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Summary

Mathematical modeling has nowadays become a cornerstone in the study of metabolic pathways.

Mathematical models provide a framework for predicting and explaining observations made in

experiments. In this work, mathematical modeling is used at two scales of detail to represent, on

the one hand, the metabolism of fatty acids (FAs) in the liver and, on the other hand, the de novo

synthesis of FAs in animals.

Fatty acids are essential in metabolism as they play a crucial role in energy conversion and storage.

Furthermore, they are involved in many other cellular functions, such as signaling and immune

response, and are material for the cell wall. They are associated with metabolic syndromes, including

mitochondrial fatty acid oxidation disorders (mFAODs). The recent investigation of some mFAODs

suggests that the disorder impacts oxidation, synthesis, and pathways. However, the studies of

mFAODs using dynamical mathematical modeling have been mainly focused on the β-oxidation.

To explore mFAODS in a more global framework, one needs models of fatty acid metabolism that

combine FA oxidation, synthesis, and degradation pathways. Additionally, I suspect FA metabolism

must be a bistable system to satisfy both the safety and rapid response to energy constraints

(switching from fed to fasted state and reciprocally).

I start by reviewing the biochemistry of enzymes involved in FA synthesis and summarize the kinetic

information of the corresponding enzymes. This step allows me to gather sufficient knowledge to

develop the two models.

The first model is a coarse-grained open model of fatty acid metabolism based on lumped enzyme

kinetics and inhibitory mechanisms. The model includes four variables: acetyl-CoA, malonyl-CoA,

fatty acids, and triglycerides, and eight reactions and eighteen parameters. I show that the model

could exhibit bi-stability through fatty acids pool. I also derive the conditions to be fulfilled by the

parameterization of the system for it to be bi-stable.

The second model is a semi-mechanistic model of the elongation part of FA de novo synthesis.

I reduced its complex mechanism into four types of reactions modeled as elementary reactions

associated with mass action kinetics. The model uses acetyl-CoA, malonyl-CoA, and NADPH to

produce three FAs (myristic acid, palmitic acid, and stearic acid) and free CoA. The model is fitted
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to the time course data of three FAs. Under the resulting parametrization, each FA’s production

rate as a function of acetyl-CoA can be approximated by Michaelis-Menten rate equations as long

as the malonyl-CoA in the system is at a low concentration. Under the latter consideration, the

palmitic acid production rates as a function of malonyl-CoA or NADPH can also be approximated

with Michaelis-Menten rate laws.
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Chapter 1

Introduction

Part of this chapter is adapted from the following published article:

Foko Kuate CA, Ebenhöh O, Bakker BM, Raguin A. Kinetic data for modeling the dynamics of

the enzymes involved in animal fatty acid synthesis. Biosci Rep. 2023 Jul 26;43(7):BSR20222496.

DOI: 10.1042/BSR20222496.

The author of this thesis contributed to the conceptualization, the methodology, the investigation

and the writing of the above article. Hence, the author retains the right to include the article in

this thesis since it is not published commercially.

Biochemical reactions occurring within living beings’ cells are the core of life. They ensure that

organisms can meet their vital challenges such as growth, reproduction, and health. To meet these

challenges, cells must process macronutrients obtained from external sources to get carbons and

free energy. These macronutrients are mainly carbohydrates, amino acids, and fat, which can

be broken down (catabolism) or used to synthesize other compounds (anabolism). Catabolism

and anabolism are the two components of metabolism, and they are carried out in several steps

involving several enzymes responsible for ensuring the relevant fluxes for the involved reactions.

Understanding how, where, and when these biochemical reactions occur is not often enough to

develop clinical solutions for associated diseases or to optimize those reactions for industrial or

commercial purposes.

It is also important to put side-by-side the enzymatic mechanisms of these reactions and their

kinetics for their studies at the macroscopic scale (in the form of pathways). In case of a defect

of one or several enzymes intervening in the metabolism, the optimal fluxes within the pathways

cannot longer be achieved, resulting in an impairment of several functionalities. In the specific cases



2

of pathways involved in energy homeostasis, numerous disorders of metabolism have been identified

that can be divided into two categories depending on whether it is involved in the metabolism of

carbohydrates or lipids.

In this work, I am interested in the dynamic understanding of fatty acid metabolism in the liver,

describing their dynamic using a mathematical modeling framework. This description is my contri-

bution to the development of tools to understand how disorder in fatty acid β-oxidation impacts

lipid metabolism and the whole body’s energy homeostasis.

1.1 Energy metabolism in the liver

The central hub of metabolism in the body is the liver, as it plays a crucial role in regulating the

synthesis, degradation, and storage of the essential building blocks for macromolecules, including

glucose derived from carbohydrates, fatty acids derived from lipids, and amino acids derived from

proteins. It is associated with the synthesis, degradation, and storage of these. In addition, it

ensures the regulation of these macromolecules through hormonal processes.

Adipose Tissues

Liver

Skeletal muscle

Brain

Glycogen synthesis

Lipogenesis

Protein synthesis

Lipogenesis
Glycogenesis

Protein synthesis

Glucose

Glucose

Ketone bodies

Glucose

Glucose

Glucose

Glucose

Dietary lipids

Glycerol

Free fatty acids

Heart

Ketone bodies

Dietary lipids

Amino acids

Glycogenolysis

Proteolysis

Lypolysis

Glycogenolysis

Gluconeogenesis

Ketogenesis

Triglycerides

Free fatty acids

Fed

 Fasted

Figure 1.1: Summary of energy homeostasis of the body: The liver’s vital function is emphasized, as it degrades

internal and peripheral organ-derived molecules during fasting to supply other organs with the necessary nutrients.

Conversely, during the fed state, the liver converts and stores macronutrients in the peripheral organs.
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1.1.1 Carbohydrate metabolism

The liver ensures the maintenance of the plasma glucose concentration (5 mmol/L) [1]. Given

the high carbohydrate content of the foods we eat, the liver stores the excess as glycogen (up

to 10% of its mass) [1]. It can also convert this excess into lipids via glycolysis and de novo

lipogenesis (DNL). Indeed through glycolysis, the liver converts glucose to pyruvate, which can

be converted into acetyl-CoA. The latter will be used as fuel for the generation of ATP through

the tricarboxylic acid (TCA) cycle and oxidative phosphorylation or as a precursor for hepatic

DNL, which is characterized by three steps: de novo fatty acid synthesis (FADNS), microsomal

modifications of fatty acids (MMFA) and formation of triglycerides (TGs) and phospholipids. TGs

resulting from DNL are stored in the liver as lipid droplets.

In the case of fasting or physical exercise, the concentration of plasma glucose drops. To compen-

sate for this drop, the liver mobilizes the glycogen reserve to produce glucose through glycogenolysis.

In the case of glycogen depletion, which usually occurs after 24 h of fasting, the liver can pro-

duce glucose from non-carbohydrates sources. This process is known as gluconeogenesis. Through

a derivative of glucose, notably the glucose-6-phosphates, the liver synthesizes NADPH via the

pentose phosphate pathway. NADPH plays an essential role in FA synthesis (see chapter 4).

The liver carbohydrates metabolism is mainly regulated by two pancreatic hormones: insulin and

glucagon. If insulin prevents hyperglycemia by activating glycogenesis and DNL, glucagon prevents

hypoglycemia by activating the degradation of glycogen and gluconeogenesis. Besides hormonal

regulation, glucose metabolism in the liver is subject to allosteric regulation through intermediates

of these pathways, and post-translational modification of intervening enzymes [2, 3].

1.1.2 Amino acid metabolism

Amino acids are mainly obtained from dietary proteins and are further metabolized in the liver.

They can be divided into essential and non-essential amino acids. Non-essential amino acids are

those that can be synthesized de novo in the liver in contrast to essential ones that cannot be

synthesized in the human body and, therefore, must be acquired from external sources. The

liver mainly uses the acquired amino acids for protein synthesis needed by peripheric tissues. In

the case of excess amino acids, the body is unable to store the excess. Therefore the liver will

break the excess into ammonia and pyruvate. The ammonia will be processed by the urea cycle

into urea, while the pyruvate can be used either for gluconeogenesis or for producing acetyl-CoA.

The latter can go directly into the TCA cycle or be used for DNL or ketogenesis. Similar to

the metabolism of carbohydrates, amino acid metabolism is subjected to hormonal and allosteric

regulations. Compared to other macromolecules, amino acids contribute less to the cell’s energy,

between 10-15 % of the total energy yield [2].
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1.1.3 Fatty acid metabolism

As for carbohydrates and amino acids, the liver is also at the center of lipid metabolism. Apart from

ensuring the contribution of lipids to energy homeostasis, it also warrants the synthesis of all the

classes of lipids necessary for other physiological processes. Although this work is dedicated to lipids’

contribution to energy homeostasis through fatty acid (FA) metabolism, I will also mention lipids’

structural and functional role occasionally. Lipids can be classified into two categories: simple and

complex lipids. Simple lipids are those composed only of atoms of carbon, hydrogen, and oxygen.

Complex lipids, in addition to these three components, also include other elements such as nitrogen,

phosphate, sulfur, or sugars. The standard criterion for all lipids is their insolubility in water and

that they all contain FAs. Therefore the description of the metabolism of lipids in the liver will focus

on that of fatty acids. In animals, specifically mammals, FAs can be obtained from dietary sources;

however, as we have seen above, the liver and other tissues can synthesize de novo FAs from the

products resulting from the breakdown of carbohydrates and amino acids. Lipids ingested as TGs

or cholesterol esters are hydrolyzed into FA, which is not subsequently absorbed by the intestine

and re-esterified into TGs. These are released into the bloodstream in the form of chylomicrons

(lipoprotein particles consisting of about triglycerides (85–92%), phospholipids (6–12%), cholesterol

(1–3%), and proteins (1–2%)) and very low-density lipoproteins (VLDL). Lipoprotein lipase (LPL)

releases FAs and 2-monoacylglycerol, which are then captured by peripheral tissues, including the

liver. Once in liver cells, depending on the energy state, FAs can be directly oxidized or remodeled

and stored in adipose tissue in the form TGs.

Nomenclature of fatty acids

FAs are long linear hydrocarbon chains, comporting a methyl group (CH3) at one end and a

carboxyl group (COOH) at the other. They can be saturated, that is to say, not having a carbon-

carbon double bond; otherwise, they are stated to be unsaturated. Natural FAs are generally made

of chains with an even number of carbons, although some have an odd number of carbons. The

FAs have a molecular formula CnH2nO2 for the saturated and CnH(2n−k)O2, where n represents

the number of carbon and k the number of double bonds. According to the recommended nomen-

clature of organic chemistry [4], there are several ways to represent FAs, among which the most

popular are the ∆ and ω representations. In both representations, the numbers of carbons and

double bonds are specified. The difference arises in the position of the double bond and its con-

figuration (cis or trans). In the ∆ representation, the positions of all the double bonds counted

from the carboxyl end are indicated by a superscript of the symbol ∆, which itself is preceded by

the cis or trans representing the double bond configuration. For example for arachidonic acid,

(CH3(CH2)4CH=CHCH2CH=CHCH2CH=CHCH2CH=CH(CH2)3COOH) its ∆ repre-

sentation is 20:4(cis, cis, cis, cis − ∆5, ∆8, ∆11, ∆14). The ω representation only gives the position

of the first double bond counted from the methyl end. Hence, for arachidonic acid, the correspond-
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ing representation is 20:4n − 6, where 20 is the number of carbons, 4 represents the number of

the double bonds, and n − 6 is the position of the first double bond.

In the following, I will be using the ω convention for the nomenclature of FA as shown in the

example, Figure1.2.

Figure 1.2: Example of structural formula of saturated and unsaturated FAs

Fatty acid catabolism: mitochondria β-oxdation

Long-chain saturated fatty acids (LCSFAs) are the favored energy source for the heart and skeletal

muscle during exercise [6]. They are mobilized from the lipogenic tissue, mainly adipose tissue,

and processed in the liver to provide the acetyl-CoA required for gluconeogenesis, ureagenesis, and

ketogenesis. Independently of the source, free FAs, are first released into the cytoplasm. Their fate

is determined by the enzyme in charge of their activation. To undergo mitochondria β-oxidation,

they are activated by acyl-CoA synthetases located in the outer membrane of the mitochondria [7].

The activation process takes place in the presence of 2 ATP, resulting in the formation of acyl-CoAs

ready to be oxidized. The resulting acyl-CoAs can directly cross the mitochondria or be shuttled

by the carnitine shuttle, a system composed of three enzymes. Short and medium-chain acyl-CoAs

cross the mitochondria membranes, whereas long-chain fatty acyl CoA requires the carnitine shuttle

system [8].

In the carnitine shuttle system (purple square boxes in Figure 1.3), the carnitine palmitoyl trans-

ferase 1 (CPT1), located within the outer membrane of the mitochondria, exchange the CoA group

of the acyl-CoA with the free carnitine resulting in an acyl-carnitine transferred in the intermem-

brane space. The carnitine acyl translocase (CACT) locate within the inner membrane transfers the

acyl-carnitine into the mitochondrial matrix, where the carnitine palmitoyl transferase 2 (CPT2)
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will exchange the carnitine group of the acyl-carnitine with the CoA. The resulting acyl-CoA, which

is ready to enter the β-oxidation cycle, is the same as the one at the beginning of the shuttling

reactions. The carnitine freed uses the shuttle system to be recycled back into the cytosol.

The oxidation cycle comprises seven in humans and eight enzymes in rodents [9] (see dark green

square boxes Figure 1.3). The difference arises in the set of substrate-specific enzymes acyl-

CoA dehydrogenases(ACADs), responsible for the first step of the oxidation cycle. The ACADs

discriminate the substrate according to its chain length. In rodents, very long-chain fatty acyl

CoA dehydrogenase (VLCAD) acts on FAs with chains greater than 12, long-chain fatty acyl CoA

dehydrogenase (LCAD) processes FAs with chains between 8 and 16, medium-chain fatty acyl

CoA dehydrogenase (MCAD) acts on FAs with chains ranging from 6 to 12. Short-chain fatty

acyl CoA dehydrogenase (SCAD) works on FAs with chains of 4 and 6. In humans, LCAD is not

expressed and therefore MCAD and VLCAD cover a wider range of substrates. Although ACADs

are consider as substrate-specific, they display a degree of flexibility when it comes to the length

of the substrate’s carbon chain. The other enzymes of the β- oxidation cycle are mitochondrial

trifunctional proteins (MTP) which in one step can process in the presence of the free CoA and

NAD+ an enoyl-CoA with a chain greater or equal to 8, resulting from the dehydrogenation by

ACADs. The MTP competes with the crotonase, which processes any chain length of enoyl-CoA

through a hydration reaction, resulting in a hydroxy-acyl-CoA. The hydroxy-acyl-CoA then goes

into a dehydrogenation reaction carried by medium/short-chain hydroxy-acyl-CoA dehydrogenase

Figure 1.3: Summary of mitochondrial β-oxidation reactions in rodents: the purple square boxes represent

the enzymes of the carnitine shuttle system, while the green square boxes represent the enzymes of the β-oxidation

cycle. (Adapted from [5])
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(MSCHAD) in the presence of NAD+. The obtained Keto-acyl-CoA goes through the last reaction

of the cycle, producing acetyl-CoA and acyl-CoA, two carbons shorter or two acetyl-CoA. This last

reaction is catalyzed by medium-chain ketoacyl-CoA thiolase (MCKAT) in the presence of the free

CoA. Regarding the oxidation of unsaturated fatty acids, specifically when the carbons containing

double bonds are encountered, instead of being acted upon by an ACAD enzyme, we observe

an isomerization reaction catalyzed by ∆3, ∆2-enoyl-CoA isomerase [10]. Figure 1.4 depicts the

isomeration mechanism of ∆3, ∆2-enoyl-CoA isomerase on a 12:2n−3 allowing its double bond to

relocate and resulting in the formation of the 12:2n−2 enoyl-CoA which could be further processed

by the MTP or the crotonase (see Figure 1.3).

Figure 1.4: Mechanism of ∆3, ∆2-enoyl-CoA Isomerase: The enzyme relocates the double bond from between

carbons 3 and 4 to between carbons 2 and 3. (Adapted from https://www.slideserve.com/hang/lecture-notes-for-

chapter-17-lipid-metabolism)

The mitochondria β-oxidation is subject to hormonal and allosteric regulation. As discussed above,

insulin activates oxidative enzymes while glucagon represses these enzymes. With respect to al-

losteric regulation, the flux of each enzyme in the oxidation cycle is inhibited by the acyl-CoA

intermediate it produces [11, 12]. It is also important to note that malonyl-CoA, which is essential

in DNL, inhibits CPT1[13].

Fatty acid anabolism

In the fed state, where the blood glucose concentration is high, the liver, via fatty acid de novo

synthesis (FADNS), will process in two steps the acetyl-CoA resulting from the degradation of

glucose into fatty acids. For FADNS to take place, the mitochondria acetyl-CoA is exported in

the cytoplasm via the citrate shuttle system. Indeed, the citrate synthase combines acetyl-CoA

with oxaloacetate to form the citrate that freely crosses the mitochondria membranes. Once in

the cytoplasm, the citrate is processed back into acetyl-CoA and oxaloacetate by the citrate lyase

using one ATP. The resulting acetyl-CoA can now be used for FADNS. The first steps of FADNS

consist in synthesizing malonyl-CoA from acetyl-CoA via a carboxylation reaction catalyzed by

acetyl-CoA carboxylase. The second step utilizes the acetyl-CoA, malonyl-CoA, and NADPH in a

series of channeling elongation reactions to produce LCSFAs. The latter, with exogenous FAs, will

contribute to cholesterol synthesis and phospholipids synthesis or be stored as triglycerides. The
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FADNS is subjected to hormonal regulation by glucagon and insulin. The glucagon inhibits FADNS

by repressing allosterically acetyl-CoA carboxylase, while insulin stimulates by dephosphorylation.

Since this work focuses on the synthesis of FAS, I dedicated a part to reviewing the literature on the

biochemical mechanisms and the kinetics of enzymes associated with the synthesis of FAs. Refer

to Chapter 3 for a more in-depth discussion of FA synthesis.

1.2 Inborn errors of metabolism

Inborn errors of metabolism (IEM) are a set of rare hereditary diseases of metabolism resulting from

enzyme or transporter deficiencies [14]. This results in the inefficiency of the pathway involving the

corresponding enzymes or transporters. They affect the metabolism of carbohydrates, amino acids,

and lipids. A compilation of worldwide data reported by Campeau et al. [15] reveals IEMs had an

incidence of about 1:1000 in 2008 [15]. To date, more than 500 IEMs have been identified and can

be classified depending on whether they are involved in the metabolism of carbohydrates, lipids,

or amino acids [14]. Among IEMs, while some can have a mild impact on the metabolism, others

could severely impact the energy homeostasis of the cell. Among others, glycogen storage diseases

(GSDs) that affect either glycogen synthesis or its breakdown into glucose are notable examples.

More than sixteen GSDs are known to date and can be clustered depending on the organ that they

impact primarily. For example, GSD type 1a and type 1b affect the liver, whereas GSD type 2a

and type 2b primarily affect muscles. Besides GSDs, mitochondria fatty acid oxidation disorders

(mFAODs) are associated either with a defect with carnitine transporters or oxidative enzymes.

A popular class of mFAODs associated with the oxidative enzymes is acyl-CoA dehydrogenase

deficiencies resulting from the defect of one of the acyl-CoA dehydrogenase (ACAD) enzymes

catalyzing the first step of the βoxidation cycle [16].

1.2.1 Mitochondria fatty acid oxidation disorders

Fatty acid oxidation disorders (FAODs) are autosomal recessive inborn errors of metabolism as-

sociated with the defects in the enzyme or transporter in the degradation of fatty acyl-CoA [17].

The defect in one of these enzymes of the carnitine shuttle system results in the class of disorders

known as carnitine transporter defects (CTDs). CTDs mainly affect the heart and are character-

ized by cardiac failure and generalized muscle weakness [18]. For a detailed description of CTDs,

the reader is encouraged to read [19, 16, 20]. As for the case of the carnitine shuttle, if one of

these enzymes is deficient, mitochondrion fatty acid oxidation disorders (mFAODs) occur, in which

ACAD deficiency disorders are the most encountered [21]. ACAD deficiencies are inherited and au-

tosomal recessive genetic diseases resulting in low production of an ACAD enzyme. They consist of

short-chain acyl-CoA dehydrogenase deficiency (SCADD), medium-chain acyl-CoA dehydrogenase

deficiency (MCADD), and very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD). This
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class of deficiencies shares common symptoms such as muscle soreness, hypoglycemia, vomiting,

and lethargy and can worsen with fasting or stress exposure. In some extreme cases, these diseases

can lead to sudden death, as is the case with MCADD [22]. The current treatment strategy consists

primarily in avoiding fasting, feeding with high carbohydrate diets, replacing LCFAs fat diets with

MCFAs fat diets for the case of VLCADD, carnitine supplementation, and uncooked corn starch

for overnight fasting [23, 16]. Some of these treatments do not always bring the expected effect.

For example, in the case of VLCADD, carnitine supplementation aimed at increasing the plasma

carnitine content negatively impacts the range of toxic acylcarnitines [24].

The most prominent ACADD is medium-chain acyl-CoA dehydrogenase deficiency (MCADD) which

is more prevalent in the caucasian population [25, 16]. The average incidence resulting from

compiling newborn screening studies from Germany, England, Australia, the United States, and

Japan suggests an average incidence of 1:10000 and 1:27000 [25]. The disease is a consequence of

the mutation of the ACADM gene that code the MCAD [14]. Since the MCAD enzyme is affected,

the cell can no longer break down medium-chain acyl-CoA leading to the accumulation of carnitine

in the blood. Another disorder of fatty acid metabolism is systemic carnitine deficiency (SCD

), characterized by the limitation of carnitine required for the carnitine shuttle. This autosomal

recessive disorder results from the mutation of the gene SLC22A5 coding for carnitine transporter

OCTN2 [25], which recover the carnitine in the kidney and ensure the availability of the carnitine

for fatty oxidation. The current treatment is carnitine supplementation and avoiding fasting [16].

1.3 Modeling

A model is a more or less simplified representation at a particular scale of a system under study

in terms of its components, their interactions, and how they come together for the system to

work. In this representation, only the relevant features of the system to allow for answering

particular or particular questions are included. Therefore, it never gives an accurate description

of the system. However, it will enable me to study the system to a certain instance, explain

observations, derive new insights, make predictions, and test various scenarios. Modeling, which is

the process of creating a representation of a system to infer knowledge from it, is a growing and

popular discipline applied in almost all fields. In biology, mathematical modeling is one of the main

components of Systems Biology and Systems Medicine, regrouping experimental and theoretical

approaches. Biological systems are complex and dynamic, involving thousands of metabolites and

reactions occurring at different time scales. To have a proxy of such complexity, it is estimated

that a single eukaryotic cell performs about ten billion reactions per second. One needs a rigorous

and rule-based framework representing the system at the microscopic and macroscopic levels to

decipher such complexity. Mathematical modeling coupled with computer simulation offers such

a framework, as mathematics provides rigor, and computers allow high-level computations and
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simulations and analyze the results.

Mathematical modeling is a vast field that includes many approaches. Depending on the aspect of

the models being studied, one approach could be more interesting than another. Fischer [26], Voit

[27], and Motta and Pappalardo [28] give a brief description of how to choose the modeling method.

No matter which modeling method is chosen, the modeling process will include the following five

fundamental steps, as described by Voit [27]

1.3.1 Steps of mathematical modeling

• Defining the scope, the goal, and the objective of the model. In this part, one should

define the question(s) to be addressed with the model and decide what aspect of the system

under study should be included. Besides, it is essential to check the data available for testing

or validating the model.

• Selecting the modeling approach and the level of details to be incorporated.

• Model construction. It consists in i) selecting the model’s components (metabolites, en-

zymes, conserved quantities); ii) define the interaction between the component of the system

(reactions, rate equations, and parameters); iii) The calibration of the model, either by ex-

tracting the parameter value from the literature, fitting the model to experimental data, or

comparing the model to existing validated models.

• Diagnosis and analysis of the model. Check for consistency, sensitivity and robustness,

and interpretation of the model’s results.

• Use of the model and applications. In this step, the model can be used for validating

the hypothesis, explaining observations, making predictions, or for other purposes

In the following, I will focus on the mathematical modeling framework based on ordinary differential

equations (ODE) used to study qualitatively and quantitatively the dynamics of several types of

biological systems and, in my case, biochemical pathways.

1.3.2 The framework for modeling metabolic pathway

Metabolism comprises many reactions, most of which are coupled and interconnected. This network

of reactions may seem insurmountable and inexplicable at first sight when regarded as a whole.

However, once dissected into subsets known as metabolic pathways, its understanding and study

become affordable. For instance, one can define a metabolic pathway as the ensemble of reactions

leading to either the degradation or the synthesis of particular compounds. Pathways can be

studied from a static or a dynamic point of view, which is chosen depending on the size of the

pathway, the questions to be addressed, the pre-existing information, and the assumptions. Static
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modeling, such as stoichiometric models and constraint-based models, allows studying the distinct

metabolic routes and the associated fluxes at the steady states [29, 30]. They are particularly

relevant for large-scale models (e.g., genome-scale) that involve up to thousands of reactions

and metabolites. However, if one is interested in tracking metabolites change over time, dynamical

models are required. Furthermore, access to the concentration of the system’s metabolites over time

allows to discriminate optimal fluxes predicted by static models that may pass through biologically

unrealistic transient states. Among dynamic models, one could differentiate between deterministic

and stochastic ones. The latter specifically allows the study of systems made of a small number

of entities and their fluctuations and to represent in silico large and complex substrates for which

kinetic rate laws cannot be derived (e.g., glycogen). Knowing what type of model to use reside

in the time scale, the assumptions, and the question to be addressed by the model. For instance,

for studying the time evolution, either quantitatively or qualitatively, of the particular metabolites

(state variables), kinetic modeling is suitable. However, if one is interested in studying steady-state

metabolites concentrations or/and steady states fluxes, one should consider static models.

1.3.3 Kinetic rate laws

The rate of change over time of individual chemical entities (noted Mi) is expressed as the sum

and difference of kinetic rate law terms (noted vj), weighted by their stoichiometric coefficients

(noted αij), following:
dMi

dt
=
∑

j

αijvj. (1.3.1)

A good overview of some simple and commonly used kinetic rate laws has been published by Saa

and Nielsen [31], as well as Kim et al. [29]. However, the ones that I use in this piece of work

are reviewed in the Chapter 2. The closer a reaction is to the equilibrium, the least details are

needed to model it. Kinetic rate laws require parameters that can be estimated from experimental

data using methods such as Lineweaver-Burk plots [32, 33, 34], Hanes-Woolf plots [35], and non-

linear regressions [36]. Still, when missing kinetic parameters, the typical approach consists in

either using those from a related organism or implementing simplistic rate laws such as mass-

action kinetics or its generalization. Although these types of rate laws are easy to analyze, they

have the disadvantage of not capturing substrate saturation [37]. To circumvent this limitation,

more complex kinetics can be used, such as Michaelis-Menten [38], multi-substrate (sequential or

ping-pong) [39], "convenience" [37] or "universal" [40] kinetics. They account for the order of

addition of the substrates, the order of formation of the products, the different types of inhibition,

the activations, the competitions, etc. Aside from these strengths, the potentially large number of

parameters is usually an obstacle for further analysis. Besides, the King and Altman method is a

generic approach to derive kinetic rate laws, step-by-step, from the underlying specific enzymatic

mechanism [41, 42, 43]. It allows determining the kinetic rate laws of complex mechanisms involving
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one or more reactants, products, inhibitors, etc. The steps of the method have been fully described

by Cleland et al. [39] and Ulusu et al. [44]. Simpler kinetics such as Michaelis-Menten can also

be retrieved by this means. In addition, the Haldane relationship can be used to relate the kinetic

parameters and the thermodynamics of the reaction via the equilibrium constant.

Generally, the mathematical representation of the dynamics of the pathway leads to large systems

of non-linear differential equations that are difficult or impossible to solve and interpret analytically.

Therefore, dedicated software tools have been developed to solve them numerically. Among others,

one can mention Modelbase [45], COPASI [46], PySCeS [47], and Berkeley Madonna [48].

1.3.4 Aims of dynamic modeling

Kinetic models can help with testing hypotheses, designing and assisting experiments, discriminating

between possible regulatory mechanisms, identifying drug targets, and making sense of genomic,

proteomic, and metabolic data [49, 50, 31, 51]. They allow for predicting how the system responds

to perturbations or identifying the existence of rescuing pathway routes, for example, towards

understanding disease phenotypes. They also can be used to predict the time course of metabolite

concentrations and fluxes, for instance, towards optimizing the latter. For illustration, I report here

a typical example where theory derived hypotheses have been verified experimentally and led to

major progress in understanding the associated metabolic pathway. It is known that hypoglycemia

observed in acyl-CoA dehydrogenase deficiencies is the result of the inability of β-oxidation to deal

with substrate influx, because one of the first enzymes involved in this cyclic pathway is defective.

Remarkably, using a detailed kinetic model, based on a bottom-up approach and a set of mice

experiments, Martines et al. [12] have been able to predict that intermediate metabolites accumulate

within the pathway, causing the reverse reactions to be more thermodynamically favorable than

the forward ones. Using metabolic control analysis, they also showed that medium-chain ketoacyl-

CoA thiolase (MCKAT) can restore the pathway fluxes, revealing its potential for being a drug

target. As an incentive, I additionally present two specific cases of experimental observations that

would typically benefit from a complementary kinetic modeling investigation. First, experimental

results by Santos and Schulze [52], and de Cedrón and de Molina [53], showed that targeting

acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), or adopting appropriate diet habits,

holds the potential to reduce tumor growth, since long chain saturated fatty acids (LCSFAs)

are considered as a risk factor for tumor proliferation. Beyond this qualitative observation, the

quantitative details of these therapeutic approaches are not specified, nor their consequences on

the whole lipid metabolism. A kinetic model could help to quantitatively characterize the respective

contribution of each enzyme to the overall LCSFAs de novo production, thereby unveiling their

potential as drug targets. Second, Lelliott and Vidal-Puig [54] observed lipotoxicity caused by an

imbalance between the synthesis and the breakdown of FA in fatty acid oxidation disorders. To

counteract this effect, they suggested that the exceeding fluxes from the oxidative tissues could be
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redirected towards lipogenic tissues such as white adipose tissue. To test this hypothesis, one would

need to develop a large model that includes the whole lipid metabolism at the organ level. For this

re-routing strategy to be quantified in a time-dependent manner and avoid unfeasible solutions, as

a first-line strategy, a kinetic model appears most appropriate.

1.3.5 Experimental data in kinetic modeling

Experimental data play a crucial role in the kinetic modeling of biological processes. They are

typically used following two fundamental modeling approaches: top-down and bottom-up. The top-

down, or data-driven approach, starts with data, whose quality and quantity guide the complexity

of the kinetic rate laws to be chosen. Indeed, it is not worth using complex kinetic rate laws that

include several parameters if only little amount of data is available. In contrast to the top-down

approach, the bottom-up uses data at the last modeling stage for model validation and refinement.

The bottom-up approach relies on prior knowledge of the enzymatic mechanism, kinetic rate laws,

and parameter values. The parameter values are usually extracted from literature or databases

(e.g., Brenda[55] and SABIO-RK [56]). It is important to keep in mind that the two methods

are not mutually exclusive. Combining them can be very powerful if data (needed for top-down)

and knowledge (needed for bottom-up) are unequally available for the distinct parts of the system

under study. The bottom-up approach requires more prior knowledge but less data for model

validation than the top-down does for model construction. Still, in both cases, time course data

of metabolite concentrations with high temporal resolution are ideal to validate kinetic models. In

case time course data are not available, one can also use fluxes to validate their model results at

the steady state, but those will not inform on the dynamics.

Metabolic data for building kinetic models are generated using targeted metabolomic techniques.

The method differs from its non-targeted counterpart in that it is calibrated for the absolute

quantification of specific metabolites. Targeted metabolomics can be combined with enzymatic

assays to measure enzyme activity or their kinetic parameters (e.g., catalytic, Michaelis-Menten,

or inhibition constants). It can also be applied to monitor the production of metabolites over time.

The most popular techniques in the field are mass spectrometry, nuclear magnetic resonance,

and liquid chromatography [57]. Most often, these methods are combined depending on the

chemical properties of the compounds to be measured, as well as that of the matrix in which the

measurements are performed [57]. The field of mass spectrometry is undergoing quick expansion,

that is boosted by the technique of stable isotope tracer labeling [58, 59, 60]. The latter allows to

track both in vivo and in vitro the incorporation of the labeled isotope to specific products, and

thus, to determine the fluxes of distinct biochemical routes in complex metabolic pathways [61].

For example, Topolska et al. [59] use 13C-labeled malonyl-CoA in combination with high-resolution

mass spectrometry, to measure the activity of fatty acid synthase (FAS) and the total fatty acid

production in vitro. Similarly, Yoo et al. [60] use 13C-labeled acetyl-CoA in combination with
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gas chromatography and mass spectrometry to measure the contribution of fluxes from different

sources, to the de novo fatty acid synthesis, in cultured brown adipose tissue.

Despite the rapid evolution of the field of targeted metabolomics with high-resolution techniques,

kinetic modeling is still limited by the quantity and quality of the available data. Regarding the

data quality, the values of the kinetic parameters associated with rate laws are most often measured

in vitro and differ from one source to another. Those do not only fail to reflect the situation in

vivo, but it is also challenging to decide what source is most suitable for modeling. Furthermore,

kinetic parameters highly depend on measurement conditions and protocols. For instance, pH and

temperature can have drastic effects, as shown by Cox and Hammes [36] for FAS. One should

also note that the amount of data produced by targeted metabolomics techniques can become

insufficient [26]. That is, for instance, the case of parameterizing complex models that include

several parameters. Depending on the time resolution of the data, it can also be challenging to

interpret the dynamics of the process, and identify kinetic parameters [62, 44].

1.4 Aims of the thesis

The metabolism of fatty acids, and thus those of lipids, is essential for the energy homeostasis

of the cell. Many metabolic disorders are related to the abnormal metabolism of FAs. Among

these disorders, mitochondrial fatty acid oxidation disorders (mFAODs) are among the most sig-

nificant due to their health care burden. To understand and provide the most appropriate clinical

solutions, extensive clinical, experimental, and computational efforts have been made, including

studies by Bentler et al. [63], Martines et al. [64, 12], and T Tucci et al. [65]. These efforts have

led to the development of treatments such as medical diets, cofactor treatments, enzyme replace-

ment, small molecule therapies, solid organ transplantation, carnitine supplementation, and cell

gene-based therapies [66]. However, the effectiveness of these treatments varies due to the wide

range of phenotypes observed for the same condition, necessitating further research for a deeper

understanding of these diseases. Particularly for MCAD deficiency, which motivates this work,

mathematical modeling has primarily focused on the dynamics of oxidation pathways [12, 67, 68].

Yet, lipidomics studies in mFAODs, such as MCAD and VLCAD deficiencies [5, 65], indicate sig-

nificant changes in the FA profiles of liver triglycerides (TGs) under these conditions, suggesting

an impact on both FA oxidation and synthesis pathways. This observation leads to our research

questions:

1. Which metabolic routes lead to the disruption of triglyceride distribution in the liver in the

context of MCAD deficiency?

2. What is the magnitude of the shift in steady-state concentration values of key metabolites

(acetyl-CoA, malonyl-CoA, and FAs) in MCAD deficiency?
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To address these questions comprehensively, an examination of the entire FA metabolism is es-

sential. To my knowledge, no existing mathematical models investigating mFAODs incorporate

FA synthesis dynamics, possibly due to the lack of a mechanistic model for a crucial part of FA

metabolism, namely fatty acid de novo synthesis (FADNS), and the scarcity of kinetic parameters

for FA synthesis. This work aims to make a pioneering step towards answering the posed research

questions. My contribution is primarily theoretical, focusing on a mathematical modeling approach.

Initially, I identify the main challenges in modeling FA synthesis (Chapter 3) through a literature

review and identification of existing gaps. Subsequently, I propose two mathematical models: the

first addresses selected questions in FA metabolism (4), and the second provides a semi-mechanistic

model of the elongation process in fatty acid de novo synthesis (Chapter 5).

Studies on mFAODs using mathematical modeling have primarily focused on FA degradation path-

ways, partly due to the lack of kinetic parameters for enzymes involved in FA synthesis. Through

Chapter 3, I conduct a thorough literature review on these enzymes’ kinetic parameters, aiming

to highlight gaps and direct where efforts should be concentrated to facilitate the development

of mathematical models for FA synthesis dynamics. Despite the lack of specific parameter val-

ues, constructing a mathematical model of FA metabolism and analyzing it qualitatively remains

feasible.

Given the limited parameters and experimental data for constructing a detailed mechanistic mathe-

matical model of FA metabolism, my initial focus was on qualitative understanding. Depending on

nutritional, environmental, or metabolic conditions, FAs are either synthesized or degraded, with

both processes representing stable, steady states within the FA metabolism dynamical system. An

initial step towards addressing the main research questions includes answering the following:

1. Which biochemical mechanisms explain the existence of two distinct metabolic steady-states

(synthesis and degradation)?

2. Under what scenarios do we observe these steady-states?

To tackle these questions, I developed a coarse-grained model of fatty acid metabolism that in-

cludes acetyl-CoA, malonyl-CoA, FAs, and TGs. This model allows deriving sufficient and necessary

conditions for the parameterization to exhibit bistability in FA metabolism. The two steady states

represent those for FA synthesis and degradation. Furthermore, these steady-states are guaran-

teed by the utilization of liver FAs for non-energetic purposes. These insights provide a better

understanding of how conditions like hypoglycemia or hyperglycemia influence the breakdown and

synthesis of FAs and the transition between steady states based on glucose or dietary fat influx.

Addressing the research questions also involves confronting the need for a detailed mechanistic

model for FADNS. I, therefore, have developed a semi-mechanistic model for FADNS, a pathway

directly linking FA synthesis and oxidation and deserving of detailed study due to its complexity
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and the multiplicity of reactions performed by a single enzyme. Besides, this model can predict

fluxes and dynamics of LCFA synthesis in any lipogenic tissue under specific conditions and deduce

kinetic parameters like kcat and Km values for FADNS in different tissues and mammalian species,

addressing the kinetic parameter scarcity.

1.5 Outline of the thesis

This thesis aims to contribute to the understanding of fatty acid (FA) metabolism, particularly in

the context of mitochondrial fatty acid oxidation disorders (mFAODs), by developing and analyzing

mathematical models. The research questions outlined in the previous section guide the structure

and content of this thesis as follows:

1. Which metabolic routes lead to the disruption of triglyceride distribution in the liver in the

context of MCAD deficiency?

2. What is the magnitude of the shift in steady-state concentration values of key metabolites

(acetyl-CoA, malonyl-CoA, and FAs) in MCAD deficiency?

The thesis is organized into five chapters, each building upon the last to systematically address

these questions through theoretical modeling and analysis.

Chapter 1: Introduction provides a comprehensive background on FA metabolism, highlighting

its importance in cellular energy homeostasis and the liver’s role. This chapter introduces key

metabolic disorders, with a focus on mFAODs, and outlines the modeling frameworks employed to

simulate metabolic pathways, emphasizing kinetic rate laws.

Chapter 2: Materials and methods details the mathematical tools and kinetic rate laws utilized

throughout the thesis. This chapter serves as a foundation for the modeling work, explaining the

methodologies employed in subsequent chapters.

Chapter 3: Biochemistry and kinetics of enzymes involved in animal fatty acid synthesis

reviews the current knowledge on FA synthesis biochemistry and the kinetics of involved enzymes. It

identifies gaps in the literature, particularly concerning kinetic parameters, and suggests directions

for future research to facilitate model development.

Chapter 4: Fatty acid metabolism: conditions for bi-stability presents a coarse-grained

model of FA metabolism in the liver. It establishes conditions under which bi-stability occurs,

offering insights into the metabolic transitions between FA synthesis and oxidation. This chapter

employs Descartes’ rules of signs and dynamic system theory to establish the necessary and sufficient

conditions for FA metabolism to be a bi-stable system, where the steady-states correspond to two

regimes, FA oxidation and FA synthesis.
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Chapter 5: A semi mechanistic model of fatty acid de novo synthesis introduces a

semi-mechanistic model of fatty acid de novo synthesis (FADNS), validated against experimen-

tal datasets. It links model parameters with experimental data and prioritizes parameters based

on sensitivity analysis. The chapter concludes with a discussion on model limitations and future

research directions.

The General conclusion evaluates the thesis’s contributions to the field of FA metabolism mod-

eling, discusses limitations, and suggests avenues for future work. This final section reflects on the

implications of the findings for understanding mFAODs and potential clinical applications.

This structure not only gives a beginning of an answer to the proposed research questions but

also contributes to the theoretical modeling of FA metabolism, offering insights into the complex

dynamics of FA synthesis and oxidation.
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Chapter 2

Material and methods

2.1 Descartes’ rule of signs

Descartes’ rule of signs is an approach used to determine the number of possible positive and

negative roots of a polynomial with real coefficients, regardless of its degree. The rule is based on

analyzing the number of sign changes among the coefficients of the polynomial. This technique,

when combined with the study of the polynomial’s maxima, can be employed to describe the roots

of a polynomial or establish constraints on its behavior. In Chapter 4, I will demonstrate the

powerful application of Descartes’ rule of signs in studying the structural stability of a dynamical

system.

In the following, I will provide a concise explanation of Descartes’ rule of signs by presenting two

fundamental propositions that serve as the foundation of this rule. Subsequently, I will provide

an example to illustrate how the rule is applied. For a more thorough understanding, extension,

and practical implementation of this concept, I encourage readers to refer to the comprehensive

summary by Anderson et al. [69].

Proposition 1 (Descartes’ rule of signs for positive roots). The number of positive roots

Np(P ) of a polynomial P with real coefficients is equal to the number of sign-changing Vp(P ) of

the coefficients of the expression P (x) minus an even number.

Vp(P ) − Np(P ) = 2k, k ∈ N

Proposition 2 (Descartes’ rule of signs for negative roots). The number of negative roots

Nn(P ) of a polynomial P with real coefficients is equal to the number of sign-changing Vn(P ) of

the coefficients of the expression P (−x) minus an even number.

Vn(P ) − Nn(P ) = 2k, k ∈ N
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Example 1. Let us consider the polynomial P defined by

P (x) = −2x5 + x4 − 3x3 − 7x2 + 6x − 3,

the coefficient are -2, 1, -3, -7, 6, -3. The number of sign-changing, Vp(P ), in the polynomial

P (x) is represented by the number of color changes. In this case, since Vp(P ) = 4, it suggests

that the polynomial P could potentially have four, two, or zero positive roots.

We have

P (−x) = 2x5 + x4 + 3x3 − 7x2 − 6x − 3,

the coefficients are 2, 1, 3, -7, -6, -3, which suggests number of sign-changing Vn(P ) of the

polynomial P is 1. Therefore the polynomial P has one negative root.

2.2 Structural stability of a dynamical system

The study of deterministic dynamic systems, such as metabolic pathways, consists in determining

the future of a system in which one has limited information of its history; still, its dynamic is

determined by a physical law of evolution. This study can be done quantitatively or qualitatively. In

the quantitative approach, one solves analytically or numerically the differential equation associated

with the system and infers the numerical values of certain aspects of the system, such as fluxes and

concentrations, as a function of time. This first approach will be used in Chapter 5. The qualitative

approach involves obtaining information on the trajectories without solving the differential equation.

More precisely, it allows for characterizing the system’s nature and predicting its asymptotic behavior

based on a particular initial condition. For example, it enables knowing if a system presents

oscillatory behaviors and determining the number of fixed points of a system and their respective

stability. This second approach is the subject of this section and will be used in Chapter 4 to

determine the bi-stability conditions of FA metabolism. My intention is not to present the theory

of dynamical systems exhaustively, but rather to give the theoretical foundations of the tools that

I use in the chapter 4 to determine the structural stability of the dynamical system that represents

FA metabolism.

Definition 2.2.1. (steady state) Consider the autonomous non-linear system described by the

equation
dx

dt
= f(x), (2.2.1)

a point x∗ is a fixed point (steady-state) of the system if it is a solution of the algebraic equation

f(x) = 0. (2.2.2)

Definition 2.2.2. (stability of steady-state )
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A steady-state x∗ is stable if and on only if

∀ǫ > 0, ∃δ(ǫ) > 0, s.t.‖x(t0) − x∗‖< δ =⇒ ‖x(t) − x∗‖< ǫ, ∀t ≥ t0.

In other words, it says that there is a neighborhood of x∗ such that any trajectory representing the

solution of (2.2.1) entering that neighborhood will end in x∗.

A steady state is said to be unstable if it is not stable.

2.2.3 Linearization and structural stability

Studying the non-linear global and asymptotical stability of the fixed points of a non-linear dy-

namical system is quite complex as it is difficult to predict the effect of nonlinearity. The classical

approach consists in finding the Lyapunov function to apply the Lyapunov theorem [70] that guar-

antees global and asymptotical stability. However, in practice, it is challenging to find a Lyapunov

function, and the difficulty increases with the system’s dimensionality. Nevertheless, it is always

possible to study the structural stability of the fixed points, that is to say, study the trajectories

of the solutions in the neighborhood of the fixed point. The Hartman-Grobman theorem allows us

to say that the linearized system has the same qualitative structures near hyperbolic fixed points.

Thus, the analysis of the stability of a fixed point of a non-linear system can be restricted to

studying the behavior of the trajectories of the linearized system in the neighborhood of this fixed

point.

Definition 2.2.4. (Linearized system) Considering the system (2.2.1), Taylor expansion allows

rewriting (2.2.1) as follow

dx

dt
= Df(x) + O(‖x2‖). (2.2.3)

The ODE
dx

dt
= Df(x) (2.2.4)

will be called the linearized system associated with (2.2.1).

Definition 2.2.5. (Hyperbolic steady-state) Let us set

J = Df(x∗) (2.2.5)

and x∗ is a hyperbolic fixed point of (2.2.1) if and only if all the eigenvalues of J has non zeros

real parts.

Remark 2.2.6. J is also known as the Jacobian matrix for the system (2.2.1) associated with the

steady-state S∗.
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Theorem 1. (Stable hyperbolic steady-state) If all the eigenvalues of J have a strictly negative

real part, then x∗ is an asymptotically stable steady-state.

Theorem 2. (Unstable hyperbolic steady-state) If J has at least one eigenvalue with strictly

positive real part, then the equilibrium x∗ is unstable

In the case of linear systems, theorems 1 and 2 give sufficient and necessary conditions for the

stability or the non-stability of a non-hyperbolic equilibrium. However, in the case of a non-linear

system, these conditions are only sufficient.

Theorem 3. (The Hartman-Grobman theorem) Let x∗ be a hyperbolic fixed point of the

system (2.2.1). If f is continuously differentiable on its domain, then there exists a small open

neighborhood U of x∗ so that the system (2.2.1) is topologically equivalent to its linearization.

(2.2.3) on U .

Given that in this Chapter 4, I am only interested in the stability of the steady-states, I will apply

the above-mentioned theorem to determine the conditions for the metabolism of FAs to exhibit

bi-stability.

2.3 Kinetic rate laws

This section gives a general overview of kinetic rate laws that I use in Chapters 4 and 5.

2.3.1 Elementary reactions and Mass actions rate laws

Elementary reactions are either reactions of spontaneous change of a molecule A to a molecule

B (uni-molecular) or resulting from the collision between two molecules (bi-molecular) and, very

rarely, of several molecules (multi-molecular). Uni-molecular elementary reactions are better known

as decay processes, in which a molecule changes its nature to give another molecule (e.g., isomeriza-

tion) or dissociates to give two molecules. Unimolecular reactions are first-order reactions because

the product(s) formation rate is proportional to the reaction compound’s concentration (reactant).

Let us consider the two scenarios. In the first case, the compound A reacts to give B, and in the

second case, A reacts to give B and C that is

A
k−→B, A

k−→B + C

In both cases, the rate of disappearance of A over time v is

−v =
dA

dt
= −k[A],

and the rate of formation of product(s) in the two scenario are
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v =
dB

dt
= k[A], v =

dC

dt
= k[A].

For bimolecular reactions, two reactants, A and B, react to give one or more products. The rate

of disappearance of reactants and formation of product(s) follow the second-order kinetics, as they

are proportional to the concentration of reactants. Hence, we have

A + B
k−→

n
∑

i=1

Ci

−v =
dA

dt
=

dB

dt
= −k[A][B] and v =

dCi

dt
= k[A][B], 1 ≤ i ≤ n.

More generally, consider reactant A1, A2, · · · , An reacting to give m products B1, B2, · · · , Bm. To

account for how many molecules of reactants and products are consumed and produced in a single

reaction, we introduce the stoichiometry coefficients αi and βi. The reaction can be described with

the following scheme,

n
∑

i=1

αiAi
k−→

m
∑

i=1

βjBi.

The rate of disappearance of reactants and formation of products will is,

−v =
dAi

dt
= −k

n
∏

i=1

[Ai]
αi and v =

dBj

dt
=

n
∏

i=1

[Ai]
αi , 1 ≤ i ≤ n, 1 ≤ j ≤ m.

The constant k is the kinetic rate constant relating the reactants’ concentrations and the reaction

rate. It describes how fast the reaction occurs and is related to the temperature. The larger k is,

the faster the reaction is.

So far, we have only considered reactions going in one direction (irreversible), yet almost all reactions

proceed in both directions (reversible). And the corresponding net rate of the overall reaction is

equal to the difference between the rate of the forward and the backward reaction. The choice

of the forward and backward reactions can be made arbitrarily. However, in practice, The forward

reaction is the one that is thermodynamically favorable. To give a better illustration, consider the

following reversible with n reactants and m products reaction. The kinetic rate constants are kf

for the forward reaction and kb for the backward reaction.

n
∑

i=1

αiAi

kf−−⇀↽−−
kb

m
∑

j=1

βjAj. (2.3.1)
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The rate of the forward reaction

vf = kf

n
∏

i=1

[Ai]
αi , (2.3.2)

and that of the backward reaction is

vb = kb

n
∏

j=1

[Bj]
βj . (2.3.3)

Hence the net rate of the reaction is given by

v = vf − vb = kf

n
∏

i=1

[Ai]
αi − kb

n
∏

j=1

[Bj]
βj . (2.3.4)

At the equilibrium, the rates of the forward and the backward reactions are equal and one can

derive the equilibrium constant

Keq =
kf

kb

=

n
∏

j=1

[Bj]
βj
eq

n
∏

i=1

[Ai]
αi
eq

, (2.3.5)

where [Ai]eq and [Bj]eq are the concentrations of n reactants and m products, respectively.

The equilibrium constant is related to the thermodynamics of the reaction through the Gibbs’ free

energy of the reaction by the following relationship,

∆G = ∆G0 + RT ln Q, with ∆G0 = −RT ln Keq.

∆G defines the spontaneity of a reaction. Indeed, if ∆G < 0, the reaction proceeds spontaneously;

otherwise, the reaction will need external energy.

Remark 2.3.2. It is important to note that no matter how complex a chemical reaction is, it is

always possible to break it down into elementary reactions. It is this observation that inspires us

in the development of the model of Chapter 5.

2.3.3 Michaelis-Menten derived kinetics

We have seen earlier that it is possible that certain reactions are not taking place spontaneously

and will need external intervention. Indeed, enzymes, through their catalytic action, can bring

such an intervention. They are capable of reducing Gibbs’ free energy. They have a catalytic site

(active site) and an allosteric site (see Figure 2.1). The substrate(s) bind to the catalytic site, while

other molecules not participating directly in the reaction can attach to the allosteric site. In this

section, we are interested in some kinetic rate laws of one substrate enzyme-catalyzed reactions,

particularly "Michaelian" kinetics. I used these kinetics, notably Michaelis-Menten kinetics and
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non-competitive inhibition, to build the model studied in Chapter 4. Furthermore, in Chapter 5, I

consider the description mechanism of competitive inhibition to represent the inhibition of FADNS

by the free CoA.

Figure 2.1: Basic description of an enzyme (Adapted from “Enzymes, Substrates, and Inhibitors”, by BioRen-

der.com (2022). Retrieved from https://app.biorender.com/biorender-templates )

Michaelis-Menten Kinetics

The Michaelis-Menten equation [38, 71], for describing the kinetics of enzymatic reactions, might

be the most famous in the field of enzyme kinetics. It allows describing the rate v of formation

of the product as a function of the concentration of the substrate and two parameters reflecting

the efficiency of the enzyme. In this paragraph, we present the derivation of Michaelis-Menten

equations from the elementary reactions and key assumptions.

Consider the enzymatic reaction with one substrate (S), where the enzyme is denoted by E. In the

first step, the enzyme bind with the substrate to form the complex enzyme-substrate ES, which

in the second step reacts to form the product P and the enzyme E (see diagram 2.3.7). For the

most recent derivation of the equation, the following assumptions are made:

• The backward reaction of dissociation of the complex ES into E and P negligible.

• The total concentration of enzyme participating in the reaction is conserved:

ET = E + ES (2.3.6)

• The concentrations of ES remains constant, although those of S and P are changing. This

last consideration, known as the quasi-steady state assumption (QSSA) proposed by Briggs

and Haldane [71], is crucial for deriving the equation.

E + S
k1−−⇀↽−−
k−1

ES
k2−−→ E + P (2.3.7)

From elementary reactions, the dynamic of the components of the system is described by the

system of ODEs
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d[S]

dt
= −k1[E][S] + k−1[ES] (2.3.8)

d[E]

dt
= −k1[E][S] + (k−1 + k2)[ES] (2.3.9)

d[ES]

dt
= k1[E][S] − (k−1 + k2)[ES] (2.3.10)

d[P ]

dt
= k2[ES], (2.3.11)

The overall rate of product formation is given by,

v =
d[P ]

dt
= k2[ES], (2.3.12)

which is the same equation as (2.3.10). The idea is to express [ES] in terms of known or tractable

quantities. The last two assumptions will be applied for this purpose.

From the QSSA, we have:

d[ES]

dt
= 0 ⇐⇒ (k−1 + k2)[ES] = k1[E][S], (2.3.13)

From the conservation of the enzyme species, one can express E in terms of [ET ] and [ES], and

the above equation becomes

(k−1 + k2)[ES] = k1([ET ] − [ES])[S], (2.3.14)

hence

[ES] =
k1[ET ][S]

(k−1 + k2) + k1[S]
=

[ET ][S]

(k−1 + k2)

k1

+ [S]

. (2.3.15)

By replacing ES, by its expression in (2.3.12) one obtains

v =
k2[ET ][S]

(k−1 + k2)

k1

+ [S]

. (2.3.16)

Let

Vmax = k2[ET ], and Km =
k−1 + k2

k1

.

Thus the Michaelis-Menten equation can be written as

v =
Vmax[S]

Km + [S]
. (2.3.17)

The equation displays a hyperbolic relation between the substrate concentration and the rate of

formation of the product (see 2.2).
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Figure 2.2: Michaelis-Menten kinetics curve

The graphical representation allows giving physical meaning to the equation parameter: V max is

the maximal rate of the reaction, and Km is the substrate concentration that gives half of the

maximum rate. For a particular reaction, these parameters can be estimated by using a Lineweaver-

Burk plot if one has experimental data before hands (see 2.3). The Lineweaver-Burk plot is also

known as the inverse plot because it results from expressing
1

v
as a function of

1

S
as follows

1

v
=

Km

Vmax

1

[S]
+

1

Vmax

, (2.3.18)

by using linear regression one can estimate Km and Vmax.
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Figure 2.3: How to extract the parameter of Michaelis-Menten equation using Lineweaver-Burk plot

Remark 2.3.4. There is an earlier derivation of the Michaelis-Menten equation by Michaelis et al.

[38] based on rapid equilibrium assumption instead of the QSSA. This derivation assumes that
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the rate at which the equilibrium for the formation of the [ES] complex is faster than the rate of

formation of P . Hence, toward the course of the reaction, the formation of [ES] is the chemical

equilibrium, and one can define the dissociation constant

Kd =
[E][S]

[ES]
=

k−1

k1

and express [ES] in terms of [ET ], Kd and [S]. using the same reasoning as for QSSA, one obtains

the following formulation of Michaelis-Menten equations

v =
Vmax[S]

Kd + [S]
. (2.3.19)

Km defines the enzyme’s affinity with the substrate. A lower Km shows a high affinity, while a

large Km shows a low affinity.

In some cases, we may have compounds that do not directly participate in the reaction but influence

its kinetics, as is the case for many biochemical reactions. A good example is the in vivo malonyl-

CoA synthesis, where LCFAs inhibit the response. Generally, a compound external to a reaction

can influence its kinetics in two ways. In the first case, it can enhance the kinetics; in this case, it is

called an activator. In the second case, it can inhibit the reaction, and it is said to be an inhibitor.

Given that I am only working with inhibition mechanisms in this thesis, I will briefly describe some

of them and their influence on the Michaelis-Menten equation. Above all, note that in the presence

of an inhibitor, the Michaelis-Menten equation remains valid, but with the parameters V app
max and

Kapp
m . The superscript "app" means that they are apparent parameters due to the effect of the

inhibitor.

In the following, we denote I any inhibitor, ki, and k−i kinetic rate constants for the forward and

backward inhibition reaction, respectively.

Figure 2.4: Different type of inhibition (Adapted from “Enzymes, Substrates, and Inhibitors”, by BioRender.com

(2022). Retrieved from https://app.biorender.com/biorender-templates)
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Competitive inhibition

In the case of competitive inhibition, the inhibitor occupies the enzyme’s active site, thus preventing

the substrate from binding to the enzyme. Therefore, it reduces the enzyme’s affinity for the

substrate (increases the value of Km). The competitive inhibition mechanism is described by

Figure 2.4 and the equations (2.3.20) and (2.3.21).

E + S
k1−−⇀↽−−
k−1

ES
k2−−→ E + P (2.3.20)

E + I
ki−−⇀↽−−
k−i

EI (2.3.21)

The kinetic rate law is given by

v =
V app

max[S]

Kapp
m + [S]

=
Vmax[S]

Km(1 +
[I]

Ki

) + [S]

, with Ki =
k−i

ki

. (2.3.22)

Thus, in the Michaelis-Menten formulation, we have

V app
max = Vmax and Kapp

m = Km(1 +
I

Ki

).

Uncompetitive inhibition

In the case of uncompetitive inhibition, the inhibitor occupies the allosteric site after the enzyme

has already bound to the substrate, thus preventing the reaction to proceed. As a result, it reduces

the enzyme’s affinity for the substrate (increases the value of Km) and the enzyme’s capacity to

release the product (V max). The uncompetitive inhibition mechanism is described in Figure 2.4

and by equations (2.3.23) and(2.3.24).

E + S
k1−−⇀↽−−
k−1

ES
k2−−→ E + P (2.3.23)

ES + I
ki−−⇀↽−−
k−i

ESI (2.3.24)

The kinetic rate law is given by:

v =
V app

max[S]

Kapp
m + [S]

=
Vmax[S]

Km + [S](1 +
[I]

Ki

)

, with Ki =
k−i

ki

. (2.3.25)

Hence

V app
max = Vmax(1 +

I

Ki

) and Kapp
m = Km(1 +

I

Ki

).
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Non-competitive inhibition

In non-competitive inhibition, the inhibitor occupies the allosteric site of the free enzyme, modifying

its active site and preventing the substrate from binding. Equally, it can bind to the allosteric site

after the complex enzyme substrate is formed, thus preventing the reaction from proceeding. As a

result, it reduces the Vmax. The non-competitive inhibition mechanism is described in Figure 2.4

and by equations (2.3.26)-(2.3.29).

E + S
k1−−⇀↽−−
k−1

ES
k2−−→ E + P (2.3.26)

E + I
ki−−⇀↽−−
k−i

EI (2.3.27)

ES + I
ki−−⇀↽−−
k−i

ESI (2.3.28)

EI + S
ki−−⇀↽−−
k−i

ESI (2.3.29)

The kinetic rate law is given by

v =
V app

max[S]

Kapp
m + [S]

=
Vmax[S]

(Km + [S])(1 +
[I]

Ki

)

, with Ki =
k−i

ki

. (2.3.30)

Hence

V app
max =

Vmax

1 +
I

Ki

and Kapp
m = Km.

In Chapter 4.1, I use only the Michaelis-Menten equation and non-competitive inhibition to describe

the kinetics of processes associated with FA metabolism. We decided to mention the other types of

inhibition as a basis for comparison, and also to question the choice of the mechanism of inhibition.

2.4 Fitting method: Lavenberg-Marquart algorithm

Once a mathematical model representing a biological system is constructed, experimental data

(observable) are essential in measuring how accurately the model describes the system and its

predictive value. As part of the answer to these questions, it is to find the best parameterization

such that the model is close enough to the system. Finding such a parameterization is known as

fitting the model to data by continuously adjusting the parameterization until the model displays

the behavior of the data. The fitting relies on optimization techniques that minimize an objective

function describing the distance between the output of the model and the data. For example, one

can choose to minimize the sum of the square of differences (SSD) between the model output and

the data under a set of constraints or not. They are mainly two classes of optimization techniques:

linear and non-linear optimization. The linear optimization techniques are used when the objective
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function and all the constraints are linear (affine is considered linear) with the parameters to be

optimized. If that is not the case, as in Chapter 5, one should use the non-linear optimization

techniques. This section intends to briefly describe the Lavenberg-Marquart algorithm, which will

be used to fit the model developed in Chapter 5 to experimental data. To introduce the Lavenberg-

Marquart method, one needs the Gradient descent method and Gauss newton method that I present

in the following.

To simplify the description, we assume that the model output and the data are one dimension and

that the system under study is a time-dependent process. Let us consider a model f that depends

on the parameterization θθθ describe by the following diagram

f :Rp → R (2.4.1)

θθθ 7→ y,

let suppose that we have m observable ȳ(t1), ȳ(t2), · · · , ȳ(tm). We would like to find a parame-

terization θ̃θθ that minimizes the distance between the output of the model and the observable. In

order words

θ̃θθ = argmin χ(θθθ), (2.4.2)

where

χ(θθθ) =
m
∑

i=1

(

f(ti, θθθ) − ȳ(ti)

σi

)2

=
m
∑

i=1

ri(θθθ). (2.4.3)

2.4.1 The Gradient descent method

The method requires the objective function χχχ to be differentiable and convex, as the differentiability

ensures the existence of the gradient that allows finding the steepest descent, and the convexity

ensures the presence of the global minimum. The method is iterative and consists in starting from

an arbitrary value of the parameter vector θ0θ0θ0, at each iteration k, updating the parameter in the

direction of the steepest descent (−∇χ(θθθk), the negative of the gradient), with the step αk. The

iteration scheme is given by

θθθk+1 = θkθkθk − αk∇χ(θθθk). (2.4.4)

Notice that at each iteration, one must compute the gradient of χ at θθθk, ∇χ(θθθk) and αk. αk is

computed by solving the one dimension optimization problem

αk = argmin
α∈R

χ(θθθk − α∇χ(θθθk)) (2.4.5)
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The algorithm stops when the minimum (θmin) is reached. Indeed, θmin is the solution of the

equation

‖∇χ(θθθ))‖= 0. (2.4.6)

Remark 2.4.2. In practice, the equation (2.4.6) is not set as a stopping condition. Rather, an

acceptable tolerance value ε > 0 is chosen, and the stopping condition is

‖∇χ(θθθ))‖< ε. (2.4.7)

When far away from θθθmin, αk is big, and the method converges faster. However, when close to

θθθmin, αk becomes slower, resulting in slow convergence. The cost for computing for αk at each

iteration can be very expensive, especially when getting close to θmin. Indeed, the step sizes αk

become very small, resulting in slow convergence. The Gauss-Newton Method has the power to

correct this last limitation.

2.4.3 The Gauss-Newton method

The Gauss-Newton methods is specific for solving the least square optimization problem (the

objective function is written as the sum of squared residuals).

One can notice that the equation (2.4.3) is written as a sum of squares of residuals, therefore

suitable to describe the Gauss-Newton method.

Like the gradient descent gradient method, this method is iterative based on the general Newton

method to find the minimum θθθmin of any function starting from an arbitrary initial guess θθθ0. In

the case studied in this section, the Newton iteration scheme is written as follows

θθθk+1 = θθθk − (∇2χ(θθθk))−1∇χ(θθθk). (2.4.8)

It is often expensive to compute the Hessian term ∇2χ(θθθk). To solve this issue, one can approximate

the Hessian term with an expression including only the gradient, which is less expensive to compute.

Indeed

∇2χ(θθθk) = ∇χ(θθθk)∇χ(θθθk)T +
m
∑

i=1

ri(θθθk)∇2ri(θθθk). (2.4.9)

By neglecting the second term of the right-hand side of (2.4.9), one obtains the following approx-

imation of the Hessian matrix

∇2χ(θθθk) ≈ ∇χ(θθθk)∇χ(θθθk)T , (2.4.10)
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replacing the Hessian in the equation (2.4.8), one obtains the iteration scheme of the Gauss-Newton

method

θθθk+1 = θθθk − (∇χ(θθθk)∇χ(θθθk)T )−1∇χ(θθθk). (2.4.11)

The stopping condition can be set by choosing two positive reals ε and δ, and the iteration will

terminate when either

‖∇χ(θθθ))‖< ε (2.4.12)

or

|θθθk − θθθk−1|< δ. (2.4.13)

The Gauss-newton method converges but only quadratically around the θθθmin, which was not the

case with gradient descent methods.

2.4.4 Lavenberg-Marquart algorithm

Earlier, we noted the limitations of the gradient descent and Gauss-Newton methods. In partic-

ular, the weak convergence around θθθmin for that of gradient descent and a weak convergence far

from θθθmin for the Gauss-Newton method. The Lavenberg-Marquardt algorithm combines the two

methods to take advantage of their strength. Indeed, it behaves like the gradient descent method

when far from θθθmin and like the Gauss-Newton method when close.

By noting that in the case of the gradient descent and Gauss-Newton methods, the iterative scheme

can be written as

θθθk+1 = θkθkθk − ω∇χ(θθθk)

with

ω = αk

in the case of the gradient descent and

ω = (∇χ(θθθk)∇χ(θθθk)T )−1

in the case of Gauss-Newton, Lavenberg proposes the following scheme

θθθk+1 = θkθkθk − (∇χ(θθθk)∇χ( θθθk)T + αkIII)−1∇χ(θθθk) (2.4.14)

that include the features of the two methods. However, when evaluated far from θθθmin, the αkIII is

dominant compared to the contribution of the Hessian matrix, and therefore the Hessian term is

almost not used. By remarking that the Hessian matrix is proportional to the curvature, Marquardt
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later suggests replacing the identity matrix with the diagonal matrix made of diagonal entry of the

Hessian. Hence, we obtain the Lavenberg-Marquart scheme:

θθθk+1 = θkθkθk − (∇χ(θθθk)∇χ( θθθk)T + αk diag(θθθk)∇χ( θθθk)T ))−1∇χ(θθθk). (2.4.15)

The Lavenberg-Marquardt algorithm generally converges quadratically and uses the same stopping

condition as the Gauss-Newton method. The literature presents numerous directions to improve

these techniques. Good starting points are the books by Nocedal and Wright [72] and Boyd et al.

[73] that I used for writing this section. I will present an example where I used lmfit [74] Python

package to show how the Lavenberg-Marquardt is an excellent fitting algorithm for non-linear least

square problems.

lmfit package

lmfit is a Python package that allows solving the non-linear optimization problem. Initially, the

package was developed only to apply the Levenberg-Marquardt algorithm (default method) to solve

non-linear least square optimization problems, but it has been extended to various forms. A quick

search on Google Scholar shows that the package has been used approximately a thousand times

in different disciplines. The package has the advantage of returning several pieces of information,

such as the confidence interval, and Akaike info criterion, the Bayesian info criterion as shown in

the example below.

Example 2.4.5. In this example, I would like to show how the Python-based library lmfit [74] is

powerful for non-linear optimization.

Consider the following mathematical function

f :R → R
3

(xxx) 7→ (f1(x), f2(x), f3(x)),

where































f1(x) =
ax + c

x2 + 1
+

dx

exp (x + 1)

f2(x) = a
√

x + d sin x + b cos x

f3(x) = −bx +
c

ax4 + 1
+ d cos x.

To generate the data, the values of a, b, c, and d were set to 2, 0.2, 10, and 3, respectively. Then

the standardized normally distributed noise around the function output were added. Then lmfit

was used to estimate the value of the parameters a, b, c, and d that allow to best reproduce the

data.
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I start with three initial guesses for the parameter vector (a, b, c, d) to be (0.1, 0.01, 0.7, 0.3, ),

(10, 21, 27, 50), and (0.006, 33, 2.7, 0.08). The three fits equally produce the same estimate of the

vector (â, b̂, ĉ, d̂) = (2.007, 0.198, 9.855, 2.98). Figure 2.5 shows the visualization of the fitting

results.
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Figure 2.5: Fitting result with lmfit library

[[Fit Statistics]]

# fitting method = leastsq

# function evals = 36

# data points = 240

# variables = 4

chi-square = 122.415157

reduced chi-square = 0.51870829

Akaike info crit = -153.572975

Bayesian info crit = -139.650419

[[Variables]]

a: 2.00766892 +/- 0.01799346 (0.90%) (init = 10)

b: 0.19769103 +/- 0.00975653 (4.94%) (init = 21)

c: 9.85508511 +/- 0.36302912 (3.68%) (init = 27)

d: 2.98016729 +/- 0.06296143 (2.11%) (init = 12)

[[Correlations]] (unreported correlations are < 0.100)

C(b, d) = 0.934
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2.4.6 Sensitivity analysis

Creating parsimonious models representing physical processes presents many difficulties in design

and validation. Regarding the design, the question of the model’s size and the detail level are

not questions that can be addressed straightforwardly. As for the validation of the model, it often

consists of the estimation of the parameters, which can be costly. It becomes crucial to study the

model’s parameterization to tackle the issues mentioned above. i.e., measuring the contribution

of each parameter to the output of the model. Thus one can classify the parameters according to

their importance and prioritize those that significantly contribute to the model. Sensitivity Analysis

(SA) is the mathematical formalism that allows such study not only from a qualitative point of

view, but also quantitatively. It allows for checking whether the model faithfully describes the

phenomenon under study. For instance, If an input parameter that a priori is known to have less

importance turns to exert a significant contribution to the model’s output, then the model does not

reflect the process under study and should be improved. Furthermore, identifying the influential

parameters permits reducing the volatility by enhancing the quality of the model’s parameterization

or modifying its structure to attenuate. Identifying the less significant parameters reduces the model

size, complexity, or parameterization, for example, by deleting the part of the model inherent to

those parameters. SA enables the measurement of the interaction between the parameters of the

model. There are three classes of sensitivity analysis. 1) the screening method whose best-known

approach is that of Morris [75]. It allows qualitatively classifying the model’s input parameters

according to their importance. 2) The local approach measure quantitatively the variation of the

model’s output in response to a perturbation of the parameter vector around a particular nominal

value [76, 77]. 3) The global approach, which is also quantitative, measures the model’s response

following variation of the parameter vector over its variability domain. The best-known method for

studying global sensitivity analysis (GSA) is based on the calculation of Sobol indices [78]. Here I

present a description of the GSA used to classify model parameters of de novo fatty acid synthesis

according to their contributions to model uncertainty (see Chapter 5 ).

Let us consider the abstract deterministic model describing a physical process represented by

yyy = f(xxx,θθθ), (2.4.16)

where

f :Rn × R
p → R

m

(xxx,θθθ) 7→ yyy,

• θθθ = (θ1, θ2, · · · , θp) is the vector of parameter input of the model

• xxx = (x1, x2, · · · , xn) is the vector input variables of the system. In our case, it could represent

the vector of different metabolites of the pathways.
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• yyy = (y1, y1, · · · , ym) is the vector output of the model. in our case, it could be some selected

metabolites produced by the model.

Since our SA focuses on the parameterization of the system, to ease the notation, I will ignore xxx

in the definition of f . Hence, f will be defined as follows

f :Rp → R
m (2.4.17)

θθθ 7→ yyy,

Local sensitivity analysis (LSA)

A multi-index ααα is a p-tuple of positive integer (α1, · · · , αp).Multi-indices are very useful in differ-

ential calculus as it allows a rigorous definition of the differential in high-dimension spaces. Let

ααα = (α1, α2, · · · , αp) be a multi index, and define

|ααα|=
p
∑

i=1

αi, ααα! =
p
∏

i=1

αi! , ∀θθθ ∈ R
p, θθθααα =

p
∏

i=1

θαi

i

∂αααf =

(

p
∏

i=1

∂αi

i

)

f =
∂|ααα|f

∂θα1

1 ∂θα2

2 · · · ∂θ
αp
p

Let θ0θ0θ0 = (θ0
1, θ0

2, · · · , θ0
p) a nominal value of the parameter vector θθθ. Using Taylor’s expansion the

order k one can express the variation of the yyy due to a small change ζζζ = (ζ1, · · · , ζp)) of θθθ by

∆yyy(θθθ0) = f(θθθ0 + ζζζ) − f(θθθ0) = Df(θθθ0)(ζζζ) + · · · + Dkf(θθθ0)(ζζζ)k + o(‖ζζζ‖k), (2.4.18)

with

Dkf(θθθ0)(ζζζ)k =
∑

|ααα|=k

∂αααf

ααα!
(θ0θ0θ0)ζζζααα.

For k > 1, the terms Dkf(θθθ0)(ζζζ)k represent the non-linear response due to the interaction of the

different combination of the parameters pi ∈ θθθ. In the local sensitivity analysis, one ignore higher

interaction and only consider the Taylor expansion to the order 1 as o(‖ζζζ‖1) tends to 0 as ζζζ tends

000. Thus (2.4.18) can be written after expansion of the term Df(θθθ0)(ζζζ) as follows

f(θθθ0 + ζζζ) − f(θθθ0) =
p
∑

j=1

ζj

∂f

∂θj

(θ0θ0θ0) + o(‖ζζζ‖). (2.4.19)

Let

Sj =
∂f

∂θj

(θ0θ0θ0) =

(

∂f1

∂θj

(θ0θ0θ0),
∂f2

∂θj

(θ0θ0θ0), · · · ,
∂fm

∂θj

(θ0θ0θ0)

)

(2.4.20)

As defined, the sensitivity index Sj is not a standardized quantity, which makes it impossible to

compare other sensitivity indices that are not expressed by the same units. For the specific case
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of m = 1 in the definition (2.4.17) It is then advisable to favor a standardized sensitivity index

defined by

S∗
j =

θ0
j

f(θθθ0)

∂f

∂θj

(θ0θ0θ0) (2.4.21)

Sj measures the response of yyy due to a small change in the j entry θ0
j of θ0θ0θ0. In practice, local

sensitivity is studied by calculating each Sj separately. This justifies the designation of one factor

at the time (OAT) given to the method. The LSA can be expensive for a relatively large model,

as its computation often uses brute-force methods based on "trial and error," which is expensive

[76]. Furthermore, for a non-linear model, the input and the output are often in different orders of

magnitude, and the inter-dependence between the parameters is difficult to identify.

Global sensitivity analysis (GSA): Sobol indices

We have pointed out the limitations of LSA, especially in the case of nonlinear models. For a more

reliable analysis, it is necessary to use a more global approach to evaluate the model’s response in

its entire parameterization range. In addition, the analysis must consider the correlation between

the parameters of the model. As mentioned earlier, the Sj calculated in the LSA case does not

provide information on how changing one parameter pj of the model affects the other parameters.

The Sobol method can be used to solve the above problems. The method is based on decomposing

the variance of the model output into terms representing the contributions of each parameter taken

separately, as well as the contributions of different combinations of these parameters. Without loss

of generality, and to facilitate the presentation of Sobol’s method, we will assume that m = 1 in

the definition of the function f in (2.4.17). Hence

f :Rp → R (2.4.22)

θθθ 7→ yyy.

In general, the analytical form of the function f that the model represents is not accessible.

However, the variance V (yyy) of its output values yyy can be evaluated. To ensure the existence of

the variance of yyy, suppose that the f is L2 a square-integrable function, that is to say

∫

‖f‖2< ∞,

then in its work to define the sensitivity index, Sobol [79] introduces the following decomposition

of f known as Sobol-Hoeffding decomposition:

yyy = f0+
p
∑

i=1

fi(θi)+
∑

1≤i<j≤p

fi,j(θi, θj)+· · ·+
∑

1≤i1<i2<···<ip−1≤p

fi1,i2,···,ip−1
(θi1

, · · · , θip−1
)+f1,···,p(θ1, · · · , θp),

(2.4.23)
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where

f0 = E(y),

fi(θi) = E(y|θi) − f0,

fi,j(θi, θj) = E(y|θi, θi) − fi − fj − f0,

fi,j,k(θi, θj, θk) = E(y|θi, θi, θk) − fi,j − fi,k − fj,k − fi − fj − fk − f0

...

Taking the variance of both sides of the equation (2.4.23) one gets

V = +
p
∑

i=1

Vi +
∑

1≤i<j≤p

Vi,j + · · · +
∑

1≤i1<i2<···<ip−1≤p

Vi1,i2,···,ip−1
+ V1,,···,p, (2.4.24)

with

V = V ar(yyy)

Vi = V (E(y|θi))

Vi,j = V (E(y|θi, θi)) − Vi − Vj

Vi,j,k = V (E(y|θi, θi, θk)) − Vi,j − Vi,k − Vj,k − Vi − Vj − Vk

...

V1,2,···,p = V −
p
∑

i=1

Vi −
∑

1≤i<j≤p

Vi,j − · · · −
∑

1≤i1<i2<···<ip−1≤p

Vi1,i2,···,ip−1
.

Sobol defines the following sequence of indices

Si =
Vi

V
,

Si,j =
Vi,j

V
,

Si,j,k =
Vi,j

V
, (2.4.25)

...

S1,2,···,p =
V1,2,···,p

V
.

Si represents the contribution of θi to the variance of yyy, Si,j represents the contribution of the

interaction of θi, θj to the variance of yyy, Si,j,k is the contribution of the interaction of θi, θj and

θk to the variance of yyy, and so on.

One should note that

p
∑

i=1

Si +
∑

1≤i<j≤p

Si,j + · · · +
∑

1≤i1<i2<···<ip−1≤p

Si1,i2,···,ip−1
+ S1,,···,p = 1, (2.4.26)
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this means that the closer the value of an index is to 1, the greater the influence of the corresponding

parameter or the interactions of the corresponding group of parameters on the model result.

Finally, Sobol [79] defines the total index of a parameter θi as

STi
= Si +

p
∑

j=1
j 6=i

Si,j +
∑

j=1
j 6=i

+
∑

k>j
k 6=j
k 6=i

Si,j,k + · · · + Si,j,k,···p, (2.4.27)

representing the contributions θi and its interactions with other parameters. STi can also be written

as

STi
= 1 − V ar(E(yyy|θ∼i))

V
= 1 − V∼i

V
, (2.4.28)

where V∼i represents the variance of the conditional expectation yyy given all the other parameters

θj parameters except θi. In practice, the equation (2.4.28) is used to compute STi.

For example, if p = 3,

ST1 = S1 + S1,2 + S1,3 + S1,3,3 and ST2 = S2 + S1,2 + S2,3 + S1,3,3.

One should notice that the calculation of one of the Sobol’s total index STi requires the calculation

of the indices of order 1 to p defined in the equation (2.4.25), which are 2p − 1 indices. For p

large, the computation of the total index will be very expensive. In practice, Monte Carlo methods

are used. In the following, I describe the sampling methods for estimating the indices defined in

(2.4.25).

Suppose θθθ is a random vector following an arbitrary distribution, and let us sample N times θθθ.

Hence, the estimation of the f0 = E(yyy) and the variance V over the sample of size N are

f̂0 =
1

N

N
∑

k=1

f(θθθk), and V̂ =
1

N

N
∑

k=1

f 2(θθθk) − f̂ 2
0 , (2.4.29)

where θθθi is the ith sample of θθθ.

Estimate Ŝi of Si

We have

Vi = Ui − f 2
0 , where Ui = E[(E(yyy|θi))

2],

hence the estimate of the Vi is

V̂i = Ûi − f̂0

2
. (2.4.30)

To compute Ûi one needs two samples of size N , θθθ
(1)
(N) and θθθ

(2)
(N) of θθθ.
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Ûi =
1

N

N
∑

k=1

f(θ
(1)
k1 , · · · , θ

(1)
k(i−1), θ

(1)
ki , θ

(1)
k(i+1), · · · , θ

(1)
kp ) × f(θ

(2)
k1 , · · · , θ

(2)
k(i−1), θ

(1)
ki , θ

(2)
k(i+1), · · · , θ

(2)
kp ),

(2.4.31)

Hence

Ŝi =
V̂i

V̂
. (2.4.32)

Estimate Ŝi,j of Si,j By proceeding similarly to the estimation of Si, one obtains

Ŝi,j =
V̂i,j

V̂
, (2.4.33)

with the estimate of Vi,j,

V̂i,j = Ûi,j − f̂ 2
0 − V̂i − V̂j, (2.4.34)

where

Ûi,j =
1

N

N
∑

k=1

f(θ
(1)
k1 , · · · , θ

(1)
k(i−1), θ

(1)
ki , θ

(1)
k(i+1), · · · , θ

(1)
kj , θ

(1)
k(j+1), · · · , θ

(1)
kp )× (2.4.35)

f(θ
(2)
k1 , · · · , θ

(2)
k(i−1), θ

(1)
ki , θ

(2)
k(i+1), · · · , θ

(1)
kj , θ

(2)
k(j+1), · · · , θ

(2)
kp ).

Estimate ŜT i of STi

Proceeding similarly to the previous cases, one obtains

ŜTi
= 1 − V̂∼i

V̂
, (2.4.36)

with

V̂∼i = ̂E(E(YYY |θ∼i)2) − ( ̂E(YYY |θ∼i))
2 = Û∼i − f̂ 2

0 , (2.4.37)

and estimate of U∼i

Û∼i =
1

N

N
∑

k=1

f(θ
(1)
k1 , · · · , θ

(1)
k(i−1), θ

(1)
ki , θ

(1)
k(i+1), · · · , θ

(1)
kp ) × f(θ

(1)
k1 , · · · , θ

(1)
k(i−1), θ

(2)
ki , θ

(1)
k(i+1), · · · , θ

(1)
kp ).

(2.4.38)

Since the number of simulations necessary to calculate the Sobol’s indices for a sample of size N is

2N , to compute the index of all orders up to p, the function f will be called N × 2p times, which

is very expensive for N large. However, to estimate the first-order and total indices, f is called

only N × (2p + 1). Therefore, it is advisable to first compute the first-order index and the total

indices before looking at the higher-order indices.
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In practice, θθθ is not extracted from an arbitrary random distribution but from a quasi-random

distribution known as Sobol’s sequence (Sobol sampling) [80, 81]. The processes that generate

quasi-random numbers, such as the Sobol sequence, are not truly random but are designed to

distribute the numbers evenly over the range of numbers in a sequence. Unlike purely random

numbers, which are generated using stochastic processes, quasi-random numbers are deterministic

and repeatable. They exhibit improved distribution properties and aim to reduce clustering and

clumping of points.

However, it is important to note that Sobol’s sequence is not random in the traditional sense. Each

number in the sequence is determined by a specific algorithmic calculation based on the previous

numbers in the sequence. As a result, the sequence is not subject to the same level of randomness

as truly random numbers generated by stochastic processes. Figure 2.6 illustrates the difference

between Sobol sampling and random sampling, highlighting the more evenly distributed nature of

Sobol’s sequence compared to purely random numbers.
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Figure 2.6: Sobol sampling vs. random sampling: In the left panel, we have a Sobol sample of 256 points

couples of points (θ1, θ2) between 0 and 1, and the right panel random sample of 256 couples of points (θ1, θ2)

between 0 and 1. The Sobol sample is evenly distributed in the sample space, whereas the random sample does not

uniformly cover the sample space uniformly.

Example 2.4.7. In this example, I present a system made of a linear opened model composed of

the compounds A and B. The influx in the system via the compound A is constant and associated

with the parameter k1. The internal reactions follow the mass action kinetics with the kinetic rate

constant k2. The outflux is proportional to the concentration of the compounds B. I apply Sobol’s

sensitivity analysis to evaluate the contribution of each parameter to the uncertainty of the time

course of the system.
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Figure 2.7: Scheme and time course of a linear open system made of two compounds and three reactions
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Figure 2.8: Sobol’s sensitivity analysis for the linear model with two compounds: As expected, k1 and k2 are

the only parameters controlling the variance of the compound A, whereas k3 exclusively control the variance of B.

Example 2.4.8. In this example, I present a system made of a branched opened model composed

of the compounds A, B, C, and D. The influx in the system via the compound A is constant and

associated with the parameter k1. The internal reactions follow the mass action kinetics with the

related kinetic rate constants k2, k3, k4, and k5. The system has two outfluxes proportional to

the concentration of the compounds C and D. I apply Sobol’s sensitivity analysis to evaluate the

contribution of each parameter to the uncertainty of the time course of the system.
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Figure 2.9: Scheme and time course of a branched open system made of four compounds and seven

reactions
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Figure 2.10: Sobol’s sensitivity analysis for the branched open model with four compounds: By looking at

the total indices, one can note that k1 has a substantial control on the concentrations of all compounds. The other

parameters have less global influences, although their effect on the concentration of a particular compound can be

more considerable, as shown by the first-order, second-order, and total indices.
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Chapter 3

Biochemistry and kinetics of enzymes involved in animal

fatty acid synthesis

Part of this chapter is adapted from the following published article:

Foko Kuate CA, Ebenhöh O, Bakker BM, Raguin A. Kinetic data for modeling the dynamics of

the enzymes involved in animal fatty acid synthesis. Biosci Rep. 2023 Jul 26;43(7):BSR20222496.

DOI: 10.1042/BSR20222496.

The author of this thesis contributed to the conceptualization, the methodology, the investigation

and the writing of the above article. Hence, the author retains the right to include the article in

this thesis since it is not published commercially.

To quantitatively model the dynamics of a metabolic pathway with ODEs, it is not enough to know

the system’s constituent elements and the list of reactions that characterize the metabolic pathway.

It is also essential to have the evolution laws of the reactions associated with the metabolite changes

in the system. These laws of evolution, known in particular by the name of kinetic rate laws, are

represented in the form of mathematical formulas comprising the metabolites involved in and

the parameters encoding the information specific to these reactions and, more precisely, on the

enzymes in the case of enzymatic reactions. In this chapter, I collect and concisely present the

necessary information to develop computational models of animal fatty acid synthesis dynamics with

a particular focus on mammals. It includes information on FADNS and microsomal modification

(elongation and desaturation) for both endogenous and exogenous FAs. We first focus on the basic

biochemistry of the associated enzymes and then review their kinetics.
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Figure 3.1: Schematic representation of the biochemistry of fatty acid biosynthesis. The process is organized

in two main parts. Enzymes involved in the fatty acid de novo synthesis (FAS and ACC1) are color-coded with

a gray background. They are responsible for the production of long chain saturated fatty acids (LCSFAs). This

process takes place in the cytoplasm. Enzymes involved in the microsomal modifications of fatty acids (ELOVLs,

∆-desaturases) are color-coded with a black background. They are responsible for elongating and desaturating long-

chain fatty acids (LCFAs) and very long-chain fatty acids (VLCFAs). This process takes place in the endoplasmic

reticulum (ER) where these enzymes are membrane-bound. In the ER, LCFAs and VLCFAs, represented in the

figure, include long-chain saturated fatty acids (LCSFAs), mono-unsaturated FAs (MUFAs), and poly-unsaturated

FAs (PUFAs). The β-oxidation that takes place in the mitochondria is not part of fatty acid synthesis. Still, it is

represented because it influences the overall synthesis process.

3.1 Basic biochemistry of enzymes of fatty acid de novo

synthesis

3.1.1 Fatty acid de novo synthesis

The fatty acid de novo synthesis, also known as the endogenous synthesis of fatty acids, produces

long-chain saturated fatty acids from Acetyl-CoA in presence of ATP, bicarbonate, and NADPH.

This involves two enzymes, namely the biotin enzyme acetyl-CoA carboxylase (ACC) and the multi-

complex enzyme fatty acid synthase (FASN). The process can be divided into two parts: i) the

synthesis of malonyl-CoA from acetyl-CoA, and ii) the step-wise elongation of the acyl-CoA chain.

The main resulting product is palmitic acid (16:0), together with some myristic (14:0) and stearic

(18:0) acid, and very low amounts of medium chain FAs (e.g.: (12:0)) [59, 82, 83].
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Acetyl-CoA carboxylase

ACC is a key enzyme for lipid homeostasis [84]. It synthesizes malonyl-CoA which is central for

fatty acid synthesis and oxidation. To date, two isoforms of ACC are known. The ACC1 isoform,

which is found in all tissues, is specifically highly expressed in lipogenic tissues such as the liver,

adipose tissues and mammary glands. The second isoform, ACC2 is mostly present in oxidative

tissues such as the heart and the skeletal muscles. It is also expressed to a lesser extent in lipogenic

tissues [85, 86, 87, 88]. ACC1 is located in the cytosol while ACC2 is located at the outer surface

of the mitochondria [89, 90, 13] (see Figure 3.1). The two isoforms are encoded by two distinct

genes, which share 80 % of similarities when comparing their amino acid sequences. One of the

major differences between the two isoforms resides in their N-terminal amino acid sequences [86].

The N-terminal amino acid sequence of ACC2 starts with hydrophobic residues, which is responsible

for its location at the surface of the mitochondrial membrane [86, 13]. The different locations of

ACC1 and ACC2 reflect their specific metabolic role. Malonyl-CoA produced by ACC1 is utilized

for elongation in FADNS, while malonyl-CoA from ACC2 inhibits the carnitine palmitoyl transferase

1 and thereby β-oxidation [90].

For both ACC isoforms, the synthesis of malonyl-CoA from acetyl-CoA takes place in three steps.

In the first step, the ACC is carboxylated, using bicarbonate in presence of ATP. In the second

step, the carboxyl group is transferred between the catalytic sites of the enzyme. In the third

step, the carboxyl group reacts with acetyl-CoA to form malonyl-CoA [91]. The overall reaction is

activated by citrate, which is the precursor for cytosolic acetyl-CoA, and thereby the precursor for

cytosolic FADNS (see Figure 3.1) [85]. Besides, the overall reaction is allosterically repressed by

malonyl-CoA, long-chain fatty acyl-CoA, and free CoA [91, 92, 93]. Both ACC isoforms are also

subject to diet and hormonal regulations [85, 89, 94, 95].

Fatty acid synthase

FASN is the cytosolic homodimeric multi-functional enzyme responsible for the channeled elongation

reactions in the FADNS [96, 97] (see Figure 3.1). This enzyme comprises two sub-units that

each contain three domains and seven catalytic sites. The initialization step is catalyzed by the

malonyl-acetyl-transferase site. It cleaves the CoA moieties of the acetyl-CoA and malonyl-CoA, and

transfers both the malonyl and acetyl groups to the acyl carrier protein (ACP) domain. This leads to

the formation of acetyl-ACP and malonyl-ACP. Then, in each elongation cycle, the addition of two

carbons in the growing acyl-chain takes place in four steps: condensation, reduction, dehydration,

and reduction [98]. In the condensation step, the β-ketoacyl synthase site condenses the malonyl-

ACP with the growing chain of acyl-ACP/ acetyl-ACP to form the β-ketoacyl-ACP. In this step, a

molecule of CO2 is released. At the β-ketoacyl reductase site, the β-ketoacyl-ACP is reduced by

NADPH in a first reduction step to form β-hydroxyacyl-ACP, which is dehydrated by the dehydratase
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site to form the trans-enoyl-ACP. A second reduction step (again involving NADPH) then forms

the end product of the elongation cycle, an acyl-ACP with two extra carbons. This acyl-ACP

either serves as substrate for a new elongation cycle, or is released by the thioesterase site after

the incorporation of a CoA moiety. The thioesterase site is regarded as the termination site

since it releases the final product of the FADNS. The main product of the FADNS is 16:0. This

suggests a high selectivity of the thioesterase domain for the 16:0 intermediate, which was confirmed

by Chakravarty et al. [99] in in vitro experiments.

3.1.2 Microsomal modifications of fatty acids

Biological functions require specific FA profiles [100, 101]. Among these profiles, there are FAs

that cannot be synthesized de novo (essential FAs) and, therefore, must be obtained from external

sources. The FAs produced de novo (endogenous) and those from the diet (exogenous) are not

always suitable and must be modified accordingly. This modification takes place in the ER and

involves two processes, elongation and desaturation. Elongation produces very-long-chain fatty

acids (VLCFAs). They are essential precursors for various classes of lipids, such as phospholipids,

sphingolipids, triglycerides, cholesterol esters, and wax esters, whose syntheses are beyond the

scope of this mini-review [102]. Desaturation tunes FA properties [103]. For instance, the cellular

and organellar membrane permeability and fluidity depend on the level of unsaturation of their

constitutive FAs [104]. Below, I introduce the biochemistry of each enzyme. For the sake of

briefness, I also provide tables that summarize the main biochemical characteristics of elongases

(see Table A4) and desaturases (see Table A5).

Elongases

The microsomal elongation of fatty acids is the major pathway to produce very-long-chain fatty

acids (VLCFAs) [105]. Similarly to the de novo synthesis, it utilizes malonyl-CoA and NADPH

as carbon donors and reducing agents, respectively. The microsomal elongation process consists

of four steps: condensation, reduction, dehydration, and reduction. Unlike the de novo synthesis,

each step is catalyzed by a distinct enzyme. In the condensation step, the 3-acyl-CoA synthetase

links the acyl-CoA chain with the malonyl-CoA to form the 3-keto-acyl-CoA. The latter is reduced

by the 3-keto-acyl-CoA reductase during the reduction step, to produce the 3-hydroxy-acyl-CoA.

In the dehydration step, the 3-hydroxy-acyl-CoA dehydratase removes a molecule of H2O from the

3-hydroxy-acyl-CoA, leading to the 2,3-trans-enoyl-CoA. The enoyl-CoA reductase subsequently

reduces the latter to form the end product of the elongation, an acyl-CoA with two extra carbons.

The 3-acyl-CoA synthetase catalyzing the condensation step plays a central role in determining the

tissue specific distribution of VLCFAs [106]. Its expression varies from one tissue to another and

its action is substrate specific [102, 107, 108, 109, 110].
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To date, seven so-called elongation of very long chain fatty acids (ELOVLs) enzymes that belong

to the 3-acyl-CoA synthetase family have been identified in humans and rodents [107]. They are

membrane bound and located at the surface of the ER (see Figure 3.1). ELOVL1 is expressed in

almost all tissues, and favors the elongation of saturated and mono-unsaturated FAs with chain

lengths ranging from 18 to 26 carbons [102, 111]. ELOVL2 elongates poly-unsaturated FAs with

20 or 22 carbons. In mice, it plays a predominant role in the elongation of non-essential FAs [102,

111, 112]. ELOVL3 elongates saturated and unsaturated FAs with chain lengths ranging from 16

to 22 carbons [102, 113]. ELOVL4 is mostly involved in the elongation of both saturated and

unsaturated FAs with at least 24 carbons [102]. ELOVL5 has a high affinity for poly-unsaturated

FAs with 18 or 20 carbons, with a particular preference for essential FAs [102, 114]. ELOVL6 acts

on FAs with chain lengths ranging from 12 to 18 carbons [115], with a high affinity for saturated

FAs with chain lengths between 12 and 16 carbons [102, 115]. This enzyme is preponderant in the

lipogenic tissues and is repressed by poly-unsaturated FAs [116]. An in vivo study conducted with

knock-out mice showed a high penchant for 16:0 and 16:1n7 [117]. ELOVL7 elongates FAs with

chain lengths ranging from 16 to 20 carbons, with a high affinity for chains of 18 carbons [102].

Investigations of its substrate specificity revealed a high affinity for non-essential FAs as compared

to other FAs of the same length [118].

Desaturases

The desaturase enzymes are responsible for the introduction of double bonds at specific positions

along FA chains. Like the ELOVLs, they are membrane-bound enzymes and are located in the ER

(see Figure 3.1). They are substrate and tissue-specific [109]. Desaturation tailors FA properties

(e.g., melting point, rancidity, and flexibility) which ensures their suitability for various biological

processes [103]. In mammals, three desaturases have been identified, namely the ∆5 desaturase,

the ∆6 desaturase, and the ∆9 desaturase [103, 119]. The three desaturations follow the same

mechanism. The ∆X desaturation consists in introducing a cis double bond between the carbons

X and X + 1, counted from the carboxyl end. Via a series of reactions, the ∆X desaturase

consecutively removes two hydrogen atoms, the first one at the Xth position, and the second one at

the X +1th position [119, 120, 121, 21]. These two hydrogens are combined with molecular oxygen

and released as water [122]. The electrons required for this reduction are derived from cytochrome

b5 [120, 121, 21]. One should note that for unsaturated FAs, a further desaturation does not change

the nY family to which the FA belongs, Y being the position of the first double bond, counted from

the methyl-end. Further biochemistry details of the ∆X enzymes are summarized in Table A5, i.e.,

their isoforms, substrates, tissue specificity, regulators, and biological functions. As for their kinetic

features, very little information and data are available. This may be due to particularly challenging

experimental tractability. Specifically, here we are dealing with membrane-bound enzymes, whose

purification requires several complicated steps. Furthermore, the desaturation reactions involve an
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intermediate step catalyzed by an extra enzyme (i.e., cytochrome b5 reductase), making the design

of kinetics assays difficult.

∆9 Desaturase The mono-unsaturated FAs are essential for producing different lipids, including

phospholipids, triglycerides, cholesterol esters and wax esters. Therefore, they play a crucial role

in lipid homeostasis and the physiological functions of lipids [122, 123, 124]. To ensure their

presence in an adequate proportion, they are endogenously produced from saturated FAs by the

∆9 desaturase, also known as stearoyl-CoA desaturase (SCD). The mechanism of ∆9 desaturation

consists in introducing a cis double bond between the carbons 9 and 10, counted from the carboxyl

end. Via a series of reactions, the ∆9 desaturase consecutively removes two hydrogen atoms, firstly

at the 9th position, secondly at the 10th position [119, 120]. These two hydrogens are combined

with molecular oxygen and released as water [122]. The electrons required for this reduction are

derived from cytochrome b5 [120]. The preferred substrates of the ∆9 desaturase are 14:0, 16:0,

and 18:0, with 14:1n5, 16:1n7, and 18:1n9 as respective products [123, 120, 125]. Among them,

18:1n9 is the most abundant one, and is consistently found as dominant in adipose tissues [103].

Furthermore, Ntambi et al. [126] and Miyazaki et al. [127] reported that SCD-deficient mice show

an increase in insulin sensitivity and are protected against diet-induced adiposity. This suggests that

the ∆9 desaturase could be a good therapeutic candidate for obesity and metabolic syndromes.

Four isoforms of the SCD gene have been identified in mouse (SCD1-4) and two in human (SCD1

and SCD5) [122, 128, 129, 130, 131, 132]. Mouse and human SCD1 are the most abundant

and expressed in the lipogenic tissues such as liver and adipose tissues [133]. Human SCD5 and

mouse SCD2 are both predominantly expressed in the brain and the pancreas [133]. Mouse SCD3

is mainly expressed in harderian, preputial glands, and sebocytes [134], while mouse SCD4 is only

expressed in the heart [132]. All SCD isoforms (except mouse SCD3) act on 16:0 and 18:0, with

a strong preference for 18:0 [135]. Opposite, the mouse SCD3 can only desaturate the 16:0 [133].

The ∆9 desaturases, in particular SCD1, which is the most studied isoform, are subject to various

regulations, ranging from diet to hormones, as summarized by Ntambi and Miyazaki [123]. High

carbohydrate diets, saturated fat, insulin, estrogen, peroxisome proliferator-activated receptor α

(PPARα), and liver X receptors enhance the expression of the ∆9 desaturases, whereas glucagon,

poly-unsaturated fatty acids (PUFAs) and leptin repress it.

∆6 and ∆5 desaturases The n3 and n6 FA families (also known as ω3 and ω6) are essential for

building highly unsaturated fatty acids. Those are necessary for cell membrane, signaling processes,

brain and retina development, and cognition and inflammatory responses [103, 119]. Animals

cannot synthesize de novo ω3 and ω6 FAs, but can modify essential FAs (18:2n6 and 18:3n3)

acquired from external sources to fit the adequate lipid profiles. The ∆5 and ∆6 desaturases are

required for this modification [103, 121, 21]. Like the ELOVLs and ∆9 desaturases, the ∆5 and ∆6
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desaturases are membrane-bound enzymes. They introduce a cis double bond between the carbons

5 and 6, and the carbons 6 and 7, respectively, counted from the carboxyl end. The mechanism

by which the double bonds are introduced is similar to that of the ∆9 desaturases [121, 21]. The

predominant substrates are 18:2n-6, 18:3n-3, and 24:5n-3 for the ∆6 desaturase, and 20:3n-6 and

20:4n-3 for the ∆5 desaturase, respectively leading to the products 18:3n-6, 18:4n-3, and 24:6n-3,

and 20:4n-6 and 20:5n-3. [103]. Both enzymes are mainly regulated by PUFAs [103].

The ∆5 and ∆6 desaturases are encoded by the FASD1 and FASD2 genes respectively, yet their

distinct isoforms have so far not been identified. They are highly expressed in the liver and the

brain, moderately expressed in the heart and lungs, and lowly expressed in the kidney, spleen, and

muscles [121, 21, 136]. A study by Ge et al. [136] shows a high expression of the ∆6 desaturase

in the skin. Interestingly, the ∆6 desaturase, highly expressed in the skin, has been shown to act

on the saturated FA 16:0, resulting in the mono-unsaturated FA 16:1n-10. This special case is

highlighted by the symbol # in Table A5. This finding is consistent with the fact that 16:1n-10 is

the major FA found in human sebum [136].

3.2 Kinetic of enzymes of fatty acid synthesis

A bottleneck in constructing kinetic models is often the experimentally determined enzymatic

parameters [137, 27, 138]. This is not surprising because enzyme kinetic parameters are difficult

and tedious to measure with high accuracy, which is in particular the case for membrane-associated

enzymes [139]. Moreover, the kinetic parameters strongly depend on external parameters, such

as pH and temperature. This section discusses experimental findings that give insight into kinetic

mechanisms and parameters of enzymes involved in the fatty acid synthesis.

3.2.1 Fatty acid de novo synthesis

The particularity of FADNS is the difficulty of building kinetic rate laws from the detailed enzymatic

mechanism. If the overall kinetic of malonyl-CoA synthesis by acetyl-CoA carboxylase is known to

follow the random Ter Ter mechanism, this is not the case for the elongation phase carried out

by FAS. It is rather complex as it includes several channeling reactions which follow either Ping

Pong or a random sequential mechanism. However, it is always possible to make simplifications,

for example, by lumping several reactions and deducing a less complex yet meaningful kinetic law.

Regardless of the level of detail or abstraction in representing the kinetics of FADNS, the literature

abounds with important information that I believe to be a good starting point to build models of

the dynamics of FADNS reactions.

Although some of the kinetic features discussed here are not from mammals, they can still be used

as a starting point for modeling. They typically share a similar enzymatic mechanism, as well as
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high amino acid sequence identity. For instance, chicken and rat FAS sequences are 63% and 79%

identical to that of human, respectively [140]. Also, murine FAS sequence is 81%, 78%, and 94%

identical to that of human, pig, and rat, respectively [35].

Acetyl-CoA carboxylase

Wright et al. [141] showed using metabolic control analysis that 63 % of the fluxes of FADNS is

controlled by the ACC1. The conversion of acetyl-CoA to malonyl-CoA is often considered as the

rate-limiting step in the de novo synthesis of LCFAs [142, 143, 141]. Therefore, understanding

its kinetics is essential for any modeling approache aiming to simulate FA metabolism and related

disorders.

The current understanding of the ACC mechanism is based on several studies, that have been

reviewed by Numa and Tanabe [144]. Using isotope labeling, the three steps of the mechanism

could be characterized. Also, Hashimoto et al. [145], and Hashimoto and Numa [146] suggested

an ordered Bi Bi Uni Uni Ping Pong mechanism with an activation by citrate. The order of

attachment of the substrates to the enzyme is, ATP, HCO−
3 , and acetyl-CoA for the forward

reaction, and malonyl-CoA, Pi, and ADP for the reverse reaction [146]. The reaction is subject to

product regulation, notably by malonyl-CoA and ADP. The mathematical expression of the rate law,

including numerical values of the kinetic parameters, has been reported by Hashimoto and Numa

[146]. With 16 parameters, it is quite complex, although it does not include inhibition by long-chain

acyl-CoAs. The reaction mechanism was later questioned by Beaty and Lane [147], and Kaushik

et al. [148], who instead proposed the random Ter Ter mechanism. Both articles provide detailed

kinetic parameter values, useful for the construction of models. Liquid chromatography/mass

spectrometry/mass spectrometry (LC/MS/MS) data of malonyl-CoA formation were fitted to the

proposed rate law, allowing characterizing the human recombinant ACC2 [148]. The resulting

kinetic parameters resemble those reported for rat skeletal muscle [149] and human recombinant

enzymes [91]. Besides, Ogiwara et al. [92] and Tanabe et al. [150] focused on the inhibition

constants of natural inhibitors (both substrate and product inhibitions) in rat liver. For example,

Tanabe et al. [150] reported the inhibition constants of LCFAs and analogs. Inhibition constants

for malonyl-CoA and palmitoyl-CoA were also determined [149]. In Table A2, I summarize some

kinetic information, notably those extracted from the work of Cheng et al. [91], Kaushik et al.

[148], and Trumble et al. [149].

Fatty acid synthase

The kinetics of FA synthesis is quite complex since the same enzyme synthesizes LCFAs through

channeling [151]. Two main strategies are reported in the literature for the derivation of the

corresponding rate law: i) considering each elementary reaction till the production of an LCFA [36,

152]; or ii) lumping all the steps up to the production of an LCFA as a single reaction [153, 154].
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The common feature of the studies using either approach is that acetyl-CoA and malonyl-CoA

compete for the same enzyme binding site.

Studying the mechanism of elongation by focusing on each of the seven enzymatic sites, Katiyar

et al. [152] concluded that all individual reactions follow a Ping Pong mechanism except the

reduction steps [152]. The latter was suggested to instead follow random sequential or ordered

sequential mechanisms, with NADPH added first and the proton added second [154]. From these

individual steps, the overall kinetic rate law of FADNS was derived using King and Altman method

[41]. The resulting detailed rate law has eleven parameters. This complexity may make it difficult

to fit the kinetic parameters and to relate them to their biological meaning. In chicken liver, Cox

and Hammes [36] proposed a simpler rate law for the overall reaction, following a three substrates

Michaelis-Menten kinetics, with competition of acetyl-CoA and malonyl-CoA. They described the

associated mechanism with eight elementary steps. The first two correspond to the attachment of

acetyl-CoA to the enzyme. Steps 3 to 7 repeat at each elongation cycle, while step 8 is the release

of the final product, here chosen as palmitic acid (16:0). In this approach, all complex formation

involving CoA or NADPH are reversible, characterized by their dissociation constant. Moreover, the

authors highlighted the explicit relation between the mechanistic parameters (kinetic rate constants

and dissociation constants), and the kcat and Kmi
(i is either acetyl-CoA, malonyl-CoA, or NADPH)

of the overall kinetics. kcat and Kmi
were measured at various pH-values, thereby highlighting the

impact of this experimental condition on the efficiency of the enzyme (kcat/Kmi
).

Other studies employ a twofold approach, to first lump the reactions and derive the rate law, and

second measure detailed kinetic parameters for specific reaction steps. For instance, Carlisle-Moore

et al. [154] considered a lumped reaction for the production of 16:0 in human, and measured the

kcat and Kmi
-values (i is either acetyl-CoA, malonyl-CoA, or NADPH). Then, the same parameters

were determined for the reduction and dehydration steps, when considered separately. In particular,

those of the enoyl-CoA reductase site (last one of the elongation cycle) were assessed as a function

of the substrate chain length (4:0, 8:0, and 12:0) (see Table A3). A similar approach was followed

in chicken liver using tracer experiments in order to determine Vmax and Km-values for various

substrates [153].

In vitro measurements of the FAS kinetics suffer from limitations, e.g., the malonyl-CoA decarboxy-

lation into acetyl-coA, and the natural abundance of the 13C carbons that introduce extra noise in

the measurement of the products of the pathway. Their impact was observed in kinetic assays by

OHASHI et al. [155] and Topolska et al. [59], using enzymes from guinea pig harderian gland and

cow, respectively.
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3.2.2 Microsomal modifications of fatty acids

The kinetics of the enzymes of MMFA are poorly studied in the literature. This can be explained

by the fact that we deal with membrane-bound enzymes, so their purification is quite complex.

Furthermore, in the specific case of elongases, they were discovered less than two decades ago.

Nevertheless, I collected some kinetic information relevant to construct their respective kinetic rate

laws (see Table A6 for ELOVLs, and Tables A7, A8for desaturases).

Elongases

The analysis of the kinetics of the microsomal elongation began with the pioneering work by

Nugteren [156] in the rat liver microsomes. This work focused on the overall elongation cycle

using tracer data. They investigated the normalized rate of elongation as a function of the chain

length and degree of unsaturation of substrates. They also reported detailed time-course data for

the overall elongation of 14:0 to 16:0. Similar approaches were carried out in porcine neutrophil

microsomes, assuming that the elongation follows a Michaelis-Menten rate law. It was possible to

determine Vmax and Km-values for malonyl-CoA and NADPH for 16:0 and 20:0, and to determine

the overall enzyme activity for elongation [157]. Although during this time, ELOVLs were not

yet identified, these studies paved the way for investigating the kinetics of the overall elongation

cycle. Surprisingly, little has been done to characterize the kinetics of the ELOVLs since they have

been identified in the early 2000s. The most popular studies are by Naganuma et al. [118], and

Naganuma and Kihara [158] on ELOVL7 and ELOVL6, respectively. In both, the kinetic parameters

of ELOVL7 [118] and ELOVL6 [158] were determined using HEK 293T cells. For the ELOVL7,

these were Vmax and Km-values for malonyl-CoA and 18:3n-3, for ELOVL6 the corresponding values

for the malonyl-CoA and 16:0. Neither ELOVL7 nor ELOVL6 are subject to allosteric inhibition.

Besides, Naganuma and Kihara [158] showed that NADPH and 3-ketoacyl-CoA reductase enhance

the activity of ELOVL7. The underlying mechanism is unknown, but they speculated that the

presence of the 3-ketoacyl-CoA reductase might cause a conformational change of the enzyme,

thereby increasing its activity. This hypothesis could, for instance, be tested using fluorescent

nano-antennas that allow monitoring of small and large protein conformational changes [159].

Desaturases

The complexity of the desaturase mechanism (see section 3.1.2) might explain why little efforts

have been dedicated to unravel the associated kinetics. However, kinetic parameters were measured

by assuming Michaelis-Menten rate law, for instance in human or rat [160, 161, 162, 163, 164,

165, 166, 167].

∆9 Desaturase As mentioned earlier, the literature turns out to be less furnished with respect to

the kinetic features of the ∆9 desaturase compared to those of the FADNS enzymes. Specifically,
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the kinetics associated with the detailed mechanism of the enzyme is not discussed. Thus, as

a first intention, most studies assume a Michaelis-Menten rate law. Three studies following this

approach in mammals can be stressed. They respectively use rat liver microsomes [167], bovine

mammary microsomes [160], and purified rat liver enzyme [161], and provide a starting point for

kinetic modeling. Since the first two studies do not use purified enzymes, the kcat values cannot be

determined. As an alternative, one can use the Lineweaver-Burk plot of the kinetic data, together

with the mass of the protein, to infer the Vmax values. For example, from the data of Soulard

et al. [167], I can estimate the Vmax values to be about 2 µM · min−1 · mg−1 protein and 1.17

µM · min−1 · mg−1 protein, for 18:0 and NADH, respectively. When considering the study by

Strittmatter and Enoch [161], it appears that its purpose is not to measure the kinetic parameters

but to present in detail the procedure of purification of the enzyme. Hence, in that case, neither the

kcat nor the Vmax values can be inferred from the reported data. Despite the limited information

available in the literature, the reader can take into account the Km values tabulated in order to

begin developing a kinetic model (see Table A7). I believe that a subsequent effort should be placed

into measuring the kinetic parameters of the ∆9 desaturase, notably the kcat and Km-values for

the different substrates and the parameters associated with potential regulatory mechanisms.

∆6 and ∆5 desaturases Like for the ∆9 desaturase, the kinetics of animal ∆5 and ∆6 de-

saturases is under-studied. Furthermore, only a few studies use purified enzymes. For instance,

Okayasu et al. [163] used the purified ∆6 desaturase from rat liver to measure Km and Vmax values

for 18:2n-6-CoA. Opposite, Rodriguez et al. [166] focused on the kinetics of both ∆5 and ∆6 de-

saturases using human fetal microsomes. The Km and Vmax values were measured for 20:3n-6-CoA

for ∆5, and 18:2n-6-CoA and 18:3n-3-CoA for ∆6. In addition, Irazú et al. [165], measured the

Km and Vmax values of ∆5 using rat kidney microsomes. For these three studies, a summary of

the parameter values, as well as the conditions of measurement, are provided in Table A8. In the

table, the kinetic parameters are only reported for essential fatty acids. One should also note that,

although in all these in vitro studies, the authors report substrate inhibition when the substrates

are above a certain threshold, I choose not to tabulate them since this phenomenon is unlikely to

be observed in vivo. Finally, nothing is known about the kinetics of desaturation of 16:0 by the ∆6

desaturase.

Discussion and conclusions

FAs are the precursors of lipid synthesis, and therefore fundamental building blocks in every living

cell. It is thus not surprising that many metabolic disorders are associated with defects in FA

metabolism [85, 168]. Mathematical modeling has become an increasingly popular approach for

the investigation of biochemical pathways. Model simulations can guide experiments and support

the identification of potential drug targets. Their construction relies on the availability of exper-
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imental data concerning the detailed enzymatic mechanisms, the enzyme kinetics, the associated

mathematical rate laws, and the values of the corresponding parameters. In this review, I focused

on animal fatty acid synthesis with a particular emphasis on mammals. I aimed to summarize

the information necessary for constructing dynamic mathematical models describing this complex

enzymatic process using rate laws. I first gave an overview of the framework, and then reviewed the

kinetic information of the enzymes involved, including both the fatty acid de novo synthesis and the

microsomal modification pathways. We also provided tables summarizing the kinetic information,

as well as the basic biochemistry, of the enzymes involved (Tables A2-A8).

We find that, despite enormous amount of information and available data, our knowledge is still

limited. Most of the enzymes involved in animal fatty acid synthesis are membrane bound, which

makes it extremely challenging to systematically analyze their kinetics in controlled in vitro ex-

periments. For instance, the purification of such enzymes requires their solubilization, which may

lead to an alteration or even a complete loss of their activity [118]. Furthermore, this step is

particularly tedious, which possibly explains why most studies that I reviewed instead use recom-

binant proteins or cell extracts. Remarkably, recent approaches have shown successes in charac-

terizing membrane-bound enzymes by embedding them into liposomes, mimicking their natural

environments [118, 169]. Even if these techniques are further developed to allow for systematic

determination of kinetic parameters, it still has to be considered that an in vitro system never

precisely reflects the situation in vivo. The conditions of in vitro assays, both physical (e.g., pH,

temperature) and chemical (e.g., buffer) can influence the measured kinetic parameter values, due

to sub-optimal enzymatic conformation changes during the reaction. Besides, the complexity of the

enzymatic process itself can limit the development of new assays. That is for instance the case of

the ∆X desaturation process that includes a reduction step involving an extra enzyme, cytochrome

b5 reductase. Furthermore, the unavailability of the purified native enzyme may lead to in vitro

experiments based on either truncated or recombinant enzymes, or cell extracts. Still, it is unclear

whether any of these substitutes can be considered a good proxy for their native counterpart. When

kinetic data are unavailable, in order to develop a mathematical model, an alternative is to use

information from a distinct tissue or isoform, or an orthologous protein from a closely related or-

ganism. It is then important to carefully consider the limits of these approximations. For instance,

even if ACC1 and ACC2 share analogous enzymatic mechanisms and high similarity in amino acid

sequences [143], the latter is a membrane-bound enzyme, such that one can expect distinct kinetic

parameter values. Similarly, although Cox and Hammes [36] provided detailed kinetic information

on FAS from chicken liver, one can question whether the derived parameter values reflect those

in mammals. Naturally, ethical concerns restrict the possibility to perform in vivo experiments in

humans. Therefore, alternative methods focusing on simpler systems appear as promising tech-

nologies to better mimic in vivo conditions. They for instance consist in cultivating specific cell

lines (e.g., adipocytes and hepatocytes) or growing organs on chips [170, 171].
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It is currently feasible to build mathematical and computational models of animal fatty acid synthesis

based on available kinetic information. However, literature gaps present a major obstacle for

developing a more fundamental understanding of these pathways, which may considerably impair

research progress, and its implications in the medical domain. To overcome these limitations, it will

not be sufficient to simply perform more experiments, but it will also be necessary to find unifying

standards to test, report, and store this important wealth of data in a findable and reusable

manner. Additionally, one must take advantage of the growing field of targeted metabolomics,

utilizing techniques such as stable isotope labeling, for measuring the kinetic parameters both in

vitro and in vivo.
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Chapter 4

Fatty acid metabolism: conditions for bi-stability

Short description of fatty acids metabolism. As mentioned in the introduction, the main-

tenance of cellular energy homeostasis largely depends on FA metabolism. In excess glucose, the

primary energy source, FAs are built from acetyl-CoA resulting from glucose degradation. The

produced FAs are stored in the liver and adipose tissues as TGs. Conversely, in the absence of

carbohydrates, cells must rely on lipid sources. As a result, FAs are degraded to fulfill the energy

requirements. In this process, the TGs are hydrolyzed into FAs, which are then oxidized into acetyl-

CoA. The latter will be used to generate ATPs in the TCA cycle and synthesize ketone bodies.

Acetyl-CoA serves as a central metabolite, bridging both the catabolic and anabolic pathways of

FAs. Furthermore, it functions as an indicator of cellular energy status, with the cytosolic concen-

tration of acetyl-CoA reflecting the overall energetic state of the cell [172]. In fact, a high level

of acetyl-CoA typically correlates with a postprandial state, promoting lipogenesis. In contrast, a

reduced concentration is associated with fasting conditions, instigating FA catabolism. Given this,

a keen understanding of acetyl-CoA fluctuations is pivotal in shedding light on the integral role of

lipids in maintaining cellular energy balance.

Acetyl-CoA also participates in various metabolic processes either as a substrate or product, in-

fluencing its cellular concentration. It becomes clear that any supply or consumption from the

acetyl-CoA pool must be accounted for in any minimal computational model of FA metabolism.

The liver TGs are hydrolyzed into FAs and glycerol in case of a carbohydrate deficit. Like acetyl-

CoA, liver TGs are subjected to external influences, such as their conversion into very low-density

lipoproteins (VLDL) to be exported to other organs and their supply from adipose tissue [173].

Such processes influence the TGs’ pool size. The cytosolic synthesis of long-chain saturated fatty

acids (LCSFAs) from acetyl-CoA incorporates an intermediary stage wherein malonyl-CoA is derived

from acetyl-CoA. This compound functions as a carbon donor for FA elongation and concurrently

inhibits FA β-oxidation. The FA pool consists of LCSFAs produced endogenously and various types

of FAs sourced from the diet. FAs are also used to synthesize other lipid classes, such as phos-
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pholipids, sphingolipids, and waxes. Both fluxes in and out may significantly influence the pool

size.

Objectives. The above description presents FAs metabolism as a complex dynamical system that

functions in two separate regimes: the degradation and the synthesis of FAs. The two regimes

appear not to be active simultaneously, and the acetyl-CoA concentration might control the switch

from one regime to another, as postulated by Shi and Tu [172]. These observations allow me to

hypothesize that the metabolism of FAs is a bi-stable system. Therefore, I want to suggest an

approach that could enable verifying the above hypothesis and understanding how the switch from

one regime to another occurs or design a bi-stable system.

This chapter aims to lay the groundwork for answering the following questions related to hepatic

FA acid metabolism:

1. Can hepatic FA acid metabolism exhibit bi-stability?

2. Which metabolites or physiological parameters govern the transition between steady-states?

3. In the context of metabolic diseases, how are these steady-states altered, and is it possible

to revert them?

To address these questions, I introduce a coarse-grained model of FA metabolism and subsequently

conduct a qualitative analysis of its dynamics. This analysis assists in identifying both the necessary

and sufficient conditions for the proposed ODE model to exhibit bi-stability. The model’s kinetic

rate laws, based on "Michaelian" principles, are further elaborated in Section 2. Here, multi-

enzymatic reactions are consolidated into a singular reaction through a process termed "lumping".

A primary criterion for bi-stability is established: the existence of at least three steady-states. I

specify the conditions that ensure the presence of two stable steady-states and an adjacent unstable

steady-state. To pinpoint these conditions, I utilize two direct mathematical methods based on

intuitive reasoning:

1. Utilizing Descartes’ rule of signs and the analysis of turning points of a polynomial, it’s

possible to establish conditions under which a polynomial has a designated number of positive

or negative roots.

2. I analyze the sign of the Jacobian matrix’s eigenvalues at the steady-state under the assump-

tion that these steady-states are hyperbolic.

4.1 Coarse-grained model of fatty acids metabolism

I present here what I consider as minimal model of FA metabolism. It consists only of the crit-

ical metabolites that influence the FA dynamics. Notably, acetyl-CoA (S1), malonyl-CoA (S2),
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Synthesis (Fed)

Oxidation
(Fasted) 

Inhibition 

Figure 4.1: Illustration of interactions among key metabolites in lipid homeostasis: Square boxes denote the

concentrations of distinct metabolites of the system, while triangular-shaped arrows signify reaction fluxes. Reaction

fluxes associated with FA synthesis are color-coded in blue, whereas those involved in FA degradation are depicted

in black. Circular arrowheads do not represent fluxes but instead indicate inhibition of the target reaction by the

originating metabolite. For instance, malonyl-CoA suppresses the flux from the FA pool to acetyl-CoA. Vini and

Vouti (where i ∈ {1, 2, 3}) signify the respective influxes and outfluxes of the attached metabolites.

FAs (S3), and TGs (S4). My strategy consists in lumping the reactions resulting in the produc-

tion or consumption of a metabolite in the model as a single enzymatic reaction. I also include

the regulation processes, notably the feedback inhibition of the FAs toward malonyl-CoA synthe-

sis [174, 175, 142] and the inhibition of the FA β−oxidation by malonyl-CoA [90]. These inhibition

reactions are assumed to be non-competitive. All the influxes into the different pools are assumed

to be constant, while the outfluxes are considered to be proportional to the concentration of the

metabolite subjected to outfluxes.

The acetyl-CoA pool (S1) receives an influx resulting from the degradation of the product of

glycolysis or other processes. The rate of this influx is represented by Vin1. Other processes, such

as ketogenesis, acetylation, and ATP production in the TCA cycle, use acetyl-CoA as a precursor.

I represent such utilization of acetyl-CoA by the outflux, Vout1. The acetyl-CoA is the substrate for

malonyl-CoA synthesis. ACC, the enzyme synthesizing malonyl-CoA from acetyl-CoA, is regulated

by two metabolites. While LCFAs allosterically repress its activity [174, 175, 142], citrate enhances

it [36]. For the sake of simplicity, I ignore the contribution of citrate and the other hormonal

regulations by insulin, glucagon, and epinephrine. Indeed, these processes are considered to be

outside the system. Therefore, I only consider the allosteric inhibition by FAs. I model the rate r1

of malonyl-CoA synthesis as a non-competitive inhibition, in which the acetyl-CoA is the substrate
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and FAs the inhibitors. Acetyl-CoA is also a substrate of FADNS. To avoid having a rate law

with many parameters, I assume that the net contribution of acetyl-CoA to FADNS is through the

malonyl-CoA formation. Malonyl-CoA, together with acetyl-CoA, are used to synthesize FAs via

FADNS. This reaction is considered not to be directly regulated by internal metabolites, although

it is known that acetyl-CoA and malonyl-CoA compete for a site of the FAS enzyme [176, 36].

With these considerations, I concluded that the rate r2 of FA synthesis follows Michaelis-Menten

kinetics with malonyl-CoA as a unique substrate. The FA pool can receive external influxes, for

example, from the diet or the degradation of complex lipids. These influxes are represented by Vin2.

FAs are also subject to internal reactions. They are used for TG synthesis and β-oxidation. I note

the respective rates of these reactions as r3 and r4. FAs are precursors for other processes, such

as synthesizing complex lipids noted by the outflux Vout2. To account for the allosteric inhibition

of the β-oxidation by malonyl-CoA, the rate r4 is considered to follow a non-competitive inhibition

with FAs as substrate and malonyl-CoA as the inhibitor.

As none of the metabolites of the system inhibit TG synthesis, its rate r5 follows the Michaelis-

Menten rate law. The outflux Vout3 represents the exportation of TGs outside the liver as very

low-density lipoproteins (VLDLs) to be stored in adipose tissues. I consider Vout3 to be proportional

to the size of its pool. The TG pool receives an influx noted Vin3 resulting from the mobilization

of fat from adipose tissue, which occurs during prolonged fasting. In case of long fasting, liver TGs

are hydrolyzed into FAs to supply the β-oxidation. This reaction is represented by the rate r5 and

follows Michaelis-Meten’s kinetics.

A scheme is essential to visualize the interactions among the different metabolites in the pathway

(see Figure 4.1). Figure 4.1 enables one to easily express the dynamics of the elements of the

pathway as a system of coupled ODEs. They are the equations (4.1.1), (4.1.2), (4.1.3), and

(4.1.4). The different rate equations with their corresponding parameters are summarized in Table

4.1.

dS1

dt
= Vin1 − r1 + r4 − Vout1 (4.1.1)

dS2

dt
= r1 − r2 (4.1.2)

dS3

dt
= Vin2 + r2 − r3 − r4 + r5 − Vout2 (4.1.3)

dS4

dt
= Vin3 + r3 − r5 − Vout3, (4.1.4)

which is equivalent to

dS1

dt
= k1 − V1S1

(Km1 + S1)(1 + q1S3)
+

V4S3

(Km4 + S3)(1 + q4S2)
− αS1 (4.1.5)

dS2

dt
=

V1S1

(Km1 + S1)(1 + q1S3)
− V2S2

Km2 + S2

(4.1.6)
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Table 4.1: Rate laws with the corresponding parameters: the ki, i = 1, 2, 3 are constants and with the dimension

of a rate. α, β, and γ are first order rate kinetic constants. Vi, i = 1, 2, 3, 4, 5 are the maximum rate of each

reaction. Kmi, i = 1, 2, 3, 4, 5 are the Michaelis-Menten constants. q1 and q4 are the inverse of the inhibition

constants. Si, i = 1, 2, 3, 4 are the metabolites of the system.

Rate Kinetic rate law Formula Parameters

Vin1 Constant influx k1 k1

Vin2 Constant influx k2 k2

Vin3 Constant influx k3 k3

Vout1 Proportional outflux αS1 α

Vout2 Proportional outflux βS3 β

Vout3 Proportional outflux γS4 γ

r1 Non-competitive inhibition V1S1

(Km1+S1)(1+q1S3)
V1, Km1, q1

r2 Michaelis-Menten kinetics V2S2

Km2+S2
V2, Km2

r3 Michaelis-Menten kinetics V3S3

Km3+S3
V3, Km3

r4 Non-competitive inhibition V4S3

(Km4+S3)(1+q4S2)
V4, Km4, q4

r5 Michaelis-Menten kinetics V5S4

Km5+S4
V5, Km5

dS3

dt
= k2 +

V2S2

Km2 + S2

− V3S3

Km3 + S3

− V4S3

(Km4 + S3)(1 + q4S2)
+

V5S4

Km5 + S4

− βS3 (4.1.7)

dS4

dt
= k3 +

V3S3

Km3 + S3

− V5S4

Km5 + S4

− γS4. (4.1.8)

4.2 Conditions for having three steady-states

4.2.1 Necessary condition

The space of admissible solutions for the system represented by the equations (4.1.5) to (4.1.8) is

R4
+, where

R
4
+ = {(S1, S2, S3, S4); such that S1, S2, S3, S4 ≥ 0} (4.2.1)

The value S∗
i of each metabolite Si, i ∈ {1, 2, 3, 4} at the steady-state is solution of the equation

dSi

dt
= 0. (4.2.2)
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Given that this is a coupled system, the solution S∗
i of (4.2.2) will be expressed as a function of

S∗
j (j 6= i). For example, S∗

1 will be expressed in terms of S∗
2 , S∗

3 , and S∗
4 . I will omit the symbol

"*" in the calculations to avoid overloading the notations and only specify it when needed.

Evaluation of S∗
1

At the steady-state, one has

dS1

dt
= 0 ⇐⇒ k1 − V1S1

(Km1 + S1)(1 + q1S3)
+

V4S3

(Km4 + S3)(1 + q4S2)
− αS1 = 0

⇐⇒
(

Km4S2S3αq2
1 + Km4S2αq1 + Km4S3αq1 + Km4α + S2S

2
3αq2

1

+S2S3αq1 + S2
3αq1 + S3α

)

S2
1 +

(

Km1Km4S2S3αq2
1 + Km1Km4S2αq1

+Km1Km4S3αq1 + Km1Km4α + Km1S2S
2
3αq2

1 + Km1S2S3αq1 + Km1S
2
3αq1

+Km1S3α − Km4S2S3k1q
2
1 + Km4S2V1q1 − Km4S2k1q1 − Km4S3k1q1 + Km4V1

−Km4k1 − S2S
2
3k1q

2
1 + S2S3V1q1 − S2S3k1q1 − S2

3V4q1 − S2
3k1q1 + S3V1 − S3V4

−S3k1) S1

− Km1Km4S2S3k1q
2
1 − Km1Km4S2k1q1 − Km1Km4S3k1q1 − Km1Km4k1

− Km1S2S
2
3k1q

2
1 − Km1S2S3k1q1 − Km1S

2
3V4q1 − Km1S

2
3k1q1 − Km1S3V4

− Km1S3k1 = 0

⇐⇒ P1(S1) = 0.

P1(S1) is a second-degree polynomial in S1 that one can write in the condensed form as follows:

P1(S1) = A1S
2
1 + B1S1 + C1,

with

A1 = Km4S2S3αq2
1 + Km4S2αq1 + Km4S3αq1 + Km4α + S2S

2
3αq2

1 + S2S3αq1 + S2
3αq1 + S3α,

B1 = Km1Km4S2S3αq2
1 + Km1Km4S2αq1 + Km1Km4S3αq1 + Km1Km4α + Km1S2S

2
3αq2

1

+ Km1S2S3αq1 + Km1S
2
3αq1 + Km1S3α − Km4S2S3k1q

2
1 + Km4S2V1q1 − Km4S2k1q1

−Km4S3k1q1 +Km4V1 −Km4k1 −S2S
2
3k1q

2
1 +S2S3V1q1 −S2S3k1q1 −S2

3V4q1 −S2
3k1q1 +S3V1 −

S3V4 − S3k1

and

C1 = −Km1Km4S2S3k1q
2
1−Km1Km4S2k1q1−Km1Km4S3k1q1−Km1Km4k1−Km1S2S

2
3k1q

2
1

− Km1S2S3k1q1 − Km1S
2
3V4q1 − Km1S

2
3k1q1 − Km1S3V4 − Km1S3k1.

One has A1 > 0, C1 < 0, which means that regardless of the sign of B1, there is only one possible

sign-changing of the coefficients of the polynomial P1(S1) (Vp(P1) = 1, see Descartes’s rule of
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signs Chapter 2). It follows from Descartes’ rule of signs that P1 has precisely one positive root,

which is

S∗
1 =

−B1 +
√

∆P1

2A1

, (4.2.3)

where

∆P1
= B2

1 − 4A1C1, (4.2.4)

which is the discriminant of the polynomial P1.

Evaluation of S∗
2

dS2

dt
= 0 ⇐⇒ r1 − r2 = 0

⇐⇒ V2S2

Km2 + S2

− V1S1

(Km1 + S1)(1 + q1S3)
= 0

=⇒ S∗
2 =

V1Km2S1

V2Km1q1S3 + V2Km1 + V2q1S1S3 + (V2 − V1)S1

. (4.2.5)

S∗
2 is positive if,

V2Km1q1S3 + V2Km1 + V2q1S1S3 + (V2 − V1)S1 > 0. (4.2.6)

From (4.2.6), one can derive a sufficient condition for S∗
2 to be positive. That is

V2 ≥ V1. (4.2.7)

The inequality (4.2.7) says that if the maximum rate of synthesis of FAs is greater than that of

malonyl-CoA, then the positiveness of S∗
2 is guaranteed.

Evaluation of S∗
3

dS3

dt
= 0 ⇐⇒ Vin2 + r2 − r3 − r4 + r5 − Vout2 = 0

⇐⇒ k2 +
V2S2

Km2 + S2

− V3S3

Km3 + S3

− V4S3

(Km4 + S3)(1 + q4S2)
+

V5S4

Km5 + S4

−βS3 = 0

=⇒ P2(S3) = 0,

where P2(S3) is a third-degree polynomial in S3 that one can write as follows

P2(S3) = A2S
3
3 + B2S

2
3 + C2S3 + D2, (4.2.8)

with

(4.2.9)A2 = −Km2Km5S2βq4 − Km2Km5β − Km2S2S4βq4

− Km2S4β − Km5S
2
2βq4 − Km5S2β − S2

2S4βq4 − S2S4β,
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B2 = −Km2Km3Km5S2βq4 − Km2Km3Km5β − Km2Km3S2S4βq4 − Km2Km3S4β
− Km2Km4Km5S2βq4 − Km2Km4Km5β − Km2Km4S2S4βq4 − Km2Km4S4β
− Km2Km5S2V3q4 + Km2Km5S2k2q4 − 2Km2Km5V3 + Km2Km5k2

− Km2S2S4V3q4 + Km2S2S4V5q4 + Km2S2S4k2q4 − 2Km2S4V3 + Km2S4V5

+ Km2S4k2 − Km3Km5S
2
2βq4 − Km3Km5S2β − Km3S

2
2S4βq4 − Km3S2S4β

− Km4Km5S
2
2βq4 − Km4Km5S2β − Km4S

2
2S4βq4 − Km4S2S4β + Km5S

2
2V2q4

− Km5S
2
2V3q4 + Km5S

2
2k2q4 + Km5S2V2 − 2Km5S2V3 + Km5S2k2 + S2

2S4V2q4

− S2
2S4V3q4 + S2

2S4V5q4 + S2
2S4k2q4 + S2S4V2 − 2S2S4V3 + S2S4V5 + S2S4k2,

(4.2.10)

C2 = −Km2Km3Km4Km5S2βq4 − Km2Km3Km4Km5β − Km2Km3Km4S2S4βq4

− Km2Km3Km4S4β + Km2Km3Km5S2k2q4 − Km2Km3Km5V3 + Km2Km3Km5k2

+ Km2Km3S2S4V5q4 + Km2Km3S2S4k2q4 − Km2Km3S4V3 + Km2Km3S4V5

+ Km2Km3S4k2 − Km2Km4Km5S2V3q4 + Km2Km4Km5S2k2q4 − Km2Km4Km5V3

+ Km2Km4Km5k2 − Km2Km4S2S4V3q4 + Km2Km4S2S4V5q4 + Km2Km4S2S4k2q4

− Km2Km4S4V3 + Km2Km4S4V5 + Km2Km4S4k2 − Km3Km4Km5S
2
2βq4

− Km3Km4Km5S2β − Km3Km4S
2
2S4βq4 − Km3Km4S2S4β + Km3Km5S

2
2V2q4

+ Km3Km5S
2
2k2q4 + Km3Km5S2V2 − Km3Km5S2V3 + Km3Km5S2k2 + Km3S

2
2S4V2q4

+ Km3S
2
2S4V5q4 + Km3S

2
2S4k2q4 + Km3S2S4V2 − Km3S2S4V3 + Km3S2S4V5

+Km3S2S4k2 +Km4Km5S
2
2V2q4 −Km4Km5S

2
2V3q4 +Km4Km5S

2
2k2q4 +Km4Km5S2V2

− Km4Km5S2V3 + Km4Km5S2k2 + Km4S
2
2S4V2q4 − Km4S

2
2S4V3q4 + Km4S

2
2S4V5q4

+ Km4S
2
2S4k2q4 + Km4S2S4V2 − Km4S2S4V3 + Km4S2S4V5 + Km4S2S4k2,

(4.2.11)

and

D2 = Km2Km3Km4Km5S2k2q4 + Km2Km3Km4Km5k2 + Km2Km3Km4S2S4V5q4

+ Km2Km3Km4S2S4k2q4 + Km2Km3Km4S4V5 + Km2Km3Km4S4k2

+ Km3Km4Km5S
2
2V2q4 + Km3Km4Km5S

2
2k2q4 + Km3Km4Km5S2V2

+ Km3Km4Km5S2k2 + Km3Km4S
2
2S4V2q4 + Km3Km4S

2
2S4V5q4

+ Km3Km4S
2
2S4k2q4 + Km3Km4S2S4V2 + Km3Km4S2S4V5 + Km3Km4S2S4k2.

(4.2.12)

Given that P2(S3) is a third-degree polynomial, if it admits three distinct roots S∗
31,S

∗
32, and S∗

33,

then with each of them, one can construct a quadruplet (S∗
1 , S∗

2 , S∗
3i, S∗

4) representing a steady-

state. I already demonstrated above that there is only one possible expression for S∗
1 and S∗

2 . I will

show later that this is also the case for S∗
4 .

Let us use Descartes’ rule of signs to set conditions for any steady-state S∗
3 solution of the poly-

nomial P2(S3) to be positive. From (4.2.9) and (4.2.12), A2 is negative while D2 is positive.

However, B2 and C2 can be positive, negative, or null. I exclude the situation where S∗
3 is null, as

that will mean no FA in the liver at the steady-state, which is physiologically impossible. According

to Proposition 1 and Proposition 2 (see Chapter 2), the number of the positive roots S∗
3 of the
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polynomial P2(S) depends only on the possible signs of B2 and C2. If B2 > 0 and C2 < 0, there

are three sign-changing in the coefficients of P2(S3), implying that there can be either three or one

positive root(s) of S∗
3 . This is only the necessary condition for the polynomial P2(S3) to have three

positive roots. One needs to study the sign of the turning points1 to have sufficient conditions. I

summarize the study of the possible number of positive values of S∗
3 using Descartes’ rule of signs

in Table 4.2.

Table 4.2: Summary of the possible number of roots for P2(S3) by applying Descartes’ rule of signs for

positive roots: the highlighted row represents the case where one can have either one positive root or three positive

roots. Vp(P2) is the number of sign-changes in the polynomial P2(S3) and Np(P2) is the corresponding number of

positive roots.

A2 B2 C2 D2 Vp(P2) Np(P2)

- 0 0 + 1 1

- 0 - + 1 1

- 0 + + 1 1

- - 0 + 1 1

- + 0 + 1 1

- - - + 1 1

- - + + 1 1

- + - + 3 3 or 1

- + + + 1 1

Evaluation of S∗
4

dS4

dt
= 0 ⇐⇒ Vin3 + r3 − r5 − Vout3 = 0

⇐⇒ k3 +
V3S3

Km3 + S3

− V5S4

Km5 + S4

− γS4 = 0

⇐⇒ (−Km3γ − S3γ) S2
4 + (−Km3Km5γ − Km3V5 + Km3k3

−Km5S3γ + S3V3 − S3V5 + S3k3) S4 + Km3Km5k3

+Km5S3V3 + Km5S3k3 = 0

1A turning point of a function f is any value x0 of its domain where the function’s derivative vanishes with a

change of sign.
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⇐⇒ P3(S4) = 0.

P3(S4) is the second-degree polynomial in S4 that one can write as follows

P3(S4) = A3S
2
4 + B3S3 + C3,

A3 = −Km3γ − S3γ (4.2.13)

B3 = −Km3Km5γ − Km3V5 + Km3k3 − Km5S3γ + S3V3 − S3V5 + S3k3 (4.2.14)

C3 = Km3Km5k3 + Km5S3V3 + Km5S3k3. (4.2.15)

Using the same analysis as for the case S∗
1 , it appears that P3(S4) has exactly one positive root,

that is

S∗
4 =

−B3 −
√

∆P3

2A3

(4.2.16)

where

∆P3
= B2

3 − 4A3C3. (4.2.17)

Note that A3 < 0 and C3 > 0 which ensure that

∆P3
= B2

3 − 4A3C3 > 0. (4.2.18)

From the above, the FA dynamics equation (S3) guarantees a possibility of having three distinct

steady-state values S∗
3 . In contrast, the other metabolites each have a single steady-state value.

So by changing the value of S∗
3 , one can have three combinations (S∗

1 , S∗
2 , S∗

3 , S∗
4) of steady-states

of system stationary.

4.2.2 Sufficient conditions

In 4.2.1, one can see that the system could only have three steady-states through S∗
3 . The conclu-

sion is that for such a realization, it is necessary that the coefficients B2 and C2 of the polynomial

P2(S3) be respectively positive and negative. Furthermore, Descartes’ rule of signs guarantees the

existence of at least one positive root and no negative root for P2. To ensure the existence of

the two other positive roots, I will derive additional conditions by studying the turning points of

P2(S3).
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Figure 4.2: Illustration of the scenario where one could have three positive values of S∗

3
at the steady-state.

• Given that A2 < 0, then






























lim
S3→−∞

P2(S3) = +∞

lim
S3→+∞

P2(S3) = −∞,

which implies that there exists x0 ∈] − ∞, +∞[ such that the curve of P2(S3) decreases in

] − ∞, x0[. Furthermore, Descartes’ rule of signs guarantees at least one positive root.

• If the derivative P
′

2(S3) of P2(S3) has two positive roots x1, x2 (with x1 < x2) and y1 =

P2(x1) < 0, y2 = P2(x2) > 0 then P2 has 3 positives roots. Figure 4.2 illustrates this

scenario.

Indeed, one has

P
′

2(S3) = 3A2S
2
3 + 2B2S3 + C2, (4.2.19)

with 3A2 < 0, 2B2 > 0, and C2 < 0. By applying Descartes’ rule of signs, it turns out that P
′

2(S3)

has either two positive roots or none. Furthermore, if the discriminant ∆
P

′

2

is strictly positive, then

P
′

2(S3) has two positive roots. One should note that having a positive discriminant is a crucial

condition.

One obtains

∆
P

′

2

> 0 ⇐⇒ 4B2
2 − 12A2C2 > 0

⇐⇒ B2
2 > 3A2C2. (4.2.20)
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Hence,






































x1 =
−B2 +

√

B2
2 − 3A2C2

3A2

x2 =
−B2 −

√

B2
2 − 3A2C2

3A2

.

One has

(4.2.21)

P2(x1) =
1

27A2
2

(−B2 +
√

B2
2 − 3A2C2)

3 +
B2

9A2
2

(−B2 +
√

B2
2 − 3A2C2)

2

+
C2

A2

(−B2 +
√

B2
2 − 3A2C2) + D2

= D2 − B2C2

3A2

+
2C2

√

B2
2 − 3A2C2

9A2

+
2B3

2

27A2
2

−
2B2

2

√

B2
2 − 3A2C2

27A2
2

(4.2.22)

P2(x2) =
1

27A2
2

(−B2 −
√

B2
2 − 3A2C2)

3 +
B2

9A2
2

(−B2 −
√

B2
2 − 3A2C2)

2

+
C2

A2

(−B2 −
√

B2
2 − 3A2C2) + D2

= D2 − B2C2

3A2

−
2C2

√

B2
2 − 3A2C2

9A2

+
2B3

2

27A2
2

+
2B2

2

√

B2
2 − 3A2C2

27A2
2

4.2.3 Summary of the conditions for having three steady-states

For the system to have three steady-states, it is necessary that S∗
3 takes three distinct values, and

for this to be achieved, the following conditions must be fulfilled simultaneously:

1) B2 must be positive

4) C2 must be negative

3) B2
2 > 3A2C2

4) P2(x1) must be negative

5) P2(x2) must be positive.

4.3 Stability analysis of the steady-states

Assuming that conditions 1) to 5). ensuring the existence of three steady-states are satisfied, let

us denote by S∗
31, S∗

32, and S∗
33 the three possible values of S∗

3 (with 0 < S∗
31 < S∗

32 < S∗
33 ). The
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associated steady-states are


























S∗S∗S∗
1 = (S∗

1 , S∗
2 , S∗

31, S∗
4)

S∗S∗S∗
2 = (S∗

1 , S∗
2 , S∗

32, S∗
4)

S∗S∗S∗
3 = (S∗

1 , S∗
2 , S∗

33, S∗
4).

(4.3.1)

To achieve bi-stability, it is necessary to have two stable steady-states and one unstable one.

Without loss of generality, consider S∗S∗S∗
1 and S∗S∗S∗

3 to be stable, and S∗S∗S∗
2 unstable.

Let us denote by f1(SSS), f2(SSS), f3(SSS), and f4(SSS) the right-hand sides of the equation (4.1.1),

(4.1.2), (4.1.3), and (4.1.4), respectively, where SSS = (S1, S2, S3, S4). The Jacobian matrix of the

system (2.2.1) associated with the steady-state S∗S∗S∗
k, k = 1, 2, 3 is given by:

Jk =
(

Dk
ij

)

1≤i,j≤4,
1≤k≤3

, (4.3.2)

where

Dk
ij =

∂fi

∂Sj

(S∗
kS∗
kS∗
k). (4.3.3)

Here, k is the index of the steady-states, whereas i and j are used to label the four metabolites in

the system and the right-hand side of the ODEs describing their dynamics, respectively.

More precisely, the entries of Jk are:

Dk
11 = −α − V1Km1

(1 + q1S∗
3k)(Km1 + S∗

1)2
(4.3.4)

Dk
12 = − V4q4S

∗
3k

(Km4 + S∗
3k)(1 + q4S∗

2)2
(4.3.5)

Dk
13 =

V1q1S
∗
1

(Km1 + S∗
1)(1 + q1S∗

3k)2
+

V4Km4

(1 + q4S∗
2)(Km4 + S∗

3k)2
(4.3.6)

Dk
14 = 0 (4.3.7)

Dk
21 =

V1Km1

(1 + q1S∗
3k)(Km1 + S∗

1)2
(4.3.8)

Dk
22 = − V2Km2

(Km2 + S∗
2)2

(4.3.9)

Dk
23 = − V1q1S

∗
1

(Km1 + S∗
1)(1 + q1S∗

3k)2
(4.3.10)

Dk
24 = 0 (4.3.11)

Dk
31 = 0 (4.3.12)

Dk
32 =

V2Km2

(Km2 + S∗
2)2

+
V4q4

(Km4 + S∗
3k)(1 + q4S∗

4)2
(4.3.13)

Dk
33 = −β − V3Km3

(Km3 + S∗
3k)2

− V4Km4

(1 + q4S∗
2)(Km4 + S∗

3k)2
(4.3.14)
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Dk
34 =

V5Km5

(Km5 + S∗
4)2

(4.3.15)

Dk
41 = 0 (4.3.16)

Dk
42 = 0 (4.3.17)

Dk
43 =

V3Km3

(Km3 + S∗
3k)2

(4.3.18)

Dk
44 = −γ − V5Km5

(Km5 + S∗
4)2

. (4.3.19)

Then,

Jk =































Dk
11 Dk

12 Dk
13 Dk

14

Dk
21 Dk

22 Dk
23 Dk

24

Dk
31 Dk

32 Dk
33 Dk

34

Dk
41 Dk

42 Dk
43 Dk

44































(4.3.20)

To facilitate the calculations that will follow, I replace the entries in (4.3.20), which beforehand

are 0 by their values. Hence, one has

Jk =































Dk
11 Dk

12 Dk
13 0

Dk
21 Dk

22 Dk
23 0

0 Dk
32 Dk

33 Dk
34

0 0 Dk
43 Dk

44































(4.3.21)

The eigenvalues of Jk are the zeros of the polynomial

Γk(λ) = det(Jk − λI4), (4.3.22)

where det and I4 stand for the determinant and 4 × 4 identity matrix, respectively. After some

algebra, one obtain

Γk(λ) = λ4 + Akλ3 + Bkλ2 + Ckλ + Dk, (4.3.23)

with

Ak = −
(

Dk
11 + Dk

22 + Dk
33 + Dk

44

)

= −tr(Jk) (4.3.24)

Bk =Dk
11D

k
22 + Dk

11D
k
33 + Dk

11D
k
44 − Dk

12D
k
21 + Dk

22D
k
33 + Dk

22D
k
44 − Dk

23D
k
32 + Dk

33D
k
44

(4.3.25)
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− Dk
34D

k
43

Ck = − Dk
11D

k
22D

k
33 − Dk

11D
k
22D

k
44 + Dk

11D
k
23D

k
32 − Dk

11D
k
33D

k
44 + Dk

11D
k
34D

k
43 (4.3.26)

+ Dk
12D

k
21D

k
33 + Dk

12D
k
21D

k
44 − Dk

13D
k
21D

k
32 − Dk

22D
k
33D

k
44 + Dk

22D
k
34D

k
43 + Dk

23D
k
32D

k
44

Dk =Dk
11D

k
22D

k
33D

k
44 − Dk

11D
k
22D

k
34D

k
43 − Dk

11D
k
23D

k
32D

k
44 − Dk

12D
k
21D

k
33D

k
44

+ Dk
12D

k
21D

k
34D

k
43 + Dk

13D
k
21D

k
32D

k
44. (4.3.27)

tr in equation (4.3.24) stand for trace of the matrix.

If it is obvious that the sign of Ak is positive, one cannot decide a priori on the signs of the other

coefficients. Indeed, their signs will depend on the values of the parameters in the expression of

the steady-state concentration vector S∗S∗S∗
k.

4.3.1 Conditions for a steady-state to be stable

For S∗S∗S∗
k to be stable, its corresponding characteristic polynomial Γk(λ) must have four distinct and

negative roots. I will use Descartes’ rule of signs for negative roots and derive the conditions under

which Γk(λ) has all its roots distinct and negative.

Considering

Γk(−λ) = λ4 − Akλ3 + Bkλ2 − Ckλ + Dk, (4.3.28)

the analysis of the possible number of negative roots of Γk(λ) is summarized in Table 4.3,
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Table 4.3: The possible number of negative roots of Γk(λ) by applying Descartes’ rule of signs for negative

roots: the highlighted represents the scenario of interest. Vn(Γk) is the number of sign-changes in the polynomial

Γk(−λ) and and Nn(Γk) is the corresponding number of negative roots.

1 -Ak Bk -Ck Dk Vn(Γk) Nn(Γk)

+ - - - - 1 1

+ - - - + 2 2 or 0

+ - - + - 3 3 or 1

+ - - + + 2 2 or 0

+ - + - - 3 3 or 1

+ - + - + 4 4 or 2 or 0

+ - + + - 3 3 or 1

+ - + + + 2 2 or 0

Based on Table 4.3, one can understand that for Γk(λ) to have four negatives roots, it is necessary

that



























Bk > 0

Ck > 0

Dk > 0.

(4.3.29)

Combining (4.3.29) with the positiveness of Ak, a necessary condition for S∗
KS∗
KS∗
K to be stable is that

the characteristic polynomial Γk(λ) of Jk must have only positive coefficients. To guarantee the

existence of the four negative roots, Γk(λ) must have three negative turning points mk
1, mk

2, mk
3

(without loss of generality, I consider mk
1 < mk

2 < mk
3). Furthermore, one must have



























Γk(mk
1) < 0

Γk(mk
2) > 0

Γk(mk
1) < 0.

(4.3.30)
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Figure 4.3: Conditions for the Jacobian matrix Jk to have three negative eigenvalues.

The turning points of Γk(λ) are the zeros of the polynomial Γ
′

k(λ), where Γ
′

k(λ) is the derivative

polynomial of Γk(λ). For Γ
′

k(λ) to have three negative roots, it is necessary to have three changes

of sign in the coefficients of Γ
′

k(−λ), which is already satisfied. Thus the sufficient condition is

Γ
′

k(λ) having two negative turning points nk
1 and nk

2. Suppose nk
1 < nk

2, one should have











Γ
′

k(nk
1) > 0

Γ
′

k(nk
2) < 0.

(4.3.31)

Figure 4.4: Analysis of the scenario where Γ
′

k(λ) has two turning points.

Using the same reasoning as in the case of Γk(λ), the turning points of Γ
′

k(λ) are the zeros of

Γ”
k(λ). One already has two sign changes in the expression Γ”

k(−λ), which is a necessary condition
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to have two negative roots. The sufficient condition is that the discriminant ∆Γ”

k
should be positive.

One has

Γ”
k(λ) = 12λ2 + 6Akλ + 2Bk, (4.3.32)

and

∆Γ”

k
= 36A2

k − 96Bk. (4.3.33)

∆Γ”

k
> 0 ⇐⇒ A2

k

Bk

>
8

3
(4.3.34)

Once the condition (4.3.34) is satisfied, one can determine nk
1 and nk

2 as follows

nk
1 = −

3Ak +
√

3(3A2
k − 8Bk)

12
(4.3.35)

nk
2 =

−3Ak +
√

3(3A2
k − 8Bk)

12
. (4.3.36)

To summarize, for a steady-state S∗S∗S∗
k to be stable, the following conditions on the parameterization

must be fulfilled:

(Stab Cond)



























































































































Bk > 0

Ck > 0

Dk > 0

A2
k

Bk

>
8

3

Γ
′

k(nk
1) > 0

Γ
′

k(nk
2) < 0

Γk(mk
1) < 0

Γk(mk
2) > 0

Γk(mk
3) < 0

.

4.3.2 Condition for a steady-state to be unstable

To achieve bi-stability, we saw 4.2.1 that at least one steady-state must be unstable; i.e., Γk(λ)

must have at least one positive root. This condition leads to different cases depending on the sign

of the coefficients Bk, Ck, and Dk. Table 4.4 summarizes the possible situations.
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Table 4.4: The possible number of positive roots of Γk(λ) by applying Descartes’ rule of signs for positive

roots.

1 Ak Bk Ck Dk Vp(Γk) Np(Γk)

+ + - - - 1 1

+ + - - + 2 2 or 0

+ + - + - 3 3 or 1

+ + - + + 2 2 or 0

+ + + - - 1 1

+ + + - + 2 2 or 0

+ + + + - 1 1

+ + + + + 0 0

From Table 4.4, one can already see that it is impossible to have four positive eigenvalues, which

eliminates the possibility of an unstable node. Furthermore, I can also eliminate the case of zero

negative roots, which corresponds to the case of the unique steady-state (uni-stability). I consider

only cases where the eigenvalues are real to avoid getting complex dynamics such as oscillations

and limit cycles. Therefore, the possible scenarios are either:

• one positive and three negative eigenvalues

• two positive and two negative eigenvalues

• three positive and one negative eigenvalues.

Given that the signs of the two leading coefficients (1 and Ak) of the characteristic polynomial Γk

are independent of the values of the parameters, Descartes’ rule of signs allows us to summarize

the possible combination based on the signs of Bk, Ck, and Dk. Table 4.5 allows summarizes the

possibilities possibilities.

Table 4.5 gives the possible combinations of the signs of the real roots of Γk(λ) without guaran-

teeing their existence. Therefore, one needs to derive further conditions to be fulfilled by S∗
k to be

a saddle (unstable in one, two, or three directions). These conditions depend only on the combina-

tions of signs of the coefficients Bk, Ck, and Dk. To represent the combination of sign-changing

of those coefficients and the corresponding fixed points, I introduce the following vector notation

(sg(Bk), sg(Ck), sg(Dk)) , (4.3.37)
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Table 4.5: The possible number of positive and negative roots Γk(λ) by applying Descartes’ rule of signs

1 Ak Bk Ck Dk −Ak −Ck Vp(Γk) Vn(Γk)

+ + - - - - + 1 3

+ + - - + - + 2 2

+ + - + - - - 3 1

+ + - + + - - 2 2

+ + + - - - + 1 3

+ + + - + - + 2 2

+ + + + - - - 1 3

+ + + + + - - 0 4

where the function sg is defined by

sg(x) =











− if x is negative

+ if x is positive
. (4.3.38)

i) Saddle with one unstable direction, that is to say, with one positive eigenvalue. For the unsta-

ble fixed point to be a saddle with an unstable direction, the vector of signs (sg(Bk), sg(Ck), sg(Dk))

should take one of the following combinations of signs (−, −, −), (+, −, −) or (+, +, −).

ii) Saddle with two unstable directions, that is, two positive eigenvalues. In this case, the

vector of signs (sg(Bk), sg(Ck), sg(Dk)) should take one of the following combination of

signs (−, −, +), (−, +, +) and (+, −, +).

iii) Saddle with three unstable directions: three positive eigenvalues. in this case the vector of

signs (sg(Bk), sg(Ck), sg(Dk)) should take the following combination of signs (−, +, −).

For a steady S∗S∗S∗
k to be any of the saddle I), ii), or iii), one has to derive the further specific

conditions. Additionally, after deriving those conditions, it is important to check that they do not

contradict the earlier derived necessary conditions in 4.2.1. Remark that Γk(λ) has four real roots

and can only have a maximum of three positive roots. Under this remark, Γk(λ) must have three

turning points that I denote by xk1
, xk2

, and xk3
(with xk1

< xk2
<xk3

). The existence of the

four real eigenvalues would be guaranteed by the change of sign of yki
= Γk(xki

), i ∈ {1, 2, 3}.

As illustrated in Figure 4.5 yk1
should be negative, while yk2

positive, and yk3
negative. In the

following, I will derive sufficient conditions for each case of saddle-node.



77

Figure 4.5: Illustration of the conditions for Γk(λ) to have four roots.

It is important to remember that Figure 4.5 is only drawn to illustrate the general case and,

therefore, can overlap with a particular case of a saddle with two unstable directions.

Saddle with one unstable direction.

As shown in Table 4.5, S∗S∗S∗
k can be a saddle with one unstable direction only when Dk is negative.

Based on the possible combination of Bk and Ck, I will derive further conditions to satisfy such a

behavior.

Case 1: The three turning points of Γk(λ) are all negatives.

Figure 4.6: Illustration of the case where Γk(λ) has four distinct roots (three negative and one positive),

and all its turning points are negative.
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Figure 4.7: Illustration of the curves of the first (left) and second (right) derivatives ensuring that Γk(λ)

has four distinct roots (three negative and one positive), and all its turning points are negative.

Given that xk1
, xk2

, and xk3
are the roots of Γ

′

k(λ), they are all negatives. The saddle with

one unstable will occur if Γ
′

k(λ) has two negative tuning points x
′

k1
, x

′

k2
(with x

′

k1
< x

′

k2
)

and Γ
′

k(xk1
) positive while Γ

′

k(xk2
) negative as illustrated by the left panel of Figure 4.7.

Furthermore, x
′

k1
and x

′

k2
must verify the following inequation derive from right panel Figure

4.7

x
′

k1
< −1

4
Ak < x

′

k2
.

For this case where the three turning points xk1
, xk2

, and xk3
are negative (xk1

< xk2
<xk3

),

the saddle with one unstable direction is achieved if Γk(xk1
) and Γk(xk3

) negative and Γk(xk2
)

positive. For Γk(λ) to have three turning points that fulfill the aforementioned conditions, Γ
′

k

must have two turning points x
′

k1
, x

′

k2
(x

′

k1
< x

′

k2
) with x

′

k1
and x

′

k1
negative, Γ

′

k(x
′

k1
) > 0,

and Γ
′

k(x
′

k2
) < 0.

Similarly, for Γ
′

k(λ) to have two turning points, the discriminant ∆Γ
′′

k
of the second derivative

Γ
′′

k(λ) of Γk(λ) must be positive.











Bk > 0

∆Γ
′′

k
= 36A2

k − 96Bk > 0
⇐⇒











Bk > 0

3A2
k − 8Bk > 0

. (4.3.39)

This case corresponds to (sg(Bk), sg(Ck), sg(Dk)) = (+, +, −). The conditions can be

summarized as follows,
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(unstab cond 1)























































































































Bk > 0

3A2
k − 8Bk > 0

Ck > 0

Γ
′

k(x
′

k1
) > 0

Γ
′

k(x
′

k2
) < 0

Dk < 0

Γk(xk1
) < 0

Γk(xk2
) > 0

Γk(xk3
) < 0

. (4.3.40)

Case 2: Two turning points of Γk(λ) are negative and one is positive.

Figure 4.8: Illustration of a case where Γk(λ) has four distinct roots (including three negative ones).

Among the three turning points, two are negative, and one is positive.

This situation occurs if Ck is negative, leading to two sub-cases based on the sign of Bk. They

are illustrated in the Figures 4.9 and 4.10. The first sub-case corresponds to the situation

where the two turning points of Γ
′

k(λ) are negative and Bk is positive. The second sub-case

is when the turning points of Γ
′

k(λ) have distinct signs, and Bk is negative. By using the

same approach as in Case 4.3.2, one can conclude that for having two turning points of

Γk(λ) (one negative and the other positive), the following conditions must be satisfied.
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For (sg(Bk), sg(Ck), sg(Dk)) = (+, −, −), the condition for having a saddle in one direction

can be summarized as follows:

(unstab cond 2)























































































































Bk > 0

3A2
k − 8Bk > 0

Ck < 0

Γ
′

k(x
′

k1
) > 0

Γ
′

k(x
′

k2
) < 0

Dk < 0

Γk(xk1
) < 0

Γk(xk2
) > 0

Γk(xk3
) < 0.

(4.3.41)

Figure 4.9: Sub-case 1: x′

k1
and x′

k2
are both negative and Bk is positive.

For (sg(Bk), sg(Ck), sg(Dk)) = (−, −, −), one can summarize the conditions for having a

saddle in one direction as follows:
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





















































































































Bk < 0

3A2
k − 8Bk > 0

Ck < 0

Γ
′

k(x
′

k1
) > 0

Γ
′

k(x
′

k2
) < 0

Dk < 0

Γk(xk1
) < 0

Γk(xk2
) > 0

Γk(xk3
) < 0

. (4.3.42)

It is important to underline here that when Bk is negative, the condition A2
k − 8Bk > 0 is

automatically satisfied, which leads to more relaxed conditions

(unstab cond 3)







































































































Bk < 0

Ck < 0

Γ
′

k(x
′

k1
) > 0

Γ
′

k(x
′

k2
) < 0

Dk < 0

Γk(xk1
) < 0

Γk(xk2
) > 0

Γk(xk3
) < 0

. (4.3.43)

Figure 4.10: Sub-case 2: x′

k1
is negative, x′

k2
positive, and Bk negative.
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To summarize, the saddle with one unstable direction corresponds to the cases where the vector sign

(sg(Bk) ,sg(Ck), sg(Dk)) is (+, +, −), (+, −, −), and (−, −, −) corresponding to the conditions

(unstab cond 1), (unstab cond 2), and (unstab cond 2), respectively. The situation where the

turning point of Γ′′
k is positive is simply impossible since Ak is positive, and the corresponding

turning point is x′′
k = −1

4
Ak.

Saddle with two unstable directions

According to Table 4.5, for having a saddle with two unstable directions, Dk must be positive. By

using a similar analysis of the characteristic polynomial Γk(λ) and its derivatives, like in the case of

the saddle with one unstable direction 4.3.2, one obtains the scenarios where the vector (sg(Bk) ,

sg(Ck), sg(Dk)) takes the combination of signs (+, −, +), (+, −, +), and (+, +, +), respectively.

These scenarios correspond respectively to the following set of conditions,

(unstab cond 4)







































































































Bk < 0

Ck < 0

Dk > 0

Γ
′

k(x
′

k1
) > 0

Γ
′

k(x
′

k2
) < 0

Γk(xk1
) < 0

Γk(xk2
) > 0

Γk(xk3
) < 0

, (4.3.44)

(unstab cond 5)























































































































Bk > 0

3A2
k − 8Bk > 0

Ck < 0

Dk > 0

Γ
′

k(x
′

k1
) > 0

Γ
′

k(x
′

k2
) < 0

Γk(xk1
) < 0

Γk(xk2
) > 0

Γk(xk3
) < 0

, (4.3.45)
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and

(unstab cond 6)























































































































Bk > 0

3A2
k − 8Bk > 0

Ck > 0

Dk > 0

Γ
′

k(x
′

k1
) > 0

Γ
′

k(x
′

k2
) < 0

Γk(xk1
) < 0

Γk(xk2
) > 0

Γk(xk3
) < 0

. (4.3.46)

Saddle with three unstable directions

Table 4.5 shows that for having a saddle with three unstable directions, Dk must be negative. The

same reasoning like for saddle with one unstable direction 4.3.2 leads to the scenario where the,

vector sign (sg(Bk), sg(Ck), sg(Dk)) is (−, +, −), corresponding to the following set of conditions,

(unstab cond 7)




























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
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
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


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





























Bk < 0

Ck > 0

Dk < 0

Γ
′

k(x
′

k1
) > 0

Γ
′

k(x
′

k2
) < 0

Γk(xk1
) < 0

Γk(xk2
) > 0

Γk(xk3
) < 0

. (4.3.47)

4.4 Summary of bi-stability conditions

For my model of FA metabolism (see Figure 4) to be a bi-stable system, the parameterization

of the system must be such that the coefficients A2, B2, C2, and D2 of the polynomial P2(S
∗
3)

representing the equation of the FA pool at the steady-state and its turning points x1 and x2 fulfill
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the following necessary conditions:

(3 steady-state cond)



























































B2 > 0

C2 < 0

B2 > 3A2C2

P2(x1) < 0

P2(x2) > 0

. (4.4.1)

Once (3 steady-state cond) is fulfilled, one would like to have S∗S∗S∗
1 and S∗S∗S∗

3 to be stable and S∗S∗S∗
2

unstable. To do so, the characteristic polynomials associated with the Jacobian matrices of S∗S∗S∗
1

and S∗S∗S∗
3 must fulfill (stab cond), and the one of S∗S∗S∗

2 must fulfill one among (unstab cond 1) to

(unstab cond 7).

4.5 Discussion and conclusion

Fatty acids (FAs) play a crucial role in maintaining the body’s energy balance. In the fed state,

when carbohydrates are abundant, FAs are synthesized from acetyl-CoA, which results from the

breakdown of carbohydrates. Conversely, in the fasted state, as the cell’s energy status declines

due to a scarcity of carbohydrates, FAs are degraded to compensate for the energy shortfall.

Malonyl-CoA is pivotal in these processes, serving both as a substrate, an intermediate for FA

synthesis, and an inhibitor for FA degradation. Acetyl-CoA occupies a central position in FA

metabolism, acting as both the precursor for synthesis and the final product in degradation. The

synthesized FAs are esterified into triglycerides (TGs) for storage and later mobilized in the fasted

state. Furthermore, FAs self-regulate their synthesis by inhibiting the production of malonyl-CoA.

This delineation underscores that FA metabolism operates across two regimes: the synthesis and

storage of FAs and their degradation. Shi and Tu [172] posited that acetyl-CoA concentration

in the cytosol dictates the metabolic regime (synthesis or degradation) a cell engages in. This

hypothesis is explored through a simplified model of FA metabolism, which demonstrates that,

alongside acetyl-CoA, FAs are critical for the bi-stability of FA metabolism. For the system to

manifest as bi-stable, FAs must also be allocated for non-energetic functions, such as components

in cellular membrane construction and signaling molecules. Analysis of various unstable steady-

states indicates the impossibility of an unstable node, suggesting that not all metabolites can

simultaneously deviate from their steady-state. The complexity of the system’s mathematical

framework and its extensive parameterization precluded a comprehensive examination of transitions

between steady-states in every scenario. However, this exploration could illuminate disruptions in

the system during FA oxidation disorders (FAODs), potentially guiding compensatory interventions.

I developed a straightforward ordinary differential equation (ODE) model to capture the dynamics
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of FA metabolism in the liver, incorporating key metabolites (acetyl-CoA, malonyl-CoA, FAs, and

TGs) and focusing solely on the essential processes affecting FA dynamics: synthesis, degradation,

and storage. Each process is modeled as a single enzymatic reaction, following either Michaelis-

Menten kinetics or non-competitive inhibition. The model also accounts for the external influx and

efflux associated with all metabolites, with the exception of malonyl-CoA. Upon constructing the

model, a qualitative analysis was conducted to identify the sufficient and necessary conditions for FA

metabolism to exhibit bi-stability. At steady-state, the equations governing the system’s dynamics

reveal that the polynomials for acetyl-CoA, malonyl-CoA, and TGs each have a singular positive

root. However, the FA pool’s polynomial is cubic, potentially yielding three positive roots under

specific conditions. These roots represent possible steady-state values for the FA pool, allowing the

system to exhibit bi-stability given additional conditions. The criteria for this polynomial to possess

three positive roots were established using Descartes’ rule of signs and by analyzing the polynomial’s

extrema. Stability analysis of the steady-states demonstrated that bi-stability is feasible only when

two of the three steady-states are stable. Assuming the existing steady-states are hyperbolic,

their stability or instability conditions were derived. Consequently, it is deduced that the model

representing FA metabolism (Figure 4) constitutes a bi-stable system if: 1) three steady-states exist

(3 steady-state cond); and 2) two of these steady-states are stable (stab cond), while the third

meets one of the instability conditions (unstab cond1 to unstab cond7). The model simplifies

processes involving multiple reactions into a single reaction (lumping), raising questions about

this approach given the complexity of enzymatic reactions involved. To address these concerns,

one strategy might involve parameterizing the enzyme with the slowest kinetics to represent the

overall kinetics of the lumped reaction or, alternatively, using the parameters of the first reaction

in the pathway. The decision to model malonyl-CoA synthesis inhibition as non-competitive is

based on findings that only long chains of fatty acids inhibit acetyl-CoA carboxylase (Brun et al.

[174]), suggesting an allosteric mechanism rather than competitive inhibition. The inhibition of

β-oxidation by malonyl-CoA, which competes with free carnitine rather than long-chain acyl-CoA,

further supports the assumption of allosteric inhibition, with FAs considered the primary substrate

for β-oxidation. Moreover, Fraser et al. [177] demonstrated that CPT1 inhibition by malonyl-CoA in

the liver varies by mechanism, being competitive at mitochondrial contact sites and non-competitive

elsewhere. Regarding the influxes and the outfluxes, for the sake of simplicity, I have represented

them to be constant and proportional to the pool concentrations, respectively. However, the fluxes

in and out of FA metabolism are highly subject to hormonal regulation. For instance, acetyl-

CoA production from glucose occurs through a metabolic pathway strongly regulated by insulin,

glucagon, and epinephrine. It is also the case for the influx of TGs. It would be interesting to

represent acetyl-CoA and TGs’ influxes as insulin and glucagon’s increasing functions, respectively.

At the same time, the two hormones would be described with opposite dynamics. In the formulation

of the bi-stability conditions that I derived, it was impossible to express the steady-states vector S∗S∗S∗
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as a strict function of the parameterization. Indeed, the conditions include the expression of the

steady-state concentrations. Since one has a well-posed ODE system, the solutions depend only

on time and parameterization once the initial values are specified. Thus, expressing the steady-

state concentrations purely as a function of parameterization and bi-stability conditions is feasible,

though finding suitable parameterization is computationally challenging with eighteen parameters.

I recommend pre-fixing known parameters, such as those associated with malonyl-CoA synthesis,

widely documented in the literature (see Table A2). Identifying the slowest reactions could further

refine the approach to parameterizing the lumped reaction, with the parameterization of glycerol-

3-phosphate-acyltransferase (GPAT) involved in the rate-limiting step of TG synthesis, serving as a

model for the entire pathway ([178]). Sampling and rejection methods could then be employed to

determine remaining parameters, sequentially verifying the (3 steady-state cond), (stab cond), and

conditions from (unstab cond 1) through (unstab cond 7). My primary focus on qualitative system

analysis precluded this step. Extending the model to incorporate citrate and its positive feed-forward

activation of malonyl-CoA synthesis could unveil more complex dynamics, such as multi-stability

and hysteresis cycles, offering further insights into FA metabolism’s regulatory mechanisms.
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Chapter 5

A semi mechanistic model of fatty acid de novo synthesis

Introduction

Short description of fatty acid de novo synthesis. In the introduction and Chapter 3, I

briefly described the de novo synthesis of fatty acids from acetyl-CoA. This description shows

that it takes place in the cytosol and is done in two phases, involving one enzyme each. The

first phase synthesizes malonyl-CoA from acetyl-CoA, bicarbonate, and ATP. In contrast to the

second phase, where several reactions occur, this phase catalyzed by the acetyl-CoA carboxylase

(ACC) is less complex. In the second phase, known as the elongation phase, acetyl-CoA, malonyl-

CoA, and NADPH are utilized to produce LCFAs, free CoA, and CO2. This phase involves seven

crucial reactions, each catalyzed at a distinct site on the Fatty Acid Synthase (FAS) enzyme (as

detailed in Chapter 3 and Figure 5.1). To simplify, the entire elongation phase can be divided into

three steps. The initialization stage activates the malonyl-acetyl transferase (MAT) site on the

enzyme. The cyclic elongation stage makes use of the ketoacyl synthase (KS), ketoacyl reductase

(KR), dehydratase (DH), and enoyl reductase (ER) sites on the enzyme. Finally, the termination

stage utilizes the thioesterase site of the enzyme. The ACP site is responsible for transferring the

intermediate from one site to another through the mechanism known as channeling. As highlighted

in earlier studies on substrate channeling reactions by Ovádi [179], Spivey and Ovádi [180], and

Ovádi et al. [181], the goal of channeling reactions whether between enzymes or within an enzyme’s

catalytic sites is not only to optimize fluxes but also to circumvent substrate competition with

other pathways involving the same substrate(s). Indeed, channeling ensures that the intermediates

are treated efficiently, rather than interacting with other enzymes resulting in the synthesis of

unnecessary compounds [182]. Additionally, it limits the possibility of having unstable intermediates

and reduces the transient time (the amount of time taken by an intermediate to reach the steady-

state response after a change in substrate concentration) [180]. It is complex to study the kinetics of

channeling reactions, either among enzymes of a pathway or within the sites of a particular enzyme.
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The primary cause being the short life of the intermediates involved in the reactions, resulting in the

difficulty of their quantification [183]. Secondly, the nature of the channeling mechanism can be

very complex and may require tremendous experiments to be understood. To study the kinetic of

channeling reactions besides experimental techniques such as isotope dilution and the measurement

of transient times [180], stochastic simulation is the widely used theoretical framework. Among

these methods, one can mention the queuing theory-based simulation, where the enzymes or the

sites of an enzyme are considered to be connected via channels. The channel’s characteristic defines

the transition probability from one enzyme to another. The work of Tsitkov et al. [184] is an example

of the use of queuing theory for modeling channeling cascade. Another approach would be to ignore

channeling in the enzymatic mechanism and then assume that all enzyme-substrate complexes are

in a steady-state (quasi-steady-state assumption) as in the case of the Michaelis-Menten Kinetics

derivation. While this approach can offer a detailed and mechanistic model, it also introduces

the challenge of dealing with numerous parameters. It is important to note that almost all the

enzymatic sites of FAS follow a two-substrate ping pong mechanism. However, KR and ER are

exceptions, as they follow the two-substrate, random sequential mechanism [185, 154]. Thus, such

a model will contain at least 42 parameters if one further ignores the regulatory mechanisms. Cox

and Hammes [36], after proposing a kinetic rate law for the elongation phase of FADNS until the

production of palmitic acid, suggest this approach as a simplified mechanism for deriving kinetic

rate laws. The proposed mechanism consists of two elementary reactions for the initialization

phase, five elementary reactions for the cyclic elongation, and one for the termination (see Figure

5.1). Furthermore, the proposed mechanism ignores the regulation processes. In this work, I

propose a further simplified mechanism that divides the pathway into three elementary reactions

corresponding to the initialization, cyclic elongation, and termination.

Figure 5.1: Detailed reactions of FADNS: The seven enzymatic site of FAS are represented, notably the malony-

lacetyltransferase(MAT) (Reprinted (adapted) with permission from [186]. Copyright 2019 ChemBioChem)
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Motivation and Objective. In a previous study by Martines [5], comparing the composition of

TGs between knockout and wild-type adult mice fasted and refed and exposed to a temperature

of 4 degrees observed a significant disturbance (see Figure 5.2). The suggested explanation is that

the medium-chain FAs that are not degraded are exported from the mitochondria, modified by

the microsomal pathway, and then stored as TGs. Even if this explanation is convincing, it would

also be essential to question the impact of mFAODs on the FADNS. Furthermore, Tucci et al.

[187] observed that VLCAD-deficient mice supplemented with medium-chain FAs were experiencing

hepatic steatosis, although [188] later showed that this result was more pronounced in females.

Earlier Mitchell et al. [189] have already demonstrated that the sequestration of free CoA by β-

oxidation intermediates in mFAODs was the reason for the manifestation of metabolites syndromes.

Given CoA’s crucial role in the FA synthesis process, its sequestration will undoubtedly impact

the synthesis and storage pathways. Indeed, CoA plays at least two roles in the synthesis of

FAs. First, it serves as a substrate for activating FAs which microsomal synthesis pathways will

modify. In the second place, it inhibits the phase of elongation of the FADNS. In order to better

understand these lipid disturbances associated with FOADs, many computational models of β-

oxidation have been developed. Noteworthy among these is the contribution by Modre-Osprian

et al. [67], who delved into the kinetics of various mFAODs using a large model that comprised

64 reactions, 91 metabolites, and 301 parameters. Subsequent to this, there was a crescendo

β-oxidation modeling endeavors, particularly in relation to MCAD deficiency. Esteemed works in

this domain include those of van Eunen et al. [49], van Eunen et al. [190], Martines et al. [12], and

Abegaz et al. [68], which inaugurated with a comprehensive model featuring 47 metabolites, 66

reactions, and 227 parameters. While these studies have significantly advanced our understanding

of mFAODs, I believe that including the pathways of synthesis and storage could offer a more

holistic perspective. This inclusion might provide a deeper insight into the cascade leading to

hepatic steatosis in cases of mFAODs, the heterogeneity of symptoms, and the sexual dimorphism

observed in specific conditions, such as MCADD and VLCAD deficiencies [63, 187]. Moreover,

such a comprehensive model could be instrumental in evaluating diet-based solutions for mFAODs.

This chapter introduces a semi-mechanistic model that captures an intricate aspect of FA synthesis,

namely, the elongation phase of FADNS.

Existing models. In the literature, various studies have examined the kinetics of the elongation

phase of the de novo synthesis of fatty acids. Among them, the work of Katiyar et al. [152]

stands out, which delves into the kinetic mechanism of palmitate synthesis in pigeon liver. Upon

determining the Michaelis-Menten constants for each of the three substrates, their research shifted

to the competitive dynamics between acetyl-CoA and malonyl-CoA. They fitted the in vitro data to

rate laws corresponding to competitive, uncompetitive, and non-competitive inhibition mechanisms.

Finally, by considering the ping-pong mechanism inherent to the reactions of each enzymatic site of

fatty acid synthase and employing the method of King and Altman [41], they established the rate
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law for palmitate synthesis from acetyl-CoA, malonyl-CoA and NADPH. Likewise, Cox and Hammes

[36] undertook a study on the kinetics of palmitate synthesis in chicken liver. They introduced a rate

law encapsulating the competition between acetyl-CoA and malonyl-CoA.Further, they elucidated

the dependence of the kinetic parameters on pH, specifically the turnover number (kcat), the diverse

Michaelis-Menten constants (Km), and the inhibition constants (Ki). The proposed rate laws are

detailed in the last row of Table A1.

Although these models are ingeniously designed and fit the in vitro data for palmitic acid synthesis,

they do not address the synthesis of other long-chain fatty acids, notably 14:0 and 18:0, which

are also products of this synthesis. Furthermore, the model by Katiyar et al. [152] is based on

the enzymatic mechanism of each enzymatic site, making it intricate and parameter-rich, which

complicates its utilization. My goal is therfore, to develop a simple, flexible model that describes the

chain elongation phase of fatty acid de novo synthesis and the production of long-chain saturated

fatty acids. Concurrently, I aim to design a model rooted in a minimalistic mechanism. This would

involve, for instance, lumping the channeling reactions into a singular reaction and considering a

minimal number of reversible reactions. This approach is influenced by the idea that channeling

seeks to optimize reactions [183]. My model can be tailored to produce shorter chains of saturated

FAs by adjusting the kinetic rate constant of termination kdi for the corresponding chains. For

chains shorter than 14, the kinetic rate constants are presently set to 0.
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Figure 5.2: Fold Changes in the TG Profile in MCAD Knockout and Wild-Type Mice: The fold in this context

is defined as the ratio between the mean TG concentration in MCAD knockout mice and that of the wild-type mice.

A simple approach to describe the TG is by considering the total number of carbons and the number of double

bonds in the FAs attached to the glycerol backbone. Using this description, I calculated the ratio between the means

of each type of TG in MCAD knockout mice and the wild type. An overall increase in each type TG is noticeable.

Moreover, these changes exhibit a positive correlation with the number of double bonds and a negative correlation

with the number of carbons. It is notable that some TGs, such as 48:8 and 42:4, exhibit fold changes of 24 and

17, respectively. (The data were extracted from Chapter 4 [5].)



91

Why not a detailed approach? The enzymatic mechanisms of all the sites of FAS have been

studied and are known to either follow the ping pong mechanism or the random sequential mech-

anism. A two-substrate ping pong mechanism includes 10 parameters. Hence, the most basic

detailed model of FAS would contain at least 70 parameters if I assume the reactions are not

substrate-specific, ignore the regulatory mechanisms, and presume each channeling by the ACP

site follows the enzymatic mechanism and therefore the same rate law. The validation of such a

model requires two distinct steps. The first step would involve validating the reactions of each

enzymatic site, requiring at least ten parameters. In the second step, one would need to validate

the overall kinetics of the pathway after combining these individual reactions. Given the limited

knowledge about the kinetic parameters associated with the rate laws corresponding to the mech-

anism of each enzymatic site, it is not possible to consider the bottom-up approach. Additionally,

such a detailed model would be intractable and, therefore, not practical for use. To address these

challenges, I have opted for a simpler representation of the system, which will be described in the

following section.

5.1 Model construction: hypotheses and dynamics

As mentioned in the previous paragraph, designing a detailed mechanistic model for such a complex

enzymatic mechanism could quickly lead to an impasse as the model will enclose many reactions

and parameters and therefore become tremendous to analyze. Instead, I consider a parsimo-

nious approach that divides the elongation mechanism into essential processes. The initialization

corresponds to the binding of acetyl-CoA to the free enzyme, the cyclic elongation of the enzyme-

substrate complexes using malonyl-CoA and NADPH, and finally, the termination, which corre-

sponds to the release of free FAs and the free enzyme. The three processes are modeled as a single

reaction governed by the irreversible mass action kinetic rate laws. Thus, the initialization reaction

that engages the MAT site of the enzyme binds acetyl-CoA to the enzyme to form the two-carbon

enzyme-substrate complex EC2 and releases the free CoA. The reaction proceeds with the kinetic

rate constant β. The cyclic elongations, which lengthen the intermediate enzyme-substrate com-

plex (e.g., EC2 to EC4) by two carbons and release a molecule of the free CoA, include several

intermediate reactions that are carried out by the MAT, KS, KR, and ER sites of the enzyme. I

lumped all these reactions into a single reaction associated with the kinetic rate constant κ for

all the chain elongations until the formation of the EC16 intermediate. I assume these reactions

to be rapid binding, which allows having the quasi steady-state assumption for enzyme-substrates

complexes during the initial phase kinetics. So their corresponding fluxes will be large compared

to other reactions in the pathways. The last reaction of the cyclic elongation (EC16 to EC18) is

associated with the kinetic rate constant δ, which is assumed to be smaller than κ. The consider-

ation of a lower rate constant is justified by the fact that the KS site has limited space for growing
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intermediates. When the chain exceeds 14 carbons, its ability to condense the malonyl-CoA with

the growing intermediate reduces significantly as reported by Heil et al. [186]. The termination

involves the TE site of the enzyme and produces FAs with chain lengths ranging from 4 to 18 and

the free enzyme, E. Each release is associated with the kinetic rate constants kdi
, (i = 1, 2, . . . , 8),

for a fatty acid with 2i+2 carbons. But to keep it simple for the version of the model I will present

here, I only considered that 14:0, 16:0, and 18:0 are the only products of the pathways. Indeed, as

shown by Topolska et al. [59], the pathway can produce shorter and longer chains, such as 20:0.

However, their concentration is very low compared to those of 14:0, 16:0, and 18:0.

In the second model, I included the CoA inhibition that can highly impact the kinetics. Indeed, Cox

and Hammes [36] in the in vitro experiment by variation of the concentration of free CoA from

0 to 120 µM with 10 µM of acetyl-CoA and 27 µM of malonyl-CoA, the overall elongation flux

is reduced by 4-fold. I modeled the CoA inhibition as a reverse binding of free CoA to the MAT

site of the free enzyme, thus preventing the initialization step from occurring. The associate rate

kinetic follows the reversible mass action kinetics with kinetic rate constants kfCoA
and kbCoA

for the

forward and backward reactions, respectively. In the forward reaction, free CoA bind to the enzyme

to form ECoA complex, whereas in the backward reaction, ECoA dissociates into free enzyme E

and free CoA. Despite that, the free CoA at low concentrations enhances the elongation flux. I

decided not to include the activation, as it only modifies the overall elongation flux by a maximum

of 15 % (see data in [36]). I assumed the concentration of enzyme species to be conserved in both

models. The conservation relations are defined by the equations (5.1.1) for the model without CoA

inhibition and (5.1.2) for the model with CoA inhibition.

Et = E +
9
∑

i=1

EC2i (5.1.1)

Et = E + ECoA +
9
∑

i=1

EC2i (5.1.2)

Given that I have data from in vitro experiments, in which the authors started with fixed concentra-

tions of substrates, I will not include any influx or outflux in the system. One could question such

a restriction as there are no isolated processes in the cell. However, the focus is to give a simplified

kinetic mechanism to represent the elongation part of FADNS. Furthermore, the proposed models

can be easily extended to an open system. To summarize the assumptions of models: Figure 5.3

and Figure 5.4 summarize the pathways scheme for the model with no CoA inhibition and with

CoA inhibition, respectively. Table 5.1 summarizes all the compounds involved in the two models.

5.1.1 Summary of the assumptions

1. The model is a closed system with a fixed concentration of the enzyme (Et) and the initial

concentrations of the substrates (acetyl-CoA, malonyl-CoA, and NADPH) are constant
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2. The complex mechanism of the elongation part of FADNS is divided into three reactions,

namely initialization, cyclic elongation, and termination

3. The three reactions follow the irreversible mass action kinetic rate law

4. The cyclic elongation, corresponding to substrates binding to either the free enzyme or to

enzyme-substrate complexes resulting in the formation of enzyme-substrate complexes EC2i

(i = 1, 2, · · · , 9), follows rapid binding mechanism for the formation EC2 to EC16, but

exhibits slow binding for the production EC18

5. The rate law for the binding of CoA to the free enzyme to form the ECoA complex, which

inhibits the elongation, follows reversible mass action kinetics

6. I assume the conservation relationship on the enzyme (see equations 5.1.1 and 5.1.2)

5.1.2 Summary of the compounds in the models and their initial con-

centrations

Table 5.1 provides a summary of the variables and initial concentrations for the two models examined

in this chapter.

5.1.3 Model schemes, ODEs and parameters

Model without inhibition

Figure 5.3: Scheme of the model without CoA inhibition: the reactions are color coded with red, black and

blue, representing the initialization, the cyclic elongation, and termination steps, respectively.

Let x be an arbitrary compound in the system. We denote the rate of conversion of x to a

compound y by vx→y. The rate of change of x over time, which represents the dynamics and
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Table 5.1: Summary of the different compounds of the two models and their initial concentrations

Compound Meaning Initial concentration (µM)

AcetCoA Acetyl-CoA 107.96

MalCoA Malonyl-CoA 22.04

NADPH Nicotinamide adenine dinucleotide0 phosphate 200

E Free enzyme (fatty acid synthase)

EC2 Complex enzyme substrates with two carbons 0

EC4 Complex enzyme substrates with four carbons 0

EC6 Complex enzyme substrates with six carbons 0

EC8 Complex enzyme substrates with eight carbons 0

EC10 Complex enzyme substrates with ten carbons 0

EC12 Complex enzyme substrates with twelve carbons 0

EC14 Complex enzyme substrates with fourteen carbons 0

EC16 Complex enzyme substrates with sixteen carbons 0

EC18 Complex enzyme substrates with eighteen carbons 0

ECoA Complex enzyme-Coenzyme A 0

C14:0 Myristic acid 0

C16:0 Palmitic acid 0

C18:0 Stearic acid 0

CoA Free Coenzyme A 0

is denoted by dx
dt

, is equal to the sum of the rates of reactions that positively contribute to x’s

pool minus those that contribute negatively. Hence, the dynamics of the system, excluding CoA

inhibition, are represented by the following system of ODEs:

dAcetylCoA

dt
= − VE→EC2 (5.1.3)

dMalCoA

dt
= −

8
∑

i=1

VEC2i→EC2i+2 (5.1.4)

dNADPH

dt
= −2

8
∑

i=1

VEC2i→EC2i+2 (5.1.5)

dEC2

dt
= VE→EC2 − VEC2→EC4 (5.1.6)

dEC2i

dt
= VEC2i−2→EC2i − VEC2i→EC2i+2 (2 ≤ i ≤ 6) (5.1.7)
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dEC14

dt
= VEC12→EC14 − VEC14→EC16 − VEC14→C14:0 (5.1.8)

dEC16

dt
= VEC14→EC16 − VEC16→EC18 − VEC16→C16:0 (5.1.9)

dEC18

dt
= VEC16→EC18 − VEC18→C18:0 (5.1.10)

dC14:0

dt
= VEC14→C14:0 (5.1.11)

dC16:0

dt
= VEC16→C16:0 (5.1.12)

dC18:0

dt
= VEC18→C18:0 (5.1.13)

ET otal = E +
9
∑

i=1

EC2i, (5.1.14)

where the different rate and the corresponding parameters and the parameters units are described

by Table 5.2

Table 5.2: Kinetic of each reaction of the FADNS for the model without inhibition: The symbol Vx→y is the

transformation rate from x to y. The mathematical formula describing the rate is in the column "Expression". The

units of the parameters appearing in the mathematical formula of the rate are explained in the column "Parameter

units".

Reaction Rate law Expression Parameters Parameter units

VE→EC2 Mass-action β×E×AcetCoA β µM−1×s−1

VEC2i→EC2i+2 Mass-action κ×EC2i×MalCoA×NADPH κ or δ µM−2×s−1

VEC2i+2→C2i+2:0 Mass-action kdi×EC2i + 2 kdi s−1
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Model with inhibition by the free CoA

Figure 5.4: Scheme of the model without CoA inhibition: the reactions are color coded with red, black, blue,

and orange representing the initialization, the cyclic elongation, termination steps, and the inhibition by the free

CoA, respectively.

dAcetylCoA

dt
= − VE→EC2 (5.1.15)

dMalCoA

dt
= −

8
∑

i=1

VEC2i→EC2i+2 (5.1.16)

dNADPH

dt
= −2

8
∑

i=1

VEC2i→EC2i+2 (5.1.17)

dEC2

dt
= VE→EC2 − VEC2→EC4 (5.1.18)

dEC2i

dt
= VEC2i−2→EC2i − VEC2i→EC2i+2 (2 ≤ i ≤ 6) (5.1.19)

dEC14

dt
= VEC12→EC14 − VEC14→EC16 − VEC14→C14:0 (5.1.20)

dEC16

dt
= VEC14→EC16 − VEC16→EC18 − VEC16→C16:0 (5.1.21)

dEC18

dt
= VEC16→EC18 − VEC18→C18:0 (5.1.22)

dECoA

dt
= VE→ECoA (5.1.23)

dC14:0

dt
= VEC14→C14:0 (5.1.24)

dC16:0

dt
= VEC16→C16:0 (5.1.25)

dC18:0

dt
= VEC18→C18:0 (5.1.26)
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dCoA

dt
= − VE→ECoA + VE→EC2 +

8
∑

i=1

VEC2i→EC2i+2 (5.1.27)

ET otal = E + ECoA +
9
∑

i=1

EC2i. (5.1.28)

Table 5.3: Kinetic of each reaction of the FADNS for the model with inhibition by the free CoA: The

symbol Vx→y is the transformation rate from x to y. The mathematical formula describing the rate is in the column

"Expression". The units of the parameters appearing in the mathematical formula of the rate are explained in the

column "Parameter units".

Reaction Rate law Expression Parameters Parameter units

VE→EC2 Mass-action β×E×AcetCoA β µM−1×s−1

VEC2i→EC2i+2 Mass-action κ×EC2i×MalCoA×NADPH κ or δ µM−2×s−1

VEC2i+2→C2i+2:0 Mass-action kdi×EC2i + 2 kdi s−1

VE→ECoA Reversible mass-action kfCoA×E×CoA− kbCoA×ECoA kfCoA, kbCoA µM−1×s−1/ s−1

Remark 5.1.4. Both models have the same dynamics, the only difference being from the CoA

inhibition reaction, which can be represented by equation (5.1.27) and from the conservation of

enzyme species (see (5.1.28))

5.1.5 Experimental data to support model validation

Experimental data from Topolska et al. [59] The authors designed mass spectrometry-

based in vitro assays to measure the specific activity of FAS. They utilized 13C-labeled malonyl-

CoA, unlabeled acetyl-CoA, and NADPH as substrates, measuring the incorporation of 13C into

long-chain fatty acids (LCFAs) (C14:0, C16:0, and C18:0) during the initial phase. This phase

is characterized by linear FA production over time, here specifically for 2 minutes (see Figure

5.5). Additionally, they provided time course data of total FAs for 90 minutes (see Figure 5.5).

The experiment used 16.5 µg of purified FAS from cow mammary gland, conducted in a total

volume of VT = 200µL at 37
◦ Celsius. The initial concentrations of substrates were 200 µM

for NADPH, 50 µM for acetyl-CoA, and 80 µM . However, the authors noted contamination of

malonyl-CoA due to its decarboxylation into acetyl-CoA. Using the initial phase data, I recalculated

the initial concentrations (Recalculated Initial Concentration) of acetyl-CoA and malonyl-CoA

to be 107.96 µM and 22.04 µM , respectively. I extracted the data from the publication using

PlotDigitizer software, converted, and plotted the average of the replicates in the model’s units.
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Table 5.4: Summary of experimental conditions from Topolska et al. [59] and recalculated initial condi-

tions: The column "Initial concentration" represents the concentrations prior the accounting for malonyl-CoA

decarboxylation. The "Recalculated initial concentration" column reflects concentrations adjusted based on

initial phase data analysis.

Compounds Initial concentration Recalculated initial concentration Comments

NADPH 200 µM 200 µM

Acetyl-CoA 50 µM 107.96 µM The initial concentration was mod-

ified resulting from the decarboxy-

lation of malonyl-CoA

Malonyl-CoA 80 µM 22.04 µM The authors pointed out that the

malonyl-CoA was decarboxylated

into to acetyl-CoA. Based on the

time course data and given that

C16 : 0 is the major product of the

pathway, I estimated the effective

concentration of malonyl-CoA and

therefore that of acetyl-CoA

Fatty acid synthase 0.153 µM 0.153 µM The concentration of the enzyme is

calculated from its mass in solution

(16.5 µg). The molecular weight

of FAS is 540 kDa as it consists of

two polypeptide chains a 270 kDa

each [191]
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Figure 5.5: Extracted data from the work by Topolska et al. [59]
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5.2 Results

In this section, I begin by introducing and subsequently discussing the main findings of this chapter,

focusing on the development and performance of two models for the elongation phase of FADNS.

The first model, known as the simple model, does not consider free CoA inhibition. In contrast,

the second model includes this inhibition in the synthesis process. These results are presented in

three stages:

1. Initially, I take a qualitative approach by choosing a suitable parameterization for the simple

model and observing its behavior over three time scales. This process is essential to ensure

that the model aligns with its foundational assumptions and to become familiar with its

behavior, thereby identifying any unexpected dynamics. Although this initial analysis is

confined to the simple model, I later illustrate that incorporating CoA inhibition enhances the

model’s qualitative dynamics. Additionally, I demonstrate that integrating CoA inhibition with

appropriate rate kinetic constants for reversible mass action kinetics governing the inhibition

process does not conflict with the rapid binding assumption.

2. Subsequently, I perform a global sensitivity analysis to assess the influence of each parameter

on the model. This comprehensive analysis sheds light on the model’s behavior across the

entire parameter spectrum, highlighting any non-linearity and interactions among parameters.

It aids in identifying the most crucial parameters for model fitting to experimental data.

3. Finally, I fit the model to data from Topolska et al. [59]. Given the sole data source, to

evaluate the fitting accuracy, I generate artificial data from the model and fit it to Michaelis-

Menten rate equations. The derived fitting parameters, especially the turnover number

kcat and the Michaelis-Menten constant Km, are then compared with those reported in the

literature.

5.2.1 Vanilla model

To perform a qualitative analysis of the model, I first choose a suitable parameterization consistent

with the model’s assumption, notably the rapid binding assumption. In the selected parameteriza-

tion, I ensure that the rate of cyclic elongation at the initial phase is large compared to other rates.

The chosen parameterization is summarized in Table 5.5.

Simulations for 200 milliseconds. To highlight the rapid binding, a crucial assumption of the

model, I begin by simulating the model’s dynamics for 200 milliseconds (see Figure 5.6 and Figure

5.7). It is noticeable that the fluxes of the cyclic elongations, associated with rapid binding, quickly

reach their maxima before progressively moving toward steady-state. This rapid increase in flux

is a key characteristic of rapid binding. In contrast, the flux of EC18 formation, associated with
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slow binding, reaches its maximum value later. Regarding the fluxes LCFAs production, the flux

of C16 : 0 production is significantly higher compared to C14 : 0 and C18 : 0. Concerning the

dynamics of the metabolites in the system, they follow the fluxes trends. Notably, the enzyme-

substrate complexes with carbon numbers less or equal to 14 move toward the same equilibrium

value, while EC16 is the dominant enzyme species. It is also evident that C16 : 0 is the main

product of the pathway. Thus, I conclude that the model accurately reproduces rapid binding.

Table 5.5: Parameters for the vanilla models

Parameters Value Units

β 0.1 µM−1 s−1

κ 0.1 µM−2 s−1

δ 10−6 µM−2 s−1

kd6 1 s−1

kd7 1 s−1

kd8 1 s−1

kfCoA 0.1 µM−1 s−1

kbCoA 5 × 10−4 s−1
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Figure 5.6: Behavior of the fluxes of the vanilla model during the first 200 milliseconds: in panels a and b,

one can observe the effect of the rapid binding as the associated fluxes peak and decrease toward quasi-steady-state

fluxes. Panel c shows the slow binding as the maximum production flux of EC18 is lower than the other cyclic

elongation fluxes. Panel d, the flux of production of C14 : 0 increases rapidly and drops exponentially due to high

flux toward the production EC16. Panels e and f show the rise in the production fluxes of C16 : 0, and C18 : 0,

respectively.
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Figure 5.7: Time course of the vanilla model during the first 200s milliseconds: panels a, b, and c show the

consumption of three substrates resulting from rapid binding. From panels d, e and f, it can be seen that almost

all enzyme species are rapidly converted to EC16. EC18 is the smallest enzyme species in the system. Panels g,

h, and i show FADNS products. One can see that the C16:0 is the main product of the channel.
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Simulation for the Initial Phase. In order to assess the linear phase of the model dynamics

(initial phase), I simulated the model for 5 seconds, as shown in Figure 5.8 and Figure 5.9. It

can be observed that all fluxes, except those for the production of EC18 and C18 : 0, remain

constant after a sharp increase followed by a sharp drop. The sharp increase corresponds to the

initial formation of enzyme-substrate complexes via rapid binding. The sharp drop results from

the partitioning of the enzyme according to the conservation relationship (see Equations 5.1.1 and

5.1.2). The fluxes associated with the cyclic elongation (EC2 to EC16) remain constant because

the enzyme-substrate complexes are fully saturated. Regarding the fluxes for the formation of

EC18 and C18 : 0, after reaching their maximum, they decrease progressively due to the slow

conversion of EC16 to EC18.

The time course of substrate consumption and product formation is almost linear, except for the

first few milliseconds, where a sharp drop in substrates is observed as a result of rapid binding. This

sharp drop in substrates corresponds to the initial formation of enzyme-substrate complexes, as

explained earlier (see Figure 5.6 and Figure 5.7). The linear time course for substrate consumption

and product formation following the initial sharp drop is due to the fact that the enzyme-substrate

complexes EC2 to EC16 remain constant. Notably, the concentration of EC16 is almost equal

to the initial concentration of the free enzyme, suggesting that all enzyme species are converted

via rapid binding into EC16, which remains quasi-constant during this kinetic phase. These

observations support the use of the quasi-steady-state approximation in analyzing the model. As

for the dynamics of EC18, it initially increases and then slowly decreases due to the combined

effects of a decrease in flux from EC16 and the rapid formation of C180. In summary, the model

exhibits the expected behavior in the initial phase.
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Figure 5.8: Behavior of the fluxes of the vanilla model after 5 seconds : The elongation fluxes associated with

rapid binding reactions (panels a and b) are quasi-constant after half of a second, as well as the rate of production

of C14 : 0 (panel d). The rate of production C16 : 0 (panel e) sharply increases and remains quasi-constant. The

production rate of C18 : 0 has reached its maximum after 2.5 seconds and decreases due to slow production of

EC18.
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Figure 5.9: Time course vanilla model after 5 seconds: panels display the initial phase dynamics. Panels a,b,

and c show the linear consumption of the substrate except for the sharp drop for the first milliseconds as a result

of rapid binding. Panels d, e, and f show that almost all the enzyme species are converted to EC16 and are at

quasi-steady-state except the EC18. Panels g, h, and i display the linear formation of the products, with C16 : 0

being the major one.
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Simulation for the long-run. To evaluate the dynamics over the long-run and to highlight

the transient phase, I simulated the model for 50 seconds, corresponding to the total depletion

of malonyl-CoA. Figure 5.10 and Figure 5.11 display, respectively, the fluxes of production of the

three types of FAs and the time course of the compounds of the model. For the flux of production

of C14:0 (panel a, Figure 5.10), one can observe a sharp initial peak between the first milliseconds

resulting from the initial formation of EC14 (via rapid binding) from which C14:0 is dissociated.

Given that the rate of elongation of EC14 to EC16 is greater than the rate of production of

C14 : 0, the flux drops as almost all enzyme-substrate complexes are converted into EC16, the

latter which remains at a quasi-steady-states (see panels d and e, Figure 5.9). The subsequent

increase is the result of a shortage in malonyl-CoA, which reduces the flux towards EC16 as EC14

is partitioned between its elongation into EC16 and the production of C14:0. Once malonyl-CoA

is fully depleted, the flux drops. Regarding the flux of production of C16 : 0 (panel b, Figure

5.10), after a sharp increase as a result of rapid binding, it remains at quasi-steady states until

the depletion of malonyl-CoA. For the flux of production of C18 : 0 (panel c, Figure 5.10), after

a sharp initial increase, it subsequently drops as a result of a large flux towards the production of

C16:0 and malonyl-CoA depletion.

By observing the time course of the metabolites in the system, one can observe that the substrates

decay linearly until malonyl-CoA is fully depleted (panels a, b, and c of Figure 5.11). Furthermore,

malonyl-CoA depletion (panel b of Figure 5.11) leads to an accumulation of enzyme-substrate

complexes with carbon chain lengths smaller than 14 (panel d of Figure 5.11) as they cannot be

further elongated. EC14, EC16, remain in a quasi-steady-state between 1 and around 20 seconds

and drop suddenly with malonyl-CoA depletion. As for EC18, one can observe a gradual decay

after its initial formation over the first few milliseconds. This progressive decay of EC18 follows

the dynamics of malonyl-CoA depletion, given that its formation occurs through slow binding. The

dynamics of the three FAs can be directly inferred from the behaviors of their corresponding fluxes

previously described. Notably, for C14 : 0, after a short linear phase (between 1 and about 20

seconds) corresponding to the quasi-steady state, we observe a rapid increase until malonyl-CoA

depletion. This second increase is due to the decrease of the flux from EC14 to EC16. C16:0 is

built linearly until the malonyl-CoA is fully depleted. As for C18:0 it follows the reverse dynamics of

EC18. This behavior reflects the linear dynamics of substrate consumption and product formation.

For C18:0, one can also observe that the dynamics of C14:0 production are neither linear nor the

expected trend. Indeed, after a short linear phase, it becomes exponential. This concavity change

is consistent with the two peaks observed with the corresponding flux.

At this point, the model fails to capture the expected transient dynamics, as only a linear production

of FAs is observed. Indeed, I would like the model to reproduce the long-run dynamics from the

data of Topolska et al. [59] (see the bottom right panel of Figure 5.5). The model might not

replicate the right dynamics because it may lack an important inhibition mechanism whose effect
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could be significant in reproducing the transient kinetics observed in the data.
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Figure 5.10: Behavior of the fluxes of the vanilla model for long-run simulations: Panel a displays the flux

of production of C14 : 0. The first peak corresponds to the initial formation of the complex EC14, which then

drops as a result of the large flux towards the production of EC16. The second peak occurs due to malonyl-CoA

depletion, favoring the release of C14:0. Panel b shows a quasi-constant flux in the production of C16:0 after the

initial formation of EC16, with the flux dropping upon malonyl-CoA depletion. Panel c illustrates the progressive

decline in the production of C18:0 following the initial formation of EC18.
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Figure 5.11: Time course of the vanilla model for long-run simulation: Panels a, b, c, h, and i display the

linear consumption of substrates and the linear formation of products until malonyl-CoA depletion. After the total

consumption of malonyl-CoA, occurring around 20 seconds, the concentration of the enzyme is distributed among

enzyme-substrate complexes with chain lengths of 12 carbons or less (panel d). Panels e and f illustrate the dynamics

of the EC16 and EC18 complexes. Notably, for EC16, a quasi-steady state is observed, followed by a drop due

to malonyl-CoA depletion. EC18 is slowly converted into C18 : 0 as malonyl-CoA depletes. Panel g shows the

dynamics of the production of C14:0.
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Simulation for the long-run after CoA Inhibition being considered. To mitigate the per-

sistent linear dynamics, I incorporated CoA inhibition following the insights from Cox and Hammes

[36], who showed in an in vitro experiment that CoA significantly influences FA synthesis kinetics

by inhibiting the pathway. Figures 5.12 and 5.13 depict the altered flux behaviors and the time

courses of the compounds in the model, respectively. The initial rapid binding effect, consistent

with earlier observations, is still observed in the first milliseconds (panels a, b, and d of Figure

5.12). Subsequently, as CoA accumulates, a noticeable decline in elongation and production fluxes

is observed (panels a and b of Figure 5.12). This decline in elongation fluxes explains the resem-

blance of the time courses of FA production to that of the data. Specifically, the time course of

the three FAs exhibits qualitatively the dynamics to those reported by Topolska et al. [59] (bottom

right panel, Figure 5.5). This trend is attributed to the increasing CoA levels, which inhibit FA

synthesis by occupying the binding site of the free enzyme. The flux of formation of the ECoA

complex displays two distinct peaks (panel c of Figure 5.12): The first peak corresponds to the

initial binding of freshly produced CoA to the free enzyme, and the sharp drop follows due to

the contribution of the backward reaction after the formation of the ECoA complex. The sec-

ond peak results from continuous CoA production. The latter escalates its inhibitory role, leading

to extensive enzyme sequestration (panel e of Figure 5.13), indicative of CoA’s competition with

acetyl-CoA for the MAT site of the enzyme. This enzyme sequestration results in a non-linear decay

of substrates and inversely affects CoA release (panels a, b, and c of Figure 5.13). Consequently,

a non-linear FA production dynamic emerges, with C16 : 0 as the predominant product. Overall,

the dynamics of FA production and substrate consumption align qualitatively with the expected

patterns, demonstrating the model’s improved accuracy after CoA inhibition implementation.
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Figure 5.12: Fluxes of the vanilla model after CoA inhibition being added : Panel a and b show how the flux

of cyclic elongation associated with the rapid binding display almost the same dynamics as in the case without CoA

inhibition, but slightly less as result of the inhibition. Panel c shows the same trends as without inhibition for the

flux VEC16→EC18. One can observe the double peaks in the flux of CoA inhibition. The first peak corresponds to

the first binding of the free CoA to the enzyme. The backward reaction could explain the drop after the first peak as

the concentration of CoA is still low. The second increase following the drop results from the progressive production

of the CoA. The CoA inhibition corrects the flux of production C14 : 0 as one can observe only one peak instead

of two as before the inclusion of the inhibition (panel d). The flux of production C16 : 0 starts dropping earlier

as compared to before I added the inhibition (panel e). This progressive drop can be explained by the progressive

increase of the ECoA, resulting in a decrease of EC16. The flux of production of C18 :0 is almost unaffected by

the inhibition.
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Figure 5.13: Time course of vanilla model after CoA inhibition being added: In panel a, b, and c, one can see

that the consumption of substrates decay with time as the CoA becomes important in the system. the same trends

can be observed with the production of C14:0, C16:0 and C18:0 in the panels g, h and i, respectively. Panels d,

e, and f show progressive decay of the enzyme-substrate complexes as the ECoA complex takes over. The reaction

becomes very slow once all the enzyme species are almost converted to ECoA.

After observing that the model almost displays the expected qualitative dynamics, the next step

will be to fit the model to the available data. But before starting the fitting procedure, I would like

to evaluate the importance of the parameters. In this way, I can prioritize some parameters over

others. To do so, I use Sobol’s sensitivity analysis, which measures each parameter’s contribution

to the output data (see Chapter 2).

5.2.2 Fitting the models to data

Determining the sample size for Sobol’s sensitivity analysis. To effectively conduct a global

sensitivity analysis of the models, determining an appropriate sample size for sampling the parameter

vectors is critical. I performed sensitivity analyses on the model with inhibition, as it has a greater

number of parameters, using a range of sample sizes from 0 to 20,000 in increments of 50. This

method allowed me to observe how the sensitivity indices change with different sample sizes. The

results are depicted in Figure 5.14, demonstrating the behavior of Sobol’s first-order and total

indices for each model output (C14:0, C16:0, and C18:0). Notably, for sample sizes larger than

about 8,000, the indices show little variation, especially for C16 : 0 (as seen in panels C and D of
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Figure 5.14), which is the major product of the pathway. Given the computationally demanding

nature of the method and its requirement for the sample size to be a power of 2, I opted for a

sample size of 8,192 (213).
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Figure 5.14: Determination of sample size for Sobol’s sensitivity analysis: Panels A and B illustrate the

variation of the first-order Sobol’s indices and the total indices, respectively, with sample size for C14:0. Panels C

and D show the variation of the first-order Sobol’s indices and the total indices, respectively, with sample size for

C16 : 0. Panels E and F depict the variation of the first-order Sobol’s indices and the total indices, respectively,

with sample size for C18:0.

Sensitivity of the model The models under consideration, one without inhibition and the other

with CoA inhibition incorporate 6 and 8 parameters, respectively. A challenge I face in this context

is the limited data availability, which hinders the estimation of reliable parameters. This issue is

further compounded by the problem of parameter identifiability, where different sets of parameters

can yield identical model performance. To address this, a global sensitivity analysis of the model

is essential. This analysis will enable the identification of the most influential parameters for each

model, thereby providing insights into what parameter to fit first.

The sensitivity analysis employed here relies on generating a Sobol sequence of size 4096 within a

hypercube. The hypercube’s dimensions are equivalent to the number of parameters, and each edge

measures 100 units (reflecting the unit for each parameter). Essentially, this entails a sequence of
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4096 parameter vectors, each parameter ranging from 0 to 100 units. Following this, I simulate the

model, applying the initial conditions previously outlined for every parameter vector in the sequence.

For each output of the model (C14 : 0, C16 : 0, and C18 : 0), I then gather a vector that depicts

the time course (from 0 to 4800 seconds). Subsequently, for each model output, I normalize the

entries of the corresponding vector by dividing them by its norm, followed by calculating the mean

of these normalized vectors. This process yields 4096 values for each output, whose variance I

analyze using Sobol’s sensitivity analysis. In this way, I can access the first-order, second-order,

and total indices. Further details on this methodology can be found in Chapter 2. The sensitivity

analysis routine is executed using the Python library SAlib [192], as elaborated in Chapter 2.

Upon examining the first-order and total indices (refer to Figure 5.15 and Figure 5.17) of each

model, it becomes apparent that the parameters κ and δ exert the most significant control on the

model dynamics. This underlines the importance of choosing the kinetic rate constants for cyclic

elongation in the parameterization of the models. Additionally, it is observed that kd6 and kd7

contribute less significantly than κ and δ. Specifically, the variations of kd6 slightly influence the

time courses of C14 : 0 and C18 : 0, whereas variations in kd7 impact the time courses of C16 : 0

and C18 : 0. As expected, kd8 solely affects the output of C18 : 0, given that the flux towards the

production of C18 : 0 faces no competition. Further, examining the second-order indices of the

model with inhibition (see Figure 5.18) reveals the notable contributions of the inhibition reaction

parameters kfCoA and kbCoA. They exhibit negative interactions with δ, particularly influencing the

time course of C16:0. In contrast, such significant negative interactions of δ with other parameters

were not observed in the model without inhibition (see Figure 5.16).
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Figure 5.15: First-Order and Total Indices for the model without inhibition: The first-order and total Sobol’s

indices highlight the significant influence of the parameters κ and δ on the model’s output. The total indices also

reveal the relatively minor impacts of kd6 and kd7. Notably, kd8 exclusively affects the dynamics of C18 : 0. The

parameter β shows negligible influence on the model output.
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Figure 5.16: Second order indices for the model without inhibition: the interaction of κ and δ control the time

course of the output of the model. One can see a slightly negative interaction of the couples (δ, kd6) and (δ, kd8)

on the time course of C16:0
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Figure 5.17: First-order and total indices for the model with inhibition by CoA : one can see the strong

control of the parameters κ and δ on the model’s output. The total indices show the minor influences of kd6 and

kd7. kd8 only control the dynamic of C18:0. β exerts a minor control on the model’s output as well as kfCoA and

kbCoA.
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Figure 5.18: Second order indices for the model without inhibition: δ negatively interacts with kd6, kd6, kfCoA,

and kbCoA to control the time courses of C16:0 and C18:0.

Estimation of the kinetic rate constant kd7kd7kd7 of release of C16:0C16:0C16:0. Given that I consider the

rapid binding assumption, one can estimate the kinetic rate constant of the release of C16 : 0

(kd7) from initial phase data by using the model without inhibition. The rapid binding assumption

suggests that all free enzymes are instantaneously converted to an EC16 complex, which remains

in a quasi-steady state until one substrate is fully consumed (refer to Figure 5.9, and Figure 5.11).

It will later be seen that using the model with inhibition would have led to a similar result, as the

EC16 complex almost maintains a quasi-steady state during the initial phase (see panel e, Figure

5.22). As the slope of the initial phase time course data corresponds to the rate of release of

C16:0, one can estimate kd7 as follows:

kd7 =
VEC16→C16:0

EC16
. (5.2.1)

From the initial phase time course data, which is recorded for 120 seconds, the slope is given by

VEC16→C16:0 ≃ 0.55 µM − 0 µM

120 s − 0 s
= 0.0046 µM · s−1, (5.2.2)

therefore

kd7 = 0.03 s−1. (5.2.3)

As kd7 is already estimated, it is essential to check the rapid binding assumption after estimating

the other parameters from the data.

Fitting of the initial phase data. Since the value of kd7 was directly calculated from the initial

phase time course data, I can now focus on estimating the remaining parameters. Priority should be

given to δ and κ, as indicated by the results of the Sobol’s sensitivity analysis. Once the values of
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these parameters are determined, my attention will shift to kd6, kd8, and β. It is important to note

that the parameters estimated or calculated from the model without inhibition will remain valid

for the model with inhibition. This is because both models are nearly identical in the initial phase,

as previously observed. Specifically, the introduction of inhibition by CoA does not significantly

affect the initial phase but becomes crucial in the long-run when CoA levels rise. Regarding the

parameters of the inhibition reaction by CoA (kfCoA and kbCoA) for the model with inhibition, they

will be fitted later to the long-run time course data. This strategy will be applied to fit the model

to the data from Topolska et al. [59], with the only difference being that for the model without

inhibition, the parameters will be fitted simultaneously to both initial phase and long-run data.

The parameter space has been limited to a hypercube whose edges measure 1 unit. This means

that the fitted value of each parameter will be between 0 and 1 unit, the unit of each parameter

being considered. The logic behind choosing the upper bound of the parameter space is explained

below.

Considering the rapid binding associated with κ and the slow binding with δ and that the reactions

associated with these parameters have the same substrates and follow the same pattern, one can

conclude that κ will be strictly greater than δ. Therefore, an upper bound for κ will also be an

upper bound for δ. Consequently, I will determine only the upper bound for κ. In order to determine

the upper bound for κ, I use the kinetic parameters (kcat and Km) of the KR site of the enzymes

for NADPH, as it has a faster rate [154]. The KR site uses a molecule of NADPH to reduce the

enzyme-substrate complex bearing malonyl-CoA. Hence, for the considered reaction, one has

KNADPH

m =
kNADPH

b + kNADPH
cat

kNADPH
f

, (5.2.4)

which implies

kNADPH

f =
kNADPH

b + kNADPH
cat

KNADPH
m

. (5.2.5)

Given that, in my model, I have considered the reactions to be irreversible, this same consideration

is applied to the reaction executed by the KR site (i.e., kNADPH
b << kNADPH

cat ). Consequently, one will

have:

kNADPH

f ≃ kNADPH
cat

KNADPH
m

. (5.2.6)

The binding constant kNADPH
f , representing the binding of NADPH to the enzyme-substrate complex,

is proportional to κ, the binding constant of NADPH and malonyl-CoA to the enzyme-substrate

complex. This proportionality assumes that the binding interactions in these complexes are similar.

Hence, κ can be estimated from Equation (5.2.6) as follows:

κ ≈ kNADPH
cat

KNADPH
m × MalCoA0

, (5.2.7)
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where MalCoA0 represents the initial concentration of malonyl-CoA in the system. The parameters

kNADPH
cat and KNADPH

m are the turnover number and the Michaelis-Menten constant, respectively, of the

KR site of the enzyme. These values are extracted from the work by Carlisle-Moore et al. [154],

where they used a human enzyme in vitro (refer to Table A3). The values reported are 4 : s−1 and

4 : µM for kNADPH
cat and KNADPH

m , respectively. Thus, one can calculate κ as follows:

κ ≈ 4 s−1

4 µM × 22.04 µM
≈ 0.04 µM−1 × s−1. (5.2.8)

The rationale for choosing the KR site parameters for calculating the first estimates of κ is based

on the fact that the KR site reaction exhibits the largest ratio of Kcat/Km among the four cyclic

elongation reactions. This significant ratio indicates a high enzymatic efficiency, making it a reliable

reference point. Consequently, this initial estimate of κ will enable me to confidently set an upper

bound for both κ and δ.

Applying the same reasoning to the MAT site of the enzyme, which involves acetyl-CoA, a prelimi-

nary estimate of β can be derived. This estimate utilizes the values extracted from Carlisle-Moore

et al. [154]. The calculation is as follows:

β ≈ kAcet
cat

KAcet
m

, (5.2.9)

where kAcet
cat is the catalytic rate constant and KAcet

m is the Michaelis-Menten constant for the MAT

site involving acetyl-CoA. Consequently,

β =
1.9 s−1

3.9 µM
≈ 0.5 µM−1 × s−1. (5.2.10)

With these initial estimates of β, κ, and δ, I can confidently set the upper bounds of the parameter

space for each parameter to 1.

As I already announced in Chapter 2, I use the Levenberg–Marquardt algorithm implemented in

Python with lmfit package to solve the following optimization problem: Find θθθmin

θθθmin = argmin L(θθθ), (5.2.11)

where

L(θθθ) =
1

2

n
∑

i=1

(fi(θθθ,xxx(θθθ)) − yi)
2 . (5.2.12)

fi(θθθ,xxx(θθθ)) is the output of my model at times ti of measurement of data yi. θθθ is the vector of the

parameters of my model. xxx(θθθ)) are the inputs of the model, which depend on the parameterization

θθθ, in this case, the metabolites of the model.
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Table 5.6: Best parameters for the initial phase fit.

Parameters Values Units

β 0.043 µM−1×s−1

κ 0.12 µM−2×s−1

δ 1.3 × 10−6 µM−2×s−1

kd6 1.16 s−1

kd7 0.03 s−1

kd8 0.7 s−1

To ensure the most accurate fit, I enhanced the selection of initial guesses for the parameter vector

by generating 1024 initial guesses using Sobol sequences (Sobol sampling). I ran the optimization

algorithm for each of these initial guesses, which yielded the best-estimated parameter vector

alongside the corresponding Root Mean Square Errors (RMSEs). The results are summarized

in the pair plot (Figure 5.19). It is noticeable that the distribution of the values for κ and δ,

which correspond to the minimum RMSE (highlighted in blue), are narrowly concentrated around

0.12 µM−2 × s−1 for κ and 1.3 × 10−6 µM−1 × s−1 for δ. In contrast, the values minimizing the

RMSE for other parameters are more widely dispersed in the parameter space. Among the best

parameter vectors, I selected the one with the smallest RMSE due to the presence of several local

minima. The chosen parameters are detailed in Table 5.6. Figure 5.20 (left panel) illustrates that

the model, with the selected parameter vector, fits the initial phase data well (RMSE = 0.013)

but is inadequate for the long-run phase. However, attempting to fit both the initial and long-run

phases simultaneously resulted in a significantly poorer fit. In fact, the model fails to represent

either phase adequately, even after expanding the limits of the parameter space to infinity, as shown

in the right panel of Figure 5.20.
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Figure 5.19: Parameter distribution and the corresponding root-means-square for the model without inhi-

bition: The pair plots the distribution of parameter values, considering each pair of parameters. The distributions

of each parameter taken individually are presented on the diagonal. The color coding corresponds to the value of

the RRMSE. The values of κ and δ associated with the smallest RMSE (indicated by blue points and distributions)

demonstrate a narrow distribution centered around 0.12 µM−2 × s−1 for κ and 1.3 × 10−6 µM−1 × s−1 for δ. This

narrow distribution suggests a higher level of certainty in these parameter estimates. In contrast, parameters such

as β, kd6, and kd8 exhibit wide distributions even at minimal RMSE, indicating greater variability and less certainty

in their optimal values. The graph also reveals that various combinations of these parameters can lead to the same

RMSE, highlighting the interdependence of its parameters.
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(a) Performance of initial phase fit parameters on data.
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(b) Performance of dual fit parameters on data.

Figure 5.20: Performance of the model without inhibition on data: (a), I have a good fit of the initial phase

but a poor of the long-run, notably the transient phase. (b), the model fails to reproduce both the initial phase and

the long-run.

Fitting the model to Total Fatty acids production data. Given that the initial phase kinetics

determine the overall time course, I fixed the parameters previously obtained from fitting the model

without inhibition to the initial phase data. I only fitted the parameters kfCoA and kbCoA. I

generated 1024 initial guesses using Sobol’s sampling and proceeded as done previously in the case

of the fit of the initial phase data. The only difference is that I fitted both the initial phase and the

long-run data. Consequently, I obtained the values of 0.041µM−1×s−1 for kfCoA and 2.6×10−4s−1

for kbCoA, with an RMSE of 0.521 (see Figure 5.21). Figures 5.22 and 5.23 demonstrate the model’s

performance in fitting the data from both the initial phase and the long-run, respectively, as well

as the time course of the different metabolites in the system. The plots in Figures 5.22 and 5.23

show that the model reproduces quite well both the initial phase data and C16:0 and C18:0 (see

panels b and c of Figure 5.22). Additionally, the model qualitatively follows the same dynamics

as the long-run data from Topolska et al. [59] (see panels a, h, and i of Figure 5.23). However,

the model fails to reproduce the kinetics of C14:0, as deviations from the data are observed. One

reason for the observed rapid kinetics (compared to the data) in the first milliseconds (panel a of

Figure 5.22) and during the long-run (panel g of Figure 5.23) might be that our model does not

account for the production of shorter FA chains. In vitro experiments, such as those conducted

by Carlisle-Moore et al. [154] and Topolska et al. [59], have shown that shorter chains can be

produced in small quantities (about 4%). Considering the production of shorter chains may correct

the observed deviation. I chose not to consider the production of shorter chains due to the lack of

time course data about their production. Furthermore, including shorter chains would double the

number of parameters in the model.

As mentioned earlier, it is also notable that, although inhibition by CoA is introduced, the quasi-
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steady-state assumption is still fulfilled. All enzymes are converted to the EC16 complex, which

remains almost at a quasi-steady state during the initial phase (see panels d, e, and f of Figure

5.22). A progressive accumulation of CoA in the system is also observed (see panel h of Figure 5.22

and panel f of Figure 5.23), gradually sequestering the enzyme (see panel c of Figure 5.23) and

progressively reducing the rate of FA production. Overall, the time course of substrate consumption

and product formation adequately reflects the dynamics of FA production as reported by Topolska

et al. [59]. The parameters resulting from fitting the model to the data are summarized in Table

5.7.
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Figure 5.21: RMSE as a function of kfCoA and kbCoA: After conducting 1024 fits, approximately 7 local minima

were identified based on their RMSE values, with the smallest RMSE being 0.521. The values of kfCoA and kbCoA

corresponding to the smallest RMSE occurred more than 900 times (indicated by red points), whereas the other

local minima appeared fewer than 10 times (indicated by blue points). The optimal parameter values associated

with the smallest RMSE (0.521) are 0.041 µM−1 × s−1 for kfCoA and 2.6 × 10−4 s−1 for kbCoA.
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Figure 5.22: Initial phase fit for the model with inhibition: Panels a, b, and c show the fit of the initial phase

data (RMSE = 0.521, indicative of the dual fitting’s accuracy). Panels d, e, and f demonstrate that, despite a slight

deviation during the first milliseconds from C14 :0, the model’s rapid binding assumption remains valid, as almost

all the enzyme is converted into EC16 complex during the initial phase. Panel e further illustrates the inhibition

effect, revealing a progressive formation of the ECoA complex within the system. Panels g, h, and i display the

substrates’ linear consumption and CoA formation, with the rapid binding evidenced by the quick drop of substrates

in the first milliseconds.
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Figure 5.23: Fitting the long-run simulation and dynamics of the compounds: Panel a demonstrates that the

model accurately fits the long-run experimental data, with an RMSE of 0.521. Panels b, c, and d illustrate CoA’s

progressive sequestration of the enzyme after the initial phase by forming the ECoA complex. Panels e and f reveal

slower substrate consumption dynamics compared to the initial phase, highlighting the inhibition by CoA. This is

further evidenced by a gradual increase in CoA, which exhibits dynamics opposite to malonyl-CoA consumption.

Panels h and i display the production of C16 : 0 and C18 : 0, both quantitatively and qualitatively, consistent with

the total fatty acids (FAs) production data.

Table 5.7: Summary of the parameters resulting from the fit of both initial phase and long-run data.

Parameters Values Units

β 0.043 µM−1×s−1

κ 0.12 µM−2×s−1

δ 1.3 × 10−6 µM−2×s−1

kd6 1.16 s−1

kd7 0.03 s−1

kd8 0.7 s−1

kfCoA 0.041 µM−1×s−1

kbCoA 2.6 × 10−4 s−1
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Fitting the model to Michaelis-Menten rate equations and estimation of the correspond-

ing parameters. Given that the model’s parameters are not directly comparable to standard

enzyme kinetic parameters found in the literature, notably kcat and Km, a strategy is required

to evaluate the model effectively. This strategy involves generating synthetic time course data

using the model parameters outlined in Table 5.7 and the experiment conditions by Carlisle-Moore

et al. [154]. The initial rate is inferred from the generated data by varying the substrates, then

fitting Michaelis-Menten rate laws, and corresponding kcat and Km for each substrate are recorded.

These inferred values will subsequently be compared to those reported in the literature, especially

the work of Carlisle-Moore et al. [154], where the kinetic parameters (kcat and Km) of the pro-

duction of C16 : 0 using human FAS expressed in baculovirus, and Rangan and Smith [193], who

study FAS purified from rat liver, are detailed. I chose the conditions of Carlisle-Moore et al. [154]

for determining the kinetic parameters because this was the most recent study providing detailed

data. Moreover, this work aims to offer insights specifically for human FAS, mirroring the focus

of Carlisle-Moore et al. [154]. The conditions utilized to determine the kinetic parameters of the

model are summarized in Table 5.8.

Table 5.8: Summary of conditions for determining kcat and Km for each substrate. I use the same conditions

as in the experimental work of Carlisle-Moore et al. [154]. To determine the kinetics parameter of a given substrate,

I first make sure that the others are in excess (saturation of the enzyme) and vary the value of the substrate of

interest, the corresponding initial rate is recorded from time course.

Determination of parameters of acetyl-CoA Determination of parameters of Malonyl-CoA Determination of parameters of NADPH

Acetyl-CoA 0 - 50 µM 25 µM 25 µM

malonyl-CoA 100 µM 1-100 µM 100 µM

NADPH 100 µM 100 µM 5-100 µM

FAS 0.02 µM 0.02 µM 0.02 µM

To generate the kinetic rate curve (v) as a function of a specific substrate concentration, I adhere

to the methodology described by Carlisle-Moore et al. [154] and Cox and Hammes [36], where

the concentrations of the two non-focal substrates are fixed at saturating levels to ensure enzyme

saturation. This setup allows for the isolated variation of the substrate of interest’s concentration.

For each concentration of this substrate, the initial rate v is determined by analyzing the linear

segment of the time course, as depicted in Figure 5.24. Subsequently, I plot the rate v against

the substrate concentration to visualize the relationship. The final step involves fitting these

plotted data points to the Michaelis-Menten rate equations, enabling the extraction of the kinetic

parameters kcat and Km.
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Figure 5.24: Description of the initial rate of the reaction: t stands for the time, S for the concentration of

substrate, ∆t time interval, ∆S the interval of variation, and v the initial rate.

My model successfully reproduces the Michaelis-Menten rate kinetics for the rate of formation of

C16 : 0 across the three substrates, as evidenced in the middle panels of Figures 5.25, 5.26, and

5.27. Furthermore, it simulates Michaelis-Menten kinetics for the production rates of all three types

of fatty acids (FAs) using acetyl-CoA as the substrate, despite some numerical artifacts observed

in the rate of production for C14 : 0. However, the kinetic parameters derived from my model

significantly deviate from those reported in the literature, specifically by Carlisle-Moore et al. [154]

and Rangan and Smith [193]. Notably, the model indicates that the production rates of C14 : 0

and C18:0, as functions of malonyl-CoA or NADPH, do not conform to the Michaelis-Menten rate

equations, as demonstrated in the left and right panels of Figures 5.26 and 5.27. The discrepancies

and similarities between my model’s predictions and established kinetic parameters are summarized

in Table 5.9, highlighting the unique insights offered by my model into fatty acid synthesis kinetics.
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Table 5.9: Comparison of the parameter of my model to enzyme kinetic parameters existing in the litera-

ture.

My model parameters Parameters from the literature

Origin of the purified enzyme Bovine mammary gland Rodent Human
Reference

Substrate/ product kcat(s
−1) km(µM) kcat(s

−1) km(µM) kcat(s
−1) km(µM)

Acetyl-CoA/C14:0 0.00037 1.56

Malonyl-CoA/C14:0 0.0012 3.3 × 10−11

NADPH/ C14:0 0.0012 2.2 × 10−11

Acetyl-CoA/C16:0 0.03 1.17 1.9 ± 0.06 3.9 ± 0.4 2.7 ± 0.2 7 ± 3 [193], [154]

Malonyl-CoA/C16:0 0.03 1.24 1.2 ± 0.008 1.9 ± 0.23 2.7 ± 0.2 6 ± 2 [193], [154]

NADPH/ C16:0 0.03 1.22 2.7 ± 0.2 5 ± 1 [193], [154]

Acetyl-CoA/C18:0 0.013 1.16

Malonyl-CoA/C18:0 0.56 4443

NADPH/ C18:0 0.75 6071
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Figure 5.25: Fitting my model with Michaelis-Menten rate equations in order to estimate kcat and km for

acetyl-CoA: The rates of production of the three FAs as a function of acetyl-CoA by the model can be approximated

with Michaelis-Menten rate equations.
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Figure 5.26: Fitting my model with Michaelis-Menten rate equations in order to estimate kcat and km for

malonyl-CoA: Only the rate of formation of C16:0 can be approximated with Michaelis-Menten rate equations
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Figure 5.27: Fitting my model with Michaelis-Menten rate equations in order to estimate kcat and km for

NADPH: Only the rate of production of C16:0 can be approximated with Michaelis-Menten rate equations

5.3 Discussion and Conclusion

Fatty acid de novo synthesis (FADNS) relates carbohydrate metabolism to lipid metabolism. It

uses acetyl-CoA as a precursor and produces LCFAs. This process is crucial both from an energetic

and physiological point of view. It allows the storage of excess carbohydrates into fats for later use

in case of long-time fasting. FADNS ensures the availability of FAs, which are building blocks for

the formation of complex lipids such as phospholipids, the main constituents of cell and organelle

membranes. Due to its association with cancer and metabolic syndromes such as insulin resistance,

type 2 diabetes, and obesity, the FADN pathway is of significant medical interest. Therefore,

modeling its dynamics could provide more insights that are beneficial for systems medicine and

metabolic engineering. Specifically, in the case of mitochondrial fatty acid oxidation disorders

(mFAODs), which is the motivation of this work, I presented a dynamical mathematical model of

FADNS that can be combined with the existing mathematical models of FA oxidation to study

mFAODs. A global approach combining FA oxidation, synthesis, and storage could provide insights

into understanding the metabolic dysregulation observed in the case of certain mFAODs. FADNS

occurs in two stages. The first is the synthesis of malonyl-CoA from acetyl-CoA, and the second

is the elongation phase, which consists of synthesizing LCFAs from acetyl-CoA, malonyl-CoA, and

NADPH. This second step was the subject of this chapter. The elongation phase of FADNS has

a particularity in that it incorporates a series of cyclic reactions, and each cycle comprises several

reactions catalyzed by the unique enzyme, FAS. Moreover, these reactions are complex as they are

carried out through channeling, where one site of the enzyme passes the intermediates to the next

one without formally releasing the product. In addition, the pathways produce different products

depending on the number of cycles, notably C14 : 0, C16 : 0, and C18 : 0, which are the major

products with C16 : 0 being around 90% of the production [36, 193, 154, 59]. These unique

mechanisms make the pathway challenging to model using either detailed mechanistic modeling or

coarse-grained approaches.

In this chapter, after briefly presenting existing models available in the literature, I proposed a semi-
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mechanistic model of the elongation phase of FADNS. The model considers the critical processes

involved in FADNS: initialization, chain cyclic elongation, and termination. I assume each of

these processes to be elementary steps modeled as irreversible mass action rate laws, except for

the competitive inhibition by CoA, which is considered to follow reversible mass action rate laws.

Furthermore, as the channeling intends to optimize kinetic efficiency, I assume that the cyclic

elongations are rapid binding except for the last elongation step where the affinity decreases [99].

Thus, I developed two models. The first does not include CoA inhibition, and the second considers

CoA inhibition. As my goal is to construct a simplest while informative model that can reproduce

the FADNS mechanism and given that I only have scarce in vitro data (closed system), I decided to

consider the system to be closed. To validate, I use the data of the time course of FADNS extracted

from the work of Topolska et al. [59], who developed a high-resolution mass spectrometry-based

assay using the FAS purified from the cow mammary gland. They measured the initial phase of

the time course of the formation of C14 : 0, C16 : 0, and C18 : 0 (120 seconds). They also

produced the temporal evolution of the concentration of all FAs (the sum of all FAs produced) for

an hour and a half (long-run). After a global sensitivity analysis of the constructed model using the

Sobol approach, I classified the parameters in order of importance. While fitting the model to the

data, this classification is considered by prioritizing the parameters that exert greater control over

the model outputs. My fitting approach minimizes the residual between the model and the data

using the Levenberg–Marquardt algorithm. The quality of the fitting is evaluated by measuring the

root-mean-square error (RMSE) between the model and the data.

If the model without inhibition reproduces the initial phase data, it fails to do so with the long-run

data qualitatively and quantitatively. However, considering the competitive inhibition reaction by

CoA allows fitting both the initial phase and the long-run data with a reasonable RMSE. I believe

the CoA inhibition must still be incorporated even in the in vivo situation where the system is open,

although other processes could use the freshly produced CoA. Indeed, CoA plays an essential role

in regulating metabolism through feedback inhibition [194].

Finally, to compare my model with the existing parameters in the literature, I constructed from the

model the production rates of the different products of the pathway (C14:0, C16:0, and C18:0) as

functions of each of the substrates of the pathway (acetyl-CoA, malonyl-CoA, and NADPH). I then

fitted the Michaelis-Menten rate equation to each to extract the kinetic parameters. The conclusion

is that the model produces all three types of FAs considered at rates similar to Michaelis-Menten

rate laws when considering acetyl-CoA as a substrate (malonyl-CoA and NADPH kept constant at

high concentrations). Additionally, for the rate of production of C16 : 0 as a function of malonyl-

CoA and NADPH, it can be assimilated to Michaelis-Menten rate law, but a fast kinetic rate

as the 0 order kinetic is achieved almost instantly. However, the model cannot be approximated

with Michaelis-Menten rate laws for the rate of production of C14 : 0 with either malonyl-CoA or

NADPH as substrates. Regarding the rate of production of C18 : 0 with malonyl-CoA or NADPH
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as substrates, the model can only agree with the linear part of the Michaelis-Menten rate laws.

Besides, the parameters recorded deviate considerably from those in the literature, as kcat values

are 100 folds lower than those reported by Carlisle-Moore et al. [154] and Rangan and Smith [193].

Positively, the Km values are in the same order of magnitude as those in the literature but lower.

One should notice that the sources of the enzymes in the works of Carlisle-Moore et al. [154] and

Rangan and Smith [193] are humans and rats, respectively. For the model calibration, I used data

that was measured with an assay using an enzyme from cow mammary glands. Indeed, in ruminants,

the termination mechanism is different as it involves both MAT and TE sites of the enzyme, which

is not the case in non-ruminants where only the TE site is responsible for termination [195, 186].

This may explain the enormous difference in kcat. Additionally, with the data from Topolska et al.

[59], I could not tell the effective concentration of malonyl-CoA participating in the reaction since

the authors reported that there had been decarboxylation of malonyl-CoA into acetyl-CoA. I then

assumed that decarboxylation happened before the sample was added to the assay. However, if

the decarboxylation occurred during the reactions, my model does not fully represent the in vitro

assay. Indeed, the decarboxylation reaction would be missing.

I also coarse-grained the elongation reactions as multi-substrate irreversible mass action kinetics.

Notably, for the irreversibility of the formation of EC2i, i = 1, 2 · · · 9, this is only valid if the

rate of the backward reaction is negligible compared to kcat of each enzymatic site participating

in the elongation steps. As I could not verify this assumption given that there is no reliable

data, I consider it to be the case as the channeling intends to make the elongation process more

efficient (presumably by lowering Km). Moreover, when fitting the model to the data, I limited the

parameterization space to the hypercube of edge 1 based on the ratio kcat/Km of enzymes coming

from human and rat sources. It would be interesting to extend the parameterization space of the

model despite the presence of many local minima. It will also be interesting further to investigate

the dynamics of production of C14:0 produced by my model as it does not align with the dynamics

of C16 : 0 and C18 : 0. It would also be interesting to include the competition of acetyl-CoA and

malonyl-CoA for the MAT site of the enzyme.
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General conclusion

Fatty acids (FA) constitute the cornerstone of cellular energy metabolism, playing a central role

beyond simple energy storage. As fundamental components of complex lipids, they form the struc-

tural backbone of cell membranes and organelles, influencing membrane fluidity, signaling pathways,

and cellular compartments’ functional integrity. The synthesis of hormones and signaling molecules

further highlights the versatility of FAs, illustrating their importance in maintaining physiological

homeostasis and facilitating cellular communication. Recent scientific advances have shed light

on the dual nature of FAs, highlighting their contribution to both health and disease. Notably,

research has begun to elucidate the complex relationship between FAs and tumorigenesis, with ev-

idence suggesting that alterations in fatty acid metabolism may promote cancer progression [196].

This growing area of study illustrates the critical balance maintained by FA metabolism in cellular

processes and the potential consequences of its dysregulation.

Among the spectrum of metabolic disorders associated with FA metabolism, mitochondrial fatty

acid oxidation disorders (mFAODs) represent a significant clinical challenge [9, 12, 14]. Character-

ized by an inability to oxidize fatty acids in mitochondria adequately, mFAODs disrupt the delicate

balance of energy production and storage, leading to a range of pathological conditions. The man-

ifestation of mFAODs, often observed in infants, can lead to severe outcomes, including metabolic

crises and sudden infant death[24, 63, 22]. The heterogeneity of these disorders, as noted in seminal

works by researchers such as Derks et al. [197], Sanders and Griffin [198], complicates the affected

individuals’ diagnosis, understanding, and treatment. Despite the heterogeneity in the specific case

of medium-chain acyl-coenzyme A dehydrogenase (MCAD) deficiency, a typical pattern observed

is the high increase of the liver triglycerides concentration [5]. This observation underlines the

complexity of the pathophysiology of mFAODs and suggests considering both the synthesis and

oxidation pathways while investigating them. Furthermore, innovative approaches are needed to

decipher the intricate web of metabolic pathways involved. In this regard, mathematical modeling

emerges as a powerful tool, enabling the exploration of metabolic interactions and responses to

various perturbations that are challenging, if not impossible, to investigate experimentally. Through

computational models, hypotheses can be rigorously tested, and underlying mechanisms of complex

biochemical processes can be unveiled. This thesis, therefore, relies on mathematical modeling to
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improve the understanding of FA metabolism in the liver, with the ultimate goal of elucidating and

understanding the dynamics of mFAODs.

The research questions at the heart of this thesis aim to shed light on critical aspects of FA

metabolism in the context of mFAODs:

1. Which metabolic routes lead to the disruption of triglyceride distribution in the liver in the

context of MCAD deficiency?

2. What is the magnitude of the shift in steady-state concentration values of key metabolites

(acetyl-CoA, malonyl-CoA, and FAs) in MCAD deficiency?

Addressing these questions represents a significant step towards a comprehensive understanding

of FA metabolism’s role in health and disease. By dissecting the metabolic routes implicated in

mFAODs and quantifying shifts in key metabolite concentrations, this work seeks to contribute

valuable insights into the mechanisms underlying these disorders and pave the way for novel ther-

apeutic strategies.

Addressing the research questions

The core objective of this thesis was to delve into the complexities of FA metabolism, focusing on

providing comprehensive tools to investigate mFAODs via mathematical modeling. This approach

is a significant step towards addressing two pivotal research questions: what are the metabolic

pathways that lead to the disruption of triglyceride distribution in the liver, particularly in the

context of MCAD deficiency, and quantifying the shifts in the steady-state concentration values of

key metabolites.

Development of mathematical models The first significant step towards answering these

questions was the development of a minimal coarse-grained model of FA metabolism that includes

the key involved metabolites, namely acetyl-CoA, malonyl-CoA, FAs, and triglycerides (see Chapter

4). The model is an ordinary differential equation model, where the rates of reactions are based

on enzyme kinetic rate laws, notably Michaelis-Menten and non-competitive inhibition rate laws.

The model qualitatively explores the synthesis and degradation of FA via bi-stability analysis. This

model aims to understand how the transition between fatty acid synthesis and degradation occurs

in the liver, thereby elucidating the metabolic flexibility required to maintain energy homeostasis.

By establishing the necessary and sufficient conditions for the system to exhibit bi-stability and

highlighting the crucial role FA pools play in guaranteeing bi-stability, the model provides a theo-

retical basis for the robustness of cellular metabolism in the face of fluctuations in energy demand

and supply. Furthermore, the creation of a semi-mechanistic model for the elongation part of fatty

acid de novo synthesis (FADNS) (see Chapter 5) marks a considerable contribution to the field.
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This model simplifies the complex enzymatic processes involved in FADNS, reducing the complex

mechanism to four processes: initiation, cyclic elongation, termination, and inhibition. Despite its

simplified nature, the model reproduces the time course of FA synthesis and can be incorporated

into a larger modeling framework to inform critical aspects of cellular metabolism that have been

less explored in the context of mFAODs.

Insights Gained and Their Implications Through rigorous analysis, these models have provided

valuable insights that can be used to understand metabolic disturbances associated with mFAODs.

The bi-stability model, in particular, suggests that the liver possesses inherent mechanisms to

switch between anabolic and catabolic states, a flexibility guaranteed by the use of FAs for non-

energetic purposes. Furthermore, the analysis of unstable steady states showed that it is impossible

to have an unstable node, suggesting that not all metabolites may be simultaneously out of steady

state. This finding has profound implications for understanding the pathophysiology of mFAODs

and suggests new avenues for therapeutic intervention.

The semi-mechanistic FADNS model further contributes globally in the field of lipid metabolism,

as it can be used to assess how alterations in FADNS affects the overall dynamics of fatty acid

synthesis. Moreover, its incorporation into a larger model of FA metabolism will help in answering

the original research questions. By fitting the model to experimental data and comparing the

parameters to literature values, I have begun to offer a tool to analyze and comprehend the shifts

in metabolite concentrations that characterize MCAD deficiency.

In summary, the mathematical models developed in this thesis represent a significant step towards

answering the research questions posed at the outset. By elucidating the conditions that lead to

bi-stability in FA metabolism and modeling the complexities of FADNS, this work advances our

theoretical understanding of FA metabolism’s role in health and disease. These findings not only

contribute to the scientific community’s knowledge base but also open up new possibilities for

diagnosing and treating mFAODs, moving us closer to the ultimate goal of mitigating the impact

of these disorders on affected individuals.

Limitations of this work

Chapter 4’s model, developed to elucidate aspects of FA metabolism through a coarse-grained

approach, inherently simplifies the complex biochemical landscape of fatty acid metabolism. While

this simplification facilitates analysis, it may also obscure critical enzymatic mechanisms and regu-

latory interactions integral to FA metabolism, such as feedforward and feedback loops. A notable

omission is the model’s disregard for the role of citrate, a known enhancer of acetyl-CoA carboxylase

activity, which is pivotal in the synthesis of malonyl-CoA, a key intermediate in fatty acid synthesis.

Including citrate could lead to more complex dynamics like limit cycles or hysteresis. Moreover, the
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assumption of constant influxes and concentration-proportional effluxes oversimplifies the reality of

hormonal regulation, which can significantly alter these rates in response to physiological needs.

The qualitative nature of the model’s analysis limits its ability to validate and accurately charac-

terize the system’s steady states, underscoring the need for quantitative analysis to understand FA

metabolism dynamics better.

Regarding the semi-mechanistic model of FADNS (Chapter 5), it abstracts the complexity of

fatty acid synthase (FAS) function, simplifying complex processes such as increases in binding

affinity and substrate specificity. Critical aspects like the order in which substrates bind to each

enzymatic site, ionization, and the mechanistic role of the acyl carrier protein (ACP), essential

for channeling substrates through the enzymatic process, are not sufficiently accounted for by the

model. This limitation is partly due to the lack of kinetic data on ACP and the challenge of

over-parameterization, which could compromise the model’s tractability and interpretability. The

model does not faithfully reproduce the C14 : 0 dynamics, suggesting that some assumptions

deserve reevaluation. However, I believe this discrepancy might be due to the non-consideration

of the production of shorter chains and their fluxes towards the production C14:0 , explaining the

overshooting observed in the fitting. Discrepancies between the kinetic parameters derived from

the model and those reported in the literature could be attributed to differences in enzyme sources

(bovine vs. human/rat) and the uncertainty of the malonyl-CoA concentration from which the

model parameterization is constructed. This last point highlights the critical need to develop an

experimental pipeline that measures the kinetic parameters under various conditions while providing

time-course data. A significant effort should also be put into measuring the kinetics of each

enzymatic site of FAS, considering the detailed enzymatic mechanism.

Recommendations for future work

Enhancing model complexity and integrating regulatory networks Future research should

focus on incorporating detailed enzymatic mechanisms and comprehensive regulatory networks into

the models of FA metabolism. The bi-stability model entails integrating the role of citrate and other

allosteric regulators that significantly influence enzyme activities, such as acetyl-CoA carboxylase.

Expanding the model to include hormonal regulation of influxes and effluxes will provide a more

physiologically relevant representation of FA metabolism dynamics. Similarly, the semi-mechanistic

model of FADNS could be significantly improved by incorporating the specificity of fatty acid

synthase (FAS) binding sites and the mechanism of the acyl carrier protein (ACP), despite the

current limitations due to data scarcity.

Quantitative analysis and experimental validation Transitioning from qualitative to quan-

titative analysis is imperative for the bi-stability model to validate its predictions and accurately
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characterize metabolic states. Establishing collaborations with experimental laboratories to gather

comprehensive kinetic data and perform detailed validations of the models under various physio-

logical and pathological conditions will enhance the models’ applicability and reliability. For the

semi-mechanistic model of FADNS, as mentioned before, developing experimental pipelines that

measure kinetic parameters across different conditions, including time-course data, will address the

current discrepancies in kinetic parameters and improve model fidelity.

Broadening the scope of models To address the limitations related to model scope and gen-

eralizability, future models should aim to cover a broader spectrum of FA metabolism, potentially

including other metabolic pathways and tissue-specific metabolic processes. This expansion would

provide a more holistic view of FA metabolism and cater to the diverse phenotypes observed in

mFAODs. Developing models that can account for the variability in enzyme kinetics between

different species and tissues (e.g., bovine versus human) will be crucial for understanding the

species-specific aspects of FA metabolism.

The path forward for FA metabolism and mFAODs research is challenging and promising. By

addressing the outlined limitations through enhanced model complexity, rigorous experimental val-

idation, and interdisciplinary collaborations, future work can build on the foundational insights

provided by this thesis. The ultimate goal is to develop predictive models that advance our under-

standing of FA metabolism’s underlying mechanisms and contribute to developing novel therapeutic

strategies for metabolic disorders.

Contributions of this work

Novel insights into bi-stability in FA metabolism in the liver One of the key contributions

of this thesis is the development and analysis of a minimal model that highlights the bi-stability

in FA metabolism. This model advances our understanding by proposing a theoretical framework

for how the liver may switch between synthesis and degradation of FA. By identifying conditions

under which bi-stability occurs, this work contributes a novel perspective on the metabolic flexibility

required for energy homeostasis and its potential dysregulation in mFAODs. This insight opens new

avenues for researching metabolic disorders, suggesting that targeting the mechanisms underlying

metabolic switching could offer therapeutic potential.

Advancing the modeling of FADNS The semi-mechanistic model of the elongation part of

fatty acid de novo synthesis (FADNS) represents another significant contribution of this thesis.

Indeed, to my knowledge, this is the first detailed model of FADNS. By abstracting the complex

enzymatic processes involved in FADNS into a more tractable form, this model provides valuable

insights into the dynamics of FA synthesis. Despite simplifications, it offers a foundation for



132

understanding the elongation phase of FADNS. This contribution is particularly relevant for studying

disorders like mFAODs, as it can be integrated into a detailed FA metabolism model.

Bridging theoretical modeling with experimental validation Although faced with limita-

tions regarding experimental data availability and model simplifications, this thesis work has laid

the groundwork for integrating theoretical models with experimental validation. By fitting the

semi-mechanistic model of FADNS to available experimental data and discussing the discrepancies

and challenges encountered, this work underscores the importance of a collaborative approach be-

tween computational and experimental researchers. This contribution highlights the potential for

mathematical models to predict and interpret complex biological phenomena and the necessity for

rigorous validation to refine these models further.

Implications for understanding and treating mFAODs By offering new theoretical tools to

explore the metabolic underpinnings of these disorders, this work paves the way for future research to

identify therapeutic targets and strategies to mitigate the effects of mFAODs on affected individuals.

In addition to the advancements made through mathematical modeling, a significant portion of my

research entailed conducting a comprehensive review of the kinetics of enzymes involved in fatty acid

synthesis. This review served a dual purpose: firstly, to consolidate the state of the art, providing

a thorough overview of current understanding and methodologies in enzyme kinetics within FA

metabolism, and secondly, to critically identify and highlight the gaps in the literature where data

is sparse or conflicting. By mapping out these gaps, my work points to areas needing further

experimental investigation and contextualizes the contributions of my modeling efforts against the

backdrop of these identified gaps.

In conclusion, this thesis represents a meaningful advancement in the study of FA metabolism,

providing novel theoretical insights and a platform for future experimental and computational re-

search. The development of models that elucidate bi-stability in FA metabolism and the dynamics

of FADNS offers new perspectives on regulating energy metabolism and its dysregulation in disease

states. By bridging gaps in our current understanding and highlighting areas for further investi-

gation, this work contributes significantly to metabolic research. It opens up new possibilities for

understanding and treating metabolic disorders.



133

Appendix

Summary of the Kinetic of enzymes of FA synthesis

Table A1: Kinetic rate laws corresponding to the parameters reported in the Tables A2, A3, A6, A7, and

A8.

Enzyme Rate law Formula Parameters Reference

ACC Competitive inhibition and activation
Vmax × S

Km

(

1 +
I

Ki

)

+ S
(

1 +
Ka

A

) Table A2 [149]

ACC

ELOVL

∆-9

∆-5

∆-6

Michaelis-Menten kinetics
kcat × E0 × S

Km + S
=

Vmax × S

Km + S
Table A2, A3, A6, A7, A8

[91], [143], [154], [193],

[157], [118], [158], [167],[160],

[161], [163], [166], [165]

FAS
kcat × E0

1 +
KMMal

Mal

(

1 + Acet
KIAcet

)

+
KMACet

Acet

(

1 + Mal
KIMal

)

+
KMNADP H

NADPH

Table A3 [36]
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Table A2: Kinetic parameters of ACC iso-enzymes. Cells are empty when the parameter values were either not measured or not considered in the rate laws. The meaning

of each symbol is defined in the List of Symbols.

Acetyl-CoA carboxylase

Organism /Source Substrate Activator Inhibitor Km kcat Ka Ki pH Temperature Measurement approach Remarks Reference

Rat

hindlimb

muscle

Acetyl-CoA

Citrate

Malonyl-CoA 31.7 ± 1.5 µM

2.13 ± 0.05 mM

10.6 ± 1 µM

7.5 37◦C

14C-labeled KHCO3 radioactivity-based

assay; the kinetic parameters were

measured by using the Lineweaver-Burk

plot method

Purified enzyme

Unknown isoform
[149]

ATP
C16:0-CoA

57.6 ± 0.9 µM
2.2 ± 0.3 µM

KHCO3 2.25 ± 0.1 mM

Rat

adipose

tissue

Acetyl-CoA

Citrate

21.5 ± 1 µM

3.02 ± 0.12 mMATP 106.5 ± 2.6 µM

KHCO3 2.73 + −0.29 mM

Human

ACC1

Acetyl-CoA 34 ± 4 µM

10.1 ± 1.2 s−1

7.5 37◦C

14C-labeled NaHCO3 radioactivity-based

assay; the kinetic parameters were

measured by non-linear regression

fitting to Michaelis-Menten equations

Purified recombinant enzyme

expressed in baculovirus;

the ACC2 lacks the

N-terminal 148 aa region;

the malonyl-CoA exerts a

competitive inhibition

[91]

ATP 161 ± 31 µM

NaHCO3 12.8 ± 0.7 mM

Human

ACC2

Acetyl-CoA 58 ± 17 µM

11.8 ± 3.8 s−1
ATP 120 ± 15 µM

NaHCO3 3.0 ± 0.8 mM

Rat

ACC2

Acetyl-CoA 37 ± 12 µM

11.6 ± 2.4 s−1
ATP 147 ± 13 µM

NaHCO3 5.1 ± 0.3 mM

Human

ACC2 (27-2458)

Acetyl-CoA 2 ± 0.2 µM 11.5 ± 2.0 min−1

7.5 25◦C

14C-labeled acetyl-CoA radioactivity-based

assay; the kinetic parameters were

measured by fitting data to

Michaelis-Menten equation

The enzyme is expressed

in the baculovirus; the ACC2

are truncated (lacking 1–148 aa),

or N-terminal 275 aa is replaced

with the ACC1 region (1-33 aa)

[143]
ATP 52.3 ± 4.4 µM 9.3 ± 2.0 min−1

Human

ACC2 (21-2458)

Acetyl-CoA 2.6 ± 0.8 µM 17.8 ± 1.6 min−1

ATP 43.7 ± 3.5 µM 13.7 ± 0.5 min−1
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Table A3: Kinetic parameters of FAS. Cells are empty when the parameter values were either not measured or

not considered in the rate laws. The meaning of each symbol is defined in the List of Symbols.

FAS & Active sites

Organism/Source Substrate Activator Inhibitor Km kcat Ka Ki pH Temperature Measurement approach Remarks Reference

Chicken Liver

(full enzyme)

Acetyl-CoA

CoA

Malonyl-coA 0.2 µM

10.4 ± 0.7s−1

1.2 µM

5.90

25◦C

Spectrophotometry-based assay by

following the reduction of NADPH

absorbance

Purified enzyme;

although it was shown that

the free CoA at low concentration

activates the enzyme and at high

concentration inhibits the enzyme,

the value of the corresponding

constants are not reported,

the reported parameters

correspond to the formation

of 16:0

[36]

Malonyl-CoA Acetyl-CoA 1.7 ± 0.3 µM 6.0 ± 1.3 µM

NADPH 2.0 ± 0.8 µM

Acetyl-CoA Malonyl-CoA 0.25

10.4 ± 0.7 s−1

1.9 µM

6.56Malonyl-CoA Acetyl-CoA 1.6 ± 0.4 µM 5.0 ± 1.3 µM

NADPH

Acetyl-CoA Malonyl-CoA 0.72 ± 0.17

23.0 ± 0.7 s−1

3.1 ± 0.8 µM

7.0Malonyl-CoA Acetyl-CoA 2.5 ± 0.8 5.4 ± 0.6 µM

NADPH 2.9 ± 0.4 µM

Acetyl-CoA Malonyl-CoA 0.85 ± 0.27 µM

17.0 ± 0.9 s−1

4.0 ± 0.4 µM

7.49Malonyl-CoA Acetyl-CoA 4.3 ± 0.6 µM 10.4 ± 1.5 µM

NADPH

Acetyl-CoA Malonyl-CoA 1.9 ± 0.5 µM

11.0 ± 1.0 s−1

16.3 ± 11 µM

8.0Malonyl-CoA Acetyl-CoA 5.7 ± 1.0 µM 16.9 ± 3.2 µM

NADPH 3.5 ± 0.8 µM

Acetyl-CoA Malonyl-CoA 2.9 ± 0.4 µM

4.0 ± 0.2 s−1

60.0 ± 30 µM

8.60Malonyl-CoA Acetyl-CoA 5.5 ± 0.9 µM 19.0 ± 4.5 µM

NADPH 5.0 ± 0.6 µM

Human

(full enzyme)

Acetyl-CoA 7 ± 3 µM

2.7 ± 0.25 s−1

7.0 25◦C

Spectrophotometry-based assay by

following the reduction of NADPH

absorbance

Purified enzyme expressed

in the baculovirus
[154]

Malonyl-CoA 6 ± 2 µM

NADPH 5 ± 1 µM

β-ketoacyl reductase

site (human)

Acetoacetyl-CoA 10 ± 2 µM
4 ± 0.2 s−1

NADPH 4 ± 2 µM

β-hydroxyacyl dehydratase

site (human)

Crotonyl-CoA

(4:0)
7 ± 5 µM 0.1 ± 0.02 s−1

Enoyl-reductase

site (human)

Crotonyl-CoA

(4:0)
6 ± 2 µM

0.3 ± 0.03 s−1

NADPH 3 ± 2 µM

Enoyl-reductase

site (human)

Octenoyl-CoA

(8:0) 0.05 ± 0.02 s−1

NADPH 100 ± 70 µM

Enoyl-reductase

site (human)

Dodecenoyl-CoA

(12:0)
7 ± 1 µM

0.22 ± 0.08 s−1

NADPH 540 ± 300 µM

Malonyl-acetyl-transferase

site (human)
Acetyl-CoA 3.9 ± 0.4 µM 1.9 ± 0.06 s−1

6.8 0◦C

Radioactivity-based assay combined

with liquid chromatography using

either 14C-labeled acetyl-CoA

or malonyl-CoA

Purified enzyme expressed in

Escherichia coli
[193]

Malonyl-acetyl-transferase

site (rat liver)
Malonyl-CoA 1.9 ± 0.23 µM 1.2 ± 0.008 s−1
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Table A4: Summary on biochemistry of elongases. The symbols "+" and "-" on top of tissues respectively mean

highly expressed and poorly expressed in the corresponding tissue. If no sign is indicated, the information could not

be retrieved from literature. All acronyms used here are listed in the Abbreviation subsection.

Enzyme Tissue expression Substrate type Substrate chain length References

ELOVL 1 almost all tissues SFAs and MUFAs 18 - 26 [102], [111], [199], [200]

ELOVL 2
testis+, liver+, brain−,

kidney−, WAT−, lung−

essential PUFAs

preference for non-essential FAs in mouse
20 - 22 [102], [199], [200], [115], [112]

ELOVL 3
skin sebaceous gland,

hair follicles, BAT
SFAs, USFAs 16 - 22 [102], [200], [118], [199]

ELOVL 4

retina, brain, skin,

testis+, prostate+, ovary,

thymus+, small intestine+

SFAs, ULCFAs ≥ 24 [102], [199]

ELOVL 5 almost all tissues essential PUFAs 18 - 20 [102]

ELOVL 6 almost all tissues
12:0, 14:0, 16:0,

16:1n7, 18:1n9
12 - 18 [102], [115], [201], [117]

ELOVL 7

brain−, liver−,

small intestine−, testis−,

leukocytes−, placenta−,

colon+, kidney+, prostate+,

pancreas+, adrenal glands+

16:0, 18:0, 20:0,

18:1n9, 18:3n6

preference for non-essential FAs

16 - 20 [102], [202], [118]
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Table A5: Summary on biochemistry of desaturases. In the isoforms column, m and h mean present in mice

and humans, respectively. In the substrates column, "*" indicates the preferred substrate, while "#" indicates a

special case of desaturation. In the column tissue specificity, "+" and "-" indicate that the enzyme is highly or

lowly expressed, respectively, while "±" means moderately expressed in the corresponding tissue. In the regulators

column, "+" and "-" indicate enzyme activity increase and decrease, respectively. All acronyms used here are listed

in the Abbreviation subsection.

Enzyme Isoforms Substrates Tissue specificity Regulators Biological function References

∆9

SCD1m,h

14:0, 16:0, 18:0 ∗

lipogenic tissues

(e.g., liver and adipose tissues)
HCD +, SFAs+,

insulin+, estrogen+,

liver X receptors+

PPARα+,

glucagon−,

PUFAs−,

leptin−

desaturate LCSFAs

[120], [123], [125],

[129], [130], [131],

[132], [133]

SCD2 m brain, pancreas
[120], [123], [125],

[133]

SCD3 m 16:0 only (SCD3)
harderian, sebocytes,

preputial glands

[120], [123], [125],

[134]

SCD4 m heart
[120], [123], [125],

[132]

SCD5 h brain, pancreas
[120], [123], [125],

[133]

∆6 FASD1
16:0#, 18:2n-6,

18:3n-3, 24:5n-3

skin +, liver+,

brain+, heart±,

lungs±, kidney−,

spleen−, muscles−

PUFAs+

build HUFAs,

build 16:1n7 found

in human sebum

[103], [121],

[21], [136]

∆5 FASD2 20:3n-6, 20:4n-3

liver+, brain+,

heart±, lungs±,

kidney−, spleen−,

muscles−

PUFAs+ build HUFAs
[103], [121],

[21], [136]

Table A6: Kinetic parameters of elongases. It is important to recall that the purified microsomes are not the

purified enzymes. They contain the four enzymes of the elongation cycle, together with other enzymes that could

impact their kinetics. The concentration of each elongation enzyme therefore remains unknown. Cells are empty

when the parameter values were either not measured or not considered in the rate laws. The meaning of each

symbol is defined in the List of Symbols.

Elongation cycle/ ELOVLs

Organism/Source Substrate Activator Inhibitor Km Vmax Ka Ki pH Temperature Measurement approach Remarks Reference

Porcine purified

microsomes

Malonyl-CoA 32.5 µM 1.6 nmol · h−1 · mg−1

7.5
Radioactivity-based assay combined with

14 C labeled malonyl-CoA

Purified microsomes containing

all the enzymes responsible

for the elongation cycle

[157]

16:0-CoA

NADPH 9.1 µM 1.2 nmol · h−1 · mg−1

Porcine purified

microsomes

Malonyl-CoA 12.9 µM 0.8 nmol · h−1 · mg−1

20:0-CoA

NADPH 23.8 µM 0.67 nmol · h−1 · mg−1

ELOVL7

(human)

Malonyl-CoA 11.7 µM 0.31 pmol · min−1 · µg−1

6.8 37◦C
Radioactivity-based assay combined with

14 C labeled malonyl-CoA

Reconstituted purified enzyme using the

proteoliposome-reconstitution system
[118]

18:3n-3-CoA 2.6 µM 0.33 pmol · min−1 · µg−1

ELOVL6

(human)

Malonyl-CoA 6.46 µM 1.03 pmol · min−1 · µg−1

6.8 37◦C
Radioactivity-based assay combined with

14 C labeled malonyl-CoA

Reconstituted purified enzyme using the

proteoliposome-reconstitution system
[158]

16:0-CoA 1.22 µM 0.79 pmol · min−1 · µg−1
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Table A7: Kinetic parameters of ∆9 desaturases. Cells are empty when the parameter values were either not

measured or not considered in the rate laws. The meaning of each symbol is defined in the List of Symbols.

∆9 desaturase

Organism/Source Substrate Activator inhibitor Km kcat Ka Ki pH Temperature Measurement approach Remarks Reference

Rat liver

microsome

C18:0-CoA 10.5 µM
7.4 37◦C

2H-labeled C18:0-CoA mass spectrometry

approach (RF-MS), Lineweaver-Burk plot
Not the purified enzyme [167]

NADH

Bovine mammary

microsome

C18:0-CoA 25 µM
7.4 30◦C

14C- labeled C18:0-CoA radioactivity-based

method, Lineweaver-Burk plot
Not the purified enzyme [160]

NADH 3 µM

Rat liver
14-19 carbon

chain Acyl-CoAs
4.5 − 5 µM 25◦C

Radioactivity-based assay

using 14C- labeled substrates

Purified enzyme;

The exact names of the Acyl-CoAs

are not specified

[161]

Table A8: Kinetic parameters of ∆5 and ∆6 desaturases. Cells are empty when the parameter values were either

not measured or not considered in the rate laws. The meaning of each symbol is defined in the List of Symbols.

∆ 5 and ∆6 desaturases

Organism/Source Substrate Activator Inhibitor Km Vmax Ka Ki pH Temperature Measurement approach Remarks Reference

∆ 6 Human

fetal liver

18:2n-6-CoA 6.5 µM 7.5 pmol · min−1 · mg−1

7.4 37◦ C

Radioactivity-based assay using
14C-labeled substrates;

Lineweaver-Burk plot

Not a purified enzyme;

liver microsomes from human fetus
[166]

18:3n-3-CoA 24.5 µM 24.4 pmol · min−1 · mg−1

∆ 5 Human

fetal liver
20:3n-6-CoA 3.91 µM 9.5 pmol · min−1 · mg−1 7.4 37◦ C

Radioactivity-based assay using
14C-labeled substrates;

Lineweaver-Burk plot

Not a purified enzyme;

liver microsomes from human fetus
[166]

∆ 5

rat kidney
20:3n-6-CoA 56 µM 60 pmol · min−1 · mg−1 7.0 36◦ C

Radioactivity-based assay using
14C-labeled substrates;

Lineweaver-Burk plot

Not a purified enzyme;

rat kidney microsomes
[165]

∆ 6

rat liver
18:2n-6-CoA 45 µM 83 nmol · min−1 · mg−1 7.2 30◦ C

Radioactivity-based assay using
14C-labeled substrates;

Lineweaver-Burk plot

Purified enzyme [163]

Thermodynamics of the reactions of FADNS estimate with

eQuilibrator

Base on this calculations of the thermodynamic of the reactions of FADNS, it clearly shows that

the overall reactions are thermodynamically favorable. This justify the choice of modeling this

elongation reactions irreversible.

• Acetyl-CoA(aq) + 6 Malonyl-CoA(aq) + 12 NADH(aq) + H2O(l) ⇀↽ 12 NAD(aq) + 7

CoA(aq) + Myristic acid(aq) + 6 CO2(total)

Estimated ∆rG
′m = −519.1 ± 27.9[kJ/mol]

Estimated ∆rG
′◦ = −399.3 ± 27.9[kJ/mol]

K ′
eq = 9.8 × 1069

pH =7.5

pMg = 3.0

Ionic strength= 0.25M

• Acetyl-CoA(aq) + 7 Malonyl-CoA(aq) + 14 NADH(aq) + H2O(l) ⇀↽ 14 NAD(aq) + 8
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CoA(aq) + Palmitate(aq) + 7 CO2(total)

Estimated ∆rG
′m = −601.4 ± 31.3[kJ/mol]

Estimated ∆rG
′◦ = −464.4 ± 31.3[kJ/mol]

K ′
eq = 2.6 × 1081

pH =7.5

pMg = 3.0

Ionic strength= 0.25M



140

List of figures

1.1 Summary of energy homeostasis of the body: The liver’s vital function is

emphasized, as it degrades internal and peripheral organ-derived molecules during

fasting to supply other organs with the necessary nutrients. Conversely, during the

fed state, the liver converts and stores macronutrients in the peripheral organs. . . 2

1.2 Example of structural formula of saturated and unsaturated FAs . . . . . . 5

1.3 Summary of mitochondrial β-oxidation reactions in rodents: the purple

square boxes represent the enzymes of the carnitine shuttle system, while the green

square boxes represent the enzymes of the β-oxidation cycle. (Adapted from [5]) . 6

1.4 Mechanism of ∆3, ∆2-enoyl-CoA Isomerase: The enzyme relocates the double

bond from between carbons 3 and 4 to between carbons 2 and 3. (Adapted from

https://www.slideserve.com/hang/lecture-notes-for-chapter-17-lipid-metabolism) . 7

2.1 Basic description of an enzyme (Adapted from “Enzymes, Substrates, and In-

hibitors”, by BioRender.com (2022). Retrieved from https://app.biorender.com/biorender-

templates ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Michaelis-Menten kinetics curve . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 How to extract the parameter of Michaelis-Menten equation using Lineweaver-

Burk plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Different type of inhibition (Adapted from “Enzymes, Substrates, and Inhibitors”,

by BioRender.com (2022). Retrieved from https://app.biorender.com/biorender-

templates) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Fitting result with lmfit library . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Sobol sampling vs. random sampling: In the left panel, we have a Sobol

sample of 256 points couples of points (θ1, θ2) between 0 and 1, and the right

panel random sample of 256 couples of points (θ1, θ2) between 0 and 1. The Sobol

sample is evenly distributed in the sample space, whereas the random sample does

not uniformly cover the sample space uniformly. . . . . . . . . . . . . . . . . . . 41

2.7 Scheme and time course of a linear open system made of two compounds

and three reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



141

2.8 Sobol’s sensitivity analysis for the linear model with two compounds: As ex-

pected, k1 and k2 are the only parameters controlling the variance of the compound

A, whereas k3 exclusively control the variance of B. . . . . . . . . . . . . . . . . 42

2.9 Scheme and time course of a branched open system made of four com-

pounds and seven reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.10 Sobol’s sensitivity analysis for the branched open model with four com-

pounds: By looking at the total indices, one can note that k1 has a substantial

control on the concentrations of all compounds. The other parameters have less

global influences, although their effect on the concentration of a particular com-

pound can be more considerable, as shown by the first-order, second-order, and

total indices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 Schematic representation of the biochemistry of fatty acid biosynthesis.

The process is organized in two main parts. Enzymes involved in the fatty acid

de novo synthesis (FAS and ACC1) are color-coded with a gray background. They

are responsible for the production of long chain saturated fatty acids (LCSFAs).

This process takes place in the cytoplasm. Enzymes involved in the microsomal

modifications of fatty acids (ELOVLs, ∆-desaturases) are color-coded with a black

background. They are responsible for elongating and desaturating long-chain fatty

acids (LCFAs) and very long-chain fatty acids (VLCFAs). This process takes place

in the endoplasmic reticulum (ER) where these enzymes are membrane-bound. In

the ER, LCFAs and VLCFAs, represented in the figure, include long-chain saturated

fatty acids (LCSFAs), mono-unsaturated FAs (MUFAs), and poly-unsaturated FAs

(PUFAs). The β-oxidation that takes place in the mitochondria is not part of fatty

acid synthesis. Still, it is represented because it influences the overall synthesis

process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Illustration of interactions among key metabolites in lipid homeostasis:

Square boxes denote the concentrations of distinct metabolites of the system, while

triangular-shaped arrows signify reaction fluxes. Reaction fluxes associated with

FA synthesis are color-coded in blue, whereas those involved in FA degradation are

depicted in black. Circular arrowheads do not represent fluxes but instead indicate

inhibition of the target reaction by the originating metabolite. For instance, malonyl-

CoA suppresses the flux from the FA pool to acetyl-CoA. Vini and Vouti (where

i ∈ {1, 2, 3}) signify the respective influxes and outfluxes of the attached metabolites. 59

4.2 Illustration of the scenario where one could have three positive values of S∗
3 at the

steady-state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Conditions for the Jacobian matrix Jk to have three negative eigenvalues. 73



142

4.4 Analysis of the scenario where Γ
′

k(λ) has two turning points. . . . . . . . 73

4.5 Illustration of the conditions for Γk(λ) to have four roots. . . . . . . . . . . 77

4.6 Illustration of the case where Γk(λ) has four distinct roots (three negative

and one positive), and all its turning points are negative. . . . . . . . . . . 77

4.7 Illustration of the curves of the first (left) and second (right) derivatives

ensuring that Γk(λ) has four distinct roots (three negative and one posi-

tive), and all its turning points are negative. . . . . . . . . . . . . . . . . . 78

4.8 Illustration of a case where Γk(λ) has four distinct roots (including three

negative ones). Among the three turning points, two are negative, and

one is positive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.9 Sub-case 1: x′
k1

and x′
k2

are both negative and Bk is positive. . . . . . . . . . . 80

4.10 Sub-case 2: x′
k1

is negative, x′
k2

positive, and Bk negative. . . . . . . . . . . . . 81

5.1 Detailed reactions of FADNS: The seven enzymatic site of FAS are represented,

notably the malonylacetyltransferase(MAT) (Reprinted (adapted) with permission

from [186]. Copyright 2019 ChemBioChem) . . . . . . . . . . . . . . . . . . . . 88

5.2 Fold Changes in the TG Profile in MCAD Knockout and Wild-Type Mice:

The fold in this context is defined as the ratio between the mean TG concentration

in MCAD knockout mice and that of the wild-type mice. A simple approach to

describe the TG is by considering the total number of carbons and the number of

double bonds in the FAs attached to the glycerol backbone. Using this description, I

calculated the ratio between the means of each type of TG in MCAD knockout mice

and the wild type. An overall increase in each type TG is noticeable. Moreover,

these changes exhibit a positive correlation with the number of double bonds and a

negative correlation with the number of carbons. It is notable that some TGs, such

as 48:8 and 42:4, exhibit fold changes of 24 and 17, respectively. (The data were

extracted from Chapter 4 [5].) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Scheme of the model without CoA inhibition: the reactions are color coded

with red, black and blue, representing the initialization, the cyclic elongation, and

termination steps, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Scheme of the model without CoA inhibition: the reactions are color coded

with red, black, blue, and orange representing the initialization, the cyclic elonga-

tion, termination steps, and the inhibition by the free CoA, respectively. . . . . . . 96

5.5 Extracted data from the work by Topolska et al. [59] . . . . . . . . . . . . 98



143

5.6 Behavior of the fluxes of the vanilla model during the first 200 milliseconds:

in panels a and b, one can observe the effect of the rapid binding as the associated

fluxes peak and decrease toward quasi-steady-state fluxes. Panel c shows the slow

binding as the maximum production flux of EC18 is lower than the other cyclic

elongation fluxes. Panel d, the flux of production of C14 : 0 increases rapidly and

drops exponentially due to high flux toward the production EC16. Panels e and f

show the rise in the production fluxes of C16:0, and C18:0, respectively. . . . . . 101

5.7 Time course of the vanilla model during the first 200s milliseconds: panels

a, b, and c show the consumption of three substrates resulting from rapid binding.

From panels d, e and f, it can be seen that almost all enzyme species are rapidly

converted to EC16. EC18 is the smallest enzyme species in the system. Panels g,

h, and i show FADNS products. One can see that the C16 : 0 is the main product

of the channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.8 Behavior of the fluxes of the vanilla model after 5 seconds : The elongation

fluxes associated with rapid binding reactions (panels a and b) are quasi-constant

after half of a second, as well as the rate of production of C14 : 0 (panel d). The

rate of production C16 : 0 (panel e) sharply increases and remains quasi-constant.

The production rate of C18 : 0 has reached its maximum after 2.5 seconds and

decreases due to slow production of EC18. . . . . . . . . . . . . . . . . . . . . 103

5.9 Time course vanilla model after 5 seconds: panels display the initial phase

dynamics. Panels a,b, and c show the linear consumption of the substrate except

for the sharp drop for the first milliseconds as a result of rapid binding. Panels d,

e, and f show that almost all the enzyme species are converted to EC16 and are at

quasi-steady-state except the EC18. Panels g, h, and i display the linear formation

of the products, with C16:0 being the major one. . . . . . . . . . . . . . . . . . 103

5.10 Behavior of the fluxes of the vanilla model for long-run simulations: Panel

a displays the flux of production of C14 : 0. The first peak corresponds to the

initial formation of the complex EC14, which then drops as a result of the large

flux towards the production of EC16. The second peak occurs due to malonyl-

CoA depletion, favoring the release of C14 : 0. Panel b shows a quasi-constant

flux in the production of C16 : 0 after the initial formation of EC16, with the flux

dropping upon malonyl-CoA depletion. Panel c illustrates the progressive decline in

the production of C18:0 following the initial formation of EC18. . . . . . . . . . 105



144

5.11 Time course of the vanilla model for long-run simulation: Panels a, b, c,

h, and i display the linear consumption of substrates and the linear formation of

products until malonyl-CoA depletion. After the total consumption of malonyl-CoA,

occurring around 20 seconds, the concentration of the enzyme is distributed among

enzyme-substrate complexes with chain lengths of 12 carbons or less (panel d).

Panels e and f illustrate the dynamics of the EC16 and EC18 complexes. Notably,

for EC16, a quasi-steady state is observed, followed by a drop due to malonyl-CoA

depletion. EC18 is slowly converted into C18 : 0 as malonyl-CoA depletes. Panel

g shows the dynamics of the production of C14:0. . . . . . . . . . . . . . . . . . 105

5.12 Fluxes of the vanilla model after CoA inhibition being added : Panel a and

b show how the flux of cyclic elongation associated with the rapid binding display

almost the same dynamics as in the case without CoA inhibition, but slightly less

as result of the inhibition. Panel c shows the same trends as without inhibition

for the flux VEC16→EC18. One can observe the double peaks in the flux of CoA

inhibition. The first peak corresponds to the first binding of the free CoA to the

enzyme. The backward reaction could explain the drop after the first peak as the

concentration of CoA is still low. The second increase following the drop results

from the progressive production of the CoA. The CoA inhibition corrects the flux

of production C14:0 as one can observe only one peak instead of two as before the

inclusion of the inhibition (panel d). The flux of production C16:0 starts dropping

earlier as compared to before I added the inhibition (panel e). This progressive drop

can be explained by the progressive increase of the ECoA, resulting in a decrease

of EC16. The flux of production of C18:0 is almost unaffected by the inhibition. 107

5.13 Time course of vanilla model after CoA inhibition being added: In panel a,

b, and c, one can see that the consumption of substrates decay with time as the

CoA becomes important in the system. the same trends can be observed with the

production of C14 : 0, C16 : 0 and C18 : 0 in the panels g, h and i, respectively.

Panels d, e, and f show progressive decay of the enzyme-substrate complexes as the

ECoA complex takes over. The reaction becomes very slow once all the enzyme

species are almost converted to ECoA. . . . . . . . . . . . . . . . . . . . . . . 108

5.14 Determination of sample size for Sobol’s sensitivity analysis: Panels A and

B illustrate the variation of the first-order Sobol’s indices and the total indices,

respectively, with sample size for C14:0. Panels C and D show the variation of the

first-order Sobol’s indices and the total indices, respectively, with sample size for

C16 : 0. Panels E and F depict the variation of the first-order Sobol’s indices and

the total indices, respectively, with sample size for C18:0. . . . . . . . . . . . . . 109
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5.15 First-Order and Total Indices for the model without inhibition: The first-

order and total Sobol’s indices highlight the significant influence of the parameters

κ and δ on the model’s output. The total indices also reveal the relatively minor

impacts of kd6 and kd7. Notably, kd8 exclusively affects the dynamics of C18 : 0.

The parameter β shows negligible influence on the model output. . . . . . . . . . 110

5.16 Second order indices for the model without inhibition: the interaction of κ

and δ control the time course of the output of the model. One can see a slightly

negative interaction of the couples (δ, kd6) and (δ, kd8) on the time course of C16:0 111

5.17 First-order and total indices for the model with inhibition by CoA : one can

see the strong control of the parameters κ and δ on the model’s output. The total

indices show the minor influences of kd6 and kd7. kd8 only control the dynamic of

C18:0. β exerts a minor control on the model’s output as well as kfCoA and kbCoA. 111

5.18 Second order indices for the model without inhibition: δ negatively interacts

with kd6, kd6, kfCoA, and kbCoA to control the time courses of C16:0 and C18:0. 112

5.19 Parameter distribution and the corresponding root-means-square for the

model without inhibition: The pair plots the distribution of parameter values,

considering each pair of parameters. The distributions of each parameter taken

individually are presented on the diagonal. The color coding corresponds to the value

of the RRMSE. The values of κ and δ associated with the smallest RMSE (indicated

by blue points and distributions) demonstrate a narrow distribution centered around

0.12 µM−2 × s−1 for κ and 1.3 × 10−6 µM−1 × s−1 for δ. This narrow distribution

suggests a higher level of certainty in these parameter estimates. In contrast,

parameters such as β, kd6, and kd8 exhibit wide distributions even at minimal RMSE,

indicating greater variability and less certainty in their optimal values. The graph

also reveals that various combinations of these parameters can lead to the same

RMSE, highlighting the interdependence of its parameters. . . . . . . . . . . . . . 116

5.20 Performance of the model without inhibition on data: (a), I have a good fit

of the initial phase but a poor of the long-run, notably the transient phase. (b),

the model fails to reproduce both the initial phase and the long-run. . . . . . . . 117

5.21 RMSE as a function of kfCoA and kbCoA: After conducting 1024 fits, approxi-

mately 7 local minima were identified based on their RMSE values, with the smallest

RMSE being 0.521. The values of kfCoA and kbCoA corresponding to the smallest

RMSE occurred more than 900 times (indicated by red points), whereas the other

local minima appeared fewer than 10 times (indicated by blue points). The optimal

parameter values associated with the smallest RMSE (0.521) are 0.041µM−1 ×s−1

for kfCoA and 2.6 × 10−4 s−1 for kbCoA. . . . . . . . . . . . . . . . . . . . . . . . 118
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5.22 Initial phase fit for the model with inhibition: Panels a, b, and c show the fit

of the initial phase data (RMSE = 0.521, indicative of the dual fitting’s accuracy).

Panels d, e, and f demonstrate that, despite a slight deviation during the first

milliseconds from C14 : 0, the model’s rapid binding assumption remains valid, as

almost all the enzyme is converted into EC16 complex during the initial phase.

Panel e further illustrates the inhibition effect, revealing a progressive formation of

the ECoA complex within the system. Panels g, h, and i display the substrates’

linear consumption and CoA formation, with the rapid binding evidenced by the

quick drop of substrates in the first milliseconds. . . . . . . . . . . . . . . . . . . 119

5.23 Fitting the long-run simulation and dynamics of the compounds: Panel a

demonstrates that the model accurately fits the long-run experimental data, with an

RMSE of 0.521. Panels b, c, and d illustrate CoA’s progressive sequestration of the

enzyme after the initial phase by forming the ECoA complex. Panels e and f reveal

slower substrate consumption dynamics compared to the initial phase, highlighting

the inhibition by CoA. This is further evidenced by a gradual increase in CoA, which

exhibits dynamics opposite to malonyl-CoA consumption. Panels h and i display the

production of C16 : 0 and C18 : 0, both quantitatively and qualitatively, consistent

with the total fatty acids (FAs) production data. . . . . . . . . . . . . . . . . . . 120

5.24 Description of the initial rate of the reaction: t stands for the time, S for the

concentration of substrate, ∆t time interval, ∆S the interval of variation, and v

the initial rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.25 Fitting my model with Michaelis-Menten rate equations in order to esti-

mate kcat and km for acetyl-CoA: The rates of production of the three FAs as a

function of acetyl-CoA by the model can be approximated with Michaelis-Menten

rate equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.26 Fitting my model with Michaelis-Menten rate equations in order to esti-

mate kcat and km for malonyl-CoA: Only the rate of formation of C16 : 0 can

be approximated with Michaelis-Menten rate equations . . . . . . . . . . . . . . . 123

5.27 Fitting my model with Michaelis-Menten rate equations in order to esti-

mate kcat and km for NADPH: Only the rate of production of C16 : 0 can be

approximated with Michaelis-Menten rate equations . . . . . . . . . . . . . . . . 124
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