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1 IntrodutionSine the invention of the laser in 1960, the use of laser tehnology has beome ubiqui-tous. Lasers today are used for optial ommuniation, digital data storage appliations,material proessing, welding, numerous medial appliations from diagnostis to surgeryand have beome an indispensable tool in sienti� researh due to the oherent natureof laser radiation.During the �rst two deades the laser intensities were inreased rapidly through theintrodution of Q-swithing and mode loking. The pulse length dereased aordingly,from miroseonds to nanoseonds with Q-swithing and femtoseonds with mode lok-ing. This allowed intensities to reah I ∼ 1014W/cm2 and already lead to relativistie�ets for eletrons osillating in the �eld of infrared lasers, as the neessary intensityfor relativisti eletrons is I λ2
0 ∼ 1018W µm2/cm2. If a laser pulse at this intensitypropagates through a gas, it is diretly ionized and a plasma is reated. The relativis-ti mass inrease then leads to nonlinear e�ets, like self-modulation and self-fousing,similar to nonlinear optis for bound eletrons in a medium.Sine typial ampli�ation media show strong nonlinear e�ets for intensities thishigh, intensities ould not be inreased further until the tehnique of hirped pulseampli�ation (CPA) was developed in 1985. This tehnique enabled a onsiderablefurther inrease in laser intensity. Large laser failities world wide now reah intensitieswell over one Petawatt. CPA also redued the ost of high power lasers signi�antlyand allowed universities to build µm lasers (e.g. using Ti:sapphire rystals) that reahintensities above I ∼ 1018W/cm2 and thus allow to study relativisti e�ets in plasmas.The basi mehanism of CPA is the strething of the pulse by a fator of thousand toa hundred thousand by induing a linear hirp. This an be ahieved by letting the pulsepropagate through a medium with large group veloity dispersion like an optial �beror by re�etion at a grating, whih has the same e�et. After strething the frequenies,the front of the pulse is red-shifted, while the bak of the pulse is blue-shifted (or vieversa). The strethed pulse an then be ampli�ed without reahing the saturation limitof the ampli�ation medium. After ampli�ation, the hirp is reversed and the pulse isthus ompressed to its original length. Ampli�ation by 6 to 12 orders of magnitudewere ahieved in this way. To reah ampli�ation fators this high, the strether andompressor have to be mathed exatly, otherwise the hirp is not fully ompensated.This gets more ompliated for shorter pulses as higher order dispersion terms beomeimportant, whih have to be ompensated, too. Still, it is possible to ahieve very shortpulses in the range of 10 to 30 femtoseonds with high quality wave fronts by usingholographi gratings, deformable mirrors and aousto-opti temporal phase orretors(Dazzler).A variant of CPA is the so alled optially parametri CPA (OPCPA). This method7



1. Introdutionuses a nonlinear rystal in whih the pulse is ampli�ed through the interation with apump pulse. Beause of the nonlinear ampli�ation mehanism, that is neessarily inthe saturated range of the medium, the e�ieny is lower than for standard CPA. Thegain bandwith, on the other hand, is larger than for CPA.Fousing the ultraintense pulses produed in this way on solid or gaseous targetsresults in the formation of overdense (whih re�et the pulse) or underdense plasmas(whih allow pulse propagation) respetively. The huge amount of oherent radiationin a small volume produes many interesting nonlinear e�ets with interesting appli-ations. The overdense plasma surfae of a solid irradiated by a short, high ontrastpulse, strongly osillates and produes higher harmonis of the laser frequeny. Morethan 100keV harmonis an be produed in this way with resulting pulse lengths inthe attoseond or even zeptoseond range [26, 3℄. These pulses an be used for thediagnostis of ultrafast physial proesses. Irradiation of a thin metal foil by an intenselaser pulse leads to a large eletrostati �eld between the foil and thermal eletronsbehind the foil that where produed by the urrents indued by the pulse. Protons orions adherent to the bak of the foil are easily aelerated by this �eld up to tens of
MeV [31, 58, 21℄. These protons an be used for time resolved imaging, beause protonsprodued at di�erent times have di�erent energies. Protons of a ertain energy an beseleted and foused by a laser irradiated ylindrial metal foil [63, 24℄. In the future theaeleration of light ions, for example arbon, to several hundredMeV is likely possible.In gaseous targets the pulse an indue a large amplitude plasma waves, alled thewake�eld of the pulse, that an be used to aelerate eletrons [18, 32, 21℄. Wake�eldsare espeially suited for partile aeleration, beause in the proess of the wake�eldprodution the huge transversal eletromagneti �eld of the laser is transformed into alongitudinal eletrostati �eld. Beause the plasma is ionized by de�nition, there are noproblems due to material breakdown at ∼ 20MV/m as for onventional aelerators.Eletrostati �elds of 100GV/m and more an be sustained and eletron energies ofup to 1GeV have been reahed [42℄. In undulators the aelerated eletrons an thenbe used to generate very short and intense oherent X-rays (X-ray free eletron lasers,XFEL). Overviews of laser tehnology and the whole �eld of nonlinear laser-plasmainteration an be found, for example, in [6, 52, 65℄, with many further referenes.Numerial simulations have been vital to understand the nonlinear e�ets that ourin laser-plasma interation. They are also indispensable for the design of experiments.Mostly partile-in-ell (PIC) odes are used for this simulations, beause they inludemost of the relevant physis and an be saled to a large number of proessors [55℄. InPIC simulations, eletrially harged maropartiles are used to model the eletrons andions in the plasma. From their positions and veloities the urrent density is alulatedon a grid. This urrent density is used as a soure term for the Maxwell equations thatare solved on the same grid. The updated eletromagneti �elds are then interpolated tothe positions of the maropartiles to update their positions and veloities. The numberof maropartiles is usually muh smaller than the number of partiles in a real plasma,hene their name. This leads to relatively high noise levels in PIC simulations. Beausethe maropartiles only interat through the grid, binary ollisions are not inluded, but8



an be added by means of Monte Carlo methods.For parameter regimes, where kineti e�ets are negligible, �uid-dynamial odes anbe used instead. They assume a �xed veloity distribution for eletrons and ions, e.g. aold or an isothermal plasma. Sine they are not partile based, simulations with �uidodes are generally less noisy than with PIC odes. The omputational ost of �uidsimulations is also signi�antly lower. For the study of a partiular parameter regime,further simpli�ations of the �uid-dynamial model an be possible. This again reduesthe omputational ost of simulations and enables the investigation of a large range ofparameters in the partiular regime.In this thesis we study the pulse ompression properties of plasma layers. Due to therelativisti interation with the plasma, a laser pulse an be longitudinally ompresseddown to a single laser yle in length, with a orresponding inrease in intensity. PICsimulations show that energy e�ient pulse ompression is limited to weakly relativistiintensities [59℄, at least for the unompressed initial pulse. In this range of intensitiesthe main soure of nonlinearity is the relativisti mass inrease due to the quiver motionof the eletrons in the �eld of the laser. The ponderomotive fore of the laser only ausessmall perturbations in the eletron density. We will derive model equations that inludethe relevant nonlinearities and develop e�ient numerial methods for them.To fully assess the potential of relativisti pulse ompression, the transversal dynamisof the pulse has to be inluded into the simulations, both during propagation in a plasmalayer and in vauum [9, 56℄. Transversal instabilities play an important role, too. Thusnumerial odes for 2D/3D geometries are neessary. With this odes we will studythe propagation of a pulse through one or more plasma layers with vauum in between.Suh layered plasma-vauum systems are a promising onept to produe very shortand intense pulses. With further improvement of the strether / ompressor gratings itmight be possible in the future to further amplify the resulting pulses with OPCPA dueto its large gain bandwith.The thesis is organized as follows. In the next hapter the model equations for theweakly relativisti parameter regime will be derived. In hapter 3 pulse dynamis in1D will be disussed. The numerial methods for 1D simulations will be developed inthis hapter, too. The neessary modi�ations for 2D simulations are developed at thebeginning of hapter 4, after whih the ompression dynamis and instabilities in 2D areinvestigated. The lens-like transversal fousing properties of a plasma layer are studiedin hapter 5. Chapter 6 about pulse ompression with strati�ed plasma-vauum systemsombines the ideas developed in the preeding hapters.
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2 Model equationsThe starting point for the derivation of the di�erent modell equations that we will lateruse for numerial simulations and analytial desriptions of pulse propagation, are the old�uid equations oupled to the Maxwell equations for the �elds A and φ. This Fluid-Maxwell-equations do not inlude kineti e�ets that hange the mirosopi veloity distribution andthus an not model partile aeleration and heating of the plasma. But they allow for muhlower runtimes of simulations that have muh less numerial noise than e.g. PIC-simulations.First we will derive a redued version of the Fluid-Maxwell equations by assuming that theplasma is url-free where A = 0. A further simpli�ation is possible for laser intensities thatonly ause a weak relativisti mass inrease of the plasma eletrons. The resulting equationsfor the weakly relativisti regime form the basis for most numerial simulations in the presentwork. Most analytial models will be based on the ubi nonlinear Shrödinger equation thatis derived at the end of this hapter using the slowly varying envelope approximation.2.1 Redued Fluid-Maxwell equationsThe Maxwell-equations for the potentials A and φ in Coulomb gauge are
1

c2
∂2

∂t2
A− ∆A =

1

c

∂

∂t
∇φ+

(
4π

c

)
j (2.1)

∆φ = 4πρ . (2.2)To ouple the �uid equations for density and momentum of a two omponent plasma ofeletrons and Zi-times harged ions, we use the following de�nitions
j = e(Zinivi − neve) ,

ρ = e(Zini − ne) .For a �xed ion bakground (vi = 0) with Zin
0
i = n0

e ≡ n0 this simpli�es to
j = −eneve ,

ρ = e(n0 − ne) .Combined with the ontinuity equation and momentum balane of a old (T = 0)eletron �uid
∂

∂t
ne + ∇ · (neve) = 0 (2.3)

(
∂

∂t
+ ve · ∇

)
Pe = e

[
−∇φ− 1

c

∂A

∂t
+

1

c
ve × (∇× A)

] (2.4)
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2.1. Redued Fluid-Maxwell equationsthis yields a losed system of equations. We an thus distinguish two types of nonlin-earity in the wave equation for A. Beause of
ve =

Pe

me γe
, (2.5)with

γe =
1√

1 −
(

ve

c

)2 =

√

1 +

(
Pe

me c

)2

. (2.6)there is a relativisti mass inrease of the eletrons, as well as osillations in plasmadensity. The momentum balane an be rewritten as an equation for the anonialmomentum
∂

∂t

(
Pe −

e

c
A
)

= e ∇φ−mc2 ∇γe +
1

meγe
Pe ×

[
∇×

(
Pe −

e

c
A
)]

. (2.7)To normalize the equations, we use the inverse wave frequeny ω−1
0 of the laser as theunit of time and the inverse wave number k−1

0 as the unit of length with ω0 = ck0. Inthis normalization the laser wavelength in vauum is λ0 = 2 π and the laser frequeny
ν0 = 1/2π. The potentials are measured in units of mec

2/e, veloities in units of c andmomentum in units of mec. The density is measured in units of the ritial plasmadensity for a given laser arrier frequeny, de�ned as
4πnce

2

me
= ω2

0 . (2.8)Additionally we extrat a onstant fator out of the eletron density
ne(r, t)

nc

=
n0

nc

ne(r, t)

n0

≡ n0

nc

ne(r, t) .A logial hoie for n0 is the maximum of the ion bakground density. To allow forpropagation of a laser pulse through the plasma n0

nc
has to be less than unity.The dimensionless Fluid-Maxwell-equations in Coulomb gauge are thus given by

∂2

∂t2
A− ∆A − ∂

∂t
∇φ = −n0

nc
ne

P

γ
(2.9)

∆φ =
n0

nc
(ni − ne) (2.10)

∂

∂t
ne + ∇ · (ne

P

γ
) = 0 (2.11)

∂

∂t
(P − A) − P

γ
× {∇× (P− A)} = ∇(φ− γ) (2.12)

γ =
√

1 + P2 (2.13)11



2. Model equationswith the additional gauge ondition ∇ · A = 0. The restrition to a old plasma anda �xed ion bakground limits the appliability of the equations to the desriptions ofshort, fast1 pulses. In the time span suh a pulse needs to propagate the distane of itsown length, neither an the muh heavier ions move, nor an the plasma thermalize theenergy transmitted by the pulse.We de�ne the projetion operators Πc and Πg suh that any �eld u is deomposedinto u = v + w with the following properties
Πgu = v ≡ ug ∇× v = 0 , but generally ∇ · v 6= 0 ,

Πcu = w ≡ uc , ∇ ·w = 0 , but generally ∇× w 6= 0 ,with
Πc + Πg = 1.as long as the manifold X, on whih the operators are de�ned, is star shaped.Clearly, v is a gradient �eld, and w is a url �eld. The operators an be representedas

Πg = ∇∆−1∇ · and Πc = 1 −∇∆−1∇ · .Applying 1 = Πc + Πg to the momentum balane
{Πc + Πg}[

∂

∂t
(P −A) − P

γ
× {∇× (P− A)} = ∇(φ− γ)] , (2.14)allows to split the equation in a divergene-free and a url-free part. The equation

∂

∂t
(Pc − A) − Πc

[
P

γ
× {∇× (Pc − A)}

]
= 0 (2.15)desribes the onvetive transport of the divergene-free part of the anonial momentum

Pcan = P − A. This implies that for the initial ondition Pc = A, the anonialmomentum stays url-free for all times.
Pcan = Pg + Pc − A = Pg . (2.16)This initial ondition simpli�es the url-free part to

∂

∂t
Pg − Πg

[
P

γ
× {∇× (Pc −A)}

]
= ∇(φ− γ) (2.17)

∂

∂t
Pg = ∇(φ− γ) (2.18)Sine ∇×Pg = 0, Pg an be written as a Clebsh-potential, Pg = ∇ψ. The momentumbalane an then be integrated to yield

∂

∂t
ψ = φ− γ + 1 . (2.19)1vg ∝ c with vg =

√
1 − n0/nc, whih implies densities not too lose to nc12



2.2. Equations for the weakly relativisti regimeThis set of equations already has a simpler struture than the original Fluid-Maxwellequations. Numerially, though, they are still hard to takle, beause they inludethe development of shoks in the density and veloity distribution that an produeunphysial negative densities and lead to numerial instability. This ours beauseof the onvetive nonlinearity that an lead to a rossing of the harateristis of theequations. There are no physial mehanism inluded in the equations that ould preventthis trajetory rossing. Simply inluding arti�ial visosity has the unwanted sidee�et of qualitatively altering the solution of the equations even in regions where it issmooth. For shemes using Lax-stabilization, e.g. [4℄ the same objetions are valid [43℄.Developing a Riemann-solver based numerial sheme (see e.g. [46℄) for relativisti laser-plasma interation, whih ould ope with shoks in the solution is beyond the sope ofthis work. Some work has been done in [53℄ on �ux orreted transport methods (FCT,see [36, 67℄), but the resulting sheme has the restrition that the grid onstants for alloordinates have to be in the same range.2.2 Equations for the weakly relativisti regimeAs we will see in the next hapter, energy e�ient pulse ompression is limited toweakly relativisti intensities. We will now derive equations for this partiular parameterregime. Applying the splitting via Πg and Πc to the wave equation for A, yields for thedivergene-free part
∂2

∂t2
A − ∆A = −n0

nc
(1 −∇∆−1∇·){ne

γ
(A + ∇ψ)} (2.20)and for the url-free part

∂

∂t
∇φ = −n0

nc

∇∆−1∇ ·
{
ne

γ
(A + ∇ψ)

}
. (2.21)The right-hand-side of both equations inludes the url-free part of the urrent density

Πg j. This part an be rewritten in a form with two terms, where the inverse Laplaeoperator ats only on one of them.
nc

n0
Πgj = ∇∆−1∇ ·

{
ne

γ
(A + ∇ψ)

} (2.22)
= ∆−1

{
∇
(
A · ∇ne

γ

)
+ ∇∇ · ne

γ
∇ψ
} (2.23)

= ∆−1

{
∇
(
A · ∇ne

γ

)
+ ∆(

ne

γ
∇ψ) + ∇×∇× (

ne

γ
∇ψ)

} (2.24)
=
ne

γ
∇ψ + ∆−1

{
∇
(
A · ∇ne

γ

)
+ ∇×

[(
∇ne

γ

)
× (∇ψ)

]}
. (2.25)
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2. Model equationsSubstituted into the equations for A and ∇φ we get
∂2

∂t2
A − ∆A = −n0

nc

{
ne

γ
A − ∆−1

{
∇
(
A · ∇ne

γ

)
+ ∇×

[(
∇ne

γ

)
× (∇ψ)

]}}(2.26)
∂

∂t
∇φ = −n0

nc

{
ne

γ
∇ψ + ∆−1

{
∇
(
A · ∇ne

γ

)
+ ∇×

[(
∇ne

γ

)
× (∇ψ)

]}}
.(2.27)The two terms that ∆−1 ats on have a simple interpretion: multiplying the divergene-free A or the url-free ∇ψ with ne

γ
leads to new divergene and url omponents inthose terms, respetively. These two terms are neessary to anel the orrespondingomponents of ne

γ
A and ne

γ
∇ψ, to get the atual url-free and divergene-free parts ofthe urrent density.Both terms are idential to zero in the one dimensional ase2, so it is natural to assumethat in the three dimensional ase they an be negleted, too, if the dependeny on theperpendiular oordinate is su�iently slow. But in this ase the perpendiular Laplaeoperator would also be negligibly small, beause for A(r) = A(z, αr⊥) it yields a fator

α2, while ∇
(
A · ∇ne

γ

), even with the assumption Az ≡ 0, only yields a fator α. Wethus have to derive the saling more thoroughly to arrive at the orret equations.We hoose the following ansatz for the weakly relativisti saling
A(r, t) = ε {A⊥(z, αr⊥) + µ ez A‖(z, αr⊥)} (2.28)
ne(r, t) = n0

e + βn1
e(z, αr⊥) (2.29)

φ(r, t) = ρ φ1(z, αr⊥) (2.30)
ψ(r, t) = δ ψ1(z, αr⊥) (2.31)
γ(r, t) = 1 +

ε2

2
|A|2 . (2.32)The di�erent smallness parameters a of ourse interrelated. First we will derive theonditions for a onsistent relation between these parameters.From Coulomb gauge we get

∇ · A = ε{α∇⊥ · A⊥ + µ ∂zA‖} = 0 ⇒ µ = α .The Laplae equation for φ yields
ρ∆φ1 =

n0

nc

(ne − n0
e) =

n0

nc

β n1
e ⇒ ρ = β .The redued momentum balane

δ ∂tψ
1 = ρ φ1 − (γ − 1) = ρ φ1 + O(ε2)2Az = 0,∇⊥

ne

γ
= 0,∇⊥ψ = 0 ⇒ A · ∇ne

γ
= 0,

(
∇ne

γ

)
× (∇ψ) = 014



2.2. Equations for the weakly relativisti regimeand the ontinuity equation
ρ∇ · ∂t∇φ1 = β ∂tn

1
e = −n0

nc

n0
e δ∆ψ1 + h.o.t.are onsistent with

δ = ρ = β = ε2 .This saling is also onsistent with the wave equation for A

ε
{
∂2

t A − ∂2
zA− α2∆⊥A

}
= −ε

{
n0

nc
(n0

e + β n1
e)

[
1 − ε2

2
|A|2

]
A

}
+ . . . .Under this assumption, beause of

∇ne

γ
= ε2(∇n1

e + n0
e∇

|A|2
2

)and
A · ∇ = A⊥ · (α∇⊥) + αA‖ ∂zwe have

∇
(
A · ∇ne

γ

)
= O(ε3α)and

∇×
[(

∇ne

γ

)
× (∇ψ)

]
= O(ε4α2) .The inverse Laplae operator does not hange the order of these terms, beause

∆−1 = F−1 1

k2
‖ + α2k2

⊥

≈ F−1 1

k2
‖

(
1 − α2k

2
⊥

k2
‖

)
=

(
∂2

∂z2

)−1

+ O(α2) ,where F−1 is the inverse Fourier transform. To get onsistent equations, we have thusto inlude all terms up to order ε3 and εα2, while negleting terms of order ε3α andhigher. Linearizing in the density �utuation allows for a further simpli�ation of theequations by di�erentiating the ontinuity equation in time
∂2

∂t2
n1

e = −n0

nc
n0

e

∂

∂t
∆ψ1 ,and applying the Laplae operator the equation for ψ1

∂

∂t
∆ψ1 = ∆φ1 − ∆γ .Substituting ψ1 in this way, we get

∂2

∂t2
n1

e +
n0

nc

n0
e n

1
e = n0

e∆γ . (2.33)15



2. Model equationsCombined with the wave equation of the orret order in the saling oe�ients
∂2

t A − ∆A = −n0

nc

{
n0

e

(
1 − ε2

2
|A|2

)
+ n1

e

}
A (2.34)we have a omplete system of equations. Sine a omponent of A that is initially zerowill stay zero, we an onstrut a pulse with A‖ ≡ 0 and only use A⊥ in the equations.It is onvenient for numeris to write A⊥(r, t) as a omplex �eld a(r, t) by de�ning

A⊥(r, t) =
1

2
a(r, t) {ex ± i ey} + c.c. (2.35)for a irular polarized laser, where the ± denotes left or right irular polarization.2.3 Slowly varying envelope approximationWe an further simplify the wave equation (2.34) by introduing the so alled slowlyvarying envelope approximation (SVEA). We �rst transform into a omoving frame withthe new variables

ζ = z and τ =
1

β
z − t , (2.36)where β =

√
1 − n0/nc is the linear group veloity of the pulse.Transforming the derivatives in (2.34) aordingly results in

{
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γ
A(r⊥, ζ, τ) . (2.37)De�ning the envelope ansatz

A(r⊥, ζ, τ) =
1

2
a(r⊥, ζ, τ) {ex ± i ey} e−i 1−β2

β2 +i τ
+ c.c. (2.38)and insertion into (2.37) yields
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a , (2.39)under the assumption that the envelope funtion a(r⊥, ζ, τ)) varies slowly ompared tothe arrier wave and ∂2

∂τ∂ζ
and ∂2

∂ζ2 an be negleted.3 Setting ne = const. and expandingthe γ-fator leads to the well known ubi nonlinear Shrödinger equation (ubi NLSE).Under the same variable transformation and envelope approximation, the densityequation beomes
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∂τ 2
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}
γ . (2.40)3For two or three dimensional wave equations this is also alled the paraxial approximation [61℄.16



2.3. Slowly varying envelope approximationNote that this equation represents an initial value problem in ζ , not in τ as the NLSE.This ompliates the numerial solution of the oupled system (2.39), (2.40).For very short pulses of only a few laser yles, the envelope approximation breaksdown. Another drawbak of the NLSE is that the transition of the laser pulse fromvauum to plasma is not desribed self-onsistently by this equation. The NLSE is thusless well suited for the numerial simulation of pulse ompression than the full waveequation. We mainly derived the NLSE here for use in analytial models based on thevariation-of-ation method (VAM).

17



3 Pulse ompression in onedimensionThe propagation of a pulse that is short in the longitudinal diretion and wide in the transver-sal diretion will at �rst be lose to the propagation of a one dimensional pulse that istransversally onstant. If and when the dynamis in 2D/3D hanges signi�antly from 1Dwill be disussed in the later hapters. In this hapter we will study the in�uene of pulseand plasma parameters on longitudinal pulse ompression and instabilities that already ourin 1D. First we will derive the 1D versions of the equations from hapter 2 and then developa numerial sheme to handle the fast time and spae dependene of the wave e1equation.This part of the hapter was published in [39℄.3.1 Model equations in 1DIt is instrutive to derive the model equations (2.33) and (2.34) again in 1D. We startwith the normalized equations (2.9), (2.11) and (2.12) and assume that all quantitiesdepend spatially only on the z-oordinate. Coulomb gauge implies the purely transversenature of the wave (A = A⊥). The wave equation (2.34) for the transverse omponent
A⊥ now reads

∂2

∂t2
A⊥ − ∂2

∂z2
A⊥ = −n0

nc
ne

P⊥

γ
. (3.1)The longitudinal part of the wave equation simpli�es to

∂2φ

∂t∂z
+
n0

nc
ne
P

γ
= 0 . (3.2)Either this equation or the ontinuity equation is redundant, beause derivation withrespet to z yields the 1D ontinuity equation.The same splitting was ahieved in 3D by deomposing the equations into a url-freeand a divergene-free part.The momentum balane (2.12) an be split into its longitudinal and transversal om-ponents. The transversal eletron momentum balane

∂

∂t
(P⊥ − A⊥) +

(
Pz

γ

)
∂ (P⊥ − A⊥)

∂z
= 0 (3.3)has the speial solution

P⊥ = A⊥ . (3.4)18



3.1. Model equations in 1DThis speial initial ondition orresponds to the 3D ondition ∇× (P− A) = 0, whihis the loal version of the global 1D ondition. In 3D the loal longitudinal diretionis given by the diretion of the k-vetor and the momentum omponents perpendiularto this diretion are equal to A⊥. The omponent of A parallel to k is equal to zerobeause of Coulomb gauge.The longitudinal eletron momentum balane
∂Pz

∂t
− P⊥ · ∂ (P⊥ − A⊥)

∂z
=
∂ (φ− γ)

∂z
, (3.5)an be simpli�ed by the speial solution, too. Thus we diretly have only a salarequation for the momentum in 1D, without using a Clebsh potential ψ with P = ∇ψ.This leads to the basi set of 1D equations:
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, (3.6)
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= 0 , (3.7)
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e) , (3.8)
∂Pz

∂t
=
∂ (φ− γ)

∂z
, (3.9)where n0

e is the time-independent part of n (whih is idential to the �xed ion bak-ground) and γ =
√

1 + |A⊥|2 + P 2
z .The saling for the weakly nonlinear regime is muh simpler in 1D, too. We assumethat

A⊥ ∝ ε ≪ 1 and ne = n0
e + αn1

e .Equations (3.8) and (3.7) then diretly tell us that φ1 ∝ α and P 1
z ∝ α (φ0 = P 0

z = 0).Inserting
γ ≈ 1 +

ε2

2
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α2

2
(P 1

z )2into (3.9) suggests α = ε2 and that P 1
z an be negleted in the γ-fator.The orretly saled wave equation then is
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A⊥ . (3.10)Derivation of (3.7) with respet to time and inserting (3.9) and the salings for ne and

Pz yield an equation for the eletrostati part of the E-�eld E1
z ≡ ∂zφ
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|A⊥|2 . (3.11)This equation allows for an arbitrary dependene of n0

e on z. The full 3D version of thisequation has three omponents and thus is better substituted with a salar equation19



3. Pulse ompression in one dimensionfor n1
e by using ∆φ = n0

nc
n1

e. If we assume n0
e to be pieewise onstant or only slowlydependent on z, as we did in the derivation of the 3D equations, we an transform theabove equation into
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∂t2
n1

e +
n0

nc
n0

e n
1
e = −1

2
n0

e

∂2

∂z2
|A⊥|2 . (3.12)The equations thus have the same form as in 3D, only the Laplae operator is restritedto the z-oordinate.Comparison of 1D simulations with these two equations for the density response showno signi�ant di�erenes for density pro�les with density jumps or smooth ramps ofseveral λ0 length. For 1D simulations we will use the equation for E1

z and for the 2Dsimulations in the following hapters the equation for n1
e.A signi�ant di�erene an our between simulations with the full γ-fator and theexpanded γ, beause the saling only tells us the order of ε of a term in the equations,but not the onstant in front of it. In all following simulations we will use the full

γ-fator, if not expliitly stated otherwise.3.2 Numerial methodsNumerially solving the wave equation (3.10) poses the problem that the arrier waveof a laser pulse has a fast time and spae dependeny. The disretization of the spatialgrid and the stepsize in time have to be hosen aordingly small. This is even thease for irular polarization and a pulse envelope that hanges slowly ompared to thelaser wavelength (so that the nonlinearity varies smoothly), beause the restrition isaused by the properties of the linear operator on the left-hand-side of the equation. Wewill disuss two methods that will allow us to attenuate the restritions, Gautshi-typenumerial shemes to handle the fast time dependene and the quasi-envelope approah(QEA) to redue the number of grid points.3.2.1 Spatial disretizationDue to the �nite energy assumption on the physial solution it is possible to onsiderperiodi boundary onditions for the disretization as long as the simulation box isbig enough and one takes are of re�eted pulses at the boundaries. For long timesimulations this an be ombined with a moving window tehnique.Semi-disretization in spae is done by a pseudospetral method withN Fourier modeson a spae interval z ∈ z0 + [−L,L]. This leads to the following system of oupledordinary di�erential equations in time (the prime denotes time-derivative):
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a , (3.13)

E ′′ = −ω2E + f(a), f(a) = −n0
eiD

√
1 + |a|2 . (3.14)20



3.2. Numerial methodsHere, D2 = F−1
N D2FN , where FN is the disrete Fourier-transform operator, and

D =
π

L
diag(−N

2
,−N

2
+ 1, . . . ,−1, 0, 1, . . . ,

N

2
− 1) .The jth omponent of the vetors a(t) and E(t) are approximations to a(zj , t) and

E(zj , t) at zj = z0 + j 2L
N
, and ω2 = n0

nc
n0

e.3.2.2 A two-step Gautshi-type exponential integrator for timedisretizationAs a solver for these equations we use a modi�ation of a Gautshi-type exponentialintegrator [34℄. This integrator is motivated as follows: By the variation-of-onstantsformula, the exat solution of
y′′ = −Ω2y + F (y) (3.15)satis�es

y(t+ τ) =2 cos(τΩ)y(t) − y(t− τ)

+

∫ τ

0
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(
(τ − s)Ω

)(
F (y(t+ s)) + F (y(t− s))

)ds . (3.16)For a onstant inhomogeneity F this yields
y(t+ τ) = 2y(t) − y(t− τ) + τ 2ψ(τΩ)

(
−Ω2y(t) + F

)
,where

ψ(x) = 2
1 − cosx

x2
.In the general ase, a numerial sheme is obtained by substituting a suitable approx-imation of F (y(t ± s)) into (3.16). This leads to approximations yk ≈ y(tk), tk = kτ ,de�ned by

yk+1 = 2yk − yk−1 + τ 2ψ(τΩ)
(
−Ω2yk + Fk

)
.The simplest hoie, originally proposed by Gautshi [22℄, is to set Fk = F (yk). However,the onvergene analysis in [34℄ shows that in order to obtain seond-order error bounds,whih are independent of the produt of the step size with the frequenies, it is neessaryto evaluate the nonlinearity F at a �ltered position, i.e. Fk = F (φ(τΩ)yk). If this �lterfuntion φ is omitted, then large errors are expeted in the ase when the produt of thestep size τ with one of the frequenies of the problem (the eigenvalues of Ω) is an integermultiple of π. The �lter funtion is a suitably hosen real funtion whose purpose is to�lter out resonant frequenies, e.g.
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3. Pulse ompression in one dimensionThe integrator applied to (3.15) then reads
yk+1 = 2yk − yk−1 + τ 2ψ(τΩ)

(
−Ω2yk + Fk

)
, Fk = F (φ(τΩ)yk). (3.17)In addition it is also possible to obtain approximations to the �veloities� y′ via

y′k+1 = y′k−1 + 2τσ(τΩ)(−Ω2yk + Fk), (3.18)where σ(x) = sin x/x. Note that approximating the �veloities� by standard �nitedi�erenes will lead to inaurate results due to the osillatory behavior of y.For Ω = 0 the Gautshi-type integrator redues to the well known leap-frog orStörmer-Verlet method. We will use (3.17) and, if desired, (3.18) for the integrationof (3.13) for the vetor potential.The auray of the integrator may be further improved if approximations to the in-homogeneity are available at additional times. This is only true if we solve the equations(3.14) for the eletrial �eld beause there the inhomogeneity only depends on a. If wesolve the equation for a �rst, we have approximations aj ≈ a(tj) for j = k − 1, k, and
k+ 1. We then replae f(a) by an interpolation polynomial of degree two interpolatingin (tk−1, f(ak−1)), (tk, f(ak)), and (tk+1, f(ak+1)). Note that we onsider the irularpolarized ase, in whih f is a smooth funtion. Using this interpolation polynomialinstead of F (y(t± s)) in (3.16) yields

Ek+1 = 2Ek − Ek−1 + τ 2ψ(τω)
(
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)

+ τ 4χ(τω)
(
f(ak+1) − 2f(ak) + f(ak−1)

) (3.19)for (3.14), where
Ek ≈ E(tk) and χ(x) = 2

cosx− 1 + 1
2
x2

x4
.The sheme (3.19) is of order four, if aj , j = k − 1, k, k + 1 are exat or su�ientlyaurate approximations of a(tj). However, the oupled sheme (3.17), (3.19) annot bebetter than seond order.3.2.3 Choie of operatorsFor solving (3.13) the obvious hoie would be using (3.17) withΩ = D. By onstrution,the Gautshi-type integrator then solves equations y′′ = −Ω2y + F with onstant Fexatly. Due to the speial form of the nonlinearity g, we an enlarge the part whih isintegrated exatly by writing

g(a, n1
e) = −α a+ g̃(a, n1

e)and setting Ω2 = D2 +α for a suitable α. If the pulse is inside the plasma, the dominantterm of g is linear in a, whih suggests to hoose α = n0/nc. Outside the plasma (where
n0

e = 0) the nonlinearity is negligible so that one should set α = 0.22



3.2. Numerial methods3.2.4 Quasi-envelope approahThe motivation behind the quasi-envelope approah (QEA) is illustrated on a numerialresult shown in Fig. 3.1: the spetrum of the vetor potential splits into two parts. Theimportant part is onentrated around a ertain harateristi wave number dependingon whether the pulse propagates inside or outside of the plasma. In addition there isanother peak resulting from re�etion whih is not of interest in our physial appliation,beause the re�etion an be nearly ompletely avoided by using a soft vauum-plasmaboundary (whih is a more realisti model for an experimental setup). Therefore, it issu�ient to resolve the part of the spetrum with positive k-values around the arrieronly, without problems due to aliasing that ould our if we do not handle the re�etionsorretly. The number of spatial grid points required an be redued signi�antly byshifting the spetrum appropriately, i.e. we replae the vetor potential a by
a(z, t) = ã(z, t)eiκzand solve (3.10) for ã instead of a. This yields
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(n0
e + n1

e)
1

γ
ã , γ2 = 1 + |ã|2 .Note that in the �lassial� envelope approximation ∂2ã/∂z2 is negleted, leading to aShrödinger type equation in z. In the spatially disretized equation (3.13), D2 has tobe replaed by (D+κ)2. The value of κ an be varied for di�erent positions of the pulse(inside/outside of the plasma or at the boundary), so we hoose κ =

√
1 − n0/nc, κ = 1or the mean value of both.
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0Figure 3.1: Spetrum of the wavenumbers of the vetor potential while entering the plasma, K =√

1 − n0/nc (arbitrary units).3.2.5 Multilevel approahObviously, the spatial grid size is determined by the neessity of resolving re�etionsarising at jumps of the plasma density. If we have a sharp jump , then the re�etions23



3. Pulse ompression in one dimensionrequire small spatial grid sizes only when the pulse enters or leaves the plasma. Thisan be exploited in a standard way by using two (or more) di�erent grids. In our asewe used a �ne grid in transitions between vauum and plasma and a oarse one in theremaining simulation. Swithing between oarse and �ne grid is done by interpolationand from the �ne to the oarse grid by restrition (both in Fourier spae). Note that thisswith requires to reompute the di�erential operator and hene the matrix operatorsrequired for the Gautshi-type integrator.3.2.6 Overall numerial methodThe omplete numerial method ombines the strategies desribed above. This requiresthe omputation of three or more sets of operators: one in vauum (αv = 0, κv = 1,oarse grid), one in plasma (αp = n0/nc, κp =
√

1 − n0/nc, oarse grid), and one in thetransition (αt = 0.5n0/nc, κt = (1 +
√

1 − n0/nc)/2, �ne grid), and possibly additionalsets if the pulse gets too steep to be resolved on the oarse grid in plasma due tononlinear pulse ompression. If bakground density is small (so that the di�erenebetween vauum and plasma wavelength is also small) and the density pro�le has nosharp jump (so that no re�etion ours), it is most of the time su�ient to use thesame set of operators for both the transitional region and the plasma region on the sameoarse grid, with a κ halfway between vauum and plasma wave-number. Reall thatin vauum, there is no nonlinearity, and thus the Gautshi-type integrator solves theproblem exatly for arbitrary time steps. Obviously, it is not neessary to ompute �lterfuntions in this ase.3.3 Auray and e�ieny of the numerial sheme3.3.1 Desription of the simulated example problemFor runtime omparison we hose a simulation box of length 1000 λ0. As density pro�lewe used a pieewise linear funtion whih is 0 for z smaller than 100 λ0 and greaterthan 810 λ0, 1 for 105 λ0 < z < 805 λ and linear in between. In this ase, themultilevel approah is not neessary, beause nearly no re�etion ours at the plasmaboundaries. To simplify the simulational setup for the runtime omparison further, formethods with QEA, only one set of operators is used with a mean value of vauumand plasma wavelength. With an additional set of operators for the plasma part, theresults disussed below would be even better. But for a low bakground density like
n0 = 0.3nc, whih we used, the results are already very good. For denser plasmas(e.g. n0 = 0.6nc), swithing of operators between plasma boundary and plasma partsof the density pro�le beomes a neessity. For the multilevel tests we used a retangulardensity pro�le beginning at 105 λ0 and ending at 805 λ0, and we inluded the di�erentoperators disussed in Se. 3.2.6.24



3.3. Auray and e�ieny of the numerial sheme
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Figure 3.2: Propagating pulse at di�erent times in red, bakground density pro�le in blak for
a0 = 0.1, L0 = 10λ0 and n0 = 0.3nc.The initial onditions for the vetor potential in vauum were alulated from

a(z, t) = a0 e
−

(z−z0−t)2

L2
0 ei(z−t) (3.20)at t = 0 and t = τ . The parameters were z0 = 35 λ0, L0 = 10 λ0, and a0 = 0.1 or

a0 = 0.12. Due to the normalization λ0 = 2π.As an example, the time evolution for two di�erent initial amplitudes is shown inFig. 3.2 and in Fig. 3.3. For the lower amplitude, �rst a ompression and then awidening of the pulse an be seen. In the ase of the higher amplitude, the pulse �rstompresses, and then splits o� a part of its energy into a prepulse. If we alulate theamplitude for the single soliton state of the Shrödinger model for a L0 = 10 λ wide
sech(z/L0) pulse (see [59℄), we get a0 ≈ 0.038. A simulation of suh a pulse veri�es thatthe soliton state of our model equations is lose to this. For the two amplitudes above,this implies that we are well within the nonlinear regime. It also suggests that the initialondition with a0 = 0.1 is lose to a bound two solution state, while for a0 = 0.12 it islearly above. In the latter ase the pulse ompresses more and earlier, and more energyis radiated away from the ore of the pulse after the ompression.As benhmarks for the auray of the di�erent numerial shemes, we used two errormeasures. Sine we do not have an analytial solution of the nonlinear model equations,we omputed a referene solution on a very �ne grid (N = 217) with very small timesteps. We then used it to measure the error in maximum amplitude squared (amplitudeerror) and its position (phase error) at di�erent times of the simulation results. Sinethe simulations were omputed on oarser grids (espeially the QEA solutions) we �rstFourier interpolated to the same number of grid points as the referene solution. 25



3. Pulse ompression in one dimension
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Figure 3.3: Propagating pulse at di�erent times in red, bakground density pro�le in blak for
a0 = 0.12, L0 = 10λ0 and n0 = 0.3nc.3.3.2 E�et of di�erent time-integration shemesIf the vetor potential is held in Fourier spae and only transformed bak for the evalu-ation of the nonlinearity/inhomogeneity, one has to ompute six fast Fourier transformsper time step for the leap-frog method (two for the nonlinearity of the wave equation,two for the inhomogeneity of the plasma response, and two for the transformation of

E). There is one more Fourier transform needed for the Gautshi-type integrator sinein eah step the �ltered as well as the non�ltered vetor potential is required in realspae. In addition, one has to ompute the produts with the matrix funtions ψ, φ,and possibly σ. Obviously omputing a single time step with the Gautshi-type inte-grator is more expensive than one time step with the leap-frog method. But it turnsout that the Gautshi-type method allows larger time steps in order to reah the sameauray.In Fig. 3.4 and Fig. 3.5 maximum relative amplitude error (left) and maximum phaseerror in λ (right) are plotted over omputational time. Eah urve represents one inte-grator on one spatial grid with di�erent time steps.For a given tolerane for the relative amplitude error the leap-frog method (dot-ted+triangles) needs two times smaller time steps than the Gautshi-type integrator(solid+diamonds) on the same spatial grid (N = 212). In our examples this redues theomputational time by a fator of 1.5 (see table 3.1). If the phase error is taken intoaount, too, the gain in omputational time is even greater.26



3.3. Auray and e�ieny of the numerial sheme
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Figure 3.4: Maximum amplitude and phase error vs. runtime (a0 = 0.1) for varying τ for leap-frog(dotted+triangles), Gautshi (solid+diamonds), leap-frog + QEA (dash-dotted+irles)and Gautshi + QEA (dashed+squares). We used N = 212 for methods without QEAand N = 211 for methods with QEA (see also table 3.1).
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Figure 3.5: Same as Fig. 3.4, but for a0 = 0.12.3.3.3 E�et of hoie of operatorsThe e�et of the hoie of operators is illustrated in Fig. 3.6 for the ase a0 = 0.1.It is observed that the hoie of α = n0/nc within the plasma redues the phase er-ror signi�antly while the error in the amplitude is only slightly larger. However, for
a0 = 0.12 swithing between the operators did not pay o�. The reason for this mightbe the inreased density variation ompared to the smaller amplitude. The results inFig. 3.6 were omputed inluding QEA of Setion 3.2.4, but the method showed thesame behavior when ombined with other variants desribed above. The phase erroris given in terms of λ whereas the amplitude error is given relatively ompared to the27



3. Pulse ompression in one dimensionreferene amplitude. In both ases the error is averaged over pulses at 100 di�erentpositions spread evenly over the omputation interval.
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τFigure 3.6: Amplitude and phase error plotted over the time step τ for the Gautshi-type integra-tor inluding quasi-envelope approah with and without the variant desribed in Se-tion 3.2.3. Phase/amplitude error with α = 0 (solid/dashed line) and α = n0/nc withinthe plasma (dotted/dash-dotted line) for a0 = 0.1.3.3.4 E�et of quasi-envelope approahBy applying the quasi-envelope approah to the leap-frog method as well as the Gautshi-type integrator, the number of spatial grid points an be signi�antly redued withoutloss of auray (see urves with and without QEA in Fig. 3.4 and Fig. 3.5). Sinethe major part of omputational time is spent on Fast Fourier transforms, whih ost
O(N logN) operations, the redution of grid points by a fator of 2 again leads to asaving in omputational time of more than a fator of 2. Another reason for a morethan linear redution in omputational time is that smaller arrays are more likely to �tinto the ahe of the proessor. For small enough arrays, a whole time step an runfrom CPU ahe. We observed that QEA is more e�etive in reduing the amplitudeerror, while the Gautshi-type method is more e�etive in reduing the phase error.The parameters for the disretization needed to ahieve a maximum relative ampli-tude error of 10−2 are summarized in table 3.1. Exemplary runtimes for one spei�hardware/software setup are also given.If one ompares the standard leap-frog method to the new variant of the Gautshi-type integrator ombined with QEA, the omputational time is redued by a fator of
3 in the �rst and even by a fator of 4.5 in the seond example. If we set a bound lowerthan 10−2 for the amplitude error, we see that without QEA this error bound annot bereahed by only reduing τ . This is beause the error due to the oarse spatial resolutionlimits the auray that an be reahed. Thus a �ner grid is needed, whih results in28



3.3. Auray and e�ieny of the numerial sheme
a0 = 0.1 a0 = 0.12

N τ time/min. N τ time/min.LF 212 0.1 2:10 212 0.04 5:07LF + QEA 211 0.1 1:03 211 0.05 1:57Gautshi 212 0.2 1:32 212 0.12 2:28Gautshi + QEA 211 0.2 0:44 211 0.12 1:10Table 3.1: Runtimes for maximum one perent relative amplitude error. N is the number of spatialgrid points, τ is the time step size. Computational details: Pentium 4, 3.0 GHz, IntelC++ 8.1, FFT routines from Intel Math Kernel Library 7.2.a orresponding inrease of omputational time, while the disretization for QEA anstay the same (see Fig. 3.7).
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Figure 3.7: Maximum amplitude error vs. runtime (a0 = 0.12) for onstant N and varying τ forleap-frog with N = 213 (dashed), leap-frog with N = 212 (dash-dotted) and Gautshi+ QEA with N = 211 (solid).
3.3.5 E�et of two-level approahThe bene�t of the two-level approah suggested in Setion 3.2.5 is illustrated in Fig. 3.8.The referene solution as well as the simulation results are shown at t = 700 · 2π for aplasma jump and a0 = 0.12. It an be seen that in this ase it is possible to work ona oarse grid (N = 211) in the major part of the simulation but it is not possible to dothe whole simulation on the oarse grid. In the transition we interpolated to 213 gridpoints. 29



3. Pulse ompression in one dimension
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Figure 3.9: Relative di�erene in intensity to the referene solution of the redued model for a0 = 0.1(left) and a0 = 0.12 (right). Gautshi+QEA (see table 3.1, solid) and PIC (dashed)with N = 2 · 105, τ = dz(N) and 3 partiles per ell, runtime around 5 : 30 h.Finally, we ompare with PIC simulations performed with VLPL [55℄. Sine PICsimulates E and B instead of A, we base our omparison on intensities, alulated by
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.For the Gautshi-type method, one has to use (3.18) for the time-derivative, and forQEA ∂/∂z → ∂/∂z + iκ. The di�erene in amplitudes between the referene solution30



3.3. Auray and e�ieny of the numerial sheme
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Figure 3.10: Phase-di�erene in terms of laser wavelength between the exat linear solution andPIC (dashed) and the exat linear solution and Gautshi+QEA (solid), both with a0 =
0.0001.
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Figure 3.11: Phase-di�erene in terms of laser wavelength between the exat linear solution andPIC (a0 = 0.12: dash-dotted and a0 = 0.0001: dotted), exat linear solution andGautshi+QEA (a0 = 0.12, solid) and di�erene between PIC and Gautshi+QEA for
a0 = 0.12 (dashed).for the redued model and PIC (see Fig. 3.9) and the Gautshi-type method with QEAfor the parameters given in table 3.1 are of the same order. This implies that, evenwith a relatively oarse disretization, the error of the simulations with our fastestsolver is within the auray of the redued model, whih seems to be at the border ofappliability at a0 = 0.12.We also notied that there is a systemati di�erene in group veloity between PICsolutions and ours. To understand whether this is due to numerial error in PIC and/orour solvers, we made simulations with both for a very small amplitude (a0 = 0.0001).31



3. Pulse ompression in one dimensionThe ombination of small amplitude and a old plasma allows to test the phase errorof the numerial simulations against the known linear analytial solution. The resultsin Fig. 3.10 show that PIC (dashed) produes a slight error in group veloity even on a�ne grid, whereas Gautshi+QEA (solid) with oarse disretization is lose to the exatsolution.In Fig. 3.11 we ompare the phase shift (with respet to the exat linear solution) ofVLPL (dash-dotted) and the Gautshi+QEA simulation from table 3.1 (solid) in thenonlinear ase (a0 = 0.12). The di�erene between the two (dashed) is onsistent withthe linear phase error of PIC (dotted). This shows that the di�erene in phase betweennonlinear PIC and Gautshi+QEA is mostly linear phase error of PIC, whih ould alsoin�uene the auray of the amplitude alulation.3.4 Pulse dynamis in 1D3.4.1 Self ompression thresholdAs we have already seen in the example problems of setion 3.3, a pulse with su�ientenergy an overome the dispersion of the plasma medium and self ompress. Thishappens due to the nonlinearity aused by the relativisti mass inrease of the eletronsosillating with the laser �eld. The energy threshold for the self-ompression an bealulated simply from the single soliton solution of the ubi nonlinear Shrödingerequation (ubi NLSE), whih is also a soliton solution to the (ubi) nonlinear waveequation (see setion B.1 of the appendix) for whih we disussed an e�ient numerialsheme above. This threshold an also be derived from the NLSE via the variation-of-ation method (VAM) with
a(τ, ζ) = A(ζ)

√
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T (ζ)
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(
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T (ζ)

) (3.21)as the trial funtion. Here η(ζ) is the linear hirp of the pulse.The Lagrange density for the ubi NLSE is
L = i β(a ∂ζa
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|a|4 . (3.22)Inserting the trial funtion and integrating over τ yields
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A2T 2 + π2βA2T 2η′ − 12βA2φ′ . (3.23)Varying L for η and T and ombining the two resulting equations leads to the followingordinary di�erential equation for the temporal length T (ζ) of the pulse

T ′′(ζ) = −4(1 − β2)2
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} (3.24)32



3.4. Pulse dynamis in 1Dwith T0 the initial pulse length.From this we immediately get the threshold value for the self ompression: if theexpression inside the parenthesis is larger than zero, the seond derivative of T (ζ) isnegative and the length dereases. An initial pulse that ful�lls
A0T0β > 2 (3.25)will thus ompress. The group veloity β enters into the threshold, beause the temporallength of the pulse inreases with dereasing group veloity. For the wave equation wherea spatial distribution is propagated in time, the threshold takes the following form
A0L0 > 2 (3.26)where L0 is the initial spatial length of the pulse.
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Figure 3.12: Amplitude evolution for solutions of the VAM model (blue), ubi NLSE (green)andubi wave equation (red) for initial sech-pulses below, at, or above to the ompressionthreshold. For VAM and NLSE the initial length are (from bottom to top) T0 =
7/ν0, 7.61/ν0, 8.2/, ν0 and for the ubi wave equation L0 = 5.857λ0, 6.37λ0, 6.86λ0.Initial lengths are hosen aording to (3.25) and (3.26) with a0 = 0.05 and n0 =
0.3nc.As expeted from true soliton solutions, the threshold values for both equations agreeperfetly with numeris. The urves of intensity vs. propagation distane in Fig. 3.12show that pulses diretly at the threshold propagate unhanged. Slightly larger orsmaller values ompress or disperse respetively. But only slightly away from the thresh-old, the VAM model di�ers signi�antly from numeris. In part this is due to solutionsof (3.24) being stritly periodi for A0T0β >

√
21. In reality a pulse with an energybetween the one- and two-soliton state will over time radiate o� the exess energy.But also for a true periodi self ompressing solution of the NLSE, the bound two-soliton state, there is no good agreement. A valid initial ondition for the two-soliton1But with length of the period to in�nity as √2 is approahed. 33



3. Pulse ompression in one dimension
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Figure 3.13: Amplitude evolution due to pulse ompression for a two soliton state with a0 = 0.1and n0 = 0.3nc. NLSE (green) with T0 = 7.61/ν0, ubi wave equation (red) with
L0 = 6.37λ0 and VAM model with T0 = 6.37/ν0 (magenta) and T0 = 7.61/ν0 (blue).state is simply a pulse with twie the single soliton amplitude. Simulation results and aomparison with the VAM predition an be seen in Fig. 3.13. For the orretly hoseninitial pulse length, the VAM model shows no agreement with the numeris for the NLSEand the nonlinear wave equation, neither with respet to the maximum amplitude, northe position of the maximum.An equivalent equation an be derived for a Gaussian-shaped initial pulse, whihis loser to the pulse shape that is produed by real laser systems. Here we an notderive the threshold from a steady state solution, beause a Gaussian pulse is not atime-independent solution of either the NLSE or nonlinear wave equation. For an initialondition for the NLSE of
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} (3.28)as the evolution equation of the pulse length. It is equivalent to the equation derivedin [56℄ and in [59℄ by means of the momentum method and also to the equation used todesribe dispersion managed solitons in �ber optis [64℄. It has the same form as (3.24)but di�ers in two respets. The fator outside the parenthesis is larger by a fator of
π2, so both nonlinear and dispersive e�ets at on a shorter length sale. The thresholdvalue is di�erent, too

A0T0β = A0L0 >

√
8
√

2 . (3.29)The reason for this di�erenes is on the one hand of ourse the di�erent shape. Butmore importantly the two shapes have di�erent half width for same value of the length34



3.4. Pulse dynamis in 1Dparameter T0. The fator between T0 and the half width for a Gaussian pulse is√ln(2) ≈
0.8 while for a sech-shaped pulse it is sech−1(1/2) ≈ 1.3. For the same T0 the half widthof the two shapes thus di�er by a fator of ≈ 1.582 whih is lose to the di�erene ofthe thresholds.
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Figure 3.14: Amplitude evolution for solutions of the VAM model (blue), ubi NLSE (green)andubi wave equation (red) for initial Gaussian pulses below, at, or above to the ompres-sion threshold. For VAM and NLSE the initial length are (from bottom to top) T0 =
5.8/ν0, 6.4/ν0, 7/ν0 and for the ubi wave equation L0 = 4.85λ0, 5.35λ0, 5.86λ0.Initial lengths are hosen aording to (3.29) with a0 = 0.1 and n0 = 0.3nc.Comparing the ompression threshold with numeris for a Gaussian pulse yields not aresult as lear as for the soliton shaped pulse disussed above. A pulse at the analytialompression threshold (3.29) does not propagate unhanged, beause it will hange itsshape towards a soliton during propagation. The periodiity of the VAM solution vs.the non-periodiity of the numerial solutions is shown in Fig. 3.14. Still, the VAMderived threshold seems to predit su�iently well if a pulse will show self ompressionor dispersion.Considering again an initial ondition with a (nearly) periodi behavior for this pulseshape, we onlude from Fig. 3.15 that, as in the ase of the truly periodi two-solitonsolution, the VAM model does not math the numerial results well. Only for theinorret hoie of T0 = L0 the maximum amplitudes are lose. This hoie also improvesthe agreement for the sech pulse shape, f. the magenta urve in Fig. 3.13. The sameparameters where used for the omparison in [59℄ to 1D PIC and good agreement wasstated. In this omparison the pulse was initially in vauum.In onlusion the VAM model is useful to predit general ompression vs. dispersionbehavior of a pulse, but is unable to desribe the dynamis orretly. This is in ontrastto the very weakly nonlinear ase for dispersion management in �ber optis, where theagreement is exellent. Inluding the full γ-nonlinearity and the n1

e-equation does nothange the thresholds for low initial amplitudes. 35



3. Pulse ompression in one dimension
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Figure 3.15: Amplitude evolution due to pulse ompression for a Gaussian pulse lose to a twosoliton solution for n0 = 0.3nc and a0 = 0.1. NLSE (green) with T0 = 11.95/ν0,ubi wave equation (red) with L0 = 10λ0, VAM model with T0 = 10/ν0 (magenta)and T0 = 11.95/ν0 (blue). Shown in blak is a simulation of the ubi wave equationwith the same parameters as used for the red urve, but inluding the transition of thepulse from vauum to plasma.3.4.2 Pulse amplitude vs. lengthAbove the ompression threshold the strength and speed of the self ompression varieswith the initial amplitude and length of the pulse. First we onsider pulses that havethe same total energy with di�erent initial amplitude and length, i.e. the same valueof a2
0 L0. From (3.28) we immediately see that a larger initial length will lead to slowerompression behavior that sales with L2

0 [56℄. The interesting question is wether theyshow the same amount of relative ompression, i.e. that the length dereases by thesame relative amount the amplitude inreases. In Fig. 3.16 we an see on the left thatinitially longer pulses reah a higher maximum amplitude relative to a0, beause theminimal length reahed is nearly equal (right side of Fig. 3.16). This is even morelearly visible in Fig. 3.17 for pulses with the same initial amplitude, but di�erent L0.A larger value of L0 leads to a larger absolute value for the maximum amplitude. Theminimum length redues slightly with inreasing initial length, but this e�et quiklysaturates. The same e�et ours for a onstant initial length and inreasing a0, as anbe seen in Fig. 3.18. Higher values of a0 lead to lower a minimum length, but this e�etquikly saturates, too.For the dynamis up to the �rst ompression maximum, varying amplitude and lengthonly hange the time sale and maximum amplitude of the ompression. The prini-pal form of the amplitude evolution with time is unhanged (but see the next setionabout plasma density with respet to high amplitudes). After the �rst maximum ofself-ompression, the dynamis strongly depends on the ratio of pulse energy to singlesoliton energy. The same is true for the inlusion of the n1
e-equation. Up to the �rstmaximum in intensity the ompression hanges only quantitatively not qualitatively,36



3.4. Pulse dynamis in 1D
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Figure 3.16: Amplitude evolution of wave equation simulations with γ-nonlinearity and n0 = 0.3nc.Pulses with the same value of a2
0 L0. a0 = 0.1/

√
2, L0 = 20λ0 (green), a0 = 0.1,

L0 = 10λ0 (red) and a0 = 0.1
√

2, L0 = 5λ0 (blue).Raman instability not onsidered. After the maximum, the dynami di�ers in so far,that a true splitting of the pulse in several pulses that propagate with di�erent veloitiesan our. The di�erene in group veloity due to the relativisti nonlinearity alone isstill too weak to drive pulses apart for the amplitudes onsidered here. For most am-plitude / length ombinations that have three or more times the single soliton energy,the pulse splits into a single short pulse with a high amplitude, and one or more smallerpulses. The the dominant short pulse then propagates over long distanes with smallerand smaller osillations in amplitude and thus seems to be lose to a soliton, but withlarge energy loss to the plasma due to the large ponderomotive fore it exerts.3.4.3 In�uene of plasma densityIn the preeding setions we have used a plasma density of n0 = 0.3nc for the plasmabakground density as a standard value. In this setion we will disuss why this is asensible hoie and what advantages and disadvantages other values for the bakgrounddensity have. We will also examine the in�uene of the equation for n1
e on simulationresults depending on the bakground density. We will mostly restrit the disussionto density values larger than quarter ritial.2 The density range lower than quarterritial will be disussed in the setion about Raman instability below.Without a vauum-plasma boundary and negleted density response, there is nohange in the maximum amplitude reahed by the self-ompression when varying the2Densities higher than 1

4
n0

nc

have been di�ult to realize in experiments for ∼ 1µm lasers, but arenow routinely ahieved through supersoni gas expansion, where a gas under high pressure (up to
100 bar) �ows through a speially formed nozzle and expands in vauum about 10 times and reahesveloities of about Mah 3 [54℄. 37



3. Pulse ompression in one dimension
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Figure 3.17: Amplitude evolution of wave equation simulations with γ-nonlinearity and n0 = 0.3nc.Pulses with the same a0 = 0.1 but di�erent L0. L0 = 10λ0 (green), L0 = 20λ0 (red)and L0 = 30λ0 (blue).bakground density. Only the length (and time) sale over whih the ompression ourshanges proportional to √n0/nc, whih an easily be seen by setting n1
e to zero in thewave equation and resaling z and t. Numerial simulations on�rm this density inde-pendent ompression behavior. For the same reason the density value does not enterthe soliton solution in appendix B.1.Inluding the density response results in stronger ompression and higher maximumamplitudes. Lower bakground densities show more gain than higher densities in thisrespet, thus the strength of the ompression varies with the plasma density. We anunderstand this by negleting the time derivative in the n1

e-equation and solving for n1
e.The loal density perturbation then is the seond spae derivative of γ with a fator nc/n0in front. Inreasing the amplitude for a pulse with onstant length shows that this e�etreverses for higher amplitudes. At lower densities the wake�eld exitation is stronger andthus more energy is transfered to the plasma whih neglets the aforementioned e�et.At a pulse length of L0 = 10 λ0 the breakeven for n0 = 0.3nc is around a0 = 0.14. Forlow densities smaller than 0.25nc this is even the ase for relatively low pulse energies.For higher energies Raman instability severely limits pulse ompression.If the pulse propagates from vauum into the plasma, two additional e�ets beomeimportant. The part of the pulse spetrum below the plasma frequeny an not propa-gate into the plasma. Even if re�etions are suppressed by using a soft boundary witha linear inrease over several λ0, this modes an not enter the plasma. Beause theplasma frequeny inreases with density, this is a disadvantage for higher densities. Butfor most densities this is only visible at low amplitudes below a0 = 0.1. Otherwise itis ompensated by the relativisti mass inrease that loally lowers ωp, this is alledself-transpareny.The other e�et that ours during the transition from vauum to plasma is that the38
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Figure 3.18: Amplitude evolution of wave equation simulations with γ-nonlinearity and n0 = 0.3nc.Pulses of the same length L0 = 10λ0, but di�erent amplitude. a0 = 0.1 (green),
a0 = 0.14 (red) and a0 = 0.2 (blue).arrier wavenumber is downshifted by a fator of β. Beause the pulse is shortened,the amplitude inreases aordingly, whih in turn enhanes the self ompression, themore the higher the density. Combined with ponderomotive e�ets modelled by the

n1
e-equation, this favors densities in the medium range. They also have the advantagesthat Raman instability is prohibited and the ompression lengths are su�iently longto be implementable in gasjet experiments. A disadvantage of this density range isthat losses to the wake�eld limit the initial intensity to lower values than possible forhigher densities. At higher amplitudes, this an have a similar e�et on the ompressione�ieny as Raman instability although no resonant unstable proess ours.3.4.4 Relativisti intensitiesIn the last setion we have seen that the density range just above quarter ritial an onlysustain e�ient pulse ompression for initial intensities below a0 ∼ 0.2. Can this problembe overome by using higher densities (although the ompression length would then beextremely small)? This question an not be answered with ertainty by simulations ofour model equations, beause they are beoming invalid for large density osillationsaused by high pulse intensities. But it is interesting to test, if without strong densityexitations, large initial amplitudes would beome usable. As an be seen in Fig. 3.19for a simulation with a0 = 0.5 and without inluding the n1

e-equation, this is not thease. Beause the nonlinearity is an order of magnitude larger than the dispersion, thepulse peak travels distintly faster than the front and a shok forms. After the shokformation, the pulse �laments at the bak due to relativisti self-phase modulation3,3Self-phase modulation onsists of two distint e�ets, longitudinal bunhing and photon aeleration(loal inrease of ω0), see [50℄ for details. 39
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Figure 3.19: High amplitude (a0 = 0.5) simulation with only γ-nonlinearity for a density of n0 =
0.6nc and a pulse length of 10λ0. The initial pulse (blak) was plaed diretly insidethe plasma. Snapshots are taken at t = 20/ν0 (blue), t = 30/ν0 (green) and t = 50/ν0(red).whih is only strong enough for relativisti amplitudes. Thus e�etive ompression isprevented. With inlusion of the n1

e-equation, the system beomes unstable, beausethere is no saturation mehanism for the density osillations. This instability is evenmore violent at high densities.To answer the question, if there maybe nonlinear e�ets at higher intensities that keepthe wake�eld amplitude in ontrol, we resort to PIC simulations with the 1D VLPL ode.In Fig. 3.20 the result of suh a simulation with a0 = 0.5 and n0 = 0.6nc shows that apart of the pulse are re�eted, a part is trapped4 and only lower amplitude noise propa-gates through the plasma. Results for other densities above n0 = 0.25nc or a higher a0equal or larger than unity show similar destrution of the pulse. The proesses that areresponsible for the fast destrution and depletion of short ultrarelativisti pulses are de-sribed in detail in [7℄. Only at very low densities the pulse an propagate and ompressslightly over some distane, but is then inevitably �lamented by Raman instability.So far the only known e�et that allows stable propagation for high intensity pulsesover a �nite distane in all density regimes is bubble formation [20℄. This is beauseof ultra relativisti self similarity, where the sale parameter of the system is no longersimply n0/nc, but S = n0/(a0 nc) [25℄. One the pulse has reated a avitation bubblefree of eletrons, it an propagate inside at c, while the front is still in plasma, propagat-ing with the orresponding group veloity, thus ompressing the pulse. No �lamentationdue to the wake�eld is possible. But the avitation proess of ourse onstantly transfersenergy from the front of the pulse to the plasma. The most interesting onsequene of4This trapping ours despite the plasma being underdense, this e�et is desribed in [7℄.40



3.4. Pulse dynamis in 1D
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Figure 3.20: 1D PIC simulation using the VLPL ode for a0 = 0.5, L0 = 10λ0 and n0 = 0.6nc.The initial pulse (blue) is in vauum and enters the plasma through a linear densityramp of 5λ0 (density pro�le in blak). Snapshots at t = 90/ν0 (green) and t = 120/ν0(red).this is the aeleration of eletrons to high energies [19, 48℄. E�ient pulse ompressionin the plasma is thus limited to weakly relativisti amplitudes, both initially and at themaximum of ompression.3.4.5 Wake�eld generation and Raman instabilityA short laser pulse exerts a very loalized ponderomotive fore on the plasma that leadsto a density deprivation at the loation of the pulse. The atual form of the densityperturbation due to the pulse an be dedued from the equation for n1
e by negletingthe time derivative

n1
e =

nc

n0
∆γ ≈ 1

2

nc

n0
∆|a|2 .thus the shape of the perturbation simply is the seond spatial derivative of the laserenvelope. Behind the laser pulse the plasma osillates at the plasma frequeny. The pulsemust ful�ll a ertain requirement [23, 45℄ to indue osillations with a �nite amplitudeompared to the bakground density

kp L ∼ O(1),where kp is the wavenumber of the plasma and L is the pulse length. Sine the pulse thatats as the driver for the osillations propagates through the plasma with the veloity
vg =

√
1 − n0/nc, the osillations have vg as their phase veloity and a wavelength of

vg/ωp. This phenomenon is alled the wake�eld of the pulse and for a old plasma ithas zero group veloity. 41



3. Pulse ompression in one dimension
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3.4. Pulse dynamis in 1D
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Figure 3.22: Pulse �lamentation due to Raman instability for a laser pulse of a0 = 0.14, L0 = 20λ0and n0 = 0.1nc. |a|2 in blue and n1
e/n0 in red.

ω0−ωp) and behind a minimum towards the density minimum (sideband with ω0+ωp).5This results in a �lamentation of the pulse, even for a short pulse as long as its lengthexeeds the wavelength of the wake�eld. E.g. for a density of n0 = 0.1nc we have awavelength of the wake�eld of 3 λ0. The pulse in Fig. 3.22 with an initial length of 20 λ0shows strong �lamentation at its bak. Beause ω0 − ωp > ωp to allow propagation ofthe lower sideband inside the plasma, the sattering proess an only beome resonantfor ω0 > 2ωp. Thus the ondition
ω2

p

ω2
0

=
n0

nc
<

1

4for the plasma density to allow for this type of instability.

5In this piture it is also obvious why there is a phase shift of π/2 between the Raman �laments andthe maxima of the density, as it is the ase for every resonantly driven harmoni osillator. 43



4 Pulse ompression in twodimensionsIn this hapter we will investigate transversal e�ets in the relativisti self-ompression oflaser pulses. We will �rst generalize the numerial methods disussed in hapter 3 to two di-mensions. Sine the numerial method used has very low noise, we an study pulse evolutionwithout transversal �lamentation, beause noise at the unstable wavelengths is neessary toseed the instability. We disuss how the additional degree of freedom hanges the pulse dy-namis inside an in�nite plasma slab depending on the transversal shape and spot size of thepulse vs. its length. This allows us to identify useful parameter ranges for 2D pulse ompres-sion. Beause a real laser pulse will likely show transversal �lamentation inside a plasma, wethen examine in detail how the strength and spetrum of transversal perturbations in�uenethe growth of this instability.4.1 Numerial MethodsIn hapter 3 we used a Gautshi-type exponential integrator for the time-integrationof the one-dimensional problem and we presented omparisons whih showed that suhtrigonometri integrators outperform the standard leap-frog method for this partiularappliation. For the spatial disretization we introdued the so-alled quasi-envelopeapproah (QEA) to redue the number of spatial grid points signi�antly.In the following setions, that are based on [40℄, we will generalize the numerialtehniques to the two-dimensional ase. This means we aim to solve the oupled equa-tions (2.34) and (2.33) with a two dimensional Laplae operator in either a Cartesiangeometry with z, x-parameterization or ylindrial geometry in z, r-parameterization.However, in ontrast to the one-dimensional ase, where a two-step implementation ofthe Gautshi-type exponential integrator with onstant step size turned out to be su�-ient, it is essential to enable hanges of the time step-size for the two-dimensional ase.We will therefore suggest use a one-step version of the Gautshi-type method [28, 29℄.An error analysis for the whole family of these methods is given in [27℄. In partiular,it was shown that these methods are seond order aurate independent of the highestfrequenies arising in the system.The main omputational e�ort for one time step with an exponential integrator arisesfrom the omputation or approximation of the produt of a matrix funtion with a ve-tor. In the one-dimensional ase, the proposed pseudospetral disretization enabled theuse of fast Fourier transformation. This lead to an implementation where the overheadompared to the leap-frog method was quite low. The situation hanges ompletely in44



4.1. Numerial Methodstwo spae dimensions. We therefore use the full two-dimensional Laplaian within thematrix funtions only in vauum, where huge time steps an be performed and higherosts pay o�. During propagation in plasma, we split the Laplaian into a transversaland a longitudinal diretion and use only the (one-dimensional) longitudinal diretionwith the matrix funtions. This splitting is justi�ed by physial properties of the solu-tion.Nevertheless, for large problems it an be neessary to parallelize the sheme. A keyobservation is that the parallelization has to be adapted to the di�erent variations of theintegrator being applied in di�erent regions during the simulation (e.g. vauum, plasma,and transition regions).4.1.1 One step Gautshi-type exponential integrator for timedisretizationAfter semi disretization in spae (f. Se. 3.2.1), we obtain a system of seond orderordinary di�erential equations of the form
ÿ(t) = −Ω2y(t) + F (y(t)) (4.1)where Ω2 is a symmetri, positive semi-de�nite matrix and ‖F‖, ‖Fy‖, ‖Fyy‖ and

‖y′‖2 + ‖Ωy‖2 are bounded. For the solution we suggest to apply the following fam-ily of numerial shemes [30, 28℄
yn+1 = cos(hΩ) yn + hsinc (hΩ) ẏn +

1

2
h2ΨF (Φyn) (4.2a)

ẏn+1 = −Ω sin(hΩ) yn + cos(hΩ) ẏn +
1

2
h
(
Ψ0F (Φyn) + Ψ1F (Φyn+1)

)
. (4.2b)Here,

Φ = φ(hΩ), Ψ = ψ(hΩ), Ψ0 = ψ0(hΩ), Ψ1 = ψ1(hΩ),where φ, ψ, ψ0, ψ1 are even and analytial funtions whih are bounded on the non-negative real axis satisfying
φ(0) = ψ(0) = ψ0(0) = ψ1(0) = 1 .To obtain a sheme with ertain desirable properties imposes onstraints on the hoieof these funtions. For instane, a sheme is symmetri if and only if

ψ(ξ) = sinc (ξ)ψ1(ξ) and ψ0(ξ) = cos(ξ)ψ1(ξ)and sympletiity is equivalent to
ψ(ξ) = sinc (ξ)φ(ξ).Moreover, Hairer and Lubih [28℄ proved that for Ω = ωI, ω > 0 and F (y) = By withonstant B, the energy is onserved up to O(h) for all values of hω if and only if
ψ(ξ) = sinc 2(ξ)φ(ξ) (4.3)45



4. Pulse ompression in two dimensionsThus, there is no sheme in this family, whih is sympleti and gives good energyonservation.In [27℄, Grimm and Hohbruk derived riteria, whih guarantee seond order aurayindependent of the eigenvalues of Ω. They suggested to hoose
ψ(ξ) = sinc 3(ξ), φ(ξ) = sinc (ξ), (4.4)whih results in a symmetri seond order sheme satisfying (4.3). We use this hoieof funtions for our implementation.Note that linear problems with F ≡ 0 are solved exatly by all these shemes. Thisallows to use arbitrarily large time steps for the propagation in vauum. For the prop-agation inside of the plasma layers, smaller time steps have to be used to obtain thedesired auray. This hange of time steps would be muh more ompliated for thetwo-step method disussed in the preeding hapter. Moreover, the equivalent one-stepvariant of this sheme does not have the favorable energy onservation property.4.1.2 Implementation of exponential integratorsFor a Gautshi-type time integration sheme, the main e�ort per time step is the eval-uation or approximation of the produts of ertain matrix funtions of the disretizedLaplaian Ω with vetors. It is indispensable to do this in an e�ient way. The ompu-tational ost of eah time step is thus losely related to the spatial disretization.For one-dimensional problems with periodi boundary onditions, the method ofhoie is using spetral disretization, in whih ase the matrix Ω is diagonalizablevia one-dimensional Fourier transformations.It is not neessarily sensible to generalize this form of disretization to two spaedimensions. Reall that a two-dimensional Fourier transformation on a grid onsistingof Nz × Nx grid points an be evaluated using O(NzNx(logNz + logNx)) operations.For large grids, this may beome too expensive. In addition, on parallel mahines, suhtransformations beome ine�ient due to the large ommuniation e�ort beause of thenon-loality of the Fourier transform.In general, diagonalization of a large matrix Ω resulting from �nite di�erene or �niteelement disretization is impossible. An alternative is to use Krylov subspae methodssuh as the symmetri Lanzos proess [12, 33℄. However, for the appliations onsideredhere suh tehniques are not ompetitive.Therefore, we will use di�erent spatial disretization in di�erent regimes dependingon physial properties of the solution. Moreover, we alter the splittings in (4.1) duringthe time integration, i.e. we move parts of the disretized Laplaian into the funtion

F . This allows for an e�ient evaluation of the matrix funtions.Cartesian oordinates in vauumIn vauum we only need to solve the linear wave equation
∂2

∂t2
a =

∂2

∂z2
a +

∂2

∂x2
a . (4.5)46



4.1. Numerial MethodsFor periodi boundary onditions the semi-disretization in spae is done by a pseudo-spetral method with Nz Fourier modes on the interval z ∈ z0+[−Lz, Lz] in propagationdiretion and Nx modes on the interval x ∈ [−Lx, Lx] in perpendiular diretion.Let a = a(t) ∈ CNz×Nx and ȧ = ȧ(t) ∈ CNz×Nx be omplex matries ontainingapproximations to the vetor potential and its time derivative on the grid,
ai,j ≈ a(xj , zi, t), ȧi,j ≈

∂

∂t
a(xj , zi, t) .The Laplaian is approximated by

∆a ≈ F−1
Nz
D2

zFNz
a + aFT

Nx
D2

xF−T
Nxwhere

Dk =
2πi

Lk
diag(−Nk

2
, . . . ,

Nk

2
− 1

)
, k = x, z,and FN denotes the disrete Fourier transform for N Fourier modes.Formally, the matries a and ȧ an be reorganized by writing them olumn wise intolong vetors. Then the spatially disretized equation (4.5) an be written as a systemof di�erential equations (4.1), where Ω is a matrix whih an be diagonalized via two-dimensional fast Fourier transforms and F ≡ 0. However, for the implementation, thematrix notation is more e�ient.In the �rst time step, where the initial data is given in physial spae, we start by per-forming a two-dimensional Fourier transform by applying fast (one-dimensional) Fouriertransforms to all olumns and rows of a and ȧ. Then we evaluate the funtions arising inthe Gautshi-type integrator at the diagonalized operator. The resulting operator anbe applied to the matries a and ȧ by pointwise multipliation. (If desired, subsequenttime steps in vauum an be omputed in frequeny spae by diagonal operations only.)At times, where the solution is required in physial spae, inverse Fourier transformshave to be applied to all rows and olumns of a and ȧ again.Due to the Gautshi-type integrator being exat in vauum, in the best ase we onlyhave to ompute one time step. The total ost amounts to two two-dimensional Fouriertransforms and in addition four salar multipliations per grid point. Storage is requiredfor two arrays for a and ȧ plus four arrays for the diagonalized matrix funtions of thesame size. If a redution of storage is neessary, the matrix funtions an be omputedon demand. From the omputational point of view, this is a rather small overheadompared to the two-dimensional Fourier transforms.Cartesian oordinates in plasmaIn plasma layers we have to solve the full, nonlinear system of equations
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4. Pulse ompression in two dimensionsAfter spae disretization, the linear part is represented by a 2 × 2 blok diagonalmatrix, whose upper diagonal blok ontains the disretized Laplaian and whose lowerdiagonal blok ontains the diagonal operator of the seond equation. Hene, the matrixoperators required for the time integration sheme an be omputed separately for bothequations. Note that due to the nonlinearity, we need to ompute (and store) morematrix operators than in vauum. The main osts of one time step in frequeny domainamounts to two two-dimensional Fourier transformations.Due to the nonlinearity, the time-integration sheme does not solve the the disretizedsystem exatly anymore. However, the time step size is only limited by auray, notby stability. This is in ontrast to the well known leap-frog method, where stabilityrequires to use time steps proportional to the inverse of the largest eigenvalue of thelinear part. This straightforward implementation turns out to be quite expensive withrespet to omputational ost and storage. Fortunately, it is possible to inrease thee�ieny onsiderably by exploiting properties of the solution.

x/λ0z/λ0

Longitudinal direction Transversal direction

-400 -200 0 200 400

-0.2

-0.1

0

0.1

0.2

0.3

80 100 120 140 160

-0.2

-0.1

0

0.1

0.2

0.3

Figure 4.1: Left: The spatial distribution of the real part of the solution in longitudinal diretionthrough the entroid of the pulse. Right: The spatial distribution of the real (solid) andimaginary (dashed) part of the solution in transversal diretion through the entroid ofthe pulse.In the left graph of Fig. 4.1 we show the longitudinal distribution of the real partof the vetor potential a along the entral axis of the pulse. On the right, we showthe transversal distribution of the real (solid) and the imaginary (dashed) part of a atthe point z, where the maximum of the pulse is attained. The transversal distributionis obviously muh smoother than the longitudinal. Therefore, we an disretize thetransversal diretion on a muh oarser grid. Moreover, it is possible to split the Lapla-ian and only treat the longitudinal part of it exatly (Ω ≈ ∆‖) whereas the transversalpart is added to the nonlinearity F (y). To avoid the expensive two-dimensional Fouriertransformations, we propose to use fourth-order �nite di�erenes in this diretion.Due to this splitting, the longitudinal part of the Laplaian, an be diagonalized byone-dimensional Fourier transforms (of length Nz). Moreover, we only have to ompute(and store) matrix operators of length Nz. For the omputation we keep the vetorpotential and its derivative in Fourier spae only in longitudinal diretion. In transversaldiretion the arrays are not transformed.48



4.1. Numerial MethodsFor the density equation the appliation of the exponential integrator is straight for-ward in physial spae. If the density pro�le only depends on z the storage requirementsare again only of the order of vetors of length Nz. The inhomogeneity ontains theLaplaian of the relativisti fator γ whih depends on the absolute value of the ve-tor potential. This is a smooth funtion for irular polarized laser beams. Thus itis su�ient to use fourth order �nite di�erenes in both diretions to approximate theinhomogeneity of the density equation.Cylindrial oordinatesFor the equations in ylindrial oordinates
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e∆γ (4.7b)we basially use the same ideas as for Cartesian oordinates in plasma regions, i.e., weuse Ω ≈ ∆‖ and treat the transversal diretion as part of the nonlinearity. For thelongitudinal diretion, we use pseudo-spetral disretization while for the transversaldiretion, we suggest to use seond order �nite di�erenes.Sine in ylindrial oordinates it is hard to diagonalize the omplete Laplaian in afast and stable way we use the same implementation in vauum as within the plasma.Methods for numerial Fourier-Bessel transforms that diagonalize the radial part of theLaplaian exist [8, 37, 60℄, but apparently there exist to date no fast transform on anequidistant grid with su�ient auray.4.1.3 AdaptivityFor adaptivity of the integration sheme, we implement the methods disussed in 3.2.4and 3.2.5. This is more important in two dimensions than in one dimension, beause, aswe will see in hapters 5 and 6, vauum setions between the plasma layers strongly in�u-ene pulse propagation due to transversal e�ets. Using di�erent grids and/or di�erentvalues of κ for the QEA method in di�erent parts of suh a strongly inhomogeneoussystem an signi�antly inrease auray and redue omputation time.In order to apply all the di�erent variations of our sheme at the appropriate time wehave to determine the loation of the pulse. This is done by physially motivated means.At the beginning we know the loation of the maximum amplitude and the exat widthof the pulse. Additionally we know the approximate group veloity of the pulse at anytime. This allows to determine the approximate speed of the maximum of the pulse andto estimate the time when the pulse hits the next region of the simulation domain.With this method we an swith between the di�erent integration shemes in vauumand plasma for Cartesian oordinates as well as adapt the values of κ for the QEA. Thelatter an be done by a simple shift in the position of the Fourier oe�ients whih alsoensures periodiity of the shift funtion eiκz with regard to the box length 2Lz. 49



4. Pulse ompression in two dimensionsAdditionally we an hange the spatial grid, whih beomes neessary for very narrowpulses as they our in the simulation of pulse ompression. Also for hard plasma bound-aries, where re�etions are no longer negligible, it beomes neessary to interpolate to a�ner grid and invert the QEA shift, as we have already shown for the one-dimensionalase in setion 3.3.5. For pseudo-spetral disretization this only requires a larger ar-ray in Fourier spae where extra entries are �lled with zeros. But the omputation ismuh more expensive for the �ner grid, thus interpolation is avoided unless absolutelyneessary. Therefore, we also use a rather tight estimate for the pulse to be nonzero.4.1.4 Moving simulation windowThere are a lot of interesting appliations, espeially those with large amounts of vauum,where the full simulation domain is very large and it is not at all feasible to use theomplete spatial domain during the whole simulation. To avoid this we use a moving-window tehnique.Using the group veloity as desribed above we estimate the time when the pulseomes lose to the right boundary of the simulation box. For this purpose we slightlyoverestimate the domain on whih we onsider the pulse to be nonzero. This inreasesrobustness while the omputational ost is negligible.The shift is implemented by transforming the vetor potential to physial spae, ut-ting o� the left part and extrapolating to the right by adding zeros for a and n1
e. n0

e isalulated from the known pro�le funtion.There are two di�ulties to be mentioned in this ontext due to the periodi boundaryonditions. First, if re�etions our at plasma boundaries we have to ut them o�entirely when shifting the simulation box. Seondly, in vauum this limits the time stepsize beause otherwise the pulse would move periodially through the box instead ofmoving on ontinuously. This would result in spatial shifts of the solution.4.1.5 ParallelizationEven though we already redued omputational osts signi�antly, for large problems itis usefull to have a parallel version of the method. Here we have to tailor the means ofparallelization to the di�erent ases desribed above.VauumFor Cartesian oordinates in vauum we �rst distribute the olumns of the arrays uni-formly over the proessors to perform the one-dimensional fast Fourier transforms foreah olumn. We then do a parallel transposition of the array and distribute the rowsover the proessors for the seond part of the two-dimensional Fourier transform1. Ofourse the appliation of the matrix funtion is also spread over the proessors involved.1We use the MPI based transpose routine from FFTW version 2 and serial FFT routines from FFTW3.50



4.1. Numerial MethodsPlasmaIn plasma we basially use the same strategy for parallelization for both kinds of ge-ometries. Here we again distribute all the olumns of the arrays over the proessors.But sine we only need one-dimensional Fourier transforms we an avoid transposingthe arrays and therefore save a lot of ommuniation time between di�erent proessors.
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Figure 4.2: Example parallelization sheme for two proessors, Cartesian oordinates in plasma,periodi boundary onditions and 20 grid points in transversal diretion. The lighterolored olumns have to be ommuniated between the proessors for the evaluation ofthe transversal Laplaian with �nite di�erenes and are stored twie.The only ommuniation between proessors is due to the transversal part of theLaplaian, whih is disretized by fourth and seond order �nite di�erenes in plasma forCartesian and ylindrial oordinates, respetively. Thus we have to exhange at mosttwo olumns at eah side of the distributed array slies. In Fig. 4.2 this is demonstratedfor a matrix divided to two proessors for Cartesian oordinates and periodi boundaryonditions. In this ase we have to store four extra olumns per proessor whih areopied from the neighboring array.Eah proessor �rst sends the boundary olumns to the neighboring proessors. Thenthe next time step is performed for the inner part of the array. At the end, the in-formation sent from the neighboring arrays is used to alulate the �nite di�erene51



4. Pulse ompression in two dimensionsapproximation at the boundaries. This results in a parallelization whih hardly su�ersfrom ommuniation overhead between proessors, beause latenies and transmissiontimes are almost ompletely hidden by the asynhronous ommuniation.4.2 Auray and e�ieny of the over-all 2Dsheme4.2.1 Splitting of the LaplaianIn this setion we will demonstrate that the error introdued by the splitting of theLaplaian is negligible. For this, we use a rather small example, where it is possible tohave a high resolution referene solution to ompare with. We also redue the modeland only onsider the wave equation with onstant density and ubi nonlinearity
∂2

∂t2
a = ∆a− n0

nc
(1 − 1

2
|a|2)a , n0

nc
= 0.3 . (4.8)This is su�ient, sine the splitting only a�ets the wave equation and does neitherdepend on the kind of nonlinearity nor on the density equation.The initial onditions are hosen from
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0 ei(k0z−z0−t) (4.9)where a0 = 0.15 is the initial amplitude, z0 = 35λ0 the initial pulse position in lon-gitudinal diretion, W0 = 10λ0 the length, W0 = 100λ0 the width of the pulse and

k0 =
√
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nc
the plasma wave length.This is solved for Cartesian oordinates (x, z) ∈ [−300λ0, 300λ0] × [0λ0, 300λ0] and

t ∈ [0/ν0, 300/ν0]. We use 1024 grid points in z-diretion and 512 grid points in x-diretion. The time step size is hosen as 0.2 dz. For the referene solution we use twieas many points in both spatial diretions, whereas for the time disretization we hoosea fourth of the original time step. For the error alulation we Fourier interpolate thesolutions to the �ner grid.In Fig. 4.3 we an see the error in two di�erent measures, in the upper piture therelative error in the maximum squared amplitude is shown and the lower one shows theabsolute error of the position of the maximum in wave lengths. For eah type of errorthere are three di�erent urves. The irular marks show the error of the Gautshi-typemethod applied to the full Laplaian, disretized via Fourier spetral method in bothdiretions. The square marks are the errors of the Gautshi-type method applied to theparallel Laplaian only and the transversal part treated as nonlinearity. Here we stilluse Fourier spetral methods for the disretization in both diretions. The diamondmarks represent the error of the splitted method, but this time with fourth order �nitedi�erenes in transversal diretion. We an see that the three error urves are nearlyindistinguishable, whih proves that the splitting does not degrade auray.52
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n0

nc
= 0.3 over 5λ0, then it stays onstant over 500λ0 until there is a linear dereasebetween 755λ0 and 760λ0 again.The initial onditions are again taken from (4.9) with a0 = 0.12, z0 = 150λ0 and

k0 = 1, sine the pulse starts in vauum. The remaining oe�ients are the same asabove. The simulation is run up to t = 1240/ν0, thus the pulse propagates throughthe plasma layer and travels through vauum afterwards for some time. For the runtime omparisons we used the moving window tehnique, sine the simulation domainis quite long.In vauum there is no need to ompare the leap-frog sheme with the exat solutionwhih the Gautshi-type integrator omputes, thus we inlude only the time steps doneinside of the plasma in the run time omparison.As a measure for the quality of the solution we hoose the relative error of the maxi-mum amplitude. As a sensible error threshold we use a value of 1%. Sine the referenesolution was omputed on a �ner grid, we interpolated the solution to the referene gridand then omputed the maximum amplitude.In Fig. 4.4 the amplitude error of the Gautshi-type method (irles) and the leap-frog method (squares) is plotted against omputation time in plasma. The dashed linerepresents a oarse spatial disretization with 1024 grid points in longitudinal diretion,53
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150λ0). Pulses at the threshold have a0 = 0.045 and pulses below have a0 = 0.045.From this equations we an diretly read o� the self-ompression thresholds for thelongitudinal diretion
β2A2

0 T
2
0 ≥ Pc (4.14)and the transversal diretion

(1 − β2)A2
0W

2
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2 in a ylindrial geometry, whih is e�etively3D.Amplitude evolution of initially Gaussian pulses at the 2D ompression threshold inCartesian geometry for L0 = β T0 = 12.73 λ0, W0 = 23.25 λ0 and n0 = 0.3nc. Left: 2DVAM model at (blak, solid) and below the threshold (blak, dashed), NLSE simulationsat (blue) and below the threshold (red). Right: NLSE simulations for pulses that are at(blue) or below (red) the 1D ompression in the longitudinal diretion and above the 2Dthreshold in the transversal diretion (solid: W0 = 30 λ0, dashed: W0 = 150λ0). Pulsesat the threshold have a0 = 0.045 and pulses below have a0 = 0.045.The only di�erene between the longitudinal and transversal threshold relations isthat for the longitudinal diretion the group veloity β enters, while for the transversal58
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Figure 4.9: Amplitude evolution of initially Gaussian pulses at the ompression threshold for 2Dylindrial geometry. Results from wave equation simulations for pulses that are at (blue,
a0 = 0.05) or below (red, a0 = 0.04) the 1D threshold in the longitudinal diretion(L0 = 10.71λ0) and above the threshold for ylindrial geometry in the transversaldiretion (solid: W0 = 30λ0, dashed: W0 = 150λ0).diretion it is the plasma density parameter n0

nc
= 1 − β2. It is also noteworthy thatthe thresholds for the two diretions are ompletely independent. The full energy ofthe pulse does not enter the relations although it enters the equations for T and W (f.appendix A).For a pulse that is at the threshold for both diretions, we �nd that within theinauray due to the expeted amplitude osillations of Gaussian pulses, the thresholdsfor both geometries are reasonably aurate. This is illustrated by the left hand sideof Fig. 4.8. In 2D, we �rst heked this result with simulations of the NLSE and thenon�rmed it by simulations of the nonlinear wave equation. In ylindrial geometry wediretly used wave equation based simulations.To study the transition between 2D and 1D thresholds in the VAM model, we an�x the spot size or length of the pulse at a onstant value T0 or W0 in the derivationof the T or W equation respetively. Unfortunately we get the nonsensial answerfrom the variation-of-ation method that the threshold for the dynamial diretion isunhanged from the ase where both diretions are dynamial. Thus the 1D thresholdan not be reovered by letting the �xed length or spot size go to in�nity. The reason isthat the pulse shape we have presribed has insu�ient degrees of freedom to allow for adi�erent strength of ompression at di�erent slies of the pulse. On axis for example, thelongitudinal ompression of a wide pulse should resemble one dimensional ompression,while further from the axis the pulse should show weaker ompression or defousing ifbelow the threshold.Of speial interest for the appliation of pulse ompression, is the transition betweenthe 2D threshold and the 1D threshold for the ase when the spot size of the pulse isinreased from a value alulated by using the 2D threshold. With inreasing W0 thedeviation of the threshold value from the 2D threshold ours rather quikly, illustrated59



4. Pulse ompression in two dimensionsby the right hand side of Fig. 4.8 and by Fig. 4.9. Like for longitudinal ompressionthe speed of the transversal ompression sales with W 2
0 [56℄. Therefore the time salesof longitudinal and transversal ompression will diverge quikly with inreasing W0/L0.Thus during the beginning of the longitudinal ompression the spot size will stay nearlyonstant. This ours both in Cartesian and ylindrial 2D geometry. A pulse withan energy at the threshold with a0 = 0.05, L0 = β T0 = 12.732 λ0, W0 = 23.246 λ0 forslab geometry and L0 = β T0 = 15.1415λ0 and W0 = 27.644 λ0 for ylindrial geometry,shows no ompression at amplitudes slightly below the threshold. If the spot size isinreased to W0 = 30 λ0, the pulse already shows ompression at a length alulatedfrom the longitudinal 1D threshold, and no ompression below. This rapid shift from the2D/3D threshold to the 1D threshold ours in both Cartesian (Fig. 4.8) and ylindrial(Fig. 4.9) geometry.4.3.2 Spot size vs. length of the pulseAs we have seen in hapter 3, a 1D pulse with parameters lose to the bound two-solitonsolution of the ubi nonlinear Shrödinger equation an ompress and deompress pe-riodially, as long as the amplitude is not too high and thus the density perturbationsindued by the ponderomotive fore of the pulse are not too large.
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Figure 4.10: Comparison of 1D and 2D dynamis for di�erent values of the initial spot size W0.1D (blak), W0 = 10 (red), W0 = 100 (green), W0 = 200λ0 (blue) for a0 = 0.1,
L0 = 10λ0 and n0 = 0.3ncWe have also seen in the preeding setion that the 2D dynami deviates the morefrom the 1D dynami the loser the ratio of the spot size to pulse length is to unity. Forsmaller initial spot sizes, the pulse starts to ollapse after a shorter propagation distane(Fig. 4.10). A Gaussian pulse above the 1D self-ompression threshold with a0 = 0.1and L0 = 10λ0 and a spot size of 200λ0 shows two ompression and deompression ylesbefore ollapse ours. For the same pulse with a spot size of 100λ0 the ollapse oursalready after the �rst ompression / deompression, while for a spot size of 10λ0 the60



4.3. Pulse dynamis in 2Dpulse starts to ollapse diretly. At this low initial intensity, the density perturbationonly produes a slightly higher ompression and does not hange the pulse dynamisqualitatively (Fig. 4.11 and Fig. 4.12).

Figure 4.11: Color plot of |a|2 for longitudinally ompressed pulse at t = 700/ν0 with initialparameters of a0 = 0.1, L0 = 10λ, W0 = 100λ0 and a plasma density of n0 = 0.3nc.Intensity inreases from blue to red.The 2D wake�eld in Fig. 4.12 is very similar to a 1D wake�eld, modulated with thetransversal pulse shape.

Figure 4.12: Color plot of the wake�eld of the pulse in Fig. 4.11. Green for zero deviation frombakground density. Positive deviation are in red, negative in blue.For an e�ient pulse ompression, the initial spot size of the pulse must be su�ientlylarge, so that at least one ompression / deompression yle an our instead of diretollapse. This allows for a ontrolled ompression of the pulse, beause the amplitudehanges only little around the maximum of ompression and little �utuations of theplasma length do not result in large hanges of the maximum amplitude. 61
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Figure 4.13: Comparison of the dynamis in 1D vs. 2D for a higher pulse amplitude and di�erentinitial spot sizes. 1D without density equation (blak), 1D with density equation(magenta), W0 = 10λ0 (red), W0 = 100λ0 (green) and W0 = 200λ0 (blue) for
a0 = 0.14, L0 = 10λ0, n0/nc = 0.3Higher amplitudes distintly above the self-ompression threshold lead to essentiallythe same e�ets as in 1D. With inlusion of the density response, the pulse deompressesonly slightly after the �rst ompression and starts to osillate around a new stationarystate (f. Fig. 4.13). The ponderomotive fore of the pulse is in this ase su�ientlystrong to produe a density avity that traps the pulse and inhibits deompression.This also redues the loal group veloity of the pulse, whih leads to a urvature ofthe pulse as well as the wake�eld. In Fig. 4.14 and Fig. 4.15 the orresponding urvatureof pulse and wake�eld is shown. This behavior ours rather abruptly when for someinitial pulse length the initial pulse amplitude is raised above a ertain value. Thethreshold for this behavior is essentially the same as in 1D.Like in 1D the pulse an split o� a part of its energy surplus into a pre- or post-pulseto reah the new stationary state that is a 1D soliton. Although this e�et is smallompared to the transversal e�ets, it is learly visible in simulations, e.g. in Fig. 4.16.But beause of the ompression in the transversal diretion the pulse an not reah atruly stationary state and eventually starts to ollapse. For the intended appliation itis only important that there is one yle of ompression and deompression before theollapse ours to allow for a ontrolled deoupling of the pulse from the plasma.4.3.3 Coupling between longitudinal and transversal ompressionThe amplitude evolution of the simulations in the last setion seems to suggest thatthere is only a weak in�uene of the ompression in the transversal diretion on theompression in the longitudinal diretion: the faster longitudinal diretion (small initiallength ompared to the spot size) periodially ompresses while the slower transversaldiretion seems to ontinuously ompress and thus inrease the pulse amplitude until62



4.3. Pulse dynamis in 2D

Figure 4.14: Color plot of |a|2 for longitudinally ompressed pulse at t = 550/ν0 with initialparameters of a0 = 0.14, L0 = 10λ0, W0 = 100λ0 and a plasma density of n0 =
0.3nc.

Figure 4.15: Color plot of the wake�eld of the pulse in Fig. 4.14.pulse ollapse ours. The ollapse is the only point at whih there is a strong ouplingbetween the ompression in both diretions. This is further baked by the solutionsof the VAM equations for T and W . Exatly this behavior an be seen in Fig. 4.17.The weaknesses in the quantitative preditions of these equations in 2D ould be solelythe result of the already weak quantitative preditions of the 1D VAM equation, whiledesribing the qualitative dynamis in 2D orretly.Surprisingly the atual length and spot size evolution from wave equation simulationsshow a very di�erent behavior, as shown in Fig. 4.18. The faster ompressing longitu-dinal diretion �enslaves� the intrinsially slower transversal diretion. Beause of thisenslavement the spot size shows minima at the same loation as the pulse length anddoes not ontinuously derease, but osillates, too. Espeially for wide initial spot sizesthe pulse an defous after the �rst minimum to nearly the initial spot size. This limitsthe possibility to redue the spot size of short pulses inside the plasma severely. 63



4. Pulse ompression in two dimensions

Figure 4.16: Comparison of on-axis intensity distribution in 1D vs. 2D. Simulations with a0 = 0.12,
L0 = 10λ0, W0 = 200λ0 and inluded density response. Top left: 2D on-axis ut.Top right: 1D. Bottom: 2D olor plot.4.4 Transversal �lamentation instability4.4.1 Pulses of onstant lengthTransversal instability of planar NLSE solitons, i.e. longitudinal 1D soliton solutionsof the NLSE that are onstant in the transversal diretion, is a well understood phe-nomenon, both analytially and numerially [1, 5, 57, 66, 47, 41℄. Harmoni perturba-tions in the transversal diretion grow exponentially in time. Good analytial estimatesexist for the growth rates. An example for the time evolution of this instability from asmall initial perturbation to the full blown instability is shown in Fig. 4.19.For the ubi NLSE the single soliton solution has the form

a(z, τ) = 2 η sech(β η τ)e−i 1−β2

2β
η2zwith τ = z/β − t and β =

√
1 − n0/nc the linear group veloity. The ubi nonlinearwave equation has a soliton solution of similar form, see appendix B.1 for the derivation.Perpendiular perturbations of this solution with (co)sine-modes below a ertain ut-o�wavenumber kc are exponentially unstable with a growth rate of
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10λ0 with n0 = 0.3nc. Solid urves are for W0 = 100λ0 and dashed urves for
W0 = 200λ0 with L(t)/L0 in red, W (t)/W0 in green. 1D referene urve of L(t)/L0in blak.The derivation an be found in appendix B.2. The same results were obtained by V.G.Makhankov in [47℄. This growth rate is derived for the ubi NLSE, but also holds forthe ubi nonlinear wave equation.The VAM alulation yields the ut-o� relation

k2
c =

12 + π2

36
η2 . (4.17)We will see that this ut-o� is not in good agreement with numerial simulations. A65



4. Pulse ompression in two dimensions

Figure 4.19: Color plot of |a|2 for a simulation with ubi nonlinearity. Initial sech shape in thelongitudinal diretion and super-Gaussian shape in transversal diretion. Initial pulseperturbation 10−3 a0 with a wavelength of 20λ0. Bottom to top: t = 0/ν0, t =
240/ν0, t = 400/ν0, t = 500/ν0. The other simulation parameters are n0 = 0.3nc,
a0 = 0.16, L0 = 2λ0 and W0 = 200λ0.better estimate for the ut-o� parameter is given by E.W. Laedke in [41℄

k2
c = 3η2 . (4.18)From equation (4.16) we an graphially determine the fator α in the relation
k⊥ = αηbetween the value of k⊥ with the maximum growth rate and the soliton parameter ηby setting η = 1 (Fig. 4.20). This is sensible, sine the position of the maximum saleslinearly with η. For the di�erent ut-o�s (4.17) and (4.18) we have for n0 = 0.3nc

αVAM
0.3 ≈ 0.497and
αL

0.3 ≈ 0.671 .For a short pulse of 2λ0 in length, this leads to a predition for the most unstablewavelength via
λ⊥ =

2π

α
L0 (4.19)66
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Figure 4.20: Growth rate (4.16) of the transversal instability for ut-o� parameters (4.17) and (4.18)at a density of n0 = 0.3nc.of
λVAM

0.3 ≈ 25.15λ0and
λL

0.3 ≈ 18.63λ0 .NLSE simulations with these parameters3 learly favor the modi�ed ut-o� value(4.18). Simulations of the ubi nonlinear wave equation with a non-onstant transversalshape yield the same result. In Fig. 4.21 the results for a pulse with a super-Gaussiantransversal shape with three di�erent perturbation wavelengths are shown (λ⊥ = 15λ0,
λ⊥ = 20λ0, λ⊥ = 25λ0). The perturbation with λ⊥ = 20λ0 shows the highest amplitudeof instability, instead of λ⊥ = 25λ0 whih is predited by (4.17).Examining the time development of the transversal spetrum for these three wave-lengths, we see that for a wide super-Gaussian the peak in the spetrum stays verynarrow and is only slightly up- or down-shifted loser to kmax

⊥ . For a Gaussian transver-sal shape the peak gets broader and the up/downshift is stronger. This is due to FWMbetween the perturbation mode and the main spetrum of the pulse. A Gaussian pulseis more loalized for the same spot size. It has a broader spetrum and thus more FWMproduts of the pulse and the perturbation our.For a narrow initial pulse, espeially with a Gaussian shape, another e�et is superim-posed. The faster transversal ompression results in an upshift of the peak and thus the�laments move loser together (Fig. 4.22). This e�et an be learly distinguished fromthe up/downshift disussed above. It ours later during the pulse evolution when thepulse is signi�antly ompressed in the transversal diretion (Fig. 4.23 and Fig. 4.24).3The spatial length of the soliton is related to the temporal length by L = βT . An L0 of 2λ0 is thusequal to a T0 of about 2.38λ0. This has to be taken into aount when omparing results fromNLSE and wave equation simulations. 67
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Figure 4.21: Color plot of |a|2 for a simulation with ubi nonlinearity. Initial sech shape in thelongitudinal diretion and super-Gaussian shape in transversal diretion. Bottom to top:pulses at t = 540/ν0 for an initial perturbation of 10−3 a0 with wavelengths of 15λ0,
20λ0, 25λ0 and 10 . . . 30λ0 (phase randomized). The other simulation parametersare n0 = 0.3nc, a0 = 0.16, L0 = 2λ0 and W0 = 200λ0.Late in the evolution of the instability, additional peaks at higher integer multiples ofthe original k-value an also our due to FWM (for details on four-wave-mixing, see[38℄).The agreement between numeris and analytis for the fastest growing mode is fur-ther on�rmed by simulations with a perturbation that is a superposition of phase-randomized cosine-modes with wavelengths of 10 . . . 30λ0, also shown in Fig. 4.21. Al-though the amplitude of the individual �laments is not as uniform as for a perturbationwith a single wavelength, the dominant unstable wavelength is losely below 20λ0 whihmathes the predition of 18.63λ0 by (4.18). This is the result for most drafts of randomphases. But for some drafts the modes with the highest growth rates may have onlysmall initial amplitudes, beause, by adding the perturbation to the pulse, interfereneterms appear in |a|2 that an suppress modes. The most unstable mode may still developa high amplitude, but other modes that have a high initial amplitude an still have alarge amplitude in the fully developed instability. It is even possible that they enslavemodes with a higher growth rate, but smaller initial amplitude and beome dominant.For omparison with analytis, it is easier to use perturbations without this ran-domization, beause the spetra of the instability are muh simpler. Several featuresthat our during the development of the instability an be singled out this way. Modes68
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Figure 4.22: Color plots of initially Gaussian and super-Gaussian transversal shapes with di�erentspot sizes at t = 540/ν0. Top to bottom: super-Gaussian withW0 = 100λ0, Gaussianwith W0 = 200λ0, Gaussian with W0 = 100λ0.above the ut-o� are damped as expeted. But surprisingly, at �rst the smallest k-valuesshow the largest growth, even for perturbation spetra that go down to k = 2π/100λ0(Fig. 4.25). For a super-Gaussian shape a distint peak at the lower orner of the per-turbation spetrum develops, probably due to the interation with the sideband peaksin the spetrum of this funtion. The most unstable mode starts to show the highestgrowth only after the pulse has propagated for some time. The loation of the peakin the spetrum is not dependent on the broadness of the perturbation spetrum, asshown in Fig. 4.26. This behavior an be explained in the following way: at �rst, low
k-values an show the highest growth, beause they are loser to the entral k = 0 modeof the pulse and have a higher FWM e�ieny. For the analytially predited mode toshow the highest growth, it is neessary that the pulse develops the mathing longitu-dinal amplitude modulation of the transversal mode. After the pulse has hanged itslongitudinal shape aordingly, the growth rates behave as expeted.This e�et an be irumvented by linearizing about the 1D soliton state and then it-eratively �breeding� the longitudinal amplitude dependene for a given k⊥. This methodis well suited to examine the stability properties of soliton solutions where analytialstatements are not possible [44℄. But in our ase the growth rate is already knownanalytially and this method would be very di�ult to apply (if at all possible) fora spetrum of perturbations or ompressing pulses.4 Instead we are interested in if4In general we do not have analytial solutions for ompressing pulses to linearize about. Even with69
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Figure 4.23: |a| in transversal uts for di�erent initial shapes/spot sizes at t = 350/ν0. Blak:super-Gaussian pro�le with W0 = 200λ0, blue: Gaussian pro�le with W0 = 200λ0,red: Gaussian pro�le with W0 = 100λ0
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Figure 4.24: Transversal amplitude spetrum for di�erent shapes/spot sizes at t = 350/ν0. blak:super-Gaussian pro�le (W0 = 200λ0), blue: Gaussian pro�le (W0 = 200λ0), red:Gaussian pro�le (W0 = 100λ0)and how a pulse without a strong omponent of the mathing longitudinal dependenedevelops the instability.For most simulations in the next hapters, we will use phase randomized perturbationspetra. They model real physial systems better, and the phase randomization further-more guarantees that the perturbation overs the full width of the pulse. Without itthe perturbation would beome the more loalized in spae, the broader its spetrumis. Randomization of the amplitude of the modes alone would not have this e�et,while randomization of the phase yields a weakly loalized perturbation with a randomamplitude of the Fourier omponent.suh a solution, using this method would be very di�ult, beause the unperturbed state would benon-stationary.70
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Figure 4.25: Time development of the transversal amplitude perturbation spetrum for an initialperturbation with wavelengths of 10 . . . 100λ0 of equal amplitude. 1D soliton with aGaussian initial shape in the transversal diretion (L0 = 2λ0, W0 = 200λ0, n0 =
0.3nc).
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Figure 4.26: Transversal amplitude spetrum at t = 700/ν0 for di�erent initial perturbation spetra.Blue: 10 . . . 30λ0, red: 7 . . . 50λ0, green: 10 . . . 100λ0. Initially Gaussian transversalshape with W0 = 200λ0.Several di�erent phase-randomized drafts for the transversal perturbation an be seenin Fig. 4.27. The resulting instability that evolves out of this initial perturbations isshown in Fig. 4.28. The orrespondene between the initial amplitudes of the individualmodes and the spetrum of the fully developed instability an be learly seen. For thedraft plotted in blak, there is su�ient initial amplitude in the most unstable rangeof k ≈ 0.325/λ0 and no peaks at other loations with muh higher amplitude. Thisresults in a broad peak around this value at the later time. The blue draft has thelargest initial amplitude at around k ≈ 0.26/λ0, whih still is the largest at t = 600/ν0.But due to a higher growth rate a seond peak that initially had a lower amplitudeould grow to nearly the same value. For the red draft the situation is reversed. The71
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Figure 4.27: Initial spetra for di�erent phase-randomized transversal perturbations with wave-lengths of 7 . . . 50λ0.
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Figure 4.28: Spetra of the initial perturbations shown in Fig. 4.27 at t = 600/ν0.peak with the largest initial value also has the largest growth rate and the largest �nalamplitude, but a seond peak at a lower k-value ould still develop. The green draftis an example that the mode with the largest growth rate will not neessarily developa large amplitude. Initially there is small but �nite amplitude between k = 0.3 and
k = 0.35 but at t = 600/ν0 there is only a single peak with a maximum at k = 0.37,whih also had the largest initial amplitude.The long term behavior of the transversal instability is di�erent from e.g. the modu-lation instability of the 1D plane wave. Modulation instability eventually saturates intoa new stable state that is a train of 1D solitons. In 2D, soliton solutions of the ubiNLSE are only marginally stable, and ollapse for a slightly higher amplitude into a sin-gularity. The ollapse of the individual �laments for a simulation of the ubi nonlinearwave equation is shown in Fig. 4.29.In reality a laser pulse does of ourse not ollapse into a singularity, beause the ubinonlinearity (1 − 1

2
|a|2)a is only a series expansion for small amplitudes of the orret72



4.4. Transversal �lamentation instability

Figure 4.29: Color plots of |a|2 at di�erent times for a simulation with ubi nonlinearity. Initial
sech pulse shape in the longitudinal diretion and super-Gaussian in the transversaldiretion. Initial pulse perturbation with 10−3 a0 and a wavelength of 20λ0. Bottomto top: t = 500/ν0, t = 600/ν0, t = 700/ν0. Other simulation parameters are
n0 = 0.3nc, a0 = 0.16, L0 = 2λ0 and W0 = 200λ0.relativisti mass fator of γ =

√
1 + |a|2. The orret nonlinearity saturates for higheramplitudes and thus the growth of the instability is slowed. For higher amplitudes,density e�ets have to be taken into aount, too. In the simpli�ed model equationswe use, the density perturbation at �rst aelerates the growth of the instability, be-ause the ollapsing �laments produe avities in the eletron density by pushing theeletrons outwards through the ponderomotive fore. This leads to a stronger trappingof the �laments whih ompensates for the saturation of the γ-nonlinearity, as shownin Fig. 4.30. But the more the �laments ollapse, the stronger the wake�eld that theygenerate beomes and the more energy is transferred to the plasma.Within our model equations, it still happens that in simulations the �laments ollapseto point-like strutures and that density osillations beome larger than the bakgrounddensity. To fully avoid this problems, the heating of the plasma through kineti e�etshas to be taken into aount. Sine parameter ranges for whih high energy transferbetween laser pulse and plasma ours are not interesting for e�ient pulse ompression,density perturbations of the order of the bakground density will simply be taken assigns that the simulated parameters are not suitable for the intended appliation. 73
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Figure 4.30: In�uene of di�erent nonlinearities in the wave equation on the transversal instabil-ity. From top to bottom: ubi nonlinearity (maximum |a| = 0.28), γ-nonlinearity(maximum |a| = 0.24), γ-nonlinearity and density response (maximum |a| = 0.32) at
t = 640/ν0. Otherwise same parameters as in Fig. 4.29.4.4.2 Longitudinally ompressing pulsesFor a pulse that ompresses in the longitudinal diretion, the behavior of the transversalinstability is more omplex. As an example we onsider a pulse that has the samelongitudinal shape as a soliton, but several times its amplitude. The mode that growthto the largest amplitude is not anymore independent of the width of the perturbationspetrum, although this e�et is small (Fig. 4.31). During the pulse ompression, shorterand shorter wavelengths an beome unstable, so it is not neessarily a single mode thatdominates. For pulses with the same initial spot size, but di�erent amplitudes (higheramplitude equals faster ompression) the spetrum of modes that show instability getsbroader for higher amplitudes, as shown in Fig. 4.32. The spetra have to be omparedat times where the pulse lengths and pulse widths are nearly the same for di�erent initialamplitudes. If an unstable mode has su�ient time to grow before shorter wavelengthsbeome unstable, it an even enslave the shorter modes and prevent their growth.Sine the pulse hanges its longitudinal shape during the ompression, it is unlear ifthe relationship between pulse length and most unstable transversal mode is the same asin the stationary ase. In Fig. 4.32 we see that the peaks of the spetrum are generallylower than expeted for a stationary pulse of the orresponding length. But for an initialpulse of four times the single soliton amplitude, it is atually at a k-value expeted for a74
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Figure 4.31: Transversal amplitude perturbation spetrum at t = 380/ν0 for a 1D soliton withan initially Gaussian shape in the transversal diretion. Initial perturbation spetraof 10 . . . 30λ0 (blue), 7 . . . 50λ0 (red) and 10 . . . 100λ0 (green). Other simulationparameters are L0 = 2λ0, W0 = 200λ0 and n0 = 0.3nc.pulse of length L = 2.3λ0. This might our, beause the pulse rise and fallo� beomesvery steep during the ompression and thus is very far from the shape of the soliton.Another interesting question is how the initial longitudinal shape in�uenes the in-stability. Espeially important would be any di�erene between a sech-shaped pulseand a Gaussian pulse, beause this is the pulse shape mostly used in experiments. Theinteresting result is that only the initial longitudinal half width needs to be equal.5 Thetransversal spetra will then be nearly equal at equal times, although the evolution oflength and width is di�erent. The graphs of length and spot size vs. time an be saledto nearly math by multiplying the time axis by some fator to ompensate the slowerompression of the Gaussian pulse. This saling fator does not seem to depend onplasma density or the width of the pulse. It only depends on the number N that givesthe amplitude of the pulse relative to the single soliton amplitude and thus determineshow fast the pulse ompresses. It is reasonable to assume that this di�erene is due tothe lower energy the Gaussian pulse has ompared to a sech-shaped pulse at the samehalf width, due to the di�erent asymptoti fall o�. Note that at points in time whereboth pulse shapes have the same length and spot size, the spetra of their instabilityare di�erent! An example is shown in Fig. 4.33.Another important di�erene to the ase of stationary pulse length we have disussedabove is, that a pulse with parameters in a realisti range for pulse ompression willhave a muh smaller ratio between its initial spot size and length, than the very shortand wide pulses we onsidered in the previous setion for omparison with analytis. Ifwe take the analytial results for solitons as a guide, the range of wavelengths belowthe ut-o� that will initially �t on suh a pulse is very small. If we take a pulse witha length of L0 = 10 λ0, a spot size of W0 = 100λ0 and a Gaussian transversal pro�le,5But the remember the di�erene between the length parameter L0 and the atually measured halfwidth. This leads to a fator of 1.58183 between L0 for a Gaussian pulse and a soliton. 75
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Figure 4.32: Transversal amplitude perturbation spetrum for initially sech(z/L0)-shaped pulses(L0 = 10λ0) with an amplitude of N -times the single soliton amplitude. The spe-tra are at a di�erent times for eah value of N suh that eah pulse has a length of
L = 3.16λ0 at that partiular time. Blak: N = 2, blue: N = 2.5, red: N = 3,green: N = 4.the most unstable mode has a wavelength ≈ 94λ0 and the ut-o� wavelength is ≈ 66 λ0.Examining the transversal Fourier-spetrum of the pulse, we see that the modes up tothe ut-o� are lose to, or already part of, the modes that determine the shape of thepulse. Through the broadening of the spetrum due to transversal ompression, theybeome part of the ore spetrum of the pulse in a short time. The dynamis of thesemodes is thus dominated by the dynamis of the main pulse and not by the transversalinstability.Only modes that are short ompared to the wavelengths of the unperturbed pulsespetrum an e�etively destroy the pulse and prevent e�ient ompression. For exper-imentally interesting parameter regimes, it is only possible for those modes to beomeunstable after su�ient longitudinal ompression. This suggests that for a ompressingpulse the transversal instability has only a �nite time window to develop. This time win-dow starts at the point where the pulse has beome su�iently short that the unstablewavelength are short ompared to the spot size and ends at the point where the pulseis maximally ompressed (where the plasma layer should end). If the initial pulse has avery lean spetrum with little noise, or the plasma produes no noise in the unstablerange of wavelengths, no instability an develop.4.5 Other 2D / 3D instabilitiesBesides transversal �lamentation there are other genuinely two or three dimensionalinstabilities of a laser pulse that an our inside of the plasma. These an either berelated to Raman instability and our due to a resonane between the laser pulse andthe plasma wake�eld, or be driven by the relativisti mass nonlinearity and are onlyenhaned by the wake�eld. The �rst type an only our at densities below 0.25nc and76
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Figure 4.33: Comparison of transversal amplitude spetra for an initial sech(z/Ls) pulse and aninitial Gaussian pulse of length Lg. Ls = 10λ0 and Lg is hosen suh that themeasured longitudinal half width are initially equal. a0 is N = 4 times the singlesoliton amplitude. Blue: sech pulse at t = 330/ν0. Red: Gaussian pulse at t = 330/ν0,Green: Gaussian pulse at t = 360/ν0 (same length and spot size as the sech pulse at
t = 330/ν0).is in the short wavelength range. The seond type an also ause instability at higherdensities and has a longer wavelength. Here short vs. long wavelength is relative to

ωp/c. The atual wavelength for a long wavelength instability at high density an thusbe shorter than the plasma wavelength at low densities.Three types of instability for a linear polarized laser beam are disussed in [14℄ bymeans of the variation-of-ation method and linear stability analysis. These are hosingas well as symmetri and antisymmetri self-modulation instability. These instabilitiesan be derived from a nonlinear Shrödinger equation oupled to an equation for theplasma potential φ
(
∇2

⊥ − 2iβ
∂

∂ζ

)
a = (1 − φ)a (4.20)

∂2

∂τ 2
φ+ φ =

|a|2
2

. (4.21)Details of the alulation for irular polarization an be found in appendix C.The stationary solution for whih the linear stability is examined is a laser beamof in�nite longitudinal length and a �nite spot size (with Gaussian pro�le) that is atthe threshold of transversal self fousing. Of ourse in the end we are interested inthe behavior of the instabilities above the threshold, but as long as the growth of theinstabilities is faster than the self-fousing proess, the analysis should be approximatelyvalid. The ase where the beam fousses faster than the instability an grow is of nointerest, beause the instability then is of no physial relevane. The threshold an bealulated as
a2

0W
2
0 = P0 ≥ Pc = 16 . 77



4. Pulse ompression in two dimensionsThe thresholds is (Pc = 32) for linear polarization. Otherwise the linearized equationsfor the instabilities are idential for both kinds of polarization. The general form of thisequations is
(
∂2

ζ + Γ1

)
f = Γ2h (4.22)

(
∂2

τ + 1
)
h = Γ3f ,where f and h are two of the olletive oordinates used to desribe the pulse shapeand/or the shape of the plasma potential.From this two oupled equations we an derive some general properties of the insta-bilities. Fourier analysis yields a dispersion relation and thus a growth rate dependenton the wave number of the perturbation. Plotting the growth rate Im(g) against k,we an see that the general form is linear growth of Im(g) with k for small values of kand a distint peak around k = ωp/c where a resonane with the wake�eld wavelengthours.6 Above the peak a sharp ut-o� ours at

k =

√
Γ1 − Γ2Γ3

Γ1
.At the resonane k = ωp/c the growth rate is

g =

(
Γ2Γ3

2

) 1
3 −1 ±

√
3i

2
.This desribes the short wavelength type of the instabilities dominant at densities lower

k = ωp/c.For the long wavelength type instabilities to our the ondition that
Γ2Γ3 ≥ Γ1has to be ful�lled.The growth rate for small values of k then is
g = i

√
Γ1k .Important to understand the relevane of these instabilities is that Γ1 and Γ2Γ3 are in-versely proportional to the square of the Rayleigh length zR = βW 2

0 /2. This implies thatthe growth rates rapidly derease with the spot size. For wide pulses this instabilitiesare thus not relevant. They ould only beome important after very strong transversalompression, but then still unlikely if the pulse is su�iently short.4.5.1 Hosing instabilityThe entroid of the laser beam an be unstable to perturbations and show sinusoidalosillations like a winding snake or water hose, hene the name hosing instability. In6Beause the NLSE used is derived for a frame omoving at c instead of vg, the wake�eld wavelengthis 2πcωp instead of 2πvg/ωp. This is only a good approximation at low densities.78



4.5. Other 2D / 3D instabilities

Figure 4.34: Left: initial pulse of longitudinally super-Gaussian (L0 = 100λ0) and transversallyGaussian shape (W0 = 20λ0) with a0 = 0.3. Sinusoidal initial perturbation of 0.01W0for short wavelength hosing with k = ωp/c. Right: Pulse at t = 820/ν0 after propa-gation through plasma of n0 = 0.01nc.(4.22) the quantities f and g for this instability are the entroids xa and xφ of the laserand the plasma potential respetively and the onstants are Γ1 = Γ2 = P0

Pc

1
z2
R

and Γ3 = 1.In the short wavelength regime at low densities, hosing leads to an alternating shiftingof the Raman �laments against the entral axis. The wavelength an beome longer,if a saturated Raman instability heats the plasma su�iently [13℄. Fig. 4.34 shows anexample for short wavelength hosing, before Raman instability has fully developed. Itis learly visible that the amplitude of instability inreases from the front to the bak ofthe pulse, beause the resonane between pulse and wake�eld has more time to develop.At higher densities only the nonresonant form of the instability an our for whihthe growth rate inreases with the bakground density.7 Sine the instability is mostlydue to the relativisti mass nonlinearity, it is more uniform along the pulse. The onlyexeption are the parts right at the beginning and end of the pulse. But even for ahigh density like n0 = 0.6nc and a very narrow pulse of W0 = 10 λ0 the growth ofthe instability is omparatively slow (see Fig. 4.35). Only after 300 λ0 of plasma theinstability has grown to a signi�ant amplitude.4.5.2 Symmetri self-modulation instabilityA small sinusoidal amplitude modulation in the longitudinal diretion of a long andnarrow pulse an lead to an uneven fousing along the pulse. This is alled symmetriself-fousing instability. Slies of the pulse an ollapse while other slies are still onlyweakly foused or (if the beam is at the self-ompression threshold) even defoused. Thise�et is enhaned by the density osillations of the plasma. Regions with higher thanbakground density have a defousing e�et, while regions with lower than bakground7The density dependene is only impliit, due to the normalization of lengths and times with ωp. 79
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Figure 4.35: Left: initial pulse of longitudinally super-Gaussian (L0 = 100λ0) and transversallyGaussian shape (W0 = 10λ0) with a0 = 0.15. Sinusoidal initial perturbation of
0.02W0 for short wavelength hosing with k = 0.1ωp/c. Right: Pulse at t = 250/ν0after propagation through plasma of n0 = 0.6nc.density fous the beam. At n0 < 0.25nc this proess an be resonant with the wake�eld,but only modulates �laments indued by Raman instability to yield the typial inverseD shape [50℄ that an be seen in Fig. 4.36.The relevant quantities for (4.22) are w̄a and w̄φ, the averages of the spot sizes in x-and y-diretion of a and φ. For the exat de�nition see appendix C. The onstants are

Γ1 = Γ2 = P0

Pc

1
z2
R

and Γ3 = 1. For n0 > 0.25nc the density osillations an only enhanethe instability, but are not in resonane with the wake�eld. The main di�erene betweenRaman instability and self-modulation an be seen in Fig. 4.37. Raman forward sat-tering redistributes pulse energy along the propagation diretion and leads to a lumpingof the energy. Low amplitude regions thus also have a narrow spot size. Symmetriself-modulation instead transversally fouses the pulse power, while the power in eahtransversal slie remains onstant. This leads to a narrow spot size for slies with a highamplitude and a wide spot size for slies of low amplitude (Fig. 4.37).4.5.3 Antisymmetri self-modulation instabilityRelated to the symmetri self-modulation is an asymmetri unstable mode, where adereasing spot size in one transversal diretion leads to an inreasing spot size in theother. The unstable quantities for (4.22) are ∆wa and ∆wφ, the di�erenes between thespot sizes in x- and y-diretion of a and φ respetively. Antisymmetri self-modulation isthe only true 3D instability of the instabilities we have disussed. Fortunately its growthrate dereases rapidly with the spot size as for the other two instabilities. Otherwisefull 3D simulations would be neessary. For this instability Γ1 = 3
z2
R

, Γ2 = 1
z2
R

P0

Pc
and

Γ3 = 1. Thus as long as P0 ≤ 3Pc no long wavelength regime exists. But this thresholdis already rossed for a pulse with a0 & 1.7 ac. Most pulses we will use for simulations80



4.5. Other 2D / 3D instabilities

Figure 4.36: Color plot of 2D �laments indued by Raman instability for a simulation with n0/nc =
0.1, a0 = 0.16, L0 = 10λ and W0 = 100λ.

Figure 4.37: Left: initial pulse of longitudinally super-Gaussian (L0 = 100λ0) and transversallyGaussian shape (W0 = 10λ0) with a0 = 0.15. Sinusoidal initial perturbation of
0.02W0 for short wavelength symmetri self-modulation with k = 0.1ωp/c. Right:Pulse at t = 250/ν0 after propagation through plasma of n0 = 0.6nc.of self-ompression will be at least a fator of two above the ompression threshold.Aordingly we have to use su�iently wide initial pulses to avoid this instability andthe neessity of 3D simulations.
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5 Transversal fousing with plasmalayersTo evaluate the pulse ompression potential of plasmas, it is neessary to inlude the propa-gation in vauum after the pulse has left the plasma. In 2D/3D geometry a plasma layer anat as a lens with a ertain foal length. This inreases the intensity of the pulse througha derease in spot size. In this hapter we will �rst study the fousing properties of suh aplasma lens and also ompare (semi-)analytial desriptions of the plasma-vauum transitionand pulse fousing to full wave equation simulations. In the seond part of the hapter, weinvestigate the propagation of transversal modes from �lamentation instability in relation tothe propagation of the main pulse. The results from both parts motivate the idea to usea layered plasma-vauum struture for pulse ompression. This will be detailed in the nexthapter.5.1 Fousing properties of plasma layersThe propagation of eletromagneti radiation in vauum in 1D is very di�erent from the2D/3D ase. In 1D an eletromagneti pulse propagates unhanged in vauum. In 2Dthe pulse an either fous or defous in the diretion transversal to the propagation. Abeam or pulse that at �rst fouses, will start to defous after it reahed a ertain minimalspot size, alled the beam waist. This behavior an be modelled with a homogeneousShrödinger equation, whih an be derived from the homogeneous wave equation bythe so alled paraxial approximation [61℄
i
∂

∂z
a+

1

2

∂2

∂x2
a = 0 (5.1)The approximation holds for beam waists that are large ompared to the laser wave-length. Non-paraxial e�ets are for example disussed in [16℄.The well known solution of this equation is the Gaussian beam [61℄
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5.1. Fousing properties of plasma layers

Figure 5.1: Time evolution of |a|2 for a simulation of a 450λ0 thik plasma lens with n0/nc = 0.3,
a0 = 0.1, L0 = 10λ0 and W0 = 100λ0. The density pro�le is shown semi-transparent.where W0 is the waist spot size. The radius of urvature of the phase front is

R(z) = z +
z2

R

z
. (5.4)The Rayleigh length

zR = π
W 2

0

λ0

(5.5)is the length of propagation where the pulse hanges its diameter by a fator of √2.Due to the missing time derivatives in equation 5.1, its solution an be modulated intime by an arbitrary time dependent funtion v(t) to obtain a loalized pulse a(z, x, t) =
v(t)× u(z, x). Any initial ondition a(z = z0, x, t) of this form will keep its longitudinalhalf width. In the derivation of (5.1) the mixed derivative ∂2

∂t∂z
was negleted, whihresults in the onservation of power in eah transversal slie

P (z) = A(z)2W (z) = A2
0W0 = const. (5.6)Thus no power is transferred on-axis in the omoving frame.For a negative urvature R(z) the pulse will fous until its spot size reahes W0 atthe foal point. By letting a highly intense laser pulse pass through a plasma layer, the83



5. Transversal fousing with plasma layers
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Figure 5.2: Evolution of pulse parameters for the simulation in Fig. 5.1 in normalized units. Densitypro�le (blak), amplitude |a| (red), length L (green), spot size W (blue). The arrowsmark the position of the maximum amplitude and minimum spot size.relativisti nonlinearity produes suh a urvature of the phase front of the pulse. Thisresults in the transversal fousing of the pulse after it has left the plasma and propagatesin vauum. A plasma layer an thus be used as a fousing lens for laser intensities wherea lassial lens would be damaged. The fousing e�et is shown in Fig. 5.1.For pulses that interated nonlinearly with a plasma layer before propagation in va-uum, the simple formulas for a Gaussian beam are only approximately valid. Comparedto a Gaussian beam, the fousing behind a plasma layer an be highly asymmetri rela-tive to the foal plane. The fousing ours on a muh shorter sale than the defousing.Surprisingly the minimum of the spot size and the maximum of the amplitude need not(and in general do not) oinide as an be seen in Fig. 5.2, the amplitude reahes itsmaximum further away from the plasma.The length evolution shows an at �rst unexpeted e�et, too. Compared to theShrödinger model in vauum the wave equation of ourse allows the pulse to hangeits length. But the e�et should be very small for the parameters in our example andnot as large as seen in Fig. 5.2. A Shrödinger simulation shows nearly the same lengthevolution, although the dispersion parameter in front of the time derivative is zero invauum.We an understand this by realizing an important di�erene between a pulse of theform a(z, x, t) = v(t) × u(z, x) that propagates only in vauum and a pulse that haspropagated through a nonlinear medium. Due to the nonlinearity the pulse an have adi�erent transversal spetrum for eah value of the time oordinate. Eah transversalslie an thus fous and defous on a di�erent time sale. The lower amplitude tails ofthe pulse will thus hange its amplitude more slowly than the higher amplitude ore,beause there the nonlinearity produed a broader spetrum. In Fig. 5.3 the fasterfousing and defousing of the transversal slies with higher amplitude an be learlyseen. For a pulse that has maximally ompressed in plasma the length always inreasesin vauum, while pulses that are far from maximum ompression shorten and then84



5.1. Fousing properties of plasma layers
W0 LP APV Amax FW Wmin WPV

Wmin

WPV
W (FW ) W (FW )

WPV100 200 0.126 0.149 5780 55 85 0.65 65 0.76320 0.172 0.216 3170 38 66 0.57 46 0.70460 0.214 0.318 1615 22 58 0.38 32 0.55150 200 0.125 0.149 13190 83 128 0.65 97 0.76320 0.170 0.214 7720 57 101 0.56 72 0.71460 0.204 0.310 4490 35 93 0.38 54 0.58200 200 0.125 0.149 23590 111 171 0.65 130 0.76320 0.169 0.214 13870 77 136 0.56 96 0.70460 0.201 0.307 8355 48 126 0.38 73 0.58250 200 0.125 0.149 36840 139 214 0.65 163 0.76320 0.169 0.213 21920 96 171 0.56 120 0.70460 0.199 0.306 13430 61 159 0.38 93 0.59300 200 0.125 0.149 53540 167 257 0.65 196 0.76320 0.169 0.213 32420 115 206 0.56 146 0.71460 0.199 0.305 19480 73 192 0.38 112 0.59Table 5.1: Charateristi quantities of transversal fousing in Cartesian 2D geometry, dependent onthe initial spot sizeW0 and the plasma length LP . APV: amplitude after plasma-vauumtransition, Amax: maximum amplitude, FW : foal point with minimum spot size, Wmin:minimum spot size, WPV: spot size after plasma-vauum transition. W (FW ): spot sizea Gaussian beam of minimum spot size Wmin would have at a distane of FW away fromthe fous (this an be ompared to the real spot size WPV at that distane). The othersimulation parameters are a0 = 0.1, L0 = 10λ0 and n0 = 0.3nc.
Pulse parameters LP Wmin/WPV W (FW )/WPV

a0 = 0.1, L0 = 10 λ0 200 0.65 0.76320 0.56 - 0.57 0.70 - 0.71460 0.38 - 0.39 0.55 - 0.59
a0 = 0.1, L0 = 20 λ0 200 0.65 0.76350 0.47 - 0.48 0.64 - 0.65530 0.33 - 0.38 0.51 - 0.58
a0 = 0.14, L0 = 10 λ0 140 0.56 0.70180 0.54 - 0.55 0.70 - 0.71230 0.34 - 0.35 0.54 - 0.56Table 5.2: Fousing properties of plasma layers in Cartesian 2D geometry. The ranges for theharateristi fousing quantities are for spot sizes between W0 = 100λ0 and 300λ0.For abbreviations and other simulation parameters, see table 5.1.
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5. Transversal fousing with plasma layers

Figure 5.3: Color plots of |a|2 for the pulse propagation in vauum behind a plasma lens with
n0 = 0.3nc and a length of 350λ0. Pulse parameters are a0 = 0.1, L0 = 20λ0,
W0 = 250λ0. From bottom to top: pulse diretly behind the plasma lens, at the foalplane and far behind the foal plane.lengthen again.To study the fousing properties of a plasma lens more thoroughly, we made a largenumber of simulation runs with a systemati variation of pulse and plasma layer pa-rameters. For three di�erent ombinations of pulse amplitude and length, the spot sizeof the pulse and the thikness of the plasma layer was varied. The initial spot size wasbetween 100 λ0 and 300 λ0. For the length of the plasma layer three di�erent valueswere used, where the largest length is given by the optimal value for longitudinal pulseompression. We used Cartesian 2D geometry for this parameter study, beause thefoal length for pulses with large initial spot sizes is very large. This is espeially thease if the pulse is only weakly foused by a short layer. This an make it neessaryto simulate the propagation in vauum for well over 105 λ0. Without the possibility touse very large steps in vauum, the omputational ost of suh simulations would beprohibitive. The qualitative results should still arry over to ylindrial or full threedimensional geometry.The results from the parameter study are given in tables 5.1 and 5.2. In table 5.1detailed results for a0 = 0.1 and L0 = 10 λ0 are given. The most important quantitiesare the ratio of the minimum spot size Wmin to the spot size WPV diretly behind theplasma layer and the ratio of W (FW ) to WPV. The quantity W (FW ) is the spot size aGaussian beam with minimum spot size Wmin would have at the distane FW from the86



5.2. Boundaries between vauum and plasmafoal point. This an be alulated from (5.3) and an be ompared to the real spot size
WPV of the pulse at that distane. The two ratios thus quantify the relative redutionin spot size from behind the length to the foal spot and the strength of the fousingompared to a Gaussian beam. From table 5.1 we see that the saling of the fousingwith the length of the plasma layer is mostly independent of initial spot size.1 It onlydepends on the length of the layer and is stronger than for a Gaussian beam. For alayer of optimal length for longitudinal pulse ompression it is nearly twie as strongand the spot size an be redued to about 25% of the initial value W0. This result isvalid for other pulse parameters, too. Table 5.2 ontains the summarized results forthe two spot size ratios for three di�erent pulse amplitude / length ombinations. Theranges that are given in the Table, are for the di�erent initial spot sizes and show avery low variane. Knowing this ratios allows the e�etive predition of the fousingbehavior of a very wide pulse by simulating a muh more narrow pulse, whih dereasesthe omputational ost signi�antly beause of the muh smaller fousing length of thenarrow pulse.5.2 Boundaries between vauum and plasmaTo model the fousing e�et of a plasma lens orretly, it is important to also model theboundaries between the vauum and plasma regions to math the experimental situationof a gas jet experiment. It is espeially important to understand the di�erene betweenhard and soft transitions to the plasma layer. The basi proess that happens at a hardboundary is known from linear eletrodynamis. A plane wave of wave number k andfrequeny ω is in part re�eted and in part transmitted if ω > ωp. Modes with ω < ωphave a re�etion oe�ient of unity and derease exponentially inside the plasma, this isalled skin e�et. The length over whih the amplitude drops by a fator of e is alled theskin length. The transmission and re�etion oe�ients are given by the so alled Fresnelformulas. For a thin layer the behavior is more ompliated, beause the re�etion andtransmission at both boundaries in�uene eah other and skin modes do ontribute tothe energy transfer through the layer. For su�iently long layers these e�ets are smalland an be negleted. The transition of a loalized pulse from vauum to plasma or vieversa an be alulated by deomposing it into Fourier modes and multiplying the modeswith their respetive Fresnel fators. Through this method, boundaries an be inludedin NLSE simulations, sine they are not treated selfonsistently in this equation. In 2Dthe transformation formulas of the vetor potential for a plasma with µr = 1 are

Ax(k) =
2

1 + η cos(α′′ )
cos(α)

Ax(k) and Ay(k) =
2

1 + η cos(α)

cos(α′′ )

Ay(k) , (5.7)where α is the inident angle measured relative to the normal vetor of the plasmasurfae and α′′ is the orresponding angle behind the surfae. The angles are given by1This is only valid if the initial spot size is su�iently larger than the spot size range where diretollapse of the pulse would our. 87



5. Transversal fousing with plasma layersthe relations
sin(α) =

kx√
k2

x + k2
z

and sin(α
′′

) =
sin(α)

η
.The index of refration η an be taken in zeroth order from the linear plasma dispersionrelation. In our units it is then equal to the linear group veloity. Relativisti orretionshave to be inluded for higher intensities, in [17℄ several di�erent are given for di�erentparameter regimes. For a derivation of the 2D Fresnel formulas for the vetor potential

A see e.g. [15℄.When entering the plasma a loalized pulse will get a higher vetor potential amplitudeand a smaller spatial length.2 Heuristially this an be understood by remembering thatthe arrier wavelength of the pulse is shorter in plasma than in vauum, as desribedby the linear dispersion relation. The e�et is the larger the higher the plasma densityand thus the lower the linear group veloity is. The width stays nearly unhanged forpulses wider than a few laser wavelengths. For long pulses the temporal length of thepulse is nearly unhanged, too. The pulse propagates more slowly inside the plasma bya fator vg ≡ η, whih is lose to the fator the pulse is shorter spatially.
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Figure 5.4: Comparison of the length evolution between NLSE (temporal pulse length) and waveequation (spatial pulse length) simulations. Plasma layer of 50λ0 length and a densityof 0.3nc. Pulse parameters are a0 = 0.15. L0 = 10λ0 and W0 = 100λ0.To examine how well the physis at the plasma boundary is aptured by the Fres-nel formulas, we ompare simulations of the nonlinear wave equation and nonlinearShrödinger equation. All simulations were done using ubi nonlinearity and inludeno density response. In NLSE simulations a temporal initial distribution is propagatedin z up to the boundary of the plasma layer. Then the �eld distribution is transformedusing the Fresnel formulas for eah Fourier mode and the resulting �eld is then propa-gated through the plasma. At the end of the plasma layer the same proedure is applied.2If the density is lose to the ritial density and the pulse is short (i.e. has a broad frequenyspetrum), the amplitude an instead derease, beause a large fration of the pulse an not enterthe plasma.88



5.2. Boundaries between vauum and plasma
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Figure 5.5: Comparison of amplitude evolution between NLSE and wave equation simulations.Plasma layer of 10λ0 length and density of 0.3nc. Pulse parameters are a0 = 0.2.
L0 = 10λ0, W0 = 50λ0. red : ubi NLSE + Fresnel formulas, blue: ubi nonlin-ear wave equation (hard boundaries), magenta : ubi nonlinear wave equation (softboundaries, 5λ0)Only for pulses with a very small spot size, the 2D Fresnel formulas yield a di�erentresult than the 1D formulas (α ≡ 0), beause only very narrow pulses of 5λ0 or less have

k⊥ values that are not small ompared to the k0 of the laser arrier. Simulations basedon the wave equation onsistently show a slight inrease in transversal width from va-uum to plasma and a derease from plasma to vauum, although this has little in�ueneon the maximum intensity of the pulse.The very di�erent behavior at the plasma boundaries of the temporal length in NLSEand the spatial length in wave equation simulations respetively does not lead to dif-ferenes in length when the pulse is again in vauum (f. Fig. 5.4). The e�et onthe amplitude for n0 = 0.3nc at the vauum-plasma boundary is already quite large ataround 9% for |a|. This jump in the amplitude is only this large for the vetor potential.The intensity, alulated from E and B, hanges muh less. Although the re�etion atthe plasma-vauum boundary leads to a higher maximum amplitude at the boundaryto vauum, the nonlinear interation with the re�eted pulse has little in�uene on thetransmitted pulse. At least this is the ase for pulses up to 20 λ0 length and weaklyrelativisti amplitudes.For the weakly relativisti regime the Fresnel formulas thus desribe the vauum-plasma transition surprisingly good and allow the simulation of strati�ed plasmas withthe NLSE, f. Fig. 5.5. For higher amplitudes they an be modi�ed by orreting thedensity used to alulate the index of refration. The γ-fator an simply be evaluatedfor maximum pulse intensity. This orretion redues the inrease of amplitude insideof the plasma (Fig. 5.6 on the left). It is also omputationally muh less intensive thana simulation of a hard boundary with the wave equation. Sine re�eted waves beomeimportant, the QEA method an not be used while the pulse propagates through theboundary and the grid disretization has to be further redued than for a soft transitionto ensure aurate results. For a realisti plasma boundary this Fresnel transformation89



5. Transversal fousing with plasma layers
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Figure 5.6: Comparison of amplitude evolution between NLSE and wave equation simulations atthe vauum-plasma (on the left) and plasma-vauum boundary (on the right). Plasmalayer of 30λ0 length and a density of 0.3nc. Pulse parameters are a0 = 0.3. L0 = 4λ0and W0 = 50λ0. Blak : ubi NLSE + Fresnel formulas, red : ubi NLSE +relativistially orreted Fresnel formulas, blue: ubi nonlinear wave equation (hardboundaries), magenta : ubi nonlinear wave equation (soft boundaries, 5λ0).would have to be modi�ed though, beause a hard density jump is not ahievable with agas jet and a smooth transition of only a few λ0 length redues re�etion to nearly zero,see the magenta urve in Fig. 5.5. This might be aommodated by deomposing thedensity inrease or derease into small steps with Fresnel transformations in between.There are two main arguments against using the NLSE ombined with the Fresnelformulas, though, for the simulation of plasma lenses. If the density response has to beinluded, it beomes di�ult to solve the oupled equations for a and n1
e, beause a hasto be integrated in z while the density has to be integrated in time (f. setion 2.3).For short pulses of less than four yles length, the envelope approximation starts tobreak down. This leads to large di�erenes in amplitude after the pulse has propagatedthrough the plasma layer (see Fig. 5.6).5.3 Propagation of short vs. long wavelengthtransversal modes in vauumWhen a pulse that has developed transversal �lamentation instability leaves the plasmaand enters vauum, the growth of the instability obviously stops. As we have seen in thepreeding setion, in vauum the pulse as a whole will at �rst fous and then defouswith a typial length sale of one half to one Rayleigh length. This behavior an beunderstood from the Fourier deomposition of the pulse. The smaller the beam waist,the broader the spetrum of transversal Fourier modes beomes. From the vauumdispersion relation

ω(k) = c
√
k2
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5.3. Propagation of short vs. long wavelength transversal modes in vauum

Figure 5.7: Color plot of |a|2 for the propagation of a pulse in vauum after propagation through a
500λ0 plasma layer with n0 = 0.3nc. The initial longitudinal sech shape and transversalsuper-Gaussian shape. Initial transversal pulse perturbation of 10−3 a0 with a wavelengthof 20λ0. Bottom to top: pulse at t = 560/ν0, t = 1400/ν0, t = 2400/ν0 and t =
4540/ν0. The other simulation parameters are a0 = 0.16, L0 = 2λ and W0 = 200λ.follows the group veloity of a transversal Fourier mode with a ertain value of k⊥

v⊥(k⊥, ω) =
∂ω(k)

∂k⊥
= c

k⊥
|k| = c2

k⊥
ω

. (5.8)For a wide pulse we an use the arrier wave number k0 = ω0/c for the value of k‖ andthus ω ≈ ω0.Sine for a symmetri beam the spetrum is symmetri, too, the wave numbers in thespetrum ome in pairs of k⊥, −k⊥ that propagate in opposite diretions. Combinedwith the higher group veloity of modes with higher absolute k-values, this implies thata pulse fouses or defouses the faster the smaller its waist size is. This an be seen,too, from the Rayleigh length (5.5).For a longitudinally loalized pulse, this an in�uene the longitudinal propagation.The onstany of the speed of light leads to a lower parallel veloity the higher theperpendiular veloity of a mode eik·r−i ω0 t is. In ontrast to 1D, this an lead to ahange of the longitudinal pulse shape in vauum. For the pulse parameters we areonsidering, the transversal k-values of the pulse will be small ompared to k0 and thise�et will be small, too. This hanges if the pulse develops transversal �lamentation.The transversal k-modes due to the instability are not small ompared to k0. These91



5. Transversal fousing with plasma layers

Figure 5.8: Same as Fig. 5.7, but for t = 1600/ν0, t = 1680/ν0 and t = 1760/ν0 (again frombottom to top).unstable modes will thus propagate more slowly in the longitudinal diretion than themain pulse and will also disperse faster in the transversal diretion.In Fig. 5.7 snapshots of the time evolution in vauum an be seen for a pulse with asuper-Gaussian shape in the transversal diretion with only a single transversal mode asa perturbation. This simpli�es the omparison with the analytially expeted behavior.At �rst, after the pulse has left the plasma, the �laments of the instability are stillloated entrally on the pulse. But beause of their slower longitudinal propagation,they soon begin to lag the main pulse. The resulting longitudinal asymmetry is the�rst sign that the unstable modes propagate di�erently from the main pulse. Althoughthey travel in the transversal diretion, too, the enter of the pulse at �rst does notlear from the �lamentation. The �laments seem to behave like two ombs that moverelative to eah other. In this way we an explain the e�et in Fig. 5.8 that peaks vanishfor a short time and then reappear. This happens several times until the oppositelypropagating �lament ombs do not overlap anymore and the enter of the pulse learsfrom the instability.The wavelength of the initial perturbation an still be identi�ed for the parts of theinstability that have already left the main pulse and their speed mathes the expetedvalue from the vauum dispersion relation for this wavelength. They do not aumulatein one lump diretly behind the pulse as stated in [59℄, beause they have a onsiderableveloity omponent in the transversal diretion.After su�iently long propagation in vauum the pulse has shed all the unstable92



5.3. Propagation of short vs. long wavelength transversal modes in vauum

Figure 5.9: Color plot of |a| showing a spherial radiation front after long propagation in vauum.Note that |a| is shown (not |a|2) for better visibility of the lower amplitude parts of thepulse.
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Figure 5.10: Amplitude evolution of a pulse in ylindrial geometry (a0 = 0.1, L0 = 20λ0, W0 =
200λ0) with di�erent phase randomized initial perturbations of 0.01 a0. Propagationthrough a plasma layer of 530λ0 with a density n0 = 0.3nc.modes that propagate on a spherially shaped surfae, see for example Fig. 5.9. Theremaining main pulse has the same shape as it would have had without �lamentationinstability, but with a lower amplitude. The amount of amplitude redution depends onthe strength of the instability.In Fig. 5.10 the evolution of maximum amplitude for three phase-randomized ini-tial perturbations of 0.01 a0 is shown for a simulation in ylindrial geometry. In thisgeometry, whih is e�etively 3D, the e�ets of the instability are stronger due to aninreasing intensity of the ollapse with an inreasing number of dimensions. 2D isritial dimensionality for the ollapse to our [62℄.The shedding of short wavelength transversal modes in vauum thus prevents the de-93



5. Transversal fousing with plasma layers

Figure 5.11: |a|2 of pulses with (on the right) and without an initial perturbation (on the left) afterpropagation through a plasma layer. Same parameters as Fig. 5.10

Figure 5.12: Same as Fig. 5.11 after propagation through ∼ 10000λ0 of vauum. Note that atthis loation only the initially perturbed pulse has its maximum intensity, not theunperturbed pulse. See Fig. 5.10 to ompare maximum amplitudes.tetion of the �lamentation in some distane behind the plasma (Fig. 5.11 and Fig. 5.12).After only a few millimeters in vauum the pulse has nearly regained its unperturbedshape. This means that the data about the strength of the instability has to ome frommeasurements inside the plasma, e.g. by means of shadowgraphy.
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6 Strati�ed plasma-vauum systemsIn this hapter we will ombine the ideas disussed in the preeding hapters by using layeredplasma-vauum strutures instead of single layers for pulse ompression. The advantageof this approah twofold. It allows to use the transversal fousing potential of a pulsemore e�etively, and thus inrease the intensity of the ompressed pulse. It also o�ersthe possibility to ontrol the transversal �lamentation instability. By dividing the plasmalayer into several shorter layers with vauum in between, the transversal dispersion of theshort unstable modes in vauum is exploited to lean the pulse before this modes an growto signi�ant amplitude. Partiular attention is given to plasma on�gurations that areexperimentally ahievable.

Figure 6.1: |a|2 of a Gaussian pulse with a0 = 0.1, L0 = 10λ0 and W0 = 150λ0 propagatingthrough two plasma layers of density n0 = 0.3nc. The �rst layer is 330λ0 and theseond is 125λ0 long with 1500λ0 vauum in between.
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6. Strati�ed plasma-vauum systems6.1 Advantages of multiple plasma layers6.1.1 Enhaned transversal fousingFor a ontrolled and e�ient longitudinal ompression, the initial laser amplitude hasto be weakly relativisti, i.e. a2
0 ≪ 1 and stay subrelativisti during the ompression.Otherwise the energy loss inside the plasma would beome too large. Moreover, thespot size has to be muh larger than the pulse length, otherwise the pulse would diretlyollapse inside of the plasma. This implies that a high power laser pulse an only beweakly foused into the plasma to be in the right amplitude and spot size range. Insidethe plasma the pulse then is longitudinally ompressed from its initial length to justone or two yles. Thus to reah high subrelativisti or even relativisti intensities,the pulse has to be strongly transversally ompressed. Beause of the strong ouplingbetween longitudinal and transversal ompression, as disussed in setion 4.3.3, it is notpossible to realize the full transversal ompression potential of the pulse purely inside theplasma. But the fousing an be enhaned by sliing a plasma layer of optimal length forlongitudinal ompression into multiple shorter layers with vauum setions in between.During the propagation in vauum the transversal and longitudinal dynami is (mostly)deoupled. The pulse fouses in the transversal diretion, due to the negative urvatureof the phase front indued by the plasma, while its length stays nearly unhanged. Whenit reahes the next plasma layer, it has a higher intensity than without propagation inthe vauum between the layers. This inreases the strength of the ompression insidethe next layer. Using two or more layers should in this way allow to produe pulses withmuh higher intensities and muh redued spot sizes.An example of a two layer on�guration is shown in Fig. 6.1. Suh a vauum-plasmaon�guration has several free parameters for whih the optimal values are di�ult todetermine analytially. These are the number of plasma layers, the relative length ofthe layers and the amount of vauum between the layers. We will study the in�ueneof this parameters in the following setions.6.1.2 Controll of transversal �lamentationOne result presented in the last hapter was that a pulse that is strongly �lamented in thetransversal diretion an regain a smooth transversal shape after propagation througha su�ient amount of vauum. How well a pulse is able to shed the unstable modes,an be estimated by omparing the Rayleigh lengths of the un�lamented pulse with theRayleigh length of the individual �laments. A pulse an only loose the unstable modesif the Rayleigh length of the full pulse is several times larger than that of the �laments.This is already ful�lled if the pulse is a few times wider than the �laments, beause ofthe quadrati dependeny of zR on the spot size. The pulse has to travel a few timesthe Rayleigh length of the �laments to shed the unstable modes. The obvious questionis, if the pulse ould shed its unstable modes before they an grow to large amplitudes,at the ost of the amplitude of the main pulse. A proposal for suh a method was madeby Shorokhov et. al. in [59℄. The pulse propagates in plasma only for a short amount of96



6.1. Advantages of multiple plasma layerstime and then propagates su�iently long in vauum for the unstable modes to get outof step with the main pulse. Then it enters another short plasma layer followed againby vauum and so on until the maximum longitudinal ompression is ahieved.The general plasma-vauum on�guration is thus similar to the on�guration for en-haned transversal fousing, but the riteria for hoosing the parameters are di�erent.The length of the individual layers is limited by the �lamentation length of the pulse.This length depends ritially on two quantities. The longitudinal pulse length deter-mines the most unstable transversal mode. The shorter this mode beomes, the higherits growth rate and thus the shorter the �lamentation length. The other quantity is thenoisiness of the system. This inludes both perturbations of the pulse shape and �u-tuations of the plasma density that at as a seed for the instability. The more noise thesystem exhibits, the shorter the �lamentation length will be. Sine the strength of the�utuations depends on the intensity of the driving pulse, more intense pulses will havea shorter �lamentation length. This suggests that the plasma layers have to beomeinreasingly short as the pulse length dereases and its amplitude inreases during theompression.The length of the vauum setions, too, depends on the wavelengths of the unstabletransversal modes. Shorter wavelengths need less propagation vauum to get out ofstep with the main pulse. We an make a simple analytial estimation for the neessaryamount of vauum for a ertain pulse length. For this we assume that the main pulsetravels at c in the longitudinal diretion and has no transversal veloity omponent(i.e. the pulse shows no transversal dispersion). This is approximately valid, if thepreviously mentioned ratio of the Rayleigh lengths is large. From the expressions forthe longitudinal and transversal veloity omponents of an eik·r−i ω0 t mode
v‖,⊥ = c2

k‖,⊥
ω0and c2 = v2

‖ + v2
⊥, we get for the parallel veloity omponent

v‖
c

=

√
1 − v2

⊥

c2
. (6.1)This allows us to alulate after how many λ0 of vauum a mode with a ertain k⊥ willlag the main pulse by the half width of the pulse. If we take for example a pulse thatompresses down to 2λ0 in length and we take the value of the most unstable modefor a soliton of this length as a guide (≈ 19 λ0), we get a group veloity di�erene of

∆vg ≈ 0.0021c and vauum length of ≈ 1400λ0 for a lag of one half width. This isonsistent with the simulations in setion 5.3. Sine the growth rate of the instabilitydepends only on |k⊥| irrespetive of the number of dimensions of k⊥ the same formulaan also be used to alulate the vauum length for simulations in 3D Cartesian orylindrial geometry. For the parameters in [59℄, the pulse ompresses down to a singlewavelength whih results in λ⊥ ≈ 6.6 λ0 for n0 = 0.6nc. The vauum for a lag of asingle wavelength is in this ase approximately 90 λ0, whih is in very good agreementwith the value of 100 λ0 that was used as the vauum length between the four plasmalayers for a total vauum length of 300 λ0. 97



6. Strati�ed plasma-vauum systemsOf ourse there are onstraints from the transversal fousing of the pulse. A stronglyfoused pulse is muh more suseptible to ollapse aused by the instability, but reduingthe length of the vauum setions to redue fousing an result in an insu�ient amountof vauum for the ontrol of the instability. The requirements for enhaned fousing and�lamentation ontrol have thus to be balaned against eah other and the pulse, layerand vauum parameters have to be hosen to meet both.6.2 Optimization of transversal fousing
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Figure 6.2: Amplitude evolution for a0 = 0.1, L0 = 10λ0, W0 = 150λ0 for 1�4 plasma layers(n0 = 0.3nc) of omparable total length. One layer of 460λ0 (blak), two layers of
227λ0 (red), three layers of 150λ0 (green), four layers of 112λ0 (blue). Eah layerhas 5λ0 transitions between vauum and plasma on both sides. For eah additionallayer the total plasma length is redued by 3λ0 to aount for the additional amountof plasma in the transition regions. Total amount of vauum between layers is 2400λ0,divided equally.In the following we will examine the in�uene of di�erent layer parameters, suh asthe number of plasma layers and the amount of vauum between the layers, on theresulting amplitude, length and spot size of the pulse. Most of the simulations in thepreeding setions were done in 2D Cartesian geometry, beause we were only interestedin qualitative results, or the results were independent of the transversal geometry. Inthis way we were able to take advantage of the fast simulation times in vauum of theGautshi-type integrator. This allowed us for example, to study the fousing behavior ofvery wide pulses with very large Rayleigh length. This is not possible when using morethan a single plasma layer. In 3D the amplitude inrease in vauum due to transversalfousing is around two times larger than in 2D, due to the additional diretion in whihfousing ours. Thus the propagation in the next plasma layer will be very di�erent in2D and 3D and we have to use a ylindrial geometry to perform realisti simulations.This inreases simulation runtimes ompared to Cartesian 2D simulations, not only98



6.2. Optimization of transversal fousing
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Figure 6.3: Pulse length evolution for the simulations shown in Fig. 6.2.
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Figure 6.4: Spotsize evolution for the simulations shown in Fig. 6.2.beause small time steps have to be used in vauum. They are also inreased, beausein ylindrial geometry the initial minimum spot size for that no diret ollapse oursis larger by a fator of about √2. This an be partially ompensated by using a oarsertransversal disretization, although the spot sizes at the foal point are not neessarily afator √2 larger. For the simulations with a transversal perturbation the disretizationis limited by the requirement to resolve the wavelengths of the instability.6.2.1 Number of plasma layersFirst we will examine how di�erent numbers of plasma layers in�uene pulse ompressionand fousing. We take the length of a single layer that is needed to fully ompress apulse with ertain parameters, split it into two, three or four layers of equal length andadd linear transitions between vauum and plasma of 5 λ0 length. To ompensate forthe added length due to the linear transitions, we redue the length of eah layer by99



6. Strati�ed plasma-vauum systems
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Figure 6.5: Amplitude evolution for a0 = 0.14, L0 = 10λ0, W0 = 150λ0 for 1�4 plasma layers(n0 = 0.3nc) of omparable total length. One layer of 235λ0 (blak), two layers of
115λ0 (red), three layers of 75λ0 (green), four layers of 55λ0 (blue). Total amount ofvauum between layers is 1800λ0.
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Figure 6.6: Amplitude (on the left) and spot size evolution (on the right) for a0 = 0.1, L0 = 20λ0,
W0 = 200λ0 for 1�4 plasma layers (n0 = 0.3nc) of omparable total length. One layerof 530λ0 (blak), two layers of 262λ0 (red), three layers of 174λ0 (green), four layersof 130λ0 (blue). Total amount of vauum between layers is 1800λ0.

3 λ0. The total amount of vauum between the layers is hosen to be the same for anynumber of layers, so that the length of the individual vauum setions dereases withthe number of layers.In Fig. 6.2 the amplitude evolution for a pulse with a0 = 0.1, L0 = 10 λ0 and W0 =
150 λ0 is shown for one to four layers layers of density n0 = 0.3nc. The total length ofthe vauum setions is 2400λ0. The length and spot size evolution are shown in Fig. 6.3and Fig. 6.4 respetively. For a single layer the pulse reahes the foal point afterpropagating 5450λ0. With foal point we denote the z-position at whih the maximumamplitude is reahed. As we have seen in the last hapter, this point does not oinide100



6.2. Optimization of transversal fousingwith the minimum spot size. The spot size at the foal point isW = 39 λ0 and its length
L = 3 λ0. For more than one layer the foal point is already reahed between 4100λ0 to
4400λ0. The spot size in fous for two layers is W = 24 λ0 and the length L = 2, λ0. Forthree and four layers the values are W = 18 λ0, L = 1.9, λ0 and W = 16 λ0, L = 1.9, λ0respetively. The use of multiple layers an thus not only enhane transversal fousingbut also inrease the longitudinal ompression. The derease of spot size and lengthwith the number of layers is diretly proportional to the inrease in intensity. Losses tothe plasma are very low.For a0 = 0.14 and the same initial length and width and a total amount of 1800λ0the maximum amplitude also inreases distintly from one to two layers. But for threeand four layers there is already a saturation in maximum amplitude visible in Fig. 6.5.This is not due to energy loss of the pulse to the plasma, but due to a saturation inboth longitudinal and transversal ompression. The spot size at the foal point (at
z = 4400 . . . 4700λ0) for two to four layers ranges from about 19.5 λ0 to 21.4 λ0, thedi�erene being less than 2 λ0. The pulse lengths are also very lose at 1.42 . . . 1.5 λ0.The values for a single layer are W = 31 λ0 and L = 1.56 λ0 at z = 4000λ0. The samesaturation e�et an be seen for a0 = 0.1,L0 = 20 λ0 and W0 = 200λ0 in Fig. 6.6 wherethe spotsize evolution is shown, too. Here the foal point is for one layer at z = 6000λ0with W = 40 λ0 and L = 1.9 λ0. For two to four layers the foal point is reahed at
z = 5800 . . . 6000λ0. The spot sizes are within less than a single laser wavelength around
W = 27.5 λ0 and the lengths are essentially the same at L = 1.65 λ0.6.2.2 Relative thikness of the plasma layers
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Figure 6.7: Amplitude evolution for a0 = 0.1, L0 = 10λ0, W0 = 150λ0 for two and threeplasma layers (n0 = 0.3nc). Total length of the plasma is 455λ0 for two layers and
450λ0 for three layers respetively. Total amount of vauum between layers is 1800λ0.The partition for two layers is 227λ0/227λ0 (red, solid), 330λ0/125λ0 (red, dashed),
375λ0/80λ0 (red, dash-dotted) and 420λ0/35λ0 (red, dotted). For three layers thepartition is 150λ0/150λ0/150λ0 (blue, solid) and 250λ0/100λ0/100λ0 (blue, dashed).101



6. Strati�ed plasma-vauum systemsAnother parameter of the strati�ed plasma-vauum system that an be varied, is therelative thikness of the plasma layers at a onstant total amount of plasma. For thepulse parameters a0 = 0.1, L0 = 10 λ0, W0 = 150λ0 the result is shown in Fig. 6.7.Inreasing the relative length of the �rst layer improves fousing and ompression upto a ertain optimal ratio above whih the maximum amplitude dereases again. Alonger �rst layer visibly inreases transversal fousing and thus inreases the intensityat the beginning of the seond layer. But sine the seond layer is redued aordinglyin length, the seond stage of longitudinal and transversal ompression in plasma isweaker. If the length of the seond layer goes to zero, the single layer result of oursehas to be reovered. At the optimal length ratio, the lowest minimum spot size andthus the strongest transversal fousing is reahed, while other ratios for the length ofthe layers may have a lower minimum length. for three and four layers, inreasing thelength of the �rst layer yields the same result.Again the e�et is less pronouned for pulses with a higher initial amplitude or length.When the relative length of the �rst layer is inreased, a saturation at whih the spotsize an not be redued further sets in quikly.6.2.3 Amount of vauum between plasma layers
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Figure 6.8: Amplitude evolution for a0 = 0.1, L0 = 10λ0, W0 = 150λ0 for two plasma layers(n0 = 0.3nc) and varying amount of vauum between the layers. The plasma layers are
330λ0 and 125λ0 long respetively. The vauum lengths are 1200λ0 (green), 1800λ0(yan), 2400λ0 (blue), 3000λ0 (magenta), 3600λ0 (red).The most important parameter for enhaned transversal fousing is the total amountof vauum between the plasma layers. With a total amount of zero we arrive at thesingle layer again. Inreasing the length of the vauum leads to a pronouned inreaseof maximum amplitude and derease of minimum spot size. But it is not possible, forexample for two layers, to put the last layer at the foal distane of the �rst layer (orgenerally the layer before), beause this would ause the pulse to ollapse inside of thelast layer. The distane to the last layer has thus to be either smaller or substantially102



6.2. Optimization of transversal fousing
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Figure 6.9: Amplitude evolution for a0 = 0.1, L0 = 20λ0, W0 = 200λ0 for two plasma layers(n0 = 0.3nc) and varying amount of vauum between the layers. The plasma layers are
355λ0 and 170λ0 long respetively. The vauum lengths are 1200λ0 (blak), 1800λ0(green), 2400λ0 (yan), 3000λ0 (blue), 3600λ0 (magenta) and 4200λ0 (red).larger than the foal distane. Otherwise the pulse will still be strongly deformed, whihleads to osillation of the pulse amplitude in vauum (Fig. 6.8).The stronger transversal fousing for a larger absolute amount of vauum does notshow saturation for a larger pulse amplitude or length (Fig. 6.9). This is di�erent tothe other variations of the plasma-vauum struture, whih where of a relative kind.This suggests that the ahievable minimum spot size is �xed by the absolute amountof vauum. A ertain on�guration may not reah the optimum spot size / amplitude,but no on�guration an exeed this value. It also suggests that inreasing the initialspot size of the pulse and the total amount of vauum, is the best way to inrease theintensity at the foal point. No saturation should our in this way until the intensitiesbeome already relativisti inside of the plasma.It is of ourse possible for more than two layers to vary the relative amount of vauumbetween the layers. From the preeding two setion we an already guess the result.Inreasing the number of layers, or dereasing the thikness of the layers from the �rstto the last, e�etively shifts plasma towards the beginning and vauum to the end ofthe plasma-vauum struture. We an thus expet to ahieve a higher intensity byshortening the �rst vauum setion and lengthening the last (Fig. 6.10). Sine thishange is relative in nature, we also expet to see a saturation e�et for the same pulseparameters as before (Fig. 6.11). The relative hange in the vauum distribution anof ourse be ombined with a relative hange in plasma distribution to further enhanethe fousing (Fig. 6.12 and Fig. 6.13).6.2.4 Currently feasible experimental on�gurationsAll of the on�gurations disussed up to this point have steep transitions between va-uum and plasma. Some of them have very short plasma layers of less than 100 λ0103



6. Strati�ed plasma-vauum systems
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Figure 6.10: Amplitude evolution for a0 = 0.1, L0 = 10λ0, W0 = 150λ0 for three plasmalayers with n0 = 0.3nc and a total amount of 1800λ0 vauum between layers.Eah plasma layer is 150λ0 long. The partition of the vauum is 1500λ0/300λ0(green), 1200λ0/600λ0 (yan), 900λ0/900λ0 (blue), 600λ0/1200λ0 (magenta) and
300λ0/1500λ0 (red).thikness. With gasjets of maximum densities larger 0.25nc, produed through super-soni gas expansion, suh parameters are urrently not ahievable. The urrent state ofthe art are a density plateau of about 200µm at n0 = 0.3nc with a transition to vauumof a length of also ∼ 200µm around the ore of the gasjet [54℄. This redues the numberof plasma layers we an use to two. Even for only two layers suh a on�guration wouldbe longer than the optimal length for a pulse with a0 = 0.1 (or more) and L0 = 10 λ0(or less).Sine inreasing the spot size or dereasing the amount of vauum between the twolayers does only weakly hange the length of plasma for whih optimal longitudinalompression is ahieved, we only have the initial pulse length and amplitude to e�etivelyontrol the ompression length. We are looking for a ombination of pulse parameterswhih allows strong ompression and fousing and is stable against slight variations inthe thikness of the gasjets that an our in experiments.A parameter ombination, whih ful�lls this requirements, is a0 = 0.08,L0 = 20 λ0 and

W0 = 250λ0. The length of the density plateau an be varied between 200 λ0 and 280 λ0with a distane between the gasjets of 3600λ0 to 5000λ0. The results for the intensityevolution for three di�erent plasma-vauum on�gurations an be seen in Fig. 6.14. It ispossible with suh on�gurations to reah a more than hundredfold inrease in intensityfrom I = 0.0064 to I = 0.69. This is nearly as good as for the physially less realistiexamples disussed above, although the absolute value of the maximum intensity is notas high. Still, the spot size an be dereased to less than 30 λ0 (Fig. 6.15) and the lengthto less than 2.5 laser yles.There are two interesting points to note. The �rst is that, although substantial partsof the two layers have a density of less than quarter ritial, no Raman instability wasvisible in any of the simulations. The seond is that the foal length of the last layer is104



6.3. Controlling transversal �lamentation
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Figure 6.11: Amplitude evolution for a0 = 0.14, L0 = 10λ0, W0 = 150λ0 for three plasmalayers (n0 = 0.3nc). Eah plasma layer is 75λ0 long. The total vauum lengthis 1800λ0. The partition of the vauum is 1000λ0/200λ0 (green), 800λ0/400λ0(yan), 600λ0/600λ0 (blue), 400λ0/800λ0 (magenta) and 200λ0/1000λ0 (red).about 6000λ0, muh larger than for most of the other on�gurations disussed before.This an be explained by the large initial spot size and less extreme fousing.6.3 Controlling transversal �lamentationWe will now introdue pulse perturbations to the simulations to examine the stabilityof the pulse propagation through a layered plasma vauum struture with respet totransversal �lamentation. The aim is to �nd parameters that allow (nearly) optimalompression and minimize losses due to pulse �lamentation. Compared to the transver-sal perturbations used in setion 4.4, we here use a disrete spetrum of wavelengths.The amplitude parameter for the perturbation is for eah wavelength and not for thesuperposed perturbation after phase randomization. For the longitudinal perturbationpro�le a super-Gaussian with two times the pulse length (full width at half maximum)is used that is shifted by half the pulse length towards the bak of the pulse. A per-turbation is applied to the pulse before eah of the layers, where the loal amplitudeand length of the pulse is used to determine the amplitude of the perturbation and thelength of the longitudinal perturbation pro�le instead of the initial values. Without aperturbation applied before eah layer the shorter modes that an only grow in the lastlayer where the pulse is su�iently short would have already dispersed before the pulsehas propagated this far. The standard perturbation that is used, onsists of 20 osine orBessel modes (depending on the transversal geometry) with wavelengths from 10 λ0 to
30 λ0 and an amplitude of either 0.01 or 0.005 times the pulse amplitude at the positionwhere the perturbation is applied to the pulse.Both perturbation amplitudes are su�ient to indue a strong instability if only asingle long layer is used. For several shorter layers the lower amplitude of 0.005 seems105



6. Strati�ed plasma-vauum systems
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Figure 6.12: Amplitude evolution for a0 = 0.1, L0 = 10λ0, W0 = 150λ0 for three plasma layers(n0 = 0.3nc). The plasma layers are 250λ0, 140λ0 and 60λ0 long respetively. Totalamount of 1800λ0 vauum between layers. Partition of the vauum is 1500λ0/300λ0(green), 1200λ0/600λ0 (yan), 900λ0/900λ0 (blue), 600λ0/1200λ0 (magenta) and
300λ0/1500λ0 (red).to favor the growth of short wavelength modes. The larger perturbation amplitude of

0.01 an lead to strong growth of long wavelength modes in the �rst layer that thepulse an not fully shed before reahing the next layer. Thus they an grow furtherand still dominate in the last layer. Due to the phase randomization used to produe aspatially uniform perturbation that an in�uene the strength of the instability, for eahsimulation run that shows suessful ontrol of the instability at least one additional runwas made to verify the result.The type and strength of the perturbations we use represents a worst ase senario.The four layer on�guration in [59℄ simulated with a 3D PIC ode shows strong insta-bility in our simulations for the higher perturbation amplitude of 0.01 and is not stablefor every run with the lower amplitude of 0.005, even with more than 100 λ0 vauumbetween the layers. It is unknown how strong the �lamentation will be in experiments,but possibly weaker than in PIC simulations due to their inherent noisiness. If we an�nd on�gurations that still allow stable pulse ompression for these strong perturba-tions, we an be su�iently sure that they will show stable behavior in experiments,too.In the preeding setion about enhaned transversal fousing, we optimized the plasma-vauum on�gurations to reah the highest possible intensity for a ertain ombinationof pulse parameters. We found these optimized on�gurations to be generally highlysuseptible to transversal instability. We thus have to modify either the pulse param-eters or the vauum-plasma on�guration to allow for stable pulse propagation again.Di�erent strategies will be disussed in the following setions.106
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Figure 6.13: Amplitude evolution for a0 = 0.1, L0 = 20λ0, W0 = 250λ0 for three plasma layers(n0 = 0.3nc). The plasma layers are 300λ0, 170λ0 and 50λ0 long respetively. Totalamount of 3600λ0 vauum between layers. Partition of the vauum is 2100λ0/1500λ0(red), 1800λ0/1800λ0 (green) and 1200λ0/2400λ0 (blue).
6.3.1 Very long vauum setionsIf the amount of the vauum between the plasma layers is not su�ient to allow theshedding of the unstable modes, it is possible to inrease the amount to a length muhlonger than the optimal length for fousing. This has the additional advantage thatthe amplitude of the pulse at the last layer is dereased, too, whih further redues thestrength of the transversal instability. The disadvantage is of ourse that the maximumintensity after ompression in the last layer is also redued. Despite of this, high in-tensities an still be reahed (Fig. 6.16). Beause of the strongly asymmetri fousingbehavior of plasma layers, the length of the vauum may have to be inreased to severaltimes the foal distane of a single layer. For more than two layers the partition of thelarge amount of vauum has to be hosen to prevent ollapse in one of the layers. Inmost ases, this an not be ahieved with an equal partition of the vauum. The beststrategy is to put most of the vauum between the last two layers, as shown in Fig. 6.17.This yields a higher intensity than the same amount of vauum between the �rst twolayers. Additionally it allows a full shedding of unstable modes from previous layersbefore the pulse enters the last layer. From theoretial onsiderations it would seemthat the longer vauum setion is more useful behind the �rst layer, where long wave-lengths have beome unstable that an not be fully shed in a short vauum setion. Thesimulation results learly suggest otherwise. It seems that a omplete shedding is mostimportant before the pulse enters the last layer, beause remaining short wavelengthmodes drive the pulse rapidly unstable. 107
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Figure 6.14: Amplitude evolution for a0 = 0.08, L0 = 20λ0, W0 = 250λ0 and three di�erent two-layer on�gurations. Eah layer has two linear transition regions of 200λ0 betweenvauum and plasma. The density plateaus (n0 = 0.3nc) are 200λ0 (green), 240λ0(blue) and 280λ0 (red) long with 4200λ0, 5000λ0 and 3600λ0 of vauum betweenthe layers respetively. The density pro�le for the 240λ0 long plateaus (blue urve)with 5000λ0 between the layers is shown in blak.
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Figure 6.15: Spotsize evolution for the simulations shown in Fig. 6.14.6.3.2 Inreasing the initial pulse spot sizeAnother strategy to allow for an easier ontrol of the �lamentation is to inrease ofthe initial spot size. Without a orresponding inrease in the amount of vauum, awider pulse is foused less strongly and is thus less lose to ollapse (Fig. 6.18). For asu�iently large inrease in spot size, the length of the vauum setions an be inreased,too, without being again lose to the ollapse of the pulse. This allows a more thoroughshedding of the unstable modes and very good suppression of the instability (Fig. 6.19).If the amplitude of the pulse is inreased as well, e.g. to a0 = 0.14 , �lamentationontrol beomes muh more simple, beause pulse amplitude and length determine the108
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0.3nc) of 375λ0 and 80λ0 length respetively, with 24000λ0 vauum in between.Unperturbed simulation run in blak, two runs with 0.5% perturbation (blue) and tworuns with 1% perturbation (red), see text for details. Left: full simulation domain.Right: seond layer only.plasma length neessary for maximum longitudinal ompression. If the layers are veryshort, the instability has only a short time to develop, too. Dereasing the pulse lengthan have the same e�et (as long as the pulse power is above the ompression threshold),but this redues the ahievable intensity and is limited by the laser hardware. For ashort and intense pulse, e.g. a0 = 0.14 and L0 = 10 λ0, whih reahes full longitudinalompression after only 230 λ0 of plasma, a small inrease in spot size from W0 = 150λ0to W0 = 180λ0 is already su�ient for stable pulse propagation. For this parameters�lamentation ontrol is possible with only two layers (Fig. 6.20). Very high intensitiesof |a|2 ∼ 1.5 an be reahed in this way. A spot size of W0 = 200λ0 allows for enoughvauum to use three layers (Fig. 6.21). This redues the strength of the instability inthe �rst (now shorter) layer and results in an even higher maximum intensity.Control of the �lamentation beomes inreasingly di�ult for longer pulses. Theindividual layers are muh longer and thus the instability has more time to develop.The amplitude of a long pulse an not be inreased to ompensate for this in the sameway as it is possible for a shorter pulse. Intensities would beome too large before thepulse length has dereased to the desired value and a large part of the pulse energywould be transferred to the plasma.1 Even for a large initial spotsizes of W0 = 250λ0and a su�ient amount of vauum between the layers, reliable �lamentation ontrol annot be ahieved for a pulse of a0 = 0.1 and L0 = 20 λ0 with three layers (Fig. 6.22 andFig. 6.23), beause the layers are too long for stable propagation. Inreasing the numberof layers to four would neessitate a muh larger initial spotsize to aommodate for theadditional vauum setion and/or using one very long vauum setion. Both measuresinrease the omputational ost to a level that makes a parameter optimization of suh1This onsideration of ourse only applies if the aim is to generate a pulse that is as short as possibleand not to simply maximize intensity. 109



6. Strati�ed plasma-vauum systems

0.5 1 1.5 2 2.5 3

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

z / λ
0

m
a

x
im

u
m

 o
f 

|a
|2

2.5 2.55 2.6 2.65 2.7 2.75 2.8

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

z / λ
0Figure 6.17: Amplitude evolution for a0 = 0.1, L0 = 10λ0, W0 = 150λ0. Three layers (n0 =

0.3nc) of 225λ0, 120λ0 and 80λ0 respetively, with 2000λ0 and 22000λ0 vauum inbetween. Unperturbed simulation run (blak), two 0.5% perturbation runs (blue), two
1% perturbation runs (red). Left: full simulation domain. Right: third layer only.

1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

z / λ
0

m
a

x
im

u
m

 o
f 

|a
|2

Figure 6.18: Amplitude evolution for a0 = 0.1, L0 = 10λ0, W0 = 200λ0. Three layers (n0 =
0.3nc) of 225λ0, 140λ0 and 60λ0 respetively, with 1500λ0 and 2100λ0 vauum inbetween. Unperturbed simulation run (blak), two 0.5% perturbation runs (blue), two
1% perturbation runs (red).

a system unattrative as long as other options exist. Instead, the individual layersan be slightly shortened to redue the strength of the pulse ompression and alsothe time for the instability to develop. This omes at the prie of a redued maximumintensity (Fig. 6.24 and Fig. 6.25) and an inrease of the minimum spotsize, but withouta signi�ant inrease in the minimum pulse length.110
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Figure 6.19: Amplitude evolution for a0 = 0.1, L0 = 10λ0, W0 = 250λ0. Three layers (n0 =
0.3nc) of 225λ0, 140λ0 and 60λ0 respetively, with 2000λ0 and 3000λ0 vauum inbetween. Unperturbed simulation run (blak), two 0.5% perturbation runs (blue), two
1% perturbation runs (red).
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Figure 6.20: Amplitude evolution for a0 = 0.14, L0 = 10λ0, W0 = 180λ0. Two layers (n0 =
0.3nc) of 180λ0 and 50λ0 respetively, with 3000λ0 vauum in between. Unperturbedsimulation run (blak), two 0.5% perturbation runs (blue), two 1% perturbation runs(red).6.3.3 Reduing the initial pulse amplitudeIn experiments it might not be possible to redue the length of the individual plasmalayers below a ertain value that is still too large for stable pulse propagation. In thisase the strategies disussed above are not appliable. The only possibility might thenbe to redue the initial pulse amplitude. For the simulations of two gasjets we alreadyhad to use a lower amplitude than for other plasma on�gurations, even without pulseperturbations. This improves ontrol of the instability as well. For the gasjet on�gura-tion with density plateaus of 200 λ0, the �lamentation is kept well in ontrol (Fig. 6.26).111
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Figure 6.21: Amplitude evolution for a0 = 0.14, L0 = 10λ0, W0 = 200λ0. Three layers (n0 =
0.3nc) of 120λ0, 80λ0 and 30λ0 respetively, with 1500λ0 and 2100λ0 vauum inbetween. Unperturbed simulation run (blak), two 0.5% perturbation runs (blue), two
1% perturbation runs (red).
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Figure 6.22: Amplitude evolution for a0 = 0.1, L0 = 20λ0, W0 = 250λ0. Three layers(n0 = 0.3nc) of 300λ0, 170λ0 and 50λ0 length respetively. Two di�erent vauumon�gurations, 1200λ0/ 2400λ0 in red and 2400λ0/1200λ0 in blue. Solid urves forunperturbed simulation runs, dashed and dash-dotted urves for 1% perturbation runs.Although there is a visible redution in maximum intensity, the losses are still tolerable.In simulations with longer plateau setions of 240 λ0, where a higher maximum inten-sity is reahed, the losses stay only in an aeptable range for the perturbation with arelative amplitude of 0.005 (Fig. 6.27 and Fig. 6.28).
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Figure 6.23: Same simulation parameters as shown in Fig. 6.22, but for 0.5% perturbation.
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Figure 6.24: Amplitude evolution for a0 = 0.1, L0 = 20λ0, W0 = 250λ0. Three layers (n0 =
0.3nc) of 280λ0, 150λ0 and 50λ0 respetively, with 1200λ0 and 2400λ0 vauum inbetween. Unperturbed simulation run (blak), two 0.5% perturbation runs (blue), two
1% perturbation runs (red).
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Figure 6.25: Amplitude evolution for a0 = 0.1, L0 = 20λ0, W0 = 300λ0. Three layers (n0 =
0.3nc) of 290λ0, 160λ0 and 50λ0 respetively, with 2000λ0 and 3000λ0 vauum inbetween. Unperturbed simulation run (blak), two 0.5% perturbation runs (blue), two
1% perturbation runs (red).
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7 ConlusionIn the present work we studied the question wether a laser pulse an be e�iently om-pressed in both the longitudinal and transversal diretions by means of the relativistinonlinear self-interation inside of a plasma. For this purpose we derived two oupledequations for the vetor potential of the laser and the eletron density perturbationaused by the laser pulse. These equations are valid in the weakly relativisti param-eter regime. Only for weakly relativisti intensities, e�ient pulse ompression withlow energy losses is possible. With further assumptions the ubi nonlinear Shrödingerequation (NLSE) an be derived from these equations. Analytial models based on theNLSE allow to alulate the power thresholds for self-ompression in the longitudinaland transversal diretion, by means of the variation-of-ation method (VAM). We on-lusively showed that only pulses that are in both the longitudinal and the transversaldiretion diretly at the 2D (or 3D) threshold, obey this threshold. Any pulse thatfor one diretion is learly above the threshold, obeys the 1D threshold for the otherdiretion instead. We also showed that while the thresholds are su�iently aurate,the pulse dynami is not well desribed by a VAM that presribes a Gaussian pulseshape. A distint dependene of the transversal shape on the longitudinal oordinateand vie versa is visible in simulations both inside the plasma (stronger ompression onaxis, hapter 4) and after the pulse has left the plasma (stronger transversal fousing ofthe pulse enter, hapter 5).Thus it is indispensable to study the pulse dynamis by means of numerial sim-ulations. We developed numerial shemes with high auray and e�ieny for one(hapter 3) and two (hapter 4) dimensions. This was ahieved by ombining Gautshi-type exponential integrators with other means like splitting the linear operator of thewave equation and the quasi-envelope approah (QEA). With these methods, it is pos-sible to handle the fast temporal and spatial dependene of the solutions e�etively.Speial attention was given to tailor the sheme to the di�erent setions of the simula-tion domain, i.e. plasma and vauum setions and transition regions. In 2D, the parallelimplementation of this integrator sales well with the number of proessors.Numerial simulations were used to study the longitudinal pulse ompression in 1Dfor a wide range of pulse and plasma parameters. This on�rmed the result from [59℄that e�ient ompression without high energy losses to the plasma is limited to weaklyrelativisti intensities and densities above 0.25nc to avoid Raman instability. In 2D theinteration between longitudinal and transversal ompression and its dependene on theinitial length and spot size of the pulse was examined. Here the result was that, fora ontrolled longitudinal ompression, the spot size of the pulse has to be muh largerthan its length. Otherwise the pulse will diretly start to ollapse, a behavior whiheventually ours for wider spot sizes, too, but only after a muh longer propagation116



in plasma than needed for optimal longitudinal ompression. We also showed thatthe ompression in the longitudinal and transversal diretions is strongly oupled evenbefore the pulse starts to ollapse. The faster diretion (smaller initial length or width)essentially enslaves the ompression dynamis of the slower diretion (larger initial lengthor width).Due to the additional degree of freedom in 2D, the pulse an develop new types ofinstabilities ompared to 1D. These where disussed in hapter 4. Beause of the lownoise properties of the numerial methods we used, eah instability ould be triggeredindependently of the others by applying an appropriate initial perturbation to the pulse.The most important one, with respet to e�ient pulse ompression, is the transversal�lamentation instability. Beause a pulse whih shows longitudinal ompression andhas a wide spot size is several times above the transversal self-ompression threshold,individual �laments an self-fous and ultimately ollapse. This leads to large energylosses due to strong plasma exitations and heating. Analytial results exist only forthe transversal stability of soliton solutions and show a dependene of the �lamentationwavelength on the pulse length. The analytial preditions for the most unstable wave-length were veri�ed numerially. Additionally, for the �rst time the relation between the�lamentation wavelength and pulse length was studied numerially for a longitudinallyompressing pulse. During the ompression the spetrum of the unstable modes shiftstowards shorter wavelengths. The shortest possible �lamentation wavelength given bythe minimal pulse length is only reahed for slowly ompressing pulses. We also demon-strated that the shape and time evolution of the unstable spetrum is nearly the samefor a soliton like and a Gaussian pulse shape, as long as their longitudinal half width isthe same.We also studied the propagation of the pulse from plasma to vauum and how thistransition an be desribed analytially, as well as the pulse propagation in vauum.While in 1D the pulse shape stays unhanged during propagation in vauum, in 2Dthe pulse an either fous or defous. Beause the plasma indues a negative urvatureon the phase front of the pulse, the pulse fouses behind the plasma layer similar to alassial lens. This further inreases the amplitude and redues the spot size of the pulse.We showed that the fousing behavior di�ers from the well known Gaussian beam. Thedi�erene inreases with the length of the plasma layer and reahes a maximum for thefully ompressed pulse. We demonstrated that the foal length and minimum spot sizeof an initially very wide pulse an be predited by the simulation of a pulse with a muhsmaller initial spot size. For pulses that developed transversal �lamentation inside theplasma, detailed simulations of the propagation of unstable modes in vauum relativeto the main pulse were performed. The di�erene in propagation of short wavelength(belonging to the instability) and long wavelength transversal modes (belonging to themain pulse) is the key to ontrol transversal �lamentation.Combining the results from pulse ompression in plasma, transversal fousing, andshedding of unstable modes in vauum, we demonstrated that a strati�ed plasma-vauum struture an not only be used to ontrol transversal �lamentation, as in [59℄. Itan also signi�antly inrease the maximum intensity of the ompressed pulse through117



7. Conlusionenhaned transversal fousing. This was tested for a wide variety of pulse parametersand plasma on�gurations. The intensity an be inreased hundredfold in this way, withexellent ontrol of transversal �lamentation. Relativisti intensities in the foal spot ofthe last layer are possible, while still being subrelativisti inside the plasma. For plasmaon�gurations that are possible in urrent gasjet experiments, the peak intensities areless high and transversal �lamentation is less well ontrolled. The results are still veryenouraging as they show the real world appliability of layered pulse ompression thatwill only inrease with advanes in experimental on�gurations.
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A VAM model for pulseompression in 2DThe ubi nonlinear Shrödinger equation in ylindrial geometry is
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A. VAM model for pulse ompression in 2Dwhere qζ denotes the derivative of q with respet to ζ .From varying for φ we get E ′ = 0, thus E(ζ) = E0 and
A(ζ) = A0 (A.7)Varying L with respet to R gives the simple relation
W ′ =

W
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(A.8)Di�erentiating this relation with respet to ζ yields
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This gives us a threshold for the longitudinal ompression
β2A2

0 T
2
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2 , (A.17)by the same argument as in the ase of the transversal ompression. To derive the samedi�erential equations for T and W in a 2D Cartesian geometry, where the NLSE hasthe form
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B Transversal �lamentationinstabilityB.1 Stationary solution of the ubi nonlinear waveequationWe derive the stationary solution of the equation
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a(z, t) , (B.1)i.e. the solution that is onstant in shape in the frame omoving with the group veloity.We use the ansatz
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v2
sg

′′ + 2iωsvsg
′ − ω2

sg − g′′ − 2iksg
′ + k2

sg = −n0

nc

(
1 − 1

2
g2

)
g , (B.3)where the prime denotes derivation with respet to the omoving oordinate ζ = z−vs t.Assuming ks = vsωs, whih is onsistent with the linear plasma dispersion relationfor v2

s = 1 − n0/nc, simpli�es this to
v2

sg
′′ − ω2

sg − g′′ + v2
sω

2
sg = −n0

nc

(
1 − 1

2
g2

)
g . (B.4)Using n0/nc = 1 − v2

s and the de�nition η2 = 1 − ω2
s , (B.4) an be transformed into

n0

nc

g′′ − n0

nc

η2g = −1

2

n0

nc

g3 . (B.5)The substitution ξ = ηζ and a resaling of the amplitude g → η g �nally yields
g′′ = (1 − 1

2
g2)g . (B.6)It is easy to verify that this equation has a solution of the form

gs(ζ) = 2η sech(η ζ) , (B.7)where we reintrodued the fator η from the last substitutions.By using the relation between ks and ωs, we arrive at the full time-dependent solution
as(ζ) = 2η sech(η ζ)ei

√
1−η2(vs ζ−(1−v2

s )τ) . (B.8)122



B.2. Growth rate of the instabilityB.2 Growth rate of the instabilityTo investigate the growth rate of transversal perturbations for 1D soliton solution of theNLSE, we use the following ansatz funtion
a(z, x, τ) = 2η(z, x)e−iφ(z,x)sech(η(z, x)βτ) . (B.9)The Lagrangian for the 2D NLSE in Cartesian oordinates onsists of four parts. Inser-tion of the ansatz funtion into eah part yields

L1 = iβ

(
a(z, x, τ)

∂

∂z
a∗(z, x, τ) − a∗(z, x, τ)

∂

∂z
a(z, x, τ)

)

= −8βη2sech(ηβτ)2 ∂

∂z
φ

L2 =
(1 − β2)

β2

(
∂

∂τ
a(z, x, τ)

)(
∂

∂τ
a∗(z, x, τ)

)

= 4η4(1 − β2)sech(ηβτ)2 tanh(ηβτ)2

L3 =

(
∂

∂x
a(z, x, τ)

)(
∂

∂x
a∗(z, x, τ)

)

= 4sech(ηβτ)2

((
∂

∂x
η

)2

+ η2

(
∂

∂x
φ

)2
)

+ 4sech(ηβτ)2

(
τ 2β2η2 tanh(ηβτ)2 ∂

∂x
η2 − 2βτη tanh(ηβτ)

∂

∂x
η2

)

L4 = −1 − β2

4
a(z, x, τ)2a∗(z, x, τ)2

= −4
(
1 − β2

)
η4sech(ηβτ)4Integration over τ results in the shortened Lagrangian

L̄ = −1

3

(
1 − β2

)
η(z, x)4 +

12 + π2

36

∂

∂x
η(t, y)2 + η(z, x)2

(
∂

∂x
φ(t, y)2 − 2β

∂

∂z
φ(t, y)

)
.(B.10)Varying for η

∂

∂η
L̄ − ∂

∂z

(
∂

∂ ∂η
∂z

L̄
)

− ∂

∂x

(
∂

∂ ∂η
∂x

L̄
)

= 0 (B.11)yields
(
∂

∂x
φ

)2

− 2β
∂

∂z
φ = (1 − β2)η2 +

12 + π2

36

[
2
∂2

xη

η
− (∂xη)

2

η2

]
, (B.12)varying for φ

∂

∂φ
L̄ − ∂

∂z

(
∂

∂ ∂φ
∂z

L̄
)

− ∂

∂x

(
∂

∂ ∂φ
∂z

L̄
)

= 0 123



B. Transversal �lamentation instabilityyields
β
∂

∂z
η =

∂

∂x

(
η
∂

∂x
φ

)
. (B.13)To study the transversal stability, we linearize around the 1D soliton with η0 = const.and φ0 = φ0(z)

η(z, x) = η0 + δη(z, x) (B.14)
φ(z, x) = φ0(z) + δφ(z, x) . (B.15)From (B.12) we get the zeroth-order equation for φ
∂

∂z
φ0(z) = −(1 − β2)

2β
η2

0 . (B.16)The �rst-order equation is
∂

∂z
δφ = −(1 − β2)

β
η0δη −

(12 + π2)

36βη0

∂2

∂x2
δη(z, x) , (B.17)where we already substituted ∂zφ0 from (B.16).From (B.13) we get an equation for δη

β
∂

∂z
δη = η0

∂2

∂x2
δφ . (B.18)Di�erentiating this equation with respet to z and subsituting ∂zδφ from (B.17) resultsin

∂2

∂z2
η(z, x) = −(1 − β2)

β2
η2

0

∂2

∂x2
δη(z, x) − (12 + π2)

36β2

∂4

∂x4
δη(z, x) . (B.19)By inserting δη = eikxx−iωz/β we get for the dispersion relation

ω2 = −n0

nc
η2

0k
2
x

(
1 − nc

n0

(12 + π2)

36

k2
x

η2
0

)
. (B.20)This implies that we get instability for

k2
x <

n0

nc

36

(12 + π2)
η2

0 . (B.21)Two transversal dimensions (x, y) hange only the Laplae operator in (B.19) to ∂2

∂x2 + ∂2

∂y2 .Thus the dispersion relation has the same form as (B.20) with k⊥ =
√
k2

x + k2
y insteadof only kx.In ylindrial geometry equation B.19 beomes

∂2

∂z2
η = −(1 − β2)

β2
η2

0

(
∂2

∂r2
+

1

r

∂

∂r

)
δη − (12 + π2)

36β2

(
∂2

∂r2
+

1

r

∂

∂r

)2

δη . (B.22)The radial Laplae operator is diagonalized by Bessel funtions of �rst kind and orderzero with
∆rJ0(krr) =

(
∂2

∂r2
+

1

r

∂

∂r

)
J0(krr) = −k2

rJ0(krr) . (B.23)For a transversal perturbation of this form the dispersion relation is again the same asin (B.20) with k⊥ = kr.124



C 3D instabilitiesWe here rederive for irular polarization the growth rates of the instabilities disussed in[14℄ for linear polarization. The nonlinear Shrödinger equation in a frame that omoveswith c is (
∇2

⊥ − 2iβ
∂

∂ζ

)
a = (1 − φ)a (C.1)

(
∂2

∂τ 2
+ 1

)
φ =

|a|2
2

(C.2)oupled with the equation for the potential φ = n1
e−|a|2/2, where n1

e = ne−n0
e. Here ωpand ωp/c were used for time and spae normalization. Note that this leads to an impliitdependene of lengths and times on the plasma density, ompared to a normalizationwith ω0 and ω0/c where n0/nc is inluded expliitly.The Lagrangian density for these equations is

L =∇⊥a · ∇⊥a
∗ − i β(a ∂ζa

∗ − a∗∂ζa) (C.3)
− (∂τφ)2 + φ2 + (1 − φ)|a|2We de�ne the shortened Lagrangian L̄ as the integral over the perpendiular oordinates

L̄ =

∫

R2

dr⊥L (C.4)For the test funtions the following ansatz is used
a(τ, ζ) =A(τ, ζ) ei kx(τ,ζ)x̃a ei ky(τ,ζ)ỹa (C.5)

× exp

(
−[1 − i α(τ, ζ)]

x̃2
a

wxa(τ, ζ)2

)

× exp

(
−[1 − i α(τ, ζ)]

ỹ2
a

wya(τ, ζ)2

)

φ(τ, ζ) =Φ(τ, ζ) exp

(
−2

x̃2
φ

wxφ(τ, ζ)2

)
exp

(
−2

ỹ2
φ

wyφ(τ, ζ)2

)
. (C.6)with the de�nitions

x̃a = x− xa(τ, ζ)

ỹa = y − ya(τ, ζ)

x̃φ = x− xφ(τ, ζ)

ỹφ = y − yφ(τ, ζ)

A(τ, ζ) =
√
ξ(τ, ζ) ei χ(τ,ζ) 125



C. 3D instabilitiesThis ansatz inludes variations in the amplitude A, shifts of the beam and wake�eldentroids (xa, ya) and (xφ, yφ) as well as variations of the beam spot size.The variation of L̄ is de�ned as
δL̄[q, qτ , qζ ] =

{
∂q − ∂τ

∂

∂qτ
− ∂ζ

∂

∂qζ

}
L̄ (C.7)where the subsript of q denotes the orresponding derivative.Varying L̄ with respet to αx, αy, kx, ky, χ yields the relations

αx = −β
4
∂ζ(w

2
xa) (C.8)

αy = −β
4
∂ζ(w

2
ya) (C.9)

kx = −β∂ζxa (C.10)
ky = −β∂ζya (C.11)

∂ζP = 0 (C.12)with P = A2wxawya. This relations redue the number of variables by �ve.To obtain an equilibrium solution for the linear stability analysis, we set wxa = wya ≡
wa, wxφ = wyφ ≡ wφ, xa = ya = xφ = yφ ≡ 0 and all derivatives with respet to τ tozero. This yields

wa =wφ (C.13)
Φ =

P

2w2
a

(C.14)
∂2

ζwa = − 4

β2w3
a

(
P

16
− 1

)
. (C.15)From this follows the self ompression threshold for the beam

A2
0 w

2
0 = P0 ≥ Pc = 16 (C.16)and the zeroth order solution
P0 = Pc (C.17)
wa = w0 (C.18)
Φ0 =

P0

2w0
(C.19)around whih we will expand the Lagrangian. The threshold value is smaller by a fatorof two than for linear polarization.126



To simplify the resulting equations, we de�ne
w̄a =

wxa1 + wya1

2
(C.20)

w̄φ =
wxφ1 + wyφ1

2
(C.21)

∆wa =
wxa1 + wya1

2
(C.22)

∆wφ =
wxφ1 + wyφ1

2
. (C.23)We now vary the expanded L̄ with respet to the �rst order quantities. The expansionin the �rst order quantities q1 = q−q0 has to be done to seond order in the perturbationparameter.Varying with respet to xa1 and xφ1 results in the equations for the hosing instability

∂2
ζxa1 +

P

Pc

1

x2
R

xa1 =
P

Pc

1

x2
R

xφ1 (C.24)
(
∂2

τ + 1
)
xφ1 = xa1 (C.25)The equations for ya1 and yφ1 are idential.Varying for w̄a and Φ1 yields

(
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τ + 1
)(
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8

w3
0
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Pc
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)
= − 8

w3
0

P

Pc

w̄a (C.26)
(
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τ + 1
)(

Φ1 +
16

w3
0

P

Pc
w̄φ

)
= 0 (C.27)Varying for w̄φ and ombining the equations from w̄a and Φ1 leads to the equations forthe symmetri self-modulation instability

[
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1

x2
R
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w̄a = − w3

0

8 x2
R

φ1 (C.28)
(
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τ + 1
)
φ1 = − 16

w3
0

P

Pc
w̄a (C.29)

(
∂2

τ + 1
)
w̄φ = w̄a . (C.30)The equation for w̄φ is deoupled from the other two equations and thus takes onlypassively part in the instability.The equations for asymmetri spot size self-modulation result from varying with re-spet to ∆wa and ∆wφ

(
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ζ +
3

x2
R

)
∆wa =

P

Pc

1

x2
R

∆wφ (C.31)
(
∂2

τ + 1
)
∆wφ = ∆wa (C.32)127



C. 3D instabilitiesDespite using irular instead of linear polarization, and thus having a stronger nonlin-earity for the same a0, these equations are idential to the equations in [14℄.The general form of the the equations for the three types of instabilities is
(
∂2

ζ + Γ1

)
f = Γ2h (C.33)

(
∂2

τ + 1
)
h = Γ3f , (C.34)Fourier mode analysis with f, g ∼ eikζ−iωτ and alulating the seular determinant yieldsthe dispersion relation

ω2k2 + Γ1(1 − ω2) − k2 + Γ1 − Γ2Γ3 = 0 . (C.35)Sine ω and k are measured in a omoving frame, we have to do the inverse transformto obtain the dispersion relation in the laboratory frame for ω′ = ω and k′ = ω′ + k. Ifwe further assume that the relation between k′ and ω′ is mostly linear with only smalldeviations, so that ω′ = k′ + g we get
g4 + 2 g3 k′ + g2 k′ 2 − Γ1(g

2 + 2 g k′ + k′ 2) − g2 + Γ1 − Γ2Γ3 = 0 , (C.36)where k′ is real and g is small and omplex.The maximum value for the growth rate Im(ω) = Im(g) is attained for k′ = 1, beauseat this value the resonane with the plasma wake ours. By setting g = 0 we get
k′ =

√
Γ1 − Γ2Γ3

Γ1
(C.37)for the ut-o� value, above whih instabilities an not our.In [14℄ the growth rate for the short wavelength regime around k′ = 1 is argued to be

g =

(
Γ2Γ3

2

) 1
3 −1 ±

√
3i

2
(C.38)by onsidering Γ1 ∼ Γ2Γ3 ∼ 1

x2
R

= ε2 and g ∼ ε. For k′ = 1 the onstant term in (C.36) oforder ε2 then has to be balaned by the lowest order terms that ontain g. Inonsistentlythey neglet 2 γ1g ∼ ε3 and only use the term that is ubi in g to alulate the growthrate (although the orretion due to the linear term should be small).For the long wavelength regime, that is not driven by the resonane with the wake�eld,but instead mostly by the relativisti mass nonlinearity alone, we have k′ ∼ ε. Thebalaning then is between the onstant term and the term quadrati in g
g = i

√
Γ2Γ3 − Γ1 . (C.39)This only gives us a ondition for the ourrene of the long wavelength regime, namelythat Γ2Γ3 ≥ Γ1, but not the desired relation between g and k′. By plotting the fulldispersion relation, we see that for long wavelength the relation is nearly linear. Theonly possibility then is

g = i
√

Γ1k
′ . (C.40)128
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