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1 Introduction

Since the invention of the laser in 1960, the use of laser technology has become ubiqui-
tous. Lasers today are used for optical communication, digital data storage applications,
material processing, welding, numerous medical applications from diagnostics to surgery
and have become an indispensable tool in scientific research due to the coherent nature
of laser radiation.

During the first two decades the laser intensities were increased rapidly through the
introduction of ()-switching and mode locking. The pulse length decreased accordingly,
from microseconds to nanoseconds with ()-switching and femtoseconds with mode lock-
ing. This allowed intensities to reach I ~ 101W/em? and already lead to relativistic
effects for electrons oscillating in the field of infrared lasers, as the necessary intensity
for relativistic electrons is T A3 ~ 10 W um?/cm?. If a laser pulse at this intensity
propagates through a gas, it is directly ionized and a plasma is created. The relativis-
tic mass increase then leads to nonlinear effects, like self-modulation and self-focusing,
similar to nonlinear optics for bound electrons in a medium.

Since typical amplification media show strong nonlinear effects for intensities this
high, intensities could not be increased further until the technique of chirped pulse
amplification (CPA) was developed in 1985. This technique enabled a considerable
further increase in laser intensity. Large laser facilities world wide now reach intensities
well over one Petawatt. CPA also reduced the cost of high power lasers significantly
and allowed universities to build pgm lasers (e.g. using Ti:sapphire crystals) that reach
intensities above I ~ 10® W /cm? and thus allow to study relativistic effects in plasmas.

The basic mechanism of CPA is the stretching of the pulse by a factor of thousand to
a hundred thousand by inducing a linear chirp. This can be achieved by letting the pulse
propagate through a medium with large group velocity dispersion like an optical fiber
or by reflection at a grating, which has the same effect. After stretching the frequencies,
the front of the pulse is red-shifted, while the back of the pulse is blue-shifted (or vice
versa). The stretched pulse can then be amplified without reaching the saturation limit
of the amplification medium. After amplification, the chirp is reversed and the pulse is
thus compressed to its original length. Amplification by 6 to 12 orders of magnitude
were achieved in this way. To reach amplification factors this high, the stretcher and
compressor have to be matched exactly, otherwise the chirp is not fully compensated.
This gets more complicated for shorter pulses as higher order dispersion terms become
important, which have to be compensated, too. Still, it is possible to achieve very short
pulses in the range of 10 to 30 femtoseconds with high quality wave fronts by using
holographic gratings, deformable mirrors and acousto-optic temporal phase correctors
(Dazzler).

A variant of CPA is the so called optically parametric CPA (OPCPA). This method



1. Introduction

uses a nonlinear crystal in which the pulse is amplified through the interaction with a
pump pulse. Because of the nonlinear amplification mechanism, that is necessarily in
the saturated range of the medium, the efficiency is lower than for standard CPA. The
gain bandwith, on the other hand, is larger than for CPA.

Focusing the ultraintense pulses produced in this way on solid or gaseous targets
results in the formation of overdense (which reflect the pulse) or underdense plasmas
(which allow pulse propagation) respectively. The huge amount of coherent radiation
in a small volume produces many interesting nonlinear effects with interesting appli-
cations. The overdense plasma surface of a solid irradiated by a short, high contrast
pulse, strongly oscillates and produces higher harmonics of the laser frequency. More
than 100keV harmonics can be produced in this way with resulting pulse lengths in
the attosecond or even zeptosecond range |26, 3|. These pulses can be used for the
diagnostics of ultrafast physical processes. Irradiation of a thin metal foil by an intense
laser pulse leads to a large electrostatic field between the foil and thermal electrons
behind the foil that where produced by the currents induced by the pulse. Protons or
ions adherent to the back of the foil are easily accelerated by this field up to tens of
MeV |31, 58, 21|. These protons can be used for time resolved imaging, because protons
produced at different times have different energies. Protons of a certain energy can be
selected and focused by a laser irradiated cylindrical metal foil [63, 24]. In the future the
acceleration of light ions, for example carbon, to several hundred MeV is likely possible.

In gaseous targets the pulse can induce a large amplitude plasma waves, called the
wakefield of the pulse, that can be used to accelerate electrons [18, 32, 21]. Wakefields
are especially suited for particle acceleration, because in the process of the wakefield
production the huge transversal electromagnetic field of the laser is transformed into a
longitudinal electrostatic field. Because the plasma is ionized by definition, there are no
problems due to material breakdown at ~ 20 MV/m as for conventional accelerators.
Electrostatic fields of 100 GV/m and more can be sustained and electron energies of
up to 1 GeV have been reached [42]. In undulators the accelerated electrons can then
be used to generate very short and intense coherent X-rays (X-ray free electron lasers,
XFEL). Overviews of laser technology and the whole field of nonlinear laser-plasma
interaction can be found, for example, in [6, 52, 65|, with many further references.

Numerical simulations have been vital to understand the nonlinear effects that occur
in laser-plasma interaction. They are also indispensable for the design of experiments.
Mostly particle-in-cell (PIC) codes are used for this simulations, because they include
most of the relevant physics and can be scaled to a large number of processors [55]. In
PIC simulations, electrically charged macroparticles are used to model the electrons and
ions in the plasma. From their positions and velocities the current density is calculated
on a grid. This current density is used as a source term for the Maxwell equations that
are solved on the same grid. The updated electromagnetic fields are then interpolated to
the positions of the macroparticles to update their positions and velocities. The number
of macroparticles is usually much smaller than the number of particles in a real plasma,
hence their name. This leads to relatively high noise levels in PIC simulations. Because
the macroparticles only interact through the grid, binary collisions are not included, but



can be added by means of Monte Carlo methods.

For parameter regimes, where kinetic effects are negligible, fluid-dynamical codes can
be used instead. They assume a fixed velocity distribution for electrons and ions, e.g. a
cold or an isothermal plasma. Since they are not particle based, simulations with fluid
codes are generally less noisy than with PIC codes. The computational cost of fluid
simulations is also significantly lower. For the study of a particular parameter regime,
further simplifications of the fluid-dynamical model can be possible. This again reduces
the computational cost of simulations and enables the investigation of a large range of
parameters in the particular regime.

In this thesis we study the pulse compression properties of plasma layers. Due to the
relativistic interaction with the plasma, a laser pulse can be longitudinally compressed
down to a single laser cycle in length, with a corresponding increase in intensity. PIC
simulations show that energy efficient pulse compression is limited to weakly relativistic
intensities [59], at least for the uncompressed initial pulse. In this range of intensities
the main source of nonlinearity is the relativistic mass increase due to the quiver motion
of the electrons in the field of the laser. The ponderomotive force of the laser only causes
small perturbations in the electron density. We will derive model equations that include
the relevant nonlinearities and develop efficient numerical methods for them.

To fully assess the potential of relativistic pulse compression, the transversal dynamics
of the pulse has to be included into the simulations, both during propagation in a plasma
layer and in vacuum |9, 56]. Transversal instabilities play an important role, too. Thus
numerical codes for 2D /3D geometries are necessary. With this codes we will study
the propagation of a pulse through one or more plasma layers with vacuum in between.
Such layered plasma-vacuum systems are a promising concept to produce very short
and intense pulses. With further improvement of the stretcher / compressor gratings it
might be possible in the future to further amplify the resulting pulses with OPCPA due
to its large gain bandwith.

The thesis is organized as follows. In the next chapter the model equations for the
weakly relativistic parameter regime will be derived. In chapter 3 pulse dynamics in
1D will be discussed. The numerical methods for 1D simulations will be developed in
this chapter, too. The necessary modifications for 2D simulations are developed at the
beginning of chapter 4, after which the compression dynamics and instabilities in 2D are
investigated. The lens-like transversal focusing properties of a plasma layer are studied
in chapter 5. Chapter 6 about pulse compression with stratified plasma-vacuum systems
combines the ideas developed in the preceding chapters.



2 Model equations

The starting point for the derivation of the different modell equations that we will later
use for numerical simulations and analytical descriptions of pulse propagation, are the cold
fluid equations coupled to the Maxwell equations for the fields A and ¢. This Fluid-Maxwell-
equations do not include kinetic effects that change the microscopic velocity distribution and
thus can not model particle acceleration and heating of the plasma. But they allow for much
lower runtimes of simulations that have much less numerical noise than e.g. PIC-simulations.
First we will derive a reduced version of the Fluid-Maxwell equations by assuming that the
plasma is curl-free where A = 0. A further simplification is possible for laser intensities that
only cause a weak relativistic mass increase of the plasma electrons. The resulting equations
for the weakly relativistic regime form the basis for most numerical simulations in the present
work. Most analytical models will be based on the cubic nonlinear Schrédinger equation that
is derived at the end of this chapter using the slowly varying envelope approximation.

2.1 Reduced Fluid-Maxwell equations

The Maxwell-equations for the potentials A and ¢ in Coulomb gauge are

1 02 10 47\ .
A¢p = 4mp . (2.2)

To couple the fluid equations for density and momentum of a two component plasma of
electrons and Z;-times charged ions, we use the following definitions

j=elZmivi —n.ve) ,
P = 6(Zznz — ne) .

0 —

For a fixed ion background (v; = 0) with Z;n? = n? = ng this simplifies to

j = —€N¢Ve ,
p=e(ng—ne) .

Combined with the continuity equation and momentum balance of a cold (7" = 0)
electron fluid

0

Ene + V- (neve) =0 (23)
0 1 0A 1

<§+V6-V)Pe—€|i—v¢—zE—I—EVGX(VXA) (24)
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2.1. Reduced Fluid-Maxwell equations

this yields a closed system of equations. We can thus distinguish two types of nonlin-
earity in the wave equation for A. Because of

, (2.5)

%zmzuu(i@c)z. (2.6)

there is a relativistic mass increase of the electrons, as well as oscillations in plasma
density. The momentum balance can be rewritten as an equation for the canonical
momentum

9
ot

with

(Pe . E A) = eV —me Vry, + ——P, x [v X (Pe . EA)] . (2.7)

MeYe

To normalize the equations, we use the inverse wave frequency w; ' of the laser as the

unit of time and the inverse wave number £, ! as the unit of length with wy = cko. In
this normalization the laser wavelength in vacuum is Ay = 27 and the laser frequency
vy = 1/27. The potentials are measured in units of m.c?/e, velocities in units of ¢ and
momentum in units of me.c. The density is measured in units of the critical plasma
density for a given laser carrier frequency, defined as

2
dmnce 9

=Wy . (2.8)

Me
Additionally we extract a constant factor out of the electron density

ne(r,t)  mngne(r,t) _ ng

ne(r,t) .
o - o (r,t)
A logical choice for ngy is the maximum of the ion background density. To allow for
propagation of a laser pulse through the plasma Z—g has to be less than unity.
The dimensionless Fluid-Maxwell-equations in Coulomb gauge are thus given by

82 8 o un P
opA —AA - o Vo = e (2.9)
Ap = 2(n; —n,) (2.10)
) P
) P
gt P~ &)~ = XAV X (P A} = V(0 —) (2.12)

v =1+ P2 (2.13)

11



2. Model equations

with the additional gauge condition V - A = (0. The restriction to a cold plasma and
a fixed ion background limits the applicability of the equations to the descriptions of
short, fast! pulses. In the time span such a pulse needs to propagate the distance of its
own length, neither can the much heavier ions move, nor can the plasma thermalize the
energy transmitted by the pulse.

We define the projection operators II. and II; such that any field u is decomposed
into u = v + w with the following properties

ju=v=u, Vxv=0, butgeneraly V.-v#0,
Mlu=w=u,, V-w=0, butgenerally Vxw#0,
with
I, +1I, = 1.

as long as the manifold X, on which the operators are defined, is star shaped.
Clearly, v is a gradient field, and w is a curl field. The operators can be represented
as
I,=VA'V. and II.=1-VA~'V..

Applying 1 = II, 4 II, to the momentum balance
0 P
{Hc+Hg}[@(P—A)—; x{Vx (P—A)} =V(p—)], (2.14)

allows to split the equation in a divergence-free and a curl-free part. The equation

P P
G (Pe = A) T | [V x (P = A)}| =0 (2.15)

describes the convective transport of the divergence-free part of the canonical momentum
P... = P — A. This implies that for the initial condition P. = A, the canonical
momentum stays curl-free for all times.

Pop=P,+P,—A=P, . (2.16)

This initial condition simplifies the curl-free part to

2Py~ 1, | X {V X (P~ A)}| = V(6 -7 (2.17)
0
apg = V(¢ —7) (2.18)

Since V x P, = 0, P, can be written as a Clebsch-potential, P, = V1. The momentum
balance can then be integrated to yield

0
§¢:¢_7+1' (2.19)

1vg o ¢ with v, = /1 — ng/n., which implies densities not too close to n.

12



2.2. Equations for the weakly relativistic regime

This set of equations already has a simpler structure than the original Fluid-Maxwell
equations. Numerically, though, they are still hard to tackle, because they include
the development of shocks in the density and velocity distribution that can produce
unphysical negative densities and lead to numerical instability. This occurs because
of the convective nonlinearity that can lead to a crossing of the characteristics of the
equations. There are no physical mechanism included in the equations that could prevent
this trajectory crossing. Simply including artificial viscosity has the unwanted side
effect of qualitatively altering the solution of the equations even in regions where it is
smooth. For schemes using Lax-stabilization, e.g. |4] the same objections are valid |43].
Developing a Riemann-solver based numerical scheme (see e.g. [46]) for relativistic laser-
plasma interaction, which could cope with shocks in the solution is beyond the scope of
this work. Some work has been done in [53| on flux corrected transport methods (FCT,
see [36, 67]), but the resulting scheme has the restriction that the grid constants for all
coordinates have to be in the same range.

2.2 Equations for the weakly relativistic regime

As we will see in the next chapter, energy efficient pulse compression is limited to
weakly relativistic intensities. We will now derive equations for this particular parameter
regime. Applying the splitting via II; and II. to the wave equation for A, yields for the
divergence-free part

82 Un

A - AA =

o (1= VATV (A + V) (2.20)

and for the curl-free part

0 no n

—V¢p=——VAT'V.- ¢ “(A+V : 2.21

V= {Zasvn) (221
The right-hand-side of both equations includes the curl-free part of the current density
II,j. This part can be rewritten in a form with two terms, where the inverse Laplace
operator acts only on one of them.

Z—;ng — VATV {% (A+w)} (2.22)
= A {v (A : v%) +VV- %w} (2.23)
— A {v A v%) + A(%W) +V XV x <%w>} (2.24)
_ %w + A {v (A : v%) +V x Kv%) X (W)H . (2.25)

13



2. Model equations

Substituted into the equations for A and V¢ we get

e O M RO RS (S RUTH
(2.26)

2o (zsa o n 92) o[ (5%) o))

(2.27)

The two terms that A~! acts on have a simple interpretion: multiplying the divergence-
free A or the curl-free Vi with % leads to new divergence and curl components in
those terms, respectively. These two terms are necessary to cancel the corresponding
components of %A and %Vz/z, to get the actual curl-free and divergence-free parts of
the current density.

Both terms are identical to zero in the one dimensional case?, so it is natural to assume
that in the three dimensional case they can be neglected, too, if the dependency on the
perpendicular coordinate is sufficiently slow. But in this case the perpendicular Laplace
operator would also be negligibly small, because for A(r) = A(z,ar,) it yields a factor

a?, while V <A . V"—;), even with the assumption A, = 0, only yields a factor . We

thus have to derive the scaling more thoroughly to arrive at the correct equations.
We choose the following ansatz for the weakly relativistic scaling

A(r,t

(r,t) =e{Ai(z,ari) + pe. Ay(z,ar.)} (2.28)
ne(r,t) = nd + Bnl(z, ar)) ( )
o(r,t) = po'(z,ary) (2.30)
P(r,t) =69 (z,ary) (2.31)

(2.32)

2
y(r,t) =1+ 5|A|2 :
The different smallness parameters a of course interrelated. First we will derive the
conditions for a consistent relation between these parameters.
From Coulomb gauge we get

VAZE{(IVJ_AJ_+/L0ZA||}:O = U=0a.

The Laplace equation for ¢ yields

pA¢1=%(ne—n2)=%6ni = p=p.

The reduced momentum balance
SOt =po' —(y—1) =po' +O(c)

2A. =0,V 2 =0,V.6=0= A- V2 =0,(V2) x (V¢) =0

14



2.2. Equations for the weakly relativistic regime

and the continuity equation
n
pV - 9,Ve = Bon! = —n5 A" + hoot.
Ne
are consistent with

This scaling is also consistent with the wave equation for A
2
e {0]A - 0A —a2AlA}——5{ (n? +6n){ %\A|2}A}+....

Under this assumption, because of

2

vl 2yt 4oy AL |)

~
and
A~VIAJ_~(O&VL)+O&A||8Z
we have
v <A : VE> = O(a)
Y
and

V x Kv%) X (w)] = O('a?) .

The inverse Laplace operator does not change the order of these terms, because

B B 1 1 k2 2N\
A ! =F 17]{,‘ﬁ—|—a2k‘2 ~F 1]{,‘2 (1_a2k‘_ﬁ> = (@) +O(Oé2) )

where F~! is the inverse Fourier transform. To get consistent equations, we have thus
to include all terms up to order £* and ea?, while neglecting terms of order 3a and
higher. Linearizing in the density fluctuation allows for a further simplification of the
equations by differentiating the continuity equation in time

0 1 ng o0
— nl = B0 Z At
oz e AV

and applying the Laplace operator the equation for ¢!
RANCE N N
ot

Substituting ¢! in this way, we get

o
@ni + ZO ndnl =nlAy . (2.33)

15



2. Model equations

Combined with the wave equation of the correct order in the scaling coefficients

2
€
DA — AA = -0 {ng (1 -3 |A|2> + ni} A (2.34)
we have a complete system of equations. Since a component of A that is initially zero
will stay zero, we can construct a pulse with A = 0 and only use A, in the equations.
It is convenient for numerics to write A (r,t) as a complex field a(r,t) by defining

1
AJ_(r> t) =

§a(r, t){e. tie,} +c.c. (2.35)

for a circular polarized laser, where the £+ denotes left or right circular polarization.

2.3 Slowly varying envelope approximation

We can further simplify the wave equation (2.34) by introducing the so called slowly
varying envelope approximation (SVEA). We first transform into a comoving frame with
the new variables

1
C:zandT:Bz—t, (2.36)

where § = /1 — ng/n. is the linear group velocity of the pulse.
Transforming the derivatives in (2.34) accordingly results in

2 1-p20% 2 0? Mo Ne
— — Al A = ——A . 2.37
{ag2 + 52 or2 + ﬂ&Tag + J_} (I'J_, CaT) Ne 7 (I'J_, CaT) ( )
Defining the envelope ansatz
1 . =82
A(r,, (1) = ia(rL,C,T) {e, Ltie,} e 7 + c.c. (2.38)
and insertion into (2.37) yields
0 1— 3% 92 1 1—75% (n.
9 P e LA ae Me 4 2.
Z&Ca+ X 87’2a+26 La 53 S a, (2.39)

under the assumption that the envelope function a(r, ¢, 7)) varies slowly compared to
the carrier wave and % and 88—;2 can be neglected.® Setting n, = const. and expanding
the ~-factor leads to the well known cubic nonlinear Schrédinger equation (cubic NLSE).
Under the same variable transformation and envelope approximation, the density
equation becomes ) ,
n 1
8_n1+n—0ngné:n2{@%—l—AJ_}’y. (2.40)

3For two or three dimensional wave equations this is also called the paraxial approximation [61].

16



2.3. Slowly varying envelope approximation

Note that this equation represents an initial value problem in ¢, not in 7 as the NLSE.
This complicates the numerical solution of the coupled system (2.39), (2.40).

For very short pulses of only a few laser cycles, the envelope approximation breaks
down. Another drawback of the NLSE is that the transition of the laser pulse from
vacuum to plasma is not described self-consistently by this equation. The NLSE is thus
less well suited for the numerical simulation of pulse compression than the full wave
equation. We mainly derived the NLSE here for use in analytical models based on the
variation-of-action method (VAM).

17



3 Pulse compression in one
dimension

The propagation of a pulse that is short in the longitudinal direction and wide in the transver-
sal direction will at first be close to the propagation of a one dimensional pulse that is
transversally constant. If and when the dynamics in 2D/3D changes significantly from 1D
will be discussed in the later chapters. In this chapter we will study the influence of pulse
and plasma parameters on longitudinal pulse compression and instabilities that already occur
in 1D. First we will derive the 1D versions of the equations from chapter 2 and then develop
a numerical scheme to handle the fast time and space dependence of the wave elequation.
This part of the chapter was published in [39].

3.1 Model equations in 1D

It is instructive to derive the model equations (2.33) and (2.34) again in 1D. We start
with the normalized equations (2.9), (2.11) and (2.12) and assume that all quantities
depend spatially only on the z-coordinate. Coulomb gauge implies the purely transverse
nature of the wave (A = A ). The wave equation (2.34) for the transverse component
A | now reads

82 82 Un PJ_
— A ——A, =——n,—. 1
o 92t Ne " v (3:-1)
The longitudinal part of the wave equation simplifies to
0? P
0 o, Ty, (3.2)

otz Ty

Either this equation or the continuity equation is redundant, because derivation with
respect to z yields the 1D continuity equation.

The same splitting was achieved in 3D by decomposing the equations into a curl-free
and a divergence-free part.

The momentum balance (2.12) can be split into its longitudinal and transversal com-
ponents. The transversal electron momentum balance

0 Pz 0 (PJ_ - AJ_)
— (P, — A 2 = T 3.3
o (P 1)+ < - ) R (3.3)
has the special solution
P, =A,. (3.4)

18



3.1. Model equations in 1D

This special initial condition corresponds to the 3D condition V x (P — A) = 0, which
is the local version of the global 1D condition. In 3D the local longitudinal direction
is given by the direction of the k-vector and the momentum components perpendicular
to this direction are equal to A ;. The component of A parallel to k is equal to zero
because of Coulomb gauge.
The longitudinal electron momentum balance
op, OPL—A) 9(¢—17)

ot P Dz 0z (3:5)
can be simplified by the special solution, too. Thus we directly have only a scalar
equation for the momentum in 1D, without using a Clebsch potential ¢ with P = V1.
This leads to the basic set of 1D equations:

82 82 No AJ_

@Al_@Al:_n_anT’ (3.6)
;2;: % ne% —0, (3.7)
= (), (33
5;} _ 8(%2— 7) ’ (3.9)

where n? is the time-independent part of n (which is identical to the fixed ion back-
ground) and v = /1 + [A| |2 + P2.

The scaling for the weakly nonlinear regime is much simpler in 1D, too. We assume
that

A, xe<landn, =nd+an!.

Equations (3.8) and (3.7) then directly tell us that ¢' oc @ and P} o< a (¢° = P2 = 0).

Inserting
g a?
vl 5|AL|2 + ?(le)2

into (3.9) suggests a = &2 and that P! can be neglected in the y-factor.
The correctly scaled wave equation then is

82 82 o

1
@AL — gt =, {ng (1— §|AL|2) +n§} A (3.10)

Derivation of (3.7) with respect to time and inserting (3.9) and the scalings for n, and

P, yield an equation for the electrostatic part of the E-field £} = 9, ¢!

82

no
ﬁ z¢1 + n—cng 8Z¢1 = ——n—n —Z|AJ_‘2 . (311)

This equation allows for an arbitrary dependence of n? on z. The full 3D version of this
equation has three components and thus is better substituted with a scalar equation

19



3. Pulse compression in one dimension

for n; by using Ag = "2ng. If we assume ny to be piecewise constant or only slowly
dependent on z, as we did in the derivation of the 3D equations, we can transform the
above equation into
2 n 1 2
%n;+n—2ngn; = —§ng%|AL|2. (3.12)
The equations thus have the same form as in 3D, only the Laplace operator is restricted
to the z-coordinate.

Comparison of 1D simulations with these two equations for the density response show
no significant differences for density profiles with density jumps or smooth ramps of
several g length. For 1D simulations we will use the equation for E! and for the 2D
simulations in the following chapters the equation for n..

A significant difference can occur between simulations with the full y-factor and the
expanded v, because the scaling only tells us the order of € of a term in the equations,
but not the constant in front of it. In all following simulations we will use the full
~v-factor, if not explicitly stated otherwise.

3.2 Numerical methods

Numerically solving the wave equation (3.10) poses the problem that the carrier wave
of a laser pulse has a fast time and space dependency. The discretization of the spatial
grid and the stepsize in time have to be chosen accordingly small. This is even the
case for circular polarization and a pulse envelope that changes slowly compared to the
laser wavelength (so that the nonlinearity varies smoothly), because the restriction is
caused by the properties of the linear operator on the left-hand-side of the equation. We
will discuss two methods that will allow us to attenuate the restrictions, Gautschi-type
numerical schemes to handle the fast time dependence and the quasi-envelope approach
(QEA) to reduce the number of grid points.

3.2.1 Spatial discretization

Due to the finite energy assumption on the physical solution it is possible to consider
periodic boundary conditions for the discretization as long as the simulation box is
big enough and one takes care of reflected pulses at the boundaries. For long time
simulations this can be combined with a moving window technique.

Semi-discretization in space is done by a pseudospectral method with N Fourier modes
on a space interval z € zg + [—L, L]. This leads to the following system of coupled
ordinary differential equations in time (the prime denotes time-derivative):

1
a" = ~D%a + g(a,nb). glant) = =m0 +nl)-a,  (3.13)
n 8

e

E" = —W*E + f(a), f(a) = —nYiD+\/1+ |al?. (3.14)
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3.2. Numerical methods

Here, D? = F'D?Fy, where Fy is the discrete Fourier-transform operator, and

N N
+1,...,-1,0,1,..., = —1).

s
D= —di
iag 5

( N
L 27 2
The jth component of the vectors a(t) and E(t) are approximations to a(z;,t) and

E(z;,t) at z; = 2 —I—j%, and w? = Z—‘zng

3.2.2 A two-step Gautschi-type exponential integrator for time
discretization

As a solver for these equations we use a modification of a Gautschi-type exponential
integrator [34|. This integrator is motivated as follows: By the variation-of-constants
formula, the exact solution of

y' = Q% + F(y) (3.15)
satisfies
y(t + 1) =2cos(tQ)y(t) — y(t — 1)

+ /OT Q7 'sin((7— s)Q) (F(y(t+ ) + F(y(t — s)))ds . (3.16)

For a constant inhomogeneity F' this yields
y(t+7) =2y(t) —y(t —7) + 7Y (7Q) (LY (t) + F)

where .
— CcoST
In the general case, a numerical scheme is obtained by substituting a suitable approx-
imation of F(y(t &+ s)) into (3.16). This leads to approximations y; ~ y(tx), tx = kT,
defined by

Yrr1 = 2y — Yp—1 + T(7Q) (- Py + Fr) -

The simplest choice, originally proposed by Gautschi [22], is to set Fj, = F(yx). However,
the convergence analysis in [34] shows that in order to obtain second-order error bounds,
which are independent of the product of the step size with the frequencies, it is necessary
to evaluate the nonlinearity F' at a filtered position, i.e. Fj, = F(¢(7Q)y). If this filter
function ¢ is omitted, then large errors are expected in the case when the product of the
step size 7 with one of the frequencies of the problem (the eigenvalues of €2) is an integer
multiple of 7. The filter function is a suitably chosen real function whose purpose is to
filter out resonant frequencies, e.g.

b(a) = (”) or o) = (Sm)2<1+ L1~ cosa)).

T T
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3. Pulse compression in one dimension

The integrator applied to (3.15) then reads

Yir1 = 2yx — Y1 + TU(TQ) (= Qs + Fr) F, = F(o(TQ)y). (3.17)
In addition it is also possible to obtain approximations to the “velocities” 1y’ via

Y1 = Yoy + 270 (TQ) (—Qyp + ), (3.18)

‘

where o(z) = sin z/z. Note that approximating the “velocities” by standard finite
differences will lead to inaccurate results due to the oscillatory behavior of y.

For Q = 0 the Gautschi-type integrator reduces to the well known leap-frog or
Stormer-Verlet method. We will use (3.17) and, if desired, (3.18) for the integration
of (3.13) for the vector potential.

The accuracy of the integrator may be further improved if approximations to the in-
homogeneity are available at additional times. This is only true if we solve the equations
(3.14) for the electrical field because there the inhomogeneity only depends on a. If we
solve the equation for a first, we have approximations a; ~ a(t;) for j = k — 1, k, and
k + 1. We then replace f(a) by an interpolation polynomial of degree two interpolating
in (tr_1, far—1)), (tg, f(ax)), and (tgs1, f(ars1)). Note that we consider the circular
polarized case, in which f is a smooth function. Using this interpolation polynomial
instead of F(y(t £ s)) in (3.16) yields

Ej1 = 2B, — By + 7°¢(tw) (—w*Ey + f(ar))

() (Flaen) — 20 (@) + flay)) O

for (3.14), where

cosx — 1+ %:1:2

Ey ~ E(t) and x(z) =2 p
The scheme (3.19) is of order four, if a;, j = k — 1,k,k + 1 are exact or sufficiently
accurate approximations of a(t;). However, the coupled scheme (3.17), (3.19) cannot be
better than second order.

3.2.3 Choice of operators

For solving (3.13) the obvious choice would be using (3.17) with Q@ = D. By construction,
the Gautschi-type integrator then solves equations y” = —Q%y + F with constant F
exactly. Due to the special form of the nonlinearity g, we can enlarge the part which is
integrated exactly by writing

g(a,ng) = —aa+gla,ne)

and setting Q02 = D? +« for a suitable «. If the pulse is inside the plasma, the dominant
term of g is linear in a, which suggests to choose a = ng/n.. Outside the plasma (where
n? = 0) the nonlinearity is negligible so that one should set a = 0.
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3.2. Numerical methods

3.2.4 Quasi-envelope approach

The motivation behind the quasi-envelope approach (QEA) is illustrated on a numerical
result shown in Fig. 3.1: the spectrum of the vector potential splits into two parts. The
important part is concentrated around a certain characteristic wave number depending
on whether the pulse propagates inside or outside of the plasma. In addition there is
another peak resulting from reflection which is not of interest in our physical application,
because the reflection can be nearly completely avoided by using a soft vacuum-plasma
boundary (which is a more realistic model for an experimental setup). Therefore, it is
sufficient to resolve the part of the spectrum with positive k-values around the carrier
only, without problems due to aliasing that could occur if we do not handle the reflections
correctly. The number of spatial grid points required can be reduced significantly by
shifting the spectrum appropriately, i.e. we replace the vector potential a by

a(z,t) = a(z, t)e"™
and solve (3.10) for @ instead of a. This yields
*_ 0P 0 9~ Mo

@a— Wa+2m$a—m a— n—c(n +n )i’d , Y =1+]al.
Note that in the “classical” envelope approximation 9%a/dz? is neglected, leading to a
Schridinger type equation in z. In the spatially discretized equation (3.13), D? has to
be replaced by (D + k)2 The value of k can be varied for different positions of the pulse
(inside/outside of the plasma or at the boundary), so we choose kK = /1 —ng/n., k =1
or the mean value of both.

x107°
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Figure 3.1: Spectrum of the wavenumbers of the vector potential while entering the plasma, K =

\/1 —ng/n. (arbitrary units).

3.2.5 Multilevel approach

Obviously, the spatial grid size is determined by the necessity of resolving reflections
arising at jumps of the plasma density. If we have a sharp jump , then the reflections
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3. Pulse compression in one dimension

require small spatial grid sizes only when the pulse enters or leaves the plasma. This
can be exploited in a standard way by using two (or more) different grids. In our case
we used a fine grid in transitions between vacuum and plasma and a coarse one in the
remaining simulation. Switching between coarse and fine grid is done by interpolation
and from the fine to the coarse grid by restriction (both in Fourier space). Note that this
switch requires to recompute the differential operator and hence the matrix operators
required for the Gautschi-type integrator.

3.2.6 Overall numerical method

The complete numerical method combines the strategies described above. This requires
the computation of three or more sets of operators: one in vacuum (o, = 0,x, = 1,
coarse grid), one in plasma (o, = no/ne, kK, = /1 — ng/n., coarse grid), and one in the
transition (ay = 0.5n9/n, ke = (1 + /1 —no/n.)/2, fine grid), and possibly additional
sets if the pulse gets too steep to be resolved on the coarse grid in plasma due to
nonlinear pulse compression. If background density is small (so that the difference
between vacuum and plasma wavelength is also small) and the density profile has no
sharp jump (so that no reflection occurs), it is most of the time sufficient to use the
same set of operators for both the transitional region and the plasma region on the same
coarse grid, with a x halfway between vacuum and plasma wave-number. Recall that
in vacuum, there is no nonlinearity, and thus the Gautschi-type integrator solves the
problem exactly for arbitrary time steps. Obviously, it is not necessary to compute filter
functions in this case.

3.3 Accuracy and efficiency of the numerical scheme

3.3.1 Description of the simulated example problem

For runtime comparison we chose a simulation box of length 1000 )\¢. As density profile
we used a piecewise linear function which is 0 for z smaller than 100 )y and greater
than 810 Ag, 1 for 105 Ao < z < 805 A and linear in between. In this case, the
multilevel approach is not necessary, because nearly no reflection occurs at the plasma
boundaries. To simplify the simulational setup for the runtime comparison further, for
methods with QEA, only one set of operators is used with a mean value of vacuum
and plasma wavelength. With an additional set of operators for the plasma part, the
results discussed below would be even better. But for a low background density like
ng = 0.3n., which we used, the results are already very good. For denser plasmas
(e.g. mo = 0.6n,.), switching of operators between plasma boundary and plasma parts
of the density profile becomes a necessity. For the multilevel tests we used a rectangular
density profile beginning at 105 Ay and ending at 805 )¢, and we included the different
operators discussed in Sec. 3.2.6.
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3.3. Accuracy and efficiency of the numerical scheme
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Figure 3.2: Propagating pulse at different times in red, background density profile in black for
ag = 0.1, LO =10 )\0 and ng = 0.3 Ne.

The initial conditions for the vector potential in vacuum were calculated from

(z=2q=t)°
a(z,t) =age B D (3.20)
at £t = 0 and ¢t = 7. The parameters were zo = 35 Ay, Ly = 10 Ag, and ag = 0.1 or
ao = 0.12. Due to the normalization Ay = 2.

As an example, the time evolution for two different initial amplitudes is shown in
Fig. 3.2 and in Fig. 3.3. For the lower amplitude, first a compression and then a
widening of the pulse can be seen. In the case of the higher amplitude, the pulse first
compresses, and then splits off a part of its energy into a prepulse. If we calculate the
amplitude for the single soliton state of the Schrodinger model for a Ly = 10 A wide
sech(z/Ly) pulse (see [59]), we get ap =~ 0.038. A simulation of such a pulse verifies that
the soliton state of our model equations is close to this. For the two amplitudes above,
this implies that we are well within the nonlinear regime. It also suggests that the initial
condition with ag = 0.1 is close to a bound two solution state, while for ag = 0.12 it is
clearly above. In the latter case the pulse compresses more and earlier, and more energy
is radiated away from the core of the pulse after the compression.

As benchmarks for the accuracy of the different numerical schemes, we used two error
measures. Since we do not have an analytical solution of the nonlinear model equations,
we computed a reference solution on a very fine grid (N = 2'T) with very small time
steps. We then used it to measure the error in maximum amplitude squared (amplitude
error) and its position (phase error) at different times of the simulation results. Since
the simulations were computed on coarser grids (especially the QEA solutions) we first
Fourier interpolated to the same number of grid points as the reference solution.
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3. Pulse compression in one dimension
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Figure 3.3: Propagating pulse at different times in red, background density profile in black for
aop = 0.12, Ly = 10 \g and ng = 0.3 n..

3.3.2 Effect of different time-integration schemes

If the vector potential is held in Fourier space and only transformed back for the evalu-
ation of the nonlinearity /inhomogeneity, one has to compute six fast Fourier transforms
per time step for the leap-frog method (two for the nonlinearity of the wave equation,
two for the inhomogeneity of the plasma response, and two for the transformation of
E). There is one more Fourier transform needed for the Gautschi-type integrator since
in each step the filtered as well as the nonfiltered vector potential is required in real
space. In addition, one has to compute the products with the matrix functions v, ¢,
and possibly 0. Obviously computing a single time step with the Gautschi-type inte-
grator is more expensive than one time step with the leap-frog method. But it turns
out that the Gautschi-type method allows larger time steps in order to reach the same
accuracy.

In Fig. 3.4 and Fig. 3.5 maximum relative amplitude error (left) and maximum phase
error in A (right) are plotted over computational time. Each curve represents one inte-
grator on one spatial grid with different time steps.

For a given tolerance for the relative amplitude error the leap-frog method (dot-
ted+triangles) needs two times smaller time steps than the Gautschi-type integrator
(solid+diamonds) on the same spatial grid (N = 2'?). In our examples this reduces the
computational time by a factor of 1.5 (see table 3.1). If the phase error is taken into
account, too, the gain in computational time is even greater.
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3.3. Accuracy and efficiency of the numerical scheme
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Figure 3.4: Maximum amplitude and phase error vs. runtime (ap = 0.1) for varying 7 for leap-frog
(dotted+triangles), Gautschi (solid+diamonds), leap-frog + QEA (dash-dotted+circles)
and Gautschi + QEA (dashed+squares). We used N = 2'2 for methods without QEA
and N = 2! for methods with QEA (see also table 3.1).
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Figure 3.5: Same as Fig. 3.4, but for ag = 0.12.

3.3.3 Effect of choice of operators

The effect of the choice of operators is illustrated in Fig. 3.6 for the case ag = 0.1.
It is observed that the choice of @ = ny/n. within the plasma reduces the phase er-
ror significantly while the error in the amplitude is only slightly larger. However, for
agp = 0.12 switching between the operators did not pay off. The reason for this might
be the increased density variation compared to the smaller amplitude. The results in
Fig. 3.6 were computed including QEA of Section 3.2.4, but the method showed the
same behavior when combined with other variants described above. The phase error
is given in terms of A\ whereas the amplitude error is given relatively compared to the
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3. Pulse compression in one dimension

reference amplitude. In both cases the error is averaged over pulses at 100 different
positions spread evenly over the computation interval.

10°

0.043 0.087 0.174 0.349

Figure 3.6: Amplitude and phase error plotted over the time step 7 for the Gautschi-type integra-
tor including quasi-envelope approach with and without the variant described in Sec-
tion 3.2.3. Phase/amplitude error with a = 0 (solid/dashed line) and o = ng/n. within
the plasma (dotted/dash-dotted line) for ag = 0.1.

3.3.4 Effect of quasi-envelope approach

By applying the quasi-envelope approach to the leap-frog method as well as the Gautschi-
type integrator, the number of spatial grid points can be significantly reduced without
loss of accuracy (see curves with and without QEA in Fig. 3.4 and Fig. 3.5). Since
the major part of computational time is spent on Fast Fourier transforms, which cost
O(N log N) operations, the reduction of grid points by a factor of 2 again leads to a
saving in computational time of more than a factor of 2. Another reason for a more
than linear reduction in computational time is that smaller arrays are more likely to fit
into the cache of the processor. For small enough arrays, a whole time step can run
from CPU cache. We observed that QEA is more effective in reducing the amplitude
error, while the Gautschi-type method is more effective in reducing the phase error.

The parameters for the discretization needed to achieve a maximum relative ampli-
tude error of 1072 are summarized in table 3.1. Exemplary runtimes for one specific
hardware /software setup are also given.

If one compares the standard leap-frog method to the new variant of the Gautschi-
type integrator combined with QEA, the computational time is reduced by a factor of
3 in the first and even by a factor of 4.5 in the second example. If we set a bound lower
than 102 for the amplitude error, we see that without QEA this error bound cannot be
reached by only reducing 7. This is because the error due to the coarse spatial resolution
limits the accuracy that can be reached. Thus a finer grid is needed, which results in
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3.3. Accuracy and efficiency of the numerical scheme

ap = 0.1 ag = 0.12
N | 7 | time/min. | N | 7 | time/min.
LF 221 0.1 2:10 2121 0.04 5:07
LF + QEA 2111 0.1 1:03 211 0.05 1:57
Gautschi 21210.2 1:32 2121 0.12 2:28
Gautschi + QEA | 21} 0.2 0:44 2111012 1:10

Table 3.1: Runtimes for maximum one percent relative amplitude error. N is the number of spatial
grid points, 7 is the time step size. Computational details: Pentium 4, 3.0 GHz, Intel
C++ 8.1, FFT routines from Intel Math Kernel Library 7.2.

a corresponding increase of computational time, while the discretization for QEA can
stay the same (see Fig. 3.7).

maximum relative amplitude error
o

10’ 10° 10

runtime/s

Figure 3.7: Maximum amplitude error vs. runtime (ag = 0.12) for constant N and varying 7 for
leap-frog with N = 213 (dashed), leap-frog with N = 22 (dash-dotted) and Gautschi
+ QEA with N = 21! (solid).

3.3.5 Effect of two-level approach

The benefit of the two-level approach suggested in Section 3.2.5 is illustrated in Fig. 3.8.
The reference solution as well as the simulation results are shown at ¢ = 700 - 27 for a
plasma jump and ay = 0.12. It can be seen that in this case it is possible to work on
a coarse grid (N = 2') in the major part of the simulation but it is not possible to do
the whole simulation on the coarse grid. In the transition we interpolated to 2!3 grid
points.
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3. Pulse compression in one dimension
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Figure 3.8: Results of simulations using the two-level approach compared to a one-level simulation
on the (same) coarse grid only. Solid: reference solution, dashed: solution computed on
a coarse grid only, dotted: two-level approach (curve coincides with the solid one).

3.3.6 Comparison with PIC
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Figure 3.9: Relative difference in intensity to the reference solution of the reduced model for ag = 0.1
(left) and ap = 0.12 (right). Gautschi+QEA (see table 3.1, solid) and PIC (dashed)
with N =2-10°, 7 = dz(N) and 3 particles per cell, runtime around 5 : 30 h.

Finally, we compare with PIC simulations performed with VLPL [55|. Since PIC
simulates E and B instead of A, we base our comparison on intensities, calculated by

1, n 1(]0 ?
1—5(\E\+|B|)—§<‘§A >

For the Gautschi-type method, one has to use (3.18) for the time-derivative, and for
QEA 0/0z — 0/0z + ik. The difference in amplitudes between the reference solution

2

0

—A
* 0z
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Figure 3.10: Phase-difference in terms of laser wavelength between the exact linear solution and

PIC (dashed) and the exact linear solution and Gautschi+QEA (solid), both with ag =
0.0001.
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Figure 3.11: Phase-difference in terms of laser wavelength between the exact linear solution and

PIC (ap = 0.12: dash-dotted and ay = 0.0001: dotted), exact linear solution and

Gautschi+QEA (ag = 0.12, solid) and difference between PIC and Gautschi+QEA for
ag = 0.12 (dashed).

for the reduced model and PIC (see Fig. 3.9) and the Gautschi-type method with QEA
for the parameters given in table 3.1 are of the same order. This implies that, even
with a relatively coarse discretization, the error of the simulations with our fastest
solver is within the accuracy of the reduced model, which seems to be at the border of
applicability at ag = 0.12.

We also noticed that there is a systematic difference in group velocity between PIC
solutions and ours. To understand whether this is due to numerical error in PIC and/or
our solvers, we made simulations with both for a very small amplitude (ay = 0.0001).
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3. Pulse compression in one dimension

The combination of small amplitude and a cold plasma allows to test the phase error
of the numerical simulations against the known linear analytical solution. The results
in Fig. 3.10 show that PIC (dashed) produces a slight error in group velocity even on a
fine grid, whereas Gautschi+QEA (solid) with coarse discretization is close to the exact
solution.

In Fig. 3.11 we compare the phase shift (with respect to the exact linear solution) of
VLPL (dash-dotted) and the Gautschi+QEA simulation from table 3.1 (solid) in the
nonlinear case (ap = 0.12). The difference between the two (dashed) is consistent with
the linear phase error of PIC (dotted). This shows that the difference in phase between
nonlinear PIC and Gautschi+QEA is mostly linear phase error of PIC, which could also
influence the accuracy of the amplitude calculation.

3.4 Pulse dynamics in 1D

3.4.1 Self compression threshold

As we have already seen in the example problems of section 3.3, a pulse with sufficient
energy can overcome the dispersion of the plasma medium and self compress. This
happens due to the nonlinearity caused by the relativistic mass increase of the electrons
oscillating with the laser field. The energy threshold for the self-compression can be
calculated simply from the single soliton solution of the cubic nonlinear Schrédinger
equation (cubic NLSE), which is also a soliton solution to the (cubic) nonlinear wave
equation (see section B.1 of the appendix) for which we discussed an efficient numerical
scheme above. This threshold can also be derived from the NLSE via the variation-of-
action method (VAM) with

TO ; ; 2 T
a(1,C) = A(Q)y | == e77%(C) (O™ gech (—) 3.21
as the trial function. Here n(({) is the linear chirp of the pulse.

The Lagrange density for the cubic NLSE is
2 1 — 2
ﬁ ﬁ |a‘4 )

1 —
L =1ip(ad:a” —a*Oca) + 7(&@)(&@*) —— (3.22)
Inserting the trial function and integrating over 7 yields
2(1-p%) A% 2y 4410 220 =5%) jore | 2, 00 2

Varying L for n and T" and combining the two resulting equations leads to the following
ordinary differential equation for the temporal length 7'(() of the pulse

a2 1 {62A8T0T(C)_1}
73 10 | 4

T(¢) = (3.24)
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3.4. Pulse dynamics in 1D

with 7j the initial pulse length.

From this we immediately get the threshold value for the self compression: if the
expression inside the parenthesis is larger than zero, the second derivative of T'({) is
negative and the length decreases. An initial pulse that fulfills

A(]Toﬂ > 2 (325)

will thus compress. The group velocity 3 enters into the threshold, because the temporal
length of the pulse increases with decreasing group velocity. For the wave equation where
a spatial distribution is propagated in time, the threshold takes the following form

A(]LO > 2 (326)
where L is the initial spatial length of the pulse.
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Figure 3.12: Amplitude evolution for solutions of the VAM model (blue), cubic NLSE (green)and
cubic wave equation (red) for initial sech-pulses below, at, or above to the compression
threshold. For VAM and NLSE the initial length are (from bottom to top) Ty =
7/1,7.61/19,8.2/, 11 and for the cubic wave equation Ly = 5.857 Ay, 6.37X¢, 6.86 Ag.
Initial lengths are chosen according to (3.25) and (3.26) with ag = 0.05 and ng =
0.3ne.

As expected from true soliton solutions, the threshold values for both equations agree
perfectly with numerics. The curves of intensity vs. propagation distance in Fig. 3.12
show that pulses directly at the threshold propagate unchanged. Slightly larger or
smaller values compress or disperse respectively. But only slightly away from the thresh-
old, the VAM model differs significantly from numerics. In part this is due to solutions
of (3.24) being strictly periodic for 4,Tp3 > v/2'. In reality a pulse with an energy
between the one- and two-soliton state will over time radiate off the excess energy.

But also for a true periodic self compressing solution of the NLSE, the bound two-
soliton state, there is no good agreement. A valid initial condition for the two-soliton

1But with length of the period to infinity as v/2 is approached.

33



3. Pulse compression in one dimension

0.07

0.061-

0.05

maximum of |a|2
o
o
e
)
|1
s

o
o
@
%

| |
0 200 400 GPO 800 1000 1200
z }‘o

Figure 3.13: Amplitude evolution due to pulse compression for a two soliton state with ag = 0.1

and ng = 0.3n.. NLSE (green) with Ty = 7.61/1p, cubic wave equation (red) with
Ly = 6.37 Ao and VAM model with T = 6.37/1 (magenta) and T = 7.61/14 (blue).

state is simply a pulse with twice the single soliton amplitude. Simulation results and a
comparison with the VAM prediction can be seen in Fig. 3.13. For the correctly chosen
initial pulse length, the VAM model shows no agreement with the numerics for the NLSE
and the nonlinear wave equation, neither with respect to the maximum amplitude, nor
the position of the maximum.

An equivalent equation can be derived for a Gaussian-shaped initial pulse, which
is closer to the pulse shape that is produced by real laser systems. Here we can not
derive the threshold from a steady state solution, because a Gaussian pulse is not a

time-independent solution of either the NLSE or nonlinear wave equation. For an initial
condition for the NLSE of

T . g __T2
Q) (O T T2

O (3.27)

a(T, ¢) = A(C)

we have

ey - A0 1 {62A8T0T(C) )
g T3(C) 8v/2

as the evolution equation of the pulse length. It is equivalent to the equation derived

in [56] and in [59] by means of the momentum method and also to the equation used to

describe dispersion managed solitons in fiber optics [64]. It has the same form as (3.24)

but differs in two respects. The factor outside the parenthesis is larger by a factor of

72, so both nonlinear and dispersive effects act on a shorter length scale. The threshold

value is different, too
A(]Toﬂ - A()LO > \/ 8\/5 . (329)

The reason for this differences is on the one hand of course the different shape. But
more importantly the two shapes have different half width for same value of the length

(3.28)
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3.4. Pulse dynamics in 1D

parameter 7. The factor between Tj and the half width for a Gaussian pulse is \/In(2) ~
0.8 while for a sech-shaped pulse it is sech™'(1/2) ~ 1.3. For the same T} the half width
of the two shapes thus differ by a factor of ~ 1.582 which is close to the difference of
the thresholds.
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Figure 3.14: Amplitude evolution for solutions of the VAM model (blue), cubic NLSE (green)and
cubic wave equation (red) for initial Gaussian pulses below, at, or above to the compres-
sion threshold. For VAM and NLSE the initial length are (from bottom to top) Tp =
5.8/vy,6.4/v9,7/vy and for the cubic wave equation Ly = 4.85 \g, 5.35 A\g, 5.86 Ap.
Initial lengths are chosen according to (3.29) with ag = 0.1 and ng = 0.3 n,.

Comparing the compression threshold with numerics for a Gaussian pulse yields not a
result as clear as for the soliton shaped pulse discussed above. A pulse at the analytical
compression threshold (3.29) does not propagate unchanged, because it will change its
shape towards a soliton during propagation. The periodicity of the VAM solution vs.
the non-periodicity of the numerical solutions is shown in Fig. 3.14. Still, the VAM
derived threshold seems to predict sufficiently well if a pulse will show self compression
or dispersion.

Considering again an initial condition with a (nearly) periodic behavior for this pulse
shape, we conclude from Fig. 3.15 that, as in the case of the truly periodic two-soliton
solution, the VAM model does not match the numerical results well. Only for the
incorrect choice of Ty = Ly the maximum amplitudes are close. This choice also improves
the agreement for the sech pulse shape, cf. the magenta curve in Fig. 3.13. The same
parameters where used for the comparison in [59] to 1D PIC and good agreement was
stated. In this comparison the pulse was initially in vacuum.

In conclusion the VAM model is useful to predict general compression vs. dispersion
behavior of a pulse, but is unable to describe the dynamics correctly. This is in contrast
to the very weakly nonlinear case for dispersion management in fiber optics, where the
agreement is excellent. Including the full y-nonlinearity and the n!-equation does not
change the thresholds for low initial amplitudes.
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Figure 3.15: Amplitude evolution due to pulse compression for a Gaussian pulse close to a two

soliton solution for ng = 0.3n. and ap = 0.1. NLSE (green) with Ty = 11.95/vy,
cubic wave equation (red) with Ly = 10 A9, VAM model with T, = 10/1 (magenta)
and Tp = 11.95/v (blue). Shown in black is a simulation of the cubic wave equation

with the same parameters as used for the red curve, but including the transition of the
pulse from vacuum to plasma.

3.4.2 Pulse amplitude vs. length

Above the compression threshold the strength and speed of the self compression varies
with the initial amplitude and length of the pulse. First we consider pulses that have
the same total energy with different initial amplitude and length, i.e. the same value
of a3 Lo. From (3.28) we immediately see that a larger initial length will lead to slower
compression behavior that scales with L2 [56]. The interesting question is wether they
show the same amount of relative compression, i.e. that the length decreases by the
same relative amount the amplitude increases. In Fig. 3.16 we can see on the left that
initially longer pulses reach a higher maximum amplitude relative to ay, because the
minimal length reached is nearly equal (right side of Fig. 3.16). This is even more
clearly visible in Fig. 3.17 for pulses with the same initial amplitude, but different L.
A larger value of Lj leads to a larger absolute value for the maximum amplitude. The
minimum length reduces slightly with increasing initial length, but this effect quickly
saturates. The same effect occurs for a constant initial length and increasing ag, as can
be seen in Fig. 3.18. Higher values of ag lead to lower a minimum length, but this effect
quickly saturates, too.

For the dynamics up to the first compression maximum, varying amplitude and length
only change the time scale and maximum amplitude of the compression. The princi-
pal form of the amplitude evolution with time is unchanged (but see the next section
about plasma density with respect to high amplitudes). After the first maximum of
self-compression, the dynamics strongly depends on the ratio of pulse energy to single
soliton energy. The same is true for the inclusion of the nl-equation. Up to the first
maximum in intensity the compression changes only quantitatively not qualitatively,
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Figure 3.16: Amplitude evolution of wave equation simulations with y-nonlinearity and ny = 0.3 n..
Pulses with the same value of a% Ly. ap = 0.1/\/5, Lo = 20\ (green), ap = 0.1,
Lo =10 )\0 (red) and apg = 0.1 \/5, Lo = 5)\0 (blue)

Raman instability not considered. After the maximum, the dynamic differs in so far,
that a true splitting of the pulse in several pulses that propagate with different velocities
can occur. The difference in group velocity due to the relativistic nonlinearity alone is
still too weak to drive pulses apart for the amplitudes considered here. For most am-
plitude / length combinations that have three or more times the single soliton energy,
the pulse splits into a single short pulse with a high amplitude, and one or more smaller
pulses. The the dominant short pulse then propagates over long distances with smaller
and smaller oscillations in amplitude and thus seems to be close to a soliton, but with
large energy loss to the plasma due to the large ponderomotive force it exerts.

3.4.3 Influence of plasma density

In the preceding sections we have used a plasma density of ng = 0.3n. for the plasma
background density as a standard value. In this section we will discuss why this is a
sensible choice and what advantages and disadvantages other values for the background
density have. We will also examine the influence of the equation for n! on simulation
results depending on the background density. We will mostly restrict the discussion
to density values larger than quarter critical.? The density range lower than quarter
critical will be discussed in the section about Raman instability below.

Without a vacuum-plasma boundary and neglected density response, there is no
change in the maximum amplitude reached by the self-compression when varying the

2Densities higher than i"“ have been difficult to realize in experiments for ~ 1 um lasers, but are

now routinely achieved through supersonic gas expansion, where a gas under high pressure (up to
100 bar) flows through a specially formed nozzle and expands in vacuum about 10 times and reaches
velocities of about Mach 3 [54].
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Figure 3.17: Amplitude evolution of wave equation simulations with y-nonlinearity and ny = 0.3 n..
Pulses with the same ag = 0.1 but different Ly. Lo = 10 Xy (green), Lo = 20 Ao (red)
and Lo =30 )\0 (blue)

background density. Only the length (and time) scale over which the compression occurs
changes proportional to \/ng/n., which can easily be seen by setting n! to zero in the
wave equation and rescaling z and t. Numerical simulations confirm this density inde-
pendent compression behavior. For the same reason the density value does not enter
the soliton solution in appendix B.1.

Including the density response results in stronger compression and higher maximum
amplitudes. Lower background densities show more gain than higher densities in this
respect, thus the strength of the compression varies with the plasma density. We can
understand this by neglecting the time derivative in the n!-equation and solving for n}.
The local density perturbation then is the second space derivative of 7y with a factor n./ng
in front. Increasing the amplitude for a pulse with constant length shows that this effect
reverses for higher amplitudes. At lower densities the wakefield excitation is stronger and
thus more energy is transfered to the plasma which neglects the aforementioned effect.
At a pulse length of Ly = 10 Ay the breakeven for ny = 0.3 n, is around ay = 0.14. For
low densities smaller than 0.25n, this is even the case for relatively low pulse energies.
For higher energies Raman instability severely limits pulse compression.

If the pulse propagates from vacuum into the plasma, two additional effects become
important. The part of the pulse spectrum below the plasma frequency can not propa-
gate into the plasma. Even if reflections are suppressed by using a soft boundary with
a linear increase over several Ao, this modes can not enter the plasma. Because the
plasma frequency increases with density, this is a disadvantage for higher densities. But
for most densities this is only visible at low amplitudes below ay = 0.1. Otherwise it
is compensated by the relativistic mass increase that locally lowers w,, this is called
self-transparency.

The other effect that occurs during the transition from vacuum to plasma is that the
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Figure 3.18: Amplitude evolution of wave equation simulations with y-nonlinearity and ny = 0.3 n..
Pulses of the same length Ly = 10 Ao, but different amplitude. ag = 0.1 (green),
ap = 0.14 (red) and ag = 0.2 (blue).

carrier wavenumber is downshifted by a factor of 3. Because the pulse is shortened,
the amplitude increases accordingly, which in turn enhances the self compression, the
more the higher the density. Combined with ponderomotive effects modelled by the
nl-equation, this favors densities in the medium range. They also have the advantages
that Raman instability is prohibited and the compression lengths are sufficiently long
to be implementable in gasjet experiments. A disadvantage of this density range is
that losses to the wakefield limit the initial intensity to lower values than possible for
higher densities. At higher amplitudes, this can have a similar effect on the compression
efficiency as Raman instability although no resonant unstable process occurs.

3.4.4 Relativistic intensities

In the last section we have seen that the density range just above quarter critical can only
sustain efficient pulse compression for initial intensities below ag ~ 0.2. Can this problem
be overcome by using higher densities (although the compression length would then be
extremely small)? This question can not be answered with certainty by simulations of
our model equations, because they are becoming invalid for large density oscillations
caused by high pulse intensities. But it is interesting to test, if without strong density
excitations, large initial amplitudes would become usable. As can be seen in Fig. 3.19
for a simulation with ay = 0.5 and without including the n!-equation, this is not the
case. Because the nonlinearity is an order of magnitude larger than the dispersion, the
pulse peak travels distinctly faster than the front and a shock forms. After the shock
formation, the pulse filaments at the back due to relativistic self-phase modulation?®,

3Self-phase modulation consists of two distinct effects, longitudinal bunching and photon acceleration
(local increase of wy), see [50] for details.
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Figure 3.19: High amplitude (ap = 0.5) simulation with only ~-nonlinearity for a density of ng =
0.6 n. and a pulse length of 10 Ag. The initial pulse (black) was placed directly inside
the plasma. Snapshots are taken at ¢ = 20/1y (blue), ¢t = 30/1 (green) and ¢ = 50/
(red).

which is only strong enough for relativistic amplitudes. Thus effective compression is
prevented. With inclusion of the nl-equation, the system becomes unstable, because
there is no saturation mechanism for the density oscillations. This instability is even
more violent at high densities.

To answer the question, if there maybe nonlinear effects at higher intensities that keep
the wakefield amplitude in control, we resort to PIC simulations with the 1D VLPL code.
In Fig. 3.20 the result of such a simulation with ay = 0.5 and ny = 0.6n. shows that a
part of the pulse are reflected, a part is trapped? and only lower amplitude noise propa-
gates through the plasma. Results for other densities above ny = 0.25n, or a higher a
equal or larger than unity show similar destruction of the pulse. The processes that are
responsible for the fast destruction and depletion of short ultrarelativistic pulses are de-
scribed in detail in |7]. Only at very low densities the pulse can propagate and compress
slightly over some distance, but is then inevitably filamented by Raman instability.

So far the only known effect that allows stable propagation for high intensity pulses
over a finite distance in all density regimes is bubble formation [20]. This is because
of ultra relativistic self similarity, where the scale parameter of the system is no longer
simply ng/n., but S = ng/(agn.) [25]. Once the pulse has created a cavitation bubble
free of electrons, it can propagate inside at ¢, while the front is still in plasma, propagat-
ing with the corresponding group velocity, thus compressing the pulse. No filamentation
due to the wakefield is possible. But the cavitation process of course constantly transfers
energy from the front of the pulse to the plasma. The most interesting consequence of

4This trapping occurs despite the plasma being underdense, this effect is described in [7].
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Figure 3.20: 1D PIC simulation using the VLPL code for a9 = 0.5, Lo = 10 \g and ng = 0.6 n..
The initial pulse (blue) is in vacuum and enters the plasma through a linear density
ramp of 5 Ao (density profile in black). Snapshots at t = 90/v (green) and t = 120/vg
(red).

this is the acceleration of electrons to high energies [19, 48|. Efficient pulse compression
in the plasma is thus limited to weakly relativistic amplitudes, both initially and at the
maximum of compression.

3.4.5 Wakefield generation and Raman instability

A short laser pulse exerts a very localized ponderomotive force on the plasma that leads
to a density deprivation at the location of the pulse. The actual form of the density
perturbation due to the pulse can be deduced from the equation for n! by neglecting
the time derivative i in
1 c 1 T 2
n, = n—OA’}/ ~ §n—OA‘CL| .
thus the shape of the perturbation simply is the second spatial derivative of the laser
envelope. Behind the laser pulse the plasma oscillates at the plasma frequency. The pulse
must fulfill a certain requirement |23, 45| to induce oscillations with a finite amplitude

compared to the background density
koL~ O(1),

where £, is the wavenumber of the plasma and L is the pulse length. Since the pulse that
acts as the driver for the oscillations propagates through the plasma with the velocity
vy = /1 —ng/n., the oscillations have v, as their phase velocity and a wavelength of
vy/wp. This phenomenon is called the wakefield of the pulse and for a cold plasma it
has zero group velocity.
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Figure 3.21: Wakefield for a Gaussian pulse with ag = 0.1 and Ly = 10 g for ng = 0.3n.. The
wakefield on the left hand side is pieced together from snapshots at different times.
On the right hand side is a magnified section of the blue curve on the left.

A periodically compressing pulse can in this way produce a localized wakefield with
the maximum amplitude of the oscillations at the maximum of compression, as shown in
Fig. 3.21. If the intensity of the pulse is sufficient to induce a density cavity that partially
traps the pulse and prevents the decompression, the wakefield becomes continuous until
the pulse energy is depleted.

The most interesting application of wakefields is electron acceleration [18, 32, 21],
also called laser wakefield acceleration (LWFA). Not included in our model equation
for the electron density, is the breaking of the wakefield |11, 35, 45|. If the plasma
wave breaks, the density gradients become infinite and particles start to overtake the
wave. This can be used for self injection of electrons into the wakefield for acceleration
purposes. Although relativistic wakefields will eventually break for any amplitude [45],
for low relativistic amplitudes this will happen after many oscillations and thus occurs
far behind the laser pulse without influence on the propagation of the pulse. In the 1D
PIC simulations we performed for weakly relativistic amplitudes, we did not observe the
generation of fast electrons.

Through stimulated Raman forward scattering (RFS) a resonant instability between
the laser pulse and the wakefield can occur [2, 51, 49]. Forward scattering here means
that the laser radiation scattered at a density perturbation still propagates in the same
direction as the laser pulse as opposed to backward scattered radiation. Due to this
scattering process, for a sinusoidal wakefield the laser energy lumps at the density min-
ima. The laser radiation is scattered from the density maxima in front (sideband with
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Figure 3.22: Pulse filamentation due to Raman instability for a laser pulse of ag = 0.14, Ly = 20 \g
and ng = 0.1n,. |a|? in blue and n/ng in red.

wo —w,) and behind a minimum towards the density minimum (sideband with wg+w,).”

This results in a filamentation of the pulse, even for a short pulse as long as its length
exceeds the wavelength of the wakefield. E.g. for a density of ng = 0.1n. we have a
wavelength of the wakefield of 3 \g. The pulse in Fig. 3.22 with an initial length of 20 A\,
shows strong filamentation at its back. Because wy — w, > w, to allow propagation of
the lower sideband inside the plasma, the scattering process can only become resonant
for wy > 2w,. Thus the condition

o 1
= — < =
n. 4

OE:M|'E€1\3

for the plasma density to allow for this type of instability.

°In this picture it is also obvious why there is a phase shift of /2 between the Raman filaments and
the maxima of the density, as it is the case for every resonantly driven harmonic oscillator.
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4 Pulse compression in two
dimensions

In this chapter we will investigate transversal effects in the relativistic self-compression of
laser pulses. We will first generalize the numerical methods discussed in chapter 3 to two di-
mensions. Since the numerical method used has very low noise, we can study pulse evolution
without transversal filamentation, because noise at the unstable wavelengths is necessary to
seed the instability. We discuss how the additional degree of freedom changes the pulse dy-
namics inside an infinite plasma slab depending on the transversal shape and spot size of the
pulse vs. its length. This allows us to identify useful parameter ranges for 2D pulse compres-
sion. Because a real laser pulse will likely show transversal filamentation inside a plasma, we
then examine in detail how the strength and spectrum of transversal perturbations influence
the growth of this instability.

4.1 Numerical Methods

In chapter 3 we used a Gautschi-type exponential integrator for the time-integration
of the one-dimensional problem and we presented comparisons which showed that such
trigonometric integrators outperform the standard leap-frog method for this particular
application. For the spatial discretization we introduced the so-called quasi-envelope
approach (QEA) to reduce the number of spatial grid points significantly.

In the following sections, that are based on [40]|, we will generalize the numerical
techniques to the two-dimensional case. This means we aim to solve the coupled equa-
tions (2.34) and (2.33) with a two dimensional Laplace operator in either a Cartesian
geometry with z, x-parameterization or cylindrical geometry in z, r-parameterization.
However, in contrast to the one-dimensional case, where a two-step implementation of
the Gautschi-type exponential integrator with constant step size turned out to be suffi-
cient, it is essential to enable changes of the time step-size for the two-dimensional case.
We will therefore suggest use a one-step version of the Gautschi-type method |28, 29|.
An error analysis for the whole family of these methods is given in |27]. In particular,
it was shown that these methods are second order accurate independent of the highest
frequencies arising in the system.

The main computational effort for one time step with an exponential integrator arises
from the computation or approximation of the product of a matrix function with a vec-
tor. In the one-dimensional case, the proposed pseudospectral discretization enabled the
use of fast Fourier transformation. This lead to an implementation where the overhead
compared to the leap-frog method was quite low. The situation changes completely in
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4.1. Numerical Methods

two space dimensions. We therefore use the full two-dimensional Laplacian within the
matrix functions only in vacuum, where huge time steps can be performed and higher
costs pay off. During propagation in plasma, we split the Laplacian into a transversal
and a longitudinal direction and use only the (one-dimensional) longitudinal direction
with the matrix functions. This splitting is justified by physical properties of the solu-
tion.

Nevertheless, for large problems it can be necessary to parallelize the scheme. A key
observation is that the parallelization has to be adapted to the different variations of the
integrator being applied in different regions during the simulation (e.g. vacuum, plasma,
and transition regions).

4.1.1 One step Gautschi-type exponential integrator for time
discretization

After semi discretization in space (cf. Sec. 3.2.1), we obtain a system of second order
ordinary differential equations of the form

i(t) = —y(t) + F(y(1) (4.1)

where Q7 is a symmetric, positive semi-definite matrix and [|F|, ||F,|, ||F,,| and
/]I + |IQy]|* are bounded. For the solution we suggest to apply the following fam-
ily of numerical schemes [30, 28|

1
Ynt1 = cos(hQ) y, + hsinc (hQ) y,, + §h2\I/F(<I>yn) (4.2a)
1
Gt = —Qsin(hQ) y, + cos(hQ) G + §h<\IIOF((I>yn) + \Ile(éynH)). (4.2b)

Here,
¢ = ¢(hQ)7 v = w(h'Q>7 \IIO = 7vbO(h'Q>7 \Ill = ¢1(h9)7

where ¢, 1,1, are even and analytical functions which are bounded on the non-
negative real axis satisfying

¢(0) =¥ (0) = o(0) =1 (0) =1.

To obtain a scheme with certain desirable properties imposes constraints on the choice
of these functions. For instance, a scheme is symmetric if and only if

(&) = sinc (§)¢1(§) and ¢o(§) = cos(€)¢(§)

and symplecticity is equivalent to

(&) = sinc (§)o(€).

Moreover, Hairer and Lubich |28] proved that for 2 = wl, w > 0 and F(y) = By with
constant B, the energy is conserved up to O(h) for all values of hw if and only if

1(€) = sinc*(£)6(¢) (4.3)
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4. Pulse compression in two dimensions

Thus, there is no scheme in this family, which is symplectic and gives good energy
conservation.

In [27], Grimm and Hochbruck derived criteria, which guarantee second order accuracy
independent of the eigenvalues of (2. They suggested to choose

U(€) =sinc’(€),  #(g) =sinc(§), (4.4)

which results in a symmetric second order scheme satistying (4.3). We use this choice
of functions for our implementation.

Note that linear problems with F' = 0 are solved exactly by all these schemes. This
allows to use arbitrarily large time steps for the propagation in vacuum. For the prop-
agation inside of the plasma layers, smaller time steps have to be used to obtain the
desired accuracy. This change of time steps would be much more complicated for the
two-step method discussed in the preceding chapter. Moreover, the equivalent one-step
variant of this scheme does not have the favorable energy conservation property.

4.1.2 Implementation of exponential integrators

For a Gautschi-type time integration scheme, the main effort per time step is the eval-
uation or approximation of the products of certain matrix functions of the discretized
Laplacian €2 with vectors. It is indispensable to do this in an efficient way. The compu-
tational cost of each time step is thus closely related to the spatial discretization.

For one-dimensional problems with periodic boundary conditions, the method of
choice is using spectral discretization, in which case the matrix €2 is diagonalizable
via one-dimensional Fourier transformations.

It is not necessarily sensible to generalize this form of discretization to two space
dimensions. Recall that a two-dimensional Fourier transformation on a grid consisting
of N, x N, grid points can be evaluated using O(N,N,(log N, + log N,.)) operations.
For large grids, this may become too expensive. In addition, on parallel machines, such
transformations become inefficient due to the large communication effort because of the
non-locality of the Fourier transform.

In general, diagonalization of a large matrix (2 resulting from finite difference or finite
element discretization is impossible. An alternative is to use Krylov subspace methods
such as the symmetric Lanczos process [12, 33|. However, for the applications considered
here such techniques are not competitive.

Therefore, we will use different spatial discretization in different regimes depending
on physical properties of the solution. Moreover, we alter the splittings in (4.1) during
the time integration, i.e. we move parts of the discretized Laplacian into the function
F'. This allows for an efficient evaluation of the matrix functions.

Cartesian coordinates in vacuum

In vacuum we only need to solve the linear wave equation

0? 0? 0?
wa = waf + @(I . (45)
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For periodic boundary conditions the semi-discretization in space is done by a pseudo-
spectral method with IV, Fourier modes on the interval z € zo+[—L,, L.] in propagation
direction and N, modes on the interval z € [—L,, L,] in perpendicular direction.

Let a = a(t) € CN=*Ne and ¢ = a(t) € CY*N= be complex matrices containing
approximations to the vector potential and its time derivative on the grid,

Qjj =~ a(xju Zivt)7 ai,j ~ —a(%, zivt) .

ot
The Laplacian is approximated by

Aar Fy!DXFy.a+ aFf DIFNT

i N N
Dk:Li:diag(—Tk,...,Tk—l), k=2,

and Fy denotes the discrete Fourier transform for N Fourier modes.

Formally, the matrices a and @ can be reorganized by writing them column wise into
long vectors. Then the spatially discretized equation (4.5) can be written as a system
of differential equations (4.1), where €2 is a matrix which can be diagonalized via two-
dimensional fast Fourier transforms and F' = 0. However, for the implementation, the
matrix notation is more efficient.

In the first time step, where the initial data is given in physical space, we start by per-
forming a two-dimensional Fourier transform by applying fast (one-dimensional) Fourier
transforms to all columns and rows of @ and a. Then we evaluate the functions arising in
the Gautschi-type integrator at the diagonalized operator. The resulting operator can
be applied to the matrices a and a by pointwise multiplication. (If desired, subsequent
time steps in vacuum can be computed in frequency space by diagonal operations only.)
At times, where the solution is required in physical space, inverse Fourier transforms
have to be applied to all rows and columns of a and & again.

Due to the Gautschi-type integrator being exact in vacuum, in the best case we only
have to compute one time step. The total cost amounts to two two-dimensional Fourier
transforms and in addition four scalar multiplications per grid point. Storage is required
for two arrays for a and a plus four arrays for the diagonalized matrix functions of the
same size. If a reduction of storage is necessary, the matrix functions can be computed
on demand. From the computational point of view, this is a rather small overhead
compared to the two-dimensional Fourier transforms.

where

Cartesian coordinates in plasma

In plasma layers we have to solve the full, nonlinear system of equations

FoE P e 150
o2 022 Ox? Ne 7 '

o

ﬁni + %ngni = nlAy. (4.6b)
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4. Pulse compression in two dimensions

After space discretization, the linear part is represented by a 2 x 2 block diagonal
matrix, whose upper diagonal block contains the discretized Laplacian and whose lower
diagonal block contains the diagonal operator of the second equation. Hence, the matrix
operators required for the time integration scheme can be computed separately for both
equations. Note that due to the nonlinearity, we need to compute (and store) more
matrix operators than in vacuum. The main costs of one time step in frequency domain
amounts to two two-dimensional Fourier transformations.

Due to the nonlinearity, the time-integration scheme does not solve the the discretized
system exactly anymore. However, the time step size is only limited by accuracy, not
by stability. This is in contrast to the well known leap-frog method, where stability
requires to use time steps proportional to the inverse of the largest eigenvalue of the
linear part. This straightforward implementation turns out to be quite expensive with
respect to computational cost and storage. Fortunately, it is possible to increase the
efficiency considerably by exploiting properties of the solution.

Longitudinal direction Transversal direction
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Figure 4.1: Left: The spatial distribution of the real part of the solution in longitudinal direction
through the centroid of the pulse. Right: The spatial distribution of the real (solid) and
imaginary (dashed) part of the solution in transversal direction through the centroid of
the pulse.

In the left graph of Fig. 4.1 we show the longitudinal distribution of the real part
of the vector potential a along the central axis of the pulse. On the right, we show
the transversal distribution of the real (solid) and the imaginary (dashed) part of a at
the point z, where the maximum of the pulse is attained. The transversal distribution
is obviously much smoother than the longitudinal. Therefore, we can discretize the
transversal direction on a much coarser grid. Moreover, it is possible to split the Lapla-
cian and only treat the longitudinal part of it exactly (€2 ~ A|) whereas the transversal
part is added to the nonlinearity F'(y). To avoid the expensive two-dimensional Fourier
transformations, we propose to use fourth-order finite differences in this direction.

Due to this splitting, the longitudinal part of the Laplacian, can be diagonalized by
one-dimensional Fourier transforms (of length N.). Moreover, we only have to compute
(and store) matrix operators of length N,. For the computation we keep the vector
potential and its derivative in Fourier space only in longitudinal direction. In transversal
direction the arrays are not transformed.
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4.1. Numerical Methods

For the density equation the application of the exponential integrator is straight for-
ward in physical space. If the density profile only depends on z the storage requirements
are again only of the order of vectors of length N,. The inhomogeneity contains the
Laplacian of the relativistic factor v which depends on the absolute value of the vec-
tor potential. This is a smooth function for circular polarized laser beams. Thus it
is sufficient to use fourth order finite differences in both directions to approximate the
inhomogeneity of the density equation.

Cylindrical coordinates

For the equations in cylindrical coordinates

8—2a—a—2a+1£ rga _@ng—l—nia (4.7a)
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we basically use the same ideas as for Cartesian coordinates in plasma regions, i.e., we
use () =~ Aj and treat the transversal direction as part of the nonlinearity. For the
longitudinal direction, we use pseudo-spectral discretization while for the transversal
direction, we suggest to use second order finite differences.

Since in cylindrical coordinates it is hard to diagonalize the complete Laplacian in a
fast and stable way we use the same implementation in vacuum as within the plasma.
Methods for numerical Fourier-Bessel transforms that diagonalize the radial part of the
Laplacian exist [8, 37, 60|, but apparently there exist to date no fast transform on an
equidistant grid with sufficient accuracy.

4.1.3 Adaptivity

For adaptivity of the integration scheme, we implement the methods discussed in 3.2.4
and 3.2.5. This is more important in two dimensions than in one dimension, because, as
we will see in chapters 5 and 6, vacuum sections between the plasma layers strongly influ-
ence pulse propagation due to transversal effects. Using different grids and/or different
values of k for the QEA method in different parts of such a strongly inhomogeneous
system can significantly increase accuracy and reduce computation time.

In order to apply all the different variations of our scheme at the appropriate time we
have to determine the location of the pulse. This is done by physically motivated means.
At the beginning we know the location of the maximum amplitude and the exact width
of the pulse. Additionally we know the approximate group velocity of the pulse at any
time. This allows to determine the approximate speed of the maximum of the pulse and
to estimate the time when the pulse hits the next region of the simulation domain.

With this method we can switch between the different integration schemes in vacuum
and plasma, for Cartesian coordinates as well as adapt the values of k for the QEA. The
latter can be done by a simple shift in the position of the Fourier coefficients which also
ensures periodicity of the shift function e*** with regard to the box length 2L.,.
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4. Pulse compression in two dimensions

Additionally we can change the spatial grid, which becomes necessary for very narrow
pulses as they occur in the simulation of pulse compression. Also for hard plasma bound-
aries, where reflections are no longer negligible, it becomes necessary to interpolate to a
finer grid and invert the QEA shift, as we have already shown for the one-dimensional
case in section 3.3.5. For pseudo-spectral discretization this only requires a larger ar-
ray in Fourier space where extra entries are filled with zeros. But the computation is
much more expensive for the finer grid, thus interpolation is avoided unless absolutely
necessary. Therefore, we also use a rather tight estimate for the pulse to be nonzero.

4.1.4 Moving simulation window

There are a lot of interesting applications, especially those with large amounts of vacuum,
where the full simulation domain is very large and it is not at all feasible to use the
complete spatial domain during the whole simulation. To avoid this we use a moving-
window technique.

Using the group velocity as described above we estimate the time when the pulse
comes close to the right boundary of the simulation box. For this purpose we slightly
overestimate the domain on which we consider the pulse to be nonzero. This increases
robustness while the computational cost is negligible.

The shift is implemented by transforming the vector potential to physical space, cut-
ting off the left part and extrapolating to the right by adding zeros for a and n!. n? is
calculated from the known profile function.

There are two difficulties to be mentioned in this context due to the periodic boundary
conditions. First, if reflections occur at plasma boundaries we have to cut them off
entirely when shifting the simulation box. Secondly, in vacuum this limits the time step
size because otherwise the pulse would move periodically through the box instead of
moving on continuously. This would result in spatial shifts of the solution.

4.1.5 Parallelization

Even though we already reduced computational costs significantly, for large problems it
is usefull to have a parallel version of the method. Here we have to tailor the means of
parallelization to the different cases described above.

Vacuum

For Cartesian coordinates in vacuum we first distribute the columns of the arrays uni-
formly over the processors to perform the one-dimensional fast Fourier transforms for
each column. We then do a parallel transposition of the array and distribute the rows
over the processors for the second part of the two-dimensional Fourier transform'. Of
course the application of the matrix function is also spread over the processors involved.

'We use the MPI based transpose routine from FFTW version 2 and serial FFT routines from FFTW
3.
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4.1. Numerical Methods

Plasma

In plasma we basically use the same strategy for parallelization for both kinds of ge-
ometries. Here we again distribute all the columns of the arrays over the processors.
But since we only need one-dimensional Fourier transforms we can avoid transposing
the arrays and therefore save a lot of communication time between different processors.

A= 20 columns
P1 P2
10 4 4 columns 10 4+ 4 columns

T

Alz A2:

T—

Figure 4.2: Example parallelization scheme for two processors, Cartesian coordinates in plasma,
periodic boundary conditions and 20 grid points in transversal direction. The lighter
colored columns have to be communicated between the processors for the evaluation of
the transversal Laplacian with finite differences and are stored twice.

The only communication between processors is due to the transversal part of the
Laplacian, which is discretized by fourth and second order finite differences in plasma for
Cartesian and cylindrical coordinates, respectively. Thus we have to exchange at most
two columns at each side of the distributed array slices. In Fig. 4.2 this is demonstrated
for a matrix divided to two processors for Cartesian coordinates and periodic boundary
conditions. In this case we have to store four extra columns per processor which are
copied from the neighboring array.

Each processor first sends the boundary columns to the neighboring processors. Then
the next time step is performed for the inner part of the array. At the end, the in-
formation sent from the neighboring arrays is used to calculate the finite difference
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4. Pulse compression in two dimensions

approximation at the boundaries. This results in a parallelization which hardly suffers
from communication overhead between processors, because latencies and transmission
times are almost completely hidden by the asynchronous communication.

4.2 Accuracy and efficiency of the over-all 2D
scheme

4.2.1 Splitting of the Laplacian

In this section we will demonstrate that the error introduced by the splitting of the
Laplacian is negligible. For this, we use a rather small example, where it is possible to
have a high resolution reference solution to compare with. We also reduce the model
and only consider the wave equation with constant density and cubic nonlinearity
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This is sufficient, since the splitting only affects the wave equation and does neither
depend on the kind of nonlinearity nor on the density equation.

The initial conditions are chosen from

7(27207k0t)2 ;1-2 )
a(z, z,t) =age e glhozm0=t) (4.9)
where ag = 0.15 is the initial amplitude, zg = 35\ the initial pulse position in lon-
gitudinal direction, Wy, = 10\, the length, W, = 100\ the width of the pulse and

ko = /1 — 12 the plasma wave length.

This is solved for Cartesian coordinates (x,z) € [—300Xg, 300\g] X [0Ag, 300\o] and
t € [0/1y,300/15]. We use 1024 grid points in z-direction and 512 grid points in z-
direction. The time step size is chosen as 0.2 dz. For the reference solution we use twice
as many points in both spatial directions, whereas for the time discretization we choose
a fourth of the original time step. For the error calculation we Fourier interpolate the
solutions to the finer grid.

In Fig. 4.3 we can see the error in two different measures, in the upper picture the
relative error in the maximum squared amplitude is shown and the lower one shows the
absolute error of the position of the maximum in wave lengths. For each type of error
there are three different curves. The circular marks show the error of the Gautschi-type
method applied to the full Laplacian, discretized via Fourier spectral method in both
directions. The square marks are the errors of the Gautschi-type method applied to the
parallel Laplacian only and the transversal part treated as nonlinearity. Here we still
use Fourier spectral methods for the discretization in both directions. The diamond
marks represent the error of the splitted method, but this time with fourth order finite
differences in transversal direction. We can see that the three error curves are nearly
indistinguishable, which proves that the splitting does not degrade accuracy.
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Figure 4.3: The relative error of the maximum squared amplitude is shown in the upper picture
and the absolute error of the position of the maximum in wave lengths is drawn in the
lower picture. The curves marked by circles are the errors of the Gautschi-type method
applied to the full Laplacian, the squares are the errors of the splitted method with
Fourier spectral discretization in both directions and the diamonds are those for the
splitted method with finite differences in transversal direction.

4.2.2 Effect of different time-integration schemes

We next compare our implementation of the one-step Gautschi-type integrator with the
leap-frog scheme. Here, we solve the full system of equations for the two-dimensional
Cartesian case (4.6). The density layer starts at 250, with a linear increase up to
Z—‘C) = 0.3 over 5\, then it stays constant over 500\ until there is a linear decrease
between 755y and 760\ again.

The initial conditions are again taken from (4.9) with a9 = 0.12, zo = 150\, and
ko = 1, since the pulse starts in vacuum. The remaining coefficients are the same as
above. The simulation is run up to ¢ = 1240/vy, thus the pulse propagates through
the plasma layer and travels through vacuum afterwards for some time. For the run
time comparisons we used the moving window technique, since the simulation domain
is quite long.

In vacuum there is no need to compare the leap-frog scheme with the exact solution
which the Gautschi-type integrator computes, thus we include only the time steps done
inside of the plasma in the run time comparison.

As a measure for the quality of the solution we choose the relative error of the maxi-
mum amplitude. As a sensible error threshold we use a value of 1%. Since the reference
solution was computed on a finer grid, we interpolated the solution to the reference grid
and then computed the maximum amplitude.

In Fig. 4.4 the amplitude error of the Gautschi-type method (circles) and the leap-
frog method (squares) is plotted against computation time in plasma. The dashed line
represents a coarse spatial discretization with 1024 grid points in longitudinal direction,
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Figure 4.4: The relative error in the maximum amplitude is plotted over the run time in minutes.
Circles: Gautschi-type integrator. Squares: leap-frog. Dashed: coarse spatial discretiza-
tion. Line: fine spatial discretization. Along each curve the value of 7 varies.

where dz is chosen to be 0.352\g and 400 grid points in transversal direction with
dr = 2)\g. The continuous line gives the errors for a fine spatial discretization with
N, = 2048, dz = 0.176 g, N, = 800 and dx = A\g. In both cases the resulting simulation
box of approximately 360, in longitudinal direction and 800\, in transversal direction
is moved along with the solution.

For the same error the step size for the leap-frog method has to be about twice as small
as for the Gautschi-type integrator. This is in agreement with the results in the one-
dimensional case. But in the two-dimensional case the advantage of the leap-frog method
in terms of computational time per time step is smaller than in the one dimensional case,
because simulation times are more strongly affected by memory bandwidth limitations,
see Fig. 4.5. Thus it is even more efficient to invest in a more sophisticated algorithm
and benefit from the larger time steps.

4.2.3 Parallelization

To demonstrate the efficiency of the parallelized version of our code we simulated the
same problem as for the run time comparison with one, two, four, six and eight processors
on a cluster of single CPU P4 nodes with standard Gigabit Ethernet interconnects. We
used the finer one of the two spatial discretizations.

In the upper three pictures of Fig. 4.6 full time (black), pure number crunching time
(light gray), data receive time (dark gray) and synchronization time? (middle gray) per
time step for two, four and eight processors, respectively, is shown. In each case we
can distinguish between three different behaviors of the code. First of all there is the
vacuum step region. Here, the crunching time is quite low, since we neither calculate

2The synchronization time is due to MPI_Barrier () calls after each time step.
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runtime/min.

Figure 4.5: For the Gautschi-type method (solid) and the leap-frog method (dashed) the runtime
between outputs (i.e. 228 timesteps, except for vacuum steps with the Gautschi-type
method) is shown. The spatial and time discretization is the same for both schemes
except in vacuum.

the nonlinearity nor the density equation. However, due to the matrix transpositions
the communication time is rather long.

The other two cases are the plasma and transition regions. The only difference is the
spatial resolution which is higher in the transition region. However in both cases the
full equations are solved and the Laplace splitting is applied. The first results in higher
crunching times whereas the latter reduces the communication time significantly.

Another nice property is the very short synchronization times given by the middle
gray curves. Thus independent of the number of processors used, the work is evenly
balanced over the processors.

In comparison we can see that a single vacuum time step takes longer than a single
time step for the full equations, even with the higher spatial resolution in transition
regions. This is compensated by the fact that the time steps in vacuum are 200 times
larger than the time steps we use for solving the full set of equations. This is illustrated
in the fourth picture of Fig. 4.6, where the accumulated full integration time is shown
for a single processor and for two, four and eight parallel processors (curves from top to
bottom). The strongest increase of computational time is in the transition region, where
we use the higher spatial resolution directly followed by the plasma regions. We can also
see that in comparison the integrator spends hardly any time in vacuum regions. Note
that the length of the time steps in vacuum is only limited by points of data output and
the shifting of the simulation box.

The run time per output step is shown in Fig. 4.7. Here again the different regions of
the simulation are visible. The drop in simulation time towards the end of the plasma
region is due to the remaining length of the plasma layer inside the simulation box, since
the density equation is only solved on those grid points which lie inside the plasma.

Another point to emphasize is the good scaling of the accumulated full integration
times with the number of processors used, even for this relatively small problem. Using
two processors reduces the run time by a factor of 1.97. The run times for four, six and
eight processors scale with 3.88, 5.73 and 7.19 respectively.
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Figure 4.6: The upper three pictures show the full time (black), pure number crunching time (light
gray), data receive time (dark gray) and synchronization time (middle gray) per time
step for two, four and eight processors respectively. The fourth picture shows the
accumulated full integration time for one, two, four and eight processors (curves from
top to bottom).

4.3 Pulse dynamics in 2D

4.3.1 2D self-compression threshold

For a two dimensional pulse, we can derive equations for the temporal length and spa-
tial width of the pulse by the same method as for one dimension in section 3.4.1. Since
already in 1D the equation for the temporal length T" of the pulse fails to describe the
pulse dynamic well (see section 3.4.1), we expect this to be even more the case in 2D
where there is a coupling between the dynamics of the two directions. Compression in
one direction enhances the compression in the other, if for example the speed of compres-
sion in each individual direction deviates from the full model equations, the combined
compression speed will deviate even more (and in a nonlinear way). Thus we are more
interested in the values and the validity of the self-compression thresholds. In 1D the
threshold can be easily shown to be exact for a soliton solution. The results were less
conclusive for a Gaussian pulse, because a localized pulse with an arbitrary initial shape
will start to change its shape towards the shape of a soliton. This leads to oscillations
in pulse amplitude even at the threshold. Because we do not have an analytical soliton
solution in 2D we restrict ourselves to examine the thresholds for Gaussian pulses, al-
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Figure 4.7: The run time per output step for two, four, six and eight processors (curves from dark
to light gray) scales with 1.97, 3.88, 5.73 and 7.19 respectively compared to single
processor run time (black).

though more general methods exist to derive the thresholds for arbitrary pulse shapes
[10].

In a geometry which has cylindrical symmetry in the transversal direction, the variation-
of-action method with a Gaussian trial function yields the equations

- 66 T3 16\/§ W2 :

for the temporal length and

W// —
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S EW316v2 T
for the spot size of the pulse. This equations were also derived in [56| for linear polar-

ization and a different normalization.
In a 2D Cartesian geometry the equations are

41 =p2)2 1 (BPPAAWT,T
and .
, 41 (1= A2W,T,W

The details of the derivation can be found in appendix A.
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Figure 4.8: Amplitude evolution of initially Gaussian pulses at the 2D compression threshold in
Cartesian geometry for Ly = 8Ty = 12.73 g, Wy = 23.25)¢ and ng = 0.3n..
Left: 2D VAM model at (black, solid) and below the threshold (black, dashed), NLSE
simulations at (blue) and below the threshold (red). Right: NLSE simulations for pulses
that are at (blue) or below (red) the 1D compression in the longitudinal direction and
above the 2D threshold in the transversal direction (solid: Wy = 30 )¢, dashed: Wy =
150 \g). Pulses at the threshold have ag = 0.045 and pulses below have ag = 0.045.

From this equations we can directly read off the self-compression thresholds for the
longitudinal direction
B AT > P, (4.14)

and the transversal direction
(1= AFWs > P, (4.15)

where the critical power P, here is either the pulse power in the longitudinal or transver-
sal slice through the centroid of the pulse. Because the transversal and longitudinal
threshold values are the same for a particular geometry, we do not distinguish between
them. Every additional dimension increases the compression threshold by a factor of
V2, from 8 /2 in 1D to 16 in 2D to 16/2 in a cylindrical geometry, which is effectively
3D.

Amplitude evolution of initially Gaussian pulses at the 2D compression threshold in
Cartesian geometry for Lo = BTy = 12.73 Ao, Wy = 23.25 g and ny = 0.3 n.. Left: 2D
VAM model at (black, solid) and below the threshold (black, dashed), NLSE simulations
at (blue) and below the threshold (red). Right: NLSE simulations for pulses that are at
(blue) or below (red) the 1D compression in the longitudinal direction and above the 2D
threshold in the transversal direction (solid: Wy = 30 Ao, dashed: Wy = 150 A¢). Pulses
at the threshold have ay = 0.045 and pulses below have ag = 0.045.

The only difference between the longitudinal and transversal threshold relations is
that for the longitudinal direction the group velocity 3 enters, while for the transversal
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Figure 4.9: Amplitude evolution of initially Gaussian pulses at the compression threshold for 2D
cylindrical geometry. Results from wave equation simulations for pulses that are at (blue,
ap = 0.05) or below (red, ap = 0.04) the 1D threshold in the longitudinal direction
(Lo = 10.71X\p) and above the threshold for cylindrical geometry in the transversal
direction (solid: Wy = 30 \g, dashed: Wy = 150 \p).

direction it is the plasma density parameter % = 1 — (3% It is also noteworthy that
the thresholds for the two directions are completely independent. The full energy of
the pulse does not enter the relations although it enters the equations for 7" and W (cf.
appendix A).

For a pulse that is at the threshold for both directions, we find that within the
inaccuracy due to the expected amplitude oscillations of Gaussian pulses, the thresholds
for both geometries are reasonably accurate. This is illustrated by the left hand side
of Fig. 4.8. In 2D, we first checked this result with simulations of the NLSE and then
confirmed it by simulations of the nonlinear wave equation. In cylindrical geometry we
directly used wave equation based simulations.

To study the transition between 2D and 1D thresholds in the VAM model, we can
fix the spot size or length of the pulse at a constant value 7 or W, in the derivation
of the T" or W equation respectively. Unfortunately we get the nonsensical answer
from the variation-of-action method that the threshold for the dynamical direction is
unchanged from the case where both directions are dynamical. Thus the 1D threshold
can not be recovered by letting the fixed length or spot size go to infinity. The reason is
that the pulse shape we have prescribed has insufficient degrees of freedom to allow for a
different strength of compression at different slices of the pulse. On axis for example, the
longitudinal compression of a wide pulse should resemble one dimensional compression,
while further from the axis the pulse should show weaker compression or defocusing if
below the threshold.

Of special interest for the application of pulse compression, is the transition between
the 2D threshold and the 1D threshold for the case when the spot size of the pulse is
increased from a value calculated by using the 2D threshold. With increasing W, the
deviation of the threshold value from the 2D threshold occurs rather quickly, illustrated
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by the right hand side of Fig. 4.8 and by Fig. 4.9. Like for longitudinal compression
the speed of the transversal compression scales with W [56]. Therefore the time scales
of longitudinal and transversal compression will diverge quickly with increasing W/ Lo.
Thus during the beginning of the longitudinal compression the spot size will stay nearly
constant. This occurs both in Cartesian and cylindrical 2D geometry. A pulse with
an energy at the threshold with aqg = 0.05, Lqg = 8Ty = 12.732 Ay, Wy = 23.246 A\, for
slab geometry and Ly = 8Ty = 15.1415 Ay and Wy = 27.644 )\, for cylindrical geometry,
shows no compression at amplitudes slightly below the threshold. If the spot size is
increased to Wy = 30 \g, the pulse already shows compression at a length calculated
from the longitudinal 1D threshold, and no compression below. This rapid shift from the
2D /3D threshold to the 1D threshold occurs in both Cartesian (Fig. 4.8) and cylindrical
(Fig. 4.9) geometry.

4.3.2 Spot size vs. length of the pulse

As we have seen in chapter 3, a 1D pulse with parameters close to the bound two-soliton
solution of the cubic nonlinear Schrodinger equation can compress and decompress pe-
riodically, as long as the amplitude is not too high and thus the density perturbations
induced by the ponderomotive force of the pulse are not too large.
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Figure 4.10: Comparison of 1D and 2D dynamics for different values of the initial spot size Wj.
1D (black), Wy = 10 (red), Wy = 100 (green), Wy = 200 )y (blue) for ag = 0.1,

Lo =10 )\0 and ng = 0.3’1’Lc

We have also seen in the preceding section that the 2D dynamic deviates the more
from the 1D dynamic the closer the ratio of the spot size to pulse length is to unity. For
smaller initial spot sizes, the pulse starts to collapse after a shorter propagation distance
(Fig. 4.10). A Gaussian pulse above the 1D self-compression threshold with ap = 0.1
and Lo = 10)\g and a spot size of 200\¢ shows two compression and decompression cycles
before collapse occurs. For the same pulse with a spot size of 100\y the collapse occurs
already after the first compression / decompression, while for a spot size of 10\ the
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pulse starts to collapse directly. At this low initial intensity, the density perturbation
only produces a slightly higher compression and does not change the pulse dynamics
qualitatively (Fig. 4.11 and Fig. 4.12).

-60 -40 -20 0 20 40 60

X/ &

665

Figure 4.11: Color plot of |a|? for longitudinally compressed pulse at ¢ = 700/vy with initial
parameters of ag = 0.1, Ly = 10 A\, Wy = 100 Ag and a plasma density of ng = 0.3 n..
Intensity increases from blue to red.

The 2D wakefield in Fig. 4.12 is very similar to a 1D wakefield, modulated with the
transversal pulse shape.
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Figure 4.12: Color plot of the wakefield of the pulse in Fig. 4.11. Green for zero deviation from
background density. Positive deviation are in red, negative in blue.

For an efficient pulse compression, the initial spot size of the pulse must be sufficiently
large, so that at least one compression / decompression cycle can occur instead of direct
collapse. This allows for a controlled compression of the pulse, because the amplitude
changes only little around the maximum of compression and little fluctuations of the
plasma length do not result in large changes of the maximum amplitude.
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Figure 4.13: Comparison of the dynamics in 1D vs. 2D for a higher pulse amplitude and different
initial spot sizes. 1D without density equation (black), 1D with density equation
(magenta), Wy = 10 )¢ (red), Wy = 100 Ay (green) and Wy = 200 )y (blue) for
apg = 0.14, Lo = 10)\0, no/nc =0.3

Higher amplitudes distinctly above the self-compression threshold lead to essentially
the same effects as in 1D. With inclusion of the density response, the pulse decompresses
only slightly after the first compression and starts to oscillate around a new stationary
state (cf. Fig. 4.13). The ponderomotive force of the pulse is in this case sufficiently
strong to produce a density cavity that traps the pulse and inhibits decompression.

This also reduces the local group velocity of the pulse, which leads to a curvature of
the pulse as well as the wakefield. In Fig. 4.14 and Fig. 4.15 the corresponding curvature
of pulse and wakefield is shown. This behavior occurs rather abruptly when for some
initial pulse length the initial pulse amplitude is raised above a certain value. The
threshold for this behavior is essentially the same as in 1D.

Like in 1D the pulse can split off a part of its energy surplus into a pre- or post-pulse
to reach the new stationary state that is a 1D soliton. Although this effect is small
compared to the transversal effects, it is clearly visible in simulations, e.g. in Fig. 4.16.
But because of the compression in the transversal direction the pulse can not reach a
truly stationary state and eventually starts to collapse. For the intended application it
is only important that there is one cycle of compression and decompression before the
collapse occurs to allow for a controlled decoupling of the pulse from the plasma.

4.3.3 Coupling between longitudinal and transversal compression

The amplitude evolution of the simulations in the last section seems to suggest that
there is only a weak influence of the compression in the transversal direction on the
compression in the longitudinal direction: the faster longitudinal direction (small initial
length compared to the spot size) periodically compresses while the slower transversal
direction seems to continuously compress and thus increase the pulse amplitude until

62



4.3. Pulse dynamics in 2D
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Figure 4.14: Color plot of |a|? for longitudinally compressed pulse at ¢ = 550/v with initial
parameters of ag = 0.14, Lo = 10 )y, Wy = 100 A\g and a plasma density of ng =

0.3 ne.
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Figure 4.15: Color plot of the wakefield of the pulse in Fig. 4.14.

pulse collapse occurs. The collapse is the only point at which there is a strong coupling
between the compression in both directions. This is further backed by the solutions
of the VAM equations for 7" and W. Exactly this behavior can be seen in Fig. 4.17.
The weaknesses in the quantitative predictions of these equations in 2D could be solely
the result of the already weak quantitative predictions of the 1D VAM equation, while
describing the qualitative dynamics in 2D correctly.

Surprisingly the actual length and spot size evolution from wave equation simulations
show a very different behavior, as shown in Fig. 4.18. The faster compressing longitu-
dinal direction “enslaves” the intrinsically slower transversal direction. Because of this
enslavement the spot size shows minima at the same location as the pulse length and
does not continuously decrease, but oscillates, too. Especially for wide initial spot sizes
the pulse can defocus after the first minimum to nearly the initial spot size. This limits
the possibility to reduce the spot size of short pulses inside the plasma severely.
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Figure 4.16: Comparison of on-axis intensity distribution in 1D vs. 2D. Simulations with ag = 0.12,
Lo = 10 A\g, Wy = 200 Mg and included density response. Top left: 2D on-axis cut.
Top right: 1D. Bottom: 2D color plot.

4.4 Transversal filamentation instability

4.4.1 Pulses of constant length

Transversal instability of planar NLSE solitons, i.e. longitudinal 1D soliton solutions
of the NLSE that are constant in the transversal direction, is a well understood phe-
nomenon, both analytically and numerically [1, 5, 57, 66, 47, 41|. Harmonic perturba-
tions in the transversal direction grow exponentially in time. Good analytical estimates
exist for the growth rates. An example for the time evolution of this instability from a
small initial perturbation to the full blown instability is shown in Fig. 4.19.
For the cubic NLSE the single soliton solution has the form
152 o
a(z,7) =2nsech(Bnr)e 25 17

with 7 = z/8 — t and = /1 — ng/n. the linear group velocity. The cubic nonlinear
wave equation has a soliton solution of similar form, see appendix B.1 for the derivation.
Perpendicular perturbations of this solution with (co)sine-modes below a certain cut-off
wavenumber k. are exponentially unstable with a growth rate of

no ne k2

2 o 21.2 el
p(ky)” = w7 k7 ( o k‘z) : (4.16)
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4.4. Transversal filamentation instability
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Figure 4.17: ODE solutions of the 2D VAM model for A, T and W with ag = 0.1, 8Ty = 10 )¢,
Wy =100 Ao and ng = 0.3 n in Cartesian geometry. T'(z)/Tp in green, W(z)/Wy in
red and A2/A2__in black.
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Figure 4.18: Length and spot size evolution of wave equation simulations for ag = 0.1 and Lg =
10 A\g with ng = 0.3n.. Solid curves are for W; = 100 \g and dashed curves for
Wo = 200 Ao with L(t)/Lg in red, W (t)/W in green. 1D reference curve of L(t)/Lg
in black.

The derivation can be found in appendix B.2. The same results were obtained by V.G.
Makhankov in [47]. This growth rate is derived for the cubic NLSE, but also holds for
the cubic nonlinear wave equation.

The VAM calculation yields the cut-off relation

12 + 72
_ Lt e (4.17)

k,2
¢ 36

We will see that this cut-off is not in good agreement with numerical simulations. A
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Figure 4.19: Color plot of |a|? for a simulation with cubic nonlinearity. Initial sech shape in the
longitudinal direction and super-Gaussian shape in transversal direction. Initial pulse
perturbation 1073 ag with a wavelength of 20 \g. Bottom to top: t = 0/vg, t =
240/vp, t = 400/vg, t = 500/vp. The other simulation parameters are ny = 0.3 n,,
apg = 0.16, Lo = 2)\0 and W() = 200 )\0.

better estimate for the cut-off parameter is given by E.W. Laedke in [41]

k2 =3n . (4.18)

C

From equation (4.16) we can graphically determine the factor « in the relation
ki =an

between the value of k; with the maximum growth rate and the soliton parameter n
by setting n = 1 (Fig. 4.20). This is sensible, since the position of the maximum scales
linearly with 7. For the different cut-offs (4.17) and (4.18) we have for ny = 0.3 n,

agsM ~ 0.497
and
ag s~ 0.671 .

For a short pulse of 2)\y in length, this leads to a prediction for the most unstable

wavelength via

2
=1, (4.19)
(8%
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0.3

0.25[ *

growth rate
o
" o
3 [
T T
L L

o
e
T
|

0.05- _

0 | | | |
0.6 0.7 0.8 0.9 1

L
0 0.1 0.2 0.3 0.4 0.5
k/ k0

Figure 4.20: Growth rate (4.16) of the transversal instability for cut-off parameters (4.17) and (4.18)
at a density of ng = 0.3 n..

of
AoaM = 25.15)

and
Ao 3~ 18.63) .

NLSE simulations with these parameters® clearly favor the modified cut-off value
(4.18). Simulations of the cubic nonlinear wave equation with a non-constant transversal
shape yield the same result. In Fig. 4.21 the results for a pulse with a super-Gaussian
transversal shape with three different perturbation wavelengths are shown (A, = 15\,
AL = 20X, Al = 25X¢). The perturbation with A; = 20Xy shows the highest amplitude
of instability, instead of | = 25X, which is predicted by (4.17).

Examining the time development of the transversal spectrum for these three wave-
lengths, we see that for a wide super-Gaussian the peak in the spectrum stays very
narrow and is only slightly up- or down-shifted closer to £7%*. For a Gaussian transver-
sal shape the peak gets broader and the up/downshift is stronger. This is due to FWM
between the perturbation mode and the main spectrum of the pulse. A Gaussian pulse
is more localized for the same spot size. It has a broader spectrum and thus more FWM
products of the pulse and the perturbation occur.

For a narrow initial pulse, especially with a Gaussian shape, another effect is superim-
posed. The faster transversal compression results in an upshift of the peak and thus the
filaments move closer together (Fig. 4.22). This effect can be clearly distinguished from
the up/downshift discussed above. It occurs later during the pulse evolution when the
pulse is significantly compressed in the transversal direction (Fig. 4.23 and Fig. 4.24).

3The spatial length of the soliton is related to the temporal length by L = 3T. An Lg of 2)\g is thus
equal to a Ty of about 2.38)g. This has to be taken into account when comparing results from
NLSE and wave equation simulations.
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4. Pulse compression in two dimensions
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Figure 4.21: Color plot of |a|? for a simulation with cubic nonlinearity. Initial sech shape in the
longitudinal direction and super-Gaussian shape in transversal direction. Bottom to top:
pulses at t = 540/ for an initial perturbation of 1073 ag with wavelengths of 15 )¢,
20 Ao, 259 and 10...30 Ao (phase randomized). The other simulation parameters
are ng = 0.3’1’Lc, ag = 0.16, Lo = 2)\0 and WO = 200 )\0.

Late in the evolution of the instability, additional peaks at higher integer multiples of
the original k-value can also occur due to FWM (for details on four-wave-mixing, see
[38]).

The agreement between numerics and analytics for the fastest growing mode is fur-
ther confirmed by simulations with a perturbation that is a superposition of phase-
randomized cosine-modes with wavelengths of 10...30),, also shown in Fig. 4.21. Al-
though the amplitude of the individual filaments is not as uniform as for a perturbation
with a single wavelength, the dominant unstable wavelength is closely below 20y which
matches the prediction of 18.63\g by (4.18). This is the result for most drafts of random
phases. But for some drafts the modes with the highest growth rates may have only
small initial amplitudes, because, by adding the perturbation to the pulse, interference
terms appear in |a|? that can suppress modes. The most unstable mode may still develop
a high amplitude, but other modes that have a high initial amplitude can still have a
large amplitude in the fully developed instability. It is even possible that they enslave
modes with a higher growth rate, but smaller initial amplitude and become dominant.

For comparison with analytics, it is easier to use perturbations without this ran-
domization, because the spectra of the instability are much simpler. Several features
that occur during the development of the instability can be singled out this way. Modes
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4.4. Transversal filamentation instability

Figure 4.22: Color plots of initially Gaussian and super-Gaussian transversal shapes with different
spot sizes at t = 540/1. Top to bottom: super-Gaussian with W = 100 )y, Gaussian
with Wy = 200 \g, Gaussian with Wy = 100 .

above the cut-off are damped as expected. But surprisingly, at first the smallest k-values
show the largest growth, even for perturbation spectra that go down to & = 27/100\g
(Fig. 4.25). For a super-Gaussian shape a distinct peak at the lower corner of the per-
turbation spectrum develops, probably due to the interaction with the sideband peaks
in the spectrum of this function. The most unstable mode starts to show the highest
growth only after the pulse has propagated for some time. The location of the peak
in the spectrum is not dependent on the broadness of the perturbation spectrum, as
shown in Fig. 4.26. This behavior can be explained in the following way: at first, low
k-values can show the highest growth, because they are closer to the central £ = 0 mode
of the pulse and have a higher FWM efficiency. For the analytically predicted mode to
show the highest growth, it is necessary that the pulse develops the matching longitu-
dinal amplitude modulation of the transversal mode. After the pulse has changed its
longitudinal shape accordingly, the growth rates behave as expected.

This effect can be circumvented by linearizing about the 1D soliton state and then it-
eratively “breeding” the longitudinal amplitude dependence for a given k. This method
is well suited to examine the stability properties of soliton solutions where analytical
statements are not possible [44]. But in our case the growth rate is already known
analytically and this method would be very difficult to apply (if at all possible) for
a spectrum of perturbations or compressing pulses.® Instead we are interested in if

“In general we do not have analytical solutions for compressing pulses to linearize about. Even with
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4. Pulse compression in two dimensions
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Figure 4.23: |a| in transversal cuts for different initial shapes/spot sizes at ¢ = 350/vp. Black:
super-Gaussian profile with Wy = 200 Ag, blue: Gaussian profile with Wy = 200 )¢,
red: Gaussian profile with Wy = 100 A\
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Figure 4.24: Transversal amplitude spectrum for different shapes/spot sizes at t = 350/1y. black:
super-Gaussian profile (W, = 200 \¢), blue: Gaussian profile (W, = 200 \g), red:
Gaussian profile (W = 100 \g)

and how a pulse without a strong component of the matching longitudinal dependence
develops the instability.

For most simulations in the next chapters, we will use phase randomized perturbation
spectra. They model real physical systems better, and the phase randomization further-
more guarantees that the perturbation covers the full width of the pulse. Without it
the perturbation would become the more localized in space, the broader its spectrum
is. Randomization of the amplitude of the modes alone would not have this effect,
while randomization of the phase yields a weakly localized perturbation with a random
amplitude of the Fourier component.

such a solution, using this method would be very difficult, because the unperturbed state would be
non-stationary.
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4.4. Transversal filamentation instability
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Figure 4.25: Time development of the transversal amplitude perturbation spectrum for an initial
perturbation with wavelengths of 10...100 Ay of equal amplitude. 1D soliton with a
Gaussian initial shape in the transversal direction (Lo = 2 X9, Wy = 200 \g, ng =
0.3 n¢).
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Figure 4.26: Transversal amplitude spectrum at ¢t = 700/ for different initial perturbation spectra.
Blue: 10...30 Ag, red: 7...50 Ag, green: 10...100 Ag. Initially Gaussian transversal
shape with Ty = 200 \g.

Several different phase-randomized drafts for the transversal perturbation can be seen
in Fig. 4.27. The resulting instability that evolves out of this initial perturbations is
shown in Fig. 4.28. The correspondence between the initial amplitudes of the individual
modes and the spectrum of the fully developed instability can be clearly seen. For the
draft plotted in black, there is sufficient initial amplitude in the most unstable range
of k =~ 0.325/\¢ and no peaks at other locations with much higher amplitude. This
results in a broad peak around this value at the later time. The blue draft has the
largest initial amplitude at around k = 0.26/)\g, which still is the largest at ¢ = 600/vy.
But due to a higher growth rate a second peak that initially had a lower amplitude
could grow to nearly the same value. For the red draft the situation is reversed. The
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Figure 4.27: Initial spectra for different phase-randomized transversal perturbations with wave-
lengths of 7...50 \.
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Figure 4.28: Spectra of the initial perturbations shown in Fig. 4.27 at ¢ = 600/1.

peak with the largest initial value also has the largest growth rate and the largest final
amplitude, but a second peak at a lower k-value could still develop. The green draft
is an example that the mode with the largest growth rate will not necessarily develop
a large amplitude. Initially there is small but finite amplitude between k£ = 0.3 and
k = 0.35 but at t = 600/1, there is only a single peak with a maximum at & = 0.37,
which also had the largest initial amplitude.

The long term behavior of the transversal instability is different from e.g. the modu-
lation instability of the 1D plane wave. Modulation instability eventually saturates into
a new stable state that is a train of 1D solitons. In 2D, soliton solutions of the cubic
NLSE are only marginally stable, and collapse for a slightly higher amplitude into a sin-
gularity. The collapse of the individual filaments for a simulation of the cubic nonlinear
wave equation is shown in Fig. 4.29.

In reality a laser pulse does of course not collapse into a singularity, because the cubic
nonlinearity (1 — ]al?)a is only a series expansion for small amplitudes of the correct
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4.4. Transversal filamentation instability

Figure 4.29: Color plots of |a|? at different times for a simulation with cubic nonlinearity. Initial
sech pulse shape in the longitudinal direction and super-Gaussian in the transversal
direction. Initial pulse perturbation with 10732 @y and a wavelength of 20 \y. Bottom
to top: t = 500/vy, t = 600/vy, t = 700/vp. Other simulation parameters are
ng = 0.3nc, ag = 0.16, LO = 2)\0 and WO = 200)\0.

relativistic mass factor of v = /1 + |a|?. The correct nonlinearity saturates for higher
amplitudes and thus the growth of the instability is slowed. For higher amplitudes,
density effects have to be taken into account, too. In the simplified model equations
we use, the density perturbation at first accelerates the growth of the instability, be-
cause the collapsing filaments produce cavities in the electron density by pushing the
electrons outwards through the ponderomotive force. This leads to a stronger trapping
of the filaments which compensates for the saturation of the v-nonlinearity, as shown
in Fig. 4.30. But the more the filaments collapse, the stronger the wakefield that they
generate becomes and the more energy is transferred to the plasma.

Within our model equations, it still happens that in simulations the filaments collapse
to point-like structures and that density oscillations become larger than the background
density. To fully avoid this problems, the heating of the plasma through kinetic effects
has to be taken into account. Since parameter ranges for which high energy transfer
between laser pulse and plasma occurs are not interesting for efficient pulse compression,
density perturbations of the order of the background density will simply be taken as
signs that the simulated parameters are not suitable for the intended application.
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4. Pulse compression in two dimensions
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Figure 4.30: Influence of different nonlinearities in the wave equation on the transversal instabil-
ity. From top to bottom: cubic nonlinearity (maximum |a| = 0.28), ~-nonlinearity
(maximum |a| = 0.24), -nonlinearity and density response (maximum |a| = 0.32) at
t = 640/vp. Otherwise same parameters as in Fig. 4.29.

4.4.2 Longitudinally compressing pulses

For a pulse that compresses in the longitudinal direction, the behavior of the transversal
instability is more complex. As an example we consider a pulse that has the same
longitudinal shape as a soliton, but several times its amplitude. The mode that growth
to the largest amplitude is not anymore independent of the width of the perturbation
spectrum, although this effect is small (Fig. 4.31). During the pulse compression, shorter
and shorter wavelengths can become unstable, so it is not necessarily a single mode that
dominates. For pulses with the same initial spot size, but different amplitudes (higher
amplitude equals faster compression) the spectrum of modes that show instability gets
broader for higher amplitudes, as shown in Fig. 4.32. The spectra have to be compared
at times where the pulse lengths and pulse widths are nearly the same for different initial
amplitudes. If an unstable mode has sufficient time to grow before shorter wavelengths
become unstable, it can even enslave the shorter modes and prevent their growth.

Since the pulse changes its longitudinal shape during the compression, it is unclear if
the relationship between pulse length and most unstable transversal mode is the same as
in the stationary case. In Fig. 4.32 we see that the peaks of the spectrum are generally
lower than expected for a stationary pulse of the corresponding length. But for an initial
pulse of four times the single soliton amplitude, it is actually at a k-value expected for a
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Figure 4.31: Transversal amplitude perturbation spectrum at ¢ = 380/ for a 1D soliton with
an initially Gaussian shape in the transversal direction. Initial perturbation spectra
of 10...30 )¢ (blue), 7...50 )y (red) and 10...100 )y (green). Other simulation
parameters are Lg = 2 A\g, Wy = 200 A9 and ng = 0.3 n..

pulse of length L = 2.3\y. This might occur, because the pulse rise and falloff becomes
very steep during the compression and thus is very far from the shape of the soliton.

Another interesting question is how the initial longitudinal shape influences the in-
stability. Especially important would be any difference between a sech-shaped pulse
and a Gaussian pulse, because this is the pulse shape mostly used in experiments. The
interesting result is that only the initial longitudinal half width needs to be equal.> The
transversal spectra will then be nearly equal at equal times, although the evolution of
length and width is different. The graphs of length and spot size vs. time can be scaled
to nearly match by multiplying the time axis by some factor to compensate the slower
compression of the Gaussian pulse. This scaling factor does not seem to depend on
plasma density or the width of the pulse. It only depends on the number N that gives
the amplitude of the pulse relative to the single soliton amplitude and thus determines
how fast the pulse compresses. It is reasonable to assume that this difference is due to
the lower energy the Gaussian pulse has compared to a sech-shaped pulse at the same
half width, due to the different asymptotic fall off. Note that at points in time where
both pulse shapes have the same length and spot size, the spectra of their instability
are different! An example is shown in Fig. 4.33.

Another important difference to the case of stationary pulse length we have discussed
above is, that a pulse with parameters in a realistic range for pulse compression will
have a much smaller ratio between its initial spot size and length, than the very short
and wide pulses we considered in the previous section for comparison with analytics. If
we take the analytical results for solitons as a guide, the range of wavelengths below
the cut-off that will initially fit on such a pulse is very small. If we take a pulse with
a length of Ly = 10 \g, a spot size of Wy = 100 Ay and a Gaussian transversal profile,

SBut the remember the difference between the length parameter Ly and the actually measured half
width. This leads to a factor of 1.58183 between Lg for a Gaussian pulse and a soliton.
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Figure 4.32: Transversal amplitude perturbation spectrum for initially sech(z/Lg)-shaped pulses
(Lo = 10 X\p) with an amplitude of N-times the single soliton amplitude. The spec-
tra are at a different times for each value of NV such that each pulse has a length of
L = 3.16 \y at that particular time. Black: N = 2, blue: N = 2.5, red: N = 3,
green: N = 4.

the most unstable mode has a wavelength ~ 94\, and the cut-off wavelength is ~ 66 \q.
Examining the transversal Fourier-spectrum of the pulse, we see that the modes up to
the cut-off are close to, or already part of, the modes that determine the shape of the
pulse. Through the broadening of the spectrum due to transversal compression, they
become part of the core spectrum of the pulse in a short time. The dynamics of these
modes is thus dominated by the dynamics of the main pulse and not by the transversal
instability.

Only modes that are short compared to the wavelengths of the unperturbed pulse
spectrum can effectively destroy the pulse and prevent efficient compression. For exper-
imentally interesting parameter regimes, it is only possible for those modes to become
unstable after sufficient longitudinal compression. This suggests that for a compressing
pulse the transversal instability has only a finite time window to develop. This time win-
dow starts at the point where the pulse has become sufficiently short that the unstable
wavelength are short compared to the spot size and ends at the point where the pulse
is maximally compressed (where the plasma layer should end). If the initial pulse has a
very clean spectrum with little noise, or the plasma produces no noise in the unstable
range of wavelengths, no instability can develop.

4.5 Other 2D / 3D instabilities

Besides transversal filamentation there are other genuinely two or three dimensional
instabilities of a laser pulse that can occur inside of the plasma. These can either be
related to Raman instability and occur due to a resonance between the laser pulse and
the plasma wakefield, or be driven by the relativistic mass nonlinearity and are only
enhanced by the wakefield. The first type can only occur at densities below 0.25n, and
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Figure 4.33: Comparison of transversal amplitude spectra for an initial sech(z/Lg) pulse and an
initial Gaussian pulse of length L,. Ls = 10Xp and L4 is chosen such that the
measured longitudinal half width are initially equal. ag is N = 4 times the single
soliton amplitude. Blue: sech pulse at ¢ = 330/1. Red: Gaussian pulse at ¢t = 330/vy,
Green: Gaussian pulse at ¢ = 360/ (same length and spot size as the sech pulse at
t= 330/1/0).

is in the short wavelength range. The second type can also cause instability at higher
densities and has a longer wavelength. Here short vs. long wavelength is relative to
wp/c. The actual wavelength for a long wavelength instability at high density can thus
be shorter than the plasma wavelength at low densities.

Three types of instability for a linear polarized laser beam are discussed in [14] by
means of the variation-of-action method and linear stability analysis. These are hosing
as well as symmetric and antisymmetric self-modulation instability. These instabilities
can be derived from a nonlinear Schrodinger equation coupled to an equation for the
plasma potential ¢

o)
<Vi—%@%)a:a—¢m (4.20)
82 _ |a‘2
gt to="5"- (4.21)

Details of the calculation for circular polarization can be found in appendix C.

The stationary solution for which the linear stability is examined is a laser beam
of infinite longitudinal length and a finite spot size (with Gaussian profile) that is at
the threshold of transversal self focusing. Of course in the end we are interested in
the behavior of the instabilities above the threshold, but as long as the growth of the
instabilities is faster than the self-focusing process, the analysis should be approximately
valid. The case where the beam focusses faster than the instability can grow is of no
interest, because the instability then is of no physical relevance. The threshold can be
calculated as

agWg =Py > P. =16 .
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4. Pulse compression in two dimensions

The thresholds is (P. = 32) for linear polarization. Otherwise the linearized equations
for the instabilities are identical for both kinds of polarization. The general form of this
equations is

(07 +T1) f =T3h (4.22)
(2+1)h=T3f,

where f and h are two of the collective coordinates used to describe the pulse shape
and/or the shape of the plasma potential.

From this two coupled equations we can derive some general properties of the insta-
bilities. Fourier analysis yields a dispersion relation and thus a growth rate dependent
on the wave number of the perturbation. Plotting the growth rate Im(g) against k,
we can see that the general form is linear growth of Im(g) with & for small values of k
and a distinct peak around k = w,/c where a resonance with the wakefield wavelength
occurs.® Above the peak a sharp cut-off occurs at

/Iy =1Ll
=/t 23
Iy

At the resonance k = w,/c the growth rate is

[Tyl 7 —1+ V3i
9=\ 2 2

This describes the short wavelength type of the instabilities dominant at densities lower
k=wp,/c.
For the long wavelength type instabilities to occur the condition that

[el'g > 1

has to be fulfilled.
The growth rate for small values of k£ then is

g=1iyTik .

Important to understand the relevance of these instabilities is that I'; and I'5I'3 are in-
versely proportional to the square of the Rayleigh length zg = 3W?/2. This implies that
the growth rates rapidly decrease with the spot size. For wide pulses this instabilities
are thus not relevant. They could only become important after very strong transversal
compression, but then still unlikely if the pulse is sufficiently short.

4.5.1 Hosing instability

The centroid of the laser beam can be unstable to perturbations and show sinusoidal
oscillations like a winding snake or water hose, hence the name hosing instability. In

6Because the NLSE used is derived for a frame comoving at c instead of v, the wakefield wavelength
is 2mewy, instead of 2mvg/w,. This is only a good approximation at low densities.
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Figure 4.34: Left: initial pulse of longitudinally super-Gaussian (Lo = 100 )g) and transversally
Gaussian shape (W = 20 \g) with ag = 0.3. Sinusoidal initial perturbation of 0.01 W)
for short wavelength hosing with k = w,/c. Right: Pulse at t = 820/v, after propa-
gation through plasma of ng = 0.01 n..

(4.22) the quantities f and g for this instability are the centroids x, and z, of the laser
and the plasma potential respectively and the constants are I'y = I'y = %Z% and I's = 1.

In the short wavelength regime at low densities, hosing leads to an altern%ting shifting
of the Raman filaments against the central axis. The wavelength can become longer,
if a saturated Raman instability heats the plasma sufficiently [13]. Fig. 4.34 shows an
example for short wavelength hosing, before Raman instability has fully developed. It
is clearly visible that the amplitude of instability increases from the front to the back of
the pulse, because the resonance between pulse and wakefield has more time to develop.

At higher densities only the nonresonant form of the instability can occur for which
the growth rate increases with the background density.” Since the instability is mostly
due to the relativistic mass nonlinearity, it is more uniform along the pulse. The only
exception are the parts right at the beginning and end of the pulse. But even for a
high density like np = 0.6 n. and a very narrow pulse of Wy = 10 )y the growth of
the instability is comparatively slow (see Fig. 4.35). Only after 300 )\ of plasma the
instability has grown to a significant amplitude.

4.5.2 Symmetric self-modulation instability

A small sinusoidal amplitude modulation in the longitudinal direction of a long and
narrow pulse can lead to an uneven focusing along the pulse. This is called symmetric
self-focusing instability. Slices of the pulse can collapse while other slices are still only
weakly focused or (if the beam is at the self-compression threshold) even defocused. This
effect is enhanced by the density oscillations of the plasma. Regions with higher than
background density have a defocusing effect, while regions with lower than background

"The density dependence is only implicit, due to the normalization of lengths and times with w,,.
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4. Pulse compression in two dimensions
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Figure 4.35: Left: initial pulse of longitudinally super-Gaussian (Lo = 100 )\¢) and transversally
Gaussian shape (Wy = 10Ag) with ap = 0.15. Sinusoidal initial perturbation of
0.02 W, for short wavelength hosing with £ = 0.1wy/c. Right: Pulse at t = 250/1
after propagation through plasma of nyg = 0.6 n..

density focus the beam. At ng < 0.25n, this process can be resonant with the wakefield,
but only modulates filaments induced by Raman instability to yield the typical inverse
D shape [50| that can be seen in Fig. 4.36.

The relevant quantities for (4.22) are w, and wy, the averages of the spot sizes in -
and y-direction of a and ¢. For the exact definition see appendix C. The constants are
I'=Iy= %Ziz and I's = 1. For ng > 0.25n, the density oscillations can only enhance
the instability,Rbut are not in resonance with the wakefield. The main difference between
Raman instability and self-modulation can be seen in Fig. 4.37. Raman forward scat-
tering redistributes pulse energy along the propagation direction and leads to a lumping
of the energy. Low amplitude regions thus also have a narrow spot size. Symmetric
self-modulation instead transversally focuses the pulse power, while the power in each
transversal slice remains constant. This leads to a narrow spot size for slices with a high
amplitude and a wide spot size for slices of low amplitude (Fig. 4.37).

4.5.3 Antisymmetric self-modulation instability

Related to the symmetric self-modulation is an asymmetric unstable mode, where a
decreasing spot size in one transversal direction leads to an increasing spot size in the
other. The unstable quantities for (4.22) are Aw, and Aw,, the differences between the
spot sizes in z- and y-direction of a and ¢ respectively. Antisymmetric self-modulation is
the only true 3D instability of the instabilities we have discussed. Fortunately its growth
rate decreases rapidly with the spot size as for the other two instabilities. Otherwise
full 3D simulations would be necessary. For this instability I'y = %, Iy, = é% and
I's = 1. Thus as long as Fy < 3 P, no long wavelength regime exists. But this threshold
is already crossed for a pulse with ag 2 1.7 a.. Most pulses we will use for simulations
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Figure 4.36: Color plot of 2D filaments induced by Raman instability for a simulation with ng/n. =
0.1, ag = 0.16, Ly = 10 A and Wy = 100 A.
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Figure 4.37: Left: initial pulse of longitudinally super-Gaussian (Ly = 100 \g) and transversally
Gaussian shape (Wy = 10)\g) with ap = 0.15. Sinusoidal initial perturbation of
0.02 W, for short wavelength symmetric self-modulation with & = 0.1w,/c. Right:
Pulse at ¢t = 250/1y after propagation through plasma of ny = 0.6 n..

of self-compression will be at least a factor of two above the compression threshold.
Accordingly we have to use sufficiently wide initial pulses to avoid this instability and

the necessity of 3D simulations.
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5 Transversal focusing with plasma
layers

To evaluate the pulse compression potential of plasmas, it is necessary to include the propa-
gation in vacuum after the pulse has left the plasma. In 2D /3D geometry a plasma layer can
act as a lens with a certain focal length. This increases the intensity of the pulse through
a decrease in spot size. In this chapter we will first study the focusing properties of such a
plasma lens and also compare (semi-)analytical descriptions of the plasma-vacuum transition
and pulse focusing to full wave equation simulations. In the second part of the chapter, we
investigate the propagation of transversal modes from filamentation instability in relation to
the propagation of the main pulse. The results from both parts motivate the idea to use
a layered plasma-vacuum structure for pulse compression. This will be detailed in the next
chapter.

5.1 Focusing properties of plasma layers

The propagation of electromagnetic radiation in vacuum in 1D is very different from the
2D/3D case. In 1D an electromagnetic pulse propagates unchanged in vacuum. In 2D
the pulse can either focus or defocus in the direction transversal to the propagation. A
beam or pulse that at first focuses, will start to defocus after it reached a certain minimal
spot size, called the beam waist. This behavior can be modelled with a homogeneous
Schrodinger equation, which can be derived from the homogeneous wave equation by
the so called paraxial approximation [61]

i—a+ -—==a= (5.1)

The approximation holds for beam waists that are large compared to the laser wave-
length. Non-paraxial effects are for example discussed in |16].
The well known solution of this equation is the Gaussian beam [61]

1 _ ik 22
) = e e 52
with the spot size
52
W(z) =Woy |14+ = (5.3)
“R
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Figure 5.1: Time evolution of |a|? for a simulation of a 450 thick plasma lens with ng/n. = 0.3,
ag = 0.1, Lo = 10 \g and Wy = 100 A\g. The density profile is shown semi-transparent.

where W, is the waist spot size. The radius of curvature of the phase front is

52
R(z)=z+ 7R : (5.4)
The Rayleigh length
W2
T (5.5)
Ao

is the length of propagation where the pulse changes its diameter by a factor of v/2.

Due to the missing time derivatives in equation 5.1, its solution can be modulated in
time by an arbitrary time dependent function v(t) to obtain a localized pulse a(z, z,t) =
v(t) X u(z, ). Any initial condition a(z = zp, z,t) of this form will keep its longitudinal
half width. In the derivation of (5.1) the mixed derivative %;Z was neglected, which
results in the conservation of power in each transversal slice

P(z) = A(2)*W(z) = AZW, = const. (5.6)

Thus no power is transferred on-axis in the comoving frame.
For a negative curvature R(z) the pulse will focus until its spot size reaches W, at
the focal point. By letting a highly intense laser pulse pass through a plasma layer, the
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Figure 5.2: Evolution of pulse parameters for the simulation in Fig. 5.1 in normalized units. Density
profile (black), amplitude |a| (red), length L (green), spot size W (blue). The arrows
mark the position of the maximum amplitude and minimum spot size.

relativistic nonlinearity produces such a curvature of the phase front of the pulse. This
results in the transversal focusing of the pulse after it has left the plasma and propagates
in vacuum. A plasma layer can thus be used as a focusing lens for laser intensities where
a classical lens would be damaged. The focusing effect is shown in Fig. 5.1.

For pulses that interacted nonlinearly with a plasma layer before propagation in vac-
uum, the simple formulas for a Gaussian beam are only approximately valid. Compared
to a Gaussian beam, the focusing behind a plasma layer can be highly asymmetric rela-
tive to the focal plane. The focusing occurs on a much shorter scale than the defocusing.
Surprisingly the minimum of the spot size and the maximum of the amplitude need not
(and in general do not) coincide as can be seen in Fig. 5.2, the amplitude reaches its
maximum further away from the plasma.

The length evolution shows an at first unexpected effect, too. Compared to the
Schrodinger model in vacuum the wave equation of course allows the pulse to change
its length. But the effect should be very small for the parameters in our example and
not as large as seen in Fig. 5.2. A Schrodinger simulation shows nearly the same length
evolution, although the dispersion parameter in front of the time derivative is zero in
vacuum.

We can understand this by realizing an important difference between a pulse of the
form a(z,x,t) = v(t) X u(z,x) that propagates only in vacuum and a pulse that has
propagated through a nonlinear medium. Due to the nonlinearity the pulse can have a
different transversal spectrum for each value of the time coordinate. Each transversal
slice can thus focus and defocus on a different time scale. The lower amplitude tails of
the pulse will thus change its amplitude more slowly than the higher amplitude core,
because there the nonlinearity produced a broader spectrum. In Fig. 5.3 the faster
focusing and defocusing of the transversal slices with higher amplitude can be clearly
seen. For a pulse that has maximally compressed in plasma the length always increases
in vacuum, while pulses that are far from maximum compression shorten and then
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5.1. Focusing properties of plasma layers

Wo | Le | Apv | Awax | Fw | Wi | Wey | 22 | W(Fw) WV[(/ZZV)
100 | 200 | 0.126 | 0.149 | 5780 %) 85 | 0.65 65 0.76
320 | 0.172 | 0.216 | 3170 38 66 | 0.57 46 0.70
460 | 0.214 | 0.318 | 1615 22 o8 | 0.38 32 0.95
150 | 200 | 0.125 | 0.149 | 13190 83| 128 | 0.65 97 0.76
320 | 0.170 | 0.214 | 7720 57 | 101 | 0.56 72 0.71
460 | 0.204 | 0.310 | 4490 39 93 | 0.38 o4 0.58
200 | 200 | 0.125 | 0.149 | 23590 111 | 171 0.65 130 0.76
320 | 0.169 | 0.214 | 13870 77| 136 | 0.56 96 0.70
460 | 0.201 | 0.307 | 8355 48 | 126 | 0.38 73 0.58
250 | 200 | 0.125 | 0.149 | 36840 139 | 214 | 0.65 163 0.76
320 | 0.169 | 0.213 | 21920 96| 171 0.56 120 0.70
460 | 0.199 | 0.306 | 13430 61| 159 | 0.38 93 0.99
300 | 200 | 0.125 | 0.149 | 53540 167 | 257 | 0.65 196 0.76
320 | 0.169 | 0.213 | 32420 115 206 | 0.56 146 0.71
460 | 0.199 | 0.305 | 19480 731 192 ] 0.38 112 | 0.59

Table 5.1: Characteristic quantities of transversal focusing in Cartesian 2D geometry, dependent on
the initial spot size Wy and the plasma length Lp. Apy: amplitude after plasma-vacuum
transition, Amax: maximum amplitude, Fyy: focal point with minimum spot size, Wiyin:
minimum spot size, Wpy: spot size after plasma-vacuum transition. W (Fyy): spot size
a Gaussian beam of minimum spot size Wy,;, would have at a distance of Fyy away from
the focus (this can be compared to the real spot size Wpy at that distance). The other
simulation parameters are ag = 0.1, Lo = 10 \g and ng = 0.3 n..

Pulse parameters Lp | Wain/Wev | W(Fw)/Wpy
ao=0.1, Lo =102 | 200 0.65 0.76
320 | 0.56 - 0.57 0.70 - 0.71
460 | 0.38 - 0.39 0.55 - 0.59
ao = 0.1, Ly =20 | 200 0.65 0.76
350 | 0.47 - 0.48 0.64 - 0.65
530 | 0.33 - 0.38 0.51 - 0.58
ag = 0.14, Lo = 10 \g | 140 0.56 0.70
180 | 0.54 - 0.55 0.70 - 0.71
230 | 0.34-0.35 0.54 - 0.56

Table 5.2: Focusing properties of plasma layers in Cartesian 2D geometry. The ranges for the
characteristic focusing quantities are for spot sizes between Wy = 100 Ag and 300 .
For abbreviations and other simulation parameters, see table 5.1.
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5. Transversal focusing with plasma layers

Figure 5.3: Color plots of |a|? for the pulse propagation in vacuum behind a plasma lens with
ng = 0.3n. and a length of 350)\g. Pulse parameters are ap = 0.1, Ly = 20\,
Wy = 250)\g. From bottom to top: pulse directly behind the plasma lens, at the focal
plane and far behind the focal plane.

lengthen again.

To study the focusing properties of a plasma lens more thoroughly, we made a large
number of simulation runs with a systematic variation of pulse and plasma layer pa-
rameters. For three different combinations of pulse amplitude and length, the spot size
of the pulse and the thickness of the plasma layer was varied. The initial spot size was
between 100 Ay and 300 \g. For the length of the plasma layer three different values
were used, where the largest length is given by the optimal value for longitudinal pulse
compression. We used Cartesian 2D geometry for this parameter study, because the
focal length for pulses with large initial spot sizes is very large. This is especially the
case if the pulse is only weakly focused by a short layer. This can make it necessary
to simulate the propagation in vacuum for well over 10° . Without the possibility to
use very large steps in vacuum, the computational cost of such simulations would be
prohibitive. The qualitative results should still carry over to cylindrical or full three
dimensional geometry.

The results from the parameter study are given in tables 5.1 and 5.2. In table 5.1
detailed results for ag = 0.1 and Ly = 10 )y are given. The most important quantities
are the ratio of the minimum spot size Wi, to the spot size Wpy directly behind the
plasma layer and the ratio of W (Fy ) to Wpy. The quantity W (Fy) is the spot size a
Gaussian beam with minimum spot size W ,;, would have at the distance Fy, from the
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5.2. Boundaries between vacuum and plasma

focal point. This can be calculated from (5.3) and can be compared to the real spot size
Wpvy of the pulse at that distance. The two ratios thus quantify the relative reduction
in spot size from behind the length to the focal spot and the strength of the focusing
compared to a Gaussian beam. From table 5.1 we see that the scaling of the focusing
with the length of the plasma layer is mostly independent of initial spot size.! It only
depends on the length of the layer and is stronger than for a Gaussian beam. For a
layer of optimal length for longitudinal pulse compression it is nearly twice as strong
and the spot size can be reduced to about 25% of the initial value W,. This result is
valid for other pulse parameters, too. Table 5.2 contains the summarized results for
the two spot size ratios for three different pulse amplitude / length combinations. The
ranges that are given in the Table, are for the different initial spot sizes and show a
very low variance. Knowing this ratios allows the effective prediction of the focusing
behavior of a very wide pulse by simulating a much more narrow pulse, which decreases
the computational cost significantly because of the much smaller focusing length of the
narrow pulse.

5.2 Boundaries between vacuum and plasma

To model the focusing effect of a plasma lens correctly, it is important to also model the
boundaries between the vacuum and plasma regions to match the experimental situation
of a gas jet experiment. It is especially important to understand the difference between
hard and soft transitions to the plasma layer. The basic process that happens at a hard
boundary is known from linear electrodynamics. A plane wave of wave number £ and
frequency w is in part reflected and in part transmitted if w > w,. Modes with w < w,
have a reflection coefficient of unity and decrease exponentially inside the plasma, this is
called skin effect. The length over which the amplitude drops by a factor of e is called the
skin length. The transmission and reflection coefficients are given by the so called Fresnel
formulas. For a thin layer the behavior is more complicated, because the reflection and
transmission at both boundaries influence each other and skin modes do contribute to
the energy transfer through the layer. For sufficiently long layers these effects are small
and can be neglected. The transition of a localized pulse from vacuum to plasma or vice
versa can be calculated by decomposing it into Fourier modes and multiplying the modes
with their respective Fresnel factors. Through this method, boundaries can be included
in NLSE simulations, since they are not treated selfconsistently in this equation. In 2D
the transformation formulas of the vector potential for a plasma with pu,. =1 are

2 2
Ax(k) = WAI(I{) and Ay(k) = mAy(k) s (57)
L+ n cos(a) 1+ nCOS(aN)

where « is the incident angle measured relative to the normal vector of the plasma
surface and o is the corresponding angle behind the surface. The angles are given by

!This is only valid if the initial spot size is sufficiently larger than the spot size range where direct
collapse of the pulse would occur.
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5. Transversal focusing with plasma layers

the relations " ‘
sin(a) = ———=—— and sin(a’) = sin(a) .

VR 2 U
The index of refraction 1 can be taken in zeroth order from the linear plasma dispersion
relation. In our units it is then equal to the linear group velocity. Relativistic corrections
have to be included for higher intensities, in [17| several different are given for different
parameter regimes. For a derivation of the 2D Fresnel formulas for the vector potential
A see e.g. |15].

When entering the plasma a localized pulse will get a higher vector potential amplitude
and a smaller spatial length.? Heuristically this can be understood by remembering that
the carrier wavelength of the pulse is shorter in plasma than in vacuum, as described
by the linear dispersion relation. The effect is the larger the higher the plasma density
and thus the lower the linear group velocity is. The width stays nearly unchanged for
pulses wider than a few laser wavelengths. For long pulses the temporal length of the
pulse is nearly unchanged, too. The pulse propagates more slowly inside the plasma by
a factor v, = 7, which is close to the factor the pulse is shorter spatially.
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Figure 5.4: Comparison of the length evolution between NLSE (temporal pulse length) and wave
equation (spatial pulse length) simulations. Plasma layer of 50 Ao length and a density
of 0.3 n.. Pulse parameters are ag = 0.15. Ly = 10 \g and Wy = 100 Ag.

To examine how well the physics at the plasma boundary is captured by the Fres-
nel formulas, we compare simulations of the nonlinear wave equation and nonlinear
Schrodinger equation. All simulations were done using cubic nonlinearity and include
no density response. In NLSE simulations a temporal initial distribution is propagated
in z up to the boundary of the plasma layer. Then the field distribution is transformed
using the Fresnel formulas for each Fourier mode and the resulting field is then propa-
gated through the plasma. At the end of the plasma layer the same procedure is applied.

2If the density is close to the critical density and the pulse is short (i.e. has a broad frequency
spectrum), the amplitude can instead decrease, because a large fraction of the pulse can not enter
the plasma.
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Figure 5.5: Comparison of amplitude evolution between NLSE and wave equation simulations.
Plasma layer of 10 Ao length and density of 0.3n.. Pulse parameters are ag = 0.2.
Ly = 109, Wy = 50 \g. red : cubic NLSE + Fresnel formulas, blue: cubic nonlin-
ear wave equation (hard boundaries), magenta : cubic nonlinear wave equation (soft
boundaries, 5 \g)

Only for pulses with a very small spot size, the 2D Fresnel formulas yield a different
result than the 1D formulas (o = 0), because only very narrow pulses of 5 or less have
k., values that are not small compared to the kg of the laser carrier. Simulations based
on the wave equation consistently show a slight increase in transversal width from vac-
uum to plasma and a decrease from plasma to vacuum, although this has little influence
on the maximum intensity of the pulse.

The very different behavior at the plasma boundaries of the temporal length in NLSE
and the spatial length in wave equation simulations respectively does not lead to dif-
ferences in length when the pulse is again in vacuum (cf. Fig. 5.4). The effect on
the amplitude for ny = 0.3n, at the vacuum-plasma boundary is already quite large at
around 9% for |a|. This jump in the amplitude is only this large for the vector potential.
The intensity, calculated from E and B, changes much less. Although the reflection at
the plasma-vacuum boundary leads to a higher maximum amplitude at the boundary
to vacuum, the nonlinear interaction with the reflected pulse has little influence on the
transmitted pulse. At least this is the case for pulses up to 20 A\g length and weakly
relativistic amplitudes.

For the weakly relativistic regime the Fresnel formulas thus describe the vacuum-
plasma transition surprisingly good and allow the simulation of stratified plasmas with
the NLSE, cf. Fig. 5.5. For higher amplitudes they can be modified by correcting the
density used to calculate the index of refraction. The ~-factor can simply be evaluated
for maximum pulse intensity. This correction reduces the increase of amplitude inside
of the plasma (Fig. 5.6 on the left). It is also computationally much less intensive than
a simulation of a hard boundary with the wave equation. Since reflected waves become
important, the QEA method can not be used while the pulse propagates through the
boundary and the grid discretization has to be further reduced than for a soft transition
to ensure accurate results. For a realistic plasma boundary this Fresnel transformation
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Figure 5.6: Comparison of amplitude evolution between NLSE and wave equation simulations at
the vacuum-plasma (on the left) and plasma-vacuum boundary (on the right). Plasma
layer of 30 \g length and a density of 0.3 n.. Pulse parameters are ag = 0.3. Lo =4\
and Wy = 50)\g. Black : cubic NLSE + Fresnel formulas, red : cubic NLSE +
relativistically corrected Fresnel formulas, blue: cubic nonlinear wave equation (hard
boundaries), magenta : cubic nonlinear wave equation (soft boundaries, 5 \p).

would have to be modified though, because a hard density jump is not achievable with a
gas jet and a smooth transition of only a few Ay length reduces reflection to nearly zero,
see the magenta curve in Fig. 5.5. This might be accommodated by decomposing the
density increase or decrease into small steps with Fresnel transformations in between.
There are two main arguments against using the NLSE combined with the Fresnel
formulas, though, for the simulation of plasma lenses. If the density response has to be
included, it becomes difficult to solve the coupled equations for a and n!, because a has
to be integrated in z while the density has to be integrated in time (cf. section 2.3).
For short pulses of less than four cycles length, the envelope approximation starts to
break down. This leads to large differences in amplitude after the pulse has propagated

through the plasma layer (see Fig. 5.6).

5.3 Propagation of short vs. long wavelength
transversal modes in vacuum

When a pulse that has developed transversal filamentation instability leaves the plasma
and enters vacuum, the growth of the instability obviously stops. As we have seen in the
preceding section, in vacuum the pulse as a whole will at first focus and then defocus
with a typical length scale of one half to one Rayleigh length. This behavior can be
understood from the Fourier decomposition of the pulse. The smaller the beam waist,
the broader the spectrum of transversal Fourier modes becomes. From the vacuum

dispersion relation
_ 2 2
w(k) = c,/kj + k]
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Figure 5.7: Color plot of |a|? for the propagation of a pulse in vacuum after propagation through a
500\g plasma layer with ng = 0.3n.. The initial longitudinal sech shape and transversal
super-Gaussian shape. Initial transversal pulse perturbation of 1073 ag with a wavelength
of 20 \g. Bottom to top: pulse at t = 560/vy, t = 1400/vy, t = 2400/vy and t =
4540/vg. The other simulation parameters are ag = 0.16, Ly = 2 A and Wy = 200 A.

follows the group velocity of a transversal Fourier mode with a certain value of k|

Owk) _ ki _ ko
é)lCJ_ n |1{‘ N w )

vi(kL,w) = (5.8)

For a wide pulse we can use the carrier wave number ky = wy/c for the value of k| and
thus w = wy.

Since for a symmetric beam the spectrum is symmetric, too, the wave numbers in the
spectrum come in pairs of k;, —k; that propagate in opposite directions. Combined
with the higher group velocity of modes with higher absolute k-values, this implies that
a pulse focuses or defocuses the faster the smaller its waist size is. This can be seen,
too, from the Rayleigh length (5.5).

For a longitudinally localized pulse, this can influence the longitudinal propagation.
The constancy of the speed of light leads to a lower parallel velocity the higher the
perpendicular velocity of a mode e’¥T~**0t is In contrast to 1D, this can lead to a
change of the longitudinal pulse shape in vacuum. For the pulse parameters we are
considering, the transversal k-values of the pulse will be small compared to kg and this
effect will be small, too. This changes if the pulse develops transversal filamentation.
The transversal k-modes due to the instability are not small compared to ky. These
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Figure 5.8: Same as Fig. 5.7, but for t = 1600/vy, ¢t = 1680/ and t = 1760/vy (again from
bottom to top).

unstable modes will thus propagate more slowly in the longitudinal direction than the
main pulse and will also disperse faster in the transversal direction.

In Fig. 5.7 snapshots of the time evolution in vacuum can be seen for a pulse with a
super-Gaussian shape in the transversal direction with only a single transversal mode as
a perturbation. This simplifies the comparison with the analytically expected behavior.
At first, after the pulse has left the plasma, the filaments of the instability are still
located centrally on the pulse. But because of their slower longitudinal propagation,
they soon begin to lag the main pulse. The resulting longitudinal asymmetry is the
first sign that the unstable modes propagate differently from the main pulse. Although
they travel in the transversal direction, too, the center of the pulse at first does not
clear from the filamentation. The filaments seem to behave like two combs that move
relative to each other. In this way we can explain the effect in Fig. 5.8 that peaks vanish
for a short time and then reappear. This happens several times until the oppositely
propagating filament combs do not overlap anymore and the center of the pulse clears
from the instability.

The wavelength of the initial perturbation can still be identified for the parts of the
instability that have already left the main pulse and their speed matches the expected
value from the vacuum dispersion relation for this wavelength. They do not accumulate
in one lump directly behind the pulse as stated in [59], because they have a considerable
velocity component in the transversal direction.

After sufficiently long propagation in vacuum the pulse has shed all the unstable

92



5.3. Propagation of short vs. long wavelength transversal modes in vacuum

-300 -200 -100 0 100 200 300

XD"o

Figure 5.9: Color plot of |a| showing a spherical radiation front after long propagation in vacuum.
Note that |a| is shown (not |a|?) for better visibility of the lower amplitude parts of the
pulse.
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Figure 5.10: Amplitude evolution of a pulse in cylindrical geometry (ap = 0.1, Lo = 20 X9, Wy =
200 \o) with different phase randomized initial perturbations of 0.01 ay. Propagation
through a plasma layer of 530 A\ with a density ng = 0.3n..
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modes that propagate on a spherically shaped surface, see for example Fig. 5.9. The
remaining main pulse has the same shape as it would have had without filamentation
instability, but with a lower amplitude. The amount of amplitude reduction depends on
the strength of the instability.

In Fig. 5.10 the evolution of maximum amplitude for three phase-randomized ini-
tial perturbations of 0.01 ag is shown for a simulation in cylindrical geometry. In this
geometry, which is effectively 3D, the effects of the instability are stronger due to an
increasing intensity of the collapse with an increasing number of dimensions. 2D is
critical dimensionality for the collapse to occur [62].

The shedding of short wavelength transversal modes in vacuum thus prevents the de-
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5. Transversal focusing with plasma layers
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Figure 5.11: |a|? of pulses with (on the right) and without an initial perturbation (on the left) after
propagation through a plasma layer. Same parameters as Fig. 5.10
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Figure 5.12: Same as Fig. 5.11 after propagation through ~ 10000 )y of vacuum. Note that at
this location only the initially perturbed pulse has its maximum intensity, not the
unperturbed pulse. See Fig. 5.10 to compare maximum amplitudes.

tection of the filamentation in some distance behind the plasma (Fig. 5.11 and Fig. 5.12).
After only a few millimeters in vacuum the pulse has nearly regained its unperturbed
shape. This means that the data about the strength of the instability has to come from
measurements inside the plasma, e.g. by means of shadowgraphy.
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6 Stratified plasma-vacuum systems

In this chapter we will combine the ideas discussed in the preceding chapters by using layered
plasma-vacuum structures instead of single layers for pulse compression. The advantage
of this approach twofold. It allows to use the transversal focusing potential of a pulse
more effectively, and thus increase the intensity of the compressed pulse. It also offers
the possibility to control the transversal filamentation instability. By dividing the plasma
layer into several shorter layers with vacuum in between, the transversal dispersion of the
short unstable modes in vacuum is exploited to clean the pulse before this modes can grow
to significant amplitude. Particular attention is given to plasma configurations that are
experimentally achievable.
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Figure 6.1: |a|?> of a Gaussian pulse with ag = 0.1, Ly = 10\¢ and Wy = 150 \¢ propagating
through two plasma layers of density ng = 0.3n.. The first layer is 330 Ay and the
second is 125 )y long with 1500 Ay vacuum in between.
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6. Stratified plasma-vacuum systems

6.1 Advantages of multiple plasma layers

6.1.1 Enhanced transversal focusing

For a controlled and efficient longitudinal compression, the initial laser amplitude has
to be weakly relativistic, i.e. a3 < 1 and stay subrelativistic during the compression.
Otherwise the energy loss inside the plasma would become too large. Moreover, the
spot size has to be much larger than the pulse length, otherwise the pulse would directly
collapse inside of the plasma. This implies that a high power laser pulse can only be
weakly focused into the plasma to be in the right amplitude and spot size range. Inside
the plasma the pulse then is longitudinally compressed from its initial length to just
one or two cycles. Thus to reach high subrelativistic or even relativistic intensities,
the pulse has to be strongly transversally compressed. Because of the strong coupling
between longitudinal and transversal compression, as discussed in section 4.3.3, it is not
possible to realize the full transversal compression potential of the pulse purely inside the
plasma. But the focusing can be enhanced by slicing a plasma layer of optimal length for
longitudinal compression into multiple shorter layers with vacuum sections in between.
During the propagation in vacuum the transversal and longitudinal dynamic is (mostly)
decoupled. The pulse focuses in the transversal direction, due to the negative curvature
of the phase front induced by the plasma, while its length stays nearly unchanged. When
it reaches the next plasma layer, it has a higher intensity than without propagation in
the vacuum between the layers. This increases the strength of the compression inside
the next layer. Using two or more layers should in this way allow to produce pulses with
much higher intensities and much reduced spot sizes.

An example of a two layer configuration is shown in Fig. 6.1. Such a vacuum-plasma
configuration has several free parameters for which the optimal values are difficult to
determine analytically. These are the number of plasma layers, the relative length of
the layers and the amount of vacuum between the layers. We will study the influence
of this parameters in the following sections.

6.1.2 Controll of transversal filamentation

One result presented in the last chapter was that a pulse that is strongly filamented in the
transversal direction can regain a smooth transversal shape after propagation through
a sufficient amount of vacuum. How well a pulse is able to shed the unstable modes,
can be estimated by comparing the Rayleigh lengths of the unfilamented pulse with the
Rayleigh length of the individual filaments. A pulse can only loose the unstable modes
if the Rayleigh length of the full pulse is several times larger than that of the filaments.
This is already fulfilled if the pulse is a few times wider than the filaments, because of
the quadratic dependency of zr on the spot size. The pulse has to travel a few times
the Rayleigh length of the filaments to shed the unstable modes. The obvious question
is, if the pulse could shed its unstable modes before they can grow to large amplitudes,
at the cost of the amplitude of the main pulse. A proposal for such a method was made
by Shorokhov et. al. in [59]. The pulse propagates in plasma only for a short amount of
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6.1. Advantages of multiple plasma layers

time and then propagates sufficiently long in vacuum for the unstable modes to get out
of step with the main pulse. Then it enters another short plasma layer followed again
by vacuum and so on until the maximum longitudinal compression is achieved.

The general plasma-vacuum configuration is thus similar to the configuration for en-
hanced transversal focusing, but the criteria for choosing the parameters are different.
The length of the individual layers is limited by the filamentation length of the pulse.
This length depends critically on two quantities. The longitudinal pulse length deter-
mines the most unstable transversal mode. The shorter this mode becomes, the higher
its growth rate and thus the shorter the filamentation length. The other quantity is the
noisiness of the system. This includes both perturbations of the pulse shape and fluc-
tuations of the plasma density that act as a seed for the instability. The more noise the
system exhibits, the shorter the filamentation length will be. Since the strength of the
fluctuations depends on the intensity of the driving pulse, more intense pulses will have
a shorter filamentation length. This suggests that the plasma layers have to become
increasingly short as the pulse length decreases and its amplitude increases during the
compression.

The length of the vacuum sections, too, depends on the wavelengths of the unstable
transversal modes. Shorter wavelengths need less propagation vacuum to get out of
step with the main pulse. We can make a simple analytical estimation for the necessary
amount of vacuum for a certain pulse length. For this we assume that the main pulse
travels at ¢ in the longitudinal direction and has no transversal velocity component
(i.e. the pulse shows no transversal dispersion). This is approximately valid, if the
previously mentioned ratio of the Rayleigh lengths is large. From the expressions for

the longitudinal and transversal velocity components of an e!**=#“0t mode
AT
VL = 220
Wo
and ¢ = Uﬁ +v?, we get for the parallel velocity component
2
Y vy
— =1/1—-—=". 6.1
c 2 (6.1)

This allows us to calculate after how many Ag of vacuum a mode with a certain k£, will
lag the main pulse by the half width of the pulse. If we take for example a pulse that
compresses down to 2)y in length and we take the value of the most unstable mode
for a soliton of this length as a guide (= 19)¢), we get a group velocity difference of
Av, =~ 0.0021c and vacuum length of ~ 1400 A, for a lag of one half width. This is
consistent with the simulations in section 5.3. Since the growth rate of the instability
depends only on |k | irrespective of the number of dimensions of k; the same formula
can also be used to calculate the vacuum length for simulations in 3D Cartesian or
cylindrical geometry. For the parameters in [59], the pulse compresses down to a single
wavelength which results in A\, ~ 6.6 Ay for ng = 0.6n.. The vacuum for a lag of a
single wavelength is in this case approximately 90 \g, which is in very good agreement
with the value of 100 A\ that was used as the vacuum length between the four plasma
layers for a total vacuum length of 300 A.
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6. Stratified plasma-vacuum systems

Of course there are constraints from the transversal focusing of the pulse. A strongly
focused pulse is much more susceptible to collapse caused by the instability, but reducing
the length of the vacuum sections to reduce focusing can result in an insufficient amount
of vacuum for the control of the instability. The requirements for enhanced focusing and
filamentation control have thus to be balanced against each other and the pulse, layer
and vacuum parameters have to be chosen to meet both.

6.2 Optimization of transversal focusing
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Figure 6.2: Amplitude evolution for ag = 0.1, Ly = 10Xy, Wy = 150 Ag for 1-4 plasma layers
(no = 0.3n.) of comparable total length. One layer of 460 Ao (black), two layers of
227 Ao (red), three layers of 150 Ao (green), four layers of 112 )y (blue). Each layer
has 5 Ag transitions between vacuum and plasma on both sides. For each additional
layer the total plasma length is reduced by 3 Ag to account for the additional amount
of plasma in the transition regions. Total amount of vacuum between layers is 2400 \q,
divided equally.

In the following we will examine the influence of different layer parameters, such as
the number of plasma layers and the amount of vacuum between the layers, on the
resulting amplitude, length and spot size of the pulse. Most of the simulations in the
preceding sections were done in 2D Cartesian geometry, because we were only interested
in qualitative results, or the results were independent of the transversal geometry. In
this way we were able to take advantage of the fast simulation times in vacuum of the
Gautschi-type integrator. This allowed us for example, to study the focusing behavior of
very wide pulses with very large Rayleigh length. This is not possible when using more
than a single plasma layer. In 3D the amplitude increase in vacuum due to transversal
focusing is around two times larger than in 2D, due to the additional direction in which
focusing occurs. Thus the propagation in the next plasma layer will be very different in
2D and 3D and we have to use a cylindrical geometry to perform realistic simulations.
This increases simulation runtimes compared to Cartesian 2D simulations, not only
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Figure 6.3: Pulse length evolution for the simulations shown in Fig. 6.2.
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Figure 6.4: Spotsize evolution for the simulations shown in Fig. 6.2.

because small time steps have to be used in vacuum. They are also increased, because
in cylindrical geometry the initial minimum spot size for that no direct collapse occurs
is larger by a factor of about /2. This can be partially compensated by using a coarser
transversal discretization, although the spot sizes at the focal point are not necessarily a
factor v/2 larger. For the simulations with a transversal perturbation the discretization
is limited by the requirement to resolve the wavelengths of the instability.

6.2.1 Number of plasma layers

First we will examine how different numbers of plasma layers influence pulse compression
and focusing. We take the length of a single layer that is needed to fully compress a
pulse with certain parameters, split it into two, three or four layers of equal length and
add linear transitions between vacuum and plasma of 5\ length. To compensate for
the added length due to the linear transitions, we reduce the length of each layer by
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Figure 6.5: Amplitude evolution for ag = 0.14, Ly = 10 A9, Wy = 150 Ag for 1-4 plasma layers
(no = 0.3n.) of comparable total length. One layer of 235 Ao (black), two layers of
115 X\g (red), three layers of 75 Ay (green), four layers of 55 Ao (blue). Total amount of
vacuum between layers is 1800 Ag.
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Figure 6.6: Amplitude (on the left) and spot size evolution (on the right) for ag = 0.1, Ly = 20 Ao,
Wo = 200 Ay for 1-4 plasma layers (ng = 0.3n.) of comparable total length. One layer
of 530 Ay (black), two layers of 262 )\ (red), three layers of 174 \y (green), four layers
of 130 Ao (blue). Total amount of vacuum between layers is 1800 A.

3 Ag. The total amount of vacuum between the layers is chosen to be the same for any
number of layers, so that the length of the individual vacuum sections decreases with
the number of layers.

In Fig. 6.2 the amplitude evolution for a pulse with ag = 0.1, Ly = 10 A\g and W, =
150 Ag is shown for one to four layers layers of density ng = 0.3n.. The total length of
the vacuum sections is 2400 A\g. The length and spot size evolution are shown in Fig. 6.3
and Fig. 6.4 respectively. For a single layer the pulse reaches the focal point after
propagating 5450 A\g. With focal point we denote the z-position at which the maximum
amplitude is reached. As we have seen in the last chapter, this point does not coincide
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6.2. Optimization of transversal focusing

with the minimum spot size. The spot size at the focal point is W = 39 A\ and its length
L = 3 )\y. For more than one layer the focal point is already reached between 4100 Ay to
4400)g. The spot size in focus for two layers is W = 24 Ay and the length L = 2, \y. For
three and four layers the values are W = 18 \g, L = 1.9, \g and W =16 Ay, L = 1.9, \g
respectively. The use of multiple layers can thus not only enhance transversal focusing
but also increase the longitudinal compression. The decrease of spot size and length
with the number of layers is directly proportional to the increase in intensity. Losses to
the plasma are very low.

For ay = 0.14 and the same initial length and width and a total amount of 1800 Ay
the maximum amplitude also increases distinctly from one to two layers. But for three
and four layers there is already a saturation in maximum amplitude visible in Fig. 6.5.
This is not due to energy loss of the pulse to the plasma, but due to a saturation in
both longitudinal and transversal compression. The spot size at the focal point (at
z = 4400...4700 \g) for two to four layers ranges from about 19.5 Ay to 21.4 Ay, the
difference being less than 2 \yg. The pulse lengths are also very close at 1.42...1.5 ).
The values for a single layer are W = 31 \g and L = 1.56 \y at z = 4000 \g. The same
saturation effect can be seen for ag = 0.1,Ly = 20 \y and Wy = 200 )\, in Fig. 6.6 where
the spotsize evolution is shown, too. Here the focal point is for one layer at z = 6000
with W = 40 \g and L = 1.9 \g. For two to four layers the focal point is reached at
z =5800...6000)g. The spot sizes are within less than a single laser wavelength around
W = 27.5 )¢ and the lengths are essentially the same at L = 1.65 ).

6.2.2 Relative thickness of the plasma layers
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Figure 6.7: Amplitude evolution for ag = 0.1, Ly = 10Xy, Wy = 150y for two and three
plasma layers (ng = 0.3n.). Total length of the plasma is 455 \y for two layers and
450 \¢ for three layers respectively. Total amount of vacuum between layers is 1800 \g.
The partition for two layers is 227 A\ /227 Ao (red, solid), 330 Ao/125 Ao (red, dashed),
375 X0/80 Ao (red, dash-dotted) and 420 \o/35 Ao (red, dotted). For three layers the
partition is 150 Ag /150 A /150 Ao (blue, solid) and 250 Ay /100 Ay /100 g (blue, dashed).
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6. Stratified plasma-vacuum systems

Another parameter of the stratified plasma-vacuum system that can be varied, is the
relative thickness of the plasma layers at a constant total amount of plasma. For the
pulse parameters ag = 0.1, Ly = 10Xy, Wy = 150 \g the result is shown in Fig. 6.7.
Increasing the relative length of the first layer improves focusing and compression up
to a certain optimal ratio above which the maximum amplitude decreases again. A
longer first layer visibly increases transversal focusing and thus increases the intensity
at the beginning of the second layer. But since the second layer is reduced accordingly
in length, the second stage of longitudinal and transversal compression in plasma is
weaker. If the length of the second layer goes to zero, the single layer result of course
has to be recovered. At the optimal length ratio, the lowest minimum spot size and
thus the strongest transversal focusing is reached, while other ratios for the length of
the layers may have a lower minimum length. for three and four layers, increasing the
length of the first layer yields the same result.

Again the effect is less pronounced for pulses with a higher initial amplitude or length.
When the relative length of the first layer is increased, a saturation at which the spot
size can not be reduced further sets in quickly.

6.2.3 Amount of vacuum between plasma layers
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Figure 6.8: Amplitude evolution for ag = 0.1, Ly = 10 X9, Wy = 150 Ao for two plasma layers
(no = 0.3n.) and varying amount of vacuum between the layers. The plasma layers are
330 Ag and 125 Ao long respectively. The vacuum lengths are 1200 \y (green), 1800 Ao
(cyan), 2400 Ag (blue), 3000 Ay (magenta), 3600 \g (red).

The most important parameter for enhanced transversal focusing is the total amount
of vacuum between the plasma layers. With a total amount of zero we arrive at the
single layer again. Increasing the length of the vacuum leads to a pronounced increase
of maximum amplitude and decrease of minimum spot size. But it is not possible, for
example for two layers, to put the last layer at the focal distance of the first layer (or
generally the layer before), because this would cause the pulse to collapse inside of the
last layer. The distance to the last layer has thus to be either smaller or substantially
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Figure 6.9: Amplitude evolution for ag = 0.1, Ly = 20 X9, Wy = 200 Ao for two plasma layers
(no = 0.3n.) and varying amount of vacuum between the layers. The plasma layers are
355 Ao and 170 A\g long respectively. The vacuum lengths are 1200 A\ (black), 1800 Ao
(green), 2400 X\ (cyan), 3000 Ag (blue), 3600 Ao (magenta) and 4200 Ao (red).

larger than the focal distance. Otherwise the pulse will still be strongly deformed, which
leads to oscillation of the pulse amplitude in vacuum (Fig. 6.8).

The stronger transversal focusing for a larger absolute amount of vacuum does not
show saturation for a larger pulse amplitude or length (Fig. 6.9). This is different to
the other variations of the plasma-vacuum structure, which where of a relative kind.
This suggests that the achievable minimum spot size is fixed by the absolute amount
of vacuum. A certain configuration may not reach the optimum spot size / amplitude,
but no configuration can exceed this value. It also suggests that increasing the initial
spot size of the pulse and the total amount of vacuum, is the best way to increase the
intensity at the focal point. No saturation should occur in this way until the intensities
become already relativistic inside of the plasma.

It is of course possible for more than two layers to vary the relative amount of vacuum
between the layers. From the preceding two section we can already guess the result.
Increasing the number of layers, or decreasing the thickness of the layers from the first
to the last, effectively shifts plasma towards the beginning and vacuum to the end of
the plasma-vacuum structure. We can thus expect to achieve a higher intensity by
shortening the first vacuum section and lengthening the last (Fig. 6.10). Since this
change is relative in nature, we also expect to see a saturation effect for the same pulse
parameters as before (Fig. 6.11). The relative change in the vacuum distribution can

of course be combined with a relative change in plasma distribution to further enhance
the focusing (Fig. 6.12 and Fig. 6.13).

6.2.4 Currently feasible experimental configurations

All of the configurations discussed up to this point have steep transitions between vac-
uum and plasma. Some of them have very short plasma layers of less than 100 A
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Figure 6.10: Amplitude evolution for ag = 0.1, Ly = 10X, Wy = 150 )y for three plasma
layers with ng = 0.3n. and a total amount of 1800 Ay vacuum between layers.
Each plasma layer is 150 A\¢ long. The partition of the vacuum is 1500 A\ /300 Ao
(green), 1200 Ao /600 A (cyan), 900 \g/900 \g (blue), 600 \g/1200 A¢ (magenta) and
300 \o/1500 Ao (red).

thickness. With gasjets of maximum densities larger 0.25 n., produced through super-
sonic gas expansion, such parameters are currently not achievable. The current state of
the art are a density plateau of about 200 um at ng = 0.3 n. with a transition to vacuum
of a length of also ~ 200 um around the core of the gasjet [54]. This reduces the number
of plasma layers we can use to two. Even for only two layers such a configuration would
be longer than the optimal length for a pulse with ap = 0.1 (or more) and Ly = 10 \g
(or less).

Since increasing the spot size or decreasing the amount of vacuum between the two
layers does only weakly change the length of plasma for which optimal longitudinal
compression is achieved, we only have the initial pulse length and amplitude to effectively
control the compression length. We are looking for a combination of pulse parameters
which allows strong compression and focusing and is stable against slight variations in
the thickness of the gasjets that can occur in experiments.

A parameter combination, which fulfills this requirements, is ag = 0.08,Ly = 20 \¢ and
Wy = 250 \g. The length of the density plateau can be varied between 200 A\g and 280 A,
with a distance between the gasjets of 3600 Ay to 5000 \g. The results for the intensity
evolution for three different plasma-vacuum configurations can be seen in Fig. 6.14. It is
possible with such configurations to reach a more than hundredfold increase in intensity
from I = 0.0064 to I = 0.69. This is nearly as good as for the physically less realistic
examples discussed above, although the absolute value of the maximum intensity is not
as high. Still, the spot size can be decreased to less than 30 Ay (Fig. 6.15) and the length
to less than 2.5 laser cycles.

There are two interesting points to note. The first is that, although substantial parts
of the two layers have a density of less than quarter critical, no Raman instability was
visible in any of the simulations. The second is that the focal length of the last layer is
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Figure 6.11: Amplitude evolution for ag = 0.14, Ly = 10Ag, Wy = 150 Ay for three plasma
layers (ng = 0.3n.). Each plasma layer is 75y long. The total vacuum length
is 1800 Ag. The partition of the vacuum is 1000 \y/200 Ao (green), 800 A\y/400 Ao
(cyan), 600 Ao/600 Ao (blue), 400 A\g/800 Ag (magenta) and 200 Ag/1000 A (red).

about 6000 \g, much larger than for most of the other configurations discussed before.
This can be explained by the large initial spot size and less extreme focusing.

6.3 Controlling transversal filamentation

We will now introduce pulse perturbations to the simulations to examine the stability
of the pulse propagation through a layered plasma vacuum structure with respect to
transversal filamentation. The aim is to find parameters that allow (nearly) optimal
compression and minimize losses due to pulse filamentation. Compared to the transver-
sal perturbations used in section 4.4, we here use a discrete spectrum of wavelengths.
The amplitude parameter for the perturbation is for each wavelength and not for the
superposed perturbation after phase randomization. For the longitudinal perturbation
profile a super-Gaussian with two times the pulse length (full width at half maximum)
is used that is shifted by half the pulse length towards the back of the pulse. A per-
turbation is applied to the pulse before each of the layers, where the local amplitude
and length of the pulse is used to determine the amplitude of the perturbation and the
length of the longitudinal perturbation profile instead of the initial values. Without a
perturbation applied before each layer the shorter modes that can only grow in the last
layer where the pulse is sufficiently short would have already dispersed before the pulse
has propagated this far. The standard perturbation that is used, consists of 20 cosine or
Bessel modes (depending on the transversal geometry) with wavelengths from 10 Ay to
30 \p and an amplitude of either 0.01 or 0.005 times the pulse amplitude at the position
where the perturbation is applied to the pulse.

Both perturbation amplitudes are sufficient to induce a strong instability if only a
single long layer is used. For several shorter layers the lower amplitude of 0.005 seems
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Figure 6.12: Amplitude evolution for ag = 0.1, Ly = 10 Ay, Wy = 150 A for three plasma layers
(no = 0.3n.). The plasma layers are 250 )\, 140 A9 and 60 Ao long respectively. Total
amount of 1800 \g vacuum between layers. Partition of the vacuum is 1500 Ao /300 Ao
(green), 1200 Ao /600 A (cyan), 900 \g/900 \g (blue), 600 \g/1200 A¢ (magenta) and
300 \o/1500 Ao (red).

to favor the growth of short wavelength modes. The larger perturbation amplitude of
0.01 can lead to strong growth of long wavelength modes in the first layer that the
pulse can not fully shed before reaching the next layer. Thus they can grow further
and still dominate in the last layer. Due to the phase randomization used to produce a
spatially uniform perturbation that can influence the strength of the instability, for each
simulation run that shows successful control of the instability at least one additional run
was made to verify the result.

The type and strength of the perturbations we use represents a worst case scenario.
The four layer configuration in [59] simulated with a 3D PIC code shows strong insta-
bility in our simulations for the higher perturbation amplitude of 0.01 and is not stable
for every run with the lower amplitude of 0.005, even with more than 100 Ay vacuum
between the layers. It is unknown how strong the filamentation will be in experiments,
but possibly weaker than in PIC simulations due to their inherent noisiness. If we can
find configurations that still allow stable pulse compression for these strong perturba-
tions, we can be sufficiently sure that they will show stable behavior in experiments,
too.

In the preceding section about enhanced transversal focusing, we optimized the plasma-
vacuum configurations to reach the highest possible intensity for a certain combination
of pulse parameters. We found these optimized configurations to be generally highly
susceptible to transversal instability. We thus have to modify either the pulse param-
eters or the vacuum-plasma configuration to allow for stable pulse propagation again.
Different strategies will be discussed in the following sections.
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Figure 6.13: Amplitude evolution for ag = 0.1, Lg = 20 Ay, Wy = 250 A\ for three plasma layers
(no = 0.3n.). The plasma layers are 300 )\, 170 A9 and 50 Ag long respectively. Total
amount of 3600 \o vacuum between layers. Partition of the vacuum is 2100 Ao /1500 Ao
(red), 1800 A\o/1800 Ao (green) and 1200 A\g/2400 Ao (blue).

6.3.1 Very long vacuum sections

If the amount of the vacuum between the plasma layers is not sufficient to allow the
shedding of the unstable modes, it is possible to increase the amount to a length much
longer than the optimal length for focusing. This has the additional advantage that
the amplitude of the pulse at the last layer is decreased, too, which further reduces the
strength of the transversal instability. The disadvantage is of course that the maximum
intensity after compression in the last layer is also reduced. Despite of this, high in-
tensities can still be reached (Fig. 6.16). Because of the strongly asymmetric focusing
behavior of plasma layers, the length of the vacuum may have to be increased to several
times the focal distance of a single layer. For more than two layers the partition of the
large amount of vacuum has to be chosen to prevent collapse in one of the layers. In
most cases, this can not be achieved with an equal partition of the vacuum. The best
strategy is to put most of the vacuum between the last two layers, as shown in Fig. 6.17.
This yields a higher intensity than the same amount of vacuum between the first two
layers. Additionally it allows a full shedding of unstable modes from previous layers
before the pulse enters the last layer. From theoretical considerations it would seem
that the longer vacuum section is more useful behind the first layer, where long wave-
lengths have become unstable that can not be fully shed in a short vacuum section. The
simulation results clearly suggest otherwise. It seems that a complete shedding is most
important before the pulse enters the last layer, because remaining short wavelength
modes drive the pulse rapidly unstable.
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6. Stratified plasma-vacuum systems
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Figure 6.14: Amplitude evolution for ag = 0.08, Ly = 20 A\g, Wy = 250 Ag and three different two-
layer configurations. Each layer has two linear transition regions of 200 \y between
vacuum and plasma. The density plateaus (ng = 0.3n.) are 200 \y (green), 240 Ao
(blue) and 280 Ao (red) long with 4200 Ag, 5000 Ao and 3600 Ao of vacuum between
the layers respectively. The density profile for the 240 Ay long plateaus (blue curve)
with 5000 Ag between the layers is shown in black.
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Figure 6.15: Spotsize evolution for the simulations shown in Fig. 6.14.

6.3.2 Increasing the initial pulse spot size

Another strategy to allow for an easier control of the filamentation is to increase of
the initial spot size. Without a corresponding increase in the amount of vacuum, a
wider pulse is focused less strongly and is thus less close to collapse (Fig. 6.18). For a
sufficiently large increase in spot size, the length of the vacuum sections can be increased,
too, without being again close to the collapse of the pulse. This allows a more thorough
shedding of the unstable modes and very good suppression of the instability (Fig. 6.19).

If the amplitude of the pulse is increased as well, e.g. to ag = 0.14 , filamentation
control becomes much more simple, because pulse amplitude and length determine the

108



6.3. Controlling transversal filamentation
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Figure 6.16: Amplitude evolution for ag = 0.1, Ly = 10, Wy = 150 \g. Two layers (ng =
0.3n.) of 375Xy and 80 Ay length respectively, with 24000 A\g vacuum in between.
Unperturbed simulation run in black, two runs with 0.5% perturbation (blue) and two
runs with 1% perturbation (red), see text for details. Left: full simulation domain.

Right: second layer only.

plasma length necessary for maximum longitudinal compression. If the layers are very
short, the instability has only a short time to develop, too. Decreasing the pulse length
can have the same effect (as long as the pulse power is above the compression threshold),
but this reduces the achievable intensity and is limited by the laser hardware. For a
short and intense pulse, e.g. ap = 0.14 and Ly = 10 Ay, which reaches full longitudinal
compression after only 230 \g of plasma, a small increase in spot size from Wy = 150 Ay
to Wy = 180 )\ is already sufficient for stable pulse propagation. For this parameters
filamentation control is possible with only two layers (Fig. 6.20). Very high intensities
of |a|?> ~ 1.5 can be reached in this way. A spot size of Wy = 200 Ao allows for enough
vacuum to use three layers (Fig. 6.21). This reduces the strength of the instability in
the first (now shorter) layer and results in an even higher maximum intensity.

Control of the filamentation becomes increasingly difficult for longer pulses. The
individual layers are much longer and thus the instability has more time to develop.
The amplitude of a long pulse can not be increased to compensate for this in the same
way as it is possible for a shorter pulse. Intensities would become too large before the
pulse length has decreased to the desired value and a large part of the pulse energy
would be transferred to the plasma.! Even for a large initial spotsizes of Wy = 250 \g
and a sufficient amount of vacuum between the layers, reliable filamentation control can
not be achieved for a pulse of ap = 0.1 and Ly = 20 \y with three layers (Fig. 6.22 and
Fig. 6.23), because the layers are too long for stable propagation. Increasing the number
of layers to four would necessitate a much larger initial spotsize to accommodate for the
additional vacuum section and/or using one very long vacuum section. Both measures
increase the computational cost to a level that makes a parameter optimization of such

!This consideration of course only applies if the aim is to generate a pulse that is as short as possible
and not to simply maximize intensity.
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6. Stratified plasma-vacuum systems
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Figure 6.17: Amplitude evolution for ag = 0.1, Ly = 10Xy, Wy = 150 \g. Three layers (ng =
0.3n.) of 225 \g, 120 A and 80 A respectively, with 2000 A9 and 22000 Ay vacuum in
between. Unperturbed simulation run (black), two 0.5% perturbation runs (blue), two
1% perturbation runs (red). Left: full simulation domain. Right: third layer only.
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Figure 6.18: Amplitude evolution for ag = 0.1, Ly = 10Xy, Wy = 200 X\g. Three layers (ng =
0.3n.) of 225 \g, 140 Ay and 60 Ao respectively, with 1500 A\g and 2100 Ay vacuum in
between. Unperturbed simulation run (black), two 0.5% perturbation runs (blue), two
1% perturbation runs (red).

a system unattractive as long as other options exist. Instead, the individual layers
can be slightly shortened to reduce the strength of the pulse compression and also
the time for the instability to develop. This comes at the price of a reduced maximum
intensity (Fig. 6.24 and Fig. 6.25) and an increase of the minimum spotsize, but without
a significant increase in the minimum pulse length.
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6.3. Controlling transversal filamentation
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Figure 6.19: Amplitude evolution for ag = 0.1, Ly = 10Xy, Wy = 250 \g. Three layers (ng =
0.3n.) of 225 \g, 140 Ay and 60 Ao respectively, with 2000 Ao and 3000 \y vacuum in
between. Unperturbed simulation run (black), two 0.5% perturbation runs (blue), two
1% perturbation runs (red).
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Figure 6.20: Amplitude evolution for ap = 0.14, Ly = 10Xy, Wy = 180 Ag. Two layers (ng =
0.3n.) of 180 A\ and 50 Ay respectively, with 3000 Ay vacuum in between. Unperturbed
simulation run (black), two 0.5% perturbation runs (blue), two 1% perturbation runs

(red).

o

6.3.3 Reducing the initial pulse amplitude

In experiments it might not be possible to reduce the length of the individual plasma
layers below a certain value that is still too large for stable pulse propagation. In this
case the strategies discussed above are not applicable. The only possibility might then
be to reduce the initial pulse amplitude. For the simulations of two gasjets we already
had to use a lower amplitude than for other plasma configurations, even without pulse
perturbations. This improves control of the instability as well. For the gasjet configura-
tion with density plateaus of 200 \g, the filamentation is kept well in control (Fig. 6.26).
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6. Stratified plasma-vacuum systems
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Figure 6.21: Amplitude evolution for ag = 0.14, Ly = 10 A9, Wy = 200 A\g. Three layers (ng =
0.3n.) of 120 Ag, 80 \g and 30 Ao respectively, with 1500 A\ and 2100 Ay vacuum in

between. Unperturbed simulation run (black), two 0.5% perturbation runs (blue), two
1% perturbation runs (red).
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Figure 6.22: Amplitude evolution for ag = 0.1, Ly = 20X, Wy = 250)g. Three layers
(no = 0.3n.) of 300 Ao, 170 A\g and 50 )\ length respectively. Two different vacuum
configurations, 1200 Ao/ 2400 g in red and 2400 Ao/1200 Ao in blue. Solid curves for
unperturbed simulation runs, dashed and dash-dotted curves for 1% perturbation runs.

Although there is a visible reduction in maximum intensity, the losses are still tolerable.
In simulations with longer plateau sections of 240 A\g, where a higher maximum inten-

sity is reached, the losses stay only in an acceptable range for the perturbation with a
relative amplitude of 0.005 (Fig. 6.27 and Fig. 6.28).
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6.3. Controlling transversal filamentation
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Figure 6.23: Same simulation parameters as shown in Fig. 6.22, but for 0.5% perturbation.
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Figure 6.24: Amplitude evolution for ag = 0.1, Lo = 20 \g, Wy = 250 \g. Three layers (ng =
0.3n.) of 280 A\g, 150 Ag and 50 Ao respectively, with 1200 Ao and 2400 \y vacuum in
between. Unperturbed simulation run (black), two 0.5% perturbation runs (blue), two
1% perturbation runs (red).
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6. Stratified plasma-vacuum systems
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Figure 6.25: Amplitude evolution for ag = 0.1, Ly = 20 \g, Wy = 300 )g. Three layers (ng =
0.3n.) of 290 A\g, 160 Ay and 50 Ao respectively, with 2000 A\g and 3000 \y vacuum in
between. Unperturbed simulation run (black), two 0.5% perturbation runs (blue), two
1% perturbation runs (red).
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Figure 6.26: Amplitude evolution for two layers with linear transition regions of 200 A\ and a plateau
of also 200 \y (no = 0.3 n.) with 4200 Ay vacuum between the layers. Pulse parameters
are ag = 0.08, Ly = 20 \g and Wy = 250 A\g. Unperturbed simulation run in black.
Left: four 1% perturbation runs (red). Right: four 0.5% perturbation runs (blue).
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6.3. Controlling transversal filamentation
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Figure 6.27: Amplitude evolution for two layers with linear transition regions of 200 A\ and a plateau
of 240 \g (no = 0.3n.) with 4200 Ay vacuum between the layers. Pulse parameters
are ag = 0.08, Ly = 20 \g and Wy = 250 A\g. Unperturbed simulation run in black.
Left: two 1% perturbation runs (red). Right: two 0.5% perturbation runs (blue).
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Figure 6.28: Amplitude evolution for two layers with linear transition regions of 200 A\ and a plateau
of 240 Ny (np = 0.3n.) with 5000 A\g vacuum between the layers. Pulse parameters
are ag = 0.08, Ly = 20 \g and Wy = 250 A\g. Unperturbed simulation run in black.
Left: two 1% perturbation runs (red). Right: two 0.5% perturbation runs (blue).
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7 Conclusion

In the present work we studied the question wether a laser pulse can be efficiently com-
pressed in both the longitudinal and transversal directions by means of the relativistic
nonlinear self-interaction inside of a plasma. For this purpose we derived two coupled
equations for the vector potential of the laser and the electron density perturbation
caused by the laser pulse. These equations are valid in the weakly relativistic param-
eter regime. Only for weakly relativistic intensities, efficient pulse compression with
low energy losses is possible. With further assumptions the cubic nonlinear Schrédinger
equation (NLSE) can be derived from these equations. Analytical models based on the
NLSE allow to calculate the power thresholds for self-compression in the longitudinal
and transversal direction, by means of the variation-of-action method (VAM). We con-
clusively showed that only pulses that are in both the longitudinal and the transversal
direction directly at the 2D (or 3D) threshold, obey this threshold. Any pulse that
for one direction is clearly above the threshold, obeys the 1D threshold for the other
direction instead. We also showed that while the thresholds are sufficiently accurate,
the pulse dynamic is not well described by a VAM that prescribes a Gaussian pulse
shape. A distinct dependence of the transversal shape on the longitudinal coordinate
and vice versa is visible in simulations both inside the plasma (stronger compression on
axis, chapter 4) and after the pulse has left the plasma (stronger transversal focusing of
the pulse center, chapter 5).

Thus it is indispensable to study the pulse dynamics by means of numerical sim-
ulations. We developed numerical schemes with high accuracy and efficiency for one
(chapter 3) and two (chapter 4) dimensions. This was achieved by combining Gautschi-
type exponential integrators with other means like splitting the linear operator of the
wave equation and the quasi-envelope approach (QEA). With these methods, it is pos-
sible to handle the fast temporal and spatial dependence of the solutions effectively.
Special attention was given to tailor the scheme to the different sections of the simula-
tion domain, i.e. plasma and vacuum sections and transition regions. In 2D, the parallel
implementation of this integrator scales well with the number of processors.

Numerical simulations were used to study the longitudinal pulse compression in 1D
for a wide range of pulse and plasma parameters. This confirmed the result from [59]
that efficient compression without high energy losses to the plasma is limited to weakly
relativistic intensities and densities above 0.25n. to avoid Raman instability. In 2D the
interaction between longitudinal and transversal compression and its dependence on the
initial length and spot size of the pulse was examined. Here the result was that, for
a controlled longitudinal compression, the spot size of the pulse has to be much larger
than its length. Otherwise the pulse will directly start to collapse, a behavior which
eventually occurs for wider spot sizes, too, but only after a much longer propagation
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in plasma than needed for optimal longitudinal compression. We also showed that
the compression in the longitudinal and transversal directions is strongly coupled even
before the pulse starts to collapse. The faster direction (smaller initial length or width)
essentially enslaves the compression dynamics of the slower direction (larger initial length
or width).

Due to the additional degree of freedom in 2D, the pulse can develop new types of
instabilities compared to 1D. These where discussed in chapter 4. Because of the low
noise properties of the numerical methods we used, each instability could be triggered
independently of the others by applying an appropriate initial perturbation to the pulse.
The most important one, with respect to efficient pulse compression, is the transversal
filamentation instability. Because a pulse which shows longitudinal compression and
has a wide spot size is several times above the transversal self-compression threshold,
individual filaments can self-focus and ultimately collapse. This leads to large energy
losses due to strong plasma excitations and heating. Analytical results exist only for
the transversal stability of soliton solutions and show a dependence of the filamentation
wavelength on the pulse length. The analytical predictions for the most unstable wave-
length were verified numerically. Additionally, for the first time the relation between the
filamentation wavelength and pulse length was studied numerically for a longitudinally
compressing pulse. During the compression the spectrum of the unstable modes shifts
towards shorter wavelengths. The shortest possible filamentation wavelength given by
the minimal pulse length is only reached for slowly compressing pulses. We also demon-
strated that the shape and time evolution of the unstable spectrum is nearly the same
for a soliton like and a Gaussian pulse shape, as long as their longitudinal half width is
the same.

We also studied the propagation of the pulse from plasma to vacuum and how this
transition can be described analytically, as well as the pulse propagation in vacuum.
While in 1D the pulse shape stays unchanged during propagation in vacuum, in 2D
the pulse can either focus or defocus. Because the plasma induces a negative curvature
on the phase front of the pulse, the pulse focuses behind the plasma layer similar to a
classical lens. This further increases the amplitude and reduces the spot size of the pulse.
We showed that the focusing behavior differs from the well known Gaussian beam. The
difference increases with the length of the plasma layer and reaches a maximum for the
fully compressed pulse. We demonstrated that the focal length and minimum spot size
of an initially very wide pulse can be predicted by the simulation of a pulse with a much
smaller initial spot size. For pulses that developed transversal filamentation inside the
plasma, detailed simulations of the propagation of unstable modes in vacuum relative
to the main pulse were performed. The difference in propagation of short wavelength
(belonging to the instability) and long wavelength transversal modes (belonging to the
main pulse) is the key to control transversal filamentation.

Combining the results from pulse compression in plasma, transversal focusing, and
shedding of unstable modes in vacuum, we demonstrated that a stratified plasma-
vacuum structure can not only be used to control transversal filamentation, as in [59]. It
can also significantly increase the maximum intensity of the compressed pulse through
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7. Conclusion

enhanced transversal focusing. This was tested for a wide variety of pulse parameters
and plasma configurations. The intensity can be increased hundredfold in this way, with
excellent control of transversal filamentation. Relativistic intensities in the focal spot of
the last layer are possible, while still being subrelativistic inside the plasma. For plasma
configurations that are possible in current gasjet experiments, the peak intensities are
less high and transversal filamentation is less well controlled. The results are still very
encouraging as they show the real world applicability of layered pulse compression that
will only increase with advances in experimental configurations.
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A VAM model for pulse
compression in 2D

The cubic nonlinear Schrédinger equation in cylindrical geometry is

0 1— 5% 02 110 0 11—/

. 2
— — ———r— =0. Al
5t 2m ot T agr e et T g e (A1)

The Lagrangian density of this equation is

. * * 1 - 52 * * 1— 52 4
L=1if(ad:a” —a*0ca)+ 7(&@)(8& )+ (0ra)(0ra*) — T|a\ : (A.2)
As the ansatz for the trial function, we use
2.2 -2

a(r,7,¢) = —A(O Wo vTo e 700 i) 7 o712 PIRO2 T W ; (A.3)

W) vT(<)

where 7 is the linear chirp and R the radius of transversal curvature. This is an exact
solution to the linear version of (A.1), valid for a purely dispersive medium.
The Lagrangian is then defined as

L:/ drdrr L . (A4)
R2

Note that to recover the Schrodinger equation from this Lagrangian density, the variation
has to be done under the integral, to include the factor r from the Jacobian determinant.
Inserting the test function and performing the integration in (A.4) results in

L2 =B 1-p B 21—

22,2
132 Ei§§ - 4{\/25 Czj L1/2 —+ 132 15 CZ’ n (f&.5)
E>W? E?
— 3 72 (R/—1)+4W+5E2(T2n’—4¢’),

where F(¢) = A(¢) Wy /T is proportional to the pulse energy.

As all collective coordinates only depend on (, variation of the action with respect to
them will yield ordinary differential equations. The variation with regard to one of the
collective coordinates is defined as

0

dL[q, qc] = 0L — 548—%

L (A.6)
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A. VAM model for pulse compression in 2D

where ¢¢ denotes the derivative of ¢ with respect to (.
From varying for ¢ we get E’ =0, thus E({) = Ey and

Differentiating this relation with respect to ¢ yields

2
R—1= —RWW” (A.9)

Varying L with respect to R results in

4 R? (1- B2 E?
R—-1=_—-— — —1 A.10
2w { 16v2 T } (4.10)
Combining the two equations for R, we get
4 1 (1-p32E? }
W= —— — S A1l
prwse { 16v2 T (A

Since W has to be negative for transversal compression, we immediately get the com-
pression threshold

(1—BHAZWE >16V2. (A.12)
Varying L with respect to 7 results in

1— 2
15

T’ 7 (A.13)
Differentiating with respect to ¢ and solving for ' yields
52 T// (T/)2
r_ - A.14
Varying L with respect to T gives a second equation for n’
2(1 — 2 2(1-p6%) 1 2 BT
g 208, 211 s » (A15)
/83 /83 T4 16 \/§ W2
Both equations for 7' combined yield
41—-p3%)2 1 2 BT
T" = — (1—5) — b —17. (A.16)
/66 T3 16 \/i W2
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This gives us a threshold for the longitudinal compression
BAZTE > 162, (A.17)

by the same argument as in the case of the transversal compression. To derive the same
differential equations for 7" and W in a 2D Cartesian geometry, where the NLSE has
the form 5 Y L o L_ g
- - 2
— =0 A.18
Z@CCH— 27 720 a+ ﬂ@x2a+ 3 lal*a : ( )

we use a similar test function

L VWo Ty e~ () in(Q) 2 e T2 ei SR e Wo)2 ’ (A.19)
W) T(¢)

and a Lagrangian density of the same form as for cylindrical geometry, but with »
substituted for = and

a(r,7,¢) =

:/ drdz L . (A.20)
R2
This yields
20 E? 20-5) pn 5, BPEW
L—TﬁjL 72 ———FE°T"n 5 R —(R'-1) (A.21)
13 b 2E2 E*(T?*n — 4

In this case E(() = A(¢) vWy To.
Again from varying for ¢ we get E(¢) = A(¢)’ = 0. The equations from varying for

n and R are unchanged from the cylindrical case. Combined with the equations from
variation of T" and W respectively we have

A1— @21 (B ET
and 41 (1-FEW
W” — _@W {T T - ]_} 5 (A.23)

which results in the same form of the thresholds (because here Ey = Ay /W, Tp), but a
difference of factor v/2 in the threshold values.
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B Transversal filamentation
instability

B.1 Stationary solution of the cubic nonlinear wave
equation

We derive the stationary solution of the equation
02 0? 1
=20 (1= a0 ) atet) (B.1)

—al(z,t) — =—=alz,t) =

Csa(,t) — —a(z,t)

i.e. the solution that is constant in shape in the frame comoving with the group velocity.
We use the ansatz

N

as(z,t) = g(¢ = 2z — vy t)etkezmiwat (B.2)
Inserting (B.2) in (B.1) and dividing by the phase factor results in
2 n . / 2 " . / 2o Ny 1 2
059" + 2iwgvsg’ —wig — g" — 2iksg + kig = —— 1—59 g, (B.3)

where the prime denotes derivation with respect to the comoving coordinate ( = z—wv;, t.
Assuming ks = wvsw,, which is consistent with the linear plasma dispersion relation
for v2 = 1 — ngy/n,, simplifies this to

1
vig" —wig— g+ vl = -2 (1 - 592) g (B.4)
Using ng/n. = 1 — v? and the definition > = 1 — w?, (B.4) can be transformed into
1
Moy 02, 203 (B.5)
Ne Ne 2n,

The substitution £ = ¢ and a rescaling of the amplitude g — 7 g finally yields

1
9" =(1-39"9 (B.6)
It is easy to verify that this equation has a solution of the form
9s(€) = 2nsech(n () , (B.7)

where we reintroduced the factor n from the last substitutions.
By using the relation between kg and ws, we arrive at the full time-dependent solution

as(¢) = 2nsech(n ()e'V 12 (vs ¢=(1=vd)7) (B.8)
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B.2. Growth rate of the instability

B.2 Growth rate of the instability

To investigate the growth rate of transversal perturbations for 1D soliton solution of the
NLSE, we use the following ansatz function

a(z,x,7) = 2n(z, x)e” > Dsech(n(z, z)B7) . (B.9)

The Lagrangian for the 2D NLSE in Cartesian coordinates consists of four parts. Inser-
tion of the ansatz function into each part yields

0

‘Cl = Zﬁ (a(Z,[L’,T)%a*(z,x,’T) - a*(Z,[L’,T)&CL(z,[E,T))

= —8ﬁnzsech(nﬂ7)2§¢
0z

£ P (L)) ()
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o= (L) (Lertenn)
= 4sech(n7)* ((5%77)2 +n? (%¢)2>

+ 4sech(nﬂ¢)2 (72527]2 tanh(nﬂT)Q%nz — 2071 tanh(nﬂT)ﬁa—xUQ)

1 22
L4=— g a(z,m,r)za*(z,m,r)z

4
=4 (1 — 62) n*sech(npr)?

Integration over 7 results in the shortened Lagrangian

L. 4 12+7T2ﬁ 2 2 3 2 Q
L= (L= B nle) + ot y)? (e, 2)? (-0t 0)? = 205-0(0) )
(B.10)
Varying for n
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e (o) o (o) o
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varying for ¢
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B. Transversal filamentation instability

yields
0 0 0
pLy=2 (”a_x¢) . (B.13)

To study the transversal stability, we linearize around the 1D soliton with 7y = const.

and ¢y = ¢o(2)

n(z,x) =1+ on(z, v) (B.14)
O(z,x) = ¢po(2) + dp(z, ) . (B.15)
From (B.12) we get the zeroth-order equation for ¢
9 _ (1=57),
@%(2) = 25 Mo - (B.16)
The first-order equation is
2., (1-p% (12 + 72) o2
825 - 6 770577 366770 8I2 577(’27 x) ) (B]‘7)

where we already substituted 0,¢, from (B.16).
From (B.13) we get an equation for o7

82

a2

Differentiating this equation with respect to z and subsituting 0,5¢ from (B.17) results

in

0
B0n = o500 (B.18)

0? (1-p5%) , 02 (12 + 7%) o
@77(2,93) == 32 7788932 on(z,z) — Tﬁg@&n(zax) . (B.19)

By inserting 6n = e?+*=2/8 we get for the dispersion relation

) no o 9 ne (12 + m2) k2
=—nki|1l— ——r=—= ] . B.20
This implies that we get instability for
36

k2 < @7778 . (B.21)

Two transversal dimensions (x, y) change only the Laplace operator in (B.19) to ;—;+§—;2.
Thus the dispersion relation has the same form as (B.20) with k; = (/A2 + k2 instead
of only k..
In cylindrical geometry equation B.19 becomes
2 2 2 2 2 2
%n:_u Zﬁ)ng(é‘ 1 a)én_ (12 + =) <8_2+1£) 51

z 16 3643 or ror
The radial Laplace operator is diagonalized by Bessel functions of first kind and order
zero with

(B.22)

ATJ()(]{?T’I“) = (7 + ;—) Jo(k’r’f’) = —k‘gjo(k‘r’f’) . (B23)

For a transversal perturbation of this form the dispersion relation is again the same as
in (B.20) with k&, = k,.
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C 3D instabilities

We here rederive for circular polarization the growth rates of the instabilities discussed in
[14] for linear polarization. The nonlinear Schrodinger equation in a frame that comoves
with c is

( ~2ip <) —(1-d)a 1)
(aa_; + 1) ¢ = @ (C.2)

coupled with the equation for the potential ¢ = nl —|a|*/2, where n! = n.—n?. Here w,
and w,/c were used for time and space normalization. Note that this leads to an implicit
dependence of lengths and times on the plasma density, compared to a normalization
with wy and wy/c where ng/n. is included explicitly.

The Lagrangian density for these equations is

L=V a-Via"—if(ada” —a*0a) (C.3)
— (0:0)* + ¢* + (1 = ¢)|af’

We define the shortened Lagrangian £ as the integral over the perpendicular coordinates

R2
For the test functions the following ansatz is used
Cl(T, C) ( C) the(7,0)%a iky('r,()g]a (05)
i’2
By — _a
<o (<1 = ia(r Ol )
g2
xexp | —[1 —ia(r,( 7‘”)
2 ~2
o(1,¢) =D(7, () exp (—2%) exp (—2%) . (C.6)
wx(b(Tv C) Wy (Tv C)
with the definitions
=T — .flfa(T, C)
- y ya(Tv C)

Ty = — z4(7,()
Jo =Yy — yfi)(Tv ¢)

A(1,0) = VE(T, Q) X9
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C. 3D instabilities

This ansatz includes variations in the amplitude A, shifts of the beam and wakefield

centroids (x4, vy,) and (z4,y,) as well as variations of the beam spot size.

The variation of £ is defined as

9q-

_ 0 0
5£[q7q77qC] = {aq - a7'— - 8C—} L

8q¢

where the subscript of ¢ denotes the corresponding derivative.

Varying £ with respect to ay, ay, ks, ky, x yields the relations

s
o, = =L (w?,)
s
O{y = _Zac(w@%a)
k‘x —/684:):@
/{Zy = —68<ya
9P =0

with P = Azwmwya. This relations reduce the number of variables by five.

(C.7)

To obtain an equilibrium solution for the linear stability analysis, we set wyq = Wy, =
Wo, Wy = Wyg = Wy, Tq = Yo = Ty = Yy = 0 and all derivatives with respect to 7 to

zero. This yields

Wq =Wy
P

2
2wz

4 P
2 _
@wf——aﬂg(ﬁ“)-

From this follows the self compression threshold for the beam

Ajws =Py > P.= 16

and the zeroth order solution

Py =F.

W, = Wo
P

Dy = —
2’LUQ

(C.13)
(C.14)

(C.15)

(C.16)

(C.17)
(C.18)

(C.19)

around which we will expand the Lagrangian. The threshold value is smaller by a factor

of two than for linear polarization.
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To simplify the resulting equations, we define

Wea1 + Wyal

Wy = 5 (C.20)
Wyp1 + Wyep1

= C.21

! 21

Aw, :w (C.22)

Awg :w (C.23)

We now vary the expanded £ with respect to the first order quantities. The expansion
in the first order quantities ¢; = ¢— gy has to be done to second order in the perturbation
parameter.

Varying with respect to z,; and x4 results in the equations for the hosing instability

P 1 P 1
8¢9€a1 + — 2 x%x = EE%I (C.24)
(82 + 1) Lp1 = Lal (025)
The equations for y,; and yg are identical.
Varying for w, and ®; yields

8 P 8 P
P+1)(@ =———1, C.26
@+1) (0t Sy pm) = - pa (20

16 P

(2 +1) <<I>1 + — B ) =0 (C.27)

Varying for w4 and combining the equations from w, and ®; leads to the equations for
the symmetric self-modulation instability

2 L (g PN __w
|:8C + l’% 3 Pc Wq = 8x%¢1 (028)
16 P
2 _ TS
(241) 01 = B (C.29)
(02 4+ 1) wy = 1w, - (C.30)

The equation for w, is decoupled from the other two equations and thus takes only
passively part in the instability.

The equations for asymmetric spot size self-modulation result from varying with re-
spect to Aw, and Awy

P 1

(8C 5 ) Awa = Fl’_Aw¢ (031)
7% clR

(02 41) Awy = Aw, (C.32)
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C. 3D instabilities

Despite using circular instead of linear polarization, and thus having a stronger nonlin-
earity for the same ag, these equations are identical to the equations in [14].
The general form of the the equations for the three types of instabilities is

(07 +T1) f = Toh (C.33)

(07 +1) h=Tsf (C.34)

Fourier mode analysis with f, g ~ e?*¢=7
the dispersion relation

and calculating the secular determinant yields

W 4+T1(1—w?) =k 4T, —Tol'3=0. (C.35)

Since w and k are measured in a comoving frame, we have to do the inverse transform
to obtain the dispersion relation in the laboratory frame for w’ = w and k' = &' + k. If
we further assume that the relation between k&’ and w’ is mostly linear with only small
deviations, so that W’ = k' + g we get

P H28K + KT+ 29K +K?) —g? +T, — T T3=0, (C.36)

where £’ is real and ¢ is small and complex.
The maximum value for the growth rate Im(w) = Im(g) is attained for £’ = 1, because
at this value the resonance with the plasma wake occurs. By setting g = 0 we get

T, — .0
K= =23 (C.37)
Iy

for the cut-off value, above which instabilities can not occur.
In [14] the growth rate for the short wavelength regime around &’ = 1 is argued to be

[Tyl —1+ V/3i
o\ 2 2

(C.38)

by considering I'; ~ ['sI'3 ~ é =¢e?and g ~ e. For k' = 1 the constant term in (C.36) of
order €2 then has to be balanced by the lowest order terms that contain g. Inconsistently
they neglect 2,9 ~ €% and only use the term that is cubic in g to calculate the growth
rate (although the correction due to the linear term should be small).

For the long wavelength regime, that is not driven by the resonance with the wakefield,
but instead mostly by the relativistic mass nonlinearity alone, we have k' ~ . The
balancing then is between the constant term and the term quadratic in g

g=1vIol's =T (C.39)

This only gives us a condition for the occurrence of the long wavelength regime, namely
that I';I'3 > T'y, but not the desired relation between g and &’. By plotting the full
dispersion relation, we see that for long wavelength the relation is nearly linear. The

only possibility then is
g = 'é\/ Flk’/ . (040)
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