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1 Introdu
tionSin
e the invention of the laser in 1960, the use of laser te
hnology has be
ome ubiqui-tous. Lasers today are used for opti
al 
ommuni
ation, digital data storage appli
ations,material pro
essing, welding, numerous medi
al appli
ations from diagnosti
s to surgeryand have be
ome an indispensable tool in s
ienti�
 resear
h due to the 
oherent natureof laser radiation.During the �rst two de
ades the laser intensities were in
reased rapidly through theintrodu
tion of Q-swit
hing and mode lo
king. The pulse length de
reased a

ordingly,from mi
rose
onds to nanose
onds with Q-swit
hing and femtose
onds with mode lo
k-ing. This allowed intensities to rea
h I ∼ 1014W/cm2 and already lead to relativisti
e�e
ts for ele
trons os
illating in the �eld of infrared lasers, as the ne
essary intensityfor relativisti
 ele
trons is I λ2
0 ∼ 1018W µm2/cm2. If a laser pulse at this intensitypropagates through a gas, it is dire
tly ionized and a plasma is 
reated. The relativis-ti
 mass in
rease then leads to nonlinear e�e
ts, like self-modulation and self-fo
using,similar to nonlinear opti
s for bound ele
trons in a medium.Sin
e typi
al ampli�
ation media show strong nonlinear e�e
ts for intensities thishigh, intensities 
ould not be in
reased further until the te
hnique of 
hirped pulseampli�
ation (CPA) was developed in 1985. This te
hnique enabled a 
onsiderablefurther in
rease in laser intensity. Large laser fa
ilities world wide now rea
h intensitieswell over one Petawatt. CPA also redu
ed the 
ost of high power lasers signi�
antlyand allowed universities to build µm lasers (e.g. using Ti:sapphire 
rystals) that rea
hintensities above I ∼ 1018W/cm2 and thus allow to study relativisti
 e�e
ts in plasmas.The basi
 me
hanism of CPA is the stret
hing of the pulse by a fa
tor of thousand toa hundred thousand by indu
ing a linear 
hirp. This 
an be a
hieved by letting the pulsepropagate through a medium with large group velo
ity dispersion like an opti
al �beror by re�e
tion at a grating, whi
h has the same e�e
t. After stret
hing the frequen
ies,the front of the pulse is red-shifted, while the ba
k of the pulse is blue-shifted (or vi
eversa). The stret
hed pulse 
an then be ampli�ed without rea
hing the saturation limitof the ampli�
ation medium. After ampli�
ation, the 
hirp is reversed and the pulse isthus 
ompressed to its original length. Ampli�
ation by 6 to 12 orders of magnitudewere a
hieved in this way. To rea
h ampli�
ation fa
tors this high, the stret
her and
ompressor have to be mat
hed exa
tly, otherwise the 
hirp is not fully 
ompensated.This gets more 
ompli
ated for shorter pulses as higher order dispersion terms be
omeimportant, whi
h have to be 
ompensated, too. Still, it is possible to a
hieve very shortpulses in the range of 10 to 30 femtose
onds with high quality wave fronts by usingholographi
 gratings, deformable mirrors and a
ousto-opti
 temporal phase 
orre
tors(Dazzler).A variant of CPA is the so 
alled opti
ally parametri
 CPA (OPCPA). This method7



1. Introdu
tionuses a nonlinear 
rystal in whi
h the pulse is ampli�ed through the intera
tion with apump pulse. Be
ause of the nonlinear ampli�
ation me
hanism, that is ne
essarily inthe saturated range of the medium, the e�
ien
y is lower than for standard CPA. Thegain bandwith, on the other hand, is larger than for CPA.Fo
using the ultraintense pulses produ
ed in this way on solid or gaseous targetsresults in the formation of overdense (whi
h re�e
t the pulse) or underdense plasmas(whi
h allow pulse propagation) respe
tively. The huge amount of 
oherent radiationin a small volume produ
es many interesting nonlinear e�e
ts with interesting appli-
ations. The overdense plasma surfa
e of a solid irradiated by a short, high 
ontrastpulse, strongly os
illates and produ
es higher harmoni
s of the laser frequen
y. Morethan 100keV harmoni
s 
an be produ
ed in this way with resulting pulse lengths inthe attose
ond or even zeptose
ond range [26, 3℄. These pulses 
an be used for thediagnosti
s of ultrafast physi
al pro
esses. Irradiation of a thin metal foil by an intenselaser pulse leads to a large ele
trostati
 �eld between the foil and thermal ele
tronsbehind the foil that where produ
ed by the 
urrents indu
ed by the pulse. Protons orions adherent to the ba
k of the foil are easily a

elerated by this �eld up to tens of
MeV [31, 58, 21℄. These protons 
an be used for time resolved imaging, be
ause protonsprodu
ed at di�erent times have di�erent energies. Protons of a 
ertain energy 
an besele
ted and fo
used by a laser irradiated 
ylindri
al metal foil [63, 24℄. In the future thea

eleration of light ions, for example 
arbon, to several hundredMeV is likely possible.In gaseous targets the pulse 
an indu
e a large amplitude plasma waves, 
alled thewake�eld of the pulse, that 
an be used to a

elerate ele
trons [18, 32, 21℄. Wake�eldsare espe
ially suited for parti
le a

eleration, be
ause in the pro
ess of the wake�eldprodu
tion the huge transversal ele
tromagneti
 �eld of the laser is transformed into alongitudinal ele
trostati
 �eld. Be
ause the plasma is ionized by de�nition, there are noproblems due to material breakdown at ∼ 20MV/m as for 
onventional a

elerators.Ele
trostati
 �elds of 100GV/m and more 
an be sustained and ele
tron energies ofup to 1GeV have been rea
hed [42℄. In undulators the a

elerated ele
trons 
an thenbe used to generate very short and intense 
oherent X-rays (X-ray free ele
tron lasers,XFEL). Overviews of laser te
hnology and the whole �eld of nonlinear laser-plasmaintera
tion 
an be found, for example, in [6, 52, 65℄, with many further referen
es.Numeri
al simulations have been vital to understand the nonlinear e�e
ts that o

urin laser-plasma intera
tion. They are also indispensable for the design of experiments.Mostly parti
le-in-
ell (PIC) 
odes are used for this simulations, be
ause they in
ludemost of the relevant physi
s and 
an be s
aled to a large number of pro
essors [55℄. InPIC simulations, ele
tri
ally 
harged ma
roparti
les are used to model the ele
trons andions in the plasma. From their positions and velo
ities the 
urrent density is 
al
ulatedon a grid. This 
urrent density is used as a sour
e term for the Maxwell equations thatare solved on the same grid. The updated ele
tromagneti
 �elds are then interpolated tothe positions of the ma
roparti
les to update their positions and velo
ities. The numberof ma
roparti
les is usually mu
h smaller than the number of parti
les in a real plasma,hen
e their name. This leads to relatively high noise levels in PIC simulations. Be
ausethe ma
roparti
les only intera
t through the grid, binary 
ollisions are not in
luded, but8




an be added by means of Monte Carlo methods.For parameter regimes, where kineti
 e�e
ts are negligible, �uid-dynami
al 
odes 
anbe used instead. They assume a �xed velo
ity distribution for ele
trons and ions, e.g. a
old or an isothermal plasma. Sin
e they are not parti
le based, simulations with �uid
odes are generally less noisy than with PIC 
odes. The 
omputational 
ost of �uidsimulations is also signi�
antly lower. For the study of a parti
ular parameter regime,further simpli�
ations of the �uid-dynami
al model 
an be possible. This again redu
esthe 
omputational 
ost of simulations and enables the investigation of a large range ofparameters in the parti
ular regime.In this thesis we study the pulse 
ompression properties of plasma layers. Due to therelativisti
 intera
tion with the plasma, a laser pulse 
an be longitudinally 
ompresseddown to a single laser 
y
le in length, with a 
orresponding in
rease in intensity. PICsimulations show that energy e�
ient pulse 
ompression is limited to weakly relativisti
intensities [59℄, at least for the un
ompressed initial pulse. In this range of intensitiesthe main sour
e of nonlinearity is the relativisti
 mass in
rease due to the quiver motionof the ele
trons in the �eld of the laser. The ponderomotive for
e of the laser only 
ausessmall perturbations in the ele
tron density. We will derive model equations that in
ludethe relevant nonlinearities and develop e�
ient numeri
al methods for them.To fully assess the potential of relativisti
 pulse 
ompression, the transversal dynami
sof the pulse has to be in
luded into the simulations, both during propagation in a plasmalayer and in va
uum [9, 56℄. Transversal instabilities play an important role, too. Thusnumeri
al 
odes for 2D/3D geometries are ne
essary. With this 
odes we will studythe propagation of a pulse through one or more plasma layers with va
uum in between.Su
h layered plasma-va
uum systems are a promising 
on
ept to produ
e very shortand intense pulses. With further improvement of the stret
her / 
ompressor gratings itmight be possible in the future to further amplify the resulting pulses with OPCPA dueto its large gain bandwith.The thesis is organized as follows. In the next 
hapter the model equations for theweakly relativisti
 parameter regime will be derived. In 
hapter 3 pulse dynami
s in1D will be dis
ussed. The numeri
al methods for 1D simulations will be developed inthis 
hapter, too. The ne
essary modi�
ations for 2D simulations are developed at thebeginning of 
hapter 4, after whi
h the 
ompression dynami
s and instabilities in 2D areinvestigated. The lens-like transversal fo
using properties of a plasma layer are studiedin 
hapter 5. Chapter 6 about pulse 
ompression with strati�ed plasma-va
uum systems
ombines the ideas developed in the pre
eding 
hapters.

9



2 Model equationsThe starting point for the derivation of the di�erent modell equations that we will lateruse for numeri
al simulations and analyti
al des
riptions of pulse propagation, are the 
old�uid equations 
oupled to the Maxwell equations for the �elds A and φ. This Fluid-Maxwell-equations do not in
lude kineti
 e�e
ts that 
hange the mi
ros
opi
 velo
ity distribution andthus 
an not model parti
le a

eleration and heating of the plasma. But they allow for mu
hlower runtimes of simulations that have mu
h less numeri
al noise than e.g. PIC-simulations.First we will derive a redu
ed version of the Fluid-Maxwell equations by assuming that theplasma is 
url-free where A = 0. A further simpli�
ation is possible for laser intensities thatonly 
ause a weak relativisti
 mass in
rease of the plasma ele
trons. The resulting equationsfor the weakly relativisti
 regime form the basis for most numeri
al simulations in the presentwork. Most analyti
al models will be based on the 
ubi
 nonlinear S
hrödinger equation thatis derived at the end of this 
hapter using the slowly varying envelope approximation.2.1 Redu
ed Fluid-Maxwell equationsThe Maxwell-equations for the potentials A and φ in Coulomb gauge are
1

c2
∂2

∂t2
A− ∆A =

1

c

∂

∂t
∇φ+

(
4π

c

)
j (2.1)

∆φ = 4πρ . (2.2)To 
ouple the �uid equations for density and momentum of a two 
omponent plasma ofele
trons and Zi-times 
harged ions, we use the following de�nitions
j = e(Zinivi − neve) ,

ρ = e(Zini − ne) .For a �xed ion ba
kground (vi = 0) with Zin
0
i = n0

e ≡ n0 this simpli�es to
j = −eneve ,

ρ = e(n0 − ne) .Combined with the 
ontinuity equation and momentum balan
e of a 
old (T = 0)ele
tron �uid
∂

∂t
ne + ∇ · (neve) = 0 (2.3)

(
∂

∂t
+ ve · ∇

)
Pe = e

[
−∇φ− 1

c

∂A

∂t
+

1

c
ve × (∇× A)

] (2.4)
10



2.1. Redu
ed Fluid-Maxwell equationsthis yields a 
losed system of equations. We 
an thus distinguish two types of nonlin-earity in the wave equation for A. Be
ause of
ve =

Pe

me γe
, (2.5)with

γe =
1√

1 −
(

ve

c

)2 =

√

1 +

(
Pe

me c

)2

. (2.6)there is a relativisti
 mass in
rease of the ele
trons, as well as os
illations in plasmadensity. The momentum balan
e 
an be rewritten as an equation for the 
anoni
almomentum
∂

∂t

(
Pe −

e

c
A
)

= e ∇φ−mc2 ∇γe +
1

meγe
Pe ×

[
∇×

(
Pe −

e

c
A
)]

. (2.7)To normalize the equations, we use the inverse wave frequen
y ω−1
0 of the laser as theunit of time and the inverse wave number k−1

0 as the unit of length with ω0 = ck0. Inthis normalization the laser wavelength in va
uum is λ0 = 2 π and the laser frequen
y
ν0 = 1/2π. The potentials are measured in units of mec

2/e, velo
ities in units of c andmomentum in units of mec. The density is measured in units of the 
riti
al plasmadensity for a given laser 
arrier frequen
y, de�ned as
4πnce

2

me
= ω2

0 . (2.8)Additionally we extra
t a 
onstant fa
tor out of the ele
tron density
ne(r, t)

nc

=
n0

nc

ne(r, t)

n0

≡ n0

nc

ne(r, t) .A logi
al 
hoi
e for n0 is the maximum of the ion ba
kground density. To allow forpropagation of a laser pulse through the plasma n0

nc
has to be less than unity.The dimensionless Fluid-Maxwell-equations in Coulomb gauge are thus given by

∂2

∂t2
A− ∆A − ∂

∂t
∇φ = −n0

nc
ne

P

γ
(2.9)

∆φ =
n0

nc
(ni − ne) (2.10)

∂

∂t
ne + ∇ · (ne

P

γ
) = 0 (2.11)

∂

∂t
(P − A) − P

γ
× {∇× (P− A)} = ∇(φ− γ) (2.12)

γ =
√

1 + P2 (2.13)11



2. Model equationswith the additional gauge 
ondition ∇ · A = 0. The restri
tion to a 
old plasma anda �xed ion ba
kground limits the appli
ability of the equations to the des
riptions ofshort, fast1 pulses. In the time span su
h a pulse needs to propagate the distan
e of itsown length, neither 
an the mu
h heavier ions move, nor 
an the plasma thermalize theenergy transmitted by the pulse.We de�ne the proje
tion operators Πc and Πg su
h that any �eld u is de
omposedinto u = v + w with the following properties
Πgu = v ≡ ug ∇× v = 0 , but generally ∇ · v 6= 0 ,

Πcu = w ≡ uc , ∇ ·w = 0 , but generally ∇× w 6= 0 ,with
Πc + Πg = 1.as long as the manifold X, on whi
h the operators are de�ned, is star shaped.Clearly, v is a gradient �eld, and w is a 
url �eld. The operators 
an be representedas

Πg = ∇∆−1∇ · and Πc = 1 −∇∆−1∇ · .Applying 1 = Πc + Πg to the momentum balan
e
{Πc + Πg}[

∂

∂t
(P −A) − P

γ
× {∇× (P− A)} = ∇(φ− γ)] , (2.14)allows to split the equation in a divergen
e-free and a 
url-free part. The equation

∂

∂t
(Pc − A) − Πc

[
P

γ
× {∇× (Pc − A)}

]
= 0 (2.15)des
ribes the 
onve
tive transport of the divergen
e-free part of the 
anoni
al momentum

Pcan = P − A. This implies that for the initial 
ondition Pc = A, the 
anoni
almomentum stays 
url-free for all times.
Pcan = Pg + Pc − A = Pg . (2.16)This initial 
ondition simpli�es the 
url-free part to

∂

∂t
Pg − Πg

[
P

γ
× {∇× (Pc −A)}

]
= ∇(φ− γ) (2.17)

∂

∂t
Pg = ∇(φ− γ) (2.18)Sin
e ∇×Pg = 0, Pg 
an be written as a Clebs
h-potential, Pg = ∇ψ. The momentumbalan
e 
an then be integrated to yield

∂

∂t
ψ = φ− γ + 1 . (2.19)1vg ∝ c with vg =

√
1 − n0/nc, whi
h implies densities not too 
lose to nc12



2.2. Equations for the weakly relativisti
 regimeThis set of equations already has a simpler stru
ture than the original Fluid-Maxwellequations. Numeri
ally, though, they are still hard to ta
kle, be
ause they in
ludethe development of sho
ks in the density and velo
ity distribution that 
an produ
eunphysi
al negative densities and lead to numeri
al instability. This o

urs be
auseof the 
onve
tive nonlinearity that 
an lead to a 
rossing of the 
hara
teristi
s of theequations. There are no physi
al me
hanism in
luded in the equations that 
ould preventthis traje
tory 
rossing. Simply in
luding arti�
ial vis
osity has the unwanted sidee�e
t of qualitatively altering the solution of the equations even in regions where it issmooth. For s
hemes using Lax-stabilization, e.g. [4℄ the same obje
tions are valid [43℄.Developing a Riemann-solver based numeri
al s
heme (see e.g. [46℄) for relativisti
 laser-plasma intera
tion, whi
h 
ould 
ope with sho
ks in the solution is beyond the s
ope ofthis work. Some work has been done in [53℄ on �ux 
orre
ted transport methods (FCT,see [36, 67℄), but the resulting s
heme has the restri
tion that the grid 
onstants for all
oordinates have to be in the same range.2.2 Equations for the weakly relativisti
 regimeAs we will see in the next 
hapter, energy e�
ient pulse 
ompression is limited toweakly relativisti
 intensities. We will now derive equations for this parti
ular parameterregime. Applying the splitting via Πg and Πc to the wave equation for A, yields for thedivergen
e-free part
∂2

∂t2
A − ∆A = −n0

nc
(1 −∇∆−1∇·){ne

γ
(A + ∇ψ)} (2.20)and for the 
url-free part

∂

∂t
∇φ = −n0

nc

∇∆−1∇ ·
{
ne

γ
(A + ∇ψ)

}
. (2.21)The right-hand-side of both equations in
ludes the 
url-free part of the 
urrent density

Πg j. This part 
an be rewritten in a form with two terms, where the inverse Lapla
eoperator a
ts only on one of them.
nc

n0
Πgj = ∇∆−1∇ ·

{
ne

γ
(A + ∇ψ)

} (2.22)
= ∆−1

{
∇
(
A · ∇ne

γ

)
+ ∇∇ · ne

γ
∇ψ
} (2.23)

= ∆−1

{
∇
(
A · ∇ne

γ

)
+ ∆(

ne

γ
∇ψ) + ∇×∇× (

ne

γ
∇ψ)

} (2.24)
=
ne

γ
∇ψ + ∆−1

{
∇
(
A · ∇ne

γ

)
+ ∇×

[(
∇ne

γ

)
× (∇ψ)

]}
. (2.25)
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2. Model equationsSubstituted into the equations for A and ∇φ we get
∂2

∂t2
A − ∆A = −n0

nc

{
ne

γ
A − ∆−1

{
∇
(
A · ∇ne

γ

)
+ ∇×

[(
∇ne

γ

)
× (∇ψ)

]}}(2.26)
∂

∂t
∇φ = −n0

nc

{
ne

γ
∇ψ + ∆−1

{
∇
(
A · ∇ne

γ

)
+ ∇×

[(
∇ne

γ

)
× (∇ψ)

]}}
.(2.27)The two terms that ∆−1 a
ts on have a simple interpretion: multiplying the divergen
e-free A or the 
url-free ∇ψ with ne

γ
leads to new divergen
e and 
url 
omponents inthose terms, respe
tively. These two terms are ne
essary to 
an
el the 
orresponding
omponents of ne

γ
A and ne

γ
∇ψ, to get the a
tual 
url-free and divergen
e-free parts ofthe 
urrent density.Both terms are identi
al to zero in the one dimensional 
ase2, so it is natural to assumethat in the three dimensional 
ase they 
an be negle
ted, too, if the dependen
y on theperpendi
ular 
oordinate is su�
iently slow. But in this 
ase the perpendi
ular Lapla
eoperator would also be negligibly small, be
ause for A(r) = A(z, αr⊥) it yields a fa
tor

α2, while ∇
(
A · ∇ne

γ

), even with the assumption Az ≡ 0, only yields a fa
tor α. Wethus have to derive the s
aling more thoroughly to arrive at the 
orre
t equations.We 
hoose the following ansatz for the weakly relativisti
 s
aling
A(r, t) = ε {A⊥(z, αr⊥) + µ ez A‖(z, αr⊥)} (2.28)
ne(r, t) = n0

e + βn1
e(z, αr⊥) (2.29)

φ(r, t) = ρ φ1(z, αr⊥) (2.30)
ψ(r, t) = δ ψ1(z, αr⊥) (2.31)
γ(r, t) = 1 +

ε2

2
|A|2 . (2.32)The di�erent smallness parameters a of 
ourse interrelated. First we will derive the
onditions for a 
onsistent relation between these parameters.From Coulomb gauge we get

∇ · A = ε{α∇⊥ · A⊥ + µ ∂zA‖} = 0 ⇒ µ = α .The Lapla
e equation for φ yields
ρ∆φ1 =

n0

nc

(ne − n0
e) =

n0

nc

β n1
e ⇒ ρ = β .The redu
ed momentum balan
e

δ ∂tψ
1 = ρ φ1 − (γ − 1) = ρ φ1 + O(ε2)2Az = 0,∇⊥

ne

γ
= 0,∇⊥ψ = 0 ⇒ A · ∇ne

γ
= 0,

(
∇ne

γ

)
× (∇ψ) = 014



2.2. Equations for the weakly relativisti
 regimeand the 
ontinuity equation
ρ∇ · ∂t∇φ1 = β ∂tn

1
e = −n0

nc

n0
e δ∆ψ1 + h.o.t.are 
onsistent with

δ = ρ = β = ε2 .This s
aling is also 
onsistent with the wave equation for A

ε
{
∂2

t A − ∂2
zA− α2∆⊥A

}
= −ε

{
n0

nc
(n0

e + β n1
e)

[
1 − ε2

2
|A|2

]
A

}
+ . . . .Under this assumption, be
ause of

∇ne

γ
= ε2(∇n1

e + n0
e∇

|A|2
2

)and
A · ∇ = A⊥ · (α∇⊥) + αA‖ ∂zwe have

∇
(
A · ∇ne

γ

)
= O(ε3α)and

∇×
[(

∇ne

γ

)
× (∇ψ)

]
= O(ε4α2) .The inverse Lapla
e operator does not 
hange the order of these terms, be
ause

∆−1 = F−1 1

k2
‖ + α2k2

⊥

≈ F−1 1

k2
‖

(
1 − α2k

2
⊥

k2
‖

)
=

(
∂2

∂z2

)−1

+ O(α2) ,where F−1 is the inverse Fourier transform. To get 
onsistent equations, we have thusto in
lude all terms up to order ε3 and εα2, while negle
ting terms of order ε3α andhigher. Linearizing in the density �u
tuation allows for a further simpli�
ation of theequations by di�erentiating the 
ontinuity equation in time
∂2

∂t2
n1

e = −n0

nc
n0

e

∂

∂t
∆ψ1 ,and applying the Lapla
e operator the equation for ψ1

∂

∂t
∆ψ1 = ∆φ1 − ∆γ .Substituting ψ1 in this way, we get

∂2

∂t2
n1

e +
n0

nc

n0
e n

1
e = n0

e∆γ . (2.33)15



2. Model equationsCombined with the wave equation of the 
orre
t order in the s
aling 
oe�
ients
∂2

t A − ∆A = −n0

nc

{
n0

e

(
1 − ε2

2
|A|2

)
+ n1

e

}
A (2.34)we have a 
omplete system of equations. Sin
e a 
omponent of A that is initially zerowill stay zero, we 
an 
onstru
t a pulse with A‖ ≡ 0 and only use A⊥ in the equations.It is 
onvenient for numeri
s to write A⊥(r, t) as a 
omplex �eld a(r, t) by de�ning

A⊥(r, t) =
1

2
a(r, t) {ex ± i ey} + c.c. (2.35)for a 
ir
ular polarized laser, where the ± denotes left or right 
ir
ular polarization.2.3 Slowly varying envelope approximationWe 
an further simplify the wave equation (2.34) by introdu
ing the so 
alled slowlyvarying envelope approximation (SVEA). We �rst transform into a 
omoving frame withthe new variables

ζ = z and τ =
1

β
z − t , (2.36)where β =

√
1 − n0/nc is the linear group velo
ity of the pulse.Transforming the derivatives in (2.34) a

ordingly results in

{
∂2

∂ζ2
+

1 − β2

β2

∂2

∂τ 2
+

2

β

∂2

∂τ∂ζ
+ ∆⊥

}
A(r⊥, ζ, τ) =

n0

nc

ne

γ
A(r⊥, ζ, τ) . (2.37)De�ning the envelope ansatz

A(r⊥, ζ, τ) =
1

2
a(r⊥, ζ, τ) {ex ± i ey} e−i 1−β2

β2 +i τ
+ c.c. (2.38)and insertion into (2.37) yields

i
∂

∂ζ
a+

1 − β2

2 β3

∂2

∂τ 2
a +

1

2 β
∆⊥ a =

1 − β2

2 β

{
ne

γ
− 1

}
a , (2.39)under the assumption that the envelope fun
tion a(r⊥, ζ, τ)) varies slowly 
ompared tothe 
arrier wave and ∂2

∂τ∂ζ
and ∂2

∂ζ2 
an be negle
ted.3 Setting ne = const. and expandingthe γ-fa
tor leads to the well known 
ubi
 nonlinear S
hrödinger equation (
ubi
 NLSE).Under the same variable transformation and envelope approximation, the densityequation be
omes
∂2

∂τ 2
n1

e +
n0

nc
n0

e n
1
e = n0

e

{
1

β2

∂2

∂τ 2
+ ∆⊥

}
γ . (2.40)3For two or three dimensional wave equations this is also 
alled the paraxial approximation [61℄.16



2.3. Slowly varying envelope approximationNote that this equation represents an initial value problem in ζ , not in τ as the NLSE.This 
ompli
ates the numeri
al solution of the 
oupled system (2.39), (2.40).For very short pulses of only a few laser 
y
les, the envelope approximation breaksdown. Another drawba
k of the NLSE is that the transition of the laser pulse fromva
uum to plasma is not des
ribed self-
onsistently by this equation. The NLSE is thusless well suited for the numeri
al simulation of pulse 
ompression than the full waveequation. We mainly derived the NLSE here for use in analyti
al models based on thevariation-of-a
tion method (VAM).

17



3 Pulse 
ompression in onedimensionThe propagation of a pulse that is short in the longitudinal dire
tion and wide in the transver-sal dire
tion will at �rst be 
lose to the propagation of a one dimensional pulse that istransversally 
onstant. If and when the dynami
s in 2D/3D 
hanges signi�
antly from 1Dwill be dis
ussed in the later 
hapters. In this 
hapter we will study the in�uen
e of pulseand plasma parameters on longitudinal pulse 
ompression and instabilities that already o

urin 1D. First we will derive the 1D versions of the equations from 
hapter 2 and then developa numeri
al s
heme to handle the fast time and spa
e dependen
e of the wave e1equation.This part of the 
hapter was published in [39℄.3.1 Model equations in 1DIt is instru
tive to derive the model equations (2.33) and (2.34) again in 1D. We startwith the normalized equations (2.9), (2.11) and (2.12) and assume that all quantitiesdepend spatially only on the z-
oordinate. Coulomb gauge implies the purely transversenature of the wave (A = A⊥). The wave equation (2.34) for the transverse 
omponent
A⊥ now reads

∂2

∂t2
A⊥ − ∂2

∂z2
A⊥ = −n0

nc
ne

P⊥

γ
. (3.1)The longitudinal part of the wave equation simpli�es to

∂2φ

∂t∂z
+
n0

nc
ne
P

γ
= 0 . (3.2)Either this equation or the 
ontinuity equation is redundant, be
ause derivation withrespe
t to z yields the 1D 
ontinuity equation.The same splitting was a
hieved in 3D by de
omposing the equations into a 
url-freeand a divergen
e-free part.The momentum balan
e (2.12) 
an be split into its longitudinal and transversal 
om-ponents. The transversal ele
tron momentum balan
e

∂

∂t
(P⊥ − A⊥) +

(
Pz

γ

)
∂ (P⊥ − A⊥)

∂z
= 0 (3.3)has the spe
ial solution

P⊥ = A⊥ . (3.4)18



3.1. Model equations in 1DThis spe
ial initial 
ondition 
orresponds to the 3D 
ondition ∇× (P− A) = 0, whi
his the lo
al version of the global 1D 
ondition. In 3D the lo
al longitudinal dire
tionis given by the dire
tion of the k-ve
tor and the momentum 
omponents perpendi
ularto this dire
tion are equal to A⊥. The 
omponent of A parallel to k is equal to zerobe
ause of Coulomb gauge.The longitudinal ele
tron momentum balan
e
∂Pz

∂t
− P⊥ · ∂ (P⊥ − A⊥)

∂z
=
∂ (φ− γ)

∂z
, (3.5)
an be simpli�ed by the spe
ial solution, too. Thus we dire
tly have only a s
alarequation for the momentum in 1D, without using a Clebs
h potential ψ with P = ∇ψ.This leads to the basi
 set of 1D equations:

∂2

∂t2
A⊥ − ∂2

∂z2
A⊥ = −n0

nc
ne

A⊥

γ
, (3.6)

∂2φ

∂t∂z
+
n0

nc
ne
Pz

γ
= 0 , (3.7)

∂2φ

∂z2
=
n0

nc
(ne − n0

e) , (3.8)
∂Pz

∂t
=
∂ (φ− γ)

∂z
, (3.9)where n0

e is the time-independent part of n (whi
h is identi
al to the �xed ion ba
k-ground) and γ =
√

1 + |A⊥|2 + P 2
z .The s
aling for the weakly nonlinear regime is mu
h simpler in 1D, too. We assumethat

A⊥ ∝ ε ≪ 1 and ne = n0
e + αn1

e .Equations (3.8) and (3.7) then dire
tly tell us that φ1 ∝ α and P 1
z ∝ α (φ0 = P 0

z = 0).Inserting
γ ≈ 1 +

ε2

2
|A⊥|2 +

α2

2
(P 1

z )2into (3.9) suggests α = ε2 and that P 1
z 
an be negle
ted in the γ-fa
tor.The 
orre
tly s
aled wave equation then is

∂2

∂t2
A⊥ − ∂2

∂z2
A⊥ = −n0

nc

{
n0

e (1 − 1

2
|A⊥|2) + n1

e

}
A⊥ . (3.10)Derivation of (3.7) with respe
t to time and inserting (3.9) and the s
alings for ne and

Pz yield an equation for the ele
trostati
 part of the E-�eld E1
z ≡ ∂zφ

1

∂2

∂t2
∂zφ

1 +
n0

nc
n0

e ∂zφ
1 = −1

2

n0

nc
n0

e

∂

∂z
|A⊥|2 . (3.11)This equation allows for an arbitrary dependen
e of n0

e on z. The full 3D version of thisequation has three 
omponents and thus is better substituted with a s
alar equation19



3. Pulse 
ompression in one dimensionfor n1
e by using ∆φ = n0

nc
n1

e. If we assume n0
e to be pie
ewise 
onstant or only slowlydependent on z, as we did in the derivation of the 3D equations, we 
an transform theabove equation into

∂2

∂t2
n1

e +
n0

nc
n0

e n
1
e = −1

2
n0

e

∂2

∂z2
|A⊥|2 . (3.12)The equations thus have the same form as in 3D, only the Lapla
e operator is restri
tedto the z-
oordinate.Comparison of 1D simulations with these two equations for the density response showno signi�
ant di�eren
es for density pro�les with density jumps or smooth ramps ofseveral λ0 length. For 1D simulations we will use the equation for E1

z and for the 2Dsimulations in the following 
hapters the equation for n1
e.A signi�
ant di�eren
e 
an o

ur between simulations with the full γ-fa
tor and theexpanded γ, be
ause the s
aling only tells us the order of ε of a term in the equations,but not the 
onstant in front of it. In all following simulations we will use the full

γ-fa
tor, if not expli
itly stated otherwise.3.2 Numeri
al methodsNumeri
ally solving the wave equation (3.10) poses the problem that the 
arrier waveof a laser pulse has a fast time and spa
e dependen
y. The dis
retization of the spatialgrid and the stepsize in time have to be 
hosen a

ordingly small. This is even the
ase for 
ir
ular polarization and a pulse envelope that 
hanges slowly 
ompared to thelaser wavelength (so that the nonlinearity varies smoothly), be
ause the restri
tion is
aused by the properties of the linear operator on the left-hand-side of the equation. Wewill dis
uss two methods that will allow us to attenuate the restri
tions, Gauts
hi-typenumeri
al s
hemes to handle the fast time dependen
e and the quasi-envelope approa
h(QEA) to redu
e the number of grid points.3.2.1 Spatial dis
retizationDue to the �nite energy assumption on the physi
al solution it is possible to 
onsiderperiodi
 boundary 
onditions for the dis
retization as long as the simulation box isbig enough and one takes 
are of re�e
ted pulses at the boundaries. For long timesimulations this 
an be 
ombined with a moving window te
hnique.Semi-dis
retization in spa
e is done by a pseudospe
tral method withN Fourier modeson a spa
e interval z ∈ z0 + [−L,L]. This leads to the following system of 
oupledordinary di�erential equations in time (the prime denotes time-derivative):
a′′ = −D2a + g(a, n1

e), g(a, n1
e) = −n0

nc
(n0

e + n1
e)

1

γ
a , (3.13)

E ′′ = −ω2E + f(a), f(a) = −n0
eiD

√
1 + |a|2 . (3.14)20



3.2. Numeri
al methodsHere, D2 = F−1
N D2FN , where FN is the dis
rete Fourier-transform operator, and

D =
π

L
diag(−N

2
,−N

2
+ 1, . . . ,−1, 0, 1, . . . ,

N

2
− 1) .The jth 
omponent of the ve
tors a(t) and E(t) are approximations to a(zj , t) and

E(zj , t) at zj = z0 + j 2L
N
, and ω2 = n0

nc
n0

e.3.2.2 A two-step Gauts
hi-type exponential integrator for timedis
retizationAs a solver for these equations we use a modi�
ation of a Gauts
hi-type exponentialintegrator [34℄. This integrator is motivated as follows: By the variation-of-
onstantsformula, the exa
t solution of
y′′ = −Ω2y + F (y) (3.15)satis�es

y(t+ τ) =2 cos(τΩ)y(t) − y(t− τ)

+

∫ τ

0

Ω−1 sin
(
(τ − s)Ω

)(
F (y(t+ s)) + F (y(t− s))

)ds . (3.16)For a 
onstant inhomogeneity F this yields
y(t+ τ) = 2y(t) − y(t− τ) + τ 2ψ(τΩ)

(
−Ω2y(t) + F

)
,where

ψ(x) = 2
1 − cosx

x2
.In the general 
ase, a numeri
al s
heme is obtained by substituting a suitable approx-imation of F (y(t ± s)) into (3.16). This leads to approximations yk ≈ y(tk), tk = kτ ,de�ned by

yk+1 = 2yk − yk−1 + τ 2ψ(τΩ)
(
−Ω2yk + Fk

)
.The simplest 
hoi
e, originally proposed by Gauts
hi [22℄, is to set Fk = F (yk). However,the 
onvergen
e analysis in [34℄ shows that in order to obtain se
ond-order error bounds,whi
h are independent of the produ
t of the step size with the frequen
ies, it is ne
essaryto evaluate the nonlinearity F at a �ltered position, i.e. Fk = F (φ(τΩ)yk). If this �lterfun
tion φ is omitted, then large errors are expe
ted in the 
ase when the produ
t of thestep size τ with one of the frequen
ies of the problem (the eigenvalues of Ω) is an integermultiple of π. The �lter fun
tion is a suitably 
hosen real fun
tion whose purpose is to�lter out resonant frequen
ies, e.g.

φ(x) =

(
sin x

x

)2

, or φ(x) =

(
sin x

x

)2

(1 +
1

2
(1 − cosx)). 21



3. Pulse 
ompression in one dimensionThe integrator applied to (3.15) then reads
yk+1 = 2yk − yk−1 + τ 2ψ(τΩ)

(
−Ω2yk + Fk

)
, Fk = F (φ(τΩ)yk). (3.17)In addition it is also possible to obtain approximations to the �velo
ities� y′ via

y′k+1 = y′k−1 + 2τσ(τΩ)(−Ω2yk + Fk), (3.18)where σ(x) = sin x/x. Note that approximating the �velo
ities� by standard �nitedi�eren
es will lead to ina

urate results due to the os
illatory behavior of y.For Ω = 0 the Gauts
hi-type integrator redu
es to the well known leap-frog orStörmer-Verlet method. We will use (3.17) and, if desired, (3.18) for the integrationof (3.13) for the ve
tor potential.The a

ura
y of the integrator may be further improved if approximations to the in-homogeneity are available at additional times. This is only true if we solve the equations(3.14) for the ele
tri
al �eld be
ause there the inhomogeneity only depends on a. If wesolve the equation for a �rst, we have approximations aj ≈ a(tj) for j = k − 1, k, and
k+ 1. We then repla
e f(a) by an interpolation polynomial of degree two interpolatingin (tk−1, f(ak−1)), (tk, f(ak)), and (tk+1, f(ak+1)). Note that we 
onsider the 
ir
ularpolarized 
ase, in whi
h f is a smooth fun
tion. Using this interpolation polynomialinstead of F (y(t± s)) in (3.16) yields

Ek+1 = 2Ek − Ek−1 + τ 2ψ(τω)
(
−ω2Ek + f(ak)

)

+ τ 4χ(τω)
(
f(ak+1) − 2f(ak) + f(ak−1)

) (3.19)for (3.14), where
Ek ≈ E(tk) and χ(x) = 2

cosx− 1 + 1
2
x2

x4
.The s
heme (3.19) is of order four, if aj , j = k − 1, k, k + 1 are exa
t or su�
ientlya

urate approximations of a(tj). However, the 
oupled s
heme (3.17), (3.19) 
annot bebetter than se
ond order.3.2.3 Choi
e of operatorsFor solving (3.13) the obvious 
hoi
e would be using (3.17) withΩ = D. By 
onstru
tion,the Gauts
hi-type integrator then solves equations y′′ = −Ω2y + F with 
onstant Fexa
tly. Due to the spe
ial form of the nonlinearity g, we 
an enlarge the part whi
h isintegrated exa
tly by writing

g(a, n1
e) = −α a+ g̃(a, n1

e)and setting Ω2 = D2 +α for a suitable α. If the pulse is inside the plasma, the dominantterm of g is linear in a, whi
h suggests to 
hoose α = n0/nc. Outside the plasma (where
n0

e = 0) the nonlinearity is negligible so that one should set α = 0.22



3.2. Numeri
al methods3.2.4 Quasi-envelope approa
hThe motivation behind the quasi-envelope approa
h (QEA) is illustrated on a numeri
alresult shown in Fig. 3.1: the spe
trum of the ve
tor potential splits into two parts. Theimportant part is 
on
entrated around a 
ertain 
hara
teristi
 wave number dependingon whether the pulse propagates inside or outside of the plasma. In addition there isanother peak resulting from re�e
tion whi
h is not of interest in our physi
al appli
ation,be
ause the re�e
tion 
an be nearly 
ompletely avoided by using a soft va
uum-plasmaboundary (whi
h is a more realisti
 model for an experimental setup). Therefore, it issu�
ient to resolve the part of the spe
trum with positive k-values around the 
arrieronly, without problems due to aliasing that 
ould o

ur if we do not handle the re�e
tions
orre
tly. The number of spatial grid points required 
an be redu
ed signi�
antly byshifting the spe
trum appropriately, i.e. we repla
e the ve
tor potential a by
a(z, t) = ã(z, t)eiκzand solve (3.10) for ã instead of a. This yields

∂2

∂t2
ã =

∂2

∂z2
ã+ 2iκ

∂

∂z
ã− κ2ã− n0

nc

(n0
e + n1

e)
1

γ
ã , γ2 = 1 + |ã|2 .Note that in the �
lassi
al� envelope approximation ∂2ã/∂z2 is negle
ted, leading to aS
hrödinger type equation in z. In the spatially dis
retized equation (3.13), D2 has tobe repla
ed by (D+κ)2. The value of κ 
an be varied for di�erent positions of the pulse(inside/outside of the plasma or at the boundary), so we 
hoose κ =

√
1 − n0/nc, κ = 1or the mean value of both.
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0Figure 3.1: Spe
trum of the wavenumbers of the ve
tor potential while entering the plasma, K =√

1 − n0/nc (arbitrary units).3.2.5 Multilevel approa
hObviously, the spatial grid size is determined by the ne
essity of resolving re�e
tionsarising at jumps of the plasma density. If we have a sharp jump , then the re�e
tions23



3. Pulse 
ompression in one dimensionrequire small spatial grid sizes only when the pulse enters or leaves the plasma. This
an be exploited in a standard way by using two (or more) di�erent grids. In our 
asewe used a �ne grid in transitions between va
uum and plasma and a 
oarse one in theremaining simulation. Swit
hing between 
oarse and �ne grid is done by interpolationand from the �ne to the 
oarse grid by restri
tion (both in Fourier spa
e). Note that thisswit
h requires to re
ompute the di�erential operator and hen
e the matrix operatorsrequired for the Gauts
hi-type integrator.3.2.6 Overall numeri
al methodThe 
omplete numeri
al method 
ombines the strategies des
ribed above. This requiresthe 
omputation of three or more sets of operators: one in va
uum (αv = 0, κv = 1,
oarse grid), one in plasma (αp = n0/nc, κp =
√

1 − n0/nc, 
oarse grid), and one in thetransition (αt = 0.5n0/nc, κt = (1 +
√

1 − n0/nc)/2, �ne grid), and possibly additionalsets if the pulse gets too steep to be resolved on the 
oarse grid in plasma due tononlinear pulse 
ompression. If ba
kground density is small (so that the di�eren
ebetween va
uum and plasma wavelength is also small) and the density pro�le has nosharp jump (so that no re�e
tion o

urs), it is most of the time su�
ient to use thesame set of operators for both the transitional region and the plasma region on the same
oarse grid, with a κ halfway between va
uum and plasma wave-number. Re
all thatin va
uum, there is no nonlinearity, and thus the Gauts
hi-type integrator solves theproblem exa
tly for arbitrary time steps. Obviously, it is not ne
essary to 
ompute �lterfun
tions in this 
ase.3.3 A

ura
y and e�
ien
y of the numeri
al s
heme3.3.1 Des
ription of the simulated example problemFor runtime 
omparison we 
hose a simulation box of length 1000 λ0. As density pro�lewe used a pie
ewise linear fun
tion whi
h is 0 for z smaller than 100 λ0 and greaterthan 810 λ0, 1 for 105 λ0 < z < 805 λ and linear in between. In this 
ase, themultilevel approa
h is not ne
essary, be
ause nearly no re�e
tion o

urs at the plasmaboundaries. To simplify the simulational setup for the runtime 
omparison further, formethods with QEA, only one set of operators is used with a mean value of va
uumand plasma wavelength. With an additional set of operators for the plasma part, theresults dis
ussed below would be even better. But for a low ba
kground density like
n0 = 0.3nc, whi
h we used, the results are already very good. For denser plasmas(e.g. n0 = 0.6nc), swit
hing of operators between plasma boundary and plasma partsof the density pro�le be
omes a ne
essity. For the multilevel tests we used a re
tangulardensity pro�le beginning at 105 λ0 and ending at 805 λ0, and we in
luded the di�erentoperators dis
ussed in Se
. 3.2.6.24



3.3. A

ura
y and e�
ien
y of the numeri
al s
heme
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Figure 3.2: Propagating pulse at di�erent times in red, ba
kground density pro�le in bla
k for
a0 = 0.1, L0 = 10λ0 and n0 = 0.3nc.The initial 
onditions for the ve
tor potential in va
uum were 
al
ulated from

a(z, t) = a0 e
−

(z−z0−t)2

L2
0 ei(z−t) (3.20)at t = 0 and t = τ . The parameters were z0 = 35 λ0, L0 = 10 λ0, and a0 = 0.1 or

a0 = 0.12. Due to the normalization λ0 = 2π.As an example, the time evolution for two di�erent initial amplitudes is shown inFig. 3.2 and in Fig. 3.3. For the lower amplitude, �rst a 
ompression and then awidening of the pulse 
an be seen. In the 
ase of the higher amplitude, the pulse �rst
ompresses, and then splits o� a part of its energy into a prepulse. If we 
al
ulate theamplitude for the single soliton state of the S
hrödinger model for a L0 = 10 λ wide
sech(z/L0) pulse (see [59℄), we get a0 ≈ 0.038. A simulation of su
h a pulse veri�es thatthe soliton state of our model equations is 
lose to this. For the two amplitudes above,this implies that we are well within the nonlinear regime. It also suggests that the initial
ondition with a0 = 0.1 is 
lose to a bound two solution state, while for a0 = 0.12 it is
learly above. In the latter 
ase the pulse 
ompresses more and earlier, and more energyis radiated away from the 
ore of the pulse after the 
ompression.As ben
hmarks for the a

ura
y of the di�erent numeri
al s
hemes, we used two errormeasures. Sin
e we do not have an analyti
al solution of the nonlinear model equations,we 
omputed a referen
e solution on a very �ne grid (N = 217) with very small timesteps. We then used it to measure the error in maximum amplitude squared (amplitudeerror) and its position (phase error) at di�erent times of the simulation results. Sin
ethe simulations were 
omputed on 
oarser grids (espe
ially the QEA solutions) we �rstFourier interpolated to the same number of grid points as the referen
e solution. 25
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Figure 3.3: Propagating pulse at di�erent times in red, ba
kground density pro�le in bla
k for
a0 = 0.12, L0 = 10λ0 and n0 = 0.3nc.3.3.2 E�e
t of di�erent time-integration s
hemesIf the ve
tor potential is held in Fourier spa
e and only transformed ba
k for the evalu-ation of the nonlinearity/inhomogeneity, one has to 
ompute six fast Fourier transformsper time step for the leap-frog method (two for the nonlinearity of the wave equation,two for the inhomogeneity of the plasma response, and two for the transformation of

E). There is one more Fourier transform needed for the Gauts
hi-type integrator sin
ein ea
h step the �ltered as well as the non�ltered ve
tor potential is required in realspa
e. In addition, one has to 
ompute the produ
ts with the matrix fun
tions ψ, φ,and possibly σ. Obviously 
omputing a single time step with the Gauts
hi-type inte-grator is more expensive than one time step with the leap-frog method. But it turnsout that the Gauts
hi-type method allows larger time steps in order to rea
h the samea

ura
y.In Fig. 3.4 and Fig. 3.5 maximum relative amplitude error (left) and maximum phaseerror in λ (right) are plotted over 
omputational time. Ea
h 
urve represents one inte-grator on one spatial grid with di�erent time steps.For a given toleran
e for the relative amplitude error the leap-frog method (dot-ted+triangles) needs two times smaller time steps than the Gauts
hi-type integrator(solid+diamonds) on the same spatial grid (N = 212). In our examples this redu
es the
omputational time by a fa
tor of 1.5 (see table 3.1). If the phase error is taken intoa

ount, too, the gain in 
omputational time is even greater.26
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Figure 3.4: Maximum amplitude and phase error vs. runtime (a0 = 0.1) for varying τ for leap-frog(dotted+triangles), Gauts
hi (solid+diamonds), leap-frog + QEA (dash-dotted+
ir
les)and Gauts
hi + QEA (dashed+squares). We used N = 212 for methods without QEAand N = 211 for methods with QEA (see also table 3.1).
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Figure 3.5: Same as Fig. 3.4, but for a0 = 0.12.3.3.3 E�e
t of 
hoi
e of operatorsThe e�e
t of the 
hoi
e of operators is illustrated in Fig. 3.6 for the 
ase a0 = 0.1.It is observed that the 
hoi
e of α = n0/nc within the plasma redu
es the phase er-ror signi�
antly while the error in the amplitude is only slightly larger. However, for
a0 = 0.12 swit
hing between the operators did not pay o�. The reason for this mightbe the in
reased density variation 
ompared to the smaller amplitude. The results inFig. 3.6 were 
omputed in
luding QEA of Se
tion 3.2.4, but the method showed thesame behavior when 
ombined with other variants des
ribed above. The phase erroris given in terms of λ whereas the amplitude error is given relatively 
ompared to the27



3. Pulse 
ompression in one dimensionreferen
e amplitude. In both 
ases the error is averaged over pulses at 100 di�erentpositions spread evenly over the 
omputation interval.
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τFigure 3.6: Amplitude and phase error plotted over the time step τ for the Gauts
hi-type integra-tor in
luding quasi-envelope approa
h with and without the variant des
ribed in Se
-tion 3.2.3. Phase/amplitude error with α = 0 (solid/dashed line) and α = n0/nc withinthe plasma (dotted/dash-dotted line) for a0 = 0.1.3.3.4 E�e
t of quasi-envelope approa
hBy applying the quasi-envelope approa
h to the leap-frog method as well as the Gauts
hi-type integrator, the number of spatial grid points 
an be signi�
antly redu
ed withoutloss of a

ura
y (see 
urves with and without QEA in Fig. 3.4 and Fig. 3.5). Sin
ethe major part of 
omputational time is spent on Fast Fourier transforms, whi
h 
ost
O(N logN) operations, the redu
tion of grid points by a fa
tor of 2 again leads to asaving in 
omputational time of more than a fa
tor of 2. Another reason for a morethan linear redu
tion in 
omputational time is that smaller arrays are more likely to �tinto the 
a
he of the pro
essor. For small enough arrays, a whole time step 
an runfrom CPU 
a
he. We observed that QEA is more e�e
tive in redu
ing the amplitudeerror, while the Gauts
hi-type method is more e�e
tive in redu
ing the phase error.The parameters for the dis
retization needed to a
hieve a maximum relative ampli-tude error of 10−2 are summarized in table 3.1. Exemplary runtimes for one spe
i�
hardware/software setup are also given.If one 
ompares the standard leap-frog method to the new variant of the Gauts
hi-type integrator 
ombined with QEA, the 
omputational time is redu
ed by a fa
tor of
3 in the �rst and even by a fa
tor of 4.5 in the se
ond example. If we set a bound lowerthan 10−2 for the amplitude error, we see that without QEA this error bound 
annot berea
hed by only redu
ing τ . This is be
ause the error due to the 
oarse spatial resolutionlimits the a

ura
y that 
an be rea
hed. Thus a �ner grid is needed, whi
h results in28
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al s
heme
a0 = 0.1 a0 = 0.12

N τ time/min. N τ time/min.LF 212 0.1 2:10 212 0.04 5:07LF + QEA 211 0.1 1:03 211 0.05 1:57Gauts
hi 212 0.2 1:32 212 0.12 2:28Gauts
hi + QEA 211 0.2 0:44 211 0.12 1:10Table 3.1: Runtimes for maximum one per
ent relative amplitude error. N is the number of spatialgrid points, τ is the time step size. Computational details: Pentium 4, 3.0 GHz, IntelC++ 8.1, FFT routines from Intel Math Kernel Library 7.2.a 
orresponding in
rease of 
omputational time, while the dis
retization for QEA 
anstay the same (see Fig. 3.7).
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Figure 3.7: Maximum amplitude error vs. runtime (a0 = 0.12) for 
onstant N and varying τ forleap-frog with N = 213 (dashed), leap-frog with N = 212 (dash-dotted) and Gauts
hi+ QEA with N = 211 (solid).
3.3.5 E�e
t of two-level approa
hThe bene�t of the two-level approa
h suggested in Se
tion 3.2.5 is illustrated in Fig. 3.8.The referen
e solution as well as the simulation results are shown at t = 700 · 2π for aplasma jump and a0 = 0.12. It 
an be seen that in this 
ase it is possible to work ona 
oarse grid (N = 211) in the major part of the simulation but it is not possible to dothe whole simulation on the 
oarse grid. In the transition we interpolated to 213 gridpoints. 29
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Figure 3.8: Results of simulations using the two-level approa
h 
ompared to a one-level simulationon the (same) 
oarse grid only. Solid: referen
e solution, dashed: solution 
omputed ona 
oarse grid only, dotted: two-level approa
h (
urve 
oin
ides with the solid one).3.3.6 Comparison with PIC
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Figure 3.9: Relative di�eren
e in intensity to the referen
e solution of the redu
ed model for a0 = 0.1(left) and a0 = 0.12 (right). Gauts
hi+QEA (see table 3.1, solid) and PIC (dashed)with N = 2 · 105, τ = dz(N) and 3 parti
les per 
ell, runtime around 5 : 30 h.Finally, we 
ompare with PIC simulations performed with VLPL [55℄. Sin
e PICsimulates E and B instead of A, we base our 
omparison on intensities, 
al
ulated by
I =

1

2

(
|E|2 + |B|2

)
=

1

2

(∣∣∣∣
∂

∂t
A

∣∣∣∣
2

+

∣∣∣∣
∂

∂z
A

∣∣∣∣
2
)

.For the Gauts
hi-type method, one has to use (3.18) for the time-derivative, and forQEA ∂/∂z → ∂/∂z + iκ. The di�eren
e in amplitudes between the referen
e solution30
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Figure 3.10: Phase-di�eren
e in terms of laser wavelength between the exa
t linear solution andPIC (dashed) and the exa
t linear solution and Gauts
hi+QEA (solid), both with a0 =
0.0001.
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Figure 3.11: Phase-di�eren
e in terms of laser wavelength between the exa
t linear solution andPIC (a0 = 0.12: dash-dotted and a0 = 0.0001: dotted), exa
t linear solution andGauts
hi+QEA (a0 = 0.12, solid) and di�eren
e between PIC and Gauts
hi+QEA for
a0 = 0.12 (dashed).for the redu
ed model and PIC (see Fig. 3.9) and the Gauts
hi-type method with QEAfor the parameters given in table 3.1 are of the same order. This implies that, evenwith a relatively 
oarse dis
retization, the error of the simulations with our fastestsolver is within the a

ura
y of the redu
ed model, whi
h seems to be at the border ofappli
ability at a0 = 0.12.We also noti
ed that there is a systemati
 di�eren
e in group velo
ity between PICsolutions and ours. To understand whether this is due to numeri
al error in PIC and/orour solvers, we made simulations with both for a very small amplitude (a0 = 0.0001).31



3. Pulse 
ompression in one dimensionThe 
ombination of small amplitude and a 
old plasma allows to test the phase errorof the numeri
al simulations against the known linear analyti
al solution. The resultsin Fig. 3.10 show that PIC (dashed) produ
es a slight error in group velo
ity even on a�ne grid, whereas Gauts
hi+QEA (solid) with 
oarse dis
retization is 
lose to the exa
tsolution.In Fig. 3.11 we 
ompare the phase shift (with respe
t to the exa
t linear solution) ofVLPL (dash-dotted) and the Gauts
hi+QEA simulation from table 3.1 (solid) in thenonlinear 
ase (a0 = 0.12). The di�eren
e between the two (dashed) is 
onsistent withthe linear phase error of PIC (dotted). This shows that the di�eren
e in phase betweennonlinear PIC and Gauts
hi+QEA is mostly linear phase error of PIC, whi
h 
ould alsoin�uen
e the a

ura
y of the amplitude 
al
ulation.3.4 Pulse dynami
s in 1D3.4.1 Self 
ompression thresholdAs we have already seen in the example problems of se
tion 3.3, a pulse with su�
ientenergy 
an over
ome the dispersion of the plasma medium and self 
ompress. Thishappens due to the nonlinearity 
aused by the relativisti
 mass in
rease of the ele
tronsos
illating with the laser �eld. The energy threshold for the self-
ompression 
an be
al
ulated simply from the single soliton solution of the 
ubi
 nonlinear S
hrödingerequation (
ubi
 NLSE), whi
h is also a soliton solution to the (
ubi
) nonlinear waveequation (see se
tion B.1 of the appendix) for whi
h we dis
ussed an e�
ient numeri
als
heme above. This threshold 
an also be derived from the NLSE via the variation-of-a
tion method (VAM) with
a(τ, ζ) = A(ζ)

√
T0

T (ζ)
e−iφ(ζ) eiη(ζ)τ2

sech

(
τ

T (ζ)

) (3.21)as the trial fun
tion. Here η(ζ) is the linear 
hirp of the pulse.The Lagrange density for the 
ubi
 NLSE is
L = i β(a ∂ζa

∗ − a∗∂ζa) +
1 − β2

β2
(∂τa)(∂τa

∗) − 1 − β2

4
|a|4 . (3.22)Inserting the trial fun
tion and integrating over τ yields

L =
2(1 − β2)

β2

A2

T 2
− (1− β2)A4T0

T
+ π2 2(1 − β2)

β2
A2T 2 + π2βA2T 2η′ − 12βA2φ′ . (3.23)Varying L for η and T and 
ombining the two resulting equations leads to the followingordinary di�erential equation for the temporal length T (ζ) of the pulse

T ′′(ζ) = −4(1 − β2)2

π2β6

1

T 3(ζ)

{
β2A2

0T0T (ζ)

4
− 1

} (3.24)32



3.4. Pulse dynami
s in 1Dwith T0 the initial pulse length.From this we immediately get the threshold value for the self 
ompression: if theexpression inside the parenthesis is larger than zero, the se
ond derivative of T (ζ) isnegative and the length de
reases. An initial pulse that ful�lls
A0T0β > 2 (3.25)will thus 
ompress. The group velo
ity β enters into the threshold, be
ause the temporallength of the pulse in
reases with de
reasing group velo
ity. For the wave equation wherea spatial distribution is propagated in time, the threshold takes the following form
A0L0 > 2 (3.26)where L0 is the initial spatial length of the pulse.
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Figure 3.12: Amplitude evolution for solutions of the VAM model (blue), 
ubi
 NLSE (green)and
ubi
 wave equation (red) for initial sech-pulses below, at, or above to the 
ompressionthreshold. For VAM and NLSE the initial length are (from bottom to top) T0 =
7/ν0, 7.61/ν0, 8.2/, ν0 and for the 
ubi
 wave equation L0 = 5.857λ0, 6.37λ0, 6.86λ0.Initial lengths are 
hosen a

ording to (3.25) and (3.26) with a0 = 0.05 and n0 =
0.3nc.As expe
ted from true soliton solutions, the threshold values for both equations agreeperfe
tly with numeri
s. The 
urves of intensity vs. propagation distan
e in Fig. 3.12show that pulses dire
tly at the threshold propagate un
hanged. Slightly larger orsmaller values 
ompress or disperse respe
tively. But only slightly away from the thresh-old, the VAM model di�ers signi�
antly from numeri
s. In part this is due to solutionsof (3.24) being stri
tly periodi
 for A0T0β >

√
21. In reality a pulse with an energybetween the one- and two-soliton state will over time radiate o� the ex
ess energy.But also for a true periodi
 self 
ompressing solution of the NLSE, the bound two-soliton state, there is no good agreement. A valid initial 
ondition for the two-soliton1But with length of the period to in�nity as √2 is approa
hed. 33
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Figure 3.13: Amplitude evolution due to pulse 
ompression for a two soliton state with a0 = 0.1and n0 = 0.3nc. NLSE (green) with T0 = 7.61/ν0, 
ubi
 wave equation (red) with
L0 = 6.37λ0 and VAM model with T0 = 6.37/ν0 (magenta) and T0 = 7.61/ν0 (blue).state is simply a pulse with twi
e the single soliton amplitude. Simulation results and a
omparison with the VAM predi
tion 
an be seen in Fig. 3.13. For the 
orre
tly 
hoseninitial pulse length, the VAM model shows no agreement with the numeri
s for the NLSEand the nonlinear wave equation, neither with respe
t to the maximum amplitude, northe position of the maximum.An equivalent equation 
an be derived for a Gaussian-shaped initial pulse, whi
his 
loser to the pulse shape that is produ
ed by real laser systems. Here we 
an notderive the threshold from a steady state solution, be
ause a Gaussian pulse is not atime-independent solution of either the NLSE or nonlinear wave equation. For an initial
ondition for the NLSE of

a(τ, ζ) = A(ζ)

√
T0

T (ζ)
e−iφ(ζ) eiη(ζ)τ2

e
− τ2

T (ζ)2 (3.27)we have
T ′′(ζ) = −4(1 − β2)2

β6

1

T 3(ζ)

{
β2A2

0T0T (ζ)

8
√

2
− 1

} (3.28)as the evolution equation of the pulse length. It is equivalent to the equation derivedin [56℄ and in [59℄ by means of the momentum method and also to the equation used todes
ribe dispersion managed solitons in �ber opti
s [64℄. It has the same form as (3.24)but di�ers in two respe
ts. The fa
tor outside the parenthesis is larger by a fa
tor of
π2, so both nonlinear and dispersive e�e
ts a
t on a shorter length s
ale. The thresholdvalue is di�erent, too

A0T0β = A0L0 >

√
8
√

2 . (3.29)The reason for this di�eren
es is on the one hand of 
ourse the di�erent shape. Butmore importantly the two shapes have di�erent half width for same value of the length34



3.4. Pulse dynami
s in 1Dparameter T0. The fa
tor between T0 and the half width for a Gaussian pulse is√ln(2) ≈
0.8 while for a sech-shaped pulse it is sech−1(1/2) ≈ 1.3. For the same T0 the half widthof the two shapes thus di�er by a fa
tor of ≈ 1.582 whi
h is 
lose to the di�eren
e ofthe thresholds.

0 500 1000 1500 2000 2500 3000
0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

z / λ
0

m
a

x
im

u
m

 o
f 

|a
|2

Figure 3.14: Amplitude evolution for solutions of the VAM model (blue), 
ubi
 NLSE (green)and
ubi
 wave equation (red) for initial Gaussian pulses below, at, or above to the 
ompres-sion threshold. For VAM and NLSE the initial length are (from bottom to top) T0 =
5.8/ν0, 6.4/ν0, 7/ν0 and for the 
ubi
 wave equation L0 = 4.85λ0, 5.35λ0, 5.86λ0.Initial lengths are 
hosen a

ording to (3.29) with a0 = 0.1 and n0 = 0.3nc.Comparing the 
ompression threshold with numeri
s for a Gaussian pulse yields not aresult as 
lear as for the soliton shaped pulse dis
ussed above. A pulse at the analyti
al
ompression threshold (3.29) does not propagate un
hanged, be
ause it will 
hange itsshape towards a soliton during propagation. The periodi
ity of the VAM solution vs.the non-periodi
ity of the numeri
al solutions is shown in Fig. 3.14. Still, the VAMderived threshold seems to predi
t su�
iently well if a pulse will show self 
ompressionor dispersion.Considering again an initial 
ondition with a (nearly) periodi
 behavior for this pulseshape, we 
on
lude from Fig. 3.15 that, as in the 
ase of the truly periodi
 two-solitonsolution, the VAM model does not mat
h the numeri
al results well. Only for thein
orre
t 
hoi
e of T0 = L0 the maximum amplitudes are 
lose. This 
hoi
e also improvesthe agreement for the sech pulse shape, 
f. the magenta 
urve in Fig. 3.13. The sameparameters where used for the 
omparison in [59℄ to 1D PIC and good agreement wasstated. In this 
omparison the pulse was initially in va
uum.In 
on
lusion the VAM model is useful to predi
t general 
ompression vs. dispersionbehavior of a pulse, but is unable to des
ribe the dynami
s 
orre
tly. This is in 
ontrastto the very weakly nonlinear 
ase for dispersion management in �ber opti
s, where theagreement is ex
ellent. In
luding the full γ-nonlinearity and the n1

e-equation does not
hange the thresholds for low initial amplitudes. 35
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ompression in one dimension
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Figure 3.15: Amplitude evolution due to pulse 
ompression for a Gaussian pulse 
lose to a twosoliton solution for n0 = 0.3nc and a0 = 0.1. NLSE (green) with T0 = 11.95/ν0,
ubi
 wave equation (red) with L0 = 10λ0, VAM model with T0 = 10/ν0 (magenta)and T0 = 11.95/ν0 (blue). Shown in bla
k is a simulation of the 
ubi
 wave equationwith the same parameters as used for the red 
urve, but in
luding the transition of thepulse from va
uum to plasma.3.4.2 Pulse amplitude vs. lengthAbove the 
ompression threshold the strength and speed of the self 
ompression varieswith the initial amplitude and length of the pulse. First we 
onsider pulses that havethe same total energy with di�erent initial amplitude and length, i.e. the same valueof a2
0 L0. From (3.28) we immediately see that a larger initial length will lead to slower
ompression behavior that s
ales with L2

0 [56℄. The interesting question is wether theyshow the same amount of relative 
ompression, i.e. that the length de
reases by thesame relative amount the amplitude in
reases. In Fig. 3.16 we 
an see on the left thatinitially longer pulses rea
h a higher maximum amplitude relative to a0, be
ause theminimal length rea
hed is nearly equal (right side of Fig. 3.16). This is even more
learly visible in Fig. 3.17 for pulses with the same initial amplitude, but di�erent L0.A larger value of L0 leads to a larger absolute value for the maximum amplitude. Theminimum length redu
es slightly with in
reasing initial length, but this e�e
t qui
klysaturates. The same e�e
t o

urs for a 
onstant initial length and in
reasing a0, as 
anbe seen in Fig. 3.18. Higher values of a0 lead to lower a minimum length, but this e�e
tqui
kly saturates, too.For the dynami
s up to the �rst 
ompression maximum, varying amplitude and lengthonly 
hange the time s
ale and maximum amplitude of the 
ompression. The prin
i-pal form of the amplitude evolution with time is un
hanged (but see the next se
tionabout plasma density with respe
t to high amplitudes). After the �rst maximum ofself-
ompression, the dynami
s strongly depends on the ratio of pulse energy to singlesoliton energy. The same is true for the in
lusion of the n1
e-equation. Up to the �rstmaximum in intensity the 
ompression 
hanges only quantitatively not qualitatively,36



3.4. Pulse dynami
s in 1D
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Figure 3.16: Amplitude evolution of wave equation simulations with γ-nonlinearity and n0 = 0.3nc.Pulses with the same value of a2
0 L0. a0 = 0.1/

√
2, L0 = 20λ0 (green), a0 = 0.1,

L0 = 10λ0 (red) and a0 = 0.1
√

2, L0 = 5λ0 (blue).Raman instability not 
onsidered. After the maximum, the dynami
 di�ers in so far,that a true splitting of the pulse in several pulses that propagate with di�erent velo
ities
an o

ur. The di�eren
e in group velo
ity due to the relativisti
 nonlinearity alone isstill too weak to drive pulses apart for the amplitudes 
onsidered here. For most am-plitude / length 
ombinations that have three or more times the single soliton energy,the pulse splits into a single short pulse with a high amplitude, and one or more smallerpulses. The the dominant short pulse then propagates over long distan
es with smallerand smaller os
illations in amplitude and thus seems to be 
lose to a soliton, but withlarge energy loss to the plasma due to the large ponderomotive for
e it exerts.3.4.3 In�uen
e of plasma densityIn the pre
eding se
tions we have used a plasma density of n0 = 0.3nc for the plasmaba
kground density as a standard value. In this se
tion we will dis
uss why this is asensible 
hoi
e and what advantages and disadvantages other values for the ba
kgrounddensity have. We will also examine the in�uen
e of the equation for n1
e on simulationresults depending on the ba
kground density. We will mostly restri
t the dis
ussionto density values larger than quarter 
riti
al.2 The density range lower than quarter
riti
al will be dis
ussed in the se
tion about Raman instability below.Without a va
uum-plasma boundary and negle
ted density response, there is no
hange in the maximum amplitude rea
hed by the self-
ompression when varying the2Densities higher than 1

4
n0

nc

have been di�
ult to realize in experiments for ∼ 1µm lasers, but arenow routinely a
hieved through supersoni
 gas expansion, where a gas under high pressure (up to
100 bar) �ows through a spe
ially formed nozzle and expands in va
uum about 10 times and rea
hesvelo
ities of about Ma
h 3 [54℄. 37
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Figure 3.17: Amplitude evolution of wave equation simulations with γ-nonlinearity and n0 = 0.3nc.Pulses with the same a0 = 0.1 but di�erent L0. L0 = 10λ0 (green), L0 = 20λ0 (red)and L0 = 30λ0 (blue).ba
kground density. Only the length (and time) s
ale over whi
h the 
ompression o

urs
hanges proportional to √n0/nc, whi
h 
an easily be seen by setting n1
e to zero in thewave equation and res
aling z and t. Numeri
al simulations 
on�rm this density inde-pendent 
ompression behavior. For the same reason the density value does not enterthe soliton solution in appendix B.1.In
luding the density response results in stronger 
ompression and higher maximumamplitudes. Lower ba
kground densities show more gain than higher densities in thisrespe
t, thus the strength of the 
ompression varies with the plasma density. We 
anunderstand this by negle
ting the time derivative in the n1

e-equation and solving for n1
e.The lo
al density perturbation then is the se
ond spa
e derivative of γ with a fa
tor nc/n0in front. In
reasing the amplitude for a pulse with 
onstant length shows that this e�e
treverses for higher amplitudes. At lower densities the wake�eld ex
itation is stronger andthus more energy is transfered to the plasma whi
h negle
ts the aforementioned e�e
t.At a pulse length of L0 = 10 λ0 the breakeven for n0 = 0.3nc is around a0 = 0.14. Forlow densities smaller than 0.25nc this is even the 
ase for relatively low pulse energies.For higher energies Raman instability severely limits pulse 
ompression.If the pulse propagates from va
uum into the plasma, two additional e�e
ts be
omeimportant. The part of the pulse spe
trum below the plasma frequen
y 
an not propa-gate into the plasma. Even if re�e
tions are suppressed by using a soft boundary witha linear in
rease over several λ0, this modes 
an not enter the plasma. Be
ause theplasma frequen
y in
reases with density, this is a disadvantage for higher densities. Butfor most densities this is only visible at low amplitudes below a0 = 0.1. Otherwise itis 
ompensated by the relativisti
 mass in
rease that lo
ally lowers ωp, this is 
alledself-transparen
y.The other e�e
t that o

urs during the transition from va
uum to plasma is that the38
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Figure 3.18: Amplitude evolution of wave equation simulations with γ-nonlinearity and n0 = 0.3nc.Pulses of the same length L0 = 10λ0, but di�erent amplitude. a0 = 0.1 (green),
a0 = 0.14 (red) and a0 = 0.2 (blue).
arrier wavenumber is downshifted by a fa
tor of β. Be
ause the pulse is shortened,the amplitude in
reases a

ordingly, whi
h in turn enhan
es the self 
ompression, themore the higher the density. Combined with ponderomotive e�e
ts modelled by the

n1
e-equation, this favors densities in the medium range. They also have the advantagesthat Raman instability is prohibited and the 
ompression lengths are su�
iently longto be implementable in gasjet experiments. A disadvantage of this density range isthat losses to the wake�eld limit the initial intensity to lower values than possible forhigher densities. At higher amplitudes, this 
an have a similar e�e
t on the 
ompressione�
ien
y as Raman instability although no resonant unstable pro
ess o

urs.3.4.4 Relativisti
 intensitiesIn the last se
tion we have seen that the density range just above quarter 
riti
al 
an onlysustain e�
ient pulse 
ompression for initial intensities below a0 ∼ 0.2. Can this problembe over
ome by using higher densities (although the 
ompression length would then beextremely small)? This question 
an not be answered with 
ertainty by simulations ofour model equations, be
ause they are be
oming invalid for large density os
illations
aused by high pulse intensities. But it is interesting to test, if without strong densityex
itations, large initial amplitudes would be
ome usable. As 
an be seen in Fig. 3.19for a simulation with a0 = 0.5 and without in
luding the n1

e-equation, this is not the
ase. Be
ause the nonlinearity is an order of magnitude larger than the dispersion, thepulse peak travels distin
tly faster than the front and a sho
k forms. After the sho
kformation, the pulse �laments at the ba
k due to relativisti
 self-phase modulation3,3Self-phase modulation 
onsists of two distin
t e�e
ts, longitudinal bun
hing and photon a

eleration(lo
al in
rease of ω0), see [50℄ for details. 39
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Figure 3.19: High amplitude (a0 = 0.5) simulation with only γ-nonlinearity for a density of n0 =
0.6nc and a pulse length of 10λ0. The initial pulse (bla
k) was pla
ed dire
tly insidethe plasma. Snapshots are taken at t = 20/ν0 (blue), t = 30/ν0 (green) and t = 50/ν0(red).whi
h is only strong enough for relativisti
 amplitudes. Thus e�e
tive 
ompression isprevented. With in
lusion of the n1

e-equation, the system be
omes unstable, be
ausethere is no saturation me
hanism for the density os
illations. This instability is evenmore violent at high densities.To answer the question, if there maybe nonlinear e�e
ts at higher intensities that keepthe wake�eld amplitude in 
ontrol, we resort to PIC simulations with the 1D VLPL 
ode.In Fig. 3.20 the result of su
h a simulation with a0 = 0.5 and n0 = 0.6nc shows that apart of the pulse are re�e
ted, a part is trapped4 and only lower amplitude noise propa-gates through the plasma. Results for other densities above n0 = 0.25nc or a higher a0equal or larger than unity show similar destru
tion of the pulse. The pro
esses that areresponsible for the fast destru
tion and depletion of short ultrarelativisti
 pulses are de-s
ribed in detail in [7℄. Only at very low densities the pulse 
an propagate and 
ompressslightly over some distan
e, but is then inevitably �lamented by Raman instability.So far the only known e�e
t that allows stable propagation for high intensity pulsesover a �nite distan
e in all density regimes is bubble formation [20℄. This is be
auseof ultra relativisti
 self similarity, where the s
ale parameter of the system is no longersimply n0/nc, but S = n0/(a0 nc) [25℄. On
e the pulse has 
reated a 
avitation bubblefree of ele
trons, it 
an propagate inside at c, while the front is still in plasma, propagat-ing with the 
orresponding group velo
ity, thus 
ompressing the pulse. No �lamentationdue to the wake�eld is possible. But the 
avitation pro
ess of 
ourse 
onstantly transfersenergy from the front of the pulse to the plasma. The most interesting 
onsequen
e of4This trapping o

urs despite the plasma being underdense, this e�e
t is des
ribed in [7℄.40
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Figure 3.20: 1D PIC simulation using the VLPL 
ode for a0 = 0.5, L0 = 10λ0 and n0 = 0.6nc.The initial pulse (blue) is in va
uum and enters the plasma through a linear densityramp of 5λ0 (density pro�le in bla
k). Snapshots at t = 90/ν0 (green) and t = 120/ν0(red).this is the a

eleration of ele
trons to high energies [19, 48℄. E�
ient pulse 
ompressionin the plasma is thus limited to weakly relativisti
 amplitudes, both initially and at themaximum of 
ompression.3.4.5 Wake�eld generation and Raman instabilityA short laser pulse exerts a very lo
alized ponderomotive for
e on the plasma that leadsto a density deprivation at the lo
ation of the pulse. The a
tual form of the densityperturbation due to the pulse 
an be dedu
ed from the equation for n1
e by negle
tingthe time derivative

n1
e =

nc

n0
∆γ ≈ 1

2

nc

n0
∆|a|2 .thus the shape of the perturbation simply is the se
ond spatial derivative of the laserenvelope. Behind the laser pulse the plasma os
illates at the plasma frequen
y. The pulsemust ful�ll a 
ertain requirement [23, 45℄ to indu
e os
illations with a �nite amplitude
ompared to the ba
kground density

kp L ∼ O(1),where kp is the wavenumber of the plasma and L is the pulse length. Sin
e the pulse thata
ts as the driver for the os
illations propagates through the plasma with the velo
ity
vg =

√
1 − n0/nc, the os
illations have vg as their phase velo
ity and a wavelength of

vg/ωp. This phenomenon is 
alled the wake�eld of the pulse and for a 
old plasma ithas zero group velo
ity. 41
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ed together from snapshots at di�erent times.On the right hand side is a magni�ed se
tion of the blue 
urve on the left.A periodi
ally 
ompressing pulse 
an in this way produ
e a lo
alized wake�eld withthe maximum amplitude of the os
illations at the maximum of 
ompression, as shown inFig. 3.21. If the intensity of the pulse is su�
ient to indu
e a density 
avity that partiallytraps the pulse and prevents the de
ompression, the wake�eld be
omes 
ontinuous untilthe pulse energy is depleted.The most interesting appli
ation of wake�elds is ele
tron a

eleration [18, 32, 21℄,also 
alled laser wake�eld a

eleration (LWFA). Not in
luded in our model equationfor the ele
tron density, is the breaking of the wake�eld [11, 35, 45℄. If the plasmawave breaks, the density gradients be
ome in�nite and parti
les start to overtake thewave. This 
an be used for self inje
tion of ele
trons into the wake�eld for a

elerationpurposes. Although relativisti
 wake�elds will eventually break for any amplitude [45℄,for low relativisti
 amplitudes this will happen after many os
illations and thus o

ursfar behind the laser pulse without in�uen
e on the propagation of the pulse. In the 1DPIC simulations we performed for weakly relativisti
 amplitudes, we did not observe thegeneration of fast ele
trons.Through stimulated Raman forward s
attering (RFS) a resonant instability betweenthe laser pulse and the wake�eld 
an o

ur [2, 51, 49℄. Forward s
attering here meansthat the laser radiation s
attered at a density perturbation still propagates in the samedire
tion as the laser pulse as opposed to ba
kward s
attered radiation. Due to thiss
attering pro
ess, for a sinusoidal wake�eld the laser energy lumps at the density min-ima. The laser radiation is s
attered from the density maxima in front (sideband with42
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Figure 3.22: Pulse �lamentation due to Raman instability for a laser pulse of a0 = 0.14, L0 = 20λ0and n0 = 0.1nc. |a|2 in blue and n1
e/n0 in red.

ω0−ωp) and behind a minimum towards the density minimum (sideband with ω0+ωp).5This results in a �lamentation of the pulse, even for a short pulse as long as its lengthex
eeds the wavelength of the wake�eld. E.g. for a density of n0 = 0.1nc we have awavelength of the wake�eld of 3 λ0. The pulse in Fig. 3.22 with an initial length of 20 λ0shows strong �lamentation at its ba
k. Be
ause ω0 − ωp > ωp to allow propagation ofthe lower sideband inside the plasma, the s
attering pro
ess 
an only be
ome resonantfor ω0 > 2ωp. Thus the 
ondition
ω2

p

ω2
0

=
n0

nc
<

1

4for the plasma density to allow for this type of instability.

5In this pi
ture it is also obvious why there is a phase shift of π/2 between the Raman �laments andthe maxima of the density, as it is the 
ase for every resonantly driven harmoni
 os
illator. 43



4 Pulse 
ompression in twodimensionsIn this 
hapter we will investigate transversal e�e
ts in the relativisti
 self-
ompression oflaser pulses. We will �rst generalize the numeri
al methods dis
ussed in 
hapter 3 to two di-mensions. Sin
e the numeri
al method used has very low noise, we 
an study pulse evolutionwithout transversal �lamentation, be
ause noise at the unstable wavelengths is ne
essary toseed the instability. We dis
uss how the additional degree of freedom 
hanges the pulse dy-nami
s inside an in�nite plasma slab depending on the transversal shape and spot size of thepulse vs. its length. This allows us to identify useful parameter ranges for 2D pulse 
ompres-sion. Be
ause a real laser pulse will likely show transversal �lamentation inside a plasma, wethen examine in detail how the strength and spe
trum of transversal perturbations in�uen
ethe growth of this instability.4.1 Numeri
al MethodsIn 
hapter 3 we used a Gauts
hi-type exponential integrator for the time-integrationof the one-dimensional problem and we presented 
omparisons whi
h showed that su
htrigonometri
 integrators outperform the standard leap-frog method for this parti
ularappli
ation. For the spatial dis
retization we introdu
ed the so-
alled quasi-envelopeapproa
h (QEA) to redu
e the number of spatial grid points signi�
antly.In the following se
tions, that are based on [40℄, we will generalize the numeri
alte
hniques to the two-dimensional 
ase. This means we aim to solve the 
oupled equa-tions (2.34) and (2.33) with a two dimensional Lapla
e operator in either a Cartesiangeometry with z, x-parameterization or 
ylindri
al geometry in z, r-parameterization.However, in 
ontrast to the one-dimensional 
ase, where a two-step implementation ofthe Gauts
hi-type exponential integrator with 
onstant step size turned out to be su�-
ient, it is essential to enable 
hanges of the time step-size for the two-dimensional 
ase.We will therefore suggest use a one-step version of the Gauts
hi-type method [28, 29℄.An error analysis for the whole family of these methods is given in [27℄. In parti
ular,it was shown that these methods are se
ond order a

urate independent of the highestfrequen
ies arising in the system.The main 
omputational e�ort for one time step with an exponential integrator arisesfrom the 
omputation or approximation of the produ
t of a matrix fun
tion with a ve
-tor. In the one-dimensional 
ase, the proposed pseudospe
tral dis
retization enabled theuse of fast Fourier transformation. This lead to an implementation where the overhead
ompared to the leap-frog method was quite low. The situation 
hanges 
ompletely in44



4.1. Numeri
al Methodstwo spa
e dimensions. We therefore use the full two-dimensional Lapla
ian within thematrix fun
tions only in va
uum, where huge time steps 
an be performed and higher
osts pay o�. During propagation in plasma, we split the Lapla
ian into a transversaland a longitudinal dire
tion and use only the (one-dimensional) longitudinal dire
tionwith the matrix fun
tions. This splitting is justi�ed by physi
al properties of the solu-tion.Nevertheless, for large problems it 
an be ne
essary to parallelize the s
heme. A keyobservation is that the parallelization has to be adapted to the di�erent variations of theintegrator being applied in di�erent regions during the simulation (e.g. va
uum, plasma,and transition regions).4.1.1 One step Gauts
hi-type exponential integrator for timedis
retizationAfter semi dis
retization in spa
e (
f. Se
. 3.2.1), we obtain a system of se
ond orderordinary di�erential equations of the form
ÿ(t) = −Ω2y(t) + F (y(t)) (4.1)where Ω2 is a symmetri
, positive semi-de�nite matrix and ‖F‖, ‖Fy‖, ‖Fyy‖ and

‖y′‖2 + ‖Ωy‖2 are bounded. For the solution we suggest to apply the following fam-ily of numeri
al s
hemes [30, 28℄
yn+1 = cos(hΩ) yn + hsinc (hΩ) ẏn +

1

2
h2ΨF (Φyn) (4.2a)

ẏn+1 = −Ω sin(hΩ) yn + cos(hΩ) ẏn +
1

2
h
(
Ψ0F (Φyn) + Ψ1F (Φyn+1)

)
. (4.2b)Here,

Φ = φ(hΩ), Ψ = ψ(hΩ), Ψ0 = ψ0(hΩ), Ψ1 = ψ1(hΩ),where φ, ψ, ψ0, ψ1 are even and analyti
al fun
tions whi
h are bounded on the non-negative real axis satisfying
φ(0) = ψ(0) = ψ0(0) = ψ1(0) = 1 .To obtain a s
heme with 
ertain desirable properties imposes 
onstraints on the 
hoi
eof these fun
tions. For instan
e, a s
heme is symmetri
 if and only if

ψ(ξ) = sinc (ξ)ψ1(ξ) and ψ0(ξ) = cos(ξ)ψ1(ξ)and symple
ti
ity is equivalent to
ψ(ξ) = sinc (ξ)φ(ξ).Moreover, Hairer and Lubi
h [28℄ proved that for Ω = ωI, ω > 0 and F (y) = By with
onstant B, the energy is 
onserved up to O(h) for all values of hω if and only if
ψ(ξ) = sinc 2(ξ)φ(ξ) (4.3)45



4. Pulse 
ompression in two dimensionsThus, there is no s
heme in this family, whi
h is symple
ti
 and gives good energy
onservation.In [27℄, Grimm and Ho
hbru
k derived 
riteria, whi
h guarantee se
ond order a

ura
yindependent of the eigenvalues of Ω. They suggested to 
hoose
ψ(ξ) = sinc 3(ξ), φ(ξ) = sinc (ξ), (4.4)whi
h results in a symmetri
 se
ond order s
heme satisfying (4.3). We use this 
hoi
eof fun
tions for our implementation.Note that linear problems with F ≡ 0 are solved exa
tly by all these s
hemes. Thisallows to use arbitrarily large time steps for the propagation in va
uum. For the prop-agation inside of the plasma layers, smaller time steps have to be used to obtain thedesired a

ura
y. This 
hange of time steps would be mu
h more 
ompli
ated for thetwo-step method dis
ussed in the pre
eding 
hapter. Moreover, the equivalent one-stepvariant of this s
heme does not have the favorable energy 
onservation property.4.1.2 Implementation of exponential integratorsFor a Gauts
hi-type time integration s
heme, the main e�ort per time step is the eval-uation or approximation of the produ
ts of 
ertain matrix fun
tions of the dis
retizedLapla
ian Ω with ve
tors. It is indispensable to do this in an e�
ient way. The 
ompu-tational 
ost of ea
h time step is thus 
losely related to the spatial dis
retization.For one-dimensional problems with periodi
 boundary 
onditions, the method of
hoi
e is using spe
tral dis
retization, in whi
h 
ase the matrix Ω is diagonalizablevia one-dimensional Fourier transformations.It is not ne
essarily sensible to generalize this form of dis
retization to two spa
edimensions. Re
all that a two-dimensional Fourier transformation on a grid 
onsistingof Nz × Nx grid points 
an be evaluated using O(NzNx(logNz + logNx)) operations.For large grids, this may be
ome too expensive. In addition, on parallel ma
hines, su
htransformations be
ome ine�
ient due to the large 
ommuni
ation e�ort be
ause of thenon-lo
ality of the Fourier transform.In general, diagonalization of a large matrix Ω resulting from �nite di�eren
e or �niteelement dis
retization is impossible. An alternative is to use Krylov subspa
e methodssu
h as the symmetri
 Lan
zos pro
ess [12, 33℄. However, for the appli
ations 
onsideredhere su
h te
hniques are not 
ompetitive.Therefore, we will use di�erent spatial dis
retization in di�erent regimes dependingon physi
al properties of the solution. Moreover, we alter the splittings in (4.1) duringthe time integration, i.e. we move parts of the dis
retized Lapla
ian into the fun
tion

F . This allows for an e�
ient evaluation of the matrix fun
tions.Cartesian 
oordinates in va
uumIn va
uum we only need to solve the linear wave equation
∂2

∂t2
a =

∂2

∂z2
a +

∂2

∂x2
a . (4.5)46



4.1. Numeri
al MethodsFor periodi
 boundary 
onditions the semi-dis
retization in spa
e is done by a pseudo-spe
tral method with Nz Fourier modes on the interval z ∈ z0+[−Lz, Lz] in propagationdire
tion and Nx modes on the interval x ∈ [−Lx, Lx] in perpendi
ular dire
tion.Let a = a(t) ∈ CNz×Nx and ȧ = ȧ(t) ∈ CNz×Nx be 
omplex matri
es 
ontainingapproximations to the ve
tor potential and its time derivative on the grid,
ai,j ≈ a(xj , zi, t), ȧi,j ≈

∂

∂t
a(xj , zi, t) .The Lapla
ian is approximated by

∆a ≈ F−1
Nz
D2

zFNz
a + aFT

Nx
D2

xF−T
Nxwhere

Dk =
2πi

Lk
diag(−Nk

2
, . . . ,

Nk

2
− 1

)
, k = x, z,and FN denotes the dis
rete Fourier transform for N Fourier modes.Formally, the matri
es a and ȧ 
an be reorganized by writing them 
olumn wise intolong ve
tors. Then the spatially dis
retized equation (4.5) 
an be written as a systemof di�erential equations (4.1), where Ω is a matrix whi
h 
an be diagonalized via two-dimensional fast Fourier transforms and F ≡ 0. However, for the implementation, thematrix notation is more e�
ient.In the �rst time step, where the initial data is given in physi
al spa
e, we start by per-forming a two-dimensional Fourier transform by applying fast (one-dimensional) Fouriertransforms to all 
olumns and rows of a and ȧ. Then we evaluate the fun
tions arising inthe Gauts
hi-type integrator at the diagonalized operator. The resulting operator 
anbe applied to the matri
es a and ȧ by pointwise multipli
ation. (If desired, subsequenttime steps in va
uum 
an be 
omputed in frequen
y spa
e by diagonal operations only.)At times, where the solution is required in physi
al spa
e, inverse Fourier transformshave to be applied to all rows and 
olumns of a and ȧ again.Due to the Gauts
hi-type integrator being exa
t in va
uum, in the best 
ase we onlyhave to 
ompute one time step. The total 
ost amounts to two two-dimensional Fouriertransforms and in addition four s
alar multipli
ations per grid point. Storage is requiredfor two arrays for a and ȧ plus four arrays for the diagonalized matrix fun
tions of thesame size. If a redu
tion of storage is ne
essary, the matrix fun
tions 
an be 
omputedon demand. From the 
omputational point of view, this is a rather small overhead
ompared to the two-dimensional Fourier transforms.Cartesian 
oordinates in plasmaIn plasma layers we have to solve the full, nonlinear system of equations

∂2

∂t2
a− ∂2

∂z2
a− ∂2

∂x2
a = −n0

nc

n0
e + n1

e

γ
a (4.6a)

∂2

∂t2
n1

e +
n0

nc

n0
en

1
e = n0

e∆γ. (4.6b)
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4. Pulse 
ompression in two dimensionsAfter spa
e dis
retization, the linear part is represented by a 2 × 2 blo
k diagonalmatrix, whose upper diagonal blo
k 
ontains the dis
retized Lapla
ian and whose lowerdiagonal blo
k 
ontains the diagonal operator of the se
ond equation. Hen
e, the matrixoperators required for the time integration s
heme 
an be 
omputed separately for bothequations. Note that due to the nonlinearity, we need to 
ompute (and store) morematrix operators than in va
uum. The main 
osts of one time step in frequen
y domainamounts to two two-dimensional Fourier transformations.Due to the nonlinearity, the time-integration s
heme does not solve the the dis
retizedsystem exa
tly anymore. However, the time step size is only limited by a

ura
y, notby stability. This is in 
ontrast to the well known leap-frog method, where stabilityrequires to use time steps proportional to the inverse of the largest eigenvalue of thelinear part. This straightforward implementation turns out to be quite expensive withrespe
t to 
omputational 
ost and storage. Fortunately, it is possible to in
rease thee�
ien
y 
onsiderably by exploiting properties of the solution.
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Figure 4.1: Left: The spatial distribution of the real part of the solution in longitudinal dire
tionthrough the 
entroid of the pulse. Right: The spatial distribution of the real (solid) andimaginary (dashed) part of the solution in transversal dire
tion through the 
entroid ofthe pulse.In the left graph of Fig. 4.1 we show the longitudinal distribution of the real partof the ve
tor potential a along the 
entral axis of the pulse. On the right, we showthe transversal distribution of the real (solid) and the imaginary (dashed) part of a atthe point z, where the maximum of the pulse is attained. The transversal distributionis obviously mu
h smoother than the longitudinal. Therefore, we 
an dis
retize thetransversal dire
tion on a mu
h 
oarser grid. Moreover, it is possible to split the Lapla-
ian and only treat the longitudinal part of it exa
tly (Ω ≈ ∆‖) whereas the transversalpart is added to the nonlinearity F (y). To avoid the expensive two-dimensional Fouriertransformations, we propose to use fourth-order �nite di�eren
es in this dire
tion.Due to this splitting, the longitudinal part of the Lapla
ian, 
an be diagonalized byone-dimensional Fourier transforms (of length Nz). Moreover, we only have to 
ompute(and store) matrix operators of length Nz. For the 
omputation we keep the ve
torpotential and its derivative in Fourier spa
e only in longitudinal dire
tion. In transversaldire
tion the arrays are not transformed.48



4.1. Numeri
al MethodsFor the density equation the appli
ation of the exponential integrator is straight for-ward in physi
al spa
e. If the density pro�le only depends on z the storage requirementsare again only of the order of ve
tors of length Nz. The inhomogeneity 
ontains theLapla
ian of the relativisti
 fa
tor γ whi
h depends on the absolute value of the ve
-tor potential. This is a smooth fun
tion for 
ir
ular polarized laser beams. Thus itis su�
ient to use fourth order �nite di�eren
es in both dire
tions to approximate theinhomogeneity of the density equation.Cylindri
al 
oordinatesFor the equations in 
ylindri
al 
oordinates
∂2

∂t2
a =

∂2

∂z2
a +

1

r

∂

∂r

(
r
∂

∂r
a

)
− n0

nc

n0
e + n1

e

γ
a (4.7a)

∂2

∂t2
n1

e = −n0

nc
n0

en
1
e + n0

e∆γ (4.7b)we basi
ally use the same ideas as for Cartesian 
oordinates in plasma regions, i.e., weuse Ω ≈ ∆‖ and treat the transversal dire
tion as part of the nonlinearity. For thelongitudinal dire
tion, we use pseudo-spe
tral dis
retization while for the transversaldire
tion, we suggest to use se
ond order �nite di�eren
es.Sin
e in 
ylindri
al 
oordinates it is hard to diagonalize the 
omplete Lapla
ian in afast and stable way we use the same implementation in va
uum as within the plasma.Methods for numeri
al Fourier-Bessel transforms that diagonalize the radial part of theLapla
ian exist [8, 37, 60℄, but apparently there exist to date no fast transform on anequidistant grid with su�
ient a

ura
y.4.1.3 AdaptivityFor adaptivity of the integration s
heme, we implement the methods dis
ussed in 3.2.4and 3.2.5. This is more important in two dimensions than in one dimension, be
ause, aswe will see in 
hapters 5 and 6, va
uum se
tions between the plasma layers strongly in�u-en
e pulse propagation due to transversal e�e
ts. Using di�erent grids and/or di�erentvalues of κ for the QEA method in di�erent parts of su
h a strongly inhomogeneoussystem 
an signi�
antly in
rease a

ura
y and redu
e 
omputation time.In order to apply all the di�erent variations of our s
heme at the appropriate time wehave to determine the lo
ation of the pulse. This is done by physi
ally motivated means.At the beginning we know the lo
ation of the maximum amplitude and the exa
t widthof the pulse. Additionally we know the approximate group velo
ity of the pulse at anytime. This allows to determine the approximate speed of the maximum of the pulse andto estimate the time when the pulse hits the next region of the simulation domain.With this method we 
an swit
h between the di�erent integration s
hemes in va
uumand plasma for Cartesian 
oordinates as well as adapt the values of κ for the QEA. Thelatter 
an be done by a simple shift in the position of the Fourier 
oe�
ients whi
h alsoensures periodi
ity of the shift fun
tion eiκz with regard to the box length 2Lz. 49



4. Pulse 
ompression in two dimensionsAdditionally we 
an 
hange the spatial grid, whi
h be
omes ne
essary for very narrowpulses as they o

ur in the simulation of pulse 
ompression. Also for hard plasma bound-aries, where re�e
tions are no longer negligible, it be
omes ne
essary to interpolate to a�ner grid and invert the QEA shift, as we have already shown for the one-dimensional
ase in se
tion 3.3.5. For pseudo-spe
tral dis
retization this only requires a larger ar-ray in Fourier spa
e where extra entries are �lled with zeros. But the 
omputation ismu
h more expensive for the �ner grid, thus interpolation is avoided unless absolutelyne
essary. Therefore, we also use a rather tight estimate for the pulse to be nonzero.4.1.4 Moving simulation windowThere are a lot of interesting appli
ations, espe
ially those with large amounts of va
uum,where the full simulation domain is very large and it is not at all feasible to use the
omplete spatial domain during the whole simulation. To avoid this we use a moving-window te
hnique.Using the group velo
ity as des
ribed above we estimate the time when the pulse
omes 
lose to the right boundary of the simulation box. For this purpose we slightlyoverestimate the domain on whi
h we 
onsider the pulse to be nonzero. This in
reasesrobustness while the 
omputational 
ost is negligible.The shift is implemented by transforming the ve
tor potential to physi
al spa
e, 
ut-ting o� the left part and extrapolating to the right by adding zeros for a and n1
e. n0

e is
al
ulated from the known pro�le fun
tion.There are two di�
ulties to be mentioned in this 
ontext due to the periodi
 boundary
onditions. First, if re�e
tions o

ur at plasma boundaries we have to 
ut them o�entirely when shifting the simulation box. Se
ondly, in va
uum this limits the time stepsize be
ause otherwise the pulse would move periodi
ally through the box instead ofmoving on 
ontinuously. This would result in spatial shifts of the solution.4.1.5 ParallelizationEven though we already redu
ed 
omputational 
osts signi�
antly, for large problems itis usefull to have a parallel version of the method. Here we have to tailor the means ofparallelization to the di�erent 
ases des
ribed above.Va
uumFor Cartesian 
oordinates in va
uum we �rst distribute the 
olumns of the arrays uni-formly over the pro
essors to perform the one-dimensional fast Fourier transforms forea
h 
olumn. We then do a parallel transposition of the array and distribute the rowsover the pro
essors for the se
ond part of the two-dimensional Fourier transform1. Of
ourse the appli
ation of the matrix fun
tion is also spread over the pro
essors involved.1We use the MPI based transpose routine from FFTW version 2 and serial FFT routines from FFTW3.50



4.1. Numeri
al MethodsPlasmaIn plasma we basi
ally use the same strategy for parallelization for both kinds of ge-ometries. Here we again distribute all the 
olumns of the arrays over the pro
essors.But sin
e we only need one-dimensional Fourier transforms we 
an avoid transposingthe arrays and therefore save a lot of 
ommuni
ation time between di�erent pro
essors.
A = 20 columns

P1

10 + 4 columns

P2

10 + 4 columns

A1 = A2 =

Figure 4.2: Example parallelization s
heme for two pro
essors, Cartesian 
oordinates in plasma,periodi
 boundary 
onditions and 20 grid points in transversal dire
tion. The lighter
olored 
olumns have to be 
ommuni
ated between the pro
essors for the evaluation ofthe transversal Lapla
ian with �nite di�eren
es and are stored twi
e.The only 
ommuni
ation between pro
essors is due to the transversal part of theLapla
ian, whi
h is dis
retized by fourth and se
ond order �nite di�eren
es in plasma forCartesian and 
ylindri
al 
oordinates, respe
tively. Thus we have to ex
hange at mosttwo 
olumns at ea
h side of the distributed array sli
es. In Fig. 4.2 this is demonstratedfor a matrix divided to two pro
essors for Cartesian 
oordinates and periodi
 boundary
onditions. In this 
ase we have to store four extra 
olumns per pro
essor whi
h are
opied from the neighboring array.Ea
h pro
essor �rst sends the boundary 
olumns to the neighboring pro
essors. Thenthe next time step is performed for the inner part of the array. At the end, the in-formation sent from the neighboring arrays is used to 
al
ulate the �nite di�eren
e51



4. Pulse 
ompression in two dimensionsapproximation at the boundaries. This results in a parallelization whi
h hardly su�ersfrom 
ommuni
ation overhead between pro
essors, be
ause laten
ies and transmissiontimes are almost 
ompletely hidden by the asyn
hronous 
ommuni
ation.4.2 A

ura
y and e�
ien
y of the over-all 2Ds
heme4.2.1 Splitting of the Lapla
ianIn this se
tion we will demonstrate that the error introdu
ed by the splitting of theLapla
ian is negligible. For this, we use a rather small example, where it is possible tohave a high resolution referen
e solution to 
ompare with. We also redu
e the modeland only 
onsider the wave equation with 
onstant density and 
ubi
 nonlinearity
∂2

∂t2
a = ∆a− n0

nc
(1 − 1

2
|a|2)a , n0

nc
= 0.3 . (4.8)This is su�
ient, sin
e the splitting only a�e
ts the wave equation and does neitherdepend on the kind of nonlinearity nor on the density equation.The initial 
onditions are 
hosen from

a(x, z, t) = a0e
−(z−z0−k0t)2

L2
0 e

−x2

W2
0 ei(k0z−z0−t) (4.9)where a0 = 0.15 is the initial amplitude, z0 = 35λ0 the initial pulse position in lon-gitudinal dire
tion, W0 = 10λ0 the length, W0 = 100λ0 the width of the pulse and

k0 =
√

1 − n0

nc
the plasma wave length.This is solved for Cartesian 
oordinates (x, z) ∈ [−300λ0, 300λ0] × [0λ0, 300λ0] and

t ∈ [0/ν0, 300/ν0]. We use 1024 grid points in z-dire
tion and 512 grid points in x-dire
tion. The time step size is 
hosen as 0.2 dz. For the referen
e solution we use twi
eas many points in both spatial dire
tions, whereas for the time dis
retization we 
hoosea fourth of the original time step. For the error 
al
ulation we Fourier interpolate thesolutions to the �ner grid.In Fig. 4.3 we 
an see the error in two di�erent measures, in the upper pi
ture therelative error in the maximum squared amplitude is shown and the lower one shows theabsolute error of the position of the maximum in wave lengths. For ea
h type of errorthere are three di�erent 
urves. The 
ir
ular marks show the error of the Gauts
hi-typemethod applied to the full Lapla
ian, dis
retized via Fourier spe
tral method in bothdire
tions. The square marks are the errors of the Gauts
hi-type method applied to theparallel Lapla
ian only and the transversal part treated as nonlinearity. Here we stilluse Fourier spe
tral methods for the dis
retization in both dire
tions. The diamondmarks represent the error of the splitted method, but this time with fourth order �nitedi�eren
es in transversal dire
tion. We 
an see that the three error 
urves are nearlyindistinguishable, whi
h proves that the splitting does not degrade a

ura
y.52
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tν0Figure 4.3: The relative error of the maximum squared amplitude is shown in the upper pi
tureand the absolute error of the position of the maximum in wave lengths is drawn in thelower pi
ture. The 
urves marked by 
ir
les are the errors of the Gauts
hi-type methodapplied to the full Lapla
ian, the squares are the errors of the splitted method withFourier spe
tral dis
retization in both dire
tions and the diamonds are those for thesplitted method with �nite di�eren
es in transversal dire
tion.4.2.2 E�e
t of di�erent time-integration s
hemesWe next 
ompare our implementation of the one-step Gauts
hi-type integrator with theleap-frog s
heme. Here, we solve the full system of equations for the two-dimensionalCartesian 
ase (4.6). The density layer starts at 250λ0 with a linear in
rease up to
n0

nc
= 0.3 over 5λ0, then it stays 
onstant over 500λ0 until there is a linear de
reasebetween 755λ0 and 760λ0 again.The initial 
onditions are again taken from (4.9) with a0 = 0.12, z0 = 150λ0 and

k0 = 1, sin
e the pulse starts in va
uum. The remaining 
oe�
ients are the same asabove. The simulation is run up to t = 1240/ν0, thus the pulse propagates throughthe plasma layer and travels through va
uum afterwards for some time. For the runtime 
omparisons we used the moving window te
hnique, sin
e the simulation domainis quite long.In va
uum there is no need to 
ompare the leap-frog s
heme with the exa
t solutionwhi
h the Gauts
hi-type integrator 
omputes, thus we in
lude only the time steps doneinside of the plasma in the run time 
omparison.As a measure for the quality of the solution we 
hoose the relative error of the maxi-mum amplitude. As a sensible error threshold we use a value of 1%. Sin
e the referen
esolution was 
omputed on a �ner grid, we interpolated the solution to the referen
e gridand then 
omputed the maximum amplitude.In Fig. 4.4 the amplitude error of the Gauts
hi-type method (
ir
les) and the leap-frog method (squares) is plotted against 
omputation time in plasma. The dashed linerepresents a 
oarse spatial dis
retization with 1024 grid points in longitudinal dire
tion,53
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ompression in two dimensions
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Figure 4.4: The relative error in the maximum amplitude is plotted over the run time in minutes.Cir
les: Gauts
hi-type integrator. Squares: leap-frog. Dashed: 
oarse spatial dis
retiza-tion. Line: �ne spatial dis
retization. Along ea
h 
urve the value of τ varies.where dz is 
hosen to be 0.352λ0 and 400 grid points in transversal dire
tion with
dx = 2λ0. The 
ontinuous line gives the errors for a �ne spatial dis
retization with
Nz = 2048, dz = 0.176λ0, Nx = 800 and dx = λ0. In both 
ases the resulting simulationbox of approximately 360λ0 in longitudinal dire
tion and 800λ0 in transversal dire
tionis moved along with the solution.For the same error the step size for the leap-frog method has to be about twi
e as smallas for the Gauts
hi-type integrator. This is in agreement with the results in the one-dimensional 
ase. But in the two-dimensional 
ase the advantage of the leap-frog methodin terms of 
omputational time per time step is smaller than in the one dimensional 
ase,be
ause simulation times are more strongly a�e
ted by memory bandwidth limitations,see Fig. 4.5. Thus it is even more e�
ient to invest in a more sophisti
ated algorithmand bene�t from the larger time steps.4.2.3 ParallelizationTo demonstrate the e�
ien
y of the parallelized version of our 
ode we simulated thesame problem as for the run time 
omparison with one, two, four, six and eight pro
essorson a 
luster of single CPU P4 nodes with standard Gigabit Ethernet inter
onne
ts. Weused the �ner one of the two spatial dis
retizations.In the upper three pi
tures of Fig. 4.6 full time (bla
k), pure number 
run
hing time(light gray), data re
eive time (dark gray) and syn
hronization time2 (middle gray) pertime step for two, four and eight pro
essors, respe
tively, is shown. In ea
h 
ase we
an distinguish between three di�erent behaviors of the 
ode. First of all there is theva
uum step region. Here, the 
run
hing time is quite low, sin
e we neither 
al
ulate2The syn
hronization time is due to MPI_Barrier() 
alls after ea
h time step.54
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Figure 4.5: For the Gauts
hi-type method (solid) and the leap-frog method (dashed) the runtimebetween outputs (i.e. 228 timesteps, ex
ept for va
uum steps with the Gauts
hi-typemethod) is shown. The spatial and time dis
retization is the same for both s
hemesex
ept in va
uum.the nonlinearity nor the density equation. However, due to the matrix transpositionsthe 
ommuni
ation time is rather long.The other two 
ases are the plasma and transition regions. The only di�eren
e is thespatial resolution whi
h is higher in the transition region. However in both 
ases thefull equations are solved and the Lapla
e splitting is applied. The �rst results in higher
run
hing times whereas the latter redu
es the 
ommuni
ation time signi�
antly.Another ni
e property is the very short syn
hronization times given by the middlegray 
urves. Thus independent of the number of pro
essors used, the work is evenlybalan
ed over the pro
essors.In 
omparison we 
an see that a single va
uum time step takes longer than a singletime step for the full equations, even with the higher spatial resolution in transitionregions. This is 
ompensated by the fa
t that the time steps in va
uum are 200 timeslarger than the time steps we use for solving the full set of equations. This is illustratedin the fourth pi
ture of Fig. 4.6, where the a

umulated full integration time is shownfor a single pro
essor and for two, four and eight parallel pro
essors (
urves from top tobottom). The strongest in
rease of 
omputational time is in the transition region, wherewe use the higher spatial resolution dire
tly followed by the plasma regions. We 
an alsosee that in 
omparison the integrator spends hardly any time in va
uum regions. Notethat the length of the time steps in va
uum is only limited by points of data output andthe shifting of the simulation box.The run time per output step is shown in Fig. 4.7. Here again the di�erent regions ofthe simulation are visible. The drop in simulation time towards the end of the plasmaregion is due to the remaining length of the plasma layer inside the simulation box, sin
ethe density equation is only solved on those grid points whi
h lie inside the plasma.Another point to emphasize is the good s
aling of the a

umulated full integrationtimes with the number of pro
essors used, even for this relatively small problem. Usingtwo pro
essors redu
es the run time by a fa
tor of 1.97. The run times for four, six andeight pro
essors s
ale with 3.88, 5.73 and 7.19 respe
tively. 55
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Figure 4.6: The upper three pi
tures show the full time (bla
k), pure number 
run
hing time (lightgray), data re
eive time (dark gray) and syn
hronization time (middle gray) per timestep for two, four and eight pro
essors respe
tively. The fourth pi
ture shows thea

umulated full integration time for one, two, four and eight pro
essors (
urves fromtop to bottom).4.3 Pulse dynami
s in 2D4.3.1 2D self-
ompression thresholdFor a two dimensional pulse, we 
an derive equations for the temporal length and spa-tial width of the pulse by the same method as for one dimension in se
tion 3.4.1. Sin
ealready in 1D the equation for the temporal length T of the pulse fails to des
ribe thepulse dynami
 well (see se
tion 3.4.1), we expe
t this to be even more the 
ase in 2Dwhere there is a 
oupling between the dynami
s of the two dire
tions. Compression inone dire
tion enhan
es the 
ompression in the other, if for example the speed of 
ompres-sion in ea
h individual dire
tion deviates from the full model equations, the 
ombined
ompression speed will deviate even more (and in a nonlinear way). Thus we are moreinterested in the values and the validity of the self-
ompression thresholds. In 1D thethreshold 
an be easily shown to be exa
t for a soliton solution. The results were less
on
lusive for a Gaussian pulse, be
ause a lo
alized pulse with an arbitrary initial shapewill start to 
hange its shape towards the shape of a soliton. This leads to os
illationsin pulse amplitude even at the threshold. Be
ause we do not have an analyti
al solitonsolution in 2D we restri
t ourselves to examine the thresholds for Gaussian pulses, al-56
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essors (
urves from darkto light gray) s
ales with 1.97, 3.88, 5.73 and 7.19 respe
tively 
ompared to singlepro
essor run time (bla
k).though more general methods exist to derive the thresholds for arbitrary pulse shapes[10℄.In a geometry whi
h has 
ylindri
al symmetry in the transversal dire
tion, the variation-of-a
tion method with a Gaussian trial fun
tion yields the equations
T ′′ = −4(1 − β2)2
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} (4.10)for the temporal length and
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} (4.11)for the spot size of the pulse. This equations were also derived in [56℄ for linear polar-ization and a di�erent normalization.In a 2D Cartesian geometry the equations are
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. (4.13)The details of the derivation 
an be found in appendix A. 57
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0Figure 4.8: Amplitude evolution of initially Gaussian pulses at the 2D 
ompression threshold inCartesian geometry for L0 = β T0 = 12.73λ0, W0 = 23.25λ0 and n0 = 0.3nc.Left: 2D VAM model at (bla
k, solid) and below the threshold (bla
k, dashed), NLSEsimulations at (blue) and below the threshold (red). Right: NLSE simulations for pulsesthat are at (blue) or below (red) the 1D 
ompression in the longitudinal dire
tion andabove the 2D threshold in the transversal dire
tion (solid: W0 = 30λ0, dashed: W0 =

150λ0). Pulses at the threshold have a0 = 0.045 and pulses below have a0 = 0.045.From this equations we 
an dire
tly read o� the self-
ompression thresholds for thelongitudinal dire
tion
β2A2

0 T
2
0 ≥ Pc (4.14)and the transversal dire
tion

(1 − β2)A2
0W

2
0 ≥ Pc , (4.15)where the 
riti
al power Pc here is either the pulse power in the longitudinal or transver-sal sli
e through the 
entroid of the pulse. Be
ause the transversal and longitudinalthreshold values are the same for a parti
ular geometry, we do not distinguish betweenthem. Every additional dimension in
reases the 
ompression threshold by a fa
tor of√

2, from 8
√

2 in 1D to 16 in 2D to 16
√

2 in a 
ylindri
al geometry, whi
h is e�e
tively3D.Amplitude evolution of initially Gaussian pulses at the 2D 
ompression threshold inCartesian geometry for L0 = β T0 = 12.73 λ0, W0 = 23.25 λ0 and n0 = 0.3nc. Left: 2DVAM model at (bla
k, solid) and below the threshold (bla
k, dashed), NLSE simulationsat (blue) and below the threshold (red). Right: NLSE simulations for pulses that are at(blue) or below (red) the 1D 
ompression in the longitudinal dire
tion and above the 2Dthreshold in the transversal dire
tion (solid: W0 = 30 λ0, dashed: W0 = 150λ0). Pulsesat the threshold have a0 = 0.045 and pulses below have a0 = 0.045.The only di�eren
e between the longitudinal and transversal threshold relations isthat for the longitudinal dire
tion the group velo
ity β enters, while for the transversal58
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Figure 4.9: Amplitude evolution of initially Gaussian pulses at the 
ompression threshold for 2D
ylindri
al geometry. Results from wave equation simulations for pulses that are at (blue,
a0 = 0.05) or below (red, a0 = 0.04) the 1D threshold in the longitudinal dire
tion(L0 = 10.71λ0) and above the threshold for 
ylindri
al geometry in the transversaldire
tion (solid: W0 = 30λ0, dashed: W0 = 150λ0).dire
tion it is the plasma density parameter n0

nc
= 1 − β2. It is also noteworthy thatthe thresholds for the two dire
tions are 
ompletely independent. The full energy ofthe pulse does not enter the relations although it enters the equations for T and W (
f.appendix A).For a pulse that is at the threshold for both dire
tions, we �nd that within theina

ura
y due to the expe
ted amplitude os
illations of Gaussian pulses, the thresholdsfor both geometries are reasonably a

urate. This is illustrated by the left hand sideof Fig. 4.8. In 2D, we �rst 
he
ked this result with simulations of the NLSE and then
on�rmed it by simulations of the nonlinear wave equation. In 
ylindri
al geometry wedire
tly used wave equation based simulations.To study the transition between 2D and 1D thresholds in the VAM model, we 
an�x the spot size or length of the pulse at a 
onstant value T0 or W0 in the derivationof the T or W equation respe
tively. Unfortunately we get the nonsensi
al answerfrom the variation-of-a
tion method that the threshold for the dynami
al dire
tion isun
hanged from the 
ase where both dire
tions are dynami
al. Thus the 1D threshold
an not be re
overed by letting the �xed length or spot size go to in�nity. The reason isthat the pulse shape we have pres
ribed has insu�
ient degrees of freedom to allow for adi�erent strength of 
ompression at di�erent sli
es of the pulse. On axis for example, thelongitudinal 
ompression of a wide pulse should resemble one dimensional 
ompression,while further from the axis the pulse should show weaker 
ompression or defo
using ifbelow the threshold.Of spe
ial interest for the appli
ation of pulse 
ompression, is the transition betweenthe 2D threshold and the 1D threshold for the 
ase when the spot size of the pulse isin
reased from a value 
al
ulated by using the 2D threshold. With in
reasing W0 thedeviation of the threshold value from the 2D threshold o

urs rather qui
kly, illustrated59



4. Pulse 
ompression in two dimensionsby the right hand side of Fig. 4.8 and by Fig. 4.9. Like for longitudinal 
ompressionthe speed of the transversal 
ompression s
ales with W 2
0 [56℄. Therefore the time s
alesof longitudinal and transversal 
ompression will diverge qui
kly with in
reasing W0/L0.Thus during the beginning of the longitudinal 
ompression the spot size will stay nearly
onstant. This o

urs both in Cartesian and 
ylindri
al 2D geometry. A pulse withan energy at the threshold with a0 = 0.05, L0 = β T0 = 12.732 λ0, W0 = 23.246 λ0 forslab geometry and L0 = β T0 = 15.1415λ0 and W0 = 27.644 λ0 for 
ylindri
al geometry,shows no 
ompression at amplitudes slightly below the threshold. If the spot size isin
reased to W0 = 30 λ0, the pulse already shows 
ompression at a length 
al
ulatedfrom the longitudinal 1D threshold, and no 
ompression below. This rapid shift from the2D/3D threshold to the 1D threshold o

urs in both Cartesian (Fig. 4.8) and 
ylindri
al(Fig. 4.9) geometry.4.3.2 Spot size vs. length of the pulseAs we have seen in 
hapter 3, a 1D pulse with parameters 
lose to the bound two-solitonsolution of the 
ubi
 nonlinear S
hrödinger equation 
an 
ompress and de
ompress pe-riodi
ally, as long as the amplitude is not too high and thus the density perturbationsindu
ed by the ponderomotive for
e of the pulse are not too large.
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Figure 4.10: Comparison of 1D and 2D dynami
s for di�erent values of the initial spot size W0.1D (bla
k), W0 = 10 (red), W0 = 100 (green), W0 = 200λ0 (blue) for a0 = 0.1,
L0 = 10λ0 and n0 = 0.3ncWe have also seen in the pre
eding se
tion that the 2D dynami
 deviates the morefrom the 1D dynami
 the 
loser the ratio of the spot size to pulse length is to unity. Forsmaller initial spot sizes, the pulse starts to 
ollapse after a shorter propagation distan
e(Fig. 4.10). A Gaussian pulse above the 1D self-
ompression threshold with a0 = 0.1and L0 = 10λ0 and a spot size of 200λ0 shows two 
ompression and de
ompression 
y
lesbefore 
ollapse o

urs. For the same pulse with a spot size of 100λ0 the 
ollapse o

ursalready after the �rst 
ompression / de
ompression, while for a spot size of 10λ0 the60



4.3. Pulse dynami
s in 2Dpulse starts to 
ollapse dire
tly. At this low initial intensity, the density perturbationonly produ
es a slightly higher 
ompression and does not 
hange the pulse dynami
squalitatively (Fig. 4.11 and Fig. 4.12).

Figure 4.11: Color plot of |a|2 for longitudinally 
ompressed pulse at t = 700/ν0 with initialparameters of a0 = 0.1, L0 = 10λ, W0 = 100λ0 and a plasma density of n0 = 0.3nc.Intensity in
reases from blue to red.The 2D wake�eld in Fig. 4.12 is very similar to a 1D wake�eld, modulated with thetransversal pulse shape.

Figure 4.12: Color plot of the wake�eld of the pulse in Fig. 4.11. Green for zero deviation fromba
kground density. Positive deviation are in red, negative in blue.For an e�
ient pulse 
ompression, the initial spot size of the pulse must be su�
ientlylarge, so that at least one 
ompression / de
ompression 
y
le 
an o

ur instead of dire
t
ollapse. This allows for a 
ontrolled 
ompression of the pulse, be
ause the amplitude
hanges only little around the maximum of 
ompression and little �u
tuations of theplasma length do not result in large 
hanges of the maximum amplitude. 61
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Figure 4.13: Comparison of the dynami
s in 1D vs. 2D for a higher pulse amplitude and di�erentinitial spot sizes. 1D without density equation (bla
k), 1D with density equation(magenta), W0 = 10λ0 (red), W0 = 100λ0 (green) and W0 = 200λ0 (blue) for
a0 = 0.14, L0 = 10λ0, n0/nc = 0.3Higher amplitudes distin
tly above the self-
ompression threshold lead to essentiallythe same e�e
ts as in 1D. With in
lusion of the density response, the pulse de
ompressesonly slightly after the �rst 
ompression and starts to os
illate around a new stationarystate (
f. Fig. 4.13). The ponderomotive for
e of the pulse is in this 
ase su�
ientlystrong to produ
e a density 
avity that traps the pulse and inhibits de
ompression.This also redu
es the lo
al group velo
ity of the pulse, whi
h leads to a 
urvature ofthe pulse as well as the wake�eld. In Fig. 4.14 and Fig. 4.15 the 
orresponding 
urvatureof pulse and wake�eld is shown. This behavior o

urs rather abruptly when for someinitial pulse length the initial pulse amplitude is raised above a 
ertain value. Thethreshold for this behavior is essentially the same as in 1D.Like in 1D the pulse 
an split o� a part of its energy surplus into a pre- or post-pulseto rea
h the new stationary state that is a 1D soliton. Although this e�e
t is small
ompared to the transversal e�e
ts, it is 
learly visible in simulations, e.g. in Fig. 4.16.But be
ause of the 
ompression in the transversal dire
tion the pulse 
an not rea
h atruly stationary state and eventually starts to 
ollapse. For the intended appli
ation itis only important that there is one 
y
le of 
ompression and de
ompression before the
ollapse o

urs to allow for a 
ontrolled de
oupling of the pulse from the plasma.4.3.3 Coupling between longitudinal and transversal 
ompressionThe amplitude evolution of the simulations in the last se
tion seems to suggest thatthere is only a weak in�uen
e of the 
ompression in the transversal dire
tion on the
ompression in the longitudinal dire
tion: the faster longitudinal dire
tion (small initiallength 
ompared to the spot size) periodi
ally 
ompresses while the slower transversaldire
tion seems to 
ontinuously 
ompress and thus in
rease the pulse amplitude until62



4.3. Pulse dynami
s in 2D

Figure 4.14: Color plot of |a|2 for longitudinally 
ompressed pulse at t = 550/ν0 with initialparameters of a0 = 0.14, L0 = 10λ0, W0 = 100λ0 and a plasma density of n0 =
0.3nc.

Figure 4.15: Color plot of the wake�eld of the pulse in Fig. 4.14.pulse 
ollapse o

urs. The 
ollapse is the only point at whi
h there is a strong 
ouplingbetween the 
ompression in both dire
tions. This is further ba
ked by the solutionsof the VAM equations for T and W . Exa
tly this behavior 
an be seen in Fig. 4.17.The weaknesses in the quantitative predi
tions of these equations in 2D 
ould be solelythe result of the already weak quantitative predi
tions of the 1D VAM equation, whiledes
ribing the qualitative dynami
s in 2D 
orre
tly.Surprisingly the a
tual length and spot size evolution from wave equation simulationsshow a very di�erent behavior, as shown in Fig. 4.18. The faster 
ompressing longitu-dinal dire
tion �enslaves� the intrinsi
ally slower transversal dire
tion. Be
ause of thisenslavement the spot size shows minima at the same lo
ation as the pulse length anddoes not 
ontinuously de
rease, but os
illates, too. Espe
ially for wide initial spot sizesthe pulse 
an defo
us after the �rst minimum to nearly the initial spot size. This limitsthe possibility to redu
e the spot size of short pulses inside the plasma severely. 63
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Figure 4.16: Comparison of on-axis intensity distribution in 1D vs. 2D. Simulations with a0 = 0.12,
L0 = 10λ0, W0 = 200λ0 and in
luded density response. Top left: 2D on-axis 
ut.Top right: 1D. Bottom: 2D 
olor plot.4.4 Transversal �lamentation instability4.4.1 Pulses of 
onstant lengthTransversal instability of planar NLSE solitons, i.e. longitudinal 1D soliton solutionsof the NLSE that are 
onstant in the transversal dire
tion, is a well understood phe-nomenon, both analyti
ally and numeri
ally [1, 5, 57, 66, 47, 41℄. Harmoni
 perturba-tions in the transversal dire
tion grow exponentially in time. Good analyti
al estimatesexist for the growth rates. An example for the time evolution of this instability from asmall initial perturbation to the full blown instability is shown in Fig. 4.19.For the 
ubi
 NLSE the single soliton solution has the form

a(z, τ) = 2 η sech(β η τ)e−i 1−β2

2β
η2zwith τ = z/β − t and β =

√
1 − n0/nc the linear group velo
ity. The 
ubi
 nonlinearwave equation has a soliton solution of similar form, see appendix B.1 for the derivation.Perpendi
ular perturbations of this solution with (co)sine-modes below a 
ertain 
ut-o�wavenumber kc are exponentially unstable with a growth rate of

µ(k⊥)2 =
n0

nc
η2k2

⊥(1 − nc

n0

k2
⊥

k2
c

) . (4.16)64
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Figure 4.17: ODE solutions of the 2D VAM model for A, T and W with a0 = 0.1, β T0 = 10λ0,
W0 = 100λ0 and n0 = 0.3nc in Cartesian geometry. T (z)/T0 in green, W (z)/W0 inred and A2/A2

max in bla
k.

0 200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ν
0
 t

L
/L

0
 ,

 W
/W

0

Figure 4.18: Length and spot size evolution of wave equation simulations for a0 = 0.1 and L0 =
10λ0 with n0 = 0.3nc. Solid 
urves are for W0 = 100λ0 and dashed 
urves for
W0 = 200λ0 with L(t)/L0 in red, W (t)/W0 in green. 1D referen
e 
urve of L(t)/L0in bla
k.The derivation 
an be found in appendix B.2. The same results were obtained by V.G.Makhankov in [47℄. This growth rate is derived for the 
ubi
 NLSE, but also holds forthe 
ubi
 nonlinear wave equation.The VAM 
al
ulation yields the 
ut-o� relation

k2
c =

12 + π2

36
η2 . (4.17)We will see that this 
ut-o� is not in good agreement with numeri
al simulations. A65
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Figure 4.19: Color plot of |a|2 for a simulation with 
ubi
 nonlinearity. Initial sech shape in thelongitudinal dire
tion and super-Gaussian shape in transversal dire
tion. Initial pulseperturbation 10−3 a0 with a wavelength of 20λ0. Bottom to top: t = 0/ν0, t =
240/ν0, t = 400/ν0, t = 500/ν0. The other simulation parameters are n0 = 0.3nc,
a0 = 0.16, L0 = 2λ0 and W0 = 200λ0.better estimate for the 
ut-o� parameter is given by E.W. Laedke in [41℄

k2
c = 3η2 . (4.18)From equation (4.16) we 
an graphi
ally determine the fa
tor α in the relation
k⊥ = αηbetween the value of k⊥ with the maximum growth rate and the soliton parameter ηby setting η = 1 (Fig. 4.20). This is sensible, sin
e the position of the maximum s
aleslinearly with η. For the di�erent 
ut-o�s (4.17) and (4.18) we have for n0 = 0.3nc

αVAM
0.3 ≈ 0.497and
αL

0.3 ≈ 0.671 .For a short pulse of 2λ0 in length, this leads to a predi
tion for the most unstablewavelength via
λ⊥ =

2π

α
L0 (4.19)66
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Figure 4.20: Growth rate (4.16) of the transversal instability for 
ut-o� parameters (4.17) and (4.18)at a density of n0 = 0.3nc.of
λVAM

0.3 ≈ 25.15λ0and
λL

0.3 ≈ 18.63λ0 .NLSE simulations with these parameters3 
learly favor the modi�ed 
ut-o� value(4.18). Simulations of the 
ubi
 nonlinear wave equation with a non-
onstant transversalshape yield the same result. In Fig. 4.21 the results for a pulse with a super-Gaussiantransversal shape with three di�erent perturbation wavelengths are shown (λ⊥ = 15λ0,
λ⊥ = 20λ0, λ⊥ = 25λ0). The perturbation with λ⊥ = 20λ0 shows the highest amplitudeof instability, instead of λ⊥ = 25λ0 whi
h is predi
ted by (4.17).Examining the time development of the transversal spe
trum for these three wave-lengths, we see that for a wide super-Gaussian the peak in the spe
trum stays verynarrow and is only slightly up- or down-shifted 
loser to kmax

⊥ . For a Gaussian transver-sal shape the peak gets broader and the up/downshift is stronger. This is due to FWMbetween the perturbation mode and the main spe
trum of the pulse. A Gaussian pulseis more lo
alized for the same spot size. It has a broader spe
trum and thus more FWMprodu
ts of the pulse and the perturbation o

ur.For a narrow initial pulse, espe
ially with a Gaussian shape, another e�e
t is superim-posed. The faster transversal 
ompression results in an upshift of the peak and thus the�laments move 
loser together (Fig. 4.22). This e�e
t 
an be 
learly distinguished fromthe up/downshift dis
ussed above. It o

urs later during the pulse evolution when thepulse is signi�
antly 
ompressed in the transversal dire
tion (Fig. 4.23 and Fig. 4.24).3The spatial length of the soliton is related to the temporal length by L = βT . An L0 of 2λ0 is thusequal to a T0 of about 2.38λ0. This has to be taken into a

ount when 
omparing results fromNLSE and wave equation simulations. 67
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Figure 4.21: Color plot of |a|2 for a simulation with 
ubi
 nonlinearity. Initial sech shape in thelongitudinal dire
tion and super-Gaussian shape in transversal dire
tion. Bottom to top:pulses at t = 540/ν0 for an initial perturbation of 10−3 a0 with wavelengths of 15λ0,
20λ0, 25λ0 and 10 . . . 30λ0 (phase randomized). The other simulation parametersare n0 = 0.3nc, a0 = 0.16, L0 = 2λ0 and W0 = 200λ0.Late in the evolution of the instability, additional peaks at higher integer multiples ofthe original k-value 
an also o

ur due to FWM (for details on four-wave-mixing, see[38℄).The agreement between numeri
s and analyti
s for the fastest growing mode is fur-ther 
on�rmed by simulations with a perturbation that is a superposition of phase-randomized cosine-modes with wavelengths of 10 . . . 30λ0, also shown in Fig. 4.21. Al-though the amplitude of the individual �laments is not as uniform as for a perturbationwith a single wavelength, the dominant unstable wavelength is 
losely below 20λ0 whi
hmat
hes the predi
tion of 18.63λ0 by (4.18). This is the result for most drafts of randomphases. But for some drafts the modes with the highest growth rates may have onlysmall initial amplitudes, be
ause, by adding the perturbation to the pulse, interferen
eterms appear in |a|2 that 
an suppress modes. The most unstable mode may still developa high amplitude, but other modes that have a high initial amplitude 
an still have alarge amplitude in the fully developed instability. It is even possible that they enslavemodes with a higher growth rate, but smaller initial amplitude and be
ome dominant.For 
omparison with analyti
s, it is easier to use perturbations without this ran-domization, be
ause the spe
tra of the instability are mu
h simpler. Several featuresthat o

ur during the development of the instability 
an be singled out this way. Modes68
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Figure 4.22: Color plots of initially Gaussian and super-Gaussian transversal shapes with di�erentspot sizes at t = 540/ν0. Top to bottom: super-Gaussian withW0 = 100λ0, Gaussianwith W0 = 200λ0, Gaussian with W0 = 100λ0.above the 
ut-o� are damped as expe
ted. But surprisingly, at �rst the smallest k-valuesshow the largest growth, even for perturbation spe
tra that go down to k = 2π/100λ0(Fig. 4.25). For a super-Gaussian shape a distin
t peak at the lower 
orner of the per-turbation spe
trum develops, probably due to the intera
tion with the sideband peaksin the spe
trum of this fun
tion. The most unstable mode starts to show the highestgrowth only after the pulse has propagated for some time. The lo
ation of the peakin the spe
trum is not dependent on the broadness of the perturbation spe
trum, asshown in Fig. 4.26. This behavior 
an be explained in the following way: at �rst, low
k-values 
an show the highest growth, be
ause they are 
loser to the 
entral k = 0 modeof the pulse and have a higher FWM e�
ien
y. For the analyti
ally predi
ted mode toshow the highest growth, it is ne
essary that the pulse develops the mat
hing longitu-dinal amplitude modulation of the transversal mode. After the pulse has 
hanged itslongitudinal shape a

ordingly, the growth rates behave as expe
ted.This e�e
t 
an be 
ir
umvented by linearizing about the 1D soliton state and then it-eratively �breeding� the longitudinal amplitude dependen
e for a given k⊥. This methodis well suited to examine the stability properties of soliton solutions where analyti
alstatements are not possible [44℄. But in our 
ase the growth rate is already knownanalyti
ally and this method would be very di�
ult to apply (if at all possible) fora spe
trum of perturbations or 
ompressing pulses.4 Instead we are interested in if4In general we do not have analyti
al solutions for 
ompressing pulses to linearize about. Even with69
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Figure 4.23: |a| in transversal 
uts for di�erent initial shapes/spot sizes at t = 350/ν0. Bla
k:super-Gaussian pro�le with W0 = 200λ0, blue: Gaussian pro�le with W0 = 200λ0,red: Gaussian pro�le with W0 = 100λ0
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Figure 4.24: Transversal amplitude spe
trum for di�erent shapes/spot sizes at t = 350/ν0. bla
k:super-Gaussian pro�le (W0 = 200λ0), blue: Gaussian pro�le (W0 = 200λ0), red:Gaussian pro�le (W0 = 100λ0)and how a pulse without a strong 
omponent of the mat
hing longitudinal dependen
edevelops the instability.For most simulations in the next 
hapters, we will use phase randomized perturbationspe
tra. They model real physi
al systems better, and the phase randomization further-more guarantees that the perturbation 
overs the full width of the pulse. Without itthe perturbation would be
ome the more lo
alized in spa
e, the broader its spe
trumis. Randomization of the amplitude of the modes alone would not have this e�e
t,while randomization of the phase yields a weakly lo
alized perturbation with a randomamplitude of the Fourier 
omponent.su
h a solution, using this method would be very di�
ult, be
ause the unperturbed state would benon-stationary.70
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Figure 4.25: Time development of the transversal amplitude perturbation spe
trum for an initialperturbation with wavelengths of 10 . . . 100λ0 of equal amplitude. 1D soliton with aGaussian initial shape in the transversal dire
tion (L0 = 2λ0, W0 = 200λ0, n0 =
0.3nc).
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Figure 4.26: Transversal amplitude spe
trum at t = 700/ν0 for di�erent initial perturbation spe
tra.Blue: 10 . . . 30λ0, red: 7 . . . 50λ0, green: 10 . . . 100λ0. Initially Gaussian transversalshape with W0 = 200λ0.Several di�erent phase-randomized drafts for the transversal perturbation 
an be seenin Fig. 4.27. The resulting instability that evolves out of this initial perturbations isshown in Fig. 4.28. The 
orresponden
e between the initial amplitudes of the individualmodes and the spe
trum of the fully developed instability 
an be 
learly seen. For thedraft plotted in bla
k, there is su�
ient initial amplitude in the most unstable rangeof k ≈ 0.325/λ0 and no peaks at other lo
ations with mu
h higher amplitude. Thisresults in a broad peak around this value at the later time. The blue draft has thelargest initial amplitude at around k ≈ 0.26/λ0, whi
h still is the largest at t = 600/ν0.But due to a higher growth rate a se
ond peak that initially had a lower amplitude
ould grow to nearly the same value. For the red draft the situation is reversed. The71
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Figure 4.27: Initial spe
tra for di�erent phase-randomized transversal perturbations with wave-lengths of 7 . . . 50λ0.
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Figure 4.28: Spe
tra of the initial perturbations shown in Fig. 4.27 at t = 600/ν0.peak with the largest initial value also has the largest growth rate and the largest �nalamplitude, but a se
ond peak at a lower k-value 
ould still develop. The green draftis an example that the mode with the largest growth rate will not ne
essarily developa large amplitude. Initially there is small but �nite amplitude between k = 0.3 and
k = 0.35 but at t = 600/ν0 there is only a single peak with a maximum at k = 0.37,whi
h also had the largest initial amplitude.The long term behavior of the transversal instability is di�erent from e.g. the modu-lation instability of the 1D plane wave. Modulation instability eventually saturates intoa new stable state that is a train of 1D solitons. In 2D, soliton solutions of the 
ubi
NLSE are only marginally stable, and 
ollapse for a slightly higher amplitude into a sin-gularity. The 
ollapse of the individual �laments for a simulation of the 
ubi
 nonlinearwave equation is shown in Fig. 4.29.In reality a laser pulse does of 
ourse not 
ollapse into a singularity, be
ause the 
ubi
nonlinearity (1 − 1

2
|a|2)a is only a series expansion for small amplitudes of the 
orre
t72
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Figure 4.29: Color plots of |a|2 at di�erent times for a simulation with 
ubi
 nonlinearity. Initial
sech pulse shape in the longitudinal dire
tion and super-Gaussian in the transversaldire
tion. Initial pulse perturbation with 10−3 a0 and a wavelength of 20λ0. Bottomto top: t = 500/ν0, t = 600/ν0, t = 700/ν0. Other simulation parameters are
n0 = 0.3nc, a0 = 0.16, L0 = 2λ0 and W0 = 200λ0.relativisti
 mass fa
tor of γ =

√
1 + |a|2. The 
orre
t nonlinearity saturates for higheramplitudes and thus the growth of the instability is slowed. For higher amplitudes,density e�e
ts have to be taken into a

ount, too. In the simpli�ed model equationswe use, the density perturbation at �rst a

elerates the growth of the instability, be-
ause the 
ollapsing �laments produ
e 
avities in the ele
tron density by pushing theele
trons outwards through the ponderomotive for
e. This leads to a stronger trappingof the �laments whi
h 
ompensates for the saturation of the γ-nonlinearity, as shownin Fig. 4.30. But the more the �laments 
ollapse, the stronger the wake�eld that theygenerate be
omes and the more energy is transferred to the plasma.Within our model equations, it still happens that in simulations the �laments 
ollapseto point-like stru
tures and that density os
illations be
ome larger than the ba
kgrounddensity. To fully avoid this problems, the heating of the plasma through kineti
 e�e
tshas to be taken into a

ount. Sin
e parameter ranges for whi
h high energy transferbetween laser pulse and plasma o

urs are not interesting for e�
ient pulse 
ompression,density perturbations of the order of the ba
kground density will simply be taken assigns that the simulated parameters are not suitable for the intended appli
ation. 73
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Figure 4.30: In�uen
e of di�erent nonlinearities in the wave equation on the transversal instabil-ity. From top to bottom: 
ubi
 nonlinearity (maximum |a| = 0.28), γ-nonlinearity(maximum |a| = 0.24), γ-nonlinearity and density response (maximum |a| = 0.32) at
t = 640/ν0. Otherwise same parameters as in Fig. 4.29.4.4.2 Longitudinally 
ompressing pulsesFor a pulse that 
ompresses in the longitudinal dire
tion, the behavior of the transversalinstability is more 
omplex. As an example we 
onsider a pulse that has the samelongitudinal shape as a soliton, but several times its amplitude. The mode that growthto the largest amplitude is not anymore independent of the width of the perturbationspe
trum, although this e�e
t is small (Fig. 4.31). During the pulse 
ompression, shorterand shorter wavelengths 
an be
ome unstable, so it is not ne
essarily a single mode thatdominates. For pulses with the same initial spot size, but di�erent amplitudes (higheramplitude equals faster 
ompression) the spe
trum of modes that show instability getsbroader for higher amplitudes, as shown in Fig. 4.32. The spe
tra have to be 
omparedat times where the pulse lengths and pulse widths are nearly the same for di�erent initialamplitudes. If an unstable mode has su�
ient time to grow before shorter wavelengthsbe
ome unstable, it 
an even enslave the shorter modes and prevent their growth.Sin
e the pulse 
hanges its longitudinal shape during the 
ompression, it is un
lear ifthe relationship between pulse length and most unstable transversal mode is the same asin the stationary 
ase. In Fig. 4.32 we see that the peaks of the spe
trum are generallylower than expe
ted for a stationary pulse of the 
orresponding length. But for an initialpulse of four times the single soliton amplitude, it is a
tually at a k-value expe
ted for a74
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Figure 4.31: Transversal amplitude perturbation spe
trum at t = 380/ν0 for a 1D soliton withan initially Gaussian shape in the transversal dire
tion. Initial perturbation spe
traof 10 . . . 30λ0 (blue), 7 . . . 50λ0 (red) and 10 . . . 100λ0 (green). Other simulationparameters are L0 = 2λ0, W0 = 200λ0 and n0 = 0.3nc.pulse of length L = 2.3λ0. This might o

ur, be
ause the pulse rise and fallo� be
omesvery steep during the 
ompression and thus is very far from the shape of the soliton.Another interesting question is how the initial longitudinal shape in�uen
es the in-stability. Espe
ially important would be any di�eren
e between a sech-shaped pulseand a Gaussian pulse, be
ause this is the pulse shape mostly used in experiments. Theinteresting result is that only the initial longitudinal half width needs to be equal.5 Thetransversal spe
tra will then be nearly equal at equal times, although the evolution oflength and width is di�erent. The graphs of length and spot size vs. time 
an be s
aledto nearly mat
h by multiplying the time axis by some fa
tor to 
ompensate the slower
ompression of the Gaussian pulse. This s
aling fa
tor does not seem to depend onplasma density or the width of the pulse. It only depends on the number N that givesthe amplitude of the pulse relative to the single soliton amplitude and thus determineshow fast the pulse 
ompresses. It is reasonable to assume that this di�eren
e is due tothe lower energy the Gaussian pulse has 
ompared to a sech-shaped pulse at the samehalf width, due to the di�erent asymptoti
 fall o�. Note that at points in time whereboth pulse shapes have the same length and spot size, the spe
tra of their instabilityare di�erent! An example is shown in Fig. 4.33.Another important di�eren
e to the 
ase of stationary pulse length we have dis
ussedabove is, that a pulse with parameters in a realisti
 range for pulse 
ompression willhave a mu
h smaller ratio between its initial spot size and length, than the very shortand wide pulses we 
onsidered in the previous se
tion for 
omparison with analyti
s. Ifwe take the analyti
al results for solitons as a guide, the range of wavelengths belowthe 
ut-o� that will initially �t on su
h a pulse is very small. If we take a pulse witha length of L0 = 10 λ0, a spot size of W0 = 100λ0 and a Gaussian transversal pro�le,5But the remember the di�eren
e between the length parameter L0 and the a
tually measured halfwidth. This leads to a fa
tor of 1.58183 between L0 for a Gaussian pulse and a soliton. 75
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Figure 4.32: Transversal amplitude perturbation spe
trum for initially sech(z/L0)-shaped pulses(L0 = 10λ0) with an amplitude of N -times the single soliton amplitude. The spe
-tra are at a di�erent times for ea
h value of N su
h that ea
h pulse has a length of
L = 3.16λ0 at that parti
ular time. Bla
k: N = 2, blue: N = 2.5, red: N = 3,green: N = 4.the most unstable mode has a wavelength ≈ 94λ0 and the 
ut-o� wavelength is ≈ 66 λ0.Examining the transversal Fourier-spe
trum of the pulse, we see that the modes up tothe 
ut-o� are 
lose to, or already part of, the modes that determine the shape of thepulse. Through the broadening of the spe
trum due to transversal 
ompression, theybe
ome part of the 
ore spe
trum of the pulse in a short time. The dynami
s of thesemodes is thus dominated by the dynami
s of the main pulse and not by the transversalinstability.Only modes that are short 
ompared to the wavelengths of the unperturbed pulsespe
trum 
an e�e
tively destroy the pulse and prevent e�
ient 
ompression. For exper-imentally interesting parameter regimes, it is only possible for those modes to be
omeunstable after su�
ient longitudinal 
ompression. This suggests that for a 
ompressingpulse the transversal instability has only a �nite time window to develop. This time win-dow starts at the point where the pulse has be
ome su�
iently short that the unstablewavelength are short 
ompared to the spot size and ends at the point where the pulseis maximally 
ompressed (where the plasma layer should end). If the initial pulse has avery 
lean spe
trum with little noise, or the plasma produ
es no noise in the unstablerange of wavelengths, no instability 
an develop.4.5 Other 2D / 3D instabilitiesBesides transversal �lamentation there are other genuinely two or three dimensionalinstabilities of a laser pulse that 
an o

ur inside of the plasma. These 
an either berelated to Raman instability and o

ur due to a resonan
e between the laser pulse andthe plasma wake�eld, or be driven by the relativisti
 mass nonlinearity and are onlyenhan
ed by the wake�eld. The �rst type 
an only o

ur at densities below 0.25nc and76
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Figure 4.33: Comparison of transversal amplitude spe
tra for an initial sech(z/Ls) pulse and aninitial Gaussian pulse of length Lg. Ls = 10λ0 and Lg is 
hosen su
h that themeasured longitudinal half width are initially equal. a0 is N = 4 times the singlesoliton amplitude. Blue: sech pulse at t = 330/ν0. Red: Gaussian pulse at t = 330/ν0,Green: Gaussian pulse at t = 360/ν0 (same length and spot size as the sech pulse at
t = 330/ν0).is in the short wavelength range. The se
ond type 
an also 
ause instability at higherdensities and has a longer wavelength. Here short vs. long wavelength is relative to

ωp/c. The a
tual wavelength for a long wavelength instability at high density 
an thusbe shorter than the plasma wavelength at low densities.Three types of instability for a linear polarized laser beam are dis
ussed in [14℄ bymeans of the variation-of-a
tion method and linear stability analysis. These are hosingas well as symmetri
 and antisymmetri
 self-modulation instability. These instabilities
an be derived from a nonlinear S
hrödinger equation 
oupled to an equation for theplasma potential φ
(
∇2

⊥ − 2iβ
∂

∂ζ

)
a = (1 − φ)a (4.20)

∂2

∂τ 2
φ+ φ =

|a|2
2

. (4.21)Details of the 
al
ulation for 
ir
ular polarization 
an be found in appendix C.The stationary solution for whi
h the linear stability is examined is a laser beamof in�nite longitudinal length and a �nite spot size (with Gaussian pro�le) that is atthe threshold of transversal self fo
using. Of 
ourse in the end we are interested inthe behavior of the instabilities above the threshold, but as long as the growth of theinstabilities is faster than the self-fo
using pro
ess, the analysis should be approximatelyvalid. The 
ase where the beam fo
usses faster than the instability 
an grow is of nointerest, be
ause the instability then is of no physi
al relevan
e. The threshold 
an be
al
ulated as
a2

0W
2
0 = P0 ≥ Pc = 16 . 77



4. Pulse 
ompression in two dimensionsThe thresholds is (Pc = 32) for linear polarization. Otherwise the linearized equationsfor the instabilities are identi
al for both kinds of polarization. The general form of thisequations is
(
∂2

ζ + Γ1

)
f = Γ2h (4.22)

(
∂2

τ + 1
)
h = Γ3f ,where f and h are two of the 
olle
tive 
oordinates used to des
ribe the pulse shapeand/or the shape of the plasma potential.From this two 
oupled equations we 
an derive some general properties of the insta-bilities. Fourier analysis yields a dispersion relation and thus a growth rate dependenton the wave number of the perturbation. Plotting the growth rate Im(g) against k,we 
an see that the general form is linear growth of Im(g) with k for small values of kand a distin
t peak around k = ωp/c where a resonan
e with the wake�eld wavelengtho

urs.6 Above the peak a sharp 
ut-o� o

urs at

k =

√
Γ1 − Γ2Γ3

Γ1
.At the resonan
e k = ωp/c the growth rate is

g =

(
Γ2Γ3

2

) 1
3 −1 ±

√
3i

2
.This des
ribes the short wavelength type of the instabilities dominant at densities lower

k = ωp/c.For the long wavelength type instabilities to o

ur the 
ondition that
Γ2Γ3 ≥ Γ1has to be ful�lled.The growth rate for small values of k then is
g = i

√
Γ1k .Important to understand the relevan
e of these instabilities is that Γ1 and Γ2Γ3 are in-versely proportional to the square of the Rayleigh length zR = βW 2

0 /2. This implies thatthe growth rates rapidly de
rease with the spot size. For wide pulses this instabilitiesare thus not relevant. They 
ould only be
ome important after very strong transversal
ompression, but then still unlikely if the pulse is su�
iently short.4.5.1 Hosing instabilityThe 
entroid of the laser beam 
an be unstable to perturbations and show sinusoidalos
illations like a winding snake or water hose, hen
e the name hosing instability. In6Be
ause the NLSE used is derived for a frame 
omoving at c instead of vg, the wake�eld wavelengthis 2πcωp instead of 2πvg/ωp. This is only a good approximation at low densities.78



4.5. Other 2D / 3D instabilities

Figure 4.34: Left: initial pulse of longitudinally super-Gaussian (L0 = 100λ0) and transversallyGaussian shape (W0 = 20λ0) with a0 = 0.3. Sinusoidal initial perturbation of 0.01W0for short wavelength hosing with k = ωp/c. Right: Pulse at t = 820/ν0 after propa-gation through plasma of n0 = 0.01nc.(4.22) the quantities f and g for this instability are the 
entroids xa and xφ of the laserand the plasma potential respe
tively and the 
onstants are Γ1 = Γ2 = P0

Pc

1
z2
R

and Γ3 = 1.In the short wavelength regime at low densities, hosing leads to an alternating shiftingof the Raman �laments against the 
entral axis. The wavelength 
an be
ome longer,if a saturated Raman instability heats the plasma su�
iently [13℄. Fig. 4.34 shows anexample for short wavelength hosing, before Raman instability has fully developed. Itis 
learly visible that the amplitude of instability in
reases from the front to the ba
k ofthe pulse, be
ause the resonan
e between pulse and wake�eld has more time to develop.At higher densities only the nonresonant form of the instability 
an o

ur for whi
hthe growth rate in
reases with the ba
kground density.7 Sin
e the instability is mostlydue to the relativisti
 mass nonlinearity, it is more uniform along the pulse. The onlyex
eption are the parts right at the beginning and end of the pulse. But even for ahigh density like n0 = 0.6nc and a very narrow pulse of W0 = 10 λ0 the growth ofthe instability is 
omparatively slow (see Fig. 4.35). Only after 300 λ0 of plasma theinstability has grown to a signi�
ant amplitude.4.5.2 Symmetri
 self-modulation instabilityA small sinusoidal amplitude modulation in the longitudinal dire
tion of a long andnarrow pulse 
an lead to an uneven fo
using along the pulse. This is 
alled symmetri
self-fo
using instability. Sli
es of the pulse 
an 
ollapse while other sli
es are still onlyweakly fo
used or (if the beam is at the self-
ompression threshold) even defo
used. Thise�e
t is enhan
ed by the density os
illations of the plasma. Regions with higher thanba
kground density have a defo
using e�e
t, while regions with lower than ba
kground7The density dependen
e is only impli
it, due to the normalization of lengths and times with ωp. 79
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ompression in two dimensions

Figure 4.35: Left: initial pulse of longitudinally super-Gaussian (L0 = 100λ0) and transversallyGaussian shape (W0 = 10λ0) with a0 = 0.15. Sinusoidal initial perturbation of
0.02W0 for short wavelength hosing with k = 0.1ωp/c. Right: Pulse at t = 250/ν0after propagation through plasma of n0 = 0.6nc.density fo
us the beam. At n0 < 0.25nc this pro
ess 
an be resonant with the wake�eld,but only modulates �laments indu
ed by Raman instability to yield the typi
al inverseD shape [50℄ that 
an be seen in Fig. 4.36.The relevant quantities for (4.22) are w̄a and w̄φ, the averages of the spot sizes in x-and y-dire
tion of a and φ. For the exa
t de�nition see appendix C. The 
onstants are

Γ1 = Γ2 = P0

Pc

1
z2
R

and Γ3 = 1. For n0 > 0.25nc the density os
illations 
an only enhan
ethe instability, but are not in resonan
e with the wake�eld. The main di�eren
e betweenRaman instability and self-modulation 
an be seen in Fig. 4.37. Raman forward s
at-tering redistributes pulse energy along the propagation dire
tion and leads to a lumpingof the energy. Low amplitude regions thus also have a narrow spot size. Symmetri
self-modulation instead transversally fo
uses the pulse power, while the power in ea
htransversal sli
e remains 
onstant. This leads to a narrow spot size for sli
es with a highamplitude and a wide spot size for sli
es of low amplitude (Fig. 4.37).4.5.3 Antisymmetri
 self-modulation instabilityRelated to the symmetri
 self-modulation is an asymmetri
 unstable mode, where ade
reasing spot size in one transversal dire
tion leads to an in
reasing spot size in theother. The unstable quantities for (4.22) are ∆wa and ∆wφ, the di�eren
es between thespot sizes in x- and y-dire
tion of a and φ respe
tively. Antisymmetri
 self-modulation isthe only true 3D instability of the instabilities we have dis
ussed. Fortunately its growthrate de
reases rapidly with the spot size as for the other two instabilities. Otherwisefull 3D simulations would be ne
essary. For this instability Γ1 = 3
z2
R

, Γ2 = 1
z2
R

P0

Pc
and

Γ3 = 1. Thus as long as P0 ≤ 3Pc no long wavelength regime exists. But this thresholdis already 
rossed for a pulse with a0 & 1.7 ac. Most pulses we will use for simulations80
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Figure 4.36: Color plot of 2D �laments indu
ed by Raman instability for a simulation with n0/nc =
0.1, a0 = 0.16, L0 = 10λ and W0 = 100λ.

Figure 4.37: Left: initial pulse of longitudinally super-Gaussian (L0 = 100λ0) and transversallyGaussian shape (W0 = 10λ0) with a0 = 0.15. Sinusoidal initial perturbation of
0.02W0 for short wavelength symmetri
 self-modulation with k = 0.1ωp/c. Right:Pulse at t = 250/ν0 after propagation through plasma of n0 = 0.6nc.of self-
ompression will be at least a fa
tor of two above the 
ompression threshold.A

ordingly we have to use su�
iently wide initial pulses to avoid this instability andthe ne
essity of 3D simulations.
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5 Transversal fo
using with plasmalayersTo evaluate the pulse 
ompression potential of plasmas, it is ne
essary to in
lude the propa-gation in va
uum after the pulse has left the plasma. In 2D/3D geometry a plasma layer 
ana
t as a lens with a 
ertain fo
al length. This in
reases the intensity of the pulse througha de
rease in spot size. In this 
hapter we will �rst study the fo
using properties of su
h aplasma lens and also 
ompare (semi-)analyti
al des
riptions of the plasma-va
uum transitionand pulse fo
using to full wave equation simulations. In the se
ond part of the 
hapter, weinvestigate the propagation of transversal modes from �lamentation instability in relation tothe propagation of the main pulse. The results from both parts motivate the idea to usea layered plasma-va
uum stru
ture for pulse 
ompression. This will be detailed in the next
hapter.5.1 Fo
using properties of plasma layersThe propagation of ele
tromagneti
 radiation in va
uum in 1D is very di�erent from the2D/3D 
ase. In 1D an ele
tromagneti
 pulse propagates un
hanged in va
uum. In 2Dthe pulse 
an either fo
us or defo
us in the dire
tion transversal to the propagation. Abeam or pulse that at �rst fo
uses, will start to defo
us after it rea
hed a 
ertain minimalspot size, 
alled the beam waist. This behavior 
an be modelled with a homogeneousS
hrödinger equation, whi
h 
an be derived from the homogeneous wave equation bythe so 
alled paraxial approximation [61℄
i
∂

∂z
a+

1

2

∂2

∂x2
a = 0 (5.1)The approximation holds for beam waists that are large 
ompared to the laser wave-length. Non-paraxial e�e
ts are for example dis
ussed in [16℄.The well known solution of this equation is the Gaussian beam [61℄

u(z, x) =
1

W (z)
eiφ(z)e

−x2/W (z)2−ik0
x2

2R(z) (5.2)with the spot size
W (z) = W0

√
1 +

z2

z2
R

(5.3)82



5.1. Fo
using properties of plasma layers

Figure 5.1: Time evolution of |a|2 for a simulation of a 450λ0 thi
k plasma lens with n0/nc = 0.3,
a0 = 0.1, L0 = 10λ0 and W0 = 100λ0. The density pro�le is shown semi-transparent.where W0 is the waist spot size. The radius of 
urvature of the phase front is

R(z) = z +
z2

R

z
. (5.4)The Rayleigh length

zR = π
W 2

0

λ0

(5.5)is the length of propagation where the pulse 
hanges its diameter by a fa
tor of √2.Due to the missing time derivatives in equation 5.1, its solution 
an be modulated intime by an arbitrary time dependent fun
tion v(t) to obtain a lo
alized pulse a(z, x, t) =
v(t)× u(z, x). Any initial 
ondition a(z = z0, x, t) of this form will keep its longitudinalhalf width. In the derivation of (5.1) the mixed derivative ∂2

∂t∂z
was negle
ted, whi
hresults in the 
onservation of power in ea
h transversal sli
e

P (z) = A(z)2W (z) = A2
0W0 = const. (5.6)Thus no power is transferred on-axis in the 
omoving frame.For a negative 
urvature R(z) the pulse will fo
us until its spot size rea
hes W0 atthe fo
al point. By letting a highly intense laser pulse pass through a plasma layer, the83
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Figure 5.2: Evolution of pulse parameters for the simulation in Fig. 5.1 in normalized units. Densitypro�le (bla
k), amplitude |a| (red), length L (green), spot size W (blue). The arrowsmark the position of the maximum amplitude and minimum spot size.relativisti
 nonlinearity produ
es su
h a 
urvature of the phase front of the pulse. Thisresults in the transversal fo
using of the pulse after it has left the plasma and propagatesin va
uum. A plasma layer 
an thus be used as a fo
using lens for laser intensities wherea 
lassi
al lens would be damaged. The fo
using e�e
t is shown in Fig. 5.1.For pulses that intera
ted nonlinearly with a plasma layer before propagation in va
-uum, the simple formulas for a Gaussian beam are only approximately valid. Comparedto a Gaussian beam, the fo
using behind a plasma layer 
an be highly asymmetri
 rela-tive to the fo
al plane. The fo
using o

urs on a mu
h shorter s
ale than the defo
using.Surprisingly the minimum of the spot size and the maximum of the amplitude need not(and in general do not) 
oin
ide as 
an be seen in Fig. 5.2, the amplitude rea
hes itsmaximum further away from the plasma.The length evolution shows an at �rst unexpe
ted e�e
t, too. Compared to theS
hrödinger model in va
uum the wave equation of 
ourse allows the pulse to 
hangeits length. But the e�e
t should be very small for the parameters in our example andnot as large as seen in Fig. 5.2. A S
hrödinger simulation shows nearly the same lengthevolution, although the dispersion parameter in front of the time derivative is zero inva
uum.We 
an understand this by realizing an important di�eren
e between a pulse of theform a(z, x, t) = v(t) × u(z, x) that propagates only in va
uum and a pulse that haspropagated through a nonlinear medium. Due to the nonlinearity the pulse 
an have adi�erent transversal spe
trum for ea
h value of the time 
oordinate. Ea
h transversalsli
e 
an thus fo
us and defo
us on a di�erent time s
ale. The lower amplitude tails ofthe pulse will thus 
hange its amplitude more slowly than the higher amplitude 
ore,be
ause there the nonlinearity produ
ed a broader spe
trum. In Fig. 5.3 the fasterfo
using and defo
using of the transversal sli
es with higher amplitude 
an be 
learlyseen. For a pulse that has maximally 
ompressed in plasma the length always in
reasesin va
uum, while pulses that are far from maximum 
ompression shorten and then84



5.1. Fo
using properties of plasma layers
W0 LP APV Amax FW Wmin WPV

Wmin

WPV
W (FW ) W (FW )

WPV100 200 0.126 0.149 5780 55 85 0.65 65 0.76320 0.172 0.216 3170 38 66 0.57 46 0.70460 0.214 0.318 1615 22 58 0.38 32 0.55150 200 0.125 0.149 13190 83 128 0.65 97 0.76320 0.170 0.214 7720 57 101 0.56 72 0.71460 0.204 0.310 4490 35 93 0.38 54 0.58200 200 0.125 0.149 23590 111 171 0.65 130 0.76320 0.169 0.214 13870 77 136 0.56 96 0.70460 0.201 0.307 8355 48 126 0.38 73 0.58250 200 0.125 0.149 36840 139 214 0.65 163 0.76320 0.169 0.213 21920 96 171 0.56 120 0.70460 0.199 0.306 13430 61 159 0.38 93 0.59300 200 0.125 0.149 53540 167 257 0.65 196 0.76320 0.169 0.213 32420 115 206 0.56 146 0.71460 0.199 0.305 19480 73 192 0.38 112 0.59Table 5.1: Chara
teristi
 quantities of transversal fo
using in Cartesian 2D geometry, dependent onthe initial spot sizeW0 and the plasma length LP . APV: amplitude after plasma-va
uumtransition, Amax: maximum amplitude, FW : fo
al point with minimum spot size, Wmin:minimum spot size, WPV: spot size after plasma-va
uum transition. W (FW ): spot sizea Gaussian beam of minimum spot size Wmin would have at a distan
e of FW away fromthe fo
us (this 
an be 
ompared to the real spot size WPV at that distan
e). The othersimulation parameters are a0 = 0.1, L0 = 10λ0 and n0 = 0.3nc.
Pulse parameters LP Wmin/WPV W (FW )/WPV

a0 = 0.1, L0 = 10 λ0 200 0.65 0.76320 0.56 - 0.57 0.70 - 0.71460 0.38 - 0.39 0.55 - 0.59
a0 = 0.1, L0 = 20 λ0 200 0.65 0.76350 0.47 - 0.48 0.64 - 0.65530 0.33 - 0.38 0.51 - 0.58
a0 = 0.14, L0 = 10 λ0 140 0.56 0.70180 0.54 - 0.55 0.70 - 0.71230 0.34 - 0.35 0.54 - 0.56Table 5.2: Fo
using properties of plasma layers in Cartesian 2D geometry. The ranges for the
hara
teristi
 fo
using quantities are for spot sizes between W0 = 100λ0 and 300λ0.For abbreviations and other simulation parameters, see table 5.1.
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Figure 5.3: Color plots of |a|2 for the pulse propagation in va
uum behind a plasma lens with
n0 = 0.3nc and a length of 350λ0. Pulse parameters are a0 = 0.1, L0 = 20λ0,
W0 = 250λ0. From bottom to top: pulse dire
tly behind the plasma lens, at the fo
alplane and far behind the fo
al plane.lengthen again.To study the fo
using properties of a plasma lens more thoroughly, we made a largenumber of simulation runs with a systemati
 variation of pulse and plasma layer pa-rameters. For three di�erent 
ombinations of pulse amplitude and length, the spot sizeof the pulse and the thi
kness of the plasma layer was varied. The initial spot size wasbetween 100 λ0 and 300 λ0. For the length of the plasma layer three di�erent valueswere used, where the largest length is given by the optimal value for longitudinal pulse
ompression. We used Cartesian 2D geometry for this parameter study, be
ause thefo
al length for pulses with large initial spot sizes is very large. This is espe
ially the
ase if the pulse is only weakly fo
used by a short layer. This 
an make it ne
essaryto simulate the propagation in va
uum for well over 105 λ0. Without the possibility touse very large steps in va
uum, the 
omputational 
ost of su
h simulations would beprohibitive. The qualitative results should still 
arry over to 
ylindri
al or full threedimensional geometry.The results from the parameter study are given in tables 5.1 and 5.2. In table 5.1detailed results for a0 = 0.1 and L0 = 10 λ0 are given. The most important quantitiesare the ratio of the minimum spot size Wmin to the spot size WPV dire
tly behind theplasma layer and the ratio of W (FW ) to WPV. The quantity W (FW ) is the spot size aGaussian beam with minimum spot size Wmin would have at the distan
e FW from the86



5.2. Boundaries between va
uum and plasmafo
al point. This 
an be 
al
ulated from (5.3) and 
an be 
ompared to the real spot size
WPV of the pulse at that distan
e. The two ratios thus quantify the relative redu
tionin spot size from behind the length to the fo
al spot and the strength of the fo
using
ompared to a Gaussian beam. From table 5.1 we see that the s
aling of the fo
usingwith the length of the plasma layer is mostly independent of initial spot size.1 It onlydepends on the length of the layer and is stronger than for a Gaussian beam. For alayer of optimal length for longitudinal pulse 
ompression it is nearly twi
e as strongand the spot size 
an be redu
ed to about 25% of the initial value W0. This result isvalid for other pulse parameters, too. Table 5.2 
ontains the summarized results forthe two spot size ratios for three di�erent pulse amplitude / length 
ombinations. Theranges that are given in the Table, are for the di�erent initial spot sizes and show avery low varian
e. Knowing this ratios allows the e�e
tive predi
tion of the fo
usingbehavior of a very wide pulse by simulating a mu
h more narrow pulse, whi
h de
reasesthe 
omputational 
ost signi�
antly be
ause of the mu
h smaller fo
using length of thenarrow pulse.5.2 Boundaries between va
uum and plasmaTo model the fo
using e�e
t of a plasma lens 
orre
tly, it is important to also model theboundaries between the va
uum and plasma regions to mat
h the experimental situationof a gas jet experiment. It is espe
ially important to understand the di�eren
e betweenhard and soft transitions to the plasma layer. The basi
 pro
ess that happens at a hardboundary is known from linear ele
trodynami
s. A plane wave of wave number k andfrequen
y ω is in part re�e
ted and in part transmitted if ω > ωp. Modes with ω < ωphave a re�e
tion 
oe�
ient of unity and de
rease exponentially inside the plasma, this is
alled skin e�e
t. The length over whi
h the amplitude drops by a fa
tor of e is 
alled theskin length. The transmission and re�e
tion 
oe�
ients are given by the so 
alled Fresnelformulas. For a thin layer the behavior is more 
ompli
ated, be
ause the re�e
tion andtransmission at both boundaries in�uen
e ea
h other and skin modes do 
ontribute tothe energy transfer through the layer. For su�
iently long layers these e�e
ts are smalland 
an be negle
ted. The transition of a lo
alized pulse from va
uum to plasma or vi
eversa 
an be 
al
ulated by de
omposing it into Fourier modes and multiplying the modeswith their respe
tive Fresnel fa
tors. Through this method, boundaries 
an be in
ludedin NLSE simulations, sin
e they are not treated self
onsistently in this equation. In 2Dthe transformation formulas of the ve
tor potential for a plasma with µr = 1 are

Ax(k) =
2

1 + η cos(α′′ )
cos(α)

Ax(k) and Ay(k) =
2

1 + η cos(α)

cos(α′′ )

Ay(k) , (5.7)where α is the in
ident angle measured relative to the normal ve
tor of the plasmasurfa
e and α′′ is the 
orresponding angle behind the surfa
e. The angles are given by1This is only valid if the initial spot size is su�
iently larger than the spot size range where dire
t
ollapse of the pulse would o

ur. 87



5. Transversal fo
using with plasma layersthe relations
sin(α) =

kx√
k2

x + k2
z

and sin(α
′′

) =
sin(α)

η
.The index of refra
tion η 
an be taken in zeroth order from the linear plasma dispersionrelation. In our units it is then equal to the linear group velo
ity. Relativisti
 
orre
tionshave to be in
luded for higher intensities, in [17℄ several di�erent are given for di�erentparameter regimes. For a derivation of the 2D Fresnel formulas for the ve
tor potential

A see e.g. [15℄.When entering the plasma a lo
alized pulse will get a higher ve
tor potential amplitudeand a smaller spatial length.2 Heuristi
ally this 
an be understood by remembering thatthe 
arrier wavelength of the pulse is shorter in plasma than in va
uum, as des
ribedby the linear dispersion relation. The e�e
t is the larger the higher the plasma densityand thus the lower the linear group velo
ity is. The width stays nearly un
hanged forpulses wider than a few laser wavelengths. For long pulses the temporal length of thepulse is nearly un
hanged, too. The pulse propagates more slowly inside the plasma bya fa
tor vg ≡ η, whi
h is 
lose to the fa
tor the pulse is shorter spatially.
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Figure 5.4: Comparison of the length evolution between NLSE (temporal pulse length) and waveequation (spatial pulse length) simulations. Plasma layer of 50λ0 length and a densityof 0.3nc. Pulse parameters are a0 = 0.15. L0 = 10λ0 and W0 = 100λ0.To examine how well the physi
s at the plasma boundary is 
aptured by the Fres-nel formulas, we 
ompare simulations of the nonlinear wave equation and nonlinearS
hrödinger equation. All simulations were done using 
ubi
 nonlinearity and in
ludeno density response. In NLSE simulations a temporal initial distribution is propagatedin z up to the boundary of the plasma layer. Then the �eld distribution is transformedusing the Fresnel formulas for ea
h Fourier mode and the resulting �eld is then propa-gated through the plasma. At the end of the plasma layer the same pro
edure is applied.2If the density is 
lose to the 
riti
al density and the pulse is short (i.e. has a broad frequen
yspe
trum), the amplitude 
an instead de
rease, be
ause a large fra
tion of the pulse 
an not enterthe plasma.88



5.2. Boundaries between va
uum and plasma
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Figure 5.5: Comparison of amplitude evolution between NLSE and wave equation simulations.Plasma layer of 10λ0 length and density of 0.3nc. Pulse parameters are a0 = 0.2.
L0 = 10λ0, W0 = 50λ0. red : 
ubi
 NLSE + Fresnel formulas, blue: 
ubi
 nonlin-ear wave equation (hard boundaries), magenta : 
ubi
 nonlinear wave equation (softboundaries, 5λ0)Only for pulses with a very small spot size, the 2D Fresnel formulas yield a di�erentresult than the 1D formulas (α ≡ 0), be
ause only very narrow pulses of 5λ0 or less have

k⊥ values that are not small 
ompared to the k0 of the laser 
arrier. Simulations basedon the wave equation 
onsistently show a slight in
rease in transversal width from va
-uum to plasma and a de
rease from plasma to va
uum, although this has little in�uen
eon the maximum intensity of the pulse.The very di�erent behavior at the plasma boundaries of the temporal length in NLSEand the spatial length in wave equation simulations respe
tively does not lead to dif-feren
es in length when the pulse is again in va
uum (
f. Fig. 5.4). The e�e
t onthe amplitude for n0 = 0.3nc at the va
uum-plasma boundary is already quite large ataround 9% for |a|. This jump in the amplitude is only this large for the ve
tor potential.The intensity, 
al
ulated from E and B, 
hanges mu
h less. Although the re�e
tion atthe plasma-va
uum boundary leads to a higher maximum amplitude at the boundaryto va
uum, the nonlinear intera
tion with the re�e
ted pulse has little in�uen
e on thetransmitted pulse. At least this is the 
ase for pulses up to 20 λ0 length and weaklyrelativisti
 amplitudes.For the weakly relativisti
 regime the Fresnel formulas thus des
ribe the va
uum-plasma transition surprisingly good and allow the simulation of strati�ed plasmas withthe NLSE, 
f. Fig. 5.5. For higher amplitudes they 
an be modi�ed by 
orre
ting thedensity used to 
al
ulate the index of refra
tion. The γ-fa
tor 
an simply be evaluatedfor maximum pulse intensity. This 
orre
tion redu
es the in
rease of amplitude insideof the plasma (Fig. 5.6 on the left). It is also 
omputationally mu
h less intensive thana simulation of a hard boundary with the wave equation. Sin
e re�e
ted waves be
omeimportant, the QEA method 
an not be used while the pulse propagates through theboundary and the grid dis
retization has to be further redu
ed than for a soft transitionto ensure a

urate results. For a realisti
 plasma boundary this Fresnel transformation89
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Figure 5.6: Comparison of amplitude evolution between NLSE and wave equation simulations atthe va
uum-plasma (on the left) and plasma-va
uum boundary (on the right). Plasmalayer of 30λ0 length and a density of 0.3nc. Pulse parameters are a0 = 0.3. L0 = 4λ0and W0 = 50λ0. Bla
k : 
ubi
 NLSE + Fresnel formulas, red : 
ubi
 NLSE +relativisti
ally 
orre
ted Fresnel formulas, blue: 
ubi
 nonlinear wave equation (hardboundaries), magenta : 
ubi
 nonlinear wave equation (soft boundaries, 5λ0).would have to be modi�ed though, be
ause a hard density jump is not a
hievable with agas jet and a smooth transition of only a few λ0 length redu
es re�e
tion to nearly zero,see the magenta 
urve in Fig. 5.5. This might be a

ommodated by de
omposing thedensity in
rease or de
rease into small steps with Fresnel transformations in between.There are two main arguments against using the NLSE 
ombined with the Fresnelformulas, though, for the simulation of plasma lenses. If the density response has to bein
luded, it be
omes di�
ult to solve the 
oupled equations for a and n1
e, be
ause a hasto be integrated in z while the density has to be integrated in time (
f. se
tion 2.3).For short pulses of less than four 
y
les length, the envelope approximation starts tobreak down. This leads to large di�eren
es in amplitude after the pulse has propagatedthrough the plasma layer (see Fig. 5.6).5.3 Propagation of short vs. long wavelengthtransversal modes in va
uumWhen a pulse that has developed transversal �lamentation instability leaves the plasmaand enters va
uum, the growth of the instability obviously stops. As we have seen in thepre
eding se
tion, in va
uum the pulse as a whole will at �rst fo
us and then defo
uswith a typi
al length s
ale of one half to one Rayleigh length. This behavior 
an beunderstood from the Fourier de
omposition of the pulse. The smaller the beam waist,the broader the spe
trum of transversal Fourier modes be
omes. From the va
uumdispersion relation

ω(k) = c
√
k2
‖ + k2

⊥90



5.3. Propagation of short vs. long wavelength transversal modes in va
uum

Figure 5.7: Color plot of |a|2 for the propagation of a pulse in va
uum after propagation through a
500λ0 plasma layer with n0 = 0.3nc. The initial longitudinal sech shape and transversalsuper-Gaussian shape. Initial transversal pulse perturbation of 10−3 a0 with a wavelengthof 20λ0. Bottom to top: pulse at t = 560/ν0, t = 1400/ν0, t = 2400/ν0 and t =
4540/ν0. The other simulation parameters are a0 = 0.16, L0 = 2λ and W0 = 200λ.follows the group velo
ity of a transversal Fourier mode with a 
ertain value of k⊥

v⊥(k⊥, ω) =
∂ω(k)

∂k⊥
= c

k⊥
|k| = c2

k⊥
ω

. (5.8)For a wide pulse we 
an use the 
arrier wave number k0 = ω0/c for the value of k‖ andthus ω ≈ ω0.Sin
e for a symmetri
 beam the spe
trum is symmetri
, too, the wave numbers in thespe
trum 
ome in pairs of k⊥, −k⊥ that propagate in opposite dire
tions. Combinedwith the higher group velo
ity of modes with higher absolute k-values, this implies thata pulse fo
uses or defo
uses the faster the smaller its waist size is. This 
an be seen,too, from the Rayleigh length (5.5).For a longitudinally lo
alized pulse, this 
an in�uen
e the longitudinal propagation.The 
onstan
y of the speed of light leads to a lower parallel velo
ity the higher theperpendi
ular velo
ity of a mode eik·r−i ω0 t is. In 
ontrast to 1D, this 
an lead to a
hange of the longitudinal pulse shape in va
uum. For the pulse parameters we are
onsidering, the transversal k-values of the pulse will be small 
ompared to k0 and thise�e
t will be small, too. This 
hanges if the pulse develops transversal �lamentation.The transversal k-modes due to the instability are not small 
ompared to k0. These91



5. Transversal fo
using with plasma layers

Figure 5.8: Same as Fig. 5.7, but for t = 1600/ν0, t = 1680/ν0 and t = 1760/ν0 (again frombottom to top).unstable modes will thus propagate more slowly in the longitudinal dire
tion than themain pulse and will also disperse faster in the transversal dire
tion.In Fig. 5.7 snapshots of the time evolution in va
uum 
an be seen for a pulse with asuper-Gaussian shape in the transversal dire
tion with only a single transversal mode asa perturbation. This simpli�es the 
omparison with the analyti
ally expe
ted behavior.At �rst, after the pulse has left the plasma, the �laments of the instability are stilllo
ated 
entrally on the pulse. But be
ause of their slower longitudinal propagation,they soon begin to lag the main pulse. The resulting longitudinal asymmetry is the�rst sign that the unstable modes propagate di�erently from the main pulse. Althoughthey travel in the transversal dire
tion, too, the 
enter of the pulse at �rst does not
lear from the �lamentation. The �laments seem to behave like two 
ombs that moverelative to ea
h other. In this way we 
an explain the e�e
t in Fig. 5.8 that peaks vanishfor a short time and then reappear. This happens several times until the oppositelypropagating �lament 
ombs do not overlap anymore and the 
enter of the pulse 
learsfrom the instability.The wavelength of the initial perturbation 
an still be identi�ed for the parts of theinstability that have already left the main pulse and their speed mat
hes the expe
tedvalue from the va
uum dispersion relation for this wavelength. They do not a

umulatein one lump dire
tly behind the pulse as stated in [59℄, be
ause they have a 
onsiderablevelo
ity 
omponent in the transversal dire
tion.After su�
iently long propagation in va
uum the pulse has shed all the unstable92



5.3. Propagation of short vs. long wavelength transversal modes in va
uum

Figure 5.9: Color plot of |a| showing a spheri
al radiation front after long propagation in va
uum.Note that |a| is shown (not |a|2) for better visibility of the lower amplitude parts of thepulse.
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Figure 5.10: Amplitude evolution of a pulse in 
ylindri
al geometry (a0 = 0.1, L0 = 20λ0, W0 =
200λ0) with di�erent phase randomized initial perturbations of 0.01 a0. Propagationthrough a plasma layer of 530λ0 with a density n0 = 0.3nc.modes that propagate on a spheri
ally shaped surfa
e, see for example Fig. 5.9. Theremaining main pulse has the same shape as it would have had without �lamentationinstability, but with a lower amplitude. The amount of amplitude redu
tion depends onthe strength of the instability.In Fig. 5.10 the evolution of maximum amplitude for three phase-randomized ini-tial perturbations of 0.01 a0 is shown for a simulation in 
ylindri
al geometry. In thisgeometry, whi
h is e�e
tively 3D, the e�e
ts of the instability are stronger due to anin
reasing intensity of the 
ollapse with an in
reasing number of dimensions. 2D is
riti
al dimensionality for the 
ollapse to o

ur [62℄.The shedding of short wavelength transversal modes in va
uum thus prevents the de-93



5. Transversal fo
using with plasma layers

Figure 5.11: |a|2 of pulses with (on the right) and without an initial perturbation (on the left) afterpropagation through a plasma layer. Same parameters as Fig. 5.10

Figure 5.12: Same as Fig. 5.11 after propagation through ∼ 10000λ0 of va
uum. Note that atthis lo
ation only the initially perturbed pulse has its maximum intensity, not theunperturbed pulse. See Fig. 5.10 to 
ompare maximum amplitudes.te
tion of the �lamentation in some distan
e behind the plasma (Fig. 5.11 and Fig. 5.12).After only a few millimeters in va
uum the pulse has nearly regained its unperturbedshape. This means that the data about the strength of the instability has to 
ome frommeasurements inside the plasma, e.g. by means of shadowgraphy.
94



6 Strati�ed plasma-va
uum systemsIn this 
hapter we will 
ombine the ideas dis
ussed in the pre
eding 
hapters by using layeredplasma-va
uum stru
tures instead of single layers for pulse 
ompression. The advantageof this approa
h twofold. It allows to use the transversal fo
using potential of a pulsemore e�e
tively, and thus in
rease the intensity of the 
ompressed pulse. It also o�ersthe possibility to 
ontrol the transversal �lamentation instability. By dividing the plasmalayer into several shorter layers with va
uum in between, the transversal dispersion of theshort unstable modes in va
uum is exploited to 
lean the pulse before this modes 
an growto signi�
ant amplitude. Parti
ular attention is given to plasma 
on�gurations that areexperimentally a
hievable.

Figure 6.1: |a|2 of a Gaussian pulse with a0 = 0.1, L0 = 10λ0 and W0 = 150λ0 propagatingthrough two plasma layers of density n0 = 0.3nc. The �rst layer is 330λ0 and these
ond is 125λ0 long with 1500λ0 va
uum in between.
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6. Strati�ed plasma-va
uum systems6.1 Advantages of multiple plasma layers6.1.1 Enhan
ed transversal fo
usingFor a 
ontrolled and e�
ient longitudinal 
ompression, the initial laser amplitude hasto be weakly relativisti
, i.e. a2
0 ≪ 1 and stay subrelativisti
 during the 
ompression.Otherwise the energy loss inside the plasma would be
ome too large. Moreover, thespot size has to be mu
h larger than the pulse length, otherwise the pulse would dire
tly
ollapse inside of the plasma. This implies that a high power laser pulse 
an only beweakly fo
used into the plasma to be in the right amplitude and spot size range. Insidethe plasma the pulse then is longitudinally 
ompressed from its initial length to justone or two 
y
les. Thus to rea
h high subrelativisti
 or even relativisti
 intensities,the pulse has to be strongly transversally 
ompressed. Be
ause of the strong 
ouplingbetween longitudinal and transversal 
ompression, as dis
ussed in se
tion 4.3.3, it is notpossible to realize the full transversal 
ompression potential of the pulse purely inside theplasma. But the fo
using 
an be enhan
ed by sli
ing a plasma layer of optimal length forlongitudinal 
ompression into multiple shorter layers with va
uum se
tions in between.During the propagation in va
uum the transversal and longitudinal dynami
 is (mostly)de
oupled. The pulse fo
uses in the transversal dire
tion, due to the negative 
urvatureof the phase front indu
ed by the plasma, while its length stays nearly un
hanged. Whenit rea
hes the next plasma layer, it has a higher intensity than without propagation inthe va
uum between the layers. This in
reases the strength of the 
ompression insidethe next layer. Using two or more layers should in this way allow to produ
e pulses withmu
h higher intensities and mu
h redu
ed spot sizes.An example of a two layer 
on�guration is shown in Fig. 6.1. Su
h a va
uum-plasma
on�guration has several free parameters for whi
h the optimal values are di�
ult todetermine analyti
ally. These are the number of plasma layers, the relative length ofthe layers and the amount of va
uum between the layers. We will study the in�uen
eof this parameters in the following se
tions.6.1.2 Controll of transversal �lamentationOne result presented in the last 
hapter was that a pulse that is strongly �lamented in thetransversal dire
tion 
an regain a smooth transversal shape after propagation througha su�
ient amount of va
uum. How well a pulse is able to shed the unstable modes,
an be estimated by 
omparing the Rayleigh lengths of the un�lamented pulse with theRayleigh length of the individual �laments. A pulse 
an only loose the unstable modesif the Rayleigh length of the full pulse is several times larger than that of the �laments.This is already ful�lled if the pulse is a few times wider than the �laments, be
ause ofthe quadrati
 dependen
y of zR on the spot size. The pulse has to travel a few timesthe Rayleigh length of the �laments to shed the unstable modes. The obvious questionis, if the pulse 
ould shed its unstable modes before they 
an grow to large amplitudes,at the 
ost of the amplitude of the main pulse. A proposal for su
h a method was madeby Shorokhov et. al. in [59℄. The pulse propagates in plasma only for a short amount of96



6.1. Advantages of multiple plasma layerstime and then propagates su�
iently long in va
uum for the unstable modes to get outof step with the main pulse. Then it enters another short plasma layer followed againby va
uum and so on until the maximum longitudinal 
ompression is a
hieved.The general plasma-va
uum 
on�guration is thus similar to the 
on�guration for en-han
ed transversal fo
using, but the 
riteria for 
hoosing the parameters are di�erent.The length of the individual layers is limited by the �lamentation length of the pulse.This length depends 
riti
ally on two quantities. The longitudinal pulse length deter-mines the most unstable transversal mode. The shorter this mode be
omes, the higherits growth rate and thus the shorter the �lamentation length. The other quantity is thenoisiness of the system. This in
ludes both perturbations of the pulse shape and �u
-tuations of the plasma density that a
t as a seed for the instability. The more noise thesystem exhibits, the shorter the �lamentation length will be. Sin
e the strength of the�u
tuations depends on the intensity of the driving pulse, more intense pulses will havea shorter �lamentation length. This suggests that the plasma layers have to be
omein
reasingly short as the pulse length de
reases and its amplitude in
reases during the
ompression.The length of the va
uum se
tions, too, depends on the wavelengths of the unstabletransversal modes. Shorter wavelengths need less propagation va
uum to get out ofstep with the main pulse. We 
an make a simple analyti
al estimation for the ne
essaryamount of va
uum for a 
ertain pulse length. For this we assume that the main pulsetravels at c in the longitudinal dire
tion and has no transversal velo
ity 
omponent(i.e. the pulse shows no transversal dispersion). This is approximately valid, if thepreviously mentioned ratio of the Rayleigh lengths is large. From the expressions forthe longitudinal and transversal velo
ity 
omponents of an eik·r−i ω0 t mode
v‖,⊥ = c2

k‖,⊥
ω0and c2 = v2

‖ + v2
⊥, we get for the parallel velo
ity 
omponent

v‖
c

=

√
1 − v2

⊥

c2
. (6.1)This allows us to 
al
ulate after how many λ0 of va
uum a mode with a 
ertain k⊥ willlag the main pulse by the half width of the pulse. If we take for example a pulse that
ompresses down to 2λ0 in length and we take the value of the most unstable modefor a soliton of this length as a guide (≈ 19 λ0), we get a group velo
ity di�eren
e of

∆vg ≈ 0.0021c and va
uum length of ≈ 1400λ0 for a lag of one half width. This is
onsistent with the simulations in se
tion 5.3. Sin
e the growth rate of the instabilitydepends only on |k⊥| irrespe
tive of the number of dimensions of k⊥ the same formula
an also be used to 
al
ulate the va
uum length for simulations in 3D Cartesian or
ylindri
al geometry. For the parameters in [59℄, the pulse 
ompresses down to a singlewavelength whi
h results in λ⊥ ≈ 6.6 λ0 for n0 = 0.6nc. The va
uum for a lag of asingle wavelength is in this 
ase approximately 90 λ0, whi
h is in very good agreementwith the value of 100 λ0 that was used as the va
uum length between the four plasmalayers for a total va
uum length of 300 λ0. 97



6. Strati�ed plasma-va
uum systemsOf 
ourse there are 
onstraints from the transversal fo
using of the pulse. A stronglyfo
used pulse is mu
h more sus
eptible to 
ollapse 
aused by the instability, but redu
ingthe length of the va
uum se
tions to redu
e fo
using 
an result in an insu�
ient amountof va
uum for the 
ontrol of the instability. The requirements for enhan
ed fo
using and�lamentation 
ontrol have thus to be balan
ed against ea
h other and the pulse, layerand va
uum parameters have to be 
hosen to meet both.6.2 Optimization of transversal fo
using
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Figure 6.2: Amplitude evolution for a0 = 0.1, L0 = 10λ0, W0 = 150λ0 for 1�4 plasma layers(n0 = 0.3nc) of 
omparable total length. One layer of 460λ0 (bla
k), two layers of
227λ0 (red), three layers of 150λ0 (green), four layers of 112λ0 (blue). Ea
h layerhas 5λ0 transitions between va
uum and plasma on both sides. For ea
h additionallayer the total plasma length is redu
ed by 3λ0 to a

ount for the additional amountof plasma in the transition regions. Total amount of va
uum between layers is 2400λ0,divided equally.In the following we will examine the in�uen
e of di�erent layer parameters, su
h asthe number of plasma layers and the amount of va
uum between the layers, on theresulting amplitude, length and spot size of the pulse. Most of the simulations in thepre
eding se
tions were done in 2D Cartesian geometry, be
ause we were only interestedin qualitative results, or the results were independent of the transversal geometry. Inthis way we were able to take advantage of the fast simulation times in va
uum of theGauts
hi-type integrator. This allowed us for example, to study the fo
using behavior ofvery wide pulses with very large Rayleigh length. This is not possible when using morethan a single plasma layer. In 3D the amplitude in
rease in va
uum due to transversalfo
using is around two times larger than in 2D, due to the additional dire
tion in whi
hfo
using o

urs. Thus the propagation in the next plasma layer will be very di�erent in2D and 3D and we have to use a 
ylindri
al geometry to perform realisti
 simulations.This in
reases simulation runtimes 
ompared to Cartesian 2D simulations, not only98



6.2. Optimization of transversal fo
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Figure 6.3: Pulse length evolution for the simulations shown in Fig. 6.2.
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Figure 6.4: Spotsize evolution for the simulations shown in Fig. 6.2.be
ause small time steps have to be used in va
uum. They are also in
reased, be
ausein 
ylindri
al geometry the initial minimum spot size for that no dire
t 
ollapse o

ursis larger by a fa
tor of about √2. This 
an be partially 
ompensated by using a 
oarsertransversal dis
retization, although the spot sizes at the fo
al point are not ne
essarily afa
tor √2 larger. For the simulations with a transversal perturbation the dis
retizationis limited by the requirement to resolve the wavelengths of the instability.6.2.1 Number of plasma layersFirst we will examine how di�erent numbers of plasma layers in�uen
e pulse 
ompressionand fo
using. We take the length of a single layer that is needed to fully 
ompress apulse with 
ertain parameters, split it into two, three or four layers of equal length andadd linear transitions between va
uum and plasma of 5 λ0 length. To 
ompensate forthe added length due to the linear transitions, we redu
e the length of ea
h layer by99
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Figure 6.5: Amplitude evolution for a0 = 0.14, L0 = 10λ0, W0 = 150λ0 for 1�4 plasma layers(n0 = 0.3nc) of 
omparable total length. One layer of 235λ0 (bla
k), two layers of
115λ0 (red), three layers of 75λ0 (green), four layers of 55λ0 (blue). Total amount ofva
uum between layers is 1800λ0.
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Figure 6.6: Amplitude (on the left) and spot size evolution (on the right) for a0 = 0.1, L0 = 20λ0,
W0 = 200λ0 for 1�4 plasma layers (n0 = 0.3nc) of 
omparable total length. One layerof 530λ0 (bla
k), two layers of 262λ0 (red), three layers of 174λ0 (green), four layersof 130λ0 (blue). Total amount of va
uum between layers is 1800λ0.

3 λ0. The total amount of va
uum between the layers is 
hosen to be the same for anynumber of layers, so that the length of the individual va
uum se
tions de
reases withthe number of layers.In Fig. 6.2 the amplitude evolution for a pulse with a0 = 0.1, L0 = 10 λ0 and W0 =
150 λ0 is shown for one to four layers layers of density n0 = 0.3nc. The total length ofthe va
uum se
tions is 2400λ0. The length and spot size evolution are shown in Fig. 6.3and Fig. 6.4 respe
tively. For a single layer the pulse rea
hes the fo
al point afterpropagating 5450λ0. With fo
al point we denote the z-position at whi
h the maximumamplitude is rea
hed. As we have seen in the last 
hapter, this point does not 
oin
ide100



6.2. Optimization of transversal fo
usingwith the minimum spot size. The spot size at the fo
al point isW = 39 λ0 and its length
L = 3 λ0. For more than one layer the fo
al point is already rea
hed between 4100λ0 to
4400λ0. The spot size in fo
us for two layers is W = 24 λ0 and the length L = 2, λ0. Forthree and four layers the values are W = 18 λ0, L = 1.9, λ0 and W = 16 λ0, L = 1.9, λ0respe
tively. The use of multiple layers 
an thus not only enhan
e transversal fo
usingbut also in
rease the longitudinal 
ompression. The de
rease of spot size and lengthwith the number of layers is dire
tly proportional to the in
rease in intensity. Losses tothe plasma are very low.For a0 = 0.14 and the same initial length and width and a total amount of 1800λ0the maximum amplitude also in
reases distin
tly from one to two layers. But for threeand four layers there is already a saturation in maximum amplitude visible in Fig. 6.5.This is not due to energy loss of the pulse to the plasma, but due to a saturation inboth longitudinal and transversal 
ompression. The spot size at the fo
al point (at
z = 4400 . . . 4700λ0) for two to four layers ranges from about 19.5 λ0 to 21.4 λ0, thedi�eren
e being less than 2 λ0. The pulse lengths are also very 
lose at 1.42 . . . 1.5 λ0.The values for a single layer are W = 31 λ0 and L = 1.56 λ0 at z = 4000λ0. The samesaturation e�e
t 
an be seen for a0 = 0.1,L0 = 20 λ0 and W0 = 200λ0 in Fig. 6.6 wherethe spotsize evolution is shown, too. Here the fo
al point is for one layer at z = 6000λ0with W = 40 λ0 and L = 1.9 λ0. For two to four layers the fo
al point is rea
hed at
z = 5800 . . . 6000λ0. The spot sizes are within less than a single laser wavelength around
W = 27.5 λ0 and the lengths are essentially the same at L = 1.65 λ0.6.2.2 Relative thi
kness of the plasma layers
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Figure 6.7: Amplitude evolution for a0 = 0.1, L0 = 10λ0, W0 = 150λ0 for two and threeplasma layers (n0 = 0.3nc). Total length of the plasma is 455λ0 for two layers and
450λ0 for three layers respe
tively. Total amount of va
uum between layers is 1800λ0.The partition for two layers is 227λ0/227λ0 (red, solid), 330λ0/125λ0 (red, dashed),
375λ0/80λ0 (red, dash-dotted) and 420λ0/35λ0 (red, dotted). For three layers thepartition is 150λ0/150λ0/150λ0 (blue, solid) and 250λ0/100λ0/100λ0 (blue, dashed).101



6. Strati�ed plasma-va
uum systemsAnother parameter of the strati�ed plasma-va
uum system that 
an be varied, is therelative thi
kness of the plasma layers at a 
onstant total amount of plasma. For thepulse parameters a0 = 0.1, L0 = 10 λ0, W0 = 150λ0 the result is shown in Fig. 6.7.In
reasing the relative length of the �rst layer improves fo
using and 
ompression upto a 
ertain optimal ratio above whi
h the maximum amplitude de
reases again. Alonger �rst layer visibly in
reases transversal fo
using and thus in
reases the intensityat the beginning of the se
ond layer. But sin
e the se
ond layer is redu
ed a

ordinglyin length, the se
ond stage of longitudinal and transversal 
ompression in plasma isweaker. If the length of the se
ond layer goes to zero, the single layer result of 
oursehas to be re
overed. At the optimal length ratio, the lowest minimum spot size andthus the strongest transversal fo
using is rea
hed, while other ratios for the length ofthe layers may have a lower minimum length. for three and four layers, in
reasing thelength of the �rst layer yields the same result.Again the e�e
t is less pronoun
ed for pulses with a higher initial amplitude or length.When the relative length of the �rst layer is in
reased, a saturation at whi
h the spotsize 
an not be redu
ed further sets in qui
kly.6.2.3 Amount of va
uum between plasma layers
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Figure 6.8: Amplitude evolution for a0 = 0.1, L0 = 10λ0, W0 = 150λ0 for two plasma layers(n0 = 0.3nc) and varying amount of va
uum between the layers. The plasma layers are
330λ0 and 125λ0 long respe
tively. The va
uum lengths are 1200λ0 (green), 1800λ0(
yan), 2400λ0 (blue), 3000λ0 (magenta), 3600λ0 (red).The most important parameter for enhan
ed transversal fo
using is the total amountof va
uum between the plasma layers. With a total amount of zero we arrive at thesingle layer again. In
reasing the length of the va
uum leads to a pronoun
ed in
reaseof maximum amplitude and de
rease of minimum spot size. But it is not possible, forexample for two layers, to put the last layer at the fo
al distan
e of the �rst layer (orgenerally the layer before), be
ause this would 
ause the pulse to 
ollapse inside of thelast layer. The distan
e to the last layer has thus to be either smaller or substantially102



6.2. Optimization of transversal fo
using
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Figure 6.9: Amplitude evolution for a0 = 0.1, L0 = 20λ0, W0 = 200λ0 for two plasma layers(n0 = 0.3nc) and varying amount of va
uum between the layers. The plasma layers are
355λ0 and 170λ0 long respe
tively. The va
uum lengths are 1200λ0 (bla
k), 1800λ0(green), 2400λ0 (
yan), 3000λ0 (blue), 3600λ0 (magenta) and 4200λ0 (red).larger than the fo
al distan
e. Otherwise the pulse will still be strongly deformed, whi
hleads to os
illation of the pulse amplitude in va
uum (Fig. 6.8).The stronger transversal fo
using for a larger absolute amount of va
uum does notshow saturation for a larger pulse amplitude or length (Fig. 6.9). This is di�erent tothe other variations of the plasma-va
uum stru
ture, whi
h where of a relative kind.This suggests that the a
hievable minimum spot size is �xed by the absolute amountof va
uum. A 
ertain 
on�guration may not rea
h the optimum spot size / amplitude,but no 
on�guration 
an ex
eed this value. It also suggests that in
reasing the initialspot size of the pulse and the total amount of va
uum, is the best way to in
rease theintensity at the fo
al point. No saturation should o

ur in this way until the intensitiesbe
ome already relativisti
 inside of the plasma.It is of 
ourse possible for more than two layers to vary the relative amount of va
uumbetween the layers. From the pre
eding two se
tion we 
an already guess the result.In
reasing the number of layers, or de
reasing the thi
kness of the layers from the �rstto the last, e�e
tively shifts plasma towards the beginning and va
uum to the end ofthe plasma-va
uum stru
ture. We 
an thus expe
t to a
hieve a higher intensity byshortening the �rst va
uum se
tion and lengthening the last (Fig. 6.10). Sin
e this
hange is relative in nature, we also expe
t to see a saturation e�e
t for the same pulseparameters as before (Fig. 6.11). The relative 
hange in the va
uum distribution 
anof 
ourse be 
ombined with a relative 
hange in plasma distribution to further enhan
ethe fo
using (Fig. 6.12 and Fig. 6.13).6.2.4 Currently feasible experimental 
on�gurationsAll of the 
on�gurations dis
ussed up to this point have steep transitions between va
-uum and plasma. Some of them have very short plasma layers of less than 100 λ0103



6. Strati�ed plasma-va
uum systems
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Figure 6.10: Amplitude evolution for a0 = 0.1, L0 = 10λ0, W0 = 150λ0 for three plasmalayers with n0 = 0.3nc and a total amount of 1800λ0 va
uum between layers.Ea
h plasma layer is 150λ0 long. The partition of the va
uum is 1500λ0/300λ0(green), 1200λ0/600λ0 (
yan), 900λ0/900λ0 (blue), 600λ0/1200λ0 (magenta) and
300λ0/1500λ0 (red).thi
kness. With gasjets of maximum densities larger 0.25nc, produ
ed through super-soni
 gas expansion, su
h parameters are 
urrently not a
hievable. The 
urrent state ofthe art are a density plateau of about 200µm at n0 = 0.3nc with a transition to va
uumof a length of also ∼ 200µm around the 
ore of the gasjet [54℄. This redu
es the numberof plasma layers we 
an use to two. Even for only two layers su
h a 
on�guration wouldbe longer than the optimal length for a pulse with a0 = 0.1 (or more) and L0 = 10 λ0(or less).Sin
e in
reasing the spot size or de
reasing the amount of va
uum between the twolayers does only weakly 
hange the length of plasma for whi
h optimal longitudinal
ompression is a
hieved, we only have the initial pulse length and amplitude to e�e
tively
ontrol the 
ompression length. We are looking for a 
ombination of pulse parameterswhi
h allows strong 
ompression and fo
using and is stable against slight variations inthe thi
kness of the gasjets that 
an o

ur in experiments.A parameter 
ombination, whi
h ful�lls this requirements, is a0 = 0.08,L0 = 20 λ0 and

W0 = 250λ0. The length of the density plateau 
an be varied between 200 λ0 and 280 λ0with a distan
e between the gasjets of 3600λ0 to 5000λ0. The results for the intensityevolution for three di�erent plasma-va
uum 
on�gurations 
an be seen in Fig. 6.14. It ispossible with su
h 
on�gurations to rea
h a more than hundredfold in
rease in intensityfrom I = 0.0064 to I = 0.69. This is nearly as good as for the physi
ally less realisti
examples dis
ussed above, although the absolute value of the maximum intensity is notas high. Still, the spot size 
an be de
reased to less than 30 λ0 (Fig. 6.15) and the lengthto less than 2.5 laser 
y
les.There are two interesting points to note. The �rst is that, although substantial partsof the two layers have a density of less than quarter 
riti
al, no Raman instability wasvisible in any of the simulations. The se
ond is that the fo
al length of the last layer is104
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Figure 6.11: Amplitude evolution for a0 = 0.14, L0 = 10λ0, W0 = 150λ0 for three plasmalayers (n0 = 0.3nc). Ea
h plasma layer is 75λ0 long. The total va
uum lengthis 1800λ0. The partition of the va
uum is 1000λ0/200λ0 (green), 800λ0/400λ0(
yan), 600λ0/600λ0 (blue), 400λ0/800λ0 (magenta) and 200λ0/1000λ0 (red).about 6000λ0, mu
h larger than for most of the other 
on�gurations dis
ussed before.This 
an be explained by the large initial spot size and less extreme fo
using.6.3 Controlling transversal �lamentationWe will now introdu
e pulse perturbations to the simulations to examine the stabilityof the pulse propagation through a layered plasma va
uum stru
ture with respe
t totransversal �lamentation. The aim is to �nd parameters that allow (nearly) optimal
ompression and minimize losses due to pulse �lamentation. Compared to the transver-sal perturbations used in se
tion 4.4, we here use a dis
rete spe
trum of wavelengths.The amplitude parameter for the perturbation is for ea
h wavelength and not for thesuperposed perturbation after phase randomization. For the longitudinal perturbationpro�le a super-Gaussian with two times the pulse length (full width at half maximum)is used that is shifted by half the pulse length towards the ba
k of the pulse. A per-turbation is applied to the pulse before ea
h of the layers, where the lo
al amplitudeand length of the pulse is used to determine the amplitude of the perturbation and thelength of the longitudinal perturbation pro�le instead of the initial values. Without aperturbation applied before ea
h layer the shorter modes that 
an only grow in the lastlayer where the pulse is su�
iently short would have already dispersed before the pulsehas propagated this far. The standard perturbation that is used, 
onsists of 20 
osine orBessel modes (depending on the transversal geometry) with wavelengths from 10 λ0 to
30 λ0 and an amplitude of either 0.01 or 0.005 times the pulse amplitude at the positionwhere the perturbation is applied to the pulse.Both perturbation amplitudes are su�
ient to indu
e a strong instability if only asingle long layer is used. For several shorter layers the lower amplitude of 0.005 seems105
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Figure 6.12: Amplitude evolution for a0 = 0.1, L0 = 10λ0, W0 = 150λ0 for three plasma layers(n0 = 0.3nc). The plasma layers are 250λ0, 140λ0 and 60λ0 long respe
tively. Totalamount of 1800λ0 va
uum between layers. Partition of the va
uum is 1500λ0/300λ0(green), 1200λ0/600λ0 (
yan), 900λ0/900λ0 (blue), 600λ0/1200λ0 (magenta) and
300λ0/1500λ0 (red).to favor the growth of short wavelength modes. The larger perturbation amplitude of

0.01 
an lead to strong growth of long wavelength modes in the �rst layer that thepulse 
an not fully shed before rea
hing the next layer. Thus they 
an grow furtherand still dominate in the last layer. Due to the phase randomization used to produ
e aspatially uniform perturbation that 
an in�uen
e the strength of the instability, for ea
hsimulation run that shows su

essful 
ontrol of the instability at least one additional runwas made to verify the result.The type and strength of the perturbations we use represents a worst 
ase s
enario.The four layer 
on�guration in [59℄ simulated with a 3D PIC 
ode shows strong insta-bility in our simulations for the higher perturbation amplitude of 0.01 and is not stablefor every run with the lower amplitude of 0.005, even with more than 100 λ0 va
uumbetween the layers. It is unknown how strong the �lamentation will be in experiments,but possibly weaker than in PIC simulations due to their inherent noisiness. If we 
an�nd 
on�gurations that still allow stable pulse 
ompression for these strong perturba-tions, we 
an be su�
iently sure that they will show stable behavior in experiments,too.In the pre
eding se
tion about enhan
ed transversal fo
using, we optimized the plasma-va
uum 
on�gurations to rea
h the highest possible intensity for a 
ertain 
ombinationof pulse parameters. We found these optimized 
on�gurations to be generally highlysus
eptible to transversal instability. We thus have to modify either the pulse param-eters or the va
uum-plasma 
on�guration to allow for stable pulse propagation again.Di�erent strategies will be dis
ussed in the following se
tions.106
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Figure 6.13: Amplitude evolution for a0 = 0.1, L0 = 20λ0, W0 = 250λ0 for three plasma layers(n0 = 0.3nc). The plasma layers are 300λ0, 170λ0 and 50λ0 long respe
tively. Totalamount of 3600λ0 va
uum between layers. Partition of the va
uum is 2100λ0/1500λ0(red), 1800λ0/1800λ0 (green) and 1200λ0/2400λ0 (blue).
6.3.1 Very long va
uum se
tionsIf the amount of the va
uum between the plasma layers is not su�
ient to allow theshedding of the unstable modes, it is possible to in
rease the amount to a length mu
hlonger than the optimal length for fo
using. This has the additional advantage thatthe amplitude of the pulse at the last layer is de
reased, too, whi
h further redu
es thestrength of the transversal instability. The disadvantage is of 
ourse that the maximumintensity after 
ompression in the last layer is also redu
ed. Despite of this, high in-tensities 
an still be rea
hed (Fig. 6.16). Be
ause of the strongly asymmetri
 fo
usingbehavior of plasma layers, the length of the va
uum may have to be in
reased to severaltimes the fo
al distan
e of a single layer. For more than two layers the partition of thelarge amount of va
uum has to be 
hosen to prevent 
ollapse in one of the layers. Inmost 
ases, this 
an not be a
hieved with an equal partition of the va
uum. The beststrategy is to put most of the va
uum between the last two layers, as shown in Fig. 6.17.This yields a higher intensity than the same amount of va
uum between the �rst twolayers. Additionally it allows a full shedding of unstable modes from previous layersbefore the pulse enters the last layer. From theoreti
al 
onsiderations it would seemthat the longer va
uum se
tion is more useful behind the �rst layer, where long wave-lengths have be
ome unstable that 
an not be fully shed in a short va
uum se
tion. Thesimulation results 
learly suggest otherwise. It seems that a 
omplete shedding is mostimportant before the pulse enters the last layer, be
ause remaining short wavelengthmodes drive the pulse rapidly unstable. 107
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Figure 6.14: Amplitude evolution for a0 = 0.08, L0 = 20λ0, W0 = 250λ0 and three di�erent two-layer 
on�gurations. Ea
h layer has two linear transition regions of 200λ0 betweenva
uum and plasma. The density plateaus (n0 = 0.3nc) are 200λ0 (green), 240λ0(blue) and 280λ0 (red) long with 4200λ0, 5000λ0 and 3600λ0 of va
uum betweenthe layers respe
tively. The density pro�le for the 240λ0 long plateaus (blue 
urve)with 5000λ0 between the layers is shown in bla
k.
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Figure 6.15: Spotsize evolution for the simulations shown in Fig. 6.14.6.3.2 In
reasing the initial pulse spot sizeAnother strategy to allow for an easier 
ontrol of the �lamentation is to in
rease ofthe initial spot size. Without a 
orresponding in
rease in the amount of va
uum, awider pulse is fo
used less strongly and is thus less 
lose to 
ollapse (Fig. 6.18). For asu�
iently large in
rease in spot size, the length of the va
uum se
tions 
an be in
reased,too, without being again 
lose to the 
ollapse of the pulse. This allows a more thoroughshedding of the unstable modes and very good suppression of the instability (Fig. 6.19).If the amplitude of the pulse is in
reased as well, e.g. to a0 = 0.14 , �lamentation
ontrol be
omes mu
h more simple, be
ause pulse amplitude and length determine the108
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0Figure 6.16: Amplitude evolution for a0 = 0.1, L0 = 10λ0, W0 = 150λ0. Two layers (n0 =

0.3nc) of 375λ0 and 80λ0 length respe
tively, with 24000λ0 va
uum in between.Unperturbed simulation run in bla
k, two runs with 0.5% perturbation (blue) and tworuns with 1% perturbation (red), see text for details. Left: full simulation domain.Right: se
ond layer only.plasma length ne
essary for maximum longitudinal 
ompression. If the layers are veryshort, the instability has only a short time to develop, too. De
reasing the pulse length
an have the same e�e
t (as long as the pulse power is above the 
ompression threshold),but this redu
es the a
hievable intensity and is limited by the laser hardware. For ashort and intense pulse, e.g. a0 = 0.14 and L0 = 10 λ0, whi
h rea
hes full longitudinal
ompression after only 230 λ0 of plasma, a small in
rease in spot size from W0 = 150λ0to W0 = 180λ0 is already su�
ient for stable pulse propagation. For this parameters�lamentation 
ontrol is possible with only two layers (Fig. 6.20). Very high intensitiesof |a|2 ∼ 1.5 
an be rea
hed in this way. A spot size of W0 = 200λ0 allows for enoughva
uum to use three layers (Fig. 6.21). This redu
es the strength of the instability inthe �rst (now shorter) layer and results in an even higher maximum intensity.Control of the �lamentation be
omes in
reasingly di�
ult for longer pulses. Theindividual layers are mu
h longer and thus the instability has more time to develop.The amplitude of a long pulse 
an not be in
reased to 
ompensate for this in the sameway as it is possible for a shorter pulse. Intensities would be
ome too large before thepulse length has de
reased to the desired value and a large part of the pulse energywould be transferred to the plasma.1 Even for a large initial spotsizes of W0 = 250λ0and a su�
ient amount of va
uum between the layers, reliable �lamentation 
ontrol 
annot be a
hieved for a pulse of a0 = 0.1 and L0 = 20 λ0 with three layers (Fig. 6.22 andFig. 6.23), be
ause the layers are too long for stable propagation. In
reasing the numberof layers to four would ne
essitate a mu
h larger initial spotsize to a

ommodate for theadditional va
uum se
tion and/or using one very long va
uum se
tion. Both measuresin
rease the 
omputational 
ost to a level that makes a parameter optimization of su
h1This 
onsideration of 
ourse only applies if the aim is to generate a pulse that is as short as possibleand not to simply maximize intensity. 109
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0Figure 6.17: Amplitude evolution for a0 = 0.1, L0 = 10λ0, W0 = 150λ0. Three layers (n0 =

0.3nc) of 225λ0, 120λ0 and 80λ0 respe
tively, with 2000λ0 and 22000λ0 va
uum inbetween. Unperturbed simulation run (bla
k), two 0.5% perturbation runs (blue), two
1% perturbation runs (red). Left: full simulation domain. Right: third layer only.
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Figure 6.18: Amplitude evolution for a0 = 0.1, L0 = 10λ0, W0 = 200λ0. Three layers (n0 =
0.3nc) of 225λ0, 140λ0 and 60λ0 respe
tively, with 1500λ0 and 2100λ0 va
uum inbetween. Unperturbed simulation run (bla
k), two 0.5% perturbation runs (blue), two
1% perturbation runs (red).

a system unattra
tive as long as other options exist. Instead, the individual layers
an be slightly shortened to redu
e the strength of the pulse 
ompression and alsothe time for the instability to develop. This 
omes at the pri
e of a redu
ed maximumintensity (Fig. 6.24 and Fig. 6.25) and an in
rease of the minimum spotsize, but withouta signi�
ant in
rease in the minimum pulse length.110
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Figure 6.19: Amplitude evolution for a0 = 0.1, L0 = 10λ0, W0 = 250λ0. Three layers (n0 =
0.3nc) of 225λ0, 140λ0 and 60λ0 respe
tively, with 2000λ0 and 3000λ0 va
uum inbetween. Unperturbed simulation run (bla
k), two 0.5% perturbation runs (blue), two
1% perturbation runs (red).
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Figure 6.20: Amplitude evolution for a0 = 0.14, L0 = 10λ0, W0 = 180λ0. Two layers (n0 =
0.3nc) of 180λ0 and 50λ0 respe
tively, with 3000λ0 va
uum in between. Unperturbedsimulation run (bla
k), two 0.5% perturbation runs (blue), two 1% perturbation runs(red).6.3.3 Redu
ing the initial pulse amplitudeIn experiments it might not be possible to redu
e the length of the individual plasmalayers below a 
ertain value that is still too large for stable pulse propagation. In this
ase the strategies dis
ussed above are not appli
able. The only possibility might thenbe to redu
e the initial pulse amplitude. For the simulations of two gasjets we alreadyhad to use a lower amplitude than for other plasma 
on�gurations, even without pulseperturbations. This improves 
ontrol of the instability as well. For the gasjet 
on�gura-tion with density plateaus of 200 λ0, the �lamentation is kept well in 
ontrol (Fig. 6.26).111
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Figure 6.21: Amplitude evolution for a0 = 0.14, L0 = 10λ0, W0 = 200λ0. Three layers (n0 =
0.3nc) of 120λ0, 80λ0 and 30λ0 respe
tively, with 1500λ0 and 2100λ0 va
uum inbetween. Unperturbed simulation run (bla
k), two 0.5% perturbation runs (blue), two
1% perturbation runs (red).
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Figure 6.22: Amplitude evolution for a0 = 0.1, L0 = 20λ0, W0 = 250λ0. Three layers(n0 = 0.3nc) of 300λ0, 170λ0 and 50λ0 length respe
tively. Two di�erent va
uum
on�gurations, 1200λ0/ 2400λ0 in red and 2400λ0/1200λ0 in blue. Solid 
urves forunperturbed simulation runs, dashed and dash-dotted 
urves for 1% perturbation runs.Although there is a visible redu
tion in maximum intensity, the losses are still tolerable.In simulations with longer plateau se
tions of 240 λ0, where a higher maximum inten-sity is rea
hed, the losses stay only in an a

eptable range for the perturbation with arelative amplitude of 0.005 (Fig. 6.27 and Fig. 6.28).
112
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Figure 6.23: Same simulation parameters as shown in Fig. 6.22, but for 0.5% perturbation.
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Figure 6.24: Amplitude evolution for a0 = 0.1, L0 = 20λ0, W0 = 250λ0. Three layers (n0 =
0.3nc) of 280λ0, 150λ0 and 50λ0 respe
tively, with 1200λ0 and 2400λ0 va
uum inbetween. Unperturbed simulation run (bla
k), two 0.5% perturbation runs (blue), two
1% perturbation runs (red).
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Figure 6.25: Amplitude evolution for a0 = 0.1, L0 = 20λ0, W0 = 300λ0. Three layers (n0 =
0.3nc) of 290λ0, 160λ0 and 50λ0 respe
tively, with 2000λ0 and 3000λ0 va
uum inbetween. Unperturbed simulation run (bla
k), two 0.5% perturbation runs (blue), two
1% perturbation runs (red).
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uum between the layers. Pulse parametersare a0 = 0.08, L0 = 20λ0 and W0 = 250λ0. Unperturbed simulation run in bla
k.Left: four 1% perturbation runs (red). Right: four 0.5% perturbation runs (blue).
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0Figure 6.27: Amplitude evolution for two layers with linear transition regions of 200λ0 and a plateauof 240λ0 (n0 = 0.3nc) with 4200λ0 va
uum between the layers. Pulse parametersare a0 = 0.08, L0 = 20λ0 and W0 = 250λ0. Unperturbed simulation run in bla
k.Left: two 1% perturbation runs (red). Right: two 0.5% perturbation runs (blue).
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uum between the layers. Pulse parametersare a0 = 0.08, L0 = 20λ0 and W0 = 250λ0. Unperturbed simulation run in bla
k.Left: two 1% perturbation runs (red). Right: two 0.5% perturbation runs (blue).
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7 Con
lusionIn the present work we studied the question wether a laser pulse 
an be e�
iently 
om-pressed in both the longitudinal and transversal dire
tions by means of the relativisti
nonlinear self-intera
tion inside of a plasma. For this purpose we derived two 
oupledequations for the ve
tor potential of the laser and the ele
tron density perturbation
aused by the laser pulse. These equations are valid in the weakly relativisti
 param-eter regime. Only for weakly relativisti
 intensities, e�
ient pulse 
ompression withlow energy losses is possible. With further assumptions the 
ubi
 nonlinear S
hrödingerequation (NLSE) 
an be derived from these equations. Analyti
al models based on theNLSE allow to 
al
ulate the power thresholds for self-
ompression in the longitudinaland transversal dire
tion, by means of the variation-of-a
tion method (VAM). We 
on-
lusively showed that only pulses that are in both the longitudinal and the transversaldire
tion dire
tly at the 2D (or 3D) threshold, obey this threshold. Any pulse thatfor one dire
tion is 
learly above the threshold, obeys the 1D threshold for the otherdire
tion instead. We also showed that while the thresholds are su�
iently a

urate,the pulse dynami
 is not well des
ribed by a VAM that pres
ribes a Gaussian pulseshape. A distin
t dependen
e of the transversal shape on the longitudinal 
oordinateand vi
e versa is visible in simulations both inside the plasma (stronger 
ompression onaxis, 
hapter 4) and after the pulse has left the plasma (stronger transversal fo
using ofthe pulse 
enter, 
hapter 5).Thus it is indispensable to study the pulse dynami
s by means of numeri
al sim-ulations. We developed numeri
al s
hemes with high a

ura
y and e�
ien
y for one(
hapter 3) and two (
hapter 4) dimensions. This was a
hieved by 
ombining Gauts
hi-type exponential integrators with other means like splitting the linear operator of thewave equation and the quasi-envelope approa
h (QEA). With these methods, it is pos-sible to handle the fast temporal and spatial dependen
e of the solutions e�e
tively.Spe
ial attention was given to tailor the s
heme to the di�erent se
tions of the simula-tion domain, i.e. plasma and va
uum se
tions and transition regions. In 2D, the parallelimplementation of this integrator s
ales well with the number of pro
essors.Numeri
al simulations were used to study the longitudinal pulse 
ompression in 1Dfor a wide range of pulse and plasma parameters. This 
on�rmed the result from [59℄that e�
ient 
ompression without high energy losses to the plasma is limited to weaklyrelativisti
 intensities and densities above 0.25nc to avoid Raman instability. In 2D theintera
tion between longitudinal and transversal 
ompression and its dependen
e on theinitial length and spot size of the pulse was examined. Here the result was that, fora 
ontrolled longitudinal 
ompression, the spot size of the pulse has to be mu
h largerthan its length. Otherwise the pulse will dire
tly start to 
ollapse, a behavior whi
heventually o

urs for wider spot sizes, too, but only after a mu
h longer propagation116



in plasma than needed for optimal longitudinal 
ompression. We also showed thatthe 
ompression in the longitudinal and transversal dire
tions is strongly 
oupled evenbefore the pulse starts to 
ollapse. The faster dire
tion (smaller initial length or width)essentially enslaves the 
ompression dynami
s of the slower dire
tion (larger initial lengthor width).Due to the additional degree of freedom in 2D, the pulse 
an develop new types ofinstabilities 
ompared to 1D. These where dis
ussed in 
hapter 4. Be
ause of the lownoise properties of the numeri
al methods we used, ea
h instability 
ould be triggeredindependently of the others by applying an appropriate initial perturbation to the pulse.The most important one, with respe
t to e�
ient pulse 
ompression, is the transversal�lamentation instability. Be
ause a pulse whi
h shows longitudinal 
ompression andhas a wide spot size is several times above the transversal self-
ompression threshold,individual �laments 
an self-fo
us and ultimately 
ollapse. This leads to large energylosses due to strong plasma ex
itations and heating. Analyti
al results exist only forthe transversal stability of soliton solutions and show a dependen
e of the �lamentationwavelength on the pulse length. The analyti
al predi
tions for the most unstable wave-length were veri�ed numeri
ally. Additionally, for the �rst time the relation between the�lamentation wavelength and pulse length was studied numeri
ally for a longitudinally
ompressing pulse. During the 
ompression the spe
trum of the unstable modes shiftstowards shorter wavelengths. The shortest possible �lamentation wavelength given bythe minimal pulse length is only rea
hed for slowly 
ompressing pulses. We also demon-strated that the shape and time evolution of the unstable spe
trum is nearly the samefor a soliton like and a Gaussian pulse shape, as long as their longitudinal half width isthe same.We also studied the propagation of the pulse from plasma to va
uum and how thistransition 
an be des
ribed analyti
ally, as well as the pulse propagation in va
uum.While in 1D the pulse shape stays un
hanged during propagation in va
uum, in 2Dthe pulse 
an either fo
us or defo
us. Be
ause the plasma indu
es a negative 
urvatureon the phase front of the pulse, the pulse fo
uses behind the plasma layer similar to a
lassi
al lens. This further in
reases the amplitude and redu
es the spot size of the pulse.We showed that the fo
using behavior di�ers from the well known Gaussian beam. Thedi�eren
e in
reases with the length of the plasma layer and rea
hes a maximum for thefully 
ompressed pulse. We demonstrated that the fo
al length and minimum spot sizeof an initially very wide pulse 
an be predi
ted by the simulation of a pulse with a mu
hsmaller initial spot size. For pulses that developed transversal �lamentation inside theplasma, detailed simulations of the propagation of unstable modes in va
uum relativeto the main pulse were performed. The di�eren
e in propagation of short wavelength(belonging to the instability) and long wavelength transversal modes (belonging to themain pulse) is the key to 
ontrol transversal �lamentation.Combining the results from pulse 
ompression in plasma, transversal fo
using, andshedding of unstable modes in va
uum, we demonstrated that a strati�ed plasma-va
uum stru
ture 
an not only be used to 
ontrol transversal �lamentation, as in [59℄. It
an also signi�
antly in
rease the maximum intensity of the 
ompressed pulse through117



7. Con
lusionenhan
ed transversal fo
using. This was tested for a wide variety of pulse parametersand plasma 
on�gurations. The intensity 
an be in
reased hundredfold in this way, withex
ellent 
ontrol of transversal �lamentation. Relativisti
 intensities in the fo
al spot ofthe last layer are possible, while still being subrelativisti
 inside the plasma. For plasma
on�gurations that are possible in 
urrent gasjet experiments, the peak intensities areless high and transversal �lamentation is less well 
ontrolled. The results are still veryen
ouraging as they show the real world appli
ability of layered pulse 
ompression thatwill only in
rease with advan
es in experimental 
on�gurations.
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A VAM model for pulse
ompression in 2DThe 
ubi
 nonlinear S
hrödinger equation in 
ylindri
al geometry is
i
∂

∂ζ
a +

1 − β2

2β3

∂2

∂τ 2
a+

1

2β

1

r

∂

∂r
r
∂

∂r
a +

1 − β2

4β
|a|2 a = 0 . (A.1)The Lagrangian density of this equation is

L = i β(a ∂ζa
∗ − a∗∂ζa) +

1 − β2

β2
(∂τa)(∂τa

∗) + (∂ra)(∂ra
∗) − 1 − β2

4
|a|4 . (A.2)As the ansatz for the trial fun
tion, we use

a(r, τ, ζ) =
A(ζ)W0

√
T0

W (ζ)
√
T (ζ)

e−iφ(ζ) ei η(ζ) τ2

e
− τ2

T (ζ)2 e
iβ r2

2 R(ζ)2 e
− r2

W (ζ)2 , (A.3)where η is the linear 
hirp and R the radius of transversal 
urvature. This is an exa
tsolution to the linear version of (A.1), valid for a purely dispersive medium.The Lagrangian is then de�ned as
L =

∫

R2

dτ dr rL . (A.4)Note that to re
over the S
hrödinger equation from this Lagrangian density, the variationhas to be done under the integral, to in
lude the fa
tor r from the Ja
obian determinant.Inserting the test fun
tion and performing the integration in (A.4) results in
L =

2(1 − β2)

β2

E2

T 2
− 1 − β2

4
√

2

E4

T W 2
+

2(1 − β2)

β2
E2 T 2 η2 (A.5)

− β2E
2W 2

R2
(R′ − 1) + 4

E2

W 2
+ β E2(T 2 η′ − 4φ′) ,where E(ζ) = A(ζ)W0

√
T0 is proportional to the pulse energy.As all 
olle
tive 
oordinates only depend on ζ , variation of the a
tion with respe
t tothem will yield ordinary di�erential equations. The variation with regard to one of the
olle
tive 
oordinates is de�ned as

δL[q, qζ ] = ∂qL− ∂ζ
∂

∂qζ
L (A.6)119



A. VAM model for pulse 
ompression in 2Dwhere qζ denotes the derivative of q with respe
t to ζ .From varying for φ we get E ′ = 0, thus E(ζ) = E0 and
A(ζ) = A0 (A.7)Varying L with respe
t to R gives the simple relation
W ′ =

W

R
(A.8)Di�erentiating this relation with respe
t to ζ yields

R′ − 1 = −R
2

W
W ′′ (A.9)Varying L with respe
t to R results in

R′ − 1 =
4

β2

R2

W 4

{
1 − β2

16
√

2

E2

T
− 1

} (A.10)Combining the two equations for R′, we get
W ′′ = − 4

β2

1

W 3

{
1 − β2

16
√

2

E2

T
− 1

} (A.11)Sin
e W ′′ has to be negative for transversal 
ompression, we immediately get the 
om-pression threshold
(1 − β2)A2

0W
2
0 ≥ 16

√
2 . (A.12)Varying L with respe
t to η results in

T ′ =
1 − β2

β3
T η (A.13)Di�erentiating with respe
t to ζ and solving for η′ yields

η′ =
β2

1 − β2

{
T ′′

T
− (T ′)2

T 2

} (A.14)Varying L with respe
t to T gives a se
ond equation for η′
η′ = −2(1 − β2)

β3
η2 − 2(1 − β2)

β3

1

T 4

{
β2

16
√

2

E2 T

W 2
− 1

} (A.15)Both equations for η′ 
ombined yield
T ′′ = −4(1 − β2)2

β6

1

T 3

{
β2

16
√

2

E2 T

W 2
− 1

}
. (A.16)120



This gives us a threshold for the longitudinal 
ompression
β2A2

0 T
2
0 ≥ 16

√
2 , (A.17)by the same argument as in the 
ase of the transversal 
ompression. To derive the samedi�erential equations for T and W in a 2D Cartesian geometry, where the NLSE hasthe form

i
∂
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2β3

∂2
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1

2β

∂2
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|a|2 a = 0 , (A.18)we use a similar test fun
tion

a(r, τ, ζ) =
A(ζ)

√
W0 T0√

W (ζ)T (ζ)
e−iφ(ζ) ei η(ζ) τ2

e
− τ2

T (ζ)2 e
iβ x2

2 R(ζ)2 e
− x2

W (ζ)2 , (A.19)and a Lagrangian density of the same form as for 
ylindri
al geometry, but with rsubstituted for x and
L =

∫

R2

dτ dxL . (A.20)This yields
L =

2(1 − β2)

β2

E2

T 2
+

2(1 − β2)

β2
E2 T 2 η2 − β2E2W

2R2
(R′ − 1) (A.21)

− (1 − β2)
E4

4 T W
+

2E2

W 2
+ β E2(T 2 η′ − 4φ′) .In this 
ase E(ζ) = A(ζ)

√
W0 T0.Again from varying for φ we get E(ζ)′ = A(ζ)′ ≡ 0. The equations from varying for

η and R are un
hanged from the 
ylindri
al 
ase. Combined with the equations fromvariation of T and W respe
tively we have
T ′′ = −4(1 − β2)2

β6

1

T 3

{
β2

16

E2 T

W
− 1

} (A.22)and
W ′′ = − 4

β2

1

W 3

{
1 − β2

16

E2W

T
− 1

}
, (A.23)whi
h results in the same form of the thresholds (be
ause here E0 = A0

√
W0 T0), but adi�eren
e of fa
tor √2 in the threshold values.
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B Transversal �lamentationinstabilityB.1 Stationary solution of the 
ubi
 nonlinear waveequationWe derive the stationary solution of the equation
∂2

∂t2
a(z, t) − ∂2

∂z2
a(z, t) = −n0

nc

(
1 − 1

2
|a(z, t)|2

)
a(z, t) , (B.1)i.e. the solution that is 
onstant in shape in the frame 
omoving with the group velo
ity.We use the ansatz

as(z, t) = g(ζ = z − vs t)e
i ks z−i ωs t . (B.2)Inserting (B.2) in (B.1) and dividing by the phase fa
tor results in

v2
sg

′′ + 2iωsvsg
′ − ω2

sg − g′′ − 2iksg
′ + k2

sg = −n0

nc

(
1 − 1

2
g2

)
g , (B.3)where the prime denotes derivation with respe
t to the 
omoving 
oordinate ζ = z−vs t.Assuming ks = vsωs, whi
h is 
onsistent with the linear plasma dispersion relationfor v2

s = 1 − n0/nc, simpli�es this to
v2

sg
′′ − ω2

sg − g′′ + v2
sω

2
sg = −n0

nc

(
1 − 1

2
g2

)
g . (B.4)Using n0/nc = 1 − v2

s and the de�nition η2 = 1 − ω2
s , (B.4) 
an be transformed into

n0

nc

g′′ − n0

nc

η2g = −1

2

n0

nc

g3 . (B.5)The substitution ξ = ηζ and a res
aling of the amplitude g → η g �nally yields
g′′ = (1 − 1

2
g2)g . (B.6)It is easy to verify that this equation has a solution of the form

gs(ζ) = 2η sech(η ζ) , (B.7)where we reintrodu
ed the fa
tor η from the last substitutions.By using the relation between ks and ωs, we arrive at the full time-dependent solution
as(ζ) = 2η sech(η ζ)ei

√
1−η2(vs ζ−(1−v2

s )τ) . (B.8)122



B.2. Growth rate of the instabilityB.2 Growth rate of the instabilityTo investigate the growth rate of transversal perturbations for 1D soliton solution of theNLSE, we use the following ansatz fun
tion
a(z, x, τ) = 2η(z, x)e−iφ(z,x)sech(η(z, x)βτ) . (B.9)The Lagrangian for the 2D NLSE in Cartesian 
oordinates 
onsists of four parts. Inser-tion of the ansatz fun
tion into ea
h part yields

L1 = iβ
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)2

− 2β
∂

∂z
φ = (1 − β2)η2 +

12 + π2

36

[
2
∂2

xη

η
− (∂xη)

2

η2

]
, (B.12)varying for φ

∂

∂φ
L̄ − ∂

∂z

(
∂

∂ ∂φ
∂z

L̄
)

− ∂

∂x

(
∂

∂ ∂φ
∂z

L̄
)

= 0 123



B. Transversal �lamentation instabilityyields
β
∂

∂z
η =

∂

∂x

(
η
∂

∂x
φ

)
. (B.13)To study the transversal stability, we linearize around the 1D soliton with η0 = const.and φ0 = φ0(z)

η(z, x) = η0 + δη(z, x) (B.14)
φ(z, x) = φ0(z) + δφ(z, x) . (B.15)From (B.12) we get the zeroth-order equation for φ
∂

∂z
φ0(z) = −(1 − β2)

2β
η2

0 . (B.16)The �rst-order equation is
∂

∂z
δφ = −(1 − β2)

β
η0δη −

(12 + π2)

36βη0

∂2

∂x2
δη(z, x) , (B.17)where we already substituted ∂zφ0 from (B.16).From (B.13) we get an equation for δη

β
∂

∂z
δη = η0

∂2

∂x2
δφ . (B.18)Di�erentiating this equation with respe
t to z and subsituting ∂zδφ from (B.17) resultsin

∂2

∂z2
η(z, x) = −(1 − β2)

β2
η2

0

∂2

∂x2
δη(z, x) − (12 + π2)

36β2

∂4

∂x4
δη(z, x) . (B.19)By inserting δη = eikxx−iωz/β we get for the dispersion relation

ω2 = −n0

nc
η2

0k
2
x

(
1 − nc

n0

(12 + π2)

36

k2
x

η2
0

)
. (B.20)This implies that we get instability for

k2
x <

n0

nc

36

(12 + π2)
η2

0 . (B.21)Two transversal dimensions (x, y) 
hange only the Lapla
e operator in (B.19) to ∂2

∂x2 + ∂2

∂y2 .Thus the dispersion relation has the same form as (B.20) with k⊥ =
√
k2

x + k2
y insteadof only kx.In 
ylindri
al geometry equation B.19 be
omes

∂2

∂z2
η = −(1 − β2)

β2
η2

0

(
∂2

∂r2
+

1

r

∂

∂r

)
δη − (12 + π2)

36β2

(
∂2

∂r2
+

1

r

∂

∂r

)2

δη . (B.22)The radial Lapla
e operator is diagonalized by Bessel fun
tions of �rst kind and orderzero with
∆rJ0(krr) =

(
∂2

∂r2
+

1

r

∂

∂r

)
J0(krr) = −k2

rJ0(krr) . (B.23)For a transversal perturbation of this form the dispersion relation is again the same asin (B.20) with k⊥ = kr.124



C 3D instabilitiesWe here rederive for 
ir
ular polarization the growth rates of the instabilities dis
ussed in[14℄ for linear polarization. The nonlinear S
hrödinger equation in a frame that 
omoveswith c is (
∇2

⊥ − 2iβ
∂

∂ζ

)
a = (1 − φ)a (C.1)

(
∂2

∂τ 2
+ 1

)
φ =

|a|2
2

(C.2)
oupled with the equation for the potential φ = n1
e−|a|2/2, where n1

e = ne−n0
e. Here ωpand ωp/c were used for time and spa
e normalization. Note that this leads to an impli
itdependen
e of lengths and times on the plasma density, 
ompared to a normalizationwith ω0 and ω0/c where n0/nc is in
luded expli
itly.The Lagrangian density for these equations is

L =∇⊥a · ∇⊥a
∗ − i β(a ∂ζa

∗ − a∗∂ζa) (C.3)
− (∂τφ)2 + φ2 + (1 − φ)|a|2We de�ne the shortened Lagrangian L̄ as the integral over the perpendi
ular 
oordinates

L̄ =

∫

R2

dr⊥L (C.4)For the test fun
tions the following ansatz is used
a(τ, ζ) =A(τ, ζ) ei kx(τ,ζ)x̃a ei ky(τ,ζ)ỹa (C.5)

× exp

(
−[1 − i α(τ, ζ)]

x̃2
a

wxa(τ, ζ)2

)

× exp

(
−[1 − i α(τ, ζ)]

ỹ2
a

wya(τ, ζ)2

)

φ(τ, ζ) =Φ(τ, ζ) exp

(
−2

x̃2
φ

wxφ(τ, ζ)2

)
exp

(
−2

ỹ2
φ

wyφ(τ, ζ)2

)
. (C.6)with the de�nitions

x̃a = x− xa(τ, ζ)

ỹa = y − ya(τ, ζ)

x̃φ = x− xφ(τ, ζ)

ỹφ = y − yφ(τ, ζ)

A(τ, ζ) =
√
ξ(τ, ζ) ei χ(τ,ζ) 125



C. 3D instabilitiesThis ansatz in
ludes variations in the amplitude A, shifts of the beam and wake�eld
entroids (xa, ya) and (xφ, yφ) as well as variations of the beam spot size.The variation of L̄ is de�ned as
δL̄[q, qτ , qζ ] =

{
∂q − ∂τ

∂

∂qτ
− ∂ζ

∂

∂qζ

}
L̄ (C.7)where the subs
ript of q denotes the 
orresponding derivative.Varying L̄ with respe
t to αx, αy, kx, ky, χ yields the relations

αx = −β
4
∂ζ(w

2
xa) (C.8)

αy = −β
4
∂ζ(w

2
ya) (C.9)

kx = −β∂ζxa (C.10)
ky = −β∂ζya (C.11)

∂ζP = 0 (C.12)with P = A2wxawya. This relations redu
e the number of variables by �ve.To obtain an equilibrium solution for the linear stability analysis, we set wxa = wya ≡
wa, wxφ = wyφ ≡ wφ, xa = ya = xφ = yφ ≡ 0 and all derivatives with respe
t to τ tozero. This yields

wa =wφ (C.13)
Φ =

P

2w2
a

(C.14)
∂2

ζwa = − 4

β2w3
a

(
P

16
− 1

)
. (C.15)From this follows the self 
ompression threshold for the beam

A2
0 w

2
0 = P0 ≥ Pc = 16 (C.16)and the zeroth order solution
P0 = Pc (C.17)
wa = w0 (C.18)
Φ0 =

P0

2w0
(C.19)around whi
h we will expand the Lagrangian. The threshold value is smaller by a fa
torof two than for linear polarization.126



To simplify the resulting equations, we de�ne
w̄a =

wxa1 + wya1

2
(C.20)

w̄φ =
wxφ1 + wyφ1

2
(C.21)

∆wa =
wxa1 + wya1

2
(C.22)

∆wφ =
wxφ1 + wyφ1

2
. (C.23)We now vary the expanded L̄ with respe
t to the �rst order quantities. The expansionin the �rst order quantities q1 = q−q0 has to be done to se
ond order in the perturbationparameter.Varying with respe
t to xa1 and xφ1 results in the equations for the hosing instability

∂2
ζxa1 +

P

Pc

1

x2
R

xa1 =
P

Pc

1

x2
R

xφ1 (C.24)
(
∂2

τ + 1
)
xφ1 = xa1 (C.25)The equations for ya1 and yφ1 are identi
al.Varying for w̄a and Φ1 yields

(
∂2

τ + 1
)(

Φ1 +
8

w3
0

P

Pc

w̄φ

)
= − 8

w3
0

P

Pc

w̄a (C.26)
(
∂2

τ + 1
)(

Φ1 +
16

w3
0

P

Pc
w̄φ

)
= 0 (C.27)Varying for w̄φ and 
ombining the equations from w̄a and Φ1 leads to the equations forthe symmetri
 self-modulation instability

[
∂2

ζ +
1

x2
R

(
3 − P

Pc

)]
w̄a = − w3

0

8 x2
R

φ1 (C.28)
(
∂2

τ + 1
)
φ1 = − 16

w3
0

P

Pc
w̄a (C.29)

(
∂2

τ + 1
)
w̄φ = w̄a . (C.30)The equation for w̄φ is de
oupled from the other two equations and thus takes onlypassively part in the instability.The equations for asymmetri
 spot size self-modulation result from varying with re-spe
t to ∆wa and ∆wφ

(
∂2

ζ +
3

x2
R

)
∆wa =

P

Pc

1

x2
R

∆wφ (C.31)
(
∂2

τ + 1
)
∆wφ = ∆wa (C.32)127



C. 3D instabilitiesDespite using 
ir
ular instead of linear polarization, and thus having a stronger nonlin-earity for the same a0, these equations are identi
al to the equations in [14℄.The general form of the the equations for the three types of instabilities is
(
∂2

ζ + Γ1

)
f = Γ2h (C.33)

(
∂2

τ + 1
)
h = Γ3f , (C.34)Fourier mode analysis with f, g ∼ eikζ−iωτ and 
al
ulating the se
ular determinant yieldsthe dispersion relation

ω2k2 + Γ1(1 − ω2) − k2 + Γ1 − Γ2Γ3 = 0 . (C.35)Sin
e ω and k are measured in a 
omoving frame, we have to do the inverse transformto obtain the dispersion relation in the laboratory frame for ω′ = ω and k′ = ω′ + k. Ifwe further assume that the relation between k′ and ω′ is mostly linear with only smalldeviations, so that ω′ = k′ + g we get
g4 + 2 g3 k′ + g2 k′ 2 − Γ1(g

2 + 2 g k′ + k′ 2) − g2 + Γ1 − Γ2Γ3 = 0 , (C.36)where k′ is real and g is small and 
omplex.The maximum value for the growth rate Im(ω) = Im(g) is attained for k′ = 1, be
auseat this value the resonan
e with the plasma wake o

urs. By setting g = 0 we get
k′ =

√
Γ1 − Γ2Γ3

Γ1
(C.37)for the 
ut-o� value, above whi
h instabilities 
an not o

ur.In [14℄ the growth rate for the short wavelength regime around k′ = 1 is argued to be

g =

(
Γ2Γ3

2

) 1
3 −1 ±

√
3i

2
(C.38)by 
onsidering Γ1 ∼ Γ2Γ3 ∼ 1

x2
R

= ε2 and g ∼ ε. For k′ = 1 the 
onstant term in (C.36) oforder ε2 then has to be balan
ed by the lowest order terms that 
ontain g. In
onsistentlythey negle
t 2 γ1g ∼ ε3 and only use the term that is 
ubi
 in g to 
al
ulate the growthrate (although the 
orre
tion due to the linear term should be small).For the long wavelength regime, that is not driven by the resonan
e with the wake�eld,but instead mostly by the relativisti
 mass nonlinearity alone, we have k′ ∼ ε. Thebalan
ing then is between the 
onstant term and the term quadrati
 in g
g = i

√
Γ2Γ3 − Γ1 . (C.39)This only gives us a 
ondition for the o

urren
e of the long wavelength regime, namelythat Γ2Γ3 ≥ Γ1, but not the desired relation between g and k′. By plotting the fulldispersion relation, we see that for long wavelength the relation is nearly linear. Theonly possibility then is

g = i
√

Γ1k
′ . (C.40)128
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