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1
S U M M A RY

Cells are the building blocks for all living organisms on earth. In
each cell, a complex network of biochemical reactions facilitates cellu-
lar metabolism, which is crucial for many biological functions. Meta-
bolic network models are powerful tools that allow the simulation
of cellular metabolism and can thus provide fundamental mecha-
nistic insights. For example, metabolic network models can be used
to predict environment-dependent growth rates, various phenotypic
states under different cultural conditions, and the flow of metabo-
lites through the metabolic reaction network [1]. Predicting more de-
tailed quantities like optimal metabolite and enzyme concentrations
or substrate-level regulatory mechanisms requires to incorporate in-
formation about enzyme kinetic parameters [2]. Unfortunately, even
for model organisms, experimentally measured kinetic parameters
are not available for the vast majority of enzymatic reactions [3, 4].
Prediction methods for kinetic parameters could help to overcome
this issue, but previously developed methods can either be only ap-
plied to a small subset of enzymatic reactions [5, 6], lead to unreal-
istic values that are largely uncoupled from the true kinetic param-
eters [7–9], or they provide inaccurate predictions for enzymes that
are not highly similar to proteins with measured kinetic parameters
[10]. However, not only missing kinetic parameters but also missing
functional information for enzyme-encoding genes lead to knowl-
edge gaps in metabolic networks. Even in model organisms, large
fractions of genes do not have high-quality functional annotations
[11]. One the one hand, this can lead to important reactions missing
in metabolic networks, and on the other hand, many reactions cannot
be associated with the catalyzing enzyme.

In this thesis, I aim to overcome the issues of missing enzyme
kinetic parameters and of not yet annotated enzymes with the use
of machine and deep learning models. I developed the first general
prediction model for the Michaelis-Menten constant KM. The result-
ing model is applicable to any natural enzyme-substrate pair and
achieves a coefficient of determination R2 = 0.53 on a test set. More-
over, I developed a general model for predicting enzyme turnover
numbers kcat for natural reactions of wild-type enzymes. The model
outperforms previously developed prediction models and achieves a
coefficient of determination R2 = 0.40 on a test set. To predict the
function of not yet fully annotated enzymes, I developed a general
model for predicting the substrate scopes of enzymes. The resulting
model generalizes well even to enzymes that are not highly similar to
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2 summary

enzymes in the training set, and it achieves an accuracy of over 91%
on a test set.

To develop these general prediction models, it was necessary to cre-
ate maximally informative numerical representations of the proteins
and the small molecules relevant for the downstream prediction tasks.
This was achieved by using and modifying state-of-the-art deep learn-
ing methods for converting the linear protein amino acid sequences
and the structures of the small molecules into numerical vectors. For
all of the developed prediction models, we only used input infor-
mation that is easily accessible, which makes the prediction models
broadly applicable.



2
I N T R O D U C T I O N

2.1 using mathematical models to gain insights into

cellular metabolism

Cells are the basic structural units for all living organisms on earth.
Complex organisms such as Homo sapiens consist of ∼37 trillion eu-
karyotic cells, whereas the simplest and smallest living organisms,
bacteria and archaea, consist of only a single prokaryotic cell. Even
those unicellular microorganisms, which typically have a size of only
approximately 1µm, are highly complex. For example, tiny prokary-
otic cells can contain millions of copies of a few thousand different
complex molecular machineries, the proteins [12, 13].

The fastest growing bacteria can replicate themselves in under 10

minutes [14]. To achieve such high growth rates, the bacterial organ-
isms must produce all components of a cell, including the cell mem-
brane, the genome, the ribosomes, and the proteins, with an incred-
ible speed. All of these complex components are often synthesized
by utilizing a single carbon source, such as small glucose molecules,
which are imported into the cell by transport proteins. Starting from
small molecules as the only available resource, how do cells manage
to synthesize these enormous amounts of various large molecules
within such a short time span? The metabolism of cells consists of
huge numbers of interconnected pathways that together form large
metabolic networks. Enzymes, which are proteins that catalyze chem-
ical reactions, play a crucial role in these networks. In metabolic path-
ways, enzymes catalyze a sequence of chemical reactions, in which
the product of one reaction serves as the substrate for the following
reaction. Thereby enzymes fulfill two important functions. On the one
hand, they accelerate reaction rates up to a million-fold [15], while on
the other hand, they favour desired reactions, such that mainly me-
tabolites are produced that are relevant for the cellular metabolism.
Thus, only little energy is wasted by molecules that become reactants
in irrelevant or even harmful reactions [16–19].

To achieve a fundamental understanding of life, it is necessary to
gain detailed insights into the basic processes of living organisms,
the metabolism of cells. Moreover, deepening the understanding of
cellular metabolism can have an impact on many different research
areas. For example, it can help treating diseases by identifying poten-
tial drug targets and by identifying potential side effects of drugs [20–
23], or it can aid the production of molecules, e.g., substances that are
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4 introduction

required for the production of food, biofuels, and pharmaceuticals
[24–26].

In recent years, many different mathematical models that aimed
to simulate the highly complex metabolism of cells have been devel-
oped. However, obtaining mechanistic insights such as understand-
ing environment-dependent growth rates and proteome allocations of
cells remains a major problem in biology. In the following subsection,
I will give a short overview about existing approaches for modelling
cellular metabolism, and I am going to discuss their limitations.

Metabolic network models

Numerous mathematical frameworks have been developed for mod-
elling and simulating cellular metabolism. These frameworks allow
to mathematically represent large metabolic networks and to simu-
late biochemical activities as well as the growth of single cells [1]. To
construct a metabolic network model for a specific cell, a network
is created that is composed of all enzyme-catalyzed reactions that
are known to be happening inside the cell. Additionally, information
about all enzyme-encoding genes can be added to the model [2]. To
gain insights about cells, for example about their various phenotypic
states under different culturing conditions, an objective function can
be optimized for the metabolic networks. Most commonly, the objec-
tive function is a biomass function, which is composed of all essential
metabolites in the proportions needed for growth [1]. Optimizing the
biomass function is often interpreted as maximizing growth rate [27],
although it is yield that is really optimized [28].

Modelling frameworks that solely rely on information about the
metabolic reaction network are powerful tools and have been success-
fully applied to a broad range of applications such as understanding
microorganisms [29–31], predicting drug targets [32], understanding
the effect of gene deletions [33], and for metabolic engineering [34–
36]. However, to fully understand the physiology of cells, one needs
to consider the non-linear dependence of biochemical reactions on the
concentrations of the enzymes and reactants involved. To achieve this,
enzyme kinetic parameters need to be incorporated into the model.
The turnover number kcat of an enzyme-catalyzed reaction is defined
as the maximal rate of one active site of an enzyme for converting sub-
strate molecules into product molecules per time unit. The Michaelis
constant KM is defined as the concentration of a substrate at which
an enzyme operates at half of its maximal catalytic rate; it hence de-
scribes the affinity of an enzyme for a specific substrate, where lower
KM values indicate higher affinity.

Reactions that are catalyzed by enzymes with lower KM values re-
quire lower metabolite concentrations to produce the same amount
of products compared to reactions catalyzed by enzymes with higher
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KM values. Similarly, reactions catalyzed by enzymes with higher
turnover numbers kcat require lower enzyme concentrations to pro-
duce the same amount of products compared to enzymes with lower
kcat. Thus, to predict quantities such as optimal metabolite and en-
zyme concentrations of a cell, information about enzyme kinetic pa-
rameters is required.

Michaelis-Menten kinetics is one of the best-known models for en-
zyme kinetics. If we assume an irreversible reaction S → P, where a
single substrate S is converted into a product P by an enzyme E, the
Michaelis-Menten rate law defines the reaction rate v as

v =
kcat[E][S]

KM + [S]
,

where [E] and [S] are the concentrations of the enzyme and the sub-
strate [37]. This rate law can be generalized to reversible reactions
and to reactions with multiple substrates and products. Hence, when
using Michaelis-Menten kinetics to describe enzyme kinetics, all re-
action rates can be calculated from the parameters KM and kcat and
from the concentrations of the reactants and of the enzyme.

Many models and modelling approaches that incorporate kinetic
parameters were developed in the past [8, 38–42]. Making accurate
predictions with these kinetic models requires realistic measurements
or estimates for either all kcat values or for all KM and kcat values. Un-
fortunately, experimental measurements for enzyme kinetic param-
eters are difficult and time-consuming, and currently, the use of ki-
netic models is limited due to a lack of available KM and kcat val-
ues for most enzymatic reactions. Even for the biochemically best-
characterized organism, Escherichia coli, in vitro measurements for KM

are available for less than 30% of all natural enzyme-substrate pairs
[3], and in vitro kcat values are available for only ∼10% of approxi-
mately 2 000 enzymatic reactions [4]. As it is unrealistic to obtain all
kinetic parameters for a large metabolic network experimentally, var-
ious efforts have been made to estimate or predict KM and kcat. How-
ever, these methods can either only provide parameters for a subset
of reactions [5], lead to parameters that are not highly connected to
the true kinetic parameters [8, 43, 44], or do not generalize well to
enzymes for which no experimental measurements are available [10]
(see below, "Predicting and estimating enzyme kinetic parameters").
Because of these limitations, it was previously not possible to fully pa-
rameterize any genome-scale metabolic reaction network with realis-
tic kinetic parameters. Hence, prediction models that generalize well
to unseen enzymes and provide KM and kcat values that are highly
correlated with experimental measurements would be a major step
towards parameterizing kinetic metabolic network models.

Another limitation of metabolic network models is missing infor-
mation about enzymatic function for many gene products. For ex-
ample, the Escherichia coli genome contains 4 623 annotated unique
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genes, approximately 1 600 of which have unknown functions [11].
This can lead to important and relevant reactions missing in meta-
bolic networks. Conversely, even in well curated metabolic models,
many reactions have not been associated with an enzyme yet. It is dif-
ficult to obtain suitable KM and kcat values for these reactions because
kinetic constants are highly dependent on the catalyzing enzyme.

2.2 predicting and estimating enzyme kinetic parame-
ters

In this subsection, I will give a short overview over existing approaches
for predicting the enzyme kinetic parameters KM and kcat, and I will
outline their limitations.

Fitting KM and kcat values using optimization processes

To obtain estimates of enzyme kinetic parameters, KM and kcat can
be fitted during optimization processes [7–9]. For example, kinetic
parameters can be obtained by choosing values that lead to a min-
imization of the differences between fluxes predicted by a metabo-
lic network model and experimentally measured steady-state fluxes.
These procedures typically lead to KM and kcat predictions with wide
confidence ranges that are often not highly connected to experimental
measurements [8, 43, 44].

Predicting KM and kcat using machine learning methods

An alternative approach for obtaining kinetic parameters without ex-
ecuting labor-intensive experiments is to predict these parameters us-
ing machine learning models, but only few previous such studies ex-
ist. Heckmann et al. [5] successfully predicted kcat values for a small
subset of reactions in Escherichia coli using machine learning. The pre-
dicted kcat values improve the proteome allocation predictions of two
kinetic metabolic models. However, their approach is limited to a sin-
gle organism, and calculating the model’s input requires knowledge
about the enzymes’ active sites, which is unavailable for the majority
of enzymes. Because of these limitations, Heckmann et al.’s training
data consist of only ∼200 data points, which is rather small for such
a complex prediction task. Recently, Li et al. [10] developed a deep
learning model, DLKcat, that uses information about the enzyme’s
amino acid sequence and about one of the substrates of the reaction
to predict kcat. DLKcat is a general approach, which can in principle
be applied to any enzymatic reaction. However, DLKcat does not use
any information about the products or about more than one substrate
of a reaction, and the model does not generalize well to enzymes that
are not highly similar to enzymes in the training set [45].
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For the prediction of Michaelis constants KM, previously only small
and substrate-specific models existed. Borger et al. [6] used linear re-
gression models to predict KM values of enzyme-substrate pairs for
eight different substrates. The models were trained with knowledge
on KM measurements for the same substrate paired with different
enzymes in the same organism and paired with the same enzyme
in other organisms. A second approach for predicting KM, which is
also substrate-specific, was later developed by Yan et al. [46], who
trained a neural network to predict beta-glucosidases for the sub-
strate cellobiose. Both previous approaches require the training of a
completely new model for every substrate with the requirement of ex-
perimentally measured KM values being available for the substrate of
interest. Hence, the described approaches are unsuitable for making
predictions for not very well-studied reactions and enzyme-substrate
pairs.

2.3 predicting enzyme functions

Predicting functions of not yet annotated proteins using artificial intel-
ligence can help to overcome and close knowledge gaps in metabolic
networks. Deep learning methods have previously been successfully
applied to predict enzymes’ EC classes [47–49], to predict functional
domains within amino acid sequences [50], and to predict suitable
substrates for whole EC classes [51]. These approaches help to gain
insights into the function of uncharacterized enzymes. However, the
exact catalyzed reaction can still remain unknown as the substrate
scope for enzymes within the same EC class or for enzymes with the
same functional domain can be highly diverse [52].

Models that are capable of predicting enzyme-substrate pairs are
needed to predict enzymatic functions more precisely. Multiple such
prediction models have been developed, but all of them can only be
applied to small groups of enzymes [53–57]. These models were typ-
ically trained on dense and comprehensive training data sets con-
taining positive and negative samples for a high fraction of all pos-
sible enzyme-substrate pairs. Transferring these approaches to new
enzyme families requires the training of completely new models with
many available training data points for the family of interest.

A general prediction model that is applicable to a broad range of
enzymes without requiring many training samples for every enzyme
family would be a huge step towards predicting the function of not
yet characterized enzyme-encoding genes. Such a model would not
only be useful to fill gaps in metabolic networks but also for phar-
maceutical research and for bio-engineering metabolic pathways [24–
26].
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2.4 numerical protein and metabolite representations

As described in the previous sections, general machine learning mod-
els that facilitate the prediction of enzyme kinetic parameters and of
substrate candidates for enzymes would be a major advance towards
closing knowledge gaps of metabolic reaction networks. Ideally, such
general prediction models could be applied to a large and diverse set
of many different enzymes. Machine learning models are mathemati-
cal functions that receive numerical features as their input. Hence, to
achieve general prediction models, it is necessary to create meaning-
ful numerical input representations with information relevant to the
prediction tasks.

Numerical protein representations

Many approaches for creating numerical protein representations ex-
ist. Most are based on deep learning and can be broadly divided
into two categories: models extracting information from the linear
protein amino acid sequence [58–60] and models extracting informa-
tion from the 3D protein structure [61–63]. As it is laborious and
time-consuming to determine the 3D structure experimentally, the
structure was previously unknown for the vast majority of proteins.
However, due to the recent development of protein structure predic-
tion tools [64, 65], 3D-based protein models could soon become very
useful. Currently, representations based on the linear amino acid se-
quences are still most commonly used to numerically encode infor-
mation about proteins.

The most successful sequence-based methods apply algorithms that
were originally developed for natural language processing (NLP) tasks
like translation or text classification [59, 60]. To apply NLP models to
protein sequences, every amino acid in a sequence is interpreted as a
word in a text or sentence. Such NLP models are often trained in a
self-supervised way, e.g., they are trained to predict the next amino
acid in a sequence [59] or to predict the type of an amino acid that has
been masked in the input sequence [60]. Even though these models
do not use any information about the structure of the folded pro-
teins, it has been shown that sequence-based protein representations
contain meaningful information about the protein structure and func-
tion. This was demonstrated by using these protein representations
to predict amino acid contact maps and enzyme properties like EC
classes or functional domains [59, 60, 62].

Numerical metabolite representations

As it is the case for protein representations, there are many different
ways to numerically represent small molecules. One class of these
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approaches are expert-crafted representations, i.e., the functions and
algorithms to create molecule representations are chosen by experts
and are not learned by machine learning algorithms. These so-called
fingerprints are often high-dimensional binary vectors containing in-
formation about the structure and the substructures of molecules [66–
68].

An alternative to expert-crafted molecule vectors are machine lear-
ning-generated fingerprints. One approach to generate these finger-
prints is through graph neural networks (GNNs) [69, 70], which are
neural networks that were developed to process graph representa-
tions. Small molecules can be represented as graphs, by interpreting
every atom of the molecule as a node of the graph and every bond as
an edge. With these representations, molecules can be used as the in-
put for a GNN, which is trained to predict a property of the inserted
molecules. While processing a graph, the GNN converts the graph
representation into a single numeric vector of fixed length, which is
then used to predict the property of interest. These representations
ideally contain all information about the molecules that is relevant
for the prediction task. After model training, the GNN can be used
to calculate task-specific representations for all molecules, which can
serve as the input for other prediction models.

Numerical reaction representations

Making predictions for enzymatic turnover numbers kcat with ma-
chine learning models requires the numerical representation of chem-
ical reactions. To achieve this, binary expert-crafted molecular finger-
prints [66–68] for all substrates and for all products can be combined
into a single reaction fingerprint. Most machine learning models re-
quire input vectors of fixed length. Hence, even for varying numbers
of substrates and products, the resulting reaction fingerprints should
not vary in length. This can be achieved by first combining all sub-
strate fingerprints into a single vector as well as combining all prod-
uct fingerprints into a single vector, e.g., by element-wise summation
of the fingerprints. The two resulting vectors for the substrates and
the products can then be combined into a single reaction vector by
concatenation or by subtracting the product vector from the substrate
vector [67, 71].

2.5 databases for model training and validation

Machine learning models that aim to solve complex problems such
as predicting enzyme properties require large sets of training data
to generalize well and to produce meaningful results. The largest
databases containing information about enzyme kinetic parameters
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and enzyme functions are BRENDA, Sabio-RK, UniProt, and the GO
annotation database.

BRENDA (BRaunschweig ENzyme DAtabase) [72] is one of the
biggest databases containing experimental enzyme data, including
KM and kcat. Information in BRENDA is curated and extracted from
published papers. Sabio-RK [73] is another curated database contain-
ing information about enzymatic reactions and their kinetic parame-
ters. UniProt (universal protein database) [74] is the largest existing
database for proteins and contains information about the sequence,
structure, and function of proteins, but also information about kinetic
parameters of enzymes can be extracted from UniProt. The GO (Gene
Ontology) annotation database [75] contains annotations for proteins,
including annotations about the catalytic function of enzymes, and
can thus be used to create a database for natural substrates of en-
zymes.

Using information from these databases requires data preprocess-
ing. For example, kcat values in BRENDA and the UniProt databases
are usually not assigned to the full chemical reactions. Instead, for
most measurements only one of the substrates of a reaction is given.
However, as it is desirable to use information about the whole chemi-
cal reaction to predict kcat, enzyme and substrate information can be
used to map these data points to the corresponding reactions. More-
over, not all data points in BRENDA are assigned to a unique protein
identifier. To map those data points with missing protein information
to the catalyzing enzyme, the organism name and EC number can be
used.

2.6 aims and results of this thesis

Numerous kinetic genome-scale metabolic network models exist that
require knowledge of enzyme kinetic parameters. However, as de-
scribed above, a complete set of realistic parameters KM and kcat is not
available for any of these models. Additionally, many models have
knowledge gaps in their metabolic networks because either the func-
tion of enzymatic genes are unknown and thus reactions are missing
from the metabolic network, or because reactions could not be asso-
ciated with the correct enzyme-encoding gene yet. In this thesis, I
present three different prediction models that are capable of either
predicting missing enzymatic parameters KM or kcat, or predicting
substrate candidates for wild-type enzymes. All models were trained
with large datasets containing thousands of experimentally validated
data points that I extracted from the Sabio-RK, UniProt, BRENDA,
and GO databases.

In Manuscript 1, we developed the first general prediction model
for the Michaelis constant KM of enzyme-substrate pairs. A gradient
boosting model was trained with thousands of experimentally ob-
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tained KM values for a diverse set of many different enzymes and
substrates. The resulting model uses numerical enzyme representa-
tions and task-specific substrate fingerprints as its input and can be
applied to any natural enzyme-substrate pair with known enzyme
amino acid sequence and with known substrate structure. To evalu-
ate model performance, we used the coefficient of determination R2,
which quantifies the proportion of variance in the target variable that
can be explained by the prediction model. On an independent test set
with previously unseen enzyme-substrate pairs, the trained model
achieves a coefficient of determination R2 = 0.53, which means that
more than 50% of the variance in KM values can be predicted.

In Manuscript 2, I implemented a general machine learning model,
the Turnover Number Prediction model - TurNuP -, for the prediction
of turnover numbers kcat for natural reactions of wild-type enzymes.
I trained a gradient boosting model that uses state-of-the-art enzyme
representations and numerical representations of the whole chemical
reaction as its input. In contrast to previous methods, this model can
be successfully applied to enzymatic reactions from any organism
and even to enzymes that are not highly similar to enzymes in the
training set. TurNuP outperforms previous models for the same task
and achieves a coefficient of determination R2 = 0.40 on an indepen-
dent test set.

In Manuscript 3, we developed a binary classification model, the En-
zyme Substrate Prediction model – ESP –, that receives task-specific
enzyme and metabolite representations as its input and predicts whe-
ther the metabolite is a substrate for the given enzyme. The model
was trained with over 18 000 experimentally validated enzyme-sub-
strate pairs and achieves a high accuracy of over 91% on an indepen-
dent test set. ESP is the first general model for predicting enzymes’
substrate scopes that is not only applicable to single enzyme families
or only to a small group of enzymes. The prediction model can be
used to identify candidate substrates for enzymes with yet unknown
substrate scope.

The following chapter consists of the three manuscripts that I de-
scribed above, each detailing one of the prediction models, its con-
struction, training, and validation. In the last chapter, I will conclude
this thesis with an outlook, in which I first discuss current limitations
of the presented prediction models and possibilities to further im-
prove model performances. Moreover, I will discuss which prediction
task could be solved in the future to further improve the utility of
metabolic reaction networks.





3
M A N U S C R I P T S

3.1 manuscript 1

Manuscript 1 is identical to the original version of the paper as it is
published in the journal PLOS Biology [3].

Contributions to Manuscript 1

I designed the study together with Martin Lercher. Martin Lercher
defined the overall task and suggested additional analyses for the
trained model. David Heckmann suggested the use of extended-con-
nectivity fingerprints (ECFPs) to numerically represent metabolites,
and Martin Engqvist suggested to use UniRep vectors as enzyme rep-
resentations. All other design choices were made by me, including
the selection of training data and machine learning algorithms as
well as the choice of a graph neural network to create task-specific
substrate representations. Except for the calculation of the UniRep
vectors, which was implemented by Martin Engqvist, I implemented
all other software. This includes the implementation and training of
all machine learning models, the creation and curation of the dataset,
as well as all analyses and visualizations. I wrote the original draft of
the manuscript. The manuscript was reviewed and edited by David
Heckmann, Martin Lercher, Martin Engqvist, and me.
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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:The Michaelis constant KM describes the affinity of an enzyme for a specific substrate and is
a central parameter in studies of enzyme kinetics and cellular physiology. As measurements
of KM are often difficult and time-consuming, experimental estimates exist for only a minority
of enzyme±substrate combinations even in model organisms. Here, we build and train an
organism-independent model that successfully predicts KM values for natural enzyme±sub-
strate combinations using machine and deep learningmethods. Predictions are based on a
task-specific molecular fingerprint of the substrate, generated using a graph neural network,
and on a deep numerical representation of the enzyme's amino acid sequence. We provide
genome-scaleKM predictions for 47 model organisms, which can be used to approximately
relate metabolite concentrations to cellular physiology and to aid in the parameterization of
kinetic models of cellular metabolism.

Introduction
The Michaelis constant, KM, is defined as the concentration of a substrate at which an enzyme

operates at half of its maximal catalytic rate; it hence describes the affinity of an enzyme for a

specific substrate. Knowledge of KM values is crucial for a quantitative understanding of enzy-

matic and regulatory interactions between enzymes and metabolites: It relates the intracellular

concentration of a metabolite to the rate of its consumption, linking the metabolome to cellu-

lar physiology.

As experimental measurements of KM and kcat are difficult and time-consuming, no experi-

mental estimates exist for many enzymes even in model organisms. For example, in Escheri-
chia coli, the biochemically best characterized organism, in vitro KM measurements exist for

less than 30% of natural substrates (see Methods, “Download and processing of KM values”),

and turnover numbers have been measured in vitro for only about 10% of the approximately

2,000 enzymatic reactions [1].

KM values, together with enzyme turnover numbers, kcat, are required for models of cellular

metabolism that account for the concentrations of metabolites. The current standard approach

in large-scale kinetic modeling is to estimate kinetic parameters in an optimization process
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[2–4]. These optimizations typically attempt to estimate many more unknown parameters

than they have measurements as inputs, and, hence, the resulting KM and kcat values have wide

confidence ranges and show little connection to experimentally observed values [2]. Therefore,

predictions of these values from artificial intelligence, even if only up to an order of magnitude,

would represent a major step toward more realistic models of cellular metabolism and could

drastically increase the biological understanding provided by such models.

Only few previous studies attempted to predict kinetic parameters of natural enzymatic

reactions in silico. Heckmann and colleagues [5] successfully employed machine learning

models to predict unknown turnover numbers for reactions in E. coli. They found that the

most important predictors of kcat were the reaction flux catalyzed by the enzyme, estimated

computationally through parsimonious flux balance analysis, and structural features of the cat-

alytic site. While many E. coli kcat values could be predicted successfully with this model, active

site information was not available for a sizeable fraction of enzymes [5]. Moreover, neither

active site information nor reaction flux estimates are broadly available beyond a small number

of model organisms, preventing the generalization of this approach.

Borger and colleagues [6] trained a linear model to predict KM values based on other KM

measurements for the same substrate paired with different enzymes in the same organism and

with the same enzymes in other organisms; they fitted an independent model for each of 8 dif-

ferent substrates. Yan and colleagues [7] later followed a similarly focused strategy, predicting

KM values of beta-glucosidases for the substrate cellobiose based on a neural network. These 2

previous prediction approaches for KM targeted individual, well-studied enzyme–substrate

combinations with ample experimental KM data for training and testing. Their strategies are

thus unsuitable for less well-studied reactions and cannot be applied to genome-scale

predictions.

A related problem to the prediction of KM is the prediction of drug–target interactions, an

important task in drug development. Multiple approaches for the prediction of drug–target

binding affinities (DTBAs) have been developed (reviewed in [8]). Most of these approaches

are either similarity-based, structure-based, or feature-based. Similarity-based methods rely on

the assumption that similar drugs tend to interact with similar targets; these methods use

known drug–target interactions to learn a prediction function based on drug–drug and tar-

get–target similarity measures [9,10]. Structure-based models for DTBA prediction utilize

information on the target protein’s 3D structure [11,12]. Neither of these 2 strategies can easily

be generalized to genome-scale, organism-independent predictions, as many enzymes and

substrates share only distant similarities with well-characterized molecules, and 3D structures

are only available for a minority of enzymes.

In contrast to these first 2 approaches, feature-based models for drug–target interaction

predictions use numerical representations of the drug and the target as the input of fully con-

nected neural networks (FCNNs) [13–16]. The drug feature vectors are most often either

SMILES representations [17], expert-crafted fingerprints [18–20], or fingerprints created with

graph neural networks (GNNs) [21,22], while those of the targets are usually sequence-based

representations. As this information can easily be generated for most enzymes and substrates,

we here use a similar approach to develop a model for KM prediction.

An important distinction between the prediction of KM and DTBA prediction is that the

former aims to predict affinities for known, natural enzyme–metabolite combinations. These

affinities evolved under natural selection for the enzymes’ functions, an evolutionary process

strongly constrained by the metabolite structure. In contrast, wild-type proteins did not evolve

in the presence of a drug, and, hence, molecular structures are likely to contain only very lim-

ited information about the binding affinity for a target without information about the target

protein.
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Despite the central role of the metabolite molecular structure for the evolved binding affin-

ity of its consuming enzymes, important information on the affinity must also be contained in

the enzyme structure and sequence. To predict KM, it would be desirable to employ detailed

structural and physicochemical information on the enzyme’s substrate binding site, as done by

Heckmann and colleagues for their kcat predictions in E. coli [5]. However, these sites have

only been characterized for a minority of enzymes [23]. An alternative approach is to employ a

multidimensional numerical representation of the entire amino acid sequence of the enzyme,

as provided by UniRep [24]. UniRep vectors are based on a deep representation learning

model and have been shown to retain structural, evolutionary, and biophysical information.

Here, we combine UniRep vectors of enzymes and diverse molecular fingerprints of their

substrates to build a general, organism-, and reaction-independent model for the prediction of

KM values, using machine and deep learning models. In the final model, we employ a

1,900-dimensional UniRep vector for the enzyme together with a task-specific molecular fin-

gerprint of the substrate as the input of a gradient boosting model. Our model reaches a coeffi-

cient of determination of R2 = 0.53 between predicted and measured values on a test set, i.e.,

the model explains 53% of the variability in KM values across different, previously unseen natu-

ral enzyme–substrate combinations. In S1 Data, we provide complete KM predictions for 47

genome-scale metabolic models, including those for Homo sapiens, Mus musculus, Saccharo-
myces cerevisiae, and E. coli.

Results
For all wild-type enzymes in the BRENDA database [25], we extracted organism name,

Enzyme Commission (EC) number, UniProt ID, and amino acid sequence, together with

information on substrates and associated KM values. If multiple KM values existed for the same

combination of substrate and enzyme amino acid sequence, we took the geometric mean. This

resulted in a dataset with 11,675 complete entries, which was split into a training set (80%) and

a test set only used for the final validation (20%). All KM values were log10-transformed.

Predicting KM from molecular fingerprints

To train a prediction model for KM, we first had to choose a numerical representation of the

substrate molecules. For each substrate in our dataset, we calculated 3 different expert-crafted

molecular fingerprints, i.e., bit vectors where each bit represents a fragment of the molecule.

The expert-crafted fingerprints used are extended connectivity fingerprints (ECFPs), RDKit

fingerprints, and MACCS keys. We calculated them with the python package RDKit [19]

based on MDL Molfiles of the substrates (downloaded from KEGG [26]; a Molfile lists a mole-

cule’s atom types, atom coordinates, and bond types [27]).

MACCS keys are 166-dimensional binary fingerprints, where each bit contains the infor-

mation if a certain chemical structure is present in a molecule, e.g., if the molecule contains a

ring of size 4 or if there are fewer than 3 oxygen atoms present in the molecule [20]. RDKit fin-

gerprints are generated by identifying all subgraphs in a molecule that do not exceed a particu-

lar predefined range. These subgraphs are converted into numerical values using hash

functions, which are then used to indicate which bits in a 2,048-dimensional binary vector are

set to 1 [19]. Finally, to calculate ECFPs, molecules are represented as graphs by interpreting

the atoms as nodes and the chemical bonds as edges. Bond types and feature vectors with

information about every atom are calculated (types, masses, valences, atomic numbers, atom

charges, and number of attached hydrogen atoms) [18]. Afterwards, these identifiers are

updated for a predefined number of steps by iteratively applying predefined functions to sum-

marize aspects of neighboring atoms and bonds. After the iteration process, all identifiers are

PLOS BIOLOGY Genome-scale prediction of Michaelis constants
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used as the input of a hash function to produce a binary vector with structural information

about the molecule. The number of iterations and the dimension of the fingerprint can be cho-

sen freely. We set them to the default values of 3 and 1,024, respectively; lower or higher

dimensions led to inferior predictions.

To compare the information on KM contained in the different molecular fingerprints inde-

pendent of protein information, we used the molecular fingerprints as the sole input to elastic

nets, FCNNs, and gradient boosting models. To the fingerprints, we added the 2 features

molecular weight (MW) and octanol–water partition coefficient (LogP), which were shown to

be correlated with the KM value [28]. The models were then trained to predict the KM values of

enzyme–substrate combinations (Fig 1A). The FCNNs consisted of an input layer with the

dimension of the fingerprint (including the additional features MW and LogP), 2 hidden lay-

ers, and a 1D output layer (for more details, see Methods). Gradient boosting is a machine

learning technique that creates an ensemble of many decision trees to make predictions. Elastic

nets are regularized linear regression models, where the regularization coefficient is a linear

combination of the L1− and L2-norm of the model parameters. For each combination of the 3

model types and the 3 fingerprints, we performed a hyperparameter optimization with 5-fold

Fig 1. Model overview. (a) Predefined molecular fingerprints. Molecular fingerprints are calculated from MDL

Molfiles of the substrates and then passed through machine learning models like the FCNN together with 2 global

features of the substrate, the MW and LogP. (b) GNN fingerprints. Node and edge feature vectors are calculated from

MDL Molfiles and are then iteratively updated for T time steps. Afterwards, the feature vectors are pooled together into

a single vector that is passed through an FCNN together with the MW and LogP. FCNNAU : AbbreviationlistshavebeencompiledforthoseusedinFigs1 À 5:Pleaseverifythatallentriesarecorrect:, fully connected neural

network; GNN, graph neural network; LogP, octanol–water partition coefficient; MW, molecular weight.

https://doi.org/10.1371/journal.pbio.3001402.g001
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cross-validation on the training set, measuring performance through the mean squared error

(MSE). For all 3 types of fingerprints, the gradient boosting model outperformed the FCNN

and the elastic net (S1–S3 Tables).

The KM predictions with the gradient boosting model based solely on the substrate ECFP,

MACCS keys, and RDKit molecular fingerprints showed very similar performances on the test

set, with MSE = 0.83 and coefficients of determination R2 = 0.40 (Fig 2).

Best KM predictions from metabolite fingerprints using graph neural

networks and gradient boosting

Recent work has shown that superior prediction performance can be achieved through task-

specific molecular fingerprints, where a deep neural network simultaneously optimizes the fin-

gerprint and uses it to predict properties of the input. In contrast to conventional neural net-

works, these GNNs can process non-Euclidean inputs, such as molecular structures. This

approach led to state-of-the-art performances on many biological and chemical datasets

[21,22].

As an alternative to the predefined, expert-crafted molecular fingerprints, we thus also

tested how well we can predict KM from a task-specific molecular fingerprint based on a GNN

(Fig 1; for details, see Methods, “Architecture of the graph neural network”). As for the calcu-

lations of the ECFPs, each substrate molecule is represented as a graph by interpreting the

atoms as nodes and the chemical bonds as edges, for which feature vectors are calculated from

the MDL Molfiles. These are updated iteratively for a fixed number of steps, in each step apply-

ing functions with learnable parameters to summarize aspects of neighboring atoms and

bonds. After the iterations, the feature vectors are pooled into 1 molecular fingerprint vector.

In contrast to ECFPs, the parameters of the update functions are not fixed but are adjusted

during the training of the FCNN that predicts KM from the pooled fingerprint vector (Meth-

ods). As for the predefined molecular fingerprints, we defined an extended GNN fingerprint

by adding the 2 global molecular features LogP and MW to the model before the KM prediction

step.

Fig 2. When using only substrate features as inputs, task-specific molecular fingerprints (GNN) lead to better KM

predictions than predefined, expert-crafted fingerprints. (a) MSE on log10-scale. (b) Coefficients of determination R2.

Boxplots summarize the results of the 5-fold cross-validations on the training set; blue dots show the results on the test set.

The data underlying the graphs shown in this figure can be found at https://github.com/AlexanderKroll/KM_prediction/

tree/master/figures_data. ECFP, extended connectivity fingerprint; GNN, graph neural network; MSE, mean squared

error.

https://doi.org/10.1371/journal.pbio.3001402.g002
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To compare the learned substrate representation with the 3 predefined fingerprints, we

extracted the extended GNN fingerprint for every substrate in the dataset and fitted an elastic

net, an FCNN, and a gradient boosting model to predict KM. As before, we performed a hyper-

parameter optimization with 5-fold cross-validation on the training set for all models. The gra-

dient boosting model again achieved better results than the FCNN and the elastic net (S1–S3

Tables). The performance of our task-specific fingerprints is better than that of the predefined

fingerprints, reaching an MSE = 0.80 and a coefficient of determination R2 = 0.42 on the test

set, compared to an MSE = 0.83 and R2 = 0.40 for the other fingerprints (Fig 2). To compare

the performances statistically, we used a one-sided Wilcoxon signed-rank test for the absolute

errors of the predictions for the test set, resulting in p = 0.0080 (ECFP), p = 0.073 (RDKit), and

p = 0.062 (MACCS keys). While the differences in the error distributions are only marginally

statistically significant for RDKit and MACCS keys at the 5% level, these analyses support the

choice of the task-specific GNN molecular fingerprint for predicting KM.

It is noteworthy that the errors on the test set are smaller than the errors achieved during

cross-validation. We found that the number of training samples has a great influence on

model performance (see below, “Model performance increases linearly with training set size”).

Hence, the improved performance on the test set may result from the fact that before valida-

tion on the test set, models are trained with approximately 2,000 more samples than before

each cross-validation.

Effects of molecular weight and octanol–water partition coefficient

Before predicting KM from the molecular fingerprints, we added the MW and the LogP. Do

these extra features contribute to improved predictions by the task-specific GNN fingerprints?

To answer this question, we trained GNNs without the additional features LogP and MW, as

well as with only one of those additional features. Fig 3 displays the performance of gradient

boosting models that are trained to predict KM with GNN fingerprints with and without extra

features, showing that the additional features have only a small effect on performance: Adding

both features reduces MSE from 0.82 to 0.80, while increasing R2 from 0.41 to 0.42. The

Fig 3. Adding MW and LogP as features has only a minor effect on the performance of the GNN in predicting KM.

(a) MSE on log10-scale. (b) Coefficients of determination R2. Models use the GNN with additional features LogP and

MW; with only one of the additional features; and without the 2 features. Boxplots summarize the results of the 5-fold

cross-validations on the training set; blue dots show the results on the test set. The data underlying the graphs shown in

this figure can be found at https://github.com/AlexanderKroll/KM_prediction/tree/master/figures_data. GNN, graph

neural network; LogP, octanol–water partition coefficient; MSE, mean squared error; MW, molecular weight.

https://doi.org/10.1371/journal.pbio.3001402.g003
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difference in model performance is not statistically significant (p = 0.13, one-sided Wilcoxon

signed-rank test for the absolute errors of the predictions for the test set). This indicates that

most of the information used to predict KM can be extracted from the graph of the molecule

itself. However, since the addition of the 2 additional features slightly improves KM predictions

on the test dataset, we include the features MW and LogP in our further analyses.

UniRep vectors as additional features

So far, we have only considered substrate-specific information. As KM values are features of

specific enzyme–substrate interactions, we now need to add input features that represent

enzyme properties. Important information on substrate binding affinity is contained in molec-

ular features of the catalytic site; however, active site identities and structures are available only

for a small minority of enzymes in our dataset.

We thus restrict the enzyme information utilized by the model to a deep numerical repre-

sentation of the enzyme’s amino acid sequence, calculating an UniRep vector [24] for each

enzyme. UniRep vectors are 1,900-dimensional statistical representation of proteins, created

with an mLSTM, a recurrent neural network architecture for sequence modeling that com-

bines the long short-term memory and multiplicative recurrent neural network architectures.

The model was trained with 24 million unlabeled amino acid sequences to predict the next

amino acid in an amino acid sequence, given the previous amino acids [24]. In this way, the

mLSTM learns to store important information about the previous amino acids in a numerical

vector, which can later be extracted and used as a representation for the protein. It has been

shown that these representations lead to good results when used as input features in prediction

tasks concerning protein stability, function, and design [24].

Predicting KM using substrate and enzyme information

To predict the KM value, we concatenated the 52-dimensional task-specific extended finger-

print learned with the GNN and the 1,900-dimensional UniRep vector with information about

the enzyme’s amino acid sequence into a global feature vector. This vector was then used as

the input for a gradient boosting model for regression in order to predict the KM value. We

also trained an FCNN and an elastic; however, predictions were substantially worse (S4–S6

Tables), consistent with the results obtained when using only the substrate fingerprints as

inputs.

The gradient boosting model that combines substrate and enzyme information achieves an

MSE = 0.65 on a log10-scale and results in a coefficient of determination R2 = 0.53, substantially

superior to the above models based on substrate information alone. We also validate our

model with an additional metric, r2
m, which is a commonly used performance measurement

tool for quantitative structure–activity relationship (QSAR) prediction models. It is defined as

r2
m ¼ r2 � ð1 À

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 À r2

0

p
Þ; where r2 and r2

0
are the squared correlation coefficients with and

without intercept, respectively [29,30]. Our model achieves a value of r2
m ¼ 0:53 on the test set.

Fig 4A and 4B compare the performance of the full model to models that use only substrate

or only enzyme information as inputs, applied to the BRENDA test dataset (which only con-

tains previously unseen enzyme–substrate combinations). To predict the KM value from only

the enzyme UniRep vector, we again fitted a gradient boosting model, leading to MSE = 1.01

and R2 = 0.27. To predict the KM value from substrate information only, we chose the gradient

boosting model with extended task-specific fingerprints as its inputs, which was used for the

comparison with the other molecular fingerprints. (Fig 2).

Fig 4A and 4B also compare the 3 models to the naïve approach of simply using the mean

over all KM values in the training set as a prediction for all KM values in the test set, resulting in

PLOS BIOLOGY Genome-scale prediction of Michaelis constants
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MSE = 1.38 and R2 = 0. Fig 4C compares the values predicted using the full model with the

experimental values of the test set obtained from BRENDA.

Predicting KM for an independently acquired test dataset

Our model was trained and tested on data from BRENDA. To confirm its prediction power, it

is desirable to test it on data from other sources. We thus created an additional, independent

test set by obtaining the same type of information from the Sabio-RK database [31], keeping

only entries that were not already included in the BRENDA dataset. This resulted in a second

test set with 274 entries. The model trained on the BRENDA data achieves a very similar per-

formance (MSE = 0.67, R2 = 0.49) on the independent Sabio-RK test data (orange dots in

S1 Fig).

Predicting KM for enzymes and substrates not represented in the training

data

Homologous enzymes that catalyze the same reaction tend to have broadly similar kinetic

parameters. To test to what extent such similarities affect our results, we investigated how well

our model performs for the 664 data points in the test set that have substrate–EC number com-

binations not found in the training set (violet dots in S1 Fig). The KM predictions for these

data points resulted in an MSE = 0.79 and R2 = 0.45, compared to MSE = 0.65 and R2 = 0.53

for the full test data.

It is conceivable that predictions are substantially better if the training set contains entries

with the same substrate or with the same enzyme, even if not in the same combination. In

practice, one may however want to also make predictions for combinations where the enzyme

and/or the substrate are not represented in the training data at all. To test how our model per-

forms in such cases, we separately analyzed those 57 entries in the test data where neither

Fig 4. Performance of the optimized models. (a) MSE. (b) Coefficients of determination (R2). Values in (a) and (b) are

calculated using the gradient boosting model with different inputs: substrate and enzyme information; substrate information

only (GNN); and enzyme information only (domain content). Boxplots summarize the results of the 5-fold cross-validations on

the training set; blue dots show the results on the test set. For comparison, we also show results on the test set from a naïve model

using the mean of the KM values in the training set for all predictions. (c) Scatter plot of log10-transformed KM values of the test

set predicted with the gradient boosting model with substrate and enzyme information as inputs versus the experimental values

downloaded from BRENDA. Red dots are for combinations where neither enzyme nor substrate were part of the training set.

The data underlying the graphs shown in this figure can be found at https://github.com/AlexanderKroll/KM_prediction/tree/

master/figures_data. GB, gradient boosting; GNN, graph neural network; MSE, mean squared error.

https://doi.org/10.1371/journal.pbio.3001402.g004
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enzyme nor substrate occurred in the training data, resulting in MSE = 0.74 and R2 = 0.26,

compared to MSE = 0.65 and R2 = 0.53 for the full test data (red points in Fig 4C). At least in

part, the smaller R2 value can be explained by the poor predictions for KM values below 10−2

mM (see the residuals in panel a in S2 Fig). The training dataset contained few KM values in

this region (panel b in S2 Fig)—there may have simply been too little training data here for the

challenging task of predicting KM for unseen enzymes and substrates. In contrast, the model

performs substantially better for unseen substrates and enzymes with KM values between 10−2

and 100 mM, where much more training data were available. We conclude that given enough

training data, the proposed model appears capable of predicting KM values also for data points

where substrate and/or enzyme are not in the training set.

Model performance increases linearly with training set size

The last analysis indicates that prediction performance may be strongly affected by the amount

of relevant training data. Indeed, the training datasets employed for AI prediction tasks are

typically vastly larger than those available for predicting KM. To test if the size of the training

set has a substantial, general effect on prediction quality, we trained the final gradient boosting

model with different amounts of the available training samples. We excluded randomly data

points from the original training set for this analysis, creating 6 different training sets with

sizes ranging from about 4,500 to approximately 9,500 data points. Fig 5 shows that model per-

formance—measured either in terms of MSE or R2—increases approximately linearly with the

size of the training set. This result indicates that our models are still far from overfitting and

that increasing availability of data will allow more accurate predictions in the future.

KM predictions for enzymatic reactions in genome-scale metabolic models

Above, we have described the development and evaluation of a pipeline for genome-scale,

organism-independent prediction of KM values. This pipeline and its parameterization can be

used, for example, to obtain preliminary KM estimates for enzyme–substrate combinations of

interest or to parameterize kinetic models of enzymatic pathways or networks. To facilitate

such applications, we predicted KM values for all enzymes in 47 curated genome-scale meta-

bolic models, (S1 Data), include models for E. coli, S. cerevisiae, M. musculus, and H. sapiens.

Fig 5. Effect of the training set size on model performance. (a) MSE. (b) Coefficients of determination (R2). Values

in (a) and (b) are calculated for the test sets, using the gradient boosting model with substrate and enzyme information

as the input. The gradient boosting model is trained with different amounts of the available training samples. The data

underlying the graphs shown in this figure can be found at https://github.com/AlexanderKroll/KM_prediction/tree/

master/figures_data. MSE, mean squared error.

https://doi.org/10.1371/journal.pbio.3001402.g005
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These models are for organisms from different domains, while the training and test data are

dominated by bacteria. To test if this uneven training data distribution leads to biases, we

divided our test set into subsets belonging to the domains Archaea, Bacteria, and Eukarya, cal-

culating separate MSE and R2 values for each domain. The test set contained 142 data points

from Archaea, with MSE = 0.71 and R2 = 0.37; 1,439 data points from Bacteria, with

MSE = 0.65 and R2 = 0.51; and 749 data points from Eukarya, with MSE = 0.64 and R2 = 0.56.

We therefore conclude that our model can predict KM values for different domains approxi-

mately equally well.

The predictions for the genome-scale metabolic models in S1 Data are based on a machine

learning model trained with all of the available data, including all data points from the test set.

For 73% of the reactions across all 47 metabolic models, substrate and enzyme information

were available, such that the full prediction model could be applied. For 15% only substrate

information, for 10% only enzyme information, and for 2% neither substrate nor enzyme

information were available. We treated situations with missing information as follows: If infor-

mation on only one of the 2 molecules (enzyme or substrate) was available, we used the corre-

sponding reduced prediction model (with either only UniRep vector or only extended GNN

representation as input, respectively). If both substrate and enzyme information were missing,

we predicted the KM value as the geometric mean of all KM values in our dataset.

Discussion
In conclusion, we found that Michaelis constants of enzyme–substrate pairs, KM, can be pre-

dicted through artificial intelligence with a coefficient of determination of R2 = 0.53: More

than half of the variance in KM values across enzymes and organisms can be predicted from

deep numerical representations of enzyme amino acid sequence and substrate molecular struc-

ture. This performance is largely organism-independent and does not require that either

enzyme or substrate are covered by the dataset used for training; the good performance was

confirmed using a second, independent and nonoverlapping test set from Sabio-RK (R2 =

0.49). To obtain this predictive performance, we used task-specific fingerprints of the substrate

(GNN) optimized for the KM prediction, as these appear to contain more information about

KM values than predefined molecular fingerprints based on expert-crafted transformations

(ECFP, RDKit fingerprint, MACCS keys). The observed differences between GNNs and prede-

fined fingerprints is in line with the results of a previous study on the prediction of chemical

characteristics of small molecules [22].

Fig 4, which compares KM predictions across different input feature sets, indicates that the

relevant information contained in an enzyme’s amino acid sequence may be less important for

its evolved binding affinity to a natural substrate than the substrate’s molecular structure: Pre-

dictions based only on substrate structures explain almost twice as much variance in KM com-

pared to predictions based only on enzyme representations. It is possible, though, that

improved (possibly task-specific) enzyme representations will modify this picture in the future.

A direct comparison of the prediction quality of our model to the results of Yan and col-

leagues [7] would not be meaningful, as the scope of their model is very different from that of

ours. Yan and colleagues trained a model specific to a single enzyme–substrate pair with only

36 data points, aiming to distinguish KM values between different sequences of the same

enzyme (beta-glucosidase) for the same substrate (cellobiose). However, the performance of

our general model, with MSE = 0.65, compares favorably to that of the substrate-specific statis-

tical models of Borger and colleagues [6], which resulted in an overall MSE = 1.02.

We compare our model to 2 different models for DTBA prediction, DeepDTA and Sim-

Boost [10,16]. These two, which were trained and tested on the same 2 datasets, achieved r2
m
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values ranging from 0.63 to 0.67 on test sets. This compares to r2
m ¼ 0:53 achieved for KM pre-

dictions with our approach. It is generally difficult to compare prediction performance

between models trained and tested on different datasets. Here, this difficulty is exacerbated by

the different prediction targets (DTBA versus KM). Crucially, the datasets used for DTBA and

KM prediction differ substantially with respect to their densities, i.e., the fraction of possible

protein–ligand combinations covered by the training and test data. One of the datasets used

for DTBA prediction encompasses experimental data for all possible drug–target combina-

tions between 442 different proteins and 68 targets (442×68 = 30,056). The second dataset con-

tains data for approximately 25% of all possible combinations between 229 proteins and 2,111

targets (118,254 out of 229×2,111 = 483, 419). In contrast, our KM dataset features 7,001 differ-

ent enzymes and 1,582 substrates but comprises only about 0.1% of their possible combina-

tions (11,600 out of 7,001×1582 = 11,075, 582). Thus, our dataset is not only much smaller, but

also has an extremely low coverage of possible protein–ligand combinations compared to the

DTBA datasets used in [10,16]. As shown in Fig 5, the number of available training samples

has a strong impact on model performance, and the same is likely true for the data density.

Against this background, the performance of our KM prediction model could be seen as being

surprisingly good. Fig 5 indicates that KM predictions can be improved substantially once

more training data become available.

To provide the model with information about the enzyme, we used statistical representa-

tions of the enzyme amino acid sequence. We showed that these features provide important

enzyme-specific information for the prediction of KM. It appears likely that predictions could

be improved further by taking features of the enzyme active site into account—such as hydro-

phobicity, depth, or structural properties [5]—once such features become widely available

[23]. Adding organism-specific information, such as the typical intracellular pH or tempera-

ture, may also increase model performance.

We wish to emphasize that our model is trained to predict KM values for enzyme–substrate

pairs that are known to interact as part of the natural cellular physiology, meaning that their

affinity has evolved under natural selection. The model should thus be used with care when

making predictions for enzyme interactions with other substrates, such as nonnatural com-

pounds or substrates involved in moonlighting activities. In such cases, DTBA prediction

models (with their higher data density) may be better suited, and estimates with our model

should be regarded as a lower bound for KM that might be reached under appropriate natural

selection.

To put the performance of the current model into perspective, we consider the mean rela-

tive prediction error MRPE = 4.1, meaning that our predictions deviate from experimental

estimates on average by 4.1-fold. This compares to a mean relative deviation of 3.4-fold

between a single KM measurement and the geometric mean of all other measurements for the

same enzyme–substrate combination in the BRENDA dataset (the geometric means of

enzyme–substrate combinations were used for training the models). Part of the high variability

across values in BRENDA is due to varying assay conditions in the in vitro experiments [28].

Moreover, entries in BRENDA are not free from errors; on the order of 10% of the values in

the database do not correspond to values in the original papers, e.g., due to errors in unit con-

version [28].

Especially on the background of this variation, the performance of our enzyme–substrate

specific KM model appears remarkable. In contrast to previous approaches [6,7,13–16], the

model requires no previous knowledge about measured KM values for the considered substrate

or enzyme. Furthermore, only one general purpose model is trained, and it is not necessary to

obtain training data and to fit new models for individual substrates, enzyme groups, or
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organisms. Once the model has been fitted, it can provide genome-scale KM predictions from

existing features within minutes. We here provide such predictions for a broad set of model

organisms, including mouse and human; these data can provide base estimates for unknown

kinetic constants, e.g., to relate metabolomics data to cellular physiology, and can help to

parameterize kinetic models of metabolism. Future work may develop similar prediction

frameworks for enzyme turnover numbers (kcat), which would facilitate the completion of

such parameterizations.

Methods
Software and code availability

We implemented all code in Python [32]. We implemented the neural networks using the

deep learning library TensorFlow [33] and Keras [34]. We fitted the gradient boosting models

using the library XGBoost [35].

All datasets generated and the Python code used to produce the results (in Jupyter note-

books) are available from https://github.com/AlexanderKroll/KM_prediction. Two of the

Jupyter notebooks contain all the necessary steps to download the data from BRENDA and

Sabio-RK and to preprocess it. Execution of a second notebook performs training and valida-

tion of our final model. Two additional notebooks contain code to train the models with

molecular fingerprints as inputs and to investigate the effect of the 2 additional features, MW
and LogP, for the GNN.

Downloading and processing KM values from BRENDA

We downloaded KM values together with organism and substrate name, EC number, UniProt

ID of the enzyme, and PubMed ID from the BRENDA database [25]. This resulted in a dataset

with 156,387 entries. We mapped substrate names to KEGG Compound IDs via a synonym

list from KEGG [26]. For all substrate names that could not be mapped to a KEGG Compound

ID directly, we tried to map them first to PubChem Compound IDs via a synonym list from

PubChem [36] and then mapped these IDs to KEGG Compound IDs using the web service of

MBROLE [37]. We downloaded amino acid sequences for all data points via the UniProt map-

ping service [38] if the UniProt ID was available; otherwise, we downloaded the amino acid

sequence from BRENDA via the organism name and EC number.

We then removed (i) all duplicates (i.e., entries with identical values for KM, substrate, and

amino acid sequence as another entry); (ii) all entries with non-wild-type enzymes (i.e., with a

commentary field in BRENDA labeling it as mutant or recombinant); (iii) entries for nonbac-

terial organisms without an UniProt ID for the enzyme; and (iv) entries with substrate names

that could not be mapped to a KEGG Compound ID. This resulted in a filtered set of 34,526

data points. Point (iii) was motivated by the expectation that isoenzymes are frequent in

eukaryotes but rare in bacteria, such that organism name and EC number are sufficient to

unambiguously identify an amino acid sequence in the vast majority of cases for bacteria but

not for eukaryotes. If multiple log10-transformed KM values existed for 1 substrate and 1

amino acid sequence, we took the geometric mean across these values. For 11,737 of these, we

could find an entry for the EC number–substrate combination in the KEGG reaction database.

Since we are only interested in KM values for natural substrates, we only kept these data points

[28]. We log10-transformed all KM values in this dataset. We split the final dataset with 11,737

entries randomly into training data (80%) and test data (20%). We further split the training set

into 5 subsets, which we used for 5-fold cross-validations for the hyperparameter optimization

of the machine learning models. We used the test data to evaluate the final models after hyper-

parameter optimization.
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To estimate the proportion of metabolic enzymes with KM values measured in vitro for E.

coli, we mapped the E. coli KM values downloaded from BRENDA to reactions of the genome

scale metabolic model iML1515 [39], which comprises over 2,700 different reactions. To do

this, we extracted all enzyme–substrate combinations from the iML1515 model for which the

model annotations listed an EC number for the enzyme and a KEGG Compound ID for the

substrate, resulting in 2,656 enzyme–substrate combinations. For 795 of these combinations

(i.e., 29.93%), we were able to find a KM value in the BRENDA database.

Download and processing of KM values from Sabio-RK

We downloaded KM values together with the name of the organism, substrate name, EC num-

ber, UniProt ID of the enzyme, and PubMed ID from the Sabio-RK database. This resulted in

a dataset with 8,375 entries. We processed this dataset in the same way as described above for

the BRENDA dataset. We additionally removed all entries with a PubMed ID that was already

present in the BRENDA dataset. This resulted in a final dataset with 274 entries, which we

used as an additional test set for the final model for KM prediction.

Calculation of predefined molecular fingerprints

We first represented each substrate through 3 different molecular fingerprints (ECFP, RDKit

fingerprint, MACCS keys). For every substrate in the final dataset, we downloaded an MDL

Molfile with 2D projections of its atoms and bonds from KEGG [26] via the KEGG Compound

ID. We then used the package Chem from RDKit [19] with the Molfile as the input to calculate

the 2,048-dimensional binary RDKit fingerprints [19], the 166-dimensional binary MACCS

keys [20], and the 1,024-dimensional binary ECFPs [18] with a radius of 3.

Architecture of the fully connected neural network with molecular

fingerprints

We used an FCNN to predict KM values using only representations of the substrates as input

features. We performed a 5-fold cross-validation on the training set for each of the 4 substrate

representations (ECFP, RDKit fingerprints, MACCS keys, and task-specific fingerprints) for

the hyperparameter optimization. The FCNN consisted of 2 hidden layers, and we used recti-

fied linear units (ReLUs), which are defined as ReLU(x) = max(x, 0), as activation functions in

the hidden layers to introduce nonlinearity. We applied batch normalization [40] after each

hidden layer. Additionally, we used L2-regularization in every layer to prevent overfitting.

Adding dropout [41] did not improve the model performance. We optimized the model by

minimizing the MSE with the stochastic gradient descent with Nesterov momentum as an

optimizer. The hyperparameters regularization factor, learning rate, learning rate decay,

dimension of hidden layers, batch size, number of training epochs, and momentum were opti-

mized by performing a grid search. We selected the set of hyperparameters with the lowest

mean MSE during cross-validation. The results of the cross-validations and best set of hyper-

parameters for each fingerprint are displayed in S1 Table.

Fitting of the gradient boosting models with molecular fingerprints

We used gradient boosting models to predict KM values using only representations of the sub-

strates as input features. As for the FCNNs, we performed a 5-fold cross-validation on the

training set for each of the 4 substrate representations (ECFP, RDKit fingerprints, MACCS

keys, and task-specific fingerprints) for hyperparameter optimization. We fitted the models

using the gradient boosting library XGBoost [35] for Python. The hyperparameters
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regularization coefficients, learning rate, maximal tree depth, maximum delta step, number of

training rounds, and minimum child weight were optimized by performing a grid search. We

selected the set of hyperparameters with the lowest mean MSE during cross-validation. The

results are displayed in S2 Fig.

Fitting of the elastic nets with molecular fingerprints

We used elastic nets to predict KM values with representations of the substrates as input fea-

tures. Elastic nets are linear regression model with additional L1- and L2-penalties for the coef-

ficients of the model in order to apply regularization. We performed 5-fold cross-validations

on the training set for all 4 substrate representations (ECFP, RDKit fingerprints, MACCS keys,

and task-specific fingerprints) for hyperparameter optimization. During hyperparameter opti-

mization, the coefficients for L1-regularization and L2-regularization were optimized by per-

forming a grid search. The models were fitted using the machine learning library scikit-learn

[42] for Python. The results of the hyperparameter optimizations are displayed in S3 Table.

Calculation of molecular weight (MW) and the octanol–water partition

coefficient (LogP)

We calculated the additional 2 molecular features, MW and LogP, with the package Chem

from RDKit [19], with the MDL Molfile of the substrate as the input.

Calculation of the input of the graph neural network

Graphs in GNNs are represented with tensors and matrices. To calculate the input matrices

and tensors, we used the package Chem from RDKit [19] with MDL Molfiles of the substrates

as inputs to calculate 8 features for very atom v (atomic number, number of bonds, charge,

number of hydrogen bonds, mass, aromaticity, hybridization type, chirality) and 4 features for

every bond between 2 atoms v and w (bond type, part of ring, stereo configuration, aromatic-

ity). Converting these features (except for atom mass) into one-hot encoded vectors resulted in

a feature vector with Fb = 10 dimensions for every bond and in a feature vector with Fa = 32

dimensions for every atom.

For a substrate with N atoms, we stored all bonds in an N×N-dimensional adjacency matrix

A, i.e., entry Avw is equal to 1 if there is a bond between the 2 atoms v and w and 0 otherwise.

We stored the bond features in a (N×N×Fb)-dimensional tensor E, where entry Evw 2 R
Fb con-

tains the feature vector of the bond between atom v and atom w. Afterwards, we expanded ten-

sor E by concatenating the feature vector of atom v to the feature vector Evw. If there was no

bond between the atoms v and w, i.e., Avw = 0, we set all entries of Evw to zero. We then used

the resulting (N×N×(Fa+Fb))-dimensional tensor E, together with the adjacency matrix A, as

the input of the GNN.

During training, the number of atoms N in a graph has to be restricted to a maximum. We

set the maximum to 70, which allowed us to include most of the substrates in the training.

After training, the GNN can process substrates of arbitrary sizes.

Architecture of the graph neural network

In addition to the predefined fingerprints, we also used a GNN to represent the substrate mole-

cules. We first give a brief overview over such GNNs, before detailing our analysis.

As in the calculations of the ECFPs, a molecule is represented as a graph by interpreting the

atoms as nodes and the chemical bonds as edges. Before a graph is processed by a GNN, fea-

ture vectors x!v for every node v and feature vectors e!vw for every edge between 2 nodes v and
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w are calculated. We calculated 8 features for every atom and 4 features for every bond of a

substrate, including mass, charge, and type of atom as well as type of bond (see Methods, “Cal-

culation of the input of the graph neural network”). The initial representations xv
!¼ xv

!ð0Þ
and

evw
�! ¼ evw

�!ð0Þ

are updated iteratively for a predefined number of steps T using the feature vec-

tors of the neighboring nodes and edges (Fig 1B). During this process, the feature vectors are

multiplied with matrices with trainable entries, which are fitted during the optimization of the

GNN. After k iterations, each node representation xv
!ðkÞ contains information about its k-hop

neighborhood graph. After completing T iteration steps, all node representations are averaged

to obtain a single vector x!, which represents the entire graph [43,44]. The vector x! can then

be used as an input of an FCNN to predict properties of the graph (the KM value of the mole-

cule in our case; Fig 1).

The described processing of a graph with a GNN can be divided into 2 phases. The first,

message passing phase consists of the iteration process. The second, readout phase comprises

the averaging of the node representations and the prediction of the target graph property [43].

During the training, both phases are optimized simultaneously. The vector x! can thus be

viewed as a task-specific fingerprint of the substrate. Since the model is trained end to end, the

GNN learns to store all information necessary to predict KM in this vector [44,45].

We use a variant of GNNs called directed message passing neural network (D-MPNN)

[22,46]. In D-MPNNs, every edge is viewed as 2 directed edges pointing in opposite directions.

During the iteration process (the message passing phase), feature vectors of nodes and edges

are iteratively updated. To update them, feature vectors of neighboring nodes and edges are

multiplied by matrices with learnable parameters and the results are summed. Then, an activa-

tion function, the ReLU, is applied to the resulting vector to introduce nonlinearities.

We set the number of iterations for updating the feature vector representations to T = 2.

The dimension of the feature vectors during the message passing phase are set to D = 50. We

apply batch normalization before every activation function. Additionally, we tried to apply

dropout at the end of the message passing phase, but this does not improve model

performance.

After the message passing phase, the readout phase starts, and feature vectors of all nodes

and edges are pooled together using an order-invariant function to obtain a single vector

x!2 RD
, which is a representation of the input. The pooling is done using the element-wise

mean of the feature vectors. We then concatenate x!with the MW and the LogP, which are

global molecular features that are correlated with the KM value [28]. This results in an extended

fingerprint x̂
!
¼ ð x!>;MW; LogPÞ> 2 RDþ2

.

Afterwards, x̂
!

is used as the input of an FCNN with 2 layers with dimensions 32 and 16,

again using ReLUs as activation functions. Batch normalization and L2-regularization are

applied to the fully connected layers to avoid overfitting.

During training, the values of the matrices from the message passing phase and the parame-

ters of the FCNN from the readout phase are fitted simultaneously. We trained the model by

minimizing the MSE with the optimizer Adadelta [47] with a decaying learning rate (decay

rate to ρ = 0.95), starting at 0.05 for 50 epochs. We used a batch size of 64, a regularization

parameter λ = 0.01 for the parameters in the message passing phase, and a regularization

parameter λ = 1 for the parameters in the readout phase. The hyperparameters regularization

factor, learning rate, batch size, dimension of feature vectors D, and decay rate were optimized

with a 5-fold cross-validation on the training set by performing a grid search. We selected the

set of hyperparameters with the lowest mean MSE during cross-validation.
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UniRep vectors

To obtain a 1,900-dimensional UniRep vector for every amino acid sequence in the dataset, we

used Python code that is a simplified and modified version of the original code from the

George Church group [24] and which contains the already trained UinRep model (available

from https://github.com/EngqvistLab/UniRep50). The UniRep vectors were calculated from a

file in FASTA format [48], which contained all amino acid sequences of our dataset.

Fitting of the gradient boosting model with substrate and enzyme

information

We concatenated the task-specific substrate fingerprint x̂
!
2 R52

and the 1,900-dimensional

UniRep vector with information about the enzyme’s amino acid sequence. We used the result-

ing 1,952-dimensional vector as the input for a gradient boosting model for regression, which

we trained to predict the KM value. We set the maximal tree depth to 7, minimum child weight

to 10.6, maximum delta step to 4.24, the learning rate to 0.012, the regularization coefficient λ
to 3.8, and the regularization coefficient α to 3.1. We trained the model for 1,381 iterations.

The hyperparameters regularization coefficients, learning rate, maximal tree depth, maximum

delta step, number of training iterations, and minimum child weight were optimized by per-

forming a grid search during a 5-fold cross-validation on the training set. We selected the set

of hyperparameters with the lowest mean MSE during cross-validation.

Model comparison

To test if the differences in performance between the models with predefined fingerprints as

input and the model with the task-specific fingerprint as input are statistically significant, we

applied a one-sided Wilcoxon signed-rank test. The Wilcoxon signed-rank test tests the null

hypothesis that the median of the absolute errors on the test set for predictions made with the

model with task-specific fingerprints, �e1, is greater or equal to the corresponding median for

predictions made with a model with predefined fingerprints, �e2 (H0 : �e1 � �e2 versus

H1 : �e2 > �e1). We could reject H0 (p = 0.0022 (ECFP), p = 0.0515 (RDKit), p = 0.030 (MACCS

keys)), accepting the alternative hypothesis H1.

Analogous to the described procedure, we tested if the difference in model performance

between the GNNs with and without the 2 additional features, MW and LogP, is statistically

significant. We could reject the null hypothesis H0 that the median of the absolute errors on

the test set for predictions made with the GNN with MW and LogP is greater or equal to the

corresponding median for predictions made with the GNN without additional feature

(p = 0.0454). To execute the tests, we used the Python library SciPy [49].

Prediction of KM values for genome-scale models

We downloaded 46 genome-scale models from BiGG [50] and the genome-scale model yeast8

for S. cerevisiae [51]. We extracted all enzymatic reactions from these models and created 1

entry for every substrate in an enzymatic reaction. We extracted the KEGG Compound IDs

for every substrate from the annotations of the model, if available; otherwise, we mapped the

substrate names to KEGG Compound IDs via synonym lists from KEGG and PubChem in the

same way as described for the substrate names in the BRENDA and Sabio-RK datasets. To

obtain the enzyme information, we used the gene reaction rules, which contain the names of

the involved genes. To obtain the amino acid sequence and the UniProt ID for every enzyme,

we used the UniProt mapping service [38]. If multiple enzymes are given for one reaction, we

made a prediction for all of the given enzymes. If an enzyme complex consisted of multiple
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genes, we tried to figure out which of the genes has a binding activity. Therefore, we down-

loaded for all of the associated UniProt IDs the GO annotations via QuickGO [52]. For every

UniProt ID, we checked if a binding activity was stated in the annotations. If we found a bind-

ing activity for more than 1 UniProt ID or for none of the UniProt IDs in the enzyme complex,

we did not use any enzyme information.

If enzyme and substrate information was available, we used the full model to predict KM. If

only substrate or only enzyme information was available, we used a gradient boosting model

that only uses substrate or enzyme information as its input. If neither substrate nor enzyme

information were available, we used the geometric mean over all KM values in the BRENDA

dataset as a prediction.

To train the gradient boosting model to predict KM values, we used the whole BRENDA

dataset for model training, including the test set.

Supporting information
S1 Table. Results of the hyperparameter optimizations of fully connected neural networks

(FCNNs), which were trained to predict KM from substrate information only. The hype-

parameter optimizations were performed for each of 4 different fingerprints of the substrates

with a 5-fold cross-validation on the training set.

(TIF)

S2 Table. Results of the hyperparameter optimizations of gradient boosting models, which

were trained to predict KM from substrate information only. The hypeparameter optimiza-

tions were performed for each of 4 different fingerprints of the substrates with a 5-fold cross-

validation on the training set.

(TIF)

S3 Table. Results of the hyperparameter optimizations of elastic nets, which were trained

to predict KM from substrate information only. The hyperparameter optimizations were per-

formed for each of 4 different fingerprints of the substrates with a 5-fold cross-validation on

the training set.

(TIF)

S4 Table. Result of the hyperparameter optimization of a fully connected neural networks

(FCNN), which was trained to predict KM from substrate and enzyme information (GNN

fingerprint and UniRep vector). The hypeparameter optimization was performed with a

5-fold cross-validation on the training set.

(TIF)

S5 Table. Result of the hyperparameter optimization of the gradient boosting model,

which was trained to predict KM from substrate and enzyme information (GNN finger-

print and UniRep vector). The hypeparameter optimization was performed with a 5-fold

cross-validation on the training set.

(TIF)

S6 Table. Result of the hyperparameter optimization of an elastic net, which was trained to

predict KM from substrate and enzyme information (GNN fingerprint and UniRep vector).

The hyperparameter optimization was performed with a 5-fold cross-validation on the training set.

(TIF)

S1 Fig. Scatter plot of log10-transformed KM values predicted with the gradient boosting

model with substrate and enzyme information as inputs versus the experimental values
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downloaded from BRENDA and Sabio-RK. The scatter plot displays all data points of the

Sabio-RK test set (orange) and all data points from the BRENDA test set with an EC number–

substrate combination not present in the training set (violet). The data underlying the graphs

shown in this figure can be found at https://github.com/AlexanderKroll/KM_prediction/tree/

master/figures_data.

(TIF)

S2 Fig. (a) Scatter plot of measured KM values and the absolute prediction errors of the

BRENDA test data points for which neither the substrate nor the enzyme occurs in the training

set. (b) Histogram with the distribution of the KM values in the training set. The data underly-

ing the graphs shown in this figure can be found at https://github.com/AlexanderKroll/KM_

prediction/tree/master/figures_data.

(TIF)

S1 Data. Dataset in xlsx format containing complete KM predictions for 47 genome-scale

metabolic models, including those for Homo sapiens, Mus musculus, Saccharomyces cerevi-
siae, and Escherichia coli.
(XLSX)
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ABSTRACT

The turnover number kcat , a measure of enzyme efficiency, is central to understanding cellular physiology

and resource allocation. As experimental kcat estimates are unavailable for the vast majority of enzymatic

reactions, the development of accurate computational prediction methods is highly desirable. However,

existing machine learning models are limited to a single, well-studied organism, or they provide inaccurate

predictions except for enzymes that are highly similar to proteins in the training set. Here, we present

TurNuP, a general and organism-independent model that successfully predicts turnover numbers for

natural reactions of wild-type enzymes. We constructed model inputs by representing complete chemical

reactions through difference fingerprints and by representing enzymes through a modified and re-trained

Transformer Network model for protein sequences. TurNuP outperforms previous models and generalizes

well even to enzymes that are not similar to proteins in the training set. Parameterizing metabolic models

with TurNuP-predicted kcat values leads to improved proteome allocation predictions. To provide a

powerful and convenient tool for the study of molecular biochemistry and physiology, we implemented a

TurNuP web server at https://turnup.cs.hhu.de.

1
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Introduction

The turnover number kcat is the maximal rate at which one activate site of an enzyme converts molecular

substrates into products. kcat is a central parameter for quantitative studies of enzymatic activities, and

is of key importance for understanding cellular metabolism, physiology, and resource allocation. In

particular, comprehensive sets of kcat values are essential for metabolic models that consider the cost of

producing or maintaining enzymes1–9, a prerequisite for accurate simulations of cellular physiology and

growth10. Currently, no high-throughput experimental assays exist for kcat , and experiments are both time

consuming and expensive. Thus, kcat estimates are unavailable for most reactions; even for Escherichia

coli, arguably the biochemically best-characterized organisms, in vitro kcat is known for only ∼ 10% of

all enzyme-catalyzed reactions11. In genome-scale kinetic models of cellular metabolism, this issue is

typically addressed by either sampling missing kcat values or fitting them to large datasets7,8,12,13. However,

these techniques typically result in inaccurate results, and fitted kcat values bear little relationship to known

in vitro estimates7,12,13.

Recent advances in artificial intelligence have put the computational prediction of unknown kcat values

from in vitro training data into reach, and two recent publications have explored this possibility. Heckmann

et al.14 developed a kcat prediction model for enzymes in E. coli. The model relies on detailed, expert-

crafted input features such as enzyme active site properties, metabolite concentrations, experimental

conditions, and reaction fluxes calculated through flux balance analysis (FBA)15. It achieved a coefficient

of determination R2 ≈ 0.34 on an independent test set. However, the complete, detailed input information

is only available for a small subset of enzymatic reactions even in E. coli, limiting the applicability of this

approach. A deep learning model that requires less detailed input features, DLKcat, was recently developed

by Li et al.16. DLKcat predicts kcat using information about the enzyme’s amino acid sequence and about

one of the reaction’s substrates, ignoring other reaction details such as products and co-substrates. In

practical applications, kcat predictions are most important when no experimental measurements for closely

related enzymes are available, and hence general prediction models should generalize well to such cases.

However, while DLKcat can in principle be applied to any enzymatic reaction, its predictions become

misleading for enzymes not similar to those in the training set, as we demonstrate below.

Here, we present a general machine and deep learning approach for predicting in vitro kcat values

for natural reactions of wild-type enzymes. In contrast to previous approaches, we represent chemical

reactions through numerical fingerprints that consider the complete set of substrates and products of a
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reaction. To capture the enzyme properties, we use fine-tuned state-of-the-art protein representations

as additional model inputs (Figure 1). We created these enzyme representations using Transformer

Networks, deep neural networks for sequence processing, which were trained with millions of protein

sequences17. It has been shown for various prediction tasks that Transformer Networks outperform protein

representations created with convolutional neural networks (CNNs)18,19, which were used in previous

models for predicting enzyme turnover numbers16.

Our resulting Turnover Number Prediction model – TurNuP – outperforms both previous methods for

predicting kcat
14,16. We show that TurNuP generalizes well even to enzymes with < 40% sequence identity

to proteins in the training set. Using genome-scale, enzyme-constrained metabolic models for different

yeast species16, we demonstrate that parameterizations with TurNuP kcat predictions lead to improved

proteome allocation predictions. To facilitate widespread use of the TurNuP model, we not only provide a

Python function for large-scale kcat calculations by bioinformaticians, but we also built an easy-to-use web

server that requires no specialized software (turnup.cs.hhu.de).

Results

Obtaining training and test data

We compiled a dataset that connects kcat measurements with the corresponding enzyme sequences, reactant

IDs, and reaction equations. The underlying data is derived from the three databases BRENDA20,

UniProt21, and Sabio-RK22. Our aim was to build a turnover number prediction model for natural

reactions of wild-type enzymes. We hypothesized that we do not have enough data to train a model

to predict the catalytic effect of enzyme mutations or to predict the kcat value of non-natural enzyme-

reaction pairs, which have not been shaped by natural selection. Hence, we removed all data points with

non-wild-type enzymes and all non-natural reactions (see Methods, ”Data preprocessing”). We removed

redundancy by deleting data that was identical to other data points in the set, and we excluded points

with incomplete reaction or enzyme information. We also removed 55 outliers with unrealistically low

or high measurements, i.e., reported kcat values that are either very close to zero (< 10−2.5/s) or that are

unreasonably high (> 105/s)23. If multiple different kcat values existed for the same enzyme-reaction pair,

we took the geometric mean across these values.

This resulted in a final dataset with 4 271 data points, comprising 2 977 unique reactions and 2 827

unique enzymes (for more details on data preprocessing, see Methods). We log10-transformed all kcat
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Figure 1. Machine learning model to predict kcat from numerical enzyme representations and

reaction fingerprints. Experimentally measured kcat values are downloaded from three different

databases. Enzyme information is represented with numerical vectors obtained from natural language

processing (NLP) models that use the linear amino acid sequence as their input. Chemical reactions are

represented using integer vectors. Concatenated enzyme-reaction representations are used to train a

gradient boosting model to predict kcat . After training, the fitted model can be used to parameterize

metabolic networks with kcat values.

values to obtain a target variable with an approximately Gaussian distribution (Figure S1). We split

the dataset into 80% training data and 20% test data in such a way that enzymes with the same amino

acid sequence would not occur both in the training and in the test set. We further split the training set

into 5 disjoint subsets to perform 5-fold cross validations (CVs) for hyperparameter optimization of our

machine learning models. To challenge our models to learn to predict kcat of enzymes without kinetically
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characterized close homologs, the cross validation sets were constructed such that no two subsets contained

enzymes with identical amino acid sequences.

Numerical reaction fingerprints alone lead to reasonable kcat predictions

The kcat value of an enzyme-catalyzed reaction depends strongly on the catalyzing enzyme, but also

on the chemical reaction itself. To integrate reaction information into our machine learning model, we

used numerical reaction fingerprints. We compared the performance of two different types of such

representations, structural and difference fingerprints (calculated with the Python package Chem from

RDKit24).

To create structural reaction fingerprints, one first calculates for each substrate and each product

a 1 638-dimensional binary molecular fingerprint, designed to encode structural information of small

molecules. The bit-wise OR-function is then applied to all substrate fingerprints and separately to all

product fingerprints, resulting in two 1 638-dimensional binary vectors with molecular information about

the substrates and about the products, respectively. These two vectors are concatenated, providing a

3 276-dimensional binary vector with structural information about the reaction24 (Figure 2a).

The calculation of difference reaction fingerprints starts with a different, 2 048-dimensional binary

fingerprint for each substrate and each product. All substrate fingerprint vectors are summed to provide a

single substrate vector, and all product fingerprint vectors are summed to provide a single product vector.

This product fingerprint is then subtracted from the substrate fingerprint, resulting in a 2 048-dimensional

reaction fingerprint with positive and negative integers25 (Figure 2b).

To test how well the reaction fingerprints alone can predict the turnover numbers of enzyme-catalyzed

reactions, we trained two gradient boosting models to predict kcat , each with one of the reaction fingerprints

as the only input. We performed a 5-fold CV with a random grid search for hyperparameter optimization

for both models. After hyperparameter optimization, we chose the set of hyperparameters with the highest

coefficient of determination R2 across CV sets, and we re-trained each model with its best hyperparameters

on the whole training set. On the test set, the resulting model with structural reaction fingerprints as its

inputs achieves a coefficient of determination R2 = 0.31, a mean squared error MSE = 0.99, and a Pearson

correlation coefficient r = 0.56 on the test set. The model with difference reaction fingerprints achieves

slightly improved results, with R2 = 0.34, MSE = 0.95, and r = 0.60 on the test set (Figure 3). Thus, a

model based on chemical reaction information alone can already predict about a third of the variation in

kcat across enzyme-catalyzed reactions.
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Figure 2. Calculation of reaction fingerprints for an exemplary reaction. (a) Structural reaction

fingerprints. Binary molecular fingerprints are calculated for each substrate and each product. The bitwise

OR-function is applied to all substrates and also to all products. The resulting substrate and the resulting

product vector are then concatenated. (b) Difference reaction fingerprints. Binary molecular fingerprints

are calculated for each substrate and each product. All substrate fingerprint vectors are summed, and the

same is done for all product fingerprint vectors. To create the difference fingerprint, the resulting product

vector is subtracted from the substrate vector.

To test if the better performance of difference fingerprints is statistically significant, we used a two-

sided Wilcoxon signed-rank test that compared the absolute errors of the two models on the test set,

resulting in p = 0.0089. Hence, using difference reaction fingerprints leads to statistically significant

improvements, and we chose the difference reaction fingerprints to represent the catalyzed chemical

reactions in the further analyses.
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Figure 3. Using enzyme and reaction information combined leads to improved kcat predictions. (a)

Coefficients of determination R2 for models with different inputs. (b) Mean squared errors (MSE) on

log10-scale. Boxplots summarize the results of the 5-fold CVs on the training set with the best set of

hyperparameters; blue dots show the results on the test set using the optimized models trained on the

whole training set. Model performances are plotted for the models with structural reaction fingerprints (str.

FP), difference reaction fingerprints (diff. FP), ESM-1b vectors (ESM-1b), task-specific ESM-1b vectors

(ESM-1bESP), and with enzyme and reaction information (ESM-1bESP + diff. FP).

Numerical enzyme representations alone lead to reasonable kcat predictions

The turnover number kcat of an enzyme-catalyzed reaction is highly dependent on the catalyzing enzyme.

It can vary by orders of magnitude even between isoenzymes that catalyze the same reaction but differ

in amino acid sequence26. To account for this dependence when predicting kcat , it is crucial to create

meaningful enzyme representations as inputs to machine learning models. In recent years, deep learn-

ing architectures that were originally developed for natural language processing (NLP) tasks, such as

translating a sentence from one language into another, have been applied successfully to the creation of

numerical protein representations from amino acid sequences17,27. When applied to natural languages,

NLP models typically represent all words in a sentence through numerical vectors that encode information

about the words’ contents and positions. When applying NLP models to protein sequences, proteins

replace sentences and amino acids replace words.
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The current state-of-the-art architecture for NLP tasks is a Transformer Network28, which can, in

contrast to previous methods, process all words of a sequence with arbitrary length simultaneously. The

Facebook AI Research team trained such a Transformer Network, called ESM-1b, with a dataset of ∼ 27

million protein sequences from the UniRef50 dataset29 to create 1280-dimensional numerical protein

vectors. The ESM-1b model was trained in a self-supervised fashion, i.e., 10-15 % of the amino acids

in a sequence were masked at random, and the model was trained to predict the identity of the masked

amino acids. It has been shown that the resulting representations contain rich information about the

structure and the function of the proteins17,30,31. Using the pre-trained ESM-1b model17, we calculated

these 1280-dimensional representations for all enzymes in our dataset, in the following referred to as

ESM-1b vectors.

In a previous project30, we created a fine-tuned and task-specific version of the ESM-1b model that

led to improved predictions for the substrate scope of enzymes, a problem for which abundant training

data exists. Such comprehensive data is required to re-train the ESM-1b model, but is not available for

kcat , and we were thus unable to create a version specific to the task of predicting kcat . However, we

speculated that the ESM-1b vectors fine-tuned previously for the prediction of enzyme-substrate pairs

might also improve kcat predictions. To test this hypothesis, we used our previously published model,

ESP30, to calculate fine-tuned representations for all enzymes in our dataset. In the following, we will

refer to these representations as ESM-1bESP vectors.

We tested how well models that use enzyme information alone can predict turnover numbers. We

trained a gradient boosting model32 that used either the ESM-1b or ESM-1bESP vectors to predict the

kcat value of enzyme-catalyzed reactions, without using any additional information on the reaction or on

substrates or products. Gradient boosting models consist of many decision trees that are built iteratively

during the training process. In the first iteration, a single decision tree is built that tries to predict the

correct kcat for all data points in the training set. In all following iterations, a new decision tree is built in

order to reduce the errors that have been made by the already existing trees. After training, many different

decision trees exist that ideally focus on different aspects of the input features and that try to predict the

correct outcome as an ensemble33.

To optimize the hyperparameters of the gradient boosting models, we again performed 5-fold cross

validations (CV) with a random grid search on the training set. Afterwards, we re-trained each model

with its best hyperparameters on the whole training set. On the test set, the model with ESM-1b vectors

as its input achieves a coefficient of determination R2 = 0.36, a mean squared error MSE = 0.92, and a
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Pearson correlation coefficient r = 0.60 (Figure 3). The model with ESM-1bESP vectors achieves slightly

improved performance, with R2 = 0.37, MSE = 0.91, and r = 0.61 on the test set (Figure 3). Thus, a

model based on enzyme information alone leads to slightly better kcat predictions than a model based only

on information on the catalyzed chemical reaction.

We had hypothesized that task-specific ESM-1bESP vectors would lead to improved results compared

to the original ESM-1b vectors. Indeed, the model with ESM-1bESP input vectors led to slightly improved

R2, MSE, and Pearson r on the test set and achieved better results during CV (Figure 3). To test if

this performance difference is statistically significant, we used a one-sided Wilcoxon signed-rank test

that compared the absolute errors made by both models on the test set, resulting in p = 0.41. Although

the difference in absolute errors is not statistically significant at the commonly used 5% level, p < 0.5

indicates that rejecting the null hypothesis (ESM-1bESP vectors do not lead to superior results) is more

likely than not to improve the model. Thus, we chose to represent enzymes through ESM-1bESP vectors in

the following.

A joint model with enzyme and reaction information leads to improved kcat predictions

To train a Turnover Number Prediction model (TurNuP) with enzyme and reaction information, we

concatenated the ESM-1bESP vector and the difference reaction fingerprint for every data point in our

dataset. We used this resulting vector as the input for a gradient boosting model. As before, we performed

a 5-fold CV with a random grid search for hyperparameter optimization, trained the model with the best

set of hyperparameters on the whole training set, and validated it on the test set. The final TurNuP model

achieves a coefficient of determination R2 = 0.40, a mean squared error MSE = 0.86, and a Pearson

correlation coefficient r = 0.63 on the test set (Figures 3 and 4).

Using enzyme and reaction information combined in one model improves performance compared to

using only enzyme or only reaction information (Figure 3). To compare these differences statistically,

we used a one-sided Wilcoxon signed-rank test, testing if the the absolute errors on the test set for the

joint model are lower than for the models with either only enzyme or only reaction information. These

tests showed that the differences are statistically significant at the 5% level, with p = 0.043 (difference

fingerprint) and p = 0.0046 (ESM-1bESP). However, the improvement for the joint model is relatively

small, indicating that the information stored in the reaction fingerprints and in the enzyme representations

are overlapping. This overlap is not surprising, as the enzyme sequence contains information about the

catalyzed reaction30; conversely, given that enzymes evolve on fitness landscapes shaped by the catalyzed
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Figure 4. Comparison of predicted and experimentally measured kcat values. kcat values predicted

with the complete TurNuP model, plotted against the corresponding experimental measurements. Each

dot is one data point from the test set.

reactions, the chemical reaction likely also contains information about the type of catalyzing enzyme.

TurNuP provides meaningful predictions even if no close homologs with known kcat exist

In our study on predicting the substrate scope of enzymes30, we found that prediction performance depends

strongly on the sequence similarity between a target enzyme and enzymes in the training set, consistent

with the widely held belief that enzymes are more likely to be functionally similar if they have more

similar sequences [34]. We hence examined the performance of TurNuP for enzyme sets that differed in

their maximal similarity to proteins in the training set. We partitioned the enzymes in the test set into four

subsets with 0-40%, 40-80%, 80-99%, and 99-100% maximal sequence identity to enzymes in the test set,

respectively. We calculated TurNuP’s coefficient of determination for all four categories (Figure 5a, black

points). As expected, prediction performance decreases with increasing distance of the enzyme’s amino

acid sequence to proteins in the training set. While TurNuP’s coefficient of determination is R2 = 0.66

for 99-100% sequence identity, it decreases to R2 = 0.28 for enzymes with a maximal sequence identity

below 40%.
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Figure 5. Predictions are more accurate for enzymes more similar to proteins in the training set,

and TurNuP predictions are more accurate compared to an existing deep learning model. (a)

Coefficients of determination R2 for the test sets for our TurNuP model (black) and the previously

published DLKcat model16 (magenta) for different levels of maximal enzyme sequence identity compared

to enzymes in the training set. Numbers next to points show how many data points of this category are in

the test set. The horizontal dashed line corresponds to a model that predicts the same mean kcat value for

all test data points. (b) Mean squared errors (MSE) for the prediction of absolute proteome data compared

to experimental data. Proteome predictions were achieved with enzyme-constrained genome-scale models,

parameterized with kcat values predicted with TurNuP (black) or with the DLKcat model (magenta).

Proteome data was predicted for four different yeast species (Sce, Saccharomyces cerevisiae; Kla,

Kluyveromyces lactis; Kmx, Kluyveromyces marxianus; Yli, Yarrowia lipolytica) in 21 different culture

conditions (for details, see Methods).

A simple, straight-forward, and often used alternative method to predict approximate kcat values is to

simply average over the kcat values of the most similar enzymes. Such simple averages are expected to

work well in cases where kinetically characterized homologs with highly similar amino acid sequences

exist; in contrast, they are unlikely to provide good estimates if no close homologs with known kcat exist.

As expected, for enzymes in the test set with close homologs in the training set (99-100% max. identity),

the geometric mean across the three most similar enzymes in the test set leads to reasonable estimates,

with R2 = 0.21 (N = 22). In contrast, averaging over the three most similar enzymes leads to a dismal

R2 = 0.02 (N = 474) if no close homologs exist in the training data (0-40% max. identity).

These results demonstrate that any sophisticated prediction model for turnover numbers will be most
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relevant for enzymes for which no close homologs with known kcat exist. As expected, TurNuP predictions

are statistically significantly better than those provided by simple averages, across the complete test set

(R2 = 0.40 vs. R2 = 0.24, N = 851, p = 0.00040 from one-sided Wilcoxon signed-rank test) as well as for

the similarity classes (0-40% max. identity: p = 2.2×10−7, N = 22; 99-100% max. identity: p = 0.0054,

N = 474).

TurNuP outperforms previous models for predicting kcat

Heckmann et al.14 trained and validated a machine learning model for the prediction of kcat values for E.

coli. As enzyme-related input features, their model used enzyme molecular weight and global structural

disorder, as well as several molecular details of the active site: number of residues, solvent access, depth,

hydrophobicity, secondary structure, and exposure. Additional input features were reaction flux, number of

substrates, the dissociation constant KM, EC number, substrate and product concentration, thermodynamic

efficiency, and the pH value and temperature at which kcat was measured in vitro. Out of this large set of

features, the most important input was found to be the reaction flux, which was calculated by performing

parsimonious flux balance analyses (pFBA)35,36. The total number of training and validation data points

was limited to 215, as Heckmann et al.14 only considered reactions from E. coli, and as many input

features are not available for most enzymes – the least widely available features were information about

the enzymes’ active site, and the pH and temperature of the in vitro experiment. The model achieved

a coefficient of determination R2 ≈ 0.34 on a test set. In comparison, our general model, which can be

applied to enzymes from any organism and which does not require any enzyme information beyond the

linear amino acid sequence, achieves an improved coefficient of determination of R2 = 0.40 on a test set.

The DLKcat model by Li et al.16 examined the same problem addressed here, the prediction of kcat

values across the space of all possible enzymatic reactions. Therefore, we undertook a more in-depth

comparison to DLKcat. We partitioned the enzymes in the DLKcat test set according to their maximal

sequence identity to proteins in the DLKcat training set, analogous to the classification of enzymes in

our own test set. Figure 5a shows that TurNuP (black) achieves substantially higher coefficients of

determination than DLKcat (magenta) for all categories of enzyme sequence identity. We tested if the

differences in model performance are statistically significant using one-sided Wilcoxon–Mann–Whitney

tests; for each subset, the test compares the distributions of absolute errors of the two models. For

three of the four subsets, the improvements are statistically significant, with p-values of p = 1.5×10−10

(0-40%), p = 0.0039 (40-80%), and p = 0.0025 (80-99%). With p = 0.080, the p-value for the forth
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subset (99-100%) is slightly higher than the customary significance level of 5%; this might be related to

the small sample size (N = 22) of the TurNuP test set in this category, caused by our decision to make

sure that amino acid sequences in the test set are distinct from those in the training set.

We also compared the performance of DLKcat to the simple strategy of taking the geometric mean

across the kcat values of the three most similar enzymes in the training set. Across all data points in the test

set, kcat predictions by DLKcat (R2 = 0.45, N = 1687) were only marginally better than those provided

by simple averages (R2 = 0.44; p = 0.0033 from one-sided Wilcoxon signed-rank test). This surprising

similarity in prediction quality between DLKcat and simple kcat averages is likely related to the strong

sequence similarities between DLKcat’s training and test sets. 68% (N = 1142) of the enzymes in the test

set are also included in the training set (100% max. sequence identity), and a further 23% (N = 394) are

at least 99% identical to amino acid sequences in the training set (but not 100% identical). In contrast to

TurNuP, DLKcat was not challenged during its training to predict kcat values for enzymes with dissimilar

amino acid sequences16. As a consequence, using the geometric mean across kcat values of similar enzymes

is a major improvement in cases where no close homologs with known kcat exist (0-40% max. identity).

While simple averages achieve R2 = 0.11 in this case, DLKcat predictions lead to R2 =−0.61 (p = 0.008,

two-sided Wilcoxon signed-rank test). The strongly negative coefficient of determination shows that

for enzymes without kinetically characterized close homologs in the training data, DLKcat predictions

are substantially worse than a trivial model that “predicts” the same mean kcat value independent of the

enzyme and the reaction. In sum, using DLKcat appears to be no improvement over the simple approach

of calculating an average kcat value across the most similar enzymes with available turnover numbers.

Although TurNuP performs better than DLKcat in each of the four categories of enzyme sequence

identities (Figure 5a), DLKcat achieves a higher R2 value (R2 = 0.44) on its overall test set, compared

to the TurNuP model on its overall test set (R2 = 0.40). This counter-intuitive observation is an example

of Simpson’s paradox. It is caused by the differential distribution of data points across categories in the

DLKcat and TurNuP test sets. As shown by the numbers above/below points in Figure 5a, 91% of the

data points in the DLKcat test set fall into the 99-100% identity class, while the majority of data points

in the TurNuP test set (56%) have less than 40% sequence identity to any enzymes in the corresponding

training set and are hence much harder to predict.

Li et al.16 designed a pipeline to use predicted kcat values for the parameterization of enzyme-

constrained genome-scale metabolic models, with the goal of predicting the proteome allocation patterns of

yeast species. They compared the resulting proteome predictions to absolute proteomics measurements for
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four yeast species in 21 different environments. We employed this pipeline to test if kcat values calculated

with the TurNuP model lead to improved proteome predictions. In 19 out of 21 environment-species

combinations, our kcat values led to improved predictions (p = 0.00010, one-sided binomial test). The

mean squared errors between measured and predicted protein abundances improved on average by ∼ 18%

when using TurNuP (Figure 5b).

Using additional input features does not improve model performance

TurNuP employs very general input features, using only the enzyme’s linear amino acid sequence and

information on the reaction’s substrates and products. However, it is unclear if these features cover

all important aspects for predicting kcat . To test if we can improve prediction quality, we examined

three potential additional input features: Michaelis constants KM, Codon Adaptation Indices (CAIs), and

reaction fluxes.

The Michaelis constant KM is defined as the substrate concentration at which an enzyme works at

half of its maximal catalytic rate; hence, KM quantifies the affinity of an enzyme for its substrate. It has

been shown that kcat is correlated with the enzyme’s Michaelis constant(s) of the reaction’s substrate(s)23.

To utilize this correlation for the prediction of kcat , we determined KM values for all enzyme-substrate

combinations in our dataset. Where available, we extracted suitable KM values from the BRENDA

database20 (∼ 7% of the enzyme-substrate pairs in our dataset); for all other cases we applied a machine

learning model that uses numerical representations of the substrate and the enzyme as its input to predict

KM
37. For reactions with multiple substrates, we took the geometric mean of all KM values to obtain a

single KM value for every data point. To calculate how much variance of kcat can be explained by KM,

we fitted a linear regression model to the training set, with the log10-transformed KM value as the only

input. The linear regression model achieves a coefficient of determination R2 = 0.11, a mean squared

error MSE = 1.28, and a Pearson correlation coefficient r = 0.34 on the test set (Figure S2). We thus

considered KM a promising candidate for improving the TurNuP predictions.

The second additional input feature, the Codon Adaptation Index (CAI), quantifies the synonymous

codon usage bias of protein-coding genes. It is widely used as an indicator of gene expression and

protein levels, with highly expressed genes typically using more ‘preferred’ codons than less highly

expressed genes38. The CAI is a value between 0 and 1 that describes the similarity of synonymous codons

frequencies between a given gene and a set of highly expressed genes, where values close to 1 indicate

nearly optimal codon usage, typically associated with a high expression level in evolutionarily relevant
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environments. We calculated CAI for all enzymes in our dataset originating from E. coli. We fitted a

linear regression model to the corresponding 237 data points in the training set, with CAI as the only input

feature. We validated the model on 66 test data points (Figure S3). The model achieved a coefficient

of determination R2 = 0.012, a MSE = 1.31, and a Pearson correlation coefficient r = 0.12 on the test

set, indicating that CAI cannot explain much of the variance of kcat values. Hence, we did not consider

CAI a promising candidate for improving the TurNuP predictions, and we did not calculate CAI for other

organisms beyond E. coli.

The most important input feature in the kcat prediction model established by Heckmann et al. for

reactions in E. coli14 was an estimate of the reaction flux, calculated using parsimonious flux balance

analysis (pFBA)35,36 across a broad range of nutrient conditions. For 108 metabolic genome scale models

from the BiGG database39, we calculated fluxes in a similar way as Heckmann et al. (Methods). For

further analyses, we selected the six BiGG models of distinct species that showed the highest Pearson

correlation between predicted fluxes and measured kcat values in the training set. We mapped the calculated

fluxes to kcat values from our dataset. In cases where no metabolic genome scale model was available for

an organism, we mapped the flux of an identical reaction but from a different organism to the data point. If

we were not able to find the identical reaction in the BiGG database, we selected the most similar one using

a similarity score (see Methods). To calculate how much variance of the kcat values can be explained by the

calculated fluxes, we fitted a linear regression model to the training set, with the log10-transformed fluxes

as the only input. The fitted model achieves a coefficient of determination R2 = 0.021, a MSE = 1.40, and

a Pearson correlation coefficient r = 0.15 on the test set (Figure S4). Thus, we found no evidence for a

high predictive power of fluxes beyond E. coli; however, as fluxes were the most important predictor for

kcat in Ref.14, we still retained them as a potential additional input feature for TurNuP.

To test if adding KM and reaction flux as input features improves model performance, we trained a

new model. As the model input, we created a concatenated vector comprised of the enzyme ESM-1bESP

vector, the difference reaction fingerprint, the reaction flux, and the Michaelis constant KM for every data

point. For a gradient boosting model, we then performed a 5-fold CV with a random grid search for

hyperparameter optimization. Afterwards, we trained the model with the best set of hyperparameters on

the complete training set. On the test set, this model achieves a coefficient of determination R2 = 0.39, a

MSE = 0.87, and a Pearson correlation coefficient r = 0.63. Thus, model performance did not improve

compared to the model without the additional input features flux and KM.
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The TurNuP web server provides an easy acces to the prediction model

We implemented a web server that facilitates an easy use of the TurNuP model without requiring program-

ming skills or the installation of specialized software. It is available at https://turnup.cs.hhu.de.

As input, the web server requires an enzyme amino acid sequence and representations of all substrates

and all products; the latter can be provided either as SMILES strings, KEGG Compound IDs, or InChI

strings. Users can enter a single enzymatic reaction into an online form, or upload a CSV file with multiple

reactions. Since TurNuP was trained only with natural reactions of wild-type enzymes, we recommend to

use the web server only for such enzyme-reaction pairs.

Discussion

Predicting the turnover number of enzyme-catalyzed reactions is a complex task, and the available datasets

for model training are small and noisy. For example, Bar-Even et al.23 found that that up to 20% of

the entries in BRENDA differ from the entries in the reference papers, probably caused by copying

errors and erroneous replacements of units. Even aside from such obvious errors, the variance of kcat

measurements for the same enzyme-reaction pairs between different studies can be high. We found an

average deviation of 5.7-fold (mean deviation on log10-scale = 0.75) between two kcat measurements

for the same enzyme-reaction pair. This variance is likely not only due to errors in the databases, but

also to different experimental procedures or varying assay conditions, such as temperature and pH value.

When comparing a single measurement to the geometric mean of all other measurements for the same

enzyme-reaction pair, we found an average deviation of 3.3-fold (mean deviation on log10-scale = 0.52).

This compares to an average deviation of 5.1-fold (mean deviation on log10-scale = 0.71) of predicted

kcat values with our TurNuP model compared to the geometric mean of all available measurements for

this enzyme-reaction pair. These numbers indicate that in practice, using predictions calculated with

the TurNuP model may lead to similar deviations and error rates compared to performing experimental

measurements.

Although the accuracy of TurNuP’s predictions is not very different from that of experimental estimates,

model accuracy can still be improved. On the one hand, we trained and validated the model with a total

of only 4 271 data points, which is rather small for a machine learning model with high-dimensional

input vectors. Once more high-quality training data becomes available, model performance will most

likely improve. On the other hand, kcat values can differ widely if measured under different experimental
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conditions such as varying pH and temperature. However, as information about the experimental conditions

is mostly unavailable in databases for enzyme kinetic parameters, we were not able to include these

conditions as an input to our prediction model. Manually extracting this information from research papers

has the potential to further improve accuracy of the prediction models and to create models that are

capable of accounting for different experimental conditions. Moreover, as we have shown above, the high

variability of experimental estimates for the same enzyme-reaction pairs indicates a lot of noise across the

measured kcat values. Better predictions will become possible in the future if experimental variation will

be reduced through improved technologies.

TurNuP achieves superior performance compared to previous methods for predicting kcat . Its coefficient

of determination (R2 = 0.4) is higher than than of Heckmann et al. (R2 ≈ 0.34)14, who trained an organism-

specific prediction model with very detailed and expert-crafted input features, including enzyme active

site properties, metabolite concentrations, reaction fluxes, and experimental conditions. TurNuP also

outperforms the most recent method for predicting kcat , the DLKcat model16 (Figure 5). One reasons for

TurNuP’s superior performance might be the use of state-of-the-art enzyme representations compared to

convolutional neural networks (CNNs) and the use of representations for the whole chemical reactions

instead of using only information on one of the substrates.

An additional important reason might be a careful preprocessing of the kcat dataset. We excluded

all data points with mutated enzymes and non-natural reactions, because we are mainly interested in

predicting turnover numbers for natural reactions of wild-type enzymes, and we hypothesized that we

do not have enough training data to teach our model to predict the catalytic effect of enzyme mutations

or to predict the kcat value of non-natural enzyme-reaction pairs. When including mutated enzymes, one

has to be very careful when splitting the dataset into training and test set, as one may easily end up with

many nearly identical enzymes in both sets. 91% of the enzymes in the DLKcat test set have a maximal

sequence identity between 99 and 100% compared to the enzymes in the training set. It is likely that the

same issue arose in the validation set used for hyperparameter optimization; such a structure of training

and validation sets makes it difficult to train a model that generalizes well to enzymes not highly similar

to those in the training set. Indeed, we showed that DLKcat does not produce meaningful predictions

for enzymes with a maximal sequence identity lower than 40% compared to the enzymes in the training

set, and total model performance on the test set is not meaningfully better than calculating kcat averages

across the most similar enzymes in the training set. In comparison, less than 3% of the enzymes in the

TurNuP test set have amino acid sequences that are >99% identical to those of homologs in the training
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data. Moreover, TurNuP generalizes well even to enzymes that are not highly similar to enzymes in the

training set, and provides a major improvement over simple kcat averages.

To achieve these results, we used general input features: the ESM-1bESP vector17, a fine-tuned, state-

of-the-art numerical representation of the enzyme, calculated from its amino acid sequence; and a reaction

fingerprint that integrates structural information about all substrates and products24, which allowed us to

create input vectors of fixed length even for varying numbers of reactants. Surprisingly, we found that

the ESM-1bESP vectors work very well if used as the only input feature (Figure 3). The reason for that is

neither that enzymes with high fluxes or with high expression levels have different enzyme representations,

because these features by themselves do not predict much variance of the kcat values (see Results, ”Using

additional input features does not improve model performance”).

It is at first sight surprising that the reaction fluxes estimated with pFBA do not explain much of the

variance of kcat , while they were found to be the best predictor in the model developed by Heckmann et

al.14. When calculating genome-scale reaction fluxes for different organisms, for many data points, we

obtained fluxes that were zero or close to zero. In contrast, Heckmann et al. focused on a small dataset

that mostly consisted of well-studied, central reactions in E. coli. Those reactions typically have fluxes

substantially different from zero at least in some of the simulated conditions. It appears likely that this

biased construction of a small dataset in Ref.14 is responsible for the high correlation observed between

reaction fluxes and kcat by Heckmann et al..

Computational estimates of kcat values are highly relevant for the functional and kinetic study of

individual enzymes40, and TurNuP can provide a first estimate of kcat before performing labor-intensive

experiments. Another major use case of TurNuP is the prediction of kcat values for genome-scale metabolic

models. We found that our predictions can be used successfully to improve proteome allocation predictions

(Figure 5b). In future work, kcat predictions with TurNuP can be combined with an existing approach for

predicting Michaelis constants (KM)37. This would facilitate full parameterizations of non-linear enzyme

kinetics in genome-scale metabolic models, a powerful tool for gaining fundamental insights into cellular

physiology9,41.
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Methods

Software and code availability

All software was coded in Python42. We created the enzyme representations using the deep learning

library PyTorch43. We fitted the gradient boosting models using the library XGBoost32. We used the

web framework Django44 to implement the TurNuP web server. The code used to generate the results

of this paper, in the form of Jupyter notebooks, as well as all datasets, are available from https:

//github.com/AlexanderKroll/Kcat_prediction.

Downloading kcat data

We used data from three different databases, Sabio-RK, UniProt, and BRENDA, to create a kcat dataset

for model training and validation. We downloaded 3 971 kcat values for wild-type enzymes together with

UniProt IDs and reaction information from Sabio-RK22. We tried to map all metabolites involved in the

reactions to unique identifiers using either a KEGG reaction ID45, if available, or using the metabolite

names and the PubChem synonym database46. We removed all data points for which we could not map

all substrates and all products to an ID. This resulted in a dataset with 2 830 data points for 289 different

enzymes.

We downloaded 5 664 kcat values for wild-type enzymes together with UniProt IDs and CHEBI reaction

IDs from UniProt via the UniProt mapping service21. We mapped the metabolites of all reactions to

unique IDs using CHEBI reaction IDs47. We removed data points, if we could not map all metabolites of a

reaction to an ID. This resulted in a dataset with 1 738 kcat values for 1 017 different enzymes.

We downloaded 14 165 turnover numbers for wild-type enzymes with protein information and substrate

names from BRENDA20. Most of the kcat values in BRENDA are not assigned with a unique reaction

equation and the entered kcat values are known to be prone to errors23. To overcome these issues, we

manually checked for more than half of all points if the stated kcat value is identical to the value from the

original paper and we assigned a unique reaction equation to all manually checked data points. After

removing those data points with incomplete reaction information and non unique enzyme IDs, 8 267 data

points were left for 3 149 different enzymes.

Data preprocessing

We merged all three kcat datasets from BRENDA, Sabio-RK, and UniProt, which resulted in a dataset

with 12 835 data points. We removed 1 050 duplicated data points from this data set. To obtain protein
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sequences for all enzymes, we used the UniProt mapping service21 to map all UniProt IDs to amino

acid sequences. We used the Python package Bioservices48 to map all metabolites to InChI strings49. If

multiple kcat values existed for the same enzyme-reaction combination, we took the geometric mean across

these values. For the calculation of the geometric mean, we wanted to ignore those values that were likely

obtained under non-optimal conditions. Thus, we excluded kcat values smaller than 1% compared to the

maximal kcat value for the same enzyme-reaction combination. Calculating the geometric mean resulted in

a dataset with 7 496 entries.

The BRENDA, UniProt, and Sabio-RK databases contain many kcat values that were measured for

secondary, non-natural reactions of enzymes. As we are only interested in measurements for the natural

reaction of an enzyme, we excluded kcat values if another measurement existed for the same enzyme but

for a different reaction with a kcat value that was more than ten times higher. To further exclude data points

that were measured under non-optimal conditions or for non-natural reactions of the enzyme, we excluded

data points if we could find a measurement for the same reaction or the same EC number that was more

than 100 times higher. The described procedures led to the removal of 3 092 data points.

We calculated reaction fingerprints and enzyme representations for all enzyme-reaction pairs (see

below) and removed all 26 data points, where either the reaction fingerprint or the enzyme representation

could not be calculated.

To exclude data points with possibly wrongly assigned reaction equations, we removed those 52 data

points where the sum of molecular weights of substrates did not match the sum of molecular weights of

the products. We removed another 55 data points because their kcat values are outliers (i.e., values below

10−2.5/s or higher than 105/s). This resulted in a final dataset with 4 271 data points.

Splitting the dataset into training and test set

We randomly split the dataset into 80% training data and 20% test data. We made sure that the same

enzyme would not occur in the training and the test set. We further split the training set into 5 disjoint

subsets for a 5-fold cross-validation (CV) to perform hyperparameter optimizations of the machine learning

models. In order to achieve a model that generalizes well during CV, we created these 5 subsets also in

such a way that the same enzyme did not occur in two different subsets.

Calculating enzyme representations

To create the ESM-1b model17, the Facebook AI research (FAIR) team trained a Transformer Network28

with 33 hidden layers and a hidden layer size of 1 280 using ∼ 27 million protein amino acid sequences
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from the UniRef50 dataset29. To process a protein sequence, the type and position of every amino acid

in a sequence is encoded in a 1 280-dimensional numerical vector. All amino acid representations of

a sequence are simultaneously applied to the ESM-1b model and updated for 33 time steps using the

attention mechanism28. The attention mechanism allows to use all representations as an input when

updating a single amino acid representation. The attention mechanism selectively chooses only relevant

input when calculating an update of a representation. To train the ESM-1b model, randomly 10−15% of

the amino acids in a sequence are masked. The model is then trained to predict the type of the masked

amino acids. After training, a single representation for the whole model can be created by calculating the

element-wise mean of all amino acid representations after they were updated for 33 times.

We used the trained ESM-1b model and the code provided on the GitHub repository of the FAIR

team17, to calculate a 1 280-dimensional numerical representation for every enzyme in our dataset. As the

ESM-1b model can only process amino acid sequences up to 1 024 amino acids, we only used the first

1 024 amino acids for those sequences that were too long.

To calculate the fine-tuned enzyme representations that were originally created for the task of predicting

the substrate scope of enzymes30, the ESM-1bESP vectors, we used code and models provided on the

following GitHub repository: https://github.com/AlexanderKroll/ESP.

Calculating reaction fingerprints

To calculate difference and structural reaction fingerprints, we first represented all reactions in our dataset

using the language SMARTS50. SMARTS can be used to describe patterns of small molecules and of

chemical reactions. To calculate the reaction fingerprints, we used functions from the RDKit24 package

Chem with the reaction SMARTS as the input.

Structural reaction fingerprints are created by first calculating 1638-dimensional binary molecular

fingerprints (ExplicitBitVect) for all substrates and products. Then, the bitwise OR-function is separately

applied to all substrate fingerprints and to all product fingerprints, which results in two 1638-dimensional

binary vectors with information about the substrates and about the products, respectively. Finally, both vec-

tors are concatenated, which results in a 3276-dimensional binary vector with structural information about

the reaction. We used the RDKit function Chem.rdChemReactions.CreateStructuralFingerprintForReaction

to calculate the fingerprints.

To calculate difference reaction fingerprints, first, a 2048-dimensional binary atom-pair fingerprint

(AtompairFP) for each substrate and each product is calculated. Then, the fingerprints for all substrates
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and also for all products are element-wise summed. The resulting fingerprint for the products is then

subtracted from the fingerprint for the substrates, which results in a 2048-dimensional reaction finger-

prints with positive and negative integers. To calculate these fingerprints, we used the RDKit function

Chem.rdChemReactions.CreateDifferenceFingerprintForReaction.

Hyperparameter optimization for gradient boosting models

To perform hyperparameter optimizations for all gradient boosting models, we split the training set into five

disjoint subsets with approximately equal sizes to perform 5-fold cross-validations (CVs). We performed

a random grid search for the hyperparameters learning rate, regularization coefficients α and λ , maximal

tree depth, maximum delta step, number of training iterations, and minimum child weight using the

Python package hyperopt51. Afterwards, we chose the set of hyperparameters that led to the highest mean

coefficient of determination R2 during CV.

Comparison of kcat predictions between the DLKcat model and TurNuP

We used code provided on a GitHub repository by Li et al.16 to reproduce the DLKcat model and to make

predictions for their test set. We divided both, the DLKcat test set and our test set, into four different

subsets according to the protein sequence identity compared to the amino acid sequences in the training

sets. To achieve this, we calculated for every test sequence the maximal pairwise sequence identity

compared to all sequences in the training set using the Needleman-Wunsch algorithm from the software

package EMBOSS52. We used the coefficient of determination R2 to compare the results of TurNuP with

the results of the DLKcat model.

Predicting protein abundances using predicted kcat values

Li et al.16 developed a Bayesian pipeline to use predicted kcat values for enzyme-constrained genome-scale

metabolic models to predict the proteome of yeast species. We used Matlab code provided on a GitHub

repository by Li et al.16 to follow the same pipeline for kcat values predicted with TurNuP. The predicted

proteome allocations were compared to measured proteome data for four different species in 21 different

cultural conditions. The measured proteome data was taken from six different publications53–58.

Statistical tests for model comparison

To test if the difference in model performance between the TurNuP model with enzyme and reaction

information compared to the models with either only enzyme or reaction information is statistically
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significant, we applied a one-sided Wilcoxon signed-rank test implemented in the Python package SciPy59.

We tested the null hypothesis that the median of the absolute errors on the test set for predictions made with

TurNuP, ē1, is greater or equal to the corresponding median for predictions made with a model with only

reaction or only enzyme information, ē2 (H0 : ē1 ≥ ē2 vs. H1 : ē2 > ē1). We could reject H0 (p = 0.0003

(structural fingerprint), p = 0.0427 (difference fingerprint), p = 0.0046 (ESM-1bESP)), accepting the

alternative hypothesis H1.

We also tested if the differences in model performance between TurNuP and the DLKcat model are

statistically significant for all subsets of the test set with different enzyme sequence identity levels. We

used the non-parametric one-sided Wilcoxon–Mann–Whitney test implemented in the Python package

SciPy59 to test the null hypothesis that the prediction errors for the two models are equally distributed.

We could reject the null hypothesis for three subsets at the 5% level with p-values of p = 1.5× 10−10

(0− 40%), p = 0.0039 (40− 80%), and p = 0.0025 (80− 99%), while the p-value for the forth subset

(99−100%) was slightly above the 5% level (p = 0.080).

Calculating reaction fluxes

We calculated reaction fluxes for all 108 genome-scale metabolic models (GEMs) from the BiGG

database39. We selected those six GEMs for different organisms that showed the highest correlation

between calculated fluxes through parsimonious flux balance analyses (pFBA) and kcat values in our

dataset. We selected the following six models: iECO111 1330 (Escherichia coli), iEK1008 (Mycobac-

terium tuberculosis), iHN637 (Clostridium ljungdahlii), iIT341 (Helicobacter pylori), iSbBS512 1146

(Shigella boydii), and iJN1463 (Pseudomonas putida).

We calculated the reaction fluxes similar to the approach by Heckmann et al.14 for E. coli. For each

of the six GEMs, we simulated 10 000 minimal growth sustaining environments through pFBA36 using

the Python package COBRApy60. Afterwards, we calculated for every reaction the mean of all non-zero

fluxes among all simulations. In all of the 10 000 simulations, first a growth sustaining environments was

created with a growth rate higher than 0.1
�
h−1� and oxygen uptake was allowed with a probability of

50% for aerobic organisms. To convert the medium into a minimal media, each metabolite of the medium

was removed if growth was sustained without it. If we could not obtain a non-zero flux for a reaction in

all simulations, we repeated the described procedure with a flux variability analysis (FVA)61 instead of a

pFBA. If we could not obtain a non-zero-flux for a reaction either via pFBA or via FVA, we replaced the

reaction flux with the mean of all non-zero fluxes. Python code for calculating the fluxes is available on the
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following GitHub repository: https://github.com/Nina181/kcat_flux_relationship.

Mapping data points to BiGG reaction IDs

We created a list with reactions from six different metabolic genome-scale models from the BiGG

database39 (iECO111 1330, iEK1008, iHN637, iIT341, iSbBS512 1146, iJN1463). To create this list,

we downloaded a json-files for each model and we extracted all substrate names and IDs (MetaNetX or

KEGG), product names and IDs, and BiGG reaction IDs. We discarded all reactions with an incomplete

list of substrate or product IDs. If only a MetaNetX ID and no KEGG ID was available for a metabolite,

we downloaded an InChI string49 for the metabolite using the MetaNetX database62. Next, we calculated

structural reaction fingerprints for all extracted BiGG reactions using the KEGG IDs and InChI strings of

the substrates and products (for details see above, ”Calculating reaction fingerprints”).

To map data points from our data set to BiGG reactions IDs, we calculated a pairwise similarity score

between all reactions in our dataset and all reactions from the 6 extracted BiGG models. To calculate the

similarity score, we used the Python function TanimotoSimilarity from the RDKit package DataStructs24

with structural reaction fingerprints as the input. This resulted in a similarity score between 0 (no similarity)

and 1 (very high similarity) for all pairs of reactions. We mapped every data point in our dataset to the

BiGG reaction with the highest similarity score.

Calculating Michaelis constants

To calculate the Michaelis constants KM for all enzyme catalyzed reactions in our dataset, we created a

list with all enzyme-substrate pairs. We used the BRENDA database20 to map enzyme-substrate pairs to

KM values via the enzymes’ amino acid sequences and via a molecular fingerprint of the substrate, called

ECFP vector63. We were able to map a KM value to ∼ 7% of 8 984 enzyme-substrate pairs.

If we could not find a value for an enzyme-substrate pair in the BRENDA database, we predicted KM

using a machine learning model37. The KM prediction model uses a graph neural network (GNN)64,65 to

create a 50-dimensional task-specific fingerprint of the substrate. These fingerprints are used together with

a 1900-dimensioanl enzyme representation, called UniRep vector27, as the input for a gradient boosted

decision tree model32 to predict the KM value for an enzyme-substrate pair. For reactions with multiple

substrates, we took the geometric mean of KM values to create a single KM value for every data point.
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Calculating the Codon Adaptation Index

The codon adaptation index (CAI) for E. coli was calculated according to the original definition66,

considering ribosomal protein genes as the highly expressed genes. The sequences of ribosomal protein

genes were retrieved from genome annotation of E. coli (NC 000913.3 from RefSeq67).
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Supporting Figures S1-S4

Figure S1. Turnover numbers are approximately log-normally distributed. Histograms of (a)

untransformed kcat values and (b) log10-transformed kcat values.

Figure S2. Michaelis constants KM compared to kcat values. We obtained either experimentally

measured KM values from BRENDA or predicted KM values for every reaction and we plotted these values

against the corresponding kcat values on a log10-scale. The plot contains 4271 data points from our

training and test set.
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Figure S3. Codon Adaptation Index (CAI) for enzymes from E. coli compared to their kcat values.

We calculated the CAI for genes from E. coli and plotted it against their log10-transformed kcat value. The

plot contains 303 data points from our training and test set.

Figure S4. Predicted reaction fluxes compared to kcat values. We obtained either predicted reaction

fluxes via parsimonious flux balance analysis (pFBA) or flux variability analysis (FVA) and we plotted

these values against the corresponding kcat values on a log10-scale. The plot contains 4271 data points

from our training and test set.
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ABSTRACT

For a comprehensive understanding of metabolism, it is necessary to know all potential substrates for

each enzyme encoded in an organism’s genome. However, for most proteins annotated as enzymes, it

is unknown which primary and/or secondary reactions they catalyze, as experimental characterizations

are time-consuming and costly. Machine learning predictions could provide an efficient alternative, but

are hampered by a lack of information regarding enzyme non-substrates, as available training data

comprises mainly positive examples. Here, we present ESP, a general machine learning model for the

prediction of enzyme-substrate pairs, with an accuracy of over 91% on independent and diverse test

data. This accuracy was achieved by representing enzymes through a modified transformer model

with a trained, task-specific token, and by augmenting the positive training data by randomly sampling

small molecules and assigning them as non-substrates. ESP can be applied successfully across widely

different enzymes and a broad range of metabolites included in the training data. It outperforms recently

published models designed for individual, well-studied enzyme families, which use much more detailed

input data. We implemented a user-friendly web server to predict the substrate scope of arbitrary

enzymes, which may support not only basic science, but also the development of pharmaceuticals and

bioengineering processes.

1

70 manuscripts



Introduction

Enzymes evolved to efficiently catalyze one or more specific chemical reactions, increasing reaction rates

up to over a million-fold over the spontaneous rates1. In addition, most enzymes are promiscuous, i.e., they

catalyze further, physiologically irrelevant or even harmful reactions2–4. Accordingly, a comprehensive

mapping of enzyme-substrate relationships plays a crucial role in pharmaceutical research and bio-

engineering, e.g., for the production of drugs, chemicals, food, and biofuels5–7.

Unfortunately, it is both expensive and time-consuming to determine experimentally which reactions

are catalyzed by a given enzyme. There is thus a huge imbalance between the number of proteins

predicted to be enzymes and the experimental knowledge about their substrate scopes. While the UniProt

database8 contains entries for over 36 million different enzymes, more than 99% of these lack high-quality

annotations of the catalyzed reactions. Efforts are underway to develop high-throughput methods for

the experimental determination of enzyme-substrate relationships, but these are still in their infancy9–11.

Furthermore, even high-throughput methods cannot deal with the vast search space of all possible small

molecule substrates, but require the experimenter to choose a small subset for testing.

Our goal in this study was to develop a single machine learning model capable of predicting enzyme-

substrate relationships across all proteins, thereby providing a tool that helps to focus experimental efforts

on enzyme-small molecule pairs likely to be biologically relevant. Developing such a model faces two

major challenges. First, a numerical representation of each enzyme that is maximally informative for

the downstream prediction task must be obtained12. To be as broadly applicable as possible, these repre-

sentations should be based solely on the enzymes’ primary sequence and not require additional features,

such as binding site characteristics. Second, public enzyme databases only list positive instances, i.e.,

molecules with which enzymes display measurable activity (substrates)13. For training a prediction model,

an automated strategy for obtaining suitable negative, non-binding enzyme-small molecule instances must

thus be devised.

Existing machine learning approaches for predicting enzyme-substrate pairs were either developed

specifically for small enzyme families for which unusually comprehensive training datasets are avail-

able13–17, or they are only capable of connecting substrates with EC classes but not with specific enzymes.

For example, Mou et al.14 developed models to predict the substrates of bacterial nitrilases, using input

features based on the 3D-structures and active sites of the enzymes. They trained various machine learning

models based on experimental evidence for all possible enzyme-small molecule combinations within the
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models’ prediction scope (N = 240). Yang et al.15 followed a similar approach, predicting the substrate

scope of plant glycosyltransferases among a pre-defined set of small molecules. They trained a decision

tree-based model with a dataset covering almost all possible combinations of enzymes and relevant small

molecules. Pertusi et al.13 trained four different support vectors machines (SVMs), each for a specific

enzyme. As input features, their models only use information about the (potential) substrates, as well as

non-substrates manually extracted from the literature; no explicit information about the enzymes was used.

Roettig et al.16 and Chevrette et al.17 predicted the substrate scopes of small enzyme families, training

machine learning models with structural information relating to the enzymes’ active sites. Finally, Visani

et al.18 implemented a general machine learning model for predicting suitable EC classes for a given

substrate. To train this model, all EC classes that are not associated with a certain substrate were used

as negative data points, which resulted in a low average positive to negative ratio of 0.0032. Visani et al.

did not use any enzyme information beyond the EC class as model input, and therefore the model cannot

distinguish between different enzymes assigned to the same EC class.

All these previous models can either not be applied to individual enzymes, or they aim to predict

substrates for only a single enzyme or enzyme family. Those models that make predictions for specific

enzymes rely on very dense experimental training data, i.e., experimental results for all or almost all

potential enzyme-substrate pairs. However, for the vast majority of enzyme families, such extensive

training data is not available. As yet, there have been no published attempts to formulate and train

a general model that can be applied to predict substrates for specific enzymes across widely different

enzyme families. Deep learning models have been used to predict enzyme functions by either predicting

their assignment to EC classes19–21, or by predicting functional domains within the protein sequence22.

However, different enzymes sharing the same domain architecture or assigned to the same EC class

can have highly diverse substrate scopes23. Directly predicting specific substrates for enzymes goes an

important step beyond those previous methods and can help to predict enzyme function more specifically

and more precisely.

Prior work related to the prediction of enzyme-substrate pairs are the prediction of drug-target binding

affinities (DTBAs) and of Michaelis-Menten constants, KM and kcat. State-of-the-art approaches in this

domain are feature-based, i.e., numerical representations of the protein and the substrate molecule are

used as input to machine learning models24–28. As numerical descriptions of the substrate molecule,

these approaches use SMILES representations29, expert-crafted fingerprints30, or fingerprints created

with graph neural networks31,32. Proteins are usually encoded numerically through deep learning-based

3/42

72 manuscripts



representations of the amino acid sequences33–35. However, these approaches cannot be transferred

one-to-one to the problem of predicting enzyme-substrate pairs. The KM and kcat prediction models

are exclusively trained with positive enzyme-substrate pairs and therefore cannot classify molecules as

substrates or non-substrates27,28. Many of the proteins used to train the DTBA prediction models have no

enzymatic functions; even if they do, the molecules used for training are mostly not naturally occurring

potential substrates, and thus there has been no natural selection for or against binding. In contrast,

the binding between enzymes and substrates evolved under natural selection. It appears likely that this

evolutionary relationship influences our ability to predict enzyme-substrate pairs, and DTBA models are

thus not expected to perform well at this task.

Here, we go beyond the current state-of-the-art by creating maximally informative protein representa-

tions, using a customized, task-specific version of the ESM-1b transformer model33. The model contains

an extra 1280-dimensional token, which was trained end-to-end to store enzyme-related information

salient to the downstream prediction task. This general approach was first introduced for natural language

processing36, but has not yet been applied to protein feature prediction. We created negative training

examples using data augmentation, by randomly sampling small molecules similar to the substrates in

experimentally confirmed enzyme-substrate pairs. Importantly, we sampled all negative data points from a

limited set of metabolites, the set of ∼ 1400 substrates that occur among all experimentally confirmed

enzyme-substrate pairs of our dataset. Thus, we do not sample from the space of all possible alternative

reactants similar to the true substrates, but only consider small molecules likely to occur in at least some

biological cells. While many enzymes are rather promiscuous2–4, it is likely that most of the potential

secondary substrates are not contained in this restricted set for any given enzyme, and hence the chance of

sampling false negative data points was likely small. We numerically represented all small molecules with

task-specific fingerprints that we created with graph neural networks (GNNs)37–39. A gradient-boosted

decision tree model was trained on the combined protein and small molecule representations for a high-

quality dataset with ∼ 18000 very diverse, experimentally confirmed positive enzyme-substrate pairs

(Figure 1).

The resulting Enzyme Substrate Prediction model – ESP – achieves high prediction accuracy for

those ∼ 1400 substrates that have been part of our training set and outperforms previously published

enzyme family-specific prediction models. Thus, our work demonstrates how augmented datasets and

enzyme representations re-trained for a specific task can be used to overcome challenges in predicting

enzyme-substrate relationships. While model performance decreases when ESP is applied to small
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Figure 1. Model overview. Experimentally validated enzyme-substrate pairs and sampled negative

enzyme-small metabolite pairs are numerically represented with task-specific enzyme and small molecule

representations. Concatenated enzyme-small molecule representations are used to train a gradient boosting

model. After training, the fitted model can be used to predict promising candidate substrates for enzymes.

molecules that have not been part of the training set, many use cases will aim to connect known substrates

to unknown enzymes. For example, a specific user might be interested in finding new enzymes that bind

to substrates involved in the metabolism of malate. To identify promising enzyme-substrate pairs for

further experimental study, ESP could be applied to the metabolites involved in malate metabolism in

combination with enzymes with incomplete functional characterizations.
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Results

Obtaining training and test data

We created a dataset with experimentally confirmed enzyme-substrate pairs using the GO annotation

database for UniProt IDs40 (Methods, “Creating a database with enzyme-substrate pairs”). For training

our machine learning models, we extracted 18351 enzyme-substrate pairs with experimental evidence for

binding, comprised of 12156 unique enzymes and 1379 unique metabolites. We also extracted 274030

enzyme-substrate pairs with phylogenetically inferred evidence, i.e., these enzymes are evolutionarily

closely related to enzymes associated with the same reactions. These ”guilt by association” assignments

are much less reliable than direct experimental evidence, and we only used them during pre-training to

create task-specific enzyme representations – numerical vectors aimed at capturing information relevant to

the prediction task from the enzyme amino acid sequences. Our validations demonstrate that using phylo-

genetically inferred functions for the construction of appropriate enzyme representations has a positive

effect on the prediction of experimentally confirmed enzyme-substrate pairs (see below, ”Representing

enzymes through a modified state-of-the-art deep learning architecture”).

There is no systematic information on negative enzyme-small molecule pairs, i.e., pairs where the

molecule is not a substrate of the enzyme. We hypothesized that such negative data points could be

created artificially through random sampling, which is a common strategy in classification tasks that lack

negative training data41. To challenge our model to learn to distinguish similar binding and non-binding

reactants, we sampled negative training data only from enzyme-small molecule pairs where the small

molecule is structurally similar to a known true substrate. However, we only considered small molecules

included among the experimentally confirmed enzyme-substrate pairs in our dataset. Among such a limited

and biased subset, enzymes are quite specific catalysts, and therefore most of the potential secondary

substrates are not included for the majority of enzymes. Thus, we assumed that the frequency of incorrectly

created negative labels is sufficiently low to not adversely affect model performance. This assumption was

confirmed by the high model accuracy on independent test data, as detailed below.

To select putatively non-binding small molecules that are structurally similar to the known substrates,

we used a similarity score based on molecular fingerprints, with values ranging from 0 (no similarity)

to 1 (identity; see Methods, “Sampling negative data points”). For every positive enzyme-substrate pair,

we sampled three molecules with similarity scores between 0.75 and 0.95 to the actual substrate of the

enzyme, and used them to construct negative enzyme-molecule pairs. We opted for creating more negative
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data points than we have positive data points, as this not only provided us with more data, but it also

more closely reflects the true distribution of positive and negative data points compared to a balanced

distribution.

Our final dataset comprises 69365 entries. We split this data into a training set (80%) and a test set

(20%). In many machine learning domains, it is standard practice to split the data into training and test

set completely at random. However, when dealing with protein sequences, this strategy often leads to

test sets with amino acid sequences that are almost identical to those of proteins in the training set. Such

close homologs often share the same function42, and the assessment of model performance could thus be

overly optimistic. It is therefore common practice to split such datasets into training, validation, and test

sets based on protein sequences similarities43. Here, we made sure that no enzyme in the test set has a

sequence identity higher than 80% compared to any enzyme in the training set. To show that despite this

sequence-based partitioning, enzymes from the training and test sets follow the same distribution, we used

dimensionality reduction to map all enzymes to a two-dimensional subspace and plotted the corresponding

data points (Supplementary Fig. 1). To evaluate how well our final model performs for different levels of

enzyme similarities, we divided the test set further into three subsets with maximal sequence identities

between 0-40%, 40-60%, and 60-80% compared to all enzymes in the training set.

Representing small molecules as numerical vectors

Extended-connectivity fingerprints (ECFPs) are expert-crafted binary representations for small molecules.

The molecules are represented as graphs, with atoms interpreted as nodes and chemical bonds as edges.

For the numerical encoding, one classifies bond types and calculates feature vectors with information about

every atom (types, masses, valences, atomic numbers, atom charges, and number of attached hydrogen

atoms)30. Afterwards, these identifiers are updated for a fixed number of steps by iteratively applying

predefined functions to summarize aspects of neighboring atoms and bonds. After the iteration process, all

identifiers are converted into a single binary vector with structural information about the molecule. The

number of iterations and the dimension of the fingerprint can be chosen freely. We set them to the default

values of 3 and 1024, respectively. For comparison, we also created 512- and 2 048-dimensional ECFPs,

but these led to slightly inferior predictions (Supplementary Fig. 2). Using ECFPs can lead to identical

representations for structurally very similar molecules, e.g., for some molecules that differ only by the

length of a chain of carbon atoms. In our dataset, 182 out of 1 379 different molecules shared an identical

fingerprint with a structurally similar molecule.
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As an alternative to expert-crafted fingerprints such as ECFPs, neural networks can be used to learn

how to map graph representations of small molecules to numerical vectors. Such networks are referred

to as graph neural networks (GNNs)37–39. We trained a GNN for the binary task of predicting if a small

molecule is a substrate for a given enzyme. While training for this task, the GNN is challenged to

store all information about the small molecule that is relevant for solving the prediction task in a single

numerical vector. After training, we extracted these 100-dimensional task-specific vectors for all small

molecules in our dataset. It has been observed that pre-training GNNs for a related task can significantly

improve model performance44,45. Thus, we first pre-trained a GNN for the related task of predicting the

Michaelis constants KM of enzyme-substrate pairs (see Methods, “Calculating task-specific fingerprints

for the small molecules using graph neural networks”). As shown below (see “Successful prediction of

enzyme-substrate pairs by using combined enzyme and small molecule representations”), pre-training

indeed improved prediction performance significantly. In contrast to ECFPs, GNN-generated fingerprints

lead to much fewer cases of identical representations for different molecules. In our dataset, identical

fingerprints occurred for 42 out of 1 379 molecules.

Representing enzymes through a modified state-of-the-art deep learning architecture

The ESM-1b model is a state-of-the-art transformer network46, trained with ∼27 million proteins from

the UniRef50 dataset47 in a self-supervised fashion33. This model takes an amino acid sequence as its

input and puts out a numerical representation of the sequence; these representations are often referred to

as protein embeddings. During training of ESM-1b, ∼ 15% of the amino acids in a protein’s sequence

are randomly masked and the model is trained to predict the identity of the masked amino acids (Figure

2a). This training procedure forces the model to store both local and global information about the protein

sequence in one 1280-dimensional representation vector for each individual amino acid. In order to

create a single fixed-length numerical representation of the whole protein, one typically calculates the

element-wise mean across all amino acid representations33,34,48. We refer to these protein representations

as ESM-1b vectors.

However, simply taking the element-wise mean results in information loss and does not consider the

task for which the representations shall be used, which can lead to subpar performance12. To overcome

these issues, we created task-specific enzyme representations optimized for the prediction of enzyme-

substrate pairs. We slightly modified the architecture of the ESM-1b model, adding one additional

1280-dimensional token to represent the complete enzyme, intended to capture information salient to the
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Figure 2. A task-specific enzyme representation developed from the ESM-1b model. (a) ESM-1b

model. Amino acids of a protein sequence are represented with numerical vectors and passed through a

transformer network. Some amino acid representations are masked. All representations are iteratively

updated 33 times, using information about neighboring and distant amino acids. The ESM-1b model is

trained to predict the masked amino acids. ESM-1b vectors are calculated by taking the element-wise

mean of all representations in the last layer. (b) Modified ESM-1b model. An additional representation for

the whole enzyme is added to the amino acid representations. After updating all representations 33 times,

the enzyme representation is concatenated with a small molecule representation. The network is trained to

predict whether the small molecule is a substrate for the given enzyme. After training, the ESM-1bts

vector is extracted as the enzyme representation before adding the small molecule representation.

downstream prediction task (Figure 2b). This whole-enzyme representation was updated in the same way

as the regular ESM-1b amino acid representations.

After a predefined number of update steps, the enzyme representation was concatenated with the small

molecule ECFP-vector. The combined vector was used as the input for a fully connected neural network

(FCNN), which was then trained end-to-end to predict whether the small molecule is a substrate for the

enzyme. This approach facilitates the construction of a single, optimized, task-specific representation.

The ESM-1b model contains many parameters and thus requires substantial training data. Therefore,

in the pre-training that produces the task-specific enzyme representations, we added phylogenetically

inferred evidence to our training set; this resulted in a total of ∼ 287000 data points used for training the

task-specific enzyme representation. After training, we used the network to extract the 1280-dimensional
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Figure 3. Optimized models provide accurate predictions of enzyme-substrate pairs. (a) Accuracies.

Boxplots summarize the results of the 5-fold CV on the training set with the best sets of hyperparameters.

Blue dots display the accuracies on the test set, using the optimized models trained on the whole training

set. (b) ROC curves for the test set. The dotted line displays the ROC curve expected for a completely

random model.

task-specific representations for all enzymes in our dataset. In the following, these representations are

called ESM-1bts vectors.

Successful prediction of enzyme-substrate pairs by using combined enzyme and small

molecule representations

To compare the performances of the different enzyme representations (ESM-1b and ESM-1bts vectors)

and of the two small molecule representations (ECFPs and GNN-generated fingerprints), we estimated

prediction quality on our test set when using machine learning models with each of the four combinations

of enzyme and small molecule representations. In each case, we concatenated one of the two 1280-

dimensional enzyme representations with one of the two small molecule representations to create a single

input vector for every enzyme-small molecule pair. We used these inputs to train gradient boosted decision

tree models49 for the binary classification task of predicting whether the small molecule is a substrate for

the enzyme.

We performed hyperparameter optimizations for all four models, including the parameters learning rate,

depth of trees, number of iterations, and regularization coefficients. For this, we performed a random grid
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search with a 5-fold cross-validation (CV) on the training set. To challenge the model to learn to predict

the substrate scope of enzymes not included in the training data, we made sure that each enzyme occurred

in only one of the five subsets used for cross-validation (Methods, “Hyperparameter optimization of the

gradient boosting models”). To account for the higher number of negative compared to positive training

data, we also included a weight parameter that lowered the influence of the negative data points. The

results of the cross-validations are displayed as boxplots in Figure 3a. The best sets of hyperparameters

are listed in Supplementary Table 1. After hyperparameter optimization, the models were trained with

the best set of hyperparameters on the whole training set and were validated on our independent test

set, which had not been used for model training or hyperparameter selection. It is noteworthy that for

some input combinations, the accuracies on the test set are higher than the accuracies achieved during

cross-validation (Figure 3a). This improved performance on the test set may result from the fact that

before validation on the test set, models are trained with approximately 11 000 more samples than before

each cross-validation; the number of training samples has a substantial influence on model performance

(see below, “Model performance increases with increased training set size”).

Commonly used metrics to measure the performance of binary classification models are accuracy,

ROC-AUC score, and Matthews correlation coefficient (MCC). Accuracy is simply the fraction of correctly

predicted data points among the test data. The ROC-AUC score is a value between 0 and 1 that summarizes

how well a classifier is able to distinguish between the positive and negative classes, where a value of

0.5 would result from a model that randomly assigns class labels, and a value of 1 corresponds to perfect

predictions. The MCC is a correlation coefficient for binary data, comparable to the Pearson correlation

coefficient for continuous data; it takes values between -1 and +1, where 0 would result from a model that

randomly assigns class labels, and +1 indicates perfect agreement.

As shown in Figure 3 and Table 1, models with task-specific enzyme and/or small molecule represen-

tations performed better than those with generic representations. The best-performing model combined

the fine-tuned ESM-1bts enzyme representations with the GNN-generated small molecule fingerprints,

achieving an accuracy of 91.5%, a ROC-AUC score of 0.956, and an MCC of 0.78. The difference

between the two best models (ESM-1bts + GNN vs. ESM-1bts + ECFP) is statistically highly significant

(McNemar’s test: p < 10−5). For the final ESP model, we thus chose to represent enzymes with ESM-1bts

vectors and small molecules with GNN-generated, task-specific fingerprints.

To compare the gradient boosting model to alternative machine learning models, we also trained a

logistic regression model and a random forest model for the task of predicting enzyme-substrate pairs
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Table 1. Prediction performance on the test set for all four combinations of enzyme and small molecule

representations.

ROC-AUC

score
Accuracy MCC

ESM-1b + ECFP 0.937 87.2% 0.69

ESM-1bts + ECFP 0.950 90.5% 0.75

ESM-1b + GNN 0.940 88.8% 0.72

ESM-1bts + GNN 0.956 91.5% 0.78

from the combined ESM-1bts and GNN vectors. However, these models performed worse compared to the

gradient boosting model (Supplementary Table 2).

The GNN used to represent small molecules in the best-performing model was pre-trained for the task

of predicting the Michaelis constants KM of enzyme-substrate pairs. To test if this pre-training improved

the predictions, we also tested model performance for fingerprints that were created with a GNN that was

not pre-trained. Using a pre-trained GNN indeed led to better model performance (Supplementary Table

3; p < 10−7 from McNemar’s test).

The results summarized in Table 1 demonstrate that re-training and fine-tuning the ESM-1b model can

significantly improve model performance. This finding contrasts previous observations that fine-tuning

protein representations can negatively influence model performance and can lead to worse results compared

to using the original ESM-1b model12,50. To achieve the improved enzyme representations, we added

an extra token for the whole enzyme, and we trained the model to store all relevant information for the

prediction task in this token. To investigate the importance of the added token for the observed superior

performance, we alternatively re-trained the ESM-1b without such an extra token. Our results show that

using the extra token indeed improves model performance (Supplementary Table 4; p = 0.040 from

McNemar’s test).

Good predictions even for enzymes with low sequence identity to training data

It appears likely that prediction quality is best for enzymes that are highly similar to enzymes in the

training set, and decreases for enzymes that are increasingly dissimilar to the enzymes used for training.

How strong is that dependence? To answer this question, we first calculated the maximal enzyme sequence

identity compared to the enzymes in the training set for all 2291 enzymes in the test set. Next, we split the
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Figure 4. Accurate predictions even for enzymes with distinct sequence similarity compared to

enzymes in the training data. We divided the test set into subsets with different levels of enzyme

sequence identity compared to enzymes in the training set. (a) ESP accuracies, calculated separately for

enzyme-small molecule pairs where the small molecule occurred in the training set and where it did not

occur in the training set. (b) ESP ROC curves. The dotted line displays the ROC curve expected for a

completely random model.

test set into three subgroups: data points with enzymes with a maximal sequence identity to training data

between 0 and 40%, between 40% and 60%, and between 60% and 80%.

For data points with high sequence identity levels (60-80%), the ESP model is highly accurate, with an

accuracy of 95%, ROC-AUC score of 0.99, and MCC of 0.88 (Figure 4). ESP still performs very well for

data points with intermediate sequence identity levels (40-60%), achieving an accuracy of 93%, ROC-AUC

score 0.97, and MCC 0.83. Even for enzymes with low sequence identity to training data (0−40%), the

ESP model achieves good results and classifies 89% of the data points correctly, with ROC-AUC score

0.93 and MCC 0.72. Thus, while using more similar enzymes during training improves the prediction

quality, very good prediction accuracy can still be achieved for enzymes that are only distantly related to

those in the training set. The observed differences were statistically significant for sequence identities

0-40% versus 40-60% (Mann–Whitney U test: p < 10−23), but not for 40-60% versus 60-80% (p = 0.14).

Low model performance for unseen small molecules

In the previous subsection, we showed that model performance is highest for enzymes that are similar

to proteins in the training set. Similarly, it appears likely that the model performs better when making
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predictions for small molecules that are also in the training set. To test this hypothesis, we divided the

test set into data points with small molecules that occurred in the training set (N = 13459) and those with

small molecules that did not occur in the training set (N = 530).

The ESP model does not perform well for data points with small molecules not present in the training

set. When considering only enzyme-small molecules pairs with small molecules not represented in the

training set and an enzyme sequence identity level of 0-40% compared to the training data, ESP achieves an

accuracy of 71%, ROC-AUC score 0.59, and MCC 0.15. At an enzyme sequence identity level of 40-60%,

accuracy improves to 83%, with ROC-AUC score 0.78, and MCC 0.25 for unseen small molecules. At

high enzyme sequence identity levels of 60-80%, the accuracy reaches 90%, with ROC-AUC score 0.71,

and MCC 0.27. Thus, for unseen small molecules, even a very moderate model performance requires

that proteins similar to the enzyme (> 40% identity) are present in the training set. We again found the

differences to be statistically significant for 0-40% versus 40-60% (Mann–Whitney U test: p < 10−20),

but not for 40-60% versus 60-80% (p = 0.226).

For those test data points with small molecules not present in the training set, we wondered if a high

similarity of the small molecule compared to at least one substrate in the training set leads to improved

predictions, analogous to what we observed for enzymes with higher sequence identities. For each small

molecules not present in the training set, we calculated the maximal pairwise similarity score compared to

all substrates in the training set. We could not find any evidence that a higher maximal similarity score

leads to better model performance (Supplementary Fig. 3). Hence, we conclude that ESP only achieves

high accuracies for new enzyme-small molecule pairs if the small molecule was present among the ∼1 400

substrates of our training set.

How many training data points with identical substrates are needed to achieve good model performance?

For every small molecule in the test set, we counted how many times the same molecule occurs as an

experimentally confirmed substrate in the training set. Supplementary Fig. 4 shows that having as few as

two positive training data points for a given small molecule leads to good accuracy when pairing the same

small molecule with other enzymes.

Model performance increases with increased training set size

The previous subsections suggest that a bigger training set with a more diverse set of enzymes and

small molecules should lead to improved performance. However, using more data does not guarantee

an improved model performance. For example, there could be a limitation in the model architecture
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Figure 5. Model performance increases with training set size. Points show accuracies and ROC-AUC

scores for the test set versus the fraction of the available training data used for training the gradient

boosting model.

that prevents the model from better fitting the data. To test how our model performs with different

amounts of training data and to analyze if more data is expected to lead to higher generalizability, we

trained the gradient boosting model with different training set sizes, ranging from 30% to 100% of the

available training data. Figure 5 shows that accuracy and ROC-AUC score indeed increase with increasing

training set size (Spearman rank correlations, accuracy: ρ2 = 0.95, p < 10−4; ROC-AUC score: ρ2 = 1.0,

p < 10−15). Thus, collecting more and more diverse data – for example, through targeted additional

experiments – will likely lead to further model improvements.

ESP can express uncertainty for data points with low prediction accuracy

Internally, our trained classification model does not simply output the positive or negative class as

a prediction. Instead, it outputs a prediction score between 0 and 1, which can be interpreted as a

measurement of the probability for a data point to belong to the positive class. So far, we assigned all

predictions with a score ≥ 0.5 to the positive class, and all predictions below 0.5 to the negative class. To

provide a more detailed view of prediction accuracies, Figure 6 displays the distributions of the true (blue)

and false (red) predictions for our test set across prediction scores.

Most true predictions have a score either close to 0 or close to 1, i.e., the ESP model is very confident

about these predictions. In contrast, false predictions are distributed much more evenly across prediction

scores. Approximately 4% of prediction scores for our test data fall between 0.4 and 0.6. The model
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Figure 6. Prediction scores around 0.5 indicate model uncertainty. Stacked histogram bars display

the prediction score distributions of true predictions (blue) and false predictions (red). The inset shows a

blow-up of the interval [0.2,0.8].

seems to be uncertain for these data points: for this subset, predictions are only barely better than random

guesses, with an accuracy of 59%, ROC-AUC score 0.60, and MCC 0.17 (Figure 6, inset). Thus, when

applied in practice, prediction scores between 0.4 and 0.6 should be considered uncertain and should not

be assigned to one of the two classes.

ESP outperforms two recently published models for predicting the substrate scope of

enzymes

We compared ESP with two recently published models for predicting the substrate scopes of specific

enzyme families. ESP has been trained with much more data points compared to the previously published

models; conversely, these previous models used much more detailed input information. Thus, a fair, direct

comparison of model architectures is impossible. Instead, we analyzed if our model, which is capable of

making use of large amounts of freely available data, can lead to better prediction accuracies than much

more targeted approaches that necessarily work on smaller datasets.

Mou et al.14 trained four different machine learning models (logistic regression, random forest,

gradient-boosted decision trees, and support vector machines) to predict substrates of bacterial nitrilases.

For model training and validation, they used a dataset with all possible combinations of 12 enzymes and 20

small molecules (N = 240), randomly split into 80% training data and 20% test data. We added all training

data from Ref.14 to our training set and validated the updated ESP model on the corresponding test data,
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which had no overlap with our training data. Mou et al.14 achieved an accuracy of 82% and a ROC-AUC

score of 0.90 on the test set. ESP achieves better results, with an accuracy of 87.5%, ROC-AUC score

0.94, and MCC 0.75. This improvement is particularly striking given that Mou et al.14 used knowledge

about the enzymes’ 3D structures and binding sites, while we only use a representation of the linear amino

acid sequences.

Yang et al.15 published a decision tree-based model, GT-Predict, for predicting the substrate scope

of glycosyltransferases of plants. As a training set, they used 2847 data points with 59 different small

molecules and 53 different enzymes from Arabidopsis thaliana, i.e., the data covered 90.7% of all possible

enzyme-small molecule combinations. These authors used two independent test sets to validate the model,

one dataset with 266 data points with enzymes from Avena strigosa and another dataset with 380 data

points with enzymes from Lycium barbarum. On those two test sets, GT-Predict achieves accuracies of

79.0% and 78.8%, respectively, and MCCs of 0.338 and 0.319, respectively. We added the training set from

Ref.15 to our training set. The test sets from Avena strigosa and Lycium barbarum had no overlap with our

training data. For these two sets, we achieved similar accuracies as Yang et al. (78.2% in both cases), but

substanitally improved MCCs: 0.484 for Avena strigosa and and 0.517 for Lycium barbarum (ROC-AUC

scores were 0.80 and 0.84, respectively). As the test datasets used by Yang et al.15 are imbalanced, with

a proportion of 18-31% of positive data points, the MCC is a more meaningful score compared to the

accuracy51; we hence conclude that ESP outperforms GT-Predict. Beyond benchmarking the performance

of ESP, the above comparisons of our model predictions to two (almost) complete experimental datasets

also indicate that ESP is indeed capable of predicting the full substrate scope of enzymes.

We also tested model performances for the test sets by Mou et al.14 and Yang et al.15 without adding

any new training data to ESP. Only ∼ 5% and ∼ 8% of the small molecules in these test sets did already

occur in our training set. As we showed above that performance drops massively if the model is applied

to unseen small molecules (Figure 4a), we did not expect good model performances. Indeed, for all

three test sets, accuracies are below 68%, ROC-AUC scores are below 0.59, and MCCs are below 0.12

(Supplementary Table 5).

The ESP web server facilitates an easy use of the prediction model

We implemented a web server that allows an easy use of ESP without requiring programming skills or

the installation of specialized software. It is available at https://esp.cs.hhu.de. As input, the

web server requires an enzyme amino acid sequence and a representation of a small molecule (either as a
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SMILES string, KEGG Compound ID, or InChI string). Users can either enter a single enzyme-small

molecule pair into an online form, or upload a CSV file with multiple such pairs. In addition to the

prediction score, the ESP web server reports how often the entered metabolite was present as a true

substrate in our training set. Since we have shown that model performance drops substantially when the

model is applied to small molecules not used during training, we recommend to use the prediction tool

only for those small molecules represented in our training dataset. We uploaded a full list with all small

molecules from the training set to the web server homepage, listing how often each one is present among

the positive data points.

Discussion

We presented a general approach for predicting the substrate scope of enzymes; ESP achieves an accuracy

of over 91% on an independent test set with enzymes that share at most 80% sequence identity with any

enzyme used for training. Notably, the model performs with an accuracy of 89% even for enzymes with

very low sequence identity (< 40%) to proteins in the training set. This performance seems remarkable,

as it is believed that enzymes often evolve different substrate specificities or even different functions if

sequence identity falls below 40%42.

To achieve these results, we used very general input features: a task-specific fingerprint of the small

molecule, constructed with a graph neural network (GNN) from a graph representing structural information,

and a numerical representation of the enzyme calculated from its amino acid sequence. We showed that

creating task-specific enzyme representations leads to significant improvements compared to non-task-

specific enzyme representations (Figure 3). Moreover, our results clearly show that a carefully devised

strategy of randomly sampling negative enzyme-molecule pairs can be an effective and viable approach.

Future refinements of this approach might boost model performance further. For example, when creating

negative data points for confirmed enzyme-substrate pairs, a tighter decision boundary might result from

preferentially choosing structurally similar substrates of highly different enzymes. On the other hand, the

sets of true substrates of highly similar enzymes often overlap, and excluding known substrates of highly

similar enzymes could avoid creating some false negative data points.

An additional avenue towards potential model improvements could be to test new model architectures.

In this study, we trained two separate models for creating task-specific enzyme and small molecule

representations. Future work could investigate if the pre-training of the enzyme representation and the

small molecule representation could be performed jointly in a single model, thereby creating matched,
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task-specific enzyme and small molecule representations simultaneously.

Despite the structural similarities of ESP to state-of-the-art models for predicting drug–target binding

affinities (DTBAs) and for predicting Michaelis-Menten constants of enzyme-substrate pairs24–28, the

performances of these models are not comparable, as we trained ESP for a binary classification task,

whereas the other models address regression tasks. Instead, we compared our approach to two recently

published models for predicting enzyme-substrate pairs14,15. These two models used very specific input

features, such as an enzyme’s active site properties and physicochemical properties of the metabolite, and

were designed and trained for only a single enzyme family. Our general ESP model – which can be trained

on much larger datasets – achieves superior results, despite learning and extracting all relevant information

for this task from much less detailed, general input representations. The application of ESP to the dataset

from Mou et al.14 also demonstrated that our model can successfully distinguish between similar potential

substrates for the same enzyme, as it achieved good results when it was applied to different nitriles for

bacterial nitrilases.

One limitation of ESP is that model performance drops substantially for small molecules that did not

occur in the training set. However, the current version of ESP can still be applied successfully to a broad

range of almost 1400 different small molecules present in our dataset. Once more training data becomes

available, model performance will very likely improve further (Figure 5). Mining other biochemical

databases – such as BRENDA52, Sabio-RK53, and UniProt8 – for new and non-overlapping data might

be a low-cost way to expand the number of different small molecules in the dataset. Adding as few as

two additional positive training data points for new molecules will typically lead to accurate predictions

(Supplementary Fig. 4).

The recent development of AlphaFold54 and RoseTTAFold55 facilitates predictions of the 3D structure

for any protein with known amino acid sequence. Future work may also include input features extracted

from such predicted enzyme structures. Our high-quality dataset with many positive and negative enzyme-

small metabolite pairs, which is available on GitHub, might be a promising starting point to explore the

utility of such features.

A main use case for the ESP model will be the prediction of possible substrate candidates for single

enzymes. In contrast, ESP will likely not lead to satisfactory results when used to predict all enzyme-

substrate pairs in a genome scale metabolic model. This problem results from the trade-off between the

True Positive Rate (TPR) and the False Postive Rate (FPR) for different classification thresholds (Figure

3b). For example, choosing a classification threshold with a TPR of ∼ 80% leads to a FPR of ∼ 5%. If we
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consider a genome scale model with approximately 2000 enzymes and 2000 metabolites, then there exist

∼ 4×106 possible enzyme-small molecule pairs, of which only about 6000 will be true enzyme-substrate

pairs. A TPR of 80% would lead to the successful detection of 4800 true pairs. At the same time, an FPR

of 5% would lead to an additional ∼ 200000 false predictions.

If, on the other hand, ESP is applied to a set of pre-selected candidate substrates for a single enzyme, a

false positive rate of 5% can be acceptable. If we choose 200 molecules as substrate candidates, where one

of these 200 is a true substrate for the enzyme, an FPR of 5 % means that the model predicts only ∼ 10

molecules falsely as a substrate, and there is an 80% chance that the true substrate is labeled correctly.

This could help to bring down the experimental burden – and associated costs – of biochemical assays to

levels where laboratory tests become tractable.
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Methods

Software

All software was coded in Python56. We implemented and trained the neural networks using the deep

learning library PyTorch57. We fitted the gradient boosting models using the library XGBoost49.

Creating a database with enzyme-substrate pairs

To create a database with positive enzyme-substrate pairs, we searched the Gene Ontology (GO) annotation

database for UniProt IDs40 for experimentally confirmed annotations of the catalytic activity of enzymes.

A GO annotation consists of a GO Term that is assigned to a UniProt ID, which is an identifier for proteins.

GO Terms can contain information about the biological processes, molecular functions, and cellular

components in which proteins are involved58. We first created a list with all 6 587 catalytic GO Terms

containing information about enzyme-catalyzed reactions. For each of these GO Terms, we extracted

identifiers for the substrates involved in the reaction. If the GO Term definition stated that the reaction

is reversible, we treated all reactants (including products) as substrates; if a reaction was labeled as

irreversible, we only extracted the reactants annotated as substrates. For this purpose, we used a RHEA

reaction ID59 from the GO Term, which was available for 4 086 out of 6 587 GO Terms. If no RHEA

reaction ID was listed for the GO Term, we extracted the substrate names via text mining from the GO

Term definition. Substrate names were then mapped to KEGG and ChEBI identifiers via the synonym

database from KEGG60, or, if no entry in KEGG was found, the PubChem synonym database61. We

discarded all 824 catalytic GO Terms for which we could not map at least one substrate to an identifier.

Entries in the GO annotation database have different levels of evidence: experimental, phylogenetically-

inferred, computational analysis, author statement, curator statement, and electronic evidence. For training

our final model, we were interested only in in entries with catalytic GO Terms based on experimental

evidence. From these, we removed 6219 enzyme-substrate pairs with water, oxygen, and ions, as these

small substrates did not lead to unique representations (see below). We extracted protein and substrate

IDs for the remaining 18351 enzyme-substrate pairs with experimental evidence. 15051 of these pairs

resulted from a GO Term that was associated with a RHEA reaction ID, the rest were created via text

mining of GO Term definitions. These data points are combinations of 12156 unique enzymes and 1379

unique substrates.

Before training our models for predicting enzyme-substrate pairs, we pre-trained the ESM-1b protein
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representations to capture information relevant to enzyme-substrate binding. Due to the high dimensionality

of the protein representations, much more data than the 18351 enzyme-substrate pairs with experimental

evidence was required for this task. Only for this pre-training, we thus additionally extracted protein

and substrate IDs for 274030 entries with catalytic GO Terms and phylogenetically inferred evidence

(this set excludes 98 384 entries with water, oxygen, and ions as substrates). 200634 of these enzyme-

substrate pairs resulted from a GO Term associated with a RHEA reaction ID, the rest were constructed

via text mining of GO Term definitions. These additional data points based on phylogenetic evidence are

combinations of 198259 unique enzymes and 661 unique substrates.

It might be surprising that although we found many more enzyme-substrate pairs with phylogenetically

inferred evidence compared to data points with experimental evidence, the number of unique substrates is

much smaller. To investigate if we can see a systematic difference between both groups, we plotted the

distribution of the first digit of EC classes among the enzymes of both classes. However, no substantial

difference was evident except for an over-representation of EC6 (ligases) in the data with phylogenetic

evidence (Supplementary Fig. 5). Hence, we assume that the data structure of phylogenetically inferred

data points is not an important issue for the calculation of enzyme representations.

We downloaded all enzyme amino acid sequences via the UniProt mapping service8.

Sampling negative data points

For every positive enzyme-substrate pair in our dataset, we created three negative data points for the

same enzyme by randomly sampling small molecules. The distinction between true and false substrates

is harder for small molecules that are similar to the true, known substrates. To challenge our model to

learn this distinction, we restricted our sampling of negative data points to small molecules similar to

the true substrate. For this purpose, we first calculated the pairwise similarity of all small molecules in

our dataset with the function FingerprintSimilarity from the RDKit package DataStructs62. This function

uses molecular fingerprints of the molecules as its input and computes values between zero (no similarity)

and one (high similarity). If possible, we sampled small molecules with a similarity score between 0.7

and 0.95. If we did not find such molecules, we reduced the lower bound in steps of 0.2 until enough

small molecules could be sampled. We had to reduce the lower bound in ∼ 19% of enzyme-substrate

pairs. We did not simply choose the three most similar compounds as negative data points, because if a

substrate appears multiple times in our dataset, this would have led to selecting always the same three

small molecules as non-substrates. Instead, we randomly picked three molecules from within the selected
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similarity range. During this sampling process, we took the distribution of the small molecules among

the positive data points into account, i.e., molecules that occur more frequently as substrates among the

positive data points also appear more frequently among the negative data points. To achieve this, we

excluded small molecules from the sampling process if these molecules were already sampled enough

times (i.e., three times their total occurrence in the set of positive enzyme-substrate pairs).

Splitting the dataset into training and test sets

Before we split the dataset into training and test sets, we clustered all sequences by amino acid sequence

identity using the CD-HIT algorithm63. The clusters were created in such a way that two sequences from

different clusters do not have a pairwise sequence identity higher than 80%. We used these clusters to split

the dataset randomly into 80% training data and 20% test data using a sequence identity cutoff of 80%,

i.e., every enzyme in the test set has a maximal sequence identity of 80% compared to any enzyme in the

training set. This was achieved by placing all sequences from one cluster either into the training or the test

set. To analyze the ESP performance for different sequence identity levels, we further split the test set into

subsets with maximal sequence identity to enzymes in the training set of 0-40%, 40-60%, and 60-80%

using the CD-HIT algorithm63.

Calculating extended-connectivity fingerprints for the small molecules

All small molecules in our final datasets were either assigned to a KEGG ID or ChEBI (Chemical Entities

of Biological Interest) ID. For all small molecules with a KEGG ID, we downloaded an MDL Molfile with

2D projections of its atoms and bonds from KEGG60. If no MDL Molfile could be obtained in this way,

we instead downloaded the International Chemical Idenitifier (InChI) string via the mapping service of

MetaCyc64, if a ChEBI ID was available. We then used the package Chem from RDKit62 with the MDL

Molfiles or InChI strings as the input to calculate the 1024-dimensional binary ECFPs30 with a radius

(number of iterations) of 3. We also calculated 512 and 2048-dimensional ECFPs to investigate if these

lead to better model performance than 1024-dimensional ECFPs.

Calculating task-specific fingerprints for the small molecules using graph neural networks

In addition to the pre-defined ECFPs, we also used a graph neural network (GNN) to calculate task-specific

numerical representations for the small molecules. GNNs are neural networks that can take graphs as their

input37–39. A molecule can be represented as a graph by interpreting the atoms and bonds of the molecule

as nodes and edges, respectively.
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We trained and implemented a variant of GNNs called Directed Message Passing Neural Network

(D-MPNN)32, using the Python package PyTorch57. To provide the GNN with information about the small

molecules, we calculated feature vectors for every bond and every atom in all molecules27. For every

atom, these features comprise the atomic number, number of bonds, charge, number of hydrogen bonds,

mass, aromaticity, hybridization type, and chirality; for every bond, these features comprise bond type,

part of ring, stereo configuration, and aromaticity. To input this information into a GNN, the graphs and

the feature vectors are encoded with tensors and matrices. While a graph is processed by a GNN, all

atom feature vectors are iteratively updated for a pre-defined number of steps by using information of

neighboring bond and atom feature vectors. Afterwards, all atom feature vectors are pooled together by

applying the element-wise mean to obtain a single graph representation. The dimension D of the updated

atom feature vectors and of the final graph representation can be freely chosen; we chose D = 100.

This small molecule representation was then concatenated with a small representation of an enzyme;

we chose to use a small enzyme representation instead of the full ESM-1b vector to keep the input

dimension of the machine learning model used for learning the task-specific small molecule representation

low. To compute the small enzyme representation, we performed principal component analysis (PCA)65

on the ESM-1b vectors (see below) and selected the first 50 principal components. The concatenated

enzyme-small molecule vector was used as the input for a fully connected neural network (FCNN) with

two hidden layers of size 100 and 32, which was trained for predicting whether the small molecule is a

substrate for the enzyme. We trained the whole model (the GNN including the FCNN) end-to-end. Thereby,

the model was challenged to store task-specific and meaningful information in the graph representations.

After training, we extracted a graph representation for every small molecule in our training set, which was

then used as input for the complete enzyme-substrate pair prediction model. For more details regarding

training and implementation, see our GitHub repository.

We performed a pre-training of the described GNN by training it for the related task of predicting

the Michaelis constants KM of enzyme-substrate pairs. As for the task of identifying potential enzyme-

substrate pairs, the prediction of KM is dependent on the interaction between enzymes and small molecules,

and hence, this pre-training task challenged the GNN to learn interactions between an enzyme and a

substrate. To train the model for the KM prediction, we used a dataset that was previously constructed for a

KM prediction model27. After pre-training, we fine-tuned the GNN by training it for the task of predicting

enzyme-substrate pairs, i.e., we used all parameters that were learned during the pre-training task as initial

parameters for the GNN that was fine-tuned.
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Calculating enzyme representations

We used the ESM-1b model33 to calculate 1280-dimensional numerical representations of the enzymes.

The ESM-1b model is a transformer network46 that takes amino acid sequences as its input and produces

numerical representations of the sequences. First, every amino acid in a sequence is converted into

a 1280-dimensional representation, which encodes the type of the amino acid and its position in the

sequence. Afterwards, every representation is updated iteratively for 33 update steps by using information

about the representation itself as well as about all other representations of the sequence using the attention

mechanism66. The attention mechanism allows the model to selectively focus only on relevant amino acid

representations to make updates66. During training, ∼ 15% of the amino acids in a sequence are masked

at random, and the model is trained to predict the type of the masked amino acids. The ESM-1b model has

been trained with ∼ 27 million proteins from the UniRef50 dataset47. To create a single representation for

the whole enzyme, ESM-1b calculates the element-wise mean of all updated amino acids representations

in a sequence33. We created these representations for all enzymes in our dataset using the code and the

trained ESM-1b model provided by the Facebook AI Research team on GitHub.

Modifying the ESM-1b model to create task-specific enzyme representations

To create task-specific enzyme representations for our task of predicting enzyme-substrate pairs, we

modified the ESM-1b model. For every input sequence, in addition to the representations of all individual

amino acids, we added a token that represents the whole enzyme. This enzyme representation is updated

in the same way as the amino acid representations. The parameters of this modified model are initialized

with the parameters of the trained ESM-1b model, setting the additional enzyme token initially to the

element-wise mean of the amino acid representations. After the last update layer of the model, i.e., after

33 update steps, we take the 1280-dimensional representation of the whole enzyme and concatenate it

with a representation for a metabolite, the 1024-dimensional ECFP vector (see above).

This concatenated vector is then used as the input for a fully-connected neural network (FCNN)

with two hidden layers of size 256 and 32. The whole model was trained end-to-end for the binary

classification task of predicting whether the added metabolite is a substrate for the given enzyme. This

training procedure challenged the model to store all necessary enzyme information for the prediction

task in the enzyme representation. After training the modified model, we extracted the updated and

task-specific representations, the ESM-1bts vectors, for all enzymes in our dataset.

We implemented and trained this model using the Python package PyTorch57. We trained the model
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with the extended dataset of 287386 enzyme-substrate pairs with phylogenetically inferred or experimental

evidence for 2 epochs on 6 NVIDA DGX A100s, each with 40GB RAM. Training the model for more

epochs did not lead to improved results. Because of the immense computational power and long training

times, it was not possible to perform a systematic hyperparameter optimization. We chose hyperparameters

after trying a few selected hyperparameter settings with values similar to the ones that were used for

training the original ESM-1b model.

Fine-tuning the ESM-1b model without an additional enzyme token

To investigate the effect on model performance of adding a token for the whole enzyme to the ESM-1b

model, we also re-trained the model without such an extra token. Instead, we calculated the element-wise

mean of all amino acid representations after the last update layer of the model, as is done in the original

ESM-1b model. We concatenated the resulting 1280-dimensional vector with a representation for a

metabolite, the 1024-dimensional ECFP vector. As for the model described above, this concatenated

vector is then used as the input for a fully-connected neural network (FCNN) with two hidden layers of

size 256 and 32. The whole model was trained end-to-end for the binary classification task of predicting

whether the added metabolite is a substrate for the given enzyme. The training procedure of this model

was identical to the model with an additional token for the whole enzyme (see above).

Hyperparameter optimization of the gradient boosting models

To find the best hyperparameters for the gradient boosting models, we performed 5-fold cross-validations

(CVs). To ensure a high diversity between all folds, we created the five folds in such a way that the same

enzyme would not occur in two different folds. We used the Python package hyperopt67 to perform a

random grid search for the following hyperparameters: learning rate, maximum tree depth, lambda and

alpha coefficients for regularization, maximum delta step, minimum child weight, number of training

epochs, and weight for negative data points. The last hyperparameter was added because our dataset is

imbalanced; this parameter allows the model to assign a lower weight to the negative data points during

training. To ensure that our model is indeed not assigning too many samples to the over-represented

negative class, we used a custom loss function that contains the False Negative Rate, FNR, and the False

Positive Rate, FPR. Our loss function, 2×FNR2 +FPR1.3, penalizes data points that are mistakenly

assigned to the negative class stronger than data points that are mistakenly assigned to the positive class.

After hyperparameter optimization, we chose the set of hyperparameters with the lowest mean loss during

CV. We used the python package xgboost49 for training the gradient boosting models.
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Displaying the results of cross-validations with boxplots

We used boxplots to display the results of the 5-fold cross-validations, which we performed to find the

best set of hyperparameters. We used a 2× interquartile range for the whiskers, the boxes extend from the

lower to upper quartile values, and the red horizontal lines are displaying the median of the data points.

Training of additional machine learning models

To compare the performance of the gradient boosting model to additional machine learning models, we

also trained a logistic regression model and a random forest model for the same prediction task. To find the

best hyperparameters for the models, we again performed 5-fold CVs on the training set. For the random

forest model, the hyperparameter optimized was the number of estimators, and for the logistic regression

model we searched for the best penalty function and coefficient of regularization strength. We used the

python package scikit-learn68 for training both models.

Validating our model on two additional test sets

We compared the performance of ESP with two published models for predicting the substrate scope of

single enzyme families. One of these models is a machine learning model developed by Mou et al. to

predict the substrates of 12 different bacterial nitrilases14. Their dataset consists of 240 data points, where

each of the 12 nitriliases was tested with the same 20 small molecules. This dataset was randomly split

by Mou et al. into 80% training data and 20 % test data14. We added all training data to our training set.

After re-training, we validated our model performance on the test set from Ref.14.

The second model that we compared to ESP is a decision tree-based model, called GT-predict, for

predicting the substrate scope of glycosyltransferases of plants15. As a training set, Yang et al.15 used

2847 data points with 59 different small molecules and 53 different enzymes from Arabidopsis thaliana.

They used two independent test sets to validate model performance: one dataset with 266 data points

comprising 7 enzymes from Avena strigose and 38 different small molecules, and a second dataset with

380 data points comprising 10 enzymes from Lycium barbarum and 38 different small molecules. We

added all training data to our training set. After re-training, we validated ESP model performance on both

test sets from Ref.15.

Analyzing the effect of training set size

To analyze the effect of different training set sizes, we created eight different subsets of our training

set, with sizes ranging from 30% to 100% of the original training set size. To create these subsets, we

27/42

96 manuscripts



first generated an enzyme list containing all enzymes of the training set in random order. To create the

subsets, we extracted all training data points with enzymes that occur in the first 30%, 40%, ..., 100% of

the generated enzyme list. Afterwards, we re-trained our model on all different subsets of the training set

and validated each version on our full test set.

Statistical tests for model comparison

We tested if the difference in model performance between the two models with ESM-1bts and ECFP vectors

compared to the model with ESM-1bts vectors and GNN-generated fingerprints is statistically significant.

For this purpose, we used McNemar’s test69 (implemented in the Python package Statsmodels70), testing

the null hypothesis that both models have a similar proportion of errors on our test set. We could reject the

null hypothesis (p < 10−9), concluding that combining ESM-1bts vectors with GNN-generated fingerprints

leads to a statistically significant improvement over a combination with ECFP vectors. We performed the

same test to show that a model with fingerprints created with a pre-trained GNN achieves improved results

compared to a model with fingerprints created with a not pre-trained GNN (p < 10−7). Moreover, we used

McNemar’s test to show that the model with ESM-1bts vectors and GNN-generated fingerprints achieves

significantly improved performance compared to the model with ESM-1b and ECFP vectors as the input

(p < 10−37) and also compared to the model with ESM-1b and GNN-generated fingerprints (p < 10−19).

Furthermore, we used the same test to show that the task-specific enzyme representations, the ESM-1bts

vectors, that were created by fine-tuning the ESM-1b model with an extra token for the whole enzyme

achieved improved performance compared to task-specific enzyme representations that resulted from

fine-tuning the ESM-1b model without such an extra token (p = 0.040).

We also tested if the differences in model performance between the three different splits of our test set

with different enzyme sequence identity levels (0-40%, 40-60%, and 60-80%) are statistically significant.

Here, we used the non-parametric two-sided Mann–Whitney U test implemented in the Python package

SciPy71 to test the null hypothesis that the prediction errors for the different splits are equally distributed.
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Supplementary Information

Supplementary Tables S1-S5

Supplementary Table 1. Results of hyperparameter optimizations of the gradient boosting models for

all four combinations of small molecule representations (ECFPs and GNN generated fingerprints) and

enzyme representations (ESM-1b and ESM-1bts vectors). The hyperparameter optimizations were

performed with 5-fold cross-validation on the training set.

mean

ROC-

AUC

(CV)

learning

rate

max. delta

step

max.

depth

min. child

weight

num. of

trees

alpha

coeff.

beta

coeff.

weight

ESM-1b &

ECFP

0.861 0.127 3.08 13 2.69 333 1.43 0.12 0.114

ESM-1bts

& ECFP

0.911 0.316 1.77 10 1.38 343 0.53 3.74 0.262

ESM-1b &

GNN

0.888 0.081 4.90 11 4.48 347 0.35 0.62 0.127

ESM-1bts

& GNN

0.926 0.198 3.82 12 0.96 358 0.37 4.44 0.113

Supplementary Table 2. Results of three different machine learning algorithms on the test set.

Hyperparameter optimizations for all models were performed with 5-fold cross-validation on the training

set.

ROC-AUC

score
Accuracy MCC

Gradient Boosting 0.955 91.5% 0.78

Random Forest 0.945 87.7% 0.67

Logistic Regression 0.621 63.0% 0.14
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Supplementary Table 3. Results of a gradient boosting model with ESM-1bts vectors and

GNN-generated fingerprints (with a pre-trained GNN) compared to a gradient boosting model with

ESM-1bts vectors and GNN-generated fingerprints (with a not pre-trained GNN). Results are shown for

the test set. The hyperparameter optimizations for all models were performed with 5-fold cross-validation

on the training set.

ROC-AUC

score
Accuracy MCC

GNN-generated fingerprints

with pre-trained GNN
0.955 91.5% 0.78

GNN-generated fingerprints

with not pre-trained GNN
0.954 90.7% 0.77

Supplementary Table 4. Results of three gradient boosting models with different enzyme

representations. Models were trained with GNN-generated fingerprints as small molecule representations

combined with three different enzyme representations: ESM-1b vectors, ESM-1bts vectors created without

an extra token for the whole enzyme, and ESM-1bts vectors created with an extra token for the whole

enzyme. Results are shown for the test set. The hyperparameter optimizations for all models were

performed with 5-fold cross-validation on the training set.

ROC-AUC

score
Accuracy MCC

ESM-1b 0.940 88.8% 0.72

ESM-1bts

(mean representation)
0.956 90.9% 0.77

ESM-1bts

(enzyme token)
0.956 91.5% 0.78
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Supplementary Table 5. Results of validating the ESP model on the test sets from Yang et al.15 and

Mou et al.14 without adding any new training data to our training set.

ROC-AUC

score
Accuracy MCC

Yang et al.

Avena strigosa
0.59 68% 0.12

Yang et al.

Lycium barbarum
0.56 66% 0.01

Mou et al. 0.41 0.5% 0.00
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Supplementary Figures S1-S5

Supplementary Fig. 1. Similar distributions of enzymes in the training and the test sets. We

projected numerical representations of the enzyme amino acid sequences to two-dimensional spaces,

using two different types of representations: (i) We created vectors with the frequencies of specific k-mers

of amino acids within the protein amino sequences (for k = 1,2,3) for all enzymes in the training and the

test set; and (ii) we used the ESM-1b vectors. (a) Projection onto the first two principal components after

Principal Component Analysis (PCA). (b) Multidimensional scaling (MDS) onto a two-dimensional space.
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Supplementary Fig. 2. Effect of different dimensions of ECFPs. We calculated

extended-connectivity fingerprints (ECFPs) as representations for small molecules using different

dimensions, comparing 512-, 1 024-, and 2 048-dimensional ECFPs. The plot shows ROC curves resulting

from optimized gradient boosting models. For training these models, ECFPs of different dimensions were

combined with ESM-1bts vectors as enzyme representations.
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Supplementary Fig. 3. Effect of the metabolite similarity score on model performance. For all

small molecules in the test set that do not also occur in the training set, we calculated the maximal

pairwise similarity score across all small molecules in the training set. The similarity score is a value

between 0 and 1, where a higher value indicates higher similarity between a pair of metabolites. We

divided all test data points with small molecules that do not occur in the training set into five subsets

dependent on their maximal similarity scores. (a) shows the accuracy and (b) shows the MCC for each

subset.

Supplementary Fig. 4. Effect of the number of identical substrates in the training set on model

performance. We grouped small molecules by how often they occur as substrates among all positive data

points in the training set. (a) shows the accuracy and (b) shows the MCC for each group.
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Supplementary Fig. 5. Enzymes with experimental evidence and with phylogenetic evidence do

not differ strongly in their distribution across top level Enzyme Commission (EC) numbers. (a)

Distribution across the first digit of EC numbers for all enzyme-substrate pairs with experimental

evidence. (b) Distribution across the first digit of EC numbers for all enzyme-substrate pairs with

phylogenetically inferred evidence.
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4
O U T L O O K

In this thesis, I presented general methods for predicting the substrate
scope of enzymes and for predicting enzyme kinetic parameters. The
developed models are either the first of their kind or achieve sub-
stantially improved performance compared to all previous methods
developed for the same tasks. The ESP model for predicting enzyme-
substrate pairs achieved an accuracy of over 91% on an independent
test set, and the model can help to find unknown primary and sec-
ondary functions of enzymes. Moreover, it was previously not possi-
ble to parameterize any genome-scale metabolic network model with
realistic kinetic parameters for all enzymatic reactions. The prediction
models presented in this thesis now allow full kinetic parameteriza-
tions of metabolic networks with KM and kcat values. On average, KM

and kcat can be predicted with an accuracy of up to an order of mag-
nitude. By parameterizing a metabolic network model with predicted
kcat values, I have shown that such an accuracy is sufficient to improve
previous predictions for proteome allocation predictions. Additional
work is required to investigate if full kinetic parameterizations of me-
tabolic network models with predicted parameters KM and kcat can
further help to gain deeper insights into cellular metabolism. Further-
more, knowing KM and kcat is not only desirable for parameterizing
metabolic networks but is also highly relevant when studying single
enzymes [77]. Values predicted with the presented models could thus
be used to achieve first estimates before executing labor-intensive ex-
periments.

Despite of the promising results, the presented models still have
some limitations and there is room for improvement. One reason
for this is that the field of applying deep learning to predict prop-
erties and numerical representations of proteins and small molecules
is rapidly evolving. In the past two years alone, a large number of
methods that improved previous state-of-the-art performances have
been published in this area, including methods for the prediction of
protein 3D structures [64, 65] and approaches to create improved pro-
tein and small molecule representations [62, 63, 78–80]. In this chap-
ter, I will discuss some of the limitations of the models presented in
this thesis, and I will give an outlook on how these limitations could
be overcome. Moreover, I am going to discuss which prediction task
could be solved next to further close knowledge gaps in metabolic
networks.
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4.1 numerical enzyme representations

Enzyme representations obtained from linear amino acid sequences

To create enzyme representations, we used the state-of-the-art archi-
tecture for NLP tasks, a Transformer Network [81], which is typi-
cally very large and requires many training data points. The Face-
book AI research (FAIR) team trained such a Transformer network,
the ESM-1b model, with ∼27 million amino acid sequences in a self-
supervised way to create 1 280-dimensional numerical protein rep-
resentations, which contain information about the structure and the
function of the proteins [60].

For the task of predicting enzyme-substrate pairs, I fine-tuned and
re-trained the ESM-1b model to create task-specific enzyme-represen-
tations, which led to improved model performance. This was possible
because many training data points were available for this task. Un-
fortunately, for the task of predicting kcat, not enough training data
was available to perform a successful fine-tuning of the large ESM-1b
model. Nevertheless, to increase model performance for predicting
kcat, we were able to use the fine-tuned representations that were cre-
ated for predicting enzyme-substrate pairs.

In my first work, the prediction of Michaelis constants KM, we used
UniRep vectors [59] as enzyme representations. These vectors were
created with a model using the former state-of-the-art architecture
for sequence processing, the LSTM model [82]. Using the newer and
improved ESM-1b vectors will likely increase model performance. As
it was the case for the task of predicting kcat, it is likely that not
enough training data is available to perform a successful fine-tuning
of the ESM-1b model to create task-specific enzyme representations.
However, using the fine-tuned ESM-1b vectors, which were created
for predicting enzyme-substrate pairs, could further improve the KM

prediction model.

Enzyme representations obtained from the protein 3D structure

Instead of using the linear amino acid sequence to create protein rep-
resentations, alternatively the protein 3D structure can be used [61–
63]. The structure of a protein defines its function, and thus, in princi-
ple it would be preferable to use such structure-based protein models.
Unfortunately, until recently the structure was unknown for the vast
majority of proteins. As a result, the amount of data points available
to train structure-based models was very sparse. However, the recent
development of AlphaFold [64] and RoseTTAFold [65] facilitates to
predict the 3D structure of almost any protein using its amino acid
sequence. In the near future this development will likely lead to im-
proved deep learning models that make use of protein structures to
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create numerical protein representations. These vectors could replace
or extend information extracted from the linear protein amino acid
sequences, and hence, they could help to further improve the predic-
tions for KM and kcat values and of enzyme-substrate pairs.

4.2 numerical metabolite representations

To represent metabolites as numerical vectors, I created task-specific
fingerprints with deep learning models. I represented metabolites as
graphs and used them as the input for graph neural networks (GNN),
which were trained to either predict a substrate-specific KM value
or to predict enzyme-substrate pairs (Manuscript 1 and Manuscript
3). The resulting metabolite representations significantly improved
model performance in comparison to pre-defined expert-crafted fin-
gerprints.

Recently, alternative deep learning based approaches for creating
task-specific metabolite representations have been published [79, 80].
These models are Transformer Networks that receive string represen-
tations of metabolites, the simplified molecular-input line-entry sys-
tem (SMILES) [83], as their input. To create task-specific metabolite
representations, the models can be trained to predict a property of
the inserted molecules. It has been shown that the resulting represen-
tations lead to improved performances in various downstream tasks
when compared to GNN-generated and expert-crafted fingerprints.
Hence, it could be promising to investigate if Transformer Networks
that are trained to create task-specific molecular fingerprints for the
prediction of KM and of enzyme-substrate pairs improve model per-
formance.

For the task of predicting turnover numbers kcat of enzyme cat-
alyzed reactions, it was required to represent all metabolites of a re-
action numerically in one single vector. To achieve this, I used dif-
ference reaction fingerprints [67, 71], which do not vary in length
even for varying numbers of reactants. These representations are cal-
culated from pre-defined expert-crafted metabolite fingerprints for
all substrates and all products. Similarly to the task-specific metabo-
lite fingerprints that were created for the KM and enzyme-substrate
pair prediction, it would be desirable to create task-specific reaction
fingerprints for the prediction of kcat. To achieve this, a GNN or a
Transformer network could be slightly modified and trained with
all substrates and all products of a reaction as its input to predict
the reaction’s kcat value. After training, task-specific reaction finger-
prints could be extracted from the trained model. However, GNNs
and Transformer Networks typically require large amounts of train-
ing data and it is thus unclear if enough data is available to create
such representations. Pre-training the deep learning models in a self-
supervised fashion on large reaction datasets or gathering more kcat
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training data could help in the process of creating task-specific reac-
tion fingerprints.

4.3 availability and quality of training data

The availability of experimentally measured or validated data points
is a limiting factor for all of the presented prediction models. For
example, I have shown that the biggest limitation of the enzyme-
substrate prediction model, ESP, is its low performance for meta-
bolites that have not been part of the training set. High-throughput
screening methods for substrate scopes of enzymes are currently de-
veloped and will make much more training data available in the
future [84–86]. This will likely increase the applicability of the ESP
model to a much wider range of different substrates.

Especially the kcat dataset with only ∼ 4 300 data points is rather
small. When training machine learning models for complex tasks
such as predicting enzyme turnover numbers, large amount of train-
ing data is required. Despite the limited dataset size, the final model
is still able to explain ∼ 40% of the variance of kcat values in an inde-
pendent test set. However, to be even more accurate and to account
for experimental conditions such as pH and temperature, much more
training data will need to become available.

Not only the availability but also the quality of training data is
a crucial factor for model performance. Due to different experimen-
tal conditions and experimental procedures, kcat and KM values that
were measured for the same enzyme, substrate, and reaction can vary
widely between different studies; on average they differ by a factor
of 2.5 and 2.9, respectively [87]. Moreover, Bar-Even et al. [87] found
that up to 20% of the values in BRENDA do not correspond to the
values in the reference papers. These errors can be caused by copy-
ing mistakes and unit mismatches. It is possible that similar errors
also occur in the other databases that I used to create training and
validation datasets. To correct copying and unit errors, we started
to manually review all kcat values that I extracted from BRENDA,
and we already reviewed half of those data points (see Manuscript 2).
However, a further manual review of all used data points from all
databases is required to ensure high data quality.

4.4 choice of machine learning algorithms

Deep neural networks are the most powerful machine learning algo-
rithms when dealing with homologous input data such as images
or sound. However, when the input is heterogeneous and presented
in the form of tabular data, algorithms based on gradient boosted
decision trees usually outperform deep neural networks [88]. In this
thesis, I created numerical enzyme, metabolite, and reaction vectors
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as the input for machine learning models. This input data is tabular,
and hence, one would expect that gradient boosting models outper-
form deep neural networks. Indeed, for the prediction of Michaelis
constants KM, turnover numbers kcat, and of enzyme-substrate pairs,
gradient boosting models achieved better performance than fully-
connected neural networks.

Although neural networks perform slightly worse on the presented
prediction tasks, an ensemble of different machine learning models,
including neural networks, could improve performances [89]. Often,
different machine learning models focus on different aspects of the
input features to make predictions. As a result, combining the predic-
tion results of such models, e.g., by taking a weighted mean of the
predicted values, could make predictions more robust and accurate
in the future.

4.5 predicting substrates for transport proteins

In Manuscript 3, I presented a model that can help to determine the
substrate scope of enzymes with yet not fully characterized func-
tion. A related problem is the prediction of substrates for transport
proteins. Knowing the function of all transporters of a metabolic
network, and hence, knowing which metabolites can be imported
into a cell and exported out of a cell is crucial for simulating cellu-
lar metabolism. However, the partially hydrophobic surface of trans-
porters and their lack of stability make it challenging to experimen-
tally identify substrates of transporters [90]. Consequently, a similar
prediction model as developed for enzymes could immensely help to
determine the function of transporters.

Previously developed models for predicting functions of transport
proteins are either based on calculating protein similarities to infer
function [91, 92], or they do not map specific substrates to transport
proteins but instead only connect transporters with large groups of
substrates [93, 94]. Using state-of-the-art deep and machine learning
models has the potential to increase the performance of these mod-
els and to connect transporters with specific substrates. Training such
a model would require the creation of a large dataset with experi-
mentally validated transport-substrate pairs. This could be achieved
by searching existing protein databases [74, 75]. To numerically en-
code information about the prediction task, i.e., about the transport
protein and the potential substrates, similar methods as used in the
prediction models for KM and kcat values and of enzyme-substrate
pairs could be used.

Training a model that classifies molecules as substrates and non-
substrates for given transport proteins requires negative training data,
i.e., transporter-molecule pairs where the molecule is not a substrate
for the transporter. However, public protein databases only list posi-
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tive instances. The same problem arose when training the enzyme-
substrate pair prediction model, where I solved this issue by suc-
cessfully creating negative data points by sampling from unlabeled
data. This process led to good model performance on independent
test data. A similar approach could be applied to the transporter-
substrate pair prediction task.

4.6 conclusion

The work presented in this thesis is a first step towards closing some
of the knowledge gaps in metabolic reaction networks. I have devel-
oped prediction tools and methods that have the potential to pro-
vide deeper insights into cellular metabolism. The performances of
the trained models are promising, but it remains to be seen in fu-
ture work how valuable these will be in practice. As outlined in this
chapter, there are still numerous possibilities and approaches that
could be taken to improve the developed methods and to develop
additional prediction models that further help to gain a fundamental
understanding of metabolic processes in living organisms.
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63. Gligorijević, V., Renfrew, P. D., Kosciolek, T., Leman, J. K., Beren-
berg, D., Vatanen, T., Chandler, C., Taylor, B. C., Fisk, I. M., Vla-
makis, H., et al. Structure-based protein function prediction us-
ing graph convolutional networks. Nat. Commun. 12, 1–14 (2021).



124 bibliography

64. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ron-
neberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko,
A., et al. Highly accurate protein structure prediction with Al-
phaFold. Nature 596, 583–589 (2021).

65. Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov,
S., Lee, G. R., Wang, J., Cong, Q., Kinch, L. N., Schaeffer, R. D.,
et al. Accurate prediction of protein structures and interactions
using a three-track neural network. Science 373, 871–876 (2021).

66. Rogers, D. & Hahn, M. Extended-connectivity fingerprints. J.
Chem. Inf. Model. 50, 742–754 (2010).

67. Landrum, G. et al. RDKit: Open-source cheminformatics http://-
www.rdkit.org. 2006.

68. Durant, J. L., Leland, B. A., Henry, D. R. & Nourse, J. G. Reop-
timization of MDL keys for use in drug discovery. J. Chem. Inf.
Comput. Sci. 42, 1273–1280 (2002).

69. Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L.,
Li, C. & Sun, M. Graph neural networks: A review of methods
and applications. AI Open 1, 57–81 (2020).

70. Yang, K., Swanson, K., Jin, W., Coley, C., Eiden, P., Gao, H.,
Guzman-Perez, A., Hopper, T., Kelley, B., Mathea, M., et al. An-
alyzing learned molecular representations for property predic-
tion. J. Chem. Inf. Model. 59, 3370–3388 (2019).

71. Hu, Q.-N., Zhu, H., Li, X., Zhang, M., Deng, Z., Yang, X. & Deng,
Z. Assignment of EC numbers to enzymatic reactions with reac-
tion difference fingerprints. PLoS One 7, 1–6 (2012).

72. Chang, A., Jeske, L., Ulbrich, S., Hofmann, J., Koblitz, J., Schom-
burg, I., Neumann-Schaal, M., Jahn, D. & Schomburg, D. BRENDA,
the ELIXIR core data resource in 2021: new developments and
updates. Nucleic Acids Res. 49, D498–D508 (2021).

73. Wittig, U., Rey, M., Weidemann, A., Kania, R. & Müller, W. SABIO-
RK: an updated resource for manually curated biochemical reac-
tion kinetics. Nucleic Acids Res. 46, D656–D660 (2018).

74. Consortium, U. UniProt: a worldwide hub of protein knowledge.
Nucleic Acids Res. 47, D506–D515 (2019).

75. Dimmer, E. C., Huntley, R. P., Alam-Faruque, Y., Sawford, T.,
O’Donovan, C., Martin, M. J., Bely, B., Browne, P., Mun Chan,
W., Eberhardt, R., et al. The UniProt-GO annotation database in
2011. Nucleic Acids Res. 40, D565–D570 (2012).

76. Kroll, A., Ranjan, S., Engqvist, M. K. & Lercher, M. J. The sub-
strate scopes of enzymes: a general prediction model based on
machine and deep learning. bioRxiv (2022).

77. McDonald, A. G. & Tipton, K. F. Parameter Reliability and Un-
derstanding Enzyme Function. Molecules 27, 263 (2022).



bibliography 125

78. Meier, J., Rao, R., Verkuil, R., Liu, J., Sercu, T. & Rives, A. Lan-
guage models enable zero-shot prediction of the effects of muta-
tions on protein function. Adv Neural Inf Process Syst. 34, 29287–
29303 (2021).

79. Irwin, R., Dimitriadis, S., He, J. & Bjerrum, E. J. Chemformer:
a pre-trained transformer for computational chemistry. Mach.
Learn.: Sci. Technol. 3, 015022 (2022).

80. Fabian, B., Edlich, T., Gaspar, H., Segler, M., Meyers, J., Fiscato,
M. & Ahmed, M. Molecular representation learning with lan-
guage models and domain-relevant auxiliary tasks. arXiv (2020).

81. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, Ł. & Polosukhin, I. Attention is all you
need. Adv Neural Inf Process Syst. 30 (2017).

82. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neu-
ral Comput. 9, 1735–1780 (1997).

83. Weininger, D. SMILES, a chemical language and information sys-
tem. 1. Introduction to methodology and encoding rules. J. Chem.
Inf. Comput. Sci. 28, 31–36 (1988).

84. Rembeza, E., Boverio, A., Fraaije, M. W. & Engqvist, M. K. Dis-
covery of Two Novel Oxidases Using a High-Throughput Activ-
ity Screen. ChemBioChem 23, e202100510 (2022).

85. Longwell, C. K., Labanieh, L. & Cochran, J. R. High-throughput
screening technologies for enzyme engineering. Curr. Opin. Biotech-
nol. 48, 196–202 (2017).

86. Black, G. W., Brown, N. L., Perry, J. J., Randall, P. D., Turnbull,
G. & Zhang, M. A high-throughput screening method for de-
termining the substrate scope of nitrilases. Chem. Commun. 51,
2660–2662 (2015).

87. Bar-Even, A., Noor, E., Savir, Y., Liebermeister, W., Davidi, D.,
Tawfik, D. S. & Milo, R. The moderately efficient enzyme: evo-
lutionary and physicochemical trends shaping enzyme parame-
ters. Biochemistry 50, 4402–4410 (2011).

88. Borisov, V., Leemann, T., Seßler, K., Haug, J., Pawelczyk, M. &
Kasneci, G. Deep neural networks and tabular data: A survey.
arXiv (2021).

89. Pintelas, P. & Livieris, I. E. Special Issue on Ensemble Learning
and Applications. Algorithms 13. issn: 1999-4893 (2020).

90. Larsen, B., Xu, D., Halkier, B. A. & Nour-Eldin, H. H. Advances
in methods for identification and characterization of plant trans-
porter function. J. Exp. Bot. 68, 4045–4056 (2017).



126 bibliography

91. Elbourne, L. D., Tetu, S. G., Hassan, K. A. & Paulsen, I. T. Trans-
portDB 2.0: a database for exploring membrane transporters in
sequenced genomes from all domains of life. Nucleic Acids Res.
45, D320–D324 (2017).

92. Saier Jr, M. H., Reddy, V. S., Moreno-Hagelsieb, G., Hendargo,
K. J., Zhang, Y., Iddamsetty, V., Lam, K. J. K., Tian, N., Russum,
S., Wang, J., et al. The transporter classification database (TCDB):
2021 update. Nucleic Acids Res. 49, D461–D467 (2021).

93. Alballa, M., Aplop, F. & Butler, G. TranCEP: Predicting the sub-
strate class of transmembrane transport proteins using compo-
sitional, evolutionary, and positional information. PLoS One 15,
1–23 (2020).

94. Mishra, N. K., Chang, J. & Zhao, P. X. Prediction of membrane
transport proteins and their substrate specificities using primary
sequence information. PLoS One 9, 1–14 (2014).


	Declaration
	Acknowledgements
	Contents

	1 Summary
	2 Introduction
	2.1 Using mathematical models to gain insights into cellular metabolism 
	2.2 Predicting and estimating enzyme kinetic parameters
	2.3 Predicting enzyme functions
	2.4 Numerical protein and metabolite representations
	2.5 Databases for model training and validation
	2.6 Aims and results of this thesis

	3 Manuscripts
	3.1 Manuscript 1
	3.2 Manuscript 2
	3.3 Manuscript 3

	4 Outlook
	4.1 Numerical enzyme representations
	4.2 Numerical metabolite representations
	4.3 Availability and quality of training data
	4.4 Choice of machine learning algorithms
	4.5 Predicting substrates for transport proteins
	4.6 Conclusion

	Bibliography

