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“Put another way, the chimpanzees'  
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I 

Zusammenfassung 
 Schimpansen sind zusammen mit Bonobos die nächsten lebenden Verwandten des 

Menschen und weisen Gemeinsamkeiten sowohl bei den makroanatomischen Merkmalen des 

Gehirns als auch bei den kognitiven Fähigkeiten und dem Genom auf. Daher bieten sie eine 

einzigartige Perspektive für die Untersuchung der menschlichen Gehirnentwicklung. Das 

Aufkommen der vergleichenden Neurowissenschaften wurde durch die wachsende Zahl 

offener Primatendatensätze sowie durch die Entwicklung neuartiger artspezifischer Methoden 

und artenübergreifender Vergleichstechniken begünstigt. In dieser Dissertation werden daher 

eine neuartige, Schimpansen spezifische Pipeline für die strukturelle Bildvorverarbeitung und 

ein datengesteuerter artenübergreifender Vergleichsrahmen vorgestellt. Die Schimpansen 

spezifische Verarbeitungspipeline mit arteigenen Vorlagen für die Segmentierung und 

Registrierung, sowie einer makroanatomischen Gehirnparzellierung ermöglicht 

standardisierte, exakte und reproduzierbare Ganzhirnanalysen. Der neuartige 

artenübergreifende Vergleichsrahmen erstellt für beide Spezies unabhängig voneinander eine 

anatomisch informierte Parzellierung, aus Organisationsmerkmalen der grauen Substanz 

(GS). Diese datengestützte vergleichende Parzellierung wird dann verwendet, um die 

Beziehung zwischen altersbedingtem GS-Rückgang und speziesübergreifender Expansion 

bei Menschen und Schimpansen zu bewerten.  Darüber hinaus wird der aktuelle Stand der 

vergleichenden Neurowissenschaften in Bezug auf die Anatomie und Funktion des 

Primatengehirns zusammengefasst. Ein besonderer Schwerpunkt liegt dabei auf der 

Asymmetrie der Konnektivität des inferioren Parietallappens und der Frage, wie diese mit der 

Entwicklung von Sprache und Werkzeugeinsatz zusammenhängt. Anhand der Schimpansen 

spezifischen Verarbeitungspipeline wird eine signifikante altersbedingte GS-Atrophie bei 

Schimpansen gezeigt. Dieser eindeutig altersbedingte GS-Rückgang bei Schimpansen ist mit 

dem beim Menschen vergleichbar und steht im Gegensatz zu früheren Schimpansen Studien, 

die nur geringe oder gar keine altersbedingten Effekte zeigten. Der artenübergreifende 

Vergleichsrahmen zeigt beim Menschen eine positive Beziehung zwischen altersbedingter 

GS-Abnahme und artenübergreifender lokaler Gehirnexpansion zwischen Schimpansen und 

Menschen. Bei Schimpansen gibt es jedoch keinen solchen Zusammenhang, obwohl sie 

einen weit verbreiteten altersbedingten Rückgang von GS aufweisen. Die starke Expansion 

und die Alterung des Gehirns in kognitiven Bereichen höherer Ordnung, wie dem präfrontalen 

Kortex, sind nur beim Menschen zu beobachten. Daher könnte die starke Expansion von 

Bereichen höherer Ordnung im Vergleich zu unserem engsten Vorfahren zu einer Anfälligkeit 

für altersbedingte Atrophie geführt haben.  

.  



 
 

II 

Summary 
 
 Chimpanzees, along with bonobos, are humans’ closest living relative and contain 

commonalities in both macroanatomical brain features, cognitive abilities, and genome. There-

fore, offer a unique perspective in studying human brain evolution. The emergence of com-

parative neuroimaging has been fostered by the growing amount of open primate datasets as 

well as by the development of novel species-specific methods and cross-species comparative 

techniques. Consequently, this dissertation presents a novel chimpanzee-specific structural 

image preprocessing pipeline and a data-driven cross-species comparative framework. The 

chimpanzee processing pipeline with associated templates for segmentation and registration 

along with a macroanatomical brain parcellation enables standardized, accurate, and repro-

ducible whole-brain analyses. The novel comparative framework establishes an anatomically 

informed parcellation within each species independently, created from gray matter (GM) or-

ganizational features. This data-driven comparative parcellation is then used to assess the 

relationship between age-related GM decline and cross-species expansion in humans and 

chimpanzees.  Additionally, the current state of comparative neuroimaging is summarized in 

terms of the anatomy and function of the primate brain. With a particular focus on the connec-

tivity asymmetry of the inferior parietal lobule and how this relates to language and tool-use 

development. Employing the chimpanzee processing pipeline, significant age-related GM at-

rophy in chimpanzees is shown. Such clear chimpanzee age-mediated GM decline is compa-

rable to that seen in humans and is contrary to previous chimpanzee studies showing little to 

no effect. The cross-species comparative framework shows a positive relationship in humans 

between age-related GM decline and cross-species local brain expansion between chimpan-

zees and humans. However, chimpanzees present no such relationship even though they 

show widespread age-mediated GM decline. The high expansion and brain aging in higher-

order cognitive areas, such as the prefrontal cortex, are only present in humans. Therefore, 

the extensive expansion of higher-order areas compared to our closest ancestor may have 

led to a vulnerability to age-related atrophy. 
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1. Introduction 

 The organization of the modern human (Homo sapian) brain, entailing the shape, size, 

connectivity, and neurobiological composition is the result of millions of years of evolution. 

Understanding how the unusually large human brain with its billions of neurons, trillions of 

synaptic connections, and intricate network organization makes us unique is a scientific 

question explored for over a century. A pivotal method to understand the uniqueness of 

humans is through further understanding and comparing additional primate species’ brains. In 

the humble and exciting beginning of comparative neuroscience, scientists were heavily 

constrained when conducting comparative investigations. This was due to the difficulty in 

obtaining the appropriate neuroscientific data, the specialized expertise to process and gather 

it, as well as sharing such data. With the advent of magnetic resonance imaging (MRI) along 

with improved digital technologies, the investigation and sharing of large multi-species 

datasets became a reality (Messinger et al., 2021; Milham et al., 2018). Enabling better 

storage and data standards for the sharing of neuroscientific data as well as facilitating high-

throughput computing and modeling. 

 

 Chimpanzees (Pan troglodytes), along with bonobos (Pan paniscus), are the closest 

living relative to humans as they share a last common ancestor 6 – 8 million years ago 

(Langergraber et al., 2012). Moreover, chimpanzees share a substantially similar genome 

(Waterson et al., 2005), cognitive abilities (Hecht et al., 2017; Savage-Rumbaugh, 1986; 

Shumaker et al., 2011; Tomasello and Call, 1997; Waal, 1996), and cerebral anatomical 

features (Hopkins et al., 2017, 2014; Rilling and Insel, 1999; Zilles et al., 1989) with humans. 

Therefore, chimpanzees represent a unique animal model among non-human primates to 

understand evolutionary adaptations of the human brain and infer the origins of the human 

condition.   

 

1.1 Voxel-Based Morphometry 
  Whole-brain structural morphometry changes can be accurately investigated using a 

technique called voxel-based morphometry (VBM). Brain MRI scans require several 

preprocessing steps for VBM investigations, namely denoising, skull-stripping, tissue type 

segmentation, and registration to a common template space (Ashburner, 2000). Image 

segmentation is conducted into gray matter (GM), white matter (WM), and cerebrospinal fluid 

(CSF). Segmentation is achieved by assessing the voxel intensity value, which is 

supplemented and enhanced by an a priori probability map of the tissue classes, a tissue 
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probability map (TPM) (Ashburner, 2000). To conduct analyses on macroanatomical changes 

over a large population the individual images are both linearly and non-linearly registered to a 

population reference template. As each brain has variations in its morphology, which are of 

interest and need to be conserved, following non-linear deformation the intensity of the voxel 

values is modulated in correspondence with the amount of deformation needed to meet the 

template to conserve this individual variation. Along with the mentioned registration and 

segmentation templates, a population reference template is needed. This template acts as a 

reference space for presenting and reporting findings in an understandable and reproducible 

fashion VBM is therefore a proficient tool to explore cerebral morphology changes during aging 

and age-related pathologies over a large population. Additionally, voxel-wise GM maps can 

be also used as inputs for machine learning algorithms such as unsupervised clustering. 

 

1.2 Aging and Gray Matter 
 The widespread GM atrophy, predominantly resulting from neuronal loss during 

healthy aging and in neurological diseases such as Alzheimer’s, dementia, and Parkinson’s 

can be investigated in-vivo using VBM (Crivello et al., 2014; Good et al., 2001; Kennedy et al., 

2009; Minkova et al., 2017). The robust brain aging atrophy, in particular GM, in humans have 

been reported to be minimal to non-existent in chimpanzees (Autrey et al., 2014; Chen et al., 

2013; Herndon et al., 1999; Sherwood et al., 2011). Chimpanzees have a relatively long 

lifespan of approximately 40 years in the wild and over 50 in captivity. Moreover, chimpanzees 

have shown a decrease in performance of cognitive tasks during aging as well as the presence 

of Alzheimer’s neuropathologies within the temporal lobe (Edler et al., 2017; Hopkins et al., 

2021). The lack of findings could be due to the low number of very old (>45 y/o) chimpanzees, 

low sample size overall, and/or utilizing image processing tools not specialized at uncovering 

morphometric changes in GM. Therefore, understanding how possible structural brain 

changes in chimpanzees relate to those found in humans is important to comprehend the 

evolution of the human brain. Additionally, such information will assist in the care for elderly 

chimpanzees in captivity. 

 

1.3 Primate Cross-species Comparison 
 Comparing brain organisation across primate species has historically been 

constrained to homologous regions or features. Such brain regions over species can be seen 

as homologous concerning their spatial location and generally in combination with 

cytoarchitectonic composition. Furthermore, cerebral organizational features have been 

compared between species, like relative brain size, gyrification, hemispheric asymmetry, sulci 
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location, as well as WM tract inter-connectivity and cortical termination (Bogart et al., 2012; 

Cheng et al., 2021; Eichert et al., 2020; Hopkins et al., 2017; Rilling and Insel, 1999; Wei et 

al., 2019). Such investigations provide both a deeper understanding of organizational 

principals within the human brain leading to our improved cognitive facilities and the neuro-

evolution of these features. Studies showing that humans possess relatively larger cortical 

areas responsible for higher-order cognitive functions, such as the prefrontal cortex and 

parietal lobe (Bruner et al., 2017; Donahue et al., 2018; Hill et al., 2010; Xu et al., 2020). These 

regions have shown to be related to function important to human cognition, such as, self-

control, executive functioning, and visuospatial processing (Cavanna and Trimble, 2006; 

Miller, 2000). 

 

 The homologous-centric approach has led to many important findings although it is 

susceptible to subjective biases (Cantalupo and Hopkins, 2001; Donahue et al., 2018; Gannon 

et al., 1998; Palomero-Gallagher and Zilles, 2019). The border of cross-species homologous 

regions can be disputed leading to possible contradicting findings. Alternatively, some 

comparisons are heavily restricted or cannot be conducted because of the lack of homologies. 

A more data-centric approach can address some of these concerns and therefore be an 

addition to the homologous approaches. The combination of data-driven methodologies as 

well as homologous structural connectivity has recently been employed to further understand 

the evolutionary organisation of the lateral temporal lobe and inferior parietal lobe (Cheng et 

al., 2021; Eichert et al., 2020). These computational techniques can leverage large samples 

over several species and provide findings less influenced by subjective definition of regions 

within different species.   

 

1.4 Brain Parcellation 
 The brain can be delineated into distinct areas based on topology, cytoarchitecture, 

connectivity, and function (Eickhoff et al., 2018). Parcellating the brain into spatial areas based 

on their unique organisation has been a neuroscientific endeavour for over a century (Amunts 

and Zilles, 2015; Brodmann, 1909; Economo and Koskinas, 1925; Vogt and Vogt, 1926, 1919). 

This began with defining areas based on micro- and macro-structure, whereby, an abrupt 

change in an organisation feature could be witnessed from one homologous area to another. 

Cortical layer changes could be in the thickness or presence of specific layers, the morphology 

of neuronal cell types (e.g., pyramidal), or the amount of myelination. With the introduction of 

improved neuroscientific technologies (e.g., MRI) as well as computational power, additional 

in-vivo features from multiple modalities have furthered our understanding of the brain’s 
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organisation (Glasser et al., 2016). The in-vivo macroanatomical features, such as gyri, sulci, 

and nuclei can be used to create brain parcellations using population MRI templates. Even 

though it is known that borders between brain areas rarely coincide with macroscopic features 

like the fundi of sulci (Amunts and Zilles, 2015).  These maps create an in-vivo low dimensional 

space for univariate and multivariate modelling, informed by macroanatomical structures. 

Data-driven brain parcellations, alternatively, use statistical techniques to identify patterns in 

brain activity or structure to establish distinct brain regions. These techniques seek to organise 

the data by analysing the within brain and across subject variance in large neuroimaging 

samples. Clustering or factorization methods are used to create such brain parcellation maps. 

 

 Common techniques used to create data-driven parcellations using brain activity or 

structure, are principal component analysis (PCA), independent component analysis (ICA), 

and non-negative matrix factorization (NMF) (Gupta et al., 2018; Sotiras et al., 2015; Yeo et 

al., 2011). Utilizing structural GM maps the modelled inter-regional GM variation over a large 

sample, commonly known as structural covariance (Alexander-Bloch et al., 2013), is captured 

by these techniques. Brain regions that present structural covariance have been shown to 

have similar WM connectivity, functional activity, neurodevelopmental pathways, genetic 

underpinnings (Alexander-Bloch et al., 2013). Therefore, such regions share similar 

organizational features. GM maps provide a non-negative measurement of GM volume within 

the brain, accordingly, the positive and negative loadings in PCA and ICA can be problematic 

to determine anatomical meaning. NMF address this concern by enforcing a non-negativity 

constraint on the factorization creating an additive parts-based representation of the 

underlying data (Lee and Seung, 1999). The variant of NMF, called orthogonal projective NMF 

(OPNMF) creates spatial continuous brain parcels that further improve interpretability 

compared to ICA or PCA (Nassar et al., 2019; Sotiras et al., 2017, 2015; Varikuti et al., 2018).   

 

1.5 Ethics Approval 
 The use of open human neuroimaging datasets IXI (Information eXtraction from 

Images) and eNKI (Enhanced Nathan Kline Institute) has been approved by the Ethics 

committee of Heinrich-Heine University Düsseldorf (2018-317-RetroDEuA). The chimpanzee 

data provided by the NCBR was acquired under protocols approved by the Yerkes National 

Primate Research Center (YNPRC) at Emory University Institutional Animal Care and Use 

Committee (Approval number YER2001206). The data acquired were approved by the 

Institutional Animal Care and Use Committees of both sites. The Data were also obtained prior 

to the 2015 implementation of the U.S. Fish and Wildlife Service and National Institutes of 
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Health regulations governing research with chimpanzees. The baboon and macaque data is 

from openly available T1w population templates, which were also created with the appropriate 

ethics approval of the associated centers. 

 

1.6 Aims of Thesis 
 Human evolution has involved intricate and diverse adaptations created by a multitude 

of genetic, physiological, and environmental factors over hundreds of millions of years. With 

respect to the numerous evolutionary changes, one could argue none is as significant as that 

of the brain. Therefore, investigating humans’ primate relatives along with cross-species 

comparisons gains valuable insight into understanding organization of the primate brain. 

Consequently, such knowledge can be employed in a general sense to understand brain 

organisation as well as to discern organizational facets related to human neurodevelopment, 

extended lifespan, and neurological disorders. 

 

 This dissertation pertains to three studies that explore primate brain organization 

utilizing modern MRI techniques with a focus on GM structural changes mediated by aging. 

Study 1 establishes a structural image preprocessing workflow for chimpanzees. Including 

population average, registration, and tissue segmentation templates for accurate and 

reproducible image processing used in group comparisons of brain morphometry. A hand-

drawn macroanatomical parcellation of the chimpanzee brain is additionally provided. The 

newly established processing pipeline, templates, and parcellation are then used to 

investigate age-related changes to GM volume and hemispheric asymmetry in chimpanzees. 

Study 2 aims to provide a spotlight on the current state and possibilities for neuroimaging the 

primate brain to further our understanding of its structure, function, and evolution. 

Furthermore, highlighting the importance of multiple species investigations to acquire a more 

fine-grained understanding of neuroevolutionary changes. Particularly, the WM connectivity 

organization and asymmetry of the inferior parietal lobule (IPL) in humans, chimpanzees, and 

macaques. Study 3 conducts a multiple primate species investigation into the relationship 

between cross-species brain volumetric expansion and age-related changes to GM in humans 

and chimpanzees. To assess the expansion-aging relationship a data-driven comparison 

method is presented. This method creates species-specific GM macroanatomical 

parcellations that contain a combination of within species organizational information and 

cross-species similarities. The comparative parcellations are then used examine the 

relationship between age-mediated GM volume changes and cross-species regional brain 

expansion in humans and chimpanzees. Expansion was determined using recent 



 
 

6 

phylogenetic ancestors. For humans chimpanzees were used and for chimpanzees two 

cercopithecid monkeys, baboons and macaques, were employed. Four manuscripts, one for 

study 1 and study 3 and two for study 2 cover these three studies. 
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Alliance, Jülich, Germany; 10Structural Brain Mapping Group, Department of
Neurology, Jena University Hospital, Jena, Germany; 11Structural Brain Mapping
Group, Department of Psychiatry and Psychotherapy, Jena University Hospital,
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Abstract Chimpanzees are among the closest living relatives to humans and, as such, provide a

crucial comparative model for investigating primate brain evolution. In recent years, human brain

mapping has strongly benefited from enhanced computational models and image processing

pipelines that could also improve data analyses in animals by using species-specific templates. In

this study, we use structural MRI data from the National Chimpanzee Brain Resource (NCBR) to

develop the chimpanzee brain reference template Juna.Chimp for spatial registration and the

macro-anatomical brain parcellation Davi130 for standardized whole-brain analysis. Additionally, we

introduce a ready-to-use image processing pipeline built upon the CAT12 toolbox in SPM12,

implementing a standard human image preprocessing framework in chimpanzees. Applying this

approach to data from 194 subjects, we find strong evidence for human-like age-related gray

matter atrophy in multiple regions of the chimpanzee brain, as well as, a general rightward

asymmetry in brain regions.

Introduction
Chimpanzees (Pan troglodytes) along with bonobos (Pan paniscus) represent the closest extant rela-

tives of humans sharing a common ancestor approximately 7–8 million years ago

(Langergraber et al., 2012). Experimental and observational studies, in both the field and in captiv-

ity, have documented a range of cognitive abilities that are shared with humans such as tool use and

manufacturing (Shumaker et al., 2011), symbolic thought (de and Frans, 1996), mirror self-
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recognition (Anderson and Gallup, 2015; Hecht et al., 2017) and some basic elements of language

(Savage-Rumbaugh, 1986; Savage-Rumbaugh and Lewin, 1994; Tomasello and Call, 1997) like

conceptual metaphorical mapping (Dahl and Adachi, 2013). This cognitive complexity together with

similar neuroanatomical features (Zilles et al., 1989; Rilling and Insel, 1999; Gómez-Robles et al.,

2013; Hopkins et al., 2014; Hopkins et al., 2017) and genetic proximity (Waterson et al., 2005)

renders these species unique among non-human primates to study the evolutional origins of the

human condition. In view of evolutionary neurobiology, the relatively recent divergence between

humans and chimpanzees explains the striking similarities in major gyri and sulci, despite profound

differences in overall brain size. Numerous studies using magnetic resonance imaging (MRI) have

compared relative brain size, shape, and gyrification in humans and chimpanzees (Zilles et al., 1989;

Rilling and Insel, 1999; Gómez-Robles et al., 2013; Hopkins et al., 2014; Hopkins et al., 2017).

Previous studies of brain aging in chimpanzees have reported minimal indications of atrophy

(Herndon et al., 1999; Sherwood et al., 2011; Chen et al., 2013; Autrey et al., 2014). Neverthe-

less, Edler et al., 2017 recently found that brains of older chimpanzees’ exhibit both neurofibrillary

tangles and amyloid plaques, the classical features of Alzheimer’s disease (AD). Neurodegeneration

in the aging human brain includes marked atrophy in frontal and temporal lobes and decline in glu-

cose metabolism even in the absence of detectable amyloid beta deposition, which increases the

likelihood of cognitive decline and development of AD (Jagust, 2018). Given the strong association

of brain atrophy and amyloid beta in humans, this phenomenon requires further investigation in

chimpanzees.

Cortical asymmetry is a prominent feature of brain organization in many primate species

(Hopkins et al., 2015) and was recently shown in humans in a large-scale ENIGMA (Enhancing Neu-

roimaging Genetics through Meta-Analysis) study (Kong et al., 2018). For chimpanzees, various

studies have reported population-level asymmetries in different parts of the brain associated with

higher order cognitive functions like tool-use (Freeman et al., 2004; Hopkins et al., 2008;

Hopkins et al., 2017; Hopkins and Nir, 2010; Lyn et al., 2011; Bogart et al., 2012; Gilissen and

Hopkins, 2013) but these results are difficult to compare within and across species, due to the lack

of standardized registration and parcellation techniques as found for humans.

To date, there is no common reference space for the chimpanzee brain available to reliably asso-

ciate and quantitatively compare neuro-anatomical evidence, nor is there a standardized image

processing protocol for T1-weighted (T1w) brain images from chimpanzees that matches human

imaging standards. With the introduction of voxel-based morphometry (Ashburner and Friston,

2000) and the ICBM (international consortium of brain mapping) standard human reference brain

templates almost two decades ago (Mazziotta et al., 2001), MRI analyses became directly compara-

ble and generally reproducible. In this study, we adapt state-of-the-art MRI (magnetic resonance

imaging) processing methods to assess brain aging and cortical asymmetry in the chimpanzee brain.

To make this possible, we rely on the largest openly available resource of chimpanzee MRI data: the

National Chimpanzee Brain Resource (NCBR, http://www.chimpanzeebrain.org/), including in vivo

MRI images of 223 subjects from 9 to 54 years of age (Mean age = 26.9 ± 10.2 years). The aim of

this study is the creation of a chimpanzee template permitting automated and reproducible image

registration, normalization, statistical analysis, and visualization to systematically investigate brain

aging and hemispheric asymmetry in chimpanzees.

Results
Initially, we created the population-based Juna.Chimp (Forschungszentrum Juelich - University Jena)

T1-template, tissue probability maps (TPM) for tissue classification and a non-linear spatial registra-

tion ‘Shooting’ templates (Figure 1) in an iterative fashion at 1 mm spatial resolution. The prepro-

cessing pipeline and templates creation were established using the freely available Statistical

Parametric Mapping (SPM12 v7487, http://www.fil.ion.ucl.ac.uk/spm/) software and Computational

Anatomy Toolbox (CAT12 r1704 http://www.neuro.uni-jena.de/cat/). Juna.Chimp templates, the

Davi130 parcellation, gray matter (GM) masks utilized, as well as statistical maps from our analysis

are interactively accessible and downloadable via the Juna.Chimp web viewer (http://junachimp.

inm7.de/).

To enable more direct comparison to previous research, we manually created the Davi130 parcel-

lation (by R.D. and S.V.), a whole brain macroanatomical annotation based on the Juna T1 template
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(Figure 2). The delineation of regions within the cortex was determined by following major gyri and

sulci, whereby, large regions were arbitrarily split into two to three sub-regions of approximate equal

size even though histological studies show that micro-anatomical borders between brain regions are

rarely situated at the fundus (Sherwood et al., 2003; Schenker et al., 2010; Spocter et al., 2010;

Amunts and Zilles, 2015). This process yielded 65 regions per hemisphere for a total of 130 regions

for the Davi130 macro-anatomical manual parcellation (Figure 2 and Figure 2—source data 1).

Following successful CAT12 preprocessing, rigorous quality control (QC) was employed to iden-

tify individual MRI scans suitable for statistical analysis of brain aging and hemispheric asymmetry in

chimpanzees. Our final sample consists of 194 chimpanzees including 130 females with an age range

of 9–54 years and a mean age of 26.3 ± 9.9 years (Figure 3A). The linear regression model with GM

fraction of total intracranial volume as the dependent variable and age, scanner field strength, sex,

and rearing environment revealed a significant negative association between age and GM

(p<0.0001) demonstrating age-related decline in overall GM density (Figure 3B). Both sex (p=0.004)

and scanner field strength (p<0.0001) showed a significant effect on total GM volume. Therefore,

the sample was split into male and female subjects and into 1.5T and 3T scanner, whereby, all sub-

samples showed a significant age effect on GM (male: R2 = 0.17, p=0.0004; female R2 = 0.13,

p<0.0001, 1.5T: R2 = 0.19, p<0.0001; 3T: R2 = 0.09, p=0.004). There were no significant sex differen-

ces of GM decline (p=0.3). The same analysis was conducted on a matched human sample from the

IXI dataset (Figure 3C; https://brain-development.org/ixi-dataset/). The human sample was matched

based on age, sex, and scanner field strength (n = 194, 128 females, 20–78 y/o,

mean = 39.4 ± 14.0). As life span and aging processes are different between species, the human

sample was matched to chimpanzees roughly by using a factor of 1.5* for age. A significant age-

Figure 1. Juna.Chimp templates including the average. T1- template, tissue probability maps (TPM), and Geodesic Shooting template. For Shooting

templates and TPM axial slices are shown of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). All templates are presented at 0.5 mm

resolution.
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related decline in overall GM (p<0.0001) as well as a significant sex effect (p<0.0001) was also found

in the human sample (Figure 3D). Similar to the chimpanzee sample, both males and female subjects

show a significant age effect on total GM (male: R2 = 0.58, p<0.0001; female: R2 = 0.61, p<0.0001)

but with no significant sex differences on GM decline (p=0.8). Although both species present a sig-

nificant age-related GM decline, humans show a higher negative correlation between age and GM

(chimpanzee: R2 = 0.12; human: R2 = 0.55) with less variance as compared to chimpanzees.

Region-based morphometry analysis was applied to test for local effect of age on GM. Linear

regression analyses identified 55 of 130 brain regions in the Davi130 parcellation across both hemi-

spheres that were significantly associated with age after family-wise error (FWE) correction for multi-

ple testing (Figure 4 and Figure 4—source data 1). Specifically, GM decline with age was found

bilaterally in the superior frontal gyrus (SFG), posterior middle frontal gyrus (pMFG), posterior infe-

rior frontal gyrus (pIFG), lateral orbitofrontal cortex (lOFC), middle and inferior precentral gyrus

(PrCG), cingulate gyrus (ACC, MCC, PCC), posterior superior temporal gyrus (pSTG), anterior middle

temporal gyrus (aMTG), precuneus (PCun), and lingual gyrus (LG) as well as unilaterally in the right

anterior insula (aIns) and middle inferior frontal gyrus (mIFG), in addition to the left superior precen-

tral gyrus (sPrCG), anterior transverse temporal gyrus (aTTG), posterior transverse temporal gyrus

(pTTG), paracentral lobule (PCL) and the area around the calcarine sulcus (Calc) within the cerebral

cortex. Subcortically, age-related GM decline was found in the bilateral putamen (Pu), caudate

nucleus (CN), and the nucleus accumbens (NA), as well as in the superior cerebellum (CerVI, CerIV,

Figure 2. Lateral and medial aspect of the Davi130 parcellation right hemisphere. Visible regions are numbered with Davi130 parcellation region

numbers and correspond to names in the figure. Even numbers correspond to regions in the right hemisphere (as shown in the figure), while left

hemisphere regions are odd numbers. A list of all Davi130 labels can be found at Figure 2—source data 1.

The online version of this article includes the following source data for figure 2:

Source data 1. Source file for Complete List of Davi130 Labels.
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CerVA, Cer VB, CerIV and right CrusII). Finally, to test for more fine grained effects of aging inde-

pendently of our macroanatomical parcellation, the same sample was analyzed with VBM revealing

additional clusters of GM that are significantly affected by age in chimpanzees (Figure 5) after FWE

correction using threshold-free cluster enhancement (TFCE) (Smith and Nichols, 2009). On top of

the regions identified by region-wise morphometry, we found extensive voxel-wise effects through-

out the orbitofrontal cortex (OFC), inferior temporal gyrus (ITG), transverse temporal gyrus (TTG),

frontal operculum (FOP), parietal operculum (POP), postcentral gyrus (PoCG), supramarginal gyrus

(SMG), angular gyrus (AnG), and in parts of the superior parietal lobule (SPL), superior occipital gyrus

(sOG), and in inferior parts of the cerebellum.

Hemispheric asymmetry of the chimpanzee brain was assessed for each cortical Davi130 region

with a total of 68% (44/65) exhibiting significant cortical asymmetry after FWE correction

(Figure 6 and Figure 6—source data 1). The majority of regions were found with greater GM vol-

ume in the right hemisphere (n = 32) as compared to the left (n = 12). In the left hemisphere, we

found more GM in the SFG, pMFG, insula, anterior TTG, and PCun within the cortex. Rightward cor-

tical asymmetry was located in the anterior MFG, middle and posterior IFG, medial OFC, cingulate

gyrus, amygdala, STG, MTG, posterior TTG, anterior and posterior fusiform gyrus (FFG), FOP, POP,

middle PrCG, middle and inferior PoCG, SMG, AnG, Calc, as well as the middle occipital gyrus.

Within the basal ganglia, leftward GM asymmetry was observed in the Pu, nucleus accumbens (NA),

basal forebrain nucleus (BF), and globus pallidus (GP), while, rightward asymmetry in the caudate

Figure 3. Total gray matter volume decline during aging in chimpanzees and matched human sample.

(A) Distribution of age and sex in the final sample of 194 chimpanzees. (B) Linear relationship between GM and

age with standard error for chimpanzee sample. (C) Distribution of age and sex in the human (IXI) matched sample

of 194 humans. (D) Linear relationship between GM and age with standard error for human sample. Figure 3—

figure supplement 1 presents the age and sex distribution of the whole sample (n = 223). Figure 3—figure

supplement 2 presents the age and sex distribution of the whole IXI sample (n = 496).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Age and sex distribution of complete chimpanzee (n = 223) sample separated by scanner

field strength.

Figure supplement 2. Age and sex distribution of complete IXI human sample (n = 496) separated by scanner

field strength.
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Figure 4. Region-wise morphometry in the Davi130 parcellation age regression. Red regions represent Davi130

regions that remained significant at p�0.05 following FWE correction (Holm method). The T-statistic and p-value

for all Davi130 labels can be found in Figure 4—source data 1. 1 and 2 – aSFG, 3 and 4 – mSFG, 5 and 6 – pSFG,

9 and 10 – pMFG, 14 – mIFG, 15 and 16 – pIFG, 19 and 20 – lOFC, 21 and 22 – ACC, 23 and 24 – MCC, 25 and 26

– PCC, 27 – sPrCG, 29 and 30 – mPrCG, 31 and 32 – iPrCG, 33 – PCL, 40 – aIns, 43 – aTTG, 49 and 50 – pSTG, 51

and 52 – aMTG, 83 and 84 – PCun, 85 – Cun, 87 and 88 – LG, 89 and 90 – Calc, 97 and 98 – CN, 99 and 100 – NA,

103 and 104 – Pu, 118 – CrusII, 119 and 120 – CerVI, 121 and 122 – CerVB, 123 and 124 – CerVB, 125 and 126 –

CerIV.

The online version of this article includes the following source data for figure 4:

Source data 1. Aging effect on gray matter in complete Davi130 Labels.

Figure 5. Voxel-based morphometry of aging on GM volume. The significant clusters are found using TFCE with

FWE correction at p�0.05.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Voxel-based morphometry of aging on GM volume using TFCE with FWE correction at

p�0.05 without rearing as a covariate.
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nucleus (CN) and thalamus (Th). The cerebellum exclusively showed rightward GM asymmetry in the

posterior cerebellar lobe (CerIX, CerVIII, CrusI, CrusII, CerVI). The hemispheric asymmetry did not

show a decipherable pattern.

Discussion
As a common reference space for the analysis of chimpanzee brain data, we created the Juna.Chimp

template, constructed from a large heterogeneous sample of T1w MRI’s from the NCBR. The Juna.

Chimp template includes a reference T1-template, along with probability maps of brain and head tis-

sues accompanied by a Geodesic Shooting template for the publicly available SPM12/CAT12 pre-

processing pipeline to efficiently segment and accurately spatially normalize individual chimpanzee

T1w images. The T1-template and TPM can also be used as the target for image registration with

other popular software packages, such as FSL (https://fsl.fmrib.ox.ac.uk/fsl) or ANTs (http://stnava.

github.io/ANTs/). Furthermore, our processing pipeline and templates can be utilized for data-driven

approaches to create connectivity-based and structural covariance parcellations of the chimpanzee

brain (Alexander-Bloch et al., 2013; Eickhoff et al., 2015).

Additionally, we provide the manually segmented, macro-anatomical Davi130 whole-brain parcel-

lation comprising 130 cortical, sub-cortical and cerebellar brain regions, which enables systematic

extraction of volumes-of-interest from chimpanzee MRI data. The image processing pipeline and

Davi130 parcellation were used to investigate ageing and interhemispheric asymmetry in the chim-

panzee brain. The Davi130 parcellation was realized by utilizing macroscopic gyral and sulcal fea-

tures such as peaks, fundi, and bends to represent the chimpanzee brain in a reduced dimensional

space based on macro-anatomical landmarks. Despite the evidence that true microanatomical bor-

ders between brain areas rarely coincide with macro-anatomical patterns (Amunts and Zilles, 2015),

macroscopic brain parcellations like Desikan-Killany human atlas (Desikan et al., 2006) have success-

fully been utilized in many studies furthering our understanding of brain structure, function, and

Figure 6. Hemispheric asymmetry of Davi130 regions within the chimpanzee sample. Significant leftward (red) and

rightward (green) asymmetrical regions are those with a p�0.05 after FWE correction. The T-statistic and p-value

for all Davi130 labels can be found in Figure 6—source data 1. 1 – aSFG, 3 – mSFG, 5 – pSFG, 8 – aMFG, 9 –

pMFG, 12 – aIFG, 14 – mIFG, 16 – pIFG, 18 – mOFC, 22 – ACC, 24 – MCC, 26 – PCC, 30 – mPrCG, 36 – FOP, 38 –

POP, 39 – aIns, 41 – pIns, 43 – aTTG, 46 – pTTG, 48 – aSTG, 50 – pSTG, 52 – aMTG, 54 – pMTG, 62 – aFFG, 64 –

pFFG, 74 – mPoCG, 76 – iPoCG, 80 – SMG, 82, AnG, 83 – PCun, 90 – Calc, 94 – mOG, 98 – CN, 101 – BF, 103 –

Pu, 108 – Th, 112 – CerIX, 114 – CerVIII, 115 –CrusI, 118 –CrusII, 120 – CerVI.

The online version of this article includes the following source data for figure 6:

Source data 1. Complete Davi130 labels hemispheric asymmetry.
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disease (Kong et al., 2020; van den Heuvel et al., 2020). The Davi130 parcellation of the chimpan-

zee brain serves two main purposes. First, regions in Juna.Chimp template space enable increased

interpretability and reproducibility of morphometric analyses and comparability between studies,

even retrospectively. Second, our manual subdivision reduces the statistical problem of multiple test-

ing for mass univariate approaches like VBM to uncover subtle brain - behavior relationships. Fur-

thermore, our macroscopic parcellation mitigates the curse of dimensionality for multivariate

machine learning methods to be applied to the relatively small samples like the NCBR.

We found clear evidence of global and local GM decline in the aging chimpanzee brain even

though previous research into age-related changes in chimpanzee brain organization has shown little

to no effect (Herndon et al., 1999; Sherwood et al., 2011; Chen et al., 2013; Autrey et al., 2014).

(Herndon et al., 1999; Sherwood et al., 2011; Chen et al., 2013; Autrey et al., 2014). This can be

attributed on the one hand to the larger number of MRI scans available via the NCBR including 30%

of older subjects with 55 individuals over 30 and 12 over 45 years of age, which is crucial for model-

ling the effect of aging (Chen et al., 2013; Autrey et al., 2014). On the other hand, state-of-the-art

image processing enabled the creation of the species-specific Juna.Chimp templates, which largely

improves tissue segmentation and registration accuracy (Ashburner and Friston, 2000). Non-linear

registration was also improved by the large heterogeneous sample utilized for the creation of the

templates encompassing a representative amount of inter-individual variation. We used the well-

established structural brain imaging toolbox CAT12 to build a reusable chimpanzee preprocessing

pipeline catered towards analyzing local tissue-specific anatomical variations as measured with T1w

MRI. The Davi130-based region-wise and the voxel-wise morphometry analysis consistently showed

localized GM decline in lateral frontal cortex, lOFC, precentral gyrus, cingulate gyrus, PCun, medial

parietal and occipital cortex, the basal ganglia, and superior cerebellum. The VBM approach addi-

tionally produced evidence for age effects in bilateral mOFC, PoCG, inferior temporal regions, infe-

rior and superior lateral parietal cortex, sOG, and throughout the cerebellum. These additional

effects can be expected, as VBM is more sensitive to GM changes due to aging (Kennedy et al.,

2009). The multiple brain regions revealing GM decline reported here in both approaches have also

been shown to exhibit GM atrophy during healthy aging in humans (Good et al., 2001b;

Kennedy et al., 2009; Crivello et al., 2014; Minkova et al., 2017). Additionally, there was no signif-

icant difference in the age-related decline between humans and chimpanzee (Figure 3), even though

a larger negative correlation with less variance was found in the matched human sample, which dem-

onstrates a commonality in the healthy aging process of chimpanzees that was thought to be specific

to humans. In general, GM atrophy in chimpanzees occurs across the entire cortex, sub-cortical

regions, and cerebellum, however, certain local areas decline at a relative extended rate within the

frontal, temporal, and parietal lobes (Fjell et al., 2014). Several Davi130 regions within the frontal

lobe (SFG, MFG, IFG, and lOFC) have been previously reported in corresponding human loci in rela-

tion to GM volume decline due to aging (Kennedy et al., 2009; Crivello et al., 2014; Fjell et al.,

2014; Minkova et al., 2017). Furthermore, aging effects in temporal (STG) and parietal (PoCG,

AnG, PCun) regions in chimpanzees have additionally been revealed in analogous human areas

(Good et al., 2001b; Kennedy et al., 2009; Crivello et al., 2014; Fjell et al., 2014; Minkova et al.,

2017). The same is true for the superior occipital gyrus and caudate nucleus (Crivello et al., 2014).

Similar age-related total GM decline along with presentation in homologous brain areas suggests

common underlying neurophysiological processes in humans and chimpanzees due to shared pri-

mate evolution.

Very recently, it has been shown that stress hormone levels increase with age in chimpanzees, a

process previously thought to only occur in humans, which can cause GM volume decline

(Emery Thompson et al., 2020). This further strengthens the argument that age-related GM decline

is also shared by humans closest relative, the chimpanzee. Furthermore, Edler et al., 2017 found

Alzheimer’s disease-like accumulation of amyloid beta plaques and neurofibrillary tangles located

predominantly in prefrontal and temporal cortices in a sample of elderly chimpanzees between 37

and 62 years of age. As the aggregation of these proteins is associated with localized neuronal loss

and cortical atrophy in humans (La Joie et al., 2012; Lladó et al., 2018), the age-related decline in

GM volume shown here is well in line with the findings by Jagust, 2016 associating GM atrophy

with amyloid beta. These findings provide a biological mechanism for accelerated GM decrease in

prefrontal, limbic, and temporal cortices found in chimpanzees. In contrast, elderly rhesus monkeys

show GM volume decline without the presence of neurofibrillary tangles (Alexander et al., 2008;
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Shamy et al., 2011). Taken together, regionally specific GM atrophy seems to be a common aspect

of the primate brain aging pattern observed in macaque monkeys, chimpanzees, and humans. To

make a case for the existence of Alzheimer’s disease in chimpanzees, validated cognitive tests for

Alzheimer’s-like cognitive decline in non-human primates are needed, to test for direct associations

between cognitive decline with tau pathology and brain atrophy.

To further analyze the possible moderator effects on aging, we considered the historical composi-

tion of the NCBR sample, with respect to the rearing environment. The majority of elderly chimpan-

zees over 40 years old (23/26) were born in the wild and captured at a young age, whereas only very

few chimpanzees under 40 were wild born (5/168). The capture, separation from their mothers, and

subsequent transport to the research centers can be considered a traumatic event with possible last-

ing effects on brain development and morphology (Bremner, 2006). In captivity, different chimpan-

zee-rearing experiences, either by their mother or in a nursery, has been shown to affect brain

morphology (Bogart et al., 2014; Bard and Hopkins, 2018). The same should be expected in com-

parison of captive and wild-born chimpanzees. The disproportionate distribution of rearing and early

life experiences likely influences our cross-sectional analyses of the effect of aging on GM volume.

However, we have some reason to be confident that the aging effect shown here is not solely driven

by these factors as rearing environment was added as a covariate to all age regression models and

the VBM age regression model with and without rearing as a covariate are almost identical (Figure 5

and Figure 5—figure supplement 1 respectively). Moreover, the GM decline we found is extensive,

widespread, and also present in chimpanzees under 30 years of age (p<0.0001), where 99% are cap-

tive born (143/144).

Hemispheric asymmetry was found in 68% (44/65) of all regions of the Davi130 parcellation,

reproducing several regional findings reported in previous studies using diverse image processing

methods as well as uncovering numerous novel population-level asymmetries. Previous studies utiliz-

ing a region-wise approach based on hand-drawn or atlas derived regions to analyze asymmetry in

cortical thickness also reported leftward asymmetry of the insula (Hopkins et al., 2017) and right-

ward lateralization of cortical thickness of the PCC (Hopkins et al., 2017) as well as STG, MTG, and

SMG (Hopkins and Avants, 2013). Previous VBM findings also revealed leftward asymmetry in the

anterior SFG (Hopkins et al., 2008) along with rightward lateralization of the MFG, PrCG, PoCG,

mOG, and CrusII (Hopkins et al., 2008; Hopkins and Avants, 2013). In the current study, new

regions of larger GM volume in the left hemisphere were found in frontal (pMFG, mSFG, pSFG),

temporal (aTTG), and parietal (PCun) cortices as well as in the basal ganglia (BF,GP, Pu). Novel right-

ward asymmetries could also be seen in the frontal (IFG, mOFC, FrOP), limbic (CC, Amy), temporal

(pTTG, FFG), parietal (POP, AnG), and occipital (Calc) cortices besides the basal ganglia (Th, CN)

and the cerebellum (CrusI, CerIX, CerVI, CerVIII).

The Davi130s’ region pTTG which contains the planum temporale (PT), presented significant

rightward lateralization, while previous studies of the PT have shown leftward asymmetry in chimpan-

zee GM volume, surface area (Hopkins and Nir, 2010), and cytoarchitecture (Zilles et al., 1996;

Gannon et al., 1998; Spocter et al., 2010). A possible reason for the divergence in this finding is

that the anterior border of PT (Hopkins and Nir, 2010) lies several millimeters posterior from the

anterior posterior split of the Davi130 TTG. Additionally, the left lateral sulcus in the Juna.Chimp

template appears to proceed further posteriorly and superiorly compared to the right, which is con-

sistent with previous findings in asymmetrical length of the POP in chimpanzees (Gilissen and Hop-

kins, 2013) and Sylvian fissure length in old world monkeys (Lyn et al., 2011; Marie et al., 2018).

Population-level asymmetries in the pIFG in chimpanzees were documented almost two decades

ago by Cantalupo and Hopkins, 2001, who reported a leftward asymmetry in pIFG volume in a

small sample of great apes. In subsequent studies, this result could not be replicated when consider-

ing GM volume (Hopkins et al., 2008; Keller et al., 2009) or cytoarchitecture (Schenker et al.,

2010). We also failed to find a leftward asymmetry in GM volume for the pIFG, in contrary to asym-

metries found in humans (Amunts et al., 1999; Uylings et al., 2006; Keller et al., 2009).

A substantial amount of regions presenting significant inter-hemispheric differences of local mor-

phology in chimpanzees has also been shown in humans (Good et al., 2001a; Plessen et al., 2014;

Kong et al., 2018). Specifically, leftward lateralization has been found in human analogous regions

of the SFG and insula utilizing GM thickness and volume in voxel-wise and atlas derived region-wise

approaches (Good et al., 2001a; Takao et al., 2011; Plessen et al., 2014; Kong et al., 2018).

Rightward asymmetry in the Davi130 regions IFG, STG, MTG, AnG, mOG, Calc, in addition to the
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thalamus and lateral cerebellum is documented in the human brain also using both VBM and surface

measures (Good et al., 2001a; Takao et al., 2011; Plessen et al., 2014; Kong et al., 2018). Gross

hemispheric asymmetry in humans follows a general structure of frontal rightward and occipital left-

ward asymmetry known as the ‘Yakovlevian torque’ (Toga and Thompson, 2003). This general orga-

nizational pattern of asymmetry was not apparent in the chimpanzee (Li et al., 2018).

The NCBR offers the largest and richest openly available dataset of chimpanzee brain MRI scans

acquired over a decade with 1.5T and 3T MRI at two locations, capturing valuable inter-individual

variation in one large heterogeneous sample. To account for the scanner effect on GM estimation,

field strength was modeled as a covariate of no interest for analyzing the age effect on GM volume.

The focus of this study was the analysis of GM volume, even though the CAT12 image processing

pipeline enables surface projection and analysis. Consequently, the next step will be the application

of CAT12 to analyze cortical surface area, curvature, gyrification, and thickness of the chimpanzee

brain, to include behavioral data and the quantitative comparison to humans and other species, as

cortical surface projection permits a direct inter-species comparison due to cross-species

registration.

Conclusion
In conclusion, we present the new chimpanzee reference template Juna.Chimp, TPM’s, the Davi130

whole-brain parcellation, and the CAT12 preprocessing pipeline which is ready-to-use by the wider

neuroimaging community. Investigations of age-related GM changes in chimpanzees using both

region-wise and voxel-based morphometry showed substantial atrophy with age, which was also

apparent in a matched human sample providing further evidence for human-like physiological aging

processes in the chimpanzee brain. Examining population-based hemispheric asymmetry in chimpan-

zees showed a general rightward lateralization of higher GM volume without the presence of a dis-

tinct pattern like the ‘Yakovlevian torgue’ seen in humans.

Materials and methods

Key resources table

Reagent type
(species)
or resource Designation

Source or
reference Identifiers

Additional
information

Software,
algorithm

CAT12 http://www.
neuro.uni-
jena.de/cat/

RRID:SCR_019184

Software,
algorithm

NCBR http://www.
chimpanzeebrain.
org/

RRID:SCR_019183

Software,
algorithm

MATLAB http://www.
mathworks.
com/products/matlab/

RRID:SCR_001622

Software,
algorithm

SPM http://www.
fil.ion.ucl.ac.
uk/spm/

RRID:SCR_007037

Software,
algorithm

RStudio http://www.
rstudio.com/

RRID:SCR_000432

Software,
algorithm

3D Slicer http://slicer.org/ RRID:SCR_005619

Subject information and image collection procedure
This study analyzed structural T1w MRI scans of 223 chimpanzees (137 females; 9–54 y/o, mean age

26.9 ± 10.2 years, Figure 3—figure supplement 1) from the NCBR (http://www.chimpanzeebrain.

org/). The chimpanzees were housed at two locations including, the National Center for Chimpanzee

Care of The University of Texas MD Anderson Cancer Center (UTMDACC) and the Yerkes National

Primate Research Center (YNPRC) of Emory University. The standard MR imaging procedures for

chimpanzees at the YNPRC and UTMDACC are designed to minimize stress for the subjects. For an
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in-depth explanation of the imaging procedure please refer to Autrey et al., 2014. Seventy-six

chimpanzees were scanned with a Siemens Trio 3 Tesla scanner (Siemens Medical Solutions USA,

Inc, Malvern, Pennsylvania, USA). Most T1w images were collected using a three-dimensional gradi-

ent echo sequence with 0.6 � 0.6 � 0.6 resolution (pulse repetition = 2300 ms, echo time = 4.4 ms,

number of signals averaged = 3). The remaining 147 chimpanzees were scanned using a 1.5T GE

echo-speed Horizon LX MR scanner (GE Medical Systems, Milwaukee, WI), predominantly applying

gradient echo sequence with 0.7 � 0.7 � 1.2 resolution (pulse repetition = 19.0 ms, echo time = 8.5

ms, number of signals averaged = 8).

DICOM conversion and de-noising
The structural T1w images were provided by the NCBR in their original DICOM format and con-

verted into Nifti using MRIcron (Rorden and Brett, 2000). If multiple scans were available, the aver-

age was computed. Following DICOM conversion, each image was cleaned of noise (Manjón et al.,

2010) and signal inhomogeneity and resliced to 0.6 mm isotropic resolution. Finally, the anterior

commissure was manually set as the center (0,0,0) of all Nifti’s to aid in affine preprocessing.

CAT12 preprocessing segmentation
Structural image segmentation in CAT12 builds on the TPM-based approach employed by SPM12,

whereby, the gray/white image intensity is aided with a priori tissue probabilities in initial segmenta-

tion and affine registration as it is in common template space. Another advantage of a TPM is that

one has a template for initial affine registration, which then enables the segment maps to be non-lin-

early registered and spatially normalized to corresponding segment maps of the chimpanzee shoot-

ing templates. Lowering the possibility for registration errors improves the quality of the final

normalized image. Improving upon SPM’s segmentation (Ashburner and Friston, 2005), CAT12

employs Local Adaptive Segmentation (LAS) (Dahnke et al., 2012), Adaptive Maximum A Posterior

segmentation(AMAP) (Dahnke and Gaser, 2017; Gaser et al., 2020), and Partial Volume Estimation

(PVE) (Tohka et al., 2004). LAS creates local intensity transformations for all tissue types to limit GM

misclassification due to varying GM intensity in regions such as the occipital, basal ganglia, and

motor cortex because of anatomical properties (e.g. high myelination and iron content). AMAP seg-

mentation takes the initially segmented, aligned, and skull stripped image created utilizing the TPM

and disregards the a priori information of the TPM, to conduct an adaptive AMAP estimation where

local variations are modeled by slowly varying spatial functions (Rajapakse et al., 1997). Along with

the classical three tissue types for segmentation (GM, WM, and CSF) based on the AMAP estima-

tion, an additional two PVE classes (GM-WM and GM-CSF) are created resulting in an estimate of

the fraction of each tissue type contained in each voxel. These features outlined above of our pipe-

line allow for more accurate tissue segmentation and therefore a better representation of macroana-

tomical GM levels for analysis.

Creation of chimpanzee templates
An iterative process as by Franke et al., 2017 was employed to create the Juna.Chimp template,

with T1 average, Shooting registration template (Ashburner and Friston, 2011), as well as the TPM

(Figure 7). Initially, a first-generation template was produced using the ‘greater_ape’ template deliv-

ered by CAT (Franke et al., 2017; Gaser et al., 2020) that utilizes data provided in Rilling and Insel,

1999. The final segmentation takes the bias-corrected, intensity-normalized, and skull-stripped

image together with the initial SPM-segmentation to conduct an AMAP estimation

(Rajapakse et al., 1997) with a partial volume model for sub-voxel accuracy (Tohka et al., 2004).

The affine normalized tissue segments of GM, white matter (WM), and cerebrospinal fluid (CSF)

were used to create a new Shooting template that consists of four major non-linear normalization

steps allowing to normalize new scans. To create a chimpanzee-specific TPM, we average the differ-

ent Shooting template steps to benefit from the high spatial resolution of the final Shooting steps

but also include the general affine aspects to avoid over-optimization. Besides the brain tissues the

TPM also included two head tissues (bones and muscles) and a background class for standard

SPM12 (Ashburner and Friston, 2005) and CAT12 preprocessing. An internal CAT atlas was written

for each subject and mapped to the new chimpanzee template using the information from the

Shooting registration. The CAT atlas maps were averaged by a median filter and finally manually
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corrected. This initial template was then used in the second iteration of CAT segmentation to estab-

lish the final chimpanzee-specific Juna.Chimp template, which was imported into the standard

CAT12 preprocessing pipeline to create the final data used for the aging and asymmetry analyses.

Davi130 parcellation
The average T1 and final Shooting template were used for a manual delineation of macro-anatomical

GM structures. Identification and annotation of major brain regions were performed manually using

the program, 3D Slicer 4.10.1 (https://www.slicer.org). The labeling enables automated, region-

based analysis of the entire chimpanzee brain and allows for robust statistical analysis. Nomenclature

and location of regions were ascertained by consulting both chimpanzee and human brain atlases

(Bailey and Bonin GV, 1950; Mai et al., 2015). The labeling was completed by two authors (S.V.

and R.D.) and reviewed by two experts of chimpanzee brain anatomy (C.C.S. and W.D.H.). A total of

65 GM structures within the cerebrum and cerebellum of the left hemisphere were annotated and

then flipped to the right hemisphere. The flipped annotations were then manually adapted to the

morphology of the right hemisphere to have complete coverage of the chimpanzee brain with 130

labels.

The location of macroscopic brain regions was determined based on major gyri of the cerebral

cortex, as well as distinct anatomical landmarks of the cerebellar cortex, and basal ganglia. Of note,

the border between two adjacent gyri was set as the mid-point of the connecting sulcus, generally

at the fundus. Large gyri were further subdivided into two or three parts based on their size and

structural features to enable greater spatial resolution and better inter-regional comparison. Naming

of regional subdivisions were based on spatial location, for example, anterior, middle, posterior, as

Figure 7. Workflow for creation of chimpanzee-specific shooting template and TPM, which can then be used in CAT12 structural preprocessing

pipeline to create the Juna.Chimp template. The resulting chimpanzee-shooting template, TPM and CAT atlas establishes the robust and reliable base

to segment and spatially normalize the T1w images utilizing CAT12’s processing pipeline (Dahnke and Gaser, 2017; Gaser et al., 2020).
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these splits are based on macroanatomical features and do not necessarily correspond to functional

parcellations.

Considering the limitations of macroscopic features present in T1w, we utilized distinct morpho-

logical representations to split large gyri, such as gyral/sulcal folds and continuation of sulci. If a dis-

tinguishable feature could not be determined, rough distance and regional size was employed as

border defining criteria. The splits of the lateral temporal lobe, including the TTG, followed a contin-

uation of the inferior portion of the postcentral sulcus that angles slightly posteriorly to better

account for the increase in length of the gyri as it proceeds inferiorly. The central sulcus as well as

the adjacent pre- and postcentral gyri contain a knob or U-shaped bend proceeding posteriorly. The

superior beginning and inferior end of this bend were employed for the two splits of these gyri.

Additionally, the central sulcus is the border between the frontal and parietal lobes, therefore, the

FOP – POP split occurs at the termination of the central sulcus at the lateral fissure. Within the fron-

tal cortex, the anterior posterior split of the MFG is at the meeting point of the middle frontal sulcus

and the superior precentral sulcus, which translates to the inferior bend of the MFG. The tip of the

fronto-orbito sulcus was used as an anchor point for the split of the pIFG and mIFG. The middle

anterior split of the IFG was then determined by distance, whereby the remaining gyrus was sepa-

rated into equally sized parts. The cingulate cortex anterior, middle, and posterior subdivisions were

delineated by splits following the anterior and posterior bends of the gyrus around the corpus cal-

losum. The cerebellum was divided into its major lobes which are quite similar across primates

(Apps and Hawkes, 2009). Finally, splits within the OFC, SFG, and insula were based on equal size

and/or distance.

Quality control
CAT12 provides quality measures pertaining to noise, bias inhomogeneities, resolution and an over-

all compounded score of the original input image. Using these ratings, poor images were flagged

for visual inspection when they were two standard deviations (std) away from the sample mean of

each rating. The preprocessed modulated GM maps were then tested for sample inhomogeneity

separately for each scanner (3T and 1.5T) and those that have a mean correlation below two std

were flagged for visual inspection. Once the original image was flagged, affine GM, and modulated

GM maps were inspected for poor quality, tissue misclassification, artefacts, irregular deformations,

and very high intensities. For the second and third iteration, the passed modulated GM maps were

tested again for mean correlation as a complete sample, flagging the images below two std for

visual inspection, looking for the same features as in the initial QC iteration. Following the three iter-

ations of QC a total of 194 of 223 chimpanzee MRI’s (130 females, 9–54 y/o, mean = 26.2 ± 9.9)

qualified for statistical analysis.

Age-related changes in total gray matter
A linear regression model was used to determine the effect of aging on total GM volume. Firstly,

total GM volume for each subject was converted into a percentage of total intracranial volume (TIV)

to account for the variation in head size. This was then entered into a linear regression model as the

dependent variable with age, sex, scanner field strength, and rearing as the independents. Sex-spe-

cific models were conducted with males and females separately using age as the only dependent

variable. The slope of each regression line was determined using R2 and a p-value of p�0.05 was

used to determine the significant effect of age and sex on total GM volume. The IXI brain develop-

ment dataset (http://brain-development.org/ixi-dataset/) was utilized to compare the age effect on

total GM volume between chimpanzees and humans, as it includes subjects with a wide age range

and T1w images from MRI scanners of both 1.5T and 3T field strength. Prior to matching the IXI

sample to the QC passed chimpanzee sample, all images collected from the Institute of Psychiatry

(IOP) were removed to keep similarity to the chimpanzee sample of a single 1.5T scanner. After

removing subjects without meta data, a total of 496 subjects (Figure 3—figure supplement 2) were

used for matching to the chimpanzee sample regarding age, sex, and scanner field strength. To

enable age matching between species, a factor of 1.5 of chimpanzee age was used to roughly calcu-

late the comparable human age. This factor was chosen based on the comparable life span of the

two species, because a chimpanzee 40+ years is considered elderly and so is a 60+ year old human,

also a 60+ year old chimpanzee is very old and uncommon similarly to a human 90+ years old.
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Furthermore, the age of sexual maturity in humans is 19.5 years, while in chimps it is 13.5 years

which is also approximately a difference of 1.5 (Robson and Wood, 2008). The sample matching

was conducted using the ‘MatchIt’ (Ho et al., 2007) R package (https://cran.r-project.org/package=

MatchIt) and utilizing the ‘optimal’ (Hansen and Klopfer, 2006) algorithm. The matched human

sample contained 194 subjects (128 females, 20–78 y/o, mean = 39.4 ± 14.0) for statistical analysis.

Age-related changes in gray matter using Davi130 parcellation
The Davi130 parcellation was applied to the modulated GM maps to conduct region-wise morphom-

etry analysis. First, the Davi130 regions were masked with a 0.1 GM mask to remove all non-GM por-

tions of the regions. Subsequently, the average GM intensity of each region for all QC-passed

chimpanzees was calculated. A multiple regression model was conducted for the labels from both

hemispheres, whereby, the dependent variable was GM volume and the predictor variables were

age, sex, TIV, scanner strength, and rearing. Significant age-related GM decline was established for

a Davi130 label with a p�0.05, after correcting for multiple comparisons using FWE (Holm, 1979).

Voxel-based morphometry
VBM analysis was conducted using CAT12 to determine the effect of aging on local GM volume. The

modulated and spatially normalized GM segments from each subject were spatially smoothed with a

4 mm FWHM (full width half maximum) kernel prior to analyses. To restrict the overall volume of

interest, an implicit 0.4 GM mask was employed. As MRI field strength is known to influence image

quality, and consequently, tissue classification, we included scanner strength in our VBM model as a

covariate. The dependent variable in the model was age, with covariates of TIV, sex, scanner

strength, and rearing. The VBM model was corrected for multiple comparisons using TFCE with

5000 permutations (Smith and Nichols, 2009). Significant clusters were determined at p�0.05, after

correcting for multiple comparisons using FWE.

Hemispheric asymmetry
As for the age regression analysis, all Davi130 parcels were masked with a 0.1 GM mask to remove

non-GM portions within regions. Cortical hemispheric asymmetry of Davi130 labels was determined

using the formula Asym = (L - R) / (L + R) * 0.5 (Kurth et al., 2015; Hopkins et al., 2017), whereby L

and R represent the average GM volume for each region in the left and right hemisphere, respec-

tively. Therefore, the bi-hemispheric Davi130 regions were converted into single Asym labels

(n = 65) with positive Asym values indicating a leftward asymmetry, and negative values, a rightward

bias. One-sample t-tests were conducted for each region under the null hypothesis of Asym = 0, and

significant leftward or rightward asymmetry was determined with a p�0.05, after correcting for mul-

tiple comparisons using FWE (Holm, 1979).

Exemplar pipeline workflow
To illustrate the structural processing pipeline, we have created exemplar MATLAB SPM batch

scripts that utilizes the Juna.Chimp templates in CAT12’s preprocessing workflow to conduct seg-

mentation, spatial registration, and finally some basic age analysis on an openly available direct-to-

download chimpanzee sample (http://www.chimpanzeebrain.org/). These scripts require the appro-

priate templates which can be downloaded from the Juna.Chimp web viewer (SPM/CAT_templates.

zip) and then place the templates_animals/folder into the latest version CAT12 Toolbox directory

(CAT12.7 r1609). The processing parameters are similar to those conducted in this study, although

different DICOM conversions and denoising were conducted. Further information regarding each

parameter can be viewed when opening the script in the SPM batch as well as the provided com-

ments and README file. The code for the workflow in addition to the code used to conduct the

aging effect and asymmetry analyses can be found here (https://github.com/viko18/

JunaChimp; Vickery, 2020; copy archived at swh:1:rev:

411f0610269416d4ee04eaf9670a9dc84e829ea0).
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Manjón JV, Coupé P, Martı́-Bonmatı́ L, Collins DL, Robles M. 2010. Adaptive non-local means denoising of MR
images with spatially varying noise levels. Journal of Magnetic Resonance Imaging 31:192–203. DOI: https://
doi.org/10.1002/jmri.22003, PMID: 20027588

Marie D, Roth M, Lacoste R, Nazarian B, Bertello A, Anton JL, Hopkins WD, Margiotoudi K, Love SA,
Meguerditchian A. 2018. Left brain asymmetry of the planum temporale in a nonhominid primate: redefining
the origin of brain specialization for language. Cerebral Cortex 28:1808–1815. DOI: https://doi.org/10.1093/
cercor/bhx096, PMID: 28431000

Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K, Woods R, Paus T, Simpson G, Pike B, Holmes C,
Collins L, Thompson P, MacDonald D, Iacoboni M, Schormann T, Amunts K, Palomero-Gallagher N, Geyer S,
Parsons L, et al. 2001. A probabilistic atlas and reference system for the human brain: international consortium
for brain mapping (ICBM). Philosophical Transactions of the Royal Society of London. Series B: Biological
Sciences 356:1293–1322. DOI: https://doi.org/10.1098/rstb.2001.0915

Minkova L, Habich A, Peter J, Kaller CP, Eickhoff SB, Klöppel S. 2017. Gray matter asymmetries in aging and
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Our brain is the fruit of billions of years of evolution. Evolution, as we
urrently understand it, strikes a delicate balance between animals’ an-
estral history and adaptations to their current niche. Within each gen-
ration, discreet changes can occur across phenotypes mostly through
enetic recombination ( Hirsch 1963 ). If disadvantageous, these changes
re more likely eliminated by natural selection (i.e. survival and repro-
uction). Accordingly, it is generally assumed that similarities between
pecies are inherited from a common ancestor whereas observed differ-
nces are more recent occurrences ( Darwin 1859 ; Fig. 1 a). Hence com-
aring species gives us insight into evolutionary history, and has been
pplied in multiple fields where precise quantitative measurements are
asy to access in large numbers including, for example skeletal structure
e.g. Dutel et al., 2019 , see also Fig. 1 b) or genetics (e.g. Boffelli et al.,
003 ; Clifen et al., 2003 , see also Fig. 1 c) 
Thus far, however, large numbers of observations and precise quan-

itative measurements are lacking for the brain across species due to its
ragile, ephemeral and complex organisation. While we know a great
eal about the evolution of species, the aforementioned difficulty to
ork with brain data has hampered progress in our understanding of
he evolution of the brain. Better understanding evolution will allow for
argeted studies with animal models matching the brain mechanisms
n the human to its phylogenetic counterpart. Further, it may also help
iscover neuroprotective mechanisms allowing for resilience to disease
n animals. Recent advancements in neuroimaging, with regard to both
ardware and software as well as larger cohort datasets are now open-
ng the door to embark on this new adventure of comparative brain
volution. 
Brains differ in many respects across species ( Haug, 1987 ;

tephan, 1975 ; Ariëns Kappers, 1909 ) and MRI can compare most of
hese levels digitally at moderate costs ( Krubitzer and Kaas, 2005 ;
ars et al., 2018 ). With the advent of better hardware and higher-
esolution magnetic resonance imaging sequences that allow researchers
o characterise many different aspects of the same brain’s structure and
unction, it has become feasible to compare different species using a non-
ig. 1. Comparative anatomy as a glimpse at the evolution of species. a) First evolu
epicted in the 6th edition of the origin of species ( Darwin 1859 ), b) Comparative
etween a sea lion and a cheetah, suggesting a close common ancestor ( Rybczynski e
) Example of comparative genetics (limited to the Preferentially Expressed Antigen 
ithin (i.e. interindividual variability in genetics) and between species (comparative
ave been coded so that it represents the level of difference with the original phyloge

2 
nvasive repeatable multimodal method of investigation ( Thiebaut de
chotten, Croxson and Mars, 2019 ). Another striking advantage of us-
ng magnetic resonance imaging for comparative studies is its feasibility
o study large cohorts longitudinally as there is no need to sacrifice ani-
als. Thereby, brains can be manipulated, and the effects of aging, train-
ng or lesions can be compared not only within but also between species.
inally, the non-invasive nature of the methods facilitates functional
tudies that better elucidate brain-behaviour interactions. Amongst the
ost commonly used MRI sequences to probe the structure of the brain
re T1-weighted and T2-weighted scans to visualise different brain tis-
ues (i.e. separate grey matter and white matter). Diffusion-weighted
maging (DWI) can be used to estimate microstructural properties within
he white matter ( Zhang et al., 2012 ) and to visualise the trajectory
f white matter pathways ( Basser, Mattiello & Le Bihan, 1994 ). Other
equences have been tuned to assess myelination ( Glasser and Van Es-
en, 2011 ; Prasloski et al., 2012 ; for review see Heath et al., 2018 ). Using
n-vivo recordings, the function of the brain can be assessed by measur-
ng task-related blood oxygen level changes (BOLD; Ogawa et al., 1990 ;
ogothetis et al., 2001 ) or modelling brain functional dynamics at rest
 Fox and Raichle, 2007 ; Biswal, 2012 ). Compared to histology, MRI data
ives access to a significantly greater number of specimens as it does not
equire the death (i.e. natural or sacrifice) of animals and allows to ac-
uire complementary information on the structure and function of the
rain within the same sample and can even be extended to measures of
lasticity mechanisms using longitudinal designs. MRI is conveniently
igital and shareable amongst researchers for easier replication of find-
ngs. MRI can also be mathematically modified (e.g. log transformation,
onahue et al., 2016 ) and reanalysed to address novel questions in al-
eady collected data ( Balezeau et al., 2020 ). Finally, while acquiring and
sing MRI data in primates come with challenges with regards to col-
ecting and harmonising data across species (see Milham et al., 2020 for
 detailed discussion), MRI allows for the methodologically most similar
ross-species comparisons ( Thiebaut de Schotten and Zilles, 2019 ). 
In this review, we summarise the emerging field of MRI-based neu-

oimaging of the primate brain evolution as well as gather the main
cientific questions to be explored in the future. 
tionary tree (courtesy of © The Complete Work of Charles Darwin Online) as 
 anatomy of the skeletal structure whereby obvious similarities can be found 
t al., 2009 , picture taken at the Museum National D’Histoire Naturelle in Paris) 
In Melanoma – PRAME – gene cluster) whereby the evolutionary tree combine 
 genetics) differences (modified from Gibbs et al., 2007 ). Hue level differences 
netic branch (in pink). New non-human variations have been coloured in black. 
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Fig. 2. Relative brain size cross-species comparison. a) 34 three-dimensional digital brain reconstructions from the brain catalogue ( Heuer et al., 2019 ) b) Body size 
and weight comparison across apes c) Brain and body weight scatter plot comparison ( Jerison 1975 ). Note that the red circle indicates human primates who deviate 
from the linear relationship existing between body and brain weight. 
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The arguably most apparent and seemingly systematic change that
ccurred over primate brain evolution is the increase in total brain size
elative to body size ( Fig. 2 ). The effect of evolutionary expansion in
elation to brain size is, however, not equally distributed across brain
tructures. This disproportional composition of the brain led to inves-
igations of allometric rules of brain evolution. The size of one region
an vary consistently with the size of another structure within the brain
 Butler and Hodos, 2005 ). In this context, allometry refers to the study
f the different pace of expansion of brain regions ( Montgomery et al.,
016 ). 
Allometric changes may provide a window for understanding the

daptations of specific neural systems in response to evolutionary pres-
ure ( Willemet, 2019 ; Finlay et al., 2001 ). In this regard, evolution-
ry psychology and neuroscience suggest that allometry arises from
volutionary developmental constraints, as a brain adjustment to op-
imise its functional organisation ( Montgomery 2013 ; Willemet, 2015 a,
ontgomery et al., 2016 ). Along these lines, some authors have argued
hat similar patterns of allometric slopes across brain regions can be
sed to identify different grades of evolution. For instance, it has been
rgued that across different primate species, the prefrontal cortex shows
llometric scaling with the visual cortex size. Importantly, this scal-
ng factor is different in apes compared to monkeys ( Passingham and
maers, 2014 ). This finding suggests that the same developmental con-
traints happened across all primates, but that a major adaptive change
eparates monkeys from apes. 
e  

3 
Due to the limited availability of tissue, comparative studies of-
en rely on small samples and many studies still rely on antiquated
atasets. These datasets often did not delineate different cortical territo-
ies with high accuracy, leading to fierce debates (e.g., Passingham and
maers, 2014 ; Barton and Venditti, 2013 ). These limitations impede on
ur ability to assess within-species diversity accurately and might have
iased our understanding of between-species differences. The ability of
euroimaging to acquire data from multiple individuals per species and
maging sequences might allow a more representative parcellation of
he brain ( Van Essen et al., 2011 , 2016 Donahue et al., 2018 ). Such an
pproach will benefit allometric studies by providing better quantitative
easurements and replicable findings as well as improve the granularity
f investigations. 

yrification 

Typically, primates with smaller brains show a smoother, less convo-
uted brain surface than species with larger brains (see Fig. 2 a; Hofmann,
012 ; Heuer et al., 2019 ). The level of convolution of the cortex, also
alled gyrification index, is easily quantifiable with surface-derived MRI
easurements. A convoluted cortex allows for more surface area to be
acked into the limited volume within the skull ( i.e. linear scaling be-
ween surface area and brain volume; Prothero and Sundsten, 1984 ) pro-
iding more space for grey matter cell bodies, white matter connections,
nd glial cells ( Namba and Huttner 2017 ). The convolution of the cortex
i.e. gyrification) would occur because of an imbalance in the expansion
f cortical (i.e. outer layer) and subcortical layers (i.e. inner layer) of the
rain (Richman, 1975 ; adapted by Lui et al., 2011 ). Computational mod-
lling of an imbalance between inner and outer layer growth success-
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ully reproduced a folding pattern similar to the mammalian brain (i.e.
uckling shell models, Toro and Burnod 2005 ; Toro 2012 ; Bayly et al.,
013 ; Tallinen et al., 2014 , 2016 ; Foubet et al., 2019 ). Biologically, the
ortico-subcortical imbalance would be due to the tangential migration
 Lui et al., 2011 ; Reillo et al., 2011 ), and the radial intercalation of neu-
ons during development (i.e. pushing of neighbouring neurons in the
uter cortical plate aside, Striedter et al., 2015 ). With evolutionary ex-
ansion, a disproportional expression of these biological mechanisms
ould explain increased cortical folding ( Mota and Herculano-Houzel
015 ; Amiez et al., 2019 ). This latter hypothesis partially implies that
he dynamic relationship between brain expansion and gyrification dur-
ng early stages of brain development differ across species. However,
nvestigating such relationships across the brain developmental stages
s more likely achievable by means of comparative “longitudinal ” imag-
ng during brain development, which is typically be unthinkable with
tandard histological methods but is feasible with MRI ( Rabiei et al.,
017 ). While models based on the ideas described above are successful
n producing random folding patterns, they do not explain why folding
atterns show similarities across the brains of the same or even different
pecies (see Fig. 2 a). 
Hypothetically, similarities in folding patterns could be related to

references for neurons to migrate in cortical areas (i.e. proliferation
otspots; Retzius, 1896 ; Kriegstein et al., 2006 ) and genetically coded.
f this assumption is correct, combining genetic measurements with cor-
ical folding patterns derived from neuroimaging in the future should
ffer some novel insights. Recent evidence already demonstrates a sig-
ificant relationship between brain surface and genetics in humans in a
ollaborative cross-laboratory dataset of more than 50,000 participants
 Grasby et al., 2020 ) as well as its distribution over the brain ( Valk et al.,
020 ). Extending genetic brain imaging MRI to other primates will not
nly validate this work but also shed light on the main brain surface
volutionary mechanisms. 
While the placement of proliferation hotspots may as well be deter-
ined genetically, other authors pointed out that the mechanical forma-
ion of folding leads to a complex stress influencing the stiffness of the
ortex (e.g., Foubet et al., 2019 ). The resulting differences in stiffness
ight potentially influence the migration of neurons during brain de-
elopment ( Franze, 2013 ). Therefore, initial folding as proposed by the
uckling shell models might be sufficient to create the intricate folding
attern as seen in mammalian cortices, which in turn, may lead to the
bserved pattern of regional cell composition and neural connections
 Heuer and Toro, 2019 ). Reversely, another hypothesis suggests that
he stereotypical pattern of folding would come from the tension ap-
lied by the axons on the cortex (i.e. axonal tension hypothesis; Van Es-
en, 1997 ). In this theory, tangential forces that are created by the ten-
ion along obliquely oriented axonal trajectories induce folds at specific
ocations. As genetic molecular gradients drive axonal migration dur-
ng brain development ( Krubitzer, 2007 ; Renier et al., 2017 ), the future
ombination of cortical folding estimate, white matter diffusion imag-
ng tractography and genetic measurements across species may reveal a
ripartite relationship between these factors. 

ulcal anatomy 

A prominent anatomical feature on the primate brain is the pres-
nce of folds, or sulci ( Fig. 2 a). Even though folding patterns may ap-
ear to vary greatly, even between individuals of the same species, sul-
al organisation is not at all random, and adheres strongly to a topo-
raphical organisation ( Petrides, 2012 ). Anatomically, sulci often con-
titute borders between cytoarchitectonic areas ( White et al., 1997 ). For
nstance, across human ( Penfield and Boldrey, 1937 ) and non-human
ammal brains ( Ferrier, 1873 ), the central sulcus serves as the bor-
er between the motor cortex and the somatosensory cortex. Function-
ise, a growing body of work has demonstrated precise relationships
etween an individual’s local sulcal morphology and the location of
unctional areas including the sensorimotor cortex (e.g. Zlatkina et al.,
4 
016 ; Germann et al., 2020 ), prefrontal cortex (e.g. Loh et al., 2020 ;
opez-Persem et al., 2019 ; Amiez and Petrides, 2018 ), cingulate cor-
ex ( Amiez and Petrides, 2014 ) and the temporal cortex ( Bodin et al.,
018 ). This robust correspondences with the anatomical-functional or-
anisation of the brain allows for the sulcal organisation to guide our
nterpretation of neuroimaging data. Especially since brain sulci are still
ften used as critical anatomical landmarks for navigating the brain dur-
ng human and non-human primate brain surgeries. Also, most surface-
ased registration methods use sulci either explicitly ( Auzias et al.,
013 ) or implicitly via geometrical maps such as curvature that are in-
icators of folding ( Robinson et al., 2014 ). 
In the primate brain, some brain sulci are conserved across species.

hese typically include primary sulci such as the central sulcus, supe-
ior temporal sulcus, cingulate sulcus, and the calcarine sulcus. The
elationship between these primary sulci and the location of anatom-
cal/functional regions appear to be conserved across species. For in-
tance, the somatotopic organisation along the dorsal-ventral extent of
he central sulcus, as well as along the rostro-caudal extent of the cin-
ulate sulcus appears to be highly conserved across the primate lineage
 Procyk et al., 2016 ; Loh et al., 2018 ). This indicates that we can poten-
ially anchor the brains of various primate species on the basis of homol-
gous sulcal landmarks, to perform interspecies comparisons on brain
tructure. In Amiez et al., 2019 , this principle has been implemented to
eveal the evolutionary trajectories of the medial frontal cortex across
acaques, baboons, chimpanzees, and humans ( Fig. 3 a, 3 b). This work
emonstrated that, unlike previously thought the paracingulate sulcus
s not a human specific feature and could be observed in chimpanzees
 Amiez et al., 2019 ; Fig. 3 a). The lateralisation of these sulci, however,
s only observed in humans, which suggests further hemispheric special-
sation in humans since the last common ancestors to humans and great
pes ( Croxson et al., 2018 ). As shown in Fig. 3 b, by aligning brains on
he basis of common sulci landmarks, the evolutionary changes in the
rimate medial frontal cortex become apparent and quantifiable. 
Inter-species sulcal-based brain alignment can be implemented and

ested using model-driven cortical surface matching ( Fig. 3 c, 3 d). For a
iven species, after building a model of relative positions, orientations,
nd alignment of sulci in a rectangular domain, any individual corti-
al surface can be registered to this rectangular model, which leads to
n explicit matching of different cortical surfaces based on their sulci
 Auzias et al., 2013 ). For two different species, two different rectangu-
ar models can be built, and inter-species sulcal correspondences can
hen be used to define a homology between the two models ( Fig. 3 c).
his allows for a correspondence between inter-species cortical surfaces,
hich can be used to compare these species and warp information from
ne species to the other ( Coulon et al., 2018 ; Fig. 3 d). 
A key challenge to this approach is the great inter-individual variabil-

ty of sulci morphology. More work will be necessary to (1) characterise
he morphological variability of the various sulci in the primate brain,
2) to determine the relationship between these variations and the lo-
alisation of anatomical and functional areas, and lastly, (3) to establish
he sulcal homologies between the various species. Such work would
nly be achievable by means of comparative MRI and data sharing in
rder to gather enough data to model evolutionary trends (with a mini-
um of three species; e.g. Balezeau et al., 2020 ) and quantify variability
ppropriately (with a minimum of 10 sample per species; Croxson et al.,
018 ). 

rain connectivity 

Brain areas interact in order to orchestrate cognition and behaviour.
hort (local) and long (distant) connections link neighbouring and re-
ote brain regions to facilitate these interactions. Importantly, explor-
ng connections informs about the organisational principles of the infor-
ation processing in the brain ( Mars et al., 2018 ) and is one step closer
o explaining the functioning of the brain ( Takemura and Thiebaut de
chotten 2020 ). Therefore, studying the extent to which evolutionary
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Fig. 3. Sulcal anatomy for inter-primate brain comparisons. a) Emergence of the para-cingulate sulcus (PCGS) the primate medial frontal cortex ( Amiez et al., 2019 : 
non-existing in baboons and macaques, but sometimes present for great apes and humans. b) Sulcal landmarks in the primate medial frontal cortex ( Amiez et al., 
2019 ). c) Projection of human brain sulci (left) onto a rectangular sulcal model (top right). Correspondences are defined between the human rectangular cortical 
sulci model and its chimpanzee equivalent (bottom right). d) Application of the model correspondences to map a human surface-based brain atlas onto an individual 
chimpanzee surface ( Coulon et al., 2018 ). 
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brain. 
hanges in brain structure entail specific differences in brain connectiv-
ty is a current agenda in comparative neuroscience. Neuroimaging is
deal for this purpose, as there are many imaging techniques available
o elucidate various aspects of connectivity. Hence, connectivity is one
f the most developed areas of comparative neuroimaging ( Goulas et al.,
014 ; Miranda-Dominguez et al., 2014 ; van den Heuvel et al. 2016 ). 
Brain connectivity can be assessed either by reconstructing structural

onnections (i.e. tractography based on diffusion weighted imaging) or
easuring the covariation of activity across brain regions (i.e. the syn-
hronisation of activation derived from functional MRI). 

ross anatomy 

Comparative neuroimaging has revealed gross connectivity differ-
nces between primate species ( Ardesch et al., 2019 ; Balsters et al.,
020 ; Xia et al., 2019 ). For instance, the inferior fronto-occipital con-
ections ( Thiebaut de Schotten et al., 2012 ; Barrett et al., 2020 ) and
he arcuate fasciculus (see Fig. 4 a, Rilling, 2008 ; Thiebaut de Schotten
5 
t al., 2012 ; Eichert et al., 2018 ; Barrett et al., 2020 ; Balezeau et al.,
020 ) are more prominent in humans than in monkeys. The arcu-
te fasciculus has sparked interest, in particular, because of its fun-
amental role in human language processing ( Barbeau et al., 2020 ;
alezeau et al., 2020 ). In addition, the parietal lobe has been linked
o uniquely human functions and the underlying white matter has
ome prominent structures in humans but also some unique connec-
ions in monkeys ( Catani et al., 2017 ). The functional interactions be-
ween the frontal and parietal lobes are also more prominent in hu-
ans than in macaques (see Fig. 4 b, Patel et al., 2015 ; Mantini et al.,
013 ; Mars et al., 2011 ) and might reflect evolutionary trends within
he attentional networks ( Patel et al., 2015 ). However, structural con-
ections and functional connectivity are usually examined separately.
omprehensive models of connectivity will require the combination
f structural-functional methods to fully grasp the modus operandi of
ow evolutionary pressure and adaptation might have modified the
iring and the organisational principles of information processing in the
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Fig. 4. Brain connectivity cross-species comparison. a) Comparison between post-mortem axonal tracing in monkeys (cases 7&9 modified from Schmahmann and 
Pandya, 2006 ) and human in vivo spherical deconvolution tractography. Common anatomical features between human and monkey are reconstructed in red whereas 
anatomical differences have been coloured in blue ( Thiebaut de Schotten et al., 2012 ) b) Flat maps of the human resting state functional connectivity without 
correspondence with the monkey (upper row) and its correspondence to cortical expansion maps ( Mantini et al., 2013 ) c) Preliminary comparison of the principal 
gradient in humans and macaques (see Brain integration section of this paper for a definition of brain gradients ; Xu et al., 2019 ) d) The rich club organisation of the 
brain where regions in red are interconnected together and a hub for regions in blue ( Bullmore and Sporns 2012 ). 
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onnectivity principles 

Although species-specific features exist in connectivity, the tendency
f two regions to be connected respects several organisational princi-
les across (mammalian) species ( Bullmore and Sporns, 2012 ; Ercsey-
avasz et al., 2013 , Horvat et al., 2016 , Goulas et al., 2019 , Vértes et al.,
012 ). In particular, two regions are more likely to display interconnec-
ions if they are adjacent to each other (Human: Betzel et al., 2016 ;
acaque: Kaiser and Hilgetag, 2006 ). They will also be more con-
ected to each other if they share a similar microstructural composition
 Pandya et al., 2015 ; Barbas, 2015 ) or connections with the same regions
 Song et al., 2014 ). Recent efforts in human neuroimaging have revealed
 seemingly overarching organisation principle ( Huntenburg et al.,
018 ), providing a window of comparison into the features that un-
erlie the spatial arrangement of cortical areas previously reported
 Abbie 1940 , 1942 ; Sanides 1962 , 1970 ; Brockhaus 1940 ; Goulas et al.,
018 ). While classical studies have focused mainly on cross-species
imilarities in this overarching organisation scheme ( Margulies et al.,
016 ; Goulas et al., 2019 ) preliminary evidence suggest these differ-
nces might be an evolutionary adaptation ( Fig. 4 c; Xu et al., 2019 ). 
Since the neural system is costly in energy consumption, one core

rinciple in the neural architecture has to be the minimisation of en-
6 
rgy costs ( Bullmore and Sporns, 2012 ). The brain wiring, therefore, can
e expected to follow rules that minimise energy costs while maintain-
ng a set of features that are indispensable for efficient brain function-
ng. The “rich-club organisation ” ( van den Heuvel and Sporns, 2011 )
epresents a shared feature of brain architecture that fits this descrip-
ion (see Fig. 4 d). Within the rich-club, few nodes act as hubs between
therwise segregated nodes and thus, facilitate efficient communication
cross the entire network ( Sporns, 2013 ). Additionally, hubs tend to in-
erconnect densely with each other. However, the unique properties of
ubs come at a high price ( van den Heuvel and Sporns, 2011 ). Cor-
ical regions that represent hubs of the rich-club tend to show high
etabolic demand and are vulnerable targets for pathogenic agents

 Bullmore and Sporns, 2012 ; Griffa and Van den Heuvel, 2018 ). From
n evolutionary perspective, the advantages of a rich-club organisation
ppear to outweigh its drawbacks. Rich-club topology is a common fea-
ure amongst various species, ranging from invertebrates to primates
 van den Heuvel, Bullmore and Sporns, 2016 ; Rubinov et al., 2016 ).
nother example includes the comparison of the macroscale organisa-
ion of human and macaque connectivity ( Goulas et al., 2014 ; Miranda-
ominguez 2014 ). However, these promising analyses should be ex-
ended to other primates in order to establish their approximate phy-
ogeny. 
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rain function 

Brain areas increase their activity when contributing to cognitive
unction, and this increase is detectable with task-related functional
agnetic resonance imaging. The question about comparability be-
ween cognitive abilities is debated, for advanced functions such as com-
unication ( Mertz et al., 2019 ) or decision making ( Tremblay et al.,
017 ; Fouragnan et al., 2019 ) as well as more primary functions such as
pisodic memory (Croxson et al., 2011; Pause et al., 2013 ) or even mo-
or cognition ( Borra and Luppino 2019 ). For instance, the superiority of
himpanzees over college students in a working memory task ( Inoue and
atsuzawa 2007 ) is directly related to training ( Cook and Wilson 2010 )
nd indeed highlights the issue of comparability of functions across
pecies. A recent alternative has been to compare functional activation
elated to the free viewing of video during fMRI measurements across
rimates ( Mantini et al., 2012 ab; Mantini et al., 2013 ; Russ and Leopold
015 ; Sliwa and Freiwald 2017 ). However, species differences likely ex-
st in the interpretation of the video limiting the interpretability of such
nterspecies differences. Therefore, more general features of brain func-
ion, such as brain lateralisation and brain integration measures, have
een preferred in comparative neuroimaging paradigms. 
Brain lateralisation 

In order to conserve the speed of brain oscillations across species,
 functional reorganisation might have occurred ( Buzsaki, Logothetis
 Singer, 2013 ) to compensate for interhemispheric delay related to
rain size ( Phillips et al., 2015 ). Accordingly, the inter-hemispheric
ndependence theory suggests that during evolution, the increase in
rain size led to increased functional lateralisation in order to avoid
xcessive conduction delays between the hemispheres ( Ringo et al.,
994 ). Functional processing asymmetries have been derived from the
euroimaging-based study of the corpus callosum ( Friedrich et al., 2017 ;
arolis et al., 2019; Horowitz et al., 2015) and hemispheric asymmetries
Hopkins 2015 ; Margiotoudi et al., 2019 ; Eichert et al., 2019 ; Marie,
018 ; Thiebaut de Schotten, 2011 ; Amiez et al., 2019 ). Accordingly, an
ncrease in functional lateralisation should be associated with a decrease
f corpus callosum size or density as well as an increase in anatom-
cal asymmetries. However, a comprehensive study of functional lat-
ralisation across primate brains is still missing due to the scarcity of
ppropriate data. Lateralised patterns in tracing studies and cytoarchi-
ectonic maps from macaques and marmosets, for instance, are rarely
nvestigated for understandable ethical and financial reasons. As a con-
equence, both hemispheres are usually considered as equal limiting this
ine of research. An HCP-like multimodal neuroimaging approach would
nable addressing brain lateralisations at the microarchitecture, connec-
omics, and functional levels as well as their interdependencies. For in-
tance, in the orbitofrontal cortex, even when both hemispheres are sim-
lar at the cytoarchitectonic level ( Mackey and Petrides, 2010 ), rs-fMRI
nalysis can reveal hemispheric differences in connectivity within the
efault-mode network ( Lopez-Persem et al., 2020 ), in both humans and
acaques. Studying the evolution of brain lateralisation in primate mod-
ls would benefit from the reuse of MRI data progressively made avail-
ble thanks to new open data initiatives ( Milham et al., 2018 , 2020 ).
his will allow to compare larger numbers of species and to disentangle
rue species differences from individual noise. 

rain integration 

The brain processes incoming sensory information (e.g. auditory
nd visual) along processing streams towards increasingly abstract and
ntegrative, or associative , levels ( Pandya and Yeterian 1990 ). Before
omparative neuroimaging, post-mortem studies already suggested that
ortical areas related to association processes are enlarged in humans
ompared to other primate species ( Schoenemann, 2006 ; Van Essen
nd Dierker, 2007 ; Hrvoj-Mihic et al., 2013 ; Hofman, 2014 ). The pre-
rontal lobe has been specifically explored, comparatively, with re-
ards to expansion ( Sherwood et al., 2005 ; Semendeferi et al., 2002 ,
7 
001 Petrides et al., 2012 ; Hofman 2014 ), cytoarchitecture ( Palomero-
allagher et al., 2013 ; 2019) and relative scaling of white matter
 Smaers et al., 2010 ; Barrett et al., 2020 ). Bryant et al. (2019) extended
his work to the visual and auditory systems. They investigated the con-
ections of the primary and secondary processing areas of the visual
nd auditory cortex. In humans, chimpanzees and macaques, the con-
ectivity of the primary visual cortex showed a retinotopic organisa-
ion with its association area. However, the primary visual cortex had
dditional connections to the temporal pole only in humans and chim-
anzees. Quite similarly, the primary auditory cortex showed a grad-
al increase of connection with temporal associative cortex in chim-
anzee and humans, but not in the macaque. These results suggest
hat a gradual expansion of the associative cortex between the audi-
ory and visual cortices must have occurred along the chimp-human
hylogenetic lineage. In line with these gradual changes, the advent
f advanced MRI analyses has enabled the comparison of a variety of
ther properties such as the “principal gradient ” of connective proper-
ies ( Margulies et al., 2016 ; Buckner and Margulies, 2019 ), which sum-
arise a specific functional connectivity signature distributed across the
uman brain ( Huntenburg et al., 2018 ). 
While the idea of organising the brain in terms of gradients is rela-

ively new in neuroimaging, the concept itself has been evinced across
odalities and species for more than 100 years ( Vogt and Vogt, 1919 ;
lechsig 1920 ; Hopf, 1954a , b , 1955 , 1956 , 1968a , 1969 , 1970b ). In a
road perspective, comparative neuroimaging could provide a system-
tic assessment of the structural variation between cortical areas in mul-
iple species. This could test whether this organisational principle is the
asis of functional specialisation and evolution of brain areas, as re-
ently suggested in rodents ( Fulcher et al., 2019 ; Lu et al., 2012 ) and
umans ( Waymel et al., 2020 ). 
Overall, these results are encouraging in our endeavour to under-

tand the differences in the structure of the brain and its functions across
pecies. However, it is important to stress that the same network in
ifferent species can have different dynamic properties and potentially
ifferent functions ( Mantini et al., 2013 ). Consequently, similarities in
rain organisation across species should not be considered as entirely
quivalent brain functions. 

erspectives & future directions 

Imaging the primate evolutionary tree would be a new stepping-
tone for neuroscience. Access to more data across species will allow
s to model the brains of common ancestors by extrapolating from
he wealth of information on commonalities and divergences between
pecies, families, orders, and classes. Having access to all levels of pri-
ate entities will allow us to create reference spaces, which in turn
ay grant better methods for inter- and intra-species comparisons. Ulti-
ately, these developments can help us to form a true ‘neuroecology’ of
ifferent brains (Mars and Bryant, in press). In other words, we would be
ble to understand how a given brain is adapted to fit its environmental
iche within the constraints of its evolutionary history. 
The resources and methodologies outlined above not only allow for

urther investigation of primate evolution but can be extended to ad-
ress crucial questions about similarities and differences in other mam-
alian species, including humans. The mouse is currently the most com-
only used mammalian model in scientific research ( Dietrich et al.,
014 ), and the species for which the most detailed mapping of a wide
ange of cellular and anatomical brain properties has been obtained.
et, there is still limited consensus on how primates and rodents differ
n terms of their brain structure and connectivity. Employing the MRI-
ased methodologies outlined above, Balsters et al. (2020) showed an
9-80% overlap in cortico-striatal connectivity fingerprints for humans
nd macaques compared to a meagre 15% overlap between humans and
ice and a 31% overlap between mice and macaques. Given the preva-
ence of animal models in biomedical research, it is of paramount impor-
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ance that neuroecology understand the differences between primates,
oth human and nonhuman, and other species such as rodents. 
Whilst primates share some cognitive abilities such as visual percep-

ion and motor functions, as well as many emotional processes, their un-
erlying neurobiology may differ. These similarities in function are typ-
cally investigated with the assumption that shared traits between pri-
ates (i.e. homology) are inherited from a common ancestor —divergent
volution. Most comparative neuroimaging studies investigate closely
elated species and hence examine divergent evolution. In more distant
pecies, however, another process may have led to the onset of a simi-
ar function — “convergent evolution ”. This so-called convergent evolu-
ion postulates that similar functions in distantly related species evolved
ndependently from each other as a result of evolutionary pressure to
dapt to similar environmental or ecological factors (i.e. homoplasy).
s a consequence, both evolutionary principles, namely homology and
omoplasy, can both lead to structural and/or functional similarities.
upporting evidence for homology and homoplasy is well documented
n the field of genetics. For instance, many animal phyla share basic
ultifunctional regulatory genes such as Pax-6. This gene is involved
n the development of light-sensitive cells and initiates eye formation
n flies, but also frogs ( Altmann et al., 1997 ; Halder et al., 1995 ). De-
pite the eyes of flies and frogs being homoplasies, the initiating gene
s homologous. Hence, homology and homoplasy should be considered
s complementary in our understanding of brain evolution and can be
ssessed using an extensive database of primate species only accessible
hrough collaborative neuroimaging. 
Another perspective would be to derive the brain of our phylogenetic

ncestors (see Kaas, 2011; 2013 for discussion) by registering differ-
nt species’ brains into a common space Although this might sound im-
lausible, recent preliminary evidence already indicates that it is feasi-
le ( Heuer et al., 2020 ; https://katjaq.github.io/brainscapes ). Using this
ossibility across proximal and more distantly related primate species
ay offer new insights into brain anatomy across taxonomic families,
lasses, and orders. Ideally, such endeavours will require the integra-
ion of multiple modalities of magnetic resonance imaging with several
pecimens for each primate species. 
Finally, although there is much effort to identify the neural basis of

pecies-defining cognitive functions, less research is devoted to the evo-
utionary processes through which those functions and their underlying
eural adaptations have arisen. Questions about the evolutionary pro-
esses imply that an event, such as a genetic mutation or external evo-
utionary pressure, is responsible for the occurrence of adaptations. In
his regard, many species share a common environment and live through
ompetitive or collaborative interactions or in a predator-prey relation-
hip. Therefore, the imaging of the evolutionary tree is accompanied
y the intriguing opportunity to investigate the co-evolution of brain
tructures across interacting species and thus, investigate brain evolu-
ion from a novel neuro-ecological perspective. 
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Hemispheric asymmetries can be seen as one of the

evolutionary adaptations that allowed the human brain to

muster more complex cognitive processes than other

primates. In this vein, the study published by Cheng

et al. [1] presents a pivotal investigation of both the

regional and connectional asymmetries within the inferior

parietal lobule (IPL) in human, chimpanzee, and macaque.

By investigating 4 sub-divisions of the IPL across the three

species, Cheng and colleagues showed that the

macroanatomical and connectional architecture of the IPL

became more asymmetric throughout the primate lineage.

While macaques show little to no structural asymmetries,

chimpanzees display a more asymmetric architecture but

with both leftward and rightward asymmetries in various

connections. In contrast, the human IPL displayed the

highest number of asymmetries among the three species

with a clear tendency towards more lateralization. This

evolutionary trend towards a more lateralized organization

of the IPL may have accompanied an improved command

of tool-use, stronger forelimb asymmetries, and the

increasing complexity of communicative behavior.

The IPL is a part of the primate association cortex that

plays an important role in language and tool-use along with

a multitude of different functions [2]. Given its functional

diversity and heterogeneity, a comprehensive analysis of

the IPL’s macroanatomy and connectivity requires

investigation on a sub-division level. However, translating

a set of sub-regions from one species to another poses a

central challenge for comparative research. There are

various strategies to solve the issue of inter-species

comparison, such as establishing a common feature space

between species based on structure and/or functional

measures [3], or one can investigate homologous regions

and/or features in each species. To accomplish this task,

Cheng et al. implemented the latter by using a connectiv-

ity-based parcellation approach, which creates sub-divi-

sions based on diffusion-weighted probabilistic

tractography. This approach can give several solutions

that vary in the number of sub-divisions. The authors

choose a 4-cluster solution with divisions that follow a

rostral-to-caudal (anterior-posterior) organization in maca-

ques, chimpanzees, and humans. This solution maximizes

the similarity across species and is consistent with previ-

ously reported anatomical and cytoarchitecture

parcellations.

Utilizing the IPL subdivisions derived by connectivity-

based parcellation, Cheng et al. conducted a thorough

exploration of the structural asymmetries within the IPL

across the three species. The investigation was centered

around the gray matter (GM) volume, probabilistic white

matter (WM) connections, and the cortical surface vertices

of the WM connections. Regarding the different structural

measures, the old-world monkeys (macaques) did not

present any asymmetries while the great apes (chimpanzees

and humans) showed similar and divergent asymmetrical

organization. In great apes, rostral subdivisions were

leftward asymmetric and caudal subdivisions were right-

ward asymmetric. This indicates a switch from a symmet-

rical to an asymmetrical organization in the IPL in a

common ancestor of the great apes and old-world monkeys.

Asymmetric WM connection from the IPL sub-divisions
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and the resulting cortical surface regions of said connec-

tions is where Cheng and colleagues found divergences

from chimpanzees to humans. Humans presented more

plentiful lateralized IPL connections, in particular those

towards the left hemisphere, as well as to unique cortical

areas such as the ventral frontal cortex, motor cortex, and

the lateral temporal cortex as compared to chimpanzees

(Fig. 1). Cheng and colleagues propose that this increase in

organizational asymmetries may have contributed to the

evolution of language, tool-use, and handedness in the

primate lineage.

The leftward asymmetry of connectivity between the

IPL and primary motor cortex (M1) appears particularly

interesting, given its potential implications for manual

skills as outlined by the authors. Human handedness is an

unprecedented example of behavioral laterality, as it is

strongly skewed towards a population-wide and task-

invariant preference of the right hand, which is unparal-

leled in other vertebrates [5]. Comparisons of primate

handedness indicate a potential evolutionary continuum of

manual dexterity, given that evidence points towards a

population-level handedness in chimpanzees, which is

however less robustly expressed than human handedness

[6]. The leftward asymmetric IPL–M1 connectivity might

represent an important evolutionary adaptation that con-

tributed to the increased left-hemispheric dominance in

motor functions from chimpanzee to human. As such, this

finding aligns with the idea that the sensory-motor system

may have evolved to form the foundation of increased

manual skills [7], including tool-use.

While this work makes an important contribution to our

understanding of the potential role of connectional brain

asymmetries in primate brain evolution, it also gives some

important leads for future studies. For instance, one topic

concerns the relationship between structure and function. It

is known that brain regions can be functionally connected

and thus take part in the same functional network, albeit in

the absence of direct structural connections [8]. Structure

and function are especially decoupled in association

cortices compared to primary sensory and motor cortices

[9]. Therefore, the effect of IPL connections and their

asymmetry on functional networks and behavior need

further investigation.

In a similar vein, Cheng and colleagues show group-

level differences in IPL asymmetries between the three

species. The variability and individual differences of these

IPL asymmetries within a species grant another perspective

that may help to unravel their functional relevance. A study

by Croxson and colleagues [10] indicates that WM is more

variable than GM in humans and macaque monkeys.

However, the human brain is generally more variable than

the macaque monkey’s brain, implying a higher degree of

individual differences in the human brain’s architecture.

Although the main findings of Cheng et al. did not address

individual differences, such difference in IPL asymmetries

is indeed important and demands further study to link to

individual performance in the functional domains.

In summary, the observations made by Cheng et al.

advance our understanding of the presence and evolution of

anatomical and connectional asymmetries. In doing so, this

Fig. 1 An adaptation of the graphical abstract originally provided in

Cheng et al. which represents the connectivity and volumetric

asymmetries found in chimpanzees and humans. The results are

presented on a surface projection of the chimpanzee reference

template (JunaChimp [4]) and human (MNI). C1:C4, subdivisions of

the IPL; CS, central sulcus; IFG, inferior frontal gyrus; Ins, insula;

ITG, inferior temporal gyrus; MFG, middle frontal gyrus; MTG,

middle temporal gyrus; PoCG, postcentral gyrus; PreCG. precentral

gyrus; PT, planum temporale; SFG, superior frontal gyrus; SPL,

superior parietal lobule.

123

S. Vickery et al.: Hemispheric Specialization of the Primate IPL 335



study marks an important step towards a better under-

standing of how evolutionary changes in structural asym-

metries may have contributed to the evolution of primate

cognition.
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 22 

Abstract 23 

 Aging is associated with stable decline in the brain’s gray matter. This spatially specific, 24 
morphological change in humans has also recently been shown in chimpanzees. The correspondence 25 
between species-specific cortical expansion and the degree of brain structure deterioration in aging 26 
remains poorly understood. Here, we present a data-driven, cross-species comparative framework 27 
and apply it to explore the relationship between gray matter alterations with age and cross-species 28 
cerebral expansion in chimpanzees and humans. In humans, we found a positive relationship 29 
between cerebral aging and cortical expansion, whereas, in chimpanzees no such relationship was 30 
found between aging and cortical expansion. The greater aging and expansion effects in higher-order 31 
cognitive regions like the orbito-frontal cortex were observed to be unique to humans. This 32 
resembles the last-in, first out hypothesis for neurodevelopment on the evolutionary scale and may 33 
suggest a biological cost for recent evolutionary developments of human faculties. 34 

 35 

Introduction 36 
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 With age, pronounced alterations occur in morphology and organization of the human brain 37 
with a distinct spatial pattern resulting in part from cellular atrophy in later life1,2. These changes are 38 
part of the normal aging process, although they may be further accelerated in some people by age-39 
mediated disorders such as Alzheimer’s disease, Parkinson’s disease, and other neurodegenerative 40 
conditions3. Furthering our understanding about specific neurobiological and possible evolutionary 41 
influences on these brain aging spatial patterns, may provide insight into the brain changes in healthy 42 
aging and possible diagnostic markers for clinical outcomes. Historically, comparative neuroscience 43 
has been an effective catalyst for important discoveries regarding principles of anatomy and 44 
functional specializations of the human brain4. With open and collaborative endeavors such as the 45 
National Chimpanzee Brain Resource (NCBR) and the PRIMatE Date Exchange (PRIME-DE)5, along 46 
with improved methodologies and imaging technology, large scale comparative neuroanatomy has 47 
become more accessible to answer new questions6.    48 

 Morphological gray matter (GM) changes during aging have recently been shown to be 49 
present in one of humans’ closest extant primate relative, chimpanzees (Pan troglodytes)7,8. The age-50 
related morphological changes observed in chimpanzees are similar but at a lower magnitude 51 
compared to humans8. For example, age-related volumetric reduction of overall hippocampus and 52 
frontal cortex size are not evident in chimpanzees, but occurs in humans that could be related to 53 
humans comparatively extended lifespan9. Cognitive decline is also present in chimpanzees, but 54 
appears not as prominent as in humans10. In this context, understanding GM alterations during brain 55 
aging in great ape evolution (e.g. which includes humans and chimpanzees, as well as bonobos, 56 
gorillas, and orangutans) may aid in explaining the spatial distribution of morphological changes due 57 
to healthy aging and disease. 58 

 The comparison of neuroanatomy and brain functions across primate species is commonly 59 
informed by analyzing homologous brain regions6,11–13. Classically, these regional homologies are 60 
defined by manually delineating brain partitions, based on macroanatomy, gene expression, 61 
connectivity, and/or cytoarchitectonic features. This approach rests on the assumption that similar 62 
anatomical features result in a common functional organization across species and thereby enable an 63 
informative and meaningful comparison. However, homologies can be debatable and therefore can 64 
be influenced by subjective biases which is minimizes through a data-driven approach. The 65 
homologous-centric approach has proven to be effective and informative, although utilizing a more 66 
data-driven approach could supplement these techniques by removing subjective biases while still 67 
capturing important cross-species differences and incorporating species-specific features in a data-68 
centric manner.  69 

 Chimpanzees offer an ideal referential model to investigate evolutionary changes in the 70 
human lineage as they share a last common ancestor with humans approximately 6 - 8 million years 71 
ago14. Accordingly, chimpanzees and humans have many genomic similarities15 as well as cerebral 72 
structural features in common16–18. Consequently, chimpanzees present a unique comparison to infer 73 
distinctive evolutionary adaptations of the human brain, keeping in mind that their neurobiology 74 
reflects their own species-specific evolutionary adaptations. The multitude of commonalities and 75 
recent evolutionary divergence allows a further understanding of changes associated with selection 76 
for human specific adaptations that occurred after the split from a common ancestor. Previous 77 
studies have shown that multimodal association cortices in humans are disproportionately larger 78 
than in non-human primates11,19,20. The higher expansion of certain areas through human evolution 79 
may relate to specific functions, important for modern human cognition. Specifically, the expanded 80 
human prefrontal cortex (PFC)11 might be associated with self-control and executive functioning21 81 
and the larger precuneus19 with visuospatial processing22.  Furthermore, the vulnerability of frontal 82 
cortical areas to aging processes is hypothesized to be related to their late maturation23. This refers 83 
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to the “last in, first out hypothesis” and interestingly similarities have been shown between cortical 84 
development and cross-species expansion24. 85 

 In this study, we directly compare age-mediated GM changes in  chimpanzees and humans, 86 
which represent two species in the Hominidae family (i.e., great apes) and explore their relationship 87 
with cross-species cerebral expansion. For inter-species comparison, we developed a multivariate 88 
data-driven comparative framework that applies voxel-wise clustering based on GM variability within 89 
each species independently. The optimal low dimensional representation of brain morphology for 90 
each species is then employed in a cross-species investigation of aging and cortical expansion. 91 
Comparative data for calculating cross-species expansion was provided by relatively recent 92 
phylogenetic ancestors. Accordingly, humans were compared to chimpanzees  and chimpanzees 93 
were compared to olive baboons (Papio anubis) and rhesus macaques (Macaca mulatta), two 94 
commonly researched cercopithecid monkey species. Therefore, we can ascertain whether such a 95 
relationship is unique to modern humans or instead might be a feature shared with chimpanzees 96 
that originated at the divergence of the great ape lineages from other primates. 97 

To summarize, we present a novel technique for cross-species comparison of structural brain 98 
organization and demonstrate its utility by comparing the relationship between cerebral aging and 99 
cross-species expansion in humans and chimpanzees. Our data-driven approach uses both species-100 
specific information in addition to cross-species similarity to create an interpretable low-dimensional 101 
brain parcellation for comparison. We show that the resulting parcellation aligns with known 102 
macroanatomical structures in humans and chimpanzees. Utilizing this comparative framework, we 103 
examine spatial differences in brain aging and cerebral expansion between the two great ape 104 
species. Finally, we present evidence for a relationship between local age-mediated GM changes and 105 
recent cortical expansion in humans that is not present in chimpanzees. 106 

  107 

Results 108 
 109 

 Our cross-species comparative approach was based on structural magnetic resonance 110 
imaging (MRI) scans from 189 chimpanzees and 480 human brains (Fig. 1B). Orthogonal projective 111 
non-negative matrix factorization (OPNMF)25,26 was applied to normalized GM maps within each 112 
species independently. The orthogonality and non-negativity constraints of OPNMF results in a 113 
spatially continuous, parts-based representation of the input data based on regional covariance of 114 
brain structure within each species27. OPNMF has been extensively used with human neuroimaging 115 
data yielding anatomically meaningful correspondence of clustering solutions25,28–31.   116 

 The comparative framework utilizing OPNMF as well as the creation of the cross-species 117 
expansion maps is outlined in Figure 1A. The approach begins with separately segmenting and 118 
normalizing the individual chimpanzee and human images utilizing species-specific templates and 119 
pipelines8,32. The processed GM maps for each species are parcellated independently using OPNMF 120 
over a range of granularities (2-40) and bootstrapped to ensure stability of the solutions accuracy. 121 
The bootstrapped solution accuracy measure assessed using the reconstruction error (RE) is used in 122 
part, to select the optimal number of parcels for cross-species comparison. For direct cross-species 123 
comparison, the JunaChimp average chimpanzee T1-weighted (T1w) template8 is applied to the 124 
human preprocessing pipeline to create a representative chimpanzee to human deformation field 125 
map. This represents the non-linear deformations required to map morphological macroanatomical 126 
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features of the JunaChimp8 template brain to the standard ICBM 2009c Nonlinear Asymmetric 127 
human template33. The chimpanzee to human deformation map is used to non-linearly register the 128 
chimpanzee OPNMF solutions to the human template space for the analysis of parcel or factor 129 
similarity using the adjusted rand index (ARI). This cross-species parcel similarity of multivariate GM 130 
morphology are used for the selection of optimal parcellation granularity, together with species-131 
specific OPNMF reconstruction error change (see Comparative Brain Parcellations for more 132 
information). To create cross-species expansion maps, average population templates from three non-133 
human primate species were processed, chimpanzee8, olive baboon34, and rhesus macaque35–37. 134 

 135 

 136 

Figure 1. Overview of our comparative approach. A – Workflow outlining the steps taken in our 137 
comparative approach by utilizing OPNMF and creating cross-species expansion maps. B – The age, sex, and 138 
scanner field strength distribution of the chimpanzee (N=189) and human (N=480) samples used in creating the 139 
OPNMF solutions for cross-species comparison. C – Diagram showing the phylogenetic relationship of humans 140 
to the other three primate species investigated in this study. 141 

 142 

Comparative Brain Parcellation 143 

 OPNMF takes the volumetric GM maps and creates parcels or clusters which contain voxels 144 
that co-vary with on another across the sample. This unsupervised technique behaves similar to 145 
clustering38 and requires an a priori decision on the number of factors or parcels to represent the 146 
original data25. The decision for the most appropriate OPNMF granularity was determined via 147 
assessing cross-species spatial similarity and the development of OPNMF solutions accuracy at 148 
different granularities (Fig. 2A). Cross-species parcel similarity was determined using the cluster 149 
similarity measure ARI. Chimpanzee parcellations are transformed to the human template space 150 
using the chimpanzee to human deformation map. Quality control of the chimpanzee to human 151 
deformation map was conducted by visually inspecting the Davi130 chimpanzee macroanatomical 152 
labels8 in the human template space (Supplementary Figure 1). The granularity with highest ARI 153 
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represents common cross-species organizational patterns of GM covariance27. The RE indicates how 154 
accurately the input data (GM maps) can be represented by the OPNMF factorization. By increasing 155 
the number of factors, or parcels, more information can be used to represent the GM data and RE 156 
naturally decreases. Although this development is non-linear and sample specific (Fig. 2A). A relative 157 
plateau means that increasing the granularity only marginally improves the parcellations 158 
representation of the GM data and therefore, will largely model noise. Consequently, the beginning 159 
of the plateau provides a good tradeoff between the solutions reconstruction accuracy and number 160 
of factors. Finally, to ensure the robustness of the RE development curve, a computationally 161 
intensive 100 bootstraps were computed for each OPNMF granularity in both species independently.  162 

The highest cross-species spatial similarity was found for the 17-factor solution with an ARI of 163 
0.23 (Fig. 2A). This is not a very high ARI, although it is along with 16 a clear local maximum and 164 
contains many parcels with relatively high ARI (> 0.4) (Fig. 2B). The robust RE development curve did 165 
not show a clear indication of a plateau for both species. Instead, a relevant number of parcels is 166 
present in the range of 15 – 21 in chimpanzees and 14 – 20 in humans. Therefore, the 17-factor 167 
solution met our criteria for both chimpanzees (Fig. 3A) and humans (Fig. 3B) to conduct our cross-168 
species comparative investigation. 169 

 170 
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Figure 2 Selected OPNMF solution for cross-species comparison. A – OPNMF granularity selection 171 
utilizing ARI to assess cross-species similarity and change in reconstruction error (RE) over a granularity range 172 
of 2 – 40 factors and bootstrapped (k=100) to ensure stability. Cloud represents ±1 sd from the mean change in 173 
RE over 100 bootstraps and the gray dashed line represents the selected number of factors, 17.  B – Presents 174 
the cross-species single factor ARI, whereby for each OPNMF factor the highest cross-species ARI is represented 175 
in human template space. C - Selected 17-factor OPNMF solution for chimpanzees. Macroanatomical labels are: 176 
1 – occipital lobe, primary motor cortex, and thalamus, 2 – temporal pole, 3 – caudate nucleus, 4 – prefrontal 177 
and orbito-frontal cortex, 5 – putamen, 6 – middle frontal gyrus, 7 – superior temporal gyrus and anterior 178 
insula, 8 – posterior superior frontal gyrus, 9 – temporal parietal junction and supramarginal gyrus, 10 – 179 
anterior and middle cingulate cortex, 11 – posterior cingulate, precuneus, and peristriate cortex, 12 – 180 
supplementary and pre-motor areas, 13 – cuneus and medial occipital-parietal sulcus, 14 – superior and 181 
inferior parietal lobe and inferior temporal gyrus, 15 – lateral parietal-occipital sulcus, 16 – superior parietal 182 
sulcus and posterior insula, 17 – amygdala and hippocampus. D – Human selected 17-factor OPNMF solution. 183 
Macroanatomical labels are: 1 – occipital lobe, 2 – temporal pole, 3 – putamen, caudate nucleus, amygdala, 184 
and hippocampus, 4 – prefrontal and orbito-frontal cortex, 5 – lingual and fusiform gyrus, 6 – superior and 185 
middle frontal gyrus, 7 – insula, 8 – pre-central gyrus and pre-motor area, 9 – temporal parietal junction, 10 – 186 
anterior and middle cingulate cortex, 11 – posterior middle and inferior temporal gyri, 12 – supramarginal 187 
gyrus, inferior post-central gyrus, and inferior pre-central sulcus, 13 – precuneus, 14 – superior parietal lobe, 15 188 
– angular and fusiform gyrus, 16 – superior parietal sulcus and parahippocampal cortex, 17 – thalamus.  189 

The 17-factor OPNMF solutions in both chimpanzees (Fig. 2D) and humans (Fig. 2C) 190 
represents a data-driven parcellation of both species cerebral GM. These regions were established 191 
through a hard parcellation by assigning each voxel to the parcel with the highest weight, which is 192 
aided by the orthogonality constraint of OPNMF. Some resulting brain parcels closely align with 193 
known macroanatomical regions within both species. Both species 17-factor solutions contained 194 
parcels accurately representing the orbito-frontal cortex, middle frontal gyrus, anterior and middle 195 
cingulate cortex, and the temporal pole (Fig. 2C&D). In humans additionally parcels separated the 196 
insula, superior parietal lobule, precuneus, occipital lobe, and thalamus (Fig. 2D). On the other hand, 197 
chimpanzees additionally showed parcels that separated the pre-motor cortex, hippocampus, 198 
putamen, and caudate nucleus (Fig. 2C). The parcels representing the orbito-frontal cortex and the 199 
cingulate cortex show the highest cross-species similarity with an ARI of 0.66 and 0.64 respectively 200 
(Fig. 2B). This was assessed by calculating the highest single parcel-to-parcel cross-species similarity. 201 
A striking difference between the species can be seen in the parcellation of the sensory-motor 202 
cortices. In chimpanzees, two parcels represented major sensory-motor structures, one for the 203 
occipital lobe, pre- and post-central gyrus, and thalamus and another for the pre-motor cortex. In 204 
humans, separate parcels represented the thalamus and occipital lobe while the motor and pre-205 
motor cortices are split between different parcels. Specifically in humans, multi-modal parietal 206 
regions like the precuneus, superior parietal lobule, angular gyrus, and temporal-parietal junction 207 
were more specifically parcellated compared to chimpanzees.   208 

 209 

Comparison of Brain Aging and Relative Expansion between Chimpanzees and Humans 210 

 Age-mediated GM decline in chimpanzees and humans was assessed for the OPNMF 17-211 
factor solution. The average GM  density of each parcel was used as the dependent variable in a 212 
multiple linear regression model with age, sex, total intracranial volume (TIV), and scanner field 213 
strength as independent variables, as has been conducted previously8. To improve comparability, the 214 
human sample age range was matched to the chimpanzees by accounting for the interspecies 215 
differences in brain aging. The comparative aging difference of human years equal to 1.15 years in 216 
chimpanzees was used based on a comprehensive study using a combination of anatomic, genetic, 217 
and behavioral data39. Accordingly, as the oldest chimpanzees were 50 years old humans over 58 218 
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years old were removed to include 304 IXI subjects (150 females; mean age = 39.0±11.0) for the age 219 
regression model. Of note, this represents a middle-aged human sample, including minimal 220 
morphological changes due to age-related neurodegenerative or pre-clinical conditions such as mild 221 
cognitive impairment. In both species, significant age effects were found in nearly all parcels 222 
following correction for multiple comparisons across parcels at p≤0.0540. Humans showed aging 223 
effects across all parcels, largest in the frontal cortex and in particular, the PFC. Chimpanzees 224 
displayed overall aging effects in all parcels except for three, which represent the peristriate cortex, 225 
posterior insula, cuneus, and superior parietal sulcus. Both species showed a relatively low aging 226 
effect in occipital and motor areas. The largest aging effect in chimpanzees was found in the 227 
striatum, in particular the caudate nucleus. Humans showed overall a much greater age effect 228 
compared to chimpanzees.  Additionally, a comparable aging effect and distribution was found when 229 
employing the higher granularity macroanatomical Davi130 parcellation8 in chimpanzees and 230 
humans (Supplementary Figure 2).  231 

 232 

Figure 3. Comparison of aging effect on GM volume. OPNMF 17-factor solution age-mediated GM 233 
changes presented as factor-wise regression model absolute t-statistics in A - chimpanzees and B – humans. 234 
The t-statistic of significant parcels are plotted and determined by a FWE p≤0.05.  235 

  236 

 Utilizing the 17-factor solution, we compared the cross-species expansion based on 237 
population representative T1w templates from humans33, chimpanzees8, olive baboons34 and rhesus 238 
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macaques35–37. Using template images provides the added benefit of artificially improved tissue 239 
contrast in addition to being representative of an average brain within a particular species aiding 240 
generalizability. Cross-species non-linear registrations were computed to provide estimations for the 241 
expansion from chimpanzee to human, baboon to chimpanzee, and macaque to chimpanzee.  242 

 In chimpanzee to human expansion, the largest deformation was found in the orbito-frontal 243 
cortex, which additionally showed the greatest aging effect (Fig. 3B) and highest cross-species parcel 244 
similarity (Fig. 2B). High expansion was additionally found in other multimodal association cortical 245 
areas such as the middle and medial frontal cortex, superior parietal, precuneus, insula, and 246 
cingulate cortex (Fig. 5A). The large expansion in frontal and parietal regions are comparable to those 247 
shown using cortical surface measures to estimate the expansion from chimpanzee to human20 as 248 
well as macaque to human 24. Low chimpanzee to human expansion was found in temporal, occipital, 249 
motor, and subcortical areas (Fig. 5A). When comparing the chimpanzee to human (Fig. 5A) with the 250 
baboon (Fig. 5B) and macaque (Fig. 5C) to chimpanzee expansion maps, similar low expansion was 251 
found in the temporal lobe and subcortical regions as well as relatively large deformations in the 252 
frontal and superior parietal lobe. The general pattern of expansion from the two cercopithecid 253 
monkeys to chimpanzees is similar although some regional differences are present. In baboon to 254 
chimpanzee, the largest expansion occurred in the superior frontal gyrus/pre-motor area (Fig. 5B) 255 
while in macaque to chimpanzee, the sulcal fundi of the parietal lobe and posterior insula (Fig. 5C) 256 
featured the largest expansion. Furthermore, macaque to chimpanzee showed comparably more 257 
expansion in the occipital-parietal junction and lower expansion in the motor/pre-motor area, 258 
occipital cortex, and basal ganglia compared to baboon to chimpanzee expansion. To summarize, 259 
chimpanzee to human as well as cercopithecid monkeys to chimpanzee expansion maps all show 260 
relatively high expansion in frontal and parietal cortical regions. Chimpanzee to human features the 261 
greatest expansion in prefrontal areas while in cercopithecid monkeys to chimpanzee the largest 262 
expansion was seen in pre-motor/frontal and lateral parietal regions. Finally, notable differences 263 
between macaques and baboons relative to chimpanzees are seen in the degree of expansion within 264 
unimodal and sensory motors areas.   265 

 266 
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Figure 4. Cross-species expansion. OPNMF 17-factor solution volumetric Cross-species expansion in A - 267 
chimpanzee to human, B - baboon to chimpanzee, & C - macaque to chimpanzee. Expansion values have been 268 
z-scaled for easier comparison.  269 

  270 

Correlation between Aging and Cross-species Expansion in Chimpanzees and Humans 271 

 We investigated the relationship between cross-species expansion (Fig. 4) and age-mediated 272 
GM changes (Fig. 3) in chimpanzees and humans. For humans, brain aging was compared with 273 
relative cortical expansion from chimpanzee to human (Fig. 5A) while for chimpanzees, aging effect 274 
was compared with both baboon and macaque (Fig. 5B). A strong positive correlation was found 275 
between cross-species expansion and the aging effect in humans (Fig. 5A), following permutation 276 
testing at p≤0.05 (r = 0.59; p = 0.004). This relationship is particularly evident in the orbito-frontal 277 
cortex and insula, which presents considerable expansion as well as an extensive aging effect. 278 
Relatively low aging effects and less cross-species expansion was found in the basal ganglia, occipital 279 
lobe, temporal pole, and medial temporal lobe. This general association was replicated in the lifespan 280 
eNKI (Enhanced Nathan Kline Institute; n = 765; r = 0.51; p = 0.01)41 dataset using the same OPNMF 281 
parcellation to extract the aging effect (Supplementary Figure 4).  282 

 In chimpanzees, no significant relationship was seen between aging and baboon to 283 
chimpanzee cross-species expansion (r = -0.005, p = 0.49) although a marked negative correlation 284 
was found in macaque to chimpanzee expansion (r = -0.53, p = 0.01). Even though the macaque and 285 
baboon to chimpanzee expansion maps show a quite similar spatial distribution, there is an apparent 286 
trend that regions showing large chimpanzee age effect have low macaque to chimpanzee expansion 287 
and the opposite for regions with low aging effect. This is driven by the comparably lower macaque 288 
to chimpanzee expansion in the basal ganglia, which shows a large age effect in chimpanzees and the 289 
higher expansion in the peristriate cortex and the lateral parietal and posterior insula cortices that 290 
presents lower aging effects in chimpanzees.  291 

 292 

Figure 5. Aging – expansion comparison. Scatter plots showing of cross-species expansion and aging effect 293 
between A – chimpanzee to human expansion and human aging effect (Pink), B – macaque to chimpanzee 294 
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expansion and chimpanzee aging effect (Blue) and baboon to chimpanzee expansion and chimpanzee aging 295 
effect (Yellow). A selection of single OPNMF factors in both species are presented. Significance (p) of 296 
correlation (Person’s r) for cross-species expansion and aging effect relationship is determined by permutation 297 
testing (k = 100 000). 298 

 299 

Discussion 300 

 Through our comparative framework, we found a human-specific positive relationship 301 
between age-related GM decline and cortical expansion in comparison to chimpanzees. In 302 
chimpanzees, on the other hand, there was no correlation between the spatial distribution of aging 303 
effect and areas of cortical cross-species expansion relative to baboons and a positive correlation 304 
with the expansion relative to macaques. These findings suggest that the extensive expansion of 305 
higher-order cortical areas in human brain evolution, which is dominated by the PFC, and in 306 
particular the orbito-frontal cortex, comes at the price of more pronounced age-related 307 
deterioration.  308 

 We demonstrated OPNMFs ability to provide a low dimensional space matching 309 
macroanatomy that serves as a basis for cross-species comparison of brain organization. Our 310 
approach (Fig. 1A) is centered on OPNMF, which establishes a brain parcellation that contains 311 
species-specific information that also identifies comparable organizational features between species. 312 
The chimpanzee factorization solution (Fig. 2D) shows overall hemispheric symmetry, spatial 313 
contiguity, and aligns with known macroanatomical structures8 which were reported in previous 314 
applications of OPNMF in humans25,28–30,42. The 17-factor solution that was selected based on cross-315 
species similarity and within-species reconstruction accuracy comprises a very similar granularity that 316 
was selected in OPNMF for infants42 and an adolescent human sample30. Along with the similar 317 
granularity, some human (Fig. 2C) and chimpanzee (Fig. 2D) parcels show apparent spatial similarity 318 
to previously reported OPNMF solutions30,42. Similarities include parcels representing the precuneus, 319 
insula, and superior parietal lobe, in the human factorization while both the chimpanzee and human 320 
solutions show similarities to previous findings in the PFC and temporal pole. Additionally, the 321 
superior parietal lobe and PFC parcels show similarities to spatial clusters representing genetic 322 
influence on cortical thickness43.  323 

 The PFC plays an important role in higher-order cognitive functions, such as executive 324 
control21,44 and working memory45. The OPNMF 17-factor solution created independently in 325 
chimpanzees (Fig. 2D) and humans (Fig. 2C) established a parcel representing the ventrolateral and 326 
orbital parts of the PFC. This region showed the highest cross-species similarity as well being 327 
expanded greatly in humans relative to chimpanzees. Therefore, the uniqueness of this region’s GM 328 
organization was conserved between humans and chimpanzees, even though there was considerable 329 
cross-species expansion. Despite the PFC being proportionally larger in humans compared to 330 
chimpanzees 11, which is due in part to allometric scaling46,47. Our multivariate data-driven analysis 331 
suggests a possible similarity in the organization of the ventral and orbital sub-regions of the PFC. 332 
Furthermore, this region showed an exceptionally large GM aging effect in humans as well as a high 333 
degree of expansion in humans relative to chimpanzees. This suggests that the greater expansion of 334 
PFC, which has been instrumental in evolutionary changes in primate cognition48, comes with the 335 
detriment of severe age-related GM decrease in humans. The much greater PFC expansion and aging 336 
effect in humans compared to chimpanzees, provides an additional dimension to the “last in, first 337 
out” hypothesis23 of later developmental maturation and aging. With later evolutionary expansion 338 
also related to early and strong age-mediated GM morphology decline, furthering previous research 339 
showing similarities between macaque to human expansion and neurodevelopment24. 340 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.27.509685doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.27.509685
http://creativecommons.org/licenses/by-nc/4.0/


 The relationship between human GM volume decline and cortical expansion indicates an 341 
evolutionary link between functional development of these particular cortical areas in humans and 342 
increased vulnerability to neurodegenerative processes. Interestingly, such a relationship was not 343 
present in the expanded cortical regions of chimpanzee relative to baboons and macaques even 344 
though a significant GM decline was present in chimpanzees 8. The main difference between humans 345 
and chimpanzees seems to be the more prominent expansion in sensorimotor regions in 346 
chimpanzees relative to the cercopithecid monkeys, whereas regions of human cortical expansion 347 
relative to chimpanzees is generally seen in more multimodal association regions. This could be 348 
related to chimpanzees improved abilities for tool use and spatial understanding as compared to 349 
cercopithecid monkeys although showing similar abilities in social-cognitive tasks49. 350 

 In general, multimodal association cortex in humans show greater expansion as well as large 351 
aging effects on GM volume. Those multimodal cortical areas are characterized by lower neuronal 352 
cell density, as well as higher dendritic branching and spine numbers of pyramidal neurons50,51. 353 
Interestingly, compared to other great apes, the human brain has a large neuropil fraction in the 354 
frontal pole52 and the anterior insula53. The neuropil fraction represents the space surrounding cell 355 
bodies occupied by dendritic and axonal interconnectedness through local intrinsic and extrinsic 356 
connections of a region. Both these areas (frontal pole and insula) show a combination of large 357 
expansion and aging effect on GM volume (Fig. 4A) in humans. With dendritic reduction and synapse 358 
loss being characteristics of normal aging processes54, the relatively increased neuropil space of 359 
human association cortex may partly explain the aging – expansion relationship we observe.  360 

   Some possible neurobiological mechanisms could explain the large aging effect in regions 361 
that expanded most in humans relative to chimpanzees. The medial and orbito-frontal cortex as well 362 
as the insula that displayed large expansion and aging effects have been previously found to have 363 
high deterioration of glucose metabolism and large accumulation uptake of β-amyloid in human 364 
aging55–57. Additionally, the novel relationship we present may aid future research to better 365 
understand the neurobiological mechanism of why certain areas have expanded more than others. 366 

 Several considerations need to be considered when interpreting the results presented in this 367 
study. First, our voxel-based morphometry analysis was limited to structural information present in 368 
the T1w contrast and does not include structural connectivity or functional dynamics. Such 369 
complimentary information provided by additional modalities will help to establish a more 370 
comprehensive cross-species comparison. Second, our inferences of age-related GM volume decline 371 
are driven by cross-sectional normal aging data (age ≤ 58 y/o), although a longitudinal design can 372 
provide additional information on structural changes that occur to the brain throughout the lifespan. 373 
Third, to infer the unique relationship in human evolution between aging and regions of cortical 374 
expansion we only used templates of one great ape species (chimpanzee) and two different 375 
cercopithecid monkey species (macaque & baboon). Further research is required using additional 376 
primate species. A broader phylogenetic investigation will enable a better understanding at which 377 
evolutionary branches these aspects of the neurobiology of aging occur.  378 

In conclusion, we demonstrate the applicability of a data-driven comparative framework in 379 
revealing organizational features of great ape brains. By establishing a species-specific parcellation 380 
containing both inter- and intra-species GM organizational features, we found a novel relationship of 381 
cortical expansion and age-related decline in great ape evolution. Our multivariate data-driven 382 
framework found regions with high expansion to show large age-mediated GM decline in humans, 383 
whereas this was not present in chimpanzees. These findings allude to a possible cost the human 384 
cortex pays, in the form of age-mediated GM decline, because of evolutionary expansion. 385 
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Methods 386 
 387 

Sample Description 388 

The chimpanzee T1w MRI scans were provided by the NCBR containing brain scans of 223 389 
captive animals (137 females; 9 - 54 y/o; mean age 26.9 ± 10.2 years). The chimpanzees were housed 390 
at the National Center for Chimpanzee Care (NCC) at The University of Texas MD Cancer Center 391 
(N=147; 1.5 Tesla G.E echo-speed Horizon LX scanner) or the Yerkes National Primate Research 392 
Center (YNPRC; N=76; 3.0 Tesla Siemens Trio scanner). The MRI scanning procedures for 393 
chimpanzees at both the NCC and YNPRC were designed to minimize stress for the animals. Data 394 
were acquired with the approval of ethics committees at both sites and were obtained prior to the 395 
2015 implementation of the U.S. Fish and Wildlife Service and National Institutes of Health 396 
regulations governing research with chimpanzees. Image quality control (QC) was conducted by 397 
assessing sample outliers in voxel-wise GM intensity correlations. 194 chimpanzees (130 females, 9 - 398 
54 y/o, mean age = 26.2 ± 9.9) passed QC. To minimize the effect of extreme aging on the OPNMF 399 
solutions subjects over 50 years old were removed for a final sample of 189 chimpanzees (126 400 
females, 9 - 50 y/o, mean age = 25.6 ± 9.1).    401 

 The human structural T1w MRI scans were provided from the IXI (Information eXtraction 402 
from Images) dataset. This open dataset was specifically chosen for comparison with the NCBR 403 
chimpanzees as it contains both 1.5 and 3 Tesla brain scans and has a comparable distribution of age 404 
and sex. IXI consists of 565 healthy subjects (314 females; 20 - 86 y/o; mean age 48.69 ± 16.46 years) 405 
without missing metadata. To further match the two NCBR scanners, subjects from the 406 
Hammersmith Hospital (HH; N=181; 3.0 Tesla Philips Medical Systems Intera scanner) and Guy’s 407 
Hospital (GUYS; N=315; 1.5 Tesla Philips Medical Systems Gyroscan Intera scanner) were considered. 408 
These 496 subjects (270 females; 20 - 86 y/o; mean age 49.57 ± 16.28 years) all passed QC. To aid in 409 
comparability to the chimpanzee sample, the very old IXI subjects (>75 y/o) were removed for the 410 
construction of the OPNMF solutions for a final sample of 480 subjects (262 females, 20 - 74 y/o, 411 
mean age = 48.7 ± 16.5). We used the eNKI open neuroimaging dataset41 to replicate the aging – 412 
expansion relationship in a larger lifespan sample.  The eNKI scans were all acquired using a single 3T 413 
scanner (Siemens Magnetom TrioTim). T1w images were obtained using a MPRAGE sequence with 414 
1mm isotropic voxels and TR = 1900 ms. The T1w images were preprocessed the same as IXI using 415 
CAT12. Following preprocessing, patient identified subjects were removed and QC was conducted by 416 
removing subjects that had CAT12 image quality ratings above two standard deviation from the 417 
mean. We then used 765 images from eNKI41 (502 females; 6 – 85 y/o; mean age = 39.9 ± 22.2) for 418 
our replication analysis.  419 

  420 

 Image Processing  421 

 The chimpanzee (NCBR) and human (IXI, & eNKI) samples were preprocessed using the 422 
SPM12 (Statistical Parametric Mapping; https://www.fil.ion.ucl.ac.uk/spm/software/spm12/; v7487) 423 
toolbox, CAT1258 (Computational Anatomy Toolbox; http://www.neuro.uni-jena.de/cat/; r1725). The 424 
NCBR sample was processed utilizing the newly established chimpanzee specific pipeline8 while the 425 
IXI sample utilized the default human processing pipeline with high accuracy shooting regestration59. 426 
The general steps of preprocessing were, first, the single subject images are affine registered to 427 
template space and segmented into the three tissue types, gray matter, white matter, and 428 
cerebrospinal fluid, utilizing a tissue probability map (TPM). Next, each tissue map is nonlinearly 429 
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registered to five shooting templates with increasing registration accuracy59 to bring all subjects' 430 
tissue maps into the same template space. Finally, the deformation fields required to register the 431 
subjects into template space are used to modulate the tissue maps to conserve original local volume. 432 
Following preprocessing the modulated GM maps for each species were down-sampled (2 mm & 3 433 
mm resolution) and smoothed (4 mm & 6 mm full width half maximum) in the NCBR and IXI samples, 434 
respectively. Finally, a GM mask at 0.3 and 0.2 probability for the chimpanzee and human samples 435 
respectively was applied encompassing the cortex and basal ganglia. 436 

 437 

Orthogonal Projective Non-negative Matrix Factorization (OPNMF) and Granularity Selection 438 

 To estimate the GM structural covariance parcellation the orthogonal variant of NMF60, 439 
OPNMF was used225,26. OPNMF establishes a low dimensional representation of the voxel-wise GM 440 
data where non-negativity is enforced on all elements. The low dimensional space comprises a 441 
parcellation matrix with the factorization loadings for each voxel and a subject matrix containing the 442 
subject loadings for each component. By constraining the matrices to non-negative values provides a 443 
parts-based representation of the cerebral GM data by the way of spatially continuous and additive 444 
covariance parcels. A hard parcellation is created by appointing each voxel to the parcel with the 445 
highest weight. Selection of the most appropriate OPNMF granularity for cross-species comparison 446 
was assessed through analysis of the reconstruction error development over bootstraps (k = 100) in 447 
combination with cross-species OPNMF solution parcel similarity over the range of 2 – 40 parcels. 448 
Further details can be found in the Supplementary. 449 

 450 

Template Processing and Expansion Maps 451 

 Employing CAT12 preprocessing we established cross-species deformation maps which 452 
represent an approximation of the cross-species expansion. Utilizing population average T1 maps of a 453 
species and the processing pipeline of the target species, we could create deformation maps that 454 
represent an estimation of cross-species expansion. Species templates were selected as they 455 
represent an average brain, improving interpretability of the expansion estimates as well as having 456 
high tissue contrasts aiding segmentation and registration. We used two species-specific processing 457 
pipeline, chimpanzee 8 and human, to create our expansion maps. The chimpanzee to human 458 
expansion map was created using the chimpanzee template in the human pipeline while the baboon 459 
and macaque to chimpanzee expansion maps were created using the chimpanzee pipeline8 with the 460 
baboon34 and macaque35–37 templates respectively. We averaged the expansion map of three 461 
commonly used macaque templates to encompass inter-sample variation. Further information 462 
regarding the expansion map creation can be found in the Supplementary. QC was performed on all 463 
deformation and expansion maps by assessing the smoothness and feasibility of the 464 
macroanatomical structures. Additionally, for the chimpanzee to human map we visually inspected 465 
the spatial location of the Davi1308 regions when registered to the human template space 466 
(Supplementary Figure 1).  467 

 468 

Gray Matter Aging and Expansion Analyses  469 

We assessed the relationship between age related GM decline and relative expansion in 470 
chimpanzees and humans, utilizing the data-driven low dimensional OPNMF solution. The aging 471 
effect on GM volume was assessed for the chimpanzee and human samples utilizing an OPNMF 472 
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parcel-wise linear regression model. The age-range of the IXI sample was matched to the chimpanzee 473 
to improve comparability, by accounting for the difference in aging processes (human ≈ 1.15x 474 
chimpanzee)39. Therefore, 304 IXI subjects (females = 150; 20 – 58 y/o; age = 39.0 ± 11.0) and 189 475 
chimpanzees (126 females; 9 - 50 y/o; age = 25.6 ± 9.1) were used for the age regression model.  476 
Average GM density values for each OPNMF parcel from the chimpanzees and humans were entered 477 
into a regression model for each species, as the independent variable with age, sex, total intracranial 478 
volume (TIV), and scanner field strength as the dependent variables. Parcels showing a significant age 479 
effect was assessed at p≤0.05 following correction for multiple comparisons using FWE40. The parcel-480 
wise age model t-statistics in the human sample were compared with the chimpanzee to human 481 
expansion while the chimpanzee age effect was compared with the baboon and macaque cross-482 
species expansion. Cross-species expansion was estimated by taking the mean expansion from each 483 
component for the various cross-species expansion maps and z-scored to present the inter-regional 484 
inter-species expansion. Significance of Pearson’s correlation and difference between correlations 485 
was determined through permutation testing (k=100 000) at p≤0.05. Finally, the human parcel-wise 486 
age effect was replicated in the eNKI41 lifespan neuroimaging dataset and correlated with 487 
chimpanzee to human expansion to assess the robustness of our findings in humans.  488 

Data and Code Availability  489 

 The chimpanzee (www.chimpanzeebrain.org) and two human neuroimaging datasets, IXI 490 
(http://brain-development.org/ixi-dataset/) and eNKI 491 
(http://fcon_1000.projects.nitrc.org/indi/enhanced/index.html) are openly available. The human 492 
(MNI) and chimpanzee (JunaChimp) reference templates are available as part of the CAT12 (v12.7+) 493 
toolbox or can be individually downloaded at 494 
http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009 and http://junachimp.inm7.de/ 495 
respectively. The cercopithecid monkey template are also openly available for download, baboon 496 
(Haiko89 - https://www.nitrc.org/projects/haiko89/) and macaques (D99 – 497 
https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/nonhuman/macaque_tempatl/atlas_d99v2.html; 498 
INIA19 – https://www.nitrc.org/projects/inia19/; NMT - 499 
https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/nonhuman/macaque_tempatl/template_nmtv2.ht500 
ml#download-symmetric-nmt-v2-datasets). The GM masks for chimpanzees and humans can be 501 
downloaded at https://zenodo.org/record/6463123#.YyljX_exVhG. The remaining data created for 502 
this manuscript can be downloaded at https://zenodo.org/record/7116203#.YzLvCfexWV4 and code 503 
for the analyses can be found at https://github.com/viko18/GreatApe_Aging.  504 
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Supplementary 
 

Orthogonal Projective Non-negative Matrix Factorization 

 To extract multivariate GM factors for cross-species comparison we employed an orthogonal 
modification of non-negative matrix factorization (NMF), orthogonal projective NMF (OPNMF)1,2. 
NMF factorizes a data matrix (X) with dimensions m x n (here GM density voxels x No. subjects) into a 
factor matrix W (m x k, voxels x factors) and a subject-specific factor weight matrix H (k x n, factors x 
subjects), whereby all three matrices contain elements of non-negative value. The construction of 
the factor (W) and weight (H) matrices is achieved by minimizing the reconstruction error between 
the original input matrix and its reconstruction by the multiplication of the two factorized matrices 
(W & H). NMF establishes a parts-based representation of the original input data through the created 
factors3. Therefore, the factors represent separate interpretable parts of the multivariate input data 
extracted from the underlying patterns of variance. 

 OPNMF factorizes the data matrix by solving the minimization problem ||X - WWTX|| which 
is subject to WTW = I; W ≥ 0 where, ||.|| refers to the squared Frobenius norm and I denotes the 
identity matrix. To first initialize the W matrix for the factorization we employed non-negative double 
singular value decomposition (NNSVD)4 which encourages sparsity of factors. Subsequently, W is 
iteratively updated (k=10 000) with the multiplicative update rule, ௜ܹ௝

´ = ௜ܹ௝  until it reaches an 
optimal solution2. The final step is to project X onto W to calculate H. 

 We decided to employ OPNMF variation instead of the original NMF as it provides several 
advantages when representing structural T1w MRI data as a small number of structural covariance 
factors1,5. OPNMF is different from standard NMF in how it constructs the factor loading weights of 
the H matrix. In standard NMF, the matrix H is estimated separately while in OPNMF it is estimated 
by projecting the input matrix (X) onto the factor matrix (W) using ܪ = ்ܹܺ. Therefore, in OPNMF 
all factors participate in the reconstruction of all data points while in NMF a subset of factors is 
involved in reconstructing a subset of data points leading to greatly less overlap of factors and more 
sparsity in OPNMF as compared to NMF. This leads to the creation of structural covariance factors 
that are spatially continuous with minimal overlap providing a low dimensional representation of the 
underlying GM data that is easier to interpret. Such features in OPNMF enable each voxel to be 
assigned a factor in the brain by employing a winner takes all approach when back projecting the 
factors back onto the brain to create the final cluster solution. 

 

Selected OPNMF Parcellation Solution 

 To determine an informative low dimensional structural covariance representation of GM 
tissue utilizing OPNMF we employed a data-driven approach accounting for accuracy, stability, and 
inter-species cluster spatial similarity.  As the reconstruction error is a depiction of how well the 
factorization solution estimates the original input matrix, we assessed its change (decrease) as the 
number of factors increased to determine factor solutions that accurately represent the input data. 
This allows us to determine the improvement of the factorizations estimation of the original data 
when increasing the granularity or factor number. Therefore, a plateau in this improvement 
represents factor solutions where increasing the granularity has minimal improvements in the 
estimation of the original data. Consequently, some intrinsic and informative dimension of the data 



has been reached and the data modeled by further factors is more difficult to discern whether they 
represent signal or noise. Accordingly, we averaged the change in reconstruction error over 100 
bootstrapped implementations of OPNMF across a range of factor numbers (2 – 40 steps of 1) to 
provide a stable indication of the accuracy change for each species separately. Additionally, to 
improve the inter-species comparability we selected the factor solution with the highest inter-
species spatial similarity measured using adjusted rand index (ARI). The ARI was calculated following 
the deformation of the chimpanzee OPNMF solutions to the human MNI space. It determines the 
factors spatial similarity above chance with a value between zero and one. Through this approach, 
the 17-factor solution was selected for both chimpanzees and humans. 

Quality Control 

 Quality control (QC) was conducted by checking the sample inhomogeneity utilizing CAT12 
(Computational Anatomy Toolbox). The modulated GM maps with a mean correlation below two 
standard deviations were flagged for visual inspection. The flagged images were then removed if 
they contained tissue misclassification, artifacts, irregular deformations, or very high intensity values. 
This process was repeated a second time with the passed images in the chimpanzee sample only as 
no images were removed in the IXI sample. Following the second iteration in the chimpanzee sample 
no more images were flagged. Following QC, 194 (130 females; 9–54 y/o; mean age = 26.2 ± 9.9) 
chimpanzees and 496 (270 females; 20 - 86 y/o; mean age 49.57 ± 16.28 years) human T1-weighted 
images qualified for further investigation.  

 To ascertain the feasibility and usability of the cross-species, chimpanzee to human, 
deformation maps visual QC was conducted. The chimpanzee Davi130 macroanatomical parcellation6 
was deformed to the human MNI space and visually inspected for large systematic misalignment 
with the expected macroanatomical structures (Supp. Fig. 1). There are some slight misalignment of 
gyri and the superior cerebellum and posterior part of the superior frontal gyrus have moved too far 
superiorly. As the OPNMF factors used in cross-species comparison are quite large and additional 
gray matter (GM) masking was conducted, these small differences will not greatly affect our analysis. 
Therefore, it shows the cross-species deformation map is able to approximate chimpanzee 
macroanatomical features onto a human template brain. Additionally, we visually inspected the 
deformed chimpanzee OPNMF factor solutions in MNI space for any large artifacts.    

 



 

Supplementary Figure 1. Deformation map quality control. Davi130 chimpanzee parcellation in 
chimpanzee (A) and human (B) template space used for visual quality control of chimpanzee to 
human deformation map.  

 

Davi130 Aging Effect on Gray Matter 

 We assessed the age related changes to GM volume in chimpanzees and humans at a higher 
granularity than the 17-factor OPNMF solution, by using the chimpanzee macroanatomical Davi130 
parcellation6. The chimpanzee parcellation was projected to human template space utilizing the 
chimpanzee to human deformation map. To be comparable with the OPNMF factor solution aging 
results the Davi130 cerebellum regions were not analyzed which left 110 cortical and sub-cortical 
regions. The same chimpanzee (n=189; 126 females; 9 – 50 y/o; mean age = 25.6 ± 9.1) and human 
(n=304; 150 females; 20 – 58 y/o; mean age = 39.0±11.0) samples were used as for the OPNMF factor 
aging analysis. The aging effect on GM volume was determined with a multiple linear regression 
model over all regions. Average GM for each region was used as the dependent variable with age, 
sex, total intracranial volume (TIV), and scanner field strength as independent variables. Significant 
age effect was determined at p ≤ 0.05 following correction for multiple comparisons using family 
wise error (FWE)7. The Davi130 aging effect (Supp. Fig. 2) shows a similar spatial pattern as the 
OPNMF 17-factor solution results in both species. In the chimpanzee, significant aging effect was 
found in the basal ganglia, cingulate cortex, lateral temporal lobe, frontal cortex, and precuneus. This 
is considerably less than the OPNMF result due to the higher threshold for significance following 
multiple comparison correction with the higher amount of regions. The largest aging effect was 
found in the caudate nucleus and the lowest in the motor cortex and occipital lobe comparable to 
the OPNMF aging result. In the human sample the Davi130 aging result showed similar large aging 
effect in the frontal and lateral temporal cortex and low effect in the basal ganglia, in particular the 
thalamus.  

 



 

Supplementary Figure 2. Comparison of aging effect on GM volume. Aging effect on GM volume 
across all cortical and sub-cortical Davi130 regions in chimpanzees (A) and human (B) samples. 
Significant regions at p≤0.05 are presented following correcting for multiple comparisons using FWE. 

  

Expansion map creation 

 We imported a species average T1 map (e.g. chimpanzee – JunaChimp6) into the pipeline for 
the other species (e.g. human – MNI8) to create maps of the non-linear registration across species. 
Following processing the JunaChimp6 chimpanzee template using the standard the CAT12 human 
pipeline the deformation field map was used to register the chimpanzee OPNMF parcellations to MNI 
space to conduct similarity analysis for granularity selection. To create the relative expansion maps, 
we used the modulated Jacobians from processing and conducted post-hoc manipulation by masking 
(brain mask) and converting the Jacobian values into cross-species expansion approximations. The 
expansion maps were created by dividing the jacobians by a scaling factor, which was the inverse of 
the relative difference in brain size between species. Therefore, as the human brain is approximately 
3.5x larger than the chimpanzee a scaling factor of 0.286 (1/3.5) was applied. The chimpanzee brain 
is approximately 2.5x larger than the baboon and 4.5x the macaque so a factor of 0.4 and 0.22 were 
applied respectively.  



 

Brain Aging and Cross-species Expansion Comparison Replication  

Davi130 Parcellation 

Supplementary Figure 3. Aging – expansion comparison (Davi130). Scatter plots showing of cross-
species expansion and aging effect between A – chimpanzee to human expansion and human aging 
effect (Pink), B – macaque to chimpanzee expansion and chimpanzee aging effect (Blue) and baboon 
to chimpanzee expansion and chimpanzee aging effect (Yellow). Significance (p) of correlation 
(Person’s r) for cross-species expansion and aging effect relationship is determined by permutation 
testing (k = 100 000). 

eNKI Human Lifespan Sample 

  



 

Supplementary Figure 4. Aging – expansion comparison (eNKI). Scatter plots showing of cross-
species expansion and aging effect using the IXI sample OPNMF 17-factor solution to extract aging 
effect for each factor using the eNKI sample (n=765). A selection of OPNMF factors are projected 
onto volume slice or rendering of the MNI human template. Significance (p) of correlation (Person’s 
r) for cross-species expansion and aging effect relationship is determined by permutation testing (k = 
100 000). 
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6. Discussion 

 Modern MRI techniques in combination large open datasets, novel methodologies, and 

improved computational possibilities has led to a renaissance in primate comparative 

neuroscience. This dissertation is concentrated on macroanatomical GM organisation in 

humans and chimpanzees with a particular focus on how aging effects such organisation.  

Additionally, an overview is provided over some novel primate neuroimaging findings and 

possibilities as well as a spotlight on the IPL connectivity and asymmetry. In study 1 a 

chimpanzee specific VBM processing pipeline is established containing associated 

registration and segmentation templates in addition to a population T1w template and hand-

drawn macroanatomical parcellation. Furthermore, this processing workflow and parcellation 

were implemented to show significant aging effect on GM volume as well as regional 

hemispheric asymmetry. The second study provides an outline on the state of the art in 

primate neuroimaging regarding asymmetry, gyrification, function, connectivity, sulcal 

anatomy, and novel comparative techniques. Along these lines a further exploration into the 

study of connectivity asymmetry in the IPL of humans, chimpanzees, and macaques. This 

showed a similar pattern of subregional IPL lateralization in chimpanzees and humans. 

Although the connectivity of the IPL subregions in humans were more leftward lateralized, with 

more plentiful connections to motor and frontal regions possibly associated with the evolution 

of language and tool-use. Study 3 presents a data-driven cross-species comparative workflow, 

which provides a macroanatomically informed low dimensional space for inter-species 

comparison. Utilizing this comparative framework, a novel relationship between age-mediated 

GM volume decline and brain volumetric expansion was present in humans and no such 

relationship was seen in chimpanzees. 

  

5.1 Gray Matter Volume Comparative Techniques 
 Considering the plentiful benefits of chimpanzees as a comparative animal model, 

such as sharing the closest common ancestor, a similar genome, and comparable brain 

organizational features. Methods facilitating brain analysis on a large scale have been found 

somewhat lacking. Therefore, two approaches (study 1 and 3) are provided and implemented 

within this dissertation. The chimpanzee-specific preprocessing pipeline (study 1) not only 

provides an accurate means to segment and spatially normalize T1w brain scans, but it also 

additionally establishes a common reference space for chimpanzee brain analysis. The 

chimpanzee population template space, in which the additional processing template are also 

situated, enables chimpanzee to have a reference space similar to the other commonly used 
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primate species (Love et al., 2016; Reveley et al., 2017; Rohlfing et al., 2012; Seidlitz et al., 

2018). The common template space facilitates the accurate and reproducible presentation of 

results from chimpanzee studies. It also acts as a space to register brains from other species 

as well as present results of a different species that have been registered or transferred into 

chimpanzee space. Consequently, the chimpanzee template space was used in both these 

aspects in study 3. By using non-linear spatial registration an estimate of brain expansion 

between chimpanzees and humans was determined and deformation maps both from 

chimpanzee to human and the inverse. These openly provided maps 

(https://zenodo.org/record/7116203#.YzLvCfexWV4) allow researchers to deform parcellation 

maps or ROI’s between chimpanzee and human volumetric template space automatically. 

Furthermore, the chimpanzee template space also enables the cross-species registration and 

in term expansion maps from smaller monkey species. Such expansion maps from baboon 

and macaque to chimpanzee are provided in study 3 and represent the first examples of 

cercopithecid monkey to great ape brain expansion maps. 

 The second novel approach presented in this dissertation, is a data-driven method for 

the investigating inter-species macroanatomical brain organisation. The method creates a 

macroanatomically informed low dimensional parcellation using GM volume in both species 

independently. As the parcellation granularity for comparison is informed by using within 

species reconstruction accuracy and cross-species similarity, both species-specific and cross-

species organizational features are provided. OPNMF effectively showed that it can be used 

to create GM brain parcellation to be employed as a data-driven low-dimensional space for 

cross-species comparison. The selected 17-factor OPNMF solution for cross-species 

comparison contains a similar granularity to previously report OPNMF solutions in human 

children (Sotiras et al., 2017; Wang et al., 2019). The comparative solution selected for both 

species also contained the same parcellation features of general hemispheric symmetry, 

spatial contiguity, and alignment to known macroanatomical structures as have been 

previously reported in OPNMF in humans (Nassar et al., 2019; Sotiras et al., 2017, 2015; 

Varikuti et al., 2018). This is particularly promising for the chimpanzee factorization solution 

(Study 3 Fig. 2C) as this is, to our knowledge, the first instance of OPNMF GM parcellation 

conducted in non-human primates. 

 

5.2 Gray matter volume decline during aging in humans and chimpanzees 
 Utilizing multiple techniques to extract GM volume data and model its decline during 

aging, this dissertation provides clear evidence for widespread significant GM decline 

mediated by aging in chimpanzees.  Global whole brain age regression models were 

https://zenodo.org/record/7116203#.YzLvCfexWV4
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employed on total GM volume and across all voxels using VBM. ROI models were conducted 

using the Davi130 macroanatomical parcellation and the OPNMF data-driven comparative 

parcellation. The GM decline seen in chimpanzees (Study 1 Fig. 3A, 4, 5, & Study 3 Fig. 3A) 

was less prominent than that shown in humans (Study 1 Fig. 3D & Study 3 Fig. 3B). Whereby, 

humans in an age, sex, and scanner matched sample presented a greater negative correlation 

between aging and total GM volume then chimpanzees, R2=0.55 compared to R2=0.12 (Study 

1 Fig. 3B & D). Additionally, using the 17-factor solution humans showed an overall greater 

age -related GM decline over cortical parcels compared to chimpanzees (Study 3 Fig. 3B), 

although chimpanzees presented a relatively greater effect in the basal ganglia, in particular 

the striatum (Study 3 Fig. 3A). In both species higher age-mediated GM volume decline was 

present in frontal, parietal, and lateral temporal areas while occipital and primary motor regions 

showed less decline. The multiple brain regions showing significant GM decline during aging, 

in chimpanzees, have also been shown in human healthy aging (Crivello et al., 2014; Good et 

al., 2001; Kennedy et al., 2009; Minkova et al., 2017). 

 

 Along with the studies presented in this dissertation, a growing body of research further 

suggests that the age-related GM decline is present in chimpanzees. The increase of stress 

hormone levels with age as well as accumulation of Alzheimer’s neuropathology molecules, 

neurofibrillary and β-amyloid plaques, in elderly chimpanzees (Edler et al., 2017; Emery 

Thompson et al., 2020). Both these processes are known to cause neuronal loss in humans 

(Jagust, 2016; Llado et al., 2018). This provides possibly biological mechanisms for the GM 

atrophy presented here. Additionally, recent studies have shown GM volume and cognitive 

decline in aging chimpanzees (Hopkins et al., 2021; Mulholland et al., 2021). These findings 

in different studies using the same sample strengthen the robustness of the aging results 

shown. 

 

5.3 Relationship Between Aging and Cross-species Expansion in Great Apes 
 The cross-species expansion maps provide an indication of possible structural 

changes between species that may relate to evolutionary development. The volumetric 

chimpanzee to human expansion map presented here (Study 3 Fig. 4A), show some 

similarities to previously reported cortical expansion between chimpanzees (Donahue et al., 

2018; Wei et al., 2019) and macaques (Hill et al., 2010; Xu et al., 2020) to humans. The high 

expansion in the prefrontal cortex and precuneus shown here is comparable to previous 

studies (Donahue et al., 2018; Wei et al., 2019). Although, previous research has shown high 

expansion in the IPL and lateral temporal lobe in macaques (Hill et al., 2010; Xu et al., 2020) 
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and to a lesser extent in chimpanzee (Wei et al., 2019) to humans. That is not shown in the 

chimpanzee to human expansion maps presented in study 3. Additionally, previously report 

expansion maps contained less expansion in the medial and orbital frontal cortex as compared 

to in here. Moderate expansion is seen in the lateral temporal lobe in both cercopithecid 

monkeys to chimpanzees (Study 3 Fig. 4B & C), therefore, it would be expected that the 

chimpanzee to human expansion in the lateral temporal lobe is less than that form macaques 

to humans as shown here and previously (Wei et al., 2019). The higher chimpanzee to human 

expansion shown previously in the lateral temporal lobe (Wei et al., 2019), may be related to 

the different granularity of parcellation used for extracting the expansion values as well as 

being based on cortical surface reconstruction measures instead of volume. Moreover, the 

low expansion in the IPL in study 3 compared to the high expansion previously reported in 

macaque to human cortical surface expansion maps (Hill et al., 2010; Xu et al., 2020) may 

also be due to the difference in structural measures employed. Even though the IPL showed 

comparably less cross-species expansion the temporal-parietal junction presented greater 

expansion in the left hemisphere (Study 3 Fig. 4A), which corresponds to previous 

comparative structural connectivity findings between chimpanzees and humans in relation to 

the development of modern complex language (Eichert et al., 2020). 

 

 The PFC presented a combination of exceptionally high age-mediated GM decline and 

cross-species expansion in humans. Interestingly, the chimpanzee OPNMF 17-factor solution 

presented a PFC factor with the highest cross-species similarity to humans independently. 

Even though the PFC plays an important role in prominent human cognitive facilities, like 

executive control, the GM organizational features of this regions seem to be partly conserved 

between chimpanzees and humans. The frontal pole has shown a greater neuropil fraction in 

humans compared to other great apes (Semendeferi et al., 2001). Such a comparatively 

greater fraction in humans has additionally been shown in the insula (Spocter et al., 2012) that 

also showed high age-related GM decline and expansion. A greater neuropil fraction refers to 

more space containing dendrites and axons as well as their interconnections. This increase in 

the interconnectivity requirements of the PFC could be a possibly factor for the large amount 

of expansion. Then as dendritic loss is a characteristic of the human brain atrophy process 

during aging, the neuropil fraction differences between chimpanzees an humans may partly 

explain the human specific relationship. Additionally, the human-specific PFC aging-

expansion relationship furthers the “last in, first out” hypothesis of the developmental 

maturation relationship with aging (Hill et al., 2010), here relating to possible later evolutionary 

development. Even though both chimpanzees and humans present a highly developed PFC, 

evidence suggest that the human PFC seems to be larger compared to other primates 
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(Donahue et al., 2018). This exceptional growth in recent human evolution may have enabled 

a greater vulnerability to aging earlier in life. Moreover, the PFC in chimpanzees was able to 

be delineated independently using OPNMF and showed significant age-related GM decline 

but did not present high expansion compared to cercopithecid monkeys. 

 

5.4 Conclusions 
 Chimpanzees showed substantial GM atrophy with age, however, not as widespread, 

and not at the same magnitude as seen in aging humans. A new chimpanzee specific CAT12 

preprocessing pipeline was presented and applied to determine that significant GM atrophy 

occurs during aging in chimpanzees. The chimpanzee pipeline is provided with a population 

reference, segmentation, and registration templates along with the Davi130 macroanatomical 

parcellation. The chimpanzee pipeline, templates, and hand-drawn parcellation are publicly 

available to the neuroimaging community. Additionally, hemispheric asymmetry was examined 

using the newly created processing pipeline that showed chimpanzees to contain a general 

rightward lateralization of greater GM volume. 

 

 Primate neuroimaging enables a multi-dimensional probe into the various 

organizational, functional, and developmental aspects of the primate brain. Modeling the 

wealth of information available from imaging our primate ancestors enables a deeper 

understanding of the commonalities and divergences between species. As well as a better 

overall comprehension of primate brain organization, if such a generalization Is even possible. 

For the comparison of brains within and across species common spaces are beneficial. Such 

spaces can be in the form of templates, homologous structures, or modeled organizational 

features. The methodological developments along with the increase depth of primate imaging 

data provide the possibility to understand the brain adaptations constrained by the factors of 

evolution. Furthermore, in more a concentrated spotlight on the comparison of brain 

organization over multiple primate species. The asymmetrical WM connections of the IPL in 

humans are predominantly left lateralized and more plentiful than chimpanzees and 

macaques. With increased asymmetrical connections to frontal, motor, and temporal areas 

that may have contributed to the evolution of tool-use, language, and handedness. 

 

 The data-driven comparative framework utilizing OPNMF was demonstrated as a 

feasible approach to reveal organizational features of great ape brains. The technique 

establishes a species-specific brain parcellations containing a combination of within and 
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across species GM macroanatomically informed features. The multivariate comparative 

framework found a novel relationship in humans between local brain expansion and age-

related GM decline, which was not seem in chimpanzees. Whereby, the regions in humans 

that showed high expansion between chimpanzees and humans additionally presented large 

age-mediated GM decline, whereas no such a relationship was seen in chimpanzees 

compared to cercopithecid monkeys. Consequently, there may exist a penalty of large 

vulnerability to age-mediated GM decline from the high regional evolutionary expansion 

occurring since the last common ancestor of humans and chimpanzees. 

 

 Looking forward, the growing body of non-human primate neuroimaging data enable 

many possibilities for interesting and important multiple species investigations. The methods 

presented within this dissertation supplement established primate comparative techniques. 

The chimpanzee-specific processing workflow enables accurate, reproducible, and automatic 

registration and segmentation of chimpanzee T1w brain scans. Making possible additional 

structural morphometry investigations both univariate or multivariate using not only GM but 

also WM and CSF tissue segments. Furthermore, the proposed data-driven comparative 

framework can be extended to additional species further along the phylogenetic tree. This 

creates a more general understanding of primate brain organization by utilizing a comparative 

space consisting of both inter- and intra-species organizational features. Possibly leading to 

novel findings of the evolution of the primate brain. 

 

6. References 
Alexander-Bloch, A., Giedd, J.N., Bullmore, E., 2013. Imaging structural co-variance 

between human brain regions. Nat Rev Neurosci 14, 322–336. 
https://doi.org/10.1038/nrn3465 

Amunts, K., Zilles, K., 2015. Architectonic Mapping of the Human Brain beyond Brodmann. 
Neuron 88, 1086–1107. https://doi.org/10.1016/j.neuron.2015.12.001 

Ashburner, J.& K.J.Friston., 2000. voxel based morphometry-The methods. Neuroimage. 
Autrey, M.M., Reamer, L.A., Mareno, M.C., Sherwood, C.C., Herndon, J.G., Preuss, T., 

Schapiro, S.J., Hopkins, W.D., 2014. Age-related effects in the neocortical 
organization of chimpanzees: gray and white matter volume, cortical thickness, and 
gyrification. Neuroimage 101, 59–67. 
https://doi.org/10.1016/j.neuroimage.2014.06.053 

Bogart, S.L., Mangin, J.F., Schapiro, S.J., Reamer, L., Bennett, A.J., Pierre, P.J., Hopkins, 
W.D., 2012. Cortical sulci asymmetries in chimpanzees and macaques: A new look 
at an old idea. NeuroImage 61, 533–541. 
https://doi.org/10.1016/j.neuroimage.2012.03.082 

Brodmann, K., 1909. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien 
dargestellt auf Grund des Zellenbaues. Barth, Leipzig. 



 
 

17 

Bruner, E., Preuss, T.M., Chen, X., Rilling, J.K., 2017. Evidence for expansion of the 
precuneus in human evolution. Brain Struct Funct 222, 1053–1060. 
https://doi.org/10.1007/s00429-015-1172-y 

Cantalupo, C., Hopkins, W.D., 2001. Asymmetric broca’s area in great apes: A region of the 
ape brain is uncannily similar to one linked with speech in humans. Nature 414, 505–
505. https://doi.org/10.1038/35107134 

Cavanna, A.E., Trimble, M.R., 2006. The precuneus: a review of its functional anatomy and 
behavioural correlates. Brain J. Neurol. 129, 564–583. 
https://doi.org/10.1093/brain/awl004 

Chen, X., Errangi, B., Li, L., Glasser, M.F., Westlye, L.T., Fjell, A.M., Walhovd, K.B., Hu, X., 
Herndon, J.G., Preuss, T.M., Rilling, J.K., 2013. Brain aging in humans, chimpanzees 
(Pan troglodytes), and rhesus macaques (Macaca mulatta): magnetic resonance 
imaging studies of macro- and microstructural changes. Neurobiol Aging 34, 2248–
2260. https://doi.org/10.1016/j.neurobiolaging.2013.03.028 

Cheng, L., Zhang, Y., Li, G., Wang, J., Sherwood, C., Gong, G., Fan, L., Jiang, T., 2021. 
Connectional asymmetry of the inferior parietal lobule shapes hemispheric 
specialization in humans, chimpanzees, and rhesus macaques. eLife 10, e67600. 
https://doi.org/10.7554/eLife.67600 

Crivello, F., Tzourio-Mazoyer, N., Tzourio, C., Mazoyer, B., 2014. Longitudinal assessment 
of global and regional rate of grey matter atrophy in 1,172 healthy older adults: 
Modulation by sex and age. PLoS ONE 9. 
https://doi.org/10.1371/journal.pone.0114478 

Donahue, C.J., Glasser, M.F., Preuss, T.M., Rilling, J.K., Van Essen, D.C., 2018. 
Quantitative assessment of prefrontal cortex in humans relative to nonhuman 
primates. Proc. Natl. Acad. Sci. 

Economo, C.F. von, Koskinas, G.N., 1925. Die Cytoarchitektonik der Hirnrinde des 
erwachsenen Menschen. J. Springer. 

Edler, M.K., Sherwood, C.C., Meindl, R.S., Hopkins, W.D., Ely, J.J., Erwin, J.M., Mufson, 
E.J., Hof, P.R., Raghanti, M.A., 2017. Aged chimpanzees exhibit pathologic 
hallmarks of Alzheimer’s disease. Neurobiol Aging 59, 107–120. 
https://doi.org/10.1016/j.neurobiolaging.2017.07.006 

Eichert, N., Robinson, E.C., Bryant, K.L., Jbabdi, S., Jenkinson, M., Li, L., Krug, K., Watkins, 
K.E., Mars, R.B., 2020. Cross-species cortical alignment identifies different types of 
anatomical reorganization in the primate temporal lobe. eLife 9, e53232. 
https://doi.org/10.7554/eLife.53232 

Eickhoff, S.B., Yeo, B.T.T., Genon, S., 2018. Imaging-based parcellations of the human 
brain. Nat. Rev. Neurosci. 19, 672–686. https://doi.org/10.1038/s41583-018-0071-7 

Emery Thompson, M., Fox, S.A., Berghänel, A., Sabbi, K.H., Phillips-Garcia, S., Enigk, D.K., 
Otali, E., Machanda, Z.P., Wrangham, R.W., Muller, M.N., 2020. Wild chimpanzees 
exhibit humanlike aging of glucocorticoid regulation. Proc. Natl. Acad. Sci. 
201920593–201920593. https://doi.org/10.1073/pnas.1920593117 

Friedrich, P., Forkel, S.J., Amiez, C., Balsters, J.H., Coulon, O., Fan, L., Goulas, A., Hadj-
Bouziane, F., Hecht, E.E., Heuer, K., Jiang, T., Latzman, R.D., Liu, X., Loh, K.K., 
Patil, K.R., Lopez-Persem, A., Procyk, E., Sallet, J., Toro, R., Vickery, S., Weis, S., 
Wilson, C.R.E., Xu, T., Zerbi, V., Eickoff, S.B., Margulies, D.S., Mars, R.B., Thiebaut 
de Schotten, M., 2021. Imaging evolution of the primate brain: the next frontier? 
NeuroImage 228, 117685. https://doi.org/10.1016/j.neuroimage.2020.117685 

Gannon, P.J., Holloway, R.L., Broadfield, D.C., Braun, A.R., 1998. Asymmetry of 
chimpanzee planum temporale: Humanlike pattern of Wernicke’s brain language 
area homolog. Science 279, 220–222. https://doi.org/10.1126/science.279.5348.220 

Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Harwell, J., Yacoub, E., Ugurbil, 
K., Andersson, J., Beckmann, C.F., Jenkinson, M., Smith, S.M., Van Essen, D.C., 
2016. A multi-modal parcellation of human cerebral cortex. Nature 536. 
https://doi.org/10.1038/nature18933 



 
 

18 

Good, C.D., Johnsrude, I.S., Ashburner, J., Henson, R.N., Friston, K.J., Frackowiak, R.S., 
2001. A voxel-based morphometric study of ageing in 465 normal adult human 
brains. Neuroimage 14, 21–36. https://doi.org/10.1006/nimg.2001.0786 

Gupta, C.N., Turner, J.A., Calhoun, V.D., 2018. Source-Based Morphometry: Data-Driven 
Multivariate Analysis of Structural Brain Imaging Data, in: Spalletta, G., Piras, F., Gili, 
T. (Eds.), Brain Morphometry, Neuromethods. Springer, New York, NY, pp. 105–120. 
https://doi.org/10.1007/978-1-4939-7647-8_7 

Hecht, E.E., Mahovetz, L.M., Preuss, T.M., Hopkins, W.D., 2017. A neuroanatomical 
predictor of mirror self-recognition in chimpanzees 12, 37–48. 
https://doi.org/10.1093/scan/nsw159 

Herndon, J.G., Tigges, J., Anderson, D.C., Klumpp, S.A., McClure, H.M., 1999. Brain weight 
throughout the life span of the chimpanzee. J. Comp. Neurol. 409, 567–72. 

Hill, J., Inder, T., Neil, J., Dierker, D., Harwell, J., Essen, D.V., 2010. Similar patterns of 
cortical expansion during human development and evolution. Proc. Natl. Acad. Sci. 
107, 13135–13140. https://doi.org/10.1073/pnas.1001229107 

Hopkins, W.D., Mareno, M.C., Neal Webb, S.J., Schapiro, S.J., Raghanti, M.A., Sherwood, 
C.C., 2021. Age-related changes in chimpanzee (Pan troglodytes) cognition: Cross-
sectional and longitudinal analyses. Am. J. Primatol. 83, e23214. 
https://doi.org/10.1002/ajp.23214 

Hopkins, W.D., Meguerditchian, A., Coulon, O., Bogart, S., Mangin, J.F., Sherwood, C.C., 
Grabowski, M.W., Bennett, A.J., Pierre, P.J., Fears, S., Woods, R., Hof, P.R., 
Vauclair, J., 2014. Evolution of the central sulcus morphology in primates 84, 19–30. 
https://doi.org/10.1159/000362431 

Hopkins, W.D., Meguerditchian, A., Coulon, O., Misiura, M., Pope, S., Mareno, M.C., 
Schapiro, S.J., 2017. Motor skill for tool-use is associated with asymmetries in 
Broca’s area and the motor hand area of the precentral gyrus in chimpanzees (Pan 
troglodytes). Behav Brain Res 318, 71–81. https://doi.org/10.1016/j.bbr.2016.10.048 

Jagust, W., 2016. Is amyloid-β harmful to the brain? Insights from human imaging studies. 
Brain 139, 23–30. https://doi.org/10.1093/brain/awv326 

Kennedy, K.M., Erickson, K.I., Rodrigue, K.M., Voss, M.W., Colcombe, S.J., Kramer, A.F., 
Acker, J.D., Raz, N., 2009. Age-related differences in regional brain volumes: A 
comparison of optimized voxel-based morphometry to manual volumetry. Neurobiol. 
Aging 30, 1657–1676. https://doi.org/10.1016/j.neurobiolaging.2007.12.020 

Langergraber, K.E., Prüfer, K., Rowney, C., Boesch, C., Crockford, C., Fawcett, K., Inoue, 
E., Inoue-Muruyama, M., Mitani, J.C., Muller, M.N., Robbins, M.M., Schubert, G., 
Stoinski, T.S., Viola, B., Watts, D., Wittig, R.M., Wrangham, R.W., Zuberbuḧler, K., 
Pääbo, S., Vigilant, L., 2012. Generation times in wild chimpanzees and gorillas 
suggest earlier divergence times in great ape and human evolution. Proc. Natl. Acad. 
Sci. U. S. A. 109, 15716–15721. https://doi.org/10.1073/pnas.1211740109 

Lee, D.D., Seung, H.S., 1999. Learning the parts of objects by non-negative matrix 
factorization. Nature 401, 788–791. https://doi.org/10.1038/44565 

Llado, A., Tort-Merino, A., Sanchez-Valle, R., Falgas, N., Balasa, M., Bosch, B., Castellvi, 
M., Olives, J., Antonell, A., Hornberger, M., 2018. The hippocampal longitudinal axis-
relevance for underlying tau and TDP-43 pathology. Neurobiol Aging 70, 1–9. 
https://doi.org/10.1016/j.neurobiolaging.2018.05.035 

Love, S.A., Marie, D., Roth, M., Lacoste, R., Nazarian, B., Bertello, A., Coulon, O., Anton, J.-
L., Meguerditchian, A., 2016. The average baboon brain: MRI templates and tissue 
probability maps from 89 individuals. NeuroImage 132, 526–533. 
https://doi.org/10.1016/j.neuroimage.2016.03.018 

Messinger, A., Sirmpilatze, N., Heuer, K., Loh, K.K., Mars, R.B., Sein, J., Xu, T., Glen, D., 
Jung, B., Seidlitz, J., Taylor, P., Toro, R., Garza-Villarreal, E.A., Sponheim, C., 
Wang, X., Benn, R.A., Cagna, B., Dadarwal, R., Evrard, H.C., Garcia-Saldivar, P., 
Giavasis, S., Hartig, R., Lepage, C., Liu, C., Majka, P., Merchant, H., Milham, M.P., 
Rosa, M.G.P., Tasserie, J., Uhrig, L., Margulies, D.S., Klink, P.C., 2021. A 



 
 

19 

collaborative resource platform for non-human primate neuroimaging. NeuroImage 
226, 117519. https://doi.org/10.1016/j.neuroimage.2020.117519 

Milham, M.P., Ai, L., Koo, B., Xu, T., Amiez, C., Balezeau, F., Baxter, M.G., Blezer, E.L.A., 
Brochier, T., Chen, A., Croxson, P.L., Damatac, C.G., Dehaene, S., Everling, S., Fair, 
D.A., Fleysher, L., Freiwald, W., Froudist-Walsh, S., Griffiths, T.D., Guedj, C., Hadj-
Bouziane, F., Ben Hamed, S., Harel, N., Hiba, B., Jarraya, B., Jung, B., Kastner, S., 
Klink, P.C., Kwok, S.C., Laland, K.N., Leopold, D.A., Lindenfors, P., Mars, R.B., 
Menon, R.S., Messinger, A., Meunier, M., Mok, K., Morrison, J.H., Nacef, J., Nagy, 
J., Rios, M.O., Petkov, C.I., Pinsk, M., Poirier, C., Procyk, E., Rajimehr, R., Reader, 
S.M., Roelfsema, P.R., Rudko, D.A., Rushworth, M.F.S., Russ, B.E., Sallet, J., 
Schmid, M.C., Schwiedrzik, C.M., Seidlitz, J., Sein, J., Shmuel, A., Sullivan, E.L., 
Ungerleider, L., Thiele, A., Todorov, O.S., Tsao, D., Wang, Z., Wilson, C.R.E., 
Yacoub, E., Ye, F.Q., Zarco, W., Zhou, Y. di, Margulies, D.S., Schroeder, C.E., 2018. 
An Open Resource for Non-human Primate Imaging. Neuron 100. 
https://doi.org/10.1016/j.neuron.2018.08.039 

Miller, E.K., 2000. The prefontral cortex and cognitive control. Nat. Rev. Neurosci. 1, 59–65. 
https://doi.org/10.1038/35036228 

Minkova, L., Habich, A., Peter, J., Kaller, C.P., Eickhoff, S.B., Klöppel, S., 2017. Gray matter 
asymmetries in aging and neurodegeneration: A review and meta-analysis. Hum. 
Brain Mapp. 38, 5890–5904. https://doi.org/10.1002/hbm.23772 

Mulholland, M.M., Sherwood, C.C., Schapiro, S.J., Raghanti, M.A., Hopkins, W.D., 2021. 
Age- and cognition-related differences in the gray matter volume of the chimpanzee 
brain (Pan troglodytes): A voxel-based morphometry and conjunction analysis. Am. J. 
Primatol. 83, e23264. https://doi.org/10.1002/ajp.23264 

Nassar, R., Kaczkurkin, A.N., Xia, C.H., Sotiras, A., Pehlivanova, M., Moore, T.M., Garcia de 
La Garza, A., Roalf, D.R., Rosen, A.F.G., Lorch, S.A., Ruparel, K., Shinohara, R.T., 
Davatzikos, C., Gur, R.C., Gur, R.E., Satterthwaite, T.D., 2019. Gestational Age is 
Dimensionally Associated with Structural Brain Network Abnormalities Across 
Development. Cereb. Cortex N. Y. NY 29, 2102–2114. 
https://doi.org/10.1093/cercor/bhy091 

Palomero-Gallagher, N., Zilles, K., 2019. Differences in cytoarchitecture of Broca’s region 
between human, ape and macaque brains. Cortex, The Evolution of the Mind and the 
Brain 118, 132–153. https://doi.org/10.1016/j.cortex.2018.09.008 

Reveley, C., Gruslys, A., Ye, F.Q., Glen, D., Samaha, J., Russ, B.E., Saad, Z., Seth, A.K., 
Leopold, D.A., Saleem, K.S., 2017. Three-dimensional digital template atlas of the 
macaque brain. Cereb. Cortex. https://doi.org/10.1093/cercor/bhw248 

Rilling, J.K., Insel, T.R., 1999. The primate neocortex in comparative perspective using 
magnetic resonance imaging. J Hum Evol 37, 191–223. 
https://doi.org/10.1006/jhev.1999.0313 

Rohlfing, T., Kroenke, C.D., Sullivan, E.V., Dubach, M.F., Bowden, D.M., Grant, K.A., 
Pfefferbaum, A., 2012. The INIA19 Template and NeuroMaps Atlas for Primate Brain 
Image Parcellation and Spatial Normalization. Front. Neuroinformatics 6, 27–27. 
https://doi.org/10.3389/fninf.2012.00027 

Savage-Rumbaugh, E.S., 1986. Ape language : from conditioned response to symbol. 
Oxford University Press. 

Seidlitz, J., Sponheim, C., Glen, D., Ye, F.Q., Saleem, K.S., Leopold, D.A., Ungerleider, L., 
Messinger, A., 2018. A population MRI brain template and analysis tools for the 
macaque. NeuroImage 170, 121–131. 
https://doi.org/10.1016/j.neuroimage.2017.04.063 

Semendeferi, K., Armstrong, E., Schleicher, A., Zilles, K., Van Hoesen, G.W., 2001. 
Prefrontal cortex in humans and apes: a comparative study of area 10. Am J Phys 
Anthr. 114, 224–241. https://doi.org/10.1002/1096-8644(200103)114:3<224::aid-
ajpa1022>3.0.co;2-i 



 
 

20 

Sherwood, C.C., Gordon, A.D., Allen, J.S., Phillips, K.A., Erwin, J.M., Hof, P.R., Hopkins, 
W.D., 2011. Aging of the cerebral cortex differs between humans and chimpanzees. 
Proc Natl Acad Sci U A 108, 13029–13034. https://doi.org/10.1073/pnas.1016709108 

Shumaker, R.W., Walkup, K.R., Beck, B.B., 2011. Animal tool behavior : the use and 
manufacture of tools by animals. Johns Hopkins University Press. 

Sotiras, A., Resnick, S.M., Davatzikos, C., 2015. Finding imaging patterns of structural 
covariance via Non-Negative Matrix Factorization. Neuroimage 108, 1–16. 
https://doi.org/10.1016/j.neuroimage.2014.11.045 

Sotiras, A., Toledo, J.B., Gur, R.E., Gur, R.C., Satterthwaite, T.D., Davatzikos, C., 2017. 
Patterns of coordinated cortical remodeling during adolescence and their 
associations with functional specialization and evolutionary expansion. Proc Natl 
Acad Sci U A 114, 3527–3532. https://doi.org/10.1073/pnas.1620928114 

Spocter, M.A., Hopkins, W.D., Barks, S.K., Bianchi, S., Hehmeyer, A.E., Anderson, S.M., 
Stimpson, C.D., Fobbs, A.J., Hof, P.R., Sherwood, C.C., 2012. Neuropil distribution 
in the cerebral cortex differs between humans and chimpanzees. J. Comp. Neurol. 
520, 2917–2929. https://doi.org/10.1002/cne.23074 

Tomasello, M., Call, J., 1997. Primate Cognition. 
Varikuti, D.P., Genon, S., Sotiras, A., Schwender, H., Hoffstaedter, F., Patil, K.R., Jockwitz, 

C., Caspers, S., Moebus, S., Amunts, K., Davatzikos, C., Eickhoff, S.B., 2018. 
Evaluation of non-negative matrix factorization of grey matter in age prediction. 
Neuroimage 173, 394–410. https://doi.org/10.1016/j.neuroimage.2018.03.007 

Vickery, S., Eickhoff, S.B., Friedrich, P., 2022. Hemispheric Specialization of the Primate 
Inferior Parietal Lobule. Neurosci. Bull. 38, 334–336. https://doi.org/10.1007/s12264-
021-00807-4 

Vickery, S., Hopkins, W.D., Sherwood, C.C., Schapiro, S.J., Latzman, R.D., Caspers, S., 
Gaser, C., Eickhoff, S.B., Dahnke, R., Hoffstaedter, F., 2020. Chimpanzee brain 
morphometry utilizing standardized MRI preprocessing and macroanatomical 
annotations. eLife 9, e60136. https://doi.org/10.7554/eLife.60136 

Vogt, C., Vogt, O., 1926. Die vergleichend-architektonische und die vergleichend-
reizphysiologische Felderung der Großhirnrinde unter besonderer Berücksichtigung 
der menschlichen. Naturwissenschaften 14, 1190–1194. 
https://doi.org/10.1007/BF01451766 

Vogt, C., Vogt, O., 1919. Allgemeine Ergebnisse unserer Hirnforschung. J.A. Barth. 
Waal, F.B.M. de (Frans B.M.), 1996. Good natured : the origins of right and wrong in humans 

and other animals. Harvard University Press. 
Wang, F., Lian, C., Wu, Z., Zhang, H., Li, T., Meng, Y., Wang, L., Lin, W., Shen, D., Li, G., 

2019. Developmental topography of cortical thickness during infancy. Proc. Natl. 
Acad. Sci. 116, 15855–15860. https://doi.org/10.1073/pnas.1821523116 

Waterson, R.H., Lander, E.S., Wilson, R.K., 2005. Initial sequence of the chimpanzee 
genome and comparison with the human genome. Nature 437, 69–87. 
https://doi.org/10.1038/nature04072 

Wei, Y., de Lange, S.C., Scholtens, L.H., Watanabe, K., Ardesch, D.J., Jansen, P.R., 
Savage, J.E., Li, L., Preuss, T.M., Rilling, J.K., Posthuma, D., van den Heuvel, M.P., 
2019. Genetic mapping and evolutionary analysis of human-expanded cognitive 
networks. Nat. Commun. 10, 4839. https://doi.org/10.1038/s41467-019-12764-8 

Xu, T., Nenning, K.-H., Schwartz, E., Hong, S.-J., Vogelstein, J.T., Goulas, A., Fair, D.A., 
Schroeder, C.E., Margulies, D.S., Smallwood, J., Milham, M.P., Langs, G., 2020. 
Cross-species functional alignment reveals evolutionary hierarchy within the 
connectome. NeuroImage 223, 117346. 
https://doi.org/10.1016/j.neuroimage.2020.117346 

Yeo, T.BT., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M., 
Roffman, J.L., Smoller, J.W., Zöllei, L., Polimeni, J.R., Fisch, B., Liu, H., Buckner, 
R.L., 2011. The organization of the human cerebral cortex estimated by intrinsic 
functional connectivity. J. Neurophysiol. 106, 1125–1165. 
https://doi.org/10.1152/jn.00338.2011 



 
 

21 

Zilles, K., Armstrong, E., Moser, K.H., Schleicher, A., Stephan, H., 1989. Gyrification in the 
cerebral cortex of primates 34, 143–150. https://doi.org/10.1159/000116500 

 

 

Acknowledgments 

I would first like to thank Professor Simon Eickhoff for the opportunity to study in his institute, 

first as a master student and then for my PhD. I’m greatly appreciative of the support, 

guidance, and motivation throughout my studies. I would also like to thank Professor Svenja 

Caspers for her guidance and assistance as my secondary supervisor during my PhD project. 

A particular thanks goes to Felix Hoffstaedter for assisting me in all aspects of my PhD and 

masters projects and for the countless enlightening scientific discussion about my work. Your 

supervision has helped me to become an independent researcher and prepared me for my 

future career in science. An additional thanks goes to all my colleagues from INM-7 who have 

always been very kind and made my PhD more enjoyable. Particularly my Dussledorf office 

colleagues, Kaustubh, Jean-Phillip, Sami, Jürgen, Leo, Tobias, and Georgios for the 

interesting lunch time discussions. 

A special thanks goes to my lovely wife Meike. The birth of our two beautiful girls during my 

PhD made our life wonderfully more challenging and without your unwavering support and 

encouragement I could not have finished my studies. I will be forever grateful for everything 

you have done for me and our family. Finally, I would like to thank my parents for their 

continued support throughout my life.  


	Vickery Sam - finale Fassung für Disputation.pdf
	Vickery_Sam-Dissertation_Urfassung.pdf

	dissertation_note.pdf
	Vickery Sam - finale Fassung für Disputation
	Vickery_Sam-Publikation_1.pdf
	Vickery_Sam-Dissertation_Urfassung
	Vickery_Sam-Publikation_2.pdf
	Vickery_Sam-Dissertation_Urfassung
	Vickery_Sam-Publikation_3.pdf
	Vickery_Sam-Dissertation_Urfassung
	Vickery_Sam-Publikation_4.pdf
	Publikation-4-supplementary
	Vickery_Sam-Dissertation_Urfassung




