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Abstract

One of the most puzzling mysteries in science is the spontaneous formation of
extremely complex structures out of the simple and chaotic system that was Earth
around four billion years ago: life [1,2]. At a first sight, in fact, the second principle
of thermodynamics, demanding a continuous increase in the entropy, would only
allow for complexity to fade away over time [3]. What this does not consider though,
is that Earth is not a closed system, as it constantly absorbs and dissipates light.
Since living beings, unceasingly requiring energy to remain alive and eventually
procreate, are much more efficient than dead matter at dissipating this flow of
energy and producing entropy, they can justify their complexity [4]. The constant
hunger for energy makes it necessary for living creatures to learn to navigate any
kind of complex environment. Most surroundings, in fact, feature very disordered
landscapes of obstacles, sources of food, friendly species and unfriendly ones [5–7].
The smartest beings even manage to use and modify the environment itself to their
advantage, as do for example hermit crabs when they use shells they scavenge as
protection [8] or humans whenever they try to improve their well-being, bringing
complexity and the production of entropy to even higher degrees [4].
This thesis draws inspiration from the intrinsic connection between life and

disorder, and investigates the behavior of active matter [9] in disordered and
complex landscapes [10]. Active matter, the field that studies what moves or does
work by consuming an external source of energy [11, 12], is well suited for the
study of living systems. It allows, for example, to use artificial active systems of
self-propelled particles, relatively easy to tune and measure, as toy-models that
can give us important insight on the much more complex living active matter. In
particular, colloidal active particles such as the Janus particles [13, 14] provide
some of the simplest examples of active matter, and can be effectively modeled by
well-established frameworks such as the Active Brownian Particle (ABP) [10,15,16].
Indeed, in my first publication, P1, I study how ABPs move in disordered fields of
both potential and motility (i.e. active speed), especially inquiring how disorder
affects their short-time behavior. As a follow up, in P5 I use ABPs to model and
analyze the motion and collective behavior of real Janus active particles immersed in
a light-induced motility field, finding the differences that occur as the motility field
becomes more or less disordered. Chapter 1 of this thesis gives a broad introduction
on the ABP and related models (Sec.1.1.1), disordered noise fields (Sec.1.1.2),
how to calculate the Mean Squared Displacement (MSD) of active particles in a
disordered field (Sec.1.2) and the basic mechanism behind the experimental setup
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of P5 (Sec.1.3).
The complexity of an environment can also come from the thermal bath: its

properties can in fact depend on local variables, in the form, for example, of a
temperature gradient [17,18], a medium which friction coefficient is space-dependent
[19,20] or anisotropic [21,22] or Brownian ratchets and heat engines [23–25], which
extract work from a system with an asymmetric potential by modulating the
diffusion coefficient over time. The second and third publications deal with this
kind of environment, studying respectively how a friction landscape can activate a
passive Brownian particle (P2) and how the long-time diffusion and drifting speed
of a passive particle in a tilted periodic potential can be enhanced by modulating
the temperature as a function of space (P3). Since varying the background
noise properties over space or time incurs in issues such as the Itô/Stratonovich
problem [26–28], Sec.1.1.3 offers an overview on this subject.
Finally, interacting with others provides a source of complexity which is ubiquitous

in nature and fundamental to the fascinating collective phenomena shown by active
matter: we list for example schools of fishes [29], herds of sheep [30], bird flocks [31],
cellular organization in bacteria colonies [32,33] and multicellular organisms [34] or
cluster formation in colloidal active particles [35, 36]. On this topic we can find
P4, which studies how different and interacting populations of bacteria can form
interesting structures, and P6, which instead focuses on large systems of entangled
polymers and how activity affects their rheology. A short introduction on the
Fokker-Planck formulation of stochastic equations [37], used to study the system
of P4, can be found in Sec.1.1.4, while Chapter 2 is completely dedicated to the
concepts of polymer physics necessary to appreciate P6.
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periodic noise, The European Physical Journal E 45, 18 (2022).
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three-state run-and-tumble model with a ”cell cycle”, The European Physical Journal
E 45, 83 (2022).

• P5 G. Jacucci D. Breoni, S. Heijnen J. Palomo P. Jones H. Löwen G. Volpe
S. Gigan Patchy landscapes promote stability of small groups, arXiv:2310.01620
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• P6 D. Breoni C. Kurzthaler B. Liebchen H. Löwen S. Mandal, Giant Activity-
Induced Stress Plateau in Entangled Polymer Solutions, arXiv:2310.02929 [cond-
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My contributions to these scientific articles are specified in Chapter 3.
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Chapter 1

Spherical active particles in complex
environments

This chapter gives an overview on the modeling of active matter and complex
environments, with a focus on simple spherical particles. I explain here the main
notions underlying publications P1–P5: in Sec.1.1 I discuss the active Brownian
particle (ABP) and similar models, used throughout most of my publications, and
how to model a complex environment. In Sec.1.2 I explain how to derive the mean
squared displacement (MSD) in various situations, and finally in Sec.1.3 there is a
shift of focus from theory to experiments with an overview on Janus particles in
speckle light fields and how to model them.

1.1 Modelling active matter and complex

environments

The field of active matter is a relatively young one, dealing with materials that can
consume energy from their environment in order to move autonomously or more
generally, to produce work [9]. Since these kinds of systems require a constant
energy intake to sustain themselves, they can only be studied in the frame of
nonequilibrium physics [38, 39], leading to fascinating effects and behaviors that
are not present in equilibrium, above all their collective behaviors [31,40] (see for
example Fig. 1.1).

Examples of active matter can be found everywhere around us, from birds flying
in flocks [41] to bacteria forming biofilms [42], to human crowds [43]. All the cited
examples are not casually chosen from the living world, as active matter can be seen
as the strongest link between physics and biology: in fact, life can only thrive out
of equilibrium. This is not to say that active matter can only describe living beings,
as in fact much of the scientific effort in this field consists in creating machines
from the macro- to the micro-scale which are active and can therefore perform
directed motion and show interesting behaviors such as cluster formation [35] and
flocking [44], with the aim of one day being able to perform complex tasks like
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targeted drug delivery or assistance to people in dangerous environments.
Over the years, several different models have been proposed for active matter.

In order to describe flocking, and hence self-aligning active particles, two very
influential models have been introduced: the Vicsek model [40, 45], which is a
stochastic particle-based model, where self moving particles are equipped with an
aligning interaction, and the Toner-Tu model [46,47], that instead is a macroscopic
theory which deals with fields of velocity, polarity and nematics. In the case of
non-aligning active particles, fundamental models are instead the Active Brownian
Particle (ABP) [10,15,16], which models the motion of active particles by adding a
self-propelling term to the Brownian equations of motion, the Ornstein-Uhlenbeck
model [48–50], where activity is implemented as a colored noise term, and the run-
and-tumble model [51, 52], where particles move ballistically and change direction
randomly with a certain rate in time.
It is uncommon to encounter perfectly homogeneous and simple environments in

nature, as almost all surroundings present complexities and randomness in their
conformation: from disordered landscapes, such as the soil [53] or the inside of a cell
[54], to responsive non-Newtonian media [55], to gradients of temperature [56–59],
viscosity [60] and many others. Complex environments are especially crucial in the
case of active matter, as activity requires a constant flow of energy in the system:
the energy present in the environment is consumed by the active agents, which
by doing so modify their surroundings in a complex and dynamical way. This is
true, both for living beings consuming the food resources of a certain area and for
inanimate active particles burning through their fuel (such as, for example, Oxygen
peroxide for Pt-Au Janus particles [61]).
Since publications P1 and P5 deal with different variations of the ABP model,

I will explain its basics in detail in Sec.1.1.1, while in Sec.1.1.2 I will instead
discuss the properties of a disordered field and how it can be modeled. Sec.1.1.3
concerns friction and thermal landscapes (that can be found respectively in P2 and
P3) and the related issue of multiplicative noise. Lastly, Sec.1.1.4 discusses the
Fokker-Planck formulation of stochastic processes and how it can be used to model
systems with various populations interacting with each other and themselves, as is
done in P4.

1.1.1 The active Langevin/Brownian particle model

A large variety of experiments involving active matter are focused on colloids [62,63]
(e.g. Fig.1.2a), that are either microscopic particles or droplets suspended in a
fluid, where the molecules that make up the fluid are much smaller than the
particles or droplets in question. At the micro-scale, although the single molecules
of the medium are quite small, their collisions with the colloid give it small kicks,
leading to the typical jiggling motion first described by Robert Brown in 1827
for a pollen particle in water [64]. The Langevin model takes these kicks into
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Figure 1.1: Many active matter systems feature behavioral patterns, such as clus-
tering, as displayed by this community of pigeons. In this example, the
pigeons are possibly driven by a common food source, or shelter (photo
taken by me).

account in a coarse-grained way by adding a noise term to the classic Newtonian
equations [65,66]. As this framework, and especially its counterpart with no inertial
term, the Brownian model [67, 68], proved very reliable to study colloids, this
project features extensively them and their active versions: the active Langevin
particle and active Brownian particle (ABP) models.

The Langevin model

Starting from the Langevin model, the equation of motion is the following:

mr̈(t) + γṙ(t) = −∇(U(r(t))) + f(t), (1.1)

where r is the position of the particle, m is its mass, t is time, γ is the friction
coefficient, U is an external potential and f is a random force that represents all the
kicks given by small elements of the bath to our particle. As the bath is assumed
to have no memory, the random force can be modeled by Gaussian white noise,
which variance is derived from the fluctuation-dissipation theorem:

⟨f(t)⟩ = 0,

⟨fα(t)fβ(t′)⟩ = 2γkBTδα,βδ(t− t′), (1.2)

where ⟨·⟩ is the thermal noise average, α and β are components, kB is Boltzmann’s
constant, T is the solvent temperature.
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The Brownian model

A main feature of the Langevin model, is that it considers particles with finite mass.
This is an important assumption at relatively large scales, where the Reynolds
number of the medium, measuring the ratio between inertial and viscous forces [69],
is very large and the full Navier-Stokes equations must be used to describe the fluid.
This changes though when we move to smaller scales: as mass scales with the cube
of the typical particle size and its surface with the square, at the micro-scale the
effects of inertia (related to mass) become negligible with respect to those of friction
(related to surface). Because of this, the most used model to describe colloids at
the micro-scale is not the Langevin model, but a variant of it, the Brownian model,
where the mass has been set to zero:

γṙ(t) = −∇(U(r(t))) + f(t). (1.3)

The limit in which friction dominates over inertia is called overdamped regime, in
contrast to the underdamped regime more typical of larger length scales.

The ABP model

We now introduce activity to the Brownian model. We are not interested in
modeling the specific propulsion mechanism of the active particle: the two main
properties of self-propelled particles that we need to capture are constant swim
velocity and persistence, i.e. the ability of active particles to perform directed
motion consistently in the same direction for a certain persistence time. The
ABP models these properties by introducing an orientation to the particle, n, in
which direction our particle pushes itself with speed v0 [15, 70]. The orientation
evolves stochastically thanks to the fluctuations of the thermal bath, while being
independent of the motion of the particle. The equations of motion for the ABP
model in 2D are:

γṙ(t) = γv0n(ϕ(t))−∇(U(r(t))) + f(t),

βϕ̇(t) = fr(t), (1.4)

where n = (cos(ϕ), sin(ϕ)), β is the rotational friction coefficient and the rotational
random force fr is white noise with

⟨fr(t)⟩ = 0,

⟨fr(t)fr(t′)⟩ = 2βkBTδ(t− t′), (1.5)

independent from the traslational random force f.
As this work only discusses this model in reference to spherical particles, it is

worth mentioning that in this case Stokes’ law yields a relationship between γ, β
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and the viscosity of the medium ηm [62]:

γ = 3πηmd,

β = πηmd
3, (1.6)

where d is the diameter of the particle.

The active Langevin model

Finally, as this project does not aim to only be relevant for colloids, a model which
is capable of describing both activity and inertia is necessary. Macroscopic active
particles, in fact, show behaviors that cannot be explained by the ABP model,
such as inertial delays and different collective behaviors [71–73], see Fig.1.2b). The
most straightforward way of implementing such a model is to go back to the initial
Langevin model and extend it to also include activity, in a similar way to how the
ABP model includes it [74]:

mr̈(t) + γṙ(t) = γv0n(ϕ(t))−∇(U(r(t))) + f(t),

βϕ̇(t) = fr(t). (1.7)

This model can be expanded to include further effects as rotational inertia, mass
variations and more [22], but in this project only simple constant-mass point-like
particles are treated.

1.1.2 Disordered fields

Disordered fields are one of the main subjects of this project, and were studied
in publications P1 and P5. They are of great interest to active matter research,
as some of the most sought-after goals revolve around active matter navigating
around unknown obstacles, for example when delivering drugs within the human
body or when reaching a certain target location in harsh terrain. The effects of
disordered fields on active matter have for this reason been an important subject of
research [10, 75], showing how disorder can affect diffusion [76–78], flocking [79, 80],
crowds [81] and phase separation [82]. A disordered landscape can be realized in a
variety of ways, for example by setting obstacles on the substrate [83–87], letting
particles move through porous media [53,88] or using light speckle fields [89–91].
This section discusses the two methods of modeling a random employed in my
publications.

Fourier series with randomly distributed modes

A very general way to define a disordered field, used in P1, is by the means of a
Fourier decomposition where the mode amplitudes ϵ

(α)
i,j are randomly distributed
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Figure 1.2: a) Milk is a very common example of a colloidal emulsion featuring
proteins and small fat droplets suspended in water. The scattering
of light provided by the droplets gives milk its typical white color
(picture provided by Regina Rusch). b) Macroscopic system with a
passive Brownian particle (the larger one) in a bath of active Brownian
particles (called vibrobots, see [73]). These particles are on the length
scale of centimeters, and the friction of the air and floor are not sufficient
to completely suppress inertial effects. The Langevin/active Langevin
model is well suited to describe systems such as this one (photo provided
by Lorenzo Caprini).
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(here in 2D):

M(r) =
∞∑

i,j=−∞

[
ϵ
(1)
ij cos(kix+ kjy) + ϵ

(2)
ij sin(kix+ kjy)

]
, (1.8)

where kn = 2π
L
n and L denotes an arbitrarily large periodicity. We further as-

sume that the amplitudes are independent with respect to each other, Gaussian
distributed and isotropic:

ϵ
(α)
ij = 0, ϵ

(α)
ij ϵ

(β)
mn = ϵ2i2+j2δimδjnδαβ, (1.9)

where (·) is the average over disorder. By tuning how the noise amplitude ϵ2i2+j2

varies as a function of the modes, we can create random fields with different
properties, as we can give more or less importance to different length scales.
Fig.1.3a) shows as example a random field where ϵ2i2+j2 decays as i2 + j2 grows,
giving more importance to larger length scales. In b) we can see its spatial
autocorrelation ⟨⟨I(r)I(r′)⟩⟩, where I is the intensity of the field and ⟨⟨·⟩⟩ is the
spatial average, while figure c) shows the intensity distribution.

Figure 1.3: Figure a) shows a random map, b) its autocorrelation and the autocor-
relation length σe and finally c) its intensity distribution.

Fourier transform of white noise

Speckle fields are particular type of disordered field, where a low-intensity back-
ground is disseminated with high-intensity areas, called grains or speckles, which
are scattered in a disordered manner. Such fields can be easily produced in a
laboratory by filtering a coherent light wave with some disordered medium [92, 93],
as for example a simple sheet of paper. The resulting light field can then provide a
complex environment for active colloids, which acts as either a potential [94, 95]
or motility [96,97] landscape based on the properties of the colloids and the light
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intensity. In publication P5 a light speckle field of this kind is used to provide a
random motility field to active Janus particles.

One way to mathematically model a speckle pattern is related to the aforemen-
tioned light fields. As light scatters through the particles in the filter, it interferes
with itself multiple times, resulting in a pattern that corresponds to the structure
factor [98] of the filter, i.e. the Fourier transform of its spatial composition. As
the filter is specifically chosen to be disordered, the distribution of its components
can be seen as simple white noise. Summarizing this process, one can numerically
produce a speckle field by applying the Fourier transform to a white noise map,
as is shown in Fig.1.4a). These fields possess two main properties: firstly, their
spatial autocorrelation function ⟨⟨I(r)I(r′)⟩⟩ clearly defines a specific autocorrela-
tion length, or grain size, σe (Fig.1.4b)), and secondly, their intensity distribution
decays exponentially (Fig.1.4c)).

Figure 1.4: Figure a) shows a typical example of speckle field, b) its autocorrelation
and the corresponding grain size σe and finally c) its exponentially
decaying intensity distribution.

1.1.3 Multiplicative noise landscapes

In order to produce an even more complex and interesting environment for our
particles to move into, we might want to further introduce a friction gradient (see
publication P2) or a temperature field (P3). By doing so we run though into a
new problem: we are introducing multiplicative noise into the system [27,37].

Additive and multiplicative noise

We can write a generic stochastic equation for the real vector r in the form:

ṙ = b(r, t) + σ(r, t) · η(t), (1.10)
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where η is a white noise vector, with ⟨ηi(t)⟩ = 0 and ⟨ηi(t)ηj(t′)⟩ = δi,jδ(t − t′),
b is a function that returns a vector and σ returns a matrix. If σ is constant,
the noise η is considered additive, meaning that fluctuations are simply added to
the equation and their strength does not depend on the state of the system. The
models described in Sec.1.1.1 only consider systems of this kind, as we could for
example write for the translational noise f = σ · η, where σ =

√
2γkBT I and I is

the identity matrix. The more general case where σ is not constant, and hence the
strength of noise depends on the system variables, is called multiplicative noise and
gives rise to a series of issues that will shortly be discussed.

The Itô/Stratonovich problem

As white noise is delta-correlated in time, Eq.(1.10) is not completely mathematically
defined. It helps to consider, instead of the noise itself η, the Wiener process that
it generates W(t) =

∫ t

0
η(t′)dt′ and to rewrite the equation as

dr = b(r, t)dt+ σ(r, t) · dW, (1.11)

where, since the noise components ηi are Gaussian distributed and delta correlated,
the increments dWi are Gaussian distributed with variance dt and independent of
the increments in others intervals of time [99]. If we attempt to integrate this set
of equations with a Riemann integral, we immediately run into the problem that
W is never differentiable, rendering the integral a purely formal expression. What
we can instead do is to use the Stieltjes integral definition, for which:

∫ t

t0

f(t′)dg(t′) = lim
n→∞

n∑

i

f(t̂l)[g(tl)− g(tl−1)], (1.12)

where f and g are real functions of t and tl−1 ≤ t̂l ≤ tl. If g is differentiable, the
limit will always converge to the same value for any t̂l, but if g is not, the choice of
t̂l becomes relevant. For example, if we take both f = W (t) and g = W (t), where
W is a Wiener process, the mean value of the integral

∫ t

0
W (t)dW will depend

heavily on where we choose to evaluate the integrating function:

lim
n→∞

n∑

l

⟨W (tl)[W (tl)−W (tl−1)]⟩ = lim
n→∞

n∑

l

⟨[W (tl)−W (tl−1)]
2⟩ = t,

lim
n→∞

n∑

l

⟨W (tl−1)[W (tl)−W (tl−1)]⟩ = lim
n→∞

n∑

l

⟨W (tl−1)⟩⟨[W (tl)−W (tl−1)]⟩ = 0,

(1.13)

where the independence of disjointed Wiener increments and the variance of a
Wiener increment were used. Given this ambiguity in the definition of a Stieltjes
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integral, it becomes always necessary to specify where the integrating function f
is evaluated. The two most common conventions regarding this specification are
f(t̂l) = f(tl−l), or Itô convention, and f(t̂l) = (f(tl) + f(tl−1))/2, or Stratonovich
convention. The Itô convention reflects well causality, as the noise is here a
consequence of the state of the system, and is also good for performing numerical
simulations, since the prefactor of the noise is usually calculated from the state
of the system at the beginning of each time step. The trade-off is that the usual
integration and differentiation laws, such as Leibniz’s chain rule, do not apply (see
for example Itô’s lemma [100]). The Stratonovich convention, on the other hand,
has the advantage of preserving the classical differentiation rules at the cost of an
additional drift term:

dri = bi dt+ σijdWj (Itô),

dri =

(
bi −

1

2
σkj

∂

∂xk

σij

)
dt+ σijdW̃j (Stratonovich), (1.14)

where the noise term dW̃j is interpreted in the Stratonovich sense and repeated
indexes imply sums. For example, the simple diffusive equation in the Itô sense

dx =
√

2D(x)dW (Itô), (1.15)

where D(x) is a real positive function, transforms into

dx = −1

2

∂D(x)

∂x
dt+

√
2D(x)dW̃ (Stratonovich). (1.16)

As the friction γ and the temperature T are fundamental properties of the thermal
bath where our particles move, they directly affect the intensity of the random
forces. It is fundamental then, when studying systems in which these quantities
are a function of time or position, to always keep in mind the convention used and
the relative properties.

1.1.4 Landscapes of different and interacting populations

Finally, we also want to model the differentiation of particles into populations
and their ability to interact. In active matter, different populations can model for
example competition among cells [101], predator-prey behaviors [102,103], run-and-
tumble motion [51,52,104], and the life cycle of cells [105]. Here, the complexity of
the landscape is not a field imposed on the particles, but an emergent feature of the
collective behavior of the particles themselves. In order to study such systems we
now change our prospective, instead of using Langevin equations we describe our
stochastic processes via probability distribution functions and the Fokker-Planck
equation [37]. Starting from a stochastic equation for a certain variable r it is
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always possible to write a partial differential equation for its probability distribution
which describes the same system. In the case of an equation with both drift and
diffusion, such as Eqs.(1.14), the corresponding Fokker-Planck equation is

∂

∂t
P (r, t) = − ∂

∂ri
[biP (r, t)] +

1

2

∂2

∂ri∂rj
[σikσjkP (r, t)] . (1.17)

We now want to extend these equations to reflect the existence of various interacting
populations. We consider a simplified version of the system studied in publication
P4: a 1D system with two active particle populations, one described by the spatial
density ρ+(x, t) moving with speed v0 towards the right, and the other defined
as ρ−(x, t) going at the same speed but in opposite direction, both subject to a
constant diffusion coefficient D:

∂tρ+ = −v0∂xρ+ +D∂2
xρ+,

∂tρ− = v0∂xρ− +D∂2
xρ−. (1.18)

Please note that as these equations handle spatial densities, and not probability
densities, they are not technically Fokker-Planck equations, although the only
difference is that the integral over these densities does not converge to one, but to
the total number of particles. Eqs.(1.18) are quite unremarkable, as they describe
two populations that do not interact with themselves or each other. To make things
more interesting we can include the population exchange rates λ± for particles
going from ρ∓ to ρ±:

∂tρ+ = +λ−ρ− − v0∂xρ+ +D∂2
xρ+ − λ+ρ+,

∂tρ− = +λ+ρ+ + v0∂xρ− +D∂2
xρ− − λ−ρ−. (1.19)

These equations now describe run-and tumble motion in 1D, i.e. active particles
that can change their direction of motion with a certain rate [51, 52]. Lastly,
interactions can be included as nonlinear terms in the population densities. We can
for example include attraction among opposite-sign populations κa and repulsion
among same-sign populations κr:

∂tρ+ = +λ−ρ− − v0∂xρ+ +D∂2
xρ+ − λ+ρ+ + κa∂x(∂x(ρ−)ρ+)− κr∂x(∂x(ρ+)ρ+),

∂tρ− = +λ+ρ+ + v0∂xρ− +D∂2
xρ− − λ−ρ− + κa∂x(∂x(ρ+)ρ−)− κr∂x(∂x(ρ−)ρ−).

(1.20)

Nonlinear systems such as this one yield much richer results than linear ones, as
they can model collective and emergent behaviors. The downside is that in most
cases they cannot be exactly solved without the heavy use of approximations. One
method that can reliably yield information on these systems is linear stability
theory [106], which, by linearizing the equations around a certain state of the
system, can tell us whether that state is stable or not.
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1.2 Mean squared displacement

After choosing a model that can well represent our system, the next step is to
decide what quantities to measure in order to yield the most insight out of it.
The observables of reference for this chapter are the mean displacement (MD) of
the particle and more importantly its mean squared displacement (MSD). These
quantities can give us an idea respectively of how symmetric and persistent the
trajectory of a particle is and how far it moves on average after a certain time t.
They are defined as

MD = ⟨r(t)− r(0)⟩,
MSD = ⟨(r(t)− r(0))2⟩, (1.21)

where ⟨·⟩ is the thermal average and r is the position. In the Fokker-Planck
representation of our stochastic equations of motion, they would be the first two
moments of the probability density function of the position (more on that in
Sec.1.2.3).
We can learn a lot about the motion of a particle from the behavior of its MD

and MSD, and more specifically from how they grow with time. Let us for example
calculate the MD and MSD of a free non-stochastic particle with initial velocity v0

and initial position r(0) = 0:

⟨r(t)− r(0)⟩ = r(t) = v0t,

⟨(r(t)− r(0))2⟩ = r(t)2 = |v0|2 t2. (1.22)

This simple calculation shows how a particle undergoing ballistic motion features an
MD that grows linearly with time and an MSD which grows quadratically. As much
as this result is trivial, a stable t2 regime in the MSD is a very strong indication
that in that time frame the system is performing ballistic motion. Another thing to
notice is that if we assume a uniformly random initial orientation for the ballistic
particle of Eqs.(1.22) and we average over the initial conditions, its MSD will not
change, while its MD will average to zero. In fact, being an even function of the
position, the MSD is much more resilient to averaging, both with respect to initial
conditions and thermal noise, and will always yield more reliable information on
the motion of a particle. Because of this, going forward more focus will be put on
the MSD.
Let us now consider another example: the free Brownian particle. This case is

not as straightforward as the previous one, as we are now considering stochastic
trajectories and must average over noise. First of all we solve the Brownian
differential equations (Eq.(1.3), setting U = 0 and r(0) = 0) formally:

r(t) =
1

γ

∫ t

0

f(t′)dt′. (1.23)
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We then substitute r(t) in the MSD obtaining:

⟨r(t)2⟩ =
1

γ2

∫ t

0

∫ t

0

⟨f(t′)f(t′′)⟩dt′dt′′ = 1

γ2

∫ t

0

∫ t

0

2dfγkBTδ(t
′ − t′′)dt′dt′′

=
2dfkBT

γ

∫ t

0

dt′ =
2dfkBT

γ
t, (1.24)

where df is the number of dimensions and the fluctuation-dissipation theorem was
used, Eq.(1.2). We further define the diffusion coefficient D = kBT

γ
, which allows

us to simplify the final result:

⟨r(t)2⟩ = 2dfDt. (1.25)

This calculation shows that the MSD of a particle undergoing diffusive motion
grows linearly with time.
Knowing now that a linear regime of the MSD in time signifies diffusive motion

and that a quadratic one indicates ballistic motion, we have the basic tools to
understand the kinematic behavior of most stochastic systems by simply looking
at their MSD.

1.2.1 The MSD and MD of an active particle

Mean squared displacement - overdamped

By introducing activity to the Brownian model, the ABP model showcases a variety
of behaviors that are perfectly captured by its MSD [70]. Let us start the calculation
from the formal solution of the 2D ABP model in Eq.(1.4), where U = 0, r(0) = 0
and ϕ(0) ≡ ϕ0:

r(t) =
1

γ

∫ t

0

f(t′)dt′ + v0

∫ t

0

n(ϕ(t′))dt′,

ϕ(t) = ϕ0 +
1

β

∫ t

0

fr(t
′)dt′. (1.26)

When substituting into the MSD, this yields

⟨r(t)2⟩ = 4Dt+
2v0
γ

∫ t

0

∫ t

0

⟨f(t′)n(ϕ(t′′))⟩dt′dt′′

+v20

∫ t

0

∫ t

0

⟨n(ϕ(t′))n(ϕ(t′′))⟩dt′dt′′, (1.27)

where in the first term the result for a free Brownian Particle in 2D, Eq.(1.24),
was used. Since n is only a function of ϕ, which in turn is only a function of the
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random force fr, and fr is assumed to be independent from f, in the mixed term
we have

⟨f(t′)n(ϕ(t′′))⟩ = ⟨f(t′)⟩⟨n(ϕ(t′′))⟩ = 0, (1.28)

as f(t′) is white noise. In order to compute the last term of Eq.(1.27), which is
purely active, we must know how ϕ is distributed. Since ϕ is a linear distribution
of Gaussian variables, in this case fr, Wick’s theorem ensures that ϕ is Gaussian
too [107,108]. As a consequence, the probability distribution of ϕ is the following:

P (ϕ, t) =

√
β

4πkBTt
exp

(
−β(ϕ− ϕ0)

2

4kBTt

)
. (1.29)

We simplify the notation by defining the rotational diffusion constant Dr =
kBT
β

.

Knowing the distribution of ϕ we can calculate the average ⟨n(ϕ(t′))n(ϕ(t′′))⟩ =
⟨cos(ϕ′) cos(ϕ′′)⟩+ ⟨sin(ϕ′) sin(ϕ′′)⟩, where ϕ′ ≡ ϕ(t′) and ϕ′′ ≡ ϕ(t′′). Focusing on
the cosine term, we have [107]:

⟨cos(ϕ′) cos(ϕ′′)⟩t′>t′′ =

∫ ∫
cos(ϕ′) cos(ϕ′′)

e
−

(φ′−φ′′)2

4Dr(t′−t′′)

2
√
πDr

P (ϕ′′, t′′)dϕ′dϕ′′. (1.30)

Solving the integral of Eq.(1.30) we obtain

⟨cos(ϕ′) cos(ϕ′′)⟩t′>t′′ =
1

2
e−Dr(t′−t′′)

[
1 + cos(2ϕ0)e

−4Drt′′
]
, (1.31)

which, when summed to the similarly obtained sine term and integrated into
Eq.(1.27), yields the following MSD:

⟨r(t)2⟩ = 4Dt+ 2v20

∫ t

0

∫ t′

0

e−Dr(t′−t′′)dt′dt′′ = 4Dt+ 2
v20
D2

r

(
Drt+ e−Drt − 1

)
.

(1.32)
The various regimes of the MSD become evident when we plot it in a log-log scale,
as can be seen in Fig.1.5 a). The particle undergoes three major regimes: first
a diffusive behaviour with diffusion constant D as the particle feels the effects of
traslational noise, then a ballistic regime in which the particle moves at speed v0
that encapsulate its active directed motion, and finally another diffusive regime

with effective diffusion constant Deff = D +
v20
2Dr

where the orientation of the
particle starts changing randomly because of the rotational noise. The relative
importance of the ballistic regime with respect to the diffusive ones is given by the
Péclet number, defined here as [10]

Pe =
v0√
DDr

. (1.33)
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It is possible to know exactly when the system goes from one behavior to the
next by mathematically calculating the intersection of the various regimes in time.
These intersections are defined as crossing times, and in the case of the ABP there
are two of them: at time

tc1 =
4D

v20
(1.34)

the particle starts moving ballistically and at time

tc2 =
4D

v20
+ 2D−1

r (1.35)

we begin to see the final diffusive regime.

Figure 1.5: a) Typical MSD of an active Brownian particle. There are three
distinctive regimes: diffusive, ballistic and diffusive again. b) Modulus
of the mean displacement of an ABP, closing in on the persistence
length lp as time grows.

Mean displacement - overdamped

Differently from the passive Brownian case, where the MD inevitably averages to
zero, calculating the Mean displacement for an active Brownian particle can give
us some interesting insight in the system. The calculation is more straightforward
than that of the MSD and yields:

⟨r(t)⟩ = v0n(ϕ0)

∫ t

0

e−Drt′dt′ =
v0n(ϕ0)

Dr

(
1− e−Drt

)
. (1.36)

We see that in the long time limit t → ∞, the MD reduces to v0n(ϕ0)/Dr, meaning
that ABPs will on average keep their initial directed motion for a persistence length
lp =

v0
Dr

, before changing their orientation. In Fig.1.5 b) we see how the MD goes
exponentially close to lp.
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Mean squared displacement - underdamped

In virtue of its inertia, the motion of an underdamped particle is dominated at
short times by its initial speed. The MSD of an underdamped active particle in its
stationary state is [74]:

⟨r(t)2⟩ = 2
m

γ

(
D +

v20
Dr

1

1− 1/α2

)[
tγ

m
+ e−tγ/m − 1

]
+2

v20
D2

r

1

1− α2

[
Drt+ e−Drt − 1

]
.

(1.37)
where the ratio α = mDr

γ
indicates how relevant inertia is in the system. By plotting

a typical example of such MSD in Fig.1.6, we find how a new initial ∝ t2 regime
appears, related to the average particle speed in the stationary state.

Figure 1.6: Typical MSD of an active Langevin particle. With respect to the
overdamped case, we have now an additional initial ballistic regime, for
a total of four: ballistic, diffusive, ballistic and diffusive again.

1.2.2 Short-time MSD in complex environments

This section goes through the basic procedure behind the calculations of the short-
time MSD in publications P1 and P2, also explained in the Appendix of P1. We
consider for this example a 2D overdamped active particle (Eq.1.4) in a disordered
potential field U(r), in the form of Eq.(1.8).

Taylor approximation of the field

The first step necessary to approach this problem is to Taylor expand the external
random forces F ≡ −∇U around the initial position of the particle r0:

F(r(t)) =
∞∑

nx=0

∞∑

ny=0

(x(t)− x0)
nx(y(t)− y0)

ny

nx!ny!

(
∂nx+nyF

∂xnx∂yny

)
(r0) (1.38)
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and to approximate this expansion to first order:

F(r(t)) ≃ F(r0) +

(
(x− x0)F

x
x (r0)

(y − y0)F
y
y (r0)

)
, (1.39)

where a subscript to F signifies a force component and a superscript denotes a
partial derivative. This approximated system is that of an active particle influenced
by two independent Brownian oscillators along the x and y directions, which is
analytically solvable [109].

Short-time MSD of the active Brownian oscillator

Let us calculate the harmonic oscillator MSD for short times. After the field
approximation, the equation of motion in the x direction becomes:

γẋB = fx(t) + γv0 cos(ϕ(t)) + Fx(r0) + F x
x (r0)(xB(t)− x0), (1.40)

which formal solution is

xB(t) = x0 +
Fx(r0)

F x
x (r0)

(
e

1
γ
Fx
x (r0)t − 1

)
+

1

γ

∫ t

0

e
1
γ
Fx
x (r0)(t−t′)fx(t

′)dt′

+ v0

∫ t

0

e
1
γ
Fx
x (r0)(t−t′) cos(ϕ(t′))dt′

≡ x0 + xa(t) + xb(t) + xc(t), (1.41)

where

ϕ(t) =
1

β

∫ t

0

fr(t
′)dt′. (1.42)

The mean square displacement up to order t4 in time in the x direction is then

MSDxB(t) =
〈
⟨(xa(t) + xb(t) + xc(t))2⟩

〉
r

= 2Dt+

(
F̂ 2
x

γ2
+

v20
2

)
t2 +

1

6

(
8D

F̂ x2
x

γ2
−DRv

2
0

)
t3

+
1

24

(
14

F̂ 2
xF

x2
x

γ4
+ 7

F̂ x2
x

γ2
v20 +D2

Rv
2
0

)
t4 +O(t5), (1.43)

where ⟨·⟩r is the average over the initial conditions, (·) the average over disorder, ⟨·⟩
the thermal average and (̂·) represents both the averages over disorder and initial
conditions. We notice that Eq.(1.43) contains both a ∝ t3 and a ∝ t4 term, which
are the lowest order terms where the configuration of the force field appears (i.e.
the force derivatives), and are neither ballistic nor diffusive. The t4 term in the
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MSD, in fact, indicates an acceleration, while in this case the t3 term is a complex
mixture of acceleration and diffusion. In order to ascertain if these are real regimes,
one must calculate the crossing times between the various order, and if a high order
crossing time (for example between order t3 and t4) is smaller than a lower order
one (for example between order t2 and t3), the orders between these crossing times
do not constitute regimes (in this case, t3 would not be a regime). In publication
P1, we find for example that an ABP in such a disordered potential landscape
does not feature real t3 and t4 regimes, while an active Langevin particle does.

Perturbative terms

Referring to the simpler active Brownian oscillator, the MSD calculated in Eq.(1.43)
does not consider any terms of order higher than the first derivative in the forces ex-
pansion of Eq.(1.38). The contribution of higher order derivatives can be calculated
starting from the oscillator solution xB(t) and adding to it a small perturbation

term h
(1)
x (t). We want to find

x(t) = xB(t) + h(1)
x (t) (1.44)

such that:

γẋB(t) + γḣ1(t) = fx(t) + γv0 cos(ϕ(t))

+
4∑

nx=0

4∑

ny=0

(xB(t) + h
(1)
x − x0)

nx(yB(t) + h
(1)
y − y0)

ny

nx!ny!

(
∂nx+nyFx

∂xnx∂yny

)
(r0), (1.45)

where we considered all the terms in Eq.(1.38) for which nx + ny ≤ 4. The result

for a small perturbation h
(1)
x (t) is:

γh(1)
x (t) ≃

∫ t

0

[F y
x (r0)∆yB(t

′)

+
1

2
F xx
x (r0)∆x2

B(t
′) + F xy

x (r0)∆xB(t
′)∆yB(t

′) +
1

2
F yy
x (r0)∆y2B(t

′)

+
1

6
F xxx
x (r0)∆x3

B(t
′) + · · ·+ 1

6
F yyy
x (r0)∆y3B(t

′)

+
1

24
F xxxx
x (r0)∆x4

B(t
′) + · · ·+ 1

24
F yyyy
x (r0)∆y4B(t

′)

]
dt′, (1.46)

where ∆xB(t
′) ≡ (xB(t

′) − x0) and ∆yB(t
′) ≡ (yB(t

′) − y0). To obtain all the
necessary terms up to fourth order in time this procedure has to be repeated with
a second order perturbation h

(2)
x (t), and the resulting MSD in the x direction is

the following

MSDx(t) =

〈〈(
xa(t) + xb(t)) + xc(t) + h

(1)
x + h

(2)
x (t)

)2〉
〉

r

. (1.47)
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We are certain that this is enough to calculate the exact short-time MSD up to
fourth order in time because the lowest time order contribution to the MSD of the
perturbations h(n) grows with n, and the lowest non-zero contribution of h(3) is of
order > t4. Once the Eq.(1.47) expression is explicitly calculated and summed to
MSDy(t), we obtain the exact short-time MSD up to order t4 (P1):

MSD(t) = 4Dt+

[
v20 +

1

γ2
F̂ 2
i

]
t2 −

[
1

3
v20DR +

D

γ2
F̂ j2
i

]
t3

+
1

24

[
2v20D

2
R + 10

D2

γ2
F̂ jk2
i − 5

v20
γ2

F̂ j2
i

+
1

γ4

(
14F̂ 2

i F
i2
i + 8F̂ 3

i F
ii
i + 14 ̂FxFyF

y
xF i

i

+14 ̂FyFxF x
y F

i
i − 5̂F 2

i F
y2
x − 5F̂ 2

i F
x2
y

)]
t4 +O

(
t5
)
, (1.48)

where the i, j and k indexes each imply a sum over the directions x and y.

1.2.3 The intermediate scattering function

We discussed in Section 1.1.4 about how one can describe a stochastic process
using partial differential Fokker-Planck equations and the probability distribution
function P (r, t). In such cases, the calculation of the MD and MSD is direct,
as they are respectively the first and second moments of r − r0 with respect to
P : MD = ⟨r − r0⟩ and MSD = ⟨(r − r0)

2⟩, where ⟨·⟩ is defined as
∫
dr(·)P (r, t).

Sometimes finding the real space solution of the equations P (r, t) and performing
these averages directly can prove challenging, so it helps to move into Fourier space
and use the properties of the intermediate scattering function, or ISF, defined as

F(k, t) ≡ P̃ (k, t)P̃ (−k, 0), (1.49)

where P̃ is the Fourier transform of P and k is the wave number conjugate to r. The
ISF can then be related to the different moments of the density by differentiation,
for example for an isotropic 3D system we have that [110]:

⟨(r− r0)
2n⟩ = (−1)2n

(2n+ 1)!

n!

∂n

∂(k2)n
F(|k|, t)

∣∣∣∣
k
2=0

, (1.50)

while in one dimension, such as in publication P4:

⟨(x− x0)
n⟩ = in

∂n

∂kn
F(k, t)

∣∣∣∣
k=0

. (1.51)
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1.3 Janus particles and thermophoresis

When possible, real-life experiments are always warranted when studying a subject,
as they provide challenges and insights that analytic modeling and simulations
do not. Since publication P5 (Fig.1.7a) features an experimental realization of a
system of active particles in a disordered landscape, this section is dedicated to this
specific experimental setup, the underlying physical mechanism and its modeling.

1.3.1 The setup

There are three main components to the setup: a laser which provides energy
to the system, a mixture of water and 2,6-lutidine at a temperature just below
its demixing threshold, where the particles move, and finally the active particles
themselves. The active particles are made out of silica and are half-coated in a
thin layer of carbon. This type of asymmetrically coated particle, or Janus particle,
is a staple in active matter systems [35,111], as this asimmetry can be exploited to
engineer simple self-propulsion mechanisms. In our case, the mechanism employed
is called thermophoresis [112]: when light is shined upon the particles, the carbon
half, being opaque, absorbs a larger part of it, increasing its own temperature. This
generates a temperature gradient in the medium surrounding the particle, which
leads to its localized demixing (see Fig.1.7b). Finally, the flows generated in the
medium by the presence of the demixed fluid around the coating push the particle,
either in the direction of the coating or opposite to it it based on whether the laser
intensity is respectively smaller or larger than a certain threshold Ir [97,113]. Since
the intensity of light impacts the active speed of the particles, a modulation in the
light field can be directly seen as a motility field [114]. The presence of an uneven
light field leads to a further effect: a torque which rotates particles either away
from or towards more intensely illuminated areas, on the base again of whether
the laser intensity is respectively smaller or larger than Ir. This effect is called
negative/positive phototaxis respectively. Now, in order to create a disordered light
field for the particles to move through, the technique explained in Sec.1.1.2 is used:
the coherent laser light is beamed through a disordered filter, which generates by
diffraction a speckle field on the other side.

1.3.2 Modeling

The experiment is modeled as a bidimensional system of dry interacting active
Brownian particles with an active speed that depends on their position, leading to
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Figure 1.7: a) Janus particles in a speckle light field (photo provided by Gianni
Jacucci). b) Sketch of the phase diagram of a water-lutidine mixture.
At rest, the temperature of the system is just below the phase transition
line, so that the heating induced by shining a laser on the Janus particles
causes a localized demixing.

the following equations for the positions r and orientations ϕ of each particle i:

γ′ṙi(t) = γ′v0(ri)n(ϕi)−
∑

j ̸=i

∇ULJ (|ri − rj|) + f(t),

β′ϕ̇i(t) = β′ω(ϕi, ri) + f r
i (t), (1.52)

where ω is the torque and γ′ and β′ are modified versions of respectively the
translational and rotational diffusion constants γ and β defined in Eqs.(1.6),
corrected to take into consideration the interface effects of the substrate surface. In
the case of particles directly touching the surface, these correction factors amount
to γ′ = 16

9
γ and β′ = 8

7
β [115]. The Lennard-Jones potential ULJ describes an

interaction which is repulsive at very short distances and attractive otherwise:

ULJ(|ri − rj|) = 4ϵ

[(
d

|ri − rj|

)12

−
(

d

|ri − rj|

)6
]
, (1.53)

where d is the diameter of the particles and ϵ is the maximum depth of the potential,
which also defines the energy scale of the system. Eqs.(1.52) are very similar to
the equations for the basic ABP model, Eq.(1.4), with the main differences being
the presence of a motility field v0(ri) and the torque term ω(ϕi, ri):

ω(ϕi, ri) =
c

d
v0(ri) [∇v0(ri)× n(ϕi)] · êz. (1.54)
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This torque models a positive or negative phototaxis for respectively a negative or
positive value of c. These equations can be integrated numerically, for example with
an Euler-Maruyama scheme, while the motility field can be generated by taking
the Fourier transform of white noise, as discussed in Sec.1.1.2. Typical snapshots
of the simulations can be seen in Fig.1.8.

Figure 1.8: Simulation snapshots for a Gaussian-like a) and a speckle b) motility
field. Different clusters are colored in different colors, while particles
not part of any cluster are left in black. The red arrows show the
orientation of the particles.



23

Chapter 2

Active entangled polymers

Polymers are systems of interconnected repeating units, called monomers. Such
structures are ubiquitous in nature: the clothes we wear, as well as any plastic
object or even the basic macromolecules in our body, like proteins, DNA and
carbohydrates can all be considered polymeric systems [116]. On a macroscopic
scale, polymers can also be used to model ropes, chains and living beings like
snakes or worms [117], which, being active, are particularly relevant for this project.
Indeed, in this chapter we evaluate the interplay between activity and particle
deformability by considering complex active polymers, which monomers are active
particles themselves. In order for the reader to appreciate the results of publication
P6, we discuss some relevant polymer models: the Rouse model in Sec.2.1, which
sets the basics for the study of free polymers, the tube model in Sec.2.2, necessary
to understand highly entangled polymer systems, and in Sec.2.3 the model used in
P6 to describe active polymers.

2.1 Free polymers: the Rouse model

As publication P6 is mostly concerned with the rheology of polymer solutions, this
section and the next are mainly focused on their mechanical response. Instead of
doing rigorous calculations, we will rely more on useful approximations, scalings
and related interpretations, similarly to what is done in Ref. [118]. For now,
we consider a very simplified model, where we have a very diluted solution of
polymers made of chains of N beads connected via harmonic springs with elastic
coefficient k ≡ 3kBT

2b2
. This value of k ensures, in the presence of thermal white

noise independent between monomers fi, Eq.(1.2), that the beads keep on average
a distance b between neighbors: ⟨(ri+1 − ri)

2⟩ = b2. The system is overdamped and
the monomer positions ri follow the equations:

γṙ1 = −k(r1 − r2) + f1,

γṙi = −k(2ri − ri−1 − ri+1) + fi, 1 < i < N

γṙN = −k(rN − rN−1)) + fN . (2.1)
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A simple result that can be extracted from this set of equations is the behavior of
the center of mass of the polymer rCM ≡ 1

N

∑
i ri:

ṙCM ≡
N∑

i=1

ṙi
N

=
N∑

i=1

fi
Nγ

⇒ NγṙCM = fCM , (2.2)

where, since the fi are independent identical Gaussian-distributed variables, fCM is
also white noise, with variance ⟨fCM,α(t)fCM,β(t

′)⟩ = 2kBTNγδα,βδ(t− t′). Essen-
tially, the center of mass of the polymer moves exactly as a free Brownian particle
with friction Nγ and diffusion coefficient DN = kBT

Nγ
. With this, we can calculate

the typical time τR necessary for the polymer to diffuse of a distance of the order
of its size:

τR ∼ ⟨R2
ee⟩

DN

=
Nγ⟨R2

ee⟩
kBT

, (2.3)

where ⟨Ree⟩ ≡ ⟨|rN − r1|⟩ is the average end-to-end distance of the polymer,
containing information on its configuration. In fact, if ⟨Ree⟩ = Nb, the polymer is
completely stretched, and the smaller ⟨Ree⟩ is, the more coiled is the polymer. The
τR timescale, or Rouse time, is made relevant by the fact that at time τR all the
monomers have on average interacted with each other (either directly or through
other monomers), and the polymer has hence relaxed. This means that the motion
of the monomers has become coherent and they all diffuse with the center of mass.
Since the beads do not repel each other, it is possible to draw a direct comparison
between a polymer of this kind, called ideal chain, and a random walk. Specifically,
the MSD of a random walk and the ⟨Ree⟩ of an ideal chain have the same scaling
behavior, with respect to time for the MSD and to the number of monomers for the
⟨Ree⟩: ⟨R2

ee⟩ = b2N . The more realistic scaling of a real chain [119, 120], where we
have repulsive interactions between different monomers, is not discussed here, as it
is not necessary to understand the entangled case. If we consider the ideal chain
scaling and also our monomers to be spheres of diameter b, we can use Eq.(1.6)
and write

τR ∼ N2b3ηm
kBT

, (2.4)

where ηm is the viscosity of the medium. Another relevant time scale is the
typical time it takes for monomers diffuse of a distance equal to the bond length,
corresponding to the typical interaction time τ0. Similarly to how τR was extracted,
we have

τ0 ∼
b3ηm
kBT

. (2.5)

We can use these two timescales as qualitative limits in time of the mechanical
response of our polymer. In fact, for times smaller than τ0, the configuration of
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the polymer does not change, leading to an elastic response, while for times larger
than τR the polymer moves diffusively and responds to stress as a Newtonian fluid
would. This complicated time-dependent response of the system indicates that we
are dealing with viscoelasticity, a concept that requires a short introduction.

2.1.1 Viscoelasticity and the stress relaxation modulus

Let us consider a thin flat solid with thickness h. In order to study the linear
mechanical response of such a system, a force F is applied to one face of the
material tangential to the surface, while the other side remains fixed. This causes a
deformation of magnitude ∆x in the material, and allows us to measure the shear
strain of the material ζ = ∆x/h and the shear stress σ = F/A, where A is the cross
section of the material. For perfectly elastic solids, the stress is proportional to the
strain, and their ratio is defined as the shear modulus G = σ/ζ.
If, instead of a solid, we decide to study the response of a fluid, this approach

no longer works, because the application of a fixed amount of shear strain to the
system does not originate any stress. What we can do instead, is to increase the
strain over time (e.g. move one of the plates constricting the system at constant
speed): in fact, in liquids the stress is a function of the shear rate ζ̇ = dζ

dt
. For

Newtonian liquids, shear stress and rate are proportional, and their ratio is the
viscosity of the material η = σ/ζ̇.

Now, viscoelastic materials, such as polymers and in general soft materials, live
somewhere in the middle between solids and liquids. Polymers specifically, as we
have seen, show an elastic solid-like response at short times, a viscous liquid-like
response at long times and some different behavior at intermediate times, when
they are in the process of relaxing. Since the response of the system is now
time-dependent, the stress becomes a function of time too [118]:

σ(t) =

∫ t

−∞

G(t− t′)ζ̇(t′)dt′, (2.6)

where G(t) = σ(t)/ζ(t) is now referred to as stress relaxation modulus. We can
further define a time-dependent viscosity η(t) = σ(t)/ζ̇(t), and if we consider a
constant shear rate ζ̇, we have:

η(t) =
σ(t)

ζ̇

∫ t

−∞

G(t− t′)ζ̇dt′ =

∫ t

0

G(t′′)dt′′. (2.7)

Some other relevant quantities that we can extract from G(t) are the relaxation
time of the system τd, that is the time at which the system has completely relaxed
and G(t) falls exponentially, and the long-time viscosity η = limt→∞ η(t). Given
the richness of information contained in G(t), this quantity is used extensively in
the study of polymer relaxation dynamics.
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2.1.2 The Rouse viscoelastic response

In order to study how polymers relax in the viscoelastic regime, it is important to
note that polymer chains are self-similar, i.e. sections of the chain behave similarly
to the full polymer. When relaxing, each of these sections constitutes a relaxation
mode, with typical relaxation time τp for a section of length N/p and 1 ≤ p ≤ N .
When a polymer section relaxes, all the monomers within that section start moving
coherently. We focus first on the whole-polymer relaxation mode (p = 1): we
already know that at time τR the whole polymer relaxes (hence τ1 = τR), so its
response will be purely diffusive for times larger than τR. The stress relaxation
modulus after this time can be then approximated with a Maxwell element [121], a
combination of an elastic element and a viscous one, giving the following formula
for G(t):

G(t ≥ τM) = GMe−t/τM , (2.8)

where τM is the relaxation time, in this case equal to τR, and GM ≡ G(τR) is
connected to the elasticity of the material. In polymer networks, elasticity is related
to the thermal energy within each polymer (also called entropic elasticity [118,122]),
so G(τR) is proportional to the chain number density Φ/Nb3 (where Φ is the average
number of monomers in a volume b3) times the thermal energy kBT :

G(τR) ∼ kBT
Φ

Nb3
. (2.9)

The G(t) for t ≥ τR is then

G(t ≥ τR) ∼ kBT
Φ

Nb3
e−t/τR . (2.10)

We can use the results for p = 1 to calculate the values of τp and G(τp) for all other p.
Knowing that the full-chain relaxation time is N2 times larger than the relaxation
time of a single monomer, τR ∼ τ0N

2, we can extrapolate an approximation of τp:

τp ∼ τ0

(
N

p

)2

, 1 ≤ p ≤ N. (2.11)

In order to find G(τp) we count all unrelaxed modes at time τp, p per chain, as
each will give its entropic contribution by the equipartiton theorem:

G(τp) ∼ kBT
Φ

Nb3
p. (2.12)

Using Eq.(2.11) we can then substitute p:

G(τp) ∼ kBT
Φ

b3

√
τ0
τp
, (2.13)
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Time scale Description ∝ MSD G(t)
t < τ0 Beads are independent Dt G0

τ0 ≤ t < τR Rouse relaxation D
√
tτ0 G0

√
τ0
t

t ≥ τR Relaxation of the whole polymer D
N
t G0

N
e−t/τR

Table 2.1: Behavior of the mean squared displacement MSD and the stress relax-
ation modulus G(t) of a Rouse polymer at different time scales.

which in the continuum limit of τp becomes

G(τ0 ≤ t < τR) ∼ kBT
Φ

b3

√
τ0
t
, (2.14)

where
√

t
τ0

≡ n(t) is the size of polymer sections relaxed at time t. Finally, we can

combine the intermediate (Eq.2.14) and long time (Eq.2.10) behaviors of G(t) in
the following equation:

G(τ0 ≤ t) ∼ kBT
Φ

b3

√
τ0
t
e−t/τR , (2.15)

while before τ0 the response is simply elastic:

G(t < τ0) ∼ kBTΦ/b
3 ≡ G0. (2.16)

Now that we have G(t) we can also calculate the polymer viscosity η:

η =

∫ ∞

0

G(t)dt ∼ kBT

b3
Φ
√
τ0τR ∼ kBT

b3
Φτ0N ∼ ηmΦN. (2.17)

Finally, knowing the length of polymer strands that have relaxed at a certain time
n(t) allows us to find an estimate for the MSD of monomers at intermediate times.
Using self-similarity and the diffusion coefficient for the center of mass of the full
polymer DN = kBT

Nγ
, we have

D(τ0 ≤ t < τR) ∼
kBT

n(t)γ
∼ kBT

γ

√
τ0
t
, (2.18)

which indicates that the polymer behaves subdiffusively at intermediate regimes:

MSD(τ0 ≤ t < τR) ∼ D(t)t ∼ kBT

γ

√
τ0t. (2.19)

The results for the G(t) and MSD are summarized in Table (2.1).
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2.2 Entangled polymers: the tube model

When we consider monomer-monomer repulsion (e.g. in the form of volume
exclusion), the physics and behavior of a solution of polymers changes radically as
a function of the polymer concentration. Broadly, three different regimes can be
observed: dilute solutions, where polymers are essentially independent with respect
to each other, semi-dilute solutions where polymers start interacting, and finally
polymer melts, where we reach such a high concentration that almost all of the
space is occupied by polymers. This last situation is especially interesting, as it
heavily features entanglement, a phenomenon typical of polymeric systems [123].
Interestingly, entangled systems are easier to describe than semi-dilute systems, as
the spatial concentration of polymers is approximately constant throughout the
whole sample, leading to a scaling behavior of the end-to-end distance that, despite
the repulsive interactions, is still that of an ideal chain ⟨R2

ee⟩ ∼ b2N [124] and
allowing for theoretical models such as the tube model by Doi and Edwards [108].
In this model, each polymer can only move within its own primitive tube, which is
a representation of the topological constraints, or entanglement points, provided by
the other polymers (Fig.2.1a). The axis of this tube is called primitive path, its
contour length is denoted by Lpp and the radius of the primitive tube is defined as
a. As the polymer relaxes, it undergoes two main regimes: at first short sections
of the polymer relax freely within the tube, then, hindered by the presence of the
neighbors, further relaxation can only proceed by slowly moving the whole polymer
along the primitive tube, a process called reptation.

2.2.1 Free Rouse relaxation

Since the polymer is allowed to move freely within the tube, short strands of it
can explore space with the usual random walk behavior ⟨|ri − ri+n|2⟩ = b2n. We
define the entanglement number Ne as the maximum strand size which can move
freely within the tube: b2Ne ∼ a2 ⇒ Ne ∼ a2/b2. Consequently, the average
primitive path contour length is ⟨Lpp⟩ ∼ aN/Ne ∼ bN/

√
Ne, behaving itself too

as a random walk with step size a. Between time τ0 and the entanglement time
τe ∼ τ0N

2
e the polymer relaxes by Rouse relaxation (Sec.2.1), with the typical MSD

and viscoelastic behaviors:

MSD(τ0 ≤ t < τe) ∼
kBT

γ

√
tτ0, G(τ0 ≤ t < τe) ∼

kBT

b3

√
τ0
t
, (2.20)

where, given the high concentration, Φ = 1.
At the end of this time window the stress relaxation modulus reaches the value

G(τe) ≡ Ge ∼
kBT

b3Ne

. (2.21)
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Figure 2.1: a) Sketch of the tube model: the main red polymer is effectively confined
by its neighbors within a primitive tube of radius a and length Lpp.
b) Typical behavior of the stress relaxation modulus G(t) as a function
of time for an entangled polymer. First we have Rouse relaxation
until the entanglement time τe, then a plateau Ge until the relaxation
time τd and finally an exponential decay. The area under this function
constitutes the value of the long-time viscosity η.

2.2.2 Reptation

Mechanical response

At this phase of the relaxation, polymer sections of size larger than Ne can only
relax along the primitive tube, almost stopping the G(t) from decaying further, and
forming a plateau at Ge. This stage lasts until the decorrelation time τd, which is
given by the time necessary to the center of mass of the polymer to exit the initial
primitive tube by diffusively exploring an area ⟨L2

pp⟩:

τd ∼
⟨L2

pp⟩
DN

∼ b2
N2

Ne

γN

kBT
∼ ηmb

3N3

kBTNe

. (2.22)

Between τe and τd the G(t) is almost constant, with the only decay given by the
amount of polymer that has already exited the tube (Fig.2.1b). The plateau in
the G(t) makes the mechanical response of the solution at these timescales very
similar to that of an elastic solid with shear modulus Ge. When time τd is reached,
the polymer can finally relax and the G(t) decays exponentially as Gee

−t/τd , with a
corresponding long-time viscous response. Since reptation takes a very long time,
scaling with N3, the plateau dominates the mechanical response of the solution
and allows us to use the approximation G(t) ≃ Gee

−t/τd to calculate the long-time
viscosity of the system:

η ∼
∫ ∞

0

Gee
−t/τddt = Geτd ∼

ηmN
3

N2
e

. (2.23)
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This result is vastly larger than what we found for the unentangled polymer:
viscosity now scales with the cube of the polymer size instead of linearly.

MSD

The main feature of reptation is that polymers can only effectively move forward
or backward in their primitive tube, in a sort of one-dimensional motion. It is then
helpful to define a new variable si, that describes the 1D position of a monomer
along the tube. The MSD of si is then subdiffusive before τR and diffusive after,
essentially performing Rouse motion in 1D. Considering that the primitive path
itself behaves as a random walk with step length a, we can write for the total MSD
of a monomer:

⟨(ri(t)− ri(t
′))2⟩ ∼ a2

√
⟨(si(t)− si(t′))2⟩, (2.24)

where

⟨(si(t)− si(t
′))2⟩ ∼

{
D
√
(t− t′)τ0 τe ≤ t′ ≤ t < τR,

D
N
(t− t′) τR ≤ t′ ≤ t < τd.

(2.25)

This means that during reptation, the monomer MSD undergoes two regimes:
before τR it scales with t1/4, and afterwards with t1/2.
After the end of reptation, the polymer will simply move diffusively. The long-

time diffusion coefficient for a polymer in an entangled solution Dl can be calculated
from the relaxation time τd (Eq.2.22):

Dl ∼
⟨R2

ee⟩
τd

∼ kBTNe

γN2
, (2.26)

where the scaling behavior of an ideal chain was used. We notice that the long
time diffusion coefficient of an entangled polymer is a factor ∼ N smaller than that
of a free polymer.
To summarize, the time evolution of the tube model can be reduced to five main

regimes, separated by four time scales (Table 2.2). The first time scale, τ0, indicates
the average time it takes for a bead to interact with the closest one. Before τ0
the beads are independent with respect to each other, and motion is dominated
by the Brownian term. After τ0 the beads start interacting, but still do not feel
the constraints given by the other polymers, resulting in simple Rouse relaxation.
The reptation behavior begins on average after the entanglement time τe = τ0N

2
e ,

where Ne ∼ (a/b)2 is the maximum average number of beads that can move freely
without interacting with the primitive tube. After this time the polymer is unable
to relax in all directions anymore, but only forward or backward in the tube, hence
the name reptation. The next step is reached when the polymer reaches its natural
Rouse relaxation time τR ∼ τ0N

2 and starts moving as a whole along the primitive
tube. Finally, the last regime takes place when the polymer escapes the initial
primitive tube at τd ∼ τe(N/Ne)

3.
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Time scale Description ∝ MSD G(t)
t < τ0 Beads are independent Dt G0

τ0 ≤ t < τe Rouse relaxation D
√
tτ0 G0

√
τ0
t

τe ≤ t < τR Rouse relaxation along tube (1D) a2
√
D 4
√
tτ0

G0

Ne

τR ≤ t < τd Polymer reptation along tube a2
√

D/Nt G0

Ne

t ≥ τd Relaxation of the whole polymer Dlt
G0

Ne
e−t/τd

Table 2.2: Behavior of the mean squared displacement MSD and the stress relax-
ation modulus G(t) of an entangled polymer at different time scales.

2.3 Modeling and analysing active polymers

Activity can be implemented in many different ways in polymer systems [117, 125,
126]. For example, it is possible to have motor particles pushing the polymers
around, similar to kinesin and microtubules [127, 128], polymers made up of active
Janus particles [129], or filaments where each section is pushed tangentially forward,
similar for example to how worms move [130–132]. Since in publication P6 we
simulated active entangled polymers tangentially moved, we provide here a short
introduction on how to model and analyze this specific system.

2.3.1 Active entangled polymers - modeling

We define the polymers as chains of N beads each in a 3-dimensional space, with
maximum bond distance b0 = 1.5d between consecutive beads moving, where d
is the diameter of the monomers. The polymers are assumed to be completely
flexible, where the beads are connected via finite-extensible non-linear elastic
(FENE) springs with potential Us [133]:

Us(r) =




−Kb20

2
ln

[
1−

(
r
b0

)2]
, r ≤ b0,

∞, r > b0,
(2.27)

where K = 30ϵ/d2 is the stiffness of the spring and ϵ is the energy scale of the
system. They repel each other with a WCA potential Ur

Ur(r) =

{
4ϵ
[(

d
r

)12 −
(
d
r

)6]
+ ϵ, r ≤ rc,

0, r > rc,
(2.28)
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where rc ≡ 6
√
2d. The angular interactions for each monomer are taken into account

within the bending potential Ua:

Ua,i = κ
i+1∑

j=i−1

(1− tj · tj+1), (2.29)

where ti ≡ ri+1−ri

|ri+1−ri|
is the vector tangential to the polymer between beads i and

i + 1, and κ is the bending energy. Finally, the active force Fa is implemented
tangentially with respect to the polymer [134]:

Fa,i = Fa(ti−1 + ti), (2.30)

where the active force strength Fa is constant. Our system is overdamped, leading
to the following equation of motion for each bead:

γṙ = −∇(Us + Ur + Ua) + Fa + f(t), (2.31)

where γ is the translational friction coefficient and f is white noise, see Eq.(1.2).
To be in the entangled regime we consider long chains with N > 200 and a volume
fraction ρ = 0.85.

System equilibration

In publication P6, the system starts in passive equilibrium and activity is turned
on at time t = 0. In order to reach the equilibrium regime for the system it is
necessary for it to relax. As we have seen in Sec.2.2, though, the time necessary for
an entangled polymer to exit its primitive tube, and hence relax, τd, grows with the
cube of the polymer length ∝ L3 and can be very large. To avoid running extremely
long thermalization simulations, there are methods that perform operations which
would not be allowed during a normal simulation, but that considerably speed the
process up. One example is the double-bridging hybrid (DBH) bond-swapping
algorithm combined with core softening described by Dietz et al. in Ref. [135]. The
standard DBH algorithm [136] works by swapping bonds and angles with Monte
Carlo (MC) moves [137] during a molecular dynamics simulation. The MC moves
work in the following way: bonds of neighboring monomers in different polymers are
swapped, essentially exchanging strands between the polymers, with a probability
P given by the Metropolis criterion [138]:

P = min

(
1, exp

(
−Ue − Us

kBT

))
, (2.32)

where Ue and Us are the potential energies of the system respectively after and
before the MC step. The possibility to swap entire strands of polymers, which



2.3 Modeling and analysing active polymers 33

is not allowed in normal molecular dynamics simulations, reduces the relaxation
time considerably, going from ∝ L3 to a much more manageable ∝ L. While this
method works well for flexible polymers, in the case of semiflexible polymers the
MC moves must overcome very large energy barriers Ue − Us, which hinder the
speed of the DBH algorithm. This problem is fixed by starting with softer cores
and progressively increasing the hardness of the monomers, until the normal DBH
algorithm can be employed.

2.3.2 Active entangled polymers - analysis

Correlation functions

Measuring a few correlation functions can yield a lot of information. The stress
relaxation modulus, G(t), allows us to study the rheology and mechanical response
of the system [139]:

G(t) =
V

kBT

∑

α ̸=β

⟨σαβ(t)σαβ(0)⟩ , (2.33)

where V is the volume of the system and σαβ is the α, β component of the stress
tensor:

σαβ =
1

V

〈∑

ij

Fij,αrij,β

〉
, (2.34)

where Fij and rij are the force and distance between monomer i and j respectively,
and we sum over all monomer pairs. From G(t) we can extract the elastic plateau
Ge, the viscosity η and the relation time τd (see Sec.2.1.1).
The MSD yields information on the dynamics of the system. It can be averaged

on the motion of each monomer, or just on the centers of mass of the polymers:

MSDCM(t) = ⟨(rCM(t)− rCM(0))2⟩, (2.35)

where in the case of monomers of equal mass, the center of mass rCM(t) ≡∑N
i=1 ri(t)/N . Finally, the end-to-end distance squared ⟨R2

ee⟩ = ⟨(rN − r1)
2⟩ is

an indicator of polymer configuration and measuring ⟨Ree⟩2 as a function of the
polymer length N reveals if we are dealing with ideal or real chains.

Topological quantities

The mechanism that distinguishes entangled polymer solutions is the impossibility
for polymer chains to cross each other. When two polymer chains interact, instead
of just colliding, they form topological structures known as entanglement points
(Fig.2.2), making topology fundamental in order to gain a deeper understanding
of such systems. In particular, the quantity Ne, that is the average number of
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monomer between entanglement points, is very relevant, as in the passive case it
is inversely proportional to the height of the stress correlation plateau Ge [140].
The key for the measure of topological quantities is the primitive path model (see
Sec.2.2): once we individuate the primitive path for each polymer, we can extract
Ne, as well as other important quantities, such as the number of entanglements per
polymer Z and the primitive path length Lpp. We cover here two different ways of
extracting the aforementioned primitive path: the primitive path analysis theorized
by Everaers et al. [140,141] and the Z1+ method developed by M. Kröger [142].

Figure 2.2: Sketch of the 2D cross-section of the tube model in the case of active
polymers. We have an active polymer (in red) that reptates along its
primitive path, while its neighboring polymers form topological obsta-
cles, known as entanglement points (in black). The stresses generated
by the interactions between the polymer and the entanglement points
(in blue) originate the short-term elastic response typical of entangled
polymer networks.

Primitive Path Analysis (PPA) This method individuates primitive paths by first
fixing the positions of the polymer extremes, then disabling all excluding volume
interactions within the same chain and finally reducing the temperature of the
system almost to zero. This means that monomers in the same chain will relax only
with the FENE attracting interaction while still not being able to cross other chains,
which effectively straightens the polymers while keeping their entanglement points
intact. An example of final configuration is shown in Fig.2.3 a). Once the energy
of the system is minimized in this way, the average primitive path length ⟨Lpp⟩ is
calculated by measuring the average contour length of the resulting polymers. In
order to estimate the entanglement length from the primitive path analysis N PPA

e
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we use the end-to-end scaling behaviour of entangled polymer chains Ree [133]:

⟨Ree(N)⟩ = lppKLpp = lppK (N)lppb , (2.36)

where lppK is the Kuhn (i.e. persistence) length of the primitive path and lppb is the
average bond length, defined as

lppb =

∑N
j=1 |rj+1 − rj|

N
. (2.37)

The entanglement length estimator will then be

N PPA
e =

lppK
lppb

. (2.38)

Since N PPA
e is just an estimator of the entanglement length Ne, it converges to Ne

only in the infinite polymer length limit N → ∞.

Z1+ Differently from the PPA method just described, the Z1+ program finds the
primitive paths with a more geometric approach: it iteratively simplifies the original
polymer configuration based on the position of entanglement points, eventually
revealing the basic topological structure of the primitive paths. We start by
taking for each polymer (or path) all sets of three consecutive nodes one after
the other, where in the first iteration the nodes are defined by the position of
the monomers. We then check the area of the triangle formed by the three nodes
for eventual obstacles, defined by paths that intersect this area. Nodes are then
added or removed to the path in order to minimize the aforementioned areas, while
not allowing the sides of such areas to cross any obstacle. When, after multiple
iterations, these areas cannot be further reduced, the nodes of the resulting paths
will represent the topological entanglement points of the system. The average
number of entanglement points ⟨Z⟩ is then the mean of the number of nodes per
path, while ⟨Lpp⟩ is the average length of the paths. As an estimator for Ne, in
publication P6 we chose the modified single chain coil estimator defined by R. Hoy
et al. [143] as

N Z
e (N) = (N − 1)

(⟨L2
pp⟩

⟨R2
ee⟩

)−1

. (2.39)

An example of primitive paths calculated with Z1+ can be found in Fig.2.3b)



36 Chapter 2 Active entangled polymers

Figure 2.3: Figure a) shows the final configuration after primitive path analysis
(PPA) for a typical simulation snapshot, in this case for a passive system
with polymer size N = 725. Figure b) instead shows the primitive paths
calculated with Z1+ for a passive system with polymer size N = 1450.
Since Z1+ is a purely geometric method, the primitive paths generated
in this way feature sharp angles that PPA-generated paths do not.
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Short-time expansion of the mean-square displacement

Davide Breoni ,1 Michael Schmiedeberg ,2 and Hartmut Löwen 1

1Institut für Theoretische Physik II: Weiche Materie, Heinrich Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
2Institut für Theoretische Physik 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany

(Received 21 October 2020; accepted 17 November 2020; published 7 December 2020)

We consider an active Brownian particle moving in a disordered two-dimensional energy or motility landscape.
The averaged mean-square displacement (MSD) of the particle is calculated analytically within a systematic
short-time expansion. As a result, for overdamped particles, both an external random force field and disorder
in the self-propulsion speed induce ballistic behavior adding to the ballistic regime of an active particle with
sharp self-propulsion speed. Spatial correlations in the force and motility landscape contribute only to the cubic
and higher-order powers in time for the MSD. Finally, for inertial particles two superballistic regimes are found
where the scaling exponent of the MSD with time is α = 3 and α = 4. We confirm our theoretical predictions
by computer simulations. Moreover, they are verifiable in experiments on self-propelled colloids in random
environments.

DOI: 10.1103/PhysRevE.102.062604

I. INTRODUCTION

The motion of active colloidal particles in complex envi-
ronments is a vivid topic of recent physics research [1–3].
In particular, if self-propelled particles are moving in a het-
erogeneous or random medium, then there is a plethora of
new effects created by disorder. Examples include trapping
and clogging of particles [4–6], destruction of flocks [7], the
control of crowds [8,9], and subdiffusive long-time dynamics
[4,10–12]. The random environment can be established by a
porous medium [13,14], by fixed obstacle particles [15–20], or
by optical fields (such as a speckle field [21–27]) which can
create both random external potentials [28–34] or a motility
landscape [35,36].

While the control of particle motion in a random environ-
ment is crucial for many applications such as steered drug
delivery and minimal invasive surgery, also the fundamental
physics needs to be understood within statistical mechanics.
In particular, analytical solutions for simple model systems
are important here to unravel the underlying principles. A
particular successful model for self-propelled particles is that
of active Brownian motion [37–39] designed for colloidal
microswimmers. Basically, the particle performs overdamped
motion under the action of an internal effective drive directed
along its orientation which is experiencing Brownian fluctu-
ations establishing a persistent random walk of the particle.
In this model, the mean-square displacement (MSD) of the
particle exhibits a crossover from ballistic behavior governed
by directed self-propulsion to final long-time diffusion with a
diffusion coefficient that scales with the square of the self-
propulsion velocity. The motion of self-propelled particles
in various random environments has been studied by using
computer simulations of active Brownian particles or related
models [4,40–56]. Also some experiments for active particle

in disordered landscapes have been performed on colloids
[7,8,16,57] and bacteria [58]. However, analytical results are
sparse, even for a single active particle. In one spatial dimen-
sion, exact results have been obtained for a run-and-tumble
particle [11]. In higher dimensions, analytical results are avail-
able for discrete lattice models [10] and for a highly entangled
slender self-propelled rod [59,60].

Here we present analytical results for the off-lattice model
of active Brownian motion in two dimensions by exploring
the short-time behavior of the mean-square displacement.
The self-propelled particle is experiencing a space-dependent
landscape of quenched disorder [61,62] of an external force
or the internal motility field. We calculate the averaged MSD
of the particle for arbitrary disorder strength in a systematic
short-time expansion. As a result, for overdamped particles,
randomness in the external force field and the particle motility
both contribute to the initial ballistic regime. Spatial correla-
tions in the force and motility landscape contribute only to the
cubic and higher-order powers in time for the MSD. Finally,
for inertial particles which are initially almost at rest three
subsequent regimes can occur where the scaling exponent of
the MSD with time crosses over from an initial α = 2 to a
transient α = 3 and a final α = 4. The latter superballistic
regimes are traced back to the initial acceleration. We remark
that similar superballistic exponents have been found for an
active Brownian particle in linear shear flow [38] and for
animal motion [63] but the physical origin is different in these
cases. Our predictions are confirmed by computer simulations
and are in principle verifiable in experiments on self-propelled
colloids in random environments.

As an aside, we also present results for a passive particle in
an random force landscape. Note that we consider the short-
time behavior that is also briefly mentioned in [28–32,64,65]
though in these works usually the focus is on the long-time
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behavior [28–32,65] or the mean first passage time [64] of
such systems.

The paper is organized as follows: In the next section we
discuss the model of a single Brownian particle interacting
with an external random landscape, in the subsequent one we
move on to the case of a random motility field and in both
cases we consider both an overdamped and an underdamped
particle. Finally, in Sec. IV we conclude with a summary of
our results and possible continuations of our work.

II. ACTIVE PARTICLE IN A DISORDERED POTENTIAL

ENERGY LANDSCAPE

A. Overdamped active Brownian motion

We start by considering a single active Brownian parti-
cle moving in the two-dimensional plane. The dynamics is
assumed to be overdamped as relevant for micron-sized swim-
mers and self-propelled colloids at low Reynolds number. The
position of the particle center is described by its trajectory
�r(t ) = (x(t ), y(t )) and its orientation is given by a unit vector
û(t ) = (cos φ(t ), sin φ(t )), where φ is the angle of the orien-
tation vector with the x axis and t is the time. The equations
of motion of an overdamped active Brownian particle for the
translation and rotation degrees of freedom are given by

γ �̇r(t ) = γ v0û(t ) + �f (t ) + �F (�r(t )), (1)

γRφ̇(t ) = fR(t ), (2)

where γ and γR are, respectively, the translational and ro-
tational friction coefficients and v0 is the self-propulsion
velocity which is directed along the orientation vector û(t ).
The terms �f (t ) and fR(t ) represent Gaussian white noise
forces and torques originating from the solvent kicks with

〈 �f (t )〉 = 0, (3)

〈 fi(t ) f j (t
′)〉 = 2Dγ 2δ(t − t ′)δi j, (4)

〈 fR(t )〉 = 0, (5)

〈 fR(t ) fR(t ′)〉 = 2DRγ 2
R δ(t − t ′). (6)

Here 〈·〉 is the thermal noise average, D is the translational
free diffusion constant, and DR is the rotational one.

Importantly, the particle is exposed starting at t = 0 to
an external force field �F (�r) representing the static quenched
disorder. We assume that the external force is conservative,
i.e., that it can be derived as a gradient from a random potential
energy V (�r) such that

�F (�r) = −�∇V (�r) (7)

holds. For the scalar potential energy we choose a general
decomposition into two-dimensional Fourier modes and as-
sume that the amplitudes in front of these modes are randomly
Gaussian distributed and uncorrelated. In detail, the random
potential V (�r) is expanded as

V (�r) = −
∞∑

i, j=0

[
ǫ

(1)
i j cos(kix + k jy) + ǫ

(2)
i j sin(kix + k jy)

]
,

(8)

where kn = 2π
L

n, L denoting a large periodicity length. The

amplitudes ǫ
(α)
i j are Gaussian random numbers which fulfill

ǫ
(α)
i j = 0 and ǫ

(α)
i j ǫ

(β )
mn = ǫ

(α)2
i j δimδ jnδ

αβ , (9)

where (·) denotes the disorder average. We further assume
the potential to be isotropic, meaning that the ǫi, j are only
functions of i2 + j2.

Now we compute the MSD 	(t ) of the particle which is
initially at time t = 0 at position �r0 with orientational angle
φ0. In this paper, we consider a disorder-averaged MSD, in
detail it is a triple average over (i) the thermal noise 〈·〉, (ii) the
disorder (·), and (iii) the initial conditions 〈〈·〉〉. As we switch
on the potential at t = 0, due to translational invariance and
self-propulsion isotropy, the latter are assumed to be homo-
geneously distributed in space and in the orientational angle.
Consequently,

	(t ) := 〈〈 〈(�r(t ) − �r0)2〉 〉〉. (10)

In order to simplify the notation, the average over both dis-
order and initial conditions for the various components and
derivatives of the forces will be abbreviated by the symbol (̂·),
for example, 〈〈F 2

x (�r0)〉〉 ≡ F̂ 2
x .

In Appendix we detail the analytical systematic short-time
expansion in terms of powers of time t for the MSD. To fourth
order, the final result reads as

	(t ) = 4Dt +
[
v

2
0 + 1

γ 2
F̂ 2

i

]
t2 −

[
1

3
v

2
0DR + D

γ 2
F̂

j2
i

]
t3

+ 1

24

[
2v

2
0D2

R + 10
D2

γ 2
F̂

jk2
i − 5

v
2
0

γ 2
F̂

j2
i

+ 1

γ 4

(
14F̂ 2

i F i2
i + 8F̂ 3

i F ii
i + 14 ̂FxFyF

y
x F i

i

+ 14 ̂FyFxF x
y F i

i − 5̂F 2
i F

y2
x − 5F̂ 2

i F x2
y

)]
t4 + O(t5).

(11)

Here our convention in the notation is that the presence of any
index i, j, or k implies an additional sum over the directions
x and y. For example, in this compact notation, we have F̂ 2

i ≡∑
i=x,y F̂ 2

i . Subscripts in F indicate the Cartesian component
of the force, while superscripts denote a spatial derivative. For

example, F̂
j2

i = ∑
i=x,y

∑
j=x,y

̂( ∂Fi

∂ j
)2.

In order to assess the presence of scaling regimes for the
MSD, it is necessary to know if the prefactors of tα are neg-
ative or positive and hence what the sign of the various force
products is. In Eq. (11), it can be shown that all products are

positive with the exception of F̂ 3
i F ii

i . In the special case of a
single mode potential, that we define as a potential where only
ǫ11 	= 0, one can simplify this negative product with all the
ones with 1/γ 4 prefactor and obtain the shorter and positive

expression 6F̂ 2
i F k2

j (see Appendix). In the more general case
positivity is not ensured.

Let us now discuss the basic result contained in Eq. (11).
First, in the absence of any external forces, we recover the
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analytical expression for a free active particle [37] where

	(t ) = 4Dt + 2
v

2
0

D2
R

(DRt + e−DRt − 1)

= 4Dt + v
2
0t2 − 1

3
v

2
0DRt3 + 1

12
v

2
0D2

Rt4 + O(t5) (12)

expanded up to order O(t5). Conversely, for finite forces but
in the limit of no activity, v0 = 0, we get results for a passive
particle in a random potential energy landscape [65].

In general, for both v0 	= 0 and �F 	= 0, as far as the influ-
ence of disorder is concerned, the first leading correction in
the MSD is in the ballistic t2 term. The physical interpretation
of this term is rooted in the fact that in a disordered energy
landscape on average the particle actually feels a nonvanishing
force such that it is drifting. The resulting ballistic contribu-
tion is on top of the activity itself which also contributes to
the transient ballistic regime. We define now the crossover
time t c

1→2 as the ratio A1/A2 between the two regimes scaling
with A1t and A2t2. This quantity indicates the time when the
ballistic regime becomes prominent over the diffusive one. In
this case t c

1→2 depends on the self-propulsion velocity and the
strength of the potential, and more specifically it shrinks as
those grow:

t c
1→2 = 4D

F̂ 2
i

/
γ 2 + v

2
0

, (13)

meaning that an active particle subject to a random force field
begins earlier to move ballistically. Spatial correlations in the
random potential energy landscape are contributing to the t3

term in lowest order and affect the higher powers in time as
well. Clearly, from the result (11), the prefactor in front of the
t3 term is negative such that there is no regime where a pure
t3 scaling in the MSD can be observed.

Finally, one could deduce from Eq. (11) that there is a
special limit of parameters where the dominant regime is an
acceleration where 	(t ) ∝ t4. In order to see this, one can set
v0 and D to be small, while considering large wave vectors k

and amplitudes ǫ in the potential decomposition Eq. (8) such
that any combination of ǫ2k4 is much larger than one. How-
ever, this is not a scaling regime, as the term O(t6) dominates
on O(t4) in the same limit.

We compared the result (11) to standard Brownian dy-
namics computer simulations. In our simulations, we first
generated a random energy landscape, and then the particle
was exposed to the selected landscape with an initial random
position and orientation. Then we integrated the equations
of motion with a Euler finite difference scheme involving a
finite time step of typically 	t = 10−6/DR. In order to sim-
plify calculations for the simulations, we always used single
mode potentials. The MSD was then appropriately averaged
over many starting configurations, the number of which was
always larger than 104. This amount was large enough to yield
statistical errors always below 1% of the averaged values of
the MSD. We believe these samples are hence large enough to
ensure ergodicity for the initial conditions.

FIG. 1. Mean-square displacement [(a) and (c)], scaling expo-
nent α [(b) and (d)], and crossing time t c

1→2 (marked by a blue line)
for an overdamped active particle in a random single mode potential.
In (a) and (b) we used the parameters v0 = 100

√
DDR, ǫ = 100Dγ ,

and L = 100
√

D/DR. As described by the theory, the initial diffu-
sive behavior is soon replaced by the ballistic behavior. In (c) and
(d) the parameters v0 = 50

√
DDR, ǫ = 100Dγ , and L = 10

√
D/DR

also show first the diffusive and then the ballistic regimes, but for
larger times the short-time expansion approximation breaks down
earlier, as the average ǫ2k4 is larger.

Figure 1 shows examples for the scaling behavior of both
the MSD and its scaling exponent

α(t ) := d ( log(	(t )))

d ( log(t ))
(14)

as functions of time in a double logarithmic plot. As can
be deduced from Figs. 1(a) and 1(b), the initial diffusive
regime where 	(t ) ∝ t and the subsequent ballistic regime
	(t ) ∝ t2 are clearly visible and reproduced by our short-time
expansion. As expected, for large times there are increasing
deviations between theory and simulation as the theory is
a short-time expansion, and this is especially noticeable for
large values of ǫ2k4, as for example is shown in Figs. 1(c)
and 1(d).

B. Underdamped active Langevin motion

For macroscopic self-propelled particles or particles in
a gaseous medium, inertial effects are getting relevant and
overdamped active Brownian motion is generalized toward
underdamped active Langevin motion [39,66]. The equations
of motion for an inertial active particle in a random potential
energy landscape are then generalized to

m�̈r(t ) + γ �̇r(t ) = γ v0û(t ) + �F (�r(t )) + �f (t ), (15)

γRφ̇(t ) = fR(t ), (16)

where m is the particle mass. For simplicity, as in many
previous studies for inertia [18,67–69], we have neglected
rotational inertia here which could be included by using a
finite moment of inertia [39,66].
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Now the initial condition average 〈〈·〉〉 has to be performed
not only over particle positions and orientations but also over
the initial particle velocity �̇r(0). The resulting triple-averaged
short-time expansion of the mean-square displacement
is now:

	(t ) = σ 2
v

t2 + γ

m

[
4

3

γ

m
D − σ 2

v

]
t3

+ 1

m2

[
7

12
γ 2σ 2

v
+ 1

4
F̂ 2

i + 1

4
γ 2

v
2
0 − γ 3

m
D

]
t4 +O(t5),

(17)

where σ 2
v

= 〈〈ẋ2(0) + ẏ2(0)〉〉 is the variance of the initial
speed of the particle. This result bears different dynami-
cal scaling regimes. First, for short times the MSD starts
ballistically with t2 due to the initial velocities. Of course,
this regime is absent if the particle is initially at rest when
σ 2

v
= 0. Remarkably, for σ 2

v
≪ Dγ /m the leading behavior

is governed by the term t3, cubic in time, as the prefactor
is positive. Please note that for an initially thermalized par-
ticle with a Maxwellian velocity distribution, the prefactor
is negative, implying the absence of this cubic regime. Fi-
nally, the presence of an external disordered force field now
contributes to the t4 term as does the self-propulsion. This
is plausible, as if on average a constant (external or internal
self-propulsion) force is present, then the particle is constantly
accelerated which leads to the t4 scaling. Consequently, for
σ 2

v
≪ Dγ /m ≪ F 2

i /γ 2+v
2
0 there are three subsequent scaling

regimes: from initially ballistic, over to the cubic regime, and
finally to the constant acceleration regime.

The typical crossover time between the t2 and t3 scalings
and the one between t3 and t4 are referred to as t c

2→3 and t c
3→4.

Their values are as follows:

t c
2→3 = m

γ

σ 2
v

4
3

γ

m
D − σ 2

v

, (18)

t c
3→4 = mγ

4
3

γ

m
D − σ 2

v

7
12γ 2σ 2

v
+ 1

4 F̂ 2
i + 1

4γ 2
v

2
0 − γ 3

m
D

, (19)

where we assume that both prefactors of t3 and t4 in Eq. (17)
are positive.

Using Langevin dynamics computer simulations, we have
compared the theoretical short-time expansion with simula-
tion data in Fig. 2. We used for the time evolution of the
system a symmetrical stochastic splitting method that sepa-
rates the stochastic and deterministic parts of the differential
equations [70,71], with a typical time step of 	t = 10−10/DR.
As for the overdamped case, we used a single mode potential
field and we averaged the MSD over more than 104 configu-
rations of the initial conditions and the potential.

A double-logarithmic plot indeed reveals three distinctive
regimes where the MSD scales as tα with α = 2, 3, 4 and
there is good agreement between theory and simulation if
the times are not too large. It is important to note that the
cubic regime can only be seen for initially cool systems which
are exposed to thermal fluctuations. These can be experimen-
tally prepared for example for granular hoppers [66] which
are initially at rest and then brought into motion by instan-
taneously changing the vibration amplitude and frequency.

FIG. 2. Mean-square displacement (a) for an underdamped ac-
tive particle in a random single mode potential, with scaling exponent
α (b) and crossing times t c

2→3, t c
3→4. The parameters used are v0 =

100
√

DDR, ǫ = 100Dγ , L = 100
√

D/DR, and σv = 0.0002
√

DDR,
and the unit for mass is the mass of the particle m. The three different
scalings t2, t3, and t4 are in this case clearly distinguishable from
each other.

Hence though the t3 regime is not visible for a thermalized
system it shows up for relaxational dynamics even for passive
particles.

III. ACTIVE PARTICLE IN A DISORDERED

MOTILITY LANDSCAPE

A. No aligning torque, overdamped

We now consider a self-propelling velocity that fluctuates
[72] as a function of the position of the particle. We denote
hence the fluctuating part of the self-propelling velocity with
δv(�r), while the constant part will still be named v0, leading to
a total propulsion velocity [v0 + δv(�r)]û(φ) or motility field.
As in the case of the random potential, the random motil-
ity field is decomposed into two-dimensional Fourier modes,
with Gaussian uncorrelated amplitudes:

δv(�r) =
∞∑

i, j=0

[
ζ

(1)
i j cos(kix + k jy) + ζ

(2)
i j sin(kix + k jy)

]
,

(20)

where the ζ
(α)
i j prefactors have the same statistical properties

as the ǫ
(α)
i j prefactors in (9).

The main differences between the motility and potential
fields are that the first one does not appear as a gradient in the
equations of motion and that it is coupled to û(φ).

In absence of an aligning torque and inertia the system
fulfills the equations:

γ �̇r(t ) = γ (v0 + δv(�r))û(φ) + �f (t ), (21)

γRφ̇(t ) = fR(t ), (22)

leading to the following short-time mean-square displace-
ment:

	(t ) = 4Dt +
(
v

2
0 + δ̂v2

)
t2

− 1
3

[
2Dδ̂vi2 + DR

(
v

2
0 + δ̂v2

)]
t3

+ 1
24

[
6D2δ̂vi j2 + 8DDRδ̂vi2 + 2D2

R

(
v

2
0 + δ̂v2

)

+ 7δ̂v2δvi2 + 4δ̂v3δvii − 5v
2
0 δ̂v

i2
]
t4 + O(t5), (23)
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FIG. 3. Mean-square displacement (a), scaling exponent α (b),
and crossing time t c

1→2 for an underdamped active particle in a ran-
dom single mode motility field. The parameters v0 = 20

√
DDR and

ζ = 20
√

DDR, L = 100
√

D/DR feature the initial diffusive behavior
and the ballistic behavior.

where we use the same notation as described for Eq. (11):
The symbol (̂·) indicates an average over disorder and initial
conditions, while the superscripts of δv indicate sums over

derivatives. We also remark that the product δ̂v3δvii is nega-
tive, while all the others are positive.

From the results in Eq. (23) we can extract similar con-
siderations as those we discussed in Sec. II A for Eq. (11).
In the limit of a vanishing motility field δv(�r) = 0, the
mean-square displacement of an active particle with constant
speed [see Eq. (12)] is recovered. For a finite total self-
propulsion velocity the first correction to the linear MSD is a
t2 term which is always positive, leading to a ballistic regime.
The typical crossover time related to this transition t c

1→2
is now

t c
1→2 = 4D

δ̂v2 + v
2
0

. (24)

Similarly to Eq. (11), the space configuration of the field
appears for the first time in the O(t3) term of the equa-
tion as a negative term that does not constitute a regime.
The O(t4) prefactor is positive for a large motility field
and a small v0, but as the higher-order terms always over-
shadow this, the particle never shows a pure accelerating
behavior.

All these results have been confirmed by simulations sim-
ilar to those described in Sec. II A. In Fig. 3 we can see an
example of such a simulation, where the plots of the MSD
and its scaling exponent α behave in accord to our theory for
short times, with first a diffusive regime and then a ballistic
one.

B. No aligning torque, underdamped

The underdamped equations of motion for a massive parti-
cle subject to a random motility field and no aligning torque
are as follows:

m�̈r(t ) + γ �̇r(t ) = γ (v0 + δv(�r))û(φ) + �f (t ), (25)

γRφ̇(t ) = fR(t ), (26)

we ignore the effects of angular inertia, for the same reason
explained in Sec. II B.

FIG. 4. Mean-square displacement (a) for an underdamped ac-
tive particle in a random single mode motility field, with scaling
exponent α (b) and crossing times t c

2→3, t c
3→4. The parameters used

are v0 = 100
√

DDR, ζ = 100
√

DDR, L = 100
√

D/DR, and σv =
0.0002

√
DDR, and the unit of mass is the mass of the particle m.

The three different scalings t2, t3, and t4 are clearly distinguishable.

The resulting MSD, averaged over disorder, initial condi-
tions, and thermal noise is as follows:

	(t ) = σ 2
v

t2 + γ

m

[
4

3

γ

m
D − σ 2

v

]
t3 + γ 2

m2

[
7

12
σ 2

v

+ 1

4

(
v

2
0 + δ̂v2

)
− γ

m
D

]
t4 + O(t5). (27)

The three consecutive scaling regimes that characterized
Eq. (17): t2, t3, and t4, can be also found in Eq. (27) by
requiring now σ 2

v
≪ Dγ /m ≪ δ̂v2 + v

2
0 . The crossing time

t3→4 changes accordingly, while t2→3 remains the same that
we calculated in the potential case [see Eq. (18)]:

t c
2→3 = m

γ

σ 2
v

4
3

γ

m
D − σ 2

v

, (28)

t c
3→4 = m

γ

4
3

γ

m
D − σ 2

v

7
12σ 2

v
+ 1

4

(
v

2
0 + δ̂v2

)
− γ

m
D

, (29)

where we assume that both the prefactors of t3 and t4 in
Eq. (27) are positive.

These results were compared to the numerical MSD cal-
culated with the help of Langevin dynamics simulations. In
Fig. 4 we present the typical results that can be obtained when
the limit σ 2

v
≪ Dγ /m ≪ δ̂v2 + v

2
0 applies, and hence three

different regimes appear.

C. Aligning torque

In this subsection we discuss the special case of the
presence of an aligning torque τ (�r, φ) that redirects the self-
propulsion of the particle toward either the maxima or the
minima of the motility field. An aligning torque is important
for colloidal realizations of active systems [35,73–75]. Since
one common way of realizing a motility field is by the use of
light fields, we refer to the self-propulsion toward the maxima
of the field as positive phototaxis and the one toward the
minima as negative phototaxis.

Here we only focus on the underdamped case, character-
ized by the following equations:

γ �̇r(t ) = γ (v0 + δv(�r))û(φ) + �f (t ), (30)

γRφ̇(t ) = γRτ (�r, φ) + fR(t ), (31)
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where τ (�r, φ) ≡ q[v0 + δv(�r)][ �∇δv(�r) × �u(φ)] · �ez. The sign
of the prefactor q determines whether the phototaxis is posi-
tive (q < 0) or negative (q > 0).

The averaged MSD up to O(t4) is as follows:

	(t ) = 4Dt +
(
v

2
0 + δ̂v2

)
t2 − 1

3

[
2D(1 + qv0)δ̂vi2

+ DR

(
v

2
0 + δ̂v2

)]
t3 + O(t4). (32)

In the special case of no translational diffusion (D = 0) the
next order of the MSD is as follows:

	(t ) = · · · + 1
24

[
2D2

R

(
v

2
0 + δ̂v2

)
+ 7δ̂v2δvi2 − 5v

2
0 δ̂v

i2

+ 4δ̂v3δvii − 4q
(
v

3
0 δ̂v

i2 + 3v0δ̂v2δvi2
)

+ 3q2
(
v

4
0 δ̂v

i2 + 6v
2
0 δ̂v

2δvi2δ̂v4δvi2
)]

t4 + O(t5).
(33)

Analyzing Eqs. (32) and (33) we first notice that in the limit of
q = 0 we recover the previous case with no aligning torque.
When q is nonzero, it appears for the first time as prefactor of
t3 if D > 0 and as prefactor of t4 otherwise. What is peculiar
about q is that for different experimental setups its sign can
change, and when it is negative, all the prefactors where it
appears become positive. One can intuitively understand the
reason for this by considering that a positive phototaxis means
that the particle redirects itself toward the motility field max-
ima, and hence will show an MSD which is larger than in the
negative phototaxis case. Even when q is negative and large
though, this does not constitute a regime of either order t3 or
t4, as the higher-order terms in time feature higher powers of
q that overshadow the lower orders.

IV. CONCLUSIONS AND OUTLOOK

In conclusion we have systematically computed the
quenched disorder average of the mean-square displacement
for an active particle in a random potential or motility land-
scape. The amplitude of the ballistic regime is affected by the
strength of disorder but spatial derivatives in the landscapes
only contribute to the next cubic term in time. For an iner-
tial particle two new superballistic scaling regimes are found
where the MSD scales as t3 or as t4.

Our method can be applied to other more complex situa-
tions [76]. First, the generalization to an anisotropic potential
is straightforward, even though tedious. Second, the land-
scapes can be time dependent as for real speckle patterns
[26], moving activity waves [75,77], and propagating ratch-
ets [36,78,79] The same analysis can be performed for
time-dependent disorder. Moreover, the same analysis can in
principle be done for other models of active particles, in-
cluding the simpler active Ornstein Uhlenbeck particle [80]
or more sophisticated pusher or puller descriptions for the
self-propagation. A refreshing or resetting of the landscapes
can be considered as well [81,82]. Finally, the model can
be extended to a viscoelastic solvent [83–86] with a random
viscoelasticity where memory effects become important.

ACKNOWLEDGMENTS

We thank S. U. Egelhaaf and C. Zunke for helpful dis-
cussions. The work of D.B. was supported within the EU
MSCA-ITN ActiveMatter (Proposal No. 812780). H.L. ac-
knowledges funds from the German Research Foundation
(DFG) within SPP 2265 within Project No. LO 418/25-1.

APPENDIX: EXAMPLE OF MEAN-SQUARE

DISPLACEMENT CALCULATION

In this Appendix we present an example for how we cal-
culated the analytical results in this paper. Specifically, we
will show the procedure used for the case of an overdamped
particle in a random potential [see Eq. (11)].

1. Model system

The equation of motion for the time-dependent position
x(t ) of the particle is given by Eqs. (1) and (2). Taylor ex-
panding �F (�r(t )) around the starting position �r(0) ≡ �r0 yields

�F (�r(t )) =
∞∑

nx=0

∞∑

ny=0

[x(t ) − x0]nx [y(t ) − y0]ny

nx!ny!

×
(

∂nx+ny �F
∂xnx ∂yny

)
(�r0). (A1)

We truncate this expression in the following way:

�F (�r(t )) ≃
(

Fx(�r0) + F x
x (�r0)[x(t ) − x0]

Fy(�r0) + F
y

y (�r0)[y(t ) − y0]

)
, (A2)

where a subscript in F denotes a component of the force and
a superscript indicates a partial derivative.

In this way we approximate our system to an active particle
subject to two Brownian oscillators in the x and y direc-
tions independent of each other. The additional force terms
of higher order will be treated in perturbation theory. The
goal is to calculate the mean-square displacement 	(t ) :=
〈〈〈(�r(t ) − �r0)2〉〉〉 for short times up to fourth order in time but
for arbitrary strength of the random forces.

2. Active Brownian oscillator

We will focus on the equation in the x component, as the
one in y can be treated in an analogous way. First we consider
the formal solution of the active Brownian oscillator

γ ẋB = fx(t ) + γ v0 cos (φ(t )) + Fx(�r0) + F x
x (�r0)[xB(t ) − x0],

(A3)

which is

xB(t ) = x0 + Fx(x0)

F ′
x (x0)

[
e

1
γ

F ′
x (x0 )t − 1

]

+ 1

γ

∫ t

0
e

1
γ

F ′
x (x0 )(t−t ′ )

fx(t ′)dt ′

+ v0

∫ t

0
e

1
γ

F ′
x (x0 )(t−t ′ ) cos (φ(t ′))dt ′

=: x0 + xa(t ) + xb(t ) + xc(t ), (A4)
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where

φ(t ) = 1

γR

∫ t

0
fR(t ′)dt . (A5)

The mean-square displacement in the x direction is

	xB(t ) = 〈〈〈[xa(t ) + xb(t ) + xc(t )]2〉〉〉

= 2Dt +
(

F̂ 2
x

γ 2
+ v

2
0

2

)
t2 + 1

6

(
8D

F̂ x2
x

γ 2
− DRv

2
0

)
t3

+ 1

24

(
14

F̂ 2
x F x2

x

γ 4
+ 7

F̂ x2
x

γ 2
v

2
0 + D2

Rv
2
0

)
t4 + O(t5).

(A6)

Note that we omitted all averages over odd powers of the
force or its derivatives, as they are all accompanied by odd
functions in space that go to zero when averaging over the
initial conditions.

3. Perturbation approach

Now we will treat the time perturbation, considering terms
up to fourth order in time. In order to do this, we will have to
consider all the terms in Eq. (A3) for which nx + ny � 4.

We want to determine the solution

x(t ) = xB(t ) + h(1)
x (t ) (A7)

that fulfills the following differential equation:

γ ẋB(t ) + γ ḣ1(t )

= fx(t ) + γ v0 cos (φ(t ))

+
4∑

nx=0

4∑

ny=0

[
xB(t ) + h(1)

x − x0
]nx

[
yB(t ) + h(1)

y − y0
]ny

nx!ny!

×
(

∂nx+ny Fx

∂xnx ∂yny

)
(�r0). (A8)

If we consider a small perturbation h(1)
x (t ), then we obtain:

γ h(1)
x (t ) ≃

∫ t

0

{
F y

x (�r0)[yB(t ′) − y0] + F xx
x (�r0)

2
[xB(t ′) − x0]2

+ F xy
x (�r0)[xB(t ′) − x0][yB(t ′) − y0]

+ F
yy

x (�r0)

2
[yB(t ′) − y0]2

+ F xxx
x (�r0)

6
[xB(t ′) − x0]3 + . . .

}
dt ′, (A9)

where we first used the differential equation of the unper-
turbed Brownian oscillator and then assumed that h(1)

x (t ) is
small. The fifth-order derivatives of the force have been omit-
ted because they would not lead to any terms of forth or
smaller order in t .

Similarly, we calculate the second-order perturbation
h(2)

x (t ), while higher-order perturbations are not necessary.
The mean-square displacement within the first- and

second-order perturbation theory is

	x(t ) =
〈〈〈[

xa(t ) + xb(t ) + h
(1)
x + h

(2)
x (t )

]2〉〉〉
, (A10)

and the only thing left is to explicitly calculate this expression
and sum it to the respective one for the y direction.

4. Simplification of averages

Given the potential described in Eq. (8), one is able to
simplify the various expressions for the averages of the forces
and their derivatives. For example we have:

F̂ 2
x = 1

2

∑

i, j,α

ǫ
(α)2
i j k2

i , (A11)

F̂ x2
x = 1

2

∑

i, j,α

ǫ
(α)2
i j k4

i , (A12)

F̂xF xx
x = − 1

2

∑

i, j,α

ǫ
(α)2
i j k4

i = −F̂ x2
x , (A13)

̂
F 2

x F
y2

x = 3

8

∑

i, j,α

ǫ
(α)4
i j k4

i k2
j + 1

4

∑

i 	= m ∧ j 	= n

α, β

ǫ
(α)2
i j ǫ

(β )2
mn k2

i k2
mk2

n ,

(A14)

̂F 2
x FyF

xy
x = − ̂

F 2
x F

y2
x , (A15)

etc.

Using these relations we can write the whole expression for
the MSD using only terms that we know to be positive.
One has to be careful though, especially with the products
containing four terms, as for example in Eq. (A16). These
kind of products contain both a common mode average and a
cross mode one [for example, respectively the first and second
sum in Eq. (A16)]. It can happen that two different products
contain the same (or opposite) common mode average but a
different cross mode one. For example:

F̂ 2
x F x2

x = 3

8

∑

i, j,α

ǫ
(α)4
i j k6

i + 1

4

∑

i 	= m ∧ j 	= n

α, β

ǫ
(α)2
i j ǫ

(β )2
mn k4

i k2
m,

(A16)

F̂ 3
x F xx

x = − 3

8

∑

i, j,α

ǫ
(α)4
i j k6

i − 3

4

∑

i 	= m ∧ j 	= n

α, β

ǫ
(α)2
i j ǫ

(β )2
mn k4

i k2
m.

(A17)

In this case the absolute value of the cross mode of (A19)
is three times larger than that of (A18), while the common
mode is the same. In other cases, these cross modes can even
disappear:

̂
F 2

x F
y2

x = 3

8

∑

i, j,α

ǫ
(α)4
i j k4

i k2
j + 1

4

∑

i 	= m ∧ j 	= n

α, β

ǫ
(α)2
i j ǫ

(β )2
mn k2

i k2
mk2

n ,

(A18)

̂FxFyF x
x F

y
x = 3

8

∑

i, j,α

ǫ
(α)4
i j k4

i k2
j . (A19)

In the special case of a single mode potential the following
expression of Eq. (11):

14F̂ 2
i F i2

i + 8F̂ 3
i F ii

i + 14 ̂FxFyF
y

x F i
i

+ 14 ̂FyFxF x
y F i

i − 5̂F 2
i F

y2
x − 5F̂ 2

i F x2
y (A20)

simplifies to 6F̂ 2
i F k2

j .
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We study a Langevin equation describing the stochastic motion of a particle in one dimension with coordinate
x, which is simultaneously exposed to a space-dependent friction coefficient γ (x), a confining potential U (x)
and nonequilibrium (i.e., active) noise. Specifically, we consider frictions γ (x) = γ0 + γ1|x|p and potentials
U (x) ∝ |x|n with exponents p = 1, 2 and n = 0, 1, 2. We provide analytical and numerical results for the particle
dynamics for short times and the stationary probability density functions (PDFs) for long times. The short-time
behavior displays diffusive and ballistic regimes while the stationary PDFs display unique characteristic features
depending on the exponent values (p, n). The PDFs interpolate between Laplacian, Gaussian, and bimodal
distributions, whereby a change between these different behaviors can be achieved by a tuning of the friction
strengths ratio γ0/γ1. Our model is relevant for molecular motors moving on a one-dimensional track and can
also be realized for confined self-propelled colloidal particles.

DOI: 10.1103/PhysRevE.103.052602

I. INTRODUCTION

Particles moving under the influence of a stochastic driving
force in one dimension [1] are a fruitful laboratory for the
exploration of the statistical mechanics of active systems,
since they allow, in suitably chosen cases, for an analytic
treatment. Following the initial works on one-dimensional
active particles [2,3], the problem is currently receiving in-
creased attention, since the results can be of relevance for
various soft matter and biological systems in a larger sense
[4–8]. One-dimensional models for active particles, in spite
of their inherent simplicity, are indeed of relevance even for
the description of collective effects [9–12].

A standard type of model under scrutiny is the persistent
Brownian motion, the persistence being forced by activity.
Maybe the simplest model for an active particle in one dimen-
sion is a discrete run-and-tumble process where the direction
of self-propulsion discretely flips, i.e., the driving is assured
by a random directional velocity, see, e.g., Refs. [10,13–19].

It is defined by the Langevin equation

ẋ(t ) = v0σ (t ), (1)

where the stochastic term η(t ) = v0σ (t ) is a telegraphic noise
with values ±v0, with the sign flipped at a given tumbling rate.
In particular, this model has been explored for a single particle
in the presence of external potentials [20–22] and random
disorder [10,16].

On a second level of complexity, one can consider a Brow-
nian particle self-propelled along its orientation such that only
the projection on the x axis is contributing to the actual parti-
cle propulsion but the orientation diffuses on the unit circle or
unit spheres [23]. These models of active Brownian particles

were extensively discussed in the literature [7] and can be

realized by self-propelled Janus colloids in channel-like con-
finement [24–26]. For low activity, the fluctuation-dissipation
theorem which couples the strength of the Brownian noise
and the friction via the bath temperature should be fulfilled.
Hence, in the limit of vanishing activity, the stationary proba-
bility density function (PDF) is a Boltzmann distribution. Also
simpler variants of these models where the drive just enters via
colored noise, often called active Ornstein-Uhlenbeck parti-
cles, have been explored in one dimension [27–32].

A third complementary approach starts from Langevin
equations coupling an active white noise term to a spatially
dependent diffusion coefficient [33], or friction [34,35]. The
basic idea here is the gradient in the friction induces a drift
velocity which drives the particle at constant noise. In near-
equilibrium situations, a spatial dependence of the friction
enforces a spatial dependence of the noise strength according
to the fluctuation-dissipation theorem which guarantees a re-
laxation of the PDF to the stationary Boltzmann distribution.
Here we deliberately abandon the validity of the fluctuation-
dissipation theorem and therefore postulate a nonequilibrium

noise in the presence of a friction gradient to define a nonequi-
librium model with inherent activity. We refer to this kind of
noise as “active” noise in the sequel. The equilibrium limit
of a stationary Boltzmann distribution is reached if the fric-
tion gradient vanishes. Though these kind of nonequilibrium
noise models were proposed more than a decade ago [34,35]
and bear interesting descriptions for the biologically moti-
vated case of molecular motors moving on a one-dimensional
track [36–41] such as the action of chromatin remodeling
motors on nucleosomes [42], they have not yet been studied
systematically.

Here we propose a class of one-dimensional models
with active noise in different friction gradients and external
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confining potentials which we solve analytically. Our moti-
vation to do so is threefold: first, any exactly soluble model
in nonequilibrium is of fundamental importance for a basic
understanding of particle transport. Second, we obtain quali-
tatively different PDFs which can be categorized within these
active noise models. Third, our results are relevant for ap-
plications in the biological context and for artificial colloidal
particles.

The model we discuss is based on a Langevin equation
of a particle with nonequilibrium noise and space-dependent
friction in one dimension with a spatial coordinate x. The
particle is exposed to a space-dependent friction coefficient
γ (x) = γ0 + γ1|x|p and an external potential U (x) ∝ |x|n with
exponents p = 1, 2 and n = 0, 1, 2. For short times, we pro-
vide analytical results for the mean displacement and the
mean-squared displacement. Depending on the parameters,
we find a crossover from an initial diffusive to a ballistic
regime for p = 1, 2 and n �= 0 as typical for any model of
a single free active particle. For long times and n > 0, we
obtain the stationary PDFs from the corresponding Fokker-
Planck equation. The PDFs are non-Boltzmannian and display
a rich variety of behaviors: from Gaussian-like to Laplace-like
distributions, and variants of bimodal-Gaussian-like distribu-
tions. A change between these different behaviors can be
achieved by a tuning of the ratio of the friction parameters
γ0/γ1. To test the robustness of our results, we evaluate the
effect of additional thermal noise [34,35].

As already mentioned, our proposed model is relevant for
molecular motors moving on a one-dimensional track and can
also be realized for confined self-propelled colloidal particles.
In fact, colloids can be exposed to almost any arbitrary ex-
ternal potential by using optical fields [43–45] and almost
any kind of noise can externally be programed by external
fields [46,47]. A space-dependent friction can be imposed be
a viscosity gradient in the suspending medium on the particle
scale, a situation typically encountered for viscotaxis [48–51].

II. A PARTICLE UNDER NONEQUILIBRIUM

NOISE: THE MODEL

Following Ref. [35], the model Langevin equation of a
single active particle on a one-dimensional trajectory x(t ), we
use in this work is given by the expression

γ (x)ẋ(t ) = −U ′(x) +
√

Aξ (t ), (2)

in which U (x) is the confining potential, and ξ (t ) a Gaussian
random noise with

〈ξ (t )〉 = 0, 〈ξ (t )ξ (t ′)〉 = δ(t − t ′), (3)

and A > 0 characterizes the noise strength. The brackets 〈...〉
denote a noise average. The Langevin equation (2) can be
rewritten in the standard multiplicative noise form as

ẋ(t ) = −
U ′(x)

γ (x)
+

√
A

γ (x)
ξ (t ), (4)

which we will interpret in the Stratonovich sense.
The factor γ (x) in Eqs. (2) and (4) is a space–dependent

friction force. It has been introduced in models for molecular
motors in [34] and been modeled by an expression γ (x) =
1 + δ tanh(xβ ) with parameters δ, β (0 < δ < 1), a function

FIG. 1. Sketch of the confining potential U (x) = κ|x|, a linear
friction gradient γ (x) = γ0 + γ1|x| in arbitrary units.The particle,
shown by a blue dot on the x axis, is activated by noise (indicated
in red), under the influence of the potential and the friction gradient.

saturating at both large positive and negative values of the ar-
gument displaying a linear crossover zone. Aiming at analytic
results, in this work we use an algebraic expression

γ (x) = γ0 + γ1|x|p (5)

for the friction term with two parameters γ0 > 0 and γ1 � 0
and an integer exponent p � 0, which, although unbounded,
will allow us to uncover interesting properties of the sta-
tionary probability density functions. These arise when we
consider the particle in low-order polynomial confining po-
tentials which we take to be of the general form

U (x) =
κ

n
|x|n (6)

with κ � 0 and another integer exponent n � 0 An illustration
of the situation we address is given for the case p = n = 1
corresponding to a wedgelike potential U (x) = κ|x| with a
friction term γ (x) = γ0 + γ1|x|, see Fig. 1.

III. SHORT-TIME BEHAVIOR

We start our discussion by determining the short-time be-
havior of the active-noise driven particle and compute the
short-time mean displacement (MD) and the mean-square
displacement (MSD) for the Langevin equation (2), as done
previously [52]. Specifically, we address the cases of a freely
moving particle, U ′(x) = 0 (i.e., n = 0) and a particle moving
in the potential U (x) = (κ/n)|x|n for n = 1, 2, which, respec-
tively, correspond to a particle on a (double) ramp (or, under
gravity) and in a harmonic oscillator potential.

A. Constant friction gradient

Free particle. First we consider the case of p = 1, i.e., a
constant friction gradient acting on a free particle. Due to the
spatial dependence of the friction term, the choice of initial
position x0 = x(t = 0) is important. In the immediate vicinity
of the origin, the initial motion will be that of a free Brownian
particle since γ0 ≫ γ1|x0|. In order to see an effect of the x de-
pendence of the friction term, we place the particle initially far
away from the origin with |x0| ≫ 0 to prevent the particle to
traverse from the positive sector x0 > 0 to the negative sector
x0 < 0 or vice versa, so that we ignore the nonanalyticity of
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γ (x) at the origin. We can then consider the case x0 > 0, drop
the modulus and use separation of the variables in Eq. (2) to
find

γ0(x(t ) − x0) +
γ1

2

(

x(t )2 − x2
0

)

=
√

A

∫ t

0
dt ′ξ (t ′) (7)

resulting in

x(t ) = γ −1
1

(

− γ0 +
√

γ 2
0 + c(t )

)

(8)

with

c(t ) ≡ 2γ1

(

γ1

2
x2

0 + γ0x0 +
√

A

∫ t

0
dt ′ξ (t ′)

)

. (9)

The resulting MD 〈x(t ) − x0〉 can then be obtained by an
expansion of the square root as

〈x(t ) − x0〉 =
1

γ0 + γ1x0
ξ (t ) +

∞
∑

m=2

(−1)m−1

×
(2m − 3)!

2m−2m!(m − 2)!

γ m−1
1 ξ

m
(t )

(γ0 + γ1x0)2m−1
, (10)

where

ξm(t ) ≡
〈(√

A

∫ t

0
dt ′ξ (t ′)

)m〉

=
{ m!

2m/2(m/2)! (At )m/2 m even

0 m odd,
(11)

such that the final expression for the MD, after reintroducing
the left side of the plane by symmetry, is

〈x(t ) − x0〉

= −sgn(x0)
∞

∑

m=1

(4m − 3)!

23m−2m!(2m − 2)!

γ 2m−1
1

γ (x0)4m−1
(At )m. (12)

The details of how we obtained Eq. (10) can be found in the
Appendix.

Let us now discuss this result for the MD in more detail:
first of all, if the friction gradient vanishes (i.e., in the case
γ1 = 0), there is no drift at all as ensured by left-right sym-
metry. Second, for positive friction gradients γ1 the leading
term for short times in the MD is linear in time and in the
friction gradient −sgn(x0)γ1At/2γ (x0) + O(t2) resulting in a
drift velocity of −sgn(x0)γ1A/2γ (x0). Interestingly the parti-
cle drift is along the negative gradient of the friction implying
that the particle migrates on average to the place where the
friction is small. This is plausible since at positions with
smaller friction there are stronger fluctuations which promote
the particle to the position of even lower friction on average.
A similar qualitative argument was put forward for col-
loids moving under hydrodynamic interactions (see Ref. [53],
p. 54), which represent another case of multiplicative noise,
see also Ref. [54]. Third, in a more mathematical sense, the
series in Eq. (13) is an asymptotic series which strictly speak-
ing does not converge for m → ∞ but nevertheless gives a
good approximation to the MD to any finite order in time. This
asymptotic expansion even holds if the cusp in the friction at
x = 0 were to be included as any corrections do not contribute
to the short-time expansion in powers of time.

Similarly, one can calculate the MSD, which we define as

	(t ) = 〈(x(t ) − x0)2〉. (13)

One obtains a simple relation to the MD as follows:

	(t ) = −sgn(x0)
2γ (x0)

γ1
〈x(t ) − x0〉. (14)

Taking the asymptotic series as an approximation for finite
times, we can now discuss for both the MD and the MSD the
crossing times tm→m+1, defined as the ratios Am/Am+1 between
two consecutive regimes scaling with Amtm and Am+1tm+1.
These crossing times define the moments at which the (m +
1)th terms of the time series start to dominate over the previous
ones [52]. In this case, the crossing times of both the MD and
MSD are given by

tm→m+1 =
4(m + 1)(2m − 1)

(4m + 1)(4m − 1)(4m − 2)

γ (x0)4

Aγ 2
1

. (15)

The sequence of crossing times is monotonously decreasing,
i.e., crossing times between larger regimes always occur be-
fore those of smaller ones. This in turn means that the only
real regime for the free particle is the first one, linear in time.
The same reasoning applies to the MSD, as it is proportional
to the MD.

Generally, we characterize these regimes with time-
dependent scaling exponents

β(t ) ≡
d (log10(〈x(t ) − x0〉))

d (log10(t ))
(16)

and

α(t ) ≡
d (log10(	(t )))

d (log10(t ))
. (17)

If these exponents are constant over a certain regime of time
they indicate that the MD (or the MSD) are a power-law in
time proportional to tβ (or tα).

Finally, we define a typical passage time for the particle
to reach the origin and cross the cusp in the friction at x = 0.
Beyond such a passage time our theory should not be appli-
cable any longer, as we ignored the presence of the cusp in
the friction. We decided to run the simulations for longer than
this time in order to show how the theory breaks down. Such
a typical passage time t c

1 is set by requiring
〈

x
(

t c
1

)〉

≡ 0, (18)

which means that on average the particle has reached the
origin. Of course this is only an estimate. The definition of
a passage time can be improved by requiring that the particle
is one standard deviation away from the origin on average

〈

x
(

t c
2

)〉

+
√

	
(

t c
2

)

≡ 0 (19)

for x0 > 0. This defines a second typical passage time t c
2

which is in general smaller than t c
1 . Taken together, the two

passage times t c
1 and t c

2 provide a rough estimate for the
validity of our theory.

Explicit data for the MD and MSD are shown in Figs. 2(a)
and 2(c), with the associated exponents β(t ) and α(t ) given in
Figs. 2(b) and 2(d). The typical passage times t c

1 (in purple)
and t c

2 (in orange) are also indicated by vertical lines. In the
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FIG. 2. Constant friction gradient and free particle (p, n) =
(1, 0). (a) mean displacement; (b) associated scaling exponent β(t );
(c) mean-squared displacement 	(t ); (d) associated scaling exponent
α(t ). The length unit is l1 ≡ γ0/γ1, while the time unit is τ1 ≡ l2

1 /A.
The initial position is x0 = 5l1. Simulation data are shown with error
bars as red symbols. The theory is the solid line. The typical passage
times t c

1 and t c
2 are indicated by purple and orange vertical lines.

figure we compare our analytic results (taken by summing up
the series up to a finite order of 5) with the full numerical
solution of the Langevin equation, Eq. (4), in Stratonovich
interpretation; details of the numerical method are discussed
in the Appendix.

First of all in the time regime t < t c
2 the asymptotic theory

is in good agreement with the simulation data. Both theory
and simulations are dominated by the linear time dependence
in the MD and MSD as indicated by the slope of the MD
and MSD and likewise by the scaling exponents β(t ) and α(t )
which are both close to unity. In both theory and simulation
the scaling exponents β(t ) and α(t ) first show a trend to
increase to transient values larger than unity, i.e., towards
superdiffusive behavior. Beyond t c

2 this trend weakens in the
simulations such that both exponents fall significantly below
unity. This is due to the fact that the particle has arrived at
the position of minimal friction at the origin and therefore
decelerates. However, in the theory there is an artificial mono-
tonic increase in the slope due to the fact that there is even
unphysical negative frictions for position smaller than γ0/γ1

(for the case x0 > 0).
Linear confining potential. Now we consider the case n = 1

where U (x) = κ|x|, for p = 1. As before, we assume x0 ≫ 0
and drop the modulus in the potential. The force is then con-
stant U ′(x) = −κ and the equation of motion can be solved
by separation of variables as in the free case n = 0. The result
for the MD is

〈x(t ) − x0〉 = −sgn(x0)

[

κt

γ (x0)
+

∞
∑

m=2

(2m − 3)!

2m−2(m − 2)!

×
γ m−1

1

γ (x0)2m−1

⌊m/2⌋
∑

k=0

Akκm−2k

(m − 2k)!2kk!
tm−k

]

, (20)

where the Gauss bracket ⌊·⌋ indicates the closest integer
from below and the case x0 < 0 is reintroduced via left-right

symmetry. For short times, the MD is given by

〈x(t ) − x0〉 = −sgn(x0)

[(

κ

γ (x0)
+

γ1A

2γ (x0)3

)

t

+
(

γ1κ
2

2γ (x0)3
+

3γ 2
1 κA

2γ (x0)5
+

15γ 2
1 A2

8γ (x0)7

)

t2

]

+O(t3)

(21)

with an initial effective drift velocity

−sgn(x0)

(

κ

γ (x0)
+

γ1A

2γ (x0)3

)

, (22)

which is a superposition of two effects arising from: (i) the
direct force −sgn(x0)κ already present in the equilibrium
noise case (where γ1 = 0), and (ii) the linear friction gradient.
As in the free particle case (n = 0), the MD and the MSD
fulfill a linear relationship given by

	(t ) = −
2γ (x0)

γ1

[

κt

γ (x0)
+ sgn(x0)〈x(t ) − x0〉

]

, (23)

such that the short-time expansion for the MSD is given by

	(t ) =
A

γ (x0)2
t+

(

κ2

γ (x0)2
+

3γ1κA

γ (x0)4
+

15γ1A2

4γ (x0)6

)

t2+O(t3).

(24)

Clearly, for κ = 0, the free case is recovered.
We see from the MSD that we have first a diffusive and

later a ballistic regime while for the MD the dominating term
is the drift, as the particle feels the effects of the constant
force. In fact, the crossing time between these two regimes
in the MSD is

t1→2 =
4Aγ (x0)4

4κ2γ (x0)4 + 12γ1γ (x0)2κA + 15γ 2
1 A2

(25)

and can be made arbitrarily small by formally varying the
parameters A and κ , meaning that one can, in principle, have
two wide regimes of initial diffusive and subsequent ballistic
dynamics. Two regimes with a crossover time t1→2 already ex-
ist for equilibrium noise γ1 = 0 but the effect is persistent and
tunable via nonequilibrium noise as documented by Eq. (25).

Results for the MD and the MSD as well as the scaling
exponents and passage times t c

1 and t c
2 are shown in Fig. 3,

obtained by both theory and simulation. The crossover be-
tween the initial diffusive and subsequent ballistic behavior
in the MSD is clearly visible, in particular in α(t ), which
shows a plateau around α(t ) = 2 for intermediate times. The
simulation data even reveal a transient subsequent superbal-
listic behavior, which then falls off once the particle arrives
at the origin, where it decelerates due to the opposed friction
gradient. Again, for times smaller than the passage duration,
theory and simulation are in very good agreement. Finally, the
reason why the agreement of theory and numerics in Fig. 3(b)
is much better than that of Fig. 2(b) is that the drift is now
dominated by the deterministic potential, while in the case of
the free particle it was completely noise driven.

Harmonic potential. Finally, for the harmonic oscillator:
U (x) = 1

2κx2, or n = 2, separation of variables is no longer
possible and we therefore resort to a short-time expansion
gained by perturbation theory (see Ref. [52]). In doing so,
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FIG. 3. Same as Fig. 2, but now for n = 1. (a) mean displace-
ment; (b) scaling exponent β(t ); (c) mean-squared displacement
	(t ); (d) scaling exponent α(t ). In (c) and (d) the crossing time
t1→2 is indicated by a vertical green line. Parameter values are:
κ = γ0l1/τ1, x0 = 100l1.

first we take the solution of the (p, n) = (1, 1) system, with
a constant force of −κx0, and next we consider a harmonic
oscillator potential centered in x0 as a perturbation. Following
this procedure, the short-time expansions of the MD and MSD
are

〈x(t ) − x0〉 = −sgn(x0)

([

κ|x0|
γ (x0)

+
γ1A

2γ (x0)3

]

t

+
[

−
|x0|κ2

2γ (x0)2
+

γ1κ
2x2

0

2γ (x0)3
−

3

4

κAγ1

γ (x0)4

+
3

2

|x0|κγ 2
1 A

γ (x0)5
+

15

8

γ 3
1 A2

γ (x0)7

]

t2

)

+ O(t3)

(26)

and

	(t ) =
A

γ (x0)2
t +

[

x2
0κ

2

γ (x0)2
−

κA

γ (x0)3

+ 3
γ1κ|x0|A
γ (x0)4

+
15

4

γ 2
1 A2

γ (x0)6

]

t2 + O(t3). (27)

In this case, the MD only shows a linear behavior, while the
MSD displays two different regimes, diffusive and ballistic,
separated by the crossing time

t1→2

=
4γ (x0)4A

4γ (x0)4x2
0κ

2−4γ (x0)3κA+12γ1γ (x0)2κx0A+15γ 2
1 A2

.

(28)

Figure 4 shows the comparison of the perturbation theory with
the full numerical simulations revealing very good agreement
for times smaller than a typical passage time. Clearly, for
larger times, the particles becomes confined by the harmonic
potential around the origin as signaled by a plateau arising in
the MD and MSD for times larger than the typical passage
time. Correspondingly, both scaling exponents β(t ) and α(t )
drop to zero.

FIG. 4. Same as Fig. 2, but now for n = 2: (a) mean displace-
ment 〈x(t ) − x0〉 and (b) scaling exponent β(t ); (c) mean-squared
displacement 	(t ), and (d) scaling exponent β(t ). The parameters
are κ = γ0/τ1 and x0 = 10l1.

B. Linear friction gradient

We now turn to a linear friction gradient, p = 2, where
there is no nonanalyticity in the spatial dependence of the
friction at the origin. Then Eq. (2) becomes

(γ0 + γ1x2)ẋ(t ) = −U ′(x) +
√

Aξ (t ). (29)

Bearing in mind that the free case is a simple special case of
the n = 1 one (for κ = 0), we directly show the results for
n = 0, 1 for any κ � 0. The MD is

〈x(t ) − x0〉 =
∞

∑

m=1

am〈ζ m(t )〉

=
∞

∑

m=1

am

⌊m/2⌋
∑

k=0

m!Ak (−sgn(x0)κ )m−2k

(m − 2k)!2kk!
tm−k, (30)

where the factors am are straightforwardly obtained by Taylor
expanding the expression (x(t ) − x0), calculated using sepa-
ration of variables, in powers of

ζ (t ) = −sgn(x0)κt +
√

A

∫ t

0
dt ′ξ (t ′). (31)

Here a1 = γ (x0)−1, but the expressions for the coefficients am

for m � 2 are quite involved so that we refrain from showing
them explicitly. In a similar way, the MSD is

	(t ) =
∞

∑

m=2

bm〈ζ m(t )〉

=
∞

∑

m=2

bm

⌊m/2⌋
∑

k=0

m!Ak (−sgn(x0)κ )m−2k

(m − 2k)!2kk!
tm−k, (32)

where b2 = γ (x0)−2 and the coefficients bm for m � 3 are
again quite involved. The behavior of both the MD and the
MSD are very similar to the ones for the p = 1 case, with a
simple diffusive behavior if κ = 0 and both a diffusive and
ballistic behavior otherwise. A comparison between theory
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FIG. 5. Linear friction gradient p = 2 for a free particle (n = 0):
(a) mean displacement 〈x(t ) − x0〉 and (b) scaling exponent β(t );
(c) mean-squared displacement 	(t ), (d) scaling exponent α(t ). The
length units used is l2 =

√
γ0/γ1 and the time unit is τ2 = l2

2 /A. The
chosen initial position is x0 = 3l2.

and simulations is shown in Fig. 5 for the free case and in
Fig. 6 for n = 1.

For the case n = 2 we used perturbation theory to calculate
up to the first order in time for the MD and up to the second
order in time for the MSD:

〈x(t ) − x0〉 =
(

−
κx0

γ (x0)
+ a2A

)

t + O(t2), (33)

	(t ) =
At

γ (x0)2
+

[

κ2x2
0

γ (x0)2
−

κA

γ (x0)3

− 3b3Aκx0 + 3b4A2

]

t2 + O(t3), (34)

FIG. 6. Same as Fig. 5, but now for n = 1: (a) mean displace-
ment 〈x(t ) − x0〉 and (b) scaling exponent β(t ); (c) mean-squared
displacement 	(t ), (d) scaling exponent α(t ) and indicated crossing
time t1→2. Parameter values: κ = γ0l2/τ2, x0 = 10l2.

FIG. 7. Same as Fig. 5, but now for n = 2: (a) mean displace-
ment 〈x(t ) − x0〉 and (b) scaling exponent β(t ); (c) mean-squared
displacement 	(t ), (d) scaling exponent α(t ) and indicated crossing
time t1→2. Parameter values: κ = γ0/τ2, x0 = 10l2.

where the ai and bi are the coefficients already used in
Eqs. (30) and (32). We see again a linear behavior for the MD
while the MSD goes from diffusive to ballistic. In Fig. 7 we
compare these results with numerical simulations.

IV. LONG-TIME BEHAVIOR

We now consider the stationary long-time behavior. In
order to keep a normalized probability distribution function,
we confine the system in a potential (n = 1, 2). The stochastic
process then admits a stationary PDF on the infinite line in the
x coordinate which can be computed from the Fokker-Planck
equation corresponding to the process Eq. (2). We rewrite,
analogous to Eq. (4),

ẋ(t ) = a(x) + b(x)ξ (t ) (35)

with

a(x) ≡ −
U ′(x)

γ (x)
, b(x) ≡

√
A

γ (x)
. (36)

The Fokker-Planck equation for this case has been derived in
Refs. [35,55] and reads as

∂t p(x, t ) = −∂x[a(x)p(x, t )] + 1
2∂x[b(x)[∂x[b(x)p(x, t )]]],

(37)

admitting a stationary solution at zero flux which is given by

p(x) =
N

b(x)
exp

[∫ x

dy
2a(y)

b2(y)

]

, (38)

where N is a normalization factor. The integrand in the expo-
nential of Eq. (38), denoted by I (y), can be expressed in terms
of the confining potential and the friction term as

I (y) = −
2

A
U ′(y)γ (y), (39)

which shows that it is given by polynomial expressions for the
cases we address now.
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FIG. 8. Normalized PDF p(x) for γ (x) = γ0 + γ1|x| and U (x) =
κ|x|, hence (p, n) = (1, 1). Shown are curves for three sets of values
of γ0 = 1 with all other parameters set to numerical values of one.
γ1 = 0.1 blue curve, Laplace distribution; γ1 = 3; yellow curve,
Gaussian distribution. With γ1 = 4 one obtains a bimodal “mirrored”
Gaussian curve.

Taking γ (x) = γ0 + γ1|x|p and U (x) = (κ/n)|x|n, which
covers both our cases of interest for p = 1, 2, n = 1, 2, one
obtains from Eq. (38)

p(x) =
N

√
A

(γ0 + γ1|x|p)

× exp

[

−
2κ

A

(

γ0

n
|x|n +

γ1

n + p
|x|n+p

)]

. (40)

We can now discuss the different cases as a function of the ex-
ponent pairs (p, n). For the lowest-order case (p, n) = (1, 1)
one has the superposition of the exponentials of a Laplace-
and a Gaussian distribution, as shown in Fig. 8. The resulting
PDF therefore interpolates between a Laplace-like distribu-
tion in the limit γ0 ≫ γ1 and a Gaussian-like distribution up
to γ1 = 2γ 2

0 a, where the coefficient a ≡ κ/A takes care of
the different physical dimensions of γ0 and γ1; we set a ≡ 1.
For still larger values of γ1 ≫ γ0, the monomodal Gaussian
distribution splits in what we call a bimodal “mirrored” Gaus-
sian distribution. This name reflects the observation that the
resulting distribution looks like a Gaussian placed close to
a mirror, with the parts of the image behind the mirror cut
out. It is important to note that for the presence of these
different distribution forms the friction-dependent prefactor
is important; at x = 0 it is a constant, but within a range of
x-values around zero it reweights the distribution away from
that constant, before for large values of x the exponential
contribution becomes dominant.

The PDF in the case (p, n) = (2, 1) shows the same behav-
ior, which can be read off from the exponents. The leading
Laplacian terms is unaltered since n = 1, while the subse-
quent term now acquires a cubic nonlinearity. In the case
(p, n) = (1, 2) the leading order term is now a Gaussian term,
which therefore dominates at small values of γ1. As in the
previous cases, for increasing values of γ1, the distribution
immediately turns into a mirrored Gaussian-distribution, i.e.,
the maximum of the distribution splits into two maxima.

Finally, (p, n) = (2, 2) the polynomial in the exponent is
even and of fourth order, with Gaussian behavior dominating

FIG. 9. Case (p, n) = (2, 2). Normalized PDF p(x) for U (x) =
κx2/2 for three sets of values of γ1 with all other parameters set to 1.
γ1 = 0.1: Gauss-like distribution; γ1 = 1: flat-top distribution; γ1 =
2; bimodal Gaussian-like distribution.

at low values of γ1. Going from small to large γ1, one now
crosses over from a Gaussian-like to a bimodal Gaussian-like-
distribution, which now is smooth at x = 0 due to the absence
of modulus terms. This form is shown in Fig. 9. All behaviors
found are summarized in Table I.

We end by considering the robustness of our results with
respect to thermal fluctuations. Following Baule et al. [35],
we consider the Langevin equation

γ (x)ẋ(t ) = −U ′(x) +
√

2γ (x)kBT η(t ) +
√

Aξ (t ), (41)

where η(t ) is a Gaussian white noise. The thermal and ac-
tive processes η(t ) and ξ (t ) being uncorrelated, they can be

TABLE I. Graphic summary of the PDFs for the cases (p, n) for
p = 1, 2, n = 1, 2, varying only the friction strengths γ0 and γ1. For
γ1 = 0, the distributions are either Laplacian (L) or Gaussian (G);
left-most points. Increasing γ1 leads to mirrored Gaussian behavior
(MG), passing via Gaussian behavior at γ1 = 2γ 2

0 a, a = (κ/A) ≡ 1.
This applies to both (p, n) = (1, 1) and (p, n) = (2, 2). For (p, n) =
(1, 2), starting from a Gaussian at γ1 = 0, the PDF changes into a
mirrored Gaussian shape for finite positive γ1. Finally, for (p, n) =
(2, 2), Gaussian behavior changes into bimodal Gaussian behavior
(BG), passing via a flat-top behavior (FT) at γ1 = γ 2

0 a, with again
a = 1.

(p, n)

•
0 γ1
−−−−−−−−−−−−−−−−−−−−−−→

(1, 1)

•
L G
−−−−−−−−−−→•

MG
−−−−−−−−−−−→

(2, 1) γ1 = 2γ2

0

(1, 2) •
GMG

−−−−−−−−−−−−−−−−−−−−−−−→

(2, 2) •
G FT
−−−−−→•

BG
−−−−−−−−−−−−−−−−→

γ1 = γ
2

0
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superimposed to ξT (t ) = η(t ) + ξ (t ), leading to

ẋ(t ) = aT (x) + bT (x)ξT (t ), (42)

with

aT (x) = −
1

γ (x)

(

U ′(x) +
kBT

2

γ ′(x)

γ (x)

)

(43)

and

b2
T (x) =

1

γ (x)

(

2kBT +
A

γ (x)

)

. (44)

The integrand I (y) in the exponential of the PDF reads as

I (y) = −2

[

U ′(y)γ (y) + kBT γ ′(x)

A + 2kBT γ (x)

]

, (45)

which can be compared with Eq. (39) in the purely active case.
As a robustness check it suffices to examine the behavior of
the integrand I (y) near the origin for small values of y and for
y → ±∞, for our four cases (p, n), n = 1, 2, p = 1, 2. For the
behavior near the origin one finds that the dominator behaves
in a similar fashion as I (y) of Eq. (39), generating a polyno-
mial with identical powers, since the temperature-dependent
term either contributes a sgn(x) for p = 1 or a linear term
for p = 2. The qualitative behavior of the PDFs remains thus
unaltered. For large arguments, one sees that generally I (y)
behaves as

I (y) ∝ −
U ′(y)

kBT
, (46)

such that the tails of the distributions are determined by ther-
mal fluctuations and decay exponentially, i.e., Laplace-like for
n = 1 or Gaussian-like for n = 2; the active noise and the
friction term then only play a role in the prefactor of the PDF.

V. DISCUSSION AND CONCLUSIONS

In this work we have studied the stochastic dynamics of
an active-noise driven particle under the influence of a space-
dependent friction and confinement. In order to elucidate the
effect of the space dependence of the friction term, we start
the dynamics for large initial values, so that the friction term
dominates the dynamics. For the case of a free particle, a
particle running down a ramp and a harmonic potential we
have determined the mean displacement and mean-squared
displacement and the corresponding scaling exponents β(t )
and α(t ) in a short-time expansion. The mean displacements
generally show diffusive behaviors, while a crossover to a bal-
listic regime is observed for the mean-squared displacement,
except for the free particle case.

Further, we have determined the effect of the friction term
in the presence of a confining potential U (x) ∝ |x|n for n =
1, 2 for long times. We have analytically computed the sta-
tionary probability density functions from the Fokker-Planck
equation. These solutions can be classified according to the
exponent pairs (p, n) and the relative magnitude of the friction
coefficients γ0 and γ1. One observes that the friction law and
the confinement potential conspire to generate a set of generic
behaviors: Laplace-like and Gaussian-like distributions for
n = 1 and n = 2, respectively, if the spatially dependent fric-
tion term is small (γ1 ≪ γ0); this behavior crosses over for

γ1 = γ 2
0 to Gaussian behavior for both p = 1, 2. In the case of

n = 2, Laplace-like behavior is absent. For all cases of (p, n)
with n = 1, 2p = 1, 2, one observes that for γ1 ≫ γ0, the
stationary PDF displays a mirrored or bimodal Gaussian-like
behavior. Therefore, generally for all combinations of (p, n),
at sufficiently strong space-dependent friction, the PDF be-
comes a bimodal distribution with a symmetrically increased
weight off-center of the potential minimum.

To conclude, our study extends current studies on active
particles in one dimension by the inclusion of a space-
dependent friction and therefore links the problem to earlier
studies of molecular motors on linear tracks. Investigations of
the stationary probability density functions for the run-and-
tumble process have already generated an extended catalog of
distributions, see, e.g., Refs. [15], in which also bimodal-type
PDFs appear (see their Fig. 7), or Ref. [56]. Placed in this
context, the present study reveals a basic classification method
in which such complex distributions are categorized for the
case of a space-dependent friction. Our model system allows
us to extract the mechanism of shape change of the PDFs in a
particularly clear manner.

Our theory can be extended to active noise driven motion
in two spatial dimensions. A special two-dimensional example
is given by a radially symmetric situation, where the friction
γ solely depends on the radial distance r =

√

x2 + y2. This
case can be solved with similar methods as proposed in this
paper. Another possible extension of our model could treat full
viscosity landscapes [57–60]. Moreover inertial effects can be
included in the particle dynamics [61–64]. Finally, collective
effects for many active-noise driven particles such as motility-
induced phase separation should be explored [65,66].
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APPENDIX: ANALYTICAL AND NUMERICAL

CALCULATIONS

1. Calculation of the mean displacement

in the (p, n) = (1, 0) case

In this Appendix we show how we obtained Eq. (10) start-
ing from Eq. (8). First, we notice that Eq. (8) can be written
as

x(t ) = −
γ0

γ1
+

γ0 + x0γ1

γ1

√

1 +
2γ1

√
A

(γ0 + x0γ1)2

∫ t

0
dt ′ξ (t ′).

(A1)
Given x(t ), we can write the equation for the MD:

〈x(t ) − x0〉 (A2)

=
γ0 + x0γ1

γ1

⎛

⎝

〈

√

1 +
2γ1

√
A

(γ0 + x0γ1)2

∫ t

0
dt ′ξ (t ′)

〉

− 1

⎞

⎠.

(A3)
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To calculate the average in this expression, we have to Taylor
expand the square root, using the following formula:

√
1 + a = 1 +

a

2
+

∞
∑

m=2

(−1)m−1 (2m − 3)!

22m−2m!(m − 2)!
am, (A4)

where we substitute

a ≡
2γ1

√
A

(γ0 + x0γ1)2

〈∫ t

0
dt ′ξ (t ′)

〉

. (A5)

Equation (10) follows directly.

2. Numerical treatment of the Langevin equation

The stochastic equation

ẋ(t ) = a(x) + b(x)ξ (t ) (A6)

is of the standard form

dxt = a(xt )dt + b(xt )dWt , (A7)

where Wt represents a Wiener process. In order to solve this
equation numerically in the Stratonovich paradigm, we im-
plement a predictor-corrector scheme. In such a scheme, one

first performs a full time step evolution of the position of
the particle x(ti ) using the same time coefficients a(x(ti)) and
b(x(ti )). This predicted position xp is used to calculate a(xp)
and b(xp) and proceed to finally calculate the position at time
step ti+1 using the averages of the coefficients calculated for
x(ti ) and xp. To implement the Stratonovich paradigm, using
this kind of average only for the stochastic part [and hence the
b(x)] is necessary, but we preferred to apply this procedure
as well to the deterministic part in order to improve stability
of the result. The method we decided to use for the time
evolution is thus a Milstein scheme, of order O(	t ) [67]. The
Milstein evolution of Eq. (A7) can be written as

x(ti+1) = x(ti ) + a(x(ti))	t + b(x(ti ))	W (ti )

+
1

2
b(x(ti ))

db(x(ti))

dx
((	W (ti ))

2 − 	t ), (A8)

where 	W (ti ) = W (ti+1 − W (ti ) is a normal-distributed ran-
dom variable.

It should be noted that the Milstein scheme uses the deriva-
tive of the function b(x), which for our model is discontinuous
at x = 0 for the case p = 1. This can be treated by adopting
an algorithm developed in Ref. [68], employing colored noise
from the Ornstein-Uhlenbeck process.
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Abstract We discuss the dynamics of a Brownian particle under the influence of a spatially periodic
noise strength in one dimension using analytical theory and computer simulations. In the absence of a
deterministic force, the Langevin equation can be integrated formally exactly. We determine the short- and
long-time behaviour of the mean displacement (MD) and mean-squared displacement (MSD). In particular,

we find a very slow dynamics for the mean displacement, scaling as t−1/2 with time t. Placed under an
additional external periodic force near the critical tilt value we compute the stationary current obtained
from the corresponding Fokker–Planck equation and identify an essential singularity if the minimum of the
noise strength is zero. Finally, in order to further elucidate the effect of the random periodic driving on
the diffusion process, we introduce a phase factor in the spatial noise with respect to the external periodic
force and identify the value of the phase shift for which the random force exerts its strongest effect on the
long-time drift velocity and diffusion coefficient

1 Introduction

Dating back to the important paper by Einstein in the
annus mirabilis 1905 [1], the dynamics of Brownian par-
ticles has been in the focus of statistical physics for
more than 100 years now [2]. The constant interest in
Brownian particles is basically inspired by two facts:
First, their stochastic description requires fundamen-
tal principles such as the Langevin or Smoluchowski
picture such that they serve as paradigmatic models
which can be made systematically more complex. Sec-
ond, there is a variety of excellent realizations of Brow-
nian particles including mesoscopic colloidal particles
in suspension [3], random walkers in the macroscopic
world (such as [4]) and in the microscopic biological
context [5], and even elements of the stock exchange
market [6]. This facilitates a direct comparison of the
stochastic averages between the stochastic modelling
and real experimental data.
In its simplest one-dimensional form, the most basic

model Langevin equation for a particle trajectory x(t)

as a function of time t is ẋ(t) =
√
Dη(t) in which η(t) is

white noise with zero mean and variance 〈η(t)η(t′)〉 =
δ(t − t′) and D > 0 is the diffusion constant. Here,
〈...〉 denotes a noise average. With the initial position
x(t = 0) = x0, the mean displacement vanishes due
to symmetry, 〈x(t) − x0〉 = 0, and the mean-squared
displacement is purely diffusive, 〈(x(t) − x0)

2〉 = 2Dt.
Clearly, this basic equation can be extended towards
more complicated situations including an additional

a e-mail: breoni@hhu.de (corresponding author)

static external force, time-dependent external forcing,
higher spatial dimensions, and many interacting parti-
cles, see [7–10] for some reviews.

One particularly interesting way to extend the equa-
tion is to generalize it to a situation of multiplicative
noise, where the noise strength is a positive function
D(x, t). While the case whereD is only an explicit func-
tion of time t is well studied, for example in the context
of Brownian ratchets [11–15] and heat engines [16–20],
in this work we focus on the case where we have a spa-
tially dependent noise strength [21–24] modelled by a
positive function D(x), i.e. a space-dependent diffusion
coefficient, such that the most basic model for such pro-
cesses is given by the Langevin equation

ẋ(t) =
√
D(x(t))η(t). (1)

The special case of multiplicative noise where ẋ(t) =
−κx(t)η(t) with positive κ [25], which is somehow
related to this model, documents already that the spa-
tial dependence of the noise gives rise to fundamen-
tally new mathematical concepts also known as the Itô-
Stratonovich problem [26]. The mathematical difficul-
ties associated with the formal treatment of Eq. (1) are
subject to intense discussion, see, e.g., the recent work
by Leibovich and Barkai for the specific choice of D(x)
as a power-law [27] and numerous other studies [24,28–
40].
In this paper, we consider a variant of this model

in the context of the discussion of particle motion in
tilted potentials. There is a large literature on this
topic, see [41–54]. Following the original suggestion by
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Büttiker [21] and Landauer [22] the spatially-varying
thermal noise source can be combined with a ratchet
potential, as, e.g., recently discussed by [55]. Our model
considers overdamped Brownian particles subject to an
oscillating tilted potential and a space-dependent peri-
odic noise amplitude with the same wave vector k as
the force; furthermore, we will ultimately also allow a
shifted phase φ in the random force. In its general form,
the model is given by the Langevin equation

γẋ(t) = −∇V (x) +
√

2γkBT (x)η(t), (2)

where V (x) := −F0 (x+ ǫ sin(kx)/k) is the potential,

T (x) := T0 (1 + ν cos(kx+ φ))
2
is the space-dependent

noise strength, γ is the friction coefficient, F0 is the tilt-
ing force, T0 is a reference temperature, η(t) is a white
noise, as introduced before, and ǫ and ν are dimension-
less parameters. The critical tilt in this model arises
when ǫ = 1. In order keep the noise strength differen-
tiable everywhere and its phase in a fixed frame we con-
sider 0 ≤ ν ≤ 1. The period of both the force and the
noise will be L = 2π/k. We remark that the case ν = 1
plays a special role insofar as there are special positions
at which the noise is zero. In absence of forces, the par-
ticle will therefore never cross these positions but stay
confined within a periodicity length L.

Our goal in this paper is to describe the particle
dynamics as functions of ǫ, ν and φ, either in the vicin-
ity of the critical tilt, or in the absence of the deter-
ministic force, F0 = 0, i.e. in the purely spatial random
noise case. Among our main results are the very slow
dynamics in the relaxation of the mean displacement
(MD) and mean-squared displacement (MSD) for long
times in the F0 = 0 case and an essential singularity
in the stationary current for F0 �= 0 and ǫ ≃ ν ≃ 1.
In the case of the full model, we build upon the results
of [21] by also considering extreme temperature oscil-
lations where the noise strength vanishes (ν = 1) and
adding an external driving force, while we expand on
[41] by finding a theoretical approximation for both the
long-time drift vL and diffusion constant DL and the
phase value φ for which we have the largest increase of
vL and DL for ǫ �= 1 and ν �= 0. Our results have been
obtained both with numerical and analytical methods.
The paper is organized as follows: in the beginning

we focus on the free case, for which we study the short-
and long-time behaviour of MD and MSD, then we pro-
ceed with the full model, including the tilted potential,
for which we study the stationary distribution and the
dependence of long time diffusion and drift on φ and ν.
Finally, we summarize the results obtained and discuss
possible experimental realizations of the model.

2 Free particle case

In the case of a vanishing external force (F0 = 0), the
Langevin equation (2) now reads as

γẋ(t) =
√

2γkBT (x)η(t), (3)

where we set φ = 0 without loss of generality. We
decided to approach this problem using the Stratonovich
interpretation. For a given representation of the noise,
this equation can be solved by direct integration in the
particular case of periodic boundary conditions (PBC)
in which we identify x(t)± L with x(t). The PBC cor-
respond to a ring-like geometry of the one-dimensional
system.

x(t) =
2

k
arctan

[

√

1 + ν

1− ν
tan

(

k

√

kBT0(1− ν2)

2γ

×
∫ t

0

η(t′)dt′ + arctan

(

√

1 + ν

1− ν
tan

(

kx0

2

)

))]

(4)

and the limit of this solution for ν → 1 is

x(t) =
2

k
arctan

[
k

√
2kBT0

γ

∫ t

0

η(t′)dt′ + tan

(
kx0

2

)]
.

(5)

We remark here that in the case with no boundaries,
i.e. when we let the particle diffuse through the whole
x-axis, the analysis is harder and we were not able to
find an analytical expression except for the special case
ν = 1. In this limit PBC and the no boundaries case are
identical as the particle can never trespass the points
where the noise is zero.
Equations (4) and (5) can be used to express noise-

averages of any power of displacement. For an arbitrary
moment Mn(t) := 〈(x(t)− x0)

n〉 we obtain

Mn(t) =

∫

∞

−∞

{

2

k
arctan

[

√

1 + ν

1− ν
tan

(

k

√

kBT0(1− ν2)

2γ

+arctan

(

√

1 + ν

1− ν
tan

(

kx0

2

)

))]

− x0

}n

×e−
W

2

2t

√
2πt

dW (6)

for ν �= 1 and

Mn(t) =

∫
∞

−∞

{
2

k
arctan

[
k

√
2kBT0

γ
W + tan

(
kx0

2

)]

−x0}n
e−

W
2

2t

√
2πt

dW (7)

for ν = 1. Since we are going to focus on the mean dis-
placement 〈x(t) − x0〉 and the mean-squared displace-
ment 〈(x(t)− x0)

2〉, we write the expressions for these
two moments (n = 1, 2) explicitly:
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〈x(t)− x0〉 =

∫

∞

−∞

2

k
arctan

[

√

1 + ν

1− ν
tan

(

k

√

kBT0(1− ν2)

2γ
W

+arctan

(

√

1 + ν

1− ν
tan

(

kx0

2

)

))]

×e−
W

2

2t

√
2πt

dW − x0 (8)

and

〈(x(t)− x0)
2〉 =

∫

∞

−∞

{

2

k
arctan

[

√

1 + ν

1− ν
tan

(

k

√

kBT0(1− ν2)

2γ
W

+arctan

(

√

1 + ν

1− ν
tan

(

kx0

2

)

))]

−x0

}2
e−

W
2

2t

√
2πt

dW

(9)

for ν �= 1 and

〈x(t)− x0〉 =
∫

∞

−∞

2

k
arctan

[
k

√
2kBT0

γ
W

+tan

(
kx0

2

)]
e−

W
2

2t

√
2πt

dW − x0

(10)

and

〈(x(t)− x0)
2〉 =

∫
∞

−∞

{
2

k
arctan

[
k

√
2kBT0

γ
W

+tan

(
kx0

2

)]
− x0

}2
e−

W
2

2t

√
2πt

dW

(11)

for ν = 1.

2.1 Short-time behavior

We can use equations (8-11) to extract the short-time
behavior of the MD and MSD. Expanding the integrand
in powers of t using a Taylor series and integrating the

terms separately we obtain for the MD:

〈x(t)− x0〉 = −kkBT0t

γ
sin(kx0)ν

×
[
(1 + ν) cos2

(
k

2
x0

)

+(1− ν) sin2
(
k

2
x0

)]

+O
(
t2
)

(12)

and for the MSD

〈(x(t)− x0)
2〉 = 2kBT0t

γ

[
(1 + ν) cos2

(
k

2
x0

)

+(1− ν) sin2
(
k

2
x0

)]2
+O

(
t2
)
. (13)

In the special limit ν = 1 we also add the second-order
correction as:

〈x(t)− x0〉 = −2kkBT0t

γ
cos2

(
k

2
x0

)
sin(kx0)

×
[
1− 6k2kBT0t

γ
cos2

(
k

2
x0

)
cos(kx0)

]

+O
(
t3
)

(14)

and

〈(x(t)− x0)
2〉 = 8kBT0t

γ
cos4

(

k

2
x0

)

×
[

1 +
k2kBT0t

γ
cos2

(

k

2
x0

)

× (7− 11 cos (kx0))

]

+O
(

t3
)

. (15)

Clearly, the first-order correction of (14) and (15) coin-
cides with equations (12) and (13) in the limit ν → 1.
Moreover for ν = 0 we recover the white noise case
solved by Einstein [1].

We now define an effective potential of the mean dis-
placement such that a particle subject to this poten-
tial and constant white noise will experience the same
average drift as a particle in a space-dependent noise
landscape. In other words, following the spirit of the
mapping proposed by Büttiker [21], the effective force
resulting from this potential can be viewed as a sub-
stitute source for the drift when only white noise is
considered. Hence, we define this force FM (x) up to a
friction coefficient prefactor γ as the first coefficient of
the short-time expansion of the MD

〈x(t)− x0〉 = a1(x0, ν)t+O
(
t2
)

(16)
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Fig. 1 Effective potential of the mean displacement VM ,
obtained from the short-time drift of the mean displace-
ment, and space-dependent noise T (x) for ν = 0.5 and φ = 0
as functions of space x. While the averaged MD tends to
the minima of VM , where the noise strength T (x) is largest,
individual trajectories spend most of their time around the
maxima of VM

as follows

FM (x) := a1(x, ν)γ

= −kkBT0 sin(kx)ν

[
(1 + ν) cos2

(
k

2
x

)

+(1− ν) sin2
(
k

2
x

)]
. (17)

The effective potential of the mean displacement is then
defined by VM (x) = −

∫ x

0
FM (x′)dx′ yielding

VM (x) = kBT0ν

×
[
(1− ν) sin4

(
k

2
x

)
− (1 + ν) cos4

(
k

2
x

)

+1 + ν

]
.

(18)

This potential is shown in Fig. 1. Even though this
potential is defined just by the short-time expansion
of the MD, it is still significant for any finite time, as
the particle is overdamped and feels at every time a
short-time drift depending only on its position. As a
result, the MD of a particle subject to this potential
and white noise can be perfectly mapped to the MD of
a free particle with space-dependent noise.
While the average mean displacement behaves accord-

ing to VM , moving over time towards the regions where
VM is smaller and the noise strength is larger, we want
to stress that individual trajectories will not accumulate
in the minima of VM but will instead freely move over
all the domain, spending most of their time in the max-
ima of VM instead. This is because when particles reach
such low-noise regions they take a longer time escaping,
as their fluctuations there are severely reduced.

2.2 Dynamics for finite and long times

Now we explore the behavior of the MD and MSD for
finite and long times. First we present an asymptotic
analysis for the special case ν = 1. Then we use a
numerical solution of the integrals in (8) and (9) as
well as computer simulations of the original Langevin
equation to obtain data for finite times and arbitrary
ν.

2.2.1 Asymptotic analysis for ν = 1 for long times

Here we present an asymptotic analysis for the MD and
MSD by starting from Eq. (10) and using the asymp-
totic approximation

arctan(θ) ≃ π

2
sign(θ)− arctan

(
1

θ

)
, (19)

for large θ. We now expand arctan
(
1
θ

)
using Euler’s

formula [56]

arctan

(
1

θ

)
=

θ

θ2 + 1
+O

(
1

θ3

)
(20)

and insert this expansion in Eq. (10) to obtain

〈x(t)− x0〉 =
∫

∞

−∞

2

k

[
π

2
sign

(
k

√
2kBT0t

γ
W

+tan

(
kx0

2

))

−
k
√

2kBT0t
γ W + tan

(
kx0

2

)

1 +
(
k
√

2kBT0t
γ W + tan

(
kx0

2

))2

⎤
⎥⎦

e−
W

2

2t

√
2πt

dW

−x0 +O
(
t−3/2

)
, (21)

which yields

〈x(t)− x0〉 =
√

πγ

kBT0t

1

k2
tan

(
kx0

2

)

(
1− 1

2k

√
γ

kBT0t

)
− x0

+O
(
t−3/2

)
. (22)

As a result, the leading asymptotic behavior of 〈x(t)〉
is determined by the first term involving a scaling
behavior of the MD in 1/

√
t. This is remarkably slow

compared to typical behavior of a Brownian particle
in a harmonic potential or of active Brownian motion
where the MD reaches its asymptotic value exponen-
tially in time [57–59] thus constituting an example of
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a very slow relaxation as induced by space-dependent
noise.
Likewise an asymptotic analysis for ν = 1 yields for

the long-time limit of the MSD

lim
t→∞

(
〈(x(t)− x0)

2〉
)
= x2

0 +
π2

k2
(23)

which represents the degree of smearing of the par-
ticle distribution for long times. We want to remark
that the MSD calculated from a distribution with peri-
odic boundary conditions does not describe the effec-
tive diffusion coefficient DL in periodic systems with
no boundaries, in contrast to the MD which can actu-
ally be calculated from the distribution with periodic
boundary conditions even for open systems.

2.2.2 Computer simulations

We performed direct Brownian dynamics computer sim-
ulations of the original Langevin equations with a finite
time step Δt to obtain numerically results for the MD
and MSD at any times. In order to properly simu-
late a system with space-dependent noise, we used the
order O (Δt) Milstein scheme [60] with a time step of

Δt = 10−3τ , where τ := γL2

kBT0

is a typical Brown-
ian time scale of the system. For each simulation set
we fixed the initial position x0 within the first period
[−L/2, L/2] and averaged typically over 200 trajecto-
ries of length ≃ 500τ .

2.2.3 MD and MSD for finite times

Data for the mean displacement and the mean posi-
tion as a function of time are obtained by a numeri-
cal evaluation of the integral in Eq. (10) and by com-
puter simulation. For ν = 1 results are presented in
Fig. 2 together with the corresponding short-time and
long-time asymptotics (14) and (22). The displacement
starts linear in time t and saturates for long times. The
mean position approaches zero slowly as a power law
in time proportional to t−1/2. For large times the sta-
tistical error in the simulation data is significant but
nevertheless these data are compatible with the scaling
prediction of the theory.

In order to understand the very slow behavior of the
MD we note that while the MD tends to zero, i.e. to
the point with largest noise, this is just an effect of
averaging over particles spending most of their time at
the points with the smallest noise on both sides of the
x-axis: x ≃ −L/2 and x ≃ L/2. This particular mech-
anism explains why the MD approaches its final value
so slowly, as the particles have to hop from one side to
the other to symmetrize their distribution. In Fig. 3a
this is clearly documented in the time evolution of the
particle distribution function p(x, t), which gives the
probability to find a particle after a time t at position
x provided it started at time t = 0 at position x0. The
system evolves from a single-peaked distribution around
x0 to a double-peaked distribution in ±L/2. Near the

two points x = ±L/2 of zero noise the peaks are get-
ting sharper as t → ∞ approaching to δ-peaks such
that limt→∞ p(x, t) = (δ(x−L/2)+ δ(x+L/2))/2. The
intuitive reason for this is that once a particle adsorbs
at the points x = ±L/2 of zero noise it will never return
to the region where the noise is finite.
This peculiar behavior is clearly delineated from the
relaxation in a symmetric double-well potential with
white noise of strength T0. In order to reveal this, we
have performed simulations for a Brownian particle in
the double-well potential with two equal minima

U(x) := A(x4 −Bx2). (24)

We set A := 48kBT0/L
4 and B := L2/2 in order to

have the two wells in ±L/2 such that the energy barrier
between the two minima is 3kBT0. Our simulation for
this white-noise reference case show that both the MD
and the MSD decay exponentially in time t rather than
with 1/

√
t, and hence much faster than for our case of

space-dependent noise. We also defined a particle hop-
ping rate Γh between the two peaks of the distribution
as

Γh(t) :=
Nh(t)

t/2
, (25)

where Nh(t) is the number of times a particle hops from
one peak to the other in the time interval [t/2, t]. Note
that the relevant time window in which hopping is con-
sidered is chosen to be proportional in time in order
to improve the statistics. We have a hop whenever the
particle trespasses the x = L/4 or x = −L/4 thresh-
olds and previously was, respectively, in the left or right
peak.
In fact, as we show in Fig. 3b, for the double-well poten-
tial, the hopping rate Γh(t) converges to a constant for
long times. This rate is maintaining the equilibrium
state with a symmetrized occupation around the two
minima. The rate saturates for t → ∞ to a value very
close to the inverse of the mean first passage time (see
for example [61]) in the double-well potential te [62],
which in our case is given by:

te ≃ 2π√
∇2U(L/2)|∇2U(0)|

exp

(
U(0)− U(L/2)

kBT0

)

≃ 1.859τ. (26)

Conversely, for our case of space-dependent noise, the
hopping rate keeps decreasing as a function of time
again with an inverse power law t−1/2. This reflects the
fact that the peaks of the space-dependent noise distri-
bution keep growing indefinitely as the particles get in
average closer to the points of zero noise.
Now in Fig. 4 we explore the MD for the case ν �= 1

where the particle crosses the position of minimal noise.
Here the boundary conditions do matter and we distin-
guish between no boundaries (Fig. 4a) with infinitely
many oscillations and periodic boundary conditions of
a ring-like geometry (Fig. 4b). While the short-time
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(a) (b)

Fig. 2 Absolute values of the mean displacement 〈x(t) −
x0〉 (a) and the mean position with a minus sign to ensure
positivity −〈x(t)〉 (b) for ν = 1 and x0 = −0.2L as a func-
tion of time t. The numerical evaluation of the integral in
Eq. (10) (theory) and its asymptotic short- and long-time

expansions (14) and (21) are shown together with simula-
tion data. The MD increases linear in time t for short times,
while the decay to its limit scales in a very slow way with

O
(

t−1/2
)

(a) (b)

Fig. 3 a Probability density function p(x, t) for the parti-
cle position at different times t, with ν = 1 and x0 = −0.2L.
Here, we averaged over 10,000 different trajectories of length
10τ . b Hopping rate Γh between the two peaks in the parti-
cle distribution as a function of time t for a space-dependent

noise with points of vanishing noise (ν = 1), and for a
double-well potential with white noise. Here, we have cho-
sen x0 = −0.2L. We also show the stationary state theoret-
ical value of Γh for the double well potential, defined as the
inverse of the mean first passage time te, derived in Eq. (26)

behavior is linear in time for both kind of boundary
conditions, the MD saturates for long times to a finite
value depending on ν and x0 for the no boundaries case.
This finite value is −x0 for periodic boundary condi-
tions since in this case the mean position will always end
at zero due to symmetry. The asymptotic approach to
zero is exponential in time as in the case of the double-
well potential with noise as the particle stays mobile
even when approaching the position where the noise is
minimal. This is in marked contrast to the limit of ν = 1
where the particle gets immobilized at the boundaries.
Now we turn to the MSD, first for the special case

ν = 1 shown in Fig. 5a where boundary conditions do
not matter. The MSD starts linear in time and then
saturates to its long-time limit C := x2

0 + (π/k)2. Its
asymptotic approach to this saturation value is revealed
by plotting the MSD shifted by C which decays to zero
for large times, see Fig. 5b. Similar to the MD for ν = 1,
we find that the asymptotic behavior is compatible with
a 1/

√
t scaling.

In Fig. 6 we show the MSD for ν �= 1 for both types
of boundary conditions. In absence of boundary con-
ditions (see Fig. 6a) the long-time behavior is linear
in time ≈ 2DLt involving a long-time diffusion coeffi-
cient DL. Clearly the latter depends on ν but not on
the initial position x0. This dependence is depicted in
the inset of Fig. 6a. We found the empirical expres-
sion DL(ν) = D0(1 − ν2) with D0 = kBT0/γ to be a
very good fit to the data. This can be regarded as a
parabolic fit which fulfills the inflection symmetry in ν
and the constraint DL(ν = 1) = 0. The same behavior
was recently found in a similar system [63].
Finally, to better clarify the behaviors of the MD and

MSD for ν = 1, we plot the dynamical exponents (Fig.
7) that define the scaling regimes for the MD (β, β′)
and MSD (α, α′) close to their short-time and long-time
limits, respectively:
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Fig. 4 Mean
displacement 〈x(t)− x0〉
(a,b) as a function of time
t for three values of
ν = 0.25, 0.5, 0.75 and
x0 = −0.2L for no
boundaries (a) and for
periodic boundary
conditions (b)

(a) (b)

(a) (b)

Fig. 5 Absolute values of the mean-squared displacement
(MSD) 〈(x(t) − x0)

2〉 (a) and shifted MSD−C, where C is
the long time limit of the MSD (b) as a function of time t

for ν = 1 and x0 = −0.2L. The numerical evaluation of the
integral in Eq. (11) and its asymptotic short- and long-time
expansions are shown together with simulation data

Fig. 6 a Mean-squared
displacement (MSD)
〈(x(t)− x0)

2〉 as a function
of time t for ν �= 1 and
x0 = −0.2L both for no
boundaries (a) and for
periodic boundary
conditions (b). The inset
shows the long-time
diffusion constant DL as a
function of ν for the no
boundaries case (a) (b)

β :=
d(log10 |〈x(t)− x0〉|)

d(log10(t))
,

β′ :=
d(log10 |〈x(t)〉|)

d(log10(t))
,

α :=
d(log10〈(x(t)− x0)

2〉)
d(log10(t))

,

α′ :=
d(log10 |〈(x(t)− x0)

2〉 − C|)
d(log10(t))

.

(27)

Both the MD and MSD for short times are linear, while
for long times the scaling of the MD converges clearly to
-0.5, that corresponds to 1/

√
t. Within the time window

explored the MSD has not yet saturated to an ultimate

dynamical exponent for long times. The asymptotics
shown is compatible with a final scaling exponent of
−1/2 although the approach to this final exponent is
much slower for the MSD than for the MD where the
saturation is clearly visible.
We remark that an algebraic asymptotic approach

in the MSD was also found for equilibrium Brownian
dynamics of repulsive interacting particles. Here the
time-derivative of the time-dependent diffusion coeffi-
cient MSD/t scales as t−d/2 in d spatial dimensions
[64–67] but the physical origins of the algebraic scal-
ing laws are different.
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(a)

(c)

(b)

(d)

Fig. 7 Dynamical exponents of the MD (a, c) and MSD
(b, d) close to 0 (a, b) and their final limit (c, d) for ν = 1
and x0 = −0.2L in theory and simulation as functions of
time t. As we have already seen in Fig. 2 for the MD and

Fig. 4 for the MSD, both quantities grow initially linearly
in time and decay to their final limit with 1/

√
t for the MD

and slower than 1/
√
t for the MSD

3 Tilted potential

In this section, we leave the situation in which the
Brownian particle is a free particle only driven by
spatially-dependent noise. We now consider the full
model, including the deterministic tilted potential. We
first look at the situation near the critical value of the
amplitude ǫ = 1, where the tilted potential develops a
plateau. The situation addressed in shown in Fig. 8.

3.1 The stationary current

Being weakly confined to a region of the determinis-
tic potential in which the dynamics can be considered
‘slow’, a quasi-stationary distribution can be defined
[49]. The Fokker–Planck equation corresponding to the
Langevin equation, Eq. (1) in Stratonovich interpreta-
tion reads as

∂tp(x, t) = −∂xa(x)p(x, t) +
1

2
∂x[b(x)∂x[b(x)p(x, t)]]

(28)

with a(x) the force and b(x) the noise amplitude,

a(x) := F0(1 + ǫ cos(kx)), b(x) :=
√

2γkBT (x) .

(29)

Following the discussion in [49], the dynamics near the
critical tilt value for ǫ ≥ 1 is characterized by a sta-

tionary current given by the one-time integrated FP-
equation

− Js = −a(x)ps(x) +
1

2
b(x)∂x[b(x)ps(x)] . (30)

Defining (b(x)/2)ps(x) = p̂s(x) we can rewrite the last
expression as

− Js
b(x)

= −R(x)p̂s(x) + ∂xp̂s(x) (31)

with

R(x) =
2a(x)

b2(x)
. (32)

The equation can be solved with the Ansatz p̂s(x) =
u(x) · v(x) which reduces the problem to two readily
integrable first-order ordinary differential equations for
u(x) and v(x). One obtains the final expression

ps(x) =
2Js
b(x)

∫
∞

x

dy
1

b(y)
exp

(
−
∫ y

x

dzR(z)

)
, (33)

in which the current Js can be obtained from the nor-
malization integral

∫
∞

−∞
dxps(x) = 1. In the following

we take for simplicity (setting all other constants to
one)
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(a)

(b)

Fig. 8 Potential (a) and corresponding force (b) near the
‘flat’ regime ǫ = 1 as a function of the spatial coordinate x

R(z) =
1 + ǫ cos(z)

(1 + ν cos(z))2
. (34)

Setting b(z) := exp (−F (z)) = exp(− ln(1 + ν cos(z)),
and expanding both b(z) and R(z) in Taylor series
around the center of the flat region near z = L/2, the
stationary current Js is given by

Js =
1

2

[∫
∞

−∞

dx exp
(
−F̂ (x)

)

×
∫

∞

0

dy exp
(
−F̂ (y)

)
exp

(
−
∫ y

x

dzR̂(z)

)]
−1

(35)

in which the symbol .̂.. indicates the Taylor-expanded
functions,

F̂ (x) = ln(1− ν) +
1

2

(
1

1− ν

)
(x− L/2)2 (36)

and

R̂(z) = 2
1− ǫ

(1− ν)2
+

ǫ(ν + 1)− 2ν

(1− ν)3
(z − L/2)2 . (37)

The integration of R̂(z) yields a cubic polynomial, but
due to cancellations the resulting expression in the
exponential is Gaussian in x and cubic in y. The Gaus-
sian integral in y can be calculated exactly, while the
remaining expression in y needs to be evaluated numer-
ically for each value of ǫ and ν.

The most interesting behavior of the stationary cur-
rent is found in the limit ν → 1, ǫ ≈ 1. The fact that
the coefficients in Eqs.(36),(37) are singular in 1/(1−ν)
leads to a singular behavior of Js in the form

Js ∝ (1− ν)m exp

[
− I(ǫ, ν)

(1− ν)n

]
, (38)

with n = 3, since the dominant singularity in R̂(z) is
∝ (1 − ν)−3, see Eq. (37). The amplitude is I(ǫ, ν) =

(ǫ(ν + 1) − 2ν)/4 and the rational factors combine to
m = 0. The stationary current thus goes to zero with
an essential singularity in (1− ν).

3.2 Phase difference between noise and potential

For a tilted potential, we now explore the effect of a
nonzero phase φ �= 0 on the long-time behavior of the
particle for different values of ν by using computer sim-
ulation.
As shown in [41], the long-time drift velocity and

diffusion coefficients (vL and DL respectively) can be
analytically calculated for the case ν = 0, where we set
V (x) as potential.
Here the question is how the mismatch of the periodic

noise and external forcing affects the long-time behav-
ior of the particle. Intuitively one would expect that
overcoming an energetic barrier is best if the maximum
of the noise occurs where the external force is opposing
most. Then the noise would help to bring the particle
over the energetic barrier. The position where the force
is opposing most is clearly given for x = L/2 + nL,
where n is an integer. Then it is expected that mobil-
ity gets a maximum if the phase shift is φ = π. This
is indeed what we confirm by simulation. We chose
kBT0 = 0.01F0L and ǫ = 1.3. The potential barrier
ΔE is given by

ΔE(ǫ) =
F0L

π

(√
ǫ2 − 1− arcsec(ǫ)

)
, (39)

yielding ΔE ≃ 0.04F0L > 0.01F0L for ǫ = 1.3.
Given these parameters, we simulated the system for

different values of φ and ν and results are summarized
in Fig. 9. Since to the best of our knowledge there is
no easy generalization of the results in [41] for a space-
dependent temperature, we have compared the simula-
tion data with a mapping on the analytical results for

v
(0)
L and D

(0)
L [41] which were obtained for a spatially

constant temperature. Since the crucial position to hop
over the barrier is at x = L/2+nL where the opposing
force is maximal, this represents the kinetic bottleneck
for the dynamical process. Therefore it is tempting to
compare our simulation results with the analytical ones
where this local noise strength T (x = L/2) is inserted
as a homogeneous temperature. We remark that this
temperature T (x = L/2) depends both on the oscilla-
tion strength ν and the phase shift φ of T with respect
to the potential. This mapping theory should work best
if the particle spends most of its time close to the point
x = L/2. In fact, Fig. 9 reveals that this simple map-
ping theory describes the simulation data well even for
large ν. As a function of the phase mismatch φ, bothDL

and vL are enhanced when φ is between about 3
5π and

7
5π. Clearly around the value φ = π we find the max-
imal enhancement of both vL and DL. In the comple-
mentary case, the noise strength T (x) has its minimum
closer to the crucial region where the opposing force is
maximal, and as a result the drift velocity and diffusion
are severely reduced. For ν = 1 they are even brought
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Fig. 9 Long time drift
(a) and diffusion (b) for
ǫ = 1.3 as functions of ν
and φ, simulations results
and theory. For φ between
about 3

5
π and 7

5
π both DL

and vL are enhanced,
having a maximum in
φ = π, while otherwise
they are reduced

(a) (b)

exactly to zero when |φ| < arcsec(ǫ), since the parti-
cle is stuck and there is no systematic external force to
drift over the positions of vanishing noise.

4 Conclusions and outlook

In conclusion we have presented a detailed study of
a model for a Brownian particle moving in a one-
dimensional environment with a space-periodic noise
and under an external potential with a tilt near its
critical value. In the free case we calculated the exact
solution of the associated Langevin equation, and fur-
ther explicitly obtained short- and long-time approx-
imations of the MD and MSD. These results allow
us to characterize the slow decay of these quantities
at long times. Interesting relaxation dynamics occurs
around points of vanishing noise which establish cen-
ters of growing peaks in the particle distribution, as
particles slow down significantly in the neighborhoods
of these points. Introducing the tilted periodic potential
we first determined the stationary current for the quasi-
stationary state, which for ǫ ≥ 1 displays an essential
singularity for the maximal strength of the noise oscilla-
tions, ν. Finally, we determined numerically the effects
of a space-periodic noise on the long-time diffusion and
drift as functions of the phase difference between noise
and potential φ and the strength of the noise oscilla-
tions ν, finding the largest enhancements to take place
for a phase of φ = π and the maximal possible noise
oscillations for ν = 1.

Our one-dimensional model with both periodic bound-
ary conditions or no boundaries can be realized by a
colloidal particle confined in a ring or a linear chan-
nel respectively by, e.g. optical forces [48,68–70]. The
space-dependent noise can be added by various means.
First, one can change locally the solvent temperature.
This realization has a limited applicability, since the
state of the solvent can be changed drastically upon
such a temperature variation. However, there are more
general and more important realizations for our model.
First of all, the viscosity or the friction coefficient can
directly be changed without changing the ambient tem-
perature. The solvent viscosity, for instance, can be
tuned over orders of magnitude by imposed patterned
substrates interacting with the solvent or even by vary-
ing the size of the colloids without changing the solvent

phase [71]. Second, space-dependent noise can stem
from active internal fluctuations [72,73] different from
thermal fluctuations and can be embodied into an effec-
tive noise strength that can largely be tuned by activity
[74–78]. Optical gradients can be used to steer activity
as a function of the position, as realized and discussed
in [63,79–81]. Another possibility is to tune the noise
amplitude of skyrmions, which have a similar equation
of motion [82]. Last but not least, the noise can be
mimicked in valuable model systems by applying ran-
domized kicks of an external field to the particle. For
example, the noise strength can largely be tuned exter-
nally without changing the solvent at all by tuning the
rotational diffusion constant of the colloids [83,84]. In
fact, the effective diffusion constant of an active parti-
cle depends on its rotational diffusion constant, and in
the limit of short persistence lengths one can indirectly
tune the translational diffusion by tuning the rotational
one.
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Abstract We study a one-dimensional three-state run-and-tumble model motivated by the bacterium
Caulobacter crescentus which displays a cell cycle between two non-proliferating mobile phases and a
proliferating sedentary phase. Our model implements kinetic transitions between the two mobile and one
sedentary states described in terms of their number densities, where mobility is allowed with different
running speeds in forward and backward direction. We start by analyzing the stationary states of the
system and compute the mean and squared-displacements for the distribution of all cells, as well as for the
number density of settled cells. The latter displays a surprising super-ballistic scaling ∼ t3 at early times.
Including repulsive and attractive interactions between the mobile cell populations and the settled cells, we
explore the stability of the system and employ numerical methods to study structure formation in the fully
nonlinear system. We find traveling waves of bacteria, whose occurrence is quantified in a non-equilibrium
state diagram.

1 Introduction

Understanding the motion of bacteria has been a classic
problem of biophysics [1,2]. Bacteria are propelled by
their flagellae, whose motor generates a torque which
translates into forward or backward motion of the bac-
teria. The problem has also found interest within the
soft matter community, as bacteria are but one exam-
ple of a much larger class of systems, commonly denoted
as microswimmers [3]. The run-and-tumble (RT) model
of an active particle system is originally motivated by
specific features of bacterial motion: this motion only
persists for a finite time, the ‘run’-time, after which the
bacterium stalls, the ‘tumble’-period, before continuing
its motion typically in a different direction, see e.g. [4].
The properties of the basic RT model have been con-
fronted with experiments, e.g. in [5,6]. The RT model
also relates to other stochastic processes, e.g. the exclu-
sion process [7] or even to the dynamics of quantum
particles [8].

RT models in one dimension are a special case within
this model class. Here, the bacterium can only switch
between left- and right motion in a stochastic man-
ner. One-dimensional RT-models have proven to be
an extremely rich field for analytic calculations; exem-
plary papers dealing with diverse aspects are: confine-
ment [9]; space-dependent velocities, space-dependent

a e-mail: breoni@hhu.de (corresponding author)

transition rates and general drift velocity distribu-
tions [10–14]; hard-core particles with spin [15]; inho-
mogeneous media [16]; attractive/repulsive interactions
[17,18]; phase transitions [19]; entropy production [20].
Field-theoretic methods have been applied to RT mod-
els recently as well [21,22].
In some sense, the (one-dimensional) RT model can

be thought of playing in active systems a role analogous
to Ising models in equilibrium statistical mechanics. In
the very recent past, several works have appeared carry-
ing this analogy further, since they consider the number
of ‘states’ in which the bacterium can find itself to go
beyond the dichotomy of left- and right-moving states.
Models with three and even more states have been
discussed—in our Ising-model analogy, this amounts to
looking at active analogues of ‘Potts’-type models [23–
25].
The present paper inserts itself in this line of research

by considering a three-state RT model with the states:
left-moving, right-moving and sedentary. Our model is
motivated by the behavior of the bacterium Caulobac-
ter crescentus (CC), a model organism in microbiology
since it has a complex lifestyle [26,27]. CC has a bac-
terial analogue of a cell cycle usually found in eukary-
otes; in order to undergo cell division, the bacterium
has to switch from its mobile swarmer state to a spa-
tially localized stalked state. Only from the latter state
the proliferation of new cells is possible. Our model,
capturing this biological feature, is however not limited
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to CC or bacteria alone. E.g., the green algae Chlamy-
domonas reinhartii has a similar cell cycle [28] with
sedentary and swimming states and also performs a
run-and-tumble motion [4]. The capacity of cell divi-
sion in our RT model inks it to the problem of the
growth of bacterial colonies. Recently, the authors of
[29] developed a growth-expansion model which gener-
ates traveling waves in bacterial chemotaxis, in accord
with experimental observations. We show that traveling
waves also arise in our much simpler 1d run-and-tumble
model.
The paper is organized as follows. In Sect. 2, we intro-

duce our RT-model as a toy model, inspired by the cell
cycle of CC. In Sect. 3, we first focus on the case of free
cells for which we derive the conditions for stability of
the system when spatial dependencies are neglected. In
Sect. 4 we consider the spatial dependence built into
the model and study the mean displacement (MD) and
mean squared displacement (MSD) for a single cell in
the process of duplicating, both showing a surprising
t3 regime for short times. Allowing the cells to inter-
act via both attraction and repulsion mechanisms, this
antagonistic effect is found to lead to structure forma-
tion: we numerically find traveling wave solutions of
the system density and quantify their occurrence in a
non-equilibrium state diagram. Finally we discuss how
the model performs with parameter values specific of
CC. Section 5 concludes the paper with a discussion of
the results of our model and a brief outlook on further
work.

2 The model

Inspired by the reproductive behavior of Caulobacter
crescentus we consider a one-dimensional toy model
representing bacteria that can actively move rightward,
leftward or settle down, and that when settled double in
number. We note that CC performs a run-reverse-flick
motion [30], where the bacterium first performs a for-
ward motion, then reverses its direction of motion and
in a third step makes a turn mediated by a buckling
instability in its flagellum [31]. Since our setup is one
dimensional, the run-reverse-flick motion is equivalent
to a run and tumble motion.

The ‘cell cycle’ of our three-state RT model moti-
vated by CC is summarized in Fig. 1. We allow for three
populations with the number densities ρ+(x, t), ρ−(x, t)
and ρ0(x, t), functions of space x and time t, respec-
tively corresponding to right and left movers, and to
the sedentary population. The ‘cell cycle’ step is given
by the rate of settling down, λs, which can occur from
either moving state, and the cell doubling with rate λd

with which a sedentary bacterium gives rise to a pair
of right- and left-moving cells. The exchange of direc-
tion, i.e. the RT step, is denoted by λe. Finally, µ is
the death rate, which we consider for motile cells only.
In a proliferating system, this rate prevents exponential
growth.

Fig. 1 Graphical representation of the transition rates
among different species. These transitions are motivated by
the cell cycle of Caulobacter crescentus, that either moves
actively or settles down to reproduce. Our model contains
three different species: the cells moving to the right ρ+, those
moving to the left ρ− and the settled ones ρ0. The moving
cells can either settle via the rate λs, move in the opposite
direction with λe or die with µ. Settled cells duplicate via
λd, and generate both a left- and a right-moving cell

This idealized CC-‘cell cycle’ is implemented in terms
of evolution equations for the cell number densities. In
the case where there is no death or proliferation, the
number densities can also be interpreted as probabil-
ity densities and the evolution equations correspond to
Fokker–Planck equations.
As the bacteria are micron-sized swimmers, we

assume a low Reynolds number and overdamped dynam-
ics. To describe this behavior mathematically, we first
group the three densities into the vector of densities
ρ = (ρ+, ρ0, ρ−). The dynamics of the system will then
be described by the differential equation

∂tρ = D∂2
xρ+ ∂x[(∂xU) · ρ]− V · ∂xρ+Mρ (1)

which generalizes the standard expression of growth-
expansion equations of logistic growth, usually formu-
lated for a single density [29]. In Eq. (1), the first term
is a diffusion term where the matrix D has the form

D =

(

D 0 0
0 0 0
0 0 D

)

(2)

since the sedentary particles do not diffuse. The second
term on the right-hand side is a nonlinear diffusion coef-
ficient containing an interaction matrix U of the form

U =

(−κρ0 0 0
0 κ0ρ0 0
0 0 −κρ0

)

. (3)

The matrix entries describe attractive interactions
(negative sign) of the moving cells to regions in which
particles have settled and repulsive interactions among
settled cells (positive sign) in order to mimic biofilm
behaviour. The third term on the right-hand side of
Eq. (1) describes the active motion of the particles in
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the right and left directions along the line. Hence

V =

(

v+ 0 0
0 0 0
0 0 −v−

)

. (4)

Finally, we have for the cell cycle or population dynam-
ics part, following the transitions shown in Fig. 1, the
matrix M given by

M =

(−(λs + λe + µ) λd λe

λs −λd λs

λe λd −(λs + λe + µ)

)

. (5)

Given that our run-and-tumble model allows for prolif-
eration and death of cells, it is important to recognize
that the population dynamics of Eq. (1) is the linear
limit of the more general nonlinear decay-growth equa-
tion

∂tρ = D∂2
xρ+ ∂x[(∂xU) · ρ]− V · ∂xρ

+MDρ+MODR(ρ). (6)

In Eq. (6), MD and MOD are the diagonal and off-
diagonal parts of the matrix M, i.e., one has M =
MD+MOD. The diagonal part describes the cell num-
ber decay, while the off-diagonal part describes the
growth of the cell population. In order to limit growth,
the non-diagonal term is generally nonlinear and satu-
rating at the carrying capacity, as is common in growth-
expansion models, see, e.g. [29]. The vector R is thus
given by

R =

⎛

⎝

ρ+(1− ρ+

ρ+,c

)

ρ0(1− ρ0

ρ0,c
)

ρ−(1− ρ
−

ρ
−,c

)

⎞

⎠ .

where the carrying capacity is given by the vector

ρc(x) ≡ (ρ+,c(x), ρ0,cx), ρ−,c(x)) . (7)

The linear limit of Eq. (6) is reached for |ρ| ≪ |ρc|. It is
important to notice that since R is only applied to one
part of the M matrix, the stationary values reached
by the population in the linear limit will not neces-
sarily be those given by ρc. The main benefit of the
nonlinear model is that it prevents the number of cells
from exploding independently of the parameters. In this
manuscript we will mainly focus on the linear case,
while explicitly referring to the full nonlinear growth
equation if needed.

3 Free cells

We start by setting the cell interaction parameters κ =
κ0 = 0, and hence consider free cells.

3.1 Population dynamics

In this section we further set D = 0 as well as the
velocities v+ = v− = 0, thus we first study free cells
undergoing the pure population dynamics given by

∂tρ(x, t) = Mρ(x, t) . (8)

This linear system of equations can be solved analyti-
cally via matrix calculations, leading to

ρ(x, t) = eMt
ρ(x, 0) = PeEtP−1

ρ(x, 0). (9)

P is the eigenvector matrix of M and E is the diagonal
matrix containing the eigenvalues of M, that are

E1 =− (µ+ 2λe + λs)

E2 =− (µ+ λd + λs + Λ)/2 (10)

E3 =− (µ+ λd + λs − Λ)/2,

where Λ =
√

(µ+ λd + λs)2 + 4λd(λs − µ). We notice
that the first two eigenvalues are always negative and
therefore stable, while the sign of the third depends
on λs − µ, which can become unstable. This instability
facilitates an exponential growth of the colony. In fact,
for small values of λd(λs−µ) with respect to µ+λd+λs

the unstable eigenvalue becomes

E3 ≃ λd(λs − µ)

µ+ λd + λs

. (11)

The exponential growth or collapse of the system is
therefore decided by the difference of λs and µ, or in dif-
ferent terms, the separating line between the two behav-
iors is λs = µ. It is also worth pointing out that in the
case of instant doubling, that is the limit of λd → ∞,
E3 simply reduces to λs − µ, as can be seen in Fig. 2.
Physically this is expected, as in this model cells can
double only when settled and can die only when mov-
ing, meaning that the growth or decay of the system
size depends exclusively on whether a moving cell is
faster in settling or dying.
In the case of λs = µ, it is possible to calculate the

stationary value of ρ(x, t → ∞) as a function of the
initial conditions ρ(x, 0):

ρ+(x, t → ∞) =
λd

2(2µ+ λd)
R(x, 0)

ρ0(x, t → ∞) =
µ

2µ+ λd

R(x, 0) (12)

ρ−(x, t → ∞) =
λd

2(2µ+ λd)
R(x, 0),

where R(x, 0) = 2ρ0(x, 0) + ρ−(x, 0) + ρ+(x, 0). Since
the exchange rate between right ρ+ and left ρ− moving
cells is symmetric, the amounts of left and right mov-
ing cells are the same in the stationary state (ρ+ = ρ−,
see also Fig. 3). Furthermore, if λd = 2µ = 2λs all the
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Fig. 2 Unstable eigenvalue E3 (solid lines) as a function of
doubling rate λd for different values of λs (color code) and
µ = 10λe. The sign of E3 is the same of λs−µ, and its value
also stabilizes at λs − µ for very large values of λd (dashed
lines)

Fig. 3 Space averages of right- ρ+, left-moving ρ
−

and
sedentary ρ0 cells as functions of time, both for the linear
model (solid lines) with λs = µ and for the nonlinear model
(dashed lines) with λs = 3µ. For both models λd is set to
be equal to λe, while µ = λe in the nonlinear model and
µ = 2.848λe in the linear one. As initial conditions we chose
the constant values ρ(x, 0) = (0, .1, 0.479) for both models.
For the nonlinear model we further set the carrying capacity
ρc(x) = (1, 1, 1)

three populations equilibrate to the same value, inde-
pendently of the initial conditions. In the case of λs > µ
it is always possible in the frame of the nonlinear growth
model to find values of ρc for which the populations
stabilize around the values given by Eq. (12). Figure 3
shows the linear and nonlinear model equations with
different parameters and with the same stationary val-
ues.

3.2 Density dynamics

We now set the running speeds v± and the diffusion
constant D to finite values, in order to study the evo-
lution of spatial quantities of the system, such as the
mean displacement MD = 〈x − x0〉, the mean-squared
displacement MSD = 〈(x − x0)

2〉 and all the higher
order moments, where x0 is the average position of the

system at t = 0. Here, the average 〈(·)〉 is defined as
∫∞

−∞
(·)P (x, t)dx, where the total probability P (x, t) is

P (x, t) ≡ 1

N(t)
(ρ+(x, t) + ρ0(x, t) + ρ−(x, t)), (13)

N(t) ≡ N0(t) + N+(t) + N−(t) is the total number of
cells, Nα(t) =

∫∞

−∞
ρα(x, t)dx is the number of cells in

phase α and α can be (+,−, 0).
In order to compute averages, we first solve the sys-

tem by using a Fourier transform (FT ):

˙̃ρ(k, t) =
(

−k2D − ikV +M
)

ρ̃(k, t), (14)

where ρ̃(k, t) = FT (ρ(x, t)) is the Fourier transform
of ρ(x, t) and k is the wave number conjugate to x.
Similarly to the constant density case, the solution in
Fourier space will be given by

ρ̃(k, t) = exp
[

(−k2D − ikV +M)t
]

ρ̃(k, 0). (15)

One can use the solution of this equation to extract the
intermediate scattering function (ISF )

F(k, t) ≡ P̃ (k, t)P̃ (−k, 0)N(t). (16)

The ISF can be related to the different moments of the
density [32] by differentiation:

〈(x(t)− x0)
n〉 = in

N(t)

∂n

∂kn
F(k, t)

∣

∣

∣

∣

k=0

, (17)

valid in one dimension (see “Appendix”).
We can also define an average for each cell population

and the relative ISF :

〈(·)〉α ≡
∫ ∞

−∞

(·)ρα(x, t)
Nα(t)

dx, (18)

Fα(k, t) ≡
ρ̃α(k, t)ρ̃α(−k, 0)

Nα(0)
. (19)

The expression corresponding to Eq. (17) is then given
by

〈(x(t)− x0)
n〉α =

in

Nα(t)

∂n

∂kn
Fα(k, t)

∣

∣

∣

∣

k=0

. (20)

First we will discuss the behavior of the whole distribu-
tion P (x, t). For simplicity, we will consider the initial
condition ρ(x, 0) = (0, δ(x), 0) which is physically rele-
vant, as it describes a cell initially settled in x = 0 in
the process of reproducing. We do not focus on the case
of an initially mobile cell, as the short-time behaviours
of both the MD and MSD turn out to be simply linear
and the long-time behaviours are identical to that of
the initially settled cell case. We further remark that
our analysis does not assume the condition µ = λs for
a stable population in the linear growth model.
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3.2.1 Full distribution

When v+ 	= v−, the MD is non-zero and we observe two
different regimes: for short times it grows as t2, while
for long times it is proportional to t, as shown in Fig. 4a.
The short-time expansion of the MD in fact yields

〈x(t)− x0〉 = λdvdt
2

−1

3
λdvd(2µ+ 4λd + λs)t

3

+O
(

t4
)

, (21)

where vd = (v+ − v−)/2. The expression shows that
both the transition rates and the running speeds have
a role in determining this initial scaling regime. This
can be interpreted as a composition of the doubling
mechanism and the system acceleration given by cells
suddenly starting to move. We can further define the

typical crossover time t
(1)
c as the ratio between absolute

values of the coefficients of the t2 and t3 scalings, as this
is the time at which the t2 order contribution becomes
smaller than the following ones [33,34]. This is a good
estimate of the average time at which the dynamics is
not dominated by the initial doubling anymore:

t(1)c =
3

2µ+ 4λd + λs

. (22)

The long-time expansion of the MD yields

〈x(t)− x0〉 =
4vdλdλs

Λ(µ− λd + λs + Λ)
t+O

(

t0
)

, (23)

where Λ is the same of Eq. (10).
As far as the MSD is concerned, in Fig. 4b we still see

a t2 regime for short times, while the long-time behav-
ior depends on the difference between v− and v+. In
the case they are the same, we will only see a diffusive
long-time regime while otherwise this diffusive regime
transitions into a ballistic one. The smaller the differ-
ence between the running speeds, the longer is the time
to reach the ballistic regime. We further calculate the
short-time expansion of the MSD:

〈(x(t)− x0)
2〉 = 2Dλdt

2

−2

3
λd

(

D(2µ+ 4λd + λs)− v2a
)

t3

+O
(

t4
)

, (24)

where va =
√

(v2+ + v2−)/2. Again, we define a crossing

time t
(2)
c for the MSD as the ratio between the absolute

values of the coefficients of the t2 and t3 scalings:

t(2)c =
3D

|D(2µ+ 4λd + λs)− v2a|
. (25)

If we change the population rates we observe that the
growth or decay in the number of cells does not influ-

ence qualitatively the scalings we just described for
both the MD and MSD. The formula for the long-time
expansion of the MSD and the relative crossing time

t
(2)
l between the long-time regimes ∝ t and ∝ t2 are
quite involved, so we refrain from showing them here.
Finally, we study directly the full intermediate scatter-
ing function F(k, t) as it carries more information than
the MSD and MD. In Fig. 5a, that is in the case of
equal velocities, we can see that the real part of F(k, t)
that generates the MSD among all other even moments,
decays rapidly for small length scales (i.e. large k) while
it has three distinct regimes for large length scales. At
first the function decays or grows, following the growth

in the number of cells, then at time t
(2)
c it plateaus for

a time that grows larger as k gets smaller, and finally
decays completely. The plateau, starting after the tran-

sition of the cell to its moving stage at time t
(2)
c , is

generated by the active cells going back to the settled
stage and not moving anymore, while the final decay
represents the long-time diffusive behavior that we have
already seen in the MSD. In Fig. 5b we see how unequal
velocities change the intermediate scattering function
by introducing an oscillating behavior at long times.
This is a signature of ballistic motion and of a non-
vanishing imaginary part of F(k, t) that generates the
odd moments like the MD.

3.2.2 Distribution of settled cells

The main feature of the MD and MSD of the settled
cells is that they both show an initial t3 regime, as
shown in Fig. 6. The short time expansion of the MD
is given by

〈x(t)− x0〉0 =
1

3
λsλdvdt

3

− 1

6
λsλdvd(µ− λd + λs)t

4

+O
(

t5
)

, (26)

with the crossing time between the t3 and t4 regimes

t
(1)
c,0 being:

t
(1)
c,0 =

2

|µ− λd + λs|
. (27)

The MSD shows the initial t3 regime as well:

〈(x(t)− x0)
2〉0 =

2

3
Dλsλdt

3

− 1

6
λsλd

(

2D(µ− λd + λs)− v2a
)

t4

+O
(

t5
)

. (28)

with the crossing time t
(2)
c,0:

t
(2)
c,0 =

4D

|2D(µ− λd + λs)− v2a|
. (29)
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(a) (b)

Fig. 4 a Mean displacement (MD), b mean-squared dis-

placement (MSD), respective crossing times t
(1)
c , t

(2)
c and

short- and long-time approximations for the initial condi-
tions ρ(x, 0) = (0, δ(x), 0)λe/v+, all rates equal to λe and

D = 0.2v2+/λe. In (b) the solid red line shows unequal swim
velocities (v− = 0.9v+) and the dashed blue line equal swim
speeds (v− = v+). The orange lines represent the short-
time approximations, while the green lines are the long-time
approximations

Fig. 5 Real part of the
intermediate scattering
function F(k, t) for a equal
swimming speeds and b

unequal swimming speeds
(v− = 0.9v+) for the initial
conditions ρ(x, 0) =
(0, δ(x), 0))λe/v+, all rates
equal to λe and
D = 0.2v2+/λe. The black
lines represent the MSD

short crossing time t
(2)
c

and, in the case of different
speeds, long crossing time

t
(2)
l

(a) (b)

The reason why we observe the t3-behaviour for short
times is the fact that the settled population can only
change by doubling, moving and then settling, with
each one of these processes being at least of order t.
We also notice that for D = 0 the MSD grows initially
with t4, as in this case the short time MSD for moving
cells grows with t2 and not t.
The long-time asymptotes for both MD and MSD of
the settled particles are identical to those of the whole
population.

4 Interacting cells

4.1 Attraction to settled regions

We now discuss the case of interacting cells. Our model
contains an effective attractive force that pushes the
moving cells towards the regions where the density
of settled cells is larger. This force is meant to rep-
resent how bacteria tend to assemble in resource-rich
regions to reproduce or how they accumulate in order
to form biofilms [35,36]; therefore the parameter κ > 0

in Eq. (1). The interaction terms κ∂x(∂x(ρ0)ρ±) render
the equation nonlinear such that it is not analytically
solvable. Instead we first perform a linear stability anal-
ysis around the homogeneous stationary solution to the
linear system ρ̂ computed in Eq. (12) (see also Fig. 3)
by adding a small perturbation δρ(x, t) and neglecting
the nonlinear terms in the perturbation (δρ(x, t))2. We
then arrive at the following system of equations for the
perturbation:

∂tδρ+ = −v+∂xδρ+ − κ∂2
x(δρ0)ρ̂+ +D∂2

xδρ+

− (λs + λe + µ)δρ+ + λeδρ− + λdδρ0
∂tδρ0 = −λdδρ0 + λs(δρ+ + δρ−) (30)

∂tδρ− = v−∂xδρ− − κ∂2
x(δρ0)ρ̂− +D∂2

xδρ−

− (λs + λe + µ)δρ− + λeδρ+ + λdδρ0,

where the stationary values for the density are sym-
metric, ρ̂+ = ρ̂−. We apply both a Fourier transform in
space and a Laplace transform in time to Eq. (30) and
solve the resulting characteristic equation of the system.
We obtain three different solutions for the eigenvalues
of the system si(k), of which only one, s1(k), can have
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(a) (b)

Fig. 6 a Mean displacement (MD), b mean-square-

displacement (MSD), respective crossing times t
(1)
c , t

(2)
c and

short- and long-time approximations for settled cells, with
initial conditions ρ(x, 0) = (0, δ(x), 0))λe/v+, all rates equal
to λe and D = 0.2v2+/λe. In (b) the solid red line shows

unequal swim velocities (v− = 0.9v+) and the dashed blue
line equal swim speeds (v− = v+). The orange lines rep-
resent the short-time approximations, while the green lines
are the long-time approximations

a positive real part. In the following we focus on s1(k),
since its positive real part introduces instabilities in the
system.

First of all, for k → 0, the value of s1(k) is one of
the eigenvalues of the system matrix where the initial
densities are constant, and more specifically the one
that can be positive:

s1(0) = E3 ≃ λd(λs − µ)

µ+ λd + λs

. (31)

This means that one of the conditions for the system
to be stable is that the number of cells does not grow
exponentially, which is expected.
The second limit we consider is k → ∞. We have

that

lim
k→∞

s1(k) →
2κρ̂+λs

D
− λd. (32)

This second condition states that the diffusion constant
contrasts directly the instabilities generated by a large
settling rate and the attractive constant κ, as it dis-
perses too large clusters of active cells, while a large
doubling rate helps the stability by reducing the size of
groups of settled cells. Knowing the limits of s1(k) in
k = 0 and k = ∞, i.e long- and short-range perturba-
tions respectively, we are sure that the system will be
unstable if the real part of either of them is larger than
zero, giving us two stability conditions for the system:

µ ≥ λs,

λd ≥ 2κρ̂+λs

D
. (33)

For D = 0, s1(k) grows asymptotically like k, mak-
ing the system always unstable. In Fig. 7 we show the
behavior of the eigenvalue Re(s1(k)) for different values
of D. Notice that for the set of parameters considered,

Fig. 7 Eigenvalue s1(k) as a function of wavenumber k
for different values of D, where all rates are equal to λe,
v− = v+ and κ = λ−1

e

if D = 2v2+/λe the stability conditions are only nar-
rowly fulfilled, but the real part of s1 stays negative for
all the values of k. Lastly, when the cell running speeds
are not isotropic, the imaginary part of s1 can be non-
zero, meaning that there can be stable periodicity in
the system.
While the real part of the other two solutions s2 and

s3 is always negative, their imaginary part is non-zero
for large values of k. More specifically, for large k and
finite D their imaginary part is proportional to k, while
the real part goes with −Dk2. A finite imaginary part
indicates oscillations in the system, although the neg-
ative real part means that these oscillations are only
transient. Signatures of these oscillations can also be
seen in our numerical solutions (see the next Section).

4.2 Repulsion among settled cells

We now include a self-repulsive potential for the cells
that do not move, given by κ0 > 0 in the matrix U in
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Eq. 1. This repulsion models the need for settled bacte-
ria to not overcrowd any particular region and deplete
its resources while reproducing. What is particularly
interesting about having both an attractive and a repul-
sive part in the potential is that the interplay of these
two opposing effects can lead to structures forming in
the system, as we will show now. If we repeat the anal-
ysis described in the last subsection including κ0 > 0,
we find that the limits of s1(k) are

s1(0) = E3
s1(k → ∞) = −κ0ρ̂0k

2 +O(k). (34)

The main difference with Eqs. (31), (32) is that s1 will
always be negative for a sufficiently large value of k.
This means that if we choose parameters for which s1
can be positive, its largest root kr will indicate the
smallest allowed instability of the system, with size
l = 2π/kr. We consequently expect instabilities to form
for systems of size L larger than l. As an example of
this we numerically calculated the values of kr for dif-
ferent values of the running speeds v+ and v−, quantify-
ing their occurrence using two non-dimensional parame-
ters, the maximum speed vm and the reduced difference
speed vr defined by

vm ≡ max(v+, v−)√
Dλe

vr ≡
v+ − v−
v+ + v−

. (35)

We chose specifically to vary the running speeds as they
can easily tune the asymmetry of the system, leading
to interesting instabilities. In Fig. 8 we can see kr as a
function of vr and vm, written in units of k0 = 2π/L.
We expect the system to develop instabilities for values
of kr > k0, so we fitted the separatrix kr = k0 to a
second-order polynomial, vfm(vr):

vfm = 2.76± 0.01 + (2.73± 0.03)vr − (1.14± 0.04)v2r .

(36)

This particular fit was determined using the linear
growth model for the parameter values indicated in the
caption to Fig. 8.

In order to study the emergence of such instabilities
in detail, we further implemented a numerical solver
for both Eqs. (1) and (6), using an explicit fourth-order
Runge–Kutta algorithm [37] for the time integration
and a finite difference scheme in space. We performed
calculations both with the linear and the nonlinear
growth model, setting respectively λs = µ and λs ≥ µ.
We use a finite box of length L with periodic boundary
conditions. Setting the time step to ∆t = 10−4λ−1

e we
calculated ∼ 106 steps to ensure that the system set-
tles into a steady state. Our calculations are initialized
using the steady-state solutions of the linear system
(Eqs. (12)), to which we add small fluctuations given by
Gaussian noise. We find that our system develops wave-
like structures, which are static for v+ = v− and become
traveling waves when v+ 	= v− - see Fig. 9 for the linear

Fig. 8 Largest root of s1(k), kr, as function of vr and vm.
As parameters we chose λs = λd = µ = 0.1λe, κ = 0.2λ−1

e ,
κ0 = 0.05λ−1

e andD = 0.001L2λe. In blue we see the param-
eters for which the system is not large enough to enable
instabilities, while in black we have the second order poly-
nomial that fits the kr = k0 curve

growth case and Fig. 11 for the nonlinear case. Test-
ing different initial conditions, e.g. choosing ρ0(x) as a
narrow Gaussian peak that approximates an initially
settled single cell, we also observed that these wave-like
structures always form, even if the specific shape of the
wave can be affected. In our analysis we preferred to use
the steady-state solution of Eqs. (12) as initial condi-
tion, as it makes comparison with the theoretical results
of Fig. 8 more straightforward. Intuitively, the attrac-
tive term κ leads to the formation of peaks, induced by
the instability in Eq. (33). These peaks are then stabi-
lized by the repulsive term κ0. The asymmetry of the
running speeds makes the peaks move.
Migrating bands of bacteria have indeed been observed

experimentally [38–43] and have also been modeled
theoretically [29,44,45], always considering only one
species of cells. A particularly surprising feature of our
model is that in this final stationary state all three
distributions evolve in the same direction at the same
speed, independently of the intrinsic running speed of
the cells.

We replicated the diagram of Fig. 8 with numeri-
cal integration of the model equation, and the resulting
non-equilibrium state diagram is shown in Fig. 10. We
find a clear transition from a stable system (shown in
blue), where all species are constant in space, to the
appearance of wave-like structures (shown in red to
yellow). The gradient visualizes the change in station-
ary speed of the waves vs, defined as the speed of the
waves in the stationary state divided by

√
Dλe, and is

hence non-dimensional. This quantity is almost vanish-
ing near the transition, and grows the further away we
move from it. The formation of these waves is typical of
systems with a large difference between v+ and v− or
rather small absolute speeds. We fitted the separatrix
to a second order polynomial vfm(vr) and obtained
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Fig. 9 Density of left ρ−,
right ρ+ and sedentary ρ0
cells as functions of space
at different times
(increasing from (a) to
(c)). We set here
λs = λd = µ = .1λe,
κ = .2λ−1

e , κ0 = .05λ−1
e ,

v+ = 2v− = .1Lλe and
D = 0.001L2λe

Fig. 10 State diagram of the system as a function of vr
and vm. As parameters we chose λs = λd = µ = 0.1λe,
κ = 0.2λ−1

e , κ0 = 0.05λ−1
e and D = 0.001L2λe. In blue

we see the parameters for which the system is stably con-
stant, while in red to yellow we see the parameters for which
the system generates traveling wave structures. Examples of
both long-time behaviors are shown in their respective area.
The gradient shows the stationary velocity of the waves vs,
while in black we have the second order polynomial that fits
the transition curve vfm

vfm = 2.78± 0.01 + (2.56± 0.03)vr − (0.88± 0.03)v2r .

(37)

We find that our numerical calculations and theory are
in very good qualitative agreement.

4.3 Application to Caulobacter crescentus

Table 1 gives an idea of the experimentally measured
values for CC which have been extracted from recent
papers on its swimming behaviour [46–49]. It is note-
worthy to comment on the running speeds v+, v−.
While the torque generated by the flagellar motor dif-
fers significantly during forward and backward motion,
the resulting velocities are not dramatically different
(and, in fact, experimentally hard to measure) [49].
We have performed calculations with the parameters
of Table 1 for different values of κ and κ0 which are
undetermined from experiments. Since for Caulobacter
µ < λs, we have included the saturating nonlinearity
for the growth in the model. The results show that the

Table 1 Values of the parameters for Caulobacter crescen-

tus taken from [46–49]

Run-and-tumbling rate (s−1) λe 10−1

Settling rate (s−1) λs 10−5

Doubling rate (s−1) λd 10−4

Decay rate (s−1) µ 10−6

Running speed right (m/s) v+ 4× 10−5

Running speed left (m/s) v− 3.5× 10−5

Diffusion coefficient (m2/s) D 2× 10−9

waves still form provided the ratio κ/κ0 is large enough
(Fig. 11).

5 Conclusions and outlook

In this work we proposed and studied a 1D 3-state
model motivated by the cell cycle progression of the
bacterium Caulobacter crescentus, including both its
run and tumble motion and its reproductive behavior.
We first analyzed the free cell space-independent case
and calculate the parameter regimes for which the num-
ber of cells grows or declines. Adding the spatial depen-
dence we subsequently determined dynamical quanti-
ties of the system such as the mean displacement, the
mean-squared displacement and the intermediate scat-
tering function. We found a surprising super-ballistic
behavior of the MSD at short times with a t3 scaling
which stems from the interplay of cells doubling and
cells starting to swim.
Subsequently, we included attractive and repulsive

interactions between cells into our model, representing
their tendency to swim towards regions in which cells
are settled and to avoid overcrowding. We determined
the stability conditions and, using numerical methods,
we studied the fully nonlinear system in which we iden-
tify traveling waves of cells. Their occurrence is quan-
tified in a non-equilibrium state diagram.
Our model lends itself to further extensions in several

ways. E.g., one could account for complex nutrient land-
scapes and for a more detailed description of the cell
cycle, which is well-studied from various aspects [27];
another possible system for application are Chlamy-
domonas reinhartii cells [28]. The cell cycle can be
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Fig. 11 Nonlinear growth model, density of left ρ−, right
ρ+ and sedentary ρ0 cells as functions of space at differ-
ent times (increasing from (a) to (c)). Because of the large
value of λe compared to the other rate parameters, the
right-moving and left-moving populations have almost the
same shape, making the red line disappear under the blue
line. The shaded areas indicate the largest peak, and how

it moves in time towards the right. We chose as param-
eters the values typical of CC shown in Table 1. For the
interaction potentials, for which no experimental estimates
can be made at present, we chose κ = κ0 = 10λ−1

e , while
for the carrying capacity of the system we set ρc(x, t) =
(0.04, 0.04, 0.04)λe/v+

included in cell-resolved simulations such as performed
recently in [50,51]. Another direction could be a two-
dimensional field description that includes the nematic
ordering of cells such as in [52]. In a higher-dimensional
model it would also be interesting to see what the
effect of different swimming strategies such as run and
tumble, run-reverse or run-reverse-flick [30] is. Finally,
an exploration of the fully nonlinear model—nonlinear
diffusive interactions as well as nonlinear growth—
including a full higher-dimensional tumbling behaviour
for a multi-species system would be an interesting prob-
lem in the context of biofilm growth.
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Appendix

Relation between intermediate scattering function

and momenta of the density in 1D

We show here the calculation that justifies Eq. (17) in one
dimension in the case where the initial conditions for the cell
density are ρ(x, t = 0) = (0, N(0)δ(x), 0). First, we write the
definition for the moments 〈(x(t)− x0)

n〉 = 〈xn(t)〉:

〈xn(t)〉 =

∫

∞

−∞

dxxnP (x, t), (38)

where P (x, t) is the probability density of the position. We
then apply a Fourier transform and its inverse in the inte-
gral

〈xn(t)〉 =
1

2π

∫

∞

−∞

dx

∫

∞

−∞

dk eikx
(

in
∂nP̃ (k, t)

∂kn

)

, (39)

where P̃ (k, t) is the Fourier Transform of P (x, t). Finally,
we exchange the order of integration to get

〈xn(t)〉 =
1

2π

∫

∞

−∞

dk 2πδ(k)

(

in
∂nP̃ (k, t)

∂kn

)

= in
∂nP̃ (k, t)

∂kn

∣

∣

∣

∣

k=0

. (40)
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Knowing that for the initial conditions that we have chosen
ρ̃(−k, 0) = (0, N(0), 0), we have

F(k, t) ≡ P̃ (k, t)P̃ (−k, 0)N(t) = P̃ (k, t)N(t), (41)

and hence

〈xn(t)〉 = in
∂nP̃ (k, t)

∂kn

∣

∣

∣

∣

k=0

=
in

N(t)

∂nF(k, t)

∂kn

∣

∣

∣

∣

k=0

. (42)
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ABSTRACT

Group formation and coordination are fundamental characteristics of living systems, essential for performing tasks and ensuring

survival. Interactions between individuals play a key role in group formation, and the impact of resource distributions is a

vibrant area of research. Using active particles in a tuneable optical environment as a model system, we demonstrate that

heterogeneous energy source distributions result in smaller, more stable groups with reduced individual exchange between

clusters compared to homogeneous conditions. Reduced group sizes can be beneficial to optimise resources in heterogeneous

environments and to control information flow within populations. Devoid of biological complications, our system provides

insights into the importance of patchy landscapes in ecological dynamics and holds implications for refining swarm intelligence

algorithms and enhancing crowd control techniques.

Introduction

Group living is widespread across different levels of biologi-

cal organisation1 and confers many advantages to individuals,

such as increased survival from predators2±4, enhanced forag-

ing efficiency5±7, or improved communication and decision

making8±10. The formation, maintenance, and disbanding of

groups depend not only on the interactions among individuals

but also on the characteristics of the surrounding environment,

such as spatial or temporal heterogeneity11. For instance,

while large group sizes are advantageous for foraging in ho-

mogeneous environments, the presence of a patchy landscape

of resources compels individuals to adopt smaller group for-

mations as an adaptive strategy to ensure sufficient resources

for all members12±15. However, the challenge of simultane-

ously monitoring multiple individuals in natural ecosystems

poses limits to our understanding of the dynamics of such

groups, particularly regarding their durability and time stabil-

ity16, 17.

Recently, active colloids have emerged as a useful tool for

studying collective behaviour in living systems18, 19. These

artificial systems, unlike natural ones20±23, have the advantage

of evolving on short timescales. Moreover, they are tuneable,

and their small sizes make data acquisition more convenient.

Previous studies have investigated the role of individual inter-

actions in group formation, such as those due to attraction24±26,

repulsion27, alignment28, 29, reorientation30, 31, or vision32, 33

and communication34, 35. The role of physical features in the

environment has also been explored, such as the presence of

obstacles36±41 or of a disordered potential42. However, the

impact that a heterogeneous distribution of energy sources

has on collective phenomena is not clear yet. Indeed, while

work exists that studied the impact of linear gradients in the

energy source43±45, natural landscapes of resources hardly

follow linear gradients and the impact of patchiness on group

dynamics is largely unknown.

Here, we use phototactic active colloids moving in a spatially

complex distribution of resources, generated optically, to in-

vestigate the role of patchy landscapes in the dynamics of

group formation and cohesion. Our results demonstrate that

patchiness restricts the size of groups and increases their sta-

bility by decreasing the exchange of individuals compared to

a homogeneous landscape.

Results

As phototactic active particles, we used monodispersed sil-

ica colloids (diameter d = 4.77±0.20µm) with a 90 nm car-

bon half-coating (Methods). These particles self-propel in a

water-2,6-lutidine critical mixture when exposed to light. The

propulsion arises from the critical mixture’s local demixing,

induced by the carbon heating upon light absorption.27, 43±48.

We created an energy source landscape with controllable spa-

tial heterogeneity by shining a laser on an optical diffuser,

generating a diffraction pattern of randomly distributed light
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Figure 1. Active particles in complex energy landscapes. a) Trajectory of an active particle in a spatially complex

distribution of energy, with high light intensities in green. The particle self-propels, avoiding the most intense illumination. The

trajectory displays the particle’s centre position over 45 minutes. b) As the particles prefer to stay in the dark areas, the group

(defined as comprising more than two individuals) size appears to be determined by the spatial characteristics of the

environmentÐσe, i.e. the average size of the energy patches. The particles belonging to a group are coloured in pink while the

isolated particles and the particles in pairs are in grey.

patches, whose intensity follows a negative exponential prob-

ability distribution49, 50. The energy density of the landscape

and the typical size of its patches (σe) can be precisely con-

trolled by optical meansÐFigure S1 and Methods for details.

σe is defined as the full width at half maximum of the land-

scape’s autocorrelation. Figure 1a shows a typical example

of a particle trajectory in a complex illumination. What can

be qualitatively observed is that an active particle tends to

navigate in the energy landscape by spending most of its time

in the low-illumination areasÐin other words, it performs

negative phototaxis. This property of the individual trajec-

tories has a direct consequence on group formation, with a

group being defined as a collection of more than two parti-

cles in contact. As shown in Figure 1b, in a heterogeneous

energy landscape (σe ≃ d = 5µm), active particles tend to

form smaller groups compared to the case of a homogeneous

illumination (σe → ∞). Under both illumination conditions,

the average local energy density (I = 0.1µWµm−2) was kept

the same by matching the incoming power and envelope size

Figure S2.

In order to explain the phenomena illustrated in Figure 1, we

first need to better understand the statistics of the dynamics of

the individual particles on the underlying energy landscape.

Figure 2a shows quantitatively that particles perform negative

phototaxis. By comparing the light intensity at locations vis-

ited by the particles along their trajectories with the overall

energy landscape, we can observe that particles tend to avoid

the most intense light regions. Delving deeper, Figure 2b

shows that as active particles navigate the darker, low-energy

channels of the light landscape, they tend to align perpen-

dicular to the light intensity gradient. This is due to their

continuous interactions with the two-dimensional gradient,

channelling their trajectories between high-energy patches

and causing them to move perpendicular to the gradientÐi.e.
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Figure 2. Statistics of single particle trajectories on the

energy landscape. A complex energy landscape (σe = 5µm)

affects the spatial occupancy and statistical features of

particle trajectories. a) Histogram comparing the distribution

of the light intensity in the locations visited by the particles

with the intensity distribution of the energy landscape. b)

Particles tend to move perpendicular to the gradient of the

illumination (α = π/2). α , illustrated in the inset, is the

angle between the velocity of the particle (v) and the intensity

gradient (∇I). c) A lower mean squared displacement reflects

avoidance of high-energy areas compared to a more

homogeneous environment (Gaussian illumination, σe → ∞).

The inset shows the long-time diffusive behaviour. Shaded

areas indicate standard deviations on the mean squared

displacement. Data was obtained from averaging at least 20

trajectories, each lasting 45 minutes.
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Figure 3. Modeling the dynamics of active particles in complex energy landscapes. A torque and spatial heterogeneities in

the energy landscape determine the dynamics of the active particles. Simulated trajectories of individual active particles with a)

different torque values (Ω) for a fixed σe = 5µm, and b) environment heterogeneity (σe), for a fixed Ω = 6. c) In a complex

environment (σe = 5µm), increasing the torque causes the particles to avoid high-energy areas. d) In the presence of a torque,

particles move more perpendicular to the gradient (α = π/2). e) The difference in the effective diffusion coefficients between

complex and Gaussian illuminations observed in the experiments is most accurately described by Ω = 0.6. f) Role of the

heterogeneity of the energy landscape (σe) on the effective diffusion coefficient (Deff(σe)) for a fixed value of the torque

(Ω = 0.6). The effective diffusion coefficient, normalised to its value for a Gaussian illumination, is minimised when the spatial

variation of the landscape is comparable to the size of the particles. All simulations averaged 150 particles over 50 minutes

each. The standard deviation of the data is represented in e) as shaded areas for experiments and vertical bars for numerics,

comparable with the size of the scatter plot points. In f), the errors match the scatter point size.

along low-intensity areas. This is evidenced by the peak at

the angle α = π/2 in Figure 2b. Here, α represents the angle

between the particle’s instantaneous velocity and the local

intensity gradient, as illustrated in the inset of Figure 2b. This

result extends beyond observations in one-dimensional light

gradients, where previous findings associated α = π (α = 0)

with negative (positive) phototaxis45.

A complex energy landscape determines not only the prefer-

ential orientation of the active colloids but also their speed.

Both in homogeneous energy landscapes43, 44 and in one-

dimensional light gradients45 a linear increase of the velocity

with the light intensity was observed after a given activation

energy. This is also reproduced in two-dimensional gradi-

ents when the illumination has a Gaussian profile (σe → ∞

in Figure S3a). In this case the local value of the gradient

is relatively low, making it comparable to the previously re-

ported linear cases also in terms of orientation with respect to

the gradient (α = π in Figure S4a)43±45. However, when the

heterogeneity of the landscape is comparable to the size of the

particles (σe = 5µm in Figure S3b) the velocity does not show

a monotonic increase with the light intensity. This results from

local values of the light gradient which are much stronger than

in the previous cases, giving rise to a complex dependency

of the speed of the particle on the energy landscape. Active

particles do indeed experience a torque proportional to the

light gradient, which, in turn, is proportional to the local light

intensity. This torque causes them to change direction and

reduce speed near high-energy patches43±45. The aligning

torque is a consequence of breaking the axial symmetry of

the velocity field around the particle51. The torque-induced

reorientation and avoidance of high-energy zones reduce the

mean squared displacement of active particles in a complex

landscape when compared to a Gaussian illumination, as seen

in Figure 2c. The mean squared displacement, despite the

decrease, exhibits a superdiffusive transition followed by a

long-time return to typical diffusion, as for typical active col-

loids in both scenarios19.

To disentangle the role of the torque (the dimensionless pa-

rameter Ω, Figure 3a) exerted by the field gradient and the

heterogeneity of the energy landscape (σe, Figure 3b) on the

microscale dynamics, we employed a particle-based model

that includes an aligning torque proportional to the gradient of

the optical field (Methods)43±45. Figure 3c confirms how the

presence of a torque prevents particles from accessing the high
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energy regions, with a cutoff in energy that decreases as the

torque increases. The emergence of this behaviour coincides

also with a preferential orientation of the particles’ velocity

perpendicular to the gradient of the illumination, whereas at

Ω = 0 the velocity shows a relatively weak dependence on

the gradient (Figure 3d). Our model further validates that

under a two-dimensional Gaussian illumination, the preferred

orientation relative to the gradient (α = π in Figure S4b) is

governed by the effect of the torque. Additionally, as depicted

in Figure 3e, the discrepancy in the long-term behavior of the

mean squared displacement between σe = 5µm and σe →∞ in

Figure 2 can be attributed to the torque. In a complex illumina-

tion, an increase in torque restricts access to regions of higher

energy, thereby reducing the mean squared displacement. Im-

portantly, altering the heterogeneity of the environment (and

thus the gradient value) while keeping the torque constant also

results in a lower mean squared displacement, as shown in

Figure 3f (represented as effective diffusion coefficient). This

finding highlights the significant influence of environmental

heterogeneity on particle dynamicsÐ i.e. when σe is on a sim-

ilar length scale to the particle size, it significantly affects its

long-time diffusion coefficient. Conversely, in the asymptotic

cases where energy variations occur on scales much smaller

or larger than the particle, differences on long-time diffusivity

are less marked.

To study the impact of the differences in individual trajectories

on the collective behaviour of active systems we performed

experiments with a higher concentration of particles (≈ 4%,

compared to ≈ 0.1% in Figure 2). When the concentration of

active particles increases, they are more likely to collide with

each other, slowing down and forming groups. A group lasts

until the propulsion direction of one of the individuals points

outside the cluster and its speed is such that it can escape

the group by winning over the short-range attraction among

particles26, 27.

A heterogeneous energy landscape plays a key role in the for-

mation of groups. As illustrated in Figure 4a, particles tend to

aggregate, and eventually separate, in the dark regions of the

optical landscape where their motility is lower. In complex

energy landscapes, groups exhibit greater durability, with the

average rate of aggregation and fragmentation events min-

imised when the spatial heterogeneity matches the individual

particle scale (Figure 4b). The torque does indeed play a dual

role in maintaining group stability. Firstly, it makes encoun-

ters between individuals more difficult by causing particles

to linger in low energy regions for longer periods of time,

which reduces the rate of aggregation. Secondly, once groups

have formed, the torque orients particles toward areas of low

energy, causing them to face inward the cluster and reduc-

ing the likelihood of fragmentation. The importance of the

torque is further confirmed by Figure S5a, where decreasing

it leads to i) an overall decrease of the rates and ii) a smaller

difference in rates between homogeneous and complex energy

landscapes.
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Figure 4. Group formation analysis. Comparison of group

formation in energy landscapes with different spatial

characteristics, i.e. different sizes of the energy patches (σe).

a) Experimental trajectories showing an example of group

aggregation and fragmentation in a complex landscape with

σe = 5µm. When the patchiness of the landscape is

comparable to the dimension of the particles, it reduces both

the rate of individual exchange between them and the group

size, b) and c), respectively. In both panels of c), the insets

show the distribution of sizes for different spatial

heterogeneities. In b), the error bars represent the standard

deviation of the data.

The patchiness of the landscape also has a significant impact

on group size, as demonstrated in Figure 4c. As individu-

als display avoidance behaviour towards high energy regions,
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groups tend to grow until they fill the space confined between

adjacent high-energy patches. The data presented in Figure 4c

support this qualitative relationship, revealing that complex

energy landscapes with heterogeneity comparable to the par-

ticle size lead to a reduction in the group dimension. The

interplay between the dimension of energy patches and the

group size is strongly influenced by the torque exerted by the

gradient of resources. Decreasing the torque provides colloids

with more freedom to move, enabling larger groups to form,

as depicted in Figure S5a.

Notably, the differences in group dynamics depicted in Fig-

ure 4 cannot be solely attributed to a lower average motility of

active particles in complex landscapes. Even when the mean

squared displacement in a homogeneous energy landscape is

reduced to match that in patchy ones (as shown in Figure S5b),

disparities persist in both group dimension and stability. This

further demonstrates that the spatial complexity of the energy

landscape plays a critical role in shaping group dynamics.

Discussion

In summary, our study investigated how heterogeneous energy

landscapes affect group formation using active particles in

optical fields as a model system. We found that by manipu-

lating the spatial complexity of the landscape, we can control

the size of groups and the exchange of individuals between

them. Our findings offer important biological perspectives.

While smaller groups optimise resource allocation in patchy

environments, their increased stability and reduced individ-

ual exchange might compromise genetic diversity. Yet, such

limited interchange could also curtail the spread of diseases

and parasites among groups and the transmission of antibiotic

resistance in bacteria52. As our experimental approach pro-

vides a versatile and precise method to modulate the spatial

dynamics of the energy landscape using lightÐwith a natu-

ral extension to explore its temporal propertiesÐit could be

instrumental in studying search strategies in the presence of

limited resources. Its applicability could span various con-

texts, ranging from animals engaged in foraging or migration

to guiding robots through complex search-and-rescue mis-

sions.

Methods

Materials
Glass capillaries were purchased from CM Scientific (5005-

050 and 5001-050 for single particle and cluster experiments,

respectively). The lutidine was purchased and used as re-

ceived: 2,6-lutidine (≥ 99%, Sigma-Aldrich). Deionised

(DI) water (≥ 18 MΩ · cm) was collected from a Milli-Q pu-

rification system. Aqueous colloidal dispersions (5% w/v)

of silica (SiO2) colloids, used for sample preparation, were

purchased from Microparticles GmbH. Additionally, carbon

rods measuring 300 mm in length and 6.15 mm in diameter

were procured from Agar Scientific and subsequently cut to a

length of 50 mm and tapered for the coating of Janus particles

through sputtering.

Particles fabrication
Janus particles were synthesised from SiO2 colloids with a

diameter of d = 4.77± 0.20µm. Initially, a monolayer of

colloids was deposited on a clean glass slide by evaporating

a 40 µL droplet containing a 2.5% w/v dispersion of the col-

loids in DI water. Subsequently, an automatic carbon coater

(AGB7367A, Agar Scientific) was employed to coat the parti-

cles with a 90 nm thick layer of carbon. The thickness of the

carbon layer was confirmed through atomic force microscopy

(AFM) measurements. After coating, sonication was per-

formed to dislodge the half-coated particles in DI water from

the glass slide, facilitating their use for sample preparation.

To reduce the interaction between particles, and the sticking

of the particles to the substrate, the Janus colloids were func-

tionalised with bovine serum albumin (BSA, Sigma Aldrich).

This was done by replacing the water solvent of the colloidal

suspension with a 1%w/v water solution of BSA. Prior to util-

isation, the colloidal dispersions underwent centrifugation at

1000 relative centrifugal force (RCF) for 3 minutes, resulting

in the formation of a pellet. The supernatant was subsequently

discarded and replaced with a solution containing 28.6% w/v

of water and 2,6-lutidine. This purification procedure was

repeated three times to ensure the removal of any remaining

BSA water solution from the original dispersion.

Sample preparation
In single-particle experiments (Figure 1 and Figure 2), a sus-

pension of Janus particles was confined in a rectangular capil-

lary with a width of 700 µm, a length of 50 mm, and a thick-

ness of 50 µm. The capillary was then sealed by applying

a UV-curable glue to avoid evaporation and drifts. In the

multiple-particles systems (Figure 4), we reduced the sam-

ple’s thickness by using a capillary with a width of 100 µm,

a length of 50 mm, and a thickness of 10 µm to restrict the

motion of the colloids to two dimensions.

Experimental setup
Figure S1 shows a schematic of the experimental setup. A

laser (Oxxius 532 nm, 300 mW of maximum output power)

and a diffuser (1◦, Newport 10DKIT-C1) are used to illu-

minate the Janus particles with a random optical field, also

known as speckle. The laser is directed to the sample via

two mirrors (M1, M2) and a 4f-lens configuration (L1=L2,

Thorlabs, LA1461-A-ML) illuminating the back aperture of

a 10x objective (Nikon, N10X-PF, NA=0.3). By changing

the position of the diffuser and that of the sample, it is pos-

sible to control both the dimension of the speckle grains and

the size of the illumination envelope. To create a Gaussian

illumination, we removed the diffuser and one lens (L1) to

image the beam on the sample. The illumination envelope

was fixed to be close to the acquisition area of the camera (≈
200× 200 µm2 and ≈ 100× 100 µm2 in the single and mul-

tiple particles experiments, respectively) and it was kept the
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same for different patchiness of the landscape (Figure S2).

The intensity of the laserÐcontrolled by a half-waveplate

(FOCtek, WPF212H) and a polarising beam splitter (FOCtek,

BSC1204) was then adjusted to have a comparable energy

density in the different optical landscapes, i.e. different values

of σe. The active particles were imaged with a 20x objective

(Nikon, N20X-PF, NA=0.5) and a tube lens (L3, Thorlabs,

LA1805-A-ML) on a camera (Basler, acA5472-17um). A

white LED (Thorlabs, MWWHF2), for simplicity not de-

picted in Figure S1, coupled to a fibre (Thorlabs, M28L01)

is used for imaging. The particles’ dynamics were analysed

by reconstructing their trajectories from videos (typically of

the duration of 50 minutes at 2 frame per second (fps)) using

a homemade code based on the python package Trackpy53, 54.

The position of the sample was controlled in three dimensions

using an xyz-stage (Thorlabs, RB13M/M). The z-coordinate

was adjusted with a stepper motor (Thorlabs, ZFS25B). For

all experiments, the suspension of Janus particles was kept

close to the critical temperature of the water-lutidine mixture

(Texp ≃ 31 ◦C, ∆T ≃ 3 ◦C) by a heater driven via a temperature

controller (Thorlabs, HT19R and TC200, respectively).

Numerical model
We numerically implemented an Euler-Maruyama time inte-

grator for the evolution of the positions ri and orientations φi

of each particle i in two dimensions, defined by the following

equations, based on45:

ṙi(t) = v(ri)ni −
1

γ ′ ∑
j ̸=i

∇V
(∣

∣ri − r j

∣

∣

)

+
√

2Dξ i(t), (1)

φ̇i(t) = ω(φi,ri)+
√

2Drξ
φ
i (t), (2)

where ni = (cos(φ),sin(φ)), ξ i and ξ
φ
i represent Gaussian

white noise. The translational and rotational diffusion coeffi-

cients D and Dr are defined as

D =
kBT

γ ′
, Dr =

kBT

β ′ , (3)

where γ ′ = 16
3

πηd and β ′ = 8
7
πηd3 are respectively the trans-

lational and rotational friction coefficient, corrected by taking

into account a distance from the substrate s = d/241, and

η = 2.1× 10−3 Pas is the viscosity of water-lutidine. The

torque ω , which is defined as:

ω(φi,ri) =
Ωd

D
v(ri) [∇v(ri)×ni] · êz, (4)

where the adimensional prefactor Ω determines whether the

torque steers the particle towards the light (Ω < 0) or away

from it (Ω > 0). The value of Ω that best fits the experimental

change in the long-time mean squared displacement is Ω =
0.6 (Figure 3e). V is a 6-12 Lennard-Jones potential with

cutoff distance at five colloid diameters d and depth ε ≃
8kBT . This value was chosen by fitting the experimental

cluster aggregation and fragmentation rates for a Gaussian

illumination. The intensity speckle field was generated by

scaling the Fourier transform of a white noise map to match

the specific characteristics of the optical fields observed in

experiments: average intensity per unit of area and grain size.

This intensity field was then translated into a motility field

using the results from45. The gradient of the motility field

acting on the particle ∇v(⃗ri) was averaged over the square

area where the particle is inscribed.

Cluster analysis
We defined the clusters by measuring all distances among

particles and then creating bonds between all the particles

with distances smaller than the cutoff radius 1.25d. Similarly

to Ref.26, 41, clusters made of 2 particles (i.e. dimers) were

disregarded in the analysis as they are unstable in time. We

determined whether a cluster survives from one timestep to the

next by confronting its particles with those of all the clusters

in the next timestep. We consider any of these clusters to be

the same as a previous one if it satisfies two properties: i) that

more than half of its particles are shared with the old cluster

(i.e. the cluster has not decreased more than half in size); ii)

that at least half of the particles of the new cluster are also

present in the old one, i.e. the cluster has not grown more than

double in size. We calculated mainly two properties regarding

clusters for each experiment: the cluster size and the monomer

acquisition/loss rate. The first is simply the average number of

monomers for each cluster, while the second is defined as the

number of monomer acquisition/loss events (i.e. the number

of times clusters receive/lose a single monomer during the

experiment) normalised by the total experiment time and the

average number of particles.

Data availability

All data needed to evaluate the conclusions in the paper are

present in the paper and/or the Supplementary Materials.
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Figure S1. Experimental setup. A laser and a diffuser are used to generate a spatially complex energy landscape for active

particles. The laser is directed to the sample via two mirrors (M1, M2) and a 4f-lens configuration (L1=L2) illuminating the

back aperture of an objective (obj. 1). Active particles are imaged via a second objective (obj. 2), a tube lens (L3) and a camera

(CMOS). The trajectories are then reconstructed using a custom software. The speckle grain size and envelope can be adjusted

by changing the longitudinal position of the diffuser with respect to the sample. The laser power is controlled by a

half-waveplate (λ /2) and a polarising beamsplitter (PBS).
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Giant Activity-Induced Stress Plateau in Entangled Polymer Solutions
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We study the viscoelastic properties of highly entangled, flexible, self-propelled polymers using
Brownian dynamics simulations. Our results show that the active motion of the polymer increases
the height of the stress plateau by orders of magnitude due to the emergence of grip forces at
entanglement points. Identifying the activity-induced energy of a single polymer and the ratio of
polymer length to self-propulsion velocity as relevant energy and time scales, we find the stress
autocorrelation functions collapse across Péclet numbers. We predict that the long-time viscosity
scales with polymer length squared ∼ L2, in contrast to equilibrium counterparts ∼ L3. These
insights offer prospects for designing new materials with activity-responsive mechanical properties.

Entangled polymer solutions represent fundamental
building blocks of many biological materials, where they
serve functions as diverse as cell mitosis [1–5] and tran-
scription of genetic material [6–8]. Furthermore, they
are important collective life forms, which provide indi-
viduals resistance to environmental stresses [9–12], and
lay the foundation for numerous technological applica-
tions [12–14]. The rheological properties of these com-
plex materials are governed by the elasticity and struc-
ture of their conformations, such as their long, slender
linear [15], twisted [16], or loop conformations [17], their
strong entanglement, and their specific microscopic in-
teractions, which makes them a fascinating many-body
problem in physics.

The viscoelastic properties of these strongly-
interacting systems at thermodynamic equilibrium
have been thoroughly studied in the realm of polymer
physics. A major breakthrough has been the theoretical
prediction of rheological properties of entangled linear
polymer melts in terms of their stress autocorrelation
function, which exhibits a prominent plateau at inter-
mediate times, characterizing the elastic response, and
relaxes exponentially at long times [18–20]. The relation
between phenomenological parameters of the underlying
tube model and microscopic system properties to ulti-
mately predict the stress plateau has been established
by analyzing the polymers’ primitive paths [21, 22],
which correspond to the axes of entangled polymer
tubes [21, 22]. While it has been shown that the stress
plateau of linear polymer solutions remains unaffected by
external driving [23], tuning the topological properties
of the polymers can lead to a qualitative change of the
stress relaxation dynamics [17]. The latter display a
power-law behavior for loop polymer melts and recover
a stress plateau only upon adding linear polymer chains
to the solution [17].

Recent work has demonstrated that microscopic inter-
actions among the entangled constituents can be gov-
erned by active components, such as molecular motors in
solution [3, 4, 6–8] or the intrinsic motility of the indi-

viduals [9–12], which drive these systems far from equi-
librium and generate dynamical and structural behaviors
distinct from their passive counterparts. Understanding
the interplay of entanglement and activity is not only fun-
damental to living systems but also crucial for designing
and processing new soft materials with tailored proper-
ties. In particular, incorporating active components in
addition to tuning the entanglement has the potential
to improve the mechanical properties of materials. Yet,
theoretical studies in this direction are limited and no
universal behaviors or scaling predictions have been es-
tablished to guide experimental progress.

Here, we use Brownian dynamics simulations to char-
acterize the viscoelastic properties of highly-entangled,
flexible, self-propelled polymers in terms of the time-
dependent stress autocorrelation function and viscosity.
Our results reveal a remarkable amplification of the stress
plateau, a phenomenon intricately linked to the interplay
of active motion and topological uncrossability of poly-
mers, leading to the emergence of grip forces. In partic-
ular, neighboring polymers form hairpin structures that
exert forces, pulling the entangled test polymer in the
direction of their self-propulsion, effectively preventing
its sliding at the entanglement points. It is noteworthy
that the magnitude of these grip forces depends on the
self-propulsion velocity. Subsequently, we show that the
stress autocorrelation functions for a broad range of poly-
mer lengths and Péclet numbers can be collapsed onto a
single master curve by identifying the relevant energy
and time scales. Finally, we predict that the long-time
viscosity scales with the square of the polymer length
∼ L2, which becomes exact for high Péclet numbers in
the highly-entangled regime.

Model– We perform 3D Brownian dynamics simula-
tions of highly-entangled polymer solutions of N self-
propelled, flexible polymer chains using the bead-spring
model [24]. Each chain consists of Np monomers with
diameter σ and has a length of L = Npσ. The con-
nectivity and repulsion of the beads are modeled us-
ing the finitely extensible nonlinear elastic potential
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Figure 1. (a) Simulation snapshot of entangled, flexible polymers (each polymer has its own color). (b) 3D illustration
depicting the primitive path of a test polymer (red line) confined within an effective tube formed by surrounding self-propelled
polymers at various times t. In the equilibrium state (t = 0), a combination of strong entanglement points (A, C, and D)
and weak entanglement point (B) coexists, with strong entanglements distinguished by the presence of hairpin structures. Due
to activity, prior to reaching the steady state (t ≳ L/v), the number of strong entanglement points increases (as shown by
the yellow polymer wrapping around the red polymer at point B), resulting in the elongation of the primitive path. The
direction of self-propulsion is indicated by colored arrows, while the distance between successive entanglement points defines
the entanglement length Ne. (c) Contour length of the primitive path Lpp, normalized by the equilibrium primitive path L0

pp

as a function of time for different polymer lengths L and fixed Péclet number Pe = 8. Time is rescaled by the ratio of polymer
length to self-propulsion velocity L/v. (d) Number of entanglement points Z, normalized by the number of entanglement points
Z0 for Pe = 0, as a function time.

(FENE) [24] and the Weeks-Chandler-Andersen poten-
tial (WCA) [25] with energies ϵFENE and ϵWCA, respec-
tively. Angular interactions along chain backbones are
captured using a bending potential for each monomer
Uang,i = κ

∑
j=i−1,i,i+1(1− tj · tj+1), where tj = (rj+1−

rj)/(|rj+1 − rj |) represents the tangent vector between
consecutive monomers having positions rj and κ corre-
sponds to the bending energy. The polymers are subject
to Brownian motion modeled by stochastic forces Fr,i,

where ⟨Fα
r,i(t)F

β
r,j(t

′)⟩ = 2kBTζδijδαβδ(t
′ − t) with fric-

tion coefficient ζ and thermal energy kBT . Their self-
propulsion is modeled by an active force Fp,i acting tan-
gentially to the polymer contour [26–28], so that (without
interactions) each bead moves at a velocity of v = |Fp,i|/ζ
(|Fp,i| being constant across all monomers). Thus, the
equation of motion for each monomer read

ζ
dri
dt

= −∇iU + Fp,i + Fr,i. (1)

Dimensionless parameters, derived from length and
time units (σ and τ0 = σ2/D0, with D0 = kBT/ζ as
the short-time diffusion coefficient of a monomer), in-
clude the Péclet number (Pe = vσ/D0) for assessing the
significance of active motion relative to diffusion, along
with coupling parameters (ϵWCA/kBT , ϵFENE/kBT , and
κ/kBT ). Additionally, we define the dimensionless den-
sity ρ⋆ = Ntotσ

3/V , where V denotes the volume of
the simulation box. We keep fixed values of ρ⋆ = 0.85,
ϵWCA/kBT = 1.0, ϵFENE/kBT = 30, and κ/kBT = 1.0,
while systematically varying the polymer length (L/σ =

100, ...2088), resulting in a dimensionless entanglement
length Ne

∼= 41 [29]. Equations of motion are solved
numerically using a modified version of LAMMPS with
a time step of δt = 10−4τ0. Equilibration is achieved
through a bond-swapping algorithm with core soften-
ing [see SI [30]], and all time measurements are refer-
enced from this equilibration point. Notably, both active
and passive highly-entangled polymer systems exhibit an
ideal chain scaling relation for the end-to-end distance
Ree ∝ L1/2, in contrast to dilute active polymer solu-
tions [27], indicating that activity does not affect this
scaling [see SI [30]].
Activity-enhanced stress plateau– The viscoelastic

properties of polymer solutions are encoded in the stress
autocorrelation function

G(t) =
V

3kBT

∑
α ̸=β

⟨σαβ(t)σαβ(0)⟩ , (2)

where the sum runs over all off-diagonal components
of the stress tensor σαβ and ⟨..⟩ denotes an ensem-
ble average. In equilibrium systems, for the case of
short, unentangled linear polymer solutions, this yields
the power-law dynamics described by the Rouse model,
G(t) ∼ t−1/2 [19]. In contrast, highly-entangled polymers
are forced to move along the direction of their contour,
while their motion perpendicular to it is restricted to
a tube-like region formed by the surrounding polymers
[Fig.1(a)]. Consequently, the stress autocorrelation func-
tion exhibits a plateau G0 at intermediate times and an
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Figure 2. (a) Stress autocorrelation function G(t) for different Péclet numbers and polymer lengths as a function of time. Inset:
The stress autocorrelation function in equilibrium for L = 725σ validates the well-established prediction G0 = 4ρkBT/(5N

0
e )

(dashed line), where N0
e is the entanglement length between two subsequent entanglement points. Axes are labeled as in the

main figure. Black arrow indicates the giant activity-induced stress plateau compared to the equilibrium state. (b) Stress
plateau G0 and (c) disengagement time τeff as a function of polymer length L extracted from our simulations for a wide range
of Péclet numbers. (d) Rescaled stress autocorrelation function G(t)σ3/FpL as a function of the rescaled time tv/L.

exponential decay G0e
−t/τeff at long times. The stress

plateau G0, a hallmark of entangled polymer chains,
quantifies the elasticity of the system, while the disen-
gagement time τeff ∼ L3 corresponds to the characteris-
tic time the polymer requires to move its own length L
along the tube.

To investigate the effect of activity, we compute the
stress autocorrelation function G(t) for self-propelled
polymers of different lengths, L = 100, ...2088σ, and
Péclet numbers, Pe = 1, ...24, see Fig. 2(a). At very
short times (t ≲ 10−3τ0), the active polymer solution is
slightly harder (G(t) increases by a factor of 4 compared
to the passive counterpart [see SI [30]]), which can be
attributed to the increased fluctuations exhibited by the
self-propelled polymers within their tubes.

At intermediate times, t ∼ τ0, the difference between
the stress autocorrelation function G(t) of passive and
active systems becomes significantly larger, which be-
comes apparent in an increase of the plateau height G0

by three orders in magnitude [see Fig. 2(a)]. This am-
plification arises from grip forces exerted on the red test
polymer by neighboring polymers [Fig.1(b)]. First, these
neighboring polymers form hairpin structures around the
test polymer, stretching its primitive path, thereby slow-
ing down the relaxation of G(t) as the test polymer tra-
verses within an elongated tube. This effect becomes
pronounced when we keep the Péclet number constant
while increasing the polymer length [Fig.2(b)]. Second
and more strikingly, these grip forces also act as barri-
ers, effectively preventing the test polymer from sliding
at the entanglement points. This results in a substan-
tial increase in the plateau height as Pe increases at a
fixed polymer length [Fig.2(a) and SI [30]]. Hence, both
mechanisms contribute to a giant enhancement of the
elastic stress plateau height, a phenomenon exclusive to

self-propelled entangled systems. When the test polymer
disengages from its tube, the grip forces imposed by the
surrounding polymers diminish, leading to a relaxation
of the stress autocorrelation function from the plateau at
long times [see Fig. 2(a)].

This physical picture can be corroborated by measur-
ing the average contour length of the primitive path,
denoted as Lpp, and the average number Z of entan-
glement points. To elucidate topological entanglement
dynamics, we employed the Z1+ topological analysis al-
gorithm [29, 31–34], which systematically undergoes a se-
quence of geometric minimizations. The primitive path
is rigorously defined as the shortest path between the
two ends of a polymer chain while preserving its topo-
logical uncrossability. At intermediate times tv/L ∼ 0.1,
our simulations show that upon increasing the polymer
length at a fixed Pe = 8, Lpp and Z increase by 10%
compared to the passive counterpart [see Fig. 1(c-d)].
This observation suggests that the active system becomes
more entangled, with the number of entanglement points
rising from Z = 105 to 115 for L/σ = 2088. Moreover, we
evaluated the entanglement length Ne using the relation
Ne = (Np − 1)⟨R2

ee⟩/⟨L2
pp⟩ [29, 33]. In contrast to Lpp,

the end-to-end distance Ree exhibits a gradual decrease
until it eventually saturates at long times (tv/L ≫ 1) at a
fixed Pe = 8 [see SI [30]]. Consequently, at intermediate
times (tv/L ∼ 0.1), we observe a reduction of approxi-
mately 30% in Ne relative to the passive counterpart [see
SI [30]].

It is tempting to validate the giant increase in the stress
plateau G0 via the well-established relation for equilib-
rium systems G0 = 4ρkBT/(5Ne) [35]. However, our
observations reveal a 30% decrease in Ne with increas-
ing polymer length L at a fixed Péclet number (Pe = 8),
while the stress plateau G0 increases by orders of mag-
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nitude. By employing a dimensional argument, we show
that the enhanced stress plateau can rather be related to
the active energy of a single polymer FpL, where Fp de-
notes the magnitude of the active force. For large Pe ≫ 1,
this energy dominates over thermal energy and thus rep-
resents the relevant energy scale of our system, leading
to our prediction G0 ∼ FpL/σ

3. To quantify this phe-
nomenon, we show the plateau height G0 as a function
of the polymer length L for a range of Péclet numbers
in Fig. 2(b). It turns out that G0 indeed increases lin-
early as a function of the polymer length in the highly
entangled regime (L ≳ 500σ). This occurs since the
polymers are forced to move within elongated tubes as
well as the system gets highly entangled (the number of
entanglement points Z increases compared to the pas-
sive counterpart). However, for unentangled chains with
L ≲ 100σ, the stress plateau vanishes and we recover an
algebraic decay ∼ t−1/2, in agreement with the Rouse
model, which validates the idea that the stress plateau
is a unique feature of highly entangled polymer solutions
(see SI [30]).

At long times t ≫ τ0, the stress autocorrelation
function follows the expected exponential decay G(t) ∼
G0 exp(−t/τeff), where τeff represents the disengagement
time of our active system [see Fig. 2(a)]. At these times,
the transverse motion becomes nearly frozen, allowing
the polymer to self-propel and diffuse freely along the
tube at timescales of L/v and ∼ L3, respectively. The
disengagement time τeff is determined by the faster of
these two mechanisms and we use the interpolation for-
mula given below as an estimate:

τ−1
eff = D0σ/L

3 + v/L. (3)

Remarkably, our computer simulations show that active
entangled polymers relax much faster than their pas-
sive counterparts, resulting in a disengagement time that
scales as τeff ∼ L [see Fig.2(c)]. This is in contrast to
the passive case, where the disengagement time scales as
∼ L3 for larger polymer lengths, as observed in experi-
ments [36].

By combining the relevant time τeff ∼ L/v and energy
scales G0 ∼ FpL/σ

3, the data collapse onto a single curve
at intermediate and long times, as depicted in Fig.2(d).
The data collapse is excellent over nearly three decades
in time, confirming our predictions.

Time-dependent viscosity– Following our previous
predictions (G0 ∼ LFp/σ

3 and τeff ∼ L/v), the time-
dependent and stationary viscosity are expected to scale
as η ∼ G0τeff ∼ L2. Only recently, it has been claimed
that in the hydrodynamic limit (i.e., at long times and at
large length scales) the Green-Kubo relation is valid even
for suspensions of active dumbells [37]. This work in-
spired us to use the Green-Kubo relation, offering access
to the time-dependent viscosity of our entangled system

via

η(t) =

∫ t

0

G(t′)dt′, (4)

which is shown in Fig. 3(a) over 6 decades in time. Our
study suggests that at short times t ≲ τ0, activity and en-
tanglement play a minor role, but at intermediate times
the data become significantly different. Following our
previous predictions (G0 ∼ LFp/σ

3 and τeff ∼ L/v), the
time-dependent and stationary viscosity are expected to
scale as η ∼ G0τeff ∼ L2. Rescaling the data accordingly,
we find a collapse onto a single master curve over 4 orders
of magnitude in time [Fig. 3(b)].
Finally, as our data saturate at long times we can es-

timate the stationary viscosity of the system via η∞ ≡
limt→∞ η(t). First, we find that the stationary viscos-
ity remains independent of Pe when the polymer length
is fixed [see Fig. 3(a)]. Second and more strikingly, the
predicted scaling η∞ ∼ L2 is confirmed by an asymp-
totic data collapse in the regime of high entanglement
(L ≳ 500σ) and high Péclet numbers (Pe ≳ 8) [Fig. 3(c)].
Hence, highly-engtangled active solutions follow a generic
scaling of L2, which is distinct from the characteristic
L3 scaling that broadly applies to equilibrium systems.
Deviations become apparent for shorter polymer lengths
(L ≤ 250), where the solution becomes less entangled.
This can be attributed to the fact that as we increase
the Péclet number, the tube diameter (∼

√
Neσ) [19]

also becomes larger. Therefore, it requires even longer
polymers to observe a highly-entangled state.
Conclusions– Our study reveals a profound impact of

activity on entangled polymer solutions, notably enhanc-
ing the stress plateau height, and predicts a scaling law
for the stationary viscosity η∞ ∼ L2, which goes beyond
common knowledge and contrasts with the characteristic
η∞ ∼ L3 law for equilibrium systems.
Our findings open up new avenues for quantifying the

viscoelastic properties of various experimental systems.
While on the macroscale the dynamics of highly entan-
gled T. Tubifex worms [14] could be studied, on the
microscale activated nanotubes [38], synthetic polymer
chains [39], or chromatin [8] represent potential realiza-
tions for entangled systems with unique properties. Our
framework can provide insights for systems under defor-
mation/shear, which may allow measuring the material
properties of these systems in the presence of another
time scale (inverse shear rate).
While significant progress has been made in under-

standing the viscoelastic properties of passive entangled
systems under deformation [40–43], it is essential to high-
light two key distinctions: First, active entangled sys-
tems exhibit a remarkable increase in the stress plateau
height, whereas deformed passive entangled polymers
typically experience a reduction in the stress plateau
height [40, 41]. Second, active entangled systems re-
main force-free and do not develop a finite stress, con-
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Figure 3. (a) Time-dependent viscosity for a wide range of Péclet numbers and polymer lengths. (b) A data collapse is obtained
by rescaling the viscosity by η(t)σ3/ζL2 and the time scale by tv/L. (c) Long-time viscosity η∞ as a function of polymer length
L extracted from simulations for a wide range of Péclet numbers. The black line indicates the scaling of η∞ ∼ L2.

trasting with the behavior of deformed passive entangled
systems [44].

Moreover, our study focuses on self-propelled flexible
polymers, yet many polymers found in nature are semi-
flexible [45–53]. Therefore, a future challenge is to in-
clude the finite bending rigidity of polymers in our anal-
ysis and explore how the stress plateau and disengage-
ment time vary with swimming speed. This would deepen
our understanding of the behavior of biological filaments
and contribute to the development of advanced materi-
als with tailored viscoelastic properties, such as synthetic
cells [54, 55].
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System equilibration

A well-known challenge in the field of entangled polymer physics has been the excessively long timescales required
to reach equilibrium, with relaxation times scaling as the cube of the polymer length, i.e., ∼ L3. To circumvent
the need for exceedingly lengthy simulations, we employ a highly efficient approach known as the double-bridging
hybrid (DBH) bond-swapping algorithm, in conjunction with core softening techniques as outlined in Dietz et al.’s
work [1]. The DBH algorithm operates by executing Monte Carlo (MC) moves to swap bonds and angles within the
context of molecular dynamics simulations [Fig. 1]. Notably, this technique allows for the exchange of entire strands of
polymers, a capability not available in standard molecular dynamics simulations. As a result, it substantially reduces
the relaxation time, transitioning from the daunting ∼ L3 scaling to a much more manageable ∼ L.

Figure 1. Representation of a double-bridging hybrid Monte Carlo move, demonstrating the exchange of bonds between separate
polymer chains.

Primitive path analysis and topology

To explore the system’s topology, we employ the Z1+ algorithm developed by M. Kröger [2]. The Z1+ algorithm
iteratively simplifies the initial polymer configuration based on entanglement point positions, thus revealing the
essential topological structure of the primitive paths [see Fig. 2(a)]. It begins by examining sets of three consecutive
nodes along each polymer, initially defined by monomer positions. It evaluates the area enclosed by the triangle
formed by these nodes, accounting for potential obstacles defined by intersecting paths. After multiple iterations,
when further area reduction becomes unattainable, the resulting nodes represent the system’s topological entanglement
points. The average number of entanglement points, denoted as Z, is calculated as the mean number of nodes per
path, while Lpp signifies the average path length. Figure 2(b) presents the final primitive path of a tracer polymer
and its neighboring paths obtained using the Z1+ algorithm from a simulation configuration.
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Figure 2. (a) Schematic representation illustrating the operation of the Z1+ algorithm. The primitive path (blue) relative
to a tracer polymer (red) is depicted, with entanglement points (black) representing obstacles posed by other polymers. (b)
Snapshot from a simulation displaying the primitive paths of a tracer polymer (red) and all of its neighboring polymers (blue).
This configuration corresponds to Pe = 0 and L = 1450σ.

Polymer conformation and entanglement length

Figure 3. (a) End-to-end distance Ree as a function of polymer size L/σ for various Péclet numbers Pe, exhibiting the

characteristic end-to-end scaling behavior reminiscent of an ideal polymer chain, ∼ L1/2. (b) Ree/R
0

ee as a function of time
for varied L at a fixed Pe = 8, time scaled by L/v. (c) Entanglement length Ne, normalized by the equilibrium value N0

e for
Pe = 8, as a function of time.

Our investigation of the end-to-end distance Ree of polymer chains at long times reveals a striking consistency:
irrespective of the applied Péclet number (Pe), the system exhibits a common scaling law, Ree ∼ L1/2, similar to ideal
polymer solutions [see Fig. 3(a)]. Intriguingly, the prefactor of this scaling relation steadily decreases with increasing
Pe, reminiscent of a coil-to-globule transition, observed in dilute active flexible polymer solutions [3]. However, in our
complex, densely entangled networks, a true globule-like structure doesn’t occur; instead, the L1/2 scaling exponent
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remains valid across all Pe values, highlighting a consistent entangled behavior in response to activity.

In Fig. 3(b), we explore the temporal evolution of the end-to-end distance for various polymer lengths L at a fixed
Péclet number Pe = 8. Given that the Ree ∼ L1/2 scaling remains valid across for all Péclet numbers, we anticipate
the normalized Ree/R

0
ee to collapse at long times (tv/L ≫ 1), as depicted in Fig. 3(b). Furthermore, we note a

gradual reduction in Ree, persisting until tv/L ∼ 1. In contrast, we observe a 10% increase in the contour length
of the primitive path (Lpp) at intermediate times (tv/L ∼ 0.1), as illustrated in Fig. 1(c) of the main text. As a
consequence, the entanglement length (Ne/N

0
e ) is expected to exhibit a 30% decline at tv/L ∼ 0.1 before ultimately

reaching a saturation value at long times [see Fig. 3(c)].

Viscoelasticity at a fixed polymer length

We explore the complete time-dependent stress autocorrelation functions across a range of Péclet numbers (Pe),
while keeping the polymer length fixed at L/σ = 725. In equilibrium, we find the familiar stress plateau G0 =
4ρkBT/(5N

0
e ) [Fig. 4]. However, upon introducing activity, we observe that the short-time behavior of G(t) increases

by a factor of 4 compared to its equilibrium counterpart. This emphasizes the active role in shaping the early-time
dynamics within the entangled tubes.

Moving on to intermediate times, t ∼ τ0, the grip forces between neighboring polymers intensify, effectively acting
as barriers for the individual polymer chains. Consequently, the system struggles to relax, resulting in a remarkable
increase in the stress plateau. In fact, for L/σ = 725, the stress plateau height increases by more than three orders
of magnitude [Fig. 4]. This striking phenomenon highlights the pivotal role played by activity-induced grip forces in
shaping the viscoelastic responses
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Figure 4. Stress relaxation modulus G(t) as a function of t/τ0 for L = 725σ and varying P’eclet numbers. The dashed line
represents the well-established prediction G0 = 4ρkBT/(5N

0

e ).

Viscoelasticity of less entangled systems

To demonstrate the unique nature of the stress plateau enhancement due to activity in entangled solutions, we
investigate polymer solutions with shorter polymer lengths, specifically L = 100σ. In Fig. 5, it becomes evident
that the stress plateau is entirely absent from G(t). Instead, the stress relaxation modulus now exhibits a distinct
behavior: an initial ∼ t−1/2 decrease at short times, followed by an eventual exponential decay. This behavior aligns

with the predictions of the Rouse model G(t) ≃ kBTρ (t/τ0)
−1/2

e−t/τR (τR is the Rouse time) [4], which describes
the relaxation dynamics of polymers in this low-entanglement-regime.
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Figure 5. Stress relaxation modulus G(t) as a function of t/τ0 for L = 100σ and varying Péclet numbers. The stress relaxation

modulus exhibits an initial decay characterized by ∼ t−1/2 behavior, followed by a subsequent exponential decay, notably
lacking the entangled plateau.

Movie

The movie (M1.mp4) illustrates the dynamic evolution of primitive paths involving a test polymer (in red) along
with its neighboring polymers (in blue) in a simulation setting characterized by Pe = 4, L = 1450σ, and ρ⋆ = 0.85.
Notably, it reveals an increase in the primitive path, expanding from Lpp/σ = 291.3 to Lpp/σ = 348.6 at intermediate
times tv/L ∼ 0.14. Ultimately, the contour length of the primitive path Lpp decreases by 40% compared to its passive
counterpart at long times (tv/L ≥ 1).
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Chapter 4

Concluding remarks

This dissertation comprises multiple works on activity, complex environments
and their relationship. Publication P1 Active Brownian and inertial particles in
disordered environments: Short-time expansion of the mean-square displacement
[144] is an analytical study of the motion active Brownian particles in disordered
landscapes in two dimensions. In it, the short time expansion of the mean squared
displacement (MSD) of the particles is calculated exactly for both disordered
motility and potential landscapes, and both in the underdamped and overdamped
regime. In particular, the contribution of noise to the MSD is explored, and
for underdamped system new superballistic regimes are found. The strongest
achievement of this publication is the systematic method with which the exact
MSD is calculated, which can be extended to a large variety of systems, from
different models of active matter [145,146] to responsive media [55,147], to time-
dependent random fields [91, 148].

In publication P2 Active noise-driven particles under space-dependent friction in
one dimension [149] the same method used to calculate the short-time MSD of P1 is
employed in the case of a 1D Brownian particle in an environment where potential
and friction are space-dependent. As a result, we find that the space-dependent
friction can lead to a ballistic regime at short times, effectively driving the particle
with noise. The work also features analytical results for the stationary probability
density function of the position in the presence of the aforementioned landscapes.
Some possibilities for continuation of this work are the study of similar systems in
2D, the inclusion of inertia [150, 151] or collective phenomena [152,153].

Publication P3 Brownian particles driven by spatially periodic noise [154] features
a study of Brownian particles moving in a 1D periodic temperature landscape,
later accompanied by a tilted periodic potential. We find, as in P2, that the space
dependent noise strength leads to a drift, which in this case turns out to be really
slow, as the MD is proportional to

√
t. When also considering the tilted potential,

we calculated the value of phase shift between potential and temperature for which
the long-time diffusion and velocity are maximized. In the special case of a potential
near the critical tilt (at which the potential becomes monotonically decreasing)
we calculated the probability current. A system such as the one described in
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this publication can be realized experimentally by setting Brownian particles in a
ring-like structure [155] where a gradient in the temperature is externally induced.
In order to achieve higher degrees in noise gradient, one can also vary, instead of
the temperature, the viscosity [60, 156], or utilize active particles and tune their
rotational diffusion [157].
Publication P4 A one-dimensional three-state run-and-tumble model with a ‘cell

cycle’ [158] proposes a 1D model for organisms with a life cycle. It draws inspiration
from the bacterium Caulobacter crescentus, which during its lifetime switches from
motile to static [159, 160], and defines three different populations, one passive and
two active (backward and forward motion), with the possibility for particles to
change populations with a certain rate and to interact with each other. The study
calculates the MSD and MD in the non-interacting regime and finds the formation
of interesting wave-like structures for certain parameters when cell-cell interactions
are turned on. This model is very flexible and can be extended in multiple ways: it
is possible to modify the cell cycle to describe other types of cells [161, 162], move
into 2D space and include a description of the nematics of cells [163,164] or more
complex swimming behaviors [165].
In publication P5 Patchy landscapes promote stability of small groups [166] we

have a realization of active Brownian particles in a disordered motility field. The
ABPs are Janus particles moving thanks to thermophoresis in a mixture of water
and 2,6-lutidine [35, 111,112]. The source of activity, and hence the motility field,
is laser light, which can be filtered to produce a disordered speckle field [89, 90].
This work shows the effects of a disordered field on active particles, as disorder
severely hampers their diffusion reduces both the size of clusters and their ability
to exchange particles with each other. As a follow-up to this project, the motility
fields could be dynamically tuned [167], as one of the most convenient property
of light fields is that they can be easily modified: one could for example go from
homogeneous to speckle field during the same experiment or change the structure
of the speckle.
At last, publication P6 Giant Activity-Induced Stress Plateau in Entangled

Polymer Solutions [168] discusses the effects that activity has on the rheology of
strongly entangled polymer solutions, finding a remarkable increase in the elasticity
plateau and a reduction in both the relaxation time and the viscosity as functions
of the polymer length. This work is an important step forward in the study and
characterization of active and entangled polymer systems, such as chromatin [169],
worms [117] or activated nanotubes [170]. It also opens up to the possibility of
realizing active materials [171,172], which viscoelastic properties could be tuned
externally by varying the energy intake of the system (and hence the activity).



119

References

[1] L. E. Orgel, The origin of life—a review of facts and speculations, Trends in
Biochemical Sciences 23, 491 (1998).

[2] N. Kitadai and S. Maruyama, Origins of building blocks of life: A review, Geoscience
Frontiers 9, 1117 (2018).

[3] R. Swendsen, An Introduction to Statistical Mechanics and Thermodynamics:
Second Edition (Oxford University Press, 2020).

[4] Y. Bar-yam, Dynamics Of Complex Systems (CRC Press, 2019).

[5] D. J. T. Sumpter, in Collective Animal Behavior (Princeton University Press, 2010).

[6] D. M. Gordon, The Ecology of Collective Behavior, PLOS Biology 12, e1001805
(2014).

[7] S. B. Rosenthal, C. R. Twomey, A. T. Hartnett, H. S. Wu, and I. D. Couzin, Re-
vealing the hidden networks of interaction in mobile animal groups allows prediction
of complex behavioral contagion, Proceedings of the National Academy of Sciences
112, 4690 (2015).

[8] B. A. Hazlett, The Behavioral Ecology of Hermit Crabs, Annual Review of Ecology
and Systematics 12, 1 (1981).

[9] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, M. Rao,
and R. A. Simha, Hydrodynamics of soft active matter, Reviews of Modern Physics
85, 1143 (2013).
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melts: Chain-length effects and fast-converging estimators for entanglement length,
Physical Review E 80, 031803 (2009).

[144] D. Breoni, M. Schmiedeberg, and H. Löwen, Active Brownian and inertial particles
in disordered environments: Short-time expansion of the mean-square displacement,
Physical Review E 102, 062604 (2020).
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three-state run-and-tumble model with a ‘cell cycle’, The European Physical Journal
E 45, 83 (2022).

[159] C. W. Shebelut, J. M. Guberman, S. van Teeffelen, A. A. Yakhnina, and Z. Gitai,
Caulobacter chromosome segregation is an ordered multistep process, Proceedings
of the National Academy of Sciences 107, 14194 (2010).

[160] A. Frandi, F. Pini, W. Beroual, A. Bianchetti, A. Chiodi, E. Mascolo, L. Miano,
G. Petazzoni, E. G. Biondi, and M. Brilli, in Cell Cycle Regulation and Development
in Alphaproteobacteria, edited by E. Biondi (Springer International Publishing,
Cham, 2022).

[161] C. J. Sherr, Cancer Cell Cycles, Science 274, 1672 (1996).



130 References

[162] E. H. Harris, The Chlamydomonas Sourcebook: Introduction to Chlamydomonas
and Its Laboratory Use: Volume 1 (Academic Press, 2009).

[163] M. M. Genkin, A. Sokolov, O. D. Lavrentovich, and I. S. Aranson, Topological
Defects in a Living Nematic Ensnare Swimming Bacteria, Physical Review X 7,
011029 (2017).

[164] A. Doostmohammadi, J. Ignés-Mullol, J. M. Yeomans, and F. Sagués, Active
nematics, Nature Communications 9, 3246 (2018).

[165] R. Stocker, Reverse and flick: Hybrid locomotion in bacteria, Proceedings of the
National Academy of Sciences 108, 2635 (2011).

[166] G. Jacucci, D. Breoni, S. Heijnen, J. Palomo, P. Jones, H. Löwen, G. Volpe,
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