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Abstract

Among the many applications of quantum information processes, one of the most
mature both from a theoretical and practical point of view is undoubtedly Quantum
Key Distribution (QKD). QKD allows two parties, commonly referred to as Alice and
Bob, to establish a secret, shared string of bits, called key, which they can use for
secure communication. In a QKD protocol the parties exploit the unique features
of quantum mechanical systems to guarantee security against possible attacks of a
third malicious party, called Eve, even when Eve is given unlimited power.

This thesis is devoted to expanding the theoretical knowledge about fundamental
and practical applications of quantum cryptography. In particular, with the perspec-
tive of building true quantum networks in the future, we focus on the extension
of QKD to many users, namely Conference Key Agreement (CKA). CKA allows, by
exploiting a shared quantum resource, an arbitrary number of parties to establish a
common secret key used for secure shared communication.

Among the different CKA protocols, the most relevant of them require the strongest
form of entanglement, called Genuine Multipartite Entanglement (GME). After a
theoretical background, we try to relax these strong entanglement requirements and
design more weakly entangled multipartite states that can be employed successfully
in CKA protocols. Furthermore, we highlight an insightful connection between CKA
and the theory of entanglement witnesses.

Then, we focus on a more practical application of CKA. We start from a bipartite
protocol, namely Twin-Field QKD (TF-QKD), which has two major advantages over
usual QKD protocols: it is well suited for long-distance communication and it
requires only simple optical devices to be implemented. Our effort is then put into
designing a novel CKA protocol that retains the same desirable properties.

Finally, we dive in the most adversarial scenario, namely the Device-Independent
(DI) scenario, where all the parties’ devices are untrusted and can be under Eve’s
control. In this scenario, we analyze how a task, which can be considered as a
primitive to QKD, namely DI randomness expansion (DIRE), can be tackled with
less-than-optimal resources. In particular we show how the parties can certify
uniform randomness in the multipartite scenario using almost separable states.

Our works represent a significant step towards realistic, practical implementations
of quantum cryptographic protocols with reduced resource requirements, paving the
way for near-term implementations of quantum cryptographic tasks.
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Zusammenfassung

Unter den vielen Anwendungen von Quanteninformationsprozessen gehört die
Quantenschlüsselverteilung (Quantum Key Distribution, kurz QKD) sowohl aus
theoretischer Sicht als auch aus praktischer Sicht zu den ausgereiftesten. QKD
erlaubt es zwei Parteien, die für gewöhnlich als Alice und Bob bezeichnet werden,
geheim eine gemeinsame Bitfolge zu erstellen, einen sogenannten Schlüssel, welchen
sie dann für eine sichere Kommunikation verwenden können. In einem QKD-
Protokoll werden die fundamentalen Eigenschaften der Quantenmechanik genutzt,
die die Sicherheit der Kommunikation vor möglichen Angriffen einer dritten Partei,
genannt Eve, gewährleistet, selbst wenn Eve alle Möglichkeiten zur Verfügung
stünden.

Diese Arbeit widmet sich der Erweiterung der Theorie über grundlegende und
praktische Anwendungen der Quantenkryptografie. Mit der Perspektive auf den Auf-
bau echter Quantennetze in der Zukunft, setzten wir den Schwerpunkt insbesondere
auf die Erweiterung von QKD auf mehrere Benutzer, die sogenannte Conference Key
Agreement (kurz CKA). CKA erlaubt es einer beliebigen Anzahl an Parteien unter
der Verwendung einer geteilten Quantumressource einen gemeinsamen sicheren
Schlüssel zu konstruieren, der für eine sicher gemeinsame Kommunikation genutzt
werden kann.

Unter den verschiedenen CKA-Protokollen erfordern die relevantesten die stärkste
Form der Verschränkung, genannt Genuine Multipartite Entanglement (kurz GME).
Nachdem wir einen theoretischen Hintergrund eingeführt haben, versuchen wir diese
starken Verschränkungsbedingungen zu lockern und weniger stark verschränkte
Zustände zu konstruieren, die erfolgreich in CKA-Protokollen verwendet werden
können. Des Weiteren zeigen wir eine Relation zwischen CKA und der Theorie der
Verschränkungszeugen.

Anschließend werden wir die praktische Anwendung von CKA diskutieren. Wir
beginnen dabei mit einem Zwei-Parteien-Protokoll, der sogenannten Twin-Field
QKD (kurz TF-QKD), welche gegenüber herkömmlichen QKD-Protokollen zwei
große Vorteile hat: Zu einem eignet es sich gut für Kommunikation über große
Entfernungen und zum anderen werden für die Implementierung nur einfache
optische Geräte benötigt. Wir stellen ein neues CKA-Protokoll vor, das die genannten
Eigenschaften beinhaltet.
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Zum Schluss befassen wir uns noch mit dem ungünstigsten Szenario, dem Device
Independent (DI) Szenario, indem die Geräte aller Parteien nicht sicher sind und von
Eve manipuliert werden können. In solch einem Szenario analysieren wir, wie eine
bestimmte Aufgabe, nämlich die Device Independen Randomness Expansion (kurz
DIRE), welche gleichzeitig auch als Vorstufe zur QKD gesehen werden kann, unter
der Verwendung von nicht optimalen Ressourcen gelöst werden kann. Insbeson-
dere zeigen wir, wie die Parteien in einem Szenario mit mehreren Parteien unter
der Verwendung von fast separablen Zuständen einheitlich Zufälligkeit (uniform
randomness) sicherstellen können.

Unsere Arbeit stellt einen wichtigen Schritt in Richtung realistischer und prak-
tischer Anwendung von Quantenkryptografie mit reduzierten Bedingungen der
Ressourcen, die den Weg für Implementierungen in naher Zukunft ebnet.
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Introduction and motivation 1
The need of concealing information is as old as civilization itself: the first testimony
of ciphered text is a carved stone discovered in Egypt, dating back to 1900 BC.
Cryptography is the discipline that studies ways to encrypt messages such that they
can be shared between two or more parties without concerns about them being
intercepted by other malicious parties. Throughout history many cryptographic
methods have been developed, starting from ciphers used by the Greeks and Romans
to exchange secret information during war, such as the famous Caesar cipher, all the
way to modern cryptography used to make day-to-day communication secure.

The most desirable feature of an encryption scheme is unconditional (or information-
theoretical) security, meaning that the message cannot be deciphered by malicious
parties, even with the assumption of unlimited power and resources. Surprisingly,
most encryption methods are not unconditionally secure: one famous historical
example is the Vigenér cipher, which was believed to be secure for more than three
centuries, before being cracked in the mid 19th century. Even modern cryptographic
schemes are not information-theoretically secure. One notable example is the RSA
protocol, used to encrypt all messages that we exchange daily, which is not uncondi-
tionally secure as it is based on the computational complexity of factorizing products
of large prime numbers. In fact, even the most powerful computer currently available
would take years to break the RSA protocol. However, it has already been shown
that the advent of quantum computers will change that, with efficient algorithms
capable of breaking the security of RSA encryption [Sho94] and thus jeopardizing
the secrecy of all encrypted data.

One of the few information-theoretically secure encryption methods is the Vernam
cipher [Ver26], or one-time pad encryption method. We will not go into details about
this cipher, which has been shown to be secure by Claude Shannon in 1949 [Sha48].
This encryption scheme has, however, one crucial requirement: the parties that
exchange the message must possess a shared key, i.e., a string of bits, which must be
as long as the message, completely random and unknown to any malicious party.
The task of encryption and decryption of a message thus reduces to the following
problem: how can the parties share a random string of bits, without any leakage of
information to any other (potentially malicious) party?

Quantum mechanics, with its intrinsic randomness and peculiar properties, pro-
vides an answer for this problem, in the form of Quantum Key Distribution (QKD).
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QKD schemes, in fact, exploit inherent properties of quantum mechanical systems to
allow two or more parties to remotely establish a secret, random string of bits. The
first QKD protocol was proposed in 1984 by Bennett and Brassard [BB84] and since
then an enormous amount of effort has been put in developing new QKD schemes,
exploiting a wide range of quantum resources for cryptographic purposes.

Furthermore, modern day applications of encryption schemes require more than
just two users to exchange information, with many devices interacting throughout
the whole world. It is thus of crucial important to generalize QKD schemes, usually
developed only for two users, to more complicated network scenarios. The task of
sharing a common, secret key among many users is called Conference Key Agreement
(CKA) and, once again, the properties of quantum mechanics can help to develop
information-theoretically secure encryption schemes for network uses. This thesis
is devoted to exploring and expanding the knowledge of such multi-user quantum
encryption schemes, which will be crucial for the future building of a secure quantum
internet network. Specifically, as increasingly more practical solutions for quantum
encryption schemes are developed, it also increases the urge for reducing the
resource requirements for such practical applications. In this thesis we will analyze
the convoluted landscape of resources required for multipartite CKA protocols
and design new methods and protocols to reduce the requirements to successfully
perform quantum cryptographic tasks, in sight of near-term practical applications.

The thesis is structured as following: chapter 2 is devoted to the introduction of
the fundamental theoretical concepts and tools required for the following chapters.
In chapter 3 we introduce the basics of QKD, outlining all the fundamental elements
of a QKD protocol and analyzing the first, most simple protocols in detail. In chapter
4 we extend the scenario to more parties, going in details of CKA and presenting the
first original work, in which we investigate the resources needed for CKA protocols.
Following the same line, in chapter 5, inspired by a practically implementable QKD
protocol called Twin-Field QKD, we present an original CKA protocol, designed to be
realizable with simple optical devices, paving the way for future quantum networks.
Then, in chapter 6, we investigate an adversarial scenario where the parties do not
need to trust their devices, called the Device-Independent scenario, and show how the
parties can certify the randomness of their outcomes with limited resources. After a
summary, given in chapter 7, of the published results, which can be found attached
in Appendix B and C, we conclude and give an outlook of future possible research
lines in chapter 8.

2 Chapter 1 Introduction and motivation



Basics of Quantum
Information Theory

2
We begin the thesis with a basic overview of the fundamental concepts of quantum
information theory that are needed as a foundation for the rest of the thesis. We
start by introducing the basic postulates of quantum mechanics, in section 2.1. In
section 2.2 we introduce the density operator formalism and review the postulates
to adapt for this new formalism and extend the formalism to composite systems in
section 2.3. We then introduce the quantum operations framework in section 2.4, to
allow for a complete description of any possible quantum state evolution and finally
we focus, in section 2.5, specifically on qubit systems, which are extensively utilized
in the rest of the thesis. This chapter is based mainly on [NC00; Wil17].

2.1 Quantum mechanics’ postulates
In this section we review the basic description of quantum mechanics, by review-
ing the three fundamental postulates that allow for a complete and satisfactory
description of any quantum system. Such description allows to characterize the
properties of any quantum states, as well as to describe its evolution, interaction
and the process of performing a measurement.

2.1.1 First postulate: vector states
The first necessity when describing a quantum system is to find a suitable description
for the state of the system. In quantum mechanics, the state of a quantum system is
described by a normalized vector |ψ⟩ of a Hilbert space H with dimension d. A Hilbert
space is defined as a complete vector space equipped with an inner product. The
vector |ψ⟩ is usually called a "ket" vector and it completely characterizes the state
of the quantum system. This notation, that is conventionally adopted in quantum
mechanics and that we will utilize throughout the thesis, is called Dirac notation.

By definition, any Hilbert space is equipped with an inner product, i.e., an opera-
tion, linear in the second argument and antilinear in the first, that maps any two
vectors |ψ⟩ and |ϕ⟩ to a complex number, indicated by the notation ⟨ϕ|ψ⟩, called
"bra-ket" notation. If the inner product of two vectors is zero, the two vectors are
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orthogonal. Moreover, the inner product induces a norm in the Hilbert space, defined
as ∥|ψ⟩∥ =

√
⟨ψ|ψ⟩. The vectors that represent the state of quantum systems are thus

normalized with respect to this norm, i.e., ∥|ψ⟩∥ = 1, or, in other terms, ⟨ψ|ψ⟩ = 1.
The Dirac notation allows us to see the inner product from another point of view:

any vector |ϕ⟩ defines a linear map ⟨ϕ| that maps any other vector |ψ⟩ of the Hilbert
space to a complex number through the inner product ⟨ϕ|ψ⟩. This map is called
the dual vector or "bra" vector (hence the "bra-ket" notation) and the space of dual
vectors, i.e., the space of linear maps from H to the complex numbers, is called dual
space of H and is indicated by H∗.

Moreover, given two vectors |ψ⟩ and |ϕ⟩ we can define, using the Dirac notation,
the so-called outer product |ψ⟩⟨ϕ|. This notation is often indicated as "ket-bra"
notation. Any outer product defines a linear operation from H to itself. In fact,
given any vector |γ⟩ ∈ H we can describe the operation that maps it to the vector
|ψ⟩⟨ϕ|γ⟩ (which is simply the vector |ψ⟩ multiplied by the complex number ⟨ϕ|γ⟩) by
applying the outer product as (|ψ⟩⟨ϕ|)|γ⟩. We can also consider linear combinations
of outer products

∑
i pi|ψi⟩⟨ϕi|. These linear combinations map any vector |γ⟩ to

the vector
∑

i pi|ψi⟩⟨ϕi|γ⟩, which is also a vector in H due to its linearity. As a final
note, the outer product |ψ⟩⟨ψ| is called projector on |ψ⟩ because the associated linear
operation projects any vector state onto the one-dimensional subspace spanned by
|ψ⟩.

To conclude the description of vector states we review the concept of an orthonor-
mal basis for H. A set of d vectors {|ai⟩}d

i=1 is said to be an orthonormal basis for
H if it is a basis for H, i.e., is a set of linearly independent vectors that span the
whole vector space, and if all vectors in the set are orthonormal to each other, i.e.,
⟨ai|aj⟩ = δi,j . Here δi,j is the Kronecker delta, with δi,j = 1 if i = j and δi,j = 0
otherwise. Given an orthonormal basis {|ai⟩}d

i=1, any vector |ψ⟩ ∈ H can be written
as |ψ⟩ =

∑d
i=1 ai|ai⟩ where ai = ⟨ai|ψ⟩. It is thus possible to write

|ψ⟩ =
d∑

i=1
⟨ai|ψ⟩|ai⟩ =

(
d∑

i=1
|ai⟩⟨ai|

)
|ψ⟩, (2.1)

which, in turn, implies
d∑

i=1
|ai⟩⟨ai|= 1H, (2.2)

where 1H is the identity operator. This important relation is known as completeness
relation and is crucial in characterizing linear operators on the Hilbert space.

4 Chapter 2 Basics of Quantum Information Theory



2.1.2 Second postulate: state evolution

The second necessary ingredient to characterize a quantum system is the description
of the evolution of the system in time. In quantum mechanics, we describe the
evolution of a state vector with unitary operators. Let us then first review the basics
of algebraic theory of operators on Hilbert spaces.

We consider linear operators Â : H → H. We first note that the completeness
relation of Eq. (2.2) allows us to characterize any linear operator simply using inner
and outer products. In fact, we can write, using two times the completeness relation,

Â = 1HÂ1H =
(

d∑
i=1

|ai⟩⟨ai|
)
Â

 d∑
j=1

|aj⟩⟨aj |

 =
d∑

i,j=1
⟨ai|Â|aj⟩|ai⟩⟨aj |. (2.3)

We can thus associate to Â a matrix A that has as elements Ai,j the quantities
⟨ai|Â|aj⟩. This is the matrix representation of Â with respect to the basis {|ai⟩}d

i=1.
Given any linear operator Â there exists a unique linear operator Â† such that

⟨ϕ|Â|ψ⟩ = (⟨ψ|Â†|ϕ⟩)∗ (2.4)

for any |ψ⟩, |ϕ⟩ ∈ H. The operator Â† is called adjoint operator of A. It follows
straightforwardly that the matrix representation of Â† is (A∗)T , i.e., the conjugate
transpose of the matrix A. It can also easily be shown that (ÂB̂)† = B̂†Â† and
(Â†)† = Â. We say that a linear operator Â is self-adjoint or Hermitian if Â = Â†.
The most important property of a Hermitian operator is that its eigenvalues are real
and its eigenvectors form an orthonormal basis, allowing us to write it in its spectral
decomposition as

Â =
d∑

i=1
ai|ai⟩⟨ai|, (2.5)

where the set of eigenvectors {|ai⟩}d
i=1, with respective eigenvalues ai form an

orthonormal basis of H.
We are now ready to introduce the main ingredient to describe the time evolution

of any quantum system, i.e., unitary operators. A linear operator Û is said to be
unitary if Û Û † = Û †Û = 1H. One can easily see that an operator is unitary if and
only if its matrix representation in any basis is unitary, i.e., UU † = 1d where 1d is the
d-dimensional identity matrix and U † = (U∗)T by definition. The most important
property of unitary operators is that they preserve the inner product. In fact, we can
write

⟨ψ|ϕ⟩ = ⟨ψ|Û †Û |ϕ⟩ = ⟨ψ′|ϕ′⟩, (2.6)

2.1 Quantum mechanics’ postulates 5



where |ψ′⟩ = Û |ψ⟩ and |ϕ′⟩ = Û |ϕ⟩ and where (Â|ψ⟩)† = ⟨ψ|Â†. Since unitary oper-
ators preserve the inner product, one can show that they also transform orthonormal
bases into other orthonormal bases. Thus, if we consider two orthonormal bases
{|ai⟩}d

i=1 and {|bi⟩}d
i=1 we can write |bi⟩ = Û |ai⟩ for some unitary operator Û .

As we anticipated at the beginning of the section, the evolution of a quantum
state is described using unitary operators. More specifically, let us consider the state
of a closed quantum system at time t0, namely |ψ(t0)⟩. The state of the system at
time t1 will be described as

|ψ(t1)⟩ = Û(t0, t1)|ψ(t0)⟩. (2.7)

We remark that this postulate is valid only for closed systems, i.e., systems that are
not interacting with other systems. Even tough this condition is never fulfilled in
realistic scenarios, there are many systems that are closed (whose time evolution is
thus unitary) to a good approximation.

Eq. (2.7) describes the discrete evolution of quantum states. If we instead consider
continuous evolution of a quantum state |ψ(t)⟩, we need to use the Schrödinger
equation

ih̄
d|ψ(t)⟩
dt

= Ĥ|ψ(t)⟩, (2.8)

where h̄ is the Planck constant and Ĥ is a fixed Hermitian operator called Hamiltonian
of the system. In the case where the Hamiltonian does not depend itself on time,
which is the most commonly considered scenario, we can see the connection between
the continuous and discrete evolution. In fact, solving explicitly the Schrödinger
equation for times t0 and t1 yields the result

|ψ(t1)⟩ = e
−i(t1−t0)Ĥ

h̄ |ψ(t0)⟩, (2.9)

which is simply Eq. (2.7) with U(t1, t0) := e
−i(t1−t0)Ĥ

h̄ . To conclude, we remark
that it can be shown that any operator in the form Û = eiK̂ , with K̂ Hermitian,
is unitary, thus ensuring that U(t1, t0) is unitary, recovering the description of the
discrete evolution of a quantum state.

2.1.3 Third postulate: quantum measurement

Lastly, we need to characterize the measurement process in quantum mechanics,
i.e., the act of extracting information from a system and how it changes the system
itself. Clearly, since the measurement operation requires interaction with the system,
its evolution cannot be unitary, as described in the previous section. Let us first
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introduce some important concepts of linear algebra that will be crucial to describe
the measurement process.

Let us first introduce an important class of operators called projectors. A linear
Hermitian operator P̂ is called a projector if, given an orthonormal basis {|ai⟩}d

i=1, it
can be written as

P̂ =
∑
i∈S

|ai⟩⟨ai|, (2.10)

where the index i runs over a subset S of cardinality k of the d indices. An operator
in this form is called a projector because it projects any vector of the Hilbert space
onto the k-dimensional subspace of H spanned by the vectors {|ai⟩}i∈S . Since any
operator |ai⟩⟨ai| is Hermitian also P̂ is Hermitian. Moreover, it can be seen that
P̂ 2 = P̂ .

Finally, we define a crucial quantity that we will use throughout the whole thesis.
We define the trace of an operator Â as

Tr[Â] =
d∑

i=1
⟨ai|Â|ai⟩, (2.11)

where, again, {|ai⟩}d
i=1 is an orthonormal basis of H. Since changing bases is

achieved with unitary transformations, we can write the following:

Tr[Â] =
d∑

i=1
⟨ai|Â|ai⟩ =

d∑
i=1

⟨bi|Û †ÂÛ |bi⟩

= Tr[Û †ÂÛ ] = Tr[ÂÛ †Û ] = Tr[Â], (2.12)

where we used the fact that the trace of product of operators is invariant under cyclic
permutations and that, from the definition of unitary operator, Û Û † = Û †Û = 1H.
Eq. (2.12) tells us that the trace is independent on the basis chosen to calculate it.

We are now ready to provide the mathematical description of quantum mea-
surements. A measurement on a quantum system, whose states are described by
vectors of the Hilbert space H, is, in fact, described by a collection {M̂i}m

i=1 of linear
operators on the Hilbert space, called measurement operators. Each operator M̂i is
associated with the i-th outcome of the measurement. We remark that no assumption
is made on the quantity of available outcomes m. In quantum mechanics, since the
outcomes of the measurements are not deterministic, the most important quantity is
the probability of obtaining a certain outcome i, when performing the measurement
described by the operators {M̂i}m

i=1 on a state |ψ⟩. This quantity is given by the
so-called Born rule, i.e.,

p(i) = ⟨ψ|M̂ †
i M̂i|ψ⟩. (2.13)
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The state of the system is also changed by the measurement process. We describe
the state of the system after the measurement as

|ψi⟩ = M̂i|ψ⟩√
p(i)

, (2.14)

where the denominator serves as normalization. Finally, since each p(i) is a proba-
bility, it must be positive, which in turn implies

M̂ †
i M̂i ≥ 0 ∀i, (2.15)

where we define an operator Â to be positive if ⟨ψ|Â|ψ⟩ ≥ 0 ∀|ψ⟩ ∈ H. Moreover,
since all p(i) form a probability distribution, it must hold

∑
i p(i) = 1, which, in

turn, implies
m∑

i=1
M̂ †

i M̂i = 1H, (2.16)

which is an equivalent formulation of the completeness relation.

2.2 Density operator formalism
The postulates presented in the previous section provide an exhaustive description of
a quantum system, as well as its interactions and readout, provided that we possess
full knowledge of the vector state |ψ⟩ describing the system. However, sometimes
our knowledge on the state of a quantum system restricts to an ensemble of vector
states with different occurring probability. In this case, to describe the state of a
quantum system, we resort to the density operator formalism.

Suppose that the state of a quantum system is described by an ensemble of vector
states {|ψi⟩}k

i=1, each occurring with probability pi. The state of the system is then
said to be a mixed state and is described by the density operator

ρ =
k∑

i=1
pi|ψi⟩⟨ψi|. (2.17)

We note that the matrix representation of the operator ρ is called density matrix.
From Eq. (2.17), due to the normalization and positivity of the probability distribu-
tion pi, we straightforwardly have that any density operator must be positive and
Tr[ρ] = 1.

If the state of the system is described by a single state vector |ψ⟩ we call it a pure
state and its density operator is the projector ρ = |ψ⟩⟨ψ|. We finally note that for pure
states, we have ρ2 = ρ and thus Tr[ρ2] = Tr[ρ] = 1. It is straightforward to see that
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for mixed states Tr[ρ2] < 1, giving us a simple criterion to determine whether a state
is pure or mixed just from the density operator: if the quantity Tr[ρ2], called purity,
is less than one, then the state is straightforwardly mixed. Moreover, it is possible
to show that, given a Hilbert space of dimension d, the minimal purity achievable
by any density operator on the Hilbert space is Tr[ρ2] = 1

d and it is achieved by the
so-called maximally mixed state ρ = 1H

d .
To provide a full description of a quantum system in a mixed state it is now

necessary to reformulate all postulates of quantum mechanics in the density operator
formalism. The three postulates given in the previous section for pure states are
then reformulated as following:

Postulate 2.2.1. The state of a quantum system is described by a positive operator
with unit trace ρ, called density operator, acting on a Hilbert space H.

Postulate 2.2.2. The time evolution of a closed quantum system is described by a
unitary operator Û(t), which evolves any initial state ρ0 according to

ρt = Û(t)ρ0Û
†(t). (2.18)

Postulate 2.2.3. The measurement on a quantum system is described by a collection of
measurement operators {M̂i}m

i=1, that satisfy
∑m

i=1 M̂
†
i M̂i = 1 and M̂ †

i M̂i ≥ 0 ∀i, each
corresponding to one of the m possible outcomes of the measurement. The measurement
statistics is determined by the so-called Born rule

p(i) = Tr
[
M̂ †

i M̂iρ
]
, (2.19)

and the state after the measurement is given by

ρi = M̂iρM̂
†
i√

p(i)
. (2.20)

Finally, we will introduce an alternative formalism for quantum measurements
that can be adopted when we are interested only in the measurement statistic and
not in the post-measurement state. We start by defining a Positive Operator-Valued
Measure (POVM) as a collection of positive operators {Êi}m

i=1, with
∑m

i=1 Êi = 1H,
called POVM effects. Once again each POVM effect represents one of the possible
outcomes of the measurement, which occur with probability

p(i) = Tr
[
Êiρ

]
. (2.21)

It is immediate to see that a POVM alone does not allow for a unique definition of

the measurement operators of Postulate 2.2.3. In fact, we can define M̂i =
√
Êi but
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this definition is not unique as also M̂ ′
i = Û

√
Êi, with Û being any unitary operator,

also give rise to the same POVM effect. As a consequence, the POVM effects do not
give us any information about the post-measurement state.

An interesting special case of POVMs is given by projective measurements, where
the POVM is composed by projectors satisfying the completeness relation. In this

case, as we have
√
Êi = M̂i = P̂i, with all the operators being Hermitian, the

description of the quantum measurement is significantly simplified. Finally, if all
projectors are rank-one, meaning that P̂i = |ai⟩⟨ai| ∀i, we call the measurement a
von Neumann measurement.

2.3 Composite systems
So far the postulates we introduced provide an exhaustive description of single
systems. However, the mathematical structure of Hilbert spaces allows for a natural
extension of this description when dealing with multiple systems, giving rise to
one of the most striking features of quantum mechanics, that is entanglement. This
section is based on [GT09; Hor+09]

2.3.1 Bipartite systems
We start with the simplest case of two different systems, labelled by A and B, whose
vector states belong to two Hilbert spaces HA and HB. We now postulate that
the vector space of the composite system is HAB = HA ⊗ HB, where ⊗ indicates
the tensor product of Hilbert spaces. This tensor product structure allows us to
define one of the most important properties of states in quantum mechanics, that is
entanglement.

We start by considering pure states. We will, from now on, imagine that the
systems are controlled by two parties, namely Alice and Bob. A pure state |ψAB⟩ ∈
HAB is called a product state if it can be written as |ψAB⟩ = |ψA⟩ ⊗ |ψB⟩, where
|ψA⟩ ∈ HA and |ψB⟩ ∈ HB and, again, ⊗ represents the tensor product of vectors.
Physically, a product state represents the situation where the states of the two
subsystems are prepared by the parties independently from one another, without any
type of classical or non-classical interaction between the two systems. The definition
extends to mixed states straightforwardly: a mixed state ρAB, where ρAB is a density
operator acting on HAB, is in a product state if ρAB = ρA ⊗ ρB, where ρA and ρB

are density operators acting on HA and HB, respectively.
We could, however, allow Alice and Bob to use classical communication to agree

on preparing locally certain sets of (possibly mixed) states {ρ(i)
A }m

i=1 and {ρ(i)
B }m

i=1,
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respectively, according to a shared probability distribution pi. In this scenario the
state of the composite system is defined as following:

Definition 2.3.1 (Separable state). A quantum state ρAB on HAB is called separable
if it is in the form

ρAB =
m∑

i=1
piρ

(i)
A ⊗ ρ

(i)
B , (2.22)

where ρ(i)
A and ρ(i)

B are density operators acting on HA and HB, respectively.

A separable state still exhibit local behavior, since the two subsystems are inde-
pendent from one another apart from the shared probability distribution pi. As a
final note, we remark that the set of separable states is a convex set, meaning that
convex combinations of separable states are still separable.

However, not all states on HAB are separable states. We can thus define the
following important property of a quantum bipartite state:

Definition 2.3.2 (Entangled state). A state ρAB on HAB is called entangled if it is
not separable, i.e., if it cannot be prepared locally with classical communication.

Entangled states are the key ingredient in many quantum information applications,
since, as we will see, entangled state exhibit a strong non-local behavior. We note
that identifying entanglement is not an easy task: given a generic mixed quantum
state ρAB, it is not immediate to tell whether it is entangled or separable. Among
the many techniques developed [GT09], we will present one of the most relevant
ones, that exploits the convexity of the set of separable states. Let us start with the
following definition:

Definition 2.3.3 (Entanglement witness). Given an entangled state ρAB, an entan-
glement witness is a Hermitian operator Ŵ such that

Tr[Ŵσ] ≥ 0, (2.23)

for all separable states σ and
Tr[ŴρAB] < 0. (2.24)

The definition is based on the fact that a convex set can be separated from its
complement with an hyperplane, represented in this case by the equation Tr[Ŵρ] =
0. The operator Ŵ thus separates the convex set of separable states from a subset of
entangled states, which, by definition, must contain at least one state. Although the
idea is quite simple and elegant, in practice finding a proper entanglement witness is
not a trivial task and usually entanglement witnesses are tailored for specific states.
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2.3.2 Partial trace and purification
In the previous section we presented a description of how composite systems are
treated in quantum mechanics. However, one important tool is missing from the
description of composite systems, i.e., a way to treat the states of the subsystems of
a composite state. We start by introducing the concept of partial trace.

Given the composite state ρAB on HAB, it can be written, in its matrix represen-
tation, as

ρAB =
∑

i,j,m,n

pi,j,m,n|ai⟩⟨aj |⊗|bm⟩⟨bn|, (2.25)

where {|ai⟩}dA
i=1 and {|bm⟩}dB

m=1 are orthonormal bases for HA and HB, respectively,
and where pi,j,m,n is the matrix element ⟨ai|⊗⟨bm|ρAB|bn⟩ ⊗ |aj⟩. We define the
partial trace of ρAB on subsystem B as the linear map

TrB [ρAB] =
∑

i,j,m,n

pi,j,m,n|ai⟩⟨aj |·Tr [|bm⟩⟨bn|] =
∑

i,j,m,n

pi,j,m,n⟨bm|bn⟩|ai⟩⟨aj |,

(2.26)
where Tr indicates the usual trace defined in Eq. (2.11). A similar definition can be
given for the partial trace on subsystem A. The partial trace provides a natural tool
to deal with subsystem of a composite system. In fact, we can give the following
definition:

Definition 2.3.4 (Reduced density operator). Let us consider the state ρAB on HAB.
The description of the state of the system of Alice is given by the reduced density operator

ρA = TrB[ρAB], (2.27)

where TrB indicates the partial trace over Bob’s subsystem.

The use of the partial trace to treat subsystems of composite systems is justified
by the fact that it is the unique operation that gives rise to the correct measurement
statistics when making measurements on a subsystem.

Related to the partial trace, we introduce another important procedure that
we will extensively use throughout the whole thesis called purification procedure.
Let us consider a mixed state ρA of Alice’s subsystem. It is always possible to
introduce a second system, labelled by E, and define a pure state |ψAE⟩ ∈ HAE with
HAE = HA ⊗ HE , such that

ρA = TrE [|ψAE⟩⟨ψAE |] . (2.28)

This purification procedure can be done for any mixed state ρA, and we will show
it by explicitly constructing the purifying state. We can, in fact, write the state ρA
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in its spectral decomposition as ρA =
∑d

i=1 pi|ψ(i)
A ⟩⟨ψ(i)

A |. We now fix the second
system to have the same vector space as A, and define the following pure state of
the composite system

|ψAE⟩ =
d∑

i=1

√
pi|ψ(i)

A ⟩ ⊗ |ψ(i)
E ⟩. (2.29)

We remark that no assumption has been made for the state ρA. Now it is straightfor-
ward to see that

TrE [|ψAE⟩⟨ψAE |] =
d∑

i,j=1

√
pipj |ψ(i)

A ⟩⟨ψ(j)
A |·Tr

[
|ψ(i)

E ⟩⟨ψ(j)
E |
]

=
d∑

i,j=1

√
pipj |ψ(i)

A ⟩⟨ψ(j)
A |δi,j =

d∑
i=1

pi|ψ(i)
A ⟩⟨ψ(i)

A |

= ρA, (2.30)

meaning that |ψAE⟩ is a purification of ρA.

2.3.3 Multipartite systems
So far we have considered only bipartite composite systems, but the tensor product
structure allows for a straightforward generalization to any number of subsystems,
or, in other words, parties. However, the structure of multipartite entanglement
is much richer and more intricate than the bipartite one and it is therefore worth
presenting in detail.

Let us now consider the scenario of a system composed of N subsystem, each
controlled by a different party labelled B1, . . . , BN and named Bob1, . . . , BobN . As
anticipated, the tensor product structure of the vector space of the composite system
directly generalizes from the bipartite scenario: the vector space of the composite
system will thus be HB1,...,BN

= HB1 ⊗ . . .⊗ HBN
. As for bipartite separable states,

we can define a class of states that can be prepared locally by the parties with, at
most, shared randomness and classical communication:

Definition 2.3.5 (Fully separable states). Consider a state ρB1...BN
on HB1,...,BN

. The
state is called fully separable if it can be written as

ρB1,...,BN
=
∑

i

piρ
(i)
B1

⊗ ρ
(i)
B2

⊗ . . .⊗ ρ
(i)
BN
, (2.31)

where ρ(i)
Bk

are states on HBk
∀k.

As we already pointed out, fully separable states are the equivalent of separable
states in the bipartite scenario, as they can be prepared locally by the parties with,
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at most, classical communication between the parties. However, when introducing
multipartite entanglement a richer structure than the simple entangled/separable
structure of the bipartite scenario arises. Let us define S to be a subset of the parties
and S̄ the complement. A state can be separable with respect to the fixed partition
S\S̄ if it is in the form

ρB1,...,BN
=
∑

i

piρ
(i)
S ⊗ ρ

(i)
S̄ , (2.32)

where ρ(i)
S and ρ(i)

S̄ are states shared by the parties in S and S̄, respectively. However,
we can still imagine a scenario where the parties can prepare different states which
are separable with respect to different partitions, according to a shared probability
distribution. In this scenario, we define the following class of multipartite states:

Definition 2.3.6 (Biseparable states). Consider a state ρB1...BN
on HB1,...,BN

. The
state is called biseparable if it is in the form

ρB1,...,BN
=
∑
Sα

∑
i

p
(i)
Sα
ρ

(i)
Sα

⊗ ρ
(i)
S̄α
, (2.33)

where the first sum runs over all possible partitions of the parties.

Biseparable states are convex combinations of states that are separable with
respect to (possibly) different partitions of the parties. This implies that there exist
states that are biseparable yet not separable with respect to any fixed partition of
the parties. We can now define the class of most strongly entangled states, that are
the Genuinely Multipartite Entangled (GME) states.

Definition 2.3.7 (GME states). Consider a state ρB1...BN
on HB1,...,BN

. The state is
called Genuinely Multipartite Entangled (GME) if it is not biseparable.

GME states are of the utmost importance, as, since they contain the strongest
form of entanglement, they are the most commonly used in multipartite quantum
information tasks. One example is the so-called GHZ state [GHZ07], defined as

|GHZ⟩ = 1√
2

(
|0⟩⊗N + |1⟩⊗N

)
, (2.34)

and whose strong correlations are exploited in many quantum information tasks. The
intricate entanglement structure of multipartite states still allows for entanglement
detection with linear witnesses, as shown in section 2.3.1: it is possible, e.g., to rule
out fully separable states or states that are separable with respect to a fixed partition
with entanglement witnesses, as they are convex sets. To better illustrate our point,
in Figure 2.1, taken from [Car+21], we give a schematic representation of the set of
tripartite states. An important remark is that the red set in Figure 2.1, i.e., the set of
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Property 2.4.1. The map E must preserve the hermiticity and positivity of ρ, i.e.,
E(ρ) must be Hermitian and positive ∀ ρ acting on H. Moreover, it must be trace
non-increasing, i.e., 0 ≤ Tr [E(ρ)] ≤ 1.

Property 2.4.2. The map E must be convex-linear, i.e.,

E
(∑

i

piρ
(i)
)

=
∑

i

piE
(
ρ(i)
)
, (2.35)

for any probability distribution pi, with pi ≥ 0 ∀i and
∑

i pi = 1.

Property 2.4.3. The map E must be completely positive, i.e., the map must be positive
also on subsystems of composite systems. In other terms, given the original Hilbert
space HA, if we define any other Hilbert space HE it must hold

E ⊗ 1E(ρAE) ≥ 0, (2.36)

for any auxiliary Hilbert space HE and any composite state ρAE acting on HA ⊗ HE .

We note that the trace non-increasing property is a relaxation with respect to the
natural choice of the map to be trace preserving, i.e., Tr [E(ρ)] = 1. This relaxation
however allows us to include the measurement operations in this framework. In
particular, the quantum operations that are trace preserving are called quantum
channels. The final property, that is complete positivity, is the least trivial property to
be verified since there are even simple examples of maps that are positive but not
completely positive.

One such example is the transposition map. In general, the transposition can
be defined for any operator Â as the conjugate of the adjoint of Â, i.e., ÂT =
(Â†)∗. If we write the matrix representation of our operator in some basis, i.e.,
Â =

∑
i,j Ai,j |ai⟩⟨aj | the transpose of Â is written as

ÂT =
∑
i,j

Ai,j |aj⟩⟨ai|=
∑
i,j

Aj,i|ai⟩⟨aj |. (2.37)

It is straightforward to see that the transpose does not change the diagonal elements
of an operator nor its eigenvalues, and thus it is trace preserving and positive.
However, it is also possible to show that the transposition map is not a quantum
operation as it can be shown that is not completely positive.

An important and elegant characterization of quantum operations is given in the
following Theorem:

16 Chapter 2 Basics of Quantum Information Theory



Theorem 1. A map E is a quantum operation, i.e., it satisfies Properties 2.4.1, 2.4.2
and 2.4.3, if and only if there exists a set of operators {K̂i}, with

∑
i K̂

†
i K̂i ≤ 1, called

Kraus operators, such that
E(ρ) =

∑
i

K̂iρK̂
†
i . (2.38)

Moreover, the number of Kraus operators K̂i is upper bounded by d2, with d being the
dimension of the Hilbert space of the initial state ρ.

We will omit the proof of the Theorem, which can be found in [NC00]. The
Theorem elegantly generalizes the unitary description of the evolution of a quantum
state to any quantum operation.

2.5 Qubit systems

In this section, and throughout most of this thesis, we will focus on a specific type
of quantum systems called quantum bits or qubits. A qubit system is any two-level
system, including, for example, the polarization state of a photon or the state of spin-
1
2 particles. The vector space of a qubit system is represented by a two-dimensional
Hilbert space H2 spanned by the two possible states of the system that we will call
{|0⟩, |1⟩}, and that form the so-called computational basis. Therefore, any pure state
of the qubit system can be written, in the computational basis, as |ψ⟩ = α|0⟩ + β|1⟩,
with |α|2+|β|2= 1.

2.5.1 Pauli operators and the Bloch sphere

We now introduce a set of operators that are crucial in the description of qubits,
called Pauli operators. Pauli operators, indicated by σ̂X , σ̂Z and σ̂Y , or alternatively
by X̂, Ẑ and Ŷ , are defined, in their matrix representation in the computational
basis, as

σ̂X =
(

0 1
1 0

)
, σ̂Z =

(
1 0
0 −1

)
, σ̂Y =

(
0 −i
i 0

)
. (2.39)

It is straightforward to see that the Pauli operators are Hermitian, traceless, have
eigenvalues +1 and −1 and square to the identity. Pauli operators transform the
computational basis according to

X̂|a⟩ = |ā⟩, Ẑ|a⟩ = (−1)a|a⟩, Ŷ |a⟩ = i(−1)a|ā⟩, (2.40)
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where a = {0, 1} and ā indicates the bit flip of a. It is thus clear that the eigenvectors
of the Pauli Ẑ operator are the elements of the computational basis, thus also
sometimes called the Z-basis. Furthermore, the eigenvectors of X̂ and Ŷ , are{ 1√

2
(|0⟩ + |1⟩), 1√

2
(|0⟩ − |1⟩)

}
,

{ 1√
2

(|0⟩ + i|1⟩), 1√
2

(|0⟩ − i|1⟩)
}
. (2.41)

Both sets of eigenstates form a basis for H2, called X-basis and Y-basis, also denoted
as {|+⟩, |−⟩} and {|R⟩, |L⟩}, respectively.

Pauli operators have a fundamental role in the characterization of mixed states of
qubits. As a matter of fact, one can write any density operator on H2 as

ρ = 1H2 + r⃗ · σ⃗
2 , (2.42)

where we defined σ⃗ = (σ̂X , σ̂Z , σ̂Y )T and where r⃗ is a real, 3-dimensional vector
with ||r⃗||≤ 1. Since any state ρ is uniquely determined by the vector r⃗, we can
identify the set of qubit states with the unit sphere in the 3-dimensional real vector
space, which is called the Bloch sphere. Most properties of the state ρ can be directly
inferred from the vector r⃗: for example, the purity of ρ can be written as

Tr
[
ρ2
]

= 1 + ||r⃗||2

2 . (2.43)

Therefore, all pure states lie on the surface of the Bloch sphere, since the state is
pure if and only if ||r⃗||= 1. The points inside the Bloch sphere represent mixed states
and the maximally mixed state is the center point of the sphere, with ||r⃗||= 0.

2.5.2 The depolarizing channel

The Pauli operators also play an important role in one of the most common char-
acterization of noise in quantum information protocols: the depolarizing noise.
Depolarizing noise is an useful tool to benchmark the robustness of any quantum
information protocol against detrimental noise. It is described by the so-called
depolarizing channel, defined in its Kraus representation as

D(ρ) = (1 − q)ρ+ q

3

3∑
i=1

σ̂iρσ̂i, (2.44)

where σ̂1 = σ̂X , σ̂2 = σ̂Z and σ̂3 = σ̂Y . The Kraus operators are thus

K̂0 =
√

1 − q1H2 , K̂i =
√
q

3σi for i = 1, 2, 3, (2.45)
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as, we recall, the Pauli operators are Hermitian. To understand more deeply the
action of the depolarizing channel we use the fact that, due to the properties of Pauli
operators, it holds

ρ+
3∑

i=1
σ̂iρσ̂i = 21H2 , (2.46)

to write the action of the depolarizing channel as

D(ρ) = (1 − p)ρ+ p
1H2

2 , (2.47)

with p = 3
4q. The physical meaning of the depolarizing channel is therefore clear:

with probability 1 − p it leaves the state unchanged whereas with probability p it
replaces it with the maximally mixed state.

We conclude the description of the depolarizing channel by generalizing it to
systems of N qubits, with vector space HN := H⊗N

2 . The first straightforward
generalization is called global depolarizing channel and is defined as

Dgd(ρ) = (1 − p)ρ+ p
1HN

2N
. (2.48)

Again, it represents the channel that replaces, with probability p, the multipartite
state ρ with the maximally mixed state of N qubits. However, a more interesting
and realistic channel model is given by the local depolarizing channel, where a
depolarizing channel is applied to each subsystem of the multipartite state ρ, as

Dld(ρ) = D⊗N (ρ). (2.49)

The local depolarizing channel better represents realistic noise in multipartite com-
munication protocols, where the parties are space-like separated and each subsystem
of the composite system ρ is sent to the specific party through a different channel.

2.5.3 Bell states

We conclude the description of qubit systems by introducing a class of relevant states
of composite qubit systems that are particularly useful in quantum information tasks:
Bell states and their multipartite generalization, GHZ states.
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We start by considering a bipartite qubit system with vector space HAB = HA ⊗
HB, where both HA and HB are two-dimensional Hilbert spaces. We define the set
of Bell states as the states

|ψ+⟩ = 1√
2

(|00⟩ + |11⟩), |ψ−⟩ = 1√
2

(|00⟩ − |11⟩),

|ϕ+⟩ = 1√
2

(|01⟩ + |10⟩), |ϕ−⟩ = 1√
2

(|01⟩ − |10⟩), (2.50)

where we used the short-hand notation |ψ⟩ ⊗ |ϕ⟩ = |ψ, ϕ⟩ for product states. The
Bell states are entangled and form a basis for HAB. Furthermore, it is possible to
show that the Bell states are maximally entangled, i.e., they contain the most amount
of entanglement among all bipartite states and thus are particularly fit for quantum
information applications.

Moving to the multipartite scenario, where the vector space of the composite
system is HB1,...,BN

= HB1 ⊗ . . .⊗ HBN
, with each HBi being two-dimensional, we

can define the set of GHZ states as

|ψi,⃗j⟩ = 1√
2

(
|0⃗j⟩ + (−1)i|1⃗j̄⟩

)
, (2.51)

where j⃗ is a binary vector of length N − 1 and ⃗̄j is the vector that has all entries
flipped with respect to j⃗. Similarly to the bipartite case, the GHZ states are all GME,
even though there not exists a notion of "maximally entangled" for multipartite
states. Moreover, for N = 2 they reduce to the Bell states. We will show in future
sections the relevance of both Bell states and GHZ states for quantum information
tasks, in particular in quantum cryptography.
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Introduction to Quantum Key
Distribution

3
This chapter is dedicated to the introduction of the quantum information task that we
are going to explore in the rest of the thesis: the task called Quantum Key Distribution
(QKD). QKD allows two parties, traditionally denoted as Alice and Bob, to share
a secret string of bits, called key, utilizable afterwards for cryptographic purposes,
whose security against possible eavsdroppers stems from the unique features of the
quantum mechanical systems employed in the protocol. The first QKD protocol was
proposed in 1984 by Bennett and Brassard [BB84], whose information-theoretical
security was shown at a later time [SP00; May01; Bih+06]. Other protocols soon
followed [Eke91; Ben92; Bru98], employing different quantum resources. An
extensive review about the most common QKD protocols can be found in [Pir+20].

The chapter is structured as following: in section 3.1 we introduce one more
theoretical tool, namely entropy, and give examples of both classical and quantum
entropy. We will then move on, in section 3.2, to provide a general description of
common QKD protocols, showing how to prove security in section 3.2.1 and finally
showing the first and most simple protocol in section 3.2.2. The chapter is mainly
based on [Gra21; Wol21], with the section 3.1 being based on [Tom16].

3.1 Measures of uncertainty: entropies
In this section we introduce one more crucial tool required to prove security of
any cryptographic protocol, i.e., a measure of the amount of uncertainty about the
state of a system, starting from classical random variables, all the way to quantum
mechanical systems. The most studied measure of uncertainty is entropy, which has
been utilized in many different fields to quantify the information (or lack thereof)
about a system. An exhaustive compendium of all relevant classical and especially
quantum entropies and their properties can be found in [Tom16].

3.1.1 Classical entropy
We start with the description of classical entropy, traditionally used in classical
information theory to quantify the uncertainty of random variables. We will not go
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into detail about all the properties and nuances of classical entropy, but an extensive
description can be found in [CT05]. In 1948 Claude Shannon [Sha48] tried to
give an answer to one simple, yet fundamental question: how do we quantify the
information of a random variable? To answer this question we define the so-called
Shannon entropy:

Definition 3.1.1 (Shannon entropy). Given a random variable X whose outcome x is
drawn from an alphabet X with probability px, the Shannon entropy of X is given by

S(X) = −
∑
x∈X

px log(px), (3.1)

where log will indicate, for the rest of the thesis, the base-2 logarithm. Moreover, we
will assume for convention that 0 · log2(0) = 01.

The Shannon entropy has many desirable properties, but the main reason why this
quantity is well suited to measure the amount of information of X is due to the so-
called Shannon’s noiseless coding theorem [Sha48]. We will not go into detail about
the theorem, but it states that, given an infinite string of independent outcomes of
the random variable X, there exists a compression scheme that allows to encode
uniquely each outcome of the string using S(X) bits. As a final remark, we consider
the special case in which the alphabet X is composed of only two symbols: in this
case the Shannon entropy is called binary entropy, and is in the form

h(p) = −p log(p) − (1 − p) log(1 − p), (3.2)

where p is the outcome probability of one of the two symbols.
The definition of the Shannon entropy can be extended to describe the joint

information of two random variables X and Y . We thus define the joint Shannon
entropy as

S(X,Y ) = −
∑
x,y

px,y log(px,y), (3.3)

where px,y is the joint probability distribution of the random variables X and Y .
One property of the joint Shannon entropy that is worth mentioning is subadditivity,
i.e., S(X,Y ) ≤ S(X) + S(Y ), where the equality holds if X and Y are independent
variables. Furthermore, given the two random variables X and Y , we can define the
conditional Shannon entropy of X conditioned on Y as

S(X|Y ) = S(X,Y ) − S(Y ). (3.4)

1This choice is supported by the intuition that an impossible event does not contribute to the
information about the variable X.

22 Chapter 3 Introduction to Quantum Key Distribution



Similarly we can define S(Y |X). The quantity S(X|Y ) represents the amount of
uncertainty we have about X given that we possess information about Y . An
important property of the conditional Shannon entropy is that it is always non-
negative, as, intuitively, the joint uncertainty about X and Y is always greater than
the uncertainty about Y . As we will see, this property is not conserved when we
move to quantum systems.

3.1.2 The von Neumann entropy
In a similar way as for classical information, it is possible to quantify the uncertainty
about a quantum state using entropic measures. Quantum entropy has been the
subject of extensive research in the last years and many different definitions have
been proposed [Tom16]. The first and most natural way to quantify the information
contained in a quantum state is using the so-called von Neumann entropy, defined as
follows:

Definition 3.1.2 (von Neumann entropy). Given a quantum state ρ on a Hilbert
space H, the von Neumann entropy of ρ is defined as

H(ρ) = −Tr[ρ log ρ]. (3.5)

It can be easily shown that the von Neumann entropy can also be written as the
Shannon entropy of the eigenvalues of ρ, and has the following properties:

1. The von Neumann entropy is bounded as 0 ≤ H(ρ) ≤ log d, with H(ρ) = 0 if
and only if ρ is pure and H(ρ) = log d if and only if ρ is maximally mixed.

2. The von Neumann entropy is concave, meaning

H

(∑
i

piρi

)
≥
∑

i

piH (ρi) (3.6)

3. The von Neumann entropy is invariant under unitary evolution, i.e.,

H
(
ÛρÛ †

)
= H(ρ), (3.7)

since unitary evolution does not change the eigenvalues of a quantum state.

These properties justify the role of the von Neumann entropy as an uncertainty
quantifier: a pure state has no uncertainty whereas the maximally mixed state is the
most uncertain one. Moreover, the uncertainty of a quantum state does not change
under unitary evolution and can only increase with mixing.
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Finally, as for the classical entropy, we can define both a joint and a conditional
quantum entropy. Given a bipartite state ρAB , the joint von Neumann entropy of ρAB

is simply defined as

H(ρAB) = H(AB) = −Tr[ρAB log ρAB]. (3.8)

The joint von Neumann entropy is still subadditive, i.e., H(A,B) ≤ H(A) +H(B),
where the equality holds if ρAB is a product state. Furthermore, given two subsys-
tems A and B belonging to Alice and Bob, respectively, we can define the conditional
von Neumann entropy of the state of Alice conditioned on the state of Bob as

H(A|B) = H(AB) −H(B), (3.9)

where H(B) = H(ρB) is the von Neumann entropy of the reduced state of Bob.
The conditional von Neumann entropy has several properties, but here we will
show three important ones, that we will use in subsequent chapters. As a direct
consequence of the additivity of the joint von Neumann entropy for product states,
the conditional von Neumann entropy satisfies

H(A|B) = H(A), (3.10)

if ρAB is a product state. Another relevant property is the so-called data-processing
inequality, that states that adding conditioning cannot increase the conditional von
Neumann entropy. More precisely, given a tripartite state ρABC , it holds

H(A|BC) ≤ H(A|B) (3.11)

where H(A|B) is evaluated on the marginal ρAB = TrC [ρABC ]. Finally, let us define
a classical-quantum (c.q.) state:

Definition 3.1.3. Given a random variable X, with M possible outcomes and a set of
M orthogonal states {|xi⟩}M

i=1, we define a classical-quantum (c.q.) state as a state in
the form

ρXQ =
M∑

i=1
pxi |xi⟩X⟨xi|⊗ρ(i)

Q , (3.12)

where the system Q is a quantum system of any dimension and pxi is the probability of
obtaining outcome xi from the random variable X.

A c.q. state represents a state where a quantum system is paired with a classical
system, represented by the orthogonal states {|xi⟩}, reproducing the outcomes of a
classical random variable. Let us then consider a particular c.q. state in the form of
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Eq. 3.12, where Q is a bipartite quantum system composed by subsystems A and B.
It is possible to show that the following holds:

H(A|BX) =
M∑

i=1
pxiH(A|BX = xi), (3.13)

where H(A|BX) is evaluated on the state ρABX and H(A|BX = xi) on the state
ρ

(i)
AB.
As a final remark, we note that the conditional von Neumann entropy, unlike the

conditional Shannon entropy, can be negative. For example, if we consider one of the
Bell states given in Eq. (2.50), its joint entropy is H(AB) = 0 since it is a pure state.
However, it can easily be seen that H(A) = H(B) = 1, and thus H(A|B) = −1. This
substantial difference with the classical entropy can be seen from another point of
view: it is no longer true that H(AB) ≥ H(A), H(B), like with classical entropy or,
in other words, it is possible to have less knowledge about the reduced systems than
the global system. This interesting feature, unique to quantum systems, gives us an
important characterization of entangled states: as a matter of fact, if H(A|B) < 0
we know that ρAB must be entangled, reinforcing the idea that entanglement is an
important and unique feature of quantum theory.

3.1.3 Conditional min- and max-entropy
In this section we will introduce two more entropy measures that are of pivotal
importance in many quantum information tasks: the conditional min-entropy and
max-entropy [KRS09]. We start by defining the min-entropy as follows:

Definition 3.1.4 ( Conditional min-entropy). Given a bipartite quantum state ρAB

the conditional min-entropy of A conditioned on B is defined as

Hmin(A|B) = − log min
σB

{Tr[σB] s.t. σB ≥ 0, (1A ⊗ σB) − ρAB ≥ 0} , (3.14)

where the minimization is over all quantum states σB.

The conditional max-entropy is defined as follows

Definition 3.1.5 (Conditional max-entropy). Given a bipartite state ρAB the condi-
tional max-entropy of A conditioned on B is defined as

Hmax(A|B) = max
σB

log
∥∥∥√ρAB

√
1 ⊗ σB

∥∥∥2

1
, (3.15)

where ∥·∥1 is the trace norm of an operator, defined as ∥Â∥ = Tr
[√

ÂÂ†
]

and where
the maximisation is over all quantum states σB.
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An alternative definition of the conditional max-entropy can be given in terms of
the conditional min-entropy:

Definition 3.1.6. Given a bipartite state ρAB and its purification ρABC , such that
TrC [ρABC ] = ρAB, we define the conditional max-entropy of A conditioned on B as

Hmax(A|B) = −Hmin(A|C). (3.16)

Given a bipartite state ρAB the conditional min- and max-entropy are related to
the conditional von Neumann entropy as follows [TCR09]

Hmin(A|B) ≤ H(A|B) ≤ Hmax(A|B). (3.17)

The importance of the conditional min-entropy is due to its operational meaning.
Let us consider the following scenario: one party, Alice, holds a key k, i.e., a string of
bits. Alice’s subsystem is indicated by K. A malicious party, traditionally called Eve,
wants to acquire knowledge about Alice’s key and, to do so, she correlates Alice’s
key with a quantum state. The global quantum state describing Alice’s key together
with Eve’s system is thus a c.q. state in the form

ρKE =
∑
k∈K

pk|k⟩⟨k|⊗ρ(k)
E , (3.18)

where the different possible keys are encoded in the orthogonal states {|k⟩}k∈K,
where K is the space of all possible keys, each occurring with probability pk and
ρ

(k)
E is Eve’s quantum state. In order to gain knowledge about Alice’s subsystem,

Eve performs a measurement, with POVM elements Ek, on her subsystem and
the probability of Eve correctly guessing the key is given by the so-called guessing
probability

pguess(K|E) = max
Ek

∑
k∈K

pkTr
[
Ekρ

(k)
E

]
. (3.19)

It turns out that the guessing probability is closely related to the conditional min-
entropy, as

Hmin(K|E) = − log pguess(K|E). (3.20)

The conditional min-entropy, therefore, plays a crucial role in another quantum
information task closely related to QKD, namely randomness extraction. In fact, the
min-entropy can be also seen, in its operational meaning, as the amount of uniform
randomness that Alice can extract from its random variable, in this case K with
probability distribution pk: if the key is completely random, in fact, Eve has no
way of guessing it and thus the conditional min-entropy is maximal, whereas in the
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opposite case, where the key is completely deterministic, Eve can perfectly guess the
key and thus the conditional min-entropy is zero.

3.1.4 Entropic uncertainty relation

Finally, we introduce an important tool related to entropy that is the entropic
uncertainty relation. In the standard formulation of quantum mechanics, the famous
Heisenberg uncertainty principle tells us that due to the inherent non-commutativity
of certain observables, like position and momentum, these observables cannot be
measured jointly with arbitrary precision. A similar situation presents itself with the
quantum von Neumann entropy and this uncertainty relation proves to be extremely
useful in quantum cryptography.

We consider the following scenario: two parties, Alice and Bob, hold a bipartite
state ρAB. Furthermore, Alice has at her disposal two quantum measurements,
defined by POVM elements {M̂ (A)

x } and {N̂ (A)
y }, respectively. If Alice performs the

first measurement, the resulting state will be the c.q. state

ρXB =
∑

x

|x⟩X⟨x|⊗TrA[(M̂ (A)
x ⊗ 1B)ρAB], (3.21)

where Alice’s subsystem has been replaced with the classical subsystem X in which
she records the outcomes x of the measurement in the orthogonal states {|x⟩}. A
similar state can be defined for the second measurement

σY B =
∑

y

|y⟩Y ⟨y|⊗TrA[(N̂ (A)
y ⊗ 1B)ρAB]. (3.22)

Using the conditional von Neumann entropy, we can define the uncertainty that
Bob has about the outcome of the measurement with H(X|B) and H(Y |B) for the
first and second measurement, respectively. We remark that H(X|B) is evaluated
on the state ρXB of Eq. (3.21) and H(Y |B) on the state σY B of Eq. (3.22). If Bob
doesn’t know which measurement is performed, the total uncertainty of Bob about
the outcome is H(X|B)+H(Y |B). The following theorem, formulated in [Ber+10],
gives a lower bound on this uncertainty.

Theorem 2. Given a bipartite state ρAB and given two measurements on Alice’s side
with POVM elements {M̂ (A)

x } and {N̂ (A)
y } the total uncertainty of Bob about Alice’s

measurements is lower bounded by

H(X|B) +H(Y |B) ≥ log 1
c

+H(A|B), (3.23)
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where H(A|B) is the conditional von Neumann entropy of ρAB. The quantity c is a
measure of incompatibility of the two measurements, defined as

c := max
x,y

∥∥∥∥√M (A)
x

√
N

(A)
y

∥∥∥∥2

∞
, (3.24)

with ||·||∞ being the infinity norm of an operator, defined as its largest singular value
(in the finite-dimensional case).

The first term on the right-hand side of Eq. (3.23) depends on the measurements
of Alice and intuitively is higher for more incompatible measurement and the second
term depends only on the state. It is worth noting that since the conditional von
Neumann entropy can be negative, even for highly incompatible measurements
Bob can know Alice’s outcome with certainty by choosing the right state. This
uncertainty relation serves, as we will see in detail later, as a foundational tool for
modern security proofs of many quantum cryptographic protocols.

3.2 Quantum Key Distribution protocols
We are now ready to introduce and discuss the main topic of this thesis, i.e., the
fundamental quantum information task known as Quantum Key Distribution (QKD).
The main goal of QKD is to allow two parties 2, called as usual Alice and Bob, to
share a common key, i.e., a string of bits, secure against possible tampering of a
malicious party called Eve. The security in particular is guaranteed by the unique
properties of quantum mechanics. A generic QKD protocol is described as following:

1. Quantum transmission: the parties share, each round of the protocol, a
quantum resource which is vulnerable to attacks by the eavsdropper Eve.
Eve can correlate the quantum resource with its own system and perform
measurements on her own subsystem. The quantum transmission can be done
mainly in two different ways: Alice can encode the information about the
key into quantum states and send them to Bob through an insecure quantum
channel, which can be attacked by Eve. In this case we say that the protocol
is Prepare and Measure (PM). Alternatively, Alice and Bob can receive each
a subsystem of a bipartite quantum state from a source which can be in the
hands of Eve. In this case we say that the protocol is entanglement based (EB).

2. Quantum measurements: the parties (or, for PM protocols, just Bob) perform,
each round of the protocol, specific measurements on the resource they shared

2The generalization to more parties will be considered in the next chapter. In this chapter we will
focus uniquely on the two-party scenario.
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to extract the encoded information. After M rounds of the protocol, they share
a raw key of length M , obtained with the measurement outcomes. We remark
that at this point the raw key contains errors and information leaked to Eve.

3. Classical parameter estimation: the parties use an authenticated classical
channel to share a small part of the raw key in order to estimate the information
gained by Eve in the protocol. If they detect that Eve has gained enough
information to reconstruct the key, they abort the protocol.

4. Classical error correction: the parties use the same authenticated classical
channel to share information about the raw keys in order to use error correction
algorithms to obtain a matching key. From now on we will consider the case
where Alice and Bob use one-way error correction algorithms, meaning that
Alice sends information to Bob, which corrects his raw key according to Alice’s
one.

5. Classical privacy amplification: the parties use the same authenticated
classical channel to compress the error-corrected keys into shorter keys, in
order to erase the information that Eve gained. This is done, e.g., with two-
universal hashing. They thus obtain matching, secure keys.

In Figure 3.1 we show a schematic representation of both a PM- and an EB-QKD
protocol. As we can see any QKD protocol is divided into two parts: a first, quantum
part, where the parties share quantum systems and perform quantum measurements
to effectively extract the key, followed by a second, classical, part where they employ
classical post-processing to guarantee the correctness and security of said key. We
note that the classical part of the protocol requires an authenticated classical channel
between Alice and Bob, meaning that when they share classical information they are
sure to communicate with each other and Eve has not replaced one of the parties.
However, Eve can have access to the classical information shared. In this thesis we
will focus mainly on the quantum part of the protocols. A variety of error correction
algorithms can be found in [MS83] and more details about privacy amplification can
be found in [Wol21]. Finally, we remark that, for different reasons, it is useful to
consider the so-called asymptotic scenario, i.e., to considerM → ∞, corresponding to
an infinite key length. One of the main reasons to restrict to the asymptotic scenario
is that it is usually easier to prove information-theoretical security of the protocol.
However in a realistic scenario Alice and Bob will not be capable of performing the
protocol for an infinite amount of rounds and therefore the security analysis must
be extended for finite-size keys.

In the protocol description we outlined the difference between PM and EB pro-
tocols. While the two descriptions are different for practical applications, it is
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of the i-th bit in a quantum state |ϕi⟩ and sends it to Bob. The global state sent by
Alice to Bob is described by

|ϕgl⟩ = |ϕ1⟩ ⊗ . . .⊗ |ϕM ⟩. (3.25)

Bob, each round of the protocol, performs a measurement on the received state and
extract the information about Alice’s key. Let us now imagine that Alice and Bob
share, each round of the protocol, the following entangled state

|ψ⟩AB =
∑

x

√
px|x⟩A|ψx⟩B, (3.26)

where the states {|x⟩A} are an orthonormal basis of Alice’s subsystem. If Alice
measures on this orthonormal basis, she obtains outcome x with probability px, thus
reproducing, if she measures M times, the generation of the key from a random
variable with probability distribution px in the PM scenario. Moreover, if we consider
the reduced state after the measurement we obtain |ψ⟩XiB = |xi⟩A|ψxi⟩B, which
simulates the transmission of the state |ψxi⟩ to Bob. This is therefore the equivalent
EB formulation for the corresponding PM protocol.

In general, it is more convenient to show security in the EB scenario, where one
does not have to deal with quantum channels but just with the bipartite entangled
state shared by the parties, assuming that Eve has full control on the source of
the state. Therefore, although PM protocols are more practical to implement, it is
common in security proofs to find the equivalent EB formulation of the protocol and
show security for the latter.

3.2.1 Security of QKD

As already pointed out, the crucial advantage that QKD protocols provide over
classical protocols is the ability to guarantee information-theoretical security, mean-
ing that we are able to guarantee security independently on the power given to
the eavsdropper. In this section we will go into detail about the security of QKD
protocols. Further details can be found in [Sca+09; PR22], where the countless
techniques that have been developed are analyzed thoroughly. We will present one
of the most modern and universal techniques, due originally to Devetak and Winter
[DW05] and then further refined [SR08], that we will extensively use throughout
the thesis.

Let us start with some basic assumptions that are required to prove security in
any QKD scheme. Breaking these assumptions will result in a possible leakage
of information to Eve not accounted for in the model. A complete treatment
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of the assumptions of quantum cryptography and possible loopholes in practical
implementations can be found in [Bea14; SK14].

1. Quantum mechanics is correct and complete. This basic underlying assump-
tion ensures that the theory we use correctly predicts measurement outcomes
and provides a description for all phenomena we observe. Without quantum
theory it is clearly impossible to formulate a QKD scheme.

2. The parties’ laboratories are isolated. We assume that Alice’s and Bob’s
laboratory, where they make measurements and prepare states, are isolated
and inaccessible to Eve.

3. Trusted devices. We assume that the state preparation (in PM protocols) and
the measurement devices are trusted and produce the exact state or measure-
ment outcome they are supposed to. Additionally, Eve has not tampered in
advance with the devices, which could give her additional information. This
assumption can be relaxed in Device-Independent QKD schemes, which will be
outlined in chapter 6.

4. Authenticated channel and trusted classical post-processing. Finally, we
already pointed out that the parties need to have an authenticated classical
communication channel in order to perform classical post-processing. More-
over, the parties need to trust that all parts of the classical post-processing
function the way they are supposed to and there are no deviations from the
theoretical model.

Under these basic assumptions, Eve is able to attack the quantum channel con-
necting the parties and access the classical information exchanged. However, we
have not specified how much power can be given to Eve in tampering with the
quantum resource. Eve’s attacks can be grouped into three classes, which we will
outline in the order of power given to Eve: individual attacks, collective attacks and
coherent attacks.

Let us start by describing the scenario: let us for now consider a PM-QKD scheme,
where Alice prepares M states ρ(1)

A . . . ρ
(M)
A , in which she encodes the information

about the key. Each round she sends one of the states through an insecure quantum
channel to Bob. The way Eve extracts information about the states sent by Alice is
to attach an ancilla state |E⟩E⟨E|, which can be chosen to be pure without loss of
generality3 and apply an unitary evolution on the composite state. Afterwards, she

3This assumption is due to the fact that, in order to give Eve the maximum amount of power, we do
not give any assumption on the dimension of the Hilbert space of Eve’s subsystem. Therefore, even
if the state is mixed, she can always purify it by enlarging the dimension of the Hilbert space of her
subsystem.

32 Chapter 3 Introduction to Quantum Key Distribution



performs some measurement on her part of the state, which is usually called Eve’s
quantum side-information, to retrieve some knowledge about Alice’s initial state.

In the weakest class of attacks, i.e., individual attacks, Eve does this procedure
each round independently: in the i-th round she attaches the ancilla state to the
state ρ(i)

A , applies the same unitary Û each round and obtains the state

ρ
(i)
E = TrA

[
Û †ρ

(i)
A ⊗ |E⟩E⟨E|Û

]
. (3.27)

She then proceeds to perform the same measurement, with POVM elements {Êi} on
each individual ρ(i)

E . Eve, however, could be able to exploit not only the information
contained in each individual state but also the one contained in the global state sent
by Alice, i.e., ρ(1)

A ⊗ . . .⊗ ρ
(M)
A . This is accounted for with collective and coherent

attacks. In fact, in collective attacks, Eve can attach the ancilla and evolve the state
individually, like in individual attacks, obtaining the same state ρ(i)

E as Eq. (3.27).
However, in collective attacks, she is able to perform a global measurement on the
global ancilla state ρ(1)

E ⊗ . . .⊗ ρ
(M)
E . Finally, with coherent attacks Eve is able to act

directly on the global state sent by Alice. Her ancilla state is, in this scenario

ρE = Tr
[
Û †

gl(ρ
(1)
A ⊗ . . .⊗ ρ

(M)
A ) ⊗ |E⟩E⟨E|Ûgl

]
, (3.28)

where Û †
gl is a global unitary on the composite system. She then can perform a

global measurement on the state ρE . Coherent attacks are the most general attacks,
that give Eve the maximum amount of power.

As a final remark, we note that in EB protocols a similar description about Eve’s
attacks can be given. Eve, instead of attaching an ancilla and unitarily evolving the
composite state, is in control of the source of entangled states and thus is assumed, to
give her the most amount of power, to hold a purification of the state shared by Alice
and Bob together with her quantum side-information, on which she can perform
any measurement or operation. For individual and collective attacks she holds a
purification of the state shared each round and she can perform measurements on
her part of the purification independently each round and globally, respectively. For
coherent attacks Eve is assumed to hold a purification of the global state shared by
the parties.

In order to assess the performances and limitations of any QKD protocol, we need
to introduce a measure of how many bits of secret key can be generated per round in
the protocol. This fundamental quantity is called the key rate, defined as the fraction
of secret bits of key extracted each round by the parties. Crucially, the key rate can
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be lower bounded, in any asymptotic QKD protocol against collective attacks, by the
following quantity [DW05; SR08],

r∞ ≥ H(A|E) − S(A|B), (3.29)

where H(A|E) is the quantum conditional entropy of Alice’s random variable repre-
senting the secret key A conditioned on Eve’s quantum side-information and S(A|B)
is the classical conditional entropy of A given the random variable representing
Bob’s key, B. Intuitively the first term represents how much information about the
key is leaked to Eve during the protocol and the second term accounts for the errors
that Bob has to correct in order to obtain a matching key with Alice. The security of
the protocol is itself contained in the key rate: if the key rate is positive, Alice and
Bob can extract a shared key, secure against Eve, whereas if the key rate is zero 4 the
protocol fails, either due to leakage of information to Eve or to too many errors in
the raw keys. We finally remark that restricting to collective attacks does not imply
loss of generality in the asymptotic regime, as security against coherent attacks can
be inferred from security against collective attacks with the post-selection technique
[CKR09]. Therefore, in many protocols and in asymptotic regimes, it is sufficient to
restrict to collective attacks to prove unconditional security.

3.2.2 The BB84 protocol
In this final section we review the first and most important QKD protocol, designed
by Bennett ans Brassard in 1984 [BB84], thus called BB84 protocol. Let us start with
the original PM protocol and then give the equivalent EB description. The protocol
is described as following:

1. Quantum transmission: each round of the protocol Alice randomly picks
either the Z- or the X-basis. She then randomly picks one of the two states
of the chosen basis, i.e., {|0⟩, |1⟩} or {|+⟩, |−⟩} and sends it to Bob through
an insecure quantum channel, subject to attacks by Eve. The parties agree to
encode the key bit value 0 with states |0⟩ and |+⟩ and bit value 1 with states
|1⟩ and |−⟩.

2. Quantum measurements: each round Bob measures randomly in the Z- or
X-basis the state he receives. If he measures in the same basis Alice prepared
her system in, he will extract the encoded information, i.e., he will obtain
exactly the bit Alice intended to encode. Otherwise, he will get a random bit.

4The key rate can be negative, which does not make physical sense, as already r∞ = 0 implies that
the protocol fails. Usually one considers the key rate to be max{r∞, 0} to avoid such confusion.
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3. Classical sifting: after M rounds the parties publicly share the information
about which basis Alice used for state preparation and in which basis Bob
measured each round. We note that this information can be overheard by
Eve as it does not give her any information about the key bits. Then, they
discard all rounds in which Bob measured in a different basis then the one
Alice prepared her state in. They are then left, in case of no noise or tampering
of Eve, with a perfectly correlated key string of approximately M

2 bits.

4. Classical parameter estimation: the parties publicly disclose a small fraction
of the key to estimate the quantum bit error rate (QBER)in each basis, namely
QZ and QX . We note that in realistic implementations errors can be caused
by any source of noise, even outside the control of Eve. However, to show
information-theoretical security we have to consider the worst-case scenario,
where all the errors and noise are caused by Eve.

5. Classical post-processing: as shown in Section 3.2, the parties perform
classical error correction and privacy amplification to obtain a secure shared
key.

This protocol’s formulation follows directly the original work and it is the most useful
from the point of view of the practical applications. However, its equivalent EB
formulation is more useful in security proofs and thus it is worth to be considered.
The equivalent EB formulation requires the parties to share the bipartite Bell state,
given in Eq. (2.50),

|ψ+⟩AB = 1√
2

(|00⟩ + |11⟩), (3.30)

where |0⟩ and |1⟩ are the element of the computational basis. It is straightforward
to show that the Bell state has the same form if we change to the X-basis, namely
|ψ+⟩AB = 1√

2(|++⟩ + |−−⟩). Therefore, if Alice and Bob measure in the Z- and
X-basis, they will obtain perfectly correlated outcomes if they measure in the same
basis and random outcomes otherwise, equivalently to the PM formulation. It
is worth also noting that all Bell states of Eq. (2.50) are equivalent up to local
operations and thus all Bell states can be used in the EB formulation of the BB84
protocol.

We can show security of the BB84 protocol in its EB formulation by exploiting
the entropic uncertainty relation. This is not the only nor the original method used
to prove security for the BB84 protocol, but besides being elegant and simple it is
close to the security proofs we will employ in the works we will present in the next
chapters. The full original security proof, that we will omit here, was rigorously
given in [SP00; May01; Bih+06], some years after the original work by Bennett and
Brassard.
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In order to proof security of the BB84 protocol, we need to allow the parties to
estimate Eve’s knowledge and errors in the protocol with the quantities that they
can estimate in the protocol, i.e., the QBERs QZ and QX . We thus recast the key
rate in Eq. (3.29) as a function of these quantities. In the asymptotic scenario and
for collective attacks, Eve has access to a purification ρABE of the state shared by
the parties ρAB. Let us start with the following Corollary, derived directly from the
entropic uncertainty relation shown in Section 3.1.4.

Corollary 3.2.1. Given the purification ρABE and given that Alice performs either Z-
or X-basis measurements on her part of the system, it holds

H(Z|E) +H(X|B) ≥ 1, (3.31)

where the first entropy is evaluated on the post Z-basis measurement state ρZBE and
the second on the post X-basis measurement state ρXBE .

Proof. To show this expression we start with Eq. (3.23), which we can write in our
case as

H(Z|B) +H(X|B) ≥ 1 +H(A|B) (3.32)

where we used that log2
1
c = 1 for Z- and X-basis measurements, since they are

maximally incompatible. We can thus write, using the expression of the conditional
von Neumann entropy in Eq. (3.9)

H(ZB) −H(B) +H(XB) −H(B) ≥ 1 +H(AB) −H(B) (3.33)

Moreover, it is possible to show that if a multipartite state is pure, the entropies of
any of its marginals are equal [Tom16]. Therefore, since ρABE is pure by definition
we have H(AB) = H(E) and H(ZB) = H(ZE). We can thus write

H(ZE) +H(XB) ≥ 1 +H(E) +H(B), (3.34)

which can finally be recast as H(Z|E) +H(X|B) ≥ 1, concluding the proof.

Using this expression, the asymptotic key rate of Eq. (3.29) becomes

r∞ ≥ H(Z|E) −H(Z|B) ≥ 1 −H(Z|B) −H(X|B), (3.35)

where we note that both H(Z|B) and H(X|B) are quantum conditional entropies
of Alice’s measurements outcomes given Bob’s quantum subsystem. We now use the
fact that the entropy does not increase with measurement operation [Tom16] to
write

r∞ ≥ 1 − S(ZA|ZB) − S(XA|XB) (3.36)

36 Chapter 3 Introduction to Quantum Key Distribution



where ZA and ZB are the random variables representing Alice’s and Bob’s outcomes
in the Z-basis, respectively, and XA and XB are the random variables representing
Alice’s and Bob’s outcomes in the X-basis, respectively. We note that this expression
only contains classical conditional entropies of the parties’ outcomes and can be
recast in terms of the QBERs as

r∞ ≥ 1 − h(QZ) − h(QX). (3.37)

This security analysis holds only for the asymptotic scenario. If we consider the
finite-size key scenario, this expression must be corrected with additional terms
depending on the size of the key. These additional terms are called finite-key effects
and vanish for M → ∞. We will not go into details about finite-key effects for the
BB84 protocol in this work, but more details can be found in [Tom+12].
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Conference Key Agreement 4
In the last chapter we introduced the main ideas behind the concept of exploiting
quantum mechanics to allow the sharing of a secure key. We mainly focused on
bipartite protocols, where the parties that want to perform the protocol are two,
namely Alice and Bob. However, all modern communication tasks involve intricate
networks, where many users establish communication channels with each other.
In this scenario, it is required to extend the secure communication protocols from
the standard two-party formulation to multipartite protocols. The extension of
QKD to many parties is often called Conference Key Agreement (CKA), and it is the
main focus of our work. Due to the imminent application of quantum cryptography
in networks, CKA has received a lot of attention in the past years, both from a
theoretical [CL07; Epp+17; GKB18; GKB19; Ott+19; ZSG18; Zha+20; HJP20;
Gra+22] and experimental point of view [Pic+22; Rüc+22]. This first chapter
is dedicated to showing the rudiments of CKA and investigating the fundamental
requirements of the quantum resource exploited in the protocol, following mainly
our work done in [Car+21].

The chapter is structured as following: in section 4.1 we introduce the task of
CKA and restrict our analysis to a specific class of protocols. From this class, we
present two simple CKA protocol, one of which being a direct generalization to many
parties of the BB84 protocol presented in section 3.2.2, the other, shown in section
4.1.2, exploiting another class of GME states. Then, in section 4.2 we explore in
detail the results we obtained in [Car+21], investigating the necessary and sufficient
requirements of the state shared in each round of the protocol to successfully perform
CKA. In section 4.2.2 we present an interesting insight connecting the key rate of a
CKA protocol with the concept of entanglement witnesses. Finally, in section 4.2.3,
we restrict to a specific type of network, namely the triangle network, where the
parties cannot perform classical communication, and investigate the properties of
the states that can be generated in this network, with the use for CKA in mind.

4.1 Basics of Conference Key Agreement
Let us start with introducing the task of CKA. In a quantum CKA protocol, N parties,
named Alice and Bob1,...,BobN−1, labelled A and B1, . . . , BN−1, exploit a quantum
resource in order to extract a common conference key, secure against the attacks
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of an eavsdropper, Eve. A general CKA protocol is described in an almost identical
way as a QKD protocol, as in Section 3.2, the only difference being that N parties
instead of two are involved in the protocol. However, from now on, we will restrict
to a specific class of protocols, described as following:

1. Quantum transmission: each round of the protocol N parties, namely Alice
and Bob1,...,BobN−1, receive, from a source possibly controlled by an eavs-
dropper, Eve, a multipartite entangled state ρAB1...BN−1 . Eve, in the most
adversarial scenario, holds a purification |ψ⟩AB1...BN−1E , where E represents
Eve’s subsystem, of the state ρAB1...BN−1 and can manipulate E freely, e.g., by
performing measurements.

2. Quantum measurements: the N parties perform, each round of the protocol,
one of two measurement on the state they shared: a first set of measure-
ments, called Key Generation (KG) measurements, chosen with probability
p, whose outcomes are used to generate the secret key and a second set
of measurements, called Parameter Estimation (PE) measurements, chosen
with probability 1 − p, used to obtain information about the eavsdropper’s
knowledge of the key. After M rounds of the protocol, where M → ∞, the
parties share a raw key of length L = Mp, obtained with the KG measure-
ment outcomes. We remark that at this point the raw key contains errors and
information leaked to Eve.

3. Classical parameter estimation: the N parties disclose, through an authen-
ticated classical channel, part of the outcomes of the KG rounds to estimate
the error correction information required to obtain matching keys. Then, they
disclose the outcomes of the PE rounds to estimate the information about the
key leaked to Eve.

4. Classical post-processing: the N parties use the same authenticated classical
channel to perform the usual post-processing, i.e., error correction and privacy
amplification. We still consider one-way error correction, where each Bob
corrects his key according to Alice’s one.

We thus restrict the analysis to EB asymptotic protocols, where the parties perform
two different sets of measurements each. We give a schematic representation of
such protocols in Figure 4.1. The EB formulation of the BB84 protocol is the most
simple and studied example, for two parties, of such protocols. We also remark that
we implicitly restricted to collective attacks, by allowing Eve to have a purification
of the individual states shared by the parties. As already discussed, however, in the
asymptotic scenario, security against general attacks can be inferred from security
against collective attacks.
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1. Quantum transmission: each round of the protocol N parties, Alice and
Bob1,...,BobN−1 ideally receive from an untrusted quantum source a GHZ
state1,

|ψ⟩AB1,...,BN−1 = 1√
2

(|0⟩⊗N + |1⟩⊗N . (4.2)

2. Quantum measurements: the N parties perform, each round of the protocol,
one of two measurements, e.g., choosing according to a pre-shared key, on the
state they shared: in KG rounds they measure on the Z-basis and in PE rounds
they measure on the X-basis.

3. Classical parameter estimation: the N parties disclose, through an authenti-
cated classical channel, part of the outcomes of the KG rounds to estimate the
error correction information required to obtain a matching key. They evaluate
the Z-basis pair-wise QBER, that is, the probability that the outcome of the
measurement in the Z-basis of Bob Bi differs from Alice’s one, defined as

QABi = 1 − ⟨ẐA ⊗ ẐBi⟩
2 , (4.3)

where Ẑ is the Pauli Z operator of Eq. (2.39). We note that in the ideal
scenario, where the parties receive the noisless GHZ state and Eve does not
tamper with the state, QABi = 0 ∀i. Then, they disclose the outcomes of the
PE rounds and calculate the X-basis QBER defined as

QX =
1 − ⟨X̂A ⊗ X̂B1 ⊗ . . .⊗ X̂BN−1⟩

2 , (4.4)

where X̂ is the Pauli X operator of Eq. (2.39). Again, in the ideal scenario
QX = 0.

4. Classical post-processing: the N parties use the same authenticated classical
channel to perform the usual post-processing, in the form of error correction
and privacy amplification. We still consider one-way error correction, where
each Bob corrects his key according to Alice’s one.

The protocol exploits the entanglement of the GHZ state, whose outcomes in the Z
basis are clearly perfectly correlated, similarly to the BB84 protocol which, in its EB
formulation, exploits the correlations of the maximally entangled Bell states, as seen
in section 3.2.2

1We note that the parties do not know exactly which state they receive from the source, as it is
untrusted and could be in the hands of Eve. If the source does not behave as expected and sends
different states, they will notice in the parameter estimation phase and abort the protocol.
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Following the same procedure as for the bipartite BB84, shown in section 3.2.2,
we can recast, for the N-BB84 protocol, the key rate of Eq. (4.1) as

r∞ ≥ 1 − h(QX) − max
i
h(QABi), (4.5)

where the QBERs QABi and QX are defined in the "Classical parameter estimation"
step of the protocol. As a final remark, we note that, without noise and Eve’s
intervention, the protocol achieves the optimal key rate r∞ = 1. However, besides
the technical difficulties of generating GHZ states, this protocol is also not suited for
long distance communication, due to the GHZ state lacking noise resistance. One
way to overcome this limitation is, as we will see in detail in chapter 5, to exploit
the correlations of a different GME states, e.g., the W-state.

4.1.2 CKA with the W state
Although the GHZ state appears to be the most natural state to exploit for CKA
due to its perfect correlations in the Z-basis, it is natural to ask whether other
multipartite states are suited for quantum cryptographic tasks. A first, simple answer
was given in [GKB19], where the authors show that another GME state can be used
in a cryptographic protocol, that is the W-state

|W ⟩ = 1√
N

N∑
i=1

|⃗bi⟩, (4.6)

where the vector b⃗i is a binary vector with zeros in all positions except for position
i, where it has a one. In [GKB19], the authors show the possibility to employ this
state in a simple CKA protocol, described as following:

1. Quantum transmission: each round of the protocol N parties, Alice and
Bob1,...,BobN−1 ideally receive, from an untrusted quantum source, a W state,

|W ⟩AB1,...,BN−1 =
N∑

i=1
|⃗bi⟩AB1,...,BN−1 . (4.7)

2. Quantum measurements: the N parties perform, each round of the protocol,
one of two measurements, e.g., choosing according to a pre-shared key, on the
state they shared: in KG rounds they measure on the X-basis and in PE rounds
they measure on the Z-basis.

3. Classical parameter estimation: the N parties disclose, through an authenti-
cated classical channel, part of the outcomes of the KG rounds to estimate the
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error correction information required to obtain a matching key. They evaluate
the X-basis pair-wise QBER, that is, the probability that the outcome of the
measurement in the X-basis of Bob Bi differs from Alice’s one, defined as

QABi = 1 − ⟨X̂A ⊗ X̂Bi⟩
2 , (4.8)

where X̂ is the Pauli X operator of Eq. (2.39). Then, they disclose the outcomes
of the PE rounds and calculate the Z-basis QBER, defined as

QZ =
1 + ⟨ẐA ⊗ ẐB1 ⊗ . . .⊗ ẐBN−1⟩

2 , (4.9)

where Ẑ is the Pauli Z operator of Eq. (2.39). In the ideal scenario, where the
parties receive the noisless W-state and Eve does not tamper with the state,
QZ = 0.

4. Classical post-processing: the N parties use the same authenticated classical
channel to perform the usual post-processing, in the form of error correction
and privacy amplification. We still consider one-way error correction, where
each Bob corrects his key according to Alice’s one.

The protocol is similar to the N-BB84 protocol, where the role of KG and PE
measurements are switched. Therefore, the key rate of Eq. (4.1) can be written,
similarly as for the N-BB84 protocol shown in section 4.1.1, as

r∞ ≥ 1 − h(QZ) − max
i
h(QABi), (4.10)

where QZ and QABi are given in Eq. (4.9) and (4.8), respectively. It is wortk noting
that using the W state for CKA has a major disadvantage with respect to the N-BB84
protocol, in which the parties share a GHZ state: if we consider the perfect scenario,
where the shared state is the noisless W state and Eve does not have any information,
the key rate reduces to

r∞ = 1 − h

(1
2 − 1

N

)
. (4.11)

The second term on the right-hand side of the equation is due to the fact that the
outcomes of the X-basis measurements on the W state are not perfectly correlated,
thus lowering the key rate due to necessary error correction even in the perfect
scenario. Moreover, the key rate drops with the number of parties, making this
scheme sub-optimal with respect to the N-BB84 protocol, which we have shown to
provide perfect key rate in the noisless scenario.

On the other hand, using W state-based CKA has other major advantages, mainly
in terms of practical applications: CKA protocols based on the W state are proven to
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be more noise tolerant and easier to implement in near-term applications [Mur+20].
We will discuss these advantages more in detail in chapter 5, where we will also
provide concrete examples of practical protocols based on W-state correlations.

4.2 Requirements for Conference Key Agreement
In this section, as an attempt to further investigate the entanglement requirements
for CKA protocols, we will finally outline the main results obtained in [Car+21],
regarding the resources required to successfully perform a CKA protocol of the class
given in section 4.1. The full work can be found in appendix B.

The work takes inspiration from [CLL04], where the authors show that, in the
bipartite scenario, entanglement is a necessary resource to successfully perform a
QKD protocol. The examples of CKA protocol provided in sections 4.1.1 and 4.1.2
require the parties to share, each round of the protocol, a GME state, where GME is
defined in Definition 2.3.7. However, GME states are the most strongly entangled
multipartite states and therefore can be challenging to generate. In this scenario,
a natural question rises: is it possible to perform a CKA protocol exploiting less
strongly entangled states, such as biseparable states defined in Definition 2.3.6? The
answer to this question is not trivial, as the structure of multipartite entanglement,
outlined in section 2.3.3, is far richer then bipartite entanglement, where a state is
either separable (and thus useless for quantum information tasks) or entangled and
thus resourceful.

The first result obtained in [Car+21] is a no-go theorem, that tells us that states
that are separable with respect to a fixed partition cannot be used in CKA protocols:

Theorem 3. Given a CKA protocol of the form given in Section 4.1, if the state
ρAB1...,BN−1 shared by the N parties each round of the protocol is separable with
respect to a fixed partition S\S̄, then r∞ = 0, where r∞ is defined in Eq. (4.1).

The proof of the Theorem can be found in [Car+21]. Theorem 3 allows us to
exclude states that are separable with respect to a fixed partition from the possible
candidates of biseparable states exploitable for CKA. With this limitation in mind,
it is possible to design a family of biseparable states that can be employed in CKA
protocols. Finally, we note that Theorem 3 is valid for a larger class of protocols
than the one considered, that is any protocol with key rate in the form of Eq. (4.1).

4.2.1 Conference Key Agreement with biseparable states
Having excluded a particular class of states, we now focus on finding a family of
biseparable states that can be used for CKA. Due to Theorem 3, we know that the
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desired states must be entangled across all partitions of the parties. We therefore
define the following family of mixed N-partite states:

ρ
(N,k)
AB1,...,BN−1

=
∑

Sα∈S(k)

1
N

|GHZ⟩⟨GHZ|Sα

⊗
Bm∈S̄α

|+⟩⟨+|Bm , (4.12)

where where S(k) is the set of subsets of k parties, for 2 ≤ k ≤ N − 1, that contain
Alice and k− 1 Bobs, |GHZ⟩Sα is the GHZ state shared by the k parties of the subset
Sα ∈ S(k), and N is a normalization factor, equal to N =

(N−1
k−1

)
, i.e., the number

of subsets of cardinality k − 1 within the N − 1 Bobs. We can exclude the trivial
cases k = 1 and k = N , since the state would be fully separable and the GHZ state,
respectively. Each term of the mixture is composed by the projector on the GHZ
state for a subset of k parties and a fully separable state for all the others, summing
over all possible subsets of parties.

To better illustrate the shape of the family of states, let us write explicitly the state
for N = 3 and k = 2:

ρ
(3,2)
AB1B2

= 1
2 (|ψ+⟩⟨ψ+|AB1⊗|+⟩⟨+|B2+|ψ+⟩⟨ψ+|AB2⊗|+⟩⟨+|B1) , (4.13)

where k = 2 is the only non-trivial value of k for N = 3 and where we note that
the GHZ state for two parties is simply the Bell state |ψ+⟩ of Eq. (2.50). As a final
remark, we note that all states ρ(N,k)

AB1,...,BN−1
, with N ≥ 3 and 2 ≤ k ≤ N − 1 are

biseparable by construction.
Let us now employ this family of states in the N-BB84 protocol, presented in

section 4.1.1, to verify whether any of these (biseparable) states lead to a positive
key rate, implying the possibility of using them for CKA. Let us then consider the
N-BB84 protocol of section 4.1.1, with the "Quantum transmission" step replaced by

1a Quantum transmission: each round of the protocol N parties, Alice and
Bob1,...,BobN−1 receive, from an untrusted quantum source the state of Eq.
(4.12) for some fixed k.

The rest of the protocol remains unchanged.
It is possible to analytically evaluate the key rate of the protocol, by evaluating

the QBERs of Eq. (4.3) and Eq. (4.4) and plugging them in Eq. (4.5). The resulting
obtainable key rate is, as a function of N and k, in the following form

r∞(N, k) = 1
2
N − k

N − 1 log2

(
N − k

N − 1

)
+ 1

2
N + k − 2
N − 1 log2

(
N + k − 2
N − 1

)
. (4.14)

For completeness we show, in Figure 4.2 (adapted from [Car+21]), a plot of the
key rate of the protocol as a function of the number of parties N for different k.
Surprisingly, the obtained key rate is positive for all values of N and k, showing that,
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and complicated, the question is not trivial and has been investigated in [Yam+22;
PV22].

It is straightforward to show that the set of states that are separable with respect
to a fixed partition (and thus also fully separable states) is tensor stable. Moreover,
also the set of GME states is tensor stable. However, the interesting part regards
the set of biseparable states that are not separable with respect to a fixed partition,
which is precisely the set of states investigated in [Car+21]: it turns out that these
states are not tensor stable. Furthermore, it is shown that any such state becomes
GME, if we consider the tensor product of enough copies of it [PV22]. This result
is useful to clarify an apparent contradiction of the results of this section with the
results in [Das+21], where the authors show that GME is necessary for CKA. In fact,
in [Car+21] we consider the entanglement properties of the single copy of the state
shared each round, whereas in [Das+21] the authors consider the properties of the
global state, resulting from the tensor product of the copies of the state shared each
round, which is necessarily GME due to the results in [PV22].

In the same context, a question remains open, that is what are the sufficient
conditions on the entanglement properties of the state shared by the parties in
order to successfully perform a CKA protocol. Answering this question could lead to
bounds on the key rate as a function of the entanglement class the state belongs to,
e.g., as a function of the number of entangled parties in each term of the mixture,
posing fundamental limitations on the achievable key rate in practical scenarios.
Moreover, all results presented concern the asymptotic scenario, which is, as we
already discussed, unrealistic for practical applications. An interesting question is
thus how these resource play a role in a finite-key analysis, taking into account the
effects stemming from dropping the asymptotic key assumption.

4.2.2 Conference key rate as an entanglement witness

The presented results also allow us to gain insight about the detection of multipartite
entanglement. As already shown in section 2.3.3, some entangled multipartite states
can be detected with entanglement witnesses, i.e., hyperplanes separating convex
sets from their complements. However, the states we are interested in, i.e., states
that are not separable with respect to any partition, do not form a convex set and
thus are not detectable in this way.

Nevertheless, following [CLL04], we can construct, using the measurement of
the parties in a CKA protocol, a collection of entanglement witnesses detecting
entanglement across a specific partition. Moreover, we can consider the key rate of
a CKA protocol itself as an entanglement witness, as the quantum state employed in
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the CKA protocol must be entangled across all partition for the protocol to succeed.
The following Theorem, adapted from [Car+21], better illustrates the claim.

Theorem 4. Given a CKA protocol in which the parties perform local measurements, for
the PE and KG rounds, which are represented by the POVMs {Ga

x}, {Gb1
y1}, . . . , {GbN−1

yN−1},
where a, b1, . . . bN−1 indicate the outputs of the measurements labeled by x, y1, . . . , yN−1,
then one can obtain a non-zero asymptotic conference key rate r∞ > 0 only if the
presence of entanglement can be proved across any partition of the parties into two
subsets.

Moreover, the presence of entanglement across each bi-partition can be verified
through a set of entanglement witnesses of the form

Wα =
∑

x,y1,...,yN−1
a,b1,...,bN−1

c(α)
x,y1,...,yN−1
a,b1,...,bN−1

Ga
x ⊗Gb1

y1 ⊗ . . .⊗GbN−1
yN−1 (4.15)

where α labels the partition Sα|S̄α, with Sα being a proper subset of the parties and S̄α

is its complement, and where c(α)
x,y1,...,yN−1
a,b1,...,bN−1

are real coefficients.

We will omit the proof, which can be found in [Car+21]. This Theorem, combined
with the insight of section 4.2.1, allows us to formulate the following Corollary.

Corollary 4.2.1. The figure of merit r∞ > 0 is a non-linear entanglement witness,
detecting the presence of entanglement across any bi-partition of the parties.

This Corollary is due to the following observations: due to Theorem 4, if CKA
protocol is performed and a non-zero key rate is obtained, the state shared by the
parties each round of the protocol must be entangled across all partitions of the
parties. Moreover, since the set of biseparable states entangled across all partitions,
i.e., the red set in Figure 2.1, is not convex, a linear witness cannot detect such
states. Thus a non-zero key rate is a non-linear witness, capable of detecting states
that are biseparable but not separable with respect to any fixed partition.

4.2.3 Biseparable states in the triangle network
Going beyond the work of [Car+21] we now focus on the question of state gener-
ation in practical scenarios. Recently a lot of effort [Nav+20; Han+22; WXG22]
has been put in investigating a particular class of quantum states, that is states
that can be produced in realistic networks where only bipartite sources and shared
randomness are available to the parties. Although already many interesting insights
were proposed, one further line of research is to analyze the capabilities of such
states in quantum cryptographic protocols. In this final section we will briefly outline
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Recent works have focused specifically on identifying which quantum states cannot
be prepared in the triangle network, resulting in no-go theorems ruling out, e.g., the
GHZ state, the W state and even a large class of graph states [Han+22; WXG22].
However, it proved to be more challenging to characterize the set of states that
can be prepared in the triangle network [Nav+20]. In this section we present a
preliminary result that could pave the way to characterize the capabilities of triangle
network states in particular quantum information tasks. The result is given in the
following Theorem.

Theorem 5. Let us consider a source state ρsource = ρAB ⊗ σA′C ⊗ τB′C′ . Then, there
exists a biseparable state ρbs such that

ρsource = lim
n→∞

MA ⊗ MB ⊗ MC
[
ρ⊗n

bs

]
, (4.17)

where MA, MB and MC are local quantum operations on Alice’s, Bob’s and Charlie’s
subsystems, respectively.

The proof of the Theorem can be found in appendix A. The proof also provides
an alternative formulation for Theorem 5: the source state can be generated from
n copies of ρbs with a local procedure that fails with a certain probability, with the
failure probability exponentially decaying with the number of copies n. Finally, since
the states that can be prepared in the triangle network are generated from bipartite
source states with local operations coordinated by shared randomness, we have the
following Corollary.

Corollary 4.2.2. The states that can be generated in the triangle network are equivalent
to states that can be generated with local operations and shared randomness starting
from multiple copies of biseparable states.

These results could provide some interesting insights on the capabilities of network
states in quantum information processes where multiple copies of the same state are
required. One example is clearly CKA: as already pointed out, in a CKA protocol, one
can consider the global state shared by the parties, described as a tensor product of
all the states shared each round of the protocol, which we recall is required to be
GME [Das+21]. In considering the global state, Theorem 5 could prove to be an
useful tool to compare the capabilities of triangle network states and biseparable
states in CKA protocols. Our result thus pave the way for further investigation on
the capabilities of network states in quantum cryptographic protocols.
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Measurement-Device-
Independent protocols

5
In section 3.2.1 we outlined four fundamental assumptions necessary for QKD and
CKA protocols to be secure. The third assumption, namely that the measurement
devices are trusted and work precisely as intended, turns out to be the most prob-
lematic to meet from a practical point of view. In a realistic implementation, in fact,
imperfections in the measurement devices are common, hard to prevent, and have
been shown to open the way for powerful eavsdropping attacks [Zha+08; Lyd+10;
Ger+11], called detector side channels. This chapter is dedicated to presenting a new
QKD scheme, namely Measurement-Device-Independent (MDI) QKD, which removes
the need for this assumption, thus preventing such attacks. We also show how MDI-
QKD schemes can be generalized to N-party MDI-CKA schemes and show how such
multipartite protocols provide practical solutions for near-term implementations of
quantum cryptography.

The chapter is structured as following: section 5.1 is dedicated to introducing
MDI protocols. Ater a brief introduction about quantum optics in section 5.1.1, we
show, in section 5.1.2 a basic MDI-QKD protocol and present, in section 5.1.3 one
of the main advantages of such scheme, i.e., the capability of beating fundamental
bounds on the communication rate. Furthermore, in section 5.1.4 we introduce a
multipartite generalization of the protocol of section 5.1.2. Then, in section 5.2,
we present some practical MDI-QKD protocols: in section 5.2.1 we introduce a
first, simple, MDI bipartite scheme, called Twin-Field QKD (TF-QKD), which is easily
implementable with state-of-the art technology and show its security in section
5.2.2, using the decoy-state method. Finally, in section 5.2.3, we analyze dive
into our original work, consisting in the design of a multipartite, practical, MDI
protocol and show, in section 5.2.4 its capabilities of beating fundamental bounds
on communication rates in networks.

5.1 Introduction to MDI protocols
In this section we introduce a new scheme for QKD, and afterwards CKA, protocols,
which allows us to drop the assumption of trusted measurement devices, while
keeping the need for trusted sources. These protocols are called Measurement-
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Device-Independent (MDI). MDI schemes require the parties to prepare and send
specific states, usually quantum optical states generated with attenuated lasers, to a
measurement relay, which, in principle, can be fully controlled by the eavsdropper.
The relay announces the outcome of the measurements and the parties are able to
extract a shared secret key based on the announcement of the relay, detecting any
possible tampering during the classical post-processing phase, as in regular QKD
schemes. Since most MDI-QKD protocols are based on quantum optical systems, let
us first introduce the rudiments of quantum optics.

5.1.1 Introduction to quantum optics

Quantum optical systems are widely used in quantum information applications,
as the technological platforms to generate and control quantum optical states are
among the most advanced. In this section we will outline the fundamentals of
quantum optics and introduce the states needed for the most common MDI-QKD
and -CKA protocols. For a more detailed analysis of quantum optical systems, we
refer the reader to [BR97; Leo10].

Quantum optical systems are described, due to the quantization of the electromag-
netic field, by an infinite-dimensional Hilbert space HF for each quantum optical
mode of the system. Each Hilbert space is equipped with a discrete orthonormal
basis, called the Fock basis, whose states, {|n⟩}+∞

n=0, are called Fock states. In practice,
the Fock state |n⟩ represents a state of n indistinguishable photons in the mode.
In particular, The Fock state |0⟩ is called vacuum state, as it represents an optical
system with no photons. On this Hilbert space, we define a crucial operator called
annihilation operator â, which acts on the Fock states as follows

â|n⟩ =
√
n|n− 1⟩. (5.1)

It is thus clear the meaning of the terminology "annihilation operator": acting on
an n-photon Fock state, it removes one photon from the state, resulting in the state
|n − 1⟩. Similarly the Hermitian conjugate of the annihilation operator is called
creation operator as it adds one photon to any mode, that is

â†|n⟩ =
√
n+ 1|n+ 1⟩. (5.2)

The operator â admits a continuous set of eigenstates, indicated by |α⟩ and called
coherent states. Coherent states can be written in the Fock basis as

|α⟩ = e− |α|2
2

+∞∑
n=0

αn

√
n!

|n⟩, (5.3)
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being an infinite superposition of Fock states. Coherent states are especially relevant
from a practical point of view, as they closely approximate the output state of a laser
system. Therefore, they are better suited for near-term applications than, e.g., Fock
states, which need more complicated devices to be generated.

Quantum optical states can be manipulated with linear optical devices. One
important example is a simple passive optical device called Beam-Splitter (BS), that
admits two input systems, described by the optical modes â and b̂ and two output
systems, described by optical modes d̂ and ĉ. The action of a BS is described by the
unitary operator

ÛBS(ξ) = eξâ†b̂−ξ∗b̂†â, (5.4)

where ξ = reiϕ, which transforms the input modes into the output modes according
to

ĉ = Û †
BS(ξ)âÛBS(ξ) = â cos(r) + b̂ sin(r)eiϕ

d̂ = Û †
BS(ξ)b̂ÛBS(ξ) = b̂ cos(r) − â sin(r)e−iϕ. (5.5)

A specific instance of a BS is the so-called Balanced Beam-Splitter (BBS), with ϕ = 0
and r = π

4 , such that the transformation of the modes, determined in this case by
the unitary evolution ÛBBS reads

ĉ = Û †
BBS âÛBBS = â+ b̂√

2

d̂ = Û †
BBS b̂ÛBBS = b̂− â√

2
. (5.6)

To close this section, we present one example of how a BBS acts on a quantum
optical system. Let us consider, as input states of a BBS, one coherent state |α⟩â1 ,
representing the state of a laser beam of intensity |α|2, and the vacuum state
|0⟩â2 , representing the fact that the second input port is left untouched. It is
possible to show that the output state is

∣∣∣ α√
2

〉
b̂1

∣∣∣ α√
2

〉
b̂2

which has a clear operational

interpretation: the laser beam is split into two laser beams of intensity |α|2
2 each.

Moreover, one can easily calculate the output state of the BBS when two coherent
states |α⟩â1 and |β⟩â2 are sent into the input ports of a BBS, which reads

|ψout⟩ =
∣∣∣∣α+ β√

2

〉
b̂1

∣∣∣∣β − α√
2

〉
b̂2

, (5.7)

meaning that the amplitudes of the coherent states are mixed in the same way as
the modes.
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5.1.2 Ideal MDI-QKD protocol
We now have all the tools to present one of the most commonly employed MDI-QKD
protocols, which is particularly relevant due to the scaling properties of its key rate
with the communication distance, as we will see in section 5.1.3. We mainly follow
the work of [CAL19], where this protocol serves as an idealized base to build a more
practical and easily implementable scheme, which we will present in section 5.2.1.
The MDI-QKD protocol is described as following:

1. Quantum transmission: both Alice and Bob prepare, each round of the
protocol, an entangled state between an optical mode and a qubit system of
the form

|ψ⟩âiQi = √
q|0⟩âi |0⟩Qi +

√
1 − q|1⟩âi |1⟩Qi , (5.8)

where âi labels the optical mode, with the states |n⟩âi being Fock states of that
mode, and Qi labels the qubit system for each party, with i ∈ {A,B}. Both
parties then send the optical mode through a lossy quantum channel, with
transmittance

√
η, to a central, untrusted relay. The lossy channel is modelled

as mixing the signal in a BS, described in section 5.1.1, with
√
η = cos(r)

in Eq. (5.5), with a second input mode in the vacuum state. Moreover, the
second output mode of the BS is not measured, representing the part of the
signal that is lost. The qubit system is stored by the parties by means of a
quantum memory.

2. Relay operations: in the relay the two input modes, namely âA and âB,
coming from Alice and Bob, respectively, are mixed in a BBS, described in
section 5.1.1. The two output modes, namely ĉ and d̂ are then measured
with threshold detectors Dc and Dd, which detect the presence of one or more
photons in the mode, but are not able to resolve the photon number. The relay
finally announces the outcomes of the measurements, by publicly disclosing
the values kc = 1 or kd = 1 if the respective detector clicked or kc = 0 or
kd = 0 if the respective detector did not click.

3. Quantum measurement: Alice and Bob perform, each round of the protocol,
one of two measurement on the stored qubit system. In KG rounds they
measure on the X-basis and in PE rounds they measure on the Z-basis.

4. Classical post-selection and parameter estimation: Alice and Bob only keep
the rounds where they measured in the same basis and only keep rounds where
kc ⊕ kd = 1, i.e., where only one detector clicked and discard the rest. We call
this phase of the protocol post-selection phase. They then disclose, through an
authenticated classical channel, part of the measurements outcomes in both
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bases. They use the disclosed data in the Z-basis to evaluate the phase-error
rate QZ defined as

QZ = pZ(ZA = ZB | kc ⊕ kd = 1), (5.9)

that is, the probability that the outcomes in the Z-basis are the same, con-
ditioned on the event that only one detector clicked. Similarly, they use the
disclosed data in the X-basis to evaluate the quantum bit error rate (QBER)
QAB defined as

QAB = pX(XA ̸= XB ⊕ kd | kc ⊕ kd = 1), (5.10)

that is, the probability that the simulated outcomes of the X-basis measure-
ment are different (taking into account a correction due to the BS evolution)
conditioned on the event that only one detector clicked.

5. Classical post-processing: Alice and Bob use the same authenticated classical
channel to perform the usual post-processing, in the form of error correction
and privacy amplification.

Let us now explain the basic idea behind the protocol. Let us imagine that the
parties prepare their states with 1 − q ≈ 0, i.e., a state preparation heavily biased
towards the vacuum. In this case, the one-click events happen, with high probability,
due to single-photon transmission, meaning that only one photon was sent, either by
Alice or by Bob. However, due to the BBS in the relay, the parties lose the information
about which party effectively sent the photon. Therefore, since the photons are
entangled with the qubit system, the resulting state of the qubit conditioned on the
one-click event is

|ϕkd
⟩ = 1√

2
(|01⟩ + (−1)kd |10⟩), (5.11)

which coincides with one of two Bell states in Eq. (2.50), depending on kd. There-
fore, the protocol, after the post-selection, reduces to a simple EB -BB84 protocol,
shown in section 3.2.2, whose key rate can be written as

r∞ ≥ 2pclick [1 − h(QAB) − h(QZ)] , (5.12)

where pclick is the probability that Alice and Bob chose the same basis and only one
detector clicks and accounts for the discarded rounds in the post-selection phase. We
note that, in a general protocol, we should consider two different key rates r(kc=1)

∞

and r(kd=1)
∞ depending on which detector clicks and the total key rate would be the

sum of the two, that is r∞ = r
(kc=1)
∞ + r

(kd=1)
∞ . However in the proposed protocol,
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due to its symmetries, the key rate does not depend on which detector clicks, thus
the form of the key rate of Eq. (5.12).

The protocol is EB, as Alice and Bob are required to generate entangled states
between an optical mode and a qubit system. This requirement can be a substantial
challenge from a practical point of view and thus an equivalent PM formulation
would be desirable. Indeed, we can note that the measurement on the qubit system
commutes with all the operations of the relay: the parties could therefore mea-
sure the qubit system independently from the announcement of the measurement
outcome from the relay, and use the information disclosed by the relay only in the
(classical) post-selection phase. The parties can therefore simulate the quantum
measurement on the qubit system with an appropriate random variable and send an
appropriate state of the optical mode, making the protocol PM. The equivalent PM
protocol is identical to the one presented above, where the "Quantum transmission"
and "Quantum measurement" phases are replaced by the following:

1a. Quantum transmission: Alice and Bob label each round, e.g. according to a
pre-shared key, as a KG or PE round. In PE rounds Alice and Bob prepare an
optical mode in the state |0⟩âi with probability q, corresponding to the Z-basis
measurement outcome Zi = +1 and |1⟩âi with probability 1−q, corresponding
to the Z-basis measurement outcome Zi = −1. The states |n⟩âi are Fock
states of the corresponding mode and i = {A,B}. In KG rounds Alice and
Bob prepare an optical mode in the state |+q⟩âi = √

q|0⟩âi +
√

1 − q|1⟩âi with
probability 1

2 , corresponding to the X-basis measurement outcome Xi = +1
and |−q⟩âi = √

q|0⟩âi −
√

1 − q|1⟩âi with probability 1
2 , corresponding to the

X-basis measurement outcome Xi = −1. Both parties then send the optical
mode through a lossy quantum channel, with transmittance

√
η, to a central,

untrusted, relay.

The rest of the protocol is left unchanged. This equivalent PM formulation of the
protocol has the same performance of the original protocol but with much more
limited practical requirements. However, the parties are still required to generate
single-photon optical states, which can be a challenging practical requirement. We
will see, in section 5.2.1, how to lift this requirement, by looking at a similar protocol
which requires only laser pulses.

5.1.3 Overcoming fundamental limitation on the communication rate
The protocol introduced in the previous section takes into account the most relevant
source of noise in practical application, i.e., transmission loss. In fact, in realistic
implementations that rely on optical sources, photon loss is the main obstacle
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for long-distance communication. As already pointed out, photon loss can be
modelled as a channel with transmittance η, where η is the probability that a photon
is successfully transmitted. One example is given by telecom fibers, where the

transmittance is given by η = 10−
αf L

10 , where L represents the length of the fiber
and αf is an optical attenuation parameter, which is equal to αf = 0.2 dB km−1 for
modern fibers. We remark that this behavior can severely limit the communication
distance, as the transmittance decays exponentially with the distance. For long
distance communication it is thus crucial to analyze how the protocol, and therefore
the key rate, behave as a function of the losses.

Interestingly, there exists some limitations on the achievable key rate of any
protocol performed by Alice and Bob, if they are connected by a lossy channel with
transmittance η [Pir+17; TGW14]. Particularly interesting is the result of [Pir+17],
where the authors show an upper bound on the achievable key rate of any QKD
protocol, which reads

r∞ ≤ − log2(1 − η) := rP LOB, (5.13)

usually referred to as Pirandola-Ottaviani-Bianchi-Laurenza (PLOB) bound. For
η ≪ 1, the PLOB bound scales linearly with η and thus exponentially with the
distance, severely limiting the communication capabilities of any protocol. This
bound however, can be overcome by employing intermediate stations in the quantum
channel, leading to a possibly better scaling of the key rate with the distance.

In particular, in the MDI-QKD protocol presented in section 5.1.2, each party is
connected to the untrusted relay with a channel of transmittance

√
η making the

total channel connecting Alice and Bob having transmittance η. In other words,
the intermediate measuring station "breaks" the total channel of transmittance η
into two channels of transmittance

√
η. Thus, the aforementioned protocol has the

striking feature of being able to overcome the PLOB bound in the high loss regime,
making it extremely appealing for long-distance communication.

More in detail, the key rate of Eq. (5.12), in the limit of highly biased preparation
1 − q ≈ 0, reduces to r∞ ≈ 2(1 − q)q√η, thus showing an improved scaling on
√
η with respect to the linear scaling of the PLOB bound. The protocol is thus

able to overcome the PLOB bound in high loss regimes, as shown, e.g., in Figure
1 of [CAL19]. The intuitive reason for this behavior is the following: since the
protocol is based on single-photon transmission, it is sufficient that only one photon,
either from Alice or from Bob is successfully transmitted each round of the protocol.
This happens with probability

√
η, as the channel connecting each party with the

relay has transmittance
√
η, with the total channel connecting Alice and Bob having

transmittance η. Therefore, the key rate scales only with
√
η, allowing for high-

distance communication even beyond the PLOB bound.
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5.1.4 Ideal MDI-CKA protocol
Due to the advantages provided by the scheme presented in section 5.1.2 over usual
QKD schemes in terms of scaling of the key rate with channel losses, it is natural to
ask whether it is possible to generalize such scheme to many parties. This section is
thus devoted to presenting a MDI-CKA scheme based on single photon interference,
which retains the main advantage of the protocol of section 5.1.2, i.e., the scaling of
the key rate with

√
η. One of the most relevant attempts was given in [GKB19]. The

first part of our work of [CMG23] was to reformulate the protocol of [GKB19] to
allow for a practical implementation, which we will show in section 5.2.3. In the
following we will present directly our formulation of the protocol, that is the ideal
protocol of [CMG23].

The protocol, performed by N parties labelled as A0, . . . , AN−1, is described as
following:

1. Quantum transmission: each party Ai prepares, each round of the protocol,
an entangled state between an optical mode and a qubit system of the form

|ψ⟩âiQi = √
q|0⟩âi |0⟩Qi +

√
1 − q|1⟩âi |1⟩Qi , (5.14)

where âi labels the optical mode, with the states |n⟩âi being Fock states of that
mode, and Qi labels the qubit system for each party. All parties then send the
optical mode through a lossy quantum channel, with transmittance

√
η, to a

central, untrusted relay.

2. Relay operations: in the relay, the incoming optical modes go through a BBS
network of M = 2s inputs and outputs, with M ≥ N . The BBS network is
sketched in Figure 5.2 for N = 4 and described in detail in Appendix A of
[CMG23]. The BBS network transforms the input modes, described by the
respective creation operators â†

0, . . . , â
†
M−1 into the output modes d̂†

0, . . . , d̂
†
M−1,

according to

â†
i → 1√

M

M−1∑
k=0

(−1)k⃗·⃗i d̂†
k, (5.15)

where i⃗ and k⃗ are the binary representation of the integers i and k, respectively.
We note that, since in principle N ≤ M , the M modes â†

0, . . . , â
†
M−1 represent

the N signals coming from the parties paired with additional M −N modes
in the vacuum state. The output modes are then measured with threshold
detectors D0, . . . , DM−1, to certify the arrival of one (or more) photon at the
detector. The relay finally announces the outcomes of the measurements of
each detector Dj ∀ 0 ≤ j ≤ M − 1, by publicly disclosing the values kj = 1 if
the respective detector clicked or kj = 0 if the detector did not click.
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3. Quantum measurement: the parties perform, each round of the protocol, one
of two measurement on the stored qubit system. In KG rounds they measure
on the X-basis and in PE rounds they measure on the Z-basis.

4. Classical post-selection and parameter estimation: the parties only keep
rounds where they all measured in the same basis. Moreover, they keep only
rounds where one detector, e.g. Dj , clicked and discard the rest. We call this
phase of the protocol post-selection phase. Each party Ai also flips the outcome
of their X-basis measurements if (−1)i⃗·⃗j = −1. They then disclose, through an
authenticated classical channel, part of the measurements outcomes in both
bases. They use the disclosed data in the Z-basis to evaluate the phase-error
rate defined as

Qj
Z = Pr

(∏N−1
i=0 Zi = 1 | kj = 1

)
, (5.16)

that is, the probability that the outcomes in the Z-basis are all the same,
conditioned on the event that only detector Dj clicked. Similarly, they use the
disclosed data in the X-basis to evaluate the pair-wise quantum bit error rate
(QBER) Qj

X0,Xi
defined as

Qj
X0,Xi

= Pr
(
X0 ̸= (−1)i⃗·⃗jXi | kj = 1

)
, (5.17)

that is, the probability that the outcomes of the X-basis of parties A0 and Ai

are different, conditioned on the event that only detector Dj clicked. These
error rates are estimated for each detector Dj .

5. Classical post-processing: the parties use the same authenticated classical
channel to perform the usual post-processing, in the form of pair-wise error
correction, where all the parties correct their keys according to party A0’s one
(hence the definition of the QBER in Eq. (5.17)) and privacy amplification.

This protocol, being analogous to the one shown in section 5.2.1, is still based on
single-photon interference. In fact, if the state preparation is heavily biased, i.e.,
1 − q ≈ 0, the events where only one detector clicks happen in rounds where only
one party sends a photon and all the others send the vacuum. However the BBS
network, mixing all modes in a balanced way, erases the information about which
party sent the photon and therefore which party’s qubit state is |1⟩. Therefore, the
post-selected state of the qubits when detector Dj clicks can be described as

|Wj⟩Q0,...QN−1 := 1√
N

N−1∑
i=0

(−1)i⃗·⃗j |⃗bi⟩Q0,...QN−1 , (5.18)
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where b⃗i is a binary vector with zeros in all positions except for position i, where
it has a one. The state is analogous to a W state, defined in Eq. (4.6), where some
terms have a −1 sign. However, the protocol is designed to correct for this sign,
such that in the end the parties hold a proper W state. In fact, the parties flip their
outcome in the X-basis if (−1)i⃗·⃗j = −1, which is equivalent to applying, before the
measurement, for each qubit system Qi, the operator Ẑ i⃗·⃗j , where Ẑ is the Pauli Z
operator of Eq. (2.39). The resulting state is therefore

|Wj⟩Q0,...QN−1 = 1√
N

N−1∑
i=0

(−1)i⃗·⃗j
N−1⊗
k=0

Z k⃗·⃗j |⃗bi⟩Q0,...QN−1

= 1√
N

N−1∑
i=0

(−1)i⃗·⃗j(−1)i⃗·⃗j |⃗bi⟩Q0,...QN−1

= 1√
N

N−1∑
i=0

|⃗bi⟩Q0,...QN−1 , (5.19)

which corresponds to the W state of Eq. (4.6).
The rest of the protocol thus is analogous to the one in section 4.1.2. It is worth

noting that the protocol is designed to also keep the same scaling properties of the
protocol of section 5.1.2, i.e., the scaling of the key rate with

√
η, since it is similarly

based on single-photon events and thus the key rate scales with the probability that
only one photon is transmitted. As we will see in section 5.2.3 for the practical
version of this protocol, this feature allows this scheme to overcome fundamental
bounds on communication rates in networks, similar to the PLOB bound. The key
rate of the protocol can be calculated as

r∞ ≥
M∑

j=1
pj(1 − h(Qj

Z) − max
i
h(Qj

X0,Xi
)), (5.20)

where pj is the probability that detector Dj clicks and Qj
Z and Qj

X0,Xi
are the error

rates defined in Eqs. (5.16) and (5.17). In this expression we take into account the
post-selection by including the probability that each detector clicks and generalize
the key rate to include multipartite post-processing, where all parties perform error
correction to match the first party’s key.

Finally, following the same arguments of section 5.1.2, we can give a PM formu-
lation of this protocol. We can replace the "Quantum transmission" and "Quantum
measurement" phases with the following

1a. Quantum transmission: each party Ai labels each round, e.g. according to
a pre-shared key, as a KG or PM round. In PE rounds each party Ai prepares
an optical mode in the state |0⟩âi with probability q, corresponding to the
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Z-basis measurement outcome Zi = +1 and |1⟩âi with probability 1 − q,
corresponding to the Z-basis measurement outcome Zi = −1. The states
|n⟩âi are Fock states of the corresponding mode. In KG rounds each party
Ai prepares an optical mode in the state |+q⟩âi = √

q|0⟩âi +
√

1 − q|1⟩âi with
probability 1

2 , corresponding to the X-basis measurement outcome Xi = +1
and |−q⟩âi = √

q|0⟩âi −
√

1 − q|1⟩âi with probability 1
2 , corresponding to the

X-basis measurement outcome Xi = −1. All parties then send their respective
optical mode through the same lossy quantum channel, with transmittance
√
η, to a central, untrusted, relay.

The rest of the protocol remains unchanged. This PM formulation is equivalent
to the EB one, achieving the same performances and key rate. Once again, this
formulation also allows for further practical simplifications of the protocol, as we
will see in section 5.2.3.

5.2 Practical protocols
The protocols presented in section 5.1 have several desirable features, the most
important of which being the ability to achieve long-distance communication, but
also drawbacks that limit their applicability in practice. In fact, the protocols, in
their PM formulation, require the parties to generate single-photon states, which
could represent a substantial challenge with the currently available technology. In
this section we will show how to overcome this practical challenge, by modifying
the protocol of section 5.1.2 to be implemented with more accessible states than
single-photon states, i.e., coherent states.

Many bipartite protocols of such nature, usually referred to as Twin-Field QKD (TF-
QKD) protocols, have already been proposed [Luc+18; CAL19; WYH18; Cui+19]
and experimentally implemented [Min+19; Liu+19; Wan+19; Fan+20; Che+20;
Pit+21; Liu+21a; Che+21; Cli+22; Wan+22; Che+22], but only few multipartite
generalizations have been proposed [Cao+21b; Cao+21a; Bai+22], and they are
limited in the number of parties as well as not being MDI. In this section, after
analyzing one of the most relevant TF-QKD protocol, i.e., the practical version of
the protocol shown in section 5.1.2, we illustrate the practical version of the CKA
protocol in section 5.1.4 that we introduced in [CMG23].

5.2.1 Twin-Field QKD
In this section we will present the TF-QKD protocol of [CAL19], which is a practical
version of the PM formulation of the protocol of section 5.1.2. We focus on this
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particular TF-QKD protocol, which is not the first one to be proposed (the first one
being the one in [Luc+18]), because of its elegant security proof and remarkable
performance at high losses. The protocol, given in its PM formulation, is described
as following:

1. Quantum transmission: Alice and Bob label each round, e.g. according to
a pre-shared key, as a KG or PM round. In KG rounds Alice and Bob each
prepare an optical mode in the state |α⟩âi with probability 1

2 , corresponding to
the X-basis measurement outcome Xi = +1, or |−α⟩âi , corresponding to the
X-basis measurement outcome Xi = −1. The states |α⟩ are coherent states,
described in section 5.1.1, and i = {A,B}. In PE rounds Alice and Bob each
prepare an optical mode in the state

ρβi
= 1

2π

∫ 2π

0
dϕ|eiϕβi⟩⟨eiϕβi|, (5.21)

where the amplitude βi is chosen at random from a finite set S. The state
is called phase-randomized coherent state (PRCS), as it represents a coherent
state with a random, unknown phase. Both parties then send the optical
mode through a lossy quantum channel, with transmittance

√
η, to a central,

untrusted, relay.

2. Relay operations: in the relay, the two input modes, namely âA and âB,
coming from Alice and Bob, respectively, are mixed in a BBS, described in
Section 5.1.1. The two output modes, namely ĉ and d̂ are then measured
with threshold detectors Dc and Dd, which detect the presence of one or more
photons in the mode, but are not able to resolve the photon number. The relay
finally announces the outcomes of the measurements, by publicly disclosing
the values kc = 1 or kd = 1 if the respective detector clicked or kc = 0 or
kd = 0 if the respective detector did not click.

3. Classical post-selection and parameter estimation: Alice and Bob only keep
rounds where they chose the same basis and where kc ⊕kd = 1, i.e., where only
one detector clicked, and discard the rest. We call this phase of the protocol
post-selection phase. They then disclose, through an authenticated classical
channel, part of the simulated X-basis measurement outcomes. They use the
disclosed data in the X-basis to evaluate the quantum bit error rate (QBER)
QAB, defined as

QAB = Pr (XA ̸= XB ⊕ kd | kc ⊕ kd = 1) , (5.22)
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|±α⟩, the latter being much simpler to generate. As for PE rounds, the states sent by
Alice and Bob are the Fock states |0⟩ or |1⟩. In the ideal protocol the phase-error rate
QZ is thus related to the probability of the parties sending no photons or more than
one photon and still obtaining a click in the detector. We will see in the next section
how the PRCS used in the practical protocol can be used to estimate the phase-error
rate efficiently.

5.2.2 Security proof and decoy-state method

In this section we will outline the security proof of the practical TF-QKD protocol
presented in the previous section and show how the key rate of the protocol is
estimated. The key rate obtained in the practical protocol is identical to the one
given in Eq. (5.12). The main difference from the ideal MDI-QKD protocol of
section 5.1.2 is how the parties estimate the error rates. As briefly outlined in the
previous section, the parties are able to estimate the QBER simply from the results
of their simulated measurement in the X-basis. In fact, the QBER is defined as in
Eq. (5.10) and the parties, in the protocol, are able to estimate the probability
of a certain detection pattern given their simulated outcomes in the X basis, i.e.,
Pr(kc, kd|XA, XB). Using Bayes’ rule, one can straightforwardly estimate QAB of
Eq. (5.10) using the aforementioned probabilities. The estimation of the phase-error
rate of Eq. (5.12), however, is more involved and requires the introduction of a
well-known technique used in such scenarios, called decoy-state method.

To estimate the phase-error rate, let us consider the equivalent EB version of the
TF-QKD protocol of section 5.2.1. In KG rounds, the parties can equivalently prepare
the following entangled state:

|ψ⟩âi, Qi = 1√
2

(|+⟩Qi |α⟩âi + |−⟩Qi |−α⟩âi), (5.25)

where Qi is a qubit system, âi an optical mode and i = {A, B}. Furthermore, they
equivalently measure the qubit system in the X-basis, while sending the optical mode
to the relay, as in the EB formulation of the ideal protocol of section 5.1.2. Therefore,
the state after the operations and announcements of the outcomes of the relay is
described as

|χkc,kd
⟩QAQBE = K̂kc,kd

(|ψ⟩âA, QA
⊗ |ψ⟩âB , QB

)√
p(kc, kd)

, (5.26)

where the operator K̂kc,kd
represents the operations and measurements of the relay

which could be, we recall, controlled by Eve (hence Eve’s system on the left-hand
side of the equation) and p(kc, kd) is the probability that the detection pattern
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(kc, kd) occurs. In this formulation, we can write the phase-error rate, affecting
Z-basis measurements on this state, as

QZ =
1∑

i=0
∥⟨ii|χkc,kd

⟩QAQBE∥2 . (5.27)

The main point of the security proof performed in [CAL19] is thus to find an
upper bound on this quantity which can be estimated in the protocol. The derived
expression for the upper bound reads

Q̄Z = 1
p(kc, kd)


 ∞∑

n,m=0
c2nc2m

√
Pr(kc, kd|2n, 2m)

2

+

 ∞∑
n,m=0

c2n+1c2m+1

√
Pr(kc, kd|2n+ 1, 2m+ 1)

2
 , (5.28)

where Pr(kc, kd|n,m) is the probability of obtaining the detection pattern (kc, kd)
given that the parties sent Fock states |n⟩ and |m⟩ to the relay and where cn =
e− |α|2

2 αn
√

n! . The probabilities Pr(kc, kd|n,m) are usually referred to as yields and
indicated by Y kc, kd

n,m .
It is important to note that the parties are not able to estimate the yields directly

in the protocol, as Fock states are hard to generate and manipulate. However, the
parties can estimate the yields from the gains of Eq. (5.23) using the so-called decoy-
state method. This technique was firstly proposed in [Hwa03; Wan05; LMC05] for
generic MDI-QKD protocols and employed for TF-QKD in [CAL19; GC19; GNC19].
Let us consider the state that the parties generate in PE rounds, i.e., the PRCS of Eq.
(5.21). The state can be equivalently written, as a mixture of Fock states, as

ρβi
= e−|βi|2

∞∑
n=0

|βi|2n

n! |n⟩⟨n|âi . (5.29)

Using this expression for PRCSs, we can write the gains as

Gkc, kd
βA,βB

= e−|βA|2−|βB |2
∞∑

n,m=0

|βA|2n|βB|2m

n!m! Y kc, kd
n,m , (5.30)

where, we recall, each βi is chosen from a discrete set of intensities S. The latter
expression corresponds to a different equation for each choice of intensities with the
same unknown variables, that is, the yields.

We then obtain a system of equations, where the unknowns are the (infinite)
yields and the known variables are the gains. The system can be solved exactly
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if we consider the unrealistic scenario where the parties can choose from a set of
infinite decoys. However, even with a finite amount of decoy amplitudes, we can
still derive an upper bound on a finite amount of yields and bound the remaining
ones trivially with 1, since they are probability distributions. Therefore the parties
are able to estimate the yields, and consequently the phase-error rate, using the
statistics obtained in the protocol, thus obtaining an estimation of the information
leaked to Eve, leading to a secure protocol. As a final remark we note that, even
in its practical implementation, the protocol retains the most desirable property of
the original MDI-QKD protocol presented in section 5.1.2, i.e, the scaling of the key
rate with

√
η and therefore the possibility of beating the PLOB bound as shown in

section 5.1.3 (see [CAL19] for further details).

5.2.3 Practical MDI-CKA protocol

In this final section we present our work from [CMG23], where one of the first
practical multipartite protocols based on single-photon interference was proposed.
The protocol is a practical version of the MDI-CKA protocol presented in section
5.1.4, in the same way as TF-QKD is a practical version of the protocol in section
5.1.2. Let us start with the description of the protocol, performed by N parties
labelled as A0, . . . , AN−1.

1. Quantum transmission: each party labels each round, e.g. according to a
pre-shared key, as a KG or PM round. In KG rounds each party Ai prepares an
optical mode in the state |α⟩âi with probability 1

2 , corresponding to the X-basis
measurement outcome Xi = +1, or |−α⟩âi with probability 1

2 , corresponding
to the X-basis measurement outcome Xi = −1. The state |α⟩ is a coherent
state, defined in Eq. (5.3). In PE rounds each party Ai prepares an optical
mode in the state

ρβi
= 1

2π

∫ 2π

0
dϕ|eiϕβi⟩⟨eiϕβi|, (5.31)

where the amplitude βi is chosen at random from a finite set S. All parties then
send the optical mode through a lossy quantum channel, with transmittance
√
η, to a central, untrusted, relay.

2. Relay operations: in the relay, the incoming optical modes go through a BBS
network of M = 2s inputs and outputs, with M ≥ N . The BBS network is
sketched in Figure 5.2 for N = 4 and described in detail in Appendix A of
[CMG23]. The BBS network transforms the input modes, described by the
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respective creation operators â†
0, . . . , â

†
M−1 into the output modes d̂†

0, . . . , d̂
†
M−1

according to

â†
i → 1√

M

M−1∑
k=0

(−1)k⃗·⃗i d̂†
k, (5.32)

where i⃗ and j⃗ are the binary representation of the integers i and j, respectively.
We note that, since in principle N ≤ M , the M modes â0, . . . , âM−1 represent
the N signals coming from the parties paired with additional M −N modes
in the vacuum state. The output modes are then measured with threshold
detectorsD0, . . . , DM−1, to certify the arrival of one (or more) photon detector.
The relay finally announces the outcomes of the measurements of each detector
Dj , by publicly disclosing the values kj = 1 if the detector clicked or kj = 0 or
kj = 0 if the detector did not click.

3. Classical post-selection and parameter estimation: the parties only keep
rounds where they chose the same basis and where only one detector, e.g.
detector Dj , clicked and discard the rest. We call this phase of the protocol
post-selection phase. They then disclose, through an authenticated classical
channel, part of the simulated measurements outcomes in the X-basis of the
KG rounds to evaluate the pair-wise QBER Qj

ABi
defined, again, as

Qj
X0,Xi

= Pr
(
X0 ̸= (−1)i⃗·⃗jXi | kj = 1

)
, (5.33)

Similarly, for PE rounds, they disclose the choices of amplitudes (β0, . . . , βN−1)
and estimate the gains

Gj
β0,...,βN−1

:= Pr (kj = 1 |β0, . . . , βN−1) , (5.34)

that is, the probabilities that detector Dj clicks given the choice of intensities
(β0, . . . , βN−1), where we recall β0, . . . , βN−1 ∈ S.

4. Classical post-processing: the parties use the same authenticated classical
channel to perform the usual post-processing, in the form of error correction
and privacy amplification.

In Figure 5.2 we show a sketch of the protocol, implemented for N = 4.
The protocol reduces to the TF-QKD protocol of section 5.2.1 for N=2. In particu-

lar, a novel multipartite decoy-state method is employed in PE rounds to estimate
the phase-error rate. The key rate of the protocol reads

r∞ ≥
M∑

j=1
pj(1 − h(Q̄j

Z) − max
i
h(Qj

X0,Xi
)), (5.35)
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of users. In the next, final, section, we examine in detail the performances of the
protocol, compared to fundamental bounds on communication rate in networks.

5.2.4 Overcoming fundamental limitations in networks
Since the proposed multipartite scheme is, like TF-QKD, based on single-photon
interference, the key rate is also expected to retain the

√
η scaling, giving advan-

tageous performances in the high-loss regime. Also, similarly to the bipartite case,
we can compare the performances of the protocol with fundamental limitations on
the communication rate in network scenarios, proposed in [Pir20] to generalize
the results of section 5.1.3 to network scenarios. This fundamental limitation is
called single-message multicast bound and it strongly depends on the architecture
of the network. Therefore, when comparing the performances, we need to choose
the architecture of the network arising from removing the relay in the practical
MDI-CKA scheme.

We consider firstly the simplest scenario, where the network resulting from the
removal of the relay is a star network, with the party A0 connected with a pure
photon-loss channel with transmittiviy η with all the other parties. We remark
that, as already discussed for the bipartite case, each party is connected to the
relay with the same pure photon-loss channel with transmittance

√
η, hence the

η transmittance of the channel connecting each party with any other. In this star
network configuration, the single-message multicast bound reads

r∞ ≤ − log2(1 − η) := R1. (5.38)

We note that the expression of Eq. (5.38) coincides with the PLOB bound of Eq.
(5.13) and does not depend on the number of parties. The other configuration
considered is a fully connected network, where each party is connected with any
other party with a pure photon-loss channel with transmittance η. The resulting
single-message multicast bound is

r∞ ≤ −(N − 1) log2(1 − η) := R2(N). (5.39)

We note that with the second configuration the parties have more communication
power, since they have more channels, and thus the single-message multicast bound
is higher.

As we can see in Fig. 5.3, taken from [CMG23], the practical scheme presented in
section 5.2.3 is capable of beating both multicast bounds of Eqs. (5.38) and 5.39 in
the high-loss regime, making this protocol suitable for long-distance communication.
We remark that in Figure 5.3 we performed the decoy-state analysis considering
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quantum non-demolition measurement on all incoming signals, making the protocol
much less appealing for near-term implementations then the one we proposed.

Nevertheless, the protocol presented in section 5.2.3 represents a substantial
step for practical implementations of MDI-CKA protocols. In fact, besides having
minimal requirements, only needing laser sources and passive optical devices to be
implemented, it allows for long-distance communication, paving the way for the
vision of a real quantum communication network.
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Device-Independent
randomness expansion

6
In chapter 5 we introduced a new quantum cryptographic paradigm, namely MDI-
QKD, that allows to relax one of the fundamental assumptions for security, outlined
in 3.2.1, that is the assumption of trusted devices. However, MDI-QKD schemes
do not allow to fully relax the assumption, as the parties do not need to trust the
measurement devices but still need to trust the state preparation. In this chapter we
will introduce a simple task, called Device-Independent randomness expansion (DIRE)
[Pir+10; CK11; PM13; FGS13; MS16; WBA18; VV12; CR12; Gal+13], where the
assumption of trusted devices is fully lifted. In DIRE two or more parties try to obtain
uniformly random outcomes from an untrusted device, with which they can interact
only by giving it inputs and receiving outputs. The task is then for the parties to
certify that the outputs of the device are truly random and unknown to possible
eavsdroppers that may have tampered with the device.

As uniform randomness is one of the basic requirements for a cryptographic key,
DIRE can be seen as a primitive to Device-Independent (DI) quantum cryptographic
protocols where the assumption of trusted devices is fully lifted. Different DI
cryptographic protocols, both bipartite [Ací+07; Pir+09; MPA11; VV14; Arn+18a]
and multipartite [SG01a; SG01b; RMW19; HKB20a; Gra+21; Gra+23], with a few
experimental implementations [Liu+22; Nad+22; Zha+22; Sha+21; Liu+21b],
have been developed. In this thesis we will focus specifically on DIRE.

The chapter is structured as following: in the first section, namely section 6.1,
we introduce the Device-Independent scenario for two parties and define Bell
inequalities in section 6.1.1. Furthermore, in section 6.1.2 we generalize the concepts
to adapt for multiple parties and introduce the multipartite Bell inequality of interest
for the subsequent work. In section 6.2 we then introduce the task of DIRE and
show, in section 6.2.1, interesting results about DIRE with partially entangled states.

6.1 Device-Independent scenario
Let us first introduce the so-called Device-Independent scenario, starting from the
bipartite case. As already anticipated, the parties, in this case Alice and Bob, have
some untrusted devices which give them outputs when they provide them with
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where ρAB is a quantum state shared by Alice and Bob and {M̂ (A)
a,x } and {M̂ (B)

b,y }
are the POVM elements of the measurement devices of Alice and Bob, respectively.
We indicate the set of quantum correlations with Q. Since the set of quantum and
classical correlations are not the same, with L ⊂ Q, the main idea behind any DI
protocol is to rule out the possibility of the device being classical by only looking
at the correlations. The parties, once they certified that their devices are quantum
devices, can then exploit the unique properties of quantum mechanics to, e.g., certify
the randomness of the outcomes of the device or extract a secure secret key from
them.

Before diving into the details on how to distinguish classical and quantum cor-
relations, we introduce another set of correlations, motivated by physical reasons.
We could indeed ask whether there exist other theories that describe the underlying
system of our devices besides quantum and classical theory. If we do not assume any
specific theory describing the device’s systems, we could observe any normalized
probability distribution p(a, b|x, y). However, physically, the outcomes of each party
must be independent from the choice of input of the other party. This requirement
is necessary to avoid instantaneous communication between Alice and Bob, which
would violate relativity. Mathematically, this requirement translates to the following
set of constraints

∑
a

p(a, b |x, y) =
∑

a

p(a, b |x′, y)∑
b

p(a, b |x, y) =
∑

b

p(a, b |x, y′), (6.3)

for all a, b, x, x′, y, y′. The probability distributions that satisfy these constraints
are usually referred to as non-signalling distributions and the set of non-signalling
distributions is indicated by N S. We remark that quantum correlations are also non-
signalling, as quantum theory does not violate relativity, and thus the non-signalling
set strictly contains set of quantum correlations.

6.1.1 Bell inequalities

In this section we introduce the crucial tool used in DI scenarios to distinguish
classical and quantum correlations: Bell inequalities. A Bell inequality is simply a
linear constraint on the probability distribution p(a, b |x, y) that is satisfied for all
classical probability distributions, i.e., all distributions in the form of Eq. (6.1), and
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The most simple and famous Bell inequality is the CHSH inequality [Cla+69],
named after the authors of the original work. We restrict to a scenario where the
devices of Alice and Bob have two inputs, i.e., x, y ∈ {0, 1} and two outputs, i.e.,
a, b ∈ {−1,+1}. In this scenario, we define the following CHSH value

SCHSH := ⟨a0b0⟩ + ⟨a0b1⟩ + ⟨a1b0⟩ − ⟨a1b1⟩, (6.5)

where we define
⟨axby⟩ :=

∑
a,b=±1

abp(a, b |x, y). (6.6)

This Bell value defines a Bell inequality, as it is possible to show that for classical
probability distributions pL(a, b |x, y) ∈ L it holds

SCHSH ≤ 2, (6.7)

whereas for quantum probability distributions it holds [Cir80]

SCHSH ≤ 2
√

2. (6.8)

Therefore, if the parties observe a Bell value greater than 2, they can certify that
their devices perform quantum measurements on a quantum system.

As already pointed out, if the devices contain quantum systems, the observed
probability distribution takes the form of Eq. (6.2). Since we restrict to dicothomic
measurements, i.e., since the parties have only two possible inputs and outputs,
the quantum measurements are fully characterized by the measurement observables
Âx := M̂

(A)
−1,x−M̂ (A)

+1,x and B̂y := M̂
(B)
−1,y−M̂ (B)

+1,y for Alice and Bob, respectively. In this
scenario, any Bell inequality can be recast, instead in terms of probabilities, in terms
of the so-called correlators, defined as the expectation values of the measurement
observables

〈
Âx

〉
,
〈
B̂y

〉
and

〈
Âx ⊗ B̂y

〉
. In particular, we call

〈
Âx

〉
and

〈
B̂y

〉
1-body correlators and

〈
Âx ⊗ B̂y

〉
2-body correlators. It is straightforward to write,

from Eq. (6.2), the probabilities p(a, b |x, y) (and thus any Bell inequality) as a
function of the correlators. For example, the CHSH inequality, can be recast as

SCHSH := ⟨Â0 ⊗ B̂0⟩ + ⟨Â0 ⊗ B̂1⟩ + ⟨Â1 ⊗ B̂0⟩ − ⟨Â1 ⊗ B̂1⟩ ≤ 2. (6.9)
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One interesting property of the CHSH inequality is that the parties can obtain the
maximal violation SCHSH = 2

√
2 if and only if they share a maximally entangled

Bell state |ψ+⟩ of Eq. (2.50), and their measurement observables are

Â0 = X̂, Â1 = Ẑ

B̂0 = X̂ + Ẑ

2 , B̂1 = X̂ − Ẑ

2 , (6.10)

where X̂ and Ẑ indicate the Pauli operators of Eq. (2.39). This result is particularly
interesting as it allows the parties to completely characterize the devices if they
observe a maximal violation.

6.1.2 Multipartite DI scenario

The DI scenario can be straightforwardly generalized for an arbitrary number of
parties. Instead of Alice and Bob we consider N parties, labelled as A1, . . . , AN ,
holding black boxes with inputs x1, . . . xN and outputs a1, . . . , aN . For our pur-
poses we restrict to the two inputs/two outputs scenario, i.e., xi ∈ {0, 1} ∀i and
ai ∈ {−1,+1} ∀i. The devices are then characterized by the probability distri-
bution p(a1, . . . , aN |x1, . . . , xN ). Once again, the classical (or local) probability
distributions are the ones in the form

p(a1, . . . , aN |x1, . . . , xN ) =
∫
dλp(λ)p(a1 |x1, λ) · · · p(aN |xN , λ), (6.11)

whereas the quantum probability distributions are in the form

p(a1, . . . , aN |x1, . . . , xN ) = Tr
[
M̂a1

x1 ⊗ · · · ⊗ M̂aN
xN
ρA1,...AN

]
, (6.12)

where M̂ai
xi

are the measurement operators of party Ai and ρA1,...AN
is a multipartite

quantum state shared by all the parties. As shown for two parties, the measurements
are uniquely characterized by the measurement observables A(i)

xi = M−1
xi

−M+1
xi

for
each party Ai.

In this scenario we can still define a Bell inequality as a linear combination

∑
a1,...aN ,x1,...xN

Ga1,...aN ,x1,...xNp(a1 . . . aN |x1 . . . xN ) ≤ βL, (6.13)

where, again, Ga1,...aN ,x1,...xN are real coefficients and where the inequality is satis-
fied for all classical probability distributions and violated by at least one quantum
one. Once again, any Bell inequality can be also written in terms of the correlators,
which in the multipartite case can be any k-body correlators for k = 1, . . . , N . Of par-
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ticular interest for our work is the N -partite Bell inequality proposed in [Bac+20].
We start by defining the following Bell value

Sθ = (N − 1) cos 2θ√
1 + cos2 2θ

(〈
A

(1)
0

〉
−
〈
A

(1)
1

〉)
+ (N − 1)

(〈
A

(1)
0 A

(2)
0 . . . A

(N)
0

〉
+
〈
A

(1)
1 A

(2)
0 . . . A

(N)
0

〉)
+ 1√

1 + cos2 2θ

N∑
i=2

(〈
A

(1)
0 A

(i)
1

〉
−
〈
A

(1)
1 A

(i)
1

〉)
, (6.14)

with θ ∈
[
0, π

4
]
. It is possible to show that this Bell value defines a Bell inequality, as

we have
Sθ ≤ βL(θ), (6.15)

where βL(θ) := 2(N − 1) 1+cos 2θ√
1+cos2 2θ

for all classical probability distributions and

Sθ ≤ βQ, (6.16)

where βQ := 2
√

2(N−1) for quantum probability distributions. The most interesting
property of this Bell inequality is that its maximal violation is attained when the
parties share a tilted GHZ-state of the form

|ψθ⟩ = cos θ|0⟩⊗N + sin θ|1⟩⊗N . (6.17)

6.2 Device-Independent Randomness Expansion

As already anticipated, we focus now on Device-Independent Randomness expansion
(DIRE) protocols, where some parties try to certify that the outcomes of their devices
are uniformly random and unkown to possible eavsdroppers. In the most simple case
one party, say Alice, uses her device n times and extracts a bit string KA of length n
using the outcomes of the device. The goal is to certify how many bits of the string
KA are uniformly random and unknown to a possible eavsdropper Eve that may have
tampered with the device. At first sight the problem seems to be intractable, as we
have to consider the whole bit string KA. However, thanks to a powerful theoretical
tool called entropy accumulation theorem[Arn+18b; DF19; DFR20], it is possible
to reduce the problem to quantifying the randomness of the single-round outcomes.
As already seen in section 3.1, to address this task we can use the conditional von
Neumann entropy H(A|E) where A indicates Alice’s single-round outcome and E
indicates Eve’s quantum side-information. Here we also see how DIRE can be seen
as a primitive for DIQKD: in the definition of the key rate of any QKD protocol, of
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Eqs. (3.29) and (4.1), the same quantity appears to quantify the information leaked
to Eve during the protocol. Therefore, in this scenario, we define the DIRE rate as

r(DIRE) := H(A|E), (6.18)

that is, the amount of random bits, unknown to Eve, that Alice is able to extract
each round of the DIRE protocol.

The main idea behind any DI protocol, in particular DIRE, is the following:
imagine Alice is able to certify, together with other parties, the violation of a given
Bell inequality, by calculating a certain Bell value S. If we find a theoretical non-
trivial lower bound on H(A|E) as a function of the Bell value S, Alice is then able to
certify H(A|E) bits of randomness in the outcomes of her device each round of the
protocol. For example, it is possible to show that the following lower bound holds

H(A|E) ≥ 1 − h

√S2
CHSH

4 − 1

 , (6.19)

where h is the binary entropy introduced in section 3.1 and SCHSH is the CHSH
value of Eq. (6.5). Using this bound, Alice is then able to successfully perform a
DIRE protocol given the violation SCHSH ≥ 2 of the CHSH inequality.

This procedure can be straightforwardly generalized to the multipartite scenario.
We consider N parties, labelled as A1, . . . , AN , k of which, labelled as A1, . . . , Ak,
want to extract random bits from their untrusted devices and make sure that the
random bits are unknown to Eve. Similarly to the bipartite case, the amount of
randomness that they can extract is given by the following DIRE rate

r
(DIRE)
k := H(A1, . . . , Ak|E), (6.20)

where H(A1, . . . , Ak|E) is the conditional von Neumann entropy of the joint out-
comes of the k parties, conditioned on Eve’s side information and where note that
r

(DIRE)
k ≤ k. Once again, the goal is, given that the parties are able to certify the

violation of a certain multipartite Bell inequality by evaluating a Bell value SN , to
find a lower bound on H(A1, . . . , Ak|E) as a function of said Bell value SN , thus
lower bounding the DIRE rate. Examples of such entropic bounds can be found,
e.g., in [Gra+21; Gra+23], where the authors find analytical lower bounds the
von Neumann entropy of the outcomes of different combinations of parties as a
function of the violation of some common multipartite Bell inequalities, such as the
Mermin-Ardehali-Belinskii-Klyshko (MABK) inequality [Mer90; Ard92; BK93] or the
Holz inequality [HKB20b].
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However, finding such analytical bounds can be a challenging task. Therefore,
to simplify the problem we can consider the conditional min-entropy, described in
section 3.1.3. As already seen in Eq. (3.17), the conditional min-entropy lower
bounds the conditional von Neumann entropy and therefore can be considered
to lower bound the achievable DIRE rate. The main advantage of the conditional
min-entropy is that, due to its operational interpretation related to the guessing
probability, as in Eq. (3.20), it can be computed efficiently with Semidefinite
Programming (SDP). On the other hand, the conditional min-entropy provides loose
lower bounds, thus limiting the performances of the DIRE protocol. In the next
section we will employ this method to evaluate a numerical lower bounds on the
achievable DIRE rate as a function of the violation of the Bell inequality of Eq.
(6.14).

6.2.1 DIRE with partially entangled states

As already anticipated, in this section we will introduce a DIRE protocol based on the
certification of the violation of the Bell inequality of Eq. (6.14). The obtained results
are interesting in the context of reducing the resource requirements in cryptographic
protocols: the investigated Bell inequality, as already shown, is maximally violated
by the state of Eq. (6.17), which is a partially entangled state. In a realistic
implementation, such states could account for experimental imperfections when
trying to generate a GHZ state or could even be easier to generate than a GHZ state.
Let us then consider a two inputs/two outputs DI scenario with N parties, labelled
as A1, . . . , AN , where the parties are able to certify the violation Sθ ≥ βL of the
Bell inequality of Eq. (6.14). Our goal is, as shown, to find lower bounds on the
conditional von Neumann entropy of the outcomes of subset of parties conditioned
on Eve’s side information.

We can numerically evaluate, using SDP relaxations of the problem [NPA08], the
conditional min-entropy, which, as already discussed, lower bounds the conditional
von Neumann entropy and thus the DIRE rate. We start with N = 3 and evaluate
the conditional min-entropy of the joint outcomes of the second and third party
Hmin(A2, A3|E). The results are shown in Figure 6.3. The numerical calculations
show a very interesting behavior, which was already known for two parties: in the
bipartite case, as seen in [12], for any value of θ ̸= 0 the parties are able to achieve
a DIRE rate of 1 for the maximal violation of a similar (although not equivalent) Bell
inequality. This implies that one party is able to extract 1 bit of uniform randomness
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Overview of the results 7
In this chapter we will give an overview of the results that led to the publications
attached in appendices B and C.

Genuine multipartite entanglement is not a precondition for
secure conference key agreement (Paper A)
In this first work [Car+21] we address one fundamental open question in the field
of CKA protocols, that is, whether GME is necessary to successfully perform CKA.
First, we utilize the properties of the von Neumann entropy to exclude some classes
of states, which we prove are not usable for CKA. In particular, we show that all
states that are separable with respect to a fixed partition will always lead to zero
key rate in any CKA protocol, as, intuitively, all parties must share entanglement for
the CKA protocol to succeed.

The obtained result allows us to restrict our analysis to the states that are not
separable with respect to any partition but are still biseparable, as possible candidates
for non-GME states that lead to a non-zero key rate in a CKA protocol. With this
intuition, we define a class of N -partite mixed states, given in Eq. (4.12), where,
in each term of the mixture, k parties share a GHZ state and the others a fully
separable state. We show that by employing this states in the well-known N-BB84
protocol [GKB18], we can obtain a non-zero key rate for all values of N and k, thus
answering the original question in the affirmative.

Furthermore, we analyze the performances of this class of states in the presence
of local depolarizing noise and compare the results with another possible strategy
to allow N parties to share a secret key, that is by performing a concatenation of
bipartite BB84 protocols and classically post-process all the different keys into one
shared key. The results show that the N-BB84 protocol with our class of states is able
to outperform a concatenation of bipartite protocols for high k. Furthermore, we
perform a detailed noise analysis and show that the advantage over concatenations
of bipartite BB84 protocols is retained in the low noise regime.

As a final result, we explored a connection between key rate and entanglement
witnesses, already outlined in [CLL04] for the bipartite scenario and here extended
and improved for the multipartite one. The intuition is that a non-zero key rate can
be seen as an entanglement witness, as entanglement across all partitions of the
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parties is necessary for CKA, as shown in the beginning of our work. Moreover, since
the set of states that can lead to a non-zero key rate is not convex, the key rate can
be seen as a non-linear entanglement witness, surpassing the capabilities of usual,
linear ones.

Overcoming Fundamental Bounds on Quantum Conference
Key Agreement (Paper B)
Inspired by TF-QKD and by previous attempts of generalizing it to many parties
[GKB19], in [CMG23] we design a simple and practical MDI-CKA protocol based on
W state post-selection. First, we show the protocol, which consists in the following:
N parties send weak coherent pulses for KG rounds and phase-randomized coherent
states for PE rounds to a central relay, which is assumed to be controlled by Eve. In
a honest implementation, the relay mixes all the modes with a network of BBS and
measures the presence of a photon in each output of the network, publicly announc-
ing the results. The parties are then able to post-select W state-like correlations by
only keeping the rounds where one detector clicked.

We prove the security of the protocol by exploiting entropic uncertainty relations
to bound the key rate as a function of two quantities: the QBER, estimated by the
parties in KG rounds and the phase-error rate, which is the error in the conjugate
basis of the KG rounds. Since the latter cannot be estimated by the parties in the
protocol, we employ a novel multipartite decoy-state method to allow the parties to
estimate the phase-error rate from the quantities they have available in the protocol
in the PE rounds.

Furthermore, we perform extensive numerical simulations to assess the perfor-
mances of the protocol in a realistic implementation. We choose a particular noise
model where each party is connected to the relay with a lossy quantum channel with
transmittance

√
η. We also consider other common sources of noise in the model,

including polarization and phase misalignment and dark counts in the detectors. We
are able to numerically evaluate the key rate and optimize it over the intensity α of
the coherent pulses prepared by the parties, for N = 3, 4, 5.

Moreover, since one of the most striking features of bipartite TF-QKD is its high
noise tolerance, represented by the possibility of beating the fundamental bound on
the repeaterless transmission rate known as the PLOB bound [Pir+17], we compare
the performances of the protocol with a similar bound for network scenarios, called
the single-message multicast bound [Pir20]. We show that our protocol is also
able to beat the single-message multicast bound in the high noise regime, at least
for N = 3 and N = 4, showing its merits for practical, long-distance quantum
communication.
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Conclusions and Outlook 8
In conclusion we explored in detail one of the most promising application of quantum
information processes, that is quantum cryptography. After introducing the basics of
quantum mechanics and all the necessary tools to describe quantum systems, we
presented the basic ideas behind bipartite QKD protocols and presented the first and
most simple protocol, the BB84 protocol. We then moved from the bipartite scenario
to the more complicated multipartite setting, describing the task of CKA, that is the
generalization to many parties of the well-known and understood QKD.

In view of building a world-wide quantum network, the necessity of designing
efficient and practical multipartite protocols is clear. Therefore, we analyzed our
first original work, where we investigated the resources necessary to successfully
perform CKA when using multipartite quantum resources. We investigated, in
particular, the multipartite entanglement properties of the quantum state shared
each round in a CKA protocol, showing that the strongest form of entanglement,
namely GME, is not necessary to successfully perform common CKA protocols. We
also drew an interesting connection between the conference key rate of a CKA
protocol and the theory of entanglement witnesses and further introduced one
particular network scenario, i.e., the triangle network scenario, where we laid
the foundation to investigate further possible cryptographic applications in such
network. As GME states can be in practice challenging to produce, our work paves
the way to reduce the the practical requirements of realistic CKA protocols.

Afterwards we focused on a specific class of protocols, specifically MDI protocols.
These protocols, designed to overcome the need for the parties to trust their mea-
surement devices, are well suited for practical, near-term applications as they can be
implemented with laser pulses and passive optical devices. In the bipartite scenario
many such protocols have been designed, the most important being TF-QKD, and
experimentally implemented. Therefore, we designed a similar protocol, scalable
for an arbitrary number of users, which retains the same properties of the bipartite
TF-QKD protocols, i.e., that is suitable for high-distance communication, being based
on single-photon interference, and practically implementable with laser sources and
passive optical devices.

Finally, we presented the most adversarial DI multipartite scenario, where the
parties are not able to trust any of their devices. In this scenario we introduce
a specific task, called DIRE, where the parties try to verify the violation of a Bell
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inequality to certify uniform randomness in their outcomes. This task is particularly
relevant as it can be considered a primitive task to DI quantum cryptogrpahy. We
specifically looked at the case of a Bell inequality violated by partially entangled
states and showed numerical evidence that the parties are able to extract many bits
of uniform randomness by certifying almost separable multipartite states in their
devices.

Whereas bipartite QKD protocols have been studied for almost five decades, mul-
tipartite protocols have attracted interest only recently, as the technological progress
makes the vision of a world-wide quantum communication network possible. The
field is thus open, with many lines of research that can be taken starting from
our work. Firstly, different question are still open on the side of the entanglement
properties of the resource states used for CKA. For example, it would be desirable to
obtain bounds on the achievable key rate for non-GME states based on the entan-
glement class they belong to. Moreover, it would be interesting to investigate real
experimental scenario where non-GME states could be less demanding to produce
than GME states. On the side of MDI-CKA protocols, it would be interesting to extend
the designed protocol to accommodate for real-life scenarios, where finite-key effects
or asymmetries in the channels are considered. Finally, in the DI scenario, the goal
of further work is to improve the performance of the DIRE protocol, by finding better
lower bounds on the DIRE rate, using both numerical and analytical methods, and
even designing DI cryptographic protocols that utilize partially entangled states.
Nevertheless, all works presented in this theses represent fundamental building
blocks for future quantum cryptographic applications in network scenarios.
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Proofs A
In this appendix we present some proofs that are too technical and articulated to be
shown in the main text.

Proof of Theorem 5

In this section we show the proof of Theorem 5. The proof consist mainly in
providing an explicit construction for ρbs. First, we define the following biseparable
state

ρbs = 1
3 ρ̃AB ⊗ |00⟩CC′⟨00|+1

3 σ̃AC ⊗ |01⟩BB′⟨01|+1
3 τ̃BC ⊗ |02⟩AA′⟨02|, (A.1)

where ρ̃AB := ρAB ⊗ |00⟩A′B′⟨00|, σ̃AC := σAC ⊗ |11⟩A′C′⟨11|, τ̃BC := τBC ⊗
|22⟩B′C′⟨22| with the primed systems being classical flags and ρAB , σAC and τBC are
the bipartite source states. Let us then consider n copies of ρbs, i.e.,

ρ⊗n
bs =

(1
3 ρ̃AB ⊗ |00⟩CC′⟨00|+1

3 σ̃AC ⊗ |01⟩BB′⟨01|+1
3 τ̃BC ⊗ |02⟩AA′⟨02|

)⊗n

.

(A.2)
This state can be written, using a multinomial expansion, as

ρ⊗n
bs =

∑
k1,k2,k3≥0

k1+k2+k3=n

1
3n

P
[
(ρ̃AB ⊗ |00⟩CC′⟨00|)⊗k1 ⊗ (σ̃AC ⊗ |01⟩BB′⟨01|)⊗k2

⊗(τ̃BC ⊗ |02⟩AA′⟨02|)⊗k3
]
, (A.3)

where P indicates a sum over all possible permutations of the tensor product terms,
as the tensor product is not commutative. The parties now can perform the following
local operations: they perform projective measurements on all their flags and obtain
a string of outcomes that determines uniquely in which term of the mixture they are.
Thus, they can trace out all flag systems and all copies of ρAB, σAC and τBC except
one, obtaining the source state ρAB ⊗σA′C ⊗τB′C′ . The described operations are local
operations that do not involve any classical communication but only measurements
and tracing out. We will indicate these local operations as MAA′ ⊗ MBB′ ⊗ MCC′ .
It is important to note that not all terms of the mixture are transformed in the
source state by these local operations: in fact, if k1 = 0, k2 = 0 or k3 = 0 the
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resulting state will be different. For example, if k1 = 0, the resulting state will be
|00⟩AB⟨00|⊗σA′C ⊗τB′C′ Overall, we can describe the state after the aforementioned
local operation as

MAA′⊗MBB′ ⊗ MCC′

[
ρ⊗n

bs

]
=

= 1
3n
ρAB ⊗ |0000⟩A′B′C1C′⟨0000|+ 1

3n
σA′C ⊗ |0000⟩ABB′C′⟨0000|

+ 1
3n
τB′C′ ⊗ |0000⟩AA′BC⟨0000|+ 1

3n

∑
k2,k3>0

k2+k3=n

(
n

k2 k3

)
σA′C ⊗ τB′C′ ⊗ |00⟩AB⟨00|

+ 1
3n

∑
k1,k3>0

k1+k3=n

(
n

k1 k3

)
ρAB ⊗ τB′C′ ⊗ |00⟩A′C⟨00|

+ 1
3n

∑
k1,k2>0

k1+k2=n

(
n

k1 k2

)
ρAB ⊗ σA′C ⊗ |00⟩B′C′⟨00|

+ 1
3n

∑
k1,k2,k3>0

k1+k2+k3=n

(
n

k1 k2 k3

)
ρAB ⊗ σA′C ⊗ τB′C′ , (A.4)

where
( n

k1 ... km

)
= n!

k1!...km! is the multinomial coefficient. We now use that
∑

k1,...,km

( n
k1 ... km

)
=

mn to write the following

∑
k1,k2>0

k1+k2=n

(
n

k1 k2

)
=

∑
k1,k2≥0

k1+k2=n

(
n

k1 k2

)
− 2 = 2n − 2. (A.5)

Moreover, with similar calculations we have

∑
k1,k2,k3>0

k1+k2+k3=n

(
n

k1 k2 k3

)
=

∑
k1,k2,k3≥0

k1+k2+k3=n

(
n

k1 k2 k3

)
−3

∑
k1,k2>0

k1+k2=n

(
n

k1 k2

)
−3 = 3n−3(2n−2)−3

(A.6)
We can therefore recast Eq. (A.4) as

MAA′⊗MBB′ ⊗ MCC′

[
ρ⊗n

bs

]
=

= 1
3n
ρAB ⊗ |0000⟩A′B′CC′⟨0000|+ 1

3n
σA′C ⊗ |0000⟩ABB′C′⟨0000|

+ 1
3n
τB′C′ ⊗ |0000⟩AA′BC⟨0000|+ 1

3n
(2n − 2)σA′C ⊗ τB′C′ ⊗ |00⟩AB⟨00|

+ 1
3n

(2n − 2)ρAB ⊗ τB′C′ ⊗ |00⟩A′C⟨00|+ 1
3n

(2n − 2)ρAB ⊗ σA′C ⊗ |00⟩B′C′⟨00|

+ 1
3n

(3n − 3(2n − 2) − 3)ρAB ⊗ σA′C ⊗ τB′C′ , (A.7)
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which can be further simplified as

MAA′ ⊗ MBB′ ⊗ MCC′

[
ρ⊗n

bs

]
=(3 + 3(2n − 2)
3n

)
ρtrash +

(
1 − 3 + 3(2n − 2)

3n

)
ρsource,

(A.8)

where we defined

ρtrash := 1
3 + 3(2n − 2)

(ρAB ⊗ |0000⟩A′B′CC′⟨0000|+σA′C ⊗ |0000⟩ABB′C′⟨0000|

+ τB′C′ ⊗ |0000⟩AA′BC⟨0000|+(2n − 2)(σA′C ⊗ τB′C′ ⊗ |00⟩AB⟨00|

+ ρAB ⊗ τB′C′ ⊗ |00⟩A′C⟨00|+ρAB ⊗ σA′C ⊗ |00⟩B′C′⟨00|)) (A.9)

and ρsource := ρAB ⊗ σA′C ⊗ τB′C′ . We now remark that

lim
n→∞

3 + 3(2n − 2)
3n

= 0, (A.10)

so that MAA′ ⊗ MBB′ ⊗ MCC′

[
ρ⊗n

bs

]
→ ρsource for n → ∞, concluding the proof.

103





Genuine multipartite
entanglement is not a
precondition for secure
conference key agreement

B

Title: Genuine multipartite entanglement is not a precondition
for secure conference key agreement

Authors: Giacomo Carrara, Hermann Kampermann, Dagmar Bruß,
Gláucia Murta

Journal: Physical Review Research

Publication status: Published

Date of publication: 19 March 2021

This publication corresponds to reference [Car+21]. A summary of its content
can be found in chapter 7. The core idea behind the work, to show that non-GME
states can be used for CKA, was given to me by GM. I developed the idea and
expanded upon it under the guidance of GM, proving Theorem 1 and finding a
suitable class of states for CKA with biseparable states. HK and DB participated in all
the discussions and provided crucial insights, giving in particular the suggestion to
further look into the entanglement witness theory, which led to the results contained
in the last section of the paper. GM also pushed me to perform the noise analysis
and the comparison with the concatenation of bipartite QKD protocols. I wrote
the manuscript, which was proofread by all other co-authors who gave valuable
feedback on how to improve it.

105



PHYSICAL REVIEW RESEARCH 3, 013264 (2021)

Genuine multipartite entanglement is not a precondition for secure conference key agreement
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Entanglement plays a crucial role in the security of quantum key distribution. A secret key can only be
obtained by two parties if there exists a corresponding entanglement-based description of the protocol in
which entanglement is witnessed, as shown by Curty et al. [M. Curty, M. Lewenstein, and N. Lütkenhaus,
Phys. Rev. Lett. 92, 217903 (2004)]. Here we investigate the role of entanglement for the generalization of
quantum key distribution to the multipartite scenario, namely, conference key agreement. In particular, we ask
whether the strongest form of multipartite entanglement, namely, genuine multipartite entanglement, is necessary
to establish a conference key. We show that, surprisingly, a nonzero conference key can be obtained even if the
parties share biseparable states in each round of the protocol. Moreover, we relate conference key agreement with
entanglement witnesses and show that a nonzero conference key can be interpreted as a nonlinear entanglement
witness that detects a class of states which cannot be detected by usual linear entanglement witnesses.

DOI: 10.1103/PhysRevResearch.3.013264

I. INTRODUCTION

Secure communication is a central demand for modern
society. Security can be provided by quantum key distribu-
tion (QKD), which readily enters the industrial market. In
QKD [1,2], entanglement plays a crucial role in the secu-
rity proofs [3,4]. Indeed, even prepare-and-measure protocols
[1,5], which do not require any entanglement for their imple-
mentation, have an entanglement-based counterpart [6] which
can be used for the protocol’s security analysis. In Ref. [7],
the authors showed that entanglement is in fact a necessary
condition to obtain a secure key in a QKD protocol and,
moreover, the entanglement of the state shared by Alice and
Bob can be witnessed using the measurements performed in
the protocol.

We consider a generalization of QKD to the scenario
where N parties wish to establish a common shared se-
cret key. This task is called a conference key agreement
(CKA) and allows for secure broadcast. CKA can be achieved
using a concatenation of bipartite QKD [8–10], together
with additional classical communication. However, the rich
structure of multipartite correlations opens the possibility
to design new protocols which can have clear advantages
in certain network architectures [11]. Several protocols ex-
ploiting the correlations of multipartite entangled states have
been proposed using qubit systems in the device-dependent
[11–15] and device-independent scenario [16–18], as well as
continuous-variable systems [19–21]. Even a proof of princi-
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ple implementation of CKA with four nodes has been recently
realized [22].

Here we ask the question of whether the strongest form
of multipartite entanglement, namely, genuine multipartite
entanglement, is a necessary ingredient for CKA based on
multipartite quantum correlations. We will show that, counter-
intuitively, this is not the case: N parties can establish a secret
conference key even when the state distributed in each round
of the protocol is biseparable. Moreover, we prove that, to
obtain a no-zero conference key, the measurements used in the
protocol need to be able to witness entanglement across any
partition of the set of parties, extending the result of Ref. [7]
to the multipartite scenario.

II. PRELIMINARIES

We focus on CKA protocols [23] consisting of several
rounds where, in each round, a single copy of a multipartite
state is distributed to the N parties, namely, Alice and Bob1, ...,
BobN−1. Upon receiving the systems, the parties perform local
measurements and record the classical outcome. The scenario
is sketched in Fig. 1.

In such protocols, an important figure of merit is the
asymptotic secret key rate, i.e., the ratio between the number
of extracted secret bits and the number of shared copies of the
state, in the limit of an infinite number of rounds. Analogously
to the bipartite case [24,25], the asymptotic secret key rate
of the CKA protocols under consideration can be expressed,
after the usual postprocessing (parameter estimation, one-way
information reconciliation and privacy amplification) as [11]

r∞ = max [0, H (X |E ) − max
i

H (X |Yi )], (1)

where X and Yi denote the registers that store the out-
comes of the measurements performed by Alice and Bobi,
respectively, in the key generation rounds. Here H (X |E ) =
H (XE ) − H (E ) is the von Neumann entropy of Alice’s out-
come in the key generation rounds, conditioned on Eve’s
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FIG. 1. Sketch of the considered CKA scenario: At each round of
the protocol, a quantum resource is distributed to the parties (in our
particular case, a multipartite quantum state). The parties perform
local measurements and utilize the outcomes to extract a common
secret key.

(possibly quantum) side information. H (X |Yi ) = H (XYi ) −
H (Yi ) represents the amount of information Alice needs to
communicate to Bobi so he can correct his raw key. The
maximum over the Bobs in Eq. (1) illustrates the fact that
Alice needs to communicate enough information to correct
for the worst case of the Bobs. We recall that for a state ρX of
a system X , the quantum von Neumann entropy is defined as
[H (X ) = −Tr[ρX log2 ρX ]].

The conditional von Neumann entropy satisfies the follow-
ing properties [26]:

(1) Additivity for product states [[26], Corollary 5.9]: If
ρAB = ρA ⊗ ρB, then H (A|B) = H (A).

(2) Data processing [[26], Corollary 5.5]: Considering
ρABC , then H (A|BC) � H (A|B).

(3) Conditioning on classical information [[26], Propo-
sition 5.4]: If ρABF = ∑

j q jρ
j
AB ⊗ | j〉〈 j|F is a classical-

quantum state where the system F is a classical register,
then H (A|BF ) = ∑

j q jH (A|BF = j) where H (A|BF = j) is

evaluated on the state ρ
j
AB.

Our goal is to investigate the role of multipartite entangle-
ment in the single copy of the state shared by the N parties
in each round of the protocol. In the bipartite case, either the
state is separable and no key can be extracted or the state is
entangled and can potentially be used for QKD [7]. In the mul-
tipartite scenario, however, different classes of entanglement
can be defined, which have been extensively studied [27–31].

Let Sα be a proper subset of the parties and S̄α be the
complement. Then a state ρAB1...BN−1 is separable with respect
to the partition Sα|S̄α if it is of the form

ρAB1...BN−1 =
∑

j

q jρ
j
Sα

⊗ ρ
j
S̄α

, (2)

where ρ
j
Sα

and ρ
j
S̄α

are states shared by the parties in Sα and

S̄α , respectively, and where q j � 0 and
∑

j q j = 1.
A state is called biseparable [27] if it is a convex com-

bination of states that are separable with respect to different
partitions, that is,

ρbs =
∑

Sα

∑
j

q j
Sα

ρ
j
Sα

⊗ ρ
j
S̄α

, (3)

where the first sum is performed over all proper subsets Sα of
the parties. Again, the coefficients must satisfy q j

Sα
� 0 ∀ j, Sα

and
∑

α

∑
j q j

Sα
= 1. It is worth noting that a state can be

biseparable, yet not separable with respect to any partition.
Finally, if a state cannot be written in the form of Eq. (3)

we call it genuine multipartite entangled (GME). All CKA
protocols based on multipartite entanglement proposed so far
[11–17,19–21] explore the correlations of GME states, such
as the Greenberger-Horne-Zeilinger (GHZ) state [32] or the
W state [33].

III. ENTANGLEMENT IS NECESSARY FOR CKA

In the following, we prove that entanglement across all
partitions in the state shared by the parties is necessary to lead
to a nonzero asymptotic conference key rate.

Theorem 1. Given a CKA protocol, if the state shared by
the N parties is separable with respect to some partition Sα|S̄α ,
then r∞ = 0.

Proof of Theorem 1 To prove the statement, since the
asymptotic key rate in Eq. (1) includes an optimization over
all the Bobs, it suffices to prove that H (X |Yl ) � H (X |E ) for a
specific Bobl . Let us consider a state separable with respect to
a partition Sα|S̄α , in the form of Eq. (2), such that Sα contains
Alice. We consider a Bob contained in S̄α , let us say Bobl . Let
Eve have a purification of the state of the form

∣∣ψAB1,...,BN−1EFF ′
〉 =

∑
j

√
q j

∣∣ψ j
Sα S̄αE

〉| j〉F | j〉F ′ , (4)

where |ψ j
Sα S̄αE

〉 is a purification of ρ
j
Sα

⊗ ρ
j
S̄α

and the systems
F and F ′ are classical registers held by Eve. The additional
classical register F ′ is necessary to exploit the properties of
the von Neumann entropy of classical-quantum states. In fact,
tracing out the system F ′, Eve’s system E and all the Bobs
except Bl will result in a state of the form

ρABl F =
∑

j

q jρ
j
A ⊗ ρ

j
Bl

⊗ | j〉〈 j|F , (5)

which is a classical-quantum state consisting of a separable
state for Alice and Bob Bl , paired with the classical register F
held by Eve. We remark that performing local measurements
on a separable state will result in a separable state. Thus, after
the measurements of the CKA protocol, the state will still be
in the form of Eq. (5). Moreover, we can write the following
chain of inequalities:

H (X |Yl ) � H (X |YlF )

=
∑

j

q jH (X |Yl F = j)

=
∑

j

q jH (X |F = j)

= H (X |F ) � H (X |EFF ′) = H (X |Etot ), (6)

where Etot indicates the global subsystem of Eve, which in-
cludes the classical registers. In the first, second, and third
line we used Property 2, Property 3, and Property 1 of the
conditional Von Neumann entropy, respectively. Finally, in the
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fourth line we used again Properties 2 and 3. This concludes
the proof.

It follows that there must be some entanglement shared
between Alice and all the Bobs to establish a secret common
key. It is worth noting that for N = 2 this proof simplifies the
argumentation given in Ref. [7].

IV. CKA WITHOUT GME

We will now focus on the main question, that is, whether a
positive conference key can be established without GME. We
answer this question in the affirmative by exhibiting a family
of biseparable states that can lead to a nonzero conference key,

ρ
(N,k)
AB1,...,BN−1

=
∑

α
Sα∈S(k)

1

N �GHZ,k
Sα

⊗
m

Bm∈S̄α

|+〉〈+|Bm , (7)

where S (k) is the set of subsets of k parties that contain Alice
and k − 1 Bobs, �GHZ,k

Sα
= |GHZ〉〈GHZ|Sα

is the projector of
the GHZ state shared by the k parties of the subset Sα , defined
as |GHZ〉Sα

= 1√
2
(|0〉⊗k + |1〉⊗k ) and |+〉 = 1√

2
(|0〉 + |1〉).

The normalization factor is equal to N = (N−1
k−1

)
since the

number of terms in the convex combination is equal to the
number of subsets of cardinality k − 1 within the N − 1 Bobs.

We show that this family of states can be used to generate
a nonzero key in a simple CKA protocol, namely, the N-BB84
protocol [14]. The N-BB84 protocol consists of X -basis mea-
surements for the parameter estimation rounds and Z-basis
measurements for the key generation rounds.

The asymptotic conference key rate of the N-BB84 proto-
col for the family of states ρ

(N,k)
AB1,...,BN−1

, Eq. (7), as a function
of the total number of parties N and the number of parties k
that are entangled is given by

r∞
N−BB84(N, k) = 1

2

N − k

N − 1
log2

(
N − k

N − 1

)

+ 1

2

N + k − 2

N − 1
log2

(
N + k − 2

N − 1

)
. (8)

A strictly positive rate r∞
N−BB84(N, k) is obtained for all possi-

ble values of N and k even though the family of states Eq. (7)
is biseparable for k < N . Therefore, we have proven our main
result:

Theorem 2. Genuine multipartite entanglement is not nec-
essary for CKA, and a nonzero secret conference key rate r∞
can be established in a CKA protocol that uses biseparable
states at each round.

A detailed derivation of r∞
N−BB84(N, k) is presented in Ap-

pendix A. Moreover, in Appendix B, we show that the key
rate given in Eq. (8) is optimal for the family of states Eq. (7),
when the key is generated with measurements in the Z basis.

In Fig. 2 we plot the secret key rate, r∞
N−BB84(N, k), as a

function of the number of parties N for different values of the
number of entangled parties k. For comparison, we also plot
the key rate of a CKA protocol based on the concatenation
of multiple bipartite QKD protocols, in the noiseless scenario,
for a network with bottleneck [11]. In this case, Alice runs
N − 1 bipartite QKD protocols to establish a secret key with
each of the Bobs.

FIG. 2. Asymptotic secret key rate, r∞
N−BB84(N, k), for the family

of states ρ
(N,k)
AB1,...,BN−1

, Eq. (7), for the N-BB84 CKA protocol. The
curves (straight lines) represent different values of k (light grey:
from left to right, k = 2, k = 5, k = 10; dark grey: top, k = N − 1,
bottom, k = N

2 ). We also plot the key rate of CKA based on multiple
noiseless bipartite QKD protocols (dashed line), both as a function
of N. We remark that since k � N − 1, the curves for fixed k start at
different values of N .

Figure 2 shows that r∞
N−BB84 approaches 1 as N increases,

if k equals N − 1. Moreover, even in the case when only two
parties, Alice and one of the Bobs, are entangled in each term
of the mixture, a nonzero secret key can be obtained. How-
ever, for a fixed value of k, r∞

N−BB84 → 0 as N increases. The
comparison with the key rate of a concatenation of multiple
bipartite QKD protocols yields interesting results: while, on
one hand, no advantage can be obtained for k = 2, on the other
hand an advantage can be obtained in the regime of a k close
to N , with a marked advantage for high k.

To further analyze the advantage obtainable with the pre-
sented protocol compared to the concatenation of bipartite
QKD protocols, we evaluate the performance of the family
of states Eq. (7) in the presence of noise. We consider the case
where the qubit of each Bob undergoes a local depolarizing
channel D, where D[ρ] = (1 − p)ρ + p12 . We compare this
with a concatenation of bipartite QKD protocols that undergo
the same type of noise. Details of this analysis can be found
in Appendix C. Figure 3 illustrates the result for N=6. Even
in the noisy scenario, an advantage can be obtained in the low
noise regime and for k close to N .

Our results show that CKA without GME states is
possible. We remark that in Ref. [34] the authors have es-
tablished that GME is a necessary condition for a nonzero
key in a one-shot CKA protocol. This result, at first,
seems in contradiction to our findings, however, Ref. [34]
refers to the global input state, that for the class of pro-
tocols we consider would be ρ⊗n

AB1...BN−1
, where n is the

number of rounds. Since the set of biseparable states is
not closed under tensor product, the global input state
can be GME even if the single copy of the state is
biseparable. Here we focus on analyzing the entanglement
properties of the single copy of the states. This is because we
consider a class of protocols in which the states are distributed
and measured at each round, therefore, no storage or quantum
global operation on all the copies is required.
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FIG. 3. Plot of the asymptotic key rate of the N-BB84 protocol
for the state of Eq. (7) undergoing local depolarizing noise (solid
lines), as a function of the depolarizing channel parameter p, for fixed
N = 6 and different k: k = 4 (blue, left) and k = 5 (green, right). The
results are compared with the key rate of a concatenation of noisy
bipartite BB84 QKD protocols (red dashed line).

V. CKA AND ENTANGLEMENT WITNESSES

Theorem 1 provides us with a necessary condition to obtain
a nonzero key rate in a CKA protocol. We now want to extend
to the multipartite scenario the bipartite result presented in
Ref. [7]: no secret key can be extracted in a QKD protocol
unless Alice and Bob are able to witness entanglement in
the shared state using the measurements performed in the
protocol. An entanglement witness [31,35,36] is a Hermitian
operator W such that Tr(W σ ) � 0 for all separable states
σ and Tr(W ρ) < 0 for at least one entangled state ρ. This
definition of an entanglement witness is based on the fact
that the set of separable states is closed and convex, and can
thus be separated with a hyperplane from its complement
[35,37]. In the multipartite scenario, given the more intricate
structure of possible correlations, witnesses can be defined to
distinguish different classes of states [31]. We thus consider
the same approach of Ref. [[7], Theorem 1]: Starting from
the measurements performed by the parties, we analyze the
entanglement witnesses that can be constructed with them. We
obtain the following theorem.

Theorem 3. Given a CKA protocol in which the parties use
a set of local measurements, for the test and key generation
rounds, which are represented by the Positive Operator-
Valued Measures (POVMs) {Ga

x}, {Gb1
y1

}, . . . , {GbN−1
yN−1 }, where

a, b1, . . . bN−1 indicate the outputs of the measurements la-
beled by x, y1, . . . , yN−1, then one can obtain a nonzero
asymptotic conference key rate r∞ > 0 only if the presence of
entanglement can be proved across any partition of the parties
into two subsets.

Moreover, the presence of entanglement across each bipar-
tition can be verified through a set of entanglement witnesses
of the form

Wα =
∑

x,y1,...,yN−1
a,b1 ,...,bN−1

c(α)
x,y1,...,yN−1

a,b1 ,...,bN−1

Ga
x ⊗ Gb1

y1
⊗ · · · ⊗ GbN−1

yN−1
, (9)

A|BC B|AC

C|AB

GME

Linear witness

   Fully 
separable

FIG. 4. Schematic representation of the set of tripartite states,
adapted from Ref. [38]. In light blue (outer set) is represented the
set of GME states. In red (dark grey area) is highlighted the set of
biseparable states that are not separable with respect to any fixed
partition, whereas in yellow (light grey) are represented the sets
of states that are separable with respect to a fixed partition. In the
middle, in green, is represented the set of fully separable states. A
linear witness defines a hyperplane in the space of states. A nonzero
conference key rate can be seen as a nonlinear entanglement witness,
as it can detect states in the red area, i.e., outside a nonconvex set.

where α labels the partition Sα|S̄α with Sα being a proper
subset of the parties and S̄α is its complement, and where
c(α)

x,y1,...,yN−1
a,b1 ,...,bN−1

are real coefficients.

The proof is given in Appendix D Theorem 3 implies that
entanglement across any bipartition can be witnessed using
the statistics of results of the measurements specified by the
protocol, since the witness operators Wα are constructed from
the POVM elements of these measurements. Theorem 3, com-
bined with the results of the previous section, leads to the
following Corollary.

Corollary 3.1. The figure of merit r∞ > 0 is a nonlinear
entanglement witness, detecting the presence of entanglement
across any bipartition of the parties.

This corollary is due to the result of Theorem 3 in com-
bination with the examples presented in the previous section:
In fact, the union of all the sets of states that are separable
with respect to a specific partition is not a convex set and thus
cannot be separated by linear witnesses from its complement
[35] (see Fig. 4). Moreover, if a CKA protocol is performed
and a nonzero key rate is obtained, it is a necessary condition
that the state shared by the parties is not separable across any
partition of the parties. Therefore, a nonzero key rate reveals
that the state utilized in the protocol is outside of the union
of the sets of states that are separable with respect to a fixed
partition. Finally, the results of the previous section tell us that
non-GME states can also lead to a nonzero conference key,
thus allowing us to conclude that the witness cannot be linear,
hence the corollary.

VI. CONCLUSIONS

We addressed the question of whether GME is a necessary
resource for a CKA protocol. We proved that, surprisingly, the
parties can establish a conference key by sharing biseparable
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states in each round of the protocol. To show this, we exhibited
a family of suitable biseparable states, which lead to nonzero
key rates in the simple N-BB84 CKA protocol. We showed
that, in a network with bottleneck, the key rates achieved by
our family of states outperform protocols based on a con-
catenation of bipartite QKD, especially for high numbers of
entangled parties.

Furthermore, we related our results to the concept of en-
tanglement witnesses, showing that a nonzero asymptotic
conference key rate can only be obtained if one is able to
detect entanglement, across any partition, in the state shared
by the parties in each round of the CKA protocol. This extends
the result of Ref. [7] for bipartite QKD to the multipartite
scenario. As a consequence, we can infer that a nonzero
asymptotic conference key rate represents a nonlinear entan-
glement witness, which can detect a type of entanglement
that cannot be detected by the traditional linear entanglement
witnesses.

Given our results, several lines of research can follow. For
example, it is known that distillation of GHZ states starting
from biseparable states is possible [31]. Moreover, the GHZ
state can be used to generate a perfect conference key. It is an
open question whether the considered class of CKA protocols
is equivalent to the distillation of a GHZ state from bisepara-
ble states. Another open point is to establish converse bounds
on the key rates achievable by different classes of multipartite
entangled states for such simple CKA protocols. Finally, an
interesting topic for further investigation is the consequence
of our results for experimental implementations. An analysis
tailored to particular setups and noise models could determine
the payoff of using biseparable states to establish a conference
key.
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APPENDIX A: CONFERENCE KEY RATE OF THE N-BB84
PROTOCOL WITH THE FAMILY OF STATES ρ

(N,k)
AB1,...,BN−1

As a first step, we briefly sketch the N-BB84 protocol
introduced in Ref. [14]. The protocol consists of the following
steps:

(1) A source distributes a state to the N parties.
(2) The parties perform two type of measurements: For

the parameter estimation rounds, they make measurements
in the X basis. For the key generation rounds, they make
measurements in the Z basis.

(3) The parties compute the following parameters:

(a) Using the outcomes of the parameter estimation rounds
the parties compute

QX = 1 − 〈X ⊗N 〉
2

, (A1)

where 〈X ⊗N 〉 is the expectation value of the operator X for
each party. QX represents the probability that the parties
obtain an unexpected result from the parameter estimation
rounds.

(b) Using some of the outcomes of the key generation esti-
mation rounds, the parties compute

QABi = 1 − 〈ZABi〉
2

, (A2)

where 〈ZABi〉 is the expectation value of the operator Z for
Alice and Bob Bi. This parameter is computed for each Bob
and represents the probability that Alice and Bob Bi get a
discordant outcome in the key generation rounds.
(4) The asymptotic key rate is given by

r∞
N−BB84 = 1 − h(QX ) − max

i
h
(
QABi

)
, (A3)

where h(x) = −x log2(x) − (1 − x) log2(1 − x) is the binary
entropy.

To evaluate the performance of the family of states
ρ

(N,k)
AB1,...,BN−1

, Eq. (7), we need to evaluate the two parameters

QX and QABi . It can be straightforwardly seen that ρ
(N,k)
AB1,...,BN−1

,
for all N and k is invariant under the application of the X op-
erator on all parties. This implies 〈X ⊗N 〉 = 1 and thus QX = 0
for any N and k.

To calculate 〈ZABi〉, we remark that ρ
(N,k)
AB1,...,BN−1

is a mixture

of N = (N−1
k−1

)
terms, where each of these terms is a projector

onto the GHZ state shared by Alice and k − 1 Bobs, and
a projector onto the |+〉-state for the remaining Bobs. It is
straightforward to see that 〈ZABi〉 = 0 for the terms in which
Bob Bi is not entangled with Alice. On the other hand, the
terms in which Bob Bi shares part of the GHZ state with Alice
are invariant under the application of the Z operator on Alice
and Bob Bi, so we obtain 〈ZABi〉 = 1 for these terms. Overall,
the expectation value 〈ZABi 〉 reads

〈
ZABi

〉 = f

N = k − 1

N − 1
, (A4)

where f = (N−2
k−2

)
is the number of terms in which Bob Bi

shares part of a GHZ state with Alice. We remark that, due
to the symmetry of the state, this result holds for any Bob.
Thus, dropping the index i we obtain

QAB(N, k) = N − k

2(N − 1)
. (A5)

With further, straightforward calculations, we obtain

r∞
N−BB84(N, k) = 1 − h(QAB) = 1

2

N − k

N − 1
log2

(
N − k

N − 1

)

+ 1

2

N + k − 2

N − 1
log2

(
N + k − 2

N − 1

)
.

(A6)
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APPENDIX B: THE N-BB84 PROTOCOL IS OPTIMAL
FOR Z MEASUREMENTS

In this Appendix, we prove that the N-BB84 protocol is the
optimal protocol for the family of states ρ

(N,k)
AB1,...,BN−1

, when the
parties use the Z basis for key generation. We prove this by
analyzing the general class of protocol presented in the Intro-
duction of the paper, thus assuming full state characterization.
We show that the key rate of the N-BB84 protocol is identical
to the one obtained assuming full tomography of the states
ρ

(N,k)
AB1,...,BN−1

, thus proving that the N-BB84 protocol is optimal
for this family of states.

1. Conditional entropy H (X |E ) for the family
of states ρ

(N,k)
AB1,...,BN−1

Here we will calculate the conditional entropy H (X |E )
for a generalization of the family of states ρ

(N,k)
AB1,...,BN−1

, as we
consider states of the form

ρAB1,...,BN−1 =
∑

α
Sα∈S(k)

qα�GHZ,k
Sα

⊗
m

Bm∈S̄α

|+〉〈+|Bm , (B1)

where �GHZ,k
Sα

= |GHZ〉〈GHZ|Sα
is the projector of the GHZ

state shared by the parties of the subset Sα , defined as
|GHZ〉Sα

= 1√
2
(|0〉⊗k + |1〉⊗k ) and |+〉 = 1√

2
(|0〉 + |1〉). We

substituted 1
N with some general real coefficients qα such that

qα � 0 ∀α and
∑

α qα = 1.
We start the explicit calculation of the conditional entropy

H (X |E ) by writing a purification of the state in Eq. (B1). An
explicit valid purification of the state is given by

|ψAB1,...,BN−1E 〉 =
∑

α
Sα∈S(k)

√
qα|GHZ〉Sα

⊗
m

Bm∈S̄α

|+〉Bm |eα〉, (B2)

where {|eα〉}α is an orthonormal basis of Eve’s subsystem
of proper dimension. We thus look at the state after Alice
performs her measurements on the Pauli Z basis. We obtain
the following explicit expression of the state:

ρXB1,...,BN−1E =
∑
α,β

Sα ,Sβ ∈S(k)

1

2
√

qαqβ

⎛
⎝|0〉X 〈0|

⊗
Bm∈Iα,β

|0〉Bm〈0|
⊗

Br∈Ūα,β

|+〉Br 〈+|
⊗

Bt ∈Sα\Iα,β

|0〉Bt 〈+|
⊗

Bl ∈Sβ\Iα,β

|+〉Bl 〈0| ⊗ |eα〉〈eβ |

+ |1〉X 〈1|
⊗

Bm∈Iα,β

|1〉Bm〈1|
⊗

Br∈Ūα,β

|+〉Br 〈+|
⊗

Bt ∈Sα\Iα,β

|1〉Bt 〈+|
⊗

Bl ∈Sβ\Iα,β

|+〉Bl 〈1| ⊗ |eα〉〈eβ |
⎞
⎠, (B3)

where Iα,β = (Sα ∩ Sβ ) is the intersection and Uα,β = Sα ∪ Sβ the union between the subsets of the Bobs in Sα and Sβ , Ūα,β is the
complement of Uα,β , and ρXB1,...,BN−1E indicates the state after Alice’s measurement. We can then trace out all the Bobs, which
leaves us with Alice and Eve’s reduced state in the form

ρXE =
∑
α,β

1

2

√
qαqβ

2k−sα,β
|0〉X 〈0| ⊗ |eα〉〈eβ | +

∑
α,β

1

2

√
qαqβ

2k−sα,β
|1〉X 〈1| ⊗ |eα〉〈eβ |

=
∑
α,β

Eα,β

1

2
(|0〉X 〈0| + |1〉X 〈1|)| ⊗ |eα〉〈eβ |

= 1X

2
⊗ ρE , (B4)

where sα,β is the cardinality of Iα,β , where we defined Eα,β =
√

qαqβ

2k−sα,β
in the second line of the equation and where ρE =∑

α,β Eα,β |eα〉〈eβ | is Eve’s reduced state. Finally, since ρXE is a product state, we can use Property 1 of the conditional entropy
to write H (X |E ) = H (X ) = 1, thus concluding the proof.

2. Conference key rates for the family of states ρ
(N,k)
AB1,...,BN−1

We now evaluate the analytical expression for the asymptotic key rate for the family of biseparable states ρ
(N,k)
AB1,...,BN−1

, given
by Eq. (7) in the main text. We recall that the number of terms in the convex combination is equal to the number of subsets of
cardinality k − 1 within the N − 1 Bobs, which is equal to N = (N−1

k−1

)
, and that we consider all the coefficients to be equal to

qα = 1
N .

To calculate the asymptotic key rate, since H (X |E ) = 1, as proven in Sec. B 1, we need to evaluate the leakage H (X |Yi ) ∀ Bobi

which, with our choice of coefficients, will be equal for all the Bobs. We thus calculate the reduced density matrix of Alice and
Bobi after they perform the key generation measurements, ρXYi , to estimate the leakage term. Tracing out all the Bobs except
one and performing the measurements both on Bobi and Alice’s side gives us the state

ρXYi = 1

2

f

N (|0〉X 〈0| ⊗ |0〉Yi〈0| + |1〉X 〈1| ⊗ |1〉Yi〈1|) +
(

1 − f

N

)
1XYi

4
, (B5)
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where f is the number of terms in which Bobi is entangled with Alice in the original state. The number f can be expressed in
term of k and N as f = (N−2

k−2

)
. Thus the reduced density matrix in the computational basis has the form

ρXYi =

⎡
⎢⎢⎣

1
4 (1 + CN,k ) 0 0 0

0 1
4 (1 − CN,k ) 0 0

0 0 1
4 (1 − CN,k ) 0

0 0 0 1
4 (1 + CN,k )

⎤
⎥⎥⎦, (B6)

where CN,k = f
N = k−1

N−1 . Note that the reduced density matrix of Bobi after the measurement is ρYi = 1Yi
2 . We therefore obtain

r∞(N, k) = 1 − H (XYi ) + H (Yi )

= 1

2

N − k

N − 1
log2

(
N − k

N − 1

)
+ 1

2

N + k − 2

N − 1
log2

(
N + k − 2

N − 1

)
. (B7)

The key rate obtained with this method is equivalent to
Eq. (A6), thus proving that the N-BB84 protocol is optimal
for Z-basis measurements for the key generation rounds.

APPENDIX C: NOISE ANALYSIS
FOR THE N-BB84 PROTOCOL

In this Appendix, we consider a noise model for the
N-BB84 protocol with the family of states ρ

(N,k)
AB1,...,BN−1

and
compare its performance with a concatenation of bipartite
QKD protocols between Alice and N − 1 Bobs, where all the
channels between Alice and the Bobs are noisy. For a fair
comparison, we thus consider local depolarizing noise. This
corresponds to applying the map

D[ρ] = (1 − p)ρ + p12 (C1)

to each of the Bobs. The state we will consider will thus be

ρnoise
AB1,...,BN−1

= D⊗(N−1)
[
ρ

(N,k)
AB1,...,BN−1

]
. (C2)

In this scenario, the parameters of the N-BB84 protocol can
be analytically evaluated and read

Qx = 1 − (1 − p)N−1

2
, (C3)

QAB = N − 1 − (1 − p)(k − 1)

2(N − 1)
, (C4)

where, again, we dropped the index i since, due to the sym-
metry of the state, all QABi are equal. We thus can evaluate
analytically the key rate for the N-BB84 protocol, which reads

r∞
N−BB84(N, k, p)

= 1

2
(1 − (1 − p)N−1) log2 (1 − (1 − p)N−1)

+ 1

2
(1 + (1 − p)N−1) log2 (1 + (1 − p)N−1)

+ N − 1 − (1 − p)(k − 1)

2(N − 1)

× log2

(
N − 1 − (1 − p)(k − 1)

2(N − 1)

)

+ N−1+(1−p)(k−1)

2(N−1)
log2

(
N−1+(1−p)(k−1)

2(N−1)

)
.

(C5)

We compare it with the scenario where Alice performs
a bipartite BB84 protocol with each of the Bobs, sharing
a maximally entangled state mixed with white noise, as in
Eq. (C1). The resulting key rate of a concatenation of bipartite
BB84 protocols reads [3,11]

r∞
QKD(N ) = 1 − 2h

( p
2

)
N − 1

, (C6)

where we divide the key rate of the bipartite BB84 protocol
in the presence of white noise by the number of times Alice
must perform the bipartite protocol to establish a secure key
with each of the N − 1 Bobs. The results are shown in Fig. 5.
We can see that for some regimes, the N-BB84 protocol
outperforms a concatenation of bipartite QKD protcols: For
a low number of parties, we can obtain a marked advantage
for k close to N in the low noise regime. Moreover, increasing
the number of parties increases the advantage obtained and
the range of k for which we can obtain it. However, we note
that the N-BB84 protocol has a lower noise tolerance than the
concatenation of bipartite QKD protocols, and thus for high
noise regimes the latter is always preferred.

APPENDIX D: PROOF OF THEOREM 3

We give here the full proof of Theorem 3. For complete-
ness, we repeat the statement of the theorem.

Theorem 3. Given a CKA protocol in which the par-
ties use a set of local measurements, for the test and key
generation rounds, which are represented by the POVMs
{Ga

x}, {Gb1
y1

}, . . . , {GbN−1
yN−1 }, where a, b1, . . . bN−1 indicate the

outputs of the measurements labeled by x, y1, . . . , yN−1, then
one can obtain a nonzero asymptotic conference key rate
r∞ > 0 only if the presence of entanglement can be proved
across any partition of the parties.

Moreover, the presence of entanglement across each parti-
tion can be verified through a set of entanglement witnesses
of the form

Wα =
∑

x,y1,...,yN−1
a,b1 ,...,bN−1

c(α)
x,y1,...,yN−1

a,b1 ,...,bN−1

Ga
x ⊗ Gb1

y1
⊗ · · · ⊗ GbN−1

yN−1
, (D1)

where α labels the partition Sα|S̄α with Sα being a proper
subset of the parties and S̄α is its complement, and where
c(α)

x,y1,...,yN−1
a,b1 ,...,bN−1

are real coefficients.
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FIG. 5. Left panel: Plot of the asymptotic key rate of the N-BB84 protocol for the state of Eq. (C2) (solid lines) as a function of p, for
fixed N = 6 and different k: k = 4 (blue, left) and k = 5 (green, right). The results are compared with the key rate of a concatenation of BB84
QKD protocols, given in Eq. (C6) (red dashed line), for N = 6, as a function of p. Right panel: Plot of the asymptotic key rate of the N-BB84
protocol for the state of Eq. (C2) (solid lines) as a function of p, for a fixed value of N = 13 and different values of k: k = 7 (blue, left), k = 9
(green, middle) and k = 11 (black, right). The results are compared with the key rate of a concatenation of BB84 QKD protocols, given in
Eq. (C6) (red dashed line), for N = 13, as a function of p.

proof. We start by focusing on the probability distri-
bution of the outcomes a, b1, . . . , bN−1 given the inputs
x, y1, . . . , yN−1 of the measurements that can be performed
in the test and key generation rounds of the CKA protocol,
namely, P(a, b1, . . . , bN−1|x, y1, . . . , yN−1). The probability
distributions are obtained as

P(a, b1, . . . , bN−1|x, y1, . . . , yN−1)

= Tr
(
Ga

x ⊗ Gb1
y1

⊗ · · · ⊗ GbN−1
yN−1

ρAB1...BN−1

)
, (D2)

where Ga
x , Gbi

yi
are the POVM elements of the measurements

performed by Alice and Bobi, respectively.
We analyze the map that maps each state into the corre-

sponding probability distribution, given the measurements of
the protocol, that is,

�CKA : ρAB1...BN−1 
→ {P(a, b1, . . . , bN−1|x, y1, . . . , yN−1)}.
(D3)

Considering a subset of the Hilbert space, namely, 	, we
call 	� the projection of the subset 	 through the map
�CKA, defined as in Eq. (D2). We now denote the set of
states separable across the partition Sα|S̄α as 	α . We note that
	α is a closed and convex set. Furthermore, the projection

of the set 	α through the linear map �CKA, namely, 	�
α is

still a closed and convex set. The elements of the projected
set represent the probability distributions that come from
states that are separable across the partition Sα|S̄α . Due to
Theorem 1, a necessary condition to obtain a nonzero key rate
is that the state is not separable with respect to any partition.
This implies that, given a state ρ∗

A,B1,...,BN−1
that leads to a

nonzero key rate in a specific protocol, the corresponding
probability distribution P∗(a, b1, . . . , bN−1|x, y1, . . . , yN−1)
is such that P∗(a, b1, . . . , bN−1|x, y1, . . . , yN−1) /∈ 	�

α ∀α.
Moreover, since each 	�

α is a convex and compact set, it is
a well-known fact that each element of its complement 	̄�

α

can be separated from 	�
α with a proper hyperplane [35,37].

In the probability space, any hyperplane can be defined as∑
x,y1,...,yN−1

a,b1 ,...,bN−1

cx,y1,...,yN−1
a,b1 ,...,bN−1

P(a, b1, . . . , bN−1|x, y1, . . . , yN−1) = 0,

(D4)
where cx,y1,...,yN−1

a,b1 ,...,bN−1

are real coefficients. Fur-

thermore, for each probability distribution
P∗(a, b1, . . . , bN−1|x, y1, . . . , yN−1) /∈ 	�

α ∀α, we can find,
for each partition Sα|S̄α , coefficients c(α)

x,y1,...,yN−1
a,b1 ,...,bN−1

, defining

hyperplanes such that

∀Pα (a, b1, . . . , bN−1|x, y1, . . . , yN−1) ∈	�
α

∑
x,y1,...,yN−1

a,b1 ,...,bN−1

c(α)
x,y1,...,yN−1

a,b1 ,...,bN−1

Pα (a, b1, . . . , bN−1|x, y1, . . . , yN−1) � 0 and

for P∗(a, b1, . . . , bN−1|x, y1, . . . , yN−1) /∈	�
α ∀α,

∑
x,y1,...,yN−1

a,b1 ,...,bN−1

c(α)
x,y1,...,yN−1

a,b1 ,...,bN−1

P∗(a, b1, . . . , bN−1|x, y1, . . . , yN−1) < 0. (D5)

Finally, the coefficients define a set of entanglement witnesses
in the form

Wα =
∑

x,y1,...,yN−1
a,b1 ,...,bN−1

c(α)
x,y1,...,yN−1

a,b1 ,...,bN−1

Ga
x ⊗ Gb1

y1
⊗ · · · ⊗ GbN−1

yN−1
, (D6)

such that, due to Eq. (D5), for each α:

Tr(Wασα ) � 0 , ∀σα ∈ 	α

Tr
(
Wαρ∗

A,B1,...,BN−1

)
< 0. (D7)
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As a matter of fact, Eq. (D7) tells us that the operator
Wα is an entanglement witness [31,35] that detects entangle-

ment across partition Sα|S̄α . This concludes the proof of the
theorem.
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Twin-field quantum key distribution (TFQKD) enables two distant parties to establish a shared secret
key, by interfering weak coherent pulses (WCPs) in an intermediate measuring station. This allows
TFQKD to reach greater distances than traditional QKD schemes and makes it the only scheme capa-
ble of beating the repeaterless bound on the bipartite private capacity. Here, we generalize TFQKD to the
multipartite scenario. Specifically, we propose a practical conference key agreement protocol that only
uses WCPs and linear optics and prove its security with a multiparty decoy-state method. Our protocol
allows an arbitrary number of parties to establish a secret conference key by single-photon interference,
enabling it to overcome recent bounds on the rate at which conference keys can be established in quantum
networks without a repeater.

DOI: 10.1103/PhysRevApplied.19.064017

I. INTRODUCTION

Quantum key distribution (QKD) allows two parties to
take advantage of quantum mechanical properties to share
a common secret key with information-theoretic security.
In the past decades, QKD developed at an increasingly
high pace and today represents one of the most mature
applications of quantum information science, both in terms
of theoretical development and experimental implemen-
tation [1,2]. More recently, in view of building quantum
communication networks, a lot of effort has been put into
generalizing QKD to the multipartite scenario with con-
ference key agreement (CKA) [3–9], which has already
seen the first experimental implementations [10,11]. CKA
exploits the correlations offered by multipartite entangle-
ment to deliver the same conference key to a set of parties
and it has recently been extended to guarantee anonymity
of the communicating parties in a larger network [12–14].

However, CKA protocols are faced with the difficulty
of establishing multipartite entanglement over large dis-
tances, limiting their applicability in real-world scenarios.
In particular, most of the protocols proposed so far exploit
Greenberger-Horne-Zeilinger (GHZ) correlations, which
are known to be difficult to distribute at large distances
[3–8].

In the bipartite case, a variant of QKD, named twin-
field QKD (TFQKD) [15–19], enables two parties to share
keys at much longer distances than most other QKD pro-
tocols. The founding idea of TFQKD [17–19] consists in
a measurement-device independent (MDI) scheme where

*federico.grasselli@hhu.de

a single photon sent by either of the parties interferes in
an intermediate untrusted relay, thus halving the commu-
nication distance. This enables TFQKD to beat the well-
known repeaterless Pirandola-Laurenza-Ottaviani-Banchi
(PLOB) bound on the secret key capacity [20] (see also
Refs. [21,22] for other preliminary bounds), as demon-
strated by several experiments [23–33].

In an effort to extend the range of CKA, Ref. [34] intro-
duces a CKA protocol based on single-photon interference
that is inspired by the TFQKD setup. This protocol, how-
ever, is highly unpractical as it requires each party to
entangle solid-state qubits with the optical signals sent to
the relay. Moreover, each party must store their qubit until
the relay announces the interference outcome and then
measure the qubit accordingly.

Alternatively, more practical generalizations of TFQKD
were devised in Refs. [8,35–37], where the parties are
only required to send weak coherent pulses or interfere
the pulses with linear optics. However, the protocols in
Refs. [35–37] are not MDI and, what is more, are lim-
ited to tripartite configurations and cannot be scaled to an
arbitrary number of parties.

In this work, we introduce an MDI CKA protocol that
does not present such drawbacks. Our protocol can be real-
ized using only weak coherent pulses interfered with linear
optics at an untrusted relay and allows an arbitrary num-
ber of parties to establish a conference key. In particular,
our protocol postselects correlations belonging to W-class
states [38] through single-photon interference, indepen-
dently of the number of parties. This enables our CKA
protocol to operate at much higher losses than previous
CKA schemes, which require either the simultaneous

2331-7019/23/19(6)/064017(37) 064017-1 © 2023 American Physical Society
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distribution of photonic multipartite entangled states [3–
5,10,11] or the postselection of GHZ-type correlations
[6–8].

We prove the security of our protocol against collec-
tive attacks in the asymptotic regime by developing a
multiparty decoy-state analysis [39–41], through which
we derive analytical upper bounds on multipartite yields.
We simulate the performance of our protocol with a real-
istic channel model that accounts for photon loss, dark
counts in the detectors as well as phase and polarization
misalignment.

Furthermore, we benchmark the protocol’s conference
key rate with recent upper bounds that apply to arbitrary
quantum networks, namely the single-message multicast
bound derived in Ref. [42], adopting a similar approach
used to benchmark bipartite TFQKD setups. In partic-
ular, we consider network architectures where the relay
is removed and compute their single-message multicast
bounds. Our simulations show that our CKA protocol can
overcome such bounds for certain noise regimes and num-
ber of parties, thus paving the way for long-distance CKA
in quantum networks.

The paper is structured as follows. In Sec. II we describe
our CKA protocol and in Sec. III we prove its security.
In Sec. IV we detail our multipartite decoy-state method.
We simulate the protocol’s performance in Sec. V and con-
clude in Sec. VI. Appendix A describes the optical setup in
the untrusted relay. In Appendix B we draw the connection
between our protocol and the correlations of W states. The
analytical upper bounds on multipartite yields are derived
in Appendix C. Appendix D contains details on the channel
model and related calculations, while Appendix E provides
details on the numerical simulations.

II. PROTOCOL

In this section we present our CKA protocol based on
single-photon interference, which is schematically repre-
sented in Fig. 1. We limit the description to the asymptotic
regime, where the effects due to finite detection statistics
are negligible.

In the following, the symbol �v stands for the binary rep-
resentation of the integer v, with components vi ∈ {0, 1},
and |�v| is the Hamming weight of the vector �v.

The CKA protocol is run by N parties, which we denote
A0, A1, . . . , AN−1.

Protocol 1 (CKA protocol)
1. Quantum state distribution and measurement: repeat

the following steps a sufficiently large number of times.
1.1. Each party Ai prepares an optical mode ai in a state

that depends on whether the round is labeled as a PE round
or KG round (the type of round could be predetermined,
e.g., by a short preshared key held by every party [4,5]).
In a PE round, they prepare a phase-randomized coherent

RKG

RKG
RPE

RKG
RPERPE

FIG. 1. Schematic representation of our CKA protocol. In a
key generation (KG) round, each party sends one of two coher-
ent states |±αi〉 at random. In a parameter estimation round (PE),
they send a phase-randomized coherent state (PRCS). In an hon-
est implementation of the protocol, the relay combines the signals
from each party with a beam-splitter network with M inputs and a
threshold detector at each of the M outputs (see Fig. 2 for the case
M = 4 and Appendix A for general M ). The relay announces the
detection pattern �k = (k0, k1, . . . , kM−1).

state (PRCS):

ρai(βi) = e−βi

∞∑

n=0

βn
i

n!
|n〉〈n|, (1)

where the intensity βi of the coherent state is chosen at ran-
dom from a finite set Si and where |n〉 is a Fock state. They
record the intensity βi. In a KG round, each party Ai pre-
pares the coherent state |xiαi〉ai for a fixed αi ∈ R, where
xi = ±1 is randomly chosen. They record the outcome xi.

1.2. Every party sends their optical pulse to an untrusted
relay through an insecure channel.

1.3. The untrusted relay performs an arbitrary opera-
tion on the N optical signals and announces the pattern
�k ∈ {0, 1}M , with M ≥ N . [In an honest implementation
of the protocol, kj = 1 (kj = 0) corresponds to a click (no
click) in threshold detector Dj .] The round gets discarded
if |�k| �= 1 and we label �j the event where kj = 1 and
k�=j = 0.

2. Parameter estimation: the parties partition their out-
comes and intensities in M sets, where each set corre-
sponds to the event �j (for j = 0, . . . , M − 1). For each
partition, the parties reveal a fraction of their outcomes
in order to estimate the probabilities Pr(�j |x0, xi, RKG)

that event �j occurs in a KG round, given that par-
ties A0 and Ai prepared coherent states |x0α0〉 and |xiαi〉,
respectively. With the estimated probabilities, the parties
calculate the quantum bit error rate (QBER) with respect
to reference party A0, for every party pair and every parti-
tion (Qj

X0,Xi
).Similarly, for each partition the parties reveal

the intensities βi used in the PE rounds and estimate the
so-called gains, Gj

β0,...,βN−1
:= Pr

(
�j |β0, . . . ,βN−1

)
, i.e.,
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the probability of the event �j in a PE round, given
that the parties prepared PRCSs in Eq. (1) with intensi-
ties β0, . . . ,βN−1, respectively. Using the gains, the parties
compute an upper bound (Q

j
Z) on the phase error rate (Qj

Z)
of the protocol.

3. Classical postprocessing: the parties extract a secret
conference key from the remaining (undisclosed) KG out-
comes. To do so, for each partition labeled by �j , party
Ai flips their outcomes xi when (−1)�j ·�i = −1. The parties
then perform error correction and privacy amplification.
The asymptotic conference key rate of the protocol is

r =
M−1∑

j =0

Pr(�j |RKG)

[
1 − h(Q

j
Z)− max

i≥1
h(Qj

X0Xi
)

]
, (2)

where h(x) = −x log2(x)− (1 − x) log2(1 − x) is the
binary entropy and where Pr(�j |RKG) = (1/4)

∑
x0,xi=±1

Pr(�j |x0, xi, RKG) is the probability of event �j in a KG
round.

We prove the security of the CKA protocol in Sec. III.
We remark that the security holds for any implementation
of the quantum channels and of the relay, as far as the relay
announces a pattern in every round.

In an honest implementation of the protocol, the opti-
cal signals are sent through potentially noisy and lossy
channels to the relay, where they interfere in a balanced
beam-splitter (BBS) network of M inputs and M outputs,
with M ≥ N and M being a power of 2. The BBS net-
work for M = 4 is depicted in Fig. 2, while the structure
for generic M is reported in Appendix A. We note that the
total number of beam splitters required by the BBS net-
work scales favourably with the number N of parties, as
O(N log2 N ). The network transforms the input modes (â†

i )
in a balanced combination of the output modes (d̂†

j ), i.e.,

â†
i → 1√

M

M−1∑

j =0

(−1)�j ·�id̂†
j . (3)

We point out that a setup designed with M inputs can be
used by any number of parties N ≤ M , by simply pair-
ing the modes of the N parties with M − N additional
modes in the vacuum state. However, it is worth noting
that adding unused ports in the BBS network introduces
unwanted noise and may reduce the performance of the
protocol. Then, the relay measures each output mode dj
with a threshold detector Dj , for j = 0, . . . , M − 1, and
announces the detection pattern �k ∈ {0, 1}M , where kj = 1
if detector Dj clicked and kj = 0 otherwise. The round is
retained only when exactly one detector clicks (event �j
for some j ).

In the following, we provide the formulas to compute
the QBER (Qj

X0,Xi
) and the upper bound on the phase error

FIG. 2. BBS network for M = 4 inputs, which can be used by
N = 2, N = 3, and N = 4 parties. We indicate the input modes
with â†

i and the output modes with d̂†
i , for i = 0, 1, 2, 3. The net-

work for a general number of inputs (M = 2s) is described in
Appendix A.

rate (Q
j
Z). The QBER is defined for every pair of parties

(A0, Ai) and for every partition labeled by �j , as follows:

Qj
X0,Xi

= Pr(X0 �= (−1)�j ·�iXi|�j , RKG), (4)

where Xi is the binary random variable with outcomes xi =
±1. The QBER is computed through Bayes’ theorem:

Qj
X0,Xi

=
∑

x0 �=(−1)�j ·�ixi

Pr
(
�j |x0, xi, RKG

)

4 Pr(�j |RKG)
. (5)

The computation of the upper bound on the phase error
rate is more involved. Indeed, it requires the derivation of
upper bounds on quantities called yields and defined as

Yj
n0,...,nN−1

:= Pr(�j |n0, . . . , nN−1), (6)

i.e., the probability of the event �j given the hypothetical
scenario where the parties send Fock states with photon
numbers n0, . . . , nN−1. In Eq. (34), we provide analytical
upper bounds (Y

j
n0,...,nN−1

) on the yields as a function of

the estimated gains Gj
β0,...,βN−1

. Then, one can compute the
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upper bound on the phase error rate as follows:

Q
j
Z = 1

Pr(�j |RKG)

∑

v∈V

⎛
⎝

∑

n0+···+nN−1≤n

×
N−1∏

i=0

c(vi)
i,ni

√
Y

j
n0,...,nN−1

+�v,n

)2

, (7)

where n is a positive even number, while the set V ,
the coefficients c(vi)

i,ni
and the quantity �v,n are defined as

follows:

V = {
v ∈ {0, 2N − 1} : |�v| mod 2 = 0

}
, (8)

c(l)i,n =
{

e−α2
i /2

αn
i√
n!

if n + l is even

0 if n + l is odd
(9)

�v,n =
∑

n0+···+nN−1≥n+2

N−1∏

i=0

c(vi)
i,ni

. (10)

The full derivation of the upper bound (7) on the phase
error rate is provided Sec. III.

We remark that the protocol presented here uses the cor-
relations of postselected W-like states to obtain a secret
conference key. In Appendix B we clarify the connection
between the correlations generated in the CKA protocol
and the W state. Moreover, we note that, for two par-
ties (N = 2), our protocol reduces to the TFQKD protocol
introduced in Ref. [17] (see Appendix A).

III. SECURITY PROOF

Here we prove the security of the CKA protocol pre-
sented in Sec. II under the assumption of collective attacks.

Theorem 1.—The CKA protocol (Protocol II), under col-
lective attacks by the eavesdropper and in the asymptotic
limit, generates a conference key with rate r, given by
Eq. (2).

Proof.—In the asymptotic limit and under collective
attacks, the achievable conference key rate r of a CKA pro-
tocol with one-way reconciliation is lower bounded by the
following [9]:

r ≥ H(X0|E)− max
i≥1

H(X0|Xi), (11)

where H(X0|E) (H(X0|Xi)) is the von Neumann (Shannon)
entropy of the KG outcome of reference party A0, condi-
tioned on the eavesdropper’s total side information (party
Ai’s KG outcome), and it is evaluated on the state shared
by the parties in a KG round. Note that the probability of
a KG round is set to one in Eq. (11), since, asymptotically,
the fraction of PE rounds becomes negligible.

In the case of our protocol, we postselect the KG rounds
where event �j occurred and discard all the other rounds.
And for each event �j , we independently extract a confer-
ence key. Hence, the asymptotic conference key rate of the
whole protocol is bounded by

r ≥
M−1∑

j =0

Pr(�j |RKG)

[
H(X0|E)�j − max

i≥1
H(X0|Xi)�j

]
,

(12)

where the entropies are computed on the state shared by
the parties in a KG round, conditioned on event �j .

Recall that, in an honest implementation, �j cor-
responds to the event where only detector Dj clicks.
Although our proof holds regardless of the physical details
associated to the event �j , in the following we often refer
to �j in terms of detector clicks for concreteness.

The second term in Eq. (12) is the conditional Shan-
non entropy between the KG outcomes of parties A0 and
Ai, when only detector Dj clicked. Thus, it can be readily
bounded through Fano’s inequality with the corresponding
QBER in Eq. (4) as follows:

H(X0|Xi)�j ≤ h(Qj
X0,Xi

). (13)

In order to lower bound the first conditional entropy in
Eq. (12), we employ the entropic uncertainty relation [43].
To apply the uncertainty relation, we need to view the out-
come X0 corresponding to the coherent state prepared by
party A0 as the result of a fictitious measurement. To this
aim, we consider an equivalent formulation of the protocol
where each party, in a KG round, first prepares the fol-
lowing entangled state between their optical mode ai and a
virtual qubit Qi:

|ψi〉Qiai = 1√
2

(|+〉Qi |αi〉ai + |−〉Qi |−αi〉ai

)
, (14)

where |±〉 = (|0〉 ± |1〉)/√2, and then measures their
qubit in the X basis. Note that, from the eavesdropper’s
point of view, the fictitious protocol is completely equiva-
lent to the actual protocol, even in the case that the parties
delay their X -basis measurement until after the relay’s
announcement. This allows us to consider the state of the
N qubits and optical modes, conditioned on detector Dj
clicking in a KG round, prior to the X -basis measurements.
The state reads

|χj 〉Q0Q1...QN−1E :=
K̂j

(⊗N−1
i=0 |ψi〉Qiai

)

√
Pr(�j |RKG)

, (15)

where K̂j is the Kraus operator [44] that models the
action of the untrusted relay, i.e., the eavesdropper, when
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it announces the event �j . The operator K̂j acts between
the Fock space of optical modes a0 . . . aN−1 and a generic
Hilbert space HE , i.e., K̂j : Ha0 ⊗ · · · ⊗ HaN−1 → HE .

We remark that, due to the assumption of collective
attacks, the operator K̂j remains the same in every KG and
PE round. Nevertheless, due to the partial distinguishabil-
ity of the states prepared in KG and PE rounds, K̂j could
model the attempt to guess the type of round followed by
an operation, which is specific to KG and PE rounds. This
implies that, in general, Pr(�j |RKG) �= Pr(�j |RPE).

With the pure state in Eq. (15), we can apply the entropic
uncertainty relation by considering the hypothetical sce-
nario where party A0 performs either an X -basis or a
Z-basis measurement on their qubit. We thus obtain the
following lower bound on the first entropy in Eq. (12):

H(X0|E)�j ≥ 1 − H(Z0|Q1 . . .QN−1)�j , (16)

where both conditional entropies are computed on the state
(15). We then derive an upper bound on the entropy on the
right-hand side of Eq. (16) by using the fact that quantum
maps on the conditioning systems can only increase the
entropy [45]:

H(Z0|Q1 · · · QN−1)�j ≤ H(Z0|
N−1∏

i=1

Zi)�j

≤ h(Qj
Z). (17)

In the second line, we use Fano’s inequality and the
definition of phase error rate:

Qj
Z = Pr(

∏N−1

i=0
Zi = 1|�j , RKG), (18)

which expresses the probability that, in the hypotheti-
cal scenario where each party measures in the Z basis
their virtual qubit, the product of the outcomes is one. By
employing Eqs. (13) and (17) in Eq. (12), we obtain the fol-
lowing expression for the asymptotic conference key rate
of our CKA protocol:

r ≥
M−1∑

j =0

Pr(�j |RKG)

[
1 − h(Qj

Z)− max
i≥1

h(Qj
X0Xi

)

]
. (19)

To complete the security proof, we still need to bound the
phase error rate (Qj

Z) with the statistics collected by the
parties in the PE rounds. The derivation of the bound is
inspired by the security proof in Ref. [17] for a bipartite
TFQKD protocol.

By definition (18), the phase error rate is the probability
that an even number of parties obtains −1 as the outcome
of their Z-basis measurement, in the hypothetical scenario
in which all parties measured their virtual qubit in the Z

basis in a KG round and detector Dj clicks. Through the
N -qubit state (15), which describes the state of the virtual
qubits in a KG round conditioned on the click of detector
Dj , we are able to express the phase error rate as follows:

Qj
Z =

∑

v∈V

∥∥∥〈�v|Q0...QN−1
|χj 〉

∥∥∥
2

, (20)

where the set V is defined in Eq. (8), i.e., the set of binary
strings with parity zero. In order to bound the expres-
sion in Eq. (20), we observe that, for l = 0, 1, we have
Qi 〈l|ψi〉Qiai

= |C(l)i 〉ai
, where |C(l)i 〉ai

are unnormalized “cat
states”:

|C(l)i 〉ai
= |αi〉 + (−1)l |−αi〉

2
=

∞∑

n=0

c(l)i,n |n〉ai , (21)

with c(l)i,n defined in Eq. (9). By employing the states in
Eq. (21), we can derive an upper bound on each term in
the sum of Eq. (20) as follows:

Pr(�j |RKG)

∥∥∥〈�v|Q0...QN−1
|χj 〉

∥∥∥
2

=
∥∥∥∥∥K̂j

N−1⊗

i=0

|C(vi)
i 〉ai

∥∥∥∥∥

2

=
∥∥∥∥∥∥

∞∑

n0,...,nN−1=0

K̂j

N−1⊗

i=0

c(vi)
i,ni

|ni〉
∥∥∥∥∥∥

2

≤
⎛
⎝

∞∑

n0,...,nN−1=0

∥∥∥∥∥K̂j

N−1⊗

i=0

c(vi)
i,ni

|ni〉
∥∥∥∥∥

⎞
⎠

2

=
⎛
⎝

∞∑

n0,...,nN−1=0

N−1∏

i=0

c(vi)
i,ni

√
Yj

n0,...,nN−1

⎞
⎠

2

, (22)

where we use the fact that K̂j acts only on the optical sys-
tems in the first equality and the triangle inequality in the
third line. Moreover, we identified

∥∥∥K̂j |n0〉a0 . . . |nN−1〉aN−1

∥∥∥
2

= Pr
(
�j |n0, . . . , nN−1

)

=: Yj
n0,...,nN−1

, (23)

as the yields. We derive an upper bound on the phase
error rate by employing the inequality (22) in Eq. (20). We
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obtain

Qj
Z ≤ Q

j
Z = 1

Pr(�j |RKG)

∑

v∈V

⎛
⎝

∞∑

n0,...,nN−1=0

×
N−1∏

i=0

c(vi)
i,ni

√
Yj

n0,...,nN−1

)2

, (24)

where the set V is given in Eq. (8) and the coefficients c(vi)
i,ni

are given in Eq. (9).
The bound in Eq. (24) is not yet sufficient to obtain

a computable lower bound on the key rate (19) of our
CKA protocol, i.e., an expression that can be evaluated
from the observed statistics. Indeed, the yields in Eq. (24)
are not directly observed and must be estimated through a
multipartite decoy-state method.

From the detection statistics of PE rounds, the par-
ties can estimate the gains. By recalling that, under the
assumption of collective attacks, the Kraus operator K̂j
corresponding to the event �j is the same in every round,
we can express the gains as follows:

Gj
β0,...,βN−1

=
∞∑

n0,...,nN−1=0

Tr

[
K̂j

N−1⊗

i=0

e−βi
β

ni
i

ni!
|ni〉 〈ni| K̂†

j

]

=
∞∑

n0,...,nN−1=0

N−1∏

i=0

Pβi(ni)Tr

[
K̂j

N−1⊗

i=0

|ni〉 〈ni| K̂†
j

]

=
∞∑

n0,...,nN−1=0

N−1∏

i=0

Pβi(ni)Yj
n0,...,nN−1

, (25)

where we use Eq. (23) in the last equality and defined the
Poisson distribution Pλ(n) = e−λλn/n!. The last expres-
sion links the observed gains to the yields and forms the
basis of our multipartite decoy-state method, which we
detail in Sec. IV. Our method allows us to obtain analytical
upper bounds Y

j
n0,...,nN−1

on any yield.
Although our method is general and works for any

choice of photon numbers n0, . . . , nN−1, in practice it is
not necessary to bound every yield appearing in Eq. (24)
with a nontrivial upper bound. This is because the product
of the coefficients defined in Eq. (9) satisfies

N−1∏

i=0

c(vi)
i,ni

�= 0 ⇐⇒ ntot :=
N−1∑

i=0

ni is even. (26)

Therefore, the only yields contributing to the phase error
rate upper bound in Eq. (24) are those with ntot =
0, 2, 4, . . . and so on. Moreover, the product of the coef-
ficients rapidly decreases with ntot, implying that it is

sufficient to nontrivially bound only the yields correspond-
ing to the first few values of ntot, while the rest of the yields
can be bounded by one.

With the yields’ bounds, we can further bound the quan-
tity in Eq. (24) and obtain the following upper bound on
the phase error rate:

Qj
Z ≤ Q

j
Z = 1

Pr(�j |RKG)

∑

v∈V

⎛
⎝

∑

n0+···+nN−1≤n

×
N−1∏

i=0

c(vi)
i,ni

√
Y

j
n0,...,nN−1

+�v,n

)2

, (27)

where Y
j
n0,...,nN−1

are the nontrivial bounds derived in
Sec. IV and�v,n is the residual term obtained by bounding
by one all the remaining yields. We have

�v,n =
∑

n0+···+nN−1≥n+2

N−1∏

i=0

c(vi)
i,ni

, (28)

where n is an even number.
By employing Eq. (27) in Eq. (19), we recover the com-

putable lower bound on the conference key rate in Eq. (2).
This concludes the security proof. �

As a final remark, we stress that the assumption on col-
lective attacks, i.e., the operator K̂j being constant in every
round, is instrumental in our proof. Extending the security
proof to coherent attacks would mean that K̂j could not
only guess the type of the current round, but also depend
on the sequence of previous guesses, thus not remaining
constant throughout the protocol run. The security of our
protocol under coherent attacks could be proved by adapt-
ing the technique in Ref. [46]. Indeed, in Ref. [46] the
authors perform a full finite-key analysis against coher-
ent attacks for the TFQKD protocol in Ref. [17], which
is recovered by our protocol when N = 2. We conjecture
that the asymptotic key rate of our protocol would not be
affected by coherent attacks, as suggested by taking the
asymptotic limit of the finite key rate in Ref. [46] and real-
izing that it coincides with our asymptotic key rate, Eq. (2),
when N = 2.

IV. MULTIPARTITE DECOY-STATE METHOD

In this section we present a technique that generalizes
the decoy-state method to the multipartite scenario and
provides an analytical upper bound on any yield Yj

n0,...,nN−1 ,
when an arbitrary number of parties N use the same set of
two decoy intensities: S = {β0,β1}.

The starting point of the multipartite decoy-state method
is the equation that relates the observed gains with the
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yields, Eq. (25), which we report here for clarity:

Gj
�f =

∞∑

n0,...,nN−1=0

Yj
n0,...,nN−1

N−1∏

i=0

e−βfiβ
ni
fi

ni!
, (29)

where we introduce the binary vector �f that fixes the
choice of intensity to βfi for party Ai.

Of note, the yields are independent of �f , i.e., of the
selected intensities. Thus, Eq. (29) can be interpreted as
a system of 2N linear equations, each one labeled by �f ,
where the yields are the unknowns. By performing appro-
priate linear combinations of the system of equations, one
can derive equalities where only a subset of yields sur-
vive, thus reducing the number of unknowns. However,
the number of unknowns is infinite, implying that such a
technique cannot generate the exact solution for each yield.
Nevertheless, from the linear combinations presenting a
reduced number of yields, one can still obtain nontrivial
upper bounds.

For concreteness, consider the following toy example of
an equality linking a function B of the observed statistics
to a (possibly infinite) subset of yields, Y and Yi,

B = cY +
∑

i

ciYi, (30)

where c and ci are real coefficients. Suppose that our goal is
to derive an upper bound on the yield Y. To do so, we first
split the sum of the other yields in two sums, one in which
the coefficients ci have the same sign as c and another
where they have opposite sign. By labeling si := sign(ci)

(s) the sign of coefficient ci (c), we have

B = cY +
∑

i:si=s

ciYi +
∑

i:si �=s

ciYi. (31)

Now, by multiplying both sides by s and isolating Y, we
get

Y|c| = sB −
∑

i:si=s

|ci|Yi +
∑

i:si �=s

|ci|Yi. (32)

Then, it is straightforward to obtain an upper bound on Y
by minimizing the yields Yi whose coefficients have the
same sign as the coefficient of Y (si = s) and by maximiz-
ing the other yields (si �= s). In the case we do not have
nontrivial bounds on the yields Yi, we simply set the former
to zero and the latter to one. In many cases, the described
procedure can lead to a nontrivial bound on Y:

Y ≤ min

⎧
⎨
⎩B/c +

∑

i:si �=s

|ci/c|, 1

⎫
⎬
⎭ , (33)

where the minimum is taken to ensure that the bound is
never greater than 1.

In Appendix C, we apply this method on the system in
Eq. (29) and obtain a nontrivial upper bound on the generic
yield Yj

n0,...,nN−1 , given by

Y
j
n0,...,nN−1

= min{Uj
n0,...,nN−1

, 1},

Uj
n0,...,nN−1

=
∏

i s.t.
ni �=0

ni!
β

ni
0 − β

ni
1

[
Bj

�h(−1)N−m

(β0 − β1)N−m

+ (
eβ0 − eβ1

)m
�(N−m−1)/2�∑

k=0

(
N − m
2k + 1

)

×
(
β1eβ0 − β0eβ1 + β0 − β1

β0 − β1

)2k+1
]

, (34)

where �h is the binary vector with components:

hi =
{

1 if ni ≥ 1
0 if ni = 0,

(35)

while m = |�h|, �x� is the floor function, and Bj
�h is given by

Bj
�h =

2N −1∑

f =0

(−1)|�f |β(
�1−�h)·�f

0 β
(�1−�h)·(�1−�f )
1

Gj
�f∏N−1

i=0 e−βfi
. (36)

As a final remark, our analytical technique can be gener-
alized to scenarios with different and more intensities for
each party. Besides, we point out that the calculation of
the yields’ bounds required by the phase error rate bound
in Eq. (7) can also be done numerically by using linear
programming techniques [16].

V. SIMULATIONS

In order to assess the performance of our protocol,
we simulate its key rate (2) under a channel model that
includes different sources of noise. First, we model the
losses between each party and the detectors at the relay
with the same pure-loss channel with transmittance η.
We also account for a polarization and phase misalign-
ment of 2% between the reference party A0 and each
other party. Moreover, we account for dark counts in the
detectors by computing the key rates considering different
dark-count probabilities, namely, 10−8, 10−9, and 10−10. In
Appendix D we describe the channel model in detail and
provide the calculations of the protocol’s statistics under
such model.

In our symmetric channel model each party experiences
the same loss. Thus, the optimal signal intensities are inde-
pendent of the party, implying that we can set αi = α and
Si = S for every i, without losing in performance. Under
these conditions, we analytically verify (see Appendix D)
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that the detection statistics, i.e., Pr(�j |x0, xi, RKG) and
Pr(�j |β0, . . . ,βN−1), are independent of which detector
clicks (j ) and of the party (i).

This readily implies that the QBER in Eq. (5) is indepen-
dent of the party and of the detector and we can indicate
it as Qj

X0Xi
= QX . Similarly, the analytical upper bounds

on the yields presented in Sec. IV are independent of j
since the gains are independent of j . We employ our yields
bounds, Eq. (34), in the calculation of the bound QZ on the
phase error rate (7), where we choose n = 4 as the cutoff
number above which every yield is trivially bounded by
one. The choice is motivated by the fact that, for n = 4,
the residual term �v,n in Eq. (10) becomes negligible.

By considering the discussed symmetries, the asymp-
totic conference key rate of our simulations simplifies
to

r ≥ M Pr(�|RKG)
[
1 − h(QZ)− h(QX )

]
, (37)

where Pr(�|RKG) is the probability that a fixed detector
clicks in a KG round and M ≥ N is the number of detectors
in the relay.

In order to benchmark the performance of our proto-
col, we follow the approach used for TFQKD schemes.
Typically, the key rate of a TFQKD protocol is bench-
marked against the repeaterless bound [20], i.e., the bound
on the private capacity between Alice and Bob when the
relay between the two parties is removed. If the TFQKD
rate surpasses the repeaterless bound, this indicates that
adding an untrusted relay enables higher secret key rates
and proves the usefulness of the TFQKD protocol. Simi-
larly, in our multipartite setting we compare the conference
key rate of our protocol with the ultimate conference key
rate that could be achieved in the quantum network with-
out the relay. This is the single-message multicast bound of
the quantum network [42] and it depends on the network
architecture. In our scenario, there are at least two network
configurations (star network and fully connected network)
that can arise when removing the relay, which we depict in
Fig. 3.

In the star network (left configuration in Fig. 3), there is
a pure-loss bosonic channel with transmittance η2 between

2

0

3

1

2

0

31

FIG. 3. Two possible network configurations that arise when
the relay is removed, for N = 4 parties. In the left configuration,
there is a bipartite link between A0 and each other party (star
network). In the right configuration, each party is connected with
each other (fully connected network). The transmittance of the
channel connecting any two parties is η2.

party A0 and each other party Ai (for i = 1, . . . , N − 1).
In this case, the single-message multicast bound is inde-
pendent of the number of parties N and coincides with
the bipartite repeaterless bound [20] used to benchmark
TFQKD protocols:

r ≤ − log2 (1 − η2) =: R1. (38)

In the right configuration of Fig. 3, the resulting network is
fully connected, such that each party is linked to each other
with the same pure-loss bosonic channel with transmit-
tance η2. In this case, the single-message multicast bound
reads [42]

r ≤ −(N − 1) log2 (1 − η2) =: R2(N ). (39)

In this network configuration the single-message multi-
cast bound increases with the number of parties, N . This
could be explained by the quadratic scaling of the number
of bipartite links with N , compared to the linear scaling
of the star network. It is worthwhile to emphasize that, in
order to obtain the network configurations of Fig. 3 when
removing the relay, additional pure-loss channels need to
be added on top of the existing channels used by our pro-
tocol. For instance, the star network can be seen as the
result of a combination of six channels with transmittance
η: three channels connect A0 to the point where the relay
was located and are subsequently linked to the three chan-
nels connecting to parties A1, A2, and A3. While our CKA
protocol requires only four such channels (from the relay
to each of the parties) when N = 4. This contrasts with the
benchmarking of bipartite TFQKD against the repeaterless
bound, where the relay is removed and the two original
channels are linked together without the need to add fur-
ther channels. Therefore, when comparing the multicast
bounds (38) and (39) with the CKA rate of our protocol,
one should consider that the multicast bounds can only be
attained if additional channels are used.

In Fig. 4, we plot the key rate (37) of our protocol for
N = 3, N = 4, and N = 5 parties (for every N , we fix the
number of inputs M in the BBS network to the smallest
power of two such that M ≥ N ), together with the multi-
cast bounds, Eqs. (38) and (39). In Fig. 4(a), we compute
the phase error rate bound in Eq. (7) with our analytical
upper bounds on the yields (34) obtained with two decoy
intensities fixed to β0 = 0.5 and β1 = 0, respectively. In
Fig. 4(b), instead, we assume that the relevant yields in the
phase error rate bound (7) are known and use their exact
analytical expression (D74) (see Appendix D for the calcu-
lation). This corresponds to the limit where the parties have
an infinite number of decoy intensities and can estimate
the yields exactly. In both plots, we optimize the key rate
at each level of loss over the signal amplitude α. Further
details on the numerical simulations and on the optimal
values for α are reported in Appendix E.
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FIG. 4. Asymptotic conference key rate of our protocol
[Eq. (37)] as a function of the loss (in dB) between any two
parties, when (a) each party uses two decoy intensities; (b) the
parties can perfectly estimate the yields. We plot the key rate
for different dark-count probabilities: pd = 10−10 (solid lines),
pd = 10−9 (dashed lines), and pd = 10−8 (dotted lines) and a dif-
ferent number of parties N , while we fix the polarization and
phase misalignment to 2%. We report the single-message multi-
cast bound R1 [Eq. (38), solid magenta line] for the star network
and the bounds R2(3) and R2(4) [Eq. (39), dashed and dotted
magenta line] for the fully connected network. (a) For sufficiently
high loss, our protocol with two decoys can overcome the mul-
ticast bounds for both configurations when N = 3. (b) A tighter
estimation of the yields (e.g., by adding decoy intensities) would
allow our protocol to overcome both multicast bounds for N = 3
and N = 4.

From Fig. 4(a) we observe that our protocol, already
with two decoy intensities per party, is capable of over-
coming both the single-message multicast bounds R1 and
R2, for three parties and in the high-loss regime. This is
explained by the fact that our protocol relies on single-
photon interference events, regardless of the number of
parties, hence its key rate scales with the transmittance
between one party and the relay: r ∼ η. Conversely, the
multicast bounds in Eqs. (38) and (39) for a quantum
network without a relay cannot scale better than r ∼ η2.

However, as the number of parties increases, the key
rate of our protocol drops due to the unavoidable QBER
inherited from W-state correlations and cannot beat the
multicast bounds. This can be mitigated by increasing the
number of decoy intensities per party, as suggested by
Fig. 4(b) that represents the best-case scenario of infinite
decoys. Indeed, we observe a significant improvement of
the key rate, especially in the high-loss regime, allowing
it to overcome the multicast bounds R1 and R2 for three
and four parties. The advantage provided by our protocol
could extend beyond four parties when compared to more
realistic multicast bounds that account for additional noise
on top of pure loss (for example, the noise model used in
the simulations), as well as tighter multicast bounds (the
multicast bounds used in our comparison are not proven to
be tight and might be quite loose [42]).

The improvement of the key rate in the high-loss regime
occurs because adding decoy intensities to the multipar-
tite decoy-state method allows for tighter yields’ bounds
when evaluating the phase error rate through (7). As a con-
sequence, the optimal value of the signal intensity (α2)
can increase without severely affecting the phase error rate
bound, as shown in Appendix E. In turn, higher signal
intensities increase the probability that exactly one detector
clicks (up to the limit where multiple-photon contribu-
tions become dominant), thus increasing the key rate. The
gain in the key rate is particularly visible in the high-loss
regime, where the effect of dark counts on the detector
clicks is comparable to the arrival of a signal.

In parallel, the key rate computed with the exact yields
[Fig. 4(b)] is higher than the one computed with two
decoys [Fig. 4(a)] even in the low-loss regime. This is due
to the fact that the latter is not optimized over the decoy
intensities. In particular, the value of β0 = 0.5 is chosen
such that it is close-to-optimal only for high losses, thus
explaining the suboptimal behavior of the key rate with
two decoys at low losses.

VI. CONCLUSION

We design a practical, measurement-device-independent,
conference key agreement protocol that delivers a shared
conference key to an arbitrary number of parties. In the
protocol, each party only has to transmit coherent pulses
to an untrusted relay, which interferes the pulses in a net-
work of balanced beam splitters and performs threshold
measurements. Our protocol harnesses single-photon inter-
ference at the relay in order to establish a common key.
This can be understood by realizing that the correlations
postselected by our protocol correspond to the correla-
tions of a W state, which can indeed generate conference
keys [9].

We prove the security of our protocol against collec-
tive attacks and derive an analytical expression for the
asymptotic key rate, by combining the entropic uncertainty
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relation [43] with an developed multipartite decoy-state
analysis. We emphasize that our protocol and its security
proof are general and can account for scenarios with arbi-
trary asymmetric losses. Moreover, we provide extended
numerical simulations with a realistic channel model that
accounts for phase and polarization misalignment, photon
loss, and dark counts in the detectors. We show that our
protocol is capable, in certain regimes, of overcoming the
ultimate conference key rates achievable in a quantum net-
work without a relay, by comparing it to single-message
multicast bounds [42].

A notable byproduct of our work is the derivation of ana-
lytical upper bounds on the yields of any combination of
Fock states sent by the parties, which may find applica-
tion in other multipartite protocols where yields need to be
estimated. Our analytical bounds on the yields are the first
bounds derived for an arbitrary number of parties.

At the same time, our protocol represents the first exam-
ple of a CKA protocol that can beat single-message multi-
cast bounds in quantum networks [42]. This heralds a key
step for long-distance CKA, similarly to how the introduc-
tion of TFQKD [15] allowed QKD to reach much longer
distances by beating the repeaterless bound [20]. Indeed,
our results show that adding an untrusted relay, with a rel-
atively simple optical setup, in a quantum network, can
increase the rate at which the network users establish con-
ference keys over long distances. In particular, the scaling
improvement in the key rate (the key rate scales with η
instead of η2) matches the one that could be achieved by
future quantum repeaters.

In addition, our protocol is readily implementable with
current technology as it does not add further experimen-
tal requirements compared to state-of-the-art experiments
on TFQKD protocols [23–33]. As a matter of fact, for
two parties our CKA scheme reduces to the bipartite
TFQKD protocol in Ref. [17], which has already been
implemented in several experiments [23,25,28,31]. In such
experiments, phase-tracking and phase-locking techniques
are required in order to ensure that the parties’ signals
remain in phase. This, however, might become more chal-
lenging when more parties are involved. A solution could
be found by multiplexing in time and/or frequency as
shown in Refs. [47,48]. We remark that the implementa-
tion of our CKA protocol would represent the first instance
of a multipartite conference key agreement, which does not
rely on GHZ-type states.

The work presented in this paper can be further devel-
oped along different lines of research. From a security
perspective, a complete finite-key analysis along the lines
of the proof given in Ref. [46] for bipartite TFQKD is
required, in order to prove the protocol secure in the
presence of statistical fluctuations and coherent attacks.

Moreover, our decoy-state analysis assumes a highly
symmetrical configuration where every party uses the same
set of decoy intensities, which is optimal in the scenario

of symmetric channel losses analyzed in this work. How-
ever, real-life scenarios would likely display asymmetric
channel losses, which require a more general decoy anal-
ysis with independent decoy intensities for each party, as
shown for the bipartite case in Ref. [49]. On a similar note,
our decoy analysis employs only two decoy settings per
party, which is not sufficient to achieve close-to-optimal
key rates (i.e., key rates obtained with infinite decoy set-
tings), as shown by Fig. 4. Hence, it is likely that using
more than two decoy settings to derive numerical or ana-
lytical bounds on the yields appearing in the phase error
rate could improve the resulting key rate.

Finally, the efficiency of the protocol at lower losses
could be improved by retaining those rounds where more
than one detector clicks and using them to extract extra
conference key bits. The security proof presented in this
work could be naturally extended to make use of such
rounds.

To conclude, we believe that our work constitutes a
significant step towards increasing the practicality of mul-
tipartite cryptographic protocols and their applicability in
high-loss regimes.
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Note added.—Recently, another CKA scheme has been
posted on preprint servers [50], with our same goal of
extending the communication distance of CKA. However,
we believe that the protocol in Ref. [50] is much more
technologically demanding than ours. For the legitimate
users, the protocol in Ref. [50] requires the parallel gen-
eration of multiple one-photon pulses from each party,
compared to only a phase randomized weak coherent pulse
in our protocol. For the measuring station, the protocol in
Ref. [50] requires a quantum nondemolition measurement
that heralds the arrival of a photon, followed by a GHZ-
state analyzer acting on the heralded signals, while in our
protocol we require only an interferometric measurement
as depicted in Fig. 2.

CODE AVAILABILITY

The code used to run the simulations can be made
available upon request to the authors.
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APPENDIX A: THE BALANCED BEAM-SPLITTER
NETWORK

In this Appendix, we provide a complete description of
the BBS network that describes the honest implementation
of the untrusted relay. The network is composed of s lay-
ers, labeled by r = 0, . . . , s − 1, and each layer receives as
input M = 2s optical modes â(r)i , for 0 ≤ i ≤ M − 1. Note
that for r = 0 the modes correspond to the modes arriving
at the relay from the parties.

In a generic layer r, the optical mode â(r)i is mixed with
the mode â(r)i+2r in a BBS, for all modes âi ∈ Fr. The set Fr
for layer r contains the modes:

Fr :=
2s−r−1−1⋃

k=0

{âk2r+1 , âk2r+1+1, . . . , âk2r+1+2r−1}. (A1)

For example, F0 contains the even modes and F1 contains
modes 0, 1, 3, 4, and so on. This pattern repeats until the
last layer, that contains the first half of the modes. Each
layer contains M/2 beam splitters. Hence, the total num-
ber of beam splitters in the BBS network, in terms of the
number of inputs M , is

nBS = M
2

log2 M . (A2)

We note that the BBS network, due to its structure, must
be prepared for a number of inputs M equal to a power of
2 but can be used by any number of parties N ≤ M . We
also remark that, for s = 1, the BBS network reduces to a
single beam splitter and coincides with the setup used in
the TFQKD protocol of Ref. [17].

We are interested in the evolution of the creation opera-
tors in layer r through a BBS, which is given by

(â(r)i )
† → 1√

2
[(â(r+1)

i )† + (â(r+1)
i+2r )

†] ∀i ∈ Fr

(â(r)j )
† → 1√

2
[(â(r+1)

j −2r )
† − (â(r+1)

j )†] ∀j ∈ Fr, (A3)

where Fr indicates the complement of Fr.
By going through all layers until r = s − 1, we are

able to transform each input mode in a balanced combi-
nation of all the output modes, whose coefficients are at
most a minus sign. The global mode transformation, which
includes the transformation of each layer, is given in the
following theorem.

Theorem 2.—Given M = 2s input modes in the BBS
network described above where, in each layer r, the modes

transform according to Eq. (A3). Then, the global evolu-
tion of the modes over all the s layers is given by

â†
i → 1

(
√

2)s

2s−1∑

k=0

f (s)k,i (â
(s)
k )

† ∀i = 0, . . . , 2s − 1, (A4)

where the function f (s)k,i is given by

f (s)k,i =
s−1∏

l=0

(−1)
⌊

k/2l
⌋⌊

i/2l
⌋

, (A5)

and �·� is the floor function. Moreover, f (s)k,i can be recast
as follows:

f (s)k,i = (−1)�k·�i, (A6)

where �k and�i are the binary vectors of length s representing
the integers k and i in binary representation.

Proof.—The theorem is proved by induction on s.
Hence, the first step of the proof is to prove the result for
s = 1, i.e., just two inputs. We thus have two optical modes
â†

0 and â†
1 mixed in a BBS. The transformation of the modes

is given in Eq. (A3), for r = 0, i.e.,

â†
0 → 1√

2
[(â(1)0 )

† + (â(1)1 )
†]

â†
1 → 1√

2
[(â(1)0 )

† − (â(1)1 )
†].

(A7)

The formula provided in the theorem’s statement,
Eq. (A4), for s = 1 reads

âi → 1√
2

1∑

k=0

(−1)ki(â(1)k )
†, (A8)

which is equivalent to the transformation of the modes of
Eq. (A7). The theorem is thus proved for s = 1.

Now, in the inductive step we assume that the theorem’s
statement in Eq. (A4) is correct for generic s and show that
it induces the same transformation for s + 1, i.e., that the
theorem holds for s + 1.

We start by adding to the modes labeled by i another
set of 2s modes, labeled by j = 2s, . . . , 2s+1 − 1, that
undergoes the same kind of transformations, i.e.,

â†
j → 1

(
√

2)s

2s+1−1∑

k=2s

f (s)k,j (â
(s)
k )

† ∀j = 2s, . . . , 2s+1 − 1.

(A9)

We now follow the prescription in Eq. (A3) and com-
bine the modes in the s + 1 layer of the BBS network.
This means that we combine the mode (â(s)i )

† with the
corresponding mode (â(s)i+2s)

†, and obtain
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(â(s)i )
† → 1√

2
[(â(s+1)

i )† + (â(s+1)
i+2s )

†] ∀i = 0, . . . , 2s − 1

(â(s)j )
† → 1√

2
[(â(r+1)

j −2s )
† − (â(s+1)

j )†] ∀j = 2s, . . . , 2s+1 − 1.

(A10)

We use the assumption in the inductive step. That is, we
use Eqs. (A4) and (A9) to describe the transformations
of the modes in the first s layers. We separately address
the transformations on the first 2s modes â†

i , described by
Eq. (A4), and the transformations on the other 2s modes
â†

j , described by Eq. (A9).

1. For the modes â†
i with i = 0, . . . , 2s − 1, we employ

the first equation in Eq. (A10) together with Eq. (A4). We
obtain the following transformation of the modes after s +
1 layers:

â†
i → 1

(
√

2)s

2s−1∑

k=0

f (s)k,i
1√
2

[(â(s+1)
k )† + (â(s+1)

k+2s )
†]

= 1

(
√

2)s+1

(
2s−1∑

k=0

f (s)k,i (â
(s+1)
k )† +

2s−1∑

k=0

f (s)k,i (â
(s+1)
k+2s )

†

)

(A11)

Now let us consider the coefficient f (s+1)
k,i . By definition

(A5), we have

f (s+1)
k,i =

s∏

l=0

(−1)
⌊

k/2l
⌋⌊

i/2l
⌋

= (−1)�k/2s��i/2s�
s−1∏

l=0

(−1)
⌊

k/2l
⌋⌊

i/2l
⌋

= (−1)�k/2s��i/2s�f (s)k,i . (A12)

However, since i = 0, . . . , 2s − 1 we have that �i/2s� =
0 ∀i, which in turn implies

f (s+1)
k,i = f (s)k,i ∀ i = 0, . . . , 2s − 1, ∀k. (A13)

We use this result in Eq. (A11) combined with a rescaling
of the second sum with k → k − 2s to write

â†
i → 1

(
√

2)s+1

(
2s−1∑

k=0

f (s+1)
k,i (â(s+1)

k )†

+
2s+1−1∑

k=2s

f (s)k−2s,i(â
(s+1)
k )†

⎞
⎠ , (A14)

where

f (s)k−2s,i =
s−1∏

l=0

(−1)
⌊
(k−2s)/2l

⌋⌊
i/2l

⌋

=
s−1∏

l=0

(−1)
⌊

k/2l−2s−l
⌋⌊

i/2l
⌋

.

(A15)

Since k ≥ 2s we have that k/2l ≥ 2s−l. Moreover, s > l for
every l, which means that 2s−l is a positive, even integer.
We thus can write

f (s)k−2s,i =
s−1∏

l=0

(−1)
(⌊

k/2l
⌋
−2s−l

)⌊
i/2l

⌋

=
s−1∏

l=0

(−1)
⌊

k/2l
⌋⌊

i/2l
⌋

(−1)−2s−l
⌊

i/2l
⌋

=
s−1∏

l=0

(−1)
⌊

k/2l
⌋⌊

i/2l
⌋

= f (s)k,i = f (s+1)
k,i , (A16)

where (−1)−2s−l
⌊

i/2l
⌋

= 1 ∀i because 2s−l is even for all l
and where we use Eq. (A13) in the last equality. With the
last expression, we can simplify (A14) as follows:

â†
i → 1

(
√

2)s+1

(
2s−1∑

k=0

f (s+1)
k,i (â(s+1)

k )†

+
2s+1−1∑

k=2s

f (s+1)
k,i (â(s+1)

k )†

⎞
⎠

= 1

(
√

2)s+1

2s+1−1∑

k=0

f (s+1)
k,i (â(s+1)

k )†, (A17)

which concludes the proof for i = 0, . . . , 2s − 1.
2. For the modes â†

j , with j = 2s, . . . , 2s+1 − 1, we
combine the second equation in Eq. (A10) with the
assumption (A9) and obtain

â†
j → 1

(
√

2)s+1

⎛
⎝

2s+1−1∑

k=2s

f (s)k,j (â
(s+1)
k−2s )

† −
2s+1−1∑

k=2s

f (s)k,j (â
(s+1)
k )†

⎞
⎠.

(A18)
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Once again, we can rescale the first sum with k → k + 2s

in the last expression and obtain

â†
j → 1

(
√

2)s+1

⎛
⎝

2s−1∑

k=0

f (s)k+2s,j (â
(s+1)
k )† −

2s+1−1∑

k=2s

f (s)k,j (â
(s+1)
k )†

⎞
⎠.

(A19)

Since 2s−l is a positive, even integer, we can simplify the
coefficient in the first sum as follows:

f (s)k+2s,j =
s−1∏

l=0

(−1)
(⌊

k/2l
⌋
+2s−l

)⌊
j /2l

⌋

=
s−1∏

l=0

(−1)
⌊

k/2l
⌋⌊

j /2l
⌋

(−1)2
s−l
⌊

j /2l
⌋

=
s−1∏

l=0

(−1)
⌊

k/2l
⌋⌊

j /2l
⌋

= f (s)k,j . (A20)

Moreover, since k = 0, . . . , 2s − 1, one has that �k/2s� =
0 and hence that

f (s+1)
k,j =

s∏

l=0

(−1)
⌊

k/2l
⌋⌊

j /2l
⌋

= (−1)�k/2s��j /2s�
s−1∏

l=0

(−1)
⌊

k/2l
⌋⌊

j /2l
⌋

= (−1)�k/2s��i/2s�f (s)k,i = f (s)k,i , (A21)

which means that we can replace the coefficient f (s)k+2s,j

in the first sum of Eq. (A19) with f (s+1)
k,j . Regarding the

second sum in Eq. (A19), we can write the coefficient as

(−1)f (s)k,j = (−1)g(k,j )f (s)k,j , (A22)

where g(k, j ) is a function that is odd for j , k =
2s, . . . , 2s+1 − 1. For instance, we can choose the function
to be the following:

g(k, j ) = ⌊
k/2s⌋ ⌊j /2s⌋ . (A23)

Then, the coefficient of the second sum in Eq. (A19)
becomes

(−1)f (s)k,j = (−1)�k/2s��j /2s�f (s)k,j ≡ f (s+1)
k,j . (A24)

With the above expressions, we can recast Eq. (A19) as
follows and conclude the proof for j = 2s, . . . , 2s+1 − 1:

â†
j → 1

(
√

2)s+1

(
2s−1∑

k=0

f (s+1)
k,j (â(s+1)

k )†

+
2s+1−1∑

k=2s

f (s+1)
k,j (â(s+1)

k )†

⎞
⎠

= 1

(
√

2)s+1

2s+1−1∑

k=0

f (s+1)
k,j (â(s+1)

k )†. (A25)

The combination of the two results in Eqs. (A17)
and (A25) imply that the global transformation of the
modes, for M = 2s+1 inputs, is given by Eq. (A4) where
s is replaced by s + 1. This proves the theorem for s + 1
and concludes the proof. �

APPENDIX B: W-STATE CORRELATIONS

In this Appendix we present the logical steps that
brought us to design the protocol presented in Sec. II and
show the connection between the correlations generated by
our protocol and the correlations of the W state [38].

We start by describing an Ideal protocol, i.e., a protocol
that is less practical than the one presented in the main text
but has the merit of elucidating the core ideas that lead
to the CKA protocol of Sec. II. The protocol is run by N
parties, which we call A0, . . . , AN−1, and consists of the
following steps.

Protocol 2 (Ideal protocol)
1. Quantum part: repeat what follows for a sufficient

amount of iterations.
1.1. Every party holds an optical mode ai and a qubit Qi and

prepares the following entangled state:

|φi〉 = √
qi|0〉Qi |0〉ai +

√
1 − qi|1〉Qi |1〉ai , (B1)

where |0〉Qi and |1〉Qi are two orthogonal states of the
qubit, |0〉ai and |1〉ai are the vacuum and one-photon
state of the optical mode, respectively, and 0 < qi <

1.
1.2. Every party sends their optical pulse through a noisy

and lossy channel to an untrusted relay.
1.3. In the untrusted relay, the optical signals interfere in

a BBS network of M = 2s inputs and M outputs,
for some natural number s with M ≥ N . The BBS
network is described in Appendix A. The network
transforms the input modes in a balanced combination
of the output modes, i.e.,

â†
i → 1√

M

M−1∑

j =0

(−1)�j ·�id̂†
j , (B2)
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where â†
i and d̂†

j are the creation operators of the input
and output modes, respectively, and �j and �i the binary
representations of the integers j and i and �j · �i is their
scalar product.

1.4. The untrusted relay measures each output mode dj with
a threshold detector Dj , for j = 0, . . . , M − 1. The
relay announces the detection pattern �k ∈ {0, 1}M for
each detector, where kj = 1 if detector Dj clicked and
kj = 0 otherwise. The round gets discarded unless
only one detector clicked, i.e., if |�k| = 1, where |�x|
is the Hamming weight of vector �x.

1.5. Each party Ai measures their qubit Qi. If the round is
labeled as a PE round, each party measures in the Z
basis and obtains an outcome Zi = ±1. If the round is
a KG round, each party measures in the X basis and
obtains outcome Xi = ±1.

2. Parameter estimation: the parties partition their out-
comes in M sets, where each set corresponds to the event
�j where only detector Dj clicks. For each partition, the
parties reveal a fraction of their X -basis outcomes in order
to compute the QBER, with respect to reference party A0.
The QBER is defined as

Qj
X0,Xi

= Pr(X0 �= (−1)�j ·�iXi|�j , RKG). (B3)

Similarly, for each partition of outcomes the parties reveal
their Z-basis outcomes and evaluate the phase error rate,
defined as follows:

Qj
Z = Pr(

∏N−1

i=0
Zi = 1|�j , RKG). (B4)

3. Classical postprocessing: the parties extract a secret
conference key from the remaining undisclosed X -basis
outcomes. To do so, for each partition labeled by �j ,
party Ai flips their X -basis outcomes when (−1)�j ·�i = −1.
The parties then perform error correction and privacy
amplification.

We remark that the probabilities defining the QBER
(B3) and the phase error rate (B4) are conditioned on
the event that only detector Dj clicked and the round
was chosen to be a KG round. While the QBER can be
directly computed from the outcomes collected in KG
rounds, the phase error rate refers to the hypothetical
scenario where the parties measured in the Z basis in a
KG round. However, since the only difference between
KG and PE rounds is the local qubit measurement, the
choice of the type of round can be delayed until the
qubit measurement is performed. Hence, the phase error
rate, as defined in Eq. (B4), effectively coincides with
the analogous quantity observed from the PE data: Qj

Z ≡
Pr(
∏N−1

i=0 Zi = 1|�j , RPE). As we discuss below, this fact
does not hold in our CKA protocol (Sec. II), where the

phase error rate (18) is indirectly bounded with the PE
statistics thanks to a multiparty decoy-state method.

The Ideal protocol is designed to exploit the correlations
of a particular class of multipartite, W-type states, which
are postselected due to single-photon interference. As a
matter of fact, a noisy version of such states is recovered
as the conditional state of the qubit systems postselected on
the event that only detector Dj clicks. In order to see this
more clearly, one can derive such a state under the Ideal
conditions of no losses in the channels and qi = q → 1
for every i—indeed, the optimal values of q are close to
one [34], hence we approximate the state to first order in
(1 − q). Under these simplifications, the state of the qubits
Q0 . . .QN−1 shared by the N parties, once postselected on
the click of detector Dj , reads

|Wj 〉Q0,...QN−1 := 1√
N

N−1∑

i=0

(−1)�j ·�i |�bi〉Q0,...QN−1
, (B5)

where the vector �bi is defined as the N -bit vector of all
zeroes except for the ith element that is one.

The state in Eq. (B5) is a W-type state, where each term
in the sum presents a real phase determined by the detec-
tor that clicked. The state is postselected from the events
where only one photon is effectively sent by any of the
parties with equal probability. Indeed, under the above
approximations, the probability that the W-type state in
Eq. (B5) is postselected is qN−1(1 − q)N/M .

In this regard, the Ideal protocol resembles the CKA pro-
tocol of Ref. [34] as it exploits the multipartite correlations
of a W state to establish a shared conference key. As a mat-
ter of fact, we note that in the classical postprocessing the
parties flip their X -basis outcomes according to (−1)�j ·�i,
where �i depends on the party and �j on the detector that
clicked. This can be equivalently seen as party Ai applying
a Z gate on their qubit before the X -basis measurement, if
�j · �i is odd. In other words, party Ai applies the gate Z�j ·�i
(note that Z2 = 1). Since such a gate does not change the
Z-basis outcomes in the PE rounds, we can assume, with-
out loss of generality, that party Ai applies the gate Z�j ·�i
before measuring their qubit in any basis. If we now apply
the gates in the postselected state of the qubits (B5), we
obtain

|Wj 〉Q0,...QN−1 = 1√
N

N−1∑

i=0

(−1)�j ·�i
N−1⊗

k=0

Z�j ·�k |�bi〉Q0,...QN−1

= 1√
N

N−1∑

i=0

(−1)�j ·�i(−1)�j ·�i |�bi〉Q0,...QN−1

= 1√
N

N−1∑

i=0

|�bi〉Q0,...QN−1
, (B6)
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where we use the fact that the operator Z�j ·�k has no effect
on the ket |�bi〉 except for k = i, i.e., when it acts on the
ith qubit that is in state |1〉. From Eq. (B6) we see that
the postselected state, after the local operations that simu-
late the classical postprocessing of the outcomes, coincides
with the W state, as claimed. The Ideal protocol presents a
crucial difference from the protocol in Ref. [34], which is
made explicit in the following remark:

Remark.—In Ref. [34] the parties needed to tailor their
KG measurements depending on which detector clicks, in
order to neutralize the effects of complex phases in their
postselected W-type state. In the Ideal protocol, thanks
to the bespoke BBS network, the postselected state (B5)
only presents real phases, which are corrected as discussed
above by simply flipping the KG outcomes and without
changing the measurement basis.

This implies that, in the Ideal protocol, the parties’ mea-
surements are independent of the relay’s announcements,
hence they commute with the action of the relay. This
enables us to reformulate the Ideal protocol in prepare-
and-measure (PM) form. In the resulting PM protocol,
the parties first measure their qubits and record the out-
come. Then they send the optical mode, whose state is
conditioned on the outcome, to the relay. Hence, the
PM protocol coincides with the Ideal protocol except for
Step 1.1.

Protocol 3 (Prepare-and-measure protocol)
1. Quantum part: repeat what follows for a sufficient

amount of iterations.
1.1. Each party Ai prepares an optical mode ai in a state

that depends on whether the round is labeled as a PE or KG
round.

(a) In a PE round, they prepare the vacuum state |0〉ai
with probability qi, corresponding to the outcome Zi =
+1, and the one-photon state |1〉ai with probability 1 − qi,
corresponding to the outcome Zi = −1.

(b) In a KG round, they prepare with equal probabil-
ity either the state |+〉ai = √

qi|0〉ai + √
1 − qi|1〉ai , cor-

responding to the outcome Xi = +1, or the state |−〉ai =√
qi|0〉ai − √

1 − qi|1〉ai , corresponding to the outcome
Xi = −1.

1.2. same as in Ideal prot.
1.3. same as in Ideal prot.
1.4. same as in Ideal prot.
2. same as in Ideal prot.
3. same as in Ideal prot.

Note that, while the PM protocol is more practical
than the Ideal protocol (e.g., it does not require qubit-
photon entanglement), it is equivalent to the latter from
the point of view of security, since an adversary could
not distinguish which of the two protocols is run. Despite
the increased practicality, the PM protocol still requires

the preparation of single-photon states and their super-
position with the vacuum. This prompts us to reduce
even further the complexity of the protocol’s implemen-
tation and obtain a practical, prepare-and-measure, CKA
protocol.

In order to derive a practical CKA protocol, we observe
that the states prepared in the KG rounds of the PM pro-
tocol (|±〉ai) can be approximated by coherent states of
suitable amplitude (|±αi〉, for αi ∈ R), where the informa-
tion about the X -basis outcome is encoded in the ampli-
tude’s sign. At the same time, the statistics collected in PE
rounds and used to compute the phase error rate (B4) are
linked to the so-called yields, i.e., the probability that a
detector clicks given that each party sent a fixed number
of photons. This suggests us to prepare phase-randomized
coherent states in PE rounds and use their detection statis-
tics to apply the decoy-state method and compute the
yields, with which we bound the phase error rate. This
heuristic reasoning leads us to the practical CKA protocol
presented in Sec. II, where, we recall, each party Ai pre-
pares a coherent state |xiαi〉ai with xi = ±1 in KG rounds
and phase-randomized coherent states in PE rounds.

We emphasize that, in the protocol of Sec. II, the choice
of the type of round (KG or PE) cannot be delayed until
after the action of the untrusted relay, contrary to the
Ideal protocol. Indeed, the average state prepared by Ai in
KG rounds, (1/2)(|αi〉 〈αi| + |−αi〉 〈−αi|), differs from the
average state prepared in PE rounds, (1/|Si|)

∑
k ρai(βk),

due to the coherences of the former in the Fock basis. This
means that an adversary controlling the relay could par-
tially distinguish the type of round being executed and act
accordingly. Another way to see this is that there is no
equivalent entanglement-based version of the CKA proto-
col. That is, party Ai cannot find two suitable POVMs (one
for KG rounds and one for PE rounds) such that the state of
their optical mode, conditioned on measuring with one of
the two POVMs a fictitious system entangled with the opti-
cal mode, corresponds to the state that Ai should prepare in
that round [51].

One of the implications of the above fact is that the
phase error rate (B4) affecting the KG rounds cannot be
directly observed from the statistics of the PE rounds, as
instead happens in the Ideal protocol. Nevertheless, in the
security proof provided in Sec. III, we show how to use
the PE statistics to derive an upper bound on the phase
error rate (B4). Specifically, we develop a multipartite
decoy-state method that allows us to bound certain yields
through the PE statistics. The yields, in turn, are needed to
analytically upper bound the phase error rate with Eq. (7).

This concludes our connection between the Ideal proto-
col, which manifestly makes use of W-state correlations
and whose phase error rate can be directly observed in
PE rounds, and the CKA protocol discussed in the main
text, whose phase error rate is bounded by PE statistics
combined with the decoy-state method.
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APPENDIX C: ANALYTICAL UPPER BOUND ON
THE YIELDS

In this Appendix, we report the full derivation of the
analytical bounds on the yields as a function of the
observed gains, Eq. (34). The bounds are derived with
a multipartite decoy-state method in which each party is
provided with the same set of two decoy intensities: S =
{β0,β1}.

We recall that the gains are probabilities that can
be directly estimated from the observed data and are
defined as Gj

�f := Pr
(
�j |βf0 , . . . ,βfN−1

)
, where �f is an

N -dimensional binary vector that covers all the possible
choices of intensities by the parties. From Eq. (25) in
Sec. III, we show that the gains are related to the yields
by the following equality:

Gj
�f =

∞∑

n0,...,nN−1=0

Yj
n0,...,nN−1

N−1∏

i=0

Pβfi
(ni)

=
∞∑

n0,...,nN−1=0

Yj
n0,...,nN−1

N−1∏

i=0

e−βfiβ
ni
fi

ni!

=
N−1∏

i=0

e−βfi

∞∑

n0,...,nN−1=0

Yj
n0,...,nN−1

n0! · · · nN−1!

N−1∏

i=0

β
ni
fi . (C1)

We remark that, in principle, the gains can depend on
the detector Dj that clicks and so can the yields. How-
ever, for simplicity of notation, in this section we drop
the superscript j from the gains and yields. Moreover,
in our simulations, due to the symmetric losses affecting
each party, the gains and hence the yields are independent
of which detector clicks (see Appendix D). Hence their
dependency on j vanishes.

The last equality in Eq. (C1) brings us to define a
rescaled gain, G̃, as follows:

G̃�f := G�f∏N−1
i=0 e−βfi

=
∞∑

n0,...,nN−1=0

Yn0,...,nN−1

n0! · · · nN−1!

N−1∏

i=0

β
ni
fi

.

(C2)

We now define, from a fixed binary vector �h of dimension
N and Hamming weight |�h| = m, the following quantity:

B�h :=
∞∑

n0,...,nN−1=0

Yn0,...,nN−1

n0! · · · nN−1!

N−1∏

i=0

(
β

1−hi
1 β

ni
0 − β

1−hi
0 β

ni
1

)
,

(C3)

which can be recast as a combination of rescaled gains G̃�f .
To see this, we expand the product over i in the last expres-
sion as a sum of 2N products, each labeled by a binary

vector �f , where each term in the sum is the product of
either β1−hi

1 β
ni
0 or −β1−hi

0 β
ni
1 for every i = 0, . . . , N − 1. In

particular, fi = 0 (fi = 1) indicates that the former (latter)
quantity is picked. With this in mind, we can write

N−1∏

i=0

(
β

1−hi
1 β

ni
0 − β

1−hi
0 β

ni
1

)

=
2N −1∑

f =0

N−1∏

i=0

β
ni
fi (−1)fiβ(1−hi)fi

0 β
(1−hi)(1−fi)
1

=
2N −1∑

f =0

(−1)|�f |β(
�1−�h)·�f

0 β
(�1−�h)·(�1−�f )
1

N−1∏

i=0

β
ni
fi . (C4)

By replacing the last expression in Eq. (C3), we can
employ Eq. (C2) to directly relate B�h and G̃�f . We obtain

B�h =
2N −1∑

f =0

(−1)|�f |β(
�1−�h)·�f

0 β
(�1−�h)·(�1−�f )
1 G̃�f . (C5)

This expression is fundamental as is constitutes the link
between the quantity B�h, which in the following is used to
bound the yields, and the observed gains.

By recasting Eq. (C3) as follows:

B�h =
∞∑

n0,...,nN−1=0

Yn0,...,nN−1

n0! · · · nN−1!

∏

i s.t.
hi=1

(β
ni
0 − β

ni
1 )

×
∏

i s.t.
hi=0

(β1β
ni
0 − β0β

ni
1 ), (C6)

we notice that, whenever hi = 1, the coefficient of the
yields Yn0,...,0i,...,nN−1 (i.e., with with ni = 0) is null, imply-
ing that they do not contribute to the value of B�h. Similarly,
when hi = 0, all yields of the form Yn0,...,1i,...,nN−1 are
removed. With this observation, we can now obtain a non-
trivial upper bound on any yield Yn0,...,nN−1 in terms of a
certain combination of B�h.

To do so, we recast Eq. (C6) as follows, where in the
first term we sum only over the indexes ni that correspond
to hi = 1 and set all the other photon indexes to zero, while
in the second term we account for all the other possibilities:
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B�h =(−1)N−m(β0 − β1)
N−m

∑

(n0,...,nN−1)∈N (�h)

Yn0,...,nN−1

n0! · · · nN−1!

∏

i s.t.
hi=1

(β
ni
0 − β

ni
1 )

+
∑

(n0,...,nN−1)∈Ñ (�h)

Yn0,...,nN−1

n0! · · · nN−1!

∏

i s.t.
hi=1

(β
ni
0 − β

ni
1 )
∏

i s.t.
hi=0

(β1β
ni
0 − β0β

ni
1 ), (C7)

where the sets of indexes N (�h) and Ñ (�h) are defined as

N (�h) := {(n0, . . . , nN−1) : ni = hiri, ri ≥ 1} , (C8)

Ñ (�h) := {(n0, . . . , nN−1) : ni ≥ 1 (if hi = 1); ni ≥ 2 or ni = 0 (if hi = 0)} \ N (�h), (C9)

where ki are integers. Note that the sum over ni in the second term skips the case ni = 1 for hi = 0 since this contribution
is null in Eq. (C6) (see observation above).

We observe that the yields in the first sum in Eq. (C7) contain exactly m nonzero photon numbers, which allowed us
to factor out the quantities (β1β

ni
0 − β0β

ni
1 ). Now, we split the second sum in Eq. (C7) in a sum of N − m terms, where

each term contains only yields with m + k nonzero photon numbers, for k = 1, . . . , N − m. In this way, we can factor out
the quantities (β1β

ni
0 − β0β

ni
1 ) even in the second sum. This becomes relevant later, when we want to evaluate the sign in

front of each yield. In order to sum over the various combinations of yields with m + k photon numbers, we introduce the
binary vectors �h(k), which can be seen as “expansions” of the vector �h obtained by flipping k of its zeros to ones. Thus, we
have that |�h(k)| = m + k and that h(k)i = 1 whenever hi = 1, which can be formally stated as the condition: �h(k) ∧ �h = �h,
where ∧ is the bitwise AND operation. Analogously to �h, when h(k)i = 0 we fix the corresponding photon number ni

to zero. Then, in analogy with N (�h), we define a set of indexes N (�h, �h(k)) for each expansion �h(k) that represents the
combinations of photon numbers that are allowed by the chosen vector �h(k):

N (�h, �h(k)) :=
{
(n0, . . . , nN−1) : ni = h(k)i ri, ri ≥ 1 + h(k)i − hi

}
, (C10)

where we account for the fact that each additional bit equal to one in �h(k), which is a zero in �h, corresponds to an index ni
that starts from two instead of one. According to this, we obtain

B�h = (−1)N−m(β0 − β1)
N−m

∑

(n0,...,nN−1)∈N (�h)

Yn0,...,nN−1

n0! · · · nN−1!

∏

i s.t.
hi=1

(β
ni
0 − β

ni
1 )

+
N−m∑

k=1

(−1)N−m−k(β0 − β1)
N−m−k(β0β1)

k
∑

(n0,...,nN−1)∈Nk(�h)

Yn0,...,nN−1

n0! · · · nN−1!

∏

i s.t.
hi=1

(β
ni
0 − β

ni
1 )

∏

i s.t.
h(k)i −hi=1

(β
ni−1
0 − β

ni−1
1 ),

(C11)

where we define the following set that accounts for all possible choices of �h(k), for a given k:

Nk(�h) :=
⋃

�h(k)∈{0,1}N :
|�h(k)|=m+k
�h(k)∧�h=�h

N (�h, �h(k)), (C12)

where the operation ∧ represents the entry-wise product. Now, we wish to isolate a specific yield Yu0,...,uN−1 from the first
sum in Eq. (C11) in order to derive an upper bound on it. Note that we can choose any combination of photon numbers
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(u0, . . . , uN−1) such that ui = hiki, for ki ≥ 1. Since the choice of the vector �h is arbitrary, the photon numbers are also
arbitrary. By isolating the yield Yu0,...,uN−1 in Eq. (C11), we obtain

B�h = (−1)N−m(β0 − β1)
N−mYu0,...,uN−1

∏

i s.t.
hi=1

(β
ui
0 − β

ui
1 )

ui!

+ (−1)N−m(β0 − β1)
N−m

∑

(n0,...,nN−1)∈N (�h)\{(u0,...,uN−1)}

Yn0,...,nN−1

n0! · · · nN−1!

∏

i s.t.
hi=1

(β
ni
0 − β

ni
1 )

+
N−m∑

k=1

(−1)N−m−k(β0 − β1)
N−m−k(β0β1)

k
∑

(n0,...,nN−1)∈Nk(�h)

Yn0,...,nN−1

n0! · · · nN−1!

∏

i s.t.
hi=1

(β
ni
0 − β

ni
1 )

∏

i s.t.
h(k)i −hi=1

(β
ni−1
0 − β

ni−1
1 ).

(C13)

We now derive an upper bound on Yu0,...,uN−1 . To this aim, we observe that the yield Yu0,...,uN−1 and each of the yields
in the second term in Eq. (C13) are multiplied by coefficients of the same sign. Indeed, they are multiplied by the same
number of terms of the form (βs

0 − βs
1). More quantitatively, the sign of the coefficient Cu0,...,uN−1 of Yu0,...,uN−1 and of the

coefficients of the yields in the second term is

sign(Cu0,...,uN−1) = (−1)N−m [sign(β0 − β1)]N . (C14)

By similar arguments, the yields in the third term in Eq. (C13) are multiplied by coefficients Cn0,...,nN−1 with the following
sign:

sign(Cn0,...,nN−1) = (−1)N−m−k [sign(β0 − β1)]N . (C15)

In order to extract an upper bound on Yu0,...,uN−1 , we need to minimize all the yields carrying the same sign as Yu0,...,uN−1
and maximize all the yields with opposite sign in Eq. (C13). In our case, this means setting to zero all the yields in the first
sum and all the yields in the second sum that correspond to even values of k. The other yields are set to one. By applying
this reasoning to Eq. (C13), we obtain the following expression satisfied by an upper bound Uu0,...,uN−1 on Yu0,...,uN−1 :

B�h = (−1)N−m(β0 − β1)
N−mUu0,...,uN−1

∏

i s.t.
hi=1

(β
ui
0 − β

ui
1 )

ui!
+

N−m∑

k=1
k odd

(−1)N−m−k(β0 − β1)
N−m−k(β0β1)

k

×
∑

(n0,...,nN−1)∈Nk(�h)

1
n0! · · · nN−1!

∏

i s.t.
hi=1

(β
ni
0 − β

ni
1 )

∏

i s.t.
h(k)i −hi=1

(β
ni−1
0 − β

ni−1
1 ). (C16)

In order to simplify the above expression, we first focus on the term with the sum over k, which we denote B(2)�h and recast
as follows:

B(2)�h =
N−m∑

k=1
k odd

(−1)N−m−k(β0 − β1)
N−m−k(β0β1)

k
∑

(n0,...,nN−1)∈Nk(�h)

∏

i s.t.
hi=1

β
ni
0 − β

ni
1

ni!

∏

i s.t.
h(k)i −hi=1

β
ni−1
0 − β

ni−1
1

ni!

=
N−m∑

k=1
k odd

(−1)N−m−k(β0 − β1)
N−m−k(β0β1)

k

×
∑

�h(k)∈{0,1}N :
|�h(k)|=m+k
�h(k)∧�h=�h

∑

(n0,...,nN−1)∈N (�h,�h(k))

∏

i s.t.
hi=1

β
ni
0 − β

ni
1

ni!

∏

i s.t.
h(k)i −hi=1

β
ni−1
0 − β

ni−1
1

ni!
, (C17)
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where in the second equality we split the second sum over all the different subsets N (�h, �h(k)) in Nk(�h) using Eq. (C12).
We can now swap the innermost sum in the last expression with the products and obtain

B(2)�h =
N−m∑

k=1
k odd

(−1)N−m−k(β0 − β1)
N−m−k(β0β1)

k
∑

�h(k)∈{0,1}N :
|�h(k)|=m+k
�h(k)∧�h=�h

∏

i s.t.
hi=1

⎛
⎝

∞∑

ni=1

β
ni
0 − β

ni
1

ni!

⎞
⎠

∏

i s.t.
h(k)i −hi=1

⎛
⎝

∞∑

ni=2

β
ni−1
0 − β

ni−1
1

ni!

⎞
⎠ . (C18)

It can now be easily seen, using the Taylor series of the exponential function, that the following identities hold:

∞∑

n=1

βn
0 − βn

1

n!
= eβ0 − eβ1 , (C19)

∞∑

n=2

βn−1
0 − βn−1

1

n!
= 1
β0β1

(
β1eβ0 − β0eβ1 + β0 − β1

)
. (C20)

By using the above identities in Eq. (C18), we obtain

B(2)�h =
N−m∑

k=1
k odd

(−1)N−m−k(β0 − β1)
N−m−k

∑

�h(k)∈{0,1}N :
|�h(k)|=m+k
�h(k)∧�h=�h

(eβ0 − eβ1)m
(
β1eβ0 − β0eβ1 + β0 − β1

)k , , (C21)

where we observe that the argument of the sum over �h(k) is independent of �h(k). Therefore, the sum reduces to counting all
the possible choices of �h(k) for a given k. This number is given by the possible combinations of k bits in �h(k) that are set to
one, chosen among the N − m elements that correspond to zeroes in �h. Hence, we have

(N−m
k

)
choices and we obtain

B(2)�h =
N−m∑

k=1
k odd

(−1)N−m−k(β0 − β1)
N−m−k

(
N − m

k

)
(eβ0 − eβ1)m

(
β1eβ0 − β0eβ1 + β0 − β1

)k

=
�(N−m−1)/2�∑

k=0

(−1)N−m−2k−1(β0 − β1)
N−m−2k−1

(
N − m
2k + 1

) (
eβ0 − eβ1

)m (
β1eβ0 − β0eβ1 + β0 − β1

)2k+1 , (C22)

where �x� is the floor function. Finally, by employing (C22) in Eq. (C16), we obtain the following equality satisfied by
the upper bound on the selected yield

B�h = (−1)N−m(β0 − β1)
N−mUu0,...,uN−1

∏

i s.t.
hi=1

(β
ui
0 − β

ui
1 )

ui!
+

�(N−m−1)/2�∑

k=0

(−1)N−m−2k−1(β0 − β1)
N−m−2k−1

×
(

N − m
2k + 1

) (
eβ0 − eβ1

)m (
β1eβ0 − β0eβ1 + β0 − β1

)2k+1 . (C23)

By isolating the yield’s upper bound and relabeling ui → ni, we obtain the final expression of the yield bound: Yn0,...,nN−1 =
min{Un0,...,nN−1 , 1}, where

Un0,...,nN−1 =
∏

i s.t.
ni �=0

ni!
β

ni
0 − β

ni
1

[
B�h (−1)N−m

(β0 − β1)N−m + (
eβ0 − eβ1

)m
�(N−m−1)/2�∑

k=0

(
N − m
2k + 1

)(
β1eβ0 − β0eβ1 + β0 − β1

β0 − β1

)2k+1
]

,

(C24)
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where B�h is given in Eq. (C5) (and in principle can depend on the detector Dj through the gains) and m = |�h|, while �h is
the binary vector with components hi defined by

hi =
{

1 if ni ≥ 1
0 if ni = 0. (C25)

APPENDIX D: CHANNEL MODEL

In this Appendix we describe our channel model and compute the detection statistics of the protocol. The channel model
includes the following sources of noise.

1. Pure-photon loss: the optical mode of party goes through the same lossy channel. The lossy channel is modeled
with a beam splitter with transmittance η, where the additional input port of the beam splitter is fed with the vacuum.

2. Polarization misalignment: the optical mode of each party undergoes a polarization misalignment modeled by a
unitary operation that maps the creation operator of each mode according to

â†
i → cos θiâ

†
i,P − sin θiâ

†
i,P⊥ , (D1)

where â†
i,P is the creation operator on the original polarization and â†

i,P⊥ is the creation operator on the orthogonal
polarization.

3. Phase shift: the optical mode of each party undergoes a phase shift φi, modelled by multiplying the mode operator
â†

i by a phase φi.
4. Dark counts in the detectors: each detector is affected by dark counts, with a probability pd that is equal for all

detectors and independent on the state sent.

In Sec. V we argue that since the channel of each party is equally lossy, the optimal choice for the signal intensities is the
same for each party. Hence, here we assume that the amplitudes of each party in KG and PE rounds coincide: αi = α and
Si = S , for every i. Moreover, we choose the same polarization misalignment between the reference party A0 and each
other party. This means that we choose a misalignment of θ0 for A0 and θ1 for the other parties. Similarly for the phase
shift, we set φ0 = 0 and φi = φ for i �= 0.

1. Computation of Pr(�j |x0, x1, . . . , xN−1, RKG)

We start by computing the detection probability Pr(�j |x0, x1, . . . , xN−1, RKG), which is the probability that only detector
Dj clicks, given that party Ai prepared, in a KG round, the coherent state |xiα〉, with xi = ±1. This detection probability
is needed to compute the QBER, Eq. (4), through Eq. (5).

The state prepared by the N parties in a KG round, before any noise or loss is applied, reads

|ψin〉 =
N−1⊗

i=0

|xiα〉. (D2)

We now apply the sources of noise discussed above.

1. The resulting state after the lossy channel is the following:

|ψ ′
in〉 =

N−1⊗

i=0

|xi
√
ηα〉. (D3)

2. After applying the polarization misalignment, we obtain

|ψ ′′
in〉 =

N−1⊗

i=0

∣∣xi cos θi
√
ηα
〉
P

∣∣−xi sin θi
√
ηα
〉
P⊥

. (D4)
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3. After the phase shift φi is applied on each mode, we get

|ψ ′′′
in 〉 =

N−1⊗

i=0

∣∣xi cos θieiφi
√
ηα
〉
P

∣∣−xi sin θieiφi
√
ηα
〉
P⊥

. (D5)

The state in Eq. (D5) is the global state of the N parties’ modes, after the noisy and lossy channel and before entering the
BBS network. We now evolve the modes through the M -input and M -output BBS network, according to the transformation
in Eq. (3). We define the coefficients of the inverse transformation of the modes as fi,j := (−1)−�i·�j . Here, we make the
nonrestrictive assumption that the N modes sent by the parties correspond to the first N inputs of the BBS network. A
different choice would not alter the protocol’s performance. The output state after the BBS network reads

|ψout〉 =
M−1⊗

j =0

∣∣∣∣∣

√
η

M
α

N−1∑

i=0

xifi,j cos θieiφi

〉

P

∣∣∣∣∣−
√
η

M
α

N−1∑

i=0

xifi,j sin θieiφi

〉

P⊥

. (D6)

At this point, the relay performs a threshold measurement on each mode that returns a click in the corresponding
detector if one or more photons are detected. We are interested in the probability that only detector Dj clicks, i.e.,
Pr(�j |x0, x1, . . . , xN−1, RKG). By including the effect of dark counts, we can express such probability as follows:

Pr(�j |x0, x1, . . . , xN−1, RKG) = pd(1 − pd)
M−1Tr

[
ρout

M−1⊗

k=0

|0〉〈0|k
]

+ (1 − pd)
M−1Tr

⎡
⎣ρout(1j − |0〉〈0|j )

⊗

k �=j

|0〉〈0|k
⎤
⎦

= (1 − pd)
M−1Tr

⎡
⎣ρout1j

⊗

k �=j

|0〉〈0|k
⎤
⎦− (1 − pd)

M Tr

[
ρout

M−1⊗

k=0

|0〉〈0|k
]

, (D7)

where |0〉〈0|k is the projector on the vacuum of the output mode k for polarizations P and P⊥, as the detectors do not
distinguish polarization, and ρout = |ψout〉〈ψout|. We calculate both terms appearing in Eq. (D7). For the second term, we
have

Tr

[
ρout

M−1⊗

k=0

|0〉〈0|k
]

=
M−1∏

k=0

exp

⎡
⎣−

∣∣∣∣∣

√
η

M
α

N−1∑

i=0

xifi,k cos θieiφi

∣∣∣∣∣

2

−
∣∣∣∣∣

√
η

M
α

N−1∑

i=0

xifi,k sin θieiφi

∣∣∣∣∣

2
⎤
⎦

= exp

⎡
⎣− η

M
α2

M−1∑

k=0

⎛
⎝
∣∣∣∣∣

N−1∑

i=0

xifi,k cos θieiφi

∣∣∣∣∣

2

+
∣∣∣∣∣

N−1∑

i=0

xifi,k sin θieiφi

∣∣∣∣∣

2
⎞
⎠
⎤
⎦ . (D8)

We now focus on the sum over k in the last expression and use the fact that we fix the angles θi and φi as discussed above.
The sum over k simplifies to

M−1∑

k=0

⎛
⎝
∣∣∣∣∣

N−1∑

i=0

xifi,k cos θieiφi

∣∣∣∣∣

2

+
∣∣∣∣∣

N−1∑

i=0

xifi,k sin θieiφi

∣∣∣∣∣

2
⎞
⎠

=
M−1∑

k=0

⎛
⎝
∣∣∣∣∣x0 cos θ0 + cos θ1eiφ

N−1∑

i=1

xifi,k

∣∣∣∣∣

2

+
∣∣∣∣∣x0 sin θ0 + sin θ1eiφ

N−1∑

i=1

xifi,k

∣∣∣∣∣

2
⎞
⎠
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=
M−1∑

k=0

⎛
⎝x2

0 cos2 θ0 + cos2 θ1

∣∣∣∣∣

N−1∑

i=1

xifi,k

∣∣∣∣∣

2

+ x2
0 sin2 θ0 + sin2 θ1

∣∣∣∣∣

N−1∑

i=1

xifi,k

∣∣∣∣∣

2

+ 2x0 cos θ0 cos θ1 cosφ
N−1∑

i=1

xifi,k + 2x0 sin θ0 sin θ1 cosφ
N−1∑

i=1

xifi,k

)

=
M−1∑

k=0

⎛
⎝1 +

∣∣∣∣∣

N−1∑

i=1

xifi,k

∣∣∣∣∣

2

+ 2x0 cos θ cosφ
N−1∑

i=1

xifi,k

⎞
⎠ , (D9)

where we use that xi = ±1, cos θi
2 + sin θi

2 = 1 and cos θ0 cos θ1 + sin θ0 sin θ1 = cos(θ0 − θ1) and where we define θ :=
θ0 − θ1. Consider the following lemma for the function fi,k, which coincides with fk,i in Eq. (A6).

Lemma 1.—For fk,i as defined by (A6), it holds

M−1∑

i=0

fk,i = M δk,0. (D10)

Proof.—To show the result of the lemma we first recall that the function fk,i is given by

fk,i = (−1)�k·�i, (D11)

where �k and �i are the binary vectors of length s that represent the numbers k and i in binary representation. Then, the sum
over i of fk,i can be recast as

M−1∑

i=0

fk,i =
∑

�i∈{0,1}s

(−1)�k·�i =

∣∣∣�k
∣∣∣∑

c=0

(−1)c
(|�k|

c

)
2s−

∣∣∣�k
∣∣∣, (D12)

where in the second equality we perform the sum over all the possible values c of �k · �i and count how many distinct vectors
�i lead to the same scalar product c = �k · �i. This number is given by the ways in which we can select c bits equal to one in
�k (the binomial coefficient), which fixes the corresponding c bits in �i to be one and also fixes other |�k| − c bits in �i to be
zero since they correspond to the ones in �k that have not been selected. At this point, the vector �i is almost all fixed, except
for the bits that correspond to the s − |�k| zero bits in �k. Since such bits in �i can be arbitrary as they would not contribute
to the scalar product, the total number of possibilities is given by 2s−|�k|.

Now, we can simplify the expression in Eq. (D12) as follows:

M−1∑

i=0

fk,i =

∣∣∣�k
∣∣∣∑

c=0

(−1)c
(|�k|

c

)
2s−

∣∣∣�k
∣∣∣ = 2s−

∣∣∣�k
∣∣∣

∣∣∣�k
∣∣∣∑

c=0

(|�k|
c

)
(−1)c(1)|�k|−c = 2s−

∣∣∣�k
∣∣∣
(1 − 1)|�k| = Mδk,0, (D13)

where we use the binomial formula in the third line and that M = 2s together with the definition of Kronecker δ in the last
line. This concludes the proof. �
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By applying Lemma 3 in Eq. (D9), we can simplify the term with the cosines as follows:

M−1∑

k=0

⎛
⎝
∣∣∣∣∣

N−1∑

i=0

xifi,k cos θieiφi

∣∣∣∣∣

2

+
∣∣∣∣∣

N−1∑

i=0

xifi,k sin θieiφi

∣∣∣∣∣

2
⎞
⎠ =

M−1∑

k=0

⎛
⎝1 +

∣∣∣∣∣

N−1∑

i=1

xifi,k

∣∣∣∣∣

2

+ 2x0 cos θ cosφ
N−1∑

i=1

xifi,k

⎞
⎠

=
M−1∑

k=0

⎛
⎝1 +

∣∣∣∣∣

N−1∑

i=1

xifi,k

∣∣∣∣∣

2
⎞
⎠+ 2x0 cos θ cosφ

N−1∑

i=1

xiMδi,0

=
M−1∑

k=0

⎛
⎝1 +

∣∣∣∣∣

N−1∑

i=1

xifi,k

∣∣∣∣∣

2
⎞
⎠ = M +

M−1∑

k=0

∣∣∣∣∣

N−1∑

i=1

xifi,k

∣∣∣∣∣

2

, (D14)

where the sum with the Kronecker δ δi,0 is identically zero since the index i starts from one.
We now expand the square in the last expression and obtain

M−1∑

k=0

⎛
⎝
∣∣∣∣∣

N−1∑

i=0

xifi,k cos θieiφi

∣∣∣∣∣

2

+
∣∣∣∣∣

N−1∑

i=0

xifi,k sin θieiφi

∣∣∣∣∣

2
⎞
⎠ = M +

M−1∑

k=0

∣∣∣∣∣

N−1∑

i=1

xifi,k

∣∣∣∣∣

2

= M +
M−1∑

k=0

N−1∑

i,i′=1

xixi′ fi,kfi′,k = M +
N−1∑

i,i′=1

xixi′
∑

�k∈{0,1}s

(−1)(�i+�i′)·�k,

(D15)

where we remark that the result of Lemma 3 cannot be directly applied to the innermost sum since (�i +�i′) is not a binary
vector. However, we can use the lemma to compute such a sum. In order to do so, we observe that the vector (�i +�i′)
deviates from a binary vector only in the elements r where ir = i′r = 1, and we have �i · �i′ many such elements. These
elements do not contribute to the value of (−1)(�i+�i′)·�k regardless of the value of kr. Hence, we can define shorter vectors
�m ∈ {0, 1}s−�i·�i′ and �l ∈ {0, 1}s−�i·�i′ that correspond to the remaining s −�i · �i′ elements of �i +�i′ and �k, respectively, where
ir + i′r �= 2. By definition, we have that (−1)(�i+�i′)·�k = (−1) �m·�l. Now, in order to replace the sum over �k with a sum over
�l, we must account for the fact that, for every fixed value of �l and hence of (−1) �m·�l, there are 2�i·�i′ vectors �k such that
(−1)(�i+�i′)·�k = (−1) �m·�l. Therefore, we can recast the innermost sum in Eq. (D15) as follows:

∑

�k∈{0,1}s

(−1)(�i+�i′)·�k = 2�i·�i′ ∑

�l∈{0,1}s−�i·�i′
(−1) �m·�l = 2�i·�i′2s−�i·�i′δ �m,�0 = Mδ �m,�0 = Mδ�i,�i′ , (D16)

where in the second equality we used Lemma 3 since now �m is a binary vector and in the fourth equality we use the fact
that the δ δ �m,�0 effectively implies that �i = �i′ over the whole set of s elements since �m is given by the elements of �i +�i′
corresponding to the positions where the two vectors are not both equal to one.

Thus, by using Eq. (D16) in Eq. (D15), we obtain

M−1∑

k=0

⎛
⎝
∣∣∣∣∣

N−1∑

i=0

xifi,k cos θieiφi

∣∣∣∣∣

2

+
∣∣∣∣∣

N−1∑

i=0

xifi,k sin θieiφi

∣∣∣∣∣

2
⎞
⎠ = M + M

N−1∑

i,i′=1

xixi′δ�i,�i′

= M

(
1 +

N−1∑

i=1

x2
i

)
= MN , (D17)

where we use the fact that xi = ±1. Finally, by employing Eq. (D17) in Eq. (D8), we obtain

Tr

[
ρout

M−1⊗

k=0

|0〉〈0|k
]

= e−Nηα2
, (D18)

which concludes the calculation of the second trace in Eq. (D7).
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We now move on to calculate the first trace in Eq. (D7). In a similar manner to Eq. (D8), we can write

Tr

⎡
⎣ρout1j

⊗

k �=j

|0〉〈0|k
⎤
⎦ =

∏

k �=j

exp

⎡
⎣−

∣∣∣∣∣

√
η

M
α

N−1∑

i=0

xifi,k cos θieiφi

∣∣∣∣∣

2

−
∣∣∣∣∣

√
η

M
α

N−1∑

i=0

xifi,k sin θieiφi

∣∣∣∣∣

2
⎤
⎦

= exp

⎡
⎣− η

M
α2
∑

k �=j

⎛
⎝
∣∣∣∣∣

N−1∑

i=0

xifi,k cos θieiφi

∣∣∣∣∣

2

+
∣∣∣∣∣

N−1∑

i=0

xifi,k sin θieiφi

∣∣∣∣∣

2
⎞
⎠
⎤
⎦

= exp

⎡
⎣− η

M
α2
∑

k �=j

Ck

⎤
⎦ = exp

[
− η

M
α2

(
M−1∑

k=0

Ck − Cj

)]
= e−Nηα2

e(η/M )α2Cj , (D19)

where in the third line we define

Ck :=
∣∣∣∣∣

N−1∑

i=0

xifi,k cos θieiφi

∣∣∣∣∣

2

+
∣∣∣∣∣

N−1∑

i=0

xifi,k sin θieiφi

∣∣∣∣∣

2

, (D20)

and we use Eq. (D18) in the last line. With analogous calculations to those leading to Eq. (D9), one can simplify Cj as
follows:

Cj = 1 +
∣∣∣∣∣

N−1∑

i=1

xifi,j

∣∣∣∣∣

2

+ 2x0 cos θ cosφ
N−1∑

i=1

xifi,j . (D21)

We now recall that in the postprocessing of the protocol, party Ai flips their X -basis outcome, xi, if fi,j = (−1)�i·�j = −1.
For this, we identify the sum

∑N−1
i=1 xifi,j in the last expression as the sum of the postprocessed X -basis outcomes of the

parties (excluding A0) and can label it as follows:

N−1∑

i=1

xifi,j =: Sj
x1,...,xN−1

. (D22)

This allows us to recast Cj as follows:

Cj = 1 + (Sj
x1,...,xN−1

)2 + 2Sj
x1,...,xN−1

x0 cos θ cosφ. (D23)

By using the last expression in Eq. (D19), we obtain the final form of the first trace in Eq. (D7):

Tr

⎡
⎣ρout1j

⊗

k �=j

|0〉〈0|k
⎤
⎦ = e−Nηα2

e(η/M )α2
(

1+(Sj
x1,...,xN−1 )

2+2Sj
x1,...,xN−1 x0 cos θ cosφ

)

= e−(MN−1)ηα2/M eηα
2
(
(Sj

x1,...,xN−1 )
2+2Sj

x1,...,xN−1 x0 cos θ cosφ
)
/M . (D24)

Finally, by combining Eqs. (D18) and (D24) in Eq. (D7), we obtain the following expression for the probability that only
detector Dj clicks, conditioned on the parties preparing coherent states |x0α〉 , . . . , |xN−1α〉 in a KG round:

Pr(�j |x0, x1, . . . , xN−1, RKG)

= (1 − pd)
M−1e−(MN−1)ηα2/M eηα

2
(
(Sj

x1,...,xN−1 )
2+2Sj

x1,...,xN−1 x0 cos θ cosφ
)
/M

− (1 − pd)
M e−Nηα2

, (D25)

where Sj
x1,...,xN−1 is given in Eq. (D22) and θ = θ0 − θ1.
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2. Computation of Pr(�j |RKG)

We now calculate the probability that detector Dj clicks in a KG round, i.e.,

Pr(�j |RKG) = 1
2N

∑

(x0,...,xN−1)∈{1,−1}N

Pr(�j |x0, x1, . . . , xN−1, RKG)

= −(1 − pd)
M e−Nηα2 + (1 − pd)

M−1

2N e−(MN−1)ηα2/M

×
∑

(x0,...,xN−1)∈{1,−1}N

eηα
2
(
(Sj

x1,...,xN−1 )
2+2Sj

x1,...,xN−1 x0 cos θ cosφ
)
/M . (D26)

We denote the leftover sum in the last expression as � for brevity. Then, we can simplify it as follows:

� =
∑

(x1,...,xN−1)∈{1,−1}N−1

(
eηα

2
(
(Sj

x1,...,xN−1 )
2+2Sj

x1,...,xN−1 cos θ cosφ
)
/M + eηα

2
(
(Sj

x1,...,xN−1 )
2−2Sj

x1,...,xN−1 cos θ cosφ
)
/M
)

=
∑

(x1,...,xN−1)∈{1,−1}N−1

eηα
2(Sj

x1,...,xN−1 )
2/M

(
eηα

22Sj
x1,...,xN−1 cos θ cosφ/M + e−ηα22Sj

x1,...,xN−1 cos θ cosφ/M
)

= 2
∑

(x1,...,xN−1)∈{1,−1}N−1

eηα
2(Sj

x1,...,xN−1 )
2/M cosh

(
2
ηα2

M
Sj

x1,...,xN−1
cos θ cosφ

)
. (D27)

At this point, we define a vector �y ∈ {1, −1}N−1 such that yi = xifi,j . Then, we can rewrite Sj
x1,...,xN−1 = ∑

i yi. Of note,
since we sum over all possible vectors (x1, . . . , xN−1), we reach all possible values for �y. This implies that we can recast
the sum over (x1, . . . , xN−1) as a sum over all possible vectors �y. This has the consequence that the probability of detector
Dj clicking is independent of j . With these considerations, we rewrite the last expression as follows:

� = 2
∑

�y∈{1,−1}N−1

eηα
2(
∑

i yi)
2/M cosh

(
2
ηα2

M
(
∑

i

yi) cos θ cosφ

)
. (D28)

Now let us call k the number of ones in the vector �y. We have that
∑

i yi = k − (N − 1 − k) = 2k + 1 − N . Since there
are

(N−1
k

)
different vectors �y that have a fixed number k of ones, we can recast the last expression as follows:

� = 2
N−1∑

k=0

(
N − 1

k

)
eηα

2(2k+1−N )2/M cosh
(

2
ηα2

M
(2k + 1 − N ) cos θ cosφ

)
. (D29)

By inserting the last expression in Eq. (D26), we obtain the final expression for the probability that detector Dj clicks in
a KG round:

Pr(�j |RKG) = −(1 − pd)
M e−Nηα2 + (1 − pd)

M−1

2N−1 e−(MN−1)ηα2/M

×
N−1∑

k=0

(
N − 1

k

)
eηα

2(2k+1−N )2/M cosh
(

2
ηα2

M
(2k + 1 − N ) cos θ cosφ

)
, (D30)

where θ = θ0 − θ1. As discussed above, the probability that a specific detector clicks is independent of j , as expected
given our symmetric channel model.
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3. Computation of Qj
X0,Xi

The QBER is computed through Eq. (5), which we report here for clarity:

Qj
X0,Xi

=
∑

x0 �=xifi,j

Pr
(
�j |x0, xi, RKG

)

4 Pr(�j |RKG)
, (D31)

where the only quantity that still needs to be computed is Pr
(
�j |x0, xi, RKG

)
. By definition, we have

Pr(�j |x0, xi, RKG) = 1
2N−2

∑

(x1,...,x̂i,...,xN−1)∈{1,−1}N−2

Pr(�j |x0, x1, . . . , xN−1, RKG)

= −(1 − pd)
M e−Nηα2 + (1 − pd)

M−1

2N−2 e−(MN−1)ηα2/M

×
∑

(x1,...,x̂i,...,xN−1)∈{1,−1}N−2

eηα
2
(
(Sj

x1,...,xN−1 )
2+2Sj

x1,...,xN−1 x0 cos θ cosφ
)
/M , (D32)

where (x1, . . . , x̂i, . . . , xN−1) are (N − 2)-dimensional vectors where the ith element is removed. Then, we can define a
vector �y ∈ {1, −1}N−1 with yl = xlfl,j for l �= i and yi = 0, such that Sj

x1,...,xN−1 = ∑
l yl + xifi,j . Since the sum in the last

expression runs over all vectors (x1, . . . , x̂i, . . . , xN−1), we can reach all possible choices of �y, meaning that we can recast
the sum as a sum over all possible choices of �y. With these considerations, we recast Eq. (D32) as follows:

Pr(�j |x0, xi, RKG) = −(1 − pd)
M e−Nηα2 + (1 − pd)

M−1

2N−2 e−(MN−1)ηα2/M

×
∑

�y∈{1,−1}N−1:
yi=0

eηα
2
(
(
∑

l yl+xifi,j )2+2(
∑

l yl+xifi,j )x0 cos θ cosφ
)
/M . (D33)

We label the sum as �′ and focus on it

�′ =
∑

�y∈{1,−1}N−1:
yi=0

eηα
2
(
(
∑

l yl)
2+1+2xifi,j

∑
l yl+2xifi,j x0 cos θ cosφ+2x0 cos θ cosφ

∑
l yl

)
/M

= eηα
2(1+2x0xifi,j cos θ cosφ)/M

∑

�y∈{1,−1}N−1:
yi=0

eηα
2
(
(
∑

l yl)
2+2

∑
l yl(xifi,j +x0 cos θ cosφ)

)
/M . (D34)

By replicating the argument in the calculation of Pr(�j |RKG), we can replace the sum over �y with a sum over k, which is
the number of ones in �y:

�′ = eηα
2(1+2x0xifi,j cos θ cosφ)/M

N−2∑

k=0

(
N − 2

k

)
eηα

2(2k+2−N )2/M e2ηα2(2k+2−N )(xifi,j +x0 cos θ cosφ)/M . (D35)

By inserting this in Eq. (D33), we obtain the final expression for the probability that detector Dj clicks, given that party
A0 (Ai) prepared coherent state |x0α〉 (|xiα〉):

Pr(�j |x0, xi, RKG) = −(1 − pd)
M e−Nηα2 + (1 − pd)

M−1

2N−2 e−(MN−2−2x0xifi,j cos θ cosφ)ηα2/M

×
N−2∑

k=0

(
N − 2

k

)
eηα

2(2k+2−N )2/M e2ηα2(2k+2−N )(xifi,j +x0 cos θ cosφ)/M . (D36)
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With Eq. (D36) we can finally compute the QBER as follows:

Qj
X0,Xi

=
∑

x0 �=xifi,j

Pr
(
�j |x0, xi, RKG

)

4 Pr(�j |RKG)
= −(1 − pd)

M e−Nηα2

2 Pr(�j |RKG)
+ (1 − pd)

M−1

2N Pr(�j |RKG)
e−(MN−2+2 cos θ cosφ)ηα2/M

×
N−2∑

k=0

(
N − 2

k

)
eηα

2(2k+2−N )2/M

×
(

e2ηα2(2k+2−N )(1−cos θ cosφ)/M + e−2ηα2(2k+2−N )(1−cos θ cosφ)/M
)

= −(1 − pd)
M e−Nηα2

2 Pr(�j |RKG)
+ (1 − pd)

M−1

2N−1 Pr(�j |RKG)
e−(MN−2+2 cos θ cosφ)ηα2/M

×
N−2∑

k=0

(
N − 2

k

)
eηα

2(2k+2−N )2/M cosh
(

2
ηα2

M
(2k + 2 − N )(1 − cos θ cosφ)

)
,

(D37)

which is also independent of j (Pr(�j |RKG) is independent of j , see Eq. (D30)), as well as i, due to the symmetry of the
considered noise model.

4. Computation of Pr(�j |β0, β1, . . . , βN−1)

We now calculate the gains, i.e., the probability that only detector Dj clicks in a PE round where the parties prepared
phase-randomized coherent states with intensities β0,β1, . . . ,βN−1. We recall that the state (1) sent by party Ai can be
equivalently described as follows:

ρai(βi) = 1
2π

∫ 2π

0
dϕi|

√
βieiϕi〉〈

√
βieiϕi |, (D38)

where βi ∈ Si. Thus, the state sent by all parties reads

ρin =
N−1⊗

i=0

ρai(βi) = 1
(2π)N

∫ 2π

0
dϕ0 · · · dϕN−1

N−1⊗

i=0

|
√
βieiϕi〉〈

√
βieiϕi |. (D39)

We now apply our channel model comprising a pure-loss channel and a polarization misalignment (we neglect the phase
shift as the states are already phase randomized). After going through the lossy and noisy channel, ρin evolves to

ρ ′
in = 1

(2π)N

∫ 2π

0
dϕ0 . . . dϕN−1

N−1⊗

i=0

| cos θi
√
ηβieiϕi〉〈cos θi

√
ηβieiϕi |P

⊗ | − sin θi
√
ηβieiϕi〉〈− sin θi

√
ηβieiϕi |P⊥ . (D40)

The final step consists in evolving ρ ′
in through the BBS network. We obtain the following state:

ρout = 1
(2π)N

∫ 2π

0
dϕ0 . . . dϕN−1

M−1⊗

k=0

∣∣∣∣∣

√
η

M

N−1∑

i=0

fi,k cos θi
√
βieiϕi

〉 〈√
η

M

N−1∑

i=0

fi,k cos θi
√
βieiϕi

∣∣∣∣∣
P

⊗
∣∣∣∣∣−
√
η

M

N−1∑

i=0

fi,k sin θi
√
βieiϕi

〉 〈
−
√
η

M

N−1∑

i=0

fi,k sin θi
√
βieiϕi

∣∣∣∣∣
P⊥

, (D41)

064017-27



CARRARA, MURTA, and GRASSELLI PHYS. REV. APPLIED 19, 064017 (2023)

which we remark is not anymore a product state of phase-randomized coherent states. Now, similarly to the calculation of
Pr(�j |x0, . . . , xN−1, RKG), we can express each gain as follows:

Pr(�j |β0,β1, . . . ,βN−1) = (1 − pd)
M−1Tr

⎡
⎣ρout1j

⊗

k �=j

|0〉〈0|k
⎤
⎦− (1 − pd)

M Tr

[
ρout

M−1⊗

k=0

|0〉〈0|k
]

, (D42)

where |0〉〈0|k is the projector on the vacuum of the output mode k for polarizations P and P⊥, since the detectors do not
distinguish polarization. We now evaluate the two terms in Eq. (D42). Let us begin with the second, i.e.,

Tr

[
ρout

M−1⊗

k=0

|0〉〈0|k
]

= 1
(2π)N

∫ 2π

0
dϕ0 . . . dϕN−1

×
M−1∏

k=0

∣∣∣∣∣〈0|
√
η

M

N−1∑

i=0

fi,k cos θi
√
βieiϕi〉

∣∣∣∣∣

2 ∣∣∣∣∣〈0| −
√
η

M

N−1∑

i=0

fi,k sin θi
√
βieiϕi〉

∣∣∣∣∣

2

= 1
(2π)N

∫ 2π

0
dϕ0 . . . dϕN−1

×
M−1∏

k=0

exp

⎡
⎣−

∣∣∣∣∣

√
η

M

N−1∑

i=0

fi,k cos θi
√
βieiϕi

∣∣∣∣∣

2

−
∣∣∣∣∣

√
η

M

N−1∑

i=0

fi,k sin θi
√
βieiϕi

∣∣∣∣∣

2
⎤
⎦

=
∫ 2π

0
,

dϕ0 . . . dϕN−1

(2π)N
exp

⎡
⎣− η

M

M−1∑

k=0

⎛
⎝
∣∣∣∣∣

N−1∑

i=0

fi,k cos θi
√
βieiϕi

∣∣∣∣∣

2

+
∣∣∣∣∣

N−1∑

i=0

fi,k sin θi
√
βieiϕi

∣∣∣∣∣

2
⎞
⎠
⎤
⎦

≡
∫ 2π

0

dϕ0 . . . dϕN−1

(2π)N
e− η

M
∑M−1

k=0 Ck . (D43)

Let us now focus on the sum of the terms labeled Ck. By expanding the squares in Ck we obtain

M−1∑

k=0

Ck =
M−1∑

k=0

⎛
⎜⎜⎝

N−1∑

i=0

∣∣∣fi,k cos θi
√
βieiϕi

∣∣∣
2
+

N−1∑

i,i′=0
i�=i′

fi,kfi′,k cos θi cos θi′
√
βiβi′ei(ϕi−ϕi′ )

+
N−1∑

i=0

∣∣∣fi,k sin θi
√
βieiϕi

∣∣∣
2
+

N−1∑

i,i′=0
i�=i′

fi,kfi′,k sin θi sin θi′
√
βiβi′ei(ϕi−ϕi′ )

⎞
⎟⎟⎠

=
M−1∑

k=0

⎛
⎜⎜⎝

N−1∑

i=0

cos2 θiβi + 2
N−1∑

i,i′=0
i<i′

fi,kfi′,k cos θi cos θi′
√
βiβi′ cos(ϕi − ϕi′)

+
N−1∑

i=0

sin2 θiβi + 2
N−1∑

i,i′=0
i<i′

fi,kfi′,k sin θi sin θi′
√
βiβi′ cos(ϕi − ϕi′)

⎞
⎟⎟⎠ . (D44)
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Now, we use the result in Eq. (D16) (derived from Lemma 3) to argue that

M−1∑

k=0

fi,kfi′,k =
M−1∑

k=0

(−1)(�i+�i′)·�k

= Mδ�i,�i′ . (D45)

By applying this result in Eq. (D44), and by noting that �i and �i′ must differ in the sums that involve them, we are left with

M−1∑

k=0

Ck =
M−1∑

k=0

(
N−1∑

i=0

βi cos θi
2 +

N−1∑

i=0

βi sin θi
2

)
= M

N−1∑

i=0

βi. (D46)

By using this result in Eq. (D43), we can directly integrate over the phases and obtain the following expression for the
second term in Eq. (D42):

Tr

[
ρout

M−1⊗

k=0

|0〉〈0|k
]

= e−η∑i βi . (D47)

Regarding the first term in Eq. (D42), we can express it as follows:

Tr

⎡
⎣ρout1j

⊗

k �=j

|0〉〈0|k
⎤
⎦ = 1

(2π)N

∫ 2π

0
dϕ0 . . . dϕN−1e−(η/M )

∑M−1
k=0, k �=j Ck

= 1
(2π)N

∫ 2π

0
dϕ0 . . . dϕN−1e−(η/M )

(∑M−1
k=0 Ck−Cj

)

= e−η∑i βi
1

(2π)N

∫ 2π

0
dϕ0 . . . dϕN−1eηCj /M . (D48)

Now we calculate the coefficient Cj by expanding its squares:

Cj =
∣∣∣∣∣

N−1∑

i=0

fi,j cos θi
√
βieiϕi

∣∣∣∣∣

2

+
∣∣∣∣∣

N−1∑

i=0

fi,j sin θi
√
βieiϕi

∣∣∣∣∣

2

=
N−1∑

i=0

βi + 2
N−1∑

i,i′=0
i<i′

fi,j fi′,j (cos θi cos θi′ + sin θi sin θi′)
√
βiβi′ cos(ϕi − ϕi′)

=
N−1∑

i=0

βi + 2
N−1∑

i,i′=0
i<i′

fi,j fi′,j cos(θi − θi′)
√
βiβi′ cos(ϕi − ϕi′). (D49)

Now we use the fact that θi = θ1 for every i ≥ 1. By splitting the second sum into two terms, where the first has i = 0
fixed and in the second i ≥ 1, we obtain

Cj =
N−1∑

i=0

βi + 2 cos θ
N−1∑

i=1

fi,j
√
β0βi cos(ϕ0 − ϕi)+ 2

N−1∑

i,i′=1
i<i′

fi,j fi′,j
√
βiβi′ cos(ϕi − ϕi′), (D50)

where θ = θ0 − θ1. By using this expression in Eq. (D48), we obtain the following expression for the first term in
Eq. (D42):

Tr

⎡
⎣ρout1j

⊗

k �=j

|0〉〈0|k
⎤
⎦ = e−η(1−1/M )

∑
i βi Ij (β0, . . . ,βN−1), (D51)
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where we define the integral:

Ij (β0, . . . ,βN−1) := 1
(2π)N

∫ 2π

0
dϕ0 . . . dϕN−1

× exp

⎡
⎢⎢⎣

2η
M

⎛
⎜⎜⎝cos θ

N−1∑

i=1

fi,j
√
β0βi cos(ϕ0 − ϕi)+

N−1∑

i,i′=1
i<i′

fi,j fi′,j
√
βiβi′ cos(ϕi − ϕi′)

⎞
⎟⎟⎠

⎤
⎥⎥⎦ . (D52)

By employing Eqs. (D51) and (D47) in Eq. (D42), we obtain the following compact expression for the gains:

Pr(�j |β0,β1, . . . ,βN−1)

= (1 − pd)
M−1e−η(1−1/M )

∑
i βi Ij (β0, . . . ,βN−1)− (1 − pd)

M e−η∑i βi , (D53)

where Ij (β0, . . . ,βN−1) is given in Eq. (D52).
Of note, due to our symmetric channel model, the gains are independent of which detector Dj clicks. To show this, we

argue that the integral in Eq. (D52) is actually independent of j . To this aim, we label the function to be integrated in
Eq. (D52) as follows:

Fj (ϕ0, . . . ,ϕN−1) := exp

⎡
⎢⎢⎣

2η
M

⎛
⎜⎜⎝cos θ

N−1∑

i=1

(−1)�i·�j
√
β0βi cos(ϕ0 − ϕi)+

N−1∑

i,i′=1
i<i′

(−1)(�i+�i′)·�j√βiβi′ cos(ϕi − ϕi′)

⎞
⎟⎟⎠

⎤
⎥⎥⎦ (D54)

and observe that this function is periodic in each variable ϕi, with period 2π . The only dependency of Fj on j comes from
the ±1 signs inside the sums. We can reabsorb such signs by defining alternative integration variables �i := ϕi − π · (�i ·
�j ), which allow us to simplify the summands as follows:

(−1)�i·�j cos(ϕ0 − ϕi) = cos(�0 −�i), (D55)

(−1)(�i+�i′)·�j cos(ϕi − ϕi′) = (−1)�i
′·�j −�i·�j cos(ϕi − ϕi′) = cos(�i −�i′). (D56)

Then, by performing the change of variable �i := ϕi − π · (�i · �j ) in the integral and by using the fact that the function Fj
is periodic in each variable, we obtain

Ij (β0, . . . ,βN−1) = 1
(2π)N

∫ 2π−π(�i·�j )

−π(�i·�j )
d�0d�1 . . . d�N−1F0(�0,�1, . . . ,�N−1)

= 1
(2π)N

∫ 2π

0
d�0d�1 . . . d�N−1F0(�0,�1, . . . ,�N−1) = I0(β0, . . . ,βN−1), (D57)

which confirms that Ij is independent of j . The final formula for the gains is thus

Pr(�j |β0,β1, . . . ,βN−1) = (1 − pd)
M−1e−η(1−1/M )

∑
i βi I(β0, . . . ,βN−1)− (1 − pd)

M e−η∑i βi , (D58)

where the integral

I(β0, . . . ,βN−1) =
∫ 2π

0

dϕ0 . . . dϕN−1

(2π)N
exp

⎡
⎢⎢⎣

2η
M

⎛
⎜⎜⎝cos θ

N−1∑

i=1

√
β0βi cos(ϕ0 − ϕi)+

N−1∑

i,i′=1
i<i′

√
βiβi′ cos(ϕi − ϕi′)

⎞
⎟⎟⎠

⎤
⎥⎥⎦ , (D59)

is evaluated numerically in our simulations. Note that we freely relabeled the variables in the integral back to ϕi.
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5. Computation of Pr(�j |n0, . . . , nN−1)

Here we calculate the analytical expression of any yield Yj
n0,...,nN−1 , defined in Eq. (6) as the probability that detector Dj

clicks given the hypothetical scenario in which party Ai sent exactly ni photons.
We remark that in an experiment the parties cannot, in general, learn the exact value of each yield with the decoy-state

analysis, but can derive upper bounds as shown in Appendix C. In the limit of an infinite number of decoy intensities, the
yields’ upper bounds would tend to the exact values computed here.

To evaluate Yj
n0,...,nN−1 , we consider the scenario in which the parties send the state

⊗N−1
i=0 |ni〉, where |ni〉 is a Fock state

of ni photons. The state can be written as

|ξ(n0, . . . , nN−1)〉 =
(

N−1∏

i=0

(â†
i )

ni

√
ni!

)
|0〉 , (D60)

where â†
i is the creation operator of the optical mode of party Ai and |0〉 represents the vacuum state on all modes. We

now introduce, step by step, the effect of all sources of noise and then apply the BBS network.
The lossy channel transforms each party’s mode according to

â†
i → √

ηâ†
i +

√
1 − ηl̂†i , (D61)

where l̂†i is the creation operator of the loss mode of party Ai. The input state |ξ〉 is transformed as follows:

|ξ ′(n0, . . . , nN−1)〉 =
(

N−1∏

i=0

(
√
ηâ†

i + √
1 − ηl̂†i )

ni

√
ni!

)
|0〉

=
⎡
⎣

N−1∏

i=0

⎛
⎝

ni∑

ki=0

(
ni

ki

)
ηki/2(1 − η)(ni−ki)/2

√
ni!

(âi
†
)ki(l̂†i )

ni−ki

⎞
⎠
⎤
⎦ |0〉

=
n0∑

k0=0

· · ·
nN−1∑

kN−1=0

(
n0

k0

)
· · ·
(

nN−1

kN−1

)
η
∑

i ki/2(1 − η)
∑

i(ni−ki)/2

√
n0! · · · nN−1!

√
(n0 − k0)! · · · (nN−1 − kN−1)!

×
[

N−1∏

i=0

(âi
†
)ki

]
|0〉a0,...,aN−1 ⊗ |n0 − k0〉l0 ⊗ · · · ⊗ |nN−1 − kN−1〉lN−1 , (D62)

where we just use the binomial expansion in the second line and where ai and li are used to indicate the optical mode and
the loss mode of party Ai, respectively.

We now note that the loss modes are not observed by the parties and thus need to be traced out. The density matrix
ρ ′ = |ξ ′〉〈ξ ′| will thus have two sets of indices (k0, . . . , kN−1) and (k′

0, . . . , k′
N−1). However, it is immediate to see from

Eq. (D62) that tracing out the loss modes will impose the conditions ki = k′
i ∀i. Thus we are left with the state

ρ ′ =
n0∑

k0=0

· · ·
nN−1∑

kN−1=0

(
n0

k0

)2

· · ·
(

nN−1

kN−1

)2

η
∑

i ki(1 − η)
∑

i(ni−ki)
(n0 − k0)! · · · (nN−1 − kN−1)!

n0! · · · nN−1!

×
[

N−1∏

i=0

(âi
†
)ki

]
|0〉〈0|a0,...,aN−1

[
N−1∏

i=0

(âi)
ki

]

=
n0∑

k0=0

· · ·
nN−1∑

kN−1=0

(
n0

k0

)
· · ·
(

nN−1

kN−1

)
η
∑

i ki(1 − η)
∑

i(ni−ki)

k0! · · · kN−1!

[
N−1∏

i=0

(âi
†
)ki

]
|0〉〈0|a0,...,aN−1

[
N−1∏

i=0

(âi)
ki

]
, (D63)

where we use the fact that (ni − ki)!/ni! = 1/
(ni

ki

)
ki! and where, from now on, for simplicity of notation we neglect the

explicit dependence of the state on n0, . . . , nN−1.
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We now introduce the polarization misalignment, while we skip the phase misalignment since its effect cancels out on
tensor products of Fock states. The polarization misalignment acts on the creation operators of each mode as follows:

â†
i → cos θiâ

†
i,P − sin θiâ

†
i,P⊥ , (D64)

where we recall that in our channel model we set θi = θ1 for i ≥ 1, i.e., we introduce only a misalignment between the
reference party A0 and the other parties. For simplicity of notation we omit the label P and consider the polarization P
to be the input polarization and label the orthogonal polarization with ⊥. By applying the above transformation to the
creation operators in Eq. (D63) and by using again the binomial expansion we obtain

N−1∏

i=0

(
cos θiâi

† − sin θiâ
†
i,⊥
)ki =

N−1∏

i=0

⎛
⎝

ki∑

li=0

(−1)ki−li

(
ki

li

)
(cos θi)

li(sin θi)
ki−li(âi

†
)li(â†

i,⊥)
ki−li

⎞
⎠

=
k0∑

l0=0

· · ·
kN−1∑

lN−1=0

(−1)
∑

i(ki−li)
(

k0

l0

)
· · ·
(

kN−1

lN−1

)
(cos θ0)

l0

× (sin θ0)
k0−l0(cos θ1)

∑N−1
i=1 li(sin θ1)

∑N−1
i=1 (ki−li)

[
N−1∏

i=0

(âi
†
)li(â†

i, ⊥)
ki−li

]
. (D65)

By using this expression in Eq. (D63), we obtain

ρ ′′ =
n0∑

k0=0

· · ·
nN−1∑

kN−1=0

k0∑

l0=0

· · ·
kN−1∑

lN−1=0

k0∑

l′0=0

· · ·
kN−1∑

l′N−1=0

(
n0

k0

)
· · ·
(

nN−1

kN−1

)(
k0

l0

)
· · ·
(

kN−1

lN−1

)(
k0

l′0

)
· · ·
(

kN−1

l′N−1

)

× (−1)
∑

i(2ki−li−l′i)
η
∑

i ki(1 − η)
∑

i(ni−ki)

k0! · · · kN−1!
× (cos θ0)

l0+l′0(sin θ0)
2k0−l0−l′0(cos θ1)

∑N−1
i=1 (li+l′i)(sin θ1)

∑N−1
i=1 (2ki−li−l′i)

×
[

N−1∏

i=0

(âi
†
)li(â†

i, ⊥)
ki−li

]
|0〉〈0|a0,...,aN−1,a0,⊥,...,aN−1,⊥

[
N−1∏

i=0

(âi)
l′i(âi, ⊥)ki−l′i

]
. (D66)

We now let the state evolve through the optical setup of the BBS network. The resulting transformation of the incoming
creation operators is given in Eq. (3), as proved in Appendix A. This brings us to the following state of the output modes
in the BBS network:

ρout =
n0∑

k0=0

· · ·
nN−1∑

kN−1=0

k0∑

l0=0

· · ·
kN−1∑

lN−1=0

k0∑

l′0=0

· · ·
kN−1∑

l′N−1=0

(
n0

k0

)
· · ·
(

nN−1

kN−1

)(
k0

l0

)
· · ·
(

kN−1

lN−1

)(
k0

l′0

)
· · ·
(

kN−1

l′N−1

)

× (−1)
∑

i(2ki−li−l′i)
η
∑

i ki(1 − η)
∑

i(ni−ki)

k0! · · · kN−1!
(cos θ0)

l0+l′0(sin θ0)
2k0−l0−l′0(cos θ1)

∑N−1
i=1 (li+l′i)(sin θ1)

∑N−1
i=1 (2ki−li−l′i)

×
⎡
⎣

N−1∏

i=0

(
1√
M

M−1∑

s=0

(−1)�s·�i d̂†
s

)li (
1√
M

M−1∑

s′=0

(−1)�s
′·�i d̂†

s′,⊥

)ki−li
⎤
⎦ |0〉〈0|d0,...,dN−1,d0,⊥,...,dN−1,⊥

×

⎡
⎢⎣

N−1∏

i=0

⎛
⎝ 1√

M

M−1∑

q=0

(−1)�q·�i d̂q

⎞
⎠

l′i ⎛
⎝ 1√

M

M−1∑

q′=0

(−1)�q
′·�i d̂q′,⊥

⎞
⎠

ki−l′i
⎤
⎥⎦ . (D67)

From the definition of yields, Yj
n0,...,nN−1 = Pr(�j |n0, . . . , nN−1), we can express them as follows by including dark counts

(each detector has a probability pd of a dark count):

Yj
n0,...,nN−1

= (1 − pd)
M−1Tr

⎡
⎣ρout1j

M−1⊗

r �=j

|0〉〈0|r
⎤
⎦− (1 − pd)

M Tr

[
ρout

M−1⊗

r=0

|0〉〈0|r
]

, (D68)
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where the identity operator and the projector on the vacuum are defined on both modes of polarization, since the detectors
cannot distinguish them. We note that calculating the second trace in Eq. (D68) is trivial: projecting all modes onto the
vacuum forces all indexes to be equal to zero, thus yielding the result:

Tr

[
ρout

M−1⊗

r=0

|0〉〈0|r
]

= (1 − η)
∑

i ni . (D69)

In order to calculate the first trace in Eq. (D68), we would need to expand the sums over the detectors’ creation modes
using multinomial expansions. However, since we need to project onto the vacuum state in all modes except modes dj
and dj ,⊥, this operation will force all the terms in the multinomial expansion to vanish, except for the terms containing
d̂j or d̂j ,⊥. Therefore, the reduced state of ρout after projecting onto the vacuum all modes except the j th mode, ρ(j )out :=
〈01, . . . , 0j −1, 0j +1, . . . , 0M−1|ρout|01, . . . , 0j −1, 0j +1, . . . , 0M−1〉, reads

ρ
(j )
out =

n0∑

k0=0

· · ·
nN−1∑

kN−1=0

k0∑

l0=0

· · ·
kN−1∑

lN−1=0

k0∑

l′0=0

· · ·
kN−1∑

l′N−1=0

(
n0

k0

)
· · ·
(

nN−1

kN−1

)(
k0

l0

)
· · ·
(

kN−1

lN−1

)(
k0

l′0

)
· · ·
(

kN−1

l′N−1

)

× (−1)
∑

i(2ki−li−l′i)
η
∑

i ki(1 − η)
∑

i(ni−ki)

k0! · · · kN−1!
(cos θ0)

l0+l′0(sin θ0)
2k0−l0−l′0(cos θ1)

∑N−1
i=1 (li+l′i)(sin θ1)

∑N−1
i=1 (2ki−li−l′i)

×
⎡
⎣

N−1∏

i=0

(
(−1)�j ·�i√

M

)ki (
d̂†

j

)li (
d̂†

j ,⊥
)ki−li

⎤
⎦ |0〉〈0|dj ,dj ,⊥

⎡
⎣

N−1∏

i=0

(
(−1)�j ·�i√

M

)ki (
d̂j

)l′i (
d̂j ,⊥

)ki−l′i

⎤
⎦

=
n0∑

k0=0

· · ·
nN−1∑

kN−1=0

k0∑

l0=0

· · ·
kN−1∑

lN−1=0

k0∑

l′0=0

· · ·
kN−1∑

l′N−1=0

(
n0

k0

)
· · ·
(

nN−1

kN−1

)(
k0

l0

)
· · ·
(

kN−1

kN−1

)(
k0

l′0

)
· · ·
(

kN−1

l′N−1

)

× (−1)
∑

i(2ki−li−l′i)
η
∑

i ki(1 − η)
∑

i(ni−ki)

M
∑

i kik0! · · · kN−1!
(cos θ0)

l0+l′0(sin θ0)
2k0−l0−l′0(cos θ1)

∑N−1
i=1 (li+l′i)(sin θ1)

∑N−1
i=1 (2ki−li−l′i)

×
[(

d̂†
j

)∑
i li (

d̂†
j ,⊥
)∑

i(ki−li)
]

|0〉〈0|dj ,dj ,⊥

[(
d̂j

)∑
i l′i (

d̂j ,⊥
)∑

i(ki−l′i)
]

, (D70)

where we use the fact that
(
(−1)�j ·�i

)2
∑

i ki = 1. We observe that, as expected, the yields do not depend on j , i.e., on the
detector that clicked, due to our symmetric channel model.

We can now compute the first trace in Eq. (D68) by simply taking the trace of ρ(j )out. We note that this forces the identity∑
i li = ∑

i l′i on the indexes, allowing us to obtain the following expression:

Tr

⎡
⎣ρout1j

M−1⊗

r �=j

|0〉〈0|r
⎤
⎦ = Tr[ρ(j )out] = Q(n0, . . . , nN−1), (D71)

where we define

Q(n0, . . . , nN−1) =
n0∑

k0=0

· · ·
nN−1∑

kN−1=0

∑

(l0,...,lN−1,l′0,...,l′N−1)∈L(k0,...,kN−1)

×
(

n0

k0

)
· · ·
(

nN−1

kN−1

)(
k0

l0

)
· · ·
(

kN−1

lN−1

)(
k0

l′0

)
· · ·
(

kN−1

l′N−1

)

× η
∑

i ki(1 − η)
∑

i(ni−ki)

M
∑

i kik0! · · · kN−1!
(cos θ0)

l0+l′0(sin θ0)
2k0−l0−l′0

× (cos θ1)
∑N−1

i=1 (li+l′i)(sin θ1)
∑N−1

i=1 (2ki−li−l′i)
(
∑

i

li

)
!

(
∑

i

(ki − li)

)
!, (D72)
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where the summation set is defined as

L(k0, . . . , kN−1) :=
{
(l0, . . . , lN−1, l′0, . . . , l′N−1) : 0 ≤ li ≤ ki, 0 ≤ l′i ≤ ki,

N−1∑

i=0

li =
N−1∑

i=0

l′i

}
. (D73)
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FIG. 5. The optimal value of the signal amplitude (α) that maximizes the key rate plotted in Fig. 4, for different values of the dark-
count probability (pd) and number of parties (N ). On the left, the key rate is computed by using the analytical bounds on the yields
(34) in the phase error rate bound (7), while the plots on the right use the exact expressions of the yields for our channel model (D74).
We observe that a tighter bound on the yields allows for a higher value of α and leads to a higher key rate (see Fig. 4).
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By using Eqs. (D69) and (D71) in Eq. (D68), we obtain the
final expression for the yields in our channel model:

Yj
n0,...,nN−1

= (1 − pd)
M−1Q(n0, . . . , nN−1)

− (1 − pd)
M (1 − η)

∑
i ni , (D74)

where Q(n0, . . . , nN−1) is defined in Eq. (D72) and we
emphasize once again that the yields are independent of j .

APPENDIX E: NUMERICAL SIMULATIONS

In this Appendix we provide more details about the
numerical simulations presented in Sec. V of the paper.

In our simulations, we set a polarization and a phase
misalignment between the reference party A0 and each
other party of 2%. This means that the parameters θi and φi,
introduced in Appendix D to describe the polarization rota-
tion and the phase mismatch of party Ai, are set to φ0 = 0,
φi≥1 = φ, θi≥1 = θ1, and φ = θ0 − θ1 = arcsin

√
0.02. We

compute the protocol’s key rate for three values of pd, i.e.,
the probability of a dark count in a given detector, namely,
pd = 10−8, 10−9, and 10−10.

As for the decoy-state analysis, we consider two decoy
intensities for each party, β0 and β1, and use the analyti-
cal bounds derived in Sec. IV to compute the upper bound
(7) on the phase error rate. The decoy intensity β0 is fixed
to β0 = 0.5, which we verify is a close-to-optimal value
for all loss parameters, while β1 = 0 is optimal. In Sec. V
we also plot the key rate in the case in which the exact
value of the yields is known, which corresponds to the
limit where the parties have an infinite number of decoy
intensities. The exact values of the yields are computed
for our channel model in Appendix D and are reported in
Eq. (D74). We then replaced the exact yields Y0, . . . , YN−1
in the phase error rate bound (7), in place of the yields’
bounds Ȳ0, . . . , ȲN−1.

The key rates in Fig. 4 are optimized over the signal
amplitude α for all values of loss and is computed for
N = 3, 4, and 5 parties. In Fig. 5 we provide the optimal
values of α for every loss, both when we use the yields
bounds obtained with two decoys and when we use the
exact expressions of the yields from the channel model.
By comparing the optimal values of α in the two cases, we
deduce that tighter bounds on the yields would allow for a
higher optimal value of α. This is explained by the fact that
having tighter bounds on the yields in the phase error rate
bound (7) allows the yields’ coefficients in that expression
to grow, i.e., α to grow, without increasing the phase error
rate bound. In turn, greater values of α can increase the key
rate due to a higher chance of having a detector click [see
Fig. 4(b)]. Therefore, we deduce that increasing the num-
ber of decoy intensities used by each party would lead to
better yields’ bounds and hence to a significantly improved
key rate.

In order to reduce the number of yields that are nontriv-
ially bounded in Eq. (7), we remark that the polarization
and phase angles θi and φi are the same for all parties
except for reference party A0. Moreover, the signal and
decoy intensities are the same for all parties as well as the
losses. Therefore, the channel model is symmetric under
the permutation of parties A1, A2, . . . , AN−1. This implies,
in particular, that the yields in Eq. (7) satisfy

Yn0,n1,...,nN−1 = Yn0,σ(n1,...,nN−1), (E1)

where σ(n1, . . . , nN−1) represents a permutation of the
indexes n1, . . . , nN−1. The permutational symmetry of the
yields in our channel model implies that, in computing the
phase error rate bound (7) for a cutoff n = 4 (above which
every yield is bounded by one), we need only to bound
the following yields for N = 3: Y0,0,0, Y2,0,0, Y0,2,0, Y4,0,0,
Y0,4,0 Y1,1,0, Y0,1,1, Y2,2,0, Y0,2,2, Y1,3,0, Y0,1,3, Y1,1,2.

Similarly, for N = 4 we bound only the yields: Y0,0,0,0,
Y2,0,0,0, Y0,2,0,0, Y4,0,0,0, Y0,4,0,0, Y1,1,0,0, Y0,1,1,0, Y2,2,0,0,
Y0,2,2,0, Y1,3,0,0, Y0,1,3,0, Y1,1,2,0, Y0,1,1,2, Y1,1,1,1.

And for N = 5 we bound only the yields: Y0,0,0,0,0,
Y2,0,0,0,0, Y2,0,0,0,0, Y4,0,0,0,0, Y0,4,0,0,0 Y1,1,0,0,0, Y0,1,1,0,0,
Y2,2,0,0,0, Y0,2,2,0,0, Y1,3,0,0,0, Y0,1,3,0,0, Y1,1,2,0,0, Y0,1,1,2,0,
Y1,1,1,1,0, Y0,1,1,1,1.
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