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                                                        Abstract 

Förster Resonance Energy Transfer (FRET) measurements are an ever-growing tool in 
structural biology that have the ability of solving highly sophisticated biological questions, 
which are otherwise inaccessible or challenging to be addressed by other approaches.  
Through technical and methodological developments, FRET measurements have evolved to a 
multiparameter detecting technique, which is able to infer the structural information with 
Ångström accuracy. Moreover, in FRET measurements one can detect and quantify 
conformational dynamics with unrivaled time resolution, spanning twelve orders of magnitudes 
in time, from sub-ns to thousands of seconds. Despite these advantages, FRET experiments 
suffer from the intrinsic sparsity of information, which impedes comprehensive structural 
insights at a satisfying level of detail or resolution. This can be overcome through an alliance 
with other experimental methods and computational methods that can add insights down to the 
atomistic level of detail. 
Driven by these challenges, efforts of this thesis were focused on two main areas. To a large 
extent, this thesis is aimed at answering the question if precision and accuracy of FRET 
measurements are at a level that is ready to take on complexity of proteins. In a blind study, we 
assessed the performance of FRET measurements at a single-molecule level (smFRET). 
Reproducibility and accuracy of smFRET experiments across instruments, analysis procedures 
and systems of different complexity were rigorously tested. And much beyond - we answered 
two questions: (1) Can FRET detect and quantify conformational dynamics on different 
timescales? (2) What are the minimal structural fluctuations detectable? We were able to extract 
maximum information from fluorescence burst traces, while pushing the limits of FRET studies 
and dismissing any doubts about its credibility. At the same time, this work also revealed areas 
where FRET measurements are still imperfect. In particular, we found that the main cause of 
discrepancies between lab reported values is the error in correction parameters. To alleviate this 
issue, in a follow-up project I established a protocol for robust determination of correction 
parameters. 
Second major area of research within this thesis was the use of FRET in integrative manner 
with all-atom MD simulations, with commitment to the principle of maximum entropy. Besides 
establishing the workflow for FRET/MD integrative modelling, we put on a test bench 
robustness of posterior reconstructions, and found that while recovering atomistic models is an 
ill-defined problem, ensemble-integrated representations, such as inter-residue distograms and 
3D density maps, can be robustly recovered. While atomistic models are a long-term dream of 
structural biology, we pose the question if these are indeed useful, when the target are 
biomolecules which exist as large quasi-continuum of states. With the established FRET/MD 
modelling workflow, we recovered the first-ever structural models of a steric chaperone PaLif, 
from the family of lipase-specific foldases, which activate the most important class of enzymes 
in biotechnology. Besides Lif, using FRET-based tools we decoded plasticity of U2AF2 - yet 
another system that exceeds the complexity of systems typically studied. All systems studied 
within this thesis belong to a family of multidomain proteins, which constitute the majority of 
proteins in both eukaryotes and prokaryotes.  
The results of this thesis provide a major step ahead for quantitative FRET and FRET-based 
structure determination.  
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Chapter 1 
 

Introduction 

Grand challenge of biology. According to the UniProt database, there are over 200 million 

known proteins, with their number growing rapidly every year. Yet, only for a tiny fraction of 

all known proteins structural models could be inferred. What might appear as a paradox to that 

statement, is a fact that proteins are comprised of only 20 building blocks, known as amino 

acids. However, a range of interactions occurring between these building blocks leads to 10300 

possible conformations of a protein, as noted by Cyrus Levinthal in 1969.1 While in nature 

proteins fold spontaneously, and in a very short time, this is a tremendously large search space 

for prediction of protein structure using computational methods. On the other side, experimental 

data are without exception too sparse to provide information on biomolecular structures at 

atomistic level of detail. Moreover, many experimental techniques suffer from temporal and/or 

spatial averaging, or derive structural information from non-physiological measurement 

conditions. This summarizes why protein structure determination represents the grand(est) 

challenge of biology. However, especially in recent years, this challenge has been tackled 

through an alliance of multiple experimental and computational methods,  resulting in so-called 

integrative or hybrid biomolecular models.2-4 Moreover, through integrative approach, 

structural biology is nowadays able to go beyond single structures, since rising number of multi-

state and time-ordered structural ensembles is being reported.5-8  

Revolution of fluorescence spectroscopy. Part of the integrative modelling revolution are 

Förster Resonance Energy Transfer (FRET) measurements. More than 70 years elapsed since 

the pioneering work of Förster9 on the inter-molecular non-radiative energy transfer between 

donor and acceptor fluorophore, which is the underlying mechanism in FRET experiment. 

Donor and acceptor fluorophore can be both free in the solution, but it is also possible that one 

or both fluorophores are attached to a molecular construct of interest, or they can even be its 

natural part, in which case they are known as intrinsic fluorophores. An example of intrinsic 

fluorophores would be aromatic amino acids, such as tryptophan. Key feature of FRET is that 

efficiency of energy transfer between the fluorophores is an inverse function of the sixth power 

of distance between the fluorophores. However, it wasn’t until the discovery of principles of 

click chemistry10 that FRET started to be used to explore biologically relevant processes. Click 

chemistry, for which the Nobel Prize in Chemistry was awarded in 2022, is an approach which 

allows building blocks to snap together. It enabled a new level of applications within a range 
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of disciplines in chemistry and related sciences. Part of this revolution was fluorescence 

spectroscopy, where click chemistry is used to tag biomolecules with fluorescent probes. 

Residue-specific labelling of biomolecules with fluorescent probes allows to obtain information 

about inter-residue distances within biomolecule. This meant that to work out the structure of a 

biomolecule, one was no longer constrained to traditional tools of structural biology, i.e. X-ray 

crystallography, NMR and cryo-EM.  

Sensitivity and experimental design of FRET measurements. Despite long-term dominance 

of X-ray crystallography, and its non-questionable contributions to the science, it is hard to 

overlook that it is limited to providing biomolecular models in a single static pose, along with 

non-physiological measurement conditions (see Chapter 4.1 for more details). Other dominant 

tools of structural biology, such as NMR spectroscopy and cryo-EM, have other limitations of 

their own, such as the size of the biomolecule that can be studied or the resolution of the 

obtained models (see Chapter 4.1 for more details). While FRET measurements are not the 

only tool reporting on molecules directly in a solution, they allow to monitor conformational 

dynamics in real-time, and most importantly, one single molecule at a time. Observing single 

molecules, instead of ensemble averages, is the ultimate level of sensitivity, that is in FRET 

experiment achieved by employing a relatively simple optical design, which is centered around 

confocal microscope. Through its focusing power, a confocal microscope minimizes the 

excitation volume, and the pinhole, that lies in a plane conjugate to the focal plane of the 

objective lens, rejects all out-of-focus light. These two features of a confocal microscope, in a 

combination with small enough sample concentrations, enable us to observe single molecules 

at a time (for details see Chapter 2.2). The true potential of FRET started to be harnessed when 

two important features were added to aforementioned experimental design, and that is Pulsed 

Interleaved Excitation (PIE)11 and Multiparameter Fluorescence Detection (MFD)12, 13. These 

two features allow selection of sub-populations and their characterization with a set of 

simultaneously recorded fluorescence parameters. PIE is an excitation scheme where two 

pulsed excitation lasers are being operated with a repetition time on nanosecond timescale, and 

are alternated with a delay in respect to each other, of approximately half the repetition period. 

Such laser operating scheme allows to excite donor and acceptor fluorophore at different points 

in time, and since the photon arrival time is determined relative to the excitation pulse, it is 

possible to disentangle donor and acceptor emitted photons despite their spectral overlap. 

Besides temporal classification of emitted photons, MFD schemes takes a step further, by 

additionally employing spectral and polarization classification of the emitted photons. This 

allows to simultaneously determine multiple properties of a sample, such as fluorescence 
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lifetime and anisotropy, as well as the quantities such as FRET efficiency and stoichiometry. 

Simultaneous acquisition of all these parameters minimizes ambiguity of the data interpretation, 

which in turn gives high fidelity to FRET measurements. Principles of PIE and MFD are 

discussed in more detail in Chapter 2.3. 

Determination of absolute FRET efficiency. Essential observable in FRET experiment is 

efficiency of energy transfer between donor and acceptor fluorophore, that informs on their 

spatial separation. As the instrumentation for FRET experiments was developing, accordingly 

the approach for determination of FRET efficiency was changing. Two most common ways to 

determine absolute value of FRET efficiency are: (a) by measuring the fraction of FRET 

sensitized acceptor fluorescence out of the total fluorescence of both donor and acceptor 

(“classical ratio method”) and (b) by measuring the decrease of donor fluorescence lifetime in 

the presence of acceptor (for details see Chapter 2.1 and Chapter 2.4). The first approach is 

intensity based, and it requires correction of raw fluorescence intensities for several 

experimental artifacts, namely: (i) background emission (ii) donor crosstalk into acceptor 

emission channel (iii) direct acceptor excitation by donor excitation laser (iv) correction for 

distinct fluorescence quantum yields of donor and acceptor, as well for different detection 

efficiencies of green and red detection channels for donor and acceptor fluorophore (v) 

correction for different excitation rates of donor and acceptor with their corresponding 

excitation light. However, in approach (b), which is lifetime-based, corrections (ii)-(v) are not 

needed. Determination of aforementioned correction parameters is a topic of Manuscript 1 (see 

Chapter 6.3 and Supplement C). Most commonly, one applies both intensity and lifetime 

approach for a consistency check. Furthermore, a series of alternative ways to determine FRET 

efficiency are described and reviewed by Clegg14, such as: (c) by measuring enhanced acceptor 

fluorescence, as the ratio of FRET sensitized acceptor fluorescence and acceptor fluorescence 

due to direct acceptor excitation (“(ratio)A method”) (d) by measuring decrease in fluorescence 

quantum yield of donor, i.e. via the ratio of donor fluorescence quantum yield in the presence 

and absence of the acceptor (“(ratio)D method”) (e) via anisotropy change of donor and 

acceptor. 

FRET-based tools. In terms on instrumentation, the field has not seen further major 

advancements of a described PIE-MFD scheme, other than multi-color FRET experiments15. 

However, in terms of data analysis, the number of statistical tools, which allow to extract the 

maximum information from the noisy experimental data, is rapidly growing, with some of the 

popular methods being: Photon Distribution Analysis (PDA)16, 17, filtered Fluorescence 

Correlation Spectroscopy (filtered FCS)18, FRET-FCS19, Burst Variance Analysis (BVA)20, 
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FRET-2 Channel Kernel Density Estimator (FRET-2CDE)21, and graphical tools such as 

FRET-lines22, 23. Extensive and up-to-date overview of different analysis tools and software 

packages is given in a community paper by Lerner et al.24 

Current status of FRET measurements and scope of the thesis. In terms of system 

complexity, FRET historically started with artificial toy models. In the first experimental proof 

of Förster theory, FRET efficiency was measured in oligomeric chains of poly-L-proline, 

between the α-naphthyl group (donor) at the carboxyl end of polypeptide and dansyl group 

(acceptor) at the imino end.25, 26 With time, rapid development of instrumentation and analysis 

tools enabled FRET to evolve into a method that nowadays can address systems with highest 

degree of complexity, i.e. multidomain proteins with dynamic super-tertiary structure7 and 

intrinsically disordered proteins8. However, the amount of data points obtained in a FRET 

experiment is typically too small relative to the number of degrees of freedom in a molecule. 

In other words, FRET data is too sparse to deliver accurate structural models of biomolecules 

on its own. To alleviate this limitation, FRET teams up with other experimental methods and 

computation techniques such as MD simulations, which provide physical models down to 

atomic resolution.5, 7 Alone or in integrative manner with other experimental techniques and 

computational methods, FRET is nowadays a competitive tool in the field of structural biology. 

It is already demonstrated that FRET can inform on small- and large-scale motions, it can 

measure distances in biomolecules, detect dynamics across different time regimes and unravel 

underlying kinetical scheme in a dynamic system.27, 28  

The FRET community has shown that FRET measurements are reproducible, and can infer 

structural information with sub-nanometer precision and accuracy when using rigid double-

stranded DNA molecules.29 However, an objective evaluation of the overall performance of 

FRET experiments when using challenging proteins system has been lacking. Therefore, this 

thesis was to large extent focused on critical assessment of FRET experiments for determining 

distances, as well for detecting and quantifying dynamics in protein systems that display 

conformational dynamics across different spatial and temporal scales (see Chapter 6.1). As 

model systems we used maltose binding protein, referred to as MalE, and U2AF2, the truncated 

large subunit of U2 auxiliary factor of the spliceosome machinery (see Chapter 5.2 and 

Chapter 5.3). In the second part of this thesis, we embarked on optimizing the conformational 

ensemble of PaLif in its apo state (see Chapter 6.2). PaLif belongs to a family of steric 

chaperones, which activate their cognate lipase (see Chapter 5.4). Since lipases are the most 

important class of enzymes in biotechnology, it is of immense importance to understand the 

behavior of their steric chaperones. To tackle this challenge, we joined the forces of MD 
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simulations and FRET measurements. For that, we established the workflow for integrative 

FRET/MD modelling using maximum entropy method. In a benchmark using synthetic data, 

we were able to find how to optimally balance these two sources of information. Moreover, we 

put on a test bench the robustness of optimized ensembles across representations of different 

level of detail- from atomistic models, over inter-residue distance histograms (distograms) to 

3D density maps. Lastly, by using experimental FRET data acquired for a network of six FRET 

pairs, we were able to infer the first ever structural models of PaLif in its apo state.  

 

 

Outline 

This thesis is designed such to provide information and tools necessary for accurate smFRET 

measurements, and robust modelling of structural ensembles, in integrative approach using 

FRET measurements and structural models obtained from all-atom MD simulations. In 

Chapter 2, I describe basics of FRET and its fundamental properties. This is then followed 

with discussion on how the ultimate level of sensitivity, i.e. single-molecule detection, is 

achieved in a FRET experiment by using a confocal microscope. I dissect the reasonings behind 

such experimental realization, and introduce further additions to a confocal setup, i.e. principles 

of Pulsed Interleaved Excitation (PIE) and Multiparameter Fluorescence Detection (MFD). I 

finally close this chapter by showing how the structural information is extracted from measured 

fluorescence decays. In Chapter 3 I outline fundamentals of MD simulations along with 

practical insights into methods for trajectory clustering, analysis tool frequently used to both 

reduce the amount of data points, but also to identify hidden trends in data. After discussing the 

fundamentals of FRET and MD simulations, in Chapter 4 I provide detailed overview of 

current trends in integrative structural biology, as well as mathematical formalism underlying 

the ensemble reweighting methods. These include Bayesian inference and principle of 

maximum entropy. Moving forward, in Chapter 5 I highlight the exciting biological context, 

structure and function of each of molecules studied within this thesis, prior to reaching Chapter 

6, which provides overview over articles published during this thesis. Lastly, Chapter 7 

summarizes the main outcomes of this thesis, while highlighting different methodologies from 

the field of computer science and fluorescence, that were applied in individual or synergetic 

approach within this thesis.  
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Chapter 2 
 

FRET: Concepts and experimental realization 

2.1. Basics of FRET 

Förster resonance energy transfer (FRET) is a singlet-singlet radiationless energy transfer that 

occurs from an excited donor fluorophore (D*) to an acceptor fluorophore (A), as described in 

the pioneering work of Förster.9 Energy transfer between excited donor and ground-state 

acceptor fluorophore, can be described by the following reaction scheme30: 

 

  
 

D A
↑ 𝑘D,nr 

D A     
↑ 𝑘A,nr 

D A ℎ𝜈exc       →       D∗ A             ⎯⎯ D A∗

 
 

↓ 𝑘D,f 
 

D A h𝜈D

↓ 𝑘A,f 
 

A D h𝜈A  

 (2.1)

 

D and A represent donor and acceptor fluorophore in the ground state, while their excited state 

is denoted as D* and A*. Furthermore, ℎ𝜈 represents the quantum of radiation, which in the 

reaction scheme above appears with frequency of donor excitation, 𝜈exc, donor fluorescence, 𝜈D 

and acceptor fluorescence, 𝜈A. 

Competitive to energy transfer (𝑘 ) are fluorescence and other non-radiative relaxation 

processes of the donor (𝑘 , , 𝑘 , ). The FRET sensitized acceptor fluorophore (A*) can 

analogously depopulate its excited state via both fluorescence and non-radiative pathways (𝑘 , , 

𝑘 , ). The efficiency of energy transfer from D to A, also called FRET efficiency E, is given 

by: 

 
𝐸

𝑘
𝑘 𝑘 , 𝑘 ,

 (2.2)

 

where 𝑘 , the rate of energy transfer between donor and acceptor fluorophore, strongly 
depends on the spatial separation between the fluorophores, 𝑅 : 

 

 
𝑘

1
𝜏

𝑅
𝑅

 (2.3)
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𝜏  is the average excited state lifetime of a donor in the absence of acceptor, i.e. 𝜏

1 𝑘 , 𝑘 ,⁄ , and 𝑅  is, as described in pioneering work of Förster9, the distance at which 

the rate of the energy transfer is equal to the sum of rates of all other pathways of donor excited 

state deactivation, i.e. 𝑘 1 𝜏⁄ . Then, it becomes obvious that 𝑅 , also known as 

Förster radius, is an intrinsic property of a given donor-acceptor pair, and that it represents a 

distance at which the energy transfer equals 0.5.  

By inserting eq. 2.3 in eq. 2.2, we can redefine FRET efficiency in terms of donor-acceptor 

distance 𝑅  and Förster radius, 𝑅  (Figure 1A): 

 

 
𝐸

𝑅

𝑅 𝑅
 (2.4)

 

Furthermore, considering the definitions of donor excited state lifetime in absence and presence 

of acceptor, i.e. 𝜏 1 𝑘 , 𝑘 ,⁄  and 𝜏 1 𝑘 , 𝑘 , 𝑘⁄ , we arrive to 

the formulation that underlies one of the most frequently used approaches for experimental 

determination of FRET efficiency: 

 𝐸 1
𝜏
𝜏

 (2.5)

 

The Förster radius, as a characteristic property of a given donor-acceptor pair, depends on a 

number of properties of the fluorophores, as well as properties of the surrounding medium: 

 

 
𝑅

9000 ln 10
128𝜋 𝑁

𝜅 Φ , 𝐽 𝜆
𝑛

 (2.6)

 

𝜅  is the orientation factor that describes relative orientation of transition dipole moment 

vectors of donor’s emission and acceptor’s excitation. The vector of inter-dye distance, 𝑅 , 

and the vectors of transition dipole moments, �⃗�  and �⃗� , define two planes, in which transition 

dipole moment vectors lie. The angle between these two planes, φ, and the angles between 

transition dipoles and inter-dye distance vector, 𝜃  and 𝜃 , define the orientational factor 

according to30: 

 

 𝜅 sin 𝜃 sin 𝜃 cos 𝜑 2 cos 𝜃 cos 𝜃  (2.7)
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For graphical illustration of geometrical parameters defining orientational factor see Figure 

1C. In a geometrical arrangement when transition dipole moment vectors are colinear, i.e. when 

they are in line with the inter-dye distance vector, i.e. 𝜑, 𝜃 , 𝜃 = [0°, 0°, 0°], 𝜅  has the 

maximum value of 4. For parallel dipoles, i.e. 𝜑, 𝜃 , 𝜃 = [0°, 90°, 90°],  𝜅  = 1.30  

The minimum value of 𝜅  = 0 can be realized for an infinite number of acceptor transition 

dipole orientations, all of which are perpendicular to the transition dipole moment of the donor, 

i.e. 𝜑, 𝜃 , 𝜃 = [90°, 90°, 0°…360°].30  

When the rotational motion of donor and acceptor is faster than the energy transfer time, then 

they sample all possible orientations relative to each other, which is known as isotropic dynamic 

averaging regime. In such conditions, 𝜅  can be replaced with its average value 〈𝜅 〉

𝜅 𝑝 𝜅 𝑑𝜅  = 2/3, which is an assumption often made when calculating FRET 

efficiency.30  

Additionally, the Förster radius is a function of: Φ , , fluorescence quantum yield of the donor 

in absence of acceptor; n, refractive index of the surrounding medium; 𝑁 , Avogadro’s number;  

𝐽 𝜆 , the overlap integral between the normalized fluorescence emission spectrum of the donor 

𝑓 𝜆 , and extinction spectrum of the acceptor 𝜀 𝜆  (Figure 1B): 

 

 
𝐽 𝜆 𝑓 𝜆 𝜀 𝜆 𝑑𝜆 (2.8)

  

 

Figure 1 | Basics of FRET. (A) Inter-dye distance dependence of FRET efficiency (eq. 2.4) for 
the dye pair Atto 532- Atto 643, with a Förster radius of 59 Å. (B) Overlap integral (grey shaded 
area), together with fluorescence emission spectrum of donor (blue) and absorption spectrum 
of acceptor dye (magenta). Overlap integral is calculated according to eq. 2.8 by assuming 
extinction coefficient of acceptor to be 150000 M-1cm-1 at the maximum of absorption. (C) 
Transition dipole moment vector of donor 𝜇  (blue) and acceptor 𝜇  (magenta), and angles 𝜃 , 
𝜃 , which denote their orientation relative to the connecting distance vector 𝑅 , whereas 
angle φ denotes the angle between the planes of dipole moment vectors. These geometrical 
parameters define the orientational factor 𝜅  according to eq. 2.7.  



9 
 

The classical definition of FRET rate constant (eq. 2.3) has a disadvantage of having both 𝑘  

and 𝑅  being a function of fluorescence quantum yield of donor, Φ , , while in fact 𝑘  is 

independent of donor quenching. Furthermore, the effect of relative dipole orientation is 

implicitly accounted through 𝑅 . To circumvent these complications, reduced “spectral” Förster 

radius 𝑅 ,  is defined31: 

 
𝑅

9000 ln 10
128𝜋 𝑁

𝐽 𝜆
𝑛

 (2.9)

 

which is less sample dependent and it allows to reformulate 𝑘  as function of radiative rate 

constant of fluorescence, 𝑘 , : 

 
𝑘 𝑘 , 𝜅

𝑅
𝑅

 (2.10)

 

Most importantly, such defined 𝑘  is independent of sample-specific donor quenching.  

 

2.2. Single-molecule resolution and confocal microscopy 

The advantage of FRET over many other methods in the field of structural biology is that the 

measurements can be done at the single-molecule level, in real time and in solution. By 

monitoring single-molecules, one at a time, smFRET excels plethora of other methods, by not 

reporting on simple ensemble averages. Instead, smFRET provides distributions of inter-dye 

distances and underlying kinetic schemes, with minimal averaging that occurs on the timescale 

of fluorescence (few ns). Monitoring single-molecules, not only is useful for assessing 

heterogeneity of structures and underlying dynamics, but it also allows direct comparison with 

computational approaches, e.g. molecular dynamics simulations, which cannot address bulk 

properties, but are rather limited to characterization of individual molecules. Detection of 

single-molecules is the ultimate level of sensitivity and ultimate goal of structural biology, that 

is in an elegant way achieved in a single-molecule FRET experiment, by using a confocal 

microscope in combination with a Time-Correlated Single Photon Counting (TCSPC)32 

detection scheme. Why such experimental optical arrangement is a good way of detecting 

single-molecules, becomes obvious once we address the key experimental requirements, and 

that is (a) high Signal-to-Noise Ratio (SNR) and (b) high detection efficiency.33  Bursts of 

fluorescence photons are interfered with unwanted background signal, that can have origins in 

(i) Rayleigh scattering by the solvent molecules at the excitation wavelength (ii) Raman 

scattering by the solvent molecules at the lower energy, i.e. higher wavelength compared to the 
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excitation light, and lastly (iii) Rayleigh and Raman scattering and fluorescence by the 

impurities in the solution.33 Therefore, to achieve high SNR, a good optical arrangement should 

have efficient delivery of the excitation light, combined with a rather small 

excitation/observation volume, since that way the number of solvent molecules is minimized 

and thus the scattered light as well.33 However, a small excitation volume is not sufficient to 

achieve ideal experimental conditions mentioned above, since unwanted signal, no matter how 

minimized, still goes through. 

A simple confocal microscope showed to be capable to detect single-molecules while satisfying 

all aforementioned criteria.33 Generally, an episcopic-fluorescence (epi-fluorescence) confocal 

microscope with a high Numerical Aperture (NA) objective is used, in an inverted 

configuration, i.e. objective pointing upwards. Epi-fluorescence is a configuration where the 

same optical component (dichromatic mirror) delivers the excitation light to the sample, and 

collects the emitted fluorescence (Figure 2A). Excitation light, reflected (or transmitted) on the 

dichromatic mirror, travels through the lens system of a microscope objective, which focuses 

the excitation light to a “point” that lies on a focal plane at the distance 𝑓 from the objective 

lens. The size of the excitation/observation volume is determined by the ratio of the excitation 

light diameter, 𝐷, and the diameter of the back aperture of the objective, 𝑟  (Figure 2C).34 

When using a laser beam with smaller diameter compared to the back aperture of the objective 

(i.e. 𝐷 𝑟 ), which is known as “underfilling” of the objective, excitation volume increases. 

Contrary to that, for overfilled back aperture of microscope objective (i.e. 𝐷 𝑟 ), we reach 

diffraction limited spot (“Airy disk”), whose radius perpendicular to the light propagation is: 

 

 
𝑑 1.22

𝑓𝜆
𝐷

 (2.11)

 

Airy disk  represents the distance between the central maximum of the diffraction pattern to the 

first minimum, and it is a function of wavelength of the excitation light λ, focal length of the 

objective lens 𝑓, and the diameter of the excitation beam D. Focal spot size can also be 

expressed in other terms, such as the radius at the half maximum of the diffraction pattern or as 

a radius at the 1 𝑒⁄  of the maximum intensity.  

By exploiting the focusing power of the microscope objective, we minimize the excitation 

volume, and the amount of unwanted scattered light. However, the excitation light travels on 

both sides of the focal plane, i.e. it converges towards the focal points, and afterwards diverges, 

causing the out-of-focus fluorescence of the specimen. Here comes the main characteristic of a 
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confocal microscope that makes it a good optical arrangement for detection of single-molecules, 

which is the existence of a pinhole that lies in a plane conjugate to the focal plane of the 

objective lens, i.e. at the equal distance 𝑓 from the objective lens as the focal plane, hence the 

name “confocal”. The pinhole will reject all out-of-focus light and prevent its propagation 

towards the detection path (Figure 2B). That way we observe a single spot of a specimen at a 

time, which for sufficiently small observation volumes (few fL) and low enough sample 

concentrations (< 100 pM), means a single molecule at a time.  

To summarize, properties of a confocal microscope that make it a suitable optical arrangement 

for detection of single molecules are:  

 It focuses the excitation light, such that the excitation volume is minimized, and so is 

the unwanted background signal 

 Through existence of the pinhole, that lies in a plane conjugate to the focal plane of the 

objective lens, it rejects any signal coming out-of-focus, allowing to study single spot 

of a specimen at a time, which means single molecule at a time, provided small enough 

concentration and small enough excitation volume. 

Depending on the position of the focal plane, there are two smFRET measurement modalities. 

If the focal plane is inside of the solution, then freely diffusing molecules are being monitored, 

but if the focal plane is nearby the surface of the glass, then so-called Total Internal Reflection 

Fluorescence Microscopy (TIRFM)35 is being employed, in which case the molecules are 

typically immobilized, and imaged on camera. Consequently, the temporal bandwidth of these 

two experimental designs is different. In diffusion experiment the observation time is limited 

by the diffusion of the molecule (typically < 10 ms), while in the TIRFM setup, the observation 

time extends to minutes, and is only limited by the dye photobleaching. On the other hand, 

TIRFM modality has a disadvantage of relatively low time resolution (miliseconds)36, as 

opposed to picosecond time resolution in diffusion experiments. Higher temporal bandwidth of 

diffusion experiments can be achieved by increasing the observation volume, or by slowing 

down the molecular diffusion, for instance by encapsulating the molecule inside of liposomes. 

In this thesis, smFRET experiments are performed on freely diffusing molecules.   

The way the specimen is seen is not solely determined by the shape of the excitation volume. 

The Point Spread Function (PSF), i.e. the mathematical description of the way the light travels 

through the entire optical arrangement is the convolution of both excitation and observation 

volume, where the latter is affected by each of the optical components in the detection path, e.g. 

objective lenses and confocal pinhole. Despite the numerous factors that contribute to its shape, 
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the PSF is a surprisingly simple mathematical expression. It was found that for underfilled back 

aperture of the objective, the shape of PSF can be approximated by a Gaussian37, 38:  

 

 PSF(x,y,z) ∝ exp 2  (2.12)

 

with 𝑤  and 𝑧  being the waist radii at the 1 𝑒⁄  of the maximum intensity (13.5%), 

perpendicular and in the direction of the light propagation (Figure 2C).   

When using laser beam of Gaussian intensity profile, one would intuitively expect that Gaussian 

PSF would be achieved by overfilling the back aperture of the objective. However, Hess37 has 

shown the opposite, i.e. that  by underfilling of the objective, combined with the small confocal 

pinhole, the PSF becomes more Gaussian. While the shape of PSF is in general of no importance 

for intensity-based approaches where we look at the ratio of the instantaneous signals of donor 

and acceptor, it is essential for formal description of the molecular diffusion in a range of 

correlation methods, such as Fluorescence Correlation Spectroscopy (FCS).39  

 

 

Figure 2 | Principles of confocal microscopy. (A) Episcopic-fluorescence confocal microscope 
in an inverted configuration, i.e. objective pointing upwards. In epi(scopic)-fluorescence, the 
same optical component, i.e. dichromatic mirror, both delivers the excitation light (bright blue) 
to the specimen, but also collects emitted light (dark blue). Here is illustrated the case of long-
pass dichromatic mirror, where excitation light is reflected, and emitted light is transmitted 
through the mirror. (B) The presence of a pinhole in a plane conjugate to the focal plane of the 
objective lens, allows to reject all out-of-focus light. This allows to study single spot of a sample 
at a time, which for sufficiently small observation volumes and small enough concentrations 
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means single molecule at a time. (C) Zoom-in to the observation volume, with waist radii, 𝑤  
and 𝑧 , at the 1 𝑒⁄  of the maximum intensity, perpendicular and parallel to the direction of the 
light propagation. Size of observation volume is determined by the ratio of the laser beam 
diameter D, and the diameter of the back-aperture of the objective, 𝑟 . For overfilled objective, 
i.e. 𝐷 𝑟 , we reach diffraction-limited size of volume (eq. 2.11), while for underfilled 
objective, i.e. 𝐷 𝑟 , size of volume increases and its shape becomes more Gaussian-like (eq. 
2.12).  All illustrations are not to scale.   

 

As already discussed, basic confocal scheme will minimize the excitation volume and amount 

of unwanted scattered light, and the confocal pinhole will eliminate out-of-focus light. 

However, unwanted signal, even though it is minimized, still goes through and interferes with 

the fluorescence of a specimen. Therefore, for high SNR further additions to a basic confocal 

optical scheme are necessary. Rayleigh scattering at the excitation wavelength can be separated 

from the fluorescence via the use of dichromatic mirror, that will reflect (long-pass) or transmit 

(short-pass) it back to the light source. Raman scattering by the solvent molecules happens at 

higher wavelengths, and spectrally overlaps with fluorescence, but can be blocked from the 

detection path through the use of bandpass filters. This often has a cost of sub-optimal 

fluorescence detection, since one typically has to use narrower bandpass filters, or filters that 

are not around the maximum of fluorescence emission. Lastly, once the scattered light is 

eliminated, efficient detection of fluorescence is achieved through the use of high-performance 

detectors. Nowadays widely used are Avalanche Photodiodes (APDs), which are “point 

detectors”, with typical active area of ~150 µm in diameter. APDs are designed such that they 

have uniform detection across the active area, high detection efficiency over a wide spectral 

range, low dark counts, fast response needed for time-resolved studies and excellent detection 

linearity.  

 

2.3. Pulsed interleaved excitation and MFD detection scheme 

When the fluorescently labelled biomolecule diffuses through the confocal volume, it emits 

bursts of fluorescence photons. Information contained within the burst is immense, and in order 

to harvest this information content, we employ spectral, polarization and temporal classification 

of the emitted photons. This in turn allows us to calculate a whole range of fluorescence 

parameters, such as fluorescence lifetime, anisotropy, FRET efficiency and stoichiometry. This 

is known as Multiparameter Fluorescence Detection (MFD).13 Exemplary set of fluorescence 

parameters typically studied from smFRET data is given in Figure 3. MFD is nowadays 

typically employed together with Pulsed Interleaved Excitation (PIE) scheme, where two 
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pulsed excitation lasers with picosecond pulse width (FWHM) are interleaved on a nanosecond 

timescale.11, 12  

 

Figure 3 | PIE-MFD burst-wise fluorescence parameters measured on single-molecule level 
for freely diffusing double-stranded DNA molecules labelled with Alexa Fluor 488 as donor 
dye and Atto647N as an acceptor dye. Visualized is only double-labelled population, obtained 
by applying the ALEX-2CDE filter, which removes single-labelled species and species with 
unstable emission of the fluorophores. Top row: (left) two-dimensional histogram of fully 
corrected FRET efficiency, E, versus the fluorescence intensity averaged lifetime of donor, 
〈𝜏 〉 ,with overlaid E-τ static FRET-line (green), which is a widely used graphical tool to 
detect FRET fluctuations. Displacement of the double labelled FRET population from the static 
FRET-line is indicative of presence of conformational dynamics, but can also be caused by dye 
artifacts, such as position-specific dye-protein interactions. Displayed static FRET-line was 
generated with following parameters: 𝑅  = 49 Å, 𝜏  = 3.94 ns and assuming normally 
distributed dye positions with width of 𝜎  = 6 Å. Furthermore, visualized are 2D histogram 
of fully corrected FRET efficiency E versus acceptor fluorescence lifetime, 〈𝜏 〉 , (middle) and 
versus stoichiometry, S, (right). Bottom row: using polarization resolved intensities, calculated 
are steady-state anisotropy of donor 𝑟 ,  versus donor fluorescence lifetime (left) and steady-
state anisotropy of acceptor, 𝑟 , , versus acceptor fluorescence lifetime (middle), which can 
inform on size and shape of biomolecule, as well on the degree of fluorophore mobility. Steady 
state anisotropies are calculated accounting for polarization-dependent sensitivity of detectors 
(𝐺 /  1.12 for donor, 𝐺 /  1.06 for acceptor) and for polarization mixing in the 
microscope objective (𝑙 = 0.0175, 𝑙 = 0.0526). 
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Donor and acceptor pulsed excitation lasers are operated at the same repetition frequency 𝑓 , 

but to ensure temporal separation of donor and acceptor excitation, lasers are delayed with 

respect to each other, for approximately half the repetition period, i.e. . By exciting donor 

and acceptor at different points in time, it is possible to separate their photons, despite their 

spectral overlap. Such excitation scheme, combined with Time-Correlated Single Photon 

Counting (TCSPC)32 detection scheme, allows for accurate FRET measurements. 

Repetition period and the delay between donor and acceptor excitation laser are determined 

based on the fluorescence lifetime of the fluorophores. They should be sufficiently long for 

fluorophores to depopulate the excited state, and to avoid leakage of their emission into each 

other’s PIE channel. To find how much at least two laser excitations have to be apart, we follow 

the simple equation for the fluorescence decay, i.e. 𝐹 𝑡 𝐹 𝑒𝑥𝑝 𝑡 𝜏⁄ . For instance, for a 

fluorophore that has fluorescence lifetime of τ = 4.1 ns, in order to collect 99.9% of the photons, 

we need two laser excitations to be at least t = 4.1 ns ⋅ ln 1 0.001⁄  29 ns apart, which gives 

us laser repetition rate of at least 𝑓 17 MHz. 

When talking about temporal classification of the photons, we use two terms, namely macro-

time, 𝑡 , and micro-time, 𝑡 . Macro-time is simply the total number of synchronization 

periods from the beginning of the measurement 

 

 𝑡  = 𝑁  (2.13)

 

while the micro-time represents the delay between the last synchronization signal and the 

subsequent photon detection time. Micro-time is perhaps the main experimental parameter 

because it encodes the fluorescence lifetime. Micro-time is determined using a Time-to-

Amplitude Converter (TAC), which charges the capacitor whose final voltage is proportional 

to the time between the start pulse (synchronization signal) and stop pulse (photon detection).32 

However, since there are many periods when excitation is not followed by the photon detection, 

TAC would be triggered, but not stopped. This would require TAC reset before each next sync 

signal. For high-frequency measurements, performing TAC reset in each sync period is not a 

sustainable approach, and instead, a reverted start-stop scheme is employed, meaning that TAC 

is started with photon detection, and stopped by the next sync signal.32 The output voltage of 

TAC is digitized using an Analog-to-Digital Converter (ADC). ADC builds a histogram, i.e. 

distribution of photons over the time. When ADC gets a signal from TAC, it adds an event in a 

respective n-th time bin, 𝑛 . The resolution of ADC time-bins is obtained as the ratio of 
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maximum time covered by TAC, 𝑇 1 𝑓⁄ , and total number of ADC bins, 𝑁 . Then, 

micro-time can be determined as 

 𝑡 𝑛   (2.14)

 

which finally leads us to accurate photon-arrival time, which is obtained as a sum of  𝑡  and 

𝑡 : 

 𝑇 𝑁 𝑛   (2.15)

 

Obtaining photon arrival times is followed with “photon-sorting” into corresponding micro-

time channels. In dual-color PIE experiment, there are four micro-time windows/channels, 

defined by the excitation laser X (Y|X) and detector Y (Y|X) where the photons are being 

registered. Donor/green micro-time windows are G|G and G|R, and similarly, acceptor/red 

micro-time windows are R|R and R|G. Besides temporal and spectral classification, one can 

further sort photons based on their polarization, which leads us to total of eight detection 

channels.  

 

2.4. Burst search and burst analysis 

After the photons are sorted, one can build photon traces, and perform burst search. To detect 

bursts of fluorescence photons, we can use the fact that background and fluorescence photons 

can be distinguished based on their inter-photon time. Background photons are of a lower count-

rate, and subsequently they have longer inter-photon times. On the other hand, single-molecules 

diffusing through the confocal volume emit bursts of photons, i.e. photons of high count-rate 

and short inter-photon times. Therefore, if one monitors the inter-photon time trace, transit of a 

single-molecule through confocal volume will be detected as a drop in inter-photon time trace. 

Since photon counts follow Poisson distribution, their number can suddenly drop after the 

beginning of the burst, or before the end of a burst. This would lead to wrong identification of 

the burst edges. Therefore, the inter-photon time trace is usually smoothed prior to the burst 

search, by using a filter developed by Lee.40, 41 Using m photons before and m photons after 

each of the photons i, a running mean Δ𝑡  and variance 𝜎  of the inter-photon times Δ𝑡  is 

computed. Based on these, smoothed data Δ𝑡  is obtained:  

 

 
𝛥𝑡 Δ𝑡 Δ𝑡 Δ𝑡

𝜎
𝜎 𝜎

 (2.16)
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with 𝜎  being the variance of background inter-photon times. From the equation above, it 

follows that for small SNR, 𝜎 ≪ 𝜎  and 𝛥𝑡 Δ𝑡 . In other words, data is replaced with its 

local mean value. On the other hand, for high SNR, 𝜎 𝜎 𝜎 1⁄  and 𝛥𝑡  Δ𝑡 . In other 

words, data remains unchanged. For such smoothed trace of inter-photon times, bursts are 

selected using an upper inter-photon time threshold, while simultaneously requiring minimum 

number of photons N in a burst. Alternatively, one can employ the “sliding-time-window” 

method,42 where the local count-rate is calculated around each of the photons, within a specified 

time window centered around it. If the local count-rate exceeds the threshold, the central photon 

is then assigned to a burst. For stream of photons to be considered a burst, it is required that at 

least N successive photons exceed the local count-rate threshold.   

Burst search can be performed on all photons, that are merged in a single trace, irrespective of 

their micro-time window origin.43 This approach is referred to as All-Photon-Burst-Search 

(APBS). This is the most common burst-search approach, where all species, i.e. double labelled 

but also single labelled species are accounted. Dual-Channel-Burst-Search (DCBS)42 method 

monitors two photon traces in parallel: (i) sum of all photons detected after donor laser time-on 

(G|G and R|G) and (ii) acceptor photons detected after acceptor laser time-on (R|R). For each 

of the two photon traces, separate burst search is performed, and only those time periods where 

bursts from two photon traces overlap define burst duration. That way we select only those 

species where both donor and acceptor are active, meaning that single-labelled species will be 

discarded, as well the species with unstable emission (bleached and blinking species). If the 

system is unknown, it is advised to use APBS to get an insight into the system and presence of 

artifacts.  

Selected bursts can be subsequently analyzed in terms of duration, brightness, polarization, 

lifetime and quantities such as FRET efficiency and stoichiometry:  

  

𝐸  
𝐹 |

𝐹 | 𝐹 |
 

 

(2.17)

 
𝑆

𝐹 | 𝐹 |

𝐹 | 𝐹 | 𝐹 |
 (2.18)

 

𝐹 |  denotes the fluorescence intensity of acceptor upon donor laser time-on, also known as 

FRET sensitized acceptor fluorescence, corrected for background, donor crosstalk into acceptor 

detection channel, α, and for direct excitation of acceptor with donor excitation laser, δ: 
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 𝐹 | 𝐼 | 𝛼 𝐼 | 𝛿 𝐼 |  (2.19)

 

𝐼 |  denotes background corrected intensity, and in general terms, for a detection channel Y 

upon excitation X, it is defined as: 

 

 𝐼 | 𝐼 | 𝐼 |  (2.20)

 

with 𝐼 |  being raw, uncorrected fluorescence intensity. 

Donor crosstalk into acceptor detection channel, 𝛼, is defined as ratio of detection efficiency of 

red and green detection path (𝑔 |  and 𝑔 | , respectively) for donor dye: 

 

 𝛼
𝑔 |

𝑔 |
 (2.21)

 

Direct excitation of acceptor with donor excitation laser, 𝛿, is defined via acceptor excitation 

cross-sections for green and red-light source, 𝜎 |  and 𝜎 | , and excitation light irradiance, 𝐿  

and 𝐿 :  

 
𝛿

𝜎 | 𝐿

𝜎 | 𝐿
 (2.22)

 

Further definitions of crosstalk and direct excitation, and practical considerations for their 

determination are discussed in Chapter 6.3 and Supplement C.  

Furthermore, FRET efficiency and stoichiometry contain 𝐹 |  term, which denotes donor 

fluorescence intensity after donor laser time-on: 

 

 𝐹 | 𝛾 𝐼 |  (2.23)

 

where correction factor γ compensates for different fluorescence quantum yields of donor and 

acceptor, and for different sensitivity of green detection channels for donor dye and red 

detection channels for acceptor dye: 

 

 
𝛾

Φ ,

Φ ,

𝑔 |

𝑔 |
 (2.24)
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The last term in definition of E and S is 𝐹 | , fluorescence intensity of acceptor upon acceptor 

laser time-on: 

 
𝐹 |

1
𝛽

𝐼 |  (2.25)

 

where correction factor β compensates for different excitation rates of donor and acceptor with 

their corresponding excitation light with irradiances 𝐿  and 𝐿 : 

 

 
𝛽

𝜎 | 𝐿
𝜎 | 𝐿

 (2.26)

 

Robust determination of the aforementioned correction parameters α, β, γ and δ is a topic of  

Chapter 6.3 and Supplement C.  

While FRET efficiency could be obtained also in single-color excitation schemes, 

stoichiometry can only be obtained through dual-color excitation scheme. For single labelled 

species, i.e. acceptor-only or donor-only, stoichiometry takes value of ~ 0 and ~ 1, respectively. 

For double labelled species it takes value around ~ 0.5. These properties of stoichiometry allow 

us to select sub-populations of interest, but also to study the stoichiometry of biomolecular 

complexes.   
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2.5. Inferring structural information from fluorescence decays 

Structural information is typically obtained from a global analysis of fluorescence decay of 

donor in the absence 𝑓 | 𝑡 ,  and in presence of acceptor 𝑓 | 𝑡 , where the latter can be 

factorized as follows31: 

 𝑓 | 𝑡 𝜀 𝑡 𝑓 | 𝑡  (2.27)

  

𝜀 𝑡  denotes the so-called FRET-induced donor decay, which informs on the time-scale of 

FRET and fraction of molecules that undergo FRET process.  

The time-dependent fluorescence intensity of donor at time t after donor excitation, 𝑓 | 𝑡 , is 

proportional to the radiative rate constant of the fluorescence, 𝑘 , , and the time-dependent 

population of the fluorescence excited state, 𝑝 | 𝑡 , i.e. 𝑓 | 𝑡 𝑘 ,  𝑝 | 𝑡 . For donor in 

the absence and presence of acceptor, the excited state depopulates in time according to: 

 

 𝑝 | 𝑡 𝑒  (2.28)

 𝑝 | 𝑡 𝑒  (2.29)

 

where 𝑘  is sum of rate constants of all deactivation processes of donor excited state, other than 

𝑘 . This allows us to express 𝑓 | 𝑡  and 𝑓 | 𝑡  as: 

 

 𝑓 | 𝑡 𝑘 , 𝑒  (2.30)

 𝑓 | 𝑡 𝑘 , 𝑒  (2.31)

 

from where it follows that 𝜀 𝑡 𝑒 . The essential part of fluorescence decay analysis 

is how 𝜀 𝑡  is modelled. In a case of a mixture of N FRET species, with state specific FRET 

rate constants 𝑘 ,  and corresponding species fractions 𝑥 , , the FRET-induced donor 

decay can be represented as species fraction weighted sum, based on the additive property of 

fluorescence intensities: 

 
𝜀 𝑡 𝑥 , 𝑒  (2.32)
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For continuous distribution of FRET rate constants, 𝑥 𝑘 , the sum is replaced by an 

integral: 

 𝜀 𝑡 𝑥 𝑘 𝑒 𝑑𝑘  (2.33)

 

Taking advantage of the Förster equation (see eq. 2.3), we can convert the time axis into inter-

dye distance axis, i.e.: 

 
𝜀 𝑅 𝑥 𝑅 𝑒 𝑑𝑅  (2.34)

 

which, however, requires the analytical model for the distribution of inter-dye distances, 

𝑥 𝑅 . For normally distributed dye positions, distribution of inter-dye distances 𝑥 𝑅  is 

then given as the non-central χ- distribution22, i.e. 𝑥 𝑅 𝜒 𝑅 |𝑅 , 𝜎 , where the non-

centrality parameter is the distance between the mean dye positions, 𝑅 , and the width 

parameter is 𝜎 , i.e.: 

 

 
𝜒 𝑅 |𝑅 , 𝜎

𝑅
𝑅

𝒩 𝑅 |𝑅 , 𝜎 𝒩 𝑅 | 𝑅 , 𝜎  (2.35)

 

𝒩 𝑅 |𝑅 , 𝜎  represents normal distribution with a mean value 𝑅  and width 𝜎 ,  

taken only at the positive values of 𝑅 : 

 

 
𝒩 𝑅 |𝑅 , 𝜎

1

𝜎 √2𝜋
𝑒  (2.36)

 

The width parameter 𝜎  is determined by the widths of spatial distributions of donor and 

acceptor, i.e. 𝜎 𝜎 𝜎 . From the study using dyes coupled to nucleic acids, and for 

unrestricted dye motion, it was found that 𝜎  and 𝜎  take value of ≈ 6 Å44, which yields 

𝜎  ≈ 8.5 Å. 

In the case of narrow spatial distributions of dye positions and large inter-dye distances, the χ-

distribution converges to a normal distribution.22 Using this approximation, and accounting for 

structural heterogeneity, i.e. a mixture of FRET species, 𝑥 𝑅  is given as a discrete sum of 

𝑛  Gaussian distributions, of variable mean 〈𝑅 , 〉, width 𝜎 ,  and weight 𝑥 : 
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𝑥 𝑅 𝑥 𝒩 𝑅 |〈𝑅 , 〉 , 𝜎 ,  (2.37)

 

Typically, 𝑛  takes value between 1-3, and is determined by comparing the scores of competing 

models.   

However, for small inter-dye distances, and especially in the absence of any knowledge 

regarding the nature of inter-dye distance distribution, the best is to represent 𝑥 𝑅  using χ-

distribution, or in general case as a mixture of L χ-distributions of variable location 𝑅  and 

width 𝜎 :  

 
𝑥 𝑅 𝜒 𝑅 |𝑅 , , 𝜎  (2.38)

 

where the number L of χ-distributions is determined by the bounds of 𝑅  and 𝜎 . For 𝑅  

and 𝜎  being sampled in a range of [10 Å, 130 Å] and [3 Å, 9 Å], respectively, we obtain L = 

130 10 3⁄  = 40. With such representation for 𝑥 𝑅 , no presumptions are made with 

respect to the nature of distribution. This is in particular suitable when the biomolecule does 

not occupy well defined states, but rather exists as quasi-continuum of interconverting states. 

Next, we optimize and sample the variable parameters and nuisance parameters, in order to find 

models M which are consistent with data D. By sampling over variable parameters, we obtain 

numerous posterior distributions 𝑥 𝑅  which describe the experiment, and their probability 

conditioned on the experimental data 𝐷, i.e. 𝑝 𝑥 𝑅 |𝐷 . For each inter-dye distance and 

species fraction bin, we integrate the probabilities of all sampled distributions found in 

respective bin to obtain 𝑝 𝑥, 𝑅 |𝐷, 𝑀  (Figure 4). From there, as final representation for 

experimentally-derived inter-dye distance distribution, 𝑥 𝑅 , we take 𝑥 𝑅  at which we 

reach 0.5 cumulative sum of 𝑝 𝑥, 𝑅 |𝐷, 𝑀 , and as ∆𝑥 𝑅  we take one standard deviation 

around 𝑥 𝑅 .45 This approach was used in Publication 2 (see Chapter 6.2 and Supplement 

B) to infer structural information from fluorescence decays.  
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Figure 4 | Inferring distance information from fluorescence decays. Exemplary inter-dye 
distance distribution obtained through Bayesian analysis of ensemble-TCSPC data, with grey 
lines denoting  𝑥 𝑅  and ∆𝑥 𝑅 .  
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Chapter 3 
 

Computational biophysics 

3.1. Basics of Molecular Dynamics Simulations 

Sampling techniques of molecular conformations can be divided into two categories: stochastic 

(e.g. Monte Carlo) and deterministic (e.g. Molecular Dynamics).46, 47 In Monte Carlo 

simulations, the configurational space is sampled by random displacement of the 

particles/atoms and the energy change during this displacement serves as a criterium based on 

which the new coordinates are being accepted or discarded. On the other hand, sampling in 

molecular dynamics simulations is deterministic, since in each step one solves classical 

Newton’s equations of motions for a given force field, which gives the new velocities and 

positions. To simulate a system using molecular dynamics, it is necessary to (i) model the 

interactions within the system, (ii) choose the appropriate integration scheme based on which 

velocities and new positions will be propagated, and (iii) to choose the statistical ensemble for 

the simulation of the ensemble.46 Although the natural choice for molecular dynamics is micro-

canonical NVE ensemble, it is also possible to simulate the system in other ensembles as well, 

such as NVT or NPT. Whatsoever, depending on a system simulated, this might be a better or 

even a necessary choice of an ensemble, e.g. for systems with lipid bilayers.  

Evolution of a system is fully determined by its potential energy 𝑈 𝑟 , which is a function of 

coordinates 𝑟 of N atoms. Within this thesis, I used AMBER functional form of the potential 

energy 𝑈 𝑟 , which consists of a bonded and a non-bonded term. The bonded term in AMBER 

is typically described by three contributions, i.e. terms for bonds, angles and dihedrals48: 

 

𝑈 𝑟
1
2

𝑘 𝑟 𝑟
1
2

𝑘 𝜃 𝜃

1
2

𝑘 , 1 cos 𝑚𝜑 𝛾  

(3.1)

 

The first term describes the bond stretching, and is a function of the distance 𝑟  between two 

bonded atoms i and j. It is typically given as the harmonic potential, with 𝑟  being the 

equilibrium distance at which the harmonic potential has minimum, and 𝑘  being the force 

constant for bond stretching. The second term in potential energy requires to know in each step 
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three consecutive atomic coordinates i, j and k. It describes the angle bending between the two 

vectors 𝒓  and 𝒓 , which is given as cos 𝜃 𝒓 ⋅ 𝒓 . Since angles only slightly change 

around their equilibrium value at room temperature, the angle potential has harmonic form as 

well, with characteristic force constant 𝑘  and equilibrium angle 𝜃 . Lastly, the potential 

describing rotation around the dihedral angles 𝜑 , which is a function of four coordinates i, 

j, k and l, typically involves expansion into periodic function of the order m, where m represents 

number of minima in the function. 𝑘 ,  represents the height of the barrier for rotation around 

the dihedral angle, and 𝛾  is the phase factor, which corresponds to the angle value at the 

corresponding minimum m.  

The non-bonded term is calculated between pairs of atoms i and j that are either in different 

molecules, or belong to the same molecules, but are separated by at least three bonds. In 

AMBER, the non-bonded term is given as sum of a pair-wise, two-body 6-12 Lennard-Jones 

potential and a pair-wise, two-body Coulomb potential, that describe van der Waals and 

electrostatic interactions, respectively: 

 

𝑈 𝑟 4𝜀
𝜎
𝑅

𝜎
𝑅

𝑞 𝑞
4𝜋𝜀𝑅

 (3.2)

 

The Lennard-Jones 12-6 potential contains attractive part, ~ 𝑅 , and repulsive part, ~ 𝑅 , 

where 𝑅  is the distance between atoms. Furthermore, Lennard-Jones potential is a function of 

a diameter 𝜎 , which is the distance between the atoms at which the potential is zero, and 𝜀 , 

which the depth of the well. Both 𝜎  and 𝜀  are a characteristic of a pair of atoms, and are 

determined by Lorentz/Berthelot mixing rules. 

Coulomb potential for electrostatic interactions decays as 𝑅 , with 𝑅  being the distance 

between the charges 𝑞  and 𝑞 , in a medium with dielectric constant ε.   

Equations 3.1 and 3.2 represent a very minimalistic description of the way interactions are 

modelled within a classical force field often used in MD simulations, originally proposed by 

Cornell et al.48 Nevertheless, such representation of interactions is adequate for the description 

of most systems. For efficient calculation of long-range and short-range interaction, various 

computational algorithms, such as Ewald summation49 and Verlet lists50, were developed. 

Depending on the force field used, functional shape of the bonded and non-bonded potential 

can vary, as well the values of atom-specific parameters. Atom-specific parameters are derived 

either from quantum chemical calculations, or directly from experiments, or are tuned to fit 
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some experimental observable. Although it is in principle possible to “mix and match” 

parametrizations for biomolecule, ions and solvent, these usually come together in a package, 

and work the best in a given combination. For example, the relatively new FF99SBdisp force 

field51, parametrized for both folded and unfolded proteins, should be used with its “native” 

water model, which is the modified TIP4P-D water model, also known as “disp-water”. For a 

more detailed overview of force field models, I refer the reader to the comprehensive book by 

Leach, A. R.47       

Once the potential energy for modelling the interactions is defined, the next step is to calculate 

the forces acting on each of the particles in the system: 

 

 
𝑓

𝜕𝑈 𝑟
𝜕𝑟

 (3.3)

 

and to solve Newton’s equations of motion. One of the most frequently used algorithms for 

solving the equations of motions is the “velocity-Verlet” algorithm.52 Main requirement of this 

algorithm is the use of a short time-step, which means that the forces are frequently calculated.  

To get to the formula that defines new atomic coordinates, we start from the Taylor expansion 

of the atomic coordinate around the time t: 

 
𝑟 𝑡 𝛥𝑡 𝑟 𝑡 𝑣 𝑡 𝛥𝑡

𝑓 𝑡
𝑚

𝛥𝑡
2!

𝒪 𝛥𝑡  (3.4)

 

Estimation of new coordinates has an error that is on the order of Δ𝑡 , with Δ𝑡 being the time 

step in equations of motion. To calculate new atomic positions, one needs to know current 

coordinates, current velocities, as well the force acting on the particles in current coordinates.  

Besides being necessary for the calculation of new coordinates, velocities are also needed for 

calculation of kinetic and total energy, as well the instantaneous temperature. To derive 

velocities at 𝑡 Δ𝑡 instance in time, we start from the Taylor expansion of velocity around the 

time t: 

 
𝑣 𝑡 𝛥𝑡 𝑣 𝑡 𝑣 𝑡 𝛥𝑡 𝑣 𝑡

𝛥𝑡
2!

𝒪 𝛥𝑡  (3.5)

 

Now, to get rid of high-order derivative 𝑣 𝑡 , we expand 𝑣 𝑡 Δ𝑡  into a Taylor series: 

 

 𝑣 𝑡 𝛥𝑡 𝑣 𝑡 𝑣 𝑡 𝛥𝑡 𝒪 𝛥𝑡  (3.6)
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and after multiplying both sides of the equation with Δ𝑡 2⁄ , we obtain: 

 

 
𝑣 𝑡

𝛥𝑡
2

𝑣 𝑡 𝛥𝑡 𝑣 𝑡 𝒪 𝛥𝑡
𝛥𝑡
2

 (3.7)

 

Finally, after plugging the latter expression for 𝑣 𝑡  back into eq. 3.5, we get: 

 

 
𝑣 𝑡 𝛥𝑡 𝑣 𝑡 𝑣 𝑡 𝑣 𝑡 𝛥𝑡

𝛥𝑡
2

𝒪 𝛥𝑡  (3.8)

 

or, expressed in terms of forces: 

 
𝑣 𝑡 𝛥𝑡 𝑣 𝑡 𝑓 𝑡 𝑓 𝑡 𝛥𝑡

𝛥𝑡
2𝑚

𝒪 𝛥𝑡  (3.9)

 

To summarize, in the “velocity-Verlet” algorithm, new coordinates are calculated (eq. 3.4), 

which is followed by calculation of forces in the updated positions. Lastly, using forces in 

current and updated positions, velocities are updated (eq. 3.9). Such expressions for positions 

and velocity have reasonable error on the order of Δ𝑡 . Furthermore, both positions and 

velocities are computed for the same instance of time.  

Besides “velocity-Verlet” algorithm, numerous other integration schemes were developed, and 

they all in essence differ in the order of the derivative at which the Taylor expansions of 

𝑟 𝑡 Δ𝑡  and 𝑣 𝑡 Δ𝑡  are truncated, and consequently in their accuracy.46 Furthermore, they 

differ in the time instance at which velocities are calculated. For example, in the basic Verlet 

algorithm, new positions are calculated with smaller error of 𝒪 Δ𝑡 , but velocities are 

calculated late in respect to the positions, i.e. at the time t, 𝑣 𝑡 . In “leap-frog” method53, 

velocities are computed half a step ahead of the coordinates, i.e. 𝑣 𝑡 , which is then used 

to calculate new positions 𝑟 𝑡 Δ𝑡 . In principle, all of these schemes are computationally 

efficient. Where they differ is actually: (a) level of accuracy for both short and large time step 

(b) time reversibility, and (c) conservation of volume and energy.46  
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3.2. MD trajectory analysis: Clustering  

For a series of purposes, it is desirable to reduce the number of structures obtained from MD 

simulations. For that, a wide range of clustering methods have been developed. Clustering is 

one of the most widespread methods of unsupervised machine learning, with implications in 

diverse fields. In terms of data science, clustering represents assigning unlabelled data to 

groups,54 and in biophysical/statistical terms it means e.g. to choose for each of the molecular 

configurations to which conformational state it belongs. However, reducing the number of 

structures is rather a “side product”, because often the essential motivation behind clustering is 

to find hidden structure in data. 

Clustering of conformational models, obtained from e.g. MD simulations, is based on some 

measure of similarity between different system configurations. Measures of similarity can be 

structural or kinetic. In the case of kinetic measures, we group configurations that are close to 

one another in time. Much more used are structural measures of similarity, such as: cartesian 

coordinates, inter-residue distances, dihedral angles etc. Using the RMSD on cartesian 

coordinates is the most frequent choice of structural similarity, however, not as trivial, since it 

requires suitable alignment of structures. Two most popular clustering approaches are K-means 

and hierarchical clustering.55, 56 K-means clustering algorithm initiates k centers (means) at 

random, and then it creates k clusters by assigning structures to the closest mean. After 

assigning structures to the k clusters, positions of means/centroids are updates. The latter two 

steps are repeated until convergence. K-means is a stochastic method, meaning that we do not 

get twice the same result, since the means are initiated at random. Further limit is that it only 

performs well on spherical and well-defined clusters. In terms of hyperparameters, it requires 

as input the number of clusters k, which is (typically) not known a priori. However, there are 

evaluation metrics one can use to determine the value of k parameter, such as the elbow method 

or silhouette score, where in the latter case k is chosen such that small within the cluster distance 

and large distance to the closest cluster is obtained.57     

Hierarchical clustering can be done in two ways: top-down (divisive) and bottom-up 

(agglomerative). Within Publication 2 (see Chapter 6.2 and Supplement B), I have used the 

agglomerative hierarchical clustering, i.e. bottom-up approach, where all structures are initially 

taken as single clusters, and then using some similarity measure they are being merged into new 

clusters, until one big cluster, containing all original clusters, is left. In other words, a hierarchy 

of clusters is being formed, which is often illustrated in a shape of a tree, also known as 

dendrogram.55 Hierarchical clustering method requires to choose so-called “linkage method”, 

which is a way of calculating the distance/dissimilarity between the data points in terms of some 
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feature. Some of the most popular linkage methods are: “single linkage”, “complete linkage”, 

and “average linkage”.55, 58  

In the case of “single linkage” method59, similarity measure between two clusters 𝐴 and 𝐵 is 

the closest distance between any pair of points of the two clusters, i.e.:    

 

 𝑑 𝐴, 𝐵 𝑚𝑖𝑛
∈ , ∈

𝑑 𝑎, 𝑏  (3.10)

 

In the case of “complete linkage”60, distance between two clusters is the maximal distance 

between any pair of points between the two clusters: 

 

 𝑑 𝐴, 𝐵 𝑚𝑎𝑥
∈ , ∈

𝑑 𝑎, 𝑏  (3.11)

 

Lastly, in the case of “average linkage”61, computed is the average distance between all pairs 

of points between two clusters 

 

 
𝑑 𝐴, 𝐵

1
|𝐴||𝐵|

𝑑 𝑎, 𝑏
∈ , ∈

 (3.12)

 

Complete and average linkage methods tend to create more compact clusters, compared to 

single linkage method. Hierarchical clustering can be performed in two ways, i.e. either we 

define number of clusters in advance, and then clusters are merged in the dendrogram till the 

defined number of clusters is met, or a full dendrogram is constructed and then a certain 

threshold is applied, and only those clusters that were formed at distance below the given 

threshold will pass. Typically, the latter approach is used.  
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Chapter 4 
 

Inference methods in structural biology 

4.1. Traditional techniques of structural biology 

X-ray crystallography. For a long time, X-ray crystallography62, 63 has dominated the field of 

structural biology. By not being limited in size of a system, it provided structural models of 

biomolecules ranging from few kDa to tens of MDa. This, in addition to being able to derive 

absolute atomic coordinates without having to employ extensive modelling procedures on raw 

data, largely explains the long-term dominance of X-ray crystallography. In X-ray 

crystallography experiment, the crucial and limiting step is the sample preparation, where the 

protein of interest is dissolved, and then its aggregation, nucleation and crystal formation are 

promoted.64 The obtained 3D crystal is exposed to the beam of X-rays, which are according to 

the Bragg’s law65 diffracted upon interaction with the electrons around each of the atoms. Angle 

and intensity of diffraction spots, known as diffraction pattern, is being detected, based on 

which the structure of biomolecule can be inferred. The quality and resolution of model directly 

depends on the sharpness of diffraction spots, which in turn is determined by the quality of the 

crystal itself. Preparing a 3D crystal of sufficient size and quality, i.e. of regular/uniform 

structure, is far from trivial task. Many proteins defy crystallization, such as the membrane 

proteins of limited solubility.64 While obtained models are of a high resolution, the ultimate 

limit of a technique, however, is the fact that only model of a single structure can be obtained, 

since measurements are performed on crystals, i.e. periodic arrays of proteins in single and 

static conformational state. However, in recent years efforts were made to overcome this issue 

through development of so-called time-resolved X-ray approaches.66 Despite its limitations, 

X- ray crystallography yielded invaluable insights into biomolecular structures, and for decades 

it guided advances in a range of disciplines, and will continue to do so. 

NMR spectroscopy. In the 1990s, NMR67, 68 appeared as competing approach of structural 

biology to X-ray crystallography (Figure 5A), by having the advantage of measuring molecules 

directly in a solution. That way, NMR has capability of providing multi-state models with 

corresponding kinetic scheme. NMR spectra appear for atoms that have non-zero spin of the 

nuclei, i.e. odd number of protons and/or neutrons, upon exposure to the radio waves of the 

external magnetic field, whose frequency is equal to the energy difference between the nuclear 

spin levels. An NMR spectrum has the following characteristics: position of the lines (so-called 
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chemical shift), their width and multiplicity/splitting. Each of these spectral properties are 

affected by the local environment of the nuclei, presence of interactions, structural exchange 

(e.g. cis-trans exchange or between two conformational states of biomolecule) and its energy 

barrier.69-71 While NMR provides high-resolution structural information on atomic/residue 

level, and in physiological conditions, due to the complexity of a signal and difficulty to 

interpret it, solution NMR is rather limited with the size of biomolecule, and typically reports 

on smaller size systems. For example, for structures of < 20 kDa, there are over 12 000 NMR 

structures deposited in PDB, but this number rapidly declines to a couple dozen structures, for 

molecular weights of > 40 kDa.  

Cryo-Electron Microscopy (Cryo-EM). Within three decades, NMR was overtaken by 

rapidly growing field of cryo-electron microscopy (cryo-EM) in terms of number of deposited 

structures in PDB (see Figure 5A).72-74 Although cryo-EM measurements are not done in 

solution, flash-freezing of the sample is performed using liquid nitrogen, as opposed to 

crystallization in X-ray crystallography. That way, instead of having all molecules in a single, 

static pose, cryo-EM captures molecules in multiple states. Since snapshots are static, the 

kinetic scheme that underlies protein function is inaccessible. However, similar to X-ray 

crystallography, cryo-EM is in principle adaptable to time-resolved studies, and some attempts 

were done in that direction.75 In cryo-EM experiment sample is exposed to the beam of high-

energy electrons, whose scattering profile is collected as stack of 2D images, that are aligned, 

averaged and then used to infer the 3D structure of biomolecule, or so-called 3D electron 

density map. Cryo-EM reconstructions are mainly of medium- to low-resolution, and most 

frequently maps with 3-4 Å resolution are reported, although exceptionally sharp 

reconstructions with features close to an atom size were reported as well.76 For a comparison, 

at the resolution of ~ 5-7 Å secondary structure elements become visible, while side-chains 

become visible only at < 3 Å resolution.4 Naturally, cryo-EM is biased towards large 

biomolecular machineries, e.g. supramolecular complexes consisted of dozens of proteins, as 

these can handle electron bombardment. For example, cryo-EM reported on > 6000 structures 

with molecular weight > 380 kDa, but on less than 100 structures with weight of < 20 kDa.  

Statistics related to number of structures, molecular sizes and resolution of models for each of 

here presented techniques is given based on entries available in PDB by the April, 2023. 
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4.2. Deep-learning single-structure predictions 

Christian Anfinsen postulated that, theoretically, one-dimensional amino acid sequence of a 

protein fully determines its 3D structure.77 Ever since, triggered with this hypothesis, numerous 

efforts were invested to solve the “protein-folding problem”, using various methodologies from 

the field of computer science. Structure prediction was initially shaped by two approaches, 

namely: (a) by modelling interactions between molecular constituents and which drive a protein 

towards its thermodynamically stable state, and (b) via bioinformatical analyses of evolutionary 

history of proteins.78 Both approaches produced far inferior levels of accuracy compared to 

experimental approaches. To facilitate and advance the progress in predicting the structures of 

single proteins and domains, the Critical Assessment of Structure Prediction (CASP) challenge 

is held biannually (https://predictioncenter.org/), and puts on a test bench hundreds of modelling 

methods. Participants of CASP challenge are asked to blindly predict structures of targets 

divided in several categories according to their complexity, and for which experimental 

structure is determined but not yet publicly available. As independent model evaluation metric, 

CASP uses the Global Distance Test (GDT)79. This metric is a measure of model accuracy, and 

can be understood as a percentage of amino acids that are within a threshold distance from 

experimentally determined positions (ground truth). Since the beginning of the CASP in 1997, 

the best performing predictors were having median accuracy of ~ 50% in GDT units, across all 

targets. Exceptional results were observed in CASP14 challenge in the year 2020, when 

AlphaFold278 achieved median accuracy of 92.4% in GDT units, across all targets, which is 

considered competitive to experimentally derived structures.80 In terms of physical units, 

AlphaFold achieved median 𝐶 -RMSD of 0.96 Å and all-atom-RMSD of 1.5 Å for 95% residue 

coverage, which is in the range of the width of carbon atom itself.78 AlphaFold2, whose 

exceptional performance originates from the use of novel neural networks trained on physical, 

geometrical and evolutionary constraints,78 has ever since inferred structures for over 200 

million proteins that are deposited with open access in AlphaFold Protein Structure Database 

(https://alphafold.ebi.ac.uk/) and in PDB. Not long after, several competing modelling methods 

reached or even outperformed the accuracy, speed and computational cost of AlphaFold2, and 

such an example is trRosettaX-Single.81  

While one can say with confidence that prediction of protein structure reached the “single-

structure frontier” 82, there are many remaining challenges, from multi-protein complexes, 

protein-ligand complexes, proteins with intrinsically disordered regions that transform to 

functionally relevant states only upon interaction with substrates, and the ultimate challenge of 

structural biology: multi-state models and the time-ordered ensembles of structures.  
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4.3. Integrative modelling of structural ensembles 

Judging by the number of protein structures inferred by deep learning-based methods, it might 

appear that the future of structural biology “will not be crystallized”,72 and that computer 

science will dominate the structural biology. Current trends in structural biology, however, 

rather indicate that traditional techniques are here to stay, but in integrative manner, such that 

advantages of each of the techniques, including X-ray crystallography, are harvested in the best 

possible way to complement each other.2-4 For example, lower-resolution cryo-EM 3D density 

maps can serve as information on overall topology of a complex, and its individual components 

can be modelled with high-resolution by e.g. X-ray crystallography or NMR spectroscopy, and 

docked into cryo-EM 3D density map.83 Another typical example of complementary techniques 

is combination of FRET and SAXS84-86 measurements, particularly for studies of multidomain 

proteins with flexible linkers or intrinsically disordered proteins.5, 8 SAXS, similarly to cryo-

EM, reports on low-resolution features, such as the overall shape of the molecule, and can be 

aided by FRET that reports on inter-residue distances, to distinguish between species with 

overall same shape but rotated domains, and which can represent two functionally different 

species. Many more techniques are arising in recent years, and in integrative manner with other 

experimental methods and/or computational approaches, they report multi-scale and/or multi-

state models. These methods provide information of varying level of detail, from overall 

molecular shape (cryo-EM, SAXS), over interface mapping (mutagenesis87, hydrogen-

deuterium exchange (HDX)88) to inter-residue distance information (cross-linking mass-

spectrometry (XL-MS)89-91, FRET, EPR92).  Methods for optimal integration of different 

sources of information93 and PDB-Dev system for archiving and dissemination of integrative 

models is under ongoing developement.94-96 While the number of deposited integrative models 

in PDB- Dev is still limited, one can already observe vast diversity, in sense of different model 

representations (coarse-grained, atomistic, volumetric etc.) and in terms of complexity of 

studied systems (Figure 5B). To get an insight into which experimental methods typically 

combine with each other, I have sourced the reports on all deposited models from PDB-Dev, 

extracted the type of input data that was used in each of the models, found all the unique 

combinations of input data types, and calculated their frequency (Figure 5C). This analysis 

revealed the complexity of the integrative modelling, with 63 unique ways of combining 

different data types, and cross-linking mass-spectrometry (CX-MS) being the most paired-with 

method. FRET typically pairs with techniques that inform on overall shape of the molecule, 

such as SAXS and cryo-EM.  
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Figure 5 | Current trends in integrative modelling. (A) Number of deposited structures per 
year in PDB by X-ray, NMR (solution or solid-state) and EM (electron microscopy or electron 
crystallography or electron tomography), compared to the number of integrative models 
deposited in PDB-Dev. The data reveal that while X-ray still dominates the field of structural 
biology, it is being challenged by rapidly growing method of cryo-EM. Moreover, through 
extensive collaborations, integrative characterizations of biomolecules are being carried out, 
and already over 100 hybrid multi-scale and/or multi-state models are disseminated to the 
public through PDB-Dev archiving system. (B) Glimpse into the different levels of complexity 
of models deposited in PDB-Dev: model of E. coli RpIJ (PDB-Dev entry 168), model B1 of IgG-
binding domain of protein G (PDB-Dev entry 84), TRAF domain of USP7 in complex with DNA 
polymerase (PDB-Dev entry 70), structure of a Fly genome Chromosome 2L (PDB-Dev entry 
8), followed by the structure of Nup84 sub-complex of NPC (PDB-Dev entry 1) and anatomy of 
the single spoke of NPC (PDB-Dev entry 10). Illustrations are taken from PDB-Dev. (C) Upset 
plot of unique combinations (63) of input data types used in integrative modelling, and their 
frequency, revealing that cross-linking mass-spectrometry (CX-MS) is the leading, but also the 
most paired-with method. Panels (A) and (C) are generated by the analysis of entries available 
in PDB and PDB-Dev by the April, 2023.      
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We join the outcomes of different experimental and computation techniques not only because 

they sense different properties of a biomolecule, but also because proteins do not adopt a single 

structural state. Instead, they display a distribution of dynamic structures, or so-called structural 

ensemble. Structural ensemble is a set of conformational models with their corresponding 

population fractions (weights), which denote to which extent biomolecule populates 

corresponding state under given experimental conditions. Such an ensemble reflects 

true/intrinsic structural heterogeneity of the molecule, and should be distinguished from so-

called “uncertainty ensembles”, where multiple reported models rather represent insufficient 

information about the system, i.e. ambiguity of the solution. Currently, PDB-Dev counts 13 

deposited multi-state models, 7 of which use single-molecule FRET measurements as input 

data. 

Structural ensembles are extremely challenging to obtain at accurate or detailed enough level 

by experimental techniques or computational methods alone. Many experimental methods 

suffer from spatial and/or temporal averaging, in addition to being sensitive on limited spatial 

and/or temporal scales. Furthermore, experimental data can be sparse and provide ambiguous 

information. For example, FRET experiments inform on long-range features, such as tertiary, 

super-tertiary and quaternary structure, and not on absolute atomistic coordinates. Similar holds 

for techniques that inform on low-resolution features such as overall molecular shape (SAXS, 

cryo-EM). Likewise, computational methods suffer from inaccurate force fields and limited 

sampling times, which has a consequence that relevant states may never be sampled. Therefore, 

the most promising approach is to combine experimental data with structural models obtained 

from computational approaches.97 Numerous approaches have been developed to combine these 

two sources of information, and they are all grouped around two principles, namely maximum 

entropy and maximum parsimony principle.93, 98 In maximum entropy principle, one searches 

for such model which will be as close as possible to the initial one, while improving the 

agreement to the experimental data. The maximum entropy principle typically yields large 

number of conformers, which is suitable for systems that do not occupy well defined states, but 

exist in the solution as quasi-continuum of interconverting states. Contrary to that, in maximum 

parsimony approaches, one searches for a minimum number of states that can describe the 

experimental data. When using either of the two principles, information from different sources 

can be combined in two ways. In one case experimental data can be used directly as a constraint 

during the sampling of structural models in molecular simulations. In another case, 

experimental data and molecular models are generated independently from each other, and then 

the experimental data act a posteriori by refining/reweighting the ensemble from molecular 
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simulations (Figure 6).99 In this thesis, I have used maximum entropy method to refine the 

conformational ensemble of lipase-specific foldase from Pseudomonas aeruginosa species in 

its apo state (for details on system see Chapter 5.4). As prior information in ensemble 

optimization I used set of conformational models obtained from all-atom MD simulations, and 

as experimental data I used time-resolved ensemble TCSPC measurements, acquired for a 

network of double-labelled cysteine variants (for details see Chapter 6.2 and Supplement B). 

The principles of MEM-based ensemble optimization are described in the Chapter 4.4.  

 

4.4. Ensemble reweighting methods 

4.4.1. Maximum Entropy Method. Our understanding of biological systems is usually given 

in a shape of some model. Model, e.g. a distribution of some observable across an ensemble of 

structures, reflects the current state of knowledge about a system. With newly acquired data, 

often an update of a model/distribution has to be performed, such that it is compatible with new 

information available. This is a frequent challenge, given the growth of both experimental and 

computational methods. Bayes and Jaynes both provided very fundamental principles on how 

to find an updated distribution of an observable, which will be in accordance with new 

information. These principles are the pillars of integrative structural biology.98  

Building upon Shannon’s information theory, Jaynes established the principle on how to find 

the best distribution of an observable, amongst infinite number of them satisfying observed 

data.100, 101 He suggested that out of all distributions, one that maintains highest uncertainty 

about the observable of interest, should be chosen.102 The uncertainty, that is to be maximized, 

is defined as information entropy, S, introduced by Shannon.101 Information entropy can be 

defined in terms of some discrete variable 𝑥  as follows: 

 

 
𝑆 𝑝 𝑝 𝑥 𝑙𝑜𝑔 𝑝 𝑥  (4.1)

 

One should not confuse information entropy with the thermodynamic entropy, although there 

is some resemblance between the two, in that both capture the randomness. There are many 

properties of this mathematical construct that make it the (only) good measure of uncertainty, 

with the fundamental ones being: (a) S vanishes as we become more and more certain about a 

particular outcome, i.e. 𝑆 → 0 when 𝑝 𝑥 → 1, (b) it increases the less we know about the 

underlying distribution, and in fact it reaches the maximum value of log 𝑁 when we know 
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nothing about the distribution, or in other words, when the distribution is uniform, i.e. 

𝑝 𝑥  .    

A set of conditions defining the optimal distribution according to maximum entropy principle 

can be summarized as follows: 

 

 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑝 𝑥 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑆 𝑝

𝑝 𝑥 1

           𝑓 𝑥 𝑝 𝑥 〈𝑓 𝑥 〉 〈𝑓 𝑥 〉 ; 𝑘 1, . . . 𝐾

 (4.2)

 

According to the set of conditions given in eq. 4.2: (i) the optimal distribution, 𝑝 𝑥 , 

maximizes information entropy (uncertainty), (ii) it sums to one, i.e. it is probability 

distribution, and lastly, (iii) the ensemble average 〈𝑓 𝑥 〉 computed for 𝑝 𝑥  is constrained 

by K experimentally derived expectation values 〈𝑓 𝑥 〉 .   

However, a common scenario is that there is already some existing model, called prior 

distribution, which, upon acquiring additional experimental restraints is to be converted to a 

posterior distribution, if such modification is necessary. In that case, the maximum entropy 

principle is rather expressed in terms of relative entropy or negative Kullback-Leibler 

divergence103 𝐷 𝑝 ||𝑝  between a prior, 𝑝 𝑥 , and posterior probability distribution, 

𝑝 𝑥 : 

 

  
𝑆 𝑝 ||𝑝 𝑝 𝑥 𝑙𝑛

𝑝 𝑥
𝑝 𝑥

𝐷 𝑝 ||𝑝  (4.3)

 

The Kullback-Leibler divergence is a measure of similarity between two distributions, that is 

minimal, i.e. it converges to zero when 𝑝 𝑝 . Therefore, the probability distribution that 

maximizes entropy, 𝑝 𝑥 , can also be defined as the distribution that is as close as possible 

to the prior distribution, while satisfying experimental constraints.  
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4.4.2. Bayesian inference. Analogous to the maximum entropy approach, the Bayesian 

theorem describes an update from a prior probability distribution 𝑝 𝑀|𝐼  to a posterior 

probability distribution 𝑝 𝑀|𝐷, 𝐼 , as a result of acquiring data D about the system.104 Bayes’ 

theorem is formulated as follows: 

 

 𝑝 𝑀|𝐷, 𝐼 ∝ 𝑝 𝐷|𝑀, 𝐼 𝑝 𝑀|𝐼  (4.4)

 

I defines some prior information about the system, and can be defined for instance as 𝐼

𝐶 , 𝑤 , i.e. as a set of J conformational states 𝐶  with corresponding population fractions 

𝑤 , obtained from e.g. molecular dynamics simulations. D is a set of K experimental 

observables, 𝐷 𝐷 , and model M represents set of updated weights, 𝑀 𝑤 , such 

that ∑ 𝑤 1 and 𝑤 0.  

Bayes theorem is defined in terms of conditional probabilities: 𝑝 𝑀|𝐷, 𝐼 , which represents the 

posterior probability of a model M, given that both D and I are true; 𝑝 𝑀|𝐼 , which is a prior 

probability of a model given the prior information I, and lastly, 𝑝 𝐷|𝑀, 𝐼 , data likelihood 

conditioned on the model and prior information. The prior probability, 𝑝 𝑀|𝐼 , is expressed in 

terms of relative information entropy 𝑆 𝑤 ||𝑤 , or negative Kullback-Leibler divergence (eq. 

4.3) between prior and posterior weights: 

 

 
𝑝 𝑀|𝐼 ∝ 𝑒𝑥𝑝 𝜃𝑆 𝑤 ||𝑤 𝑒𝑥𝑝 𝜃 𝑤 𝑙𝑛

𝑤

𝑤
 (4.5)

 

where θ denotes temperature-like factor that quantifies the confidence in the prior, as will be 

discussed later. Data likelihood, 𝑝 𝐷|𝑀, 𝐼 , is defined by Gaussian distribution as the sum of 

squared deviations between observables computed for a model, 𝑥 , , and observables derived 

from an experiment, 𝑥 , , weighted by the experimental uncertainty, Δ𝑥 , :  

 

 
𝑝 𝐷|𝑀, 𝐼 ∝ 𝑒𝑥𝑝

1
2

𝜒 ,  (4.6)
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𝜒 ,

1
𝐾

𝑒𝑥𝑝
𝑥 , 𝑥 ,

𝛥𝑥 ,
 (4.7)

 

According to Bayes’ theorem, finding the optimal model, in this case optimal weights of 

conformational models, means to maximize posterior probability 𝑝 𝑀|𝐷, 𝐼 : 

 

 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑝 𝑀|𝐷, 𝐼 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑝 𝐷|𝑀, 𝐼 𝑝 𝑀|𝐼  (4.8)

 

Now, instead of maximizing posterior probability, we maximize log-posterior probability, for 

several practical reasons. First, log is a monotonically increasing function, meaning that it will 

preserve the properties of the original function, i.e. the same ascending or descending order of 

probabilities. Extrema of p are the same as extrema of log 𝑝. Therefore, maximizing log-

posterior probability, is the same as maximizing probability itself. Furthermore, having the 

optimization problem expressed in terms of logarithm is much more convenient, since with 

logarithmic transformation a lot of mathematical expressions get significantly simplified. For 

instance, product becomes a sum (ln 𝑎𝑏 ln 𝑎 ln 𝑏), which is more numerically stable, and 

prevents underflow, since probabilities can have very small magnitudes, and their product can 

often go below the float precision of the computers.  

However, optimizers in available statistical packages rather perform minimization of some 

objective function, instead of searching for its maximum. By having in mind the following 

equivalence:  

 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑙𝑛 𝑝 𝑀|𝐷, 𝐼 𝑎𝑟𝑔 𝑚𝑖𝑛 𝑙𝑛 𝑝 𝑀|𝐷, 𝐼  (4.9)

 

we can redefine the goal, and say that optimal model (i.e. maximum a posteriori distribution, 

“MAP”) can be found by minimizing negative log-posterior probability. Bayes’ theorem can 

then be expressed as: 

 

 𝑀𝐴𝑃  𝑎𝑟𝑔 𝑚𝑖𝑛 𝑙𝑛 𝑝 𝑀|𝐷, 𝐼 𝑎𝑟𝑔 𝑚𝑖𝑛 𝑙𝑛 𝑝 𝐷|𝑀, 𝐼 𝑙𝑛 𝑝 𝑀|𝐼  (4.10)

 

which, after inserting eq. 4.5 and eq. 4.6, transforms to: 

 

 𝑀𝐴𝑃 𝑎𝑟𝑔 𝑚𝑖𝑛 1 2⁄ 𝜒 , 𝜃𝑆  = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝐺 (4.11)
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Solution to the optimization problem is unique, since the negative log-posterior is convex. 

Furthermore, the gradient of eq. 4.11 can be easily calculated, which makes the optimization 

computationally efficient, i.e. it can be performed in seconds on a current laptop, using efficient 

limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm.   

According to the last transformation, finding the maximum a posteriori distribution means to 

minimize the energy-like function G, which contains two terms- one that scores the agreement 

of the optimized model against the experimental data (𝜒 , ), and an entropy term, S, which 

is a negative Kullback-Leibler divergence, and which informs on the similarity between prior 

and posterior weights. Contribution of each term in optimization is determined by the 

temperature-like θ factor. When using large θ value, we express huge confidence in prior, and 

consequently, entropy term dominates in the optimization over the 𝜒 ,  term. In that case, in 

order to minimize G, one has to find such distribution of weights for which the entropy will be 

maximized. As discussed previously, entropy is maximized with minimal modification of prior 

information (eq. 4.3). On the other hand, for small θ, we express small confidence in prior 

information, and in that case minimization of G is dominated by 𝜒 ,  term. In other words, 

agreement with experimental data is prioritized, which allows large changes in the prior 

weights. This in turn leads to overfitting. 

Therefore, it becomes obvious that prioritizing any of the two sources of information has 

consequences, and for reliable ensemble reweighting it is necessary to optimally balance 

different sources of information. Optimal balance of prior information and experimental data 

was one of the topics in Publication 2 (see Chapter 6.2 and Supplement B). It was previously 

proposed that θ value at the corner of  𝜒 ,  versus 𝑆 , which is often referred to as “L-shaped 

curve”, should be taken for optimal balance of prior information and experimental data. 105 

Through rigorous analysis using synthetic data we found that θ value at the corner of  “L-shaped 

curve” is close to the optimal choice of θ. This confirmed that previously arbitrarily proposed 

corner point is indeed a meaningful choice of θ. 
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Figure 6 | Ensemble refinement. To overcome the limitations of using experimental or 
computational data alone, we gather all available sources of information about the system, for 
instance structural models with corresponding weights obtained from all-atom MD simulations, 
and inter-dye distance distributions from FRET experiments, and combine them using some 
refinement approach, here Maximum Entropy Method (MEM). MEM is the most suitable 
approach for systems that do not occupy well defined states, and it provides posterior 
distribution, i.e. set of optimized weights, that are as close as possible to the prior weights, 
while simultaneously satisfying available experimental data. Figure is adapted from article by 
Dittrich J., Popara M., et al45 (see Supplement B).  

 

   

4.5. Representing structural ensembles: are atomistic models needed? 

Having structural biology for a long time limited to modelling biomolecules in a single, static 

pose, comparison of structures was typically done in terms of Root-Mean-Square Deviation 

(RMSD). However, developments in the field of structure determination and integrative 

modelling, have brought us to a stage where we talk about ensembles of structures, and where 

one-to-one comparison of individual structures is no longer a suitable approach. Moreover, it 

was found that RMSD is not an adequate quantitative measure of similarity, and whatsoever, it 

was found that it is the least representative measure of structural similarity.106 Main reason to 

that is that RMSD calculation requires superimposition of structures under comparison, which 

is not a trivial task for structures containing loops, flexible termini or disordered regions. 

Therefore, two structures that are essentially identical, but differ in position of a single loop, 

would be classified as different structures, if judged by global RMSD value. These challenges 

have sparked the discussion on what are suitable ways to visualize and compare ensembles of 

structures.107-110  
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Within Publication 2 we proposed alternative ways to visualize and compare ensembles of 

conformations, namely inter-residue distance histograms (distograms) and 3D density maps 

(see Chapter 6.2 and Supplement B). These model representations are in no way novel, but we 

were able to give reasoning why they are well suited and why they should be widely adopted. 

In the case of distogram representation, two-dimensional matrix of distances between all pairs 

of 𝐶  atoms is computed, followed by distance histogramming across entire ensemble, by 

accounting for weights of individual ensemble members. To compare two distograms, we 

proposed Jensen-Shannon divergence111, 𝐷 , a quantitative measure of distributions similarity, 

that converges to zero for identical distributions.111 It is even more convenient to look at 

moments of distribution, i.e. mean, variance and skewness, and directly compute absolute 

deviation between these distribution features for the two ensembles in comparison. In the case 

of 3D density maps, which is a concept taken from EM field, we map the coordinates of 

ensemble members onto a grid of nx, ny, nz dimensions and of a specific voxel size. Voxel 

occupancy is computed as a sum of weights of ensemble members found in respective voxel. 

As a comparison measure between the density maps, we used the cross-correlation coefficient 

(CCC). Using synthetic benchmark, we were able to demonstrate that such ensemble 

representations are robust and efficient way for ensemble visualization and comparison. For 

details see Chapter 6.2 and  Supplement B. In the distogram representation, we integrate over 

ensemble members, but residue information is retained. Freely said, one can think of distograms 

as a “medium-resolution” representation of ensembles. In the case of 3D density maps, we go 

even further with reduction of the information content, and besides ensemble averaging, residue 

information is not conserved. Strictly speaking, one can think of 3D density maps as a “low-

resolution” ensemble representation. 

However, 3D density maps are informative, and there are numerous examples of industrial 

applications where the volumetric models were successfully used in drug design. One example 

would be so-called shape screening, where based on a shape of a molecule known to bind to a 

target, it is possible to identify new binding partners that fit into a given shape constraint.112 

Such simple approach was shown to be very successful, and well suited for early stage drug 

design (Schrödinger, Inc.). Sadly, there is a long-term practice of attributing negative 

connotation to these representations, for instance by naming them “blob” or “cartoon-like”. We 

hope that the work presented in this thesis will contribute to removing the stigma from such 

model representations of ensembles.   
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Chapter 5 
 

Biological context of studied systems and prior knowledge 

5.1. Multi-domain proteins 

All three proteins that I studied share the same architecture- they are multidomain proteins, 

where different modules are connected with a linker of varying level of softness. Multidomain 

proteins are of immense importance, as they constitute the majority of proteins in both 

eukaryotes and prokaryotes.113 Linkers between the domains are found to have huge variability 

in amino acid propensity, secondary structure, and length.114 As such, they shape the free-

energy landscape of proteins. The function of linkers is beyond being mere connectors of the 

subunits.113 They have a role in enabling domains to move from detached to closed form, and 

classical example for such linker-induced large-scale displacements can be found in U2AF2, 

the large subunit of U2 auxiliary factor of spliceosome machinery. Furthermore, when the linker 

acts as a hinge, it can direct correlated movements of subunits. Such an example would be 

clamp motion upon substrate binding (“Venus-flytrap mechanism”) of D-maltodextrin binding 

protein (MalE). I studied U2AF2 and MalE within Publication 1 (see Chapter 6.1 and 

Supplement A).  As opposed to those two examples, rigid linkers, which typically exist in a 

shape of stable α-helices, act as spacers that keep domains at a certain end-to-end distance. This 

is of importance when different modules in a protein perform separate functions, or when inter-

domain cavity serves for substrate docking. Example would be extended helical domain found 

in lipase specific foldases (Lifs), which maintains mini domains at a specific distance upon 

binding to lipase. Such spatial arrangement enables docking of lipase into a high contact area, 

which in turn results in strong binding between Lif and its cognate lipase.115 I studied 

conformational landscape of Lif within Publication 2 (see Chapter 6.2. and Supplement B).  

Linkers, their structure and intrinsic dynamics are not the topic of this thesis, but they rule the 

energy landscape of the studied proteins and they are the underlying factor of their structural 

complexity. For an interested reader, comprehensive discussion on the role of linkers in 

conformational dynamics and allostery can be found in a review by Papaleo et al.114 
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5.2. MalE 

Membrane transport is one of the crucial processes in the physiology of a cell, which is mediated 

by a plethora of transport systems. One of these is so called Adenosine Triphosphate Binding 

Cassette (ABC) family of transporters.116 ABC transporters exploit the energy coming from 

Adenosine Triphosphate (ATP) hydrolysis for the transport of the substrates through the 

membrane. Typical ABC transporter has a four-domain organization, where two domains are 

highly hydrophobic and are incorporated within the membrane, forming the pathway for the 

substrate translocation.116 Remaining two domains are on the cytoplasm side of the membrane, 

and are responsible for ATP binding. These four domains represent minimal ABC construct, 

but additional domains can be involved, having a regulatory or substrate binding role, and can 

be located on either side of membrane.116 Example of such domain would be D-maltodextrin 

binding protein (MalE) of Escherichia coli, which is periplasmic component of ABC 

transporter MalFGK2-E, responsible for delivery of maltodextrins to membrane-associated 

domains of ABC. MalE follows typical structure of periplasmic proteins, i.e. it is monomeric 

and contains two globular rigid domains of roughly equal size, connected with a hinge which 

allows conformational change upon substrate binding (Figure 7A).117 Hinge region 

simultaneously acts as a binding pocket for a substrate.  

MalE is a well characterized system, and a classical example of systems used in numerous 

studies of ligand binding mechanism.118 We studied MalE as part of Publication 1 (Chapter 

6.1 and Supplement A), with aim to assess the reproducibility of smFRET measurements in 

detecting slow, ligand induced, conformational change on a sub- second time scale. In 

particular, we studied reproducibility in detecting population shift between open/inactive (apo, 

PDB 1OMP) and closed/active (holo, PDB 1ANF) form of MalE upon maltose binding (Figure 

7A). Holo measurements were done at the substrate concentration of 1 mM, with 𝐾  varying 

between 1 and 2 µM (for details see Supplement A). Sensing of conformational change was 

done through smFRET measurements of stochastically labelled double-cysteine mutants at the 

positions K29C-S352C (MalE-1), D87C-A186C (MalE-2), A134-A186C (MalE-3), K34C-

N205C (MalE-4) and T36C-N205C (MalE-5), using multiple dye pair combinations (Figure 

7A). For further details see Chapter 6.1 and Supplement A. 

 

5.3. U2AF2 

U2 Auxiliary Factor (U2AF) is part of spliceosome machinery, responsible for the 

transformation of precursor mRNA into mature mRNA. Splicing of pre-mRNA represents 
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removal of non-coding sequence (intron), which is followed by ligation of coding material 

(exons).119 Spliceosome machinery consists of several small nuclear ribonucleoproteins 

(snRNP) and auxiliary factors, that in coordinating manner and through several stages bind and 

remove intron.120 After the formation of mature mRNA, intron is released from the spliceosome, 

which is then ready for the next splicing activity. 

U2AF is a heterodimer consisted of larger (65 kDa) subunit, U2AF65 (also known as U2AF2), 

and a smaller (35 kDa) subunit, U2AF35 (also known as U2AF1). U2AF acts in the early stage 

of pre-mRNA splicing, by targeting 3’- splice site of the intron. Specifically, U2AF2 subunit 

binds to single-stranded polypyrimidine RNA sequence (Py-tract) while U2AF1 subunit binds 

to ‘AG’ dinucleotide at the 3’- splice end of intron.   

Binding of U2AF2 to Py-tract of the intron is the crucial act of U2AF in the splicing process. 

U2AF2 subunit has following building blocks: RS - arginine and serine rich domain, ULM- 

peptide motif responsible for binding of U2AF2 and U2AF1 into heterodimer121, RNA 

recognition motif domains, RRM1 and RRM2, that bind to polypyrimidine sequence122 of pre-

mRNA, and lastly, C-terminal U2AF homology motif (UHM) domain, that has a role in 

interaction between U2AF and splicing factor 1 (SF1) of spliceosome123. Interaction between 

U2AF1 and U2AF2, is proven to have affinity-increasing effect in the recognition of weak Py-

tracts.124 

Subject of Publication 1 (Chapter 6.1 and Supplement A) was truncated version of U2AF2, 

that contains only tandem RRM1,2 domains (residues 148-342), connected via flexible linker, 

since these are responsible for the recognition of Py-tract. For simplicity, we refer to this 

minimalistic construct as U2AF2. These two domains follow a typical architecture of RRMs, 

with two alpha helices intertwined with four antiparallel beta sheets: βαββαβ.125 Despite having 

canonical topology of its building blocks, U2AF2  exists in the solution as a continuum of 

dynamic diverse conformations, as a result of flexible linkage between RRMs.126 

U2AF2 has a strong affinity towards uridine rich sequences.127 Therefore, in this work we 

studied the population shift between inactive (apo, PDB 2YH0) and active (holo, PDB 2YH1) 

form of U2AF2 upon binding to U9 RNA (Figure 7B), at the concentration of 5 µM, 

corresponding to 𝐾  of roughly 1.2 µM. Since RRM2 has exposed binding site in the apo state, 

and RRM1 not, binding of shorter sequences, e.g. U4 RNA, would occur only on RRM2, 

without causing inter-domain rearrangement.128 Hence, we chose longer Py-tract (U9) in order 

to trigger the rearrangement of RRM1 and RRM2 relative to one another. While binding of Py-

tract to U2AF2 is well understood122, characterization of dynamic repositioning of RRM1 and 

RRM2 relative to one another with corresponding kinetic scheme is lacking.  
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Figure 7 | Overview of studied biomolecules. (A) Left: Crystal structure of MalE in its ligand-
free apo state (PDB ID 1OMP) showing structural organization typical for periplasmic 
proteins, where two rigid domains D1 and D2 are linked with a hinge (highlighted in 
blue). Right: Conformational change between open/apo (gray, PDB ID 1OMP) and closed/holo 
(green, PDB ID 1ANF) form of MalE, induced with maltose binding, where hinge region acts 
as a binding pocket for a substrate. (B) Conformational ensemble of U2AF2. Apo state (gray) 
fluctuates between an ensemble of detached conformations126, where for simplicity only five 
representative structures are displayed, and a compact conformation (PDB ID 2YHO). Binding 
of U9 Py-tract ligand triggers rearrangement of RRM domains relative to one another, leading 
to stabilization of open/holo state (green, PDB ID 2YH1). (C) Left: Homology model of catalytic 
folding domain of Lif in complex with its cognate lipase, LipA (yellow), from Pseudomonas 
Aeruginosa species. CFD of PaLif has headphone-like shape, and is consisted of mini domain 



47 
 

1 (MD1, cyan), extended helical domain (EHD, blue) and mini domain 2 (MD2, light blue). In 
all three panels, cysteine mutations are depicted as black spheres and mean dye positions 
determined from AV simulations are shown as red spheres. Double cysteine variants, for which 
inter-dye distances were measured experimentally, are indicated with black dashed lines. 
Panels (A-B) are adapted from Agam, G., Gebhardt, C., Popara M., et al129 (see Supplement 
A) and panel (C) is adapted from Dittrich J., Popara M., et al45 (see Supplement B).  

 

Here we employed a range of fluorescence-based methods to unravel the RRM1,2 domain 

arrangement as well the kinetic scheme of a dynamic exchange within a heterogeneous 

ensemble of U2AF2. Furthermore, U2AF2 served as more complex system to evaluate the 

reproducibility of smFRET measurements in detection of fast conformational dynamics on a 

millisecond and sub-millisecond time scale. Sensing of U2AF2 ensemble was performed using 

multiple dye pair combinations, stochastically labelled at the positions L187C of RRM1 and 

G326C of RRM2 (Figure 7B), which, as previously shown, do not affect structural integrity of 

U2AF2, nor its binding affinity towards U9 ligand.130 For details see Chapter 6.1 and 

Supplement A. 

 

5.4. Lif 

Lipase specific foldases (Lifs) are an inner-membrane bound steric chaperones, that in the 

periplasm of Gram-negative bacteria activate their cognate lipase.131 Extracellular microbial 

lipases are the most important class of enzymes with vast number of applications in 

biotechnology, from detergents, over food to paper industry.132, 133 It is therefore of great 

interest to understand structure and dynamics of their chaperones. The whole understanding of 

the role of Lif chaperones is vague, and historically they were named “foldase”132 from the 

understanding that Lifs interact with unfolded lipase, and assist their folding into enzymatically 

active state. However, circular dichroism studies showed that secondary structure of 

enzymatically active lipase and lipase in absence of Lif is practically indistinguishable.134 On 

the other hand, sum of CD spectra of lipase and Lif, measured separately, does not match the 

CD spectrum of a solution containing both Lif and lipase. On those grounds, it is concluded 

that it is rather Lif that undergoes structural change upon lipase binding. However, without Lif, 

lipase is not enzymatically active. The importance of Lif in the activity of lipase is furthermore 

highlighted through the fact that they are encoded together in a single operon. Their interaction 

is highly specific, as it was found that Lif does not activate lipase originating from different 

species.135    
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BgLif in complex with lipase BgLipA, originating from bacterial species Burkholderia glumae, 

represent the only foldase-lipase complex for which the crystal structure has been reported 

(PDB 2ES4).115 This structure reveals high contact area between Lif and its cognate lipase, 

which is in agreement with nM 𝐾  value.115, 136 Focus of this study was PaLif, responsible for 

the folding of its cognate lipase PaLipA, originating from the Pseudomonas aeruginosa species 

(Figure 7C). There is 52% sequence similarity and 39% sequence identity between P. 

aeruginosa and B. glumae Lifs.136 Overall, level of sequence identity between Lifs originating 

from different species is rather low, and only a sequence of eight amino acids is found to be 

conserved for all members of Lif family known by now: RXXFDY(F/C)L(S/T)A, with X being 

any residue.137 This conserved sequence contains amino acids which were shown to be 

essential, but not sufficient for the activation of LipA.138  

PaLif has five domains, namely: TMD- transmembrane domain that anchors Lif to the inner 

membrane, VLD- unstructured variable linker domain, that most likely has a role as a spacer 

that keeps catalytically active part of Lif far enough from inner membrane for the full 

accessibility to LipA, which is lastly followed by CFD- catalytic folding domain, consisted of 

mini domain 1 (MD1, α1-α3), extended helical domain (EHD, α4-α8) and mini domain 2 (MD2, 

α9-α11). Here we studied truncated PaLif, containing only catalytic folding domain (MD1-

EHD-MD2, residues 66-340) (see Figure 7C). Conserved sequence is found to be located in 

the α1 helix of MD1115, however, MD1 alone is not sufficient for activation of PaLipA.136 

So far, high-resolution structure of PaLif has not been reported. The only structural insight 

available is the NMR-derived structure of MD1, that is found to form a stable three-helical 

bundle, preceded with unstructured N-terminal tail, similar to MD1 from BgLif.136 To unravel 

the conformational ensemble of apo Lif, we applied Maximum Entropy Method (MEM) on 

prior conformational models obtained from all-atom MD simulations. As starting structure in 

MD simulations we used homology model constructed based on crystal structure of 

BgLif:BgLipA complex. We refined prior conformational ensembles using time-resolved 

ensemble-TCSPC data, acquired for a network of 6 FRET pairs (for details see Chapter 6.2 

and Supplement B).  
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Chapter 6 
 

Overview of published articles and manuscripts 

In this chapter, I give the overview of published articles and manuscripts. Presented articles 

demonstrate various methodologies from the field of single-molecule FRET studies, computer 

science and integrative structural modelling, for which I presented the basic concepts in the 

previous chapters. In the Chapter 6.1 I present the results of a blind international study 

(Publication 1), whose aim was to assess the precision and accuracy of single-molecule FRET 

measurements, across different instruments, analysis procedures and when using challenging 

protein systems. In the Chapter 6.2, I give an overview of Publication 2, in which we embarked 

on optimizing the conformational ensemble of a flexible and disordered system. Ensemble 

optimization was done using maximum entropy method, by combining FRET data with 

conformational ensembles obtained from MD simulations. Lastly, within the Manuscript 1 I 

created the protocol for robust estimation of correction parameters necessary for accurate 

determination of FRET observables, and which I accompanied with guidelines for alignment 

and calibration of diffusion-based PIE-MFD confocal setup. Results of this study are 

summarized in Chapter 6.3. 

 

6.1. Publication 1: Reliability and accuracy of single-molecule FRET studies for 

characterization of structural dynamics and distances in proteins 

 

This section is based on Agam, G., Gebhardt, C., Popara M., et al129 (Supplement A). 

 

This community paper was an international blind study involving 19 laboratories world-wide, 

and it was a follow-up of a previous study by Hellenkamp et al29, in which double-stranded 

DNA strands were used to evaluate the precision and accuracy of single-molecule FRET 

measurements. We took the next step, and using challenging protein systems we confirmed that 

smFRET measurements are reliable and reproducible across different instrumentations and 

analysis tools, even when dealing with complex systems such as proteins. 

Proteins display large structural heterogeneity, they are dynamic across different spatial and 

temporal scales, local environments and dye mobility vary a lot within proteins, and lastly, they 

are more challenging to handle, as they often demonstrate substantial sensitivity to experimental 

conditions, such as buffer composition, storage and measurement temperature, pH etc. Despite 
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all presented challenges, we were able to obtain the sub-nanometer precision and accuracy as 

in a previous study by Hellenkamp et al.29  

 

How consistent are FRET efficiency histograms and distances determined by different 
laboratories?  
 
In the first round of blind study, as a model system we used D-maltodextrin binding protein of 

Escherichia coli, the periplasmic binding component of the ATP binding cassette, here referred 

to as MalE (for further information see Chapter 5.2).  MalE has a typical architecture of the 

periplasmic binding proteins, i.e. it contains two roughly globular domains, or approximately 

equal size, connected with a hinge, which allows conformational change from opened (apo) to 

closed (holo) state, upon substrate binding (Figure 8a-b). We monitored conformational 

change of MalE upon binding to maltose at the concentration of 1 mM, and for that we designed 

three double-cysteine variants K29C-S352C, D87C-A186C and A134-A186C, to which we 

refer as MalE-1, MalE-2 and MalE-3. These three variants display an increase, decrease and no 

change in FRET efficiency upon maltose binding. Later on, additional two mutants were added, 

namely K34C-N205C (MalE-4) and T36C-N205C (MalE-5), which are analogous to MalE-1, 

but show larger FRET efficiency contrast between apo and holo state. The latter two MalE 

variants were studied only by a subset of laboratories. MalE variants were stochastically 

labelled by Alexa Fluor 546 (later referred to as Alexa546) as a donor dye and Alexa Fluor 647 

(later referred to as Alexa647) as an acceptor dye. Laboratories were asked to provide fully 

corrected average FRET efficiencies for all three variants MalE1-3 in both apo and holo 

conditions. All laboratories properly observed expected FRET efficiency change, namely 

increase (MalE-1), decrease (MalE-2) and no change (MalE-3) in FRET efficiency upon ligand 

binding (Figure 8c). We observed excellent consistency between the 〈𝐸〉 values reported by 

different laboratories, with uncertainty across all MalE variants ≤ 0.06, which in terms of inter-

dye distances corresponds to the precision of ≤ 2 Å, and accuracy of ≤ 5 Å, when comparing 

experimentally derived distances to the structure-based derived distances. Largest uncertainty 

was obtained for MalE-1, and smallest for MalE-3, which interestingly also has the highest 

FRET efficiency of ~ 0.9.  

Despite good agreement between the laboratories, we did observe, consistently across all 

mutants, systematic deviations of some laboratories from the lab-averaged 〈𝐸〉 values. 

Therefore, we looked at the difference between apo and holo average FRET efficiency, i.e. 

〈𝐸 〉 〈𝐸 〉 (Figure 8d). As expected, distribution of FRET efficiency differences 

narrowed down two- to three-fold, which proved that observed deviations were indeed 
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systematic and not random. We suspected that these systematic deviations originate from the 

error in determination of correction parameters.   

 

  

Figure 8 | Experimental design of MalE as a protein model system for smFRET studies. (a) 
Crystal structure of MalE in its ligand-free apo state (PDB ID 1OMP) with domains D1 and 
D2 linked by flexible beta sheets (highlighted in blue). (b) The crystal structure of MalE (rotated 
by 90° as compared to (a) in the apo (gray, PDB ID 1OMP) and holo (green, PDB ID 1ANF) 
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states with mutations at K29C-S352C (MalE-1), D87C-A186C (MalE-2) and A134C-A186C 
(MalE-3) indicated in black. Note, each mutant only contains one cysteine pair and was 
measured using the Alexa546–Alexa647 FRET pair. The estimated mean position of the 
fluorophores from AV calculations are shown as red spheres. (c) FRET efficiency E histograms 
for three MalE mutants, MalE-1 (left), MalE-2 (middle) and MalE-3 (right), in the absence and 
presence of 1 mM maltose (bottom, green) for one exemplary dataset measured in laboratory 
1. The distribution is fitted to a Gaussian distribution. The reported mean FRET efficiencies for 
16 laboratories are shown below (due to experimental difficulties, the results of three 
laboratories were excluded). The mean FRET efficiency and the standard deviation of all 16 
laboratories are given by the black line and gray area. (d) Individual FRET efficiency 
differences for each laboratory, between the apo and holo states, 〈𝐸 〉 〈𝐸 〉, for MalE-1 
(left), MalE-2 (middle) and MalE-3 (right). The mean FRET efficiency difference and the 
standard deviation of all 16 laboratories are given by the black line and gray area. Figure and 
figure caption are taken from Agam, G., Gebhardt, C., Popara M., et al129 (Supplement A).  

 

Therefore, we propagated the uncertainty in FRET efficiency based on the error in correction 

parameters (Figure 9A). Propagated uncertainties due to the error in background, crosstalk, α, 

and direct excitation, δ, all show monotonic decrease or increase against FRET efficiency. Only 

the uncertainty ∆𝐸  due to the error in detection efficiency parameter, 𝛾, shows parabolic 

dependence: 

 
∆𝐸 𝐸 1 𝐸

∆𝛾
𝛾

 (6.1.1)

 

We found that experimentally observed uncertainties in FRET efficiency all lie on a parabolic 

line that corresponds to relative error in 𝛾 parameter of 23% (Figure 9B). Therefore, error due 

to the γ parameter alone was sufficient to explain discrepancies between different laboratories. 

 

 

Figure 9 | Contributions of the errors in correction factors to the uncertainty in FRET 
efficiency. (A) Propagated uncertainties in FRET efficiency due to donor crosstalk, ∆𝐸 , 
acceptor direct excitation, ∆𝐸 , detection efficiency, ∆𝐸 , and due to background in donor and 
acceptor channels, ∆𝐸  and ∆𝐸 . Total uncertainty, ∆𝐸, is given as grey line.  (B) Standard 



53 
 

deviation of the reported FRET efficiencies against the average FRET efficiency for MalE1-3 
variants, revealing that variability between lab-reported values arises solely due to the error 
in γ parameter, since all points lie on parabolic black line that corresponds to relative error in 
γ of 23%.  Adapted from Agam, G., Gebhardt, C., Popara M., et al129 (see Supplement A). 

 

Second system that we studied was part of the U2 auxiliary factor (U2AF) of the spliceosome 

machinery. Specifically, we studied a minimalistic construct consisted of two RNA recognition 

motifs 1 and 2 (RRM1,2), connected with a flexible linker (see Chapter 5.3 and Figure 7B). 

We refer to this construct as U2AF2. In the spliceosome activity U2AF2 binds to the 

polypyrimidine tract of the precursor mRNA, and therefore in our study we monitored RRM1,2 

inter-domain rearrangement upon binding to U9 single-stranded RNA sequence, at the 

concentration of 5 µM. For such minimalistic construct we designed a single double-cysteine 

variant, L187C-G326C, for which the labelling positions are on the two RRM domains, 

allowing us to sense the inter-domain arrangement (Figure 7B). Double cysteine variant was 

labelled with Atto 532 as a donor dye and Atto 643 as an acceptor dye. Similarly as for MalE, 

we found a good agreement between average FRET efficiencies reported by different 

laboratories. However, especially in the case of this protein we expected that the systematic 

errors, due to the user bias in determination of correction parameters, would be prominent. Due 

to the smaller number of measurements that cover narrower range of FRET efficiencies, γ 

parameter could not be as robustly determined as for MalE. Therefore, to evaluate the extent of 

the user bias in data correction, single person reanalyzed measurements from all laboratories 

with optimized calibration procedure, which improved precision to a standard deviation of 

0.008 from previously obtained 0.03. This again demonstrated that γ parameter is indeed the 

limiting factor and main cause of the observed discrepancies. Therefore, improved calibration 

protocols are necessary in order to further push the limits of FRET measurements.  

  

How reliably can FRET detect dynamics across different time-scales? 
 
In the next step we wanted to address the ability of FRET measurements to unambiguously 

detect and quantify dynamics across different time-scales. Burst variance analysis (BVA) and 

E-τ plots are frequently used tools to detect FRET dynamics. In both approaches, presence of 

E-fluctuations is visualized as a displacement of double-labelled FRET population from the 

static FRET-line. This displacement can be quantified using so-called apparent dynamic shift, 

ds, which is a minimal distance of the center of the FRET population to the static FRET-line.22, 

23 Both BVA and E-τ plots confirmed that MalE in apo and holo state does not exhibit large 

scale structural changes on the time-scale of < 10 ms, since in that case two distinct populations 



54 
 

should be visible. However, when looking at the apparent dynamic shift values, we found that 

in particular MalE-1 variant exceeds the reference value of a static system (dsDNA), but also 

the upper limit that is expected for the large-scale apo-holo transition: 

 

 
𝑑𝑠

1

√2
1 𝐸 1 𝐸  (6.1.2)

 

Due to that, some laboratories declared that they suspect MalE to be dynamic on sub-ms time-

scale.  In the case of U2AF2 apo, all groups unambiguously detected dynamics, since it displays 

prominent displacement of the double-labelled population from the static FRET-line. In the 

holo state, apparent dynamic shift was not so prominent compared to the static reference. 

Additionally, in the holo measurement around 15% of the molecules remained in the apo state 

at the RNA concentration used, which overlaps in the E-histogram with the holo state of the 

holo measurement. Thus, it was difficult to judge if U2AF2 holo was indeed dynamic or static.  

 

What are the minimal structural fluctuations detectable? 
 
MalE-1 variant showed not only the notably higher ds values compared to what is expected for 

static reference and large-scale apo-holo transition, but it also had the largest deviation of inter-

dye distances from structure-based predicted values (Figure 10d). To understand the origins of 

these deviations, we studied dye behavior using fluorescence lifetime and anisotropy. We found 

that position S352 of MalE-1 variant displays prominent sticking for both donor and acceptor 

dye (𝑟  0.25), while at the position K29 of MalE-1 only donor dye largely interacts with the 

surface (𝑟 ,  0.3), but acceptor has unrestrained mobility (𝑟 ,   0.12) (Figure 10b). 

Accounting for position-specific sticking in the forward model helped improve the agreement 

between predicted and measured distances (Figure 10a-d). Such position-specific dye-protein 

interactions cause E-fluctuations, which manifest themselves as displacement of double-

labelled population from the static FRET-line. This in turn, might be falsely interpreted as 

presence of conformational dynamics. Therefore, we studied additional dye combinations, for 

all MalE variants in both apo and holo conditions. We found that the dye pair Alexa546-

Alexa647, originally measured by laboratories, has the highest combined residual anisotropy 

𝑟 , 𝑟 , 𝑟 , . We were able to understand that this comes due to the donor dye, because 

when the acceptor is changed and donor is the same, 𝑟 ,  remains high, but it reduces once the 

donor is exchanged (Figure 10e, top). Next, we looked into the relation between observed 
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apparent dynamic shift and combined residual anisotropy, and found strong correlation between 

the two, over all dye pairs (Pearson’s 𝑟 = 0.73), which even further increased when looking at 

individual dye-combinations (Figure 10f). This was indication that observed ds is caused by 

dye sticking interactions. To remove the data sets with prominent dye sticking, we needed to 

establish a robust threshold for the combined residual anisotropy, instead of using previously 

used rule-of-the thumb value of  𝑟 ,  = 0.2.29 To do so, we propagated uncertainty in distance, 

∆𝑅 𝜅 , based on the orientational factor 𝜅  using “diffusion with traps” model139, that takes 

as an input experimentally determined residual anisotropies of donor and acceptor (Figure 10e, 

bottom). We proposed a realistic threshold of 10% in distance uncertainty, and we were able 

to find that this corresponds to the threshold of 0.25 in terms of combined residual anisotropy, 

𝑟 , . Interestingly, this is close to previously arbitrarily used threshold of 0.2. Using the 

established threshold, we were able to filter out the data sets with spurious dye behavior, and 

we performed the P-test analysis of remaining data sets where dye mobility is unrestrained. P-

test revealed that, even then, ds value is significant for some of the MalE variants. This indicated 

that observed ds values, were perhaps caused by a combination of dye sticking and small-scale 

structural fluctuations. Through simple assumptions, we were able to convert experimentally 

observed ds values into the amplitude of structural fluctuations 𝛿𝑅 (Figure 10g). We found that 

the obtained 𝛿𝑅 exceeds the amplitude of structural fluctuations of a static system (dsDNA), by 

2-3 Å for MalE-1 and its analogous variants MalE-4 and MalE-5. This was an ultimate proof 

that indeed small-scale structural fluctuations take place, and we were able to establish a current 

lower limit for the detection of structural dynamics of ≤ 5 Å.  

 

Beyond lab comparison 
 
In the article we went beyond lab comparison, and characterized in detail the complex structural 

ensemble of U2AF2 (see Figure 7B), using a combination of approaches, namely filtered FCS 

for the dynamics on microsecond time-scale, and dynamic-PDA for dynamics on millisecond 

time-scale. We were able to model the apo state of U2AF2 as an exchange (~ 10 ms) between 

the ensemble of detached conformations and a compact state. The detached ensemble is itself 

highly dynamic, with interconversion between the detached states happening on the order of 

~ 9 µs. Then, upon ligand binding (> 100 ms), opened state is being stabilized.  Lastly, we also 

collected all setup-related data from participating laboratories, and were able to identify the 

advantages and disadvantages of different experimental designs, opening a discussion regarding 

optimal measurement conditions.   
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Figure 10 | Assessing the accuracy of smFRET-derived distances in MalE. (a–d) AV 
calculations and model-based interdye distances. (a) Schematic of Alexa546 attached to MalE 
(PDB 1OMP) showing the parameters needed for the AV calculations using the AV3 model. (b) 
Fluorescence anisotropy decays of single-cysteine mutants for the donor (Alexa546, left) and 
acceptor (Alexa647, right) at the labeling positions K29C and S352C. Solid lines represent fits 
to a model with two or three rotational components. (c) AV (light color) and ACV (dark color) 
calculations for Alexa546 (cyan) and Alexa647 (pink) at labeling positions 352 and 29. The 
zoom-ins show the mean positions of the dyes based on the AV (light shade) and ACV (darker 
shade) models. (d) Comparison of the experimentally obtained FRET-averaged distance 𝑅〈 〉 
with the theoretical model distances using the AV (filled squares) and ACV (empty squares) 
calculations. Errors represent the standard deviation in experimental distances (n = 16 
laboratories for MalE mutants 1–3, n = 2 laboratories for MalE mutants 4–5, n = 7 
laboratories for U2AF2). The solid line represents a 1:1 relation and the gray area indicates 
an uncertainty of ± 3 Å for a Förster radius of 𝑅  = 65 Å. MalE-4 and -5 were measured by two 
laboratories. (e) Detection of dye-specific protein interactions. Top shows the five MalE 
mutants and U2AF2 labelled with different dye combinations to determine the donor–acceptor-
combined residual anisotropy, 〈𝑟 , 〉 ,  (n = 3 laboratories). Bottom shows the distance 
uncertainty relating to 𝜅 , ∆𝑅 𝜅 , estimated from residual anisotropy. A maximum allowed 
distance uncertainty of ≤ 10% (shaded gray region) in ∆𝑅 𝜅  leads to a dye-independent 
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threshold of 0.25 for 〈𝑟 , 〉. (f) Lab-averaged apparent dynamic shift 〈𝑑𝑠〉 versus the combined 
residual anisotropy 〈𝑟 , 〉 is shown for all measured dye pairs (top left) and individually. Error 
bars of the apparent ds represent the standard deviation over n = 3 laboratories. For the 
combined residual anisotropy, the propagated 1σ uncertainty. (g) The structural flexibility of 
MalE estimated after filtering using the distance uncertainty threshold shown in (e). Error bars 
represent the 1σ percentiles averaged over all dye pairs (n = 1, MalE-1; n = 7, MalE-2 and 
MalE-3; n = 4, MalE-4 and n = 5, MalE-5). The residual distance fluctuations obtained from 
control measurements on dsDNA in one laboratory (𝑑𝑠  = 0.0026 ± 0.0044) are shown as 
a black line (gray areas represent confidence intervals of 1σ, 2σ and 3σ). Figure and figure 
caption are taken from Agam, G., Gebhardt, C., Popara M., et al129 (Supplement A)  

 

Conclusions and significance 
 
This article was a community-driven effort that verified smFRET measurements as mature and 

reliable technique for quantitative structural biology. Despite the use of various home-built 

instrumentations and software, we were able to demonstrate that with smFRET one can measure 

distances with sub-nanometer precision and accuracy, even when using challenging protein 

systems. Main outcomes of this community paper are: 

 Across two protein systems, with different level of structural complexity, and which 

display dynamics across different spatial and temporal scales, we were able to measure 

FRET efficiencies with uncertainty of ≤ 0.06, which in terms of inter-dye distances 

corresponds to precision of ≤ 2 Å and accuracy of ≤ 5 Å. 

 We showed that discrepancies between the lab-reported values could be fully explained 

by the error in γ parameter, and that optimized procedures for the determination of 

correction parameters are necessary to further push the limits of FRET experiments. 

 We demonstrated that FRET can unambiguously detect dynamics across different 

timescales, and is able to distinguish true conformational dynamics from dye-artifacts.  

 The article encourages to perform dye controls and/or additional variant measurements, 

before drawing conclusions on the presence of dynamics, and provides quantitative 

guidelines on how to recognize measurements with spurious dye behavior. 

 We showed that in smFRET experiment one can detect small-scale fluctuations on the 

order of ≤ 5 Å, and that detectability of dynamics depends on myriad of factors, such as 

the FRET efficiency contrast between the interconverting states, kinetic averaging, 

photon statistics of the experimental data and systematic errors in the determination of 

correction parameters.   
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6.2. Publication 2: Resolution of Maximum Entropy Method-derived posterior 

conformational ensembles of a flexible system probed by FRET and molecular dynamics 

simulations  

 

This section is based on the article by Dittrich J., Popara M., et al (Supplement B). 

 

In this project we embarked on optimizing the conformational ensemble of lipase-specific 

foldase from Pseudomonas aeruginosa species, i.e. PaLif, using the Maximum Entropy Method 

(MEM). For fundamentals of ensemble optimization see Chapter 4.4 and for biological context 

of PaLif see Chapter 5.4.  

As prior information we used conformational ensembles obtained from all-atom MD 

simulations, and as experimental data we used inter-dye distance distributions obtained from 

time-resolved ensemble-TCSPC measurements. As there is no existing structural model for the 

PaLif, as a starting structure for MD simulations we used homology model generated using the 

only existing crystal structure of lipase-specific foldase, BgLif, in complex with its cognate 

lipase, i.e. BgLif:BgLipaA.115, 136 The obtained homology model of PaLif (see Figure 7C) 

shares the same headphone-like shape of its catalytic folding domain with the BgLif. Three 

domain organization can be recognized, where two mini-domains (MD1 and MD2) are 

connected with extended helical domain (EHD). Helical organization of EHD implies that it 

most likely plays a role of a rigid linker that keeps mini domains at a fixed distance, allowing 

the docking of LipA. Knowing from a previous NMR study that MD1 is structurally stable136, 

and assuming that MD2 is predominantly stable as well, we approximated Lif as a three rigid 

body object, with six degrees of freedom. With such approximation, smaller number of FRET 

pairs was assumed to be sufficient to resolve inter-domain arrangement of Lif. We designed 6 

FRET pairs, sampling both inter- and intra-domain distances (see Figure 7C). Fluorescence 

decays of each FRET pair 𝐷 ∈ 𝐷 , were analyzed through non-parametric Bayesian 

framework (eq. 2.35 and eq. 2.38) to obtain inter-dye distance distribution 𝑥 𝑅  and 

corresponding error ∆𝑥 𝑅  (for details see Chapter 2.5). 

As prior information, we used conformational ensembles obtained from all-atom MD 

simulations, using distinct force fields, namely FF14SB140, FF19SB141 and FF99SB142, which 

are tailored to ordered proteins, followed by FF14IDPS143 (here referred to as IDPSFF) tailored 

to disordered proteins and FF99SBdisp51 parameterized to describe the whole spectrum of 

proteins from folded to disordered. Prior to ensemble reweighting, trajectories were clustered 

using agglomerative hierarchical clustering method (see Chapter 3.2). Each obtained cluster is 
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represented with the respective centroid structure 𝐶  and population fraction (weight) 𝜔 . 

Centroid of a cluster is a structure with smallest cumulative distance to all members in a cluster.  

 

Ensemble optimization 
 
To combine prior information 𝐼 𝐶 , 𝜔  with experimental data 𝐷

𝑥 𝑅 , ∆𝑥 𝑅 , experimental observables must be first computed for a prior, using 

a forward model. As forward model we used AV simulations144, 145 that provide center-to-center 

distance 𝑅  between the AV clouds of donor and acceptor for each of the conformational 

models j and for each of the k FRET variants. 𝑅  distances are then converted to inter-dye 

distance distributions 𝑥 𝑅  using non-central χ-distribution as described previously (see 

eq. 2.35). Ensemble-averaged inter-dye distance distribution 𝑥 𝑅  is then computed as 

weighted average over all ensemble members: 

 

 
𝑥 𝑅 𝜔 𝑥 𝑅  (6.2.1)

 

In maximum entropy method, we minimize energy-like function G (see eq. 4.11), by optimizing 

the weights of structural models 𝜔 , and by varying the temperature-like parameter 𝜃, 

which determines the contribution of two sources of information. Prioritizing any source of 

information has its consequences, and for reliable MEM reconstructions, optimal balance 

between experimental data and prior information is necessary. Results of MEM optimization 

are typically given as 𝜒 ,  versus entropy 𝑆, which is often referred to as “L-shaped curve”. 

Entropy 𝑆 tells about the level of perturbation of prior weights (see eq. 4.3 and eq. 4.5), and 

𝜒 ,  quantifies the agreement between the distributions computed for model 𝑥 𝑅  and 

experimental data 𝑥 𝑅 , discretized in 𝑁  bins. Due to the pronounced sensitivity of FRET 

measurements in the proximity of Förster radius, i.e. in the range of 0.65𝑅 -1.5𝑅 , which for a 

dye-pair used in this study (AlexaFluor488-AlexaFluor647, 𝑅  = 52 Å) equals to 30-80 Å, and 

less reliable performance outside of these boundaries, we performed non-uniform binning of 

the distance distributions, such that distances < 30 Å and > 80 Å are represented by a single bin 

each. The overall discrepancy between 𝑥  and 𝑥  per each distance bin, and for each of the k 

FRET measurements was calculated as follows: 
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𝜒 ,

1
𝐾

1
𝑁

𝑥 𝑅 𝑥 𝑅

𝑥 𝑅
 (6.2.2)

 

 

MEM benchmark using synthetic data 
 
In the first step we wanted to assess the performance of MEM, i.e. to establish how to optimally 

balance different sources of information, and to assess which ensemble representations can be 

robustly recovered by MEM. For that we computed synthetic FRET data using our prior 

conformational ensembles, and that way the structural models underlying the ground 

truth/target Y are known (Figure 11A).  

To cover different experimental scenarios, we created two target ensembles, namely Y(FF14SB) 

and Y(all). In the case of Y(FF14SB), cluster representatives and their corresponding weights 

obtained using FF14SB force field represent target ensemble. In the case of Y(all), target 

ensemble is a mixture of structures randomly selected from all prior ensembles, where the 

contribution of each FF in the target ensemble, in terms of number of structures, is proportional 

to the size of the prior ensemble, i.e.: 21.5% of structures in Y(all) originate from FF14SB, 

17.2% from FF19SB, 6.6% from FF99SB, 16.4% from IDPSFF and 38.3% from FF99SBdisp.  

Uniform weights are assigned to all members in Y(all). 

For target ensembles with such underlying structural models and corresponding weights, we 

generated synthetic fluorescence decays for a network of 50 optimally selected FRET pairs 

(Figure 11B).145 Using previously described Bayesian framework (eq. 2.29 and eq. 2.32), 

synthetic fluorescence decays were converted to inter-dye distance distributions, which are then 

used in MEM optimization (Figure 11C). When using Y(FF14SB), as expected, the prior 

I(FF14SB) has initially the lowest 𝜒 , , and 𝜒 ,  = 1 is obtained with the least perturbation 

of prior weights (Figure 11D). However, on the case of other priors, we have learnt that to 

compare and rank the priors, one should consider not only the initial agreement with 

experimental data, but the entire evolution of L-shaped curve, i.e. the position of its corner 

(elbow), as well the reduction of 𝜒 ,  at the corner point.  

 

How to optimally balance different sources of information? 
 
When solely looking at 𝜒 , , θ value which yields 𝑆 3, here denoted as 𝜃 , appears 

as senseful choice of θ, since majority of the FFs have virtually converged L-curves at that 

point. However, we found that prior ensembles are heavily perturbed at 𝜃 , with change in 
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individual weights up to 9 orders of magnitude, and that few structures dominate the ensemble. 

Such observations are indicative of overfitting, and that such selected θ value does not provide 

optimal balance between different sources of information, despite good agreement with 

experimental data. 

 

 

Figure 11 | MEM reweighting and validation of posterior ensembles using synthetic FRET 
data. For a given target ensemble, here Y(FF14SB) (A) and a network of the 50 most 
informative FRET pairs (B), we simulate fluorescence decay curves and convert them by 
sampling probability distributions over the population of distances (synthetic distance 
distribution, 𝑥 𝑅 ) (C). The total reduced discrepancy, 𝜒 , , between the model distance 
distributions, 𝑥 𝑅 , of the posterior conformational ensemble recovered by MEM and 
𝑥 𝑅  for all FRET network members versus the entropy, S (D). The circles mark 𝜃  points 
that balance the synthetic data D and the prior I based on the L-curve criterion. For a given 
posterior ensemble with structures and weights (E), we compute residue pairwise Cα-distance 
matrices (F) and corresponding population-weighted distograms (G). Each point in a 
distogram corresponds to a distance occupancy computed for Cα atoms of structures of an 
ensemble. To compare two ensembles, we compute the Jensen-Shannon divergence (DJS) 
between the posterior distogram and the distogram computed for Y, here Y(FF14SB) (H). 
Figure and figure caption are taken from the article by Dittrich J., Popara M., et al (for details 
see Supplement B)  

 

In synthetic experiment, we know the structural models underlying the ground truth, meaning 

that we can validate MEM results beyond looking at mere agreement with experimental data in 

terms of 𝜒 , . Therefore, we computed pair-wise inter-residue 𝐶 -distance matrices for each 

of the structural models in the ensembles, which were converted, using the cluster weights of 

ensemble members, to inter-residue distance histograms (distograms) (Figure 11E-G). To 

quantify the similarity between the distograms computed for posterior and target, we calculated 
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Jensen-Shannon divergence111 between two distograms, 𝐷 (Y, Q(FF, θ)). We found that in the 

case of complete prior, i.e. when optimizing I(FF14SB) against Y(FF14SB), 𝐷  continuously 

increases. For other FFs, 𝐷  curve has a minimum in the proximity of a corner point of the L-

shaped curve (Figure 11H). Evolution of 𝐷  curves confirmed that MEM reconstructions are 

not reliable at 𝜃 , and that instead, more senseful choice of θ is at the corner point of L-

shaped curve, here referred to as 𝜃 , when we are much closer to the minimum of 𝐷  curve.  

 

Which model representations can be robustly recovered by MEM? 
 
Atomistic models. It has already been shown that when using temporal and/or ensemble 

averaged experimental data, resolving ensemble members at the atomistic level is an ill-defined 

problem, meaning that MEM will allow multiple solutions dependent on prior, which can all fit 

the same averaged data.98, 104, 146-148 In our case, we did not use a simple ensemble averaged 

observable, but a distribution of distances from minimally averaged, time-resolved FRET 

measurements, where the averaging occurs on a nanosecond time-scale, i.e. during the 

fluorescence lifetime of the donor. Nevertheless, FRET informs on long-range features, and not 

on absolute atomic positions. Therefore, it is not expected that unique solution can be obtained 

for different priors, when individual structures at atomistic resolution and their weights are 

considered. We computed 𝐶 -RMSD matrices between the top 50 most populated clusters in 

posterior and target ensemble, and we found that even the best fitting force field, i.e. Q(FF14SB, 

𝜃 ), is on average ≈ 20 Å away from the target, which is the level of dissimilarity that one would 

obtain when comparing two randomly chosen proteins. Furthermore, remarkable dissimilarity 

was also obtained when cross-comparing posterior ensembles- we found no structural similarity 

amongst most populated clusters, and no correlation in weights for similar structures between 

two posterior ensembles. For details see Supplement B. 

 

Inter-residue distograms. We asked ourselves, if there is instead a model representation of 

reduced level of detail compared to atomistic models, that can be robustly recovered by MEM. 

As a first step in resolution reduction, we computed inter-residue distance histograms 

(distograms), as a “medium-resolution” representation of an ensemble (for details see Chapter 

4.5 and Supplement B). This representation integrates over the ensemble members, but retains 

the residue information. We then reduce the information complexity even further, by looking 

at the moments of the inter-residue distograms, i.e. mean 𝑅 and standard deviation 𝜎 . To 

quantify the similarity between two distograms, we computed squared relative differences of 𝑅 
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and 𝜎  (𝛿 𝑅  and 𝛿 𝜎 ). For Y(FF14SB) and I(FF14SB), which is the case of complete 

prior, we get an excellent agreement between the distograms in terms of both the mean and 

standard deviation (Figure 12A). For Y(FF14SB) and incomplete prior, e.g. I(FF99SBdisp), 

initial deviations are larger, but nevertheless MEM improves 𝛿 𝑅  4-fold, while 𝜎  on average 

remains unchanged (Figure 12B).   

 

 

Figure 12 | Robustness of distogram and 3D density map ensemble representations. Line 1: 
case Y = I, a single FF is the target Y(FF14SB) and the identical FF was chosen as prior I. 
Line 2: case Y ≠ I, a single FF is the target Y(FF14SB) and another FF was chosen as prior 
I(F99SBdisp) (A, B) Residue-wise squared relative deviation of prior (left) and posterior (right) 
of the distogram mean distance 𝛿 𝑅  (upper-right triangles) and standard deviation 𝛿 𝜎  
(lower-left triangles) to Y. Cyan, dark blue, and light blue squares and bars mark the residue 
range of the MD1, EHD, and MD2, respectively. Blue dots indicate FRET pairs. (C, D) Density 
maps of the target ensemble Y (orange), the prior I (FF14SB - blue, FF99SBdisp - dark pink), 
and the posterior Q (FF14SB - light blue, FF99SBdisp - light pink), outline the extent of the 
experimental ensembles at 50%, 68% and 90% of the density-weighted volume. The cross-
correlation coefficients (CCCs) displayed to the left of the densities quantify similarities of prior 
and posterior entire density maps to the target ensemble, Y, and the ones on the right 
similarities of prior and posterior density maps. (E, F) Fourier Shell Correlations (FSCs) of 
the two half-density maps provide precision estimates for target Y(orange) and posterior Q 
(FF14SB - blue, FF99SBdisp - pink) density maps. The horizontal dashed line at FSC = 0.143 
serves for a precision estimate of a density map. Figure and figure caption are adapted from 
the article by Dittrich J., Popara M., et al (for details see Supplement B)  
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3D density maps. As further reduced ensemble representation, we used 3D density maps, a 

concept adopted from cryo-EM field. In such representation, we have further information loss, 

by averaging over both the ensemble members and residues (for details see Chapter 4.5 and 

Supplement B). As a similarity measure between two density maps we used cross-correlation 

coefficient (CCC). We found that CCCs to the target ensemble are larger for the posterior than 

for the prior, which proves that MEM reliably recovers ensemble-integrated features (Figure 

12C-D). Furthermore, we estimated the precision of the posterior density maps, by means of 

Fourier shell correlation (FSC) curves149. Ensembles were split into two sets of structures of the 

same size, by using interleaved ensemble member numbers. Subsequently, FSC curves were 

computed between two half-maps computed for two sets of structures. Precision of 3D density 

map was found to be in range of 5-10 Å, and is determined at the point where FSC curve crosses 

the threshold of 0.143150 (Figure 12E-F).  

 

MEM refinement using experimental data 
 
When using the experimental data, we found that for all priors we needed a large entropy value 

in order to obtain good agreement with experimental data (Figure 13A). Even at the corner 

point of L-shaped curves, perturbation of weights spans across several orders of magnitude. 

This is indication that none of the priors is suitable to describe the data. However, we wanted 

to assess if the posterior ensembles nevertheless converged to unique solution in terms of model 

representations with reduced level of detail, such as inter-residue distograms or 3D density 

maps. For the two best fitting FFs, namely FF14SB and IDPSFF, with 𝜒 ,  = 2.011 and 

𝜒 ,  = 2.069 at their respective corner points, we found that they better agree in distogram 

representation before MEM, than after MEM refinement (Figure 13B). Particularly high 

differences in terms of means of distograms were observed in EHD region as well for distances 

between MD1 and EHD. This is likely a consequence of much smaller number of experimental 

FRET restraints (6) compared to the synthetic benchmark (50), and a consequence of EHD 

internal conformations not being sufficiently probed.  

 

Likewise, similarity between the 3D density maps of FF14SB and IDPSFF is not improved for 

posteriors at 𝜃  (CCC=0.88) compared to the priors (CCC=0.88).  However, analyzing the CCC 

values of all pairwise combinations of FFs, we could identify that our five distinct priors 

converged to three classes of posterior density maps (Figure 13C). First class, consisted of 

FF14SB, FF19SB and FF99SBdisp, retains a headphone-like shape of the homology model. 
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Second and third class are formed by FF99SB and IDPSFF. FF99SB density map is more 

compact, while the one of IDPSFF is extended. However, the solutions of two best fitting FFs 

are notably distinct, and with the data available we could not judge which one, or a mixture of 

both describes a true behavior of Lif in solution. To solve this ambiguity of the solution, 

additional experimental data is necessary, such as SAXS scattering profiles. We computed 

theoretical scattering profiles for the posterior ensembles, and showed that their differences are 

large enough to score differently against experimental SAXS data (for details see Supplement 

B).      

 

 

Figure 13 | Experimental inter-residue distograms and posterior density maps of Lif. (A) The 
total reduced discrepancy 𝜒 ,  between experimental, 𝑥 𝑅 , and model distance 
distributions, 𝑥 𝑅 , versus entropy S. (B) Residue-wise squared relative deviation of 
distogram mean distance 𝑅 and standard deviation 𝜎  between FF14SB and IDPSFF prior 
(left) and posterior (right) ensembles. (C) Posterior density maps of Q(FF, 𝜃 ) contoured at 50, 
68, and 90% of the density-weighted volume aligned to all atoms of the homology model are 
displayed as cartoon. Numbers below the density maps represent Cross Correlation Coefficient 
(CCC) values between the posterior density map of a respective force field to all the others. 
CCC(Q,Q) values are color-coded according to the force field coloring scheme. Figure and 
figure caption are adapted from the article by Dittrich J., Popara M., et al (for details see 
Supplement B)  
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Conclusions and significance 
 
Lipase specific foldases (Lifs) are responsible for the activation of their cognate lipases in the 

periplasm of Gram-negative bacteria. Lipases are the most important class of enzymes in 

biotechnology, and it is therefore essential to understand the behavior of their chaperons. In this 

article we provided first-ever insights into the structural ensemble of PaLif in apo state.  

Main outcomes of this study are: 

 We established the workflow for integrative modelling using time-resolved FRET data 

and structural ensembles obtained from all-atom MD simulations.   

 We found that in the absence of posterior uncertainty estimates, varying priors is an 

approach to estimate the robustness of MEM results. 

 Through the benchmark using synthetic data, we found that optimal balance between 

different sources of information is obtained using θ value at the corner of L-shaped 

curve. 

 To rank and compare the priors, one has to consider not only the initial 𝜒 , , but the 

entire evolution of the L-shaped curve, i.e. the position of the corner point, as well the 

reduction of 𝜒 ,  at the corner point.  

 Resolving the individual ensemble members at the atomistic resolution is an ill-defined 

problem, meaning that MEM will yield multiple solutions dependent on the prior, that 

will all fit the same experimental data. 

 Depending on the agreement of the prior and experimental data, MEM can reliably 

recover only ensemble representations of reduced level of detail, such as inter-residue 

distance histograms (distograms) and 3D density maps. 

 Using experimental fluorescence decays acquired for a network of 6 FRET pairs, we 

did not obtain consistency of posterior ensembles when using medium-resolution 

distogram representation. However, using 3D density map representation we obtained 

consistent result for three out of five priors.  

 3D density maps of two best fitting solutions have distinct shape, i.e. headphone-like 

and extended, and at present we cannot judge which one describes apo Lif in solution.



67 
 

6.3. Manuscript 1: Increasing the accuracy of single-molecule FRET experiments – robust 

and unbiased estimation of correction parameters  

 

This section is based on the manuscript in preparation by Popara M. et al (Supplement C). 

 

In this work I established robust and unbiased workflow (see Figure 14) for estimation of 

correction parameters, that are necessary for the accurate determination of quantitative FRET 

observables, such as FRET efficiency and stoichiometry (see Chapter 2.4). Motivation for this 

project came from the results of a blind study (see Chapter 6.1 and Supplement A), where we 

showed that the observed deviations between the lab-reported FRET efficiencies can be fully 

explained by the systematic errors in determination of correction parameters. In particular, 

deviations could be explained by the error in detection efficiency parameter alone. That is why 

the particular focus of this work was devoted to determination of detection efficiency parameter.   

In a single-molecule FRET experiment, donor and acceptor emitted photons are distorted due 

to the background signal, spectral overlap of the fluorophores, and the non-ideal optical 

configuration of the setup that allows photons to be misguided to wrong detection channel. To 

get the accurate FRET quantities, such as FRET efficiency and stoichiometry, a set of correction 

parameters needs to be applied to raw, distorted, signal. First, fluorescence photons emitted by 

a single molecule in a focus are always interfered with unwanted background photons, that can 

originate from sample impurities, Rayleigh scattering at the excitation wavelength, or dark 

counts of detector. Estimation and correction for background emission is the first step towards 

accurate FRET observables. Afterwards, four additional correction parameters are applied to 

the data, namely:  

(i) crosstalk α, which corrects FRET sensitized acceptor signal for the leakage of donor photons 

into acceptor detection channel (eq. 2.19 and eq. 2.21). Absence of this correction falsely 

increases FRET sensitized acceptor signal, which leads to overestimation of FRET efficiency. 

As shown already (see Figure 9A), the uncertainty in E due to donor crosstalk is largest for the 

low FRET efficiencies, but is significant also for the range of intermediate FRET efficiencies 

where most of the measurements are being performed. Crosstalk α is determined from the 

donor-only sub-population, by performing the robust linear regression between the 

corresponding background-corrected photon counts: 

 

 𝑁 | 𝑆 | 𝑇 𝛼 𝑁 | 𝑆 | 𝑇  (6.3.1)
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𝑁 |  and 𝑆 |  denote raw photon counts and background count-rate in a detection channel Y 

after X excitation, and T represents burst duration. In the protocol, provided are instructions on 

how to select donor-only population in order to assure the least amount of user bias. This is 

followed with the guidelines concerning the regression fit, and with recommendations on how 

to validate the obtained α value.  

(ii) direct excitation δ, which corrects FRET sensitized acceptor signal for the direct acceptor 

excitation with the donor excitation laser (eq. 2.19 and eq. 2.22). Similarly as for crosstalk, 

absence of this correction leads to overestimation of FRET efficiency, and it has increasing 

effect towards low FRET efficiencies (Figure 9A). Direct excitation correction parameter is 

determined from acceptor-only sub-population, by performing robust regression between the 

corresponding background-corrected photon counts: 

 

 𝑁 | 𝑆 | 𝑇 𝛿 𝑁 | 𝑆 | 𝑇  (6.3.2)

 

In the protocol, provided are instructions for selecting acceptor-only sub-population, and 

recommendations for cross-validation of obtained δ value. 

(iii) detection efficiency 𝜸, which represents correction of donor signal after donor laser time-

on (eq. 2.23 and eq. 2.24) for distinct fluorescence quantum yields of donor and acceptor, as 

well for different detection sensitivities of green and red detection channels for donor and 

acceptor fluorophore. 

(iv) correction parameter β, which is applied to acceptor signal upon acceptor laser time-on 

(eq. 2.25 and eq. 2.26), and which compensates for different excitation rates of donor and 

acceptor with their corresponding excitation light.   

In the three methods proposed, γ and β correction parameters are determined jointly, using 

double-labelled donor-acceptor (DA) sub-population. Therefore, the first step is to ensure 

robust selection of DA species. For that I proposed selection method based on ALEX-2CDE 

filter21, that in the least invasive way removes single-labelled species (DO, AO), as well the 

species with unstable emission of the fluorophores. Three methods are proposed, namely: 

(M- 1) non-linear regression of burst-wise values of 𝑆  versus 𝐸 ; (M-2) linear 

regression between 1 〈 𝑆 〉⁄  and 〈 𝐸 〉 of the population means; (M-3) linear regression 

on photon counts.   
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Figure 14 | Workflow diagram for MFD-PIE confocal setup alignment and setup and sample 
calibration. Steps with dotted frame are typically not needed in day-to-day 
alignement/calibration. 

 

 In method M-1, one performs non-linear regression of burst wise values of 𝑆  versus 

𝐸 , which are background, α and δ corrected. Such procedure requires either multiple DA 
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species with different FRET efficiencies, or a single sample that displays sufficient broadening 

of FRET efficiency distribution. The underlying equation for this approach is: 

 

 𝑆 1 𝛾𝛽 1 𝛾 𝛽 𝐸  (6.3.3)

 

This method is based on the homogeneous approximation, i.e. it requires uniform fluorophore 

properties across all samples used in regression.  

In method M-2 one performs linear regression between 1 〈 𝑆 〉⁄  and 〈 𝐸 〉, where 

〈 𝑆 〉 and 〈 𝐸 〉 are the means of the 𝑆  and 𝐸  histograms of selected DA 

population.151 γ and β are then obtained from the intercept and slope of the linear regression: 

 

 1 〈 𝑆 〉 1 𝛾𝛽 1 𝛾 𝛽〈 𝐸 〉⁄ (6.3.4)

 

This method requires minimum two DA populations for the regression, with uniform 

fluorophore properties. In the article by  Agam, G., Gebhardt, C., Popara M., et al129 

(Supplement A), we evaluated how much is the uncertainty of γ parameter affected by the FRET 

efficiency contrast between the populations used in γ determination (Figure 15).  In the simplest 

case of two samples, propagated uncertainty Δγ, based on the errors in the population mean 

estimates  〈 𝑆 , 〉 and 〈 𝐸 , 〉, is given by: 

 

 
∆𝛾

𝜕𝛾
𝜕〈 𝑆 , 〉

,

∆〈 𝑆 , 〉
𝜕𝛾

𝜕〈 𝐸 , 〉
∆〈 𝐸 , 〉 (6.3.5)

 

where the partial derivatives are calculated according to the chain rule: 
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𝜕𝑢

𝜕𝛾
𝜕𝛺

∙
𝜕𝛺
𝜕𝑢

 (6.3.6)

 

with 𝑢 ∈ 〈 𝑆 , 〉, 〈 𝐸 , 〉, 〈 𝑆 , 〉, 〈 𝐸 , 〉 , and Ω and Σ being the intercept and 

slope of the regression.  

We found that all partial derivatives  and  are an inverse function of apparent FRET 

efficiency difference:  



71 
 

𝜕𝛾
𝜕Σ

𝛾
β

;
𝜕𝛾
𝜕Ω

1 𝛾
β

;
 

𝜕Σ
𝜕〈 𝑆 , 〉

1
〈 𝐸 , 〉 〈 𝐸 , 〉

∙
1

〈 𝑆 , 〉
;  

𝜕Σ
𝜕〈 𝑆 , 〉

1
〈 𝐸 , 〉 〈 𝐸 , 〉

∙
1

〈 𝑆 , 〉
;

   
𝜕Σ

𝜕〈 𝐸 , 〉
Σ

〈 𝐸 , 〉 〈 𝐸 , 〉
;  

𝜕Σ
𝜕〈 𝐸 , 〉

Σ
〈 𝐸 , 〉 〈 𝐸 , 〉

;
   

𝜕Ω
𝜕〈 𝑆 , 〉

〈 𝐸 , 〉

〈 𝐸 , 〉 〈 𝐸 , 〉
∙

1
〈 𝑆 , 〉

;  
𝜕Ω

𝜕〈 𝑆 , 〉

〈 𝐸 , 〉

〈 𝐸 , 〉 〈 𝐸 , 〉
∙

1
〈 𝑆 , 〉

;
   

𝜕Ω
𝜕〈 𝐸 , 〉

〈 𝐸 , 〉

〈 𝐸 , 〉 〈 𝐸 , 〉
Σ;

𝜕Ω
𝜕〈 𝐸 , 〉

〈 𝐸 , 〉

〈 𝐸 , 〉 〈 𝐸 , 〉
Σ.

 (6.3.7)

 

 

Figure 15 | The propagated error of the 𝜸-factor based on the uncertainty of the population 
mean estimate in the apparent FRET efficiency histogram. For the calculations shown here, 
the uncertainties of the population mean estimates in the 〈 𝐸 〉 vs. 〈 𝑆 〉 plot are given 

by 𝛥〈 𝐸 〉 𝛥〈 𝑆 〉  0.05/√1000. The position of the two populations is chosen to be 
symmetric with respect to 〈 𝐸 〉  0.5, i.e., 〈 𝐸 , 〉 0.5 𝛥〈 𝐸 , 〉 𝛥〈 𝐸 , 〉 /
2. (a-c) The absolute uncertainty 𝛥𝛾 is evaluated as a function of the difference of the apparent 
FRET efficiencies of the two populations, 〈 𝐸 , 〉 〈 𝐸 , 〉, at the indicated values of the 
𝛾 factor (see color bar) and 𝛽 values of 1 (a), 0.5 (b), and 2 (c). (d-f) The relative uncertainty 
𝛥𝛾/𝛾 is evaluated as a function of the absolute values of 𝛾 and 𝛽, and is plotted for difference 
between the apparent FRET efficiencies of 0.1 (g), 0.25 (h), and 0.5 (i). Figure and figure 
caption are adapted from Agam, G., Gebhardt, C., Popara M., et al129 (Supplement A).  

 

We observed that the total absolute uncertainty of detection efficiency, Δγ, is indeed the highest 

for the small FRET efficiency contrast between the DA populations used in regression, and it 

drops as the contrast increases. However, we also found that the absolute uncertainty in γ 
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parameter depends on the absolute values of both γ and β parameters (Figure 15a-c). To further 

explore this dependence, we computed the relative error Δγ/γ for a range of γ and β values, at 

the fixed differences 〈 𝐸 , 〉 〈 𝐸 , 〉 of 0.1, 0.25 and 0.5 (Figure 15d-f). We found that 

relative uncertainty of γ is the lowest for intermediate values of γ and β around the value of 1. 

Interestingly, Δγ/γ remains constant in large range of γ and β values, from ~0.1 to ~3, where 

most experiments are performed. In such range of γ and β values, neither does the FRET 

efficiency contrast plays notable role.  Only at extreme values of γ and β, do they have large 

effect on γ uncertainty. These findings were experimentally confirmed in a previous study. 152 

 

As opposed to M-1 and M-2 methods, which rely on ratiometric quantities 𝐸  and 𝑆 , 

method M-3 takes advantage of photon counts directly. This approach is based on the following 

relation: 

 𝑁 | 𝛾𝛽𝑁 | 𝛽𝑁 |  (6.3.8)

 

which is derived under the assumption of D:A=1:1 labelling stoichiometry.153 Essentially, in 

this approach one performs a plane fit in 3D space, which is defined by the coordinates 

[𝑁 | , 𝑁 | , 𝑁 | ]. While on one hand the pitfall of this approach is that it requires labelling 

stoichiometry of a FRET construct to be known and equal to 0.5, on the other hand this approach 

has advantage of not being sensitive to the asymmetry or presence of shoulders in the histogram, 

as is the case for methods M-1 and M-2.     

For the benchmark of designed protocol for determination of correction parameters, we used a 

set of double-stranded DNA molecules, with high-, medium- and low-FRET efficiencies, 

covering distances of ~ 50-70 Å. Considering dsDNA molecule to be static and provided 

photophysical stability of the tethered fluorophores and absence of dye-protein sticking 

interactions, no displacement of the DA population from the static FRET-line should be 

observed, when all levels of correction are applied. Therefore, one way to assess the accuracy 

of determined correction parameters is by quantifying the displacement of DA sub-populations 

from the static FRET-line. As an additional way of evaluating parameter accuracy, we 

quantified the agreement between experimentally derived FRET efficiencies and values 

predicted using structural model of double-stranded DNA and AV forward model. No notable 

displacement from the static FRET-line was observed, and moreover, we found agreement 

between experimental and predicted FRET-averaged inter-dye distances, with RMSD across all 

dye-pairs and samples on the order of ~3 Å, which is close to the accuracy previously reported 
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for dsDNA.29 Furthermore, these two evaluation procedures did not reveal discrepancies 

between different methods of γ and β determination. However, a blind test, involving seven 

laboratory members, revealed superiority of methods M-1 and M-3, compared to method M-2 

where we observed larger discrepancy between user-reported γ and β values. This can be 

explained with the fact that method M-2 in the first step requires determination of population 

means in 〈 𝐸 〉 - 〈 𝑆 〉 histogram. Inconsistencies in fit model and assignment of the main 

population are underlying cause of the observed discrepancies between the user reported values. 

 

Conclusions and significance 

In a recent FRET community paper129 (see Supplement A), it was identified that the error in 

determination of correction parameters is the main cause of the discrepancies between FRET 

efficiencies determined by different laboratories. This suggested the necessity for optimized 

protocol for the determination of correction parameters, that will minimize the extent of user 

bias, and further push the limits of FRET measurements in terms of precision and accuracy. 

Driven by these insights, this project was initiated, and building upon existing practices in the 

field, we designed minimally user-biased protocol. The main outcomes of this study are: 

 As a first step towards accurate FRET measurements, we provided elaborate 

instructions on how to align and optimize confocal setup for MFD-PIE diffusion-based 

FRET experiments.  

 Coming to sample-related correction parameters, for each of the steps we defined 

unambiguous steps on how to select a sub-population (DO, AO and DA), necessary for 

determination of the respective correction parameter. 

 Presented are theoretical foundations underlying determination of corrections 

parameters, followed by discussions on their application versatility and performance. 

 All correction parameters can be obtained from the measurement of the sample of 

interest. No separate measurements, which could introduce the error, are needed. 

 Robustness of proposed protocol is evaluated in a blind study comprising seven lab 

members. 

 Accuracy of fitted correction parameters is confirmed through two independent 

evaluation procedures. 

 If nature of the samples allows, users should apply multiple methods for determination 

of γ and β parameters and check for their consistency, rather than exclusively using 

single approach.   
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Chapter 7 
 

Summary and Perspectives 

In this thesis, I showed the potential of smFRET measurements for dissecting the inner 

workings of proteins, from unraveling the structural features down to Ångström resolution, to 

resolving structural dynamics across multiple time-scales, with unparalleled time resolution. 

The challenge of observing conformational dynamics lies in a fact that dynamics occurs in 

unsynchronized manner in a molecular ensemble. However, in FRET experiment we are able 

to observe single-molecules at a time, circumventing the need for synchronization of the entire 

ensemble. Moreover, such ultimate level of sensitivity in smFRET experiment, where the 

ensemble averaging is circumvented, and temporal averaging occurs on the timescale of 

fluorescence lifetime (few ns), is achieved through relatively simple optical design, centered 

around a confocal microscope.  

Although the studies demonstrating potentials of FRET are numerous, assessment of robustness 

of FRET measurements was done only for simple toy systems, such as double-stranded DNA 

molecules, dsDNA, that essentially behave as rigid rods.29 Therefore, as one of the first aims of 

this thesis, overall performance of FRET measurements was critically assessed in a truly blind 

study on substantially more complex systems.  

Using two protein systems, i.e. maltose-binding protein, MalE, and large subunit of U2 

auxiliary factor, U2AF2, we verified that FRET measurements are reproducible and accurate 

across instrumentations, analysis tools and dynamic protein systems of different structural 

complexity and with varying dye environments. We found that all laboratories were able to 

observe expected conformational change upon ligand binding, with standard deviation across 

reported mean FRET efficiencies up to 0.06, which in terms of inter-dye distances corresponds 

to precision of ≤ 2 Å and accuracy ≤ 5Å. Deviations between the laboratories could be fully 

explained by the error and user bias in determination of correction parameters, and in particular 

by the error in detection efficiency parameter. Driven with these findings, in a follow-up project 

I established a robust protocol on how to determine accurate values of correction parameters, 

with minimum number of steps required and least amount of user bias (Supplement C). 

Furthermore, we went beyond evaluating precision and accuracy of FRET measurements. In a 

rigorous approach we showed how the presence of position-specific dye-protein sticking 

interactions can lead to false-positive identification of conformational dynamics, highlighting 

the importance of dye controls. Through elaborate analysis of fluorescence anisotropy, we were 
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able to establish a robust threshold for exclusion of measurements with dye artifacts. Using this 

exclusion rule, we were left with artifact-free measurements, for which we were ultimately able 

to detect small-scale structural fluctuations on the order of 5 Å for MalE, a current lower limit 

for detection of structural fluctuations. Lastly, on the example of U2AF2, we showed how 

conformational dynamics can be studied through the combination of multiple tools, such as 

PDA and filtered FCS.        

 

The second main research area of this thesis was aimed at facilitating translation of distance 

information encoded in fluorescence decays into accurate structural models (Supplement B). 

We created a set of guidelines on how to harvest the information content from FRET 

measurements and combine it with MD simulations, in order to achieve detailed and robust 

ensembles of biomolecular structures. Our workflow is centered around the principle of 

maximum entropy, a method of ensemble reweighting that is the most suitable approach for 

systems with large number of states. As a target system we used lipase-specific foldase from 

Pseudomonas aeruginosa species in its apo state.   

In the synthetic benchmark, we investigated how to properly balance prior information and 

experimental data, as well how to compare and rank different priors. Furthermore, we addressed 

the robustness of three different types of model representations for ensembles: atomistic 

models, inter-residue distance histograms (distograms) and 3D density maps. We found that 

even for the complete prior, at atomistic resolution MEM yields ambiguous solutions heavily 

dependent on the prior. However, the fact that individual structures with atomistic resolution 

could not be achieved, should not be taken as shortcoming, but as inherent characteristic of a 

method when using averaged experimental data. To this also contributes if the experimental 

method reports on long-range features, such as tertiary, super-tertiary and quaternary structure, 

and not directly on absolute atomic positions. To achieve posterior distribution with distogram 

level of resolution, good coverage of the conformational space should be assured, meaning that 

prior ensemble has to be part of the true ensemble underlying experimental data. Even in that 

case, means of distograms are better recovered than the width of distograms. In the case of 3D 

density maps, we found that MEM robustly recovers such ensemble representation, for both 

complete and incomplete priors. Lastly, using experimental fluorescence decays of limited set 

of FRET pairs (6), we could obtain consistent 3D density maps for 3 out of the 5 priors. 

However, two best fitting solutions are different, and at present, without additional information 

available, we cannot judge which, or if the combination of both solutions describes apo PaLif. 
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Overall, our results indicate that maximum entropy principle is a promising route for ensemble 

reweighting. However, for systems with large number of degrees of freedom, good coverage of 

conformational space in the prior, and as large as possible amount of experimental data points, 

are a prerequisite in order to achieve robust posterior reconstructions with high level of 

structural detail. Furthermore, due to the absence of posterior uncertainty estimates, varying 

priors is crucial in order to get an insight in how robust posterior reconstructions are.  

We believe that these results represent major step forward for integrative modelling of 

biomolecular ensembles, and that we opened an important discussion on how the ensembles 

should be visualized, compared and disseminated. We posed an important question if atomistic 

models are indeed necessary or even useful when ensembles are large. Contrary to that, results 

of this thesis put a positive light on volumetric representations, as these can be robustly obtained 

irrespective of the completeness of the prior information. Moreover, even though volumetric 

representations are of lower resolution, they still have high information content, and have a 

proven track record of successful applications in pharmaceutical industry. 

In the future it would be interesting to see how MEM performs when additional experimental 

methods, informing on orthogonal features, are included, either as a restraint or as a post-hoc 

validation. It would be also of interest to see how much the local-model accuracy would 

improve if fluorescence anisotropy measurements, which sense local environment and internal 

motions154, are included.  

To conclude, results of this thesis, which comprised different methodologies from the field of 

computer science and fluorescence spectroscopy, demonstrated that FRET measurements are 

an outstanding tool of structural biology, but they also revealed areas where FRET 

measurements are still imperfect, and challenges yet to be overcome.    
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Abstract 

Single-molecule FRET experiments are a prime example of ever-growing scientific 

method, whose impact can be credited to the ability to provide site-specific structural 

information, with minimal spatial and temporal averaging, and temporal resolution spanning 

across twelve decades in time (sub-ns to thousands of s). Despite wide-spread use of smFRET 

and new measurement modalities arising, few long-standing challenges of this scientific 

method are yet to be overcome. In a typical single-molecule FRET experiment, donor and 

acceptor raw signal are distorted due to spectral overlap, and using a set of correction 

parameters they can be converted into accurate quantities, such as FRET efficiency and 

stoichiometry. After the background subtraction, further four levels of correction to raw data 

are needed, namely α, β, γ and δ, which are known as correction parameters. Major advancement 

in determination of correction parameters happened with introduction of Pulsed Interleaved 

Excitation (PIE) scheme, but ever since, several correction procedures were proposed, with no 

consensus in the community on the optimal approach. Moreover, neither of the approaches 

gives clear guidelines on the selection of subpopulations necessary for determination of each 

of four correction parameters. And while it has been recognized that the user bias in correction 

procedures is significant, so far there were no attempts to alleviate this issue. Driven with this 

challenge, and building upon the previous contributions in the community, we designed 

protocol for data correction, with the smallest number of selection steps to minimize the extent 

of user bias. For each of the correction steps provided are unambiguous instructions for 
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population selection and filtering, and proposed are complementary measurements for 

parameter cross-validation, although all necessary information can be obtained from the 

measurement of the sample. Robustness of proposed protocol is assessed in a blind challenge. 

Furthermore, we complemented data correction workflow with guidelines for setup alignment 

and calibration. 

 

1. Introduction 

Vast number of experimental methods with different spatial and temporal resolution are 

being employed to inform on structure and dynamics of biomacromolecules and their 

complexes. Method of Förster Resonance Energy Transfer (FRET) stands out, as it can inform 

on both the small- and large-scale conformational motions, conformational states and 

corresponding kinetical schemes1-3. Alone or in integrative approach with data from other 

sources, it was demonstrated that FRET measurements are able to tackle all levels of 

biomolecular complexity, from folded proteins4, over multi-domain proteins5 to IDPs6, 7. Main 

observable in FRET experiment is energy transfer from donor to acceptor fluorophore, i.e. 

FRET efficiency E, which informs about their spatial separation. There are different 

experimental approaches to determine FRET efficiency, such as: (a) by measuring the fraction 

of FRET sensitized acceptor fluorescence out of the total fluorescence of both donor and 

acceptor (classical ratio method) (b) by measuring enhanced acceptor fluorescence, as the ratio 

of FRET sensitized acceptor fluorescence and acceptor fluorescence due to direct acceptor 

excitation ((ratio)A method) (c) by measuring decrease in fluorescence quantum yield of donor, 

i.e. via the ratio of donor fluorescence quantum yield in the presence and absence of the acceptor 

((ratio)D method) (d) via decrease of donor fluorescence lifetime in the presence of acceptor (e) 

via anisotropy change of donor and acceptor. Clegg8 wrote a comprehensive overview on how 

each of the methods should be handled, and in which scenarios, considering their strengths and 

weaknesses. Out of the approaches listed here, classical ratio method is most commonly 

employed. In this work, we focus on a confocal measurement modality where freely diffusing 

molecules in solution are studied, and at single-molecule concentration (smFRET). Major 

advancement in smFRET studies has been made with introduction of Pulsed Interleaved 

Excitation (PIE), where donor and acceptor excitation light are being interleaved on a 

nanosecond timescale.  By exciting donor and acceptor fluorophore at different points in time, 

it is possible to separate donor and acceptor emitted photons, despite the difficulty of their 

spectral overlap. For details on how a PIE microscope works, reader is referred to pioneering 
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work of Müller et al9 and a review by Hendrix et al.10 Step forward was made when PIE was 

combined with Multiparameter Fluorescence Detection (MFD).11 MFD measurement modality 

allows simultaneous detection of several fluorescence parameters, which in turn minimizes data 

interpretation ambiguity. Moreover, due to both temporal and spectral separation of detected 

photons PIE-MFD measurement modality allows for double-labelled donor-acceptor species 

(DA) to be separated from single-labelled donor-only (D-only, D0) and acceptor-only species 

(A-only, A0), and furthermore using those sub-populations it is possible to determine four 

levels of correction to measured fluorescence signals: (i) 𝜶 − correction of FRET sensitized 

acceptor signal for donor crosstalk (leakage) into acceptor emission channel (ii) 𝜹 − correction 

of FRET sensitized acceptor signal for direct acceptor excitation with donor excitation laser 

(iii) 𝜸 − correction of donor signal upon donor excitation for distinct fluorescence quantum 

yields of donor and acceptor, as well for different detection efficiencies of green or red detection 

path for donor or acceptor fluorophore (iv) 𝜷 − correction of acceptor signal upon acceptor 

excitation for different excitation rate of acceptor and donor with their corresponding excitation 

light. These four correction parameters, in addition to background correction, allow to convert 

semiquantitative observables, i.e. apparent FRET efficiency and apparent stoichiometry, into 

their fully-corrected (accurate) equivalents, making it possible for FRET to deliver structural 

information with interdye distances accuracy of ≤ 5 Å.12, 13  

Recent international blind study, where 19 laboratories were asked to report accurate FRET 

efficiencies on two proteins undergoing conformational change, has thought us a lot about the 

objective performance of FRET experiments.13 While on one hand this study was encouraging 

in terms of observed precision, accuracy and sensitivity of FRET experiments, it also revealed 

limitations, yet to be overcome. The study showed that the spread of reported accurate FRET 

efficiencies was mainly caused by the error in data calibration, where predominant error 

contributor was found to be detection efficiency correction parameter, γ. These findings 

indicated that the routines for data correction needed further improvement, and they triggered 

a vivid debate in the community on proper procedures for data correction. However, despite 

these observations, up to date there is no consensus in the community on the optimal correction 

procedure. A generalized protocol is lacking and in-house procedures for estimation of 

correction parameters and filtering of data are often not enclosed in the publications. Apart from 

affecting the accuracy of smFRET measurements, error in data correction is limiting even 

further our possibilities. With emerging use of graphical tools, such as FRET-lines14, 15, one 

could go beyond resolving accurate FRET efficiencies, and obtain more information on the 

dynamic systems, such as to identify limiting states and their connectivity map. However, for 
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reliable interpretation of a system using graphical tools, it is of crucial importance to properly 

determine correction parameters. 

Historically, there are two most commonly referred correction procedures, but of rather 

limited application, considering how detection efficiency parameter, γ, is determined. In one 

case, γ is obtained from the linear regression of 1 〈 𝑆 〉⁄  versus 〈 𝐸 〉, where 〈 𝑆 〉 and 

〈 𝐸 〉 represent population means of double-labelled sub-populations.16, 17 Clearly, the 

disadvantage is the necessity to have either multiple samples in calibration (i.e. minimum two), 

or that a single sample shows distance-related E broadening. Second, this approach requires 

uniform acceptor properties for all samples (“homogeneous approximation”), i.e. this method 

represents global γ correction. Second historical reference for the smFRET data calibration is 

given in Kudriavtstev et al.11 Two approaches are proposed there, with the first one requiring 

minimum two samples to be used in the calibration, and where γ is tuned till the donor-acceptor 

sub-populations get the same stoichiometry distribution, since stoichiometry should be 

independent of the FRET efficiency. In the second approach, calibration can be done on just 

one sample, however, γ is tuned till the donor-acceptor sub-population(s) fall on the static 𝐸

𝜏 FRET-line. This method requires that the nature of the system is known, i.e. system must be 

static, which limits the application versatility of the method. Additionally, requirement is the 

use of static FRET-line. Defining accurate static FRET-line as a reference for calibration is far 

from trivial if donor has multi-exponential lifetime decay. Good example is widely used Atto 

550 dye, which has three distinct lifetimes originating from different isomeric states. 

Furthermore, typically used standard deviation of ~6 Å 18, 19 for linker-induced broadening of 

inter-dye distance distributions is determined in benchmark studies involving rigid DNA 

molecules, and hence may not be accurate for more complex environments such as those in 

proteins. To avoid the use of static FRET-line, possible workaround here is to decompose the 

detection ratio, γ, on two factors, with one being the ratio of donor and acceptor effective 

quantum yields Φ , Φ ,⁄ , and the second factor being the ratio of instrument detection 

efficiency for acceptor and donor fluorophore, 𝑔 | 𝑔 |⁄ .  This way nature of the system does 

not have to be known in advance. However, pitfall is that both terms require additional 

measurements (spectra of dyes and optical components) and reference values (quantum yields), 

which can result in significant error. Furthermore, neither of the aforementioned approaches 

give clear guidelines on selecting donor-only (D-only, D0), acceptor-only (A-only, A0) and 

donor-acceptor (DA) sub-populations, which is the first step in determination of correction 

parameters. 
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Driven with all aforementioned challenges and debates in the community, in this work we 

evaluated performance of multiple methods for determination of correction parameters, and 

building upon the previous contributions in the community we designed a minimally user-

biased protocol (Figure 1). Our protocol comprises instructions on how to select sub-

populations necessary for determination of correction parameters (e.g. D-only, A-only and 

double-labelled donor-acceptor population, DA) as well the instructions for their determination. 

We further propose complementary measurements for cross-validation of obtained correction 

parameters, although all necessary information can be obtained from the measurement of the 

sample. Furthermore, we complemented data correction workflow with guidelines for setup 

alignment and calibration. Robustness of protocol for determination of correction parameters is 

tested in a blind challenge, and furthermore, their accuracy is assessed through the agreement 

between derived and modelled inter-dye distances and by quantifying the displacement of DA 

sub-populations from the static 𝐸 𝜏 FRET-line. Careful implementation of the here proposed 

workflow should enhance the accuracy of FRET measurements and allow use of graphical tools 

for the analysis of complex biomolecular systems.   
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Figure 1. Workflow diagram for MFD-PIE confocal setup alignment and setup/sample calibration. Steps 
with dotted frame are typically not needed in day-to-day alignment/calibration. 
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2. Theory 

 

Nomenclature, definitions and E, S-correction procedure. In a dual-color PIE excitation 

scheme, there are four micro-time data channels, that are defined by the excitation laser X (Y|X) 

and detector Y where the photons are being registered (Y|X). Each of two detectors (green and 

red) has two micro-time windows, defined with excitation light. Green micro-time detection 

windows are: G|G and G|R. Similarly, red micro-time detection windows are: R|G and R|R. 

When PIE is combined with MFD, additional polarization separation of photons is being 

performed in each of the four micro-time windows, resulting in total of eight independent 

detection channels. Fluorescence intensity in green detection channel after red excitation can 

be ignored, i.e. 𝐼 | 0 , since the red laser normally does not excite the donor fluorophore. 

Fluorescence intensities detected in other three micro-time channels, namely: donor 

fluorescence intensity after green laser time-on, 𝐼 | , fluorescence intensity of acceptor upon 

green laser time-on, 𝐼 | , and fluorescence intensity of acceptor upon red laser excitation, 𝐼 | , 

constitute main parameters for determination of apparent FRET efficiency and stoichiometry: 

 

 
𝐸

𝐼 |

𝐼 | 𝐼 |
  

 

(1)

 
𝑆

𝐼 | 𝐼 |

𝐼 | 𝐼 | 𝐼 |
  (2) 

 

As the first step toward accurate FRET efficiency, background intensities 𝐼 | , that originate 

from scattered light, detector dark counts and sample impurities, are subtracted from raw 

fluorescence intensities in each of the micro-time detection channels: 

 

 𝐼 | 𝐼 | 𝐼 |  (3) 

 

and background-corrected FRET observables 𝐸  and 𝑆  are calculated. 

Background corrected fluorescence intensity of acceptor upon green laser time-on, 𝐼 | , also 

known as FRET sensitized acceptor emission, is in the next step corrected for donor crosstalk 

(leakage) into acceptor emission channel after green laser time-on, given as correction 

parameter α, and for direct acceptor excitation with donor excitation laser, given as correction 

parameter δ: 
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 𝐹 | 𝐼 | 𝛼 𝐼 | 𝛿 𝐼 |  (4) 

 

Stoichiometry and FRET efficiency values can now be updated, using 𝐹 | , 𝐼 |  and 𝐼 | : 

  

𝐸
𝐹 |

𝐹 | 𝐼 |
  

 

(5)

 
𝑆

𝐹 | 𝐼 |

𝐹 | 𝐼 | 𝐼 |
 (6)

 

Donor crosstalk is defined as the ratio of detection efficiency of red detection path for a donor 

dye, 𝑔 | , and detection efficiency of greed detection path for donor dye, 𝑔 | : 

 

 𝛼
𝑔 |

𝑔 |
 (7) 

 

while direct acceptor excitation with donor excitation laser is defined via acceptor excitation 

cross-sections for green and red-light source, 𝜎 |  and 𝜎 | , and corresponding excitation light 

irradiances, 𝐿  and 𝐿 : 

 
𝛿

𝜎 | 𝐿
𝜎 | 𝐿

 (8) 

 

Furthermore, to account for different detection sensitivity of green detection channels for donor 

dye, 𝑔 | , and red detection channels for acceptor dye, 𝑔 | , and for different fluorescence 

quantum yields of donor, Φ , , and acceptor, Φ , , donor fluorescence intensity after donor 

laser time-on is multiplied with γ correction factor: 

 

 
𝛾

Φ ,

Φ ,
⋅

𝑔 |

𝑔 |
 (9) 

 𝐹 | 𝛾 𝐼 |  (10) 

 

Lastly, to account for different excitation rates of donor and acceptor with their corresponding 

excitation light source, fluorescence intensity of acceptor fluorescence upon red excitation is 

divided with β correction parameter: 

 
𝛽

𝜎 | 𝐿

𝜎 | 𝐿
 (11) 



293 
 

 
𝐹 |

1
𝛽

𝐼 |  (12) 

 

with 𝜎 |  being the acceptor excitation cross-section for the red light, and 𝜎 |  donor excitation 

cross-section for the green light. 

Finally, using fully corrected fluorescence intensities, as defined in eqs. (4), (10) and (12), 

accurate FRET efficiency and stoichiometry can be obtained: 

 

 
𝐸

𝐹 |

𝐹 | 𝐹 |
 

 

(13) 

 
𝑆

𝐹 | 𝐹 |

𝐹 | 𝐹 | 𝐹 |
 (14) 

 

Detailed overview over symbols used in this work, as well their definitions are comprised in 

Table 1. 
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Table 1. Used symbols and their definitions. 

Variable description eqs 
 

Abbreviations   

    a) detection channel names  

G|G intensity in green (donor) channel upon green 
(donor) excitation

 

R|G intensity in red (acceptor) channel upon green 
(donor) excitation

 

R|R intensity in red (acceptor) channel upon red 
(acceptor) excitation

 

    b) species names 

A-only or A0 acceptor-only species
D-only or D0 donor-only species
DA double-labelled donor-acceptor species 

    c) other indices used  

D or A donor or acceptor
BG background
𝑖 uncorrected (raw) quantity 
𝑖𝑖 background corrected quantity 

𝑖𝑖𝑖 background, crosstalk and direct excitation 
corrected quantity

 

PIE-MFD quantities  

    a) correction parameters 

 

𝛼
𝑔 |

𝑔 |
 

 

leakage (crosstalk) of donor fluorescence into the 
acceptor detection channel 

4, 7, 29, 
30, 31 

 

𝛿
𝜎 |  𝐿   
𝜎 |  𝐿

 

 

direct acceptor excitation by the donor excitation 
laser 

4, 8, 32, 
33, 34 

 

𝛾
Φ ,

Φ ,
⋅

𝑔 |

𝑔 |
 

 

correction for distinct fluorescence quantum 
yields of donor and acceptor, and different 
detection efficiencies of green and red detection 
channels for donor and acceptor fluorophore 

9, 10,  
35, 38, 
41  

 

𝛽
𝜎 |  𝐿   

𝜎 |  𝐿
 

 

correction for different excitation rates of 
acceptor and donor with their corresponding 
excitation light 
 

11, 12, 
35, 37, 
41 

    b) Photon counts, signal count-rates and fluorescence intensities  

𝑆 |  
uncorrected (raw) count rate in detection channel 
Y after X excitation (X and Y can be G or R) 
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𝑆 |  background count rate   

𝑁 |  uncorrected (raw) photon counts   

NY|X	 background corrected photon counts   

𝑁 |  
background, crosstalk, α, and direct excitation, δ, 
corrected photon counts 

 

𝐼 |  uncorrected (raw) fluorescence intensity   

𝐼 | 𝐼 | 𝐼 |  background corrected fluorescence intensity 3 

𝐹 | 𝐼 | 𝛼 𝐼 | 𝛿 𝐼 |   
background, crosstalk and direct excitation 
corrected FRET-sensitized acceptor fluorescence 
intensity

4 

𝐹 | 𝛾 𝐼 |  detection efficiency corrected fluorescence 
intensity of donor upon donor laser time-on 

10 

𝐹 |
1
𝛽

𝐼 |  
fluorescence intensity of acceptor upon acceptor 
laser time-on, corrected for different excitation 
rates of D and A

12 

    c) Burst-wise quantities  

T burst duration  

𝐸
 𝐼 | 

 𝐼 | 𝐼 | 
  

 

𝑆
 𝐼 | 𝐼 | 

 𝐼 |  𝐼 | 𝐼 |  
  

 

 
fully uncorrected apparent FRET efficiency and 
stoichiometry, calculated from raw photon counts 
 

1, 2 

𝐸
 𝐼 | 

 𝐼 |  𝐼 | 
  

 

𝑆
 𝐼 | 𝐼 | 

 𝐼 |  𝐼 | 𝐼 |  
  

 

background corrected apparent FRET efficiency 
and stoichiometry 

 

𝐸
 𝐹 |

 𝐹 | 𝐼 | 
  

 

𝑆
 𝐹 | 𝐼 | 

 𝐹 |  𝐼 | 𝐼 |  
  

 

 
background, crosstalk, α, and direct excitation, δ, 
corrected apparent FRET efficiency and 
stoichiometry 

 
 

5, 6 

𝐸  
𝐹 |

𝐹 | 𝐹 |
 

 

𝑆  
𝐹 | 𝐹 |

𝐹 | 𝐹 | 𝐹 |
 

 

fully corrected (accurate) FRET efficiency and 
stoichiometry, after correction for: background, 
donor crosstalk, α, acceptor direct excitation, δ, 
detection ratio, γ, and ratio of excitation flux, β 
 

13, 14 

    d) other variables used 
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𝐺 /  correction factor compensating for polarization 
dependent sensitivity of the detectors 

18, 20 

𝑙 , 𝑙  
correction factors for polarization mixing in 
high-NA microscope objectives

 

𝜎 | , 𝜎 |  excitation cross-sections of acceptor for green 
and red light source

8 

𝜎 |  excitation cross-section of donor for green light 
source

11 

𝐿 , 𝐿  irradiance of green and red excitation light 8, 11 

Δ𝑡 inter-photon time  

𝛥𝑡  average inter-photon time  

𝑔 | , 𝑔 |  
detection efficiency of a green (G) or red (R) 
detection path for donor, D, or acceptor, A, 
fluorophore

9 

Φ , , Φ ,  fluorescence quantum yield of donor and acceptor 9 

ALEX-2CDE 
ALEX two-channel kernel-based density 
estimator function
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3. Protocol 

This protocol starts with steps for setup alignment and calibration (step 1-2), followed by the 

steps for determination of sample-related correction parameters (step 3). Diagram comprising 

all the recommended steps for setup alignment and calibration, as well for data correction is 

given in Figure 1Error! Reference source not found.. 

 

3.1. Confocal PIE-MFD setup optimization and calibration  

 

3.1.1. Step 1: Setup alignment  

 

Setup alignment instructions are tailored to the typical architecture of the PIE-MFD confocal 

workstation as previously described.12 For detailed description of optical design of our setup 

see Supplemental Note 1. 

 

Caution: Users should familiarize themselves beforehand with laser safety, to avoid injuries 

due to the exposure to open laser radiation during the setup alignment.  

 

Step 1.1: Setup thermalization. Prior to any setup alignment or measurements, one should 

allow for thermal stabilization of the setup. Ideally, the microscope is placed in a temperature-

controlled room. The entire setup should be thermally stabilized for at least 30 minutes up to 

two hours before usage, to avoid drift of the optical components during the experiment. 

Importantly, the laser source should be allowed to stabilize to avoid slow fluctuations of the 

incident laser power. 

Step 1.2: Laser power. As the next step, one should set the desired laser power. After the setup 

is optimized, laser power is finely tuned again prior to measurements. Commonly, the aim is to 

have as much signal as possible, however, one has to make a compromise such that dye 

photobleaching and photoblinking are avoided. However, if high laser powers are required, one 

could reduce dye photo-damage by using chemical photo-stabilizers, such as Trolox. In any 

case, high laser powers that produce count rates of more than 200 kHz should be avoided, as 

detector saturation occurs in this range for APD detectors due to detector dead times of typically 

~50-100 ns. After setting up the laser power, its stability should be assured. Occasionally, 

stability of the laser power should be done over extended periods of the time. In day-to-day 

work, multiple power checks during the day are commonly sufficient. 
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Step 1.3a: Laser beam alignment. To align the laser beam arising from a fiber, we recommend 

mounting a crosshair on the microscope, and adjust the laser output coupler in the lateral (x-y) 

plane using micrometer screws, until equal illumination of all four crosshair arms is observed 

in image on the ceiling. Any adjustment of the coupler position in the axial (z) direction requires 

re-alignment in lateral plane. Furthermore, any adjustment of the excitation path requires a 

careful realignment of the detection path. Generally, this step is not needed in day-to-day 

alignment if the laser output coupler is stably mounted.  

Step 1.3b: Size of confocal volume. The size of the observation volume can be controlled by 

tuning the diameter of the laser beam at the back aperture of the objective. Shape of this 

dependence has been given in the work of Enderlein et al. 20 By underfilling back aperture of 

the objective (i.e. radius of back aperture is larger than the radius of laser beam), observation 

volume increases. Then, observation volume, also called point spread function (PSF), can be 

approximated by three-dimensional Gaussian function.21, 22 Although for intensity-based 

approaches shape of PSF is of no importance, this plays a large role for formal description of 

molecular diffusion for a range of correlation spectroscopy methods, as it will be shown later. 

Furthermore, bigger observation volume means longer burst duration, which allows slow 

processes to be studied. However, for underfilled objective, size of observation volume is more 

sensitive to the changes in laser diameter, causing such experiments harder to be reproduced.20 

On the other hand, smaller observation volume generally provides higher count rates at equal 

laser power due to higher irradiances, yielding a higher signal to noise ratio (SNR) and allows 

to study fast processes.13 However, smaller observation volumes are also more non-Gaussian.21 

Therefore, choice of observation volume size has to be a trade-off between a high SNR and 

validity of a Gaussian function assumption. There are several ways to determine the size of 

confocal volume, and here we focus on approaches that rely on FCS. One way to determine the 

size of observation volume is via the fit of FCS curve of a free dye with known translational 

diffusion coefficient (e.g. Rhodamine 110, 𝐷  = 4.4∙10-6 cm2/s at T= 22.5 °C23). Given that 

dye diffusion is the only source of the fluorescence intensity fluctuation, and that the 

observation volume can be approximated by a three-dimensional Gaussian function, the 

following fit model can be applied to the data24 

 

𝐺 𝑡 1
1
𝑁

𝐺 𝑡 1
1
𝑁

∙

⎣
⎢
⎢
⎢
⎢
⎡

1

1
𝑡

𝑡

∙
1

1
𝑡

𝑧
𝜔 𝑡 ⎦

⎥
⎥
⎥
⎥
⎤

 (15)
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with the fit parameters being as follows: 𝑡 - correlation lag time, N - average number of 

molecules in the detection volume obtained as 1 𝐺⁄ 𝑡 → 0 , 𝑡  – translational diffusion 

time of a molecule, 𝑧  and 𝜔  - axial and lateral 1 𝑒⁄  radii of the detection volume. From the 

relationship between known translational diffusion coefficient, 𝐷 , and fitted translational 

diffusion time, 𝑡 , one can estimate the lateral radius 𝜔 4𝐷 𝑡 .   

Next, axial radius 𝑧  is obtained from the fitted ratio  and previously calculated value of 𝜔 . 

Finally, size of observation volume is obtained according to the:  

 𝑉 𝜋 / 𝑧 𝜔  
 

(16)

With the approach described above we found in our measurements size of observation volume 

to be ~6 fL, corresponding to lateral and axial radii of 𝜔 ~ 0.6 µm and 𝑧 ~ 3.7 µm, and diffusion 

time of Rhodamine 110 of 𝑡  ~ 0.170 ms.  

Another approach to estimate the size of detection volume is by measuring FCS curves for a 

concentration series of a free dye. By plotting the estimated number of molecules in detection 

volume, N, versus the sample concentration, c, size of observation volume can be determined 

from the slope of approximately linear dependence 𝑁 𝑉𝑁 𝑐. 

At lower sample concentrations, dependence deviates from a linear one, due to the prominent 

contribution of uncorrelated background signal, which lowers the correlation amplitude. 

Although this approach does not require any assumption to be made in regard to the shape of 

PSF, a wide range of sample concentrations has to be measured and tedious correction for 

background contribution at lower concentrations has to be performed.  

Step 1.4: Detection pinhole. Next, pinhole size should be selected. Optimal pinhole size should 

correspond to one Airy Unit (1 AU), which represents the diameter of the Airy disk. Airy disk 

is the inner circle of so called “Airy pattern”, which is obtained as a consequence of light 

diffraction at the objective aperture. Airy disk contains approximately 84% of diffracted light, 

and remaining light is distributed across concentric circles. The more the pinhole exceeds the 

diameter of Airy disk, more out-of-focus light is transmitted. Optimal size of pinhole, equal to 

1 AU, is a function of objective magnification, M, numerical aperture, NA, and wavelength of 

transmitted light: 

 
𝑑

1.22 ∙ 𝜆
𝑁𝐴

∙ 𝑀 (17)

 

However, due to aberrations and underfilling of the back aperture of the objective, diameter of 

Airy disk is usually underestimated.  
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Alternatively, one can vary pinhole size till the maximum dye brightness is obtained, or 

specifically maximum cpm (counts per molecule (per time). Dye brightness, or cpm, is simply 

determined by dividing the average count rate with the number of molecules in the detection 

volume. For this, one constructs FCS curve from a nM measurement of a known dye (e.g. 

Rhodamine 110). Besides obtaining maximum cpm, approximation of 3D-Gaussian shaped 

detection volume should be satisfied, as measured by the fit quality of FCS curve. For our setup 

with 60x/1.2 NA objective and dual edge dichroic beamsplitter FF500/646-Di01, we found 

rather a large pinhole of 100 µm to be suitable. Besides selecting pinhole size, its position 

should be optimized. Pinhole should be positioned at the focal plane of the tube lens. Using 

micrometer screws, optimization of its position in lateral (x-y) plane is commonly sufficient in 

day-to-day setup alignment.  

Step 1.5: Detectors alignment. For alignment of each of detectors one can measure nM water 

solution of dye emitting in a given detection channel. For instance, Rhodamine 110 for green 

channels, and Rhodamine 101 for red channels. APD positions are then optimized using 

micrometer screws, such that maximum cpm is obtained. 

Step 1.6: Objective correction collar. To correct for the thickness of the cover glass, most 

water-immersion objectives are equipped with a correction collar, that allows the adjustment of 

the central lens group position to coincide with the glass thickness. Objective correction collar 

position should correspond to the manufacturer information on the glass thickness. For instance, 

if one uses #1.5 cover glass, correction collar should be set to the position 0.17 mm. However, 

thickness of a cover glass usually varies few percent compared to the value reported by 

manufacturer. Enderlein et al20 have shown that deviation in cover-slide thickness mainly 

affects axial radius (i.e. elongation of focal volume) and that absolute deviation of 10 µm in 

glass thickness can cause an increase in focal volume by approximately a factor of 2. Therefore, 

to avoid deformation of focal volume due to variation in cover glass thickness, it is 

recommended to optimize the position of correction collar before the experiments such that the 

cpm is maximized.  
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3.1.2. Step 2:  Setup calibration 

 

Step 2.1: Instrument Response Function. Fluorescence intensity decay of a sample of interest 

is analyzed in convolution with Instrument Response Function (IRF), which represents 

response of the instrument to zero lifetime sample. MilliQ water normally satisfies the purity 

requirement for this purpose. Depending on the age of the filter, MilliQ water can be 

contaminated by fluorescent background (seen as an exponential tail in the TCSPC histogram), 

in which case pure water can also be purchased from suppliers. It is also possible to measure 

the IRF using fluorescent dyes with a short lifetime (< 50 ps), such as azo dye Allura Red AC 

(CAS: 25956-17-6) with fluorescence lifetime of ~10 ps, or by measuring any dye in a highly 

concentrated potassium-iodide solution which lowers the lifetime of dye by collisional 

quenching 25. This has the benefit that the IRF is measured using a dye with identical spectral 

signature as in the sample of interest. However, small but finite lifetimes of the reference sample 

can affect the extracted lifetimes, especially in the sub-nanosecond regime. 

Step 2.2: G-factor for polarization. For each of the detection channels one should determine 

G-factor for polarization, 𝐺 / , a parameter that quantifies polarization dependent sensitivity 

of the detectors, defined as the ratio of horizontally and vertically polarized light. For each of 

the channels, nM measurement of a dye emitting in given channel should be performed. For 

macro-times 𝑡  of at least five times the dye rotational correlation time ρ, any observed 

polarization must be due to 𝐺 /  ≠ 1. Thus, to obtain the 𝐺 / , polarization resolved 

fluorescence decays, 𝐹  and 𝐹 ,  are integrated over 𝑡 ≫ 𝜌 TCSPC channels26: 

 

 
𝐺 /

∑ 𝐹 𝑡≫

∑ 𝐹 𝑡≫

 (18)

 

Another approach to determine 𝐺 /  factor is to fit the uncorrected time-resolved anisotropy 

decay of a free dye, with a mono-exponential decay: 

 

 𝑟 𝑡 𝑟 𝑟 exp
𝑡
𝜌

𝑟  (19)

 

If  𝐹  and 𝐹  were to be the same, anisotropy would be zero. However, if the anisotropy 

decay appears with the offset, it is due to the polarization sensitivity of the detectors, and 𝐺 /  

factor can then be directly determined from the offset of anisotropy decay 11: 
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𝐺 /

1 𝑟
1 2𝑟

 (20)

 

Step 2.3: Correction for polarization mixing. Mixing of the polarization, of both incident and 

emitted light, happens due to the light refraction on the high NA objective lenses. To correct 

for this effect in the calculation of anisotropy, introduced are correction factors 𝑙  and 𝑙 . 27 For 

their determination used is a sample with slow rotational correlation time, and of simple and 

known characteristics. Good example is mutant of GFP protein, known as eYFP (enhanced 

Yellow Fluorescence Protein) with mono-exponential lifetime decay, with fluorescence 

lifetime of 𝜏 = 3.2 ns, fundamental anisotropy of 𝑟  = 0.39 and rotational correlation time of 

𝜌=16 ns 28. nM solution of eYFP in the TRIS buffer (pH=8.5) is prepared and polarization 

resolved signals are recorded of both the sample and buffer. In the next step one performs a 

global fit of parallel and perpendicular decays with fixed 𝜌 = 16 ns, and 𝑙  and 𝑙  being the fit 

parameters. In addition, if fluorescence lifetime is previously fitted from a magic angle decay, 

it can be as well fixed in a global fit, to reduce the number of free fit parameters. Normally, 𝑙  

and 𝑙  parameters are determined once for a given objective and size of observation volume, 

and not in day-to-day calibration.  

Step 2.4: Lifetime and anisotropy of a known dye. Perform a pM water solution measurement 

of a known dye with single exponential decay (e.g. Rhodamine 110). Use scatter-corrected 

steady-state anisotropy and fitted lifetime as final control of well performed setup optimization 

and calibration. 

Step 2.5: Regularized optimization of instrument detection efficiency profile, 𝒈 𝐆,𝐑 . 

Detection efficiency of a setup is determined by the shape functions 𝑔 𝜆  and 𝑔 𝜆 , which 

represent spectral response of green and red detection path. Shape function  𝑔 𝜆  and 𝑔 𝜆  

are a product of spectral response of each of the setup components: microscope objective, 

dichroic beamsplitter, longpass filter, bandpass filters and detectors (see Figure 2a). Spectral 

response of filters is usually known with more certainty, as these can be easily determined in 

the house using conventional absorption spectrometer. On the other hand, up-to-date spectral 

response of detectors is harder to obtain, and variation between modules or a change in their 

performance due to the detector ageing is often an issue. Furthermore, spectral response of some 

components, such as dichroic beamsplitter, is affected by setup misalignment, due to its angle-

dependency. 
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Therefore, as the final control of well-performing and aligned setup, we propose optimization 

approach that provides a 𝑔 ,  – profile using a series of dyes measured free in solution, 

emitting in both detection channels, G and R. From the optimized 𝑔 ,  profile, one can 

identify if and which detection channel under-performs and at which spectral part. Full 

mathematical formalism underlying optimization of 𝑔 ,  profile is given in Supplemental 

Note 3. In a nutshell, for each of the j dyes determined is the ratio of background-corrected 

measured intensities in green and red detection channels: 

 

 
𝜉

𝑓

𝑓
 (21)

 

where observed intensity 𝑓  of a given detection window Λ G, R  is the result of the 

product of instrument spectral response 𝑔 𝜆  and fluorescence emission spectrum of a dye, 

𝑝 𝜆 :  

 

 
𝑓 𝑓 , 𝑔 𝜆 𝑝 𝜆 𝑑𝜆 (22) 

 

with 𝑓 ,  being total radiative intensity of a dye. 

Ideally, ratios predicted using fluorescence emission spectra and 𝑔  profile, 𝜉 , , 

should be equal to measured ratios 𝜉 , . As both spectra and emission intensities are 

measured with some accuracy, we perform minimization of difference between predicted and 

measured ratios 𝜉 , by optimizing the instrument spectral response, 𝑔 . Arising ambiguity of 

the optimized solution can be circumvented by requiring certain properties of the solution, such 

that only positive values of 𝑔 , 𝜆  are allowed, and that no sharp changes are allowed, 

besides at its edges. Smoothness regularized optimization of  𝑔 , 𝜆  is formulated as 

 

 𝑚𝑖𝑛 𝑔 
, 𝜇 𝑆 , 𝑃 , 𝑃 , 𝑔 ,

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐼𝑔 , 0
(23)

 

where µ is regularization term, penalizing sharp changes of the solution other than at its edges. 

 𝑆 ,  is a “smoothness” block matrix that is based on the central-difference differentiation 

operator of first order and 𝑃 ,  is 1 2 block matrix 𝑃 ,  𝑃 ,  Ξ  𝑃  with j rows. 
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𝑃  contains in each of the j rows normalized dye fluorescence emission spectrum with sum 

in rows being equal to one, and Ξ is diagonal matrix with measured 𝜉 ,  ratios along the 

diagonal. 

In Supplemental Table S3 given is a set of 13 dyes, that are a good example of dyes 

emitting in both detection channels. Their corresponsind fluorescence emission spectra are 

given in Supplemental Figure S1. Dyes with very low ratios, i.e. 𝜉 , ∼ 0, are not 

recommended, as those will not contribute to the solution. In Figure 2 illustrated is the approach 

of regularized optimization of instrument detection profile 𝑔 , . We have found the approach 

to be more successful if input are not fluorescence emission spectra 𝑝 𝜆 , but rather 

fluorescence emission spectra multiplied with transmission spectra of all optical components 

(objective, dichroic beamsplitter, longpass filter, bandpass filters and detectors), i.e. 

𝑔 𝜆 𝑝 𝜆 . In that case, optimized 𝑔 ,  solution is not the detection profile, but the 

correction to it. In Supplemental Table S4 we compile measured, predicted and optimized 

intensity ratios 𝜉 . We show that approach of regularized optimization of 𝑔 ,  profile on 

average improves agreement with measured intensity ratios for a given set of dyes 

(Supplemental Figure S2). Obtained 𝑔 ,  profile in our case is given as top stack in Figure 

2c. Chosen 𝑔 ,  solution corresponds to µ = 0.9 value, selected such that it satisfies two 

criteria: (i) has the smallest sum over all dyes of squared deviations of the eq. S13  from zero 

(see Supplemental Note 3), and (ii) is smooth within each of Λ windows. Larger value of 

correction in the right edge of G window, obtained in the case of our setup, we attribute to 

underestimated detection profile of detectors, as these are associated with highest uncertainty.  

We identify this approach as very practical way of evaluating setup performance, i.e. identifying 

potential degradation of optical components, setup misalignment and sub-optimal probe 

detection. 
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Figure 2.  Smoothness regularized optimization of instrument detection efficiency profile 𝒈 𝐆,𝐑  using a set 
of dyes measured free in solution. (a) Transmission spectra of optical components in our MFD confocal setup 
(b) Fluorescence emission spectra of a set of dyes measured free in solution, p(λ), as well the observed emission 
intensities, f(λ), after multiplication with instrument detection profile, 𝑔 , . (c) Illustration of input and output 
data for the determination of instrument detection profile, 𝑔 , . Optimized 𝑔 ,  solution satisfies measured 
intensity ratios 𝜉  of a set of j dyes, is positive and regularized via parameter μ, which penalizes its sharp changes 
within a given spectral window Λ G, R  except at its edges. For that, “smoothness” operator 𝑆  is applied to 
the detection profile, and solution with minimum derivative is taken.  
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3.2. Step 3: Sample calibration 

 

For the evaluation of the protocol we used a set of double-stranded DNA molecules, with 

varying base-pair separation between donor and acceptor. In total, we designed three dsDNA 

molecules, with high- (HF), medium- (MF) and low-FRET efficiency (LF), covering range of 

FRET efficiencies from ~0.1 to ~0.5. As robustness of smFRET measurements depends on the 

fluorophore choice,13 we critically assessed our protocol on samples with different dye-pair 

combinations. As donor we used bright and photostable blue emitting rhodamine dye Alexa 

Fluor 488 (here referred to as AF488)29, and as acceptor we used far-red dyes, i.e. carbopyronine 

dye Atto647N, and cyanine dyes Alexa Fluor 647 (here referred to as AF647) and Cy5. Features 

of Atto647N are long fluorescence lifetime (τ(H20) = 3.71 ns), big fluorescence quantum yield 

(Φ (H20) = 0.64) and increased hydrophobicity.30 On the other hand, cyanine dyes AF647 and 

Cy5 have shorter fluorescence lifetime (τ(H20) = 1.02 ns, τ(H20) = 0.99 ns), lower fluorescence 

quantum yield (Φ (H20) = 0.34, Φ (H20) = 0.29), and are associated with cis-trans 

isomerization induced blinking.30-32 For extensive overview of photophysical features of used 

dyes reader is referred to work of Vandenberk et al.33 Not only do these dyes display diverse 

photophysical features, but they are also widely used in smFRET studies. In all three samples 

(HF, MF and LF), position of acceptor is fixed, which allows homogeneous approximation and 

global γ correction. For further details on samples, including sequence, labelling positions and 

labelling chemistry, see Supplemental Note 2 and Supplemental Table S1.  

Procedure for determination of correction parameters is illustrated on the example of dsDNA 

molecules labelled with AF488-Atto647N, and the full overview of all experiment- and data 

processing-specific metadata of all dye combinations is collected in Supplemental Table S2. 

 

Step 3.1: Presence of multi-molecule events 

 

First step in data correction procedure is to ensure that samples are measured at sufficiently 

low concentration, such that each burst of photons is generated by a single molecule passing 

through confocal volume.34 As previously described35, 36, probability to find n molecules in the 

detection volume follows a Poisson distribution: 

 
𝑃 𝑁

𝑁
𝑛!

𝑒  (24) 

and is function of the sample concentration with the average number of molecules in detection 

volume, 𝑁 . If more than one molecule diffuses through the detection volume, and are 
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separated less than the mean transit time, they will produce a single unresolved fluorescence 

burst. The multi-molecule probability can then be calculated as: 

 

𝑃 𝑃 𝑁 1 𝑃 𝑁 𝑃 𝑁  
 

1 𝑒 𝑁 1
(25)

 

To obtain the fraction of multi-molecule events in the histogram, multi-molecule probability 

𝑃 𝑁  has to be normalized with the burst probability,  𝑃 𝑁 : 

 

 

𝐹
𝑃 𝑁
𝑃 𝑁

1
𝑁 𝑒
1 𝑒

 

 

(26) 

 

For burst rate of 1 burst/s (including all species, i.e. D-only, A-only, DA and BG), and confocal 

volume with 1 ms burst duration, 𝑁 0.001, which yields fraction of multi-molecule events 

of 0.05%. Similarly, for burst rate of 10 bursts/s, 𝑁 0.01  and multi-molecule fraction is 

0.5%. On the other hand, significant value of 5% is reached at the burst rate of 100 bursts/s. 

Therefore, we recommend measurements to be performed with burst-rate of up to 10 bursts/s.  

  



308 
 

Step 3.2: Determination of buffer background count rate  

 

Single-molecules in a focus emit fluorescence photons with high count rate, i.e. short inter-

photon times. However, in any real system single-molecule photons are interfered with 

unwanted background signal. Background photons can have various origins, such as sample 

impurities, scattering at the excitation wavelength and dark counts of detectors. Photons of such 

origin are with low count rate, and subsequently with longer inter-photon times. Therefore, all 

recorded photons can be divided in two categories according to inter-photon times. Proper 

estimation of pure background count rate is essential for all further calibration steps, and is 

based on the aforementioned fact that we can distinguish background and single-molecule 

photons based on inter-photon times, Δ𝑡. We give an overview over two ways to determine the 

background count-rate, both of which perform well and provide consistent results. Two 

approached are illustrated in Figure 3. Lastly, these two approaches are more favorable 

compared to simple determination of mean background count-rate, where discrimination of 

pure background signal from potential fluorescence impurities is not possible.  

 

a) Tail fit of inter-photon time histogram 37 

 

Straight tail of semi-log inter-photon time distribution can be fitted with single exponential 

function (Figure 3a), which indicates that these photons obey to Poisson distribution, and 

represent background: 

 𝑃 Δ𝑡 𝑁 exp 𝑆 Δ𝑡  (27) 

 

At the short inter-photon times, data deviates from exponential function, which is due to high 

count rate processes (i.e. fluorescence bursts of single-molecules). 

In this approach one defines a threshold after which the distribution can be explained with 

mono-exponential function. Using non-linear least-squares curve fitting, or Maximum 

Likelihood Estimator (MLE), one finally obtains background count rate, 𝑆 , as the inverse 

of exponential time constant. 
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b) Distribution fit of the average inter-photon time 𝛥𝑡  36 

 

To better discriminate background from fluorescence signal, one can smooth the trace of 

the inter-photon times, by calculating average inter-photon time Δ𝑡  over 𝑛 subsequent inter-

photon times, Δ𝑡 𝑛 1 𝑛⁄ ∑ ∆𝑡 . Distribution of average inter-photon times is fitted with 

gamma distribution (Figure 3b): 

 

 
𝑃 Δ𝑡 , 𝑛

𝑛𝑆
𝑛 1 !

∆𝑡 exp 𝑛∆𝑡𝑆  (28) 

 

It is recommended to use 5-10 subsequent photons for the estimation of the average inter-photon 

time. Higher photon numbers lead to data over-smoothing, and wrong estimation of the 

background count rate.  

 

 
Figure 3. Step 3.2: Background estimation based on inter-photon times. (a) Tail fit of inter-photon times 
using single-exponential function for each micro-time detection window (G|G, R|G, R|R) according to eq. (27) 
(b) Fit of average inter-photon time distribution using gamma distribution, Γ, for each micro-time detection 
window (see eq. (28)). 
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Step 3.3: Donor crosstalk 

 

After the background determination for each of the detection channels, next step needed 

for accurate E and S determination is correction for the leakage (crosstalk) of donor emission 

into acceptor detection channel. The absence of donor crosstalk correction falsely increases the 

intensity in acceptor emission channel, 𝐹 | , and subsequently larger FRET efficiency is 

measured than expected. As shown previously 12, 17, 38, the error of measured E due to donor 

crosstalk increases towards low- E species. They show that while error is negligible for high- E 

species, in the range of intermediate FRET efficiencies, where most measurements are 

performed, error is already significant. Finally, for low- E species, E error goes up to 50%, 

implying that careful crosstalk evaluation is essential for accurate E- determination. 

For robust crosstalk determination, recommended is to perform a cut of D-only (D0) species 

from a 2D histogram of fully uncorrected apparent FRET efficiency, 𝐸 , versus fully 

uncorrected apparent stoichiometry, 𝑆 , with  𝑆  > 0.95, while along 𝐸  axis selection 

should be made in amount ~ ±0.015, symmetrically around the center of the population (Figure 

4a). Subsequently, for such selected D-only sub-population, historically it was proposed to 

histogram the background corrected  𝐸  values and fit with a single or a mixture of 

Gaussian functions to determine the mean value. 11 Next, using the fitted mean value of the 

distribution, crosstalk can be calculated as follows: 

 

 
𝛼

〈 𝐸 〉

1 〈 𝐸 〉
 (29) 

 

However, since such approach is user-biased when identifying the mean of the D-only sub-

population, here we advocate to instead perform linear bisquare robust regression of 

background corrected photon counts (Figure 4b) following the relation: 

 

 𝑁 | 𝑆 | 𝑇 𝛼 𝑁 | 𝑆 | 𝑇  (30) 

 

We highly advocate for the use of robust regression39, as it is less prone to the effect of outliers 

compared to ordinary least squares. Robust regression optimizes the weights of each data point 

through iteratively reweighted least-squares method, and is less sensitive to extreme outliers in 

data. Here we chose bisquare function for weight calculation, and tune constant of K = 4.685. 
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Validation of fitted α value can be performed by monitoring if D-only sub-population is 

positioned at 𝐸 ∗ = 0 and 𝑆 ∗  = 1 (Figure 4c). Here, asterix in superscript denotes that 

besides for background, apparent FRET efficiency and stoichiometry are also corrected for 

donor crosstalk. 

 

 
Figure 4. Step 3.3: Determination of donor crosstalk into acceptor emission channel. (a) Selection of donor-
only sub-population in 𝑆 𝐸  2D histogram (red rectangle). Only stoichiometry values of  𝑆  > 0.95 
should be selected, while on 𝐸  axis the selection is made ±0.015 symmetrically around the center od D-only 

population. (b) Robust linear regression on background corrected photon counts 𝑁 | 𝑓 𝑁 | , where the 

proportionality constant corresponds to donor crosstalk, α (see eq. (30)). (c) Cross-validation of the obtained 
crosstalk value, by monitoring the position of D-only sub-population after BG and α correction. Ideally, D-only 
species should be at 𝐸 ∗  = 0 and 𝑆 ∗  = 1.  

  

Control measurement. Furthermore, possible is to cross-validate obtained value from a 

separate nM measurement of D-only sample. Measurement of a free dye is not recommended 

due to the spectral shift occurring after coupling dye to biomolecule. From the background 

corrected mean count rates in detection channels G|G and R|G, one can calculate crosstalk as 

follows: 

 
𝛼

𝑆 | 𝑆 |

𝑆 | 𝑆 |

 (31) 
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Step 3.4: Direct excitation 

 

Besides for donor crosstalk, fluorescence intensity of FRET sensitized acceptor emission, 

𝐹 | , needs to be corrected for direct acceptor excitation by the donor excitation laser. The 

absence of this correction, leads to overestimation of measured FRET efficiency. 12, 17, 38 

demonstrated, that as in the case of donor crosstalk, direct excitation has increasing effect 

towards low-E species. That being so, accurate distance measurements are only possible with 

meticulous determination of both the crosstalk and direct excitation. 

As for crosstalk, determination of direct excitation is as well possible from the single-

molecule measurement of the system of interest, using acceptor-only (A-only, A0) sub-

population, selected using a  2D histogram of fully uncorrected apparent FRET efficiency and 

stoichiometry, 𝑆 𝐸 . 𝑆  threshold should be set symmetrically around the center of 

A-only sub-population, while for 𝐸  we recommend selecting higher FRET efficiencies 

( 𝐸   0.5), given that these are associated with direct excitation of the acceptor (Figure 5a). 

Lower 𝐸  values are hard to disentangle from species that have unstable emission, and which 

manifest as tailing between A-only and DA species. Following the selection of acceptor-only 

sub-population, similar as for donor crosstalk, historically it was recommended to histogram 

background corrected apparent stoichiometry values, 𝑆   and fit that distribution with a 

Gaussian fit model. From obtained mean value, one calculates direct acceptor excitation as 

follows 11: 

 
𝛿

〈 𝑆 〉

1 〈 𝑆 〉
 (32) 

 

However, to avoid user bias associated with this approach, we suggest to instead perform robust 

linear regression between background corrected photon counts 𝑁 |  and 𝑁 |  (Figure 5b): 

 

 𝑁 | 𝑆 | 𝑇 𝛿 𝑁 | 𝑆 | 𝑇  (33) 

 

Such determined direct excitation parameter, locates the acceptor-only sub-population at the  

𝑆  = 0 and 𝐸  = 0…1 (Figure 5c).  

Control measurement. To avoid acceptor photobleaching, one commonly performs sm-PIE 

measurements with lower power of acceptor excitation laser, which on the other hand leaves us 

with smaller number of bursts in A-only population. This makes direct excitation determination 
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less robust compared to crosstalk determination. For that reason, in such circumstances, we 

speak for additional controls of fitted direct excitation parameter. Highly robust control would 

be to perform nM measurement of A-only sample. Use of free dye measurement should be 

avoided, since free dye can have a spectral shift compared to dye coupled to a biomolecule. 

From the background corrected mean count-rates in detection channels R|G and R|R, one can 

calculate direct excitation as follows: 

 

 
𝛿

𝑆 | 𝑆 |

𝑆 | 𝑆 |

 (34) 

 

 

 
Figure 5. Step 3.4: Determination of acceptor direct excitation with donor excitation laser. (a) Selection of 
acceptor-only sub-population in 𝑆 𝐸   2D histogram (red rectangle). Recommended is to select 𝐸   
0.5 to avoid bleached and blinking acceptor species that smear between DA and A-only sub-populations. 𝑆  
selection is made symmetrically around the center of the population. (b) Robust linear regression on background 
corrected photon counts 𝑁 | 𝑓 𝑁 | , where the proportionality constant corresponds to direct acceptor 

excitation, δ (see eq. (33)). (c) Cross-validation of the obtained δ value, by monitoring the position of A-only sub-
population in 𝑆 1D histogram. Ideally, A-only species should be at 𝑆 = 0. 
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Step 3.5: Selection of DA sub-population via “ALEX-2CDE” filter 

 

Detection efficiency γ and excitation ratio β are determined using DA species. Since 

photobleaching and photoblinking result in brightness fluctuations of the donor and/or acceptor 

fluorophore, it is essential to filter out these events, such that only those DA molecules that 

have stable emission of both fluorophores are used for γ and β determination. Selecting DA 

sub-population via stoichiometry cut is not the proper way to deal with this, because bleaching 

and blinking events manifest themselves as strong tailing between double-labelled, DA, and A-

only and/or D-only sub-populations, causing the DA species of interest to be concealed. 

It was found that bursts containing photobleached acceptor species can be removed by 

analyzing macroscopic photon arrival times.11, 40 With stable acceptor emission, burst-averaged 

macroscopic photon arrival time in acceptor detection channel after donor excitation, TR|G, is 

equal to burst-averaged macroscopic photon arrival time in donor detection channel after donor 

excitation, TG|G, i.e. TG|G -TR|G  0. However, in the presence of acceptor photobleaching within 

a burst, TR|G gets lower than TG|G. This is the key feature for filtering out bursts with unstable 

acceptor emission based on average macro arrival times of photons. However, in this approach, 

it is very difficult to distinguish photobleaching from slow conformational dynamics. 

Therefore, by filtering bursts according to TG|G -TR|G difference, we potentially eliminate very 

valuable bursts containing information on slow conformational dynamics. To overcome this 

drawback, it was proposed to instead monitor the difference between burst-averaged 

macroscopic arrival time of photons detected in acceptor detection channel after acceptor 

excitation, TR|R, which are independent of FRET, and burst-averaged macroscopic photon 

arrival time of all photons after donor excitation, TX|G. However, since background photons can 

be wrongly assigned to a burst at its edges, this approach suffers from using a simple average 

over macro arrival times of photons as it does not consider local count rate around each of the 

photons. 

Convenient way to remove DA species with brightness fluctuations, as well single-labelled 

species, while maintaining enough bursts in the DA sub-population, is to apply ALEX 2-

Channel kernel-based Density Estimator function, “ALEX-2CDE” (Figure 6), developed by 

Tomov et al41. The essence of this approach is in estimation of local density of photons around 

each of detected photons. Local density of photons is obtained using kernel density estimate of 

exponential kind, which is expressed in terms of photon arrival times. For density estimation, 

considered are only photon arrival times of those photons that arrive within 5  tw before and 

5  tw after each central photon. Time-window, tw, used for estimation of local photon density 
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should be smaller than burst duration, but longer than inter-photon time. Considering those 

factors and also in terms of CPU time, we found the optimal choice of time-window to be 100 

µs. For the fixed brightness of donor and acceptor, ALEX-2CDE filter converges to the value 

of 0. On the other hand, for fluctuating brightness of donor and/or acceptor, ALEX-2CDE > 0. 

After application of the ALEX-2CDE filter, no further 𝐸  or 𝑆  cuts should be applied 

to double labelled, DA, sub-population. 

 

 
Figure 6. Step 3.5: Selection of DA population using ALEX-2CDE filter. (a) Selection of double-labelled 
population used for γ and β determination is made in 2D histogram of ALEX-2CDE filter values against 𝑆 . 
Selection is made such to remove single labelled species, A-only and D-only, as well species with non-stable 
emission that smear between A-only/D-only and DA species. Here ALEX-2CDE ≤ 15 (horizontal black line). (b) 
Visualization of obtained DA population after applying ALEX-2CDE filter.  
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Step 3.6: Determination of γ and β correction factors 

 

a) (M-1) Non-linear regression of burst-wise 𝑆  versus 𝐸   

 

In this method for γ and β determination, the underlying relation between 𝑆  and 𝐸  

is as follows: 

 𝑆 1 𝛾𝛽 1 𝛾 𝛽 𝐸  (35) 

 

Due to the large spread of 1/ 𝑆  burst-wise values, instead of fitting the inverse of  𝑆  

versus 𝐸 , we perform direct non-linear regression of burst-wise values of 𝑆  versus  

𝐸 . Such fit is performed on DA populations of multiple samples with different FRET 

efficiencies (Figure 7a), or on a single sample that shows sufficient broadening of 𝐸 . 

However, if acceptor properties are not uniform across the samples, then the homogeneous 

approximation does not apply. In that case, regression is performed either on the subset of DA 

populations, or local γ correction is applied. For the entire goodness-of-fit landscape see 

Supplemental Note 4, where two aforementioned scenarios are examined: global and local γ 

correction. Since the benchmark samples are DNA rulers with labelling stoichiometry D:A=1:1, 

and which are considered to be static, we do cross-validation of obtained γ and β parameters by 

monitoring if after the correction all DA populations lie on the S = 0.5 line and static E-τ FRET-

line (Figure 7b-c).  

 

 

Figure 7. Step 3.6: γ and β determination via non-linear regression of burst-wise values of 𝑺𝐚𝐩𝐩 
𝐢𝐢𝐢  versus 

𝑬𝐚𝐩𝐩 
𝐢𝐢𝐢  (M-1). (a) Non-linear regression on burst-wise values of 𝑆  versus 𝐸 . (b) Control of obtained γ 
and β parameters, by monitoring whether the DA populations are centered at S = 0.5. (c) Control of obtained γ and 
β parameters, by monitoring the position of DA populations relative to the static FRET-line. For stiff molecule 
such as DNA, no shift from static FRET-line is expected, provided photophysical stability of fluorophores and the 
absence of position-specific dye-protein sticking interactions. For the derivation of static FRET-line and used 
parameters, see Supplemental Note 5 and Supplemental Table S5. 
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b) (M-2) Linear regression between 1 〈 𝑆 〉⁄  and 〈 𝐸 〉 of population means  

 

As an alternative to performing non-linear regression of 𝑆  versus 𝐸 , one could 

directly perform linear regression between 1 〈 𝑆 〉⁄  and 〈 𝐸 〉, where 〈 𝑆 〉 and 

〈 𝐸 〉 are the means of the DA sub-populations 17 (Figure 8a) 

 

 1 〈 𝑆 〉 𝑎 𝑏〈 𝐸 〉⁄  (36) 

 

Correction factors γ and β are then obtained from the intercept, a, and the slope, b, of the linear 

fit (Figure 8b) 

 𝛽 𝑎 𝑏 1 (37) 

 𝛾 𝑎 1 𝑎 𝑏 1⁄  (38) 

 

If the population means do not follow straight line, this is indication that homogeneous 

approximation does not hold, and if possible, regression should be applied on a subset of species 

(minimum two). Otherwise, method is not applicable. While on one hand this method has 

advantage of not being sensitive to shoulders in the distributions, as is the case when fitting 

burst-wise values of 𝑆  versus 𝐸 , there is a user bias while performing Gaussian fit to 

the subpopulations, and when assigning the main population. Furthermore, it was previously 

shown that the uncertainty in such determined γ parameter is the function of inverse difference 

between the population mean estimates, but this only makes notable effect at extreme values of 

γ and β, i.e. < 0.1 and >3.13 For intermediate values of γ and β, where most measurement are 

performed, FRET efficiency contrast between species does not play a major role, as it was 

experimentally observed in earlier study.33  

Analogously to previous method, cross-validation of obtained γ and β parameters is performed 

by monitoring if after the correction all DA populations lie on the S = 0.5 line and static E-τ 

FRET-line (Figure 8c-d). 
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Figure 8. Step 3.6: γ and β determination via linear regression on population means (M-2). (a) 1D 𝑆  and 
𝐸  histograms are fitted using the superposition of N normal distributions. For N>1, Gaussian with maximum 

amplitude is taken as the main population (b) Fit of 1 〈 𝑆 〉⁄  versus 〈 𝐸 〉 of DA population means. γ and β 
are determined using slope and intercept of linear fit using eqs. (36)-(38). (c) and (d) Control of obtained γ and β 
parameters, by monitoring whether the DA populations are centered at S=0.5 and if they lie on static FRET-line. 
For the derivation of static FRET-line and used parameters, see Supplemental Note 5 and Supplemental Table 
S5. 
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c) (M-3) Linear regression on photon counts, 𝑁 | 𝑓 𝑁 | , 𝑁 |   

 

Instead of using ratiometric quantities 𝑆  and 𝐸  one can directly use underlying photon 

counts, as described previously.42 The underlying equation of this method is obtained from the 

definition of stoichiometry: 

 
𝑆

𝛾𝑁 | 𝑁 |

𝛾𝑁 | 𝑁 |
1
𝛽 𝑁 |

 (39)

by rewriting it as follows 

 𝑆
1 𝑆

𝑁 | 𝛾𝛽𝑁 | 𝛽𝑁 |  
(40)

 

It can be recognized that this represents equation of a plane in 3D space, defined by 

[𝑁 | , 𝑁 | , 𝑁 | ]. However, in the next step, assumption about the stoichiometry of the sample 

has to be made. For D:A =1:1, this equation reduces to  

 

 𝑁 | 𝛾𝛽𝑁 | 𝛽𝑁 |  (41) 

 

where multiplication factors γ and β are determined using plane fit (Figure 9a). 

Although eq. (41) can be mathematically reformulated as 𝑁 |  𝑓 𝑁 | , 𝑁 |  or 𝑁 |

𝑓 𝑁 | , 𝑁 | , that way we add another dependency in addition to the one we want to extract, 

since 𝑁 |  and 𝑁 |  are correlated due to FRET. Therefore, for determination of γ and β 

parameters we recommend to use eq. (41), with 𝑁 |  on z-axis. 

 

Potential drawback of this method is that it requires to know the donor:acceptor labelling 

stoichiometry of the sample in advance. However, for the constructs used for intramolecular 

FRET experiments, this information is in general known. Otherwise, separate construct with 

known stoichiometry has to be measured, with the same FRET pair, and with the same setup 

conditions. Cross-validation of obtained γ and β parameters is given in Figure 9b-c. 
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Figure 9. Step 3.6: γ and β determination via linear regression on photon counts (M-3). (a) Plane fit in 3D 
space of photon counts [𝑁 | , 𝑁 | , 𝑁 | ] according to (41). (b) and (c) Control of obtained γ and β parameters, by 

monitoring whether the DA populations are centered at S=0.5 and if they lie on static FRET-line. For the derivation 
of static FRET-line and used parameters, see Supplemental Note 5 and Supplemental Table S5. 
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Assessment of the extent of user bias in calibration workflow 

 

To assess the user bias when determining correction parameters, we performed a blind 

challenge amongst seven lab members. Participants were provided with a set of DNA 

measurements for a global calibration (i.e. HF-, MF- and LF-sample), and calibration protocol, 

presented in this work. Distribution of reported values for calibration parameters is shown in 

Figure 10. Even though that somewhat bigger spread of ALEX-2CDE threshold values were 

obtained, in all cases threshold was properly selected, and DA sub-populations were cleaned-

up from single-labelled species and species with brightness fluctuations. However, due to 

different ALEX-2CDE thresholds applied, we observe inconsistencies in  determination of γ 

and β parameters using the method M-2 of Linear regression between 1 〈 𝑆 〉⁄  and 

〈 𝐸 〉 of population means ((36)). ALEX-2CDE filter directly affects the mean of the DA 

population, and on top of that users were inconsistent in the decision of how many Gaussians 

should be fitted to the DA sub-population, as well in the assignment of the main population. 

Especially troublesome is fitting of stoichiometry distribution, where asymmetry of the 

distribution is often observed. Other than ALEX-2CDE filter value, and γ and β calibration 

method M-2, in other cases we found rather consistent results.  

 

 
Figure 10. Results of a blind calibration challenge. Reported values of correction parameters by lab members 
(N=7). Blue circle in the distribution plot denotes mean of the distribution, while whiskers span a range of one 
standard deviation. Background count rates are reported in kHz. Superscript for γ and β denotes different 
calibration method: M-1: Non-linear regression of burst-wise 𝑆  versus 𝐸  values; M-2: Linear regression 

between 1 〈 𝑆 〉⁄   and 〈 𝐸 〉 of population means; M-3: linear regression on photon counts, 𝑁 |

𝑓 𝑁 | , 𝑁 | . Results of blind calibration challenge revealed that method of linear regression between 

1 〈 𝑆 〉⁄  and 〈 𝐸 〉 of population means (M-2) should be applied with caution, since we observed high user 
bias when determining the mean of the DA populations. 
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Evaluation of calibration parameters accuracy 

 

a) Static FRET-line 

When all levels of correction are performed (background, α, δ, γ and β) no displacement of 

the DA population from the static FRET-line should be observed, considering dsDNA molecule 

to be static and provided photophysical stability of the fluorophores and absence of dye sticking. 

For detailed description and derivation of equation underlying static FRET-line see 

Supplemental Note 5. In this work, we use static FRET-line to evaluate the accuracy of 

different calibration methods. We determined apparent dynamic shift of the DA population 

from the static FRET-line, 𝑑𝑠 , for each of the calibration methods, as described previously13 

and in Supplemental Note 6. In Figure 11 illustrated is determination of 𝑑𝑠  values for a set 

of DNA rulers labelled with AF488-Atto647N using method M-1. In Figure 12a provided are 

𝑑𝑠  box plots for all three dye combinations and three methods for γ and β determination. 

Determined 𝑑𝑠  values comply with the static nature of the measured system. 

Lastly, it is worth to mention that such evaluation of calibration methods accuracy carries 

assumption of 𝜎  = 6 Å linker-induced broadening of inter-dye distance distribution. Ideally, 

width of 𝑅  distribution when computing static FRET-line should be determined individually 

for each system under the study, by performing Gaussian fit of ensemble-TCSPC decays, with 

variance of the 𝑝 𝑅  distribution being the fit parameter (see Supplemental Note 5). 

However, such approach typically overestimates broadening of the inter-dye distance 

distribution, due to the donor-only contribution. Alternative would be to use sub-ensemble 

TCSPC decays of DA sub-population to restrain the fitting.  
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Figure 11. Apparent dynamic shift for different methods of γ and β determination. Displacement of DA sub-
populations from static FRET-line was determined for HF (left column), MF (middle column) and LF sample 
(right column) labelled with AF488-Atto 647N, and for different methods of γ and β determination, namely: M-1: 
Non-linear regression of burst-wise 𝑆  versus 𝐸  values; M-2: Linear regression between 1 〈 𝑆 〉⁄   and 

〈 𝐸 〉 of population means; M-3: linear regression on photon counts, 𝑁 | 𝑓 𝑁 | , 𝑁 | . For the derivation 

of static FRET-line and used parameters, see Supplemental Note 5 and Supplemental Table S5. 
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b) Structural models 

In order to assess how well the experimentally determined FRET observables agree with 

structural model of dsDNA used in this study, we simulated Accessible Volume (AV)19  of the 

fluorophores using Olga software.43 See Supplemental Note 7 for detailed description of AV 

simulations and used parameters. In Figure 12b plotted are experimental versus modelled E-

averaged inter-dye distances, 𝑅〈 〉. Consistent distances are obtained using independent 

measurements with three different dye pairs, and using different calibration methods. RMSD = 

3.31 Å between experimental and modelled 𝑅〈 〉 distances agrees with what was reported earlier 

for dsDNA molecules (RMSD = 3.34 Å for static DNA model and RMSD = 2.74 Å for dynamic 

DNA model12).  

 

 
Figure 12. Assessing the accuracy of calibration parameters. (a) Box plots of dynamic shift values determined 
for HF, MF and LF samples with three different dye combinations and for different calibration methods. Box 
length denotes interquartile range, horizontal line inside a box is median, while blue square is the mean of 
distribution. Whiskers spread from minimum to maximum observed value. (b) Agreement between measured and 
modelled FRET-efficiency averaged inter-dye distances, showing that the same distances are recovered 
irrespective of dye pair or calibration method used. 
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5. Conclusions 

In this study we presented robust and unbiased workflow for estimation of calibration 

parameters, allowing for determination of accurate FRET efficiency and stoichiometry. As 

estimation of each of correction parameters is preceded with selection of D-only, A-only or DA 

sub-population, and neither of the existing calibration methods gives clear guidelines on the 

robust selection of those, we refined existing approaches, such that for each of the steps in 

calibration, proposed are clear, unambiguous instructions. As a benchmark system we used a 

set of dsDNA rulers with varying FRET efficiencies, such that position of acceptor dye is fixed, 

and the one of donor is varied. This allowed global γ correction, since donor dye has uniform 

properties even in distinct environments. We primarily focused on determination of γ and β 

parameters, and for that we put on a test three commonly used methods: (M-1) Non-linear 

regression of burst-wise values of 𝑆  versus 𝐸 , (M-2) Linear regression between 

1 〈 𝑆 〉⁄  and 〈 𝐸 〉 of the population means, (M-3) Linear regression on photon counts. 

We presented their theoretical foundations, application versatility and assessed their 

performance in the blind calibration challenge.  

When applicable, users should evaluate different methods and check for their consistency, 

rather than to exclusively use one of the methods. Method of non-linear regression of burst-

wise values of 𝑆  versus 𝐸  (M-1) and method of linear regression of 1 〈 𝑆 〉⁄  versus 

〈 𝐸 〉 (M-2) depend on ratiometric quantities of unknown statistics, and are sensitive to 

shoulders in the distribution. Furthermore, through the blind calibration challenge, we identified 

that method M-2, is particularly prone to user bias. We found that this method is the most 

sensitive on the way DA sub-population is selected, since ALEX-2CDE filter directly shifts the 

mean of DA species in 𝑆  - 𝐸  histogram. Furthermore, users were inconsistent with 

the fit model and at assigning the main population. On contrary, methods M-1 and M-3 give 

more narrow distribution of γ and β values. 

After evaluating the extent of the user bias, in the next step we assessed the accuracy of the 

calibration methods: (i) by using static FRET-line as a reference and by calculating the 

displacement of DA sub-populations from the static FRET-line via apparent dynamic shift, 

𝑑𝑠  (ii) by comparing derived and modelled FRET efficiency averaged inter-dye distances. 

For these two criteria, we did not observe any significant distinction between the calibration 

methods, i.e. they all give consistent inter-dye distances irrespective of the dye-pair used, and 

they comply with the static nature of the system, since obtained 𝑑𝑠  values are in all cases 

negligibly small. 
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However, even though that the method of linear regression on photon counts (M-3) seems to 

tick all boxes, its pitfall is that it requires stoichiometry of a FRET construct to be known. If 

stoichiometry is to be determined from the experiment, then calibration has to be performed on 

independent FRET construct of known stoichiometry, measured with the same fluorophore pair 

and under the same setup conditions.  

Finally, we devoted particular attention to setup alignment and calibration, with 

elaborate instructions for handling entire setup configuration. As ultimate control of optimal 

setup performance, we proposed framework for regularized optimization of instrument 

detection profile, using a set of dyes emitting in both spectral windows, which are measured 

free in solution. We identify this approach as practical way of evaluating setup performance, 

i.e. for identifying potential degradation of optical components or setup misalignment. 
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Supplemental Notes 

 

Supplemental Note 1: Experimental setup and burst analysis 

All sample solutions were measured in NUNC chambers (Lab-Tek, Thermo Scientific) with 

500 µL sample volume at a concentration of ~10 pM. Single-molecule MFD measurements 

were performed at a room temperature on a homebuilt, dual-color and dual-polarization 

confocal setup, as described previously.1 Donor molecules (AlexaFluor488) were excited by a 

pulsed diode laser (LDH-D-C 485, PicoQuant) at 485 nm, operated with repetition frequency 

of 32 MHz (16 MHz for samples with Atto647N as acceptor dye due to its longer fluorescence 

lifetime). Acceptor molecules (AlexaFluor647/Cy5/Atto647N) were excited with pulsed diode 

laser (LDH-D-C 640, PicoQuant) at 635 nm. Laser powers were measured at the sample and 

were 60 µW for donor excitation laser and 10 µW for acceptor excitation laser (20 µW for 

samples with Atto647N due to the smaller extinction coefficient compared to other acceptor 

dyes). Laser pulses were delayed with respect to each other by ~15 ns (~31 ns for samples with 

Atto647N as acceptor dye). Laser light is guided into the epi-illuminated confocal microscope 

(Olympus IX71, Hamburg, Germany) by a dichroic beamsplitter FF500/646-Di01 (Semrock, 

USA), and focused on the sample by a water immersion objective (UPlanSApo 60x/1.2 NA, 

Olympus Hamburg, Germany). The emitted fluorescence is collected through the objective and 

focused on a 100 µm pinhole. Using a polarizing beam splitter cube, emitted light is divided 

into its parallel and perpendicular components, followed by splitting into two spectral windows, 

“green” and “red”, using long pass beamsplitter Q595 LPXR (AHF, Germany), and then again 

using non-polarizing 50/50 beam splitters resulting in a total of eight detection channels. 

Additionally, bandpass filters are placed in front of the detectors (FF01-530/43-25; AHF, 

Tübingen, Germany for donor molecules and HQ 720/150 nm; AHF, Tübingen, Germany for 

acceptor molecules). Detection is performed using eight avalanche photodiodes (4 green 

detectors (τ-SPAD, PicoQuant, Germany) and 4 red detectors (SPCM-AQR-14, Perkin Elmer). 

The detector outputs were recorded by a TCSPC module (HydraHarp 400, PicoQuant). Burst 

search was performed using home-written LabView-based software based on the inter-photon 

times. Before the burst selection, the trace of inter-photon times is smoothed using Lee-filter2 

with sliding window of the size 5 (m=2) and standard deviation of the background inter-photon 

times of 𝜎 =10 3. Bursts were selected using inter-photon time threshold of 100 µs. Minimum 

required number of photons in a burst is 60. Such settings correspond to approximately 10 kHz 

threshold in count-rate. 
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Supplemental Note 2: Benchmark samples 

For the evaluation of correction procedures, we used a set of DNA rulers with varying base-

pair separation between donor and acceptor dye, yielding a range of FRET efficiencies. The 

base-pair separation of the donor and acceptor labelling sites is as follows: 19 bp for low-FRET 

(LF), 14 bp for medium-FRET (MF) and 10 bp for high-FRET (HF) sample. These constructs 

cover distances of ~50-70 Å. The set of DNA rulers was measured with following three dye 

combinations, with labelling modification and linker length specified in bracket: 

AlexaFluor488 (TFP ester/C6 linker) – Atto647N (NHS ester/C2 linker); AlexaFluor488 (TFP 

ester/C6 linker) – Cy5 (NHS ester/C2 linker); AlexaFluor488 (TFP ester/C6 linker) – 

AlexaFluor647 (NHS ester/C2 linker). AlexaFluor488 and AlexaFluor647 are abbreviated as 

AF488 and AF647 throughout this work. Our choice of dyes was driven by many reports where 

these dyes were used and evaluated as suitable dye choice for burst-wise single-molecule 

experiments 4. Measurements of DNA rulers were performed in buffer containing 5 mM MgCl2, 

150 mM NaCl, and 50 mM TRIS at pH 7.9. Labelling sites and DNA sequences are given in 

Table S1. 
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Supplemental Note 3: Regularized optimization of instrument spectral 

response. 

 

Observed signal of 𝑗-th dye in detection window Λ 𝐺, 𝑅  is defined as follows: 

 

 
𝑓 𝑓 , 𝑔 λ 𝑝 λ dλ 

(S1)

 𝑝 λ dλ 1 

 

where 𝑓 ,  is the total radiative intensity of the 𝑗-th dye, 𝑝 𝜆  is the unit area normalized 

fluorescence emission spectrum of the 𝑗-th dye and 𝑔 𝜆  is the instrument spectral response 

of a given spectral window Λ 𝐺, 𝑅  . This formulation can be discretized and given in a form 

of a matrix 

 
𝑓 𝐹 , 𝑔 𝑝  (S2) 

  
𝑓 𝐹 𝑃 𝑔  (S3) 

 

where 𝐹  is a diagonal matrix with diagonal elements being radiative intensities 𝑓 , .  

𝑔  is a column vector, whose elements are integrals over the 𝑖th λ – bin  

 

 
𝑔 𝑔 𝜆 𝑑𝜆

∆

 (S4) 

 

and 𝑃 is a matrix with sum in rows being equal to one, and whose elements are analogously 

integrals over the 𝑖th λ – bin  

 
𝑝 𝑝 𝜆 𝐴𝑑𝜆

∆

 (S5) 

 

For two detection windows, e.g. green (G) and red (R), we can write the system of matrix 

equations: 

 𝑓 𝐹 𝑃 𝑔  (S6) 

 𝑓 𝐹 𝑃 𝑔  (S7) 
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Quantities 𝑓 ,
  are unknown, but can be easily removed by dividing the observed signals 𝑓  

and 𝑓 . Such ratio of observed signal of j-th dye we denote as 𝜉 : 

 

 
𝜉

𝑓

𝑓
 (S8) 

This can be rewritten as  

 𝑓 𝜉 𝑓  (S9) 

 𝑓 Ξ 𝑓  (S10) 

 

where Ξ is the diagonal matrix of the 𝑓 𝑓  ratios. Using the definitions of 𝑓  and 𝑓  

from above (see eq. (S6) and eq. (S7)), we can rewrite previous equation as follows: 

 

 𝐹  𝑃 𝑔 Ξ 𝐹 𝑃 𝑔  (S11) 

 

After multiplying each side of the equation with inverted matrix 𝐹  one obtains 

 

 𝑃 𝑔 Ξ 𝑃 𝑔  (S12) 

 

One can rewrite this equation as 

 𝑃 , 𝑔 , 0 (S13) 

  

 𝑃 , 𝑃 ,   0 0 , Ξ 𝑃 𝑃 , Ξ 𝑃  
 

(S14) 

 
𝑔 , 𝑔

𝑔
 (S15) 

 

where 𝑃 ,  is row block matrix with size 𝑛 𝑛 𝑗  and 𝑔 ,  is column block vector 

with size 𝑛 𝑛 . 

As elements of matrix 𝑃 ,  are measured with some accuracy, the equation 𝑃 , 𝑔 ,

0 is never fulfilled in practice. Therefore, instead of looking for exact solution, we are looking 

for such 𝑔 ,  that minimizes the norm of the vector 𝑃 , 𝑔 ,  (optimization problem). The 

arising ambiguity of the solution can be dealt with by requiring certain properties of the vector 
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𝑔 , , such that only positive values are allowed. In that case the optimization problem can be 

defined as follows: 

 𝑚𝑖𝑛 𝑃 , 𝑔 ,

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐼𝑔 , 0
 

(S16) 

 

 

Smoothness regularized optimization 

 

One can impose further restrictions on the 𝑔 , 𝜆  solution. For instance, we can require 

that the shape of 𝑔 , 𝜆  does not have sharp changes, i.e. is smooth. This is achieved by 

searching the minimum norm of the derivative vector for each wavelength window Λ 𝐺, 𝑅 : 

 

 min 𝜕 𝑔 𝜆
𝟐

, Λ 𝐺, 𝑅  (S17) 

 

where the derivative 𝜕 𝑔 𝜆  is defined as 

 

 
𝜕 𝑔 𝜆

𝑑𝑔 𝜆
𝑑𝜆

 (S18) 

 

or in a case of finite-difference approximation 

 

 
𝜕𝑔

∆𝑔
∆𝜆

 
(S19) 

 

where ∆𝑔  can be defined as forward difference 

 

 ∆𝑔 𝑔 𝑔  (S20) 

as a backward difference  

 

 ∆𝑔 𝑔 𝑔  (S21) 

 

or as a central difference 

 
∆𝑔

1
2

𝑔 𝑔  (S22) 
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Therefore, the vector of 𝑔 differences can be expressed as 

 

 ∆𝑔 𝐷 𝑔  
 

(S23) 

  

 

𝐷
1
2

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0
1 0 1

0 1 0
⋯ 0

⋮ ⋱ ⋮

0 ⋯
0 1 0
1 0 1

0 0 0⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

 

(S24) 

 

where D is first-order, central-difference differentiation operator with 1’s on upper diagonal, -

1’s on lower diagonal and 0’s on main diagonal. First and last row elements are treated 

specially, i.e. set to zero. 𝐷𝑔  represents a measure of the variation or a measure of 

“smoothness” of 𝑔 . 

The squared norm of vector 𝜕𝑔  is: 

 

 𝜕𝑔 𝜕𝑔 𝜕𝑔 𝑔 𝑆 𝑔  (S25) 

 

where S is a “smoothness” matrix/operator 

 

 
𝑆

1
∆𝜆

𝐷 𝐷 (S26) 

 

A sharp change of derivative on the border of two spectral windows, G and R, is allowed. 

Therefore, we build the final smoothing operator as block matrix: 

 

 

 

𝑆 ,

1
∆𝜆

𝐷 𝐷 0

0
1

∆𝜆
𝐷 𝐷

 (S27) 

 

 

Matrices 𝐷  and 𝐷  are of sizes 𝑛 𝑛  and 𝑛 𝑛  respectively. Finally, the 

smoothness regularized optimization problem can be formulated as: 
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 𝑚𝑖𝑛 𝑔 
, 𝜇 𝑆 , 𝑃 , 𝑃 , 𝑔 ,

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐼𝑔 , 0
(S28) 

 

where µ is regularization term, penalizing sharp changes of the 𝑔 ,  solution.  

In our workflow, we multiply the spectra of dyes, 𝑃 and 𝑃 , with the spectra of dichroic, 

filters and detector, and the optimized 𝑔 ,  solution in that case is not the detection profile, 

but the correction to it. Smoothness regularized optimization of the 𝑔 ,  solution was 

performed using in-house Python script, based on quadratic programming module of CVXOPT 

library. 
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Supplemental Note 4: Goodness-of-fit landscape for methods M-1 and M-3 

 

Here we show γ and β goodness-of-fit landscape, where as a goodness of fit statistics we 

used sum of weighted squared residuals, here denoted as sse (“sum of squared errors”). 

Furthermore, we examined how is fit landscape affected by limited data availability, i.e. when 

only one sample is available for the calibration. We considered two scenarios: global calibration 

of three populations (“global γ”), and calibration of a single population (“local γ”). In both 

cases, we evaluate following two methods: “Non-linear regression of burst-wise 𝑆  versus 

𝐸 ” (M-1), and “Linear regression on photon counts” (M-3). In the first step generated is 

a search space of all possible combinations of γ and β values for which we would like to evaluate 

goodness of a fit. In the next step, for each of the γ and β combinations, computed is a curve 

(M-1) or a plane (M-3), and estimated is the goodness of a given fit model, as a sum of a 

weighted squared residuals, sse. As weights, used are robust weights, calculated according to 

bisquare weight function.5 Finally, we normalize sse with the minimum observed 𝑠𝑠𝑒 , to 

ensure equal scaling of the z-axis for different calibration methods. Contour lines are displayed 

in range from 1 𝑠𝑠𝑒 𝑠𝑠𝑒⁄  to 1.1 𝑠𝑠𝑒 𝑠𝑠𝑒⁄ .  It can be seen in Figure SN1 that in both 

scenarios, quite broad range of γ and β values satisfy the data. Lastly, we demonstrate that when 

using a single population in a fit ambiguity of the optimal solution visibly increases, as well the 

discrepancy between methods M-1 and M-3. 

 

 
Figure SN4.1. γ and β goodness-of-fit landscape using methods M-1 and M-3. (a) global calibration of three 
samples (HF, MF and LF) and (b) local calibration of a single sample (HF) for a dye combination AF488-
Atto647N.  
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Supplemental Note 5: Static FRET-line.  

 

If one assumes a fixed distance between donor and acceptor, then only a single FRET rate is 

expected from single donor lifetime, 𝜏 . With that being the case, static FRET-line can be 

described using two following simple equations: 

 𝐸 1
𝜏

𝜏
 (S29) 

 

 𝐹 |

𝐹 |

𝜙 ,

𝜙 ,
∙

𝜏

𝜏
1  (S30) 

 

In such approximation, to obtain static FRET-line, FRET rate, 𝑘 ,  is varied, giving us a 

relation between all possible 𝐸 or |

|
 values and all possible 𝜏  values. Unfortunately, this 

simple scenario does not explain experimental data. However, even for the structurally static 

systems, DA sub-population is not lying on a static FRET-line defined as in (S29) and (S30). 

This displacement largely is caused by the approximation of dyes being fixed in space, while 

in experiment dyes are coupled to the biomolecules via ~20 Å long chemical linkers. This 

means that there is a spatial distribution of donor and acceptor positions, leading to the 

distribution of lifetimes, 𝑝 𝑘 ,  which then translates into distribution of interdye distances, 

𝑝 𝑅  6. For dye positions being normally distributed around the mean dye position, 𝑝 𝑅  

is given as non-central χ-distribution, with non-centrality parameter being distance between 

mean dye positions, 𝑅 , and width parameter 𝜎 . However, for long interdye distances and 

small variance, χ-distribution converges to the normal distribution. As in experiments only the 

distances > 35Å are measured, and the linker mobility induced distribution broadening is in the 

range of 5-10 Å, we can then express 𝑝 𝑅  as follows: 

 

 
𝑝 𝑅

1

𝜎 √2𝜋
𝑒

〈 〉

 (S31) 

 

To correct static FRET-line for dye linker mobility, we vary 〈𝑅 〉, and for each of them 𝑝 𝑅  

is calculated, using a fixed value of 6Å for standard deviation, as this is found to be in agreement 

with series of benchmark experiments.7 Using computed probabilities, 𝑝 𝑅 , we can further 

calculate species-weighted average fluorescence lifetime, 〈𝜏 〉 ∑ 𝑝 𝑅 𝜏 . Static 

FRET-line corrected for linker mobility, can be then expressed as follows: 
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𝐸 1

∑ 𝑝 𝑅 𝜏

𝜏
 (S32) 

 

 𝐹 |

𝐹 |

𝜙 ,

𝜙 ,
∙

𝜏
∑ 𝑝 𝑅 𝜏

1  (S33) 

 

For different values of 𝜎 , shape of static FRET-line changes for the short lifetimes, i.e. high 

FRET efficiencies.  Finally, it is important to note that all the static FRET-line derivations above 

assumed single donor-only lifetime, 𝜏 . This condition is often not met, and if donor 

possesses multiple lifetimes due to, for instance, multiple isomeric states, then such 

approximated static FRET-line will not properly describe the system. 

Parameters used to generate static FRET-lines for different dye combinations are given in Table 

S5. 

 

 

Supplemental Note 6: Apparent dynamic shift determination 

 

To assess the accuracy of procedures for determination of correction parameters, determined is 

displacement of DA sub-populations from a static FRET-line. We refer to this displacement to 

as apparent dynamic shift, 𝑑𝑠 . In the first step, ensured is equal scaling in the range 0-1 for 

both axes in the 𝐸 〈𝜏 〉  plot, by normalizing x-axis with 𝜏 . In the next step, performed 

is a fit of the DA population using a superposition of N bivariate normal distributions. In a case 

that a mixture of Gaussians is needed to describe the population, mean of the Gaussian with 

maximum amplitude is taken. Next, computed are distances of the mean point to all points in 

the static FRET-line. Finally, the shortest distance is taken as a value for 𝑑𝑠 . Due to the 

curvature of the static FRET-line that accounts for linker broadening, the shortest distance is 

not necessarily the orthogonal one. Lastly, dynamic shift is assigned a positive or negative sign 

if the population is above or below the static FRET-line.   
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Supplemental Note 7: AV simulations  

 

AV represents sterically allowed space of the dye coupled to biomolecule. In the AV method, 

fluorophore moiety is modelled as a sphere with radius Rdye or as an ellipsoid with radii Rdye 1 , 

Rdye (2), Rdye (3). Model with three radii is generally recommended for sterically complex dye 

environments. Chemical linker that couples dye to the biomolecule is modelled as a cylinder 

with length Llength and width Lwidth. The AV algorithm searches for the dye positions from 

attachment point and within the linker length, and this way a 3D grid is built around the 

attachment point, with the resolution of 0.9 Å. However, only those positions that do not cause 

steric clashes with the biomolecule are taken. To allow that linker actually can move around its 

attachment point, there is certain tolerance for linker clashes, such that all positions within 

0.5×Lwidth are allowed.  

All sterically allowed points in the AV cloud are equally weighted when calculating FRET 

observables. Such approach provided accurate inter-dye distances when host molecule for dyes 

are nucleic acids.7, 8  

Here we used Rdye = 3.5 Å, Lwidth = 4.5 Å, Llength = 21 Å for AF488 and Llength = 22.5 Å for 

acceptor dyes. 

AV simulations were performed using open-source software Olga9 available at 
github.com/Fluorescence-Tools/Olga. 
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Supplemental Tables 
 

Table S1. Sequence of dsDNA molecules and labelling sites. Labelling sites for the donor and 
acceptor are denoted in green and red. In the sample name, abbreviations LF, MF and HF 
indicate low-, medium- and high-FRET efficiency.

Name Labelling position Sequence and labelling sites 

LF 

T 28 
 

5’- GAG  CTG  AAA  GTG  TCG  AGT  TTG  TTT  GAG  TGT  TTG  TCT  GG-3’ 
 

T 31 
 

3’- CTC  GAC  TTT  CAC  AGC  TCA  AAC  AAA  CTC ACA  AAC  AGA  CC-5’ 

 

MF 

T 23 
 

5’- GAG  CTG  AAA  GTG  TCG  AGT  TTG  TTT  GAG  TGT  TTG  TCT  GG-3’ 
 

T 31 
 

3’- CTC  GAC  TTT  CAC  AGC  TCA  AAC  AAA  CTC ACA  AAC  AGA  CC-5’ 
 

HF 
 

T 19 
 

5’- GAG  CTG  AAA  GTG  TCG  AGT  TTG  TTT  GAG  TGT  TTG  TCT  GG-3’ 
 

T 31 
 

3’- CTC  GAC  TTT  CAC  AGC  TCA  AAC  AAA  CTC ACA  AAC  AGA  CC-5’ 
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Table S2. Documentation of sample properties, experimental design and parameters used in 
data processing and analysis  

A. Sample specification

Samples 

Double-stranded DNA rulers: 
 
 LF: sample with low-FRET efficiency; 19 bp 

separation 
 MF: sample with medium-FRET efficiency; 14 bp 

separation 
 HF: sample with high-FRET efficiency; 10 bp 

separation 
 

For sequence information see main text Table S1. 

Dyes and labelling 
modification/linkage 
length 

Donor dye:  
 Alexa Fluor 488 (TFP ester/C6 linker) 
Acceptor dye:  
 Atto647N (NHS ester/C2 linker) 
 Alexa Fluor 647 (NHS ester/C2 linker) 
 Cy5 (NHS ester/C2 linker)

Labelling positions 
LF sample: T28 (D-strand); T31 (A-strand) 
MF sample: T23 (D-strand); T31 (A-strand) 
HF sample: T19 (D-strand); T31 (A-strand) 

Buffer 5 mM MgCl2, 150 mM NaCl, and 50 mM TRIS at pH 7.9
Additives n.a. 

B. Measurement specification

Measurement modality 
confocal smFRET measurements of freely diffusing molecules 
using Pulsed Interleaved excitation (PIE)

Laser 
Donor excitation laser: LDH-D-C 485 (PicoQuant, Germany)  
Acceptor excitation laser: LDH-D-C 640 (PicoQuant, 
Germany)

Laser power at the sample 
(measured on a dry 
objective) 

Donor excitation laser: 60 µW 
Acceptor excitation laser: 10µW (20 µW for samples with 
Atto647N)

Laser repetition rate 32 MHz (16 MHz for samples with Atto647N) 
Laser repetition time 31.25 ns (62.5 ns for samples with Atto647N) 
Delay between the lasers ~ 15 ns (~ 31 ns for samples with Atto647N) 
Time resolution 1 ps (2 ps for samples with Atto647N)
Confocal microscope Olympus IX71 (Hamburg, Germany)
Dichroic beamsplitter FF500/646-Di01 (Semrock, USA)

Objective 
water immersion objective UPlanSApo 60x/1.2 NA (Olympus 
Hamburg, Germany)

Observation volume size ~6 fL 
Pinhole size 100 µm
Fluorescence beamsplitter longpass beamsplitter Q595 LP DCXR (AHF, Germany),

Bandpass filters 

donor detection channels: FF01-530/43-25 (AHF, Tübingen, 
Germany) 
acceptor detection channels: and HQ 720/150 nm (AHF, 
Tübingen, Germany)
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Detectors 

4 donor detection channels: τ-SPAD (PicoQuant, Germany): 
 #0, #4 – perpendicular signal detectors 
 #1, #5 – parallel signal detectors 
4 acceptor detection channels: SPCM-AQR-14 (Perkin 

Elmer): 
 #2, #6 – perpendicular signal detectors 
 #3, #7 – parallel signal detectors

Data acquisition 
electronics 

TCSPC and Time Tagging Electronics HydraHarp 400 
(PicoQuant, Germany)

Raw data format HydraHarp 400 time-tagged time-resolved (TTTR) file (*.ht3)
Sample chamber 8 well NUNC chambers with #1.5 borosilicate glass bottom 

(Lab-Tek, Thermo Scientific);  
sample volume: 0.5 mL

Temperature 20°C 
C. Data processing/ parameters and software

Software 

MFD Spectroscopy and Imaging 
Software package for confocal fluorescence spectroscopy and 
imaging experiments using Multiparameter Fluorescence 
Detection (MFD) data includs various analysis tools (FCS, 
fFCS, PDA, seTCSPC, trace analysis, 2D simulation of MFD 
diagrams and Multiparameter Fluorescence Image 
Spectroscopy (MFIS)).

Burst search method Inter-photon time- based burst selection with Lee filter 
smoothing of inter-photon time trace

Selection method All photons
Lee filter parameters m=2; σ =10 
Inter-photon time 
threshold 

100 µs 

Minimum number of 
photons in a burst 

60 

Japanese correction factors 
for polarization mixing 

𝑙  = 0.0175, 𝑙 = 0.0526 

Time window for 
computation of ALEX-
2CDE filter 

100 µs 

dsDNA-Alexa Fluor 488- Atto647N 

𝐺 /  donor detection channels: 1.12 
acceptor detection channels: 1.06

Background count-rate 

𝑆 |  = 0.7617 kcps 

𝑆 |  = 0.4131 kcps 

𝑆 |  =  0.4192 kcps 

𝑆 𝐸  selection of 
D0 population 

-0.017 < 𝐸  < 0.074 
 0.955 < 𝑆 < 1.002 

Donor crosstalk, α 0.0145
𝑆 𝐸  selection of 

A0 population 
𝐸  > 0.478 

0.017 < 𝑆 < 0.117 
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Direct excitation of 
acceptor, δ 

0.0243 

ALEX-2CDE threshold for 
selection of DA population 

15.5 

β and γ parameters 

 Non-linear regression of burst-wise 𝑆  versus 
𝐸  values (M-1) 

γ = 0.9046; β =0.6617 
 Linear regression between 1 〈 𝑆 〉⁄  and 〈 𝐸 〉 of 

the population means (M-2) 
γ = 0.8967; β = 0.6075 

 Linear regression on photon counts (M-3) 
γ = 0.8887; β = 0.6215

dsDNA-Alexa Fluor 488- Alexa Fluor 647 

𝐺 /  donor detection channels: 1.25 
acceptor detection channels: 1.11

Background countrate 

𝑆 |  = 0.7901 kcps 

𝑆 |  = 0.4866 kcps 

𝑆 |  = 0.3519 kcps 

𝑆 𝐸  selection of 
D0 population 

-0.002 < 𝐸 < 0.058  
 0.968 < 𝑆  < 1.012  

Donor crosstalk, α 0.0118
𝑆 𝐸  selection of 

A0 population 
𝐸   > 0.478 

 0.028 < 𝑆  < 0.139  
Direct excitation of 
acceptor, δ 

0.0321 

ALEX-2CDE threshold for 
selection of DA population 

20.5 

β and γ parameters 

 Non-linear regression of burst-wise 𝑆  versus 
𝐸  values (M-1) 

γ = 0.5449; β = 0.5849 
 Linear regression between 1 〈 𝑆 〉⁄  and 〈 𝐸 〉 of 

the population means (M-2) 
γ = 0.5454; β = 0.5476 

 Linear regression on photon counts (M-3) 
               γ = 0.5066; β = 0.5631

dsDNA-Alexa Fluor 488- Cy5 

𝐺 /  donor detection channels: 1.14 
acceptor detection channels: 1.14

Background count-rate 

𝑆 |  = 0.7095 kcps 

𝑆 |  = 0.4274 kcps 

𝑆 |  = 0.3658 kcps 

𝑆 𝐸  selection of 
D0 population 

-0.001 < 𝐸  < 0.058 
 0.966 < 𝑆  < 1 

Donor crosstalk, α 0.0134
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𝑆 𝐸  selection of 
A0 population 

 𝐸   > 0.478  
 0.028 < 𝑆  < 0.139 

Direct excitation of 
acceptor, δ 

0.0384 

ALEX-2CDE threshold for 
selection of DA population 

18.5 

β and γ parameters 

 Non-linear regression of burst-wise 𝑆  versus 
𝐸  values (M-1) 

γ = 0.5045; β = 0.5107 
 Linear regression between 1 〈 𝑆 〉⁄  and 〈 𝐸 〉 of 

the population means (M-2) 
γ = 0.5034; β = 0.4757 

 Linear regression on photon counts (M-3) 
              γ = 0.4644; β = 0.4814
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Table S3. List of dyes used for regularized optimization of instrument detection profile. Dyes 
are selected such that they emit in both detection channels. All measurements are performed in 
Milli-Q water (18 MΩ∙cm), with exception of Rhodamine B, where triethylamine (Fluka) was 
added in traces to the measurement solution to ensure formation of Rhodamine B- zwitterion. 
Background signal was recorded for each sample separately. This is especially crucial for 
reproducibility of smaller intensity ratios.  

Dye Producer 
Stock solution 

solvent 
Alexa Fluor 488 free acid, 5 – isomer/ 
experimental sample

Molecular Probes water 

Atto 488 – COOH ATTO-TEC water 

Rhodamine 110 – chloride Sigma Aldrich 
ethanol 

(Merck Supelco)
Oregon Green 514 carboxylic acid, 
mixed isomers 

Molecular Probes 
N, N – DMF 

(Merck Supelco)

Rhodamine 123 Sigma Aldrich 
ethanol 

(Merck Supelco)

Rhodamine 19 – perchlorate Fluka 
ethanol 

(Merck Supelco)

Atto 532 – COOH ATTO-TEC water 

Rhodamine 6G Lambda Physik water 

Atto 542 – COOH ATTO-TEC water 

Rhodamine B Fluka water 

Alexa Fluor 546 free acid (isomer 
mix?/experimental sample) 

Molecular Probes water 

5 – carboxy tetramethylrhodamine (5-
TAMRA) 

Biosearch 
methanol 

(Acros Organics)

Atto 550 – COOH ATTO-TEC 
DMSO 

(Fisher Scientific)
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Table S4. Measured, predicted and optimized ratios of green to red fluorescence intensity. 

Dye 𝝃𝒋,𝐦𝐞𝐚𝐬𝐮𝐫𝐞𝐝 𝝃𝒋,𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝 𝝃𝒋,𝐨𝐩𝐭𝐢𝐦𝐢𝐳𝐞𝐝 
𝝃𝒋,𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝

𝝃𝒋,𝐦𝐞𝐚𝐬𝐮𝐫𝐞𝐝
 

𝝃𝒋,𝐨𝐩𝐭𝐢𝐦𝐢𝐳𝐞𝐝

𝝃𝒋,𝐦𝐞𝐚𝐬𝐮𝐫𝐞𝐝
 

Alexa Fluor 488 free 
acid, 5 – isomer/ 
experimental sample

93.2809 93.1178 91.6162 0.9983 0.9822 

Atto 488 – COOH 69.7432 72.2228 73.3419 1.0356 1.0516 

Rhodamine 110 – 
chloride 

60.5077 61.1656 61.7754 1.0109 1.0210 

Oregon Green 514 
carboxylic acid, 
mixed isomers 

48.8029 45.7916 45.2581 0.9383 0.9274 

Rhodamine 123 40.8533 43.4413 44.7400 1.0633 1.0951 

Rhodamine 19 – 
perchlorate 

16.2032 15.4369 16.8769 0.9527 1.0416 

Atto 532 – COOH 9.4590 8.7309 9.5257 0.9230 1.0070 

Rhodamine 6G 8.5998 7.7937 8.5223 0.9063 0.9910 

Atto 542 – COOH 2.8493 2.5236 2.7775 0.8857 0.9748 

Rhodamine B 0.5932 0.5742 0.5929 0.9680 0.9996 

Alexa Fluor 546 free 
acid (isomer 
mix?/experimental 
sample) 

0.4879 0.4268 0.4667 0.8747 0.9565 

5-carboxy 
tetramethylrhodamine 
(5-TAMRA) 

0.3532 0.3015 0.3283 0.8537 0.9297 

Atto 550 – COOH 0.2755 0.2560 0.2806 0.9291 1.0182 
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Table S5. Parameters of static FRET-line for different dye combinations used in this study. 

Dye pair 𝝉𝐃 𝟎  [ns] 𝝈𝐃𝐀 [Å] 𝑹𝟎 [Å] 

AlexaFluor488-Atto647N 3.94 6 49 

AlexaFluor488-AlexaFluor647 3.94 6 52 

AlexaFluor488-Cy5 3.94 6 52 
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Supplemental Figures  

 

 

Figure S1. Spectra of free dyes used for regularized optimization of instrument spectral 
response.  
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Figure S2. Discrepancy between measured and predicted/optimized ratios of green to red 
fluorescence intensity. 
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