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Abstract

The non-Newtonian flow of glass-forming fluids displays multiple interesting phenomena that are dif-
ferent from those found in simple liquids. However, so far simulations of those glass-forming fluids do
not use a constitutive equation that arises from a microscopic theory able to predict a glass transition.
To determine the flow of any fluid in general one has to solve the non-linear Navier-Stokes equations,
in our special case we can reduce these to the incompressible time-dependent Stokes equations since
in the flow of glass-forming fluids advective inertial forces are negligible compared to viscous forces.
In this work we present a combination of finite element method (FEM) fluid flow simulations with mi-
croscopic Mode-Coupling theory (MCT) as a source to provide constitutive equations. One challenge
lies in the fact that MCT poses complicated integral equations that capture the entire flow-history of
the glass-forming fluid. Another numerical difficulty lies in the fact that the fluid mechanical and the
MCT equations are coupled via the Finger tensor, a rotation invariant measure for the deformation
of a fluid element. To decouple the set of equations while remaining stable implicit algorithms an
operator splitting technique was used.
Previously MCT has only been numerically solved in very simple setups, such as homogeneous channel
flow. The combination of MCT to the highly flexible finite element method allows to simulate flow
problems in various non-trivial geometries, such as the flow past obstacles or in an abrupt contraction,
with desired local spatial resolution refinements. Furthermore by choosing adequate finite elements
one can assure some import physical laws such as the conservation mass and momentum.
In general the dynamics of glass-forming fluids depends on slow collective structural relaxation pro-
cesses that cause viscoelasticity. Viscoelastic fluids combine the response of an elastic solid at short
observation time scales with that of a viscous liquid at long times. Our MCT model is able to produce
all standard viscoelastic effect such as the appearance of a plug flow in channels or stress overshoots in
start up flow curves. However, the biggest reward of tackling these more complicated integral consti-
tutive equations is that one is able to recover flow-history dependent effects of the glass-forming fluids
that empirical models cannot capture. One of these effects is the qualitatively correct formation of
residual stresses after the removal of an external driving force, for example a pressure gradient. In our
FEM-MCT simulations we were able to reproduce residual stresses that qualitatively show all features
found in experiments while the standard empirical differential constitutive models cannot reproduce
them at all.
Despite the huge success of the MCT-ITT model in predicting geometry-dependent residual shear
stresses in glass-forming fluids the model does lack rheological correctness. From continuum mechanics
it is known that the correct rate of change for a scalar quantity (such as the transient density correla-
tion function φ) in the (laboraty fixed) Euler frame is given by the advected derivative D

Dt
∶= ∂t+[v⃗ ⋅∇⃗].

It turned out that in our advected MCT simulations, in which the velocities ∣v⃗∣ are small, the advection
term does not change the rheological effects of the MCT-ITT model. Most importantly we found the
same residual shear stresses after a cessation of flow past a spherical obstacle as in the local MCT-ITT
version. However, in simulations with bigger velocities ∣v⃗∣ and therefore "bigger" v⃗ ⋅ ∇⃗ and especially
in two-component systems the advection will have a influence on the decay of the transient density
correlation function φ and therefore on the stresses.
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Kurzzusammenfassung

Die nicht-newtonsche Strömung von glasbildenden Flüssigkeiten weist zahlreiche interessante
Phänomene auf, die sich von denen einfacher Flüssigkeiten unterscheiden. Bislang werden für Sim-
ulationen solcher glasbildenden Flüssigkeiten jedoch keine konstituierenden Gleichungen verwendet,
die sich aus einer mikroskopischen Theorie ergeben, mit der sich ein Glasübergang vorhersagen lässt.
Um die Strömung eines beliebigen Fluids zu bestimmen, muss man im Allgemeinen die nichtlinearen
Navier-Stokes-Gleichungen lösen. In unserem speziellen Fall können wir diese auf die inkompress-
iblen zeitabhängigen Stokes-Gleichungen reduzieren, da die advektiven Trägheitskräfte im Vergleich
zu den viskosen Kräften bei der Strömung von glasbildenden Flüssigkeiten vernachlässigbar sind. In
dieser Arbeit stellen wir eine Kombination aus Finite-Elemente-Methode (FEM) Strömungssimulatio-
nen mit mikroskopischer Mode-Coupling-Theorie (MCT) als Ursprung der konstituierenden Gleichun-
gen vor. Eine Herausforderung liegt darin, dass die MCT komplizierte Integralgleichungen aufstellt,
die die gesamte Strömungsgeschichte der glasbildenden Flüssigkeit erfassen. Eine weitere numerische
Schwierigkeit liegt darin, dass die strömungsmechanischen Gleichungen und die MCT-Gleichungen
über den Finger-Tensor, ein rotationsinvariantes Maß für die Verformung eines Strömungselements,
gekoppelt sind. Um den Gleichungssatz zu entkoppeln und gleichzeitig stabile implizite Algorithmen
zu erhalten, wurde ein Operator-Splitting-Verfahren verwendet.
Bisher wurde die MCT nur in sehr einfachen Konstellationen, wie zum Beispiel in homogenen Strö-
mungskanälen, numerisch gelöst. Die Kombination von MCT mit der hochflexiblen Finite-Elemente-
Methode ermöglicht es uns, Strömungsprobleme in verschiedenen nicht-trivialen Geometrien zu simulieren,
wie z.B. die Strömung um ein Hindernis oder in einer abrupten Verengung, mit gewünschten lokalen
räumlichen Auflösungsfeinheiten. Außerdem kann man durch die Wahl geeigneter finiter Elemente
einige wichtige physikalische Gesetze wie die Massen- und Impulserhaltung sicherstellen.
Im Allgemeinen hängt die Dynamik der glasbildender Flüssigkeiten von langsamen kollektiven struk-
turellen Relaxationsprozessen ab, die Viskoelastizität verursachen. Viskoelastische Flüssigkeiten kom-
binieren die Reaktion eines elastischen Festkörpers auf kurzen Beobachtungszeitskalen mit denen einer
viskosen Flüssigkeit auf langen Zeitskalen. Unser MCT Modell ist in der Lage, alle viskoelastis-
chen Standardeffekte zu reproduzieren, wie zum Beispiel. das Auftreten eines Pfropfenschrömung in
Kanälen oder Spannungsüberschwinger in den Anlaufkurven. Der größte Vorteil dieser kompliziert-
eren integralen konstitutiven Gleichungen besteht jedoch darin, dass man in der Lage ist, von der
Strömungsgeschichte abhängige Effekte der glasbildenden Flüssigkeiten zu untersuchen, die empirische
Modelle nicht erfassen können. Einer dieser Effekte ist die qualitativ korrekte Vorhersage eingefrorener
Spannungen nach dem Wegfall einer externen treibenden Kraft wie zum Beispiel eines Druckgradi-
enten. In unseren FEM-MCT-Simulationen konnten wir eingefrorene Spannungen reproduzieren, die
qualitativ alle in Experimenten gefundenen Merkmale aufweisen, während die standardmäßigen em-
pirischen differenziellen konstituierenden Modelle sie überhaupt nicht reproduzieren können.
Trotz des großen Erfolgs des MCT-ITT-Modells bei der Vorhersage geometrieabhängiger Residualspan-
nungen in glasbildenden Flüssigkeiten mangelt es dem Modell an rheologischer Korrektheit. Aus der
Kontinuumsmechanik ist bekannt, dass die korrekte Änderungsrate für eine skalare Größe (wie z. B.
die transiente Dichtekorrelationsfunktion φ) im (laborfixierten) Euler-Rahmen durch die advektierte
Ableitung D

Dt
∶= ∂t + [v⃗ ⋅ ∇⃗] gegeben ist.

Es zeigte sich, dass in unseren Simulationen der advektierten MCT, in denen die Geschwindigkeiten∣v⃗∣ klein sind, der Advektionsterm die rheologischen Effekte des MCT-ITT-Modells nicht verändert.
Am wichtigsten ist, dass wir die gleichen residualen Schubspannungen nach einer Unterbrechung der
Strömung an einem kugelförmigen Hindernis gefunden haben wie in der lokalen MCT-ITT-Version.
In Simulationen mit größeren Geschwindigkeiten ∣v⃗∣ und damit "größeren" v⃗ ⋅ ∇⃗ und insbesondere in
Zweikomponentensystemen wird die Advektion jedoch einen Einfluss auf den Zerfall der transienten
Dichtekorrelationsfunktion φ und damit auf die Spannungen haben.
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Chapter 0

Introduction and Outline

0.1 Introduction

Many fluids we encounter in everyday life are viscoelastic and shear-thinning. These terms refer to
two "non-Newtonian" flow behaviors (since the description of the flow of ordinary fluids like water
goes back to Newton1) that that provoke many interesting phenomena. They arise due to collective
relaxation dynamics on the microscale and require sophisticated coarse-grained models to describe the
continuum behavior.
This thesis is about one way to combine elaborate microscopic theory with macroscopic finite elements
simulations to study viscoelastic (or viscoelastoplastic) flow of glass-forming fluids in non-trivial ge-
ometries.
To set the stage, recall that Newtonian fluid flow is described by the linear-response relation

σ = ηγ̇,

where η is called the (dynamic) viscosity of the fluid. Thus in a Newtonian fluid the stress σ is
proportional to the strain-rate γ̇. This distinguishes them for solids where in linear response one finds
that the stress is proportional to the strain (not the strain-rate):

σ ∝ γ,

this relation is called Hooke’s law.
Already in 1867 James Clark Maxwell2 noticed that some materials show the properties of an elastic
solid on short times, but behave like a viscous fluid on long time scales [40]. Silly putty is a toy that
bounces from walls when thrown, but flows like a liquid when given enough time. Maxwell developed
a simple model of viscoelasticity that is based on the mechanical analog of a serial connection of an
elastic spring to a viscous damper / dashpot.

Figure 1: Schematic idea of the Maxwell element: a serial connection of an elastic spring to a viscous
dashpot. Figure from [25].

1Sir Isaac Newton (25 December 1642 – 20 March 1727) was an English mathematician, physicist, astronomer,
alchemist and theologian. He is widely recognized as one of the most influential persons in the scientific world.

2James Clerk Maxwell (13.06.1831 – 05.11.1879) was a Scottish mathematician and scientist mostly known for the
classical theory of electromagnetic radiation.
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CHAPTER 0. INTRODUCTION AND OUTLINE

The Maxwell model leads to a relation between stress σ and strain rate γ̇ (a material law or constitutive
equation (CE)) that is a differential equation:

σ̇ +
1

λ
σ = G∞γ̇.

This heuristic model was – and still is – a huge success because it is able to combine the elasticity on
short time scales with the viscosity on longer time scales, that we all know from honey for example.
If one quickly turns the pot of honey to its side for a second or maybe two nothing will flow. The
honey seems like a solid on this timescale of roughly one or two seconds. However if one leaves the
pot of honey on its side for a couple of minutes the honey flow out of its pot like a liquid. The time
necessary until the honey (or another Maxwell viscoelastic fluid) flows is the Maxwell time scale λ,
the viscosity of the flow is then given by η = G∞λ.
The Maxwell model can nicely be modified to include other rheological effects such as shear-thinning
and yield stress, which is the main characterization of plasticity in a material law. The effect of shear-
thinning is especially known and appreciated among painters because it is desirable to apply paint
(a colloidal suspension) very easily and evenly on a wall while painting but to have no further flow
(creating varnish run / tear) afterwards when the paintbrush is no longer in contact with the paint.
These characteristics are fulfilled if the dynamical viscosity is decreased while the painter shears the
paint of thickness h between their brush with velocity v and the stationary wall (effective strain-rate:
γ̇ ≈ v/h), but again increased to a timescale such that the paint is basically not flowing and dries on
the exact spots where it was painted on.
The second phenomenon mentioned before is the yield stress, which means that there is a minimum
stress needed for a material to flow or deform. Viscous fluid like water have no (or a zero) yield
stress, which means that only the tiniest amount of force is sufficient that for example they spread
on a sheet of paper (neglecting surface effects). Materials like for example ink for a printer have a
non-zero yield stress which is very helpful to achieve precise printing with sharp letters and edges since
the ink drops will not spread out. However the combination of shear-thinning and yield stress is not
always appreciated and can be very frustrating as we all know that from a bottle of ketchup (which
is a standard example of a shear-thinning yield stress fluid). First no ketchup comes out of the bottle
because the applied forces by gravity and carefully tapping the bottle are not sufficient to reach the
yield stress and after the one big tap the yield point is crossed and due to the shear-thinning all of a
sudden all the ketchup comes out really fast spreading all over our table.

2



0.1. INTRODUCTION

Figure 2: Typical measured flow curve of ketchup. One can see that ketchup is a very good example
of a shear-thinning yield stress fluid, because at zero shear rate the stress (here denoted by τ) does
not vanish, which is exactly the yield stress. Second one can see that the stress grows slower than
linear with an increase of the shear rate, which does mean that the effective viscosity η(γ̇) = τ(γ̇)/γ̇
decreases as the shear rate γ̇ increases. Figure from [4]

.

This thesis aims to go even beyond those shear-thinning variants of these heuristically based Maxwell-
like model (called generalized or nonlinear Maxwell or White-Metzner models) and uses an extension
of the so called Mode-Coupling Theory (MCT). A very well established theory in describing (ex-
pectation values of) such colloidal suspensions or polymeric melts such as paint, ketchup or honey
and many more. To deliver material laws / constitutive equations from first principles / statistical
mechanics able to describe and simulate the flow of viscoelastoplastic material a formalism called
integration through transients (ITT)[7] is used. This work specifically tackles the regime where the
colloidal suspensions / polymeric melts are so dense that without shear the viscosity tends to diverge
towards infinity. This regime where the viscosity of a colloidal system diverges is referred to as the
glassy state and is roughly speaking somewhat in between a liquid and a solid (microscopically, for
example liquid but macroscopically solid). The framework of MCT is highly successful in describing
the glass transition that occurs when the packing-fraction of a colloidal (hard-sphere like) suspension
reaches a certain threshold. The flow of glass-forming fluids displays multiple phenomena that are
quite different from those found in ordinary (Newtonian) liquids, such as the appearance of plug flow
in channels, or residual stresses after removal of the external driving force.

Crucially the MCT-ITT framework presents a constitutive equation in integral form, which can not be
reduced to a (partial) differential equation as the common CEs, such as those of the Maxwell model
(see above). The fact that one has to deal with integral equations will increase the computational
cost – especially in terms of memory – drastically, but on the other hand one can argue that integral

3



CHAPTER 0. INTRODUCTION AND OUTLINE

constitutive equations are capable to provide a much richer set of phenomenology because not only
the current state of the flow is taken into account but also the whole flow / deformation history of a
fluid element.

To numerically simulate the flow of any fluid (not restricted to vicsoelastoplastic ones) there are
numerous techniques, for example a simple finite differences scheme in both time and space or the
Lattice Boltzmann3 (LB) method, which is based on the main idea, to develop a highly simplified
pseudo-particle simulation, which nonetheless reproduces the Navier-Stokes equation in the contin-
uum limit. Both of these simulation techniques are not well established when dealing with complex
flow geometries. To solve that issue one can use the more flexible, but mathematically more complex
finite volume or finite element methods (FVM and FEM) where especially the FEM became increas-
ingly popular in the last decades because of its flexible application to deformation (linear elasticity)
but also fluid flow problems while making sure that basic physical laws such as mass and momentum
conservation are fulfilled (at least cell-wise, sometimes with more sophisticated numerical algorithms
even point-wise).

Main goal of this thesis is develop a FEM solver which uses the Mode-Coupling Theory to pro-
vide first-principles material laws for viscoelastoplastic fluids. To demonstrate the technique, various
geometries such as the channel (with and without obstacles) and the 4 to 1 contraction / extension are
used as exemplary cases to demonstrate how much richer constitutive equations of MCT explain qual-
itative flow phenomena observed in glass-forming (and more generally high viscoelastoplastic) fluids
that can not (or not well enough) be captured by using standard empirical constitutive equations that
are commonly used in conjunctiond with finite element simulations. One can state that this project
combines the microscopical description of the fluid behavior provided by the material laws from the
MCT extension with the mesoscopical fluid flow level described tb the Navier-Stokes equations.

0.2 Outline

The first chapter is a very brief introduction to the Mode-Coupling Theory of Brownian particles, but
will also go into the numerical details of the schematic MCT equation. Further in this first chapter
the linear / logarithmic schematic two-time MCT algorithm for computational fluid dynamics (CFD)
is developed.

In chapter two a very short recall of conservation laws and an in depth discussion of both differ-
ential and integral constitutive equations is given. The chapter also provides a detailed recapitulation
of the exentension of Mode-Coupling theory to non-linear rheology through the ITT framework. Fur-
thermore some analytical calculations are done to gain basic understanding of the – in comparison to
the MCT-ITT model – easier and widely used constitutive equation and see where they are lacking,
for example in terms of capability to predict residual stresses.

Chapter three provides a introduction to the mathematical basics of the finite element method to
numerically solve partial differential equations. It will also briefly focus on the implementation of
finite elements and partial differential equations (in their weak formulation) using the FEniCS exten-
sion in the python3 programming language. It will not show any mathematical proofs, but will refer
to excellent literature if more mathematical insight is desired by the reader.

3Ludwig Eduard Boltzmann (20 February 1844 – 5 September 1906) was an Austrian physicist and philosopher. His
greatest achievements were the development of statistical mechanics, and the statistical explanation of the second law of
thermodynamics.
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Chapter four will present how exactly the combined FEM-MCT code basis is implemented. An
in-depth derivation of the ’weak’ equations and all discretizations are extensivly discussed, also the
important mathematical details (like which order and elements are used) are discussed in compact
form. Also the code will be applied to both the generalized (integral) Maxwell model and especially to
the MCT constitutive model. The discussion will focus on start up and cessation of flow, stationary
plug flow in the channel and an in depth discussion of residual stresses in different geometries.

In the fifth chapter an advectional extension of the schematic two-time MCT will be discussed and
simulated. Like in the previous chapter all necessary equation will be derived in detailed steps. Sim-
ulation results will be compared with those of the standard (local) version of MCT-FEM.

Finally the sixth chapter will summarize the thesis and give an outlook towards further interesting
research in the field of finite element simulations of glass-forming / viscoelastoplastic fluids.
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Chapter 1

Mode-Coupling Theory

This chapter derives the basic equation of the so called mode-coupling theory of the glass transition
(MCT). MCT is a microscopical theory which is able to describe the transition of a liquid into a
so called glass or glassy state. The glassy state is commonly viewed as something in between a
crystalline solid and a disordered liquid, because macroscopic properties such as a diverging viscosity
and a bounded mean-squared displacement indicate a solid state, but microscopic properties such
as the structure factor S(q⃗) are identical to those found in liquid state systems. In experiment
a glass transition can be achieved by very rapidly cooling down or compressing a liquid below its
melting point. Under certain conditions the liquid might not undergo crystallization but its viscosity
η becomes so large that it basically stops flowing on any practical time scale [14, 2]. In this work
the Brownian1 dynamics version of MCT is used because the systems of interest are colloidal and
polymeric suspensions in which a (Newtonian) background fluid acts as a thermostat.

1.1 Derivation of MCT for Brownian Particles

In the following we summarize the key concepts of MCT in quiescent systems for later reference. An
overview of MCT extended to describe shear-thinning is given in section 1.4.

1.1.1 Brownian Motion and the Smoluchowski Operator

The overdamped limit of the stochastic equation of motion for one Brownian particle (labeled by index
k) in a system of N Brownian particles reads [45]:

dr⃗k = µF⃗k(Γ)dt +√2D ⋅ dW⃗k, (1.1)

where F⃗k(Γ) is the direct interaction force resulting from system configuration Γ and dW⃗k the Wiener
process (white noise) acting on particle k. It is important to mention that the Brownian motion is
driven by Wiener2 processes dW⃗k that are independent of each other. Furthermore D is known as the
diffusion coefficient and µ the particle mobility, both will be set to unity in the following derivation.
From the theory of stochastic differential equation for Markovian3 processes (again [45, 58]) it is known
that the set of equations 1.1 for each particle can be translated into a Fokker-Planck equation. In
this particular case the equation is usually called the Smoluchowski 4 equation, determining the time
evolution of the probability distribution function Ψ(Γ, t) to find the system in configuration Γ at a

1Robert Brown (21 December 1773 – 10 June 1858) was a Scottish botanist.
2Norbert Wiener (November 26, 1894 – March 18, 1964) was an American mathematician.
3Andrey Andreyevich Markov (14 June 1856 – 20 July 1922) was a Russian mathematician.
4Marian Smoluchowski (28 May 1872 – 5 September 1917) was a Polish physicist.
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CHAPTER 1. MODE-COUPLING THEORY

given time t:

∂tΨ(Γ, t) = Ω(Γ)Ψ(Γ, t), (1.2)

with the (forward) Smoluchowski operator (the Γ-dependence is dropped in the following to simplify
the notation):

Ω =
N

∑
k=1

∇⃗k ⋅ (∇⃗k − F⃗k(Γ)). (1.3)

The adjoint (or often called backward) Smoluchowski operator is given by:

Ω†
=

N

∑
k=1

(∇⃗k + F⃗k(Γ)) ⋅ ∇⃗k (1.4)

and drives the time evolution of observables. This is similar to the switch from the Schrödinger5 picture
which describes the time evolution of the wavefunction (here instead of wavefunction the evolution
of probability distribution function) to the Heisenberg6 picture which describes the time evolution of
operators (representing observables) in the theory of Quantum Mechanics.

1.1.2 MCT Equation for Brownian Particles

Transient Density Correlation Function

The observable of interest here is the particle density ρ(r⃗, t), or to be precise its Fourier7 transform
ρ̂(q⃗, t) which are defined by:

ρ(r⃗, t) ∶= N

∑
k=1

δ(r⃗ − r⃗k(t)), (1.5)

ρ̂(q⃗, t) = N

∑
k=1

eiq⃗⋅r⃗k(t)/√N. (1.6)

The time-dependent transient density correlation function is defined as:

Φ(q⃗, t) = ⟨ρ̂∗(q⃗)eΩ†tρ̂(q⃗)⟩, (1.7)

with ⟨. . . ⟩ the canonical / thermal average and the short notation ρ̂(q⃗) ∶= ρ̂(q⃗,0). The time-dependent
transient density correlation function is the time-dependent generalization of the static structure factor

S(q⃗) ∶= ⟨ρ̂∗(q⃗)ρ̂(q⃗)⟩ = 1

N
∑
i,j

eiq⃗⋅[r⃗j(0)−r⃗i(0)]. (1.8)

The static structure factor S(q⃗) is known to be linked to the radial distribution g(r). The radial
distribution function measures how many particles are on average found within a distance of r and
r + dr away from a particle. S(q⃗) can be obtained from g(r) via Fourier transformation [20]:

S(q⃗) = 1 +
N

V
∫

V
e−iq⃗⋅r⃗[g(r) − 1]dr⃗.

5Erwin Rudolf Josef Alexander Schrödinger (12 August 1887 – 4 January 1961) was a Nobel Prize-winning Austrian
and naturalized Irish physicist who developed fundamental results in quantum theory.

6Werner Karl Heisenberg (5 December 1901 – 1 February 1976) was a German theoretical physicist and one of the
main pioneers of the theory of quantum mechanics.

7Jean-Baptiste Joseph Fourier (21 March 1768 – 16 May 1830) was a French mathematician and physicist born in
Auxerre and best known for initiating the investigation of Fourier series.
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1.1. DERIVATION OF MCT FOR BROWNIAN PARTICLES

Figure 1.1: Static structure factor extracted from the simulations mimicking colloidal Brownian dy-
namics. The packing fractions ϕ = 0.45, 0.5, 0.55, and 0.57 are marked with crosses (red), squares
(green), circles (blue) and triangles (magenta), respectively. Figure from [60].

One can see that for all of the packing fractions shown the static structure factor S(q) looks like from
an classical simple liquid. However in the transient density correlation Φ(q, t) one observes a two-
staged decay. For the higher packing fractions (red crosses) the transient density correlation function
of this colloidal system plateaus at first until it finally decays.
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CHAPTER 1. MODE-COUPLING THEORY

Figure 1.2: Dynamic correlation function extracted from the simulations mimicking colloidal Brownian
dynamics. Packing fractions shown are ϕ = 0.585 (black plus symbols), ϕ = 0.58 (red crosses), ϕ = 0.57

(green stars), ϕ = 0.55 (blue open squares), ϕ = 0.53 (magenta filled squares) and ϕ = 0.50 (black
circles). Note that t/τ is shown such that all correlation functions decay at t/τ ≈ 1...10. Figure from
[60].
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1.1. DERIVATION OF MCT FOR BROWNIAN PARTICLES

Figure 1.3: Fits of stretched-exponential functions (dashed black lines) to the dynamic density corre-
lation functions obtained from simulations (circles) at ϕ = 0.585. The q-values are from top to bottom
qd = 6.6 (red), 7.4 (black), 9.8 (blue), 12.8 (green) and 15.6 (magenta), with d being the particle
diameter. The fit range was chosen as t ∈ [102

∶ 105]. Figure from [60].

Physical Interpretation: Caging Effect

The physical interpretation of this two-staged decay called the caging effect is best understood if one
thinks about hard disks. The first stage one can refer to as the ballistic regime: the disk (or particle
with another stiff interaction potential) moves freely until it collides with other particles. The plateau
stage, also called β-relaxation, occurs since the disks is trapped (due to the high packing fraction) in a
cage of other disks. This means that during caging (or β-relaxation) the mean-squared displacement
of the disks is bounded by the area of its neighboring particles. Whether now a second decay from
the plateau happens or not is decided (in terms of hard disks) by the packing fraction, if the packing
fraction is above a certain threshold – and therefore the system in glassy state – the cages cannot be
broken and there is no second decay (the second decay is called α-relaxation). If the system is close
but below the glass transition the cages will break during β-relaxation (it will take longer the closer
the system is to the glass transition point) and due to the escape of the cages the α-relaxation will
occur [28].
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Figure 1.4: Typical MCT prediction for the transient density correlation function, here called F (k, t),
of a system close to its glass transition point as a function of time, for a wave number k = k0 that
corresponds to the first peak of the static structure factor. At very short times, particles undergo
ballistic motion. At intermediate times, particles become transiently trapped in cages (β-relaxation)
and the transient density correlation function correspondingly remains approximately constant. Only
at sufficiently long times particles will break free and full relaxation takes place (α-relaxation) [28].
Figure from Ref. [28].

Mori-Zwanzig Projection Operator Formalism

To derive an equation of motion for Φ(q⃗, t) one can now use the Mori8-Zwanzig9 projection operator
formalism. First introduce a projection operator

P =
∣ρ̂(q⃗)⟩⟨ρ̂∗(q⃗)∣

S(q⃗) , (1.9)

to project onto density fluctuations. Also define the orthogonal projector Q by Id = P +Q. Note that
∂te

Ω†t
= Ω†(P +Q)eΩ†t

= Ω†PeΩ†t
+Ω†QeΩ†t and use the Dyson decomposition

eΩ†t
= eΩ†Qt

+∫
t

0
eΩ†Q(t−t′)Ω†

PeΩ†t′dt′, (1.10)

in the second term to obtain an equation of motion for the density correlation function:

∂tΦ(q⃗, t) = −ω(q⃗)Φ(q⃗, t) +∫ t

0
K(q⃗, t − t′)Φ(q⃗, t′)dt′, (1.11)

with

−ω(q⃗) ∶= S−1(q⃗)⟨ρ̂∗(q⃗)Ω†ρ̂(q⃗)⟩∝ −q2 (1.12)

8Hajime Mori (*1926) is a Japanese theoretical physicist working on nonequilibrium statistical mechanics and chaos
theory.

9Robert Walter Zwanzig (9 April 1928 - 15 May 2014) was an American theoretical physicist and chemist who made
important contributions to statistical mechanics
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1.1. DERIVATION OF MCT FOR BROWNIAN PARTICLES

and the Mori-Zwanzig memory kernel defined by:

K(q⃗, t) ∶= S−1(q⃗)⟨ρ̂∗(q⃗)Ω†
QeΩ†QtΩ†ρ̂(q⃗)⟩. (1.13)

Note that if Q and Ω† would commute, the Mori-Zwanzig memory kernel K would vanish and the
equation of motion for Φ(q⃗, t) would be a simple exponential decay, however since Q and Ω† do not
commute further effort must be made.

Second Dyson Decomposition

Equation 1.11 is treated further in order to rewrite the memory kernel K(q⃗, t) into a so called MCT
(friction) memory kernel. Therefore one first defines a further projection operator on the physical
grounds, that one wants to obtain a memory kernel that is a correlation of fluctuating forces. Therefore
define

P
′
∶= −ρ̂(q⃗)⟩ω(q⃗)−1⟨ρ̂∗(q⃗)Ω†, (1.14)

Q
′
∶= Id −P ′

to take out the one-particle reducible dynamics by a further Dyson decomposition

eΩ†Qt
= eΩ†Q′Qt

+∫
t

0
eΩ†Q(t−t′)Ω†

P
′
QeΩ†Q′Qt′dt′. (1.15)

Inserting this Dyson decomposition into the Mori-Zwanzig memory kernel 1.13 one obtains

m(q⃗, t) = ω−1(q⃗)K(q⃗, t) +∫ t

0
ω−1(q⃗)K(q⃗, t − t′)m(q⃗, t′)dt′, (1.16)

with the defintion

m(q⃗, t) ∶= S−1(q⃗)ω−1(q⃗)⟨ρ̂∗(q⃗)Ω†
QeQΩ†QQ′t

QΩ†ρ̂(q⃗)⟩. (1.17)

The equations 1.11 and 1.16 can be combined to a single equation of motion for the density correlation
function

∂tΦ(q⃗, t) + ω(q⃗)Φ(q⃗, t) +∫ t

0
m(q⃗, t − t′)∂tΦ(q⃗, t′)dt′ = 0, (1.18)

which is called the MCT equation.

Mode-Coupling Approximations

The MCT approximation now consists of two intertwined steps: first the fluctuating forces QΩ†ρ̂(q⃗)⟩
that appear in m(q⃗, t) are replaced by their overlap with density pairs. Using the short-hand notation
ρ̂1 ∶= ρ̂1(q⃗1) one introduces the pair-density projector

P2 = ∑
1,2,1′,2′

∣ρ̂∗1 ρ̂∗2⟩χ1,2,1′,2′⟨ρ̂1′ ρ̂2′ ∣ (1.19)

with a suitable normalization matrix χ. Second, the resulting dynamical four-point correlation func-
tions that involve the reduced dynamics are replaced by the product of two-point correlation functions
propagated by the full dynamics

⟨ρ̂∗1 ρ̂∗2eQΩ†QQ′tρ̂1′ ρ̂2′⟩ ≈ ⟨ρ̂∗1eΩ†tρ̂1′⟩ ⋅ ⟨ρ̂∗2eΩ†tρ̂2′⟩ + {1′ ↔ 2′} (1.20)

together with a consistent approximation of χ [37].
Note that this is not just a simple mean-field approach of the style ⟨x ⋅ y⟩ ≈ ⟨x⟩ ⋅ ⟨y⟩ because the four-
point correlation functions propagated by the reduced dynamics are replaced by two-point correlation
functions propagated by the full dynamics.
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Excursion: Volterra Integral Theory

Alternative to the "standard" derivation using a second Dyson decomposition, as shown above, one
can also use the existing mathematical theory of integral equations (see for example [54]) to derive
the desired MCT equation.
Dividing the Mori-Zwanzig equation 1.11 by −ω(q⃗) the resulting equivalent equation can be viewed
as a Volterra integral equation of the second kind, with −ω−1(q⃗)∂tΦ(q⃗, t) as an in-homogeneity. The
rich theory of these Volterra integral equation of the second kind (again [54]) leads (after rearranging
all terms to the LHS) to the MCT equation:

∂tΦ(q⃗, t) + ω(q⃗)Φ(q⃗, t) +∫ t

0
m(q⃗, t − t′)∂tΦ(q⃗, t′)dt′ = 0,

with the MCT memory kernel m(q⃗, t) again given by

m(q⃗, t) = ω−1(q⃗)K(q⃗, t) +∫ t

0
ω−1(q⃗)K(q⃗, t − t′)m(q⃗, t′)dt′.

Derivation of the Dyson Decomposition

The Dyson decomposition (equation 1.10) can be found by differentiating and reinserting (to the LHS)
the Ansatz

eΩ†t
= eΩ†Qt

+ eΩ†tX(t)
to obtain (after canceling the eΩ†tΩ†X(t) term on both sides and multiplying by e−Ω†t) the following
differential equation for X(t):

Ẋ(t) = e−Ω†tΩ†
PeΩ†t.

After integrating this simple differential equation one recovers the Dyson decomposition 1.10 from
above [47].

1.2 Schematic MCT

A schematic version of the mode-coupling theory equation (often called sMCT) is obtained by simply
dropping the wavevector dependence:

φ̇(t) + φ(t) +∫ t

0
m(t − τ)φ̇(τ)dτ = 0 (1.21)

and assuming the memory kernel m(s) to be a polynomial (with non-negative coefficients) in the
correlation function φ(s) itself. This can be motivated by the fact that the MCT dynamics close to
the glass transition is governed by a bifurcation scenario with a single critical mode in q-space [24].

1.2.1 Bifurcation Equation

To find out about the long time limits of the correlation function φ(t→∞), which determine whether
the system is in the glassy state φ(t → ∞) > 0 or not φ(t → ∞) = 0, one applies the Laplace10

10Pierre-Simon Laplace (23 March 1749 – 5 March 1827) was a French mathematician, physicist and astronomer. He
worked, besides many other fields, on probability theory and partial differential equations.
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transformation to the sMCT equation 1.21 which leads – regarding the properties of the Laplace
transformation – to:

sφ̂(s) − φ(0) + φ̂(s) + m̂(s)(sφ̂(s) − φ(0)) = 0.

Using initial condition, that φ(0) = 1 one ends up with:

sφ̂(s) − 1 + φ̂(s) + m̂(s)(sφ̂(s) − 1) = 0, (1.22)

which is an algebraic equation relating the Laplace transformed memory function m̂(s) and the Laplace
transformed correlation function φ̂(s).
The final value theorem for the Laplace transformation (proof can be found in [56]) states that

lim
t→∞

g(t) = lim
s→0

sĝ(s), (1.23)

if g is bounded (and measurable) and the limit lim
t→∞

g(t) exists. Both conditions are known [22] to be

true for both m and φ. If one sets lim
t→∞

φ(t) =∶ f , lim
t→∞

m(t) =∶m and multiplies our algebraic equation

1.22 by an additional factor of s before performing the limit s→ 0, one obtains the so called bifurcation
equation:

f +m(f − 1) = 0 ⇒ m =
f

1 − f
. (1.24)

The bifurcation equation is highly useful to study the long time limits and therefore the glass transition
for a simple example memory kernel model, called the F12 model. Rigorous mathematics by W.
Götze11 proves that the biggest real solution of this bifurcation equation is the actual long term limit
of the sMCT correlation function φ [22, 24].

1.2.2 F12 Model

The schematic F12 Model is an idea, first proposed by W. Götze [23], which dates back to the mid 80s
of the last century. One assumes the (schematic) memory kernel to be a quadratic polynomial with
non-negativ coefficients in φ itself:

m[φ(t)] = v1φ(t) + v2φ
2(t), (1.25)

where v1 and v2 are coupling coefficients / parameters set by the thermodynamic state of the system.
The physical necessity that the memory kernel m[φ] has to vanish if φ = 0 leads to the fact that there
is no constant coefficient v0 in this quadratic polynomial.

F1 Model

One could first look at the special case where the coefficient v2 = 0. In this case the memory kernel is
just a linear function in φ:

m(t) = v1φ(t),
this model of a memory function is called the F1 model.
In the long time limit φ(t→∞) = f , this leads to to the bifurcation equation:

f(f + 1 − v1

v1

) = 0. (1.26)

11Wolfgang Götze (born 11 July 1937 – 20 October 2021) was a German theoretical physicist and father of the
mode-coupling theory.
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So if 0 < v1 < 1 then f = 0 is the biggest real solution of this quadratic equation. Otherwise if v1 > 1

the biggest solution is f = v1−1
v1
= 1 − 1

v1
.
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F1 Model bifurcation

Figure 1.5: Bifurcation of the F1 model.

We can see that f(v1) is continuous, hence the F1 model does not predict any glass transition with a
two-step decay of correlation functions.

F2 Model

Now assume that the coefficient v1 vanishes, such that the memory function will be

m(t) = v2φ
2(t).

This leads to the bifurcation equation:

f(f2
− f +

1

v2

) = 0. (1.27)

This cubic equation has solutions f = 0 and f = 1
2
±

√
1
4
−

1
v2
, where f = 0 is the only real solution if

v2 < 4 and f = 1
2
+

√
1
4
−

1
v2

is the biggest solution if v2 ≥ 4. This means that a jump in f(v2) occurs at
v2 = 4 indicating a dramatic change in the long time limit of the correlation function due to a minor
change in the coupling parameter v2. So this schematic model helps to understand why MCT is able
to predict / describe the glass transition.
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Figure 1.6: Bifurcation of the F2 model.

F12 Model

The superposition of the F1 and F2 schematic model leads to the full F12 model, where we have two
positive parameters v1 and v2 (if one of these is zero it reduces to either the F1 or F2 model) and a
memory function

m(t) = v1φ(t) + v2φ
2(t), (1.28)

leading to the bifurcation equation:

f(f2
+
v1 − v2

v2

f +
1 − v1

v2

) = 0. (1.29)

This cubic equation has solutions f = 0 and f = v2−v1

2v2
±

√
(v2−v1)2

4v2
2

−
1−v1

v2
. In the figure below the largest

real solution of the bifurcation equation is plotted for (v1, v2) ∈ [0,5]2. Again for v2 > 1 one can see
jumps / discontinuities hinting that the F12 is able to mathematically mimic the glass transition
behavior.
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Figure 1.7: Bifurcation heat map of the F12 model.

1.3 Numerical Basics for sMCT

This section should give a brief introduction into the numerical basics of solving schematic MCT
equations of the structure

φ̇(t) + φ(t) +∫ t

0
m(t − τ)φ̇(τ)dτ = 0

numerically. To have acceptable computational run times – with having to solve a lot of sMCT
equations in the fluid dynamics simulations in mind – a fast decimation scheme is presented.

1.3.1 Discretization

A very important point in the discretization of this equation is that it has to respect the bifurcation
equation. Otherwise one can not ensure that – at least – the correct long time limit, meaning whether
the system is in the liquid (f = 0) or in the glassy (f > 0) regime, is found. For this reason the final
discretized equation has to be an implicit equation – like the bifurcation equation itself – to recover
the correct implicit connection between φi ≡ φ(i ⋅ dt) and mi ≡ m[φi]. First one should start on a
linear time grid with grid size ∆t, building on this, a quick and easy to implement code to solve these
MCT-like equations, even for long times, will be derived.
The first thing is to use the implicit Euler12 scheme to numerically approximate the derivative and some
quadrature formula to approximate the convolution integral, here iterative undersums (left rectangular

12Leonhard Euler (15 April 1707 – 18 September 1783) was a Swiss mathematician, physicist, astronomer, geogra-
pher, logician and engineer who founded the studies of graph theory and topology and made pioneering and influential
discoveries in many other branches of mathematics.
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rule) are sufficient:

φ̇(t) + φ(t) +∫ t

0
m(t − t′)φ̇(t′)dt′ = 0→

φi − φi−1

∆t
+ φi +∆t

i−1

∑
k=0

mi−kφ̇k = 0. (1.30)

At this point another discretization of φ̇ inside the integral is necessary. Since φ is defined on t ≥ 0

one might choose φ̇k =
φk+1−φk

h
, to avoid the necessity of having to define φ−1.

By restructuring the above equation one arrives at the implicit equation

φi = −B ⋅mi +C, (1.31)

with the additional definitions of

A ∶= 1/∆t + 1 +m1,

B ∶= (φ1 − 1)/A,
C ∶= [(1/∆t +m1)φi−1 −

i−2

∑
k=1

mi−k [φk+1 − φk]] /A.
However it is necessary to know φ1 in order to get the algorithm started. One way would be to write
out m1 and solve this polynomial equation. The other option is to look at the short time limit of the
MCT equation in which one just neglects the integral and observes an exponential decay φ(t) = e−t

and therefore sets φ1 = e−∆t or φ1 = 1 −∆t.
The resulting implicit equation 1.31 could be solved by iteration in the following way:

1. φ
(0)
i ← φi−1 ⇒ m

(0)
i =m[φ(0)i ]

2. φ
(n+1)
i ← −B ⋅m

(n)
i +C

3. continue steps 1. and 2. until ∣φ(n+1)
i − φ

(n)
i ∣ < ε1 and

∣φ(n+1)
i − φ

(n)
i ∣∣φ(n+1)

i ∣ < ε2 are reached.

4. φ
(n+1)
i → φi,

with desired precisions ε1 and ε2. Mathematics byW. Götze proves that this iterative scheme converges
towards the right solution[24].

1.3.2 Step Size Doubling and Decimation

Since the glass transition is observed on very long (logarithmic) time scales a linear time stepping would
not lead to acceptable computational run times. Therefore it is common to use a decimation method
(kind of a step size control) that uses exponentially larger steps the further the algorithm goes back
in the history / memory integral. This is physically reasonable since one can imagine that the more
recent correlations have bigger influence on the system than the ones far back in history. Therefore
these more recent correlations must have the best resolution, while the influence of correlations far
back in history is minor and one could trade some resolution in history for computational speed.
Here the discretized equation is solved on different blocks b (starting with the block b = 0) with a fixed
amount of steps in each block, called the block size NA. The total number of blocks is called NB.
After every block of NA steps the step size is doubled from ∆t to 2∆t, which means that in block b
the step size is ∆bt = 2b∆t (the initial block is denoted with b = 0). This doubling of step size from
block to block is only allowed and does not ruin the numerical precision because φ(t) is known to only
vary quickly on short time scale and vary slowly on larger time scales.
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Figure 1.8: Schematic representation of block idea and the step size doubling. Figure from [36].

Only on the initial block b = 0 it is necessary to solve the whole block, then starting with block b = 1

one calculates the first half of the block b = 1 out of the values already given from the previous block
b = 0. There are numerous ways to do so, the simplest way is to set φb

i ← φb−1
2i , alternatively one could

calculate (weighted) averages with the neighboring points, for example φb
i ← (φb−1

2i + φ
b−1
2i−1)/2. With

averaging like this one achieves that the integral (calculated by the trapazoidal-rule for example) over
the first half of the block is still as exact as with the previous smaller step size.

Figure 1.9: Schematic representation of the decimation procedure from [36].

1.3.3 Numerical Error from Doubling the Step Size

For the implicit Euler scheme the numerical error of the first derivative is known to be

E(f ′i) = ∣fi − fi−1

∆t
− f ′i ∣ = ∣∆t ⋅ f ′′(ξ)∣,

with ξ being a time between the data points i − 1 an i [52]. One can expect φ to vary slower than
exponential, so for simplicity one can set f(t) = e−t. An upper limit for f ′′(ξ) on block b would be
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2
(∆bt⋅NA/2)2

> e−∆bt⋅NA/2, therefore one calculates:

E(f ′i) =∆bt ⋅ f
′′(ξ) ≤∆bt ⋅ e

−∆bt⋅NA/2
<

8

∆bt ⋅NA

,

which shows that despite doubling the step size ∆bt the error does not increase from block to block.
This even shows that the error goes to zero if b→∞, because the bifurcation equation is still respected
and therefore the correct long term limit f obtained.

1.3.4 Bifurcation Equation

Recall that the long time limit (t→∞) of the system is determined by the bifurcation equation:

m =
f

1 − f
⇐⇒ f =

m

1 +m
,

with lim
t→∞

φ(t) =∶ f , lim
t→∞

m(t) =∶ m. With these settings and 1/∆t → 0, because of the long time limit

(or because b is big and therefore ∆bt→∞) the implicit equation 1.31 reduces to:

f = −B ⋅m +C, (1.32)

A = 1 +m,

B = (f − 1)/A,
C =mf/A.

Here one needs to argue that for large enough step size ∆t, the first point φ1 is already in the long
time limit, such that one could set φ1 = f and m1 =m. If one puts this all together the second version
of the bifurcation equation above is recovered, which shows that this implicit algorithm is able to
numerically predict the long time limits correct.

1.3.5 Numerical Solutions of the F12 Model

Finally one might briefly look at some solutions φ(t) of the F12 Model with different parameter sets(v1, v2). It is know from various sources ([8, 24] for example) that for v1 = 2(√2−1)+ǫ/(√2−1), v2 = 2

one expects a glass transition at ǫ = 0. This means, that the density correlation function φ is expected
to not decay to zero for ǫ ≥ 0 and to vanish for ǫ < 0 in the long time limit. For the numerical
calculation the algorithm is implemented exactly as described above with running times below 1
minute on a standard modern laptop or PC. The numerical parameters are dt = 0.01 using 40 blocks
with a block size of 1000 steps in each block. For decimation scheme the simple version φb

i ← φb−1
2i was

used.
One can observe that the expected behavior of the correlators is recovered (dacay to zero for ǫ < 0)
and that the analytically calculated long time limits f from the bifurcation equation are also recovered
within the numerical errors.
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Figure 1.10: Numerical solution of the schematic MCT equation in the F12 Model with different
parameters ǫ, below, above and exactly at the analytically calculated glass transition point ǫ = 0.

1.4 Two-Time MCT

In later extensions of MCT to non-stationary driven systems (for example in case of a startup flow,
cessation of flow or in oscillatory shear) the correlation function φ no longer depends only on one time
– which has actually been a time difference – but on two times t, t′ (final time t and reference time
t′ with t ≥ t′)[6, 5]. On the other hand the memory kernel now depends not only on two but even on
three times t ≥ t′′ ≥ t′ with t′′ an intermediate integration time. The memory kernel also functionally
depends on the deformation history, which is encoded in the tensor B(t, t′). B(t, t′) (called the Finger
tensor) is a measure of the deformation history of a fluid element and will be discussed in detail later
on in this thesis.
The schematic MCT equation under time-dependent shear generally reads:

∂tφ(t, t′) + φ(t, t′) +∫ t

t′
m(t, t′′t′, [B])∂t′′φ(t′′, t′)dt′′ = 0. (1.33)

However one often reduces the memory kernel to the known F12 model with some prefactors taking
in account the shear [8].

1.4.1 Two-Time MCT for Time Dependent Shear

Since the F12 Model is very well known to capture quantitatively many aspects of the glass transition
the target of the following Ansatz is to reuse the F12 model but to also introduce some shear-thinning
effects. To do so one makes the assumption

m(t, t′′, t′, [B]) = htt′[B]htt′′[B]mF 12[φ(t, t′′)], (1.34)
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with mF 12[φ(t, t′′)] = v1φ(t, t′′) + v2φ
2(t, t′′) the standard F12 model – for simplicity in the following

denoted by m(t, t′′) – and further one chooses the h-operator to be:

htt′[B] = γ2
c

γ2
c + tr(B(t, t′) − Id) . (1.35)

This means that the operator htt′ evaluates the Finger tensor at times (t, t′) and performs the calcu-
lations above. In general one could also introduce another factor ht′′t′[B], but – in analogy to [8] –
this factor is neglected throughout this thesis.
For the case of quasi one dimensional simple shear these h-factors (because of the trace of the defor-
mation measuring tensor B) reduce to

htt′[γ] = 1

1 + (γ(t, t′)/γc)2 , γ(t, t′) = ∫ t

t′
γ̇(s)ds, (1.36)

with γ̇(s) the scalar strain-rate and γc the critical yield parameter. This critical yield parameter
determines how strong the shear is taken into account (most of the time one sets γc = 0.1). The limit
γc → ∞ ⇒ htt′ → 1 means that shear does not affect the system, such that one ends up with the
sMCT equation without any shear effects. For a constant γ̇ the model is known as the F12-(γ̇) model
[18]. The functional dependence [B] is conveniently dropped in the notation and one only writes htt′

instead of htt′[B].
The final two-time sMCT equation for time dependent shear reads:

∂tφ(t, t′) + φ(t, t′) + htt′ ∫
t

t′
htt′′m(t, t′′)∂t′′φ(t′′, t′)dt′′ = 0 (1.37)

with a two-time convolution-like integral, visualized in the following schematic picture.

φ(t, t) = 1

1 = φ(t′, t′) φ(t, t′)
∂t′′φ(t′′, t′)

htt′′m[φ(t, t′′)]

Figure 1.11: Schematic picture of the two-time convolution-like integral to calculate a specific φ(t, t′).
In the upcoming second chapter of this thesis an integral constitutive equation (an integral equa-
tion to calculate the stress tensor σ) will be derived. This integral equation will be of the form
σ(t)∝ ∫ t

0 γ̇(t′)φ2(t, t′)dt′ and therefore one needs φ(t, t′) on a linear grid in t because most standard
computational fluid dynamics simulations step linear in time t. For computational speed of the stress
integral (σ(t)∝ ∫ t

0 γ̇(t′)φ2(t, t′)dt′) one would like to have a (quasi) logarithmic grid in the references
times t′.

1.4.2 Numerical Details, Linear/Logarithmic Grid (for CFD)

Later on in this thesis – in the study of non-Newtonian fluid flow – one will encounter constitutive /
material equations for the (polymeric) stress similar (but in tensorial form) to the construction

σ(t) = G0∫
t

0
γ̇(t′)φ2(t, t′)dt′,

with φ(t, t′) determined by the shear dependent sMCT equation.
Therefore the first time argument t needs to be compatible with the time stepping requirements of
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the computational fluid dynamics (CFD). A CFD simulation usually progresses linear in time, which
implies that one would like to have φ(t, t′) on a linear grid in the first time argument t. For a
fast computation of this extensive (polymeric) stress integral it is desirable to perform the numerical
approximation on a (quasi-) logarithmic grid which is relatively fine for small t − t′ and gets larger
for bigger t − t′. The physical intepretation is again that the latest deformations have the biggest
influence on the stress of a material element and should therefore have the best resolution. This
quasi-logarithmic grid – allowing fast computations of the memory integrals in the sMCT equation –
is done by doubling the step size ∆t after a certain number of steps. This number of steps using the
same ∆t is called the block size and will be denoted NA). So for every fixed i (therefore t) one uses
the step size ∆0t = 20dt = dt for the zeroth block of the j indices (connected to t′) and then ∆1t = 2dt

for the first, ∆2t = 22dt = 4dt for the second an so on, until one arrives at t′ < ∆NB−1t. The total
number of blocks is denoted NB, starting at block 0 up to block NB − 1.
The grid on which the (discretized version of the) sMCT equation is solved, looks the following way:
the wider t and t′ are apart from each other (or in other words: the further we are away from the
diagonal t = t′ in Fig. 1.11) the less accurate the discretization gets.

0 10 20 30 40
t

0

10

20

30

40

t′

Figure 1.12: Schematic sketch of the discretization grid. Blue points are the finest level (b = 0), red
pluses are the points corresponding to b = 1, cyan triangles correspond to b = 2.
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Algorithm

The two-time sMCT equation in its discretized version ((t, t′)→ (i, j)) using the implicit Euler method
is given by

φi,j − φi−1,j

∆t
+ φi,j + hi,j

i−1

∑
k=j

hi,kmi,k [φk+1,j − φk,j] = 0. (1.38)

Now set

A ∶= 1/∆t + 1 + hi,jhi,i−1mi,i−1

B ∶= h2
i,j(φj+1,j − 1)/A

C ∶=

⎡⎢⎢⎢⎢⎣(1/∆t + hi,jhi,i−1mi,i−1)φi−1,j − hi,j

i−2

∑
k=j+1

hi,kmi,k [φk+1,j − φk,j]⎤⎥⎥⎥⎥⎦ /A.
This leads to the simple implicit equation:

φi,j = −Bmi,j +C, (1.39)

which one could solve by the following iterative procedure:

1. start by φ(0)i,j ← φi−1,j ,

2. calculate a first Ansatz for m(0)i,j =m[φ(0)],
3. with this m(0)i,j calculate a new φ

(1)
i,j via the implicit equation 1.39,

4. iterate this procedure (steps 1. to 3.) to calculate new m
(1)
i,j , ...,m

(n)
i,j and φ(2)i,j , ..., φ

(n+1)
i,j ,

5. continue this procedure until ∣φ(n+1)
i,j − φ

(n)
i,j ∣ < ε1 and

∣φ(n+1)
i,j

−φ
(n)
i,j
∣

∣φ(n+1)
i,j

∣
< ε2 are reached,

6. set φi,j ← φ
(n+1)
i,j .

The threshold parameters ε1 and ε2 determine the desired absolute and relative tolerance of the
iterative procedure.

Long Time Limit of the Two-Time MCT Algorithm

In the special case of zero shear, mathematically described by h ≡ 1, the long term limit (here t−t′ →∞
instead of t→∞ in the one-time MCT discussed in section 1.3.4) of system is given by the bifurcation
equation

f =
m

1 +m
,

with lim
t−t′→∞

φ(t, t′) = f and lim
t−t′→∞

m(t, t′) = m. This means that for a fixed t and therefore i in the

discretized version one needs to assume that one step back in t′ and therefore j is already in the long
time limit. This also implies that the step size ∆t→∞, which leads to:

A = 1 +m,

B = (f − 1)/A = f − 1

1 +m
.
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Since it is assumed that φj+1,j is already in the long term limit (φj+1,j = f) the sum ∑i−2
k=j+1 ... in C

vanishes, such that:

C =mf/A = mf

1 +m
.

This leads to an implicit equation (obtained form 1.39):

f = −B ⋅m +C =
m

1 +m
,

which is exactly the desired bifurcation equation given above (and in 1.24).
This calculation proves that the proposed algorithm to solve the two-time schematic MCT equation
does predict – in the special case of h ≡ 1 – the correct long time limits.

1.4.3 Solution of F12 Model under Time-Dependent Shear

Let us now look at some numerical solutions of the shear-dependent two-time sMCT equation 1.37
obtained by the previously described algorithm. One can already assume, that the correlation function
decays quicker under stronger shear because the memory kernel decreases stronger, resulting in less
coupling. In the limit γ̇ →∞ the memory kernel vanishes, resulting in an exponential decay.
The following graphics will show φ(t, t′) versus t − t′. In a system without shear this is equal to
φ(t − t′,0) because φ(t2, t1) is only dependent on t2 − t1. In an oscillatory sheared system, with

γ̇(s) = γ0f cos(fs),
this is not the case because ht1t2

depends on γ(t2, t1) = γ0 [sin(ft2) − sin(ft1)] ≠ γ(t2 − t1,0).
The inner memory kernel (without the h-factors) should be in F12 Model form m[φ] = v1φ + v2φ

2,
with parameters v1 = 2(√2 − 1), v2 = 2, which is – as previously discussed – in the glassy regime
(ǫ = 0 so exactly at the critical point) and therefore the correlation function would not decay to zero
for t − t′ →∞ without shear.

10 2 10 1 100 101

t-t'

0.0

0.2

0.4

0.6

0.8

1.0

(t,
t′ )

t= tend, no shear
t= tend, 0/ c=2.5, freq=1.0
t= tend, 0/ c=5.0, freq=1.0
t= tend, 0/ c=10.0, freq=1.0

Figure 1.13: φ(t, t′) versus t − t′ for various γ0/γc on a logarithmic grid in time t′.
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One can see that – as expected – the correlation functions decays much quicker with stronger shear
(γ0/γc bigger). Please note that an increase in the correlation function φ does not violate the second
law of thermodynamics since the external strain-rate does provide energy to the system.
Next one can vary t and see that we get different correlation function, except for time shifts of factor
2πf . In this case the h-factor is the same due to the periodicity of the sinus function.

10 2 10 1 100 101

t-t'

0.0

0.2

0.4

0.6

0.8

1.0

(t,
t′ )

t= tend, 0/ c =2.5, freq=1.0
t= tend 1, 0/ c =2.5, freq=1.0
t= tend 2, 0/ c =2.5, freq=1.0
t= tend 6.28, 0/ c =2.5, freq=1.0

Figure 1.14: φ(t, t′) versus t − t′ for various t with the same critical v1, v2 as above.

One can see that qualitatively all correlation functions decay on the same timescale. The small
difference is induced by smaller or bigger strains γ(t, t′) at the different points in the two time plane
t, t′.
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Chapter 2

Continuum Mechanics

This chapter presents the basic equations, mainly the incompressible Navier-Stokes equation, of con-
tinuum mechanics (which can of course also be found in many textbooks, for example [31, 59]) and
introduces some material laws (also called constitutive equations) for viscoelastic and viscoelasto-
plastic fluids. Furthermore some analytical observations in simple flow geometry (an infinitely long
rectangular channel) are recalled to gain basic understanding of the behavior of viscoelastic and vis-
coelastoplastic (yield stress) fluids.

2.1 Navier-Stokes Equation for incompressible Fluids

To derive the famous Navier1-Stokes2 equation (NSE) one might start by remembering some basic
conservation rules

dm

dt
= 0 → conservation of total mass, (2.1)

d

dt
P⃗ = F⃗ext + F⃗surface → conservation of total momentum, (2.2)

where F⃗ext is the total external force (for example a gravitational or electric force) and F⃗surface =

∫∂V (t)Σ(r⃗, t) ⋅ds⃗ is the friction force at the surface of the control volume. The total mass m is defined
by integrating the particle density ρ(r⃗, t) over the control volume V (t) that moves along with the
flow. A similar statement for the total momentum leads to:

m(t) ∶= ∫
V (t)

ρ(r⃗, t)dr⃗,
P⃗ (t) ∶= ∫

V (t)
ρ(r⃗, t)v⃗(r⃗, t)dr⃗.

Inserting the definitions of total mass and momentum into the conservation laws and applying the
Gauss3 theorem onto the surface force term produces continuity equations for mass and momentum:

∂tρ + ∇⃗ ⋅ [ρv⃗] = 0, (2.3)

∂tρv⃗ + ∇⃗ ⋅ [ρv⃗ ⊗ v⃗] = ρf⃗ext + ∇⃗ ⋅Σ . (2.4)
1Claude Louis Marie Henri Navier (10 February 1785 – 21 August 1836) was a French mechanical engineer and

physicist.
2Sir George Gabriel Stokes (13 August 1819 – 1 February 1903) was an Irish physicist and mathematician.
3Johann Carl Friedrich Gauss (30 April 1777 – 23 February 1855) was a German mathematician, geodesist, and

physicist who made significant contributions to many fields in mathematics and science.
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Incompressible Fluids

These universal equations can be reduced if one assumes the flow to be incompressible, which means
that the density does not change along the streamlines. Mathematically this leads to

D

Dt
ρ ∶= ∂tρ + [v⃗ ⋅ ∇⃗]ρ = 0.

In this thesis the density is assumed to even be constant, which is a slightly stronger condition. In
a sense that otherwise there could be for example a bubble in the flow that is transported along the
flow lines and D

Dt
ρ = 0 would be fulfilled, even though ρ is not constant.

The differential operator D
Dt
∗ ∶= ∂t ∗ +[v⃗ ⋅ ∇⃗]∗ is called the material (or advective) derivative. It

describes the time rate of change of some scalar or vector physical quantity ∗ of a material element
that is subjected to a space-and-time-dependent macroscopic velocity field v⃗. Combined with the mass
conservation

∂tρ + ∇⃗ ⋅ [ρv⃗] = ∂tρ + ρ[∇⃗ ⋅ v⃗] + [v⃗ ⋅ ∇⃗]ρ = 0

this leads to the incompressiblility equation

∇⃗ ⋅ v⃗ = 0.

The so called Euler stress tensor Σ can be splitted into its trace, the "volumetric stress" and the
"deviatoric stress" Σ = −p1 + σ. Using this splitting and combining the two equations leads to the
incompressible Navier-Stokes equation, which are a set of partial differential equations:

∂tρ + [v⃗ ⋅ ∇⃗]ρ = 0,

ρ (∂tv⃗ + [v⃗ ⋅ ∇⃗]v⃗) = ρf⃗ext − ∇⃗p + ∇⃗ ⋅ σ,

∇⃗ ⋅ v⃗ = 0.

Under the assumption of a constant density, which for convenience can be set to unity (ρ = 1), the
first equation becomes redundant and the set of equations reduces to:

∂tv⃗ + [v⃗ ⋅ ∇⃗]v⃗ = f⃗ext − ∇⃗p + ∇⃗ ⋅ σ, (2.5)

∇⃗ ⋅ v⃗ = 0. (2.6)

Incompressible Stokes Flow

For the special case of viscoelatic and viscoelastoplastic fluid flow one might neglect the [v⃗ ⋅ ∇]v⃗ term,
because these advective inertial forces are small (and therefore neglectable) compared to the viscous
forces. The Navier-Stokes equation for the momentum reduces to the so-called time-dependent Stokes
equation

∂tv⃗ = f⃗ext −∇p +∇ ⋅ σ. (2.7)

One also calls this equation the Stokes flow or creep flow.

Need for Constitutive Equations

In two spatial dimensions the momentum balance gives two equations, plus the additional equation
from the incompressibility condition leads to three equations in total. However, the system has six
unknowns, since σ consists of three independent unknowns because of the symmetry (σij = σji). The
velocity v⃗ consists of two components (x and y direction), plus the scalar pressure variable. To solve
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this underdetermined set of equations is in general of course mathematically impossible.
Therefore one needs additional equations to close the system. These additional equations are called
constitutive equations or material laws, and specify the stress tensor σ. Constitutive equations are
usually emprical, the aim of this thesis is to incorporate more sophisticated constitutive equations
that are closer to them being found in statistical physics.

2.2 Differential Constitutive Equations

As discussed in the last section the Navier-Stokes equations are underdetermined and need closure by
adding an external material law, also called a constitutive equation (CE). Here a couple of more or
less ad-hoc constitutive equation in differential form (DCE) are presented. Note that neither of them
has a “first-principles” starting point, but at least some heuristics.
One defines the velocity gradient κ and its symmetrized version, the strain-rate (sometimes also
deformation-rate) tensor D by

κ(t) ∶= (∇⃗ ⊗ v⃗(t))T ≡ (∇⃗v⃗(t))T , (2.8)

D(t) ∶= 1

2
(κ(t) + κT (t)). (2.9)

2.2.1 Newtonian Model

The Newtonian model assumes an instantaneous linear relation between the stress and the strain-rate.
This linear relation defines the so called (dynamic) viscosity η of the Newtonian fluid. The model
assumes that η is constant during all deformations.
The constitutive equation for the Newtonian incompressible fluid is given by

σ(t) = 2ηD(t), (2.10)

and leads to the Laplace-operator ∆ ∶= ∇⃗2 acting on the velocity such that the momentum balance in
the NSE reads:

∂tv⃗ + [v⃗ ⋅ ∇⃗]v⃗ − η∆v⃗ = f⃗ext − ∇⃗p.

In the following the Newtonian model is used to describe a solvent background (for example water or
ethanol) in which a polymer / colloidal suspension is dissolved. Since most colloidal suspensions or
polymeric melts are diluted in a Newtonian (incompressible) solvent it is customary to split the stress
tensor into a Newtonian solvent part and polymeric part:

σ = σS + σP ,

with the solvent stress tensor σS given by σS(t) = 2ηSD(t).
2.2.2 Maxwell Model

The observations that many fluids (including honey for example) behave viscoelastic, which means
that they show elastic properties on short time scales and viscous properties on long times scales, lead
to the famous Maxwell model – proposed by James Clark Maxwell himself in 1867 [40].
The Maxwell model assumes that the total strain of a material is the sum of a purely viscous dashpot
and a purely elastic spring which are in serial connection, such that the strains of both elements add
up: γ = γD + γS . As damper and spring are connected in series, the total stress is equal to the stress
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on the damper and equal to the stress on the spring (similar to the current in a series connection)
σ = σD = σS .

Figure 2.1: Schematic idea of the Maxwell element: a serial connection of an elastic spring to a viscous
dashpot. Figure from [25]

.

With the Newtonian fluid approximation / assumption σD = ηγ̇D where η is the viscosity of the
dashpot and Hooke’s law σS = G∞γS as a model for the spring one gets the (differential) constitutive
equation

γ̇ =
σ̇

G∞
+
σ

η
. (2.11)

This differential equation with initial condition σ(t = 0) = 0 (no initial stress) is solved by

σ(t) = G∞∫ t

0
γ̇(t′)e−(t−t′)

λ dt′, (2.12)

with λ = η/G∞ being a characteristic relaxation time of the system. Some literature also uses τ instead
of λ for the relaxation time.

Figure 2.2: Stress versus time for constant strain-rate γ̇ obtained from the Maxwell model. Figure
from Ref.[13].

This was the simple one-dimensional case, in higher dimensions one uses the previously defined velocity
gradient κ = (∇⃗v⃗)T and its symmetrized version D = 1

2
(κ + κT ), instead of the scalar strain-rate γ̇.

However, the simple partial time derivative does not take the advection of the fluid element into
account, neither is it rotation invariant. Therefore it needs to be replaced by a suitable "covariant"
derivate. The most common choice to do so is the so called upper convected derivative. The upper
convected derivative correctly describes the rate of change of some tensor property in a laboratory
fixed (also called Eulerian) reference frame.
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Upper Convected Maxwell Model

To formulate the upper convected version of the Maxwell model for the polymeric stress tensor σP

(also called Oldroyd4 B model for the total stress tensor σ = σS + σP ) one first needs to define the
upper convected (or Oldroyd B) derivative[42] – which fulfills tensorial transformation properties – for
an arbitrary tensor A:

▿

A ∶= ∂tA + [v⃗ ⋅ ∇⃗]A − κ ⋅A −A ⋅ κT . (2.13)

By simply exchanging the partial time derivative ∂tσ(t) from the simple Maxwell model with the

upper convected derivative
▿

σ(t) one obtains the upper convected Maxwell model (UCM model) given
by

▿

σP (t) + 1

λ
σP (t) = 2G∞D(t). (2.14)

Finger Tensor

To be actually able to formulate an integral solution formula (similar to the variation of constant
formula previously) one needs to furthermore define the Finger tensor B(t, t′), which is a rotation-
invariant measure of occurring deformations of a given material / fluid element between times t′ and
t. The Finger tensor is defined as the solution of:

▿

B(t, t′) ∶= ∂tB(t, t′) + [v⃗(t) ⋅ ∇⃗]B(t, t′) − κ(t) ⋅B(t, t′) −B(t, t′) ⋅ κT (t) = 0, (2.15)

with the initial condition that B(t′, t′) = Id for all times t′ ≤ t.

Define a deformation gradient tensor E(t, t′) by
E(t, t′) ∶= exp

+
(∫ t

t′
κ(s) − [v⃗(s) ⋅ ∇⃗]ds),

such that one can write the Finger tensor

B(t, t′) = E(t, t′) ⋅E(t, t′)T .
One can easily check that this expression fulfills the defining equation 2.15 from above.
Further note that

−∂t′B(t, t′)∣t′=t = 2D(t) (2.16)

holds true for all times t.

Integral Formula of the UCM

With these properties – equation 2.16 and the defining PDE 2.15 – of the Finger tensor one can
show (see 2.2.4 where all the derivatives are actually calculated) that the integral formula or integral
constitutive equation (ICE)

σP (t) = G∞∫ t

0
[−∂t′B(t, t′)]e−(t−t′)

λ dt′. (2.17)

is equivalent to UCM model defined by equation 2.14 above.
4James Gardner Oldroyd (25 April 1921 – 22 November 1982) was a British applied mathematician.
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2.2.3 Excursion: Upper Convected Derivative and Finger Tensor

In the subsection before it was mentioned that the upper convected derivative is the proper way
– that the correct tensor transformation behaviour from Lagrangian ξα (Greek letters) to Eulerian
coordinates xi (Roman letters) is fulfilled – to define the rate of change for tensorial quantities (such
as the stress tensor for example) in the Eulerian reference frame. So far there was no destinction
between upper (contravariant) and lower (covariant) indices for the components of the vectors and
tensors, as done very often outside of the field of general relativity (GR). If one looks very carefully
into some course (e.g. [59]) on classical field theory one finds that components of vectors (as opposed
to those of covectors) are said to be contravariant. Therefore (only for this excursion!) one should
use upper indices for vectors and especially tensors (such as the Finger tensor which will be the main
focus of this subsection) and calculate so-called covariant derivative (objects in geometry should be
independent of their description and in particular of the chosen coordinate system).

Why the Material Derivative is not sufficient

Before that one could first verify why it is not sufficient to simply change the partial derivative ∂t to a
material derivative D

Dt
. To do so one could consider a motion / flow in which a given material element

has a "worldline" x⃗(t), and a second motion where just the whole fluid is rotated by Q(t) such that the

very same material has a "worldline" x⃗∗(t) = Q(t)x⃗(t). If the constitutive equation respects material
frame indifference, stresses in a material element should only arise from deformations. Especially these
stresses should not change even if the material is under a time-dependent rotation [48]. This however
is not the case if one would just naively exchange the partial derivative ∂t with the material derivative
D
Dt

, as the following calculation (from [48])

T ∗(x⃗∗, t) = Q(t)T (x⃗, t)Q−1(t)
D

Dt
T ∗(x⃗∗, t) = Q(t) [ D

Dt
T (x⃗, t)]Q−1(t) + Q̇(t)Q−1(t)T ∗(x⃗∗, t) + T ∗(x⃗∗, t)Q̇(t)Q−1(t)

shows.

Covariant Derivatives and Christoffel Symbols

Now it is clear why it is insufficient to simply exchange ∂t with D
Dt

, but so far it is still unclear why
the upper convected derivative

▿

A ∶= ∂tA + [v⃗ ⋅ ∇⃗]A − κ ⋅A −A ⋅ κT .

of a tensor A fulfills the right tensorial transformation behaviour.
From the classical field theory it is known that the covariant derivatives with respect to k (written
with a lower ;k in contrast of , k for the partial derivative) of a contravariant vector ai and tensor (of
the second order) Aij , using the Einstein5 summation convention, are

ai
;k = a

i
,k + Γi

mka
m,

A
ij

;k
= A

ij
,k
+ Γi

mkA
mj
+ Γ

j
mk
Aim,

5Albert Einstein (14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to
be one of the greatest and most influential physicists of all time.

34



2.2. DIFFERENTIAL CONSTITUTIVE EQUATIONS

with the Christoffel6 symbols Γ of the Levi-Civita7 connection, commonly known from GR. In the
Euclidean geometry these Christoffel symbols describe how the local coordinate basis changes from
point to point [30]. The covariant derivative is designed to obey the correct tensor coordinate transfor-
mation behaviour, therefore it is sufficient to prove that the upper convected derivative can be written
with only covariant and no partial derivatives (other than a partial time derivative ∂t). To do so one
writes the upper convected derivative of a tensor Aij in index notation using the fact that κi

j ≡ v
i
,j

and v⃗ ⋅ ∇⃗ = vk∂k:

▿

Aij
= ∂tA

ij
+ vkA

ij
,k
− vi

,kA
kj
−Aikv

j
,k

= ∂tA
ij
+ (vkA

ij
;k
− vkΓi

mkA
mj
− vkΓ

j
mk
Aim) − vi

,kA
kj
−Aikv

j
,k

= ∂tA
ij
+ vkA

ij
;k
− (vi

,kA
kj
+ vkΓi

mkA
mj) − (Aikv

j
,k
+ vkΓ

j
mk
Aim)

= ∂tA
ij
+ vkA

ij
;k
− (vi

,kA
kj
+ Γi

mkv
mAkj) − (Aikv

j
,k
+AikvmΓ

j
mk
)

= ∂tA
ij
+ vkA

ij
;k
− vi

;kA
kj
−Aikv

j
;k

where in the second last step one first renames the indices k and m and then uses the symmetry
property Γi

mk = Γi
km.

One can see that the upper convected derivative can be written using only covariant derivatives and
is therefore covariant itself. However, this is not the only covariant derivative, a similar derivation but
with covariant (lower indices) instead of contravariant (upper indices) tensors leads the so-called lower
convected derivative (corresponding to the Oldroyd A model). From a mathematical perspective it is
hard to decide which version to use on a basis of Euclidean space and Navier-Stokes equation alone.
The extensive use of the upper convected version is due to experiments that show that polymeric
fluids climb a rotating rod, favoring the upper convected version (B). The lower convected version (A)
would predict the opposite effect [29].

Finger Tensor

The fact that the Finger tensor Bij(t, t′) fulfills the equation

▿

Bij(t, t′) = 0

Bij(t′, t′) = δij

makes Bij a covariant second rank tensor in the Eulerian reference system that does not contain any
rigid-body rotations. Therefore only deformations – but no translations or rotations – of a material
element do enter the Finger tensor.

2.2.4 Fluidity Model

Finally one might consider a more general type of differential constitutive equation for viscoelastic
material. This more general fluidity model – in contrast to the Maxwell Model – consists of a set of
two partial differential equations instead of only one differential equation for the stress tensor σP (t).
The first differential equation still describes the evolution of the stress tensor. This differential equation
needs a so called "fluidity", which is an inverse timescale in order to describe the memory / relaxation

6Elwin Bruno Christoffel (10 November 1829 – 15 March 1900) was a German mathematician and physicist who
worked on fundamental concepts of differential geometry, which would later provide the mathematical basis for theory
of general relativity.

7Tullio Levi-Civita (29 March 1873 – 29 December 1941) was an Italian mathematician, most famous for his work on
differential geometry.
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of a viscoelastic or glassy fluid as a parameter instead of a constant timescale λ in the Maxwell Model.
The fluidity f(t) itself is given by another differential equation in which also other details such as the
shear of the system are taken into account.
Some microscopic arguments such as the cage-breaking phenomena under shear (or shear-thinning)
which shortens relaxation time massively can be explained within this fluidity model. The set of
differential equations for the fluidity model reads the following way (here the spatial dependence is
written explicitly because of the spatial derivatives):

▿

σP (r⃗, t) + f(r⃗, t)σP (r⃗, t) = 2G∞D(r⃗, t), (2.18)

λf
D

Dt
f(r⃗, t) − ξ2∆f(r⃗, t) = 1

λM(∣γ̇(r⃗, t)∣) − f(r⃗, t). (2.19)

The second equation is a diffusive partial differential equation with a characteristic diffusive / fluidity
timescale λf and a cooperativity length ξ, leading to a diffusion coefficient Df = ξ

2/λf . The flow
induced timescale λM(∣γ̇∣), which includes a shear-thinning effect, is defined by

1

λM(∣γ̇∣) =
1

λ
+
∣γ̇∣
γc

, (2.20)

with a scalar strain-rate defined by

∣γ̇∣ ∶=√2 ⋅ tr(D2). (2.21)

Note that this is still an ad-hoc expression for the relaxation time and cannot be calculated out of any
basic physical assumptions.
If dealing with homogeneous simple shear flow, which means that κxy(t) = γ̇(t) and other entries are
zero, the fluidity equation reduces to

λf ḟ(t) + f(t) = 1

λ
+
∣γ̇(t)∣
γc

, (2.22)

which is a simple ordinary differential equation and can be solved by the variation of constant formula:

f(t) = (f(0) − 1

λ
) e−t/λf +

1

λ
+∫

t

0
e−(t−t′)/λf

∣γ̇(t)∣
γcλf

dt′.

The equation for the (polymeric) stress reduces to another ordinary differential equation:

σ̇P,xy(t) + f(t)σP,xy(t) = G∞γ̇(t), (2.23)

which can also be solved by the variation of constant formula (but here it is very likely that the integral
over the fluidity cannot be calculated analytically):

σP,xy(t) = σP,xy(0)e− ∫ t
0

f(s)ds
+∫

t

0
e− ∫

t
t′ f(s)dsG∞γ̇(t′)dt′. (2.24)

Reduction to the White Metzner Model

This fluidity model reduces to the so-called White-Metzner model by simply setting both the fluidity
timescale τf and the cooperativity length ξ to zero, in which case the fluidity f(r⃗, t) is immediately
given by

f(r⃗, t) = 1

λM(∣γ̇(r⃗, t)∣) . (2.25)
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Therefore the differential constitutive equation of the White-Metzner model is:

▿

σP (r⃗, t) + 1

λM(∣γ̇(r⃗, t)∣)σP (r⃗, t) = 2G∞D(r⃗, t). (2.26)

Note that the White-Metzner model can also be written in a variation of constant formula like style:

σP (t) = ∫ t

0
[−∂t′B(t, t′)]G(t, t′)dt′, (2.27)

very similar to the UCM model solution given in equation 2.17, with a DE for the shear modulus
G(t, t′). This and other connections, for example between the White-Metzner and UCM model, can
be observed by explicitly taking the upper convected derivative of the integral formula 2.27 above.
Therefore first calculate the partial time derivative and the effect of the advection term v⃗ ⋅ ∇⃗ on 2.27:

∂tσP (t) = 2G∞D(t) +∫ t

0
[−∂t′B(t, t′)]∂tG(t, t′) + [−∂t′∂tB(t, t′)]G(t, t′)dt′,

[v⃗ ⋅ ∇⃗]σP (t) = ∫ t

0
[−∂t′B(t, t′)] [v⃗ ⋅ ∇⃗]G(t, t′) + [−∂t′[v⃗ ⋅ ∇⃗]B(t, t′)]G(t, t′)dt′.

If one now calculates
▿

σP with the use of
▿

B ≡ 0 one ends up with:

▿

σP (t) = 2G∞D(t) +∫ t

0
[−∂t′B(t, t′)] [∂t + v⃗ ⋅ ∇⃗]G(t, t′)dt′. (2.28)

One can see that the White Metzner Model is obtained if G(t, t′) fulfills the PDE:

[∂t + v⃗ ⋅ ∇⃗]G(t, t′) = − 1

λM(∣γ̇(t)∣)G(t, t′). (2.29)

Thus one can write the White-Metzner (and the UCM) model in the spirit of an integral equation
for the stress which needs "weights" G(t, t′) determined by a differential equation. This is due to the
mathematical fact that every differential equation can be transformed into an integral equation, but
of course not vice versa.

Further Reduction to the UCM Model

The reduction to the UCM Model can be done by simply letting γc → ∞ such that λM ≡ λ. We see
that 2.26 reduces to 2.14 and more interestingly that 2.29 reduces to:

[∂t + v⃗ ⋅ ∇⃗]G(t, t′) = −1

λ
G(t, t′). (2.30)

This differential equation, with initial condition G(t, t) = G∞, has a spatially homogeneous solution
(exponential decay):

G(t, t′) = G∞e
−(t−t′)

λ ,

which proves that 2.17 is indeed the solution to 2.14 as boldly claimed in subsection 2.2.2.

2.3 Integral Constitutive Equations

Of course one can write every differential equation into an integral equation (most times by using the
variation of constant formula) but not vice versa. In mathematical terms one could say that the set
of differential equation is a subset of the bigger set of integral equations. Constitutive equations that
only exist in an integral formulation are often called (true) ICEs.
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2.3.1 Generalized Maxwell Model

As a first example for a true ICE for σP one could consider the generalized Maxwell model, which can
be introduced as a slight modification of the White-Metzner (differential) model:

σP (t) = ∫ t

0
[−∂t′B(t, t′)]G(t, t′)dt′,

[∂t + v⃗ ⋅ ∇⃗]G(t, t′) = − 1

λM(∣γ̇(t)∣)G(t, t′),
by changing the time at which τM is evaluated in the lower equation from t to t′.
Therefore the generalized Maxwell model for the polymeric stress is given by:

σP (t) = ∫ t

0
[−∂t′B(t, t′)]G(t, t′)dt′,

[∂t + v⃗ ⋅ ∇⃗]G(t, t′) = − 1

λM(∣γ̇(t′)∣)G(t, t′). (2.31)

In contrast to the White-Metzner model (shown in 2.2.4) the generalized Maxwell model cannot be
transformed into a differential equation. The reason is that if one calculates the derivative of σ(t)
the λM(∣γ̇(t′)∣) term obtained from 2.31 cannot be pulled out of the integral 2.28 like in the White-
Metzner (or upper convected Maxwell) model. Therefore this is a true ICE.
The generalized Maxwell Model was successfully introduced in [49] in its simple shear version where
v⃗ ⋅ ∇⃗ = 0. The vanishing advection term leads to the fact that 2.31 can be homogeneously solved by:

G(t, t′) = G∞e−(t−t′)/λM (∣γ̇(t′)∣),

resulting in the integral equation

σP (t) = G∞∫ t

0
[−∂t′B(t, t′)]e−(t−t′)/λM (∣γ̇(t′)∣)dt′. (2.32)

The generalized non-linear Maxwell model has been used in the past to reproduce important and
central features predicted by MCT since it is able to mimic the physics of glass-forming liquids rheology
[13, 43].

2.3.2 MCT-ITT Model

Within the framework of Mode-Coupling-Theory one can derive a much more complicated constitutive
equation which has a microscopic "first-principles" starting point with well understood approximations,
in contrast to the other more or less ad-hoc constitutive equations shown previously. This extension of
(schematic) MCT to describe glass-forming liquids under shear using the integration-through-transient
formalism was first introduced by Fuchs and Cates in [17] and [19]. Later refinements of their work
lead to first-principles constitutive equations using MCT in [5, 7] and schematic MCT in [8].
The integration through transient (short: ITT) framework is a way of calculating non-equilibrium
averages from a Green-Kubo relation of equilibrium averages.

However, the first question one should discuss is why it is appropriate to close the (Navier-) Stokes
equations, that arise from Newtonian dynamics, with a constitutive equation that arises from Brow-
nian dynamics. The underlying idea is that our Brownian MCT is already a temporal coarse-grained
model. Additionally the full stress tensor should always contain a Newtonian solvent (or background)
viscosity.
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Further it should be mentioned that the upcoming derivation is only valid for (locally) homogeneous
flow. Since in later finite elements simulations we are going to use a low order scheme the Finger
tensor B and therefore the shear is indeed constant per finite element cell and the derived equations
can be used without further modification. In other word the local homogeneity per FEM node will be
given.

Smoluchowski Equation

For dense colloidal particles one usually describes the system by a probability distribution function Ψ

for the positions of the particles. The time evolution of the probability distribution function Ψ(r⃗, t)
is given by the Smoluchowski equation:

∂tΨ(t) = Ω(t)Ψ(t), (2.33)

with Ω(t) = Ω0 + δΩ(t) the (forward) Smoluchowski operator, here split into a stationary equilibrium
operator Ω0 and a time-dependent pertubation δΩ(t). Assume that there is an equilibrium solution
Ω0Ψeq = 0 and that the system has been in equilibrium up to time t = 0 (which means that δΩ(t < 0) ≡
0), then one can write down a formal solution:

Ψ(t) = exp
+
(∫ t

0
Ω(t′)dt′)Ψeq, (2.34)

with exp
+
the positiv time-ordered exponential. Using the basic exponential property:

exp
+
(x(t)) = 1 +∫

t

0
ẋ(t′) exp

+
(x(t′))dt′,

which can be shown by taking the time derivative on both sides (one obtains the chain rule and
therefore LHS and RHS have the same derivative) and plugging in t = 0 (one obtains the simple true
statement 1 = 1 which means that LHS and RHS are equal at t = 0 and therefore, because of the first
property, for all t), one ends up with:

Ψ(t) = Ψeq +∫
t

0
Ω(t′) exp

+
(∫ t′

0
Ω(t′′)dt′′)Ψeqdt′. (2.35)

Now one is tempted to switch the order of the Smoluchowski operator and the ordered exponential,
such that Ω(t′) = Ω0+δΩ(t′) acts first onto the equilibrium probability distribution function. However,
since these two operators do not commute with each other this switch cannot be done.
First define the time evolution operator and its adjoint operator by:

Ut,t′ ∶= exp
+
(∫ t

t′
Ω(t′′)dt′′), (2.36)

U
†
t,t′ ∶= exp

−
(∫ t

t′
Ω†(t′′)dt′′). (2.37)

To now work out how the Smoluchowski and time evolution operators commute with each other, it is
helpful to first note that:

∂t′′′Ω(t′′)Ut′′,t′′′ = −∂t′′Ut′′,t′′′Ω(t′′′).
This leads to the following calculation:

∫
t′′

t′
Ω(t′′)Ut′′,t′′′dt

′′′
= Ω(t′′)Ut′′,t′′ −Ω(t′′)Ut′′,t′

= −∫
t′′

t′
∂t′′Ut′′,t′′′Ω(t′′′)dt′′′

= −∂t′′ ∫
t′′

t′
Ut′′,t′′′Ω(t′′′)dt′′′ +Ω(t′′)Ut′′,t′′ ,
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and therefore:

Ω(t′)Ut′,0 = ∂t′ ∫
t′

0
Ut′,t′′′Ω(t′′′)dt′′′. (2.38)

Now one can see that the Smoluchowski operator Ω(t′′′) is right from the time evolution operator
Ut′,t′′′ and therefore directly acts onto the equilibrium probability distribution function Ψeq.

Nonequilibrium Distribution Function

Combining the equation 2.38 with the formal solution 2.35 for the Smoluchowski equation, one obtains

Ψ(t) = Ψeq +∫
t

0
∂t′ [exp

+
(∫ t′

t′′′
Ω(t′′)) Ω(t′′′)]Ψeqdt′′′dt′.

By the application of the fundamental theorem of calculus, followed by renaming t′′′ to t′ and finally
switching to the adjoint operators (due to anti-distributivity (AB)† = B†A† the order of the exponential
also changes) one finds

Ψ(t) = Ψeq +∫
t

0
Ω(t′)Ψeq exp

−
(∫ t

t′
Ω†(t′′)dt′′)dt′. (2.39)

One can now specify the Smoluchowski operator Ω(t) = Ω0 + δΩ(t) to be

Ω0 =∑
i

D0∇⃗i ⋅ (∇⃗i − βF⃗i), δΩ(t) = −∑
i

D0∇⃗i ⋅ κ(t) ⋅ r⃗i (2.40)

with the diffusion constant D0 and the inverse thermal energy β = 1
kBT

set to unity. κ(t) denotes the
flow velocity gradient tensor, which was defined in subsection 2.2.1. Note that for the incompressible
fluid flow κ is traceless because of tr(κ) ≡ ∇⃗ ⋅ v⃗ = 0. With this property of the velocity gradient tensor
κ in mind, one is able to calculate how the pertubation operator acts onto the equilibrium probability
density function:

Ω(t′)Ψeq = δΩ(t′)Ψeq = −∑
i

∇⃗i ⋅ κ(t′) ⋅ r⃗iΨeq = −∑
i

F⃗i ⋅ κ(t′) ⋅ r⃗iΨeq

= κ(t′) ∶ σ̂ Ψeq, (2.41)

with A ∶ B = ∑i,j AijBij the contraction of tensors A and B and σ̂ab = ∑i F
a
i r

b
i the microscopic stress

of the fluid.
This means when acting on the equilibrium distribution Ψeq the nonequilibrium Smoluchowski operator
Ω(t′) generates a term proportional to the stress tensor. Note that tr(κ) = 0 was used to eliminate
the first term of the product rule.
The full non-equilibrium distribution function, which is therefore given by combining the result 2.41
and equation 2.39 into

Ψ(t) = Ψeq +∫
t

0
[κ(t′) ∶ σ̂ ]Ψeq exp

−
(∫ t

t′
Ω†(t′′)dt′′)dt′. (2.42)

Equation 2.42 is the central result of the integration through transients (ITT) formalism and will
provide a very convenient starting point for analysis of the non-equilibrium dynamics of colloidal
suspensions. A fundamental advantage of 2.42 over 2.35 or 2.39 is that it enables non-equilibrium
averages to be expressed in terms of equilibrium averages, under the sole assumption that the system
has been in equilibrium up to t = 0 [7].
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Exact Green-Kubo Relation

The full non-equilibrium distribution function allows to calculate non-equilibrium averages ⟨...⟩neq

from Green-Kubo relations out of only regular equilibrium Boltzmann averages ⟨...⟩eq. For the non-
equilibrium average of arbitrary (not necessary scalar) f one obtains

⟨f⟩neq
t = ⟨f⟩eq

+∫
t

0
⟨κ(t′) ∶ σ̂ exp

−
(∫ t

t′
Ω†(t′′)dt′′)f⟩eqdt′, (2.43)

which states that time development of the observable f is, thus, generated by the adjoint operator.
With this equation and the assumption that in equilibrium the system is unstressed one derives the
exact non-equilibrium Green-Kubo relation for the stress tensor:

σ(t) = 1

V
∫

t

0
⟨κ(t′) ∶ σ̂ exp

−
(∫ t

t′
Ω†(t′′)dt′′) σ̂⟩eqdt′. (2.44)

Unfortunately this exact generalized Green-Kubo expression for the stress tensor 2.44 requires ap-
proximation before explicit calculations can be performed.

Exact Projection

In order to be able to perform the necessary approximations to the exact generalized Green-Kubo
expression for the stress tensor – given by equation 2.44 – one first needs to construct a still exact
reformulation of 2.43 in which slow fluctuations are explicitly projected out. To do so one must first
note (a proof is given in [7]) that

⟨κ(t′) ∶ σ̂ exp
−
(∫ t

t′
Ω†(t′′)dt′′)ρ̂(q⃗)⟩eq

= 0 (2.45)

is true for all wave vectors q⃗. Remember that the Fourier transformed density ρ̂(q⃗, t) is defined – like
in the first chapter – by

ρ̂(q⃗) = N

∑
k=1

eiq⃗⋅r⃗k/√N.
Introduce the density projection operator P and its orthogonal Q by

P ∶= ∑⃗
q

∣ρ̂(q⃗)⟩eq⟨ρ̂∗(q⃗)∣
S(q⃗) , (2.46)

Q ∶= Id −P ,

where the normalization factor S(q⃗) ∶= ⟨ρ̂(q⃗)ρ̂∗(q⃗)⟩eq is the static structure factor.
Because of 2.45 and f = Pf +Qf one can (still exact!) smuggle in a Q projector into 2.43, such that:

⟨f⟩neq
t = ⟨f⟩eq

+∫
t

0
⟨κ(t′) ∶ σ̂ Q exp

−
(∫ t

t′
Ω†(t′′)dt′′)Qf⟩eqdt′.

By using the idempotency Q2
= Q of the (and of course any other) projection operator one is able to

smuggle in even more Q’s (details in [7] and [61]) and obtains the following still exact formulation:

⟨f⟩neq
t = ⟨f⟩eq

+∫
t

0
⟨κ(t′) ∶ σ̂ Q exp

−
(∫ t

t′
QΩ†(t′′)Qdt′′)Qf⟩eqdt′. (2.47)

Note that the reformulation relies on the incompressibility condition tr(κ) = 0.
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MCT-like Approximation

As previously mentioned the exact Green-Kubo relation of the (polymeric) stress tensor 2.44 is not
suitable to perform explicit calculations and that approximations must be made. To make these
approximations it is desirable to use the also exact formulation 2.47 to obtain

σP (t) = 1

V
∫

t

0
⟨κ(t′) ∶ σ̂ Q exp

−
(∫ t

t′
QΩ†(t′′)Qdt′′)Qσ̂⟩eqdt′

in the Q projected dynamics. Due to the projector Q the lowest non-zero order of density fluctua-
tions must be pair-density fluctuations ρ̂(q⃗1)ρ̂(q⃗2) with two distinct wave vectors. We thus define a
projection operator

P2 = ∑
q⃗1,q⃗2

∣ρ̂∗(q⃗1)ρ̂∗(q⃗2)⟩eqχ(q⃗1, q⃗2)⟨ρ̂(q⃗1)ρ̂(q⃗2)∣ (2.48)

onto density pairs. The factors χ(q⃗1, q⃗2) should be designed to ensure normalization. The Green-Kubo
relation projected onto pair-density fluctuations, which is no longer exact, is given by

σP (t) = 1

V
∫

t

0
⟨κ(t′) ∶ σ̂ QP2 exp

−
(∫ t

t′
QΩ†(t′′)Qdt′′)P2Qσ̂⟩eqdt′. (2.49)

One can rewrite this approximative Green-Kubo relation of the stress tensor by defining vertex func-
tions:

V
(1)

k⃗′p⃗′
∶=
κ(t′) ∶ (k⃗′ ⊗ p⃗′)
NS(k⃗′)S(p⃗′) 1

k

dS(k⃗′)
dk′

δ
k⃗′,−p⃗′

, (2.50)

V
(2)

k⃗p⃗
∶=

k⃗ ⊗ p⃗

NS(k⃗)S(p⃗) 1

k

dS(k⃗)
dk

δ
k⃗,−p⃗

, (2.51)

to the form

σP (t) = ∑
k⃗,p⃗,k⃗′,p⃗′

1

V
∫

t

0
V
(1)

k⃗′p⃗′
V
(2)

k⃗p⃗
⋅ ⟨ρ̂∗(k⃗′)ρ̂∗(p⃗′) exp

−
(∫ t

t′
QΩ†(t′′)Qdt′′)ρ̂(k⃗)ρ̂(p⃗)⟩eqdt′. (2.52)

By applying an MCT-like approximation the four-point correlation function with the reduced dynamics
will be replaced by a product of two-point correlation functions with the full dynamics:

⟨ρ̂∗(k⃗′)ρ̂∗(−k⃗′)e∫ t
t′ QΩ†(t′′)Qdt′′

−
ρ̂(k⃗)ρ̂(−k⃗)⟩eq

≈ (⟨ρ̂∗(k⃗′)e∫ t
t′ Ω†(t′′)dt′′

−
ρ̂(k⃗)⟩eq)2

. (2.53)

By using the essential observation from [7]: k⃗′ = exp
+
(∫ t

t′ κ(s)) k⃗ =∶ k⃗(t, t′), which means k⃗′ is the

forward advected wave vector of k⃗.
One now (re-)defines the two-time transient density correlation function

Φ
k⃗
(t, t′) ∶= ⟨ρ̂∗(k⃗(t, t′))e∫

t
t′ Ω†(t′′)dt′′

−
ρ̂(k⃗)⟩eq

S(k⃗(t, t′)) .

If one further remembers that the Finger tensor is given by

B(t, t′) = E(t, t′) ⋅E(t, t′)T
the full MCT-ITT forumla for the (polymeric) stress tensor simplifies to

σP (t) = ∫ t

0
dt′∫

R2

dk⃗ [−∂t′(k⃗ ⋅B(t, t′) ⋅ k⃗)]Gk⃗
(t, t′), (2.54)
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where for the generalized shear modulus one can see that

G
k⃗
(t, t′)∝ Φ

k⃗
(t, t′)2 (2.55)

holds true. For the full detailed version of the generalized shear modulus G
k⃗
one might redirect to the

work of Brader et al. [7] where the whole discussion of the MCT-ITT formula for the stress tensor
can be found in great detail.

Schematic Version of the MCT-ITT Formula

By doing further approximations to eliminate the wavevector dependence (details in [8]) one gets the
desired version of the ITT formula for the stress tensor:

σP (t) = ∫ t

0
[−∂t′B(t, t′)]G(t, t′)dt′, (2.56)

where B(t, t′) is again the Finger tensor and G(t, t′) is a generalized shear modulus which relates to
MCT-like dynamical density correlations. In the full MCT-ITT formula (with wave vector dependence)
one observed that the wave vector dependent generalized shear modulus G

k⃗
is proportional to the

squared transient density correlation function Φ2

k⃗
. Therefore it is a reasonable and commonly used

choice (see [8]) to set

G(t, t′) =∶ G0φ
2(t, t′). (2.57)

So the equation 2.56 is structurally identical to the (generalized) Maxwell Model, but the shear
modulus G(t, t′) is "microscopically calculated" with the help of the sMCT instead of an exponential
decay differential equation.

2.4 Analytical Observations of a Pressure Driven Channel Flow

The standard example in the field of rheology is the pressure driven channel flow:
One assumes an infinitely long rectangular channel of height h directed in the x-direction. By looking
at infinitly long channels (or in a simulation: a channel of length L with periodic boundary conditions
in the x direction) one does not have to worry about in- and outlet effects. In addition one only has
to consider velocities in the x direction and changes (mathematically speaking non-vanishing partial
derivatives) in the y direction. Further one assumes the pressure to drop linearly by ∆p over each
length unit L, such that ∇⃗p = ∆p

L
êx.

This allows the Navier-Stokes equation to be reduced to the time-dependent Stokes equation:

∂tvx = −
∆p

L
+ ∂yσxy, (2.58)

with zero Dirichlet8 boundary conditions

vx(y = {0, h}, t) = 0, (2.59)

often referred to as ’no-slip’ boundary conditions.
Since vy ≡ 0 and the fact that one does not have to consider any partial derivatives in the x direction,
one gets the following matrix representation of the velocity gradient tensor:

κ = (0 ∂yvx

0 0
) . (2.60)

8Johann Peter Gustav Lejeune Dirichlet (13 February 1805 – 5 May 1859) was a German mathematician who made
contributions to number theory (including creating the field of analytic number theory), and to the theory of Fourier
series and other topics in mathematical analysis.
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Since this matrix is nilpotent with index 2 for all times t1, t2 (which means that κ(t1)κ(t2) = 0 for any
two times t1 and t2) and the v⃗ ⋅ ∇⃗ term vanishes in the channel flow, one can easily write down

E(t, t′) = Id +∫
t

t′
κ(s)ds

and further calculate the Finger tensor

B(t, t′) = E(t, t′)E(t, t′)T = Id + ((∫ t
t′ ∂yvx(s)ds)2 ∫ t

t′ ∂yvx(s)ds
∫ t

t′ ∂yvx(s)ds 0
) . (2.61)

With the Maxwell-like constitutive equations shown previously one is able to close the set of equations
and make at least some analytical observations in simple flow situations.

2.4.1 Steady State of the Upper Convected Maxwell Model

With the variation of constant formula for the upper convected Maxwell model (in the case of λ > 0)
one obtains

σxy(y, t) = G∞∫ t

0
∂yvx(y, t′) e− t−t′

λ dt′, (2.62)

which can be plugged in into the time-dependent Stokes equation of the pressure driven channel flow
to achieve the final integro-differential equation

∂tvx = −
∆p

L
+G∞∫

t

0
∂2

yvx(y, t′) e− t−t′

λ dt′, (2.63)

with the boundary condition vx(y = {0, h}, t) = 0.

Stationary Solution

A stationary solution vss
x (y) would mean that the right hand side vanishes and that one could pull

the stationary velocity vss
x (y) out of the integral, such that

∆p

L
= ∂2

yv
ss
x (y) ⋅G∞∫ ∞

0
e−

s
λds = ∂2

yv
ss
x (y) ⋅ η

⇒ vss
x (y) = ∆p

2Lη
y(y − h), (2.64)

with η = G∞λ the viscosity of the fluid.
One can easily check that this is the same profile as for a Newtonian fluid with viscosity η = G∞λ.
Parabola profiles like this are often called Hagen-Poiseuille profiles in literature.
The next thing one can show is that any initial condition vx(y, t = 0) will be driven into vss

x when
t → ∞. To do so, one uses the Laplace transformed version of 2.63, in which the convolution is
transformed to a multiplication. Furthermore one multiplies the whole equation by a factor s:

s2v̂x(y, s) − svx(y,0) = −∆p

L
+G∞

1

s + λ−1
⋅ ∂2

y v̂x(y, s)s, (2.65)

s→ 0, ⇒ 0 = −
∆p

L
+ η ⋅ ∂2

yvx(y, t→∞),
vx(y, t→∞) = ∆p

2Lη
y(y − h) = vss

x (y), (2.66)

where the final value theorem of the Laplace transformation is used to get back to real time space.
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2.4.2 Stationary Solutions for the White-Metzner and generalized Maxwell Mod-
els

To calculate stationary solutions vss
x of either WMM or genMM one first needs to calculate the sta-

tionary stress tensor σss. One can already guess that both models will share the same stationary
stress tensor since the only difference between the two models is the time at which λM is taken and
in the stationary regime this time dependence becomes irrelevant.

White-Metzner Model

In the steady state the partial time derivative in equation 2.26 vanishes, therefore one can reformulate
it to

−κ ⋅ σss
− σss

⋅ κT
= G∞κ +G∞κ

T
−

1

λss
M(∣γ̇ss∣)σss, (2.67)

with

κ = (0 γ̇ss

0 0
) .

Since κ2
= 0, one can see and quickly check that

σss
= G∞λ

ss
M(∣γ̇ss∣) [κ + κT

+ 2λss
M(∣γ̇ss∣)κκT ] (2.68)

solves the equation above. Insert the stress tensor into the right hand side:

−κ ⋅ σss
− σss

⋅ κT
= G∞λ

ss
M(∣γ̇ss∣) [−κκ − κκT

− 2λss
M(∣γ̇ss∣)κκκT

− κκT
− κTκT

− 2λss
M(∣γ̇ss∣)κκTκT ]

= G∞λ
ss
M(∣γ̇ss∣) [−2κκT ]

= −G∞ [2λss
M(∣γ̇ss∣)κκT ]

= G∞κ +G∞κ
T
−

1

λss
M(∣γ̇ss∣)σss.

Generalized Maxwell Model

First one assumes that the system is in the steady state since forever, such that the lower integral
limit can be set to −∞. Further one knows that in the channel geometry the deformation gradient
tensor is given by

E(t, t′) = Id + κ(t − t′)
for a stationary velocity gradient κ. This leads to

B(t, t′) = Ett′ ⋅Ett′
T
= Id + [κ + κT ] (t − t′) + κκT (t − t′)2

−∂t′B(t, t′) = κ + κT
+ 2κκT (t − t′), (2.69)

which one can plug into 2.32 with the integral starting from −∞. By setting t − t′ = s and with the
use of the integral

∫
∞

0
se−s/λds = λ,

one obtains

σss
= G∞∫

∞

0
[κ + κT

+ 2κκT s] e−s/λss
Mds = G∞λ

ss
M(∣γ̇ss∣) [κ + κT

+ 2κκT ] , (2.70)

which is the exact same stationary stress tensor as for the WMM.
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Stationary Velocity Profile

Since the (mathematical) intuitive statement that the WMM and genMM are stationary identical is
now proved by having explicitly calculated both, one can further calculate the stationary velocity
profile from the (Navier-) Stokes equation. Again all calculations are restricted to no-slip boundary
conditions vx(y = {0, h}, t) = 0.
In order to physically model a polymer melt or colloidal suspension one often adds a Newtonian
viscosity part to the stress tensor (called solvent part of the stress tensor).

σ = σP + σS

This corresponds to the idea that the viscoelastic material (a polymer melt for example) is diluted in
a Newtonian / viscous solvent with viscosity ηS = G∞λS . Correspondingly we replace the structural
relaxation time λ of the polymeric part by λP = ηP /G∞. This leads to the Navier-Stokes x-equation

∆p

L
= ∂y ([ηS +G∞λM(∣γ̇ss∣)] γ̇ss) . (2.71)

Integrating both side with respect to y and writing out all the terms leads to

∆p

L
⋅ (y − h

2
) = ⎡⎢⎢⎢⎢⎣ηS +

ηP

1 + λP

γc
∣∂yvss

x (y)∣
⎤⎥⎥⎥⎥⎦∂yv

ss
x (y)

which one only needs to solve for 0 < y < h
2
where ∂yv

ss
x (y) > 0. The other half is then known by its

symmetry property around the middle axes y = h
2
.

Without the loss of generality one can set some constants to unity to fix scales, for example h = 1 to
fix the length scale, λS = 1 to fix the time scale and G∞ = 1 to fix the pressure scale. Further one

defines d ∶=
y−h

2

h
, γ̂c ∶=

L
∆p
γc and sets ∂yv

ss
x =∶

∆p
L
u′, such that the integrated NSE reduces to

d =

⎡⎢⎢⎢⎢⎣1 +
λP

1 + λP

γ̂c
u′

⎤⎥⎥⎥⎥⎦u
′ (2.72)

in the region −1
2
≤ d ≤ 0 where u′ is non-negative. This equation leads to a quadratic equation (multiply

by 1+ λP

γ̂c
u′) in u′ which is solved by two solutions. The physically reasonable solution is the one that

obeys u′(d = 0) = 0, because the velocity profile should have its maximum in the middle of the channel
(by symmetry reasons). Therefore one has

u′ = −
γ̂c

2

⎡⎢⎢⎢⎣(
d

γ̂c

+
1 + λP

λP

) −
√
( d
γ̂c

+
1 + λP

λP

)2 + 4

γ̂cλP

d
⎤⎥⎥⎥⎦ (2.73)

in the lower half of the channel (d is negative or zero).
Now one needs to integrate this and fit the integration constant to the no-slip Dirichlet boundary
condition u(d = −1

2
) = 0. Since this integration (especially the second term with the √...) is very

tedious details are left out.
Further define t = λP−1

λP
and s2

=
4

λP
to obtain

û(d) = −d2

4
−

1 + λP

λP

γ̂c

2
d −

γ̂c
2

4
(t + d

γ̂c

)
√
(t + d

γ̂c

)2 + s2 (2.74)

−
γ̂c

2s2

4
ln
⎛⎝
√
(t + d

γ̂c

)2 + s2 + (t + d

γ̂c

)⎞⎠
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for the indefinite integral of u′. To now fulfill the no-slip boundary condition one needs to set

u(d) = û(d) − û(d = −1

2
) (2.75)

for the lower half of the channel and the mirror-symmetrical (around d = 0) continuation for the upper
half of the channel.

The glassy solution

In the glassy limit one considers λP →∞ and therefore t→ 1 and s2
→ 0, such that

û(d) λP→∞

ÐÐÐÐ→ −
γ̂c

2

4
[ 1

γ̂c
2
d2
+

2

γ̂c

d − (1 + d

γ̂c

)∣1 + d

γ̂c

∣] . (2.76)

One can now separate this into two different regimes ∣d∣ > γ̂c, called "outer regime" and ∣d∣ < γ̂c, called
"inner regime".
For the "outer regime" one finds (note that all calculations are done for the lower part of the channel
where d < 0)

û(d) λP→∞

ÐÐÐÐ→
γ̂c

2

4
[1 − 2(1 + d

γ̂c

)2] (2.77)

which means that in the ’outer regime’ one receives a parabolic shaped velocity profile.
However for the "inner regime" one obtains

û(d) λP→∞

ÐÐÐÐ→
γ̂c

2

4
(2.78)

which means that in the "inner regime" the velocity is constant. This yields to the observation that a
velocity-plug is expressed.
Further one recognizes that ∣ d

γ̂c
∣ > 1 takes the role of a yield criterion, where ∣ d

γ̂c
∣ = 1 defines a so

called yield surface. Viscoelastic fluids that have a non vanishing yield stress are often called vis-
coelastoplastic fluids. Note that in γ̂c =

L
∆p
γc the pressure difference plays a major role, such that if

the pressure difference ∆p is to small γ̂c gets to big to fulfill the yield criterion anywhere inside the
channel, resulting in no flow at all.

2.5 Residual Stresses from a Simple Shear Experiment, analytical
Observations

Another analytically solvable situation is the simple shear flow through an infinitely long rectangular
channel. Like the pressure driven channel flow the system is quasi one dimensional (v⃗(r⃗, t) = v⃗(y, t)).
Here, instead of a pressure gradient, the movement of the fluid is induced by a "moving upper wall"
in the infinitely long channel, which precisely means that the boundary conditions are changed to
v⃗(y = h) = v0

ˆ⃗ex and v⃗(y = 0) = 0. Since there is no pressure gradient the (non-trivial part of the)
Navier-Stokes equation reduces to

∂tvx = ∂yσxy, (2.79)

which immediately implies that the shear stress σxy must be a constant in the steady state.
The question now is whether this constant is zero or if there is a remaining shear stress (so-called
residual stress) after flow cessation. The experiment is to stop the upper wall at given time (commonly
one sets this to t = 0) and see weather the stress relaxes to zero or if a residual stress remains. Since
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the system is dissipative one can assume that the velocity relaxes to zero when the energy supply by
the moving upper boundary is set to zero.
Experimental work on glass-forming and viscoelastoplastic fluids have found residual stresses σres that
show three main features [1]:

(1) partial relaxation of σres from the steady state stress σss,

(2) σ = σres
≠ 0 for t→∞,

(3) the residual stress σres depends on the deformation history.

To be able to make analytical predictions one further simplifies the whole setup by directly setting
∂yvx(y, t) = γ̇(t). This assumption corresponds to a infinitely thin channel, such that the shear rate
γ̇ and therefore the velocity v⃗(y) die down to zero immediately at t = 0. This means that one can
assume the shear rate to be a step function:

γ̇(t) = γ̇ ⋅ θ(−t). (2.80)

2.5.1 White-Metzner Model

For the White-Metzner model in the infinitely long channel one has to solve the ordinary differential
equation

σ̇xy(t) + 1

λM(t)σxy(t) = G∞γ̇(t).
Note that for t > 0 the right hand side vanishes and that 1

λM (t)
=

1
λ
, reducing the equation to a standard

exponential decay differential equation:

σ̇xy(t) + 1

λ
σxy(t) = 0, (2.81)

which leads to σxy(t→∞) = 0 for finite relaxation time λ.
However in the glassy limit in which 1

λ
vanishes and the equation reduces to σ̇xy(t > 0) = 0 the solution

must be constant σxy(t→∞) = σxy(0).
The constant σxy(0) can be calculated with the variation of constant formula:

σxy(0) = G∞γ̇ ∫ 0

−∞

exp( γ̇t′
γc

)dt′ = G∞γc. (2.82)

This indicates that in the glassy limit 1
λ
→ 0 the White-Metzner model forms "trivial" residual stresses,

which are not history dependent. Therefore the White-Metzner model does not predict feature (1)
and (3) correctly.

2.5.2 Generalized Maxwell Model

In this simplified one dimensional setup the generalized or nonlinear Maxwell model is, in contrast to
the differential equation of the previous White-Metzner model, given by the integral equation

σxy(t) = G∞∫ t

−∞

γ̇(t′) exp( −(t − t′)
λM(∣γ̇(t′)∣)dt′.

If one now plugs in γ̇(t) = γ̇ ⋅ θ(−t), the integral is cut off at t′ = 0:

σxy(t > 0) = G∞γ̇ ∫ 0

−∞

exp(−(t − t′)
λM(∣γ̇∣) )dt′

= G∞γ̇λM(∣γ̇∣) exp(− t

λM(∣γ̇∣)), (2.83)
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which implies that σxy(t → ∞) → 0, regardless of the structural relaxation time λ. So in contrast
to the White-Metzner model the generalized Maxwell model does not form any residual stresses in
the glassy limit 1

λ
→ 0. Obviously features (2) and (3) are not correctly predicted by the generalized

Maxwell model.

2.5.3 MCT-ITT Model

Analytical observations in terms of a analytical calculation of the one dimensional stress integral

σ(t > 0) = G0γ̇ ∫
0

−∞

φ2(t, t′)dt′ (2.84)

for the MCT-ITT model are not possible. However, numerical calculations of exactly this integral,
where φ(t, t′) is given by the schematic two-time MCT under time-dependent shear, do show non-
trivial residual stresses [1]. The MCT-ITT model is the only model that fulfills (1), (2) and (3).

Figure 2.3: Stress decay σ(t) after cessation of steady shear, for various strain-rates γ̇ (increas-
ing from red to blue) and control parameters, as labeled. (a) MD simulation: T = 0.14 in
the liquid, T = 0.1 in the glass. (b) Isotropic hard-sphere model of ITT-MCT, packing fraction
ϕMCT = 0.51, 0.515(liquid), and 0.52(glass). (c) HS colloidal suspension: ϕ = 0.542, 0.587 (liquid),
and 0.614 (glass). (d) PS-PNIPAM particles: T = 18C (ϕ ≈ 0.57, liquid, γ̇ as labeled, with g = 3.4)
and T = 15C (ϕ ≈ 0.65, glass, g = 4.0). Figure from Ref. [1].
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Chapter 3

Theory of the Finite Element Method
and FEniCS

This chapter provides a general introduction of the finite element method (FEM) and of the
FEniCS environment to create such finite elements (FE) simulations for the numerical approxima-
tion of (systems of) partial differential equations in the Python3 programming language. For a better
understanding first a brief general introduction into the mathematical theory – including also weak
derivatives and Sobolev1 spaces from the theory of partial differential equations – and technical aspects
of the finite element method is given.

3.1 FEM Basics

This section is written to shortly cover the basics of the finite elements method, a simulation technique
to numerically solve (simulate) partial differential equations. For a more in-depth discussion of the
mathematical principles of the finite element method the reader is referred to the excellent literature
[10, 33] for the mathematical aspects, [38] for technical aspects and [15] explicitly for flow problems.

3.1.1 Concept of Weak Derivatives and Sobolev Spaces

The finite element method does not aim to numerically solve the partial differtial equation directly,
instead it numerically solves the weak formulation of the problem and delivers an approximation of
the so-called weak solution.
To get a first idea of the concept of weak solutions consider the Poisson2 problem

−∆u = f in Ω,

u = uD on δΩ,

where Ω is any open (real) subspace of Rd and δΩ the boundary of this subspace. The equations above
require that u ∈ C2(Ω) if f ∈ C0(Ω) is given. Recall that by definition Cn(Ω) is the space of functions
living on Ω which have continuous (partial) derivatives up to order n, therefore C0 or C is the space
of continuous functions. If one multiplies the first equation of the Poisson problem with any so-called
test-function ϕ ∈ C∞0 (Ω) (here the lower index 0 indicates that the functions ϕ vanish at the boundary
δΩ) and integrates over the whole space Ω – using the integration by parts formula – to obtain

∫
Ω
(∇u) ⋅ (∇v)dx = ∫

Ω
fvdx, ∀ϕ ∈ C∞0 (Ω). (3.1)

1Sergei Lvovich Sobolev (6 October 1908 – 3 January 1989) was a Soviet mathematician working in mathematical
analysis and partial differential equations.

2Siméon Denis Poisson (21 June 1781 – 25 April 1840) was a French mathematician and physicist.

51



CHAPTER 3. THEORY OF THE FINITE ELEMENT METHOD AND FENICS

Because ϕ vanishes at the boundary δΩ there is no boundary term on the left hand side. We note that
this equation does not require u to be at least two times differentiable, it only requires u to be "weakly
differentiable" once and the integral to exist. First one needs to the define what a weak derivative is:
One calls a function v the α-th (with α = (α1, ..., αd) and ∣α∣ = α1+ ...+αd) weak derivative of function
u if

∫
Ω
uϕ(α)dx = (−1)∣α∣∫

Ω
vϕdx, ∀ϕ ∈ C∞0 (Ω)

holds true for all test-functions. One often denotes the α-th weak derivative by v = Dαu, in contrast
to the normal (or strong) derivative u(α).
The concept of a weak derivative is obviously an extension to the normal derivative, since the equation
above holds by the integration by parts formula if v is the normal derivative u(α) of the function u.
Also if two functions v,w are weak derivatives of the same function u, they must be equal (up to a
set of points with measure zero). Therefore the weak derivative is unique.
The two conditions given above (u is once weakly differentiable and all integrals do exist) are fulfilled
by functions in a space that the mathematicans call the Sobolev space H1(Ω), which is defined as

H1(Ω) ∶= {u ∶ Ω→ R ∣ Dαu ∈ L2(Ω), ∀ ∣α∣ ≤ 1}.
The integral equation 3.1 is called the weak formulation of the Poisson problem. Finally note that
every solution of the differentiable problem automatically is also a solution of the weak formulation
but not vice versa. We call the solution of the weak formulation the weak solution of the PDE. For a
detailed mathematical introduction to weak derivatives, Sobolev spaces and weak solutions the reader
is referred to the classic literature on partial differetial equation by L.C. Evans [16].

3.1.2 Idea of Trial- and Test-function Space and their Approximations

The main idea of the finite element method is to approximate the exact solution by a linear combination
of basis functions, historically called "trial-functions" ("Ansatzfunktionen" or "Ritz-Ansätze" by the
swiss mathematican Ritz3). To numerically approximate or solve the weak problem one needs to
define a trial-function space V = {u ∈ H1(Ω)∣u = uD on δΩ} and a test-function space V̂ = {v ∈
H1(Ω)∣v = 0 on δΩ} and approximate these to do numerical simulations.
The need for further approximations is needed because the function space H1 is a space of infinite
dimension and therefore one would need to numerically solve an infinite amount of equations for the
basis coefficients, which is obviously not possible. Therefore one needs to approximate the infinite
spaces V and V̂ by finite function spaces Vh and V̂h on which one can calculate an approximative
solution uh ∈ Vh to the weak problem by numerically solving only a finite amount of equations. To
understand the basic idea it might be helpful to visit a very simple example in one dimension first.

Linear Polynomials in 1D, Hatfunctions

In one dimension the connected set Ω must be an interval. Without loss of generality one can set this
interval to I = [0, L] which can be divided into n sub-intervals Ii = [xi−1, xi], such that x0 = 0 is the
start of I and xn = L is the end of I. In 1D one often does this in an equidistant way, but this is
not necessary for FEM. On each sub-interval one now defines the space of continuous piecewise linear
polynomials which is called P1 (or CG1 for continuous Galerkin of order 1):

P1(Ii) ∶= {p(x) = c0 + c1x, x ∈ Ii}. (3.2)

3Walther Heinrich Wilhelm Ritz (22 February 1878 – 7 July 1909) was a Swiss mathematican and theoretical physicist.
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With this space of linear functions one can define finite-dimensional trial- and test-function spaces Vh

and V̂h on the whole grid such that every function v out of these spaces is in P1(Ii) if v is restricted
to Ii. Therefore:

Vh = {v ∈ C(I), v∣Ii
∈ P1(Ii) ∧ b.c.}, (3.3)

V̂h = {v ∈ C(I), v∣Ii
∈ P1(Ii) ∧ v(0) = v(L) = 0}, (3.4)

where b.c. means that v fulfills the given boundary conditions of the problem.

Figure 3.1: A continuous piecewise linear function v. Figure from Ref. [33].

To design a FEM simulation one must be able to convert the weak problem (which arises from the PDE)
into a system of algebraic equations (not necessary linear). To do so one needs a finite dimensional
basis of these function spaces to set up equations. Obviously every function out of these spaces Vh

and V̂h is uniquely determined by its nodal values v(xi) (with i = 0,1, ..., n). This implies that for
every set of nodal values {ai; i = 0,1, .., n} there is only one v which shares these nodal values, so it is
an obvious choice to set

ϕi(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(x − xi−1)/(xi − xi−1), x ∈ (xi−1, xi)(xi+1 − x)/(xi+1 − xi), x ∈ [xi, xi+1)
0, else

(3.5)

and call these set of basis functions {ϕi} the nodal basis. Since these functions look like hats (see
figure below) one often calls them hat functions.

Figure 3.2: Nodal basis in 1D, also called hat functions. Figure from Ref. [33].

For a given continuous function f on the interval I its continuous piecewise linear approximation (πf)
is easily calculated as:

(πf)(x) =∑
i

f(xi)ϕi(x).
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Figure 3.3: Approximation (πf) of f(x) = 2x sin(2πx) + 3 over [0,1] on a uniform mesh/grid with 6
nodes xi (i = 0,1, ...5). Figure from Ref. [33].

Minimal Example in 1D

Consider the Poisson problem in 1D with zero Dirichlet boundary condition over the unit interval[0,1]:
−u′′ = f in (0,1),
u = 0 on {0,1}.

For simplicity one might choose an equidistant grid / mesh 0 = x0 < .. < xi = i/n < ... < xn = 1 and set
h = 1/n. From above one knows that the weak formulation of this problem is given by

∫
1

0
u′v′dx = ∫

1

0
fvdx.

Now u and v should be constructed as a linear combination of hat functions, for example

u(x) = n

∑
i=0

µiϕi(x),
v(x) = n

∑
j=0

νjϕj(x),
because of the zero Dirichlet boundary condition Vh = V̂h and therefore also ϕi = ϕ̂i. Further one could
define the coefficient vectors µ = (µi)ni=0 and ν = (νj)nj=0 to simplify further writing. Since

ϕ′i(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1/h, x ∈ (xi−1, xi)
−1/h, x ∈ [xi, xi+1)
0, else

the weak formulation from above reduces to

∑
i,j

µiνj ∫
1

0
ϕ′iϕ

′

jdx´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Aij

=∑
j

νj ∫
1

0
fϕ′jdx´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶bj

,

∑
i,j

µiνjAij =∑
j

νjbj ,

νTAµ = νT b.
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This is equivalent to the system of linear equations

Aµ = b. (3.6)

Because A is a symmetric and positive-definite matrix one knows from textbook linear algebra that
A is invertible (A−1 exists). Therefore one can find a unique solution vector µ(= A−1b) of the system
of linear equations, which leads to a unique (approximative) solution uh = ∑i µiϕi ∈ Vh.
From calculating the integrals in the definition of the (later called: stiffness-) matrix A one finds that:

Aij = ∫
1

0
ϕ′iϕ

′

jdx =
1

h

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1

−1 2 −1

−1 2 −1

⋱ ⋱ ⋱

−1 2 −1

−1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
which is (up to factor −h) the well-known first order finite difference approximation of the second
derivative. The generalization of this procedure is called the standard Galerkin4 method and will be
discussed in the next subsection.

3.1.3 Standard Galerkin Method

The standard Galerkin method converts a continuous operator problem, such as a differential equation
(commonly in weak formulation like here in the finite element method), to a discrete algebraic problem
by applying linear constraints determined by finite sets of basis functions. Suppose that infinite trial-
and test-function spaces V and V̂ are already successfully reduced to finite-dimensional approximations
Vh and V̂h, for example consisting out of continuous piecewise linear functions, with (nodal) basis{ϕi}nNodes

i=1 and {ϕ̂i}nNodes

i=1 . One can calculate a system of algebraic equations for the basis coefficients
which leads to an approximative solution of the weak problem.
It is important to note that even if the PDE itself is nonlinear it is sufficient to use the basis functions
ϕ̂i as test-functions. This can be seen at the very beginning of creating the weak problem from the
PDE: one multiplies with v and therefore the whole equation is linear in v. Consider for example, the
nonlinear part of the Navier-Stokes-Equation:

(u ⋅ ∇)u = f
∫ [(u ⋅ ∇)u]vdx −∫ fvdx = 0

where the second equation is obviously linear in v.

Linear problems

If the PDE is linear, one arrives at a weak problem of the form:

a(u, v) = L(v), ∀v ∈ V̂ (3.7)

with a bilinear form a and a linear form L. In the case of the Poisson problem one is able to identify
a(u, v) = ∫ (∇u) ⋅ (∇v)dx and L(v) = ∫ fvdx. Since a(⋅,−) is a bilinear form it is sufficient to calculate
the ’stiffness matrix’ Aij = a(ϕi, ϕ̂j) and the ’load vector’ bj = L(ϕ̂j) and solve the linear equation

Aµ = b (3.8)

4Boris Grigoryevich Galerkin (4 March [O.S. 20 February] 1871–12 July 1945) was a Soviet mathematician and
engineer.
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to obtain the approximative solution

uh(x) =∑
i

µiϕi(x). (3.9)

The existence of a solution u ∈ V to the problem 3.7 is guaranteed – under the assumption that a
is a continuous coercive bilinear form and L a continuous linear functional – by the Lax-Milgramm
theorem [10, 33].

Nonlinear problems

For nonlinear problems equation 3.7 changes to

F (u, v) = 0 (3.10)

with F only linear in the second argument (as discussed previously). Due to this linearity in the
second argument one ends up with the nonlinear system of equations

F (∑
j

µjϕj , ϕi) = 0 ∀i = 1, ..., nNodes (3.11)

for our degrees of freedom or (unknown coefficients) µj .
This nonlinear system of equations then needs to be plugged into a non-linear solver, for example
using Newton’s method (mathematical details on the Newton method can be found in [52]). However
the existence or even uniqueness of a solution uh can not be guaranteed and is an open research topic
for mathematicians.

3.1.4 Finite Elements in 2D

In the above discussion in one dimension, one was able to easily construct a discrete subspace Vh ⊂ V of
the infinite-dimensional function spaces. However, in two (or even more) dimensions this is no longer
that straightforward, because it is no longer trivial how to divide Ω (which was just an interval in
the one dimensional case) into smaller sets K on which one could afterwards define finite-dimensional
basis functions. A central aspect of the finite element method is the construction of such subspaces
by patching together local function spaces defined by a set of finite elements.

Triangulation

The first step one needs to do is to decompose our subspace Ω into a set K = {K} (also very often
called Th) of open cells K (simplices) such that

1. Ω = ∪K∈KK,

2. any nonempty intersection between two different cells Ki, Kj is either a vertex, an edge or a
face of both cells.

If both of these conditions are fulfilled the mathematical literature [10, 33, 38] defines K to be a valid
triangulation.
In practice the whole decomposition of space is usually called the "mesh". In 2D (which is the only
case covered in this work) this is mainly done with triangles (therefore this process is often called
triangulation), but could also be done by squares. In 3D one uses prisms, pyramids or tetrahedrons.
If one restricts the triangulation conditions to only triangles in two dimensions the second condition
could also be reformulated to

2. no vertex of any triangle lies in the interior of an edge of another.
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With this condition one can directly tell that the left decomposition in the figure below is a valid
triangulation while the right one is not.

Figure 3.4: Two subdivisions: the one on the left is a valid triangulation and the one on the right is
not because of the hanging node in the center. Figure from Ref. [10].

As a full two dimensional example a channel is shown with right orientated diagonals (default in
FEniCS) and crossed diagonals (better to keep certain symmetries, for example in the channel flow)

Figure 3.5: Decomposition (or mesh) of a channel with right (default) and crossed diagonals.

In the mesh creation (or triangulation) of Ω lies one of the major advantages of the FEM over other
method such as finite differences or Lattice Boltzmann, because it is much more flexible in terms of
overall simulation geometry but also in terms of refinement towards for example a certain edge as
shown in the figure below.
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Figure 3.6: Refinement towards the recessed edge in the center. Figure from Ref. [9].

On the open cells K from a valid triangulation one can now define finite-dimensional function spaces
which will be used as trial- and test-function spaces. To keep it simple and fitting to this thesis we will
only look into polynomials with degree less or equal to n ∈ N living on these cells K that are defined
in the following way:

Pn(K) ∶= {p(x) = ∑
∣α∣≤n

cαx
α, x ∈K}. (3.12)

The Finite Element

Similar to the one dimensional case, discussed earlier, one can look at the space of continuous piecewise
linear functions in two spatial dimensions. Previously we have discussed how to decompose our 2D
space, on which we want to solve a PDE, into triangles K. A linear function on a triangle K is defined
by:

pK
1 (x, y) = c(0,0) + c(1,0)x + c(0,1)y, (x, y) ∈K.

There are three coefficients (R = 3) that need to be fixed by three equations, consequently one could
use the three edges of the triangle to fix values. For comparison, a constant element would only need
one value (usually the center of mass of the triangle) and a quadratic element would need six values
(usually the three edges and the three midpoints of the sides).
Let us first consider K to be the elementary triangle with edges NK

1 = (0,0), NK
2 = (1,0) and

NK
3 = (0,1) (do not confuse with the multi-indices above) from the figure below.
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Figure 3.7: Elementary triangle with edges NK
1 = (0,0), NK

2 = (1,0) and NK
3 = (0,1). Figure from

Ref. [10].

The local basis functions {ϕK
i }3i=1 corresponding to a linear element need to fulfill ϕK

i (NK
j ) = δij ,

hence

ϕK
1 (x, y) = 1 − x − y,

ϕK
2 (x, y) = x,

ϕK
3 (x, y) = y.

{ϕK
i }3i=1 are sufficient to write every linear function on the elementary triangle K as a linear combina-

tion of these basis functions: p1 = ∑3
i=1 liϕi. The triple (K,P1(K),{li}) consisting of the cell K, the

finite dimensional function space (the "Ansatzfunktionen") P1(K) (linear polynomials on K) and the
degrees of freedom {li} which is a basis of its dual space P1(K)′ is what is called a "finite element".
The properties of this example on the elementary triangle can be generalized to the definition (for
example [38] or [10]) that one says, if

1. the domain K is a bounded, closed subset of Rd with nonempty interior and piecewise smooth
boundary,

2. the space of "Ansatzfunktionen" V is a finite dimensional function space on K of dimension n,

3. the set of degrees of freedom (nodes) L = {l1, ..., lnK
} is a basis for the dual space V ′,

are fulfilled, then (K,V,L) is a finite element.

Hatfunctions in 2D

Again very similar to the one dimensional case one can construct a linear global nodal basis {ϕi}nNodes

i=1

with ϕi(Nj) = δij and Vh = span{ϕi∣i = 1, ..., nNodes}, where Nj denotes the j-th node of the mesh.
This construction leads to the two dimensional hat functions shown in the figure below.
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Figure 3.8: 2D hat function ϕj on a general triangle mesh. Figure from Ref. [33].

Assembly of the Stiffness Matrix and Load Vector

For the sake of simplicity the discussion of the assembly is restricted to the case of zero Dirichlet
boundary conditions, such that one does not need to distinguish between Vh and V̂h or their (global
nodal) basis functions given by {ϕi}nNodes

i=1 (for example the 2D hat functions from figure 3.8). The
local basis functions on triangle K should be given by {ϕK

i }Ri=1, with R the number of the local degrees
of freedom (for example R = 3 in the the case of the linear hat functions in figure 3.8).
Goal of the finite element method when applied to linear PDEs is to be able to calculate a numerical
solution uh = ∑i µiϕi by solving a system of linear equations

Aµ = b

with a stiffness matrix A and a load vector b. The organization of the calculation of the stiffness
matrix A and the load vector b is what is called the "assembly". The assembly process can be done in
the following way:

• Let the total number of triangles be given by nT such that there exist a global numeration of the
triangles K1,K2, ...,KnT

. The local nodes of triangle Kl should be numerated by NKl

1 , ...,N
Kl

R .
Further give all the nodes (for the whole mesh) a global numeration N1,N2, ...,NnNodes

which
corresponds to the numeration of the global nodal basis {ϕi}nNodes

i=1 .
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Figure 3.9: Triangle 8 has nodes (or edges) (9,6,8).

• Define a local to global mapping by: il(r) is the global number of the node which has the local
number NKl

r in triangle Kl. Then for i = il(r)
ϕi∣Kl

= ϕKl
r

holds true for all l = 1, ..., nT and all r = 1, ...,R.

• Algorithm to assemble the stiffness matrix A (for the Poisson equation example):
Aij = 0;

for l = 1, ..., nT do (Loop over all nT triangles.)

for r, s = 1, ...,R do (Loop over the local degrees of freedom.)

AKl
rs ← a(ϕKl

r , ϕKl
s ); (= ∫Kl

∇ϕKl
r ⋅ ∇ϕ

Kl
s dx in the Poisson equation example.)

i← il(r);
j ← il(s);
Aij ← Aij +A

Kl
rs ;

end for

end for

• Assembly of the load vector can be done in similar fashion.

Remarks concerning the generalization of the assembly process:
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1. Note that the assembly process for A and b from above covers only linear PDEs. However, in
the nonlinear case one needs to solve a set of nonlinear equations

F (uh, ϕi) = 0, ∀i = 1, ..., nNodes

in order to optain a numerical approximation uh of the nonlinear PDE. Still the assembly process
for a set of nonlinear equations works very similar also using the local to global mapping il(r)
to set up the set of equations.

2. If one does not have zero Dirichlet boundary conditions one needs to distinguish between Vh and
V̂h and use ϕ̂i as the second argument to assemble the stiffness matrix A and also for the load
vector b.

3.1.5 Discontinuous Galerkin Method

This final subsection is written to briefly present some very basic aspects of the discontinuous Galerkin
(DG) method, which will be used later on in our simulations. This method is based on finite element
spaces that consist of discontinuous piecewise polynomials defined on a partition of the computational
domain.

Motivation

The DG method generalizes the FEM by eliminating continuity constraints and providing the tools
to handle potential jumps via numerical fluxes. In this respect it transfers a classical advantage of
the finite volume methods to a finite element approach. Hence, it provides additional flexibility in
designing the shape functions that are discontinuous, and means to stabilize discontinuities or steep
gradient regions. DG methods are inherently local requiring less communication between neighbouring
mesh cells. This facilitates the enforcement of local mass conservation (i.e., per mesh cell).

Figure 3.10: Visualization of the difference between CG and DG methods. DG allows steps, while CG
methods are constraint on continuity.

Basic Definitions

In contrast to the previously defined Vh the condition that the functions v ∈ Vh are continuous (v ∈ C(Ω)
or better Vh ⊂ C(Ω)) will be dropped (or better: reduced to being square integrable). Therefore let
K = {K} be a mesh of our domain Ω and define the trial-function space of discontinuous piecewise
polynomial functions with degree less or equal to n ∈ N by

Vh = {v ∈ L2(Ω), v∣K ∈ Pn(K), ∀K ∈ K ∧ b.c.}. (3.13)
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Thus, the functions v ∈ Vh are polynomials (up to degree n) on each element K, but (can be) dis-
continuous across the element boundaries ∂K. Let EI denote the set of interior edges and with each
interior edge E we associate a fixed unit normal vector n. We denote by K± the element for which ±n
is the exterior normal. Accordingly we define

v± ∶= lim
ǫ→0+

v(x ± ǫn).
For edges on the boundary ∂Ω we let n be the exterior unit normal vector. Further, we define the
"jump" [v] and the "average" ⟨v⟩ of a function v by

[v] ∶= v+ − v−,
⟨v⟩ ∶= v+ + v−

2
,

and note that the following identity

[uv] = [u]⟨v⟩ + ⟨u⟩[v] (3.14)

can be quickly be proven by multiplying out the right-hand side.

Example Problem: Transport Equation

In 1973 Reed and Hill first introduced a DG method to solve the hyperbolic neutron transport equation
[46], here also a hyperbolic transport equation will be used as an example. We consider the following
problem modeling convection and reaction: given a divergence-free vector field b(x) find u such that

u + b ⋅ ∇u = f in Ω, (3.15)

u = g on ∂Ω−, (3.16)

where

∂Ω− ∶= {x ∈ ∂Ω;n(x) ⋅ b(x) < 0} (3.17)

is the so-called "inflow part" of the boundary. Further we define the "outflow part" of the boundary
by ∂Ω+ ∶= ∂Ω ∖ ∂Ω−.

Figure 3.11: "inflow part" ∂Ω−, where n ⋅ b < 0. Figure from Ref.[33]

The first step to derive a DG method is – similar to the standard CG method – to multiply the
equation with a test-function v ∈ Vh and perform integration by parts. This time we need to perform
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the integration by parts on element-wise (for eachK ∈ K) because of the discontinuities. This procedure
gives us

(f, v) = ∑
K∈K

(u + b ⋅ ∇u, v)K (3.18)

= ∑
K∈K

(u, v)K − (u, b ⋅ ∇v)K + (n ⋅ bu, v)∂K

= ∑
K∈K

(u, v)K − (u, b ⋅ ∇v)K (3.19)

+ ∑
E∈EI

(n ⋅ bu, [v])E + (n ⋅ bg, v)∂Ω− + (n ⋅ bu, v)∂Ω+

where we have used the inflow boundary condition and ∇ ⋅ b ≡ 0 (divergence free). With (.,−) we
denote the L2 scalar product (integration of the product over the given set). In order to make use
of this form for u ∈ Vh we replace u by ⟨u⟩ + γ[u], where γ is a jump parameter on interior edges.
Choosing γ = sign(n ⋅ b)/2 leads to the traditional DG method for first order problems where

⟨u⟩ + γ[u] = ⎧⎪⎪⎨⎪⎪⎩
u+, if n ⋅ b > 0

u−, if n ⋅ b < 0
(3.20)

is precisely the upstream value at the face.
Using element-wise integration by parts, together with the identity 3.14, we end up with

(f, v) − (n ⋅ bg, v)∂Ω− = ∑
K∈K

(u, v)K + (b ⋅ ∇u, v)K (3.21)

− ∑
E∈EI

(n ⋅ b[u], ⟨v⟩)E + (γn ⋅ b[u], [v])E − (n ⋅ bu, v)∂Ω− .

From the right-hand side of 3.21 we can define the bilinear form a(u, v) ("stiffness") and from the
left-hand side of 3.21 we define the linear form l(v) ("load"). Now we may formulate the following
discontinuous Galerkin (DG) method: find uh ∈ Vh such that

a(uh, v) = l(v), ∀v ∈ Vh. (3.22)

From now on we can solve this similar to the CG method.

3.2 Introduction to the FEniCS Software

This section is meant to be a very short introduction to the FEniCS software in the Python3 pro-
gramming language. We will only discuss the absolute minimum to understand how a finite element
method simulation is structured in FEniCS. Therefore we will revise the simple Poisson problem.

3.2.1 Poisson Problem in FEniCS

The material covered in this subsection can be found in great detail in the FEniCS Tutorial book
[32], which is highly recommend as a practical starting point to learn how to implement numerical
simulations of partial differential equations – such as the Poisson equation – with the finite element
method in the FEniCS environment of the Python3 programming language.
Recall that the weak formulation of the Poisson problem

−∆u = f in Ω,

u = uD on δΩ,
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is given by

∫
Ω
(∇u) ⋅ (∇v)dx = ∫

Ω
fvdx, ∀ϕ ∈ C∞0 (Ω). (3.23)

For the sake of simplicity let Ω = [0,1]2 and manufacture some exact solution ue(x, y) by calculating f
and setting uD = ue. Here we choose ue(x, y) = 1+x2

+2y2, by taking the −∆ of ue we get f(x, y) = −6.
Now we want to solve this Poisson problem to get a numerical solution u that can be compared to the
exact solution ue ≡ uD.
Now we need to do the following step to perform a FEM simulation in Python using the FEniCS
software5:

1. import FEniCS and Numpy (for further calculations):

from f e n i c s import ∗

import numpy as np

2. define / load the mesh and function space approximation (for example piecewise linear polyno-
mials P1):

# Create mesh and d e f i n e func t i on space
mesh = UnitSquareMesh (8 , 8)
V = FunctionSpace (mesh , ’P ’ , 1)

3. Implement the boundary conditions (here: Dirichlet boundary conditions):

# Define boundary cond i t i on
u_D = Express ion ( ’1+x [ 0 ] ∗ x [0 ]+2∗x [ 1 ] ∗ x [ 1 ] ’ , degree=2)
# Define the boundary i t s e l f
def boundary (x , on_boundary ) :
return on_boundary
# D i r i c h l e t boundary cond i t i on s
bc = Dir ichletBC (V, u_D, boundary )

4. Define the trial- and test-function spaces, FEniCS takes care of constructing the basis functions:

# Define t r i a l − and t e s t − f unc t i on spaces
u = Tria lFunct ion (V)
v = TestFunction (V)
f = Constant ( −6 .0)
a = dot ( grad (u ) , grad (v ) )∗ dx
L = f ∗v∗dx

5. Implement the weak formulation of the problem you want to solve. FEniCS takes care of the
assembly process:

# Define the weak problem
f = Constant ( −6 .0)
a = dot ( grad (u ) , grad (v ) )∗ dx
L = f ∗v∗dx
# Assembly system
A, b_vec = assemble_system (a , L , bc )

5code can be found on https://jorgensd.github.io/dolfinx-tutorial/ and in the FEniCS Tutorial Book [32]
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6. Use a FEniCS solver for example by LU decomposition (mathematcial details on the LU decom-
position can be found in [52]) or Newton’s method to solve the algebraic equations FEniCS has
set up in the background:

# Solve system
u = Function (V)
s o l v e (A, u , b_vec )

7. Plot and save obtained simulation data:

# Plot s o l u t i o n and mesh
p lo t (u)
p l o t (mesh )

# Save s o l u t i o n to f i l e in VTK format
v t k f i l e = F i l e ( ’ po i s son / s o l u t i o n . pvd ’ )
v t k f i l e << u

8. Compute errors (only possible since the analytic solution is known!):

# Compute error in L2 norm
error_L2 = errornorm (u_D, u , ’L2 ’ )

# Compute maximum error at v e r t i c e s
vertex_values_u_D = u_D. compute_vertex_values (mesh )
vertex_values_u = u . compute_vertex_values (mesh )
error_max = np .max(np . abs ( vertex_values_u_D − vertex_values_u ) )

# Print e r ro r s
print ( ’ error_L2␣␣=’ , error_L2 )
print ( ’ error_max␣=’ , error_max )

Since the analytical solution is known, one is able to calculates two types of errors: the L2-norm error
and the maximal error of a degree of freedom.
The widely used L2-norm error is given by

EL2 = (∫
Ω
(u − ue)2dx) 1

2

, (3.24)

while the maximal error of a degree of freedom is

Emax =max(∣u(Nj) − ue(Nj)∣;Nj ∈mesh).
A note on the Accuracy of Integration

An excellent explanation of integration accuracy can be given by a direct citation from [32]:
As seen before, FEniCS expressions must be defined using a particular degree. The degree tells FEniCS
into which local finite element space the expression should be interpolated when performing local
computations (integration). As an illustration, consider the computation of the integral ∫ 1

0 cos(x)dx =
sin(1). This may be computed in FEniCS by

mesh = UnitIntervalMesh (1 )
I = assemble ( Express ion ( ’ cos ( x [ 0 ] ) ’ , degree=degree )∗dx ( domain=mesh ) )
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Note that one must here specify the argument domain=mesh to the measure dx. This is normally not
necessary when defining forms in FEniCS but is necessary here since cos(x[0]) is not associated with
any domain (as is the case when we integrate a function from some function space defined on some
mesh).
FEniCS also allows expressions to be expressed directly as part of a form. This requires the creation
of a ’SpatialCoordinate’. In this case, the accuracy is dictated by the accuracy of the integration,
which may be controlled by a degree argument to the integration measure dx. The degree argument
specifies that the integration should be exact for polynomials of that degree.
The following code snippet shows how to compute the integral ∫ 1

0 cos(x)dx = sin(1) using this ap-
proach:

mesh = UnitIntervalMesh (1 )
x = Spat ia lCoord inate (mesh )
I = assemble ( cos ( x [ 0 ] ) ∗ dx ( degree=degree ) )

Varying the degree between 0 and 5, the value of ∣ sin(1)−I∣ is 0.036, 0.036, 0.00020, 0.00020, 4.3E−07,
4.3E − 07. Note that the quadrature degrees are only available for odd degrees so that degree 0 will
use the same quadrature rule as degree 1, degree 2 will give the same quadrature rule as degree 3 and
so on.

3.2.2 Stationary Stokes Flow Problem of a shear-thinning Fluid

Highly inspired by the article of Tunc et al. [55] we want to look at stationary flow first. While Tunc
et al. have implemented the Oldroyd-B Model, which is the UCM Model plus a Newtonian term for
the stress tensor, we will "upgrade" the UCM Model to the shear-thinning White Metzner Model. In
the computational fluid dynamics community it is very common to denote the relaxation time with λ
instead of τ , while τ is sometimes used for the polymeric (UCM or other) part of the stress tensor.

Set of Partial Differential Equations

We want to solve the conservation laws for a homogeneous incompressible fluid under isothermal
steady-state conditions (often called Stokes equation):

∇ ⋅ v⃗ = 0,

−∇p +∇ ⋅ σ = 0.

As mentioned before the stress tensor should be a superposition of a Newtonian solvent and a White-
Metzner Fluid, such that:

σ = 2ηSD + σP ,

▿

σP +
1

λM(∣γ̇∣)σP = 2G∞D.

Here ηS is the Newtonian solvent viscosity and G∞λM =∶ ηP is the polymeric viscosity. Note that
under steady-state conditions the upper convected derivative changes to [v⃗ ⋅ ∇] ∗ −κ ∗ − ∗ κT because
∂t vanishes.

Weak forms

Since the FEM does not use the PDE itself but its weak formulation we need to define test-functions
p̂, ˆ⃗v, σ̂P corresponding to the unknown p, v⃗, σP . The weak formulations are obtained by multiplying
these test-functions to the corresponding equations above and performing integration by parts. When
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we denote the domain on which the problem is defined by Ω and its boundary by ∂Ω the weak equations
that we are going to solve are given by

∫
Ω
(∇ ⋅ v⃗)p̂dV = 0, (3.25)

−∫
Ω
p(∇ ⋅ ˆ⃗v)dV +∫

Ω
(2ηSD + σP ) ∶ ∇ˆ⃗vdV −∫

∂Ω
(T ⋅ n⃗) ⋅ ˆ⃗vdA = 0, (3.26)

∫
Ω
[σP + λM(∣γ̇∣)([v⃗ ⋅ ∇]σP − κ ⋅ σP − σP ⋅ κ

T ) − 2µp(∣γ̇∣)D] ∶ σ̂PdV = 0. (3.27)

Note that ⋅ denotes the contraction over one index (scalar product or matrix multiplication) and
is implemented in FEniCS using "dot", while ∶ denotes the contraction over both indices (A ∶ B ≡
∑i∑j AijBij) and is implemented in FEniCS using "inner". (If there is just one index "dot" and
"inner" are identical.) With n⃗ the outer normal unit vector to the boundary ∂Ω is denoted.

Approximation of Trial- and Testfunctions

To perform a FEM simulation in FEniCS we must specify trial- and test-function spaces. For the mesh
(specified later) we use – as always – triangular elements, the functions on the triangular elements are
approximated by so called Taylor-Hood (P2 P1) elements which means

• ’CG2’ (continuous polynomials of degree two) elements for the velocity v⃗ (in FEniCS language:
"VectorElement(’CG’, triangle, 2)"),

• ’CG1’ (continuous polynomials of degree one) elements for the pressure p (in FEniCS language:
"FiniteElement(’CG’, triangle, 1)"),

• ’CG1’ (continuous polynomials of degree one) elements for the stress σP (in FEniCS language:
"TensorElement(’CG’, triangle, 1)").

The test-functions p̂, ˆ⃗v, σ̂P are chosen to coincide with the corresponding basis of the trial-functions
(see Standard Galerkin Method).

Mesh

After all equations are implemented we now need to specify the area / domain on which our system
of equations (incompressible Stokes equation plus stationary White Metzner model) should be solved,
further we need to define boundary conditions.
The areas / geometries on which the simulations take place should be:

• a simple channel,

• a channel with a sphere as an obstacle (very common CFD example in the applied mathematics
community, "classical TU Dortmund benchmark example"),
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• the so called "4:1 contraction" (very common CFD example in the rheology community).

All of these geometries can be created using the "mshr" extension to FEniCS using a superposition of
predefined commands such as "Rectangle(point1, point2)" and "Circle(point, radius, number of edges)".
The mesh is created by using the "generate_mesh(domain, cells across its diameter)" function of the
mshr extension, where in these examples above we used 15 cells across the channel width (diameter) to
see the mesh, in simulations these meshs will be much finer. "mshr" and many other meshing tools also
allow local refinements of the mesh in areas where higher spatial precision is needed. This flexibility
is one of the major benefits of the FE Method over LB Method or finite differences (FD) Method.
For the boundary conditions we use "no-slip" conditions which mean that v⃗(x⃗) ≡ 0 for x⃗ ∈ wall. In
addition we want to have a pressure drop of ∆p between the inflow (left) and outflow (right) resulting
in ∇p = ∆p

L
e⃗x.

Numerical Results for λ = 1

Let us look at the numerical results of this Stokes problem for solvent viscosity ηS = 1, pressure scale
G∞ = 1 and structural relaxation time λ = 1 for the channel flow, channel flow with spherical obstacle
and the 4:1 contraction, all driven by a pressure gradient ∆p

L
= 1. The critical strain parameter γc is

set to 0.1 (= 10%) For all simulations 64 elements across the diameter of the simulation area are used.
To visualize the numerical results we use the FEniCS build-in plot function to show the magnitude of
the velocity ∣v⃗∣, the xy component of the total stress tensor σxy and the first normal stress difference
N1 = σxx − σyy.
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Channel without obstacle
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Figure 3.12: FEM Simulation result ∣v⃗∣, σxy and N1 of the Stokes problem for a White-Metzner model
fluid with λ = 1 in a simple rectangular channel.

Channel with a spherical obstacle
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Figure 3.13: FEM Simulation result ∣v⃗∣, σxy and N1 of a Stokes flow past a spherical obstacle in a
rectangular channel for a White-Metzner Model fluid with λ = 1..
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Figure 3.14: FEM Simulation result ∣v⃗∣, σxy and N1 of the Stokes problem for a White-Metzner Model
fluid with λ = 1 in 4:1 contraction / extension channel.
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Chapter 4

FEM Simulation of non-Newtonian
Fluid Flow

Having now discussed the basic principles of FEM simulations, we can use these concepts to numerically
solve non-Newtonian flow problems for the previously introduced integral constitutive equations (ICE),
especially the ITT-MCT but also the generalized Maxwell constitutive equations. This leads to large
memory demands to store the entire deformation history. The large memory demand poses a major
computational challenge and asks for a discretization strategy focused on economical use of degrees
of freedom. To this end, we propose a low-order discontinuous Galerkin scheme, which additionally
respects the physical conservation laws inherent in incompressible fluid flow problems. It is worth
mentioning that (Brownian) MCT is a microscopic theory based on stochastic equation of motions.
All the atomic interactions between particles are encoded in the Smoluchowski operator. Using a FEM
simulation to determine of the the macroscopic quantities, especially the Finger-Tensor, provides a link
between the microscopic first-principle MCT and the macroscopic flow geometry. These simulations
open new fields of application and promise a better understanding of non-Newtonian effects.

MCT: φ(t, t′)

FEM:
v⃗(t), p(t)

σ(t)B(t, t′)

Figure 4.1: Schematic idea of the interplay between microscopic MCT and macroscopic FEM simula-
tion.

4.1 Development of FEM Code for Integral Constitutive Equations

In contrast to many of the commonly used ad-hoc constitutive equations, aim of this thesis is to sim-
ulate the flow of non-Newtonian fluids described by strongly history depended constitutive equations.
This history dependence leads to the mathematical form of an integral (constitutive) equation instead
of a differential equation. In a differential equation the change of a quantity at time t is only dependent
of its state at the very same time t but not of all previous times denoted by t′ ≤ t.
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4.1.1 FEM/FEniCS Setup

CG2-DG0 Setup

For any given geometry / mesh (for example one the rectangular channel) one needs to fix the trial-
and test-function spaces for the velocity v⃗(t), the pressure p(t), and the polymeric stress tensor σ̂P (t).
This thesis presents a discontinuous Galerkin finite elements approach which is the lowest order stable
approximation of the pressure and the stress. Their approximation will be done by a superposition
of piece-wise constant and discontinuous basis functions. It is desirable to have a lower order for the
stress elements because one has to solve the schematic MCT equations on every stress node in the grid
in order to calculate the polymeric stress tensor. This lowest order LBB stable DG approximation are
the so called ’CG2-DG0’ elements [34] and have the following form:

• ’CG2’ (continuous polynomials of degree two) elements for the velocity v⃗ (in FEniCS language:
"VectorElement(’CG’, mesh.ufl_cell(), 2)"),

• ’DG0’ (discontinuous polynomials of degree zero) elements for the pressure p (in FEniCS lan-
guage: "FiniteElement(’DG’, mesh.ufl_cell(), 0)"),

• ’DG0’ (discontinuous polynomials of degree one) elements for the stress σP (in FEniCS language:
"TensorElement(’DG’, mesh.ufl_cell(), 0)"),

where the FEniCS command "mesh.ufl_cell()" just returns the cell type (for example "triangle" or
"interval").
The LBB (named after mathematicians Ladyzhenskaya, Babuska and Brezzi) criterion is a sufficient
condition for a saddle point problem to have a unique solution that depends continuously on the input
data, for mathematical detail see [15]. Note that this setting does not secure that the imcompressibility
condition ∇ ⋅ v⃗ = 0 holds point-wise, but of course cell-wise (since this equation is solved on each cell).
This means that the suggested setup ensures that both mass- and momentum-conservation hold cell-
wise and that the problem is well-posed and LBB-stable.

Alternative Setup

To even ensure pressure-robustness and point-wise mass-conservation one could (simulations presented
in this thesis are performed using the ’CG2-DG0’ code version) change to the slightly more computa-
tional expensive linear BDM elements [11] for the velocity leading to the FEM setup:

• ’BDM1’ (H(div,Ω)-conforming1 vector elements of degree one) elements for the velocity v⃗ (in
FEniCS language: "VectorElement(’BDM’, mesh.ufl_cell(), 1)"),

• ’DG0’ (discontinuous polynomials of degree zero) elements for the pressure p (in FEniCS lan-
guage: "FiniteElement(’DG’, mesh.ufl_cell(), 0)"),

• ’DG0’ (discontinuous polynomials of degree one) elements for the stress σP (in FEniCS language:
"TensorElement(’DG’, mesh.ufl_cell(), 0)").

Note that both ’BMD1’ and ’CG2’ elements have 6 degrees of freedom (in the case of a two dimensional
triangulation) and have lead to the same results in all test simulations we have performed. For further
details on ’BDM’ elements one can consult references [11, 38].

1
H(div, Ω) is the Sobolev space of vector functions with square-integrable divergence on the set Ω.
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Boundary Conditions

Our choice of boundary conditions are the "no-slip" boundary conditions which means that we have
no velocity at the walls (v⃗(x⃗) ≡ 0 for x⃗ ∈ wall) in the case of a fixed wall and v⃗(x⃗) ≡ v⃗wall if a wall is
moving (for example the lid-driven cavity simulation or the simple shear, where typically the upper
wall "moves" with a velocity v⃗wall = v0e⃗x in the x-direction). In both cases it means, that there is no
velocity difference between the fluid and the walls at the boundaries. Towards the x-direction of the
flow we usually use periodic boundary conditions, such that the values on the inlet will be overwritten
with the values on the outlet of the flow.

4.1.2 Operator-Splitting by the Marchuk-Yanenko Method

The goal of any numerical simulation is to propagate a system – here given by (σ[B,G], v⃗, p) – from
one time-step t −∆t to another time-step t. The problem in this specific case is that the equations
describing the time evolution of the system are coupled. This means, that for example the equations
for v⃗(t) and p(t) (Stokes equations) need the stress tensor σ(t). But to be able to calculate the stress
tensor σ(t) one needs to know B(t, t′) and therefore the velocity field v⃗(t) itself.
One possible solution would be to use a fully explicit method to update some of this variables (for
example σ and therefore φ and B) and then calculate the other variable with a (often more stable)
implicit method (in this example v⃗). A more refined and widely used alternative is the so-called
Marchuk-Yanenko operator-splitting method (see [39] or [21]). This method allows to implicitly update
all variables by splitting the propagation operator into two propagation operators which will be used
successively. The idea here is to update B implicitly (more stable [12]) but with the old v⃗(t −∆t) as
a zeroth order approximation for the correct v⃗(t).
So the whole numerical algorithm using the Marchuk-Yanenko method is given by the following steps

1. calculate B(t, ∶) from v⃗(t −∆t),
2. from this calculate φ(t, ∶) or rather G(t, ∶),
3. with that σ(t) (discretized integral),

4. finally calculate v⃗(t), p(t) (solving the Stokes problem) implicitly.

4.1.3 Numerics of the Finger Tensor

As hinted in the schematic image at the very beginning of this chapter the link between the macroscopic
FEM simulation and the microscopic MCT calculations of correlation functions is done via the Finger-
Tensor B(t, t′). The Finger tensor is determined by the partial differential equation 2.15:

▿

B(t, t′) ∶= ∂tB(t, t′) + [v⃗(t) ⋅ ∇]B(t, t′) − κ(t) ⋅B(t, t′) −B(t, t′) ⋅ κT (t) = 0

and needs to be discretized both in time and space. The FEniCS environment will take care of
the spatial discretizations if one sets B(t, t′) to be a DG0 tensor element. It is practical to use the
same finite elements for both the Finger tensor B and the polymeric stress tensor σP because the
polymeric stress tensor σP is calculated from an integral over the Finger tensor B and a generalized
shear modulus G, this way no interpolations or projections must be made.

Basic Discretization

The time derivative will be discretized with the implicit Euler method such that one obtains

B(t, t′) +∆t ([v⃗(t) ⋅ ∇]B(t, t′) − κ(t) ⋅B(t, t′) −B(t, t′) ⋅ κT (t)) = B(t −∆t, t′). (4.1)
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Now perform the zeroth order approximation for the unknown v⃗(t), which is to simply replace it by
v⃗(t −∆t) =∶ v⃗old:

B(t, t′) +∆t ([v⃗old ⋅ ∇]B(t, t′) − κold
⋅B(t, t′) −B(t, t′) ⋅ κT

old
) = B(t −∆t, t′), (4.2)

for all (discrete) t′ ≤ t, with B(t′, t′) = 1 as an initial condition. This means that one has to solve this
implicit equation for the whole set off previous times up to the youngest Finger-Tensor B(t, t) = 1.

Transformation from Reference Time t′ to Age a = t − t′

Unfortunately one has to deal with a more complicated grid (see the section on two-time MCT) which
is not linear in t′, therefore sometimes one does not have the right hand side value B(t − ∆t, t′)
available. One possible solution – proposed by Hulsen et al. in [27] – is to define a new Finger-Tensor
with arguments time t and age a = t − t′ such that b(t, a) ∶= B(t, t − a).
By applying the chain-rule one derives

∂tB(t, t′ = t − a) = ∂tb(t, a) + ∂ab(t, a),
hence that the upper convected derivative is no longer zero, but:

▿

b(t, a) = −∂ab(t, a). (4.3)

Note that the additional term −∂a∗ is just because of the chain rule, which needs to be applied when
differentiating with respect to t, and has nothing to do with any properties of the Finger tensor itself
or the upper convected derivative.
The transformation from reference time variable t′ to the age variable a = t − t′ and the defining
equation of the Finger tensor (notation: drop the distinction between B and b) are sketched in the
figure below.

time

reference time time

age

Figure 4.2: Sketch of the transformation from reference time variable t′ to the age variable a = t − t′.
The blue arrows describe a change in age a = t − t′ at a given fixed time t. Figure courtesy of Dr.
Timm Treskatis.

To achieve good numerical stability one uses the implicit Euler scheme for both the time derivative ∂t as
well as for the additional derivative ∂a. Interestingly the implicit Euler scheme (often called backward
Euler) is actually forward in a (since a grows while t′ decreases) and makes sure that the information
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is transported the correct temporal way (otherwise it will cause strong oscillatory artifacts).
For notational convention one may now drop the distinction between B and b and just write B(t, a)
to formulate the new (temporal discretized) new evolution equation for the Finger-Tensor:

B(t, a) +∆t ([v⃗old ⋅ ∇]B(t, a) − κold
⋅B(t, a) −B(t, a) ⋅ κT

old
)

= B(t −∆t, a) − ∆t

∆a
[B(t −∆t, a) −B(t −∆t, a −∆a)] . (4.4)

This can also be viewed as an interpolation from B(t−∆t, a) to B(t−∆t, a−∆t), which corresponds
to the "old" right hand side B(t −∆t, t′).
Note that if ∆t ≡∆a the first two terms on the right hand side would cancel each other and we would
directly have B(t−∆t, a−∆t) (corresponding to a grid which is linear in both arguments t, t′ or t, a).
For time grids used during this thesis, which are linear in the time t but logarithmic in the age a to
save memory and achieve fast computation of the integral constitutive equation for the polymeric part
of the stress tensor, this cancellation is unfortunately not the case.

time

reference time time

age

Figure 4.3: Sketch of the transformation from reference time variable t′ to the age variable a = t − t′

on a grid logarithmic in age a. Figure courtesy of Dr. Timm Treskatis.

DG-Method

To be able to use any FE method the equations need to be in their weak formulation. Therefore –
as always – the above equation must be multiplied with a test-function / -tensor C and integrated by
using the DG-method similar to the classic example problem from Reed and Hill 3.21. If one defines

vn = v⃗old ⋅ n⃗,

vn,± = (vn ± ∣vn∣)/2,
with n⃗ denoting the outer unit normal vector, one can formulate the weak formulation of the defor-
mation problem:

∑
K∈K
∫

K
B(t, a) ⋅C −∆t ⋅B(t, a) ⋅ div(C ⋅ v⃗old) +∆t ⋅ (−κ

old
⋅B(t, a) −B(t, a) ⋅ κT

old
) ⋅C dx

+ ∑
K∈K
∫

∂K
∆t (vn,+ ⋅B

+(t, a) + vn,− ⋅B
−(t, a)) ⋅ [C]dS + ∑

E∈EI

∫
E

∆t(vn ⋅B(t, a)) ⋅C ds

= ∑
K∈K
∫

K
(B(t −∆t, a) − ∆t

∆a
(B(t −∆t, a) −B(t −∆t, a −∆a))) ⋅C dx. (4.5)
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(The very first "−" in the equation 4.5 above is from integrating by parts and [C] = C+ −C− defines
the "jump", like in 3.1.5.)
Since the equation is linear in both the new B(t, a) and the test function / tensor C one can assemble
a system of linear equations and solve it using the "mumps" LU (decomposition) solver provided by
the FEniCS environment.
It is worth to mention that the left hand side (corresponding to the stiffness matrix) of 4.5 needs to
be assembled only once for every discrete time step in t. To solve – when t is fixed – for every a on
the quasi-logarithmic grid only a new right hand side (corresponding to the load vector) needs to be
assembled in order to solve the system of linear equations.

4.1.4 Integral Constitutive Equation

In the subsection 2.3 we have seen that all of the integral constitutive equations – considered in this
thesis – for the polymeric part σP of the stress tensor σ = 2ηSD+σP have the same integral construction

σP (t) = ∫ t

0
[−∂t′B(t, t′)]G(t, t′) dt′,

but with different generalized shear moduli G(t, t′) depending on the exact constitutive model. For
the upper-convected Maxwell Model, generalized (sheer-thinning) Maxwell model and the MCT-ITT
model revisit equations 2.17, 2.32, 2.56.
The last subsection focused on the calculation of the Finger tensor on a grid linear in t but non-linear
(quasi logarithmic) in the historical time t′ and therefore the age a ∶= t− t′ to which the Finger-Tensor
B(t, t′)→ B(t, a) was transformed in the second variable. Accordingly one has to carry out the same
variable transformation t′ → a ∶= t − t′ for the the polymeric stress integral constitutive equation.
Therefore note that

t′ → a ∶= t − t′ ⇒
da

dt′
= −1,

which leads to

σP (t) = ∫ t

0
[∂aB(t, a)]G(t, a) da. (4.6)

Here G(t, a) is defined in the exact the same procedure as done previously with the Finger-Tensor
B(t, a) (defining a new g(t, a) ∶= G(t, t − a) and then renaming from small to capital letter again).

For now suppose that G(t, a) is already given and that also the calculation of the Finger tensor B(t, a)
is already carried out as discussed in the previous subsection. To find the polymeric stress tensor σP (t)
one needs to numerically approximate the integral formula 4.6. This rather standard numerical task
is done using the trapezoidal rule (for example [52]) for a non uniform grid 0 = a0 < a1 < ... < aN = t:

∫
t

0
f(a)da ≈ N

∑
k=1

f(ak) + f(ak−1)
2

(ak − ak−1).
One can simplify this by making use of the fact that in each block the grid is uniform (with step-size
∆ab
= 2bdt), such that ab

k = a
b
0 + k ⋅∆a

b with a0
0 = 0 and ab

0 = Na∑b−1
l=0 ∆al:

∫
t

0
f(a)da ≈ NB−1

∑
b=0

∆ab
NA

∑
k=1

f(ab
k) + f(ab

k−1)
2

.
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In the specific case of f(a) = [∂aB(t, a)]G(t, a) this leads to the following numerical approximation
of the stress integral 4.6:

σP (t) ≈ NB−1

∑
b=0

NA

∑
k=1

[B(t, ab
k) −B(t, ab

k−1)] G(t, ab
k) +G(t, ab

k−1)
2

, (4.7)

where the ∆ab from the integral approximation cancels out with the 1/∆ab from the numerical ap-
proximation of the partial derivative ∂a.

Error of the Trapazoidal Rule

For every block the error is known (again [52]) to be of order O(f (2)(ξb)(∆ab)2) and would therefore
– disregarding f (2)(ξb) – grow by a factor of 4 with each doubling of the step size ∆ab

→ ∆ab+1.
Fortunately the generalized shear moduli G(t, a) are roughly known to be functions that decay at
least exponentially or build a plateau (in the glassy limit). In the case of exponential decay the
integral is dominated by the the first blocks with the small error. In the case of a plateau one basically
has to solve the integral over a derivative and is exact anyway (by the main theorem of calculus).

4.1.5 Stokes Problem

At this point the numerical implementation of the Finger tensor and the integral constitutive equation
are done. According to the Marchuk-Yanenko splitting method one further needs to solve the fluid
mechanical (Stokes) problem to determine the velocities v⃗(x⃗, t) and pressures p(t) to be able to iterate
the whole procedure.
The general momentum time evolution for an incompressible (which mathematically provides ∇⋅ v⃗ = 0)
fluid without external forces is given by the famous Navier-Stokes equation (with density ρ ≡ 1):

∂tv⃗ + [v⃗ ⋅ ∇]v⃗ = −∇p +∇ ⋅ σ.
Since this thesis aims to study the rheology of extremely viscous (viscoelatic or even viscoelastoplastic)
fluids it is very common to neglect the [v⃗ ⋅∇]v⃗ term. On can assume, that advective inertial forces are
small compared with viscous forces, resulting in the Stokes problem (also called "creep flow"):

∂tv⃗ = −∇p +∇ ⋅ σ. (4.8)

To numerically solve the Stokes problem in the FEniCS environment one has to discretize the partial
time derivative ∂tv⃗ on the right hand side of 4.8. For similar flow problems the mathematical theory
(for example [53]) indicates that the implicit Euler method is again (like for the Finger-Tensor) a
reasonable choice.
Using the implicit Euler scheme results in the temporal discretized equation

v⃗(t) +∆t [∇p(t) −∇ ⋅ σ(t)] = v⃗(t −∆t), (4.9)

which needs to be transformed into its weak form to be solved with the finite element method. This
is – as always – done by multiplying with test-functions ˆ⃗v and p̂ (for the incompressibility equation)
and integrating by parts. Note that σ = 2ηSD + σP is written out explicitly and that D denotes the
symmetrized gradient operator:

∑
K∈K
∫

K
v⃗ ⋅ ˆ⃗v +∆t ⋅ [2ηSD(v⃗) ⋅D(ˆ⃗v) + σP ⋅D(ˆ⃗v) − p ⋅ div(ˆ⃗v) − p̂ ⋅ div(v⃗)]dx

= ∑
K∈K
∫

K
v⃗old ⋅

ˆ⃗v dx + ∑
K∈K
∫

∂K
∆t ⋅ (⟨σP ⟩n⃗ ⋅ [v⃗])dS + ∑

E∈EI

∫
E

∆t ⋅ (σP n⃗ ⋅ ˆ⃗v + pn⃗ ⋅ ˆ⃗v)ds. (4.10)

The p̂ ⋅ div(v⃗) dx term ensures the incompressibility of flow, while the pn⃗ ⋅ ˆ⃗v ds term is providing a
pressure gradient on the inlet and outlet. The linear variational problem is assembled and solved by
the FEniCS environment using the "mumps" LU solver.
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4.2 Numerical Details of Integral Constitutive Equations

Integral constitutive equations need a much more complicated memory management compared to
standard differential models. The main reason for this is that for every time step (fixed variable t)
one needs to know the whole history, stored in the age variable a, of both the Finger tensor B(t, a)
and the generalized shear modulus G(t, a).
In the MCT-ITT model one even needs to store all the old correlation functions φ(t′′, t′) for t′′ ∈ [t′, t]
to be able to calculate the memory integral in the two-time sMCT equation (see section 1.4).

Figure 4.4: Schematic picture to visualize the general memory management of the ICE Stokes simu-
lations. In this sketch a small square represents one scalar variable at a given time t, the rectangle
(size of two small squares) represents a two dimensional vector variable at a given time t and the large
square (size of four small squares) represents a 2 × 2 tensorial variable at a given time t. A series of
these squares (or ractangles) menas that one needs to store the whole history of that quantity. Figure
courtesy of Dr. Timm Treskatis.

4.2.1 Generalized (integral) Maxwell Model

The first integral constitutive equation for the polymeric stress tensor σP shall be the generalized
Maxwell model which is a real ICE model (such that there is no way to reduce it into a differential
model) but computationally a bit more generous than the MCT-ITT model. The main difference in
computational effort lies in the fact that one does not need to solve an integral equation (for example
the schematic MCT equation) to obtain the generalized dynamic shear modules G(t, a), a ∶= t − t′
which is essential to be able to perform any numerical approximations of the polymeric stress tensor:

σP (t) = ∫ t

0
[∂aB(t, a)]G(t, a) da
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known from the subsection 2.3. In the generalized Maxwell model one can calculate the dynamical
shear modulus G(t, a) by solving:

D

Dt
G(t, t′) = − 1

λM(∣γ̇(t′)∣)G(t, t′), (4.11)

with ∣γ̇∣ = √2 ⋅ tr(D2) a scalar strain-rate that needs to be stored for every historical time step t′.
Afterwards one transforms to G(t, a = t−t′) (and interpolate if necessary). A slightly better way (done
in the simulations presented in this thesis) is to change the second variable to age a = t − t′ straight
away and note (as seen in the Finger tensor) that an additional −∂a occurs on the right hand side.
This is due to the chain-rule since the second variable is no longer independent of the first one. The
equation – in its strong formulation – is given by:

D

Dt
G(t, a) = −( 1

λM(∣γ̇(t − a)∣) + ∂a)G(t, a) (4.12)

To be able to numerically solve this PDE with the finite element method in the FEniCS environ-
ment one needs the weak formulation for appropriate DG0 elements (because the Finger tensor is
approximated by DG0 elements as well).

Weak Formulation, DG0-Method

With the same DG-method as previously used for the Finger tensor B(t, a) one can write down a weak
formulation that can be numerically solved on DG0 elements. The scalar test-function multiplied to
equation 4.12 will be denoted by H. The notations vn = v⃗old ⋅ n⃗ for the (old) flow in outer normal (n⃗)
direction and vn,± = (vn ± ∣vn∣)/2 for the jumps in tangential direction are kept consistent. With these
notations one can formulate the weak problem using the integration by parts formula:

∑
K∈K
∫

K
G(t, a) ⋅H −∆t ⋅G ⋅ div(H ⋅ v⃗old) + G(t, a) ⋅H

λM(∣γ̇(t − a)∣) dx

+ ∑
K∈K
∫

∂K
∆t ⋅ (vn,+ ⋅G

+(t, a) + vn,− ⋅G
−(t, a)) ⋅ [H] dS

+ ∑
E∈EI

∆t ⋅ (vn ⋅G(t, a)) ⋅H ds

= ∑
K∈K
∫

K
(G(t −∆t, a) − ∆t

∆a
{G(t −∆t, a) −G(t −∆t, a −∆a)}) ⋅H dx. (4.13)

Similar to the case of the Finger tensor one one needs to assemble the stiffness matrix only once for
every time step t and just use different load vectors for every age a. The assembled system of linear
equations can be solved using the "mumps" LU solver provided by the FEniCS environment.
Note that for the integral form of the White-Metzner model the weak equation is almost identical to
4.13, with the only difference that in the first line one needs to exchange λM(∣γ̇(t−a)∣) by λM(∣γ̇(t)∣).
With the dynamical shear modulus G one can easily perform a numerical approximation of the poly-
meric stress integral (for example with the help of the trapazoidal rule as discussed previously) and
perform the whole simulation by solving the equations for B and v⃗, p implicitly using the operator-
splitting scheme by Marchuck and Yanenko as described in subsection 4.1.2.

79



CHAPTER 4. FEM SIMULATION OF NON-NEWTONIAN FLUID FLOW

4.2.2 MCT-ITT Integral Constitutive Equation

In comparison to the previously discussed generalized Maxwell ICE model the calculation of the
dynamical shear modulus G(t, a) = G∞φ2(t, a) from the MCT-ITT model is far more complicated.
Here φ(t, a) is the solution of the schematic two-time MCT equation under shear. So to simulate the
MCT-ITT model one needs to to solve another integral equation for G(t, a) in every time step. Recall
that the schematic (two-time) MCT equation under shear is given by:

∂tφ(t, t′) + φ(t, t′) + htt′ ∫
t

t′
htt′′m(t, t′′)∂t′′φ(t′′, t′)dt′′ = 0.

This makes it necessary to store φ(t, a) ∶= φ(t, t − t′) in both variables on a linear/logarithmic grid as
discussed in section 1.4.

Even though the correlation function φ itself should by transformed to the (t, a) variables, the in-
ner part (previously stored in the variable C, see 1.4) of the convolution-like memory integral
htt′ ∫ t

t′ htt′′m(t, t′′)∂t′′φ(t′′, t′)dt′′ will be performed on the (t, t′) grid. The partial time derivative
on the very left of the sMCT equation will be performed on the (t, a) grid. Therefore one first recalls
the (t, t′)→ (i, j) discretized version (see section 1.4 or equation 1.38)

∂tφi,j + φi,j + hi,j

i−1

∑
k=j

hi,kmi,k [φk+1,j − φk,j] =
(∂̂t + 1 + hi,jhi,i−1mi,i−1)φi,j + h

2
i,jmi,j [φj+1,j − 1] + R̃i,j = 0, (4.14)

where ∂̂t should be the implicit Euler operator, such that ∂̂tφi,j =
φi,j−φi−1,j

∆t
. While the new R̃i,j should

contain all the reminder terms not containing either φi,j nor mi,j .
If one now switches the temporal coordinates from (t, t′) to (t, a = t − t′), which means from (i, j) to(i, l = i − j) in the discretized equation reads

(∂̂t + ∂̂a + 1 + hi,lhi,1mi,1)φi,l + h
2
i,lmi,l [φi−l+1,1 − 1] + R̃i,l = 0.

With writing out the partial derivatives one obtains

φi,l − φi−1,l +
∆t
∆a
(φi−1,l − φi−1,l−1)

∆t
+ (1 + hi,lhi,1mi,1)φi,l + h

2
i,lmi,l [φi−l+1,1 − 1] + R̃i,l = 0,

which one can further manipulate by absorbing all the terms that do not contain either φi,l nor mi,l

into a new Ri,l = R̃i,l +
−φi−1,l+

∆t
∆a
(φi−1,l−φi−1,l−1)
∆t

.
This leads to the final discretized equation

( 1

∆t
+ 1 + hi,lhi,1mi,1)φi,l + h

2
i,lmi,l [φi−l+1,1 − 1] +Ri,l = 0. (4.15)

One can again think of interpolating the point φ(t−∆t, a−∆t) out of φ(t−∆t, a) and φ(t−∆t, a−∆a)
to construct the partial time derivative in the very beginning of the sMCT equation.
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t′

t

t = t′

φ(t, a = t − t′)φ(t −∆t, a −∆t)
φ(t −∆t, a)

φ(t −∆t, a −∆a)
∂t∣t′
∂t∣a

Figure 4.5: Schematic picture of the partial derivative on the very left of the sMCT equation. The
black filled circle represents the φ(t, a = t− t′) that one wants to calculate, the empty circle represents
the missing φ(t − ∆t, a) with that one would wish to approximate the partial time derivative ∂t∣t′
with fixed t′ in the (t, t′) coordinate representation and the red filled circles represent φ(t −∆t, a)
and φ(t −∆t, a −∆a) which approximate the needed ∂a derivative in the (t, a) coordinates. One can
observe that first ’stepping’ form φ(t, a) to φ(t−∆t, a) (∂t∣a) and then ∆t

∆a
in the ∂a∣t direction (towards

φ(t− dt, a− da) would correspond to the whole ∂a∣t-step) leads to φ(t−∆t, a−∆t). Therefore one can
think of this, such as interpolating the desired – but often missing – φ(t−∆t, a−∆t) out of φ(t−∆t, a)
and φ(t −∆t, a −∆a).
Newton’s Method

With the explicit knowledge that the schematic memory kernel is the F12 model mi,l = m[φi,l] =
v1φi,l + v2φ

2
i,l one can reformulate the problem 4.15 to a root-search problem of a polynomial P (φi,l).

Given the fact that one has an excellent initial guess by using the previous time step φi−1,l a fast and
reliable way of solving P (φi,l) = 0 is to use Newton’s method:

φ
(n+1)
i,l

= φ
(n)
i,l
−
P (φi,l)
P ′(φi,l) , (4.16)

where P ′(φi,l) is the derivative of 4.15, in which one uses m′i,l = m
′[φi,l] = v1 + 2v2φi,l. The Newton

iteration is done until certain thresholds ∣φ(n+1)
i,l

− φ
(n)
i,l
∣L2 < ǫ1 (absolute tolerance, in the simulation

this is set to 10−9) and
∣φ(n+1)

i,l
−φ
(n)
i,l
∣
L2

∣φn+1

i,l
∣
L2

< ǫ2 (relative tolerance, in the simulation this is set to 10−6) or a

maximum number of iterations (set to 25) are reached. The maximum number of iteration is only a
necessary criterion to ensure that the Newton method does not "get stuck" or diverge. For example if
P (x) = x3

− 2x + 2, therefore P ′(x) = 3x2
− 2 and one chooses the staring point x(0) to be either 0 or

2 one ends up in an oscillation between these two point x(n) = 0 and x(n+1)
= 2 [52]. Therefore if the

simulation reaches this maximum iteration criterion, one can not trusts its results and should consider
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re-tuning the parameters. Fortunately all simulations performed during this thesis never reached more
than 5 Newton iterations.
Since on has to calculate up to NA ⋅NB correlation functions on each cell during each time step of the
simulation it is very helpful that the Newton method does provide quadratic convergence instead of
only linear convergence such as for the standard Picard iteration method [52].

4.3 Channel Flow

The previously discussed numerical implementation can be tested to study the non-Newtonian fluid
flow provided by MCT-based integral constitutive equations for some exemplary cases and geometries.
To first test the numerics the simple rectangular channel flow is tested.

4.3.1 Pressure driven Channel Flow of MCT-ITT and generalized Maxwell Model

The pressure driven channel flow is one of the standard examples one wants to simulate. One assumes
that the channel is infinitely long and therefore provides translational invariance in the flow (here x)
direction. This yields to the fact that ∂x ≡ 0 inside the whole channel. Since the fluid is incompressible
one can deduct that all flow will be in the x-direction and that vy ≡ 0 will hold true during the whole
simulation. As a consequence of these two facts the v⃗ ⋅∇ term will vanish (this means that all changes -
mathematically captured by the gradient ∇ - are perpendicular to the flow direction êx). Nonetheless
the channel flow setup is still able to tell whether some of the typical behavior of viscoelastic flow
which is experimentally and for easier models even analytically (see 2.4) well known. These classical
effects, for example the existence of a plug in the flow profile, are recovered with the MCT-Integral
constitutive model. Like in the whole thesis no-slip Dirichlet boundary conditions are used, which
means that v⃗(x⃗) ≡ 0⃗, ∀x⃗ ∈ wall. The initial condition at which every simulation starts (at time t = 0)
is that all material is at rest, unstressed and without any deformation history (short said: is has been
at rest since forever), mathematically precise: v⃗(t = 0) = 0⃗, σ(t = 0) = 0 and B(t = 0, a) = Id ∀a ≥ 0.
Note that the second condition σ(t = 0) = 0 is implied by the other two conditions, because v⃗(t = 0) = 0⃗

immediately leads to zero strain-rate and therefore the solvent (or Newtonian) stress is zero. In
addition B(t = 0, a) = Id ∀a ≥ 0 leads to ∂aB(t = 0, a) = 0 ∀a ≥ 0 which implies that the polymeric
stress is zero as well. Thus one obtains that the total stress (σ = σS + σP ) vanishes: σ(t = 0) = 0.
During all simulations, if not stated otherwise, both the constants G∞ = 1 in the generalized Maxwell
model or G0 = 1 in the MCT-ITT model and the solvent viscosity ηS = 1 are set to unity. This sets
the pressure scale and the relaxation time of the solvent liquid. The numerical time-step size of the
implicit Euler scheme (of both the Stokes problem and the Finger tensor partial differential equation
▿

B = 0) is set to ∆t = 0.05.
A single simulation of the MCT-ITT model, using these parameters, takes around 10 days utilizing 24
cores of a dual Xeon E5-2650v4 workstation and needs around 45 GB of memory. The same simulation,
but using the generalized Maxwell model only takes around 1 day on the same machine and just needs
memory in the order of 1 GB.

Plug Flow

The pressure driven channel flow simulation of both the generalized Maxwell model and the more
complicated, but microscipical reasoned, MCT model both show very similar plug flow velocity profiles
in the steady state. Of course the height vmax of these plug profiles is very different since the MCT
(without any shear) builds plateaus at f < 1 and therefore shows faster velocity profiles (since the
polymeric stress is at least by a factor of f2 smaller that the genMM one). To correct for this, one can
simply scale the velocity profile to unit height (by dividing each profile with its maximum value in the
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middle). As discussed earlier the plug width is determined by the pressure gradient, which is ∆p/L
where L is the periodic channel length (L = 5 in this case), the critical yield parameter γc which is (when
not explicitly stated otherwise) always set to γc = 0.1. The structural (polymeric) relaxation time is
either given by a constant λc in the genMM or by the schematic coupling coefficients v1, v2 in the F12
sMCT model. In the MCT case one often looks at the specific transition point at v1 = 2(√2−1), v2 = 2

and tunes this with an additional parameter ǫ such that v1 = 2(√2 − 1) + ǫ/(√2 − 1), v2 = 2 (as in the
[8] reference), so for ǫ < 0 the undeformed material would be in the liquid regime and for ǫ ≥ 0 the
undeformed material would be in the glassy regime. Of course also for ǫ ≥ 0 one can observe a flow
since the cages that the particles build in the glassy regime can be broken by the pressure gradient or
by shear / deformation of the material.
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Figure 4.6: Plug flow velocity profiles for MCT and generalized Maxwell model with different param-
eters.

As one can see in the picture above one can find a parameter set for ǫ in the MCT model and λc in
the generalized Maxwell model such that their profiles are very similar in their scaled shapes. The
absolute plug profiles one can map onto each other by using different (higher G0 for the MCT model)
G∞ and G0 for both models. This observation is a good first indication that the MCT model converges
in the steady state to similar characteristics. Furthermore one can observe that the deeper – in terms
of bigger ǫ-parameter – the unperturbed system would be in the glassy state the more pronounced is
the plug flow. This observaton is very intuitive and explained by the caging effect. The deeper the
system is in the glassy regime the more shear is needed to break the cages. Since the (absolute value
of the) shear increases linearly from the channel center (where σxy(y = 0) = 0) to the walls (where
σxy(y = 0,1) = ±∆p

2L
), as shown in an upcoming calculation (and numerically), the plug gets wider as

ǫ increases.
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Figure 4.7: Plug flow velocity profiles for MCT with different ǫ-parameters. The larger ǫ is the deeper
is the system in the glassy state. For the ǫ = 1.0 simulation the positions where ∣σxy ∣ = σyield (see 4.18)
are indicated by the vertical dashed lines.

However, the interesting new physics should be inside the transient dynamics behavior of the flow,
for example whether there are velocity and stress overshoots in the start up phase and how does the
cessation of the flow look, especially in more complex geometries that the FE methods is able to solve.

Total Stress and Polymeric Stress

As a reminder and a good numerical test as well, let us briefly recapture that in the pressure driven
channel the (Navier-)Stokes equation alone (and nothing else) determines the steady state off-diagonal
total stress σxy, totally independent of the material laws and parameters. Therefore one only needs
to integrate the first (x-related) momentum equation in the steady state, respecting the symmetry
condition that σxy(y = H

2
) vanishes:

−∆p/L = ∂yσxy

⇒ σxy(y) = (∆p/L)(H
2
− y). (4.17)

This means that σxy(y) is linear from ∆pH
2L

at y = 0 to −∆pH
2L

at y = H. Since this simple condition
is totally independent of the constitutive model one should use this to check whether the numerical
simulations are at least trustworthy or inconsistent in itself (not actually"’solving" the fluid mechanics
correctly).
First one can observe that the simulations actually rediscover y-linear relation 4.17 of the total stress
tensor numerically.
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Figure 4.8: xy-component of the total stress versus the height position y for MCT and generalized
Maxwell model with different parameters. One can see that the linear relation required from the fluid
mechanics (independent of the constitutive model) is correctly found.

The more interesting stress property is the polymeric part which - in contrast to the xy total stress
which is fully given by the fluid mechanics - is determined by the constitutive equation. It is worth
mentioning that a higher polymeric stress must result in a lower strain-rate. Since the solvent viscosity
ηS is fixed this is the reason why the (maximum) mid-channel velocity is dependent on the constitutive
equation even though the total stress is not. One will see that the constitutive equations leading to
the least polymeric stress will show the largest mid-channel velocities and vice versa. Also one can
explain the plug profile with the relation of the polymeric stress and strain-rate. In the region around
the middle of the channel (y = 0.5 ± ǫ) the polymeric stress has (about) the same slope / gradient as
the total stress. Hence, the strain-rate must be (very close to) zero and therefore there must be a
plug region. If one sets σxy = σyield, where σyield is the yield stress, defined as σyield = G0f

2γc in the
MCT-ITT model [44] and σyield = G∞γc in the generalized Maxwell model [43], one finds the plug area
to be:

y = 0.5 ±
σyield

∆p/L. (4.18)
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Figure 4.9: xy-component of the polymeric stress versus the height position y for MCT and generalized
Maxwell model with different parameters.

So far the focus was only on the off-diagonal component of the (polymeric) stress tensor. Even though
(since ∂x ≡ 0 in the infinite channel geometry) σxx has no influence on the fluid flow, the Finger tensor
growths quadratic in the time difference / age. One could be worried about this growth because in
the integral formula of our ICEs there is only one time derivative applied (∂aBxx still growths linear
in a). However luckily the generalized shear moduli G(t, a) decays rapidly enough such that also σxx

reaches a steady state profile and does not diverge towards ∞. Analytically that was already observed
in 2.4.2 for the genMM and WMM, in which G(t, a) decays exponentially.
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Figure 4.10: xx-component of the polymeric stress versus the height position y for MCT and gener-
alized Maxwell model with different parameters.

Start-Up Flow Dynamics

To be able to observe the transient dynamics of the start-up flow one has to start with a material
that is and has been at rest since forever, such that there is no deformation history (start with unity
Finger tensors at time t = 0). Apply an external force or a pressure gradient for t ≥ 0 to initiate flow of
the material. The start-up flow will reach a steady state – like in the figure above – when all external
forces or pressure gradients are balanced by the divergence of the stress (tensor) of the material. The
phase until the material reaches its steady state one calls the transient dynamics of the start-up flow.
Let us first have a look on the evolution of the mid-channel velocity after application of a constant
pressure gradient ∇p = (∆p/L)êx for the generalized Maxwell model and the MCT-ITT model. As
previously, the simulation setup is a periodic channel of length L = 5 and height H = 1, the pressure
drop is ∆p = 1 and for the material specific parameter one sets the critical yield stress parameter to
γc = 0.1, the solvent viscosity to ηS = 1 and the shear modulus constant to G∞ = G0 = 1. For the
generalized Maxwell model one could also set a constant (shear independent) structural relaxation
time λc and in the MCT model the schematic parameter ǫ, as described previously.
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Figure 4.11: Evolution of the mid channel velocity in the start-up flow for the MCT and generalized
Maxwell model with different parameters.

Again one can see that the generalized Maxwell model with λc = 10 and the MCT model with ǫ = 0.01

behave qualitatively very similar. All models show drastic velocity overshoots which is a phenomenon
typical for viscoelastic fluid flow and not present in Newtonian fluid flow.

4.3.2 Accuracy of Integral Formulation compared to Differential Formulation

To observe the amount of error that the way more complicated integral formulation of constitutive
equations has over simpler differential models, we have compared the integral to the classical dif-
ferential formulation of the White-Metzner model. The White-Metzner model was taken because it
can be formulated in both integral and differential form and has some shear-thinning effect included,
which the classical upper convected Maxwell model (or Oldroyd B) does not have. So in the integral
formulation the polymeric part of the stress tensor is given by

σP (t) = ∫ t

0
[∂aB(t, a)]G(t, a) da

known from the subsection 2.2.4, with the dynamical shear modulus G(t, a) determined from the
solution of

D

Dt
G(t, a) = −( 1

λM(∣γ̇(t)∣) + ∂a)G(t, a). (4.19)

Note that the extra −∂a term on the right hand side arises – like before – from the variable change from
t′ to a = t−t′ and the chain rule (see [27] or 4.1.3). In the differential formulation of the White-Metzner
model the polymeric stress is given by

▿

σ(t) + 1

λM(∣γ̇(t)∣)σ(t) = 2G∞D(t).
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Simulation Setup

The simulation geometry (or mesh) that was used is the simple periodic rectangular channel with
L = 5H and Nx cells in length and Ny cells in height. To achieve symmetry around the central axis
(y = H/2 ≡ 1/2) a crossed triangulation was used. The parameters in the White-Metzner model are
set to G∞ = 1, λc = 10, γc = 0.1 and the solvent viscosity is set to µS = 1. In both cases the pressure
drop over one (periodic) channel lenght (L = 5) was set to be ∆p = 2.5. All temporal (time t and in
the integral model also age a) discretizations are done using the stable implicit Euler scheme using
a simulation time step of ∆t = 0.1. In the integral formulation 6 blocks with 16 steps in each blocks
were used (such that there is no cut-off), in the differential formulation this procedure is of course not
used, since there is no need to calculate Finger tensors B(t, a) or shear modulus G(t, a), because it is
a Markovian process and therefore described by an (in our case implicit) update rule.

Error Analysis

The L2-norm difference (see 3.24 for the definition of the L2-norm error) of the euclidean norm of the
velocity field, the strain-rate, the pressure and the polymeric stress tensor for different Nx,Ny and
therefore different cell diameters hmax are calculated after 250 time steps when the system has reached
its steady state and shown in the following table. Note that for spatial reasons not the whole machine
precision but only the first five non vanishing digits are shown (so the last digits are not rounded, but
floored).

hmax Nx Ny ∣∣vdiff − vint∣∣L2 ∣∣Ddiff −Dint∣∣L2 ∣∣pdiff − pint∣∣L2 ∣∣σP,diff − σP,int∣∣L2

0.25 20 5 0.0012037 0.0085258 0.0032912 0.0098730
0.125 40 10 0.00043930 0.0028918 0.00069851 0.0047115
0.0625 80 20 0.00011846 0.00077666 0.00015710 0.0038658
0.03125 160 40 2.5999E-05 0.00020212 4.4661E-05 0.0036716
0.015625 320 80 5.0194E-06 6.7118E-05 1.7455E-05 0.0036314

In addition to the tabular representation one can plot the L2-norm error versus the inverse cell diameter
hmax (’mesh.hmax()’ in FEniCS). In this visual representation one can directly observe that the error
in the polymeric stress tensor plateaus at approximately 0.0036 which is a relative error of about 0.1%

is due to the temporal discretization scheme of the integration.
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Figure 4.12: Visualization of the L2-norm error versus the inverse cell diameter hmax.
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Discretization of the Leibniz Integral Rule

It can be shown that the discretized version of the integral formulation does not exactly solve the
implicit Euler discretized version of the differential formulation. In the analytic continuum case in
section 2.2.4 one uses the Leibniz integral rule

d

dt
∫

t

t0

f(t, s)ds = f(t, t) +∫ t

t0

∂tf(t, s)ds
to show that the integral formulation does fulfill the differential formulation. However in exactly this
Leibniz integral rule the order of discretization of the derivative and the integral matters up to an
error of order O(∆t)
For example if one first discretizes the integral on the right hand side with a given quadrature formula
with weights wi and applies the implicit Euler derivative – using linear grid with n + 1 nodes, such
that ∆t = t/n – one obtains (w.l.o.g. t0 = 0)

∫
t

0
∂tf(t, s)ds ≈ n

∑
i=0

wi∂tf(t, i∆t)∆t ≈ n

∑
i=0

wi [f(t, i∆t) − f(t −∆t, i∆t)] ,
such that the full discretized statement of the the right hand side is given by:

f(t, t) + n

∑
i=0

wi [f(t, i∆t) − f(t −∆t, i∆s)] .
In constrast one could start by discretizing the left hand side of the Leibniz integral rule

d

dt
∫

t

0
f(t, s)ds ≈ ∫ t

0 f(t, s)ds − ∫ t−∆t
0 f(t −∆t, s)ds
∆t

≈ ∫
t

t−∆t

f(t, s)ds
∆t

+∫
t−∆t

0

f(t, s) − f(t −∆t, s)
∆t

ds

≈

n

∑
i=n−1

ŵif(t, i∆s) + n−1

∑
i=0

ˆ̂wi [f(t, i∆s) − f(t −∆t, i∆s)] ,
which is not identical to the discretized statement of the right hand side if uses a consistent quadrature
rule (for example the trapazoidal rule where all w, ŵ, ˆ̂w = 1/2.
This mathematical fact leads to an additional systematic error of O(∆t) which is independent of the
spatial mesh cell diameter hmax and therefore contributes to the error plateau in σP .

4.4 Channel with Spherical Obstacle, Geometry-Dependent Resid-
ual Stresses

The MCT model is able to show flow-induced residual stresses (self balanced internal stresses that
remain after the flow has come to rest). The theoretical study of these residual stresses dates back to
at least the early 1930’s, but first experimental knowledge / observations dates even further back to
the spectacular exploding Prince Rupert glass droplets in the 1660’s and even further to the images
produced by "magic mirrors" of the Western Han dynasty around 200 B.C.. The ability to calculate
them in a numerical fluid flow simulation is one of the major achievements in this work. Because of
the large role they play in determining the mechanical properties and failure behaviour the controlled
use of residual stresses can massively improve material stability to build for example crack resistant
cover glasses for modern smartphones or safety glasses in general.
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Theory of Geometry-Dependent Residual Stresses

To be able to observe residual stresses the geometry must be suitable to find a non-trivial solution of
the Stokes equation without external pressure gradients or other forces, which is just that the stress
tensor is divergence free:

∇ ⋅ σ = 0.

Since the stress tensor is always symmetric (σxy = σyx) this reduces to the following two equations:

∂xσxx = −∂yσxy, (4.20)

∂xσxy = −∂yσyy. (4.21)

If one now goes back to the simple channel flow where ∂x ≡ 0 holds true for the whole channel one
notices that σxy must be constant and because of the symmetry properties around the middle this
constant must be zero ⇒ σxy = 0. This means that only the volumetric part of the stress tensor can
remain after the flow has come to rest in the simple channel flow geometry. If however the x-invariance
is broken (which means ∂x ≠ 0) by an obstacle (or a contraction) inside the channel, the equations
above (especially the first one) allow σxy ≠ 0 balanced by a non vanishing ∂xσxx term.

A geometrical setup which fulfills this x-invariance breaking is the usual rectangular channel with
L = 5H but tuned with a little spherical obstacle around a point in the vertical middle of the channel
(diameter is 40% of the channel width) and can be seen (as the actual mesh used for simulations)
in the figure 4.13 below. The mesh used in this simulations is build with the help of the "mshr"
FEniCS extension and consists of 128 cells across its diameter and 18911 cells in total, which leads to
a hmax ≈ 0.0358 therefore, since ∣v⃗∣max ≤ 0.1, leads to Courant-Friedrichs-Lewy (CFL) number C < 1.

Simulation Details

The simulation is started with a pressure gradient (∆p/L)êx (with L = 5 as before) from an at rest
initial condition (v⃗(t = 0) = 0⃗, σ(t = 0) = 0 and B(t = 0, a) = Id) with no-slip Dirichlet boundary
conditions at the walls as well as at the obstacle. After 1/4 of the simulation time tend = 101.6 (7
blocks with 16 steps and a time step of ∆t = 0.05, such that there is no cut-off in history) the pressure
gradient is set to zero (at toff =

1
4
tend = 25.6 on changes ∆p = 0).
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Figure 4.13: Mesh (and a zoom in) used in the simulation with a maximum cell diamater of hmax ≈

0.0358.

Simulations of the MCT constitutive equation model with ǫ = +0.01 and the other parameters un-
changed (G0 = 1, γc = 0.1 and the solvent viscosity to ηS = 1) - therefore slightly in the glassy regime if
unsheared - show that after the removal of the pressure gradient ∆p/L stresses undergo a fast initial
drop, while the velocities display a pronounced undershoot. This can be rationalized as another vis-
coelastic effect [43],[44]: the presence of stresses causes the fluid to be driven in the direction opposite
of the initial flow direction, until the stresses have sufficiently relaxed.
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4.4.1 Steady State

First one can observe the streamlines of the velocity filed v⃗ss(r⃗) in the steady state phase of the
simulation (just before switching off the driving pressure gradient) which of course confirm that the x
symmetry is indeed broken by the flow around the obstacle.

Figure 4.14: Steady state velocity field v⃗ss(r⃗) and streamlines around the obstacle for a pressure drop
of ∆p = 1.0 over the channel length of L = 5.

Due to the obstacle also the shear stress σxy is no longer linear in y, like in the normal rectangular
channel geometry. One can guess that in the x = 1 plane, where the center of the obstacle is located,
the shear stress must vanish in the two symmetrical points (1,0.2) and (1,0.8) between the obstacle
and the walls. Further one can guess that far away from the spherical obstacle one can observe that
shear stress is again linear in y.

Figure 4.15: Steady state shear stress σss
xy for a pressure drop of ∆p = 1.0 over the channel length of

L = 5.
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Figure 4.16: Steady state normal stress difference N ss
1 for a pressure drop of ∆p = 1.0 over the channel

length of L = 5.

4.4.2 Geometry-Dependent Residual Stresses from the MCT-ITT Model

Crucially, we observe the shear stress σxy(t) to completely relax in the channel without obstacle (green
line in Fig. 4.17 below), while in the presence of the obstacle, the velocity back-leash is much less
pronunced, and finite shear stresses remain even for times where the velocity has already decayed to
zero. These are geometry-dependent residual stresses [51].
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Figure 4.17: Shear stress σxy(t) and velocity vx(t) as a function of time in the 5:1 rectangular channel
with and without the spherical obstacle. Switched on at t = 0, off at t = t0 = 25.4. Inset provides a
logarithmic zoom.
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A further notable observation of the geometry-dependent residual stress phenomena is that around
the obstacle the sign of the stress pattern does flip. This means for example that the the negative
valued (blue) area below the obstacle changes to a positive valued (red) area. A possible reason for
this could be the previously mentioned viscoelastic undershoot / pullback after removing the pressure
gradient which one can see in the velocity plot of figure 4.17. This viscoelastic undershoot may change
the signs in the most relevant and more recent Finger tensors in the the integral constitutive equation
which leads to an exchange of signs in the stress tensor as well.

Figure 4.18: Residual shear stress σres
xy of the ∆p = 1.0 simulation.

Generalized Maxwell Model

As comparison to the MCT-ITT residual stress results above the exact same simulations, of a pressure
driven channel (L = 5H) flow with a spherical obstacle of diameter covering 40% of the channel height,
are done for the generalized Maxwell model with a very high structural relaxation time scale of λc = 103

and the critical yield parameter is – as usual – set to γc = 0.1. Like previously with the MCT-ITT
model different pressure drops (∆p = {1,2}) across the (periodic) channel are simulated. As before
the numerical time step for the implicit Euler scheme is ∆t = 0.05 and also the resolution in age is
kept identical, which means 7 blocks of 16 steps in each block and no cut-off in history. The mesh is
also the same "mshr" FEniCS extension mesh with 128 cells across the diameter with hmax = 0.0358,
like in figure 4.13.
The shear stress σxy relaxes on a much smaller time scale (≈ 101, depending on the pressure gradient
applied previously) compared to its structural relaxation time scale λc = 103. This means that unlike
the MCT-ITT model the generalized Maxwell model is not able to predict geometry-dependent residual
stresses when the spherical obstacle is put in the rectangular channel. This is a major advantage of the
more complicated and statstical physics based MCT-ITT model over the simpler generalized Maxwell
model.
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Figure 4.19: Shear stress σxy(t) and velocity vx(t) of the generalized Maxwell model as a function of
time in the 5:1 rectangular channel with the spherical obstacle.

Normal Stresses and Influence of the Periodic Boundary Condition

Another effect, which is already known from the rectangular channel flow [44], is that the the normal
stress σxx and also the first normal stress difference N1 = σxx−σyy remain non-zero after the cessation
of flow is also present in the channel tuned with the spherical obstacle. The N1 pattern changes
drastically (in x) from the one in the ordinary channel around the obstacle. Away from the obstacle
the N1 pattern becomes locally constant in x. However one observes that away from the obstacle in
the normal channel are small residual shear stresses.
This effect is due to the periodic boundary conditions which forces σxx to vary slowly in x direction
also in the channel region and therefore induce residual shear stresses in order to fulfill the Stokes
equation ∂xσxx = −∂yσxy. In the channel flow σxx is not directly effected by the Stokes equation
∂xσxx = −∂yσxy because of ∂x ≡ 0 due to the x symmetry. In the geometry with the obstacle ∂x ≠ 0

and ∂xσxx needs to balance the residual shear stress ∂yσxy which is strongest in the x = 1 plane around
the obstacle and therefore one can observe that ∂xσxx is also strongest around the x = 0 plane. This
can be seen very nicely in figure 4.21 by looking at the color changing from red (+) to blue (−) around
the the x = 1 plane. But also far away from the obstacle, for example at roughly x = 4 one can see
that σxy is linear in y and that in order to balance this σxx changes in x, which is not the case in the
channel, because of the x symmetry and the therefore lacking residual shear stresses changing in the
y direction.
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Figure 4.20: Residual first normal stress difference N1 of the ∆p = 1.0 simulation. Color bar is chosen
to show that N1 is locally changing around the obstacle and constant in the channel away from the
obstacle.

Figure 4.21: Residual normal stress σres
xx of the ∆p = 1.0 simulation.
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To further investigate the effect of the periodic boundary condition in the x-direction the channel
length is doubled, while the pressure gradient is kept constant (so ∆p is doubled as well). With this
setup one can now observe how σxx changes in the x-direction. The first plausible guess is, that due
to the incompressibility, that σxx inside the channel part away from the obstacle varies only roughly
half as quick as in the original half length channel. Then in the limit of L→∞ one can expect to have
no residual shear stresses except around the obstacle.
The following plots do verify this expectation and show that one can indeed expect the shear residual
inside the channel part away from the obstacle to scale with 1/L and therefore vanish as L→∞.
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Figure 4.22: σxx(x, y = 0.5) for both the standard L = 5 channel with obstacle and for the longer
L = 10 channel. In the inlet view the periodicity is subtracted.

Short Summary

To summarize the discussion on residual stresses so far, it can be said that the the geometrical setup
needs to allow ∂x ≠ 0 in order to make it possible that ∂yσxy is not zero, but balanced by ∂xσxx which
is clearly non vanishing because of the geometry (for example with an obstacle like done in this thesis).
The second observation, that away from the obstacle, in the normal channel one has small residual
shear stresses might be because of the periodic boundary conditions which forces σxx to vary slowly
in x direction also in the channel region and therefore induce residual shear stresses in order to fulfill
the Stokes equation ∂xσxx = −∂yσxy [51].
In the next subsection it will be seen that the residual stresses that might be induces by the periodic
boundary conditions take a minor role in experimental realizations because they are to small to be
visualized by stress-optical effects between crossed polarizers.

4.4.3 Stress-Optical Visualization of the Residual Stresses

For transparent materials, a non-destructive method to observe residual stresses employs the stress-
optical effect: otherwise non-birefringent materials are observed to become optically birefringent in
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response to mechanical stress. This led Maxwell to postulate the stress-optical law [40], ∆n = no−ne =

C(σ1 − σ2), where σ1,2 are the stress eigenvalues in the plane perpendicular to the propagation of
light, and no,e are the refractive indices along the optical axes defined by the corresponding stress
eigenvalues. C is called the stress-optical coefficient. Assuming a slab of material whose properties
are invariant along the light-propagation direction (taken to be along z), a textbook calculation shows
that the transmitted light intensity when placing the sample between two circular polarizers, is (only
here λw is once used as the wavelength!):

I(λw, δ) = I0(λw) cos(δ/2)2,
where

δ = (2πz/λw)∆n
is the (stress-dependent) optical retardation. If we assume illumination by a white-light source (I0

constant across the visible spectrum λw ∈ [360,830]nm), a colorful transmission spectrum will be
recorded by the observer. This spectrum I(λ, δ) can be converted to empirical RGB values of colors
as perceived by the human eye [50]. This is the color bar used in the figure below.
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Figure 4.23: Residual-stress induced birefringence in a 5:1 rectangular channel with a circular obstacle,
after cessation of a pressure-driven flow with pressure drops (a) ∆p/G∞ = 1, (b) ∆p/G∞ = 2 per channel
length L = 5H. Colors represent optical path lengths for white-light illumination (as indicated by the
color bar) assuming sample thickness h and stress-optical coefficient C such that Ch = 1mm/G∞.
4.4.4 Linear Elasticity Theory of Residual Stresses

The analysis of structures and their deformations is one of the major activities of modern engineering,
a framework often used is linear elasticity theory which linearly relates small deformations u⃗ of a body
Ω to the internal stresses σ. To study the influence of residual stresses to the shape of the body when
cut free we set the full internal stress σ = σ̂ + σ

res
, with σ̂ the stresses that arise from linear elasticity

and σres the residual stresses frozen in the material. Under the assumption that there are no external
forces acting on either the bulk of the material or the surfaces and denoting the deformation field of
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the material with u⃗ the governing equations of linear elasticity are given by

∇⃗ ⋅ σ = 0,

σ̂ = λtr(ε)Id + 2µε,

ε =
1

2
(∇⃗ ⊗ u⃗ + (∇⃗ ⊗ u⃗)T ) ,

together with the mixed boundary conditions that the total internal stress σ is perpendicular to the
free surfaces Γ1, which are both the upper and lower surface and the hole in our case and that on the
fixed surfaces Γ2 there is no deformation

σ ⋅ n⃗ = 0 on Γ1,

u⃗ = 0 on Γ2.

Even though the residual stress is of course divergence-free (∇⃗ ⋅ σres
= 0) its influence is expressed in

the first boundary condition at the free surfaces in a way that the elastic stresses have to balance the
residual stress σ̂ ⋅ n⃗ = −σres

⋅ n⃗. To quantify the influence of the residual stress through the boundary
conditions we used another FEM simulation with parameters λ,µ and simple linear continuous ele-
ments (’CG1’ or sometimes called ’P1’) for the displacements u⃗ to calculate the the shape (given by
the deformations) and the resulting relaxed residual stresses σ̂. The observation from this simulation
is that the body shrinks around the hole in order to balance the residual stresses normal to the free
surfaces.
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Figure 4.24: Magnitude of the eigenstrain caused by the residual stresses (top: ∆p = 1, bottom:
∆p = 2). Also shown are the relaxed residual shear stresses σxy.

4.5 4:1 Contraction / Extension Flow

Another classical benchmark geometry that is well established for over 30 years [3],[35] is the 4:1
contraction – already mentioned in the last chapter – where the channel abruptly contracts to one
quarter of its width (or height). The popularity of this geometry is reasoned because the contraction of
flow is of great importance in many processing operations, such as molding and extrusion of viscoelastic
(polymeric) materials. Furthermore, the 4:1 planar contraction is a suitable benchmark problem for
the evaluation of new models or codes [26]. The ability to be able to simulate the viscoelastic flow of
integral constitutive models in such a slightly more complicated geometry (compared to the classical
rectangular channel) does show the advanced ability and versatility that the finite element simulation
technique has over other methods such as lattice Boltzmann or simple finite difference schemes.
This versatility can be seen in the following figure, where the mesh used for the simulations in this
subsection is shown. Note that the cell diameter decreases by a factor of 4 from h = 0.025 in the wide
are towards h = 0.00625 in the contracted area, such that in both the wide and contracted area are 40

cells from bottom to top. The total number of cells is 65974. As in the previous simulations periodic
boundary conditions in the x-direction are used.
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A single simulation of the MCT-ITT model, using these parameters, takes around 20 days utilizing
24 cores of a dual Xeon E5-2650v4 workstation and needs around 120 GB of memory. The same
simulation, but using the generalized Maxwell model only takes around 2 day on the same machine
and just needs memory in the order of 3 GB.

Figure 4.25: Parts of the 4:1 contraction mesh used in the simulations. Cells diameter decreases from
h = 0.025 in the wide are towards h = 0.00625 in the contracted area.

4.5.1 Pressure Driven Flow and transient Cessation in the 4:1 Contraction

The pressure driven flow through the periodic 4:1 contraction has been simulated for both the MCT-
ITT and the generalized Maxwell model using the implicit Euler scheme with a time step ∆t = 0.05

and 7 blocks of 16 steps in age, which again results in the fact that there is no cut-off in history / age.
For the high pressure simulations a pressure drop of ∆p = 20 over the periodic length of L = 10 (which
means ∣∇p∣ = ∆p/L = 2 in the wide area) was used. The MCT glass transition parameter was set to
ǫ = 0.01, while in the generalized Maxwell model λc = 10 was used, both models where simulated with
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the standard critical yield parameter γc = 0.1.
Similar to previous simulations using the rectangular channel with the spherical obstacle the pressure
drop is removed after 1/4 of the total simulation time of tend = 101.6 to study the cessation of flow
and whether or not residual shear stresses remain after the material has come to rest. In the figure
below the velocity field and streamlines of both the MCT-ITT and the generalized Maxwell model are
shown in the steady state at t = toff − dt and at t = toff + {1,2,3,5,7,9}.

(a) MCT-ITT model: velocity field and streamlines at
t = toff − dt.

(b) Generalized Maxwell model: velocity field and
streamlines at t = toff − dt.

(c) MCT-ITT model: velocity field and streamlines at
t = toff + 1.

(d) Generalized Maxwell model: velocity field and
streamlines at t = toff + 1.

(e) MCT-ITT model: velocity field and streamlines at
t = toff + 2.

(f) Generalized Maxwell model: velocity field and
streamlines at t = toff + 2.
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(a) MCT-ITT model: velocity field and streamlines at
t = toff + 3.

(b) Generalized Maxwell model: velocity field and
streamlines at t = toff + 3.

(c) MCT-ITT model: velocity field and streamlines at
t = toff + 5.

(d) Generalized Maxwell model: velocity field and
streamlines at t = toff + 5.

(e) MCT-ITT model: velocity field and streamlines at
t = toff + 7.

(f) Generalized Maxwell model: velocity field and
streamlines at t = toff + 7.

(g) MCT-ITT model: velocity field and streamlines at
t = toff + 9.

(h) Generalized Maxwell model: velocity field and
streamlines at t = toff + 9.
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One can see that in the transient phase after switching off the driving pressure gradient both models
show a strong vortex formation in the corners, this is clearly an non-Newtonian phenomenon since
the overall velocity magnitude is decreasing (because it is a dispersive system with friction). A both
possible and plausible explanation is that the material near the contraction edges – which is more
sheared and therefore has a lower viscosity – gets pushed back (due to the elasticity) against higher
viscosity material resulting in a flow into the corners and this vortex formation.

Steady State Shear Stresses predicted by the MCT-ITT Model

To study steady state shear stresses in the 4:1 contraction the same simulation setups (MCT-ITT
model with parameters ǫ = 0.01 and γc = 0.1) are used (only the pressure drop is chosen differently as
∆p
L
= 1).

In the steady state one observes the standard linear shear stress pattern inside the wide (x < 4 or
x > 6) and narrow (4 < x < 6) channels and a more complicated, but familiar pattern around see edges
(see [13] to compare to a differential viscoelastic constitutive model). The following images show the
steady state shear stress pattern, on the left side the colorbar is restricted to have a better visualization
of the pattern around the edges while on the right side the colorbar is adjusted to fit the whole range
of found values.

(a) Steady state σxy for the standard MCT-ITT system driven by ∆p

L
= 1 with a restricted colorbar.

(b) Steady state σxy for the standard MCT-ITT system driven by ∆p

L
= 1 with full colorbar (showing the whole

range of found values).
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4.5.2 Residual Stresses in 4:1 Contraction Flow predicted by the MCT-ITT Model

The geometry of the abrupt 4:1 contraction allows flow-induced residual shear stresses since ∂x ≠ 0 is
valid in the contraction region.
After turning off the driving pressure gradient the system comes to rest, similar to the geometrical
setup with the spherical obstacle one finds that there are remaining residual shear stresses. One also
finds a similar sign flip in the narrow channel as the one around the spherical obstacle. Further one
can observe a stress free region directly in front (and also directly after) the contraction area.

Figure 4.29: Residual shear stresses of the standard MCT-ITT model previously driven by a pressure
gradient of by ∆p

L
= 1.

Another effect one observes after cessation of the system is that the residual shear stresses in the wide
channel area are relatively (compared to the stresses in the stronger narrow channel) much stronger
than the shear stresses in the steady state pressure driven system. This effect and the sign-flipping
can be seen best in a line plot of σxy over the x-position of the (periodic) simulation domain for a
fixed y value. Here y = 0.4 is chosen, which is in the lower half, where σxy > 0 in the steady state of
the pressure driven system.
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Figure 4.30: Line plot of σxy(x,0.4)
∣σxy(5,0.4)∣ is shown for both the pressure driven steady state (so just before

the switch-off at t = toff −∆t) and after cessation of the flow (at the end of the simulation, t = tend).

Because of the first component of the Stokes equation ∂xσxx+∂yσxy = 0 – and the geometrical symmetry
around the the y = 0.5 line – one can already know that also the residual normal stress σxx must have
a negative slope (regarding the x-positional variable for y = 0.4 fixed) inside the narrow (4 < x < 6)
part of the simulation domain, while the steady state normal stress in the pressure driven phase of
the simulation must have a positive slope.
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Figure 4.31: Line plot of σxx(x,0.4)
∣σxx(5,0.4)∣ is shown for both the pressure driven steady state (so just before

the switch-off at t = toff −∆t) and after cessation of the flow (t the end of the simulation (t = tend).

We expect the same finite-size effects as discussed above for the channel with a spherical obstacle (see
4.4.2).

Line Plots of Residual Stresses

Another property worth looking at is the residual first normal stress difference N1 at the end of the
simulation. As in the previous simulation concerning viscoelastoplastic flow past the spherical obstacle
N1 tends to be constant away from the x-invariance breaking areas, which are in this geometrical setup
the contraction areas. The normal stress σxx seems to be affected by the periodical boundaries in x-
direction in the same way as the simulations concerning the flow around the spherical obstacle done
in the previous subsection (see the dedicated sub-subsection in 4.4.2).
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Figure 4.32: Line plot at constant y = 0.4 of the residual normal stress σxx and the residual first
normal stress difference N1 at the end of the simulation (t = tend).

Further one can have a look on line plots of the residual shear stress and the first normal stress
difference (at the end of the simulation at t = tend) for fixed values of x, for example x = 3.5 and x = 3.9

(contraction at x = 4). Note that due to the geometrical symmetry around the y = 0.5 axis the shear
stress σxy must be (approximately) zero at y = 0.5, which is the case as one can see from the following
two line plots. For the first normal stress difference N1 this is not the case as one can already see from
the surface plot of the first normal stress difference shown below.

Figure 4.33: Residual first normal stress difference N1 of the standard MCT-ITT model previously
driven by a pressure gradient of by ∆p

L
= 1.
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Figure 4.34: Line plot at constant x = 3.5 and x = 3.9 of the residual normal stress σxy and the residual
first normal stress difference N1 at the end of the simulation (t = tend).
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Chapter 5

Advectional Extension to the
Schematic Mode-Coupling Theory

This chapter will provide an advectional extension to the schematic MCT equation. This means that
the partial time derivatives will be exchanged by material derivatives which continuum mechanics
desires to correctly describe the rate of change of any scalar quantity in the Eulerian reference frame.
One could consider this a similar approach as the upper convected (or Oldroyd derivative version B)
done by Oldroyd [42] to correctly describe the rate of change of a tensorial quantity in the Eulerian
reference frame. Of course this exchange of the partial time derivative with the material derivative
is a rather heuristic approach and has no statistical physics based derivation yet, however there are
existing efforts by Alexandre Nicolas and Matthias Fuchs [41] towards this direction.

5.1 Reasoning of the Advectional Extension

In the MCT equation

∂tφ(t, t′) + φ(t, t′) + htt′ ∫
t

t′
htt′′m(t, t′′)∂t′′φ(t′′, t′)dt′′ = 0

all spatial information is encoded in the h-factors and therefore come from the Finger tensor B. Since
the equation of the Finger tensor B is formulated in the laboratory fixed Eulerian reference frame and
therefore contains the advected (or material) derivative (the upper convected derivative is the tensorial
extension of the material derivative) one could argue that the correlation function φ is also formulated
in Eulerian coordinates. According to continuum mechanics the correct temporal rate of change of
any scalar quantity in the Eulerian system is the material derivative D

Dt
, so one might exchange the

partial time derivatives in the schematic version of the MCT equation with material derivatives. This
leads the above equation to change to

D

Dt
φ(t, t′) + φ(t, t′) + htt′ ∫

t

t′
htt′′m(t, t′′) D

Dt′′
φ(t′′, t′)dt′′ = 0, (5.1)

where all the partial time derivatives have been replaced by material derivatives.
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Reduction to the Maxwell Model

If one thinks of a Markovian process the memory kernel should be δ-function like

m(t, t′′, t′) = 2λ̂δ(t − t′′),
such that the MCT equation reduces to

2λ
D

Dt
φ(t, t′) + φ(t, t′) = 0, (5.2)

with 2λ = Γ + λ̂, where Γ is the intrinsic time scale from MCT that has always been set to unity
previously. If one now sets G(t, t′) = φ2(t, t′) one obtains the known differential equation of the
Maxwell model:

D

Dt
G(t, t′) = −1

λ
G(t, t′). (5.3)

In the same spirit one could also think of the White-Metzner and generalized Maxwell Model as a
reduced form of the MCT equation, where basically the integral is removed by a δ-like approach to
the memory kernel.

5.2 Numerical Details of the Advected MCT-ITT Model

5.2.1 Outer Advection

The implementation of the first (called outer, because it is outside the memory integral) advected
derivative D

Dt
on the very left of equation 5.1 can be done without changing the memory setup. One

simply uses v⃗old ∶= v⃗(t−∆t) as the same zeroth order approximation to v⃗(t) as in the numerical method
to calculate the Finger tensor (see 4.1.3). The additional error is of the order O(∆t) which is the
same order as the implicit Euler scheme.
By only taking the into account the outer advection term the disctretized two-time sMCT equation
4.15 changes to:

( 1

∆t
+ [v⃗old ⋅ ∇⃗] + 1 + hi,lhi,1mi,1)φi,l + h

2
i,lmi,l [φi−l+1,1 − 1] +Ri,l = 0, (5.4)

where the term Ri,l is unchanged.

DG0 Method

However, in contrast to the algebraic equation 4.15 this is a partial differential equation, therefore a
DG0 (it is convenient that φ and B, σ are all approximated the same way to avoid interpolations or
projections) weak formulation must be derived. The weak formualtion of 5.4 can be found in similar
fashion as described in subsections 3.1.5 or 4.1.3. Denoting the test-function by ψ the weak formulation
reads

F [φi,l] = ∑
K∈K
∫

K
( 1

∆t
+ 1 + hi,lhi,1mi,1)φi,l ⋅ ψ − φi,l ⋅ div(ψv⃗old) dx

+ ∑
K∈K
∫

K
(h2

i,lmi,l [φi−l+1,1 − 1] +Ri,l) ⋅ ψ dx

+ ∑
K∈K
∫

∂K
(vn,+ ⋅ φ

+

i,l + vn,− ⋅ φ
−

i,l) ⋅ [ψ] dS + ∑
E∈EI

∫
E
(vn ⋅ φi,l) ⋅ ψ ds

!
= 0.
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To solve F [φi,l] = 0 for all valid test-functions ψ one uses the Newton scheme in an operator sense.
This is quite similar to the multidimensional Newton scheme to numerically solve f(x) = 0 for a given
f ∶ Rn

→ R
m via iterativly solving

Jf(x(n))∆x(n) = −f(x(n)),
x(n+1)

= x(n) +∆x(n),

where Jf(x(n)) is the Jacobian evaluated at the n-th iteration point x(n) [52]. However instead of a fi-

nite dimensional (Jacobi-) matrix the functional derivative DF (φ(n)
i,l
)[∆φ(n)

i,l
] is an infinite dimensional

(weak differential-) operator acting on ∆φ
(n)
i,l

.

DF (φi,l)[∆φi,l] = ∑
K∈K
∫

K
( 1

∆t
+ 1 + hi,lhi,1mi,1)∆φi,l ⋅ ψ −∆φi,l ⋅ div(ψv⃗old) dx

+ ∑
K∈K
∫

K
h2

i,lm
′

i,l∆φi,l [φi−l+1,1 − 1] ⋅ ψ dx

+ ∑
K∈K
∫

∂K
(vn,+ ⋅∆φ

+

i,l + vn,− ⋅∆φ
−

i,l) ⋅ [ψ] dS + ∑
E∈EI

∫
E
(vn ⋅∆φi,l) ⋅ ψ ds, (5.5)

with m′i,l = v1 + 2v2φi,l as in the previous chapter, since the F12 model (like proposed in [8]) is used
throughout all simulations.
The functional Newton scheme is then given by iterativly solving

DF (φ(n)
i,l
)[∆φ(n)

i,l
] = −F [φ(n)

i,l
], (5.6)

φ
(n+1)
i,l

= φ
(n)
i,l
+∆φ

(n)
i,l
,

in its weak form using the "mumps" LU solver provided by the FEniCS environment.
A good initial guess is (similar to the Newton scheme provided by the algebraic equation 4.15) given
by φ(0)

i,l
= φi−1,l.

5.2.2 Inner Advection

Memory Management

The advected derivative D
Dt′′

inside the memory integral of 5.1, referred to as inner advection (term),
causes more problems than the outer advection. The reason for this is that one needs the historical
velocity field v⃗(t′′) for all integration points t′′ between t′ and t. These velocity fields v⃗(t′′) need to
be stored in addition to the the previous memory management.

113



CHAPTER 5. ADVECTIONAL EXTENSION TO THE SCHEMATIC MODE-COUPLING
THEORY

Figure 5.1: Schematic picture to visualize the memory management of the advected MCT-ITT model
simulation. Figure courtesy of Dr. Timm Treskatis.

Changes to the Discretized sMCT Equation

The inner advection changes equation 5.4 further from the standard discretized two-time sMCT equa-
tion 4.14 in a way that there is an additional sum

hi,j

i−1

∑
k=j

hi,kmi,k[v⃗k ⋅ ∇⃗]φk+1,j(∆t)k
= h2

i,jmi,j[v⃗j ⋅ ∇⃗]φj+1,j(∆t)j + hi,jhi,i−1mi,i−1[v⃗i−1 ⋅ ∇⃗]φi,j(∆t)i−1 +

i−2

∑
k=j+1

...

resulting from the additional inner advection term. One now has to be careful when changing from
the j (reference time variable) indices to the l = i − j indices (age variable) because the summation
order is reversed.
The equation 5.4 changes to

( 1

∆t
+ [v⃗old ⋅ ∇⃗] + 1 + hi,lhi,1mi,1)φi,l + h

2
i,lmi,l [φi−l+1,1 − 1] +Ri,l

+ h2
i,lmi,l[v⃗i−l ⋅ ∇⃗]φi−l+1,1(∆t)l + hi,lhi,1mi,1[v⃗i−1 ⋅ ∇⃗]φi,l(∆t)1

+ hi,l

l−1

∑
k=2

hi,kmi,k[v⃗i−k ⋅ ∇⃗]φi−k+1,l−k+1(∆t)k = 0,

with the same Ri,l as previously, also note that v⃗old ≡ v⃗i−1.
Because of the used DG0 elements the additional terms, which all contain a v⃗ ⋅ ∇⃗-operator, do not only
enter the second dx integral of equation 5.5, but also create new dS (for jumps between cells) and ds
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(for cells / edges on the boundaries) integrals:

F [φi,l] = ∑
K∈K
∫

K
( 1

∆t
+ 1 + hi,lhi,1mi,1)φi,l ⋅ ψ − (1 + hi,lhi,1mi,1(∆t)1)φi,l ⋅ div(ψv⃗old) dx

+ ∑
K∈K
∫

K
h2

i,lmi,l ([φi−l+1,1 − 1] ⋅ ψ − φi−l+1,1(∆t)l ⋅ div(ψv⃗i−l)) +Ri,l ⋅ ψ dx

− ∑
K∈K
∫

K
hi,l

l−1

∑
k=2

hi,kmi,kφi−k+1,l−k+1(∆t)k ⋅ div(ψv⃗i−k) dx

+ ∑
K∈K
∫

∂K
(1 + hi,lhi,1mi,1(∆t)1) (vn,+ ⋅ φ

+

i,l + vn,− ⋅ φ
−

i,l) ⋅ [ψ] dS

+ ∑
E∈EI

∫
E
(1 + hi,lhi,1mi,1(∆t)1) (vn ⋅ φi,l) ⋅ ψ ds

+ ∑
K∈K
∫

∂K
h2

i,lmi,l(∆t)l (vi−l,n,+ ⋅ φ
+

i−l+1,1 + vi−l,n,− ⋅ φ
−

i−l+1,1) ⋅ [ψ] dS

+ ∑
E∈EI

∫
E
h2

i,lmi,l(∆t)l (vi−l,n ⋅ φi−l+1,1) ⋅ ψ ds

+ ∑
K∈K
∫

∂K
hi,l

l−1

∑
k=2

hi,kmi,k(∆t)k (vi−k,n,+ ⋅ φ
+

i−k+1,l−k+1 + vi−k,n,− ⋅ φ
−

i−k+1,l−k+1) ⋅ [ψ] dS

+ ∑
E∈EI

∫
E
hi,l

l−1

∑
k=2

hi,kmi,k(∆t)k(vi−k,n ⋅ φi−k+1,l−k+1) ⋅ ψ ds
!
= 0. (5.7)

To solve F [φi,l] = 0 for all valid test-functions ψ one agian uses the Newton scheme in an operator
sense. To be able to use the Newton scheme one first needs to calculate the functional derivative of
F [φi,l] applied to ∆φi,l:

DF (φi,l)[∆φi,l] = ∑
K∈K
∫

K
( 1

∆t
+ 1 + hi,lhi,1mi,1)∆φi,l ⋅ ψ − (1 + hi,lhi,1mi,1(∆t)1)∆φi,l ⋅ div(ψv⃗old)dx

+ ∑
K∈K
∫

K
h2

i,lm
′

i,l∆φi,l ([φi−l+1,1 − 1] ⋅ ψ − φi−l+1,1(∆t)l ⋅ div(ψv⃗i−l)) dx

+ ∑
K∈K
∫

∂K
(1 + hi,lhi,1mi,1(∆t)1) (vn,+ ⋅∆φ

+

i,l + vn,− ⋅∆φ
−

i,l) ⋅ [ψ] dS

+ ∑
E∈EI

∫
E
(1 + hi,lhi,1mi,1(∆t)1) (vn ⋅∆φi,l) ⋅ ψ ds

+ ∑
K∈K
∫

∂K
h2

i,lm
′

i,l∆φi,l(∆t)l (vi−l,n,+ ⋅ φ
+

i−l+1,1 + vi−l,n,− ⋅ φ
−

i−l+1,1) ⋅ [ψ] dS

+ ∑
E∈EI

∫
E
h2

i,lm
′

i,l∆φi,l(∆t)l (vi−l,n ⋅ φi−l+1,1) ⋅ ψ ds (5.8)

with m′i,l = v1 + 2v2φi,l as previously.
The functional Newton scheme is again given by iterativly solving

DF (φ(n)
i,l
)[∆φ(n)

i,l
] = −F [φ(n)

i,l
],

φ
(n+1)
i,l

= φ
(n)
i,l
+∆φ

(n)
i,l
,

with the initial guess φ(0)
i,l
= φi−1,l.

Note that this procedure is still the same Marchuck-Yananko method [39] as previously. One does

115



CHAPTER 5. ADVECTIONAL EXTENSION TO THE SCHEMATIC MODE-COUPLING
THEORY

not propagate the whole system (σ[B,G], v⃗, p) at once, buts splits the propagation operator to first
implicitly propagate σ and therefore B and G∝ φ2 with the old velocity field v⃗old and then solves the
Stokes problem (propagate (v⃗, p) from the old time step t −∆t to the new time step t).

Note on the Advected Derivative in the Convolution Integral

Note that the v⃗k ⋅ ∇⃗ was applied to φk+1,j in the convolution integral, one also could have applied it
onto φk,j . If it would have been done that way, than it would have no impact on DF (φi,l)[∆φi,l]
because the term k = j containing mi,j would vanish since φj,j = 1 and therefore [v⃗j ⋅ ∇⃗]φj,j = 0. So
F [φi,l] (after transforming to discretized age variable) would not contain additional mi,l terms. The
k = i−1 term would lead to [v⃗old ⋅ ∇⃗]φi−1,j instead of [v⃗old ⋅ ∇⃗]φi,j resulting no additional φi,l in F [φi,l]
and therefore would not affect DF (φi,l)[∆φi,l]. Only the right hand side −F [φ(n)

i,l
] in the Newton

scheme would change due to the inner advection.

5.2.3 Simulation Setup

Since the Newton method is – as previously discussed in detail – much more complicated for the
advected MCT-ITT model, because the schematic MCT equation is no longer local. The standard
computational parameters NB and NA, for the number of blocks and the number of steps in each
blocks that in which the density correlation φ(t, t′) dates back in history, need to be reduced from
NB = 7 to NB = 6 and from NA = 16 to NA = 8. Accordingly the number of total time steps, that
can be simulated without a cut-off in history (which is Nt = NA ⋅ (2NB − 1)), needs to be reduced by
roughly a factor of 4. To compensate the reduced number of time steps the step size ∆t of the implicit
Euler scheme is doubled to ∆t = 0.1.
All simulations still use the F12 model for the memory kernel with coupling coefficients v1 = 2(√2 −

1)+ǫ/(√2−1) and v2 = 2, where ǫ = 0.01 to be slightly in the glassy state. The critical yield parameter
γc is as previously set to 0.1. The further constants G0 and ηS are both set to unity (as done in the
local MCT version in the previous chapter).
The boundary conditions are identical to the ones in the last chapter, which means: no-slip Dirchlet
boundary condition at all walls or obstacle and periodic boundary conditions in the x-direction.
For both simulation geometries, the rectangular channel with spherical obstacle and the 4:1 contraction
/ extension the exact same meshes (triangulations) as in chapter 4 were used.

5.3 Flow Past a Spherical Obstacle

As a first non-trivial example (this means a geometry that provides v⃗ ⋅ ∇⃗ ≠ 0), the pressure driven flow
past a spherical obstacle is simulated. The pressure drop, creating ∇⃗p = ∆p

L
êx, is adjusted to ∆p = 1.0

per periodic length of L = 5.

5.3.1 Steady State Results

The steady state velocity field and streamlines are visualized in the following graphic. As already
mentioned previously the area around (x ≈ 1.0 ± 0.2) and in front / past (x ≈ 0.65 or x ≈ 1.35) the
cylinder is of special interest, because there v⃗ and ∇⃗ point approximately in the same direction (in
contrast to the channel area where they are perpendicular).
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Figure 5.2: Stationary velocity field ∣v⃗∣ and streamlines of the advected MCT-ITT model driven by a
pressure gradient of by ∆p

L
= 0.2.

Further one observes identitical patterns of the shear stress σxy and the first normal stress difference
N1 = σxx − σyy in the steady state.

Figure 5.3: Stationary shear stress σxy of the advected MCT-ITT model driven by a pressure gradient
of by ∆p

L
= 0.2.
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Figure 5.4: Stationary first normal stress difference N1 of the advected MCT-ITT model driven by a
pressure gradient of by ∆p

L
= 0.2.

For a better understanding why – so far – the advectional extensional does not change the macroscopic
flow behavior one needs to investigate the microscopic transient density correlation functions of both
the advected MCT-ITT model and the standard local MCT-ITT model used in the previous chapter.

5.3.2 Transient Density Correlation Functions

Since one can expect the correlation function φ(t, t′) calculated with the advected MCT to be identical
to the one calculated with the standard local MCT in areas where v⃗ ⋅ ∇⃗ = 0, both correlation functions
(from the local and advected MCT) are plotted (at the end of the simulation) against their age t − t′

in the interesting areas, where neither the shear rate is not zero nor the advection term v⃗ ⋅ ∇⃗ does
vanish.
One can see that both MCT models (local and advected) lead to very similar transient density correla-
tion functions φ(t, t′) and therefore to similar generalized shear moduli G(t, t′) and similar polymeric
stress σP (t). This is due to the very high viscosity and slow flow of such glass-forming and viscoelasto-

plastic fluids, informally speaking: since ∣v⃗∣ is small v⃗ ⋅∇⃗ is "small" ("..." since this a differential operator
and not a real number like ∣v⃗∣) as well.
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Figure 5.5: Transient density correlation functions φ(t, t′) at positions (1.1,0.3) and (0.65,0.5) plotted
against t − t′ (previously defined as the age a), obtained from both the standard local MCT and the
advected MCT, at the end (t = tend) of the pressure driven flow past a spherical obstacle simulation.

Heatmap Plots

Furthermore one can visualize the transient density correlation functions φ for both the local and
the advected MCT-ITT model on the whole mesh for different ages. The following graphics show
φ(tend, a) – with the local MCT on the left (a) and the advected MCT on the right(b) – for ages
a = tend − t

′
∈ {24.8,20.0,16.8,10.4,4.0} as a heatmap on the whole mesh.
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(a) Transient density correlation function φ(tend, a =

4.0) calculated by the local MCT-ITT model.
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(b) Transient density correlation function φ(tend, a =

4.0) calculated by the advected MCT-ITT model.
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(a) Transient density correlation function φ(tend, a =

10.4) calculated by the local MCT-ITT model.
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(b) Transient density correlation function φ(tend, a =

10.4) calculated by the advected MCT-ITT model.
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(a) Transient density correlation function φ(tend, a =

16.8) calculated by the local MCT-ITT model.
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(b) Transient density correlation function φ(tend, a =

16.8) calculated by the advected MCT-ITT model.
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(a) Transient density correlation function φ(tend, a =

20.0) calculated by the local MCT-ITT model.
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(b) Transient density correlation function φ(tend, a =

20.0) calculated by the advected MCT-ITT model.
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(a) Transient density correlation function φ(tend, a =

24.8) calculated by the local MCT-ITT model.
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(b) Transient density correlation function φ(tend, a =

24.8) calculated by the advected MCT-ITT model.

The transient density correlation functions behave nearly identical for both MCT-ITT models, maybe
one can spot a minimal difference in the size (smaller for the advected MCT) of the non-decaying
(because of the local symmetry) region between the spherical obstacle and the wall for the fully aged
(t′ = 0) correlation function.
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Correlation Functions at Switch-Off

So far all the density correlation functions were shown at time t = tend of a simulation with a constant
(in time) pressure drop ∆p. However it is worth looking at correlation functions of a simulation where
at a certain time t = toff =

tend

2
the pressure drop is set to zero (similar to the simulations in the

previous chapter).
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adv MCT (0.65,0.5) t= toff
adv MCT (1.1,0.3) t= toff t
adv MCT (0.65,0.5) t= toff t

Figure 5.11: Transient density correlation function for different positions and times t calculated by
the local MCT model in the upper and by the advected MCT-ITT model in the lower plot.
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Finally one can look at the difference ∆φ = φadv − φloc of both transient correlation functions. For
times close to to the switch-off t = {toff −∆t, toff} the advected MCT seems to decay a bit slower right
behind the obstacle at position (0.65,0.5) since the red and brown curves are positive. In contrast,
around the obstacle at position (1.1,0.3) the advected MCT seems to decay slightly faster since the
green and purple curves are negative.
However, the correlation functions at t = tend are almost identical with the tendency that the advected
MCT decays very slightly slower.
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Figure 5.12: Transient density correlation function for different positions and times t calculated by
the local MCT model on the left hand side and by the advected MCT-ITT model on the right hand
side.

5.3.3 Residual Stresses

If one again removes the driving pressure drop ∆p when the system has reached its steady state – like
in the previous chapter – also the advected MCT-ITT model predicts residual stresses. The residual
stresses are very similar to the local MCT model, and are shown in the following graphics.
One can see that the residual stress (both shear and normal stresses) look qualitatively identical to the
ones obtained from the standard local MCT-ITT model (as discussed in chapter 4). However if one
looks carefully on the range of values the residual stresses are slightly bigger than the ones presented
in the previous chapter. This is due to the fact that the relaxation time t − toff is shorter by a factor
of 3, since the advected MCT-ITT model is much more computationally expensive and therefore the
simulations are shortened.
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Residual Shear Stresses

Figure 5.13: Residual shear stresses σres
xy at t−toff = 25.2 (25.2 simulation time units after the previous

pressure drop of ∆p = 1.0 was turned off).

The same pattern as in the previous chapter can be observed, again around the obstacle the sign of the
stresses are flipped compared to the steady state values. Since the correlators φ(t, t′) were (almost)
identical to the local MCT-ITT version this was expected and underlines the predicting power of the
MCT-ITT model in general since it seems to be very robust to the advection terms where it is unsure
to include them or not. From the microscopical derivation of MCT-ITT constitutive laws found in
[7] there is no sign to put them in, however from the continuum mechanics perspective they must be
included.

Residual Normal Stresses

Figure 5.14: Residual normal stresses σres
xx at t − toff = 25.2 (25.2 simulation time units after the

previous pressure drop of ∆p = 1.0 was turned off).
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One can expect the exact same finite-size / periodical boundary effects as extensively discussed in
subsection 4.4.2 of the previous chapter.

5.4 Flow in 4:1 Contraction / Extension

As a second example of simulations pressure driven flow in the famous abrupt 4:1 contraction /
extension geometry are considered. The pressure drop, creating ∇⃗p = ∆p

L
êx, is adjusted to ∆p = 10.0

per periodic length of L = 10. Therefore a stronger pressure gradient is applied to the system to
achieve higher flow velocities and "bigger" v⃗ ⋅ ∇⃗ terms.

5.4.1 Steady State Results

Figure 5.15: Stationary velocity field ∣v⃗∣ and streamlines obtained from the the advected MCT-ITT
model driven by a pressure drop of ∆p = 10.0 per periodic length of L = 10.
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Figure 5.16: Stationary shear stress σxy obtained from the advected MCT-ITT model driven by a
pressure drop of ∆p = 10.0 per periodic length of L = 10.

One can observe the same stationary streamline pattern as already discussed in the previous chapter.
A very promising point to spot differences between advected and local MCT seems to be (4.0,0.5)
which is directly in the middle of the abrupt contraction. At this point one can see that there should
be strong gradients – due to the contraction – and high velocities. Another good point might be near
the contraction edges (for example (3.75,0.375)) where also the shear stress is high. In contrast, at
points in the edges where almost no flow takes place or at points where v⃗ ⊥ ∇⃗ and therefore v⃗ ⋅ ∇⃗ very
small or zero (only done for verification) one cannot expect different correlation function functions
since the overall flow seems to be very similar and at these points advection plays no role.
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5.4.2 Transient Density Correlation Functions

Again the simulations are modified by adding a switch-off time t = toff =
tend

2
at which the pressure

drop is set to zero and the flow undergoes a cessation process (due to energy dissipation). In the next
subsection the residual stresses predicted by the advected MCT-ITT model in the 4:1 contraction
/ extension are studied using these simulations. The comparison of the transient density correlation
function will already tell what to expect in terms of residual stresses since similar correlation functions
cause similar stress patterns.
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adv MCT (5.0,0.4) t= toff

Figure 5.17: Transient density correlation function for different positions – mentioned in the previous
subsection – and times t calculated by the advected MCT-ITT model.

Comparison and Heatmap Plots

Next one can compare the local and the advected correlation functions extracted from similar simu-
lations (same number of blocks with the same blocksize, identical pressure drop and switch-off). In
this higher pressure simulations one observes bigger differences between the MCT versions (local or
advected) than in the corresponding subsection 5.3.2 of previous section on the (lower) pressure driven
flow past a spherical obstacle. However these bigger differences only occur in comparisons at time
t = toff and – as already seen in 5.3.2 – not systematically in a sense that all correlation functions of
the advected model dacay quicker or vice versa.
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Figure 5.18: Comparison of transient density correlation functions for different positions between the
local and the advected MCT-ITT model. All correlation functions evaluated at t = tend.
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Figure 5.19: Comparison of transient density correlation functions for different positions between the
local and the advected MCT-ITT model. All correlation functions evaluated at t = toff .

To finalize the discussion on transient density correlation functions in the 4:1 contraction / extension
geometry one can look at different heatmaps. Due to limited computational resources these heatmap
plot were made with data extracted from simulations on a mesh with lower resolution.
Even though the differences between advected and local MCT-ITT models are bigger (due to the
higher pressure gradient and the faster velocities in the narrow channel) the heatmaps look identical
for both models.
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(a) Transient density correlation function φ(tend, a =

tend) calculated by the local MCT-ITT model.
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(b) Transient density correlation function φ(tend, a =

tend) calculated by the advected MCT-ITT model.
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(c) Transient density correlation function φ(tend, a =

24.0) calculated by the local MCT-ITT model.

0 2 4 6 8 10
0

1

0.1 0.2 0.3 0.4

(d) Transient density correlation function φ(tend, a =

24.0) calculated by the advected MCT-ITT model.
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(a) Transient density correlation function φ(toff , a =

24.0) calculated by the local MCT-ITT model.
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(b) Transient density correlation function φ(toff , a =

24.0) calculated by the advected MCT-ITT model.
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(a) Transient density correlation function φ(t = 24.0, a =

24.0) (note that t = 24 < toff ) calculated by the local
MCT-ITT model.
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(b) Transient density correlation function φ(t = 24.0, a =

20.0) (note that t = 24 < toff ) calculated by the advected
MCT-ITT model.

5.4.3 Residual Stresses

Finally we show the resulting residual stresses of the advected MCT-ITT model. Note that due to
the high similarity of the correlators the residual stresses look identical to those shown in the previous
chapter. First one observes the same sign flip of the shear stress (compare to the colors in Figure 5.16)
in the narrow channel while the sign in the wide area remains unchanged.
In the first normal stress difference N1 we also see a familiar pattern, however there is slightly more
finite size error (due to the periodic boundary conditions in x) than in the local MCT-ITT model as
simulated in the last chapter.
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Figure 5.23: Residual shear stress σxy obtained from the advected MCT-ITT model driven by a
pressure drop of ∆p = 10.0 per periodic length of L = 10.

Figure 5.24: Residual first normal stress difference N1 obtained from the advected MCT-ITT model
driven by a pressure drop of ∆p = 10.0 per periodic length of L = 10.

Comparison to the local MCT-ITT model

As expected one can say that the pressure drop is still not big enough and maybe also the geometry is
not ideal to observe big differences between the local and the advected MCT-ITT model. Therefore an
extensive comparison between both model is not done, however there are some differences highlighted
in the following graphics.
To ensure a good comparability the same triangulation and numerical parameters (as described in
5.2.3) are used for both models.
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Figure 5.25: Transient density correlation function for different positions and times t calculated by
the local MCT model on the left hand side and by the advected MCT-ITT model on the right hand
side.
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One can – again – see that that both models produce nearly identical results, only at the periodic x
boundaries the advected MCT-ITT model seems to be a bit more sensitive to finite size effects. These
differences at the periodic x boundaries cannot be induced by the additional advection term (∇⃗ ⋅ v⃗)
since x = 0 and x = 10 are in the middle of plain channel elements where the advection term vanishes.
Apart from finite size effects the difference between both models is negligible supporting the findings
of the previous chapter (since it is a priory not clear which version to use, but fortunately it does
not make a difference in results) that statistical mechanics based (schematic) MCT models are much
more powerful than the typical empirical based models widely used because they show quantitatively
similar residual stresses like found in experiments [1].
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Chapter 6

Summary and Outlook

6.1 Summary

In this thesis the foundations of the Mode-Coupling theory of the glass transition (MCT), mostly
in its schematic version, were introduced both from a conceptual, but especially from a numerical
point of view. Numerical algorithms for both the standard one-time schematic MCT (sMCT) and the
two-time MCT for colloidal systems under time-dependent shear [6] in its schematic version [8] were
presented. These algorithms ensure correct predictions of long time limits, given by the bifurcation
equation. The need for fast computations of integrals over the second time argument – the reference
time t′ – arising from a "first-principles" constitutive equation, leads to a new algorithm that steps
linear in the time t but (quasi-) logarithmic in the reference time t′.

After understanding the fundamentals of sMCT the Navier-Stokes equations were revisited and re-
duced to the special case of incompressible time-dependent Stokes flow, in which one assumes advective
inertial forces to be negligible compared to viscous forces, which is fairly reasonable when dealing with
viscoelastoplastic glass-forming fluids.
To close the time-dependent Stokes problem a variety of known differential and integral constitutive
equations were presented, all based on the Maxwell model [40] presented by Maxwell himself in 1853.
The Maxwell model of viscoelasticity is derived from the mechanical analog of serial connection of an
elastic spring and a viscous damper and leads to a simple ordinary differential equation (ODE) for the
stress. Oldroyd later modified this simple ODE model to a tensorial one, by introducing his convected
/ Oldroyd derivatives. If one makes shear-thinning (viscosity decreases when a strain-rate is applied
to the fluid) variations of this model one can derive further differential and even integral models.
However as already shown in [1], and highlighted at the end of the second chapter in this thesis, all
the heuristic Maxwell-like model do lack a qualitatively correct prediction of residual stresses after
the cessation of flow. Residual stresses are stresses that remain in the material / fluid after the flow
has come to rest (because of the dissipation of energy, after a pressure gradient is turned off for
example). Experiments on colloidal suspensions have shown that a good model need to make three
key-predictions on the residual stress σres:

(1) partial relaxation of σres from the steady state stress σss,

(2) σ = σres
≠ 0 for t→∞,

(3) the residual stress σres depends on the deformation history.

It turns out (again [1]) that only the schematic MCT-ITT model developed in [8] is able to predict
qualitatively correct residual stresses that are in good agreement with experiments. Therefore it is
worth to implement fully two dimensional flow simulations – instead of the quasi one dimensional
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numerical predictions in [1] – of this model, despite the extensive computational cost and memory
demand of the model.

To be able to simulate the flow in a variety of non-trivial geometries we used the finite element
method (FEM) as the main simulation technique. As already mentioned FEM is much more versatile
when it comes to the geometry in which the flow should be simulated, especially compared to existing
lattice Boltzmann (LB) simulation [44]. Furthermore by choosing proper elements one can assure
some import physical laws such as mass or momentum conservation while still maintaining reasonable
computational cost (at least in solving the Stokes problem).

We successfully developed an implicit LBB-stable [15] implicit FEM code basis – implemented with
the help of the FEniCS environment [32, 38] inside the python programming language – able to per-
form numerical flow simulations of the MCT-ITT model in various benchmark geometries such as the
pressure driven flow inside a rectangular channel or the 4:1 contraction / extension flow. Since the
macroscopic Stokes problem and the microscopic MCT-ITT formalism are coupled via the Finger ten-
sor B we used the Marchuk-Yanenko operator splitting method [39] to decouple the set of equations.
A geometry that we were especially interested in is the pressure driven flow past a spherical obstacle
inside a rectangular channel, since this geometry is not x-invariant like the standard channel flow. Be-
cause of the previously described x-invariance breaking of the spherical obstacle, partial x-derivatives
∂x no longer vanish (at least not around the obstacle) allowing the self-equilibrated residual shear (xy-
component of the stress tensor) stresses. To understand the importance of ∂x not vanishing, revisit
the stationary Stokes problem without any pressure gradient or external force:

−∇⃗ ⋅ σres
= 0.

Thus the x-component of the Stokes leads to ∂yσ
res
xy = −∂xσ

res
xx and if ∂x would vanish the Residual

shear stress σres
xy must be a constant in y, due to symmetry (shear stress must vanish in the middle

of the channel) this constant must be zero. This means that we succesfully demonstrated that the
MCT-ITT model predicts geometry-dependent residual shear stresses that seem to couple the micro-
scopic (MCT) and macroscopic (fluid mechanics) scales [51].
The 4:1 contraction / extension flow simulations lead to similar residual shear stresses since also the
x-invariance is broken at the contraction / extension. Furthermore transient history-dependent effects
(during cessation) are discussed. We showed that the historical deformations induce different local
viscosity resulting in a transient vortex formation in the contraction edges.

Despite the huge success of the MCT-ITT model in predicting geometry-dependent residual shear
stresses in glass-forming fluids the model does lack rheological correctness. From continuum mechan-
ics it is known that the correct rate of change for a scalar quantity (such as the transient density
correlation function φ) in the (laboraty fixed) Euler frame is given by the advected (also called mate-
rial) derivative D

Dt
= ∂t + v⃗ ⋅ ∇⃗.

Even though there is no microscopical derivation for the advected derivative (yet) we included the
advection terms into the MCT-ITT formalism. Unfortunatly this (especially the advection term in
the memory integral) massively increases the computational effort. First one now needs to store the
historical velocity fields. Second the MCT equation is no longer local (which is kind of desired) result-
ing in a much more complex functional Newton scheme, instead of the simple one dimensional one in
the local MCT.
It turned out that in our simulations, in which the velocities ∣v⃗∣ are small, the advection term does
not change the rheological effects of the MCT-ITT model. Most importantly we found the same
residual shear stresses after a cessation of flow past a spherical obstacle as in the local MCT-ITT
version. However, in simulations with bigger velocities ∣v⃗∣ and therefore "bigger" v⃗ ⋅ ∇⃗ and especially
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in two-component systems the advection will have a influence on the decay of the transient density
correlation function φ and therefore on the stresses.

6.2 Outlook

The standard local schematic MCT-ITT as proposed in [8] does lack the correct rate of change for
scalar quantities which is the advected / material derivative D

Dt
∶= ∂t + [v⃗ ⋅ ∇⃗]. In the fifth chapter

of this thesis a simply exchange to the – from a fluid mechanics point of view correct – advected
derivative was proposed and successfully implemented in our existing local FEM-MCT code basis of
the FEniCS environment. However, this exchange was only microscopically motivated. In future work
one should try to find a correct microscopical derivation of (schematic) MCT-ITT equation which do
contain advected derivatives. Furthermore it is not even clear that our proposed way (∂t ↔

D
Dt

) would
be the result of such a more in depth study of the derivation of MCT-ITT constitutive equations.
An appropriate starting point for a more detailed study of the MCT-ITT constitutive equation would
be to go all the way back to the stochastic differential equations for Brownian particles (before the
overdamped limit) and formulate the equations carefully with co- and contravariant tensors. In the
excursion on the Oldroyd B / upper convected derivative the connections between upper or lower
indices and the upper or lower (Oldroyd B or A) convected derivative was shown. Only with a fully
tensorial derivation of MCT-ITT constitutive equations one can ensure that it is microscopically cor-
rect to only use the upper convected derivative as a rotation invariant deformation measure.
Of course more high pressure simulations in non-trivial geometries should be done to further study
the effect of the advectional extension to the MCT-ITT model. Ideally one should compare simulation
results to experiments.

Another macroscopically motivated idea, inspired by so called "fluidity models", would be to further
exchange the material derivative by diffusion operators ( D

Dt
↔

D
Dt
−D0∆) to build in further spatial

non-locality between the generalized shear moduli G(t, t′) given by MCT-like integro-differential equa-
tions. Obvious downsides would be that one would need higher order stress elements because of the
second derivatives in the −∆ operator, which would increase the memory demand of the simulations
even further and would also increase the computational cost since the assembled matrices would in-
crease in size. However such code would provide a link to the "fluidity" and typical "elasto-plastic"
models that are commonly discussed in the context of rheology of glassforming fluids on a more meso-
scopic level than MCT.

Furthermore recent work by F. Vogel and M. Fuchs [57] suggests to replace the Zwanzig-Mori projection-
operator formalism by a more refined irreducible dynamics. The new approach leads to a more careful
treatment of q⃗-vectors which also include transverse contributions - besides the longitudinal q⃗ ⋅ k⃗ con-
tributions - resulting in a different memory kernel for the stress tensor. This recovers the expression
for the stress autocorrelation including the elastic terms in solid states as found for Newtonian and
Langevin systems, in case that those are evaluated in the overdamped limit.
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