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Summary

In the following thesis we consider two different models known from fluid dynamics
which are based on Navier-Stokes equations.
The first model is devoted to the so-called 2D contact line dynamics investigating
the contact point between fluid and solid phases. Since the fluid and solid phases
are moving within time, it is necessary to transform this model to a fixed domain
in order to apply known strategies. This leads to a system of Stokes equations
subject to transformed free and partial slip boundary conditions which are considered
on the sector. Then linear analysis is performed for the resolvent Stokes system
leading to the existence of weak solutions. The main result states that the solution
triple fulfills corresponding resolvent estimates. Here, we work in the framework of
homogeneous Sobolev spaces with p = 2. We make use of the fact that in the Hilbert
space setting elements from functional analysis, e.g. Lax Milgram’s theorem, are
available. (In)homogeneous Sobolev spaces in sectors are introduced at the beginning
of this thesis complemented by various results which are transferred to the setting
of (in)homogeneous spaces in sectors, as e.g. trace theorems, elliptic problems and
Korn’s inequality.
The second model, that is considered in this thesis, is an active fluid continuum
model which describes the motion of self-propelled organisms of high concentration
in fluids. This model is based on generalized Navier-Stokes equations having a
leading fourth order term which is responsible for global wellposedness. Here, we
consider the active fluid continuum model on a bounded domain subject to periodic
boundary conditions in Lebesgue spaces with p = 2 in n = 2, 3. Two stationary
states are considered: the disordered isotropic state and the ordered polar state.
In this thesis, we focus on the stability analysis of the ordered polar state which
indeed forms a manifold. This allows us to apply the generalized principle for
normal stability and normal hyperbolicity, respectively. Here, it is essential that
we are working on periodic spaces on a bounded domain. Then we can use the
Fourier series representation and properties for the spectrum which are necessary
to apply the theory. At last the existence of a global attractor for the active fluid
continuum model is established. Here, we essentially make use of energy estimates
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and perform bootstrapping arguments to obtain a compact absorbing set of arbitrary
high regularity. The theory about infinite-dimensional dynamical system yields the
existence of such an attractor. Then, several properties of the global attractor are
proved, to be precise we show injectivity and finite dimension of the global attractor.
At last we even prove the existence of an inertial manifold for n = 2 which has even
the stronger property of attracting solutions exponentially.
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Zusammenfassung

In dieser Arbeit betrachten wir zwei verschiedene Modelle aus dem Bereich der
Fluiddynamik. Beide Modelle basieren auf den Navier-Stokes Gleichungen.
Das erste Modell beschreibt die Dynamik von Kontaktlinien in zwei Dimensionen,
welche beispielsweise bei der Interaktion von Flüssigkeiten mit Feststoffen und Gas
entstehen. Da wir dynamische Modelle betrachten, ist es notwendig, diese in Mo-
delle auf zeitunabhängigen Gebieten zu transformieren um bekannte Methoden zur
Lösung von partiellen Differentialgleichungen anzuwenden. Nach der Transformation
erhält man ein System von Stokes Gleichungen, welches linear auf einem Sektor
gelöst wird. In dieser Arbeit wird das Resolventenproblem untersucht, für welches
die Existenz von schwachen Lösungen gezeigt werden kann. Für die Lösung werden
Resolventenabschätzungen gezeigt, die das Hauptresultat des Kapitels darstellen. Wir
arbeiten in (in)homogenen Sobolevräumen mit p = 2, sodass wir Resultate aus der
Hilbertraumtheorie verwenden können, wie beispielsweise den Satz von Lax-Milgram.
Die (in)homogenen Sobolevräume werden am Anfang dieser Arbeit eingeführt und
grundlegende Resultate wie Spursätze, die Lösbarkeit von elliptischen Problemen
und die Korn’sche Ungleichung werden gezeigt.
Im zweiten Teil der Arbeit beschäftigen wir uns mit einem Active Fluid Modell,
welches die Bewegung von Organismen mit Eigenantrieb in hoher Konzentration
in Flüssigkeiten beschreibt. Dieses Modell, welches einen zusätzlichen Term vierter
Ordnung besitzt, basiert auf den generalisierten Navier-Stokes Gleichungen. Der Term
vierter Ordnung sorgt dafür, dass wir globale Wohlgestelltheit für das System zeigen
können. Wir betrachten das Active Fluid Modell auf einem beschränkten Gebiet
mit periodischen Randbedingungen in Lebesgueräumen mit p = 2 und n = 2, 3.
Untersucht werden zwei stationäre Zustände, die vorliegen können: Der ungeordnete
und der geordnete Zustand. Wir beschränken uns auf die Analyse des geordneten
Zustands, der eine Mannigfaltigkeit bildet, sodass wir das generalisierte Prinzip zur
normalen Stabilität und normalen Hyperbolizität anwenden können. Die Anwendung
von Fourierreihen und Ausnutzung von Eigenschaften des Spektrums aufgrund des
beschränkten Gebiets sind hier essentiell. Als letztes zeigen wir die Existenz eines
globalen Attraktors für das Active Fluid Modell. Mithilfe von Energieabschätzungen

v



können wir zeigen, dass kompakte, absorbierende Mengen von beliebig hoher Regula-
rität existieren, welche die Existenz eines globalen Attraktors implizieren. Zusätzlich
zeigen wir Injektivität und endliche Dimension des Attraktors. In n = 2 können wir
außerdem die Existenz einer inertialen Mannigfaltigkeit zeigen, welche Lösungen
sogar in exponentieller Geschwindigkeit anzieht.
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Chapter 1

Introduction

Our life is surrounded by mathematics. It is present not only in our daily life when
we go grocery shopping and calculate the savings for discounted products or the
total amount of our purchases. Especially phenomena in nature can be described by
mathematics. How does heat distribute in a room? When water is dropping down to
a water surface in a uniform time interval, how do the arising waves on the water
surface behave? What will the weather be like in two days? An answer to all these
questions can be given when one performs a rigorous analysis of the corresponding
mathematical model. This leads to the introduction of so-called partial differential
equations. There are many types of PDEs. However, in the following we will consider
equations of parabolic type

ut = F (u) (t > 0), u|t=0 = u0,

which describe the dependence of the development of the unknown quantity u on time
and space. Of special interest are Navier-Stokes equations, named after Claude-Louis
Navier and George Gabriel Stokes. The Navier-Stokes equations are widely used to
model the physics of many phenomena of scientific and engineering interests, as e.g.
weather forecast, the study of ocean currents and modeling of flows of different kinds
of fluids in containers. The Navier-Stokes equations for incompressible fluids then
read as

ρ∂tu− µ∆u+∇p+ ρ(u · ∇)u = ρf in (0, T )× Ω,
div u = 0 in (0, T )× Ω,
u|t=0 = u0 in Ω.

The equations describe the motion of an incompressible Newtonian fluid with velocity
u and pressure p inside some arbitrary domain Ω ⊆ Rn. The consideration in two
and three dimensions is of preferable interest from the physical point of view. The
behavior of the fluid is determined by the external body force f given inside the
domain Ω and the known initial velocity u0, which is given at the beginning t = 0.

1



Chapter 1. Introduction

Depending on the viscosity µ and the density ρ we obtain systems that model different
phenomena.
Because of the wide application, it is of great interest to study the Navier-Stokes

equations and related parabolic systems of partial differential equations in order
to have a better understanding of the physics behind natural phenomena. There
are different aspects which can be considered when analyzing a system of partial
differential equations. In this thesis we focus on two questions:
The first problem is the solvability of the underlying system. Hence, in order to

prove so-called wellposedness, it is crucial to choose an appropriate setting (function
spaces, domains, regularity of the solution,...). There are different approaches to
prove wellposedness. One approach in order to solve parabolic equations is to use the
theory of semigroups and maximal regularity which is introduced in [2, 11, 14, 27, 35].
The theory of maximal regularity leads to existence of solutions and corresponding
estimates.
The second problem is the long-term behavior of solutions, i.e., how do they

behave when time is approaching infinity? Since solutions are normally not explicitly
computable, any information about the solution is helpful. Again there are many
approaches to study the stability of the system. In this thesis we concentrate on the
principle of linearized stability as introduced in [35, 36] and the approach for global
attractors from [39, 47].

1.1 2D Contact Line Dynamics

Fluid dynamics appears in many situations in our everyday life without us explicitly
noticing the fluid flow. A water drop running down a glass or an ice cube melting in a
glass of water are examples for motivating the mathematical analysis of the dynamics
of fluids. Inn this thesis we consider the so-called multi-phase model: the interaction
of fluid phases with solid phases. Of special interest is the contact line, formed by
points where the fluid-fluid interface touches the solid phase. If we consider fluid and
solid phases, which are both moving, then the contact line becomes dynamic. The
angle between the fluid and the solid phase at the contact line is called the contact
angle. There are different points of view how to model such a contact angle problem.
The first ansatz follows the idea that the dynamic contact angle is determined by an
additional equation, while for the second ansatz one assumes that the contact angle
is already fully determined by the appearing dynamic equations for the interface and
the fluid. We will mainly focus on the latter ansatz.
In this thesis we consider the contact line dynamics in two dimensions. In the
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Section 1.1. 2D Contact Line Dynamics

half-space R2
+ we consider a two-phase model in phases Ω(t) and R2

+\Ω(t) where
we decide to neglect the continuous phase R2

+\Ω(t) for simplicity. In this case the
interface is given as Γ(t) := Γf(t) ∪ Γs(t) ⊆ R2

+ ∪ C(t), where Γf denotes the free
boundary, Γs the solid boundary and C the contact point (in two dimensions; in
three dimensions one would obtain a contact line).

Figure 1: Two-phase model in two dimensions.

The isothermal flow of incompressible fluids is denoted by (u(t, ·), p(t, ·)) : Ω(t) →
R3 for t ≥ 0. Here, u denotes the velocity field and p the pressure. We assume the
fluid to be Newtonian with viscous stress T (u, p) = 2µD(u)− p correlating to the
rate of deformation D(u) = 1

2(∇u + ∇uT ). At the solid boundary Γs we assume
impermeability, i.e., u · ns = 0 and a partial slip condition given as:

λPΓsu+ PΓsT (u, p)ns = 0.

Here, ns denotes the outer normal vector field at Γs, λ > 0 is the constant friction
coefficient and PΓs = 1 − ns ⊗ ns is the tangential projection. The free boundary
Γf has constant surface tension σ > 0 and mean curvature κ = − div nf , where nf
denotes the outer normal vector at Γf . The normal interface velocity is given as
Vnf

= u · nf . At the contact point we assume contact point velocity VC = u · nC,
where nC denotes the corresponding outer normal vector at the contact point C.
Furthermore, the contact angle θ is given through the constitutive equation θ = ψ(VC).

3



Chapter 1. Introduction

Then our full two-phase system reads as

∂tu+ (u · ∇)u− div T (u, p) = 0 in ⋃︁
t∈(0,T ){t} × Ω(t),

div u = 0 in ⋃︁
t∈(0,T ){t} × Ω(t),

λu1 + (D(u)ns)1 = 0 on ⋃︁
t∈(0,T ){t} × Γs(t),

u2 = 0 on ⋃︁
t∈(0,T ){t} × Γs(t),

T (u, p)nf = σκnf on ⋃︁
t∈(0,T ){t} × Γf (t),

Vnf
= u · nf on ⋃︁

t∈(0,T ){t} × Γf (t),
VC = u · nC on ⋃︁

t∈(0,T ){t} × C(t),
θ = ψ(VC) on ⋃︁

t∈(0,T ){t} × C(t),
u|t=0 = u0 in Ω(0),
Γs(0) = Γ0

s in Ω(0),
Γf (0) = Γ0

f in Ω(0),
C(0) = C0 in Ω(0).

(1.1)

It turns out that the conditions at the contact point can be neglected in our setting
since the contact point velocity VC is not defined in this case (this can be observed after
transforming (1.1) to a fixed domain). Furthermore, from now on we assume that
the contact angle θ is either a given function θ = θ(t) or modeled by a constitutive
equation θ = ψ(VC) (if the contact point velocity VC exists). Transforming (1.1) to a
fixed domain (0, T )×Σθ0 via a suitable diffeomorphism we end up with the following
system of partial differential equations:

∂tv − div T (v, q) = F1(v, q, ρ) in (0, T )× Σθ0 ,

div v = F2(v, ρ) in (0, T )× Σθ0 ,

λτΣ · v + τΣD(v)nΣ = F3(v, ρ) on (0, T )× Γ0,

nΣ · v = 0 on (0, T )× Γ0,

T (v, q)nΣ + σc̃(θ0)∂2y2ρnΣ = F4(v, ρ) on (0, T )× Γ+,

sin(θ0)∂tρ+ nΣ · v = F5(v, ρ) on (0, T )× Γ+,

VC = v · nΣ on (0, T )× {0},
∂x2ρ = cot(θ(t))− cot(θ0) on (0, T )× {0},

θ = ψ(VC) on (0, T )× {0},
v|t=0 = v0 in Σθ0 ,

ρ|t=0 = ρ0 on Γ+,

(1.2)

with height function ρ(t, ·) : Γ+ → R3 and for suitable right-hand sides. Here,
Σθ0 := {(x1, x2) ∈ R2 : x1 ∈ (0,∞), 0 ≤ x2 ≤ tan(θ0)x1} is the wedge with opening

4



Section 1.1. 2D Contact Line Dynamics

Figure 2: Transformation to a fixed domain.
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Chapter 1. Introduction

angle θ0 = θ(0) (the contact angle at t = 0) and Γ0 the lower boundary and Γ+ the
upper boundary of the wedge. By treating (1.2) in the setting of reflection invariant
L2-spaces on the sector Σθ0 := {(x1, x2) ∈ R2\{0} : |x2| < x1 tan(θ0)} we first observe
that VC and ∂x2ρ|(0,T )×{0} are not defined in the weak regularity class for 1 < p ≤ 2,
hence we can neglect these equations. For p > 2 we need to reduce the inhomogeneity
which again leads to working in reflection invariant spaces. Furthermore, the partial
slip condition on Γ0 is automatically fulfilled when working in reflection invariant
spaces after applying a perturbation argument. Therefore, a full analysis of the
system

∂tu− div T (u, p) = f1 in (0, T )× Σθ,

div u = 0 in (0, T )× Σθ,

T (u, p)n+ σc(θ)∂2τρn = f4 on (0, T )× Γ,
∂tρ+ 1

sin(θ)(n · u) = f5 on (0, T )× Γ,
u|t=0 = u0 in Σθ,

ρ|t=0 = ρ0 on Γ,
will greatly help our understanding in order to solve the full nonlinear system (1.1)
with θ = θ0 and Γ := ∂Σθ. A first crucial step is to consider the stationary system

λu− div T (u, p) = f1 in Σθ,

div u = 0 in Σθ,

T (u, p)n+ σc(θ)∂2τρn = f4 on Γ,
λρ+ 1

sin(θ)(n · u) = 0 on Γ

(1.3)

for λ ∈ Σπ/2. However, it seems that solving the Stokes system subject to different
boundary conditions on wedge type domains is a natural first step in order to solve
the linear contact line problem for θ ∈ (0, π/2). The analysis was addressed by Maier,
Köhne, Saal and Westermann in [29, 30, 31, 33].
On the other hand, contact line dynamics have been studied for almost three decades.
First pioneering results were derived by Solonnikov in 1995. These results were
published in [44], where it was proved that singularities of solutions for the contact
line problem vanish and that corresponding solutions have finite Dirichlet integral
for fixed contact angle θ ∈ {0, π}. Almost two decades later in [55], Wilke proved
wellposedness in cylindrical domains for fixed contact angle θ = π/2. Both authors
observed that these contact angles remove singularities at the contact lines. From
the classical Young law it follows that the contact angle is dependent on time if
the initial contact angle is not equal to the contact angle at the equilibria. Hence,
by considering a fixed contact angle, just an idealized situation is represented. On
the other hand, Watanabe proved optimal regularity for θ = π/2 in a cylinder in

6



Section 1.1. 2D Contact Line Dynamics

[53]. Dynamic contact lines were considered by Zhang, Guo and Tice. They proved
wellposedness in a 2D vessel in [58] and considered stability analysis in the same
setting in [21]. In [16], Fricke, Köhne and Bothe observed that smooth solutions to
the dynamic contact line problem are non-physical and that the existence of smooth
solutions lead to unstable equilibria. Hence, weak regularity at the contact line needs
to be present. By using another approach, namely the interface formation model,
Kusaka proved the existence of an axially symmetric solution for the stationary
problem in weighted Hölder spaces in [28]. This shows that the study of contact line
dynamics is still an interesting challenge in research up to today.
In Chapter 3 we first perform analysis on two-dimensional sectors Σθ of opening

angle θ. There, we first introduce (in)homogeneous Sobolev spaces since they provide
the framework where we want to consider the linearized 2D contact line problem
in Chapter 4. Making use of results on the half-space and whole space, we will
prove e.g. trace theorems, Korn’s inequality and solvability of elliptic problems on
sectors. The consideration of the normal Dirichlet trace and Neumann trace is of
special interest, which leads to the the multiplication with normal and tangential
vector fields at the boundary Γ. Normal and tangential vector fields are given as
the sign function in one component. It turns out that multiplication with sgn is not
bounded on (in)homogeneous spaces of order s ≥ 1/2. This leads to the introduction
of reflection invariant subspaces in Section 3.2, where the multiplication with sgn is
bounded when the correct symmetry is given.
In Chapter 4 we prove wellposedness of the linearized 2D contact line problem (1.3)

and corresponding resolvent estimates. We first apply a suitable transformation to
(1.1) in order to obtain a system on a fixed domain (0, T )×Σθ0 in Section 4.1. Then
in Section 4.2 we consider the resolvent problem of (1.3) in the setting of reflection
invariant homogeneous Sobolev spaces in p = 2. The advantage of working in p = 2
lies in the fact that we can derive a corresponding weak formulation of (1.3) to apply
the Lax-Milgram theorem to obtain a weak solution u. In this case the pressure p
and the height function ρ can be recovered. By making use of the scaling invariance
of the sector Σθ and the scaling of the norm in homogeneous spaces, it is possible to
obtain relevant resolvent estimates for λ ∈ Σπ/2 of large absolute value, i.e., |λ| ≥ 1.
Hence, this leads to resolvent estimates for the stationary system (1.3), to be precise
we prove the following estimate:

∥u∥λ,H−1
0 (Σθ)R + |λ|1/2∥u∥L2(Σθ)R + ∥∇u∥L2(Σθ)R +

√
σ|λ|1/2∥ρ∥Ĥ1(Γ)r

+ σ∥∂2τρ∥λ, Ĥ−1/2(Γ)r+Ĥ1/2(Γ)r + ∥p∥λ,L2(Σθ)r+Ĥ1(Σθ)r

≤ C
(︂
∥f1∥Ĥ−1

0,div(Σθ)R + ∥f4∥Ĥ−1/2(Γ)R

)︂
.

7



Chapter 1. Introduction

In the context of homogeneous spaces, it turns out that we can expect (u, p, ρ) to
have at most the regularity given above since Ĥ1/2(Γ) is the borderline for the non
existence of a trace at the singular point (0, 0) (the contact point), whereas for
s > 1/2 the trace does exist. Furthermore, we observe that Ĥ1/2(Γ) is the borderline
where multiplication with normal and tangential vector is still a continuous operator
if the right symmetry is given (for s > 1/2 the multiplication is not continuous
any more), hence it seems that in the weak setting with p = 2 we are working in a
borderline case.

1.2 Active Fluids

There is a need to study turbulence since it is ubiquitous in nature. Turbulence
occurs e.g. in ocean currents and small-scale biological and quantum systems. It is of
great interest to study the self-sustained turbulent motion in microbial suspensions.
In [54] different experiments and simulations were made in order to model the
bacterial dynamics and spontaneous formation of vortex structures of bacteria at
high concentration at low Reynolds number [37] adequately. In [54] it is shown that
a system of generalized Navier-Stokes equations models the motion and behavior
of self-propelled bacteria adequately and this system was then also considered in
[12, 13]. Since the bacteria has internal self-propulsion such a model is often referred
to as an active fluid continuum model, which is given as

vt + λ0v · ∇v = f −∇p+ λ1∇|v|2 − (α + β|v|2)v + Γ0∆v − Γ2∆2v,

div v = 0,
v|t=0 = v0.

(1.4)

The continuum model is based on two assumptions: At first, the vector field v models
the dynamic behavior of the bacterial suspension. Secondly, the bacterial suspension
becomes an incompressible active fluid at high concentration.
In (1.4) elements from the Toner-Tu theory [49, 50] and Swift-Hohenberg theory

[45] were combined. Corresponding Toner-Tu terms (α -β terms) model flocking
which describes the motion of self-propelled organisms and which is responsible
for the emergence of turbulence and provide the isotropic equilibrium state. Swift-
Hohenberg terms (Γ2 - Γ0 terms) were added in order to model the pattern formation
and describe the turbulence of the described particles.
Let n be the dimension of the space we are working in. Since we assume that the

bacterial suspension becomes incompressible at high concentration, we obtain the
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Section 1.2. Active Fluids

well-known divergence condition as known from the Navier-Stokes equations

div v = ∇ · v = 0

for the velocity field v. The dynamics of v is governed by generalized Navier-Stokes
equations for incompressible fluids

(∂tv · ∇)v = −∇p− (α + β|v|2)v +∇ · E. (1.5)

Here p denotes the pressure and the rate-of-strain tensor E depends on the velocity
field v. The α -β term is called Toner-Tu term and corresponds to a Landau-potential.
We demand β ≥ 0 in order to obtain stability, whereas α can be any real number.
Stability analysis in Chapter 5 and Chapter 6 show that the relation of α and β is
responsible for (in)stability of the system, hence the Toner-Tu term is responsible
whether stability or instability occurs.
The symmetric and trace-free rate-of-strain tensor E describes the rate of change of
the deformation of the bacterial suspensions. Hence, E depends on v and has the
following form (cf. [43]):

Eij = Γ0(∂ivj + ∂jvi)− Γ2∆(∂ivj + ∂jvi) + Sqij,

qij = vivj −
δij
n
|v|2,

where δij denotes the Kronecker-symbol denoting elements of the unit matrix and S
presents an active stress contribution, which depends on the choice of the fluid. For
S = Γ2 = 0 we obtain the usual rate-of-strain tensor E of a conventional fluid with
viscosity Γ0 as seen e.g. in the usual Navier-Stokes equations. Since we aim to model
self-propelled turbulence, negative values for Γ0 have to be allowed while demanding
Γ2 > 0 to ensure wellposedness of the system. Defining

λ0 = 1− S, λ1 = −S
n
,

and inserting everything in (1.5) we finally end up with (1.4). Hence, the Toner-Tu
term drives the fluid to a disordered isotropic equilibrium state if

v = 0.

If α < 0 then the Toner-Tu term leads to an ordered global state with characteristic
speed

|v| =
»
|α|/β.

For a further introduction and a more precise derivation of the continuum model we
refer to [54], especially the Supporting Appendix.

9



Chapter 1. Introduction

In order to mathematically justify the observations regarding active turbulence that
were made within simulations, the continuum model (1.4) was already considered in
various settings. In [57] a full analysis regarding local and global wellposedness in
Lp(Rn) and stability in L2(Rn) for the full nonlinear model was proposed. However,
the more interesting ordered global state is not covered in this setting, since constants
|v| =

√︁
|α|/β are not contained in L2(Rn). In [9] an approach in spaces of Fourier

transformed Radon measures FM(Rn) was performed with the intention to mathe-
matically justify the ansatz that ”waves” of the form eik· solve (1.4) which makes
sense from the physical point of view. However, in this setting the ordered global
state is still not covered. To this end, in Chapter 5 and Chapter 6 the continuum
model is considered on a bounded domain subject to periodic boundary conditions
which seems to fit into the physical setting.

In Chapter 5 and Chapter 6 we work in the periodic L2(Qn) setting where Qn is the
n-dimensional cube with side length L > 0. Indeed, in this setting the ordered global
polar state is contained in L2(Qn). Furthermore, in Chapter 5 a proper nonlinear
stability analysis can be performed using the generalized principle of normal stability
and normal hyperbolicity as known from Prüss, Simonett and Zacher (cf. [35, 36]).
In contrast to the setting in L2(Rn) and FM(Rn), where the corresponding linear
operator A to (1.4) has a continuous spectrum, in L2(Qn) the operator A has compact
resolvent, hence the spectrum only consists of the point spectrum. This fact allows
0 to be an isolated eigenvalue of A such that it is possible to prove that 0 is a
semi-simple eigenvalue depending on the choice of the occurring parameters Γ2,Γ0, α

and β. Note that the semi-simple eigenvalue assumption is crucial in order to apply
the generalized principle. Having proved normal hyperbolicity, we can conclude
that the manifold of globally ordered states can be split up in a stable and unstable
foliation. The existence of this unstable foliation coincides with the observation of
turbulence in [54].
In Chapter 6 the existence of a global attractor can be ensured (in contrast to the
results from Chapter 5 the existence is assured for every parameter set Γ2,Γ0, α, β)
by using the approach as known from Robinson and Temam (cf. [39, 47]). This
result coincides with the observation from [54] that the simulation of the bacterial
suspension reaches some stable final state after a finite time.

Chapter 5 is structured as follows: In Section 5.1 local and global wellposedness
of (1.4) is proved for initial values in H2

π(Qn) ∩ L2
σ(Qn) by making use of the

H∞-calculus and maximal Lp-regularity. Applying the generalized principle of
linearized (in)stability in Section 5.2 we are able to prove normal stability and
normal hyperbolicity for the ordered polar state, respectively. In Chapter 6 we

10



Section 1.2. Active Fluids

again have to ensure local and global wellposedness of (1.4) at first. In contrast to
Section 5.1 we need wellposedness in spaces of lower regularity, i.e., initial values
in L2

σ(Qn). Hence, in Section 6.1 we introduce interpolation-extrapolation scales
to transfer the results from Section 5.1. The existence of a global attractor A
is addressed in Section 6.2 by making use of energy methods and in Section 6.3
important properties of this global attractor are proved. At last in Section 6.4 we
observe that an inertial manifold M exists in two dimensions which even has stronger
properties: firstly, the global attractor A has to be contained in M and secondly,
every solution of (1.4) can be approximated by solutions on M at an exponential
rate.
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Chapter 2

Preliminaries

Let n ∈ N be the dimension. For K ∈ {R,C} we denote the j-th component of a
vector x ∈ Kn by xj for j = 1, ..., n and the components of a vector field u in Kn by
u = (u1, ..., un). By x · y = ∑︁n

j=1 xjyj = xTy we denote the scalar product of two
vectors x, y ∈ Kn, where xT is the transpose of x (AT also denotes the transpose of
a matrix A). By | · | we denote the norm in Kn and Kn×n, respectively.
Let X, Y be Banach spaces. The space L (X, Y ) contains all linear and bounded

operators T : X → Y and is equipped with the usual operator norm ∥ · ∥L (X,Y ). The
space Lis(X, Y ) is the subspace of L (X, Y ) containing all isomorphisms. If X = Y

we write L (X) and Lis(X). Let T : D(T ) ⊆ X → X be a closed operator. By
N(T ) we denote the kernel and by R(T ) the range of the operator T . We call σ(T )
the spectrum and ρ(T ) the corresponding resolvent set.
The dual space of a Banach space X is denoted by X ′ := L (X,K) whereas the dual

operator to a linear and bounded operator T : X → Y is denoted by T ′ : Y ′ → X ′.
For x ∈ X and a functional x′ ∈ X ′ we write ⟨x′, x⟩X′,X for the duality pairing. Then
the dual space is endowed with the standard norm

∥x′∥X′ = sup
x∈X

∥x∥X=1

|⟨x′, x⟩X′,X | (x′ ∈ X ′).

If X = H is a Hilbert space we denote by (·, ·)H the corresponding inner product
which induces the norm.
Let Ω ⊆ Rn be a domain. By C(Ω, X) we denote the space of all continuous

functions u : Ω → X. The subspace of bounded continuous functions is denoted
by BC(Ω, X) which is a Banach space endowed with the usual ∥ · ∥∞ norm. By
BUC(Ω, X) we denote the space of uniformly bounded functions. For k ∈ N the
space Ck(Ω, X) contains all k-times continuously differentiable functions and we
set C∞(Ω, X) := ∩k∈NCk(Ω, X). The space of test functions or infinitely often
differentiable functions with compact support is denoted by C∞

c (Ω, X). Furthermore,
the space C∞

c (Ω, X) contains all restrictions of functions u ∈ C∞
c (Rn, X) to Ω.

13
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The space C∞
c,σ(Ω, X) is a subspace of C∞

c (Ω, X) consisting of functions which are
divergence free additionally. The space C∞

c,σ(Ω, X) is defined accordingly.
The scale of spaces of continuous functions f : E → X on a Banach space E are
defined accordingly.
The X-valued Bochner-Lebesgue spaces for 1 ≤ p ≤ ∞ are denoted by Lp(Ω, X)

endowed with the standard integral norm

∥u∥Lp(Ω,X) =
(︂∫︂

Ω
∥u(x)∥pX dx

)︂1/p
(u ∈ Lp(Ω, X))

for 1 ≤ p <∞ and ∥u∥L∞(Ω,X) = ess supx∈Ω∥u(x)∥X if p = ∞. The spacesW k,p(Ω, X)
contain the Lp-functions that are weakly differentiable in the distributional sense
equipped with the norm

∥u∥Wk,p(Ω,X) =
(︄∑︂

|α|≤k
∥∂αu∥pLp(Ω,X)

)︄1/p

(p <∞)

for k ∈ N and multi indices α ∈ Nn
0 with the usual modification if p = ∞. Further-

more, we define W k,p
0 (Ω, X) := C∞

c (Ω, X)∥·∥Wk,p . In the Hilbert space setting p = 2
and X Hilbert space, we set Hk(Ω, X) := W k,2(Ω, X) and Hk

0 (Ω, X) := W k,2
0 (Ω, X)

for k ∈ N0. By (·, ·)2 we denote the standard inner product in L2(Ω, X) given as

(u, v)2 = (u, v)L2(Ω,X) =
∫︂
Ω
u(x)v(x) dx (u, v ∈ L2(Ω, X)).

The Bessel potential spaces of fractional powers with s ∈ N are defined via interpola-
tion: Hθs(Ω, X) := [L2(Ω, X), Hs(Ω, X)]θ and Hθs

0 (Ω, X) := [L2(Ω, X), Hs
0(Ω, X)]θ,

where 0 < θ < 1 and [·, ·]θ denotes the interpolation functor (cf. [51, Section 1.9]).
Bessel potential spaces of negative power −s < 0 are defined as H−s(Ω, X) :=
(Hs

0(Ω, X))′ and H−s
0 (Ω, X) := (Hs(Ω, X))′, respectively.

The corresponding Bessel potential spaces for p ̸= 2 are defined accordingly as
complex interpolation spaces W θs,p(Ω, X) := [Lp(Ω, X),W s,p(Ω, X)]θ for 0 < θ < 1
and s ∈ N. Sobolev-Slobodeckij spaces are denoted by W s

p (Ω, X) and are defined via
real interpolation W θs

p (Ω, X) := (Lp(Ω, X),W s,p(Ω, X))θ,p (see [51, Sections 1.3, 1.4,
1.6] for an introduction to real interpolation).
The space L1

loc(Ω, X) consists of all functions which are locally integrable. In all
cases we drop the space X if X = Kn where K ∈ {R,C} or if X is clear by the
context.

2.1 Elements from Functional Analysis
Here, we will list most of the results from functional analysis we will use of in the
following chapters of this thesis. However, we will omit the proofs and just give a
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corresponding reference for the reader’s convenience. The first two statements are
well-known (see [56, Sections III.6, III.7]). In the context of wellposedness of PDEs
those statements are frequently used to ensure the existence of weak solutions in the
Hilbert space setting:

2.1.1 Theorem (Riesz’ representation theorem). Let H be a Hilbert space and ℓ a
bounded linear functional on H. Then there exists a unique y ∈ H such that

ℓ(x) = (x, y)H for all x ∈ H,

and ∥ℓ∥L (H,C) = ∥y∥H . Conversely, any vector y ∈ H defines a bounded linear
functional ℓy on H by

ℓy(x) := (x, y)H for all x ∈ H

and ∥ℓy∥L (H,C) = ∥y∥H .

2.1.2 Theorem (Lax and Milgram). Let H be a separable Hilbert space and the
map a : H ×H → C a sesquilinear form. We assume that

(i) there exists a C > 0 such that |a(u, v)| ≤ C∥u∥H∥v∥H (u, v ∈ H);

(ii) there exists a δ > 0 such that |a(u, u)| ≥ δ∥u∥2H (u ∈ H).

Then for every linear functional ℓ ∈ H ′ = L (H,C) there exists a unique uℓ ∈ H

such that
a(uℓ, v) = ℓ(v) (v ∈ H).

Next, we add some theorems stating (in)stability of equilibria for nonlinear quasi-
linear parabolic problems. To be precise, we are quoting the generalized principle of
linearized (in)stability for manifolds from [35, 36]. Hence, for the proofs we also refer
to [35, 36]. We start with the principle for normal stability as seen in [35, Theorem
5.3.1] and [36, Theorem 2.1]:

2.1.3 Theorem. Let 1 < p < ∞ and X0, X1 be two Banach spaces where X1 is
densely embedded in X0. Let U ⊆ Xγ := (X0, X1)1−1/p,p be open and assume that
(A,F ) ∈ C1(U,L (X1, X0)×X0) with

v̇(t) + A(v(t))v(t) = F (v(t)), t > 0, v(0) = v0. (2.1)

Suppose V ∈ U ∩X1 is an equilibrium state of (2.1) and A(V ) possesses the property
of maximal Lp-regularity. Let

Aou := A(V )u+ (DA(V )u)V −DF (V )u

for u ∈ X1 denote the linearization of (2.1) at V . Suppose that V is normally stable,
i.e., assume that

15



Chapter 2. Preliminaries

(i) near V the set of equilibria E is a C1-manifold in X1 of dimension m ∈ N,

(ii) the tangent space for E at V is given by N(Ao),

(iii) 0 is a semi-simple eigenvalue of Ao, i.e., N(Ao)⊕R(Ao) = X0,

(iv) σ(Ao)\{0} ⊆ {z ∈ C : Re z > 0}.

Then V is stable in Xγ and there exists δ > 0 such that the unique solution v(t) of
(2.1) with initial value v0 ∈ Xγ satisfying ∥v0 − V ∥Xγ < δ converges exponentially to
some V∞ ∈ E in Xγ as t→ ∞.

Next, we quote the version of the generalized principle corresponding to normally
hyperbolic equilibria, cf. [35, Theorem 5.5.1] and [36, Theorem 6.1]:

2.1.4 Theorem. Let 1 < p < ∞. Suppose V ∈ U ∩X1 is an equilibrium of (2.1)
and suppose that the functions (A,F ) have the same properties as in Theorem 2.1.3.
Suppose further that A(V ) has the property of maximal Lp-regularity. Let Ao be the
linearization of (2.1) at V . Suppose that V is normally hyperbolic, which means that

(i) near V the set of equilibria E is a C1-manifold in X1 of dimension m ∈ N0,

(ii) the tangent space for E at V is given by N(Ao),

(iii) 0 is a semi-simple eigenvalue of Ao, i.e., N(Ao)⊕R(Ao) = X0,

(iv) σ(Ao) ∩ iR = {0}, σu := σ(Ao) ∩ C− = σ(Ao) ∩ {z ∈ C : Re z < 0} ≠ ∅.

Then V is unstable in Xγ: For each sufficiently small ρ > 0 there exists 0 < δ ≤ ρ

such that the unique solution v(t) of (2.1) with initial value v0 ∈ BXγ(V, δ) either
satisfies

• distXγ (v(t0), E) > ρ for some finite time t0 > 0, or

• v(t) exists on R+ and converges at an exponential rate to some v∞ ∈ E in Xγ

as t→ ∞.

2.2 Periodic Sobolev Spaces
In this section we will introduce periodic Sobolev spaces. For a more detailed
introduction we refer to [19, Chapter 3]. We fix some L > 0 and set Qn := [0, L]n

such that L is the length of the box Qn. We set

Ck
π(Qn) :=

{︁
f ∈ Ck(Qn,Rn) : ∂αfm|xj=0 = ∂αfm|xj=L, j,m = 1, ..., n ∀ |α| ≤ k

}︁
,
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Section 2.2. Periodic Sobolev Spaces

C∞
π (Qn) :=

∞⋂︂
k=0

Ck
π(Qn),

as the spaces of k-times continuously differentiable periodic functions. Then the
periodic Sobolev space L2

π(Qn,Rn) := L2
π(Qn) is defined as the completion of C∞

π (Qn)
w.r.t. the L2-norm. By [19, Proposition 3.2.1] it follows that the above definition of
L2
π(Qn,Rn) coincides with the definition of L2(Qn, X) with X = Rn such that we

can write L2(Qn,Rn) = L2(Qn) = L2
π(Qn) in this specific case.

When working in periodic Sobolev spaces we can employ the Fourier transform to
obtain the Fourier coefficient û(m) for m = (m1, ...,mn) ∈ Zn:

û(m) := F(u)(m) := 1
Ln

∫︂
Qn

u(x)e−2πim·x/L dx (u ∈ L2(Qn)).

Also, for a smooth function u the m-th Fourier coefficient of the derivative is given as

∂αuˆ︃(m) =
Å2πi
L

ã|α|
mαû(m) (2.2)

for m ∈ Zn and α ∈ Nn
0 , which can be verified by integration by parts. The norm on

L2(Qn) is induced by the scalar product

(f, g)2,π := 1
Ln

∫︂
Qn

u(x)v(x) dx (f, g ∈ L2(Qn)).

As a consequence we obtain well-known results from the whole space case in the
periodic setting:

2.2.1 Theorem. Let u, v ∈ L2(Qn) be arbitrary.

(1) The Plancherel theorem holds:

∥u∥2L2(Qn) =
∑︂
m∈Zn

|û(m)|2.

(2) Then Parseval’s identity holds:

(u, v)2,π = 1
Ln

∫︂
Qn

u(x)v(x) dx =
∑︂
m∈Zn

û(m)v̂(m).

(3) Every function u ∈ L2(Qn) can be represented as the L2(Qn)-limit of trigono-
metric polynomials, i.e.,

u =
∑︂
m∈Zn

û(m)e2πim·/L.
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We refer to [19, Proposition 3.2.7] for the proof of Theorem 2.2.1. Next, periodic
Sobolev spaces of higher order k ∈ N are defined in a natural way as

Hk
π(Qn) :=

®
u =

∑︂
m∈Zn

û(m)e2πim·/L : û(m) = û(−m) ∀ m ∈ Zn, ∥u∥H̃k
π(Qn) <∞

´
=
{︁
u ∈ Hk(Qn) : ∂αum|xj=0 = ∂αum|xj=L (j,m = 1, ..., n, |α| < k)

}︁
= C∞

π (Qn)
Hk(Qn)

,

where the restriction û(m) = û(−m) for m ∈ Zn ensures that u takes real values. In
this case the norm is given as

∥u∥2
H̃k

π(Qn)
:=

∑︂
m∈Zn

⃓⃓⃓⃓
⃓
Ç
1 +
Å2π
L

ãk
|m|k
å
û(m)

⃓⃓⃓⃓
⃓
2

.

We will also make use of homogeneous periodic Sobolev spaces which are defined
accordingly:

Ĥ1
π(Qn) :=

{︁
u ∈ L1

loc(Qn) : ∇u ∈ L2(Qn), u|xj=0 = u|xj=L (j = 1, ..., n)
}︁

= C∞
π (Qn)

∥∇·∥L2
.

Thanks to Theorem 2.2.1 and formula (2.2) any derivative of u ∈ Hk
π(Qn) can be

represented as the L2(Qn)-limit

∂αu =
∑︂
m∈Zn

∂αuˆ︃(m)e2πim·/L =
∑︂
m∈Zn

Å2πi
L

ã|α|
mαû(m)e2πim·/L

for α ∈ Nn
0 with |α| ≤ k. Furthermore, it is straightforward to prove that ∥ · ∥H̃k

π(Qn)

and ∥ · ∥Hk
π(Qn) are equivalent, where

∥u∥2Hk
π(Qn) :=

∑︂
|α|≤k

∑︂
m∈Zn

⃓⃓⃓⃓
⃓
Å2π
L

ã|α|
mαû(m)

⃓⃓⃓⃓
⃓
2

.

Also by (2.2) we now can write the norm in the well-known form:

∥u∥2Hk
π(Qn) =

∑︂
|α|≤k

∥∂αu∥2L2(Qn) = ∥u∥2Hk(Qn).

Thus, periodic Sobolev spaces of fractional power s ≥ 0 are defined in the canonical
way

Hs
π(Qn) :=

®
u =

∑︂
m∈Zn

û(m)e2πim·/L : û(m) = û(−m) ∀ m ∈ Zn, ∥u∥Hs
π(Qn) <∞

´
,
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where the norm is modified as

∥u∥Hs
π(Qn) :=

∑︂
m∈Zn

Ç
1 +
Å2π
L

ã2
|m|2
ås/2

|û(m)|2.

It is straightforward to prove that both definitions for periodic Sobolev spaces of
higher order coincide for s ∈ N. We can also obtain a Gagliardo-Nirenberg type
estimate just by the fact that L2(Qn) is equipped with a scalar product:

2.2.2 Corollary. Let k ∈ N be arbitrary. Then we have

∥∇ku∥2L2(Qn) ≤ ∥∇k+1u∥L2(Qn)∥∇k−1u∥L2(Qn) (u ∈ Hk+1
π (Qn)).

Proof. This is a direct consequence of the Cauchy-Schwarz inequality:

∥∇u∥2L2(Qn) = −(∆u, u)2,π ≤ ∥∆u∥L2(Qn)∥u∥L2(Qn)

for u ∈ H2
π(Qn). Now for arbitrary v ∈ Hk+1

π (Qn) we insert u = ∇k−1v in order to
obtain the desired estimate.

Next, we aim to define Fourier multipliers in the setting of periodic Sobolev spaces.
Let m : Zn → Cn×n be a function. We define Tm : D(Tm) ⊆ L2(Qn) → L2(Qn) with
domain

D(Tm) :=
®
u ∈ L2(Qn) : ∥Tmu∥2L2(Qn) =

∑︂
k∈Zn

|m(k)û(k)|2 <∞
´

as the L2(Qn)-limit

Tmu :=
∑︂
k∈Zn

m(k)û(k)e2πik·/L (u ∈ L2(Qn)),

and the operator Tm is bounded if m is a bounded function with D(Tm) = L2(Qn).
This is a direct consequence of Theorem 2.2.1. Then we call m a Fourier multiplier.

In order to decompose L2(Qn) into a solenoidal subspace L2
σ(Qn) and a subspace

of gradient fields G2(Qn) we define the multiplier σP : Zn → Cn×n as

σP (m) := I − mmT

|m|2

for m ̸= 0 and σP (0) = I, where I denotes the n × n identity matrix. Then the
Helmholtz-Weyl projector on L2(Qn) is given as

P : L2(Qn) → L2
σ(Qn), u ↦→ Pu :=

∑︂
m∈Zn

σP (m)û(m)e2πim·/L,
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inducing the desired decomposition

L2(Qn) = L2
σ(Qn)⊕G2(Qn),

where

L2
σ(Qn) :=

¶
u ∈ L2(Qn) : û(m) = û(−m), m · û(m) = 0 ∀ m ∈ Zn

©
,

G2(Qn) :=
{︁
u = ∇g ∈ L2(Qn) : g ∈ L1

loc(Qn)
}︁
,

cf. [40, Section 2.1]. We note that u ∈ L2
σ(Qn) implies div u = 0. We also observe

that P obviously commutes with Bessel potentials and derivatives. As a consequence,
P is also a projector on Hs

π(Qn) and P (Hs
π(Qn)) = Hs

π(Qn) ∩ L2
σ(Qn) which yields

the decomposition

Hs
π(Qn) = (Hs

π(Qn) ∩ L2
σ(Qn))⊕ (Hs

π(Qn) ∩G2(Qn))

for fractional Sobolev spaces with s ≥ 0.

2.3 Global Attractors for Infinite-Dimensional
Dynamical Systems

In this section we collect important definitions and theorems from the theory concern-
ing global attractors for infinite-dimensional dynamical systems. For a more detailed
introduction to this theory we refer to [39, Chapters 10,13] and [47, Chapters III,
VI].

Let H be a Hilbert space. We consider a semidynamical system on the phase space
H given by

ut = f(u), u|t=0 = u0, (2.3)

with some nonlinearity f such that for u0 ∈ H the system (2.3) has a unique solution
u = u(t;u0) for all positive times, hence we demand global solvability of (2.3).
In the context of semidynamical systems, we define the C0-semigroup of solution
operators S(t) : H → H by S(t)u0 := u(t;u0). In the following we will consider the
semidynamical system (H, (S(t))t≥0).

2.3.1 Definition. Let (S(t))t≥0 be a semigroup.

(i) A set Y ⊆ H is called positively invariant if S(t)Y ⊆ Y for all t ≥ 0.

(ii) A set X ⊆ H is called invariant if S(t)X = X for all t ≥ 0.
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(iii) The semigroup (S(t))t≥0 is called dissipative if it possesses a compact absorbing
set B ⊆ H, i.e., there exists some compact set B ⊆ H such that for any
bounded set X ⊆ H there exists some t0(X) ≥ 0 such that

S(t)X ⊆ B for all t ≥ t0(X).

2.3.2 Definition. Let (S(t))t≥0 be a semigroup. The global attractor A ⊆ H is the
maximal compact invariant set such that

S(t)A = A for all t ≥ 0

and the minimal set that attracts all bounded sets:

distH(S(t)X,A) t→∞−−−→ 0,

for any bounded set X ⊆ H.

The next theorem is crucial in order to prove the existence of an attractor. For
the proof we refer to [39, Theorem 10.5]:

2.3.3 Theorem. Let (S(t))t≥0 be a semigroup. If (S(t))t≥0 is dissipative and B ⊆ H

is a compact absorbing set then there exists a global attractor

A = ω(B) :=
⋂︂
t≥0

S(t)B.

If H is connected then so is A.

In the next results we try to characterize a global attractor more precisely. Again
for the proofs we refer to [39, Theorems 10.6, 10.7, 10.10].

2.3.4 Definition. The semigroup (S(t))t≥0 is injective on a global attractor A ⊆ H

if for any u0, v0 ∈ A we have

S(t)u0 = S(t)v0 ∈ A for some t > 0 ⇒ u0 = v0.

2.3.5 Theorem. Let (S(t))t≥0 be a semigroup which is injective on a global attractor
A ⊆ H. Then the following statements hold:

(i) Every trajectory on A is defined for all t ∈ R and (A, (S(t))t∈R) is a dynamical
system with S(t)A = A for all t ∈ R.

(ii) A = ⋃︁{u is a complete bounded orbit}, in particular all complete bounded
orbits lie in A.
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(iii) For every compact invariant set X ⊆ H we have

W u(X) := {u0 ∈ H : S(t)u0 defined ∀ t ∈ R, S(−t)u0 t→∞−−−→ x ∈ X} ⊆ A.

At last we introduce relevant notions in order to prove that an attractor A ⊆ H

has finite fractal and Hausdorff dimension. We refer to [39, Chapter 13] for a precise
introduction.

2.3.6 Definition. Let (S(t))t≥0 be a semigroup. We say that (S(t))t≥0 is uniformly
differentiable on A if for every u ∈ A there exists a linear operator Λ(t, u) : H → H

such that for all t ≥ 0

sup
u,v∈A; 0<∥u−v∥H≤ε

∥S(t)v − S(t)u− Λ(t, u)(v − u)∥H
∥v − u∥H

ε→0−−→ 0

and

sup
u∈A

∥Λ(t, u)∥L (H) <∞ (t ≥ 0).

Next, we want to quote the result finite dimension of the global attractor (cf. [39,
Theorem 13.16]). In order to introduce the notion of the statement, we consider the
semigroup (S(t))t≥0 and the compact global attractor A of (2.3). To this end, let
u0 ∈ A be arbitrary and {ξ0j : j = 1, ...n} ⊆ H where ξ0j are linearly independent.
We are in interested in the evolution of {ξ0j : j = 1, ...n} near u0 under the flow of
(2.3). Let Λ(t, u)ξ0j be the solution of the linearized equation about u(t) := S(t)u0
with initial value ξ0j , to be precise

vt = f ′(u)v = L(·, u0)v v|t=0 = ξ0j .

with linear operator L(t;u0) := f ′(u(t)). Then consider the span {Λ(t, u)ξ0j : j =
1, ..., n} ⊆ H and chose a time-dependent set of orthonormal vectors {ϕj(t) : j =
1, ..., n} ⊆ H which have the same span. Next, we define the projection P (n)

ξ01 ,...,ξ
0
n
(t)

to {ϕj(t) : j = 1, ..., n} and we have

P
(n)
ξ01 ,...,ξ

0
n
(t) =

n∑︂
i=1

ϕi(t)(ϕi(t), ·)H

and
TrL(t;u0)P (n)

ξ01 ,...,ξ
0
n
(t) =

n∑︂
i=1

(ϕ(i)(t), L(t;u0)ϕ(i))H .

Hence, the asymptotic growth rate of the n-volume {ξ0j : j = 1, ..., n} about the
trajectory u(·) = S(·)u0 is given as

lim
t→∞

exp
ï1
t

∫︂ t

0
TrL(s;u0)P (n)

ξ01 ,...,ξ
0
n
(s) ds

ò
.
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We aim to prove that all of the n-volumes decay exponentially for all initial values
u0 ∈ A and initial infinitesimal n-volumes {ξ0j : j = 1, ..., n}. This finally leads to

2.3.7 Theorem. Let (S(t))t≥0 be a semigroup. Suppose that (S(t))t≥0 is uniformly
differentiable on A and that there exists a t0 ≥ 0 such that Λ(t, u0) is compact for all
t ≥ t0. If

T Rn(A) := sup
u0∈A

sup
ξ0
j
∈H

∥ξ0
j
∥H=1,

j=1,...,n

⟨︂
TrL(t;u0)P (n)

ξ01 ,...,ξ
0
n
(t)
⟩︂
< 0,

where ⟨f(t)⟩ = lim supt→∞
1
t

∫︁ t
0 f(s) ds and L and P are defined as above. Then the

fractal dimension of A is finite, to be precise df (A) ≤ n.
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Chapter 3

Analysis on Sectors

In this chapter we perform analysis on sectors which are the natural domain for some
PDE systems from fluid dynamics, as e.g. the contact line model from Chapter 4.
To this end we will introduce homogeneous and inhomogeneous Sobolev spaces in
sectors Σθ as well as in smooth sector-like domains Σδ

θ in two dimensions. In this
section we assume n = 2. For a fixed 0 < θ < π/2 we define the sector

Σθ := {x = (x1, x2) ∈ R2\{0} : |x2| < x1 tan(θ)}

and the smooth sector-like domain

Σδ
θ :=

{︂
x = (x1, x2) ∈ R2\{0} :

»
x22 + sin(θ)2δ < x1 tan(θ)

}︂
, δ ≥ 0.

We note that Σθ = Σ0
θ. Furthermore, we set Γ := ∂Σθ and Γδ := ∂Σδθ for δ ≥ 0 as the

boundary of the sector. Then normal and tangential vector field at Γ are given as

n(x) = n(x2) = (− sin(θ), sgn(x2) cos(θ)),
τ(x) = τ(x2) = (sgn(x2) cos(θ), sin(θ)),

for x = (x1, x2) ∈ Γ (cf. Lemma 3.1.1).

3.1 Sobolev Spaces in Sectors
In this section we introduce (in)homogeneous Sobolev spaces in sectors and prove
related results, as e.g. solvability of elliptic problems, density properties and trace
theorems. In order to transfer results from the half-space or the whole space to Σθ

and Σδθ or its boundary Γ and Γδ we need to construct an appropriate transformation.
Then it is straightforward to transfer the results. It will be crucial to derive estimates
as e.g. for the trace operator uniformly in δ ≥ 0 in order to prove results for elliptic
problems. We note that then we will especially obtain these estimates for δ = 0
which is the case which we are mostly interested in.

25



Chapter 3. Analysis on Sectors

In order to define homogeneous Sobolev spaces in Σδ
θ and Γδ properly we first

parametrize the boundary Γδ via the path γδ which turns out to be a bi-Lipschitz
diffeomorphism:

3.1.1 Lemma. Let δ ≥ 0. Then

γδ : R → Γδ, t ↦→
Ç
cos(θ)

√
t2 + δ

sin(θ)t

å
passed through in clockwise direction parametrizes the boundary Γδ. Then γδ is a
bi-Lipschitz diffeomorphism uniformly in δ ≥ 0 with⃓⃓⃓⃓

d

dt
γδ(t)

⃓⃓⃓⃓
=
 
t2 + sin(θ)2δ

t2 + δ
(t ∈ R, δ ≥ 0)

and the special case |d/dt γ0(t)| = 1. Furthermore, outer normal and tangential
vector fields on Γδ are given as

τ̃ δ(t) =
 

t2 + δ

t2 + sin(θ)2δ

Ç
cos(θ)t/

√
t2 + δ

sin(θ)

å
(t ∈ R)

and

ñδ(t) =
 

t2 + δ

t2 + sin(θ)2δ

Ç
− sin(θ)

cos(θ)t/
√
t2 + δ

å
(t ∈ R).

Proof. First, we note that γδ(t) ∈ Γδ for every t ∈ R since
√︁
(γ2δ )2 + sin(θ)2δ =

γ1δ tan(θ), where γδ = (γ1δ , γ2δ )T . Then γδ parametrizes Γδ also by the fact that γδ is
obviously injective. Furthermore, we have

d

dt
γδ(t) =

Ñ
cos(θ)2t 1

2
√
t2+δ

sin(θ)

é
=

Ñ
cos(θ) t√

t2+δ

sin(θ)

é
for all t ∈ R such that⃓⃓⃓⃓

d

dt
γδ(t)

⃓⃓⃓⃓
=
 

cos(θ)2 t2

t2 + δ
+ sin(θ)2 =

 
t2 + sin(θ)2δ

t2 + δ

for all t ∈ R. From this we note that on one hand we have⃓⃓⃓⃓
d

dt
γδ(t)

⃓⃓⃓⃓
≤
 
t2 + sin(θ)2δ
t2 + sin(θ)2δ = 1

for all t ∈ R since sin(θ) ∈ (0, 1). On the other hand we also obtain a lower bound:⃓⃓⃓⃓
d

dt
γδ(t)

⃓⃓⃓⃓
=
 
1− cos(θ)2δ

t2 + cos(θ)2δ + sin(θ)2δ ≥
»
1− cos(θ)2 = sin(θ),
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for all t ∈ R such that we especially obtain a bound uniformly in δ ≥ 0:

sin(θ) ≤
⃦⃦⃦⃦
⃦ ddtγδ

⃦⃦⃦⃦
⃦
L∞(R)

≤ 1, (3.1)

which proves that γδ is a bi-Lipschitz diffeomorphism. The tangential vector field
follows directly from the derivative of γδ since τ̃ δ = |d/dt γδ|−1(d/dt γδ). Then it is
also straightforward to calculate the outer normal vector field.

On the other hand we also obtain a bi-Lipschitz diffeomorphism between Σδ
θ and

the rotated half-space R2
>0 := {(η, t) ∈ R2 : η > 0} which will be used to transfer

function spaces on Σδ
θ to spaces defined on the half-space.

3.1.2 Lemma. Let δ ≥ 0. We define R2
>0 := {(η, t) ∈ R2 : η > 0}. Then

ϕδ : R2
>0 → Σδ

θ, (η, t) ↦→
Ç
η + cos(θ)

√
t2 + δ

sin(θ)t

å
is a bi-Lipschitz diffeomorphism uniformly in δ ≥ 0, i.e.,

∥∇ϕδ∥L∞(R2
>0,L (R2)), ∥(∇ϕδ)−1∥L∞(R2

>0,L (R2)) ≤ C (δ ≥ 0)

and det ϕ′
δ = sin(θ) and det[(ϕ′

δ)−1] = sin(θ)−1.

Proof. Obviously, ϕδ is well-defined. The Jacobi matrix is given as

∇ϕδ(η, t) =

Ñ
1 cos(θ)t√

t2+δ

0 sin(θ)

é
and (∇ϕδ(η, t))−1 = 1

sin(θ)

Ñ
sin(θ) − cos(θ)t√

t2+δ

0 1

é
for (η, t) ∈ R2

>0 and we immediately obtain the stated estimates as well as the
determinant of both matrices. Hence, ϕδ is a bi-Lipschitz diffeomorphism.

Finally, we can define homogeneous Sobolev spaces on sectors and sector-like
domains, see e.g. [17, 52]. Let k ∈ N be arbitrary, then

Ḣk(Σδ
θ) :=

{︁
u ∈ L1

loc(Σδ
θ) : ∇ku ∈ L2(Σδ

θ)
}︁

is a function space which is equipped with the semi-norm | · |Ḣk(Σδ
θ
) = ∥∇k · ∥L2(Σδ

θ
).

Now let Pk be the class of all polynomials of degree ≤ k − 1. Then we set

Ĥk(Σδ
θ) := Ḣk(Σδ

θ)/Pk,

such that the homogeneous Sobolev space Ĥk(Σδ
θ) is defined as a factor space. For

simplicity we denote elements in Ĥk(Σδ
θ) as u if we refer to their equivalence class
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[u] = u+Pk. By [17, Lemma II.6.2] we know that Ĥk(Σδθ) is a Hilbert space equipped
with the norm

∥u∥Ĥk(Σδ
θ
) := ∥[u]∥Ĥk(Σδ

θ
) = inf

p∈Pk

|u+ p|Ḣk(Σδ
θ
) = inf

p∈Pk

∥∇k(u+ p)∥L2(Σδ
θ
)

= ∥∇ku∥L2(Σδ
θ
)

for all u ∈ Ĥk(Σδθ) (in contrast to Ḣk(Σδθ) which is only equipped with a semi-norm
| · |Ḣk(Σδ

θ
)). Furthermore, for k ∈ N we define

Ĥk
0(Σδ

θ) = C∞
c (Σδ

θ)
∥∇k·∥L2

.

Homogeneous spaces on the half-space R2
+ := {(x1, x2) ∈ R2 : x2 > 0}, R2

>0 :=
{(x1, x2) ∈ R2 : x1 > 0} and on the whole space R2 are defined accordingly. Further-
more, for k ∈ N we define

Ḣk
div(Σδ

θ) :=
{︁
u ∈ Ḣk(Σδ

θ) : div u = 0
}︁

and Ĥk
div(Σδ

θ) := Ḣk
div(Σδ

θ)/Pk equipped with the same norm as Ĥk(Σδ
θ) since

Ĥk
div(Σδ

θ) ⊆ Ĥk(Σδ
θ). In order to define Sobolev spaces of fractional power for

0 < s < 1 we first observe

3.1.3 Lemma. Let the bi-Lipschitz diffeomorphism ϕδ from Lemma 3.1.2 be given.
Defining push-forward and pull-back through

Φδ
∗u := u ◦ ϕ−1

δ and Φ∗
δv := v ◦ ϕδ,

it holds

Φδ
∗ ∈ Lis(Ĥ1(R2

>0), Ĥ1(Σδ
θ)) ∩ Lis(Hk(R2

>0), Hk(Σδ
θ))

(Φδ
∗)−1 = Φ∗

δ ∈ Lis(Ĥ1(Σδ
θ), Ĥ1(R2

>0)) ∩ Lis(Hk(Σδ
θ), Hk(R2

>0))

for k = 0, 1 with norm estimates uniformly in δ ≥ 0. In the setting of homogeneous
spaces we interpret the composition [v] ◦ ϕδ = [v ◦ ϕδ] where [v] ∈ Ĥ1(Σδ

θ) with
v ∈ Ḣ1(Σδ

θ) by choosing a corresponding representative for [v].

Proof. First we note that the definition in the setting of homogeneous spaces is
meaningful. For any constant function c we also have c ◦ ϕ−1

δ ≡ c such that we have
(u + c) ◦ ϕ−1

δ = u ◦ ϕ−1
δ + c for any u ∈ Ḣ1(R2

>0) leading to the same equivalence
class for u ◦ ϕ−1

δ by

[u] ◦ ϕδ = [(u+ R) ◦ ϕδ] = [u ◦ ϕδ + R] = [u ◦ ϕδ].
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We can estimate the norm uniformly in δ ≥ 0: Let [v] ∈ Ĥ1(Σδθ) with v+c ∈ Ḣ1(Σδθ)
for any constant c ∈ R. Then

∥∇Φ∗
δ [v]∥2L2(R2

>0)
= ∥[∇(v + c) ◦ ϕδ] · ∇ϕδ∥2L2(R2

>0)

=
∫︂
R2
>0

|∇v(ϕδ(η, t)) · ∇ϕδ(η, t)|2 d(η, t)

≤ C
∫︂
R2
>0

|∇v(ϕδ(η, t))|2 d(η, t)

= C
∫︂
Σδ

θ

|∇v(x)|2|det[(ϕ′
δ)−1]| dx

≤ C∥∇v∥2L2(Σδ
θ
) = C∥∇[v]∥2L2(Σδ

θ
)

and we also obtain the converse estimate for Φδ
∗. Also similarly to (3.3) we obtain

the estimate in the L2-setting where we again put emphasize on the fact that all
appearing estimates are uniform in δ ≥ 0. Hence the assertion holds.

3.1.4 Remark. (i) Note that in the context of Lemma 3.1.2 and Lemma 3.1.3 we
obtain a bi-Lipschitz transformation of Σδ

θ to R2
>0. However, the results that

we want to transfer later are formulated on R2
+ := {x = (x1, x2) ∈ R2 : x2 > 0}.

It is clear that we can transform R2
>0 to R2

+ via a rotation matrix such that in
fact we obtain

Φδ
∗ ∈ Lis(Ĥ1(R2

+), Ĥ1(Σδ
θ)) ∩ Lis(Hk(R2

+), Hk(Σδ
θ))

(Φδ
∗)−1 = Φ∗

δ ∈ Lis(Ĥ1(Σδ
θ), Ĥ1(R2

+)) ∩ Lis(Hk(Σδ
θ), Hk(R2

+))

in Lemma 3.1.3 with norm estimates uniform in δ ≥ 0.

(ii) We also observe that due to the fact that ϕδ is not more regular than bi-Lipschitz
and not C1, we cannot transform spaces of higher regularity than k = 1 from
Σδ
θ to the half-space R2

>0 (using this diffeomorphism).

By making use of the push-forward from Lemma 3.1.2 we can now define homoge-
neous Sobolev spaces of fractional power 0 < s < 1: We set

Ĥs(Σδ
θ) := Φδ

∗Ĥ
s(R2

+) = Φδ
∗Ḣ

s(R2
+)/P1,

which can also be defined via interpolation as we will observe. Here (·, ·)s,p denotes
the real interpolation functor for s ∈ (0, 1) and 1 < p < ∞ (see [51, Chapter 1]).
Interpolation of the homogeneous Sobolev spaces Ĥs(Σδ

θ) can be interpreted in the
following way: At first we consider interpolation on the whole space Rn (see [52,
Section 5.1]): Let S(Rn) be the Schwartz space and S ′(Rn) the space of tempered
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distributions defined in the usual way (cf. [52, Section 1.2.1]). Let F and F−1 denote
the Fourier transform and inversion in S(Rn) and S ′(Rn), respectively. Then we
define the following subspace of S(Rn) equipped with the same topology

Z(Rn) = {ϕ ∈ S(Rn) : ∂αFϕ(0) = 0 ∀ α ∈ Nn
0} .

Then Z(Rn) is a locally convex space and Z ′(Rn) denotes its dual. For any f ∈ S ′(Rn)
the restriction to Z(Rn) yields f |Z(Rn) ∈ Z ′(Rn) and

(f + p)(ϕ) = f(ϕ) (ϕ ∈ Z(Rn)),

if p ∈ P∞ is any polynomial. Here P∞ denotes the set of all polynomials of degree
n ∈ N. Conversely, any f ∈ Z ′(Rn) can be extended to f̃ ∈ S ′(Rn) linearly
and continuously, where f̃ 1 − f̃ 2 is a polynomial if f̃ 1, f̃ 2 are two extensions of f .
Hence, we may identify Z ′(Rn) with the factor space S ′(Rn)/P∞ via a corresponding
isomorphism ι. Hence by [52, Section 5.1.3, Definition 2] we can regard Ĥk(Rn) for
k ∈ N as a subspace of S ′(Rn)/P∞ and via the isomorphism

ι : S ′(Rn)/P∞ → Z ′(Rn) (3.2)

we can regard Ĥk(Rn) for k ∈ N as a subspace of Z ′(Rn). Hence, making use of
Lemma 3.1.2, the extension operator E1 : Ĥ1(R2

+) → Ĥ1(R2) from [10, Proposition
3.19] and the extension by zero E0 yields

Ĥ1(Σδ
θ)

Φ∗
δ−→ Ĥ1(R2

+)
E1−→ Ĥ1(R2) ι−→ Z ′(R2)

L2(Σδ
θ)

Φ∗
δ−→ L2(R2

+)
E0−→ L2(R2) −→ Z ′(R2)

by regarding L2(R2) ↪→ S ′(R2)/P∞ ↪→ Z ′(R2). Thus,
¶
L2(Σδ

θ), Ĥ1(Σδ
θ)
©

is an
interpolation couple. Interpolation of the diffeomorphism Φδ

∗ then yields

Φδ
∗ ∈ Lis

Ä
Ĥs(R2

+), (L2(Σδ
θ), Ĥ1(Σδ

θ))s,2
ä

by [10, Proposition 3.22]. This explicitly yields the desired characterization of
fractional spaces via interpolation Ĥs(Σδ

θ)
∼= (L2(Σδ

θ), Ĥ1(Σδ
θ))s,2. Homogeneous

Sobolev spaces of negative order are defined as dual spaces. For 0 < s ≤ 1 we set
Ĥ−s

0 (Σδ
θ) := (Ĥs(Σδ

θ))′, endowed with the canonical norm.

Analogously we can now define homogeneous spaces on the boundary Γδ: Using
the path from Lemma 3.1.1 we can identify L2(Γδ) with L2(R) (see Lemma 3.1.5
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below):

∥u ◦ γδ∥2L2(R) =
∫︂
R
|u(γδ(t))|2 dt ≤ sin(θ)−2

∫︂
R
|u(γδ(t))|2|γδ̇(t)|2 dt

= sin(θ)−2
∫︂
Γδ

|u|2 dη = sin(θ)−2∥u∥2L2(Γδ)

≤ sin(θ)−2
∫︂
R
|u(γδ(t))|2 dt = sin(θ)−2∥u ◦ γδ∥2L2(R),

(3.3)

where we essentially made use of the uniform estimate of γδ̇ from (3.1). Thus, by
defining ζ∗δu := u ◦ γδ the calculation above yields ζ∗δ ∈ Lis(L2(Γδ), L2(R)) with
ζδ∗ := (ζ∗δ )−1. Sobolev spaces on the boundary Γδ can be defined as

Ḣ1(Γδ) :=
{︁
u : Γδ → Rn : u ◦ γδ ∈ Ḣ1(R)

}︁
= ζδ∗Ḣ

1(R).

Then Ḣ1(Γδ) is equipped with the semi-norm |u|Ḣ1(Γδ) := ∥∂τδu∥L2(Γδ). Note that
for any constant function c the function ζδ∗c is still a constant. Hence, the following
definition is meaningful:

Ĥ1(Γδ) := Ḣ1(Γδ)/P1 = ζδ∗
(︁
Ḣ1(R)/P1

)︁
= ζδ∗Ĥ

1(R) = ζδ∗Ḣ
1(R)/P1

where Ĥ1(Γδ) again is a Hilbert space by [17, Lemma II.6.2] with the corresponding
norm ∥[u]∥Ĥ1(Γδ) = ∥∂τδu∥L2(Γδ), where the proof can easily be modified such that it
holds in the 1-dimensional case as well. Note that similarly to the case of Σδθ we will
denote elements in Ĥ1(Γδ) by u although we want to refer to their equivalence class
[u] = u+ P1.
Sobolev spaces of fractional power 0 < s < 1 are again defined as

Ĥs(Γδ) := ζδ∗Ĥ
s(R) = ζδ∗Ḣ

s(R)/P1,

where Ĥs(R) is defined via interpolation Ĥs(R) = (L2(R), Ĥ1(R))s,2 (see [52, Section
5.2.5, Theorem 5.2.3.1(ii), Theorem 2.4.2]. Since ζ∗δ ∈ Lis(Ĥ1(Γδ), Ĥ1(R)) (elemen-
tary calculation as seen in Lemma 3.1.5), we can use the same arguments as for Σδ

θ

to deduce

Ĥ1(Γδ)
ζ∗
δ−→ Ĥ1(R) ι−→ Z ′(R),

L2(Γδ)
ζ∗
δ−→ L2(R) −→ Z ′(R),

hence
¶
L2(Γδ), Ĥ1(Γδ)

©
is an interpolation couple and we obtain

ζ∗δ ∈ Lis((L2(Γδ), Ĥ1(Γδ))s,2, Ĥs(R)),

which again yields the characterization of spaces of fractional order by interpolation

Ĥs(Γδ) ∼= (L2(Γδ), Ĥ1(Γδ))s,2.
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Spaces of negative order are again defined as dual spaces Ĥ−s(Γδ) := (Ĥs(Γδ))′ for
0 < s ≤ 1. Note that thanks to Lemma 3.1.5 we have (Ĥs(Γδ))′ ∼= (Ĥs

0(Γδ))′ since
Ḣs(R) = Ḣs

0(R) := C∞
c (R)|·|Hs .

These observations lead to the desire to identify (in)homogeneous spaces on the
boundary Γδ with well-studied (in)homogeneous spaces on the whole space R for the
scale Ĥs(Γδ) and Hs(Γδ) for s ∈ [−1, 1]:

3.1.5 Lemma. Let s ∈ [−1, 1] and the path γδ from Lemma 3.1.1 be given. We
define

ζδ∗u := u ◦ γ−1
δ and ζ∗δ v := v ◦ γδ,

Then

ζδ∗ ∈ Lis(Ĥs(R), Ĥs(Γδ)) and (ζδ∗)−1 = ζ∗δ ∈ Lis(Ĥs(Γδ), Ĥs(R))

for s ∈ [0, 1] and

|γ̇δ ◦ γ−1
δ |−1ζδ∗ ∈ Lis(Ĥs(R), Ĥs(Γδ)) and |γδ̇|ζ∗δ ∈ Lis(Ĥs(Γδ), Ĥs(R))

for s ∈ [−1, 0] where all norm estimates are uniform in δ ≥ 0. Furthermore, the
statement also holds in the case of inhomogeneous spaces Hs.

Proof. As observed in Lemma 3.1.3 the path γδ transforms constants to constants
such that the definition is meaningful. In this proof we just consider the proof of
the statement in the homogeneous spaces. We first prove the assertion for s = 0, 1.
First, we define

CLip(Γδ) := ζδ∗CLip(R) := ζδ∗ {u ∈ C(R) : |u(x)− u(y)| ≤ L|x− y| (x, y ∈ R)}

since γδ is a bi-Lipschitz transform by Lemma 3.1.1. Hence for u ∈ CLip(Γδ) we
observe that

d

dt
u(γδ(t)) = ∇u(γδ(t)) · γδ̇(t) = (∂τδu)(γδ(t))|γδ̇(t)| (3.4)

for a.e. t ∈ R where we used the fact that γδ̇ = τδ|γδ̇| from Lemma 3.1.1. Hence, for
ζ∗δu := u ◦ γδ we infer⃦⃦⃦⃦

⃦ ddt(u ◦ γδ)
⃦⃦⃦⃦
⃦
2

L2(R)
=

∫︂
R

⃓⃓⃓⃓
d

dt
u(γδ(t))

⃓⃓⃓⃓2
dt =

∫︂
R
|(∂τδu)(γδ(t))|2|γδ̇(t)|2 dt

≤
∫︂
R
|(∂τδu)(γδ(t))|2|γδ̇(t)| dt =

∫︂
Γδ

|∂τδu|2 dη = ∥∂τδu∥2L2(Γδ)

≤ sin(θ)−1
∫︂
R
|(∂τδu)(γδ(t))|2|γδ̇(t)|2 dt
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= sin(θ)−1
⃦⃦⃦⃦
⃦ ddt(u ◦ γδ)

⃦⃦⃦⃦
⃦
2

L2(R)
,

where we essentially made use of the uniform estimate of |γδ̇| from (3.1). By the
density of CLip(Γδ) in Ĥ1(Γδ) this estimate also holds for all u ∈ Ĥ1(Γδ) such that
we can define push-forward and pull-back as stated in the proposition. The estimate
above combined with (3.3) shows that

ζδ∗ ∈ Lis(Ĥ1(R), Ĥ1(Γδ)) ∩ Lis(Hs(R), Hs(Γδ)),

(ζδ∗)−1 = ζ∗δ ∈ Lis(Ĥ1(Γδ), Ĥ1(R)) ∩ Lis(Hs(Γδ), Hs(R)),

for s = 0, 1. Interpolation yields the statement in Ĥs and Hs for s ∈ [0, 1]. Again,
we put emphasize on the fact that all arising norm estimates are uniform in δ ≥ 0. In
case of negative s we need to calculate the dual operator (ζδ∗)′ : Ĥ−1(Γδ) → Ĥ−1(R):
For ϕ ∈ C∞

c,m(Γδ), ψ ∈ CLip(R) (where C∞
c,m(Γδ) is defined in Lemma 3.1.11) we infer

⟨(ζδ∗)′ϕ, ψ⟩Ĥ−1(R),Ĥ1(R) := ⟨ϕ, ζδ∗ψ⟩Ĥ−1(Γδ),Ĥ1(Γδ) =
∫︂
Γδ

ϕζδ∗ψ dη

=
∫︂
Γδ

ϕψ ◦ γ−1
δ dη =

∫︂
Γδ

(ϕ ◦ γδ)ψ|γδ̇| dη

=
∫︂
R
|γδ̇|ζ∗δϕψ dt

= ⟨|γδ̇|ζ∗δϕ, ψ⟩Ĥ−1(R),Ĥ1(R),

where we made use of the fact that by Lemma 3.1.11 functions of the form (f, ·)2,Γδ

with f ∈ C∞
c,m(Γδ) are dense in (Ĥ1(Γδ))′ and by [17, Theorem II.8.1] this density

also holds for R. Then the calculation above yields (ζδ∗)′ = |γδ̇|ζ∗δ . On the other hand,
almost the same calculation gives us

⟨(ζ∗δ )′ϕ, ψ⟩Ĥ−1(Γδ),Ĥ1(Γδ) := ⟨ϕ, ζ∗δψ⟩Ĥ−1(R),Ĥ1(R) =
∫︂
R
ϕζ∗δψ dx

=
∫︂
R
|γδ̇|ϕζ∗δψ|γδ̇|−1 dt

=
∫︂
Γδ

(ϕ ◦ γ−1
δ )ψ|γδ̇ ◦ γ−1

δ |−1 dη

=
∫︂
Γδ

ζδ∗ϕψ|γδ̇ ◦ γ−1
δ |−1 dη

= ⟨|γδ̇ ◦ γ−1
δ |−1ζδ∗ϕ, ψ⟩Ĥ−1(Γδ),Ĥ1(Γδ)

again for smooth ϕ, ψ such that (ζ∗δ )′ = |γδ̇ ◦γ−1
δ |−1ζδ∗ . We note that both calculations

also hold in L2 such that the dual operator in the L2-setting is given in the same
way. Thanks to the boundedness of the dual operator we obtain

|γδ̇ ◦ γ−1
δ |−1ζδ∗ ∈ Lis(Ĥ−1(R), Ĥ−1(Γδ)) ∩ Lis(H−s(R), H−s(Γδ)),
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|γδ̇|ζ∗δ ∈ Lis(Ĥ−1(Γδ), Ĥ−1(R)) ∩ Lis(H−s(Γδ), H−s(R))

for s = 0, 1 where the operator norms are uniformly in δ ≥ 0. Again, interpolation
yields the statement for Ĥs and Hs for s ∈ [−1, 0] with norms uniform in δ ≥ 0.

3.1.6 Remark. It is clear that we can transform R to ∂R2
+ := {x = (x1, x2) ∈

R2 : x1 ∈ R, x2 = 0} and ∂R2
>0 := {x = (x1, x2) ∈ R2 : x1 = 0, x2 ∈ R} via a

smooth linear mapping (using a transformation matrix). Hence, this yields that from
Lemma 3.1.5 we even obtain

ζδ∗ ∈ Lis(Ĥs(∂R2
+), Ĥs(Γδ)) and (ζδ∗)−1 = ζ∗δ ∈ Lis(Ĥs(Γδ), Ĥs(∂R2

+)),

ζδ∗ ∈ Lis(Ĥs(∂R2
>0), Ĥs(Γδ)) and (ζδ∗)−1 = ζ∗δ ∈ Lis(Ĥs(Γδ), Ĥs(∂R2

>0))

with norm estimates uniform in δ ≥ 0. In the following we denote every push-forward
and pull-back from Γδ to R, ∂R2

+, ∂R2
>0 by ζδ∗ and ζ∗δ .

3.1.1 Embeddings, Dual Spaces and Related Results

For a precise characterization and well-understanding of (in)homogeneous spaces on
sectors, we collect some embeddings and related results in this section. The strategy
for the proof of most of the results is the following: By applying the bi-Lipschitz
transforms from Lemma 3.1.1 and Lemma 3.1.2 we transfer results known from the
half-space setting to sectors. We will mainly focus on results on sectors Σθ with
boundary Γ but we note that all results hold true on smooth sector-like domains Σδθ
with boundary Γδ and corresponding norm estimates are uniformly in δ > 0. We
start with some embedding theorems:

3.1.7 Lemma. Let s ∈ (0, 1]. Then we have

C∞
c (Σδ

θ)
d
↪→ Hs(Σδ

θ)
d
↪→ Ĥs(Σδ

θ).

Here, the embeddings above can be interpreted by considering the isomorphism ι from
(3.2).

Proof. From the observation above we know that
{︁
L2(Σδ

θ), H1(Σδ
θ)
}︁

as well as¶
L2(Σδ

θ), Ĥ1(Σδ
θ)
©

are interpolation couples. By [51, Theorem 1.6.2] we obtain
for s ∈ (0, 1):

H1(Σδ
θ) = L2(Σδ

θ) ∩ Ĥ1(Σδ
θ)

d
↪→ (L2(Σδ

θ), Ĥ1(Σδ
θ))s,2 = Ĥs(Σδ

θ),

H1(Σδ
θ) = L2(Σδ

θ) ∩H1(Σδ
θ)

d
↪→ (L2(Σδ

θ), H1(Σδ
θ))s,2 = Hs(Σδ

θ).
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Furthermore,

Hs(Σδ
θ) = (L2(Σδ

θ), H1(Σδ
θ))s,2 ↪→ (L2(Σδ

θ), Ĥ1(Σδ
θ))s,2 = Ĥs(Σδ

θ).

Since C∞
c (Σδ

θ)
d
↪→ H1(Σδ

θ) by [25, Lemma 12.4] we deduce

C∞
c (Σδ

θ)
d
↪→ H1(Σδ

θ)
d
↪→ Hs(Σδ

θ)
d
↪→ Ĥs(Σδ

θ).

The assertion for s = 1 follows from [29, Lemma B1].

3.1.8 Lemma. Let m ∈ N and Hm
div(Σθ) := {u ∈ Hm(Σθ,R2) : div u = 0}. Then

Hm
div(Σθ) is dense in H1

div(Σθ).

Proof. Let (ϕη)η>0 ⊆ C∞
c (R2) be a mollifier such that ϕη ≥ 0 and supp ϕη ⊆ Bη(0)

for all η > 0. We fix u ∈ H1
div(Σθ) and ε > 0. For ω > 0 we denote by Σωθ := Σθ−ωe1

the shifted sector. Next, we define the shifted uω ∈ H1
div(Σω

θ ) as

uω(x1, x2) := u(x1 + ω, x2) for x = (x1, x2) ∈ Σω
θ .

By construction we have uω|Σθ
→ u in H1(Σθ,R2) as ω → 0. We first fix ω > 0 such

that
∥v|Σθ

− u∥H1(Σθ,R2) <
ε

2 for v := u4ω.

We choose δ > 0 such that Σθ +Bδ(0) ⊆ Σωθ . By χ := χΣ2ω
θ

∈ L∞(R2) we denote the
characteristic function of the shifted sector Σ2ω

θ . For the convolution ψ := ϕδ ∗ χ ∈
C∞(R2) we observe that

(i)
∫︁
R2 ϕδ(x1, x2) d(x1, x2) = 1 and 0 ≤ χ ≤ 1 imply 0 ≤ ψ ≤ 1;

(ii) χ|Σ2ω
θ

≡ 1 and Σω
θ +Bδ(0) ⊆ Σ2ω

θ imply that ψ|Σω
θ
≡ 1;

(iii) χ|R2\Σ2ω
θ

≡ 0 and R2\Σ3ω
θ +Bδ(0) ⊆ R2\Σ2ω

θ imply that ψ|R2\Σ3ω
θ

≡ 0;

(iv) 0 ≤ χ ≤ 1 implies ∥ψ∥BC1(R2) ≤ ∥ϕδ∥W 1,1(R2) <∞.

By definition

w(x1, x2) :=

⎧⎨⎩ψ(x1, x2)v(x1, x2), if (x1, x2) ∈ Σ4ω
θ ,

0, otherwise,
(x = (x1, x2) ∈ R2)

leads to a well-defined vector field w ∈ H1(R2,R2) with divw = 0 in Σω
θ since

ψ|Σω
θ
≡ 1 and div v = 0 in Σω

θ .
Then by construction we have ϕη ∗ w ∈ Hm(R2,R2) for all η > 0 with

ϕη ∗ w
η→0−−→ w in H1(R2,R2).
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Furthermore, if 0 < η < δ then Σθ+Bη(0) ⊆ Σωθ such that div(ϕη∗w) = 0 in Σθ due to
the fact that divw = 0 in Σωθ . Choosing 0 < η < δ such that ∥ϕη∗w−w∥H1(R2,R2) <

ε
2

we also obtain

∥ũ− w|Σθ
∥H1(Σθ,R2) ≤

ε

2 for ũ := (ϕη ∗ w)|Σθ
.

Then we have ũ ∈ Hm(R2,R2) with div ũ = 0, i.e., ũ ∈ Hm
div(Σθ) and

∥ũ− u∥H1(Σθ,R2) < ε.

3.1.9 Lemma. Let s ∈ [0, 1/2]. Then it holds

(i) C∞
c (Γ±)

d
↪→ Hs(Γ±)

d
↪→ Ĥs(Γ±);

(ii) C∞
c (Γ\{0}) d

↪→ Hs(Γ) d
↪→ Ĥs(Γ).

Proof. (i) We just prove the assertion for +. This is a consequence of [51]. Note that
by [51, Theorem 2.9.3(d)] the space C∞

c (R+) is dense in Hs(R+) for s ∈ [0, 1/2]. This
also holds for Ĥs(R+): Applying [51, Theorem 1.6.2] to the interpolation couples
{L2(R+), Ĥ1(R+)} and {L2(R+), H1(R+)} yields

H1(R+) = L2(R+) ∩ Ĥ1(R+)
d
↪→ (L2(R+), Ĥ1(R+))s,2 = Ĥs(R+),

H1(R+) = L2(R+) ∩H1(R+)
d
↪→ (L2(R+), H1(R+))s,2 = Hs(R+).

Since also

Hs(R+) = (L2(R+), H1(R+))s,2 ↪→ (L2(R+), Ĥ1(R+))s,2 = Ĥs(R+),

we can deduce for s ∈ [0, 1/2]

C∞
c (R+)

d
↪→ Hs(R+)

d
↪→ Ĥs(R+),

and the assertion follows by rotating R+ to Γ+.
(ii) We pick v ∈ Ĥ1/2(Γ). Then we define v± := v|Γ± ∈ Ĥ1/2(Γ±). Now let

(vk±) ⊆ C∞
c (Γ±) be a sequence such that

vk±
k→∞−−−→ v± in Ĥ1/2(Γ±).

Now we set vk(x) := χΓ+(x)vk+(x1, x2) + χΓ−(x)vk−(x1, x2) ∈ C∞
c (Γ\{0}) where

x = (x1, x2). Obviously by definition we know that (vk)k is a Cauchy sequence in
Ĥ1/2(Γ) such that there exists ψ ∈ Ĥ1/2(Γ) with vk → ψ in Ĥ1/2(Γ). Then it also
follows vk → ψ in L1

loc(Γ\{0}). On the other hand by construction we have vk → v in
Ĥ1/2(Γ±), hence vk → v in L1

loc(Γ\{0}). Since the limit is unique, we deduce v = ψ.
The statement for in the inhomogeneous setting follows with the same arguments.
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Next, we characterize dual spaces of homogeneous Sobolev spaces on sectors Σδ
θ

and the boundary Γδ in order to be able to use the representation of the duality
pairings as an integral. To be precise we want to prove the density of mean value
free infinitely differentiable functions with compact support in those dual spaces.
This result is well-known for e.g. the whole space Rn and half-space Rn

+ where the
restriction that the functions have to be mean value free can be dropped. In this
case we need this restriction such that the integral is well-defined. The approach
follows the ideas as seen in [29, Appendix A].

3.1.10 Lemma. Let r > 0 and Ω1 := Σδ
θ ∩Br(0) and Ω2 := (−r, r). The Poincaré

inequality holds for u ∈ Ḣ1
m(Ωi) := {u ∈ Ḣ1(Ωi) :

∫︁
Ωi
u dx = 0} for i = 1, 2. To be

precise we have
∥u∥L2(Ωi) ≤ C∥∇u∥L2(Ωi).

Proof. This is a direct consequence of the Poincaré inequality for mean value free
functions in the version of [46, Lemma 10.2(vi)]. Note that by [17, Remark II.6.1]
we infer that H1(Ωi) and Ḣ1(Ωi) are equal algebraically, i.e., H1(Ωi) = Ḣ1(Ωi) since
Ωi is bounded and Lipschitz. Note that [17, Remark II.6.1] follows from [17, Lemma
II.6.1] which holds also in the 1-dimensional case if we modify its proof, hence [17,
Remark II.6.1] holds for Ωi, i = 1, 2, simultaneously. Then we can apply [46, Lemma
10.2(vi)].

3.1.11 Lemma. We set Ω1 := Σδ
θ and Ω2 := Γδ. We define the set of functionals

which are given through a regular distribution, as

Si :=
¶
F ∈ (Ĥ1(Ωi))′ : F(u) = (f, u)2,i for f ∈ C∞

c,m(Ωi)
©
,

where the space of mean value free infinitely differentiable functions with compact
support are defined as

C∞
c,m(Ωi) :=

ß
f ∈ C∞

c (Ωi) :
∫︂
Ωi

f(x) dx = 0
™
.

Here, the functionals are defined as

(f, u)2,1 := (f, u)2 :=
∫︂
Σδ

θ

f(x)u(x) dx (f ∈ C∞
c,m(Σδ

θ), u ∈ Ĥ1(Σδ
θ)),

(f, u)2,2 := (f, u)2,Γδ
:=

∫︂
Γδ

f(x)u(x) dη(x) (f ∈ C∞
c,m(Γδ), u ∈ Ĥ1(Γδ)).

Then Si is dense Ĥ1(Ωi)′ for i = 1, 2. It also holds that Si is dense in Ĥ1
div(Σδ

θ)′.
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Proof. First, we need to prove that Si is a subset of Ĥs(Ωi)′. To this end, let F ∈ Si
be arbitrary with F(u) = (f, u)2,i for one fixed f ∈ C∞

c,m(Ωi) and for all u ∈ Ĥs(Ωi).
Note that due to the fact that f is mean value free, the integral (f, u)2,i is well-defined
for i = 1, 2. It is obvious that F is a linear operator. Now let r > 0 such that
supp f ⊆ Br(0). We set Ki := Ωi∩Br(0) ⊆ R2. For i = 1 we first obtain by choosing
a representative of u ∈ Ĥ1(Σδ

θ) with
∫︁
K1
u(x) dx = 0:

|(f, u)2,1| =
⃓⃓⃓⃓∫︂
K1
f(x)u(x) dx

⃓⃓⃓⃓
≤ ∥f∥L2(K1)∥u∥L2(K1)

≤ C∥f∥L2(Σδ
θ
)∥u∥Ĥ1(K1) ≤ C∥f∥L2(Σδ

θ
)∥u∥Ĥ1(Σδ

θ
),

where we applied Lemma 3.1.10. For i = 2 we note that the path γδ from Lemma 3.1.1
maps bounded sets to bounded sets, in fact γ−1

δ (K2) = (−r, r). Then we obtain by
choosing a representative of u ∈ Ĥ1(Γδ) with

∫︁
K2
u dη =

∫︁ r
−r u ◦ γδ|γ̇δ| dt = 0 with

Lemma 3.1.1:

|(f, u)2,2| =
⃓⃓⃓⃓∫︂
K2
f(x)u(x) dη(x)

⃓⃓⃓⃓
=
⃓⃓⃓⃓∫︂ r

−r
f(γδ(t))u(γδ(t))γ̇δ(t) dt

⃓⃓⃓⃓
≤ ∥f ◦ γδ∥L2((−r,r))∥u ◦ γδ|γ̇δ|∥L2((−r,r)).

Now we note that thanks to u ∈ Ĥ1(K2) we have u ◦ γδ|γ̇δ| ∈ Ĥ1((−r, r)). Again by
applying the Poincaré inequality from Lemma 3.1.10 we obtain

|(f, u)2,2| ≤ ∥f ◦ γδ∥L2((−r,r))∥u ◦ γδ|γ̇δ|∥L2((−r,r))

≤ C∥f∥L2(K2)∥u ◦ γδ|γ̇δ|∥Ĥ1((−r,r))

≤ C∥f∥L2(Γδ)∥u∥Ĥ1(Γδ).

Hence, we proved Si ⊆ Ĥ1(Ωi)′.
The density follows with a functional analytic argument as in [17, Lemma II.8.1].

Assume that Si is not dense in Ĥ1(Ωi)′. Since Ĥ1(Ωi)′ as a dual space is equipped
with a norm we can apply Hahn-Banach ([17, Theorem 1.7(b)] to the result that
there exists some Z ∈ Ĥ1(Ωi)′′ such that Z ̸= 0 and

Z(F) = 0 (F ∈ Si).

Since Ḣ1(Ωi) is reflexive by [17, Exercise II.6.2] we know that Ĥ1(Ωi) = Ḣ1(Ωi)/R
is also reflexive and that Ĥ1(Ωi)′′ ∼= Ĥ1(Ωi) such that the condition simplifies as

F(z) = (f, z)2,i = 0 (F ∈ S such that f ∈ C∞
c (Ωi)).
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Let U ⊆ Ωi such that U is open and bounded. Let z̃ ∈ [z] be a representative of
z ∈ Ĥ1(Ωi) such that

z̃|U ∈ L2
m(U) :=

{︂
z̃ ∈ L2(U) :

∫︂
U
z̃ dx = 0

}︂
.

(Note that z̃ ∈ L2
loc(Ωi) such that z̃ ∈ L2(U)). Then we have

(z̃, f)2 =
∫︂
U
z̃f dx = 0 (f ∈ C∞

c,m(U)).

Since L2
m(U) = C∞

c,m(U)
L2

we even deduce (z̃, f)2 = 0 for all f ∈ L2
m(U) such that

z̃ = 0 a.e. in U follows. Hence [z] = [const] in U , such that z = 0 since U ⊆ Ωi is an
arbitrary open and bounded subset with U ⊆ Ωi.
The statement for the subspace of divergence free functions Ĥ1

div(Σθ) follows
analogously. Then the assertion is proved.

3.1.12 Remark. In the following we will interpret Lemma 3.1.11 in the following
way: Instead of saying that Si is dense in (Ĥ1(Ωi))′, we will say that

C∞
c,m(Ωi)

d
↪→ Ĥ1(Ωi)′

by using the duality pairing defined in Lemma 3.1.11.

Next, we will consider some results regarding the tangential derivative operator
on the boundary Γ by transferring corresponding results from R by making use of
Lemma 3.1.5.

3.1.13 Corollary. For every s ∈ [0, 1] the tangential derivative operator satisfies

∂τ ∈ Lis(Ĥs(Γ), Ĥs−1(Γ)) ∩ L (Hs(Γ), Hs−1(Γ)).

Proof. First, we prove the assertion for s = 0, 1. Note that for u ∈ CLip(Γδ) it follows
from (3.4) that

∂τ = ζ0∗
d

dt
ζ∗0 .

Since d/dt is the derivative operator on the whole space R we can use the definition
of Bessel potential spaces for s ∈ R using the Fourier transform F :

Ḣs(R) =
{︁
u ∈ L1

loc(R) : F−1|ξ|sFu ∈ L2(R)
}︁
.

Then it is straightforward to prove that d/dt : Ĥ1(R) → L2(R) is an isomorphism.
Combining this with Lemma 3.1.5 we immediately deduce

∂τ ∈ Lis(Ĥ1(Γ), L2(Γ)).
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Next, we have to compute the dual operator (∂τ )′ : L2(Γ) → Ĥ−1(Γ). For ϕ ∈ C∞
c,m(Γ)

and ψ ∈ CLip(Γ) we infer

⟨(∂τ )′ϕ, ψ⟩Ĥ−1(Γ),Ĥ1(Γ) := ⟨ϕ, ∂τψ⟩L2(Γ),L2(Γ) =
∫︂
Γ
ϕ∂τψ dη

=
∫︂
Γ
ϕζ0∗

d

dt
ζ∗0ψ dη

=
∫︂
R
(ζ∗0ϕ)

d

dt
ζ∗0ψ dt = −

∫︂
R

d

dt
(ζ∗0ϕ)(ζ∗0ψ) dt

= −
∫︂
Γ
(∂τϕ)ψ dη = ⟨−∂τϕ, ψ⟩Ĥ−1(Γ),Ĥ1(Γ)

again thanks to Lemma 3.1.11 which yields (∂τ )′ = −∂τ and from the boundedness
of the dual operator we deduce

∂τ ∈ Lis(L2(Γ), Ĥ−1(Γ)).

Interpolation then yields the result for the homogeneous case.
In order to obtain the statement in the inhomogeneous case we only need to replace

d/dt : Ĥ1(R) → L2(R) with d/dt : H1(R) → L2(R) which is obviously bounded.

3.1.14 Corollary. Let s ∈ [0, 1]. Then the shifted tangential derivative operator on
Γ is an isomorphism, i.e.,

1 + ∂τ ∈ Lis(Hs(Γ), Hs−1(Γ)).

Proof. The proof is essentially the same proof as of Corollary 3.1.13. Then we have
1 ± ∂τ = ζ0∗ (1± d/dt) ζ∗0 . Clearly we have 1 ± d/dt ∈ Lis(H1(R), L2(R)) which
yields 1± ∂τ ∈ L (H1(Γ), L2(Γ)). Furthermore, we also infer (1± ∂τ )′ = 1∓ ∂τ ∈
Lis(L2(Γ), H−1(Γ)) and interpolation yields the result.

Weyl Projections

Dealing with divergence free functions almost always leads to introducing corre-
sponding Weyl and Helmholtz projections on the corresponding function spaces.
The solenoidal subspaces of H1(Σθ)2, Ĥ1(Σθ)2 and L2(Σθ)2 will be denoted by
H1

div(Σθ), Ĥ1
div(Σθ) and L2

div(Σθ). Here, we will only consider the divergence free
subspaces which are defined as the range of a Weyl projection. The Weyl projection
can be defined by making use of the Dirichlet problem (cf. Lemma 3.1.15). However,
another approach to obtain divergence free subspaces is to consider the range of the
Helmholtz projection which is defined by using the Neumann problem. Using the
Helmholtz projection leads to the definition of the L2

σ(Σθ) spaces. In the context
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of Chapter 4 we are only interested in L2
div(Σθ), hence in the following we will only

consider Weyl projections.
Here, we will use standard techniques in order to prove the existence of the Weyl

projection and corresponding properties. In fact, we will make use of the Dirichlet
problem, cf. Section 3.1.3.

3.1.15 Lemma (Weyl projection on L2(Σθ)2). We define the Weyl map as

PW : L2(Σθ)2 → L2(Σθ)2, PWϕ := ϕ−∇Φ,

where Φ is the weak solution of the homogeneous Dirichlet problem

∆Φ = divϕ in Σθ, Φ = 0 on Γ. (3.5)

Then PW is a projection along ∇Ĥ1
0(Σθ) and there exists a direct orthogonal decom-

position
L2(Σθ)2 = L2

div(Σθ)⊕∇Ĥ1
0(Σθ).

Proof. At first we observe the following regarding the divergence: Note that the
definition of the divergence div : L2(Σθ) → Ĥ−1(Σθ) is meaningful by setting

⟨divϕ, ψ⟩Ĥ−1(Σθ),Ĥ1
0(Σθ) := (ϕ,∇ψ)2 (ψ ∈ C∞

c (Σθ)).

Integration by parts then yields the consistency of the definition of the divergence
with the definition in spaces of positive order with ∥ divϕ∥Ĥ−1(Σθ) ≤ ∥ϕ∥L2(Σθ). Hence,
for ϕ ∈ L2(Σθ)2 we have divϕ ∈ Ĥ−1(Σθ) and by Lemma 3.1.31 there exists a unique
Φ ∈ Ĥ1

0(Σθ) solving (3.5). Then PW is well-defined. Furthermore, for ϕ ∈ L2(Σθ)2

we observe
P 2
Wϕ = PWPWϕ = PW (ϕ−∇Φ) = ϕ−∇Φ−∇Ψ

where Φ solves (3.5) and Ψ solves

∆Ψ = div(ϕ−∇Φ) = 0 in Σθ, Ψ = 0 on Γ.

Since (3.5) is uniquely solvable we infer Ψ = 0 and P 2
Wϕ = ϕ −∇Φ = PWϕ. It is

obvious that PW is a linear map. Furthermore, PW is bounded:

∥PWϕ∥L2(Σθ) = ∥ϕ−∇Φ∥L2(Σθ) ≤ ∥ϕ∥L2(Σθ) + C∥ divϕ∥Ĥ−1(Σθ)

≤ C∥ϕ∥L2(Σθ)

where we used the estimate from Lemma 3.1.31. Hence, PW is a projection.
Since L2(Σθ)2 is a Hilbert space it is a well-known fact that there exists a direct
orthogonal decomposition

L2(Σθ)2 = N(PW )⊕⊥ R(PW ).
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where N(PW ) and R(PW ) denote the kernel and the range of PW , respectively. We
prove N(PW ) = ∇Ĥ1

0(Σθ) and R(PW ) = L2
div(Σθ) and the assertion then follows.

At first we prove R(PW ) = L2
div(Σθ). If ψ ∈ R(PW ) then there exists some ϕ ∈

L2(Σθ)2 such that PWϕ = ϕ−∇Φ = ψ where Φ solves (3.5). But then we have

divψ = div(ϕ−∇Φ) = divϕ−∆Φ = 0

and ψ ∈ L2
div(Σθ). If ϕ ∈ L2

div(Σθ) then we note that PWϕ = ϕ−∇Φ = ϕ, where Φ
solves (3.5) with right-hand side divϕ = 0. By the uniqueness it follows Φ = 0 and
R(PW ) = L2

div(Σθ).
Next, we will show N(PW ) = ∇Ĥ1

0(Σθ). Let ϕ ∈ N(PW ), then we have PWϕ =
ϕ − ∇Φ = 0, hence ϕ = ∇Φ. Since Φ solves (3.5) we know that Φ ∈ Ĥ1

0(Σθ) by
Lemma 3.1.31. Then we have ϕ ∈ ∇Ĥ1

0(Σθ).
Now let ϕ ∈ Ĥ1

0(Σθ). Then

PW (∇ϕ) = ∇ϕ−∇Φ,

where Φ is the solution of (3.5) with right-hand side div∇ϕ = ∆ϕ. Obviously, since
∇ϕ ∈ ∇Ĥ1

0(Σθ) we know that ϕ solves (3.5) with the same right-hand side. By
the solution’s uniqueness we obtain Φ = ϕ and PW (∇ϕ) = 0. Then the assertion
follows.

3.1.16 Corollary (Weyl projection on H1(Σθ)2). We define the Weyl map as

PW : H1(Σθ)2 → H1(Σθ)2, PWϕ := ϕ−∇Φ

where Φ solves (3.5) strongly. Then PW is a projection and there exists a direct
orthogonal decomposition

H1(Σθ)2 = H1
div(Σθ)⊕∇(Ĥ1

0(Σθ) ∩ Ĥ2(Σθ)).

Proof. This follows from the consistency of PW . Due to the fact that in Lemma 3.1.31
the weak and strong solution of (3.5) are consistent, the Weyl projection PW is also
consistent on L2(Σθ)2 and H1(Σθ)2. Then the assertion follows by making use of
H1(Σθ)

d
↪→ L2(Σθ) and

N(PW |H1(Σθ)2) ⊆ N(PW |L2(Σθ)2) and R(PW |H1(Σθ)2) ⊆ R(PW |L2(Σθ)2).

As a direct consequence of the consistency of the Weyl projection PW due to
Lemma 3.1.31 we also obtain the Weyl projection on Ĥ1(Σθ)2. We only replace
Ĥ1

0(Σθ) ∩ Ĥ2(Σθ) by Ĥ2
D(Σθ) due to regularity reasons.
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3.1.17 Corollary (Weyl projection on Ĥ1(Σθ)2). We define the Weyl map as

PW : Ĥ1(Σθ)2 → Ĥ1(Σθ)2, PWϕ := ϕ−∇Φ,

where Φ is the strong solution of the Dirichlet problem (3.5). Then PW is a projection
and there exists a direct orthogonal decomposition

Ĥ1(Σθ)2 = Ĥ1
div(Σθ)⊕∇Ĥ2

D(Σθ),

where Ĥ2
D(Σθ) := {u ∈ Ĥ2(Σθ) : u|Γ = 0}.

3.1.18 Remark. We put emphasize on the fact that the Weyl projections on
L2(Σθ), H1(Σθ) and Ĥ1(Σθ) from the previous Lemma 3.1.15, Corollary 3.1.16 and
Corollary 3.1.17 are consistent by construction and by Lemma 3.1.31.

3.1.2 Trace Theorems

In this section we collect various trace theorems dealing with Dirichlet and Neumann
traces. Using the bi-Lipschitz diffeomorphism from Lemma 3.1.2 we are able to
transfer results from the half-space R2

+ to sectors Σθ. Note that trace theorems in
the framework of inhomogeneous spaces are well-known from [34, Theorem 2] since
Σθ is a convex domain.

3.1.19 Theorem. The trace operator

T : Ĥ1(Σθ) → Ĥ1/2(Γ)

exists and is linear and bounded and satisfies the estimate

∥Tu∥Ĥ1/2(Γ) ≤ C∥u∥Ĥ1(Σθ)

with a constant C > 0 independent of u. Furthermore, T is a retraction: There exists
a bounded linear extension operator

Ẽ : Ĥ1/2(Γ) → Ĥ1(Σθ)

such that if ũ ∈ Ĥ1/2(Γ) then u := Ẽũ ∈ Ĥ1(Σθ) with Tu = ũ and

∥u∥Ĥ1(Σθ) ≤ C∥ũ∥Ĥ1/2(Γ)

where C > 0 is again independent of ũ.
Likewise, in the inhomogeneous case there also exists a trace operator T from H1(Σθ)
to H1/2(Γ) and a bounded extension operator Ẽ : H1/2(Γ) → H1(Σθ) fulfilling
corresponding estimates.
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Proof. In order to prove the result, we want to transfer the trace operator T from the
half-space R2

+ = {x = (x1, x2) ∈ R2 : x2 > 0} to our setting. [17, Theorem II.10.2]
states the existence of a bounded trace operator T̃ : Ḣ1(R2

+) → Ḣ1/2(∂R2
+) with

∂R2
+ = {x ∈ R2 : x2 = 0}. Hence, by definition of the spaces Ĥ1 we immediately also

infer the boundedness of T̃ : Ĥ1(R2
+) → Ĥ1/2(∂R2

+). [17, Theorem II.10.2] also states
the surjectivity of T̃ . By functional analytic arguments we immediately infer that T̃
is a retraction since we are in the Hilbert space setting. We denote the coretraction
by Ẽ ∈ L (Ĥ1/2(∂R2

+), Ĥ1(R2
+)).

Using the same arguments as in Remark 3.1.4 and Remark 3.1.6 we can extend
the trace operator to

T̃ ∈ L (Ĥ1(R2
>0), Ĥ1/2(R)) and Ẽ ∈ L (Ĥ1/2(R), Ĥ1(R2

>0))

where Tu := u|x1=0.
We now want to transfer this result to our case. Let push-forward and pull-back
Φ0

∗,Φ∗
0 and ζ0∗ , ζ∗0 from Lemma 3.1.3 and Lemma 3.1.5 be given. For v ∈ C∞

c (Σδ
θ) we

observe that

(v ◦ ϕ0)(0, t) = v (cos(θ)|t|, sin(θ)t) = (v ◦ γδ)(t) (t ∈ R).

Consequently,

(v ◦ ϕ0|η=0) ◦ γ−1
0 = v|Γ

or equivalently

(ζ0∗ ◦ T̃ ◦ Φ∗
0)v = v|Γ.

Hence, we can define T := ζ0∗ ◦ T̃ ◦ Φ∗
0. Furthermore, we define E = Φ0

∗ ◦ Ẽ ◦ ζ∗0 and
by construction we have TE = IĤ1/2(Γ). Then E is also linear and bounded .
For the statement in the inhomogeneous case we replace the trace operator T

and the extension operator E by the operators in the inhomogeneous case, cf. [17,
Theorem II.4.3] with Ω = R2

>0.

3.1.20 Remark. Note that [17, Theorem II.10.2] actually states the existence of a
bounded extension operator E ∈ L (Ḣ1/2(∂R2

+), Ḣ1(R2
+)) but the linearity of E is

not stated. However, E is actually linear by construction. This can be observed by
having a look at [26, Theorem 2.7, Corollary 1]. The proof of [26, Theorem 2.7] is
similar to the proof of [26, Theorem 2.6]. If we consider the proof of [26, Theorem
2.6] in the case r = 1 then the corresponding extension u is defined as

E(ũ)(x1, ...., xn) = u(x1, ..., xn) =
r−1∑︂
k=0

uk(x1, ..., xn) = u0(x1, ..., xn)
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= 1
xn−1
n

∫︂ x1+xn

x1
...

∫︂ xn−1+xn

xn−1
ũ(t1, ..., tn−1) dt1... dtn−1

where we used [26, Formula (2.46),(2.49)]. Then it is obvious that E is a linear
operator, hence the trace T on the half-space is a retraction. This also holds in the
non Hilbert space setting.

Next, we consider Neumann trace operators and prove the existence of the Neumann
trace operator on Ĥ2

D(Σθ) of functions with vanishing Dirichlet trace. Furthermore,
we prove that the Neumann trace operator has dense range. For this purpose,
we consider the Dirichlet-Neumann trace pair taking the trace of f ∈ Ĥ2(Σθ)
simultaneously. The main idea is to consider the trace in a neighborhood at the
vortex (the critical point) and separately on Γ± as seen in e.g. [20]. Note that
the Neumann trace operator on Ĥ2(Σθ) doesn’t have to exist since by interpreting
∂nu = ∇u · n for u ∈ Ĥ2(Σθ) it is now clear if ∂nu ∈ Ĥ1/2(Γ) since multiplication
with the normal vector field n is not continuous in general. This is caused by the
fact that multiplication with sgn is not bounded in H1/2(R) (cf. [51, Section 2.10.2,
Remark 1]). Hence, in Lemma 3.1.21 we will observe that the Dirichlet-Neumann
trace pair maps into a rather unnatural space DN(Γ) where functions, which fulfill
compatibility conditions, are contained. However, later we will observe that the
Neumann trace of functions with vanishing Dirichlet trace, does indeed map into
Ĥ1/2(Γ).

3.1.21 Lemma. The trace pair

(T, Tn) := (T, ∂n) : Ĥ2(Σθ) → DN(Γ)

is well-defined and continuous with

DN(Γ) :=
¶
(g0, g1) ∈ DN˜︃(Γ)/(P1 × P0) : ∥(∂τg0)τ + g1n∥Ĥ1/2(Γ)×Ĥ1/2(Γ) <∞

©
where

DN˜︃(Γ) :=

⎧⎨⎩(g0, g1) ∈ L2
loc(Γ)× L2

loc(Γ) :
∥gj|Γ±∥Ḣ3/2−j(Γ±) <∞ for j = 0, 1,

g0|Γ+(0) = g0|Γ−(0)

⎫⎬⎭ .

Proof. Let [u] ∈ Ĥ2(Σθ) be fixed and u ∈ Ḣ2(Σθ) be any representative (u will be
specified later on). At first we take care of the trace pair on Γ± = Γ∩(R×R±). Due to
the density there exists a sequence (uk)k∈N ⊆ C∞

c (R2) such that uk|Σθ
→ u in Ḣ2(Σθ)

as k → ∞. Now, for every k ∈ N the trace pair (Tuk, Tnuk) ∈ Ḣ3/2(Λ+)×Ḣ1/2(Λ+) is
well-defined on the line Λ+ := Γ+∪(−Γ+)∪{0} and depends linearly and continuously
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on uk (w.r.t. the topology on Ḣ2(R2)). Here, Ḣ3/2(Λ+) is defined as Ḣ3/2(R) since
Λ+ is a rotation of R.
Clearly, if v, w ∈ Ḣ2(R2) such that v|Σθ

= w|Σθ
, then (Tv, Tnv) = (Tw, Tnw) on Γ+.

Hence, the trace (T, Tn) is only dependent of the function inside Σθ. Then for every
k ∈ N the trace pair (Tuk, Tnuk) ∈ Ḣ3/2(Γ+)× Ḣ1/2(Γ+) is well-defined and depends
linearly and continuously on uk|Σθ

(w.r.t. the topology on Ḣ2(Σθ)).
This shows that the trace pair (Tu, Tnu) ∈ Ḣ3/2(Γ+)× Ḣ1/2(Γ+) is well-defined

(as the limit of the trace pairs of the uk) and depends linearly and continuously on u
(w.r.t. the topology on Ḣ2(Σθ)). Of course, the same observations are valid for the
trace pair (Tu, Tnu) ∈ Ḣ3/2(Γ−)× Ḣ1/2(Γ−).
From [17, Remark II.6.1] we have Ḣ2(Σ1

θ) = H2(Σ1
θ) algebraically for Σ1

θ :=
Σθ ∩B1(0). Due to the Sobolev embedding (cf. [1, Theorem 4.12]) we can choose a
continuous representative u ∈ Ĥ2(Σθ ∩B1(0)) ⊆ BUC(Σ1

θ) which yields Tu|Γ+(0) =
Tu|Γ−(0). In summary, the trace pair

(T, Tn) : Ĥ2(Σθ) → DN˜︃(Γ)/(P1 × P0)

is well-defined, linear and continuous.
We now detect the compatibility condition at the vortex point of Γ. We extend

normal and tangential vector field to Σθ by extending constantly. Then τ, n ∈ L∞(Σθ).
Moreover, a straightforward calculation shows ∇u = (τ · ∇u)τ + (n · ∇u)n a.e. in
Σθ, which implies that

(∂τu)τ + (∂nu)n = T (∇u) ∈ Ĥ1/2(Γ)× Ĥ1/2(Γ)

by Theorem 3.1.19, where T : Ĥ1(Σθ) → Ĥ1/2(Γ) denotes the trace operator. Thus,
if (g0, g1) = (Tu, Tnu) ∈ DN˜︃(Γ), then we necessarily have

(∂τg0)τ + g1n ∈ Ĥ1/2(Γ)× Ĥ1/2(Γ).

This can be seen as a compatibility condition at the vortex of Γ. Then the assertion
follows.

As a consequence we obtain the existence of the Neumann trace operator (see
Corollary 3.1.24). By making use of the density of C∞

c (Γ\{0}) in Ĥ1/2(Γ) from
Lemma 3.1.9 we can actually prove that the Neumann trace operator has dense range.
However, we prove this statement for v± ∈ W 1−1/p,p(Γ±) for 1 < p < ∞ with the
restriction of fulfilling the compatibility condition limt→0 v±(t · τ±) = 0 for the trace
at the vortex if p > 2. This is reasoned by the fact that in the proof of Lemma 3.1.22
we have to apply Hardy’s inequality which is not valid in p = 2 which is the case we
are interested in. However, the results then follows by interpolation.
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3.1.22 Lemma. Let 1 < p <∞. We set Γ+ := Γ ∩ (R× (0,∞)) = (0,∞) · τ+ and
Γ− := Γ ∩ (R× (−∞, 0)) = (−∞, 0) · τ−, where

τ± = (± cos(θ), sin(θ)), n± = (− sin(θ),± cos(θ)).

Let v± ∈ W
1−1/p
p (Γ±) such that limt→0 v±(t · τ±) = 0 for the trace at the vortex if

p > 2 and vn ∈ Ḣ1/2(Γ)2 if p = 2. Then there exists some u ∈ W 2,p(Σθ) such that

u = 0, ∂nu = v± on Γ±.

Proof. Step 1. At first we consider the case p ̸= 2. In this step we follow the ideas of
the proof of [29, Proposition 4.1]. First we rotate Σθ anti-clockwise with θ such that
Γ− = (−∞, 0) · τ− and Γ+ = (0,∞) · τ+ where

τ+ = (cos(2θ), sin(2θ)), n+ = (− sin(2θ), cos(2θ)),
τ− = −e1, n− = −e2.

Note that by rotation we still have v± ∈ W 1−1/p,p(Γ±).
Let G̃ = (0,∞)2 be the wedge with opening angle π/2. For the boundary we define
Γ̃+ := {0}×(0,∞) and Γ̃− := (0,∞)×{0}. Furthermore, we set ρ := |x| =

√︁
x21 + x22

for x ∈ R2. Defining the transformation

Ψ : Σθ → G̃, Ψ(x1, x2) =
Å
ρ cos

Å
π

4θ arccos
Å
x1
ρ

ãã
, ρ sin

Å
π

4θ arccos
Å
x1
ρ

ããã
,

it is straightforward to verify that Ψ is well-defined as well as the fact that Ψ is a
C∞-diffeomorphism. Next, we set ṽ− := v− and ṽ+(t · e2) := v+(t · τ+) for t > 0 such
that

ṽ± ∈ W 1−1/p
p (Γ̃±) with lim

t→0
ṽ+(t · e2) = lim

t→0
ṽ−(t · e1) = 0 (p > 2) (3.6)

Then we are in position to apply [4, Theorem VIII.1.8.5] on the corner G̃ and
[4, Theorem VIII.1.8.5] implies the existence of ũ ∈ W 2,p(G̃) with ũ = 0 on Γ̃±

and ∂nũ = ṽ± on Γ̃±. Then we set u := ũ ◦ Ψ and by construction u satisfies the
desired boundary conditions. Furthermore, we have u ∈ W 2,p(Σθ) by considering
the following: we note that ∂xjΨ ∼ ρ and ∂xj∂xkΨ ∼ ρ−1 for ρ→ 0 and ρ→ ∞ and
j, k = 1, 2. Then we have ∂xjΨn, ρ∂xj∂xkΨn ∈ L∞(Σθ) for j, k, n = 1, 2. Regarding
the derivatives of u = ũ ◦ Φ we obtain (note that det ∇Ψ ≡ π/4θ) for j, k = 1, 2

∥∂xk(ũ ◦Ψ)∥Lp(Σθ) = ∥(∂x1ũ ◦Ψ)∂xkΨ1 + (∂x2ũ ◦Ψ)∂xkΨ2∥Lp(Σθ)

≤ ∥∂x1ũ ◦Ψ∥Lp(Σθ) + ∥∂x2ũ ◦Ψ∥Lp(Σθ) ≤ C∥∇ũ∥Lp(G̃) <∞
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and

∥∂xj∂xk(ũ ◦Ψ)∥Lp(Σθ)

=
⃦⃦⃦⃦
⃦⃦ 2∑︂
m,n=1

((∂xm∂xnũ) ◦Ψ)∂xjΨm∂xkΨn +
2∑︂

n=1
(∂xnũ ◦Ψ)∂xj∂xkΨn

⃦⃦⃦⃦
⃦⃦
Lp(Σθ)

≤
2∑︂

m,n=1
∥(∂xm∂xnũ) ◦Ψ∥Lp(Σθ) +

2∑︂
n=1

∥ρ−1∂xnũ ◦Ψ∥Lp(Σθ) ≤ C∥∇2ũ∥Lp(G̃),

where we applied Hardy’s inequality in the version of [29, Lemma A.2] in the last
step. Note that in order to apply Hardy’s inequality we need to fulfill the boundary
condition limt→0 ∂nũ(t · ej) = 0 for j = 1, 2 (if p > 2) which is fulfilled due to (3.6).
Thus, then we have u = ũ ◦Ψ ∈ W 2,p(Σθ). At last we rotate Σθ clockwise with θ to
obtain our original sector Σθ.
This, in fact, proves that the operator Tp extending v± ∈ W

1−1/p
p (Γ±) to some

u ∈ W 2,p(Σθ) with u = 0 and ∂nu = v± on Γ± is bounded since the coretraction
from [4, Theorem VIII.1.8.5] is bounded.
Step 2. In order to obtain p = 2 we apply an interpolation argument. Note that in

Step 1, [4, Theorem VIII.1.8.5] yields a coretraction which is universal such that the
operators Tp for p ̸= 2 are consistent. Hence, interpolation of

Tp : D(Tp) :=
{︂
v ∈ W 1−1/p

p (Γ) : lim
t→0

v(t · τ) = 0
}︂
→ W 2,p(Σθ) (p > 2),

Tp : D(Tp) := W 1−1/p
p (Γ) → W 2,p(Σθ) (p < 2)

yields the assertion for p = 2 and

D(T2) =
¶
v ∈ H1/2(Γ) : vn ∈ Ḣ1/2(Γ)2

©
.

3.1.23 Remark. (i) We are only able to obtain the result in Lemma 3.1.22 since
by demanding u = 0 on Γ± as a boundary condition we don’t have any other
compatibility conditions as in [29, Proposition 4.1] and for every p > 2 the
operator Tp has the same domain

D(Tp) =
{︂
v ∈ W 1−1/p

p (Γ) : lim
t→0

v(t · τ) = 0
}︂

and D(Tp) = W
1−1/p
p (Γ) for p < 2.

(ii) In the second step of Lemma 3.1.22 we can interpolate

(D(T3/2), D(T3))1/2,2 = {v ∈ H1/2(Γ) : vn ∈ Ḣ1/2(Γ)2},

48



Section 3.1. Sobolev Spaces in Sectors

which leads to Lions-Magenes type spaces. These occur since we interpolate
spaces with boundary conditions (in our case D(T3)) with spaces with no
boundary conditions (in our case D(T3/2)). For an introduction to the Lions-
Magenes spaces we refer to [46, Chapter 33] and [51, Section 2.10].

Summarizing the results from above we obtain the following result on the Neumann
trace operator:

3.1.24 Corollary. Let Ĥ2
D(Σθ) := {u ∈ Ĥ2(Σθ) : u|Γ = 0}. The Neumann trace

operator Tn : Ĥ2
D(Σθ) → Ĥ1/2(Γ) is bounded and has dense range.

Proof. The assertion essentially follows from Lemma 3.1.21 and Lemma 3.1.22. If
u ∈ Ĥ2

D(Σθ), then (Tu, Tnu) = (0, g1) ∈ DN(Γ) such that

g1n ∈ Ĥ1/2(Γ)× Ĥ1/2(Γ).

Since n(x) = (− sin(θ), sgn(x2) cos(θ)) we infer − sin(θ)g1 ∈ Ĥ1/2(Γ). Furthermore,
by the density of C∞

c (Γ\{0}) in Ĥ1/2(Γ) by Lemma 3.1.9 and the fact that functions
in C∞

c (Γ\{0}) fulfill the assumptions of Lemma 3.1.22, for every g ∈ C∞
c (Γ\{0}) we

can find u ∈ H2(Σθ) with u|Γ = 0. Thus, u ∈ Ĥ2
D(Σθ) and Tn has dense range.

Next, we consider the normal trace operator. Note that the normal vector field at
Γ is given as n = (− sin(θ), sgn(x2) cos(θ)) which shows that by taking the normal
trace we have to multiply with sgn. Since multiplication with sgn is not a bounded
operator in H1/2(R) (cf. [51, Section 2.10.2, Remark 1]) we cannot expect the
normal trace operator T0 : H1(Σθ)2 → H1/2(Γ) to be well-defined. In Lemma 3.2.8
we will observe that the normal trace operator on Γ actually exists if the correct
symmetry is given. However, the coretraction exists even if we don’t assume any
symmetry properties. In the following we will construct such a coretraction. The
strategy will be as follows: We will divide Σθ into a bounded Lipschitz domain
(containing the vortex (0, 0) of Σθ) and a smooth sector-like domain. Then for given
h ∈ H1/2(Γ) ∩ Ĥ−1/2(Γ) we will construct a function v on the bounded Lipschitz
domain fulfilling the boundary condition on the corresponding boundary via a Stokes
system. On the unbounded domain we will prove the existence of such a function w
fulfilling the boundary conditions by solving a divergence equation. The solvability
of the divergence equation is stated at first:

3.1.25 Lemma. Let Hω := {(x1, x2) ∈ R2 : x2 > ω(x1)} be the bent half-space
with ω ∈ C∞(R,R), where ω is linear in R\Br(0) for some r > 0. Then for every
h ∈ H1/2(∂Hω)2 ∩ Ĥ−1/2(∂Hω)2 there exists a unique u ∈ H1(Hω)2 solving

div u = 0 in Hω, u = h on ∂Hω.
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and fulfilling the estimate

∥u∥H1(Hω) ≤ C∥h∥H1/2(∂Hω)∩Ĥ−1/2(∂Hω)

with C > 0 independent of h.

Proof. We prove the assertion by solving the Stokes equation

(1−∆)v −∇q = 0 in R2
+,

div v = 0 in R2
+,

v = h̃ on ∂R2
+

(3.7)

on the half-space and then transform the solution to Hω. The solvability and
corresponding estimates in the half-space can be based on explicit solution formulas
as displayed e.g. in [24, Section 2.6]. Hence, we can reduce the proof to considering
a suitable transformation.
We define the transformation

ϕ : Hω → R2
+, (x1, x2) ↦→ (x1, x2 − ω(x1)),

which is clearly a C∞-diffeomorphism due to the fact that ω ∈ C∞(R,R) and
ω′ ∈ BC∞(R,R). Note that

ϕ′(x) =
Ç

1 0
−ω′(x1) 1

å
and detϕ′(x) = 1 (x ∈ Hω).

We set Φ(u) := u ◦ ϕ−1 for u : Hω → R2. By the fact that ω is linear in R\Br(0) for
some r > 0, we deduce that ω′ is constant in R\Br(0) and that supp (ω(k)) ⊆ Br(0)
for k ≥ 2. Then we immediately infer

Φ ∈ Lis(W s,p(Hω)2,W s,p(R2
+)2)

for all s ∈ R and 1 ≤ p ≤ ∞ which follows as in Lemma 3.1.3. Here, we can transform
derivatives of higher order since the derivatives of ϕ are bounded. Furthermore, we
observe that

ϕ′ ◦ ϕ−1 = ϕ′ =
Ç

1 0
−ω′ 1

å
∈ BC∞(R2

+,R2×2).

Then for u : Hω → R2 we set Ψu := ϕ′Φu. Then the divergence transforms as follows:

divR2
+
Ψu = ∂x1(Φu)1 + ∂x2 [−ω′(Φu)1 + (Φu)2]

= (∂x1u1) ◦ ϕ−1 + [(∂x2u1) ◦ ϕ−1]ω′ − [(∂x2u1) ◦ ϕ−1]ω′ + (∂x2u2) ◦ (ϕ−1)
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= (divHω u) ◦ ϕ−1

and Ψ ∈ Lis(W s,p(Hω)2,W s,p(R2
+)2) for all s ∈ R and 1 ≤ p ≤ ∞ as well. Note

that obviously Ψ ∈ Lis(W s,p(∂Hω)2,W s,p(∂R2
+)2) ∩ Lis(Ĥk(∂Hω)2, Ĥk(∂R2

+)2) as
well for k ∈ [−1, 1].

Let h ∈ H1/2(∂Hω)2 ∩ Ĥ−1/2(∂Hω)2. Then h̃ := Ψh ∈ H1/2(∂R2
+)2 ∩ Ĥ−1/2(∂R2

+)2.
Then there exists v ∈ H1

div(R2
+) solving (3.7) in R2

+ with v = h̃ on ∂R2
+. We

set u := Ψ−1v ∈ H1(Hω)2 and thanks to the observation above we also obtain
divHωu = (divR2

+
v) ◦ ϕ = 0. Furthermore, u = h on ∂Hω by construction and

∥u∥H1(Hω) ≤ C∥v∥H1(R2
+) ≤ C∥h̃∥H1/2(∂R2

+)∩Ĥ−1/2(∂R2
+) ≤ C∥h∥H1/2(∂Hω)∩Ĥ−1/2(∂Hω)

with C > 0 independent of h.

3.1.26 Remark. We note that the transformation Ψ from Lemma 3.1.25 preserves
the normal trace. Hence, using Ψ it is possible to transfer normal and tangential
trace from the half-space. This can be observed by

n∂Hω · u = (n∂R2
+
· v) ◦ ϕ = (n∂R2

+
· h̃) ◦ ϕ = n∂Hω · h.

3.1.27 Lemma. There exists a linear and bounded operator

R0 : H1/2(Γ) ∩ Ĥ−1/2(Γ) → H1
div(Σθ)

such that
(R0g · n)|Γ = g for all g ∈ H1/2(Γ) ∩ Ĥ−1/2(Γ).

Proof. We will prove the assertion in several steps. To this end, we consider the
bounded Lipschitz domain G := Σθ ∩ B4(0) and the smooth sector-like domain
Ω by smoothing out the vortex (cf. Figure 3). We will make use of the Stokes
equation in G and the divergence equation in Ω in order to construct functions
v, w in G and Ω which fulfill the given boundary conditions, i.e., u · n = g on Γ for
u = v + w ∈ H1

div(Σθ) and given g ∈ H1/2(Γ) ∩ Ĥ−1/2(Γ).
Let g ∈ C∞

c (Γ\{0}) be arbitrary but fixed. We choose χ ∈ C∞
c (Γ) such that χ ≡ 1

on Γ ∩B7/3(0) and χ ≡ 0 on Γ\B8/3(0). We note that supp(χg) ∈ (Γ ∩B3(0))\{0}
and supp((1− χ)g) ⊆ Γ\B2(0).
In the following we denote the extension operator, which extends functions by zero

to a set U ⊆ R2, as EU
0 .

Step 1. We construct a linear operator M : F → F where F := {h ∈ C∞
c (Γ ∩

B3(0)) : 0 /∈ supp(h)}. The operator M will have the following properties: it holds
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Figure 3: Domains G and Ω

supp(Mh) ⊆ Γ ∩ (B3(0)\B2(0)), the extended function E∂G
0 (h+Mh) is mean value

free on ∂G and

∥Mh∥H1/2(Γ∩B3(0))∩Ĥ−1/2(Γ∩B3(0)) ≤ C∥h∥H1/2(Γ∩B3(0))∩Ĥ−1/2(Γ∩B3(0)) (3.8)

for h ∈ F . We set

Mh(tτ±) :=

⎧⎨⎩−3h((3t− 6)τ±), 2 ≤ |t| < 3,
0, 0 ≤ |t| < 2,

where tτ+ = t(cos(θ), sin(θ)) if t > 0 and tτ− = t(− cos(θ), sin(θ)) if t < 0. Then we
can calculate∫︂

∂G
E∂G

0 (h+Mh) dη =
∫︂
Γ∩B3(0)

(h+Mh) dη

=
∫︂
0<|t|<3

h(tτ±) dt− 3
∫︂
2<|t|<3

h((3t− 6)τ±) dt

= 0.

Furthermore, it is straight forward to prove that (3.8) holds for all h ∈ F with a
constant C > 0 independent of h by making use of the Slobodeckij seminorm. A
density argument then yields the assertion.
Step 2. First we consider the bounded Lipschitz domain G. We set g1 := E∂G

0 (χg+
M(χg)) ∈ H1/2(∂G) ∩ Ĥ−1/2(∂G). We consider the Stokes equations on G:

−∆ṽ −∇p̃ = 0 in G,
div ṽ = 0 in G,

ṽ = g1n∂G on ∂G,
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where n∂G denotes the normal vector field at ∂G. Note that since χg ∈ C∞
c ((Γ ∩

B3(0))\{0}) by construction, multiplication with n∂G is well-defined (no singularities
at the vortices occur) and yields g1n∂G ∈ H1/2(∂G)2. By [17, Theorem IV.1.1] there
exists a unique weak solution ṽ ∈ H1

div(G) to the Stokes system if∫︂
∂G
g1n∂G · n∂G dη =

∫︂
∂G
E∂G

0 (χg +M(χg)) dη = 0.

Furthermore, ṽ satisfies the estimate

∥ṽ∥H1(G) ≤ C∥g1n∂G∥H1/2(∂G) ≤ C∥g1∥H1/2(∂G) ≤ C∥g∥H1/2(Γ)∩Ĥ−1/2(Γ). (3.9)

Since ṽ = g1n∂G = 0 on Σθ ∩ ∂G by construction, we infer v := EΣθ
0 ṽ ∈ H1

div(Σθ).
Step 3. Now we consider the unbounded smooth sector-like domain Ω. We set

g2 := E∂Ω
0 ((1−χ)g−M(χg)) ∈ H1/2(∂Ω)∩Ĥ−1/2(∂Ω) and h := g2n∂Ω ∈ H1/2(∂Ω)2∩

Ĥ−1/2(∂Ω) where n∂Ω denotes the normal vector field at ∂Ω. Since Ω is smooth, n∂Ω
is smooth as well (cf. Lemma 3.1.1) such that g2n∂Ω ∈ H1/2(∂Ω)2∩ Ĥ−1/2(∂Ω)2. Due
to Lemma 3.1.25 there exists a w̃ ∈ H1

div(Ω) such that w̃ = g2n∂Ω = 0 on ∂Ω∩B1(0)
by construction. Furthermore, w̃ satisfies w̃ · n∂Ω = g2 by construction and

∥w̃∥H1(Ω) ≤ C∥g2n∂Ω∥H1/2(∂Ω)∩Ĥ−1/2(∂Ω) ≤ C∥g2∥H1/2(∂Ω)∩Ĥ−1/2(∂Ω)

≤ C∥g∥H1/2(Γ)∩Ĥ−1/2(Γ)

(3.10)

since supp(g2) ⊆ Γ\B2(0). Then we obtain w := EΣθ
0 w̃ ∈ H1

div(Σθ).
Step 4. We set R0g := u := v + w ∈ H1

div(Σθ). Furthermore, we have

n · u = n · v + n · w = χg +M(χg) + (1− χ)g −M(χg) = g on Γ

as well as ∥u∥H1(Σθ) ≤ C∥g∥H1/2(Γ)∩Ĥ−1/2(Γ) by (3.9) and (3.10). Since C∞
c (Γ\{0}) is

dense in H1/2(Γ)∩ Ĥ−1/2(Γ) by Lemma 3.1.9 and Lemma 3.1.11, a density argument
yields the assertion.

At last we prove the existence of the generalized trace by following the ideas
from [6]. From the discussion ahead of Lemma 3.1.27 one would expect that the
generalized trace should also not exist. Actually, due to the lack of regularity and
by construction via the generalized principle of integration, it turns out that the
generalized trace Tn : L2

div(Σθ) → Ĥ−1/2(Γ) does exist.

3.1.28 Lemma (Generalized trace theorem). Let

T0 : L2
div(Σθ) → Ĥ−1/2(Γ)

be defined by

T0v(ψ) = ⟨n · v, ψ⟩Ĥ−1/2(Γ),Ĥ1/2(Γ) := ⟨v,∇Eψ⟩L2(Σθ),L2(Σθ),
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for ψ ∈ Ĥ1/2(Γ) where E : Ĥ1/2(Γ) → Ĥ1(Σθ) is the linear and bounded exten-
sion operator to the trace operator T : Ĥ1(Σθ) → Ĥ1/2(Γ), characterized by the
inhomogeneous Dirichlet problem:

∆Eψ = 0 in Σθ, Eψ = ϕ on Γ,

see Corollary 3.1.33. Then T0 is well-defined (especially independent of the choice of
the extension operator E) and bounded.

Proof. The proof follows the proof of [6, Proposition 3.4]. Let ϕ ∈ Ĥ1(Σθ) be
arbitrary. Then Tϕ = ϕ|Γ ∈ Ĥ1/2(Γ) exists by Theorem 3.1.19 and we have
Eϕ−ϕ ∈ Ĥ1

0(Σθ) since Eϕ ∈ Ĥ1(Σθ) and by construction we have (Eϕ−ϕ)|Γ = 0 (the
trace exists). Then also ∇(Eϕ− ϕ) = ∇Eϕ−∇ϕ ∈ ∇Ĥ1

0(Σθ). From Lemma 3.1.15
we know that the Weyl projection PW projects along ∇Ĥ1

0(Σθ) such that

PW (∇Eϕ−∇ϕ) = 0 ⇒ PW (∇Eϕ) = PW (∇ϕ).

Making use of the fact that v ∈ L2
div(Σθ) = R(PW ) (note that PW is a symmetric

operator) we obtain

⟨v,∇Eϕ⟩L2(Σθ),L2(Σθ)

= ⟨PWv,∇Eϕ⟩L2(Σθ),L2(Σθ) = ⟨v, PW∇Eϕ⟩L2(Σθ),L2(Σθ)

= ⟨v, PW∇ϕ⟩L2(Σθ),L2(Σθ) = ⟨PWv,∇ϕ⟩L2(Σθ),L2(Σθ)

= ⟨v,∇ϕ⟩L2(Σθ),L2(Σθ)

which gives us the generalized version of integration by parts

⟨T0v, Tϕ⟩Ĥ−1/2(Γ),Ĥ1/2(Γ) = ⟨v,∇ϕ⟩L2(Σθ),L2(Σθ)

for ϕ ∈ Ĥ1(Σθ) and v ∈ L2
div(Σθ). In particular we have

⟨T0v, ψ⟩Ĥ−1/2(Γ),Ĥ1/2(Γ) = ⟨v,∇ϕ⟩L2(Σθ),L2(Σθ)

for any ϕ ∈ Ĥ1(Σθ) that fulfills Tϕ = ψ such that the definition of T0 is independent of
the extension operator E, hence T0 is well-defined. By making use of the boundedness
of the extension operator E from Theorem 3.1.19 we obtain the boundedness of T0:

∥T0v∥Ĥ−1/2(Γ) = sup
ψ∈Ĥ1/2(Γ)

∥ψ∥
Ĥ1/2(Γ)=1

|⟨T0v, ψ⟩Ĥ−1/2(Γ),Ĥ1/2(Γ)|

= sup
ψ∈Ĥ1/2(Γ)

∥ψ∥
Ĥ1/2(Γ)=1

|⟨v,∇Eψ⟩L2(Σθ),L2(Σθ)|
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≤ sup
ψ∈Ĥ1/2(Γ)

∥ψ∥
Ĥ1/2(Γ)=1

∥Eψ∥Ĥ1(Σθ)∥v∥L2(Σθ)

≤ C sup
ψ∈Ĥ1/2(Γ)

∥ψ∥
Ĥ1/2(Γ)=1

∥ψ∥Ĥ1/2(Γ)∥v∥L2(Σθ)

≤ C∥v∥L2(Σθ)

for arbitrary v ∈ L2
div(Σθ).

3.1.3 Elliptic Problems

The study of elliptic problems is as usual of great interest. Elliptic problems were
already considered in various kinds of settings and domains. However, the closest
results we could find for elliptic problems on sectors, were found in [20] where the
setting in inhomogeneous spaces and bounded non-smooth domains were considered.
In this section we collect results in the framework of homogeneous spaces. We will

mainly focus on the Dirichlet problem in the strong, weak and very weak setting. The
strategy to solve the strong problem is as follows: It will be necessary to approximate
Σθ with smooth sector-like domains Σδ

θ where results are known. Then passing to
the limit we obtain the results for Σθ. We start with a result derived in [20]:

3.1.29 Lemma (Theorem 3.1.1.1 in [20]). Let Ω ⊆ R2 be a C2-domain. Then the
equality

∫︂
Ω
| div v|2 −

2∑︂
i,j=1

∫︂
Ω
∂iv

i∂jv
j dx

= −2⟨∂τ (n · v), (τ · v)⟩Ĥ−1/2(∂Ω),Ĥ1/2(∂Ω)

−
∫︂
∂Ω\{0}

[B(t · v, t · v) + trB(n · v)2] dη

(3.11)

holds for every v ∈ C∞
c (Ω). Here, B denotes the second fundamental quadratic form

corresponding to the boundary of the underlying domain (trB denotes its trace), see
[20, Section 3.1.1].

3.1.30 Remark. We remark that in [20, Theorem 3.1.1.1] Ω is assumed to be
bounded. However, following the lines of the proof it is easily checked that the
boundedness assumption can be dropped. In fact, the calculations in the proof of
[20, Theorem 3.1.1.1] work verbatim for all v ∈ C∞

c (Ω) since then the existence of
all appearing integrals are given.
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The strategy to derive strong solvability of related Dirichlet problems on Σθ is
now as follows where we adapt the main ideas from [20, Section 3.1]: As already
mentioned we approximate Σθ by the smoothed out convex sector-like domains Σδ

θ.
Since Σδ

θ is of class C∞ we will then obtain smooth solutions for the corresponding
elliptic problem with estimates in Ĥ2(Σδ

θ) that are uniform in δ > 0 thanks to
Lemma 3.1.29. Note that in (3.11) the boundary terms B drop out due to the
convexity of Σδ

θ. Then passing δ → 0 then yields Ĥ2 regularity for the considered
elliptic problems on Σθ.
We now consider the Dirichlet problem with homogeneous boundary conditions

which is formulated as follows:

−∆p = f in Σθ,

p = 0 on Γ.
(3.12)

3.1.31 Lemma (Strong and weak homogeneous Dirichlet problem). We assume
f ∈ Ĥ−1(Σθ). Then there exists a unique solution p ∈ Ĥ1

0(Σθ) of (3.12) in the weak
sense satisfying

∥∇p∥L2(Σθ) ≤ C∥f∥Ĥ−1(Σθ)

with C > 0 independent of f and p. If, in addition, f ∈ L2(Σθ), then ∇p ∈ H1(Σθ)
and

∥∇2p∥L2(Σθ) ≤ C∥f∥L2(Σθ).

Proof. First we note that since C∞
c,m(Σθ)

d
↪→ Ĥ−1(Σθ) by Lemma 3.1.11, we can

assume f ∈ C∞
c,m(Σθ). As already mentioned, at first we consider (3.12) on Σδθ in its

weak formulation ∫︂
Σδ

θ

∇pδ · ∇ϕdx =
∫︂
Σδ

θ

fδϕdx (ϕ ∈ Ĥ1
0(Σδ

θ)), (3.13)

where we define fδ := f |Σδ
θ
via restriction and use the representation of the duality

pairing from Lemma 3.1.11. Then the Riesz representation Theorem 2.1.1 yields a
unique solution p ∈ Ĥ1

0(Σδ
θ) for (3.13) satisfying

∥∇pδ∥L2(Σδ
θ
) ≤ C∥f∥Ĥ−1(Σθ) (δ > 0). (3.14)

Since Σδθ is a uniform C∞ domain, we have ∇2pδ ∈ L2(Σδθ) if f ∈ L2(Σδθ) additionally,
see [20]. Hence, we can apply Lemma 3.1.29 to the result

∥∇2pδ∥L2(Σδ
θ
) ≤ ∥∆pδ∥L2(Σδ

θ
) + 2⟨∂τδ(∂nδ

pδ), ∂τδpδ⟩Ĥ−1/2(Γδ),Ĥ1/2(Γδ)

≤ ∥f∥L2(Σθ)
(3.15)
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uniformly in δ > 0. Here, we took into account the fact that pδ = 0 implies ∂τδpδ = 0
on Γδ and that the B term drops out due to the convexity of Σδ

θ. We note that
formula (3.11) still holds for p since C∞

c (Σδ
θ) is dense in Ĥ1

0(Σδ
θ) by definition.

For ϕ ∈ C∞
c (Σδθ) ↪→ Ĥ1

0(Σθ) we consider the weak formulation (3.13) again. Then
by the continuity of the integral we obtain∫︂

Σδ
θ

fδϕdx
δ→0−−→

∫︂
Σθ

fϕ dx.

Now, we denote by h̃ the extension to Σθ by zero for some function h : Σδ
θ → Rn.

Then by (3.14) we obtain the estimate

∥∇pδfi∥L2(Σθ) ≤ C∥f∥Ĥ−1(Σθ)

uniformly in δ > 0 which yields the boundedness of (∇pδfi)δ>0 in L2(Σθ). Then
(∇pδfi)δ>0 has a weak limit

∇pδfi→ w weak in L2(Σθ),

i.e., ∫︂
Σδ

θ

∇pδϕdx =
∫︂
Σθ

∇pδfiϕdx
δ→0−−→

∫︂
Σθ

wϕdx

for all ϕ ∈ C∞
c (Σθ). For ϕ ∈ C∞

c,σ(Σθ) we can choose δ > 0 so small that ϕ ∈ C∞
c,σ(Σδθ).

Then we can calculate∫︂
Σθ

∇pδfiϕdx =
∫︂
Σδ

θ

∇pδϕdx =
∫︂
Σδ

θ

pδ divϕdx = 0

where we made use of the fact that divϕ = 0. Thus, ⟨w,ϕ⟩L2(Σθ),L2(Σθ) = 0 for all
ϕ ∈ C∞

c,σ(Σθ) and de Rahm’s theorem implies w = ∇p for some p ∈ L2
loc(Σθ). So for

δ → 0 in (3.13) we infer∫︂
Σθ

∇p · ∇ϕdx =
∫︂
Σθ

fϕ dx (ϕ ∈ C∞
c (Σθ)),

which means that p ∈ Ĥ1
0(Σθ) is the weak solution of (3.12). Note that ∇Ĥ1

0(Σθ) ∋
∇pδfi → ∇p in L2(Σθ) such that p ∈ Ĥ1

0(Σθ). Also by the Riesz representation
theorem it is clear that p is unique.
Finally, for the Ĥ2-regularity we remark that by (3.15) we obtain

∥∇2pδ
fi ∥L2(Σθ) ≤ ∥f∥L2(Σθ) (δ > 0),

which on one hand yields th boundedness of (∇2pδ
fi )δ>0 in L2(Σθ) which on the other

hand gives us the weak convergence of (∇2pδ
fi )δ>0 in L2(Σθ), i.e.,∫︂

Σθ

∇2pδ
fi ϕdx

δ→0−−→
∫︂
Σθ

Wϕdx
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for all ϕ ∈ C∞
c (Σθ). Then again for ϕ ∈ C∞

c (Σθ) we can choose δ so small that
ϕ ∈ C∞

c (Σδ
θ) such that∫︂

Σθ

ϕ∂j∂kpδ‡ dx =
∫︂
Σδ

θ

ϕ∂j∂kpδ dx = −
∫︂
Σδ

θ

∂jϕ∂kpδ dx = −
∫︂
Σθ

∂jϕ∂kpδfi dx

δ→0−−→ −
∫︂
Σθ

∂jϕ∂kp dx =
∫︂
Σθ

ϕ∂j∂kp dx

for k, j = 1, 2 by the weak convergence of (∇pδfi)δ>0 by the argumentation above. By
the uniqueness of the limit we deduce ∇2p = W ∈ L2(Σθ). Now we have proved
that p is the unique strong solution to the homogeneous Dirichlet problem (3.12)
satisfying the estimates as claimed for smooth f . Then a density argument yields
the assertions for all f .

3.1.32 Remark. (i) For the reader’s convenience we want to compare the results
of [20, Theorem 3.1.2.1, Theorem 3.1.2.3] to our above results. In [20] in order
to obtain the full H2(Ω) regularity, Poincaré’s inequality is applied where the
constant from Poincaré’s inequality depends on the diameter of the bounded
domain. Hence, the constant C of the corresponding norm estimates for the
solution also depend on the diameter of Ω. However, in the context of [20] it
is also possible to obtain a constant C independent of the domain if we only
consider Ĥk(Ω), k = 1, 2, regularity. Thus, in homogeneous spaces the approach
developed in [20] also works on a class of unbounded convex domains. The
only condition we used above is that C∞

c (Ω) is dense in Ĥ1
0(Ω) which holds via

definition.

As the results about surjectivity of trace theorems and solvability of elliptic prob-
lems are closely related, it is possible to solve the weak Dirichlet problem with inho-
mogeneous boundary conditions by applying the trace theorem (cf. Theorem 3.1.19):

3.1.33 Corollary (Weak inhomogeneous Dirichlet problem). For every pair of data
(f, g) ∈ Ĥ−1(Σθ)× Ĥ1/2(Γ) there exists a unique solution p ∈ Ĥ1(Σθ) of

−∆p = f in Σθ,

p = g on Γ,
(3.16)

in the weak sense satisfying

∥∇p∥L2(Σθ) ≤ C
Ä
∥f∥Ĥ−1(Σθ) + ∥g∥Ĥ1/2(Γ)

ä
with C > 0 independent of f, g and p.
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Proof. Let (f, g) ∈ Ĥ−1(Σθ)× Ĥ1/2(Γ) be given. Thanks to Theorem 3.1.19 there
exists some p̃ = E(g) ∈ Ĥ1(Σθ) such that p̃ = g on Γ. Now let p ∈ Ĥ1(Σθ) be the
solution of

−∆p = f +∆p̃ in Σθ, p = 0 on Γ

which exists thanks to Lemma 3.1.31. By the observation regarding divergence from
Lemma 3.1.15, we deduce ∆p̃ = div∇p̃ ∈ Ĥ−1(Σθ) since ∇p̃ ∈ L2(Σθ).
Then p = p̃+ p ∈ Ĥ1(Σθ) solves (3.16). The solution is also unique: Let p and p̃ be
two solutions solving (3.16). It follows that p = p− p̃ solves

−∆p = 0 in Σθ, p = 0 on Γ,

which is uniquely solvable thanks to Lemma 3.1.31. Hence we infer p = 0 and p = p̃.
The estimate also follows from Theorem 3.1.19 and Lemma 3.1.31.

At last we solve the very weak Dirichlet problem which we want to prove by a
simplified approach for spaces of low regularity as seen in [3, Theorem 1.1]:

3.1.34 Lemma. Let Ĥ2
D(Σθ) := {u ∈ Ĥ2(Σθ) : u|Γ = 0} and let Ĥ−2

D (Σθ) :=
(Ĥ2

D(Σθ))′ be the corresponding dual space. For h ∈ Ĥ−1/2(Γ) we define

ℓh(ϕ) := −⟨h, Tnϕ⟩Ĥ−1/2(Γ),Ĥ1/2(Γ) (ϕ ∈ Ĥ2
D(Σθ)),

where Tn denotes the Neumann trace operator from Corollary 3.1.24. Then we have
ℓh ∈ Ĥ−2

D (Σθ) and using this identification we obtain

Ĥ−1/2(Γ) ↪→ Ĥ−2
D (Σθ).

Proof. Fix an arbitrary h ∈ Ĥ−1/2(Γ). Let ℓh be defined as above. Then ℓh is
obviously well-defined since Tnϕ ∈ Ĥ1/2(Γ) which follows from Corollary 3.1.24.
Obviously, using Corollary 3.1.24 we also see that ℓh ∈ Ĥ−2

D (Σθ):

|ℓh(ϕ)| ≤ ∥h∥Ĥ−1/2(Γ)∥Tnϕ∥Ĥ1/2(Γ) ≤ C∥h∥Ĥ−1/2(Γ)∥ϕ∥Ĥ2(Σθ)

for all ϕ ∈ Ĥ2
D(Σθ) which gives us

∥ℓh∥Ĥ−2
D

(Σθ) ≤ C∥h∥Ĥ−1/2(Γ).

The strategy to prove the very weak inhomogeneous Dirichlet problem is given
as follows: By considering the solution operator L−1 to the strong homogeneous
Dirichlet problem from Lemma 3.1.31, we will observe that the dual operator (L−1)′

actually is the solution operator to the very weak (in)homogeneous Dirichlet problem.
By the low regularity that is assumed, we even obtain the solution operator for
inhomogeneous boundary conditions.
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3.1.35 Lemma (Very weak inhomogeneous Dirichlet problem). For every data
g ∈ Ĥ−1/2(Γ) there exists a unique solution p ∈ L2(Σθ) of

−∆p = 0 in Σθ,

p = g on Γ,
(3.17)

in the very weak sense satisfying

∥p∥L2(Σθ) ≤ C∥g∥Ĥ−1/2(Γ)

with C > 0 independent of g and p.

Proof. As already mentioned before, it will turn out that the solution operator for
the very weak formulation corresponds with the solution operator for the strong
formulation of the Dirichlet problem with homogeneous boundary conditions from
Lemma 3.1.31. Also by Lemma 3.1.31 we know that for every f ∈ L2(Σθ) there
exists a unique p ∈ Ĥ2

D(Σθ), where Ĥ2
D(Σθ) = {p ∈ Ĥ2(Σθ) : p|Γ = 0}, solving the

Dirichlet problem for homogeneous boundary conditions (here Ĥ2
D(Σθ) is as defined

as in Lemma 3.1.34). In fact, that means that the solution operator L−1 : L2(Σθ) →
Ĥ2
D(Σθ) to

L : Ĥ2
D(Σθ) → L2(Σθ), Lp := ∆p,

exists and that L−1 is bounded (by the estimate from Lemma 3.1.31). Considering
the dual operator L′ : L2(Σθ) → Ĥ−2

D (Σθ) we infer for u, ϕ ∈ L2(Σθ) ∩ Ĥ2
D(Σθ):

⟨L′u, ϕ⟩Ĥ−2
D

(Σθ),Ĥ2
D
(Σθ) = ⟨u, Lϕ⟩L2(Σθ),L2(Σθ) = (u,∆ϕ)2 = (−∆u, ϕ)2,

which shows that L′ is a consistent extension of L and (L′)−1 = (L−1)′ : Ĥ−2
D (Σθ) →

L2(Σθ) is the corresponding solution operator. Then to every H ∈ Ĥ−2
D (Σθ) there

exists a unique p ∈ L2(Σθ) such that L′p = H in Ĥ−2
D (Σθ) with the desired estimate.

Now thanks to Lemma 3.1.34 we even get a solution for the very weak Dirichlet
problem with inhomogeneous boundary conditions (3.17): By Lemma 3.1.34 we can
identify every g ∈ Ĥ−1/2(Γ) with some functional

ℓg = −⟨g, Tn ·⟩Ĥ−1/2(Γ),Ĥ1/2(Γ) = H ∈ Ĥ−2
D (Σθ).

Then there exists a unique p ∈ L2(Σθ) solving L′p = H which in particular gives us

−⟨g, Tnϕ⟩Ĥ−1/2(Γ),Ĥ1/2(Γ) = ⟨H,ϕ⟩Ĥ−2
D

(Σθ),Ĥ2
D
(Σθ) = (p,∆ϕ)2

for every ϕ ∈ Ĥ2
D(Σθ) which is indeed the very weak formulation of (3.17) showing

that p solves (3.17) in the very weak sense. Also the estimate follows:

∥p∥L2(Σθ) = ∥(L−1)′H∥L2(Σθ) ≤ ∥(L−1)′∥L (Ĥ−2
D

(Σθ),L2(Σθ))∥H∥Ĥ−2
D

(Σθ)

60



Section 3.1. Sobolev Spaces in Sectors

≤ ∥L−1∥L (L2(Σθ),Ĥ2
D
(Σθ))∥g∥Ĥ−1/2(Γ)

with C = ∥L−1∥L (L2(Σθ),Ĥ2
D
(Σθ)) > 0 being the same constant C as in Lemma 3.1.31.

3.1.4 Korn’s Inequality for Convex and Non-Convex Wedges

For 0 < θ < π we define the upper wedge of opening angle θ as

Σ+
θ :=

¶
(x1, x2) ∈ R2 : arccot

Ä
x1
x2

ä
< θ, x2 > 0

©
and the lower wedge of opening angle θ as Σ−

θ := {(x1, x2) ∈ R2 : (x1,−x2) ∈ Σ+
θ }.

Finally, the wedge of opening angle 2θ (sector of opening angle θ) is given as
Σθ := (0,∞) × {0} ∪ Σ+

θ ∪ Σ−
θ . Note that Σπ/2 is the right half plane (0,∞) × R.

Now, the following variant of Korn’s inequality is available for the (right) half plane;
cf. [7]:

3.1.36 Lemma. Let R2
>0 := Σπ/2. There exists a constant C > 0 such that

∥∇u∥2L2(R2
>0,R2×2) ≤ C

(︂
∥u∥2L2(R2

>0,R2) + ∥D(u)∥2L2(R2
>0,R2×2)

)︂
for u ∈ H1(R2

>0,R2).

Proof. Following the proof of [7, Lemma IV.7.6] the assertion follows immediately
by replacing Nečas’ inequality for bounded domains with Nečas’ inequality for the
half-space [7, Proposition IV.1.5] in the last step.

In order to transfer Korn’s inequality to convex and non-convex wedges, we first
prove Korn’s inequality on the first and second quadrant:

3.1.37 Corollary. Let R2
>0,+ := Σ+

π/2. There exists a constant C > 0 such that

∥∇u∥2L2(R2
>0,+,R2×2) ≤ C

(︂
∥u∥2L2(R2

>0,+,R2) + ∥D(u)∥2L2(R2
>0,+,R2×2)

)︂
for all u ∈ H1(R2

>0,+,R2).

Proof. Step 1. For λ = (λ1, λ2) ∈ R2 we define the extension operators

Eλ, E ′
λ : L2(R2

>0,+) → L2(R2
>0)

by setting

(Eλf)(x1, x2) :=

⎧⎨⎩ f(x1, x2), if x2 > 0,

λ1f(x1,−x2) + λ2f(x1,−2x2), if x2 < 0,
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for x ∈ R2
>0 as well as

(E ′
λf)(x1, x2) :=

⎧⎨⎩ f(x1, x2), if x2 > 0,

−λ1f(x1,−x2)− 2λ2f(x1,−2x2), if x2 < 0,

for x ∈ R2
>0 for functions f ∈ L2(R2

>0,+), respectively. Clearly, both operators are
linear and continuous with

∥f∥2L2(R2
>0,+) ≤ ∥Eλf∥2L2(R2

>0)
≤ (1 + |λ1|2 + 2|λ2|2)∥f∥2L2(R2

>0,+) =: Cλ∥f∥2L2(R2
>0,+)

and

∥f∥2L2(R2
>0,+) ≤ ∥E ′

λf∥2L2(R2
>0)

≤ (1 + |λ1|2 + 4|λ2|2)∥f∥2L2(R2
>0,+) =: C ′

λ∥f∥2L2(R2
>0,+)

for f ∈ L2(R2
>0,+), respectively.

Step 2. Now, let R2
>0,− := Σ−

π/2 and let λ = (λ1, λ2) ∈ R2 with λ1 + λ2 = 1. For
f ∈ H1(R2

>0,+) we then have ∂1Eλf = Eλ∂1f as well as∫︂
R2
>0

(∂2ϕ)Eλf dx

=
∫︂
R2
>0,+

(∂2ϕ)f dx+
∫︂
R2
>0,−

(∂2ϕ(x1, x2)) (λ1f(x1,−x2) + λ2f(x1,−2x2)) dx

=
∫︂ ∞

0
ϕ(x1, 0) ((λ1f(x1, 0) + λ2f(x1, 0))− f(x1, 0))⏞ ⏟⏟ ⏞

=0

dx1 −
∫︂
R2
>0,+

ϕ(∂2f) dx

−
∫︂
R2
>0,−

ϕ(x1, x2) (−λ1∂2f(x1,−x2)− 2λ2∂2f(x1,−2x2)) dx

= −
∫︂
R2
>0

ϕ(E ′
λ∂2f) dx,

for ϕ ∈ D(R2
>0) which shows that ∂2Eλf = E ′

λ∂2f . Note that the condition λ1+λ2 = 1
is necessary to obtain the latter relation. It follows that Eλ : H1(R2

>0,+) → H1(R2
>0)

is well-defined, linear and continuous, provided that we assume λ1 + λ2 = 1.
Step 3. Now, let λ = (λ1, λ2) := (3,−2) and let µ = (µ1, µ2) := (−3, 4). Then we

have λ1 + λ2 = 1, µ1 + µ2 = 1, −λ1 = µ1 and −2λ2 = µ2. Note that the latter two
relations ensure that E ′

λ = Eµ. We fix u ∈ H1(R2
>0,+,R2) and define v ∈ H1(R2

>0,R2)
as v = (v1, v2) := (Eλu1, Eµu2). Now, we have

∥u∥2L2(R2
>0,+,R2) ≤ ∥v∥2L2(R2

>0,R2) ≤ max{Cλ, Cµ}∥u∥2L2(R2
>0,R2)
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using the estimate from above as well as

∇v =

Ñ
∂1v1 ∂2v1

∂1v2 ∂2v2

é
=

Ñ
Eλ∂1u1 Eµ∂2u1

Eµ∂1u2 E ′
µ∂2u2

é
and

D(v) =

Ñ
∂1v1

1
2(∂2v1 + ∂1v2)

1
2(∂2v1 + ∂1v2) ∂2v2

é
=

Ñ
Eλ∂1u1 Eµ 1

2(∂2u1 + ∂1u2)

Eµ 1
2(∂2u1 + ∂1u2) E ′

µ∂2u2

é
,

which implies that

∥∇u∥2L2(R2
>0,+,R2×2) ≤ ∥∇v∥2L2(R2

>0,R2×2) ≤ max{Cλ, Cµ, C ′
µ}∥∇u∥2L2(R2

>0,+,R2×2)

and

∥D(u)∥2L2(R2
>0,+,R2×2) ≤ ∥D(v)∥2L2(R2

>0,R2×2)

≤ max{Cλ, Cµ, C ′
µ}∥D(u)∥2L2(R2

>0,+,R2×2).

Now, the assertion is a direct consequence of Lemma 3.1.36.

As a consequence we also obtain

3.1.38 Corollary. Let R2
>0,− := Σ−

π/2. There exists a constant C > 0 such that

∥∇u∥2L2(R2
>0,−,R2×2) ≤ C

(︂
∥u∥2L2(R2

>0,−,R2) + ∥D(u)∥2L2(R2
>0,−,R2×2)

)︂
for u ∈ H1(R2

>0,−,R2).

Proof. This result follows with the same arguments as used in the proof of Corol-
lary 3.1.37 from Lemma 3.1.36. Alternatively, this result can be deduced from
Corollary 3.1.37 by means of suitable reflections w.r.t. the half axis (0,∞)×{0}.

For our next result we introduce the following notation: For M ∈ L∞(R2
>0,R2×2)

we define the modified rate of deformation tensor as

DM(u) := 1
2
(︁
(∇u)M+MT (∇u)T

)︁
(u ∈ H1(R2

>0,R2)).

Note that DM(u) ∈ L2(R2
>0,R2×2) for u ∈ H1(R2

>0,R2). Also note that for M ≡
M ∈ R2×2 we have ∇(Mu) = M∇u and D(Mu) = 1

2(M(∇u) + (∇u)TMT ) for
u ∈ H1(R2

>0,R2), which yields

D(M−Tu) =M−T 1
2
(︁
(∇u)M +MT (∇u)T

)︁
M−1 =M−TDM(u)M−1

for u ∈ H1(R2
>0,R2) provided that det(M) ̸= 0.
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3.1.39 Corollary. Let R2
>0 := Σπ/2. Let M± ∈ R2×2 with det(M±) ̸= 0. Let

M ∈ L∞(R2
>0,R2×2) such that M|R2

>0,±
=M± for R2

>0,± := Σ±
π/2. Then there exists

a constant C > 0 such that

∥∇u∥2L2(R2
>0,R2×2) ≤ C

(︂
∥u∥2L2(R2

>0,R2) + ∥DM(u)∥2L2(R2
>0,R2×2)

)︂
for u ∈ H1(R2

>0,R2).

Proof. Let CM := max{|M−1
+ |, |M−1

− |, |MT
+ |, |M−T

+ |, |MT
− |, |M−T

− |} ≥ 1 and let C > 0
be the constant in Korn’s inequality for R2

>0,± obtained in Corollary 3.1.37 and
Corollary 3.1.38. For u ∈ H1(R2

>0,R2) we then have

∥∇u∥2L2(R2
>0,R2×2) = ∥∇u∥2L2(R2

>0,+,R2×2) + ∥∇u∥2L2(R2
>0,−,R2×2)

≤ C2
M

(︂
∥M−T

+ ∇u∥2L2(R2
>0,+,R2×2) + ∥M−T

− ∇u∥2L2(R2
>0,−,R2×2)

)︂
= C2

M

(︂
∥∇(M−T

+ u)∥2L2(R2
>0,+,R2×2) + ∥∇(M−T

− u)∥2L2(R2
>0,−,R2×2)

)︂
≤ CC2

M

(︂
∥M−T

+ u∥2L2(R2
>0,+,R2) + ∥D(M−T

+ u)∥2L2(R2
>0,+,R2×2)

+ ∥M−T
− u∥2L2(R2

>0,−,R2) + ∥D(M−T
− u)∥2L2(R2

>0,−,R2×2)

)︂
≤ CC6

M

(︂
∥u∥2L2(R2

>0,+,R2) + ∥DM(u)∥2L2(R2
>0,+,R2×2)

+ ∥u∥2L2(R2
>0,−,R2) + ∥DM(u)∥2L2(R2

>0,−,R2×2)

)︂
= CC6

M

(︂
∥u∥2L2(R2

>0,R2) + ∥DM(u)∥2L2(R2
>0,R2×2)

)︂
,

which is the asserted estimate.

Finally, we are able to transfer a variant of Korn’s inequality from the half-space
to convex and non-convex wedges:

3.1.40 Corollary. Let 0 < θ < π. There exists a constant C > 0 such that

∥∇u∥2L2(Σθ,R2×2) ≤ C
Ä
∥u∥2L2(Σθ,R2) + ∥D(u)∥2L2(Σθ,R2×2)

ä
(u ∈ H1(Σθ,R2)).

Proof. We fix u ∈ H1(Σθ,R2). Using the transformation Φ : R2
>0 → Σθ given as

Φ(x1, x2) := (x1 + |x2| cos(θ), x2) (x ∈ Σθ),

we set v := u ◦ Φ ∈ H1(R2
>0,R2). The inverse Φ−1 : Σθ → R2

>0 of Φ is given as

Φ−1(x1, x2) = (x1 − |x2| cos(θ), x2), (x ∈ Σθ),
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and we have

∇Φ(x) =

Ñ
1 sgn(x2) cos(θ)

0 1

é
(x ∈ R2

>0),

∇(Φ−1)(x) =

Ñ
1 −sgn(x2) cos(θ)

0 1

é
(x ∈ R2

>0).

Note that the composition with Φ and Φ−1 constitute linear isometries from L2(Σθ)
onto L2(R2

>0) and from L2(R2
>0) onto L2(Σθ), respectively. Now, with ∇(Φ−1) =

((∇(Φ−1)) ◦ Φ) ◦ Φ−1 =: M◦ Φ−1 the chain rule yields

∇u = ∇(v ◦ Φ−1) = ((∇v) ◦ Φ−1)∇(Φ−1) = ((∇v)M) ◦ Φ−1

and, consequently,

D(u) = 1
2
(︁
∇u+ (∇u)T

)︁
= 1

2
(︁
(∇v)M) ◦ Φ−1 + (MT (∇v)T ) ◦ Φ−1)

)︁
= (DM(v)) ◦ Φ−1.

Moreover, we have

M(x) =

Ñ
1 ∓ cos(θ)

0 1

é
=:M± ∈ R2×2 (x ∈ R2

>0,±),

which shows that M ∈ L∞(R2
>0,R2×2) satisfies the assumptions of Corollary 3.1.39.

Therefore, with CM := max{|M+|, |M−|} > 0 we obtain

∥∇u∥2L2(Σθ,R2×2) = ∥((∇v)M) ◦ Φ−1∥2L2(Σθ,R2×2) = ∥(∇v)M∥2
L2(R2

>0,R2×2)

≤ C2
M∥∇v∥2

L2(R2
>0,R2×2)

≤ CC2
M

(︂
∥v∥2

L2(R2
>0,R2) + ∥DM(v)∥2

L2(R2
>0,R2×2)

)︂
= CC2

M

(︂
∥u ◦ Φ∥2

L2(R2
>0,R2) + ∥D(u) ◦ Φ∥2

L2(R2
>0,R2×2)

)︂
= CC2

M

Ä
∥u∥2L2(Σθ,R2) + ∥D(u)∥2L2(Σθ,R2×2)

ä
,

which is the asserted estimate.

3.1.5 Scaling of Norms

One advantage of working with homogeneous Sobolev spaces on sectors lies in the
fact that the sector Σθ is scaling invariant and that the norms in the homogeneous
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setting have nice scaling properties. Hence, we briefly collect those properties in the
following statements. We start with the calculation in Sobolev spaces of positive
order which turns out to be the easier case. We will consider the scaling on sectors
Σθ and on the boundary Γ separately.

3.1.41 Lemma. Let λ ∈ Σπ/2 and k = 0, 1. We define

S : Ĥk(Σθ) → Ĥk(Σθ), (Sf)(x) := f

Ç
x√︁
|λ|

å
,

S−1 : Ĥk(Σθ) → Ĥk(Σθ), (S−1f)(x) := f
(︂»

|λ|x
)︂
.

Then

∥Sf∥Ĥk(Σθ) = |λ|−k/2+1/2∥f∥Ĥk(Σθ) and ∥S−1f∥Ĥk(Σθ) = |λ|−1/2+k/2∥f∥Ĥk(Σθ),

such that

∥S∥L (Ĥk(Σθ)) = |λ|−k/2+1/2 and ∥S−1∥L (Ĥk(Σθ)) = |λ|k/2−1/2.

Proof. It is obvious that S−1 is the inverse of S and SS−1 = S−1S = I on Ĥk(Σθ).
Then a straightforward calculation yields

∥Sf∥Ĥk(Σθ) = ∥∇kSf∥L2(Σθ)

=
(︄∫︂

Σθ

⃓⃓⃓⃓
⃓∇k

Ç
f

Ç
·√︁
|λ|

åå
(x)
⃓⃓⃓⃓
⃓
2

dx

)︄1/2

= |λ|−k/2
(︄∫︂

Σθ

⃓⃓⃓⃓
⃓∇kf

Ç
x√︁
|λ|

å⃓⃓⃓⃓
⃓
2

dx

)︄1/2

= |λ|−k/2+1/2∥∇kf∥L2(Σθ) = |λ|−k/2+1/2∥f∥Ĥk(Σθ),

since ⃦⃦⃦⃦
⃦∇kf

Ç
·√︁
|λ|

å⃦⃦⃦⃦
⃦
2

L2(Σθ)

=
∫︂
Σθ

⃓⃓⃓⃓
⃓∇kf

Ç
x√︁
|λ|

å⃓⃓⃓⃓
⃓
2

dx

=
∫︂
Σθ

⃓⃓
∇kf(y)

⃓⃓2 |λ| dy
= ∥∇kf∥2L2(Σθ)|λ|.

For the inverse we obtain what we have expected:

∥S−1f∥Ĥk(Σθ) =
⃦⃦⃦
∇kS−1f

⃦⃦⃦
L2(Σθ)

=
⃦⃦⃦⃦
∇k
(︂
f
(︂»

|λ|·
)︂)︂⃦⃦⃦⃦

L2(Σθ)
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= |λ|k/2
⃦⃦⃦⃦
∇kf

(︂»
|λ|·
)︂⃦⃦⃦⃦

L2(Σθ)

= |λ|−1/2+k/2∥∇kf∥L2(Σθ) = |λ|−1/2+k/2∥f∥Ĥk(Σθ)

since analogously to the calculation above we have⃦⃦⃦⃦
∇kf

(︂»
|λ|·
)︂⃦⃦⃦⃦2

L2(Σθ)
=

∫︂
Σθ

⃓⃓⃓
∇kf

(︂»
|λ|x

)︂⃓⃓⃓2
dx

=
∫︂
Σθ

|∇kf(y)|2|λ|−1 dy

= ∥∇kf∥2L2(Σθ)|λ|
−1

using the transform y =
√︁

|λ|x and y = x/
√︁
|λ|, respectively. This immediately also

yields the assertion regarding the operator norm.

3.1.42 Lemma. Let λ ∈ Σπ/2 and k = 0, 1. We define S, S−1 : Ĥk(Γ) → Ĥk(Γ) as
in Lemma 3.1.41. Then we have

∥Sf∥Ĥk(Γ) = |λ|−k/2+1/4∥f∥Ĥk(Γ) and ∥S−1f∥Ĥk(Γ) = |λ|k/2−1/4∥f∥Ĥk(Γ),

hence

∥S∥L (Ĥk(Γ)) = |λ|−k/2+1/4 and ∥S−1∥L (Ĥk(Γ)) = |λ|k/2−1/4.

Proof. Note that by Lemma 3.1.5 we can identify L2(Γ) with L2(R) on the boundary.
Hence, the transformation from Lemma 3.1.41 changes a little bit:

∥Sf∥Ĥk(Γ) = ∥∂kτSf∥L2(Γ) =
(︄∫︂

Γ

⃓⃓⃓⃓
⃓∂kτ
Ç
f

Ç
·√︁
|λ|

åå
(x)
⃓⃓⃓⃓
⃓
2

dx

)︄1/2

= |λ|−k/2
(︄∫︂

Γ

⃓⃓⃓⃓
⃓∂kτ f

Ç
x√︁
|λ|

å⃓⃓⃓⃓
⃓
2

dx

)︄1/2

= |λ|−k/2+1/4∥∂kτ f∥L2(Γ) = |λ|−k/2+1/4∥f∥Ĥk(Γ)

since
∫︂
Γ

⃓⃓⃓⃓
⃓∂kτ f

Ç
x√︁
|λ|

å⃓⃓⃓⃓
⃓
2

dx =
∫︂
R

⃓⃓⃓⃓
⃓∂kf

Ç
γ0

Ç
t√︁
|λ|

åå⃓⃓⃓⃓
⃓
2 ⃓⃓⃓⃓
⃓γ′0
Ç

t√︁
|λ|

å⃓⃓⃓⃓
⃓ dt

=
∫︂
R
|∂kf(γ0(t))|2|γ′0(t)|

»
|λ| dt

=
∫︂
Γ
|∂kτ f(x)|2

»
|λ| dx.
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The same holds for S−1 (calculation can be done analogously to the Σθ case as seen
in Lemma 3.1.41):

∥S−1f∥Ĥk(Γ) = ∥∂kτS−1f∥L2(Γ) =
⃦⃦⃦⃦
∂kτ

(︂
f
(︂»

|λ|·
)︂)︂⃦⃦⃦⃦

L2(Γ)

= |λ|k/2
⃦⃦⃦⃦(︁
∂kτ f

)︁ (︂»
|λ|·
)︂⃦⃦⃦⃦

L2(Γ)
= |λ|k/2−1/4∥∂kτ f∥L2(Γ)

= |λ|k/2−1/4∥f∥Ĥk(Γ).

Hence, the assertion follows.

3.1.43 Remark. In the context of Lemma 3.1.42 we will be mainly interested in
the norm scaling in Ĥ1/2(Γ). To this end, we apply the Riesz-Thorin interpolation
theorem (see e.g. [51]), to S, S−1 : L2(Γ) + Ĥ1(Γ) → L2(Γ) + Ĥ1(Γ) (we note that
interpolation is meaningful in this case by the observation we made in the beginning
of Section 3.1). Then we deduce that S, S−1 : Ĥ1/2(Γ) → Ĥ1/2(Γ) are bounded and

∥S∥L (Ĥ1/2(Γ)) ≤ ∥S∥1/2L (L2(Γ))∥S∥
1/2
L (Ĥ1(Γ)) = 1,

∥S−1∥L (Ĥ1/2(Γ)) ≤ ∥S−1∥1/2L (L2(Γ))∥S
−1∥1/2

L (Ĥ1(Γ)) = 1.

Hence, from this we infer for f ∈ Ĥ1/2(Γ):

∥f∥Ĥ1/2(Γ) = ∥S−1Sf∥Ĥ1/2(Γ) ≤ ∥Sf∥Ĥ1/2(Γ) ≤ ∥f∥Ĥ1/2(Γ),

to be precise this means
∥f∥Ĥ1/2(Γ) = ∥Sf∥Ĥ1/2(Γ).

Now we need to calculate the norms in Sobolev spaces of negative order. To this
end, we again consider the operator S in Σθ first for k = 1:

3.1.44 Lemma. Let λ ∈ Σθ and

S̃−1 : Ĥ1(Σθ) → Ĥ1(Σθ), S̃−1f := |λ|S−1f,

S̃ : Ĥ1(Σθ) → Ĥ1(Σθ), S̃f := |λ|−1Sf,

where S, S−1 are defined as in Lemma 3.1.41. Then for smooth functions g ∈ C∞
c,m(Σθ)

the dual operator (S̃−1)′ is given as

(S̃−1)′ : Ĥ−1
0 (Σθ) → Ĥ−1

0 (Σθ),

⟨(S̃−1)′g, ·⟩Ĥ−1
0 (Σθ),Ĥ1(Σθ) = ⟨Sg, ·⟩Ĥ−1

0 (Σθ),Ĥ1(Σθ) ,
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with operator norms

∥S̃−1∥L (Ĥ1(Σθ)) = |λ| = ∥(S̃−1)′∥L (Ĥ−1
0 (Σθ)),

∥S̃∥L (Ĥ1(Σθ)) = |λ|−1 = ∥S̃ ′∥L (Ĥ−1
0 (Σθ)).

The statement also holds in divergence free spaces, i.e., in Ĥ1
div(Σθ).

Proof. By Lemma 3.1.41 we immediately deduce

∥S̃−1f∥Ĥ1(Σθ) = |λ|∥f∥Ĥ1(Σθ) and ∥S̃f∥Ĥ1(Σθ) = |λ|−1∥f∥Ĥ1(Σθ).

This yields the assertion regarding the operator norms. Next, we want to calculate
the dual operator (S̃−1)′ : Ĥ−1

0 (Σθ) → Ĥ−1
0 (Σθ):

⟨(S̃−1)′g, f⟩Ĥ−1
0 (Σθ),Ĥ1(Σθ) = (g, S̃−1f)2 =

∫︂
Σθ

g(x)(S̃−1f)(x) dx

=
∫︂
Σθ

g(x)f
(︂»

|λ|x
)︂
dx|λ|

=
∫︂
Σθ

g

Ç
x√︁
|λ|

å
f(x) dx

= ⟨Sg, f⟩Ĥ−1
0 (Σθ),Ĥ1(Σθ)

for every f ∈ Ĥ1(Σθ) and g ∈ C∞
c,m(Σθ). Since the set of functionals of the form

Ĥ1(Σθ) ∋ f ↦→ (g, f)2 with g ∈ C∞
c,m(Σθ) are dense in (Ĥ1(Σθ))′ (see Lemma 3.1.11)

we obtain
(S̃−1)′g = lim

ℓ→∞
Sgℓ in Ĥ−1

0 (Σθ)

where (gℓ)ℓ ⊆ C∞
c,m(Σθ) is a sequence where (gℓ, ·)2 is approximating g ∈ Ĥ−1

0 (Σθ).
Hence, the assertion holds.

3.1.45 Lemma. Let λ ∈ Σπ/2 and k = 0, 1. As in Lemma 3.1.44 we set

S̃−1 : Ĥk(Γ) → Ĥk(Γ), (S̃−1f)(x) = |λ|1/2S−1f

with S defined as in Lemma 3.1.41. Then the dual operator (S̃−1)′ : Ĥ−k(Γ) →
Ĥ−k(Γ) for smooth functions g ∈ C∞

c,m(Γ) is given as⟨︁
(S̃−1)′g, ·

⟩︁
Ĥ−k(Γ),Ĥk(Γ) = ⟨Sg, ·⟩Ĥ−k(Γ),Ĥk(Γ)

with

∥S̃−1∥L (Ĥk(Γ)) = |λ|1/4+k/2 = ∥(S̃−1)′∥L (Ĥ−k(Γ)).
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Proof. It immediately follows

∥S̃−1f∥Ĥk(Γ) = |λ|1/4+k/2∥f∥Ĥk(Γ)

for k = 0, 1. Also the dual operator (S̃−1)′ : Ĥ−k(Γ) → Ĥ−k(Γ) is given as

⟨(S̃−1)′g, f⟩Ĥ−k(Γ),Ĥk(Γ) = (g, (S̃−1)f)2,Γ =
∫︂
Γ
g(x)(S̃−1f)(x) dx

=
∫︂
Γ
g(x)f

(︂»
|λ|x

)︂
dx|λ|1/2

=
∫︂
Γ
g

Ç
x√︁
|λ|

å
f(x) dx

= ⟨Sg, f⟩Ĥ−k(Γ),Ĥk(Γ)

for f ∈ Hk(Γ) where we again identified L2(Γ) with L2(R) and for Ĥ1(Γ) we used the
representation of the functionals in Ĥ−1(Γ) = (Ĥ1(Γ))′ from Lemma 3.1.11. Using
the density argument again we obtain

(S̃−1)′g = lim
ℓ→∞

Sgℓ in Ĥ−k(Γ)

for any sequence (gℓ)ℓ ⊆ C∞
c,m(Γ) where (gℓ, ·)2,Γ is approximating g ∈ Ĥ−k(Γ).

3.1.46 Remark. In the context of Lemma 3.1.45 we are interested in the norm scaling
in Ĥ−1/2(Γ). To this end, in order to obtain the estimates in the Ĥ−1/2(Γ) norm we
again have to apply the interpolation argument: S−1 : L2(Γ)+Ĥ1(Γ) → L2(Γ)+Ĥ1(Γ)
is bounded. Applying the Riesz-Thorin interpolation theorem (see e.g. [51]) we know
that S̃−1 : Ĥ1/2(Γ) → Ĥ1/2(Γ) is also bounded and its operator norm can be
estimated as

∥S̃−1∥L (Ĥ1/2(Γ)) ≤ ∥S̃−1∥1/2L (L2(Γ))∥S̃
−1∥1/2

L (Ĥ1(Γ)) = |λ|1/8|λ|1/8+1/4 = |λ|1/2.

such that for the dual operator (S̃−1)′ : Ĥ−1/2(Γ) → Ĥ−1/2(Γ) we obtain

∥(S̃−1)′∥L (Ĥ−1/2(Γ)) = ∥S̃−1∥L (Ĥ1/2(Γ)) ≤ |λ|1/2.

3.2 Reflection Invariant Sobolev Spaces in Sectors
In this section we introduce subspaces of (in)homogeneous spaces that consist of
even and odd functions. This later allows us to consider functions on the wedge Σ±

θ

as defined in Section 3.1.4 which is the natural domain to some systems from fluid
dynamics, as e.g. the contact line problem from Chapter 4. Another advantage of
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considering reflection invariant subspaces lies in the fact that given the correct sym-
metry, multiplication with sgn is a bounded operator which yields that multiplication
with the normal vector n is also a bounded operator (see Lemma 3.2.8).

Since many results from Section 3.1 are transferable, we keep most of the proofs
short and sometimes also do not formulate the corresponding statements from
Section 3.1 in the setting of reflected spaces. However, we put emphasize on the fact
that almost all results from Section 3.1 also hold in the setting of reflection invariant
spaces.
We start with the definition of a reflection invariant subspace. For a function space

E on Σθ we set
E±R := {u ∈ E : ±Ru = u}

in case that functions in E are vector-valued and if functions in E are scalar-valued
then we define

E±r := {u ∈ E : ±ru = u},

where the reflection is defined as Ru := (ru1,−ru2) and rh(x1, x2) = h(x1,−x2) for
u = (u1, u2) and h : Σθ → C. For matrix-valued functions we set

E±R := {u ∈ E : ±Ru = u},

where

Ru = R
Ç
u1,1 u1,2

u2,1 u2,2

å
=
Ç
ru1,1 −ru1,2

−ru2,1 ru2,2

å
.

At first we collect some basic properties of (in)homogeneous spaces in the framework
of reflected spaces. The proof is straightforward and hence is kept short.

3.2.1 Lemma. The following assertions hold:

(i) ±r ∈ Lis(Ĥk(Σθ)), ∥ ± r∥L (Ĥk(Σθ)) = 1, (±r)2 = IĤk(Σθ), (±r)
′ = ±r for all

k ∈ [0, 1]. This also holds for Σθ replaced by Γ.

(ii) ±R ∈ Lis(Ĥk(Σθ)2), ∥ ± R∥L (Ĥk(Σθ)2) = 1, (±R)2 = IĤk(Σθ)2 , (±R)
′ = ±R for

all k ∈ [0, 1]. This also holds for Σθ replaced by Γ.

(iii) For k ∈ [0, 1] the operator

Q± : Ĥk(Σθ)2 → Ĥk(Σθ)2, Q±v := v ±Rv

2
is a bounded projection onto Ĥk(Σθ)±R. In particular, Ĥk(Σθ)±R is closed in
Ĥk(Σθ)2 and we have

(Ĥk(Σθ)±R)′ = (Q±Ĥ
k(Σθ)2)′ = Q±(Ĥk(Σθ)2)′ = (Ĥk(Σθ))′±R.

This statement also holds for ±R replaced by ±r and Σθ replaced by Γ.
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(iv) For k ∈ (0, 1] we have C∞
c (Σθ)±R

d
↪→ Hk(Σθ)±R

d
↪→ Ĥk(Σθ)±R.

(v) For s ∈ (0, 1/2] we have C∞
c (Γ\{0})±R

d
↪→ Hs(Γ)±R

d
↪→ Ĥs(Γ)±R.

Proof. (i) We prove the statement for k = 0, 1: Let u ∈ Ĥk(Σθ) be arbitrary. Then

∥ru∥2
Ĥk(Σθ)

=
∑︂
|α|≤k

∫︂
Σθ

|∂α(ru)(x1, x2)|2 dx1 dx2

=
∑︂
|α|≤k

∫︂
Σθ

|(r∂αu)(x1, x2)|2 dx1 dx2

=
∑︂
|α|≤k

∫︂
Σθ

|∂αu(x1,−x2)|2 dx1 dx2

= ∥u∥2
Ĥk(Σθ)

using the transform (x1, x2) ↦→ (x1,−x2) and the fact that Σθ is scaling invariant.
Obviously, r is self-inverse and r2 = IĤk(Σθ). The reflection of a distribution f ∈
Ĥ−k

0 (Σθ) is defined as

⟨rf, ϕ⟩Ĥ−k
0 (Σθ),Ĥk(Σθ) := ⟨f, rϕ⟩Ĥ−k

0 (Σθ),Ĥk(Σθ) (ϕ ∈ Ĥk(Σθ)),

which coincides with the definition of the dual operator r′ ∈ L (Ĥ−k
0 (Σθ)) such that

we obtain r′ = r. Then the assertion follows for k = 0, 1. Interpolation yields the
statement for all k ∈ [0, 1].
(ii) The assertion follows from (i) since R = (r,−r).
(iii) Thanks to (ii) it is obvious that Q± ∈ L (Ĥk(Σθ)2) for all k ∈ [0, 1]. Further-

more, Q± is a projection since

Q2
±v = Q±

v ±Rv

2 =
v±Rv

2 ±R v±Rv
2

2 = v ±Rv

2 = Q±v.

Now we aim to prove R(Q±) = Ĥk(Σθ)±R. Let v ∈ Ĥk(Σθ)2. Then

±RQ±v = ±Rv ±Rv

2 = ±Rv + v

2 = Q±v,

hence v ∈ Ĥk(Σθ)±R. On the other hand, let v ∈ Ĥk(Σθ)±R, i.e., ±Rv = v. Then
Q±v = v±Rv

2 = v and v ∈ R(Q±). Indeed, Ĥk(Σθ)±R is closed since the range of
a projection is always closed. The fact that Q′

± = Q± follows as above and as a
consequence we obtain (Q±Ĥ

k(Σθ)2)′ = Q±(Ĥk(Σθ)2)′.
(iv) First we note that Q± : C∞

c (Σθ)2 → C∞
c (Σθ)2 again with

Q±C
∞
c (Σθ)2 = C∞

c (Σθ)±R

using the same calculation as in (iii). Then Lemma 3.1.7 combined with (iii) and
Lemma 3.2.2(iii) yields the assertion. The proof for (v) follows analogously.
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3.2.2 Lemma. Let k ∈ Z and 1 < p <∞. Then the following assertions hold:

(i) ±r ∈ Lis(W k,p(Σθ)), ∥ ± r∥Wk,p(Σθ) = 1, (±r)′ = ±r and (±r)2 = IWk,p(Σθ).

(ii) ±R ∈ Lis(W k,p(Σθ)2), ∥ ±R∥Wk,p(Σθ)2 = 1, (±R)′ = ±R and
(±R)2 = IWk,p(Σθ)2.

(iii) The operator

Q± : W k,p(Σθ)2 → W k,p(Σθ)2, Q±v := v ±Rv

2

is a bounded projection onto W k,p(Σθ)±R which is orthogonal for p = 2. In
particular, W k,p(Σθ)±R is closed in W k,p(Σθ)2 and we have

(W k,p(Σθ)±R)′ = (Q±W
k,p(Σθ)2)′ = Q±(W k,p(Σθ)2)′ = (W k,p(Σθ))′±R.

The same assertions remain true, if W k,p(Σθ) is replaced by W k,p(Γ) and R by
r.

(iv) For k,m ∈ Z, k ≤ m, we have the embeddings Wm,p(Σθ)±R
d
↪→ W k,p(Σθ)±R and

Wm,p(Γ)±R
d
↪→ W k,p(Γ)±R.

(v) For m ∈ N it holds Hm
div(Σθ)±R

d
↪→ H1

div(Σθ)±R.

Proof. (i) - (iv) essentially follow as in Lemma 3.2.1.
(v) By Lemma 3.1.8 we know that the statement holds in the non-reflected case.

Then the assertion follows from (iii).

By the observations we made above we are now able to characterize interpolation of
reflected spaces by making use of the bounded projection Q± from Lemma 3.2.1 and
Lemma 3.2.2. Hence, interpolation of reflection invariant spaces are then well-defined
by applying the standard argument from [51, Section 1.2.4]:

3.2.3 Corollary. Let k ∈ N, 1 ≤ p <∞ and s ∈ (0, 1). Then

Ĥs(Σθ)±R = (L2(Σθ)±R, Ĥ1(Σθ)±R)s,2,

W sk
p (Σθ)±R = (Lp(Σθ)±R,W k,p(Σθ)±R)s,p,

W sk,p(Σθ)±R = [Lp(Σθ)±R,W k,p(Σθ)±R]s,

where W k
p (Σθ) denotes the Sobolev-Slobodeckij space (see [51, Chapter 4]). The above

statements also hold with ±R replaced by ±r and Σθ replaced by Γ.
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Proof. This follows from the fact that Q± is a bounded projection onto Ĥ1(Σθ)±R
and W k,p(Σθ)±R by Lemma 3.2.1(iii) and Lemma 3.2.2(iii). Hence, Q± is a retraction
and the assertion follows from [51, Theorem 1.2.4].

3.2.4 Remark. It is straightforward to verify that all results from Section 3.1 can
be transferred to the corresponding reflection invariant setting. We will not state
all results again in this section but focus on results which are essential within this
thesis. However, transferring the results almost always makes use of the projection
Q± from Lemma 3.2.1 and Lemma 3.2.2.

3.2.1 Multiplication with the Sign Function

In this section we will prove that multiplication with the sign function sgn is a
bounded operator if the correct symmetry is given. Hence, then also multiplication
with the normal vector n = (− sin(θ), sgn cos(θ)) is well-defined. This shows that
introducing reflection invariant subspaces is somehow natural in order to perform
analysis on sectors.
At first we briefly define the reflection invariant subspace of a function space where

functions f : R → Rn are contained. By making use of push-forward ζ0∗ and pull-back
ζ∗0 from Lemma 3.1.5, we can reduce the boundedness of the tangential and normal
traces to corresponding estimates on R.

3.2.5 Corollary. Let s ∈ [−1, 1] and ζ0∗ , ζ∗0 from Lemma 3.1.5 be given. Then

ζ0∗ ∈ Lis(Ĥs(R)±r̃, Ĥs(Γδ)±r) and ζ∗0 ∈ Lis(Ĥs(Γδ)±r, Ĥs(R)±r̃)

for s ∈ [−1, 1]. Here, we define for any scalar-valued function space E on R

E±r̃ := {u ∈ E : ±r̃u(t) := ±u(−t) = u(t)}

and any vector-valued function space E on R

E±R̃ := {u = (u1, u2) ∈ E : ±R̃(u1, u2)(t) = ±(u1(−t),−u2(−t)) = u(t)}.

Proof. Let s ∈ [−1, 1]. The assertion essentially follows from Lemma 3.1.5. We note
that if f ∈ Ĥs(Γδ)±r is smooth with f(x1,−x2) = ±f(x1, x2) then

ζ∗0f(−t) = f (cos(θ)|t|,− sin(θ)t) = ±f (cos(θ)|t|, sin(θ)t) = ±ζ∗0 (f)(t).

On the other hand, if f ∈ Ĥs(R)±r̃ with f(−t) = ±f(t) then

ζδ∗f (cos(θ)|t|,− sin(θ)t) = f(−t) = ±f(t) = ±ζδ∗f (cos(θ)|t|,− sin(θ)t) .

And the assertion follows.
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Next, we consider the boundedness of the operations τ · and n· from Ĥ±1/2(Γ,R2)
to Ĥ±1/2(Γ,R) where τ and n are tangential and outer normal vector fields given by

n(x) = n(x2) = (− sin(θ), sgn(x2) cos(θ)),
τ(x) = τ(x2) = (sgn(x2) cos(θ), sin(θ)),

for x = (x1, x2) ∈ Γ (cf. Lemma 3.1.1). However, as we will observe this is only
achievable if the functions have the correct symmetry, since multiplication with sgn
is not a bounded operator on H1/2(R) in general, cf. [51, Section 2.10.2, Remark 1].
We make use of Corollary 3.2.5 to transfer results from R to Γ. We finally prove

3.2.6 Lemma. For s ∈ [0, 1/2] the multiplication with the sign function is a bounded
operator on Ĥs(R)−r̃ and Ĥ−s(R)r̃, to be precise:

sgn · ∈ L (Ĥs(R)−r̃, Ĥs(R)r̃) ∩ L (Ĥ−s(R)r̃, Ĥ−s(R)−r̃).

The statement also holds in the inhomogeneous setting.

Proof. Obviously, we have sgn · ∈ L (L2(R)) since sgn is bounded. Let f ∈
Ĥ1/2(R)−r̃. Then we calculate by using the Slobodeckij norm:

∥ sgn f∥2
Ĥ1/2(R)r̃

=
∫︂
R

∫︂
R

| sgn(x)f(x)− sgn(y)f(y)|2
|x− y|2

dy dx

=
∫︂ 0

−∞

∫︂ 0

−∞

|f(x)− f(y)|2
|x− y|2

dy dx+
∫︂ ∞

0

∫︂ ∞

0

|f(x)− f(y)|2
|x− y|2

dy dx

+ 2
∫︂ 0

−∞

∫︂ ∞

0

|f(x) + f(y)|2
|x− y|2

dy dx

≤ C∥f∥2
Ĥ1/2(R+) ≤ C∥f∥2

Ĥ1/2(R)−r̃
,

where we note that

2
∫︂ 0

−∞

∫︂ ∞

0

|f(x) + f(y)|2
|x− y|2

dy dx = 2
∫︂ ∞

0

∫︂ ∞

0

|f(−z) + f(y)|2
|y + z|2

dy dz

= 2
∫︂ ∞

0

∫︂ ∞

0

|f(y)− f(z)|2
|y + z|2

dy dz

≤ 2
∫︂ ∞

0

∫︂ ∞

0

|f(y)− f(z)|2
|y − z|2

dy dz

≤ 2∥f∥Ĥ1/2(R+)

using the transform z = −x and making use of the symmetry f(−z) = −f(z) and
|y+z|2 = (y+z)2 ≥ (y−z)2 = |y−z|2 for y, z > 0. Interpolation (cf. Corollary 3.2.3)
yields the assertion for s ∈ [0, 1/2]. The assertion for Ĥ−s(R)r̃ follows by duality
since (sgn ·)′ = sgn · in L2(R) and (Ĥ1/2(R)±r̃)′ = Ĥ−1/2(R)±r̃ by Lemma 3.2.1.
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3.2.7 Remark. (i) Since Lemma 3.2.6 holds, we can immediately deduce that
sgn · : H1/2(R)r̃ → H1/2(R)−r̃ cannot be bounded. Since then by decomposing
H1/2(R) = H1/2(R)r̃ +H1/2(R)−r̃ in even and odd functions would imply that
sgn · would be bounded on H1/2(R) which definitely does not hold by [51,
Section 2.10.2, Remark 1].

(ii) Multiplication with sgn is known to be a bounded operator on Hs(R) for
s ∈ [0, 1/2). Hence in Lemma 3.2.6 we can actually drop the symmetry
restrictions for s ∈ [0, 1/2).

3.2.8 Lemma. For s ∈ [0, 1/2] we have

(v ↦→ n · v) ∈ L (Ĥs(Γ)R, Ĥs(Γ)r),
(v ↦→ τ · v) ∈ L (Ĥs(Γ)−R, Ĥs(Γ)r),

and

(v ↦→ n · v) ∈ L (Ĥ−s(Γ)−R, Ĥ−s(Γ)−r),
(v ↦→ τ · v) ∈ L (Ĥ−s(Γ)R, Ĥ−s(Γ)−r).

The same assertions hold true for the inhomogeneous counterparts of the spaces.

Proof. This is a direct consequence of Corollary 3.2.5 and Lemma 3.2.6.

3.2.2 Elliptic Problems

In this section we briefly collect the results from Section 3.1.3 transferred to the
framework of reflection invariant spaces. However, the strategy is always as follows:
Since we assume the data to have a certain symmetry, it follows by the uniqueness
that the solution also has to have a certain symmetry.

3.2.9 Corollary (Strong and weak homogeneous Dirichlet problem). For every
f ∈ Ĥ−1(Σθ)±r there exists a unique solution p ∈ Ĥ1

0(Σθ)±r of (3.12) in the weak
sense satisfying

∥∇p∥L2(Σθ)±R
≤ C∥f∥Ĥ−1(Σθ)±r

with C > 0 independent of f and p. If, in addition, f ∈ L2(Σθ)±r, then we have
∇p ∈ H1(Σθ)±R and

∥∇2p∥L2(Σθ)±R ≤ C∥f∥L2(Σθ)±r
.

Proof. Let p be the unique solution of (3.12) from Lemma 3.1.31. We assume f = rf .
Then it is straightforward to prove that rp solves ∆(rp) = r∆p = rf = f . From the
uniqueness of the solution we infer p = rp.
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The proofs for the weak and very weak (in)homogeneous Dirichlet problem are
given accordingly:

3.2.10 Corollary (Weak inhomogeneous Dirichlet problem). For every pair of data
(f, g) ∈ Ĥ−1(Σθ)±r×Ĥ1/2(Γ)±r there exists a unique solution p ∈ Ĥ1(Σθ)±r of (3.16)
in the weak sense satisfying

∥∇p∥L2(Σθ)±R
≤ C
Ä
∥f∥Ĥ−1(Σθ)±r

+ ∥g∥Ĥ1/2(Γ)±r

ä
with C > 0 independent of f, g and p.

3.2.11 Corollary (Very weak inhomogeneous Dirichlet problem). For every data
g ∈ Ĥ−1/2(Γ)±r there exists a unique solution p ∈ L2(Σθ)±r of (3.17) in the very
weak sense satisfying

∥p∥L2(Σθ)±r
≤ C∥g∥Ĥ−1/2(Γ)±r

with C > 0 independent of g and p.

3.2.3 Trace Theorems

In this section we collect trace theorems from Section 3.1.2 and transfer them to the
setting of reflected (in)homogeneous spaces. Here, we will essentially make use of
the projection Q± from Lemma 3.2.1 and Lemma 3.2.2 which helps us to construct
even and odd functions.
Furthermore, thanks to the symmetry property we are able to prove the existence

and surjectivity of the normal trace T0 : H1
div(Σθ)R → H1/2(Γ)r ∩ Ĥ−1/2(Γ)r which

we don’t obtain in the unreflected setting due to the unboundedness of multiplication
with the normal vector field.

3.2.12 Corollary (Trace theorem). The trace operator

T : Ĥ1(Σθ)±R → Ĥ1/2(Γ)±R

exists and is linear and bounded and satisfies

∥Tu∥Ĥ1/2(Γ)±R
≤ C∥u∥Ĥ1(Σθ)±R

with a constant C > 0 independent of u. Furthermore, T is a retraction: There exists
a bounded linear extension operator

E : Ĥ1/2(Γ)±R → Ĥ1(Σ)±R

such that if ũ ∈ Ĥ1/2(Γ)±R then we have u := Eũ ∈ Ĥ1(Σθ)±R with Tu = ũ and

∥u∥Ĥ1(Σθ)±R
≤ C∥ũ∥Ĥ1/2(Γ)±R
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where C > 0 is again independent of ũ.
All statements also hold for Ĥ1(Σθ)±r and Ĥ1/2(Γ)±r and the corresponding inhomo-
geneous counterparts.

Proof. We only prove the case +R. The other case −R follows analogously. In view
of Theorem 3.1.19 we only need to ensure that if Ru = u in Σθ then RTu = Tu on Γ
and the other way around.
Let T be the same trace operator from Theorem 3.1.19. First we observe that from
Lemma 3.2.1(iv) we obtain C∞

c (Σθ)R
d
↪→ Ĥ1(Σθ)R. Let u ∈ Ĥ1(Σθ)R be arbitrary.

Then due to the density there exists a sequence (uk)k ⊆ C∞
c (Σθ)R with uk → u in

Ĥ1(Σθ)R. Then obviously RTuk = R(uk|Γ) = uk|Γ = Tuk since uk is continuous and
even in Σθ. Since T is a continuous operator thanks to Theorem 3.1.19 we infer

RTu = RT
(︂
lim
k→∞

uk
)︂
= R lim

k→∞
Tuk = lim

k→∞
RTuk = lim

k→∞
Tuk = Tu

where we also made use of the fact that by Lemma 3.2.1(ii) ±R : Ĥ1/2(Γ) → Ĥ1/2(Γ)
is bounded.
Now let ũ ∈ Ĥ1/2(Γ)R be arbitrary, i.e., Rũ = ũ. Then due to Theorem 3.1.19 there

exists v = Ẽũ ∈ Ĥ1(Σθ) with Tv = ũ. Setting u := 1/2(v +Rv) = Q+v ∈ Ĥ1(Σθ)R
(where Q+ is the projection from Lemma 3.2.1(iii)) we deduce

Tu = T

Å1
2(v +Rv)

ã
= 1

2(Tv + TRv) = 1
2(Tv +RTv) = 1

2(ũ+Rũ) = ũ,

where TRv = RTv. In fact this holds for continuous v ∈ C∞
c (Σθ) and since the

continuous functions C∞
c (Σθ) are dense in Ĥ1(Σθ) and R and T are bounded we

obtain this equality for all v ∈ Ĥ1(Σθ). Then we can set Eũ := u = Q+Ẽũ and
obviously E : Ĥ1/2(Γ)R → Ĥ1(Σθ)R is linear and bounded since E inherits the
linearity and boundedness of Ẽ and Q+.
Replacing R by r we obtain the exact same statements for Ĥ1(Σθ)r and Ĥ1/2(Γ)r as
well as for the inhomogeneous case.

3.2.13 Corollary. Let Ĥ2
D(Σθ)±r be defined as in Corollary 3.1.24. Then the

Neumann trace operator Tn : Ĥ2
D(Σθ)±r → Ĥ1/2(Γ)±r is bounded and has dense

range.

Proof. By Corollary 3.1.24 the trace operator Tn is well-defined by the same argu-
ments as used in Corollary 3.2.12.
Now let such v ∈ C∞

c (Γ\{0})±r be given. Due to Corollary 3.1.24 there exists
some ũ ∈ Ĥ2

D(Σθ) with Tnũ = ∂nũ = v on Γ. Using the same arguments as in
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Corollary 3.2.12 we deduce that u = 1/2(ũ ± rũ) = Q±u ∈ Ĥ2
D(Σθ)±r (where the

operator Q± is defined as in Lemma 3.2.1). Then we observe

∂nu = 1
2∂n(ũ± rũ) = 1

2(v ± rv) = v on Γ,

since v = ±rv. In the second step we made use of the fact

r∂nũ = r(n · ∇T ũ) = Rn ·RT∇ũ = n · T∇rũ = ∂nrũ,

where the third equality RT∇ũ = T∇rũ holds on Γ: Note that the equality holds for
smooth ũ ∈ C∞

c (Σθ)
d
↪→ Ĥ2(Σθ) and R, r : Ĥ2

D(Σθ) → Ĥ2
D(Σθ) and the trace operator

T : Ĥ1(Σθ) → Ĥ1/2(Γ) is bounded due to Theorem 3.1.19 and Lemma 3.2.2(iii).

3.2.14 Corollary (Generalized trace theorem). Let

T0 : L2
div(Σθ)±R → Ĥ−1/2(Γ)±r

be defined by

T0v(ψ) = ⟨n · v, ψ⟩Ĥ−1/2(Γ)±r,Ĥ1/2(Γ)±r
:= ⟨v,∇Eψ⟩L2(Σθ)±R,L2(Σθ)±R

,

for ψ ∈ Ĥ1/2(Γ)±r where E : Ĥ1/2(Γ)±r → Ĥ1(Σθ)±r is the linear and bounded
extension operator to the trace operator T : Ĥ1(Σθ)±r → Ĥ1/2(Γ)±r, characterized by
the inhomogeneous Dirichlet problem:

∆Eψ = 0 in Σθ, Eψ = ϕ on Γ,

see Corollary 3.2.10. Then T0 is well-defined (especially independent of the choice of
the extension operator E) and bounded.

Proof. Note that the Weyl decomposition from Lemma 3.1.15 also holds in the
setting of reflection invariant spaces since the weak inhomogeneous Dirichlet problem
(cf. Corollary 3.2.10) can be solved in the setting. Then the statement can be proved
as in the unreflected setting (Lemma 3.1.28) and all cited results can be replaced by
the corresponding results from the reflection invariant setting.

Since boundedness of sgn · is not given in H1/2(R) due to [51, Section 2.10.2,
Remark 1], we cannot expect the normal trace operator T0 to be bounded in H1(Σθ).
However, Lemma 3.1.27 at least states that for any g ∈ H1/2(Γ) ∩ Ĥ−1/2(Γ)r we can
find u ∈ H1

div(Σθ) with g = u · n on Γ. Thanks to Lemma 3.2.8, Corollary 3.2.12 and
Corollary 3.2.14, we now immediately obtain existence and boundedness of the trace
operator and thanks to Lemma 3.1.27 we can even prove that T0 is a retraction.
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3.2.15 Lemma. The normal trace operator

T0 : H1
div(Σθ)R → H1/2(Γ)r ∩ Ĥ−1/2(Γ)r

is linear, bounded and a retraction. The coretraction is given by R̃0 := Q+R0 :
H1/2(Γ)r ∩ Ĥ−1/2(Γ)r → H1

div(Σθ)R where R0 is the linear, bounded operator from
Lemma 3.1.27 and Q+ is the projection from Lemma 3.2.2.

Proof. As already observed above the normal trace operator T0 is well-defined
and bounded by Lemma 3.2.8, Corollary 3.2.12 and Corollary 3.2.14. Note that
T0 : H1

div(Σθ)R → H1/2(Γ)r and T0 from Corollary 3.2.14 are consistent by the
formula for integration by parts. We apply the same arguments as in Corollary 3.2.12
and Corollary 3.2.13 to obtain the symmetry properties. Furthermore, we infer that
R̃0 := Q+R0 : H1/2(Γ)r ∩ Ĥ−1/2(Γ)r → H1

div(Σθ)R is well-defined, linear and bounded.
Note that Q+H

1
div(Σθ) ⊆ H1

div(Σθ). Hence, we have T0R̃0 = IH1/2(Γ)r∩Ĥ−1/2(Γ)r and
the assertion follows.

3.2.16 Remark. By the construction of the linear operator R0 in Lemma 3.1.27 we
can already deduce that R0 preserves symmetry properties, i.e., R0 = Q+R0.

3.2.17 Corollary. The normal trace operator

T0 : H1
div(Σθ)R → Ĥ1/2(Γ)r ∩ Ĥ−1/2(Γ)r

is linear, bounded and a retraction.

Proof. By Lemma 3.2.15 the normal trace operator T0 : H1
div(Σθ)R → H1/2(Γ)r ∩

Ĥ−1/2(Γ)r is bounded and surjective. We observe that

H1/2(Γ)r ∩ Ĥ−1/2(Γ)r ↪→ Ĥ1/2(Γ)r ∩ Ĥ−1/2(Γ)r ↪→ L2(Γ)r,

since (Ĥ−1/2(Γ)r, Ĥ1/2(Γ)r)1/2,2 = L2(Γ)r. This shows that the L2(Γ)r norm can be
estimated by the norm in Ĥ1/2(Γ)r ∩ Ĥ−1/2(Γ)r. Then we can deduce that

H1/2(Γ)r ∩ Ĥ−1/2(Γ)r = Ĥ1/2(Γ)r ∩ Ĥ−1/2(Γ)r

topologically. Then in fact T0 : H1
div(Σθ)R → Ĥ1/2(Γ)r ∩ Ĥ−1/2(Γ)r.
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Chapter 4

2D Contact Line Dynamics

In this chapter we consider the following set-up of the contact line problem (here in
2D where the contact line is actually a contact point):

∂tu+ (u · ∇)u− div T (u, p) = 0 in ⋃︁
t∈(0,T ){t} × Ω(t),

div u = 0 in ⋃︁
t∈(0,T ){t} × Ω(t),

λu1 + (D(u)ns)1 = 0 on ⋃︁
t∈(0,T ){t} × Γs(t),

u2 = 0 on ⋃︁
t∈(0,T ){t} × Γs(t),

T (u, p)nf = σκnf on ⋃︁
t∈(0,T ){t} × Γf (t),

Vnf
= u · nf on ⋃︁

t∈(0,T ){t} × Γf (t),
VC = u · nC on ⋃︁

t∈(0,T ){t} × C(t),
θ = ψ(VC) on ⋃︁

t∈(0,T ){t} × C(t),
u|t=0 = u0 in Ω(0),
Γs(0) = Γ0

s, in Ω(0),
Γf (0) = Γ0

f in Ω(0),
C(0) = C0 in Ω(0).

(4.1)

Here, Ω(t) ⊆ R2 is a two-dimensional domain at time t ∈ (0, T ) which is moving
within the time t. By Γs we denote the solid surface whereas by Γf we refer to the
free upper surface (cf. Figure 1). Furthermore, nf and ns denote the normal outer
vector at Γf and Γs, respectively. The surface tension coefficient is given as σ and
the mean curvature as κ. The normal velocity of the free surface Γf is denoted by
Vnf

. Again, the stress tensor is written as

T (u, p) := 2µD(u)− Ip, D(u) := 1
2(∇u+∇uT ),

where µ is the viscosity. At the contact point C the contact point velocity is denoted
by VC and nC is the corresponding normal vector at the contact point.
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Note that the third and fourth equation of (4.1) corresponds to partial slip boundary
conditions with slip length λ and the fifth equation is the kinematic condition. The
sixth equation describes the normal velocity, whereas the seventh equation addresses
the contact point velocity. Note that both equations about the normal velocity and
the contact point velocity show that there is no phase transition at the interface
and at the contact point. The constitutive equation θ = ψ(VC) models the contact
angle at the contact point, which is the point where the upper free surface Γf gets in
contact with the solid surface Γs.
The chapter is structured as follows: At first we transform (4.1) to a fixed wedge-

type domain (0, T )×Σθ by applying a suitable transformation in Section 4.1 leading
to the following resolvent Stokes system:

λu− div T (u, p) = f1 in Σθ,

div u = f2 in Σθ,

T (u, p)n+ σc(θ)∂2τρn = f4 on ∂Σθ,

λρ+ 1
sin(θ)(n · u) = f5 on ∂Σθ.

Then we study the resulting Stokes system in Section 4.2 assuming f2 = 0 and f5 = 0
for simplicity. We prove the existence of a triple (u, p, ρ) which solves the system
in the weak sense. Furthermore, the triple (u, p, ρ) fulfills corresponding resolvent
estimates.

4.1 Transformation
In this section we want to apply a transformation to (4.1) such that we have a fixed
Ω that is not moving in time such that a rigorous analysis is simplified. To this end,
we assume the origin to be located at the meeting point of Γ0

s and Γ0
f . At first we

note that we can write the solid surface and the free surface as

Γs(t) = {(y1, 0) : y1 ∈ (y∗,∞)} ,
Γf (t) = {(y1, h(t, y1)) : y1 ∈ (y∗,∞)} ,

where h(t, ·) is the height function. The contact point is obviously C(t) = (y∗, 0)
where h(t, y∗) = 0, i.e., where the free surface meets the solid surface at y2 = 0. We
want to parametrize Γf w.r.t. the y2-axis, then we have

Γf (t) =
{︁
(h−1(t, y2), y2) : y2 ∈ (0,∞)

}︁
,

if we assume that h is monotone increasing. Then we set b(t, y2) := h−1(t, y2). Now
we get another parametrization of Γs and Γf :

Γs(t) = {(y1, 0) : y1 ≥ b(t, 0)} ,

82



Section 4.1. Transformation

Γf (t) =
{︁
(y1, y2) ∈ R2 : y2 ∈ (0,∞), y1 = b(t, y2)

}︁
,

and the contact point is now at C(t) = (b(t, 0), 0). Note that the initial free surface

Γ0
f =

{︁
(y1, y2) ∈ R2 : y2 ∈ (0,∞), y1 = b(0, y2) = h−1(0, y2)

}︁
is given with initial contact angle θ0 ∈ (0, π/2) between Γ0

f and Γ0
s. Furthermore, we

deduce ∂y2h(0, 0) = tan(θ0) by the fact that θ0 is the initial contact angle and that
h(0, ·) parametrizes Γ0

f . Now we define the wedge for θ0 ∈ (0, π/2) as

Σθ0 :=
{︁
(x1, x2) ∈ R2 : x1 ∈ (0,∞), 0 ≤ x2 < tan(θ0)x1

}︁
,

where we note that for simplicity we make the assumption

lim
y1→∞

∂y1h(0, y1) = tan(θ0) (4.2)

(which means that at the initial free surface Γ0
f even for large y1 we still have the

contact angle θ0). Basically, we then have h(0, y1) ∼ tan(θ0)y1 for large y1. The
transformation from the fixed wedge domain to the free moving domain along the
x1-axis is given as:

Θ(t) : Σθ0 → Ω(t),
(x1, x2) ↦→ (y1(t), y2) = Θ(t, x1, x2) := (x1 − ∂x2b0(0)x2 + b(t, x2), x2),

where

Ω(t) = {(x1, x2) : x1 = b(t, y2) for a y2 ∈ (0,∞), x2 ∈ (0, h(t, x1))}
= {(x1, x2) : x1 ∈ R, x2 ∈ (0, h(t, x1))}
= {(x1, x2) : x2 ∈ (0,∞), x1 > b(t, x2)}

and b0(x2) := b(0, x2). First, we need to assure that the transformation is well-defined
which means showing that for a fixed (x1, x2) ∈ Σθ0 we have Θ(t, x1, x2) ∈ Ω(t). Now
let (x1, x2) ∈ Σθ0 . According to the definition of Ω(t) it is sufficient to ensure that
x̃1 > b(t, x̃2) for (x̃1, x̃2) = Θ(t, x1, x2) = (x1 − ∂x2b0(0)x2 + b(t, x2), x2). It follows
x̃2 = x2 such that we need to prove x1−∂x2b0(0)x2+b(t, x2) > b(t, x2), which actually
means that we have to assure x1 − ∂x2b0(0)x2 > 0. Since 0 ≤ x2 < tan(θ0)x1 and
∂x2b0(0) = cot(θ0) we deduce

x1 − ∂x2b0(0)x2 = x1 − cot(θ0)x2 > x1 − cot(θ0) tan(θ0)x1 = 0.

(It holds ∂x2b(0, 0) = (∂x1h(0, 0))−1 = tan(θ0)−1 = cot(θ0) by the rule for derivation of
inverse functions.) Then Θ(t) is well-defined for every t ∈ (0, T ). The full time-space
transformation is presented by

Φ : (0, T )× Σθ0 →
⋃︂

t∈(0,T )
{t} × Ω(t),
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(t, x1, x2) ↦→ (t, y1(t), y2) = Φ(t, x1, x2) := (t,Θ(t, x1, x2)).

Obviously, then Φ is also well-defined. Moreover, we define

ρ(t, x1, x2) := ρ(t, x2) := b(t, x2)− ∂x2b0(0)x2 ((t, x1, x2) ∈ [0, T )× Σθ0).

Then we also have ρ(0, x2) = b(0, x2) − ∂x2b0(0)x2 = b(0, x2) − cot(θ0)x2, which
results in

lim
x2→∞

ρ(0, x2)
x2

= lim
x2→∞

b(0, x2)− b(0, 0)
x2 − 0 − cot(θ0) = lim

x2→∞
∂x2b(0, x2)− cot(θ0) = 0

by (4.2) such that ρ(0, x2) → 0 as x2 → ∞. Then we can simplify the definition of
the transformation as

(y1, y2) = Θ(t, x1, x2) = (x1 + ρ(t, x2), x2) : Σθ0 → Ω(t),
(x1, x2) = Θ−1(t, y1, y2) = (y1 − ρ(t, y2), y2) : Ω(t) → Σθ0 .

We note that Θ−1 is well-defined as well: To this end, let (y1, y2) ∈ Ω(t). By the
definition of Ω(t) and the property of h and b by being strictly increasing we know
that y2 < h(t, y1) since (y1, h(t, y1)) ∈ Γf (t) and on the other hand y1 > b(t, y2) since
(b(t, y2), y2) ∈ Γf (t). Then we deduce

x1 = y1 − ρ(t, y2) = y1 − b(t, y2) + ∂y2b0(0)y2 > cot(θ0)y2 > 0

since θ0 ∈ (0, π/2) and y2 > 0 since (y1, y2) ∈ Ω(t). For the second component x2 we
obtain

0 ≤ x2 = y2 = tan(θ0) cot(θ0)y2 = tan(θ0)∂y2b0(0)y2
≤ tan(θ0)(y1 − b(t, y2)) + tan(θ0)∂y2b0(0)y2
= tan(θ0)(y1 − ρ(t, y2)) = tan(θ0)x1,

which yields (x1, x2) ∈ Σθ0 . Furthermore, it is obvious that Θ and Θ−1 are inverse to
each other. Then also

Φ : (0, T )× Σθ0 →
⋃︂

t∈(0,T )
{t} × Ω(t),

(t, x1, x2) ↦→ (t, y1(t), y2) = Φ(t, x1, x2) := (t,Θ(t, x1, x2)),

and

Φ−1 :
⋃︂

t∈(0,T )
{t} × Ω(t) → (0, T )× Σθ0 ,
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(t, y1, y2) ↦→ (t, x1(t), x2) = Φ−1(t, y1, y2) := (t,Θ−1(t, y1, y2))

are inverse to each other. We note that it depends on b(t, ·) which regularity the
transformation has.
Next, we want to apply the transformation to our main system (4.1) in order to

get a system on a fixed time-space domain (0, T )×Σθ0 . To this end, we denote push
forward and pull back by

u = Φ∗v = v ◦ Φ−1 :
⋃︂

t∈(0,T )
{t} × Ω(t) → R2,

p = Φ∗q = q ◦ Φ−1 :
⋃︂

t∈(0,T )
{t} × Ω(t) → R,

and

v = Φ∗u = u ◦ Φ : (0, T )× Σθ0 → R2,

q = Φ∗p = p ◦ Φ : (0, T )× Σθ0 → R,

where (u, p) is the solution of the original system (4.1) and (v, q) will be the solution
of the transformed system.
Now, we need to transform the (u, p) terms in (4.1) to terms depending on (v, q),

since they are defined on a fixed domain. We note that if h and b, respectively, are
smooth then the Jacobian (derivation in space dimension) of Θ is given by

DΘ(t, x1, x2) =
Ç
1 ∂x2ρ(t, x2)
0 1

å
, DΘ−1(t, y1, y2) =

Ç
1 −∂y2ρ(t, y2)
0 1

å
.

In order to obtain (4.1) in terms of (v, q) we need to apply Φ∗ to (4.1). At first we
calculate the transformation of the time derivative ∂tu:

Φ∗∂tu = ∂tu ◦ Φ = (∂tu)(t,Θ(t, x1, x2))

= ∂t(u(t,Θ(t, x1, x2))− (∂x1u)(t,Θ(t, x1, x2))∂tρ

= ∂tv − ∂x1v∂tρ,

since

∂t(u(t,Θ(t, x1, x2)) = (∂tu)(t,Θ(t, x1, x2)) + (∇u)(t,Θ(t, x1, x2))T (∂tρ, 0)

= (∂tu)(t,Θ(t, x1, x2)) + (∂x1u)(t,Θ(t, x1, x2))⏞ ⏟⏟ ⏞
=(∇u)(t,Θ(t,x1,x2))∂x1Θ(t,x1,x2)

= ∂x1 (u(t,Θ(t,x1,x2)))

∂tρ.

In general we can transform derivatives in x1 as follows for arbitrary functions ϕ:

Φ∗∂x1ϕ = ∂x1ϕ ◦ Φ = (∂x1ϕ)(t,Θ(t, x1, x2))
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= (∇ϕ))(t,Θ(t, x1, x2))T (1, 0)⏞ ⏟⏟ ⏞
= ∂x1Θ(t,x1,x2)

= ∂x1(ϕ(t,Θ(t, x1, x2))) = ∂x1Φ∗ϕ.

It will be more difficult to calculate the first and second order derivatives in x2 since
the transformation in x2 involves the height function ρ. At first we calculate the first
derivative:

Φ∗∂x2u
k = (∂x2)uk ◦ Φ = ∂x2u

k(t,Θ(t, x1, x2))

= ∂x2(uk(t,Θ(t, x1, x2))− (∂x1uk)(t,Θ(t, x1, x2))∂x2ρ

= ∂x2v
k − ∂x1v

k∂x2ρ

for k = 1, 2, since

∂x2(uk(t,Θ(t, x1, x2)) = (∇uk)(t,Θ(t, x1, x2))T (∂x2ρ, 1)⏞ ⏟⏟ ⏞
= ∂x2Θ(t,x1,x2)

= (∂x2uk)(t,Θ(t, x1, x2)) + (∂x1uk)(t,Θ(t, x1, x2))⏞ ⏟⏟ ⏞
=∂x1 (uk(t,Θ(t,x1,x2)))

∂x2ρ.

The transformation of the second derivative is given as:

Φ∗∂
2
x2u

k = (∂2x2u
k)(t,Θ(t, x1, x2))

= ∂2x2(u
k(t,Θ(t, x1, x2))− (∂x1∂x2uk)(t,Θ(t, x1, x2))∂x2ρ

− (∂2x1u
k)(t,Θ(t, x1, x2))(∂x2ρ)2 − (∂x1uk)(t,Θ(t, x1, x2))∂2x2ρ

= ∂2x2v
k − 2∂x1∂x2vk∂x2ρ− ∂2x1v

k(∂x2ρ)2 − ∂x1v
k∂2x2ρ

for k = 1, 2. In the following we will show how we transformed derivatives in x2 of
second order more precisely: The difficulty lies in the fact that now mixed derivatives
in x1 and x2 are also involved now. First, we have

∂2x2(u
k(t,Θ(t, x1, x2)) = ∂x2(∂x2(uk(t,Θ(t, x1, x2)))

= ∂x2((∂x2uk)(t,Θ(t, x1, x2)))

+ ∂x2((∂x1uk)(t,Θ(t, x1, x2))∂x2ρ).

(4.3)

For the first part of (4.3) we have using the calculation of ∂x2(uk(t,Θ(t, x1, x2)))
above:

∂x2((∂x2uk)(t,Θ(t, x1, x2))) = (∂2x2u
k)(t,Θ(t, x1, x2))

+ (∂x1∂x2uk)(t,Θ(t, x1, x2))∂x2ρ
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and for the second term in (4.3) we calculate:

∂x2((∂x1uk)(t,Θ(t, x1, x2))∂x2ρ)

= ∂x2(∂x1uk(t,Θ(t, x1, x2)))∂x2ρ+ (∂x1uk)(t,Θ(t, x1, x2))∂2x2ρ

= (∂2x1u
k)(t,Θ(t, x1, x2))(∂x2ρ)2 + (∂x2∂x1uk)(t,Θ(t, x1, x2))∂x2ρ

+ (∂x1uk)(t,Θ(t, x1, x2))∂2x2ρ.

Hence, we obviously obtain with the calculation we made above:

Φ∗∂x1∂x2u
k = ∂x1Φ∗∂x2u

k = ∂x1(∂x2vk − ∂x1v
k∂x2ρ) = ∂x1∂x2v

k − ∂2x1v
k∂x2ρ.

Using the calculations for u from above we are able to transform the pressure p
immediately:

Φ∗∇p = (∂x1q, ∂x2q − (∂x1q)(∂x2ρ)) = ∇q − (0, (∂x1q)(∂x2ρ)).

In order to transform the first two equations of (4.1) we also need to calculate

Φ∗ div u = ∂x1v
1 + ∂x2v

2 − ∂x1v
2∂x2ρ = div v − (∂x1v2)(∂x2ρ)

for the divergence. Transforming the stress tensor, we first observe that

T (u, p) = 2µD(u)− Ip = µ(∇u+∇uT )− Ip

= µ

ÇÇ
∂x1u

1 ∂x2u
1

∂x1u
2 ∂x2u

2

å
+
Ç
∂x1u

1 ∂x1u
2

∂x2u
1 ∂x2u

2

åå
−
Ç
p1 0
0 p2

å
,

hence the divergence of the stress tensor is given as

div T (u, p)

= µ∇ ·
ÇÇ

∂x1u
1 ∂x2u

1

∂x1u
2 ∂x2u

2

å
+
Ç
∂x1u

1 ∂x1u
2

∂x2u
1 ∂x2u

2

åå
−∇ ·

Ç
p1 0
0 p2

å
= µ(∂2x1u

1 + ∂x1∂x2u
2, ∂x1∂x2u

1 + ∂2x2u
2) + µ(∂2x1u

1 + ∂2x2u
1, ∂2x1u

2 + ∂2x2u
2)−∇p

= µ(2∂2x1u
1 + ∂2x2u

1 + ∂x1∂x2u
2, ∂2x1u

2 + 2∂2x2u
2 + ∂x1∂x2u

1)−∇p

= µ∆u+ µ∇ div u−∇p.

Having this form we can now transform the divergence of the stress tensor more
easily by using the transformations that we calculated before:

Φ∗ div T (u, p)

= µ(2Φ∗∂
2
x1u

1 + Φ∗∂
2
x2u

1 + Φ∗∂x1∂x2u
2,Φ∗∂

2
x1u

2 + 2Φ∗∂
2
x2u

2 + Φ∗∂x1∂x2u
1)
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− (Φ∗∂x1p,Φ∗∂x2p)

= µ(2∂2x1v
1 + ∂2x2v

1 − 2∂x1∂x2v1∂x2ρ+ ∂2x1v
1(∂x2ρ)2 − ∂x1v

1∂2x2ρ

+ ∂x1∂x2v
2 − ∂2x1v

2∂x2ρ,

∂2x1v
2 + 2(∂2x2v

2 − 2∂x1∂x2v2∂x2ρ+ ∂2x1v
2(∂x2ρ)2 − ∂x1v

2∂2x2ρ)

+ ∂x1∂x2v
1 − ∂2x1v

1∂x2ρ)

− (∂x1q, ∂x2q − (∂x1q)(∂x2ρ))

= div T (v, q) + µ(−2∂x1∂x2v1∂x2ρ+ ∂2x1v
1(∂x2ρ)2 − ∂x1v

1∂2x2ρ− ∂2x1v
2∂x2ρ,

− 4∂x1∂x2v2∂x2ρ+ 2∂2x1v
2(∂x2ρ)2 − 2∂x1v2∂2x2ρ− ∂2x1v

1∂x2ρ)

+ (0, (∂x1q)(∂x2ρ))

= div T (v, q) + µ(−2∂x1∂x2v∂x2ρ+ ∂2x1v(∂x2ρ)
2 − ∂x1v∂

2
x2ρ− ∂2x1(v

2, v1)∂x2ρ

+ (0,−2∂x1∂x2v2∂x2ρ+ ∂2x1v
2(∂x2ρ)2 − ∂x1v

2∂2x2ρ)

+ (0, ∂x1q)(∂x2ρ).

The Navier-Stokes nonlinearity is known to be written as

(u · ∇)u =
2∑︂
j=1

(uj∂xj)u = u1∂x1u+ u2∂x2u,

which leads to

Φ∗(u · ∇)u = Φ∗u
1Φ∗∂x1u+ Φ∗u

2Φ∗∂x2u

= v1∂x1v + v2∂x2v − v2∂x1v(∂x2ρ)

= (v · ∇)v − v2∂x1v(∂x2ρ).

The deformation tensor is given as

D(u) = 1
2(∇u+∇uT ) = 1

2

ÇÇ
∂x1u

1 ∂x2u
1

∂x1u
2 ∂x2u

2

å
+
Ç
∂x1u

1 ∂x1u
2

∂x2u
1 ∂x2u

2

åå
,

such that for the transformation of the deformation tensor we obtain

Φ∗D(u)

= 1
2

ÇÇ
Φ∗∂x1u

1 Φ∗∂x2u
1

Φ∗∂x1u
2 Φ∗∂x2u

2

å
+
Ç
Φ∗∂x1u

1 Φ∗∂x1u
2

Φ∗∂x2u
1 Φ∗∂x2u

2

åå
= 1

2

ÇÇ
∂x1v

1 ∂x2v
1 − ∂x1v

1∂x2ρ

∂x1v
2 ∂x2v

2 − ∂x1v
2∂x2ρ

å
+
Ç

∂x1v
1 ∂x1v

2

∂x2v
1 − ∂x1v

1∂x2ρ ∂x2v
2 − ∂x1v

2∂x2ρ

åå
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= D(v) + 1
2

ÇÇ
0 −∂x1v1∂x2ρ
0 −∂x1v2∂x2ρ

å
+
Ç

0 0
−∂x1v1∂x2ρ −∂x1v2∂x2ρ

åå
= D(v) + 1

2

Ç
∇v
Ç
0 −∂x2ρ
0 0

å
+
Ç

0 0
−∂x2ρ 0

å
∇vT
å

and using the transformation of the deformation tensor we can obtain the transfor-
mation of the stress tensor:

Φ∗T (u, p) = 2µΦ∗D(u)− Φ∗Ip

= 2µD(v)− Iq + µ

Ç
∇v
Ç
0 −∂x2ρ
0 0

å
+
Ç

0 0
−∂x2ρ 0

å
∇vT
å

+
Ç

0
(∂x1q)(∂x2ρ)

å
= T (v, q) + µ

Ç
∇v
Ç
0 −∂x2ρ
0 −0

å
+
Ç

0 0
−∂x2ρ 0

å
∇vT
å

+
Ç

0
(∂x1q)(∂x2ρ)

å
.

Hence, the first two equations of (4.1) are transformed.
Now we need to take care of the terms on the boundary. In order to transform
the third and fourth equation of (4.1) we denote by τΣ and nΣ the tangential and
exterior normal vector at ∂Σθ0 , respectively. We note that at Γ0 := Φ∗Γs we have
τΣ = (1, 0)T and nΣ = (0,−1)T where

Γ0 = Φ∗Γs(t) = {(x1 + b(t, 0), 0) : x1 + b(t, 0) ≥ b(t, 0)} = {(x1, 0) : x1 ≥ 0}

as desired. Then we transform the third equation (note that τs and ns denote
the tangential and outer normal vector at Γs, respectively, i.e., τs = (1, 0) and
ns = (0,−1) and that the third and fourth equation are defined on Γs):

Φ∗(λu1 + (D(u)ns)1)

= Φ∗(λτs · u+ τs ·D(u)ns)

= λΦ∗τs · Φ∗u+ Φ∗τs · Φ∗D(u)Φ∗ns)

= λτΣ · v + τΣ ·
Ç
D(v) + 1

2

Ç
∇v
Ç
0 −∂x2ρ
0 0

å
+
Ç

0 0
−∂x2ρ 0

å
∇vT
åå

nΣ

= λτΣ · v + τΣD(v)nΣ + 1
2∂x1v

1∂x2ρ,

and
Φ∗u

2 = Φ∗(−ns · u) = −nΣ · v,

with both equations now being defined on Γ0.
Next, we have to transform the equations defined on the free boundary. To this
end, we first need to transform tangential and exterior normal vector. We want to
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calculate the exterior normal vector at (b(t, y2), y2) ∈ Γf (t). Then tan(θ) of the angle
θ at (b(t, y2), y2) is given by

tan(θ) = lim
h→0

y2 + h− y2
b(t, y2 + h)− b(t, y2)

= lim
h→0

h

b(t, y2 + h)− b(t, y2)
= (∂y2b(t, y2))−1

and for ϕ+ θ = π/2 we have

tan(ϕ) = tan(π/2− θ) = sin(π/2− θ)
cos(π/2− θ) = cos(θ)

sin(θ) = tan(θ)−1 = ∂y2b(t, y2).

Then for the (not normed) exterior normal vector at (b(t, y2), y2) with (ñf)1 = −1
we conclude

(ñf )2 = − tan(ϕ)(nf )1 = tan(ϕ) = ∂y2b(t, y2),

such that for the (not normed) exterior normal vector we obtain:

ñf (t, (b(t, y2), y2)) = ñf (t, y2) = (−1, ∂y2b(t, y2)).

Hence, the generalized exterior normal vector at Γf (t) is given as

nf (t, (b(t, y2), y2)) = nf (t, y2) =
(−1, ∂y2b(t, y2))T√︁
1 + ∂y2(b(t, y2))2

.

Next, we have to transform Γf (t). To this end, we obtain

Γ+ := Φ∗Γf (t) = {(b(t, y2) + ∂y2b0(0)y2 − b(t, y2), y2) ∈ R2 : y2 ∈ (0,∞)}

= {(∂y2b0(0)y2, y2) ∈ R2 : y2 ∈ (0,∞)}

= {(cot(θ0)y2, y2) ∈ R2 : y2 ∈ (0,∞)}.

Doing the exact same calculation as above for (cot(θ0)y2, y2) ∈ Γ+, we see that the
generalized exterior normal vector at Γ+ is given as

nΣ(t, (cot(θ0)y2, y2)) = nΣ(t, y2) =
(−1, cot(θ0))T√︁
1 + cot(θ0)2

= (−1, ∂y2b0(0))T√︁
1 + (∂y2b0(0))2

= (− sin(θ0), cos(θ0))T

since
1 + cot(θ0)2 = 1 + cos(θ0)2

sin(θ0)2
= sin(θ0)2 + cos(θ0)2

sin(θ0)2
= 1

sin(θ0)2
.

We note that nΣ is then independent of t and y2. For the fifth and sixth equation in
(4.1) it is sufficient to see how the exterior normal vector nΣ at Γ+ is given. This
now yields

Φ∗T (u, p)nf = (Φ∗T (u, p))Φ∗nf
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= T (v, q)nf

+ µ

Ç
∇v
Ç
0 −∂x2ρ
0 −0

å
+
Ç

0 0
−∂x2ρ 0

å
∇vT
å
nf +

Ç
0

(∂x1q)(∂x2ρ)

å
nf

= T (v, q)nΣ + T (v, q)(nf − nΣ)

+ µ

Ç
∇v
Ç
0 −∂x2ρ
0 −0

å
+
Ç

0 0
−∂x2ρ 0

å
∇vT
å
nf +

Ç
0

(∂x1q)(∂x2ρ)

å
nf ,

since nf is only dependent on x2 but not on x1

Φ∗nf (t, x1, x2) = nf (t,Θ(t, x1, x2)) = nf (t, x1 − ∂x2b0(0)x2 + b(t, x2), x2)

= nf (t, x2) = nf (t, x1, x2).

For the fifth equation in (4.1) we have to take a look at the mean curvature κ: First
we note that similar to our calculations for nf we can also obtain the tangential
vector τf . Here, it is even easier: If

(τ̃ f (t, (b(t, y2), y2)))1 = (τ̃ f (t, y2))1 = ∂y2b(t, y2)

then we obtain

(τ̃ f (t, (b(t, y2), y2)))2 = (τ̃ f (t, y2))2 = tan(θ)(τ̃ f (t, y2))1 = 1

such that the normed tangential vector is given by

τf (t, y2) =
(∂y2b(t, y2), 1)T√︁
1 + (∂y2b(t, y2))2

.

At this point we also calculate the tangential vector τΣ at Γ+ as for the exterior
normal vector. Here, for (cot(θ0)y2, y2) ∈ Γ+ we obtain (using the exact same
arguments as for τf ):

τΣ(t, (cot(θ0)y2, y2)) =
(cot(θ0), 1)T√︁
1 + cot(θ0)2

= τΣ(t, y2) =
(∂y2b0(0), 1)T√︁
1 + (∂y2b0(0))2

= (cos(θ0), sin(θ0))T ,

where we again made use of the observations above. We need the tangential vector
at Γf(t) to calculate the mean curvature (we omit the arguments (t, y2) in this
calculation):

κ = − divΓf
nf = − 1

1 + (∂y2b)2

Ç
∂y2b

1

å
· ∂y2

Ç
1√︁

1 + (∂y2b)2

Ç
−1
∂y2b

åå
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= − 1
1 + (∂y2b)2

Ç
∂y2b

1

å
·

Ñ (∂y2b)∂
2
y2b

(1+(∂y2b)2)3/2
∂2y2b√

1+(∂y2b)2
− (∂y2b)

2∂2y2b

(1+(∂y2b)2)3/2

é
= −

(∂y2b)2∂2y2b
(1 + (∂y2b)2)5/2

−
∂2y2b

(1 + (∂y2b)2)3/2
+

(∂y2b)2∂2y2b
(1 + (∂y2b)2)5/2

= −
∂2y2ρ

(1 + (∂y2b)2)3/2

= −
∂2y2ρ

(1 + (∂y2b0(0)2)3/2
−

∂2y2ρ

(1 + (∂y2b)2)3/2
+

∂2y2ρ

(1 + (∂y2b0(0)2)3/2

= − sin(θ0)3∂2y2ρ− ∂2y2ρ

Å 1
(1 + (∂y2b)2)3/2

− sin(θ0)3
ã

since ρ(t, y2) = b(t, y2)− ∂y2b0(0)y2 such that ∂2y2b(t, y2) = ∂2y2ρ(t, y2) and where we
used the calculation for 1 + (∂y2b0(0))2 = 1 + cot(θ0)2 = sin(θ0)−2 from above. This
also shows that κ is only dependent on x2 but not on x1. Hence, transforming κ
yields

Φ∗κ(t, x1, x2) = κ(t,Θ(t, x1, x2)) = κ(t, x1 − ∂y2b0(0)x2 + b(t, x2), x2) = κ(t, x2)

= κ(t, x1, x2).

This gives us all terms for the fifth equation of (4.1). For the sixth equation of (4.1)
we need to transform the normal velocity Vnf

. To this end, we define

γy2 : (0, T ) → R2, t ↦→ (b(t, y2), y2)

for a fixed y2 ∈ (0,∞). Then γy2 is a C1-path on ⋃︁
t∈(0,T ){t}×Γf (t) since γy2(t) ∈ Γf (t)

for each t ∈ (0, T ). Then for the normal velocity we obtain

Vnf
(t, y2) = γ′y2(t) · nf (t, y2)

= 1√︁
1 + (∂y2b(t, y2))2

(∂tb(t, y2), 0)
Ç

−1
∂y2b(t, y2)

å
= − ∂tb(t, y2)√︁

1 + (∂y2b(t, y2))2

= − ∂tρ(t, y2)√︁
1 + (∂y2b(t, y2))2

,

since ρ(t, y2) = b(t, y2)− ∂y2b0(0)y2 such that ∂tρ(t, y2) = ∂tb(t, y2). Using the same
arguments as for the mean curvature κ, we observe that Vnf

is only dependent on x2
but not on x1 such that

Φ∗Vnf
(t, x1, x2) = Vnf

(t, x1, x2).
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Hence the kinematic condition (sixth equation of (4.1)) transforms as

Vnf
= Φ∗Vnf

= Φ∗(nf · u) = nf · v

= 1√︁
1 + (∂x2b)2

(−1, ∂x2b)
Ç
v1

v2

å
= − v1√︁

1 + (∂x2b)2
+ (∂x2b)v2√︁

1 + (∂x2b)2

= − v1√︁
1 + (∂x2b)2

+ (∂x2ρ)v2√︁
1 + (∂x2b)2

+ cot(θ0)v2√︁
1 + (∂x2b)2

where we note that

∂x2ρ(t, x2) = ∂x2b(t, x2)− ∂x2b0(0) = ∂x2b(t, x2)− cot(θ0).

Hence, inserting Vnf
we arrive at (again omitting the arguments here)

∂tρ = v1 − (∂x2ρ)v2 − cot(θ0)v2

for the sixth equation of (4.1).
It is obvious that we also obtain (0, 0) = Φ∗C(t) for the contact point such that
Φ∗nC = Φ∗(−1, 0) = nΣ = (−1, 0) in this case. Hence, for the contact point velocity
we observe

Φ∗VC = VC = u · nΣ = Φ∗(v · nC),
since VC is independent of x1 and x2. Furthermore, regarding the angle which is
determined thanks to the (derivative of the) height function ρ we obtain

∂x2ρ(t, 0) = ∂x2b(t, 0)− cot(θ0) = cot(θ(t))− cot(θ0)

at the contact point (0, 0) now.
Now collecting all terms we obtain the following system after the transformation:

∂tv − div T (v, q) = F1(v, q, ρ) in (0, T )× Σθ0 ,

div v = F2(v, ρ) in (0, T )× Σθ0 ,

λτΣ · v + τΣD(v)nΣ = F3(v, ρ) on (0, T )× Γ0,

nΣ · v = 0 on (0, T )× Γ0,

T (v, q)nΣ + σc̃(θ0)∂2y2ρnΣ = F4(v, ρ) on (0, T )× Γ+,

sin(θ0)∂tρ+ nΣ · v = F5(v, ρ) on (0, T )× Γ+,

VC = v · nΣ on (0, T )× {0},
∂x2ρ = cot(θ(t))− cot(θ0) on (0, T )× {0},

θ = ψ(VC) on (0, T )× {0},
v|t=0 = v0 in Σθ0 ,

ρ|t=0 = ρ0 on Γ+,

(4.4)
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with

F1(v, q, ρ) = (∂x1v)∂tρ− (v · ∇)v + v2(∂x1v)∂x2ρ

+ µ(−2∂x1∂x2v∂x2ρ+ ∂2x1v(∂x2ρ)
2 − ∂x1v∂

2
x2ρ+ ∂2x1(v

2, v1)∂x2ρ

+ (−2∂x1∂x2v2∂x2ρ+ ∂2x1v
2(∂x2ρ)2 − ∂x1v

2∂2x2ρ)(0, 1))

+ (∂x1q)(∂x2ρ)(0, 1),

F2(v, ρ) = (∂x1v2)∂x2ρ,

F3(v, ρ) = −1/2(∂x1v1)∂x2ρ,

F4(v, ρ) = T (v, q)(nΣ − n)− µ

Ç
∇v
Ç
0 −∂x2ρ
0 0

å
+
Ç

0 0
−∂x2ρ 0

å
∇vT
å
n

− σ∂2y2ρ

Ç
1√︁

1 + (∂y2b)2
− c̃(θ0)

å
n

− σc̃(θ0)∂2y2ρ(n− nΣ)−
Ç

0
(∂x1q)(∂x2ρ)

å
n,

F5(v, ρ) = − sin(θ0)(∂x2ρ)v2

and c̃(θ0) := sin(θ0)3 > 0. Here for simplicity we write n := nf and v0 := Φ∗u0 and
ρ0 = b0 are the given initial conditions. Note, that the contact point velocity VC
has to be determined as well as the contact point via C(t) = (ρ(t, 0), 0), whereas the
contact angle θ is given by the constitutive equation θ = ψ(VC) or prescribed.

4.2 Resolvent Stokes Equations on Sectors
In this section we provide a full analysis in the weak setting of the linearized version
of (4.4) on a sector Σθ with angle 0 < θ < π/2 (see definition below). Note that in
contrast to system (4.4) we will consider (4.5) on the reflected wedge which yields
the sector. However, in the framework of reflection invariant spaces we obtain the
boundary conditions on Γ0 after restricting the solution to the wedge again and only
boundary conditions at Γ+ have to be imposed: In the framework of reflected spaces
(cf. Section 3.2) we demand u1 to be an even function and u2 to be an odd function
w.r.t. to x2. Then we especially can ensure for Γ0 = (0,∞)× {0} with nΣ = (0,−1)
and τΣ = (−1, 0) that

(nΣ · u)(t, x1, 0) = −u2(t, x1, 0) = u2(t, x1, 0) = 0,

(τΣD(v)nΣ)(t, x1, 0) =
1
2(∂x2u

1(t, x1, 0) + ∂x1u
2(t, x1, 0)) = 0,
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for t ∈ (0, T ) and x1 ∈ (0,∞). Then applying a perturbation argument yields the
original boundary conditions. Also we will simplify the fifth equation of (4.4). Since
ρ only depends on the y2 component of the argument we deduce ∂kτΣρ = sin(θ0)k∂ky2ρ
for k = 1, 2:

∂τΣρ = (cos(θ0), sin(θ0))T
Ç
∂y1ρ

∂y2ρ

å
= sin(θ0)∂y2ρ,

∂2τΣρ = (cos(θ0), sin(θ0))T sin(θ0)
Ç
∂y2∂y1ρ

∂2y2ρ

å
= sin(θ0)2∂2y2ρ.

Also note that in our framework all equations at the contact point vanish since in
our desired regularity class

u ∈ H1((0, T ), H−1
0 (Σθ)) ∩H1/2((0, T ), L2

div(Σθ)) ∩ L2((0, T ), Ĥ1(Σθ)),

ρ ∈ H3/2((0, T ), Ĥ−1/2(Γ)) ∩H1/2((0, T ), H1(Γ)),

∂τρ ∈ L2((0, T ), Ĥ1/2(Γ)),

the contact point velocity VC = −u2 and ∂x2ρ are not defined at the contact point,
hence the corresponding equations drop out of (4.4).
This section is structured as follows: We prove the existence of weak solutions for

the inhomogeneous stationary system (4.5). Furthermore, we will prove corresponding
resolvent estimates. The strategy is as follows: In Section 4.2.1 we first consider
the weak formulation of (4.5) in the Hilbert space setting in order to obtain weak
solutions of the system with corresponding resolvent estimates for |λ| = 1. In
Section 4.2.2 we will apply a scaling argument to finally obtain resolvent estimates
for λ with arbitrary large absolute value.
In the sequel we will consider the following stationary system with data (f1, f4)

that have the suitable regularity:

λu− div T (u, p) = f1 in Σθ,

div u = 0 in Σθ,

T (u, p)n+ σc(θ)∂2τρn = f4 on Γ,
λρ+ 1

sin(θ)(n · u) = 0 on Γ,

(4.5)

where c(θ) = sin(θ) > 0 for θ ∈ (0, π/2). In the following θ ∈ (0, π/2) will be a
fixed angle throughout the section and (4.5) will be considered on the sector Σθ as
introduced in Chapter 3:

Σθ = {x = (x1, x2) ∈ C\{0} : | arg x| < θ},
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where Γ := ∂Σθ denotes the boundary. First we assume λ ∈ Σπ/2 but later in the
section we will assume that |λ| is large. For the reader’s convenience we recall
exterior normal vector field n and tangential vector field τ at Γ which are given in
Lemma 3.1.1 for δ = 0:

n = n(x2) = (− sin(θ), sgn(x2) cos(θ)) =

⎧⎨⎩n+ = (− sin(θ), cos(θ)), x2 > 0,
n− = (− sin(θ),− cos(θ)), x2 < 0,

and

τ = τ(x2) = (sgn(x2) cos(θ), sin(θ)) =

⎧⎨⎩τ+ = (cos(θ), sin(θ)), x2 > 0,
τ− = (− cos(θ), sin(θ)), x2 < 0.

As we were originally interested in solving (4.4) on the wedge, we will consider (4.5)
on the reflected wedge (which is a sector) in the framework of homogeneous spaces
as introduced in Section 3.2. In the following we will assume for the data

f1 ∈ Ĥ−1
0,div(Σθ)R := (Ĥ1

div(Σθ)R)′ and f4 ∈ Ĥ−1/2(Γ)R.

4.2.1 Remark. We set Ĥ−1
0 (Σθ) = (Ĥ1(Σθ))′ and define the divergence of a func-

tional in Ĥ−1
0 (Σθ) as

div : Ĥ−1
0 (Σθ) → D′(Σθ), div f(ϕ) := ⟨f,∇ϕ⟩Ĥ−1

0 (Σθ),Ĥ1(Σθ) (ϕ ∈ C∞
c (Σθ)),

where D′(Σθ) denotes the space of distributions on Σθ. We note that indeed we have
Ĥ−1

0,div(Σθ) ⊆ {u ∈ Ĥ−1
0 (Σθ) : div u = 0} by the following observation: Note that the

Weyl projection from Corollary 3.1.17 is symmetric, hence we obtain the orthogonal
decomposition

(Ĥ1(Σθ)2)′ = (Ĥ1
div(Σθ))′ ⊕ (∇Ĥ2

D(Σθ))′,

with

(Ĥ1
div(Σθ))′ ∼= (∇Ĥ2

D(Σθ))⊥,

where M⊥ denotes the polar of M . We observe that the polar contains u ∈ Ĥ−1
0 (Σθ)

having the property

⟨u,∇ϕ⟩Ĥ−1
0 (Σθ),Ĥ1(Σθ) = 0 (ϕ ∈ Ĥ2

D(Σθ)),

which especially yields the equality for all ϕ ∈ C∞
c (Σθ). Thus, div u = 0 by definition.
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4.2.1 Weak Solutions and Resolvent Estimates for |λ| = 1

In this section we prove existence of a triple (u, p, ρ) solving (4.5) in the weak sense
and fulfilling corresponding resolvent estimates. To be precise, we want to prove the
following

4.2.2 Proposition. Let σ > 0, λ ∈ Σπ/2 with |λ| = 1. Furthermore, we assume

f1 ∈ Ĥ−1
0,div(Σθ)R and f4 ∈ Ĥ−1/2(Γ)R.

Then there exists a unique weak solution (u, p, ρ) ∈ H1
div(Σθ)R×L2(Σθ)r+ Ĥ1(Σθ)r×

Ĥ1(Γ)r of (4.5) fulfilling the resolvent estimate

∥u∥L2(Σθ)R + ∥∇u∥L2(Σθ)R +
√
σ∥ρ∥Ĥ1(Γ)r

+ σ∥∂2τρ∥Ĥ−1/2(Γ)r+Ĥ1/2(Γ)r + ∥p∥L2(Σθ)r+Ĥ1(Σθ)r

≤ C
(︂
∥f1∥Ĥ−1

0,div(Σθ)R + ∥f4∥Ĥ−1/2(Γ)R

)︂ (4.6)

with C > 0 independent of σ, λ, u, p, ρ and the data f1, f4.

The strategy to prove Proposition 4.2.2 is as follows: At first we prove the existence
of the velocity field u by considering the weak formulation of (4.5) and applying
the Lax-Milgram theorem. From this we directly obtain resolvent estimates for
u. Next, we define the height function ρ by making use of the fourth equation of
(4.5). In order to reconstruct the pressure p we need to prove that ρ has higher
regularity. Then we can solve the very weak and weak Dirichlet problem to obtain p
and corresponding resolvent estimates are also obtained.
At first we need to derive the weak formulation of (4.5). To this end, let ϕ ∈

C∞
c,σ(Σθ) and data f1, f4 be sufficiently smooth. Then we calculate

(λu, ϕ)2 − (div T (u, p), ϕ)2
= (λu, ϕ)2 + (T (u, p),∇ϕ)2 − (T (u, p)n, ϕ)2,Γ
= (λu, ϕ)2 + 2µ(D(u),∇ϕ)2 − (p · I,∇ϕ)2 − (T (u, p)n, ϕ)2,Γ
= (λu, ϕ)2 + 2µ(D(u), D(ϕ))2 − (p, divϕ)2 − (f4 − σc(θ)∂2τρn, ϕ)2,Γ
= (λu, ϕ)2 + 2µ(D(u), D(ϕ))2 − (f4, ϕ)2,Γ +

(︁
σc(θ)∂2τρ, n · ϕ

)︁
2,Γ

= (λu, ϕ)2 + 2µ(D(u), D(ϕ))2 − σc(θ)(∂τρ, ∂τ (n · ϕ))2,Γ − (f4, ϕ)2,Γ

= (λu, ϕ)2 + 2µ(D(u), D(ϕ))2 +
σc(θ)
sin(θ)λ(∂τ (n · u), ∂τ (n · ϕ))2,Γ − (f4, ϕ)2,Γ

= (f1, ϕ)2,

97



Chapter 4. 2D Contact Line Dynamics

where we inserted the equations from (4.5). The calculation above then leads to the
weak formulation of (4.5) for u given as

(λu, ϕ)2 + 2µ(D(u), D(ϕ))2 +
σc(θ)
sin(θ)λ(∂τ (n · u), ∂τ (n · ϕ))2,Γ

= (f1, ϕ)2 + (f4, ϕ)2,Γ.
(4.7)

In order to apply the Lax-Milgram theorem from Theorem 2.1.2 we have to consider
the weak formulation (4.7) in a suitable setting. To this end, we set

H1 :=
{︁
u ∈ H1(Σθ)2 : div u = 0, n · u|Γ ∈ H1(Γ)

}︁
,

equipped with the norm ∥u∥H1 :=
Ä
∥u∥2H1(Σθ) + ∥n · u∥2H1(Γ)

ä1/2
which is the natural

function space to apply Lax-Milgram. We demand higher regularity for the boundary
term n · u|Γ such that the term (∂τ (n · u), ∂τ (n · ϕ))2,Γ is well-defined. Thus, at first
we prove

4.2.3 Lemma. Let θ ∈ (0, π/2) and λ ∈ Σπ/2. Then there exists a unique weak
solution u ∈ H1

R of the linearized problem (4.7). If |λ| = 1 then the solution u can be
estimated as

∥u∥L2(Σθ)R + ∥∇u∥L2(Σθ)R +
√
σ∥∂τ (n · u)∥L2(Γ)−r

≤ C
(︂
∥f1∥Ĥ−1

0,div(Σθ)R + ∥f4∥Ĥ−1/2(Γ)R

)︂ (4.8)

with C > 0 independent of λ, σ, u and the data f1, f4.

Proof. As already mentioned above we want to apply Theorem 2.1.2. To this end,
we define the corresponding form to (4.7) as

aλ : H1
R ×H1

R → C,

aλ(u, ϕ) = (λu, ϕ)2 + 2µ(D(u), D(ϕ))2 +
σc(θ)
sin(θ)λ(∂τ (n · u), ∂τ (n · ϕ))2,Γ.

Furthermore, the functional ℓ on the right-hand side is given as (now assuming that
f1 and f4 have the assumed regularity)

ℓ : H1
R → C,

ℓ(ϕ) = ⟨f1, ϕ⟩Ĥ−1
0,div(Σθ)R,Ĥ1

div(Σθ)R + ⟨f4, ϕ⟩Ĥ−1/2(Γ)R,Ĥ1/2(Γ)R

and ℓ is linear (obviously), well-defined and bounded:

|ℓ(ϕ)| ≤ ∥f1∥Ĥ−1
0,div(Σθ)R∥ϕ∥Ĥ1(Σθ)R + ∥f4∥Ĥ−1/2(Γ)R∥ϕ∥Ĥ1/2(Γ)R
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≤ ∥f1∥Ĥ−1
0,div(Σθ)R∥ϕ∥Ĥ1(Σθ)R + C∥f4∥Ĥ−1/2(Γ)R∥ϕ∥Ĥ1(Σθ)R

≤ C
(︂
∥f1∥Ĥ−1

0,div(Σθ)R + ∥f4∥Ĥ−1/2(Γ)R

)︂
∥ϕ∥H1(Σθ)R ,

where we made use of the boundedness of the trace operator T : Ĥ1(Σθ)±R →
Ĥ1/2(Γ)±R from Corollary 3.2.12. Hence, ℓ ∈ (H1

R)′ such that we only need to prove
that aλ is a coercive sesquilinear form in order to apply Theorem 2.1.2.
It is obvious that aλ is sesquilinear in both arguments. However, in order to prove

the coercitivity we need to apply Korn’s inequality from Corollary 3.1.40. Then we
infer by the fact that λ, λ−1 ∈ Σπ/2

|aλ(u, u)|

=
⃓⃓⃓⃓
λ∥u∥2L2(Σθ)R + 2µ∥D(u)∥2L2(Σθ)R + σc(θ)

sin(θ)λ∥∂τ (n · u)∥2L2(Γ)−r

⃓⃓⃓⃓
≥ C

Å
|λ|∥u∥2L2(Σθ)R + 2µ∥D(u)∥2L2(Σθ)R + σc(θ)

sin(θ)|λ|∥∂τ (n · u)∥2L2(Γ)−r

ã
≥ C(λ)

Ä
∥u∥2L2(Σθ)R + ∥∇u∥2L2(Σθ)R + ∥∂τ (n · u)∥2L2(Γ)−r

+ ∥n · u∥2L2(Γ)r

ä
≥ C(λ)∥u∥2H1

R
,

by the boundedness of the trace operator T : H1(Σθ)±R → H1/2(Γ)±R from Corol-
lary 3.2.12 and n· : L2(Γ)R → L2(Γ)r from Lemma 3.2.8:

∥u∥L2(Σθ)R + ∥∇u∥L2(Σθ)R = ∥u∥H1(Σθ)R

≥ C∥u∥H1/2(Γ)R ≥ C∥u∥L2(Γ)R ≥ C∥n · u∥L2(Γ)r .

Hence, thanks to the Lax-Milgram Theorem (cf. Theorem 2.1.2) we can find a unique
u ∈ H1

R such that
aλ(u, ϕ) = ℓ(ϕ) (ϕ ∈ H1

R).

Now setting ϕ = u we immediately obtain the important resolvent estimate for u:⃓⃓⃓⃓
λ∥u∥2L2(Σθ)R + 2µ∥D(u)∥2L2(Σθ)R + σc(θ)

sin(θ)λ∥∂τ (n · u)∥2L2(Γ)−r

⃓⃓⃓⃓
=
⃓⃓⃓
⟨f1, u⟩Ĥ−1

0,div(Σθ)R,Ĥ1
div(Σθ)R + ⟨f4, u⟩Ĥ−1/2(Γ)R,Ĥ1/2(Γ)R

⃓⃓⃓
,

and since λ ∈ Σπ/2 we immediately deduce

|λ|∥u∥2L2(Σθ)R + 2µ∥D(u)∥2L2(Σθ)R + σc(θ)
sin(θ)|λ|∥∂τ (n · u)∥2L2(Γ)−r

≤ C
(︂
∥f1∥Ĥ−1

0,div(Σθ)R∥u∥Ĥ1(Σθ)R + ∥f4∥Ĥ−1/2(Γ)R∥u∥Ĥ1(Σθ)R

)︂
.
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Thanks to Korn’s inequality from Corollary 3.1.40 and u ∈ H1
R we have

∥u∥Ĥ1(Σθ)R = ∥∇u∥L2(Σθ)R ≤ C
(︁
∥u∥L2(Σθ)R + ∥D(u)∥L2(Σθ)R

)︁
,

such that we can absorb all ∥u∥Ĥ1(Σθ)R terms on the right hand side by applying
Young’s inequality. At this point we are not able to absorb the ∥u∥Ĥ1(Σθ)R term as
well as the remaining ∥u∥L2(Σθ)R term without leaving some terms containing |λ| as
a factor on the right-hand side. Hence, we set |λ| = 1 to obtain

∥u∥2L2(Σθ)R + ∥∇u∥2L2(Σθ)R + σ∥∂τ (n · u)∥2L2(Γ)−r

≤ C
(︂
∥f1∥2Ĥ−1

0,div(Σθ)R
+ ∥f4∥2Ĥ−1/2(Γ)R

)︂
,

and (4.8) follows for |λ| = 1.

4.2.4 Remark. (i) The reason why we don’t immediately get estimates for arbi-
trary λ ∈ Σπ/2 follows from the proof: By applying Korn’s inequality in the
form of Corollary 3.1.40 we obtain an extra ∥u∥L2(Σθ)R term on the right hand
side which cannot be absorbed without leaving some terms containing λ as a
factor. However, if we had the stronger Korn inequality

∥∇u∥L2(Σθ,R2×2) ≤ C∥D(u)∥L2(Σθ,R2×2), (4.9)

then this problem wouldn’t occur and we would have obtained estimates for
all λ ∈ Σπ/2. To the best knowledge of the author, up to now it is not known
whether (4.9) holds or not.

(ii) Without setting f5 = 0 the linear form ℓ would have had another term
−σc(θ)λ−1(∂τf5, ∂τ (n · ϕ))2,Γ which is difficult to handle in view of getting
the resolvent estimate for u. Even by setting |λ| = 1, we cannot absorb terms
containing σ term fully such that a term containing σ as a factor would be
left on right-hand side of the estimate. Hence, the scaling argument from
Section 4.2.1 cannot be applied.

Next, we reconstruct the pressure p by solving a corresponding very weak and
weak Dirichlet problem. To this end, we need higher regularity for n · u. Note that
by the last equation in (4.5) we can reconstruct the height function ρ by setting

ρ := − 1
λ sin(θ)(n · u) ∈ H1(Γ)r, (4.10)

where u is the solution from Lemma 4.2.3. As mentioned before we need to prove
higher regularity for u to reconstruct the pressure p:
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4.2.5 Lemma. Let σ > 0 and λ ∈ Σπ/2 with |λ| = 1 and u be given from in
Lemma 4.2.3. Then we have

σ∥∂2τ (n · u)∥Ĥ−1/2(Γ)r+Ĥ1/2(Γ)r ≤ C
(︂
∥f1∥Ĥ−1

0,div(Σθ)R + ∥f4∥Ĥ−1/2(Γ)R

)︂
(4.11)

with C > 0 independent of λ, σ, u and the data f1, f4.

Proof. We will prove that ∂2τ (n · u) ∈ Ĥ−1/2(Γ)r + Ĥ1/2(Γ)r with a corresponding
estimate. Let ϕ ∈ H1

R. Since u is the solution from Lemma 4.2.3 it fulfills aλ(u, ϕ) =
ℓ(ϕ) for ϕ ∈ H1

R which yields
σc(θ)
sin(θ)λ

∫︂
Γ
∂τ (n · u)∂τ (n · ϕ) dη = −(λu, ϕ)2 − 2µ(D(u), D(ϕ))2

+ ⟨f1, ϕ⟩Ĥ−1
0,div(Σθ)R,Ĥ1

div(Σθ)R

+ ⟨f4, ϕ⟩Ĥ−1/2(Γ)R,Ĥ1/2(Γ)R .

Estimating this we arrive at

σ

⃓⃓⃓⃓∫︂
Γ
∂τ (n · u)∂τ (n · ϕ) dη

⃓⃓⃓⃓
= sin(θ)|λ|

c(θ)

⃓⃓⃓
− (λu, ϕ)2 − 2µ(D(u), D(ϕ))2

+⟨f1, ϕ⟩Ĥ−1
0,div(Σθ)R,Ĥ1

div(Σθ)R + ⟨f4, ϕ⟩Ĥ−1/2(Γ)R,Ĥ1/2(Γ)R

⃓⃓⃓
≤ C|λ|

(︁
|λ|∥u∥L2(Σθ)R∥ϕ∥L2(Σθ)R + ∥D(u)∥L2(Σθ)R∥D(ϕ)∥L2(Σθ)R

+∥f1∥Ĥ−1
0,div(Σθ)R∥ϕ∥Ĥ1(Σθ)R + ∥f4∥Ĥ−1/2(Γ)R∥ϕ∥Ĥ1(Σθ)R

)︂
≤ C|λ|

(︂
|λ|∥u∥L2(Σθ)R + ∥D(u)∥L2(Σθ)R + ∥f1∥Ĥ−1

0,div(Σθ)R

+∥f4∥Ĥ−1/2(Γ)R

ä
· ∥ϕ∥H1(Σθ)R .

Since we only have estimate (4.8) for |λ| = 1 we also have to assume |λ| = 1 here;
then we can make use of (4.8) and apply integration by parts to the left-hand term
to obtain

σ

⃓⃓⃓⃓∫︂
Γ
∂2τ (n · u)(n · ϕ) dη

⃓⃓⃓⃓
≤ C

(︂
∥f1∥Ĥ−1

0,div(Σθ)R + ∥f4∥Ĥ−1/2(Γ)R

)︂
∥ϕ∥H1(Σθ)R

where we note that C > 0 is independent of σ and λ. (Note that r(∂τ (n · u)) =
−(∂τ (n · u)) by the symmetry.)
By Corollary 3.2.17 the normal trace operator T0 : H1

div(Σθ)R → Ĥ1/2(Γ)r ∩
Ĥ−1/2(Γ)r is bounded and a retraction. Then N(T0) := {ϕ ∈ H1

div(Σθ)R : n ·ϕ|Γ = 0}
is closed and we obtain the orthogonal decomposition

H1
div(Σθ)R = N(T0)⊕⊥ N(T0)⊥.
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Then there exists a projection P ∈ L (H1
div(Σθ)R) such that R(P ) = N(T0)⊥ and

T0|N(T0)⊥ : N(T0)⊥ → Ĥ1/2(Γ)r ∩ Ĥ−1/2(Γ)r is an isomorphism. Then we observe
that

σ

⃓⃓⃓⃓∫︂
Γ
∂2τ (n · u)(n · ϕ) dη

⃓⃓⃓⃓
≤ C

(︂
∥f1∥Ĥ−1

0,div(Σθ)R + ∥f4∥Ĥ−1/2(Γ)R

)︂
∥n · ϕ∥Ĥ1/2(Γ)r∩Ĥ−1/2(Γ)r

holds for ϕ ∈ H1
R ∩N(T0)⊥.

Next, we observe that P (H1
R)

d
↪→ P (H1

div(Σθ)R) = N(T0)⊥: Since H2
div(Σθ)R ↪→

H1
R ↪→ H1

div(Σθ)R and H2
div(Σθ)R

d
↪→ H1

div(Σθ)R by Lemma 3.2.2(iv), we deduce
H1
R

d
↪→ H1

div(Σθ)R which yields the desired density statement.
We finally conclude that T0 : P (H1

R) → Ĥ1/2(Γ)r ∩ Ĥ−1/2(Γ)r has dense range.
Then we finally deduce

σ∥∂2τ (n · u)∥Ĥ−1/2(Γ)r+Ĥ1/2(Γ)r

= sup
g∈Ĥ1/2(Γ)r∩Ĥ−1/2(Γ)r
∥g∥

Ĥ1/2(Γ)r∩Ĥ−1/2(Γ)r
=1

σ|(∂2τ (n · u), g)Γ|

= sup
ϕ∈P (H1

R
)

∥n·ϕ∥
Ĥ1/2(Γ)r∩Ĥ−1/2(Γ)r

=1

σ|(∂2τ (n · u), n · ϕ)Γ|

≤ C sup
ϕ∈P (H1

R
)

∥n·ϕ∥
Ĥ1/2(Γ)r∩Ĥ−1/2(Γ)r

=1

(︂
∥f1∥Ĥ−1

0,div(Σθ)R + ∥f4∥Ĥ−1/2(Γ)R

)︂
∥n · ϕ∥Ĥ1/2(Γ)r∩Ĥ−1/2(Γ)r

≤ C
(︂
∥f1∥Ĥ−1

0,div(Σθ)R + ∥f4∥Ĥ−1/2(Γ)R

)︂
,

where C > 0 is independent of λ and σ for |λ| = 1. We remark that (Ĥ−1/2(Γ)r +
Ĥ1/2(Γ)r)′ = Ĥ1/2(Γ)r ∩ Ĥ−1/2(Γ)r. Then the assertion follows.

As a consequence of the above result we obtain the following estimates for the
height function ρ if |λ| = 1:

∥ρ∥Ĥ1(Γ)r =
⃦⃦⃦⃦
⃦− 1

λ sin(θ)(n · u)
⃦⃦⃦⃦
⃦
Ĥ1(Γ)r

≤ C

|λ|
∥∂τ (n · u)∥L2(Γ)−r

≤ C√
σ

(︂
∥f1∥Ĥ−1

0,div(Σθ)R + ∥f4∥Ĥ−1/2(Γ)R

)︂
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and

∥∂2τρ∥Ĥ−1/2(Γ)r+Ĥ1/2(Γ)r =
⃦⃦⃦⃦
⃦− 1

λ sin(θ)∂
2
τ (n · u)

⃦⃦⃦⃦
⃦
Ĥ−1/2(Γ)r+Ĥ1/2(Γ)r

≤ C

|λ|
⃦⃦⃦
∂2τ (n · u)

⃦⃦⃦
Ĥ−1/2(Γ)r+Ĥ1/2(Γ)r

≤ C

σ

(︂
∥f1∥Ĥ−1

0,div(Σθ)R + ∥f4∥Ĥ−1/2(Γ)R

)︂
.

At last we need to reconstruct the pressure p. Finally, we are able to prove (weak)
solvability of the linearized problem (4.5). Hence, we finally give the proof for
Proposition 4.2.2:

Proof of Proposition 4.2.2. In Lemma 4.2.3 and by (4.10) we already proved the
existence of a unique u and ρ solving (4.5) (in the weak sense). At last we need
to reconstruct the pressure p. Since ∂2τρ ∈ Ĥ−1/2(Γ)r + Ĥ1/2(Γ)r we can choose
ρ1 ∈ Ĥ−1/2(Γ)r and ρ2 ∈ Ĥ1/2(Γ)r such that ∂2τρ = ρ1 + ρ2 and

∥∂2τρ∥Ĥ−1/2(Γ)r+Ĥ1/2(Γ)r ≤ ∥ρ1∥Ĥ1/2(Γ)r + ∥ρ2∥Ĥ1/2(Γ)r < ∥∂2τρ∥Ĥ−1/2(Γ)r+Ĥ1/2(Γ)r + ε/σ

for every ε > 0. In order to construct the pressure we set p := q · n+ p̃ where q and
p̃ solve the very weak and the weak Dirichlet problem, respectively. In particular, we
consider

−∆q = 0 in Σθ, q = −f4 + 2µD(u)n+ σc(θ)ρ1n on Γ (4.12)

as a very weak Dirichlet problem and

−∆p̃ = 0 in Σθ, p̃ = σc(θ)ρ2 on Γ (4.13)

as a weak Dirichlet problem. Considering (4.12) we obtain this very weak formulation
by calculating for ϕ ∈ Ĥ2

D(Σθ)R from Lemma 3.1.34:

−(q,∆ϕ)2 = −⟨q, ∂nϕ⟩Ĥ−1/2(Γ)R,Ĥ1/2(Γ)R

= −⟨−f4 + 2µD(u)n+ σc(θ)ρ1n, ∂nϕ⟩Ĥ−1/2(Γ)R,Ĥ1/2(Γ)R

(4.14)

where we took (4.12) into consideration. By Corollary 3.2.11 such a unique solution
q ∈ L2(Σθ)R exists if

−f4 + 2µD(u)n+ σc(θ)ρ1n ∈ Ĥ−1/2(Γ)R.

We note that by D(u)n = 1/2(∇uTn + (nT∇uT )T ) with div∇uT = 0 it follows
D(u)n ∈ Ĥ−1/2(Γ)R by Corollary 3.2.14. Furthermore, since we know that the
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normal trace T0 : L2
div(Σθ)±R → Ĥ−1/2(Γ)±r from Corollary 3.2.14 is bounded, this

yields
∥D(u)n∥Ĥ−1/2(Γ)R ≤ C∥D(u)∥L2(Σθ)R <∞

by using (4.8). The last term is also in Ĥ−1/2(Γ)R which follows from ρ1 ∈ Ĥ−1/2(Γ)r
and Lemma 3.2.6. Hence, by Corollary 3.2.11 there exists a unique q ∈ L2(Σθ)R
which can be estimated as

∥q∥L2(Σθ)R ≤ C ∥−f4 + 2µD(u)n+ σc(θ)ρ1n∥Ĥ−1/2(Γ)R

≤ C
Ä
∥f4∥Ĥ−1/2(Γ)R + 2µ∥∇u∥L2(Σθ)R + σ∥ρ1∥Ĥ−1/2(Γ)r

ä
where we used the estimates that we proved before.
Regarding (4.13) we observe that σc(θ)ρ2 ∈ Ĥ1/2(Γ)r. Then by Corollary 3.1.33

there exists a unique p̃ ∈ Ĥ1(Σθ)r such that p̃ solves (4.13) with

∥p̃∥Ĥ1(Σθ)r ≤ Cσ∥ρ2∥Ĥ1/2(Γ)r .

Then summing up we end up by using ρ1 + ρ2 = ∂2τρ

q · n+ p̃ = −f4 · n+ 2µD(u)n · n+ σc(θ)(ρ1 + ρ2) = p on Γ,

which shows that p as a solution of the Dirichlet problem is unique and for ε > 0:

∥p∥L2(Σθ)r+Ĥ1(Σθ)r

≤ C
Ä
∥f4∥Ĥ−1/2(Γ)r + 2µ∥∇u∥L2(Σθ)R + σ∥∂2τρ∥Ĥ−1/2(Γ)r+Ĥ1/2(Γ)r + ε

ä
.

We extend the normal vector n = (− sin(θ), sgn(x2) cos(θ)) constantly to the entire
sector Σθ. Recovering the pressure p by setting p = q · n + p̃ we first note that
p ∈ L2(Σθ)r + Ĥ1(Σθ)r by Lemma 3.2.8. Furthermore, we also know ∆p = 0 in
distributional sense since for ϕ ∈ C∞

c (Σθ\{x2 = 0})r we deduce (since p is even it is
sufficient to consider ϕ even since the integral vanishes for odd ϕ):∫︂

Σθ

p(x)∆ϕ(x) dx

=
∫︂
Σθ

(− sin(θ)q1(x) + sgn(x2) cos(θ)q2(x))∆ϕ(x) dx+
∫︂
Σθ

p̃(x)∆ϕ(x) dx

= − sin(θ)
∫︂
Σθ

q1(x)∆ϕ(x) dx+ cos(θ)
∫︂
Σθ

sgn(x2)q2(x)∆ϕ(x) dx

+
∫︂
Σθ

p̃(x)∆ϕ(x) dx

= 0.
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Note that the first integral vanishes since ∆q1 = 0 by the weak formulation in (4.14)
and the third integral vanishes since p̃ is the solution of (4.13). The weak formulation
(4.14) for q1 first holds for ϕ ∈ C∞

c (Σθ)r. However, since q1 is even, (4.14) also holds
for ϕ ∈ C∞

c (Σθ)−r, hence it holds for all ϕ ∈ C∞
c (Σθ). The same arguments can

be applied to q2 since q2 is odd and (4.14) holds for ϕ ∈ C∞
c (Σθ)−r. Regarding the

latter integral we make use of q2 odd and ϕ even such that for Σ±
θ := Σθ ∩{±x2 > 0}

we obtain:∫︂
Σθ

sgn(x2)q2(x)∆ϕ(x) dx =
∫︂
Σ+

θ

q2(x)∆ϕ(x) dx−
∫︂
Σ−

θ

q2(x)∆ϕ(x) dx

= 2
∫︂
Σ+

θ

q2∆ϕ(x) dx

= 2
∫︂
Σ+

θ

∆q2(x)ϕ(x) dx− 2
∫︂
∂Σ−

θ

∂nq
2(x)ϕ(x) dη

= 0,

since {x2 = 0}∩supp ϕ = ∅. Hence, ∆p = 0 in the distributional sense in Σθ\{x2 = 0}
and p fulfills the estimate:

∥p∥L2(Σθ)r+Ĥ1(Σθ)r

≤ C
Ä
∥f4∥Ĥ−1/2(Γ)r + 2µ∥∇u∥L2(Σθ)R + σ∥∂2τρ∥Ĥ−1/2(Γ)r+Ĥ1/2(Γ)r

ä
≤ C

(︂
∥f1∥Ĥ−1

0,div(Σθ)R + ∥f4∥Ĥ−1/2(Γ)R

)︂
.

Collecting all terms from Lemma 4.2.3 and from above of this lemma, we arrive at
the resolvent estimate in case if |λ| = 1:

∥u∥L2(Σθ)R + ∥∇u∥L2(Σθ)R +
√
σ∥ρ∥Ĥ1(Γ)r

+ σ∥∂2τρ∥Ĥ−1/2(Γ)r+Ĥ1/2(Γ)r + ∥p∥L2(Σθ)r+Ĥ1(Σθ)r

≤ C
(︂
∥f1∥Ĥ−1

0,div(Σθ)R + ∥f4∥Ĥ−1/2(Γ)R

)︂
.

Then the assertion is proved.

4.2.2 Weak Solutions and Resolvent Estimates for large |λ|

In this section we prove solvability of the weak linearized problem (4.7) for λ ∈ Σπ/2
of large absolute value and corresponding resolvent estimates as in (4.6). To this
end, we apply a scaling argument since the sector Σπ/2 is obviously scaling invariant.
We note that it is sufficient to have results on solvability of (4.5) for |λ| = 1 and
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arbitrary σ > 0 since we will see that (4.5) is equivalent to

λ
|λ| ũ− µ∆ũ+∇p̃ = f̃ 1 in Σθ,

div ũ = 0 in Σθ,

T (ũ, p̃)n+ σc(θ)
|λ|1/2∂

2
τ ρ̃n = f̃ 4 on Γ,

λ
|λ| ρ̃+

1
sin(θ)(n · ũ) = 0 on Γ.

(4.15)

Hence if (u, p, ρ) is a weak solution of (4.5) then (ũ, p̃, ρ̃) is a weak solution of (4.15)
where the relation between both solution triples is given as

ũ(x) = |λ|u
Ç

x√︁
|λ|

å
, p̃(x) =

»
|λ|p
Ç

x√︁
|λ|

å
, ρ̃(x) = |λ|2ρ

Ç
x√︁
|λ|

å
and left-hand side (at first for smooth f1, f4, the definition will be adjusted to later
on)

f̃ 1 = f1

Ç
x√︁
|λ|

å
, f̃ 4 =

»
|λ|f4

Ç
x√︁
|λ|

å
,

for all x ∈ Σθ and x ∈ Γ, respectively (note that if x ∈ Σθ then x/
√︁

|λ| ∈ Σθ for all
λ ∈ Σπ/2 since Σθ is scaling invariant; the same holds for Γ). Equivalence of (4.5)
and (4.15) can be observed by a straightforward calculation:

λu(x)− µ∆u(x) +∇p(x)

= λ

|λ|
ũ
(︂»

|λ|x
)︂
− µ

|λ|
∆
(︂
ũ
(︂»

|λ|·
)︂)︂

(x) + 1√︁
|λ|

∇
(︂
p̃
(︂»

|λ|·
)︂)︂

(x)

= λ

|λ|
ũ
(︂»

|λ|x
)︂
− µ∆ũ

(︂»
|λ|x

)︂
+∇p̃

(︂»
|λ|x

)︂
= f̃ 1

(︂»
|λ|x

)︂
= f1(x)

and
div u(x) = div

Å 1
|λ|
ũ
(︂»

|λ|·
)︂ã

(x) = 1√︁
|λ|

div ũ
(︂»

|λ|x
)︂
= 0.

Furthermore, by the fact that τ(x) = τ
Ä√︁

|λ|x
ä
and n(x) = n

Ä√︁
|λ|x
ä
since

sgn(x2) = sgn
Ä√︁

|λ|x2
ä
we infer

T (u, p)n+ σ

sin(θ)∂
2
τρ(x)n

=
ñ
µ

Ç
∇
Å 1
|λ|
ũ
(︂»

|λ|·
)︂ã

(x) +∇
Å 1
|λ|
ũ
(︂»

|λ|·
)︂ãT

(x)
å

− 1√︁
|λ|
p̃
(︂»

|λ|x
)︂ô

n

+ σc(θ)∂2τ
Å 1
|λ|2

ρ̃
(︂»

|λ|·
)︂ã

(x)n

106



Section 4.2. Resolvent Stokes Equations on Sectors

=
ñ

1√︁
|λ|
µ

Å
∇ũ
(︂»

|λ|x
)︂
+∇ũ

(︂»
|λ|x

)︂Tã
− 1√︁

|λ|
p̃
(︂»

|λ|x
)︂
n
(︂»

|λ|x
)︂ô

+ 1√︁
|λ|

σc(θ)√︁
|λ|

∂2τ ρ̃
(︂»

|λ|x
)︂

= 1√︁
|λ|
f̃ 4

(︂»
|λ|x

)︂
= f4(x)

and at last

λρ(x) + 1
sin(θ)(n(x) · u(x))

= λ

|λ|2
ρ̃
(︂»

|λ|x
)︂
+ 1

sin(x)|λ|

(︂
n
(︂»

|λ|x
)︂
· ũ
(︂»

|λ|x
)︂)︂

= 0.

Then (u, p, ρ) is a weak solution to (4.5) if and only if (ũ, p̃, ρ̃) is a solution to (4.15).
By Proposition 4.2.2 we know that (4.15) is weakly solvable for σ̃ = σ/|λ|1/2 and ar-
bitrary λ ∈ Σπ/2. As a consequence, we obtain the generalization of Proposition 4.2.2:

4.2.6 Corollary. Let σ > 0 and λ ∈ Σπ/2. Furthermore, we assume

f1 ∈ Ĥ−1
0,div(Σθ)R and f4 ∈ Ĥ−1/2(Γ)R.

Then there exists a unique weak solution

(u, p, ρ) ∈ H1
div(Σθ)R × L2(Σθ)r + Ĥ1(Σθ)r × Ĥ1(Γ)r

of (4.5).

Thus, it was possible to transfer the solvability of (4.5) by using the scaling
argument. In the following we will investigate in which sense estimate (4.6) can be
transferred to the case if λ ∈ Σπ/2 is of large absolute value. Furthermore, we aim to
also have an estimate of u in the corresponding H−1

0 (Σθ)R norm. To this end, we
first define equivalent norms in L2(Σθ)r + Ĥ1(Σθ)r and Ĥ−1/2(Γ)r + Ĥ1/2(Γ)r:

∥q∥λ,L2(Σθ)r+Ĥ1(Σθ)r := inf
{︄

∥q0∥L2(Σθ)r + |λ|−1/2∥q1∥Ĥ1(Σθ)r :
q = q0 + q1, q0 ∈ L2(Σθ)r, q1 ∈ Ĥ1(Σθ)r

}︄
,

∥h∥λ, Ĥ−1/2(Γ)r+Ĥ1/2(Γ)r := inf
{︄

∥h0∥Ĥ−1/2(Γ)r + |λ|−1/2∥h1∥Ĥ1/2(Γ)r :
h = h0 + h1, h0 ∈ Ĥ−1/2(Γ)r, h1 ∈ Ĥ1/2(Γ)r

}︄
.

We can now take advantage of the fact that for the scaled system (4.15) we can
use our estimates from (4.5) by setting σ̃ = σ/|λ|1/2. Then if (ũ, p̃, ρ̃) is the weak
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solution of (4.15) with right-hand side (f̃ 1, f̃ 4) we obtain the following estimates
from (4.6):

∥ũ∥L2(Σθ)R + ∥∇ũ∥L2(Σθ)R +
√
σ

|λ|1/4
∥ρ̃∥Ĥ1(Γ)r

+ σ

|λ|1/2
∥∂2τ ρ̃∥Ĥ−1/2(Γ)r+Ĥ1/2(Γ)r + ∥p̃∥L2(Σθ)r+Ĥ1(Σθ)r

≤ C
(︂
∥f̃ 1∥Ĥ−1

0,div(Σθ)R + ∥f̃ 4∥Ĥ−1/2(Γ)R

)︂
.

(4.16)

with C > 0 independent of u, p, ρ, λ, σ and the data f1, f4. Next, we make use of the
norm scaling that we already considered in Section 3.1.5 to obtain these norms in
terms of u, p, ρ, f1 and f4. Then inserting all norm calculations from Section 3.1.5 in
(4.16) we deduce

|λ|3/2∥u∥L2(Σθ)R + |λ|∥∇u∥L2(Σθ)R +
√
σ|λ|3/2∥ρ∥Ĥ1(Γ)r

+ σ|λ|∥∂2τρ∥λ, Ĥ−1/2(Γ)r+Ĥ1/2(Γ)r + |λ|∥p∥λ,L2(Σθ)r+Ĥ1(Σθ)r

≤ C
(︂
|λ|∥f1∥Ĥ−1

0,div(Σθ)R + |λ|∥f4∥Ĥ−1/2(Γ)R

)︂
which simplifies to

|λ|1/2∥u∥L2(Σθ)R + ∥∇u∥L2(Σθ)R +
√
σ|λ|1/2∥ρ∥Ĥ1(Γ)r

+ σ∥∂2τρ∥λ, Ĥ−1/2(Γ)r+Ĥ1/2(Γ)r + ∥p∥λ,L2(Σθ)r+Ĥ1(Σθ)r

≤ C
(︂
∥f1∥Ĥ−1

0,div(Σθ)R + ∥f4∥Ĥ−1/2(Γ)R

)︂
.

As a consequence we are finally able to prove the full resolvent estimate for the
Stokes system (4.5) in the weak setting. Here, we want to prove resolvent estimates
in H−1

0 (Σθ)R. Again, we consider an equivalent norm defined as

∥v∥λ,H−1
0 (Σθ)R := sup

ϕ∈H1(Σθ)R,
|λ|−1/2∥ϕ∥L2(Σθ)R

+|λ|−1∥ϕ∥Ĥ1(Σθ)R
≤1

|⟨v, ϕ⟩H−1
0 (Σθ)R,H1(Σθ)R |. (4.17)

4.2.7 Theorem. Let σ > 0, λ ∈ Σπ/2 with |λ| ≥ 1. Furthermore, we assume

f1 ∈ Ĥ−1
0,div(Σθ)R and f4 ∈ Ĥ−1/2(Γ)R.

Then there exists a unique weak solution (u, p, ρ) ∈ H1
div(Σθ)R×L2(Σθ)r+ Ĥ1(Σθ)r×

Ĥ1(Γ)r of the Stokes system (4.5) fulfilling the resolvent estimate

∥u∥λ,H−1
0 (Σθ)R + |λ|1/2∥u∥L2(Σθ)R + ∥∇u∥L2(Σθ)R +

√
σ|λ|1/2∥ρ∥Ĥ1(Γ)r

+ σ∥∂2τρ∥λ, Ĥ−1/2(Γ)r+Ĥ1/2(Γ)r + ∥p∥λ,L2(Σθ)r+Ĥ1(Σθ)r

≤ C
(︂
∥f1∥Ĥ−1

0,div(Σθ)R + ∥f4∥Ĥ−1/2(Γ)R

)︂ (4.18)
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with C > 0 independent of λ, σ, u, p, ρ and the data f1, f4.

Proof. Our last aim is to obtain the resolvent estimate of ũ in the H−1
0 (Σθ)R norm

given in (4.17). We again note that (4.5) and (4.15) are equivalent problems, i.e., if
(u, p, ρ) solves (4.5) then (ũ, p̃, ρ̃) solves (4.15) in the weak sense with σ̃ = σ|λ|−1/2

and λ̃ = λ/|λ|.
By Proposition 4.2.2 we know that ũ satisfies the weak formulation (4.7) such that

(4.7) holds for ϕ ∈ H1
R with the corresponding right-hand side (f̃ 1, f̃ 4). By taking

ũ, ϕ ∈ L2(Σθ) into account, we first observe that≠
λ

|λ|
ũ, ϕ

∑
H−1

0 (Σθ)R,H1(Σθ)R
=
Å
λ

|λ|
ũ, ϕ

ã
2

(ϕ ∈ H1(Σθ)R).

We note that in this case we have the decomposition

H1(Σθ)R = H1
div(Σθ)R ⊕∇(Ĥ1

0(Σθ)r ∩ Ĥ2(Σθ)r)

from Corollary 3.1.16. Now let ϕ ∈ H1(Σθ)R be arbitrary. Thanks to the decomposi-
tion there exists ψ ∈ H1

div(Σθ)R and Φ ∈ Ĥ1
0(Σθ)r ∩ Ĥ2(Σθ)r such that ϕ = ψ +∇Φ.

Then we haveÅ
λ

|λ|
ũ, ϕ

ã
2
=
Å
λ

|λ|
ũ, ψ

ã
2
+
Å
λ

|λ|
ũ,∇Φ

ã
2
=
Å
λ

|λ|
ũ, ψ

ã
2
,

since Å
λ

|λ|
ũ,∇Φ

ã
2
= −
Å
λ

|λ|
div ũ,Φ

ã
2
+
Å
λ

|λ|
ũ · n,Φ

ã
Γ
= 0

because of div ũ = 0 in Σθ and Φ = 0 on Γ. Now, we again make use of the fact that
H1
R

d
↪→ H1

div(Σθ)R (as observed in the proof of Lemma 4.2.5). Hence, it is sufficient
to obtain an estimate for ψ ∈ H1

R. Then from (4.7) we obtain the identity:Å
λ

|λ|
ũ, ψ

ã
2
= −2µ(D(ũ), D(ψ))2 −

σc(θ)|λ|
sin(θ)λ|λ|1/2 (∂τ (n · ũ), ∂τ (n · ψ))Γ

+ ⟨f̃ 1, ψ⟩Ĥ−1
0,div(Σθ)R,Ĥ1

div(Σθ)R + ⟨f̃ 4, ψ⟩Ĥ−1/2(Γ)R,Ĥ1/2(Γ)R

from which we obtain the estimate:⃓⃓⃓⃓Å
λ

|λ|
ũ, ψ

ã
2

⃓⃓⃓⃓
≤ 2µ∥D(ũ)∥L2(Σθ)R∥D(ψ)∥L2(Σθ)R

+ σc(θ)
sin(θ)|λ|1/2∥∂

2
τ (n · ũ)∥Ĥ1/2(Γ)r+Ĥ−1/2(Γ)r∥n · ψ∥Ĥ−1/2(Γ)r∩Ĥ1/2(Γ)r

+ ∥f̃ 1∥Ĥ−1
0,div(Σθ)R∥ψ∥Ĥ1(Σθ)R + C∥f̃ 4∥Ĥ−1/2(Γ)R∥ψ∥Ĥ1/2(Γ)R .
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We can use (4.8) to handle ∥D(ũ)∥L2(Σθ)R . Since σ̃ = σ|λ|−1/2 we can use (4.11)
to estimate ∥∂2τ (n · ũ)∥Ĥ−1/2(Γ)r+Ĥ1/2(Γ)r . Also thanks to Lemma 3.2.15 and the
observation that Ĥ−1/2(Γ)r+H1/2(Γ)r and Ĥ−1/2(Γ)r+Ĥ1/2(Γ)r coincide topologically
(cf. Lemma 4.2.5) we can estimate

∥n · ψ∥
Ĥ−1/2(Γ)r∩Ĥ

1/2(Γ)r
≤ C∥T0ψ∥Ĥ−1/2(Γ)r∩H1/2(Γ)r ≤ C∥ψ∥H1(Σθ)R .

Hence, we have the following estimate⃓⃓⃓⃓Å
λ

|λ|
ũ, ψ

ã
2

⃓⃓⃓⃓
≤ C

(︂
∥f̃ 1∥Ĥ−1

0,div(Σθ)R + ∥f̃ 4∥Ĥ−1/2(Γ)R

)︂
∥ψ∥H1(Σθ)R .

Note that ϕ = ψ +∇Φ such that ψ = ϕ−∇Φ and then

∥ψ∥H1(Σθ)R ≤ ∥ϕ∥H1(Σθ)R + ∥∇Φ∥H1(Σθ)R ≤ C∥ϕ∥H1(Σθ)R ,

where the second estimate follows from the fact that Φ is the unique solution of the
strong Dirichlet problem (3.5) (cf. Lemma 3.1.31). Since

⟨λ/|λ|ũ, ϕ⟩H−1
0 (Σθ)R,H1(Σθ)R = ⟨λ/|λ|ũ, ψ⟩H−1

0 (Σθ)R,H1(Σθ)R

we finally arrive at⃓⃓⃓⃓
⃓
≠
λ

|λ|
ũ, ϕ

∑
H−1

0 (Σθ)R,H1(Σθ)R

⃓⃓⃓⃓
⃓ ≤ C

(︂
∥f̃ 1∥Ĥ−1

0,div(Σθ)R + ∥f̃ 4∥Ĥ−1/2(Γ)R

)︂
∥ϕ∥H1(Σθ)R

and, hence, ⃦⃦⃦⃦
⃦ λ|λ| ũ

⃦⃦⃦⃦
⃦
H−1

0 (Σθ)R

≤ C
(︂
∥f̃ 1∥Ĥ−1

0,div(Σθ)R + ∥f̃ 4∥Ĥ−1/2(Γ)R

)︂
.

Furthermore, we note that

∥ũ∥H−1
0 (Σθ)R ≥ C|λ|∥u∥λ,H−1

0 (Σθ)R

with C > 0 independent of λ by taking the calculations from Section 3.1.5 into
consideration. Now inserting the calculations from above for f̃ 1, f̃ 4 as in Section 3.1.5
we obtain the estimate we aimed for:

∥u∥λ,H−1
0 (Σθ)R ≤ C

(︂
∥f1∥Ĥ−1

0,div(Σθ)R + ∥f4∥Ĥ−1/2(Γ)R

)︂
.

Altogether we proved the desired resolvent estimate (4.18).

4.2.8 Remark. Taking Section 4.2 into consideration we observe that the proof of
higher regularity for n · u in Lemma 4.2.5 is an essential step for the whole section.
However, if we would get a better estimate for n · u, i.e., n · u ∈ Ĥ−1/2(Γ)r, this
would also lead to better regularity classes for p and u: Then we would be able to
prove that the pressure p is in L2(Σθ)r and estimates for |λ|∥u∥Ĥ−1

0 (Σθ)R .
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Chapter 5

Stable and Unstable Flow Regimes for
Active Fluids

In this chapter we will consider a continuum model which models the motion of
self-propelled organisms in fluids, e.g. of bacteria. This model was proposed in [54]
and is formulated as

vt + λ0v · ∇v = f −∇p+ λ1∇|v|2 − (α + β|v|2)v
+Γ0∆v − Γ2∆2v in (0, T )×Qn,

div v = 0 in (0, T )×Qn,

v|t=0 = v0 in Qn.

(5.1)

Here, we consider the model in the physically relevant dimensions n = 2, 3 and
Qn := [0, L]n denotes the box of length L as in Section 2.2. We will investigate
(5.1) in the framework of periodic Sobolev spaces as introduced in Section 2.2.
The bacterial velocity field is denoted by v whereas the pressure is denoted by p.
Regarding the occurring parameters we will assume Γ2, β > 0 and Γ0, λ0, λ1 ∈ R.
This chapter is structured as follows: In the first section we will provide a theorem

stating global wellposedness of (5.1). In the second section we will investigate a
manifold of stationary solutions which can be proved to be (in)stable depending on
the occurring parameters. In Chapter 6 we prove the existence of a global attractor
to (5.1) which is even contained in an inertial manifold in the two-dimensional case.
There are two known steady states. The disordered isotropic state is given as

(v, p) = (0, p0),

where p0 is a constant. If α < 0 we even obtain a manifold of globally ordered polar
states given as

(v, p) = (V, p0),
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where V ∈ Bα,β := {x ∈ Rn : |x| =
√︁

−α/β}, i.e., V denotes a constant vector
with arbitrary orientation and fixed swimming speed |V | =

√︁
α/β and p0 is again a

constant.

5.0.1 Remark. It is not known whether aside from the disordered and the ordered
polar states there are more physically relevant stationary states. Note that in the
whole space setting (see [57]) there is a larger manifold of stationary solutions given
as

v(x) = v0, p(x) = p0 − (α + β|v0|2)v0 · x, x ∈ Rn, p0 ∈ R.

For v0 = 0 and |v0| =
√︁

−α/β we then obtain the disordered isotropic and the
manifold of globally ordered polar states, respectively. Whereas for arbitrary v0 ∈ Rn

the pressure p takes negative values for large x ∈ Rn such that this stationary state
doesn’t make sense from the physical point of view. However, this kind of stationary
states are not contained in L2

π(Qn) since p is not periodic.

5.1 Global Wellposedness in H2
π(Qn) ∩ L2

σ(Qn)

In order to prove global wellposedness we will consider a generalized system of (5.1)
that includes the linearization at the corresponding stationary state (disordered and
ordered state):

ut + λ0[(u+ V ) · ∇]u+ (M + β|u|2)u
−Γ0∆u+ Γ2∆2u+∇q = f +N(u) in (0, T )×Qn,

div u = 0 in (0, T )×Qn,

u|t=0 = v0 in Qn.

(5.2)

where q = p− λ1|u|2 and M ∈ Rn×n is a symmetric matrix and the nonlinearity N
of second order is given as N(u) = ∑︁

j,k ajku
juk with (ajk)nj,k=1 ∈ Rn×n. Regarding

the occurring parameters we assume

λ0, λ1,Γ0, α ∈ R, Γ2, β > 0,

throughout this and the next sections. Note that from (5.2) we obtain (5.1) linearized
about the disordered isotropic state by setting

V = 0, M = αI, N(u) = 0

for u = v where I denotes the n× n identity matrix and α is a scalar. By setting

V ∈ Bα,β, M = 2βV V T , N(u) = −β|u|2V − 2β(u · V )u

112



Section 5.1. Global Wellposedness in H2
π(Qn) ∩ L2

σ(Qn)

we obtain the system corresponding to the ordered polar state for u = v − V .
In order to prove global wellposedness we first consider the linearization of (5.2)
where we already applied the Helmholtz-Weyl projection P from Section 2.2:

ut + λ0(V · ∇)u+ PMu− Γ0∆u+ Γ2∆2u = f in (0, T )×Qn,

u|t=0 = u0 in Qn.
(5.3)

Then we define the operator associated to (5.3) as

ALFu := λ0(V · ∇)u+ PMu− Γ0∆u+ Γ2∆2u,

D(ALF ) := H4
π(Qn) ∩ L2

σ(Qn),
(5.4)

and the corresponding Fourier symbol as

σALF
(ℓ) := Γ2

Å2π
L

ã4
|ℓ|4 + Γ0

Å2π
L

ã2
|ℓ|2 + λ0

Å2πi
L

ã
(V · ℓ) + σP (ℓ)M

for ℓ ∈ Zn. By considering the leading term

ASHu := Γ2∆2u, D(ASH) := H4
π(Qn) ∩ L2

σ(Qn),

we observe that ASH is a selfadjoint operator. Furthermore, by making use of
the fact that for λ ∈ ρ(ASH) the resolvent (λ − ASH)−1 : L2

σ(Qn) → L2
σ(Qn) is

compact by the Rellich-Kondrachov theorem [39, Theorem A.4, Corollary A.5], we
conclude that ASH has compact resolvent, hence the spectrum σ(ASH) is discrete
and σ(ASH) = σP (ASH) where σP (ASH) denotes the point spectrum of ASH . Hence,
we can further characterize the (point) spectrum of ASH as

λ− ASH is not injective ⇔ λ = Γ2

Å2π
L

ã4
|ℓ|4 for some ℓ ∈ Zn,

where we made use of the fact that σASH
(ℓ) := Γ2

(︁2π
L

)︁4 |ℓ|4. Hence the spectrum
is given as σ(ASH) = {Γ2

(︁2π
L

)︁4 |ℓ|4 : ℓ ∈ Zn} and as a consequence of the spectral
theorem in its functional calculus form (e.g. [38, Theorem VIII.5]), we observe that
for some ω > 0 the operator ω + ASH admits a bounded H∞-calculus on L2

σ(Qn)
with H∞-angle ϕ∞

w+ASH
= 0. For a proper introduction to the notion of a bounded

H∞-calculus, we refer to [22]. Next, by defining the perturbation as

Bu := λ0(V · ∇)u+ PMu− Γ0∆u,

D(B) := H2
π(Qn) ∩ L2

σ(Qn),

we immediately observe that B is a perturbation of lower order. Now applying a
perturbation theorem for the H∞-calculus [27, Proposition 13.1] we deduce
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5.1.1 Proposition. There exists an ω > 0 such that ω + ALF admits a bounded
H∞-calculus on L2

σ(Qn) with H∞-angle ϕ∞
ω+ALF

= 0.

As an immediate consequence we obtain that ALF enjoys maximal Lp-regularity on
intervals (0, T ) with T <∞ and −ALF is the generator of an analytic C0-semigroup
(exp(−tALF ))t≥0 on L2

σ(Qn):

5.1.2 Proposition. Let T ∈ (0,∞). For f ∈ L2((0, T ), L2
σ(Qn)) and initial value

u0 ∈ H2
π(Qn) ∩ L2

σ(Qn) = (L2
σ(Qn), H4

π(Qn) ∩ L2
σ(Qn))1/2,2 there exists a unique

solution (u, q) of (5.2) such that

∥u∥H1((0,T ),L2
σ(Qn)) + ∥u∥L2((0,T ),H4

π(Qn)) + ∥∇q∥L2((0,T ),L2(Qn))

≤ C(T )
(︁
∥f∥L2((0,T ),L2

σ(Qn)) + ∥u0∥H2
π(Qn)

)︁
.

In order to prove local wellposedness we use the common approach by combining
the maximal Lp-regularity with the local inverse theorem to construct a solution
(u, q). By making use of energy estimates we even obtain global wellposedness by
proceeding as in [57, Section 3.2]:

5.1.3 Theorem (Global wellposedness). Let Γ2, β > 0 and Γ0, α, λ0 ∈ R and
T ∈ (0,∞). Let the initial value u0 ∈ H2

π(Qn) ∩ L2
σ(Qn) and an exterior force

f ∈ L2((0, T ), L2
σ(Qn)) be given. Then there exists a unique pair (u, q) with

u ∈ H1((0, T ), L2
σ(Qn)) ∩ L2((0, T ), H4

π(Qn)),

∇q ∈ L2((0, T ), L2(Qn)),

solving (5.2) for periodic boundary conditions.

5.1.4 Remark. Note that, in contrast to the classical incompressible Navier-Stokes
equations, we can prove global wellposedness since the convective term (u · ∇)u in
(5.2) is dominated by the fourth order term ∆2. In this case, we are able to prove
corresponding energy estimates which lead to global strong solvability.

5.2 Stability Analysis for the Ordered Polar State
In this section we perform a full stability analysis for the manifold of ordered polar
states, i.e., for (v, p) = (V, p0) where V ∈ Bα,β = {x ∈ Rn : |x| =

√︁
−α/β} and p0 is

a constant. We will proceed as follows: At first we will consider linear (in)stability. In
fact, we will prove that depending on the relation of the occurring parameters we will
obtain stability or instability for the ordered polar state. Hence, those observations
are fundamental to prove nonlinear stability and turbulence, respectively. Here, we
will apply the generalized principle of linearized stability as provided in [35, 36].
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5.2.1 Remark. Note that in this section we are not considering the disordered polar
state (v, p) = (0, p0) where p0 is a constant. In this case a full stability analysis can
also be performed but is straightforward by making use of energy methods. For the
full stability analysis for the disordered polar state we refer to [8].

5.2.1 Linear Stability

In this section we consider linear stability for the ordered polar state. To this end,
we are making use of properties of the analytic semigroup (exp(−tALF ))t≥0 which
is generated by the operator −ALF , see (5.4). It is straightforward to verify the
identity

exp(−tALF )v =
∑︂
ℓ∈Zn

exp(−tσALF (ℓ))v̂(ℓ)e2πiℓ·/L

for v ∈ L2
σ(Qn). Using this representation we can characterize linear (in)stability

by basically examining the Fourier symbol σALF
. Next, we set V ∈ Bα,β, and

M = 2βV V T to obtain the operator Ao corresponding to the ordered polar state:

Aou = Γ2∆2u−Γ0∆u+ λ0(V · ∇)u+2βPV V Tu (u ∈ H4
π(Qn)∩L2

σ(Qn)). (5.5)

Then the Fourier symbol σAo is given as

σAo(ℓ) := Γ2

Å2π
L

ã4
|ℓ|4 + Γ0

Å2π
L

ã2
|ℓ|2 + λ0

Å2πi
L

ã
(V · ℓ)

+ 2βσP (ℓ)V V TσP (ℓ).
(5.6)

Then we can state the following result on linear (in)stability:

5.2.2 Proposition. Let Γ2 > 0. Then the semigroup (exp(−tAo))t≥0 corresponding
to the ordered polar state is

(1) stable if Γ0 ≥ 0;

(2) exponentially unstable if Γ0 < 0 and

(i) if for n = 2 there exists some 0 ̸= ℓ0 ∈ Zn such that

Γ2

Å2π
L

ã2
|ℓ0|4 + Γ0|ℓ0|2 < 2α; (5.7)

(ii) if for n = 3 there exists some 0 ̸= ℓ0 ∈ Zn such that

Γ2

Å2π
L

ã2
|ℓ0|2 + Γ0 < 0. (5.8)
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Proof. At first we consider the case if Γ0 ≥ 0. Then we can infer that the Fourier
symbol

Re σAo(ℓ) = Γ2

Å2π
L

ã4
|ℓ|4 + Γ0

Å2π
L

ã2
|ℓ|2 + 2βσP (ℓ)V V TσP (ℓ) ∈ Rn×n (5.9)

is positive semi-definite since σP (ℓ)V V TσP (ℓ) is positive semi-definite and the two
remaining terms are positive. Then we can estimate the norm of the semigroup as

∥ exp(−tAo)v∥2L2(Qn) =
∑︂
ℓ∈Zn

|e−tσAo (ℓ)v̂(ℓ)|2 ≤ |v̂(0)|2 +
∑︂

ℓ∈Zn\{0}
|e−tσAo (ℓ)v̂(ℓ)|2

≤ ∥v∥2L2(Qn),

where we applied Theorem 2.2.1. Hence, the estimate yields stability for Γ0 ≥ 0.
Next, we examine instability. For this purpose we assume Γ0 < 0. In order to

prove exponential instability we have to find some 0 ̸= ℓ0 ∈ Zn such that the matrix
Re σAo(ℓ0) ∈ Rn×n is negative definite or indefinite. Then the growth bound of the
semigroup (exp(−tAo))t≥0 is strictly positive and we obtain exponential instability
of the semigroup.
To prove the negative definiteness or indefiniteness we have to find some x ∈ Rn\{0}
such that xTRe σAo(ℓo)x < 0, which in fact results in

Γ2

Å2π
L

ã4
|ℓ0|4|x|2 + Γ0

Å2π
L

ã2
|ℓ0|2|x|2 + 2βxTσP (ℓ0)V V TσP (ℓ0)x < 0.

For ℓ0 ∈ Zn\{0} we are able to find some x ∈ Rn\{0} such that ℓ0 ⊥ x. Then
σP (ℓ0)x =

(︁
I − ℓ0ℓ

T
0 /|ℓ0|2

)︁
x = x such that we end up with

Γ2

Å2π
L

ã4
|ℓ0|4|x|2 + Γ0

Å2π
L

ã2
|ℓ0|2|x|2 + 2β|V · x|2 < 0

which we want to prove. Thanks to the fact that |V |2 = −α/β this is equivalent to
the condition

Γ2

Å2π
L

ã4
|ℓ0|4 + Γ0

Å2π
L

ã2
|ℓ0|2 < −2β|V · x|2

|x|2
∈ [2α, 0].

Indeed if we assume the existence of some ℓ0 ∈ Zn\{0} which fulfills (5.7) we can
choose some x ∈ Rn\{0} with x ⊥ ℓ0 such that xTRe σAo(ℓ0)x < 0. This yields the
exponential instability for n = 2, 3.
For the three dimensional case we can even improve the condition (5.7) a little bit.
In three dimensions we have enough degrees of freedom to choose x ∈ R3\{0} with
x ⊥ ℓ0 and x ⊥ V . Then

xTRe σAo(ℓ0)x = Γ2

Å2π
L

ã4
|ℓ0|4|x|2 + Γ0

Å2π
L

ã2
|ℓ0|2|x|2 < 0,
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if ℓ0 ∈ Z3\{0} fulfills (5.8). Hence, also in this case we obtain exponential instability
and the assertion is proved.

5.2.3 Remark. We want to briefly compare this result to the continuous setting
considered in [57, Section 3.1] and [9, Section 3.1]. Note that in the continuous
setting we don’t have the restricted assumption (5.7) for n = 2 and ℓ0 ∈ R2\{0}
since in the continuous setting some ℓ0 ∈ R2\{0} such that ℓ0 is parallel to V can
always be found such that we can find some x ∈ R2\{0} with x ⊥ V and x ⊥ ℓ0.
Hence in the continuous case assumption (5.8) for ℓ0 ∈ R2\{0} is sufficient to prove
instability.

5.2.2 Nonlinear Stability

In this section we study nonlinear stability of the manifold of ordered polar states.
As already mentioned we will apply the generalized principle of linearized stability
[35, Theorem 5.3.1] or [36, Theorem 2.1] to prove normal stability. To observe
normal hyperbolicity we will use the principle of normally hyperbolic equilibria [35,
Theorem 5.5.1] or [36, Theorem 6.1]. For the reader’s convenience we formulated the
corresponding theorems in Theorem 2.1.3 and Theorem 2.1.4.
In order to apply both principles we formulate our setting in the notation of

Theorem 2.1.3 and Theorem 2.1.4. In our case we first neglect the pressure and
consider system (5.1) after applying the Helmholtz-Weyl projection

vt + λ0P (v · ∇)v = f − (α + βP |v|2)v + Γ0∆v − Γ2∆2v in (0, T )×Qn,

v|t=0 = v0 in Qn.
(5.10)

Here, we have U = H2
π(Qn) ∩ L2

σ(Qn), X0 = L2
σ(Qn), X1 = H4

π(Qn) ∩ L2
σ(Qn) for

the spaces and E = Bα,β for the manifold. Furthermore, we set

A(v)ṽ := Aṽ := Γ2∆2ṽ − Γ0∆ṽ + αṽ (ṽ ∈ H4
π(Qn) ∩ L2

σ(Qn)),

F (v) := −λ0P (v · ∇)v − βP |v|2v.

for v ∈ H2
π(Qn) ∩ L2

σ(Qn). By the structure of A and F (linear and semilinear,
respectively) it is straightforward to see that

(A,F ) ∈ C1(H2
π(Qn) ∩ L2

σ(Qn),L (H4
π(Qn) ∩ L2

σ(Qn), L2
σ(Qn))× L2

σ(Qn)).

Moreover, a quick calculation shows that the operator Ao from (5.5) is indeed the
linearized operator of (5.1) at V . By Proposition 5.1.2 we also know that A and Ao
enjoy maximal Lp-regularity on (0, T ) for T <∞.
In order to apply both principles of normal stability and normal hyperbolicity, we
first provide the following
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5.2.4 Lemma. Let n = 2, 3 and V ∈ Bα,β be arbitrary but fixed. Then near V the
set of equilibria Bα,β is a C1-manifold in H4

π(Qn) ∩ L2
σ(Qn) of dimension n− 1 ∈ N.

The tangent space TVBα,β at V is given as

TVBα,β = ⟨V ⟩T .

Proof. It is straightforward to define a C1-function which maps into Bα,β. If n = 2
we can write every given V ∈ Bα,β as

V =
…

−α
β

Ç
cos(ϕV )
sin(ϕV )

å
with a unique fixed ϕV ∈ [0, 2π). Then we can define a corresponding C1 map as

Ψ2 : [0, 2π) → H4
π(Qn) ∩ L2

σ(Qn), z ↦→ Ψ2(z) :=
…

−α
β

Ç
cos(ϕV + z)
sin(ϕV + z)

å
.

For n = 3 analogously we can write every V ∈ Bα,β as

V =
…
−α
β

Ö
sin(θV ) cos(ϕV )
sin(θV ) sin(ϕV )

cos(θV )

è
,

for fixed and unique θV ∈ [0, π] and ϕV ∈ [0, 2π). The corresponding C1 map then
can be defined as

Ψ3 : [0, π]× [0, 2π) → H4
π(Qn) ∩ L2

σ(Qn),Ç
y

z

å
↦→ Ψ3(y, z) :=

…
−α
β

Ö
sin(θV + y) cos(ϕV + z)
sin(θV + y) sin(ϕV + z)

cos(θV + y)

è
.

Hence Ψ2(z) ∈ Bα,β and Ψ3(y, z) ∈ Bα,β, respectively, are constant functions in
H4
π(Qn) ∩ L2

σ(Qn) for every z ∈ [0, 2π) and (y, z) ∈ [0, π] × [0, 2π), respectively,
satisfying Ψ2(0) = V and Ψ3(0, 0) = V .
Obviously then the corresponding tangent space TVBα,β at V is n − 1 ∈ N

dimensional and a straightforward calculation shows TVBα,β = ⟨V ⟩T .

5.2.5 Lemma. Let V ∈ Bα,β be arbitrary and Ao be defined as in (5.5). Assume
that the occurring parameters are chosen such that

N(Ao) ⊆ {u ∈ H4
π(Qn) ∩ L2

σ(Qn) : u constant and u ⊥ V }. (5.11)

Then the spectrum of Ao is discrete, consists only of the point spectrum and 0 is a
semi-simple eigenvalue of Ao, i.e., L2

σ(Qn) = N(Ao)⊕R(Ao), where

N(Ao) = {u ∈ H4
π(Qn) ∩ L2

σ(Qn) : u constant and u ⊥ V }.
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Proof. First we observe that for λ ∈ ρ(Ao)

(λ− Ao)−1 : L2
σ(Qn) → D(Ao) = H4

π(Qn) ∩ L2
σ(Qn)

c
↪→ L2

σ(Qn)

is a compact operator by the Rellich-Kondrachov theorem [39, Theorem A.4, Corollary
A.5]. Hence, Ao has compact resolvent and Ao has a discrete spectrum which just
consists of the point spectrum, i.e., σ(Ao) = σp(Ao), where σp(Ao) denotes the point
spectrum of Ao. Next, we prove that 0 ∈ σ(Ao) and

N(Ao) ⊇ {u ∈ H4
π(Qn) ∩ L2

σ(Qn) : u constant and u ⊥ V }.

Let u ∈ H4
π(Qn) ∩ L2

σ(Qn) be a constant vector in Rn and perpendicular to V . Then
we immediately observe that

Aou = Γ2∆2u− Γo∆u+ λ0(V · ∇)u+ 2βPV V Tu = 0

by the properties of u. Hence, 0 is an eigenvalue and by assumption (5.11) we even
obtain the equality in (5.11).
At last we need to prove that 0 is a semi-simple eigenvalue of Ao, i.e., we will show

that the decomposition N(Ao)⊕R(Ao) = L2
σ(Qn) holds. In order to prove this we

define the following projection

S : L2
σ(Qn) → L2

σ(Qn), Su := 1
Ln

∫︂
Qn

S∗u(x) dx,

where S∗ : L2
σ(Qn) → L2

σ(Qn) is given by S∗u(x) = (I − V V T/|V |2)u(x), where I
again denotes the identity matrix in n dimensions. First we note that if u ∈ L2

σ(Qn)
then Su is constant and Su ∈ L2

σ(Qn). Note that S∗S∗ = S∗, hence we also
obtain S2 = S such that S is a projection. Then there exists a decomposition
S(L2

σ(Qn)) ⊕ (I − S)(L2
σ(Qn)) = L2

σ(Qn) and we need to prove that on one hand
S(L2

σ(Qn)) = N(Ao) holds and on the other hand (I − S)(L2
σ(Qn)) = R(Ao).

First we claim N(Ao) = S(L2
σ(Qn)). To see the inclusion S(L2

σ(Qn)) ⊆ N(Ao) we
assume u ∈ S(L2

σ(Qn)). Then u = Su is constant and perpendicular to V since

V Tu = V TSu = 1
Ln

∫︂
Qn

V Tu(x)dx− 1
Ln

∫︂
Qn

1
|V |2

V TV V Tu(x) dx = 0,

hence u ∈ N(Ao) by the already proved equality in (5.11). Conversely, let u ∈ N(Ao).
Then by the fact that u is constant and perpendicular to V we observe

Su = 1
Ln

∫︂
Qn

u dx− 1
Ln

∫︂
Qn

1
|V |2

V V Tu dx = u

Å 1
Ln

∫︂
Qn

dx

ã
= u,

such that u ∈ S(L2
σ(Qn)). Hence, the claim is proved.
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Since L2
σ(Qn) is a Hilbert space and S is a selfadjoint projection it is well-known

that L2
σ(Qn) = S(L2

σ(Qn))⊕ (I − S)(L2
σ(Qn)) is an orthogonal decomposition. If we

take u ∈ D(Ao) and show that Aou is perpendicular to any w ∈ N(Ao) then we have
R(Ao) ⊆ (I − S)(L2

σ(Qn)):

(Aou,w)2,π = Γ2(∆u,∆w)2,π + Γ0(∇u,∇w)2,π
− λ0(u, (V · ∇)w)2,π + 2β(V Tu, V Tw)2,π

= 0,

because w is constant and perpendicular to V . In fact, by the orthogonal decomposi-
tion of L2

σ(Qn) we just proved N(Ao) ∩R(Ao) = {0}.
Since Ao has compact resolvent it follows from [14, Corollary 1.19] that the spectral
value 0 is a pole of the resolvent. Then by [32, Remark A.2.4] it suffices to show that

N(Ao) = N(A2
o)

to prove that 0 is a semi-simple eigenvalue of Ao. It is obvious that N(Ao) ⊆ N(A2
o).

To observe the converse inclusion let u ∈ N(A2
o) such that A2

ou = 0. Then we
conclude Aou ∈ N(Ao) ∩ R(Ao) = {0} by our observation above. Hence, Aou = 0
and u ∈ N(Ao) such that N(A2

o) = N(Ao). Finally, from [32, Proposition A.2.2,
Remark A.2.4] it follows that 0 is a semi-simple eigenvalue.

At first we will show that for the unstable regime the manifold of ordered polar
states is normally hyperbolic. From Theorem 2.1.4 we recall that an equilibrium V

is called normally hyperbolic in our setting if

(i) near V the set of equilibria Bα,β is a C1-manifold in H4
π(Qn) ∩ L2

σ(Qn) of
dimension n ∈ N;

(ii) the tangent space TVBα,β for Bα,β at V is isomorphic to N(Ao);

(iii) 0 is a semi-simple eigenvalue of Ao, i.e., L2
σ(Qn) = N(Ao)⊕R(Ao);

(iv) σ(Ao) ∩ iR = {0} and σu := σ(Ao) ∩ {z ∈ C : Re z < 0} ≠ ∅.

This means instability in the following sense: For each sufficiently small ρ > 0
there exists 0 < δ ≤ ρ such that the unique solution v of (5.1) with initial value
v0 ∈ BH2(V, δ) := {v ∈ H2

π(Qn) : ∥v − V ∥H2
π(Qn) < δ} either satisfies

(i) distH2(v(t0), Bα,β) := infV ∈Bα,β
∥v(t0)−V ∥H2

π(Qn) > ρ for a finite time t0 > 0 or

(ii) (v(t), p(t)) exists on R+ and converges at exponential rate to some pair
(V∞, p∞) ∈ Bα,β × R in (H2

π(Qn) ∩ L2
σ(Qn))× Ĥ1

π(Qn) as t→ ∞.
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Finally, we gathered all relevant properties to prove normal hyperbolicity by applying
the principle of normally hyperbolic equilibria from Theorem 2.1.4:

5.2.6 Theorem. Let Γ2, β > 0 and α < 0 and λ0 ∈ R. The ordered polar state is
normally hyperbolic if

Γ2

Å2π
L

ã4
|ℓ|4 + Γ0

Å2π
L

ã2
|ℓ|2 /∈ [2α, 0], ℓ ∈ Zn\{0} (5.12)

for Γ0 < 0 and if there exists some ℓ0 ∈ Zn such that (5.8) holds. Thus, the ordered
polar state is unstable in the sense given above.

Proof. As mentioned before we will first consider the projected system (5.10) and
neglect the pressure first. In order to apply Theorem 2.1.4 we need to show that
every equilibrium V ∈ Bα,β is normally hyperbolic. By Lemma 5.2.4 we already know
that the manifold of ordered polar states Bα,β forms a C1-manifold of equilibria. In
order to obtain the results from Lemma 5.2.5 we only need to prove the inclusion
(5.11).

For this purpose let u ∈ N(Ao) such that Aou = 0. Using the Fourier series
representation from Theorem 2.2.1 we obtain

∥Aou∥2L2(Qn) =
∑︂
ℓ∈Zn

|σAo(ℓ)û(ℓ)|2 = 0

where σAo is defined as in (5.6). Then σAo(ℓ)û(ℓ) = 0 for every ℓ ∈ Zn, hence also
û(ℓ)TσAo(ℓ)û(ℓ) = 0 such that we obtain

0 = Re
(︂
û(ℓ)TσAo(ℓ)û(ℓ)

)︂
= Γ2

Å2π
L

ã4
|ℓ|4|û(ℓ)|2 + Γ0

Å2π
L

ã2
|ℓ|2|û(ℓ)|2 + 2βû(ℓ)TσP (ℓ)V V TσP (ℓ)û(ℓ)

for all ℓ ∈ Zn. Note that û(ℓ) ∈ Cn for ℓ ∈ Zn. We recall that σP (ℓ) is a symmetric
matrix for all ℓ ∈ Zn and that σP (ℓ)û(ℓ) = û(ℓ) since u is divergence free by
assumption such that ℓ · û(ℓ) = 0 (see definition of L2

σ(Qn) in Section 2.2). Then we
infer

Γ2

Å2π
L

ã4
|ℓ|4|û(ℓ)|2 + Γ0

Å2π
L

ã2
|ℓ|2|û(ℓ)|2 + 2β|V · û(ℓ)|2 = 0 (ℓ ∈ Zn).

Setting ℓ = 0 yields |V · û(0)| = 0 such that V ⊥ û(0). By considering the remaining
ℓ ̸= 0 with û(ℓ) ̸= 0 we obtain

Γ2

Å2π
L

ã4
|ℓ|4 + Γ0

Å2π
L

ã2
|ℓ|2 = −2β|V · û(ℓ)|2

|û(ℓ)|2 ∈ [2α, 0]
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by the fact that |V |2 = −α/β. Since we assumed (5.12) this is a contradiction such
that û(ℓ) = 0 for ℓ ̸= 0. Altogether we just proved that u ∈ N(Ao) is constant
and perpendicular to V , indeed we just proved (5.11). By Lemma 5.2.5 we know
that 0 is a semi-simple eigenvalue of Ao and combined with Lemma 5.2.4 this yields
TVBα,β = N(Ao). Hence (i)-(iii) in Theorem 2.1.4 are fulfilled.
Finally, we have to verify (iv) from Theorem 2.1.4. Note that by assumptions (5.8)

and (5.12) we deduce that also (5.7) is fulfilled such that the arguments work for
both dimensions n = 2, 3. Hence by Proposition 5.2.2(2) we infer σ(Ao) ∩ C− ≠ ∅,
since the ordered polar state is linearly exponentially unstable in this case.
At last we need to verify σ(Ao) ∩ iR = {0}. Let λ ∈ σ(Ao) with Re λ = 0. Let

u ̸= 0 be the corresponding eigenfunction. Then (λ− Ao)u = 0 which again results
in

∥(λ− Ao)u∥2L2(Qn) =
∑︂
ℓ∈Zn

|(λ− σAo(ℓ))û(ℓ)|2 = 0

again by Theorem 2.2.1. Then by applying the same arguments as above we obtain
that û(ℓ)T (λ− σAo(ℓ))û(ℓ) = λ|û(ℓ)|2 − û(ℓ)TσAo(ℓ)û(ℓ) = 0 for every ℓ ∈ Zn which
results in

Re
(︂
û(ℓ)TσAo(ℓ)û(ℓ)

)︂
= Re λ|û(ℓ)|2 = 0 (ℓ ∈ Zn).

By applying exactly the same arguments as in the first part of the proof this implies
û(ℓ) = 0 for all ℓ ̸= 0 and û(0) ⊥ V . Hence u ∈ N(Ao) such that λ = 0 since
all eigenspaces N(λ− Ao) corresponding to the eigenvalues λ ∈ σ(Ao) are disjoint.
(Note that by Lemma 5.2.5 we know σ(Ao) = σP (Ao).) Finally by Theorem 2.1.4
the assertion for V follows.
At last it remains to prove the convergence of the pressure in case (ii). We assume

in this case that v(t) exists on R+ and v(t) → V∞ exponentially in H2
π(Qn)∩L2

σ(Qn)
for some V∞ ∈ Bα,β as t → ∞. We still need to prove the existence of p and the
convergence p(t) → p∞ in Ĥ1

π(Qn) exponentially for some p∞ ∈ R as t→ ∞. Note
that we can recover the pressure gradient ∇p by applying the projection (I − P ) to
(5.1). Hence, we then obtain

∇p = (I − P )
[︁
−λ0(v · ∇)v + λ1∇|v|2 − β|v|2v

]︁
= (I − P )G(v),

with G(v) := −λ0(v ·∇)v+λ1∇|v|2−β|v|2v for our solution v(t) ∈ H2
π(Qn)∩L2

σ(Qn).
Note that G ∈ C1(H2

π(Qn), L2(Qn)) by the estimate

∥G(w)∥L2(Qn) ≤ C∥w∥L4(Qn)∥∇w∥L4(Qn) + C∥w∥2H1
π(Qn) + C∥w∥3L6(Qn)

≤ C∥w∥H1
π(Qn)∥∇w∥H1

π(Qn) + C∥w∥2H1
π(Qn) + C∥w∥3H1

π(Qn)

≤ C
Ä
∥w∥2H2

π(Qn) + ∥w∥3H2
π(Qn)

ä
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and the fact that G consists of bi- and trilinear forms which are known to be
continuous on H2

π(Qn). Note that in the estimate we used two Sobolev embeddings
[5, Corollary 1.2]

H1
π(Qn) ↪→ L6(Qn) and H1

π(Qn) ↪→ L4(Qn),

where we only consider dimensions n = 2, 3. The Fréchet derivative of G at w ∈
H2
π(Qn) reads as

DG(w)z = −λ0(w · ∇)z − λ0(z · ∇)w + 2λ1(∇w)z + 2λ1w(∇z)
− 2β(w · z)w − β(w · w)z

for all z ∈ H2
π(Qn). Since v(t) → V∞ exponentially in H2

π(Qn) ∩ L2
σ(Qn) we infer

that the solution v remains in a ball in H2
π(Qn) for all times that also includes V∞,

to be precise we have v(t) ∈ BH2(V∞, R) for all t < ∞ for some R > 0. Hence, we
can estimate the Fréchet derivative DG in this ball as:

∥DG(ξ)z∥L2(Qn)

≤ C
Ä
∥ξ∥L4(Qn)∥∇z∥L4(Qn) + ∥z∥L4(Qn)∥∇ξ∥L4(Qn) + ∥ξ∥2L6(Qn)∥z∥L6(Qn)

ä
≤ C
Ä
∥ξ∥H1

π(Qn)∥z∥H2
π(Qn) + ∥z∥H1

π(Qn)∥ξ∥H2
π(Qn) + ∥ξ∥2H1

π(Qn)∥z∥H1
π(Qn)

ä
≤ C∥z∥H2

π(Qn)

such that
∥DG(ξ)∥L (H2

π(Qn),L2(Qn)) ≤ C

for all ξ ∈ BH2(V∞, R). Note that ∥ξ∥H2
π(Qn) ≤ ∥ξ − V∞∥H2

π(Qn) + ∥V∞∥H2
π(Qn) ≤ C

for some C > 0 independent of ξ in this case. Hence, applying the Taylor expansion
for v(t), V∞ ∈ BH2(V∞, R) in the convex ball BH2(V∞, R) yields

∥G(v(t))−G(V∞)∥L2(Qn) = ∥DG(ξ)(v(t)− V∞)∥L2(Qn)

≤ sup
ξ∈BH2 (V∞,R)

∥DG(ξ)∥L (H2
π(Qn),L2(Qn))∥v(t)− V∞∥H2

π(Qn)

≤ C∥v(t)− V∞∥H2
π(Qn).

Since we assumed v(t) → V∞ in H2
π(Qn) ∩ L2

σ(Qn) as t→ ∞ at an exponential rate,
this inequality shows G(v(t)) → G(V∞) in L2(Qn) as t→ ∞ also at an exponential
rate. Since I − P : L2(Qn) → L2(Qn) is a bounded operator, we then even obtain

∇p(t) = (I − P )G(v(t)) t→∞−−−→ (I − P )G(V∞)
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at an exponential rate. On the other hand, we recall that every (V∞, p1) ∈ Bα,β × R
is a stationary solution of (5.1). Since V∞ ∈ L2

σ(Qn) we deduce (I − P )G(V∞) =
α(I − P )V∞ = 0 and thus

∇p(t) t→∞−−−→ 0.

Finally, p(t) converges in Ĥ1
π(Qn) to some constant p∞ ∈ R at an exponential rate

and the proof is complete.

Next, we will show that for the stable regime the manifold of ordered polar states
is normally stable. From Theorem 2.1.3 we recall that an equilibrium V is called
normally stable in our setting if (i)-(iii) from the definition of normal hyperbolicity
hold and

(iv) σ(Ao)\{0} ⊆ {z ∈ C : Re z > 0}.

Finally, in our last result regarding nonlinear stability, we are able to prove that if
Γ0 ≥ 0 then every stationary solution (V, p0) ∈ Bα,β × R is exponentially stable in
the following sense by applying the principle of normal stability:

5.2.7 Theorem. Let Γ2, β > 0,Γ0 ≥ 0, α < 0 and λ0 ∈ R. Let (V, p0) with V ∈ Bα,β

be a stationary state of (5.1). Then (V, p0) is stable in the space (H2
π(Qn) ∩ L2

σ(Qn))×
Ĥ1
π(Qn) and there exists some δ > 0 such that if (v, p) is a solution to (5.1) with

initial data v0 ∈ H2
π(Qn) ∩ L2

σ(Qn) and ∥v0 − V ∥H2
π(Qn) < δ then (v, p) converges to

some (V∞, p∞) ∈ Bα,β × R exponentially in (H2
π(Qn) ∩ L2

σ(Qn))× Ĥ1
π(Qn).

Proof. As in the proof of Theorem 5.2.6 we first consider the projected system (5.10)
and neglect the pressure. We proceed as in the proof of Theorem 5.2.6 and prove
that every equilibrium V ∈ Bα,β is normally stable. Again by Lemma 5.2.4 the first
condition (i) is fulfilled. In order to verify (ii) and (iii) we again apply Lemma 5.2.5:
Here we need to show that assumption (5.11) holds. Therefore, let u ∈ N(Ao) be
arbitrary. Then Aou = 0 and by testing with u we obtain

(Γ2∆2u, u)2,π − (Γ0∆u, u)2,π + (λ0(V · ∇)u, u)2,π + 2β(PV V Tu, u)2,π = 0.

Then exploiting integration by parts yields

Γ2∥∆u∥2L2(Qn) + Γ0∥∇u∥2L2(Qn) + 2β∥V · u∥2L2(Qn) = 0

by the fact that the λ0 term is skew-symmetric. By assumption we have Γ2, β > 0
and Γ0 ≥ 0 such that we infer ∥∆u∥L2(Qn) = ∥V · u∥L2(Qn) = 0 which yields on one
hand that u is constant by the fact that

∥∆u∥2L2(Qn) =
∑︂
ℓ∈Zn

|ℓ|2|û(ℓ)|2 = 0,
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hence û(ℓ) = 0 for all ℓ ̸= 0. On the other hand ∥V · u∥L2(Qn) = 0 yields that u
is perpendicular to V . Altogether we just verified (5.11). By Lemma 5.2.4 and
Lemma 5.2.5 assumptions (ii) and (iii) are now fulfilled.
The fact that σ(Ao) ⊆ {λ ∈ C : Re λ ≥ 0} follows from Proposition 5.2.2(i) since

the manifold of ordered polar states is linearly stable. In (5.9) we observed that
λ = 0 is the only possible eigenvalue with Re λ = 0 since for ℓ ̸= 0 the symbol
Re σAo(ℓ) is always positive definite. Hence, (iv) follows and V is normally stable.
By Theorem 2.1.3 the assertion follows for V .
Convergence for the pressure p can be obtained completely analogously to the

proof of Theorem 5.2.6.
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Chapter 6

Global Attractor for an Active Fluid
Continuum Model

In this chapter we consider the active fluid continuum model from the last Chapter 5.
In contrast to the result from the last chapter, we prove the existence of a global
attractor in two and three dimensions. At last we prove some properties of the global
attractor. For the reader’s convenience we recall the model. In the following we
consider:

vt + Γ2∆2v − Γ0∆v + (α + β|v|2)v
+λ0(v · ∇)v − λ1∇|v|2 +∇p = 0 in (0, T )×Qn,

div v = 0 in (0, T )×Qn,

v|t=0 = v0 in Qn,

(6.1)

again with subject to periodic boundary conditions on L2(Qn) with Qn = [0, L]n for
n = 2, 3 where the length L > 0 is arbitrary chosen but fixed. In this chapter we
assume Γ2, β > 0 and Γ0, α, λ0, λ1 ∈ R. In contrast to the last chapter we will not
distinguish between the cases Γ0 ≥ 0 and Γ0 < 0.
We will proceed as follows: Since we are working in a different setting as in the

last chapter, we first have to make sure that (6.1) is globally wellposed in L2
σ(Qn).

Then we will prove the existence of absorbing sets of arbitrary regularity in order to
prove existence of a global attractor which turns out to have finite Hausdorff and
fractal dimension. At last we can deduce that the model (6.1) even has an inertial
manifold in two dimensions which attracts all solutions at an exponential rate.

6.1 Global Wellposedness in L2
σ(Qn)

In order to investigate the existence of a global attractor as well as its finite dimension
we need to prove the existence of a semigroup solving (6.1) for u0 ∈ L2

σ(Qn) in this
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case. To this end, we first neglect the pressure p and consider the projected system.
Then the system where we applied the Helmholtz-Weyl projection from Section 2.2
to (6.1) reads as

vt + Γ2∆2v − Γ0∆v + (α + Pβ|v|2)v + λ0P (v · ∇)v = 0 in (0, T )×Qn,

v|t=0 = v0 in Qn.
(6.2)

In this section we aim to prove the existence of a semigroup

S(t) : L2
σ(Qn) → L2

σ(Qn), v0 ↦→ S(t)v0,

where S(t)v0 solves (6.2). Recovering the pressure p by applying (I − P ) to (6.1) we
also obtain the existence of a pair (v,∇p) ∈ L2

σ(Qn)× L2(Qn) which solves (6.1).
Note that in contrast to (global) wellposedness in Section 5.1 we need the existence

of a semigroup (S(t))t≥0 for initial values v0 ∈ L2
σ(Qn) and not in H2

π(Qn) ∩ L2
σ(Qn)

as in Section 5.1. Hence, applying the theory of interpolation-extrapolation scales
we will be able to transfer results from Section 5.1 to the desired setting.
To this end, we set E0 := L2

σ(Qn) and

A : D(A) ⊆ L2
σ(Qn) → L2

σ(Qn), Au := Γ2∆2u,

where D(A) := H4
π(Qn) ∩ L2

σ(Qn). By Section 5.1 we know that ω + A admits
a bounded H∞-calculus for ω > 0 large. In order to define the interpolation-
extrapolation scale we choose λ > ω such that 0 ∈ ρ(λ+ A) and define A := λ+ A.
By [2, Theorem V.1.5.4] we deduce that [(Eα,Aα) : α ∈ [−1,∞)] is a densely injected
interpolation-extrapolation scale generated by (E0,A), where

Eα
·=

⎧⎨⎩
(︁
D(Aα), ∥Aα · ∥L2(Qn)

)︁
0 ≤ α <∞,(︁

E0, ∥Aα · ∥L2(Qn)
)︁∼ −1 ≤ α < 0,

and (E0, ∥Aα ·∥L2(Qn))∼ denotes the completion of E0 w.r.t. the norm ∥Aα ·∥L2(Qn). For
the Eα-realization of A we also obtain Aα ∈ L (Eα+1, Eα). By [2, Theorem V.1.5.15]
we know that the scale [(Eα,Aα) : α ∈ [−1,∞)] consists of Hilbert spaces equipped
with the canonical inner product since A is self-adjoint and positive. Corresponding
dual spaces w.r.t. the duality pairing (·, ·)2,π are characterized as

(Eα)′ = E−α, (Aα)′ = A−α (−1 ≤ α ≤ 1),

by [2, Theorem V.1.4.12]. At last we note that we have

(Eα, Eβ)θ,2 ·= [Eα, Eβ]θ ·= E(1−θ)α+θβ (−1 ≤ α < β <∞, 0 < θ < 1)
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by [2, Theorem V.1.5.4] and [51, Chapter 1.18.10, Remark 3]. This also shows why
extrapolation of the setting in Section 5.1 leads us to wellposedness with initial
values in L2

σ(Qn): For α = −1/2 and β = 1/2 we then obtain (E−1/2, E1/2)1/2,2 =
E0 = L2

σ(Qn), hence we solve (6.2) in E−1/2.
In the following we give a short overview of the steps we have to follow in order to
prove global wellposedness of (6.2) with initial values v0 ∈ L2

σ(Qn).
Step 1 (H∞-calculus and maximal Lp-regularity). Let A−1/2 denote the realization

of the operator A in E−1/2, i.e., A−1/2 : D(A−1/2) ⊆ E−1/2 → E−1/2 and let B−1/2 :
D(B−1/2) = E0 ⊆ E−1/2 → E−1/2 be the E−1/2-realization of the perturbation

B : D(B) ⊆ L2
σ(Qn) → L2

σ(Qn), Bu := −Γ0∆u+ α,

where D(B) = H2
π(Qn) ∩ L2

σ(Qn). By [23, Theorem 6.5] we deduce that A−1/2 =
A−1/2+λ admits a bounded H∞-calculus on E−1/2. Applying a standard perturbation
result for the H∞-calculus (e.g. [27, Proposition 13.1]), it is straightforward to
conclude that µ+ A−1/2 +B−1/2 also admits an H∞-calculus for µ > 0 large. As a
consequence we observe that A−1/2+B−1/2 enjoys maximal Lp-regularity on intervals
(0, T ) with T <∞:

6.1.1 Proposition. Let T ∈ (0,∞). For data f ∈ L2((0, T ), E−1/2) and initial
value v0 ∈ L2

σ(Qn) = (E−1/2, E1/2)1/2,2 there exists a unique solution (v, p) of the
linearization of (6.1), i.e.,

vt + Γ2∆2v − Γ0∆v + αv +∇p = f in (0, T )×Qn,

div v = 0 in (0, T )×Qn,

v|t=0 = v0 in Qn,

such that the following estimate holds:

∥v∥H1((0,T ),E−1/2) + ∥v∥L2((0,T ),E1/2) + ∥∇p∥L2((0,T ),E−1/2)

≤ C(T )
Ä
∥f∥L2((0,T ),E−1/2) + ∥v0∥L2(Qn)

ä
.

Thus, wellposedness of the linearization of (6.1) is ensured and by applying
standard techniques (fixed point argument) we can obtain local wellposedness of the
full nonlinear problem (6.1).
Step 2 (local wellposedness). At first we define relevant function spaces as

ET := H1((0, T ), E−1/2) ∩ L2((0, T ), E1/2),
F1
T := L2((0, T ), E−1/2),
F2 := (E−1/2, E1/2)1/2,2 = E0 = L2

σ(Qn),
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FT := F1
T × F2.

Making use of the isomorphism which is stated within maximal Lp-regularity L :
ET → FT with Lu = (u̇+ A−1/2 +B−1/2, u|t=0) it is possible to rephrase (6.2) as

F : ET → FT , F (u) := Lu+ (H(u), 0),

with H : ET → F1
T defined as H(u) := βP−1/2|u|2u + λ0P−1/2(u · ∇)u. Here, P−1/2

is the consistent extension of the Helmholtz-Weyl projection P on L2(Qn) from
Section 2.2 to Ẽ−1/2. Here, the interpolation-extrapolation scale [(Ẽα,Aα) : α ∈
[−1,∞)] is generated by the (Ẽ0,A) = (L2(Qn),A). Note that Eα denotes the scale
generated by the projected spaces L2

σ(Qn) and Ẽα is generated by L2(Qn). It is
straightforward to prove H ∈ C1(ET ,F1

T ): Making use of the embedding

ET ↪→ L∞((0, T ), L2
σ(Qn))

by [2, Theorem III.4.10.2], div ∈ L ((Ẽ−1/4)n×n, (Ẽ−1/2)n) and the fact that Ẽ1/2 =
H2
π(Qn) ↪→ L∞(Qn) and L2(Qn) = Ẽ0 ↪→ Ẽ−1/4 we can estimate the latter term of

H as:

∥P−1/2(u · ∇)u∥F1
T
≤ C∥ div(u⊗ u)∥L2((0,T ),Ẽ−1/2) ≤ C∥|u|2∥L2((0,T ),Ẽ−1/4)

≤ C∥u∥L∞((0,T ),L2
σ(Qn))∥u∥L2((0,T ),L∞(Qn)) ≤ C∥u∥2ET

and the first term as

∥P−1/2|u|2u∥F1
T
≤ C∥|u|2u∥L2((0,T ),Ẽ−1/2) ≤ C∥u∥2L∞((0,T ),L2

σ(Qn))∥u∥L2((0,T ),L∞(Qn))

≤ C∥u∥3ET

by additionally making use of the embedding L1(Qn) ↪→ Ẽ−1/2 which holds thanks
to the estimate⃓⃓⃓

⟨ϕ, u⟩Ẽ−1/2,Ẽ1/2

⃓⃓⃓
=
⃓⃓⃓⃓
1
Ln

∫︂
Qn

ϕ(x)u(x) dx
⃓⃓⃓⃓
≤ C∥ϕ∥L1(Qn)∥u∥Ẽ1/2

for ϕ ∈ L1(Qn) and u ∈ Ẽ1/2. We also observe that L+ (DH(v), 0) ∈ Lis(ET ,FT )
for arbitrary v ∈ ET : This can be proved by using the same arguments as in [57,
Lemma 3]:

∥(u · ∇)v(t)∥Ẽ−1/2
≤ C∥u⊗ v(t)∥Ẽ−1/4

≤ C∥u∥L∞(Qn)∥v(t)∥L2(Qn)

≤ C∥u∥Eα/4∥v∥ET
,
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and

∥|v(t)|2u∥Ẽ−1/2
≤ C∥|v(t)|2u∥L1(Qn) ≤ C∥u∥L∞(Qn)∥v(t)∥2L2(Qn)

≤ C∥u∥Eα/4∥v∥2ET

and Eα/4 = D(Aα/4) = Hα
π (Qn) ∩ L2

σ(Qn) ↪→ L∞(Qn) ∩ L2
σ(Qn) for α > 3/2 since

α− n/2 > 0. At last local wellposedness can be proved by making use of maximal
Lp-regularity and applying the local inverse theorem as seen in [57, Theorem 1].

6.1.2 Theorem. Let Γ2, β > 0, Γ0, α, λ0, λ1 ∈ R. For every initial value v0 ∈ L2
σ(Qn)

and data f ∈ L2((0, T ), E−1/2) there exists 0 < T∗ < T and a unique solution (v, p)
of (6.1) such that

v ∈ H1((0, T∗), E−1/2) ∩ L2((0, T∗), E1/2),

∇p ∈ L2((0, T∗), E−1/2).

Having proved local wellposed leads to the question whether global wellposedness
can also be obtained.
Step 3 (global wellposedness). Global wellposedness can be obtained by using

energy estimates as in Theorem 5.1.3 and [57, Theorem 2], to be precise we can show

∥v∥L∞((0,T ),L2
σ(Qn)) ≤ C(T )∥v0∥L2(Qn),

which proves that (v, p) from Step 2 exists globally.

6.2 Existence of a Global Attractor
In this section we prove the existence of a global attractor of arbitrary high regularity.
We proceed as in [39, Chapter 10] in order to prove the existence. For instance
we will show that there exists some compact absorbing set such that we can apply
Theorem 2.3.3 in order to obtain the result. In Section 2.3 we collected all relevant
definitions and theorems regarding the global attractor theory.
In order to prove the existence of some compact absorbing set in L2

σ(Qn), it is
crucial to prove the existence of an absorbing set in L2

σ(Qn) in general at first. Using
a bootstrapping argument and the Rellich-Kondrachov compact embedding theorem
we then obtain the compactness of the corresponding absorbing set.
Let v0 ∈ L2

σ(Qn) be some initial value such that v(t) = S(t)v0 for t ≥ 0 is the
corresponding solution of (6.2). Testing the first equation of (6.2) with v w.r.t. the
inner product in L2

σ(Qn) yields
1
2
d

dt
∥v(t)∥2L2(Qn) = −Γ2∥∆v(t)∥2L2(Qn) − Γ0∥∇v(t)∥2L2(Qn)
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− α∥v(t)∥2L2(Qn) −
β

Ln
∥v(t)∥4L4(Qn),

where we note that the λ0 term vanishes since it is skew-symmetric. Again by making
use of the Fourier series representation for periodic functions (Theorem 2.2.1) we
end up with

1
2
d

dt
∥v(t)∥2L2(Qn)

= −
∑︂
ℓ∈Zn

Ç
Γ2

Å2π
L

ã4
|ℓ|4 + Γ0

Å2π
L

ã2
|ℓ|2 + α

å
|v(t)ˆ︃(ℓ)|2 − β

Ln
∥v(t)∥4L4(Qn).

Using the same arguments as in [8, Corollary 3.5] we observe that there exists a
finite set U ⊆ Zn such that

Γ2

Å2π
L

ã4
|ℓ|4 + Γ0

Å2π
L

ã2
|ℓ|2 + α ≤ 0 ⇔ ℓ ∈ U, (6.3)

where U depends on the relation between the occurring parameters Γ2,Γ0, α. This
is justified by the fact that the paraboloid given in (6.3) can be fully analyzed and
describes a paraboloid which is open to the top. Hence, we can also find some γ1 > 0
such that

−γ1 ≤ Γ2

Å2π
L

ã4
|ℓ|4 + Γ0

Å2π
L

ã2
|ℓ|2 + α ≤ 0 (ℓ ∈ U)

and

1
2
d

dt
∥v(t)∥2L2(Qn)

≤ −
∑︂
ℓ∈U

Ç
Γ2

Å2π
L

ã4
|ℓ|4 + Γ0

Å2π
L

ã2
|ℓ|2 + α

å
|v(t)ˆ︃(ℓ)|2 − β

Ln
∥v(t)∥4L4(Qn)

≤ γ1∥v(t)∥2L2(Qn) −
β

Ln
∥v(t)∥4L4(Qn)

≤ γ1∥v(t)∥2L2(Qn) − γ2∥v(t)∥4L2(Qn)

for γ1, γ2 > 0, where we applied the Sobolev embedding L4(Qn)∩L2
σ(Qn) ↪→ L2

σ(Qn)
in the last step such that γ2 = β. In order to obtain an L2 bound for v(t) uniformly
in t <∞ we need to examine the differential inequality

d

dt
ϕ(t) ≤ 2γ1ϕ(t)− 2γ2ϕ(t)2 (t > 0). (6.4)

By regarding the differential inequality (6.4) as a differential equation, some elemen-
tary calculations yield
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6.2.1 Remark. Let t∗ ≥ 0 be arbitrary. Then the ordinary differential equation

d

dt
ψ(t) = 2γ1ψ(t)− 2γ2ψ(t)2 (t > t∗), ψ(t∗) = ∥v(t∗)∥2L2(Qn)

has a maximal unique solution

ψ(t) = γ1
1

γ1−γ2ψ(t∗)
ψ(t∗) exp(−2γ1(t− t∗)) + γ2

(t ∈ (t̃,∞)),

for ψ(t∗) ∈ R≥0\
¶
0, γ1

γ2

©
and

t̃ :=

⎧⎨⎩−∞, if γ1
γ2
> ψ(t∗),

−(2γ1)−1 log(γ2ψ(t∗)/(γ2ψ(t∗)− γ1)) + t∗, if γ1
γ2
< ψ(t∗),

and ψ(t) = ψ(t∗) for ψ(t∗) ∈ {0, γ1
γ2
} and t ∈ R. If γ1

γ2
> ψ(t∗) then ψ(t) ↗ γ1

γ2
as

t→ ∞ and if γ1
γ2
< ψ(t∗) then ψ(t) ↘ γ1

γ2
as t→ ∞. Furthermore, we observe that

A :=
ß
γ1
γ2
, 0
™

are stationary solutions and that A attracts all solutions ψ.

We aim to apply a comparison theorem in order to obtain a (uniform) bound for
∥v(t)∥L2(Qn) for t ≥ t0 starting from a certain t0 > 0. Since we set ϕ(t) = ∥v(t)∥2L2(Qn)
it suffices to find any bound for ϕ. Hence, we can finally prove

6.2.2 Lemma. Let v denote the solution of (6.2). Then there exists some t0 > 0
and R0 > 0 both independent of the initial value v0 ∈ L2

σ(Qn) such that

∥v(t)∥2L2(Qn) ≤ R0 (t ≥ t0).

Proof. Using the differential inequality (6.4) we want to find a bound for ϕ and
hence for ∥v(t)∥L2(Qn). At first we aim to apply the comparison theorem from [48,
Theorem 1.3] to f : R≥0 → R, f(z) := 2γ1z − 2γ2z2 and ψ : [0,∞) → R, the solution
from Remark 6.2.1 and ϕ, the function from the differential inequality (6.4). Then
we have

ϕ(0) = ∥v0∥2L2(Qn) = ψ(0), ϕ′(t)− f(ϕ(t)) ≤ 0 = ψ′(t)− f(ψ(t)) (6.5)

for t > 0. Note that f is locally Lipschitz w.r.t. z and that ϕ and ψ are weakly
differentiable in (0,∞). Then [48, Theorem 1.3] states

ϕ(t) ≤ ψ(t) (t ≥ 0).
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Note that in fact we first just obtain the estimate for t > 0. However, by the
continuity of ψ and ϕ we indeed obtain the estimate for t ≥ 0.
Hence, we are now able to obtain bounds for ∥v(t)∥L2(Qn) uniformly in the initial
data v0 ∈ L2

σ(Qn). If ∥v0∥2L2(Qn) = 0 then ψ ≡ 0, hence ∥v(t)∥2L2(Qn) = ϕ(t) = 0 for
all t ≥ 0. If ∥v0∥2L2(Qn) =

γ1
γ2

then ψ ≡ γ1
γ2

and ∥v(t)∥2L2(Qn) = ϕ(t) ≤ γ1
γ2

for all t ≥ 0.
Let ∥v0∥2L2(Qn) <

γ1
γ2
. Then by Remark 6.2.1 we observe that ψ(t) ↗ γ1

γ2
as t → ∞,

hence ψ is monotonically increasing such that ψ(t) ≤ γ1
γ2

for t ≥ 0. Hence, also in
this case we infer ∥v(t)∥2L2(Qn) = ϕ(t) ≤ γ1

γ2
for all t ≥ 0.

At last we consider the case ∥v0∥2L2(Qn) >
γ1
γ2
. Then integrating the differential

inequality (6.4) yields

ϕ(t) ≤ γ1
1

γ1−γ2ϕ(0)
ϕ(0) exp(−γ12t) + γ2

(t ≥ 0).

Note that we can estimate the denominator on the right-hand side as

γ1 − γ2ϕ(0)
ϕ(0) exp(−γ12t) + γ2 = γ2 −

γ2ϕ(0)− γ1
ϕ(0) exp(−γ12t)

= γ2(1− exp(−γ12t)) +
γ1
ϕ(0) exp(−γ12t)

≥ γ2(1− exp(−γ12t))

for all t ≥ 0. Furthermore, we observe that for every ε > 0 there exists some t0 > 0
such that

γ1
γ2(1− exp(−γ12t))

− γ1
γ2

=
⃓⃓⃓⃓

γ1
γ2(1− exp(−γ12t))

− γ1
γ2

⃓⃓⃓⃓
< ε (t ≥ t0)

due to the convergence. Hence for fixed ε > 0 and corresponding t0 = t0(ε) > 0 we
finally end up with

ϕ(t) ≤ γ1
1

γ1−γ2ϕ(0)
ϕ(0) exp(−γ12t) + γ2

≤ γ1
γ2(1− exp(−γ12t))

= γ1
γ2(1− exp(−γ12t))

− γ1
γ2

+ γ1
γ2

< ε+ γ1
γ2

for t ≥ t0. Summing up we finally obtain

∥v(t)∥2L2(Qn) = ϕ(t) ≤ ε+ γ1
γ2

:= R0 (t ≥ t0)

independent of v0 ∈ L2
σ(Qn).

6.2.3 Remark. We can apply [48, Theorem 1.3] in the setting of Lemma 6.2.2
by weakening the assumptions from [48, Theorem 1.3]. In fact in the original
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formulation differentiability of ϕ and ψ in the classical sense and (6.5) for t ≥ 0 is
required. Actually, the proof of [48, Theorem 1.3] shows that we can assume weak
differentiability of ϕ and ψ and that (6.5) does not have to hold for t = 0 in order to
obtain the result.

6.2.4 Corollary. Let (S(t))t≥0 be the semigroup from Section 6.1. Then the set
B0 := BL2

(︁
0,
√
R0
)︁
is a bounded absorbing set in L2

σ(Qn).

Proof. This is an immediate consequence of Lemma 6.2.2.

Next, we will prove the existence of an absorbing set in H1
π(Qn)∩L2

σ(Qn) in order
to apply the Rellich-Kondrachov compact embedding theorem [39, Theorem A.4,
Corollary A.5] to obtain a compact absorbing set in L2

σ(Qn).

6.2.5 Lemma. Let v denote the solution of (6.2). Then there exists some t1 > 0
and R1 > 0 both independent of the initial value v0 ∈ L2

σ(Qn) such that

∥v(t)∥2H1
π(Qn) ≤ R1 (t ≥ t1).

Proof. By Lemma 6.2.2 we already have an L2 bound for any solution v of (6.2).
Hence we only need to find some estimate for ∇v in L2(Qn). To this end, we apply
energy methods. We test (6.2) with −∆v w.r.t. to the inner product in L2(Qn).
Then we infer

1
2
d

dt
∥∇v(t)∥2L2(Qn) + α∥∇v(t)∥2L2(Qn) + Γ0∥∆v(t)∥2L2(Qn) + Γ2∥∆∇v(t)∥2L2(Qn)

+ β

Ln

∫︂
Qn

∇
(︁
|v(t)|2v(t)

)︁
∇v(t) dx = −λ0((v(t) · ∇)v(t),∆v(t))2,π.

As in [57, Theorem 3.2] we observe that the β term is positive and hence can be
dropped. Furthermore, in order to estimate the Γ0 term we apply Corollary 2.2.2 for
k = 2 and Young’s inequality to absorb the ∆∇v term with the Γ2 term. We then
infer

1
2
d

dt
∥∇v(t)∥2L2(Qn) +

Γ2

2 ∥∆∇v(t)∥2L2(Qn)

≤ |λ0||((v(t) · ∇)v(t),∆v(t))2,π|+ C1∥∇v(t)∥2L2(Qn)

with C1 > 0. We can estimate the λ0 term as

((v(t) · ∇)v(t),∆v(t))2,π = (div(v(t)⊗ v(t)),∆v(t))2,π
= −(v(t)⊗ v(t),∆∇v(t))2,π
≤ ∥v(t)⊗ v(t)∥L2(Qn)∥∆∇v(t)∥L2(Qn)

135



Chapter 6. Global Attractor for an Active Fluid Continuum Model

≤ C(ε)∥v(t)∥4L4(Qn) + ε∥∆∇v(t)∥2L2(Qn)

such that we end up with

1
2
d

dt
∥∇v(t)∥2L2(Qn) +

Γ2

4 ∥∆∇v(t)∥2L2(Qn) ≤ C1∥∇v(t)∥2L2(Qn) + C2∥v(t)∥4L4(Qn)

for some new constants C1, C2 > 0 independent of v and t. Hence, we also obtain
the estimate

d

dt
∥∇v(t)∥2L2(Qn) ≤ C1∥∇v(t)∥2L2(Qn) + C2∥v(t)∥4L4(Qn). (6.6)

Next, we have to ensure the integrability of the terms in (6.6) in order to apply the
generalized Gronwall lemma from [47, Lemma III.1.1]. To this end, let r ≥ 0 and
t ≥ t0 where t0 > 0 is the same t0 from Lemma 6.2.2. Testing (6.2) with v and
integrating in Qn w.r.t. the space variable and from t to t+ r w.r.t. the time variable
leads to

∥v(t+ r)∥2L2(Qn) + Γ2

∫︂ t+r

t
∥∆v(s)∥2L2(Qn) ds+ Γ0

∫︂ t+r

t
∥∇v(s)∥2L2(Qn) ds

+ α
∫︂ t+r

t
∥v(s)∥2L2(Qn) ds+

β

Ln

∫︂ t+r

t
∥v(s)∥4L4(Qn) ds

= ∥v(t)∥2L2(Qn).

Again, we apply Corollary 2.2.2 and Young’s inequality in order to absorb the Γ0

term with the Γ2 and α term. Hence, we obtain

∥v(t+ r)∥2L2(Qn) +
Γ2

2

∫︂ t+r

t
∥∆v(s)∥2L2(Qn) ds+

β

Ln

∫︂ t+r

t
∥v(s)∥4L4(Qn) ds

≤ ∥v(t)∥2L2(Qn) + C
∫︂ t+r

t
∥v(s)∥2L2(Qn) ds,

with some constant C > 0. Since t ≥ t0 from Lemma 6.2.2 we obtain

∥v(t+ r)∥2L2(Qn) +
Γ2

2

∫︂ t+r

t
∥∆v(s)∥2L2(Qn) ds+

β

Ln

∫︂ t+r

t
∥v(s)∥4L4(Qn) ds ≤ C(r)

for t ≥ t0 where C(r) > 0 is dependent of r ≥ 0. Then we obtain
∫︂ t+r

t
∥v(s)∥4L4(Qn) ds ≤ C(r) (t ≥ t0)

and∫︂ t+r

t
∥∇v(s)∥2L2(Qn) ds ≤

∫︂ t+r

t
∥∆v(s)∥2L2(Qn) ds+

∫︂ t+r

t
∥v(s)∥2L2(Qn) ds ≤ C(r)
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for t ≥ t0 where we again applied Corollary 2.2.2 for k = 1. Hence we can finally
apply [47, Lemma III.1.1] to (6.6) in order to obtain

∥∇v(t)∥2L2(Qn) ≤ C (t ≥ t1),

where we set t1 := t0 + r for some fixed r > 0 now. Combined with Lemma 6.2.2
this finally yields

∥v(t)∥2H1
π(Qn) = ∥v(t)∥2L2(Qn) + ∥∇v(t)∥2L2(Qn) ≤ R1 (t ≥ t1)

for some R1 ≥ R0 > 0.

Hence, as a direct consequence we obtain:

6.2.6 Corollary. Let (S(t))t≥0 be the semigroup from Section 6.1. Then the set
B1 := BH1(0,

√
R1) is a bounded absorbing set in H1

π(Qn) ∩ L2
σ(Qn).

Then we can finally prove the existence of a global attractor in L2
σ(Qn):

6.2.7 Proposition. Let (S(t))t≥0 be the semigroup from Section 6.1. Then there
exists a global attractor A0 ⊆ H1

π(Qn) ∩ L2
σ(Qn) such that

S(t)A0 = A0 for all t ≥ 0.

Proof. We apply Theorem 2.3.3 to prove the assertion. We need to verify that
(S(t))t≥0 is dissipative, hence we have to ensure the existence of a compact absorbing
set B ⊆ L2

σ(Qn).
From Corollary 6.2.6 we infer that B1 is a bounded absorbing set in H1

π(Qn)∩L2
σ(Qn).

Hence by Rellich’s compact embedding theorem ([39, Theorem A.4, Corollary A.5])
we obtain that B1 is relatively compact in L2

σ(Qn). As a consequence B := B1
L2

is compact in L2
σ(Qn) and Theorem 2.3.3 yields the existence of a global attractor

A0 ⊆ L2
σ(Qn).

We can even prove that the global attractor A0 has H1-regularity. Note that
S(t)A0 = A0 for all t ≥ 0 by definition of a global attractor. This especially holds
for t = t1 where t1 is the same as in Lemma 6.2.5. Hence we deduce

A0 = S(t1)A0 ⊆ B1 ⊆ H1
π(Qn) ∩ L2

σ(Qn),

where B1 is defined as in Corollary 6.2.6.

Next, we prove that the global attractor in fact has arbitrary high regularity which
again can be obtained by considering energy estimates:
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6.2.8 Lemma. Let k ∈ N and v denote the solution of (6.2). Then there exists some
tk > 0 and Rk > 0 both independent of the initial value v0 ∈ L2

σ(Qn) such that

∥v(t)∥2Hk
π(Qn) ≤ Rk (t ≥ tk).

Proof. We will prove the assertion via an induction argument. For k = 1 the
statement was proved in Corollary 6.2.6. For k ∈ N we assume the existence of an
absorbing set in Hk−1

π (Qn) ∩ L2
σ(Qn). Then there exist Rj > 0 and tj > 0 with

∥v(t)∥2
Hj

π(Qn)
≤ Rj (t ≥ tj)

for j = 0, ..., k− 1 by assumption. Note that we can assume tk−1 > ... > t0 > 0. Now
testing (6.2) with (−1)k∆kv(t) yields

1
2
d

dt
∥∇kv(t)∥2L2(Qn) + Γ2∥∇k+2v(t)∥2L2(Qn) + Γ0∥∇k+1v(t)∥2L2(Qn)

+ α∥∇kv(t)∥2L2(Qn) + λ0(∇k−2(v(t) · ∇)v(t),∇k+2v(t))2,π

+ β(∇k−2|v(t)|2v(t),∇k+2v(t))2,π = 0.

Again, we aim to absorb the Γ0 term with the Γ2 and α terms by applying Corol-
lary 2.2.2 and Young’s inequality (as seen in the proof of Corollary 6.2.6). Further-
more, we obtain

∥∇k−2|v(t)|2v(t)∥L2(Qn) ≤
k−2∑︂
j,i,ℓ=0

∥∇jv(t)∥L6(Qn)∥∇iv(t)∥L6(Qn)∥∇ℓv(t)∥L6(Qn)

≤ C
k−2∑︂
j,i,ℓ=0

∥∇jv(t)∥H1
π(Qn)∥∇

iv(t)∥H1
π(Qn)∥∇

ℓv(t)∥H1
π(Qn)

≤ C
k−2∑︂
j,i,ℓ=0

∥v(t)∥Hj+1
π (Qn)∥v(t)∥Hi+1

π (Qn)∥v(t)∥Hℓ+1
π (Qn)

≤ C∥v(t)∥3
Hk−1

π (Qn)
,

where we used the Sobolev embedding H1
π(Qn) ↪→ L6(Qn) by [5, Corollary 1.2] since

n = 2, 3. Hence we can estimate the β term as

|(∇k−2|v(t)|2v(t),∇k+2v(t))2,π| ≤ ε∥∇k+2v(t)∥2L2(Qn) + C(ε)∥v(t)∥6
Hk−1

π (Qn)

≤ ε∥∇k+2v(t)∥2L2(Qn) + C(ε)R3
k−1

for ε > 0 arbitrary small and C(ε) > 0 dependent on ε. Hence we can absorb the
∇k+2v(t) term with the Γ2 term. We also observe

∥∇k−2(v(t) · ∇)v(t)∥L2(Qn) ≤
k−2∑︂
j,i=0

∥∇jv(t)∥L4(Qn)∥∇i+1v(t)∥L4(Qn)
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≤ C
k−2∑︂
j,i=0

∥∇jv(t)∥H1
π(Qn)∥∇

i+1v(t)∥H1
π(Qn)

≤ C
k−2∑︂
j,i=0

∥v(t)∥Hj+1
π (Qn)∥v(t)∥Hi+2

π (Qn)

≤ C∥v(t)∥Hk−1
π (Qn)∥v(t)∥Hk

π(Qn)

≤ C∥v(t)∥Hk−1
π (Qn)

Ä
∥v(t)∥2L2(Qn) + ∥∇kv(t)∥2L2(Qn)

ä1/2
,

where we again made use of the Sobolev embedding H1
π(Qn) ↪→ L4(Qn) by [5,

Corollary 1.2] and the fact that

∥v(t)∥Hk
π(Qn) =

Ç
k∑︂
j=0

∥∇jv(t)∥2L2(Qn)

å1/2

≤ C
Ä
∥v(t)∥2L2(Qn) + ∥∇kv(t)∥2L2(Qn)

ä1/2
by Corollary 2.2.2. Then the λ0 term can be estimated as

|(∇k−2(v(t) · ∇)v(t),∇k+2v(t))2,π|

≤ ε∥∇k+2v(t)∥2L2(Qn)

+ C(ε)
Ä
∥v(t)∥2

Hk−1
π (Qn)

∥∇kv(t)∥2L2(Qn) + ∥v(t)∥2
Hk−1

π (Qn)
∥v(t)∥2L2(Qn)

ä
≤ ε∥∇k+2v(t)∥2L2(Qn) + C(ε)Rk−1∥∇kv(t)∥2L2(Qn) + C(ε)R0Rk−1.

Here the remaining terms ∇k+2v(t) and ∇kv(t) can be absorbed by the Γ2 and α
term. Note that all estimates hold for t ≥ tk−1. Summing up we arrive at

d

dt
∥∇kv(t)∥2L2(Qn) +

Γ2

2 ∥∇k+2v(t)∥2L2(Qn) ≤ C1∥∇kv(t)∥2L2(Qn) + C2 (t ≥ tk−1)

for some constants C1, C2 > 0 which are independent of t and v. Note that we can
do the same calculation for k − 2 such that we obtain

d

dt
∥∇k−2v(t)∥2L2(Qn) +

Γ2

2 ∥∇kv(t)∥2L2(Qn) ≤ C1∥∇k−2v(t)∥2L2(Qn) + C2 (t ≥ tk−1),

which yields for t ≥ tk−1 and r ≥ 0 arbitrary∫︂ t+r

t
∥∇kv(s)∥2L2(Qn) ds ≤ C1

∫︂ t+r

t
∥∇k−2v(s)∥2L2(Qn) ds+ C2

∫︂ t+r

t
ds ≤ C(r),

where we made use of the fact that ∥∇k−2v(t)∥2L2(Qn) ≤ Rk−2 for t ≥ tk−1 by the
induction assumption. Again by applying the generalized Gronwall lemma (cf. [47,
Lemma III.1.1] we end up with

∥∇kv(t)∥2L2(Qn) ≤ C (t ≥ tk),
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for some tk ≥ 0 and therefore

∥v(t)∥2Hk
π(Qn) ≤ Rk (t ≥ tk)

for some Rk > 0 independent of v0. Hence, the assertion is proved.

6.2.9 Corollary. Let (S(t))t≥0 be the semigroup from Section 6.1. Then the set
Bk := BHk(0,

√
Rk) is a bounded absorbing set in Hk

π(Qn) ∩ L2
σ(Qn).

6.2.10 Corollary. Let (S(t))t≥0 be the semigroup from Section 6.1. Then the global
attractor A0 from Proposition 6.2.7 has Hk-regularity for all k ∈ N, i.e.,

A0 ⊆ Hk
π(Qn) ∩ L2

σ(Qn).

Proof. Proposition 6.2.7 states that S(t)A0 = A0 for all t ≥ 0. This especially holds
for tk > 0 for all k ∈ N, hence

A0 = S(tk)A0 ⊆ Bk ⊆ Hk
π(Qn) ∩ L2

σ(Qn)

by Corollary 6.2.9.

Next, we prove the existence of a global attractor A4 ⊆ H4
π(Qn) ∩ L2

σ(Qn) for
the semigroup (S̃(t))t≥0 in the context of Section 5.1 and Theorem 5.1.3. Note
that there we proved that solutions even have H4-regularity for initial data v0 ∈
H2
π(Qn)∩L2

σ(Qn). Then even (H4
π(Qn)∩L2

σ(Qn), S̃(t))t≥0 is a semidynamical system
and we can expect higher regularity for the global attractor A4. At last we will prove
that the attractor A0 from Proposition 6.2.7 and A4 actually coincide.

6.2.11 Proposition. Let (S̃(t))t≥0 be the semigroup from Section 5.1. Then there
exists a global attractor A4 ⊆ H4

π(Qn) ∩ L2
σ(Qn) such that

S̃(t)A4 = A4 for all t ≥ 0.

Proof. We apply the same arguments as in Proposition 6.2.7. Then we only have
to prove that (S̃(t))t≥0 is dissipative by Theorem 2.3.3. Note that already by
Corollary 6.2.9 we obtain a bounded absorbing set B5 ⊆ H5

π(Qn) ∩ L2
σ(Qn) where

B5
H4

is compact in H4
π(Qn) ∩ L2

σ(Qn) by Rellich’s embedding theorem (cf. [39,
Theorem A.4, Corollary A.5]).

6.2.12 Lemma. Let (S(t))t≥0 and (S̃(t))t≥0 be the semigroups from Section 6.1 and
Section 5.1, respectively. Then the corresponding attractors A0 and A4 coincide.
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Proof. First we note that A0 ⊆ H5
π(Qn) ∩ L2

σ(Qn) is bounded and invariant, such
that by Rellich’s compact embedding theorem (cf. [39, Theorem A.4, Corollary A.5])
we infer that A0

H4
is compact and absorbing in H4

π(Qn) ∩ L2
σ(Qn). Furthermore,

we observe that A0
H4

= A0 since A0 is compact (and especially closed) in L2
σ(Qn)

which is equipped with a weaker topology than H4
π(Qn) ∩ L2

σ(Qn). Hence,

A0 = A0
H4

⊆ A4,

since A4 is the maximal compact, invariant set in H4
π(Qn) ∩ L2

σ(Qn). On the other
hand by making use of the representation of the global attractor from Theorem 2.3.3,
we obtain

A4 =
⋂︂
t≥0

S(t)B5
H2

⊆
⋂︂
t≥0

S(t)B5
L2

= A0,

since B5
L2

is obviously also a compact, absorbing set in L2
σ(Qn) and since the global

attractor A0 is unique. Thus, the assertion is proved.

6.3 Injectivity and Finite Dimension
In this section we try to characterize the global attractor A0 from Proposition 6.2.7
more precisely. To this end, we will first prove injectivity of the semigroup (S(t))t≥0

from Section 6.1 on A0 which will yield some properties of the global attractor, i.e.,
(A0, S(t))t∈R is a dynamical system (we put emphasize on the fact that the semigroup
then exists for all t ∈ R) and that the global attractor just consists of complete and
bounded orbits. At last we will prove that the global attractor A0 has finite (fractal
and Hausdorff) dimension m.

6.3.1 Lemma. Let (S(t))t≥0 be the semigroup from Section 6.1. Then (S(t))t≥0 is
injective on its global attractor A0 ⊆ L2

σ(Qn). Furthermore, all properties stated in
Theorem 2.3.5 hold, i.e.,

(i) every trajectory on A0 is defined for all t ∈ R and (A0, S(t))t∈R is a dynamical
system;

(ii) A0 =
⋃︁ {v is a complete bounded orbit};

(iii) for every compact invariant set X ⊆ L2
σ(Qn) the unstable manifold of X

W u(X) :=
¶
v0 ∈ L2

σ(Qn) : S(t)v0 defined ∀t ∈ R, S(−t)v0 t→∞−−−→ x ∈ X
©

is contained in the global attractor A0.
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Proof. We follow the ideas of [39, Theorem 12.8] in order to prove that (S(t))t≥0 is
injective on A0. Hence, we need to show that if S(T )u0 = S(T )v0 ∈ A0 for some
T > 0, then u0 = v0 already follows.
Hence, let u0, v0 ∈ A0 and let u = S(·)u0 and v = S(·)v0 be the corresponding
solutions of (6.2) with u(T ) = S(T )u0 = S(T )v0 = v(T ) for some T > 0. We set
w := u− v and then w solves

wt + Γ2∆2w − Γ0∆w + αw + Pβ(|u|2u− |v|2v) + Pλ0((u · ∇)u− (v · ∇)v) = 0

in (0, T )×Qn. Using the same energy estimates as in [57, Theorem 2] we obtain u, v ∈
L∞((0, T ), H2

π(Qn)) ∩ L2((0, T ), H4
π(Qn) ∩ L2

σ(Qn)) by Corollary 6.2.9 since u0, v0 ∈
A0 ⊆ H2

π(Qn) ∩ L2
σ(Qn). Hence, also w ∈ L∞((0, T ), H2

π(Qn)) ∩ L2((0, T ), H4
π(Qn) ∩

L2
σ(Qn)). By defining

B : H2
π(Qn) ∩ L2

σ(Qn) = E1/2 ⊆ E−1/2 → E−1/2, Bw = Γ2∆2w − Γ0∆w + αw,

we observe that B is a bounded and linear operator (see Section 6.1). We aim to
apply [39, Lemma 11.9, Theorem 11.10] with H = L2

σ(Qn) and V = H2
π(Qn)∩L2

σ(Qn).
Defining

h(t, w(t)) := Pβ(|u(t)|2u(t)− |v(t)|2v(t)) + Pλ0((u(t) · ∇)u(t)− (v(t) · ∇)v(t)),

it remains to show ∥h(t, w(t))∥L2(Qn) ≤ k(t)∥w(t)∥H2
π(Qn) for k(t) ∈ L2((0, T ),R).

We first consider the first difference in h. Applying the Taylor expansion to G ∈
C1(H1

π(Qn) ∩ L2
σ(Qn), L2

σ(Qn)), G(u) = |u|2u with DG(ξ)λ = 2(ξ · λ)ξ + |ξ|2λ for
ξ, λ ∈ H1

π(Qn) ∩ L2
σ(Qn) we arrive at

∥|u|2u− |v|2v∥L2(Qn) = ∥G(u)−G(v)∥L2(Qn) = ∥DG(ξ)(u− v)∥L2(Qn)

≤ C sup
ξ∈B1

∥DG(ξ)∥L (H1
π(Qn)∩L2

σ(Qn),L2
σ(Qn))∥u− v∥H1

π(Qn)

≤ C sup
ξ∈B1

sup
∥λ∥

H1
π(Qn)=1

∥2(ξ · λ)ξ + |ξ|2λ∥L2(Qn)∥u− v∥H1
π(Qn)

≤ C sup
ξ∈B1

sup
∥λ∥

H1
π(Qn)=1

∥ξ∥2H1
π(Qn)∥λ∥H1

π(Qn)∥u− v∥H1
π(Qn)

≤ C∥u− v∥H1
π(Qn),

where we applied the Taylor expansion to u, v ∈ A0 ⊆ B1 by Corollary 6.2.6 and
making use of the Sobolev embedding H1

π(Qn) ↪→ L6(Qn) from [5, Corollary 1.2].
The second difference in h is estimated as

∥(u · ∇)u− (v · ∇)v∥L2(Qn)
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= ∥(u · ∇)(u− v)− ((u− v) · ∇)v∥L2(Qn)

≤ ∥u∥L4(Qn)∥∇(u− v)∥L4(Qn) + ∥u− v∥L4(Qn)∥∇v∥L4(Qn)

≤ C
(︁
∥u∥H1

π(Qn)∥u− v∥H2
π(Qn) + ∥u− v∥H1

π(Qn)∥v∥H2
π(Qn)

)︁
≤ C∥u− v∥H2

π(Qn),

using the same arguments as before. Then making use of the boundedness of the
Helmholtz-Weyl projection yields ∥h(t, w(t))∥L2(Qn) ≤ C∥w(t)∥H2

π(Qn) where C > 0
is independent of t. Hence, all assumptions for [39, Theorem 11.10] hold. Since
S(T )u0 = S(T )v0 for some T > 0 we have w(T ) = u(T )−v(T ) = 0 and [39, Theorem
11.10] yields w(t) = u(t)− v(t) = 0 for all 0 ≤ t ≤ T , which especially holds for t = 0.
Hence, u0 = v0 and (S(t))t≥0 is injective on A0.

Next, we attempt to obtain dimensional bounds for the Hausdorff and fractal
dimension for the attractor A0 following the approach in [39, Chapter 13]. Even
though A0 ⊆ L2

σ(Qn) is a subset of an infinitely-dimensional phase space, we are
able to prove (fractal) finite-dimension which shows that the dynamics of the whole
system (6.2) can be determined by a finite degree of freedom. We aim to apply
Theorem 2.3.7. To this end, we first prove uniform differentiability of the semigroup
(S(t))t≥0:

6.3.2 Lemma. Let (S(t))t≥0 be the semigroup from Section 6.1 and A0 be the global
attractor. For u0, v0 ∈ A0 we then have

∥S(t)u0 − S(t)v0∥2L2(Qn) ≤ eCt∥u0 − v0∥2L2(Qn) (t ≥ 0).

This especially yields uniqueness of solutions with initial value v0 ∈ A0.

Proof. We apply a standard argument which is often used in order to prove uniqueness
of solutions. Let u0, v0 ∈ A0 be initial values and u = S(·)u0 and v = S(·)v0 be
corresponding solutions of (6.2). We define the difference w := u−v and w0 = u0−v0.
Then w solves

wt + Γ2∆2w − Γ0∆w + αw + βP (|u|2u− |v|2v) + λ0P ((u · ∇)u− (v · ∇)v) = 0,

w|t=0 = w0.

Testing with w w.r.t. the scalar product in L2(Qn) then yields the following (we omit
the variable t):

1
2
d

dt
∥w∥2L2(Qn) + Γ2∥∆w∥2L2(Qn) + Γ0∥∇w∥2L2(Qn) + α∥w∥2L2(Qn) + β(|u|2u,w)2,π
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+ β(|v|2v, w)2,π + λ0((u · ∇)u,w)2,π − λ0((v · ∇)v, w)2,π = 0.

We aim to apply Gronwall’s inequality. To this end, we observe that ((v ·∇)v, v)2,π =
((v ·∇)u, u)2,π = 0 since u, v are divergence free and ((v ·∇)v, u)2,π = −((v ·∇)u, v)2,π,
hence the λ0 terms simplify as

((u · ∇)u,w)2,π − ((v · ∇)v, w)2,π = −((w · ∇)u,w)2,π.

Again by applying the Sobolev embedding H1
π(Qn) ↪→ L4(Qn) from [5, Corollary 1.2]

and making use of the fact that A0 ⊆ B2, Corollary 6.2.9 yields for the λ0 term:

|((w · ∇)u,w)2,π| ≤ C∥w∥H1
π(Qn)∥w∥L2(Qn)∥u∥H2

π(Qn) ≤ C∥w∥H1
π(Qn)∥w∥L2(Qn),

since u(t) = S(t)u0 ∈ A0 for all t ≥ 0. Concerning the β term we apply the Taylor
expansion exactly as in the proof of Lemma 6.3.1. Hence collecting all estimates and
making use of Corollary 2.2.2 for all ∇w terms leads us to

1
2
d

dt
∥w∥2L2(Qn) +

Γ2

8 ∥∆w∥2L2(Qn) ≤ C
Ä
∥w∥H1

π(Qn)∥w∥L2(Qn) + ∥w∥2L2(Qn)

ä
and in the end

1
2
d

dt
∥w∥2L2(Qn) +

Γ2

8 ∥w∥2H2
π(Qn) ≤ C∥w∥2L2(Qn) (6.7)

with C > 0 independent of u0, v0 and t. Applying Gronwall’s inequality yields the
assertion:

∥w(t)∥2L2(Qn) ≤ eCt∥w0∥2L2(Qn) (t ≥ 0),

where C > 0 is independent of t.

6.3.3 Lemma. The semigroup (S(t))t≥0 from Section 6.1 is uniformly differentiable
on the attractor A0 ⊆ L2

σ(Qn) in the sense of Definition 2.3.6. Furthermore, the
solution operator Λ(t, v0) of (6.8) is a compact operator for t > 0 and v0 ∈ A0.

Proof. In order to prove the assertion we need to show that for every v0 ∈ A0 there
exists a linear operator Λ(t, v0) such that for all t ≥ 0 we have

sup
u0,v0∈A0,0<∥v0−u0∥L2(Qn)<ε

∥S(t)u0 − S(t)v0 − Λ(t, v0)(u0 − v0)∥L2(Qn)

∥u0 − v0∥L2(Qn)

ε→0−−→ 0

and

sup
v0∈A0

∥Λ(t, v0)∥L (L2
σ(Qn)) <∞.
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We claim that w(t) = Λ(t, v0)w0 is given as the solution of the equation (6.2)
linearized about the solution v of (6.2) with initial value v0:

wt + Γ2∆2w − Γ0∆w + αw + Pλ0((v · ∇)w − (w · ∇)v)
+Pβ(2(v · w)v − |v|2w) = 0,

w|t=0 = w0.

(6.8)

Hence, by Section 6.1 we observe that (6.8) is wellposed for data w0 ∈ A0 (and
w0 ∈ L2

σ(Qn) for the second part of the proof) by applying a perturbation argument
once again.
At first we will prove the first assumption on uniform differentiability. To this

end, let u, v be solutions of (6.2) to corresponding initial values u0, v0 ∈ A0. Let w
be the solution of (6.8) with initial value w0 = u0 − v0. Then we define the error
θ := u− v − w which then fulfills the following equation

θt + Γ2∆2θ − Γ0∆θ + αθ + Pλ0((v · ∇)θ + (θ · ∇)v + ((v − u) · ∇)(v − u))

+ Pβ(|u|2u− |v|2v − 2(v · w)v − |v|2w) = 0.
(6.9)

Note that we can write the β term as

|u|2u− |v|2v − 2(v · w)v − |v|2w

= |u|2u− |v|2v − |v|2(u− v)− 2(v · (u− v))v + 2(v · θ)v + |v|2θ

such that (6.9) can be written as

θt + Γ2∆2θ − Γ0∆θ + αθ + Pλ0((v · ∇)θ + (θ · ∇)v + ((v − u) · ∇)(v − u))

+ Pβ(2(v · θ)v + |v|2θ + g(u, v)) = 0,
(6.10)

with g(u, v) = |u|2u − |v|2v − |v|2(u − v) − 2(v · (u − v))v. We aim to estimate
∥θ∥L2(Qn) in order to obtain the desired convergence. To this end, we test (6.10) with
θ w.r.t. the scalar product in L2(Qn) to obtain

1
2
d

dt
∥θ∥2L2(Qn) + Γ2∥∆θ∥2L2(Qn) + Γ0∥∇θ∥2L2(Qn) + α∥θ∥2L2(Qn) + λ0((θ · ∇)v, θ)2,π

+ λ0(((u− v) · ∇)(u− v), θ)2,π − β(g(u, v), θ)2,π
+ 2β((v · θ)v, θ)2,π + β(|v|2, |θ|2)2,π = 0.

We aim to apply Gronwall’s inequality to obtain corresponding estimates for the
term ∥θ∥L2(Qn). Hence, we consider all terms separately. Using similar estimates and
arguments (Sobolev embeddings) as in Lemma 6.2.5 we obtain for the λ0 terms

|((θ · ∇)v, θ)2,π| ≤ C∥θ∥H1
π(Qn)∥θ∥L2(Qn)∥v∥H2

π(Qn),
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|(((u− v) · ∇)(u− v), θ)2,π| ≤ C∥u− v∥H2
π(Qn)∥u− v∥L2(Qn∥θ∥H1

π(Qn).

Furthermore, since β > 0 we deduce that β(|v|2, |θ|2)2,π ≥ 0 and that β((v·θ)v, θ)2,π =
β∥v · θ∥2L2(Qn) ≥ 0. Considering the (g(u, v), θ)2,π term we observe that g(u, v) =
G(u)−G(v)−DG(v)(u−v) withG(x) = |x|2x, hence considering the Taylor expansion
of G ∈ C2(H1

π(Qn)∩L2
σ(Qn), L2

σ(Qn)) withD2G(x)[y, z] = 2(x·y)z+2(y·z)x+2(x·z)y
for x, y, z ∈ H1

π(Qn) ∩ L2
σ(Qn) yields

∥g(u, v)∥L2(Qn)

≤ C sup
x∈B1

sup
∥(y,z)∥

H1
π(Qn)×H1

π(Qn)=1
∥(x · y)z + (y · z)x+ (x · z)y∥L2(Qn)∥u− v∥2H1

π(Qn)

≤ C sup
x∈B1

sup
∥(y,z)∥

H1
π(Qn)×H1

π(Qn)=1
∥x∥H1

π(Qn)∥y∥H1
π(Qn)∥z∥H1

π(Qn)∥u− v∥2H1
π(Qn)

≤ C∥u− v∥2H1
π(Qn),

because u, v ∈ A0 ⊆ B1, since u0, v0 ∈ A0 (cf. Corollary 6.2.6). At last by applying
Corollary 2.2.2 to the Γ0 term, collecting all estimates from above and making use of
u, v ∈ A0 ⊆ B2 (Corollary 6.2.9) we arrive at

1
2
d

dt
∥θ∥2L2(Qn) +

Γ2

4 ∥∆θ∥2L2(Qn) ≤ C
Ä
∥θ∥2H1

π(Qn) + ∥u− v∥2H1
π(Qn)∥θ∥L2(Qn)

+∥u− v∥H2
π(Qn)∥u− v∥L2(Qn)∥θ∥H1

π(Qn)
)︁
.

Again, by making use of Corollary 2.2.2 (applied to the ∇ terms) and Young’s
inequality we finally conclude

1
2
d

dt
∥θ∥2L2(Qn) +

Γ2

8 ∥∆θ∥2L2(Qn) ≤ C
Ä
∥θ∥2L2(Qn) + ∥u− v∥2H2

π(Qn)∥u− v∥2L2(Qn)

ä
.

Finally, applying the Gronwall inequality then yields (note that θ(0) = 0):

∥θ(t)∥2L2(Qn) ≤ C(t)
∫︂ t

0
∥u(s)− v(s)∥2H2

π(Qn)∥u(s)− v(s)∥2L2(Qn) ds.

Note that the right-hand side is bounded by Lemma 6.3.2; in the proof of Lemma 6.3.2
we tested (6.7) with ∥u− v∥2L2(Qn) w.r.t. the time t to conclude

∫︂ t

0
∥u(s)− v(s)∥2H2

π(Qn)∥u(s)− v(s)∥2L2(Qn) ds ≤ C(t)∥u0 − v0∥4L2(Qn),

which then finally yields

∥u(t)− v(t)− w(t)∥2L2(Qn)

∥u0 − v0∥2L2(Qn)
≤ C(t)∥u0 − v0∥2L2(Qn)

u0 → v0−−−−−→ 0.
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At last we prove that Λ(t, v0) is a compact operator for t > 0 and v0 ∈ A0 and
has an operator norm uniform in v0. To this end, we will prove that Λ(t, v0)w0 can
be bounded in L2 and H1

π such that we can apply the Rellich compact embedding
theorem. We recall that w(t) = Λ(t, v0)w0, where w is the solution of (6.8). Testing
(6.8) with w w.r.t. the L2 inner product and making use of the same arguments as in
the proof before (positivity of the β term, Corollary 2.2.2, Corollary 6.2.6, Sobolev
inequality), we obtain

d

dt
∥w(t)∥2L2(Qn) + ∥∆w(t)∥2L2(Qn) ≤ C∥w(t)∥2L2(Qn). (6.11)

Hence, applying Gronwall’s inequality yields

∥w(t)∥2L2(Qn) ≤ eCt∥w0∥2L2(Qn), ∥w(t)∥2L2(Qn) ≤ eCt∥w(t/2)∥2L2(Qn) (6.12)

for t > 0 with C > 0 independent of v0, w0. The first inequality then already yields
the L2 bound for Λ(t, v0) for t > 0 and v0 ∈ A0. In order to obtain the H1

π bound we
test (6.8) with −∆w and apply Corollary 2.2.2 and Sobolev embeddings to obtain
d

dt
∥∇w(t)∥2L2(Qn) + ∥∆∇w(t)∥2L2(Qn) ≤ C

(︁
∥∇w(t)∥L2(Qn) + ∥w(t)∥L2(Qn)

)︁
. (6.13)

We aim to derive a bound for ∇w. To this end, we integrate (6.11) from t/2 to t to
obtain ∫︂ t

t/2
∥w(s)∥2H2

π(Qn) ds ≤ C

Å∫︂ t

t/2
∥w(s)∥2L2(Qn) ds+ ∥w(t/2)∥2L2(Qn)

ã
,

which especially yields by applying (6.12):∫︂ t

t/2
∥∇w(s)∥2L2(Qn) ds ≤ C(t)∥w0∥2L2(Qn).

At last we integrate (6.13) first from s to t with s ∈ (t/2, t) and then from t/2 to t
to end up with

t

2∥∇w(t)∥L2(Qn)

≤ C

Å∫︂ t

t/2
∥∇w(s)∥2L2(Qn) ds+

t

2

∫︂ t

t/2
∥∇w(s)∥2L2(Qn) +

t

2

∫︂ t

t/2
∥w(s)∥2L2(Qn) ds

ã
,

which finally leads us to

∥∇w(t)∥2L2(Qn) ≤ C(t)∥w0∥2L2(Qn).

This proves that for any bounded set M ⊆ L2
σ(Qn) the range Λ(t, v0)M ⊆ H1

π(Qn)∩
L2
σ(Qn) is bounded, such that Λ(t, v0)M ⊆ L2

σ(Qn) is relatively compact. Thus,
Λ(t, v0) ∈ L (L2

σ(Qn)) is compact with bounds uniformly in v0 ∈ A0. The proof is
now completed.
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6.3.4 Theorem. Let (S(t))t≥0 be the semigroup from Section 6.1. Then the fractal
and Hausdorff dimension of the global attractor A0 from Proposition 6.2.7 is finite,
i.e., there exists m ∈ N such that dH(A0) ≤ df(A0) ≤ m, where dH and df denote
the Hausdorff and fractal dimension, respectively.

Proof. We want to apply Theorem 2.3.7 to obtain the result. By Lemma 6.3.3 we
only need to prove the trace condition, i.e.,

T Rm(A0) = sup
v0∈A0

sup
ξ0
j
∈L2

σ(Qn),
∥ξ0

j
∥L2(Qn)=1,
j=1,...,m

⟨TrL(t, v0)P (m)
ξ01 ,...,ξ

0
m
(t)⟩ < 0

(see Theorem 2.3.7 regarding the notation).
To this end, we fix m ∈ N and consider {ξ0j : j = 1, ...,m} ⊆ L2

σ(Qn) where ξ0j are
linearly independent. Let v0 ∈ A0 and v be the corresponding solution of (6.2). Then
by L(t, v0) we denote the linearized operator in (6.8) and by Λ(t, v0) its corresponding
solution operator (as defined in Lemma 6.3.3). We consider the linear span

M(t) :=
{︁
ξj(t) := Λ(t, v0)ξ0j : j = 1, ...,m

}︁
⊆ L2

σ(Qn),

which is a finite dimensional subspace of L2
σ(Qn), hence we can find a projection

P
(m)
ξ01 ,...,ξ

0
m
(t) onto M(t) for every t ≥ 0 such that P (m)

ξ01 ,...,ξ
0
m
(t)L2

σ(Qn) = M(t). However,
w.l.o.g. we can choose an orthonormal span {ϕj(t) : j = 1, ...,m} ⊆ Hm

π (Qn)∩L2
σ(Qn)

of P (m)
ξ01 ,...,ξ

0
m
(t)L2

σ(Qn) w.r.t. the L2 norm. Then testing L(t, v0)ϕj(t) with ϕj(t) w.r.t.
the L2 inner product yields

(L(t, v0)ϕj(t), ϕj(t))2,π
= −Γ2∥∆ϕj(t)∥2L2(Qn) − Γ0∥∇ϕj(t)∥2L2(Qn) − α∥ϕj(t)∥2L2(Qn)

− λ0((ϕj(t) · ∇)v(t), ϕj(t))2,π − λ0((v(t) · ∇)ϕj(t), ϕj(t))2,π
− 2β((v(t) · ϕj(t))v(t), ϕj(t))2,π − β(|v|2(t)ϕj(t), ϕj(t))2,π

≤ −Γ2∥∆ϕj(t)∥2L2(Qn) − Γ0∥∇ϕj(t)∥2L2(Qn) − α∥ϕj(t)∥2L2(Qn)

+ C∥ϕj(t)∥H2
π(Qn)∥ϕj(t)∥L2(Qn)∥v(t)∥H2

π(Qn)

≤ −Γ2

4 ∥∆ϕj(t)∥2L2(Qn) + C,

taking into account Corollary 2.2.2, ∥ϕj(t)∥L2(Qn) = 1, v(t) ∈ B2 by Corollary 6.2.9
and Sobolev embeddings with some constant C > 0 independent of ϕj , t and v0. Also
note that the β terms are positive. Now, summing up all j = 1, ...,m and making
use of the definition of ⟨·⟩ from Theorem 2.3.7 yields

⟨TrL(t, v0)P (m)(t)⟩ ≤ −
m∑︂
j=1

Γ2

4
¨
∥∆ϕj(t)∥2L2(Qn)

∂
+mC.
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Next, we want to apply the Sobolev-Lieb-Thierring inequality as seen in [18, Propo-
sition 3.1, Remark 3.2] to estimate the ∥∆ϕj(t)∥2L2(Qn) term. In order to apply [18,
Proposition 3.1] we write all appearing terms in the setting of [18, Proposition 3.1]:

ρ(x) :=
m∑︂
j=1

|ϕj(t, x)|2 (x ∈ Qn)

which yields for p = 3/2 and n,m = 2:Å∫︂
Qn

ρ(x)p/(p−1) dx

ã2m(p−1)/n
=

∫︂
Qn

ρ(x)3 dx

≤ C

(︄
m∑︂
j=1

∫︂
Qn

∑︂
|α|=2

|∂αϕj(t, x)|2 dx+
∫︂
Qn

ρ(x) dx
)︄

≤ C
m∑︂
j=1

∥ϕj(t)∥2H2
π(Qn)

≤ C
m∑︂
j=1

Ä
∥ϕj(t)∥2L2(Qn) + ∥∆ϕj(t)∥2L2(Qn)

ä
≤ C

Ç
m+

m∑︂
j=1

∥∆ϕj(t)∥2L2(Qn)

å
,

where we again made use of the fact that {ϕj(t)}j=1,...,m is an orthonormal system.
Hence, by observing

m3 =
Ç

m∑︂
j=1

∥ϕj(t)∥2L2(Qn)

å3

=
Å 1
Ln

∫︂
Qn

ρ(x) dx
ã3

≤ C
∫︂
Qn

ρ(x)3 dx

≤ C

Ç
m+

m∑︂
j=1

∥∆ϕj(t)∥2L2(Qn)

å
for all t > 0, we finally obtain

⟨TrL(t, v0)P (m)
ξ01 ,...,ξ

0
m
(t)⟩ ≤ C(m−m3) < 0,

which holds for a chosen m ∈ N large enough. For n = 3 we can obtain the same
results by applying [18, Proposition 3.1] with p = 7/4 such that we get the same
estimate with the leading term m7/3. Thus, we infer

T Rm(A0) = sup
v0∈A0

sup
ξ0
j
∈L2

σ(Qn),
∥ξ0

j
∥L2(Qn)=1,
j=1,...,m

⟨TrL(t, v0)P (m)
ξ01 ,...,ξ

0
m
(t)⟩ < 0,

and Theorem 2.3.7 yields the assertion.
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6.4 Existence of a 2D Inertial Manifold
Another approach to analyze long-term behavior is the examination of the existence
of an inertial manifold such that the underlying system (6.2) reduces to an ordinary
differential equation on the inertial manifold - hence stability analysis of (6.2) can
be simplified. In the following we will prove the existence of an inertial manifold for
(6.2) in n = 2 by following the approach in [15] and [41, Chapter 8].

6.4.1 Theorem. Let (S(t))t≥0 be the semigroup from Section 6.1. Then there exists
an inertial manifold M for (6.2) having the following properties:

(i) M is a finite dimensional, Lipschitz continuous manifold in H3/2
π (Q2)∩L2

σ(Q2);

(ii) M is positively invariant;

(iii) M is exponentially attracting, i.e., there exists η > 0 such that for every
v0 ∈ L2

σ(Q2) there is some K = K(v0) > 0 such that

distL2(S(t)v0,M) ≤ Ke−ηt (t ≥ 0).

Proof. We aim to apply [41, Theorem 81.2] to prove the result. To this end, in the
setting of [41] we set H = L2

σ(Q2) and Aω : D(Aω) ⊆ L2
σ(Q2) → L2

σ(Qn) with

Aωv = Γ2∆2v − Γ0∆v + αv + ωv,

D(Aω) = H4
π(Q2) ∩ L2

σ(Q2),

where ω > 0 is chosen arbitrary large such that Aω is a linear, positive operator. By
Section 5.1 it is known that Aω has compact resolvent and admits a bounded H∞-
calculus such that by [22, Theorem 6.6.9, Theorem 7.3.1] the family of interpolation
spaces V 2α = D(Aαω) = [D(Aβω), D(Aγω)]θ for (1 − θ)β + θγ = α, θ ∈ [0, 1] and
0 ≤ β < γ generated by fractional powers of Aω are defined for α ≥ 0. Furthermore,
we set

Fω(v) := −Pβ|v|2v − Pλ0(v · ∇)v + ωv

such that (6.2) can be rewritten as vt + Aωv = Fω(v). For β = 3/8 and V 2β =
D(Aβω) = [L2

σ(Q2), H4
π(Q2) ∩ L2

σ(Q2)]3/8 we then infer for the nonlinearity that
Fω ∈ CLip,loc(H3/2

π (Q2)∩L2
σ(Q2), L2

σ(Q2)) since the derivative is given as DFω(v)u =
−2Pβ(u·v)v−Pβ|v|2u−Pλ0(u·∇)v−Pλ0(v ·∇)u+ωu for u, v ∈ H

3/2
π (Q2)∩L2

σ(Q2).
Here, CLip,loc denotes the space of all locally Lipschitz continuous functions. Then
we can estimate the occurring terms locally

∥|v|2u∥L2(Q2) ≤ ∥v∥2L6(Q2)∥u∥L6(Q2) ≤ C∥v∥2
H

3/2
π (Q2)

∥u∥
H

3/2
π (Q2)

,
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∥(u · ∇)v∥L2(Q2) ≤ ∥∇v∥L3(Q2)∥u∥L6(Q2) ≤ C∥v∥
H

3/2
π (Q2)

∥u∥
H

3/2
π (Q2)

,

by making use of the embedding H3/2
π (Q2) ↪→ W 1,3(Q2). Furthermore, the so-called

spectral gap condition

λk+1 − λk ≥ K(λβk+1 + λβk) (k ∈ N)

(see [41, Formula 81.16]) has to hold for K ≥ 0 and ordered eigenvalues 0 < λ1 ≤
λ2 ≤ ... ≤ λk−1 ≤ λk ≤ ... of the bi-Laplacian ∆2. It is known that the corresponding
eigenvalues behave as λk ∼ k2 = k4/n and [41, Table 8.1] states that the spectral gap
condition is fulfilled in two dimensions whenever 0 ≤ β < 1/2 which is given in our
case. Hence [41, Theorem 81.2] yields the assertion.

6.4.2 Remark. (i) Note that by the third property of the inertial manifold M in
Theorem 6.4.1, we observe that the global attractor A0 from Proposition 6.2.7 is
contained in M. Furthermore, in contrast to the result from Proposition 6.2.7
we obtain exponential attraction of the inertial manifold M which means
that after a rather short time every solution of (6.2) can be approximated by
solutions on the inertial manifold M.

(ii) We cannot satisfy the spectral gap condition for n = 3 due to the fact that we
need β ≥ 1/4 in order to estimate the nonlinearity but we need β < 1/4 in
order to fulfill the spectral gap condition (see [41, Table 8.1]).
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Chapter 7

Conclusion

In this thesis we considered two systems of partial differential equations: A 2D
contact line model and an active fluid continuum model. Both are based on the
Navier-Stokes equations which describe the motion of viscous fluids. As the dynamic
2D contact line model can be transformed to a Stokes system on a fixed sector, we first
performed analysis on a sector in Chapter 3. There we introduced (in)homogeneous
Sobolev spaces in sectors and we gave results on e.g. trace theorems, Korn’s inequality
and solvability of elliptic problems. We also introduced reflection invariant subspaces
since there multiplication with the sign function sgn is bounded for s = 1/2 which is
not the case in the setting of (in)homogeneous spaces Ĥs for s > 1/2.

For the linearized 2D contact line model, existence of weak solutions for the
stationary system was proved resulting in resolvent estimates for the corresponding
solution triple. The active fluid continuum model was considered in the periodic
setting. At first (in)stability depending on the involved parameters was proved,
hence in order to obtain results matching the observations in [54], the existence of a
global attractor and characterizations were considered in the second part.

2D Contact Line Dynamics

Chapter 4 is devoted to the analysis of a contact line model in two dimensions which
corresponds to the Navier-Stokes equations subject to partial slip conditions at the
solid boundary and free slip conditions at the free boundary in a time-dependent
domain. At first a suitable transformation was applied in order to obtain a system
on a fixed domain (0, T )× Σθ where θ ∈ (0, π/2) is the initial contact angle at time
t = 0 and Σθ denotes the sector with opening angle θ and Γ its boundary. This leads
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to the resolvent Stokes system:

λu− div T (u, p) = f1 in Σθ,

div u = 0 in Σθ,

T (u, p)n+ σc(θ)∂2τρn = f4 on Γ,
λρ+ 1

sin(θ)(n · u) = 0 on Γ,

(7.1)

which is solved in the setting of homogeneous Sobolev spaces with p = 2. At first the
resolvent Stokes system was analyzed by making use of the fact that we are working
in the Hilbert space setting. Here, it was crucial to have a proper introduction to the
homogeneous Sobolev spaces Ĥs for s ∈ [−1, 1] on the sector Σθ and its boundary
Γ which was addressed in Chapter 3. We again put emphasize on the fact that
the boundedness of the multiplication with sgn was crucial throughout Chapter 4
which we only obtained in the setting of reflection invariant (in)homogeneous spaces
with the correct symmetry. Since literature dealing with homogeneous spaces in
sectors Σθ is limited, we applied a bi-Lipschitz transformation to transfer as much
results as possible from the whole space Rn and the half-space R2

+ to the sector Σθ.
Furthermore, elliptic problems and additional trace results, and Korn’s inequality
on convex and non-convex wedges were proved. Then solving the resolvent problem
(7.1) in the weak setting can be achieved by using Hilbert space theory, leading to
resolvent estimates for |λ| = 1. By making use of the scaling invariance of (7.1) and
the scaling of the norm in homogeneous spaces, it was possible to obtain resolvent
estimates for λ with large absolute value, leading to the important resolvent estimates

∥u∥λ,H−1
0 (Σθ)R + |λ|1/2∥u∥L2(Σθ)R + ∥∇u∥L2(Σθ)R +

√
σ|λ|1/2∥ρ∥Ĥ1(Γ)r

+ σ∥∂2τρ∥λ, Ĥ−1/2(Γ)r+Ĥ1/2(Γ)r + ∥p∥λ,L2(Σθ)r+Ĥ1(Σθ)r

≤ C
(︂
∥f1∥Ĥ−1

0,div(Σθ)R + ∥f4∥Ĥ−1/2(Γ)R

)︂
.

Several observations within the development of the results were made: In the
context of homogeneous spaces we can expect at most the regularity stated above
for the triple (u, p, ρ) since Ĥ1/2(Γ) (the space for the data on the boundary) is the
borderline for the non existence of the trace at the singular point (0, 0) and for the
boundedness of the multiplication with normal and tangential vector fields in spaces
with the correct symmetry.

Further challenges are to develop methods to reduce the divergence of the velocity
field and f5 (second and fourth equation of (7.1)). E.g. it is possible to reduce f5
by solving a corresponding weak and strong inhomogeneous Neumann problem. As
soon as (7.1) can be solved with arbitrary data f5 it is possible to apply the Laplace
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transform to the time-dependent system in order to obtain maximal regularity type
estimates as seen e.g. in [42]. Solving the linear 2D contact line model automatically
leads to the question whether the nonlinear problem can also be solved in this setting.
This is left as a future challenge.

Active Fluids
In Chapter 5 we presented a full stability analysis of an active fluid continuum model
with results depending on the occurring parameters in two and three dimensions.
Here, the model is given as generalized Navier-Stokes equations with a leading fourth
order term ∆2 subject to periodic boundary conditions:

vt + λ0v · ∇v = f −∇p+ λ1∇|v|2 − (α + β|v|2)v + Γ0∆v − Γ2∆2v,

div v = 0,
v|t=0 = v0.

(7.2)

The model was investigated in the periodic L2-setting in a box Qn of length L > 0
such that it was possible to take advantage of the fact that in bounded domains
results like the compactness theorem by Rellich-Kondrachov could be applied. At first
we ensured global wellposedness of (7.2) for initial values in H2

π(Qn) ∩ L2
σ(Qn) using

the theory of maximal Lp-regularity. Global wellposedness can then be obtained by
using energy estimates.
Two physical relevant stationary states occur: the disordered polar state (0, p0) with
p0 ∈ R and the manifold of ordered polar states consisting of (V, p0) with p0 ∈ R
and constant vectors V of length

√︁
−α/β. Here, we focus on the analysis of the

manifold of ordered polar states. Every function in L2(Qn) can be represented by a
Fourier series, hence by making use of this Fourier series expansion it was possible to
prove that V is normally stable if Γ0 ≥ 0, hence applying the generalized principle
of linearized stability from [35, 36] yields stability. Depending on the occurring
parameters Γ2,Γ0, α, β it was possible to show that V is normally hyperbolic, by
again making use of the Fourier series expansion. Then again [35, 36] yields the
existence of a stable and an unstable foliation, stating especially that the case of
instability occurs which matches the observation of turbulence in [54].
However, in [54] it is also observed that the simulation of bacterial suspensions
reaches some stable final state after a finite time. This was mathematically justified
in Chapter 6 where we proved the existence of a global attractor independent of the
relation of the occurring parameters. At first we again ensured global wellposedness
for initial values in L2(Qn) in contrast to the setting in Chapter 5. Following the
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approach from [39, 47] it was possible to show the existence of compact absorbing
sets of arbitrary high regularity such that we could deduce the existence of a global
attractor, which is a maximal set which attracts all solutions of (7.2). Here, we
again made use of the Fourier series expansion, and used a bootstrapping argument
to obtain estimates in spaces of higher regularity. At least we tried to characterize
the global attractor by showing properties like injectivity and finite fractal and
Hausdorff dimension, which leads to the observation that the dynamics of (7.2)
can be determined by finite degrees of freedom. At last we proved the existence of
an inertial manifold in two dimensions which was possible due to the fourth order
term and the nonlinearity of second and third order. Then a so-called spectral gap
condition could be fulfilled. The advantage of having an inertial manifold lies in the
fact that an inertial manifold has more structure (and is indeed a manifold) which
attracts exponentially and where the global attractor is contained.
Hence, the inertial manifold might also contain stationary states that we haven’t

considered before. Also it is not clear whether we also obtain an inertial manifold in
three dimensions. In this case the spectral gap condition is not fulfilled, however,
it is still open if the spectral gap condition is mandatory to obtain the existence
of an inertial manifold. Furthermore, in [54] it was observed that the stable final
state forms a hexagonal grid. Up to today, it is still open if there are any stationary
solutions corresponding to this hexagonal grid. Also it could be helpful to have a
more precise characterization of the global attractor which could be achieved with
numerical simulations.
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Contributions

The content of this thesis is based on joint work with other contributors.

Chapter 3, which introduce the mathematical framework used in Chapter 4, and
Chapter 4, are based on a joint work of Jürgen Saal, Matthias Köhne and the author
of this thesis. The results in Chapter 3 are the result of several working sessions of
Jürgen Saal, Matthias Köhne and the author of this thesis. In Chapter 4 the results
concerning weak solvability and corresponding resolvent estimates were established
by Matthias Köhne, Jürgen Saal and the author of this thesis.

Chapter 5 and Chapter 6 resulted from a joint work with Jürgen Saal, Christian
Gesse and the author of this thesis. The results of Chapter 5 were published in [8].
Here, global wellposedness with initial values in H2

π(Qn) ∩ L2
σ(Qn) was established

by Jürgen Saal and the author of this thesis. The full nonlinear stability analysis of
the ordered polar state, to be precise results regarding normal stability and normal
hyperbolicity, were developed by Christian Gesse, Jürgen Saal and the author of this
thesis.
In Chapter 6 results regarding global wellposedness with initial values in L2

σ(Qn),
existence and corresponding properties of the attractor were established by Christian
Gesse and the author of this thesis in equal parts complemented by many discussions
with Jürgen Saal. The existence of an inertial manifold in two dimensions is due to
Christian Gesse, Jürgen Saal and the author of this thesis, inspired by a discussion
regarding this topic with Edriss Titi.
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