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Summary

In the following thesis we consider two different models known from fluid dynamics
which are based on Navier-Stokes equations.

The first model is devoted to the so-called 2D contact line dynamics investigating
the contact point between fluid and solid phases. Since the fluid and solid phases
are moving within time, it is necessary to transform this model to a fixed domain
in order to apply known strategies. This leads to a system of Stokes equations
subject to transformed free and partial slip boundary conditions which are considered
on the sector. Then linear analysis is performed for the resolvent Stokes system
leading to the existence of weak solutions. The main result states that the solution
triple fulfills corresponding resolvent estimates. Here, we work in the framework of
homogeneous Sobolev spaces with p = 2. We make use of the fact that in the Hilbert
space setting elements from functional analysis, e.g. Lax Milgram’s theorem, are
available. (In)homogeneous Sobolev spaces in sectors are introduced at the beginning
of this thesis complemented by various results which are transferred to the setting
of (in)homogeneous spaces in sectors, as e.g. trace theorems, elliptic problems and
Korn’s inequality.

The second model, that is considered in this thesis, is an active fluid continuum
model which describes the motion of self-propelled organisms of high concentration
in fluids. This model is based on generalized Navier-Stokes equations having a
leading fourth order term which is responsible for global wellposedness. Here, we
consider the active fluid continuum model on a bounded domain subject to periodic
boundary conditions in Lebesgue spaces with p = 2 in n = 2,3. Two stationary
states are considered: the disordered isotropic state and the ordered polar state.
In this thesis, we focus on the stability analysis of the ordered polar state which
indeed forms a manifold. This allows us to apply the generalized principle for
normal stability and normal hyperbolicity, respectively. Here, it is essential that
we are working on periodic spaces on a bounded domain. Then we can use the
Fourier series representation and properties for the spectrum which are necessary
to apply the theory. At last the existence of a global attractor for the active fluid

continuum model is established. Here, we essentially make use of energy estimates

iii



and perform bootstrapping arguments to obtain a compact absorbing set of arbitrary
high regularity. The theory about infinite-dimensional dynamical system yields the
existence of such an attractor. Then, several properties of the global attractor are
proved, to be precise we show injectivity and finite dimension of the global attractor.
At last we even prove the existence of an inertial manifold for n = 2 which has even

the stronger property of attracting solutions exponentially.
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Zusammenfassung

In dieser Arbeit betrachten wir zwei verschiedene Modelle aus dem Bereich der
Fluiddynamik. Beide Modelle basieren auf den Navier-Stokes Gleichungen.

Das erste Modell beschreibt die Dynamik von Kontaktlinien in zwei Dimensionen,
welche beispielsweise bei der Interaktion von Fliissigkeiten mit Feststoffen und Gas
entstehen. Da wir dynamische Modelle betrachten, ist es notwendig, diese in Mo-
delle auf zeitunabhéngigen Gebieten zu transformieren um bekannte Methoden zur
Losung von partiellen Differentialgleichungen anzuwenden. Nach der Transformation
erhélt man ein System von Stokes Gleichungen, welches linear auf einem Sektor
gelost wird. In dieser Arbeit wird das Resolventenproblem untersucht, fiir welches
die Existenz von schwachen Losungen gezeigt werden kann. Fiir die Losung werden
Resolventenabschétzungen gezeigt, die das Hauptresultat des Kapitels darstellen. Wir
arbeiten in (in)homogenen Sobolevraumen mit p = 2, sodass wir Resultate aus der
Hilbertraumtheorie verwenden koénnen, wie beispielsweise den Satz von Lax-Milgram.
Die (in)homogenen Sobolevraume werden am Anfang dieser Arbeit eingefithrt und
grundlegende Resultate wie Spursétze, die Losbarkeit von elliptischen Problemen
und die Korn’sche Ungleichung werden gezeigt.

Im zweiten Teil der Arbeit beschéftigen wir uns mit einem Active Fluid Modell,
welches die Bewegung von Organismen mit Eigenantrieb in hoher Konzentration
in Fliissigkeiten beschreibt. Dieses Modell, welches einen zusétzlichen Term vierter
Ordnung besitzt, basiert auf den generalisierten Navier-Stokes Gleichungen. Der Term
vierter Ordnung sorgt dafiir, dass wir globale Wohlgestelltheit fiir das System zeigen
konnen. Wir betrachten das Active Fluid Modell auf einem beschriankten Gebiet
mit periodischen Randbedingungen in Lebesguerdaumen mit p = 2 und n = 2, 3.
Untersucht werden zwei stationdre Zustédnde, die vorliegen kénnen: Der ungeordnete
und der geordnete Zustand. Wir beschrénken uns auf die Analyse des geordneten
Zustands, der eine Mannigfaltigkeit bildet, sodass wir das generalisierte Prinzip zur
normalen Stabilitdt und normalen Hyperbolizitdt anwenden kénnen. Die Anwendung
von Fourierreihen und Ausnutzung von Eigenschaften des Spektrums aufgrund des
beschriankten Gebiets sind hier essentiell. Als letztes zeigen wir die Existenz eines
globalen Attraktors fiir das Active Fluid Modell. Mithilfe von Energieabschéitzungen



konnen wir zeigen, dass kompakte, absorbierende Mengen von beliebig hoher Regula-
ritdt existieren, welche die Existenz eines globalen Attraktors implizieren. Zusétzlich
zeigen wir Injektivitdt und endliche Dimension des Attraktors. In n = 2 kénnen wir
auflerdem die Existenz einer inertialen Mannigfaltigkeit zeigen, welche Losungen

sogar in exponentieller Geschwindigkeit anzieht.
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Chapter 1

Introduction

Our life is surrounded by mathematics. It is present not only in our daily life when
we go grocery shopping and calculate the savings for discounted products or the
total amount of our purchases. Especially phenomena in nature can be described by
mathematics. How does heat distribute in a room? When water is dropping down to
a water surface in a uniform time interval, how do the arising waves on the water
surface behave? What will the weather be like in two days? An answer to all these
questions can be given when one performs a rigorous analysis of the corresponding
mathematical model. This leads to the introduction of so-called partial differential
equations. There are many types of PDEs. However, in the following we will consider

equations of parabolic type
uw=F(u) (t>0), U|g=0 = uo,

which describe the dependence of the development of the unknown quantity u on time
and space. Of special interest are Navier-Stokes equations, named after Claude-Louis
Navier and George Gabriel Stokes. The Navier-Stokes equations are widely used to
model the physics of many phenomena of scientific and engineering interests, as e.g.
weather forecast, the study of ocean currents and modeling of flows of different kinds
of fluids in containers. The Navier-Stokes equations for incompressible fluids then
read as
pOiu — pAu+ Vp+ p(u- V)u = pf in (0,T) x Q,
divu=0 1in (0,7T) x ©,

Ulg=0 = up in Q.

The equations describe the motion of an incompressible Newtonian fluid with velocity
u and pressure p inside some arbitrary domain {2 C R"™. The consideration in two
and three dimensions is of preferable interest from the physical point of view. The
behavior of the fluid is determined by the external body force f given inside the

domain €2 and the known initial velocity ug, which is given at the beginning ¢ = 0.
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Depending on the viscosity . and the density p we obtain systems that model different
phenomena.

Because of the wide application, it is of great interest to study the Navier-Stokes
equations and related parabolic systems of partial differential equations in order
to have a better understanding of the physics behind natural phenomena. There
are different aspects which can be considered when analyzing a system of partial
differential equations. In this thesis we focus on two questions:

The first problem is the solvability of the underlying system. Hence, in order to
prove so-called wellposedness, it is crucial to choose an appropriate setting (function
spaces, domains, regularity of the solution,...). There are different approaches to
prove wellposedness. One approach in order to solve parabolic equations is to use the
theory of semigroups and maximal regularity which is introduced in |2} 11, 14} 27, [35].
The theory of maximal regularity leads to existence of solutions and corresponding
estimates.

The second problem is the long-term behavior of solutions, i.e., how do they
behave when time is approaching infinity? Since solutions are normally not explicitly
computable, any information about the solution is helpful. Again there are many
approaches to study the stability of the system. In this thesis we concentrate on the
principle of linearized stability as introduced in [35, [36] and the approach for global
attractors from [39, [47].

1.1 2D Contact Line Dynamics

Fluid dynamics appears in many situations in our everyday life without us explicitly
noticing the fluid flow. A water drop running down a glass or an ice cube melting in a
glass of water are examples for motivating the mathematical analysis of the dynamics
of fluids. Inn this thesis we consider the so-called multi-phase model: the interaction
of fluid phases with solid phases. Of special interest is the contact line, formed by
points where the fluid-fluid interface touches the solid phase. If we consider fluid and
solid phases, which are both moving, then the contact line becomes dynamic. The
angle between the fluid and the solid phase at the contact line is called the contact
angle. There are different points of view how to model such a contact angle problem.
The first ansatz follows the idea that the dynamic contact angle is determined by an
additional equation, while for the second ansatz one assumes that the contact angle
is already fully determined by the appearing dynamic equations for the interface and
the fluid. We will mainly focus on the latter ansatz.

In this thesis we consider the contact line dynamics in two dimensions. In the
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half-space R2 we consider a two-phase model in phases Q(t) and R2 \Q(t) where
we decide to neglect the continuous phase R? \W for simplicity. In this case the
interface is given as I'(¢) := ['f(t) UT,(¢t) C R% UC(t), where 'y denotes the free
boundary, I'; the solid boundary and C the contact point (in two dimensions; in

three dimensions one would obtain a contact line).

Figure 1: Two-phase model in two dimensions.

The isothermal flow of incompressible fluids is denoted by (u(t, ), p(t,)) : Q(t) =
R3 for ¢ > 0. Here, u denotes the velocity field and p the pressure. We assume the
fluid to be Newtonian with viscous stress T'(u,p) = 2uD(u) — p correlating to the
rate of deformation D(u) = (Vu + VuT). At the solid boundary I'; we assume
impermeability, i.e., u - n; = 0 and a partial slip condition given as:

APr,u+ Pr,T(u,p)ns = 0.

Here, n, denotes the outer normal vector field at I';, A > 0 is the constant friction
coefficient and Pr, = 1 — ns ® n, is the tangential projection. The free boundary
I'; has constant surface tension ¢ > 0 and mean curvature k = — divny, where ny

denotes the outer normal vector at I's. The normal interface velocity is given as
Vi

ny
where n¢ denotes the corresponding outer normal vector at the contact point C.

= u - ny. At the contact point we assume contact point velocity Ve = u - nc,

Furthermore, the contact angle 6 is given through the constitutive equation 6 = 1(V¢).
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Then our full two-phase system reads as

Ou+ (u-V)u—divT(u,p) =0

divu =0
Aul + (D(u)ng)' =0
u? =0
T(u,p)ny = okny
Vo, = u-ny
Ve=u-nc
0 =p(Ve)
U|t=0 = Uo
Iy(0) =T7¢
I's(0) =T
C(0) = Co

in Useo.r){t} x (1),
in Use,m{t} x Q)
on Useo.r{t} x T's(?)
on Useo.r{t} x T's(?)
on Useo.r{t} x T'(?)
on Useo.r{t} x T'(?)
on Useo.m{t} x C(2),
on Useo.m{t} x C(2),
in ©(0),

in Q(0),
in ©Q(0),
in Q(0).

)

)

)

)

)

(1.1)

It turns out that the conditions at the contact point can be neglected in our setting

since the contact point velocity V¢ is not defined in this case (this can be observed after

transforming (1.1)) to a fixed domain). Furthermore, from now on we assume that

the contact angle 6 is either a given function § = 6(t) or modeled by a constitutive
equation 6 = (V) (if the contact point velocity Ve exists). Transforming (1.1)) to a
fixed domain (0,7") X g, via a suitable diffeomorphism we end up with the following

system of partial differential equations:

O —divT(v,q) = Fi(v,q,p)
dive = Fy(v, p)
ATs - v+ 12 D(v)ng = F3(v, p)
ny-v=>0
T(v,q)ns + 0¢(80)0,,pns = Fu(v, p)
sin(6p)0:p + ng - v = F5(v, p)

Ve =v-ny

Oz, p = cot(6(t)) — cot(fy) on

0 = (Ve)
U|t:0 = Vo
,0|t:0 = Po

in (O,T) X 290,
in (O,T) X 290,

on (0,7) x Iy,
on (0,7) x Iy,
on (0,7) xI'y,
on (0,7) xI'y,
on (0,7T) x {0},
(0,T) x {0},
on (0,7) x {0}
in Xg,,
onl',,

(1.2)

with height function p(t,-) : 'y — R3 and for suitable right-hand sides. Here,
Yo, = {(z1,72) € R? : 71 € (0,00), 0 < x5 < tan(fp)z} is the wedge with opening
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Z2

Hp)

o(t)

p(t’m2)

T

0

Figure 2: Transformation to a fixed domain.
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angle 6y = 6(0) (the contact angle at t = 0) and I'y the lower boundary and I';. the
upper boundary of the wedge. By treating in the setting of reflection invariant
L?-spaces on the sector 3y, = {(x1, z2) € R?\{0} : |z2| < x1 tan(f)} we first observe
that V¢ and 0,,p|0,1)x{0} are not defined in the weak regularity class for 1 < p < 2,
hence we can neglect these equations. For p > 2 we need to reduce the inhomogeneity
which again leads to working in reflection invariant spaces. Furthermore, the partial
slip condition on I'y is automatically fulfilled when working in reflection invariant
spaces after applying a perturbation argument. Therefore, a full analysis of the
system

Owu —divT(u,p) = fr in (0,T) x X,
divu =0 in (0,T) x Xy,
T (u,p)n + oc(0)d?pn = f4 on (0,T) x T,
0ip + gy (n-u) = fs on (0,T) x T,
Ult=o = uo in Xy,
pli=o =po onT,
will greatly help our understanding in order to solve the full nonlinear system ({1.1))
with 8 = 0y and I := 0%y. A first crucial step is to consider the stationary system
A —divT(u,p) = fi in Xy,
divu =0 in X,
T(u,p)n + oc(0)d?pn = fy onT,
)\p-l—ﬁ(n-u) =0 onTl

(1.3)

for A € ¥;/2. However, it seems that solving the Stokes system subject to different
boundary conditions on wedge type domains is a natural first step in order to solve
the linear contact line problem for § € (0,7/2). The analysis was addressed by Maier,
Kohne, Saal and Westermann in [29] 30, 31, 33].

On the other hand, contact line dynamics have been studied for almost three decades.
First pioneering results were derived by Solonnikov in 1995. These results were
published in [44], where it was proved that singularities of solutions for the contact
line problem vanish and that corresponding solutions have finite Dirichlet integral
for fixed contact angle # € {0,7}. Almost two decades later in [55], Wilke proved
wellposedness in cylindrical domains for fixed contact angle § = /2. Both authors
observed that these contact angles remove singularities at the contact lines. From
the classical Young law it follows that the contact angle is dependent on time if
the initial contact angle is not equal to the contact angle at the equilibria. Hence,
by considering a fixed contact angle, just an idealized situation is represented. On
the other hand, Watanabe proved optimal regularity for § = 7/2 in a cylinder in
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[53]. Dynamic contact lines were considered by Zhang, Guo and Tice. They proved
wellposedness in a 2D vessel in [58] and considered stability analysis in the same
setting in [21]. In [16], Fricke, K6hne and Bothe observed that smooth solutions to
the dynamic contact line problem are non-physical and that the existence of smooth
solutions lead to unstable equilibria. Hence, weak regularity at the contact line needs
to be present. By using another approach, namely the interface formation model,
Kusaka proved the existence of an axially symmetric solution for the stationary
problem in weighted Holder spaces in [28]. This shows that the study of contact line
dynamics is still an interesting challenge in research up to today.

In we first perform analysis on two-dimensional sectors ¥y of opening
angle 6. There, we first introduce (in)homogeneous Sobolev spaces since they provide
the framework where we want to consider the linearized 2D contact line problem
in Making use of results on the half-space and whole space, we will
prove e.g. trace theorems, Korn’s inequality and solvability of elliptic problems on
sectors. The consideration of the normal Dirichlet trace and Neumann trace is of
special interest, which leads to the the multiplication with normal and tangential
vector fields at the boundary I'. Normal and tangential vector fields are given as
the sign function in one component. It turns out that multiplication with sgn is not
bounded on (in)homogeneous spaces of order s > 1/2. This leads to the introduction
of reflection invariant subspaces in where the multiplication with sgn is
bounded when the correct symmetry is given.

In we prove wellposedness of the linearized 2D contact line problem ({1.3))
and corresponding resolvent estimates. We first apply a suitable transformation to

(1.1) in order to obtain a system on a fixed domain (0,7’ x X4, in [Section 4.1l Then

in [Section 4.2| we consider the resolvent problem of (1.3) in the setting of reflection
invariant homogeneous Sobolev spaces in p = 2. The advantage of working in p = 2

lies in the fact that we can derive a corresponding weak formulation of to apply
the Lax-Milgram theorem to obtain a weak solution u. In this case the pressure p
and the height function p can be recovered. By making use of the scaling invariance
of the sector ¥y and the scaling of the norm in homogeneous spaces, it is possible to
obtain relevant resolvent estimates for A € ¥/, of large absolute value, i.e., |A| > 1.
Hence, this leads to resolvent estimates for the stationary system , to be precise
we prove the following estimate:

||U||,\,HO—1(29)R + AP Null 20 e + 1Vl 2. + \/E|/\|1/2||P||f11(r)r
+ 0”63/)”)\, H-1/2(T),+H/2(T), + ||p||,\,L2(29)T+ﬁ11(29)T

<C (il soyn + Ml oy ) -

,di
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In the context of homogeneous spaces, it turns out that we can expect (u,p, p) to
have at most the regularity given above since HY 2(T) is the borderline for the non
existence of a trace at the singular point (0,0) (the contact point), whereas for
s > 1/2 the trace does exist. Furthermore, we observe that A'/?(T") is the borderline
where multiplication with normal and tangential vector is still a continuous operator
if the right symmetry is given (for s > 1/2 the multiplication is not continuous
any more), hence it seems that in the weak setting with p = 2 we are working in a
borderline case.

1.2 Active Fluids

There is a need to study turbulence since it is ubiquitous in nature. Turbulence
occurs e.g. in ocean currents and small-scale biological and quantum systems. It is of
great interest to study the self-sustained turbulent motion in microbial suspensions.
In [54] different experiments and simulations were made in order to model the
bacterial dynamics and spontaneous formation of vortex structures of bacteria at
high concentration at low Reynolds number [37] adequately. In [54] it is shown that
a system of generalized Navier-Stokes equations models the motion and behavior
of self-propelled bacteria adequately and this system was then also considered in
[12 [13]. Since the bacteria has internal self-propulsion such a model is often referred

to as an active fluid continuum model, which is given as

v+ Av - Vo = f—Vp+ MV|v]2 — (a+ B|v]?)v + ToAv — ThA%,
dive = 0, (1.4)

’U|t:0 = 9.

The continuum model is based on two assumptions: At first, the vector field v models
the dynamic behavior of the bacterial suspension. Secondly, the bacterial suspension
becomes an incompressible active fluid at high concentration.

In elements from the Toner-Tu theory [49, [60] and Swift-Hohenberg theory
[45] were combined. Corresponding Toner-Tu terms (a- 3 terms) model flocking
which describes the motion of self-propelled organisms and which is responsible
for the emergence of turbulence and provide the isotropic equilibrium state. Swift-
Hohenberg terms (I's- Iy terms) were added in order to model the pattern formation
and describe the turbulence of the described particles.

Let n be the dimension of the space we are working in. Since we assume that the

bacterial suspension becomes incompressible at high concentration, we obtain the
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well-known divergence condition as known from the Navier-Stokes equations
divv=V.v=0

for the velocity field v. The dynamics of v is governed by generalized Navier-Stokes

equations for incompressible fluids
(O -V)v=-Vp— (a+ Blv[*)v+ V- E. (1.5)

Here p denotes the pressure and the rate-of-strain tensor E' depends on the velocity
field v. The a- B term is called Toner-Tu term and corresponds to a Landau-potential.

We demand 8 > 0 in order to obtain stability, whereas a: can be any real number.

Stability analysis in [Chapter 5| and [Chapter 6| show that the relation of o and S is

responsible for (in)stability of the system, hence the Toner-Tu term is responsible
whether stability or instability occurs.

The symmetric and trace-free rate-of-strain tensor E describes the rate of change of
the deformation of the bacterial suspensions. Hence, E' depends on v and has the
following form (cf. [43]):

E;; = To(0vj + 0jv;) — T2 A(Ov; + 0jv:) + Sqij,
i, 12
gij = viv; — ol
where §;; denotes the Kronecker-symbol denoting elements of the unit matrix and S
presents an active stress contribution, which depends on the choice of the fluid. For
S =Ty = 0 we obtain the usual rate-of-strain tensor F of a conventional fluid with
viscosity I'y as seen e.g. in the usual Navier-Stokes equations. Since we aim to model

self-propelled turbulence, negative values for I'y have to be allowed while demanding

I's > 0 to ensure wellposedness of the system. Defining

do=1-8 A\=-2,
n

and inserting everything in (|1.5)) we finally end up with (1.4). Hence, the Toner-Tu
term drives the fluid to a disordered isotropic equilibrium state if

v=0.
If @ < 0 then the Toner-Tu term leads to an ordered global state with characteristic

ol = +/lal/B.

For a further introduction and a more precise derivation of the continuum model we

speed

refer to [54], especially the Supporting Appendix.
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In order to mathematically justify the observations regarding active turbulence that
were made within simulations, the continuum model was already considered in
various settings. In [57] a full analysis regarding local and global wellposedness in
LP(R™) and stability in L?(R") for the full nonlinear model was proposed. However,
the more interesting ordered global state is not covered in this setting, since constants
|v| = \/]a|/B are not contained in L?(R™). In [9] an approach in spaces of Fourier
transformed Radon measures FM(R™) was performed with the intention to mathe-
matically justify the ansatz that "waves” of the form e* solve (1.4) which makes

sense from the physical point of view. However, in this setting the ordered global

state is still not covered. To this end, in [Chapter 5| and [Chapter 6| the continuum

model is considered on a bounded domain subject to periodic boundary conditions
which seems to fit into the physical setting.

In [Chapter 5 and [Chapter 6 we work in the periodic L?(Q,,) setting where @, is the
n-dimensional cube with side length L > 0. Indeed, in this setting the ordered global
polar state is contained in L?(Q,). Furthermore, in a proper nonlinear
stability analysis can be performed using the generalized principle of normal stability

and normal hyperbolicity as known from Priiss, Simonett and Zacher (cf. [35, 36]).
In contrast to the setting in L?(R™) and FM(R™), where the corresponding linear
operator A to has a continuous spectrum, in L?(Q,,) the operator A has compact
resolvent, hence the spectrum only consists of the point spectrum. This fact allows
0 to be an isolated eigenvalue of A such that it is possible to prove that 0 is a
semi-simple eigenvalue depending on the choice of the occurring parameters I's, I'g,
and (3. Note that the semi-simple eigenvalue assumption is crucial in order to apply
the generalized principle. Having proved normal hyperbolicity, we can conclude
that the manifold of globally ordered states can be split up in a stable and unstable
foliation. The existence of this unstable foliation coincides with the observation of
turbulence in [54].

In the existence of a global attractor can be ensured (in contrast to the
results from the existence is assured for every parameter set I'y, o, o, 3)
by using the approach as known from Robinson and Temam (cf. [39, [47]). This
result coincides with the observation from [54] that the simulation of the bacterial
suspension reaches some stable final state after a finite time.

is structured as follows: In local and global wellposedness
of (1.4) is proved for initial values in H2(Q,) N L%(Q,) by making use of the

H*-calculus and maximal LP-regularity. Applying the generalized principle of
linearized (in)stability in [Section 5.2 we are able to prove normal stability and
normal hyperbolicity for the ordered polar state, respectively. In we

10



Section 1.2. Active Fluids

again have to ensure local and global wellposedness of at first. In contrast to
we need wellposedness in spaces of lower regularity, i.e., initial values
in L2(Q,). Hence, in we introduce interpolation-extrapolation scales
to transfer the results from The existence of a global attractor A
is addressed in by making use of energy methods and in
important properties of this global attractor are proved. At last in we
observe that an inertial manifold M exists in two dimensions which even has stronger
properties: firstly, the global attractor A has to be contained in M and secondly,
every solution of can be approximated by solutions on M at an exponential
rate.

11






Chapter 2

Preliminaries

Let n € N be the dimension. For K € {R,C} we denote the j-th component of a
vector z € K" by z; for j = 1,...,n and the components of a vector field u in K" by
u=(u,...,u"). Byz-y= 21 %Yy = 2Ty we denote the scalar product of two
vectors z,y € K", where z7 is the transpose of z (AT also denotes the transpose of
a matrix A). By | - | we denote the norm in K™ and K"*", respectively.

Let X,Y be Banach spaces. The space -Z(X,Y) contains all linear and bounded
operators T': X — Y and is equipped with the usual operator norm || - || (x,y). The
space .Z;5(X,Y) is the subspace of .Z(X,Y’) containing all isomorphisms. If X =Y
we write £ (X) and Zs(X). Let T : D(T) C X — X be a closed operator. By
N(T) we denote the kernel and by R(T") the range of the operator T'. We call o(T)
the spectrum and p(T") the corresponding resolvent set.

The dual space of a Banach space X is denoted by X' := .Z (X, K) whereas the dual
operator to a linear and bounded operator T': X — Y is denoted by 7" : Y’ — X'.
For z € X and a functional 2’ € X’ we write (z', z)x/ x for the duality pairing. Then

the dual space is endowed with the standard norm

lz'llx = sup [{«",z)x x| (¢ €X).
Il

If X = H is a Hilbert space we denote by (-,-)y the corresponding inner product
which induces the norm.

Let 2 C R™ be a domain. By C(€2,X) we denote the space of all continuous
functions u : 2 — X. The subspace of bounded continuous functions is denoted
by BC(?, X) which is a Banach space endowed with the usual || - || norm. By
BUC(£2, X) we denote the space of uniformly bounded functions. For k£ € N the
space C*(€, X) contains all k-times continuously differentiable functions and we
set C°(,X) = MrenC*(, X). The space of test functions or infinitely often
differentiable functions with compact support is denoted by C°(€2, X). Furthermore,
the space C°(Q, X) contains all restrictions of functions u € C®(R”, X) to Q.

13



Chapter 2. Preliminaries

The space Cg% (€2, X) is a subspace of C°(€2, X) consisting of functions which are
divergence free additionally. The space C¢y, (Q, X) is defined accordingly.
The scale of spaces of continuous functions f : £ — X on a Banach space E are
defined accordingly.

The X-valued Bochner-Lebesgue spaces for 1 < p < oo are denoted by LP(Q2, X)
endowed with the standard integral norm

llra = ([ @l dr) " e 2@x)

for 1 < p < oo and ||ul| (o x) = €sssup,eq|lu(z)| x if p = 0o. The spaces W*P(1, X)
contain the LP-functions that are weakly differentiable in the distributional sense
equipped with the norm

1/p
lullwer@,x) = ( > |I3QUII’£p<9,X)> (p < 00)

|| <k

for k € N and multi indices oo € N} with the usual modification if p = co. Further-
more, we define Wi (Q, X) = m” Iwes 14 the Hilbert space setting p = 2
and X Hilbert space, we set H*(Q, X) :== W*2(Q, X) and H(Q, X) == W (Q, X)
for k € Ny. By (-, )2 we denote the standard inner product in L?(2, X) given as

(u,v)2 = (u,v)r2(0,x) = /Qu(x)'v(x) dr  (u,v € L*(Q, X)).

The Bessel potential spaces of fractional powers with s € N are defined via interpola-
tion: H%(Q, X) == [L*(Q, X), H*(Q, X)]p and HE*(Q, X) == [L*(Q, X), H3(Q, X)]o,
where 0 < 6 < 1 and [+, -]y denotes the interpolation functor (cf. [51, Section 1.9]).
Bessel potential spaces of negative power —s < 0 are defined as H *(Q2, X) =
(H§(Q, X)) and H,°(Q,X) = (H*(Q, X)), respectively.

The corresponding Bessel potential spaces for p # 2 are defined accordingly as
complex interpolation spaces WP (Q, X) := [LP(Q, X), W*P(Q, X)]s for 0 < 0 < 1
and s € N. Sobolev-Slobodeckij spaces are denoted by W; (2, X) and are defined via
real interpolation Wf*(Q, X) := (LP(Q, X)), W*(Q, X))o, (see [51, Sections 1.3, 1.4,
1.6] for an introduction to real interpolation).

The space L}, (2, X) consists of all functions which are locally integrable. In all
cases we drop the space X if X = K™ where K € {R,C} or if X is clear by the
context.

2.1 Elements from Functional Analysis

Here, we will list most of the results from functional analysis we will use of in the

following chapters of this thesis. However, we will omit the proofs and just give a

14



Section 2.1. Elements from Functional Analysis

corresponding reference for the reader’s convenience. The first two statements are
well-known (see [66, Sections II1.6, II1.7]). In the context of wellposedness of PDEs
those statements are frequently used to ensure the existence of weak solutions in the
Hilbert space setting:

2.1.1 Theorem (Riesz’ representation theorem). Let H be a Hilbert space and £ a

bounded linear functional on H. Then there exists a unique y € H such that
(x) = (z,y)g forallx € H,

and ||| z@c) = ||ylla. Conversely, any vector y € H defines a bounded linear
functional £, on H by

ly(x) = (z,y)g forallze H

and |[&y|| 2,0y = llylla-

2.1.2 Theorem (Lax and Milgram). Let H be a separable Hilbert space and the
map a: H x H— C a sesquilinear form. We assume that

(i) there ezists a C > 0 such that |a(u,v)| < Cllu|lg|lv|lz (u,v € H);

(ii) there exists a § > 0 such that |a(u,u)| > d||ull} (u € H).

Then for every linear functional £ € H' = £ (H,C) there exists a unique up € H
such that
a(ug,v) = £(v) (veH).

Next, we add some theorems stating (in)stability of equilibria for nonlinear quasi-
linear parabolic problems. To be precise, we are quoting the generalized principle of
linearized (in)stability for manifolds from [35] [36]. Hence, for the proofs we also refer
to [35), B6]. We start with the principle for normal stability as seen in [35, Theorem
5.3.1] and [36, Theorem 2.1]:

2.1.3 Theorem. Let 1 < p < o0 and Xy, X1 be two Banach spaces where X; is
densely embedded in Xo. Let U C X, := (Xo, X1)1-1/pp be open and assume that
(A, F) € Cl(U,g(Xl,Xo) X Xo) with

o(t) + Aw®)() = Fu@t)), t>0,  v(0) = vp. (2.1)

Suppose V € UN X is an equilibrium state of and A(V') possesses the property
of mazimal LP-reqularity. Let

A = A(V)u+ (DA(V)u)V — DF(V)u

for u € X7 denote the linearization of at V. Suppose that V is normally stable,

i.e., assume that

15
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(i) near V the set of equilibria £ is a C*-manifold in X, of dimension m € N,
(ii) the tangent space for £ at V is given by N(A,),
(iii) 0 is a semi-simple eigenvalue of A,, i.e., N(A,) ® R(A,) = X,
(iv) 0(A,)\{0} C {z € C:Re z > 0}.

Then V is stable in X., and there exists § > 0 such that the unique solution v(t) of
with initial value vy € X, satisfying ||vo — V||x, < converges exponentially to
some Voo € € in X, ast — oo.

Next, we quote the version of the generalized principle corresponding to normally
hyperbolic equilibria, cf. [35, Theorem 5.5.1] and [36], Theorem 6.1]:

2.1.4 Theorem. Let 1 < p < co. Suppose V € U N X7 is an equilibrium of
and suppose that the functions (A, F') have the same properties as in|Theorem 2.1..
Suppose further that A(V') has the property of mazimal LP-regularity. Let A, be the
linearization of at V. Suppose that V is normally hyperbolic, which means that

(i) near V the set of equilibria € is a C'-manifold in X, of dimension m € Ny,
(ii) the tangent space for £ at'V is given by N(A,),
(iii) 0 is a semi-simple eigenvalue of A,, i.e., N(A,) & R(A,) = Xo,
(iv) o(A,) NiR = {0}, 0, = 0(4,)NC_ =0(4,)N{z€ C:Re 2<0} #0.

Then V is unstable in X.,: For each sufficiently small p > 0 there exists 0 < < p
such that the unique solution v(t) of with initial value vy € Bx (V,0) either

satisfies
o distx (v(to),E) > p for some finite time to > 0, or

o v(t) exists on Ry and converges at an exponential rate to some vy, € € in X,

ast — oo.

2.2 Periodic Sobolev Spaces

In this section we will introduce periodic Sobolev spaces. For a more detailed
introduction we refer to [19, Chapter 3]. We fix some L > 0 and set Q,, :== [0, L]"
such that L is the length of the box @),,. We set

C*Q,) = {f € C*(Qn,R™) : 0% [ ;=0 = O f"|e;=L,5,m=1,..,nV |a| < k} ,
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Section 2.2. Periodic Sobolev Spaces

0z(@1) = [ CH@0).

as the spaces of k-times continuously differentiable periodic functions. Then the
periodic Sobolev space L2(Q,,R") = L2(Q,,) is defined as the completion of C*°(Q,,)
w.r.t. the L?>-norm. By [19, Proposition 3.2.1] it follows that the above definition of
L2(Q,,R") coincides with the definition of L*(Q,,X) with X = R" such that we
can write L?(Q,,R") = L?(Q,) = L2(Q,,) in this specific case.

When working in periodic Sobolev spaces we can employ the Fourier transform to
obtain the Fourier coefficient 4(m) for m = (my, ..., m,,) € Z™:

am) = Flu)(m) = — [ u@em e lhar (e 1(Qu).

Also, for a smooth function u the m-th Fourier coefficient of the derivative is given as

Pu(m) = (%)lal medi(m) 2.2)

for m € Z" and o € Njj, which can be verified by integration by parts. The norm on
L?(Q,) is induced by the scalar product

(F9)se = 7 [, u@p@de (9 L(@w)

As a consequence we obtain well-known results from the whole space case in the
periodic setting:

2.2.1 Theorem. Let u,v € L*(Q,,) be arbitrary.

(1) The Plancherel theorem holds:

lullZeg = > la(m)l.

mezZ™

(2) Then Parseval’s identity holds:

(U, v)2r = % /Qn w@)v(r)de = > a(m)d(m).

mezZm”

(3) Every function u € L*(Q,) can be represented as the L*(Q,)-limit of trigono-
metric polynomials, i.e.,

u = Z ﬁ(m)eQﬂ'im/L.

mez"
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We refer to [19, Proposition 3.2.7] for the proof of [Theorem 2.2.1f Next, periodic
Sobolev spaces of higher order £ € N are defined in a natural way as

H*Q,) = {u = Z @(m)ezmm'/L ca(m) =a(—m)VmeZ", ||“”H£i(Qn) < oo}

mez™
= {u € H*(Qn) : 0°u™|4,=0 = O°U"|o=r (J,m =1,..,n, |a| < k)}
ST A H(@n)

= Cgo(Qn) )

where the restriction 4(m) = 4(—m) for m € Z™ ensures that u takes real values. In

(1 + (%”)k |m|k> a(m)

We will also make use of homogeneous periodic Sobolev spaces which are defined

this case the norm is given as

2
el g, = 22

mezm

accordingly:

j:‘[‘:ilr(Qn) = {u € Llloc(Qn) - Vu S L2(Q’n)’ u|z]-=O = ul:csz (.7 = ]-’ 7n)}

Foor VellL2

= C(@n)

Thanks to [Theorem 2.2.1| and formula (2.2) any derivative of u € H*(Q,) can be
represented as the L2(Q,)-limit

__ , NE .
Pu= > 0%u(m)e?™m /L = > <@> m®a(m)e?™m /L

mezm mezm L

for @ € Nj with |a| < k. Furthermore, it is straightforward to prove that || - ||z q,)

Also by (2.2) we now can write the norm in the well-known form:

and || - || g2 (g, are equivalent, where

2

“’U’”?{,’KQ”) =2 >

|| <k meZ™

||U||§{;;(Qn) = Z ”8au||%2(Qn) = ”u”%{k(Qn)'
o<k

Thus, periodic Sobolev spaces of fractional power s > 0 are defined in the canonical

way

>

H3(Qn) = {“ = > wm)e’™ ™ d(m) =

mezn

(—=m)V m € Z" ||ullas@.) < 00} :
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where the norm is modified as
s/2
2\ 2 .
lullaz@n = > |1+ (5 ) Iml*] la@m)*
L
mez™

It is straightforward to prove that both definitions for periodic Sobolev spaces of
higher order coincide for s € N. We can also obtain a Gagliardo-Nirenberg type
estimate just by the fact that L2(Q,) is equipped with a scalar product:

2.2.2 Corollary. Let k € N be arbitrary. Then we have
IV*ullZaig. < IV ull@u IV ullzy  (u € HyH(Qn))-
Proof. This is a direct consequence of the Cauchy-Schwarz inequality:

IVullZzg,) = —(Au, w)ar < [[Aullz2g, lullz2 @)

for u € H2(Q,,). Now for arbitrary v € H**(Q,,) we insert u = V*~1y in order to

obtain the desired estimate. O]

Next, we aim to define Fourier multipliers in the setting of periodic Sobolev spaces.
Let m : Z™ — C™" be a function. We define T,, : D(T},) C L*(Q,) — L*(Q,) with

domain
D(T,,) = {u € L*(Qn) : | TmullZ2g,) = Y Im(k)ak)|* < oo}
kezn

as the L?(Q,)-limit

Tou =) m(k)a(k)e*™ /L (u e LH(Qy)),

kezm

and the operator T, is bounded if m is a bounded function with D(T;,) = L*(Q,)-

This is a direct consequence of [I'heorem 2.2.1L Then we call m a Fourier multiplier.

In order to decompose L?(Q,) into a solenoidal subspace L2(Q,) and a subspace
of gradient fields G5(Q,,) we define the multiplier op : Z™ — C"*" as

for m # 0 and op(0) = I, where I denotes the n x n identity matrix. Then the
Helmholtz-Weyl projector on L?*(Q,) is given as

P:LXQn) = L2(Qn), uw Pui= Y op(m)a(m)e* /L,

mezn"
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inducing the desired decomposition

L*(Qn) = L3(Qn) ® G2(Qn),

where

L3(@Qn) = {u € L*(Qn) : &(m) = &(=m), m-a(m) =0V m € 2"} ,
G2(Qn) = {’LL =Vge L2(Qn) ‘g€ Llloc(Q'n } )

cf. [40, Section 2.1]. We note that u € L2(Q,,) implies divu = 0. We also observe
that P obviously commutes with Bessel potentials and derivatives. As a consequence,
P is also a projector on H:(Q,) and P(H:(Q,)) = H:(Q,) N L%(Q,) which yields
the decomposition

HZ(Qn) = (H7(Qn) N L3(@n)) ® (Hz(Qn) N G2(Qn))

for fractional Sobolev spaces with s > 0.

2.3 Global Attractors for Infinite-Dimensional

Dynamical Systems

In this section we collect important definitions and theorems from the theory concern-
ing global attractors for infinite-dimensional dynamical systems. For a more detailed
introduction to this theory we refer to [39, Chapters 10,13] and [47, Chapters III,
VIJ.
Let H be a Hilbert space. We consider a semidynamical system on the phase space
H given by
u = f(u), Ult=0 = uo, (2.3)

with some nonlinearity f such that for uy € H the system has a unique solution
u = u(t;ug) for all positive times, hence we demand global solvability of .
In the context of semidynamical systems, we define the Cy-semigroup of solution
operators S(t) : H — H by S(t)ug := u(t; up). In the following we will consider the
semidynamical system (H, (S(t)):>0)-

2.3.1 Definition. Let (S(t)):>0 be a semigroup.
(i) Aset Y C H is called positively invariant if S(t)Y CY for all t > 0.

(ii) A set X C H is called invariant if S(t)X = X for all ¢ > 0.
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(iii) The semigroup (S(t)):>0 is called dissipative if it possesses a compact absorbing
set B C H, i.e., there exists some compact set B C H such that for any
bounded set X C H there exists some to(X) > 0 such that

St)X CB  forallt>ty(X).

2.3.2 Definition. Let (S(t)):>0 be a semigroup. The global attractor A C H is the

maximal compact invariant set such that
St) A=A forallt>0
and the minimal set that attracts all bounded sets:
distg(S(t)X, A) == 0,
for any bounded set X C H.

The next theorem is crucial in order to prove the existence of an attractor. For
the proof we refer to [39, Theorem 10.5]:

2.3.3 Theorem. Let (S(t))i>0 be a semigroup. If (S(t))i>o0 s dissipative and B C H

is a compact absorbing set then there exists a global attractor

A=w(B) = ()S()B.

t>0

If H is connected then so is A.

In the next results we try to characterize a global attractor more precisely. Again
for the proofs we refer to [39, Theorems 10.6, 10.7, 10.10].

2.3.4 Definition. The semigroup (S(t)):>0 is injective on a global attractor A C H

if for any ug, vy € A we have
S(t)up = S(t)vo € A for some ¢t > 0 = Uy = Vp.

2.3.5 Theorem. Let (S(t))i>0 be a semigroup which is injective on a global attractor
A C H. Then the following statements hold:

(i) Every trajectory on A is defined for allt € R and (A, (S(t))ier) s a dynamical
system with S(t)A = A for allt € R.

(it) A = U{u is a complete bounded orbit}, in particular all complete bounded
orbits lie in A.
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(iii) For every compact invariant set X C H we have

W*(X) == {uo € H : S(t)uy defined V t € R, S(—t)ug =5z € X} C A.

At last we introduce relevant notions in order to prove that an attractor A C H
has finite fractal and Hausdorff dimension. We refer to [39, Chapter 13] for a precise

introduction.

2.3.6 Definition. Let (S(t)):>0 be a semigroup. We say that (S(¢)):>o is uniformly
differentiable on A if for every u € A there exists a linear operator A(t,u) : H - H
such that for allt > 0

0

sup 1S5 (#)v — SE)u — At u)(v — u)||a e0,

e A; 0<lu—v]r <e v —ullg

and
suB |A(t, w)|| 2m) < o0 (t >0).
Uue

Next, we want to quote the result finite dimension of the global attractor (cf. [39,
Theorem 13.16]). In order to introduce the notion of the statement, we consider the
semigroup (S(¢)):>0 and the compact global attractor A of (2.3). To this end, let
up € A be arbitrary and {&} : j = 1,..n} C H where &) are linearly independent.
We are in interested in the evolution of {5? : 7 =1,...n} near uy under the flow of
(2.3). Let A(t,u)&) be the solution of the linearized equation about u(t) := S(t)uo

with initial value §?, to be precise
v = f'(wv=L(u)v V=g =§.

with linear operator L(t;uo) := f'(u(t)). Then consider the span {A(t,u)) : j =

1,..,n} C H and chose a time-dependent set of orthonormal vectors {¢?(t) : j =

1,...,n} C H which have the same span. Next, we define the projection ng ) (t)
0,69

to {¢/(t) : j=1,...,n} and we have

and

n

TeL(tu0) By (1) = (09 (1), Lt o)) -

=1
Hence, the asymptotic growth rate of the n-volume {£; : j = 1,...,n} about the

trajectory u(-) = S(-)uo is given as

: 1t n
Jlim exp [5/0 TrL(s; uo)PSY Lo (s)ds| .

£, 80
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We aim to prove that all of the n-volumes decay exponentially for all initial values
up € A and initial infinitesimal n-volumes {£J : j = 1,...,n}. This finally leads to

2.3.7 Theorem. Let (S(t)):>0 be a semigroup. Suppose that (S(t)):>o is uniformly
differentiable on A and that there exists a tg > 0 such that A(t,w) is compact for all
t>to. If

TR.(A) == sup sup <TrL(t; uo)Pg(gL) €0 (t)> <0,

UOEA &?GH 190 n

€31l =1,
3
j=l,...n

where (f(t)) = limsup,_,o, 1 [5 f(s)ds and L and P are defined as above. Then the
fractal dimension of A is finite, to be precise d¢(A) < n.
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Chapter 3

Analysis on Sectors

In this chapter we perform analysis on sectors which are the natural domain for some
PDE systems from fluid dynamics, as e.g. the contact line model from
To this end we will introduce homogeneous and inhomogeneous Sobolev spaces in
sectors 2y as well as in smooth sector-like domains 3 in two dimensions. In this

section we assume n = 2. For a fixed 0 < § < 7/2 we define the sector
Yo = {113 = (:vl,xg) S Rz\{()} : |.’£2| < I tan(&)}

and the smooth sector-like domain

»e = {m = (x1,72) € R®2\{0} : \/2% + sin(6)26 < z; tan(@)} , 0>0.

We note that Xy = X9, Furthermore, we set I := 0% and T's := %5 for § > 0 as the
boundary of the sector. Then normal and tangential vector field at I' are given as

n(z) = n(z2) = (—sin(d), sgn(x2) cos()),
T(z) = 7(z2) = (sgn(z2) cos(h), sin(h)),

for x = (z1,x2) € T (cf. [Lemma 3.1.1)).

3.1 Sobolev Spaces in Sectors

In this section we introduce (in)homogeneous Sobolev spaces in sectors and prove
related results, as e.g. solvability of elliptic problems, density properties and trace
theorems. In order to transfer results from the half-space or the whole space to Xy
and X5 or its boundary I' and I'; we need to construct an appropriate transformation.
Then it is straightforward to transfer the results. It will be crucial to derive estimates
as e.g. for the trace operator uniformly in § > 0 in order to prove results for elliptic
problems. We note that then we will especially obtain these estimates for 6 = 0

which is the case which we are mostly interested in.
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In order to define homogeneous Sobolev spaces in 33 and I's properly we first
parametrize the boundary I's via the path s which turns out to be a bi-Lipschitz
diffeomorphism:

3.1.1 Lemma. Let § > 0. Then

s R Ty e (cos(&) 2+ 5)

sin(9)t

passed through in clockwise direction parametrizes the boundary I's. Then s is a
bi-Lipschitz diffeomorphism uniformly in § > 0 with

t2 4 sin(6)26
—Ys@)| =\ ——— teR, § >
‘dt% ‘ 216 (tER, 620)
and the special case |d/dt vo(t)| = 1. Furthermore, outer normal and tangential

vector fields on I's are given as

) — tz-:;% (COS(G;ZF) (t € R)

and

t2 +sin(0)20 \ cos(0)t/v/12 + 6

Proof. First, we note that v5(t) € I's for every ¢t € R since /(7Z)? + sin()?6 =
73 tan(0), where v5 = (7;,72)". Then ~;s parametrizes T's also by the fact that s is

7is(t) = ﬁ;‘s< —sin(9) > (t €R).

obviously injective. Furthermore, we have

d cos(6)2t—A— cos(f) ———
_ 2/e2+s | — N
dt%(t) ( sin(6) ) < sin(6) )

for all ¢ € R such that

2 + sin(6)26
246

t2
’dt% ' \/cos(e)?t2 s +sin(#)? =
for all ¢ € R. From this we note that on one hand we have

t? + sin(0)%6

‘ 7%(t) ‘ 2 + sin(6)26 =1

for all ¢ € R since sin(f) € (0,1). On the other hand we also obtain a lower bound:

cos(6)26 5
‘_% ’ \/ 7+ cos(8)% 1 sim(@)20 = V1 7 0os(0)* =sin(0),
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Section 3.1. Sobolev Spaces in Sectors

for all £ € R such that we especially obtain a bound uniformly in § > 0:

<1, (3.1)

sin(6 Vs
<.,

which proves that ;s is a bi-Lipschitz diffeomorphism. The tangential vector field
follows directly from the derivative of s since 75 = |d/dt s|~*(d/dt 7s). Then it is

also straightforward to calculate the outer normal vector field. m

On the other hand we also obtain a bi-Lipschitz diffeomorphism between X3 and
the rotated half-space R, := {(n,t) € R? : n > 0} which will be used to transfer
function spaces on X to spaces defined on the half-space.

3.1.2 Lemma. Let 6 > 0. We define R2; :={(n,t) € R? :p > 0}. Then

N+ cos(0)vVt2 + 6
sin(6)t

®s - R2>O - Zga (777t) = (
is a bi-Lipschitz diffeomorphism uniformly in 6 > 0, i.e.,
||V<P5||L°°(R2>O,.$(R2))a ”(v905)_1||L°°(R2>0,,$(R2)) <C (6>0)
and det ;5 = sin(f) and det[(¢}) ] = sin() 1.

Proof. Obviously, s is well-defined. The Jacobi matrix is given as

cos(O)t 1 sm(@) — cos(0)¢
Vs(n,t) = 1246 and  (Ves(n, t))—l - o
0 sin(f) sin(6) 0 1

for (n,t) € R?, and we immediately obtain the stated estimates as well as the
determinant of both matrices. Hence, s is a bi-Lipschitz diffeomorphism. n

Finally, we can define homogeneous Sobolev spaces on sectors and sector-like
domains, see e.g. [17,52]. Let k € N be arbitrary, then

H*(Z)) = {u € L (X)) : VFu € LA(Z))}

is a function space which is equipped with the semi-norm | - | x5y = |[VE -] L2(s)-
Now let Py, be the class of all polynomials of degree < k — 1. Then we set

H* (%) = H*(Z5)/Pr,

such that the homogeneous Sobolev space A k(x¢) is defined as a factor space. For

simplicity we denote elements in A k(2¢) as u if we refer to their equivalence class
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[u] = u+Ps. By [17, Lemma, IL.6.2] we know that H*(?) is a Hilbert space equipped
with the norm
||u||ﬁk(zg) = ||[“]||ﬁ1k(zg) = piengk lu+ p|Hk(zg) = pienpfk V¥ (u + p)”Lz(zg)
= ||Vku||L2(zg)
for all u € H*(X3) (in contrast to H*(%J) which is only equipped with a semi-norm

|+ |z%(s))- Furthermore, for & € N we define

. IR
H§(%5) =Ce(Z)) .

Homogeneous spaces on the half-space R = {(z1,22) € R? : 25 > 0}, R, =
{(z1,z2) € R?: z; > 0} and on the whole space R? are defined accordingly. Further-
more, for k € N we define

HE (29) = {ue H*(XY) : divu = 0}

and HE (2%) = HE (2%)/Py equipped with the same norm as H*(Z9) since
H% (2%) € H*(Z%). In order to define Sobolev spaces of fractional power for
0 < s < 1 we first observe

3.1.3 Lemma. Let the bi-Lipschitz diffeomorphism s from be given.
Defining push-forward and pull-back through

®lu=uop;' and P :=wvo p;,
it holds
o € Li(HH(RLy), HY(SD) N Li(HH(RE,), HH(55)
(@) 7" = € L, (H'(55), H'(R20)) N Lo (H*(55), H*(R,))

for k = 0,1 with norm estimates uniformly in 6 > 0. In the setting of homogeneous
spaces we interpret the composition [v] o @5 = [v o @s] where [v] € H'(ZS) with
v € HY(X)) by choosing a corresponding representative for [v].

Proof. First we note that the definition in the setting of homogeneous spaces is
meaningful. For any constant function ¢ we also have c o gogl = c such that we have
(u+4c)ops! =uop; +cfor any u € H'(R2,) leading to the same equivalence

class for u o @' by

[u] 0 s = [(u+R) o ps5] = [uops + R| = [uo ps].
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Section 3.1. Sobolev Spaces in Sectors

We can estimate the norm uniformly in § > 0: Let [v] € H'(Z%) with v+c € H'(Z9)
for any constant ¢ € R. Then

IV 23012252 ) = IV (0 + ) 0 93] - Vg 2agea
= [, IVo(es(n,8)) - Vios(n, 1) d(m,)
>0
< 2
<C [, 19o(estnO)F eyt
_ 2 /\—1
=C /Eg IVo(2)Pldet]() ]| da
< C||V’U||i2(2g) = C”V[”]H;(zg)

and we also obtain the converse estimate for ®. Also similarly to (3.3) we obtain
the estimate in the L2-setting where we again put emphasize on the fact that all

appearing estimates are uniform in § > 0. Hence the assertion holds. O]

3.1.4 Remark. (i) Note that in the context of Lemma 3.1.2/ and [Lemma 3.1.3 we
obtain a bi-Lipschitz transformation of ) to R2,. However, the results that

we want to transfer later are formulated on R? = {z = (z1,22) € R? : 5 > 0}.
It is clear that we can transform R2, to R? via a rotation matrix such that in

fact we obtain

& € L (H (R), HY(ZY)) N L (HF(R2), H*(25))
(®)7! = &) € L, (H'(Z)), H'(R2)) N L, (H*(Z5), H*(RY))

in with norm estimates uniform in 6 > 0.

(ii) We also observe that due to the fact that ¢; is not more regular than bi-Lipschitz
and not C', we cannot transform spaces of higher regularity than k¥ = 1 from
3¢ to the half-space R? (using this diffeomorphism).

By making use of the push-forward from [Lemma 3.1.2| we can now define homoge-
neous Sobolev spaces of fractional power 0 < s < 1: We set

H(%)) = @ H*(R%) = ®TH*(R2) /Py,

which can also be defined via interpolation as we will observe. Here (-, ), , denotes
the real interpolation functor for s € (0,1) and 1 < p < oo (see [51, Chapter 1]).
Interpolation of the homogeneous Sobolev spaces H $(X9) can be interpreted in the
following way: At first we consider interpolation on the whole space R™ (see [52,
Section 5.1]): Let S(R™) be the Schwartz space and S’(R™) the space of tempered
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Chapter 8. Analysis on Sectors

distributions defined in the usual way (cf. [562, Section 1.2.1]). Let F and F~! denote
the Fourier transform and inversion in S(R™) and S’'(R™), respectively. Then we
define the following subspace of S(R") equipped with the same topology

ZR") ={peSR"):0°Fp(0) =0V a € N} }.

Then Z(R™) is a locally convex space and Z’(R™) denotes its dual. For any f € S'(R")
the restriction to Z(R") yields f|z®n) € Z’'(R™) and

(f+p)(p)=flp) (pe€ Z(R"),

if p € P is any polynomial. Here P, denotes the set of all polynomials of degree
n € N. Conversely, any f € Z'(R") can be extended to f € &'(R™) linearly
and continuously, where fl — ]~”2 is a polynomial if fl, ]~‘2 are two extensions of f.
Hence, we may identify Z’(R™) with the factor space S'(R")/P via a corresponding
isomorphism ¢. Hence by [52, Section 5.1.3, Definition 2] we can regard H*(R") for
k € N as a subspace of §'(R")/P and via the isomorphism

t:S'(R") /Py — Z'(R") (3.2)

we can regard H*(R") for k € N as a subspace of Z'(R"). Hence, making use of
Lemma 3.1.2, the extension operator E; : H'(R2) — H'(R?) from [I0}, Proposition
3.19] and the extension by zero Ej, yields

a8 I iR 25 BY(R?) & 2/(RY)
L3(28) 25 L2(R2) B [2(R?) — 2/(R?)

by regarding L*(R?) — S'(R?)/Ps — Z'(R?). Thus, {LZ(Eg),ﬁl(Zg)} is an
interpolation couple. Interpolation of the diffeomorphism ®° then yields

¥ € i, (F(R2), (LX(S)), H'(Z5),)

by [10, Proposition 3.22]. This explicitly yields the desired characterization of
fractional spaces via interpolation H*(X9) = (L3(X3), H'(X?)).2. Homogeneous
Sobolev spaces of negative order are defined as dual spaces. For 0 < s < 1 we set
Hy°(28) == (H*(Z%))', endowed with the canonical norm.

Analogously we can now define homogeneous spaces on the boundary I's: Using

the path from [Lemma 3.1.1| we can identify L?(Ts) with L?(R) (see [Lemma 3.1.5
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below):
w0 5l agey = [ lulrs(e)2 dt < sin(8) 2 [ ura(®)) P1s(t)|? e
=sin(8)* [ Juf*dn = sin(6) 2lullisr, (33
Ts

< sin(0) 2 [ [u(rs()I dt = sin(6) w0 %32,

where we essentially made use of the uniform estimate of 45 from (3.1). Thus, by
defining (u = u o s the calculation above yields ¢} € Z(L*(Ts), L*(R)) with
¢ := (¢¢)~. Sobolev spaces on the boundary I's can be defined as

H' ;) ={u:Ts > R":uoys € H(R)} = CH'(R).

Then H'(T'5) is equipped with the semi-norm |u| s = 0rull2r;). Note that
for any constant function c the function ¢(’c is still a constant. Hence, the following

definition is meaningful:
H'(Ts) == H'(Ts) /P = ¢ (H'(R)/P1) = (CH'(R) = (L (R) /Py

where H'(I's) again is a Hilbert space by [I7, Lemma, I1.6.2] with the corresponding
norm [|[u](| g1 (r;) = 107wl L2(rs), Where the proof can easily be modified such that it
holds in the 1-dimensional case as well. Note that similarly to the case of $3 we will
denote elements in A*(T's) by u although we want to refer to their equivalence class
[u] = u+ P;.

Sobolev spaces of fractional power 0 < s < 1 are again defined as

H#(Ts) = (CH*(R) = CH*(R) /Py,

where H*(R) is defined via interpolation A*(R) = (L?(R), H(R)),  (see [52, Section
5.2.5, Theorem 5.2.3.1(ii), Theorem 2.4.2]. Since ¢} € Z,(H'(T'5), H'(R)) (elemen-

tary calculation as seen in [Lemma 3.1.5)), we can use the same arguments as for 3
to deduce

YT & HY(R) & 2/(R),
L3(Ts) < IA(R) — 2'(R),
hence {L2(I‘5), H 1(I‘5)} is an interpolation couple and we obtain
G € Zis(L(Ts), H'(T5))s 0 H*(R)),
which again yields the characterization of spaces of fractional order by interpolation

H*(Ts) = (L*(Ts), H(Ts))s-
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Spaces of negative order are again defined as dual spaces H*(T'5) == (H*(T'5))’ for

0 < s < 1. Note that thanlk|s to [Lemma 3.1.5 we have (H*([';)) = (H5(I's)) since
H*(R) = H3(R) = C=(R) ™.
These observations lead to the desire to identify (in)homogeneous spaces on the

boundary I's with well-studied (in)homogeneous spaces on the whole space R for the
scale H*(T'5) and H*(T;) for s € [-1,1]:

3.1.5 Lemma. Let s € [—1,1] and the path s from |Lemma 8.1.1] be given. We
define
Gui=uoy;' and (uvi=vons,

Then
¢ € Zis(H*(R), H*(T5)) and ()" = (5 € Z(H*(Ts), H(R))
for s € [0,1] and
95075 171¢! € Zio(H*(R), H*(T5))  and  |35|¢; € Zis(H°(T5), H*(R))

for s € [—1,0] where all norm estimates are uniform in 6 > 0. Furthermore, the
statement also holds in the case of inhomogeneous spaces H*.

Proof. As observed in the path -, transforms constants to constants
such that the definition is meaningful. In this proof we just consider the proof of
the statement in the homogeneous spaces. We first prove the assertion for s =0, 1.
First, we define

Crip(Ts) = (CLip(R) = ¢} {u € C(R) : Ju(z) — u(y)| < Llz —y| (z,y € R)}

since 5 is a bi-Lipschitz transform by [Lemma 3.1.1l Hence for u € Cp;,(T's) we
observe that

D u(5(6) = Vul(t)) - 35(6) = (@) ) (1) (34

for a.e. t € R where we used the fact that v5 = 75|7s| from [Lemma 3.1.1] Hence, for
(u == u o s we infer

= / ‘—U(%

< [ 1@u)u@)PhsOldt = [ |00 dn = 190l

<sin(9)~ /R |(Br5w) (v5(£)) 1715 (2) | dt

dt = [ 1(0w)(35®)P1s(0) at

“ d (u 0 7s)
>, )
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2

L2(R) ,

= sin(9)™!

d
E(UC’%)

where we essentially made use of the uniform estimate of |y;| from (3.1). By the
density of Cp;,(T's) in H'(T's) this estimate also holds for all u € H'(T'5) such that
we can define push-forward and pull-back as stated in the proposition. The estimate
above combined with shows that

¢ € L (H'(R), H'(T5)) N L (H*(R), H*(Ts)),
() =G € L (H (Ts), H'(R)) N Lo(H*(Ts), H (R)),

for s = 0, 1. Interpolation yields the statement in H* and H* for s € [0,1]. Again,
we put emphasize on the fact that all arising norm estimates are uniform in 6 > 0. In
case of negative s we need to calculate the dual operator (¢?) : H-(T'5) — H™1(R):
For ¢ € C2,(T5),% € CLip(R) (where C,(Ts) is defined in [Lemma 3.1.11)) we infer

<(Cf)'90a I/’)H*l(R),Hl(R) = (e, Cf@ﬂfl(r(;),ﬁl(ré) = /1“5 ‘PCf?ﬂ dn

_ -1 _ .
—/Féswom; dn—La(¢°75)¢|75|dn
= [ FislGs o dt

= (1951650 ¥) 1wy, 11 ).

where we made use of the fact that by [Lemma 3.1.11| functions of the form (f,-)2r,
with f € Cg5,(T'5) are dense in (H'(T'5))" and by [17, Theorem I1.8.1] this density
also holds for R. Then the calculation above yields (¢?)’ = |ys|¢t. On the other hand,
almost the same calculation gives us

(&) e, ?/))fz—l(r,;),ﬁl(r,s) = (p, C§¢>ﬁ—1(R),ﬁl(R) = /RSOC(W dz
= /IR Vslw GGl ys|~ dt
= [ (porihis o7 dn
é

= /F Cedls ot dn
é

= (s o 75_1|_1Cf€07'€b>ﬁ—1(p5),g1(p6)

again for smooth ¢, 1 such that ((})' = |y507; '|71¢%. We note that both calculations
also hold in L? such that the dual operator in the L2-setting is given in the same

way. Thanks to the boundedness of the dual operator we obtain

Vs 075 |71 € Lis(HY(R), HH(T5)) N Lo (H*(R), H*(T's)),
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A

Vs|Gy € Lio(H7(Ts), H'(R)) N Lo (H™*(Ts), H*(R))

for s = 0,1 where the operator norms are uniformly in § > 0. Again, interpolation
yields the statement for H* and H* for s € [—1,0] with norms uniform in § > 0. [

3.1.6 Remark. It is clear that we can transform R to 6Ri = {z = (x1,22) €
R? : z; € R,zy = 0} and OR? ) = {z = (z1,22) € R? : ; = 0,2z, € R} via a
smooth linear mapping (using a transformation matrix). Hence, this yields that from

[Lemma 3.1.5] we even obtain

¢l € Zu(HP(ORY), H*(T))  and  (¢))7" = ¢ € Za(H*(Ty), H*(0RY)),
Gl € Lo(HP(OR), H*(Ts))  and  (C)7" =G5 € Z,(H*(Ty), H'(0RS,))

with norm estimates uniform in 6 > 0. In the following we denote every push-forward
and pull-back from T's to R, 0R2,0R2, by ¢’ and ¢}.

3.1.1 Embeddings, Dual Spaces and Related Results

For a precise characterization and well-understanding of (in)homogeneous spaces on
sectors, we collect some embeddings and related results in this section. The strategy
for the proof of most of the results is the following: By applying the bi-Lipschitz

transforms from [Lemma 3.1.1| and [Lemma 3.1.2) we transfer results known from the
half-space setting to sectors. We will mainly focus on results on sectors ¥y with

boundary T' but we note that all results hold true on smooth sector-like domains 3
with boundary I's and corresponding norm estimates are uniformly in § > 0. We

start with some embedding theorems:
3.1.7 Lemma. Let s € (0,1]. Then we have
O () <& H*(2)) < H°(5).

Here, the embeddings above can be interpreted by considering the isomorphism ¢ from

B2).

Proof. From the observation above we know that {L*(X),H'(X3)} as well as
{L2(Zg),_ﬁl 1(22)} are interpolation couples. By [51, Theorem 1.6.2] we obtain
for s € (0,1):

HY(Z3) = LA(S9) N HY(Z)) <& (LA(E)), HY(S))).2 = B (),
HY(Z)) = L3(S9) N HY(S)) <5 (LA(9), H(9))s2 = H*(D).
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Furthermore,
H*(5) = (L*(5§), H'(5§))s2 = (L*(55), H'(5§))s,2 = H* ().
Since C° (E_g) 4 H 1(x9) by [25, Lemma 12.4] we deduce
C2(S)) < H'(S)) < H(%)) < H°(%)).
The assertion for s = 1 follows from [29, Lemma B1]. O

3.1.8 Lemma. Let m € N and HT, () = {u € H™(Z,R?) : divu = 0}. Then
HT (Xg) is dense in H}, (Xq).

Proof. Let (¢,)n>0 C C°(R?) be a mollifier such that ¢, > 0 and supp ¢, C B,(0)
for all p > 0. We fix u € Hj, (Xg) and € > 0. For w > 0 we denote by X = 3y —we;
the shifted sector. Next, we define the shifted u, € H}, (XY) as

Up(Z1,Z2) = u(z1 + w,z2)  for z = (z1,22) € Tf.

By construction we have u,|s, — u in H'(Zp,R?) as w — 0. We first fix w > 0 such
that

g
ok, —wllme,en < 5 forvi=us.

We choose § > 0 such that X9 + Bs(0) € X§. By x = xs2e € L* (R?%) we denote the
characteristic function of the shifted sector ¥2~. For the convolution 9 = @5 * x €
C>(R?%) we observe that

(i) Jre ps(x1,72) d(z1,22) =1and 0 < x < 1imply 0 <9 < 1;

(i) x[zz2» =1 and £ + B;(0) C £3* imply that d"ﬁ =1

(iii) X|g2\p2v =0 and R*\Z3* + Bs(0) C R*\X3* imply that ¢)|pz\sz = 0;
(iv) 0 < x <1 implies |[¢[|pcr(re) < [l@s|lwri(re) < oo
By definition

¢($17x2)v($17x2), if (171,.’1:2) € Zgw?

(z = (z1,72) € R?)
0, otherwise,

w(x1,x2) =

leads to a well-defined vector field w € H'(R? R?) with divw = 0 in 3 since
Y|z =1 and dive =0 in .
[
Then by construction we have ¢, * w € H™(R? R?) for all > 0 with

cp,,*wn—_mww in H'(R? R?).
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Furthermore, if 0 < n < ¢ then 34+ B,(0) C Xy such that div(p,*w) = 0 in 3y due to
the fact that divw = 0 in Xj. Choosing 0 < 7 < ¢ such that ||, *w—w|| g1 @2 r2) < §
we also obtain

- € ~
1t — wls, || 51z ,r2) < 2 for @ == (5 * w)|s,.
Then we have % € H™(R? R?) with diva = 0, i.e., & € HT (3Z¢) and

||’fl, — u||H1(297R2) < E.

3.1.9 Lemma. Let s € [0,1/2]. Then it holds
(i) C(Ty) <5 H*(Ty) < He(T);
(i) C=(T\{0}) <> H*(T) < H(T).

Proof. (i) We just prove the assertion for +. This is a consequence of [5I]. Note that
by [51, Theorem 2.9.3(d)] the space C°(R,.) is dense in H*(R ) for s € [0,1/2]. This
also holds for H*(R,): Applying [51, Theorem 1.6.2] to the interpolation couples
{L*(R4), H'(R4)} and {L*(Ry), H'(Ry)} yields

H'(Ry) = LA(Ry) N HY(R,) < (LA(RY), A (RY)). = BP(RY),

Since also
H°(Ry) = (L*(Ry), H'(Ry))s2 = (LA(Ry), H'(Ry))s = HY(RY),
we can deduce for s € [0,1/2]
C2(Ry) <5 HP(Ry) < H(R,),

and the assertion follows by rotating R, to I';.
(ii) We pick v € HY2(I"). Then we define vy = v|r, € HY2(T'y). Now let
(v%) C C*(T+) be a sequence such that

o Lt N in HY2(Ty).

Now we set v*(z) = xr,(z)v*(z1,22) + xr_(2)v" (21,22) € C*(T'\{0}) where
z = (z1,%2). Obviously by definition we know that (v*); is a Cauchy sequence in
HY2(T") such that there exists ¢ € H2(T") with v* — 4 in H'/2(T"). Then it also
follows vy, — 9 in L} (T'\{0}). On the other hand by construction we have v* — v in

(T'\{0}). Since the limit is unique, we deduce v = 1.

HY2(I't), hence v* — v in L},
The statement for in the inhomogeneous setting follows with the same arguments. [
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Next, we characterize dual spaces of homogeneous Sobolev spaces on sectors 3
and the boundary I's in order to be able to use the representation of the duality
pairings as an integral. To be precise we want to prove the density of mean value
free infinitely differentiable functions with compact support in those dual spaces.
This result is well-known for e.g. the whole space R" and half-space R”, where the
restriction that the functions have to be mean value free can be dropped. In this
case we need this restriction such that the integral is well-defined. The approach
follows the ideas as seen in [29, Appendix A].

3.1.10 Lemma. Letr > 0 and ; = 35N B,(0) and Qs = (—r,7). The Poincaré
inequality holds for u € HE, () = {u € H' () : o, udz = 0} fori=1,2. To be
precise we have

lullz20) < ClIVullL2@)-

Proof. This is a direct consequence of the Poincaré inequality for mean value free
functions in the version of [46, Lemma 10.2(vi)]. Note that by [17, Remark II1.6.1]
we infer that H'(€;) and H'(;) are equal algebraically, i.e., H*(€;) = H'(€;) since
€; is bounded and Lipschitz. Note that [17, Remark I1.6.1] follows from [I7, Lemma
I1.6.1] which holds also in the 1-dimensional case if we modify its proof, hence [17,
Remark I1.6.1] holds for €;, 7 = 1,2, simultaneously. Then we can apply [46, Lemma
10.2(vi)]. O

3.1.11 Lemma. We set Q; := 3§ and Q, = T's. We define the set of functionals

which are given through a regular distribution, as
Si = {F € (H' () : F(u) = (f,u)2s for f € CZ,(R)}

where the space of mean value free infinitely differentiable functions with compact

support are defined as
C () = { Fec=(Q,): /Q f(a)de = o} .
Here, the functionals are defined as
(s = (fwa = [ f(@u(e) da (f € O (Sh),u € H'(3),
(fuaz = (fu)er, = [ f@u(@)dn(@) (/€ C5u(Ts)ue H(TY))

Then S; is dense H'(S)' fori=1,2. It also holds that S; is dense in HY, (X3)'.
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Proof. First, we need to prove that S; is a subset of Hs (€;)". To this end, let F € S;
be arbitrary with F(u) = (f,u)2, for one fixed f € Cg5,(§%) and for all u € H5 ().
Note that due to the fact that f is mean value free, the integral (f, u)s; is well-defined
for + = 1,2. It is obvious that F is a linear operator. Now let r > 0 such that
supp f C B-(0). We set K; := ;N B,(0) C R2. For i = 1 we first obtain by choosing
a representative of u € H'(X?) with Jx, u(z) dz = 0:

< N Fllzz e lwll 22z

(el =| [ f@ute) do

< C||f||L2(Eg)”u”I§I1(K1) < C||f||L2(zg)||U||ﬂ1(zg)7

where we applied |[Lemma 3.1.10, For ¢ = 2 we note that the path 7s from|Lemma 3.1.1
maps bounded sets to bounded sets, in fact ;' (K2) = (—r,7). Then we obtain by
choosing a representative of u € H'(T's) with | K, wdn = [T, uos|¥s| dt = 0 with
Lemma, 3.1.1¢

(el = | [ Fa)uta)dnta)

=| [ seuenutn®yist) e
< If o vsll o rirp 1w © Y61V | L2 (=rry)-

Now we note that thanks to u € H'(K5) we have u o ;|%s| € H'((—r,r)). Again by
applying the Poincaré inequality from [Lemma 3.1.10| we obtain

|(fs wa2| <N o vsllz(—rmy 1w 0 Vsl Vsl l L2 ()
< O\ fllz2(ra 1w 0 vs|¥sl | g1 =y
< Cllfllzz@sllull gragry)-

Hence, we proved S; C H(Q;)".

The density follows with a functional analytic argument as in [17, Lemma I1.8.1].
Assume that S; is not dense in H(€;). Since H*(£);) as a dual space is equipped
with a norm we can apply Hahn-Banach ([I7, Theorem 1.7(b)] to the result that
there exists some Z € H'(£;)” such that Z # 0 and

Z(F)=0 (Fes8y).

Since H'(€);) is reflexive by [17, Exercise I1.6.2] we know that H'(€;) = H*(€;)/R
is also reflexive and that H'(;)” = H'();) such that the condition simplifies as

F(z) =(f,2)2,=0  (F € S such that f € C(£)).
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Let U C Q; such that U is open and bounded. Let # € [z] be a representative of
z € H'(Q;) such that

3o € L2 (U) = {z e LA(U) : /

U%da::O}.

(Note that z € L2 () such that Z € L?(U)). Then we have

loc

(fa= [ 2fdz=0  (feC,0)).

Since L2,(U) = mLQ we even deduce (2, f), = 0 for all f € L2,(U) such that
zZ =0 a.e. in U follows. Hence [z] = [const] in U, such that z = 0 since U C €; is an
arbitrary open and bounded subset with U C €.

The statement for the subspace of divergence free functions H (Z4) follows

analogously. Then the assertion is proved. O]

3.1.12 Remark. In the following we will interpret [Lemma 3.1.11|in the following

way: Instead of saying that S; is dense in (H'(€))’, we will say that

O () S HY ()

by using the duality pairing defined in [Lemma 3.1.11]

Next, we will consider some results regarding the tangential derivative operator

on the boundary I' by transferring corresponding results from R by making use of

[Lemma, 3.1.51

3.1.13 Corollary. For every s € [0,1] the tangential derivative operator satisfies
8, € L (H (D), H*~Y(I)) N Z(H*(T), H*~X(I)).

Proof. First, we prove the assertion for s = 0, 1. Note that for u € Cr;,(Ts) it follows

from (3.4) that

d
0 7 %
*dtCO'

Since d/dt is the derivative operator on the whole space R we can use the definition

8, =

of Bessel potential spaces for s € R using the Fourier transform F:
H*(R) = {u € Li,,(R) : F'|¢|*Fu € L*(R)} .

Then it is straightforward to prove that d/dt : H'(R) — L?(R) is an isomorphism.
Combining this with we immediately deduce

8, € Zis(H'(T), L*(T)).
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Next, we have to compute the dual operator (9,)' : L*(T') — H~Y(T). For ¢ € C,(T)
and ¢ € CL;,(I") we infer

<(87')I(p71/}>f[*1(1"),ﬁ1(1") = (Qoa a7'¢>L2(F),L2(1") = /1“90671/) d77
d
= [e¢ 2 dn
d d
= [Go)SGwdt=— [ 2(Ge)Gw) dt

= — [(Grp)wdn = (=0r, W) ps0y.00)

again thanks to [Lemma 3.1.11| which yields (9;)’ = —0, and from the boundedness

of the dual operator we deduce
9, € L (LA(T), H~X(I)).

Interpolation then yields the result for the homogeneous case.

In order to obtain the statement in the inhomogeneous case we only need to replace
d/dt : H(R) — L*(R) with d/dt : H'(R) — L(R) which is obviously bounded. [J

3.1.14 Corollary. Let s € [0,1]. Then the shifted tangential derivative operator on

I' is an isomorphism, i.e.,

1+ 0, € Z(H*(T), H*1(I)).

Proof. The proof is essentially the same proof as of [Corollary 3.1.13] Then we have
1+, = % (1+d/dt) ;. Clearly we have 1 + d/dt € £,(H'(R), L*(R)) which
yields 1+ 9, € £ (HY(T"), L*(T")). Furthermore, we also infer (1+0,) =1F 0, €
Zis(LA(T), H1(I")) and interpolation yields the result. O

Weyl Projections

Dealing with divergence free functions almost always leads to introducing corre-
sponding Weyl and Helmholtz projections on the corresponding function spaces.
The solenoidal subspaces of H' ()2, H'(Z4)? and L?(%)? will be denoted by
HL (%), HY (Z¢) and L3 (Z¢). Here, we will only consider the divergence free
subspaces which are defined as the range of a Weyl projection. The Weyl projection

can be defined by making use of the Dirichlet problem (cf. [Lemma 3.1.15). However,

another approach to obtain divergence free subspaces is to consider the range of the
Helmholtz projection which is defined by using the Neumann problem. Using the
Helmholtz projection leads to the definition of the L2(X,) spaces. In the context
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of we are only interested in L2, (34), hence in the following we will only
consider Weyl projections.

Here, we will use standard techniques in order to prove the existence of the Weyl
projection and corresponding properties. In fact, we will make use of the Dirichlet

problem, cf.
3.1.15 Lemma (Weyl projection on L?(34)?). We define the Weyl map as
Py : L*(Z9)* = L*(%9)*,  Pwy =9 — V9,
where ® is the weak solution of the homogeneous Dirichlet problem
Ad=divp in¥y, ®=0 onTl. (3.5)

Then Py is a projection along VH 4(3¢) and there exists a direct orthogonal decom-
position
L*(4)* = L5y (Z0) © VH(5s).

Proof. At first we observe the following regarding the divergence: Note that the
definition of the divergence div : L?(X) — H(Zy) is meaningful by setting

(le ©; 1/)>H*1(29),I§Ié(29) = (Qoa v¢)2 (¢ € 020(29))

Integration by parts then yields the consistency of the definition of the divergence

with the definition in spaces of positive order with || div ¢[| 7-1(5,) < ||| z2(s)- Hence,
for ¢ € L2(%y)? we have div o € H~1(Z) and by [Lemma 3.1.31| there exists a unique
® € H)(Z)) solving (3.5). Then Pyy is well-defined. Furthermore, for ¢ € L2(Zg)?

we observe
Piyp = PwPwyp = Py(p — V®) = ¢ — Vo — VU

where ® solves (3.5) and ¥ solves
AY =div(p—V®) =0 inYy, ¥=0 onl.

Since (3.5)) is uniquely solvable we infer ¥ = 0 and P%¢ = p — V® = Pyo. It is
obvious that Py is a linear map. Furthermore, Py is bounded:

1Pwellrzsy) = llo — V@[22 < l@llz2(sy) + Clldivell g-1s,)
< Cllellzz s,

where we used the estimate from |[Lemma 3.1.31) Hence, Py is a projection.

Since L?*(34)? is a Hilbert space it is a well-known fact that there exists a direct
orthogonal decomposition

L*(%9)* = N(Py) @, R(Pw).
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where N(Py) and R(Py ) denote the kernel and the range of Py, respectively. We
prove N(Py) = VHL(Zy) and R(Py) = L2, (Z¢) and the assertion then follows.
At first we prove R(Py) = L3,(Z9). If ¥ € R(Pyw) then there exists some ¢ €
L?*(X)? such that Pyp = ¢ — V® = ¢ where ® solves (3.5). But then we have

divy =div(p — V®) =divp — AP =0

and ¢ € L3, (Zy). If ¢ € L3,,(XZy) then we note that Py = ¢ — V® = ¢, where @
solves with right-hand side div ¢ = 0. By the uniqueness it follows ® = 0 and
R(Pw) = L§;,(Se).

Next, we will show N(Py) = VHL(Zg). Let ¢ € N(Py), then we have Pyp =
¢ —V® =0, hence ¢ = V®. Since ¢ solves we know that ® € fIé(Eg) by
[Lemma 3.1.31l Then we have ¢ € VH(Z,).

Now let ¢ € H}(Z5). Then

where ® is the solution of with right-hand side div Vi = Ap. Obviously, since
Vo € VHL(Z) we know that ¢ solves with the same right-hand side. By
the solution’s uniqueness we obtain ® = ¢ and Py (Vy) = 0. Then the assertion
follows. O

3.1.16 Corollary (Weyl projection on H*(34)?). We define the Weyl map as
Py : HY(Z9)? — H'(Z9)?, Pwop=¢p—V®

where ® solves (3.5)) strongly. Then Py is a projection and there exists a direct

orthogonal decomposition
H'(20)* = Hyi, (S0) @ V(HG(So) 0 H ().

Proof. This follows from the consistency of Py,. Due to the fact that in|Lemma 3.1.31
the weak and strong solution of are consistent, the Weyl projection Py, is also
consistent on L%(34)? and H'(3g)2. Then the assertion follows by making use of
H'(Zg) <% L2(Zy) and

N(Pwl|asy2) € N(Pwlra,e) and  R(Pwlmisy)2) € R(Pw|r2(zy))-
O

As a direct consequence of the consistency of the Weyl projection Py due to

[Lemma 3.1.31| we also obtain the Weyl projection on H'(%,)2. We only replace
HY(Z9) N H2(X) by H%(Xs) due to regularity reasons.
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3.1.17 Corollary (Weyl projection on H'(%4)2). We define the Weyl map as
Py : H'(Z9)? — HY(Z9)?, Py :=¢— V9,

where ® is the strong solution of the Dirichlet problem (3.5). Then Py is a projection
and there exists a direct orthogonal decomposition

H'(S)* = Hy, (S0) ® VHR(S0),
where H%(Zg) = {u € H*(Zy) : u|r = 0}.

3.1.18 Remark. We put emphasize on the fact that the Weyl projections on
L2(%4), HY(Zg) and H'(Z) from the previous [Lemma 3.1.15| |Corollary 3.1.16/ and
|Corollary 3.1.17| are consistent by construction and by |[Lemma 3.1.31}

3.1.2 Trace Theorems

In this section we collect various trace theorems dealing with Dirichlet and Neumann
traces. Using the bi-Lipschitz diffeomorphism from [Lemma 3.1.2] we are able to
transfer results from the half-space R? to sectors ¥. Note that trace theorems in
the framework of inhomogeneous spaces are well-known from [34, Theorem 2| since

Yl is a convex domain.
3.1.19 Theorem. The trace operator
T : H(Zy) — HY(T)
exists and is linear and bounded and satisfies the estimate
1Tl oy < Cllal sy

with a constant C > 0 independent of u. Furthermore, T is a retraction: There exists

a bounded linear extension operator
E: HY2(T) — HY(Zp)

such that if & € HY/2(T') then u = Eu € HY(Zy) with Tu = @ and
el 1) < Cllal grareqry

where C' > 0 is again independent of .
Likewise, in the inhomogeneous case there also exists a trace operator T' from H(%,)
to HY/*(I') and a bounded extension operator E : HY*(T) — H'(Zy) fulfilling

corresponding estimates.
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Proof. In order to prove the result, we want to transfer the trace operator 7' from the
half-space R2 = {z = (z1,22) € R?: 25 > 0} to our setting. [17, Theorem II.10.2]
states the existence of a bounded trace operator T : H YR2) - HY 2(0R%) with
OR2 = {z € R?: zy = 0}. Hence, by definition of the spaces A" we immediately also
infer the boundedness of T': H*(R2) — HY/2(9R2). [I7, Theorem I1.10.2] also states
the surjectivity of 7. By functional analytic arguments we immediately infer that T
is a retraction since we are in the Hilbert space setting. We denote the coretraction
by E € Z(H'?(0R%), H'(R2)).

Using the same arguments as in [Remark 3.1.4} and [Remark 3.1.6| we can extend

the trace operator to
T e L(H\R2), HA(R) and Ee 2(HYVA(R), H'(RL,))

where Tu = |y, —o-
We now want to transfer this result to our case. Let push-forward and pull-back
®°, &% and (°,¢; from [Lemma 3.1.3 and [Lemma 3.1.5/ be given. For v € C°(Z8) we

observe that

(v0¢0)(0,2) = v (cos(9)[¢], sin(0)t) = (voys)() (¢t €R).

Consequently,
(v o @oly=o) 0% " =l
or equivalently
(0T o ®)v =lr.

Hence, we can define T := (° o T o ®%. Furthermore, we define E = ® o E o ¢} and
by construction we have T'E = I /2. Then E is also linear and bounded .
For the statement in the inhomogeneous case we replace the trace operator T’

and the extension operator F by the operators in the inhomogeneous case, cf. [17,
Theorem 11.4.3] with Q = R2,, O

3.1.20 Remark. Note that [I7, Theorem II.10.2] actually states the existence of a
bounded extension operator E € .Z(H'?(8R2), H'(R%)) but the linearity of E is
not stated. However, E is actually linear by construction. This can be observed by
having a look at [26, Theorem 2.7, Corollary 1]. The proof of [26, Theorem 2.7] is
similar to the proof of [26, Theorem 2.6]. If we consider the proof of [26, Theorem
2.6] in the case r = 1 then the corresponding extension u is defined as

r—1
E() (%1, ooy Tn) = W(T1, ey Tp) = Zuk(xl, ey @) = Up(T1y eeny T
k=0
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1 z1+Zn Tn—1+Tn _
= / / U(tl,...,tn_l) dtl...dtn_l
T x

zn=t Jay

n—1

where we used [26, Formula (2.46),(2.49)]. Then it is obvious that F is a linear
operator, hence the trace T on the half-space is a retraction. This also holds in the
non Hilbert space setting.

Next, we consider Neumann trace operators and prove the existence of the Neumann
trace operator on H2 () of functions with vanishing Dirichlet trace. Furthermore,
we prove that the Neumann trace operator has dense range. For this purpose,
we consider the Dirichlet-Neumann trace pair taking the trace of f € H 2(2)
simultaneously. The main idea is to consider the trace in a neighborhood at the
vortex (the critical point) and separately on I'y as seen in e.g. [20]. Note that
the Neumann trace operator on H2(%,) doesn’t have to exist since by interpreting
dpu = Vu - n for u € H?(Zy) it is now clear if d,u € HY2(T") since multiplication
with the normal vector field n is not continuous in general. This is caused by the
fact that multiplication with sgn is not bounded in H/2(R) (cf. [51], Section 2.10.2,
Remark 1]). Hence, in [Lemma 3.1.21| we will observe that the Dirichlet-Neumann

trace pair maps into a rather unnatural space DN(I") where functions, which fulfill
compatibility conditions, are contained. However, later we will observe that the

Neumann trace of functions with vanishing Dirichlet trace, does indeed map into
HY2(T).

3.1.21 Lemma. The trace pair
(T, T,,) = (T, 8,) : H*(X4) — DN(I)
is well-defined and continuous with

DN(T) = {(go, 91) € DN(T)/(P1 x Py) : [|(3r80)7 + g1l gra/aqryiriraqry < o0}
where

— ||gJ|F ||H3/2—j(]_" ) < 00 fOTj — 0, 1,
DN(F) — (90,91) € L%oc(r) v LZQOC(F) : + N
90|F+ (0) = golr_(0)

Proof. Let [u] € H?(Zy) be fixed and u € H?(Z) be any representative (u will be
specified later on). At first we take care of the trace pair on I'y = 'N(RxR4). Due to
the density there exists a sequence (ux)rey C C°(R?) such that uz|s, — u in H?(Xy)
as k — oo. Now, for every k € N the trace pair (Tug, Thuy) € H¥?(Ay) x HY/?(Ay) is
well-defined on the line A, := ', U(—I';)U{0} and depends linearly and continuously
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on u; (W.r.t. the topology on H?(R?)). Here, H3/2(A,) is defined as H32(R) since
A, is a rotation of R.

Clearly, if v,w € H?(R?) such that v|s, = wls,, then (Tv, T,v) = (Tw, T,w) on I',.
Hence, the trace (T',T,,) is only dependent of the function inside ¥y. Then for every
k € N the trace pair (Tug, Thug) € H32(I'}) x HY?(T,,) is well-defined and depends
linearly and continuously on u|s, (W.r.t. the topology on H?(Xy)).

This shows that the trace pair (Tu, T,u) € H¥?(T'}) x HY2(T',) is well-defined
(as the limit of the trace pairs of the uy) and depends linearly and continuously on u
(w.r.t. the topology on H?(4)). Of course, the same observations are valid for the
trace pair (T, Tyu) € H¥?(T_) x HY*(T'_).

From [I7, Remark I1.6.1] we have H2(Z}) = H?(X}) algebraically for ¥} =
Y9 N B1(0). Due to the Sobolev embedding (cf. [I, Theorem 4.12]) we can choose a
continuous representative u € H2(Xy N B;(0)) € BUC(Z}) which yields Tulr, (0) =

Tu|r_(0). In summary, the trace pair
(T, Ty) : H*(Zs) — DN(T)/(Py x Po)

is well-defined, linear and continuous.

We now detect the compatibility condition at the vortex point of I'. We extend
normal and tangential vector field to ¥y by extending constantly. Then 7,n € L°(%).
Moreover, a straightforward calculation shows Vu = (7 - Vu)7 + (n- Vu)n a.e. in

39, which implies that

(8,u)T + (Bpu)n = T(Vu) € HY*(T) x HY*(I)

by [Theorem 3.1.19) where T : H'(Zy) — HY2(I") denotes the trace operator. Thus,
if (9o, 91) = (T'w, Tou) € DN(T"), then we necessarily have

(8,90)T + gin € HY*(I') x HY*(T).

This can be seen as a compatibility condition at the vortex of I'. Then the assertion
follows. 0

As a consequence we obtain the existence of the Neumann trace operator (see
ICorollary 3.1.24). By making use of the density of C®°(I'\{0}) in A2(I) from
we can actually prove that the Neumann trace operator has dense range.

However, we prove this statement for v, € W'~Y/P?(T'y) for 1 < p < oo with the
restriction of fulfilling the compatibility condition lim; ,o v+ (¢ - 72) = 0 for the trace
at the vortex if p > 2. This is reasoned by the fact that in the proof of
we have to apply Hardy’s inequality which is not valid in p = 2 which is the case we

are interested in. However, the results then follows by interpolation.
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3.1.22 Lemma. Let 1 <p<oo. WesetT'y =T"N(R x (0,00)) = (0,00) - 7 and
' =T'N(R x (—00,0)) = (—00,0) - 7—, where

T+ = (£ cos(h), sin(6)), ny = (—sin(f), £ cos(6)).

Let vy € Wpl_l/ P(T1) such that lim;_qvi(t - 72) = O for the trace at the vortex if
p>2 andvn € HY2(I')? if p=2. Then there exists some u € W2P(%y) such that

u=0, O,u=uvs on I'y.

Proof. Step 1. At first we consider the case p # 2. In this step we follow the ideas of
the proof of [29, Proposition 4.1]. First we rotate ¥, anti-clockwise with 6 such that
' =(—00,0)-7_ and I'y = (0, 00) - 7 where

T4+ = (cos(26),sin(26)), ny = (—sin(26), cos(26)),

T—_ = —é€1, n_ = —es.

Note that by rotation we still have v. € W1=1/PP(T).

Let G = (0,00)? be the wedge with opening angle 7/2. For the boundary we define
T, = {0} x (0,00) and T_ := (0, 00) x {0}. Furthermore, we set p := |z| = \/2? + 2%
for z € R2. Defining the transformation

g _ T arccos () psin (™ arccos (&
U:%y— G, U(xy,z0) = (pCOS (49 arceos ( ) >) » EIT (49 Areeos < p ))) !

it is straightforward to verify that ¥ is well-defined as well as the fact that ¥ is a
C°°-diffeomorphism. Next, we set v_ := v_ and 0 (¢ - e2) == vy (t- 74 ) for ¢ > 0 such
that

b € WiP(Fy) with lmd(t-e)) =limd_(t-e) =0 (p>2)  (36)

Then we are in position to apply [4, Theorem VIII.1.8.5] on the corner G and
[4, Theorem VIII.1.8.5] implies the existence of @ € W2?(G) with @ = 0 on I'y
and 8,% = 94 on ['x. Then we set u := @& o ¥ and by construction u satisfies the
desired boundary conditions. Furthermore, we have u € W2?(34) by considering
the following: we note that 0,,¥ ~ p and 8,,0,, ¥ ~ p~' for p — 0 and p — oo and
J,k =1,2. Then we have 0,, 9", p0,,0,, V" € L>*(%y) for j,k,n = 1,2. Regarding
the derivatives of u = % o ® we obtain (note that det V¥ = x/40) for j, k = 1,2

105, (@ 0 ©)o(m) = [|(Be, % 0 W) 0, ¥* + (D, h © ¥)Oe, Ul 12 (5y)

< |8y @ 0 Wl Lo (s) + (|00, 8 © Wl Lo(p) < ClIVl| oy < 00

47



Chapter 8. Analysis on Sectors

and

1020 (@ © ¥) | Lo ()

2 2
> (02,0, 1) © ¥) 8y, U0y, U™ + > (8,6 0 V) Dy, 0y, U™

m,n=1 n=1

Lr(3)

2 2
S 5 OB Wiy + 3 o000 Wlanesy < OV ey,
where we applied Hardy’s inequality in the version of [29, Lemma A.2] in the last
step. Note that in order to apply Hardy’s inequality we need to fulfill the boundary
condition lim; ,o 0, 4(t - ;) = 0 for j = 1,2 (if p > 2) which is fulfilled due to (3.6].
Thus, then we have u = %o U € W?P(3y). At last we rotate Xy clockwise with 6 to
obtain our original sector Y.
This, in fact, proves that the operator 7, extending vy € I/Vp1 —i/p (T'+) to some
u € W?P(3g) with u = 0 and d,u = v+ on I'y is bounded since the coretraction
from [4, Theorem VIII.1.8.5] is bounded.

Step 2. In order to obtain p = 2 we apply an interpolation argument. Note that in
Step 1, [4, Theorem VIII.1.8.5] yields a coretraction which is universal such that the

operators 1), for p # 2 are consistent. Hence, interpolation of
T, : D(Tp) = {v € Wpl_l/p(l") : 1lti_r%v(t T) = O} — W?P(%,) (p > 2),
T, : D(Ty) = WP (D) — W22(5,) (b <2)
yields the assertion for p = 2 and
D(Ty) = {v € H*(T) : vn € HY*()?} .

]

3.1.23 Remark. (i) We are only able to obtain the result in [Lemma 3.1.22|since
by demanding u = 0 on I'y. as a boundary condition we don’t have any other

compatibility conditions as in [29, Proposition 4.1] and for every p > 2 the
operator T}, has the same domain

D(T}) = {v € WP(T) : limw(t - 7) = o}

and D(T,) = Wy /P(T) for p < 2.

(ii) In the second step of [Lemma 3.1.22| we can interpolate

(D(Ts/2), D(T3))122 = {v € HY*(T) : vn € HY*(T)?},
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which leads to Lions-Magenes type spaces. These occur since we interpolate
spaces with boundary conditions (in our case D(T53)) with spaces with no
boundary conditions (in our case D(T3/2)). For an introduction to the Lions-
Magenes spaces we refer to [46, Chapter 33] and [51], Section 2.10].

Summarizing the results from above we obtain the following result on the Neumann

trace operator:

3.1.24 Corollary. Let H%(Zg) = {u € H?(Zy) : u|r = 0}. The Neumann trace
operator T, : H%(Z9) — HY2(T) is bounded and has dense range.

Proof. The assertion essentially follows from [Lemma 3.1.21| and [Lemma 3.1.22] If
u € H% (), then (Tu, Tou) = (0,9;) € DN(T) such that

gin € HY*(I) x HY2(D).

Since n(z) = (—sin(f), sgn(z;) cos()) we infer —sin(f)g; € H/2(T'). Furthermore,
by the density of C°(I'\{0}) in HY/2(T") by and the fact that functions
in C°(I'\{0}) fulfill the assumptions of [Lemma 3.1.22] for every g € C°(I'\{0}) we
can find u € H?(Zg) with u|r = 0. Thus, u € H% () and T, has dense range. [

Next, we consider the normal trace operator. Note that the normal vector field at
I is given as n = (—sin(#), sgn(xs) cos(#)) which shows that by taking the normal
trace we have to multiply with sgn. Since multiplication with sgn is not a bounded
operator in HY/2(R) (cf. [51, Section 2.10.2, Remark 1]) we cannot expect the
normal trace operator Ty : H'(Xg)? — H'/?(T) to be well-defined. In
we will observe that the normal trace operator on I' actually exists if the correct
symmetry is given. However, the coretraction exists even if we don’t assume any
symmetry properties. In the following we will construct such a coretraction. The
strategy will be as follows: We will divide Y4 into a bounded Lipschitz domain
(containing the vortex (0,0) of ¥y) and a smooth sector-like domain. Then for given
h € HY2(I") N H~Y/2(T") we will construct a function v on the bounded Lipschitz
domain fulfilling the boundary condition on the corresponding boundary via a Stokes
system. On the unbounded domain we will prove the existence of such a function w
fulfilling the boundary conditions by solving a divergence equation. The solvability
of the divergence equation is stated at first:

3.1.25 Lemma. Let H, = {(z1,72) € R? : o > w(z1)} be the bent half-space
with w € C°(R,R), where w is linear in R\B,.(0) for some r > 0. Then for every
h € HY2(8H,)? N H~12(8H,,)? there exists a unique u € H'(H,)? solving

divu=0 1n H,, u=~h ondH,.
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and fulfilling the estimate

Jullarga) < C”h||H1/2(an)mH—1/2(an)
with C > 0 independent of h.
Proof. We prove the assertion by solving the Stokes equation

(1-Aw—-Vg=0 inR2,
divv =0 inR2?, (3.7)
v=~h ondR%
on the half-space and then transform the solution to H,. The solvability and
corresponding estimates in the half-space can be based on explicit solution formulas
as displayed e.g. in [24] Section 2.6]. Hence, we can reduce the proof to considering

a suitable transformation.

We define the transformation
0: H, — @, (1, 22) = (21,22 — w(z1)),

which is clearly a C°°-diffeomorphism due to the fact that w € C*(R,R) and
w' € BC*(R,R). Note that

¢'(z) = ( L (1)> and dety'(z) =1 (z € H,).

—u'(z1)

We set ®(u) :== uo ! for u: H, — R2 By the fact that w is linear in R\B,(0) for
some r > 0, we deduce that w’ is constant in R\B,(0) and that supp (w*)) C B,(0)
for £ > 2. Then we immediately infer

® € Z,(W*P(H,)?, W*P(R?)?)

for all s € R and 1 < p < oo which follows as in|[Lemma 3.1.3. Here, we can transform
derivatives of higher order since the derivatives of ¢ are bounded. Furthermore, we
observe that

1 0
S0/ o) (,0_1 — (,0/ = < . ) c Bcoo(Ri,Rbd).
—w' 1
Then for u : H, — R? we set Uu := ¢/®u. Then the divergence transforms as follows:

divgz Yu = O, (Bu)' + Oy, [~/ (Pu)* + (Pu)?]

= (Onyu') 0 07! + [(Op,u") 0 o W' — [(Op,ut) 0 07w + (8pyu®) 0 (071)
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= (divg, u) o !

and ¥ € %, (W*P(H,)?*, WP(R2)?) for all s € R and 1 < p < oo as well. Note
that obviously ¥ € .%,(W*?(8H,,)?, W**(8R2)?) N %, (H*(8H,,)?, H*(OR?)?) as
well for k£ € [—1,1].

Let h € H/?(OH,,)> N H~Y/2(8H,)?. Then h := Uh € H?(R2)2 N H~1/2(9R?)2.
Then there exists v € Hj, (R2) solving in R2 with v = h on 9R%Z. We
set u = U~lv € H'(H,)? and thanks to the observation above we also obtain
divg, u = (disz+ v) o ¢ = 0. Furthermore, u = h on 0H, by construction and

ull () < Cllvllan@z) < C||ﬁ||H1/2(aR3)nﬁ—1/2(aR3) < ClIhll grr2omynir-17208)

with C' > 0 independent of h. m

3.1.26 Remark. We note that the transformation ¥ from [Lemma 3.1.25| preserves

the normal trace. Hence, using W it is possible to transfer normal and tangential

trace from the half-space. This can be observed by

Nom, - U = (naRi ‘v)op= (naRi +h) o =ngn, - h.
3.1.27 Lemma. There exists a linear and bounded operator
Ry : HYA(T) N HY4(T) — HL, (Zo)

such that
(Rog-n)[r =g for all g € HY*(T) n HY2(I).

Proof. We will prove the assertion in several steps. To this end, we consider the
bounded Lipschitz domain G := ¥y N B4(0) and the smooth sector-like domain
Q by smoothing out the vortex (cf. [Figure 3). We will make use of the Stokes
equation in G and the divergence equation in {2 in order to construct functions
v,w in G and Q which fulfill the given boundary conditions, i.e., u-n =g on I for
u=v+w € Hi (%) and given g € H/2(T') N H-Y/2(I).

Let g € C°(I'\{0}) be arbitrary but fixed. We choose x € C°(T") such that x =1

on I' N By/3(0) and x = 0 on I'\ Bg/3(0). We note that supp(xg) € (I' N B3(0))\{0}
and supp((1 — x)g) € '\ B(0).

In the following we denote the extension operator, which extends functions by zero
to a set U C R?, as EY.

Step 1. 'We construct a linear operator M : F — F where F :={h € C*(I'N

B3(0)) : 0 ¢ supp(h)}. The operator M will have the following properties: it holds
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Figure 3: Domains G and 2

supp(Mh) C I' N (B3(0)\By(0)), the extended function EJ%(h + Mh) is mean value
free on 0G and

||Mh||H1/2(FﬂBg(O))ﬂH_l/z(FﬂBg,(O)) < C“h”H1/2(r‘mB3(0))ﬂIfI—1/2(FmB3(0)) (3-8)
for h € F. We set

—3h((3t —6)rE), 2<|t| <3,

Mh(tm%) =
0, 0< |t <2,

where 71 = t(cos(6),sin(f)) if t > 0 and t7~ = ¢(— cos(h), sin(f)) if ¢ < 0. Then we
can calculate

E9C(h, Mhd=/ h+ Mh)d
| ESC(h+ Mh) d [ MB)dn

= h(tT™)dt — 3 h((3t — 6)7%) dt

0<|t|<3 2<|t|<3

=0.

Furthermore, it is straight forward to prove that holds for all h € F with a
constant C' > 0 independent of h by making use of the Slobodeckij seminorm. A
density argument then yields the assertion.

Step 2. First we consider the bounded Lipschitz domain G. We set g; :== EJ%(xg+
M(xg)) € H/2(8G) N H~1/2(@). We consider the Stokes equations on G:

—AD—-Vp=0 in G,
dive = 0 in G,

¥ = ginsg on 0G,
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where nge denotes the normal vector field at 0G. Note that since xg € C((I' N
B3(0))\{0}) by construction, multiplication with nyq is well-defined (no singularities
at the vortices occur) and yields ginoe € HY/?(0G)?. By [I7, Theorem IV.1.1] there
exists a unique weak solution ¥ € Hj, (G) to the Stokes system if

/ ginag - Nag dn = / EZ%(xg + M(xg)) dn = 0.
oG oG

Furthermore, ¥ satisfies the estimate

18]l z1e) < Cllginacllmirzee) < Cllgillmrea < Cllgllge@na-12m)- (3.9)

Since ¥ = gingg = 0 on Xy NG by construction, we infer v == E;°% € H} (Z).

Step 8. Now we consider the unbounded smooth sector-like domain 2. We set
g2 = EZ%((1—x)g—M(xg)) € H/2(0Q)NH2(8Q) and h = gynaq € HY?(8Q)%N
H='/2(8Q) where ngq denotes the normal vector field at 8Q. Since Q is smooth, naq
is smooth as well (cf. [Lemma 3.1.1) such that gynaq € HY2(8Q)2N H-/2(8Q)2. Due
to [Lemma 3.1.25| there exists a @ € H2_ () such that @ = ganasq = 0 on QN By (0)
by construction. Furthermore, i satisfies W - ngg = g2 by construction and

||17’||H1(ﬂ) < 0”92”’39||H1/2(8Q)OI?I*1/2(8Q) < 0”92||H1/2(6Q)nf1*1/2(89) (3.10)

< C”Q”Hlﬂ(l“)mﬂ—l/z(r)
since supp(gz) C I'\B,(0). Then we obtain w = Ey*@® € HL (Zy).
Step 4. We set Rog :==u :=v +w € H}, (Zg). Furthermore, we have
n-u=n-v+n-w=xg+Mixg)+(1-x)g-Mxg)=g onl

as well as [|ullz(sy) < Cllgll grrzryngr-1/2y by (3-9) and (3.10). Since C°(I'\{0}) is
dense in H/2(T') N H~/2(T") by [Lemma 3.1.9 and [Lemma 3.1.11} a density argument

yields the assertion. O]

At last we prove the existence of the generalized trace by following the ideas

from [6]. From the discussion ahead of |[Lemma 3.1.27 one would expect that the

generalized trace should also not exist. Actually, due to the lack of regularity and
by construction via the generalized principle of integration, it turns out that the
generalized trace T, : L2, (X29) — H~'/2(T") does exist.

3.1.28 Lemma (Generalized trace theorem). Let
Ty : L3, (Se) — H7(T)
be defined by

Tov(¥) = (n - v,9) o172y mr1r2ry = (Vs VEY) 12(5,),L2(54)s
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for ¢ € H2(T) where E : H/2(T') — H' (%)) is the linear and bounded exten-
sion operator to the trace operator T : HY(Z,) — HY2(T'), characterized by the
inhomogeneous Dirichlet problem:

AEY =0 in Xy, EYp=¢ onl,

see|Corollary 8.1.33. Then Ty is well-defined (especially independent of the choice of
the extension operator E) and bounded.

Proof. The proof follows the proof of [6, Proposition 3.4]. Let ¢ € H'(Xy) be
arbitrary. Then Ty = ¢|r € HY?(I') exists by [Theorem 3.1.19| and we have
Ep—p € H}(Zy) since Eg € H'(Z4) and by construction we have (Ep—)|r = 0 (the
trace exists). Then also V(Ep — @) = VEp — Vg € VHL(Zg). From [Lemma 3.1.15
we know that the Weyl projection Py projects along VH $(3) such that

Py(VEp —Vp) =0 = Pw(VEyp) = Py (Vo).

Making use of the fact that v € L3, (Xy) = R(Pw) (note that Py is a symmetric

operator) we obtain
(0, VE®) 12(5),12(20)
= (Pwv, VEQ) 12(5),12(56) = (V; Pw VEQ) 12(),12(5)
= (v, PwV o) L2(sy),L2(20) = (Fw, Vo) 12(5,),12(2,)
= (v, Vo) 12(5),L2(9)
which gives us the generalized version of integration by parts
{Tov, T0) gr-172(r), mr1/2(ry = (Vs V) 12(3),12(26)
for ¢ € H'(Z9) and v € L% (Z). In particular we have
{Tov, ) =120y, 1720y = (0> Vi) 12(33),12(59)

for any ¢ € H'(X,) that fulfills T = 9 such that the definition of T} is independent of

the extension operator F, hence Tj is well-defined. By making use of the boundedness

of the extension operator E from [Theorem 3.1.19| we obtain the boundedness of Tj:

||TOU||1§r—1/2(r) = Sup [(Tov, 1/)>1§r—1/2(r),1§r1/2(r)|
YeH/2(I)
”"Zjllgl/?aﬂ):l

=  sup (v, VEY)r2(5,),2(z0)|

YeH/2(I)
||¢||g1/2(r):1
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< sup [|EY| syl
$peH/2(T)
||1/J||g1/2(r)=1

<C  sup ¥l lvlizze,
YEH/2(T)
191l gr1/2 0y =1

< o]l z2(sy)

for arbitrary v € L%, (Zy). O

3.1.3 Elliptic Problems

The study of elliptic problems is as usual of great interest. Elliptic problems were
already considered in various kinds of settings and domains. However, the closest
results we could find for elliptic problems on sectors, were found in [20] where the
setting in inhomogeneous spaces and bounded non-smooth domains were considered.

In this section we collect results in the framework of homogeneous spaces. We will
mainly focus on the Dirichlet problem in the strong, weak and very weak setting. The
strategy to solve the strong problem is as follows: It will be necessary to approximate
¥¢ with smooth sector-like domains ) where results are known. Then passing to
the limit we obtain the results for ¥,. We start with a result derived in [20]:

3.1.29 Lemma (Theorem 3.1.1.1 in [20]). Let Q C R? be a C%-domain. Then the
equality

2+ P,
ivol? — P W
/Q|d1vv| > /9821) oV dx

3,j=1

= —2(37-(71 : 'U)’ (T : U))f[—l/2(ag)’f{1/2(ag) (3'11)

— B(t-v,t- trB(n - v)? d
oy |2t 0t 0) - tr (-] i

holds for every v € C°(2). Here, B denotes the second fundamental quadratic form
corresponding to the boundary of the underlying domain (tr% denotes its trace), see
[20, Section 3.1.1].

3.1.30 Remark. We remark that in |20, Theorem 3.1.1.1] €2 is assumed to be
bounded. However, following the lines of the proof it is easily checked that the
boundedness assumption can be dropped. In fact, the calculations in the proof of
[20, Theorem 3.1.1.1] work verbatim for all v € C>°(Q) since then the existence of
all appearing integrals are given.
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The strategy to derive strong solvability of related Dirichlet problems on ¥y is
now as follows where we adapt the main ideas from [20, Section 3.1]: As already
mentioned we approximate %y by the smoothed out convex sector-like domains XJ.
Since XJ is of class C* we will then obtain smooth solutions for the corresponding
elliptic problem with estimates in A 2(x¢) that are uniform in § > 0 thanks to
[Lemma 3.1.29. Note that in the boundary terms % drop out due to the
convexity of ©J. Then passing § — 0 then yields ig regularity for the considered

elliptic problems on .
We now consider the Dirichlet problem with homogeneous boundary conditions

which is formulated as follows:

—Ap = f in Xy,

b_0 onT (3.12)

3.1.31 Lemma (Strong and weak homogeneous Dirichlet problem). We assume
f € HY(Zy). Then there exists a unique solution p € H(Z) of in the weak
sense satisfying

IVPlL2g) < Cllfll 15y

with C > 0 independent of f and p. If, in addition, f € L*(X4), then Vp € H'(Zy)
and

IV2pllzz(my) < Cllf 2.

Proof. First we note that since Cg5,(2g) & H ~1(Xy) by [Lemma 3.1.11, we can
assume f € Cg5,(Xg). As already mentioned, at first we consider (3.12) on ¥ in its

weak formulation
/25 Vps - Vipdz = /2 frpdz (o € HYE?)), (3.13)
0 0

where we define f;5 .= f |zg via restriction and use the representation of the duality

pairing from [Lemma 3.1.11l Then the Riesz representation [I'heorem 2.1.1| yields a
unique solution p € H}(X3) for (3.13) satisfying

||VP6||L2(23) < C”f”H—l(zg) (6 >0). (3.14)

Since ¥ is a uniform C* domain, we have V2p; € L?(X9) if f € L?(X)) additionally,
see [20]. Hence, we can apply [Lemma 3.1.29| to the result

||V2p6||L2(zg) < ||AP6||L2(23) + 2(0r, (8nap5)78T5p5>ﬁ—1/2(r‘5),ﬁ1/2(1“5)

(3.15)
< [1£llz2(s0)
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uniformly in 6 > 0. Here, we took into account the fact that ps = 0 implies 0,,ps = 0
on T's and that the % term drops out due to the convexity of ¥). We note that
formula, (3.11)) still holds for p since C°(29) is dense in HE(X)) by definition.

For ¢ € C°(24) < HL(X4) we consider the weak formulation (8.13) again. Then
by the continuity of the integral we obtain

/éf(;(pda: ‘H—O>/ fodx.
=3 S

Now, we denote by h the extension to Ty by zero for some function h : 25 — R
Then by (3.14) we obtain the estimate

IVPslzasy) < Cllfll g-1(sy)

uniformly in § > 0 which yields the boundedness of (%)bo in L?(3Xg). Then
(Vps)s=o has a weak limit

Vps —w weak in L3(Zy),

ie.,
/ Vp5<pdx=/ %godm‘s_)—())/ we dx
Eg pI7 g

for all ¢ € C°(g). For ¢ € C(Zg) we can choose § > 0 so small that ¢ € C2(X)).
Then we can calculate

/%godx=/ Vpgcpdx=/ psdivipdr =0
S =3 =3

where we made use of the fact that divy = 0. Thus, (w, ¥)r2(s,),12(s,) = 0 for all
¢ € C(Xy) and de Rahm’s theorem implies w = Vp for some p € L}, (X¢). So for
0 — 0 in (3.13) we infer

) — S 0
[ Vp-Veda /29fsodw (¢ € C (%)),

which means that p € H3(Z) is the weak solution of (3.12). Note that VH(Zg) >
Vps — Vp in L2(Z) such that p € H(X). Also by the Riesz representation
theorem it is clear that p is unique.

Finally, for the H 2_regularity we remark that by we obtain

||V2p5||L2(29) < 22z (6 > 0),

which on one hand yields th boundedness of (%)bo in L?(3y) which on the other

—_—

hand gives us the weak convergence of (V?p;)sso in L*(3y), i.e.,

/ V2psp dz 920, Wodz
)27} )37
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for all ¢ € C(Xy). Then again for ¢ € C(3y) we can choose ¢ so small that
@ € C°(X5) such that

/20 ©0;0kps dx = /Zg 00;0kps dr = — /Eg 0;p0kps dr = — /29 0;0kps dx

=20, —/ ajgoakpdxz/ ©0;Op dz
o] o

for k,j = 1,2 by the weak convergence of (%)&>0 by the argumentation above. By
the uniqueness of the limit we deduce V?p = W € L?(%,). Now we have proved
that p is the unique strong solution to the homogeneous Dirichlet problem (3.12))
satisfying the estimates as claimed for smooth f. Then a density argument yields

the assertions for all f. [

3.1.32 Remark. (i) For the reader’s convenience we want to compare the results
of [20, Theorem 3.1.2.1, Theorem 3.1.2.3] to our above results. In [20] in order
to obtain the full H?(2) regularity, Poincaré’s inequality is applied where the
constant from Poincaré’s inequality depends on the diameter of the bounded
domain. Hence, the constant C' of the corresponding norm estimates for the
solution also depend on the diameter of 2. However, in the context of [20] it
is also possible to obtain a constant C' independent of the domain if we only
consider H k(Q), k = 1,2, regularity. Thus, in homogeneous spaces the approach
developed in [20] also works on a class of unbounded convex domains. The
only condition we used above is that C2°(€) is dense in H}(€) which holds via

definition.

As the results about surjectivity of trace theorems and solvability of elliptic prob-

lems are closely related, it is possible to solve the weak Dirichlet problem with inho-

mogeneous boundary conditions by applying the trace theorem (cf. [Theorem 3.1.19):

3.1.33 Corollary (Weak inhomogeneous Dirichlet problem). For every pair of data
(f,9) € H1(Zg) x HY2(T') there exists a unique solution p € H'(Z¢) of

_Ap = f n Z9a

g onT (3.16)

in the weak sense satisfying

IVBllzeme) < C (1l a1y + gl o)

with C > 0 independent of f,g and p.
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Proof. Let (f,g) € H™(Z9) x HY/2(T') be given. Thanks to [Theorem 3.1.19| there
exists some p = E(g) € H(Z4) such that p =g on T'. Now let p € ﬁl(Eg) be the
solution of

—Ap=f+Ap in Xy, p=0 onT

which exists thanks to [Lemma 3.1.31] By the observation regarding divergence from
[Lemma 3.1.15, we deduce Ap = divVp € H~1(Z)) since Vi € L2(Zy).

Then p = p+p € H'(Z) solves (3-16). The solution is also unique: Let p and p be
two solutions solving ([3.16)). It follows that p = p — p solves

—Ap =0 in X, p=0 onl,

which is uniquely solvable thanks to |[Lemma 3.1.31] Hence we infer p = 0 and p = p.

The estimate also follows from [Theorem 3.1.19 and [Lemma 3.1.31. O

At last we solve the very weak Dirichlet problem which we want to prove by a
simplified approach for spaces of low regularity as seen in [3, Theorem 1.1]:

3.1.34 Lemma. Let H%(Zy) = {u € H%(Zy) : ulr = 0} and let H2(Zy) =
(H% (%)) be the corresponding dual space. For h € H™Y/2(T") we define

h(p) = —(h, Tn¢>ﬁfl/2(r),ﬁ1/2(r) (p € }AIQD(E9))7

where T, denotes the Neumann trace operator from [Corollary 3.1.24). Then we have

te H 2(Zg) and using this identification we obtain
H V2T — HZ2 ().

Proof. Fix an arbitrary h € H~'/2(T'). Let £, be defined as above. Then £, is
obviously well-defined since T, € H'/?(T") which follows from |Corollary 3.1.24.
Obviously, using |Corollary 3.1.24] we also see that £, € H52(Zy):

1€n ()] < 1Pll 1720 1 Tnpll zr1/2ry < ClBN g-12 0y 0]l 225
for all p € H%(Zg) which gives us
1€all frz2(50) < CllAl g-12ry -
[

The strategy to prove the very weak inhomogeneous Dirichlet problem is given

as follows: By considering the solution operator L~! to the strong homogeneous

Dirichlet problem from [Lemma 3.1.31], we will observe that the dual operator (L)’

actually is the solution operator to the very weak (in)homogeneous Dirichlet problem.
By the low regularity that is assumed, we even obtain the solution operator for

inhomogeneous boundary conditions.
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3.1.35 Lemma (Very weak inhomogeneous Dirichlet problem). For every data
g € HV2(T) there exists a unique solution p € L*(Z¢) of

—Ap =0 in 29,

g ont (3.17)

in the very weak sense satisfying

IPllz2cz0) < Cligllg-1r2r)
with C > 0 independent of g and p.

Proof. As already mentioned before, it will turn out that the solution operator for
the very weak formulation corresponds with the solution operator for the strong
formulation of the Dirichlet problem with homogeneous boundary conditions from
ILemma 3.1.31} Also by [Lemma 3.1.31| we know that for every f € L?(3y) there
exists a unique p € H2 (%), where H2 (%) = {p € H%(Zy) : p|r = 0}, solving the
Dirichlet problem for homogeneous boundary conditions (here H2 () is as defined
as in [Lemma 3.1.34). In fact, that means that the solution operator L= : L%(%) —
H2 () to

L: H2(Z9) —» L* (%), Lp:= Ap,

exists and that L' is bounded (by the estimate from [Lemma 3.1.31]). Considering
the dual operator L' : L2(Zg) — H72(X4) we infer for u, o € L?(Zg) N H(Z):

(L'u, 90>H52(29),H2D(29) = (u, L‘P>L2(29)7L2(29) = (u, Ap)2 = (—Au, p)a,

which shows that L’ is a consistent extension of L and (L)™' = (L) : H;*(Zg) —
L?(Z) is the corresponding solution operator. Then to every H € H;?(%,) there
exists a unique p € L?(X,) such that L'p = H in H;*(3y) with the desired estimate.
Now thanks to |[Lemma 3.1.34) we even get a solution for the very weak Dirichlet
problem with inhomogeneous boundary conditions (3.17): By [Lemma 3.1.34 we can
identify every g € H~1/2(T") with some functional

by=~(9,T0 ) g2y irreey = H € Hp (So).
Then there exists a unique p € L?*(3y) solving L'p = H which in particular gives us
_<gaTn(p>I§[—1/2([‘),1§[1/2(1") = (H, 90>f152(29),ﬁ%(29) = (p, Ap)2

for every ¢ € H% (%) which is indeed the very weak formulation of (3.17) showing
that p solves (3.17)) in the very weak sense. Also the estimate follows:

Ipllz2(me) = N7 Hllzas) < N a2 e2mon H a2,
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< ||L_1||$(L2(29),H§)(29))||9||ﬁ1—1/2(1“)

with C' = ||L_1||$(L2(29),ﬁ1§3(29)) > 0 being the same constant C as in |Lemma 3.1.31}
0

3.1.4 Korn’s Inequality for Convex and Non-Convex Wedges
For 0 < 6 < 7 we define the upper wedge of opening angle 6 as
¥ = {(zl, z3) € R? : arccot (i—;) <0,y > O}

and the lower wedge of opening angle 0 as 3, = {(z1,22) € R? : (z1, —22) € T] }.
Finally, the wedge of opening angle 26 (sector of opening angle 6) is given as
Yy = (0,00) x {0} UXS UX,. Note that ./, is the right half plane (0,00) x R.
Now, the following variant of Korn’s inequality is available for the (right) half plane;
cf. [7]:

3.1.36 Lemma. Let ]R2>O = YXr/2. There exists a constant C' > 0 such that

IVel2aquz sy < C (lZagez, mo + D@2z, poes) )
for u € H'(RZ,,R?).

Proof. Following the proof of [7, Lemma IV.7.6] the assertion follows immediately
by replacing Necas’ inequality for bounded domains with Necas’ inequality for the
half-space [7, Proposition IV.1.5] in the last step. O

In order to transfer Korn’s inequality to convex and non-convex wedges, we first
prove Korn’s inequality on the first and second quadrant:

3.1.37 Corollary. Let R%, , = E:/Q. There exists a constant C > 0 such that

IVl moey < C (Il gy + ID@Iss, goes))
for allu € H'(R%, ,,R?).
Proof. Step 1. For A = (A1, X2) € R? we define the extension operators
EnEy: L2(R2>0,+) - Lz(R2>o)
by setting
f(z1, 22), if x5 > 0,

(Exf)(z1,22) = ,
>\1f($1, —.’EQ) + Azf(xl, —21,'2), if Ty < O,
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for z € R?, as well as

, f(z1,22), if zo > 0,
(ExS) (21, 32) =
—)qf(.'El, —.’132) - 2)\2f($1, —21172), if T < O,

for z € R2, for functions f € L*(R% ), respectively. Clearly, both operators are

linear and continuous with

1 1aez, ) < I FIagea,y < (U P+ 2Dl I, ) = CallFagea,

and

11z, ) S NESNTaz) < U+ P + 4 IF 2z, ) = CAlFIZ2ge, )

for f € L>(R%, , ), respectively.
Step 2. Now, let RZ, = ¥, and let A = (A1, X2) € R? with \; + Ay = 1. For
f € HY(R? 20.+) We then have 0,16\ f = £,01f as well as

/R (O2p)Enf dzx

>0

_/ (O2p) f dx +/ (3280(901,962)) (A f (21, —22) + Ao f (21, —272)) dz

= [ @0 4Mﬂmﬁ)+&ﬂm,»—f@hm2@q—éz<M&ﬂdx

>0,+

—0

— 2 (p(IL'l, CL'Q) (—)\1an($1, —$2) — 2)\282]‘(1‘1, —21172)) dx

=—/ 0(EDof) du,

for p € D(Rio) which shows that 0,E, f = £,02f. Note that the condition A\; +A; =1
is necessary to obtain the latter relation. It follows that &, : H*(R2, ) — H'(R2)
is well-defined, linear and continuous, provided that we assume A\; + Ay = 1.

Step 8. Now, let A = (A, A2) = (3,—2) and let p = (1, 2) = (—3,4). Then we
have A\ + Ao =1, p1 + pe =1, —A\; = p; and —2X3 = uo. Note that the latter two
relations ensure that £ = &,. We fix u € H'(RZ, ,,R?) and define v € H'(R%,, R?)
as v = (v1,v2) = (E\uq, E,uz). Now, we have

”u”%Z(R? LR2) = ”'U“L?(]R2 JR2) < max{Cj, M}l|u”L2(R2 JR2)
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using the estimate from above as well as

81’01 82’01 5)\61114 Euc?gul
Vo = =
311)2 82’02 8#8111/2 8,:621142
and
O1v1 %(327)1 + O1v2)
D(v) =
%(82’01 + 81'02) 62’02
_ 8)\81’U/1 8“%(821!1 + 61u2)
gué(ag’llll + 8111,2) Sl’ﬁqu ’

which implies that

||vu||i2([@2;01+,11@2x2) < ”VUH%F(RZ;O,]R?X?) < maX{CA,OmCL}HVUH%?(RZ;O#,RM?)

and
||D(U)||i2(na2>0,+,n@2x2) < ||D(U)||%2(R2>O,R2x2)
< max{C, Cy, CHID W12z, g2y
Now, the assertion is a direct consequence of |[Lemma 3.1.36] O

As a consequence we also obtain

3.1.38 Corollary. Let RZ, = ¥ /o There exists a constant C' > 0 such that

”VUH%Q(Rio’_,RQX?) <C (”11’”%2(]1%10’_,[[{2) + ”D(u)”%%ﬂ%io,_,[@%@))
foru e HY(RZ, _,R?).

Proof. This result follows with the same arguments as used in the proof of
ary 3.1.37| from [Lemma 3.1.36l Alternatively, this result can be deduced from
|Corollary 3.1.37| by means of suitable reflections w.r.t. the half axis (0,00) x {0}. O

For our next result we introduce the following notation: For M € L>(R2,, R**?)

we define the modified rate of deformation tensor as
1
Dpy(u) = 3 ((Vu)M + MT(VU)T) (ue Hl(RiO,R2)).

Note that Dy(u) € L*(R2,, R**?) for u € H*(R%,,R?). Also note that for M =
M € R*? we have V(Mu) = MVu and D(Mu) = (M (Vu) + (Vu)"MT) for
u € H(R?,, R?), which yields

>0

D(M~Tu) = M‘T% (Vu)M + MT(Vu)") M~ = M "D p(u)M ™!

for u € H'(R2,, R?) provided that det(M) # 0.
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3.1.39 Corollary. Let R2) := X,/,. Let My € R¥? with det(My) # 0. Let
M € L*(R2,y, R**?) such that M|gz ou = Mz for RZ,. =37, Then there exists
a constant C > 0 such that

”V’u‘”i?(Rio,Rz“) <C <||u||2L2(R2>0,R2) + ||DM(U)||%2(R2>O,R2“)>
for u € HY(R?,,R?).

Proof. Let Cyr = max{|M}"|,|M_"|,|MET|,| M|, | ME|,|M-"|} > 1 and let C >0
be the constant in Korn’s inequality for R, , obtained in [Corollary 3.1.37| and
(Corollary 3.1.38, For u € H'(R2,, R?) we then have

”Vu”iz(Rio,RZX?) = ||vu||%2(R2>0,+,R2><2) + ”VUH%2(R2>O’_,R2X2)

< C <||M-:Tvu”%2(]R2>0,+,R2X2) + ”M—_Tvuué(mo,_,ﬂ{?x?))

= G (I MG sz, oy + IV T Bz, o))

< OO (1M ulZaqee, sy + D0 B, gy
M s,y + IDOMET0) e, o)

< CC% (IulZaque, moy + IDM) ez, e
o ulZaguz, mny + 1D oz, poes))

= CC% (N[ull2aqu, oy + 1Da(®) 2agez mes)) -

which is the asserted estimate. n

Finally, we are able to transfer a variant of Korn’s inequality from the half-space

to convex and non-convex wedges:

3.1.40 Corollary. Let 0 < § < w. There exists a constant C > 0 such that
IVullZ2symor) < C (lulliagm, o + ID@Eaw, pon)  (u € H (S, RY)).
Proof. We fix u € H*(Xy,R?). Using the transformation ® : R?2; — X, given as
O (1, x2) = (21 + |22| cos(d), z2) (x € Zy),
we set v :=uo® € H'(R?,,R?). The inverse @' : £y — R%, of ® is given as

O (1, z2) = (z1 — |12| cos(8), z2), (xz € L),
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and we have

1 sgn(z) cos(d)

Vd(z) = (z € RY),
0 1
1 —sgn(xq)cos(d
V(@) (z) = () cos(?) (z € RS).
0 1

Note that the composition with ® and ®~! constitute linear isometries from L?(%,)
onto L*(R%,) and from L?(R2;) onto L*(3y), respectively. Now, with V(®~1) =
(V(®1) o®) o d! =: Mo ®! the chain rule yields

Vu=V@wod!)= (Vo) o @ HV(®7!) = ((Vo)M) 0 71

and, consequently,

Dlu) = % (Vu+(Vo)') = % (Vo) M) 0 &1 + (M7 (Vo)) 0 &)
= (Dm(v)) o @71
Moreover, we have
M(z) = 1 Fcos(b) — M, € R¥® (e R2>0,j:)7

0 1

which shows that M € L*(R2,, R?*?) satisfies the assumptions of |Corollary 3.1.39
Therefore, with Cy; := max{|M,|,|M_|} > 0 we obtain

IVullZam, poxzy = ((VO)M) 0 @7H[a s, pasay = [(VO)MIL2ga | poxe)
CullVolZeaz, poxey

CC% (I0l22qea, 5oy + 1D @) B soes))

IA

IA

O (I1w0 @l ua oy + I1D() 0 BlZags gy )

= CC% (Ilull22(s, g2y + 1 DW)[122(5, poxzy ) »

which is the asserted estimate. O]

3.1.5 Scaling of Norms

One advantage of working with homogeneous Sobolev spaces on sectors lies in the

fact that the sector ¥y is scaling invariant and that the norms in the homogeneous
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setting have nice scaling properties. Hence, we briefly collect those properties in the
following statements. We start with the calculation in Sobolev spaces of positive
order which turns out to be the easier case. We will consider the scaling on sectors
Y9 and on the boundary I' separately.

3.1.41 Lemma. Let A € X, /3 and k = 0,1. We define

S HH(S) (), sne =1 (7).
7 s H¥(Z9) - B (S0), (S 1)(@) = £ (vINle).

Then
1S Fll ey = N 21 e,y and 187 Fllgnyy = T2 21 F | sy,
such that
IS1 2 amcmgy = N2 and  (IS7H | ygrsyy = 2712

Proof. Tt is obvious that S~ is the inverse of S and $S~! = §~15 = I on H*(%).
Then a straightforward calculation yields
2 1/2
dx)

1S fll e csyy = IV*SFll22(s0)
2 1/2
dx)

- Av - x
()
= A2V oy = T2 £ 1l v sy

w7 ()

since

2 2

()

= [ V57 @)* P dy

. <_>
H \/m L2(3) o

= V¥ £ Z2(z) A

For the inverse we obtain what we have expected:

157 sy = |95 ] sy = |9 (7 (VIN))

L2(2y)
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71 (1)

= ATV e = A0l s

= A2

L2(Z)

since analogously to the calculation above we have

()

2

L%(Z) )

= [ V@I dy

ka< |)\|x) ‘2 dx

= ||ka||?;2(z:9)|)\|_1

using the transform y = \/|A|z and y = z/+/|\|, respectively. This immediately also
yields the assertion regarding the operator norm. O

3.1.42 Lemma. Let \ € 3./, and k = 0,1. We define S,S~': H*T) — H*T) as
in|Lemma 3.1.41. Then we have

IS llaey = N 4 fllgney  and  1S™ Fllgnry = 270 £l sy

hence
11 ey = T/ and 1S pgarnry) = AT

Proof. Note that by [Lemma 3.1.5| we can identify L?*(T") with L?(R) on the boundary.
Hence, the transformation from [Lemma 3.1.41| changes a little bit:

2 1/2
15 ey = 105 sy = ( [ (s (7)) @ da:)

= |A|7F/2 (/F aicf<\/a|;7|>2d$>1/z

= (X707 fll ey = N2V N ey
2

. t Lt
=Lt (o Gim)) ()
= [ 16" F (o) 6@1 /M at
= [ 18 £ @) /1N do.

since
2
dt

J

(i)
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The same holds for S~ (calculation can be done analogously to the ¥4 case as seen
in [Lemma 3.1.41):

1S ey = 1078 Fll 2y =

(£ (Vi)

L2(T)
= 2 (@81) (VI |,y = N2 008
= 2740 £ 1 o ry-
Hence, the assertion follows. n

3.1.43 Remark. In the context of [Lemma 3.1.42 we will be mainly interested in

the norm scaling in a2 (T"). To this end, we apply the Riesz-Thorin interpolation
theorem (see e.g. [51]), to S, S~ : L*(T) + AX(T") — L*(T) + HY(T) (we note that
interpolation is meaningful in this case by the observation we made in the beginning
of. Then we deduce that S, S~ : HY/2(I") — H'/2(T") are bounded and

1/2 1/2
IS0 gz < U122y IS Sy = 1
— —1111/2 1/2
1™ Nz qarvvayy < IS 2reaepllS ™ Igzs oy = 1

Hence, from this we infer for f € HY/2(I):

£l zr2ey = 1SS Fll sy < NSFllznraey < Nfllzrary,

to be precise this means
£ lzr/2y = IS F zr1r2ry -

Now we need to calculate the norms in Sobolev spaces of negative order. To this
end, we again consider the operator S in Y first for £ = 1:

3.1.44 Lemma. Let A € ¥y and
S HY(Z) = HY(Zy), 87f =|)NS7S,

S H'(Z) —» HY(Zy), Sf = |\"'SS,

where S, S™! are defined as in |Lemma 3.1 .41|. Then for smooth functions g € Cg5,, (o)
the dual operator (S~ is given as

(571 : Hy' () — Hg ' (S),

((S_l)lga '>ﬁ51(29),ﬂ1(29) = (Sy, ‘>ﬁ51(29),ﬁ11(29) )
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with operator norms

||S_1||z(1§r1(29)) =[Al = ||(S'_1)/||z(1§r51(29)),

~ _ ~1!
||S||z(1§r1(29)) = [Al ' IS ||f(ﬁ151(29))-

The statement also holds in divergence free spaces, i.e., in H: (3q).

Proof. By [Lemma 3.1.41] we immediately deduce

157 Fllin(mgy = M fllanyy  and 18 F sy = N llansy)-

This yields the assertion regarding the operator norms. Next, we want to calculate
the dual operator (1) : H3'(Z) — Hy*(Zp):

(Y9, Dirg iy = 9,57 02 = [ @S (@) de

4

= [ 9@ (Virlz) e

Lo

= (99, f)ﬂgl(zg),ﬁl(zo)

for every f € H'(Z¢) and g € Co.(Xg). Since the set of functionals of the form
HY(Z9) > f > (g,f)2 with g € C25,.(Xp) are dense in (H ()" (see |Lemma 3.1.11[)

we obtain

(8Yg= eliglo Sg, in H7' (%)

where (g¢)¢ € Cg5,(20) is a sequence where (gy, -)2 is approximating g € H7H(%).

Hence, the assertion holds. n

3.1.45 Lemma. Let A € X,/ and k = 0,1. As in|[Lemma 3.1.44 we set

SUEND) BT, (3@ = VST

with S defined as in|Lemma 3.1.41. Then the dual operator (81) : H*(') —
H*(T) for smooth functions g € Con(T) is given as

(579 ) ooy ey = (59 Vs e

with

157 L arr ey = N2 = 15 | -+ ryy-
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Proof. 1t immediately follows
IS~ Fllzre ey = 21 1] ey
for k = 0,1. Also the dual operator (S~!) : H=*(I") — H~*(T') is given as
(Y0, D) sy = 0. 5 ar = [ o@)(E1)(e) de
- / @)f (VM) daln2

=9 (ﬁ) f(z) da

= (59, ) gr-r(r, i (v

for f € H*(T") where we again identified L2(T") with L2(R) and for A (") we used the
representation of the functionals in A~!(I') = (A*("))’ from [Lemma 3.1.11| Using

the density argument again we obtain
(8')g = lim Sg, in H*(T)
£—00
for any sequence (g¢)¢ € Cg5,(I") where (ge, -)2r is approximating g € H*D). O

3.1.46 Remark. In the context of we are interested in the norm scaling
in H=/2(T"). To this end, in order to obtain the estimates in the H~1/2(T") norm we
again have to apply the interpolation argument: S—! : L2(I')+H(I') — L*(I)+H(I)
is bounded. Applying the Riesz-Thorin interpolation theorem (see e.g. [51]) we know
that S~1 : HY%(I") — HY2(I) is also bounded and its operator norm can be
estimated as

- 1 —111/2 1/8) )\ [1/8+1/4 _ | )\|1/2.
157 vy < 157 ||Wm)||s 1 sy = PRI = |

such that for the dual operator (S~1) : H=1/2(T') — H~1/2(T") we obtain

1™ o1y = I8 oz < IAM2.

3.2 Reflection Invariant Sobolev Spaces in Sectors

In this section we introduce subspaces of (in)homogeneous spaces that consist of
even and odd functions. This later allows us to consider functions on the wedge X5
as defined in which is the natural domain to some systems from fluid
dynamics, as e.g. the contact line problem from Another advantage of
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considering reflection invariant subspaces lies in the fact that given the correct sym-
metry, multiplication with sgn is a bounded operator which yields that multiplication
with the normal vector n is also a bounded operator (see [Lemma 3.2.8).

Since many results from are transferable, we keep most of the proofs
short and sometimes also do not formulate the corresponding statements from
in the setting of reflected spaces. However, we put emphasize on the fact
that almost all results from also hold in the setting of reflection invariant
spaces.

We start with the definition of a reflection invariant subspace. For a function space

E on ¥y we set
EiR::{uEE::I:Ru=u}

in case that functions in E are vector-valued and if functions in F are scalar-valued

then we define
Eir ={u€ E: tru=u},

where the reflection is defined as Ru = (ru', —ru?) and rh(z1,z2) = h(x1, —z2) for

u = (u',u?) and h : ¥y — C. For matrix-valued functions we set

E.r ={u€ E:+Ru=u},

ubl b2 rubl gl
Ru=TR\| ., ,5]= 2,1 22 |-
u>l u?® —rut  ru®

At first we collect some basic properties of (in)homogeneous spaces in the framework

where

of reflected spaces. The proof is straightforward and hence is kept short.
3.2.1 Lemma. The following assertions hold:
(i) +r € Lis(H*Z0)), || £ 7ll sangmyy = 1 (£7)? = sy, (£r)' = %7 for all
k € [0,1]. This also holds for ¥y replaced by T'.

(i) £R € Zis(H*(Z)?), || + Rl y(rseyy = 1, (£R)* = f*(zy2) (ER) = £R for
all k € [0,1]. This also holds for ¥y replaced by T.
(iit) For k € [0,1] the operator

v+ Rv
2

is a bounded projection onto H ¥(32¢)+r- In particular, H k(3¢)+r is closed in
H*(%)? and we have

(H*(S0)<r) = (Q=H"(Z0)) = Q=(H"(20)*) = (H*(%0) )1
This statement also holds for £R replaced by +r and ¥y replaced by T'.

Qx: H*(Z)? = H¥(D)?,  Quv:=
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(iv) For k € (0,1] we have C=(Tg)sr < H* (o) sr < H*(Zo)4r.
(v) For s € (0,1/2] we have C=®(T\{0})2r <% H*(D)ar < H*(D)4r.
Proof. (i) We prove the statement for k = 0,1: Let u € H*(Z) be arbitrary. Then

Irul s,y = 3 [ 18°(ru) (@1, 22)|? day da
o

|la|<k

= Z /29|(7°3au)($1,1’32)|2d$1 dxy

|| <k

S /E o u(er, ~) do do

o<k

_ 2
- ”u”ﬁk(ze)
using the transform (z1, ;) — (x1, —x2) and the fact that Xy is scaling invariant.

Obviously, r is self-inverse and 7% = I fk(5)- The reflection of a distribution f €
H7*(%y) is defined as

(rf, ‘P)f{gk(zo),f{k(z)o) =(/, T‘P>ﬁ5k(ze),f{k(ze) (p € Hk(zé')),

which coincides with the definition of the dual operator 1’ € .Z(H7*(Zy)) such that
we obtain ' = r. Then the assertion follows for £ = 0, 1. Interpolation yields the
statement for all k € [0, 1].

(ii) The assertion follows from (i) since R = (r, —r).

(iii) Thanks to (ii) it is obvious that Qi € .Z(H*(Z4)?) for all k € [0,1]. Further-

more, ()1 is a projection since

v+ Ry ERRLRER 4 Ry
Qo= T =2 T80 _UER_q,,
Now we aim to prove R(Q+) = H*(Z¢)+r. Let v € H*(Z)2. Then
+ R +R
:l:RQ:t’U = :I:RU 9 Y = g_'_ ° = Q:I:Ua

hence v € H*(Z¢)+g. On the other hand, let v € H*($)+r, ie., 2Rv = v. Then
Qiv = % =wv and v € R(Q+). Indeed, ﬁk(Zg)iR is closed since the range of
a projection is always closed. The fact that @), = Q.+ follows as above and as a
consequence we obtain (Q+H*(29)2) = QL (H*(%))2).

(iv) First we note that Q. : C2°(Xg)? — C=°(Xg)? again with

Q:CP(%6)* = C(9)+r

using the same calculation as in (iii). Then [Lemma 3.1.7| combined with (iii) and
Lemma 3.2.2((iii) yields the assertion. The proof for (v) follows analogously. O

72



Section 3.2. Reflection Invariant Sobolev Spaces in Sectors

3.2.2 Lemma. Let k € Z and 1 < p < 0co. Then the following assertions hold:
(i) £r € Zs(WFP(Zy)), || £ Tllwres,) = 1, (£r) = £r and (£r)? = Tykn(sy).-

(i) £R € Z;s(W*P(36)?), | £ Rllwrs(s,)2 = 1, (£R)' = £R and
(:l:R)2 == IWk,p(29)2.
(iii) The operator

v+ Rv
2

Qx : WFP(29)? = WFP(%)%, Qv =

is a bounded projection onto W*P(3g)+r which is orthogonal for p = 2. In
particular, W*P(3g)1g is closed in W*P(34)? and we have

(WHP(S0)£r)' = (Q=W™(56)*) = Qe (W (Z5)*) = (WH(50)) sr-

The same assertions remain true, if W*P(3q) is replaced by W*?(T) and R by

r.

(iv) For k,m € Z,k < m, we have the embeddings W™P(X9)+r < WHP(Zg)+r and
Wm’P(F)iR i) Wk,p(l"):tR.

(v) For m € N it holds H (S9)+r < HL (Zo)+r.

Proof. (i) - (iv) essentially follow as in [Lemma 3.2.1
(v) By [Lemma 3.1.8| we know that the statement holds in the non-reflected case.

Then the assertion follows from (iii). O

By the observations we made above we are now able to characterize interpolation of

reflected spaces by making use of the bounded projection )1 from and
Lemma 3.2.2] Hence, interpolation of reflection invariant spaces are then well-defined

by applying the standard argument from [51, Section 1.2.4]:

3.2.3 Corollary. Let k€ N, 1 <p < oo and s € (0,1). Then

H*(Z)1r = (LA(Z0)+r, H (Z0)+R)s 2,
Wk (Se)xr = (LP(39)+r, WP (56) £R) s p;
WP(S9)sr = [LP(Z6)+r, WP (20)+R)s,

where W) (3g) denotes the Sobolev-Slobodeckij space (see [51, Chapter 4]). The above
statements also hold with £R replaced by +r and g replaced by I'.
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Proof. This follows from the fact that (). is a bounded projection onto aH 1(3¢)+r

and W*P (%) g by [Lemma 3.2.1{(iii) and |[Lemma 3.2.2(iii). Hence, Q. is a retraction

and the assertion follows from [51, Theorem 1.2.4]. O

3.2.4 Remark. It is straightforward to verify that all results from can
be transferred to the corresponding reflection invariant setting. We will not state
all results again in this section but focus on results which are essential within this

thesis. However, transferring the results almost always makes use of the projection

Q@+ from [Lemma 3.2.1 and [Lemma 3.2.2

3.2.1 Multiplication with the Sign Function

In this section we will prove that multiplication with the sign function sgn is a
bounded operator if the correct symmetry is given. Hence, then also multiplication
with the normal vector n = (—sin(f), sgn cos()) is well-defined. This shows that
introducing reflection invariant subspaces is somehow natural in order to perform
analysis on sectors.

At first we briefly define the reflection invariant subspace of a function space where
functions f : R — R™ are contained. By making use of push-forward ¢° and pull-back
¢¢ from we can reduce the boundedness of the tangential and normal
traces to corresponding estimates on R.

3.2.5 Corollary. Let s € [-1,1] and (%, { from[Lemma 3.1.5 be given. Then
(0 € L(H*(R)sr, H'(Ts)sr) and (€ Lo(H*(Ts) v, H (R)27)
for s € [—1,1]. Here, we define for any scalar-valued function space E on R
Eii ={u € E : £7u(t) = tu(—t) = u(t)}
and any vector-valued function space E on R
E.; = {u=(u',v?) € E: £R(u},u?)(t) = £(u'(—t), —u®(—t)) = u(t)}.

Proof. Let s € [-1,1]. The assertion essentially follows from [Lemma 3.1.5. We note
that if f € H%(Ds)+, is smooth with f(zy, —z2) = & f (21, z2) then

Gof(=t) = £ (cos(9)[¢], —sin(6)t) = +f (cos(B)[t], sin(6)¢) = +¢5(f)(2)-
On the other hand, if f € H°(R)4; with f(—t) = ££(t) then

G f (cos(B)[t], —sin(9)t) = f(—t) = ££(t) = £ f (cos(9)[t], —sin(6)t) .

And the assertion follows. O]
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Next, we consider the boundedness of the operations 7- and n- from H*1/2(T', R?)

to H*Y/ (T, R) where 7 and n are tangential and outer normal vector fields given by

n(z) = n(z2) = (—sin(d), sgn(x2) cos()),
T(z) = 7(z2) = (sgn(z2) cos(h), sin(h)),
for £ = (z1,22) € ' (cf. Lemma 3.1.1). However, as we will observe this is only

achievable if the functions have the correct symmetry, since multiplication with sgn
is not a bounded operator on H'/?(R) in general, cf. [51, Section 2.10.2, Remark 1].

We make use of [Corollary 3.2.5| to transfer results from R to I'. We finally prove

3.2.6 Lemma. For s € [0,1/2] the multiplication with the sign function is a bounded
operator on H*(R)_; and H~*(R);, to be precise:

sgn- € L(H(R)_, B*(R);) N L(H*(R)s, H*(R) ).
The statement also holds in the inhomogeneous setting.

Proof. Obviously, we have sgn- € Z(L?(R)) since sgn is bounded. Let f €
HY2(R)_;. Then we calculate by using the Slobodeckij norm:

o0 ey, = [ E = EIOE gy g

_/ / |x_y|2y)|2d dx+/()°°/0°°—|f(”|2:§|(§/)l2 dy dz
+2/ / |fm)+§|2 Ol dy dx

< O,y < Clf G s

where we note that

2/ / £ (=) + fly)? ddm_Q/ / f(= +fy)|2dydz

e
1fly) = f2)I?
_2/ / |y-|-z|2 dy dz

<2/ / - Iy—z|2Z)|2d +

< 2| fll 12 e

using the transform z = —z and making use of the symmetry f(—z) = —f(z) and
ly+2)?> = (y+2)? > (y—2)? = |y —z|* for y, 2 > 0. Interpolation (cf. [Corollary 3.2.3)
yields the assertion for s € [0,1/2]. The assertion for H~*(R); follows by duality
since (sgn-)’ = sgn- in L2(R) and (HY2(R)+;) = H~Y2(R)4; by [Lemma 3.2.1l O
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3.2.7 Remark. (i) Since holds, we can immediately deduce that
sgn-: H'/2(R); — H'/?(R)_; cannot be bounded. Since then by decomposing
HY?(R) = HY?(R); + H/%(R)_; in even and odd functions would imply that
sgn - would be bounded on H'/?(R) which definitely does not hold by [51,
Section 2.10.2, Remark 1].

(ii) Multiplication with sgn is known to be a bounded operator on H*(R) for

s € [0,1/2). Hence in [Lemma 3.2.6| we can actually drop the symmetry

restrictions for s € [0,1/2).

3.2.8 Lemma. For s € [0,1/2] we have

(v—>n-v) € f(ﬁls(F)R, fls(l")r),
(v 7-0) € L), BO(D),),

and

(v n-v) € L(H*(T)-g, A*(T)-,),
(v 7-v) € LH(D)g, H*()_,).

The same assertions hold true for the inhomogeneous counterparts of the spaces.

Proof. This is a direct consequence of [Corollary 3.2.5 and [Lemma 3.2.6 O

3.2.2 Elliptic Problems
In this section we briefly collect the results from transferred to the

framework of reflection invariant spaces. However, the strategy is always as follows:
Since we assume the data to have a certain symmetry, it follows by the uniqueness

that the solution also has to have a certain symmetry.

3.2.9 Corollary (Strong and weak homogeneous Dirichlet problem). For every
f € H ()4 there exists a unique solution p € HL(Zg)+r of in the weak

sense satisfying
IVPllza)en < Cllflla-1c2y)..
with C > 0 independent of f and p. If, in addition, f € L*(Xg)+,, then we have
Vp € H(Xy)+r and
||V2p||L2(29)iR < Ol fllz2 ()
Proof. Let p be the unique solution of from We assume f = rf.

Then it is straightforward to prove that rp solves A(rp) = rAp = rf = f. From the

uniqueness of the solution we infer p = rp. n
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The proofs for the weak and very weak (in)homogeneous Dirichlet problem are

given accordingly:

3.2.10 Corollary (Weak inhomogeneous Dirichlet problem). For every pair of data
(f,9) € H(Zg)1r x HV2(T), there exists a unique solution p € H'(3¢)+, of

in the weak sense satisfying
IVPlzzaren < C (111, + 19z, )
with C > 0 independent of f,g and p.

3.2.11 Corollary (Very weak inhomogeneous Dirichlet problem). For every data
g € HY2(I')y, there exists a unique solution p € L2(3g)+, of in the very
weak sense satisfying

Ipllz220)sr < Cllgllig-1r2(ry.,
with C > 0 independent of g and p.

3.2.3 Trace Theorems

In this section we collect trace theorems from and transfer them to the
setting of reflected (in)homogeneous spaces. Here, we will essentially make use of

the projection Q)+ from [Lemma 3.2.1] and [Lemma 3.2.2 which helps us to construct

even and odd functions.

Furthermore, thanks to the symmetry property we are able to prove the existence
and surjectivity of the normal trace Tj : HL (Z¢)r — HY?(I"), N H~Y/2(T"), which
we don’t obtain in the unreflected setting due to the unboundedness of multiplication
with the normal vector field.

3.2.12 Corollary (Trace theorem). The trace operator
T: H'(Z9)xr — HY*(T)sr
exists and is linear and bounded and satisfies

1Tull a2y < Cllwllirsyyin

with a constant C' > 0 independent of u. Furthermore, T is a retraction: There exists
a bounded linear extension operator

E : .FII/2(F):|:R — ﬁIl(E)iR

such that if & € HY/2(T)1x then we have u = Eu € H'(S¢)+r with Tu = @ and

lull i spyen < Ol g2y,
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where C' > 0 is again independent of .
All statements also hold for H'(3g)+, and HY2(T')4, and the corresponding inhomo-
geneous counterparts.

Proof. We only prove the case +R. The other case —R follows analogously. In view
of [Theorem 3.1.19| we only need to ensure that if Ru = u in ¥y then RTu =Tu on I’
and the other way around.

Let T be the same trace operator from [Theorem 3.1.19, First we observe that from
Lemma 3.2.1(iv) we obtain C>°(3)r < H'(Z9)g. Let u € H'(Z4)g be arbitrary.
Then due to the density there exists a sequence (uz)r € C°(Xg)r With uy — u in

H 1(39)r. Then obviously RTur = R(ux|r) = ux|r = T'uy since uy is continuous and

even in Y. Since T is a continuous operator thanks to [Theorem 3.1.19) we infer

RTu=RT <lim uk) = R lim Tu, = lim RTu, = lim Tu, = Tu
k—o0 k—oo k—o0 k—o0

where we also made use of the fact that by [Lemma 3.2.1(ii) £R : HY2(I') — H2(I)
is bounded.

Now let & € H'/2(T") be arbitrary, i.e., Ré = @. Then due to(Theorem 3.1.19| there
exists v = B € H' () with Tv = @. Setting u := 1/2(v + Rv) = Qv € H (Z9)r
(where @ is the projection from [Lemma 3.2.1fiii)) we deduce

Tu=T <%(v —i—Rv)) = %(Tv—l—TRv) = %(Tv—i-RTv) = %(Q+R@) = @,

where TRv = RTw. In fact this holds for continuous v € C°(Xg) and since the
continuous functions C°(Z) are dense in H*(Zy) and R and T are bounded we
obtain this equality for all v € H'(Zg). Then we can set Ei = u = Q,F# and
obviously E : H/2(I')\g — H'(Z¢)g is linear and bounded since E inherits the
linearity and boundedness of E and Q..

Replacing R by r we obtain the exact same statements for H'(Z), and H2(T), as
well as for the inhomogeneous case. O

3.2.13 Corollary. Let H% (%), be defined as in |Corollary 3.1.24. Then the
Neumann, trace operator T, : H%(Zg)1, — HY2(I), is bounded and has dense

range.

Proof. By |Corollary 3.1.24] the trace operator T, is well-defined by the same argu-

ments as used in [Corollary 3.2.12
Now let such v € C°(I'\{0})+, be given. Due to [Corollary 3.1.24] there exists

some @ € H2 (%) with T, = 8,% = v on I'. Using the same arguments as in
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ICorollary 3.2.12| we deduce that u = 1/2(@ £ i) = Qiu € H%(Z¢)+, (where the
operator (). is defined as in [Lemma 3.2.1). Then we observe

1 1
Opu = 58,1(71 +ri) = E(v trv)=v onl,
since v = £rv. In the second step we made use of the fact
ro, i =r(n-VTa) = Rn- RTVi =n-TVra = 0,ri,

where the third equality RT'V@ = TVra holds on I': Note that the equality holds for
smooth @ € C° () < H?(%) and R, : H%(Zg) — H%(Zs) and the trace operator
T : H () — HY2(D) is bounded due to [Theorem 3.1.19| and [Lemma 3.2.2(iii). [

3.2.14 Corollary (Generalized trace theorem). Let
TO : chiiv(ze):l:R — IAJ_l/2(1")iT
be defined by

Tov(y) = (n - v, ¢>ﬁ1—1/2(r‘)ﬂ,ﬁl/2(I‘)ﬂ = (v, VE¢>L2(26)1R7L2(29)iR7

for ¢ € HY2()., where E : HY2(I)y, — HY(Zg)1, is the linear and bounded
extension operator to the trace operator T : H 1(Ze)tr — HY 2(T) 4y, characterized by

the inhomogeneous Dirichlet problem:

AEY =0 in X, EYy=¢ onl,

see |Corollary 3.2.10. Then Ty is well-defined (especially independent of the choice of

the extension operator E) and bounded.

Proof. Note that the Weyl decomposition from [Lemma 3.1.15| also holds in the
setting of reflection invariant spaces since the weak inhomogeneous Dirichlet problem

(cf. [Corollary 3.2.10)) can be solved in the setting. Then the statement can be proved

as in the unreflected setting (Lemma 3.1.28) and all cited results can be replaced by

the corresponding results from the reflection invariant setting. O]

Since boundedness of sgn- is not given in H'/2(R) due to [5I, Section 2.10.2,
Remark 1], we cannot expect the normal trace operator T to be bounded in H'(%,).
However, [Lemma, 3.1.27| at least states that for any g € HY/2(T') N H~'/2(T"), we can
find u € H}, (Z¢) with g = w-n on I'. Thanks to |[Lemma 3.2.8| [Corollary 3.2.12 and
[Corollary 3.2.14] we now immediately obtain existence and boundedness of the trace

operator and thanks to [Lemma 3.1.27| we can even prove that Tj is a retraction.
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3.2.15 Lemma. The normal trace operator
Ty : HY, (Zo)r — HYA(T), N HYA(T),

is linear, bounded and a retraction. The coretraction is given by Ry = Q. Ry :
HY(D), N H2(T), — HL (Z¢)r where Ry is the linear, bounded operator from
[Lemma 3.1.27 and Q4 is the projection from[Lemma 3.2.2.

Proof. As already observed above the normal trace operator T is well-defined
and bounded by |[Lemma 3.2.8, [Corollary 3.2.12 and |Corollary 3.2.14, Note that
To : H},(Z9)r — HY?(T), and Ty from |Corollary 3.2.14| are consistent by the

formula for integration by parts. We apply the same arguments as in |Corollary 3.2.12]

and |Corollary 3.2.13| to obtain the symmetry properties. Furthermore, we infer that
Ry = Q. Ry : HY*(),NnHY2("), — HL (Z¢)r is well-defined, linear and bounded.
Note that Q, H} (Z¢) C HL, (). Hence, we have TyRy = H1/2(D),nf-1/2(r), and
the assertion follows. m

3.2.16 Remark. By the construction of the linear operator Ry in [Lemma 3.1.27 we

can already deduce that R, preserves symmetry properties, i.e., Ry = Q+Ro.

3.2.17 Corollary. The normal trace operator
To : H (Z0)r — HY*(D), N HY2(D),

is linear, bounded and a retraction.

Proof. By [Lemma 3.2.15( the normal trace operator Ty : HL (Z¢)r — HY?(T), N
H='2(I"), is bounded and surjective. We observe that

HY2(I), n H YD), — HBY*(), n A~ Y4(), — L*(T),,

since (H=Y/2(T),, H'/*(T"),)1/22 = L*(T"),. This shows that the L(T'), norm can be
estimated by the norm in AH'/2(T"), N H~Y/2(T"),. Then we can deduce that

HY2T), n B~Y4(I), = HV*T), n ~Y*(I),

topologically. Then in fact Ty : HL (Z9)r — HY2(T), N H~1/2(T),. O
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Chapter 4

2D Contact Line Dynamics

In this chapter we consider the following set-up of the contact line problem (here in

2D where the contact line is actually a contact point):

ou+ (u-V)u—divT(u,p) =0 in Useom{t} x Qt

Y

)
)

divu =0 in Ueo,m {t} x Qt),
)‘ul + (D(u)ns)l =0 on UtG(O,T) {t} X Fs(t)a
u?=0 on Ui {t} x T's(t),

T(u,p)ny = okny  on Uit} x Ts(2),

Vo, =u-ng on Ueom{th x Tf(t)

Ve =u-nc on Uomnit} x C(2),

0 =(Ve) on Ueom{t} x C(t),
Ule=0 = wo in Q(0),
I(0) =17,  inQ(0),
I's(0) =T in Q(0),
C(0) =Co in Q(0).

’ (4.1)

Here, Q(t) C R? is a two-dimensional domain at time ¢ € (0,7') which is moving
within the time ¢. By I's we denote the solid surface whereas by I'; we refer to the
free upper surface (cf. [Figure 1). Furthermore, ny and n, denote the normal outer
vector at I'y and I';, respectively. The surface tension coefficient is given as o and
the mean curvature as x. The normal velocity of the free surface I'; is denoted by
Vg Again, the stress tensor is written as

1
T(u,p) :=2uD(u) —Ip,  D(u) = 5(Vu+Vu'),
where p is the viscosity. At the contact point C the contact point velocity is denoted

by V¢ and nc¢ is the corresponding normal vector at the contact point.
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Note that the third and fourth equation of corresponds to partial slip boundary
conditions with slip length A and the fifth equation is the kinematic condition. The
sixth equation describes the normal velocity, whereas the seventh equation addresses
the contact point velocity. Note that both equations about the normal velocity and
the contact point velocity show that there is no phase transition at the interface
and at the contact point. The constitutive equation 6 = (V) models the contact
angle at the contact point, which is the point where the upper free surface I'; gets in
contact with the solid surface I';.

The chapter is structured as follows: At first we transform to a fixed wedge-
type domain (0,T") x Xy by applying a suitable transformation in leading
to the following resolvent Stokes system:

M —divT(u,p) = fi in Xy,
divu = fo in X,
T(u,p)n + oc(0)d%pn = f, on %y,
A+ g w) = f5 on 9%,
Then we study the resulting Stokes system in assuming fo = 0and f5 =0
for simplicity. We prove the existence of a triple (u, p, p) which solves the system
in the weak sense. Furthermore, the triple (u, p, p) fulfills corresponding resolvent

estimates.

4.1 Transformation

In this section we want to apply a transformation to (4.1) such that we have a fixed
(2 that is not moving in time such that a rigorous analysis is simplified. To this end,
we assume the origin to be located at the meeting point of I'? and F?. At first we

note that we can write the solid surface and the free surface as

Io(t) = {(%1,0) : w1 € (37, 00)},
Ly(t) = {(y1, (¢, 11)) 1 31 € (¥, 00)},
where h(t,-) is the height function. The contact point is obviously C(t) = (y*,0)

where h(t,y*) = 0, i.e., where the free surface meets the solid surface at yo = 0. We

want to parametrize I'y w.r.t. the y,-axis, then we have

Ff(t) = {(h_l(t’ y2))y2) ‘Y2 € (07 OO)} )
if we assume that h is monotone increasing. Then we set b(t, y2) :== h(t,y2). Now

we get another parametrization of I's and I'y:

Ls(t) = {(41,0) : 51 2 b(¢,0)},
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Tt(t) = {(1,52) € R? : y € (0,00), 31 = b(t, 42) } ,

and the contact point is now at C(t) = (b(t,0),0). Note that the initial free surface

IS = {(y1,52) € R?: 95 € (0,00), y1 =b(0,52) = h™(0,12) }

is given with initial contact angle 8y € (0, 7/2) between I’g and I'Y. Furthermore, we
deduce 0,,h(0,0) = tan(6p) by the fact that 6, is the initial contact angle and that
h(0,-) parametrizes I'}. Now we define the wedge for 6, € (0,7/2) as

Yo, = {(wl,xz) €R?: 2, € (0,00), 0< 1y < tan(@o)xl} ,
where we note that for simplicity we make the assumption
y}i_r}noo 0y, h(0,y1) = tan(f) (4.2)

(which means that at the initial free surface Fg’c even for large y; we still have the
contact angle 6y). Basically, we then have h(0,y;) ~ tan(6p)y; for large y;. The
transformation from the fixed wedge domain to the free moving domain along the
T1-axis is given as:

O(t) : g, = Q2),

(21, 72) = (41(2),y2) = O(¢, 71, 2) = (T1 — Ou,bo(0)z2 + b(¢, T2), T2),

where

Qt) = {(x1,22) : 1 = b(t,y2) for a ys € (0,00), z2 € (0, h(t,z1))}

={(z1,22) : 1 €R, x5 € (0,h(t,21))}

= {(z1,22) : 22 € (0,00), 1 > b(t,z2)}
and bo(z2) == b(0, z3). First, we need to assure that the transformation is well-defined
which means showing that for a fixed (z1,z2) € Xy, we have O(t, 21, z2) € Q(t). Now
let (z1,22) € Xg,. According to the definition of §(¢) it is sufficient to ensure that
%1 > b(t, Ze) for (Z1,%2) = O(t, 1, %) = (T1 — Orybo(0)xa + b(t, x2), z2). It follows
%o = x5 such that we need to prove z1 — 9,,b9(0)z2+b(t, z5) > b(t, z2), which actually
means that we have to assure z; — 0,,b0(0)z2 > 0. Since 0 < x5 < tan(fp)z; and
02,00(0) = cot(6p) we deduce

x1 — Op,bo(0)xe = 1 — cot(By)z2 > 1 — cot(bp) tan(fy)z; = 0.

(It holds 8,,b(0,0) = (8.,h(0,0))~! = tan(fy) ! = cot(hy) by the rule for derivation of
inverse functions.) Then ©(t) is well-defined for every ¢ € (0,7"). The full time-space
transformation is presented by

®:(0,T)xZg = |J {t} xQt),
te(0,T)
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(t, 1, 22) = (6, 51(2), 92) = (¢, 21, 72) = (¢, O(t, 21, 72)).
Obviously, then @ is also well-defined. Moreover, we define
p(ta 1, m2) = P(t, 1"2) = b(t’xQ) - ambo(o)x? ((ta 1, m2) € [O’T) X E90)'

Then we also have p(0,z2) = b(0,2z2) — 0z,b0(0)x2 = b(0,z2) — cot(fp)z2, which
results in

To—00 Ty To—>00 To — 0

— cot(fy) = Jim 0z,b(0, z5) — cot(fy) =0

by (4.2)) such that p(0,z2) — 0 as o — co. Then we can simplify the definition of
the transformation as

(Y1,92) = O(t, 71, T2) = (21 + p(t, 22), T2) : Tg, — Q2),
(151,5172) = @_l(t, yl,y2) = (yl - p(t,yQ),yz) : Q(t) — g,

We note that ©~! is well-defined as well: To this end, let (y1,%2) € (¢). By the
definition of Q(¢) and the property of h and b by being strictly increasing we know
that yo < h(t,y1) since (y1, h(t,y1)) € I'f(t) and on the other hand y; > b(¢,y,) since
(b(t,y2),y2) € T's(t). Then we deduce

z1 =11 — p(t,y2) = y1 — b(t,y2) + 0y, b0(0)y2 > cot(bp)yz > 0

since 6y € (0,7/2) and y, > 0 since (y1,y2) € (¢). For the second component zo we
obtain

0 < zy = yo = tan(fy) cot(fy)y2 = tan(y)0,,b0(0)y
< tan(6o)(y1 — b(t, y2)) + tan(6o)9y,b0(0)y2
= tan(6o) (y1 — p(t,32)) = tan(fo)z1,

which yields (z1,z2) € Xg,. Furthermore, it is obvious that © and ©~! are inverse to
each other. Then also

®:(0,T)x g, = |J {t} x Qt),
te(0,T)

(t, w1, 22) = (t,41(t), 1) = @(t, 21, 72) = (t,O(t, 71, 22)),
and

' | {t} x Q@) = (0,T) x Ze,,
te(0,T)
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(t, g1, y2) = (8 21(t), 22) = (8,91, 92) = (¢, 07 (¢, 41, 2))

are inverse to each other. We note that it depends on b(¢,-) which regularity the
transformation has.

Next, we want to apply the transformation to our main system in order to
get a system on a fixed time-space domain (0,7") X 3g,. To this end, we denote push

forward and pull back by

u=0v=vod®': |J {t} xQ) >R
te(0,T)

p=0q=qo®': |J {t} xQ1t) —R,
te(0,T)

and
v=0qu=uo0®:(0,T) x Ty, — R?,
q=bp=pod:(0,7) x 3y, — R,
where (u, p) is the solution of the original system (4.1)) and (v, q) will be the solution
of the transformed system.
Now, we need to transform the (u,p) terms in (4.1 to terms depending on (v, q),

since they are defined on a fixed domain. We note that if h and b, respectively, are
smooth then the Jacobian (derivation in space dimension) of © is given by

D@(ta xl)xZ) = ((1) apr(lt,x2)) s D@_l(t, y17y2) = ((1) _8y2p1(t, 3/2)) )

In order to obtain (4.1)) in terms of (v, q) we need to apply ®. to (4.1). At first we
calculate the transformation of the time derivative O,u:

P, 0pu = dyu o ® = (Gyu)(t, O(t, 21, x2))
= O¢(u(t, O(t, z1,22)) — (O, u) (¢, O(t, 21, 22))0p
= 0y — O, v0:p,
since
Os(u(t, O(t, z1,22)) = (Byu)(t, O(t, 71, 72)) + (Vu)(t, O(t, 1, 2)) T (8;p, 0)
= (Owu)(t, O(t, x1,x2)) + (O, u)(t, O(t, 1, Z2)) Orp-

N /

= (vu) (t7®(tix1;r2))am1 @(t,.’L’l ,.’1,'2)
= 0y (u(t,0(t,71,72)))

In general we can transform derivatives in z; as follows for arbitrary functions ¢:

q)*aﬂll()o = 8981(10 0d = (8zlc,0)(t, @(ta 1, 1"2))
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= (Vo)) (¢, 6(t, 71, xz))T@

=621®(t7x1712)
= Oy, (p(t,O(t, 21, 22))) = Or, Pup.
It will be more difficult to calculate the first and second order derivatives in x5 since

the transformation in x5 involves the height function p. At first we calculate the first

derivative:

®,0,,u" = (0,,)uf o ® = 0,,u"(t, O(t, z1,22))
= 6902 (uk(ta @(t’ 1, x2)) - (aﬂvluk)(t’ @(ta L1, zQ))awzp
= 0, 0" — 0,,0%0,,p

for £k = 1,2, since

a902 (uk(t7 @(t’ I1, .'172)) = (Vuk)(t, @(ta Ty, -’BZ))T (axzpa 1)

=0z, 0(t,x1,%2)

= (05, uF)(t,0(t, 71, 12)) + (&Eluk)(t, O(t, x1,x2)) O, p-

(. S

=0, (uF (£,0(t,21,22)))

The transformation of the second derivative is given as:

@,ﬁiuk = (Gizuk)(t,@(t, x1,%2))
= 832 (uk(t, O(t, z1,22)) — (8x18x2uk)(t, O(t,x1,22))0x,p
- (6gluk)(t’ @(t’ 1, x2))(aZ2p)2 - (amuk)(t’ @(t’ T1, 1:2))852/)
= (9221)'“ — 20,,0,,0"0,,p — 8§1vk(8x2p)2 - awlvka;p
for £k = 1,2. In the following we will show how we transformed derivatives in x5 of

second order more precisely: The difficulty lies in the fact that now mixed derivatives

in 1 and x5 are also involved now. First, we have
92 (uF(t, O(t, 21, T2)) = Or, (O, (UF (8, O(¢, 21, 22)))
= 04, (00, u") (¢, O(t, 21, T2))) (4.3)
+ O, (B, uF) (t, O(t, 1, £2)) Oz, ).

For the first part of (4.3) we have using the calculation of d,,(u*(t,©(t, z1,x2)))
above:

8w2((6w2uk)(t’ @(trxlvw?))) = (8§2uk)(t’ @(t7x17x2))
+ (O, Oy uF) (2, O(t, 21, 22))Oaop
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and for the second term in (4.3) we calculate:

O, (82, ") (2, O(t, 1, T2)) Bz )
= Oy, (8x1uk(t, O(t,x1,22)))0u,p + (azluk)(t, O(t, z1, xz))822,0

T

= (6:31uk)(t’ @(t? 1, x2))(az2p)2 + (awzamuk)(t? @(t’ L1, 1172))8932/)
+ (axluk)(ta @(ty L1, 1,'2))852,0

Hence, we obviously obtain with the calculation we made above:
D,0;,0,,u" = 0y, ®.05,u" = 0, (85,0" — 85,070, p) = 0,,0,,0% — 82 V*0,,p.

Using the calculations for u from above we are able to transform the pressure p
immediately:

@.Vp = (05,9, 02,9 — (02,9)(02,p)) = Vg — (0, (02,9)(0z,0))-

In order to transform the first two equations of we also need to calculate
®, divu = 0, v" + 0py0% — 04,0%0p,p = divv — (0;,0%) (04, )

for the divergence. Transforming the stress tensor, we first observe that

T(u,p) = 2uD(u) — Ip = p(Vu + Vu') — Ip

B Op ut Op,ul N Op ut Oy, u? pt 0
# Op,u?  Op,u? O, Op,u? 0 p?)’
hence the divergence of the stress tensor is given as

div T'(u, p)

1 1 1 2 1
-0 ((a )+ (o 5) -0 (5 )
= p(02,u' + 8,,0,,u%, 0,, 0y, u' + 02 u?) + p(02 u' + &2 u', 02w’ + 92 u®) — Vp
= p(282 u' + 02 u' + 8, 0,,u*, 02 u? + 202w + 0,,0,,u') — Vp
= pAu + pVdivu — Vp.

Having this form we can now transform the divergence of the stress tensor more

easily by using the transformations that we calculated before:

o, divT(u,p)
= p(29,02 u' + ®,02 u' + ©.0,,0,,u*, @02 U + 29,02 u? + 9,0,,0,,u')
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~ (9.0z,p, ©.0,,)
= p(202 v' + 2 v" — 20;,0,,0 0y, p + 02 0 (0,p)° — O v' 0L p
+ 8,,05,0° — 02 0°0,,p,
02,0% + 2(82,0° — 204, 02,0°0rp + 02, 0*(8a,p)* — 85,0°62,p)
+ 0, 00,0" — 02 0'0,,p)
— (02,4, 02,9 — (82,9) (0r.))
= divT(v, q) + p(—205,05,0" Opyp + 02, 0" (0r,p)? — 05,002, p — 82 V0, p,
— 40, 05,v° 0y, p + 202, V* (0, p)? — 20,,0°02, p — 02 0" Oy, p)
+ (0, (0:,9)(022p))
= divT(v,q) + p(—205, 05,00z, p + 02, 0(0z,p)* — 0,002, p — 02, (v%,0")Osyp
+ (0, =20, 05,00, p + 02, V*(0s,p)* — O, v 02, p)
+ (0, 02,9) (O, p)-

The Navier-Stokes nonlinearity is known to be written as

2
(u-V)u=> (u/0;,)u=u'dzu+vu*d,,u,

=1

which leads to

®,(u-Vu=®,u'®,0,,u+ ®,u*®,0,,u
= 00,0 + v?0,,v — V?0,,v(0y,p)
= (v V)v — v?0,,v(0,,p).

The deformation tensor is given as
1 1 Op,ut Op,ut Op,ut Oy, u?
D — - v + V T _ - 1 2 + T1 1 ,
(W) =5(Vut Vo) =3 ((azlm 8z2u2> (Bwul azzzﬂ))

such that for the transformation of the deformation tensor we obtain

®,.D(u)
1 [ (90 u' D.0,,ul 4 0,0, ut 0,0, u’
2\ \8,0,,u? ®,0,,u? ®,0,,ut D,0,,u’

O, v Op, vt — 0,010, p N Oy, 0! Oy, v?
Op, V% Op,v? — 0y, v20,,p Op, 0! — 05,01 0,,0 Oy, 0% — O3y V204, p

N
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Section 4.1. Transformation

1 0 —0,,v'0,,p 0 0
- D 1 1 2
(v) + 2 ((0 —81.11)281.2/)) * (—6“@16@;) —3z1v23z2p)>

1 0 —0p 0 0 T
=D i O v \Y%
“’”2( “(o 0 )*(—amp o) )

and using the transformation of the deformation tensor we can obtain the transfor-

mation of the stress tensor:

®.T(u,p) = 2u®,.D(u) — ®.Ip

— — v 0 —3m2p 0 0 ’UT 0

— 2uD(v) Iq+u<V (O . >+(_amp 0>V )*((aquamp))
_ 0 —O,p 0 0o r 0
raaen (52 ) (2 D) o)

Hence, the first two equations of are transformed.

Now we need to take care of the terms on the boundary. In order to transform
the third and fourth equation of we denote by 7s and nyx the tangential and
exterior normal vector at 0¥y,, respectively. We note that at I'y := ®,I'; we have
72 = (1,0)T and ny = (0, —1)T where

FO = (I)*Ps(t) = {(Il + b(t, 0),0) T+ b(t, O) Z b(t, 0)} = {(.’1)1,0) I Z 0}

as desired. Then we transform the third equation (note that 7, and n, denote
the tangential and outer normal vector at I';, respectively, i.e., 7, = (1,0) and
ns = (0,—1) and that the third and fourth equation are defined on I';):

®,(\u' + (D(u)n,)h)
=&, (A5 - u+ 75 - D(u)ny)
= A0, 7 - Du+ D7 - DD (u)Piny)

v (00 )-8 )

1
= My v+ 1sD(V)ns + éamvlamp,
and
®,u? = ®,(—n, - u) = —ng - v,

with both equations now being defined on Ty.
Next, we have to transform the equations defined on the free boundary. To this

end, we first need to transform tangential and exterior normal vector. We want to
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calculate the exterior normal vector at (b(¢,y2),y2) € I'f(t). Then tan() of the angle
6 at (b(t,y2),y2) is given by

Yo+ h—yo . 1
=i =1 =
tan(0) = lim b(t,ys + ) — b(t,ys) 70 b(t, ys + h) — b(t, yo) (915(¢, 92))
and for ¢ + 0 = w/2 we have

sin(7/2 — 0) _ cos(6)
cos(m/2—0)  sin(f)

tan(p) = tan(w/2 — 0) = = tan(0) ™! = 8,,b(t, y2)-

Then for the (not normed) exterior normal vector at (b(¢,y2),y2) with (7if)! = —1

we conclude
(7i)* = — tan(p)(ns)" = tan(p) = 8,,b(t,v2),
such that for the (not normed) exterior normal vector we obtain:
ﬁf(t7 (b(ta yQ)a y2)) = ﬁf(ta y2) = (_17 ay2b(ta y2))'
Hence, the generalized exterior normal vector at I'y(t) is given as

(=1, 0,,b(t, y2))"
V1+0, 0 y2))*

Next, we have to transform I'¢(¢). To this end, we obtain

ng(t, (b(t, ¥2), ¥2)) = ns(t, y2) =

F-i- = (I)*Ff(t) = {(b(ta y2) + abeO(O)y2 - b(t7y2)a y2) € R2 ‘Y2 € (Oa OO)}
= {(04:b0(0)y2, y2) € R? : 2 € (0,00)}
= {(cot(Bo)y2, v2) € R?: g € (0,00)}.
Doing the exact same calculation as above for (cot(6p)yz,y2) € 'y, we see that the
generalized exterior normal vector at I', is given as
(=1, cot(6h))” _ (-1 3yzbo(0))T
\/ 1+ COt(90)2 \/1 8y2b0

= (—sin(6p), cos(6o))”

ns(t, (cot(fo)ys, y2)) = nx(t, y2) =

(9 _ sin(80)® +cos(d)® 1
1 2_q cos(ty _ sin(0g)” + cos(6y _ .
+ cot(6o) * sin(6p)? sin(6p)? sin(6p)?

We note that ny is then independent of ¢t and y,. For the fifth and sixth equation in

(4.1) it is sufficient to see how the exterior normal vector ny at I'y is given. This
now yields

0.7 (u,p)ns = (BT (u, p))Puriy
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Section 4.1. Transformation

=T (v,q)ns

+p Vv( )—i—( >Vv)n +< )n
( 0 -0 _awzp 0 ! (aﬂth)(amp) !

=T(v,q)ns +T(v,9)(ns — nx)

( 0 -0 ~By,p 0 "N\ (0n0)00))

since ny is only dependent on z, but not on z;
Q.ns(t,z1,22) = ng(t, 0L, x1,22)) = nys(t, 1 — Oz, b0(0)z2 + b(t, 22), z2)
=ng(t,x2) = ns(t, 1, T2).

For the fifth equation in (4.1)) we have to take a look at the mean curvature k: First
we note that similar to our calculations for ny we can also obtain the tangential

vector 7;. Here, it is even easier: If

(F4(t, (bt 12),12)))" = (F£(t,12))" = 0b(t, 1)

then we obtain

(%f(t7 (b(t’ y2), y2)))2 = (%f(ta y2))2 = tan(e)(%f(t’ y2))1 =1
such that the normed tangential vector is given by

_ (0y,0(t,32), 1)T
Tf(t, y2) B \/1 + (8y2b(t, y2))2 .

At this point we also calculate the tangential vector 7% at ', as for the exterior

normal vector. Here, for (cot(fy)ys,y2) € I'y we obtain (using the exact same

arguments as for 7¢):

7s:(t, (cot(6o)y2, y2)) = \(/% =Te(ty2) = \/(laﬁb(oa(i)l;ol()OT))z

= (cos(bp),sin(p))?,

where we again made use of the observations above. We need the tangential vector
at I's(t) to calculate the mean curvature (we omit the arguments (¢,y,) in this

calculation):

k= —divp, n ——; Ornd -0 ; -1
- BT T (0,02 \ 1 2\ 1+ (9,,0)2 \9,b
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(By50)3;
= _—1 (8y2b> ) 82 b(l-’-(a”b)z();/2 b)202,b
2
1 + (ay2b) ]. \/14—?22(91/217)2 (1+?(/;y2b)2)3/2

N CRYA 2b (8y,b)202.b
T 0,022 T 1+ (0,022 T (1+ (8,,0)2)72
02 p
_ Y2
(1+ (8,,0)2)77
G G Oy
(L + b0 (0))2 ~ (L+ (0,092 T (1+ (3,,bo(0)2)72

1 , 3>
(T~

since p(t,y2) = b(t,y2) — 0y,b0(0)y, such that 92 b(t,y2) = 92,p(t, y2) and where we
used the calculation for 1+ (9,,b0(0))? = 1+ cot(6p)? = sin(6p) 2 from above. This
also shows that x is only dependent on z, but not on x;. Hence, transforming

= —sin(6)*02,p — 82,

yields
Q.k(t, z1,22) = K(t, O(t, 21, 22)) = K(t, 1 — Oy, bo(0)x2 + b(t, x2), z2) = K(t, z2)
= k(t, x1, T2).
This gives us all terms for the fifth equation of (4.1)). For the sixth equation of (4.1)
we need to transform the normal velocity V;,;. To this end, we define
Yo ¢ (Oa T) - RZ, t— (b(t7y2)7 y2)

for a fixed g, € (0,00). Then v, is a C*-path on Use o {t} xT#(t) since v, (t) € T'¢(t)
for each t € (0,T). Then for the normal velocity we obtain

Vo, (t,92) = ,, () - (2, y2)
1 -1
IRV T Eh (%b(t, y2>>
0:b(t, y2)
VI bt 1))
9ip(t, y2)
VI 0 1)

since p(t,y2) = b(t, y2) — Oy, b0(0)y2 such that O:p(t,y2) = 0:b(t, y2). Using the same
arguments as for the mean curvature x, we observe that V,,, is only dependent on z,

but not on z; such that

q)*vnf (ta 1, -1;2) = an (ta 1, .’L'z).
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Section 4.1. Transformation

Hence the kinematic condition (sixth equation of (4.1))) transforms as
an = Q*an = Q*(nf . U) =nNs-v

1
- _(-1,0.0) %
1+ (0g,b)? v

- _ vt + (Oz,b)v?
VI+ 0 1+ (0:0)
vt (Oy p)0? cot (o) v?

=— +
V14 (05,02 /14 (9,,0)? 1+ (8,,b)?
where we note that

Op, p(t, T2) = Or,b(t, 22) — 02,b0(0) = 0y, b(t, z2) — cot(by).

Hence, inserting V,,, we arrive at (again omitting the arguments here)
Oip = v' — (Opyp)v* — cot(Bp)v?

for the sixth equation of (4.I)).
It is obvious that we also obtain (0,0) = ®.C(t) for the contact point such that
®,nc = &,(—1,0) = ny = (—1,0) in this case. Hence, for the contact point velocity
we observe

D, Ve =Ve=u-ng = P.(v-ne),
since V¢ is independent of z; and z,. Furthermore, regarding the angle which is
determined thanks to the (derivative of the) height function p we obtain

0r,p(t,0) = 0,,b(t,0) — cot(8y) = cot(6(t)) — cot(fo)

at the contact point (0,0) now.
Now collecting all terms we obtain the following system after the transformation:

0w —divT(v,q) = Fi(v,q,p) in (0,7) x Xg,,
divev = Fy(v, p) in (0,7) x Xg,,
ATs - v + T2 D(v)ng = F3(v, p) on (0,T) x T,
ng-v=0 on (0,T) x Iy,
T(v,q)ns + 0¢(60)0;,pns = Fy(v, p) on (0,T) x Ty,
sin(0y)0sp + nx - v = F5(v, p) on (0,7) x T'y, (4.4)
Ve =v-ng on (0,7) x {0},
Or,p = cot(6(t)) — cot(hy) on (0,7) x {0},
0 = $(Ve) on (0,T) x {0},
V]t=0 = o in Xg,,
pli=o = po on I'y,
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with

Fi(v,q,p) = (05,0)0ip — (v - V) + v*(05,0) O, p
+ (=205, 02,005, p + 02,V(0z,p)* — 80,002, p + 02, (v*,0") Dy, p
+ (=20:,0:,0°00,p + 0;,0°(0:,p)" — 0:,0°0;,p) (0, 1))
+ (02,9)(0,p)(0, 1),
Fy(v,p) = (02,v*) 0z, p,
Fs(v, p) = —1/2(0,,0")0,,p,

0 —8y,p 0 0\ ,
Fy(v,p) =T(v,q)(ng —n) — ,LL(V'U (0 0 ) ( 6,5 0) Vv )n

—00? ¢(0
7 ””( T+ ( ay2b>2 0))”
0

F5(v, p) = —sin(6h)(0z,p)v"

and &(6p) == sin(f)® > 0. Here for simplicity we write n := n; and vy := ®,ug and
po = by are the given initial conditions. Note, that the contact point velocity V¢
has to be determined as well as the contact point via C(t) = (p(¢,0),0), whereas the
contact angle 6 is given by the constitutive equation § = ¢ (V) or prescribed.

4.2 Resolvent Stokes Equations on Sectors

In this section we provide a full analysis in the weak setting of the linearized version
of on a sector Xy with angle 0 < # < m/2 (see definition below). Note that in
contrast to system (4.4) we will consider (4.5) on the reflected wedge which yields
the sector. However, in the framework of reflection invariant spaces we obtain the
boundary conditions on I'y after restricting the solution to the wedge again and only
boundary conditions at I'; have to be imposed: In the framework of reflected spaces
(cf. we demand u! to be an even function and u? to be an odd function
w.r.t. to 2. Then we especially can ensure for 'y = (0, 00) x {0} with ny = (0, —-1)
and v = (—1,0) that

(ns - u)(t,71,0) = —u*(t,21,0) = u*(¢,21,0) = 0,
(15D (v)ns)(t, 21, 0) = %(azzul(t, 21,0) + By, u2(t, 71, 0)) = 0,
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for t € (0,T) and z; € (0,00). Then applying a perturbation argument yields the
original boundary conditions. Also we will simplify the fifth equation of (4.4). Since
p only depends on the y, component of the argument we deduce 87’?2p = sin(ﬁo)’“alf2 P
for k =1,2:

Bryp = (cos(6y), sin(6p))” (gylp> = sin(60)d,,p,

Y2 P
8y2 8y1 P

&2 p = (cos(bp),sin(6p))" sin(6o) ( )
ayzp

) = sin(6,)?0%, p.
Also note that in our framework all equations at the contact point vanish since in

our desired regularity class

u € Hl((o, T)’ H(J_1(29)) N Hl/2((0’ T)’ chiiv(29)) N Lz((()’ T)7 ﬁIl(EG))7
p € H¥((0,T), H™*(T)) n H/*((0,T), H(T")),
d.p € L*((0,T), HY(I)),

the contact point velocity Ve = —u? and 8,,p are not defined at the contact point,
hence the corresponding equations drop out of .

This section is structured as follows: We prove the existence of weak solutions for
the inhomogeneous stationary system (4.5)). Furthermore, we will prove corresponding
resolvent estimates. The strategy is as follows: In we first consider
the weak formulation of in the Hilbert space setting in order to obtain weak
solutions of the system with corresponding resolvent estimates for |A\| = 1. In
we will apply a scaling argument to finally obtain resolvent estimates
for \ with arbitrary large absolute value.

In the sequel we will consider the following stationary system with data (fi, f1)

that have the suitable regularity:

A —divT(u,p) = fi in X,
divu =0 in X,

4.5
T(u,p)n+ oc(9)02pn = fy onT, (4.5)

)\p—l—ﬁ(n-u) =0 onT,

where ¢(f) = sin(f) > 0 for 8 € (0,7/2). In the following 6 € (0,7/2) will be a
fixed angle throughout the section and (4.5 will be considered on the sector ¥y as
introduced in

Yo = {z = (z1,22) € C\{0} : |argz| < 6},
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where I' := 0%y denotes the boundary. First we assume A € ¥/, but later in the
section we will assume that |\| is large. For the reader’s convenience we recall
exterior normal vector field n and tangential vector field 7 at I" which are given in

Lemma. 3.1.1l for § = 0:

ny = (—sin(6), cos(6)), zy > 0,

n = n(xy) = (—sin(f), sgn(xy) cos(d)) =
(@) = (6),sgn(mz) cosl(8)) n_ = (—sin(f), —cos(d)),  z2 <0,

and

74 = (cos(6),sin(6)), x9 > 0,

T = 7(x2) = (sgn(x2) cos(d),sin(f)) =
(z2) = (sgn(z2) cos(6), sin(6)) 7_ = (—cos(f),sin(h)), 2 <O.

As we were originally interested in solving (4.4) on the wedge, we will consider (4.5)
on the reflected wedge (which is a sector) in the framework of homogeneous spaces
as introduced in In the following we will assume for the data

fl € ﬂ()_,(liiv(Eo)R = (f{iliv(ze)R)l a'nd f4 € ﬁ_1/2(F)R.

4.2.1 Remark. We set H5'(%) = (H*(Z)) and define the divergence of a func-
tional in H5'(Z) as

div : Hy'(Sg) = D'(S), div f() = (, Vo) =1 (5), 1 (S0) (¢ € C°(Z0)),

where D'(3y) denotes the space of distributions on ¥y. We note that indeed we have
H odiv(Ze) € {u € H7' (%) : divu = 0} by the following observation: Note that the
Weyl projection from [Corollary 3.1.17]is symmetric, hence we obtain the orthogonal

decomposition
(H'(S6)") = (Hyi(S0)) © (VHD(S0)),
with
(3, (S0))" = (VHD(Z0)*,

where M1 denotes the polar of M. We observe that the polar contains u € 5 ()
having the property

<U, v(p>ﬂo_1(29),f{1(29) =0 (QO € ﬂ%(ZQ)),

which especially yields the equality for all ¢ € C°(3g). Thus, divu = 0 by definition.
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4.2.1 Weak Solutions and Resolvent Estimates for |A\| = 1

In this section we prove existence of a triple (u,p, p) solving (4.5) in the weak sense
and fulfilling corresponding resolvent estimates. To be precise, we want to prove the

following
4.2.2 Proposition. Let 0 > 0, A € X/, with |\| = 1. Furthermore, we assume
fEHL(So)r  and  fi€ HVA(T)g

Then there exists a unique weak solution (u,p, p) € Hi (Le)r X L*(Zg), + H' (Z)r X
HYT), of fulfilling the resolvent estimate

lull2(se)n + [ VUl L2(20)r + \/5||P||ﬁ1(1“)r
+ 01020l g2y, + 72y, + 1PN L2(ey),+ (), (4.6)

<C (il soyn + Millz-)

with C' > 0 independent of o, \,u,p, p and the data f1, f4.

The strategy to prove [Proposition 4.2.2|is as follows: At first we prove the existence

of the velocity field u by considering the weak formulation of and applying
the Lax-Milgram theorem. From this we directly obtain resolvent estimates for
u. Next, we define the height function p by making use of the fourth equation of
. In order to reconstruct the pressure p we need to prove that p has higher
regularity. Then we can solve the very weak and weak Dirichlet problem to obtain p
and corresponding resolvent estimates are also obtained.

At first we need to derive the weak formulation of (4.5). To this end, let ¢ €
Coo (X¢) and data fi, f4 be sufficiently smooth. Then we calculate

(A, @)z — (divT(u, p), )2

= (M, )2 + (T'(u,p), V)2 — (T'(uw, p)n, @)2r

= (Au, @)z + 2u(D(u), V)2 — (p- I, V) — (T'(u, p)n, @)2r

D(u), D(¢))2 — (p, div @)z — (fs — 0¢(6)02pn, @)ar
D(u), D())2 = (fa, 9)ar + (0¢(0)82p,n - ),
D(u), D(¢))2 — ¢c(0)(07p, 8- (1 - 9))or — (fa, P)2r

oc(0)
sin(6)A

= (A\u, p)2 +2u

—_ o~ o~ o~

(
(

= ()\’U,, (10)2 +2p
(

= (Au, )2 + 2u

= (M, 9)s +2u(D(u), D(p))2 + (Or(n-w),0-(n - @))or — (fa,0)ar

= (fla (p)Qv
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where we inserted the equations from (4.5). The calculation above then leads to the
weak formulation of (4.5) for u given as

?’C(e) (Or(n-w),0-(n-@))ar

(Au, @)2 + 2u(D(u), D(p))2 + sin(6)\ (4.7)

= (fi,¢)2 + (fu, 0)2r.

In order to apply the Lax-Milgram theorem from [I’heorem 2.1.2| we have to consider
the weak formulation (4.7) in a suitable setting. To this end, we set

H' = {u€ H'(Z)" : divu =0, n-ulr € H'(I)},

1/2
equipped with the norm ||u||m: = (||u||§{1(29) +||n- u||§{1(r)) / which is the natural
function space to apply Lax-Milgram. We demand higher regularity for the boundary
term n - u|r such that the term (0,(n - w),0;(n - ¢))or is well-defined. Thus, at first

we prove

4.2.3 Lemma. Let § € (0,7/2) and XA € X,)5. Then there exists a unique weak
solution u € H, of the linearized problem ([4.7)). If |A\| = 1 then the solution u can be
estimated as

lull 20y r + IVUll 2250 + VOO (1 - )| L2(r)_,

< C (Il mon + el i-s2ys)

iv

(4.8)

with C > 0 independent of A\, o,u and the data fi, fs.

Proof. As already mentioned above we want to apply [Theorem 2.1.2| To this end,

we define the corresponding form to (4.7) as

ay : Hy x Hy — C,
oc(6)
sin(6)A

ax(u, p) = (Mu, )2 + 2u(D(w), D(p))2 + (Or(n - u), 0r(n - ¢))2r-

Furthermore, the functional £ on the right-hand side is given as (now assuming that

f1 and f; have the assumed regularity)
¢:Hy — C,
€)= (11 0) i, oyt @ + o) i /2(0y 12001

and / is linear (obviously), well-defined and bounded:

£ < il sl @llinmpyn + 1Fall oy lelliemy,

,d
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Section 4.2. Resolvent Stokes Equations on Sectors

< ||f1||1ffg,}ﬁv(2,,)R||90||H1(29)R +C||f4||1?1—1/2(r)R||<P||H1(29)R
<C (I1filazs, oy + Mallvzey,) lellin o

where we made use of the boundedness of the trace operator T : H Y(2g)xr —
H'2(T")1p from |Corollary 3.2.12| Hence, £ € (HL)' such that we only need to prove

that ay is a coercive sesquilinear form in order to apply [[heorem 2.1.2

It is obvious that a, is sesquilinear in both arguments. However, in order to prove

the coercitivity we need to apply Korn’s inequality from [Corollary 3.1.40L Then we
infer by the fact that A, \™' € £,/

|ax(u, u)|
oc(0
= N+ 200D + g 10 Wl |
oc(f
> 0 (M1l + 2D s + g 100 0l

> C(A) (”U”%%ze)R + ||Vu||%2(29)R + |0-(n - U)||%2(r)_r + |n- U||%2(r)r)
> COVlull

by the boundedness of the trace operator T : H*(3g)+r — HY?(I")+g from
lary 3.2.12/and n- : L*(T")g — L*(T), from [Lemma 3.2.8

lullz220)r + IVUllL2(20)r = Ul 21 (202

2 Cllullgreey, 2 Cllull2@ys 2 Clin - vl 2,

Hence, thanks to the Lax-Milgram Theorem (cf. Theorem 2.1.2) we can find a unique
u € H} such that

ax(u,9) =L(p) (v € Hp).
Now setting ¢ = u we immediately obtain the important resolvent estimate for u:

2 2 oc(f) 2
‘)‘”U”B(EG)R + 2N||D(u)||L2(29)R + W”ar(n : u)||L2(r)_,.

)

= ‘<‘f1’u>ﬁ[aéiv(26)R:ﬁéiv(20)R +(fa, u>ﬁ_1/2(F)R7ﬁ1/2(F)R

and since A € X,/ we immediately deduce

2 2 oc(f) 2
IAllwllz2sy) . + 2001 D)1 22(5,)x + W”@(n “w)||z2 ey,

< C (Wil oyl iy + sl sy el sy ) -
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Chapter 4. 2D Contact Line Dynamics

Thanks to Korn’s inequality from |Corollary 3.1.40| and u € H}, we have

1ull 415y, = IVl 20 < C (lullz2on + 1DWlz2(0)) »

such that we can absorb all |[u|z1(x,), terms on the right hand side by applying
Young’s inequality. At this point we are not able to absorb the |[u||z1(,), term as
well as the remaining ||u||z2(s,), term without leaving some terms containing || as
a factor on the right-hand side. Hence, we set |A| =1 to obtain

||u||%2(29)R + ||VU||%2(29)72 + 0|0 (n - “)||%2(r),r
<O (1A, e+ 1l rney)
and (4.8) follows for |A| = 1. O

4.2.4 Remark. (i) The reason why we don’t immediately get estimates for arbi-
trary A € X, /; follows from the proof: By applying Korn’s inequality in the

form of (Corollary 3.1.40] we obtain an extra ||u||z2(s,), term on the right hand

side which cannot be absorbed without leaving some terms containing A as a
factor. However, if we had the stronger Korn inequality

||V'U/||L2(29’R2><2) S C”D(U) ||L2(29,R2><2)7 (49)

then this problem wouldn’t occur and we would have obtained estimates for
all A € X, /5. To the best knowledge of the author, up to now it is not known
whether (4.9) holds or not.

(ii) Without setting f; = 0 the linear form ¢ would have had another term
—oc(0)AH(D: f5,0-(n - ¢))2r which is difficult to handle in view of getting
the resolvent estimate for u. Even by setting |A| = 1, we cannot absorb terms
containing ¢ term fully such that a term containing o as a factor would be

left on right-hand side of the estimate. Hence, the scaling argument from

Section 4.2.1| cannot be applied.

Next, we reconstruct the pressure p by solving a corresponding very weak and
weak Dirichlet problem. To this end, we need higher regularity for n - u. Note that
by the last equation in (4.5) we can reconstruct the height function p by setting

p = ~Xsin@d) (n-u) € H(T),, (4.10)

where u is the solution from As mentioned before we need to prove

higher regularity for u to reconstruct the pressure p:
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4.2.5 Lemma. Let 0 > 0 and A € X,/p with |A\| = 1 and u be given from in
[Lemma 4.2.3. Then we have

ol|6%(n - U)||H—1/2(F)r+ﬁ11/2(r),. <C <||f1||ﬁ(;(1iiv(zg)R + ||f4||H—1/2(r)R> (4.11)
with C > 0 independent of A\, o,u and the data fi, f4.

Proof. We will prove that 82(n - u) € H~'/%(T), + H/*(T'), with a corresponding
estimate. Let ¢ € Hk. Since u is the solution from [Lemma 4.2.3|it fulfills a)(u, p) =
() for p € HY which yields

o JL0r(n 00,00+ ) dn = ~ ) — 2u(D(w), Dl

+ (1 0 ®om 2 S0

+ {f1,0) fr-112(0) . 21072(T) -

Estimating this we arrive at

[ o-tn-w.n- ) dn]
_ sin(9)|)\|’ iy
c(0)

o

Au, )2 = 2p(D(u), D(p))2

Q) iyt somit, Eon T 6O 2wy, memny
< CP (Ml 2ol 2oy n + 1D @)l z2(20)% 1 D) 22(20)

Al oyl + Wl

,d
< O (Ml 2 + 1D lz2sre + 1l s

Hlfall 12y ) N2l )

Since we only have estimate (4.8)) for |A\| = 1 we also have to assume |A| = 1 here;

then we can make use of (4.8)) and apply integration by parts to the left-hand term
to obtain

[ 8- u)n- o) dn] < C (Willizs, oym + Wall -2, ) 16l e

where we note that C' > 0 is independent of o and A. (Note that r(0.(n - u)) =
—(07(n - u)) by the symmetry.)

By (Corollary 3.2.17| the normal trace operator Ty : Hk,(Zg)r — HY2(D), N
H='2(I"), is bounded and a retraction. Then N (Tp) == {p € HL (Z¢)r : n-@|r = 0}
is closed and we obtain the orthogonal decomposition

o

Hy (So)r = N(Tp) &1 N(Tp)*.
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Chapter 4. 2D Contact Line Dynamics

Then there exists a projection P € .Z(H} (Z¢)r) such that R(P) = N(Tp)* and
Tolnems : N(To)* — HY*(T), N H-Y*(T), is an isomorphism. Then we observe
that

g

[ #n-wn-) dn‘

< C (Ifillis, @orn + Milla-veyn ) 10 @llasay,ni-vae),

,div

holds for ¢ € Hy N N (Tp)*.

Next, we observe that P(H}) LN P(H} (Z)r) = N(Ty)*: Since HZ (Zo)r —
HY < HL (Se)r and HZ (Se)r < HL (Ze)r by [Lemma 3.2.2(iv), we deduce
H3, 4 H 1 (3¢)r which yields the desired density statement.

We finally conclude that Tj : P(HL) — HY2(T'), N H~Y/2(T"), has dense range.
Then we finally deduce

olloF(n - W)l grramy, 4 m2(),

= sup a|(@7(n - u), g)r|
geHY/2(T),,NH~1/2(D),

9l 7172 0y, r-1/2(r), =1

= sup a|(@7(n - u),n - p)r|
pEP(HL)
Inell g1/2py, na-1/2(r), =1
<C sup <||f1||f15<11- So)r T ||f4”H—1/2(F)R) - (‘DHﬁl/z(F)r”ﬁ_l/z(F)’"
SDGP(H}%) ,div

”n.sa”1:11/2(1")7~OI:I_1/2(1")7~:1

< C (Ifillis, @orn + Millg-r2ys)

where C > 0 is independent of X and o for |A| = 1. We remark that (H~/2(T"), +
HY2(I),) = H/*(T'), N H~Y/2(T"),. Then the assertion follows. O

As a consequence of the above result we obtain the following estimates for the
height function p if |A| = 1:

1 C
oo, = |- s <l e

A1),

C
< 2 (i, on + Ifilmr)
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and

1
5> — 2
” Tp||ﬁ_1/2(]_")r+ﬁ1/2(]_")T H \si (9) 87. ('I’L . ’U,)

C’

H=1/2(0),+HY/2(T),

2(n - u)|

H-1/2 (F)r+ﬁ1/2 ()

C
< = (Ifillag, e+ Ifalla-sragey, ) -

At last we need to reconstruct the pressure p. Finally, we are able to prove (weak)
solvability of the linearized problem (4.5). Hence, we finally give the proof for
|Proposition 4.2.2}

Proof of [Proposition 4.2.3. In [Lemma 4.2.3 and by (4.10) we already proved the
existence of a unique u and p solving (4.5) (in the weak sense). At last we need

to reconstruct the pressure p. Since 82p € H-Y*(T), + H'/*(T'), we can choose
p1 € HY2(I"), and p, € HY2(T"), such that 82p = p; + p; and

||83P||H—l/z(r)rﬂfp/z(r)r < ||P1||f{1/2(r)T + ||P2||f{1/2(r)r < ||33P||ﬂ—1/2(r)T+ﬁ1/2(r)r +efo

for every € > 0. In order to construct the pressure we set p :== q-n + p where q and
P solve the very weak and the weak Dirichlet problem, respectively. In particular, we

consider
—Ag=0 in3y, qg=-—fi+2uDu)n+oc(@)pin onT (4.12)
as a very weak Dirichlet problem and
—Ap=0 in¥y, p=oc(@)p, onT (4.13)

as a weak Dirichlet problem. Considering (4.12)) we obtain this very weak formulation
by calculating for ¢ € H2% (%) from [Lemma 3.1.34:

—(¢, Ap)2 = (4, 0nP) gr-1/2(r0) . B11/2(1) (4.14)

— (= fa+2pD(uw)n + oc() pin, 3n90>17—1/2(r)R,ﬁ1/2(r)R

where we took (4.12)) into consideration. By [Corollary 3.2.11|such a unique solution
q € L?(3Zy)r exists if

—fa+ 2uD(u)n + oc(0)pyn € H2(D)p.

We note that by D(u)n = 1/2(Vu'n + (nTVu®)T) with divVu? = 0 it follows
D(u)n € H2(")g by |Corollary 3.2. 14L Furthermore, since we know that the
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normal trace Ty : L2, (Z9)+r — H /(T 4, from |Corollary 3.2.14| is bounded, this
yields

1Dl g-1/2r), < CIDW)| 220 < 00

by using (£.8). The last term is also in A~'/2(T") z which follows from p; € H~/2(T),
and [Lemma 3.2.6, Hence, by |Corollary 3.2.11| there exists a unique ¢ € L*(Xy)r

which can be estimated as

lallc2o)r < Cll=fa+ 2uD(u)n + oc(0) prnll g-1/2(ry .
< C (I1fall -2y, + 260 Vil 2y + 0lloillg-ar2ry, )
where we used the estimates that we proved before.

Regarding (#.13) we observe that oc()p; € H'/2(T),. Then by |Corollary 3.1.33
there exists a unique p € H'(Zy), such that p solves (£.13) with

||1~9||ﬁ11(29)T < CU||P2||ﬁ11/2(r)T-

Then summing up we end up by using p; + p2 = 82p
g n+p=—fi-n+2uDun-n+oc(®)(p1+p)=p onT,

which shows that p as a solution of the Dirichlet problem is unique and for € > 0:

1Pl z2(29), + 1120,

< C (Ifall oy, + 20l Vel 2oy + 1020l -2y, ir12ry, +€) -

We extend the normal vector n = (— sin(), sgn(x2) cos(f)) constantly to the entire
sector Y. Recovering the pressure p by setting p = q - n + p we first note that

p € L*(Zg), + H'(Zy), by [Lemma 3.2.8. Furthermore, we also know Ap = 0 in

distributional sense since for ¢ € C°(3g\{z2 = 0}), we deduce (since p is even it is

sufficient to consider ¢ even since the integral vanishes for odd ¢):
[, p@)Ap(@) d
g

= | (—sin(0)q"(z) + sgn(zs) cos(8)g*(z)) Ap(x) dx + /29 p(z)Ap(z) dx

DIV

— _sin(6) / q*(z)Ap(z) dx + cos(h) /

+ /Ea P(x)Ap(z) dz

=0.

9 sgn(z2)q" (z) Ap(z) dz
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Note that the first integral vanishes since Ag' = 0 by the weak formulation in (4.14)
and the third integral vanishes since p is the solution of . The weak formulation
for ¢* first holds for ¢ € C°(%),. However, since ¢! is even, also holds
for ¢ € C*(Xg)_,, hence it holds for all ¢ € C°(Xy). The same arguments can
be applied to ¢? since ¢? is odd and holds for ¢ € C°(3g)_,. Regarding the
latter integral we make use of ¢; odd and ¢ even such that for ¥ := $yN {£z, > 0}
we obtain:

[, s(@)d @de(@)de = | P@)Ap()de~ [ ¢@)Ag() do

[4

_ 2
_2/2;;(1 Ap(z)dz

=2 /2* A¢*(z)p(z) dz — 2 /62_ 0nq*(z)(z) dn
=0

)

since {z2 = 0}Nsupp ¢ = 0. Hence, Ap = 0 in the distributional sense in ¥y\{z2 = 0}
and p fulfills the estimate:

1Pl z2(29), + 1120,

<C (||f4||1§r—1/2(r)r + 20| Vul r2(p) + U”83P||ﬁ—1/2(r)r+ﬁ1/2(r)r>

<C (Milizs, e + Mallzqy, ) -

d
Collecting all terms from [Lemma 4.2.3| and from above of this lemma, we arrive at
the resolvent estimate in case if |A| = 1:
||U|IL2(20)R + “vu”L2(Es)R + \/E”p”ﬁl(l")r

+ ‘7”azp||1§r—1/2(r)T+ﬁ1/2(r)T + ||p||L2(29)T+H1(29)T

< O (Iillagy, e + Malla-srzqoys) -

iv

Then the assertion is proved. n

4.2.2 Weak Solutions and Resolvent Estimates for large ||

In this section we prove solvability of the weak linearized problem for A € Xy /o
of large absolute value and corresponding resolvent estimates as in . To this
end, we apply a scaling argument since the sector X /5 is obviously scaling invariant.
We note that it is sufficient to have results on solvability of for |\l =1 and
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arbitrary o > 0 since we will see that (4.5)) is equivalent to

ﬁﬂ—uAﬂ+Vﬁ=%»mEm
divi =0 in Xy,

T (@, p)n + FiA02pn = f, onT,
|§—|~ + sinl(e) (n-a)=0 onl.

(4.15)

Hence if (u,p, p) is a weak solution of (4.5 then (@, D, p) is a weak solution of (4.15))
where the relation between both solution triples is given as

i(x) = [Au (\/ﬁ> f)(x)=\/Np(\/rT|>, f)(w)=|/\|2p<\/%)

and left-hand side (at first for smooth fi, f4, the definition will be adjusted to later

on)
s () e 5)

for all x € ¥y and z € T, respectively (note that if z € ¥y then z/+/|A| € Xy for all
A € X,/ since ¥y is scaling invariant; the same holds for I'). Equivalence of (4.5)

and can be observed by a straightforward calculation:
Au(z) — pAu(z) + Vp(z)
- AR )@ s o 6y ¢
_ |i| (Vidlz) — i (Vidlz) + 5 (/6
= 11 (VIAz) = fi(a)

divu(z) = dw(&l i |)\|->>(x): 1|A|diva(\/mx):o.

Furthermore, by the fact that 7(z) = 7'( |)\|x) and n(z) = n( |)\|x> since

sgn(xz) = sgn ( |)\|:c2) we infer

and

T(wpn+ 25 0 p(z)n

= (7 (e (V) 9 (o (V) @) = o (V)
+ oc(6)9 <ﬁp (M)) (2)n
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_ l_%qu(va ) + 93 (412 - -5 () IAm>]

+% 9)32~( Ne)
Tl (Vi) = (o)

and at last

=ﬁﬁ<'”@+§iﬁﬂ04 Az) @ (/1Alz))

Then (u, p, p) is a weak solution to (4.5) if and only if (@, p, p) is a solution to (4.15)).
By [Proposition 4.2.2 we know that (4.15)) is weakly solvable for & = o/|\|*/? and ar-
bitrary A € ¥, /2. As a consequence, we obtain the generalization of [Proposition 4.2.2;

4.2.6 Corollary. Let 0 > 0 and X € X /3. Furthermore, we assume
e (Sor and fo€ HY2(D)g.
Then there exists a unique weak solution
(u,p,p) € Hy(Zo)r x L*(Zg), + H' (o) x H'(D),

of [#-9).

Thus, it was possible to transfer the solvability of (4.5) by using the scaling
argument. In the following we will investigate in which sense estimate (4.6 can be
transferred to the case if A € ¥/, is of large absolute value. Furthermore, we aim to

also have an estimate of u in the corresponding H; ' (%) norm. To this end, we
first define equivalent norms in L2(Xy), + H*(Zp), and H~Y2(T), 4+ H2(T),:

lgollz2g). + N2 @l g sy, -
q=qo+q,9 € L*(X9)r, ¢1 € H'(Z9),

ol =172y, + N2l ey,
h = ho+ hi,ho € ﬁ_l/Q(F)T, h, € ﬁ[l/2(F)T

||Q||)\,L2(29)T+ﬁ[1(29)r = inf{

Il ey s, lﬁ{

We can now take advantage of the fact that for the scaled system (4.15) we can
use our estimates from (4.5) by setting & = o/|\|*/2. Then if (@, p, p) is the weak
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solution of (4.15) with right-hand side (f,, f,) we obtain the following estimates
from (4.6):

iy

~ ~ o A
||U||L2(29)R + ”VUHLz(Ee)R + |>\|1/4 ”p”ﬁl(r)r

—U 7 ~
+ |A[/2 ||872'p||ﬁ—l/2(F)r+fI1/2(F)T + ||p||L2(EG)r+ﬁ1(Eg)T (4.16)

<€ (Ialla s, @opn + 1Falla-srzoyn) -

with C > 0 independent of u, p, p, A, o and the data f;, f4. Next, we make use of the
norm scaling that we already considered in [Section 3.1.5| to obtain these norms in

terms of u, p, p, f1 and f4. Then inserting all norm calculations from [Section 3.1.5|in
(4.16]) we deduce

NP2 llull 2oy + INIVUll 2o + VI llol 1),
+ 0|>‘|||83P||,\, H-1/2(T),+HY2(T), T |)‘|”p”)\,L2(29)T+I:11(29)T
< C (A, o + W alla-s/m)
which simplifies to
|)\|1/2||U||L2(29)R + [Vl z2g) + \/5|>\|1/2||P||ﬁ11(r)r
+ 0||33P||,\, -2y, in2my, 1P 2y ci1 ),

<C (il sayn + Mallz-12ys) -

As a consequence we are finally able to prove the full resolvent estimate for the
Stokes system (4.5)) in the weak setting. Here, we want to prove resolvent estimates
in Hy'(3¢)r. Again, we consider an equivalent norm defined as

||U||,\,H(;1(29)R = we;}g’) |<Ua(p>H0_1(29)R,H1(29)R|' (4.17)
6)R>

21l 2 gy HA -l 11 g <1
4.2.7 Theorem. Let 0 > 0, A € X/, with |A| > 1. Furthermore, we assume
1€ ﬁI(I(liiv(EG)R and f, € H'/*(D)p.

Then there exists a unique weak solution (u,p, p) € HL (Le)r X L2(Zg)r + H (Zg), X
H L"), of the Stokes system fulfilling the resolvent estimate

Il 115150y + A2l 20y + 1Vl 2220 + VEIX2]l0

HY(T),
+all2plly, 12yt inrzwy, + 1PN, L2020, 1 20). (4.18)

<C (il son + il gz
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with C > 0 independent of A\, o,u,p, p and the data fi, f4.

Proof. Our last aim is to obtain the resolvent estimate of % in the H;'(Zg)z norm
given in (4.17). We again note that and are equivalent problems, i.e., if
(u, p, p) solves then (1, D, p) solves in the weak sense with & = o|\|~'/2
and X = \/|)|.

By [Proposition 4.2.2) we know that @ satisfies the weak formulation (4.7]) such that
holds for € H} with the corresponding right-hand side (f,, f,). By taking

@, € L*(Xy) into account, we first observe that

A A
<|—>\|u, g0> = <mu, cp) (p € H (X9)r).
Hy ' (Z0)r,H (Zo) R 2

We note that in this case we have the decomposition

H'(Zo)r = Hy;, (So)r ® V(H(Zo)r N H(Zp),)

from |Corollary 3.1.16| Now let ¢ € H'(Xy)g be arbitrary. Thanks to the decomposi-
tion there exists ¢ € HL (Z¢)g and ® € HE (), N H2(Zy), such that ¢ = ¢ + V.
Then we have

(), o), o), (o),

(AuV¢> =—(id1vu<1>> +<iu n@) =0
A 2 A A r
because of divei = 0 in ¥y and & = 0 on I'. Now, we again make use of the fact that

H N Hj, (3)r (as observed in the proof of [Lemma 4.2.5). Hence, it is sufficient
to obtain an estimate for ¢ € H}. Then from (4.7) we obtain the identity:

(%), = =20(D@). D) = 7o (0rn-3).01(n- ¥

since

+{fu¥)a; oy (Eo) R Y, (Zo)r <f47¢>H_1/2(F)R:I:I1/2(F)R

from which we obtain the estimate:

(o),

< 2ul|D(@) || 22(20)= 1 P () | 22 (50)

7e0) \62n

* an@ 2 1 Dl e, 0 Pla-see.nm e,

1Fillars, oy alllin(syn + CIFall i1l i)
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We can use (4.8) to handle ||D(%)||12(zy)r- Since & = o|A|7¥/2 we can use (4.11)
to estimate ||8$(Z"L W 172y, 1 172 AAlso tha,nkAs to Lemma 3.2.15 and the
observation that H~/2(T"),+H/%(T), and H~?(T"),+H?/%(T), coincide topologically
(cf. [Lemma 4.2.5) we can estimate

- 9l sy ey, < CIT0l vy, aingey, < Cl s e

Hence, we have the following estimate

A ~ ~
(7). | =€ (il an * Vi) Wl
2 ,

Note that ¢ = 1 + V& such that ¥ = ¢ — V® and then

||¢||H1(20)R < ”(p”Hl(Eo)R + ”vq)”Hl(Ee)R < C”(:O”Hl(ze)m

where the second estimate follows from the fact that ® is the unique solution of the
strong Dirichlet problem (3.5)) (cf. [Lemma 3.1.31)). Since

<)‘/|)‘|ﬂa 90>H(;1(29)R,H1(29)R = <)‘/|)‘|€1’7 1/’>H()—1(29)R,H1(29)R

we finally arrive at

()

and, hence,

=C <”f1“f18§iv(29)3 + ||J~c4||ﬁ—1/2(r)R> ol a1 (2 r
Hy ™ (So)r,H (So)r :

<C (Il sorm + 1Fall -2y ) -

,di

LY
Al

Furthermore, we note that

Hy ' (Zo)r

||’1~L||H0—1(29)R = C|)‘|||“||,\,H51(EQ)R

with C' > 0 independent of A by taking the calculations from [Section 3.1.5 into
consideration. Now inserting the calculations from above for fl, f4 as in [Section 3.1.5

we obtain the estimate we aimed for:

lully, 5 @on < € (Ml oy + Mall oy, -

Altogether we proved the desired resolvent estimate (4.18)). O]

4.2.8 Remark. Taking into consideration we observe that the proof of
higher regularity for n - v in [Lemma 4.2.5|is an essential step for the whole section.
However, if we would get a better estimate for n - u, i.e., n-u € IA{‘W(I‘)T, this
would also lead to better regularity classes for p and u: Then we would be able to

prove that the pressure p is in L?(3g), and estimates for |A|||ul| 3 (S0)n-
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Chapter 5

Stable and Unstable Flow Regimes for
Active Fluids

In this chapter we will consider a continuum model which models the motion of
self-propelled organisms in fluids, e.g. of bacteria. This model was proposed in [54]

and is formulated as
v+ Av-Vu = f—Vp+ V]2 —(a+ Bv*)v
+ToAv —T2A%v in (0,T) X Qn,
dive = 0 in (0,7) X Qn,

V=0 = vo in Qy.

(5.1)

Here, we consider the model in the physically relevant dimensions n = 2,3 and
Q. = [0, L]" denotes the box of length L as in [Section 2.2, We will investigate
(5.1) in the framework of periodic Sobolev spaces as introduced in [Section 2.2

The bacterial velocity field is denoted by v whereas the pressure is denoted by p.
Regarding the occurring parameters we will assume I's, 8 > 0 and [y, Ao, A\; € R.
This chapter is structured as follows: In the first section we will provide a theorem
stating global wellposedness of (5.1). In the second section we will investigate a
manifold of stationary solutions which can be proved to be (in)stable depending on
the occurring parameters. In we prove the existence of a global attractor
to (5.1)) which is even contained in an inertial manifold in the two-dimensional case.

There are two known steady states. The disordered isotropic state is given as

('U’p) = (pro),

where pg is a constant. If & < 0 we even obtain a manifold of globally ordered polar

states given as
(’U,p) = (‘/,p(J),
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Chapter 5. Stable and Unstable Flow Regimes for Active Fluids

where V € B, = {z € R" : |z| = \/—a/B}, i.e.,, V denotes a constant vector
with arbitrary orientation and fixed swimming speed |V| = \/a/8 and py is again a
constant.

5.0.1 Remark. It is not known whether aside from the disordered and the ordered
polar states there are more physically relevant stationary states. Note that in the
whole space setting (see [57]) there is a larger manifold of stationary solutions given
as

v(z) = o, p(z) = po — (e + Blvol*)vo - z, z €R", po €R.

For vy = 0 and |vg| = \/—a/B we then obtain the disordered isotropic and the
manifold of globally ordered polar states, respectively. Whereas for arbitrary vy € R™
the pressure p takes negative values for large x € R™ such that this stationary state
doesn’t make sense from the physical point of view. However, this kind of stationary
states are not contained in L2(Q,) since p is not periodic.

5.1 Global Wellposedness in H2(Q,,) N L?(Q.)

In order to prove global wellposedness we will consider a generalized system of (5.1
that includes the linearization at the corresponding stationary state (disordered and

ordered state):

ut + do[(u+ V) - V]u+ (M + Blul*)u
—ToAu+TA%?u+Vqg = f+ N(u) in (0,T) X Qp,
divu = 0 in (0,7) X Qn,

uli—o = o in Qy.

(5.2)

where ¢ = p — A\1|ul? and M € R™ " is a symmetric matrix and the nonlinearity N
of second order is given as N(u) = ¥, ajpu’u® with (ax)7;—; € R™". Regarding

the occurring parameters we assume
AOa)‘laFO’aeR’ F275>07

throughout this and the next sections. Note that from (/5.2)) we obtain (5.1)) linearized
about the disordered isotropic state by setting

V=0, M = al, N(u)=0
for u = v where I denotes the n x n identity matrix and « is a scalar. By setting

V € By, M =2pVVT, N(u) = —Bul*V — 2B8(u-V)u
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we obtain the system corresponding to the ordered polar state for u =v — V.
In order to prove global wellposedness we first consider the linearization of (5.2)
where we already applied the Helmholtz-Weyl projection P from

us+ (V- V)u+ PMu —ToAu+TA%u = f  in (0,T) X Qn,

_ (5.3)
Uli=0 = up in Q.
Then we define the operator associated to (5.3) as
ALFU = )\0(V . V)U + PMu — F()A’LL + FQAZ’U, (5 4)

D(Arr) = Hy(Qn) N L2(Qn),

and the corresponding Fourier symbol as

4 2 .
oa (0) =T (%”) 0]* + T (%”) 107 + Ao (%) (V-0) + op(O)M

for £ € Z". By considering the leading term
Asgu =Ty A%, D(Asn) = H7(Qn) N L3(Qn),

we observe that Agy is a selfadjoint operator. Furthermore, by making use of
the fact that for A\ € p(Agy) the resolvent (A — Agy)™t : L2(Q,) — L2(Q) is
compact by the Rellich-Kondrachov theorem [39, Theorem A.4, Corollary A.5], we
conclude that Agy has compact resolvent, hence the spectrum o(Agy) is discrete
and o(Agy) = op(Asy) where op(Agy) denotes the point spectrum of Agy. Hence,

we can further characterize the (point) spectrum of Asy as

4
A — Agp is not injective < A =T, (%T) |€|* for some £ € Z",

where we made use of the fact that o4, (¢) =Ty (27”)4 |¢|*. Hence the spectrum
is given as o(Asg) = {2 (2%)4 |¢|* : £ € Z™} and as a consequence of the spectral
theorem in its functional calculus form (e.g. [38, Theorem VIIIL.5]), we observe that
for some w > 0 the operator w + Agy admits a bounded H*-calculus on L2(Q,)
with H*-angle ¢, , . = 0. For a proper introduction to the notion of a bounded
H®>-calculus, we refer to [22]. Next, by defining the perturbation as

Bu = X(V - V)u+ PMu — T')Au,
D(B) == Hy(Qn) N L7(Qn),

we immediately observe that B is a perturbation of lower order. Now applying a

perturbation theorem for the H*-calculus [27, Proposition 13.1] we deduce
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5.1.1 Proposition. There exists an w > 0 such that w + Arr admits a bounded
H>-calculus on L2(Qn) with H*-angle o3, 4, . = 0.

As an immediate consequence we obtain that Ay enjoys maximal LP-regularity on
intervals (0,7) with T' < oo and —Ajp is the generator of an analytic Cy-semigroup

(exp(—tALr))i>0 on L2(Q,):

5.1.2 Proposition. Let T € (0,00). For f € L*((0,T), L2(Qy)) and initial value
uy € HZ(Qn) N L2(Qn) = (L2(Qn), Hx(Qn) N L2(Qr))1/2,2 there exists a unique
solution (u,q) of (5.2) such that

lwll 1 0,1y, 22 (@) F 1l 20, 12 (@) + IVl 22(0,1), 2200
< C(T) (1 z2¢0.1),22(@n)) + Nuollm2(q.)) -

In order to prove local wellposedness we use the common approach by combining
the maximal LP-regularity with the local inverse theorem to construct a solution
(u, q). By making use of energy estimates we even obtain global wellposedness by
proceeding as in [57, Section 3.2]:

5.1.3 Theorem (Global wellposedness). Let I's, 5 > 0 and I'p,a, A\ € R and
T € (0,00). Let the initial value vy € H2(Q,) N L2(Q,) and an exterior force
f € L?(0,T),L2(Qy)) be given. Then there exists a unique pair (u,q) with

u € H'((0,T), L;(Qn)) N L*((0,T), Hz(Qn)),
Vg € L*((0,T), L*(Qx)),
solving for periodic boundary conditions.

5.1.4 Remark. Note that, in contrast to the classical incompressible Navier-Stokes
equations, we can prove global wellposedness since the convective term (u - V)u in
is dominated by the fourth order term A2. In this case, we are able to prove
corresponding energy estimates which lead to global strong solvability.

5.2 Stability Analysis for the Ordered Polar State

In this section we perform a full stability analysis for the manifold of ordered polar
states, i.e., for (v,p) = (V,po) where V € B, g = {z € R": |z| = /—a/B} and py is
a constant. We will proceed as follows: At first we will consider linear (in)stability. In
fact, we will prove that depending on the relation of the occurring parameters we will
obtain stability or instability for the ordered polar state. Hence, those observations
are fundamental to prove nonlinear stability and turbulence, respectively. Here, we
will apply the generalized principle of linearized stability as provided in [35] 36].
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5.2.1 Remark. Note that in this section we are not considering the disordered polar
state (v,p) = (0, po) where py is a constant. In this case a full stability analysis can
also be performed but is straightforward by making use of energy methods. For the
full stability analysis for the disordered polar state we refer to [§].

5.2.1 Linear Stability

In this section we consider linear stability for the ordered polar state. To this end,
we are making use of properties of the analytic semigroup (exp(—tArr)):>0 which
is generated by the operator —Arp, see (5.4). It is straightforward to verify the
identity

exp(—tArr)v = Y exp(—toa,r(£))0(£)e* /"
Lezr

for v € L2(Q,). Using this representation we can characterize linear (in)stability
by basically examining the Fourier symbol o4,,. Next, we set V € B,g, and
M = 2BVVT to obtain the operator A, corresponding to the ordered polar state:

Agu = ToA%u —ToAu+ X (V- V)u+28PVVTu (v € HXQ,)NL2(Q,)). (5.5)
Then the Fourier symbol g4, is given as

o) =Ta () e 1o (22) 20 () v

+ 2ﬂap(£)VV O'P(f).

(5.6)

Then we can state the following result on linear (in)stability:

5.2.2 Proposition. Let I'; > 0. Then the semigroup (exp(—tA,))i>0 corresponding
to the ordered polar state is

(1) stable if T'y > 0,

(2) exponentially unstable if Ty < 0 and
(i) if for n = 2 there exists some 0 # £y € 7" such that

2
rz< ”) ol + Tolo|? < 20 (5.7)
(i) if for n = 3 there exists some 0 # ¢y € Z™ such that

r, (2”> (ol + T < 0. (5.8)
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Proof. At first we consider the case if I'y > 0. Then we can infer that the Fourier

symbol
27T 4 2m 2 2 T nxmn
Re 04, (f) Fz |£| f |£| + QBO'P(E)VV ap(ﬁ) eR (59)

is positive semi-definite since op(£)VV7Top(£) is positive semi-definite and the two

remaining terms are positive. Then we can estimate the norm of the semigroup as

lexp(—tAo)vli2(0,) = D le Do) <[p(0)+ Y. e Oa(e)
tezn ¢ez\{0}

< [lvliZ2(@n);

where we applied [[heorem 2.2.1] Hence, the estimate yields stability for I'y > 0.

Next, we examine instability. For this purpose we assume I'y < 0. In order to
prove exponential instability we have to find some 0 # ¢y € Z" such that the matrix
Re 04,(4p) € R™ " is negative definite or indefinite. Then the growth bound of the
semigroup (exp(—tA,)):>o is strictly positive and we obtain exponential instability
of the semigroup.

To prove the negative definiteness or indefiniteness we have to find some z € R™\{0}
such that z7Re 04,(¢,)z < 0, which in fact results in

2 2
Pz( ﬂ-) |£0| |1§|2+F < 7T> |€0| |.’L'|2+2ﬁ.’11' ap(EO)VV 0'p(€0)$<0
For ¢y € 7Z"\{0} we are able to find some z € R"\{0} such that ¢, L z. Then
op(lo)x = (I — £off /|€o|*) x = z such that we end up with

2 2
r2< ”) [ol*][? + T ( ”) [ol?)zf? + 26V - z]? < 0

which we want to prove. Thanks to the fact that |[V|? = —a/f this is equivalent to

2 2 28|V - x|?
o (2) tat o (3) e < -2 €

Indeed if we assume the existence of some ¢, € Z™\{0} which fulfills we can
choose some z € R™\{0} with z L £, such that z7Re o4,(o)z < 0. This yields the
exponential instability for n = 2, 3.

the condition

For the three dimensional case we can even improve the condition (5.7) a little bit.

In three dimensions we have enough degrees of freedom to choose z € R3\{0} with
z 1l ¢yand x L V. Then

+"Re o (lo)z = T (2”) o] |x|2+r0(2”) 1o 2lar]? < 0,
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if £y € Z3\{0} fulfills (5.8)). Hence, also in this case we obtain exponential instability
and the assertion is proved. O]

5.2.3 Remark. We want to briefly compare this result to the continuous setting
considered in [57, Section 3.1] and [9, Section 3.1]. Note that in the continuous
setting we don’t have the restricted assumption for n = 2 and ¢, € R?\{0}
since in the continuous setting some £, € R*\{0} such that ¢, is parallel to V can
always be found such that we can find some z € R?\{0} with z L V and = L 4.
Hence in the continuous case assumption for £y € R?\{0} is sufficient to prove
instability.

5.2.2 Nonlinear Stability

In this section we study nonlinear stability of the manifold of ordered polar states.
As already mentioned we will apply the generalized principle of linearized stability
[35, Theorem 5.3.1] or [36, Theorem 2.1] to prove normal stability. To observe
normal hyperbolicity we will use the principle of normally hyperbolic equilibria [35),
Theorem 5.5.1] or [36, Theorem 6.1]. For the reader’s convenience we formulated the

corresponding theorems in [I'heorem 2.1.3| and [I’heorem 2.1.4}

In order to apply both principles we formulate our setting in the notation of

[Theorem 2.1.3] and [Theorem 2.1.4] In our case we first neglect the pressure and

consider system ([5.1)) after applying the Helmholtz-Weyl projection
v+ P Vv = f—(a+ BPv*)v+ToAv —T2A% in (0,T) X Qn,
V]=o = vo in Q,.

Here, we have U = H2(Q,) N L2(Qx), Xo = L2(Q.), X1 = HX(Q,) N L(Q,) for
the spaces and £ = B, g for the manifold. Furthermore, we set

(5.10)

AW)D = AD =ToA*% —ToAd +ab (5 € HX Q) N L2(Qy)),
F(v) == —XP(v - V)v — BP|v|*v.

for v € H2(Q,) N L2(Q,). By the structure of A and F (linear and semilinear,

respectively) it is straightforward to see that

(A, F) € C'(HZ(Qn) N L5 (@Qn), £ (Hr(Qn) N L(Qn), L5 (@n)) X Lg(Qn))-

Moreover, a quick calculation shows that the operator A, from (5.5) is indeed the
linearized operator of (5.1) at V. By [Proposition 5.1.2) we also know that A and A,
enjoy maximal LP-regularity on (0,7) for T < oo.

In order to apply both principles of normal stability and normal hyperbolicity, we
first provide the following
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5.2.4 Lemma. Letn = 2,3 and V € B, g be arbitrary but fired. Then near V the
set of equilibria B, g is a C*-manifold in H(Qn) N L2(Q.) of dimension n —1 € N.
The tangent space Ty By g at V is given as

Ty B = (V)".

Proof. 1t is straightforward to define a C*-function which maps into B, g. If n =2
we can write every given V € B, g as

a [ cos(pv)
V=4/-—1".
B \ sin(py)
with a unique fixed ¢y € [0,27). Then we can define a corresponding C! map as

cos(py + z)) .

Uy :[0,2m) = Hp(Qn) N L3(Qn), 2+ Uy(2) = \/% (sin(SOV + 2)

For n = 3 analogously we can write every V' € B, g as

- sin(fy ) cos(py)
V=1/—= | sin(6y)sin(ey) |,
P cos(6y)

for fixed and unique 6y € [0, 7] and ¢y € [0,27). The corresponding C* map then
can be defined as

s : [0,7] x [0,27) = HXQ,) N L2(Qy),
sin(fy + y) cos(py + 2)
(Z) — W3y, 2) = \/% sin(fy + y) sin(py + 2)
cos(Oy +y)

Hence VUy(z) € By p and VU3(y, 2) € Bag, respectively, are constant functions in
HX(Q,) N L2(Q,) for every z € [0,27) and (y,z) € [0,7] x [0,27), respectively,
satisfying ¥2(0) = V and ¥3(0,0) = V.

Obviously then the corresponding tangent space Ty B,z at Visn—1 € N
dimensional and a straightforward calculation shows Ty B, s = (V)7. O

5.2.5 Lemma. Let V € B, s be arbitrary and A, be defined as in . Assume

that the occurring parameters are chosen such that
N(A,) C{u € HX{Q,) N LA(Qy,) : u constant and u 1L V'}. (5.11)

Then the spectrum of A, is discrete, consists only of the point spectrum and 0 is a
semi-simple eigenvalue of A,, i.e., L2(Q,) = N(A,) & R(A,), where

N(A,) = {u € H{Q,) N L3(Qy,) : u constant and u 1 V'}.
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Proof. First we observe that for A € p(A,)
(A= 45) 71 L2(Qn) = D(Ao) = Hy(Qn) N LE(Qn) < LE(Qn)

is a compact operator by the Rellich-Kondrachov theorem [39, Theorem A.4, Corollary
A.5]. Hence, A, has compact resolvent and A, has a discrete spectrum which just
consists of the point spectrum, i.e., 0(A,) = 0,(A,), where o,(A,) denotes the point
spectrum of A,. Next, we prove that 0 € 0(A4,) and

N(A,) 2 {u € HX(Q,) N LA(Q,) : u constant and u | V}.

Let u € H3(Q,) N L2(Q,,) be a constant vector in R™ and perpendicular to V. Then
we immediately observe that

A =ToA%u —T,Au+ X(V - V)u+28PVVTu =0

by the properties of u. Hence, 0 is an eigenvalue and by assumption (5.11)) we even
obtain the equality in (5.11)).

At last we need to prove that 0 is a semi-simple eigenvalue of A,, i.e., we will show
that the decomposition N(A4,) & R(4,) = L2(Q,) holds. In order to prove this we
define the following projection

SiL2Qu) S L2@),  Su=g; [ Sal)ds

where S, : L2(Q,) — L2(Q,) is given by S,u(z) = (I — VVT/|V|?)u(z), where I
again denotes the identity matrix in n dimensions. First we note that if u € L2(Q,,)
then Su is constant and Su € L2(Q,). Note that S.S. = S, hence we also
obtain S? = S such that S is a projection. Then there exists a decomposition
S(L2(Qn)) ® (I — S)(L2(Qy)) = L2(Q.) and we need to prove that on one hand
S(L%(Qy)) = N(A,) holds and on the other hand (I — S)(L2(Q,)) = R(A,).

First we claim N(A4,) = S(L2(Q.)). To see the inclusion S(L2(Q,)) C N(A,) we
assume u € S(L2(Q,)). Then u = Su is constant and perpendicular to V since

VIiu=VTSu= %/Q VTu(z)dr — %/Q #VTVVTu(x) dx =0,

hence u € N(A,) by the already proved equality in (5.11]). Conversely, let u € N(A,).
Then by the fact that u is constant and perpendicular to V' we observe

1 1 1 T 1
SUZE/QTLde_E/QnWVV udxzu(ﬁ/ndz)=u,

such that u € S(L2(Q,)). Hence, the claim is proved.
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Since L2(Q,) is a Hilbert space and S is a selfadjoint projection it is well-known
that L2(Q,) = S(L2(Q»)) & (I — S)(L2(Q,)) is an orthogonal decomposition. If we
take u € D(A,) and show that A,u is perpendicular to any w € N(A,) then we have
R(A,) € (I = 8)(Lg(@n)):

(Aou, W) » = Ta(Au, Aw)s » + To(Vu, Vw)o »
— Xo(u, (V- V)w)gr +28(VTu, VIw), .
=0,

because w is constant and perpendicular to V. In fact, by the orthogonal decomposi-
tion of L2(Q,) we just proved N(A,) N R(A,) = {0}.

Since A, has compact resolvent it follows from [I4, Corollary 1.19] that the spectral
value 0 is a pole of the resolvent. Then by [32, Remark A.2.4] it suffices to show that

N(Ao) = N(47)

to prove that 0 is a semi-simple eigenvalue of A,. It is obvious that N(A,) C N(42).
To observe the converse inclusion let v € N(A?) such that A2y = 0. Then we
conclude A,u € N(A,) N R(A,) = {0} by our observation above. Hence, A,u = 0
and u € N(A4,) such that N(A2%) = N(A4,). Finally, from [32, Proposition A.2.2,
Remark A.2.4] it follows that 0 is a semi-simple eigenvalue. O

At first we will show that for the unstable regime the manifold of ordered polar

states is normally hyperbolic. From [I'heorem 2.1.4] we recall that an equilibrium V

is called normally hyperbolic in our setting if

(i) near V the set of equilibria B, s is a C'-manifold in H2(Q,) N L2(Q,) of
dimension n € N;

(ii) the tangent space Ty B, g for B, at V is isomorphic to N(A4,);
(iii) 0 is a semi-simple eigenvalue of A,, i.e., L2(Q,) = N(A,) ® R(A,);
(iv) o(A,) NiR = {0} and o, :== 0(A,) N {2z € C: Re 2z < 0} # 0.

This means instability in the following sense: For each sufficiently small p > 0
there exists 0 < § < p such that the unique solution v of (5.1) with initial value
v € Bp2(V,0) = {v € H2(Qy) : [v — V|l g2(q.) < 0} either satisfies

(i) distgz(v(to), Ba,g) = infves, 4 [|v(to) = Vlm2(q,) > p for a finite time ¢, > 0 or

(i) (v(t),p(t)) exists on R, and converges at exponential rate to some pair
(Voos Poo) € Bayp x Rin (HA(Qn) N L2(Qn)) X HL(Qn) as t — oo.
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Finally, we gathered all relevant properties to prove normal hyperbolicity by applying

the principle of normally hyperbolic equilibria from [Theorem 2.1.4:

5.2.6 Theorem. LetI';, 8 > 0 and o < 0 and \g € R. The ordered polar state is
normally hyperbolic if

r, (2L”) 0 + T, (2”) 02 ¢ 20,0, £ € Z"\{0} (5.12)

for To < 0 and if there ezists some £y € Z™ such that (5.8) holds. Thus, the ordered

polar state is unstable in the sense given above.

Proof. As mentioned before we will first consider the projected system ((5.10) and

neglect the pressure first. In order to apply [Theorem 2.1.4] we need to show that
every equilibrium V' € B, g is normally hyperbolic. By we already know
that the manifold of ordered polar states B, g forms a C'-manifold of equilibria. In
order to obtain the results from we only need to prove the inclusion
(5.17).

For this purpose let u € N(A,) such that A,u = 0. Using the Fourier series

representation from [Theorem 2.2.1| we obtain

1AoullZ2 (g, = D loa,(O)aE)]* =0

Lezn

where o4, is defined as in (5.6). Then o4, (¢)4(£) = 0 for every £ € Z™, hence also
WTUAO (£)a(£) = 0 such that we obtain

0=Re (WT% (e)a(e))
_r2<2”> 14142 ()|2+r0(2”> 212(0)[2 + 28a(0) op(Q)VVTap(0)a(l)

for all £ € Z". Note that @(¢) € C" for £ € Z". We recall that op(¢) is a symmetric
matrix for all £ € Z™ and that op(¢)a(f) = @(¢) since u is divergence free by
assumption such that £ - 4(€) = 0 (see definition of L2(@Q,) in [Section 2.2)). Then we
infer

L (2 et + 1o (25 ePla(oF + 281V -2 =0 (¢e ).

Setting ¢ = 0 yields |V - 4(0)| = 0 such that V' L 4(0). By considering the remaining
¢ # 0 with 4(¢) # 0 we obtain

V- a(0))?
r (2) trt o (31) = 2SO oo
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by the fact that |V |?> = —a/fB. Since we assumed this is a contradiction such
that @4(£) = 0 for £ # 0. Altogether we just proved that u € N(A,) is constant
and perpendicular to V, indeed we just proved (5.11). By we know
that 0 is a semi-simple eigenvalue of A, and combined with this yields
TvBa s = N(A,). Hence (i)-(iii) in [Theorem 2.1.4] are fulfilled.

Finally, we have to verify (iv) from [Theorem 2.1.4. Note that by assumptions
and we deduce that also is fulfilled such that the arguments work for
both dimensions n = 2,3. Hence by [Proposition 5.2.2(2) we infer (A4,) N C_ # 0,
since the ordered polar state is linearly exponentially unstable in this case.

At last we need to verify o(A4,) NiR = {0}. Let A € 0(A,) with Re A = 0. Let
u # 0 be the corresponding eigenfunction. Then (A — A,)u = 0 which again results

in

I3 = Ao)ullzag,) = 2 [(A =0, @)a@)f* =0

Lezm

again by [T'heorem 2.2.1l Then by applying the same arguments as above we obtain

that 4(£) (A — o4, (0))a(£) = MNa(f)|* — ﬁ(é)TaAo (£)@(€) = 0 for every £ € Z™ which
results in

Re (wTaAo(e)a(z)) —Re MNa(®)?=0 (LeZn).

By applying exactly the same arguments as in the first part of the proof this implies
@(f) = 0 for all £ # 0 and 4(0) L V. Hence u € N(A,) such that A = 0 since
all eigenspaces N (A — A,) corresponding to the eigenvalues \ € o(A4,) are disjoint.

(Note that by [Lemma 5.2.5 we know o(A,) = op(4,).) Finally by [Theorem 2.1.4|

the assertion for V follows.

At last it remains to prove the convergence of the pressure in case (ii). We assume
in this case that v(¢) exists on R, and v(t) — V,, exponentially in H2(Q,) N L2(Q,)
for some V,, € B, as t — oo. We still need to prove the existence of p and the
convergence p(t) — poo in HL(Q,) exponentially for some po, € R as t — co. Note
that we can recover the pressure gradient Vp by applying the projection (I — P) to
(5.1). Hence, we then obtain

Vp = (I = P) [-Xo(v- V)v+ M V|v]> = Blv|*v] = (I — P)G(v),

with G(v) == —Xo(v-V)v+ A V|v|2 — BJv|?v for our solution v(t) € H2(Q,) N L2(Qy).
Note that G € C*(H%(Q.), L*(Q.)) by the estimate

IGW)llz2@u) < Cllwllzs@uIVwliza@a + Cllwli g, + Cllwllzsg,)
< Cllwllzz i@ IVwllaz@.) + Cllwlii g, + Clwli g,

< C (Il + Il @)
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and the fact that G consists of bi- and trilinear forms which are known to be
continuous on H2(Q,,). Note that in the estimate we used two Sobolev embeddings
[5, Corollary 1.2

Hp(Qn) = L(Qn) and  H(Qn) = L*(Qn),

where we only consider dimensions n = 2,3. The Fréchet derivative of G at w €
H2(Q,) reads as
DG(w)z = —Xo(w - V)z — Xo(2 - V)w + 2\ (Vw)z + 2\ w(Vz)
—2B(w - 2)w — B(w - w)z
for all 2 € H2(Q,). Since v(t) — V4 exponentially in H2(Q,) N L2(Q,) we infer
that the solution v remains in a ball in H2(Q,,) for all times that also includes V,,

to be precise we have v(t) € By2(Vy, R) for all ¢ < oo for some R > 0. Hence, we
can estimate the Fréchet derivative DG in this ball as:

IDG(€)2||L2(qn)
<C (||€||L4(Qn)||VZ||L4(Qn) + 12l za@um) I V€l L2 @n) + ”E”%G(Qn)”z”Lﬁ(Qn))
<C (||€||H;(Qn)||Z|IHg(Qn) + 121l 22 @u) Il B2 (0 + ||§||§1,1(Qn)||z||H%(Qn)>
< Cllz||lm2(q.)
such that
DG 2 (m2@n),22@n) < C

for all £ € Bp2(Vo, R). Note that [[£lm2(q.) < 1€ = Veollm2(@n) + IVeollm2(@n) < €
for some C' > 0 independent of ¢ in this case. Hence, applying the Taylor expansion
for v(t), Voo € By2(Vio, R) in the convex ball By2(Vy, R) yields

1G(v(®)) = G(Voo)ll2(@n) = IPG(E)(v(F) = Vo)l 2(@n)

< sup ||DG(5)||$(H,%(Qn),L2(Qn)) |v(t) — Voo||H3,(Qn)
¢€By2(Voo,R)

< Cllv(t) = Vool 12(0n)-

Since we assumed v(t) = Vo, in H2(Q,) N L2(Q,) as t — oo at an exponential rate,
this inequality shows G(v(t)) = G(V,) in L?*(Q,) as t — oo also at an exponential
rate. Since I — P : L*(Q,) — L*(Q,) is a bounded operator, we then even obtain

Vp(t) = (I - P)G(v(t)) == (I~ P)G(Vio)
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at an exponential rate. On the other hand, we recall that every (Voo,p1) € Bag X R
is a stationary solution of (5.1). Since Vi, € L2(Q,) we deduce (I — P)G(V) =
a(I — P)V, = 0 and thus

Vp(t) =2 0.

Finally, p(t) converges in H1(Q,) to some constant p,, € R at an exponential rate
and the proof is complete. m

Next, we will show that for the stable regime the manifold of ordered polar states

is normally stable. From [['heorem 2.1.3| we recall that an equilibrium V is called

normally stable in our setting if (i)-(iii) from the definition of normal hyperbolicity
hold and

(iv) 0(A,)\{0} C {z € C:Re z > 0}.

Finally, in our last result regarding nonlinear stability, we are able to prove that if
Iy > 0 then every stationary solution (V,py) € B, g X R is exponentially stable in
the following sense by applying the principle of normal stability:

5.2.7 Theorem. Let 'y, 5 > 0, > 0, < 0 and A\g € R. Let (V,po) with V € By g
be a stationary state of (5.1). Then (V,po) is stable in the space (H2(Qn) N L2(Qn)) X
HY(Q,) and there exists some § > 0 such that if (v,p) is a solution to with
initial data vo € H2(Qn) N LZ(Qr) and |lvo — Vg2, < 0 then (v,p) converges to
some (Vao, Doo) € Bag X R exponentially in (H2(Q,) N L2(Qy)) X HL(Q,).

Proof. As in the proof of [Theorem 5.2.6| we first consider the projected system (/5.10))

and neglect the pressure. We proceed as in the proof of [T’heorem 5.2.6| and prove
that every equilibrium V' € B, g is normally stable. Again by the first

condition (i) is fulfilled. In order to verify (ii) and (iii) we again apply [Lemma 5.2.5
Here we need to show that assumption (5.11) holds. Therefore, let u € N(A,) be

arbitrary. Then A,u = 0 and by testing with u we obtain

(T2A%u, u)g.r — (oAU, w)2x + (Ao(V - V)u,u)ox + 28(PVVTu, 1)y, = 0.
Then exploiting integration by parts yields

by the fact that the A\ term is skew-symmetric. By assumption we have I's, 5 > 0
and I'g > 0 such that we infer ||Aul|z2q,) = |V - u||z2(0,) = 0 which yields on one
hand that u is constant by the fact that

1Aul|Z2 g,y = D 1Pla@)]* =0,

Lezm
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hence @(¢) = 0 for all £ # 0. On the other hand ||V - u||12(g,) = 0 yields that u

is perpendicular to V. Altogether we just verified (5.11). By [Lemma 5.2.4] and

Lemma 5.2.5| assumptions (ii) and (iii) are now fulfilled.
The fact that 0(A,) C {A € C: Re A > 0} follows from [Proposition 5.2.2((i) since

the manifold of ordered polar states is linearly stable. In (5.9) we observed that
A = 0 is the only possible eigenvalue with Re A = 0 since for £ # 0 the symbol

Re 04,(¢) is always positive definite. Hence, (iv) follows and V' is normally stable.
By [Theorem 2.1.3| the assertion follows for V.

Convergence for the pressure p can be obtained completely analogously to the
proof of [[heorem 5.2.6] O
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Chapter 6

Global Attractor for an Active Fluid
Continuum Model

In this chapter we consider the active fluid continuum model from the last
In contrast to the result from the last chapter, we prove the existence of a global
attractor in two and three dimensions. At last we prove some properties of the global
attractor. For the reader’s convenience we recall the model. In the following we

consider:
vy + [2A%v — ToAv + (a + Blv|?)v
+X@-Vv=MV|P+Vp = 0 in (0,T) X Qn,
dive = 0 in (0,7) X Qp,

Vo = vo in Qn,

(6.1)

again with subject to periodic boundary conditions on L?(Q,) with @,, = [0, L] for
n = 2,3 where the length L > 0 is arbitrary chosen but fixed. In this chapter we
assume 'y, 8 > 0 and 'y, o, A\g, A1 € R. In contrast to the last chapter we will not
distinguish between the cases I'y > 0 and 'y < 0.

We will proceed as follows: Since we are working in a different setting as in the
last chapter, we first have to make sure that is globally wellposed in L2(Q,,).
Then we will prove the existence of absorbing sets of arbitrary regularity in order to
prove existence of a global attractor which turns out to have finite Hausdorff and
fractal dimension. At last we can deduce that the model even has an inertial
manifold in two dimensions which attracts all solutions at an exponential rate.

6.1 Global Wellposedness in L2(Q,,)

In order to investigate the existence of a global attractor as well as its finite dimension
we need to prove the existence of a semigroup solving (6.1) for ug € L2(Q,,) in this
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case. To this end, we first neglect the pressure p and consider the projected system.
Then the system where we applied the Helmholtz-Weyl projection from
to (6.1) reads as

vy + [9A%v — ToAv + (a + PB|v[*)v + AP(v-V)v =0 in (0,T) X Qy,

| (62)
V|t=0 = vo in Qp.

In this section we aim to prove the existence of a semigroup
S(t) : L2(Q,) — L2(Q,), vo > S(t)vo,

where S(t)vo solves (6.2)). Recovering the pressure p by applying (I — P) to (6.1) we

also obtain the existence of a pair (v, Vp) € L2(Q,) x L*(Q,) which solves (6.1).
Note that in contrast to (global) wellposedness in we need the existence

of a semigroup (S(t));>o for initial values vy € L2(Q,) and not in H2(Q,) N L2(Q»)

as in Hence, applying the theory of interpolation-extrapolation scales

we will be able to transfer results from to the desired setting.

To this end, we set Ey = L2(Q,,) and

A:D(A) C Ly(@Qn) = L3(Qn),  Au:=T2A%,

where D(A) = HX(Q,) N L2(Q,). By we know that w + A admits

a bounded H*-calculus for w > 0 large. In order to define the interpolation-
extrapolation scale we choose A\ > w such that 0 € p(A + A) and define A :== X\ + A.
By [2, Theorem V.1.5.4] we deduce that [(E,, A,) : o € [—1,00)] is a densely injected
interpolation-extrapolation scale generated by (FEyo, A), where

(D(A*), |A* - || z2(q.)) 0<a< oo,
(Eo, 1A% - [|22(@n)) ™ -1<a<0,

and (Ep, ||A*-||z2(g,))" denotes the completion of Ey w.r.t. the norm ||A%-||12(g,). For
the E,-realization of A we also obtain A, € £ (E4+1, E,). By [2, Theorem V.1.5.15]
we know that the scale [(E,, Ay) : & € [—1,00)] consists of Hilbert spaces equipped
with the canonical inner product since A is self-adjoint and positive. Corresponding

dual spaces w.r.t. the duality pairing (-,)2, are characterized as
(Ea)/ = E—ou (Aa), = A—a (_1 <a< ]-)>
by [2, Theorem V.1.4.12]. At last we note that we have

(Ea, Eﬁ)g,g = [Ea, Eg]g = E(l_g)oH_Qg (—1 <a< ,8 < 090, 0<b< 1)
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by [2, Theorem V.1.5.4] and [51, Chapter 1.18.10, Remark 3]. This also shows why
extrapolation of the setting in leads us to wellposedness with initial
values in L2(Q,): For a = —1/2 and B = 1/2 we then obtain (E_1/3, E1/2)1/22 =

Ey = L2(Q,), hence we solve in E_15.
In the following we give a short overview of the steps we have to follow in order to
prove global wellposedness of with initial values vy € L2(Q,).

Step 1 (H*®-calculus and mazimal LP-reqularity). Let A_,/, denote the realization
of the operator A in E_;/9, i.e., A_1/2: D(A_1/2) € E_1/2 = E_1)5 and let B_y, :
D(B_,4 /2) =FEy C E_j/; — E_y); be the E_, ;-realization of the perturbation

B:D(B) C LX(Q,) = L%(Q,), Bu:=-TiAu+a,

where D(B) = H2(Q,) N L2(Q»). By [23, Theorem 6.5] we deduce that A_;/» =
A_1/2+ X admits a bounded H*-calculus on E_; /5. Applying a standard perturbation
result for the H>-calculus (e.g. [27, Proposition 13.1]), it is straightforward to
conclude that p+ A_;/5 + B_1/7 also admits an H*-calculus for u > 0 large. As a

consequence we observe that A_;/, +B_y/; enjoys maximal LP-regularity on intervals
(0,T) with T < o0:

6.1.1 Proposition. Let T € (0,00). For data f € L*((0,T),E_1/2) and initial
value vy € L2(Qn) = (E_1/2, E1/2)1/2,2 there ezists a unique solution (v,p) of the

linearization of , i.e.,
v+ AW —ToAv+av+Vp=f in(0,T) X Q,,
dive =0 n (0,T) x Qn,
V)= = vo N Qn,

such that the following estimate holds:

vl 0,1),5_10) + IVl L2¢0.7). 1 2) + IVPIl L2 (07,51 )
<c(@) (||f||L2((0,T),E_1/2) + ||Uo||L2(Qn)) :

Thus, wellposedness of the linearization of is ensured and by applying
standard techniques (fixed point argument) we can obtain local wellposedness of the
full nonlinear problem (6.1)).

Step 2 (local wellposedness). At first we define relevant function spaces as

Er == H'((0,T), E_12) N L*((0,T), Eyj2),
Fr = L*((0,T), E_1/2),
F? .= (E-12, Brj2)1/22 = Eo = L3 (Qn),
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Fr = F1 x F2

Making use of the isomorphism which is stated within maximal LP-regularity L :
Er = Fr with Lu = (& + A_1/2 + B_1/2,u|t—0) it is possible to rephrase (6.2)) as

F :Ep — Fr, F(u) == Lu+ (H(u),0),

with H : Er — F7. defined as H(u) == BP_12|ul>u + AoP-1/2(u - V)u. Here, P15
is the consistent extension of the Helmholtz-Weyl projection P on L?*(Q,) from
Section 2.2 to E_; 2. Here, the interpolation-extrapolation scale [(EQ,AQ) o€
[—1,00)] is generated by the (Eq, A) = (L*(Q,), A). Note that E, denotes the scale
generated by the projected spaces L2(Q,) and E, is generated by L*(Q,). It is
straightforward to prove H € C*(Er, FL): Making use of the embedding

]ET — Loo((oﬂ T)’ Lg(Qn))

by [2, Theorem 111.4.10.2], div € L ((E_1/4)"*", (E_1/2)") and the fact that B, =
H%(Q,) — L*(Qy) and L*(Q,) = Ey — E_,/, we can estimate the latter term of
H as:

[P-1/2(u - Vullp < C|ldiv(u® U)HL?((O,T),E,I/Q) < C|||U|2||L2((0,T),E,1/4)
< Cllull e o.m),22 @y 1l L2 0.1, 2 (@) < Cllullz,,

and the first term as

||P_1/2|u|2u||]F1T < C'|||U|2U||L2((0,T),E_1/2) < C”“”%OO((O,T),L?,(Q”))”u”LQ((O,T):Lm(Qn))
< Clluli3,

by additionally making use of the embedding L'(Q,) — E_, /2 Which holds thanks

to the estimate

= ‘%/Qn o(z)u(x) dz

(RO < Cllelluliullz, ,

for ¢ € L}(Qn) and u € E /5. We also observe that L + (DH(v),0) € %s(Er,Fr)
for arbitrary v € Er: This can be proved by using the same arguments as in [57,

Lemma 3

[(w-V)o@®)lz_,,, < Cluwv®)lz_,, < Cllullze@wllv@)lzzqm

1/4 —

< Cllullz, [Vl
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and

@ Pullz_,,, < Cllv@Pulle.) < Cllullze@nllv@lzz@.)
< Cllull gasallvllE,
and E,/s = D(A%*) = H2(Q,) N L2(Qn) — L®(Qn) N L2(Q») for a > 3/2 since

a—mn/2 > 0. At last local wellposedness can be proved by making use of maximal

LP-regularity and applying the local inverse theorem as seen in [57, Theorem 1].

6.1.2 Theorem. Let 'y, 8 > 0, Ty, a, Ao, A1 € R. For every initial value vy € L2(Q,,)
and data f € L*((0,T), E_12) there exists 0 < T, < T and a unique solution (v,p)

of such that
veE Hl((07 T*)7 E—1/2) N L2((0> T*)) E1/2)7
Vp € L*((0,T..), E_1/2).

Having proved local wellposed leads to the question whether global wellposedness
can also be obtained.
Step 3 (global wellposedness). Global wellposedness can be obtained by using

energy estimates as in [Theorem 5.1.3 and [57, Theorem 2], to be precise we can show

11| oo (0,7, 22 @0)) < C(T)|vollL2(@n)>

which proves that (v, p) from Step 2 exists globally.

6.2 Existence of a Global Attractor

In this section we prove the existence of a global attractor of arbitrary high regularity.
We proceed as in [39, Chapter 10] in order to prove the existence. For instance
we will show that there exists some compact absorbing set such that we can apply
Theorem 2.3.3]in order to obtain the result. In we collected all relevant

definitions and theorems regarding the global attractor theory.

In order to prove the existence of some compact absorbing set in L2(Q,), it is
crucial to prove the existence of an absorbing set in L2(Q,,) in general at first. Using
a bootstrapping argument and the Rellich-Kondrachov compact embedding theorem
we then obtain the compactness of the corresponding absorbing set.

Let vo € L2(Q,) be some initial value such that v(t) = S(t)vo for t > 0 is the
corresponding solution of (6.2)). Testing the first equation of with v w.r.t. the
inner product in L2(Q,) yields

1d
5 7 IV Ollz@,) = ~TallAv(®)z2(q,) — Toll Vo®)lz2(.)
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B

—alv®lz2@.) — T2V Ollze@n)»

where we note that the A\ term vanishes since it is skew-symmetric. Again by making

use of the Fourier series representation for periodic functions (Theorem 2.2.1) we

end up with

1d
S 20,

== 5 (0 (%) e n (%) e+ o) BOF - 1ol

Lezm

Using the same arguments as in [8, Corollary 3.5] we observe that there exists a
finite set U C Z" such that

2 2
m(;) |z|4+ro(L”> WP+a<0 & feU (6.3)

where U depends on the relation between the occurring parameters I's, I'g, . This
is justified by the fact that the paraboloid given in (6.3) can be fully analyzed and
describes a paraboloid which is open to the top. Hence, we can also find some v; > 0
such that

2 2
—71<1“2< ”) |e|4+ro( ”) P+a<0 (Lel)

and

1d
5 0@,

<=3 (na(5) oo (5) e40) WO - 0o,

teU
< 2 B 4
> ’Yl”“(t)“L?(Qn) - ﬁ”v(t)”L‘i(Qn)
< 1llv@®)i2(@,) — 2llv@®lz2q.)

for 71,72 > 0, where we applied the Sobolev embedding L*(Q,) N L2(Q,) — L2(Q,)
in the last step such that v, = 8. In order to obtain an L? bound for v(¢) uniformly
in ¢ < oo we need to examine the differential inequality

Solt) < Implt) — 2 (> 0). (64

By regarding the differential inequality (6.4) as a differential equation, some elemen-
tary calculations yield
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6.2.1 Remark. Let t* > 0 be arbitrary. Then the ordinary differential equation

%d)(t) =2m9(t) = 2%9()° (t>17), ) =lv(t)Z2q.

has a maximal unique solution

1 ~
() =N (t € (t,00)),
1280 exp(—27 (¢ — 1)) + 72

for ¢(t*) S Rzo\ {0, z—;} and
—o0, if 2> y(t),
—(271) 7 log (123 (8)/ (129 (¢) — ) + 17, if 7, <9(),

and () = P(¢*) for (") € {0,L} and t € R. If T > ¢(¢*) then ¢(¢) 7 I as
t — oo and if 2 <+(t*) then ¢(¢) \ I as t — oco. Furthermore, we observe that

A= {E,O}
Y2

are stationary solutions and that A attracts all solutions .

We aim to apply a comparison theorem in order to obtain a (uniform) bound for
lv(t)l|£2(@n) for t > to starting from a certain to > 0. Since we set ¢(t) = [[v(t)||72(q.,)
it suffices to find any bound for ¢. Hence, we can finally prove

6.2.2 Lemma. Let v denote the solution of (6.9). Then there exists some ty > 0
and Ry > 0 both independent of the initial value vy € L2(Q,) such that

lo@®)|72@,) < Ro (t > to).

Proof. Using the differential inequality we want to find a bound for ¢ and
hence for ||v(t)||12(g,)- At first we aim to apply the comparison theorem from [48,
Theorem 1.3] to f : Ry = R, f(2) = 2712 — 2722? and ¢ : [0,00) — R, the solution
from and ¢, the function from the differential inequality (6.4). Then

we have

9(0) = llvollz2iq) = ¥(0),  @(t) = fp(t)) SO=9'(t) - f(¥(t))  (6.5)

for t > 0. Note that f is locally Lipschitz w.r.t. z and that ¢ and i are weakly
differentiable in (0,00). Then [48, Theorem 1.3] states

p(t) <)  (E=0).
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Note that in fact we first just obtain the estimate for ¢ > 0. However, by the
continuity of 1) and ¢ we indeed obtain the estimate for ¢ > 0.

Hence, we are now able to obtain bounds for ||v(t)||2(g,) uniformly in the initial
data vg € L2(Q,). If ||vo||%2(Q = 0 then ¢ = 0, hence [|v(t)[172(q,) = ¢(t) = 0 for
allt > 0. If ||vo||L2 Q ) =L then ¢ = I and ||v(t)||L2(Qn) =(t) < It for all ¢ > 0.
Let ||v0||L2(Q y <L Then by Remark 6 2.1) we observe that ¢(t) /* L. as t — oo,
hence v is monotonlcally increasing such that ¥(t) < % for ¢ > 0. Hence, also in
this case we infer ||v(¢ )||L2(Qn) =p(t) < L forall ¢t > 0.

At last we consider the case |vgl|? 72@n) > 25+ Then integrating the differential

inequality (6.4) yields

Note that we can estimate the denominator on the right-hand side as

Y29(0) — 1

- 0
1 = 12¢(0) exp(—m12t) + 72 =72 — W exp(—12t)

©(0)
T1
= 72(1 — exp(—m2t)) + 2(0) exp(—712t)

> 72(1 — exp(—m2t))

for all £ > 0. Furthermore, we observe that for every € > 0 there exists some £, > 0
such that

gl _n_ M1 . n
Y2(1 —exp(—m12t)) 72 [72(l—exp(—m2t)) 1

<e (t>t)

due to the convergence. Hence for fixed € > 0 and corresponding to = to(g) > 0 we
finally end up with

1 ")/1

t) <7« <
el <m %20‘;’(0) exp(—mi2t) + v, ~ 72(1 — exp(—m2t))
4! TN 4!
Y2(l —exp(—m2t)) 72 72 V2

for t > ty. Summing up we finally obtain

M
lo@))122(g,) = ¢(t) < e+ = Ry, (t>t)

independent of vy € L2(Q,,). O

6.2.3 Remark. We can apply [48, Theorem 1.3] in the setting of [Lemma 6.2.2

by weakening the assumptions from [48, Theorem 1.3]. In fact in the original

134



Section 6.2. Existence of a Global Attractor

formulation differentiability of ¢ and v in the classical sense and fort > 0is
required. Actually, the proof of [48, Theorem 1.3] shows that we can assume weak
differentiability of ¢ and 1 and that does not have to hold for t = 0 in order to
obtain the result.

6.2.4 Corollary. Let (S(t))i>0 be the semigroup from |Section 6.1. Then the set
By := Bi2 (0,+/Ro) is a bounded absorbing set in L2(Qy).

Proof. This is an immediate consequence of [Lemma, 6.2.2 O]

Next, we will prove the existence of an absorbing set in H}(Q,) N L(Q,,) in order
to apply the Rellich-Kondrachov compact embedding theorem [39, Theorem A .4,
Corollary A.5] to obtain a compact absorbing set in L2(Q,,).

6.2.5 Lemma. Let v denote the solution of (6.9). Then there exists some t; > 0
and Ry > 0 both independent of the initial value vo € L2(Q,) such that

”,U(t)”iI}r(Qn) <R (t>t).

Proof. By we already have an L? bound for any solution v of (6.2).
Hence we only need to find some estimate for Vv in L?(Q,,). To this end, we apply
energy methods. We test with —Av w.r.t. to the inner product in L*(Q,).
Then we infer

1d

3 dt —IVV®)lIZ2(q,) + el VV)lIZ2(q,) + TollAv(t)lIZ2q,) + T2l AVU(E)IIZ2(q,)

v v (1)) Vo(t) o = —Do((v(2) - V)o(t), Av(t))2n

As in [57, Theorem 3.2] we observe that the 8 term is positive and hence can be

dropped. Furthermore, in order to estimate the I'y term we apply [Corollary 2.2.2] for
k = 2 and Young’s inequality to absorb the AVv term with the I's term. We then

infer

r
s SNV a0 + 2 IATVYO) g
< Poll((@() - V)o(t), Av(t))zal + C1IVO(OlExc0,)

with C; > 0. We can estimate the A\ term as

((v(t) - V)u(t), Av(t))2,r = (div(v(t) ® v(t)), Av(t))2x
= —(v(t) ® v(t), AVv(t))2.r
< llv(®) ® v(®)ll 2@ 1AVO() 22(@n)
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< CEv®)Izs(.) + llAVYE)IIZ2q,)
such that we end up with

1d
571 Ve @Ol + = 1 1AVe@Z20,) < CilVod)lix@.) + Callv®)l1a@n)

for some new constants C7,Cy > 0 independent of v and ¢. Hence, we also obtain

the estimate

d
ZIVv @Ol < ClIVE@z2Q,) + Callv®)zsq,): (6.6)

Next, we have to ensure the integrability of the terms in in order to apply the
generalized Gronwall lemma from [47, Lemma III.1.1]. To this end, let » > 0 and
t > to where to > 0 is the same ¢ from [Lemma 6.2.2 Testing with v and
integrating in ), w.r.t. the space variable and from ¢ to ¢ + r w.r.t. the time variable
leads to

t+r t+r
o+ + T2 [ 1A80(3)]22(q,) ds +To / IV0(5)|122(q,) ds

b B 4
ta [T Baguds + L [ 1) g, ds

= [v®)lz2(q.)-

Again, we apply [Corollary 2.2.2] and Young’s inequality in order to absorb the I'y

term with the I'; and a term. Hence, we obtain

F2 B t+r
oGt + ey + 5 [ 1A0(3) g,y s+ [ ols)lbecq, ds

< ||v<t>||%2@n) +0 [ lols) ey ds,

with some constant C' > 0. Since ¢t > ¢y from [Lemma 6.2.2) we obtain

Fz

/3 t+r
ot + Mg + 2 [ 180 aguds + 2 [ (@, ds < O)

for t > to where C(r) > 0 is dependent of » > 0. Then we obtain

t+r
[ ) g ds <) (2 10)
t

and

t+r t+r t+r
| IVe) g ds < [ 1806 Eaguds+ [ 06, ds < C(r)
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for t > t, where we again applied [Corollary 2.2.2/ for £k = 1. Hence we can finally
apply [47, Lemma II1.1.1] to in order to obtain

||V’U(t)||%2(Qn) < C (t > tl)a

where we set t; := ty + r for some fixed r > 0 now. Combined with
this finally yields

[ 0. = l0Olli20, + VO 2@y S B (E =)
for some R; > Ry > 0. O

Hence, as a direct consequence we obtain:

6.2.6 Corollary. Let (S(t)):>0 be the semigroup from |Section 6.1, Then the set
B, == By1(0,4/Ry) is a bounded absorbing set in H:(Q,) N L2(Q,).

Then we can finally prove the existence of a global attractor in L2(Q,,):

6.2.7 Proposition. Let (S(t));>0 be the semigroup from |Section 6.1, Then there
ezists a global attractor Ay C HX(Qy,) N L2(Q,) such that

St)Ag=Ay  forall t>0.

Proof. We apply [Theorem 2.3.3| to prove the assertion. We need to verify that
(S(t))e>0 is dissipative, hence we have to ensure the existence of a compact absorbing
set B C L2(Q,).

From [Corollary 6.2.6) we infer that B; is a bounded absorbing set in H1(Q,,) N L2(Q,,).
Hence by Rellich’s compact embedding theorem ([39, Theorem A.4, Corollary A.5]2
we obtain that B is relatively compact in L2(Q,). As a consequence B = B

is compact in L2(Q,) and [Theorem 2.3.3| yields the existence of a global attractor
AO g L(27 (Qn)

We can even prove that the global attractor A, has H'-regularity. Note that
S(t)Ao = Ay for all t > 0 by definition of a global attractor. This especially holds

for t = t; where t; is the same as in Hence we deduce

Ao = S(t1) Ao C By C HY(Qn) N LZ(Qn),

where B; is defined as in [Corollary 6.2.6l O]

Next, we prove that the global attractor in fact has arbitrary high regularity which

again can be obtained by considering energy estimates:
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6.2.8 Lemma. Let k € N and v denote the solution of (6.4). Then there exists some
tr > 0 and Ry > 0 both independent of the initial value vo € L2(Q,) such that

”'U(t)”%[jg(Qn) S Rk (t Z tk)-

Proof. We will prove the assertion via an induction argument. For £ = 1 the

statement was proved in [Corollary 6.2.6| For k£ € N we assume the existence of an
absorbing set in H*~1(Q,) N L2(Q,). Then there exist R; > 0 and ¢; > 0 with

Oy, <B (21t

for 7 =0, ...,k —1 by assumption. Note that we can assume t;_; > ... >ty > 0. Now
testing (6.2) with (—1)FA*v(t) yields

5 IV U020, + T2V 20(0) e g, + Tol Vo0

+al|VFo(8)l 720, + M(VF2(u(t) - V)o(t), VE*20(t))2x
+ B(VF2|u () Po(t), V20 (t)) 2. = 0.

Again, we aim to absorb the I'y term with the I'; and a terms by applying
lary 2.2.2] and Young’s inequality (as seen in the proof of (Corollary 6.2.6). Further-

more, we obtain

k-2
IVF2 @ Po®) . < D IVo)llzs@ IV lzs@u IV (E)lizo@n)
J,3,4=0
k—2 ,
<C X IVv®)llaz@ull Vvl a@n VYO 2@
7,8,=0

<C Z 0@l g+ @uy 0Ol 1 @ [V 1.0,
J,i,€=0

< C”’U( )”Hk HQn)’

where we used the Sobolev embedding H}(Q,) — L°(Qy,) by [5, Corollary 1.2] since
n = 2,3. Hence we can estimate the § term as

(V2@ (), V¥*20()ar] < e VH20(0) 3q,) + CE) )]G
S g||vk+2’l)(t)”%2(Qn) + C(e)RZ—l

(@n)

for € > 0 arbitrary small and C(¢) > 0 dependent on €. Hence we can absorb the
V#+2y(t) term with the I’y term. We also observe

k-2

IV*2(u(t) - V)o@)ll2@n < D IVl a@u IV 0(®) [l 24@n)

3,=0
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k—2

<C Y IVl @u IV o) | a2 (0.

3,=0
k—2

<C Y @)l gr g, )]
J,i=0
< Cllo@ -2 g VO 00y
2 k 2 1/2
< Clo@®ll -1,y (0@ 3200 + IV @) 2200 )

where we again made use of the Sobolev embedding H(Q,) — L*Q,) by [5,
Corollary 1.2] and the fact that

Hy"2(Qn)

1/2

k 1/2
o)l zt(0,) = (;) ||w<t>||%2@n)> < C (lv® 32 + IV*9® 132q.))
J:

by [Corollary 2.2.2 Then the )¢ term can be estimated as

(V*2(w(t) - V)o(#), V*20(0)) e
< ellV*0(8) 22(q,)
+0E) ()21 ) V0O By + WO o, [0,

< ellVF0(t) (1320, + C(€) Re-1lIV*0(#)|[72(q.) + C(€) RoRe-1.

Here the remaining terms V**2y(t) and V*v(¢) can be absorbed by the I'; and «
term. Note that all estimates hold for ¢ > t;_;. Summing up we arrive at

d I
ST @) g + LIV e,y < VIO Rag) +Co (2 1)

for some constants C;,Cy > 0 which are independent of ¢ and v. Note that we can
do the same calculation for £ — 2 such that we obtain

d _ Iy _
allvk 20(8)[| 7200y + 7||Vkv(t)||%2@n) <GV 200720, +Co (B2 te),
which yields for ¢t > t;_; and r > 0 arbitrary
t+r & 9 t+r k2 9 t+r
[ IV @) ds < Cr [ IV 0(9)lEaq,y ds+Ca [ ds < O,

where we made use of the fact that [|[V*~?v(t)||72,) < Re—2 for t > t;_1 by the

induction assumption. Again by applying the generalized Gronwall lemma (cf. [47,
Lemma II1.1.1] we end up with

”Vkv(t)”%ﬂ(c)n) <C (t > ty),
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for some t; > 0 and therefore

@) < Br (E> 1)
for some Ry, > 0 independent of vy. Hence, the assertion is proved. m

6.2.9 Corollary. Let (S(t)):>0 be the semigroup from |Section 6.1. Then the set
B = By (0,+/Ry) is a bounded absorbing set in HX(Q,) N L2(Qy).

6.2.10 Corollary. Let (S(t))i>0 be the semigroup from |Section 6.1. Then the global
attractor Ay from|Proposition 6.2.7 has H*-regularity for all k € N, i.e.,

Ay € HE(Qn) N LE(Qn).

Proof. [Proposition 6.2.7] states that S(t).Ag = Ao for all ¢ > 0. This especially holds
for t;, > 0 for all £ € N, hence

Ao = S(tr) Ao C By € HE(Qn) N L2(Qn)

by [Corollary 6.2.9. O]

Next, we prove the existence of a global attractor A4y C H2(Q,) N L2(Q,,) for
the semigroup (S(t))so in the context of and [Theorem 5.1.3, Note

that there we proved that solutions even have H*-regularity for initial data vy €
H2(Q,) NL2(Qy). Then even (H(Q,) NL2(Qy), S(t))e>0 is a semidynamical system
and we can expect higher regularity for the global attractor A4. At last we will prove

that the attractor Ay from [Proposition 6.2.7 and A4 actually coincide.

6.2.11 Proposition. Let (S(t));>o be the semigroup from |Section 5.1. Then there
ezists a global attractor Ay C HX(Q,) N L2(Q,) such that

S(t) Ay = Ay for allt > 0.

Proof. We apply the same arguments as in [Proposition 6.2.7. Then we only have
to prove that (S(t))so is dissipative by [Theorem 2.3.3. Note that already by
[Corollary 6.2.9| we obtain a bounded absorbing set Bs C H2(Q,) N L2(Q,) where
B_5H4 is compact in H2(Q,) N L2(Q,) by Rellich’s embedding theorem (cf. [39,
Theorem A.4, Corollary A.5]). O

6.2.12 Lemma. Let (S(t))i>0 and (S(t))i>0 e the semigroups from |Section 6.1 and
respectively. Then the corresponding attractors Ay and A4 coincide.
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Proof. First we note that Ay C H2(Q,) N L2(Q,) is bounded and invariant, such
that by Rellich’s compact embedding theorem (cf. [39, Theorem A.4, Corollary A.5])
we infer that I0H4 is compact and absorbing in H(Q,) N L2(Q,). Furthermore,
we observe that XOH‘l = Ay since A is compact (and especially closed) in L2(Q,)
which is equipped with a weaker topology than H2*(Q,) N L2(Q.,). Hence,

-AO = -’TOI_I4 g A47

since A4 is the maximal compact, invariant set in H2(Q,) N L2(Q,). On the other
hand by making use of the representation of the global attractor from [Theorem 2.3.3|

we obtain

A=(SHB" N S®Bs" = A,
>0 t>0

712
since B5L is obviously also a compact, absorbing set in L2(Q,,) and since the global

attractor Ay is unique. Thus, the assertion is proved. O]

6.3 Injectivity and Finite Dimension

In this section we try to characterize the global attractor Ay from [Proposition 6.2.7]

more precisely. To this end, we will first prove injectivity of the semigroup (S(t)):>o0
from on Ag which will yield some properties of the global attractor, i.e.,
(Ao, S(t))ier is a dynamical system (we put emphasize on the fact that the semigroup
then exists for all ¢ € R) and that the global attractor just consists of complete and
bounded orbits. At last we will prove that the global attractor Ay has finite (fractal
and Hausdorff) dimension m.

6.3.1 Lemma. Let (S(t))e>0 be the semigroup from[Section 6.1 Then (S(t))iso s

injective on its global attractor Ay C L2(Q,). Furthermore, all properties stated in
|Theorem 2.3.5 hold, i.e.,

(i) every trajectory on Ay is defined for allt € R and (Ao, S(t))ier is a dynamical

system;
(i) Ao =U{v is a complete bounded orbit};
(iii) for every compact invariant set X C L2(Q,,) the unstable manifold of X
W*(X) = {vo € L2(Qn) : S(t)vo defined ¥t € R, S(—t)vy =5z € X}

is contained in the global attractor Ajy.
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Proof. We follow the ideas of [39, Theorem 12.8] in order to prove that (S(t)):>o is
injective on Ay. Hence, we need to show that if S(T)ug = S(T)vy € Ao for some
T > 0, then ug = vy already follows.

Hence, let ug,vg € Ay and let u = S(-)ug and v = S(-)vy be the corresponding
solutions of with u(T) = S(T)up = S(T)vy = v(T) for some T' > 0. We set
w = u — v and then w solves

w; + ToA%w — ToAw + aw + PB(Jul*u — [v]*v) + PAo((u- V)u — (v- V)v) =0

in (0,7) X @,,. Using the same energy estimates as in [57, Theorem 2| we obtain u,v €
L>®((0,T), H3(Q,)) N L*((0,T), HX(Q,) N L2(Q,)) by [Corollary 6.2.9| since ug, vy €
Ao C H2(Q,) N L2(Q,,). Hence, also w € L*°((0,T), H3(Qy,)) N L2((0,T), H*(Q,) N
L%(Q,)). By defining

B: HX(Qn) NL2(Qn) = Eij2s C E_1)2 — E_1 2, Bw =2A*w — TyAw + aw,

we observe that B is a bounded and linear operator (see [Section 6.1). We aim to
apply [39, Lemma 11.9, Theorem 11.10] with H = L2(Q,) and V = H2(Q,)NL2(Q.).
Defining

h(t, w(t)) = PB(lu(t)*u(t) — [v(®)[*v(t)) + PAo((u(t) - V)u(t) — (v(t) - V)u(t)),

it remains to show [|h(t, w(t))|lz2@.) < k(E)|lw(t)| a2, for k(t) € L*((0,T),R).
We first consider the first difference in h. Applying the Taylor expansion to G €
CY(Hz(Qn) N L3 (Qn), L2(Qr)), G(u) = |ul*u with DG(§)A = 2(£ - )€ + [€*A for
£\ € H(Q,) N LA(Q,) we arrive at

lulv = [v[*v]lz2@n) = IG(w) = G(V)llL2(@.) = IDG(E) (v — )ll22(@.)

< C?gg DGO 2t2 @unz2@n).L2 @) 1v — vl E2 (@0
1

<Csup sup [|2(€ - NE+ A2 v — vllm2qn)
£€B1 M1 (g, =1

<Csup  sup €120 IMzrom e — vz o,
€81 Ml gy =t T #(Qn) (@)

< Cllu = vl m1(Qu);

where we applied the Taylor expansion to u,v € Ay C B; by [Corollary 6.2.6| and
making use of the Sobolev embedding H}(Q,) — L%(Q,) from [5, Corollary 1.2].
The second difference in h is estimated as

1w V)u = (v- V)vll2q.)

142



Section 6.3. Injectivity and Finite Dimension

= [[(u-V)(u—v) = ((u—v) - V)v|r20,)
< lullza@u IV (v = v)|l22@n) + v = vllza@u) VUl L2(@n)

< C (Ilullm@ulle = vllmzin + v = vllm@ullvlzze.)
< Cllu = vllm2(Qu);

using the same arguments as before. Then making use of the boundedness of the
Helmholtz-Weyl projection yields ||h(t, w(t))||z2(q,) < Cllw(t)||g2(g,) Where C >0
is independent of ¢. Hence, all assumptions for [39, Theorem 11.10] hold. Since
S(T)up = S(T)vo for some T' > 0 we have w(T') = u(T) —v(T) = 0 and [39, Theorem
11.10] yields w(t) = u(t) —v(t) = 0 for all 0 < ¢t < T', which especially holds for ¢ = 0.
Hence, uy = vp and (S(t)):>0 is injective on Ay. O

Next, we attempt to obtain dimensional bounds for the Hausdorff and fractal
dimension for the attractor Ay following the approach in [39, Chapter 13]. Even
though Ay C L2(Q,) is a subset of an infinitely-dimensional phase space, we are
able to prove (fractal) finite-dimension which shows that the dynamics of the whole
system (6.2) can be determined by a finite degree of freedom. We aim to apply
[Theorem 2.3.7} To this end, we first prove uniform differentiability of the semigroup

(S(t))exo0:

6.3.2 Lemma. Let (S(t)):>0 be the semigroup from|Section 6.1 and Ay be the global
attractor. For ug, vy € Ay we then have

ISt)uo — S(t)vollZz(q,) < € lluo — volli2g,) (2 0).
This especially yields uniqueness of solutions with initial value vy € Ay.

Proof. We apply a standard argument which is often used in order to prove uniqueness
of solutions. Let wug,vg € Ay be initial values and u = S(-)uy and v = S(-)vy be
corresponding solutions of (6.2)). We define the difference w := u—v and wy = ug—vp.
Then w solves
w; + ToA%w — ToAw + aw + BP(|ul?u — [v|*v) + Mo P((u - V)u — (v- V)v) =0,
w|t:0 = Wyp.

Testing with w w.r.t. the scalar product in L?(Q,,) then yields the following (we omit
the variable t):

1d
5%”“’”%2(@”) + I‘2||Aw||%2(Qn) + F0||VU’||%2(Q,L) + a”w”%?(Qn) + B(lulPu, w)g
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B(|v*v, w)ax + Ao((u - V)u, w)gr — Ao((v - V)v,w)g, = 0.

We aim to apply Gronwall’s inequality. To this end, we observe that ((v: V)v,v)o, =
((v-V)u,u)s2, = 0 since u, v are divergence free and ((v-V)v,u)a» = —((v-V)u,v)2.x,
hence the A\ terms simplify as

((u-V)u,w)ar — (v VIv,w)ar = —((w- V)u,w)ar

Again by applying the Sobolev embedding H}(Q,,) < L*(Q,) from [5, Corollary 1.2]
and making use of the fact that Ay C Bs, [Corollary 6.2.9|yields for the Ay term:

[((w - V)u, w)az| < Cllwllgz@ullwllzz@ullulm2@.) < Cllwllai@.)llwllz @.),

since u(t) = S(t)up € Ao for all ¢ > 0. Concerning the 8 term we apply the Taylor
expansion exactly as in the proof of Hence collecting all estimates and
making use of [Corollary 2.2.2| for all Vw terms leads us to

1d
3 ol + 218wl < C (Iwllgn ol + i)

and in the end
1d

5 ol + Il < Cllul,) (67)
with C' > 0 independent of ug, vg and t. Applying Gronwall’s inequality yields the
assertion:

lw®l72.) < € lwollza,y — (¢=0),
where C' > 0 is independent of ¢. n

6.3.3 Lemma. The semigroup (S(t))i>o0 from is uniformly differentiable
on the attractor Ay C L2(Q,) in the sense of [Definition 2.5.6. Furthermore, the

solution operator A(t,vo) of is a compact operator for t > 0 and vy € Ayp.

Proof. In order to prove the assertion we need to show that for every vy € Ay there
exists a linear operator A(t,vp) such that for all ¢t > 0 we have

|5 (t)uo — S()vo — A(t, v0)(uo — vo)llL2(Qn) 0,
sup

wo,u0€ A0 0<luo—uoll 2, < [uo = ol z2(Qn)

> 0

and

sup 1A, vo)ll (22 (@n)) < 00

voE€Ag
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We claim that w(t) = A(t,vo)wo is given as the solution of the equation (6.2)
linearized about the solution v of (6.2)) with initial value vy:
wy + T2A?w — ToAw + aw + PAo((v- V)w — (w - V)v)
+PB(2(v-w)v — [v|*w) = 0, (6.8)
w|t=0 = wy.

Hence, by we observe that is wellposed for data wy € Ay (and

wo € L2(Q,,) for the second part of the proof) by applying a perturbation argument
once again.

At first we will prove the first assumption on uniform differentiability. To this
end, let u,v be solutions of to corresponding initial values ug, vy € Ag. Let w
be the solution of with initial value wg = ug — v9. Then we define the error
0 := u — v — w which then fulfills the following equation

0; + T2A%0 — ToAl + af + PAo((v- V)0 + (0 - Vv + (v —u) - V)(v — u))

(6.9)
+ PB(|ul*u — |v|*v — 2(v - w)v — |v|*w) = 0.

Note that we can write the 5 term as

lu|?u — |v*v — 2(v - w)v — |v*w

= |ulu — |[v]*v — |v*(u —v) = 2(v - (u — v))v + 2(v - O)v + |v|*8
such that can be written as
0; + T2A%0 — ToA0 + ad + Po((v- V)0 + (0 - Vv + (v —u) - V) (v — u)) 6.10)
+ PB(2(v - 0)v + |v]|*0 + g(u,v)) = 0,

with g(u,v) = |u]?u — |[v|*v — |v|*(u — v) — 2(v - (u — v))v. We aim to estimate
16| 2(@,,) in order to obtain the desired convergence. To this end, we test (6.10) with
6 w.r.t. the scalar product in L?(Q,) to obtain

1d

5%”9”22(@") + FQHAHH%Z(QH) + I‘0||V9||%2(Qn) + a”(g”%?(Qn) + 2o((0 - V)v,0)2.

+ Xo(((u —v) - V)(u—v),0)2x — B(9(w,v),0)2,x
+2B((v - 0)0,8)5.x + B(V[ |6]2)2r = 0.

We aim to apply Gronwall’s inequality to obtain corresponding estimates for the
term ||6||z2(q,.)- Hence, we consider all terms separately. Using similar estimates and
arguments (Sobolev embeddings) as in [Lemma 6.2.5| we obtain for the Ay terms

1((0- V)v,0)2x| < Cl0l m2 @) 10Nl 20 |1V ] 22()
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|(((w =) - V)(u = 0),0)22| < Cllu = vllm2(Qu) lu = 2l 22(@u 10Nl 2 @) -

Furthermore, since 8 > 0 we deduce that 8(|v|?, |0]?)2.~ > 0 and that 8((v-0)v,8)2, =
Bllv - 9”%2(%) > 0. Considering the (g(u,v),8)s, term we observe that g(u,v) =
G(u)—G(v)—DG(v)(u—v) with G(z) = |z|*x, hence considering the Taylor expansion
of G € C*(Hz(Qn)NL3(Qn), L2(Qr)) with D2G(z)y, 2] = 2(z-y)2+2(y-2)z+2(z-2)y
for z,y,2 € H:(Q,) N L2(Q,) yields

ll9(u, v)llz2(@n)

< C'sup sup Iz - y)z+ (- )z + (@ 2yl v — vl (o,
TEBLN WA @n)x ik @n) 71

<Cswp s lallsonWllaenlHllaenlls — e,
2€B1 |2l 11 (@ x a1 (@) =1

< Cllu = vz Q.

because u,v € Ay C By, since ug,vg € Ay (cf. [Corollary 6.2.6)). At last by applying

|Corollary 2.2.2 to the I'y term, collecting all estimates from above and making use of
u,v € Ay C By (Corollary 6.2.9) we arrive at

1d
100 + 21881 0, < C (1610, + I — vl ) IBlz2cauy

+llu = vl g2@uyllv = vl 2@ 181l 52 00)) -

Again, by making use of [Corollary 2.2.2| (applied to the V terms) and Young’s

inequality we finally conclude

1d Iy
5 7191z + g 14611220,y < C (I61132(q.) + llu = vz (g llu = vliz2.) ) -

Finally, applying the Gronwall inequality then yields (note that 6(0) = 0):

16 Z2(q.) < / lu(s) = v(9) I 2(q, luls) — v(s)ll12(q.) ds-
Note that the right-hand side is bounded by in the proof of
we tested with [u —v]|Z2 g, ) W.r.t. the time ¢ to conclude
/Ot lu(s) = () 2(q.) luls) = v(s)ll12(q,) s < C(B)luo — ollz2 (g,
which then finally yields
lu(t) — v(t) —w(®)ll72(q,

) 2 ug — Vo
< C(1)|luo = vol[22(0. ) =2 0.
“’LLO - ’UO“%z(Qn) L*(@n)
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At last we prove that A(t,vo) is a compact operator for t > 0 and vy € Ag and
has an operator norm uniform in vg. To this end, we will prove that A(¢, vo)wo can
be bounded in L? and H! such that we can apply the Rellich compact embedding
theorem. We recall that w(t) = A(t, vo)wo, where w is the solution of (6.8). Testing
(6.8) with w w.r.t. the L? inner product and making use of the same arguments as in
the proof before (positivity of the § term, [Corollary 2.2.2} [Corollary 6.2.6, Sobolev
inequality), we obtain

d
Ellﬂ)(t)lliz@n) +lIAw) Iz, < Cllw®)lZz .- (6.11)

Hence, applying Gronwall’s inequality yields

lw)lZ2g. < € lwolltag,y,  Nwlizq, < e lwt/2zeq,y  (612)

for t > 0 with C' > 0 independent of vy, wy. The first inequality then already yields
the L? bound for A(t,vp) for ¢ > 0 and vy € Ap. In order to obtain the H} bound we
test with —Aw and apply [Corollary 2.2.2| and Sobolev embeddings to obtain

d
ZI1Ve® iz, + 1AVe@)liZ e, < C (IVwd)lz@n + lw@)llzen) - (6.13)

We aim to derive a bound for Vw. To this end, we integrate (6.11)) from ¢/2 to ¢ to
obtain

t t
[ 106z ds < € ([ 1(6) gy ds+ ult/2) e, )
which especially yields by applying (6.12):
t
L 190()Eaqq, ds < COlluollEac,

At last we integrate (6.13)) first from s to ¢ with s € (¢/2,t) and then from ¢/2 to ¢
to end up with

t
2 IVw® @
<C t 2 d t t 2 t t 2 d
<O [ IVus)liagyds+ 5 [ IV0()lia@n + 5 [, 106, ds )
which finally leads us to
IV ()72, < C@)llwollZz(q,)-

This proves that for any bounded set M C L2(Q,,) the range A(¢,vo)M C HX(Q,)N
L%(Q,) is bounded, such that A(t,v9)M C L2(Q,) is relatively compact. Thus,
A(t,v) € Z(L%(Qy)) is compact with bounds uniformly in vy € Ay. The proof is

now completed. n
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6.3.4 Theorem. Let (S(t))i>0 be the semigroup from|Section 6.1 Then the fractal
and Hausdorff dimension of the global attractor Aqy from [Proposition 6.2.7 is finite,
i.e., there exists m € N such that dg(Ag) < df(Ag) < m, where dy and dy denote

the Hausdorff and fractal dimension, respectively.

Proof. We want to apply [Theorem 2.3.7 to obtain the result. By we

only need to prove the trace condition, i.e.,

TRm(Ag) = sup sup  (TrL(t, vo)Pg(f)" ) e (8) <0
weAo €9€L2(Qn), pmm

||€ ||L2(Qn)_1
j=1,...m

(see [Theorem 2.3.7| regarding the notation).
To this end, we fix m € N and consider {£) : j =1,...,m} C L%(Q,) where & are
linearly independent. Let vy € Ay and v be the corresponding solution of (6.2)). Then

by L(t,v) we denote the linearized operator in and by A(t, ) its corresponding
solution operator (as defined in [Lemma 6.3.3). We consider the linear span

M(t) = {§(t) = Alt,v0)&} - = 1,...,m} C L3 (Qn),
which is a finite dimensional subspace of L2(Q,,), hence we can find a projection
P(m) o (t) onto M(t) for every ¢ > 0 such that Pé(gn ) co () L3 (Qn) = M(t). However,
w. 1 0. g we can choose an orthonormal span {p;(t) : 5 = 1,...,m} C H™(Q,)NL2(Q,)
of P;{,ﬁ?"g% (¢)LZ(Qy) w.r.t. the L? norm. Then testing L(¢, vo)p;(t) with ¢;(t) w.r.t.
the L? inner product yields
(L(t, v0) 5 (t), 05 (t))2r
= —T5[|Ap; ()1 Z2(q.) — Loll Vi ()l Z2(q.) — lles®lIZ2(q.)
— Xo((@5 () - V)u(t), i (t))2.x — Ao((v(E) - V);(t), 5 (£)) 2
= 28((v(t) - @5 (1))o(t), 05 ()2 — B0 ()95 (1), 05 (t))2n
< =Dl Ap; ()12, — TollVei)I20.) — alle; )22,
+ Cllo; Ol m2@m llei Ol 2@ 10 @) | 2@

Iy
< _Z”A‘Pj(t)”%?(qzn) +C,

taking into account [Corollary 2.2.2] ||¢;(t)||z2(0.) = 1, v(t) € Bs by [Corollary 6.2.9)
and Sobolev embeddings with some constant C' > 0 independent of ¢;, ¢ and v,y. Also

note that the 8 terms are positive. Now, summing up all j = 1, ..., m and making
use of the definition of (-) from [Theorem 2.3.7 yields

(TXL(t, 00) P™ (1)) < — i % (1Ag;(1)2:(q.)) +mC.
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Next, we want to apply the Sobolev-Lieb-Thierring inequality as seen in [18, Propo-
sition 3.1, Remark 3.2] to estimate the [[Ag;(t)[17(,) term. In order to apply [I8,
Proposition 3.1] we write all appearing terms in the setting of [I8, Proposition 3.1]:

CEDICICRINN

which yields for p = 3/2 and n,m = 2:

2m(p—1)/n
</Q p(z)P/ 1) dm) —/ p(z)® dz

(Z/ Z|aa%tm|2dx+/ )

@n jal=2

< cz les®2.)
<€ (lesOlizn + 1400l E0)

<C <m+2|lﬁ% )z Qn)

where we again made use of the fact that {¢;(t)};=1,..m is an orthonormal system.

.....

Hence, by observing

3

m® = (ZII% ||L2<Qn)3= (55 | swrds) <c [ pads

<C <m + Z IIAw(t)IIiz<Qn>>

=1

for all ¢ > 0, we finally obtain
(TrL(t, w)Pg" o (8)) < C(m —m®) <0,

which holds for a chosen m € N large enough. For n = 3 we can obtain the same
results by applying [18, Proposition 3.1] with p = 7/4 such that we get the same
estimate with the leading term m/3. Thus, we infer

TRm(Ao) = sup sup  (TrL(t,v0)PS” o (1)) <0,
weAo ¢0€L2(Qn), o

||§ ||L2(Qn)_1
Jj=1,...m

and [I'heorem 2.3.7 yields the assertion. n
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6.4 Existence of a 2D Inertial Manifold

Another approach to analyze long-term behavior is the examination of the existence
of an inertial manifold such that the underlying system reduces to an ordinary
differential equation on the inertial manifold - hence stability analysis of can
be simplified. In the following we will prove the existence of an inertial manifold for
in n = 2 by following the approach in [15] and [41, Chapter 8§].

6.4.1 Theorem. Let (S(t))i>0 be the semigroup from|Section 6.1. Then there exists
an inertial manifold M for having the following properties:

(i) M is a finite dimensional, Lipschitz continuous manifold in HY? (@2)NL2(Q2);
(i) M is positively invariant;

(iii) M is exponentially attracting, i.e., there exists n > 0 such that for every
vo € L2(Q2) there is some K = K (vg) > 0 such that

distrz(S(t)vo, M) < Ke ™™ (t>0).

Proof. We aim to apply [41, Theorem 81.2] to prove the result. To this end, in the
setting of [41] we set H = L2(Q3) and A, : D(A,) C L2(Q2) — L2(Q,) with

A,v =T9A% —TyAv + av + wo,
D(A,) = Hy(Q2) N LZ(Q),

where w > 0 is chosen arbitrary large such that A, is a linear, positive operator. By
it is known that A, has compact resolvent and admits a bounded H*-
calculus such that by [22, Theorem 6.6.9, Theorem 7.3.1] the family of interpolation
spaces V2* = D(A%) = [D(AP), D(A))]y for (1 — )8+ 0y = a, 0 € [0,1] and
0 < B < 7 generated by fractional powers of A, are defined for a > 0. Furthermore,
we set
F,(v) == —PBv|*v — PXy(v - V)v +wv

such that can be rewritten as v; + A,v = F,(v). For 8 = 3/8 and V* =
D(AB) = [L%(Q2), HX(Q2) N L%(Q2)]3/s we then infer for the nonlinearity that
Fyy € Clipioc(H*(Q2) N L2(Q2), L2(Q3)) since the derivative is given as DF,,(v)u =
—2PB(u-v)v— PBv[*u—PAo(u-V)v—Po(v- V)utwu for u,v € He'*(Q2) NL2(Q2).
Here, Cripoc denotes the space of all locally Lipschitz continuous functions. Then

we can estimate the occurring terms locally

llolPullz2@a) < Nvllzoiga lwllzo@a < CllvII e g 1l 22 g,
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- D)vllizn < IV0llsamllullzsign < Clloll sz g, ull sz g

by making use of the embedding H2/ ?(Q2) = W3(Q,). Furthermore, the so-called

spectral gap condition
Mer1 =AM > KO, +X) (keN)

(see [41, Formula 81.16]) has to hold for K > 0 and ordered eigenvalues 0 < A\; <
Ao < ... < M—1 < X\ < ... of the bi-Laplacian A2, It is known that the corresponding
eigenvalues behave as Ay ~ k% = k*™ and [41], Table 8.1] states that the spectral gap
condition is fulfilled in two dimensions whenever 0 < 5 < 1/2 which is given in our
case. Hence [41], Theorem 81.2] yields the assertion. O

6.4.2 Remark. (i) Note that by the third property of the inertial manifold M in
[Theorem 6.4.1], we observe that the global attractor Ay from [Proposition 6.2.7]is

contained in M. Furthermore, in contrast to the result from [Proposition 6.2.7|

we obtain exponential attraction of the inertial manifold M which means
that after a rather short time every solution of (6.2)) can be approximated by
solutions on the inertial manifold M.

(ii) We cannot satisfy the spectral gap condition for n = 3 due to the fact that we
need 8 > 1/4 in order to estimate the nonlinearity but we need § < 1/4 in
order to fulfill the spectral gap condition (see [41, Table 8.1]).
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Chapter 7
Conclusion

In this thesis we considered two systems of partial differential equations: A 2D
contact line model and an active fluid continuum model. Both are based on the
Navier-Stokes equations which describe the motion of viscous fluids. As the dynamic
2D contact line model can be transformed to a Stokes system on a fixed sector, we first
performed analysis on a sector in There we introduced (in)homogeneous
Sobolev spaces in sectors and we gave results on e.g. trace theorems, Korn’s inequality
and solvability of elliptic problems. We also introduced reflection invariant subspaces
since there multiplication with the sign function sgn is bounded for s = 1/2 which is

not the case in the setting of (in)homogeneous spaces H* for s > 1/2.

For the linearized 2D contact line model, existence of weak solutions for the
stationary system was proved resulting in resolvent estimates for the corresponding
solution triple. The active fluid continuum model was considered in the periodic
setting. At first (in)stability depending on the involved parameters was proved,
hence in order to obtain results matching the observations in [54], the existence of a
global attractor and characterizations were considered in the second part.

2D Contact Line Dynamics

is devoted to the analysis of a contact line model in two dimensions which
corresponds to the Navier-Stokes equations subject to partial slip conditions at the
solid boundary and free slip conditions at the free boundary in a time-dependent
domain. At first a suitable transformation was applied in order to obtain a system
on a fixed domain (0,7") x ¥y where 6 € (0,7/2) is the initial contact angle at time
t = 0 and Xy denotes the sector with opening angle 6 and I' its boundary. This leads
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to the resolvent Stokes system:

M —divT(u,p) = fi in Xy,
divu =0 in X,

(7.1)
T(u,p)n + oc(0)d?pn = fy onT,
)\p+@(n-u)=0 onT,

which is solved in the setting of homogeneous Sobolev spaces with p = 2. At first the
resolvent Stokes system was analyzed by making use of the fact that we are working
in the Hilbert space setting. Here, it was crucial to have a proper introduction to the
homogeneous Sobolev spaces H* for s € [—1,1] on the sector &y and its boundary
I' which was addressed in We again put emphasize on the fact that
the boundedness of the multiplication with sgn was crucial throughout
which we only obtained in the setting of reflection invariant (in)homogeneous spaces
with the correct symmetry. Since literature dealing with homogeneous spaces in
sectors Yy is limited, we applied a bi-Lipschitz transformation to transfer as much
results as possible from the whole space R™ and the half-space R2 to the sector .
Furthermore, elliptic problems and additional trace results, and Korn’s inequality
on convex and non-convex wedges were proved. Then solving the resolvent problem
in the weak setting can be achieved by using Hilbert space theory, leading to
resolvent estimates for |A\| = 1. By making use of the scaling invariance of and
the scaling of the norm in homogeneous spaces, it was possible to obtain resolvent

estimates for A with large absolute value, leading to the important resolvent estimates

lully, 5220y + N2 ull 2250 + 1 VUll 20y + VX2 ]0ll 1),

+ ‘7”639”,\, 12y, in2wy, 1PN 2y, i1 ).

< C (il gayn + Mallz-ays) -

Several observations within the development of the results were made: In the
context of homogeneous spaces we can expect at most the regularity stated above
for the triple (u,p, p) since H'/2(T") (the space for the data on the boundary) is the
borderline for the non existence of the trace at the singular point (0,0) and for the
boundedness of the multiplication with normal and tangential vector fields in spaces
with the correct symmetry.

Further challenges are to develop methods to reduce the divergence of the velocity
field and f5 (second and fourth equation of (7.1)). E.g. it is possible to reduce f5
by solving a corresponding weak and strong inhomogeneous Neumann problem. As
soon as can be solved with arbitrary data fs it is possible to apply the Laplace
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transform to the time-dependent system in order to obtain maximal regularity type
estimates as seen e.g. in [42]. Solving the linear 2D contact line model automatically
leads to the question whether the nonlinear problem can also be solved in this setting.
This is left as a future challenge.

Active Fluids

In we presented a full stability analysis of an active fluid continuum model
with results depending on the occurring parameters in two and three dimensions.
Here, the model is given as generalized Navier-Stokes equations with a leading fourth

order term A2 subject to periodic boundary conditions:

v+ Xv - Vo= f—Vp+ MV|v]? — (a+ Bv]*)v + ToAv — Ty A?,
dive =0, (7.2)

U|t:0 = o-

The model was investigated in the periodic L?-setting in a box @, of length L > 0
such that it was possible to take advantage of the fact that in bounded domains
results like the compactness theorem by Rellich-Kondrachov could be applied. At first
we ensured global wellposedness of for initial values in H2(Q,) N L2(Q,) using
the theory of maximal LP-regularity. Global wellposedness can then be obtained by
using energy estimates.

Two physical relevant stationary states occur: the disordered polar state (0, py) with
Po € R and the manifold of ordered polar states consisting of (V,pg) with py € R
and constant vectors V' of length \/T/,B . Here, we focus on the analysis of the
manifold of ordered polar states. Every function in L?(Q,,) can be represented by a
Fourier series, hence by making use of this Fourier series expansion it was possible to
prove that V is normally stable if I'y > 0, hence applying the generalized principle
of linearized stability from [35, 36] yields stability. Depending on the occurring
parameters I'y, Iy, a, B it was possible to show that V is normally hyperbolic, by
again making use of the Fourier series expansion. Then again [35, 36] yields the
existence of a stable and an unstable foliation, stating especially that the case of
instability occurs which matches the observation of turbulence in [54].

However, in [54] it is also observed that the simulation of bacterial suspensions
reaches some stable final state after a finite time. This was mathematically justified
in where we proved the existence of a global attractor independent of the
relation of the occurring parameters. At first we again ensured global wellposedness
for initial values in L?(Q,) in contrast to the setting in Following the
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approach from [39, [47] it was possible to show the existence of compact absorbing
sets of arbitrary high regularity such that we could deduce the existence of a global
attractor, which is a maximal set which attracts all solutions of . Here, we
again made use of the Fourier series expansion, and used a bootstrapping argument
to obtain estimates in spaces of higher regularity. At least we tried to characterize
the global attractor by showing properties like injectivity and finite fractal and
Hausdorff dimension, which leads to the observation that the dynamics of
can be determined by finite degrees of freedom. At last we proved the existence of
an inertial manifold in two dimensions which was possible due to the fourth order
term and the nonlinearity of second and third order. Then a so-called spectral gap
condition could be fulfilled. The advantage of having an inertial manifold lies in the
fact that an inertial manifold has more structure (and is indeed a manifold) which
attracts exponentially and where the global attractor is contained.

Hence, the inertial manifold might also contain stationary states that we haven’t
considered before. Also it is not clear whether we also obtain an inertial manifold in
three dimensions. In this case the spectral gap condition is not fulfilled, however,
it is still open if the spectral gap condition is mandatory to obtain the existence
of an inertial manifold. Furthermore, in [54] it was observed that the stable final
state forms a hexagonal grid. Up to today, it is still open if there are any stationary
solutions corresponding to this hexagonal grid. Also it could be helpful to have a
more precise characterization of the global attractor which could be achieved with
numerical simulations.
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Contributions

The content of this thesis is based on joint work with other contributors.

Chapter 3| which introduce the mathematical framework used in and
are based on a joint work of Jiirgen Saal, Matthias Kéhne and the author
of this thesis. The results in are the result of several working sessions of
Jirgen Saal, Matthias Kéhne and the author of this thesis. In the results
concerning weak solvability and corresponding resolvent estimates were established
by Matthias Kohne, Jiirgen Saal and the author of this thesis.

[Chapter 5| and [Chapter 6| resulted from a joint work with Jiirgen Saal, Christian

Gesse and the author of this thesis. The results of were published in [§].
Here, global wellposedness with initial values in H2(Q,) N L2(Q,) was established
by Jiirgen Saal and the author of this thesis. The full nonlinear stability analysis of

the ordered polar state, to be precise results regarding normal stability and normal
hyperbolicity, were developed by Christian Gesse, Jiirgen Saal and the author of this
thesis.

In results regarding global wellposedness with initial values in L2(Q,),
existence and corresponding properties of the attractor were established by Christian
Gesse and the author of this thesis in equal parts complemented by many discussions
with Jirgen Saal. The existence of an inertial manifold in two dimensions is due to
Christian Gesse, Jiirgen Saal and the author of this thesis, inspired by a discussion

regarding this topic with Edriss Titi.
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