Multicellular defense against phage infection in *Streptomyces* – impact of secondary metabolites and mycelial development

Inaugural Dissertation

for the attainment of the title of doctor in the Faculty of Mathematics and Natural Sciences at the Heinrich-Heine-University Düsseldorf

presented by

Larissa Kever

from Würselen

Jülich, October 2022

The thesis has been conducted at the Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, from March 2019 until October 2022 under the supervision of Prof. Dr. Julia Frunzke.

Published by permission of the

Faculty of Mathematics and Natural Sciences at

Heinrich-Heine-University Düsseldorf

Supervisor:	Prof. Dr. Julia Frunzke
	Institute of Bio- and Geosciences, IBG-1: Biotechnology
	Forschungszentrum Jülich GmbH
	Jülich
Co-supervisor:	Prof. Dr. Ilka Maria Axmann
	Institute for Synthetic Microbiology
	Heinrich-Heine-University Düsseldorf
	Düsseldorf

Date of oral examination: 29th March 2023

"There is something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment of fact."

Mark Twain (1835-1910)

The research presented in this dissertation has been published in the following manuscripts:

Hardy, A., Sharma, V., **Kever, L.** & Frunzke, J. (2020). Genome sequence and characterization of five bacteriophages infecting *Streptomyces coelicolor* and *Streptomyces venezuelae*: Alderaan, Coruscant, Dagobah, Endor1 and Endor2. Viruses, 12(10), 1065. doi:10.3390/v12101065

Kever, L., Hünnefeld, M., Brehm, J., Heermann, R. & Frunzke, J. (2021). Identification of Gip as a novel phage-encoded gyrase inhibitor protein of *Corynebacterium glutamicum*. Mol Microbiol, 116(5), 1268-1280. doi:10.1111/mmi.14813

Kever, L.*, Hardy, A.*, Luthe, T., Hünnefeld, M., Gätgens, C., Milke, L., Wiechert, J., Wittmann, J., Moraru, C., Marienhagen, J. & Frunzke, J. (2022). Aminoglycoside Antibiotics Inhibit Phage Infection by Blocking an Early Step of the Infection Cycle. mBio, 13(3). doi:10.1128/mbio.00783-22

*These authors contributed equally to this work.

Hardy, A., **Kever, L**. & Frunzke, J. (2023). Antiphage small molecules produced by bacteria - beyond protein-mediated defenses. Trends Microbiol. 31(1). doi:10.1016/j.tim.2022.08.001

To be submitted:

Kever, L. & Frunzke, J. (2022). Inactivation of phage particles in the extracellular space of *Streptomyces* populations.

Further contributions not included in this dissertation:

Luthe, T., **Kever, L**., Hänsch, S., Hardy, A., Tschowri, N., Weidtkamp-Peters, S. & Frunzke, J. (2023). *Streptomyces* development is involved in the efficient containment of viral infections. microLife, 4, uqad002. doi:10.1093/femsml/uqad002

Forschungszentrum Jülich GmbH. Protein-basierter Wachstumsinhibitor in Bakterien. German patent application published as DE102021004449A1 (2022). (Inventors: Frunzke, J., **Kever, L.** & Hünnefeld, M.)

Abbreviations

16S-RMTase	16S ribosomal RNA methyltransferases
AAC	Aminoglycoside acetyltransferase
Abi	Abortive infection
AME	Aminoglycoside-modifying enzyme
ATCC	American Type Culture Collection
Cas	CRISPR-associated protein
CBASS	Cyclic oligonucleotide-based antiphage signaling systems
cf.	confer
CGP3	Corynebacterium glutamicum prophage 3
CgpS	C. glutamicum prophage silencer
CRISPR	Clustered regularly interspaced short palindromic repeats
DNA	Deoxyribonucleic acid
dsDNA	Double-stranded DNA
dsRNA	Double-stranded RNA
e.g.	exempli gratia
et al.	et alii
FISH	Fluorescence in situ hybridization
Gip	Gyrase-inhibiting protein
HGT	Horizontal gene transfer
LC-MS	Liquid chromatography – mass spectrometry
PCR	Polymerase chain reaction
PFU	Plaque-forming units
pVip	Prokaryotic viperins
R-M	Restriction-modification
RNA	Ribonucleic acid
RNA-seq	RNA-sequencing
SEM	Scanning electron microscopy
SM	Spent medium
ssDNA	Single-stranded DNA
ssRNA	Single-stranded RNA
XS	Xenogeneic silencing

Further abbreviations not included in this section can exemplarily be found in the JCB abbreviation list under the following hyperlink: <u>Standard Abbreviations</u> | Journal of Cell Biology | Rockefeller <u>University Press (rupress.org)</u>

Table of contents

1.	Su	mmary	
2.	Sc	ientific	context and key results
2	2.1.	Bacter	iophages: Ubiquitous bacterial viruses shaping bacterial evolution
	2.1	1.1.	Discovery, classification and life style3
	2.1	1.2.	(Pro-)phage proteins affecting bacterial hosts6
	2.1	1.3.	Bacterial antiphage defense systems 8
ź	2.2.	Strept	omyces, a filamentous soil bacterium as major producer of bioactive compounds 12
	2.2	2.1.	Multicellular development and its hierarchical regulatory network
	2.2	2.2.	Complex secondary metabolism as hallmark of <i>Streptomyces</i>
ź	2.3.	Multic	ellular antiphage defense systems of <i>Streptomyces</i>
	2.3	3.1.	Phage infection of <i>Streptomyces</i> : Initial observations
	2.3	3.2.	Chemical defense via aminoglycoside antibiotics
	2.3	3.3.	Inactivation of infectious phage particles in the extracellular space
	2.3	3.4.	Community-wide protection against phage infection
2	2.4.	Conclu	ision and perspectives
2	2.5.	Refere	ences
3.	Pu	blicatio	ons and manuscripts
3	3.1.	Identif	ication of Gip as a novel phage-encoded gyrase inhibitor protein of Corynebacterium
		glutan	nicum
3	3.2.	Aminc	glycoside antibiotics inhibit phage infection by blocking an early step of the infection
		cycle	
3	3.3.	Inactiv	vation of phage particles in the extracellular space of Streptomyces populations 91
	3.4.	. Genome sequence and characterization of five bacteriophages infecting Streptomyces	
		coelico	plor and Streptomyces venezuelae: Alderaan, Coruscant, Dagobah, Endor1 and
		Endor	2
	3.5.	Antiph	nage small molecules produced by bacteria – beyond protein-mediated
		defens	ses 124

4. Ap	opendix140	
4.1.	Appendix to 3.1. Identification of Gip as a novel phage-encoded gyrase inhibitor protein of	
	Corynebacterium glutamicum	
4.2.	Appendix to 3.2: Aminoglycoside antibiotics inhibit phage infection by blocking an early	
	step of the infection cycle	
4.3.	Appendix to 3.3: Inactivation of phage particles in the extracellular space of Streptomyces	
	populations	
4.4.	Appendix to 3.4: Genome sequence and characterization of five bacteriophages infecting	
	Streptomyces coelicolor and Streptomyces venezuelae: Alderaan, Coruscant, Dagobah,	
	Endor1 and Endor2	
Acknowledgements		
Erkläru	ing	

1. Summary

In almost every habitat, bacteria are challenged with persistent attacks of bacterial viruses, socalled bacteriophages (or phages). Upon infection, phages can target key cellular processes in their host cell to optimize reproduction conditions making them a promising source for identification of novel antimicrobial proteins. This was exemplified by the identification of the gyrase-<u>i</u>nhibiting <u>p</u>rotein Cg1978, termed Gip, encoded by the CGP3 prophage of *Corynebacterium glutamicum*. In vitro studies confirmed a direct interaction of Gip with gyrase subunit A of its host *C. glutamicum* leading to an inhibition of the gyrase supercoiling activity.

The evolutionary pressure exerted by phages forced bacteria to evolve multiple lines of defense. However, our current knowledge of antiphage defense is dominated by systems acting at a cellular level, but there is an increasing evidence that bacterial communities also employ several strategies specifically protecting multiple cells from phage predation at the same time. By using the filamentous soil bacterium *Streptomyces* as a model, this doctoral thesis focused on the contribution of bacterial small molecule production and multicellular development to antiphage defense.

To this end, five newly isolated *Streptomyces* phages were comprehensively characterized to establish a set of model phages for further investigations. Next, we focused on the chemical defense against phages via aminoglycosides, which are naturally derived, bactericidal antibiotics produced by *Streptomyces*. Using bacterial strains producing aminoglycoside-modifying enzymes as resistance mechanism, a significant inhibition of phage infection by structurally divergent aminoglycosides in Gram-negative as well as Gram-positive bacterial hosts was observed. The interference with phage infection occurred at an early step of phage life cycle between injection and replication with potential differences between individual host organisms. As exemplified with the aminoglycoside apramycin, in vitro modification of the aminoglycoside scaffold via acetylation prevented the antibacterial mode of action, but had no impact on the antiphage properties, suggesting different molecular targets underlying this dual functionality. Moreover, culture supernatant of the natural apramycin producer *S. tenebrarius* was shown to mimic the effect of the pure compound, hinting towards the physiological relevance of aminoglycoside antibiotics as chemical defense against phages in the environment.

As a further part of this work, we analysed the inactivation of phages in the extracellular space of *Streptomyces* populations. In contrast to prototypical infections with unicellular-growing bacteria, infectious phage titers dropped again at later stages of *Streptomyces* infection, which coincided with re-growth of phage-resistant mycelium. When considering different parameters underlying this inactivation, we observed a potential influence of medium acidification, production of antiphage metabolites and proteins as well as mycelial growth. Mature mycelium revealed a reduced susceptibility to phage infection hinting towards an important contribution of multicellular development to antiphage defense. A decline in phage titer was further observed upon incubation of *Streptomyces* mycelium with different non-host phages, which coincided with the phase of hyphae-spore transition. This led to the hypothesis that mycelium might efficiently adsorb phages from the environment with important implications for community interactions.

Overall, the work presented in this thesis expands our knowledge about bacterial immune systems by unravelling the antiphage properties of aminoglycoside antibiotics and the important impact of cellular development, thereby adding further layers of antiviral defense acting at the multicellular level.

2. Scientific context and key results

2.1. Bacteriophages: Ubiquitous bacterial viruses shaping bacterial evolution

2.1.1. Discovery, classification and life style

Bacteriophages, or shortly known as phages, are ubiquitous viruses infecting bacteria. With an estimated number of $\sim 10^{31}$ phage particles in the biosphere, they represent the most abundant biological entity distributed over all natural habitats (Clokie et al., 2011; Hendrix et al., 1999; Mushegian, 2020).

Phage research finds its origin in the early twentieth century with the independent discovery of bacteriophages through the pioneering work of Frederick Twort (1915) and Félix d'Herelle (1917), the latter coining the name "bacteriophage" meaning bacteria-eater (d'Herelle, 2007; Twort, 1915). At that time, phages were mainly studied for their potential to treat bacterial infections in clinics. This initial motivation was quickly faded in western countries as the antibiotic era dawned (Salmond & Fineran, 2015; Summers, 2001). However, a general interest in phage research persisted, which led to the first visualization of phages by electron microscopy and the identification of DNA as the carrier of the genetic information (Hershey & Chase, 1952; Ruska et al., 1939). Over the years, the increasing understanding of phage biology has contributed significantly to our current knowledge of fundamental, biological principles (Salmond & Fineran, 2015). This has been accompanied by the establishment of diverse molecular tools for biotechnological applications, including exemplarily the T7 expression system of the Enterobacteria phage T7 (Studier & Moffatt, 1986) as well as restriction-modification systems (Roberts, 2005). More recently, the discovery of CRISPR-Cas systems as adaptive bacterial immune system against phages initiated a new era of genetic and genome engineering (Barrangou et al., 2007; Doudna & Charpentier, 2014). Additionally, emerging antibiotic resistance as major health issue led to the resurgence of phage therapy approaches as alternative antimicrobials (Kortright et al., 2019).

Bacteriophages are necessarily dependent on the metabolic machinery of their bacterial host for their propagation – regardless of whether they follow a lytic, a lysogenic or a chronic life style (Roucourt & Lavigne, 2009). Infection starts with a receptor-based attachment of the phage to the bacterial host cell and subsequent injection of the viral genome (Rakhuba et al., 2010). Afterwards, temperate phages can choose either the lytic or the lysogenic life cycle (Figure 1), while virulent phages are strictly lytic (Bertani, 1953).

Figure 1: Lytic and lysogenic life cycle of bacteriophages. Phages following the lytic life cycle use the bacterial host for production of new phage progenies, which are released by subsequent cell lysis. Temperate phages can alternatively follow a lysogenic life cycle by integrating their DNA into the bacterial chromosome or establishing as an episome. Unfavorable conditions can trigger induction of the prophage to allow reproduction via the lytic life cycle. In addition, some phages propagate via chronic infection or transitionally establish a pseudolysogenic state, which is not included in this schematic illustration (Clokie et al., 2011).

By entering the **lysogenic life cycle**, the phage establishes itself as an episome (e.g. phage P1) or integrates its DNA into the bacterial chromosome via specific attachment sites (e.g. phage λ) (Ikeda & Tomizawa, 1968; Landy & Ross, 1977). This so-called prophage is replicated in conjunction with the bacterial DNA and typically a phage repressor protein is involved in the maintenance of the lysogenic state. Upon certain, usually DNA-damaging conditions (e.g. UV radiation or DNA-damaging agents), the prophage leaves its dormant state and excises itself out of the bacterial chromosome to switch to the lytic life cycle, a process called prophage induction. In response to spontaneous DNA damage events, this induction can even occur in the absence of an external trigger (Helfrich et al., 2015; Nanda et al., 2015; Oppenheim et al., 2005).

A special case of lysogeny is represented by a **pseudolysogenic state**, which describes the establishment of a circular, non-replicating pre-prophage. This unstable state can occur upon infection under nutrient deficiency and is maintained until conditions are improved and the lytic or lysogenic life cycle is entered (Feiner et al., 2015). In the **lytic cycle**, the bacterial cell machinery is harnessed for phage DNA replication and phage protein synthesis, which allows the assembly of

new phage progenies and their subsequent release via cell lysis (Salmond & Fineran, 2015). An exception of phage release without disintegration of the host cell was observed for filamentous phages like M13, some archaeal viruses and for plasmaviruses infecting *Mycoplasma*. This lifestyle is called **chronic infection** (Clokie et al., 2011).

In addition to their life style, phages differ in gene content, genome type and virion morphology (Dion et al., 2020). The latter two have been used in the past for phage classification. According to this decades-old taxonomy, the vast majority of phages belonged to the order of *Caudovirales* unifying phages with a tailed morphology and double-stranded DNA (dsDNA) genome. Based on their tail contractility and length, these phages were further grouped into the three families of *Siphoviridae*, *Myoviridae* and *Podoviridae* (Ackermann, 2009). Contrary to this tailed morphotypes, other virions exhibit a cubic, pleomorphic and filamentous nature with their genomes being single-stranded (ss) or double-stranded DNA or RNA. Additionally, some phages have lipid constituents, which all in all defined the further phage families as illustrated in Figure 2 (Ackermann, 2009).

Figure 2: Phage taxa based on genome types and morphology. Phage families are grouped by tailed, dsDNA phages, lipid-containing phages with double-stranded genomes and phages with a single-stranded genome. The figure was designed based on Ofir and Sorek (2018) and Hyman and Abedon (2012).

In recent years, the discovery of the mosaic-like architecture of phage genomes exposed a hitherto unexpected genetic diversity, which could be attributed to a high rate of horizontal gene transfer (HGT) during phage evolution (Hatfull, 2008). With the increasing availability of genomic and metagenomic data, it became apparent that the caudoviral families of *Sipho-, Myo-,* and *Podoviridae* are not monophyletic. The need of considering their evolutionary origin initiated a comprehensive re-classification towards a genome-based megataxonomy (Koonin et al., 2020; Turner et al., 2021). However, distinguishing phages based on their morphotypes can still be useful to get a first overview of phage diversity.

2.1.2. (Pro-)phage proteins affecting bacterial hosts

Upon infection, phages are able to subvert and control key cellular processes to create favorable conditions for their own reproduction (De Smet et al., 2017). For this host-takeover, phage proteins expressed in the early stages of infection appear to be of primary importance. For instance, in direct competition for the transcription machinery, they can redirect the host RNA polymerase to viral gene expression or even temporarily inhibit it if the phage encodes its own RNA polymerase (De Smet et al., 2017; Drulis-Kawa et al., 2012; Lammens et al., 2020). Furthermore, they can shut down host DNA replication and degrade the bacterial chromosome to increase the pool of precursors for viral DNA replication (Drulis-Kawa et al., 2012). In addition, further studies revealed that phage proteins can amongst others also directly target translation-related processes and cell division (De Smet et al., 2017; Lammens et al., 2020). Deciphering the underlying mechanisms of these host-interfering processes is not only essential to deepen our knowledge of phage-host interactions, but may also be harnessed for the development of new antimicrobial agents (De Smet et al., 2017; Roach & Donovan, 2015).

However, recent advances in viral genomics exposed a high number of open reading frames in phage genomes whose function remains to be elucidated (Yin & Fischer, 2008). Of particular interest are previously overlooked small phage genes, as their gene products are known to frequently exert regulatory functions by activating, inhibiting or redirecting target proteins (De Smet et al., 2017; Fremin et al., 2022; Orr et al., 2020; Storz et al., 2014). For example, the early small protein Mip of *Pseudomonas aeruginosa* podovirus LUZ24 prevents silencing of phage DNA by inhibiting the activity of the host-encoded xenogeneic silencer MvaT (Wagemans et al., 2015). Another example is the protein Gp2 from *E. coli* phage T7, which inhibits the host RNA polymerase to prevent interference with its own faster T7 RNA polymerase (Nechaev & Severinov, 1999).

Besides directly targeting regulatory hubs to optimize reproduction conditions, phage proteins can also improve fitness of their bacterial host, which may partly explain the frequency of long-term relationships between phages and bacteria (Bondy-Denomy & Davidson, 2014). Almost half of all sequenced bacterial genomes harbor at least one, but frequently even more prophages (Touchon et al., 2016), These prophages can increase bacterial pathogenicity or contribute to defense against other phages, a process called lysogenic conversion (Bondy-Denomy & Davidson, 2014; Davies et al., 2016). However, many prophages appear to be cryptic as rapid inactivation of these 'molecular time bombs' is under tough selection, which let them suffer from mutations preventing completion of the lytic life cycle. This domestication process allows the bacterial host to keep beneficial prophage elements while limiting the risk of phage-induced cell lysis (Bobay et al., 2014; Ramisetty & Sudhakari, 2019; Wang et al., 2010).

In search of phage-derived proteins affecting their bacterial host, we focused on the prophage CGP3 (~219 kb, including CGP4), which is one of overall four cryptic prophages (CGP1-4) found in the genome of the actinobacterial strain Corynebacterium glutamicum ATCC 13032 (lkeda & Nakagawa, 2003). Upon induction, CGP3 can excise itself out of the bacterial chromosome and replicate as a circular genome, but it appears to be unable to cause cell lysis or produce active phage progenies (Donovan et al., 2015; Frunzke et al., 2008). The lysogenic state of CGP3 is maintained by the prophage-encoded nucleoid-associated protein CgpS, which silences phage gene expression (Pfeifer et al., 2016). During a screening of several small proteins encoded by the CGP3 prophage, the protein Cg1978 (6.8 kDa) was identified as a novel gyrase-inhibiting protein, therefore termed Gip. In vitro pull-down assays and surface plasmon resonance spectroscopy exposed a highly specific interaction of Gip with DNA gyrase subunit A of its bacterial host C. glutamicum, which was proven to inhibit the gyrase supercoiling activity in vitro (Figure 3). In addition, overproduction of Gip was found to severely impair bacterial growth and lead to an activation of the host SOS response. On a transcriptome level, Gip-mediated gyrase inhibition was compensated with an upregulation of the gyrase-encoding genes gyrAB and a downregulation of topA coding for topoisomerase I (Kever et al., 2021).

Figure 3: Supercoiling inhibition assays showing the Gip-mediated inhibition of the DNA gyrase. Increasing concentrations of the GyrA-targeting protein Gip (Cg1978) inhibit the DNA supercoiling activity of the *C. glutamicum* DNA gyrase, which leads to an accumulation of nicked/relaxed DNA (adapted and modified from Kever et al. (2021)).

Being crucial for DNA metabolism and absent in mammalian cells, the bacterial DNA gyrase is one of the most prominent targets of proteinaceous and chemical toxins (Khan et al., 2018). This heterotetrameric enzyme (GyrA₂GyrB₂, type IIA topoisomerase) catalyzes the ATP-dependent introduction of negative supercoils into double-stranded DNA. Gyrase subunit A cleaves and rejoins the DNA, while subunit B is responsible for ATP hydrolysis (N. G. Bush et al., 2015; McKie et al., 2021; Vanden Broeck et al., 2019). Based on what is currently known from already characterized gyrase-inhibiting small molecules and proteins, inhibition of this enzyme can be mediated by i) stabilization of the gyrase-DNA cleavage intermediate (Bernard et al., 1993; Drlica & Malik, 2003; Pierrat & Maxwell, 2003), ii) inhibition of ATP hydrolysis (Maxwell & Lawson, 2003) or iii) DNA mimicry (Shah & Heddle, 2014). However, while clearly showing that Gip targets the gyrase subunit A, the underlying molecular basis of this inhibition still needs to be elucidated. Mimicking the mechanism of gyrase inhibition applied by phages could open up new directions for antibacterial drug design.

From a physiological point of view, the question arises to what extent the coding of such an inhibitor could benefit phages. The existence of further phage-derived proteins targeting topology modulators such as the small peptide Igy (5.6 kDa) encoded by phage LUZ24 of *Pseudomonas aeruginosa* (De Smet et al., 2021) or gp55.2 encoded by the T4 phage of *E. coli* (Mattenberger et al., 2015) suggests that DNA supercoiling and relaxation plays a crucial role during the phage life cycle. Consistent with the hypothesis of Mattenberger and colleagues, we propose that the production of such inhibitory proteins might allow a modulation of topoisomerase activity to enable an optimal phage DNA replication (Mattenberger et al., 2015). Even though CGP3 is a cryptic prophage, it can be assumed that Gip originally had a comparable function for the active phage.

2.1.3. Bacterial antiphage defense systems

The omnipresence of phages in almost all ecosystems and the persistent threat of viral predation has led to a competitive co-evolution of bacteria and phages. Bacteria were forced to evolve an impressive arsenal of antiphage defense systems, while phages co-evolve to overcome these barriers (Hampton et al., 2020; Shabbir et al., 2016; Stern & Sorek, 2011). New antiphage defense systems can be acquired through horizontal gene transfer from closely related strains (Koonin et al., 2017; van Houte et al., 2016). Accordingly, the antiphage defense repertoire of a single strain is subjected to high fluctuation, making defense genes a rather shared community resource as recently described with the term 'pan-immune system' (Bernheim & Sorek, 2020). Escaping phage infection can already be mediated by **blocking adsorption** of the phage to its specific receptor on the bacterial surface. Typical receptors like surface proteins or lipopolysaccharides can exemplarily be mutated (Clément et al., 1983), modified by post-translational glycosylation (Harvey et al., 2018) or masked by proteins or extracellular polymers (Nordström & Forsgren, 1974; Scholl et al., 2005). Besides, a simultaneous protection of several cells against phage adsorption is mediated by release of outer membrane vesicles (OMV) sequestering phages (Manning & Kuehn, 2011) and formation of biofilms shielding interior cells (Hansen et al., 2019). Such multicellular defense strategies will be addressed in further detail in chapter 2.3.4.

Once attached, injection of phage DNA can be blocked by **superinfection exclusion** mechanisms. These protein-based defense systems are encoded by pre-existing phages and serve as protection against specific secondary infections by e.g. inhibiting phage DNA translocation into the cytoplasm through conformational changes or blocking the lysozyme-based degradation of the peptidoglycan layer (Labrie et al., 2010; Lu & Henning, 1994).

After passing these two potential barriers of adsorption and injection, a plethora of intracellular defense mechanisms come into play, among them systems targeting viral nucleic acids, most prominently **R-M (restriction-modification)** and **CRISPR-Cas (Clustered Regularly Interspaced Palindromic Repeats/CRISPR-associated protein)** (Figure 4). R-M systems are based on the enzymatic activity of a restriction endonuclease digesting DNA as well as a methyltransferase modifying DNA. Methylation of host DNA enables the discrimination between host and foreign genetic material and avoids sequence-specific binding and cutting by the restriction endonuclease, whereas incoming, non-methylated phage DNA is digested (Raleigh & Brooks, 1998; Tock & Dryden, 2005). In contrast to innate R-M systems, antiphage defense via CRISPR-Cas entails a prior infection with the same phage to acquire short foreign DNA sequences, called spacers. These spacers are incorporated into a CRISPR array, which enables a subsequent sequence-specific cleavage of identical or similar invader DNA (Barrangou et al., 2007; Hille et al., 2018).

In addition to these destructive mechanisms, **xenogeneic silencer** (XS) proteins could potentially contribute to bacterial antiphage defense as well. With their C-terminal DNA-binding domain and their N-terminal oligomerization domain, xenogeneic silencers preferentially bind to AT-rich sequences thereby silencing viral gene expression through formation of dense nucleoprotein complexes (Duan et al., 2018; Gordon et al., 2010; Navarre, 2016). However, at least in case of the prophage-encoded xenogeneic silencer CgpS in *C. glutamicum*, which maintains the lysogenic state of the CGP3 prophage, a direct contribution to phage defense was not yet confirmed (Hünnefeld et al., 2021; Pfeifer et al., 2019; Pfeifer et al., 2016).

Abortive infection (Abi), a further strategy to combat viral predation, implies sensing of infection by an individual cell and subsequent cell suicide to prevent phage spread into the surrounding community (Lopatina et al., 2020) (Figure 4). Phage infection is typically recognized through phage replication intermediates, phage proteins or altered expression profiles. This in turn activates an effector module causing e.g. cell death by increasing membrane permeability, inhibiting protein biosynthesis, cleaving nucleic acids or phosphorylating multiple host proteins. The mechanistic diversity is further expanded by toxin-antitoxin mediated Abi systems relying on a phage-induced, missing neutralization of a toxin by its corresponding anti-toxin (Lopatina et al., 2020). Another principle is utilized by CBASS (cyclic oligonucleotide-based antiphage signaling system), where the communication between the sensing module and the killing module is mediated by production of cyclic nucleotide molecules as secondary messengers (Cohen et al., 2019).

In recent years, bioinformatics screenings and the discovery that defense genes are clustered in so-called 'defense islands', significantly extended the known repertoire of antiphage defense mechanisms to more than 100 systems, which together form the prokaryotic 'immune system'. However, most of them still need to be mechanistically described (Bernheim & Sorek, 2020; Doron et al., 2018; Makarova et al., 2011; Tesson et al., 2022). Although the last years have revealed new defense systems at unprecedented speed, the step of phage sensing is still a major blind spot for a multitude of systems. A current study started to shed light on this by defining the phage replication machinery, host take over mechanisms and structural phage proteins as unified key determinants for phage sensing (Stokar-Avihail et al., 2023). This may open the door for further mechanistic elucidations.

Two already well-characterized examples of newly discovered antiphage defense systems are **prokaryotic viperins (pVip)** and **nucleotide depletion** (Figure 4). The antiviral activity of viperins against various DNA and RNA viruses was initially detected in humans (Helbig & Beard, 2014; Rivera-Serrano et al., 2020). Like their eukaryotic homologues, prokaryotic viperins can modify nucleotides to ddh-(didehydro)-nucleotides, which act as chain terminators during viral polymerase-dependent transcription (Bernheim et al., 2021; Gizzi et al., 2018). Nucleotide depletion as antiviral defense was also already known from the human immune system (Ayinde et al., 2012; Goldstone et al., 2011). Bacterial dGTPases or dCTP deaminases manipulate the dNTP pool by depleting dGTP or dCTP, respectively, which halts phage DNA replication (Tal et al., 2022). Interestingly, several other recently described antiviral defense strategies are conserved between eukaryotes and prokaryotes, suggesting a bacterial origin of several central eukaryotic immune mechanisms (Wein & Sorek, 2022).

Figure 4: Selected bacterial antiphage defense systems. After successful injection of phage DNA, different mechanisms can interfere with the phage life cycle. Restriction modification systems as well as CRISPR-Cas systems directly target and cleave intracellular phage DNA. Abortive infection mechanisms are highly diverse, but have in common that they consist of a module sensing the infection and a module initiating cell suicide to prevent phage spread. The repertoire of defense system was recently supplemented with the discovery of diverse new systems, including exemplarily prokaryotic viperins inhibiting transcription of viral DNA or mechanisms of nucleotide depletion halting viral DNA replication. The figure was designed based on Tal and Sorek (2022).

2.2. *Streptomyces*, a filamentous soil bacterium as major producer of bioactive compounds

2.2.1. Multicellular development and its hierarchical regulatory network

Streptomyces is a Gram-positive, filamentous-growing actinobacterium, which is highly abundant in soil habitats (Anderson & Wellington, 2001; Janssen, 2006). As all soil-dwelling organisms, it has to deal with a high level of microbial competition and constant fluctuations in nutrient availability (Fierer, 2017). To survive in this challenging environment, *Streptomyces* can initiate the formation of dormant exospores as part of its multicellular life cycle, allowing its dispersal into new environments as well as the protection of its genetic material throughout various environmental stresses (Bobek et al., 2017).

The multicellular development of *Streptomyces* has parallels to the one of filamentous fungi, but is rather a peculiarity among prokaryotes (Elliot & Talbot, 2004). Favorable conditions initiate germination of spores to build up a network of vegetative hyphae, which grow by branching and tip extension. Upon stressful conditions like nutrient deficiency, parts of this vegetative mycelium are self-degraded via programmed cell death to provide a nutrient source for the morphological differentiation into apical-growing, aerial hyphae (Flärdh & Buttner, 2009; Manteca et al., 2007). This developmental transition to reproductive growth usually coincides with the onset of antibiotic production, probably to protect released nutrients from other soil-living competitors in the same ecological niche (van der Meij et al., 2017). During sporogenesis, the multigenomic aerial hyphae differentiate into chains of unigenomic pre-spores via synchronized septation and chromosome segregation. After subsequent spore maturation, dormant exospores are released into the environment, which can outlast various environmental insults, until germination is triggered again (Flärdh & Buttner, 2009) (Figure 5a).

This life cycle is used for the general description of surface-grown cultures. However, many *Streptomyces* species including the historical model *Streptomyces coelicolor* are arrested in a presporulation state when growing in submerged cultures (Manteca et al., 2008). Therefore, more recent studies have tended to focus on *Streptomyces venezuelae* as new model species due to its ability to undergo sporulation even in submerged cultures (Glazebrook et al., 1990). This facilitated the elucidation of the development-specific regulatory network by allowing the application of established "omics" methods (M. J. Bush et al., 2015).

Figure 5: Multicellular life cycle of surface-grown *Streptomyces* **cultures.** a) The life cycle starts with the germination of spores, which leads to the formation of a branched network of vegetative hyphae. Upon nutrient starvation, parts of the vegetative mycelium are self-degraded to supply nutrients for the morphological differentiation into aerial hyphae. This transition is mediated by Bld regulators. The accompanied production of antibiotics is proposed to protect released nutrients from other competitors in close proximity. Unlike vegetative hyphae, aerial hyphae are characterized by a hydrophobic surface, which is based on a coating layer of rodlin and chaplin proteins. The regulatory activity of the Whi proteins mediate further differentiation from aerial hyphae to mature exospores. The figure was designed based on Jones and Elliot (2017) and Urem et al. (2016). b) Morphology of *S. venezuelae* colonies in different developmental stages with corresponding scanning electron micrographs (images taken from Tschowri (2016)).

Hyphae-spore transition is orchestrated by two classes of developmental regulators, Bld and Whi regulators. Their names were coined by the phenotypic appearance of corresponding developmental mutants: Deletion of *bld* genes prevents transition from vegetative growth to aerial hyphae and hence shows up in a bald and shiny phenotype, whereas *whi* mutants are unable to differentiate from aerial hyphae to mature spores and thus have a white, fuzzy appearance (Figure 5b) (McCormick & Flärdh, 2012). These regulators are part of a complex hierarchical network, which is controlled by the c-di-GMP-dependent activity of the master regulator BldD. BldD inhibits the expression of most key developmental genes delaying the onset of differentiation (M. J. Bush et al., 2015; den Hengst et al., 2010; Tschowri et al., 2014). Roughly summarized, relieving repression by BldD initiates the first developmental transition from vegetative mycelium to aerial hyphae. In contrast to the hydrophilic vegetative hyphae in the moist soil, aerial hyphae are highly hydrophobic, which is dependent on the sigma-factor BldN (σ^{BldN})-regulated transcription of rodlin and chaplin genes (Bibb et al., 2012). Their gene products assemble to build up a hydrophobic

sheath covering the surface of aerial hyphae, which – on certain media together with surfactant protein SapB lowering surface tension – enables the escape from the aqueous environment into the air (Claessen et al., 2003; Claessen et al., 2002; Elliot et al., 2003; Elliot & Talbot, 2004; Willey & Losick, 1991). Besides regulating expression of rodlin and chaplin genes, σ^{BIdN} activates transcription of *bldM*, which in turn allows the expression of sporulation genes, including *whiB* (Al-Bassam et al., 2014). The heterodimer formed of WhiAB was shown to stop aerial growth and activates genes for chromosome segregation and cell division (Bush et al., 2013; Bush et al., 2016). Finally, spore maturation is initiated via the regulatory activity of σ^{WhiG} and its downstream cascade (M. J. Bush et al., 2015).

Interestingly, recent studies discovered an alternative mode of growth, termed exploration, which is initiated in response to fungal competitors or glucose depletion. During exploratory growth, unbranched, vegetative hyphae rapidly outgrow and move across solid surfaces, which allows a sporulation-independent colonization of new environments. Accordingly, exploration might represent a further strategy to promote survival in this challenging soil environment by facilitating nutrient access (Jones & Elliot, 2017; Jones et al., 2017; Jones et al., 2019).

2.2.2. Complex secondary metabolism as hallmark of *Streptomyces*

In addition to its multicellular life cycle, Streptomyces is well studied for its rich source of secondary metabolites (Donald et al., 2022), whose secretion can sometimes even be observed with the naked eye (Figure 6a). In contrast to primary metabolites, secondary metabolites are not essential for growth and development, but instead can confer producers an adaptive benefit in ecological interactions (Challis & Hopwood, 2003; Seyedsayamdost, 2019). With their antibacterial, antifungal and antitumor activity, these compounds find applications in medical, biotechnological and agricultural sectors (Barka et al., 2016). The ability of Streptomyces to produce bioactive compounds was initially recognized by Waksman and colleagues almost 80 years ago (Waksman & Woodruff, 1940; Waksman & Woodruff, 1942). The inspiring discovery of penicillin by Alexander Fleming was soon followed by the isolation of the first *Streptomyces*-derived antibiotics, among them also streptomycin, which served as the first successful treatment against tuberculosis (Fleming, 1929; Schatz & Waksman, 1944). The finding that Streptomyces, but also fungi produce a variety of bioactive compounds, revolutionized medicine drastically. About 2/3 of all naturalderived antibiotics are produced by Streptomyces, while the potential for the discovery of new antibiotics has not yet been exhausted (Bibb, 2013; Kieser et al., 2000). According to an estimation of Watve and colleagues, just 3% of natural products encoded by Streptomyces species have been reported until 2001 (Watve et al., 2001). However, the fact that most of the corresponding

biosynthetic gene clusters are silent under laboratory conditions, hampers their isolation and functional characterization (Liu et al., 2021).

Production and release of secondary metabolites is not just frequently linked to the developmental transition into aerial hyphae, but is probably also influenced by a broad variety of biotic and abiotic environmental triggers indicative for their host demands (Bibb, 2005; van der Meij et al., 2017). For instance, antibiotic production and secretion can be activated when competition-related stress such as nutrient deficiency or cell damage is sensed (Cornforth & Foster, 2013). Because producers are resistant to their own substances, they can outcompete other sensitive soil organisms in close proximity (Fajardo et al., 2009; van der Meij et al., 2017). However, the traditional image of antibiotics as chemical weapons has been challenged by the fact that despite local extremes the overall concentration of antibiotics found in soil is generally subinhibitory (Fajardo et al., 2009). This shaped the current assumption that antibiotics exhibit rather a concentration-dependent functionality (Figure 6b). At high concentrations, they can serve as direct weapons against microbial competitors, while at subinhibitory concentrations they may be used as signaling molecules between interacting microbes (Hashem & Van Impe, 2022; Linares et al., 2006; Spagnolo et al., 2021; Vaz Jauri et al., 2013). Nonetheless, the biochemical diversity and the ecological role of most secondary metabolites is far from being entirely understood (Tyc et al., 2017).

Figure 6: Secondary metabolite production in *Streptomyces.* a) Stereomicroscopic image showing the production of the pigmented antibiotic actinorhodin as droplets on the colony surface of *S. coelicolor* M145. b) Current hypothesis on the concentration-dependent function of antibiotics as chemical weapons or signaling molecules.

Interestingly, biosynthetic gene clusters encoding secondary metabolites are enriched in the flanking arms of the linear *Streptomyces* chromosome (Aigle et al., 2014; Bentley et al., 2002). In contrast to the core genome harboring essential genes for replication, protein biosynthesis and central metabolism, the arm regions containing conditionally adaptive genes are more frequently affected by genetic rearrangement leading to amplifications and deletions under laboratory

conditions (Bentley et al., 2002; Thibessard & Leblond, 2014; Volff & Altenbuchner, 1998). This arm plasticity is proposed to possibly confer an adaptive benefit on a population level by facilitating the differentiation into social subpopulations, which may produce an extended pool of 'public goods' (Lorenzi et al., 2021). Such concept was recently exemplified for the antibiotic production in *S. coelicolor*, which was shown to be organized by a division of labor. The terminal differentiation led to genetically heterogeneous *S. coelicolor* colonies containing antibiotic hyper-producing mutant strains with massive genomic deletions. Although this enhanced antibiotic production came at the expense of individual fitness, colony-wide reproduction was not affected when combining mutant and parental strains (Zhang et al., 2020). However, after their emergence these mutant cells further accumulate genetic deletions and mutations leading to their cell death via mutational meltdown over time (Zhang et al., 2022).

2.3. Multicellular antiphage defense systems of Streptomyces

2.3.1. Phage infection of Streptomyces: Initial observations

Like other bacteria, *Streptomyces* is continuously challenged by phage attacks. Over the years, *Streptomyces* phages were primarily studied for their source of genetic tools to manipulate the host genome, enabling for instance the construction of phage-based integration vectors (Baltz, 2012; Bierman et al., 1992; Gregory et al., 2003). In the last decade, vast efforts were spent on the isolation and characterization of new phages infecting actinobacterial species, including *Streptomyces*. This was mainly driven by the Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Sciences (SEA-PHAGES) program, which markedly expanded the collection of sequenced actinobacteriophages (Jordan et al., 2014). To date, more than 21,000 actinobacteriophages have been isolated and more than 4,000 sequenced genomes are deposited in 'The Actinobacteriophage Database' (phagesdb.org, (Russell & Hatfull, 2016)), including ~300 sequenced *Streptomyces* phages (as of October 2022). However, the amount of experimentally studied phages infecting this genus remained comparable low. Furthermore, little is known about the extent to which the extensive chemical repertoire and the multicellular life cycle of *Streptomyces* might contribute to antiphage defense. This topic has just recently gained significant interest and is the focus of this doctoral thesis.

To establish a set of model phages in our laboratory for studying phage-host interactions, pioneering work started with the isolation and characterization of five novel *Streptomyces* phages, preying on either *S. venezuelae* or *S. coelicolor*. In contrast to the majority of known *Streptomyces* phages, these new phage isolates were comprehensively characterized with regard to plaque and virion morphology, genome sequence, phylogeny and infection dynamics (Hardy et al., 2020). All newly isolated phages are siphophages as they possess a long-tailed morphology and a dsDNA genome (Figure 7a). In terms of their life cycle, the two phages infecting *S. venezuelae*, named Alderaan and Coruscant, were shown to be virulent phages, while all three phages infecting *S. coelicolor*, named Dagobah, Endor1 and Endor2, were predicted to be temperate.

Strikingly, for all *S. coelicolor* phages, plaque formation was accompanied by secretion of pigmented secondary metabolites at the infection interface ((Hardy et al., 2020), Figure 7b). Although it is still under investigation whether this formation of colored halos is a specific response to phage infection or rather a general stress response triggered by cell lysis (Hardy et al., ongoing work), it served as an inspiration to actively search for *Streptomyces*-derived secondary metabolites harboring an antiphage activity as chemical defense mechanism (cf. chapter 2.3.2). In addition to the increased secondary metabolite production, *Streptomyces* frequently responded

to phage infection with a ring of enhanced morphological differentiation surrounding the plaques, which was especially the case for Alderaan infecting *S. venezuelae* and Dagobah infecting *S. coelicolor* (Figure 7b). Further examination revealed that this formation of aerial hyphae was essential for the emergence of transiently phage-resistant mycelium and hence for the containment of phage infection (Luthe et al., 2023a). Another interesting observation was made when performing infection assays in submerged cultures. The extent of culture lysis and phage proliferation showed significant differences, ranging from complete culture collapse during Alderaan infection to only minor effects on bacterial growth upon infection with Dagobah (Hardy et al., 2020). However, it was notable that for all phages, a successful initial phage propagation was often followed by a decrease in extracellular infectious phage titers was not obtained for infection of unicellular bacteria recently performed in our laboratory (Erdrich et al., 2022; Hünnefeld et al., 2021), which gave rise to further investigate the molecular basis of this phenomenon (chapter 2.3.3).

Secretion of secondary metabolites

Enhanced cellular development

Phage titer decline over time

Figure 7: Particle morphology of novel *Streptomyces* phages and phenotypic observations upon infection. a) Transmission electron microscopy identifies all phages as siphophages (scale bar: 150 nm, images taken from Hardy et al. (2020)). b) Stereomicroscopic images showing the production of the blue-pigmented compound actinorhodin (left) as well as enhanced sporulation at the plaque interface (right) in response to infection of *S. coelicolor* M145 with phage Dagobah. c) Development of phage titers upon infection of *S. venezuelae* NRRL B-65442 with phage Alderaan.

2.3.2. Chemical defense via aminoglycoside antibiotics

Aminoglycosides – a case of molecular multitasking

In search for secondary metabolites featuring an antiphage activity, we observed that phage infection was significantly impaired in presence of the aminoglycoside apramycin, which was the cornerstone for studying the antiphage properties of these well-studied antibacterial compounds (Kever et al., 2022). Actually, antiphage activity of aminoglycosides was already described in reports published in the middle of the last century, which showed an inhibitory effect of streptomycin on various phages (Brock et al., 1963; Brock & Wooley, 1963). However, the biological relevance of these molecules as part of the bacterial immune system was not investigated and the mode of action remained controversial.

Aminoglycosides are naturally derived, bactericidal antibiotics, which interfere with protein biosynthesis in several aerobic Gram-positive, but particularly Gram-negative bacteria (Krause et al., 2016). Structurally, they are characterized by an amino sugar core structure, which is glycosidically linked to a dibasic aminocyclitol, mostly 2-deoxystreptamin, whose presence and substitutions define four different subclasses (Magnet & Blanchard, 2005; Mingeot-Leclercq et al., 1999). The uptake of these polycationic antibiotics starts with their binding to the negatively charged surface of the bacterial membrane. This electrostatic interaction causes the dissociation of divalent cations and thus a permeabilization of the bacterial membrane, which promotes initial aminoglycoside uptake into the cytoplasm in an energy-dependent process (Ramirez & Tolmasky, 2010). Once taken up, they inhibit bacterial protein translation by a high-affinity binding to the aminoacyl site (A-site) on the 16S rRNA of the 30S ribosomal subunit (Kotra et al., 2000; Magnet & Blanchard, 2005). The induced conformational changes cause an error-prone translation through misreading or a direct blocking of translation initiation or elongation. Incorporation of mistranslated proteins into the membrane further enhances aminoglycoside uptake, finally resulting in cell death (Krause et al., 2016).

Resistance towards these antibiotics is mediated by enzymatic modifications of the aminoglycoside scaffold or the ribosomal target site, active export via efflux pumps or modifications of the cell membrane (Garneau-Tsodikova & Labby, 2016). Among these resistance mechanisms, antibiotic modification is the most common one, which relies on the catalytic activity of aminoglycoside-modifying enzymes (AME), subdivided into aminoglycoside O-phosphotransferases (APHs), aminoglycoside N-acetyltransferases (AACs) and aminoglycoside O-nucleotidyltransferases (ANTs). According to their functional categorization, these enzymes can modify various positions of the aminoglycoside scaffold via phosphorylation, acetylation or adenylation, which prevents the

efficient binding of the antibiotic to the 16S rRNA (Ramirez & Tolmasky, 2010). In contrast to this rather specific resistance mechanism towards single aminoglycosides, enzymatic modification of the primary target site via 16S rRNA methyltransferases (RMTase) offers a broader resistance profile. By methylating distinct nucleotides of the 16S rRNA, namely G1405 or A1408, RMTases prevent binding of various structurally related aminoglycosides at the same time (Garneau-Tsodikova & Labby, 2016; Krause et al., 2016).

Following the natural resistance of producers to their own compounds, the project was started with the construction of aminoglycoside-resistant strains carrying a plasmid-borne gene coding for an AME. This step was considered essential for a systematic screening of the antiphage properties of aminoglycoside antibiotics, since the strong antibacterial effect of these compounds would markedly hamper the recognition of an additional antiphage effect. As a screening platform, double-agar overlays with increasing antibiotic concentrations were used to correlate reduced plaque formation with increased aminoglycoside pressure. To keep the spectrum of this tripartite interaction between phages, hosts and aminoglycosides quite broad, structurally divergent aminoglycosides were combined with phages of different morphotypes (sipho-, myo-, podo-, ino-and levivirus) and specific for different host organisms (*S. venezuelae, S. coelicolor, C. glutamicum* and *E.coli*).

Substantial differences were perceived for the individual phage-host pairs and aminoglycosides, ranging from complete inhibition of plaque formation to no noticeable changes. When trying to find an underlying pattern for this aminoglycoside-mediated inhibition, the only statement that can currently be made is that all affected phages are siphophages, which are characterized by a dsDNA genome and a tailed morphology. Among them, the strongest effect of aminoglycoside addition was observed for phage Alderaan infecting S. venezuelae in presence of apramycin and hygromycin, but also infection of *E. coli* model phage λ was significantly impaired in presence of apramycin and kanamycin. Interestingly, all phages infecting S. coelicolor revealed no inhibition upon aminoglycoside treatment, potentially suggesting that differences in cell envelope structures and aminoglycoside uptake by the host strain might contribute to the observed cluster as well (Figure 8). Therefore, ongoing studies are currently expanding the diversity of screened phages including also a Streptomyces phage with a broad host range, which may allow a more precise distinction between host-specific and phage-specific differences in aminoglycoside-mediated inhibition of phage infection. However, based on this screening, follow-up studies focused mainly on the inhibitory effect of apramycin on the virulent phage Alderaan infecting S. venezuelae and the temperate phage λ infecting *E. coli*.

Figure 8: Aminoglycosides are potent inhibitors of phage infection. This heat map shows the screening results as log_{10} fold change comparing plaque formation under aminoglycoside pressure to antibiotic-free conditions. If aminoglycoside treatment completely prevented plaque formation by the phage or bacterial growth, it was stated as 'no lysis' or 'no lawn', respectively (n = 2 independent biological replicates). The corresponding molecular structures of the tested aminoglycosides are provided on the left. The different phage morphologies are schematically shown with icons according to the following color scheme: blue, siphovirus; red, myovirus; green, podovirus; purple, inovirus; yellow, levivirus (adapted and modified from Kever et al. (2022)).

Mechanism of antiphage activity: Interference with an early step of the phage life cycle

To investigate the mechanism of action, infection experiments with aminoglycoside-resistant strains were performed in submerged cultures to benefit from a larger number of established methods (Figure 9a). While infection of *S. venezuelae* with Alderaan usually results in a culture collapse, addition of apramycin (10 μ g/ml) completely prevented phage amplification and phage-mediated cell lysis (Figure 9b). This inhibitory effect of apramycin could also be observed to a similar extent during infection assays with phage λ . Interestingly, infection with both phages was completely restored when adding simultaneously high concentrations of MgCl₂, which was in line with previous reports describing the antagonistic effect of MgCl₂ on aminoglycoside-mediated phage inhibition (Brock & Wooley, 1963). This could potentially be attributed to the known interference of enhanced Mg²⁺ levels with aminoglycoside uptake (Hancock et al., 1981) and hence already gave a first hint that interference most likely occurs on an intracellular level. In line with this, pre-incubation of Alderaan particles with physiologically relevant apramycin concentrations

of <50 μ g/ml and subsequent spotting on a bacterial lawn showed no influence on phage infectivity.

Figure 9: Apramycin inhibits an early step of phage life cycle. a) Schematic representation of the different steps of the lytic life cycle and respective experiments, which were performed to study the effect of apramycin. b) Alderaan infection assays of the apramycin-resistant strain *S. venezuelae* ATCC 10712 producing the aminoglycoside acetyltransferase AAC(3)IV as resistance mechanism. Infection was performed in presence and absence of 10 µg/ml apramycin (n = 3 independent biological replicates). c) Relative concentration of phage DNA to host DNA calculated via quantitative PCR during the time course of Alderaan infection in presence and absence of 10 µg/ml apramycin. Data represent means of three independent biological replicates measured as technical duplicates. The range of relative phage DNA concentrations measured for an uninfected control is highlighted in gray. d) Corresponding time-resolved measurement of extracellular phage titers via double-agar overlay assays (n = 3 independent biological replicates). e) Visualization of intracellular Alderaan DNA during infection by phage-targeting direct geneFISH. Fluorescence signals from phage DNA (Alexa647, red) are once shown separately (second row) and once as merged images with phase-contrast and fluorescence signal from bacterial DNA (DAPI, blue) (first row) (adapted and modified from Kever et al. (2022)).

To identify the step that is inhibited in the presence of apramycin, each step of the phage life cycle was systematically addressed by appropriate techniques (Figure 9a). The influence of apramycin on phage adsorption as the first step of the phage life cycle was examined with a synchronized infection assay. After an initial incubation phase of *Streptomyces* mycelium with phage Alderaan in presence of apramycin, free and reversible-attached phage particles as well as extracellular apramycin were removed. A successful following phage amplification suggested no obvious effect of the aminoglycoside on irreversible phage adsorption. In accordance with this, when apramycin was not added to the pre-incubation step, but instead thereafter, no phage propagation was possible (cf. chapter 4.2, Figure S3).

To assess phage DNA injection and replication upon apramycin treatment, the relative amount of intracellular Alderaan DNA to host DNA was calculated via quantitative PCR, while simultaneously quantifying extracellular phage titers via double-agar overlays (Figure 9c and d). Under normal infection conditions, an exponential increase of relative phage DNA levels and a concomitant increase in extracellular phage titers was detected, indicating the successful release of newly amplified phage progenies. In contrast, intracellular phage DNA levels increased only slightly in the presence of apramycin, which was even followed by a decrease until the detection limit. Together with the decline of extracellular phage titers, these data hinted on a successful phage adsorption, but a blockage of subsequent replication.

A further visual proof of this inhibited replication in presence of apramycin was gained when performing a fluorescence in situ hybridization (FISH) assay with fluorescently labelled gene probes specifically targeting the phage genome (phage-targeting direct geneFISH). Focusing on λ infection first, distinct fluorescent foci were detected in the early stages of infection independent of the presence of apramycin, which indicated a successful phage DNA delivery. This was in line with an apramycin-independent efflux of potassium ions as indicator for successful injection of the λ genome (Boulanger & Letellier, 1992). However, a further increase in fluorescence revealing an ongoing phage DNA replication was just observed for apramycin-free conditions. Also for Streptomyces phage Alderaan, the intensity and amount of fluorescent foci progressively increased over time under normal infection conditions. Conversely, just a more diffuse signal without distinct fluorescent foci could be detected during infection under apramycin pressure (Figure 9e). This could be either traced back to i) technical limitation in detecting single injected phage DNA genomes, as they may be obscured by S. venezuelae autofluorescence ii) delayed sampling time points or iii) an interference of apramycin at the level of phage DNA injection. To conclude, quantification of phage DNA via qPCR and phage-targeting geneFISH suggested an inhibition of phage infection at an early step of phage life cycle, most likely between phage DNA injection and

replication. Thereby, it cannot be excluded that the mechanism of inhibition might further be dependent on the phage-host pair, since results obtained for λ and Alderaan showed potential differences in the influence of apramycin on the DNA injection step.

Finally, we examined the step of phage DNA transcription by performing RNA-sequencing. Whereas normal infection conditions exhibited an increasing amount of phage DNA transcripts, almost no viral DNA transcription seemed to have taken place in presence of apramycin (cf. chapter 3.2., Figure 4d).

Targeting of injected phage DNA as potential mechanism of antiphage activity

While the obtained data indicated an inhibition of phage infection at an early step in the life cycle prior to DNA replication and transcription, the underlying mechanism of action remains to be elucidated. A comparable point of attack, namely a blocking of phage DNA replication, was also proposed in a parallel conducted study describing the inhibition of two mycobacteriophages by hygromycin, kanamycin, and streptomycin (Jiang et al., 2020). Worth mentioning, a comparatively low phage-inhibiting activity was detected for tetracycline as another ribosome-targeting antibiotic. This comparison suggests that inhibition of phage infection by aminoglycosides is not just a general trait of blocked protein translation, but might be rather dependent on the mechanism of translation inhibition (Zuo et al., 2021). Remarkably, antagonistic effects of translation inhibitors and phage infection were also demonstrated in two recent studies: Bacteriostatic translation inhibitors can impair phage infection by decelerating phage reproduction, which extends the time for the acquisition of adaptive CRISPR immunity (Dimitriu et al., 2022). In addition, subinhibitory concentrations of chloramphenicol, tetracycline and erythromycin were shown to hinder amplification of phages encoding anti-CRISPR proteins in a CRISPR-immune bacterial host, probably by impeding translation of the phage-encoded counterdefense proteins. Contrary to this, the bactericidal aminoglycoside gentamicin had no impact on the immunosuppression via anti-CRISPR proteins, but instead impaired phage infection independent of the presence of CRISPR-Cas and anti-CRISPR proteins, suggesting a distinct mode of antiviral activity of aminoglycoside antibiotics (Pons et al., 2023).

Interestingly, DNA-intercalating anthracyclines, which represent a further class of antiphage secondary metabolites produced by *Streptomyces*, were proposed to interfere with phage infection on a similar stage of phage life cycle as aminoglycosides (Kronheim et al., 2018). Taken together, it can be hypothesized that these antiphage molecules may target injected but not yet replicated DNA, since the linear and relaxed conformation and a missing protection by DNA-binding proteins makes injected phage DNA possibly sensitive to DNA-binding molecules. A direct 24
interaction could inhibit either DNA circularization or protein-DNA interaction mandatory for replication and transcription (Casjens & Gilcrease, 2009; Kronheim et al., 2018). The general ability of aminoglycosides to target nucleic acids is already demonstrated by their inhibitory binding to the 16S rRNA as their antibacterial mode of action. A first evidence for a potential, direct binding to phage DNA was given by in vitro studies with purified λ DNA, proposing formation of a clamp around the phage DNA causing structural deformations (Kopaczynska et al., 2004; Kopaczynska et al., 2016).

To further examine this early phase of phage life cycle, phage DNA injection and a potential apramycin-phage DNA interaction in vivo could be analysed via super resolution microscopy (SRM). Therefore, phage DNA could be labeled by the incorporation of 5-ethynyl-2'-deoxyuridine (EdU), a thymidine analogue, which can be detected through reaction with a fluorescent azide ("click" chemistry) (Ohno et al., 2012; Salic & Mitchison, 2008). At the same time, the aminoglycoside could potentially be conjugated to a cyanine fluorophore as it was recently described for the labeling of a neomycin derivative with sulfonated Cy3 or Cy5 (Sabeti Azad et al., 2020). Additionally, further efforts should focus on phage DNA circularization as step between DNA injection and replication. To do so, total intracellular DNA in the early stages of infection in presence and absence of apramycin could be isolated and analysed in terms of DNA topology via pulsed field gel electrophoresis, either followed by a phage DNA-targeting southern-blot hybridization or in case of a previous Edu-labeling of phage DNA by visualization via click chemistry as described above. Alternatively, one could attempt to use a **restriction mapping** to discriminate between circular and linear phage DNA based on different DNA fingerprints. Due to the used packaging mechanisms, phage λ would be more suitable for this approach. The λ DNA circularizes via pairing of cohesive ends with following ligation (Wu & Kaiser, 1968). After rolling circle replication and translocation, each capsid contains exactly one genome with cohesive ends leading to identical phage progenies (Merrill et al., 2016). In contrast, Alderaan DNA is circularized by homologous recombination of the genomes ends and subsequent ligation. After replication, translocation of single phage genomes into the capsid happens via the headful packaging mechanisms (Hardy et al., 2020). As the name says, DNA is packed into the phage head until it is completely filled, which usually corresponds to a bit more than genome length leading to heterogeneous progenies with terminal redundancy and cyclic permutations (Merrill et al., 2016).

Coordinating molecular multitasking of aminoglycoside antibiotics

A striking feature of aminoglycoside antibiotics is that they can function as antibacterial and – at the same time - antiphage molecules. In all assays, aminoglycoside resistant strains were used to circumvent the antibacterial effect on the host during infection. In case of apramycin, this bacterial resistance mechanism relied on the acetylation of the 3-amino group of the deoxystreptamine ring via aminoglycoside N(3)-acetyltransferase (AAC(3)IV) preventing efficient binding to the 16S rRNA (Magalhaes & Blanchard, 2005). To examine the influence of this modification on the antiviral activity, in vitro acetylated apramycin (Ac-Apr) was supplemented to infection assays with the non-resistant wild type strain. Since this modification is known to abolish the antibacterial effect, no impact of acetylated apramycin on bacterial growth was detected. Conversely, the antiphage activity of apramycin appeared to be unaffected by this modification as indicated by the complete inhibition of phage infection (Figure 10a), which was in line with the results gained for unmodified apramycin during infection of the resistant strain carrying a plasmid-borne AAC(3)IV.

To further screen for the antiphage activity of the unmodified compound, the rRNA methyltransferase KamB from the natural apramycin producer *Streptoalloteichus tenebrarius* (formerly known as *Streptomyces tenebrarius*) was harnessed as alternative resistance mechanism (Holmes et al., 1991; Tamura et al., 2008). This enzyme catalyzes the N1-methylation of the 16S rRNA at position A1408 conferring resistance to the *Streptomyces*-derived aminoglycosides kanamycin, apramycin and tobramycin (Koscinski et al., 2007). Comparable to the results obtained for acetylated apramycin, methylation of the target site almost completely abolished the antibacterial effect of apramycin, but still allowed a strong inhibition of phage infection (Figure 10b). Altogether, acetylation appeared to neither impair nor be essential for the antiphage activity of apramycin. At the same time, drug modification and target site modification prevented the antibacterial mode of action, which is a further indication for the different target sites of this dual functionality. However, whether such uncoupling of antiphage and antibacterial properties via modification of the aminoglycoside scaffold can be generalized to other AMEs and aminoglycosides as well, needs to be determined in future experiments.

Figure 10: Aminoglycoside resistance mechanisms uncouple antibacterial and antiviral properties of apramycin. a) Alderaan infection assays of the *S. venezuelae* ATCC 10712 wild type strain using in vitro acetylated apramycin (Ac-Apr, 10 µg/ml). The acetylation reaction via acetyltransferase AAC(3)IV is shown above (n = 3 independent biological replicates, adapted and modified from Kever et al. (2022)). b) Alderaan infection assays of the apramycin-resistant strain *S. venezuelae* NRRL B-65442 producing the 16S rRNA methyltransferase KamB as resistance mechanism. Infection was performed in presence and absence of 10 µg/ml apramycin (n = 3 independent biological replicates) (cf. chapter 4.2, Part B). A schematic illustration of the methylation position A1408 in the A-site of the 16S rRNA was adapted and modified from Wachino and Arakawa (2012).

Spent medium from natural apramycin producer showed antiphage activity

Since aminoglycosides are naturally secreted small molecules, their antiphage activity could potentially be relevant in natural settings as well. To take a first step towards answering this question, culture supernatants (= spent media) of the natural apramycin producer *S. tenebrarius* were collected at two different time points after inoculation and analysed for apramycin production via liquid chromatography-mass spectrometry (LC-MS). When adding these spent media to infection assays, a strong correlation between the antiphage effect and the contained apramycin concentration was detected. This means that spent medium collected from natural producer strains after apramycin production was able to mimic the antiphage effect of the pure compound by completely preventing cell lysis and phage amplification, whereas apramycin-free spent medium showed no impact on phage infection (cf. chapter 3.2, Figure 3). Although the production of further antiphage molecules by *S. tenebrarius* could not be ruled out at this stage, these data already gave a first indication of a possible ecological relevance of chemical defense by aminoglycosides, which will be further addressed in chapter 2.3.4. However, to finally determine

whether the antiphage effect of the tested spent medium is mainly caused by apramycin, ongoing studies are focusing on the antiphage activity of spent medium from *S. tenebrarius* mutants lacking different genes of the biosynthetic pathway for apramycin production. In addition, this could shed light on the biosynthetic step and thus on the chemical groups or structural features leading to an antiphage activity, which is crucial to decipher the structure-function relationship of aminoglycosides.

Moreover, to address the physiological relevance of the antiphage effect of aminoglycosides, it would be of special interest to directly study phage infection in a bacterial host capable of aminoglycoside production. Therefore, current efforts are focusing on the isolation of corresponding phages, which would allow us to examine whether phage infection even triggers the production of these antiphage compounds.

2.3.3. Inactivation of infectious phage particles in the extracellular space

Dropping phage titer temporally coincides with re-growth of mycelium

The characterization of several novel phage isolates in our group exposed that Streptomyces phage infection appears to differ from prototypical infections in terms of phage titer development, which piqued our interest with respect to a potential, further layer of *Streptomyces* phage defense (Hardy et al., 2020). The observation of dropping phage titers during Streptomyces phage infection was taken up in our recent study by focusing on the phage Alderaan infecting S. venezuelae as a model system (Kever & Frunzke, 2022, to be submitted). To directly compare the development of infectious extracellular phage titers at later stages of Streptomyces infection with the one of unicellular-growing bacteria, long-term infection assays were performed for phage Alderaan infecting S. venezuelae NRRL B-65442, phage CL31 infecting C. glutamicum MB001 and phage λ infecting E. coli LE392. For all phage-host pairs, the impact on bacterial growth strongly correlated with the applied initial phage titer, resulting in a significant growth defect at a high phage pressure. Consistent with the previous observations, accompanying quantification of phage titers revealed an initial phage amplification and a subsequent drop in plaque-forming units (PFU) for infection of S. venezuelae with phage Alderaan (Hardy et al., 2020). This decline in titer started ~48 h after infection and temporally coincided with the emergence and re-growth of mycelium (Figure 11ab), which appeared to be resistant towards re-infection with the same phage (cf. chapter 4.3, Figure S1a). Contrary to this, infection of C. glutamicum MB001 with CL31 and E. coli with phage λ resulted in progressive phage amplification and a subsequent plateau in titer despite renewed bacterial growth for an intermediate phage pressure (Figure 11a-b).

Figure 11: Emergence of phage-resistant *Streptomyces* mycelium results in a decrease in extracellular infectious phage particles. a) Growth curves of *S. venezuelae* NRRL B-65442 infected by Alderaan, *C. glutamicum* MB001 infected by CL31 and *E. coli* LE392 infected by λ . Phage titers were calculated over time via double-agar overlays for infection with an intermediate phage pressure (see PFU/ml values in brackets; grey bars) (n = 3 independent biological replicates). b) Representative double-agar overlay assays of three independent biological replicates (adapted from Kever and Frunzke (2022, to be submitted)).

To study this dropping titer during *Streptomyces* phage infection in more detail, we compared the amount of plaque-forming units counted on double-agar overlay assays with total extracellular phage DNA levels quantified via qPCR (Figure 12a). Calculating the percent decrease of remaining phages (t = 72 h post infection) to the maximum titer reached (t = 8 h post infection) exposed a stronger reduction in infectious phage particles than in phage DNA levels. This suggested that dropping phage titers at later stages of infection were synergistically caused by a high proportion of completely removed/degraded phages (~92-96% decrease in DNA levels) and an additional proportion of inactivated/partially destroyed phages (>99.9% overall decrease in PFU/mI) (Figure 12b). However, it should be noted that this ratio might be biased by an unknown amount of non-encapsulated phage DNA deriving from lysed cells. In the following, the term 'phage inactivation' refers to the overall decrease of infectious phage particles in the extracellular space.

To approach the molecular basis of this phage inactivation, several factors were considered that might contribute to the decline in infectious phage particles: i) instability of phage particles due to acidification of the culture supernatant, ii) production and secretion of antiphage metabolites or proteins as well as iii) adsorption of phages to mycelial structures (Figure 12b).

Figure 12: Synergistic effects on phage titer decline. a) Comparison of remaining Alderaan phages (t_{72}/t_8) based on quantification of Alderaan genome equivalents via qPCR (biological replicates R1-R3 measured as technical triplicates) and quantification of plaque-forming units via double-agar overlay assays. b) Schematic illustration of different influencing factors possibly contributing to the observed decrease in extracellular phage titers (adapted and modified from Kever and Frunzke (2022, to be submitted)).

Growth of *S. venezuelae* in complex medium can be accompanied by acidification of the medium, reaching pH values of ~4.5-5.0. This is presumably due to secretion of organic acids, as it has been described previously for *S. venezuelae* and other *Streptomyces* strains (Ahmed et al., 1984; Hobbs et al., 1992; Madden & Ison, 1996). Accordingly, infectious extracellular phage titers were tracked during incubation of phage Alderaan in medium adjusted to different pH values for 24 h. While a high pH stability was observed for pH 5.0-9.0, incubation of phages at pH 4.0 led to a ~100-fold reduction in infectious phage particles (cf. chapter 4.3, Figure S1e). Interestingly, during further long-term infection studies under buffered conditions, an earlier re-growth of mycelium and a less pronounced, but still distinct drop in infectious phage particles (~92%) could be detected (cf. chapter 3.3, Figure 2c). However, whether this reduced drop is due to the eliminated influence of medium acidification or rather due to downstream effects of buffered cultivation conditions, e.g. an altered morphology or exo-metabolome, needs to be addressed by future experiments.

Moreover, a possible effect of secreted metabolites and proteins on infectious phage particles was investigated, even though *S. venezuelae* is, for instance, unable to produce aminoglycosides and anthracyclines as the two main classes of antiphage metabolites currently known (Kever et al., 2022; Kronheim et al., 2018). For that purpose, supernatants (= spent media) of uninfected *S. venezuelae* cultures were harvested and filtrated at different time points after inoculation (8, 24 and 48 h). After subsequent incubation of phage Alderaan in these cell-free spent media for 48 h, infectious phage particles were quantified via double-agar overlay assays. The highest impact on the number of infectious phage particles was observed upon incubation in spent medium, which was harvested after 24 h of *Streptomyces* cultivation in unbuffered conditions (pH 6.9), showing a $^{60-73\%}$ reduction in infectious phage titers (cf. chapter 3.3, Figure 2d). In contrast, the number

of infectious Alderaan particles stayed almost constant upon incubation with all other tested spent media, overall hinting on the transient production of phage-inactivating metabolites or proteins. Moreover, examining plaque formation on double-agar overlay assays containing increasing chloramphenicol concentrations as a well-known antibiotic produced by *S. venezuelae* (Vining & Stuttard, 1995) revealed no impact on phage infectivity as well. However, it is important to emphasize that this experimental setup used for studying the effect of spent medium did not consider potential intracellular effects of small molecule production on phage amplification as well as a phage-triggered production of some antiphage metabolites or enzymes, which highlights the need to include spent medium of infected cultures in follow-up studies.

Mature mycelium showed enhanced phage tolerance

In addition to medium acidification and secretion of antiphage molecules, further efforts focused on the impact of mycelial structures on the phage titer decline. Therefore, pre-cultures of different developmental stages of S. venezuelae mycelium were used for inoculation of infection assays. The highest susceptibility towards Alderaan infection was observed for stationary pre-cultures comprising already a high amount of spore chains. Upon inoculation of a fresh culture, infection of germinating spores led to a substantial growth defect and a significant increase in extracellular phage titers already at an intermediate initial phage pressure of 10⁷ PFU/ml. A comparable outcome of phage infection was gained for young, vegetative mycelium deriving from pre-cultures in the early exponential growth phase. Contrary to this, infection of dense mycelium from mid exponential pre-cultures with 10⁷ PFU/ml of Alderaan exposed no impact on bacterial growth and even a decrease in extracellular phage titers over time (Figure 13a-c). These data revealed that mature and densely branched Streptomyces mycelium features a significantly reduced susceptibility to phage infection. This could be due to several reasons. On the one hand, the phages could adsorb directly to the mycelium, but productive infection is prevented. On the other hand, shielding of phage receptors and thereby prevention of phage adsorption could lead to prolonged retention of phages in the extracellular space, where phages are inactivated over time by secretion of antiphage molecules or lowering of pH.

In the case of *Streptomyces albus*, a study of the 1980's described the enhanced adsorption capacity of actinophage Pal6 to mature mycelium compared to germinated spores. This effect also led to a decline in extracellular phage titers over time (Rosner & Gutstein, 1981). Conversely, adsorption studies with phage $\Phi A7$ infecting *Streptomyces antibioticus* revealed that phage adsorption was restricted to germ tubes and not observed during incubation of phages with spores or mycelium (Diaz et al., 1991). Further evidence for an influence of the developmental stage on

31

phage susceptibility was recently described by Luthe et al. (2023a), who demonstrated a decrease in plaque diameter up to a complete prevention of plaque formation by phage Alderaan with increasing age of the surface-grown mycelium used as bacterial lawn. Interestingly, a decrease in extracellular phage density after initial amplification was also observed at later stages of *Streptomyces lividans* infection with phage KC301 in soil microcosms, which was presumed to be caused by a high adsorption rate of phages to vegetative mycelium of mature colonies (Burroughs et al., 2000; Marsh & Wellington, 1992).

Figure 13: Influence of *S. venezuelae* developmental stage on phage susceptibility a) Infection curves of *S. venezuelae* NRRL B-65442 infected by phage Alderaan (n = 3 independent biological replicates). Precultures of different developmental stages were used to inoculate main cultures for conducting infection assays (early exp.: 16 h pre-cultivation, mid exp.: 20 h pre-cultivation, stationary: 30 h pre-cultivation). (b) Microscopic analysis of *S. venezuelae* pre-cultures (scale bar = 10 μ m, exposure time = 120 ms). (c) Log₁₀ fold change of extracellular infectious phage particles based on plaque-forming units quantified via double-agar overlay assays, which indicates the level of phage amplification for an initial phage pressure of 10⁷ PFU/ml over 24 h of infection (n = 3 independent biological replicates) (adapted from Kever and Frunzke (2022, to be submitted)).

Inactivation of a non-host phage coincides with the hyphae-spore transition phase

To further analyse general abilities of mature mycelium to inactivate phages non-specifically in the extracellular space, titers of diverse non-host phages (referring to phages unable to infect *S. venezuelae*) with different morphotypes and host specificities were tracked during incubation with *S. venezuelae* mycelium under buffered conditions in submerged cultures. Among overall twelve tested phages, the *C. glutamicum* phage CL31 and the two *E. coli* phages T4 and MS2 exhibited a decrease in extracellular phage titers upon incubation with mycelium - listed in descending order. Using CL31 as a model phage for a time-resolved quantification revealed a simultaneous decline in infectious phage particles and extracellular phage DNA levels suggesting a

complete removal of the phages from the extracellular space (Figure 14a). Interestingly, this decline in phage titer coincided with the phase of hyphae-spore transition, as indicated by the concomitant microscopic analysis of mycelium (Figure 14b). Moreover, incubation of new CL31 particles in *S. venezuelae* spent medium harvested during the drop in CL31 titers had no effect on phage infectivity giving a first indication that this decline was probably not caused by a CL31-triggered production of previously unknown antiphage metabolites or proteins in *S. venezuelae*.

As already explained in chapter 2.2.1, the developmental transition to spores is regulated by a complex hierarchical network. The master regulator BldD represses key developmental genes, amongst them *bldN*. Unfavorable conditions like nutrient starvation relieve repression by BldD and initiate the morphological differentiation to spores (M. J. Bush et al., 2015). In surface grown cultures, this transition includes the formation of aerial hyphae, which are coated by a hydrophobic surface layer based on the o^{BIdN}-dependent transcription of rodlin and chaplin genes. Although the growth of aerial mycelium is not relevant in submerged cultures, hyphae-spore transition was proven to be still accompanied by expression of rodlin and chaplin genes (Bibb et al., 2012). To analyse the importance of this morphological differentiation for the phage titer decline, the incubation assay was repeated with two developmental mutant strains: i) *S. venezuelae* $\Delta bldD::apr$, which is characterized by a hypersporulation phenotype forming premature spores from vegetative mycelium (Tschowri et al., 2014) and ii) S. venezuelae $\Delta bldN::apr$, which can only grow vegetatively and is lacking hydrophobic rodlin and chaplin proteins (Bibb et al., 2012). For both mutant strains, incubation with CL31 led to a lower decline in phage titer in comparison to the wild type strain (Figure 14c). Consistent with this, overexpression of *bldN* markedly accelerated the reduction in CL31 particles, possibly due to higher expression levels of rodlin and chaplin genes (cf. chapter 3.3, Figure 4e). Moreover, a substantially less pronounced reduction in CL31 titers was observed for incubation with S. coelicolor and S. olivaceus (Figure 14c). In contrast to S. venezuelae, both strains were unable to form spores during the entire cultivation under the applied conditions, which – at least for S. coelicolor – is already sufficiently described in literature (Glazebrook et al., 1990; Manteca et al., 2008). In addition, incubation of CL31 with other bacteria dividing by binary fission, namely E. coli, B. subtilis and P. putida, exhibited no decline in extracellular CL31 titers as well (Figure 14c). Overall, this led to the assumption that hyphae-spore transformation with a switch from hydrophilic to hydrophobic surface properties may substantially contribute to declining extracellular titers of the non-host phage CL31, possibly by allowing adsorption of phage particles to the mycelial surface via hydrophobic interactions. However, the levels of hydrophobic sheath proteins actually produced under the applied conditions still needs to be determined. Apart from that, a transient production of antiphage metabolites or proteases leading to phage

inactivation cannot be definitively excluded by the single time point measurements conducted in our studies.

The hydrophobic surface proteins of Streptomyces are functionally related to the hydrophobins of filamentous-growing fungi. These fungal hydrophobins have several functions like for instance conferring hydrophobicity to aerial hyphae and allowing their attachment to hydrophobic surfaces (Elliot & Talbot, 2004; Wösten, 2001). Assumed, that the decrease in CL31 titers upon incubation with S. venezuelae mycelium could be attributed to hydrophobic interactions, incubation with fungal mycelium might lead to a comparable phenotype. Just recently, Ghanem and colleagues described such a hydrophobicity-dependent phage retention by fungal mycelium in a microfluidic chip platform (Ghanem et al., 2019). Unfortunately, our access to appropriate fungal strains was limited to haploid, yeast-like cells of Ustilago cynodontis, which revealed no effect on CL31 titers (Figure 14c). It should be noted, that this basidiomycete is a dimorphic fungi, which just exhibit filamentous, pathogenic growth upon fusion of two haploid cells with different mating types (Bölker, 2001). As shown for Ustilago maydis, in these fungal strains hydrophobins appear to be functionally substituted by small amphipathic peptides called repellents. Their production is associated with filamentous growth and required for aerial hyphae formation (Teertstra et al., 2006; Teertstra et al., 2009; Wösten et al., 1996). Accordingly, it is reasonable to assume that a reduced or even lacking production of hydrophobicity-mediating proteins during yeast-like growth of U. cynodontis could be an explanation for the lack of decline in CL31 titers. Apart from that, several studies already described a certain influence of surface hydrophobicity on phage adhesion to various solid materials like aluminum oxide-coated sand or polypropylene (Attinti et al., 2010; Dika et al., 2013; Farkas et al., 2015; Richter et al., 2021). Finally yet importantly, the phage T4, which showed a strong reduction upon incubation with S. venezuelae mycelium as well, is referred to as hydrophobic phage (Ghanem et al., 2019), whereas the degree of surface hydrophobicity of the less affected phage MS2 is controversially described in the literature (Farkas et al., 2015; Sautrey et al., 2018; Vodolazkaya et al., 2022). Altogether, this supported the hypothesis of a potential influence of hydrophobic interactions on the phage titer decline.

However, attempts to visualize CL31 phages on the mycelial surface via scanning electron microscopy (SEM) failed by now. Additionally, repeated efforts to detach phages from the mycelial fraction were not yet successful as well, which may account for a high affinity, irreversible binding of phages to hyphae or degradation of the phage particles by alternative mechanisms.

Figure 14: Influence of *Streptomyces* mycelium on extracellular phage titers of the non-host phage CL31. a) Time-resolved quantification of extracellular CL31 phage particles during incubation with *S. venezuelae* NRRL B-65442 mycelium via double-agar overlay assays (PFU/ml, cyan bars, three biological replicates) and via qPCR (CL31 genome equivalents, reddish dots, means of three biological replicates measured as technical duplicates). The detection limit for double-agar overlay assays is indicated by the dotted line; for qPCR, measurement points minimally outside of the standards are marked by increased transparency (t_9, t_{12}, t_{18}). b) Microscopic images of *S. venezuelae* mycelium during declining CL31 titers at 6 h and 9 h post inoculation (scale bar: 10 µm, exposure time = 200 ms). The yellow arrow points to the first spore chains detected after 6 h of incubation. c) Reduction in extracellular infectious CL31 particles during cultivation with different microorganism calculated via double-agar overlay assays, shown as log₁₀ fold change t₁₈/t₀. In case of incubation with *S. venezuelae* wild type, one replicate showed a log₁₀ fold change of ~-4, while two out of three replicates showed no more plaque formation after 18 h of incubation (log₁₀ fold change not determinable) (adapted and modified from Kever and Frunzke (2022, to be submitted)).

The interplay of many factors shapes Streptomyces multicellular defense

Based on our current results, development of phage titers during infection of S. venezuelae with phage Alderaan cannot be attributed to a single parameter, but may instead be conditioned by an interplay of several factors likely influencing each other. So far, only a vague guess can be made on how the different dissected parameters could contribute to the phage titer decline: The reduction in extracellular infectious phage titers temporally correlates with the re-growth of phage-resistant mycelium. One could envision, that phages are removed from the extracellular space via direct adsorption to mycelium. Here, one could further discriminate between i) receptor-specific attachment without following phage amplification and ii) a rather unspecific entrapment in the mycelial network, e.g. via interaction with the hydrophobic sheath proteins as suggested for the non-host phages (CL31, MS2, T4). However, the fact that a drop in phage titer after a successful initial phage amplification was previously also observed during infection of S. coelicolor with its host phages Dagobah, Endor1 and Endor2 (Hardy et al., 2020), but incubation of the non-host phage CL31 with S. coelicolor mycelium caused a comparatively low reduction in extracellular phage titers might rather hint at two different mechanisms of phage inactivation for host- and nonhost phages in presence of Streptomyces mycelium. Moreover, incubation of Alderaan particles with S. venezuelae spent medium of uninfected cultures harvested after 24 h of cultivation resulted in a reduction in infectious phage particles. This refers to a transient production and secretion of **phage-inactivating metabolites or proteases**, which might be even enhanced under infection conditions. These antiphage molecules or proteins could either directly target phages in the extracellular space or interfere with phage amplification on an intracellular level after successful phage adsorption. Apart from that, Alderaan particles showed a high **pH instability** in acidic conditions at pH < 5.0, which can be reached during *Streptomyces* growth. However, since a substantial, but less pronounced reduction in infectious particles was observed even under buffered conditions, an influence of medium acidification on declining phage titers cannot be excluded, but might be rather minor. Another factor, which was not considered yet, is a potential phage neutralization through binding to **extracellular vesicles**. These vesicles are released from hyphal tips of *S. venezuelae* upon cell-wall stress, but their extrusion in response to phage infection was not investigated so far (Fröjd & Flärdh, 2019).

To further shed light on the molecular mechanism of dropping phage titers, a variety of different experiments could be performed, some of which are listed below. First, visualization of a potential phage attachment to mycelial structures could be re-attempted by using fluorescently labeled phages. Moreover, performing phage adsorptions assays with mycelium of the wild type and respective developmental mutant strains in buffer would allow to analyse the impact of the current developmental stage on phage adsorption. To further examine to involvement of hydrophobic interactions, in vitro analysis of phage adhesion to purified rodlin and chaplin filaments might be a useful experimental addition as well. Moreover, omics-analysis of re-grown mycelium might provide further insights into the molecular basis of phage receptors, or activation of further antiphage defense systems. In this context, determining the composition of spent medium under infection conditions and testing its effects on infection dynamics is crucial to elaborate on a potential **release of antiphage molecules.**

Altogether, the current results emphasize an important impact of *Streptomyces* development on phage susceptibility. Furthermore, we can deduce that *Streptomyces* has evolved a complex antiphage defense with several components acting at the multicellular level that may provide a community-wide protection against phage predation – as further discussed in chapter 2.3.4.

2.3.4. Community-wide protection against phage infection

Our current knowledge of antiphage defense is very much dominated by systems that act at the cellular level. Such mechanisms protect an individual bacterium from phage infection and hence the surrounding community by preventing phage spread (cf. chapter 2.1.3).

However, in their natural environment, bacteria preferentially reside in complex, multispecies microbial communities (Stubbendieck et al., 2016). Numerous studies already indicated that these communities have also evolved various antiphage strategies, which are extracellularly available to allow protection of multiple cells at the same time (Figure 15). For instance, bacterial biofilm formation serves as an efficient protection against various abiotic and biotic environmental insults, among them also bacteriophages. The antiphage defense mechanisms of biofilms are multifaceted including shielding of susceptible bacteria by resistant cells, reducing phage amplification through metabolically inactive cells, limiting phage diffusion and trapping phages in the self-produced polymer matrix as recently reviewed by Visnapuu et al. (2022). A matrix-mediated protection against T5 and T7 phage predation was exemplarily described for curli amyloid fibers as a proteinaceous component of the E. coli biofilm matrix. These amyloid fibers allow a collective antiphage defense by preventing phage diffusion as well as an individual cell protection by entrapping phages in the cell surface-covering fibers, hence inhibiting cell-phage attachment (Vidakovic et al., 2018). Though, curli-trapped phages can remain infectious and kill biofilminvading cells (Bond et al., 2021). Moreover, the release of outer membrane vesicles provides another adsorption trap. Due to comparable surface structures as the bacterial cell, these vesicles serve as cellular decoys and enable irreversible phage neutralization (Manning & Kuehn, 2011; Reyes-Robles et al., 2018). In addition, quorum sensing-regulated activation of antiphage defense systems via release of extracellular signaling molecules represents another mechanism of multicellular protection against phage predation. Accumulation of these signaling molecules at high cell densities can alter the gene expression profile on a population scale leading e.g. to the downregulation of phage receptors (Høyland-Kroghsbo et al., 2013; Tan et al., 2015), activation of CRISPR-Cas immunity (Høyland-Kroghsbo et al., 2017; Patterson et al., 2016) or production of phage-inactivating proteases as it was shown for the haemagglutinin protease in Vibrio cholera (Hoque et al., 2016). Besides extracellular signaling molecules, especially actinobacterial strains like Streptomyces produce and secrete an impressive diversity of bioactive molecules, which can be harnessed as chemical weapons in competitive or predatory microbial interactions (Donald et al., 2022; Tyc et al., 2017). Their potential contribution to prokaryotic antiphage defense was just recognized recently. Kronheim and colleagues discovered that Streptomyces-derived anthracyclines, namely doxorubicin and daunorubicin, exhibit a broad antiphage activity. These

DNA-intercalating agents were shown to block replication of various dsDNA phages. Accordingly, their secretion could provide a chemical shield allowing protection against phage predation at the community level (Kronheim et al., 2018).

With the description of the antiviral properties of **aminoglycosides**, this doctoral thesis provides a further example for a chemical antiphage defense mechanism. Aminoglycoside antibiotics were shown to inhibit phage infection in widely divergent bacterial hosts by blocking an early step of phage life cycle. The fact, that aminoglycoside, but also anthracycline secretion by a natural producer was sufficient to inhibit phage infection opens the door for discussing the ecological significance of such chemical antiphage defense mechanisms, which was also outlined in our recent review about phage inhibition via bacterial small molecules (Hardy et al., 2023). Streptomyces as main producer of aminoglycosides predominantly lives in the soil, which is a highly challenging environment in terms of microbial density and diversity (Fierer, 2017). In this context, the dual functionality of aminoglycosides might provide an outstanding benefit. Their secretion could create an antibacterial and antiviral microenvironment, which would allow producers as well as resistant strains in the surrounding community to be chemically protected against various phages and competing bacteria at the same time. However, most bacteria are naturally sensitive to aminoglycosides. Here, the high mobility of genes coding for aminoglycoside-modifying enzymes (AME) might come into play, which increases the probability of acquiring resistance through horizontal gene transfer from producer strains (Ramirez & Tolmasky, 2010). Assuming that a decoupling of antibacterial and antiphage properties by aminoglycoside modification can be generalized, acquisition of AMEs might allow neighboring cells to benefit from the antiphage properties upon aminoglycoside uptake, without suffering from the antibacterial effect. Overall, one could imagine a division of labor, where secretion of aminoglycosides as 'public goods' provide protection from phages on a community level, while the producers themselves could in turn profit from complementary tasks carried out by other members of the cooperating community (Smith & Schuster, 2019; Zhang et al., 2016). Interestingly, sublethal aminoglycoside concentration were just recently shown to be still sufficient to impair phage infection (Zuo et al., 2021), which dependent on the locally achieved concentration – potentially opens up the protective effect against phages to aminoglycoside-sensitive bacteria in the cooperating community as well. It could be argued that the broad antiphage activity may also favor the growth of non-cooperating bacteria, which would be controversial from a sociomicrobiological perspective. However, one could envision that such social cheating could be limited by spatial structuring, e.g. biofilm formation, that enables to set up a local pool of public goods (Hardy et al., 2023; Smith & Schuster, 2019).

In addition to the antiviral properties of aminoglycosides, this doctoral thesis further examined the phage inactivation in the extracellular space of *Streptomyces* populations, which was specifically observed at later stages of infections. Such inactivation could especially be relevant on a community level, where resistant or tolerant fractions might inactivate phages in the surroundings to protect susceptible cells from viral predation. Related to that, we observed that mature mycelium exhibits a transient tolerance towards phage infection, which was consistent with other studies (Diaz et al., 1991; Rosner & Gutstein, 1981). Based on the present data, we hypothesize that mycelial growth contributes to the observed decline in extracellular phage titers and thereby to antiphage defense, possibly by allowing an efficient adsorption of phages from the environment without producing phage progenies. A comparable scenario was proposed when studying phagehost interactions in Streptomyces using soil microcosms, which imitate natural conditions with the physical separation of vegetative and aerial mycelium more properly than submerged cultures. By showing a reduction of free phages in the soil with raising mycelial density, the authors suggested that vegetative mycelium adsorbs the majority of phages, thereby protecting young, susceptible hyphae from phage predation (Burroughs et al., 2000; Marsh & Wellington, 1992). Apart from that, another study from our group recently pointed out that sensing of phage infection seems to trigger the formation of aerial hyphae and spores in surface-grown cultures leading to a transient phage resistance. In this context, Streptomyces development was shown to be crucial for limiting phage spread (Luthe et al., 2023a). Overall, it can be inferred that a cooperative behavior of mycelial structures of different ages could contribute essentially to antiphage defense at the community level, although the molecular basis of the increased phage tolerance of mature mycelium requires further investigations.

Interestingly, phage inactivation in presence of *Streptomyces* mycelium was also detected for specific non-host phages, which could possibly open up this antiphage defense to some interspecies communities as well. Under the assumption, that a reduced extracellular phage density could, at least for non-host phages, be attributed to interaction with the hydrophobic sheath during hyphae-spore transition (cf. chapter 2.3.3), it appears to be debatable to what extent this could contribute to community-wide antiphage defense in the natural soil habitat. Susceptible members of the community are likely located in the moist soil and hence spatially separated from the hydrophobic aerial mycelium in surface-grown cultures. This suggests that hydrophobic mycelial surface structures have a limited ability to protect the surrounding community from infection by adsorbing phages from the subsurface. A similar assumption was also made in a previous study by Burroughs et al. (2000). Nonetheless, it can be hypothesized that aerial mycelium could interfere with the water-based phage transport at the water-air interface by retaining phages

via hydrophobic interactions and impacting the infiltration properties of the soil, which was already discussed in a comparable manner for fungal mycelium (Ghanem et al., 2019; Ritz & Young, 2004).

Figure 15: Overview of multicellular antiphage defense strategies. Protection against phages on a multicellular level can be mediated by i) extrusion of outer membrane vesicles sequestering phages, which prevents attachment to susceptible cells, ii) quorum sensing-mediated activation of antiphage defense systems, iii) biofilm formation and trapping of phages via interaction with components of the extracellular matrix, iv) production of antiphage molecules as chemical defense and v) cellular development allowing emergence of transient phage tolerance. A modified version of this figure was after submission of this thesis published in Luthe et al. (2023b).

2.4. Conclusion and perspectives

The abundance of phages in almost all ecosystems leads to an ongoing arms race between bacteria and phages (Hampton et al., 2020). Phages encode unique proteins that interfere with key cellular processes to create favorable reproduction conditions (De Smet et al., 2017). With the description of the gyrase-inhibiting protein Gip encoded by the CGP3 prophage of *C. glutamicum*, this doctoral thesis represents a further example of a host-affecting protein, whose mechanistic elucidation might open up new directions for antimicrobial drug design (Kever et al., 2021).

To counteract viral attacks, bacteria have evolved numerous antiphage defense mechanisms, which collectively build up the bacterial immune system (Tal & Sorek, 2022). This doctoral thesis provides novel insights into the contribution of bacterial secondary metabolite production and multicellular development to the antiphage arsenal of Streptomyces, both having the potential for a community-wide antiphage defense. To provide the basis for studying phage host interactions, we started with the characterization of five newly isolated Streptomyces phages preying on the model species S. coelicolor and S. venezuelae (Hardy et al., 2020). Inspired by the striking observation of enhanced secondary metabolite production at the infection interface and the description of the antiviral properties of anthracyclines (Kronheim et al., 2018), we studied the antiphage properties of another class of small molecules produced by *Streptomyces*, namely aminoglycoside antibiotics (Kever et al., 2022). The interference of aminoglycosides with phage infection could be narrowed down to an early step of phage life cycle between injection and replication. Moreover, aminoglycoside-mediated inhibition of phage infection could be reproduced with culture supernatant of the natural producer, hinting on an ecological relevance of the antiphage activity of aminoglycoside antibiotics, which was discussed in further detail in our recent review article (Hardy et al., 2023). Although the underlying mechanism of action for the two main classes of currently known antiphage molecules - aminoglycoside and anthracyclines remains to be elucidated, these studies represent a cornerstone for further establishing chemical defense as part of the bacterial immune system. The identification of further antiphage molecules and their mechanism of action will expand our knowledge about this previously unappreciated facet of bacterial immunity and may also fuel the discovery line for novel antiviral drugs with important medical and biotechnological applications.

In addition to the role of aminoglycosides in antiphage defense, we examined the observation of dropping infectious phage titers in the extracellular space of *Streptomyces* populations upon regrowing of mycelium with an emphasis on cellular development as a potential further layer of antiphage defense. By showing the potential contribution of secreted antiphage molecules and

proteins, medium acidification and mycelial growth to phage inactivation, we point to the complexity of the multicellular antiphage defense employed by *Streptomyces* (Kever & Frunzke, 2022, to be submitted). Such phage inactivation could have its significance on a community-level, where phage-tolerant mycelial structures could protect susceptible cells from viral predation. This could be further analysed in future studies by deciphering the underlying mechanism of inactivation and performing co-cultivation experiments with tolerant and susceptible cells.

Currently, defense strategies against phages are primarily examined as isolated systems, but the efficiency of antiphage defense depends rather on the interaction and complementation of different systems acting at a cellular and multicellular level. The integration of these different lines of defense into the bacterial immune system and their temporal coordination is an exciting aspect for future studies, which could be addressed by spatiotemporal visualization of defense system activity via reporter assays or transcriptomic profiling. Since it is already known that antibiotic production is frequently linked to morphological differentiation (Bibb, 2005), it might be of particular interest to investigate a possible connection between production of antiphage metabolites and cellular development of phage-tolerant phenotypes. One could imagine that released antiphage compounds are not just used as chemical weapon against viral predation, but may serve as a warning molecule for adjacent cells, which might trigger the emergence of phage tolerance in the surrounding community.

2.5. References

- Ackermann, H.-W. (2009). Phage Classification and Characterization. In M. R. J. Clokie & A. M. Kropinski (Eds.), Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions (pp. 127-140). Humana Press. https://doi.org/10.1007/978-1-60327-164-6_13
- Ahmed, Z. U., Shapiro, S., & Vining, L. C. (1984). Excretion of α-keto acids by strains of *Streptomyces* venezuelae. Can. J. Microbiol., 30(8), 1014-1021. <u>https://doi.org/10.1139/m84-158</u>
- Aigle, B., Lautru, S., Spiteller, D., Dickschat, J. S., Challis, G. L., Leblond, P., & Pernodet, J. L. (2014). Genome mining of *Streptomyces ambofaciens*. J. Ind. Microbiol. Biotechnol., 41(2), 251-263. <u>https://doi.org/10.1007/s10295-013-1379-y</u>
- Al-Bassam, M. M., Bibb, M. J., Bush, M. J., Chandra, G., & Buttner, M. J. (2014). Response regulator heterodimer formation controls a key stage in *Streptomyces* development. *PLoS Genet.*, 10(8), e1004554. <u>https://doi.org/10.1371/journal.pgen.1004554</u>
- Anderson, A. S., & Wellington, E. M. (2001). The taxonomy of *Streptomyces* and related genera. *Int. J. Syst. Evol. Microbiol.*, *51*(Pt 3), 797-814. <u>https://doi.org/10.1099/00207713-51-3-797</u>
- Attinti, R., Wei, J., Kniel, K., Sims, J. T., & Jin, Y. (2010). Virus' (MS2, phiX174, and Aichi) Attachment on Sand Measured by Atomic Force Microscopy and Their Transport through Sand Columns. *Environ. Sci. Technol.*, 44(7), 2426-2432. <u>https://doi.org/10.1021/es903221p</u>
- Ayinde, D., Casartelli, N., & Schwartz, O. (2012). Restricting HIV the SAMHD1 way: through nucleotide starvation. *Nat Rev Microbiol*, *10*(10), 675-680. <u>https://doi.org/10.1038/nrmicro2862</u>
- Baltz, R. H. (2012). Streptomyces temperate bacteriophage integration systems for stable genetic engineering of actinomycetes (and other organisms). J. Ind. Microbiol. Biotechnol., 39(5), 661-672. <u>https://doi.org/10.1007/s10295-011-1069-6</u>
- Barka, E. A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., Meier-Kolthoff, J. P., Klenk, H.
 P., Clement, C., Ouhdouch, Y., & van Wezel, G. P. (2016). Taxonomy, Physiology, and Natural Products of Actinobacteria. *Microbiol Mol Biol Rev, 80*(1), 1-43. <u>https://doi.org/10.1128/MMBR.00019-15</u>
- Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., & Horvath, P. (2007). CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes. *Science*, 315(5819), 1709-1712. <u>https://doi.org/10.1126/science.1138140</u>
- Bentley, S. D., Chater, K. F., Cerdeño-Tárraga, A. M., Challis, G. L., Thomson, N. R., James, K. D., Harris, D. E., Quail, M. A., Kieser, H., Harper, D., Bateman, A., Brown, S., Chandra, G., Chen, C. W., Collins, M., Cronin, A., Fraser, A., Goble, A., Hidalgo, J., Hornsby, T., Howarth, S., Huang, C. H., Kieser, T., Larke, L., Murphy, L., Oliver, K., O'Neil, S., Rabbinowitsch, E., Rajandream, M. A., Rutherford, K., Rutter, S., Seeger, K., Saunders, D., Sharp, S., Squares, R., Squares, S., Taylor, K., Warren, T., Wietzorrek, A., Woodward, J., Barrell, B. G., Parkhill, J., & Hopwood, D. A. (2002). Complete genome sequence of the model actinomycete *Streptomyces coelicolor* A3(2). *Nature*, *417*(6885), 141-147. https://doi.org/10.1038/417141a
- Bernard, P., Kézdy, K. E., Van Melderen, L., Steyaert, J., Wyns, L., Pato, M. L., Higgins, P. N., & Couturier, M. (1993). The F Plasmid CcdB Protein Induces Efficient ATP-dependent DNA Cleavage by Gyrase. J. Mol. Biol., 234(3), 534-541. https://doi.org/10.1006/jmbi.1993.1609

- Bernheim, A., Millman, A., Ofir, G., Meitav, G., Avraham, C., Shomar, H., Rosenberg, M. M., Tal, N., Melamed, S., Amitai, G., & Sorek, R. (2021). Prokaryotic viperins produce diverse antiviral molecules. *Nature*, 589(7840), 120-124. <u>https://doi.org/10.1038/s41586-020-2762-2</u>
- Bernheim, A., & Sorek, R. (2020). The pan-immune system of bacteria: antiviral defence as a community resource. *Nat Rev Microbiol*, *18*(2), 113-119. <u>https://doi.org/10.1038/s41579-019-0278-2</u>
- Bertani, G. (1953). LYSOGENIC VERSUS LYTIC CYCLE OF PHAGE MULTIPLICATION. *Cold Spring Harb. Symp. Quant. Biol.*, *18*, 65-70. <u>https://doi.org/10.1101/sqb.1953.018.01.014</u>
- Bibb, M. J. (2005). Regulation of secondary metabolism in streptomycetes. *Curr Opin Microbiol*, 8(2), 208-215. <u>https://doi.org/10.1016/j.mib.2005.02.016</u>
- Bibb, M. J. (2013). Understanding and manipulating antibiotic production in actinomycetes. *Biochem. Soc. Trans.*, 41(6), 1355-1364. <u>https://doi.org/10.1042/BST20130214</u>
- Bibb, M. J., Domonkos, A., Chandra, G., & Buttner, M. J. (2012). Expression of the chaplin and rodlin hydrophobic sheath proteins in *Streptomyces venezuelae* is controlled by σ^{BldN} and a cognate anti-sigma factor, RsbN. *Mol Microbiol*, *84*(6), 1033-1049. https://doi.org/10.1111/j.1365-2958.2012.08070.x
- Bierman, M., Logan, R., O'Brien, K., Seno, E. T., Nagaraja Rao, R., & Schoner, B. E. (1992). Plasmid cloning vectors for the conjugal transfer of DNA from *Escherichia coli* to *Streptomyces* spp. *Gene*, 116(1), 43-49. <u>https://doi.org/10.1016/0378-1119(92)90627-2</u>
- Bobay, L. M., Touchon, M., & Rocha, E. P. (2014). Pervasive domestication of defective prophages by bacteria. *PNAS*, 111(33), 12127-12132. <u>https://doi.org/10.1073/pnas.1405336111</u>
- Bobek, J., Smidova, K., & Cihak, M. (2017). A Waking Review: Old and Novel Insights into the Spore Germination in *Streptomyces. Front Microbiol, 8*, 2205. <u>https://doi.org/10.3389/fmicb.2017.02205</u>
- Bölker, M. (2001). Ustilago maydis a valuable model system for the study of fungal dimorphism and virulence. Microbiology, 147(Pt6), 1395-1401. <u>https://doi.org/10.1099/00221287-147-6-1395</u>
- Bond, M. C., Vidakovic, L., Singh, P. K., Drescher, K., & Nadell, C. D. (2021). Matrix-trapped viruses can prevent invasion of bacterial biofilms by colonizing cells. *Elife*, *10*, e65355. <u>https://doi.org/10.7554/eLife.65355</u>
- Bondy-Denomy, J., & Davidson, A. R. (2014). When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness. *J Microbiol.*, *52*(3), 235-242. <u>https://doi.org/10.1007/s12275-014-4083-3</u>
- Boulanger, P., & Letellier, L. (1992). Ion channels are likely to be involved in the two steps of phage T5 DNA penetration into *Escherichia coli* cells. *J. Biol. Chem.*, *267*(5), 3168-3172. https://doi.org/10.1016/s0021-9258(19)50710-4
- Brock, T. D., Mosser, J., & Peacher, B. (1963). The Inhibition by Streptomycin of Certain Streptococcus Bacteriophages, using Host Bacteria Resistant to the Antibiotic. J. Gen. Microbiol., 33(1), 9-22. <u>https://doi.org/10.1099/00221287-33-1-9</u>
- Brock, T. D., & Wooley, S. O. (1963). Streptomycin as an Antiviral Agent: Mode of Action. *Science*, *141*(3585), 1065-1067. <u>https://doi.org/10.1126/science.141.3585.1065</u>.
- Burroughs, N. J., Marsh, P., & Wellington, E. M. H. (2000). Mathematical Analysis of Growth and Interaction Dynamics of Streptomycetes and a Bacteriophage in Soil. *Appl. Environ. Microbiol.*, 66(9), 3868-3877. <u>https://doi.org/10.1128/AEM.66.9.3868-3877.2000</u>

- Bush, M. J., Bibb, M. J., Chandra, G., Findlay, K. C., & Buttner, M. J. (2013). Genes required for aerial growth, cell division, and chromosome segregation are targets of WhiA before sporulation in *Streptomyces venezuelae*. *mBio*, *4*(5), e00684-00613. https://doi.org/10.1128/mBio.00684-13
- Bush, M. J., Chandra, G., Bibb, M. J., Findlay, K. C., & Buttner, M. J. (2016). Genome-Wide Chromatin Immunoprecipitation Sequencing Analysis Shows that WhiB Is a Transcription Factor That Cocontrols Its Regulon with WhiA To Initiate Developmental Cell Division in *Streptomyces*. *mBio*, 7(2), e00523-00516. <u>https://doi.org/10.1128/mBio.00523-16</u>
- Bush, M. J., Tschowri, N., Schlimpert, S., Flärdh, K., & Buttner, M. J. (2015). c-di-GMP signalling and the regulation of developmental transitions in streptomycetes. *Nat Rev Microbiol*, 13(12), 749-760. <u>https://doi.org/10.1038/nrmicro3546</u>
- Bush, N. G., Evans-Roberts, K., & Maxwell, A. (2015). DNA Topoisomerases. *EcoSal Plus, 6*(2). https://doi.org/10.1128/ecosalplus.ESP-0010-2014
- Casjens, S. R., & Gilcrease, E. B. (2009). Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-bacteriophage virions. *Methods Mol Biol, 502*, 91-111. <u>https://doi.org/10.1007/978-1-60327-565-1_7</u>
- Challis, G. L., & Hopwood, D. A. (2003). Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by *Streptomyces* species. *PNAS*, *100*(suppl_2), 14555-14561. <u>https://doi.org/10.1073/pnas.1934677100</u>
- Claessen, D., Rink, R., de Jong, W., Siebring, J., de Vreugd, P., Boersma, F. G., Dijkhuizen, L., & Wösten, H. A. (2003). A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in *Streptomyces coelicolor* by forming amyloid-like fibrils. *Genes Dev*, *17*(14), 1714-1726. <u>https://doi.org/10.1101/gad.264303</u>
- Claessen, D., Wösten, H. A. B., van Keulen, G., Faber, O. G., Alves, A. M. C. R., Meijer, W. G., & Dijkhuizen, L. (2002). Two novel homologous proteins of *Streptomyces coelicolor* and *Streptomyces lividans* are involved in the formation of the rodlet layer and mediate attachment to a hydrophobic surface. *Mol. Microbiol.*, 44(6), 1483-1492. https://doi.org/10.1046/j.1365-2958.2002.02980.x
- Clément, J. M., Lepouce, E., Marchal, C., & Hofnung, M. (1983). Genetic study of a membrane protein: DNA sequence alterations due to 17 *lamB* point mutations affecting adsorption of phage lambda. *EMBO J.*, 2(1), 77-80. <u>https://doi.org/10.1002/j.1460-2075.1983.tb01384.x</u>
- Clokie, M. R., Millard, A. D., Letarov, A. V., & Heaphy, S. (2011). Phages in nature. *Bacteriophage*, 1(1), 31–45. <u>https://doi.org/10.4161/bact.1.1.14942</u>
- Cohen, D., Melamed, S., Millman, A., Shulman, G., Oppenheimer-Shaanan, Y., Kacen, A., Doron, S., Amitai, G., & Sorek, R. (2019). Cyclic GMP-AMP signalling protects bacteria against viral infection. *Nature*, *574*(7780), 691-695. <u>https://doi.org/10.1038/s41586-019-1605-5</u>
- Cornforth, D. M., & Foster, K. R. (2013). Competition sensing: the social side of bacterial stress responses. *Nat Rev Microbiol*, *11*(4), 285-293. <u>https://doi.org/10.1038/nrmicro2977</u>
- d'Herelle, F. (2007). On an invisible microbe antagonistic toward dysenteric bacilli: brief note by Mr. F. D'Herelle, presented by Mr. Roux 1917. *Res. Microbiol.*, *158*(7), 553-554. <u>https://doi.org/10.1016/j.resmic.2007.07.005</u>.
- Davies, E. V., Winstanley, C., Fothergill, J. L., & James, C. E. (2016). The role of temperate bacteriophages in bacterial infection. *FEMS Microbiol. Lett.*, *363*(5), fnw015. https://doi.org/10.1093/femsle/fnw015

- De Smet, J., Hendrix, H., Blasdel, B. G., Danis-Wlodarczyk, K., & Lavigne, R. (2017). *Pseudomonas* predators: understanding and exploiting phage-host interactions. *Nat. Rev. Microbiol*, *15*(9), 517-530. <u>https://doi.org/10.1038/nrmicro.2017.61</u>
- De Smet, J., Wagemans, J., Boon, M., Ceyssens, P. J., Voet, M., Noben, J. P., Andreeva, J., Ghilarov, D., Severinov, K., & Lavigne, R. (2021). The bacteriophage LUZ24 "Igy" peptide inhibits the *Pseudomonas* DNA gyrase. *Cell Rep*, *36*(8), 109567. https://doi.org/10.1016/j.celrep.2021.109567
- den Hengst, C. D., Tran, N. T., Bibb, M. J., Chandra, G., Leskiw, B. K., & Buttner, M. J. (2010). Genes essential for morphological development and antibiotic production in *Streptomyces coelicolor* are targets of BldD during vegetative growth. *Mol Microbiol*, *78*(2), 361-379. <u>https://doi.org/10.1111/j.1365-2958.2010.07338.x</u>
- Diaz, L. A., Gomez, P., Hardisson, C., & Rodicio, M. R. (1991). Biological characterization of the lytic cycle of actinophage ΦA7 in *Streptomyces antibioticus*. *FEMS Microbiol. Lett.*, 83(1), 65-68. <u>https://doi.org/10.1111/j.1574-6968.1991.tb04390.x</u>
- Dika, C., Ly-Chatain, M. H., Francius, G., Duval, J. F. L., & Gantzer, C. (2013). Non-DLVO adhesion of F-specific RNA bacteriophages to abiotic surfaces: Importance of surface roughness, hydrophobic and electrostatic interactions. *Colloids Surf. A Physicochem. Eng.*, 435, 178-187. <u>https://doi.org/10.1016/j.colsurfa.2013.02.045</u>
- Dimitriu, T., Kurilovich, E., Łapińska, U., Severinov, K., Pagliara, S., Szczelkun, M. D., & Westra, E. R. (2022). Bacteriostatic antibiotics promote CRISPR-Cas adaptive immunity by enabling increased spacer acquisition. *Cell Host Microbe*, *30*(1), 31-40 e35. https://doi.org/10.1016/j.chom.2021.11.014
- Dion, M. B., Oechslin, F., & Moineau, S. (2020). Phage diversity, genomics and phylogeny. *Nat Rev Microbiol*, *18*(3), 125-138. <u>https://doi.org/10.1038/s41579-019-0311-5</u>
- Donald, L., Pipite, A., Subramani, R., Owen, J., Keyzers, R. A., & Taufa, T. (2022). *Streptomyces*: Still the Biggest Producer of New Natural Secondary Metabolites, a Current Perspective. *Microbiol. Res.*, *13*(3), 418-465. <u>https://doi.org/10.3390/microbiolres13030031</u>
- Donovan, C., Heyer, A., Pfeifer, E., Polen, T., Wittmann, A., Kramer, R., Frunzke, J., & Bramkamp, M. (2015). A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria. *Nucleic Acids Res.*, 43(10), 5002-5016. <u>https://doi.org/10.1093/nar/gkv374</u>
- Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., & Sorek, R. (2018). Systematic discovery of antiphage defense systems in the microbial pangenome. *Science*, *359*(6379), eaar4120. https://doi.org/10.1126/science.aar4120
- Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. *Science*, *346*(6213), 1258096. <u>https://doi.org/10.1126/science.1258096</u>
- Drlica, K., & Malik, M. (2003). Fluoroquinolones: Action and Resistance. *Curr Top Med Chem*, 3(249), 249-282. <u>https://doi.org/10.2174/1568026033452537</u>
- Drulis-Kawa, Z., Majkowska-Skrobek, G., Maciejewska, B., Delattre, A., & Lavigne, R. (2012). Learning from bacteriophages - advantages and limitations of phage and phage-encoded protein applications. *Curr Protein Pept Sci.*, *13*(8), 699-722. <u>https://doi.org/10.2174/138920312804871193</u>
- Duan, B., Ding, P., Hughes, T. R., Navarre, W. W., Liu, J., & Xia, B. (2018). How bacterial xenogeneic silencer rok distinguishes foreign from self DNA in its resident genome. *Nucleic Acids Res.*, 46(19), 10514 - 10529. <u>https://doi.org/10.1093/nar/gky836</u>

- Elliot, M. A., Karoonuthaisiri, N., Huang, J., Bibb, M. J., Cohen, S. N., Kao, C. M., & Buttner, M. J. (2003). The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in *Streptomyces coelicolor*. *Genes Dev*, 17(14), 1727-1740. https://doi.org/10.1101/gad.264403
- Elliot, M. A., & Talbot, N. J. (2004). Building filaments in the air: aerial morphogenesis in bacteria and fungi. *Curr Opin Microbiol*, 7(6), 594-601. <u>https://doi.org/10.1016/j.mib.2004.10.013</u>
- Erdrich, S. H., Sharma, V., Schurr, U., Arsova, B., & Frunzke, J. (2022). Isolation of Novel *Xanthomonas* Phages Infecting the Plant Pathogens *X. translucens* and *X. campestris*. *Viruses*, *14*(7). https://doi.org/10.3390/v14071449
- Fajardo, A., Linares, J. F., & Martinez, J. L. (2009). Towards an ecological approach to antibiotics and antibiotic resistance genes. *Clin Microbiol Infect*, 15 (Suppl 1), 14-16. <u>https://doi.org/10.1111/j.1469-0691.2008.02688.x</u>
- Farkas, K., Varsani, A., & Pang, L. (2015). Adsorption of Rotavirus, MS2 Bacteriophage and Surface-Modified Silica Nanoparticles to Hydrophobic Matter. *Food Environ Virol*, 7(3), 261-268. <u>https://doi.org/10.1007/s12560-014-9171-3</u>
- Feiner, R., Argov, T., Rabinovich, L., Sigal, N., Borovok, I., & Herskovits, A. A. (2015). A new perspective on lysogeny: prophages as active regulatory switches of bacteria. *Nat Rev Microbiol*, 13(10), 641-650. <u>https://doi.org/10.1038/nrmicro3527</u>
- Fierer, N. (2017). Embracing the unknown: disentangling the complexities of the soil microbiome. *Nat Rev Microbiol*, 15(10), 579-590. <u>https://doi.org/10.1038/nrmicro.2017.87</u>
- Flärdh, K., & Buttner, M. J. (2009). Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol, 7(1), 36-49. https://doi.org/10.1038/nrmicro1968
- Fleming, A. (1929). On the Antibacterial Action of Cultures of a Penicillium, with Special Reference to their Use in the Isolation of *B. influenzæ. Br. J. Exp. Pathol.*, *10*(3), 226-236.
- Fremin, B. J., Bhatt, A. S., Kyrpides, N. C., & Global Phage Small Open Reading Frame (GP-SmORF) Consortium. (2022). Thousands of small, novel genes predicted in global phage genomes. *Cell Rep*, 39(12), 110984. <u>https://doi.org/10.1016/j.celrep.2022.110984</u>
- Fröjd, M. J., & Flärdh, K. (2019). Extrusion of extracellular membrane vesicles from hyphal tips of Streptomyces venezuelae coupled to cell-wall stress. Microbiology 165(12), 1295-1305. <u>https://doi.org/10.1099/mic.0.000836</u>
- Frunzke, J., Bramkamp, M., Schweitzer, J. E., & Bott, M. (2008). Population Heterogeneity in Corynebacterium glutamicum ATCC 13032 caused by prophage CGP3. J. Bacteriol., 190(14), 5111-5119. <u>https://doi.org/10.1128/JB.00310-08</u>
- Garneau-Tsodikova, S., & Labby, K. J. (2016). Mechanisms of Resistance to Aminoglycoside Antibiotics: Overview and Perspectives. *Medchemcomm*, 7(1), 11-27. <u>https://doi.org/10.1039/C5MD00344J</u>
- Ghanem, N., Stanley, C. E., Harms, H., Chatzinotas, A., & Wick, L. Y. (2019). Mycelial Effects on Phage Retention during Transport in a Microfluidic Platform. *Environ Sci Technol*, *53*(20), 11755-11763. <u>https://doi.org/10.1021/acs.est.9b03502</u>
- Gizzi, A. S., Grove, T. L., Arnold, J. J., Jose, J., Jangra, R. K., Garforth, S. J., Du, Q., Cahill, S. M., Dulyaninova, N. G., Love, J. D., Chandran, K., Bresnick, A. R., Cameron, C. E., & Almo, S. C. (2018). A naturally occurring antiviral ribonucleotide encoded by the human genome. *Nature*, 558(7711), 610-614. <u>https://doi.org/10.1038/s41586-018-0238-4</u>

- Glazebrook, M. A., Doull, J. L., Stuttard, C., & Vining, L. C. (1990). Sporulation of *Streptomyces venezuelae* in submerged cultures. *J Gen Microbiol*, *136*(3), 581-588. <u>https://doi.org/10.1099/00221287-136-3-581</u>
- Goldstone, D. C., Ennis-Adeniran, V., Hedden, J. J., Groom, H. C., Rice, G. I., Christodoulou, E., Walker, P. A., Kelly, G., Haire, L. F., Yap, M. W., de Carvalho, L. P., Stoye, J. P., Crow, Y. J., Taylor, I. A., & Webb, M. (2011). HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. *Nature*, 480(7377), 379-382. https://doi.org/10.1038/nature10623
- Gordon, B. R. G., Li, Y., Wang, L., Sintsova, A., van Bakel, H., Tian, S., Navarre, W. W., Xia, B., & Liu, J. (2010). Lsr2 is a nucleoid-associated protein that targets AT-rich sequences and virulence genes in *Mycobacterium tuberculosis*. *PNAS*, *107*(11), 5154-5159. https://doi.org/10.1073/pnas.0913551107
- Gregory, M. A., Till, R., & Smith, M. C. (2003). Integration site for *Streptomyces* phage phiBT1 and development of site-specific integrating vectors. *J Bacteriol*, *185*(17), 5320-5323. <u>https://doi.org/10.1128/JB.185.17.5320-5323.2003</u>
- Hampton, H. G., Watson, B. N. J., & Fineran, P. C. (2020). The arms race between bacteria and their phage foes. *Nature*, *577*(7790), 327-336. <u>https://doi.org/10.1038/s41586-019-1894-8</u>
- Hancock, R. E., Raffle, V. J., & Nicas, T. I. (1981). Involvement of the outer membrane in gentamicin and streptomycin uptake and killing in *Pseudomonas aeruginosa*. J. Antimicrob., 19(5), 777–785. <u>https://doi.org/10.1128/AAC.19.5.777</u>.
- Hansen, M. F., Svenningsen, S. L., Roder, H. L., Middelboe, M., & Burmolle, M. (2019). Big Impact of the Tiny: Bacteriophage-Bacteria Interactions in Biofilms. *Trends Microbiol.*, 27(9), 739-752. <u>https://doi.org/10.1016/j.tim.2019.04.006</u>
- Hardy, A., Kever, L., & Frunzke, J. (2023). Antiphage small molecules produced by bacteria beyond
protein-mediated defenses. *Trends Microbiol.*, 31(1), 92-106.https://doi.org/10.1016/j.tim.2022.08.001
- Hardy, A., Sharma, V., Kever, L., & Frunzke, J. (2020). Genome sequence and characterization of five bacteriophages infecting *Streptomyces coelicolor* and *Streptomyces venezuelae*: Alderaan, Coruscant, Dagobah, Endor1 and Endor2. *Viruses*, *12*(10), 1065. https://doi.org/10.3390/v12101065
- Harvey, H., Bondy-Denomy, J., Marquis, H., Sztanko, K. M., Davidson, A. R., & Burrows, L. L. (2018). *Pseudomonas aeruginosa* defends against phages through type IV pilus glycosylation. *Nat. Microbiol.*, 3(1), 47-52. <u>https://doi.org/10.1038/s41564-017-0061-y</u>
- Hashem, I., & Van Impe, J. F. M. (2022). A Game Theoretic Analysis of the Dual Function of Antibiotics. *Front Microbiol*, *12*, 812788. <u>https://doi.org/10.3389/fmicb.2021.812788</u>
- Hatfull, G. F. (2008). Bacteriophage genomics. *Curr Opin Microbiol*, *11*(5), 447-453. <u>https://doi.org/10.1016/j.mib.2008.09.004</u>
- Helbig, K. J., & Beard, M. R. (2014). The role of viperin in the innate antiviral response. *J. Mol. Biol*, 426(6), 1210-1219. <u>https://doi.org/10.1016/j.jmb.2013.10.019</u>
- Helfrich, S., Pfeifer, E., Krämer, C., Sachs, C. C., Wiechert, W., Kohlheyer, D., Noh, K., & Frunzke, J. (2015). Live cell imaging of SOS and prophage dynamics in isogenic bacterial populations. *Mol. Microbiol.*, 98(4), 636-650. <u>https://doi.org/10.1111/mmi.13147</u>
- Hendrix, R. W., Smith, M. C. M., Burns, R. N., Ford, M. E., & Hatfull, G. F. (1999). Evolutionary relationships among diverse bacteriophages and prophages: All the world's a phage. *PNAS*, 96(5), 2192-2197. <u>https://doi.org/10.1073/pnas.96.5.2192</u>

- Hershey, A. D., & Chase, M. (1952). Independent functions of viral protein and nucleic acid in growth of bacteriophage. *J Gen Physiol.*, *36*(1), 39-56. <u>https://doi.org/10.1085/jgp.36.1.39</u>
- Hille, F., Richter, H., Wong, S. P., Bratovic, M., Ressel, S., & Charpentier, E. (2018). The Biology of
CRISPR-Cas: Backward and Forward. *Cell*, 172(6), 1239-1259.
https://doi.org/10.1016/j.cell.2017.11.032
- Hobbs, G., Obanye, A. I. C., Petty, J., Mason, J. C., Barratt, E. M., Gardner, D. C. J., Flett, F. J., Smith, C. P., Broda, P. M. A., & Oliver, S. G. (1992). An integrated approach to studying regulation of production of the antibiotic methylenomycin by *Streptomyces coelicolor* A3(2). *J. Bacteriol.*, *174*(5), 1487 1494. https://doi.org/10.1128/jb.174.5.1487-1494.1992
- Holmes, D. J., Drocourt, D., Tiraby, G., & Cundliffe, E. (1991). Cloning of an aminoglycosideresistance-encoding gene, kamC, from Saccharopolyspora hirsuta: comparison with kamB from Streptomyces tenebrarius. Gene, 102 (1), 19-26. <u>https://doi.org/10.1016/0378-1119(91)90532-G</u>
- Hoque, M. M., Naser, I. B., Bari, S. M. N., Zhu, J., Mekalanos, J. J., & Faruque, S. M. (2016). Quorum Regulated Resistance of Vibrio cholerae against Environmental Bacteriophages. Sci Rep, 6(1), 37956. <u>https://doi.org/10.1038/srep37956</u>
- Høyland-Kroghsbo, N. M., Maerkedahl, R. B., & Svenningsen, S. L. (2013). A quorum-sensinginduced bacteriophage defense mechanism. *mBio*, 4(1), e00362-00312. <u>https://doi.org/10.1128/mbio.00362-12</u>
- Høyland-Kroghsbo, N. M., Paczkowski, J., Mukherjee, S., Broniewski, J., Westra, E., Bondy-Denomy,
 J., & Bassler, B. L. (2017). Quorum sensing controls the *Pseudomonas aeruginosa* CRISPRCas adaptive immune system. *PNAS*, 114(1), 131-135.
 https://doi.org/10.1073/pnas.1617415113
- Hünnefeld, M., Viets, U., Sharma, V., Wirtz, A., Hardy, A., & Frunzke, J. (2021). Genome Sequence of the Bacteriophage CL31 and Interaction with the Host Strain *Corynebacterium glutamicum* ATCC 13032. *Viruses*, *13*(3), 495. <u>https://doi.org/10.3390/v13030495</u>
- Hyman, P., & Abedon, S. T. (2012). Smaller fleas: viruses of microorganisms. *Scientifica 2012*(4814), 734023. <u>https://doi.org/10.6064/2012/734023</u>
- Ikeda, H., & Tomizawa, J.-i. (1968). Prophage P1, an Extrachromosomal Replication Unit. *Cold Spring Harb. Symp. Quant. Biol., 33,* 791-798. <u>https://doi.org/10.1101/sqb.1968.033.01.091</u>
- Ikeda, M., & Nakagawa, S. (2003). The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl. Microbiol. Biotechnol., 62(2-3), 99-109. <u>https://doi.org/10.1007/s00253-003-1328-1</u>
- Janssen, P. H. (2006). Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. *Appl. Environ. Microbiol.*, 72(3), 1719-1728. <u>https://doi.org/10.1128/AEM.72.3.1719-1728.2006</u>
- Jiang, Z., Wei, J., Liang, Y., Peng, N., & Li, Y. (2020). Aminoglycoside Antibiotics Inhibit Mycobacteriophage Infection. *Antibiotics*, *9*(10), 714. <u>https://doi.org/10.3390/antibiotics9100714</u>
- Jones, S. E., & Elliot, M. A. (2017). *Streptomyces* Exploration: Competition, Volatile Communication and New Bacterial Behaviours. *Trends Microbiol.*, 25(7), 522-531. <u>https://doi.org/10.1016/j.tim.2017.02.001</u>
- Jones, S. E., Ho, L., Rees, C. A., Hill, J. E., Nodwell, J. R., & Elliot, M. A. (2017). *Streptomyces* exploration is triggered by fungal interactions and volatile signals. *Elife*, *6*, e21738. <u>https://doi.org/10.7554/eLife.21738</u>

- Jones, S. E., Pham, C. A., Zambri, M. P., McKillip, J., Carlson, E. E., & Elliot, M. A. (2019). *Streptomyces* Volatile Compounds Influence Exploration and Microbial Community Dynamics by Altering Iron Availability. *mBio*, 10(2), e00171-00119. <u>https://doi.org/10.1128/mBio.00171-19</u>.
- Jordan, T. C., Burnett, S. H., Carson, S., Caruso, S. M., Clase, K., DeJong, R. J., Dennehy, J. J., Denver, D. R., Dunbar, D., Elgin, S. C., Findley, A. M., Gissendanner, C. R., Golebiewska, U. P., Guild, N., Hartzog, G. A., Grillo, W. H., Hollowell, G. P., Hughes, L. E., Johnson, A., King, R. A., Lewis, L. O., Li, W., Rosenzweig, F., Rubin, M. R., Saha, M. S., Sandoz, J., Shaffer, C. D., Taylor, B., Temple, L., Vazquez, E., Ware, V. C., Barker, L. P., Bradley, K. W., Jacobs-Sera, D., Pope, W. H., Russell, D. A., Cresawn, S. G., Lopatto, D., Bailey, C. P., & Hatfull, G. F. (2014). A broadly implementable research course in phage discovery and genomics for first-year undergraduate students. *mBio*, 5(1), e01051-01013. https://doi.org/10.1128/mBio.01051-13
- Kever, L., & Frunzke, J. (2022). Inactivation of phage particles in the extracellular space of *Streptomyces* populations. *Inside this thesis. To be submitted.*
- Kever, L., Hardy, A., Luthe, T., Hünnefeld, M., Gätgens, C., Milke, L., Wiechert, J., Wittmann, J., Moraru, C., Marienhagen, J., & Frunzke, J. (2022). Aminoglycoside Antibiotics Inhibit Phage Infection by Blocking an Early Step of the Infection Cycle. *mBio*, 13(3). https://doi.org/10.1128/mbio.00783-22
- Kever, L., Hünnefeld, M., Brehm, J., Heermann, R., & Frunzke, J. (2021). Identification of Gip as a novel phage-encoded gyrase inhibitor protein of *Corynebacterium glutamicum*. *Mol Microbiol*, 116(5), 1268-1280. <u>https://doi.org/10.1111/mmi.14813</u>
- Khan, T., Sankhe, K., Suvarna, V., Sherje, A., Patel, K., & Dravyakar, B. (2018). DNA gyrase inhibitors: Progress and synthesis of potent compounds as antibacterial agents. *Biomed Pharmacother*, 103, 923-938. <u>https://doi.org/10.1016/j.biopha.2018.04.021</u>
- Kieser, T., Bibb, M., Chater, K., Butter, M., Hopwood, D., Bittner, M., & Buttner, M. (2000). *Practical Streptomyces Genetics: A Laboratory Manual.*
- Koonin, E. V., Dolja, V. V., Krupovic, M., Varsani, A., Wolf, Y. I., Yutin, N., Zerbini, F. M., & Kuhn, J. H. (2020). Global Organization and Proposed Megataxonomy of the Virus World. *Microbiol. Mol. Biol. Rev.*, 84(2), e00061-00019. <u>https://doi.org/10.1128/MMBR.00061-19</u>
- Koonin, E. V., Makarova, K. S., & Wolf, Y. I. (2017). Evolutionary Genomics of Defense Systems in Archaea and Bacteria. *Annu. Rev. Microbiol.*, *71*, 233-261. <u>https://doi.org/10.1146/annurev-micro-090816-093830</u>
- Kopaczynska, M., Lauer, M., Schulz, A., Wang, T., Schaefer, A., & Fuhrhop, J.-H. (2004). Aminoglycoside antibiotics aggregate to form starch-like fibers on negatively charged surfaces and on phage λ-DNA. *Langmuir*, 20(21), 9270-9275. <u>https://doi.org/10.1021/la049207m</u>
- Kopaczynska, M., Schulz, A., Fraczkowska, K., Kraszewski, S., Podbielska, H., & Fuhrhop, J. H. (2016).
 Selective condensation of DNA by aminoglycoside antibiotics. *Eur Biophys J*, 45(4), 287-299. https://doi.org/10.1007/s00249-015-1095-9
- Kortright, K. E., Chan, B. K., Koff, J. L., & Turner, P. E. (2019). Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria. *Cell Host Microbe*, *25*(2), 219-232. <u>https://doi.org/10.1016/j.chom.2019.01.014</u>
- Koscinski, L., Feder, M., & Bujnicki, J. M. (2007). Identification of a Missing Sequence and Functionally Important Residues of 16S rRNA:m1A1408 Methyltransferase KamB that Causes Bacterial Resistance to Aminoglycoside Antibiotics. *Cell Cycle*, 6(10), 1268-1271. <u>https://doi.org/10.4161/cc.6.10.4231</u>

- Kotra, L. P., Haddad, J., & Mobashery, S. (2000). Aminoglycosides: Perspectives on Mechanisms of Action and Resistance and Strategies to Counter Resistance. Antimicrob. Agents Chemother., 44(12), 3249-3256. <u>https://doi.org/10.1128/aac.44.12.3249-3256.2000</u>
- Krause, K. M., Serio, A. W., Kane, T. R., & Connolly, L. E. (2016). Aminoglycosides: An Overview. *Cold Spring Harb. Perspect. Med.*, 6(6), a027029. <u>https://doi.org/10.1101/cshperspect.a027029</u>
- Kronheim, S., Daniel-Ivad, M., Duan, Z., Hwang, S., Wong, A. I., Mantel, I., Nodwell, J. R., & Maxwell, K. L. (2018). A chemical defence against phage infection. *Nature*, 564(7735), 283-286. <u>https://doi.org/10.1038/s41586-018-0767-x</u>
- Labrie, S. J., Samson, J. E., & Moineau, S. (2010). Bacteriophage resistance mechanisms. *Nat Rev Microbiol*, 8(5), 317-327. <u>https://doi.org/10.1038/nrmicro2315</u>
- Lammens, E. M., Nikel, P. I., & Lavigne, R. (2020). Exploring the synthetic biology potential of bacteriophages for engineering non-model bacteria. *Nat Commun*, *11*(1), 5294. https://doi.org/10.1038/s41467-020-19124-x
- Landy, A., & Ross, W. (1977). Viral Integration and Excision: Structure of the Lambda *att* Sites. *Science*, 197(4309), 1147-1160. <u>https://doi.org/10.1126/science.331474</u>
- Linares, J. F., Gustafsson, I., Baquero, F., & Martinez, J. L. (2006). Antibiotics as intermicrobial signaling agents instead of weapons. *PNAS*, *103*(51), 19484-19489. <u>https://doi.org/10.1073/pnas.0608949103</u>
- Liu, Z., Zhao, Y., Huang, C., & Luo, Y. (2021). Recent Advances in Silent Gene Cluster Activation in *Streptomyces. Front Bioeng Biotechnol*, *9*, 632230. <u>https://doi.org/10.3389/fbioe.2021.632230</u>
- Lopatina, A., Tal, N., & Sorek, R. (2020). Abortive Infection: Bacterial Suicide as an Antiviral Immune Strategy. *Annu. Rev. Virol.*, 7(1), 371-384. <u>https://doi.org/10.1146/annurev-virology-011620-040628</u>
- Lorenzi, J. N., Lespinet, O., Leblond, P., & Thibessard, A. (2021). Subtelomeres are fast-evolving regions of the *Streptomyces* linear chromosome. *Microb Genom*, 7(6), 000525. https://doi.org/10.1099/mgen.0.000525
- Lu, M.-J., & Henning, U. (1994). Superinfection exclusion by T-even-type coliphages. *Trends Microbiol.*, 2(4), 137-139. <u>https://doi.org/10.1016/0966-842X(94)90601-7</u>
- Luthe, T., Kever, L., Hänsch, S., Hardy, A., Tschowri, N., Weidtkamp-Peters, S., & Frunzke, J. (2023a). *Streptomyces* development is involved in the efficient containment of viral infections. *microLife*, *4*, uqad002. <u>https://doi.org/10.1093/femsml/uqad002</u>
- Luthe, T., Kever, L., Thormann, K., & Frunzke, J. (2023b). Bacterial multicellular behavior in antiviral defense. *Current Opinion in Microbiology*, 74, 102314. <u>https://doi.org/10.1016/j.mib.2023.102314</u>
- Madden, T., & Ison, J. M. W. A. P. (1996). Organic acid excretion by *Streptomyces lividans* TK24 during growth on defined carbon and nitrogen sources. *Microbiology*, *142*((Pt11)), 3181-3185. <u>https://doi.org/10.1099/13500872-142-11-3181</u>
- Magalhaes, M. L., & Blanchard, J. S. (2005). The kinetic mechanism of AAC3-IV aminoglycoside acetyltransferase from *Escherichia coli*. *Biochemistry*, 44(49), 16275-16283. <u>https://doi.org/10.1021/bi051777d</u>
- Magnet, S., & Blanchard, J. S. (2005). Molecular Insights into Aminoglycoside Action and Resistance. *Chem. Rev.*, 105(2), 477–498. <u>https://doi.org/10.1021/cr0301088</u>

- Makarova, K. S., Wolf, Y. I., Snir, S., & Koonin, E. V. (2011). Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. *J Bacteriol*, *193*(21), 6039-6056. https://doi.org/10.1128/JB.05535-11
- Manning, A. J., & Kuehn, M. J. (2011). Contribution of bacterial outer membrane vesicles to innate bacterial defense. *BMC Microbiology*, *11*(258). <u>https://doi.org/10.1186/1471-2180-11-258</u>
- Manteca, A., Alvarez, R., Salazar, N., Yagüe, P., & Sanchez, J. (2008). Mycelium differentiation and antibiotic production in submerged cultures of *Streptomyces coelicolor*. *Appl Environ Microbiol*, 74(12), 3877-3886. <u>https://doi.org/10.1128/AEM.02715-07</u>
- Manteca, A., Claessen, D., Lopez-Iglesias, C., & Sanchez, J. (2007). Aerial hyphae in surface cultures of *Streptomyces lividans* and *Streptomyces coelicolor* originate from viable segments surviving an early programmed cell death event. *FEMS Microbiol Lett*, 274(1), 118-125. <u>https://doi.org/10.1111/j.1574-6968.2007.00825.x</u>
- Marsh, P., & Wellington, E. M. H. (1992). Interactions between Actinophage and their Streptomycete Hosts in Soil and the Fate of Phage Borne Genes. In M. J. Gauthier (Ed.), *Gene Transfers and Environment* (pp. 135-142). Springer Berlin Heidelberg. <u>https://doi.org/10.1007/978-3-642-77450-8_15</u>
- Mattenberger, Y., Silva, F., & Belin, D. (2015). 55.2, a phage T4 ORFan gene, encodes an inhibitor of *Escherichia coli* topoisomerase I and increases phage fitness. *PLoS One*, *10*(4), e0124309. <u>https://doi.org/10.1371/journal.pone.0124309</u>
- Maxwell, A., & Lawson, D. M. (2003). The ATP-Binding Site of Type II Topoisomerases as a Target for Antibacterial Drugs. *Curr Top Med Chem*, *3*(3), 283-303. <u>https://doi.org/10.2174/1568026033452500</u>
- McCormick, J. R., & Flärdh, K. (2012). Signals and regulators that govern *Streptomyces* development. *FEMS Microbiology Reviews*, *36*(1), 206-231. <u>https://doi.org/10.1111/j.1574-6976.2011.00317.x</u>
- McKie, S. J., Neuman, K. C., & Maxwell, A. (2021). DNA topoisomerases: Advances in understanding of cellular roles and multi-protein complexes via structure-function analysis. *Bioessays*, 43(4), e2000286. <u>https://doi.org/10.1002/bies.202000286</u>
- Merrill, B. D., Ward, A. T., Grose, J. H., & Hope, S. (2016). Software-based analysis of bacteriophage genomes, physical ends, and packaging strategies. *BMC Genomics*, *17*, 679. <u>https://doi.org/10.1186/s12864-016-3018-2</u>
- Mingeot-Leclercq, M.-P., Glupczynski, Y., & Tulkens, P. M. (1999). Aminoglycosides: Activity and Resistance. *Antimicrob. Agents Chemother.*, 43(4). <u>https://doi.org/10.1128/AAC.43.4.727</u>
- Mushegian, A. R. (2020). Are There 10³¹ Virus Particles on Earth, or More, or Fewer? *J. Bacteriol.*, 202(9), e00052-00020. <u>https://doi.org/10.1128/JB.00052-20</u>
- Nanda, A. M., Thormann, K., & Frunzke, J. (2015). Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions. *J Bacteriol*, 197(3), 410-419. <u>https://doi.org/10.1128/JB.02230-14</u>
- Navarre, W. W. (2016). The Impact of Gene Silencing on Horizontal Gene Transfer and BacterialEvolution.Adv.Microb.Physiol.,69,157-186.https://doi.org/10.1016/bs.ampbs.2016.07.004.
- Nechaev, S., & Severinov, K. (1999). Inhibition of *Escherichia coli* RNA Polymerase by Bacteriophage T7 Gene 2 Protein. J. Mol. Biol., 289(4), 815-826. <u>https://doi.org/10.1006/jmbi.1999.2782</u>

- Nordström, K., & Forsgren, A. (1974). Effect of protein A on adsorption of bacteriophages to *Staphylococcus aureus. J. Virol.*, 14(2), 198-202. <u>https://doi.org/10.1128/JVI.14.2.198-202.1974</u>
- Ofir, G., & Sorek, R. (2018). Contemporary Phage Biology: From Classic Models to New Insights. *Cell*, 172(6), 1260-1270. <u>https://doi.org/10.1016/j.cell.2017.10.045</u>
- Ohno, S., Okano, H., Tanji, Y., Ohashi, A., Watanabe, K., Takai, K., & Imachi, H. (2012). A method for evaluating the host range of bacteriophages using phages fluorescently labeled with 5ethynyl-2'-deoxyuridine (EdU). *Appl. Microbiol. Biotechnol.*, 95(3), 777-788. https://doi.org/10.1007/s00253-012-4174-1
- Oppenheim, A. B., Kobiler, O., Stavans, J., Court, D. L., & Adhya, S. (2005). Switches in bacteriophage lambda development. *Annu. Rev. Genet.*, *39*, 409-429. <u>https://doi.org/10.1146/annurev.genet.39.073003.113656</u>
- Orr, M. W., Mao, Y., Storz, G., & Qian, S. B. (2020). Alternative ORFs and small ORFs: shedding light on the dark proteome. *Nucleic Acids Res.*, 48(3), 1029-1042. <u>https://doi.org/10.1093/nar/gkz734</u>
- Patterson, A. G., Jackson, S. A., Taylor, C., Evans, G. B., Salmond, G. P. C., Przybilski, R., Staals, R. H.
 J., & Fineran, P. C. (2016). Quorum Sensing Controls Adaptive Immunity through the Regulation of Multiple CRISPR-Cas Systems. *Mol Cell*, 64(6), 1102-1108. https://doi.org/10.1016/j.molcel.2016.11.012
- Pfeifer, E., Hünnefeld, M., Popa, O., & Frunzke, J. (2019). Impact of Xenogeneic Silencing on Phage– Host Interactions. J. Mol. Biol., 431(23), 4670-4683. https://doi.org/10.1016/j.jmb.2019.02.011
- Pfeifer, E., Hünnefeld, M., Popa, O., Polen, T., Kohlheyer, D., Baumgart, M., & Frunzke, J. (2016). Silencing of cryptic prophages in *Corynebacterium glutamicum*. *Nucleic Acids Res.*, 44(21), 10117-10131. <u>https://doi.org/10.1093/nar/gkw692</u>
- Pierrat, O. A., & Maxwell, A. (2003). The action of the bacterial toxin microcin B17. *J. Biol. Chem.*, 278(37), 35016-35023. <u>https://doi.org/10.1074/jbc.M304516200</u>
- Pons, B. J., Dimitriu, T., Westra, E. R., & van Houte, S. (2023). Antibiotics that affect translation can antagonize phage infectivity by interfering with the deployment of counter-defences. *PNAS*, 120(4), e2216084120. <u>https://doi.org/10.1073/pnas.2216084120</u>
- Rakhuba, D. V., Kolomiets, E. I., Szwajcer Dey, E., & Novik, G. I. (2010). Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. *Pol J Microbiol.*, *59*(3), 145-155.
- Raleigh, E. A., & Brooks, J. E. (1998). Restriction Modification Systems: Where They Are and What They Do. In F. J. de Bruijn, J. R. Lupski, & G. M. Weinstock (Eds.), *Bacterial Genomes: Physical Structure and Analysis* (pp. 78-92). Springer US. <u>https://doi.org/10.1007/978-1-4615-6369-3_8</u>
- Ramirez, M. S., & Tolmasky, M. E. (2010). Aminoglycoside modifying enzymes. *Drug Resist Updat*, *13*(6), 151-171. <u>https://doi.org/10.1016/j.drup.2010.08.003</u>
- Ramisetty, B. C. M., & Sudhakari, P. A. (2019). Bacterial 'Grounded' Prophages: Hotspots for Genetic Renovation and Innovation. *Front Genet*, *10*, Article 65. <u>https://doi.org/10.3389/fgene.2019.00065</u>
- Reyes-Robles, T., Dillard, R. S., Cairns, L. S., Silva-Valenzuela, C. A., Housman, M., Ali, A., Wright, E.
 R., & Camilli, A. (2018). *Vibrio cholerae* Outer Membrane Vesicles Inhibit Bacteriophage Infection. *J. Bacteriol.*, 200(15), e00792-00717. <u>https://doi.org/10.1128/JB.00792-17</u>

- Richter, L., Ksiezarczyk, K., Paszkowska, K., Janczuk-Richter, M., Niedziolka-Jonsson, J., Gapinski, J., Los, M., Holyst, R., & Paczesny, J. (2021). Adsorption of bacteriophages on polypropylene labware affects the reproducibility of phage research. *Sci Rep*, *11*(1), 7387. https://doi.org/10.1038/s41598-021-86571-x
- Ritz, K., & Young, I. M. (2004). Interactions between soil structure and fungi. *Mycologist*, *18*(2), 52-59. https://doi.org/10.1017/S0269-915X(04)00201-0
- Rivera-Serrano, E. E., Gizzi, A. S., Arnold, J. J., Grove, T. L., Almo, S. C., & Cameron, C. E. (2020). Viperin Reveals Its True Function. *Annu. Rev. Virol.*, 7(1), 421-446. <u>https://doi.org/10.1146/annurev-virology-011720-095930</u>
- Roach, D. R., & Donovan, D. M. (2015). Antimicrobial bacteriophage-derived proteins and therapeutic applications. *Bacteriophage*, 5(3), e1062590. https://doi.org/10.1080/21597081.2015.1062590
- Roberts, R. J. (2005). How restriction enzymes became the workhorses of molecular biology. *PNAS*, 102(17), 5905-5908. <u>https://doi.org/10.1073/pnas.0500923102</u>
- Rosner, A., & Gutstein, R. (1981). Adsorption of actinophage Pal6 to developing mycelium of *Streptomyces albus. Can. J. Microbiol.*, *27*(2), 254-257. <u>https://doi.org/10.1139/m81-039</u>
- Roucourt, B., & Lavigne, R. (2009). The role of interactions between phage and bacterial proteins within the infected cell: a diverse and puzzling interactome. *Environ Microbiol*, *11*(11), 2789-2805. <u>https://doi.org/10.1111/j.1462-2920.2009.02029.x</u>
- Ruska, H., Borries, B. v., & Ruska, E. (1939). Die Bedeutung der Übermikroskopie für die Virusforschung. Archiv f Virusforschung, 1, 155-169. <u>https://doi.org/10.1007/BF01243399</u>
- Russell, D. A., & Hatfull, G. F. (2016). PhagesDB: the actinobacteriophage database. *Bioinformatics*, 33(5), 784-786. <u>https://doi.org/10.1093/bioinformatics/btw711</u>
- Sabeti Azad, M., Okuda, M., Cyrenne, M., Bourge, M., Heck, M. P., Yoshizawa, S., & Fourmy, D. (2020). Fluorescent Aminoglycoside Antibiotics and Methods for Accurately Monitoring Uptake by Bacteria. *ACS Infect. Dis.*, *6*(5), 1008-1017. <u>https://doi.org/10.1021/acsinfecdis.9b00421</u>
- Salic, A., & Mitchison, T. J. (2008). A chemical method for fast and sensitive detection of DNA synthesis *in vivo*. *PNAS*, *105*(7), 2415-2420. <u>https://doi.org/10.1073/pnas.0712168105</u>
- Salmond, G. P., & Fineran, P. C. (2015). A century of the phage: past, present and future. *Nat Rev Microbiol*, 13(12), 777-786. <u>https://doi.org/10.1038/nrmicro3564</u>
- Sautrey, G., Brie, A., Gantzer, C., & Walcarius, A. (2018). MS2 and Qβ bacteriophages reveal the contribution of surface hydrophobicity on the mobility of non-enveloped icosahedral viruses in SDS-based capillary zone electrophoresis. *Electrophoresis*, *39*(2), 377-385. https://doi.org/10.1002/elps.201700352
- Schatz, A., & Waksman, S. A. (1944). Effect of Streptomycin and Other Antibiotic Substances upon Mycobacterium tuberculosis and Related Organisms. Proc. Soc. Exp. Biol. Med., 57(2), 244-248. <u>https://doi.org/10.3181/00379727-57-14769</u>
- Scholl, D., Adhya, S., & Merril, C. (2005). *Escherichia coli* K1's capsule is a barrier to bacteriophage T7. *Appl. Environ. Microbiol.*, *71*(8), 4872-4874. <u>https://doi.org/10.1128/AEM.71.8.4872-4874.2005</u>
- Seyedsayamdost, M. R. (2019). Toward a global picture of bacterial secondary metabolism. *J. Ind. Microbiol. Biotechnol*, 46(3-4), 301-311. <u>https://doi.org/10.1007/s10295-019-02136-y</u>

- Shabbir, M. A., Hao, H., Shabbir, M. Z., Wu, Q., Sattar, A., & Yuan, Z. (2016). Bacteria vs. Bacteriophages: Parallel Evolution of Immune Arsenals. *Front Microbiol*, 7, 1292. <u>https://doi.org/10.3389/fmicb.2016.01292</u>
- Shah, S., & Heddle, J. G. (2014). Squaring up to DNA: pentapeptide repeat proteins and DNA mimicry. *Appl. Microbiol. Biotechnol.*, *98*(23), 9545-9560. <u>https://doi.org/10.1007/s00253-014-6151-3</u>
- Smith, P., & Schuster, M. (2019). Public goods and cheating in microbes. *Curr Biol*, *29*(11), R442-R447. <u>https://doi.org/10.1016/j.cub.2019.03.001</u>
- Spagnolo, F., Trujillo, M., & Dennehy, J. J. (2021). Why Do Antibiotics Exist? *mBio*, *12*(6), e01966-01921. <u>https://doi.org/10.1128/mBio.01966-21</u>
- Stern, A., & Sorek, R. (2011). The phage-host arms race: shaping the evolution of microbes. Bioessays, 33(1), 43-51. https://doi.org/10.1002/bies.201000071
- Stokar-Avihail, A., Fedorenko, T., Hör, J., Garb, J., Leavitt, A., Millman, A., Shulman, G., Wojtania, N., Melamed, S., Amitai, G., & Sorek, R. (2023). Discovery of phage determinants that confer sensitivity to bacterial immune systems. *Cell*, *186*(9), 1863-1876.e1816. https://doi.org/10.1016/j.cell.2023.02.029
- Storz, G., Wolf, Y. I., & Ramamurthi, K. S. (2014). Small proteins can no longer be ignored. *Annu. Rev. Biochem.*, *83*, 753-777. <u>https://doi.org/10.1146/annurev-biochem-070611-102400</u>
- Stubbendieck, R. M., Vargas-Bautista, C., & Straight, P. D. (2016). Bacterial Communities: Interactions to Scale. *Front Microbiol*, 7, 1234. <u>https://doi.org/10.3389/fmicb.2016.01234</u>
- Studier, F. W., & Moffatt, B. A. (1986). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol., 189(1), 113-130. https://doi.org/10.1016/0022-2836(86)90385-2
- Summers, W. C. (2001). Bacteriophage Therapy. Annu. Rev. Microbiol., 55, 437-451. https://doi.org/10.1146/annurev.micro.55.1.437
- Tal, N., Millman, A., Stokar-Avihail, A., Fedorenko, T., Leavitt, A., Melamed, S., Yirmiya, E., Avraham, C., Brandis, A., Mehlman, T., Amitai, G., & Sorek, R. (2022). Bacteria deplete deoxynucleotides to defend against bacteriophage infection. *Nat Microbiol*, 7(8), 1200-1209. <u>https://doi.org/10.1038/s41564-022-01158-0</u>
- Tal, N., & Sorek, R. (2022). SnapShot: Bacterial immunity. *Cell*, *185*(3), 578-578.e571. <u>https://doi.org/10.1016/j.cell.2021.12.029</u>
- Tamura, T., Ishida, Y., Otoguro, M., Hatano, K., & Suzuki, K.-i. (2008). Classification of 'Streptomyces tenebrarius' Higgins and Kastner as Streptoalloteichus tenebrarius nom. rev., comb. nov., and emended description of the genus Streptoalloteichus. Int. J. Syst. Evol. Microbiol., 58(3), 688-691. https://doi.org/10.1099/ijs.0.65272-0
- Tan, D., Svenningsen, S. L., & Middelboe, M. (2015). Quorum Sensing Determines the Choice of Antiphage Defense Strategy in Vibrio anguillarum. mBio, 6(3), e00627-00615. <u>https://doi.org/10.1128/mBio.00627-15</u>
- Teertstra, W. R., Deelstra, H. J., Vranes, M., Bohlmann, R., Kahmann, R., Kämper, J., & Wösten, H. A. B. (2006). Repellents have functionally replaced hydrophobins in mediating attachment to a hydrophobic surface and in formation of hydrophobic aerial hyphae in *Ustilago maydis*. *Microbiology*, *152*(12), 3607-3612. <u>https://doi.org/10.1099/mic.0.29034-0</u>
- Teertstra, W. R., van der Velden, G. J., de Jong, J. F., Kruijtzer, J. A., Liskamp, R. M., Kroon-Batenburg, L. M., Muller, W. H., Gebbink, M. F., & Wösten, H. A. (2009). The filamentspecific Rep1-1 repellent of the phytopathogen Ustilago maydis forms functional surface-

active amyloid-like fibrils. *J Biol Chem*, 284(14), 9153-9159. https://doi.org/10.1074/jbc.M900095200

- Tesson, F., Herve, A., Mordret, E., Touchon, M., d'Humieres, C., Cury, J., & Bernheim, A. (2022). Systematic and quantitative view of the antiviral arsenal of prokaryotes. *Nat Commun*, *13*(1), 2561. <u>https://doi.org/10.1038/s41467-022-30269-9</u>
- Thibessard, A., & Leblond, P. (2014). Subtelomere Plasticity in the Bacterium *Streptomyces*. In E. J. Louis & M. M. Becker (Eds.), *Subtelomeres* (pp. 243-258). Springer Berlin Heidelberg. <u>https://doi.org/10.1007/978-3-642-41566-1_14</u>
- Tock, M. R., & Dryden, D. T. F. (2005). The biology of restriction and anti-restriction. *Current Opinion in Microbiology*, 8(4), 466-472. <u>https://doi.org/10.1016/j.mib.2005.06.003</u>
- Touchon, M., Bernheim, A., & Rocha, E. P. (2016). Genetic and life-history traits associated with the distribution of prophages in bacteria. *ISME J*, 10(11), 2744-2754. <u>https://doi.org/10.1038/ismej.2016.47</u>
- Tschowri, N. (2016). Cyclic Dinucleotide-Controlled Regulatory Pathways in *Streptomyces* Species. *J Bacteriol*, 198(1), 47-54. <u>https://doi.org/10.1128/JB.00423-15</u>
- Tschowri, N., Schumacher, M. A., Schlimpert, S., Chinnam, N. B., Findlay, K. C., Brennan, R. G., & Buttner, M. J. (2014). Tetrameric c-di-GMP mediates effective transcription factor dimerization to control *Streptomyces* development. *Cell*, *158*(5), 1136-1147. <u>https://doi.org/10.1016/j.cell.2014.07.022</u>
- Turner, D., Kropinski, A. M., & Adriaenssens, E. M. (2021). A Roadmap for Genome-Based Phage Taxonomy. *Viruses*, *13*(3). <u>https://doi.org/10.3390/v13030506</u>
- Twort, F. W. (1915). An investigation on the nature of ultramicroscopic viruses. *The Lancet*, *186*(4814), 1241-1243. <u>https://doi.org/10.1016/S0140-6736(01)20383-3</u>
- Tyc, O., Song, C., Dickschat, J. S., Vos, M., & Garbeva, P. (2017). The Ecological Role of Volatile and Soluble Secondary Metabolites Produced by Soil Bacteria. *Trends Microbiol.*, 25(4), 280-292. <u>https://doi.org/10.1016/j.tim.2016.12.002</u>
- Urem, M., van Rossum, T., Bucca, G., Moolenaar, G. F., Laing, E., Swiatek-Polatynska, M. A., Willemse, J., Tenconi, E., Rigali, S., Goosen, N., Smith, C. P., & van Wezel, G. P. (2016). OsdR of *Streptomyces coelicolor* and the Dormancy Regulator DevR of *Mycobacterium tuberculosis* Control Overlapping Regulons. *mSystems*, 1(3). https://doi.org/10.1128/mSystems.00014-16
- van der Meij, A., Worsley, S. F., Hutchings, M. I., & van Wezel, G. P. (2017). Chemical ecology of antibiotic production by actinomycetes. *FEMS Microbiol Rev*, *41*(3), 392-416. <u>https://doi.org/10.1093/femsre/fux005</u>
- van Houte, S., Buckling, A., & Westra, E. R. (2016). Evolutionary Ecology of Prokaryotic Immune Mechanisms. Microbiol Mol Biol Rev, 80(3), 745-763. <u>https://doi.org/10.1128/MMBR.00011-16</u>
- Vanden Broeck, A., Lotz, C., Ortiz, J., & Lamour, V. (2019). Cryo-EM structure of the complete *E. coli* DNA gyrase nucleoprotein complex. *Nat. Commun.*, *10*(1), 4935. <u>https://doi.org/10.1038/s41467-019-12914-y</u>
- Vaz Jauri, P., Bakker, M. G., Salomon, C. E., & Kinkel, L. L. (2013). Subinhibitory antibiotic concentrations mediate nutrient use and competition among soil *Streptomyces*. *PLoS One*, *8*(12), e81064. <u>https://doi.org/10.1371/journal.pone.0081064</u>
- Vidakovic, L., Singh, P. K., Hartmann, R., Nadell, C. D., & Drescher, K. (2018). Dynamic biofilm architecture confers individual and collective mechanisms of viral protection. *Nat Microbiol*, *3*(1), 26-31. <u>https://doi.org/10.1038/s41564-017-0050-1</u>

- Vining, L. C., & Stuttard, C. (1995). CHAPTER 18 Chloramphenicol. In L. C. Vining & C. Stuttard (Eds.), *Genetics and Biochemistry of Antibiotic Production* (pp. 505-530). Butterworth-Heinemann. <u>https://doi.org/10.1016/B978-0-7506-9095-9.50028-9</u>
- Visnapuu, A., Van der Gucht, M., Wagemans, J., & Lavigne, R. (2022). Deconstructing the Phage-Bacterial Biofilm Interaction as a Basis to Establish New Antibiofilm Strategies. *Viruses*, 14(5). <u>https://doi.org/10.3390/v14051057</u>
- Vodolazkaya, N., Nikolskaya, M., Laguta, A., Farafonov, V., Balklava, Z., Stich, M., McHedlov-Petrossyan, N., & Nerukh, D. (2022). Estimation of Nanoparticle's Surface Electrostatic Potential in Solution Using Acid-Base Molecular Probes. III. Experimental Hydrophobicity/Hydrophilicity and Charge Distribution of MS2 Virus Surface. J Phys Chem B, 126(41), 8166-8176. <u>https://doi.org/10.1021/acs.jpcb.2c04491</u>
- Volff, J.-N., & Altenbuchner, J. (1998). Genetic instability of the *Streptomyces* chromosome. *Mol. Microbiol.*, *27*(2), 239-246. <u>https://doi.org/10.1046/j.1365-2958.1998.00652.x</u>.
- Wachino, J., & Arakawa, Y. (2012). Exogenously acquired 16S rRNA methyltransferases found in aminoglycoside-resistant pathogenic Gram-negative bacteria: an update. *Drug Resist Updat*, 15(3), 133-148. <u>https://doi.org/10.1016/j.drup.2012.05.001</u>
- Wagemans, J., Delattre, A. S., Uytterhoeven, B., De Smet, J., Cenens, W., Aertsen, A., Ceyssens, P.
 J., & Lavigne, R. (2015). Antibacterial phage ORFans of *Pseudomonas aeruginosa* phage
 LUZ24 reveal a novel MvaT inhibiting protein. *Front Microbiol*, *6*, 1242.
 https://doi.org/10.3389/fmicb.2015.01242
- Waksman, S. A., & Woodruff, H. B. (1940). Bacteriostatic and Bactericidal Substances Produced by a Soil Actinomyces. *Proc. Soc. Exp. Biol. Med.*, 45(2), 609-614. <u>https://doi.org/10.3181/00379727-45-11768</u>
- Waksman, S. A., & Woodruff, H. B. (1942). Selective Antibiotic Action of Various Substances of Microbial Origin. J. Bacteriol., 44(3), 373-384. <u>https://doi.org/10.1128/jb.44.3.373-384.1942</u>
- Wang, X., Kim, Y., Ma, Q., Hong, S. H., Pokusaeva, K., Sturino, J. M., & Wood, T. K. (2010). Cryptic prophages help bacteria cope with adverse environments. *Nat Commun*, *1*, 147. <u>https://doi.org/10.1038/ncomms1146</u>
- Watve, M. G., Tickoo, R., Jog, M. M., & Bhole, B. D. (2001). How many antibiotics are produced by the genus *Streptomyces*? *Arch Microbiol*, *176*(5), 386-390. <u>https://doi.org/10.1007/s002030100345</u>
- Wein, T., & Sorek, R. (2022). Bacterial origins of human cell-autonomous innate immune mechanisms. Nat Rev Immunol, 22(10), 629-638. <u>https://doi.org/10.1038/s41577-022-00705-4</u>
- Willey, J., Santamaria, R., Guijarro, J., Geistlich, M., & Losick, R. (1991). Extracellular complementation of a developmental mutation implicates a small sporulation protein in aerial mycelium formation by *S. coelicolor. Cell, 65*, 641-650. https://doi.org/10.1016/0092-8674(91)90096-h
- Wösten, H. A., Bohlmann, R., Eckerskorn, C., Lottspeich, F., Bölker, M., & Kahmann, R. (1996). A novel class of small amphipathic peptides affect aerial hyphal growth and surface hydrophobicity in *Ustilago maydis*. *The EMBO Journal*, *15*(16), 4274-4281. https://doi.org/10.1002/j.1460-2075.1996.tb00802.x
- Wösten, H. A. B. (2001). Hydrophobins: Multipurpose Proteins. *Mol Microbiol*, *55*, 625-646. <u>https://doi.org/10.1146/annurev.micro.55.1.625</u>

- Wu, R., & Kaiser, A. D. (1968). Structure and Base Sequence in the Cohesive Ends of Bacteriophage Lambda DNA. J. Mol. Biol., 35(3), 523-537. <u>https://doi.org/10.1016/S0022-2836(68)80012-9</u>
- Yin, Y., & Fischer, D. (2008). Identification and investigation of ORFans in the viral world. *BMC Genomics*, 9, 24. <u>https://doi.org/10.1186/1471-2164-9-24</u>
- Zhang, Z., Claessen, D., & Rozen, D. E. (2016). Understanding Microbial Divisions of Labor. *Front. Microbiol*, 7, 2070. <u>https://doi.org/10.3389/fmicb.2016.02070</u>
- Zhang, Z., Du, C., de Barsy, F., Liem, M., Liakopoulos, A., van Wezel, G. P., Choi, Y. H., Claessen, D., & Rozen, D. E. (2020). Antibiotic production in *Streptomyces* is organized by a division of labor through terminal genomic differentiation. *Sci Adv.*, *6*(3), eaay5781. https://doi.org/10.1126/sciadv.aay5781
- Zhang, Z., Shitut, S., Claushuis, B., Claessen, D., & Rozen, D. E. (2022). Mutational meltdown of putative microbial altruists in *Streptomyces coelicolor* colonies. *Nat Commun*, *13*(1), 2266. <u>https://doi.org/10.1038/s41467-022-29924-y</u>
- Zuo, P., Yu, P., & Alvarez, P. J. J. (2021). Aminoglycosides Antagonize Bacteriophage Proliferation, Attenuating Phage Suppression of Bacterial Growth, Biofilm Formation, and Antibiotic Resistance. *Appl. Environ. Microbiol.*, *87*(15), e0046821. <u>https://doi.org/10.1128/aem.00468-21</u>

3. Publications and manuscripts

Contributions of the listed authors to the manuscripts were described using the 'Contributor Roles Taxonomy (CRediT)' (<u>CRediT – Contributor Roles Taxonomy (niso.org)</u>):

Contributor role	Definition
Conceptualization	Ideas; formulation or evolution of overarching research goals and aims
Data curation	Management activities to annotate (produce metadata), scrub data and maintain research data (including software code, where it is necessary for interpreting the data itself) for initial use and later re- use
Formal analysis	Application of statistical, mathematical, computational, or other formal techniques to analyse or synthesize study data
Funding acquisition	Acquisition of the financial support for the project leading to this publication
Investigation	Conducting a research and investigation process, specifically performing the experiments, or data/evidence collection
Methodology	Development or design of methodology; creation of models
Project administration	Management and coordination responsibility for the research activity planning and execution
Resources	Provision of study materials, reagents, materials, patients, laboratory samples, animals, instrumentation, computing resources, or other analysis tools
Software	Programming, software development; designing computer programs; implementation of the computer code and supporting algorithms; testing of existing code components
Supervision	Oversight and leadership responsibility for the research activity planning and execution, including mentorship external to the core team
Validation	Verification, whether as a part of the activity or separate, of the overall replication/reproducibility of results/experiments and other research outputs
Visualization	Preparation, creation and/or presentation of the published work, specifically visualization/data presentation
Writing – original draft	Preparation, creation and/or presentation of the published work, specifically writing the initial draft (including substantive translation)
Writing – review and editing	Preparation, creation and/or presentation of the published work by those from the original research group, specifically critical review, commentary or revision – including pre- or post-publication stages

3.1. Identification of Gip as a novel phage-encoded gyrase inhibitor protein of *Corynebacterium glutamicum*

Kever, L., Hünnefeld, M., Brehm, J., Heermann, R. and Frunzke, J.

Published in Molecular Microbiology, 2021

Contributor role	Contributor
Conceptualization	LK (50%), MH (20%), JF (30%)
Data curation	LK (80%), MH (10%), JB (10%)
Formal analysis	LK (65%), MH (25%), JB (10%)
Funding acquisition	JF (95%), RH (5%)
Investigation	LK (80%), MH (10%), JB (10%)
Methodology	LK (60%), MH (30%), JB (10%)
Project administration	LK (50%), MH (30%), JF (20%)
Resources	-
Software	-
Supervision	JF (50%), LK (25%) MH (15%), JB (7.5%), RH (2.5%)
Validation	LK (65%), MH (25%), JB (10%)
Visualization	LK (100%)
Writing – original draft	LK (70%), JF (30%)
Writing – review and editing	LK (40%), JF (40%), MH (10%), JB (5%), RH (5%)

Overall contribution: 80%

Most of the presented experimental work and data analysis was done by LK except the pull-down assay done in cooperation Rebecca Lukaschewsky during her bachelor thesis (Figure 3a), the SPR spectroscopy done by JB (Figure 3b), MALDI-TOF-MS done in cooperation with Christina Mack from the research group of Prof. Dr. Michael Bott and Dr. Meike Baumgart from the Forschungszentrum Jülich GmbH, LC-MS/MS analysis done in cooperation with Astrid Wirtz from the research group of Dr. Tino Polen from the Forschungszentrum Jülich GmbH as well as initial screenings (Figure 1 and S1) and analysis of DNA microarrays (Table 1 and S4) done in cooperation with MH. The visualization of the obtained data was performed by LK. The original draft was mainly prepared by LK and LK was significantly involved in the revision and editing process.
Received: 9 April 2021 Revised: 14 September 2021 Accepted: 14 September 2021

DOI: 10.1111/mmi.14813

RESEARCH ARTICLE

WILEY

Identification of Gip as a novel phage-encoded gyrase inhibitor protein of *Corynebacterium glutamicum*

Larissa Kever¹ | Max Hünnefeld¹ | Jannis Brehm² | Ralf Heermann² | Julia Frunzke¹

¹Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany

²Institut für Molekulare Physiologie, Biozentrum II, Mikrobiologie und Weinforschung, Johannes-Gutenberg-Universität Mainz, Mainz, Germany

Correspondence

Julia Frunzke, Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany. Email: j.frunzke@fz-juelich.de

Funding information

H2020 European Research Council, Grant/ Award Number: 757563; Helmholtz-Gemeinschaft, Grant/Award Number: W2/ W3-096

Abstract

By targeting key regulatory hubs of their host, bacteriophages represent a powerful source for the identification of novel antimicrobial proteins. Here, a screening of small cytoplasmic proteins encoded by the CGP3 prophage of Corynebacterium glutamicum resulted in the identification of the gyrase-inhibiting protein Cg1978, termed Gip. Pull-down assays and surface plasmon resonance revealed a direct interaction of Gip with the gyrase subunit A (GyrA). The inhibitory activity of Gip was shown to be specific to the DNA gyrase of its bacterial host C. glutamicum. Overproduction of Gip in C. glutamicum resulted in a severe growth defect as well as an induction of the SOS response. Furthermore, reporter assays revealed an RecA-independent induction of the cryptic CGP3 prophage, most likely caused by topological alterations. Overexpression of gip was counteracted by an increased expression of gyrAB and a reduction of *topA* expression at the same time, reflecting the homeostatic control of DNA topology. We postulate that the prophage-encoded Gip protein plays a role in modulating gyrase activity to enable efficient phage DNA replication. A detailed elucidation of the mechanism of action will provide novel directions for the design of drugs targeting DNA gyrase.

KEYWORDS

bacteriophages, DNA gyrase, gyrase inhibitors, prophage induction, topoisomerase II inhibitors

1 | INTRODUCTION

Bacteriophages represent the "dark matter" of the biological world (Hatfull, 2015; Ofir & Sorek, 2018; Rohwer & Youle, 2011). With the recent massive expansion of the genomic sequence space, the number of functionally unknown open reading frames (ORFs) in phage genomes is continuously increasing (Yin & Fischer, 2008). By targeting diverse cellular processes and regulatory hubs in their host cell, bacteriophages represent a rich source for the identification of novel antibacterial proteins as well as for the establishment of highly efficient molecular tools (De Smet et al., 2017; Nobrega et al., 2018; Roach & Donovan, 2015; Schroven et al., 2021). Especially, small cytoplasmic phage proteins have been shown to influence and reprogram a variety of key cellular processes, including transcription, translation, cell division, and central metabolism (De Smet et al., 2017; Orr et al., 2020; Storz et al., 2014).

DNA gyrase represents a type IIA topoisomerase present in all bacteria and plays a crucial role in the homeostatic control of DNA topology. Because of its unique ability to introduce negative supercoils into covalently linked double-stranded DNA (dsDNA), the

1268 wileyonlinelibrary.com/journal/mmi

Molecular Microbiology. 2021;116:1268-1280.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. © 2021 The Authors. *Molecular Microbiology* published by John Wiley & Sons Ltd.

activity of DNA gyrase is indispensable for bacterial growth and a key target of antibacterial agents. The heterotetrameric enzyme consists of two GyrA and two GyrB subunits (GyrA₂GyrB₂). While the GyrA subunit of the enzyme catalyzes the breakage and resealing of dsDNA, the GyrB subunit exhibits ATPase activity (Bush et al., 2015; McKie et al., 2021; Vanden Broeck et al., 2019). Currently, two major classes of small molecule drugs targeting the bacterial gyrase are known: the aminocoumarins and the quinolones (Collin et al., 2011). Besides a range of small molecules, also some proteinaceous, bacterial toxins were found to inhibit the activity of the gyrase, including Microcin B17 (Pierrat & Maxwell, 2003), a glycine-rich peptide found in *Escherichia coli* strains carrying the *mcb* operon as well as the CcdB toxin as part of the *ccd* toxin–antitoxin system encoded by the Fplasmid (Dao-Thi et al., 2005; Miki et al., 1992).

Corynebacterium glutamicum—a member of the phylum Actinobacteria—is an important industrial platform organism used for the industrial production of a wide range of value-added compounds, including amino acids, organic acids, and proteins (Wendisch et al., 2016). The genome of the model organism *C. glutamicum* ATCC 13032 contains four cryptic prophages (CGP1-4) (Frunzke et al., 2008; Ikeda & Nakagawa, 2003). The largest prophage CGP3 (~219 kb, containing also prophage CGP4) was shown to be inducible in an SOSdependent manner as well as in an SOS-independent manner (Helfrich et al., 2015; Nanda et al., 2014; Pfeifer et al., 2016). Recently, the Lsr2type protein CgpS was identified as a prophage-encoded nucleoidassociated protein involved in the silencing of phage gene expression maintaining the lysogenic state of the large CGP3 prophage (Pfeifer et al., 2016). Interference with CgpS binding was shown to result in prophage activation and consequently cell death.

In this study, a systematic screening of small cytoplasmic proteins encoded by the CGP3 prophage of *C. glutamicum* resulted in the identification of phage proteins causing severe growth defects and prophage induction. The small phagic protein Cg1978 was further shown to directly target the DNA gyrase enzyme by interacting with the GyrA subunit and inhibiting the supercoiling activity of the *C. glutamicum* DNA gyrase in vitro. Cg1978 was therefore termed Gip for gyrase inhibiting protein. A detailed elucidation of the mechanism of action may point to novel directions for the design of drugs targeting DNA gyrase.

2 | RESULTS

2.1 | Systematic screening of small CGP3-encoded proteins influencing growth and prophage induction

Most of the proteins encoded by the cryptic CGP3 prophage are of unknown function. Phage proteins were shown to frequently target key regulatory hubs to shut down bacterial metabolism (Roach & Donovan, 2015). In this study, we screened the impact of overall 11 small (<75 amino acids), cytoplasmic phage-encoded proteins on cellular growth and prophage induction. For this purpose, plasmidbased overexpression (pAN6-GOI) of the selected genes of interest

-WILEY 1269

was performed in the prophage reporter strain C. glutamicum ATCC 13032::P_{tve}-eyfp. In previous studies, this chromosomal reporter (P_{tve}eyfp) was successfully established to translate prophage activation into a fluorescent output (Helfrich et al., 2015). During cultivation, biomass was measured as a function of backscattered light intensity with an excitation wavelength of 620 nm. Following this approach, the overproduction of 9 out of 11 phage proteins (Cg1902, Cg1910, Cg1924, Cg1925, Cg1971, Cg2026, Cg2035, Cg2045, and Cg2046) displayed comparable phenotypes as the empty vector control regarding backscatter signal and fluorescence output measured via flow cytometry (Figure 1c and Figure S1a,b). By contrast, overproduction of Cg1914 and Cg1978 showed a significant effect on growth and prophage induction in the presence of 50 µM IPTG. Cg1914 overproduction resulted in a reduced growth rate ($\mu = 0.23 \pm 0.01 \text{ hr}^{-1}$) and a reduced final backscatter (Figure 1a, blue line) compared with the empty vector control pAN6 (μ = 0.38 \pm 0.01 hr^{-1}). In the case of Cg1978, overproduction led to an elongated lag-phase, but the final backscatter as well as the growth rate in the exponential phase $(\mu = 0.36 \pm 0.01 \text{ hr}^{-1})$ (Figure 1a, red line) were comparable with those of the empty vector control.

A comparable impact on cell growth due to cg1914 or cg1978 overexpression was also detected in the prophage-free strain MB001, indicating that the observed growth defect was independent of the presence and/or activity of the CGP3 island (Figure 1b).

For both target proteins, Cg1914 and Cg1978, overproduction resulted in an increased fluorescence signal after 24 hr of cultivation (cg1914: 7.4 \pm 2.6% induced cells, cg1978: 3.5 \pm 0.2% induced cells) indicating CGP3 prophage induction in the respective subpopulation (Figure 1c). As a positive control, we expressed an N-terminally truncated variant of the prophage silencer CgpS (CgpS-N), which was previously shown to trigger prophage induction (Pfeifer et al., 2016).

Since overproduction of Cg1914 and Cg1978 showed a high impact on prophage induction, we tested the inducibility of the CGP3 prophage in mutants lacking the respective genes using a plasmid-based prophage reporter (P_{hys} -lys'-venus). Remarkably, the corresponding strains *C. glutamicum* ATCC 13032 Δ cg1914 and Δ cg1978 featured no difference—neither in cell growth nor in prophage inducibility—upon treatment with the DNA-damaging antibiotic mitomycin C (Tomasz, 1995), which was used to trigger SOS-dependent prophage induction (Figure S2). These results indicated that both proteins are not essentially involved in SOS-dependent CGP3 induction. Prophage induction, therefore, appeared to be an indirect effect of Cg1914 or Cg1978 overproduction. Based on further results described in the following, we focused on the role and cellular target of the small phage protein Cg1978.

2.2 | Overproduction of Cg1978 triggers the activation of SOS response and RecA-independent prophage induction

As the CGP3 prophage was already characterized to be inducible in an SOS-dependent manner as well as in an SOS-independent

¹²⁷⁰ WILEY-

manner (Helfrich et al., 2015; Nanda et al., 2014; Pfeifer et al., 2016), we determined the SOS dependency of Cg1978-mediated prophage induction. To this end, the fluorescent outputs of different reporter strains were measured via flow cytometry in a time-resolved manner during cg1978 overexpression. Besides the prophage reporter strain (*C.g.* ATCC 13032::P_{*lys*}-*eyfp*), an SOS reporter strain (*C.g.* ATCC 13032::P_{*lys*}-*eyfp*) lacking the coprotease RecA–required for the induction of the host SOS response (Janion, 2008)–were used.

As described above, overexpression of cg1978 resulted in a similar growth phenotype of all reporter strains characterized by an elongated lag-phase (marked in gray) with subsequent wild type-like growth (Figure 2a). The impaired cell growth under cg1978 overexpression conditions was confirmed by time-lapse fluorescent

KEVER ET AL.

FIGURE 1 Screening of small phagic proteins regarding their impact on cellular growth and CGP3 induction in Corynebacterium glutamicum. The cultivation of the prophagereporter strain C. glutamicum ATCC 13032::P_{lvs}-eyfp and the prophage-free strain MB001 carrying the corresponding gene sequences of the small proteins on the pAN6 vector (under control of P_{tac}) was performed in CGXII-Kan₂₅ medium with 2% (w/v) glucose and 50 µM IPTG for 24 hr. All data represent mean values with standard deviations from three independent biological replicates (n = 3). (a) Growth curves of the prophage reporter strain (C. glutamicum ATCC 13032::P_{lys}-eyfp) upon small protein overproduction are based on the backscatter measurements in the BioLector[®] microcultivation system. (b) Growth curves of the prophage-free strain MB001 upon small protein overproduction are based on the backscatter measurements in the BioLector⁴ microcultivation system. (c) Percentage of induced cells after 24 hr cultivation without and with 50 μ M IPTG based on the flow cytometric measurements of the prophage reporter strain C. glutamicum ATCC 13032::P_{lvs}-eyfp

microscopy of a *C. glutamicum* microcolony of the prophage reporter strain, which was grown in a microfluidic chamber. Increased levels of Cg1978 led to elongated cell morphology and a small fraction of cells featuring a strongly increased output of the prophage reporter (Figure 2c and Videos S1 and S2).

Measurement of the reporter output over time not only confirmed CGP3 induction but also revealed an induction of the cellular SOS response (Figure 2b). Interestingly, the wild type-like and the RecA-deficient prophage reporter strain showed nearly the same percentage of induced cells upon cg1978 overexpression throughout the entire measurement, reaching a peak value after 9.5 hr of cultivation ($\Delta recA::P_{lys}-eyfp: 4.6 \pm 0.7, P_{lys}-eyfp: 4.8 \pm 0.9$). These results emphasize RecA-independent CGP3 induction as an indirect effect of cg1978 overexpression.

Remarkably, all reporter strains revealed an increasing fluorescence during the lag-phase, which decreased again upon transition into the exponential growth phase (Figure 2b), suggesting the growth of a subpopulation resistant to Cg1978 overproduction effects.

2.3 | Cg1978 directly interacts with gyrase subunit A (GyrA)

To identify the direct cellular target of Cg1978, we performed an in vitro pull-down assay. For this purpose, the small protein Cg1978 containing a C-terminal Strep-tag was overproduced in *E. coli* BL21 (DE3) and purified via affinity purification. The purified target protein was incubated with *C. glutamicum* cell extract and this sample was again passed over a Strep-Tactin column to identify proteins copurifying with Cg1978. SDS-PAGE analysis of proteins coeluting with Cg1978 revealed an additional protein band at ~100 kDa (Figure 3a). Analysis of the copurified protein via MALDI-TOF as well as LC-MS/MS analysis of the whole elution fraction indicated the copurification of Cg1978 with *C. glutamicum* (*C.g.*) DNA gyrase subunit A (~95 kDa), a subunit of the heterotetrameric ATP-dependent DNA gyrase complex (A₂B₂). The DNA gyrase belongs

FIGURE 2 Time-resolved measurement of reporter outputs upon Cg1978 overproduction in *Corynebacterium glutamicum* showed activation of SOS response and RecA-independent prophage induction. Cultivation of an SOS reporter strain ATCC 13032::P_{recA}-venus, a prophage reporter strain ATCC 13032 Δ recA::P_{lys}-eyfp carrying the plasmids pAN6 or pAN6-cg1978 was performed in the BioLector[®] microcultivation system in CGXII-Kan₂₅ medium with 2% (w/v) glucose and 50 µM IPTG. All data represent mean values with SDs from three independent biological replicates (*n* = 3). (a) Growth curves based on the backscatter measurements in the BioLector[®] microcultivation system. The elongated lag-phase of the Cg1978 overproducing strain is marked in gray. (b) Percentage of induced cells based on the flow cytometric measurements of eYFP or Venus fluorescence of the reporter strains. (c) Time-lapse fluorescence imaging of the *C. glutamicum* prophage reporter strain ATCC 13032::P_{ys}-eyfp carrying the pAN6-cg1978 plasmid. Cells were cultivated in PDMS-based microfluidic chip devices (Grünberger et al., 2015) using CGXII-Kan₂₅ medium with 2% (w/v) glucose. The medium was continuously supplied with a flow rate of 300 nl/min. Overexpression of cg1978 was induced by the addition of 50 µM IPTG. Fluorescent images represent cutouts from Videos S1 and S2

KEVER ET AL.

FIGURE 3 Cg1978 directly interacts with the gyrase subunit A (GyrA) in vitro. (a) The small protein Cg1978 containing a Cterminal Strep-tag was overproduced in *Escherichia coli* BL21 (DE3) and purified via affinity purification. For the pull-down assay, the *Corynebacterium glutamicum* wild-type strain was cultivated in BHI medium until OD_{600} of 6. The purified target protein was incubated with *C. glutamicum* cell extract and again passed over a Strep-Tactin column aiming at the copurification of Cg1978 with possible interaction partners. Proteins in the elution fractions were analyzed via SDS-PAGE using the Precision Plus ProteinTM Dual protein marker as a standard and further identified using LC-MS/MS and MALDI-TOF. Gels were spliced for labeling purposes. (b) Surface plasmon resonance spectroscopy of GyrA-N-Strep binding to Cg1978-C-His (k_{ar} , association constant; k_{dr} , dissociation constant, $K_{D_{cr}}$ equilibrium dissociation constant). The colored lines represent the experimental data, the dotted lines represent the fitted data using a 1:1 binding algorithm that was the basis for the binding kinetics calculation

FIGURE 4 Cg1978 inhibits gyrase supercoiling activity in vitro. The assay was conducted according to the manual of the Mycobacterium tuberculosis Gyrase (HIS) Supercoiling Assay Kit from Inspiralis (Norwich, UK). (a) Cg1978 containing a C-terminal His-tag as well as gyrase subunit A containing a C-terminal and subunit B containing an N-terminal Strep-tag were separately overproduced in *Escherichia coli* BL21 (DE3) and purified via affinity purification. (b) After formation of the heterotetrameric gyrase complex, the activity assay of the purified DNA gyrase from *Corynebacterium glutamicum* ATCC 13032 was performed to identify the gyrase concentration required for maximal supercoiling of 0.5 µg relaxed plasmid DNA, which was defined as 1 U. (c) Supercoiling inhibition assay to test the inhibitory effect of Cg1978 on 1 U of the DNA gyrase from *C. glutamicum* ATCC 13032. Incubation of relaxed plasmid DNA with Cg1978 in the absence of DNA gyrase was used as a negative control to screen for any nuclease activity. The known gyrase inhibitor Ciprofloxacin (CFX) served as a positive control for efficient gyrase inhibition. Two agarose gels were compiled as indicated by the boundaries

to the subclass of type II topoisomerases and plays a key role in DNA metabolism as it is able to introduce negative supercoiling to double-stranded DNA in an ATP-dependent manner. Gyrase subunit B was also detected in the elution fraction, but in a significantly lower amount compared to GyrA rather suggesting unspecific copurification.

As a next step, surface plasmon resonance spectroscopy was used to examine the binding affinity of Cg1978 to GyrA. The sensorgram revealed a stable and specific 1:1 interaction between Cg1978 and GyrA with a high association rate ($k_a = 9.7 \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$) and a slow dissociation rate ($k_d = 5.2 \times 10^{-4} \text{ s}^{-1}$) resulting in an overall affinity (K_D) of 5.4 nM (Figure 3b). Purification of Cg1978-C-His and GyrA-N-Strep for SPR analysis are shown in Figure S3.

2.4 | Cg1978 inhibits DNA supercoiling via interaction with the DNA gyrase in vitro

Due to its essential role for cell survival, DNA gyrase represents an important drug target of antibiotics and protein-based inhibitors (Collin et al., 2011). Based on the observed growth defect upon Cg1978 overproduction and the interaction with GyrA, we

further assessed the effect of Cg1978 on gyrase activity by performing in vitro supercoiling inhibition assays with the purified enzyme.

For this purpose, Cg1978-C-His, GyrA-C-Strep, and GyrB-N-Strep from *C. glutamicum* were purified separately using affinity chromatography (Figure 4a). The formation of the heterotetrameric enzyme complex was obtained by incubating equimolar amounts of both gyrase subunits on ice for 30 min. In the first step, the activity of the purified *C.g.* DNA gyrase was measured by incubating 0.5 μ g relaxed pBR322 plasmid DNA with different *C.g.* gyrase concentrations. The addition of increasing *C.g.* gyrase concentrations led to an increase in supercoiling of the plasmid DNA resulting in maximal supercoiling using 50 nM of *C.g.* gyrase. This concentration was defined as 1 U (corresponding to a specific activity of 1.88 × 10³ U/mg) and was used for testing the potential inhibitory effect of Cg1978 (Figure 4b).

As shown in Figure 4c, incubation of increasing concentrations of Cg1978 (0.2–60 μ M) with 1 U C.g. DNA gyrase and relaxed plasmid DNA resulted in a decreased supercoiling activity of the C.g. DNA gyrase. Complete inhibition of the introduction of supercoils by DNA gyrase was achieved by the addition of 10 μ M Cg1978 leading to an accumulation of the relaxed/nicked conformation. Therefore, we named the gene product of cg1978 Gip (gyrase inhibiting protein).

As a negative control, Gip was incubated with relaxed plasmid DNA in absence of DNA gyrase to visualize any potential nuclease activity in the elution fraction of Gip. A slight band reflecting linear DNA could be detected when adding 40 µM Gip. However, incubating increasing concentrations of Gip with the C.g. DNA gyrase did not lead to an accumulation of linear DNA. As a positive control, the known fluoroquinolone-based gyrase-inhibitor ciprofloxacin (CFX) stabilizing the gyrase-DNA cleavage complex (Drlica & Malik, 2003) was used showing significant inhibition of the supercoiling activity of the C.g. gyrase at 50 μM (16.6 $\mu g/ml$). This was in line with already published data for the DNA gyrase of Mycobacterium smegmatis, which showed 50% inhibition of the supercoiling activity of 1 U gyrase by the addition of 10 µg/ml CFX (Manjunatha et al., 2002). As for Gip, inhibition of the DNA gyrase via CFX led to an accumulation of the relaxed/nicked plasmid conformation.

To further investigate the activity profile of Gip, we determined its effect on the DNA gyrases of *Mycobacterium tuberculosis* and *E. coli*. Gyrase subunits A of the actinobacterial species *C. glutamicum* and *M. tuberculosis* (*M.tb.*) share a sequence identity of ~71%, while GyrA of *C. glutamicum* and *E. coli* (*E.c.*) only show a ~45% sequence identity (Figures S4 and S5). As described previously for the DNA gyrase of *C. glutamicum*, 1 U of the *E.c.* and *M.tb.* gyrases were used to examine supercoiling inhibition via Gip. The supercoiling assay showed no significant change in the supercoiling activity of the respective gyrases when adding increasing concentrations of Gip. In case of the *M.tb.* gyrase, a slight shift from supercoiled plasmid DNA to linear plasmid DNA could be detected by addition of 40 μ M Gip, which was even less pronounced for the *E.c.* gyrase. The corresponding assays are shown in Figure S6.

-WILEY | 1273

2.5 | Compensatory expression of *gyrAB* and *topA* as a response to gyrase inhibition via Gip

Supercoiling inhibition assays showed that Cg1978 (Gip) is a gyraseinhibiting protein. As the activity of DNA gyrase is indispensable for bacterial growth, we investigated the impact of *gip* overexpression on the transcriptome of *C. glutamicum*. Since the *gip* overexpressing strain revealed a wild type-like growth rate after an elongated lag-phase, we were especially interested to understand how the bacterial host counteracts gyrase inhibition. For this purpose, comparative transcriptome analysis of the *C. glutamicum* ATCC 13032 strain containing the empty vector control and the strain containing the overexpression plasmid pAN6-*gip* was performed using DNA microarrays. The shown transcriptomic changes are based on mRNA levels of cells harvested at an OD₆₀₀ of 6 in the mid-exponential growth phase.

The *gip* overexpressing strain showed a partial upregulation of CGP3 genes due to overexpression of *gip* (Table S4), confirming the prophage induction also revealed by the above-described reporter assays. Apart from the CGP3 region, overexpression of *gip* led to upregulation of 352 genes and downregulation of 333 genes reflecting the high impact of gyrase inhibition on overall cell metabolism.

Interestingly, both gyrase subunits gyrA and gyrB were markedly upregulated showing a more than 4-fold increase in expression levels (Table 1). In contrast, *topA* coding for topoisomerase I, which catalyzes the opposing reaction of DNA gyrase by removing negative supercoils, showed a reduced expression level. Moreover, the expression of further genes involved in DNA metabolism was influenced by *gip* overexpression including for example the reduced expression of genes coding for helicases (exemplarily cg0838, cg0842, cg0843, cg0845, cg0889, and cg1498). Additionally, 10 targets of the SOS key player LexA, for example, *recN* (DNA repair) and *ftsK* (cell division and chromosome segregation), showed an increased mRNA ratio, which was in line with the high fluorescent outputs of the SOS reporter strain upon Gip overproduction (Table 1, see Table S4 for the complete list of genes with altered expression levels).

3 | DISCUSSION

In this study, a screening of small cytoplasmic proteins encoded by the CGP3 prophage of *C. glutamicum* resulted in the identification of the novel gyrase inhibitor protein Gip (Cg1978, 6.8 kDa). Overproduction of Gip resulted in significant growth defects and prophage induction in a subpopulation. Further characterization of this small phagic protein confirmed a specific, stable, and highaffinity interaction with the GyrA subunit and inhibition of the supercoiling activity of the DNA gyrase in vitro.

DNA gyrase possesses the unique ability to catalyze the ATPdependent negative supercoiling of double-stranded DNA by cleaving and rejoining it (Bush et al., 2015). Supercoiling inhibition assays showed that Gip-mediated gyrase inhibition resulted in the accumulation of the nicked/relaxed plasmid conformation, while no more

¹²⁷⁴ WILEY

Genes coding for proteins involved in DNA metabolismcg0015gyrADNA gyrase subunit A, DNA topoisomerase I6.23cg0007gyrBDNA gyrase subunit B, DNA topoisomerase I4.44cg0373topADNA topoisomerase I0.40cg0373topADNA topoisomerase I0.40cg0373topAPNA topoisomerase I0.40cg0845Putative superfamily II DNA/RNA helicase, SNE2 family0.49cg0845Putative DNA helicase RecQ0.48cg0843Putative helicase0.43cg0842Putative helicase0.49cg0838Putative helicase0.49cg0842Putative helicase0.49cg0843Putative helicase0.49cg0842Putative helicase0.49cg0838Putative NA helicase0.49cg1602recNDNA repair protein10.96cg1255Putative HNH endonuclease, conserved5.11cg1777Putative secreted protein4.41cg0738dnaE2DNA polymerase III subunit α3.11cg1288Putative multicopper oxidase2.67cg2158ftsKCell division protein2.46cg0713Hypothetical protein2.13cg2950radAPutative ATP-dependent protease, DNA repair0.47cg0834tusEBacterial extracellular solute-binding protein, trehalose uptake system0.31cg1314putPProine transport system0.30	Gene locus	Gene name	Annotation	mRNA ratio
IIIcg0007gyrBDNA gyrase subunit B, DNA topoisomerase I4.44cg0373topADNA topoisomerase I0.40cg0373topADNA topoisomerase I0.40cg0845Putative superfamily II DNA/RNA helicase, SNF2 family0.49cg0889Putative DNA helicase RecQ0.48cg0843Putative DNA helicase RecQ0.43cg0843Putative helicase0.49cg0843Putative RecG-like helicase0.43cg0842Putative RecG-like helicase0.32cg0843Putative DNA helicase0.32cg0843Putative Bicase0.32cg0843Putative Bicase0.32cg1498Putative HNH endonuclease, conserved5.11cg1502recNDNA repair protein4.51cg1602recNDNA polymerase III subunit α 3.11cg1288dnaE2DNA polymerase III subunit α 3.11cg1288dnaE2DNA polymerase III subunit α 3.11cg1288ftsKCell division protein2.46cg0713Putative multicopper oxidase2.67cg2158ftsKCell division protein2.13cg2144lexATranscriptional regulator, involved in SOS/ stress response2.09cg2381Hypothetical protein0.47cg0841tusEBacterial extracellular solute-binding 	Genes coding for proteir	is involved in E	NA metabolism	
II II cg0373 topA DNA topoisomerase I 0.40 cg0845 Putative superfamily II DNA/RNA helicase, SNF2 family 0.49 cg0889 Putative DNA helicase RecQ 0.48 cg0843 Putative helicase 0.43 cg0843 Putative helicase 0.43 cg0842 Putative NA helicase 0.39 cg0838 Putative helicase 0.39 cg0842 Putative helicase 0.39 cg0838 Putative helicase 0.22 LexA target genes 10.96 10.96 cg1402 recN DNA repair protein 4.51 cg0470 htaB Secreted heme transport-associated protein 4.51 cg0738 dnaE2 DNA polymerase III subunit α 3.11 cg1288 ftsK Cell division protein 2.66 cg2158 ftsK Cell division protein 2.41 cg0831 lexA Transcriptional regulator, involved in SOS/ stress response 2.09 cg2381 ftsK Cell division protein <td>cg0015</td> <td>gyrA</td> <td></td> <td>6.23</td>	cg0015	gyrA		6.23
cg0845Putative superfamily II DNA/RNA helicase, SNF2 family0.49cg0843Putative DNA helicase RecQ0.48cg0843Putative helicase0.45cg1498Putative RecG-like helicase0.43cg0842Putative RecG-like helicase0.43cg0843Putative DNA helicase0.43cg0842Putative DNA helicase0.22cg0838Putative helicase0.22cg0838Putative helicase0.22cg0842Putative helicase0.22cg0838Putative HNH endonuclease, conserved5.11cg1602recNDNA repair protein4.52cg0470htaBSecreted heme transport-associated protein4.41cg0738dnaE2DNA polymerase III subunit α3.11cg1288ftsKCell division protein2.67cg1080Putative multicopper oxidase2.67cg1214lexATranscriptional regulator, involved in SOS/ stress response2.09cg2381ruaAPutative ATP-dependent protease, DNA repair0.43cg0841tusEBacterial extracellular solute-binding protein, trehalose uptake system0.31cg0841putPProline transport system0.31	cg0007	gyrB		4.44
SNF2 familySNF2 familyCSNF2 familycg0889Putative DNA helicase RecQ0.48cg0843Putative helicase0.45cg1498Putative RecG-like helicase0.43cg0842Putative DNA helicase0.39cg0838Putative DNA helicase0.22LexA target genesUutative Hicase0.22cg1602recNDNA repair protein10.96cg1777Putative HNH endonuclease, conserved5.11cg1777Putative secreted protein4.41cg0738dnaE2DNA polymerase III subunit α3.11cg1288Putative multidrug efflux permease of the major facilitator superfamily2.63cg1080Putative multicopper oxidase2.67cg114lexATranscriptional regulator, involved in SOS/ stress response2.09cg2381rudAPutative ATP-dependent protease, DNA repair0.43cg0841tusEBacterial extracellular solute-binding protein, trehalose uptake system0.31cg0841putPProline transport system0.31	cg0373	topA	DNA topoisomerase I	0.40
cg0843Putative helicase0.45cg1498Putative RecG-like helicase0.43cg0842Putative DNA helicase0.39cg0838Putative helicase0.22LexA target genescg1602recNDNA repair protein10.96cg1255Putative HNH endonuclease, conserved5.11cg1777Putative secreted protein4.52cg0738dnaE2DNA polymerase III subunit α3.11cg1288dnaE2DNA polymerase III subunit α3.11cg1288ftsKCell division protein2.67cg1080Putative multicopper oxidase2.67cg2158ftsKCell division protein2.13cg2114lexATranscriptional regulator, involved in SOS/ stress response2.09cg2381Hypothetical protein0.47cg0834tusEBacterial extracellular solute-binding protein, trehalose uptake system0.31cg0841putPProline transport system0.31	cg0845			0.49
cg1498Putative RecG-like helicase0.43cg0842Putative DNA helicase0.39cg0838Putative helicase0.22LexA target genesPutative helicase0.22cg1602recNDNA repair protein10.96cg1255Putative HNH endonuclease, conserved5.11cg1977Putative secreted protein4.52cg0470htaBSecreted heme transport-associated protein4.41cg0738dnaE2DNA polymerase III subunit α3.11cg1258Putative multidrug efflux permease of the major facilitator superfamily2.67cg1080Putative multicopper oxidase2.67cg2158ftsKCell division protein2.46cg0713Hypothetical protein2.13cg2144lexATranscriptional regulator, involved in SOS/ stress response2.09cg2381tusEBacterial extracellular solute-binding protein, trehalose uptake system0.34cg0841usEHypothetical protein0.31cg1314putPProline transport system0.30	cg0889		Putative DNA helicase RecQ	0.48
cg0842Putative DNA helicase0.39cg0838Putative helicase0.22LexA target genescg1602recNDNA repair protein10.96cg1255Putative HNH endonuclease, conserved5.11cg1977Putative secreted protein4.52cg0470htaBSecreted heme transport-associated protein4.41cg0738dnaE2DNA polymerase III subunit a3.11cg1258Putative multidrug efflux permease of the major facilitator superfamily2.67cg1080Putative multicopper oxidase2.67cg2158ftsKCell division protein2.46cg0713Hypothetical protein2.13cg2144lexATranscriptional regulator, involved in SOS/ stress response2.09cg2381tusEBacterial extracellular solute-binding protein, trehalose uptake system0.31cg0841putPProline transport system0.31	cg0843		Putative helicase	0.45
cOutputcg0838Putative helicase0.22LexA target genes10.96cg1602recNDNA repair protein10.96cg1255Putative HNH endonuclease, conserved5.11cg1977Putative secreted protein4.52cg0470htaBSecreted heme transport-associated protein4.41cg0738dnaE2DNA polymerase III subunit α3.11cg1288Putative multidrug efflux permease of the major facilitator superfamily2.67cg1080Putative multicopper oxidase2.67cg2158ftsKCell division protein2.13cg2114lexATranscriptional regulator, involved in SOS/ stress response2.09cg2381Hypothetical protein0.44cg0834tusEBacterial extracellular solute-binding protein, trehalose uptake system0.31cg0841putPProline transport system0.31	cg1498		Putative RecG-like helicase	0.43
LexA target genesLexA target genes10.96cg1602recNDNA repair protein10.96cg1255Putative HNH endonuclease, conserved5.11cg1977Putative secreted protein4.52cg0470htaBSecreted heme transport-associated protein4.41cg0738dnaE2DNA polymerase III subunit α3.11cg1288Putative multidrug efflux permease of the major facilitator superfamily2.83cg1080Putative multicopper oxidase2.67cg2158ftsKCell division protein2.13cg2114lexATranscriptional regulator, involved in SOS/ stress response2.09cg2381Hypothetical protein0.47cg0834tusEBacterial extracellular solute-binding protein, trehalose uptake system0.31cg0841putPProline transport system0.30	cg0842		Putative DNA helicase	0.39
cg1602recNDNA repair protein10.96cg1255Putative HNH endonuclease, conserved5.11cg1777Putative secreted protein4.52cg0470htaBSecreted heme transport-associated protein4.41cg0738dnaE2DNA polymerase III subunit α3.11cg1288Putative multidrug efflux permease of the major facilitator superfamily2.83cg1080Putative multicopper oxidase2.67cg2158ftsKCell division protein2.13cg0713Hypothetical protein2.13cg2114lexATranscriptional regulator, involved in SOS/ stress response2.09cg2381Hypothetical protein0.47cg0834tusEBacterial extracellular solute-binding protein, trehalose uptake system0.31cg0841putPProline transport system0.30	cg0838		Putative helicase	0.22
cg1255Putative HNH endonuclease, conserved5.11cg1255Putative HNH endonuclease, conserved5.11cg1977Putative secreted protein4.52cg0470htaBSecreted heme transport-associated protein4.41cg0738dnaE2DNA polymerase III subunit α3.11cg1288Putative multidrug efflux permease of the major facilitator superfamily2.83cg1080Putative multicopper oxidase2.67cg2158ftsKCell division protein2.13cg2114lexATranscriptional regulator, involved in SOS/ stress response2.09cg2381Hypothetical protein0.47cg0834tusEBacterial extracellular solute-binding protein, trehalose uptake system0.31cg0841putPProline transport system0.30	LexA target genes			
cg1977Putative secreted protein4.52cg0470htaBSecreted heme transport-associated protein4.41cg0738dnaE2DNA polymerase III subunit α3.11cg1288Putative multidrug efflux permease of the major facilitator superfamily2.83cg1080Putative multicopper oxidase2.67cg2158ftsKCell division protein2.46cg0713Hypothetical protein2.13cg2114lexATranscriptional regulator, involved in SOS/ stress response2.09cg2381Hypothetical protein0.48cg0834tusEBacterial extracellular solute-binding protein, trehalose uptake system0.31cg0841putPProline transport system0.30	cg1602	recN	DNA repair protein	10.96
cg0470htaBSecreted heme transport-associated protein4.41cg0738dnaE2DNA polymerase III subunit α3.11cg1288Putative multidrug efflux permease of the major facilitator superfamily2.83cg1080Putative multicopper oxidase2.67cg2158ftsKCell division protein2.46cg0713Hypothetical protein2.13cg2114lexATranscriptional regulator, involved in SOS/ stress response2.09cg2381radAPutative ATP-dependent protease, DNA repair0.48cg0834tusEBacterial extracellular solute-binding protein, trehalose uptake system0.31cg0841putPProline transport system0.30	cg1255		Putative HNH endonuclease, conserved	5.11
cg0738dnaE2DNA polymerase III subunit α3.11cg1288Putative multidrug efflux permease of the major facilitator superfamily2.83cg1080Putative multicopper oxidase2.67cg2158ftsKCell division protein2.46cg0713Hypothetical protein2.13cg2114lexATranscriptional regulator, involved in SOS/ stress response2.09cg2950radAPutative ATP-dependent protease, DNA repair0.48cg0834tusEBacterial extracellular solute-binding protein, trehalose uptake system0.31cg0841putPProline transport system0.30	cg1977		Putative secreted protein	4.52
cg1288Putative multidrug efflux permease of the major facilitator superfamily2.83cg1288Putative multicopper oxidase2.67cg1080Putative multicopper oxidase2.67cg2158ftsKCell division protein2.13cg0713Hypothetical protein2.13cg2114lexATranscriptional regulator, involved in SOS/ stress response2.09cg2950radAPutative ATP-dependent protease, DNA repair0.48cg0834tusEBacterial extracellular solute-binding protein, trehalose uptake system0.31cg0841putPProline transport system0.30	cg0470	htaB	Secreted heme transport-associated protein	4.41
major facilitator superfamilymajor facilitator superfamilycg1080Putative multicopper oxidase2.67cg2158ftsKCell division protein2.46cg0713Hypothetical protein2.13cg2114lexATranscriptional regulator, involved in SOS/ stress response2.09cg2950radAPutative ATP-dependent protease, DNA repair0.48cg2381Hypothetical protein0.47cg0834tusEBacterial extracellular solute-binding protein, trehalose uptake system0.31cg1314putPProline transport system0.30	cg0738	dnaE2	DNA polymerase III subunit α	3.11
cg2158ftsKCell division protein2.46cg0713Hypothetical protein2.13cg2114lexATranscriptional regulator, involved in SOS/ stress response2.09cg2950radAPutative ATP-dependent protease, DNA repair0.48cg2381Hypothetical protein0.47cg0834tusEBacterial extracellular solute-binding protein, trehalose uptake system0.31cg1314putPProline transport system0.30	cg1288		0 1	2.83
cg0713Hypothetical protein2.13cg2114lexATranscriptional regulator, involved in SOS/ stress response2.09cg2950radAPutative ATP-dependent protease, DNA repair0.48cg2381Hypothetical protein0.47cg0834tusEBacterial extracellular solute-binding protein, trehalose uptake system0.31cg1314putPProline transport system0.30	cg1080		Putative multicopper oxidase	2.67
cg2114lexATranscriptional regulator, involved in SOS/ stress response2.09cg2950radAPutative ATP-dependent protease, DNA repair0.48cg2381Hypothetical protein0.47cg0834tusEBacterial extracellular solute-binding protein, trehalose uptake system0.34cg0841Hypothetical protein0.31cg1314putPProline transport system0.30	cg2158	ftsK	Cell division protein	2.46
stress responsecg2950radAPutative ATP-dependent protease, DNA repair0.48cg2381Hypothetical protein0.47cg0834tusEBacterial extracellular solute-binding protein, trehalose uptake system0.34cg0841Hypothetical protein0.31cg1314putPProline transport system0.30	cg0713		Hypothetical protein	2.13
repaircg2381Hypothetical protein0.47cg0834tusEBacterial extracellular solute-binding protein, trehalose uptake system0.34cg0841Hypothetical protein0.31cg1314putPProline transport system0.30	cg2114	lexA		2.09
cg0834tusEBacterial extracellular solute-binding protein, trehalose uptake system0.34cg0841Hypothetical protein0.31cg1314putPProline transport system0.30	cg2950	radA		0.48
cg0841 Hypothetical protein 0.31 cg1314 putP Proline transport system 0.30	cg2381		Hypothetical protein	0.47
cg1314 putP Proline transport system 0.30	cg0834	tusE	-	0.34
	cg0841		Hypothetical protein	0.31
cg3345 Hypothetical protein 0.24	cg1314	putP	Proline transport system	0.30
-G-F-F- Hyperforder proton	cg3345		Hypothetical protein	0.24

TABLE 1Impact of gip (cg1978)overexpression on global expression levels

Note: A genome-wide comparison of mRNA levels of the *Corynebacterium glutamicum* ATCC 13032 strain overexpressing *gip* and the wild-type strain carrying the empty vector control was performed. The shown mRNA ratios indicate mean values from three independent biological replicates (n = 3). The strains were cultivated in CGXII-Kan₂₅ minimal medium with 2% (w/v) glucose and 50 μ M IPTG and mRNA was prepared from cells harvested at an OD₆₀₀ of 6. The mRNA ratios were calculated by dividing the mRNA levels of the *gip* overexpressing strain by the mRNA levels of the strain carrying the empty vector control. The table includes selected genes from a larger set which showed a changed mRNA level in all experiments (mRNA ratio >2.0: upregulation [red] or <0.5: downregulation [green], *p*-value <0.05).

supercoiled plasmid DNA was detectable (Figure 4). Different molecular mechanisms of gyrase inhibition have been described so far. Fluoroquinolones and the well-characterized proteinaceous bacterial toxins Microcin B17 (MccB17, 3.1 kDa) and CcdB (11.7 kDa) poison the DNA gyrase by stabilizing the gyrase-DNA cleavage complex leading to double-strand DNA breaks (Bernard et al., 1993; Drlica & Malik, 2003; Pierrat & Maxwell, 2003). In contrast, aminocoumarins (c.g. novobiocin) inhibit ATP hydrolysis as the binding site overlaps with the ATP-binding pocket of the GyrB subunit (Maxwell & Lawson, 2003). Further proteins targeting DNA gyrase are pentapeptide repeat proteins (PRPs) like Qnr proteins or MfpA, whose inhibitory interaction is proposed to be based on DNA mimicry (Shah & Heddle, 2014). However, no conserved domains of Gip with other known proteinaceous gyrase inhibitors could be identified using the

conserved domain database (CDD) with Reverse Position-Specific BLAST (RPS-BLAST) (Lu et al., 2020). Accordingly, further studies and structural analysis are required to elucidate the exact molecular mechanism of Gip-mediated gyrase inhibition.

Investigations regarding the activity profile of Gip suggested that the inhibitory activity seems to be highly specific for the DNA gyrase of its bacterial host *C. glutamicum*, as the DNA gyrase of *M. tuberculosis* and *E. coli* were not significantly affected by Gip. Similar observations were made for the proteinaceous bacterial toxins Microcin B17 (MccB17, 3.1 kDa) and CcdB (11.7 kDa), which target the DNA gyrase of their host *E. coli* in vitro, while no inhibition of the DNA gyrase of *M. smegmatis* could be detected (Chatterji et al., 2001). Even though DNA gyrase is a conserved protein among bacteria, Grampositive and Gram-negative bacteria show substantial differences in the amino acid sequence of GyrAB (Madhusudan & Nagaraja, 1996; Manjunatha et al., 2000). Accordingly, the absence of specific target residues potentially explains the different levels of susceptibility of the DNA gyrases to proteinaceous toxins (Chatterji et al., 2001).

Reporter outputs of the RecA-dependent SOS reporter strain and transcriptomic analysis of Gip overproducing cells revealed an induction of the SOS response (Figure 2b, Table 1). These findings are in agreement with already published data describing activation of the SOS response as one of the pleiotropic effects of gyrase inhibition (Jeong et al., 2006). Stabilization of the gyrase-cleaved DNA complex results in arrested replication forks and widespread DNA damage by stimulating the formation of DNA breaks triggering the SOS response (DeMarini & Lawrence, 1992; Dwyer et al., 2007).

Gip overproduction was further shown to activate the induction of the CGP3 prophage. However, the fact that the observed growth defect of Gip overproducing cells is independent of the presence of the CGP3 prophage (Figure 1b) and that deletion of gip did not result in altered inducibility of CGP3 (Figure S2) emphasize prophage activation as an indirect effect of Gip overproduction. Recent studies already confirmed that CGP3 is inducible in an SOS-dependent manner as well as in an SOS-independent manner (Helfrich et al., 2015; Nanda et al., 2014; Pfeifer et al., 2016). As the wild type and the RecA-deficient prophage reporter strain revealed nearly identical fluorescent outputs, we propose that prophage induction occurred mainly in a RecA-independent manner. Here, influencing the introduction of supercoils due to gyrase inhibition might be a possible reason for CGP3 induction. The lysogenic state of CGP3 is maintained by the Lsr2-type silencer protein CgpS, which was shown to target more than 35 AT-rich regions within the CGP3 element (Pfeifer et al., 2016). The formation of this dense nucleoprotein complex was shown to be crucial for efficient CgpS-mediated silencing (Wiechert et al., 2020). Especially in the case of proteins-targeting AT-rich DNA sequences, the topologic state of DNA can affect protein-DNA interactions (Dorman & Dorman, 2016). Apart from that, different studies already demonstrated an influence of DNA supercoiling on the λ repressor and the lysogenic-lytic decision of phage λ (Ding et al., 2014; Norregaard et al., 2013, 2014).

In general, it is conceivable that the CGP3 prophage could have an advantage from encoding a gyrase inhibitor as it might allow a

-WILEY | 1275

more efficient phage DNA replication by modulating host gyrase activity. Similar assumptions were recently made for the topo I inhibitor protein gp55.2 encoded by the T4 phage of *E. coli*. It was hypothesized that modulating DNA relaxation activity of topo I is required for an optimal phage yield during infection (Mattenberger et al., 2015). Another example of a phage-encoded protein altering DNA topology is represented by the gyrase-inhibiting peptide Igy encoded by phage LUZ24 infecting *Pseudomonas aeruginosa* (De Smet et al., 2021). Interaction of Igy with GyrB, possibly by functioning as a DNA mimicry protein, inhibits the DNA gyrase and LUZ24 infection seems to be independent of a functioning host DNA gyrase.

Global topological alterations caused by Gip overproduction were also reflected by the transcriptome analysis revealing a marked impact on global gene expression patterns (Table 1). As DNA gyrase is indispensable for replication and transcription by changing the topological state of DNA, its inhibition was previously described to globally affect the gene expression profile (Guha et al., 2018; Jeong et al., 2006). Particularly noteworthy in this context are the significantly increased mRNA levels of gyrA and gyrB as well as the downregulation of topA. The DNA topology modulatory proteins, gyrase and topoisomerase I (topo I), catalyze opposing reactions of DNA supercoiling and relaxation (McKie et al., 2021). Previous studies already revealed that expression of the gyrAB and topA is controlled in a supercoiling-sensitive manner: While increasing DNA relaxation stimulates gyrAB expression (Menzel & Gellert, 1983), it represses expression of topA allowing homeostatic maintenance of DNA topology (Ahmed et al., 2016; Tse-Dinh, 1985). As gyrase inhibition blocks the introduction of negative supercoils, increased expression levels of gyrAB and a decreased expression level of topA upon Gip overproduction are most probably used to counteract gyrase inhibition. The adaptation at the level of gene expression could then explain the resumed growth of the gip expressing strain-reaching almost wild type-like growth rates after a pronounced lag phase (Figure 1).

In summary, we identified Gip as a novel gyrase inhibitor protein encoded by the CGP3 prophage of *C. glutamicum*. Gip was shown to specifically inhibit the gyrase of its bacterial host *C. glutamicum*, but further studies are required to decipher its impact on the phage life cycle.

4 | EXPERIMENTAL PROCEDURES

4.1 | Bacterial strains and growth conditions

All bacterial strains and plasmids used in this study are listed in Tables S1 and S2, respectively. *Corynebacterium glutamicum* ATCC 13032 (NCBI reference: NC_003450.3) was used as a wild-type strain (lkeda & Nakagawa, 2003). For growth studies and fluorescence measurements as well as for transcriptome analysis, *C. glutamicum* cells were precultivated in BHI (brain heart infusion, Difco BHI, BD, Heidelberg, Germany) at 30°C for 8 hr. The preculture was used to inoculate an overnight culture in CGXII minimal medium with 2% (w/v) glucose (Keilhauer et al., 1993), which was cultivated under

WILEY-

the same conditions. The next day, the overnight culture was used to inoculate the main culture in CGXII minimal medium with 2% (w/v) glucose to an OD₆₀₀ of 1. All media contained kanamycin in a concentration of 25 µg/ml. Gene expression was induced using 50 µM IPTG (Isopropyl β-D-1-thiogalactopyranoside). For standard cloning applications, *E. coli* DH5α was cultivated in Lysogeny Broth (Difco LB, BD, Heidelberg, Germany) medium containing 50 µg/ml kanamycin (LB Kan₅₀) at 37°C and 170 rpm. For protein overproduction and following purification, the *E. coli* BL21 (DE3) strain was used. Precultivation was performed in LB Kan₅₀ medium, which was incubated overnight at 37°C and 120 rpm. The main culture was inoculated in LB Kan₅₀ medium to an OD₆₀₀ of 0.1 using the pre-culture. At an OD₆₀₀ of 0.6 gene expression was induced using 100 µM IPTG. Cells were harvested after additional 24 hr incubation at 16°C.

4.2 | Recombinant DNA work and cloning techniques

All plasmids and oligonucleotides used in this study are listed in Tables S2 and S3, respectively. Standard cloning techniques like PCR and restriction digestion were performed according to standard protocols (Sambrook & Russell, 2001). In all cases, Gibson assembly was used for plasmid construction (Gibson, 2011). DNA regions of interest were amplified via PCR using the chromosomal DNA of C. glutamicum ATCC 13032 as a template. The plasmid backbone was cut using the indicated restriction enzymes. Sequencing and synthesis of oligonucleotides were performed by Eurofins Genomics (Ebersberg, Germany). Genomic deletions were constructed using the pK19mobsacB plasmid and the two-step homologs recombination method (Niebisch & Bott, 2001). The 500 bp up- and downstream regions of the respective gene were amplified using the oligonucleotides listed in Table S3. Both PCR products and the digested pK19mobsacB plasmid (with HindIII, EcoRI) were assembled via Gibson assembly (Gibson, 2011). The correct deletion was verified by sequencing of the colony PCR product with the indicated oligonucleotides (Table S3).

4.3 | Microtiter cultivation and reporter assays

For growth experiments and fluorescence assays, the BioLector[®] microcultivation system of m2p-labs (Aachen, Germany) was used (Kensy et al., 2009). The main cultivation was executed in FlowerPlates (MTP-48-B, m2p-labs) at 30°C and 1,200 rpm with a starting OD₆₀₀ of 1 using 750 µl of CGXII minimal media with 2% (w/v) glucose containing 50 µM IPTG and 25 µg/ml kanamycin. During cultivation, biomass was measured as a function of back-scattered light intensity with an excitation wavelength of 620 nm (filter module: $\lambda_{Ex}/\lambda_{Em}$: 620 nm/620 nm, gain: 15). Data for biomass measurements were baseline-corrected by subtracting the t_0 value from all data points. The measurements of backscatter were taken at 15 min intervals.

KEVER ET AL.

4.4 | Protein purification via affinity tags

For heterologous protein overproduction, *E. coli* BL21 (DE3) cells containing the pET-cg1978-C-*strep* plasmid, the pET-gyrA-C-*strep* plasmid, the pET-gyrA-N-*strep* plasmid, the pET-gyrB-N-*strep* plasmid, or the pET-cg1978-C-*his* plasmid were cultivated as described in "Bacterial strains and growth conditions."

Cell harvesting and disruption were performed as described by Pfeifer et al. (2016). In case of Cg1978-C-Strep, buffer A (100 mM Tris-HCl, pH 8.0) with cOmplete^M Protease inhibitor (Roche, Basel, Switzerland) was used for cell disruption and buffer B (100 mM Tris-HCl, 250 mM NaCl, pH 8.0) for purification. Purification of Streptagged Cg1978 was conducted by applying the supernatant to an equilibrated 2 ml Strep-Tactin[®]-Sepharose[®] column (IBA, Göttingen, Germany). After washing with 20 ml buffer B, the protein was eluted with 6 ml buffer B containing 15 mM d-desthiobiotin (Sigma–Aldrich, St. Louis, MO, USA). Purification of GyrA-C-Strep, GyrA-N-Strep, and GyrB-N-Strep was conducted in the same way using an adjusted buffer B_{gyr} for cell disruption and purification (buffer B_{gyr}: 20 mM Tris-HCl, 500 mM NaCl, 10% (w/v) glycerol, 5 mM EDTA, 1 mM DTT, pH 7.9).

For purification of Cg1978-C-His, the cell pellet was resuspended in 50 ml TNI20 buffer (20 mM Tris-HCl, 300 mM NaCl, 20 mM imidazole, and pH 8.0) with cOmplete[™] Protease inhibitor (Roche, Basel, Switzerland), and cells were disrupted as described above. Purification of His-tagged Cg1978 was performed by applying the supernatant to an equilibrated 2 ml Ni-NTA Agarose column (Invitrogen, California, USA). After washing with 30 ml TNI20 buffer, the protein was eluted with increasing imidazole concentrations using TNI buffer (20 mM Tris-HCl, 300 mM NaCl, pH 8.0) containing 50 mM, 100 mM, 200 mM, or 400 mM imidazole.

After purification, the elution fractions with the highest protein concentration were pooled and analyzed with SDS-PAGE (Laemmli, 1970) using a 4%–20% Mini-PROTEAN[®] gradient gel (Bio-Rad, Munich, Germany).

4.5 | In vitro pull-down assay and MALDI-TOF analysis

Protein purification of Cg1978-C-Strep was conducted as described above. The elution fractions showing the highest protein concentration in a Bradford assay (Bradford, 1976) were pooled and purified with sizeexclusion chromatography using PD10 desalting columns (GE Healthcare, Freiburg, Germany) and buffer B (100 mM Tris-HCl, 250 mM NaCl, pH 8.0) according to manufacturer's manual to remove excess desthiobiotin. For the detection of possible interaction partners of the target protein on a protein-protein level, *C. glutamicum* ATCC 13032 wild-type cells were cultivated in a BHI medium. At an OD₆₀₀ of 5 to 6, the cells were harvested at 11,325 g and 4°C for 15 min and cell pellet of 100 ml cell culture was resuspended in 25 ml buffer A (100 mM Tris-HCl, pH 8.0) with cOmplete[™] Protease inhibitor (Roche, Basel, Switzerland). Cell disruption was performed using the French Press cell with a pressure of 172 mPA for five passages followed by a centrifugation step at 5,000 g for 50 min.

For copurification of possible protein interaction partners, the purified target protein Cg1978 was incubated with the C. glutamicum crude extract at RT for 1 hr. After loading the mixture to the StrepTactin column, the purification was performed as described above. The elution fractions with the highest protein concentration were precipitated by the addition of 100% (w/v) trichloroacetic acid (TCA) in a volume ratio of four units of protein to one unit TCA (Sivaraman et al., 1997). After incubation at 4°C overnight, the precipitation approach was centrifuged for 5 min at 14,000 g. The supernatant was discarded and the pellet was washed with 200 ul cold acetone twice. Afterward, the pellet was dried for 10 min at 95°C and resuspended in 30 μl 1.5 \times SDS loading buffer for gel electrophoresis or in 30 ul trypsin reaction buffer provided by the Trypsin Singles, Proteomics Grade kit (Sigma-Aldrich) for LC-MS/ MS sample preparation. Analysis of elution fractions via SDS-PAGE (Laemmli, 1970) was performed using a 4%-20% Mini-PROTEAN® gradient gel (Bio-Rad, Munich, Germany). After staining the gel with Coomassie dye-based RAPIDstain solution (G-Biosciences, St. Louis, MO, USA) MALDI-TOF-MS measurements were performed with an Ultraflex III TOF/TOF mass spectrometer (Bruker Daltonics, Bremen, Germany) for identification of the co-purified proteins (Bussmann et al., 2010). Elution fractions were further analyzed via LC-MS/MS.

4.6 | LC-MS/MS sample preparation and measurement

LC-MS/MS was performed after TCA precipitation using the Trypsin Singles, Proteomics Grade kit (Sigma-Aldrich, St.Louis, MO, USA) according to the manufacturer's instruction. The prepared tryptic peptide samples were separated chromatographically on a nanoLC Eksigent ekspert[™] 425 LC system in microLC modus (Sciex) coupled with a 25 Micron ESI Electrode to a TripleTof[™] 6600 mass spectrometer (Sciex). As a trap, a YMC-Triart C18 column with the dimension 5×0.5 mm ID, 3 μ m, 12 nm (YMC) was used, combined with a YMC-Triart C18 column with 150 × 0.3 mm ID, 12 nm, S-3 μ m (YMC) as an analytical column. The column oven was set to 40°C.

For trapping, 2% acetonitrile in dd.H₂O with 0.5% formic acid served as a loading solvent, whereas 0.1% formic acid was used as mobile phase A and acetonitrile with 0.1% formic acid (both LC-MS grade, ROTISOLV[®], ≥99.9%, Carl Roth) as mobile phase B. First, 10 µl of each sample containing up to 8 µg of digested protein was loaded from the cooled autosampler onto the trap column using 100% loading solvent for 10 min at 10 µl/min for desalting and enrichment.

For the following separation of the peptides on the analytical column, a linear gradient with increasing concentrations of mobile phase B was used starting with 97% A and 3% B and a flow rate of 5 μ l/min as an initial condition. During Information-Dependent Acquisition (IDA) and SWATH measurements, the following source and gas settings were applied: 5,500 V spray voltage, 35 psi curtain gas, 12 psi ion source gas 1, 20 psi ion source gas 2, and 150°C interface heater. Each sample was injected three times.

-WILEY | 1277

For shotgun measurements, the mass spectrometer was operated with a "top 50" method: Initially, a 250-ms survey scan (TOF-MS mass range m/z 400-1,500, high-resolution mode) was collected from which the top 50 precursor ions were automatically selected for fragmentation, whereby each MS/MS 97 Appendix event (mass range m/z 170–1,500, in high-sensitivity mode) consisted of a 40 ms fragment ion scan. For parent ion selection, the precursor ion intensity served as the main selection criterion. lons with an intensity exceeding 100 counts/s and with a charge state of 2+ to 5+ were preferentially selected. Selected precursors were added to a dynamic exclusion list for 22 s and subsequently isolated using a quadrupole resolution of 0.7 amu and fragmented in the collision cell with a rolling collision energy (CE) of 10 eV. If ${<}50$ precursor ions fulfilling the selection criteria were detected per survey scan, the detected precursors were subjected to extended MS/MS accumulation time to maintain a constant total cycle time of 2.3 s.

For data analysis, the IDA data were processed with ProteinPilotTM (V5.01, Sciex, USA) using the ParagonTM Algorithm for peptide identification and the ProGroupTM Algorithm for protein identification.

4.7 | DNA microarrays

For a comparative transcriptome analysis of C. glutamicum ATCC 13032 carrying the empty pAN6 vector and cells carrying the pAN6-cg1978 vector, cultivation was performed as described in "Bacterial strains and growth conditions" using CGXII-Kan₂₅ minimal media with 2% (w/v) glucose and 50 μ M IPTG. For both strains, cells were harvested at an OD_{400} of 6 in a reaction tube filled with ice (50 ml) for 5 min at 5,000 g and 4°C. RNA purification was carried out using the "RNeasy Mini"-Kit (QIAGEN, Hilden, Germany) according to the manufacturer's manual. The preparation of labeled cDNA and DNA microarray analysis was performed as described previously (Donovan et al., 2015). The data processing was executed with in-house software according to (Polen & Wendisch, 2004). Genes with an mRNA ratio (sample/neg. control) of >2.0 (p-value <0.05) were classified as upregulated, whereas genes with an mRNA ratio of <0.5 (p-value <0.05) were classified as downregulated. Array data were deposited in the GEO database (ncbi.nlm. nih.gov/geo) with accession number GSE151224.

4.8 | Flow cytometry

Analysis of fluorescent reporter outputs at the single-cell level was performed using the BD AccuriTM C6 flow cytometer (BD biosciences, Heidelberg, Germany). The chromophore of the yellow fluorescent protein eYFP or Venus was excited with a blue laser with an excitation wavelength of 488 nm. The fluorescence emission of eYFP and Venus was measured using a 530/30 nm standard filter. Particle size was detected using the forward light scatter (FSC). The flow cytometer was started up by flushing with filtered, dd.H₂O for 10 min. For preparing flow cytometry samples, cell cultures were mixed with 1 ml flow cytometric fluid (BDTM 342003)

FACSFlow[™] Sheath Fluid). For every sample, 100,000 events were analyzed via BD Accuri C6 software (version 1.0.264.21).

4.9 | Cultivation and perfusion in microfluidic device

Single-cell analysis of cg1978 overexpressing cells was performed using an in-house developed microfluidic platform (Grünberger et al., 2013, 2015; Helfrich et al., 2015). Cultivation and time-lapse imaging were performed in CGXII minimal medium with 2% (w/v) glucose and 25 μ g/ ml kanamycin as described by (Pfeifer et al., 2016). Overexpression of cg1978 in the prophage reporter strain ATCC 13032:::P_{lys}-eyfp carrying the pAN6-cg1978 vector was induced by adding 50 μ M IPTG to the medium. An uninduced control served as a reference.

4.10 | Supercoiling inhibition assay

For the supercoiling inhibition assay, Cg1978 as well as both gyrase subunits (GyrA and GyrB) were purified by the means of a Cterminal His-Tag for Cg1978, a C-terminal Strep-Tag for GyrA, and an N-terminal Strep-Tag for GyrB as described above. Using PD10 desalting columns (GE Healthcare, Freiburg, Germany), the buffer of Cg1978 was exchanged to PBS (137 mM NaCl, 2.7 mM KCl, 8 mM Na₂HPO₄, 1.5 mM KH₂PO₄, pH 7.4). In case of GyrA and GyrB, the buffer was exchanged to 20 mM Tris-HCl, pH 7.9, 50% (w/v) glycerol, 0.5 M KCl, and 1 mM DTT. Formation of the heterotetramic gyrase complex was obtained by incubating equimolar amounts of GyrA and GyrB for 30 min on ice. The activity of the purified C. glutamicum (C.g.) gyrase as well as its inhibition by Cg1978 were determined using the M. tuberculosis Gyrase (HIS) Supercoiling Assay Kit (Inspiralis, Norwich, UK) according to the manufacturer's manual. According to the assay conditions, the C.g. gyrase concentration of 50 nM resulting in full supercoiling of 0.5 µg relaxed plasmid DNA after 30 min of incubation at 37°C was determined as 1 U. Supercoiling inhibition of the C.g. gyrase was assayed by using 1 U of the C.g. gyrase with increasing concentrations of Cg1978-C-His (0.02-60.0 μ M). Additionally, different concentrations of the known inhibitor ciprofloxacin (10 and 50 μ M) were used as a positive control.

Moreover, the inhibitory effect of Cg1978 on the M.tb and E.c. gyrase was investigated according to the M. tuberculosis and E. coli Gyrase (HIS) Supercoiling Assay Kits (Inspiralis, Norwich, UK) using 1 U of the respective gyrases and the same Cg1978 concentrations as for the C.g. gyrase. All reactions were stopped by adding 30 μ l STEB buffer (40% (w/v) sucrose, 100 mM Tris-HCl pH 8.0, 10 mM EDTA, 0.5 mg/ ml Bromophenol Blue), and 30 μ l chloroform/isoamyl alcohol (v:v, 24:1).

4.11 | Surface Plasmon Resonance Spectroscopy (SPR)

For SPR analysis, Cg1978-C-His and GyrA-N-Strep were purified as described above. After purification, the buffer of both proteins was

KEVER ET AL.

exchanged to PBS (137 mM NaCl, 2.7 mM KCl, 8 mM Na₂HPO₄ 1.5 mM KH₂PO₄, pH 7.4) using PD10 Desalting columns (GE Healthcare, Freiburg, Germany). The binding of His-tagged Cg1978-C-His to GyrA-N-Strep was analyzed by SPR analysis in a Biacore 3000 device (GE Healthcare, Freiburg, Germany) using a Sensor Chip CM5 (GE Healthcare, Freiburg, Germany). As the first step, an anti-histidine antibody (GE Healthcare, Freiburg, Germany) was immobilized to the chip matrix using amino coupling chemistry. All experiments were carried out in HBS-EP buffer (0.01 M HEPES, pH 7.4, 0.15 M NaCl, 3 mM EDTA, 0.005% v/v Surfactant P20) at 25°C. Following the standard coupling protocol for antibody immobilization, the mixture of 0.05 M N-Hydroxysuccinimide (NHS) and 0.2 M 1-Ethyl-3-(3-dimethylami nopropyl) carbodiimide hydrochloride (EDC) was injected for a total contact time of 420 s to activate the matrix. Then, the anti-histidine antibody (50 $\mu\text{g/ml})$ diluted in immobilization buffer (10 mM sodium acetate, pH 4.5) was injected for 420 s. To deactivate the unbound parts of the chip matrix, 1 M ethanolamine hydrochloride-NaOH (pH 8.5) was injected for 420 s. The flow rate was set to 10 µl/min during this immobilization procedure. Approximately 8.000-10.000 response units (RU) of the anti-histidine antibody were immobilized per flow cell. For the binding analysis, 180–250 RU of Cg1978-C-His was captured via injection of 40 µl (10 nM) at a flow rate of 5 µl/min followed by 10 min of HBS-EP buffer to remove unbound protein from the chip. The binding analysis between Cg1978-C-His and GyrA-N-Strep was then performed by injecting 90 μl of GyrA-N-Strep (10-250 nM) followed by a dissociation time of 300 s at a flow rate of 30 µl/min. After each cycle, the surface was regenerated by injection of regeneration buffer (10 mM Glycine-HCl, pH 1.5) for 30 s, at a flow rate of 30 μ l/min. After the equilibration with three start up cycles without the analyte, this was repeated for various concentrations of GyrA-N-Strep (10-250 nM). Sensorgrams were recorded using Biacore 3000 Control Software 4.1.2 and analyzed with BIAevaluation software 4.1.1 (GE Healthcare, Freiburg, Germany). The surface of flow cell 1 immobilized with the anti-histidine antibody was used to obtain blank sensorgrams for the subtraction of the bulk refractive index background. The referenced sensorgrams were normalized to a baseline of 0. Peaks in the sensorgrams at the beginning and the end of the injection are due to the run-time difference between the flow cells for the chip

ACKNOWLEDGMENTS

We thank the European Research Council (ERC Starting Grant, grant number 757563) and the Helmholtz Association (grant number W2/ W3-096) for financial support. We thank Astrid Wirtz for technical assistance with respect to the LC-MS/MS measurement. We thank Rebecca Lukaschewsky for constructing the gyrase overexpression plasmids. SPR analyses were performed in the Bioanalytics service unit of the JGU Biocenter. We very much thank the reviewers of this manuscript for their critical but constructive comments during the review process. Open access funding enabled and organized by ProjektDEAL.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

LK, MH, and JF conceived the study; LK and JB performed the experiments; LK, MH, JB, RH, and JF analyzed the data; LK and JF wrote the manuscript. All authors reviewed and edited the manuscript.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available in the supplementary material of this article. Microarray data were deposited in the GEO database (ncbi.nlm.nih.gov/geo) with accession number GSE151224.

ORCID

Julia Frunzke D https://orcid.org/0000-0001-6209-7950

REFERENCES

- Ahmed, W., Menon, S., Karthik, P.V. & Nagaraja, V. (2016) Autoregulation of topoisomerase I expression by supercoiling sensitive transcription. Nucleic Acids Research, 44(4), 1541–1552. https://doi. org/10.1093/nar/gkv1088
- Bernard, P., Kézdy, K.E., Van Melderen, L., Steyaert, J., Wyns, L., Pato, M.L. et al. (1993) The F plasmid CcdB protein induces efficient ATPdependent DNA cleavage by gyrase. *Journal of Molecular Biology*, 234(3), 534–541. https://doi.org/10.1006/jmbi.1993.1609
- Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Analytical Biochemistry*, 72, 248–254. https:// doi.org/10.1006/abio.1976.9999
- Bush, N.G., Evans-Roberts, K. & Maxwell, A. (2015) DNA topoisomerases. EcoSal Plus, 6(2), https://doi.org/10.1128/ecosalplus.ESP-0010-2014
- Bussmann, M., Baumgart, M. & Bott, M. (2010) RosR (Cg1324), a hydrogen peroxide-sensitive MarR-type transcriptional regulator of Corynebacterium glutamicum. Journal of Biological Chemistry, 285(38), 29305–29318. https://doi.org/10.1074/jbc.M110.156372
- Chatterji, M., Unniraman, S., Mahadevan, S. & Nagaraja, V. (2001) Effect of different classes of inhibitors on DNA gyrase from Mycobacterium smegmatis. Journal of Antimicrobial Chemotherapy, 48(4), 479–485. https://doi.org/10.1093/jac/48.4.479
- Collin, F., Karkare, S. & Maxwell, A. (2011) Exploiting bacterial DNA gyrase as a drug target: current state and perspectives. Applied Microbiology and Biotechnology, 92(3), 479-497. https://doi. org/10.1007/s00253-011-3557-z
- Dao-Thi, M.H., Van Melderen, L., De Genst, E., Afif, H., Buts, L., Wyns, L. et al. (2005) Molecular basis of gyrase poisoning by the addiction toxin CcdB. Journal of Molecular Biology, 348(5), 1091–1102. https:// doi.org/10.1016/j.jmb.2005.03.049
- De Smet, J., Hendrix, H., Blasdel, B.G., Danis-Wlodarczyk, K. & Lavigne, R. (2017) *Pseudomonas* predators: understanding and exploiting phage-host interactions. *Nature Reviews Microbiology*, 15(9), 517– 530. https://doi.org/10.1038/nrmicro.2017.61
- De Smet, J., Wagemans, J., Boon, M., Ceyssens, P.-J., Voet, M., Noben, J.-P. et al. (2021) The bacteriophage LUZ24 "Igy" peptide inhibits the *Pseudomonas* DNA gyrase. *Cell Reports*, 36(8), 109567. https://doi. org/10.1016/j.celrep.2021.109567
- DeMarini, D.M. & Lawrence, B.K. (1992) Prophage induction by DNA topoisomerase II poisons and reactive-oxygen species: role of DNA breaks. *Mutation Research*, 267(1), 1-17. https://doi. org/10.1016/0027-5107(92)90106-C
- Ding, Y., Manzo, C., Fulcrand, G., Leng, F., Dunlap, D. & Finzi, L. (2014) DNA supercoiling: a regulatory signal for the λ repressor. Proceedings of the National Academy of Sciences of the United States of America, 111(43), 15402–15407. https://doi.org/10.1073/pnas.1320644111

Donovan, C., Heyer, A., Pfeifer, E., Polen, T., Wittmann, A., Krämer, R. et al. (2015) A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria. *Nucleic Acids Research*, 43(10), 5002–5016. https://doi.org/10.1093/nar/gkv374

- Dorman, C.J. & Dorman, M.J. (2016) DNA supercoiling is a fundamental regulatory principle in the control of bacterial gene expression. *Biophysical Reviews*, 8(3), 209–220. https://doi.org/10.1007/s1255 1-016-0205-y
- Drlica, K. & Malik, M. (2003) Fluoroquinolones: action and resistance. Current Topics in Medicinal Chemistry, 3(3), 249-282. https://doi. org/10.2174/1568026033452537
- Dwyer, D.J., Kohanski, M.A., Hayete, B. & Collins, J.J. (2007) Gyrase inhibitors induce an oxidative damage cellular death pathway in *Escherichia coli*. *Molecular Systems Biology*, *3*, 91. https://doi. org/10.1038/msb4100135
- Frunzke, J., Bramkamp, M., Schweitzer, J.E. & Bott, M. (2008) Population Heterogeneity in Corynebacterium glutamicum ATCC 13032 caused by prophage CGP3. Journal of Bacteriology, 190(14), 5111–5119. https://doi.org/10.1128/JB.00310-08
- Gibson, D.G. (2011) Enzymatic assembly of overlapping DNA fragments. Methods in Enzymology, 498, 349–361. https://doi.org/10.1016/ B978-0-12-385120-8.00015-2
- Grünberger, A., Probst, C., Helfrich, S., Nanda, A., Stute, B., Wiechert, W. et al. (2015) Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform. *Cytometry Part* A, 87(12), 1101-1115. https://doi.org/10.1002/cyto.a.22779
- Grünberger, A., van Ooyen, J., Paczia, N., Rohe, P., Schiendzielorz, G., Eggeling, L. et al. (2013) Beyond growth rate 0.6: Corynebacterium glutamicum cultivated in highly diluted environments. Biotechnology and Bioengineering, 110(1), 220–228. https://doi.org/10.1002/bit.24616
- Guha, S., Udupa, S., Ahmed, W. & Nagaraja, V. (2018) Rewired downregulation of DNA gyrase impacts cell division, expression of topology modulators, and transcription in *Mycobacterium smegmatis. Journal of Molecular Biology*, 430(24), 4986–5001. https://doi. org/10.1016/i.imb.2018.10.001
- Hatfull, G.F. (2015) Dark matter of the biosphere: the amazing world of bacteriophage diversity. *Journal of Virology*, 89(16), 8107–8110. https://doi.org/10.1128/jvi.01340-15
- Helfrich, S., Pfeifer, E., Krämer, C., Sachs, C.C., Wiechert, W., Kohlheyer, D. et al. (2015) Live cell imaging of SOS and prophage dynamics in isogenic bacterial populations. *Molecular Microbiology*, 98(4), 636– 650. https://doi.org/10.1111/mmi.13147
- Ikeda, M. & Nakagawa, S. (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Applied Microbiology and Biotechnology, 62(2-3), 99-109. https://doi. org/10.1007/s00253-003-1328-1
- Janion, C. (2008) Inducible SOS response system of DNA repair and mutagenesis in Escherichia coli. International Journal of Biological Sciences, 4(6), 338-344. https://doi.org/10.7150/ijbs.4.338
- Jeong, K.S., Xie, Y., Hiasa, H. & Khodursky, A.B. (2006) Analysis of pleiotropic transcriptional profiles: a case study of DNA gyrase inhibition. *PLoS Genetics*, 2(9), e152. https://doi.org/10.1371/journ al.pgen.0020152
- Keilhauer, C., Eggeling, L. & Sahm, H. (1993) Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. Journal of Bacteriology, 175(17), 5595–5603. https://doi. org/10.1128/jb.175.17.5595-5603.1993
- Kensy, F., Zang, E., Faulhammer, C., Tan, R.K. & Büchs, J. (2009) Validation of a high-throughput fermentation system based on online monitoring of biomass and fluorescence in continuously shaken microtiter plates. *Microbial Cell Factories*, 8, 31. https://doi. org/10.1186/1475-2859-8-31
- Laemmli, U.K. (1970) Cleavage of structural proteins during assembly of head of bacteriophage T4. *Nature*, 227(5259), 680–685. https://doi. org/10.1038/227680a0

WILEY

- Lu, S., Wang, J., Chitsaz, F., Derbyshire, M.K., Geer, R.C., Gonzales, N.R. et al. (2020) CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Research, 48(D1), D265-D268. https://doi. org/10.1093/nar/gkz991
- Madhusudan, K. & Nagaraja, V. (1996) Alignment and phylogenetic analysis of type II DNA topoisomerases. *Journal of Biosciences*, 21, 613– 629. https://doi.org/10.1007/BF02703140
- Manjunatha, U.H., Dalal, M., Chatterji, M., Radha, D.R., Visweswariah, S.S. & Nagaraja, V. (2002) Functional characterisation of mycobacterial DNA gyrase: an efficient decatenase. *Nucleic Acids Research*, 30(10), 2144–2153. https://doi.org/10.1093/nar/30.10.2144
- Manjunatha, U.H., Madhusudan, K., Visweswariah, S. & Nagaraja, V. (2000) Structural heterogeneity in DNA gyrases in Gram-positive and Gram-negative bacteria. *Current Science*, 79(7), 968–974.
- Mattenberger, Y., Silva, F. & Belin, D. (2015) 55.2, a phage T4 ORFan gene, encodes an inhibitor of *Escherichia coli* topoisomerase I and increases phage fitness. *PLoS One*, 10(4), e0124309. https://doi. org/10.1371/journal.pone.0124309
- Maxwell, A. & Lawson, D.M. (2003) The ATP-binding site of type II topoisomerases as a target for antibacterial drugs. Current Topics in Medicinal Chemistry, 3(3), 283–303. https://doi.org/10.2174/15680 26033452500
- McKie, S.J., Neuman, K.C. & Maxwell, A. (2021) DNA topoisomerases: advances in understanding of cellular roles and multi-protein complexes via structure-function analysis. *BioEssays*, 43(4), e2000286. https://doi.org/10.1002/bies.202000286
- Menzel, R. & Gellert, M. (1983) Regulation of the genes for E. coli DNA gyrase: homeostatic control of DNA supercoiling. Cell, 34, 105–113. https://doi.org/10.1016/0092-8674(83)90140-X
- Miki, T., Park, J.A., Nagao, K., Murayama, N. & Horiuchi, T. (1992) Control of segregation of chromosomal DNA by sex factor F in *Escherichia coli*. Mutants of DNA gyrase subunit A suppress *letD* (*ccdB*) product growth inhibition. *Journal of Molecular Biology*, 225(1), 39–52. https://doi.org/10.1016/0022-2836(92)91024-j
- Nanda, A.M., Heyer, A., Krämer, C., Grünberger, A., Kohlheyer, D. & Frunzke, J. (2014) Analysis of SOS-induced spontaneous prophage induction in *Corynebacterium glutamicum* at the single-cell level. *Journal of Bacteriology*, 196(1), 180–188. https://doi.org/10.1128/JB.01018-13
- Niebisch, A. & Bott, M. (2001) Molecular analysis of the cytochrome bc₁-aa₃ branch of the Corynebacterium glutamicum respiratory chain containing an unusual diheme cytochrome c₁. Archives of Microbiology, 175(4), 282–294. https://doi.org/10.1007/s0020 301000262
- Nobrega, F.L., Vlot, M., de Jonge, P.A., Dreesens, L.L., Beaumont, H.J.E., Lavigne, R. et al. (2018) Targeting mechanisms of tailed bacteriophages. *Nature Reviews Microbiology*, 16(12), 760–773. https://doi. org/10.1038/s41579-018-0070-8
- Norregaard, K., Andersson, M., Sneppen, K., Nielsen, P.E., Brown, S. & Oddershede, L.B. (2013) DNA supercoiling enhances cooperativity and efficiency of an epigenetic switch. *Proceedings of the National Academy of Sciences of the United States of America*, 110(43), 17386– 17391. https://doi.org/10.1073/pnas.1215907110
- Norregaard, K., Andersson, M., Sneppen, K., Nielsen, P.E., Brown, S. & Oddershede, L.B. (2014) Effect of supercoiling on the λ switch. *Bacteriophage*, 4(1), e27517. https://doi.org/10.4161/bact.27517
- Ofir, G. & Sorek, R. (2018) Contemporary phage biology: from classic models to new insights. *Cell*, 172(6), 1260–1270. https://doi.org/10.1016/j.cell.2017.10.045
- Orr, M.W., Mao, Y., Storz, G. & Qian, S.B. (2020) Alternative ORFs and small ORFs: shedding light on the dark proteome. *Nucleic Acids Research*, 48(3), 1029–1042. https://doi.org/10.1093/nar/gkz734
- Pfeifer, E., Hünnefeld, M., Popa, O., Polen, T., Kohlheyer, D., Baumgart, M. et al. (2016) Silencing of cryptic prophages in *Corynebacterium glutamicum*. *Nucleic Acids Research*, 44(21), 10117–10131. https://doi. org/10.1093/nar/gkw692

- Pierrat, O.A. & Maxwell, A. (2003) The action of the bacterial toxin microcin B17. Journal of Biological Chemistry, 278(37), 35016–35023. https://doi.org/10.1074/jbc.M304516200
- Polen, T. & Wendisch, V.F. (2004) Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays. *Applied Biochemistry and Biotechnology*, 118, 215–232. https://doi. org/10.1385/ABAB:118:1-3:215
- Roach, D.R. & Donovan, D.M. (2015) Antimicrobial bacteriophagederived proteins and therapeutic applications. *Bacteriophage*, 5(3), e1062590. https://doi.org/10.1080/21597081.2015.1062590
- Rohwer, F. & Youle, M. (2011) Consider something viral in your search. Nature Reviews Microbiology, 9(5), 308–309. https://doi.org/10.1038/nrmicro2563
- Sambrook, J. & Russell, D.W. (2001) *Molecular cloning: a laboratory manual*, 3rd edition. Cold Spring Harbor Laboratory Press.
- Schroven, K., Aertsen, A. & Lavigne, R. (2021) Bacteriophages as drivers of bacterial virulence and their potential for biotechnological exploitation. FEMS Microbiology Reviews, 45(1), fuaa041. https://doi. org/10.1093/femsre/fuaa041
- Shah, S. & Heddle, J.G. (2014) Squaring up to DNA: pentapeptide repeat proteins and DNA mimicry. Applied Microbiology and Biotechnology, 98(23), 9545–9560. https://doi.org/10.1007/s00253-014-6151-3
- Sivaraman, T., Kumar, T.K.S., Jayaraman, G. & Yu, C. (1997) The mechanism of 2,2,2-trichloroacetic acid-induced protein precipitation. *Journal of Protein Chemistry*, 16(4), 291–297. https://doi. org/10.1023/A:1026357009886
- Storz, G., Wolf, Y.I. & Ramamurthi, K.S. (2014) Small proteins can no longer be ignored. Annual Review of Biochemistry, 83, 753-777. https:// doi.org/10.1146/annurev-biochem-070611-102400
- Tomasz, M. (1995) Mitomycin C: small, fast and deadly (but very selective). Chemistry and Biology, 2(9), 575–579. https://doi. org/10.1016/1074-5521(95)90120-5
- Tse-Dinh, Y.-C. (1985) Regulation of the Escherichia coli DNA topoisomerase I gene by DNA supercoiling. Nucleic Acids Research, 13(13), 4751–4763. https://doi.org/10.1093/nar/13.13.4751
- Vanden Broeck, A., Lotz, C., Ortiz, J. & Lamour, V. (2019) Cryo-EM structure of the complete E. coli DNA gyrase nucleoprotein complex. Nature Communications, 10(1), 4935. https://doi.org/10.1038/ s41467-019-12914-y
- Wendisch, V.F., Jorge, J.M.P., Pérez-García, F. & Sgobba, E. (2016) Updates on industrial production of amino acids using *Corynebacterium glutamicum*. World Journal of Microbiology and Biotechnology, 32(6), 105. https://doi.org/10.1007/s11274-016-2060-1
- Wiechert, J., Filipchyk, A., Hünnefeld, M., Gätgens, C., Brehm, J., Heermann, R. et al. (2020). Deciphering the rules underlying xenogeneic silencing and counter-silencing of Lsr2-like proteins using CgpS of Corynebacterium glutamicum as a model. mBio, 11(1), e02273-19. https://doi.org/10.1128/mBio.02273-19
- Yin, Y. & Fischer, D. (2008) Identification and investigation of ORFans in the viral world. BMC Genomics, 9, 24. https://doi. org/10.1186/1471-2164-9-24

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher's website.

How to cite this article: Kever, L., Hünnefeld, M., Brehm, J., Heermann, R. & Frunzke, J. (2021) Identification of Gip as a novel phage-encoded gyrase inhibitor protein of *Corynebacterium glutamicum*. *Molecular Microbiology*, 116, 1268–1280. https://doi.org/10.1111/mmi.14813

3.2. Aminoglycoside antibiotics inhibit phage infection by blocking an early step of the infection cycle

Kever, L.[#], Hardy, A.[#], Luthe, L., Hünnefeld, M., Gätgens, C., Milke, L, Wiechert, J., Wittmann, J., Moraru, C., Marienhagen, J. and Frunzke, J.

Authors contributed equally to this work.

Published in mBio, 2022

Contributor role	Contributor
Conceptualization	LK (30%), AH (30%), JF (25%), TL (10%), MH (5%)
Data curation	LK (50%), AH (30%), TL (10%), LM (5%), JWie (5%)
Formal analysis	LK (60%), MH (20%), AH (10%), LM (10%)
Funding acquisition	JF (95%), JM (5%)
Investigation	LK (40%), AH (30%), TL (12.5%), MH (7.5%), CG (5%), LM (2.5%), JWie (2.5%)
Methodology	LK (40%), AH (25%), TL (15%), MH (10%), LM (5%), CM (5%)
Project administration	LK (40%), AH (30%), JF (20%), CG (10%)
Resources	JWit (60%), CM (40%)
Software	MH (60%), LM (20%), TL (20%)
Supervision	JF (50%), LK (25%), AH (20%), MH (2.5%), JM (2.5%)
Validation	LK (65%), AH (25%), JF (10%)
Visualization	LK (55%), AH (25%), TL (10%), MH (5%), LM (5%)
Writing – original draft	AH (45%), LK (40%), JF (7.5%), MH (2.5%), TL (2.5%) LM (2.5%)
Writing – review and editing	JF (40%), AH (30%), LK (15%), TL (5%), JM (5%), JWie (2.5%), MH (2.5%)

Overall contribution: 35%

Planned and conducted experiments and respective data analysis performed by LK is shown in the following figures: Figure 1 (*Streptomyces* screening), Figure 2a and e, Figure 2d (in cooperation with CG), Figure 4b and c, Figure 4d (RNA was isolated by LK, RNA-seq was performed by GENEWIZ (Leipzig), data analysis was conducted by MH), Figure S1, Figure S4a and b and Figure S5. Phage-targeting geneFISH experiments (Figure 5, S6a and c) were done in cooperation with MH. LK drafted all figures based on partially pre-visualized data received from contributing authors, which were subsequently revised in collaboration with AH, TL, MH, and LM. LK was substantially involved in writing the original draft and contributes to a lesser extent to the revision and editing process. 74

RESEARCH ARTICLE

Aminoglycoside Antibiotics Inhibit Phage Infection by Blocking an Early Step of the Infection Cycle

Larissa Kever,^a Aël Hardy,^a Tom Luthe,^a Max Hünnefeld,^a Cornelia Gätgens,^a Lars Milke,^a Johanna Wiechert,^a Johannes Wittmann,^b Cristina Moraru,^c Jan Marienhagen,^{a,d} ^(b)Julia Frunzke^a

Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
 Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
 Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
 Institute of Biotechnology, RWTH Aachen University, Aachen, Germany

Larissa Kever and Aël Hardy contributed equally to this work. To determine the order of the two co-first authors, we flipped a coin.

ABSTRACT In response to viral predation, bacteria have evolved a wide range of defense mechanisms, which rely mostly on proteins acting at the cellular level. Here, we show that aminoglycosides, a well-known class of antibiotics produced by *Streptomyces*, are potent inhibitors of phage infection in widely divergent bacterial hosts. We demonstrate that aminoglycosides block an early step of the viral life cycle, prior to genome replication. Phage inhibition was also achieved using supernatants from natural aminoglycoside producers, indicating a broad physiological significance of the antiviral properties of aminoglycosides. Strikingly, we show that acetylation of the aminoglycoside antibiotic apramycin abolishes its antibacterial effect but retains its antiviral properties. Altogether, our study expands the knowledge of aminoglycoside functions, suggesting that aminoglycosides not only are used by their producers as toxic molecules against their bacterial competitors but also could provide protection against the threat of phage predation at the community level.

IMPORTANCE Predation by phages is a major driver of bacterial evolution. As a result, elucidating antiphage strategies is crucial from both fundamental and therapeutic standpoints. While protein-mediated defense mechanisms, like restriction-modification systems or CRISPR/Cas, have been extensively studied, much less is known about the potential antiphage activity of small molecules. Focusing on the model bacteria *Escherichia coli* and *Streptomyces venezuelae*, our findings revealed significant antiphage properties of aminoglycosides, a major class of translation-targeting antibiotics produced by *Streptomyces*. Further, we demonstrate that supernatants from natural aminoglycoside producers protect bacteria from phage propagation, highlighting the physiological relevance of this inhibition. Suppression of phage infection by aminoglycosides did not result from the indirect inhibition of bacterial translation, suggesting a direct interaction between aminoglycosides, which have evolved to efficiently block protein synthesis in bacterial competitors and provide protection against phages.

KEYWORDS *Streptomyces*, aminoglycosides, antibiotics, bacteriophages, phage defense, phage-host interaction

B acteriophages are viruses that prey upon bacteria. Facing the existential threat posed by phage predation, prokaryotes have developed numerous lines of defense, which together form the prokaryotic "immune system" (1). In response, phages have evolved a multitude of ways to circumvent these barriers, thereby fostering the diversification of

May/June 2022 Volume 13 Issue 3

Editor Gisela Storz, National Institute of Child Health and Human Development

Copyright © 2022 Kever et al. This is an openaccess article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Julia Frunzke, j.frunzke@fz-juelich.de.

The authors declare no conflict of interest. **Received** 18 March 2022

Accepted 1 April 2022 Published 4 May 2022

10.1128/mbio.00783-22 1

bacterial antiviral strategies. Recent bioinformatics-guided screenings revealed a large number of previously unknown antiviral defense systems (2, 3). However, the majority of currently known prokaryotic defense systems rely on a wide range of molecular mechanisms but are mediated mainly by protein or RNA complexes (4).

Environmental bacteria produce a wide range of small molecules, conferring producer cells a specific fitness advantage in competitive or predatory interactions. However, the potential antiphage role of this extensive chemical repertoire remains largely unexplored. Recently, new types of defense systems that rely on small molecules rather than on proteins or RNA have been discovered (5, 6). Anthracyclines are secondary metabolites naturally produced by *Streptomyces* species and were shown to inhibit infection by double-stranded-DNA (dsDNA) phages (5). These molecules act as DNA-intercalating agents and block the replication of phage—but not bacterial—DNA. Since these secondary metabolites are excreted by *Streptomyces* cells and are diffusible molecules, their production may provide broad protection against dsDNA phages at the community level.

In nature, producers of secondary metabolites are generally resistant to the molecules they synthesize (7, 8). This feature is of special importance when screening small molecules for antiviral properties, as toxic effects on bacterial growth would prevent the appreciation of any inhibition of phage infection. In this study, we leveraged this principle to look for phage inhibition by secondary metabolites, using bacterial hosts resistant to the compounds tested.

Aminoglycosides are antibiotics well known for their bactericidal effect by targeting the 30S subunit of the ribosome and thereby either directly inhibiting protein synthesis or, for most aminoglycosides, promoting mistranslation. The aminoglycoside streptomycin, discovered in 1943, was the first antibiotic active against *Mycobacterium tuberculosis* (9). Strikingly, we observed strong phage inhibition in the presence of aminoglycosides when using strains resistant to the antibiotic. In agreement with this observation, decades-old reports described the inhibition of various phages by streptomycin (10–12). However, the biological significance of these observations was not explored, and the underlying mechanism of action remains unclear. For these reasons, we focused our efforts on aminoglycosides and set out to investigate their potential antiphage properties.

In this study, we show that aminoglycoside antibiotics inhibit phages infecting the actinobacterial model species *Streptomyces venezuelae* and *Corynebacterium glutamicum* as well as the λ phage infecting *Escherichia coli*. Investigations of the mechanism of action point toward a blockage of phage infection occurring after DNA injection but before genome replication. Furthermore, the antiphage activity observed with the purified aminoglycoside apramycin could be reproduced with supernatants from the natural producer *Streptoalloteichus tenebrarius*, suggesting a broad physiological significance of the antiphage properties of aminoglycosides.

RESULTS

Aminoglycosides inhibit a broad range of phages. To investigate a potential antiviral activity of aminoglycosides, we first constructed resistant strains carrying a plasmid-borne resistance cassette encoding an aminoglycoside-modifying enzyme (Table S1 and S2A). With respect to the aminoglycosides selected for this study, we focused on antibiotics produced by *Streptomyces* species and included the atypical aminoglycoside streptomycin, aminoglycosides containing a monosubstituted deoxystreptamine ring (apramycin and hygromycin), kanamycin (4,6-di-substituted deoxystreptamine ring), and the aminocyclitol spectinomycin (13, 14). We challenged the aminoglycoside-resistant strains with a set of different phages using double-agar overlays with increasing aminoglycoside concentrations as screening platform (Fig. 1a). In the screening, we included phages from three different viral realms (15): dsDNA viruses from the order *Caudovirales* in *Duplodnaviria* (families *Sipho-, Myo-*, and *Podoviridae*), single-stranded DNA (ssDNA) viruses from the family *Inoviridae* in *Monodnaviria*, and

May/June 2022 Volume 13 Issue 3

10.1128/mbio.00783-22 2

mBio

FIG 1 Aminoglycosides inhibit a wide range of phages. (a) Schematic representation of the screening for the antiphage effect of different aminoglycosides. Strains resistant to the aminoglycosides were constructed using plasmid-borne resistance cassettes and subsequently challenged by phages in the presence of increasing aminoglycoside concentrations. (b) Overview of the screening results, showing the log_{10} fold change in plaque formation by tested phages relative to the aminoglycoside-free control. Molecular structures of the aminoglycoside tested are indicated on the left. High concentrations of aminoglycosides prevented in some cases either the formation of plaque or lysis zone by the spotted phages ("no lysis") or bacterial growth ("no lawn"). n = 2 independent biological replicates. The different phage morphologies are depicted with icons according to the following color scheme: blue, *Siphoviridae*; req. *Myoviridae*; green, *Podoviridae*; purple, *Inoviridae*; yellow, *Leviviridae*. (c) Exemplary pictures from propagation assays performed in the presence of the indicated aminoglycoside concentration. Results are representative of two biological replicates.

May/June 2022 Volume 13 Issue 3

10.1128/mbio.00783-22 3

ssRNA viruses from the family *Leviviridae* in *Riboviria* (Table S2B). The efficiency of plating comparing plaque formation under aminoglycoside pressure with aminoglycosidefree conditions was calculated for phages infecting either the actinobacterial model species *Streptomyces venezuelae*, *Streptomyces coelicolor*, and *Corynebacterium glutamicum* or the Gram-negative species *Escherichia coli* (Fig. 1b).

The extent of inhibition showed clear differences between the individual phages and aminoglycosides. Remarkably, infection with some phages, namely, the virulent phages Alderaan, Coruscant, and Spe2 as well as the temperate *E. coli* phage λ , was significantly impaired with increasing aminoglycoside concentrations. In contrast, all phages infecting *S. coelicolor*, CL31 infecting *C. glutamicum* MB001, and the T phages, RNA phage MS2, and filamentous phages M13 and fd infecting *E. coli* displayed no susceptibility to the tested aminoglycosides. The phages susceptible to aminoglycosides infect widely divergent hosts and possess different lifestyles and types of genome ends (Table S2B). However, they are all dsDNA phages belonging to the family *Siphoviridae*, suggesting a specificity of aminoglycosides for this phage family.

In the case of *S. venezuelae* phages, we observed the strongest inhibition with the aminocyclitol antibiotic apramycin. The *S. venezuelae* phage Alderaan showed the highest susceptibility among all tested phages, leading to ~10⁶-fold reduction in numbers of PFU for 25 μ g/mL apramycin and a complete inhibition of cell lysis at 100 μ g/mL hygromycin or apramycin (Fig. 1b and c). This observation was in line with results from infection assays in liquid culture revealing no more culture collapse when supplementing the respective aminoglycosides (Fig. 2a). The antiviral activity was further demonstrated to be dose dependent, showing already an inhibition of infection at 1 μ g/mL apramycin (Fig. S1). In contrast, no antiviral activity was detected for spectinomycin (Fig. 2a).

To visualize the effect of apramycin on infection dynamics using live-cell imaging, *S. venezuelae* mycelium was grown from spores in a microfluidic device and infected with the phage Alderaan. Addition of apramycin almost completely inhibited phage-mediated lysis of *Streptomyces* mycelium, confirming the protective effect of apramycin against phage infection (Fig. 2b and Video S1).

Infection of *E. coli* with the model phage λ was also strongly impaired in the presence of aminoglycosides. Here, apramycin and kanamycin at concentrations as low as 25 μ g/mL showed a protective effect in liquid cultures (Fig. 2c and Fig. S2a) as well as an up to 1,000-fold reduction in numbers of PFU (Fig. 1b and c). Furthermore, this effect was shown to be independent of the host strain used (Fig. S2b).

In the case of temperate phages such as λ , an increased entry into the lysogenic cycle could explain the absence of phage amplification in the presence of aminoglycosides. To test this hypothesis, we conducted a reinfection experiment, in which cells surviving the first round of infection were washed and exposed to the same phage again. In the first infection round, cultures without apramycin showed a strongly increasing phage titer associated with extensive lysis of the culture. In contrast, infection in the presence of apramycin was completely inhibited, showing no phage amplification during λ infection and even an ~100-fold decrease in phage titers over time for Alderaan (Fig. 2d and Fig. S2c).

Interestingly, removal of the antibiotic and reinfection of cells from apramycintreated cultures resulted in similar amplification kinetics of Alderaan and λ compared to an untreated control. Hence, these results do not support the selection of genetically encoded resistance traits or, in the case of λ , an increased formation of lysogens but rather indicate a reversible antiphage effect of apramycin.

Since elevated Mg^{2+} levels were previously shown to interfere with aminoglycoside uptake (16) and streptomycin-mediated inhibition of phage infection (12), we examined whether the antiviral effect of apramycin is alleviated in the presence of MgCl₂. As shown in Fig. 2e, phage infection was completely restored by the addition of 5 mM MgCl₂, as evidenced by the strong growth defect and the increasing phage titer during infection. Comparable results regarding the antagonistic effects of MgCl₂ were also

May/June 2022 Volume 13 Issue 3

10.1128/mbio.00783-22 4

FIG 2 Aminoglycosides strongly inhibit phage amplification in liquid cultures. (a) Infection curves for *Streptomyces venezuelae* infected by phage Alderaan in the presence of different aminoglycosides (concentrations, in μ g/mL, are indicated with subscripts; AB, antibiotic). (b) Time-lapse micrographs of *S. venezuelae* cultivated in a microfluidics system and challenged with Alderaan (insets show time after infection). (c) Infection curves for *E. coli* DSM 4230 infected by λ in the presence of 25 μ g/mL apramycin. (d) Phage titers determined over two successive rounds of infection. A first infection round of *S. venezuelae* by Alderaan was performed in the presence of apramycin. At the end of the cultivation, surviving cells from the apramycin-treated cultures were collected and exposed to phage Alderaan again, this time in the absence of apramycin. (e) Effect of MgCl₂ on infection of *S. venezuelae* by Alderaan, assessed by infection curves and determination of the corresponding phage titers over time. (a, d, and e) Alderaan was added to an initial titer of 10^o PFU/mL; (c) A was added to an initial titer of 10^s PFU/mL. For growth curves and phage titers in panels a, c, d, and e, data are averages for three independent biological replicates (*n* = 3).

obtained for λ (Fig. S2d). Overall, these results suggest that the antiviral effect of aminoglycosides is based on an interference with phage infection at the intracellular level, probably during or shortly after phage DNA injection.

Spent medium of a natural aminoglycoside producer provides protection against phage predation. As Streptomyces are the natural producers of aminoglycosides, we examined whether infection of S. venezuelae in spent medium of the apramycin producer Streptoalloteichus tenebrarius (formerly known as Streptomyces tenebrarius [17]) provides protection against phage predation. Alderaan infection was not impaired by spent medium of S. tenebrarius harvested after 1 day of cultivation. In contrast, cultivation in spent medium taken after 2 days completely reproduced the antiviral effect observed during experiments with supplemented purified apramycin, showing equivalent growth of infected and uninfected cultures (Fig. 3a). Endpoint quantification of extracellular phage titers confirmed this inhibition of infection, as no more infective extracellular phages were detectable in the supernatants of the infected cultures (Fig. 3b). Importantly, this protective effect of S. tenebrarius spent medium coincided with the presence of apramycin in cultures, as determined by liquid chromatographymass spectrometry (LC-MS) (Fig. 3c). While the phage-inhibitory effect of the supernatants is very likely to be caused by the native levels of apramycin, we cannot exclude the possibility that this strain may produce other compounds with antiphage

May/June 2022 Volume 13 Issue 3

10.1128/mbio.00783-22 5

FIG 3 Secondary metabolites produced by *Streptoalloteichus tenebrarius* inhibit phage infection. (a) Influence of spent medium from *S. tenebrarius* on infection of *S. venezuelae* by Alderaan. Data are averages for three independent biological replicates; error bars represent standard deviations. (b) Determination of the final phage titers of infected cultures shown in panel a. Results are representative of two biological replicates. (c) Extracted ion chromatogram of samples analyzed by LC-MS assessing the presence of apramycin (molecular weight, 539.58 g/mol) in spent medium (SM) of *S. tenebrarius*. The indicated concentrations of apramycin are close to the detection limit under these measuring conditions. GYM, glucose-yeast extract-malt extract medium.

properties. Taken together, these data suggest that production of aminoglycoside antibiotics in natural environments might serve as a chemical defense providing protection against phage infection on a community level.

Aminoglycosides block an early step of phage infection. To decipher the mechanism underlying the antiviral activity of aminoglycosides, we investigated the influence of apramycin on the different steps of the phage infection cycle (Fig. 4a).

First, we determined the impact of apramycin on the adsorption step, by following phage titers over time after performing an intense washing 15 min after phage addition to remove Alderaan phages that are only reversibly adsorbed to *Streptomyces* mycelium (Fig. S3). We confirmed that this 15-min preincubation time was sufficient to reach the stage of irreversible adsorption of phage particles, as the control without apramycin showed strongly increasing titers following washing. Importantly, the outcome of phage amplification was determined only in the presence of apramycin in the main culture, as preincubation with apramycin had no influence on later phage titers. Taken together with the adsorption assay performed in the presence of apramycin but rather a later stage of the phage life cycle. In accordance with these findings, preincubation of phage particles with apramycin showed no impact on phage infectivity at physiologically relevant levels of 10 or 50 μ g/mL apramycin (Fig. S5). In contrast, higher concentrations (>500 μ g/mL) strongly impacted phage infectivity, showing a ~100-fold reduction in PFU/mL after 24 h of incubation.

Next, we assessed phage DNA delivery and amplification by determining the level of intracellular Alderaan DNA during infection via quantitative real-time PCR (qPCR). In the absence of apramycin, the phage DNA levels increased exponentially until 360 min post-infection, indicating active genome replication across several rounds of infection (Fig. 4b). Simultaneous measurement of extracellular phage titers showed stable titers until 120 min, followed by a strong rise indicative of the release of new phage progeny after cells lysis (Fig. 4c). Conversely, only a slight increase in intracellular DNA was obtained for infection under apramycin pressure (Fig. 4b; note that measurement in the presence of apramycin is close to the detection limit). Relative phage concentrations then declined starting at 45 min and were even similar to those measured in the uninfected controls at 360 and 450 min, hinting at degradation of intracellular phage DNA. In the meantime, extracellular phage titers of apramycin-treated cultures declined from 120 min (Fig. 4c). Overall, these results suggest an inhibition of phage genome replication but do not exclude an interference with the injection process in *S. venezuelae*.

Assuming that apramycin blocks an early step of phage infection prior to genome replication, addition of the antibiotic after the replication phase would not interfere

May/June 2022 Volume 13 Issue 3

10.1128/mbio.00783-22 6

FIG 4 Apramycin blocks the phage life cycle at an early stage—before replication and transcription of phage DNA. (a) Scheme of the phage lytic life cycle, highlighting the different steps which could be inhibited by antiphage metabolites. (b) Infection of *S. venezuelae* by Alderaan; time-resolved quantification of phage DNA by qPCR in the intracellular fraction. To quantify the relative concentration of phage DNA per host DNA, a gene coding for the minor tail protein of Alderaan (HQ601_00028) and the housekeeping gene *atpD* of *S. venezuelae* were used. The corresponding oligonucleotide sequences are provided in Table S2D. Data are means for three independent biological replicates measured as technical duplicates. The range of relative concentrations measured for the uninfected controls (measured 120 min postinfection) is marked in gray. Note that the values measured for apramycin-treated samples are close to or even below the detection limit. (c) Time-resolved determination of Alderaan titers in the extracellular medium via double-agar overlays. *n* = 3 independent replicates. (d) RNA-seq coverage of the Alderaan genome (39 kbp) during infection in the presence and absence of apramycin.

with the infection. This hypothesis was indeed confirmed by supplementation of the aminoglycoside at different time points post infection (Fig. S4b). Corresponding infection assays indicated that apramycin addition 30 min after infection was sufficient to prevent a reproductive Alderaan infection. The observed decrease in extracellular phage titers is probably the result of adsorption and subsequent DNA injection of a fraction of phages without release of new infective viral particles.

In contrast, no decrease in extracellular phage titers was observed when apramycin was added 1 to 2 h after infection, indicating that the first phages were able to complete their infection cycle before apramycin was added. Comparison of these results with the quantification of intracellular phage DNA (Fig. 4b) further showed that this period corresponds to the replication phase, indicating that replication is a sensitive time point for the antiviral activity of aminoglycosides. In the case of the *E. coli* system, the measurement of potassium efflux is an established approach to probe the successful delivery of phage DNA into the bacterial cell (18). Applying this method to infection of *E. coli* with phage λ confirmed that the injection process was not impaired by apramycin (Fig. S2e).

Next, we examined the influence of apramycin on phage DNA transcription. RNA sequencing revealed an increasing transcription of Alderaan DNA during phage infection under normal infection conditions, whereas addition of apramycin drastically hindered phage gene expression (Fig. 4d and Fig. S4c). In accordance with the previous results, these data suggest a blockage of phage infection prior to phage DNA replication and transcription, which is congruent with a recent report of inhibition of two mycobacteriophages by streptomycin, kanamycin, and hygromycin (19).

To visualize intracellular phage infections in the presence and absence of apramycin, we performed fluorescence *in situ* hybridization of phage DNA (phage-targeting direct-geneFISH) using Alexa Fluor 647-labeled probes specific for the phage genome. In this

10.1128/mbio.00783-22 7

assay, the formation of bright and distinct fluorescent foci is indicative of advanced viral infections (20). When infecting E. coli with λ_i , comparable amounts of injected phage DNA were detected for both infection conditions after 30 min. This result is in line with the potassium efflux assay described above, which showed similar injection kinetics in the presence of apramycin for E. coli (Fig. S2e). As the infection progressed, only samples without apramycin exhibited a strong increase in fluorescence intensity 90 min and 180 min postinfection, further hinting at an inhibited replication in the presence of apramycin (Fig. 5a). For Alderaan, an increase in red fluorescence and thus intracellular phage DNA could be observed 4 h after infection and was even more pronounced at 6 h, reflecting phage DNA replication. In contrast, apramycin-treated samples showed only a very weak and more diffuse red fluorescent signal in the 6-h samples (Fig. 5c), which is overall consistent with the quantification of intracellular phage DNA by qPCR (Fig. 4b). Plotting the distribution of fluorescence intensity per pixel confirmed that the massive increase in fluorescence at the last time point (180 min for λ and 6 h for Alderaan, respectively) was inhibited in the presence of apramycin, supporting the blockage of replication exerted by apramycin (Fig. 5b and d; Fig. S6a and c). Interestingly, determination of the percentage of λ -infected *E. coli* cells over time showed a peak at 30 min in apramycin-treated samples followed by a decline down to almost no infected cell at 180 min (Fig. S6b). This observation suggests that intracellular phage DNA was degraded following the halt of the phage life cycle caused by apramycin.

Acetylation of apramycin abolishes its antibacterial, but not antiphage properties. Enzymatic modification of aminoglycosides is a major mechanism of bacterial resistance to these antibiotics. Aminoglycoside-modifying enzymes are categorized in three major classes: aminoglycoside *N*-acetyltransferases (AACs), aminoglycoside *O*-nucleotidyltransferases (ANTs), and aminoglycoside *O*-phosphotransferases (APHs) (13). Addition of an acetyl, adenyl, or phosphoryl group at various positions of the aminoglycoside core scaffold decreases the binding affinity of the drug for its primary ribosomal target, leading to the loss of the antibacterial potency, with the modified aminoglycosides being described as "inactivated."

However, the impact of these modifications on the antiphage activity of aminoglycosides is unknown. We set out to answer this question using apramycin and the acetyltransferase AAC(3)IV (21), also referred to as "Apr" in the literature. In the presence of apramycin, AAC(3)IV catalyzes the acetylation of the 3-amino group of the deoxystreptamine ring, using acetyl coenzyme A (acetyl-CoA) as a cosubstrate (Fig. 6a).

Using purified AAC(3)IV enzyme, we performed an *in vitro* acetylation reaction of apramycin. LC-MS analysis of the reaction mixtures revealed complete acetylation of apramycin, as the peak of apramycin (m/z 540) disappeared in favor of the one corresponding to acetylated apramycin (m/z 582) (Fig. 6b).

The efficiency of the acetylation reaction being confirmed, we tested the effect of acetylated apramycin on phage infection in liquid medium, using wild-type *S. venezuelae* (not carrying a plasmid-borne acetyltransferase gene) and its phage Alderaan. As expected, apramycin fully prevented growth of *S. venezuelae*, while acetylated apramycin did not show any toxicity effect. Strikingly, phage infection was completely inhibited in the presence of acetylated apramycin, suggesting that acetylation of apramycin does not interfere with its antiphage properties (Fig. 6c). Plate assays showed a comparable pattern: acetylation of apramycin suppressed its antibacterial effect but did not disrupt its ability to inhibit phage infection (Fig. 6d). Altogether, these results suggest a decoupling of the antibacterial and antiphage properties of apramycin and further highlight the distinct molecular target accounting for apramycin's antiphage properties.

DISCUSSION

We have shown that aminoglycosides inhibit phage infection in a diverse set of bacterial hosts by blocking an early step of the phage life cycle prior to DNA replication. These findings highlight the multifunctionality of this class of antibiotics, as they possess both antibacterial and antiviral properties. The dual properties of aminoglycosides

May/June 2022 Volume 13 Issue 3

10.1128/mbio.00783-22 8

FIG 5 Visualization of intracellular phage DNA by phage targeting direct-geneFISH. (a and c) Phage-targeting direct-geneFISH micrographs of (a) *E. coli* DSM4230 infected with λ and (c) *S. venezuelae* infected with Alderaan in the presence and absence of 25 μ g/mL and 10 μ g/mL apramycin, respectively. (First and third rows) Phase-contrast pictures merged with fluorescence signal from bacterial DNA (DAPI, blue) and phage DNA (Alexa647, red). (Second and fourth rows) Fluorescence signal from phage DNA only (Alexa647, red). Bar, 10 μ m. (b and d) Quantification of Alexa647 fluorescence in (b) *E. coli* cells infected with λ and (d) *S. venezuelae* cells infected with Alderaan, shown as density plots of pixel counts relative to their fluorescence intensity. Data are averages for biological three independent biological replicates (n = 3); the data for all replicates are shown in Fig. S6a and b.

were first recognized in the 1950s and 1960s (10–12, 22), but mechanistic studies about their impact on phage infection differed in their conclusions. Brock and colleagues proposed a 2-fold inhibition of streptomycin on *Enterococcus faecium*, where streptomycin would be able to inhibit both genome injection and replication (12). In the same year, it was proposed that streptomycin inhibits the process of injection of

May/June 2022 Volume 13 Issue 3

10.1128/mbio.00783-22 9

FIG 6 Acetylated apramycin strongly inhibits phage infection, despite the loss of its antibacterial properties. (a) Acetylation reaction of apramycin catalyzed by the AAC(3)IV acetyltransferase. (b) Total ion chromatogram and extracted ion chromatograms of samples analyzed by LC-MS assessing the presence of apramycin (molecular weight, 539.58 g/mol; *m/z* 540) and acetylated apramycin (molecular weight, 581.62 g/mol; *m/z* 582) after *in vitro* acetylation of apramycin. (c and d) Effect of acetylated apramycin on infection of wild-type *S. venezuelae* with Alderaan, performed in liquid (c) and solid (d) media. For panel d, the reaction mixtures of the *in vitro* acetylation assays containing apramycin, acetyl-CoA, the AAC(3)IV acetyltransferase, or different combinations of these were used to supplement the plates. A piece of paper was placed below plates to facilitate assessment of bacterial growth.

these phages by preventing proper unfolding of the phage genome through crosslinking of the phage DNA (23). Recently, Jiang and colleagues reported the inhibition of two *M. tuberculosis* phages by streptomycin, kanamycin, and hygromycin (19). Following adsorption and quantifying of viral DNA, the authors proposed that the blockage caused by aminoglycosides occurs between genome circularization and replication. Our results put forward different pictures depending on the bacterial host. Infection with λ and Alderaan phages seems to be blocked at the genome replication stage by apramycin in both cases. However, we cannot exclude some additional interference with the injection step of phage Alderaan. This disparity presumably has its roots in the major differences in cell wall architectures between Gram-positive and -negative bacteria. Moreover, it opens the possibility that aminoglycosides exert a multilayered inhibition of phage infection in their natural producers.

More recently, sublethal aminoglycoside concentrations of aminoglycosides were shown to inhibit phage infection in *E. coli* and *Bacillus cereus* (24). Interestingly, tetracycline, another translation-inhibiting antibiotic binding to the 30S ribosome, was much less effective at suppressing phage proliferation. This difference suggests a direct

May/June 2022 Volume 13 Issue 3

10.1128/mbio.00783-22 10

antiphage action of aminoglycosides and indicates that inhibition of phage replication is not a common trait of antibiotics blocking protein synthesis.

One crucial question is that of which structural features or chemical groups of aminoglycosides are responsible for their antiphage properties. Our screening revealed that aminoglycosides belonging to 3 of 4 subclasses showed antiphage activity, suggesting that these properties are widespread among aminoglycosides and not limited to one particular subclass. Furthermore, a potential antiviral activity is probably also strongly influenced by the uptake and cell envelope structure of a particular host species. However, thorough structure-function relationship studies are needed to address this topic.

The versatility of aminoglycosides can be attributed to their ability to bind a wide variety of molecules, including nucleic acids—DNA or RNA, biologically or nonbiologically derived. The most prominent target of aminoglycosides is the 16S rRNA, accounting for the disruption of protein translation and hence their bactericidal properties (13). Aminoglycosides have also been shown to bind to seemingly unrelated families of RNA molecules such as group I introns (25), a hammerhead ribozyme (26), the transactivating response element (TAR) (27) and the Rev response element (RRE) of the human immunodeficiency virus (HIV) (28-30). Interestingly, this effect on HIV is the only report of a direct inhibition of eukaryotic viruses by aminoglycosides. Evidence of indirect influence on infection by eukaryotic viruses comprises the activation of interferon-based antiviral response following topical application of aminoglycosides (31), and the enhancement of plaque formation by coxsackieviruses via increased diffusion of virions in the extracellular matrix (32). Furthermore, in vitro studies showed condensation of purified phage λ DNA by aminoplycosides. It was proposed that the clamp formed by aminoglycosides around the DNA double helix causes a bend responsible for the formation of toroids and other structural deformations (33, 34).

Injected phage DNA is linear, in a relaxed state, and not protected by DNA-binding proteins, and it is therefore probably highly sensitive to DNA-binding molecules. Interestingly, anthracyclines—another class of secondary metabolites produced by *Streptomyces* strains with antiphage properties—inhibit phage infection at a similar stage (5). While the exact mechanism of action underlying phage inhibition by anthracyclines and aminoglycosides remains elusive, these recent results suggest that already injected but not yet replicating phage DNA is preferentially targeted by antiviral molecules. Repeated efforts to isolate Alderaan clones that developed resistance to apramycin were not successful, suggesting that phage inhibition by apramycin relies on structural properties of phage DNA that cannot be readily overcome by single-base mutations or small structural variants.

Therapeutical use of phages—known as phage therapy—is often combined with an antibiotic treatment due to the potentially synergistic effect between these two antimicrobial agents. In contrast, we describe here an antagonistic impact of a common antibiotic class on phages, which has important implications for phage-aminoglycoside combination treatment. We propose that sensitivity of the phage to aminoglycosides be assessed *in vitro* before administration of such combination therapy.

From a more fundamental perspective, these findings also shed new light on the role of aminoglycosides in natural bacterial communities. While their use as antibiotics for medical applications has been extensively documented, until now, relatively little was known about their function in the natural setting. We posit that aminoglycosides not only are used by their producers as a powerful weapon against bacterial competitors but also protect them against phage predation at the community level. In strepto-mycetes, antibiotic production happens mainly at later stages of development, typically during the formation of aerial hyphae (35–37), while phages preferentially attack young mycelium (38). This clear difference in chronology may make secondary-metabolite-mediated antiphage defense seem irrelevant when studied in a laboratory setting. However, this defense strategy takes its full meaning in the light of community

May/June 2022 Volume 13 Issue 3

10.1128/mbio.00783-22 11

ecology, where older fractions of an established microbial community could ensure a protective "antiviral milieu" for their descendants.

Another key consideration to appreciate aminoglycoside antiviral properties in an ecological context concerns the importance of the resistance mechanism to these antibiotics. Using *Streptomyces venezuelae* and its phage Alderaan, we showed that acetylation of apramycin led to a loss of its antibacterial properties, while leaving its ability to block phage infection untouched. Assuming that this observation can be extended to more phages and aminoglycoside-modifying enzymes, it raises the question of whether deflecting the antibacterial effect of aminoglycosides while benefiting from their intracellular protective effect against phages would be a strategy favored over antibiotic resistance by efflux. Interestingly, unlike many antibiotic classes (39), efflux proteins reported to pump out aminoglycosides are relatively rare and conferred only partial resistance to aminoglycosides (13). In contrast, aminoglycoside-modifying enzymes are widespread and found in natural producers and clinical isolates alike (13, 40). Natural aminoglycoside producers often encode a second line of resistance represented by 16S rRNA methyltransferases, whose action makes their ribosomes insensitive to aminoglycosides without interfering with the action of the latter on phages (40).

Considering the colossal number of molecules produced by environmental bacteria whose physiological role is still unclear, we postulate that additional prokaryotic antiphage metabolites are to be discovered in the future, further underlining the extraordinary diversity of strategies employed by bacteria against their viral predators.

MATERIALS AND METHODS

Bacterial strains and growth conditions. All bacterial strains, phages, and plasmids used in this study are listed in Table S2A, B, and C, respectively. For growth studies and double-agar overlay assays, *Streptomyces* sp. cultures were inoculated from spore stocks and cultivated at 30°C and 120 rpm using glucose-yeast extract-malt extract (GYM) medium for *S. venezuelae* and *Streptoalloteichus tenebrarius* and yeast extract-malt extract (YEME) medium for *S. coelicolar* (35). *E. coli* was cultivated in lysogeny broth (LB) medium at 37°C and 170 rpm, while *C. glutamicum* was grown in brain heart infusion (BHI) medium at 30°C and 120 rpm.

For double-agar overlays, BHI agar for *C. glutamicum*, LB agar for *E. coli*, and GYM agar (pH 7.3) for all Streptomyces species were used, with 0.4% and 1.5% agar for the top and bottom layers, respectively. For quantification of extracellular phages, 2 μ L of the culture supernatants was spotted on a bacterial lawn propagated on a double-agar overlay inoculated at an initial optical density at 450 nm (OD₄₅₀) of 0.4 for Streptomyces spp, an OD₆₀₀ of 0.1 for *E. coli*, and an OD₆₀₀ of 0.7 for *C. glutamicum*. Both agar layers were supplemented with antibiotics at the indicated concentrations.

For standard cloning applications, *E. coli* DH5 α was cultivated in LB medium containing the appropriate antibiotic at 37°C and 120 rpm. For conjugation between *Streptomyces* spp. and *E. coli*, the conjugative *E. coli* strain ET12567/pUZ8002 was used (41).

Recombinant DNA work and cloning. All plasmids and oligonucleotides used in this study are listed in Table S2C and D, respectively. Standard cloning techniques such as PCR and restriction digestion were performed according to standard protocols (42). In all cases, Gibson assembly was used for plasmid construction (43). DNA regions of interest were amplified via PCR using the indicated plasmid DNA as the template. The plasmid backbone was cut using the listed restriction enzymes. DNA sequencing and synthesis of oligonucleotides was performed by Eurofins Genomics (Ebersberg, Germany).

Phage infection curves. For phage infection curves, the BioLector microcultivation system of m2plabs (Baesweiler, Germany) was used (44). Cultivations were performed as biological triplicates in FlowerPlates (m2p-labs, Germany) at 30°C and a shaking frequency of 1,200 rpm. During cultivation, biomass was measured as a function of backscattered light intensity with an excitation wavelength (λ_{ex}) of 620 nm (filter module: $\lambda_{ex}/\lambda_{erms}$ 620 nm/620 nm; gain, 25 or 20 in Fig. 3a) every 15 min. All growth curves are baseline corrected. Main cultures of *Streptomyces* spp. in 1 mL GYM medium containing the indicated supplements were inoculated with overnight cultures in the same medium to an initial OD₄₅₀ of 0.15. Infection was performed by adding phages to an initial titer of 10' PFU/mL. Supernatants were collected in 2-h intervals to determine the time course of phage titer via double-agar overlays. Phage infection curves in *E. coli* were done in the same way at 37°C and 1,200 rpm using an initial OD₆₀₀ of 0.1 in 1 mL LB medium and an initial phage titer of 10⁸ PFU/mL, resulting in a multiplicity of infection (MOI) of 1.

Phage infection curves in shaking flasks were performed analogously to the cultivation in microbioreactors using a shaking frequency of 120 rpm. To study phage infection and the influence of aminoglycosides in *Streptomyces*, we draw attention to the importance of ion content, e.g., of water used for medium preparation.

Cultivation and perfusion in microfluidic devices. Single-cell analysis of *S. venezuelae* cells infected with phage Alderaan in presence and absence of apramycin was performed using an in-house-developed microfluidic platform (45–47). Cultivation and time-lapse imaging were performed in three steps. First, cultivation chambers in the microfluidic chip were inoculated with GYM medium containing an

10.1128/mbio.00783-22 12

initial spore titer of 10⁸ PFU/mL. During the following precultivation phase, cells in all chambers were cultivated under continuous GYM medium supply supplemented with 2.5 μ g/mL apramycin (flow rate, 300 nL/min) to allow comparable growth conditions. After 6 h of precultivation, cells were cultivated for 3 h in GYM medium containing one of the final apramycin concentrations (0, 5, or 10 μ g/mL). Subsequently, infection was initiated by a continuous supply of GYM medium containing the final apramycin concentrations and Alderaan phages with a titer of 10⁸ PFU/mL (flow rate, 200 nL/min). By using disposable syringes (Omnifix-F tuberculin, 1 mL; B. Braun Melsungen AG, Melsungen, Germany) and a high-precision syringe pump system (neMESYS; Cetoni GmbH, Korbussen, Germany), continuous medium supply and waste removal were achieved. Phase-contrast images were obtained at 5-min intervals (exposure time, 100 ms) by a fully motorized inverted Nikon Eclipse Ti microscope (Nikon Europe B.V., Amsterdam, Netherlands). During the complete cultivation, the temperature was set to 30°C using an incubator system (PeCon GmbH, Erbach, Germany).

Cultivation in spent medium. For preparation of spent medium, cultures of the natural apramycin producer *Streptoalloteichus tenebrorius* were prepared by inoculating 50 mL of GYM medium to an initial OD_{aso} of 0.1 and were cultivated for 4 days. Spent medium of the culture was collected every day by centrifugation and subsequent filtration of the supernatant. After adjustment of the pH to 7.3, GYM medium and spent medium were mixed in a ratio of 4.1, so that spent medium accounted for 20% of the total volume. Ten-times-concentrated GYM was added to keep the concentration of C sources equal to that of fresh GYM medium. Cultivation and infection of the apramycin-resistant *S. venezuelae*/pULK04 strain in 20% spent medium was conducted in microbioreactors as describe above by using an initial OD_{aso} of 0.5 and an initial phage titer of 10⁶ PFU/mL.

LC-MS measurements of apramycin. Aminoglycosides were analyzed using an Agilent ultrahigh-performance LC (UHPLC) 1290 Infinity system coupled to a 6130 Quadrupole LC-MS system (Agilent Technologies, Waldbronn, Germany). LC separation was carried out using an InfinityLab Poroshell 120 2.7 μ m EC-C₁₈ column (3.0 by 150 mm; Agilent Technologies, Waldbronn, Germany) at 40°C. For elution, 0.1% acetic acid (solvent A) and acetonitrile supplemented with 0.1% acetic acid (solvent B) were applied as the mobile phases at a flow rate of 0.3 mL/min. A gradient elution was used, where the amount of solvent B was increased stepwise: minutes 0 to 6, 10% to 25%; minutes 6 to 7, 25% to 50%; minutes 7 to 8, 50% to 100%; and minutes 8 to 8.5, 100% to 10%. The mass spectrometer was operated in the positive electrospray ionization (ESI) mode, and data were acquired using the selected-ion-monitoring (SIM) mode. An authentic apramycin standard was obtained from Sigma-Aldrich (Munich, Germany). Area values for [M+H]⁺ mass signals were linear for metabolite concentrations from 10 to 50 μ d/mL.

Potassium efflux assays. Cultures of *E. coli* DSM 4230/pEKEx2.d were grown in LB medium supplemented with 50 µg/mL apramycin at 37°C and 170 rpm overnight. Fresh LB medium (50 µg/mL apramycin if needed) was inoculated 1:100 from the overnight cultures and incubated at 37°C and 120 rpm for 1.5 h. The cultures were centrifuged at 5,000 × *g* for 20 min, and the pellets were resuspended in SM buffer (0.1 M NaCl, 8 mM MgSO₄, 50 mM Tris-HCl [pH 7.5]). The OD₆₀₀ was measured and adjusted to 2. The cultures were stored at 4°C and incubated at 37°C for 5 min directly before use. The measurements were performed using an Orion potassium ion selective electrode (Thermo Fisher Scientific, Waltham, MA, USA). Five microliters of the prepared cultures was mixed 1:50 with Orion ionic strength adjuster (ISA) (Thermo Fisher Scientific, Waltham, MA, USA), and measurements were started immediately to monitor the electric potential (in millivolts) every 5 s for a total of 60 min at room temperature with constant stirring. If apramycin was needed, it was added in the beginning to a concentration of 100 µg/mL. After 5.5 min, 100 µL of a polyethylene glycol (PEG)-precipitated λ phage lysate in SM buffer (10¹¹ PFU/ mL) was added to the cultures.

Quantitative real-time PCR. Quantification of cell-associated Alderaan phages was performed via quantitative real-time PCR. For this, infection of the apramycin-resistant strain S. venezuelae ATCC 10712 pIJLK04 with Alderaan was performed as described in "Phage infection curves." At the indicated time points, 3 OD units of cells were harvested via centrifugation at 5,000 imes g and 4°C for 10 min and washed twice with phosphate-buffered saline (PBS) before being stored at -20° C. For quantification of intracel-Iular phage DNA in presence and absence of apramycin, cells were resuspended in 500 μ L lysis buffer (10 mM Tris, 50 mM NaCl [pH 7.0]), and cell disruption was performed using a Precellys instrument (Bertin, Montigny Le Bretonneux, France) at 6,000 rpm three times for 40 s each. After centrifugation at 16,000 imes g and 4°C for 10 min, DNA concentrations in the supernatants were determined via nanophotometer (Implen, Munich, Germany) and adjusted to 1 ng/ μ L. Finally, 5 μ L of the diluted supernatants as the template DNA was mixed with 10 μL 2× Luna universal qPCR master mix (New England BioLabs, Ipswich, MA, USA) and 1 µL of each oligonucleotide (Table S2D) (final oligonucleotide concentration, 0.5 μ M) and adjusted to a final volume of 20 μ L with double-distilled water (ddH₂O). Measurements were performed in 96-well plates in the qTOWER 2.2 (Analytik Jena, Jena, Germany). For the determination of the relative concentration of cell-associated phages, the relative expression ratio of the phage target phage gene (HQ601_00028, coding for the minor tail protein of Alderaan; PCR product, 144 bp) to the S. venezuelae housekeeping gene atpD (coding for the ATP synthase beta subunit; PCR product, 147 bp) was calculated via the "Relative quantification method" function of the gPCRsoft 3.1 software (Analytik Jena, Jena, Germany).

Transcriptomics via RNA sequencing. To compare transcription of phage and host DNA in presence and absence of apramycin, infection of the apramycin-resistant strain *S. venezuelae* ATCC 10712/ pULK04 with Alderaan was conducted as described in "Phage infection curves." Cells were harvested 90 min and 180 min after infection on ice at 5,000 \times *g* and 4°C for 10 min. RNA purification was done using the Monarch total RNA miniprep kit (New England Biolabs, Ipswich, MA, USA) according to the

10.1128/mbio.00783-22 13

manufacturer's manual. Depletion of rRNA, library preparation, and sequencing were conducted by Genewiz (Leipzig, Germany)

After sequencing, all subsequent steps were conducted using CLC genomic workbench V. 20.0.4 software (Qiagen, Hilden, Germany). The initial quality check to analyze read quality and sequencing performances was followed by a trimming step. This step was used to remove read-through adapter sequences, leftover adapter sequences, low-quality reads (limit = 0.05), and ambiguous nucleotides. Subsequently, the trimmed reads were mapped against the genomes of S. venezuelae (accession no. NC_018750.1) and the phage Alderaan (accession no. MT711975.1). Coverage plots were generated to show the distribution of mapped reads on both genomes. Subsequently, transcripts-per-million (TPM) values were calculated using the RNA-seq analysis tool of CLC genomics workbench (read alignment parameters: mismatch cost, 2; insertion cost, 3; deletion cost, 3; length fraction, 0.8; similarity fraction, 0.8; strand specificity, both; maximum number of hits for a read, 10). A table containing these values and an overview matrix containing all values were exported for each sample.

Phage targeting direct-geneFISH. Visualization and guantification of intracellular phage DNA during the time course of infection were conducted via fluorescence in situ hybridization (FISH), following the direct-geneFISH protocol (48), with modifications as described below.

Design of phage gene probes was done using the gene-PROBER (49). Sequences of the 200-bp polynucleotides for Alderaan and 300-bp polynucleotides for λ are provided in Table 53. Phage infection was performed as described in "Phage infection curves" using 107 PFU/mL as the initial phage titer for both phages. For infection of E. coli, the chemical labeling of polynucleotides with Alexa Fluor 647 dye (Thermo Fisher Scientific, Waltham, MA, USA) as well as the "core" direct-geneFISH protocol for microscopic slides was conducted as described previously using 0.5 mg/mL lysozyme for permeabilization and 35% (vol/vol) formamide during the hybridization step. Imaging of cells was performed with an inverted time-lapse live cell microscope (Nikon Europe B.V., Amsterdam, Netherlands) using a 100× oil immersion objective (CFI Plan Apo Lambda DM; 100× oil; numerical aperture [NA], 1.45; Nikon Europe B.V., Amsterdam, Netherlands) (45). Fluorescence was recorded using the optical filters DAPI (4',6-diamidino-2-phenylindole) and CY5-4040C (DAPI: excitation, 360/40 nm; dichroic, 400 nm; emission, 460/50 nm; exposure time, 500 ms; CY5: excitation, 628/40 nm; dichroic, 660 nm; emission, 692/40 nm; exposure time, 500 ms [AHF Analysentechnik AG, Tübingen, Germany]). Phase contrast was imaged with an exposure time of 500 ms.

For S. venezuelae infection, the protocol was adjusted as follows. Fixation of cells and phages was performed in 50% ethanol overnight at 4°C. After washing and immobilization, permeabilization was performed with 1.5 mg/mL lysozyme for 60 min at 37°C. Due to the high GC content of the phage Alderaan. the formamide concentration in the hybridization buffer and in the humidity chamber was adjusted to 60% (vol/vol) and the NaCl concentration in the washing buffer was reduced to 4 mM. After counterstaining with DAPI, imaging of cells was performed as described for E. coli using the optical filters DAPI and CY5-4040C with the indicated exposure times (DAPI: excitation, 360/40 nm; dichroic, 400; emission, 460/50 nm; exposure time, 800 ms; CY5: excitation, 628/40 nm; dichroic, 660; emission, 692/40 nm; exposure time, 500 ms [AHF Analysentechnik AG, Tübingen, Germany]). Phase contrast was imaged with an exposure time of 500 ms. The images for phage signal quantification were taken at the same exposure times to enable comparison; exposure times were adjusted to avoid overexposure of the signals. Preparation of image cutouts and adjustments of lookup tables (LUTs) were performed using NIS-Elements BR 5.30.03 (64 bit).

As a quantification of the microscopic analyses, plots showing the distribution of Cy5 signal intensities for single microscopy images were generated. To this end, signal intensity of each pixel of the Cy5 channel images was determined using the software Fiji (50), and the frequency of occurrence of each intensity was calculated and plotted using R with the Rstudio interface (51, 52). Fluorescence intensity profiles of single replicates are shown in Fig. S6a and c.

Purification of the AAC(3)IV apramycin acetyltransferase. For heterologous protein overproduction, E. coli BL21(DE3) cells containing the pAN6_aac(3)IV_CStrep plasmid were cultivated as described in "Bacterial strains and growth conditions." Precultivation was performed in LB medium supplemented with 50 μ g/mL kanamycin (LB Kan_{so}), which was incubated overnight at 37°C and 120 rpm. The main culture in LB Kan_{50} medium was inoculated to an OD_{600} of 0.1 using the preculture. At an OD_{600} of 0.6, gene expression was induced using 100 μ M IPTG (isopropyl- β -D-thiogalactopyranoside). Cells were harvested after additional 24 h of incubation at 20°C.

Cell harvesting and disruption were performed as described earlier (53) using buffer A (100 mM Tris-HCl [pH 8.0]) with cOmplete protease inhibitor (Roche, Basel, Switzerland) for cell disruption and buffer B (100 mM Tris-HCl, 500 mM NaCl [pH 8.0]) for purification. Purification of the Strep-tagged AAC(3)IV apramycin acetyltransferase was conducted by applying the supernatant to an equilibrated 2-mL Strep-Tactin-Sepharose column (IBA, Göttingen, Germany). After washing with 20 mL buffer B, the protein was eluted with 5 mL buffer B containing 15 mM p-desthiobiotin (Sigma-Aldrich, St. Louis, MO, USA).

After purification, the purity of the elution fractions was checked by SDS-PAGE (54) using a 4 to 20% Mini-Protean gradient gel (Bio-Rad, Munich, Germany). The protein concentration of the elution fraction was determined with the Pierce bicinchoninic acid (BCA) protein assay kit (Thermo Fisher Scientific, Waltham, MA, USA), and the elution fraction with the highest protein concentration was chosen for further use

In vitro acetylation reaction of apramycin. Protein purification of the AAC(3)IV apramycin acetyltransferase was conducted as described above. Acetylation of apramycin was performed using a modified version of the protocol described by Magalhaes and Blanchard (21). Assay mixtures were composed of 100 µL 100 mM Tris-HCI-500 mM NaCI (pH 8.0) containing the AAC(3)IV at a concentration of 10 µg/ mL, as well as 10 mM apramycin (approximately 5 mg/mL) and 10 mM acetyl-CoA sodium salt (Sigma-Aldrich, St. Louis, MO, USA). The assay mixtures were incubated at 37°C for 20 min

Mav/June 2022 Volume 13 Issue 3

10.1128/mbio.00783-22 14

Data availability. Raw data as well as processed tables were deposited in the GEO database under the accession number GSE171784.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only. VIDEO S1, MOV file, 2 MB. FIG S1, PDF file, 1.1 MB. FIG S2, PDF file, 2.5 MB. FIG S3, PDF file, 1.1 MB. FIG S4, PDF file, 1.1 MB. FIG S5, PDF file, 1.1 MB. FIG S6, PDF file, 1.1 MB. TABLE S1, DOCX file, 0.01 MB. TABLE S2, DOCX file, 0.05 MB. TABLE S3, DOCX file, 0.02 MB

ACKNOWLEDGMENTS

We thank the European Research Council (ERC Starting Grant, grant number 757563), the Deutsche Forschungsgemeinschaft (SPP 2330, project 464434020), and the Helmholtz Association (grant number W2/W3-096) for financial support.

We thank Paul Ramp (Forschungszentrum Jülich) and Natalia Tschowri (University of Hannover) for providing strains and plasmids and our bachelor's degree student Lisa Helm for her contribution to this project. We furthermore thank Mark Buttner (John Innes Centre, Norwich, United Kingdom) for introducing us into *Streptomyces* biology and for many fruitful discussions.

We declare no conflict of interest.

REFERENCES

- Hampton HG, Watson BNJ, Fineran PC. 2020. The arms race between bacteria and their phage foes. Nature 577:327–336. https://doi.org/10.1038/ s41586-019-1894-8.
- Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A, Keren M, Amitai G, Sorek R. 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359:eaar4120. https://doi.org/10.1126/science.aar4120.
- Gao L, Altae-Tran H, Böhning F, Makarova KS, Segel M, Schmid-Burgk JL, Koob J, Wolf YI, Koonin EV, Zhang F. 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369:1077–1084. https://doi .org/10.1126/science.aba0372.
- Rostøl JT, Marraffini L. 2019. (Ph)ighting phages: how bacteria resist their parasites. Cell Host Microbe 25:184–194. https://doi.org/10.1016/j.chom .2019.01.009.
- Kronheim S, Daniel-Ivad M, Duan Z, Hwang S, Wong AI, Mantel I, Nodwell JR, Maxwell KL. 2018. A chemical defence against phage infection. Nature 564:283–286. https://doi.org/10.1038/s41586-018-0767-x.
- Bernheim A, Millman A, Ofir G, Meitav G, Avraham C, Shomar H, Rosenberg MM, Tal N, Melamed S, Amitai G, Sorek R. 2021. Prokaryotic viperins produce diverse antiviral molecules. Nature 589:120–124. https:// doi.org/10.1038/s41586-020-2762-2.
- Hopwood DA. 2007. How do antibiotic-producing bacteria ensure their self-resistance before antibiotic biosynthesis incapacitates them? Mol Microbiol 63:937–940. https://doi.org/10.1111/j.1365-2958.2006.05584.x.
- Tenconi E, Rigali S. 2018. Self-resistance mechanisms to DNA-damaging antitumor antibiotics in actinobacteria. Curr Opin Microbiol 45:100–108. https://doi.org/10.1016/j.mib.2018.03.003.
 Schatz A, Bugie E, Waksman SA. 2005. The classic: streptomycin, a sub-
- Schatz A, Bugie E, Waksman SA. 2005. The classic: streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria. Clin Orthop Relat Res 437:3–6. https://doi.org/10.1097/01 .blo.0000175887.98112.fe.
- Schindler J. 1964. Inhibition of reproduction of the f2 bacteriophage by streptomycin. Folia Microbiol 9:269–276. https://doi.org/10.1007/BF02873305.
- Bowman BU. 1967. Biological activity of phi-X DNA. I. Inhibition of infectivity by streptomycin. J Mol Biol 25:559–561. https://doi.org/10.1016/ 0022-2836(67)90207-0.

May/June 2022 Volume 13 Issue 3

- Brock TD, Mosser J, Peacher B. 1963. The inhibition by streptomycin of certain *Streptococcus* bacteriophages, using host bacteria resistant to the antibiotic. J Gen Microbiol 33:9–22. https://doi.org/10.1099/00221287-33-1-9.
- Krause KM, Serio AW, Kane TR, Connolly LE. 2016. Aminoglycosides: an overview. Cold Spring Harb Perspect Med 6:a027029. https://doi.org/10 .1101/cshperspect.a027029.
- Padilla IMG, Burgos L. 2010. Aminoglycoside antibiotics: structure, functions and effects on in vitro plant culture and genetic transformation protocols. Plant Cell Rep 29:1203–1213. https://doi.org/10.1007/s00299-010-0900-2.
 Koonin EV, Dolja VV, Krupovic M, Varsani A, Wolf YI, Yutin N, Zerbini FM,
- Koonin EV, Dolja VV, Krupovic M, Varsani A, Wolf YI, Yutin N, Zerbini FM, Kuhn JH. 2020. Global organization and proposed megataxonomy of the virus world. Microbiol Mol Biol Rev 84:e00061-19. https://doi.org/10 .1128/MMBR.00061-19.
- Hancock RE, Raffle VJ, Nicas TI. 1981. Involvement of the outer membrane in gentamicin and streptomycin uptake and killing in *Pseudomonas aeruginosa*. Antimicrob Agents Chemother 19:777–785. https://doi.org/10 .1128/AAC.19.5.777.
- Tamura T, Ishida Y, Otoguro M, Hatano K, Suzuki K. 2008. Classification of 'Streptomyces tenebrarius' Higgins and Kastner as Streptoalloteichus tenebrar- ius nom. rev., comb. nov., and emended description of the genus Streptoallo- teichus. Int J Syst Evol Microbiol 58:688–691. https://doi.org/10.1099/ijs.0 .65272-0.
- Boulanger P, Letellier L. 1992. Ion channels are likely to be involved in the two steps of phage T5 DNA penetration into *Escherichia coli* cells. J Biol Chem 267:3168–3172. https://doi.org/10.1016/S0021-9258(19)50710-4.
- Jiang Z, Wei J, Liang Y, Peng N, Li Y. 2020. Aminoglycoside antibiotics inhibit mycobacteriophage infection. Antibiotics (Basel) 9:714. https://doi .org/10.3390/antibiotics9100714.
- Allers E, Moraru C, Duhaime MB, Beneze E, Solonenko N, Barrero-Canosa J, Amann R, Sullivan MB. 2013. Single-cell and population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free viruses. Environ Microbiol 15:2306–2318. https://doi.org/10 .1111/1462-2920.12100.
- Magalhaes ML, Blanchard JS. 2005. The kinetic mechanism of AAC3-IV aminoglycoside acetyltransferase from *Escherichia coli*. Biochemistry 44: 16275–16283. https://doi.org/10.1021/bi051777d.

10.1128/mbio.00783-22 15

89

- Perlman D, Langlykke AF, Rothberg HD, Jr. 1951. Observations on the chemical inhibition of *Streptomyces griseus* bacteriophage multiplication. J Bacteriol 61:135–143. https://doi.org/10.1128/jb.61.2.135-143.1951.
- Brock TD, Wooley SO. 1963. Streptomycin as an antiviral agent: mode of action. Science 141:1065–1067. https://doi.org/10.1126/science.141 .3585.1065.
- 24. Zuo P, Yu P, Alvarez PJJ. 2021. Aminoglycosides antagonize bacteriophage proliferation, attenuating phage suppression of bacterial growth, biofilm formation, and antibiotic resistance. Appl Environ Microbiol 87: e0046821. https://doi.org/10.1128/AEM.00468-21.
- Chow CS, Bogdan FM. 1997. A structural basis for RNA-ligand interactions. Chem Rev 97:1489–1514. https://doi.org/10.1021/cr960415w.
- Tor Y, Hermann T, Westhof E. 1998. Deciphering RNA recognition: aminoglycoside binding to the hammerhead ribozyme. Chem Biol 5:R277–R283. https://doi.org/10.1016/S1074-5521(98)90286-1.
- Zapp ML, Stern S, Green MR. 1993. Small molecules that selectively block RNA binding of HIV-1 Rev protein inhibit Rev function and viral production. Cell 74:969–976. https://doi.org/10.1016/0092-8674(93)90720-8.
 Litovchick A, Evdokimov AG, Lapidot A. 1999. Arginine-aminoglycoside con-
- Litovchick A, Evdokimov AG, Lapidot A. 1999. Arginine-aminoglycoside conjugates that bind to HIV transactivation responsive element RNA in vitro. FEBS Lett 445:73–79. https://doi.org/10.1016/S0014-5793(99)00092-7.
 Litovchick A, Evdokimov AG, Lapidot A. 2000. Aminoglycoside – arginine
- Litovchick A, Evdokimov AG, Lapidot A. 2000. Aminoglycoside arginine conjugates that bind TAR RNA: synthesis, characterization, and antiviral activity. Biochemistry 39:2838–2852. https://doi.org/10.1021/bi9917885.
- activity. Biochemistry 39:2838–2852. https://doi.org/10.1021/bi9917885. 30. Mei H-Y, et al. 1995. Inhibition of an HIV-1 Tat-derived peptide binding to TAR RNA by aminoglycoside antibiotics. Bioorg Med Chem Lett 5: 2755–2760. https://doi.org/10.1016/0960-894X(95)00467-8. 31. Gopinath S, Kim MV, Rakib T, Wong PW, van Zandt M, Barry NA, Kaisho T,
- Gopinath S, Kim MV, Rakib T, Wong PW, van Zandt M, Barry NA, Kaisho T, Goodman AL, Iwasaki A. 2018. Topical application of aminoglycoside antibiotics enhances host resistance to viral infections in a microbiota-independent manner. Nat Microbiol 3:611–621. https://doi.org/10.1038/s41564 -018-0138-2.
- Acevedo MAW, Erickson AK, Pfeiffer JK, Greber UF. 2019. The antibiotic neomycin enhances cossackievirus plaque formation. mSphere 4:e00632-18. https://doi.org/10.1128/mSphere.00632-18.
- Kopaczynska M, Lauer M, Schulz A, Wang T, Schaefer A, Fuhrhop J-H. 2004. Aminoglycoside antibiotics aggregate to form starch-like fibers on negatively charged surfaces and on phage lambda-DNA. Langmuir 20: 9270–9275. https://doi.org/10.1021/la049207m.
- Kopaczynska M, Schulz A, Fraczkowska K, Kraszewski S, Podbielska H, Fuhrhop JH. 2016. Selective condensation of DNA by aminoglycoside antibiotics. Eur Biophys J 45:287–299. https://doi.org/10.1007/s00249-015-1095-9.
- Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. 2000. Practical streptomyces genetics: a laboratory manual. John Innes Foundation, Norwich, United Kingdom.
- Bibb MJ. 2013. Understanding and manipulating antibiotic production in actinomycetes. Biochem Soc Trans 41:1355–1364. https://doi.org/10 .1042/BST20130214.
- McCormick JR, Flärdh K. 2012. Signals and regulators that govern Streptomyces development. FEMS Microbiol Rev 36:206–231. https://doi.org/10 .1111/j.1574-6976.2011.00317.x.
- Rosner A, Gutstein R. 1981. Adsorption of actinophage Pal 6 to developing mycelium of *Streptomyces albus*. Can J Microbiol 27:254–257. https:// doi.org/10.1139/m81-039.

- Reygaert WC. 2018. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol 4:482–501. https://doi.org/10.3934/ microbiol.2018.3.482.
- Ogawara H. 2019. Comparison of antibiotic resistance mechanisms in antibiotic-producing and pathogenic bacteria. Molecules 24:3430. https:// doi.org/10.3390/molecules24193430.
- MacNeil DJ, Gewain KM, Ruby CL, Dezeny G, Gibbons PH, MacNeil T. 1992. Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61–68. https://doi .org/10.1016/0378-1119(92)90603-M.
- 42. Sambrook J, Russell DW. 2001. Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- Gibson DG. 2011. Enzymatic assembly of overlapping DNA fragments. Methods Enzymol 498:349–361. https://doi.org/10.1016/B978-0-12-385120 -8.00015-2.
- 44. Kensy F, Zang E, Faulhammer C, Tan RK, Buchs J. 2009. Validation of a high-throughput fermentation system based on online monitoring of biomass and fluorescence in continuously shaken microtiter plates. Microb Cell Fact 8:31. https://doi.org/10.1186/1475-2859-8-31.
- Grünberger A, Probst C, Helfrich S, Nanda A, Stute B, Wiechert W, von Lieres E, Nöh K, Frunzke J, Kohlheyer D. 2015. Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform. Cytometry A 87:1101–1115. https://doi.org/10.1002/cyto.a.22779.
- Grünberger A, van Ooyen J, Paczia N, Rohe P, Schiendzielorz G, Eggeling L, Wiechert W, Kohlheyer D, Noack S. 2013. Beyond growth rate 0.6: Corynebacterium glutamicum cultivated in highly diluted environments. Biotechnol Bioeng 110:220–228. https://doi.org/10.1002/bit.24616.
- Helfrich S, Pfeifer E, Krämer C, Sachs CC, Wiechert W, Kohlheyer D, Nöh K, Frunzke J. 2015. Live cell imaging of SOS and prophage dynamics in isogenic bacterial populations. Mol Microbiol 98:636–650. https://doi.org/10 .1111/mmi.13147.
- Barrero-Canosa J, Moraru C. 2021. Linking microbes to their genes at single cell level with direct-geneFISH. Methods Mol Biol 2246:169–205. https://doi .org/10.1007/978-1-0716-1115-9_12.
- Moraru C. 2021. Gene-PROBER—a tool to design polynucleotide probes for targeting microbial genes. Syst Appl Microbiol 44:126173. https://doi .org/10.1016/j.syapm.2020.126173.
- Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. 2012. Fiji: an opensource platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019.
- Allaire J. 2012. RStudio: integrated development environment for R. RStudio, Boston, MA.
- 52. R Core Team. 2021. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
- Pfeifer E, Hünnefeld M, Popa O, Polen T, Kohlheyer D, Baumgart M, Frunzke J. 2016. Silencing of cryptic prophages in *Corynebacterium glutamicum*. Nucleic Acids Res 44:10117–10131. https://doi.org/10.1093/nar/gkw692.
- Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10 .1038/227680a0.

3.3. Inactivation of phage particles in the extracellular space of *Streptomyces* populations

Kever, L. and Frunzke, J.

Research article is part of this thesis; to be submitted

Contributor role	Contributor
Conceptualization	LK (65%), JF (35%)
Data curation	LK (100%)
Formal analysis	LK (100%)
Funding acquisition	JF (100%)
Investigation	LK (100%)
Methodology	LK (80%), JF (20%)
Project administration	LK (50%), JF (50%)
Resources	-
Software	-
Supervision	JF (60%), LK (40%)
Validation	LK (80%), JF (20%)
Visualization	LK (100%)
Writing – original draft	LK (70%), JF (30%)
Writing – review and editing	LK (50%), JF (50%)

Overall contribution: 85%

LK did all experimental work, data analysis and visualization except the scanning electron microscopy (Figure S4a) done by Dr. Mathias Müsken from the ZEIM department at Helmholtz Centre for Infection Research (HZI, Braunschweig, Germany). The original draft was mainly prepared by LK and LK took over a large part (50 %) of the revision and editing process.

Inactivation of phage particles in the extracellular space of *Streptomyces* populations

Larissa Kever¹ and Julia Frunzke^{1*}

¹Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany

*Corresponding author: Julia Frunzke; Email: j.frunzke@fz-juelich.de

Abstract

Multicellular development is one of the main characteristics of *Streptomyces*. However, its impact on the protection against phage infection remains largely unclear. In this study, we observed that *Streptomyces* phage infection significantly differs from infection of unicellular-growing bacteria. As exemplified by phage Alderaan infecting *Streptomyces venezuelae*, infection experiments revealed a successful phage amplification followed by a significant drop in infectious phage particles at later stages. This reduction in phage titer coincided with the re-growth of phage-resistant mycelium. In the following, we systematically considered bacterial molecule secretion, medium acidification and mycelial growth as potential influencing factors that could condition the reduction in infectious phage particles in the supernatant. In addition to the first two factors showing a possible contribution to the observed phenotype, the developmental state of the mycelium showed a strong impact on phage susceptibility. Besides Alderaan, we also observed a significant reduction for other non-host phages. This effect was even enhanced upon overexpression of *bldN*, which is involved in the formation of the hydrophobic protein sheath formed at later stages during mycelial development. Overall, these results suggest that the multicellular development of *Streptomyces* might represent an additional layer of the complex multicellular antiphage defense employed by these bacteria, which might have substantial ecological implications for community interactions.

Introduction | The Gram-positive soil bacterium Streptomyces represents the largest genus of Actinobacteria (Anderson & Wellington, 2001). Besides being a prolific producer of bioactive molecules (Hopwood, 1999; Watve et al., 2001), Streptomyces spp. differ significantly from other prokaryotes dividing by binary fission as they possess a unique developmental life cycle (Chater, 2016; Flärdh & Buttner, 2009). Starting with the germination of a spore, Streptomyces forms a network of branching hyphae known as vegetative mycelium. Unfavorable conditions such as nutrient deficiency foster transition to reproductive growth with erection of unbranched aerial hyphae and subsequent compartmentalization into unigenomic, stress-resistant spores (Flärdh & Buttner, 2009; McCormick & Flärdh, 2012). This transition is preceded by an autodegradation of the first substrate mycelium serving as nutrient source (Manteca et al., 2007; Miguélez et al., 1999). The production of bioactive compounds is intriguingly linked to this developmental program and is typically triggered by nutrient starvation or stress stimuli (Bibb, 2005).

The multicellular life style is regulated by a complex hierarchical network, which is controlled by the c-di-GMP-dependent activity of the master regulator BldD (Bush et al., 2015; Tschowri et al., 2014). During vegetative growth, BldD delays the onset of differentiation by repressing the key developmental bld and whi genes (Bush et al., 2015; den Hengst et al., 2010). Relieving repression by BldD initiates the first developmental transition from vegetative mycelium to aerial hyphae, which is accompanied by a change from hydrophilic to hydrophobic cell surface properties based on the $\sigma^{\text{BldN}}\text{-regulated transcription of \textit{rodlin}}$ and <code>chaplin</code> genes (Bibb et al., 2012; Claessen et al., 2003; Claessen et al., 2002; Elliot et al., 2003). In case of S. venezuelae, this so-called rodlet layer consists of three types of rodlin proteins (RdIA-C) as well as six types of chaplin proteins, two of them belonging to the group of long chaplins (ChpB and C) and four of them being short chaplins (ChpE-H) (Bibb et al., 2012). Together with the surfactant protein SapB, these proteins allow the escape of aerial hyphae from the aqueous environment into the air (Elliot & Talbot, 2004; Willey et al., 2006).

Due to the constant threat of phage attacks in almost every habitat, bacteria evolved multiple lines of antiphage defense including the well-characterized restriction-modification systems, CRISPR-Cas systems as well as abortive infection strategies. This repertoire experienced a significant expansion by the discovery of a multitude of new defense mechanisms fostering the notion of a prokaryotic immune system (Bernheim & Sorek, 2020; Doron et al., 2018). Despite the resurgence of phage research and the increasing amount of known actinobacteriophages (Hatfull, 2020), less is actually known about the extent to which Streptomyces can employ its features of bioactive molecule production and multicellular development as defense against viral predators. Just recently, bacterial small molecule production was discovered as a new anti-viral strategy as exemplified by Streptomyces-derived anthracyclins and aminoglycoside antibiotics (Kever et al., 2022; Kronheim et al., 2018). As important contributor of soil biomass, the dense, partly hydrophobic mycelium might represent a further layer of antiphage defense by retaining phages, as it was already described for fungal mycelia-phage-interactions (Ghanem et al., 2019).

Previous studies describing one-step infection curves with Streptomyces revealed a distinct drop in infectious phage particles at later stages of the experiment indicating inactivation of released viruses (Hardy et al., 2020). In this study, we dissected different parameters contributing to the reduction in phage titer by considering the impact of small molecule production, medium acidification and mycelial growth as potential influencing factors using Streptomyces venezuelae as model strain. Besides a potential impact of secreted antiphage molecules and medium acidification, we observed a high impact of the developmental stage of mycelium on phage susceptibility as evidenced by the transient phage tolerance of mature mycelium. Interestingly, a significant decline in infectious extracellular non-host phages during incubation with Streptomyces mycelium was observed, which seemed to coincide with the onset of differentiation. We could envision that phages might be adsorbed by the hydrophobic bacterial surface layer during hyphaespore transition. Overall, these findings emphasize a contribution of multicellular development to antiphage defense potentially providing a community-wide protection on an interspecies level.

Results

Mycelial growth coincides with a significant reduction of infectious phage particles | Infection curves with different *Streptomyces* phages recently revealed a significant reduction in extracellular phage titers upon re-growth of *Streptomyces* mycelium (Hardy et al., 2020). To investigate if this phenotype can also be observed during phage infection of non-filamentous growing hosts, long-term infection was comparatively performed for phages infecting different bacterial species, including Alderaan infecting *S. venezuelae* NRRL B-65442, CL31 infecting *C. glutamicum* MB001 and λ infecting *E. coli* LE392. Phage titers were quantified over time for an intermediate phage pressure (Alderaan: 10⁷ PFU/ml; CL31: 10⁴ PFU/ml; Lambda: 10⁸ PFU/ml).

Growth defects correlated well with applied initial phage titers for all tested phage-host pairs, with high titers resulting in a significant culture collapse. Accompanied quantification of the corresponding phage titers over time revealed an initial increase within the first hours of infection indicative for a successful phage amplification (Figure 1). In case of Alderaan, this ~1000-fold increase in infectious phage particles was followed by a decrease in extracellular titers starting ~48 h post infection. This temporally coincided with the re-growth of Streptomyces mycelium, which was later shown to be resistant towards re-infection with the same phage at an initial phage pressure of 10⁸ PFU/mI (Figure S1a). In contrast, CL31 titers during re-growing of C. glutamicum stayed almost constant. A comparable time course of phage titer was also quantified during $\boldsymbol{\lambda}$ infection indicating a ~100-fold increase within the first 8 h of infection, before reaching a plateau. To conclude, this phenotypic observation of declining phage titers could not be seen for unicellular-growing bacteria as exemplified by E. coli and C. glutamicum phage infection and thus might be conditioned by the filamentous growth of Streptomyces.

Figure 1: Emergence of phage-resistant *Streptomyces* mycelium results in a decrease in extracellular infectious phage particles. a) Infection curves of *S. venezuelae* NRRL B-65442 infected by Alderaan, *C. glutamicum* MB001 infected by CL31 and *E. coli* LE392 infected by λ . Cultivations were conducted in the BioLector microcultivation systems (Beckman Coulter Life Sciences, Krefeld, Germany) using three different initial phage titers as indicated (n=3 independent biological replicates). Phage titers were calculated over time via double-agar overlays for infection with an intermediate phage pressure (see PFU/ml values in brackets; grey bars). b) Representative double-agar overlay assays of three independent biological replicates.

Contribution of bacterial molecule secretion and medium acidification to phage inactivation | Phage infection in Streptomyces spp. exemplified by Alderaan infecting S. venezuelae exhibits an atypical time course of phage titers showing a drop during re-growing of phage-resistant Streptomyces mycelium. То discriminate between a decrease in total extracellular phage particles or rather in infectious phages, doubleagar overlays and qPCR were comparatively conducted during the entire infection experiment. Calculation of the end point fraction of remaining phages (72 h post infection) to the maximum titer reached (8 h post infection) showed a reduction in infectious phage particles of ≥99.9% for double-agar overlay quantification, whereas extracellular phage DNA-levels measured via qPCR just exposed a decline of ~92-96% (Figure 2a und Figure S1b and c). This hints on combinatorial effects of factors causing a complete removal/degradation of viral particles and further factors contributing to the inactivation of remaining particles.

In the following, different factors were considered for their contribution to the decline in infectious phage particles: (i) instability of phage particles due to acidification of the culture supernatant, (ii) inactivation of phages by production and secretion of antiphage metabolites or proteins as well as (iii) adsorption of phages to mycelial structures.

Growth of *S. venezuelae* in GYM medium can result in a significant acidification of the medium reaching pH values of ~4.5-5.0 (Figure S1d), most likely due to secretion of organic acids (Ahmed et al., 1984; Madden & Ison, 1996). Testing pH stability of phage Alderaan in GYM medium adjusted to different pH values showed a high pH stability at pH 5.0-9.0. At pH 4.0, a ~100-fold reduction in infectious phage particles was detected after 24 h of incubation. This was less pronounced than

the decline observed during long-term infection, even at a lower pH value than usually reached during cultivation in GYM medium (Figure S1e). Nevertheless, to eliminate any influence of acidification, long-term infection was repeated in GYM medium buffered with 100 mM MOPS (pH 7.3). Interestingly, bacteria showed significantly faster re-growth of mycelium in buffered conditions starting already at 18 h post infection, which coincided with a less pronounced, but still distinct reduction in infectious phage particles of ~10-fold (Figure 2c). This could be explained by either eliminating acidification itself as an influence factor or by downstream effects of buffered cultivation conditions potentially resulting in an altered morphology or exo-metabolome.

Further, we tested the impact of secreted metabolites or proteins on phage stability by incubating Alderaan in either fresh GYM medium or in phage-free spent medium (SM) of S. venezuelae. Additionally, the effect of chloramphenicol (Cm) as a well-known antibiotic produced by S. venezuelae (Vining & Stuttard, 1995) was directly tested on Alderaan plaque formation. The highest impact on infectious phage particles was observed upon incubation in spent medium harvested after 24 h of Streptomyces cultivation in unbuffered conditions (pH 6.9) showing a decline in phage titers of 60-73%, while all other tested conditions showed no substantial differences in infectious phage titers (Figure 2d and S1f). However, it should be noted that transient production of antiphage molecules cannot be completely ruled out and may not have been detected in this experimental setup.

Altogether, these data already gave a first hint that bacterial metabolite or protein secretion as well as medium acidification could contribute to the observed decline in infectious titers.

Figure 2: Influence of acidification and molecule secretion on infectious Alderaan particles. a) Fraction of remaining Alderaan phages (t_{72}/t_8) based on quantification of Alderaan genome equivalents via qPCR (three independent biological replicates (R1-R3) measured as technical triplicates) and quantification of PFUs (three independent biological replicates R1-R3). Corresponding growth curves and time-resolved measurements of phage DNA and PFUs are shown in Figure S1b and c. b) Schematic illustration of different influencing factors potentially contributing to the observed decrease in extracellular phage titers. c) Infection *S. venezuelae* NRRL B-65442 infected by Alderaan in GYM medium buffered with 100 mM MOPS (pH 7.3). Phage titers over time were calculated via double-agar overlays (grey bars) (n=3 independent biological replicates). d) Influence of spent media and chloramphenicol on Alderaan plaque formation. Phage Alderaan was incubated in different spent media of uninfected cultures under cultivation conditions for 48 h. Infectious phages were quantified via double-agar overlays directly after and in the end of incubation to calculate the log_{10} fold change (t_{48}/t_0) (n=3 independent biological replicates). In case of chloramphenicol (Cm) assays, plaque formation was counted on plates with and without 50 µg/ml Cm, shown as log_{10} fold change (Cm_{50}/Cm_0). For comparison, plaque formation at further Cm concentrations is shown Figure S1f.
Mature Streptomyces mycelium features a significant reduction in phage susceptibility | In addition to medium acidification and secreted bacterial molecules, a potential impact of mycelial structures on the decline in infectious phage particles was examined. Therefore, phage susceptibility of different developmental stages of S. venezuelae was investigated by using pre-cultures of different growth phases to inoculate main cultures for infection assays. The highest susceptibility towards Alderaan infection was observed for stationary precultures containing already a high proportion of spore chains. Upon inoculation of a fresh culture, spore germination led to a significant culture collapse upon addition of 10⁷ and 10⁸ PFU/ml of Alderaan (Figure 3a and b). An almost equivalent extent of phage infection on bacterial growth was obtained for young, vegetative mycelium just starting to branch, which derived from pre-cultures in the early exponential phase.

In contrast, the mature, dense mycelium from mid exponential pre-cultures showed a significantly enhanced phage tolerance as indicated by an omitted cell lysis at an intermediate phage pressure of 10⁷ PFU/ml. Comparing phage amplification until 24 h post infection revealed a ~1000-fold increase in extracellular phage titers for stationary and early exponential precultures when using an initial phage titer of 10⁷ PFU/ml for infection. This differed significantly for mid exponential cultures revealing no substantial phage amplification and even a slight decrease in infectious Alderaan phages over time (Figure 3c and Figure S2).

Figure 3: Influence of *S. venezuelae* developmental stage on phage susceptibility. a) Infection curves of *S. venezuelae* NRRL B-65442 infected by Alderaan. Pre-cultures of different developmental stages were used to inoculate main cultures for conducting infection assays in microtiter plates using three different initial phage titers as indicated (n=3 independent biological replicates) (early exp.: 16 h pre-cultivation, mid exp.: 20 h pre-cultivation, stationary: 30 h pre-cultivation). (b) Microscopy of *S. venezuelae* pre-cultures (scale bar = 10 μ m, exposure time = 120 ms). (c) Log₁₀ fold change of phage titers indicating the level of phage amplification until 24 h post infection. Phage titers over time were calculated at an intermediate phage pressure of 10⁷ PFU/ml via double-agar overlays (n=3 independent biological replicates). Corresponding double-agar overlay assays are shown in Figure S2.

Incubation with *Streptomyces* mycelium caused a decline in non-host phage titers | Based on the high phage tolerance of dense mycelium and the dropping phage titer upon re-growth of phage-resistant mycelium we hypothesized that the mycelial growth might contribute to the observed phenotype by efficiently adsorbing phages from the environment.

To prove this hypothesis, a broad set of phages infecting different bacterial species and belonging to different phage families was incubated with mycelium of *S. venezuelae*: Endor1, λ, T-phages, Langgrundblatt1, Pfeifenkraut, Athelas and CL31 as tailed dsDNA viruses from the class of Caudoviricetes, M13 as filamentous ssDNA viruses from the class of *Faserviricetes* and MS2 as ssRNA viruses from class of Leviviricetes (Table S2). To eliminate pH effects on phage stability, GYM medium was buffered with 100 mM MOPS (pH 7.3). Calculating start and end titers of infectious phage particles in the culture supernatants via double-agar overlays revealed no substantial influence of growing S. venezuelae mycelium on the majority of tested phages. However, listed in descending order CL31 infecting C. glutamicum MB001, T4 infecting E. coli B and MS2 infecting E. coli W1485 exhibited a decrease in extracellular phage titers upon incubation with mycelium, while corresponding spent medium showed no influence on phage infectivity (Figure 4a and Figure S3a-c). In the following, the term 'non-host phage' refers to phages unable to infect S. venezuelae.

Focusing on the lytic siphophage CL31 as the most affected one, incubation assays were repeated in a time-resolved manner with simultaneous quantification of CL31 DNA levels via qPCR. Continuously decreasing quantities of infectious phage particles in culture supernatant were detected from 6 h post inoculation, which coincided with the simultaneous decrease in CL31 DNA levels (Figure 4b). Microscopic analysis of mycelium during this decrease exposed first spore chains at 6 h and already a high proportion of spores at 9 h post inoculation. This indicates that a reduction in infectious CL31 particles went along with a transition from hyphal growth to sporulation suggesting an impact of the developmental stage of mycelium on this decrease. In contrast, spent medium taken at these time points and addition of new phage particles to the remaining ones showed no further decrease in infectious CL31 titers over 18 h, thereby widely excluding spent medium as main influencing factor (Figure 4c). However, attempts to get phages back in culture supernatant via extensive shaking or mechanical cell disruption as well as visualization of CL31 particles at the mycelial surface via scanning electron microscopy were not successful so far (Figure S4a and b).

To further focus on the influence of the developmental transition to spores on the decline in extracellular phage titers, incubation assays with CL31 were comparatively conducted with other microorganisms unable to sporulate as well as different Streptomyces species. Here, we included mycelium of S. coelicolor and S. olivaceus, the S. venezuelae developmental mutants $\Delta bldD:apr$ (hypersporulation phenotype (Tschowri et al., 2014)) and $\Delta bldN:apr$ (only vegetative growth (Bibb et al., 2012)), a couple of bacteria dividing by binary fission comprising E. coli, P. putida and B. subtilis as well as the haploid, yeast-like growing fungi Ustilago cynodontis (Table S1). Addition of CL31 phages to bacterial cultures of E. coli, P. putida and B. subtilis exhibited no significant decline in extracellular infectious CL31 particles (Figure 4d). The same applied to incubation of CL31 with the fungi U. cynodontis, which probably does not produce hydrophobicitymediating proteins in its haploid, yeast-like state (Teertstra et al., 2006; Teertstra et al., 2009). Additionally, a reduced decline was observed for S. coelicolor and S. olivaceus, which - different from S. venezuelae - revealed no sporulation during the entire cultivation in submerged cultures (Glazebrook et al., 1990; Manteca et al., 2008).

While the *S. venezuelae* wild type strain showed significant effects on extracellular CL31 titers, this decline was less pronounced during incubation with the developmental mutants $\Delta bldD$::apr and $\Delta bldN$::apr (Figure 4d). Deletion of bldD as the master regulator repressing the key developmental genes results in a hypersporulation phenotype forming premature spores from vegetative mycelium (Bush et al., 2015; Tschowri et al., 2014). Null mutants of σ^{BldN} are restricted to vegetative growth as they are unable to build up the hydrophobic surface layer during aerial hyphae formation by expression of *rodlin* and *chaplin* genes. Although the formation of aerial mycelium is not

relevant in submerged cultures, hyphae-spore transition was proven to be still accompanied by expression of *rodlin* and *chaplin* genes (Bibb et al., 2012). Accordingly, results gained for these two mutants lead to the hypothesis that dense mycelial networks as well as hydrophobic surface structures during late stages of *Streptomyces* development might substantially influence extracellular titers of infectious non-host phage particles. Consistent with this,

overproduction of the mature BldN protein and expected enhanced expression of *rodlin* and *chaplin* genes (Bibb et al., 2012) accelerated the observed decline in CL31 titers in direct comparison to the wild type strain cultivated in the same batch of medium (Figure 4e). This further strengthened the assumption that the hydrophobic layer could be one factor conditioning the drop in infectious phage particles (Figure 4f).

Figure 4: Influence of Streptomyces mycelium on extracellular phage titers of non-related phages. a) Schematic presentation of phages showing a reduction in titer upon incubation with S. venezuelae NRRL B-65442 mycelium and phages showing stable extracellular phage titers in presence of mycelium. Corresponding double-agar overlays are shown in Supplementary Figure S3b and c. The different phage morphotypes are illustrated as follows: blue - siphovirus; red - myovirus; green - podovirus; purple - inovirius; yellow - levivirus. b) Time-resolved quantification of CL31 phage particles during incubation with S. venezuelae NRRL B-65442 mycelium via double-agar overlays (cyan bars, n = 3 independent biological replicates) and via qPCR (reddisch dots, n = 6, three independent biological replicates measured as technical duplicates). The detection limit for double-agar overlays is indicated by the dotted line; for qPCR, measurement points minimally outside of the standards are marked by increased transparency (ts, t12, t18). c) Microscopic images of S. venezuelae mycelium during declining CL31 titers at 6 h and 9 h post inoculation (scale bar: 10 µm, exposure time = 200 ms) and influence of incubation with corresponding spent medium on extracellular CL31 titers. The yellow arrow points to the first spore chains detected after 6 h of incubation. d) Reduction in extracellular infectious CL31 particles during cultivation with different microorganism calculated via double-agar overlays, shown as log10 fold change t18/t0. In case of incubation with S. venezuelae wild type, one replicate showed a log10 fold change of ~-4, while two out of three replicates showed no more plaque formation after 18 h of incubation. e) Time-resolved reduction in extracellular infectious CL31 particles during cultivation with the wild type S. venezuelae NRRL B-65442 and S. venezuelae overexpressing bldN. f) Phenotype of the bldN overexpression strain in comparison to the wild type - both cultivated in GYM medium supplemented with 100 mM MOPS (pH 7.3) - with schematic representation of hypothetical downstream effects of enhanced BldN levels.

Discussion | Phage infection of *Streptomyces* spp. was shown to exhibit a unique time course of phage titers, which is characterized by a drop in extracellular infectious phage particles upon bacterial re-growth after an initial successful phage amplification. Such behavior markedly differs from prototypical infections and was not observed for the unicellular-growing bacteria included in our assays. Accordingly, we further investigated this declining titer by focusing on the potential contribution of mycelial growth of *Streptomyces*, which could present a further layer of antiphage defense.

Even when taking into account the different measurement inaccuracies of phage quantification via double-agar overlays and qPCR, we demonstrated that extracellular levels of phage DNA remain above the level of infectious phage particles. This suggests that the observed phenotypic time course of infectious phage particles is synergistically caused by a high proportion of completely removed phages from the extracellular fraction (~92-96% decrease in DNA levels) an and additional minor proportion of inactivated/partially destroyed phages (>99.9% decrease in PFU/ml). However, it should be noted that an unknown amount of non-encapsulated phage DNA deriving from lysed cells contributes to the quantified DNA level as well, which might bias the ratio of reduced infectivity versus DNA reduction. Another recent study from our laboratory revealed comparable results when quantifying the phage load from plaques of phage Alderaan on S. venezuelae. Analogously to our results gained for submerged cultures, plaque diameters started to decrease again after an initial cell lysis. Upon reconquering of the lysis zone and plaque shrinkage, a high reduction in infectious phage particles was measured, which co-occurred with a less pronounced decline in phage DNA levels. Additionally, reduction in plague size was shown to be neglectable for developmental mutants highlighting the significance of the hyphal structures for containment of phage infection (Luthe et al., 2023).

Approaching this phage inactivation in the extracellular space in more detail revealed a high impact of the developmental stage of mycelium on infection dynamics. Mature, highly branched mycelium of *S. venezuelae* exposed a transient tolerance towards

Alderaan infection leading even to a decrease in extracellular phage titers over time. However, the molecular basis of this increased phage tolerance at later stages during Streptomyces development was not investigated in detail thus far, but could potentially involve either a direct adsorption of phages to mycelium without following phage amplification or a shielding of phage receptors, which prevents phage adsorption and may favors the targeting of phages by extracellular phage-inactivating factors. The influence of mycelium age on phage susceptibility was also investigated in further studies. Exemplarily, mature mycelium of Streptomyces albus showed an enhanced adsorption capacity of actinophage Pal6 in comparison to newly germinated spores leading also to a decline in extracellular titers over time (Rosner & Gutstein, 1981). Moreover, Luthe et al. (2023) demonstrated a decrease in plaque diameter up to a complete prevention of Alderaan plaque formation with increasing age of the surface-grown mycelium used as bacterial lawn. They proposed that a reduced diffusivity upon increasing mycelial density significantly influenced spreading of infection. Comparable results regarding the influence of diffusivity were also published for E. coli biofilms serving as a multicellular antiphage defense by trapping phages in a curli fiber network (Bond et al., 2021; Vidakovic et al., 2018). Interestingly, a decrease in unadsorbed phages after initial phage amplification was also detected in soil microcosms at later stages of S. lividans infection with phage KC301. This was attributed to a high adsorption of phages to vegetative mycelium of mature colonies (Burroughs et al., 2000; Marsh & Wellington, 1992).

Apart from a potential direct influence of mycelial structures, an impact of medium acidification and secreted metabolites or proteins on extracellular infectious Alderaan particles was observed, but appeared to be rather minor. However, it should be noted that the current data just reflect the influence of spent medium from uninfected cultures. Accordingly, the transient production of antiphage molecules in response to phage infection cannot yet be ruled out and is an important aspect for further investigations, although *S. venezuelae* is not capable of producing aminoglycosides or anthracyclines as the two main classes of antiphage metabolites currently known

(Kever et al., 2022; Kronheim et al., 2018). Summarized, all considered parameters might contribute to the observed decline in infectious phage titers upon bacterial re-growth, but to a yet unknown extent. Another possible influencing factor, which requires further consideration, is the release of extracellular membrane vesicles, which has not yet been studied in the context of *Streptomyces* phage infection (Fröjd & Flärdh, 2019; Schrempf et al., 2011).

An inactivation of phages in the extracellular space by hyphal structures was further analysed by tracking extracellular titers of non-host phages during cultivation with S. venezuelae mycelium over time. Among the tested phages, CL31, T4 and MS2 revealed a reduction in extracellular titers with T4 described to be hydrophobic (Ghanem et al., 2019). Performing a timeresolved quantification of CL31 titers as the most affected phage revealed a simultaneous decrease in infectivity and phage DNA content, which coincided with the developmental transition to spores and thus probably with the expression of the hydrophobic sheath (Bibb et al., 2012). This sheath is composed of rodlin and chaplin proteins (Claessen et al., 2003; Claessen et al., 2002; Elliot et al., 2003), whose expression is regulated by the σ factor BldN and anti- σ factor RsbN (Bibb et al., 2012). Although the levels of these hydrophobic proteins actually produced under the applied conditions were not determined so far, results gained for *bldN* overexpression and *bldN* deletion strains - showing either a faster or a less pronounced decline in infectious phage particles, respectively refer to a direct involvement of hydrophobic interactions. The hydrophobic proteins of Streptomyces spp. harbor a comparable function as hydrophobins in filamentous-growing fungi (Elliot & Talbot, 2004; Wösten, 2001). Interestingly, physiochemical interactions between phages and fungal mycelium were already studied in a microfluidic platform by Ghanem et al. (2019). Combining mycelium of highly hydrophobic Coprinopsis cinerea or moderately hydrophobic Pythium ultimum with two different phages, hydrophobic T4 and more hydrophilic PSA-HS2, revealed an increasing phage retention with increasing hydrophobicity of the phage and the hyphae, the latter having the higher impact (Ghanem et al., 2019). Fitting to this, a general influence of hydrophobicity on phage retention was described in various studies when screening for phage adhesion to different solid surfaces like aluminum oxide-coated sand or polypropylene (Attinti et al., 2010; Dika et al., 2013; Farkas et al., 2015). All in all, this supported our hypothesis that switching from a hydrophilic to a hydrophobic surface during hyphae-spore transition contributes to declining extracellular titers of a non-host phage. Unfortunately, attempts to detach phages from the mycelial fraction failed, which accounts for a high affinity, irreversible binding of phages to hyphae or degradation of the phage particles. To finally confirm the interaction between phage particles and the hydrophobic sheath further investigations are required.

Altogether, this study emphasizes an important impact of *Streptomyces* cellular development on phage susceptibility. Furthermore, we can deduce that *Streptomyces* has evolved a complex antiphage defense with several components acting at the multicellular level that may provide a community-wide protection against phage predation.

Material and Methods

Microbial strains and growth conditions | All bacterial strains, fungi and phages used in this study are listed in Table S1 and S2. For growth studies and double-agar overlay assays, *Streptomyces* cultures were inoculated from spore stocks and cultivated at 30°C and 120 rpm using glucose-yeast extract-malt extract (GYM) medium containing 50% tap water, pH 7.3). For double-agar overlays and phage titer determination, 2 μ l of decimal dilution series of culture supernatants in sodium chloride/magnesium sulfate (SM) buffer (10 mM Tris-HCl pH 7.3, 100 mM NaCl, 10 mM MgCl₂, 2 mM CaCl₂) were spotted on a bacterial lawn propagated on a double-agar overlay with the top layer inoculated at an initial optical density (OD₄₅₀) of 0.3 in GYM soft-agar (0.4% agarose).

Cultivation of Corynebacterium glutamicum MB001 and quantification of phage CL31 was done analogously using brain heart infusion (BHI) medium and BHI softagar (0.4% agarose) inoculated to an OD₆₀₀ of 0.5. Escherichia coli, Bacillus subtilis and Pseudomonas putida were cultivated in lysogeny broth (LB) medium. E. coli infecting phages were quantified using LB softagar (0.4% agarose) inoculated to an OD_{600} of 0.2. For the plant pathogens Pseudomonas syringae pv. lapsa and Xanthomonas translucens pv. translucens nutrient broth (NB) medium (pH 7.0) and NB soft-agar (0.4% agarose, OD₆₀₀ of 0.2) served as cultivation medium for phage titer determination. The haploid, yeast-like growing fungi Ustilago cynodontis NBRC 9727 was inoculated in Modified Tabuchi Medium (MTM) (Geiser et al., 2014) containing 200 g/l glucose. All cultivations were performed at 30 °C.

E. coli DH5a cultivated at 37°C and 120 rpm in LB medium containing the appropriate antibiotic was utilized for standard cloning application. For conjugation *E. coli* strain ET12567/pUZ8002 was used.

Recombinant DNA work and cloning | All plasmids and oligonucleotides used in this study are listed in Table S3. Standard cloning techniques such as PCR, restriction digestion with indicated restrictions enzymes and Gibson assembly were performed according to standard protocols (Gibson, 2011; Sambrook & Russell, 2001). For amplification via PCR, genomic DNA of *S. venezuelae* NRRL B-65442 was used as template. DNA sequencing and synthesis of oligonucleotides was performed by Eurofins Genomics (Ebersberg, Germany).

Phage propagation | For amplification of phage Alderaan, *S. venezuelae* main cultures in GYM medium (pH 7.3, 50% tap water) were inoculated from overnight cultures after ~16 h of cultivation to an OD₄₅₀ of 0.15. Phages were added to an initial phage titer of ~5*10⁷ PFU/ml. Cultivation at 30 °C and 120 rpm was performed until complete lysis. After harvesting of supernatants via centrifugation at 5.000 *g* for 10 min and following sterile filtration, spent medium was exchanged by SM buffer using Amicon Ultra Filter falcons with a 30 kDa cutoff membrane (MerckMillipore, Burlington, MA, USA). For CL31, phage amplification in *C. glutamicum* MB001 was done as described previously by Hünnefeld et al. (2021) using a starting OD₆₀₀ of 0.5 and an MOI of 0.1.

Phage infection curves in microcultivation systems | Phage infection curves were performed in the BioLector microcultivation system (Beckman Coulter Life Sciences (formerly m2p-labs), Krefeld, Germany) (Kensy et al., 2009) using a cultivation temperature of 30°C and shaking frequency of 1200 rpm. Biomass was measured as a function of backscattered light intensity with an excitation wavelength of 620 nm (filter module: λ_{Ex} / λ_{Em} : 620 nm/ 620 nm, gain: 25) from three independent biological replicates. All growth curves are baseline corrected with respect to the backscatter values at time point t₀.

Main cultures of *S. venezuelae* in 1 ml GYM medium (pH 7.3, 50% tap water) were inoculated with overnight cultures to an initial OD₄₅₀ of 0.15. Infection was performed by adding phages to the indicated initial phage titers ($10^6 - 10^8$ PFU/ml). Phage infection curves in *E. coli* LE392 and *C. glutamicum* MB001 were done in the same way using an initial OD₆₀₀ of 0.15 in 1 ml LB medium or 1 ml BHI medium, respectively, and the indicated initial phage titers. Supernatants were collected in specific time intervals to quantify plaque forming units (PFU) via double-agar overlay assays over time.

Re-infection experiments | To investigate, if re-grown Streptomyces mycelium is resistant towards reinfection with the same phage, mycelium was harvested after 72 h of infection by centrifugation at 16,000 g for 5 min and washed two times with fresh GYM medium (pH 7.3, 50% tap water) to remove residual extracellular phages. After re-suspending in fresh GYM medium again, OD₄₅₀ was determined and new cultures were inoculated to an initial OD₄₅₀ of 0.15. Cultivation was performed as described in 'Phage infection curves' as biological triplicates. Infection was conducted by adding 10⁸ PFU/ml as initial phage titer, while uninfected samples served as a growth control. Additionally, mycelium which was not infected in the first infection cycle was re-inoculated and infected analogously serving as a control for successful infection.

Incubation assays of phages with Streptomyces mycelium | To investigate the adsorption capacity of S. venezuelae mycelium on phages, pre-cultures were inoculated from spore stocks and grown in GYM medium (pH 7.3, 50% tap water) to be subsequently used to inoculate main cultures in the same medium to an OD₄₅₀ of 1.2. To eliminate pH effects on phage stability, GYM medium was supplemented with 100 mM MOPS (pH 7.3). Finally, 20 μ l of the different phage stocks were incubated with 700 μl of resuspended mycelium, which was done in biological triplicates. Cultivation was conducted in Flower plates (Beckman Coulter Life Sciences (formerly m2p-labs), Krefeld, Germany) at 900 rpm and 30°C. Extracellular phage titers were quantified via double-agar overlays after 18 h, which were performed as described in 'Microbial strains and growth conditions', while pH values were measured via pH indicator stripes (Carl Roth, Karlsruhe, Germany). As control, phage titers were also tracked upon incubation in S. venezuelae spent medium harvested after 18 h of cultivation under the same conditions.

The same set-up was used for investigating the influence of other *Streptomyces* strains on infectious CL31 phage particles. Incubation of CL31 phages with *B. subtilis, P. putida* and *E. coli* was done analogously using LB medium with a starting OD_{600} of 1.2, while incubation with *U. cynodontis* was conducted in MTM medium with 200 g/l glucose.

Stability assays in spent medium | To determine potential effects of spent medium (secreted metabolites and proteins) on infectious phage particles, *S. venezuelae* main cultures were inoculated in GYM medium (pH 7.3, 50% tap water) with overnight cultures to an initial OD₄₅₀ of 0.15 and cultivated at 30 °C and 120 rpm. Spent medium was harvested via centrifugation at 5,000 *g* for 10 min and subsequent sterile filtration at the indicated time points.

In case of Alderaan stability assays, spent medium of uninfected *S. venezuelae* cultures was collected at 8 h, 24 h and 48 h post inoculation in buffered and unbuffered medium and subsequently used for incubation with ~ 10^8 PFU/ml Alderaan particles at cultivation conditions at 30 °C and 900 rpm.

For CL31, spent medium of *S. venezuelae* was taken during the decrease in infectious CL31 particles 6 h and 9 h post infection. After sterile filtration, $\sim 10^9$ PFU/ml of fresh CL31 particles were added to the remaining ones still present in the spent medium and incubated 30 °C and 900 rpm. Extracellular phage titers of Alderaan and CL31 were tracked over time via double-agar overlay assays.

For investigating the influence of chloramphenicol on Alderaan plaque formation, a decimal dilution series of phage Alderaan in SM buffer (10 mM Tris-HCl pH 7.3, 100 mM NaCl, 10 mM MgCl₂, 2 mM CaCl₂) was directly spotted on a bacterial lawn propagated on double-agar overlays containing either 0, 10, 50 or 200 μ g/ml chloramphenicol in both agar layers.

pH stability assays | To examine the pH stability of phage Alderaan, GYM medium (50% tap water) was adjusted to different pH values (pH 4.0-9.0) using HCl or NaOH. Subsequently, Alderaan particles were added to these media using an initial phage titer of 10⁹ PFU/ml and incubated at cultivation conditions at 30 °C and 900 rpm for 24 h in DeepWell plates. Phage titers were tracked over time via double-agar overlays as described in 'Microbial strains and growth conditions'.

Determining extracellular phage titers via quantitative PCR | In addition to spot assays, extracellular phage titers were further quantified via quantitative PCR to discriminate between an inactivation and total removal/degradation of phage particles. To do so, 5 μ l of supernatants (1:10 or 1:100 diluted in phage buffer for quantification of CL31 and Alderaan phages, respectively) as template DNA were mixed with 10 μ l 2x Luna[®] Universal qPCR Master Mix (New England BioLabs, Ipswich, MA, USA) and 0.5 μ l of each oligonucleotide (Table S3, final oligonucleotide concentration: 0.25 μ M), before adjusting to a final volume of 20 μ l with dd. H₂O. Quantification was performed in 96-well plates in the qTOWER 2.2 (Analytik Jena, Jena, Germany).

For determining the absolute concentration of extracellular phage DNA, amplification of the phage target gene HQ601_00028 (coding for the minor tail protein of Alderaan, PCR product: 144 bp) was calculated via the 'Absolute quantification method' of the qPCRsoft 3.1 software (Analytik Jena, Jena, Germany). A decimal dilution series of the phage stock with known phage titer was used as standard. Quantification of extracellular CL31 phages was done analogously based on the phage target phage gene clg56 (coding for the minor tail protein of CL31, PCR product: 150 bp).

In case of Alderaan, the fraction of remaining phages and the corresponding deviation was calculated as follows:

$$\Phi_{remaining} = \frac{t_{72}}{t_8} \pm \left| \left(\frac{\Delta_{t72}}{t_{72}} + \frac{\Delta_{t8}}{t_8} \right) * \frac{t_{72}}{t_8} \right|$$

 t_x : Mean concentration calculated via 'Absolute quantification method' of qPCRsoft 3.1

 Δ_{tx} : Standard deviation calculated via 'Absolute quantification method' of qPCRsoft 3.1 Microscopy | Analysis of the developmental level of *Streptomyces* cultures was conducted via microscopic Z-stack imaging using the Axio Imager M2 phase contrast microscope (Zeiss, Germany) with the indicated exposure time (120 or 200 ms). Images were taken using the AxioVision 4.8.2 software (Zeiss, Jena, Germany) and subsequently stacked via ImageJ (Schneider et al., 2012) and the Extended Depth of Field Plugin (Forster et al., 2004).

Scanning electron microscopy (SEM) | Incubation of CL31 particles with *S. venezuelae* mycelium was conducted as described in 'Incubation assays of phages with *Streptomyces* mycelium' using GYM medium (50% tap water, pH 7.3) supplemented with 100 mM MOPS. At the decline in infectious phage particles at 9 h post inoculation, *S. venezuelae* mycelium was diluted with fresh medium to an OD₄₅₀ of ~1 in a total volume of 3.6 ml and fixed via addition of 400 μ l 25% glutaraldehyde and 1 ml 25% paraformaldehyde. As control, a phage-free sample was handled in the same way. Scanning electron microscopy was conducted at the ZEIM department (Central Facility for Microscopy) in the Helmholtz center for infection research (HZI, Braunschweig, Germany).

References

- Ahmed, Z. U., Shapiro, S., & Vining, L. C. (1984). Excretion of α-keto acids by strains of *Streptomyces venezuelae*. *Can. J. Microbiol.*, 30(8), 1014-1021. <u>https://doi.org/10.1139/m84-158</u>
- Anderson, A. S., & Wellington, E. M. H. (2001). The taxonomy of *Streptomyces* and related genera. *Int. J. Syst. Evol. Microbiol*, *51*(3), 797-814. <u>https://doi.org/10.1099/00207713-51-3-797</u>
- Attinti, R., Wei, J., Kniel, K., Sims, J. T., & Jin, Y. (2010). Virus' (MS2, phiX174, and Aichi) Attachment on Sand Measured by Atomic Force Microscopy and Their Transport through Sand Columns. *Environ. Sci. Technol.*, 44(7), 2426-2432. https://doi.org/10.1021/es903221p
- Bernheim, A., & Sorek, R. (2020). The pan-immune system of bacteria: antiviral defence as a community resource. *Nat Rev Microbiol*, 18(2), 113-119. <u>https://doi.org/10.1038/s41579-019-0278-2</u>
- Bibb, M. J. (2005). Regulation of secondary metabolism in streptomycetes. *Curr Opin Microbiol*, 8(2), 208-215. https://doi.org/10.1016/j.mib.2005.02.016
- Bibb, M. J., Domonkos, A., Chandra, G., & Buttner, M. J. (2012). Expression of the chaplin and rodlin hydrophobic sheath proteins in *Streptomyces venezuelae* is controlled by o^{BldN} and a cognate antisigma factor, RsbN. *Mol Microbiol*, *84*(6), 1033-1049. https://doi.org/10.1111/j.1365-2958.2012.08070.x
- Bond, M. C., Vidakovic, L., Singh, P. K., Drescher, K., & Nadell, C. D. (2021). Matrix-trapped viruses can prevent invasion of bacterial biofilms by colonizing cells. *Elife*, 10, e65355. https://doi.org/10.7554/eLife.65355
- Burroughs, N. J., Marsh, P., & Wellington, E. M. H. (2000). Mathematical Analysis of Growth and Interaction Dynamics of Streptomycetes and a Bacteriophage in Soil. Appl. Environ. Microbiol., 66(9), 3868-3877. https://doi.org/10.1128/AEM.66.9.3868-3877.2000
- Bush, M. J., Tschowri, N., Schlimpert, S., Flardh, K., & Buttner, M. J. (2015). c-di-GMP signalling and the regulation of developmental transitions in streptomycetes. *Nat Rev Microbiol*, 13(12), 749-760. https://doi.org/10.1038/nrmicro3546
- Chater, K. F. (2016). Recent advances in understanding *Streptomyces. F1000Res, 5,* 2795. <u>https://doi.org/10.12688/f1000research.9534.1</u>
- Claessen, D., Rink, R., de Jong, W., Siebring, J., de Vreugd, P., Boersma, F. G., Dijkhuizen, L., & Wosten, H. A. (2003). A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in *Streptomyces coelicolor* by forming amyloid-like fibrils. *Genes Dev*, *17*(14), 1714-1726. https://doi.org/10.1101/gad.264303
- Claessen, D., Wösten, H. A. B., Keulen, G. v., Faber, O. G., Alves, A. M. C. R., Meijer, W. G., & Dijkhuizen, L. (2002). Two novel homologous proteins of *Streptomyces coelicolor* and *Streptomyces lividans* are involved in the formation of the rodlet layer and

mediate attachment to a hydrophobic surface. *Mol Microbiol*, 44(6), 1483-1492. https://doi.org/10.1046/j.1365-2958.2002.02980.x

- den Hengst, C. D., Tran, N. T., Bibb, M. J., Chandra, G., Leskiw,
 B. K., & Buttner, M. J. (2010). Genes essential for morphological development and antibiotic production in *Streptomyces coelicolor* are targets of BldD during vegetative growth. *Mol Microbiol*, *78*(2), 361-379. <u>https://doi.org/10.1111/j.1365-2958.2010.07338.x
 </u>
- Dika, C., Ly-Chatain, M. H., Francius, G., Duval, J. F. L., & Gantzer, C. (2013). Non-DLVO adhesion of F-specific RNA bacteriophages to abiotic surfaces: Importance of surface roughness, hydrophobic and electrostatic interactions. *Colloids Surf. A Physicochem. Eng. Asp.*, 435, 178-187. https://doi.org/10.1016/j.colsurfa.2013.02.045
- Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., & Sorek, R. (2018). Systematic discovery of antiphage defense systems in the microbial pangenome. *Science*, 359(6379), eaar4120. <u>https://doi.org/10.1126/science.aar4120</u>
- Elliot, M. A., Karoonuthaisiri, N., Huang, J., Bibb, M. J., Cohen, S. N., Kao, C. M., & Buttner, M. J. (2003). The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in *Streptomyces coelicolor. Genes Dev, 17*(14), 1727-1740. https://doi.org/10.1101/gad.264403
- Elliot, M. A., & Talbot, N. J. (2004). Building filaments in the air: aerial morphogenesis in bacteria and fungi. *Curr Opin Microbiol*, 7(6), 594-601. https://doi.org/10.1016/i.mib.2004.10.013
- Farkas, K., Varsani, A., & Pang, L. (2015). Adsorption of Rotavirus, MS2 Bacteriophage and Surface-Modified Silica Nanoparticles to Hydrophobic Matter. *Food Environ Virol*, 7(3), 261-268. https://doi.org/10.1007/s12560-014-9171-3
- Flärdh, K., & Buttner, M. J. (2009). Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol, 7(1), 36-49. <u>https://doi.org/10.1038/nrmicro1968</u>
- Forster, B., Ville, D. V. D., Berent, J., Sage, D., & Unser, M. (2004). Extended depth-of-focus for multi-channel microscopy images: a complex wavelet approach. 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821), Arlington, VA, USA, 1, 660-663. https://doi.org/10.1109/ISBI.2004.1398624
- Fröjd, M. J., & Flärdh, K. (2019). Extrusion of extracellular membrane vesicles from hyphal tips of *Streptomyces venezuelae* coupled to cell-wall stress. *Microbiology* 165(12), 1295-1305. https://doi.org/10.1099/mic.0.000836
- Geiser, E., Wiebach, V., Wierckx, N., & Blank, L. M. (2014). Prospecting the biodiversity of the fungal family Ustilaginaceae for the production of value-added chemicals. *Fungal Biol. Biotechnol.*, 1(2). https://doi.org/10.1186/s40694-014-0002-y
- 14

- Ghanem, N., Stanley, C. E., Harms, H., Chatzinotas, A., & Wick, L. Y. (2019). Mycelial Effects on Phage Retention during Transport in a Microfluidic Platform. *Environ Sci Technol*, *53*(20), 11755-11763. https://doi.org/10.1021/acs.est.9b03502
- Gibson, D. G. (2011). Enzymatic assembly of overlapping DNA fragments. *Methods in Enzymology, 498,* 349-361. https://doi.org/10.1016/B978-0-12-385120-8.00015-2
- Glazebrook, M. A., Doull, J. L., Stuttard, C., & Vining, L. C. (1990). Sporulation of *Streptomyces venezuelae* in submerged cultures. *J Gen Microbiol*, 136(3), 581-588. <u>https://doi.org/10.1099/00221287-136-3-581</u>
- Hardy, A., Sharma, V., Kever, L., & Frunzke, J. (2020). Genome sequence and characterization of five bacteriophages infecting *Streptomyces coelicolor* and *Streptomyces venezuelae*: Alderaan, Coruscant, Dagobah, Endor1 and Endor2. *Viruses*, *12*(10), 1065. https://doi.org/10.3390/v12101065
- Hatfull, G. F. (2020). Actinobacteriophages: Genomics, Dynamics, and Applications. *Annu Rev Virol*, 7(1), 37-61. <u>https://doi.org/10.1146/annurev-virology-122019-070009</u>
- Hopwood, D. A. (1999). Forty years of genetics with Streptomyces: from in vivo through in vitro to in silico. Microbiology, 145(9), 2183-2202. https://doi.org/10.1099/00221287-145-9-2183
- Hünnefeld, M., Viets, U., Sharma, V., Wirtz, A., Hardy, A., & Frunzke, J. (2021). Genome Sequence of the Bacteriophage CL31 and Interaction with the Host Strain *Corynebacterium glutamicum* ATCC 13032. *Viruses*, 13(3), 495. <u>https://doi.org/10.3390/v13030495</u>
- Kensy, F., Zang, E., Faulhammer, C., Tan, R. K., & Buchs, J. (2009). Validation of a high-throughput fermentation system based on online monitoring of biomass and fluorescence in continuously shaken microtiter plates. *Microb Cell Fact*, 8, 31. <u>https://doi.org/10.1186/1475-2859-8-31</u>
- Kever, L., Hardy, A., Luthe, T., Hünnefeld, M., Gätgens, C., Milke, L., Wiechert, J., Wittmann, J., Moraru, C., Marienhagen, J., & Frunzke, J. (2022).
 Aminoglycoside Antibiotics Inhibit Phage Infection by Blocking an Early Step of the Infection Cycle. *mBio*, 13(3). <u>https://doi.org/10.1128/mbio.00783-</u>22
- Kronheim, S., Daniel-Ivad, M., Duan, Z., Hwang, S., Wong, A.
 I., Mantel, I., Nodwell, J. R., & Maxwell, K. L. (2018).
 A chemical defence against phage infection. *Nature*, 564(7735), 283-286.
 https://doi.org/10.1038/s41586-018-0767-x
- Luthe, T., Kever, L., Hänsch, S., Hardy, A., Tschwori, N., Weidtkamp-Peters, S., & Frunzke, J. (2023). *Streptomyces* development is involved in the efficient containment of viral infections. *Microlife*, 4(uqad002).

https://doi.org/10.1093/femsml/uqad002

Madden, T., & Ison, J. M. W. A. P. (1996). Organic acid excretion by *Streptomyces lividans* TK24 during growth on defined carbon and nitrogen sources *Microbiology*, *142*(Pt11), 3181-3185. <u>https://doi.org/10.1099/13500872-142-11-3181</u>

- Manteca, A., Alvarez, R., Salazar, N., Yagüe, P., & Sanchez, J. (2008). Mycelium differentiation and antibiotic production in submerged cultures of *Streptomyces coelicolor. Appl Environ Microbiol*, 74(12), 3877-3886. <u>https://doi.org/10.1128/AEM.02715-07</u>
- Manteca, A., Claessen, D., Lopez-Iglesias, C., & Sanchez, J. (2007). Aerial hyphae in surface cultures of *Streptomyces lividans* and *Streptomyces coelicolor* originate from viable segments surviving an early programmed cell death event. *FEMS Microbiol Lett*, 274(1), 118-125. <u>https://doi.org/10.1111/j.1574-6968.2007.00825.x</u>
- Marsh, P., & Wellington, E. M. H. (1992). Interactions between Actinophage and their Streptomycete Hosts in Soil and the Fate of Phage Borne Genes. In M. J. Gauthier (Ed.), *Gene Transfers and Environment* (pp. 135-142). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-77450-8 15
- McCormick, J. R., & Flärdh, K. (2012). Signals and regulators that govern *Streptomyces* development. *FEMS Microbiol. Rev.*, *36*(1), 206-231. https://doi.org/10.1111/j.1574-6976.2011.00317.x
- Miguélez, E., Hardisson, C., & Manzanal, M. (1999). Hyphal Death during Colony Development in *Streptomyces antibioticus*: Morphological Evidence for the Existence of a Process of Cell Deletion in a Multicellular Prokaryote. *The Journal of Cell Biology*, *145*(3), 515-525. <u>https://doi.org/10.1083/JCB.145.3.515</u>
- Rosner, A., & Gutstein, R. (1981). Adsorption of actinophage Pal6 to developing mycelium of *Streptomyces albus*. *Can. J. Microbiol.*, *27*(2), 254-257. https://doi.org/10.1139/m81-039
- Sambrook, J., & Russell, D. W. (2001). Molecular Cloning: A Laboratory Manual (3rd ed.). Cold Spring Harbor Laboratory Press, NY.
- Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. *Nat Methods*, 9(7), 671-675. <u>https://doi.org/10.1038/nmeth.2089</u>
- Schrempf, H., Koebsch, I., Walter, S., Engelhardt, H., & Meschke, H. (2011). Extracellular Streptomyces vesicles: amphorae for survival and defence. Microb Biotechnol, 4(2), 286-299. https://doi.org/10.1111/j.1751-7915.2011.00251.x
- Teertstra, W. R., Deelstra, H. J., Vranes, M., Bohlmann, R., Kahmann, R., Kämper, J., & Wösten, H. A. B. (2006). Repellents have functionally replaced hydrophobins in mediating attachment to a hydrophobic surface and in formation of hydrophobic aerial hyphae in Ustilago maydis. Microbiology, 152(12), 3607-3612. https://doi.org/10.1099/mic.0.29034-0
- Teertstra, W. R., van der Velden, G. J., de Jong, J. F., Kruijtzer, J. A., Liskamp, R. M., Kroon-Batenburg, L. M., Muller, W. H., Gebbink, M. F., & Wösten, H. A. (2009). The filament-specific Rep1-1 repellent of the

phytopathogen *Ustilago maydis* forms functional surface-active amyloid-like fibrils. *J Biol Chem*, *284*(14), 9153-9159. https://doi.org/10.1074/jbc.M900095200

- Tschowri, N., Schumacher, M. A., Schlimpert, S., Chinnam, N. B., Findlay, K. C., Brennan, R. G., & Buttner, M. J. (2014). Tetrameric c-di-GMP mediates effective transcription factor dimerization to control *Streptomyces* development. *Cell*, *158*(5), 1136-1147. https://doi.org/10.1016/j.cell.2014.07.022
- Vidakovic, L., Singh, P. K., Hartmann, R., Nadell, C. D., & Drescher, K. (2018). Dynamic biofilm architecture confers individual and collective mechanisms of viral protection. *Nat Microbiol*, 3(1), 26-31. https://doi.org/10.1038/s41564-017-0050-1
- Vining, L. C., & Stuttard, C. (1995). CHAPTER 18 -Chloramphenicol. In L. C. Vining & C. Stuttard (Eds.), *Genetics and Biochemistry of Antibiotic Production* (pp. 505-530). Butterworth-Heinemann. <u>https://doi.org/10.1016/B978-0-7506-9095-</u> 9.50028-9
- Watve, M. G., Tickoo, R., Jog, M. M., & Bhole, B. D. (2001). How many antibiotics are produced by the genus *Streptomyces*? *Arch Microbiol*, *176*(5), 386-390. https://doi.org/10.1007/s002030100345
- Willey, J. M., Willems, A., Kodani, S., & Nodwell, J. R. (2006). Morphogenetic surfactants and their role in the formation of aerial hyphae in *Streptomyces coelicolor*. *Mol Microbiol*, *59*(3), 731-742. https://doi.org/10.1111/j.1365-2958.2005.05018.x
- Wösten, H. A. B. (2001). Hydrophobins: Multipurpose Proteins. *Mol Microbiol*, *55*, 625-646. <u>https://doi.org/10.1146/annurev.micro.55.1.625</u>

Acknowledgements | We thank the Deutsche Forschungsgemeinschaft (SPP 2330, project 464434020) and the European Research Council (ERC Starting Grant 757563) for financial support. We would like to thank Dr. Mathias Müsken from the ZEIM department (Central Facility for Microscopy) at the Helmholtz Centre for Infection Research (HZI, Braunschweig, Germany) for conducting scanning electron microscopy.

Author contributions | Conceptualization: L.K., J.F. | Data curation: L.K.| Formal analysis: L.K. | Funding acquisition: J.F. | Investigation: L.K. | Methodology: L.K., J.F. | Project administration: L.K., J.F. | Supervision: L.K., J.F. | Validation: L.K., J.F. | Visualization: L.K. | Writing – original draft: L.K., J.F. | Writing – review and editing: L.K., J.F.

Competing interest statement | The authors declare no conflict of interest.

3.4. Genome sequence and characterization of five bacteriophages infecting *Streptomyces coelicolor* and *Streptomyces venezuelae*: Alderaan, Coruscant, Dagobah, Endor1 and Endor2

Hardy, A., Sharma, V., Kever, L. and Frunzke, J.

Published in Viruses, 2020

Contributor role	Contributor
Conceptualization	AH (50%), JF (30%), VS (10%), LK (10%)
Data curation	VS (55%), AH (30%), LK (10%), JF (5%)
Formal analysis	VS (80%), AH (15%), LK (5%)
Funding acquisition	JF (100%)
Investigation	AH (85%), LK (10%), VS (5%)
Methodology	AH (55%), VK (25%), JF (10%), LK (10%)
Project administration	JF (60%), AH (40%)
Resources	-
Software	VS (95%), AH (5%)
Supervision	JF (60%), AH (40%)
Validation	AH (35%), LK (35%), VS (30%)
Visualization	AH (55%), VS (40%), LK (5%)
Writing – original draft	AH (70%), VS (15%), JF (10%), LK (5%)
Writing – review and editing	AH (40%), JF (40%), LK (10%), VS (10%)

Overall contribution: 10%

LK conducted the experimental work and data analysis shown in Figure 2B. Visualization of the Figure 2A and B was done by LK. To a minor extent, LK was involved in writing the original draft as well as in the review and editing process.

Article

Genome Sequence and Characterization of Five Bacteriophages Infecting *Streptomyces coelicolor* and *Streptomyces venezuelae*: Alderaan, Coruscant, Dagobah, Endor1 and Endor2

Aël Hardy^D, Vikas Sharma, Larissa Kever and Julia Frunzke *^D

Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany; a.hardy@fz-juelich.de (A.H.); v.sharma@fz-juelich.de (V.S.); l.kever@fz-juelich.de (L.K.) * Correspondence: j.frunzke@fz-juelich.de; Tel.: +49-2461-615430

Received: 17 August 2020; Accepted: 21 September 2020; Published: 23 September 2020

Abstract: *Streptomyces* are well-known antibiotic producers, also characterized by a complex morphological differentiation. *Streptomyces*, like all bacteria, are confronted with the constant threat of phage predation, which in turn shapes bacterial evolution. However, despite significant sequencing efforts recently, relatively few phages infecting *Streptomyces* have been characterized compared to other genera. Here, we present the isolation and characterization of five novel *Streptomyces* phages. All five phages belong to the *Siphoviridae* family, based on their morphology as determined by transmission electron microscopy. Genome sequencing and life style predictions suggested that four of them were temperate phages, while one had a lytic lifestyle. Moreover, one of the newly sequenced phages shows very little homology to already described phages, highlighting the still largely untapped viral diversity. Altogether, this study expands the number of characterized phages of *Streptomyces* and sheds light on phage evolution and phage-host dynamics in *Streptomyces*.

Keywords: phage isolation; phage genomics; *Streptomyces; Siphoviridae;* actinobacteriophages; actinorhodin

1. Introduction

Streptomyces is a genus of Gram-positive bacteria belonging to the order of Actinobacteria that exhibit a high GC-content (on average about 73 mol% G + C). *Streptomyces* are prolific producers of natural products with a wide range of biological activities. This repertoire of bioactive molecules has been harnessed for medical and agricultural purposes, as for example 2/3 of known antibiotics of microbial origin are produced by *Streptomyces* [1–3].

Another distinctive feature of *Streptomyces* is their complex developmental cycle. Unlike most bacteria—that divide by binary fission, *Streptomyces* development is instead centered on the formation of spores. Germinating spores first form a network of interconnected cells, called vegetative mycelium. The vegetative mycelium later serves as a basis for the coordinated erection of an aerial mycelium. This is followed by the segmentation of these aerial filaments into spores, which can then start a new cycle [3–5].

Phages infecting *Streptomyces* were described at a quick pace in the 1970–1980s, but most of them were not sequenced later [6–8]. The phage phiC31 represents a notable exception to this trend, as it was used to develop crucial genetic tools for *Streptomyces* before being sequenced in 1999 [9–11]. Phages R4, SV1, VP5 were also the subject of numerous studies, but the latter was not sequenced [12,13].

Streptomyces peculiarities were studied in the context of phage infection. For example, adsorption to mycelium of phage Pal6 was shown to differ depending on the stage of development of

Streptomyces albus [14]. In this instance, phage adsorption was found to be maximal for germinating spores. Combined with the observation that germinating spores showed an intense average metabolic activity, this suggests that spore germination represents the most sensitive development stage for phage infection.

Conversely, the recent years have seen a sustained effort into the isolation and sequencing of *Streptomyces* phages, notably by the Science Education Alliance-Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES; https://seaphages.org/) program in the USA [15]. However, few of these phages were extensively characterized.

Here, we report the isolation, characterization and genome analysis of five novel *Streptomyces* phages. Two of them (Alderaan and Coruscant) were isolated using *S. venezuelae*, the remaining three (Dagobah, Endor1 and Endor2) were isolated using *S. coelicolor*. Observation with transmission electron microscopy showed that all five phages belong to the *Siphoviridae* family. Lifestyle prediction with the complete nucleotide sequences revealed that four (Alderaan, Dagobah, Endor1 and Endor2) are probably temperate, while Coruscant was predicted to be a virulent phage. Alderaan, Coruscant, Endor1 and Endor2 show close relatedness to already described *Streptomyces* phages—Endor1 and Endor2 being highly homologous to each other. In contrast, Dagobah showed very little relatedness to any sequenced phage, highlighting the still massively untapped viral diversity.

2. Materials and Methods

2.1. Bacterial Strains and Growth Conditions

Streptomyces venezuelae ATCC 10712 [16] and Streptomyces coelicolor M600 [17] and strain M145 [18] were used as main host strains in this study. Cultures were started by inoculating spores from spore stocks stored in 20% glycerol at -20 °C [19]. *S. venezuelae* was grown in liquid Glucose Yeast Malt extract (GYM) medium, while *S. coelicolor* was grown in liquid Yeast Extract Malt Extract (YEME) medium. Unless otherwise stated, cultivation was carried out at 30 °C. For double agar overlays, GYM agar was used for both species, with 0.5% and 1.5% agar for the top and bottom layers, respectively.

2.2. Phage Isolation and Propagation

Phages were isolated from soil samples taken near the Forschungszentrum Jülich (Jülich, Germany). Phages contained in soil samples were resuspended by incubation in sodium chloride/magnesium sulfate (SM) buffer (10 mM Tris-HCl pH 7.3, 100 mM NaCl, 10 mM MgSO₄, 2mM CaCl₂) for 2 h. The samples were centrifuged at $5000 \times g$ for 10 min to remove solid impurities. The supernatants were filtered through a 0.22-µm pore-size membrane filter to remove bacteria. For each sample, 1 mL of filtered supernatant was mixed with 3 mL of liquid medium inoculated with 10^7 *Streptomyces* spores.

After overnight incubation, the culture supernatant was collected by centrifugation at $5000 \times g$ for 10 min and filtered through a 0.22-µm pore-size membrane filter. Serial dilutions of the filtrate were then spotted on a bacterial lawn propagated by mixing 200 µL of *Streptomyces* overnight culture with 4 mL top agar, according to a modified version of the double agar overlay method [20]. Plaques were visualized after overnight incubation at 30 °C.

Purification of the phage samples was carried out by restreaking single plaques twice [20]. Phage amplification was achieved by mixing 100 μ L of the purified phage lysate into top agar to obtain confluent lysis on the plate. After overnight incubation, 5 mL of SM buffer were used to soak the plates and resuspend phages. The resulting phage lysate was centrifuged, and the supernatant was filtered to obtain the high-titer phage solution used for downstream processes.

To assess presence of actinorhodin, the plates were inverted and exposed to ammonia fumes for 15 min by placing 5 mL of 20% ammonium hydroxide solution on the inner surface of the lid.

2.3. Electron Microscopy Observation of Phage Virions

For electron microscopy, 5 μL of purified phage suspension were deposited on a glow-discharged formvar carbon-coated nickel grids (200 mesh; Maxtaform; Plano, Wetzlar, Germany) and stained with 0.5% (*wt/vol*) uranyl acetate. After air drying, the sample was observed with a TEM LEO 906 (Carl Zeiss, Oberkochen, Germany) at an acceleration voltage of 60 kV.

2.4. Phage Infection Curves

Growth experiments were performed in the BioLector[®] microcultivation system of m2p-labs (Aachen, Germany). Cultivation was performed as biological triplicates in 48-well FlowerPlates (m2plabs) at 30 °C and a shaking frequency of 1200 rpm [21]. Backscatter was measured by scattered light with an excitation wavelength of 620 nm (filter module: $\lambda_{Ex}/\lambda_{Em}$: 620 nm/620 nm, gain: 25) every 15 min. Each well contained 1 mL YEME or GYM medium and was inoculated using an overnight culture of *S. coelicolor* or *S. venezuelae*, respectively, to an initial OD₄₅₀ of 0.1. Phages were directly added to an initial titer of 10⁵, 10⁶ or 10⁷ PFU/mL, and sampling was performed at the indicated time points. Subsequently, 2 µL of the supernatants were spotted on a lawn of *S. coelicolor* or *S. venezuelae* propagated on a double overlay of GYM agar inoculated at an initial OD₄₅₀ = 0.5.

2.5. Host Range Determination

The host range of our phages was determined for the following *Streptomyces* species: *S. rimosus* (DSM 40260), *S. scabiei* (DSM 41658), *S. griseus* (DSM 40236), *S. platensis* (DSM 40041), *S. xanthochromogenes* (DSM 40111), *S. mirabilis* (DSM 40553), *S. lividans* TK24 [22], *S. olivaceus* (DSM 41536) and *S. cyaneofuscatus* (DSM 40148). The different *Streptomyces* species were grown in GYM medium, to which glass beads were added to favor dispersed growth.

The host range was determined by spotting serial dilutions of phage solution on lawns of the different *Streptomyces* species, in duplicates. A species was considered sensitive to a given phage only if single plaques could be detected; we further indicated if the phages are able to lyse a species (Table 1).

2.6. DNA Isolation

For isolation of phage DNA, 1 μ L of 20 mg/mL RNAse A and 1 U/ μ L DNAse (Invitrogen, Carlsbad, CA, USA) were added to 1 mL of the filtered lysates to limit contamination by host nucleic acids. The suspension was incubated at 37 °C for 30 min. Then, EDTA, proteinase K and SDS were added to the mixture at final concentrations of 50 μ g/mL (EDTA and proteinase K) and 1% SDS (*w*/*v*), respectively. The digestion mixture was incubated for 1 h at 56 °C, before adding 250 μ L of phenol:chloroform:isopropanol. The content was thoroughly mixed before centrifugation at 16,000× g for 4 min.

The upper phase containing the DNA was carefully transferred to a clean microcentrifuge tube and 2 volumes of 100% ethanol were added as well as sodium acetate to a final concentration of 0.3 M. After centrifugation at $16,000 \times g$ for 10 min, the supernatant was discarded, and the pellet washed with 1 mL 70% ethanol. Finally, the dried pellet was resuspended in 30 µL DNAse-free water and stored at 4 °C until analyzed.

2.7. DNA Sequencing and Genome Assembly

The DNA library was prepared using the NEBNext Ultra II DNA Library Prep Kit for Illumina according to the manufacturer's instructions and shotgun-sequenced using the Illumina MiSeq platform with a read length of 2×150 bp (Illumina). In total, 100,000 reads were subsampled for each phage sample, and de novo assembly was performed with Newbler (GS De novo assembler; 454 Life Sciences, Branford, CT, USA). Finally, contigs were manually curated with Consed version 29.0 [23].

2.8. Gene Prediction and Functional Annotation

Open reading frames (ORFs) in the phage genomes were identified with Prodigal v2.6.3 [24] and functionally annotated using an automatic pipeline using Prokka 1.11 [25]. The functional annotation was automatically improved and curated with hidden Markov models (HMMs), and Blastp [26] searches against different databases (Prokaryotic Virus Orthologous Groups (pVOGs) [27], viral proteins and Conserved Domain Database CDD [28]), with the e-value cutoff 10⁻¹⁰.

The annotated genomes were deposited in GenBank under the following accession numbers: MT711975 (Alderaan), MT711976 (Coruscant), MT711977 (Dagobah), MT711978 (Endor1) and MT711979 (Endor2). The ends of the phage genomes were determined with PhageTerm [29] using default parameters. Phage lifecycle was predicted with PhageAI [30] using default parameters.

2.9. Genome Comparison and Classification

To classify the unknown phage genomes at the nucleotide level, 31 complete reference actinophage genomes belonging to different known clusters were downloaded from the Actinobacteriophage Database [31]. Pairwise average nucleotide identities (ANI) were calculated with the five unknown *Streptomyces* phages and the 31 reference genomes using the python program pyani 0.2.9 [32] with ANIb method. The output average percentage identity matrix file generated from pyani was used for clustering and displayed using the ComplexHeatmap package in R [33]. Phage genome map with functional annotation was displayed using the gggenes package in R.

2.10. Protein Domain-Based Classification

An alternative approach was used to classify newly sequenced phages based on conserved protein domains [28]. RPS-BLAST (Reverse PSI-BLAST) searches were performed with e-value cutoff 0.001 against the Conserved Domain Database [28] using the 2486 complete reference actinophages [31], including the newly sequenced phage genomes. Identified Pfam protein domains output files from each phage genome were merged and converted into a numerical presence-absence matrix. The hierarchical clustering dendrogram was constructed with the help of the ward.2 method using the R platform. The resulting dendrogram was visualized using ggtree [34].

3. Results

3.1. Phage Isolation and Virion Morphology

Five novel phages infecting *Streptomyces* were isolated from soil samples close to the Forschungszentrum Jülich in Germany. The phages Alderaan and Coruscant were isolated using *Streptomyces venezuelae* ATCC 10712. Alderaan formed small, transparent, and round plaques of approximately 2 mm of diameter, while the plaques formed Coruscant were very small (<1 mm) and were fully visible only after 2 days of incubation (Figure 1A).

The phages Dagobah, Endor1 and Endor2 were isolated using *Streptomyces coelicolor* M600 as a host strain. Dagobah's plaques were very small (<1 mm) and were completely formed only after 2 days of incubation. Endor1 and Endor2 formed plaques of 2 mm in diameter with a distinct turbid zone in the center. Additionally, colored halos circling the plaques appeared after 3 days of incubation (Figure 1B). These halos were mostly brownish in the case of Dagobah, and reddish for Endor1 and Endor2. Exposure to ammonia fume resulted in a pronounced blue coloration around plaques, confirming that the halos surrounding plaques contained actinorhodin (Figure S1) [35].

TEM observation of the phage particles revealed that all five phages exhibit an icosahedral capsid and a non-contractile tail (Figure 1C). Based on the morphology, the phages were classified as members of the *Siphoviridae* family.

Figure 1. Morphology observation of five novel *Streptomyces* phages. (**A**) Plaque morphologies of the five phages. Double agar overlays were performed to infect *S. venezuelae* ATCC 10712 with the phages Alderaan and Coruscant, and *S. coelicolor* M600 with the phages Dagobah, Endor1, and Endor2. Plates were incubated overnight at 30 °C and another day (3 days in the case of Dagobah) at room temperature to reach full maturity of the bacterial lawn. (**B**) Close-ups of phage plaques imaged using a stereomicroscope Nikon SMZ18. *S. coelicolor* M145 was infected by phages using GYM double agar overlays. The plates were incubated at 30 °C overnight and then kept at room temperature for two (Endor1 and Endor2) or three days (Dagobah). Scale bar: 1 mm. (**C**) Transmission electron microscopy (TEM) of phage isolates. The phage virions were stained with uranyl acetate. Scale bar: 150 nm.

3.2. Infection Curves and Host-Range Determination

Phage infection in liquid cultures was performed to assess infection dynamics. Due to the complex developmental cycle of *Streptomyces*, standard one-step growth curves could not be performed. Instead, we cultivated *S. coelicolor* and *S. venezuelae* in microtiter plates in presence of phage challenge, and cell growth was monitored over a 24 h time period using continuous backscatter measurements. In both cases, phage titer was measured over time to estimate the production of phage progeny.

Infection of *S. venezuelae* with Alderaan showed a marked culture collapse at the highest initial phage load (10⁷ PFU/mL), and a plateauing of cell biomass at a significantly reduced level for the intermediate phage challenge (10⁶ PFU/mL). In contrast, addition of Coruscant causes only a mild but initial titer-dependent growth delay of the cultures (Figure 2A). For both phages, phage titers peaked at 6 h at the higher initial phage titer (10⁷ PFU/mL), and at the intermediate phage challenge, phage amplification was delayed or very weak for Alderaan and Coruscant, respectively.

As for the *S. coelicolor* phages (Figure 2B), infection with Dagobah caused a mild growth delay, visible especially when 10⁷ PFU/mL was initially added. In parallel, the phage titers either declined over time or grew moderately (10-fold increase between 0 and 8 h) for initially intermediate (10⁶ PFU/mL) or high (10⁷ PFU/mL) phage challenge, respectively. Infection with Endor1 and Endor2 showed a similar behavior and caused a stronger growth delay than Dagobah, even for the intermediate initial

phage burden (10⁶ PFU/mL). The phage titers showed concordant behavior, with a strong increase in titers for both Endor1 and Endor2 until 10 h, followed by a marked decline up to 24 h.

Altogether, infection curves revealed that all five phages can successfully propagate in liquid cultures at the expense of their host. Surprisingly, the titers of all phages dropped after an initial increase, which needs further investigation.

Figure 2. Infection curves of the five phages infecting *S. venezuelae* (**A**) and *S. coelicolor* (**B**). *S. venezuelae* or *S. coelicolor* were inoculated to GYM or YEME medium, respectively, and grown in microtiter plates, to which phages were added at the indicated initial phage titers. Backscatter was measured over time (left panels), in parallel to phage titers (right panels).

7 of 15

While phages usually have a relatively narrow host range, some phages can sometimes infect many strains of the same species and even distinct species. We assessed the host-range of our phages by spotting them on lawns of different *Streptomyces* species (Table 1).

Table 1. The host range of the five phages was assessed by spotting serial dilutions of these phages on lawns of different *Streptomyces* species propagated on GYM medium. The outcome of the spot assays is reported as follows: plaque formation (green), clearance of the bacterial lawn without visible plaques (yellow), no plaque or lysis visible (no color). The efficiency of plating (EOP) of a phage on a given strain relative to the host used for isolation is indicated, when plaques are countable.

	Alderaan	Coruscant	Dagobah	Endor1	Endor2
S. venezuelae					
S. coelicolor M600					
S. coelicolor M145			1	1	1
S. rimosus subsp. rimosus					
S. scabiei					
S. griseus					
S. platensis					
S. xanthochromogenes					
S. lividans			0.2		
S. olivaceus					4
S. cyaneofuscatus				0.08	0.4

S. coelicolor M145 showed the same sensitivity pattern than the M600 strain. M145 and M600 are both plasmid-free derivatives of A3(2) and mainly differ from each other in the length of their direct terminal repeats [17].

Beside *S. venezuelae* and *S. coelicolor, S. lividans* showed plaque formation by phage Dagobah. Endor1 and Endor2 also formed plaques on *S. olivaceus* and *S. cyanofuscatus*. Alderaan, Endor1 and Endor2 caused indefinite clearance of the bacterial lawn of several species, but higher dilutions did not reveal distinct, single plaques. For these species, the phage lysates could have inhibitory effects on growth or cause non-productive infection [36,37].

In summary, Endor1 and Endor2 showed the broadest host range, but overall, the five phages we isolated feature a relatively modest host range, as they are only able to infect few other *Streptomyces* species.

3.3. Genome Sequencing and Genome Features

All phages were sequenced using short-read technology (Illumina Mi-Seq). Each genome could be assembled to a single contig, to which >80% of the reads could be mapped confirming the purity of the samples.

The genome features of the five phages are summed up in Table 2. Briefly, they show diverse genome sizes (39 to 133 kb), GC-contents (48 to 72%) and ORFs numbers (51 to 290). The phage Coruscant differed from other phages, in that its genome is significantly larger than the other phages and exhibits a markedly low GC content (48%), in comparison to the one of its host (72%). The genomic ends were predicted using PhageTerm, which detects biases in the number of reads to determine DNA termini and phage packaging mechanisms [29]. Alderaan, Endor1 and Endor2 showed a headful packaging mechanism where the phage genomes have a fixed start at the *pac* site, but the end of the genome is variable. In contrast, phages Coruscant and Dagobah have direct terminal repeats (DTR). These DTR were identified in the initial assembly by an approximately 2-fold increase in

coverage clearly delimitated at single base positions. Phage lifecycle was predicted using PhageAI, which developed a lifecycle classifier based on machine learning and natural language processing [30].

Table 2. Basic genome features of the five phages. Open reading frames (ORFs) were predicted using Prokka [25] and were later manually curated. Protein domains encoded in ORFs were identified using RPS-BLAST against the Conserved Domain Database (CDD). The type of genome ends was determined using Phage Term [29]. The lifestyle of each phage was predicted by the machine-learning based program PhageAI [30].

Phage Name	Accession Number	Reference Host	Genome Size (kb)	GC Content (%)	ORF Number	Genome Termini Class	Lifestyle Prediction
Alderaan	MT711975	Streptomyces venezuelae ATCC 10712	39	72.1	51	Headful (pac)	Temperate
Coruscant	MT711976	Streptomyces venezuelae ATCC 10712	133 (12 kb DTR)	48.4	290	DTR (long)	Virulent
Dagobah	MT711977	Streptomyces coelicolor M600	47 kb (1 kb DTR)	68.9	93	DTR (short)	Temperate
Endor1	MT711978	Streptomyces coelicolor M600	49	65.8	75	Headful (pac)	Temperate
Endor2	MT711979	Streptomyces coelicolor M600	48	65.1	75	Headful (pac)	Temperate

Phage genes involved in the same function are usually clustered together, forming functional modules (Figure 3) [38,39]. These modules fulfil the basic functions necessary for production of progeny phages, including DNA/RNA metabolism, DNA replication and repair, DNA packaging, virion structure and assembly (tail and capsid), regulation, lysogeny (in the case of temperate phages) and lysis.

Interestingly, Coruscant's large genomes is paralleled by a high genome complexity. It contains no less than 41 copies of tRNAs, covering 19 different amino acids—all standard amino acids except valine. Coruscant has also a relatively high fraction of coding sequences for which no function could be predicted (155 hypothetical proteins out 290 CDS compared to 16/51 for Alderaan).

The phages were also found to encode homologs of bacterial regulators that are typically used by *Streptomyces* to control sporulation and overall development. For example, *whiB* (found in Alderaan, and Coruscant) and *ssgA* (found in Dagobah) are both essential for sporulation of *Streptomyces* [40,41]. Three phages (Coruscant, Endor1 and Endor2) also encode Lsr2-like proteins, which are nucleoid-associated proteins functioning as xenogeneic silencing proteins and are conserved throughout Actinobacteria [42].

Additionally, despite overall high synteny and homology, the phages Endor1 and Endor2 showed sequence variations in the tail fiber proteins, tapemeasure and endolysin. In particular, the region encoding distal elements of the tail (ORF_00022 to ORF_00025 in Endor1, ORF_00023 to ORF_00026 in Endor2) displays reduced similarity at the nucleotide level (Supplementary Table S1). The resulting differences at the protein level could potentially account for the differences in host range between these two phages, e.g., infectivity on *S. olivaceus* (Table 1).

Figure 3. Genome map of the five *Streptomyces* phages. Open reading frames (ORFs) were identified with Prodigal and functionally annotated using an automatic pipeline based on Prokka [25]. The functional annotation was automatically improved and curated using hidden Markov models (HMMs), and Blastp searches [26] against different databases (Prokaryotic Virus Orthologous Groups (pVOGs) [27], viral proteins and Conserved Domain Database (CDD) [28]. Genome maps were created using the R package gggenes.

10 of 15

3.4. Average Nucleotide Identity (ANI) Analysis

We established the sequence relationship between the newly sequenced *Streptomyces* phages and the selected genomes from the representative group members of actinophages.

The Average nucleotide identity (ANI) based clustering dendrogram analysis showed that four (Endor1, Endor2, Alderaan, and Coruscant) out of five phage genomes clustered confidently with the members of already known clusters (Endor1/Endor2: BD, Coruscant: BE, and Alderaan: BC) (Figure 4). However, one of the phage genomes (Dagobah) does not share sufficient similarity and was therefore clustered as an unresolved group. Calculation of virus intergenomic similarities using VIRIDIC [43] showed congruent results to the ANI-based clustering (Figure S2), providing further support to the clustering shown in Figure 4. Altogether, the overall analysis showed that except Dagobah, all four phages show close relatedness to Streptomyces phages.

Figure 4. Average nucleotide-based dendrogram analysis using 38 actinophage genomes. These 38 genomes include 31 genomes downloaded from the Actinophage Database (https://phagesdb.org/), two genomes from NCBI based on close relatedness, and the five newly sequenced phages. The group of each phage, as defined by the Actinophage Database, is indicated.

3.5. Protein Domain-Based Analysis

Sequence relationship between the phage genomes is most commonly determined with the help of genome-wide similarity or average nucleotide identity-based analysis. However, a traditional method such as phylogeny with single genes is challenging because of the high variability and lack of universal genes across the phage genomes. Thus, we used additional phyletic-based analysis to establish a sequence relationship between the phage genomes. The hierarchical clustering dendrogram based on the identified 703 Pfam domains presence-absence matrix confidently clusters newly sequenced phages with known actinophages (Figure 5).

11 of 15

In comparison to ANI-based analysis, hierarchical clustering showed congruent topology for the four newly sequenced *Streptomyces* phage genomes (Endor1 and Endor2: BD cluster, Alderaan: BC cluster, and Coruscant: BE cluster) (Supplementary Figures S3–S6). It also resolved polytomy between the unresolved groups and showed that Dagobah comes under the singleton group, consisting of highly divergent phages. Moreover, a high level of congruence was observed between already known groups and the groups identified by our hierarchical clustering. Thus, our results strongly suggest domain-based phyletic or hierarchical clustering analysis as an alternate way of classification of newly sequenced phage genomes.

4. Discussion

In this study, we report the isolation and characterization of five novel *Streptomyces* phages. Alderaan and Coruscant were isolated using *S. venezueale*, while *S. coelicolor* was the host used for isolation of Dagobah, Endor1 and Endor2.

The machine-learning based lifestyle prediction tool PhageAI suggested a temperate lifestyle for four of the phages (Alderaan, Dagobah, Endor1 and Endor2) and a virulent lifestyle for Coruscant.

These results were congruent with the lifestyle indicated by PhagesDB of phages belonging to the same cluster, as shown by the protein domain-based hierarchical clustering (Supplementary Figures S3–S6). However, unlike the other members of the BC cluster, Alderaan does not seem to have any integrase domain or gene. Together with the clear plaques it forms, this suggests that this phage potentially lost its integrase and therefore adopted a lytic lifestyle. Such events alter only slightly the overall genome landscape, be it at the nucleotide or protein level, and could thereby explain why whole-genome based predictions like PhageAI or protein domain-based clustering still predict Alderaan as temperate. These discongruencies, however, highlight the requirement of further experimental validation.

In contrast to the other four phages, Coruscant exhibits a large genome (superior to 130 kb) with massive direct terminal repeats (12 kb) and a low GC content (48%), in comparison to the 72% of its *Streptomyces* host. Coruscant also encodes 41 copies of tRNA genes, spanning 19 of the 20 standard amino acids. This large tRNA gene repertoire could be used to optimize gene expression in hosts that have differing codon usage patterns or to counteract potential tRNA-based degradation defense systems [44]. Altogether, the combination of a low GC content and a substantial tRNA equipment suggests a recent adaptation of the phage Coruscant to *Streptomyces*.

ANI and hierarchical clustering analysis revealed that Alderaan, Coruscant and Endor1/Endor2 belong to clusters BC, BE and BD defined by PhagesDB [31], respectively. In contrast, Dagobah showed very little homology with described phages, and was thus considered as a singleton. This finding highlights the largely untapped phage diversity, making the isolation of entirely "novel" phages still possible.

Streptomyces are characterized by their complex lifestyle and cellular differentiation. Interestingly, the isolated actinophages also encode homologs of SsgA, WhiB and Lsr2 proteins—regulatory proteins typically encoded by their hosts. The *ssgA* gene product was previously shown to be necessary for proper sporulation of *Streptomyces coelicolor* [41]; *whiB* is also essential for sporulation of *Streptomyces* and was already reported to be found in several actinophages [45–47]. Interestingly, the WhiB-like protein of mycobacteriophage TM4, WhiB_{TM4}, was shown to inhibit the transcription of *Mycobacterium whiB2*. Expression of WhiB_{TM4} in *M. smegmatis* led to hindered septation resembling a WhiB2 knockout phenotype, highlighting how phage can interfere with their host's development [46].

Lsr2-like proteins are nucleoproteins conserved in Actinobacteria. In *Streptomyces*, they were recently shown to silence cryptic specialized metabolic clusters [48]. The first example of a phage-encoded Lsr2-like protein is the prophage-encoded Lsr2-like protein CgpS in *Corynebacterium glutamicum* [49]. CgpS was shown to maintain the lysogenic state of the prophage on which it resides. Further bioinformatic searches revealed that Lsr2-like proteins are abundant in actinophages, with almost 20% of *Streptomyces* phages encoding such proteins [42]. However, their role in the coordination of the phage life cycle still remains unclear. Altogether, these observations suggest that phages manipulate their host development, by interfering with central processes such as sporulation and antibiotic production.

More generally, the specificities of *Streptomyces*—especially its morphological complexity—impact the phage isolation and characterization process. For example, the mycelial nature of streptomycetes complicates quantitative studies. The notion of MOI loses a lot of its significance once mycelium has formed, as the network structure originating from one spore has greatly increased phage adsorption but would still be counted as one CFU [14,50]. Furthermore, the formation of clumps, although mitigated by the addition of glass beads or increase of osmotic pressure [51], makes accurate monitoring of cell growth (based on optical density or backscatter) difficult.

S. coelicolor was established as a model system for the *Streptomyces* genus partly because of its prolific pigment production [52]. Interestingly, we observed colored halos around the plaques formed by the *S. coelicolor* phages. Exposure to ammonia fume confirmed that these colored halos contain actinorhodin. This observation suggests that *Streptomyces* release metabolites in reaction to phage predation, some of which may potentially have anti-phage properties as it was shown recently with anthracyclines in *Streptomyces peucetius* [53].

13 of 15

Understanding the processes governing phage infection has the potential to illuminate the basic physiology of their hosts. Therefore, phages can serve as a basis to study *Streptomyces'* specific traits—its complex reproduction cycle and abundant production of secondary metabolites—in the context of phage infection.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/12/10/1065/s1, Figure S1: Close-ups of phage plaques imaged using a Nikon SMZ18 stereomicroscope, before (upper row) and after (lower row) exposure to ammonia fumes. Figure S2: VIRIDIC generated heatmap showing the intergenomic similarities of the newly sequenced phages with reference phages. Figure S3: Subclade dendrogram with *Streptomyces* phage Alderaan and its closely related actinophages. Figure S4: Subclade dendrogram with *Streptomyces* phage Coruscant and its closely related actinophages. Figure S5: Subclade dendrogram with *Streptomyces* phage Dagobah and its closely related actinophages. Figure S6: Subclade dendrogram with *Streptomyces* phage Endor1 and Endor2 and their closely related actinophages. Supplementary Table S1: List of the functional annotation of proteins ORFs within phage genomes.

Author Contributions: Conceptualization, A.H., and J.F.; methodology, All; validation, All; formal analysis, All; investigation, A.H. and L.K.; resources, V.S. and J.F.; data curation, A.H. and V.S.; writing—original draft preparation, A.H. and V.S.; writing—review and editing, All; visualization, A.H., V.S. and L.K.; supervision, J.F.; project administration, J.F.; funding acquisition, J.F. All authors have read and agreed to the published version of the manuscript.

Funding: We thank the European Research Council (ERC Starting Grant, grant number 757563) for financial support. A.H. was supported by a fellowship from the Ecole Normale Supérieure (Paris, France).

Acknowledgments: We thank David Brandt (Center for Biotechnology, University of Bielefeld) for his help with genome assembly and Julio Ortiz (Forschungszentrum Jülich) for his assistance during electron microscopy. The *S. cyaneofuscatus* and *S. olivaceus* strains were kindly provided by the German Collection of Microorganisms and Cell Cultures (DSMZ). We are also grateful to the entire Frunzke lab for fruitful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Bibb, M.J. Understanding and manipulating antibiotic production in actinomycetes. *Biochem. Soc. Trans.* 2013, 41, 1355–1364. [CrossRef] [PubMed]
- Hopwood, D.A. Streptomyces in Nature and Medicine: The Antibiotic Makers; Oxford University Press: Oxford, NY, USA, 2007; ISBN 978-0-19-515066-7.
- Keiser, T.; Bibb, M.J.; Buttner, M.J.; Chater, K.F.; Hopwood, D.A. Practical Streptomyces Genetics; The John Innes Foundation: Norwich, UK, 2000; ISBN 0-7084-0623-8.
- Elliot, M.A.; Buttner, M.J.; Nodwell, J.R. 24 Multicellular Development in *Streptomyces. Myxobacteria* 2008, 419–438. [CrossRef]
- McCormick, J.R.; Flärdh, K. Signals and regulators that govern *Streptomyces* development. *FEMS Microbiol. Rev.* 2012, 36, 206–231. [CrossRef] [PubMed]
- Anne, J.; Wohlleben, W.; Burkardt, H.J.; Springer, R.; Pohler, A. Morphological and Molecular Characterization of Several Actinophages Isolated from Soil Which Lyse *Streptomyces cattleya* or *S. venezuelae*. *Microbiology* 1984, 130, 2639–2649. [CrossRef] [PubMed]
- Donadio, S.; Paladino, R.; Costanzi, I.; Sparapani, P.; Schreil, W.; Iaccarino, M. Characterization of bacteriophages infecting *Streptomyces erythreus* and properties of phage-resistant mutants. *J. Bacteriol.* 1986, 166, 1055–1060. [CrossRef] [PubMed]
- Dowding, J.E. Characterization of a Bacteriophage Virulent for *Streptomyces coelicolor* A3 (2) | Microbiology Society. J. Gen. Microbiol. 1973, 76, 163–176. [CrossRef]
- Smith, M.C.M.; Hendrix, R.W.; Dedrick, R.; Mitchell, K.; Ko, C.-C.; Russell, D.; Bell, E.; Gregory, M.; Bibb, M.J.; Pethick, F.; et al. Evolutionary Relationships among Actinophages and a Putative Adaptation for Growth in *Streptomycesspp. J. Bacteriol.* 2013, 195, 4924–4935. [CrossRef]
- Smith, M.C.M.; Burns, R.N.; Wilson, S.E.; Gregory, M.A. The complete genome sequence of the *Streptomyces* temperate phage φC31: Evolutionary relationships to other viruses. *Nucleic Acids Res.* 1999, 27, 2145–2155. [CrossRef]
- Lomovskaya, N.D.; Mkrtumian, N.M.; Gostimskaya, N.L.; Danilenko, V.N. Characterization of Temperate Actinophage φC31 Isolated from *Streptomyces coelicolor* A3(2). J. Virol. 1972, 9, 5. [CrossRef]

- 12. Lomovskaya, N.D.; Chater, K.F.; Mkrtumian, N.M. Genetics and molecular biology of *Streptomyces* bacteriophages. *Microbiol. Mol. Biol. Rev.* **1980**, *44*, 206–229. [CrossRef]
- 13. Burke, J.; Schneider, D.; Westpheling, J. Generalized transduction in *Streptomyces coelicolor. Proc. Natl. Acad. Sci. USA* 2001, *98*, 6289–6294. [CrossRef] [PubMed]
- 14. Rosner, A.; Gustein, R. Adsorption of actinophage Pal 6 to developing mycelium of *Streptomyces. Can. J. Microbiol.* **1981**, 27, 254–257. [CrossRef] [PubMed]
- Jordan, T.C.; Burnett, S.H.; Carson, S.; Caruso, S.M.; Clase, K.; DeJong, R.J.; Dennehy, J.J.; Denver, D.R.; Dunbar, D.; Elgin, S.C.R.; et al. A Broadly Implementable Research Course in Phage Discovery and Genomics for First-Year Undergraduate Students. *mBio* 2014, 5. [CrossRef] [PubMed]
- Pullan, S.T.; Chandra, G.; Bibb, M.J.; Merrick, M. Genome-wide analysis of the role of GlnR in *Streptomyces venezuelae* provides new insights into global nitrogen regulation in actinomycetes. *BMC Genom.* 2011, 12, 175. [CrossRef] [PubMed]
- Weaver, D.; Karoonuthaisiri, N.; Tsai, H.-H.; Huang, C.-H.; Ho, M.-L.; Gai, S.; Patel, K.G.; Huang, J.; Cohen, S.N.; Hopwood, D.A.; et al. Genome plasticity in *Streptomyces*: Identification of 1 Mb TIRs in the *S. coelicolor* A3(2) chromosome: Identification of 1 Mb TIRs in *S. coelicolor* A3(2). *Mol. Microbiol.* 2004, *51*, 1535–1550. [CrossRef]
- Bentley, S.D.; Chater, K.F.; Cerdeño-Tárraga, A.-M.; Challis, G.L.; Thomson, N.R.; James, K.D.; Harris, D.E.; Quail, M.A.; Kieser, H.; Harper, D.; et al. Complete genome sequence of the model actinomycete *Streptomyces coelicolor* A3(2). *Nature* 2002, 417, 141–147. [CrossRef]
- 19. Shepherd, M.D.; Kharel, M.K.; Bosserman, M.A.; Rohr, J. Laboratory Maintenance of *Streptomyces* species. *Curr. Protoc. Microbiol.* **2010**, *18*, 10E.1.1–10E.1.8. [CrossRef]
- 20. Kauffman, K.M.; Polz, M.F. Streamlining standard bacteriophage methods for higher throughput. *MethodsX* **2018**, *5*, 159–172. [CrossRef]
- Kensy, F.; Zang, E.; Faulhammer, C.; Tan, R.-K.; Büchs, J. Validation of a high-throughput fermentation system based on online monitoring of biomass and fluorescence in continuously shaken microtiter plates. *Microb. Cell Fact.* 2009, *8*, 31. [CrossRef]
- Rückert, C.; Albersmeier, A.; Busche, T.; Jaenicke, S.; Winkler, A.; Friðjónsson, Ó.H.; Hreggviðsson, G.Ó.; Lambert, C.; Badcock, D.; Bernaerts, K.; et al. Complete genome sequence of *Streptomyces lividans* TK24. *J. Biotechnol.* 2015, 199, 21–22. [CrossRef]
- 23. Gordon, D.; Green, P. Consed: A graphical editor for next-generation sequencing. *Bioinformatics* 2013, 29, 2936–2937. [CrossRef] [PubMed]
- 24. Hyatt, D.; Chen, G.-L.; LoCascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic gene recognition and translation initiation site identification. *BMC Bioinform.* **2010**, *11*, 119. [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. *Bioinformatics* 2014, 30, 2068–2069. [CrossRef]
 [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [CrossRef]
- 27. Grazziotin, A.L.; Koonin, E.V.; Kristensen, D.M. Prokaryotic Virus Orthologous Groups (pVOGs): A resource for comparative genomics and protein family annotation. *Nucleic Acids Res.* 2017, 45, D491–D498. [CrossRef]
- Marchler-Bauer, A.; Derbyshire, M.K.; Gonzales, N.R.; Lu, S.; Chitsaz, F.; Geer, L.Y.; Geer, R.C.; He, J.; Gwadz, M.; Hurwitz, D.I.; et al. CDD: NCBI's conserved domain database. *Nucleic Acids Res.* 2015, 43, D222–D226. [CrossRef]
- Garneau, J.R.; Depardieu, F.; Fortier, L.-C.; Bikard, D.; Monot, M. PhageTerm: A tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. *Sci. Rep.* 2017, 7, 8292. [CrossRef]
- 30. Tynecki, P.; Guziński, A.; Kazimierczak, J.; Jadczuk, M.; Dastych, J.; Onisko, A. PhageAI—Bacteriophage Life Cycle Recognition with Machine Learning and Natural Language Processing. *Bioinformatics* **2020**. [CrossRef]
- 31. Russell, D.A.; Hatfull, G.F. PhagesDB: The actinobacteriophage database. *Bioinformatics* 2017, 33, 784–786. [CrossRef]
- 32. Pritchard, L. Widdowquinn/pyani. 2020. Available online: https://github.com/widdowquinn (accessed on 21 September 2020).
- 33. Gu, Z.; Eils, R.; Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. *Bioinformatics* 2016, 32, 2847–2849. [CrossRef]

- 34. Yu, G.; Smith, D.K.; Zhu, H.; Guan, Y.; Lam, T.T.-Y. Ggtree: An r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. *Methods Ecol. Evol.* **2017**, *8*, 28–36. [CrossRef]
- Rudd, B.A.M.; Hopwood, D.A. Genetics of Actinorhodin Biosynthesis by Streptomyces coelicolor A3(2). Microbiology 1979, 114, 35–43. [CrossRef]
- 36. Abedon, S.T. Lysis from without. Bacteriophage 2011, 1, 46–49. [CrossRef]
- Abedon, S.T. Detection of Bacteriophages: Phage Plaques. In *Bacteriophages: Biology, Technology, Therapy*; Harper, D.R., Abedon, S.T., Burrowes, B.H., McConville, M.L., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–32. ISBN 978-3-319-40598-8.
- Botstein, D. A Theory of Modular Evolution for Bacteriophages. Ann. N. Y. Acad. Sci. 1980, 354, 484–491. [CrossRef] [PubMed]
- 39. Brüssow, H.; Desiere, F. Comparative phage genomics and the evolution of *Siphoviridae*: Insights from dairy phages. *Mol. Microbiol.* **2001**, *39*, 213–223. [CrossRef] [PubMed]
- Molle, V.; Palframan, W.J.; Findlay, K.C.; Buttner, M.J. WhiD and WhiB, homologous proteins required for different stages of sporulation in *Streptomyces coelicolor* A3(2). J. Bacteriol. 2000, 182, 1286–1295. [CrossRef]
- 41. van Wezel, G.P.; van der Meulen, J.; Kawamoto, S.; Luiten, R.G.M.; Koerten, H.K.; Kraal, B. *ssgA* Is Essential for Sporulation of *Streptomyces coelicolor* A3(2) and Affects Hyphal Development by Stimulating Septum Formation. *J. Bacteriol.* **2000**, *182*, 5653–5662. [CrossRef]
- 42. Pfeifer, E.; Hünnefeld, M.; Popa, O.; Frunzke, J. Impact of Xenogeneic Silencing on Phage–Host Interactions. *J. Mol. Biol.* **2019**. [CrossRef] [PubMed]
- 43. Moraru, C.; Varsani, A.; Kropinski, A.M. VIRIDIC—A novel tool to calculate the intergenomic similarities of prokaryote-infecting viruses. *bioRxiv* 2020. [CrossRef]
- 44. Hyman, P.; Abedon, S.T. Chapter 7—Bacteriophage Host Range and Bacterial Resistance. In *Advances in Applied Microbiology*; Academic Press: Cambridge, MA, USA, 2010; Volume 70, pp. 217–248.
- Morris, P.; Marinelli, L.J.; Jacobs-Sera, D.; Hendrix, R.W.; Hatfull, G.F. Genomic Characterization of Mycobacteriophage Giles: Evidence for Phage Acquisition of Host DNA by Illegitimate Recombination. *J. Bacteriol.* 2008, 190, 2172–2182. [CrossRef]
- Rybniker, J.; Nowag, A.; van Gumpel, E.; Nissen, N.; Robinson, N.; Plum, G.; Hartmann, P. Insights into the function of the WhiB-like protein of mycobacteriophage TM4—A transcriptional inhibitor of WhiB2. *Mol. Microbiol.* 2010, 77, 642–657. [CrossRef]
- Van Dessel, W.; Van Mellaert, L.; Liesegang, H.; Raasch, C.; DeKeersmaeker, S.; Geukens, N.; Lammertyn, E.; Streit, W.; Anné, J. Complete genomic nucleotide sequence and analysis of the temperate bacteriophage VWB. *Virology* 2005, 331, 325–337. [CrossRef] [PubMed]
- Gehrke, E.J.; Zhang, X.; Pimentel-Elardo, S.M.; Johnson, A.R.; Rees, C.A.; Jones, S.E.; Gehrke, S.S.; Turvey, S.; Boursalie, S.; Hill, J.E.; et al. Silencing cryptic specialized metabolism in *Streptomyces* by the nucleoid-associated protein Lsr2. *eLife* 2019, *8*, e47691. [CrossRef]
- 49. Pfeifer, E.; Hünnefeld, M.; Popa, O.; Polen, T.; Kohlheyer, D.; Baumgart, M.; Frunzke, J. Silencing of cryptic prophages in *Corynebacterium glutamicum*. *Nucleic Acids Res.* **2016**, *44*, 10117–10131. [CrossRef] [PubMed]
- Gilmour, C.M.; Noller, E.C.; Watkins, B. Studies on Streptomyces Phage: I. Growth Characteristics of the Streptomyces griseus Host-Phage System. J. Bacteriol. 1959, 78, 186–192. [CrossRef] [PubMed]
- Nguyen, L.D.; Kalachová, L.; Novotná, J.; Holub, M.; Kofroňová, O.; Benada, O.; Thompson, C.J.; Weiser, J. Cultivation System Using Glass Beads Immersed in Liquid Medium Facilitates Studies of *Streptomyces* Differentiation. *Appl. Environ. Microbiol.* 2005, 71, 2848–2852. [CrossRef] [PubMed]
- 52. Chater, K. David Hopwood and the emergence of *Streptomyces* genetics. *Int. Microbiol.* 1999, 2, 61–68.
- Kronheim, S.; Daniel-Ivad, M.; Duan, Z.; Hwang, S.; Wong, A.I.; Mantel, I.; Nodwell, J.R.; Maxwell, K.L. A chemical defence against phage infection. *Nature* 2018, 564, 283. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

15 of 15

3.5. Antiphage small molecules produced by bacteria – beyond protein-mediated defenses

Hardy A., Kever L. and Frunzke J.

Published in Trends in Microbiology, 2023

Contributor role	Contributor
Conceptualization	AH (60%), JF (30%), LK (10%)
Data curation	AH (95%), LK (5%)
Formal analysis	-
Funding acquisition	JF (100%)
Investigation	AH (90%), LK (5%), JF (5%)
Methodology	AH (65%), JF (30%), LK (5%)
Project administration	AH (90%), JF (10%)
Resources	-
Software	-
Supervision	AH (60%), JF (40%)
Validation	AH (70%), LK (20%), JF (10%)
Visualization	LK (80%), AH (15%), JF (5%)
Writing – original draft	AH (95%), JF (5%)
Writing – review and editing	JF (60%), AH (30%), LK (10%)

Overall contribution: 7.5%

Design of the review figures was mainly done by LK and optimized in cooperation with JF and AH. LK was further involved in the conceptualization as well as review and editing process.

ARTICLE IN PRES

Trends in Microbiology

CelPress

Review Antiphage small molecules produced by bacteria - beyond protein-mediated defenses

Aël Hardy, ¹ Larissa Kever, ¹ and Julia Frunzke ¹,*

Bacterial populations face the constant threat of viral predation exerted by bacteriophages ('phages'). In response, bacteria have evolved a wide range of defense mechanisms against phage challenges. Yet the vast majority of antiphage defense systems described until now are mediated by proteins or RNA complexes acting at the single-cell level. Here, we review small moleculebased defense strategies against phage infection, with a focus on the antiphage molecules described recently. Importantly, inhibition of phage infection by excreted small molecules has the potential to protect entire bacterial communities, highlighting the ecological significance of these antiphage strategies. Considering the immense repertoire of bacterial metabolites, we envision that the list of antiphage small molecules will be further expanded in the future.

Bacteriophages (or phages for short) are viruses preying on bacteria and are considered to be the Secreted antiphage metabolites have tities in the biosphere [1]. They represent a ubiquitous feature of bacterial existence as there is virtually no ecosystem where bacteria do not coexist with phages infecting them [1]. The strong evolutionary pressure imposed by phage predation has led to a sophisticated arsenal of antiphage strategies, which have been extensively reviewed elsewhere [2-5]. The repertoire of known defense systems has been significantly expanded through large-scale bioinformatics screenings followed by experimental validation [6,7]. In addition to the already known defense systems, such as restriction-modification systems, CRISPR-Cas, or abortive infection (Abi), antiviral strategies now include the use of cyclic nucleotides as signaling molecules (CBASS [8], Pycsar [9]) and NAD+ depletion as a widespread response to viral infection [10-13]. Scrutiny of these novel antiphage defense systems revealed striking similarities to eukaryotic immune systems, suggesting that a previously underappreciated fraction of eukaryotic immunity evolved from prokaryotic antiphage defenses [8,10,14-16]. With the accelerating pace of discovery of new antiphage systems, keeping an overview of the currently known antiviral prokaryotic arsenal has become increasingly difficult but has been facilitated by the development of tools aimed at systematic and comprehensive identification of defense systems in prokaryotic genomes [17,18]. The notion of a bacterial pan-immune system has been recently proposed to recognize phage defense as a community resource distributed between closely related bacteria via horizontal gene transfer (HGT) [19].

In nature, bacteria live in complex, spatially structured and multispecies communities [20], which highlights the need to consider antiphage strategies at the community level. These mechanisms include the release of extracellular vesicles [21,22], formation of protective biofilm structures [23,24], or quorum sensing [25-27]. Chemical inhibition of phages using small molecules secreted in the extracellular space represents another effective multicellular strategy against phage infection, which, unlike most defense systems described until now, does not rely on proteins or RNA.

Trends in Microbiology, Month 2022, Vol. xx, No. xx https://doi.org/10.1016/j.tim.2022.08.001 1

Highlights

Bacteria are prolific metabolite producers, but the role of this metabolite diversity in protection against phages has been only recently appreciated.

Anthracyclines, aminoglycosides, and chain terminators produced by prokaryotic viperins represent the main classes of antiphage small molecules known to date

Aminoglycosides have both antibacterial and antiphage properties, this dual function making them an interesting example of molecular multitasking.

the potential to protect bacterial communities, serving as a multicellular defense strategy.

¹Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany

*Correspondence: j.frunzke@fz-juelich.de (J. Frunzke).

© 2022 Elsevier Ltd. All rights reserved.

CellPress

The direct inhibition of phage infection by bacterial small molecules was an intense research field in the 1950s and 1960s and has recently regained significant attention. Here, we aim at summarizing the extensive but largely overlooked body of research in the field of antiphage molecules and present the latest developments in this emerging research area. Furthermore, we outline future perspectives for the discovery of novel antiphage metabolites and discuss the ecological significance of this defense strategy.

The present review aims at presenting small molecules, other than RNAs and proteins, that are produced by bacteria and confer protection against phage infection. As a result, antibiotics preventing phage infection by a primary action on the bacterium are not included.

Chemical defense against phage infection

Overall, the study of antiphage molecules has known two distinct periods of interest - the first one spanning the third quarter of the 20th century while the second started only a few years ago. The interest to find new compounds active against phages was very strong in the 1950s [28-30], with, in some cases, heroic screening efforts such as those performed by Schatz and Jones or Asheshov and colleagues - who assessed the antiphage activity of more than 170 and 1000 strains of actinomycetes, respectively [28,29]. In these screenings, the supernatants of 29% (49/176) and 17% (144/1000) of the tested actinomycete isolates caused an inhibition of plaque formation, suggesting that the release of antiphage metabolites is not uncommon in actinobacteria. These two screenings led to the description in follow-up studies of four antiphage compounds (chrysomycin, phagolessin A58, nybomycin, and aklavin), the latter being shown to be a close congener of the anthracycline (see Glossary) aclacinomycin A [31]. The primary goal of these screenings was, however, not to understand how bacteria defend themselves against phages but rather to find new antiviral drugs usable in a clinical or agricultural setting [30]. An additional focus was put on substances able to specifically prevent phages from infecting Streptomyces griseus because of the risk phages posed to industrial production of streptomycin by this important production host [32].

Over the decades, a significant number of molecules were described to have antiphage properties. We listed these antiphage compounds in Table 1, which includes the phages inhibited and their bacterial hosts. In the following, we focus on the three main classes of antiphage small molecules described to date: anthracyclines, **aminoglycosides**, and modified nucleotides produced by prokaryotic **viperins**.

Anthracyclines

Anthracyclines are secondary metabolites naturally produced by *Streptomyces* – a common genus of soil-dwelling bacteria. Chemically speaking, anthracyclines belong to the family of type II aromatic polyketides and feature an aglycone scaffold decorated by a sugar residue [58]. Soon after their discovery, anthracyclines were shown to possess potent antitumor activity and have since been used to treat a wide range of cancers [59]. They are still among the most effective anticancer treatments ever developed [60-62]. The precise mechanism behind their cytotoxic effect in eukaryotic cells is still subject to debate. However, their antitumor activity can be broadly attributed to their ability to intercalate into the DNA helix and/or bind covalently to proteins involved in DNA replication and transcription [63]. The DNA-damaging properties of anthracyclines also affect their producer, which, as a result, evolved several self-resistance mechanisms. In the case of *Streptomyces peucetius*, the toxic effects of daunorubicin and doxorubicin are mitigated by a combination of active efflux by DrrA and DrrB, extracellular sequestration to prevent reimport, and dislodgement of intercalated anthracyclines by DrrC [64-66].

2 Trends in Microbiology, Month 2022, Vol. xx, No. xx

Trends in Microbiology

Glossary

Aminoglycosides: antibacterials naturally produced by Streptomyces and Micromonosporas species. They target bacterial translation by binding to the 30S ribosomal subunit. Besides their antibacterial action, additional antiphage properties were recently discovered. Anthracyclines: DNA-intercalating antibiotics produced by Streptomyces having antitumor as well as antiphage

properties. Bioactivity-guided fractionation:

chromatographic separation of extracts aiming at the isolation of a pure biologically active compound.

Chemical defense: protection against phage infection via bacterial small molecules.

Streptomyces: a genus of

Gram-positive bacteria of the phylum Actinobacteria. Streptomyces species are found mainly in the soil and are characterized by mycelial development as well as by their complex secondary metabolism. Streptomyces is one of the most important producers of bloactive molecules.

Viperins: virus-inhibitory proteins in eukaryotes which convert ribonucleotides into chain terminators, thereby preventing transcription of viral genes. Uperin homologs are found in prokaryotes and are known as prokaryotic viperins (pVips), pVips inhibit phage infection by a mode of action similar to that of their eukaryotic counterparts.

Trends in Microbiology

Class	Compound	Phages affected	Bacterial host	Phage family	Genome	Refs
DNA-intercalating agents						
Alkaloid	Ellipticine	λ	Escherichia coli	Siphoviridae	Linear dsDNA	[33]
Fluorochrome	Propidium iodide	λ	E. coli	Siphoviridae	Linear dsDNA	[33]
		fScoe2	Streptomyces coelicolor	Siphoviridae	Linear dsDNA	
Acridine family compounds		fScoe25	S. coelicolor E. coli	Siphoviridae Siphoviridae	Linear dsDNA Linear dsDNA	[33]
Activitie family compounds	Acritlavine	۸ fScoe2	S. coelicolor	Siphoviridae	Linear dsDNA	
		fScoe25	S. coelicolor	Siphoviridae	Linear dsDNA	
	Ethacridine	λ	E. coli	Siphoviridae	Linear dsDNA	
	lactate	Λ	E. COII	Sipriovindae	Linear dsDINA	
⊃olypeptide antibiotic	Actinomycin D	T2r	E. coli	Myoviridae	Linear dsDNA	[34]
		T4	E. coli	Myoviridae	Linear dsDNA	[35]
Anthracyclines	Rutilantin	Various phages infe	cting both Gram + and	l Gram –		[29]
	Aclacinomycin	fX174	E. coli	Microviridae	Circular ssDNA	[36]
	(aklavin) A and analogs	λ	E. coli	Siphoviridae	Linear dsDNA	[37]
	analogo	Various phages infe	cting both Gram + and	l Gram –		[38]
	Daunorubicin	fX174	E. coli	Microviridae	Circular ssDNA	[36]
	(daunomycin)	λ	E. coli	Siphoviridae	Linear dsDNA	[33]
		T1	E. coli	Siphoviridae	Linear dsDNA	[39]
		ТЗ	E. coli	Autographiviridae	Linear dsDNA	[39]
		T4	E. coli	Myoviridae	Linear dsDNA	[39]
		T5	E. coli	Siphoviridae	Linear dsDNA	[33]
		T6	E. coli	Myoviridae	Linear dsDNA	[33,39
		T7	E. coli	Autographiviridae	Linear dsDNA	[33]
		JBD26	Pseudomonas aeruginosa	Siphoviridae	Linear dsDNA	[33]
		JBD30	P. aeruginosa	Siphoviridae	Linear dsDNA	[33]
		fScoe2	S. coelicolor	Siphoviridae	Linear dsDNA	[33]
		fScoe25	S. coelicolor	Siphoviridae	Linear dsDNA	[33]
	Doxorubicin (Adriamycin)	fX174	E. coli	Microviridae	Circular ssDNA	[36]
		λ	E. coli	Siphoviridae	Linear dsDNA	[33]
		fScoe2	S. coelicolor	Siphoviridae	Linear dsDNA	[33]
		fScoe25	S. coelicolor	Siphoviridae	Linear dsDNA	[33]
		PBS1	Bacillus subtilis	Myoviridae	Linear dsDNA	[40]
		SP10	B. subtilis	Myoviridae	Linear dsDNA	[40]
		fScoe2	S. coelicolor	Siphoviridae	Linear dsDNA	[33]
		fScoe25	S. coelicolor	Siphoviridae	Linear dsDNA	[33]
	Cosmomycin D	fScoe2	S. coelicolor	Siphoviridae	Linear dsDNA	[33]
		fScoe25	S. coelicolor	Siphoviridae	Linear dsDNA	
	Epirubicin	λ	E. coli	Siphoviridae	Linear dsDNA	[33]
	Idarubicin	λ	E. coli	Siphoviridae	Linear dsDNA	[33]
	Mitoxantrone	λ	E. coli	Siphoviridae	Linear dsDNA	[33]

Table 1. Small molecules with known antiphage properties^a

(continued on next page)

CellPress

Trends in Microbiology

Class	Compound	Phages affected	Bacterial host	Phage family	Genome	Refs
Protein biosynthesis inhibito	rs ^a					
Aminoglycosides	Streptomycin	MS-2	E. coli	Leviviridae	Linear ssRNA	[41]
		P9	Streptococcus faecium	Siphoviridae	Linear dsDNA	[42,43
		f2	E. coli	Leviviridae	Linear ssRNA	[44]
		μ2	E. coli	Leviviridae	Linear ssRNA	[44]
		fd	E. coli	Inoviridae	Circular ssDNA	[44]
		F-WJ-I	-	-	-	[45]
		Legendre	Mycobacterium smegmatis	Siphoviridae	Linear dsDNA	[45]
		Clark	M. smegmatis	Siphoviridae	Linear dsDNA	[45]
		D29	M. smegmatis	Siphoviridae	Linear dsDNA	[45,46
		phAE159	M. smegmatis	Phasmid (derived from TM4 phage)	Circular dsDNA	[46]
	Kanamycin	D29	M. smegmatis	Siphoviridae	Linear dsDNA	[46]
		phAE159	M. smegmatis	Phasmid (derived from TM4 phage)	Circular dsDNA	[46]
		Spe2	Corynebacterium glutamicum	Siphoviridae	Linear dsDNA	[47]
		λ	E. coli	Siphoviridae	Linear dsDNA	[46]
		ТЗ	E. coli	Autographiviridae	Linear dsDNA	[48]
		WSP	E. coli	-	-	[48]
		BSP	Bacillus cereus	-	-	[48]
	Hygromycin	D29	M. smegmatis	Siphoviridae	Linear dsDNA	[46]
		phAE159	M. smegmatis	Phasmid (derived from TM4 phage)	Circular dsDNA	[46]
		Alderaan	Streptomyces venezuelae	Siphoviridae	Linear dsDNA	[47]
	Apramycin Neomycin	Alderaan	S. venezuelae	Siphoviridae	Linear dsDNA	[47]
		λ	E. coli	Siphoviridae	Linear dsDNA	
		80	Staphylococcus aureus	Siphoviridae	Linear dsDNA	[49]
		ТЗ	E. coli	Autographiviridae	Linear dsDNA	[48]
		WSP	E. coli	-	-	[48]
		BSP	B. cereus	-	-	[48]
Others						
Di-benzimidazole	Ro 90-7501	λ	E. coli	Siphoviridae	Linear dsDNA	[33]
Quaternary ammonium	Dequalinium chloride	λ	E. coli	Siphoviridae	Linear dsDNA	[33]
λ	'Phagostatin'	ТЗ	E. coli	Autographiviridae	Linear dsDNA	[50]
Cyclopentenone	Sarkomycin	f2	E. coli	Leviviridae	Linear ssRNA	[51]
Naphthocoumarin	Chrysomycin	Diverse phages				[52]
λ	'Phagocidin'	ТЗ	E. coli	Autographiviridae	Linear dsDNA	[53,54
Pyrrolobenzodiazepine	Tomaymycin	T1	E. coli	Siphoviridae	Linear dsDNA	[55]
		T3	E. coli	Autographiviridae	Linear dsDNA	

Trends in Microbiology

Table 1. (continued)

Class	Compound	Phages affected	Bacterial host	Phage family	Genome	Refs
		M2	B. subtilis	Podoviridae	Linear dsDNA	
		SP10	B. subtilis	Myoviridae	Linear dsDNA	
Heterocyclic anthracene	Nybomycin	15/60 phages tested				[56]
λ	'Phagolessin A58'	Τ1	E. coli	Siphoviridae	Linear dsDNA	[57]
		ТЗ	E. coli	Autographiviridae	Linear dsDNA	
		T7	E. coli	Autographiviridae	Linear dsDNA	
Modified ribonucleotides produced by prokaryotic viperins	ddhCTP, ddhGTP, ddhUTP	T7	E. coli	Autographiviridae	Linear dsDNA	[14]
		P1	E. coli	Myoviridae	Linear dsDNA	
		λ	E. coli	Siphoviridae	Linear dsDNA	

^aThe classification of aminoglycosides as protein synthesis inhibitors is based on their antibacterial action.

Multiple reports described the inhibition of phage infection by anthracyclines such as daunorubicin, doxorubicin, or cosmomycin (Table 1). Parisi and Soller assessed the impact of daunomycin on the steps of the lytic cycle and showed a strong impairment of phage DNA synthesis during phage infection, suggesting a blockage occurring during replication or between injection and replication [39].

A major step forward in the understanding of both the mechanism and biological significance of the antiphage properties of anthracyclines was made more than 40 years later by Kronheim and colleagues [33]. In this study, the authors show that daunorubicin inhibits phage λ in *Escherichia* coli as well as several double-stranded DNA (dsDNA) phages infecting E. coli, Streptomyces coelicolor, or Pseudomonas aeruginosa and encompassing the three main families of tailed phages (Siphoviridae, Podoviridae, and Myoviridae). The exact mechanism of action remains unclear, but inhibition by daunorubicin takes place at an early stage of the infection cycle, namely, after injection of the phage genome but before phage replication (Figure 1). All dsDNA phages tested - whose incoming genome is linear - are inhibited by daunorubicin. In contrast, the filamentous M13 phage, whose single-stranded DNA (ssDNA) genome enters as a circular molecule, is not, suggesting that the circularization of incoming linear dsDNA could be the step blocked by daunorubicin. The anthracyclines doxorubicin and cosmomycin D were also shown to have antiphage properties. Importantly, the inhibition of phage infection could be reproduced with supernatants from natural producers of these anthracyclines (S. peucetius for daunorubicin and doxorubicin; strains of the WAC collection [67] for cosmomycin D, respectively). This observation suggests that phage inhibition by anthracyclines is physiologically relevant in the natural environment.

Kronheim and colleagues also reported the antiphage properties of synthetic DNA-intercalating agents such as propidium iodide or acridine derivatives [33]. Further, the inhibition of *E. coli* phage T2 by actinomycin D – another DNA-intercalating agent produced by *Streptomyces* – was already described in 1961 [34]. Altogether, this suggests that intercalation into phage DNA is probably a widespread antiphage strategy (Table 1).

Aminoglycosides

Aminoglycosides are bactericidal antibiotics that are active against Gram-negative and Grampositive organisms [68,69]. As their name suggests, aminoglycosides are pseudosaccharides that possess several amino and hydroxy functionalities and most of them share a core 2deoxystreptamine ring [70]. Since the amine groups are typically protonated under physiologically relevant conditions, these antibiotics can be considered as polycationic species featuring a

CellPress

Trends in Microbiology

Trends in Microbiology

Figure 1. Mechanism of action of antiphage molecules anthracyclines, aminoglycosides, and modified nucleotides produced by prokaryotic viperin homologs (pVips). The phage replication cycle comprises several steps, some of which are targeted by antiphage molecules. Unlike the modified ribonucleotides produced by pVips, anthracyclines and aminoglycosides are secreted by producer cells and can be taken up by neighboring cells.

binding affinity for nucleic acids. In bacteria, they disrupt protein biosynthesis by targeting the 30S subunit of the ribosomes, which, in turn, leads to complete blockage of translation or promotes mistranslation [71]. Aminoglycosides were originally isolated from actinomycetes belonging to the genera *Streptomyces* and *Micromonospora* [72]. In nature, aminoglycoside producers are resistant to these molecules, which is a feature important to keep in mind when screening aminoglycosides – and small molecules in general – for antiviral properties.

Using bacterial hosts expressing plasmid-borne aminoglycoside-resistance cassettes, aminoglycosides were recently shown to inhibit phages infecting the Gram-negative bacterium *E. coli* as well as Gram-positive bacteria such as *Corynebacterium glutamicum* and *Streptomyces venezuelae* [47]. Experiments aiming at shedding light on the molecular mechanism of phage infection inhibition revealed that phage DNA was present inside cells in the presence of aminoglycosides. Together with the observation that amplification of phage DNA was strongly impaired, these results suggest that the blockage exerted by aminoglycosides occurs mostly after DNA injection but before genome replication (Figure 1). These results are in line with those obtained by Jiang and colleagues, who reported the inhibition of the two mycobacteriophages phAE159 and D29 by kanamycin, hygromycin, and streptomycin [46]. Following the impact of streptomycin on phage adsorption and amplification of phage DNA, the authors propose that the blockage caused by aminoglycosides occurs between genome circularization and replication.

Trends in Microbiology

One important question is whether this inhibition of phage infection by aminoglycosides is relevant in a physiological context. In the case of apramycin, inhibition of the *Streptomyces* phage Alderaan could be reproduced with supernatants of the natural producer of apramycin [47], *Streptoalloteichus tenebrarius* (formerly known as *Streptomyces tenebrarius* [73]). Appearance of the antiphage effect of supernatants coincided with the detection of apramycin in the culture supernatants. In combination with the antiphage effect of purified apramycin, these data strongly suggest that the main molecule behind the antiphage properties of the supernatants of *S. tenebrarius* is apramycin [47]. Additionally, it indicates that aminoglycosides are secreted by producers at levels which prevent infection in neighboring bacteria, opening the door to community-wide protection.

In a natural context, most bacteria do not possess aminoglycoside-resistance genes, and residual concentrations of antibiotics are pervasive across man-shaped and natural environments alike. Zuo and colleagues studied the impact of sublethal concentrations of aminoglycosides on phage infection in aminoglycoside-sensitive hosts [48]. Phage amplification was strongly impeded by concentrations as low as 3 mg/l. Interestingly, tetracycline, another antibiotic which blocks protein synthesis by binding to the 30S ribosomal subunit, had a significantly reduced impact on phage proliferation. These results suggest that blockade of translation alone is not sufficient to efficiently prevent phage replication. Alternatively, the mechanism of translation inhibition may be of importance, and the mistranslation caused by tetracycline could participate in the difference of impact observed with aminoglycosides [48].

Although the action of aminoglycosides on the phage life cycle *in vivo* is not fully understood yet, independent *in vitro* studies provide further hints about the basis of aminoglycosides' antiphage properties. Exposure of purified phage λ DNA to aminoglycosides leads to condensation of DNA, presumably coated by aminoglycoside fibers [74]. The same authors later proposed that aminoglycosides form a clamp around the DNA double helix, causing a bend responsible for the formation of structural deformations such as toroids [75].

In vivo mechanistic studies about the inhibition of phage infection by aminoglycosides are scarce, but Brock and his collaborators contributed work worthy of attention. Using Streptococcus faecium and its phage P9, Brock and Wooley investigated the inhibition of phage infection by streptomycin [42]. The authors used resistance to shearing forces as an indicator for DNA injection, under the assumption that the formation of a plaque from an initially infected cell subjected to shearing implies a successful delivery of the phage genome. Using this technique, they proposed that streptomycin inhibits phage infection at an early stage of the phage infection cycle, namely, the DNA injection step. They further hypothesized that streptomycin exerts its inhibition by binding phage DNA in the capsid, thus preventing its unfolding necessary for infection. It is, however, important to note that, although phage infection could already be inhibited by a concentration of 100 µg/ml, high concentrations of streptomycin were used (1 mg/ml) in most experiments. Such high concentrations could cause nonspecific effects such as phage precipitation potentially not present at lower concentrations. Moreover, the streptomycin-resistant bacterial host was reported to bind very low amounts of streptomycin, which suggests modifications of the cell surface that could, in turn, influence the antiphage properties of streptomycin. In another study, Brock demonstrated the inhibitory effect of streptomycin on the E. coli RNA phage MS-2 [41]. Streptomycin inhibited the formation of phage progeny very early in the replication cycle (5-10 min after infection), and no impact of streptomycin was noticed when added shortly after injection had occurred.

The fact that aminoglycosides have both antibacterial and antiviral properties raises the question of the interplay between these two facets. In the case of apramycin, acetylation of one of its amino

CellPress

Trends in Microbiology

groups by the well-studied apramycin acetyltransferase AAC(3)IV abolished its impact on bacterial growth, while fully retaining its protective effect against phages [47]. This observation suggests that the antibacterial and antiviral actions of apramycin, and potentially further aminoglycosides, could be decoupled from one another and that the respective molecular targets are distinct.

Taken together, these studies suggest that aminoglycosides are used by their producers not only as toxic molecules against bacterial competitors but also as a protection against the threat of phage predation at the community level.

Modified ribonucleotides produced by prokaryotic viperins

Viperins are important players of the innate antiviral response in eukaryotes [76]. They produce ddhCTP, a modified ribonucleoside lacking the 3'-hydroxyl group necessary for elongation of the nascent viral mRNA; hence, they act as chain terminators [77].

Viperin-like genes were known to be present in prokaryotes too, but the function of these prokaryotic viperin homologs (pVips) remained unknown. Recently, they were shown to protect archaea and bacteria from viral infection and displayed a remarkable conservation between the eukaryotic and prokaryotic kingdoms [14]. Indeed, pVips use a mode of action similar to that of their eukaryotic homologs to inhibit viral transcription (Figure 1) – except that pVips produce a wider range of modified ribonucleotides (ddhCTP, but also ddhGTP and ddhUTP) [14]. Strikingly, the human viperin, when expressed in *E. coli*, conferred resistance to phage infection, which underlines inhibition of viral transcription as a broad antiviral strategy. Interestingly, inhibition of phage infection was also observed with phages like P1 and λ which do not encode their own RNA polymerases and rely instead on the host polymerase to complete transcription. This raises the possibility that pVips also exert their antiviral activity independently of premature termination of viral transcripts, via mechanisms which remain to be elucidated.

Mirroring the absence of toxic effects caused by human viperin in human cells, expression of pVips in *E. coli* had no effect on host transcription and did not cause toxicity. This observation hints that the bacterial RNA polymerase may be less sensitive than the phage RNA polymerase to ddh-ribonucleotides, as self-resistance to the ddh-ribonucleotides would be favored during coevolution of bacterial RNA polymerase and pVips. In contrast to anthracyclines and aminogly-cosides, the modified nucleotides synthesized by viperins do not show antibacterial activity. Additionally, they are not secreted, and protection is thus conferred only to producer cells.

Perspectives

Discovery of novel antiphage small molecules

Until now, the antiphage effects of most molecules were either discovered empirically or based on earlier reports describing antiphage properties of the same or closely related molecules. However, recent progress in the fields of genomics, metabolomics, and automation has the potential to greatly accelerate the discovery of new antiviral molecules.

Automated screening allows high-throughput testing of the antiphage properties of molecule libraries (Figure 2). To this end, bacteria are cultivated in microtiter plates, either alone, in the presence of phages, or together with both phages and the compounds to be tested. If the addition of a given compound suppresses the phage-mediated lysis of the culture, this hit indicates a probable inhibition of phage infection by this molecule, warranting further investigation. This strategy was successfully used with *E. coli* and phage λ to reveal the antiphage activity of anthracyclines and other DNA-intercalating agents [33]. One major limitation of this approach is

Figure 2. Discovery strategies for the identification of new antiphage molecules. Bioinformatic prediction of candidate biosynthetic gene clusters (BGCs) whose products may act against phages (1) inform large-scale testing of small molecule libraries as well as complex supernatants (2). The elucidation of the antiphage compounds can be achieved by bioactivity-guided fractionation (3,4) followed by analytic techniques such as liquid chromatography-mass spectrometry (LC-MS) (5). (5). Results of the screening efforts can then be fed back to the bioinformatic screening to help define genomic features of antiphage BGCs (6).

that the compounds tested need to not interfere with the growth of the bacterium, since strong growth defects would prevent the detection of antiphage effects.

Alternatively, spotting the molecules of interest on a phage-infected bacterial lawn represents another screening strategy with potential for automation and upscaling (Figure 2). This technique has been used for decades to assess antibacterial activity of antibiotics and has been hamessed by phage researchers too [56,78,79]. It enables the appreciation of antiphage effects (or, on the contrary, phage-antibiotic synergy) despite inhibition of bacterial growth, as shown by rings devoid of plaque formation – or displaying larger plaques, respectively – around the zone of growth inhibition caused by the candidate molecule.

These two strategies are not restricted to pure compounds and can also be used with complex supernatants from bacterial hosts, enabling the exploration of a vaster metabolic landscape as well as of potential synergistic interactions between candidate molecules. In the case where a supernatant inhibits phage infection, **bioactivity-guided fractionation** followed by liquid chromatography–mass spectrometry (LC-MS) can narrow the antiphage properties of the supernatant down to one or a few compounds [33].

These screening approaches are likely to have a low discovery rate due to their untargeted nature. Screening can be narrowed down by testing in priority metabolites released in reaction to phage infection. For example, phage infection in *S. coelicolor* leads to the formation of colored halos around phage plaques. The presence of pigmented compounds at the infection interface suggests that *Streptomyces* reacts to phage infection by releasing these molecules, making them interesting candidates for further analysis [80].

CellPress

Trends in Microbiology

In silico prediction of gene clusters involved in chemical antiphage defense would allow rational identification and validation of candidate molecules. However, antiphage biosynthetic gene clusters (BGCs) such as the ones encoding aminoglycosides and anthracyclines are not detected using the now well-established 'guilty-by-association' approach. This discovery strategy is based on the observation that defense systems are clustered in genomic 'defense islands'. Genes markedly enriched in the vicinity of known defense genes are therefore assumed to be also involved in antiphage defense [6]. The use of this concept has led in recent years to a considerable expansion of the known repertoire of antiphage defense systems [6,7,14]. It is, however, biased towards small and very well-conserved genes, explaining why this approach did not detect large and genus- or sometimes even species-specific BGCs as putative novel antiphage defense systems. Now that tools systematically screening for known defense systems are available [17,18], combining detection of phage defense systems and prediction of BGCs could reveal interesting patterns of co-occurrence and help to define genomic features of antiphage BGCs. In the case of antiphage metabolites fulfilling several roles (e.g., antibacterial and antiviral), such as aminoglycosides, these supplementary functions likely impose further genomic and evolutionary constraints, hindering the establishment of genomic signatures for gene clusters encoding multifunctional molecules.

Importantly, empirical approaches and *in silico* screening are not mutually exclusive; uncovering more antiphage secondary metabolites will help to define genomic signatures for antiphage molecules. *Streptomyces* species are considered to encode the largest biosynthetic diversity across bacterial genera, and actinobacteria at large show remarkable diversity in their secondary metabolism [81]. Yet these findings are presumably biased by the extensive knowledge we already have about actinobacteria. Less-well-studied bacterial phyla, such as myxobacteria [82,83] or planctomycetes [84,85], to name only a few, also have elaborate BGC arsenals which represent promising sources for the discovery of novel antiviral molecules.

Ecological relevance

The ecological significance of antiphage molecules was mostly ignored in the first wave of research focusing on antiphage molecules and has only been recently appreciated. When considering the ecological relevance of antiphage molecules, one key question is: is the antiphage molecule secreted? If yes, are the concentrations reached high enough to block phage amplification? With the evidence currently available, we can answer in the affirmative to these two questions regarding both anthracyclines and aminoglycosides. Indeed, anthracyclines and aminoglycosides are typically exported from producer cells by ABC-type transporters [66,86], and culture supernatants of producers were shown to inhibit phage replication [33,47].

Contrary to most protein-based defense systems, antiphage molecules described so far display rather broad inhibitory abilities. Anthracyclines and aminoglycosides inhibit seemingly very disparate phages infecting diverse bacteria, Gram-positive and -negative alike. So far, the rules behind the sensitivity of a given phage to these two classes of compounds remain unclear, the only common feature of the inhibited phages being their dsDNA genome and tailed morphology. This broad range of inhibition has important ecological implications: depending on their local concentrations and diffusion, these antiphage compounds could serve as 'public goods' and protect not only producer cells but also neighboring, unrelated cells – provided they are resistant to these compounds (Figure 3). The fact that nonrelatives could benefit from antiphage molecules is debatable under the light of sociomicrobiology. We can imagine that spatial structure and biofilms play a key role in restricting the access to these molecules primarily to genetic kin. Alternatively, the substantial metabolic costs associated with the production of complex compounds like aminoglycosides and anthracyclines, combined with the genomic instability in *Streptomyces*

Figure 3. Ecological significance of the dual properties of aminoglycosides in a bacterial community. Aminoglycoside producers release aminoglycosides (purple) in their environment. Aminoglycosides kill sensitive bacteria (antibacterial effect, A) while they may protect neighboring bacteria from phage infection (antiviral effect, B), provided they are resistant to these molecules, for example, via prior horizontal gene transfer (HGT) of resistance genes from producer cells (C). Bystander microorganisms not affected by aminoglycosides are shown in gray.

[87], may lead to a partial or complete loss of the corresponding BGCs in certain subpopulations, following a division of labor strategy. This loss of BGCs following genetic instability could be offset by the gene flow from related bacteria. For instance, actinobacteria like *Salinispora* maintain a pool of BGCs at the population level which are shuffled between strains through HGT, following a 'plug-and-play' strategy [88].

The dual function of certain antiphage molecules adds another layer of complexity. For instance, aminoglycosides represent a remarkable example of molecular multitasking, with the same molecules exerting two seemingly unrelated effects – inhibition of bacterial translation and of phage replication.

Furthermore, acquisition of resistance to aminoglycosides by initially sensitive cells is highly beneficial for two reasons: not suffering from their antibacterial effect anymore while benefiting from the inhibition of phage infection. Naturally, the mode of resistance to these antibiotics is of particular importance. Considering that aminoglycosides are thought to act intracellularly to block phage infection, resistance mechanisms based on decreased aminoglycoside intracellular concentration – such as decreasing uptake or expressing efflux pumps – would confer resistance to the antibiotic at the expense of the loss of its protective antiphage effect. Conversely, resistance to aminoglycosides mediated by aminoglycoside-modifying enzymes has the potential to inactivate aminoglycoside apramycin, it was shown that acetylation of one of its amino groups suppresses its antibacterial

CellPress

Trends in Microbiology

effect while retaining its antiphage properties [47]. Whether this example is a unique case or is a general feature of aminoglycoside modifications remains to be determined. However, this observation could potentially be one factor contributing to the wide distribution of aminoglycoside-modifying enzymes catalyzing, for example, the acetylation, phosphorylation, or adenylation of amino or hydroxyl groups at various positions of the aminoglycoside scaffold [89].

While secreted antiphage metabolites raise important ecological questions, keeping antiphage compounds strictly intracellularly also provides the producer with special advantages. From a metabolic point of view, this obviously suppresses the costs associated with exporting the molecules and the problematics of re-entry in neighboring cells. Privatizing the antiviral molecules also prevents nonrelated bacteria occupying the same niche from benefiting from this resource. Moreover, the modified ribonucleotides produced by pVips necessitate a single enzyme, which greatly facilitates the spread of this antiviral strategy by HGT as reflected by the scattered phylogenetic distribution of pVips across the main bacterial clades [14]. Lastly, the substrates of viperins (ribonucleotides) are so pervasive across life-forms that this antiviral mechanism is applicable against a wide range of vinuses, prokaryotic and eukaryotic alike [14]. We anticipate that bacteria have evolved further defense mechanisms acting as molecular 'grains of sand' jamming key steps of the viral machinery such as replication or translation.

To fully appreciate the ecological significance of **chemical defense** against phages, moving away from the traditional 'one phage – one bacterium' approach represents a key step. Building simplified, synthetic communities by increasing phage and/or bacterial diversity can provide decisive insights into the physiology of antiphage defense strategies, as shown, for example, with the importance of CRISPR-mediated phage resistance over modifications of the phage receptor in complex microbial communities [90]. Yet, additional mechanistic insights are required to understand the impact of antiphage molecules on community interactions.

Finally, one further direction worthy of investigation is the study of the interplay between the different defense systems – small molecule- and protein-based. Producers of antiphage molecules also encode other defense systems, and certain secondary metabolites could serve as a trigger for other defense strategies. For instance, it was recently shown that the transcription-inhibiting antibiotic rifampicin activates nucleotide-depletion defense, even in the absence of phages [91]. Our current knowledge about how prokaryotes coordinate these diverse antiphage strategies to mount efficient antiviral responses is still in its infancy and needs to be advanced to provide an integrated view of the prokaryotic immune system.

Concluding remarks

Phage defense systems are often considered at the level of the individual cell, where it is mechanistically described how they protect a bacterium from being infected by an incoming phage. By acting at the single-cell level, antiphage strategies prevent the spread of the infection and thereby protect the broader bacterial community. However, some mechanisms specifically protect several cells or the entire population simultaneously. One of these consists in the release of small molecules into the extracellular environment. The antiphage metabolites described until now predominantly correspond to anthracyclines and aminoglycosides, both inhibiting the early steps of the phage infection cycle. Interestingly, aminoglycosides are well-known antibacterial agents, but were also shown to be potent inhibitors of phage infection, suggesting that evolutionary constraints allowed the development of two seemingly very distinct functions.

From a therapeutic standpoint, antiviral metabolites in bacteria have the potential to fuel the discovery pipeline for novel antiviral drugs in humans. For example, synthetic nucleoside chain

12 Trends in Microbiology, Month 2022, Vol. xx, No. xx

Outstanding questions

What is the molecular mechanism of action underlying the antiviral activity of anthracyclines and aminoglycosides?

How did the dual antibacterial and antiviral functions of aminoglycosides shape the evolution of these molecules?

To what extent do secreted antiphage molecules confer protection at the community level?

Can genomic signatures be determined for antiphage biosynthetic gene clusters?

Is chemical defense against phages a conserved defense strategy across bacteria?

Are there strategies involved in the conditional privatization of secreted antiviral molecules?

How does the production of antiphage molecules interact with other antiviral defenses in prokaryotic immune systems?

terminators are widely used in conditions such as HIV [92,93] or infection with herpes viruses [94], and chain terminators produced by pVips could represent new avenues for treatments of viral infections in humans [14]. Knowledge gained about small molecule-mediated inhibition of phage infection is also relevant for phage therapy, for example, to avoid antagonistic effects when administering phage-antibiotic combination treatments.

The repertoire of bacterial secondary metabolites is extremely large, and the physiological function of many of these compounds remains unclear. We can thus hypothesize that the number of described antiphage molecules will keep growing in the future (see Outstanding questions). For example, molecules triggering death of parts of the bacterial population represent promising candidates as their release in reaction to phage predation would mimic the effect of proteinmediated Abi systems.

Phages have developed ways to circumvent most bacterial defense strategies, as part of the arms race in which they are engaged with their bacterial hosts. It is therefore plausible that phages have evolved means to overcome this metabolite-based defense system. Elucidating these adaptations could illuminate phage biology by attributing a function to certain already known phage features and further our understanding of the intricate relationships between phages and their bacterial hosts in the context of chemical defense.

Acknowledgments

Research in the Frunzke laboratory is supported by the European Research Council (ERC Starting Grant 757563) and the Deutsche Forschungsgemeinschaft (SPP 2330, project 464434020). We thank Aude Bernheim for critical reading of the manuscript. Figures were created using BioRender.com

Declaration of interests

No interests are declared.

References

- 2. Rostøl, J.T. and Marraffini, L. (2019) (Ph)ighting phages: how
- Hostory of a design of marginal parallel (a local block of the second of
- 4. Hampton, H.G. et al. (2020) The arms race between bacteria and
- their phage foes. *Nature* 577, 327–336 5. Dy, R.L. *et al.* (2014) Remarkable mechanisms in microbes to
- by the state of the second residuation in the second state is second state in the second
- eaar4120 7. Gao, L. *et al.* (2020) Diverse enzymatic activities mediate antiviral
- Odo, L. *et al.* (2007) Diverse encymatic activities instruction immunity in prokaryotes. Science 369, 1077–1084
 Cohen, D. *et al.* (2019) Cyclic GMP–AMP signalling protects bacteria against viral infection. *Nature* 574, 691–695
- Tail, N.*et al.* (2021) Cyclic CMP and cyclic UMP medate bacterial immunity against phages. *Cell* 184, 5728–5739.e16
 Ofr, G. *et al.* (2021) Antiviral activity of bacterial TIR domains via
- mune signalling m cules, Nature 600, 116-120 Garb, J. *et al.* (2021) Multiple phage resistance systems inhibit in-fection via SIR2-dependent NAD+ depletion. *bioRxiv* Published on-
- line December 14, 2021. https://doi.org/10.1101/2021.12.14. Zaremba, M. et al. (2021) Sir2-domain associated short prokaryotic Argonautes provide defence against invading mobile genetic elements through NAD+ depletion. bioRxiv Published online De-
- cember 14, 2021. https://doi.org/10.1101/2021.12.14.472599 Tai, N. and Sorek, R. (2022) SnapShot: bacterial immunity. *Cell* 13. 185. 578-578.e1

- 1. Clokie, M.R. et al. (2011) Phages in nature. Bacteriophage 1, 14. Bernheim, A. et al. (2021) Prokaryotic viperins produce diverse Derminin, P. et al. (2021) Tokalyotic openins produce diverse antiviral molecules. *Nature* 589, 120–124
 Morehouse, B.R. et al. (2020) STING cyclic dinucleotide sensing
 - originated in bacteria. Nature 586, 429-433.
 - 16. Wein, T. and Sorek, R. (2022) Bacterial origins of human cellautonomous innate immune mechanisms. Nat. Rev. Immunol. Published online April 8, 2022, https://doi.org/10.1038/
 - Payne, L.J. *et al.* (2021) Identification and classification of antiviral Frayine, L.J. et al. (2021) Identification and Cashina and Mith PADLOC reveals defence systems in bacteria and archaea with PADLOC reveals new system types. *Nucleic Acids Res.* 49, 10868–10878
 Tesson, T. *et al.* (2022) Systematic and quantitative view of the antiviral assenal of prokaryotes. *Nat. Commun.* 13, 2561
 Bernheim, A. and Sorek, R. (2020) The par-immune system of

 - bacteria: antiviral defence as a community resource. Nat. Rev Microbiol. 18, 113–119
 Stubbendieck, R.M. *et al.* (2016) Bacterial communities: interactions
 - scale, Front, Microbiol, 7, 1234
 - 21. Manning, A.J. and Kuehn, M.J. (2011) Contribution of bacteria outer membrane vesicles to innate bacterial defense. BMC Microbiol. 11, 258
 - 22. Reves-Robles, T. et al. (2018) Vibrio cholerae outer membrai sicles inhibit bacteriophage infection. J. Bact e00792-17
 - Vidakovic, L. *et al.* (2018) Dynamic biofilm architecture confers individual and collective mechanisms of viral protection. *Nat. Microbiol.* 3, 26–31
 - 24. Simmons, M. et al. (2018) Phage mobility is a core determinant of
 - phage-bacteria coexistence in biofilms. *ISME J.* 12, 531–543 Høyland-Kroghsbo, N.M. *et al.* (2013) A quorum-sensing-induc
 - bacteriophage defense mechanism. mBio 4 e00362-00312

CelPress

Trends in Microbiology

- Silpe, J.E. and Bassler, B.L. (2019) A host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny decision. Cell 176, 268-280.e13
- 27. León-Félix, J. and Villicaña, C. (2021) The impact of guorum nsing on the modulation of phage-host interactions. J. Bacteriol. 203 e00687-20
- 28. Schatz, A. and Jones, D. (1947) The production of antiphage Schatz, A. and Sches, D. (1941) The production of any prage agents by actinomyceties. *Bull. Torrey Bot. Club* 74, 9
 Asheshov, I.N. *et al.* (1954) A survey of actinomycetes for antiphage activity. *Antibiot. Chemother.* 4, 380–394
- Bydžovský, V. and Šimek, A. (1960) Antiphage activity of some actinomycetes. *Folia Microbiol.* 5, 46–49 actinomycetes. Folia Microbiol. 5, 46–49 31. Kumar, V. et al. (1977) The structure of aklavin. J. Antibiot. 30,
- 881-882 32. Periman, D. et al. (1951) Observations on the chemical inhibition of
- ces griseus bacteriophage multiplication. J. Bacteriol. 61, 135-143 onheim, S. et al. (2018) A chemical defence against phage 33 Kr
- Nomen, S. et al. (2010) A chemical defence against phage infection. *Nature* 564, 283
 Nakata, A. *et al.* (1961) Inhibition of multiplication of bacterio-
- 35.
- Plage by actionryoin. Nature 159, 246–247 Kom, D. et al. (1965) A novel effect of actionryoin D in preventing bacteriophage 14 maturation in *Escherichia coli*. Biochem. Biophys. Res. Commun. 19, 473–481
- B. Morta, J. *et al.* (1979) inactivation of phage qX174 by anthracycline anthiotics, adiacinomycin A, doxonubicin and daunorubicin. *Agric. Biol. Chem.* 43, 2629–2631
 Tanaka, A. *et al.* (1983) Phage inactivation by aclacinomycin A
- Tranaka, A. et al. (1955) Frage intervation by adaption your a and its analogues. *J. Antibiot.* 36, 1242–1244
 Streiltz, F. et al. (1955) Atlavin, an antibiotic substance with antiphage activity. *J. Bacteriol.* 72, 90–94
- Parsi, B. and Solier, A. (1964) Studies on antiphage activity of daunomyon. G. *Microbiol.* 12, 183–194
 Prtkin, W.B. and Reter, H. (1999) Abortive infection of *Bacillus* subtilis bacteriophage PBS1 in the presence of actinomycin D.
- J. Virol. 3, 578–585
 41. Brock, T.D. (1962) The inhibition of an RNA bacteriophage by
- streptomycin, using host bacteria resistant to the antibiotic. Biochem, Biophys. Res. Commun. 9, 184–187
 Brock, T.D. and Wooley, S.O. (1963) Streptomycin as an antiviral agent: mode of action. *Science* 141, 1065–1067
 Brock, T.D. *et al.* (1963) The inhibition by streptomycin of certain
- Door 12 et al. (1900) The imitation by support of the entant Streptococcurs bacteriophages, using host bacteria resistant to the antibiotic. J. Gan. Microbiol. 33, 9–22
 Schindler, J. (1964) Inhibition of reproduction of the f2 bacterio-
- Community of the principal of the production of the telephone phage by streptomycin. *Folia Microbiol.* 9, 269–276
 Jones, W.D. and Greenberg, J. (1978) Resistance relationships in *Mycobacterium smegmatis* ATCC 607 to phages sensitive or resistant to both chloroform and streptomycin sulphate. J. Gen.
- 46. Jiang, Z. et al. (2020) Aminoglycoside antibiotics inhibit mycobacteriophage infection. Antibiotics 9, 714
- Kever, L. *et al.* Aminoglycoside antibiotics inhbit phage infection by blocking an early step of the infection cycle, mBio, 13, e0078322
- 48. Zuo, P. et al. (2021) Aminoglycosides antagonize bacteriophage profileration, attenuating phage suppression of bacterial growth, biofilm formation, and antibiotic resistance. *Appl. Environ. Microbiol.* 87, e0046821
- 49. Joy Harrison, K. et al. (1959) The effect of neomycin on phagetyping of staphylococci. *Lancet* 273, 908–910 50. Higo, N. (1958) Studies on antiviral antibiotics produced by
- Streptomyces XI. Effect of phagostin on the multiplication of
- bacteriophanytes *in Linet of the phagestaria* of the mapping at the interplace of the bacteriophage T3. *Jap. J. Microbiol.* 2, 203–215
 51. Koenuma, M. *et al.* (1974) An improved screening method for antiphage antibiotics and isolation of sarkomycin and its relatives. J. Antibiot. 27, 801-804
- Shelliz, et al. (1955) Chrysomycin: a new antibiotic substance for bacterial viruses. J. Bacteriol. 69, 280–283
 Higo, N. (1956) Studies on antiviral antibiotics from Streptomyces.
- II. Phagocidin, a new antiviral antibiotic. J. Antibiot. (Tokyo) 9,
- 54. Higo, N. and Hinuma, Y. (1956) Studies on antiviral antibiotics from Streptomyces. III. Mode of action of phagocidin on bacterial us. J. Antibiot. (Tokyo) 9, 157–163

- Arima, K. et al. (1972) Studies on tomaymycin, a new antibiotic I Isolation and properties of tomaymycin. J. Antibiot. 25 437-444
- Streliz, F. et al. (1955) Nybomycin, a new antibiotic with antiphage and antibacterial properties. Proc. Natl. Acad. Sci. U. S. A. 41,
- 57. Hall, E.A. and Asheshov, I.N. (1953) A study of the action of phagolessin AS8 on the T phages. *J. Gen. Physiol.* 37, 217–230 58. Leatsch, H. and Fotso, S. (2008) Naturally occurring anthracyclines. In
- Anthracycline Chemistry and Biology I (Krohn, K., ed.), pp. 4–74,
- 59 ujiwara, A. et al. (1985) Anthracycline antibiotics. Crit. Rev.
- Biotechnol. 3, 133–157 60. Minotti, G. et al. (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. *Pharmacol. Rev.* 56, 185–229
- 61. Weiss, R.B. (1992) The anthracyclines: will we ever find a better
- Australia (2006) 100 (1997) 10 62.
- Carvalho, C. *et al.* (2009) Doxorubicin: the good, the bad and the ugly effect. *Curr. Med. Chem.* 16, 3267–3285 63.
- 64. Tenconi, E. and Rigali, S. (2018) Self-resistance mechanisms to Oracian, L.: an inglate, b. device on transmission incommunity of DNA-damaging antitumor antibiotics in actinobacteria. *Curr.* Opin. *Microbiol.* 45, 100–108
 Prija, F. and Prasad, R. (2017) DirC protein of *Streptomyces peucellus* renoves dauronubich from intercalated *dvf* promoter.
- Microbiol. Res. 202, 30–35 Li, W. et al. (2014) The DrrAB efflux system of Strept
- 66. peucetius is a multidrug transporter of broad substrate specificity.
- J. Biol. Chem. 289, 12633–12646 Thaker, M.N. et al. (2013) Identifying producers of antibacterial compounds by screening for antibiotic resistance. *Nat. Biotechnol.* 67. 31, 922-927
- 68. Mingeot-Leclercq, M.-P. et al. (1999) Aminoglycosides activity and resistance. Antimicrob. Agents Chemother. 43,
- Krause, K.M. et al. (2016) Aminoglycosides: an overview. Cold Spring Harb. Perspect. Med. 6, a027029
 Busscher, G.F. et al. (2005) 2-Deoxystreptamine: central
- scaffold of aminoglycoside antibiotics. Chem. Rev. 105. 775-792
- 71. Houghton, J.L. et al. (2010) The future of aminoglycosides: the end or renaissance? ChemBioChem 11, 880-902
- 72. Serio, A.W. et al. (2018) Aminoglycoside revival: review of a historically important class of antimicrobials undergoing rejuvenation. EcoSal Plus 3, 1-20
- 73. Tamura, T. et al. (2008) Classification of 'Streptomyces tenebrarius' Higgins and Kastner as Streptoalloteichus tenebrarius nom. rev., comb. nov., and emended description of the genus Streptoalloteichus. Int. J. Syst. Evol. Microbiol. 58, 688-691
- 688-691 Kopaczynska, M. *et al.* (2004) Aminoglycoside antibiotos aggre-gate to form stard-Hike fibers on negatively charged surfaces and on phage A-DNA. *Langmuit* 20, 9270-9275 Kopaczynska, M. *et al.* (2016) Selective condensation of DNA by aminoglycoside antibiotos. *Eur. Biophys. J.* 45, 287-299 Rivera-Serano, E.E. *et al.* (2020) Vperin reveals its true function. *Annu. Rev. Virol.* 7, 421-446 74.
- 75 76.

- Annu. Hav. Virol. 1, 421–446
 77. Gizz, A.S. et al. (2018) A naturally occurring antiviral ribonucleotide encoded by the human genome. *Nature* 558, 610–614
 78. Comeau, A.M. et al. (2007) Phage-antibiotic synergy (PAS): β-lactam and quinolone antibiotics stimulate virulent phage growth. *PLoS One* 2, e799
 79. Stachurska, X. et al. (2021) Double-layer agar (DLA) modifica-tions (et al. for the form the other phage antibiotics (DLA)
- tions for the first step of the phage-antibatics synergy (PAS) identification. Antibiotics 10, 1306 Hardy, A. et al. (2020) Genome sequence and characterization of five bacteriophages infecting Streptomyces coelicolor and
- 80. Streptomyces venezuelae: Alderaan, Coruscant, Dagobah Endor1 and Endor2. *Viruses* 12, 1065 81. Gavrilldou, A. *et al.* (2022) Compendium of specialized metabo-
- lite biosynthetic diversity encoded in bacterial genomes. Nat. Microbiol. 7, 726–735

CelPress

- Amiri Moghaddam, J. *et al.* (2018) Analysis of the genome and me-tabolome of marine myxobacteria reveals high potential for biosyn-thesis of novel specialized metabolites. *Sci. Rep.* 8, 16600
 Gregory, K. *et al.* (2019) Sunvey of biosynthetic gene clusters from sequenced myxobacteria reveals unexplored biosynthetic potential. *Microorganisms* 7, 181
 Kallacheuer, N. and Jogler, C. (2021) The bacterial phylum Planctomycetes as novel source for bioactive small molecules. *Biotachnol. Adv.* 53, 107818
 Wegard, S. *et al.* (2020) Cuthvation and functional characteriza-tion of 79 planctomycetes uncovers their unique biology. *Nat.*

- Wegand, S. *et al.* (2020) Cuthvation and functional characterization of 79 planotomycetes uncovers their unique biology. *Nat. Microbiol.* 5, 126–140
 Kudo, F. and Eguchi, T. (2009) Biosynthetic genes for aminogly-coside antibiotics. *J. Antibiot.* 62, 471–481
 Zhang, Z. *et al.* (2020) Antibiotic production in *Streptomyces* is organized by a division of labor through terminal genomic differentiation. *Sci. Adv.* 6, eaay5781
- Ziemert, N. et al. (2014) Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. Proc. Natl. Acad. Sci. U. S. A. 111, E1130-E1139
 Raminez, M.S. and Toimasky, M.E. (2010) Aminoglycoside modifying enzymes. Drug Resist. Updates 13, 151-171
 Alseth, E.O. et al. (2019) Bacterial biodiversity drives the evolution of CRISPR-based phage resistance. Nature 574, 540-574.
- 549-552
- 549-552
 91. Tal, N. *et al.* (2022) Bacteria deplete deoxynucleotides to defend against bacteriophage infection. *Nat. Microbiol.* 7,
- defend against bacteriophage intection. *Nat. Microbiol.* 1, 1200–1209
 92. Donne, B. (2019) Key principles of antiretroviral pharmacology. *Infect. Dis. Clinics North Am.* 33, 787–805
 93. Smon, V. *et al.* (2006) HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. *Lancat* 488, 439–504
 94. Shiraki, K. (2018) Antiviral drugs against alphaherpesvirus. *Adv. Exp. Med. Biol.* 1045, 103–122

4. Appendix

4.1. Appendix to 3.1. Identification of Gip as a novel phage-encoded gyrase inhibitor protein of *Corynebacterium glutamicum*

Supplemental information to:

Identification of Gip as a novel phage-encoded gyrase inhibitor protein of *Corynebacterium glutamicum*

Running title: CGP3-encoded Gip inhibits C.g. DNA gyrase

Larissa Kever¹, Max Hünnefeld¹, Jannis Brehm², Ralf Heermann² and Julia Frunzke^{1*}

¹Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany

²Institut für Molekulare Physiologie, Biozentrum II, Mikrobiologie und Weinforschung, Johannes-Gutenberg-Universität Mainz, 55128 Mainz, Germany

*Corresponding authors:

Julia Frunzke; Email: j.frunzke@fz-juelich.de; Phone: +49 2461 615430

Content

Figure S1: Screening of small phagic proteins regarding their impact on cellular growth and CGP3 induction in *C. glutamicum*.

Figure S2: Cell growth and prophage inducibility in the \triangle cg1914 or \triangle cg1978 mutant strain.

Figure S3: Purification of proteins for surface plasmon resonance spectroscopy of proteinprotein interaction.

Figure S4: Sequence alignment of the DNA gyrase subunit A from *C. glutamicum, M. tuberculosis* and *E. coli.*

Figure S5: Sequence alignment of the DNA gyrase subunit B from *C. glutamicum, M. tuberculosis* and *E. coli.*

Figure S6: Gyrase activity and supercoiling assays.

Table S1: Bacterial strains used in this study.

Table S2: Plasmids used in this study.

Table S3: Oligonucleotides used in this study.

Table S4: Impact of gip (cg1978) overexpression on global expression levels.

Video S1: Time-lapse video of a *C. glutamicum* microcolony of the prophage reporter strain under cg1978 overexpression (50 μ M IPTG).

Video S2: Time-lapse video of a *C. glutamicum* microcolony of the prophage reporter strain under standard conditions (0 μ M IPTG).

Figure S1: Screening of small phagic proteins regarding their impact on cellular growth and CGP3 induction in *C. glutamicum*. The cultivation of *C. glutamicum* ATCC 13032::P_{lys}*eyfp* strains carrying the corresponding gene sequences of the small proteins on the pAN6 vector (under control of P_{tac}) was performed in CGXII minimal medium with 2 % (w/v) glucose and 50 µM IPTG for 24 h. (A,B) Growth curves upon small protein overproduction are based on the backscatter measurements in the BioLector® microcultivation system. All data represent mean values with standard deviations from three independent biological replicates (n=3). As the backscatter values were measured with two different BioLector® devices, data are represented in two separated graphs.

Figure S2: Cell growth and prophage inducibility in the Δ cg1914 or Δ cg1978 mutant strain. Cultivation of the *C. glutamicum* ATCC 13032 Δ cg1914 strain, the *C. glutamicum* ATCC 13032 Δ cg1978 strain and the *C. glutamicum* ATCC 13032 wild type strain carrying the plasmid-based prophage reporter pJC1-P_{lys}-*lys*'-*venus* was performed in the BioLector® microcultivation system in CGXII minimal medium with 2 % (w/v) glucose. All data represent mean values with standard deviations from three independent biological replicates (n=3). (A) Growth curves based on the backscatter measurements in the BioLector® microcultivation system. (B) Percentage of induced cells after 24 h cultivation based on the flow cytometric measurements of the plasmid-based prophage reporter.

Figure S3: Purification of proteins for surface plasmon resonance analysis of proteinprotein interaction. Cg1978 containing a C-terminal His-tag and GyrA containing a N-terminal Strep-tag were overproduced in *E. coli* BL21 (DE3) and purified via affinity purification. The gel electrophoresis was performed with 4-20 % gradient gels at 120 V for 60 min using the Precision Plus Protein[™] Dual protein marker as a standard.

Sequence alignment GyrA (E: E. coli, C: C. glutamicum	. M: <i>M. tuberculosis</i>)
Cequence angriment CyrA (E. E. con, C. C. glatametam	, where m is the construction of f

E.	1	MSDLARETTPVNIEEELKSSYTDYAMSVIVGRALPDVRDGLKPVHRRVLYAMN
C.	1	MSDDNTGQFDRVNPIDINEEMQSSYIDYAMSVIVGRALPEVRDGLKPVHRRVLYAMF
M.	1	MTDTTLPPDDSLDRIEPVDIEQEMQRSYIDYAMSVIVGRALPEVRDGLKPVHRRVLYAMF
E.	54	VLGNDWNKAYKKSARVVGDVIGKYHPHGDSAVYDTIVRMAQPESLRY <mark>M</mark> LVDGQGNFGSID
C.	58	DNGYRPDRSYVKSAKPVADTMGNEHPHGDIAIYDTLVRMAQPWSMRYPLVDGQGNFGSRG
M.	61	DSGERPDRSHAKSAR <mark>SVAETMGNYHPHGDAS</mark> IYDSLVRMAQPWSLRYPLVDGQGNFGSPG
E.	114	GDSAAAMRYTEIRL <mark>AKLAHELMADLEK</mark> ETVDFVDNYDGTEKIPDVMPTKIPNLLVNGSSG
C.	118	NDGPAAMRYTECRMTPLAMEMVRDIRENTVNESPNYDGKTLEPDVLPSRVPNLLMNGSGG
M.	121	NDPPAAMRYTEARLTPLAMEMLREIDEETVDFIPNYDGRVQEPTVLPSREPNLLANGSGG
E.	174	IAVGMATNIPPHNLTEVINGCLAYIDDEDISIEGIMEHIPGPDFPTAAIINGRRGI
C.	178	IAVGMATNIPPHNINELADAIFWLLENPDAEE <mark>S</mark> EALEACMKEVKGPDFPTAGLIIGDKGI
M.	181	IAVGMATNIPPHNLRELADAVFWALENHDADEEETLAAVMGRVKGPDFPTAGLIVGSQGT
Е.	230	EEAYRTGRGKVYIRARAEVE <mark>VDAKTGRETIIVHEI</mark> PYQVNKARLIEKIAE <mark>I</mark> VKEKRVEGI
С.	238	HDAYTTGRGSIRMRGVTSIEEEGNRTVIVITELPYQVNPDNLISNIAEQVRDGKLVGI
М.	241	ADAYKTGRGSIRMRGV <mark>V</mark> EVEED <mark>S-R</mark> GRTSIVITELPYQVNHDNFITSIAEQVRDGKLAGI
E.	290	SALRDE-SDKDGMRIVIEVKRDAVGEVVLNNLY <mark>SQ</mark> TQLQVSFGINMVALHHGQPKIMNLK
C.	296	SKIEDESSDRVGMRIVVILKRDAVARVVLNNLEKHSQLQANFGANMLSIVDGVPRTLRLD
M.	300	SNIEDQSSDRVGIRIVIEIKRDAVAKVVINNLYKHTQLQTSFGANMLAIVDGVPRTLRLD
E.	349	DI IAAFVRHRREVVTRRTISELRKARDRAHILEALAVALANIDPIIELIRHAPTPAEAKT
C.	356	OMIRYVAHQIEVIVRRTOYRLDKAEERAHILRGLVKALDMLDEVIALIRRSPTPDEART
M.	360	OLIRYYVDHQLDVIVRRTTYRLRKANERAHILRGLVKALDALDEVIALIR <mark>ASET</mark> VDIARA
Е.	409	ALVANPWQLGNVAAMLERAGDDAARPEWLEPEFGVRDG <mark>IYYITE</mark> QQAQAILDIR <mark>LQKITG</mark>
С.	416	GLMSLLDVDEAQA <mark>D</mark> AIL <mark>A</mark> MQLRRLAA
М.	420	GLIELLDIDEIQAQAILDMQLRRLAA
E.	469	LEHEKLIDEYKEILDQIAELLRILGSADRLMEVIREELELVREQFGDKRRTEITANSADI
C.	442	LERQKIIDELAEIELEIADLKAILASPERQRTIVRDELTEIVEKYGDERRSOIIAATGDV
M.	446	LERQRIIDDLAK <mark>IEA</mark> EIADLEDILAKPERQRGIVRDELAEIVDRHGDDRRTRIIAADGDV
E.	529	NLEDLITQEDVVVTLSHQGYVKYQPLSEYEAQARGGKGKSAARIKEEDFIDRLLVANTHD
C.	502	SEEDLIARENVVITITSTGYAKRTKVDAYKSQKRGGKGVRGAELKQDDIVRHFFVSSTHD
M.	506	SDEDLIAREDVVVTITETGYAKRTKTDLYRSQKRGGKGVQGAGLKQDDIVAHFFVCSTHD
E.	589	HILCFSSRGRVYSMKVYQLPEATRGARGRPIVNLLPLEQDERITAILPVTEFEEGVKVFM
C.	562	WILFFTNYGRVYRIKAFELPEASRTARGQHVANLLEFQPGEQIAQVIQIESYNDFPYLVL
M.	566	LILFFTTQGRVYR <mark>A</mark> KAYDLPEASRTARGQHVANLL <mark>AFQPEERIAQVIQIRGYT</mark> DAPYLVL
E.	649	ATANGTVKKTVLTEFNRLRTAGKVAIKLVDGDELIGVDLTSGEDEVMLFSABGKVVRFKE
C.	622	ATA <mark>H</mark> GRVKKSRLLDYESARSGGLIAINLNEDDRLIGAALCGEEDDLLLVSEFGQSIRFTA
M.	626	ATRNGLVKKSKLTDFDSNRSGGIVAVNLRDNDELVGAVLCSAGDDLLLVSANGQSIRFSA

Figure S4: Sequence alignment of the DNA gyrase subunit A from *C. glutamicum* (C), *M. tuberculosis* (M) and *E. coli* (E). The multiple sequence alignment was conducted by using the Clustal Omega platform (Sievers et al., 2011). The output file was further transformed using Boxshade (<u>https://embnet.vital-it.ch/software/BOX_form.html</u>). The sequence similarity of the DNA gyrase subunit A between *C. glutamicum* (UniProtKB - Q8NUC6) and *M. tuberculosis* (UniProtKB - P9WG47) is 71.34 %, the one between *C. glutamicum* and *E. coli* (UniProtKB - P0AES4) is 45.17 %.

E.	1	MSNSYD <mark>S</mark> SSIKVLKGLDAVRKRPGMYIGDTDDGTGLHHMVFEVVDNAIDEALA
C.	1	MANTEHNYDASSITILEGLEAVRKRPGMYIGSTG-PRGLHHLIWEVVDNSVDEAMA
M.	1	MAAQKKKAQDE <mark>YGA</mark> ASITILEGLEAVRKRPGMYIGSTG-ERGLHHLIWEVVDNAVDEAMA
E.	54	GHCKEIIVTIHADNSVSVQDDGRGIPTGIHPEEGVSAAEVIMTVLHAGGKFDDNSYKVSG
C.	56	GHATKVEVTLLEDGGVQVVDDGRGIPVDMHPS-CAPTVQVVMTQLHAGGKFDSDSYAVSG
M.	60	GYATTVNVVLLEDGGVEVADDGRGIPVATHAS-CIPTVDVVMTQLHAGGKFDSDAYAISG
E.	114	GLHGVGVSVVNALSQKLELVIQREGKIHRQIYEHGVPQAPLAVTGETEKTGTMVRFWPSL
C.	115	GLHGVGISVVNALSTRVEATIKLHGKHWYQNEEKSVPDE-LIEGGNARGTGTTIRFWPDA
M.	119	GLHGVGVSVVNALSTRLEVEIKRDGYEWSQVYEKSEPLG-LKQGAPTKKTGSTVRFWADP
E.	174	ETFTNVTEFEYEILAKRIRELSFINSGVSIRIRDKRD
C.	174	EIFE-TTEFDFETISRRIQEMAFINKGITITITDNRATDELELEATADQCETATEISID
M.	178	AVFE-TTEYDFET <mark>VARRIQEMAFINKGITI</mark> NITD <mark>ERVT</mark> QDEVVDEVVSDVAEAPKSAS
E.	211	E-RAAESTAPHKVKSRTFHYPGGLKAFVEYLNKNKTPIHPNIFYFSTEKD
C.	233	EIDNETELVE <mark>E</mark> TTDAPKKPKKREKKKIFHYPNGLEDYVHYLNRSKTNIHPSIVSFEAKGD
M.	235	E-RAAESTAPHKVKSRTFHYPGGLVDFVKHINRTKNAIHSSIVDFSCKGT
Е.	249	GIGVEVALQWNDGFQENIYCETNNIPQRDGGTHLAGFRAAMTRTINAYMDKEGYSKKAKV
С.	293	DHEVEVAMQWNSSYKESVHTFANTINTREGGTHEEGFRSALTSLMNRYAREHKLLKEKEA
М.	284	GHEVETAMQWNA <mark>GY</mark> SESVHTFANTINT <mark>H</mark> EGGTHEEGFRSALTSVVNKYAKDRKLLKDKDP
E.	309	SATGDDAREGLIAVVSVKVPDPKFSSQTKDKLVSSEVKSAVEQQMNBLLAEYLLENPTDA
C.	353	NLTGDDCREGLSAVISVRVGDPQFEGQTKTKLGNTELKSFVQRMANBHIGHWLEANPAEA
M.	344	NLTGDDIREGL <mark>A</mark> AVISVKVSEPQFEGQTKTKLGNTEVKSFVQKVC <mark>NEQLTHW</mark> FEANPTDA
E.	369	KIVVGKIIDAARAREAARRAREMTRRKGALDLAGLPGKLADCQERDPALSELYLVEGDSA
C.	413	KVIINKAVCSAQARLAARKARLUVRRKSATDLGGLPGKLADCRSKDPEKSELYIVEGDSA
M.	404	KVVVNKAVSSAQARIAARKARELVRRKSATDIGGLPGKLADCRSTDPRKSELYVVEGDSA
Е.	429	GGSAKQGRNRKNQAILPLKGKILNVEKARFDKMLSSQEVATIITALGCGIGRDEYNPDKL
С.	473	GGSAKSGRDSMFQAILPLRGKILNVEKARIDKVLKNAEVQAIITALGTGIH-DEFDINKL
М.	464	GGSAKSGRDSMFQAILPLRGKIINVEKARIDHVLKNTEVQAIITALGTGIH-DEFDIGKL
E.	489	RYH <mark>SIIIM</mark> TDADVDG <mark>S</mark> HIRTLLLTFFYRQMPEIVERGHVYIAQPPLYKVKKGKQEQYIKD
C.	532	RYHKIVLMADADVDGQHIATLLLTLLFRFMPDLVAEGHVYLAQPPLYKLKWQRGEPG
M.	523	RYHKIVLMADADVDGQHISTLLLTLLFRFMRPLIENGHVFLAQPPLYKLKWQRSDPEFAY
E. C. M.	549 592 583	DEAMDQYQISIALDGATLHTNASAPALAGEALEKLVSEYNATQKMINRMERRYPKAMLKE SS
Е. С. М.	609 593 584	LIYQPTLTEADLS <mark>DE</mark> QTVTRWVNALVSELNDK <mark>B</mark> QHGSQWKFDVHTNAEQNLFEPIVRVRT DE

Sequence alignment GyrB (E: *E. coli*, C: *C. glutamicum*, M: *M. tuberculosis*)

Figure S5: Sequence alignment of the DNA gyrase subunit B from *C. glutamicum* (C), *M. tuberculosis* (M) and *E. coli* (E). The multiple sequence alignment was conducted by using the Clustal Omega platform (Sievers et al., 2011). The output file was further transformed using Boxshade (<u>https://embnet.vital-it.ch/software/BOX_form.html</u>). The sequence similarity of the DNA gyrase subunit B between *C. glutamicum* (UniProtKB - A0A6L2RK64) and *M. tuberculosis* (UniProtKB - P9WG45) is 73.92 %, the one between *C. glutamicum* and *E. coli* (UniProtKB - P0AES6) is 53.77 %.

Figure S6: Gyrase activity and supercoiling assays. **(A)** Different gyrase concentrations of the *M. tuberculosis (M.tb.)* gyrase and **(B)** the *E. coli (E.c.)* gyrase were tested to determine the concentration required for maximal supercoiling of 0.5 μ g relaxed plasmid DNA. The assay was conducted according to the manual of the Gyrase Supercoiling Inhibition Assay Kit from Inspiralis (Norwich, UK). Subsequently, 1 U of the respective gyrases were used to investigate a potential inhibitory activity of Gip on the supercoiling activity. Different agarose gels were compiled as indicated by the boundaries.

Table S1: Bacterial strains used in this study

Strain	Genotype and relevant characteristics	Reference
E. coli BL21 (DE3)	F ⁻ ompT hsdS _B ($r_B^- m_B^-$) gal dcm λ(DE3)	(Studier & Moffatt, 1986)
E. coli DH5a	supE44 ∆lacU169 (ø80lacZDM15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1	Invitrogen
C. glutamicum ATCC 13032	Biotin-auxotrophic wild type (NC_003450.3)	(Ikeda & Nakagawa, 2003)
ATCC 13032::P _{lys} -eyfp	ATCC 13032 with promoter fusion P _{lys} -eyfp integrated into the intergenic region of cg1121 and cg1122	(Helfrich et al., 2015)
ATCC 13032 ∆recA∷P _{lys} - eyfp	ATCC 13032::P _{lys} -eyfp with in-frame deletion of ATPase domain of <i>recA</i> (cg2141)	(Helfrich et al., 2015)
ATCC 13032::PrecA-venus	ATCC 13032 with promoter fusion P _{recA} -venus integrated into the intergenic region of cg1121 and cg1122	(Helfrich et al., 2015)
MB001	ATCC 13032 $\Delta CGP1$ (cg1507-cg1524), $\Delta CGP2$ (cg1746-cg1752) and $\Delta CGP3$ (cg1890-cg2071) (BA strain)	(Baumgart et al., 2013)
ATCC 13032 Δcg1914	ATCC 13032 with partial in-frame deletion of cg1914	This work
ATCC 13032 ∆cg1978	ATCC 13032 with in-frame deletion of cg1978	This work

Table S2: Plasmids used in this study. Numbers represent oligonucleotides used for amplification of the insert DNA (Table S3) using the *C. glutamicum* genome as template. The vectors were linearized with the indicated restriction enzyme and plasmids were constructed using Gibson assembly. Sequencing was performed using the listed oligonucleotides.

Plasmids	Template	Primer	Vector	Restriction enzymes	Sequencing primer
I	Plasmids for overpro	duction of sn	nall proteins in C	C. glutamicum	
pAN6				gulated gene expres oriV _{E.c.}) (Frunzke e	
pAN6-cgpS-N	Kan ^R ; pAN6 deriv		ng a truncated var P _{tac} (Pfeifer et al.,	iant of the <i>cgpS</i> ger 2016)	ne under control
pAN6-cg1902	<i>C. glutamicum</i> chromosome	1 + 2	pAN6	Ndel + EcoRI	45 + 46
pAN6-cg1910	<i>C. glutamicum</i> chromosome	3 + 4	pAN6	Ndel + EcoRI	45 + 46
pAN6-cg1914	<i>C. glutamicum</i> chromosome	5 + 6	pAN6	Ndel + EcoRI	45 + 46
pAN6-cg1924	<i>C. glutamicum</i> chromosome	7 + 8	pAN6	Ndel + EcoRI	45 + 46
pAN6-cg1925	<i>C. glutamicum</i> chromosome	9 + 10	pAN6	Ndel + EcoRI	45 + 46
pAN6-cg1971	<i>C. glutamicum</i> chromosome	11 + 12	pAN6	Ndel + EcoRI	45 + 46
pAN6-cg1978 / pAN6- <i>gip</i>	<i>C. glutamicum</i> chromosome	13 + 14	pAN6	Ndel + EcoRI	45 + 46
pAN6-cg2026	<i>C. glutamicum</i> chromosome	15 + 16	pAN6	Ndel + EcoRI	45 + 46
pAN6-cg2035	<i>C. glutamicum</i> chromosome	17 + 18	pAN6	Ndel + EcoRI	45 + 46
pAN6-cg2045	<i>C. glutamicum</i> chromosome	19 + 20	pAN6	Ndel + EcoRI	45 + 46
pAN6-cg2046	<i>C. glutamicum</i> chromosome	21 + 22	pAN6	Ndel + EcoRI	45 + 46

Plasmids for overproduction of proteins with affinity tags in *E. coli*

pET24b	Kan ^R ; <i>E. coli</i> vector for regulated gene expression; derivative of pBR322 (Ртт, <i>lacl</i> , f1 ori, pBR322 ori, T7 terminator) (Novagen)
pET2b- <i>Cstrep</i>	pET24b derivative with TEV cleavage site and C-terminal Strep-tag (Davoudi, unpublished)
pET2b- <i>Nstrep</i>	pET24b derivative with TEV cleavage site and N-terminal Strep-tag (Davoudi, unpublished)

pET2b- <i>Chi</i> s	pET24b derivative with TEV cleavage site and C-terminal His-tag (Davoudi, unpublished)				
pET24b-cg1978-C- strep	<i>C. glutamicum</i> chromosome	23 + 24	pET24b- C <i>strep</i>	Ndel + Nhel	47 + 48
pET24b-cg1978-C-his	<i>C. glutamicum</i> chromosome	25 + 26	pET24b- C <i>his</i>	Ndel + Nhel	47 + 48
pET24b-gyrA-C-strep	<i>C. glutamicum</i> chromosome	27 + 28	pET24b- C <i>strep</i>	Ndel + Nhel	47 + 48 49 + 50
pET24b-gyrA-N-strep	<i>C. glutamicum</i> chromosome	29 + 30	pET24b- N <i>strep</i>	Blpl + Nhel	47 + 48 49 + 50
pET24b-gyrB-N-strep	C. glutamicum chromosome	31 + 32	pET24b- N <i>strep</i>	Blpl + Nhel	47 + 48 51 + 52

Plasmids for construction of deletion mutants

pK19 <i>mobsacB</i>	Plasmid containing a negative (<i>sacB</i>) as well as a positive selection marker (<i>kan^R</i>) for allelic exchange in <i>C. glutamicum</i> (pK18 oriV _{<i>E.c</i>} , <i>sacB, lacZ</i> α) (Schäfer et al., 1994)				
pK19 <i>mobsacB</i> - ∆cg1914	<i>C. glutamicum</i> chromosome	33 + 34 35 + 36	pK19 <i>mobsacB</i>	EcoRI + HindIII	41 + 42 53 + 54
pK19 <i>mobsacB-</i> Δcg1978	C. glutamicum chromosome	37 + 38 39 + 40	pK19 <i>mobsacB</i>	EcoRI + HindIII	43 + 44 53 + 54

Reporter plasmids

pJC1	Kan ^R , Amp ^R , <i>C. glutamicum</i> shuttle vector (Cremer et al., 1990)
pJC1-P _{lys} -lys´-venus	Prophage reporter plasmid carrying the gene coding for the fluorescent protein Venus under control of the P _{lys} promotor (Hünnefeld et al., 2019)

Table S3: Oligonucleotides used in this study

Primer No.	ligonucleotide name	Sequence (5' → 3')
---------------	---------------------	--------------------

Construction of plasmids for overproduction of small proteins in C. glutamicum

1	pAN6_cg1902_fw	CAGAAGGAGATATACATATGATGATTAAGAGACTGGCTGCAGG
2	pAN6_cg1902_rv	AAACGACGGCCAGTGAATTCTTATACAACTTGAATAGCCGTACCTG
3	pAN6_cg1910_fw	CAGAAGGAGATATACATATGTTGGAGTTTATTTTATTTT
4	pAN6_cg1910_rv	AAACGACGGCCAGTGAATTCCTATTTTTCCAACTTGTCGCTCTTAC
5	pAN6_cg1914_fw	CAGAAGGAGATATACATATGATGAACTGCCCAAACTGCTC
6	pAN6_cg1914_rv	AAACGACGGCCAGTGAATTCTTACAGTACTTCGATATATCCGCAGTC
7	pAN6_cg1924_fw	CTGCAGAAGGAGATATACATATGTACTCGACATCATCATTACC
8	pAN6_cg1924_rv	AAACGACGGCCAGTGAATTCTTACTGCTCATTATGAGGTGCC
9	pAN6_cg1925_fw	CTGCAGAAGGAGATATACATATGGTGGTGTGCGGC
10	pAN6_cg1925_rv	AAACGACGGCCAGTGAATTCTTACGGCTGTCGAGCTG
11	pAN6_cg1971_fw	CTGCAGAAGGAGATATACATATGTCTAATCTCGGCACATACTATG
12	pAN6_cg1971_rv	AAACGACGGCCAGTGAATTCTCAGAAACCAGGCTGTTGAGAC
13	pAN6_cg1978_fw	CAGAAGGAGATATACATATGATGGCTAAAGAATTCGAATTCACC
14	pAN6_cg1978_rv	AAACGACGGCCAGTGAATTCTTACTCGACGATGACGTAGGG
15	pAN6_cg2026_fw	CAGAAGGAGATATACATATGATGACCAAGCGAAATATCACTACTGT
16	pAN6_cg2026_rv	AAACGACGGCCAGTGAATTCTCAGCCCTTAGGTGGGTG
17	pAN6_cg2035_fw	CTGCAGAAGGAGATATACATATGTCAATCAATGCGTTCTGG
18	pAN6_cg2035_rv	AAACGACGGCCAGTGAATTCTCAGGCACCTAGATATGTGATTAC
19	pAN6_cg2045_fw	CAGAAGGAGATATACATATGATGCCTCAACGCGAAAAGC
20	pAN6_cg2045_rv	AAACGACGGCCAGTGAATTCTTAGCTGTCCACAAGAATGCC
21	pAN6_cg2046_fw	CTGCAGAAGGAGATATACATATGGGGTACCTGGGAATTGATAG
22	pAN6_cg2046_rv	AAACGACGGCCAGTGAATTCTTAGATATCGACTCCTAGCGCTC

Construction of plasmids for overproduction of proteins with affinity tags in E. coli

23	cg1978_C-Strep_pET_fw	AAGAAGGAGATATACATATGATGGCTAAAGAATTCGAATTCACCATC
24	cg1978_C-Strep_pET_rv	AAATACAGGTTCTCGCTAGCCTCGACGATGACGTAGGG
25	cg1978_C-His_pET_fw	AAGAAGGAGATATACATATGATGGCTAAAGAATTCGAATTCACCATC
26	cg1978_C-His_pET_rv	AAATACAGGTTCTCGCTAGCCTCGACGATGACGTAGGG
27	<i>gyrA</i> _C-Strep_pET_fw	AAGAAGGAGATATACATATGGTGAGCGACGACAATACCGGAC
28	<i>gyrA</i> _C-Strep_pET_rv	AAATACAGGTTCTCGCTAGCTTCCTCGCCGTTTTCGTCG
29	<i>gyrA</i> _N-Strep_pET_fw	TGTATTTTCAGGGCGCTAGCGTGAGCGACGACAATACC
30	<i>gyrA</i> _N-Strep_pET_rv	TATGCTAGTTATTGCTCAGCTTATTCCTCGCCGTTTTCGTCG
31	<i>gyrB</i> _N-Strep_pET_fw	TGTATTTTCAGGGCGCTAGCGTGGCAAACACTGAACACAATTATG
32	<i>gyrB</i> _N-Strep_pET_rv	TATGCTAGTTATTGCTCAGCTTAGATATCGAGGAAACGAACATCCTTG

Construction of plasmids for genomic deletion in C. glutamicum

33	LF_fw_cg1914	CCATGATTACGCCAAGCTTGTCTGTGGACATCATGAAAAACG				
34	LF_rv_cg1914	GTCTGTAACCGAGCATCTCTCGATGATCTCCTTTTAAGGGATTGAGGTG				
35	RF_fw_cg1914	GAGAGATGCTCGGTTACAGACCACGTCTGCAGCGACTG				
36	RF_rv_cg1914	AACGACGGCCAGTGAATTCGGACCATGAGCGGCCGGTT				
37	LF_fw_cg1978	ACCATGATTACGCCAAGCTTGACCAAATCGGCGATGTGTTTG				
38	LF_rv_cg1978	GTCTGTAACCGAGCATCTCTCAATAAGTGTTCTTTCTTATGCGAGGTG				

39	RF_fw_cg1978	GAGAGATGCTCGGTTACAGACAGGCGTTTCTTTTTCTCCCCC
40	RF_rv_cg1978	AAAACGACGGCCAGTGAATTGCCCGTGAGGTCACCCTTAT
		Sequencing primer
41	∆cg1914_fw_seq	AGGTGTGTATAACACCCGACAAG
42	∆cg1914_rv_seq	ATGCGACGCAAATTTTGGACC
43	∆cg1978_fw_seq	TCCGACATCATTCACATGACTGAC
44	∆cg1978_rv_seq	TCGTCAAGGTAGAGAGACATAAGTTATGTAG
45	pAN6_fw_seq	GATATGACCATGATTACGCCAAGC
46	pAN6_rv_seq	CGGCGTTTCACTTCTGAGTTCGGC
47	pET24b_fw_seq	CGATATAGGCGCCAGCAACC
48	pET24b_rv_seq	CCTCAAGACCCGTTTAGAGG
49	gyrA-C/N-strep _fw_seq	GGCTGACGCAATTCTGGCAATG
50	gyrA-C/N-strep _rv_seq	CAGCTCATCGCGAACGATGG
51	<i>gyrB</i> -N-strep _fw_seq	CGAGGAAGGTTTCCGCTCTG
52	<i>gyrB</i> -N-strep _rv_seq	GGAAATAACCGCGGACAGGC
53	pK19 <i>mobSacB_</i> fw_seq	AGCGGATAACAATTTCACACAGGA
54	pK19 <i>mobSacB</i> _rv_seq	CGCCAGGGTTTTCCCAGTCACGAC

Table S4: Impact of *gip* (cg1978) overexpression on global expression levels. A genomewide comparison of mRNA levels the *C. glutamicum* ATCC 13032 strain overexpressing *gip* and the wild type strain carrying the empty vector control was performed. The shown mRNA ratios indicated mean values from three independent biological replicates (n=3). The strains were cultivated in CGXII minimal medium with 2 % (w/v) glucose and mRNA was prepared from cells at an OD₆₀₀ of 6. The mRNA ratios were calculated by dividing the mRNA levels of the *gip* overexpressing strain by the mRNA levels of the strain carrying the empty vector control. The table includes all genes which showed a changed mRNA level in all experiments (mRNA ratio > 2.0: upregulation (red) or < 0.5: downregulation (green), p-value < 0.05).

The table is provided in a separate file (Table S4_Complete Microarray Data).

Table S4: Impact of *gip* (cg1978) overexpression on global expression levels. A genome-wide comparison of mRNA levels the *C. glutamicum* ATCC 13032 strain overexpressing *gip* and the wildtype strain carrying the empty vector control was performed. The shown mRNA ratios indicated mean values from three independent biological replicates (n=3). The strains were cultivated in CGXII minimal medium with 2 % (w/v) glucose and mRNA was prepared from cells at an OD₆₀₀ of 6. The mRNA ratios were calculated by dividing the mRNA levels of the *gip* overexpressing strain by the mRNA levels of the strain carrying the empty vector control. The table includes all genes which showed a changed mRNA level in all experiments (mRNA ratio > 2.0: upregulation (red) or < 0.5: downregulation (green), p-value < 0.05).

Gene	mRNA ratio	P- value	Gene name	Annotation	Categorization
cg0001	0,60	0,02	dnaA	dnaA, chromosomal replication initiation protein	DNA replication, recombination, repair, and degradation
cg0004	0,70	0,02	dnaN	dnaN, DNA polymerase III subunit beta	DNA replication, recombination, repair, and degradation
cg0007	4,44	0,01	gyrB	gyrB, DNA topoisomerase IV subunit B	DNA replication, recombination, repair, and degradation
cg0008	0,59	0,01		hypothetical protein cg0008 hypothetical protein cg0008	General function prediction only
cg0009	0,77	0,01		uncharacterized membrane protein	Unknown function
cg0010	1,64	0,04		hypothetical protein cg0010	Unknown function
cg0012	6,95	0,00	ssuR	ssuR, sulphonate sulphur utilization transcriptional regulator SsuR	Signal transduction mechanisms
cg0013	1,16	0,00		bacterial regulatory proteins, TetR family	Signal transduction mechanisms
cg0015	6,23	0,00	gyrA	gyrA, DNA gyrase subunit A	DNA replication, recombination, repair, and degradation
cg0016	2,41	0,00		putative integral membrane protein	Unknown function
cg0018	9,84	0,00		hypothetical membrane protein	Unknown function
cg0025	1,18	0,04	ccdA2	putative integral membrane cytochrome biogenesis protein	Protein turnover and chaperones
cg0033	0,65	0,04		putative secreted protein	Unknown function
cg0038	0,44	0,00	ohr	organic hydroperoxide resistance protein organic hydroperoxide resistance protein	General function prediction only
cg0040	0,57	0,02		putative secreted protein	Inorganic ion transport, metabolism, and storage
cg0044	0,32	0,00	rbsB	rbsB, ABC transporter/periplasmic D-ribose- binding protein rbsB, ABC transporter/periplasmic D-ribose-binding protein	Carbon source transport and metabolism
cg0045	0,38	0,00		probable ABC transport protein, membrane component	Carbon source transport and metabolism
cg0046	0,81	0,01		probable ABC transport protein, ATP-binding compon	Carbon source transport and metabolism
cg0047	0,67	0,02		hypothetical protein cg0047	Unknown function
cg0054	0,42	0,04		cytoplasmic siderophore-interacting protein	Inorganic ion transport, metabolism, and storage
cg0055	0,82	0,01	crgA	crgA, ortholog of Rv0011c, member of the cell division complex in mycobacteria	Cell division, chromosome partitioning
cg0057	0,62	0,00	pknB	pknB, eukaryotic-type serine/threonine kinase	Post-translational modification; Signal transduction mechanisms
cg0059	0,77	0,03	pknA	pknA, serine/threonine protein kinase	Post-translational modification; Signal transduction mechanisms
cg0060	0,54	0,00	pbp2b (pbpA)	pbpA, D-alanyl-D-alanine carboxypeptidase pbpA, D-alanyl-D-alanine carboxypeptidase	Cell wall/membrane/envelope biogenesis
cg0061	0,58	0,00	rodA	rodA, putative FTSW/RODA/SPOVE family cell cycle protein	Cell division, chromosome partitioning
cg0062	0,62	0,02	ррр	ppp, protein phosphatase	Post-translational modification; Signal transduction mechanisms
cg0063	0,61	0,00	fhaB	secreted protein	General function prediction only
cg0064	0,66	0,05	fhaA	hypothetical protein cg0064 hypothetical protein cg0064	General function prediction only
cg0065	0,78	0,04		haem peroxidase superfamily	General function prediction only
cg0067	0,54	0,00	gabD3	gabD3, succinate-semialdehyde dehydrogenase (NADP+)	Amino acid transport and metabolism
cg0071	0,58	0,02		metallo-beta-lactamase superfamily	General function prediction only
cg0072	0,57	0,03		hypothetical protein cg0072	Unknown function
cg0073	0,44	0,02		sulfurtransferase	General function prediction only
cg0075	0,92	0,02		hypothetical protein cg0075	Unknown function
cg0075	0,37	0,03		hypothetical protein cg0076	Unknown function

cg0080	0,82	0,01		CorA-like Mg2+ transporter protein CorA- like Mg2+ transporter protein	Inorganic ion transport, metabolism, and storage
cg0081	1,77	0,03		putative tautomerase	Carbon source transport and metabolism
cg0081	0,74	0,04		voltage gated chloride channel	Inorganic ion transport, metabolism, and storage
cg0088	0,53	0,00	citH (citP, citM)	citH, citrate transporter	Carbon source transport and metabolism
cg0090	0,55	0,01	citB	citB, two-component response regulator CitB	Signal transduction mechanisms
cg0095	0,56	0,03	bioB	bioB, biotin synthase	Coenzyme transport and metabolism
cg0097	0,72	0,04		hypothetical protein cg0097 hypothetical	Unknown function
-				protein cg0097 hypothetical protein cg0097	
cg0104	1,87	0,00	codA	codA, creatinine deaminase	Amino acid transport and metabolism
cg0107	0,65	0,00	lin 1	secreted protein	Unknown function
cg0109 cg0111	4,16 0,82	0,00	lip1	triacylglycerol lipase precursor hypothetical protein cg0111	Lipid transport and metabolism Unknown function
CgUIII	0,82	1		ureR, bacterial regulatory protein, MarR	
cg0112	1,51	0,03	ureR	family	Signal transduction mechanisms
cg0113	1,35	0,01	ureA	ureA, probable urease gamma subunit	Transport and metabolism of further metabolites
cg0117	1,45	0,02	ureF	ureF, urease accessory protein	Transport and metabolism of further metabolites
cg0122	1,51	0,01		putative glycerol 3-phosphate dehydrogenase	Lipid transport and metabolism
cg0123	0,45	0,00	htpG	putative heat shock protein (HSP90-family)	Protein turnover and chaperones
cg0128	0,71	0,01		secreted protein, signal peptide	Unknown function
cg0131	0,70	0,03		putative oxidoreductase putative	General function prediction only
cg0133	0,21	0,00	abgT	p-aminobenzoyl-glutamate transporter	Amino acid transport and metabolism
cg0134	0,25	0,00	abgB	hydrolase, AMA/HIPO/HYUC family	Amino acid transport and metabolism
cg0135	0,41	0,00	5	putative inner membrane protein	Unknown function
cg0136	0,48	0,01		hypothetical protein cg0136	Unknown function
cg0138	1,81	0,01		ATP/GTP-binding protein	Unknown function
cg0144	0,62	0,04	rbtT	rbtT, putative ribitol transporter	Carbon source transport and metabolism
cg0148	0,41	0,00	panC	panC, pantoatebeta-alanine ligase protein	Coenzyme transport and metabolism
cg0149	0,51	0,03	panB	panB, 3-methyl-2-oxobutanoate hydroxymethyltransferase	Coenzyme transport and metabolism
cg0150	0,68	0,01		bacterial regulatory protein	Signal transduction mechanisms
cg0156	2,39	0,00	cysR	cysR, transcriptional regulator involved in sulphonate utilisation	Signal transduction mechanisms
cg0158	0,51	0,00		putative membrane transport protein	General function prediction only
cg0159	0,42	0,02		hypothetical protein cg0159 hypothetical protein cg0159	Unknown function
cg0161	0,60	0,00		putative secreted or membrane protein	Unknown function
cg0162	0,53	0,00		membrane spanning protein	Unknown function
cg0163	0,64	0,00		N-acetylglucosaminyltransferase	General function prediction only
cg0165	0,72	0,05		ABC-2 type transporter	General function prediction only
cg0170	1,36	0,02		probable transmembrane protein	Unknown function
cg0171	1,39	0,00		secreted protein	Unknown function
cg0172	1,76	0,03	panD	panD, aspartate 1-decarboxylase precursor	Amino acid transport and metabolism; Coenzyme transport and metabolism
cg0174	0,49	0,00		putative transport protein	Unknown function
cg0176	0,69	0,02		permease	Unknown function
cg0180 cg0182	0,38	0,00	maa taqA2	maa, maltose O-acetyltransferase tagA2, probable DNA-3-methyladenine	Carbon source transport and metabolism DNA replication, recombination, repair,
-				glycosylase I protein	and degradation
cg0183	0,42	0,01		putative lyse type translocator	Amino acid transport and metabolism
cg0184	1,65	0,01		hypothetical protein cg0184 glyoxalase/bleomycin resistance	Unknown function
cg0185	1,79	0,01		protein/dioxygenas	General function prediction only
cg0186	0,67	0,02		methylated-DNAprotein-cysteine methyltransferase	DNA replication, recombination, repair, and degradation
cg0191	0,36	0,00		translation initiation inhibitor	General function prediction only
cg0193	0,50	0,01	рерО	pepO, endopeptidase O	Protein turnover and chaperones
cg0197	1,22	0,02	iolC	iolC, myo-Inositol catabolism, carbohydrate kinase	Carbon source transport and metabolism
cg0198	0,82	0,03		hypothetical protein cg0198	Carbon source transport and metabolism
cg0199	0,68	0,02	iolA	iolA, myo-Inositol catabolism, aldehyde dehydrogenase	Carbon source transport and metabolism
cg0201	0,49	0,01	iolB	iolB, enzyme involved in inositol metabolism	Carbon source transport and metabolism
	0,50	0,00	iolD	iolD, putative acetolactate synthase protein	Carbon source transport and metabolism

cg0203	0,50	0,00	iolE	iolE, 2-Keto-myo-inositol dehydratase	Carbon source transport and metabolism
cg0205	0,63	0,00	iolH	iolH, myo-inositol catabolism protein	Carbon source transport and metabolism
cg0207	0,54	0,03	oxiA	oxi1, myo-Inositol dehydrogenase, oxidoreductase	Carbon source transport and metabolism
cg0208	1,75	0,02		hypothetical protein cg0208	Unknown function
cg0209	1,73	0,01		hypothetical protein cg0209	Unknown function
cg0211	0,54	0,00	охіВ	putative oxidoreductase	General function prediction only
cg0212	0,67	0,03		phosphate isomerase/epimerase	General function prediction only
cg0214	0,70	0,04		hypothetical protein cg0214	Unknown function
cg0215	0,28	0,01	cspA	cspA, cold-shock protein CSPA cspA, cold- shock protein CSPA	Transcription including sigma factors, RNA processing and modification
cg0217	0,68	0,02		bacterial regulatory protein, ArsR family	Signal transduction mechanisms
cg0218	1,71	0,00		O-methyl transferase (N-terminal fragment)	General function prediction only
cg0219	2,18	0,00		O-methyl transferase (C-terminal fragment)	General function prediction only
cg0220	0,65	0,01		acetyltransferase, GNAT family	General function prediction only
cg0222	0,65	0,03		membrane protein	Unknown function
cg0223	0,34	0,01	iolT1	iolT1, myo-Inositol transporter iolT1, myo- Inositol transporter	Carbon source transport and metabolism
cg0228	0,26	0,00	hkm	sensor histidine kinase of two-component	Post-translational modification; Signal
-				system, fragment gltB, glutamine 2-oxoglutarate	transduction mechanisms
cg0229	0,37	0,02	gltB	aminotransferase large SU gltD, glutamine 2-oxoglutarate	Amino acid transport and metabolism
cg0230	0,31	0,01	gltD	aminotransferase small SU	Amino acid transport and metabolism
cg0232	0,54	0,00	ļ	hypothetical secreted protein	Unknown function
cg0233	0,61	0,01		hypothetical protein cg0233	Unknown function
cg0236	0,73	0,00	aftA	aftA, arabinofuranosyltransferase aftA, arabinofuranosyltransferase	Cell wall/membrane/envelope biogenesis
cg0241	1,35	0,01		hypothetical protein cg0241	Unknown function
cg0243	0,73	0,01		membrane protein	Unknown function
cg0244	0,73	0,01		membrane protein	Unknown function
cg0245	0,70	0,05		hypothetical protein cg0245 hypothetical protein cg0245	Unknown function
cg0246	0,63	0,02		glycosyl transferase	General function prediction only
cg0247	0,76	0,02		hypothetical protein cg0247	Unknown function
cg0249	1,57	0,01		polysaccharide/polyol phosphate export systems, permease component	General function prediction only
cg0250	1,34	0,01		aminotransferase	General function prediction only
cg0250	0,55	0,01		membrane protein	Unknown function
cg0254	0,43	0,01		amino acid carrier protein (sodium/alanine symporter)	Amino acid transport and metabolism
cg0255	0,51	0,00		hypothetical protein cg0255	Unknown function
cg0255	0,45	0,02		hypothetical protein cg0256	Unknown function
cg0250	1,60	0,02	тоеВ	molybdopterin biosynthesis protein MoeB	Coenzyme transport and metabolism
cg0259	1,72	0,01	тоаВ	moaB, molybdenum cofactor biosynthesis	Coenzyme transport and metabolism
cg0260	0,73	0,02	moaC	protein moaC, molybdenum cofactor biosynthesis	Coenzyme transport and metabolism
-				protein C modB, sulfate/molybdate transport system,	
cg0262	1,30	0,03	modB	permease component	Coenzyme transport and metabolism
cg0264	0,57	0,01		putative molybdopterin converting factor	Coenzyme transport and metabolism
cg0266	0,84	0,02		membrane protein	Unknown function
cg0272	1,41	0,02		bacterial regulatory protein, LysR family	Signal transduction mechanisms
cg0273	0,57	0,03	<u> </u>	probable alcohol dehydrogenase	General function prediction only
cg0274 cg0275	0,54	0,01	maoA mgtE2	putative oxidoreductase protein mgtE2, mg2+ transporter	Carbon source transport and metabolism Inorganic ion transport, metabolism, and
680273	0,02	0,01	ingitz	dccT, dicarboxylate uptake system (succinate,	storage
cg0277	0,29	0,00	dccT (dcsT)	fumarate or L-malate) dccT, dicarboxylate uptake system (succinate, fumarate or L- malate) dccT, dicarboxylate uptake system	Carbon source transport and metabolism
0270	1.24	0.02		(succinate, fumarate or L-malate)	
cg0279	1,21	0,03	tyrA	tyrA, prephenate dehydrogenase	Amino acid transport and metabolism
cg0283	0,55	0,02		membrane protein	Unknown function
cg0285	0,69	0,01	tgt	tgt, putative trna-guanine transglycosylase	Transcription including sigma factors, RNA processing and modification
cg0286	0,63	0,02		hypothetical protein cg0286	Unknown function
cg0287	0,43	0,01		similar to malic enzyme	General function prediction only
-0				3,4-dioxygenase beta subunit 3,4-	

cg0292	0,63	0,03	tnp16a	tnp16a(ISCg16a), transposase	DNA replication, recombination, repair, and degradation
cg0293	0,49	0,00		hypothetical protein cg0293	Unknown function
cg0294	0,87	0,01	aspT (aspB)	aspT, aspartate aminotransferase	Amino acid transport and metabolism
cg0294	0,80	0,01			Unknown function
		· ·		hypothetical protein cg0295	
cg0297	3,71	0,03		hypothetical protein cg0297	Unknown function
			_	recR, recombination protein RecR recR,	DNA replication, recombination, repair,
cg0298	3,51	0,00	recR	recombination protein RecR recR,	and degradation
				recombination protein RecR	
ca0200	1 20	0.02		hypothetical tripeptide synthase involved in	Coll wall (mambrane (any along biogenesic
cg0300	1,38	0,02		murein formation	Cell wall/membrane/envelope biogenesis
0202	0.00	0.05	10.0	leuA, 2-isopropylmalate synthase leuA, 2-	
cg0303	0,80	0,05	leuA	isopropylmalate synthase	Amino acid transport and metabolism
cg0304	2,53	0,00		membrane protein membrane protein	Unknown function
cg0305	0,85	0,01	#NV	hypothetical protein cg0305	#NV
cg0306	2,53	0,00	lysC	lysC, aspartate kinase	Amino acid transport and metabolism
		· ·	1 '		
cg0307	2,66	0,01	asd	asd, aspartate-semialdehyde dehydrogenase	Amino acid transport and metabolism
cg0308	2,39	0,00		hypothetical protein cg0308	Unknown function
cg0310	2,15	0,01	katA	katA, catalase katA, catalase	Inorganic ion transport, metabolism, and
cg0310	2,13	0,01	KutA		storage
				brnF, branched chain amino acid exporter,	
cg0314	8,35	0,01	brnF	large subunit brnF, branched chain amino	Amino acid transport and metabolism
5		,		acid exporter, large subunit	······································
				brnE, branched chain amino acid exporter,	
cg0315	5,93	0,00	brnE	small subunit	Amino acid transport and metabolism
070217	2.40	0.02	arcD2		Cignal transduction mash
cg0317	2,48	0,02	arsR2	arsR2, arsenate/arsenite regulatory protein	Signal transduction mechanisms
cg0318	0,77	0,04	arsC1 (arsB2)	arsB2, arsenite permease	Inorganic ion transport, metabolism, and
680310	0,11	0,01	uiser (uisez)	uisbe, uisente permease	storage
0221	0.52	0.02			Inorganic ion transport, metabolism, and
cg0321	0,52	0,02	mrpG1 (mnhG)	Na+/H+ antiporter subunit	storage
					Inorganic ion transport, metabolism, and
cg0322	0,42	0,01	mrpF1 (mnhF)	predicted conserved membrane protein	storage
					Inorganic ion transport, metabolism, and
cg0323	0,58	0,01	mrpE1 (mnhE)	conserved hypothetical secreted protein	
		-			storage
cg0324	0,42	0,00	mrpD1 (mnhD)	mnhD, NADH dehydrogenase subunit N	Inorganic ion transport, metabolism, and
-8	-,	-,			storage
cg0325	0,40	0,01	mrpC1 (mnhC)	hypothetical protein cg0325	Inorganic ion transport, metabolism, and
680923	0,10	0,01	imper (innite)	hypothetical protein egoszs	storage
****	0.42	0.01	mrpA1	nual NADU suinene suideredustess shein C	Inorganic ion transport, metabolism, and
cg0326	0,43	0,01	(mnhAB)	nuoL, NADH-quinone oxidoreductase chain 5	storage
cg0327	0,36	0,04		membrane protein membrane protein	Unknown function
cg0332	0,76	0,00		secreted protein	Unknown function
		<u> </u>			
cg0333	1,07	0,02		possible membrane protein	Unknown function
cg0334	0,75	0,02		secreted phosphohydrolase	General function prediction only
cg0335	0,46	0,00		conserved hypothetical protein, GatB/Yqey	Unknown function
Cg0333	0,40	0,00		domain	onknown function
cg0336	2,23	0,00	pbp1a	ponA, penicillin-binding protein 1B	Cell wall/membrane/envelope biogenesis
-				whcA, negative role in SigH-mediated	
cg0337	0,88	0,01	whcA (whiB4)	(oxidative) stress response	Cell wall/membrane/envelope biogenesis
		1	1	hypothetical protein cg0338 hypothetical	
cg0338	1,78	0,03		protein cg0338 hypothetical protein cg0338	Unknown function
ag0220	2.74	0.02			Conorol function prodiction and
cg0339	2,74	0,02		translation initiation inhibitor	General function prediction only
cg0340	0,51	0,01	phdT	putative integral membrane transport	Carbon source transport and metabolism
-0-0.0	5,51		,	protein	
ca0242	0.50	0,02	phdR	putative transcription regulator protein,	Signal transduction mechanisms
cg0343	0,50	0,02		MarR fam	Signal transduction mechanisms
		1		fabG1, 3-oxoacyl-(acyl-carrier protein)	
			1		1
				I reductase Tabla I. 3-oxoacvi-(acvi-carrier	
cg0344	0,62	0,00	phdB (fabG1)	reductase fabG1, 3-oxoacyl-(acyl-carrier	Carbon source transport and metabolism
cg0344	0,62	0,00	phdB (fabG1)	protein) reductase fabG1, 3-oxoacyl-(acyl-	Carbon source transport and metabolism
cg0344	0,62	0,00	phdB (fabG1)	protein) reductase fabG1, 3-oxoacyl-(acyl- carrier protein) reductase	Carbon source transport and metabolism
cg0344 cg0345	0,62	0,00	phdB (fabG1) phdC	protein) reductase fabG1, 3-oxoacyl-(acyl- carrier protein) reductase metal-dependent hydrolase of the TIM-barrel	
cg0345	0,47	0,02	phdC	protein) reductase fabG1, 3-oxoacyl-(acyl- carrier protein) reductase metal-dependent hydrolase of the TIM-barrel fold	Carbon source transport and metabolism
cg0345 cg0346		0,02	phdC phdD (fadE)	protein) reductase fabG1, 3-oxoacyl-(acyl- carrier protein) reductase metal-dependent hydrolase of the TIM-barrel fold fadE, glutaryl-CoA dehydrogenase	Carbon source transport and metabolism
cg0345 cg0346	0,47	0,02	phdC	protein) reductase fabG1, 3-oxoacyl-(acyl- carrier protein) reductase metal-dependent hydrolase of the TIM-barrel fold	Carbon source transport and metabolism Carbon source transport and metabolism
cg0345 cg0346	0,47	0,02	phdC phdD (fadE)	protein) reductase fabG1, 3-oxoacyl-(acyl- carrier protein) reductase metal-dependent hydrolase of the TIM-barrel fold fadE, glutaryl-CoA dehydrogenase	Carbon source transport and metabolism Carbon source transport and metabolism
cg0345 cg0346 cg0347	0,47 0,47 0,57	0,02 0,01 0,01	phdC phdD (fadE) phdE (hdtZ)	protein) reductase fabG1, 3-oxoacyl-(acyl- carrier protein) reductase metal-dependent hydrolase of the TIM-barrel fold fadE, glutaryl-CoA dehydrogenase hdtZ, 3-hydroxyacyl-thioester dehydratase glxR, cAMP-dependent transcriptional	Carbon source transport and metabolism Carbon source transport and metabolism Carbon source transport and metabolism
cg0345 cg0346 cg0347	0,47	0,02	phdC phdD (fadE)	protein) reductase fabG1, 3-oxoacyl-(acyl- carrier protein) reductase metal-dependent hydrolase of the TIM-barrel fold fadE, glutaryl-CoA dehydrogenase hdtZ, 3-hydroxyacyl-thioester dehydratase glxR, cAMP-dependent transcriptional regulator glxR, cAMP-dependent	Carbon source transport and metabolism Carbon source transport and metabolism
cg0345 cg0346 cg0347 cg0350	0,47 0,47 0,57 0,59	0,02 0,01 0,01 0,01	phdC phdD (fadE) phdE (hdtZ)	protein) reductase fabG1, 3-oxoacyl-(acyl- carrier protein) reductase metal-dependent hydrolase of the TIM-barrel fold fadE, glutaryl-CoA dehydrogenase hdtZ, 3-hydroxyacyl-thioester dehydratase glxR, cAMP-dependent transcriptional regulator glxR, cAMP-dependent transcriptional regulator	Carbon source transport and metabolism Carbon source transport and metabolism Carbon source transport and metabolism Signal transduction mechanisms
cg0345	0,47 0,47 0,57	0,02 0,01 0,01	phdC phdD (fadE) phdE (hdtZ)	protein) reductase fabG1, 3-oxoacyl-(acyl- carrier protein) reductase metal-dependent hydrolase of the TIM-barrel fold fadE, glutaryl-CoA dehydrogenase hdtZ, 3-hydroxyacyl-thioester dehydratase glxR, cAMP-dependent transcriptional regulator glxR, cAMP-dependent	Carbon source transport and metabolism Carbon source transport and metabolism Carbon source transport and metabolism Carbon source transport and metabolism Signal transduction mechanisms Unknown function General function prediction only

cg0354	0,49	0,01		thioredoxin-related protein, secreted	Inorganic ion transport, metabolism, and storage
cg0355	0,51	0,00		pyrophosphohydrolase	General function prediction only
cg0356	0,50	0,02		putative serine protease, membrane protein	General function prediction only
cg0358	0,76	0,01		hydrolase or acyltransferase	General function prediction only
cg0360	1,62	0,01		putative phosphatase	General function prediction only
cg0365	1,71	0,02		membrane protein	Unknown function
Cg0305	1,71	0,01		DEAD/DEAH box helicase DEAD/DEAH box	Transcription including sigma factors, RNA
cg0370	1,18	0,01		helicase	processing and modification
cg0371	0,56	0,01	cspA2	cspA2, cold-shock protein CSPA	Transcription including sigma factors, RNA processing and modification
cg0372	0,50	0,03		hypothetical protein cg0372	Unknown function
cg0373	0,40	0,00	topA	topA, DNA topoisomerase I topA, DNA	DNA replication, recombination, repair,
cg0374	0,48	0,03		topoisomerase I hypothetical protein cg0374 hypothetical	and degradation Unknown function
-		0.02	dia a V	protein cg0374 dnaX, putative DNA polymerase III, delta	DNA replication, recombination, repair,
cg0376 cg0378	0,72	0,02	dnaX	subunit putative phage-associated protein	and degradation General function prediction only
LgU378	0,04	0,02			· · · · · · · · · · · · · · · · · · ·
cg0384	0,37	0,00	rluC1	rluC1, ribosomal large subunit pseudouridine synthase C	Translation, ribosomal structure and biogenesis
cg0386	0,38	0,05	bgIS	bglS, beta-glucosidase-C-terminal domain	Carbon source transport and metabolism
cg0388	0,61	0,04	-	Zn-dependent hydrolase	General function prediction only
cg0389	0,89	0,01		short chain dehydrogenase	General function prediction only
cg0390	0,44	0,00		permease, major facilitator family	General function prediction only
cg0393	0,75	0,02		hypothetical protein cg0393	Unknown function
cg0394	0,75	0,02			
Cg0594	0,71	0,00		glycosyl transferase	General function prediction only
cg0395	0,61	0,00		hypothetical protein cg0395	Transcription including sigma factors, RNA processing and modification
cg0396	0,57	0,02		glycosyl transferase	General function prediction only
cg0398	4,30	0,00		hypothetical protein predicted by Glimmer	Unknown function
cg0399	4,61	0,00		hypothetical protein cg0399	Unknown function
cg0400	4,14	0,00	adhC	adhC, alcohol dehydrogenase, class C adhC, alcohol dehydrogenase, class C	Carbon source transport and metabolism
cg0402	1,28	0,04	rmICD	rmlCD, dTDP-4-dehydrorhamnose 3,5- epimerase, dTDP-dehydrorhamnose reductase	Nucleotide transport and metabolism
cg0403	1,72	0,02	rmlB1	rmlB1, dTDP-glucose 4,6-dehydratase	Nucleotide transport and metabolism
cg0404	1,70	0,05		nitroreductase family	General function prediction only
cg0407	0,48	0,01		secreted protein	Unknown function
cg0408	0,59	0,02		membrane protein	Unknown function
cg0410	0,54	0,00		putative prolyl endopeptidase	Protein turnover and chaperones
-		· ·			
cg0411	0,53	0,01		hypothetical protein cg0411	Unknown function
cg0413	1,55	0,02	cmt1	cmt1, trehalose corynomycolyl transferase	Cell wall/membrane/envelope biogenesis
cg0418	0,67	0,04		putative aminotransferase murA, UDP-N-acetylglucosamine 1-	Cell wall/membrane/envelope biogenesis
cg0422	0,68	0,05	murA	carboxyvinyltransferase	Cell wall/membrane/envelope biogenesis
cg0424	0,69	0,03		putative glycosyltransferase	General function prediction only
cg0426	1,87	0,00	tnp17a	tnp17a(ISCg17a), transposase-fragment tnp17a(ISCg17a), transposase-fragment	DNA replication, recombination, repair, and degradation
cg0431	3,23	0,01		hypothetical protein cg0431	General function prediction only
cg0432	1,83	0,01		putative acyltransferase, expression is under the control of autoinducers	Cell wall/membrane/envelope biogenesis
cg0435	2,46	0,01	udgA1	udgA1, UDP-glucose 6-dehydrogenase udgA1, UDP-glucose 6-dehydrogenase	Nucleotide transport and metabolism
cg0436	1,50	0,04		hypothetical protein cg0436	Unknown function
0		- '			Central carbon metabolism; Anaerobic
cg0445	0,27	0,01	sdhC sdhCD	sdhC, succinate dehydrogenase	metabolism; Respiration and oxidative phosphorylation
cg0446	0,18	0,00	sdhA	sdhA, succinate dehydrogenase	Central carbon metabolism; Anaerobic metabolism; Respiration and oxidative phosphorylation
cg0447	0,21	0,00	sdhB	sdhB, succinate dehydrogenase sdhB, succinate dehydrogenase	Central carbon metabolism; Anaerobic metabolism; Respiration and oxidative phosphorylation
cg0448	0,35	0,00		hypothetical protein cg0448 hypothetical protein cg0448	Central carbon metabolism; Anaerobic metabolism; Respiration and oxidative phosphorylation
cg0450	2,40	0,00		hypothetical protein cg0450	Unknown function

cg0453	1,76	0,00		predicted membrane protein	Unknown function
cg0455	1,36	0,03		permease, major facilitator superfamily	General function prediction only
cg0456	1,66	0,01		permease, major facilitator superfamily	General function prediction only
cg0457	1,49	0,03	purU	purU, formyltetrahydrofolate deformylase	Coenzyme transport and metabolism; Nucleotide transport and metabolism; Carbon source transport and metabolism
cg0458	1,46	0,01	deoC	deoC, deoxyribose-phosphate aldolase	Central carbon metabolism; Nucleotide transport and metabolism
cg0462	0,87	0,01		hypothetical protein cg0462	Unknown function
cg0463	5,77	0,00	csoR	hypothetical protein cg0463	Signal transduction mechanisms; Inorganic ion transport, metabolism, and storage
cg0464	7,03	0,00	copA (ctpA, ctpV)	ctpA, copper-transporting ATPase ctpA, copper-transporting ATPase	Inorganic ion transport, metabolism, and storage
cg0466	0,55	0,00	htaA	htaA, secreted heme-transport associated protein	Transport and metabolism of further metabolites
cg0467	0,57	0,03	hmuT	hmuT, hemin-binding periplasmic protein precursor	Transport and metabolism of further metabolites
cg0468	0,66	0,00	hmuU	hmuU, hemin transport system, permease protein	Transport and metabolism of further metabolites
cg0469	0,86	0,04	hmuV	hmuV, hemin transport system, ATP-binding protein	Transport and metabolism of further metabolites
cg0470	4,41	0,04	htaB	htaB, secreted heme transport-associated protein	Transport and metabolism of further metabolites
cg0472	2,25	0,00		hypothetical protein cg0472 hypothetical protein cg0472 hypothetical protein cg0472	Unknown function
cg0474 cg0476	0,53	0,01	murB2	hypothetical protein cg0474 murB, UDP-N-acetylenolpyruvoylglucosamine	Unknown function Cell wall/membrane/envelope biogenesis
cg0480	2,20	0,02	fadD5 (fcs)	reductase fadD5, acyl-coA synthase	Carbon source transport and metabolism
cg0481	1,55	0,00	mshA	mshA, glycosyltransferase	Transport and metabolism of further metabolites
cg0482	0,74	0,02	gpmA	gpmA, phosphoglyceromutase	Central carbon metabolism
cg0488	0,49	0,02	ppx1	ppx1, exopolyphosphatase	Inorganic ion transport, metabolism, and storage
cg0489	0,41	0,00		hypothetical membrane protein	Unknown function
cg0490	0,38	0,01	proC	proC, pyrroline-5-carboxylate reductase	Amino acid transport and metabolism
cg0491 cg0492	0,47	0,03		hypothetical protein cg0491 extremely conserved possible DNA-binding protein extremely conserved possible DNA- binding protein	Unknown function DNA replication, recombination, repair, and degradation
cg0493	0,48	0,02		hypothetical protein predicted by Glimmer	Unknown function
cg0493	0,40	0,02		extremely conserved hypothetical protein	Unknown function
cg0499	1,95	0,00		hypothetical protein cg0499	Unknown function
cg0500	0,55	0,00	qsuR	bacterial regulatory protein, LysR family	Signal transduction mechanisms
cg0501	0,51	0,00	qsuA	putative integral membrane transport protein	Amino acid transport and metabolism
cg0502	0,54	0,00	qsuB	phosphate isomerase/epimerase phosphate isomerase/epimerase	Amino acid transport and metabolism
cg0504	0,65	0,01	qsuD (aroE)	an NAD-dependent quinate dehydrogenase	Amino acid transport and metabolism
cg0505	0,85	0,04		putative ribosomal protein L7/L12 family	Translation, ribosomal structure and biogenesis
cg0506	0,22	0,02		ATP-binding protein of ABC transporter	General function prediction only
cg0507	0,18	0,00		permease of ABC transporter	General function prediction only
cg0508	0,19	0,00		secreted substrate-binding lipoprotein	General function prediction only
cg0510	0,46	0,01	hemD	hemD, uroporphyrinogen III synthase/methyltransferase	Transport and metabolism of further metabolites
cg0512	0,62	0,01	hemB	hemB, delta-aminolevulinic acid dehydratase	Transport and metabolism of further metabolites
cg0513	0,63	0,01		hypothetical membrane protein	Unknown function
cg0514 cg0522	0,55	0,01	ccsA	hypothetical membrane protein ccsA, cytochrome c biogenesis protein,	Unknown function Transport and metabolism of further
cg0523	1,45	0,03		membrane protein membrane protein required for cytochrome c	metabolites Transport and metabolism of further
-				biosynthesis	metabolites
cg0530	1,35	0,03		hypothetical protein cg0530	Unknown function
-	0,64	0,05		putative glycosyltransferase	General function prediction only
cg0532 cg0535	1,31	0,04		probable ketoglutarate semialdehyde dehydrogenase	Carbon source transport and metabolism

cg0527	2 61	0.01	1	putative transcriptional regulator burn tura	signal transduction machanisms
cg0537 cg0550	2,61 1,47	0,01	pepE2	putative transcriptional regulator lysr-type putative peptidase E putative peptidase E	signal transduction mechanisms Protein turnover and chaperones
cg0550	0,64	0,03	menC	menC, O-succinylbenzoate synthase	Coenzyme transport and metabolism
cg0552	0,59	0,01	menC menD	menD, 2-oxoglutarate decarboxylase	Coenzyme transport and metabolism
cg0552	0,63	0,00	lineno	hypothetical protein cg0553	Unknown function
cg0554	0,84	0,05	mgtA	mgtA, alpha-mannosyltransferase (add mannose to GlcAGroAc2)	Cell wall/membrane/envelope biogenesis
cg0555	0,53	0,03		amino acid permease	Amino acid transport and metabolism
-				ispB, putative octaprenyl-diphosphate	Transport and metabolism of further
cg0559	0,60	0,02	ispB	synthase protein	metabolites
cg0563	0,37	0,01	rplK	rplK, 50S ribosomal protein L11	Translation, ribosomal structure and biogenesis
cg0564	0,41	0,00	rplA	rplA, 50S ribosomal protein L1	Translation, ribosomal structure and biogenesis
cg0569	29,82	0,00		cation-transporting ATPase	Carbon source transport and metabolism, Inorganic ion transport, metabolism, and storage
cg0570	8,16	0,00		putative dehydrogenase	General function prediction only
cg0571	12,37	0,00		hypothetical protein cg0571 hypothetical protein cg0571	Unknown function
cg0573	0,61	0,03	rplL	rplL, 50S ribosomal protein L7/L12	Translation, ribosomal structure and biogenesis
cg0579	1,47	0,02		transcriptional regulator	signal transduction mechanisms
cg0581	0,59	0,05	rpsL	rpsL, 30S ribosomal protein S12	Translation, ribosomal structure and biogenesis
cg0582	0,59	0,04	rpsG	rpsG, 30S ribosomal protein S7	Translation, ribosomal structure and biogenesis
cg0583	0,67	0,00	fusA	fusA, elongation factor EF-2	Translation, ribosomal structure and biogenesis
cg0587	0,59	0,00	tuf	tuf, elongation factor Tu	Translation, ribosomal structure and biogenesis
cg0588	0,92	0,04		hypothetical protein cg0588	Unknown function
cg0592	0,59	0,02		putative butyryl-CoA:acetate coenzyme A transferase	Carbon source transport and metabolism
cg0594	0,45	0,04	rplC	rplC, 50S ribosomal protein L3	Translation, ribosomal structure and biogenesis
cg0596	0,40	0,00	rplD	rplD, 50S ribosomal protein L4 rplD, 50S ribosomal protein L4	Translation, ribosomal structure and biogenesis
cg0597	0,50	0,00	rplW	rplW, 50S ribosomal protein L23	Translation, ribosomal structure and biogenesis
cg0598	0,55	0,03	rplB	rplB, 50S ribosomal protein L2	Translation, ribosomal structure and biogenesis
cg0599	0,50	0,01	rpsS	rpsS, 30S ribosomal protein S19	Translation, ribosomal structure and biogenesis
cg0600	0,42	0,01	rplV	rplV, 50S ribosomal protein L22	Translation, ribosomal structure and biogenesis
cg0601	0,50	0,00	rpsC	rpsC, 30S ribosomal protein S3	Translation, ribosomal structure and biogenesis
cg0602	0,60	0,01	rpIP	rplP, 50S ribosomal protein L16	Translation, ribosomal structure and biogenesis
cg0603	0,46	0,00	rpmC	rpmC, 50S ribosomal protein L29	Translation, ribosomal structure and biogenesis
cg0604	0,51	0,04	rpsQ	rpsQ, 30S ribosomal protein S17	Translation, ribosomal structure and biogenesis
cg0606	2,40	0,00		hypothetical membrane protein	Unknown function
cg0607	3,88	0,00		hypothetical secreted protein	Unknown function
cg0608	0,43	0,01	rplN	rplN, 50S ribosomal protein L14	Translation, ribosomal structure and biogenesis
cg0609	0,42	0,01	rplX	rplX, 50S ribosomal protein L24	Translation, ribosomal structure and biogenesis
cg0610	0,41	0,01	rplE	rplE, 50S ribosomal protein L5	Translation, ribosomal structure and biogenesis
cg0611	0,62	0,00		secreted protein	Unknown function
cg0617	0,84	0,00		putative molybdopterin-guanine dinucleotide	Carbon source transport and metabolism
ca0620	0,49	0,01		biosyn secreted protein	Unknown function
cg0620		<u> </u>		substrate-specific component SCO2325 of	
cg0621	0,49	0,03	cbrT	predicted cobalamin ECF transporter	Coenzyme transport and metabolism

cg0622	0,36	0,00	cbrU	duplicated ATPase component SCO2324 of energizing module of predicted cobalamin ECF transporter	Coenzyme transport and metabolism
cg0623	0,29	0,00	cbrV	transmembrane component SCO2323 of energizing module of predicted cobalamin ECF transporter	Coenzyme transport and metabolism
cg0624	0,29	0,00		secreted oxidoreductase	General function prediction only
cg0625	0,37	0,00		secreted protein	Unknown function
cg0628	0,35	0,01	rpsH	rpsH, 30S ribosomal protein S8	Translation, ribosomal structure and biogenesis
cg0629	0,32	0,02	rplF	rplF, 50S ribosomal protein L6	Translation, ribosomal structure and biogenesis
cg0630	0,29	0,01	rplR	rplR, 50S ribosomal protein L18	Translation, ribosomal structure and biogenesis
cg0631	0,29	0,01	rpsE	rpsE, 30S ribosomal protein S5	Translation, ribosomal structure and biogenesis
cg0632	0,28	0,00	rpmD	rpmD, 50S ribosomal protein L30	Translation, ribosomal structure and biogenesis
cg0634	0,51	0,01	rplO	rplO, 50S ribosomal protein L15	Translation, ribosomal structure and biogenesis
cg0637	0,89	0,01	creC (betB)	betB, putative betaine aldehyde dehydrogenase (BADH) oxidoreductase	Carbon source transport and metabolism
cg0638	0,86	0,00	creD	HD superfamily hydrolase	Carbon source transport and metabolism
cg0639	0,80	0,04	creE	ferredoxin reductase	Carbon source transport and metabolism
cg0640	0,65	0,01	creF (fdxB)	fdxB, ferredoxin	Carbon source transport and metabolism
cg0641	0,69	0,02	creG (fabG2)	fabG2, probable short-chain dehydrogenase, secreted	Carbon source transport and metabolism
cg0644	0,68	0,01	crel	pyruvate phosphate dikinase, PEP/pyruvate binding	Carbon source transport and metabolism
cg0647	2,83	0,00	secY	secY, preprotein translocase SecY	Protein secretion
cg0648	1,78	0,01	adk	adk, adenylate kinase	Nucleotide transport and metabolism
cg0650	0,73	0,01		secreted protein	Unknown function
cg0651	0,67	0,02	infA	infA, translation initiation factor IF-1	Translation, ribosomal structure and biogenesis
cg0653	0,55	0,04	rpsK	rpsK, 30S ribosomal protein S11	Translation, ribosomal structure and biogenesis
cg0654	0,57	0,03	rpsD	rpsD, 30S ribosomal protein S4	Translation, ribosomal structure and biogenesis
cg0655	0,45	0,02	rpoA	rpoA, DNA-directed RNA polymerase alpha subunit	Transcription including sigma factors, RNA processing and modification
cg0656	0,51	0,03	rplQ	rplQ, 50S ribosomal protein L17	Translation, ribosomal structure and biogenesis
cg0658	0,60	0,01	rptA	rptA, terminal Rhamnopyranosyltransferase	Cell wall/membrane/envelope biogenesis
cg0659	0,77	0,02		acetyltransferase, GNAT family	General function prediction only
cg0661	0,38	0,03		hypothetical protein cg0661	Unknown function
cg0662	2,07	0,01		FAD/FMN-containing dehydrogenase	General function prediction only
cg0672	0,70	0,03		hypothetical protein cg0672	Unknown function
cg0673	0,35	0,01	rplM	rplM, 50S ribosomal protein L13	Translation, ribosomal structure and biogenesis
cg0674	0,34	0,01	rpsl	rpsl, 30S ribosomal protein S9	Translation, ribosomal structure and biogenesis
cg0675	0,43	0,00	mrsA	mrsA, phosphoglucosamine mutase / phosphoacetylglucosami	Cell wall/membrane/envelope biogenesis
cg0678	0,46	0,03		hypothetical protein cg0678 hypothetical protein cg0678 hypothetical protein cg0678	Unknown function
cg0679	0,57	0,03		hypothetical protein cg0679	Unknown function
cg0681	0,78	0,01	alr	alr, alanine racemase	Amino acid transport and metabolism; Cell wall/membrane/envelope biogenesis
cg0682	0,55	0,00		ATPase or kinase	General function prediction only
cg0683	0,50	0,03		permease	General function prediction only
cg0684 cg0685	0,48	0,00	papA	papA, prolyl aminopeptidase A homolog of metal-dependent protease,	Protein turnover and chaperones Protein turnover and chaperones
cg0686	0,41	0,00		putative molecular chaperone acetyltransferase, GNAT family	General function prediction only
cg0687	0,64	0,00	gcp	gcp, probable O-sialoglycoprotein endopeptidase	Carbon source transport and metabolism; Amino acid transport and metabolism
cg0688	0,61	0,02		hypothetical protein cg0688	Unknown function
cg0689	0,41	0,00		hypothetical protein cg0689	Unknown function
-	2,82	0,01	groES	groES, chaperonin 10 Kd subunit	Protein turnover and chaperones

cg0691	2,58	0,03	groEL	groEL, 60 KDA chaperonin (protein CPN60) (HSP60)-N-terminal fragment	Protein turnover and chaperones
cg0692	0,81	0,02	tnp1c	tnp1c(ISCg1c), transposase	DNA replication, recombination, repair, and degradation
cg0693	2,44	0,02	groEL	groEL, 60 KDA chaperonin (protein CPN60) (groel protein) C-terminal fragment groEL, 60 KDA chaperonin (protein CPN60) (groel protein) C-terminal fragment groEL, 60 KDA chaperonin (protein CPN60) (groel protein) C- terminal fragment	Protein turnover and chaperones
cg0696	1,85	0,02	sigD	sigD, RNA polymerase sigma-70 factor	Transcription including sigma factors, RNA processing and modification
cg0697	1,23	0,05		hypothetical protein cg0697	Unknown function
cg0699	0,61	0,03	guaB2	guaB2, inositol-5-monophosphate dehydrogenase	Carbon source transport and metabolism
cg0700	0,60	0,01	guaB3	guaB3, inositol-5-monophosphate dehydrogenase	Carbon source transport and metabolism
cg0704	2,04	0,00		hypothetical protein cg0704	Unknown function
cg0705	1,34	0,03		hypothetical protein predicted by Glimmer	Unknown function
cg0706	2,84	0,00		conserved hypotetical membrane protein	Unknown function
cg0710	0,72	0,03		membrane protein	Unknown function
cg0711	0,54	0,02		membrane protein	Unknown function
cg0712	0,41	0,00		secreted protein	Unknown function
cg0713	2,13	0,00		hypothetical protein cg0713	Unknown function
cg0715	0,46	0,02		secreted protein	Unknown function
cg0717	1,46	0,04	crtEb (ubiA)	crtEb, hypothetical protein cg0717	Transport and metabolism of further metabolites
cg0719	2,08	0,04	crtYe	crtYe, C50 carotenoid epsilon cyclase	Transport and metabolism of further metabolites
cg0720	2,38	0,01	crtl	crtl2, phytoene dehydrogenase (desaturase)	Transport and metabolism of further metabolites
cg0721	2,92	0,01	crtB	crtB2, phytoene synthetase crtB2, phytoene synthetase	Transport and metabolism of further metabolites
cg0722	3,29	0,00		drug exporter, RND superfamily	Transport and metabolism of further metabolites
cg0723	3,65	0,01	crtE	crtE, geranylgeranyl-pyrophosphate sythase	Transport and metabolism of further metabolites
cg0726	1,66	0,02		secreted lipoprotein	Unknown function
cg0728	0,38	0,00	phr	phr, deoxyribodipyrimidine photolyase	DNA replication, recombination, repair, and degradation
cg0730	0,65	0,03		glycosyl transferase	General function prediction only
cg0733	0,70	0,03		putative ABC transporter ATP-binding protein	General function prediction only
cg0735	0,76	0,04	metl	ABC transporter, transmembrane component	Amino acid transport and metabolism
660733	0,70	0,04	mee	ABC-type transport system, secreted	
cg0737	0,63	0,01	metQ	lipoprotein component dnaE2, DNA polymerase III subunit alpha	Amino acid transport and metabolism
cg0738	3,11	0,02	dnaE2	dnaE2, DNA polymerase III subunit alpha	DNA replication, recombination, repair, and degradation
cg0739	1,32	0,02		putative integral membrane protein	Unknown function
cg0741	1,35	0,02	mntR	sirR, iron repressor protein	signal transduction mechanisms
cg0742	0,60	0,00		putative integral membrane protein	Unknown function
cg0745	0,60	0,00		NAD-dependent deacetylase	General function prediction only
cg0747 cg0749	0,58	0,01	spoU	cytidine and deoxycytidylate deaminase spoU, putative tRNA/rRNA methyltransferase	Nucleotide transport and metabolism Translation, ribosomal structure and
cg0751	0,69	0,01		protein membrane protein	biogenesis Unknown function
6607.51				putative secreted or membrane protein	Unknown function
cg0752	1,89	0,02		putative secreted or membrane protein	
cg0752	1,89 4,29	0,02		putative secreted or membrane protein secreted protein	Unknown function
cg0752 cg0753		· ·	metA (metX)		
cg0752 cg0753 cg0754	4,29	0,00	metA (metX) metY	secreted protein	Unknown function
cg0752 cg0753 cg0754 cg0755	4,29 4,88	0,00		secreted protein metA, homoserine O-acetyltransferase	Unknown function Amino acid transport and metabolism
cg0752 cg0753 cg0754 cg0755 cg0758	4,29 4,88 2,63	0,00 0,00 0,01		secreted protein metA, homoserine O-acetyltransferase metY, O-acetylhomoserine sulfhydrylase	Unknown function Amino acid transport and metabolism Amino acid transport and metabolism Unknown function
cg0752 cg0753 cg0754 cg0755 cg0758 cg0759	4,29 4,88 2,63 0,50 0,28	0,00 0,00 0,01 0,01 0,01	metY prpD2	secreted protein metA, homoserine O-acetyltransferase metY, O-acetylhomoserine sulfhydrylase hypothetical protein predicted by Glimmer prpD2, 2-methycitrate dehydratase	Unknown function Amino acid transport and metabolism Amino acid transport and metabolism Unknown function Carbon source transport and metabolism
cg0752 cg0753 cg0754 cg0755 cg0758 cg0759 cg0760	4,29 4,88 2,63 0,50 0,28 0,25	0,00 0,00 0,01 0,01 0,01 0,01	metY prpD2 prpB2	secreted protein metA, homoserine O-acetyltransferase metY, O-acetylhomoserine sulfhydrylase hypothetical protein predicted by Glimmer prpD2, 2-methycitrate dehydratase prpB2, 2-methylisocitrate lyase	Unknown function Amino acid transport and metabolism Amino acid transport and metabolism Unknown function Carbon source transport and metabolism Carbon source transport and metabolism
cg0752 cg0753 cg0754 cg0755 cg0758 cg0759 cg0760 cg0760 cg0762	4,29 4,88 2,63 0,50 0,28	0,00 0,00 0,01 0,01 0,01	metY prpD2	secreted protein metA, homoserine O-acetyltransferase metY, O-acetylhomoserine sulfhydrylase hypothetical protein predicted by Glimmer prpD2, 2-methycitrate dehydratase prpB2, 2-methylisocitrate lyase prpC2, 2-methylcitrate synthase putative GntR-family transcriptional	Unknown function Amino acid transport and metabolism Amino acid transport and metabolism Unknown function Carbon source transport and metabolism Carbon source transport and metabolism
cg0752 cg0753 cg0754 cg0755 cg0758 cg0759 cg0760 cg0760 cg0762 cg0764	4,29 4,88 2,63 0,50 0,28 0,25 0,26 1,62	0,00 0,00 0,01 0,01 0,01 0,01 0,02 0,00	metY prpD2 prpB2	secreted protein metA, homoserine O-acetyltransferase metY, O-acetylhomoserine sulfhydrylase hypothetical protein predicted by Glimmer prpD2, 2-methycitrate dehydratase prpB2, 2-methylisocitrate lyase prpC2, 2-methylcitrate synthase putative GntR-family transcriptional regulator	Unknown function Amino acid transport and metabolism Amino acid transport and metabolism Unknown function Carbon source transport and metabolism Carbon source transport and metabolism Signal transduction mechanisms
cg0752	4,29 4,88 2,63 0,50 0,28 0,25 0,26	0,00 0,00 0,01 0,01 0,01 0,01 0,02	metY prpD2 prpB2	secreted protein metA, homoserine O-acetyltransferase metY, O-acetylhomoserine sulfhydrylase hypothetical protein predicted by Glimmer prpD2, 2-methycitrate dehydratase prpB2, 2-methylisocitrate lyase prpC2, 2-methylcitrate synthase putative GntR-family transcriptional	Unknown function Amino acid transport and metabolism Amino acid transport and metabolism Unknown function Carbon source transport and metabolism Carbon source transport and metabolism Carbon source transport and metabolism

g0774 0.65 0.01 membrane protein and eggadation g0775 0.59 0.03 secreted siderophore-binding lipoprotein Incigant: Ion transport, metabolism of unsport, metabolism, and unsport, metabolism of unsport, metabolism of unsport, metabolism, and unsport, metabolism of unsport, metabolism, and unsport, metabolism, and unsport, metabolism, and un	cg0773	1,09	0,04		putative exodeoxyribonuclease	DNA replication, recombination, repair,
gg7776 0.59 0.03 secretod siderophore-binding lipoprotein protein Inorganic ion transport, metabolism, and storage; Transport and metabolism of further metabolites gg777 0.58 0.03 trp5 trp5, trystophanyl:NNA synthesise trp5, trystophanyl:NNA synthsynthsynthesise trp5, trystophanyl:NNA synthsynthsyn	-		Ĺ		. ,	-
cg8777 0.3 0.03 secreted sideraphore-binding lipportoticin storage: transport and metabolism of further metabolism of further metabolism. cg8777 0.87 0.04 index pipture ABC transporter, ATP-binding protein Inorganic ion transport, metabolism of further metabolism of further metabolism. cg8778 0.38 0.03 trps trps <thtrps< th=""> <thtrps< th=""> <thtrps< th=""></thtrps<></thtrps<></thtrps<>	cg0774	0,65	0,01		membrane protein	
gg0777 0.87 0.04 Index Data Carlson of Prive A Participant of the second of the se	cg0776	0,59	0,03		secreted siderophore-binding lipoprotein	storage; Transport and metabolism of
Pgp/19 0.93 U/93 Uppoint tryptophamy.IRMA synthetase biogenesis 607060 1.63 0.02 Membrane protein inboundease BM-like General function prediction only 607780 0.33 0.01 <i>bpb4</i> (dod) dat_O-bainty-D-alamy-D-alamine carboxypeptides Cell wall/membrane/envelope biogenesi 607787 0.37 0.00 my curplic phamy-basyltans/envelope Signal transduction mechanisms 607787 0.37 0.00 pmmB phosphoglucor signal transduction mechanisms 60778 0.31 0.00 pc pry-pry-urade carboxylase Central action mechanisms 60778 0.31 0.00 prediational invitoriation signal transduction mechanisms Carbon source transport and metabolism 60779 0.32 0.01 prediational invitoriation signal transduction mechanisms Carbon source transport and metabolism 60780 0.00 prediational motional invitoriation signal transduction mechanisms Carbon source transport and metabolism 60780 0.01 prediational motion information signal transduction mechanisms Carbon source transport and metabolism 60780	cg0777	0,87	0,04			
gg/82 Lin3 U.0.2 fmily General function prevention only gg/72 0.3 0.01 <i>bpd</i> (<i>dar</i>) <i>dat</i> , <i>Delaryl-D-alamine carboxycept</i> (<i>dat</i>) <i>Cell</i> val/membrane/mwidee bigenesi gg/73 0.37 0.00 <i>hypothetical protein carboxycept Sell Linknown function</i> gg/73 0.37 0.00 <i>prams proteinal protein carboxycept Sell Linknown function</i> gg/73 0.31 0.00 <i>pyc</i> , <i>pyrustac carboxylase Carbon source transport</i> and metabolism gg/73 0.34 0.00 <i>pyc</i> , <i>pyrustac carboxylase Carbon source transport</i> and metabolism gg/73 0.33 0.31 <i>pyc</i> , <i>pyrustac carboxylase Carbon source transport</i> and metabolism gg/73 0.32 0.01 <i>pyc</i> , <i>pyrustac carboxylase Carbon source transport</i> and metabolism gg/73 0.33 0.39 <i>pyB pyB pyB</i>	cg0779	0,58	0,03	trpS		
cg0738 0.59 0.00 hypothetical protein cg0738 Unknown function cg0786 0.37 0.00 pp up, ural phosphophotosyltransferase Nickolife transport and metabolism cg0787 0.37 0.00 proms phosphoglucomutase/phosphomannomutase Carbon source transport and metabolism cg0731 0.31 0.00 proc.prycup transport.containing protein Unknown function cg0732 0.32 0.01 Hordwork containing protein Unknown function cg0737 0.33 0.01 prpB1, methylocitrate synthase Carbon source transport and metabolism cg0737 0.33 0.01 prpB1, methylocitrate synthase Carbon source transport and metabolism cg0737 0.31 0.01 prpB1, methylocitrate synthase Carbon source transport and metabolism cg0803 0.50 0.01 thtR thranscriptical grotein Indixwork function cg0803 0.51 0.01 thtR thtR, thosulfate suffurnasferase toraspe cg0804 0.51 0.01 maf maf, Maf-like protein Maf, Maf	cg0780	1,63	0,02			General function prediction only
g0785 0.47 0.02 upp, uraci phosphoribosytransferase Nucleative transport and metabolism g0787 0.31 0.00 transcriptional regulator signal transduction mechanisms g0787 0.31 0.00 pmmB phosphoglucomutase/phosphomannomutase Carbon source transport and metabolism g0792 0.34 0.00 ppc, pyruvate carboxylase Central carbon metabolism g0792 0.53 0.01 prpE1 prpB1, 2-methylicototrate lysac Carbon source transport and metabolism g0798 0.70 0.01 prpE1 prpB1, 2-methylicototrate lysac Carbon source transport and metabolism g0800 2.00 0.00 prpE1 prpB1, 2-methylicototrate lysac Carbon source transport and metabolism g0800 0.50 0.01 thtR thisordigator, famB1 signal transduction mechanisms g0801 0.72 0.01 thtR thisordigator, famB1 signal transduction mechanisms g0802 0.51 0.01 thtR thisordigator, famB1 signal transduction mechanisms g0803 0.51	cg0782	0,63	0,01	pbp4 (dac)	dac, D-alanyl-D-alanine carboxypeptidase	Cell wall/membrane/envelope biogenesis
cg0787 0.37 0.00 transcriptional regulator signal transduction mechanisms cg0781 0.31 0.00 prosphoglucomutase/phosphomannomutase Cartbon source transport and metabolism cg0792 0.34 0.00 prc, pyrowtic carboxylace Cartbon source transport and metabolism cg0795 0.52 0.01 FAD-dependent pyrdine nucleotide- diulphide oxidoretta synthase Cartbon source transport and metabolism cg0795 0.53 0.00 prpE1_1 prpE1_2, methylicitate synthase Carbon source transport and metabolism cg0796 0.00 prpE1 prpE1_2, methylicitate synthase Carbon source transport and metabolism cg0801 0.50 0.01 thras thrascriptional regulator, MerF family signal transduction mechanisms cg0808 0.51 0.01 wbpC, hypothetical protein (q0801 Unknown function cg0809 0.75 0.03 mdf maf, MaFilke protein Indivision, chromosome partitioning cg0809 0.75 0.02 maf, MaFilke protein Ipd Harsbort and metabolism cg0801 0.55 0.02 </td <td>cg0783</td> <td>0,59</td> <td>0,00</td> <td></td> <td>hypothetical protein cg0783</td> <td>Unknown function</td>	cg0783	0,59	0,00		hypothetical protein cg0783	Unknown function
rg0788 1.77 0.01 pmm8 pmm8, pms9hglucomutase/phosphomannomutase Carbon source transport and metabolism rg0791 0.31 0.00 pyc pyc, pyrusele carboxylase Central carbon metabolism rg0792 0.53 0.00 FAD-dependent pyrdine nucleotide- disulphide oxidoreductase Insroam function rg0797 0.53 0.02 prp81 prp81, methylicotitate iyase Carbon source transport and metabolism disulphide oxidoreductase rg0808 0.70 0.01 prpC1, 2-methylicotitate iyase Carbon source transport and metabolism, and storage rg0800 0.70 0.01 PrpR1, transcriptional regulator, Merk family signal transduction mechanisms rg0800 0.50 0.01 thtR thitR, thiosuffate suffurtransferase Carbon source transport, metabolism, and storage rg0800 0.75 0.03 mof thitR, thiosuffate suffurtransferase Cell wail/membrane/nevelope biogenesi carbon source transport and metabolism rg8080 0.75 0.03 <i>acsE</i> hypothetical protein cg0810 Lipid transport and metabolism rg8081 0.55 0.02 <i>dtsR2</i> , a	-		<u> </u>	ирр		
g0/28 1,7 U0,0 pmmt phosphoglucomutase/phosphognomanomutase Carbon source transport and metabolism g0791 0,31 0,00 pyc pyc, pyruste carboxylase Central carbon metabolism g0792 0,53 0,01 FAD-dependent pyrdim nucleotide- disulpide oxidereductase carbon source transport, metabolism g0797 0,53 0,01 prg0.1 srg0.2, zmethylisoettrate lysse Carbon source transport and metabolism g0798 0,70 0,01 prg0.2, zmethylisoettrate lysse Carbon source transport, metabolism, and storage g0808 0,50 0,01 thtR thistR, thiosulfate sulfurtransferase Corbon source transport, metabolism, and storage g0808 0,51 0,01 wbpc, lipopolysaccharide biosynthesis Cell wall/membrane/envelope biogenesi g0808 0,51 0,01 wbpc, lipopolysaccharide biosynthesis Cell wall/membrane/envelope biogenesi g0809 0,55 0,03 acccE hypothetical protein [maf, Maf-like protein Cell division, chromosome partitioning g0810 0,55 0,02 disr2 (accD2) disr2 (accD2) Cell	cg0787	0,37	0,00		· · · ·	signal transduction mechanisms
gg792 0,34 0,00 thioredoxin domain-containing poteim Unknown function gg0795 0,52 0,01 FAD-dependent pyridine nucleotide- disulphide oxidoreductase Inorganic ion transport, metabolism, and disulphide oxidoreductase Storage gg0797 0,53 0,03 <i>prpB1</i> prgB1, zmethylisocitrate tyrase Carbon source transport and metabolism gg0801 Carbon source transport and metabolism gg0801 0,50 0,01 <i>thrR</i> thranscriptional regulator, MerR family signal transduction mechanisms gg0801 0,50 0,01 <i>thrR</i> thrift, thiosulfate sulfurtransferase Inorganic ion transport, metabolism, and storage gg0801 0,55 0,03 <i>maf</i> maf, MaFilke protein Gall division, chromosome partitioning gg0810 0,55 0,03 <i>accE</i> hypothetical protein gg0810 Eell division, chromosome partitioning gg0810 Cell wail/membrane/envelope biogenesi acyltransferase, m gg0814 1,53 0,01 <i>birA</i> birA,	cg0788		· ·	рттВ	phosphoglucomutase/phosphomannomutase	Carbon source transport and metabolism
gg0795 0,52 0,01 FAD-dependent synchine nucleotide- disulphide exidoreductase Inorganic ion transport, metabolism, and storage gg0787 0,53 0,03 prp81 prp81, 2-methytilaocitate lyase Carbon source transport and metabolism gg0808 Carbon source transport and metabolism gg0801 Carbon source transport, metabolism gg0801 Carbon source transport, metabolism gg0801 Unknown function gg0808 0,51 0,01 thtR thtR, thiosulfate sulfurtansferase, m acyltransferase, m Cell wall/membrane/envelope biogenesi sorage gg0801 0,55 0,03 maf, Maf-like protein maf, Maf-like protein Cell wall/membrane/envelope biogenesi carbox/gase, beta subunit Cell wall/membrane/envelope biogenesi carbox/gase, beta subunit gg0811 0,55 0,02 dtsR2 (acct/D2) beta subunit Cell wall/membrane/envelope biogenesi carbox/gase, beta subunit gg0821 0,66 0,01 hypothetical protein (gg021 Unknown function gg0822 0,75 0,02 typothetical protein (gg021 Unknown function gg0823 0,66 <t< td=""><td>cg0791</td><td></td><td><u> </u></td><td>рус</td><td></td><td></td></t<>	cg0791		<u> </u>	рус		
Q2075 0.52 0.01 disulphile axidoreductase storage Q2077 0.53 0.03 prpB1, 2-methylisocitrate lyase Carbon source transport and metabolisn Q2078 0.70 0.01 prpC1 prpB1, 2-methylisocitrate lyase Carbon source transport and metabolisn Q2000 2.00 0.00 prpR1 transcriptional regulator, MerR family signal transduction metabolisn Q2001 0.01 thtR thild, hiosulfate sulfurtransferase thoragain clore transport, metabolisn, and storage Q2009 0.75 0.03 maf Maf.like protein [maf, Maf-like protein Cell wall/membrane/envelope biogenesi acyltransferase, m Q2001 0.55 0.03 accf hypothetical protein cg0810 Lipid transport and metabolism Q2011 0.55 0.03 accf dtsR2, acetty/propionyICAA Cell wall/membrane/envelope biogenesi acyltransferase, m Q2012 0.56 0.03 accf hypothetical protein cg0810 Lipid transport and metabolism Q2014 0.55 0.02 dtsR2 (accD2) beta subunit (1 dsR2, acetty/propionyICAA Cell wall/membrane/en	cg0792	0,34	0,00			
gg07980.700.01 <i>prpC1prpC1</i> .2-methydirate synthaseCarbon source transport and metabolisngg08000.720.01hypothetical protein cg0801Unknown functiongg08010.720.01httphypothetical protein cg0801Unknown functiongg08030.500.01thtRthtR, thiosulfate sulfurtransferaseInorganic ion transport, metabolism, and storagegg08040.510.01wbpCwbpC, lipopolysacharide biosynthesisCell wall/membrane/envelope biogenesigg08090.750.03mafmaf, Maf-like proteinIndi Karsee, mCell wall/membrane/envelope biogenesigg08100.550.03accEhypothetical protein cg0810Lipid transport and metabolismgg08110.550.02dtsR2 acett//propionyl CoA carboxylase, beta subunit (JatR2, acett/propionyl CoACell wall/membrane/envelope biogenesigg08141.530.01 <i>birA</i> birA, b	cg0795	0,52	Ľ		disulphide oxidoreductase	storage
gg08002.000.00 <i>prpR</i> transcriptional regulator, MerR familysignal transduction mechanismscg08010.720.01hysothetical protein cg0801Unknown functioncg08030.500.01thrRthtR, thiosulfate sulfurtransferaseInorganic ion transport, metabolism, and storagecg08080.510.01wbpCwbpC, lipopolysaccharide biosynthesis acyltransferase, mCell wall/membrane/envelope biogenesi acyltransferase, mcg08090.750.03 <i>maf</i> Maf.Kle proteinMaf.Maf-like proteinCell wall/membrane/envelope biogenesi acyltransferase, mcg08110.550.03 <i>accE</i> hysothetical protein cg0810Lipid transport and metabolismcg08110.550.02 <i>dus2 (accD2)</i> beta subunitCell wall/membrane/envelope biogenesi carboxylase, beta subunitcg08120.670.00membrane proteinUnknown functioncg08130.670.00membrane protein ligaseCenzyme transport and metabolismcg08210.660.01hysothetical protein cg0822Unknown functioncg08231.480.00putative dihydrofolate reductaseCoenzyme transport and metabolismcg08240.730.04 <i>tmp5a</i> transporter, permease proteinCarbon source transport and metabolismcg08310.560.02tus6tus6, sugar ABC transporter, permease proteinCarbon source transport and metabolismcg08320.480.00tus6tus6, sugar ABC transporter, permease proteinC	cg0797		<u> </u>	<u> </u>		Carbon source transport and metabolism
cg08010,720,01hypothetical protein cg0801Unknown functioncg08030,500,01thtRthtR, thiosulfate sulfurtransferaseInorganic ion transport, metabolism, and storagecg08080,510,01wbpCwbpC, lipopolysaccharide biosynthesis acyltransferase, mCell wall/membrane/envelope biogenesi acyltransferase, mcg08090,750,03mafmaf, Maf-like protein maf, Maf-like protein maf, Maf-like protein maf, Maf-like protein maf, Maf-like protein carboxylase, beta subunit cg0811Cell division, chromosome partitioning total tarsport and metabolismcg08141,530,01birAbirA, bioin-protein ligaseCell wall/membrane/envelope biogenesi carboxylase, beta subunit cg0821Cell wall/membrane/envelope biogenesi carboxylase, beta subunit unknown functioncg08240,760,00membrane protein membrane proteinUnknown functioncg08280,770,02hypothetical protein cg0821Unknown functioncg08291,420,00putative dihydrofolate reductase proteinCoenzyme transport and metabolism and degradationcg08300,790,01membrane proteinUnknown functioncg08310,560,02tus6tus6, sugar ABC transporter, permease proteincg08330,420,00tus6tus6, sugar transport systems, trahalose uptake systemcg08330,420,01hypothetical protein cg0837Unknown functioncg08340,340,02tus6hypothetical protein cg0837U		'		1		Carbon source transport and metabolism
cg08030,500,01thtRthtR, thiosulfate sulfurtransferaseInorganic ion transport, metabolism, and storagecg08080,510,01wbpCwbpC, lipopolysaccharide biosynthesis acyltransferase, mCell wall/membrane/envelope biogenesicg08090,750,03maf,Maf-like proteinCell wall/membrane/envelope biogenesicg08100,550,03accEhypothetical protein cg0810Upid transport and metabolismcg08110,550,02dtsR2 (accD2)bita subunit dtsR2, actty//propionyl CoACell wall/membrane/envelope biogenesicg08141,530,01birAbirA, biotinprotein ligaseCoenzyme transport and metabolismcg08120,660,00membrane proteinUnknown functioncg08220,750,02hypothetical protein cg0821Unknown functioncg08240,730,04tnp5atnp5a(ISC5a), transposaseDNA replication, recombination, repair, and degradationcg08300,790,01membrane proteinUnknown functioncg08320,480,00tusFtusG, sugar ABC transporter, permease protein, trehalose uptake systemCarbon source transport and metabolismcg08330,420,00tusFtusK, ABC-transporter, permease protein, trehalose uptake systemCarbon source transport and metabolismcg08330,420,00tusK (msiK2)tusK, ABC-transporter, go837Unknown functioncg08330,420,00tusFtusK, ABC-transporter, permease protein, trehalose uptake	-	2,00	0,00	prpR		
gg08030,00U/U <t< td=""><td>cg0801</td><td>0,72</td><td>0,01</td><td></td><td>hypothetical protein cg0801</td><td>Unknown function</td></t<>	cg0801	0,72	0,01		hypothetical protein cg0801	Unknown function
cg08080.510.01WpCacyltransferase, mCell waity filentia interperveduge biogenesiscg08090.750.03mafmaf, Maf-like protein maf, Maf-like proteinCell division, chromosome partitioningcg08100.550.03accEhypothetical protein cg0810Uipid transport and metabolismcg08110.550.02dtsR2 (accD2)dtsR2, acety//propinyl CoACell division, chromosome partitioningcg08141.530.01birA, birA, biotn-protein ligaseCoenzyme transport and metabolismcg08130.670.00membrane proteinUnknown functioncg08240.750.02hypothetical protein cg0821Unknown functioncg08240.770.04tnp5atnp5a(ISCg5a), transposaseDNA replication, recombination, repair, and degradationcg08291.420.00latcylgiutathione lyase or related lyaseGeneral function prediction onlycg08310.560.02tusFtusF, BC transporter, permease proteinCarbon source transport and metabolismcg08330.420.00tusFtusF, BC transporter, permease protein, trehalose uptake systemCarbon source transport and metabolismcg08330.420.00tusFtusF, BC transporter, permease protein, trehalose uptake systemCarbon source transport and metabolismcg08340.340.02tusFtusF, BC transporter, gen837Unknown functioncg08330.420.00tusK (msi/K2)tusK, BC-type sugar transport systems, trehalose uptake syst	cg0803	0,50	0,01	thtR	thtR, thiosulfate sulfurtransferase	Inorganic ion transport, metabolism, and storage
cg08390,7s0,0smdy maf, Maf-like proteinLeff division, chromosome partitioningcg08100,5s0,0aaccEhypothetical protein cg0810Lipid transport and metabolismcg08110,5s0,02dtsR2 (accD2)beta subunit dtsR2, acety//propionyl CoACell wall/membrane/envelope biogenesicg08141,530,01birA, biotin-protein ligaseCoenzyme transport and metabolismcg08140,660,01hypothetical protein cg0821Unknown functioncg08220,750,02hypothetical protein cg0822Unknown functioncg08240,730,04tnp5atnp5a(ISCg5a), transposaseDNA replication, recombination, repair, and degradationcg08281,480,00putative dihydrofolate reductaseCoenzyme transport and metabolismcg08300,790,01itusG, sugar ABC transporter, permease proteinCarbon source transport and metabolismcg08310,560,02tusGtusG, sugar ABC transporter, permease protein, trehalose uptake systemCarbon source transport and metabolismcg08330,420,00tusFtusG, Sugar ABC transporter, membrane spanning protein, trehalose uptake systemCarbon source transport and metabolismcg08340,340,02tusEtusK, ABC-type sugar transport systems, trehalose uptake systemCarbon source transport and metabolismcg08330,420,00tusK (msiK2)tusK, ABC-type sugar transport systems, trehalose uptake systemCarbon source transport and metabolismcg083	cg0808	0,51	0,01	wbpC		Cell wall/membrane/envelope biogenesis
cg08110,550,02dtsR2 (accD2)dtsR2 (accD2)dtsR2, acety/propionyl CAA carboxylase, beta subunitCell wall/membrane/envelope biogenesicg08141,530,01birAbirA, biotinprotein ligaseCeenzyme transport and metabolismcg08150,670,00membrane proteinUnknown functioncg08210,660,01hypothetical protein cg0821Unknown functioncg08220,750,02hypothetical protein cg0822Unknown functioncg08240,730,04tnp5atnp5a(ISCg5a), transposaseDNA replication, recombination, repair, and degradationcg08291,480,00putative dihydrofolate reductaseCeenzyme transport and metabolismcg08290,790,01membrane proteinUnknown functioncg08310,560,02tusGtusG, sugar ABC transporter, permease proteinCarbon source transport and metabolismcg08320,480,00tusFtusF, ABC transporter, membrane spanning protein, trehalose uptake systemCarbon source transport and metabolismcg08330,420,00tusFtusK, ABC-type sugar transport systems, trehalose uptake systemCarbon source transport and metabolismcg08340,340,02tusK (msiK2)tusK, ABC-type sugar transport systems, trehalose uptake systemCarbon source transport and metabolismcg08350,650,00tusK (msiK2)tusk, ABC-type sugar transport systems, trehalose uptake systemCarbon source transport and metabolismcg08380,22 <td>cg0809</td> <td>0,75</td> <td>0,03</td> <td>maf</td> <td></td> <td>Cell division, chromosome partitioning</td>	cg0809	0,75	0,03	maf		Cell division, chromosome partitioning
cg08110,550,02dts2 (accD2)beta subunitdts2, accty/propionyl CoA carboxylase, beta subunitCell wall/membrane/envelope biogenesicg08141,530,01birAbirA, birA, bitA, bitA	cg0810	0,55	0,03	accE	hypothetical protein cg0810	Lipid transport and metabolism
cg08141,530,01 <i>birAbirA</i> , <i>biotin-protein ligase</i> Coenzyme transport and metabolismcg08150,670,00membrane proteinUnknown functioncg08210,660,01hypothetical protein cg0821Unknown functioncg08220,750,02hypothetical protein cg0822Unknown functioncg08240,730,04 <i>tnp5a</i> tnp5a(ISCg5a), transposaseDNA replication, recombination, repair, and degradationcg08281,480,00putative dihydrofolate reductaseCoenzyme transport and metabolismcg08291,420,00iactoy(glutathione lyase or related lyaseGeneral function prediction onlycg08310,560,02 <i>tusG</i> tusG, sugar ABC transporter, permease proteinCarbon source transport and metabolismcg08330,420,00 <i>tusF</i> protein, trehalose uptake systemCarbon source transport and metabolismcg08330,420,00 <i>tusF</i> protein, trehalose uptake systemCarbon source transport and metabolismcg08340,340,02 <i>tusE</i> tusF, ABC transport solute-binding protein, trehalose uptake systemCarbon source transport and metabolismcg08350,650,00 <i>tusE</i> tusF, ABC-type sugar transport systems, trehalose uptake systemCarbon source transport and metabolismcg08360,220,01putative helicaseDNA replication, recombination, repair, and degradationCarbon source transport and metabolismcg08370,360,03hypothetical protein cg0837 <t< td=""><td>cg0811</td><td>0,55</td><td>0,02</td><td>dtsR2 (accD2)</td><td>beta subunit dtsR2, acetyl/propionyl CoA</td><td>Cell wall/membrane/envelope biogenesis</td></t<>	cg0811	0,55	0,02	dtsR2 (accD2)	beta subunit dtsR2, acetyl/propionyl CoA	Cell wall/membrane/envelope biogenesis
cg08210,660,01hypothetical protein cg0821Unknown functioncg08220,750,02hypothetical protein cg0822Unknown functioncg08240,730,04tnp5atnp5a(ISCg5a), transposaseDNA replication, recombination, repair, and degradationcg08281,480,00putative dihydrofolate reductaseCoenzyme transport and metabolismcg08291,420,00lactoy[glutathione lyase or related lyaseGeneral function prediction onlycg08300,790,01membrane proteinUnknown functioncg08310,560,02tus6tus6, sugar ABC transporter, permease proteinCarbon source transport and metabolismcg08320,480,00tusFprotein, trehalose uptake systemCarbon source transport and metabolismcg08330,420,00tusFprotein, trehalose uptake systemCarbon source transport and metabolismcg08340,340,02tusEprotein, trehalose uptake systemCarbon source transport and metabolismcg08350,650,00tusK (msiK2)tusK, ABC-type sugar transport systems, trehalose uptake systemCarbon source transport and metabolismcg08380,220,01putative helicaseDNA replication, recombination, repair, and degradationcg08390,300,01hypothetical protein cg0837Unknown functioncg08390,300,01hypothetical protein cg0839Unknown functioncg08410,310,02putative helicaseDNA replication, re	cg0814	1,53	0,01	birA	birA, biotinprotein ligase	Coenzyme transport and metabolism
cg08220,750,02hypothetical protein cg0822Unknown functioncg08240,730,04tnp5atnp5a(ISCg5a), transposaseDNA replication, recombination, repair, and degradationcg08281,480,00putative dihydrofolate reductaseCenzyme transport and metabolismcg08291,420,00lactoy[glutathione]yase or related lyaseGeneral function prediction onlycg08300,790,01membrane proteinUnknown functioncg08310,560,02tws6tws6, sugar ABC transporter, permease proteinCarbon source transport and metabolismcg08320,480,00twsFtwsF, ABC transporter, membrane spanning protein, trehalose uptake systemCarbon source transport and metabolismcg08330,420,00twsFtwsF, ABC transporter, membrane spanning protein, trehalose uptake systemCarbon source transport and metabolismcg08330,420,00twsFtwsF, ABC transporter systemCarbon source transport and metabolismcg08340,340,02twsEputative membrane protein, involved in trehalose uptake systemCarbon source transport and metabolismcg08350,650,00twsK (msiK2)twsK, ABC-type sugar transport systems, trehalose uptake systemCarbon source transport and metabolismcg08380,220,01putative helicaseDNA replication, recombination, repair, and degradationDNA replication, recombination, repair, and degradationcg08390,300,01hypothetical protein cg0839Unkno	cg0815	0,67	0,00		membrane protein	Unknown function
cg08240,730,04tnp5atnp5a(ISCg5a), transposaseDNA replication, recombination, repair, and degradationcg08281,480,00putative dihydrofolate reductaseCoenzyme transport and metabolismcg08291,420,00lactoylglutathione lyase or related lyaseGeneral function prediction onlycg08300,790,01membrane proteinUnknown functioncg08310,560,02tusGtusG, sugar ABC transporter, permease proteinCarbon source transport and metabolismcg08320,480,00tusFtusF, ABC transporter, membrane spanning protein, trehalose uptake systemCarbon source transport and metabolismcg08330,420,00tusFtusF, baCtransporter, membrane protein, involved in trehalose uptake systemCarbon source transport and metabolismcg08340,340,02tusEtusK, ABC-type sugar transport systems, trehalose uptake systemCarbon source transport and metabolismcg08350,650,00tusK (msiK2)tusK, ABC-type sugar transport systems, trehalose uptake systemCarbon source transport and metabolismcg08370,360,03hypothetical protein cg0837Unknown functioncg08380,220,01putative helicaseDNA replication, recombination, repair, and degradationcg08410,310,02hypothetical protein cg0839Unknown functioncg08430,450,01putative helicaseDNA replication, recombination, repair, and degradationcg08440,450,01	cg0821	0,66	0,01		hypothetical protein cg0821	Unknown function
cg08240,730,04 <i>thp3a</i> thp3a(ISLg3a), transposaseand degradationcg08281,480,00putative dihydrofolate reductaseCoenzyme transport and metabolismcg08291,420,00lactoylglutathione lyase or related lyaseGeneral function prediction onlycg08300,790,01membrane proteinUnknown functioncg08310,560,02tusGtusG, sugar ABC transporter, permease protein, trehalose uptake systemCarbon source transport and metabolismcg08330,420,00tusFtusF, ABC transporter, membrane spanning protein, trehalose uptake systemCarbon source transport and metabolismcg08340,340,02tusEtusE, bacterial extracellular solute-binding protein, trehalose uptake systemCarbon source transport and metabolismcg08350,650,00tusK (msiK2)tusK, ABC-type sugar transport systems, trehalose uptake systemCarbon source transport and metabolismcg08380,220,01putative helicaseDNA replication, recombination, repair, and degradationcg08380,220,01putative helicaseDNA replication, recombination, repair, and degradationcg08430,450,02putative helicaseDNA replication, recombination, repair, and degradation	cg0822	0,75	0,02		hypothetical protein cg0822	Unknown function
cg08291,420,00Iactoylglutathione lyase or related lyaseGeneral function prediction onlycg08300,790,01membrane proteinUnknown functioncg08310,560,02tusGtusG, sugar ABC transporter, permease proteinCarbon source transport and metabolismcg08320,480,00tusFtusF, ABC transporter, membrane spanning protein, trehalose uptake systemCarbon source transport and metabolismcg08330,420,00putative membrane protein, involved in trehalose uptake systemCarbon source transport and metabolismcg08340,340,02tusEtusE, bacterial extracellular solute-binding protein, trehalose uptake systemCarbon source transport and metabolismcg08350,650,00tusK (msiK2)tusK, ABC-type sugar transport systems, trehalose uptake systemCarbon source transport and metabolismcg08370,360,01tusK (msiK2)tusK, ABC-type sugar transport systems, trehalose uptake systemCarbon source transport and metabolismcg08380,220,01putative helicaseDNA replication, recombination, repair, and degradationDNA replication, recombination, repair, and degradationcg08410,310,02putative helicaseDNA replication, recombination, repair, and degradationcg08430,450,01type II restriction enzyme, methylase subunit l type II restriction enzyme, methylaseDNA replication, recombination, repair, and degradationcg08440,450,01putative superfamily II DNA/RNA helicase,DN	cg0824	0,73	0,04	tnp5a	tnp5a(ISCg5a), transposase	
cg08291,420,00Iactoylglutathione lyase or related lyaseGeneral function prediction onlycg08300,790,01membrane proteinUnknown functioncg08310,560,02tusGtusG, sugar ABC transporter, permease proteinCarbon source transport and metabolismcg08320,480,00tusFtusF, ABC transporter, membrane spanning protein, trehalose uptake systemCarbon source transport and metabolismcg08330,420,00tusFtusF, ABC transporter, membrane spanning protein, trehalose uptake systemCarbon source transport and metabolismcg08340,340,02tusEtusE, bacterial extracellular solute-binding protein, trehalose uptake systemCarbon source transport and metabolismcg08350,650,00tusK (msiK2)tusK, ABC-type sugar transport systems, trehalose uptake systemCarbon source transport and metabolismcg08380,220,01tusK (msiK2)tusK (msiK2)tusK, ABC-type sugar transport systems, trehalose uptake systemCarbon source transport and metabolismcg08370,360,01hypothetical protein cg0837Unknown functionDNA replication, recombination, repair, and degradationcg08410,310,02hypothetical protein cg0839Unknown functioncg08430,450,01putative helicaseDNA replication, recombination, repair, and degradationcg08440,450,01putative helicaseDNA replication, recombination, repair, and degradationcg08450,490,00p	cg0828	1,48	0,00		putative dihydrofolate reductase	Coenzyme transport and metabolism
cg08300,790,01membrane proteinUnknown functioncg08310,560,02tusGtusG, sugar ABC transporter, permease proteinCarbon source transport and metabolismcg08320,480,00tusFtusF, ABC transporter, membrane spanning protein, trehalose uptake systemCarbon source transport and metabolismcg08330,420,00tusFputative membrane protein, involved in trehalose uptake systemCarbon source transport and metabolismcg08340,340,02tusEtusE, bacterial extracellular solute-binding protein, trehalose uptake systemCarbon source transport and metabolismcg08350,650,00tusK (msiK2)tusK, ABC-type sugar transport systems, trehalose uptake systemCarbon source transport and metabolismcg08370,360,03hypothetical protein cg0837Unknown functioncg08380,220,01putative helicaseDNA replication, recombination, repair, and degradationcg08410,310,02putative helicaseDNA replication, recombination, repair, and degradationcg08430,450,01type II restriction enzyme, methylase subunit l type II restriction enzyme, methylase subunit l type II restriction enzyme, methylaseDNA replication, recombination, repair, and degradationcg08450,490,00putative superfamily II DNA/RNA helicase,DNA replication, recombination, repair, and degradation			0,00			
cg08310,560,02tusGtusG, sugar ABC transporter, permease proteinCarbon source transport and metabolismcg08320,480,00tusFtusF, ABC transporter, membrane spanning protein, trehalose uptake systemCarbon source transport and metabolismcg08330,420,00tusFtusF, ABC transporter, membrane protein, involved in trehalose uptake systemCarbon source transport and metabolismcg08330,420,00tusEtusE, bacterial extracellular solute-binding protein, trehalose uptake systemCarbon source transport and metabolismcg08340,340,02tusEtusK, ABC-type sugar transport systems, trehalose uptake systemCarbon source transport and metabolismcg08350,650,00tusK (msiK2)tusK, ABC-type sugar transport systems, trehalose uptake systemCarbon source transport and metabolismcg08370,360,03hypothetical protein cg0837Unknown functioncg08380,220,01putative helicaseDNA replication, recombination, repair, and degradationcg08410,310,02putative DNA helicaseDNA replication, recombination, repair, and degradationcg08430,450,01type II restriction enzyme, methylase subunit i type II restriction enzyme, methylase subunitDNA replication, recombination, repair, and degradationcg08430,450,01type II restriction enzyme, methylaseDNA replication, recombination, repair, and degradation	-					
cg08310,360,02tuscproteinCarbon source transport and metabolismcg08320,480,00tusFtusF, ABC transporter, membrane spanning protein, trehalose uptake systemCarbon source transport and metabolismcg08330,420,00tusFtusF, ABC transporter, membrane protein, involved in trehalose uptake systemCarbon source transport and metabolismcg08330,420,00tusEtusE, bacterial extracellular solute-binding protein, trehalose uptake systemCarbon source transport and metabolismcg08340,340,02tusEtusK, ABC-type sugar transport systems, trehalose uptake systemCarbon source transport and metabolismcg08350,650,00tusK (msiK2)tusK, ABC-type sugar transport systems, trehalose uptake systemCarbon source transport and metabolismcg08370,360,03hypothetical protein cg0837Unknown functioncg08380,220,01putative helicaseDNA replication, recombination, repair, and degradationcg08410,310,02putative DNA helicaseDNA replication, recombination, repair, and degradationcg08430,450,01putative helicaseDNA replication, recombination, repair, and degradationcg08440,450,01type II restriction enzyme, methylase subunitDNA replication, recombination, repair, and degradationcg08450,490,00putative superfamily II DNA/RNA helicase,DNA replication, recombination, repair, and degradation	-		<u> </u>			
cg08320,480,00tuskprotein, trehalose uptake systemCarbon source transport and metabolismcg08330,420,00putative membrane protein, involved in trehalose uptake systemCarbon source transport and metabolismcg08340,340,02tusEtusE, bacterial extracellular solute-binding protein, trehalose uptake systemCarbon source transport and metabolismcg08350,650,00tusK (msiK2)tusK, ABC-type sugar transport systems, trehalose uptake systemCarbon source transport and metabolismcg08370,360,03hypothetical protein cg0837Unknown functioncg08380,220,01putative helicaseDNA replication, recombination, repair, and degradationcg08410,310,02hypothetical protein cg0839Unknown functioncg08430,450,02putative helicaseDNA replication, recombination, repair, and degradationcg08430,450,01putative helicaseDNA replication, recombination, repair, and degradationcg08440,450,01putative helicaseDNA replication, recombination, repair, and degradationcg08450,490,00putative superfamily II DNA/RNA helicase,DNA replication, recombination, repair, and degradation	0	· ·	<u> </u>		protein	
cg08330,420,00trehalose uptake systemCarbon source transport and metabolismcg08340,340,02tusEtusE, bacterial extracellular solute-binding protein, trehalose uptake systemCarbon source transport and metabolismcg08350,650,00tusK (msiK2)tusK, ABC-type sugar transport systems, trehalose uptake systemCarbon source transport and metabolismcg08370,360,00tusK (msiK2)tusK, ABC-type sugar transport systems, trehalose uptake systemCarbon source transport and metabolismcg08370,360,00tusK (msiK2)tusK, ABC-type sugar transport systems, trehalose uptake systemCarbon source transport and metabolismcg08380,220,01hypothetical protein cg0837Unknown functioncg08390,300,01hypothetical protein cg0839Unknown functioncg08410,310,02hypothetical protein cg0841Unknown functioncg08430,450,02putative DNA helicaseDNA replication, recombination, repair, and degradationcg08440,450,01type II restriction enzyme, methylase subunit i type II restriction enzyme, methylaseDNA replication, recombination, repair, and degradationcg08450,490,00putative superfamily II DNA/RNA helicase,DNA replication, recombination, repair, and degradation	cg0832	0,48	0,00	tusF	protein, trehalose uptake system	Carbon source transport and metabolism
cg08340,340,02 <i>lusc</i> protein, trehalose uptake systemCarbon source transport and metabolismcg08350,650,00 <i>tusK (msiK2)</i> tusK, ABC-type sugar transport systems, trehalose uptake systemCarbon source transport and metabolismcg08370,360,03hypothetical protein cg0837Unknown functioncg08380,220,01putative helicaseDNA replication, recombination, repair, and degradationcg08390,300,01hypothetical protein cg0839Unknown functioncg08410,310,02hypothetical protein cg0841Unknown functioncg08420,390,01putative helicaseDNA replication, recombination, repair, and degradationcg08430,450,02putative helicaseDNA replication, recombination, repair, and degradationcg08440,450,01type II restriction enzyme, methylase subunit subunitDNA replication, recombination, repair, and degradationcg08450,490,00putative superfamily II DNA/RNA helicase,DNA replication, recombination, repair, and degradation	cg0833	0,42	0,00		trehalose uptake system	Carbon source transport and metabolism
cg08350,650,00tusk (msik2)trehalose uptake systemCarbon source transport and metabolismcg08370,360,03hypothetical protein cg0837Unknown functioncg08380,220,01putative helicaseDNA replication, recombination, repair, and degradationcg08390,300,01hypothetical protein cg0839Unknown functioncg08410,310,02hypothetical protein cg0841Unknown functioncg08420,390,01putative helicaseDNA replication, recombination, repair, and degradationcg08430,450,02putative helicaseDNA replication, recombination, repair, and degradationcg08440,450,01type II restriction enzyme, methylase subunit l type II restriction enzyme, methylaseDNA replication, recombination, repair, and degradationcg08450,490,00putative superfamily II DNA/RNA helicase,DNA replication, recombination, repair, and degradation	cg0834	0,34	0,02	tusE	protein, trehalose uptake system	Carbon source transport and metabolism
cg08380,220,01putative helicaseDNA replication, recombination, repair, and degradationcg08390,300,01hypothetical protein cg0839Unknown functioncg08410,310,02hypothetical protein cg0841Unknown functioncg08420,390,01putative DNA helicaseDNA replication, recombination, repair, and degradationcg08430,450,02putative helicaseDNA replication, recombination, repair, and degradationcg08440,450,01type II restriction enzyme, methylase subunit subunitDNA replication, recombination, repair, and degradationcg08450,490,00putative superfamily II DNA/RNA helicase,DNA replication, recombination, repair, and degradation	cg0835		<u> </u>	tusK (msiK2)	trehalose uptake system	Carbon source transport and metabolism
cg08380,220,01putative helicaseand degradationcg08390,300,01hypothetical protein cg0839Unknown functioncg08410,310,02hypothetical protein cg0841Unknown functioncg08420,390,01putative DNA helicaseDNA replication, recombination, repair, and degradationcg08430,450,02putative helicaseDNA replication, recombination, repair, and degradationcg08440,450,01type II restriction enzyme, methylase subunit i type II restriction enzyme, methylaseDNA replication, recombination, repair, and degradationcg08450,490,00putative superfamily II DNA/RNA helicase,DNA replication, recombination, repair, and degradation	cg0837	0,36	0,03		nypotnetical protein cg0837	
cg0841 0,31 0,02 hypothetical protein cg0841 Unknown function cg0842 0,39 0,01 putative DNA helicase DNA replication, recombination, repair, and degradation cg0843 0,45 0,02 putative helicase DNA replication, recombination, repair, and degradation cg0843 0,45 0,01 type II restriction enzyme, methylase subunit DNA replication, recombination, repair, and degradation cg0843 0,45 0,01 type II restriction enzyme, methylase subunit DNA replication, recombination, repair, and degradation cg0845 0,49 0.00 putative superfamily II DNA/RNA helicase, DNA replication, recombination, repair, and degradation	cg0838					and degradation
cg0842 0,39 0,01 putative DNA helicase DNA replication, recombination, repair, and degradation cg0843 0,45 0,02 putative helicase DNA replication, recombination, repair, and degradation cg0843 0,45 0,02 putative helicase DNA replication, recombination, repair, and degradation cg0844 0,45 0,01 type II restriction enzyme, methylase subunit DNA replication, recombination, repair, and degradation cg0845 0,49 0,00 putative superfamily II DNA/RNA helicase, DNA replication, recombination, repair, and degradation	-		· ·			
cg0843 0,45 0,02 putative helicase and degradation cg0844 0,45 0,01 type II restriction enzyme, methylase subunit DNA replication, recombination, repair, and degradation cg0845 0,49 0,00 putative superfamily II DNA/RNA helicase, DNA replication, recombination, repair, and degradation			<u> </u>			DNA replication, recombination, repair,
cg0845 0,49 0,00 1 type II restriction enzyme, methylase subunit l type II restriction enzyme, methylase subunit subunit DNA replication, recombination, repair, and degradation	-		<u> </u>			DNA replication, recombination, repair,
subunit and degradation cr0845 0.49 0.00 putative superfamily II DNA/RNA helicase, DNA replication, recombination, repair,	-				type II restriction enzyme, methylase subunit	DNA replication, recombination, repair,
$c\sigma(845) = 10.49 \pm 0.00 \pm 0.00$	-		· ·		subunit	-
	cg0845	0,49	0,00			

cg0847	0,74	0,03	lcpA	putative transcriptional regulator	Cell wall/membrane/envelope biogenesis
cg0848	0,74	0,04	wbbL	wbbL, putative rhamnosyl transferase WbbL	Cell wall/membrane/envelope biogenesis
cg0849	0,59	0,04	manC (rmIA2)	rmIA2, GDP-mannose pyrophosphorylase	Cell wall/membrane/envelope biogenesis
cg0850	0,59	0,00	whcD (whiB2)	whiB2, transcription factor whib	signal transduction mechanisms
cg0851	0,77	0,01		hypothetical protein cg0851	Unknown function
cg0853	0,63	0,02		hypothetical protein cg0853	Unknown function
cg0854	1,48	0,05	manB (pmmA)	pmmA, phosphomannomutase	Carbon source transport and metabolism
cg0859	0,40	0,00		hypothetical protein cg0859	Unknown function
cg0860	0,45	0,01	sahH	sahH, S-adenosyl-L-homocysteine hydrolase	Amino acid transport and metabolism
cg0861	0,35	0,00	tmk	tmk, thymidylate kinase	Nucleotide transport and metabolism
cg0862	0,76	0,04	mtrA	mtrA, response regulator	Signal transduction mechanisms; Cell wall/membrane/envelope biogenesis
cg0864	0,76	0,01	mtrB	mtrB, signal transduction histidine kinase	Signal transduction mechanisms; Cell wall/membrane/envelope biogenesis
cg0871	0,87	0,01		hypothetical protein cg0871	Unknown function
cg0876	1,91	0,01	sigH	sigH, RNA polymerase sigma-70 factor	Transcription including sigma factors, RNA processing and modification
cg0877	2,03	0,00	rshA	putative anti-sigma factor	Transcription including sigma factors, RNA processing and modification
cg0878	4,17	0,01	whcE (whiB1)	whcE, positive role in survival under (heat and oxidative) stress	Signal transduction mechanisms
cg0879	2,73	0,00		membrane protein	Unknown function
cg0880	1,55	0,01		secreted protein	Unknown function
cg0881	1,57	0,02	rhIE	rhlE, probable ATP-dependent RNA helicase protein	Transcription including sigma factors, RNA processing and modification
cg0882	1,13	0,00		hypothetical protein cg0882	Unknown function
cg0885	0,40	0,00		helicase, UvrD/Rep family	General function prediction only
-				probable DNA helicase II protein probable	
cg0886	0,39	0,00		DNA helicase II protein	General function prediction only
cg0887	0,41	0,01	cglK	cglK, major potassium uptake system	Inorganic ion transport, metabolism, and storage
cg0888	0,51	0,02		NTP pyrophosphohydrolase	General function prediction only
cg0889	0,48	0,00		putative DNA helicase RecQ	DNA replication, recombination, repair, and degradation
cg0892	3,30	0,01		hypothetical protein cg0892	Unknown function
cg0894	0,73	0,01		conserved hypothetical protein, possibly secreted	Unknown function
cg0895	0,63	0,02		hypothetical protein cg0895	Unknown function
cg0896	1,24	0,05		hypothetical protein cg0896	Unknown function
cg0897	1,74	0,01	pdxR	pdxR, pyridoxine biosynthesis transcriptional regulator, aminotransferase	Signal transduction mechanisms
cg0898	0,85	0,01	pdxS	pdxS, pyridoxine biosynthesis enzyme	Coenzyme transport and metabolism
cg0899	0,52	0,00	pdxT	pdxT, pyridoxine biosynthesis enzyme	Coenzyme transport and metabolism
cg0903	0,79	0,01		hypothetical protein cg0903 hypothetical protein cg0903	Unknown function
cg0905	0,77	0,03	psp2	psp2, putative secreted protein	Unknown function
cg0906	1,80	0,00		hypothetical protein cg0906 hypothetical protein cg0906	Unknown function
cg0907	3,02	0,01		hypothetical protein cg0907	Unknown function
cg0908	3,05	0,00		putative secreted protein	Unknown function
cg0909	3,39	0,00		hypothetical protein cg0909 hypothetical protein cg0909	Unknown function
cg0911	1,42	0,02		inositol monophosphatase	Carbon source transport and metabolism
cg0913	1,63	0,02	prfB	prfB, peptide chain release factor 2	Translation, ribosomal structure and biogenesis
cg0918	0,75	0,02		putative uroporphyrin-III C- methyltransferase	Transport and metabolism of further metabolites
	_	<u> </u>		metnyitransierase	Inorganic ion transport, metabolism, and
cg0924	0,29	0,01		secreted siderophore-binding lipoprotein	storage; Transport and metabolism of further metabolites
cg0926	0,45	0,02		siderophore ABC transporter, permease protein	Inorganic ion transport, metabolism, and storage; Transport and metabolism of further metabolites
cg0927	0,38	0,01		siderophore ABC transporter, permease protein	Inorganic ion transport, metabolism, and storage; Transport and metabolism of further metabolites
270038	0,53	0,02		siderophore ABC transporter, ATP-binding protein	Inorganic ion transport, metabolism, and storage; Transport and metabolism of
cg0928				protein	further metabolites

cg0933	2,65	0,02		DNA or RNA helicase of superfamily II DNA or RNA helicase of superfamily II	General function prediction only
cg0936	0,54	0,04	rpf1	rpf1, resuscitation promoting factor	Cell wall/membrane/envelope biogenesis
cg0939	0,67	0,05		secreted protein	Unknown function
cg0944	0,67	0,01		xanthine/uracil permeases family	Nucleotide transport and metabolism
cg0949	0,47	0,00	gltA	gltA, citrate synthase	Central carbon metabolism
cg0950	0,79	0,03	fkpA	fkpA, probable FKBP-type peptidyl-prolyl cis- trans isome	Protein turnover and chaperones
cg0952	0,37	0,00	mctB	putative integral membrane protein	Unknown function
cg0953	0,35	0,00	mctC	mctC, monocarboxylic acid transporter	Carbon source transport and metabolism
cg0957	1,40	0,01	fas-IB	fas-IB, fatty acid synthase fas-IB, fatty acid synthase	Lipid transport and metabolism
cg0958	0,35	0,00		secreted protein	Unknown function
cg0950	0,44	0,00		hypothetical protein predicted by Glimmer	Unknown function
cg0961	0,39	0,00	<u>.</u>	homoserine O-acetyltransferase	Amino acid transport and metabolism
cg0962	3,08	0,01		secreted protein	Unknown function
cg0964	2,04	0,01	mrx1	glutaredoxin or related protein	Transport and metabolism of further
-		· ·		-	metabolites
cg0965	2,33	0,00	folA	folA, dihydrofolate reductase	Coenzyme transport and metabolism
cg0966	2,78	0,00	thyA	thyA, thymidylate synthase	Nucleotide transport and metabolism
cg0967	2,35	0,00	cysQ	cysQ, 3-phosphoadenosine 5-phosphosulfate (PAPS) 3-phosphatase	Amino acid transport and metabolism; Inorganic ion transport, metabolism, and storage
cg0968	0,66	0,01		putative ATP-dependent helicase	General function prediction only
cg0970	2,78	0,01		membrane protein	Unknown function
cg0972	0,74	0,02	cynX	cyanate permease	Inorganic ion transport, metabolism, and storage
cg0973	0,51	0,00	pgi	pgi, glucose-6-phosphate isomerase	Central carbon metabolism
cg0974	0,76	0,03	1	hypothetical protein cg0974	Unknown function
cg0975	1,47	0,05		chorismate mutase	Amino acid transport and metabolism
		<u> </u>			-
cg0976	0,57	0,01	pcrA	pcrA, ATP-dependent helicase PCRA	General function prediction only
cg0977	0,76	0,03		ABC-type transport system, involved in lipoprotein release, permease component ABC-type transport system, involved in lipoprotein release, permease component	Protein secretion
cg0979	1,38	0,00		transcriptional regulator PadR-like family	Signal transduction mechanisms
cg0982	0,49	0,00		membrane protein	Unknown function
cg0983	0,51	0,00	purN	purN, phosphoribosylglycinamide formyltransferase	Nucleotide transport and metabolism
cg0985	0,61	0,01	citE	citE, citryl-CoA lyase beta subunit homolog	Carbon source transport and metabolism
		<u> </u>			Carbon source transport and metabolism
cg0986	0,62	0,00	amtR	amtR, master regulator of nitrogen control	Signal transduction mechanisms
cg0987	0,57	0,03		hypothetical protein cg0987	Unknown function
cg0988	0,47	0,02	rpsR	rpsR, 30S ribosomal protein S18	Translation, ribosomal structure and biogenesis
			rnchi	rpsN, 30S ribosomal protein S14 rpsN, 30S	Translation, ribosomal structure and
cg0989	0,47	0,00	rpsN	ribosomal protein S14	biogenesis
cg0989 cg0990	0,47	0,00	rpsN rpmG	ribosomal protein S14 rpmG, 50S ribosomal protein L33	biogenesis Translation, ribosomal structure and biogenesis
-		<u> </u>			Translation, ribosomal structure and biogenesis Translation, ribosomal structure and
cg0990	0,44	0,00	rpmG	rpmG, 50S ribosomal protein L33 rpmB, 50S ribosomal protein L28 sulfate permease or related transporter (MFS	Translation, ribosomal structure and biogenesis Translation, ribosomal structure and biogenesis Inorganic ion transport, metabolism, and
cg0990 cg0991	0,44	0,00	rpmG rpmB	rpmG, 50S ribosomal protein L33 rpmB, 50S ribosomal protein L28	Translation, ribosomal structure and biogenesis Translation, ribosomal structure and biogenesis Inorganic ion transport, metabolism, and storage Translation, ribosomal structure and
cg0990 cg0991 cg0992	0,44 0,66 0,65	0,00 0,04 0,02	rpmG rpmB sutP	rpmG, 50S ribosomal protein L33 rpmB, 50S ribosomal protein L28 sulfate permease or related transporter (MFS superfamily)	Translation, ribosomal structure and biogenesis Translation, ribosomal structure and biogenesis Inorganic ion transport, metabolism, and storage Translation, ribosomal structure and biogenesis Translation, ribosomal structure and
cg0990 cg0991 cg0992 cg0994 cg0995	0,44 0,66 0,65 0,61	0,00 0,04 0,02 0,01	rpmG rpmB sutP rpmE	rpmG, 50S ribosomal protein L33 rpmB, 50S ribosomal protein L28 sulfate permease or related transporter (MFS superfamily) rpmE, 50S ribosomal protein L31 rpmF, 50S ribosomal protein L32 cgtR2, putative two component response	Translation, ribosomal structure and biogenesis Translation, ribosomal structure and biogenesis Inorganic ion transport, metabolism, and storage Translation, ribosomal structure and biogenesis
cg0990 cg0991 cg0992 cg0994 cg0995 cg0996	0,44 0,66 0,65 0,61 0,61 1,29	0,00 0,04 0,02 0,01 0,00 0,01	rpmG rpmB sutP rpmE rpmF cgtR2	rpmG, 50S ribosomal protein L33 rpmB, 50S ribosomal protein L28 sulfate permease or related transporter (MFS superfamily) rpmE, 50S ribosomal protein L31 rpmF, 50S ribosomal protein L32 cgtR2, putative two component response regulator	Translation, ribosomal structure and biogenesis Translation, ribosomal structure and biogenesis Inorganic ion transport, metabolism, and storage Translation, ribosomal structure and biogenesis Translation, ribosomal structure and biogenesis Signal transduction mechanisms
cg0990 cg0991 cg0992 cg0994 cg0995 cg0996 cg0998	0,44 0,66 0,65 0,61 0,61 1,29 2,24	0,00 0,04 0,02 0,01 0,00 0,01 0,00	rpmG rpmB sutP rpmE rpmF	rpmG, 50S ribosomal protein L33 rpmB, 50S ribosomal protein L28 sulfate permease or related transporter (MFS superfamily) rpmE, 50S ribosomal protein L31 rpmF, 50S ribosomal protein L32 cgtR2, putative two component response regulator trypsin-like serine protease	Translation, ribosomal structure and biogenesis Translation, ribosomal structure and biogenesis Inorganic ion transport, metabolism, and storage Translation, ribosomal structure and biogenesis Translation, ribosomal structure and biogenesis Signal transduction mechanisms Protein turnover and chaperones
cg0990 cg0991 cg0992 cg0994 cg0995 cg0996 cg0998	0,44 0,66 0,65 0,61 0,61 1,29	0,00 0,04 0,02 0,01 0,00 0,01	rpmG rpmB sutP rpmE rpmF cgtR2	rpmG, 50S ribosomal protein L33 rpmB, 50S ribosomal protein L28 sulfate permease or related transporter (MFS superfamily) rpmE, 50S ribosomal protein L31 rpmF, 50S ribosomal protein L32 cgtR2, putative two component response regulator	Translation, ribosomal structure and biogenesis Translation, ribosomal structure and biogenesis Inorganic ion transport, metabolism, and storage Translation, ribosomal structure and biogenesis Translation, ribosomal structure and biogenesis Signal transduction mechanisms Protein turnover and chaperones Unknown function
cg0990 cg0991 cg0992 cg0994	0,44 0,66 0,65 0,61 0,61 1,29 2,24	0,00 0,04 0,02 0,01 0,00 0,01 0,00	rpmG rpmB sutP rpmE rpmF cgtR2	rpmG, 50S ribosomal protein L33 rpmB, 50S ribosomal protein L28 sulfate permease or related transporter (MFS superfamily) rpmE, 50S ribosomal protein L31 rpmF, 50S ribosomal protein L32 cgtR2, putative two component response regulator trypsin-like serine protease hypothetical protein cg1000 mscL, large conductance mechanosensitive channel	Translation, ribosomal structure and biogenesis Translation, ribosomal structure and biogenesis Inorganic ion transport, metabolism, and storage Translation, ribosomal structure and biogenesis Translation, ribosomal structure and biogenesis Signal transduction mechanisms Protein turnover and chaperones
cg0990 cg0991 cg0992 cg0994 cg0995 cg0996 cg0998 cg1000 cg1001	0,44 0,66 0,65 0,61 0,61 2,24 1,48	0,00 0,04 0,02 0,01 0,00 0,01 0,00 0,04	rpmG rpmB sutP rpmE rpmF cgtR2 pepD	rpmG, 50S ribosomal protein L33 rpmB, 50S ribosomal protein L28 sulfate permease or related transporter (MFS superfamily) rpmE, 50S ribosomal protein L31 rpmF, 50S ribosomal protein L32 cgtR2, putative two component response regulator trypsin-like serine protease hypothetical protein cg1000 mscL, large conductance mechanosensitive	Translation, ribosomal structure and biogenesis Translation, ribosomal structure and biogenesis Inorganic ion transport, metabolism, and storage Translation, ribosomal structure and biogenesis Translation, ribosomal structure and biogenesis Signal transduction mechanisms Protein turnover and chaperones Unknown function Carbon source transport and metabolism Inorganic ion transport, metabolism, and
cg0990 cg0991 cg0992 cg0994 cg0995 cg0996 cg0998 cg1000 cg1001 cg1005	0,44 0,66 0,65 0,61 0,61 1,29 2,24 1,48 0,33	0,00 0,04 0,02 0,01 0,00 0,01 0,00 0,04 0,03	rpmG rpmB sutP rpmE rpmF cgtR2 pepD mscL	rpmG, 50S ribosomal protein L33 rpmB, 50S ribosomal protein L28 sulfate permease or related transporter (MFS superfamily) rpmE, 50S ribosomal protein L31 rpmF, 50S ribosomal protein L32 cgtR2, putative two component response regulator trypsin-like serine protease hypothetical protein cg1000 mscL, large conductance mechanosensitive channel moeA2, molybdenum cofactor biosynthesis	Translation, ribosomal structure and biogenesis Translation, ribosomal structure and biogenesis Inorganic ion transport, metabolism, and storage Translation, ribosomal structure and biogenesis Translation, ribosomal structure and biogenesis Signal transduction mechanisms Protein turnover and chaperones Unknown function Carbon source transport and metabolism, and storage
cg0990 cg0991 cg0992 cg0994 cg0995 cg0996 cg0998 cg1000 cg1001 cg1005 cg1006	0,44 0,66 0,65 0,61 1,29 2,24 1,48 0,33 1,21	0,00 0,04 0,02 0,01 0,00 0,01 0,00 0,01 0,00 0,01 0,00 0,01 0,03	rpmG rpmB sutP rpmE rpmF cgtR2 pepD mscL moeA2	rpmG, 50S ribosomal protein L33 rpmB, 50S ribosomal protein L28 sulfate permease or related transporter (MFS superfamily) rpmE, 50S ribosomal protein L31 rpmF, 50S ribosomal protein L32 cgtR2, putative two component response regulator trypsin-like serine protease hypothetical protein cg1000 mscL, large conductance mechanosensitive channel moeA2, molybdenum cofactor biosynthesis protein acetyltransferase	Translation, ribosomal structure and biogenesis Translation, ribosomal structure and biogenesis Inorganic ion transport, metabolism, and storage Translation, ribosomal structure and biogenesis Translation, ribosomal structure and biogenesis Signal transduction mechanisms Protein turnover and chaperones Unknown function Carbon source transport and metabolism Inorganic ion transport, metabolism, and storage Coenzyme transport and metabolism
cg0990 cg0991 cg0992 cg0994 cg0995 cg0996 cg0998 cg1000	0,44 0,66 0,65 0,61 1,29 2,24 1,48 0,33 1,21 1,06	0,00 0,04 0,02 0,01 0,00 0,01 0,00 0,01 0,00 0,01 0,00 0,01 0,00 0,01 0,03 0,01	rpmG rpmB sutP rpmE rpmF cgtR2 pepD mscL moeA2	rpmG, 50S ribosomal protein L33 rpmB, 50S ribosomal protein L28 sulfate permease or related transporter (MFS superfamily) rpmE, 50S ribosomal protein L31 rpmF, 50S ribosomal protein L32 cgtR2, putative two component response regulator trypsin-like serine protease hypothetical protein cg1000 mscL, large conductance mechanosensitive channel moeA2, molybdenum cofactor biosynthesis protein	Translation, ribosomal structure and biogenesis Translation, ribosomal structure and biogenesis Inorganic ion transport, metabolism, and storage Translation, ribosomal structure and biogenesis Translation, ribosomal structure and biogenesis Signal transduction mechanisms Protein turnover and chaperones Unknown function Carbon source transport and metabolism, and storage Coenzyme transport and metabolism General function prediction only

cg1012	2,28	0,03	cdaS	cyclomaltodextrinase cyclomaltodextrinase	Carbon source transport and metabolism
cg1014	0,88	0,00	pmt	pmt, glycosyltransferase	Cell wall/membrane/envelope biogenesis
cg1016	0,25	0,00	betP	betP, glycine betaine transporter	Transport and metabolism of further metabolites
cg1018	0,33	0,00		probable ATP-dependent DNA helicase protein probable ATP-dependent DNA helicase protein	General function prediction only
cg1019	0,80	0,00		predicted metal-dependent hydrolase	General function prediction only
cg1022	1,67	0,04	tnp6a	tnp6a(ISCg6a), transposase	DNA replication, recombination, repair, and degradation
cg1027	1,69	0,02	dld	dld, D-lactate dehydrogenase	Carbon source transport and metabolism; Respiration and oxidative phophorylation
cg1032	1,24	0,04	cadR	bacterial regulatory protein, ArsR family	Signal transduction mechanisms
cg1037	0,27	0,00	rpf2	rpf2, resuscitation promoting factor	Cell wall/membrane/envelope biogenesis
cg1044	1,28	0,04		hypothetical protein cg1044	Unknown function
cg1046	0,38	0,00	ppk2A (ppk2)	ppk2A, polyphosphate kinase	Inorganic ion transport, metabolism, and storage
cg1048	0,69	0,01		haloacid dehalogenase/epoxide hydrolase family	Carbon source transport and metabolism
cg1049	0,42	0,02		enoyl-CoA hydratase	Carbon source transport and metabolism
cg1051	1,40	0,03		hypothetical protein cg1051 hypothetical protein cg1051	Unknown function
cg1055	0,39	0,01	rraA (menG is cg0556)	menG, ribonuclease activity regulator protein RraA menG, ribonuclease activity regulator protein RraA	Transcription including sigma factors, RNA processing and modification
cg1056	0,60	0,04		hypothetical protein cg1056	Unknown function
cg1062	0,48	0,02	urtB	urtB, ABC-type urea uptake system, permease subunit	Transport and metabolism of further metabolites
cg1064	0,67	0,03	urtC	urtC, ABC-type urea uptake system, permease subunit	Transport and metabolism of further metabolites
cg1065	0,34	0,03	urtD	urtD, ABC-type urea uptake system	Transport and metabolism of further metabolites
cg1067	0,85	0,05	pth2	pth2, peptidyl-tRNA hydrolase	Translation, ribosomal structure and biogenesis
cg1068	1,31	0,05		probable oxidoreductase	General function prediction only
cg1069	0,49	0,01	gapB (gapX)	gapX, glyceraldehyde-3-phosphate dehydrogenase	Central carbon metabolism
cg1070	0,69	0,00		hypothetical protein cg1070	Unknown function
cg1072	0,58	0,02	rplY	rplY, 50S ribosomal protein L25	Translation, ribosomal structure and biogenesis
cg1073	5,40	0,00		predicted lactoylglutathione lyase predicted lactoylglutathione lyase	Transport and metabolism of further metabolites
cg1074	0,60	0,00		hypothetical protein cg1074	Unknown function
cg1075	0,54	0,02	prsA	prsA, ribose-phosphate pyrophosphokinase	Amino acid transport and metabolism; Nucleotide transport and metabolism; Coenzyme transport and metabolism
cg1080	2,67	0,01		putative multicopper oxidase putative multicopper oxidase	General function prediction only
cg1081	3,90	0,00		ABC-type multidrug transport system, ATPase component	General function prediction only
cg1082	3,56	0,00		hypothetical protein cg1082	Unknown function
cg1083	3,39	0,00	cgtS10	cgtS10, probable two component sensor kinase	Post-translational modification; Signal transduction mechanisms
cg1084	2,34	0,01	cgtR10	cgtR10, putative two component response regulator	Signal transduction mechanisms
cg1085	0,58	0,01		hypothetical protein cg1085	Unknown function
cg1087	0,72	0,01		hypothetical protein cg1087	Unknown function
cg1088	0,66	0,01		ABC-type multidrug/protein/lipid transport system, ATPase component	General function prediction only
cg1089	0,74	0,01		ABC-type multidrug/protein/lipid transport system, ATPase component	General function prediction only
cg1090	0,32	0,00	ggtB	ggtB, probable gamma- glutamyltranspeptidase precursor PR	Transport and metabolism of further metabolites
cg1094	1,40	0,01	tnp3a	tnp3a(ISCg3a), transposase	DNA replication, recombination, repair, and degradation
cg1095	1,86	0,03		hypothetical protein cg1095 hypothetical protein cg1095 hypothetical protein cg1095 hypothetical protein cg1095 hypothetical protein cg1095	Unknown function
		1			
cg1097	0,82	0,04		hypothetical protein cg1097	Unknown function
------------------	--------------	--------------	------------	--	--
cg1098	1,66	0,00		bacterial regulatory proteins, TetR family	Signal transduction mechanisms
cg1099	1,34	0,00	mfd	mfd, putative transcription-repair coupling factor	Transcription including sigma factors, RNA processing and modification
cg1100	2,13	0,00		ABC transporter transmembrane component	General function prediction only
cg1101	2,73	0,02		ABC-type multidrug/protein/lipid transport system, membrane component	General function prediction only
cg1103	2,33	0,00		hypothetical protein cg1103	Unknown function
cg1104	3,23	0,00		predicted esterase, membrane protein	General function prediction only
cg1105	1,56	0,02	lysl	lysi, L-lysine permease	Amino acid transport and metabolism
cg1107	0,66	0,05	· ·	predicted pyrophosphatase	General function prediction only
cg1108	0,44	0,01	porC	porC, putative secreted protein porC, putative secreted protein	Unknown function
cg1109	0,46	0,01	porB	porB, anion-specific porin precursor	Inorganic ion transport, metabolism, and storage
cg1112	0,61	0,04		septum formation initiator, secreted protein	Cell division, chromosome partitioning
cg1117	0,89	0,04		hypothetical protein cg1117	Unknown function
cg1121	4,64	0,00		permease of the major facilitator superfamily	General function prediction only
cg1122	1,53	0,02		putative secreted protein	Unknown function
cg1123	1,92	0,03	greA	greA, transcription elongation factor GreA	Transcription including sigma factors, RNA processing and modification
cg1125	4,05	0,00		hypothetical protein cg1125	Unknown function
cg1127	1,40	0,02	тса	uncharacterized proteins, LmbE homolog	Transport and metabolism of further metabolites
cg1128	0,77	0,00		similar to ribosomal protein S2	Unknown function
cg1129	1,45	0,03	aroF	aroF, 3-deoxy-7-phosphoheptulonate synthase	Amino acid transport and metabolism
cg1132	0,65	0,05	coaA	coaA, pantothenate kinase	Coenzyme transport and metabolism
cg1135	0,80	0,03	pabC	branched-chain amino acid aminotransferase/4-amino-4- deoxychorismate Iyase	Amino acid transport and metabolism
cg1136	0,55	0,01		hypothetical protein cg1136 hypothetical protein cg1136	Unknown function
cg1139	0,51	0,00		allophanate hydrolase subunit 2	Transport and metabolism of further metabolites
cg1140	0,53	0,00		allophanate hydrolase subunit 1	Transport and metabolism of further metabolites
cg1141	0,61	0,00		hypothetical protein cg1141	Carbon source transport and metabolism
cg1142	0,48	0,00		Na+/proline, Na+/panthothenate symporter Na+/proline, Na+/panthothenate symporter	Amino acid transport and metabolism; Coenzyme transport and metabolism
cg1143	0,76	0,04		putative GntR-family transcriptional regulator	Signal transduction mechanisms
cg1145	5,29	0,00	fumC (fum)	fumC, fumarate hydratase	Central carbon metabolism
cg1147	7,00	0,00	ssul	ssul, FMN-binding protein required for sulfonate and sulfonate ester utilization ssul, FMN-binding protein required for sulfonate and sulfonate ester utilization	Transport and metabolism of further metabolites
cg1150	2,63	0,01		NADPH-dependent FMN reductase NADPH- dependent FMN reductase NADPH- dependent FMN reductase	General function prediction only
cg1151	4,50	0,00	seuA	seuA, monooxygenase for sulfonate ester utilization	Transport and metabolism of further metabolites
cg1152	3,20	0,02	seuB	seuB, monooxygenase for sulfonate ester utilization	Transport and metabolism of further metabolites
cg1153	3,66	0,00	seuC	seuC, monooxygenase for sulfonate ester utilization	Transport and metabolism of further metabolites
cg1156	6,64	0,00	ssuD2	ssuD2, monooxygenase for sulfonate utilization	Transport and metabolism of further metabolites
cg1157	3,08	0,00	fbp	fbp, class II, essential for gluconeogenesis	Central carbon metabolism
cg1158	1,22	0,00		putative secreted protein	Unknown function
cg1160	3,27 2,41	0,00 0,00	хseB	similar to arabinose efflux permease xseB, exodeoxyribonuclease VII small subunit	Unknown function DNA replication, recombination, repair,
cg1162			1		and degradation
cg1162 cg1163	2,81	0,01	xseA	xseA, exodeoxyribonuclease VII large subunit	DNA replication, recombination, repair, and degradation
-		0,01	xseA	xseA, exodeoxyribonuclease VII large subunit hypothetical protein cg1166	DNA replication, recombination, repair, and degradation Unknown function

cg1169	0,32	0,01	metP	Na+-dependent transporters of the SNF family Na+-dependent transporters of the SNF family	Amino acid transport and metabolism
cg1170	0,54	0,01	cmt5	cmt5, corynomycolyl transferase cmt5, corynomycolyl transferase	Cell wall/membrane/envelope biogenesis
cg1172	0,78	0,05		hypothetical protein cg1172	General function prediction only
cg1174	1,40	0,01	arcB	arcB, probable ornithine carbamoyltransferase protein arcB, probable ornithine carbamoyltransferase protein	Amino acid transport and metabolism
cg1178	0,58	0,03	tnp9a	tnp9a(ISCg9a), transposase	DNA replication, recombination, repair, and degradation
cg1182	1,78	0,02		hypothetical protein cg1182	Unknown function
cg1183	1,55	0,02		predicted dinucleotide-utilizing enzyme	Unknown function
cg1184	1,40	0,02	tnp10c	tnp10c(ISCg10a), transposase-fragment	DNA replication, recombination, repair, and degradation
cg1185	1,55	0,04	tnp10b	tnp10b(ISCg10a), transposase-fragment	DNA replication, recombination, repair, and degradation
cg1187	5,59	0,00	tnp10a	tnp10a(ISCg10a), transposase-fragment	DNA replication, recombination, repair, and degradation
cg1189	1,91	0,03	ļ	hypothetical protein cg1189	Unknown function
cg1190	4,28	0,00		hypothetical protein cg1190	Unknown function
cg1191	0,77	0,01		hypothetical protein cg1191	Unknown function
cg1193	0,54	0,02		carboxymuconolactone decarboxylase	Carbon source transport and metabolism
cg1195	1,90	0,01		sulfate permease or related transporter (MFS superfamily)	General function prediction only
cg1197	0,46	0,00		ABC-type transport systems, involved in lipoprotein release, ATPase component	Cell wall/membrane/envelope biogenesis
cg1203	1,90	0,01		Mg-chelatase subunit Chll	Inorganic ion transport, metabolism, and storage
cg1205	2,02	0,00		hypothetical protein cg1205	Unknown function
cg1206	1,86	0,00		PEP phosphonomutase or related enzyme PEP phosphonomutase or related enzyme	Transport and metabolism of further metabolites
cg1208	1,28	0,01		hypothetical protein cg1208	Unknown function
cg1211	1,74	0,02		putative MarR-family transcriptional regulator	Signal transduction mechanisms
cg1213	0,78	0,05	tnp1a	tnp1a(ISCg1a), transposase	DNA replication, recombination, repair, and degradation
cg1215	1,52	0,00	nadC	nadC, quinolinate phosphoribosyltransferase	Coenzyme transport and metabolism
cg1216	1,86	0,01	nadA	nadA, quinolinate synthetase	Coenzyme transport and metabolism
cg1218	4,35	0,01	ndnR	ndnR, transcriptional repressor of NAD de novo biosynthesis genes	Signal transduction mechanisms
cg1219	1,39	0,04		hypothetical protein cg1219	Unknown function
cg1220	2,77	0,00		predicted Zn-dependent hydrolase of the beta-lactamase fold	General function prediction only
cg1221	1,35	0,02		hypothetical protein cg1221	Unknown function
cg1222	1,67	0,00	IpIA	IpIA, lipoate-protein ligase	Coenzyme transport and metabolism
cg1224	6,69	0,00	phnB2	phnB2, similarity to alkylphosphonate uptake operon protein PhnB-Escherichia coli	Transport and metabolism of further metabolites
cg1225	1,80	0,00	benK3 (pcaK)	benK3, putative benzoate transport transmembrane protein	Carbon source transport and metabolism
cg1226	0,36	0,00	pobB (pobA)	pobB, 4-hydroxybenzoate 3-monooxygenase pobB, 4-hydroxybenzoate 3- monooxygenase	Carbon source transport and metabolism
cg1227	3,12	0,00	ykoE	ykoE, substrate-specific component YkoE of thiamin-regulated ECF transporter for hydroxymethylpyrimidine	Coenzyme transport and metabolism
cg1228	1,51	0,00	ykoD	ykoD, duplicated ATPase component YkoD of energizing module of thiamin-regulated ECF transporter for hydroxymethyl ykoD, duplicated ATPase component YkoD of energizing module of thiamin-regulated ECF transporter for hydroxymethyl	Coenzyme transport and metabolism
cg1231	1,76	0,01	chaA	chaA, Ca2+/H+ antiporter	Inorganic ion transport, metabolism, and storage
cg1232	2,20	0,00		hypothetical protein cg1232	Unknown function
cg1233	1,82	0,01		hypothetical protein cg1233	Unknown function
cg1234	1,81	0,02		putative excinuclease ATPase subunit-UvrA- like protein	DNA replication, recombination, repair, and degradation
cg1236	1,26	0,01	tpx (prx)	tpx, thiol peroxidase	Transport and metabolism of further metabolites

cg1237	0,39	0,03		hypothetical protein cg1237	Unknown function
cg1239	0,71	0,03		2-dehydropantoate 2-reductase	Coenzyme transport and metabolism
cg1241	1,24	0,05		hypothetical protein cg1241	Unknown function
cg1242	1,77	0,05		hypothetical protein cg1242	Unknown function
cg1243	2,97	0,00		secreted trypsin-like serine protease, contain C-terminal PDZ domain	General function prediction only
cg1244	2,65	0,02	arsC4	arsC4, arsenate reductase	Inorganic ion transport, metabolism, and storage
cg1245	2,33	0,04		hypothetical protein cg1245	Unknown function
cg1246	3,94	0,01		hypothetical protein cg1246	Unknown function
cg1247	3,95	0,00		putative secreted protein	Unknown function
cg1248	1,52	0,04		GTPase involved in stress response	General function prediction only
cg1249	1,67	0,00	lpqW	lpqW, homologe to Rv1166 lipoprotein required to channel PIM4 into LAM synthesis, cell envelope	Cell wall/membrane/envelope biogenesis
cg1250	1,36	0,04	mshB	mshB, deacetylase	Cell wall/membrane/envelope biogenesis
cg1251	1,44	0,00		hypothetical protein cg1251	Unknown function
cg1252	0,53	0,02	fdxC	fdxC, ferredoxin	Transport and metabolism of further metabolites
cg1253	0,56	0,00	dapC	dapC, N-succinyl-2,6-diaminopimelate aminotransferase	Amino acid transport and metabolism
cg1254	0,63	0,03		hypothetical protein cg1254	Unknown function
cg1255	5,11	0,01		putative HNH endonuclease, conserved	General function prediction only
cg1259	2,34	0,00	dapD2	dapD2, similar to tetrahydrodipicolinate N- succinyltransferase	Amino acid transport and metabolism
cg1261	0,82	0,03		lysine decarboxylase family protein	Amino acid transport and metabolism
cg1264	4,08	0,00		hypothetical protein cg1264	Unknown function
cg1265	5,41	0,00		hypothetical protein cg1265	Unknown function
cg1266	5,75	0,00	rrmA	rrmA, rRNA guanine-N1-methyltransferase	Translation, ribosomal structure and biogenesis
cg1268	0,54	0,00	glgA	glgA, glycogen synthase glgA, glycogen synthase	Carbon source transport and metabolism
cg1269	0,43	0,00	glgC	glgC, ADP-glucose pyrophosphorylase	Carbon source transport and metabolism
cg1271	3,26	0,00	sigE	sigE, RNA polymerase sigma-70 factor sigE, RNA polymerase sigma-70 factor	Transcription including sigma factors, RN/ processing and modification
cg1272	4,85	0,01	cseE	hypothetical protein cg1272	Transcription including sigma factors, RNA processing and modification
cg1273	5,24	0,00	tatB	tatB, sec-independent translocase	Protein secretion
cg1274	1,27	0,02	mrp	mrp, ATPase involved in chromosome partitioning	Cell division, chromosome partitioning
cg1275	2,16	0,01		hypothetical protein cg1275	Unknown function
cg1276	2,89	0,00	mgtE1	mgtE1, Mg/Co/Ni transporter MgtE (contains CBS domain) intracellular	Inorganic ion transport, metabolism, and storage
cg1277	6,31	0,00		hypothetical protein cg1277	Unknown function
cg1278	3,60	0,00		conserved hypothetical secreted protein	Unknown function
cg1280	0,70	0,04	odhA	odhA, 2-oxoglutarate dehydrogenase	Central carbon metabolism
cg1284	2,26	0,00	lipT	lipT, type B carboxylesterase	Lipid transport and metabolism
cg1285	1,40	0,02		hypothetical protein cg1285	Unknown function
cg1286	3,09	0,00		hypothetical protein cg1286	Unknown function
cg1287	0,42	0,01		hypothetical protein cg1287	Unknown function
cg1288	2,83	0,00		putative multidrug efflux permease of the major facilitator superfamily	General function prediction only
cg1290	0,19	0,02	metE	metE, 5- methyltetrahydropteroyltriglutamate homocysteine methyltransferase	Amino acid transport and metabolism
cg1291	8,05	0,00		hypothetical protein cg1291 hypothetical protein cg1291	Unknown function
cg1292	0,34	0,01		flavin-containing monooxygenase 3	General function prediction only
cg1293	0,53	0,01		putative secreted protein	Unknown function
cg1295	2,35	0,01		predicted hydrolase or acyltransferase (alpha/beta hydrolase superfamily)	General function prediction only
cg1300	0,73	0,02	cydB	cydB, cytochrome D terminal oxidase polypeptide subunit	Respiration and oxidative phosphorylation
	0,49	0,02		putative secreted protein	Unknown function
cg1304		0,02	pheP	L-phenylalanine transporter	Amino acid transport and metabolism
cg1304 cg1305		1 0,07	F.1.57		
cg1304 cg1305	0,70				I UNA replication, recomplication repair
-	2,31	0,00		superfamily II DNA and RNA helicase superfamily II DNA and RNA helicase superfamily II DNA and RNA helicase	DNA replication, recombination, repair, and degradation; Transcription including sigma factors, RNA processing and modification

cg1311	0,56	0,01	rolD (catA2)	catA2, catechol 1,2-dioxygenase catA2, catechol 1,2-dioxygenase	Carbon source transport and metabolism
cg1313	0,41	0,02		putative secreted lipoprotein	Unknown function
cg1314	0,30	0,00	putP	putP, proline transport system	Amino acid transport and metabolism
cg1316	1,42	0,03		superfamily II DNA/RNA helicases, SNF2 family	DNA replication, recombination, repair, and degradation; Transcription including sigma factors, RNA processing and modification
cg1317	1,25	0,04		putative 2-oxo acid dehydrogenase	General function prediction only
cg1319	0,56	0,02		ATPase involved in DNA repair	DNA replication, recombination, repair, and degradation
cg1320	0,66	0,01	lipP	lipP, lipase	Lipid transport and metabolism
cg1325	1,64	0,00		putative stress-responsive transcriptional regulator	Signal transduction mechanisms
cg1328	1,97	0,02		putative copper chaperone	Protein turnover and chaperones
cg1329	2,28	0,04	ctpC	ctpC, cation transport ATPase	Inorganic ion transport, metabolism, and storage
cg1333	0,44	0,01	argS	argS, arginyl-tRNA synthetase	Translation, ribosomal structure and biogenesis
cg1334	0,36	0,00	lysA	lysA, diaminopimelate decarboxylase	Amino acid transport and metabolism
cg1335	0,62	0,02		hypothetical protein cg1335	Unknown function
cg1337	3,08	0,01	hom	hom, homoserine dehydrogenase	Amino acid transport and metabolism
cg1338	3,19	0,02	thrB	thrB, homoserine kinase	Amino acid transport and metabolism
cg1341	0,42	0,00	narl	narl, respiratory nitrate reductase 2 gamma chain	Respiration and oxidative phosphorylation
cg1342	0,38	0,00	narJ	narJ, nitrate reductase delta chain	Respiration and oxidative phosphorylation
cg1343	0,48	0,00	narH	narH, probable respiratory nitrate reductase oxidoreduct	Respiration and oxidative phosphorylation
cg1344	0,31	0,01	narG	narG, nitrate reductase 2, alpha subunit	Respiration and oxidative phosphorylation
cg1345	0,55	0,01	narK	narK, putative nitrate/nitrite transporter narK, putative nitrate/nitrite transporter	Inorganic ion transport, metabolism, and storage
cg1346	0,53	0,03	mog	mog, putative molybdopterin biosynthesis MOG protein	Coenzyme transport and metabolism
cg1347	0,66	0,02		secreted phospholipid phosphatase	Cell wall/membrane/envelope biogenesis
cg1349	1,32	0,02		membrane protein containing CBS domain	Unknown function
cg1351	0,71	0,03	moeA3	moeA3, molybdopterin biosynthesis protein	Coenzyme transport and metabolism
cg1352	2,98	0,01	moaA	moaA, molybdenum cofactor biosynthesis protein A	Coenzyme transport and metabolism
cg1354	0,66	0,02	rho	rho, transcription termination factor Rho	Transcription including sigma factors, RNA processing and modification
cg1355	0,58	0,00	prfA	prfA, peptide chain release factor 1	Translation, ribosomal structure and biogenesis
cg1359	0,80	0,01		membrane protein, UDP-N-acetylmuramyl pentapeptide phosphotransferase/UDP-N- acetylglucosamine-1-pho	Cell wall/membrane/envelope biogenesis
cg1360	0,63	0,03		hypothetical protein cg1360	Unknown function
cg1361	1,52	0,01	atpl	hypothetical protein cg1361	Inorganic ion transport, metabolism, and storage
cg1362	0,88	0,00	atpB	atpB, ATP synthase subunit A	Respiration and oxidative phosphorylation
cg1368	0,70	0,03	atpD	atpD, ATP synthase subunit B	Respiration and oxidative phosphorylation
cg1372	0,55	0,02		hypothetical protein cg1372	Unknown function
cg1373	0,34	0,01		glyoxalase/bleomycin resistance/dioxygenase superfamily protein	General function prediction only
cg1375	0,83	0,03		putative thioredoxin	General function prediction only
cg1376	2,20	0,01	ssuD1	ssuD1, alkanesulfonate monoxygenase	Transport and metabolism of further metabolites
cg1377	3,12	0,00	ssuC	ssuC, aliphatic sulfonates transmembrane ABC transporterprotein	Transport and metabolism of further metabolites
cg1379	2,97	0,00	ssuB	ssuB, aliphatic sulfonates ATP-binding ABC transporterprotein	Transport and metabolism of further metabolites
cg1380	2,35	0,01	ssuA	ssuA, aliphatic sulfonate binding protein	Transport and metabolism of further metabolites
cg1381	0,80	0,04	glgB	glgB, glycogen branching enzyme	Carbon source transport and metabolism
cg1383	0,57	0,01		ABC-type molybdenum transport system, ATPase component	Coenzyme transport and metabolism
cg1384	1,63	0,02		putative NUDIX hydrolase	General function prediction only
cg1385	0,77	0,01		SAM-dependent methyltransferase	General function prediction only
cg1386	2,53	0,01	etfB (fixA)	fixA, putative electron transfer flavoprotein, beta subunit fixA, putative electron transfer flavoprotein, beta subunit	Respiration and oxidative phosphorylation

cg1387	2,16	0,02	etfA (fixB)	fixB, putative electron transfer flavoprotein, alpha subunit	Respiration and oxidative phosphorylation
cg1388	1,48	0,03	nifS1	nifS1, probable pyridoxal-phosphate- dependent aminotransferase/cysteine desulfinase	Amino acid transport and metabolism
cg1391	1,28	0,02		uncharacterized protein related to capsule biosynthesis enzyme	General function prediction only
cg1394	1,61	0,01	speE2	putative spermidine synthase putative spermidine synthase	Transport and metabolism of further metabolites
cg1395	1,93	0,01		hypothetical protein cg1395 hypothetical protein cg1395	Unknown function
cg1396	3,37	0,00		hypothetical protein cg1396	Unknown function
cg1397	1,71	0,02	trmU	tRNA (5-methylaminomethyl-2- thiouridylate)-methyltransferase	Translation, ribosomal structure and biogenesis
cg1398	1,27	0,02		hypothetical protein cg1398	Unknown function
cg1399	0,71	0,01		permease of the major facilitator superfamily	General function prediction only
cg1400	0,33	0,00		DNA polymerase III subunit epsilon	DNA replication, recombination, repair, and degradation
cg1404	0,86	0,04	gatA	gatA, glutamyl-tRNA amidotransferase subunit A	Translation, ribosomal structure and biogenesis
cg1409	1,24	0,04	pfkA (pfk)	pfkA, 6-phosphofructokinase	Central carbon metabolism
cg1410	0,68	0,02	rbsR	rbsR, transcriptional repressor of ribose transport	Signal transduction mechanisms
cg1411	0,40	0,01	rbsA	ABC-type sugar (aldose) transport system, ATPase component	Carbon source transport and metabolism
cg1412	0,52	0,01	rbsC	ribose/xylose/arabinose/galactoside ABC- type transport system, permease component	Carbon source transport and metabolism
cg1413	0,43	0,01	rbsB	secreted sugar-binding protein	Carbon source transport and metabolism
cg1414	0,41	0,00	rbsD	uncharacterized component of ribose/xylose transport systems	Carbon source transport and metabolism
cg1417	2,67	0,00	act2	acetyltransferase	General function prediction only
cg1420	1,54	0,00	gatB	gatB, aspartyl/glutamyl-tRNA amidotransferase subunit B	Translation, ribosomal structure and biogenesis
cg1421	2,00	0,00		putative dinucleotide-binding enzyme	General function prediction only
cg1423	2,57	0,00		putative oxidoreductase (related to aryl- alcohol dehydrogenase) putative oxidoreductase (related to aryl-alcohol dehydrogenase)	General function prediction only
cg1426	1,74	0,01	gst	dehydrogenase) putative glutathione S-transferase putative glutathione S-transferase	Transport and metabolism of further metabolites
cg1434	2,22	0,02	yggB (mscCG)	yggB, small-conductance mechanosensitive channel yggB, small-conductance mechanosensitive channel yggB, small- conductance mechanosensitive channel	Amino acid transport and metabolism
cg1444	0,48	0,00		putative flavoprotein oxygenase	General function prediction only
cg1452	1,34	0,00		hypothetical protein cg1452	Unknown function
cg1456	0,77	0,04		predicted signal-transduction protein containing cAMP-binding and CBS domain	Signal transduction mechanisms
cg1457	0,34	0,01	dnaQ2	dnaQ2, DNA polymerase III, epsilon subunit, putative	DNA replication, recombination, repair, and degradation
cg1458	0,49	0,00	odx	odx, oxaloacetate decarboxylase	Central carbon metabolism
cg1459	0,61	0,03		SAM-dependent methyltransferase SAM- dependent methyltransferase SAM- dependent methyltransferase	General function prediction only
cg1464	1,87	0,00		putative transcriptional regulatory protein	Signal transduction mechanisms
cg1465	2,34	0,00		hypothetical protein cg1465	Unknown function
cg1468	0,77	0,02		hypothetical protein cg1468	Unknown function
cg1476	1,56	0,02	thiC	thiC, thiamine biosynthesis protein ThiC	Coenzyme transport and metabolism
cg1478	2,15	0,01		hypothetical protein cg1478 hypothetical protein cg1478	Unknown function
cg1479	0,59	0,00	malP (glgP1)	malP, maltodextrin phosphorylase malP, maltodextrin phosphorylase malP, maltodextrin phosphorylase	Carbon source transport and metabolism
cg1481	2,00	0,01		hypothetical protein cg1481	Unknown function
cg1482	3,39	0,00		Zn-dependent hydrolase, including glyoxylases	General function prediction only
cg1483	2,60	0,01		hypothetical protein cg1483 hypothetical protein cg1483	Unknown function
cg1487	1,50	0,05	leuC	leuC, isopropylmalate isomerase large subunit	Amino acid transport and metabolism
cg1491	0,67	0,03		hypothetical protein cg1491	Unknown function

cg1492	0,46	0,02	gpsA	gpsA, NAD(P)H-dependent glycerol-3- phosphate dehydrogenase	Central carbon metabolism
cg1493	0,71	0,04	ddl	ddl, D-alanylalanine synthetase	Cell wall/membrane/envelope biogenesis
cg1497	0,83	0,01		predicted kinase related to dihydroxyacetone kinase	General function prediction only
cg1498	0,43	0,02		putative RecG-like helicase	DNA replication, recombination, repair, and degradation
cg1502	0,90	0,02		ABC-type polar amino acid transport system, ATPase component	Amino acid transport and metabolism
cg1505	1,34	0,02		putative secreted protein	Unknown function
cg1508	0,67	0,04		hypothetical protein predicted by Glimmer	Prophage genes
cg1511	2,40	0,01		hypothetical protein cg1511	Prophage genes
cg1512	2,61	0,00		hypothetical protein cg1512	Prophage genes
cg1515	0,67	0,01	tnp24a	tnp24a(ISCg24a), transposase-fragment	Prophage genes, DNA replication, recombination and repair
cg1516	0,67	0,04		hypothetical protein cg1516 hypothetical protein cg1516	Prophage genes
cg1517	0,59	0,03		putative secreted protein	Prophage genes
cg1519	1,33	0,02		hypothetical protein cg1519	Prophage genes
cg1520	0,70	0,02		putative secreted protein putative secreted	Prophage genes
cg1524	0,79	0,04		hypothetical protein cg1524	Prophage genes
-		1 ´	l		DNA replication, recombination, repair,
cg1525	1,45	0,00	polA	polA, DNA polymerase l	and degradation
cg1527	1,20	0,02		hypothetical protein cg1527	Signal transduction mechanisms
-					Translation, ribosomal structure and
cg1531	0,62	0,02	rpsA	rpsA, 30S ribosomal protein S1	biogenesis
				ptsG, glucose-specific enzyme II BC	Carbon source transport and metabolism
cg1537	0,32	0,00	ptsG	component of PTS ptsG, glucose-specific	signal transduction mechanisms
				enzyme II BC component of PTS	
cg1540	0,56	0,04		putative secreted protein	Unknown function
cg1542	1,30	0,04		hypothetical protein cg1542	Unknown function
cg1546	1,16	0,04	rbsK1	rbsK1, putative ribokinase protein	Nucleotide transport and metabolism
cg1548	0,55	0,01		hypothetical protein cg1548	Unknown function
cg1549	0,61	0,00		hypothetical protein cg1549	Unknown function
cg1550	2,58	0,00	uvrB	uvrB, excinuclease ABC subunit B	DNA replication, recombination, repair, and degradation
cg1551	1,49	0,00	uspA1	uspA1, universal stress protein UspA and related nucleotide-binding proteins	DNA replication, recombination, repair, and degradation
cg1555	2,45	0,00		superfamily I DNA or RNA helicase	DNA replication, recombination, repair, and degradation; Transcription including sigma factors, RNA processing and modification
cg1556	2,32	0,01		hypothetical protein cg1556	Unknown function
cg1560	1,99	0,00	uvrA	uvrA, excinuclease ABC subunit A	DNA replication, recombination, repair, and degradation
cg1563	0,52	0,05	infC	infC, translation initiation factor IF3 protein	Translation, ribosomal structure and biogenesis
cg1564	0,46	0,04	rpml	rpml, 50S ribosomal protein L35	Translation, ribosomal structure and biogenesis
cg1565	0,37	0,02	rplT	rplT, 50S ribosomal protein L20	Translation, ribosomal structure and biogenesis
cg1567	1,66	0,01		hypothetical protein cg1567	Unknown function
cg1568	2,04	0,01	ugpA	ugpA, sn-glycerol-3-phosphate transport system permease protein	Carbon source transport and metabolism
cg1570	2,13	0,00	ugpB	ugpB, secreted sn-glycerol-3-phosphate- binding protein	Carbon source transport and metabolism
cg1572	0,54	0,03	glpQ2	glpQ2, putative glycerophosphoryl diester phosphodiesterase	Carbon source transport and metabolism
cg1574	2,77	0,02	pheS	pheS, phenylalanyl-tRNA synthetase alpha subunit	Translation, ribosomal structure and biogenesis
cg1577	0,53	0,05		putative secreted hydrolase	General function prediction only
cg1578	0,40	0,00		acyltransferase family, membrane protein	General function prediction only
cg1579	0,62	0,02		putative secreted protein putative secreted	Unknown function
cg1580	4,17	0,02	argC	argC, N-acetyl-gamma-glutamyl-phosphate reductase	Amino acid transport and metabolism
cg1589	1,65	0,04		putative secreted protein	Unknown function
	- ·	<u> </u>		1	
cg1590	2,05	0,00		secreted Mg-chelatase subunit	Inorganic ion transport, metabolism, and

cg1591	2,27	0,01		putative secreted protein	Unknown function
cg1592	3,15	0,01		hypothetical protein cg1592	Unknown function
cg1594	2,54	0,01	tyrS	tyrS, tyrosyl-tRNA synthetase	Translation, ribosomal structure and biogenesis
cg1597	1,50	0,01		hypothetical protein cg1597	Unknown function
cg1598	1,30	0,01		sugar phosphatase of the HAD superfamily	General function prediction only
Cg1338	1,24	0,03			DNA replication, recombination, repair,
cg1602	10,96	0,00	recN	recN, DNA repair protein RecN	and degradation
cg1603	0,49	0,00		hypothetical protein cg1603	Unknown function
-		1		Ortholog of M, tub, outer membrane protein,	
cg1604	0,61	0,00		porin	General function prediction only
cg1606	3,66	0,00	pyrG	pyrG, CTP synthetase	Nucleotide transport and metabolism
cg1607	1,27	0,03		NTP pyrophosphohydrolase including oxidative damage repair enzyme	DNA replication, recombination, repair, and degradation
cg1612	0,15	0,01		acetyltransferase acetyltransferase	General function prediction only
1615	0.55	0.02		16S rRNA uridine-516 pseudouridylate	Translation, ribosomal structure and
cg1615	0,55	0,02	rluA	synthase or related pseudouridylate synthase	biogenesis
cg1616	0,49	0,01	cmk	cmk, cytidylate kinase	Nucleotide transport and metabolism
071617	0.64	0.01		GTP-binding protein EngA GTP-binding	General function prediction only
cg1617	0,64	0,01		protein EngA	General function prediction only
cg1618	3,55	0,00		hypothetical protein cg1618	Unknown function
cg1619	2,93	0,00		putativo DNA gyrasa inhibitar	Transcription including sigma factors, RNA
CB1019	2,93	0,00		putative DNA gyrase inhibitor	processing and modification
cg1621	0,57	0,03		ABC-type multidrug/protein/lipid transport system, ATPase component	General function prediction only
cg1622	0,56	0,01		ABC-type multidrug/protein/lipid transport	General function prediction only
				system, ATPase component	
cg1626	8,48	0,00		hypothetical protein cg1626	Unknown function
cg1628	15,59	0,00		hydrolase of the alpha/beta superfamily	General function prediction only
cg1632	1,54	0,00		hypothetical protein cg1632	Unknown function
cg1633	0,57	0,01		predicted transcriptional regulator	Signal transduction mechanisms
cg1638	0,67	0,01		hypothetical protein cg1638	Unknown function
cg1639	0,72	0,02		membrane protein containing CBS domain	Unknown function
cg1643	2,76	0,00	gnd	gnd, 6-phosphogluconate dehydrogenase	Central carbon metabolism
cg1645	0,67	0,01		SAM-dependent methyltransferase	General function prediction only
cg1646	3,05	0,00		ABC-type multidrug transport system, ATPase component	General function prediction only
cg1647	4,37	0,00		ABC-type multidrug transport system,	General function prediction only
		· ·		permease component	
cg1653	0,62	0,01	pctH (pgp1)	pgp1, putative phosphoglycolate phosphatase	Transport and metabolism of further metabolites
cg1655	0,67	0,00	thiM	thiM, hydroxyethylthiazole kinase thiM, hydroxyethylthiazole kinase	Coenzyme transport and metabolism
cg1656	0,67	0,01	ndh	ndh, NADH dehydrogenase ndh, NADH	Respiration and oxidative phosphorylation
cg1050	0,07	0,01	nun	dehydrogenase ufaA, putative cyclopropane fatty acid	
cg1657	0,73	0,03	ufaA	synthase (cyclopropane-fatty-acyl- phospholipid synthase) ufaA, putative cyclopropane fatty acid synthase (cyclopropane-fatty-acyl-phospholipid synthase)	Cell wall/membrane/envelope biogenesis
cg1658	1,60	0,01		permease of the major facilitator superfamily permease of the major facilitator superfamily	General function prediction only
cg1659	2,65	0,01	gpt	gpt, purine phosphoribosyltransferase gpt, purine phosphoribosyltransferase gpt, purine phosphoribosyltransferase	Nucleotide transport and metabolism
cg1662	3,11	0,00		putative secreted protein	Unknown function
cg1665	0,47	0,00		putative secreted protein putative secreted protein	Unknown function
cg1668	1,93	0,02		hypothetical protein cg1668	Unknown function
cg1669	2,78	0,00		putative secreted protein	Unknown function
cg1670	2,24	0,00		hypothetical protein cg1670	Unknown function
cg1671	3,58	0,00		putative membrane-associated GTPase	Unknown function
cg1672	0,74	0,00	ppmC (ppm1)	ppm1, polyprenyl monophosphomannose	Cell wall/membrane/envelope biogenesis
cg1673	2,54	0,01	ppmN (ppm2)	synthase apolipoprotein N-acyltransferase, ortholog of	Cell wall/membrane/envelope biogenesis
			[[[[[[[[[[[[[[[[[[[mycobacterium MSMEG_3860	
cg1675	2,74	0,00		hypothetical protein cg1675	Unknown function
cg1676	2,17	0,00	lip3	lip, putative lipase	Lipid transport and metabolism

cg1678	2,08	0,02	cobL	cobL, precorrin-6Y C5,15-methyltransferase (decarboxylating)	Coenzyme transport and metabolism
cg1680	0,53	0,00		hypothetical protein cg1680	General function prediction only
cg1681	0,50	0,00	pepE (pepQ?)	pepE, proline dipeptidase	Protein turnover and chaperones
cg1682	1,57	0,04		trypsin-like serine protease	Protein turnover and chaperones
cg1683	1,38	0,03		superfamily II DNA and RNA helicase	General function prediction only
cg1685	1,88	0,05	tatA	tatA, twin argininte translocase protein A	Protein secretion
cg1688	0,68	0,02	pafA (pafA2)	pafA, proteasome accessory factor A, pupylation machinery	Post-translational modification
cg1691	1,45	0,01	arc (mpa)	arc, AAA+ ATPase ARC, pupylation machinery	Post-translational modification; Protein turnover and chaperones
cg1693	2,12	0,01	рерС	pepC, putative aminopeptidase 2	Protein turnover and chaperones
cg1694	0,46	0,01	recB	recB, RecB family exonuclease	DNA replication, recombination, repair, and degradation
cg1695	0,49	0,00		putative plasmid maintenance system antidote protein	General function prediction only
cg1696	2,68	0,02		permease of the major facilitator superfamily permease of the major facilitator superfamily	General function prediction only
cg1697	3,25	0,00	aspA	aspA, aspartate ammonia-lyase (aspartase)	Amino acid transport and metabolism
cg1698	6,21	0,00	hisG	hisG, ATP phosphoribosyltransferase	Amino acid transport and metabolism
cg1699	6,41	0,00	hisE	hisE, phosphoribosyl-ATP pyrophosphatase	Amino acid transport and metabolism
cg1700	1,97	0,02		putative phosphatase/phosphohexomutase	General function prediction only
cg1700	3,56	0,01	metH	metH, homocysteine methyltransferase	Amino acid transport and metabolism
cg1701	2,15	0,01		hypothetical protein cg1702	Unknown function
cg1706	0,77	0,02	arsC1	arsC1, arsenate reductase	Inorganic ion transport, metabolism, and storage
cg1709	1,97	0,01	mshC	mshC, ligase, cysteinyl-tRNA synthetase mshC, ligase, cysteinyl-tRNA synthetase	Transport and metabolism of further metabolites
cg1710	1,71	0,01	uppP (bacA)	uppP, undecaprenyl pyrophosphate phosphatase	Cell wall/membrane/envelope biogenesis
cg1712	2,70	0,00	lppL	lppL, secreted lipoprotein	Cell wall/membrane/envelope biogenesis
cg1713	1,99	0,00	pyrD	pyrD, dihydroorotate dehydrogenase	Nucleotide transport and metabolism
cg1715	0,55	0,03		hypothetical protein cg1715 hypothetical protein cg1715	Unknown function
cg1716	0,51	0,03	tnp16b	tnp16b(ISCg16b), transposase tnp16b(ISCg16b), transposase	DNA replication, recombination, repair, and degradation
cg1717	0,73	0,00		hypothetical protein cg1717	Unknown function
cg1719	1,23	0,02	tetB	tetB, ABC-type multidrug/protein/lipid transport system, ATPase component	Transport and metabolism of further metabolites
cg1722	7,23	0,00	act3	N-acetylglutamate synthase activity, complements arginine-auxotrophic argJ strain	Amino acid transport and metabolism
cg1724	0,31	0,00	meaB	meaB, accessory protein of methylmalonylCoA mutase	Amino acid transport and metabolism; Lipid transport and metabolism
cg1725	0,26	0,00	mutA (mcmB)	mutA, methylmalonyl-CoA mutase, subunit	Amino acid transport and metabolism; Lipid transport and metabolism
cg1726	0,27	0,01	mutB (mcmA)	mutB, methylmalonyl-CoA mutase, small subunit	Amino acid transport and metabolism; Lipid transport and metabolism
cg1728	0,87	0,03		hypothetical protein cg1728	Unknown function
cg1730	3,83	0,01		secreted protease subunit, stomatin/prohibitin homolog	Protein turnover and chaperones
cg1731	2,68	0,00		membrane protein implicated in regulation of membrane protease activity	Protein turnover and chaperones
cg1732	1,48	0,02		hypothetical protein cg1732	Unknown function
cg1734	3,36	0,00	hemH	hemH, ferrochelatase precursor	Transport and metabolism of further metabolites
cg1735	0,29	0,01		secreted cell wall-associated hydrolase (invasion-associated protein)	Cell wall/membrane/envelope biogenesis
cg1736	0,63	0,00		hypothetical protein cg1736 hypothetical protein cg1736	Unknown function
cg1737	0,52	0,01	acn	acn, aconitate hydratase	Central carbon metabolism
cg1738	0,82	0,04	acnR	acnR, transcriptional regulator, represses aconitase	Signal transduction mechanisms
cg1739	2,55	0,02	gat	glutamine amidotransferase	Amino acid transport and metabolism; Nucleotide transport and metabolism; Coenzyme transport and metabolism
cg1740	1,28	0,02		putative nucleoside-diphosphate-sugar epimerase	Nucleotide transport and metabolism
Cg1740				hypothetical protein cg1741	

cg1742	0,66	0,01		hypothetical protein cg1742	Unknown function
cg1743	0,45	0,00		hypothetical protein cg1743	Unknown function
cg1744	1,61	0,00	pacL	pacL, cation-transporting ATPase	Inorganic ion transport, metabolism, and storage
cg1750	0,66	0,02		hypothetical protein cg1750	Prophage genes
cg1753	2,25	0,00		ATPase component of ABC transporters with duplicated ATPase domains	General function prediction only
cg1758	1,98	0,00		hypothetical protein cg1758	Unknown function
cg1762	1,52	0,05	sufC	sufC, Fe-S cluster assembly ATPase	Coenzyme transport and metabolism
cg1763	1,82	0,04	sufD	sufD, Fe-S cluster assembly membrane protein	Coenzyme transport and metabolism
cg1765	1,91	0,02	sufR	sufR, transcriptional regulator of suf operon sufR, transcriptional regulator of suf operon	Signal transduction mechanisms
cg1766	1,88	0,01	mptB	mptB, Mannosyltransferase	Cell wall/membrane/envelope biogenesis
cg1767	1,23	0,05		ABC-type multidrug transport system, ATPase component	General function prediction only
cg1768	1,67	0,01		ABC-type multidrug transport system, permease component	General function prediction only
cg1769	6,28	0,01	ctaA	ctaA, cytochrome oxidase assembly protein	Protein turnover and chaperones
cg1773	2,82	0,00	ctaB	ctaB, hypothetical protein cg1773 ctaB, hypothetical protein cg1773	Protein turnover and chaperones
cg1779	0,73	0,02	орсА	opcA, putative subunit of glucose-6-P dehydrogenase	Central carbon metabolism
cg1780	0,74	0,02	pgi (devB)	devB, 6-phosphogluconolactonase	Central carbon metabolism
cg1781	0,63	0,05	soxA	soxA, sarcosine oxidase-fragment	Carbon source transport and metabolism
cg1782	0,26	0,00	tnp13b	tnp13b(ISCg13b), transposase	DNA replication, recombination, repair, and degradation
cg1783	0,70	0,05	soxA	soxA, sarcosine oxidase-N-terminal fragment	Carbon source transport and metabolism
cg1785	1,67	0,03	amtA (amt)	amt, high-affinity ammonia permease	Inorganic ion transport, metabolism, and storage
cg1786	3,14	0,00	secG	secG, protein-export membrane protein	Protein secretion
cg1790	1,36	0,02	pgk	pgk, phosphoglycerate kinase	Central carbon metabolism
cg1792	2,61	0,01		putative transcriptional regulator-WhiA homolog	Signal transduction mechanisms
cg1793	2,65	0,01		hypothetical protein cg1793	Unknown function
cg1794	2,31	0,00		hypothetical protein cg1794	General function prediction only
cg1795	1,57	0,00	uvrC	uvrC, excinuclease ABC subunit C	DNA replication, recombination, repair, and degradation
cg1799	1,60	0,03	ribC	ribC, riboflavin synthase subunit alpha	Coenzyme transport and metabolism
cg1800	1,53	0,02	ribG	ribG, putative bifunctional riboflavin-specific deaminase/reductase	Coenzyme transport and metabolism
cg1801	1,37	0,02	rpe	rpe, ribulose-phosphate 3-epimerase	Central carbon metabolism
cg1802	1,46	0,00	fmu	fmu, putative 16S rRNA m(5)C 967 methyltransferase	Translation, ribosomal structure and biogenesis
cg1803	1,33	0,00	fmt	fmt, methionyl-tRNA formyltransferase	Translation, ribosomal structure and biogenesis
cg1804	2,01	0,00	def2	def, peptide deformylase	Post-translational modification
cg1805	0,89	0,04	priA	priA, primosome assembly protein PriA	Transcription including sigma factors, RNA processing and modification
cg1806	1,66	0,04	metK	metK, S-adenosylmethionine synthetase	Amino acid transport and metabolism
cg1807	0,74	0,01	dfp	dfp, phosphopantothenoylcysteine synthase/decarboxylase	Coenzyme transport and metabolism
	1,21	0,02	#NV	hypothetical protein predicted by Glimmer	#NV
cg1808	1,21	0,02			
	1,69	0,02		DNA-directed RNA polymerase omega subunit	Transcription including sigma factors, RNA processing and modification
cg1809			pyrF	, , , <u>,</u>	
cg1809 cg1812	1,69	0,05	pyrF carB	subunit	processing and modification Nucleotide transport and metabolism Amino acid transport and metabolism; Nucleotide transport and metabolism;
cg1809 cg1812 cg1813	1,69 0,42	0,05		subunit pyrF, orotidine 5-phosphate decarboxylase carB, carbamoyl-phosphate synthase large subunit nucleoside-diphosphate sugar epimerase	Nucleotide transport and metabolism Amino acid transport and metabolism;
cg1809 cg1812 cg1813 cg1819	1,69 0,42 0,52 1,57	0,05 0,00 0,04 0,00		subunit pyrF, orotidine 5-phosphate decarboxylase carB, carbamoyl-phosphate synthase large subunit nucleoside-diphosphate sugar epimerase (SuIA family)	processing and modification Nucleotide transport and metabolism Amino acid transport and metabolism; Nucleotide transport and metabolism; Coenzyme transport and metabolism Nucleotide transport and metabolism
cg1809 cg1812 cg1813 cg1819 cg1821	1,69 0,42 0,52 1,57 1,56	0,05 0,00 0,04 0,00 0,00		subunit pyrF, orotidine 5-phosphate decarboxylase carB, carbamoyl-phosphate synthase large subunit nucleoside-diphosphate sugar epimerase (SulA family) hypothetical protein cg1821	processing and modification Nucleotide transport and metabolism Amino acid transport and metabolism; Nucleotide transport and metabolism; Coenzyme transport and metabolism Nucleotide transport and metabolism Unknown function
cg1809 cg1812 cg1813 cg1819 cg1821 cg1822	1,69 0,42 0,52 1,57 1,56 1,56	0,05 0,00 0,04 0,00 0,02 0,01		subunit pyrF, orotidine 5-phosphate decarboxylase carB, carbamoyl-phosphate synthase large subunit nucleoside-diphosphate sugar epimerase (SulA family) hypothetical protein cg1821 hypothetical protein cg1822	processing and modification Nucleotide transport and metabolism Amino acid transport and metabolism; Nucleotide transport and metabolism; Coenzyme transport and metabolism Nucleotide transport and metabolism Unknown function Unknown function
cg1808 cg1809 cg1812 cg1813 cg1819 cg1821 cg1822 cg1823 cg1824	1,69 0,42 0,52 1,57 1,56	0,05 0,00 0,04 0,00 0,00		subunit pyrF, orotidine 5-phosphate decarboxylase carB, carbamoyl-phosphate synthase large subunit nucleoside-diphosphate sugar epimerase (SulA family) hypothetical protein cg1821 hypothetical protein cg1822 hypothetical protein cg1823 nusB, transcription antitermination protein NusB nusB, transcription antitermination	processing and modification Nucleotide transport and metabolism Amino acid transport and metabolism; Nucleotide transport and metabolism; Coenzyme transport and metabolism Nucleotide transport and metabolism Unknown function Unknown function
cg1809 cg1812 cg1813 cg1819 cg1821 cg1822 cg1823	1,69 0,42 0,52 1,57 1,56 1,56 1,25	0,05 0,00 0,04 0,00 0,02 0,01 0,05	carB	subunit pyrF, orotidine 5-phosphate decarboxylase carB, carbamoyl-phosphate synthase large subunit nucleoside-diphosphate sugar epimerase (SulA family) hypothetical protein cg1821 hypothetical protein cg1822 hypothetical protein cg1823 nusB, transcription antitermination protein	processing and modification Nucleotide transport and metabolism Amino acid transport and metabolism; Nucleotide transport and metabolism; Coenzyme transport and metabolism Nucleotide transport and metabolism Unknown function Unknown function Unknown function Transcription including sigma factors, RNA

cg1829	1,57	0,01	aroC	aroC, chorismate synthase	Amino acid transport and metabolism
cg1831	1,06	0,05		bacterial regulatory protein, ArsR family	Signal transduction mechanisms
cg1833	1,21	0,04		secreted substrate-binding lipoprotein	Inorganic ion transport, metabolism, and storage; Transport and metabolism of further metabolites
cg1834	0,48	0,02		ATP-binding protein of ABC transporter	Inorganic ion transport, metabolism, and storage; Transport and metabolism of further metabolites
cg1835	0,34	0,02	aroE3	aroE3, shikimate 5-dehydrogenase	Amino acid transport and metabolism
cg1836	0,34	0,00		secreted solute-binding protein, aminodeoxychorismate lyase-like	General function prediction only
cg1837	0,55	0,04		holliday junction resolvase-like protein	DNA replication, recombination, repair, and degradation
cg1838	0,60	0,00	alaS	alaS, alanyl-tRNA synthetase	Translation, ribosomal structure and biogenesis
cg1839	1,18	0,04		uncharacterized ATPase related to the helicase subunit of the holliday junction resolvase	DNA replication, recombination, repair, and degradation
cg1841	1,48	0,00	aspS	aspS, aspartyl-tRNA synthetase aspS, aspartyl-tRNA synthetase	Translation, ribosomal structure and biogenesis
cg1844	0,49	0,00		membrane protein	Unknown function
cg1848	1,63	0,00		coenzyme F420-dependent N5,N10- methylene tetrahydromethanopterin reductase or related flavin-depende coenzyme F420-dependent N5,N10- methylene tetrahydromethanopterin reductase or related flavin-depende	Coenzyme transport and metabolism
cg1849	1,50	0,03		hypothetical protein cg1849	Unknown function
cg1852	2,66	0,01	sdaA	sdaA, serine deaminase sdaA, serine deaminase	Amino acid transport and metabolism
cg1855	1,35	0,02	hisS	hisS, histidyl-tRNA synthetase	Translation, ribosomal structure and biogenesis
cg1856	2,55	0,00		Zn-dependent hydrolase Zn-dependent hydrolase	General function prediction only
cg1857	0,65	0,02	рріВ	ppiB, peptidyl-prolyl cis-trans isomerase ppiB, peptidyl-prolyl cis-trans isomerase	Protein turnover and chaperones
cg1859	1,44	0,01		putative secreted protein	Unknown function
cg1860	2,24	0,00		hypothetical protein cg1860	Unknown function
cg1861	0,54	0,03	rel	rel, ppGpp synthetase, ppGpp pyrophosphorylase	Signal transduction mechanisms
cg1862	0,69	0,05	apt	apt, adenine phosphoribosyltransferase	Nucleotide transport and metabolism
cg1865	0,70	0,00	secF	secF, protein export protein SecF secF, protein export protein SecF secF, protein export protein SecF	Protein secretion
cg1867	0,64	0,03	secD	secD, protein export protein SecD secD, protein export protein SecD secD, protein export protein SecD	Protein secretion
cg1869	0,74	0,00	ruvB	ruvB, holliday junction DNA helicase RuvB	DNA replication, recombination, repair, and degradation
cg1870	0,64	0,01	ruvA	ruvA, holliday junction DNA helicase motor protein	DNA replication, recombination, repair, and degradation
cg1872	0,94	0,04		hypothetical protein cg1872	Unknown function
cg1876	1,13	0,02		glycosyl transferase glycosyl transferase	General function prediction only
cg1878	0,81	0,03	pgsA1	pgsA1, phosphatidylglycerophosphate synthase pgsA1, phosphatidylglycerophosphate synthase pgsA1, phosphatidylglycerophosphate synthase pgsA1, phosphatidylglycerophosphate synthase	Cell wall/membrane/envelope biogenesis
cg1891	2,12	0,02	alpA	hypothetical protein cg1891	Prophage genes
cg1893	4,49	0,00	act4	acetyltransferase	Prophage genes
cg1894	0,49	0,01		hypothetical protein cg1894	Prophage genes
cg1896	1,79	0,00		putative secreted protein	Prophage genes
cg1897	2,90	0,00		putative secreted protein	Prophage genes
cg1898 cg1899	1,53 2,92	0,02		hypothetical protein cg1898 hypothetical protein cg1899	Prophage genes Prophage genes
cg1900	1,60	0,01		hypothetical protein cg1999	Prophage genes
cg1901	3,62	0,00		hypothetical protein cg1901	Prophage genes
-	4,13	0,01		putative secreted protein	Prophage genes
cg1902				ABC-type multidrug transport system, ATPase	

	1.00				
cg1904	1,96	0,01		hypothetical protein cg1904	Prophage genes
cg1905	0,68	0,02		hypothetical protein cg1905 hypothetical protein cg1905	Prophage genes
cg1909	1,52	0,00		hypothetical protein cg1909	Prophage genes
cg1912	1,53	0,00		hypothetical protein cg1912	Prophage genes
CGIJIZ	1,55	0,00		hypothetical protein cg1913 hypothetical	
cg1913	1,48	0,01			Prophage genes
	0.54			protein cg1913 hypothetical protein cg1913	
cg1914	3,51	0,03		hypothetical protein predicted by Glimmer	Prophage genes
cg1915	2,85	0,02		hypothetical protein cg1915	Prophage genes
cg1916	2,24	0,02		hypothetical protein cg1916	Prophage genes
cg1918	1,70	0,04		putative secreted protein	Prophage genes
cg1919	2,94	0,02		hypothetical protein cg1919	Prophage genes
cg1920	3,09	0,02		hypothetical protein cg1920	Prophage genes
cg1921	3,15	0,01		hypothetical protein cg1921	Prophage genes
cg1921	4,47	0,01		hypothetical protein cg1922	
-					Prophage genes
cg1923	3,25	0,01		hypothetical protein cg1923	Prophage genes
cg1924	2,55	0,01		hypothetical protein cg1924	Prophage genes
cg1928	1,80	0,05		hypothetical protein cg1928	Prophage genes
cg1931	1,26	0,01		putative secreted protein	Prophage genes
cg1934	4,49	0,01		hypothetical protein cg1934	Prophage genes
cg1937	2,31	0,01		putative secreted protein	Prophage genes
cg1940	2,97	0,01		putative secreted protein	Prophage genes
cg1940	2,65	0,02		putative secreted protein	Prophage genes
Cg1941	2,03	0,00			ו וסטוומצב צבוובי
cg1942	0,59	0,02		putative secreted protein putative secreted	Prophage genes
10.10	0.00			protein	
cg1943	0,63	0,01		hypothetical protein cg1943	Prophage genes
cg1944	1,58	0,02		hypothetical protein cg1944	Prophage genes
cg1947	0,68	0,02		hypothetical protein cg1947	Prophage genes
1040	1 72	0.01		hypothetical protein cg1949 hypothetical	Duranha an ann an
cg1949	1,73	0,01		protein cg1949	Prophage genes
cg1950	1,79	0,03	tnp14b	tnp14b(ISCg14a), transposase	Prophage genes
cg1951	2,10	0,02	tnp14a	tnp14a(ISCg14a), transposase	Prophage genes
cg1951	0,46	0,02	1111140	hypothetical protein cg1954	
Cg1954	0,46	0,02			Prophage genes
cg1956	10,31	0,00	recJ	recJ, single-stranded-DNA-specific	Prophage genes
0	1	,		exonuclease	
cg1957	1,77	0,00		hypothetical protein cg1957 hypothetical	Prophage genes
-				protein cg1957	
cg1959	3,85	0,01	priP	priP, prophage DNA primase	Prophage genes
cg1960	3,09	0,00		hypothetical protein cg1960	Prophage genes
cg1961	4,40	0,00		hypothetical protein predicted by Glimmer	Prophage genes
cg1962	0,13	0,00		hypothetical protein cg1962	Prophage genes
cg1963	4,51	0,00		superfamily II DNA/RNA helicase	Prophage genes
cg1964	4,02	0,00		hypothetical protein cg1964	Prophage genes
Cg1J04	4,02	0,00			
cg1965	2,46	0,01		similarity to hypothetical protein gp57-phage	Prophage genes
cg1066					riepiie8e Seriee
cg1966	1 ⊑ ว	0.02	cans	N15 hypothetical protein cg1966	
ag10C7	1,52	0,02	cgpS	hypothetical protein cg1966	Prophage genes
cg1967	2,70	0,00	cgpS	hypothetical protein cg1966 hypothetical protein cg1967	Prophage genes Prophage genes
cg1968	2,70 2,56	0,00 0,00	cgpS	hypothetical protein cg1966 hypothetical protein cg1967 hypothetical protein cg1968	Prophage genes Prophage genes Prophage genes
cg1968 cg1969	2,70 2,56 2,24	0,00 0,00 0,00	cgpS	hypothetical protein cg1966 hypothetical protein cg1967 hypothetical protein cg1968 hypothetical protein cg1969	Prophage genes Prophage genes Prophage genes Prophage genes
cg1968	2,70 2,56	0,00 0,00	cgpS	hypothetical protein cg1966 hypothetical protein cg1967 hypothetical protein cg1968	Prophage genes Prophage genes Prophage genes
cg1968 cg1969	2,70 2,56 2,24	0,00 0,00 0,00	cgpS	hypothetical protein cg1966 hypothetical protein cg1967 hypothetical protein cg1968 hypothetical protein cg1969	Prophage genes Prophage genes Prophage genes Prophage genes
cg1968 cg1969 cg1970 cg1971	2,70 2,56 2,24 2,92 2,13	0,00 0,00 0,00 0,00 0,01	cgpS	hypothetical protein cg1966 hypothetical protein cg1967 hypothetical protein cg1968 hypothetical protein cg1969 hypothetical protein cg1970	Prophage genes Prophage genes Prophage genes Prophage genes Prophage genes Prophage genes
cg1968 cg1969 cg1970	2,70 2,56 2,24 2,92	0,00 0,00 0,00 0,00	cgp\$	hypothetical protein cg1966 hypothetical protein cg1967 hypothetical protein cg1968 hypothetical protein cg1969 hypothetical protein cg1970 hypothetical protein predicted by Glimmer putative translation elongation factor	Prophage genes Prophage genes Prophage genes Prophage genes Prophage genes
cg1968 cg1969 cg1970 cg1971 cg1972	2,70 2,56 2,24 2,92 2,13 0,75	0,00 0,00 0,00 0,00 0,01 0,04	cgp\$	hypothetical protein cg1966 hypothetical protein cg1967 hypothetical protein cg1968 hypothetical protein cg1969 hypothetical protein cg1970 hypothetical protein predicted by Glimmer putative translation elongation factor (GTPase)	Prophage genes Prophage genes Prophage genes Prophage genes Prophage genes Prophage genes Prophage genes
cg1968 cg1969 cg1970 cg1971 cg1972 cg1974	2,70 2,56 2,24 2,92 2,13 0,75 1,41	0,00 0,00 0,00 0,00 0,01 0,04 0,05	cgp\$	hypothetical protein cg1966 hypothetical protein cg1967 hypothetical protein cg1968 hypothetical protein cg1969 hypothetical protein cg1970 hypothetical protein predicted by Glimmer putative translation elongation factor (GTPase) putative lysin	Prophage genes Prophage genes Prophage genes Prophage genes Prophage genes Prophage genes Prophage genes Prophage genes
cg1968 cg1969 cg1970 cg1971 cg1972 cg1974 cg1975	2,70 2,56 2,24 2,92 2,13 0,75 1,41 2,67	0,00 0,00 0,00 0,01 0,04 0,05 0,01	cgpS	hypothetical protein cg1966 hypothetical protein cg1967 hypothetical protein cg1968 hypothetical protein cg1969 hypothetical protein cg1970 hypothetical protein predicted by Glimmer putative translation elongation factor (GTPase) putative lysin hypothetical protein cg1975	Prophage genes Prophage genes Prophage genes Prophage genes Prophage genes Prophage genes Prophage genes Prophage genes Prophage genes
cg1968 cg1969 cg1970 cg1971 cg1972 cg1974 cg1975 cg1976	2,70 2,56 2,24 2,92 2,13 0,75 1,41 2,67 2,87	0,00 0,00 0,00 0,01 0,04 0,05 0,01 0,01	cgpS	hypothetical protein cg1966 hypothetical protein cg1967 hypothetical protein cg1968 hypothetical protein cg1969 hypothetical protein cg1970 hypothetical protein predicted by Glimmer putative translation elongation factor (GTPase) putative lysin hypothetical protein cg1975 hypothetical protein cg1976	Prophage genes
cg1968 cg1969 cg1970 cg1971 cg1972 cg1974 cg1975 cg1976 cg1977	2,70 2,56 2,24 2,92 2,13 0,75 1,41 2,67 2,87 4,52	0,00 0,00 0,00 0,01 0,04 0,05 0,01 0,01 0,00	cgpS	hypothetical protein cg1966 hypothetical protein cg1967 hypothetical protein cg1968 hypothetical protein cg1969 hypothetical protein cg1970 hypothetical protein predicted by Glimmer putative translation elongation factor (GTPase) putative lysin hypothetical protein cg1975 hypothetical protein cg1976 putative secreted protein	Prophage genes
cg1968 cg1969 cg1970 cg1971 cg1972 cg1974 cg1975 cg1976	2,70 2,56 2,24 2,92 2,13 0,75 1,41 2,67 2,87	0,00 0,00 0,00 0,01 0,01 0,04 0,05 0,01 0,01 0,00 0,00	cgp\$	hypothetical protein cg1966 hypothetical protein cg1967 hypothetical protein cg1968 hypothetical protein cg1969 hypothetical protein cg1970 hypothetical protein predicted by Glimmer putative translation elongation factor (GTPase) putative lysin hypothetical protein cg1975 hypothetical protein cg1976 putative secreted protein hypothetical protein cg1978	Prophage genes
cg1968 cg1969 cg1970 cg1971 cg1972 cg1974 cg1975 cg1976 cg1977	2,70 2,56 2,24 2,92 2,13 0,75 1,41 2,67 2,87 4,52	0,00 0,00 0,00 0,01 0,04 0,05 0,01 0,01 0,00	cgp\$	hypothetical protein cg1966 hypothetical protein cg1967 hypothetical protein cg1968 hypothetical protein cg1969 hypothetical protein cg1970 hypothetical protein predicted by Glimmer putative translation elongation factor (GTPase) putative lysin hypothetical protein cg1975 hypothetical protein cg1976 putative secreted protein	Prophage genes
cg1968 cg1969 cg1970 cg1971 cg1972 cg1974 cg1975 cg1976 cg1977 cg1978	2,70 2,56 2,24 2,92 2,13 0,75 1,41 2,67 2,87 4,52 135,36	0,00 0,00 0,00 0,01 0,01 0,04 0,05 0,01 0,01 0,00 0,00	cgpS	hypothetical protein cg1966 hypothetical protein cg1967 hypothetical protein cg1968 hypothetical protein cg1969 hypothetical protein cg1970 hypothetical protein predicted by Glimmer putative translation elongation factor (GTPase) putative lysin hypothetical protein cg1975 hypothetical protein cg1976 putative secreted protein hypothetical protein cg1978	Prophage genes
cg1968 cg1969 cg1970 cg1971 cg1972 cg1974 cg1975 cg1976 cg1977 cg1978 cg1980 cg1981	2,70 2,56 2,24 2,92 2,13 0,75 1,41 2,67 2,87 4,52 135,36 4,28 3,46	0,00 0,00 0,00 0,01 0,04 0,05 0,01 0,01 0,00 0,00 0,00 0,00	cgpS	hypothetical protein cg1966 hypothetical protein cg1967 hypothetical protein cg1968 hypothetical protein cg1969 hypothetical protein cg1970 hypothetical protein predicted by Glimmer putative translation elongation factor (GTPase) putative lysin hypothetical protein cg1975 hypothetical protein cg1976 putative secreted protein hypothetical protein cg1978 MoxR-like ATPase	Prophage genes
cg1968 cg1969 cg1970 cg1971 cg1972 cg1974 cg1975 cg1976 cg1977 cg1978 cg1980 cg1981 cg1982	2,70 2,56 2,24 2,92 2,13 0,75 1,41 2,67 2,87 4,52 135,36 4,28	0,00 0,00 0,00 0,01 0,04 0,05 0,01 0,01 0,00 0,00 0,00	cgpS	hypothetical protein cg1966 hypothetical protein cg1967 hypothetical protein cg1968 hypothetical protein cg1969 hypothetical protein cg1970 hypothetical protein predicted by Glimmer putative translation elongation factor (GTPase) putative lysin hypothetical protein cg1975 hypothetical protein cg1976 putative secreted protein hypothetical protein cg1978 MoxR-like ATPase hypothetical protein cg1981	Prophage genes Propha
cg1968 cg1969 cg1970 cg1971 cg1972 cg1974 cg1975 cg1976 cg1977 cg1978 cg1980 cg1981 cg1982	2,70 2,56 2,24 2,92 2,13 0,75 1,41 2,67 2,87 4,52 135,36 4,28 3,46 4,36	0,00 0,00 0,00 0,01 0,04 0,05 0,01 0,00 0,00 0,00 0,00 0,00	cgpS	hypothetical protein cg1966 hypothetical protein cg1967 hypothetical protein cg1968 hypothetical protein cg1969 hypothetical protein cg1970 hypothetical protein predicted by Glimmer putative translation elongation factor (GTPase) putative lysin hypothetical protein cg1975 hypothetical protein cg1976 putative secreted protein hypothetical protein cg1978 MoxR-like ATPase hypothetical protein cg1981 ATPase with chaperone activity, ATP-binding subunit	Prophage genes Propha
cg1968 cg1969 cg1970 cg1971 cg1972 cg1974 cg1975 cg1976 cg1977 cg1978 cg1981 cg1983	2,70 2,56 2,24 2,92 2,13 0,75 1,41 2,67 2,87 4,52 135,36 4,28 3,46 4,36 2,87	0,00 0,00 0,00 0,01 0,04 0,05 0,01 0,00 0,00 0,00 0,00 0,00 0,00	cgpS	hypothetical protein cg1966 hypothetical protein cg1967 hypothetical protein cg1968 hypothetical protein cg1969 hypothetical protein cg1970 hypothetical protein predicted by Glimmer putative translation elongation factor (GTPase) putative lysin hypothetical protein cg1975 hypothetical protein cg1976 putative secreted protein hypothetical protein cg1978 MoxR-like ATPase hypothetical protein cg1981 ATPase with chaperone activity, ATP-binding subunit hypothetical protein cg1983	Prophage genes Propha
cg1968 cg1969 cg1970 cg1971 cg1972 cg1974 cg1975 cg1976 cg1977 cg1978 cg1980 cg1981 cg1982 cg1984	2,70 2,56 2,24 2,92 2,13 0,75 1,41 2,67 2,87 4,52 135,36 4,28 3,46 4,36 2,87 4,47	0,00 0,00 0,00 0,01 0,04 0,05 0,01 0,00 0,00 0,00 0,00 0,00 0,00	cgpS	hypothetical protein cg1966 hypothetical protein cg1967 hypothetical protein cg1968 hypothetical protein cg1969 hypothetical protein cg1970 hypothetical protein predicted by Glimmer putative translation elongation factor (GTPase) putative lysin hypothetical protein cg1975 hypothetical protein cg1976 putative secreted protein hypothetical protein cg1978 MoxR-like ATPase hypothetical protein cg1981 ATPase with chaperone activity, ATP-binding subunit hypothetical protein cg1983 hypothetical protein cg1984	Prophage genes Propha
cg1968 cg1969 cg1970 cg1971 cg1972 cg1974 cg1975 cg1976 cg1977 cg1978 cg1981 cg1983	2,70 2,56 2,24 2,92 2,13 0,75 1,41 2,67 2,87 4,52 135,36 4,28 3,46 4,36 2,87	0,00 0,00 0,00 0,01 0,04 0,05 0,01 0,00 0,00 0,00 0,00 0,00 0,00	cgpS	hypothetical protein cg1966 hypothetical protein cg1967 hypothetical protein cg1968 hypothetical protein cg1969 hypothetical protein cg1970 hypothetical protein predicted by Glimmer putative translation elongation factor (GTPase) putative lysin hypothetical protein cg1975 hypothetical protein cg1976 putative secreted protein hypothetical protein cg1978 MoxR-like ATPase hypothetical protein cg1981 ATPase with chaperone activity, ATP-binding subunit hypothetical protein cg1983 hypothetical protein cg1984 superfamily I DNA or RNA helicase	Prophage genes Propha
cg1968 cg1969 cg1970 cg1971 cg1972 cg1974 cg1975 cg1976 cg1977 cg1978 cg1980 cg1981 cg1982 cg1984	2,70 2,56 2,24 2,92 2,13 0,75 1,41 2,67 2,87 4,52 135,36 4,28 3,46 4,36 2,87 4,47 1,98	0,00 0,00 0,00 0,01 0,04 0,05 0,01 0,00 0,00 0,00 0,00 0,00 0,00	cgpS	hypothetical protein cg1966 hypothetical protein cg1967 hypothetical protein cg1968 hypothetical protein cg1969 hypothetical protein cg1970 hypothetical protein predicted by Glimmer putative translation elongation factor (GTPase) putative lysin hypothetical protein cg1975 hypothetical protein cg1976 putative secreted protein hypothetical protein cg1978 MoxR-like ATPase hypothetical protein cg1981 ATPase with chaperone activity, ATP-binding subunit hypothetical protein cg1983 hypothetical protein cg1984 superfamily I DNA or RNA helicase hypothetical protein cg1986 hypothetical	Prophage genes Propha
cg1968 cg1969 cg1970 cg1971 cg1972 cg1974 cg1975 cg1976 cg1977 cg1980 cg1981 cg1983 cg1984 cg1985 cg1986	2,70 2,56 2,24 2,92 2,13 0,75 1,41 2,67 2,87 4,52 135,36 4,28 3,46 4,28 3,46 2,87 4,47 1,98 2,35	0,00 0,00 0,00 0,01 0,04 0,05 0,01 0,00 0,00 0,00 0,00 0,00 0,00	cgpS	hypothetical protein cg1966 hypothetical protein cg1967 hypothetical protein cg1968 hypothetical protein cg1969 hypothetical protein cg1970 hypothetical protein predicted by Glimmer putative translation elongation factor (GTPase) putative lysin hypothetical protein cg1975 hypothetical protein cg1976 putative secreted protein hypothetical protein cg1978 MoxR-like ATPase hypothetical protein cg1981 ATPase with chaperone activity, ATP-binding subunit hypothetical protein cg1983 hypothetical protein cg1984 superfamily I DNA or RNA helicase hypothetical protein cg1986 hypothetical protein cg1986	Prophage genes Propha
cg1968 cg1969 cg1970 cg1971 cg1972 cg1974 cg1975 cg1976 cg1978 cg1981 cg1982 cg1983 cg1985 cg1986	2,70 2,56 2,24 2,92 2,13 0,75 1,41 2,67 2,87 4,52 135,36 4,28 3,46 4,28 3,46 2,87 4,47 1,98 2,35 2,68	0,00 0,00 0,00 0,01 0,04 0,05 0,01 0,01 0,00 0,00 0,00 0,00 0,00	cgpS	hypothetical protein cg1966 hypothetical protein cg1967 hypothetical protein cg1968 hypothetical protein cg1969 hypothetical protein cg1970 hypothetical protein predicted by Glimmer putative translation elongation factor (GTPase) putative lysin hypothetical protein cg1975 hypothetical protein cg1976 putative secreted protein hypothetical protein cg1978 MoxR-like ATPase hypothetical protein cg1981 ATPase with chaperone activity, ATP-binding subunit hypothetical protein cg1983 hypothetical protein cg1984 superfamily I DNA or RNA helicase hypothetical protein cg1986 hypothetical protein cg1986 hypothetical protein cg1987	Prophage genes Propha
cg1968 cg1969 cg1970 cg1971 cg1972 cg1974 cg1975 cg1976 cg1977 cg1980 cg1981 cg1983 cg1984 cg1985 cg1986	2,70 2,56 2,24 2,92 2,13 0,75 1,41 2,67 2,87 4,52 135,36 4,28 3,46 4,28 3,46 2,87 4,47 1,98 2,35	0,00 0,00 0,00 0,01 0,04 0,05 0,01 0,00 0,00 0,00 0,00 0,00 0,00	cgpS	hypothetical protein cg1966 hypothetical protein cg1967 hypothetical protein cg1968 hypothetical protein cg1969 hypothetical protein cg1970 hypothetical protein predicted by Glimmer putative translation elongation factor (GTPase) putative lysin hypothetical protein cg1975 hypothetical protein cg1976 putative secreted protein hypothetical protein cg1978 MoxR-like ATPase hypothetical protein cg1981 ATPase with chaperone activity, ATP-binding subunit hypothetical protein cg1983 hypothetical protein cg1984 superfamily I DNA or RNA helicase hypothetical protein cg1986 hypothetical protein cg1986	Prophage genes Propha

			1		
cg1990	1,59	0,04		NUDIIX hydrolase	Prophage genes
cg1991	2,51	0,02		similar to gp52-bacterophage PHIC31	Prophage genes
cg1992	2,53	0,01		hypothetical protein predicted by Glimmer	Prophage genes
cg1993	3,08	0,00		hypothetical protein cg1993 hypothetical protein cg1993	Prophage genes
cg1994	4,80	0,01		hypothetical protein cg1994	Prophage genes
cg1996	0,34	0,01	cglIM	cglIM, modification methylase	Prophage genes
cg1997	0,41	0,01	cglIR	cglIR, type II restriction endonuclease	Prophage genes
cg1998	0,58	0,02	cglIIR	cgIIIR, restriction endonuclease CGLIIR protein	Prophage genes
cg1999	1,79	0,04		hypothetical protein cg1999 hypothetical protein cg1999	Prophage genes
cg2001	2,11	0,03		hypothetical protein cg2001 hypothetical protein cg2001	Prophage genes
cg2002	1,80	0,00		hypothetical protein cg2002	Prophage genes
cg2003	1,46	0,04		hypothetical protein cg2003	Prophage genes
cg2004	3,19	0,04		similar to 232 protein-lactobacillus	Prophage genes
cg2005	0,73	0,01		bacteriophage g1e conserved hypothetical protein-plasmid	Prophage genes
-		· ·		encoded	
cg2008	1,31	0,04		hypothetical protein cg2008	Prophage genes
cg2009	1,47	0,01		putative CLP-family ATP-binding protease	Prophage genes
cg2010	1,29	0,02		permease of the major facilitator superfamily	Prophage genes
cg2011	1,47	0,04		hypothetical protein cg2011 hypothetical protein cg2011	Prophage genes
cg2014	2,77	0,00		hypothetical protein cg2014	Prophage genes
cg2015	1,50	0,02		hypothetical protein cg2015 hypothetical protein cg2015	Prophage genes
cg2017	1,41	0,05		hypothetical protein cg2017	Prophage genes
cg2020	1,92	0,03		hypothetical protein cg2020	Prophage genes
cg2023	1,92	0,02		hypothetical protein cg2023	Prophage genes
cg2024	1,60	0,03		putative nuclease subunit of the excinuclease complex	Prophage genes
cg2026	0,58	0,01		hypothetical protein predicted by Glimmer	Prophage genes
cg2020	3,39	0,00		hypothetical protein g2028	Prophage genes
cg2020	4,66	0,00		hypothetical protein predicted by Glimmer	Prophage genes
cg2030	3,03	0,02		hypothetical protein predicted by Glimmer	Prophage genes
cg2030	2,76	0,00		hypothetical protein cg2031	Prophage genes
cg2032	1,60	0,01		hypothetical protein cg2032 hypothetical protein cg2032	Prophage genes
cg2033	1,41	0,02		putative secreted protein	Prophago gonos
cg2035	2,03	0,02		putative methyltransferase	Prophage genes Prophage genes
cg2033	2,03	0,03		hypothetical protein cg2037	Prophage genes
cg2037	2,91	0,01		hypothetical protein predicted by Glimmer	Prophage genes
cg2038	1,84	0,00		hypothetical protein greatered by Gimmer	Prophage genes
cg2035	1,85	0,01		putative transcriptional regulator	Prophage genes
cg2040	1,43	0,04		hypothetical protein predicted by Glimmer	Prophage genes
cg2041	0,84	0,04		putative secreted protein	Prophage genes
cg2042	3,21	0,00		hypothetical protein cg2046	Prophage genes
cg2040	1,66	0,00		putative secreted protein	Prophage genes
cg2051	1,68	0,00		hypothetical protein cg2051	Prophage genes
cg2051	0,65	0,01		putative secreted protein	Prophage genes
cg2052	4,51	0,00		hypothetical protein cg2053	Prophage genes
cg2055	16,97	0,00		hypothetical protein cg2054	Prophage genes
cg2055	19,69	0,00		hypothetical protein cg2055	Prophage genes
cg2055	3,52	0,01		hypothetical protein cg2056	Prophage genes
cg2050	3,31	0,00		putative secreted protein	Prophage genes
cg2058	3,63	0,00		hypothetical protein predicted by Glimmer and Critica	Prophage genes
cg2059	2,74	0,01		putative secreted protein putative secreted	Prophage genes
cg2060	1,75	0,01		hypothetical protein cg2060 hypothetical	Prophage genes
				protein cg2060	
cg2061	0,38	0,00	psp3	psp3, putative secreted protein	Prophage genes
cg2062	1,57	0,04		similar to plasmid-encoded protein PXO2,09	Prophage genes
	1120	0,00		hypothetical protein cg2063	Prophage genes
cg2063	1,26	+ <u>′</u>			
cg2063 cg2064	1,26	0,04		DNA topoisomerase I (omega-protein) DNA topoisomerase I (omega-protein)	Prophage genes

cg2070	4,49	0,00	int2	int2, putative phage integrase (C-terminal fragment)	Prophage genes
cg2071	3,05	0,00	int2	int2, putative phage integrase (N-terminal fragment)	Prophage genes
cg2074	0,60	0,01		hypothetical protein cg2074 hypothetical protein cg2074 hypothetical protein cg2074 hypothetical protein cg2074 hypothetical protein cg2074 hypothetical protein cg2074	Unknown function
cg2075	0,44	0,03		hypothetical protein cg2075 hypothetical protein cg2075 hypothetical protein cg2075	Unknown function
cg2076	1,67	0,04	ribD	ribD, hypothetical protein cg2076	Transport and metabolism of further metabolites
cg2078	1,62	0,01	msrB	peptide methionine sulfoxide reductase- related protein	Amino acid transport and metabolism
cg2079	2,03	0,01		hypothetical protein cg2079	Inorganic ion transport and metabolism
cg2080	0,42	0,00		hypothetical protein cg2080	Unknown function
cg2081	1,90	0,00	rnd	rnd, probable ribonuclease D protein rnd, probable ribonuclease D protein	Transcription including sigma factors, RNA processing and modification
cg2084	0,77	0,04		putative RNA methyltransferase	Transcription including sigma factors, RNA processing and modification
cg2086	0,59	0,00	dut	dut, deoxyuridine 5-triphosphate nucleotidohydrolase	Nucleotide transport and metabolism
cg2087	2,46	0,02		hypothetical protein cg2087	Unknown function
cg2088	0,77	0,02		hypothetical protein cg2088	Unknown function
cg2095	1,79	0,00		hypothetical protein cg2095 hypothetical protein cg2095	Unknown function
cg2096	1,75	0,01		hypothetical protein cg2096	Unknown function
cg2090	0,97	0,01		hypothetical protein cg2098	Unknown function
Cg2098	0,97	0,01		hypothetical protein cg2098	
cg2101	0,72	0,03		D-tyrosyl-tRNA deacylase	Translation, ribosomal structure and biogenesis
cg2102	3,65	0,01	sigB	sigB, RNA polymerase sigma factor	Transcription including sigma factors, RNA processing and modification
cg2103	4,54	0,01	dtxR	dtxR, diphtheria toxin repressor	Signal transduction mechanisms
cg2104	2,56	0,01	galE	galE, UDP-glucose 4-epimerase	Carbon source transport and metabolism
cg2105	1,58	0,02		hypothetical protein cg2105 hypothetical protein cg2105	Unknown function
cg2106	3,13	0,00		hypothetical protein cg2106	Unknown function
cg2107	0,56	0,04		superfamily II DNA or RNA helicase	General function prediction only
cg2110	1,82	0,00		hypothetical protein cg2110	Unknown function
cg2111	1,73	0,01	hrpA	hrpA, probable ATP-dependent RNA helicase protein	Transcription including sigma factors, RNA processing and modification
cg2112	1,59	0,05	nrdR	nrdR, transcriptional regulator of deoxyribonucleotide biosynthesis	Signal transduction mechanisms
cg2113	1,32	0,05	divS	divS, suppressor of cell division	Signal transduction mechanisms
cg2114	2,09	0,01	lexA	transcriptional repressor/regulator, involved in SOS/stress response, LexA-family	Signal transduction mechanisms
cg2116	0,76	0,00		putative phosphofructokinase	Central carbon metabolism
cg2117	0,58	0,00	ptsl	ptsl, phosphoenolpyruvate:sugar phosphotransferase system enzymei	Carbon source transport and metabolism
cg2118	0,40	0,03	fruR	transcriptional regulator of sugar metabolism, DeoR family	Signal transduction mechanisms
cg2119	0,29	0,00	pfkB (fruK)	pfkB, 1-phosphofructokinase protein	Central carbon metabolism
cg2120	0,30	0,00	ptsF	ptsF, sugar specific PTS system, fructose/mannitol-specific transport protein	Carbon source transport and metabolism
cg2125	1,36	0,02	uraA	uraA, putative uracyl permease	Nucleotide transport and metabolism
cg2126	3,19	0,00	hflX	GTPase	Translation, ribosomal structure and biogenesis
cg2127	3,20	0,02		hypothetical protein cg2127	Unknown function
cg2127	0,60	0,02		putative secreted or membrane protein	Unknown function
cg2128	1,65	0,00	dapF	dapF, diaminopimelate epimerase	Amino acid transport and metabolism
cg2125	0,43	0,00	- uup,	hypothetical protein cg2131	Unknown function
cg2131	0,43	0,01		hypothetical protein cg2131	Unknown function
cg2133	0,69	0,02		acetyltransferase, GNAT family	General function prediction only
cg2134	1,46	0,01		hypothetical protein cg2134	Unknown function
cg2135	1,37	0,02	miaB	miaB, trna methylthiotransferase	Translation, ribosomal structure and biogenesis
cg2136	0,31	0,01	gluA	gluA, glutamate uptake system ATP-binding protein	Amino acid transport and metabolism
	0.20	0,00	qluB	gluB, glutamate secreted binding protein	Amino acid transport and metabolism
cg2137	0,30	0,00	giub	glub, glutamate secreted binding protein	Amino aciu transport anu metabolism

cg2139	0,35	0,01	gluD	gluD, glutamate permease	Amino acid transport and metabolism
-	0,73	0,04	recA	recA, recombinase A	DNA replication, recombination, repair,
cg2141			TELA		and degradation
cg2145	3,55	0,01		hypothetical protein cg2145	Unknown function
cg2146	1,23	0,02		hypothetical protein cg2146	Unknown function
cg2147	2,47	0,00	bioY	bioY, substrate-specific component BioY of biotin ECF transporter	Coenzyme transport and metabolism
cg2148	1,51	0,00	bioM	bioM, ATPase component BioM of energizing module of biotin ECF transporter	Coenzyme transport and metabolism
cg2149	1,55	0,03	bioN	bioN, transmembrane component BioN of energizing module of biotin ECF transporter	Coenzyme transport and metabolism
cg2151	2,91	0,02		similar to phage shock protein A similar to phage shock protein A	General function prediction only
cg2152	2,99	0,01	clgR	clgR, transcriptional regulator	Signal transduction mechanisms
cg2153	2,03	0,00		similar to competence-and mitomycin- induced protein	General function prediction only
cg2154	2,00	0,01	pgsA2	pgsA2, CDP-diacylglycerolglycerol-3- phosphate 3-phosphatidyltransferase pgsA2, CDP-diacylglycerolglycerol-3- phosphate 3-phosphatidyltransferase	Cell wall/membrane/envelope biogenesis
cg2155	0,64	0,01		hypothetical protein cg2155	Unknown function
cg2157	1,50	0,01	terC	terC, tellurium resistance membrane protein	Inorganic ion transport and metabolism
cg2158	2,46	0,01	ftsK	ftsK, cell division protein, required for cell division and chromosomepartitioning	Cell division, chromosome partitioning
cg2159	1,34	0,04		hypothetical protein cg2159	Unknown function
cg2163	2,12	0,04	dapB	dapB, dihydrodipicolinate reductase	Amino acid transport and metabolism
cg2165	3,23	0,02		putative secreted protein	Unknown function
cg2167	0,41	0,01	rpsO	rpsO, 30S ribosomal protein S15	Translation, ribosomal structure and biogenesis
cg2169	1,32	0,02	ribF	ribF, hypothetical protein cg2169	Coenzyme transport and metabolism
cg2170	0,71	0,04	truB	truB, tRNA pseudouridine synthase B truB, tRNA pseudouridine synthase B	Translation, ribosomal structure and biogenesis
cg2175	1,22	0,03	rbfA	rbfA, ribosome-binding factor A	Translation, ribosomal structure and biogenesis
cg2178	0,27	0,02	nusA	nusA, transcription elongation factor NusA nusA, transcription elongation factor NusA nusA, transcription elongation factor NusA	Transcription including sigma factors, RNA processing and modification
cg2179	0,54	0,01		hypothetical protein cg2179	Unknown function
cg2181	0,30	0,03	oppA	ABC-type peptide transport system, secreted component ABC-type peptide transport system, secreted component	Transport and metabolism of further metabolites
cg2182	0,35	0,01	оррВ	ABC-type peptide transport system, permease component	Transport and metabolism of further metabolites
cg2184	0,61	0,00	оррD	ATPase component of peptide ABC-type transport system, contains duplicated ATPase domains ATPase component of peptide ABC-type transport system, contains duplicated ATPase domains	Transport and metabolism of further metabolites
cg2185	1,75	0,01	proS	proS, prolyl-tRNA synthetase	Translation, ribosomal structure and biogenesis
cg2186	1,23	0,03		hypothetical protein cg2186 hypothetical protein cg2186	Unknown function
cg2189	0,71	0,03	cobA (cysG)	cobA, uroporphyrinogen III synthase/methyltransferase	Transport and metabolism of further metabolites
cg2190	0,81	0,02		hypothetical protein cg2190	Unknown function
cg2192	2,47	0,02	mqo	mqo, malate:quinone oxidoreductase	Central carbon metabolism; Respiration and oxidative phosphorylation
cg2193	0,60	0,02		putative lysophospholipase	Cell wall/membrane/envelope biogenesis
	1,79	0,01		putative secreted or membrane protein	Unknown function
cg2195		0,03		putative secreted or membrane protein	Unknown function
cg2196	1,54	- ·			I I fundi un anno anno anno anno anno anno anno a
cg2196 cg2197	1,40	0,04		hypothetical protein cg2197	Unknown function
cg2195 cg2196 cg2197 cg2198		- ·	map2	map2, methionine aminopeptidase	Protein turnover and chaperones
cg2196 cg2197	1,40	0,04	map2 pbp2a		Protein turnover and chaperones
cg2196 cg2197 cg2198	1,40 2,52	0,04		map2, methionine aminopeptidase pbp, penicillin-binding protein, putative D-	Protein turnover and chaperones
cg2196 cg2197 cg2198 cg2199	1,40 2,52 0,55	0,04 0,00 0,01	pbp2a	map2, methionine aminopeptidase pbp, penicillin-binding protein, putative D- alanyl-D-alanine carboxypeptidase cgtR8, two-component system, response	Protein turnover and chaperones Cell wall/membrane/envelope biogenesis

cg2204	0,68	0,04	hrtA	hrtA, ABC-type transport system, ATPase component	Transport and metabolism of further metabolites
cg2206	1,64	0,03	ispG	ispG, 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase	Transport and metabolism of further metabolites
cg2208	1,40	0,01	dxr	dxr, 1-deoxy-D-xylulose 5-phosphate reductoisomerase	Transport and metabolism of further metabolites
cg2213	0,82	0,01		ABC-type multidrug transport system, ATPase component	General function prediction only
cg2214	1,52	0,04		predicted Fe-S-cluster redox enzyme	General function prediction only
cg2215	3,48	0,00		hypothetical protein cg2215	General function prediction only
cg2221	0,72	0,01	tsf	tsf, elongation factor Ts	Translation, ribosomal structure and biogenesis
cg2222	0,54	0,01	rpsB	rpsB, 30S ribosomal protein S2	Translation, ribosomal structure and biogenesis
cg2230	2,77	0,00	rnhB	rnhB, ribonuclease HII	Transcription including sigma factors, RNA processing and modification
cg2232	2,00	0,00	ІерВ	lepB, probable signal peptidase I (spase I)	Protein secretion
cg2237	0,69	0,01	thiO	thiO, putative D-amino acid oxidase flavoprotein oxidoreductase	Coenzyme transport and metabolism
cg2238	0,71	0,05	thiS	thiS, sulfur transfer protein involved in thiamine biosynthesis	Coenzyme transport and metabolism
cg2239	0,71	0,01	thiG	thiG, thiazole synthase	Coenzyme transport and metabolism
cg2240	0,65	0,04	thiF	thiF, molybdopterin biosynthesis protein MoeB thiF, molybdopterin biosynthesis protein MoeB	Coenzyme transport and metabolism
cg2241	1,19	0,01	tex	putative transcriptional accessory protein, RNA binding	Transcription including sigma factors, RN/ processing and modification
cg2242	0,41	0,01		putative transcription regulation repressor, Lacl family putative transcription regulation repressor, Lacl family	Signal transduction mechanisms
cg2248	0,86	0,04		hypothetical protein cg2248	Unknown function
cg2249	1,15	0,03	trmD	trmD, tRNA (guanine-N(1)-)- methyltransferase	Translation, ribosomal structure and biogenesis
cg2250	1,56	0,00		putative secreted lipoprotein	Unknown function
cg2251	0,56	0,00	rimM	rimM, 16S rRNA-processing protein	Translation, ribosomal structure and biogenesis
cg2252	4,03	0,01		double-stranded beta-helix domain	Unknown function
cg2253	0,50	0,02	rpsP	rpsP, 30S ribosomal protein S16 rpsP, 30S ribosomal protein S16	Translation, ribosomal structure and biogenesis
cg2257	1,19	0,05	srp	srp, signal recognition particle GTPase	Translation, ribosomal structure and biogenesis
cg2258	0,61	0,01	gInD	gInD, PII uridylyl-transferase	Signal transduction mechanisms
cg2261	1,88	0,01	amtB	amtB, low affinity ammonium uptake protein ftsY, signal recognition particle GTPase ftsY,	Inorganic ion transport and metabolism
cg2262	0,51	0,01	ftsY	signal recognition particle GTPase ftsY, signal recognition particle GTPase ftsY, signal recognition particle GTPase	Translation, ribosomal structure and biogenesis
cg2263	1,41	0,02		hypothetical protein cg2263 hypothetical	Unknown function
cg2265	0,54	0,02	smc	protein cg2263 hypothetical protein cg2263 smc, chromosome segregation ATPase smc, chromosome segregation ATPase	Cell division, chromosome partitioning
cg2267	2,13	0,01		hypothetical protein cg2267 hypothetical protein cg2267	Unknown function
cg2272	1,54	0,02	mutM1	mutM1, formamidopyrimidine-DNA glycosylase	DNA replication, recombination, repair, and degradation
cg2275	1,97	0,02		putative FOF1-type ATP synthase b subunit	Cell division, chromosome partitioning
cg2277	0,64	0,02		ABC-type multidrug/protein/lipid transport system, transmembrane ATPase component ABC-type multidrug/protein/lipid transport	General function prediction only
cg2279	0,56	0,03		system, transmembrane ATPase component ABC-type multidrug/protein/lipid transport system, transmembrane ATPase component ABC-type multidrug/protein/lipid transport system, transmembrane ATPase component	General function prediction only
cg2280	0,71	0,01	gdh	gdh, glutamate dehydrogenase	Amino acid transport and metabolism
cg2282	1,21	0,01	glxK	glxK, putative glycerate kinase	Amino acid transport and metabolism; Lipid transport and metabolism
cg2284	0,44	0,01	galT	galactose-1-phosphate uridylyltransferase	Carbon source transport and metabolism
cg2285	0,78	0,02	hipO	hipO, putative hippurate hydrolase protein	Amino acid transport and metabolism
cg2286	0,60	0,02		hypothetical protein cg2286	General function prediction only
cg2287	0,72	0,02		hypothetical protein cg2287	Unknown function

cg2289	1,98	0,01	glgP	glgP2, alpha-glucan phosphorylase, glycogen phosphorylase glgP2, alpha-glucan phosphorylase, glycogen phosphorylase	Carbon source transport and metabolism
cg2290	1,78	0,03		glyoxalase/bleomycin resistance/dioxygenase superfamily protein	General function prediction only
cg2293	0,75	0,01		putative indole-3-glycerol phosphate synthase	Amino acid transport and metabolism
cg2294	1,48	0,01		hypothetical protein cg2294	Unknown function
cg2296	1,51	0,03	hisl	hisl, phosphoribosyl-AMP cyclohydrolase	Amino acid transport and metabolism
cg2298	1,43	0,02	impA	impA, myo-inositol-1(or 4)- monophosphatase family protein	Cell wall/membrane/envelope biogenesis
cg2299	1,44	0,02	hisA	hisA, 1-(5-phosphoribosyl)-5-	Amino acid transport and metabolism
cg2300	2,62	0,00	hisH	hisH, imidazole glycerol phosphate synthase subunit HisH	Amino acid transport and metabolism
cg2302	0,73	0,01		hypothetical protein cg2302	Unknown function
cg2303	0,67	0,01	hisB	hisB, imidazoleglycerol-phosphate dehydratase	Amino acid transport and metabolism
cg2304	0,75	0,03	hisC	hisC, histidinol-phosphate aminotransferase	Amino acid transport and metabolism
cg2308	1,82	0,02		putative secreted protein	Unknown function
cg2309	0,67	0,04	bioQ	bacterial regulatory proteins, TetR family bacterial regulatory proteins, TetR family	Signal transduction mechanisms
cg2310	0,50	0,00	glgX	glgX, glycogen debranching enzyme	Carbon source transport and metabolism
cg2311	3,08	0,01		SAM-dependent methyltransferase	General function prediction only
cg2313	1,87	0,02	idhA3	idhA3, myo-inositol 2-dehydrogenase	Cell wall/membrane/envelope biogenesis
cg2315	1,21	0,02		ATP-binding protein of ABC transporter	Carbon source transport and metabolism; Inorganic ion transport and metabolism
cg2317	1,62	0,00		permease of ABC transporter	Carbon source transport and metabolism; Inorganic ion transport and metabolism
cg2318	1,76	0,01		putative secreted vitamin B12-binding	Carbon source transport and metabolism;
-		,		lipoprotein	Inorganic ion transport and metabolism
cg2320	2,54	0,00		predicted transcriptional regulator DNA polymerase III epsilon subunit or related	Signal transduction mechanisms
cg2321	0,72	0,05		3-5 exonuclease	DNA replication, recombination, repair, and degradation
cg2323	1,86	0,01	treY	treY, maltooligosyl trehalose synthase	Carbon source transport and metabolism; Cell wall/membrane/envelope biogenesis
cg2324	1,55	0,02		hypothetical protein cg2324	Unknown function
cg2329	1,33	0,01		coenzyme F420-dependent N5,N10- methylene tetrahydromethanopterin reductase or related flavin-dependent	Coenzyme transport and metabolism
cg2330	2,89	0,00		ribosome-associated heat shock protein implicated in the recycling of the 50S subunit (S4 paralog)	Translation, ribosomal structure and biogenesis
cg2331	2,63	0,01		hypothetical protein cg2331	Unknown function
	2.14	0,00	two 7	treZ, malto-oligosyltrehalose	Carbon source transport and metabolism;
cg2333	2,14	0,00	treZ	trehalohydrolase	Cell wall/membrane/envelope biogenesis
cg2334	1,87	0,00	ilvA	ilvA, threonine dehydratase	Amino acid transport and metabolism; Coenzyme transport and metabolism
cg2338	3,58	0,00	dnaE1	dnaE1, DNA polymerase III subunit alpha	DNA replication, recombination, repair, and degradation
cg2339	2,92	0,01		predicted permease	General function prediction only
cg2341	1,81	0,03		predicted Co/Zn/Cd cation transporter predicted Co/Zn/Cd cation transporter	Inorganic ion transport and metabolism
cg2342	3,12	0,00		dehydrogenase	General function prediction only
cg2348	0,60	0,00		putative secreted protein	Unknown function
cg2349	2,34	0,02		ATPase component of ABC transporters with duplicated ATPase domains	General function prediction only
cg2352	1,30	0,01	ansA	ansA, L-asparaginase ansA, L-asparaginase	Amino acid transport and metabolism
cg2353	1,24	0,02		hypothetical protein disrupted by insertion of ISCg2e	Unknown function
cg2356	0,57	0,02		permease of the drug/metabolite transporter (DMT) superfamily	General function prediction only
cg2357	0,76	0,04		bacterial regulatory proteins, MerR family	Signal transduction mechanisms
cg2358	0,79	0,01		hypothetical protein cg2358	Unknown function
cg2359	0,84	0,02	ileS	ileS, isoleucyl-tRNA synthetase	Translation, ribosomal structure and biogenesis
cg2362	1,67	0,04		hypothetical protein cg2362	Unknown function
cg2363	0,48	0,00		hypothetical protein cg2363 hypothetical protein cg2363	Cell division, chromosome partitioning
				ftsZ, cell division protein FtsZ ftsZ, cell	

cg2368	1,49	0,00	murC	murC, UDP-N-acetylmuramateL-alanine ligase	Cell wall/membrane/envelope biogenesis
cg2369	1,50	0,03	murG	murG, N-acetylglucosaminyl transferase	Cell wall/membrane/envelope biogenesis
cg2370	1,54	0,02	ftsW	ftsW, bacterial cell division membrane protein	Cell division, chromosome partitioning
cg2372	1,18	0,05	mraY	mraY, phospho-N-acetylmuramoyl- pentapeptide-transferase	Cell wall/membrane/envelope biogenesis
cg2374	1,51	0,01	murE	murE, UDP-N-acetylmuramoylalanyl-D- glutamate2,6-diaminopimelate ligase	Cell wall/membrane/envelope biogenesis
cg2378	0,50	0,00	mraZ	mraZ, hypothetical protein cg2378	Signal transduction mechanisms
cg2380	2,43	0,00		hypothetical protein cg2380	Unknown function
cg2381	0,47	0,02		hypothetical protein cg2381	Unknown function
cg2382	1,55	0,00	act5	GCN5-related N-acetyltransferase	General function prediction only
cg2383	0,51	0,01	metF	metF, 5,10-methylenetetrahydrofolate reductase	Amino acid transport and metabolism
cg2384	1,65	0,00	idsA	idsA, putative geranylgeranyl pyrophosphate synthase	Transport and metabolism of further metabolites
cg2385	1,24	0,00	mptA	mptA, alpha-1,6-mannopyranosyltransferase	Cell wall/membrane/envelope biogenesis
cg2390	4,52	0,00		hypothetical protein cg2390	Unknown function
cg2391	0,40	0,01	aroG	aroG, phospho-2-dehydro-3-deoxyheptonate aldolase	Amino acid transport and metabolism
cg2393	1,70	0,04		hypothetical protein cg2393	Unknown function
cg2394	0,69	0,03	cmt4	cmt4, corynomycolyl transferase	Cell wall/membrane/envelope biogenesis
cg2397	0,89	0,04		hypothetical protein cg2397	Unknown function
cg2400	1,30	0,00		pimB, Ac1PIM1 mannosyltransferase	General function prediction only
			1	nlpC, putative secreted cell wall peptidase	· · · ·
cg2402	0,63	0,01	nlpC	nlpC, putative secreted cell wall peptidase	Cell wall/membrane/envelope biogenesis
cg2407	0,61	0,03	#NV	hypothetical protein cg2407	#NV
cg2408	0,51	0,01	ctaF	ctaF, cytochrome aa3 oxidase SU IV	Respiration and oxidative phosphorylatio
				ctaC, cytochrome C oxidase chain II ctaC,	
cg2409	0,52	0,01	ctaC	cytochrome C oxidase chain II ltsA, glutamine-dependent amidotransferase	Respiration and oxidative phosphorylatio
cg2410	0,44	0,03	ltsA	involved in formation of cell wall and L- glutamate biosynthesis ItsA, glutamine- dependent amidotransferase involved in formation of cell wall and L-glutamate biosynthesis	Amino acid transport and metabolism; Ce wall/membrane/envelope biogenesis
cg2411	1,87	0,02		hypothetical protein HesB/YadR/YfhF family	Unknown function
cg2413	0,66	0,04	cobU	cobU, cobinamide kinase / cobinamide phosphate guanylyltransferase cobU, cobinamide kinase / cobinamide phosphate guanylyltransferase	Coenzyme transport and metabolism
cg2414	0,47	0,00	cobT	cobT, nicotinate-nucleotide dimethylbenzimidazole phosphoribosyltransferase cobT, nicotinate-nucleotide dimethylbenzimidazole phosphoribosyltransferase	Coenzyme transport and metabolism
cg2415	0,72	0,04	cobS	cobS, cobalamin synthase cobS, cobalamin synthase	Coenzyme transport and metabolism
cg2417	2,20	0,00		short chain dehydrogenase short chain dehydrogenase	General function prediction only
cg2418	0,56	0,01	ilvE	ilvE, branched-chain amino acid aminotransferase ilvE, branched-chain amino acid aminotransferase	Amino acid transport and metabolism
cg2419	0,57	0,05	рерВ	pepB, leucyl aminopeptidase pepB, leucyl aminopeptidase pepB, leucyl aminopeptidase	Protein turnover and chaperones
cg2420	2,15	0,00		hypothetical protein cg2420	Unknown function
cg2423	1,41	0,01	lipA	lipA, lipoyl synthase	Coenzyme transport and metabolism
cg2424 cg2428	0,70	0,02		hypothetical protein cg2424 hypothetical protein cg2428 hypothetical	Unknown function Unknown function
662420	2,04			protein cg2428	
cg2429	2,99	0,00	gInA	gInA, glutamine synthetase I	Amino acid transport and metabolism
cg2430	0,47	0,00		hypothetical protein cg2430	Unknown function
cg2431	0,73	0,04		putative transcriptional regulator	Signal transduction mechanisms
cg2437	1,72	0,03	thrC	thrC, threonine synthase thrC, threonine synthase	Amino acid transport and metabolism
cg2438	0,50	0,02		hypothetical protein predicted by Glimmer	Unknown function

cg2444	1,16	0,03		hypothetical protein cg2444 hypothetical protein cg2444	Unknown function
cg2445	0,64	0,01	hmuO	hmuO, heme oxygenase hmuO, heme oxygenase	Transport and metabolism of further metabolites
cg2446	0,52	0,01	gInE	glnE, glutamate-ammonia-ligase adenylyltransferase	Post-translational modification
cg2447	0,61	0,01	gInA2	glnA2, glutamine synthetase 2	Amino acid transport and metabolism
cg2449	0,66	0,01	ginte	hypothetical protein cg2449 hypothetical protein cg2449	General function prediction only
cg2450	1,46	0,02		putative pyridoxine biosynthesis enzyme	Coenzyme transport and metabolism
cg2450	3,43	0,02		hypothetical protein cg2451	Unknown function
cg2453	1,44	0,01		putative exoribonuclease putative exoribonuclease	DNA replication, recombination, repair, and degradation
cg2454	0,61	0,01	#NV	hypothetical protein cg2454	#NV
cg2458	0,48	0,01	pgp2	pgp2, predicted phosphatase, HAD family	Carbon source transport and metabolism
cg2461	0,41	0,01	tnp4a	tnp4a(ISCg4a), transposase	DNA replication, recombination, repair, and degradation
cg2464	0,53	0,00		hypothetical protein cg2464	Unknown function
cg2466	0,73	0,04	aceE	aceE, pyruvate dehydrogenase subunit E1	Central carbon metabolism
cg2467	0,27	0,01		ABC transporter ATP-binding protein	Amino acid transport and metabolism
cg2468	0,33	0,01		branched-chain amino acid ABC-type transport system, permease component	Amino acid transport and metabolism
cg2470	0,27	0,00		secreted ABC transporter substrate-binding protein	Amino acid transport and metabolism
cg2471	2,45	0,00		weakly conserved hypothetical protein	Unknown function
cg2475	1,76	0,00		ATPase component of ABC transporters with duplicated ATPase domains	General function prediction only
cg2478	0,64	0,01	pbp6	putative penicillin binding protein	General function prediction only
cg2482	1,57	0,03		hypothetical protein cg2482	Unknown function
cg2483	0,61	0,04		hypothetical protein cg2483	Unknown function
cg2484	0,63	0,05		hypothetical protein cg2484	Unknown function
cg2/85	0,57	0,01	phoD	phoD, secreted alkaline phosphatase	Post-translational modification; Signal
cg2485	0,37	0,01	phod	precursor	transduction mechanisms
cg2487	0,85	0,01		hypothetical protein cg2487	Unknown function
cg2490	1,62	0,00		secreted guanine-specific ribonuclease	Transcription including sigma factors, RN/ processing and modification
cg2495	1,16	0,03		hypothetical protein cg2495	Unknown function
cg2497	1,22	0,01		hypothetical protein cg2497	Unknown function
cg2499	1,33	0,02	glyS	glyS, glycyl-tRNA synthetase	Translation, ribosomal structure and biogenesis
cg2502	2,14	0,02	zur (fur)	zur, zinc-dependent transcriptional regulator	Signal transduction mechanisms
cg2507	0,80	0,00		hypothetical protein cg2507	Unknown function DNA replication, recombination, repair,
cg2509	0,70	0,02	rec0	recO, DNA repair protein RecO	and degradation
cg2510	0,61	0,01	era (bex)	era, GTP-binding protein Era	Cell division, chromosome partitioning
cg2516	1,60	0,03	hrcA	hrcA, heat-inducible transcription repressor	Signal transduction mechanisms
cg2519	0,53	0,00		hypothetical protein cg2519	Unknown function
cg2520	0,71	0,01		hypothetical protein cg2520	Unknown function
cg2523 cg2524	1,88 2,04	0,00	malQ	malQ, 4-alpha-glucanotransferase putative beta (1>2) glucan export composite transmembrane/ATP-binding	Carbon source transport and metabolism Carbon source transport and metabolism
eg1517	0.72	0.00	l dan	protein	Protoin turneyer and shares are
cg2527	0,72	0,00	dcp	dcp, probable peptidyl-dipeptidase A protein treS, trehalose synthase (maltose alpha-D-	Protein turnover and chaperones Carbon source transport and metabolism
cg2529	1,93	0,00	treS	glucosyltransferase)	Cell wall/membrane/envelope biogenesis
cg2530	2,16	0,00	treX	treX, probable trehalose synthase	Carbon source transport and metabolism Cell wall/membrane/envelope biogenesis
cg2536	0,57	0,00	metC (aceD)	metC, cystathionine beta-lyase metC, cystathionine beta-lyase	Amino acid transport and metabolism
cg2537	0,48	0,01	brnQ	brnQ, branched-chain amino acid uptake carrier	Amino acid transport and metabolism
cg2538	1,41	0,02		alkanal monooxygenase alpha chain	General function prediction only
cg2539	0,45	0,00	ectP	ectP, ectoine/proline/glycine betaine carrier EctP ectP, ectoine/proline/glycine betaine carrier EctP	Amino acid transport and metabolism
cg2542	0,71	0,04		predicted permease	Carbon source transport and metabolism
-	0,71	0,04		predicted permease putative secreted or membrane protein	Unknown function
cg2545		10,01		parative secreted of memoralie proteill	o manowi i function
cg2545 cg2546	0,51	0,01		hypothetical protein cg2546	Carbon source transport and metabolism

cg2549	0,58	0,00		ABC-type dipeptide/oligopeptide/nickel	General function prediction only
-8		-,		transport system, secreted component	
cg2550	0,42	0,00		ABC-type dipeptide/oligopeptide/nickel transport system, permease component	General function prediction only
cg2551	0,51	0,01		ABC-type dipeptide/oligopeptide/nickel transport system, permease component	General function prediction only
cg2552	0,48	0,00		ATPase component of ABC-type transport system, contains duplicated ATPase domain ATPase component of ABC-type transport system, contains duplicated ATPase domain	General function prediction only
cg2553	2,07	0,01		2-5 RNA ligase	Transcription including sigma factors, RNA processing and modification
cg2554	3,62	0,00	rbsK2	rbsK2, probable ribokinase protein	Nucleotide transport and metabolism
cg2556	2,95	0,00		uncharacterized iron-regulated membrane protein	Unknown function
cg2557	0,26	0,00		predicted Na+-dependent transporter	General function prediction only
cg2558	1,16	0,02		related to aldose 1-epimerase	General function prediction only
cg2559	0,55	0,02	aceB	aceB, malate synthase	Central carbon metabolism
cg2560	0,20	0,00	aceA	aceA, isocitrate lyase	Central carbon metabolism
cg2563	1,44	0,01	IcoP	IcoP, ectoine betaine transporter IcoP, ectoine betaine transporter IcoP, ectoine betaine transporter	Transport and metabolism of further metabolites
cg2564	3,33	0,01		hypothetical protein cg2564	Unknown function
cg2565	0,66	0,01		hypothetical protein cg2565	Unknown function
cg2572	3,02	0,00		hypothetical protein cg2572	Unknown function
cg2573	0,39	0,00	rpsT	rpsT, 30S ribosomal protein S20	Translation, ribosomal structure and biogenesis
cg2574	1,50	0,00		lyse type translocator	Amino acid transport and metabolism
cg2576	0,74	0,01		DNA polymerase III subunit delta	DNA replication, recombination, repair, and degradation
cg2578	0,69	0,05		secreted DNA uptake protein or related DNA-	DNA replication, recombination, repair,
ag2570	0.40	0.01		binding protein	and degradation Unknown function
cg2579	0,46	0,01		protein DegV family	
cg2581	0,47	0,00		putative fructose-2,6-bisphosphatase	Central carbon metabolism
cg2582 cg2584	0,47	0,03	nadD	hypothetical protein cg2582 nadD, nicotinic acid mononucleotide	Unknown function Coenzyme transport and metabolism
2505	0.00	0.02		adenyltransferase	l la la sua fuesti sa
cg2585	0,68	0,03		putative secreted protein	Unknown function
cg2586 cg2587	1,54 1,44	0,01	proA	proA, gamma-glutamyl phosphate reductase phosphoglycerate dehydrogenase or related	Amino acid transport and metabolism General function prediction only
077500	1.40	0.01	nroP	dehydrogenase	Amino acid transport and metabolism
cg2588	1,49	0,01	proB	proB, gamma-glutamyl kinase	· · · · · · · · · · · · · · · · · · ·
cg2589	1,67	0,03		predicted GTPase	General function prediction only
cg2591 cg2594	2,26 0,64	0,01	dkgA rpmA	dkgA, 2,5-diketo-D-gluconic acid reductase	Coenzyme transport and metabolism Translation, ribosomal structure and
682331	0,01	0,01	1,211,81		biogenesis Translation, ribosomal structure and
cg2595	0,57	0,04	rplU	rplU, 50S ribosomal protein L21	biogenesis
cg2597	0,66	0,01	rneG	rne, probable ribonuclease E (RNase E) protein rne, probable ribonuclease E (RNase E) protein	Transcription including sigma factors, RNA processing and modification
cg2598	0,59	0,00		hypothetical protein cg2598 hypothetical protein cg2598	Unknown function
cg2599	1,32	0,03		pirin-related protein-fragment	General function prediction only
cg2600	0,80	0,03	tnp1d	<pre>tnp1d(ISCg1d), transposase tnp1d(ISCg1d), transposase tnp1d(ISCg1d), transposase tnp1d(ISCg1d), transposase tnp1d(ISCg1d), transposase</pre>	DNA replication, recombination, repair, and degradation
cg2602	0,59	0,05		hypothetical protein cg2602	Unknown function
cg2604	1,56	0,01		putative secreted or membrane protein	Unknown function
cg2605	1,28	0,04		predicted acetyltransferase	General function prediction only
cg2609	1,29	0,05	valS	valS, valyl-tRNA synthetase	Translation, ribosomal structure and biogenesis
cg2610	0,49	0,01		ABC-type dipeptide/oligopeptide/nickel transport system, secreted component ABC-type dipeptide/oligopeptide/nickel transport system, secreted component	General function prediction only
cg2612	1,06	0,02		predicted rossmann fold nucleotide-binding	General function prediction only

cg2613	1,20	0,04	mdh	mdh, malate dehydrogenase mdh, malate dehydrogenase	Anaerobic metabolism
cg2616	0,66	0,01	vanA	vanA, vanillate demethylase, oxygenase subunit vanA, vanillate demethylase,	Carbon source transport and metabolism
cg2617	0,31	0,01	vanB	oxygenase subunit vanB, vanillate demethylase	Carbon source transport and metabolism
cg2618	0,39	0,00	vanK	vank, transporter (vanilate/protocatechuate) vanK, transporter (vanillate/protocatechuate)	Carbon source transport and metabolism
cg2619	4,73	0,00		predicted permease	General function prediction only
cg2620	2,92	0,00	clpX	clpX, ATP-dependent protease ATP-binding subunit clpX, ATP-dependent protease ATP- binding subunit	Protein turnover and chaperones
cg2622	0,86	0,01	pcaJ	pcaJ, ?-ketoadipate succinyl-CoA transferase subunit pcaJ, ?-ketoadipate succinyl-CoA transferase subunit	Carbon source transport and metabolism
cg2624	1,28	0,02	pcaR	pcaR, transcriptional regulator of 4- hydroxybenzoate, protocatechuate, p-cresol pathway	Signal transduction mechanisms
cg2628	0,46	0,01	pcaC	pcaC, ?-carboxymuconolactone decarboxylase	Carbon source transport and metabolism
cg2629	0,48	0,01	рсаВ	pcaB, ?-carboxy-cis,cis-muconate cycloisomerase pcaB, ?-carboxy-cis,cis- muconate cycloisomerase	Carbon source transport and metabolism
cg2630	0,38	0,00	pcaG	pcaG, protocatechuate dioxygenase alpha subunit pcaG, protocatechuate dioxygenase alpha subunit	Carbon source transport and metabolism
cg2631	0,35	0,00	рсаН	pcaH, protocatechuate dioxygenase beta subunit	Carbon source transport and metabolism
cg2633	3,31	0,02		putative restriction endonuclease	DNA replication, recombination, repair, and degradation
cg2634	0,62	0,01	catC	catC, muconolactone isomerase	Carbon source transport and metabolism
cg2635	0,44	0,01	catB	catB, chloromuconate cycloisomerase	Carbon source transport and metabolism
cg2636	0,28	0,00	catA1 (catA)	catA1, catechol 1,2-dioxygenase catA1, catechol 1,2-dioxygenase	Carbon source transport and metabolism
cg2637	0,29	0,00	benA	benA, benzoate 1,2-dioxygenase alpha subunit (aromatic ring hydroxylation dioxygenase A) benA, benzoate 1,2- dioxygenase alpha subunit (aromatic ring hydroxylation dioxygenase A)	Carbon source transport and metabolism
cg2638	0,30	0,01	benB	benB, benzoate dioxygenase small subunit	Carbon source transport and metabolism
cg2639	0,41	0,02	benC	benC, benzoate 1,2-dioxygenase ferredoxin	Carbon source transport and metabolism
-		<u> </u>		reductase subunit	
cg2640	0,40	0,03	benD	benD, cis-diol dehydrogenase	Carbon source transport and metabolism
cg2641	5,40	0,00	benR	benR, bacterial regulatory protein, LuxR family benR, bacterial regulatory protein,	Signal transduction mechanisms
		-,		LuxR family	
cg2642	2,06	0,01	benK1 (benK)	LuxR family benK1, putative benzoate transport protein	Carbon source transport and metabolism
cg2642 cg2643	2,06 1,72			LuxR family	
		0,01	benK1 (benK)	LuxR family benK1, putative benzoate transport protein benK1, putative benzoate transport protein benE, benzoate membrane transport protein clpP2, ATP-dependent Clp protease	Carbon source transport and metabolism
cg2643	1,72	0,01	benK1 (benK) benE	LuxR family benK1, putative benzoate transport protein benK1, putative benzoate transport protein benE, benzoate membrane transport protein	Carbon source transport and metabolism Carbon source transport and metabolism
cg2643 cg2644	1,72 4,81	0,01 0,04 0,00	benK1 (benK) benE clpP2	LuxR family benK1, putative benzoate transport protein benK1, putative benzoate transport protein benE, benzoate membrane transport protein clpP2, ATP-dependent Clp protease proteolytic subunit clpP1, ATP-dependent Clp protease	Carbon source transport and metabolism Carbon source transport and metabolism Protein turnover and chaperones
cg2643 cg2644 cg2645	1,72 4,81 5,29	0,01 0,04 0,00 0,00	benK1 (benK) benE clpP2	LuxR family benK1, putative benzoate transport protein benK1, putative benzoate transport protein benE, benzoate membrane transport protein clpP2, ATP-dependent Clp protease proteolytic subunit clpP1, ATP-dependent Clp protease proteolytic subunit	Carbon source transport and metabolism Carbon source transport and metabolism Protein turnover and chaperones Protein turnover and chaperones
cg2643 cg2644 cg2645 cg2648 cg2649 cg2650	1,72 4,81 5,29 0,68 0,70 0,83	0,01 0,04 0,00 0,00 0,02 0,04 0,01	benK1 (benK) benE clpP2 clpP1	LuxR family benK1, putative benzoate transport protein benK1, putative benzoate transport protein benE, benzoate membrane transport protein clpP2, ATP-dependent Clp protease proteolytic subunit clpP1, ATP-dependent Clp protease proteolytic subunit bacterial regulatory protein, ArsR family secreted penicillin binding protein hypothetical protein cg2650	Carbon source transport and metabolism Carbon source transport and metabolism Protein turnover and chaperones Protein turnover and chaperones Signal transduction mechanisms Transport and metabolism of further metabolites Unknown function
cg2643 cg2644 cg2645 cg2648 cg2649 cg2649 cg2650 cg2651	1,72 4,81 5,29 0,68 0,70	0,01 0,04 0,00 0,00 0,02 0,04	benK1 (benK) benE clpP2 clpP1	LuxR family benK1, putative benzoate transport protein benK1, putative benzoate transport protein benE, benzoate membrane transport protein clpP2, ATP-dependent Clp protease proteolytic subunit clpP1, ATP-dependent Clp protease proteolytic subunit bacterial regulatory protein, ArsR family secreted penicillin binding protein	Carbon source transport and metabolism Carbon source transport and metabolism Protein turnover and chaperones Protein turnover and chaperones Signal transduction mechanisms Transport and metabolism of further metabolites Unknown function Unknown function
cg2643 cg2644 cg2645 cg2648 cg2649 cg2650 cg2651 cg2652	1,72 4,81 5,29 0,68 0,70 0,83 2,47 0,50	0,01 0,04 0,00 0,00 0,02 0,04 0,01 0,00 0,02	benK1 (benK) benE clpP2 clpP1	LuxR family benK1, putative benzoate transport protein benK1, putative benzoate transport protein benE, benzoate membrane transport protein clpP2, ATP-dependent Clp protease proteolytic subunit clpP1, ATP-dependent Clp protease proteolytic subunit bacterial regulatory protein, ArsR family secreted penicillin binding protein hypothetical protein cg2650 conserved hypothetical protein-fragment tnp12a(ISCg12a), transposase-fragment	Carbon source transport and metabolism Carbon source transport and metabolism Protein turnover and chaperones Protein turnover and chaperones Signal transduction mechanisms Transport and metabolism of further metabolites Unknown function Unknown function DNA replication, recombination, repair, and degradation
cg2643 cg2644 cg2645 cg2648 cg2649 cg2650 cg2651 cg2652 cg2657	1,72 4,81 5,29 0,68 0,70 0,83 2,47 0,50 2,09	0,01 0,04 0,00 0,00 0,02 0,04 0,01 0,00 0,02 0,00	benK1 (benK) benE clpP2 clpP1 pbp5 tnp12a	LuxR family benK1, putative benzoate transport protein benK1, putative benzoate transport protein benE, benzoate membrane transport protein clpP2, ATP-dependent Clp protease proteolytic subunit clpP1, ATP-dependent Clp protease proteolytic subunit bacterial regulatory protein, ArsR family secreted penicillin binding protein hypothetical protein cg2650 conserved hypothetical protein-fragment tnp12a(ISCg12a), transposase-fragment putative membrane protein-fragment	Carbon source transport and metabolism Carbon source transport and metabolism Protein turnover and chaperones Protein turnover and chaperones Signal transduction mechanisms Transport and metabolism of further metabolites Unknown function Unknown function DNA replication, recombination, repair, and degradation Unknown function
cg2643 cg2644 cg2645 cg2648 cg2649 cg2650 cg2651 cg2652	1,72 4,81 5,29 0,68 0,70 0,83 2,47 0,50	0,01 0,04 0,00 0,00 0,02 0,04 0,01 0,00 0,02	benK1 (benK) benE clpP2 clpP1 pbp5	LuxR family benK1, putative benzoate transport protein benK1, putative benzoate transport protein benE, benzoate membrane transport protein clpP2, ATP-dependent Clp protease proteolytic subunit bacterial regulatory protein, ArsR family secreted penicillin binding protein hypothetical protein cg2650 conserved hypothetical protein-fragment tnp12a(ISCg12a), transposase-fragment putative membrane protein-fragment rpi, ribose-5-phosphate isomerase B rpi, ribose-5-phosphate isomerase B	Carbon source transport and metabolism Carbon source transport and metabolism Protein turnover and chaperones Protein turnover and chaperones Signal transduction mechanisms Transport and metabolism of further metabolites Unknown function Unknown function DNA replication, recombination, repair, and degradation
cg2643 cg2644 cg2645 cg2649 cg2649 cg2650 cg2651 cg2657 cg2657 cg2658 cg2658	1,72 4,81 5,29 0,68 0,70 0,83 2,47 0,50 2,09 2,14 0,76	0,01 0,04 0,00 0,00 0,02 0,04 0,01 0,00 0,02 0,00 0,03 0,01	benK1 (benK) benE clpP2 clpP1 pbp5 tnp12a	LuxR family benK1, putative benzoate transport protein benK1, putative benzoate transport protein benE, benzoate membrane transport protein clpP2, ATP-dependent Clp protease proteolytic subunit bacterial regulatory protein, ArsR family secreted penicillin binding protein hypothetical protein cg2650 conserved hypothetical protein-fragment tnp12a(ISCg12a), transposase-fragment putative membrane protein-fragment rpi, ribose-5-phosphate isomerase B rpi, ribose-5-phosphate isomerase B	Carbon source transport and metabolism Carbon source transport and metabolism Protein turnover and chaperones Protein turnover and chaperones Signal transduction mechanisms Transport and metabolism of further metabolites Unknown function Unknown function DNA replication, recombination, repair, and degradation Unknown function Central carbon metabolism Protein turnover and chaperones
cg2643 cg2644 cg2645 cg2648 cg2649 cg2650 cg2651 cg2652 cg2657 cg2658	1,72 4,81 5,29 0,68 0,70 0,83 2,47 0,50 2,09 2,14	0,01 0,04 0,00 0,02 0,02 0,04 0,01 0,00 0,02 0,00 0,03	benK1 (benK) benE clpP2 clpP1 pbp5 tnp12a rpi	LuxR family benK1, putative benzoate transport protein benK1, putative benzoate transport protein benE, benzoate membrane transport protein clpP2, ATP-dependent Clp protease proteolytic subunit bacterial regulatory protein, ArsR family secreted penicillin binding protein hypothetical protein cg2650 conserved hypothetical protein-fragment tnp12a(ISCg12a), transposase-fragment putative membrane protein-fragment rpi, ribose-5-phosphate isomerase B rpi, ribose-5-phosphate isomerase B pepN, aminopeptidase N hypothetical protein predicted by Glimmer	Carbon source transport and metabolism Carbon source transport and metabolism Protein turnover and chaperones Protein turnover and chaperones Signal transduction mechanisms Transport and metabolism of further metabolites Unknown function Unknown function DNA replication, recombination, repair, and degradation Unknown function Central carbon metabolism Protein turnover and chaperones Unknown function
cg2643 cg2644 cg2645 cg2649 cg2650 cg2651 cg2652 cg2653 cg2654 cg2657 cg2658 cg2662 cg2663 cg2663 cg2663 cg2663	1,72 4,81 5,29 0,68 0,70 0,83 2,47 0,50 2,09 2,14 0,76 2,22 1,08	0,01 0,04 0,00 0,02 0,04 0,01 0,04 0,01 0,00 0,02 0,00 0,03	benK1 (benK) benE clpP2 clpP1 pbp5 tnp12a rpi	LuxR family benK1, putative benzoate transport protein benK1, putative benzoate transport protein benE, benzoate membrane transport protein clpP2, ATP-dependent Clp protease proteolytic subunit bacterial regulatory protein, ArsR family secreted penicillin binding protein hypothetical protein cg2650 conserved hypothetical protein-fragment tnp12a(ISCg12a), transposase-fragment rpi, ribose-5-phosphate isomerase B rpi, ribose-5-phosphate isomerase B pope, aminopeptidase N hypothetical protein predicted by Glimmer crtl, phytoene desaturase (C-terminal fragment)	Carbon source transport and metabolism Carbon source transport and metabolism Protein turnover and chaperones Protein turnover and chaperones Signal transduction mechanisms Transport and metabolism of further metabolites Unknown function DNA replication, recombination, repair, and degradation Unknown function Central carbon metabolism Protein turnover and chaperones Unknown function Transport and metabolism of further metabolites
cg2643 cg2644 cg2645 cg2649 cg2650 cg2651 cg2652 cg2657 cg2657 cg2658 cg2662 cg2662	1,72 4,81 5,29 0,68 0,70 0,83 2,47 0,50 2,09 2,14 0,76 2,22	0,01 0,04 0,00 0,02 0,02 0,04 0,01 0,00 0,02 0,00 0,03 0,01 0,01	benK1 (benK) benE clpP2 clpP1 pbp5 tnp12a tnp12a rpi pepN	LuxR family benK1, putative benzoate transport protein benK1, putative benzoate transport protein benE, benzoate membrane transport protein clpP2, ATP-dependent Clp protease proteolytic subunit bacterial regulatory protein, ArsR family secreted penicillin binding protein hypothetical protein cg2650 conserved hypothetical protein-fragment tnp12a(ISCg12a), transposase-fragment putative membrane protein-fragment rpi, ribose-5-phosphate isomerase B rpi, ribose-5-phosphate isomerase B pepN, aminopeptidase N hypothetical protein predicted by Glimmer crtl, phytoene desaturase (C-terminal	Carbon source transport and metabolism Carbon source transport and metabolism Protein turnover and chaperones Protein turnover and chaperones Signal transduction mechanisms Transport and metabolism of further metabolites Unknown function Unknown function DNA replication, recombination, repair, and degradation Unknown function Central carbon metabolism Protein turnover and chaperones Unknown function Transport and metabolism of further

cg2688	0,73	0,03		ABC-type molybdenum transport system, ATPase component/photorepair protein PhrA	Inorganic ion transport and metabolism
cg2691	1,24	0,00		hypothetical protein cg2691	Unknown function
cg2694	0,58	0,02		hypothetical protein cg2694	Unknown function
cg2695	0,70	0,00		ABC-type transport system, ATPase component	General function prediction only
cg2699	2,87	0,02		hypothetical protein cg2699	Inorganic ion transport and metabolism
					Post-translational modification; Signal
cg2700	0,38	0,02	phoB	phoB, alkaline phosphatase precursor	transduction mechanisms
cg2701	0,40	0,02	musl	hypothetical protein cg2701	Carbon source transport and metabolism
cg2703	0,44	0,01	musG	sugar permease	Carbon source transport and metabolism
cg2704	0,52	0,04	musF	ABC-type sugar transport system, permease component	Carbon source transport and metabolism
cg2705	0,27	0,00	musE (amyE/malE1)	amyE, maltose-binding protein precursor	Carbon source transport and metabolism
cg2707	0,43	0,01	(011) 2) 11/0122)	hypothetical protein cg2707	Unknown function
-				msiK1, ABC-type sugar transport system,	
cg2708	0,47	0,02	musK (msiK1)	ATPase component	Carbon source transport and metabolism
cg2710	0,43	0,02	int3	int3, integrase	DNA replication, recombination, repair, and degradation
cg2712	0,86	0,02		AraC-type regulator AraC-type regulator	Signal transduction mechanisms
cg2714	0,59	0,05		Zn-dependent alcohol dehydrogenase, class III	General function prediction only
cg2715	0,69	0,03		hypothetical protein cg2715	Unknown function
cg2716	1,62	0,00	hyi	hyi, hydroxypyruvate isomerase	Carbon source transport and metabolism
cg2720	0,71	0,02	lppS	lppS, secreted lipoprotein ErfK/YbiS/YcfS/YnhG family lppS, secreted lipoprotein ErfK/YbiS/YcfS/YnhG family	General function prediction only
cg2723	0,38	0,00		hypothetical protein cg2723	Unknown function
cg2727	1,24	0,05		putative secreted protein putative secreted protein	Unknown function
cg2728	1,99	0,01	qlsK	glsK, glutaminase	Amino acid transport and metabolism
cg2729	0,72	0,02		transcriptional repressor, Lacl family, N- terminus	Signal transduction mechanisms
cg2732	1,69	0,01	gntV (gntK)	gntV, putative gluconokinase	Central carbon metabolism
cg2734	1,29	0,01	pncA	pncA, nicotinamidase/ pyrazinamidase	Coenzyme transport and metabolism
cg2735	1,95	0,00	P	hypothetical protein cg2735	Unknown function
cg2736	2,37	0,00	bcp	bcp, probable bacterioferritin comigratory oxidoreductase	Inorganic ion transport and metabolism
cg2737	1,82	0,03	fasR	fasR, regulator involved in control of cellular fatty acid synthesis	Signal transduction mechanisms
cg2738	1,24	0,04	acpS (ppt1)	acpS, 4-phosphopantetheinyl transferase acpS, 4-phosphopantetheinyl transferase	Lipid transport and metabolism
cg2745	1,37	0,02		hypothetical protein cg2745	Unknown function
cg2746	0,65	0,01		putative sugar diacid utilization regulator	Signal transduction mechanisms
cg2748	2,55	0,02		hypothetical protein cg2748	Unknown function
cg2750	4,18	0,00		hypothetical protein cg2750	Unknown function
cg2751	0,69	0,01		putative deoxyribonucleotide triphosphate pyrophosphatase	Nucleotide transport and metabolism
cg2753	1,53	0,01	rph	rph, ribonuclease PH	Transcription including sigma factors, RNA processing and modification
cg2755	0,57	0,01		hypothetical protein cg2755	Unknown function
cg2761	0,71	0,03	cpdA	metal-dependent hydrolase of the beta- lactamase superfamily III	Signal transduction mechanisms
cg2765	0,58	0,01		putative secreted protein	Unknown function
cg2765 cg2766	0,58	0,01		bacterial regulatory protein, MarR family	Signal transduction mechanisms
cg2766	1,35	0,01		L-aminopeptidase/D-esterase	General function prediction only
cg2768	1,35	0,02		hypothetical protein cg2770	Unknown function
	1,49	-		clpS, ATP-dependent Clp protease adaptor	
cg2772	1,49	0,03	clpS	protein ClpS	Protein turnover and chaperones
cg2774	1,58	0,02		nicotinate phosphoribosyltransferase	Coenzyme transport and metabolism
cg2775	1,99	0,00		hypothetical protein cg2775	Unknown function
cg2778	1,12	0,04		hypothetical protein cg2778	Unknown function
cg2779	1,20	0,03	serB	serB, phosphoserine phosphatase	Amino acid transport and metabolism
cg2780	0,57	0,02	ctaD	ctaD, cytochrome aa3 oxidase, subunit 1 ctaD, cytochrome aa3 oxidase, subunit 1 ctaD, cytochrome aa3 oxidase, subunit 1	Respiration and oxidative phosphorylation
cg2781	3,48	0,01	nrdF	nrdF, ribonucleotide-diphosphate reductase	Nucleotide transport and metabolism

cg2782	5,67	0,05	ftn	ftn, ferritin-like protein	Inorganic ion transport, metabolism, and storage
cg2783	0,88	0,01	gntR1	gntR1, gluconate-responsive repressors of genes involved in gluconate catabolism and the pentose phosphate pathway	Signal transduction mechanisms
cg2786	9,79	0,00	nrdE	nrdE, ribonucleotide-diphosphate reductase alpha subunit	Nucleotide transport and metabolism
cg2787	10,16	0,00	nrdl	nrdl, hypothetical protein cg2787	Nucleotide transport and metabolism
cg2789	7,12	0,00	nrdH (mrx2)	nrdH, putative glutaredoxin NRDH	0
cg2793	1,98	0,01		hypothetical protein cg2793	Unknown function
cg2795	2,62	0,00		NADPH quinone reductase or related Zn- dependent oxidoreductase	General function prediction only
cg2797	0,39	0,01		hypothetical protein cg2797	Unknown function
cg2799	0,50	0,00	pknE	pknE, putative secreted protein	Post-translational modification
cg2800	0,44	0,00	pgm	pgm, phosphoglucomutase	Central carbon metabolism
cg2801	0,86	0,00	ccrB	ccrB, camphor resistance protein CrcB	Inorganic ion transport, metabolism, and storage
cg2803	5,13	0,00		hypothetical protein cg2803	Unknown function
cg2805	0,66	0,02	psp4	psp4, putative secreted protein	Unknown function
cg2806	0,56	0,01	<u> </u>	hypothetical protein cg2806	Unknown function
cg2809	0,72	0,01		hypothetical protein cg2809	Unknown function
		L '		ABC-type transport system, involved in	
cg2811	2,90	0,00		lipoprotein release, permease component ABC-type transport system, involved in	General function prediction only
cg2812	3,71	0,00		lipoprotein release, ATPase component	General function prediction only
cg2824	1,66	0,00		SAM-dependent methyltransferase	General function prediction only
cg2828	0,61	0,05		hypothetical protein cg2828 hypothetical protein cg2828	Unknown function
cg2829	3,11	0,00	murA2	murA2, UDP-N-acetylglucosamine 1- carboxyvinyltransferase	Cell wall/membrane/envelope biogenesis
cg2830	1,67	0,02	pduO	pduO, adenosylcobalamin-dependent diol dehydratase gamma	Coenzyme transport and metabolism
cg2831	0,91	0,05	ramA	ramA, transcriptional regulator, acetate metabolism	Signal transduction mechanisms
cg2833	3,25	0,00	cysK	cysK, O-acetylserine (thiol)-lyase	Amino acid transport and metabolism
cg2834	1,67	0,01	<i>cysE</i>	cysE, serine O-acetyltransferase	Amino acid transport and metabolism
cg2835	1,41	0,04		predicted acetyltransferase	General function prediction only
cg2836	0,23	0,01	sucD	sucD, succinyl-CoA synthetase alpha subunit	Central carbon metabolism
cg2837	0,23	0,00	sucC	sucC, succinyl-CoA synthetase subunit beta	Central carbon metabolism
cg2840	0,62	0,03	actA (ctfA)	actA, CoA transferase (acetate, propionate, succinate)	Central carbon metabolism
cg2842	3,19	0,00	phoU	phoU, putative phosphate uptake regulator	Inorganic ion transport, metabolism, and storage
		0.00	pstC	pstC, ABC-type phosphate transport system, permease component	Inorganic ion transport, metabolism, and
cg2845	2,03	0,02	Ι.	permease component	storage
0	2,03 0,51	0,02		putative secreted protein	storage Unknown function
cg2848	0,51	0,01			Unknown function
cg2848 cg2849	0,51	0,01		putative secreted protein predicted kinase related to diacylglycerol kinase	Unknown function General function prediction only
cg2845 cg2848 cg2849 cg2850	0,51	0,01		putative secreted protein predicted kinase related to diacylglycerol kinase hypothetical protein cg2850	Unknown function
cg2848 cg2849 cg2850	0,51	0,01		putative secreted protein predicted kinase related to diacylglycerol kinase hypothetical protein cg2850 putative aminomethyltransferase, GCVT homolog putative aminomethyltransferase,	Unknown function General function prediction only
cg2848 cg2849 cg2850 cg2852	0,51 0,79 0,68 2,62	0,01 0,03 0,00 0,00		putative secreted protein predicted kinase related to diacylglycerol kinase hypothetical protein cg2850 putative aminomethyltransferase, GCVT homolog putative aminomethyltransferase, GCVT homolog	Unknown function General function prediction only Unknown function General function prediction only
cg2848 cg2849 cg2850 cg2852 cg2853	0,51 0,79 0,68	0,01 0,03 0,00	purM	putative secreted protein predicted kinase related to diacylglycerol kinase hypothetical protein cg2850 putative aminomethyltransferase, GCVT homolog putative aminomethyltransferase, GCVT homolog conserved hypothetical protein-fragment purM, phosphoribosylaminoimidazole	Unknown function General function prediction only Unknown function
cg2848 cg2849 cg2850 cg2852 cg2852 cg2853 cg2856	0,51 0,79 0,68 2,62 2,09 1,28	0,01 0,03 0,00 0,00 0,00 0,02 0,00	purM	putative secreted protein predicted kinase related to diacylglycerol kinase hypothetical protein cg2850 putative aminomethyltransferase, GCVT homolog putative aminomethyltransferase, GCVT homolog conserved hypothetical protein-fragment purM, phosphoribosylaminoimidazole synthetase	Unknown function General function prediction only Unknown function General function prediction only Unknown function Nucleotide transport and metabolism
cg2848 cg2849 cg2850 cg2852 cg2853 cg2853 cg2856 cg2857	0,51 0,79 0,68 2,62 2,09 1,28 2,63	0,01 0,03 0,00 0,00 0,00 0,02 0,00 0,00		putative secreted protein predicted kinase related to diacylglycerol kinase hypothetical protein cg2850 putative aminomethyltransferase, GCVT homolog putative aminomethyltransferase, GCVT homolog conserved hypothetical protein-fragment purM, phosphoribosylaminoimidazole synthetase purF, amidophosphoribosyltransferase	Unknown function General function prediction only Unknown function General function prediction only Unknown function Nucleotide transport and metabolism Nucleotide transport and metabolism
cg2848 cg2849 cg2850 cg2852 cg2853 cg2853 cg2856 cg2857	0,51 0,79 0,68 2,62 2,09 1,28	0,01 0,03 0,00 0,00 0,00 0,02 0,00	purM	putative secreted protein predicted kinase related to diacylglycerol kinase hypothetical protein cg2850 putative aminomethyltransferase, GCVT homolog putative aminomethyltransferase, GCVT homolog conserved hypothetical protein-fragment purM, phosphoribosylaminoimidazole synthetase purF, amidophosphoribosyltransferase putative acyl-CoA thioester hydrolase protein	Unknown function General function prediction only Unknown function General function prediction only Unknown function Nucleotide transport and metabolism
cg2848 cg2849 cg2850 cg2852 cg2853 cg2853 cg2856 cg2857 cg2860	0,51 0,79 0,68 2,62 2,09 1,28 2,63	0,01 0,03 0,00 0,00 0,00 0,02 0,00 0,00	purM	putative secreted protein predicted kinase related to diacylglycerol kinase hypothetical protein cg2850 putative aminomethyltransferase, GCVT homolog putative aminomethyltransferase, GCVT homolog conserved hypothetical protein-fragment purM, phosphoribosylaminoimidazole synthetase purF, amidophosphoribosyltransferase putative acyl-CoA thioester hydrolase protein purL, phosphoribosylformylglycinamidine synthase subunit II	Unknown function General function prediction only Unknown function General function prediction only Unknown function Nucleotide transport and metabolism Nucleotide transport and metabolism
cg2848 cg2849 cg2850 cg2852 cg2853 cg2853 cg2856 cg2857	0,51 0,79 0,68 2,62 2,09 1,28 2,63 0,48	0,01 0,03 0,00 0,00 0,00 0,00 0,00	purF	putative secreted protein predicted kinase related to diacylglycerol kinase hypothetical protein cg2850 putative aminomethyltransferase, GCVT homolog putative aminomethyltransferase, GCVT homolog conserved hypothetical protein-fragment purM, phosphoribosylaminoimidazole synthetase purF, amidophosphoribosyltransferase putative acyl-CoA thioester hydrolase protein purL, phosphoribosylformylglycinamidine	Unknown function General function prediction only Unknown function General function prediction only Unknown function Nucleotide transport and metabolism General function prediction only Nucleotide transport and metabolism Nucleotide transport and metabolism
cg2848 cg2849 cg2850 cg2852 cg2853 cg2853 cg2856 cg2857 cg2860 cg2862 cg2863	0,51 0,79 0,68 2,62 1,28 2,63 0,48 0,56	0,01 0,03 0,00 0,00 0,02 0,00 0,00 0,01 0,00	purM purF purL	putative secreted protein predicted kinase related to diacylglycerol kinase hypothetical protein cg2850 putative aminomethyltransferase, GCVT homolog putative aminomethyltransferase, GCVT homolog conserved hypothetical protein-fragment purM, phosphoribosylaminoimidazole synthetase purF, amidophosphoribosyltransferase putative acyl-CoA thioester hydrolase protein purL, phosphoribosylformylglycinamidine synthase subunit II purQ, phosphoribosylformylglycinamidine	Unknown function General function prediction only Unknown function General function prediction only Unknown function Nucleotide transport and metabolism Nucleotide transport and metabolism General function prediction only Nucleotide transport and metabolism Nucleotide transport and metabolism Transport and metabolism of further metabolites
cg2848 cg2849 cg2850 cg2852 cg2853 cg2856 cg2856 cg2860 cg2862 cg2863 cg2867 cg2868	0,51 0,51 0,79 0,68 2,62 1,28 2,63 0,48 0,56 0,78 0,70	0,01 0,03 0,00 0,00 0,00 0,00 0,00 0,00	purM purF purL purQ	putative secreted protein predicted kinase related to diacylglycerol kinase hypothetical protein cg2850 putative aminomethyltransferase, GCVT homolog putative aminomethyltransferase, GCVT homolog conserved hypothetical protein-fragment purM, phosphoribosylaminoimidazole synthetase purF, amidophosphoribosyltransferase putative acyl-CoA thioester hydrolase protein purL, phosphoribosylformylglycinamidine synthase subunit II purQ, phosphoribosylformylglycinamidine synthase subunit I gpx, glutathione peroxidase nuc, predicted extracellular nuclease	Unknown function General function prediction only Unknown function General function prediction only Unknown function Nucleotide transport and metabolism Nucleotide transport and metabolism General function prediction only Nucleotide transport and metabolism Nucleotide transport and metabolism Transport and metabolism of further metabolites DNA replication, recombination, repair, and degradation
cg2848 cg2849 cg2850 cg2852 cg2853 cg2856 cg2857 cg2860 cg2862 cg2863 cg2863	0,51 0,51 0,79 0,68 2,62 2,09 1,28 2,63 0,48 0,56 0,78 0,43	0,01 0,03 0,00 0,00 0,02 0,00 0,00 0,01 0,00 0,03	purM purF purL purQ mpx	putative secreted protein predicted kinase related to diacylglycerol kinase hypothetical protein cg2850 putative aminomethyltransferase, GCVT homolog putative aminomethyltransferase, GCVT homolog conserved hypothetical protein-fragment purM, phosphoribosylaminoimidazole synthetase purF, amidophosphoribosyltransferase putative acyl-CoA thioester hydrolase protein purL, phosphoribosylformylglycinamidine synthase subunit II purQ, phosphoribosylformylglycinamidine synthase subunit I gpx, glutathione peroxidase	Unknown function General function prediction only Unknown function General function prediction only Unknown function Nucleotide transport and metabolism Nucleotide transport and metabolism General function prediction only Nucleotide transport and metabolism Nucleotide transport and metabolism Nucleotide transport and metabolism Transport and metabolism of further metabolites DNA replication, recombination, repair, and degradation General function prediction only
cg2848 cg2849 cg2850 cg2852 cg2853 cg2856 cg2856 cg2860 cg2862 cg2863 cg2867 cg2868	0,51 0,51 0,79 0,68 2,62 1,28 2,63 0,48 0,56 0,78 0,70	0,01 0,03 0,00 0,00 0,00 0,00 0,00 0,00	purM purF purL purQ mpx	putative secreted protein predicted kinase related to diacylglycerol kinase hypothetical protein cg2850 putative aminomethyltransferase, GCVT homolog putative aminomethyltransferase, GCVT homolog conserved hypothetical protein-fragment purM, phosphoribosylaminoimidazole synthetase purF, amidophosphoribosyltransferase putative acyl-CoA thioester hydrolase protein purL, phosphoribosylformylglycinamidine synthase subunit II purQ, phosphoribosylformylglycinamidine synthase subunit I gpx, glutathione peroxidase nuc, predicted extracellular nuclease	Unknown function General function prediction only Unknown function General function prediction only Unknown function Nucleotide transport and metabolism Nucleotide transport and metabolism General function prediction only Nucleotide transport and metabolism Nucleotide transport and metabolism Nucleotide transport and metabolism Transport and metabolism of further metabolites DNA replication, recombination, repair, and degradation

cg2877	0,68	0,00	avtA	avtA, aminotransferase, uses alanine, keto- isovalerate and ketobutyrate	Amino acid transport and metabolism
cg2878	0,46	0,00	purD	purD, phosphoribosylamineglycine ligase purD, phosphoribosylamineglycine ligase	Nucleotide transport and metabolism
cg2883	0,70	0,04		SAM-dependent methyltransferase	General function prediction only
cg2884	0,59	0,01		dipeptide/tripeptide permease	General function prediction only
cg2886	0,70	0,03	bioD	bioD, dithiobiotin synthetase bioD, dithiobiotin synthetase	Coenzyme transport and metabolism
cg2887	1,53	0,04	phoS (cgtS3)	phoS, two component sensor kinase	Post-translational modification; Signal transduction mechanisms
cg2888	2,55	0,02	phoR (cqtR3)	phoR, two component response regulator	Signal transduction mechanisms
cg2890	1,28	0,01		putative amino acid processing enzyme	General function prediction only
cg2893	2,73	0,02		putative cadaverine transporter	Carbon source transport and metabolism
cg2896	0,34	0,00		putative secreted protein, hypothetical endoglucanase	General function prediction only
cg2898	1,78	0,00		putative 3-ketosteroid dehydrogenase	Carbon source transport and metabolism
cg2900	1,37	0,00	ddh	ddh, meso-diaminopimelate dehydrogenase	Amino acid transport and metabolism
cg2902	1,29	0,03		predicted hydrolase of the HAD superfamily	General function prediction only
cg2905	1,41	0,03	thrE	thrE, threonine export carrier	Amino acid transport and metabolism
				otsA, trehalose-6-phosphate synthase otsA,	Carbon source transport and metabolism;
cg2907	1,67	0,02	otsA	trehalose-6-phosphate synthase	Cell wall/membrane/envelope biogenesis
	4				Carbon source transport and metabolism;
cg2909	1,75	0,05	otsB	otsB, trehalose phosphatase	Cell wall/membrane/envelope biogenesis
cg2910	0,83	0,03	ipsA	transcriptional regulator, Lacl family	Signal transduction mechanisms
cg2911	0,58	0,00	znuA1	ABC-type Mn/Zn transport system, secreted Mn/Zn-binding (lipo)protein (surface adhesin)	Inorganic ion transport, metabolism, and storage
cg2912	0,75	0,01	znuC1	ABC-type cobalamin/Fe3+-siderophores transport system, ATPase component	Inorganic ion transport, metabolism, and storage
cg2913	0,58	0,02	znuB1	ABC-type Mn2+/Zn2+ transport system, permease component	Inorganic ion transport, metabolism, and storage
cg2915	0,35	0,03		hypothetical protein cg2915	Unknown function
-		1		ptsS, enzyme II sucrose protein ptsS,	
cg2925	0,33	0,01	ptsS	enzyme II sucrose protein scrB, putative sucrose-6-phosphate hydrolase	Carbon source transport and metabolism
cg2927	0,43	0,00	scrB	scrB, putative sucrose-6-phosphate hydrolase hydrolase	Carbon source transport and metabolism
cg2929	2,35	0,01	nagA	nagA1, probable N-acetylglucosamine-6- phosphate deacetylase nagA1, probable N- acetylglucosamine-6-phosphate deacetylase	Carbon source transport and metabolism
cg2931	4,67	0,01	nanA	nanA, N-acetylneuraminate lyase (aldolase) nanA, N-acetylneuraminate lyase (aldolase)	Carbon source transport and metabolism
cg2932	3,58	0,01	nanK	transcriptional regulator ROK family, putative sugar kinase	Carbon source transport and metabolism
cg2933	3,99	0,01	nanE	nanE, N-acetylmannosamine-6-phosphate 2- epimerase / N-AC nanE, N- acetylmannosamine-6-phosphate 2- epimerase / N-AC	Carbon source transport and metabolism
cg2935	0,45	0,01	nanP	nanP, neuraminidase NANP nanP, neuraminidase NANP	Carbon source transport and metabolism
cg2936	0,49	0,00	nanR	bacterial regulatory proteins, GntR family	Signal transduction mechanisms
cg2937	0,55	0,02	siaE	ABC-type dipeptide/oligopeptide/nickel transport system, secreted component ABC-type dipeptide/oligopeptide/nickel transport system, secreted component ABC-type dipeptide/oligopeptide/nickel transport system, secreted component	Carbon source transport and metabolism
cg2938	0,50	0,02	siaF	ABC-type dipeptide/oligopeptide/nickel transport system, permease component ABC-type dipeptide/oligopeptide/nickel transport system, permease component	Carbon source transport and metabolism
cg2939	0,70	0,00	siaG	ABC-type dipeptide/oligopeptide/nickel transport system, fused permease and ATPase components	Carbon source transport and metabolism
cg2940	0,56	0,01	sial	ATPase components of ABC-type transport system, contain duplicated ATPase domains	Carbon source transport and metabolism
cg2941	0,48	0,02		lyse type translocator	Amino acid transport and metabolism
cg2943	1,63	0,00		hypothetical protein cg2943	Unknown function
cg2944				ispF, 2-C-methyl-D-erythritol 2,4-	Transport and metabolism of further
	1,55	0,00	ispF	cyclodiphosphate synthase ispF, 2-C-	metabolites

				methyl-D-erythritol 2,4-cyclodiphosphate synthase	
cg2945	1,96	0,02	ispD	ispD, 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase ispD, 2-C-methyl-D-	Transport and metabolism of further metabolites
cg2946	3,38	0,01		erythritol 4-phosphate cytidylyltransferase CarD-like transcriptional regulator CarD-like transcriptional regulator CarD-like	Signal transduction mechanisms
cg2947	0,60	0,03	cqtR5	transcriptional regulator cgtR5, putative two component response	Signal transduction mechanisms
-		<u> </u>		regulator cgtS5, probable two component sensor	Post-translational modification; Signal
cg2948	0,48	0,02	cgtS5	kinase	transduction mechanisms
cg2949	0,54	0,05		putative secreted protein	Unknown function
cg2950	0,48	0,03	radA	putative ATP-dependent protease, DNA repair	DNA replication, recombination, repair, and degradation
cg2951	0,77	0,04		predicted nucleic-acid-binding protein (contains the HHH domain)	General function prediction only
cg2952	0,33	0,00		putative secreted protein	Unknown function
cg2953	0,62	0,01	vdh	xylC, benzaldehyde dehydrogenase xylC, benzaldehyde dehydrogenase	Carbon source transport and metabolism
cg2954	0,69	0,01	bca (cynT)	cynT, carbonic anhydrase	Inorganic ion transport, metabolism, and storage
cg2955	0,82	0,02	mutY	mutY, A/g-specific adenine glycosylase	DNA replication, recombination, repair, and degradation
cg2959	0,54	0,01		putative secreted protein	Unknown function
cg2962	3,70	0,03		uncharacterized enzyme involved in biosynthesis of extracellular polysaccharides	Cell wall/membrane/envelope biogenesi:
cg2965	0,67	0,05		AraC-type transcriptional regulator	Signal transduction mechanisms
cg2966	0,52	0,01		phenol 2-monooxygenase	Carbon source transport and metabolism
cg2975	1,52	0,00	panC2	panC2, pantoatebeta-alanine ligase	Coenzyme transport and metabolism
cg2976	1,93	0,01		hypothetical protein cg2976	Unknown function
cg2977	1,43	0,00		hypothetical protein cg2977	Unknown function
cg2982	0,78	0,04	folP1	folP1, dihydropteroate synthase	Coenzyme transport and metabolism
cg2983	0,65	0,01	folE	folE, GTP cyclohydrolase I	Coenzyme transport and metabolism
cg2985	0,69	0,04	hpt	hpt, hypoxanthine-guanine phosphoribosyltransferase	Nucleotide transport and metabolism
cg2986	0,43	0,01	mesJ	mesJ, ATPase of the PP-loop superfamily implicated in cell cycle control	Cell division, chromosome partitioning
cg2987	0,47	0,02	pbp4b (dacB)	dacB, penicillin-binding protein, D-Ala-D-Ala carboxypeptidase dacB, penicillin-binding protein, D-Ala-D-Ala carboxypeptidase	Cell wall/membrane/envelope biogenesis
cg2988	0,74	0,01	рра	ppa, inorganic pyrophosphatase	Inorganic ion transport, metabolism, and storage
cg2990	1,20	0,01	speE	speE, spermidine synthase	Transport and metabolism of further metabolites
cg2991	0,90	0,02		hypothetical protein cg2991	Unknown function
cg2993	1,10	0,02		hypothetical protein cg2993 hypothetical	Unknown function
cg2994	1 21	0.02		protein cg2993	Linknown function
cg2994 cg2999	1,21 1,98	0,02		putative secreted or membrane protein putative ferredoxin reductase	Unknown function General function prediction only
cg3001	0,75	0,01		hypothetical protein cg3001	Signal transduction mechanisms
-	0,75	0,05		cps, non-ribosomal peptide synthetase cps,	-
cg3003	0,71	0,03	cps	non-ribosomal peptide synthetase	Amino acid transport and metabolism
cg3004	0,61	0,01	gabD1	gabD2, succinic semialdehyde dehydrogenase	Transport and metabolism of further metabolites
cg3008	0,62	0,03	porA	porA, main cell wall channel protein	Inorganic ion transport, metabolism, and storage Transport and metabolism of further metabolites
cg3013	0,60	0,02		hypothetical protein cg3013	Unknown function
cg3014	0,56	0,01		hypothetical protein cg3014	Unknown function
cg3015	0,46	0,01		hypothetical protein cg3015	Unknown function
cg3016	0,38	0,00		hypothetical protein cg3016	Unknown function
cg3017	0,44	0,03		hypothetical protein cg3017 hypothetical protein cg3017 hypothetical protein cg3017	Unknown function
cg3018	0,52	0,01		hypothetical protein cg3018	Unknown function
	0,55	0,01		putative secreted protein	Unknown function
cg3019	0,55	- /			
	0,74	0,03	tpdA	hypothetical protein cg3021 hypothetical protein cg3021	Protein turnover and chaperones

cg3024	1,46	0,00	mrpA2 (mrpA)	mrpA, NADH ubiquinone oxidoreductase subunit 5 (chain L)/multisubunit Na+/H+ antiporter, A subunit	Inorganic ion transport, metabolism, and storage	
cg3025	1,62	0,01	mrpC2 (mrpC)	mrpC, hypothetical protein cg3025 mrpC, hypothetical protein cg3025	Inorganic ion transport, metabolism, and storage	
cg3026	2,27	0,01	mrpD2 (mrpD)	mrpD, NADH-ubiquinone oxidoreductase/multisubunit Na+/H+ antiporter, D subunit	Inorganic ion transport, metabolism, and storage	
cg3027	2,18	0,01	mrpE2 (mrpE)	mrpE, hypothetical protein cg3027	Inorganic ion transport, metabolism, and storage	
cg3028	2,60	0,02	mrpF2 (mrpF)	mrpF, hypothetical protein cg3028	Inorganic ion transport, metabolism, and storage	
cg3029	2,48	0,01	mrpG2 (mrpG)	mrpG, multisubunit Na+/H+ antiporter, g subunit	Inorganic ion transport, metabolism, and storage	
cg3031	0,73	0,05		hypothetical protein cg3031	Unknown function	
cg3033	0,51	0,02		hypothetical protein cg3033	Unknown function	
cg3034	0,45	0,00	def1 (def)	def, peptide deformylase	Post-translational modification	
cg3035	0,46	0,00	nagS?	acetyltransferase	Amino acid transport and metabolism	
cg3036	0,60	0,03	xthA	xthA, exodeoxyribonuclease III	DNA replication, recombination, repair, and degradation	
cg3040	0,85	0,03		predicted epimerase, PhzC/PhzF homolog	General function prediction only	
cg3041	0,82	0,04		ABC-type multidrug transport system, permease component	General function prediction only	
cg3046	2,00	0,01	pknG	pknG, serine/threonine protein kinase	Post-translational modification	
cg3047	0,28	0,00	ackA	ackA, acetate/propionate kinase	Anaerobic metabolism	
cg3048	0,28	0,00	pta	pta, phosphate acetyltransferase	Anaerobic metabolism	
cg3049	3,45	0,00	fprA (fpr1)	fprA, putative ferredoxin/ferredoxin-NADP reductase	Transport and metabolism of further metabolites	
cg3050	1,24	0,02		acyltransferase	General function prediction only	
cg3051	0,70	0,02		putative secreted protein	Unknown function	
cg3051	0,49	0,03		permease of the major facilitator superfamily	General function prediction only	
cg3033	0,45	0,01		purT, 5-phosphoribosylglycinamide	General Iditation prediction only	
cg3054	0,51	0,02	purT	transformylase purT, 5- phosphoribosylglycinamide transformylase	Nucleotide transport and metabolism	
cg3057	0,75	0,04		putative secreted protein	Unknown function	
cg3058	2,72	0,04	tnp8b	tnp8b(ISCg8a), transposase	DNA replication, recombination, repair, and degradation	
cg3059	2,41	0,01	tnp8a	tnp8a(ISCg8a), transposase	DNA replication, recombination, repair, and degradation	
cg3060	1,65	0,03	cgtS6	cgtS6, probable two component sensor kinase	Post-translational modification; Signal transduction mechanisms	
cg3061	2,33	0,01	cgtR6	cgtR6, putative two component response regulator	Signal transduction mechanisms	
cg3063	0,72	0,00	purA	purA, adenylosuccinate synthetase	Nucleotide transport and metabolism	
cg3065	1,31	0,02	(hypothetical protein cg3065	Unknown function	
cg3068	1,34	0,03	fda	fda, fructose-bisphosphate aldolase	Central carbon metabolism	
cg3070	0,55	0,00		SpoU rRNA methylase family protein	Translation, ribosomal structure and biogenesis	
cg3071	0,59	0,02	pyrE	pyrE, orotate phosphoribosyltransferase	Nucleotide transport and metabolism	
cg3072	1,92	0,02		putative secreted or membrane protein	Unknown function	
cg3074	0,61	0,00		predicted transcriptional regulator	Signal transduction mechanisms	
cg3075	0,63	0,00	cmr	cmr, multidrug resistance protein	Transport and metabolism of further metabolites	
cg3077	1,91	0,00		hypothetical protein cg3077	Unknown function	
cg3078	1,63	0,04		hypothetical protein cg3078	Unknown function	
cg3079	2,05	0,04	clpB	clpB, probable ATP-dependent protease (heat shock protein)	Protein turnover and chaperones	
cg3080	0,61	0,04	gltS	Na+/glutamate symporter	Inorganic ion transport, metabolism, and	
cg3084	1,92	0,03		predicted flavoprotein involved in K+ transport	storage Inorganic ion transport, metabolism, and	
cg3086	0,63	0,01		putative L,L-cystathionine gamma-lyase	storage Transport and metabolism of further matabolitae	
cg3096	0.25	0.02	ald (padA)	ald alcohol degybdrogenase	metabolites	
cg3096	0,35	0,02	αια (ραάΑ)	ald, alcohol degyhdrogenase hspR, transcriptional regulator MerR family	Carbon source transport and metabolism	
cg3097	1,79	0,00	hspR	hspR, transcriptional regulator MerR family	Signal transduction mechanisms	
cg3099	2,04	0,04	grpE	grpE, molecular chaperone GrpE (heat shock protein)	Protein turnover and chaperones	
cg3102	0,53	0,04		nucleosidase	Nucleotide transport and metabolism	
cg3103	0,38	0,01		hypothetical protein cg3103	Unknown function	

cg3104	0,47	0,01		ATPase involved in DNA repair ATPase involved in DNA repair	DNA replication, recombination, repair, and degradation	
cg3105	0,37	0,01		hypothetical protein cg3105	Unknown function	
cg3105	0,47	0,01		hypothetical protein cg3106 hypothetical protein cg3106 hypothetical protein cg3106	Unknown function	
cg3107	0,21	0,01	adhA	adhA, Zn-dependent alcohol dehydrogenase	Carbon source transport and metabolism	
cg3112	4,78	0,00	cysZ	predicted permease	Amino acid transport and metabolism; Inorganic ion transport, metabolism, and storage	
cg3113	3,92	0,00	cysY	hypothetical protein cg3113	Amino acid transport and metabolism; Inorganic ion transport, metabolism, and storage	
cg3114	4,56	0,00	cysN	cysN, sulfate adenyltransferase subunit 1	Amino acid transport and metabolism; Inorganic ion transport, metabolism, and storage	
cg3115	4,86	0,00	cysD	cysD, sulfate adenylyltransferase subunit 2	Amino acid transport and metabolism; Inorganic ion transport, metabolism, and storage	
cg3116	4,38	0,01	cysH	cysH, phosphoadenosine-phosphosulfate reductase	Amino acid transport and metabolism; Inorganic ion transport, metabolism, and storage	
cg3117	3,62	0,02	cysX	hypothetical protein cg3117	Amino acid transport and metabolism; Inorganic ion transport, metabolism, and storage	
cg3118	4,32	0,01	cysl	cysl, sulfite reductase (hemoprotein) cysl, sulfite reductase (hemoprotein)	Amino acid transport and metabolism; Inorganic ion transport, metabolism, and storage	
cg3119	5,29	0,00	cysJ (fpr2)	cysJ, probable sulfite reductase (flavoprotein)	Amino acid transport and metabolism; Inorganic ion transport, metabolism, and storage	
cg3120	1,47	0,01		hypothetical protein cg3120	Unknown function	
cg3122	0,55	0,03	phnB1	phnB1, uncharacterized protein, homolog of PhnB E,coli	Inorganic ion transport, metabolism, and storage	
cg3125	0,46	0,02	tctA	tctA, tricarboxylate transport membrane protein	Carbon source transport and metabolism	
cg3126	0,38	0,00	tctB	tctB, tricarboxylate transport membrane protein	Carbon source transport and metabolism	
cg3127	0,46	0,00	tctC	tctC, tricarboxylate-binding protein	Carbon source transport and metabolism	
cg3128	0,75	0,02		ABC-type transport system, ATPase component	General function prediction only	
cg3129	0,80	0,04		ABC-type transport system, ATPase component	General function prediction only	
cg3130	0,43	0,01		permease of the major facilitator superfamily	General function prediction only	
cg3131	1,67	0,01		acetylornithine deacetylase or related deacylase	General function prediction only	
cg3133	0,47	0,01		ATPase component STY3232 of energizing module of queuosine-regulated ECF transporter / ATPase component STY3233 of	Carbon source transporter and metabolism; Inorganic ion transport, metabolism, and storage	
cg3134	0,54	0,02		transmembrane component STY3231 of energizing module of queuosine-regulated ECF transporter	Carbon source transporter and metabolism; Inorganic ion transport, metabolism, and storage	
cg3135	0,56	0,01		substrate-specific component STY3230 of queuosine-regulated ECF transporter	Carbon source transporter and metabolism; Inorganic ion transport, metabolism, and storage	
cg3137	0,54	0,00	iunH1	iunH1, inosine-uridine preferring nucleoside hydrolase iunH1, inosine-uridine preferring nucleoside hydrolase	Nucleotide transport and metabolism	
cg3138	0,82	0,01	ppmA	ppmA, putative membrane-bound protease modulator	Protein turnover and chaperones	
cg3141	3,36	0,02	hmp	hmp, flavohemoprotein	Inorganic ion transport, metabolism, and storage	
cg3142	1,37	0,04		hypothetical protein cg3142	Unknown function	
cg3143	2,01	0,04		putative secreted protein	Unknown function	
cg3148	0,77	0,02	fepC	ABC-type cobalamin/Fe3+-siderophores transport system, ATPase component	General function prediction only	
cg3149	0,62	0,01	alaT	alaT, aminotransferase, uses alanine, glutamate, 2-aminobutyrate ad aspartate	Amino acid transport and metabolism	
cg3154	1,83	0,02	udgA2	udgA2, UDP-glucose 6-dehydrogenase	Nucleotide transport and metabolism	
cg3155	1,85	0,03	dcd	dcd, deoxycytidine triphosphate deaminase	Nucleotide transport and metabolism	
cg3157	1,94	0,04		putative secreted protein putative secreted protein	Unknown function	

cg3160 cg3162 cg3164 cg3165 cg3170 cg3172 cg3174 cg3176 cg3177 cg3177 cg3179	0,68 0,38 0,59 0,69 0,76 1,52 1,60 0,60 0,57 0,65	0,00 0,04 0,01 0,01 0,01 0,01		precursor putative secreted protein hypothetical protein cg3162 putative secreted or membrane protein hypothetical protein cg3165 hypothetical protein cg3165 tellurite resistance protein or related permease tellurite resistance protein or	Unknown function Unknown function Cell wall/membrane/envelope biogenesis Cell wall/membrane/envelope biogenesis	
cg3162 cg3164 cg3165 cg3170 cg3172 cg3172 cg3174 cg3176 cg3177	0,38 0,59 0,69 0,76 1,52 1,60 0,60 0,57	0,04 0,01 0,01 0,01 0,01		hypothetical protein cg3162 putative secreted or membrane protein hypothetical protein cg3165 hypothetical protein cg3165 tellurite resistance protein or related permease tellurite resistance protein or	Unknown function Cell wall/membrane/envelope biogenesis	
cg3164 cg3165 cg3170 cg3172 cg3174 cg3176 cg3177	0,59 0,69 0,76 1,52 1,60 0,60 0,57	0,01 0,01 0,01 0,02		putative secreted or membrane protein hypothetical protein cg3165 hypothetical protein cg3165 tellurite resistance protein or related permease tellurite resistance protein or	Cell wall/membrane/envelope biogenesis	
cg3165 cg3170 cg3172 cg3174 cg3176 cg3177	0,69 0,76 1,52 1,60 0,60 0,57	0,01 0,01 0,02		hypothetical protein cg3165 hypothetical protein cg3165 tellurite resistance protein or related permease tellurite resistance protein or		
cg3172 cg3174 cg3176 cg3177	1,52 1,60 0,60 0,57	0,02		tellurite resistance protein or related permease tellurite resistance protein or		
cg3172 cg3174 cg3176 cg3177	1,52 1,60 0,60 0,57	0,02	ture D		General function prediction only	
cg3174 cg3176 cg3177	1,60 0,60 0,57	<u> </u>		related permease trmB, tRNA (guanine-N(7)-)-	Translation, ribosomal structure and	
cg3176 cg3177	0,60 0,57	0,00	trmB	methyltransferase	biogenesis	
cg3177	0,57		mmpL1	mmpL1, exporter of the MMPL family	Cell wall/membrane/envelope biogenesis	
		0,02		hypothetical protein cg3176	Unknown function	
cg3179	0,65	0,02	pccB (accD4)	pccB, propionyl-CoA carboxylase beta chain	Cell wall/membrane/envelope biogenesis	
CEDI/J		0,00	fadD2	fadD2, acyl-CoA synthase	Cell wall/membrane/envelope biogenesis	
cg3180	0,61	0,01		putative secreted protein, lipase-associated function	General function prediction only	
cg3181	0,40	0,01		putative secreted protein	Unknown function	
cg3182	0,45	0,01	cop1	cop1, trehalose corynomycolyl transferase	Cell wall/membrane/envelope biogenesis	
cg3185	0,49	0,00	·	hypothetical protein cg3185	Unknown function	
cg3186	0,45	0,01	cmt2	cmt2, trehalose corynomycolyl transferase	Cell wall/membrane/envelope biogenesis	
cg3187	0,44	0,01	aftB	aftB, arabinofuranosyltransferase	Cell wall/membrane/envelope biogenesis	
-23101	0,14	0,05	5,00		Transport and metabolism of further	
cg3189	0,44	0,00	ubiA	hypothetical protein cg3189	metabolites; Cell wall/membrane/envelope biogenesis	
		<u> </u>		membrane-associated pheenbolinid	wary memoraney envelope progenesis	
cg3190	0,51	0,01		membrane-associated phospholipid phosphatase membrane-associated	Unknown function	
cg3192	2,37	0,01		phospholipid phosphatase putative secreted or membrane protein	Unknown function	
cg3194	0,80	0,05		membrane-associated PA-phosphatase related phosphoesterase	Cell wall/membrane/envelope biogenesis	
cg3195	0,21	0,01		flavin-containing monooxygenase (FMO)	General function prediction only	
cg3196	0,55	0,00	alf	glf, UDP-galactopyranose mutase	Cell wall/membrane/envelope biogene	
cg3199	1,76	0,00	37	predicted hydrolase of the HAD superfamily	General function prediction only	
cg3200	1,36	0,03		acyltransferase family protein	General function prediction only	
cg3201	1,53	0,01	serS	serS, seryl-tRNA synthetase	Translation, ribosomal structure and biogenesis	
cg3203	1,33	0,03		hypothetical protein cg3203	Unknown function	
cg3204	0,64	0,02		hypothetical protein cg3204	Unknown function	
cg3205	0,50	0,02		hypothetical protein cg3205	Unknown function	
cg3205	0,46	0,04		phosphoglycerate mutase family protein	General function prediction only	
-	-	· ·	mhaA		· · · · · · · · · · · · · · · · · · ·	
cg3207	0,64	0,00	pheA	pheA, prephenate dehydratase Asp-tRNAAsn/Glu-tRNAGIn amidotransferase	Amino acid transport and metabolism	
cg3208	0,71	0,04		A subunit or related amidase	Translation, ribosomal structure and biogenesis	
cg3209	0,58	0,00		predicted metal-dependent membrane protease	Protein turnover and chaperones	
cg3210	0,43	0,00	ІсрВ	cell envelope-related transcriptional regulator	Cell wall/membrane/envelope biogenesis	
cg3211	1,80	0,01		putative secreted protein	Unknown function	
cg3213	2,03	0,01		putative secreted protein	Unknown function	
cg3214	0,59	0,01		hypothetical protein cg3214	Unknown function	
cg3216	0,33	0,02	gntP	gntP, gluconate permease	Carbon source transport and metabolism	
cg3218	1,32	0,04		pyruvate kinase	General function prediction only	
-g cg3220	0,39	0,03		hypothetical protein cg3220	Unknown function	
cg3221	0,72	0,03		predicted hydrolase of the HAD superfamily	General function prediction only	
cg3223	1,52	0,03		NADPH-dependent FMN reductase	Coenzyme transport and metabolism	
cg3225	1,45	0,04		putative serine/threonine-specific protein	Post-translational modification; Signal	
cg3226	0,03	0,00		phosphatase putative L-lactate permease	transduction mechanisms Carbon source transport and metabolism	
cg3227	0,09	0,00	lldD	lldD, quinone-dependent L-lactate dehydrogenase LldD	Carbon source transport and metabolism Respiration and oxidative phosphorylatio	
cg3228	0,35	0,01		hypothetical protein cg3228		
		0,01		secreted phosphohydrolase, ICC family	Unknown function General function prediction only	
cg3232	1,91	· ·				
cg3233 cg3234	3,52 1,85	0,01		hypothetical protein cg3233 metal-dependent amidase/aminoacylase/carboxypeptidase metal-dependent	Unknown function Protein turnover and chaperones	

cg3235	2,13	0,00	#NV	hypothetical protein cg3235 hypothetical protein cg3235	#NV	
cg3236	3,41	0,00	msrA	msrA, peptide methionine sulfoxide reductase	Transport and metabolism of further metabolites	
cg3238	0,70	0,01		hypothetical protein cg3238	Unknown function	
cg3243	0,30	0,01		predicted RecB family nuclease	DNA replication, recombination, repair, and degradation	
cg3246	0,66	0,03		bacterial regulatory protein, MarR family	Signal transduction mechanisms	
cg3248	0,75	0,02	hrrS (cgtS11)	cgtS11, probable two component sensor kinase cgtS11, probable two component sensor kinase	Post-translational modification; Signal transduction mechanisms	
cg3249	0,85	0,03		putative secreted protein	Unknown function	
cg3252	1,83	0,00		putative inner membrane protein translocase component YidC	Protein secretion	
cg3253	1,54	0,02	mcbR	mcbR, TetR-type transcriptional regulator of sulfur metabolism	Signal transduction mechanisms	
cg3254	1,64	0,02		hypothetical protein cg3254 hypothetical protein cg3254	Unknown function	
cg3256	1,72	0,00		alkanal monooxygenase alpha chain	General function prediction only	
cg3257	1,56	0,03		hypothetical protein cg3257	Unknown function	
cg3258	1,63	0,04	rluC2	rluC2, putative ribosomal pseudouridine synthase	Translation, ribosomal structure and biogenesis	
cg3260	0,51	0,04	#NV	hypothetical protein cg3260 hypothetical protein cg3260 hypothetical protein cg3260	#NV	
cg3263	0,64	0,03		hypothetical protein cg3263	Unknown function	
cg3264	1,62	0,01	rsmP	rsmP, cytoskeletal protein RsmP, regulates rod-shape morphology	Cell division, chromosome partitioning	
cg3267	0,53	0,02		hypothetical protein cg3267	Unknown function	
cg3273	2,75	0,03		hypothetical protein predicted by Glimmer	Unknown function	
cg3274	4,40	0,01		site-specific recombinases, DNA invertase Pin homolog-fragment site-specific recombinases, DNA invertase Pin homolog- fragment	DNA replication, recombination, repair, and degradation	
cg3275	3,50	0,00	fdxA	fdxA, ferredoxin	General function prediction only	
cg3276	1,32	0,03	#NV	hypothetical protein cg3276	#NV	
cg3277	2,58	0,02		uncharacterized ACR, double-stranded beta- helix domain	General function prediction only	
cg3279	2,75	0,01		putative dehydrogenase-fragment	General function prediction only	
cg3280	4,98	0,00		putative secreted protein putative secreted protein	Unknown function	
cg3281	6,89	0,00	сорВ	probable cation-transporting ATPase transmembrane protein	Inorganic ion transport, metabolism, and storage	
cg3282	6,22	0,00		cation transport ATPase	Inorganic ion transport, metabolism, and storage	
cg3283	7,40	0,01		hypothetical protein predicted by Glimmer	Unknown function	
cg3284	0,33	0,02	copS (cgtS9)	cgtS9, probable two component sensor kinase	Post-translational modification; Signal transduction mechanisms	
cg3285	0,57	0,04	copR (cgtR9)	cgtR9, putative two component response regulator	Signal transduction mechanisms	
cg3286	0,46	0,03		putative secreted protein	Unknown function	
cg3287	0,49	0,01	сорО	secreted multicopper oxidase	Inorganic ion transport, metabolism, and storage	
cg3288	0,35	0,00		hypothetical protein predicted by Glimmer	Unknown function	
cg3291	0,33	0,04		bacterial regulatory protein, Crp family bacterial regulatory protein, Crp family	Signal transduction mechanisms	
cg3294	0,49	0,02		hypothetical protein cg3294	Unknown function	
cg3295	0,67	0,02		cation transport ATPase	Inorganic ion transport, metabolism, and storage	
cg3297	1,21	0,03	tnp19b	tnp19b(ISCg19a), transposase-fragment tnp19b(ISCg19a), transposase-fragment	DNA replication, recombination, repair, and degradation	
cg3299	0,55	0,03	trxB1	trxB1, thioredoxin	Transport and metabolism of further metabolites	
cg3300	0,40	0,00		cation transport ATPase	Inorganic ion transport, metabolism, and storage	
cg3303	2,92	0,02		transcriptional regulator PadR-like family	Signal transduction mechanisms	
cg3306	0,54	0,02	rpll	rpll, 50S ribosomal protein L9	Translation, ribosomal structure and biogenesis	
cg3308	0,52	0,03	rpsF	rpsF, 30S ribosomal protein S6	Translation, ribosomal structure and biogenesis	
		-	1		ative secreted protein Unknown function	

cg3311	0,67	0,04		hypothetical protein cg3311	Unknown function	
cg3313	1,17	0,03	pbp1b (mcrB)	mrcB, membrane carboxypeptidase, penicillin-binding protein Cell wall/membrane/envelope bio		
cg3314	2,02	0,01		hypothetical protein cg3314	Unknown function	
cg3315	1,81	0,01	malR	bacterial regulatory protein, MarR family	Signal transduction mechanisms	
cg3316	2,06	0,00		universal stress protein UspA or related nucleotide-binding protein	Transcription including sigma factors, RNA processing and modification	
cg3318	2,89	0,00		uncharacterized enzyme involved in biosynthesis of extracellular polysaccharides	Cell wall/membrane/envelope biogenes	
cg3320	0,75	0,02		ABC-type transport system, involved in lipoprotein release, permease component	Protein secretion	
cg3321	0,78	0,04		ABC-type transport system, involved in lipoprotein release, ATPase component	Protein secretion	
cg3323	0,46	0,03	ino1	myo-inositol-1-phosphate synthase	Cell wall/membrane/envelope biogenesis	
cg3324	0,47	0,01		putative secreted protein	Unknown function	
cg3325	0,65	0,01		hypothetical protein cg3325 hypothetical protein cg3325	Unknown function	
cg3327	4,38	0,04	dps	dps, starvation-induced DNA protecting protein	Inorganic ion transport, metabolism, and storage	
cg3328	0,86	0,04	mutM2	mutM2, probable formamidopyrimidine-DNA glycosylase protein	DNA replication, recombination, repair, and degradation	
cg3329	3,25	0,01		hypothetical protein cg3329	Unknown function	
cg3330	1,84	0,01		putative secreted protein	Unknown function	
cg3331	1,41	0,00	ogt	ogt, methylated-DNAprotein-cysteine methyltransferase	DNA replication, recombination, repair, and degradation	
cg3332	1,57	0,01	qor3	putative quinone oxidoreductase	Respiration and oxidative phosphorylation	
cg3335	0,21	0,00	malE (mez)	malE, malic enzyme	Central carbon metabolism	
cg3336	2,16	0,02	gntK	gntK, putative gluconate kinase gntK, putative gluconate kinase	Central carbon metabolism	
cg3337	3,34	0,00		hypothetical protein cg3337	Unknown function	
cg3338	4,83	0,00		hypothetical protein cg3338	Unknown function	
cg3339	1,62	0,01	merA	merA, putative FAD-dependent pyridine nucleotide-disulphideoxidoreductase, similar to mercuric reductases	DNA replication, recombination, repair, and degradation	
cg3341	0,48	0,00		hypothetical protein cg3341	Unknown function	
cg3342	0,56	0,00		putative secreted protein	Unknown function	
cg3345	0,24	0,00		hypothetical protein cg3345 hypothetical protein cg3345	Unknown function	
cg3346	0,68	0,04	leuS	leuS, leucyl-tRNA synthetase	Translation, ribosomal structure and biogenesis	
cg3348	0,53	0,01		putative plasmid maintenance system antidote protein, HigA homolog	General function prediction only	
cg3352	0,64	0,00	nagR (genR)	nagR, transcriptional regulator of gentisate pathway	Signal transduction mechanisms	
cg3353	0,49	0,04	nagT (genK)	nagT, gentisate transporter	Amino acid transport and metabolism	
cg3354	0,37	0,01	genH (nahG)	3-hydroxybenzoate 6-hydroxylase	Transport and metabolism of further metabolites	
cg3356	0,36	0,01		Na+/H+-dicarboxylate symporter	Carbon source transport and metabolism; Inorganic ion transport, metabolism, and storage	
cg3358	0,67	0,05	#NV	hypothetical protein predicted by Glimmer	#NV	
cg3359	0,89	0,04	trpE	trpE, anthranilate synthase component I	Amino acid transport and metabolism	
cg3360	0,77	0,00	trpG	trpG, anthranilate synthase component II	Amino acid transport and metabolism	
cg3364	0,61	0,00	trpA	trpA, tryptophan synthase subunit alpha	Amino acid transport and metabolism	
cg3365	0,40	0,00	ptsA1 (ulaA, rmpC)	ulaA, ascorbate-specific PTS system enzyme IIC	Carbon source transport and metabolism; Signal transduction mechanisms	
cg3366	0,46	0,01	ptsA2 (sgCA, rmpA)	rmpA, putative ribitol-specific enzyme II of PTS system	Carbon source transport and metabolism; Signal transduction mechanisms	
cg3368	2,65	0,01		ABC-transporter permease protein ABC- transporter permease protein	General function prediction only	
cg3369	2,53	0,04		Rieske-type iron-sulfur protein General function prediction only		
cg3370	2,05	0,01		putative NADH-dependent flavin oxidoreductase putative NADH-dependent flavin oxidoreductase	General function prediction only	
cg3371	1,36	0,00		Na+-dependent transporter	General function prediction only	
cg3372	2,39	0,00		hypothetical protein cg3372	Unknown function	
cg3373	1,77	0,00	cyeR	bacterial regulatory proteins, ArsR family	Signal transduction mechanisms	
cg3374	3,74	0,01	cye1	putative NADH-dependent flavin oxidoreductase putative NADH-dependent	General function prediction only	

cg3375	1,49	0,03		predicted nucleoside-diphosphate-sugar	Nucleotide transport and metabolism	
-	,	ĺ,		epimerase	· · · · · · · · · · · · · · · · · · ·	
cg3378	0,63	0,02		hypothetical protein cg3378	Unknown function	
cg3384	0,77	0,03		bacterial regulatory protein, TetR family	Signal transduction mechanisms	
cg3387	0,64	0,04	iolT2	iolT2, myo-Inositol transporter	Carbon source transport and metabolism	
cg3388	0,56	0,03		bacterial regulatory proteins, IclR family	Signal transduction mechanisms	
cg3390	0,96	0,05		myo-Inositol catabolism, sugar phosphate isomerase/epimerase	Carbon source transport and metabolism	
cg3393	0,65	0,05	phoC	putative secreted phosphoesterase	Inorganic ion transport, metabolism, and storage	
cg3395	0,31	0,01	proP	proP, proline/ectoine carrier	Amino acid transport and metabolism	
cg3397	0,70	0,01		hypothetical protein cg3397	Unknown function	
cg3398	0,53	0,01		DNA or RNA helicase of superfamily II	General function prediction only	
cg3399	7,88	0,00		permease of the major facilitator superfamily	General function prediction only	
cg3402	3,54	0,00		copper chaperone copper chaperone	Inorganic ion transport, metabolism, and storage	
cg3404	4,35	0,00		secreted siderophore-binding lipoprotein	Carbon source transport and metabolism; Inorganic ion transport, metabolism, and storage	
cg3405	0,70	0,04		NADPH quinone reductase or Zn-dependent oxidoreductase	General function prediction only	
cg3407	0,90	0,03		hypothetical protein cg3407	Unknown function	
cg3408	2,47	0,02		hypothetical protein predicted by Glimmer	Unknown function	
cg3409	0,73	0,04	thiD2	thiD2, phosphomethylpyrimidine kinase	Coenzyme transport and metabolism	
cg3410	0,63	0,02		hypothetical protein cg3410	Unknown function	
cg3411	2,62	0,00		copper chaperone	Inorganic ion transport, metabolism, and storage	
cg3412	0,52	0,01	azlD	azID, predicted branched-chain amino acid permease (azaleucine resistance)	Amino acid transport and metabolism	
cg3415	0,65	0,04	pcnA	pcnA, poly-A polymerase	DNA replication, recombination, repair, and degradation	
cg3417	0,53	0,03		NTP pyrophosphohydrolase NTP pyrophosphohydrolase	Nucleotide transport and metabolism	
cg3418	0,51	0,00		putative secreted protein	Unknown function	
Lg5410	0,31	0,00		uncharacterized membrane protein,	onknown function	
cg3419	0,36	0,00		virulence factor homolog	General function prediction only	
cg3420	0,56	0,00	sigM	sigM, RNA polymerase sigma-70 factor, ECF subfamily	Transcription including sigma factors, RNA	
cg3422	0,67	0,03	trxB	trxB, thioredoxin reductase	processing and modification General function prediction only	
cg3422	0,61	0,03	trxC	trxC, thioredoxin	General function prediction only	
cg3428	0,41	0,00	aidB	gidB, glucose-inhibited division protein B	Cell division, chromosome partitioning	
cg3429	0,50	0,00	giab	putative inner membrane protein translocase	Protein secretion	
cg3431	0,45	0,03	rnpA	component YidC rnpA, ribonuclease p	Transcription including sigma factors, RNA	
	0.62	0,03		humethetical protein co2422	processing and modification Unknown function	
cg3433	0,62	0,03	#NV	hypothetical protein cg3433 hypothetical protein cg4000	#NV	
cg4000 cg4001	2,00 0,49	0.01	#197	hypothetical protein cg4000	Unknown function	
cg4001	1,36	0,02	#NV	hypothetical protein cg4003	#NV	
cg4003	1,11	0,03	minv	hypothetical protein cg4004 hypothetical	Unknown function	
cg4007	2,89	0,00		protein cg4004 hypothetical protein cg4007	Prophage genes	
cgr01	1,69	0,00		16S ribosomal RNA	Translation, ribosomal structure and	
cgr04	1,79	0,01		16S ribosomal RNA geneID:3345599	biogenesis Translation, ribosomal structure and	
cgr05	1,86	0,03		23S ribosomal RNA geneID:3345511	biogenesis Translation, ribosomal structure and	
cgr07	1,74	0,01		16S ribosomal RNA geneID:3345547	biogenesis Translation, ribosomal structure and	
cgr12	1,74	0,00		16S ribosomal RNA geneID:3344357	biogenesis Translation, ribosomal structure and	
-		0,00			biogenesis Translation, ribosomal structure and	
cgr18	1,76	0,05		16S ribosomal RNA geneID:3344358	biogenesis Translation, ribosomal structure and	
cgs01	0,43	0,04	ssrA (cgb_09185)	tmRNA genelD:3343963	biogenesis; Protein turnover and chaperones	
	1,52	0,01			Translation, ribosomal structure and	

artDNA 2520	0.00	0.01	Translation, ribosomal structure and
cgtRNA_3529	0,80	0,01	biogenesis
cgtRNA 3533	0,48	0,03	Translation, ribosomal structure and
COLKINA_5555	0,48	0,05	biogenesis
cgtRNA 3534	0,42	0,03	Translation, ribosomal structure and
CELLINA_5554	0,42	0,03	biogenesis
cgtRNA 3535	0,58	0,01	Translation, ribosomal structure and
CELUNA_3333	0,58	0,01	biogenesis
cgtRNA 3536	0,25	0.00	Translation, ribosomal structure and
CgINNA_3330	0,25	0,00	biogenesis
cgtRNA 3537	0,48	0.02	Translation, ribosomal structure and
CgINNA_3337	0,48	0,02	biogenesis
cgtRNA 3542	0,31	0.01	Translation, ribosomal structure and
CgINNA_3342	0,31	0,01	biogenesis
cgtRNA 3545	0,64	0,02	Translation, ribosomal structure and
CgunnA_3343	0,04	0,02	biogenesis
cgtRNA 3560	0,82	0,01	Translation, ribosomal structure and
CgtRINA_3300	0,82	0,01	biogenesis
cgtRNA 3561	0,70	0,04	Translation, ribosomal structure and
CglilliA_5501	0,70	0,04	biogenesis
cgtRNA 3570	0,57	0.01	Translation, ribosomal structure and
cgttttA_3370	0,57	0,01	biogenesis
cgtRNA 3572	0,31	0,05	Translation, ribosomal structure and
egaan <u>5572</u>	0,51	0,05	biogenesis
cgtRNA 3577	0,53	0.03	Translation, ribosomal structure and
	3,35		biogenesis
cgtRNA 3586	0,62	0.03	Translation, ribosomal structure and
- cgennin	0,02	0,05	biogenesis
cgtRNA 3587	0,57	0.04	Translation, ribosomal structure and
CBUILT_2201	5,57	0,04	biogenesis

Video S1: Time-lapse video of a *C. glutamicum* microcolony of the prophage reporter strain under cg1978 overexpression (50 μM IPTG). Cells of the prophage reporter strain ATCC 13032::P_{lys}-eyfp carrying the overexpression plasmid pAN6-cg1978 were cultivated in microfluidic chambers (Grünberger et al., 2015) using CGXII minimal medium with 2% (w/v) glucose and 25 μg ml⁻¹ kanamycin for 18 h. Overexpression was induced using 50 μM IPTG.

Video S2: Time-lapse video of a *C. glutamicum* microcolony of the prophage reporter strain under standard conditions (0 μ M IPTG). The same reporter strain (Video S1) carrying the overexpression plasmid pAN6-cg1978 was grown in the absence of IPTG serving as a control for normal cell growth.

The videos are provided as separate files:

- Video S1_cg1978 overexpression_prophage reporter_50 µM IPTG
- Video S2_cg1978 overexpression_prophage reporter_0 µM IPTG

References

- Baumgart, M., Unthan, S., Ruckert, C., Sivalingam, J., Grünberger, A., Kalinowski, J., ... Frunzke, J. (2013). Construction of a prophage-free variant of *Corynebacterium glutamicum* ATCC 13032 for use as a platform strain for basic research and industrial biotechnology. *Applied and Environmental Microbiology*, *79*(19), 6006-6015. doi:10.1128/AEM.01634-13
- Cremer, J., Eggeling, L., & Sahm, H. (1990). Cloning the *dapA dapB* cluster of the lysinesecreting bacterium *Corynebacterium glutamicum*. *Molecular and General Genetics*, 220, 478-480. doi:10.1007/BF00391757
- Frunzke, J., Engels, V., Hasenbein, S., Gätgens, C., & Bott, M. (2008). Co-ordinated regulation of gluconate catabolism and glucose uptake in *Corynebacterium glutamicum* by two functionally equivalent transcriptional regulators, GntR1 and GntR2. *Molecular Microbiology*, *67*(2), 305-322. doi:10.1111/j.1365-2958.2007.06020.x
- Grünberger, A., Probst, C., Helfrich, S., Nanda, A., Stute, B., Wiechert, W., . . . Kohlheyer, D. (2015). Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform. *Cytometry Part A, 87*(12), 1101-1115. doi:10.1002/cyto.a.22779
- Helfrich, S., Pfeifer, E., Krämer, C., Sachs, C. C., Wiechert, W., Kohlheyer, D., . . . Frunzke, J. (2015). Live cell imaging of SOS and prophage dynamics in isogenic bacterial populations. *Molecular Microbiology*, 98(4), 636-650. doi:10.1111/mmi.13147
- Hünnefeld, M., Persicke, M., Kalinowski, J., & Frunzke, J. (2019). The MarR-Type Regulator MalR Is Involved in Stress-Responsive Cell Envelope Remodeling in *Corynebacterium glutamicum*. Frontiers in Microbiology, 10, 1039. doi:10.3389/fmicb.2019.01039
- Ikeda, M., & Nakagawa, S. (2003). The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Applied Microbiology and Biotechnology, 62(2-3), 99-109. doi:10.1007/s00253-003-1328-1
- Pfeifer, E., Hünnefeld, M., Popa, O., Polen, T., Kohlheyer, D., Baumgart, M., & Frunzke, J. (2016). Silencing of cryptic prophages in *Corynebacterium glutamicum*. *Nucleic acids research*, *44*(21), 10117-10131. doi:10.1093/nar/gkw692
- Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G., & Pühler, A. (1994). Small mobilizable multi-purpose cloning vectors derived from the *Escherichia coli* plasmids pK18 and pK19: selection of defined deletions in the chromosome of *Corynebacterium glutamicum*. *Gene*, 145(1), 69-73. doi:10.1016/0378-1119(94)90324-7
- Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., . . . Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Molecular Systems Biology*, *7*, 539. doi:10.1038/msb.2011.75
- Studier, F. W., & Moffatt, B. A. (1986). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. *Journal of Molecular Biology, 189*(1), 113-130. doi:10.1016/0022-2836(86)90385-2

4.2. Appendix to 3.2: Aminoglycoside antibiotics inhibit phage infection by blocking an early step of the infection cycle

Part A: Supplementary material to the published manuscript

Supplementary information to

Aminoglycoside antibiotics inhibit phage infection by blocking an early step of the infection cycle

Running title: Aminoglycosides inhibit phage infection

Larissa Kever^{1#}, Aël Hardy^{1#}, Tom Luthe¹, Max Hünnefeld¹, Cornelia Gätgens¹, Lars Milke¹, Johanna Wiechert¹, Johannes Wittmann², Cristina Moraru³, Jan Marienhagen^{1,4} and Julia Frunzke¹*

¹Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany

²Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany

³Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky-

University Oldenburg, Oldenburg, Germany

⁴Institute of Biotechnology, RWTH Aachen University, Aachen, Germany

[#] Authors contributed equally to this work.

*Corresponding author:

Julia Frunzke; Email: j.frunzke@fz-juelich.de; Phone: +49 2461 615430

Tables

Supplementary Table S1 | Aminoglycoside-modifying enzymes used in this study

Supplementary Table S2A | Bacterial strains used in this study.

Supplementary Table S2B | Phages used in this study

Supplementary Table S2C | Plasmids used in this study.

Supplementary Table S2D | Oligonucleotides used in this study

Supplementary Table S3 | Polynucleotides used for phage targeting direct-geneFISH

Figures

Supplementary Figure S1 | Dose-dependent effect of apramycin on the Streptomyces phage Alderaan.

Supplementary Figure S2 | Effect of aminoglycosides on *E. coli* phage λ .

Supplementary Figure S3 | Synchronized infection of *Streptomyces venezuelae* with phage Alderaan under apramycin pressure.

Supplementary Figure S4 | Investigations of the mechanism of action of apramycin.

Supplementary Figure S5 | Pre-incubation of phage Alderaan with apramycin.

Supplementary Figure S6 | Distribution of fluorescence intensities from phage targeting direct-geneFISH.

Videos

Supplementary Video S1 | Apramycin prevents cell lysis during infection of *S. venezuelae* with phage Alderaan.

Antibiotic	Gene	Annotation	Protein sequence	Modification
Apramycin	aac(3)IV (apr)	Aminoglycoside N(3)- acetyltransferase	VQYEWRKAELIGQLLNLGVTPGGV LLVHSSFRSVRPLEDGPLGLIEALRA ALGPGGTLVMPSWSGLDDEPFDPA TSPVTPDLGVVSDTFWRLPNVKRS AHPFAFAAAGPQAEQIISDPLPLPPH SPASPVARVHELDGQVLLLGVGHD ANTTLHLAELMAKVPYGVPRHCTI LQDGKLVRVDYLENDHCCERFALA DRWLKEKSLQKEGPVGHAFARLIR SRDIVATALGQLGRDPLIFLHPPEA GCEECDAARQSIG	Acetylation of 3- amino group of the deoxystreptamine ring
Hygromycin	aph(7")-Ia	Aminoglycoside O- phosphotransferase APH(7")-Ia,	VTQESLLLLDRIDSDDSYASLRNDQ EFWEPLARRALEELGLPVPPVLRVP GESTNPVLVGEPDPVIKLFGEHWCG PESLASESEAYAVLADAPVPVPRLL GRGELRPGTGAWPYLVMSRMT GTTWRSAMDGTTDRNALLALARE LGRVLGRLHRVPLTGNTVLTPHSE VFPELLRERRAATVEDHRGWGYLS PRLLDRLEDWLPDVDTLLAGREPR FVHGDLHGTNIFVDLAATEVTGIVD FTDVYAGDSRYSLVQLHLNAFRGD REILAALLDGAQWKRTEDFARELL AFTFLHDFEVFEETPLDLSGFTDPEE LAQFLWGPPDTAPGA	Phosphorylation of hydroxyl group at position 7"
Kanamycin	aph(3\\')- Ia	Aminoglycoside 3'- phosphotransferase	MSHIQRETSCSRPRLNSNMDADLY GYKWARDNVGQSGATIYRLYGKP DAPELFLKHGKGSVANDVTDEMV RLNWLTEFMPLPTIKHFIRTPDDAW LLTTAIPGKTAFQVLEEYPDSGENIV DALAVFLRRLHSIPVCNCPFNSDRV FRLAQAQSRMNNGLVDASDFDDER NGWPVEQVWKEMHKLLPFSPDSV VTHGDFSLDNLIFDEGKLIGCIDVG RVGIADRYQDLAILWNCLGEFSPSL QKRLFQKYGIDNPDMNKLQFHLML DEFF	Phosphorylation of hydroxyl group at position 3'
Spectinomycin/ Streptomycin	aad4	Aminoglycoside (3") (9) adenylyltransferase	MREAVIAEVSTQLSEVVGVIERHLE PTLLAVHLYGSAVDGGLKPHSDIDL LVTVTVRLDETTRRALINDLLETSA SPGESEILRAVEVTIVVHDDIIPWRY PAKRELQFGEWQRNDILAGIFEPAT IDIDLAILLTKAREHSVALVGPAAEE LFDPVPEQDLFEALNETLTLWNSPP DWAGDERNVVLTLSRIWYSAVTG KIAPKDVAADWAMERLPAQYQPVI LEARQAYLGQEEDRLASRADQLEE FVHYVKGEITKVVGK	O-adenylation at positions 3" and 9

Supplementary Table S1: Aminoglycoside-modifying enzymes used in this study
Supplementary Table S2A: Bacterial strains used in this study

Strains	Genotype	Reference
C. glutamicum MB001	ATCC 13032 strain with deletion of prophages Δ CGP1 (cg1507-cg1524), Δ CGP2 (cg1746-cg1752) und Δ CGP3 (cg1890-cg2071)	1
C. glutamicum MB001 – pEKEx2a	MB001 carrying the plasmid pEKEx2a, Kan ^R	This study
C. glutamicum MB001 – pEKEx2b	MB001 carrying the plasmid pEKEx2b, Hyg ^R	This study
C. glutamicum MB001 – pEKEx2d	MB001 carrying the plasmid pEKEx2d, Apr ^R	This study
C. glutamicum MB001 – pEKEx2e	MB001 carrying the plasmid pEKEx2e, Sp ^R /Sm ^R	This study
Escherichia coli DH5a	supE44 AlacU169 (f80lacZDM15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1	Invitrogen
Escherichia coli ET12567/pUZ8002	dam-13::Tn9 dcm-6 hsdM hsdR, carrying plasmid pUZ8002	2
Escherichia coli BL21 (DE3)	F ⁻ ompT hsdS _B ($r_B^- m_B^-$) gal dcm λ (DE3)	3
Escherichia coli DSM 613	Wild-type strain	4
<i>E. coli</i> DSM 613 – pEKEx2a	<i>E. coli</i> DSM 613 carrying the plasmid pEKEx2a, Kan ^R	This study
<i>E. coli</i> DSM 613 – pEKEx2b	<i>E. coli</i> DSM 613 carrying the plasmid pEKEx2b, Hyg ^R	This study
E. coli DSM 613 – pEKEx2d	<i>E. coli</i> DSM 613 carrying the plasmid pEKEx2d, Apr ^R	This study
E. coli DSM 613 – pEKEx2e	<i>E. coli</i> DSM 613 carrying the plasmid pEKEx2e, Sp ^R /Sm ^R	This study
Escherichia coli DSM 5695	F^+ met str T1 ^s T6 ^s lambda ⁻	5
E. coli DSM 5695 – pEKEx2a	<i>E. coli</i> DSM 5695 carrying the plasmid pEKEx2a, Kan ^R	This study
<i>E. coli</i> DSM 5695 – pEKEx2b	<i>E. coli</i> DSM 5695 carrying the plasmid pEKEx2b, Hyg ^R	This study
E. coli DSM 5695 – pEKEx2d	<i>E. coli</i> DSM 5695 carrying the plasmid pEKEx2d, Apr ^R	This study
<i>E. coli</i> DSM 5695 – pEKEx2e	<i>E. coli</i> DSM 5695 carrying the plasmid pEKEx2e, Sp ^R /Sm ^R	This study
Escherichia coli DSM 4230	F ⁻ hsdR514 (rk ⁻ mk ⁻) supE44 supF58 Δ(lacIZY)6 galK2 galT22 metB1 trpR55 lambda ⁻	6
<i>E. coli</i> DSM 4230 – pEKEx2a	<i>E. coli</i> DSM 4230 carrying the plasmid pEKEx2a, Kan ^R	This study
E. coli DSM 4230 – pEKEx2b	<i>E. coli</i> DSM 4230 carrying the plasmid pEKEx2b, Hyg ^R	This study
E. coli DSM 4230 – pEKEx2d	<i>E. coli</i> DSM 4230 carrying the plasmid pEKEx2d, Apr ^R	This study

<i>E. coli</i> DSM 4230 – pEKEx2e	<i>E. coli</i> DSM 4230 carrying the plasmid pEKEx2e, Sp ^R /Sm ^R	This study
Escherichia coli JW3996	E. coli BW25113 ΔlamB	7
Streptomyces venezuelae ATCC 10712	Wild-type strain	8
S. venezuelae ATCC 10712 – pIJLK01	<i>S. venezuelae</i> ATCC 10712 carrying the integrative plasmid pIJLK01, Hyg ^R	This study
S. venezuelae ATCC 10712 – pIJLK04	S. venezuelae ATCC 10712 carrying the integrative plasmid pIJLK04, Apr^{R}	This study
S. venezuelae ATCC 10712 – pIJLK05	<i>S. venezuelae</i> ATCC 10712 carrying the integrative plasmid pJJLK05, Sp ^R /Sm ^R	This study
Streptomyces coelicolor M145	S. coelicolor A3(2) lacking plasmids SCP1 and SCP2	9
S. coelicolor M145– pIJLK01	<i>S. coelicolor</i> M145 carrying the integrative plasmid pIJLK01, Hyg ^R	This study
S. coelicolor M145- pIJLK04	S. coelicolor M145 carrying the integrative plasmid pIJLK04, Apr^{R}	This study
S. coelicolor M145- pIJLK05	S. coelicolor M145 carrying the integrative plasmid pIJLK05, Sp^{R}/Sm^{R}	This study

Phage	Host organism	Lifestyle	Family	Genome	State of injected genome ^{13,14}	Reference
Alderaan	S. venezuelae ATCC 10712	Virulent	Siphoviridae	dsDNA	Linear with terminal redundancy	15
Coruscant	S. venezuelae ATCC 10712	Virulent	Siphoviridae	dsDNA	Linear with terminal repeats	15
Dagobah	S. coelicolor M145	Temperate	Siphoviridae	dsDNA	Linear with terminal repeats	15
Endor1	S. coelicolor M145	Temperate	Siphoviridae	dsDNA	Linear with terminal redundancy	15
Endor2	S. coelicolor M145	Temperate	Siphoviridae	dsDNA	Linear with terminal redundancy	15
CL31	C. glutamicum MB001	Temperate	Siphoviridae	dsDNA	Linear with cohesive ends	16
Spe2	C. glutamicum ATCC 13032	Virulent	Siphoviridae	dsDNA	Unknown	This study, DSM110582
T4	E. coli B (DSM613)	Virulent	Myoviridae	dsDNA	Linear with terminal redundancy	DSM4505
T5	E. coli B (DSM613)	Virulent	Siphoviridae	dsDNA	Linear with terminal redundancy	DSM16353
T6	E. coli B (DSM613)	Virulent	Myoviridae	dsDNA	Linear with terminal repeats	DSM4622
T7	<i>E. coli</i> B (DSM613)	Virulent	Podoviridae	dsDNA	Linear with terminal repeats	DSM4623
M13	<i>E. coli</i> W1485 (DSM5695)	Chronic infection	Inoviridae	ssDNA	Circular (+) strand	DSM13976
fd	<i>E. coli</i> W1485 (DSM5695)	Chronic infection	Inoviridae	ssDNA	Circular (+) strand	DSM4498
MS2	<i>E. coli</i> W1485 (DSM5695)	Virulent	Leviviridae	ssRNA	Linear, bound to the maturation protein ¹⁷	DSM13767
Lambda (λ)	<i>E. coli</i> LE392 (DSM4230)	Temperate	Siphoviridae	dsDNA	Linear with cohesive ends	DSM4499

Supplementary	Table	S2B:	Phages	used in	this study

Supplementary Table S2C: Plasmids used in this study. Insert DNA was amplified using the listed oligonucleotides (compare Supplementary File 5). Linearization of vector DNA was conducted with the indicated restriction enzyme and plasmids were constructed using Gibson assembly. Sequencing was performed by Eurofins Genomics (Ebersberg, Germany) with the sequencing oligonucleotides listed.

Plasmids	Characteristics	Characteristics					Reference
pIJ10257		Hyg ^R ; Cloning vector for the conjugal transfer of DNA from <i>E. coli</i> to <i>Streptomyces spp.;</i> (constitutive promoter <i>ermE</i> *; Integration at the Φ BT1 attachment site)					
pEKEx2	Kan ^R ; <i>C. glutamic</i> pBL1 oriV _{C.g.} , pU0		ttle vector for	regulated ger	ne expression;	P _{tac} , lacI ^q ,	19
pIJ773	pBluescript II SK(flanked by FRT (F					assette	20
pCDFduet-1	Sp ^R /Sm ^R ; <i>E. coli</i> v T7 terminator	ector for coexp	ression of two	o target genes	s; P _{T7} , <i>lacI</i> , Clo	DF13 ori,	Novagen
pUZ8002	Kan ^R ; RK2 derivat	ive with nontra	ansmissible or	iΤ			21
pAN6	Kan ^R .; <i>E. coli</i> vect pBL1 <i>oriV_{C.g.}</i> , pUC		l gene express	sion; derivativ	ve of pEKEx2	(P _{tac} , <i>lacI</i> ^q ,	22
Plasmids	Characteristics	Template	Primer	Vector	Restriction enzyme	Sequencing primer	Reference
pIJLK01	Hyg ^R ; Derivative of pIJ10257 with additional restrictions sites Bst1107I (upstream) and Stul (downstream) of the <i>aph(7")-Ia</i> gene allowing exchanging of the antibiotic cassette	pIJ10257	1 + 2 3 + 4 5 + 6	pIJ10257	KpnI; PvuII	25 - 28	This study
pIJLK04	Apr ^R ; Derivative of pIJLK01 with <i>aph(7")-Ia</i> exchanged for <i>aac(3)IV</i> (apramycin resistance gene)	pIJ773	7+8	pIJLK01	Bst11071; StuI	28	This study

pIJLK05	Sp ^R /Sm ^R ; Derivative of pIJLK01 with <i>aph(7")-Ia</i> exchanged for <i>aadA</i> (spectinomycin/ streptomycin resistance gene)	pCDFduet- 1	9 + 10	pIJLK01	Bst1107I; StuI	28	This study
pEKEx2a	Kan ^R ; Derivative of pEKEx2 with additional restrictions sites Bst1107I (upstream) and NotI (downstream) of the <i>aphA1</i> gene allowing exchanging of the antibiotic cassette	pEKEx2	11 + 12 13 + 14 15 + 16	pEKEx2	SapI; StuI	29 - 32	This study
pEKEx2b	Hyg ^R ; Derivative of pEKEx2a with <i>aphA1</i> exchanged for <i>aph(7")-Ia</i> (hygromycin resistance gene)	pIJ10257	17+18	pEKEx2a	Bst1107I; NotI	31 + 32	This study
pEKEx2d	Apr ^R ; Derivative of pEKEx2a with <i>aphA1</i> exchanged for <i>aac(3)IV</i> (apramycin resistance gene)	pIJ773	19 + 20	pEKEx2a	Bst1107I; NotI	31 + 32	This study
pEKEx2e	Sp ^R /Sm ^R ; Derivative of pEKEx2a with <i>aphA1</i> exchanged for <i>aadA</i> (spectinomycin/ streptomycin resistance gene)	pCDFduet- 1	21 + 22	pEKEx2a	Bst1107I; NotI	31 + 32	This study
pAN6_ aac(3)IV_Cstrep	Kan ^R , Derivative of pAN6 with <i>aac(3)IV</i> fused to a C-terminal Strep-tag	pIJ773	23 + 24	pAN6_ CStrep	NdeI; NheI	33 + 34	This study

Supplementary Table S2D: Oligonucleotides used in this study

No.	Oligonucleotide name	Sequence (5' - 3')					
Con	Construction of plasmids						
1	pIJ10257_RE1_1_fw	TGCTCGGGTCGGGCTGGTACCAGTGAGCGTTTTTCAACCTCAG					
2	pIJ10257_RE1_1_rv	GATTCTTGTGTCACGTATACAGCGGACCTCTATTCACAGGG					
3	pIJ10257_RE1_2_fw	AATAGAGGTCCGCTGTATACGTGACACAAGAATCCCTGTTACTTCTCG					
4	pIJ10257_RE2_2_rv	CGGGCGGCCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG					
5	pIJ10257_RE2_3_fw	CCCCCGGCGCCTGAAGGCCTCGCCCCGGGCCGC					
6	pIJ10257_RE2_3_rv	GAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGC					
7	pIJLK04_aac(3)IV_fw	TGAATAGAGGTCCGCTGTATACGTGCAATACGAATGGCGAAAAG					
8	pIJLK04_aac(3)IV_rv	GGCGGCCCGGGGCGAGGCCTTCAGCCAATCGACTGGCG					
9	pIJLK05_aadA_fw	TGAATAGAGGTCCGCTGTATACATGAGGGAAGCGGTGATCG					
10	pIJLK05_aadA_rv	GCGGCCCGGGGCGAGGCCTTTATTTGCCGACTACCTTGGTGAT					
11	pEKEx2_RE1_1_fw	GCGGTTTGCGTATTGGGCGCTCT					
12	pEKEx2_RE1_1_rv	ATGGCTCATGTATACAACACCCCTTGTATTACTGTTTATGTAAGCAGAC					
13	pEKEx2_RE1_2_fw	GGGGTGTTGTATACATGAGCCATATTCAACGGGAAACGTCT					
14	pEKEx2_RE2_2_rv	TTCTGAGCGGCCGCTTAGAAAAACTCATCGAGCATCAAATGAAAC					
15	pEKEx2_RE2_3_fw	TTTCTAAGCGGCCGCTCAGAATTGGTTAATTGGTTGTAACA					
16	pEKEx2_RE2_3_rv	CGTGAAGAAGGTGTTGCTGACTC					
17	pEKEx2b_hygR_fw	ATACAAGGGGTGTTGTATACGTGACACAAGAATCCCTGTTACTTCTC					
18	pEKEx2b_hygR_rv	AATTAACCAATTCTGAGCGGCCGCTCAGGCGCCGGGGGGC					
19	pEKEx2d_aac(3)IV_fw	ATACAAGGGGTGTTGTATACGTGCAATACGAATGGCGAAAAG					
20	pEKEx2d_aac(3)IV_rv	ACCAATTCTGAGCGGCCGCTCAGCCAATCGACTGGCGAG					
21	pEKEx2e_aadA_fw	ACAAGGGGTGTTGTATACATGAGGGAAGCGGTGATCG					
22	pEKEx2e_aadA_rv	ACCAATTCTGAGCGGCCGCTTATTTGCCGACTACCTTGGTGATC					
23	pAN6_aac(3)IV_Cstrep_ fw	CCTGCAGAAGGAGATATACATATGATGTCATCAGCGGTGGAG					
24	pAN6_aac(3)IV_CStrep_rv	TGTGGGTGGGACCAGCTAGCGCCAATCGACTGGCGAGC					
Seq	uencing primer						
25	pIJLK01_seq_fw_1	GATCAACCGCGACTAGCATC					
26	pIJLK01_seq_fw_2	CCGGTGATCAAGCTGTTC					
27	pIJLK01_seq_fw_3	TTTCTGCGCGTAATCTGCTG					
28	pIJLK0x_seq_fw_4	CGTAGAGATTGGCGATCCC					
29	pEKEx2a_seq_fw	TTCCAGTCGGGAAACCTGTC					
30	pEKEx2a_seq_rv	TCGCGAGCCCATTTATACCC					
31	pEKEx2x_seq_fw	GGAAAGCCACGTTGTGTCTC					
32	pEKEx2x_seq_rv	GCCTCGTGAAGAAGGTGTTG					
33	pAN6_seq_Cstrep_fw	CGGCGTTTCACTTCTGAGTTCGGC					
34	pAN6_seq_Cstrep_rv	GATATGACCATGATTACGCC					
qPC	CR primer						
35	qPCR_atpD_Sv_fw	TGTTCGAGACCGGCCTGAAG					
36	qPCR_atpD_Sv_rv	AGACACCGTCGTGCAGCTTG					
37	qPCR_Alderaan_HQ601_00028_fw	CTCGGCTATCCGATCATCC					
38	qPCR_Alderaan_HQ601_00028_rv	TTGGTTGCGGTTGATGGAC					

Supplementary Table S3: Polynucleotides used for phage targeting direct-geneFISH

N o	Sequence (5' - 3')
Gen	e probes for phage targeting direct-geneFISH with Alderaan infecting S. venezuelae
1	ACGGCGATCAGCACCCAGGACAGGACGACGTCTTTGTGTCGCACCCACC
2	TACGCGGACGCCGAGGACGCCTGTAACGGCTACCTCCTGAACAAGAAGGCCAAGGCGGACGGCATCAACCC GGCCGCCCTGTTCAGCGGCCCAGCCCGTATCGCGTACGCCCGAGCGTCGGACGAGCTGAAAGAGTGGTGGG CCGAACACGGTCGCCTAACGCAGGCGGAGTTCATCGAGCAGGTCACCGGCAAGGCTCA
3	CGCCGACAGCAACGGCCGTCACGAGCACGTCACCAACTACGACGTCGCCACGGCCTCCCCCACCACCCCGTA AGGAGGTCCGCCCATGGCGGGTAACAGCAGGTCCATCGACGCGCGGGGATGGCTCTTCGAGGTCAAGGACA CCGACGCCAGCACCGAGACGTGGCTCCCGATCGCCGGTCTCAACTCCTGGTCGTACT
4	CGGCGCGTACGAGGAGGACGTCATGCAGCGCGGCGCCTCCATCACCCTGGAGGGTCAGTACCGCATCGACA AGACGACCAAGGCCCGCGCGTGGGACAGGCGTACATCGATGAGGAATGGACGCCGCGTCTCGGCATCGAC TCGCACAACCAGATCCGCTACCGGCACGAGACGCAGTCCGCATGGGCGATCTGGGACG
5	CGTAGACGTCGCCGAAGACCTCTTGGACACGTTCGCCGAGTATCCGACGGAGTTCCGTCAGCTCGGCCTCGA CGCCGAGACGGCGATGGGGCTGCTCTCCCAGGGACTCCAAGGCGGTGCGCGCGACGCCGATACGGTCGCCG ACGCGTTGAAGGAATTCACGCTCATGGCTCAGGGCATGGGCGAGTCAACTGCGGAGT
6	GCCGTGTGGGCCGGGGCCATCGTCGTCGGTCAGTGGGTCCTCATGGCCACACAGGCCCTCATGCAGGCCGCC CGCATGGCCGCCGCGTGGCTCATCGCCATGGGCCCGATTGGCCTGCTCATCGCCGTGGTCGGTC
7	GGCCGCCGGCGACTACGTCGAGATGACCATTTTCAGCGGCGCCGCCCTGTCCGGCATTCCGTCCAGCTACAG CCGGGCGTCGTTGGTCTGGCAGGGCCCCGCGTGAGCGGCATGTACCGCGTCGTTCTGTGCGACCTGCGATCC GACCAAGTCCTCGACATCCTTCCCGCGCAGGGCATCAAGTGCGACGACTACATCGG
8	CCGCGACGTTCGACTCGTACCTCGCGCACCGGCTACTCAAGGACGGGTGGACCGGGAACGGGGTCGACCAA CTCGACATCGCCCGTCAGATCGTCGACTGGGTCCAGTCGACCGAGGGCGGCAACATCGGCATCGAACTGGAC TGGTCGCAGACATCCGGAGTGCTCCGCGACCGGGCGTACTCCCGCTACGACCTGTAC
9	GTCGTGCGCGACGTGCTCGACCAACTCGCCAACGTCGAGAACGGGTTCGAGTGGCGCGTACGTA
10	GCGCCACCGCGCAGCTTCAGTTCCGCGTGAACGGAACCATCGTGGCGACCGGCACGGCGGGTCAACCGCTCC TTGCCACCTTCGCCATCCCGTCGTACGCGTTCGGCATGAACGCCGAGTTCGAGCTACAGGCCCGCGTGTCCA GCGGCACCGGAACCGCCTACGCCCAGACCCGCTACCTGTACGGCTTCCAGTCCTAA
11	GGCGCGGTGCTCGGCGCGGTGCTCGGCACGGTCGTCGTGGCGCTCATCGGCTGCTCTCCTCCTTGCGGGGGCG TGCTCCGGAATGGCTCCACCTTGACACCCCGGTCCGGACGTATCTGCCCCCCAAAGCGAGGACAGTTGAGACG TCTCTCGCTAGGGTCGAATAAGGCCCAAAAGTCCGGGCAGAGGGGGTTGACAGTGA
12	AACCGCGCGGACGCTGCACGGGCGCTGGGAGTGGATGAGGAAATGATCTGGCCGAAGGCGGTGCAGGACCG CGTAAAGGTCGGCGGCGACCGGGAGATCCTCCGCACTTACCCATACCGCTCGGCGTGCCCCTCCAACGTGTG GGCGGACCTCGCTGCCGGCGCCGAGCACGAGCTGTTTCTCGCCGGGTATACGAACTA
13	GCGAGGTGACCCGGCAGCGCGAGGTAATCGAAGGCGTTCCGCTGTCGGTTTCCACGCGCATTCGGATCACGC TCGATGAGTTGGCGCGGGCTCGGGTCGGTCGAGGGTGTCGAGGCCCGGCTGAGCGCTGCCGAGGATGCCGTA AATCACGTGAGCCTGTCGGTATTCCGATTCGACGAGGAGGCCCTCGTAACGCCTCAT

14	TGCGGCGGCACGTTGACGGCGGGATGTTCGACCGCTTCGCAGAGCACGCCGAAGAGCTGTGGGAGCGGGCC GTGCCCGTGACGTCGTAGACGACGACGGACCGCCCCGCC
15	GACGCGAGTGTCTGTGACTGCTTCGCCCCTGAGGAGCCGGCCG
16	CCGCGCGGCGAGAAGGGCACGCACACCGTGCTCCGGATGCTGTACCGCATCTACGGCCCGGCCGG
17	GGTGATCCCGCCCGCGTTCACCCCGGAGGACGGCACCTAGCCCCCTCGATAGGGGGAGCCGGATCAGCCCC ACATCCGCTATCTTTCTGTCTCGACAGATACATGCCTGTCGAGAACAGAACCGCGAGCGCGCGC
Gen	e probes for phage targeting direct-geneFISH with λ infecting <i>E. coli</i>
1	AGCAGTATCTTAAATTTGGCGACAAAGAGACGCCGTTTGGCCTCAAATGGACGCCGGATGACCCCTCCAGCG TGTTTTATCTCTGCGAGCATAATGCCTGCGTCATCCGCCAGCAGGAGCTGGACTTTACTGATGCCCGTTATAT CTGCGAAAAGACCGGGATCTGGACCCGTGATGGCATTCTCTGGTTTTCGTCATCCGGTGAAGAGAGATTGAGCC ACCTGACAGTGTGACCTTTCACATCTGGACAGCGTACAGCCCGTTCACCACCTGGGTGCAGATTGTCAAAGA CTGGATGAAAA
2	GCAGGACAACGTATTCGATGTGTTATCTGAAAGTACTGATGAACGGTGCGGTGATTTATGATGGCGCGGGCGAACGAGGCGGGTACAGGTGTTCTCCCCGTATTGTTGACATGCCAGCGGGTCGGGGAAACGTGATCCTGACGTTCACGCTTACGTCCACACGGCATTCGGCAGATATTCCGCCGTATACGTTTGCCAGCGATGTGCAGGTTATGGTGATTAAGAAACAGGCGCTGGGCATCAGCGTGGTCTGAGTGTGTTACAGAGGTTCGTCCGGGAACGGGCGTTTTATTATAAAACAGT
3	AGATTATTATGGGCCGCCACGACGATGAACAGACGCTGCTGCGTGTGGATGAGGCCATCAATAAAACCTATA CCCGCCGGAATGGTGCAGAAATGTCGATATCCCGTATCTGCTGGGGATACTGGCGGGGATTGACCCGACCATTG TGTATGAACGCTCGAAAAAACATGGGCTGTTCCGGGTGATCCCCATTAAAGGGGCATCCGTCTACGGAAAGC CGGTGGCCAGCATGCCACGTAAGCGAAACAAAAACGGGGTTTACCTTACCGAAATCGGTACGGATACCGCG AAAGAGCAGATTT
4	CAATTTTGTCCCACTCCCTGCCTCTGTCATCACGATACTGTGATGCCATGGTGTCCGACTTATGCCCGAGAAGATGTTGAGCAAACTTATCGCTTATCTGCTTCTCATAGAGTCTTGCAGACAAACTGCGCAACTCGTGAAAGGTAGGCGGATCCCCTTCGAAGGAAAGACCTGATGCTTTTCGTGCGCGCGC
5	TGCTCGACATAAAGATATCCATCTACGATATCAGACCACTTCATTTCGCATAAATCACCAACTCGTTGCCCGG TAACAACAGCCAGTTCCATTGCAAGTCTGAGCCAACATGGTGATGATTCTGCTGCTTGATAAATTTTCAGGTA TTCGTCAGCCGTAAGTCTTGATCTCCTTACCTCTGATTTTGCTGCGCGAGTGGCAGCGACATGGTTTGTTGTT ATATGGCCTTCAGCTATTGCCTCTCGGAATGCATCGCTCAGTGTTGATCTGATTAACTTGGCTGACGCCGCCT TGCCCTCG
6	AACTCAATGTTGGCCTGTATAGCTTCAGTGATTGCGATTCGCCTGTCTCTGCCTAATCCAAACTCTTTACCCG TCCTTGGGTCCCTGTAGCAGTAATATCCATTGTTTCTTATATAAAGGTTAGGGGGGTAAATCCCGGCGCTCATG ACTTCGCCTTCTTCCCATTTCTGATCCTCTTCAAAAGGCCACCTGTTACTGGTCGATTTAAGTCAACCTTTACC GCTGATTCGTGGAACAGATACTCTCTTCCATCCTTAACCGGAGGTGGGAATATCCTGCATTCCCGAACCCATC GACGAAC
7	TGTTTCAAGGCTTCTTGGACGTCGCTGGCGTGCGTTCCACTCCTGAAGTGTCAAGTACATCGCAAAGTCTCCG CAATTACACGCAAGAAAAAACCGCCATCAGGCGGCTTGGTGTTCTTTCAGTTCTTCAATTCGAATATTGGTTA CGTCTGCATGTGCTATCTGCGCCCATATCATCCAGTGGTCGTAGCAGTCGTTGATGTTCTCCGCTTCGATAAC TCTGTTGAATGGCTCTCCATTCCAT
8	ACTCAACCCGATGTTTGAGTACGGTCATCATCTGACACTACAGACTCTGGCATCGCTGTGAAGACGACGCGA AATTCAGCATTTTCACAAGCGTTATCTTTTACAAAACCGATCTCACTCTCCTTTGATGCGAATGCCAGCGTCA GACATCATATGCAGATACTCACCTGCATCCTGAACCCATTGACCTCCAACCCCGTAATAGCGATGCGTAATG ATGTCGATAGTTACTAACGGGTCTTGTTCGATTAACTGCCGCAGAAACTCTTCCAGGTCACCAGTGCAGTGCT TGATAACAGG

TCCCCAGT CTCTCTGTT TCTTCGTT GCATTTTTA
CATTITA
CATCGTTCC TTACCGTTT GCTTTTTTT CAAGTCCC
CGGTACGC GGGTTCTG GCAAACCT TGCTATCA
CCCGGTACG AAGAGCTT GAGCGGCA ATCGTTAAC
GTCATAGA TGGGATGCG CATCCATTC TGCTCAAA
CATTCTGC GTAATGCG GTGGGTCG GTTTTATAC
AAACTCAAC CATAGCGA GGGCGAGC GCTGAACTC
GCGTCCAC TGCAGGTT CTCGTGATT GGGATTTG
TTAGCTTTG CGGAATCG TCTTCAGG CGCCAGTG
TATCAGCT ACTTTCCCC ACCTGACCG CTGGCTCAA
CGCAACGA GGAAGCTG IGCTTGCTG CACCAATA
ACGAGGGA GGGGACAC TGACCAGC CAGCAGAA

21	ATAAGTGGACCCAACTCGAAATCAACCGTAACAAGCAACAGGCAGG
22	TGGCGGTATATGGAGTTAAAAGATGACCATCTACATTACTGAGCTAATAACAGGCCTGCTGGTAATCGCAGG CCTTTTTATTTGGGGGAGAGGGAAGTCATGAAAAAACTAACCTTTGAAATTCGATCTCCAGCACATCAGCAA AACGCTATTCACGCAGTACAGCAAATCCTTCCAGACCCAAACCAAACCAATCGTAGTAACCATTCAGGAACGC AACCGCAGCTTAGACCAAAACAGGAAGCTATGGGCCTGCTTAGGTGACGTCTCTCGTCAGGTTGAATGGCAT GGTCGCTGGCTG
23	GATGCAGAAAGCTGGAAGTGTGTGTGTTTACCGCAGCATTAAAGCAGGATGTTGTTCCTAACCTTGCCGGG AATGGCTTTGTGGTAATAGGCCAGTCAACCAGCAGGATGCGTGTAGGCGAATTTGCGGAGCTATTAGAGCTT ATACAGGCATTCGGTACAGAGCGTGGCGTG
24	$\label{eq:cattrog} CCATTTCGGGCGAGGGAATTACACCACGTGGATGGATTGGCATCAGAGCTGAACCGAAGCGGCTAAAGCCAAAGCCTGGAATCAGATATCTTGCTGAACTGTCAGACTTTGAGAAGGAAG$
25	GGAAACGCCAAAGGAGATTATGTACCGAGGAAGAATGTCGCTGGACGGTATCGCGAAAATGTATTCAGAAAAATGTATTCAGAAAAATGTATTCAAGCCCTGTATCAGGACATGGTACGAGGCTAAAAGATTCGATACCGGCTCTTGTTCTGAGTCATGCGAAATAATTTGGAGGGCAGCTTGATTTCGACTTCGGGAGGGA
26	GTGTTACCACTACCGCAGGAAAAGGAGGACGTGTGGCGAGACAGCGACGAAGTATCACCGACATAATCTGC GAAAACTGCAAATACCTTCCAACGAAACGCACCAGAAATAAACCCAAGCCAATCCCAAAAGAATCTGACGT AAAAACCTTCAACTACACGGCTCACCTGTGGGATATCCGGTGGCTAAGACGTCGTGCGAGGAAAAACAAGGT GATTGACCAAAATCGAAGTTACGAACAAGAAAGCGTCGAGCGAG
27	GCGCAGAACTGATGAGCGATCCGAATAGCTCGATGCACGAGGAAGAAGATGATGGCTAAACCAGCGCGAAG ACGATGTAAAAACGATGAATGCCGGGAATGGTTTCACCCTGCATTCGCTAATCAGTGGTGGTGCTCTCCAGA GTGTGGAACCAAGATAGCACTCGAACGACGAAGTAAAGAACGCGAAAAAGCGGAAAAAGCAGCAGAGAAG AAACGACGACGAGGAGGAGCAGAAACAGAAAGATAAACTTAAGATTCGAAAACTCGCCTTAAAGCCCCGCA GTTACTGGATTAAACAA
28	CCAACAAGCCGTAAACGCCTTCATCAGAGAAAGAGACCGCGACTTACCATGTATCTCGTGCGGAACGCTCAC GTCTGCTCAGTGGGATGCCGGACATTACCGGACAACTGCTGCGGGCACCTCAACTCCGATTTAATGAACGCAA TATTCACAAGCAATGCGTGGTGTGCAACCAGCACAAAAGCGGAAATCTCGTTCCGTATCGCGTCGAACTGAT TAGCCGCATCGGGCAGGAAGCAGTAGACGAAATCGAATCAAACCATAACCGCCATCGCTGGACTATCGAAG AGTGCAAGGCGAT
29	TGTTATCTGCCACGCCGATTATCCCTTTGACGAATACGAGTTTGGAAAGCCAGTTGATCATCAGCAGGTAATC TGGAACCGCGAACGAATCAGCAACTCACAAAACGGGATCGTGAAAGAAA
30	CAGAGATTGCCATGGTACAGGCCGTGCGGTTGATATTGCCAAAACAGAGCTGTGGGGGGAGAGTTGTCGAGA AAGAGTGCGGAAGATGCAAAGGCGTCGGCTATTCAAGGATGCCAGCAAGCGCAGCATATCGCGCTGTGACG ATGCTAATCCCAAACCTTACCCAACCCA
31	TGAATAAAATTGGGTAAATTTGACTCAACGATGGGTTAATTCGCTCGTTGTGGTAGTGAGATGAAAAGAGGC GGCGCTTACTACCGATTCCGCCTAGTTGGTCACTTCGACGTATCGTCTGGAACTCCAACCATCGCAGGCAG
32	TGCTGAATTAAGCGAATACCGGAAGCAGAACCGGATCACCAAATGCGTACAGGCGTCATCGCCGCCCAGCA ACAGCACAACCCAAACTGAGCCGTAGCCACTGTCTGTCCTGAATTCATTAGTAATAGTTACGCTGCGGCCTTT TACACATGACCTTCGTGAAAGCGGGTGGCAGGAGGTCGCGCTAACAACCTCCTGCCGTTTTGCCCGTGCATA TCGGTCACGAACAAATCTGATTACTAAACACAGTAGCCTGGATTTGTTCTATCAGTAATCGACCTTATTCCTA ATTAAATAGAG

33	$\label{eq:calibratic} CAAATCCCCTTATTGGGGGGTAAGACATGAAGATGCCAGAAAAACATGACCTGTTGGCCGCCATTCTCGCGGCCAATCATGCGGGCAAACAAGGAACAAGGCATCGGGGGCAATCCTTGCGTTTGCAATGGCGTACCTTCGCGGCAGATATAATGGCGGTGCGTTTACAAAAACAGTAATCGACGCAACGATGTGCGCCATTATCGCCTGGTTCATTCGTGACCTTCTCGACTTCGGCGACTAAGTAGCAATCTCGCTTATATAACGAGCGTGTTTATCGGCTACATCGGTACTGACTCGATTGGTTCGCTTATCAA\\ \label{eq:calibratic}$
34	eq:atcategetatgetatgetatgetatgetatgetatgeta
35	GATAAAACAAAAGCCACCGTGTCGGTCAGTGGTATGACCATCACCGTGAACGGCGTTGCTGCAGGCAAGGT CAACATTCCGGTTGTATCCGGTAATGGTGAGTTTGCTGCGGGTTGCAGAAATTACCGTCACCGCCAGTTAATCC GGAGAGTCAGCGATGTTCCTGAAAACCGAATCATTTGAACATAACGGTGTGACCGTCACGCTTTCTGAACTG TCAGCCCTGCAGCGCATTGAGCATCTCGCCCTGATGAAACGGCAGGCA

Supplementary Figure S1 | Dose-dependent effect of apramycin on the *Streptomyces* phage Alderaan. (a) Growth of *Streptomyces venezuelae* ATCC 10712 pIJLK04 infected with the phage Alderaan showing the dose-dependent effects of apramycin on infection (n = 3 independent biological replicates; error bars represent standard deviations [SD]) (AB; antibiotic). (b) Corresponding phage titers over time in presence of increasing concentrations of apramycin (0, 1, 2.5, and 10 µg/mL). Data are averages for three independent biological replicates.

Supplementary Figure S2 | Effect of aminoglycosides on *E. coli* phage λ . (a) Infection curves of *E. coli* DSM 4230 infected with phage λ in presence of different aminoglycosides (n = 3 independent biological replicates; error bars represent SD). (b) Heat map showing the log₁₀ fold change in plaque formation by λ on different *E. coli* strains in the presence of aminoglycosides relative to the aminoglycoside-free control. (c) Reinfection of cultures previously treated with apramycin (Apr₂₅, top row, right), shows efficient infection of *E. coli* DSM 4230 by phage λ in the absence of apramycin (Apr₂₅, bottom row, right). (d) Addition of MgCl₂ counteracts the effect of apramycin on infection of *E. coli* DSM 4230 by λ . (e) Potassium efflux assays performed with *E. coli* DSM 4230 wild type and the *E. coli* JW3996 Δ *lamB* strain (lacking the λ receptor). λ was added after 5.5 min.

Supplementary Figure S3 | Synchronized infection of *Streptomyces venezuelae* with phage Alderaan under apramycin pressure. *Streptomyces venezuelae* ATCC 10712 pIJLK04 was inoculated to an OD₄₅₀ of 1 and preincubated with 10^8 PFU/mL for 15 min at room temperature with gentle shaking. After four washing steps with GYM medium to remove unadsorbed phages, cultures were diluted to a final starting OD₄₅₀ of 0.1. Preincubation with phages and further cultivation was performed with and without apramycin (10 µg/mL) as indicated. (a) Growth of *Streptomyces venezuelae* infected with phage Alderaan (n = 3 independent biological replicates). (b) Corresponding plaque assays showing comparable phage amplification during the main cultivations performed in absence of apramycin, independent of the presence of apramycin in the preincubation step.

Supplementary Figure S4 | Investigations of the mechanism of action of apramycin. (a) Effect of apramycin on phage adsorption of phage Alderaan to *S. venezuelae* ATCC 10712 pIJLK04. Shown is the time-resolved quantification of extracellular Alderaan DNA via qPCR using a gene coding for the minor tail protein (HQ601_00028, oligonucleotide sequences are provided in Table S2D). Culture supernatants were pretreated with 100 U/mL DNase to exclusively quantify phage DNA deriving from intact phage particles. A DNase-treated phage stock with known phage titer was used to infer phage titers (in PFU/mL) from DNA quantification. Data are means for two independent biological replicates measured as technical duplicates. (b) Impact of apramycin (10 μ g/mL) when added at the different indicated time points after phage infection. For each sample, phage titers were measured over time. Data are averages for two independent biological replicates. (c) Enlargement of Fig. 4c showing the RNA-seq coverage of the Alderaan genome in presence or absence of apramycin. Genome organization of Alderaan is displayed at the top.

Supplementary Figure S5 | **Preincubation of phage Alderaan with apramycin.** Alderaan phages were preincubated in GYM medium containing the indicated apramycin concentrations at 30°C and 900 rpm before spotting on a bacterial lawn of *Streptomyces venezuelae* ATCC 10712 pIJLK04.

Supplementary Figure S6 | Distribution of fluorescence intensities from phage targeting directgeneFISH. (a and c) Quantification of Alexa647 fluorescence in (a) *E. coli* cells infected with λ and (c) *S. venezuelae* cells infected with Alderaan, shown as density plots of pixel counts relative to their fluorescence intensity. For each panel, profiles of the three biological replicates are shown. (b) Determination of the percentage of *E. coli* cells infected with λ over time (n = 3 independent biological replicates) (Uninf, uninfected). A cell was considered infected if Alexa647 (red) fluorescence was detected within the cell.

Supplementary Video S1 | Apramycin prevents cell lysis during infection of *S. venezuelae* with phage Alderaan. Time-lapse video of *S. venezuelae* ATCC 10712 carrying the plasmid pIJLK04, which was cultivated in a microfluidics system and challenged with Alderaan (10^8 PFU/mL; flow rate, 200 nL/min) in presence and absence of 5 or 10 µg/mL apramycin.

References

- 1 Baumgart, M. *et al.* Construction of a prophage-free variant of *Corynebacterium glutamicum* ATCC 13032 for use as a platform strain for basic research and industrial biotechnology. *Appl Environ Microbiol* **79**, 6006-6015, doi:10.1128/AEM.01634-13 (2013).
- 2 MacNeil, D. J. *et al.* Analysis of *Streptomyces avermitilis* genes required for avermectin biosynthesis utilizing a novel integration vector. *Gene* **111**, 61-68, doi:10.1016/0378-1119(92)90603-M (1992).
- 3 Studier, F. W. & Moffatt, B. A. Use of Bacteriophage T7 RNA Polymerase to Direct Selective High-level Expression of Cloned Genes *J Mol Biol* **189**, 113-130, doi:10.1016/0022-2836(86)90385-2 (1986).
- 4 Luria, S. E., Delbrück, M. & Anderson, T. F. Electron microscope studies of bacterial viruses. *Journal of Bacteriology* **46**, 57-77, doi:10.1128/JB.46.1.57-77.1943 (1943).
- 5 Lederberg, E. M. & Lederberg, J. Genetic Studies of Lysogenicity in *Escherichia Coli*. *Genetics* **38**, 51-64 (1953).
- 6 Murray, N. E., Brammar, W. J. & Murray, K. Lambdoid Phages that Simplify the Recovery of in vitro Recombinants. *Mol Gen Genet.* **150**, 53-61, doi:10.1007/BF02425325. (1977).
- 7 Baba, T. *et al.* Construction of *Escherichia coli* K-12 in-frame, single-gene knockout mutants: the Keio collection. *Mol Syst Biol* **2**, 2006 0008, doi:10.1038/msb4100050 (2006).
- 8 Ehrlich, J., Gottlieb, D., Burkholder, P. R., Anderson, L. E. & Pridham, T. G. Streptomyces venezuelae, n. sp., the source of chloromycetin. Journal of Bacteriology 56, 467-477, doi:10.1128/jb.56.4.467-477.1948 (1948).
- 9 Bentley, S. D. *et al.* Complete genome sequence of the model actinomycete *Streptomyces coelicolor* A3(2). *Nature* **417**, 141-147, doi:10.1038/417141a (2002).
- 10 Higgins, C. E. & Kastner, R. E. Nebramycin, a new broad-spectrum antibiotic complex. II. Description of *Streptomyces tenebrarius*. *Antimicrobial agents and chemotherapy* 7, 324-331 (1967).
- 11 Lv, M. *et al.* Characterization of a C3 Deoxygenation Pathway Reveals a Key Branch Point in Aminoglycoside Biosynthesis. *Journal of the American Chemical Society* **138**, 6427-6435, doi:10.1021/jacs.6b02221 (2016).
- 12 Zhang, Q., Chi, H. T., Wu, L., Deng, Z. & Yu, Y. Two Cryptic Self-Resistance Mechanisms in *Streptomyces tenebrarius* Reveal Insights into the Biosynthesis of Apramycin. *Angewandte Chemie (International ed. in English)* **60**, 8990-8996, doi:10.1002/anie.202100687 (2021).
- 13 Kronheim, S. *et al.* A chemical defence against phage infection. *Nature* **564**, 283-286, doi:10.1038/s41586-018-0767-x (2018).
- 14 Casjens, S. R. & Gilcrease, E. B. Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-bacteriophage virions. *Methods in molecular biology* (*Clifton, N.J.*) **502**, 91-111, doi:10.1007/978-1-60327-565-1_7 (2009).
- 15 Hardy, A., Sharma, V., Kever, L. & Frunzke, J. Genome sequence and characterization of five bacteriophages infecting *Streptomyces coelicolor* and *Streptomyces venezuelae*: Alderaan, Coruscant, Dagobah, Endor1 and Endor2. *Viruses* 12, 1065, doi:10.3390/v12101065 (2020).
- 16 Hünnefeld, M. *et al.* Genome Sequence of the Bacteriophage CL31 and Interaction with the Host Strain *Corynebacterium glutamicum* ATCC 13032. *Viruses* **13**, 495, doi:10.3390/v13030495 (2021).
- 17 Harb, L. *et al.* ssRNA phage penetration triggers detachment of the F-pilus. *Proc Natl Acad Sci USA* **117**, 25751-25758, doi:10.1073/pnas.2011901117 (2020).
- 18 Hong, H. J., Hutchings, M. I., Hill, L. M. & Buttner, M. J. The role of the novel Fem protein VanK in vancomycin resistance in *Streptomyces coelicolor*. *J Biol Chem* 280, 13055-13061, doi:10.1074/jbc.M413801200 (2005).
- 19 Eikmanns, B. J., Kleinertz, E., Liehl, W. & Sahm, H. A family of *Corynebacterium glutamicum/Escherichia coli* shuttle vectors for cloning, controlled gene expression, and promoter probing. *Gene* **102**, 93-98, doi:10.1016/0378-1119(91)90545-M (1991).
- 20 Gust, B., Challis, G. L., Fowler, K., Kieser, T. & Chater, K. F. PCR-targeted *Streptomyces* gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. *PNAS* **100**, 1541–1546, doi:10.1073/pnas.0337542100 (2003).

- 21 Paget, M. S. B., Chamberlin, L., Atrih, A., Foster, S. J. & Buttner, M. J. Evidence that the Extracytoplasmic Function Sigma Factor s^E Is Required for Normal Cell Wall Structure in *Streptomyces coelicolor* A3(2). *Journal of Bacteriology* 181, 204-211, doi:10.1128/JB.181.1.204-211.1999 (1999).
- 22 Frunzke, J., Engels, V., Hasenbein, S., Gätgens, C. & Bott, M. Co-ordinated regulation of gluconate catabolism and glucose uptake in *Corynebacterium glutamicum* by two functionally equivalent transcriptional regulators, GntR1 and GntR2. *Mol Microbiol* **67**, 305-322, doi:10.1111/j.1365-2958.2007.06020.x (2008).

Part B: Supplementary information about aminoglycoside resistance via methyltransferase KamB (Figure 10 in "Scientific context and key results")

(Data set is not part of the published manuscript)

Table S1: Microbial strains

Strain and phages	Characteristics	Reference
Escherichia coli DH5α	supE44ΔlacU169 (φ80lacZDM15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1	Invitrogen
Escherichia coli ET12567/pUZ8002	dam-13::Tn9 dcm-6 hsdM hsdR, carrying plasmid pUZ8002	(MacNeil et al., 1992)
Streptomyces venezuelae NRRL B-65442	Wild-type strain	(Gomez-Escribano et al., 2021)

Table S2: Construction of pIJ10257-kamB

Plasmids & primer	Characteristics/Sequence 5'-3'	Reference	
Plasmids			
plJ10257	Hyg ^R ; Cloning vector for the conjugal transfer of DNA from <i>E. coli</i> to <i>Streptomyces</i> spp. (Constitutive promoter <i>ermE</i> *; Integration at the ΦBT1 attachment site)	(Hong et al., 2005)	
plJ10257- <i>kamB</i>	 Hyg^R; Derivative of pIJ10257 containing the gene sequence <i>kamB</i> under control of the constitutive promoter <i>ermE</i>* constructed via Gibson assembly with Primer 1 + 2 for insert amplification using gDNA of <i>S. tenebrarius</i> DSM 40477 as template digestion of vector pIJ10257 via Ndel and HindIII 	This study	
Oligonucleotides for plasmid construction			
1_plJ10257 <i>kamB</i> fw	TAGAACAGGAGGCCCCATATGATGCGCCGCGTGGTGGGCAA	This study	
2_plJ10257- <i>kamB</i> -rv	TCATGAGAACCTAGGATCCAAGCTTTCACGGACTGATCGTGCCGGTGAG	This study	
Oligonucleotides for sequencing			
3_plJ10257-seq-fw	AGATGGTTACCTCGCCTCTG	This study	
4_plJ10257-seq-rv	TCAGCGAGCTGAAGAAAGAC	This study	

Plasmid construction, conjugation and infection assays were performed as described in Kever et al. (2022).

Figure S1: Alderaan infection assays of the apramycin-resistant strain *S. venezuelae* encoding the 16S rRNA methyltransferase KamB as resistance mechanism. Infection of *S. venezuelae* NRRL B-65442 carrying the integrative plasmid plJ10257-*kamB* was performed in the BioLector microcultivation system (Beckman Coulter Life Sciences, Krefeld, Germany) in presence and absence of 10 µg/ml apramycin as described in Kever et al. (2022) (n = 3 independent biological replicates).

References

- Gomez-Escribano, J. P., Holmes, N. A., Schlimpert, S., Bibb, M. J., Chandra, G., Wilkinson, B., Buttner, M. J., & Bibb, M. J. (2021). Streptomyces venezuelae NRRL B-65442: genome sequence of a model strain used to study morphological differentiation in filamentous actinobacteria. J Ind Microbiol Biotechnol, 48(9-10). https://doi.org/10.1093/jimb/kuab035
- Hong, H. J., Hutchings, M. I., Hill, L. M., & Buttner, M. J. (2005). The role of the novel Fem protein VanK in vancomycin resistance in *Streptomyces coelicolor. J Biol Chem*, *280*(13), 13055-13061. <u>https://doi.org/10.1074/ibc.M413801200</u>
- Kever, L., Hardy, A., Luthe, T., Hünnefeld, M., Gätgens, C., Milke, L., Wiechert, J., Wittmann, J., Moraru, C., Marienhagen, J., & Frunzke, J. (2022). Aminoglycoside Antibiotics Inhibit Phage Infection by Blocking an Early Step of the Infection Cycle. *mBio*, 13(3). <u>https://doi.org/10.1128/mbio.00783-22</u>
- MacNeil, D. J., Gewain, K. M., Ruby, C. L., Dezeny, G., Gibbons, P. H., & MacNeil, T. (1992). Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene, 111(1), 61-68. <u>https://doi.org/10.1016/0378-1119(92)90603-M</u>

4.3. Appendix to 3.3: Inactivation of phage particles in the extracellular space of *Streptomyces* populations

Supplementary information to:

Inactivation of phage particles in the extracellular space of *Streptomyces* populations

Larissa Kever¹ and Julia Frunzke^{1*}

¹Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany

*Corresponding author: Julia Frunzke; Email: j.frunzke@fz-juelich.de

Tables

Table S1: Microbial strains used in this study

Table S2: Phages used in this study

Table S3: Plasmids and oligonucleotides used in this study

Figures

Figure S1: Influence of re-growing S. venezuelae NRRL B-65442 mycelium on phage Alderaan

Figure S2: Time course of Alderaan titers during infection of different developmental stages of Streptomyces

Figure S3: Influence of S. venezuelae NRRL B-65442 mycelium on extracellular titers of different phages

Figure S4: Failed visualization of CL31 phages on S. venezuelae mycelium

Table S1: Microbial strains used in this study

Strain and phages	Characteristics	Reference
Escherichia coli DH5α	supE44ΔlacU169 (φ80lacZDM15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1	Invitrogen
Escherichia coli ET12567/pUZ8002	dam-13::Tn9 dcm-6 hsdM hsdR, carrying plasmid pUZ8002	(MacNeil et al. <i>,</i> 1992)
Escherichia coli LE392	F ⁻ hsdR514 (rk ⁻ mk ⁻) supE44 supF58 Δ(laclZY)6 galK2 galT22 metB1 trpR55 lambda ⁻	(Murray et al., 1977)
Escherichia coli W1485	F⁺ met str T1 ^s T6 ^s lambda⁻	(Lederberg & Lederberg, 1953)
Escherichia coli B	Wild-type strain	(Luria et al., 1943)
Corynebacterium glutamicum ATCC 13032	Biotin-auxotrophic wild type (Accession: BX927147)	(Ikeda & Nakagawa, 2003)
Corynebacterium glutamicum MB001	ATCC 13032 with in-frame deletion of prophages CGP1 (cg1507-cg1524), CGP2 (cg1746-cg1752), and CGP3 (cg1890-cg2071)	(Baumgart et al., 2013)
Pseudomonas putida KT2440	Wild-type strain	(Nelson et al., 2002)
Pseudomonas syringae pv. lapsa ATCC 10859	Wild-type strain, plant pathogen	(Kong et al., 2016)
Bacillus subtilis EC1524	Bioassay strain	(Widdick et al., 2003)
Ustilago cynodontis NBRC 9727	Wild-type strain, haploid	(Geiser et al., 2014)
Xanthomonas translucens pv. translucens	Wild-type strain, plant pathogen	(Sapkota et al. <i>,</i> 2020)
Streptomyces venezuelae NRRL B-65442	Wild-type strain	(Gomez-Escribano et al., 2021)
Streptomyces venezuelae NRRL B-65442 ΔbldD::apr	NRRL B-65442 with <i>bldD::apr</i> mutant allele	(Tschowri et al., 2014)
Streptomyces venezuelae NRRL B-65442 ΔbldN::apr	NRRL B-65442 with <i>bldN::apr</i> mutant allele	(Bibb et al., 2012)

Streptomyces venezuelae NRRL B-65442 – pIJ10257- bldN	NRRL B-65442 containing integrative vector pIJ10257 for <i>bldN</i> overexpression	This study
Streptomyces coelicolor M145	S. coelicolor A3(2) lacking plasmids SCP1 and SCP2	(Bentley et al., 2002)
Streptomyces olivaceus BU 16	Wild-type strain	DSM1536

Phages	Characteristics	Reference
Alderaan	<i>Caudoviricetes</i> (morphotype: siphovirus), virulent, infecting <i>S. venezuelae</i> NRRL B-65442	(Hardy et al., 2020)
Endor1	<i>Caudoviricetes</i> (morphotype: siphovirus), temperate, infecting <i>S. coelicolor</i> M145	(Hardy et al., 2020)
Lambda	<i>Caudoviricetes</i> (morphotype: siphovirus), temperate, infecting <i>E. coli</i> LE392	DSM4499
T4	<i>Caudoviricetes</i> (morphotype: myovirus), virulent, infecting <i>E. coli</i> B	DSM4505
Т5	<i>Caudoviricetes</i> (morphotype: siphovirus), virulent, infecting <i>E. coli</i> B	DSM16353
Т6	<i>Caudoviricetes</i> (morphotype: myovirus), virulent, infecting <i>E. coli</i> B	DSM4622
Т7	<i>Caudoviricetes</i> (morphotype: podovirus), virulent, infecting <i>E. coli</i> B	DSM4623
M13	<i>Faserviricites</i> (morphotype: inovirus), chronic infection, infecting <i>E. coli</i> W1485	DSM13976
MS2	<i>Leviviricetes,</i> (morphotype: levivirus), virulent, infecting <i>E. coli</i> W1485	DSM13767
Langgrundblatt 1	Caudoviricetes (morphotype: siphovirus), virulent, infecting Xanthomonas translucens pv. translucens	(Erdrich et al., 2022)
Pfeifenkraut	Caudoviricetes (morphotype: siphovirus), virulent, infecting Xanthomonas translucens pv. translucens	(Erdrich et al., 2022)
Athelas	<i>Caudoviricetes</i> (morphotype: podovirus), virulent, infecting <i>Pseudomonas syringae</i> pv. lapsa	Isolated by S. Erdrich (unpublished)
CL31	<i>Caudoviricetes</i> (morphotype: siphovirus), virulent, infecting <i>C. glutamicum</i> MB001	(Hünnefeld et al., 2021)

Plasmids and primer	Characteristics/Sequence 5'-3'	Reference	
Plasmids		I	
plJ10257	Hyg ^R ; Cloning vector for the conjugal transfer of DNA from <i>E. coli</i> to <i>Streptomyces</i> spp. (Constitutive promoter <i>ermE</i> *; Integration at the Φ BT1 attachment site)	(Hong et al., 2005)	
pIJ10257-bldN	 Hyg^R; Derivative of pIJ10257 containing the gene sequence encoding the mature BIdN¹ under control of the constitutive promoter <i>ermE</i>* constructed via Gibson assembly with Primer 1 and 2 for insert amplification using gDNA of <i>S. venezuelae</i> NRRL B-65442 as template digestion of vector pIJ10257 via Ndel and HindIII 	This study	
	¹ mature BldN: lacking 84 aa N-terminal extension of the proprotein (Bibb & Buttner, 2003; Bibb et al., 2012)		
Oligonucleotides for p	Oligonucleotides for plasmid construction		
1_pIJ10257- <i>bldN-</i> fw	CTAGAACAGGAGGCCCCATATGATGGACCTGGTCGAGCG	This study	
2_pIJ10257-bldN-rv	TCATGAGAACCTAGGATCCAAGCTTTCAGCGGGCGTCGTC	This study	
Oligonucleotides for se	equencing	1	
3_pIJ10257-seq-fw	AGATGGTTACCTCGCCTCTG	This study	
4_pIJ10257-seq-rv	TCAGCGAGCTGAAGAAAGAC	This study	
Oligonucleotides for qPCR			
5_cgl56-qPCR-fw	TTGCGGAAGGTCTCGGCA	This study	
6_cgl56-qPCR-rv	AAGTTGGAGCAAGGTCACCG	This study	
7_HQ601_00028-fw	СТСБСТАТССБАТСАТСС	(Kever et al., 2022)	
8_HQ601_00028-rv	TTGGTTGCGGTTGATGGAC	(Kever et al., 2022)	

Table S3: Plasmids and oligonucleotides used in this study

Figure S1: Influence of re-growing *S. venezuelae* NRRL B-65442 mycelium on phage Alderaan. a) Re-infection of *S. venezuelae* mycelium, which was re-grown during an infection experiment. Infection of re-grown mycelium with Alderaan revealed high phage resistance in comparison to naïve infection (control). b) Growth curves of *S. venezuelae* infected with phage Alderaan showing re-growth of mycelium (R1-3 = biological triplicates). For a) and b), cultivations were conducted in the Biolector microcultivation systems (Beckman Coulter Life Sciences, Krefeld, Germany) using an initial phage titer of 10⁸ PFU/ml (n=3 independent biological replicates). c) Quantification of extracellular Alderaan titers via qPCR (n= 9, three independent biological replicates measured as technical triplicates) and double-agar overlays (n= 3 independent biological replicates) during long-term infection and bacterial re-growth shown in b). d) Time course of pH during cultivation of *S. venezuelae* under normal cultivation conditions (GYM, 50 % tap water, pH 7.3) and buffered conditions (GYM supplemented with 100 mM MOPS, pH 7.3) (n = 2 independent biological replicates). e) Stability of infectious Alderaan particles in GYM medium (50% tap water) adjusted to different pH values quantified over 24 h via double-agar overlays (n = 3 independent biological replicates). Incubation was performed under cultivation conditions at 30 °C and 900 rpm in DeepWell plates. f) Plaque formation in presence of different chloramphenicol (Cm) concentrations calculated via double-agar overlay assays (n= 3 independent biological replicates).

Figure S2: Time course of Alderaan titers during infection of different developmental stages of *Streptomyces*. Phage quantification via doubleagar overlay assays showing the phage amplification during infection of different developmental stages of *Streptomyces venezuelae* mycelium. These assays were used to quantify the log_{10} fold change (t_{24}/t_0) shown in Figure 3.

Figure S3: Influence of *S. venezuelae* NRRL B-65442 mycelium on extracellular titers of different phages. a) Schematic representation of experimental set-up composed of 1) incubation of non-host phages *with S. venezuelae* mycelium and 2) subsequent quantification of infectious phage particles via double-agar overlay assays using the corresponding host strains. b) Phages showing constant extracellular phage titers during incubation with *S. venezuelae* mycelium over 18 h. c) Phages showing a decline in extracellular titers over 18 h of cultivation with *S. venezuelae* mycelium. Incubation with corresponding *S. venezuelae* spent medium taken after 18 h exhibited no influence on infectious phage particles (n – 3 independent biological replicates).

S. venezuelae mycelium + CL31, 9 h post inoculation

Figure S4: Failed visualization of CL31 phages on *S. venezuelae* mycelium. a) SEM images of *S. venezuelae* mycelium during the decrease in extracellular infectious CL31 titers in comparison to an uninfected control (scale bar = 300 nm) allowing no detection of phage particles on cell surface. b) Decrease in extracellular infectious CL31 phages over 18 h of cultivation and failed re-covering of the phages from mycelial fraction via intensive shaking or mechanical cell disruption.

References

- Baumgart, M., Unthan, S., Ruckert, C., Sivalingam, J., Grunberger, A., Kalinowski, J., Bott, M., Noack, S., & Frunzke, J. (2013). Construction of a prophage-free variant of *Corynebacterium glutamicum* ATCC 13032 for use as a platform strain for basic research and industrial biotechnology. *Appl Environ Microbiol*, *79*(19), 6006-6015. <u>https://doi.org/10.1128/AEM.01634-13</u>
- Bentley, S. D., Chater, K. F., Cerdeño-Tárraga, A. M., Challis, G. L., Thomson, N. R., James, K. D., Harris, D. E., Quail, M. A., Kieser, H., Harper, D., Bateman, A., Brown, S., Chandra, G., Chen, C. W., Collins, M., Cronin, A., Fraser, A., Goble, A., Hidalgo, J., Hornsby, T., Howarth, S., Huang, C. H., Kieser, T., Larke, L., Murphy, L., Oliver, K., O'Neil, S., Rabbinowitsch, E., Rajandream, M. A., Rutherford, K., Rutter, S., Seeger, K., Saunders, D., Sharp, S., Squares, R., Squares, S., Taylor, K., Warren, T., Wietzorrek, A., Woodward, J., Barrell, B. G., Parkhill, J., & Hopwood, D. A. (2002). Complete genome sequence of the model actinomycete *Streptomyces coelicolor* A3(2). *Nature*, *417*(6885), 141-147. https://doi.org/10.1038/417141a
- Bibb, M. J., & Buttner, M. J. (2003). The Streptomyces coelicolor developmental transcription factor o^{BidN} is synthesized as a proprotein. J Bacteriol, 185(7), 2338-2345. https://doi.org/10.1128/JB.185.7.2338-2345.2003
- Bibb, M. J., Domonkos, A., Chandra, G., & Buttner, M. J. (2012). Expression of the chaplin and rodlin hydrophobic sheath proteins in *Streptomyces venezuelae* is controlled by o^{BldN} and a cognate anti-sigma factor, RsbN. *Mol Microbiol*, *84*(6), 1033-1049. https://doi.org/10.1111/j.1365-2958.2012.08070.x
- Erdrich, S. H., Sharma, V., Schurr, U., Arsova, B., & Frunzke, J. (2022). Isolation of Novel Xanthomonas Phages Infecting the Plant Pathogens X. translucens and X. campestris. Viruses, 14(7). <u>https://doi.org/10.3390/v14071449</u>
- Geiser, E., Wiebach, V., Wierckx, N., & Blank, L. M. (2014). Prospecting the biodiversity of the fungal family Ustilaginaceae for the production of value-added chemicals. *Fungal Biol. Biotechnol.*, 1(2). https://doi.org/10.1186/s40694-014-0002-y
- Gomez-Escribano, J. P., Holmes, N. A., Schlimpert, S., Bibb, M. J., Chandra, G., Wilkinson, B., Buttner, M. J., & Bibb, M. J. (2021). Streptomyces venezuelae NRRL B-65442: genome sequence of a model strain used to study morphological differentiation in filamentous actinobacteria. J Ind Microbiol Biotechnol, 48(9-10). <u>https://doi.org/10.1093/jimb/kuab035</u>
- Hardy, A., Sharma, V., Kever, L., & Frunzke, J. (2020). Genome sequence and characterization of five bacteriophages infecting Streptomyces coelicolor and Streptomyces venezuelae: Alderaan, Coruscant, Dagobah, Endor1 and Endor2. Viruses, 12(10), 1065. <u>https://doi.org/10.3390/v12101065</u>
- Hong, H. J., Hutchings, M. I., Hill, L. M., & Buttner, M. J. (2005). The role of the novel Fem protein VanK in vancomycin resistance in Streptomyces coelicolor. J Biol Chem, 280(13), 13055-13061. <u>https://doi.org/10.1074/jbc.M413801200</u>
- Hünnefeld, M., Viets, U., Sharma, V., Wirtz, A., Hardy, A., & Frunzke, J. (2021). Genome Sequence of the Bacteriophage CL31 and Interaction with the Host Strain *Corynebacterium glutamicum* ATCC 13032. *Viruses*, 13(3), 495. <u>https://doi.org/10.3390/v13030495</u>
- Ikeda, M., & Nakagawa, S. (2003). The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl. Microbiol. Biotechnol., 62(2-3), 99-109. <u>https://doi.org/10.1007/s00253-003-1328-1</u>
- Kever, L., Hardy, A., Luthe, T., Hünnefeld, M., Gätgens, C., Milke, L., Wiechert, J., Wittmann, J., Moraru, C., Marienhagen, J., & Frunzke, J. (2022). Aminoglycoside Antibiotics Inhibit Phage Infection by Blocking an Early Step of the Infection Cycle. *mBio*, 13(3). <u>https://doi.org/10.1128/mbio.00783-22</u>
- Kong, J., Jiang, H., Li, B., Zhao, W., Li, Z., & Zhu, S. (2016). Complete Genome Sequence of *Pseudomonas syringae* pv. lapsa Strain ATCC 10859, Isolated from Infected Wheat. *Genome Announc*, 4(2). <u>https://doi.org/10.1128/genomeA.00024-16</u>
- Lederberg, E. M., & Lederberg, J. (1953). Genetic Studies of Lysogenicity in *Escherichia Coli. Genetics*, 38(1), 51-64. https://doi.org/10.1093/genetics/38.1.51.

11

- Luria, S. E., Delbrück, M., & Anderson, T. F. (1943). Electron microscope studies of bacterial viruses. J Bacteriol, 46(1), 57-77. https://doi.org/10.1128/JB.46.1.57-77.1943
- MacNeil, D. J., Gewain, K. M., Ruby, C. L., Dezeny, G., Gibbons, P. H., & MaeNeil, T. (1992). Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene, 111(1), 61-68. https://doi.org/10.1016/0378-1119(92)90603-M
- Murray, N. E., Brammar, W. J., & Murray, K. (1977). Lambdoid Phages that Simplify the Recovery of in vitro Recombinants. Mol Gen Genet., 150(1), 53-61. <u>https://doi.org/10.1007/BF02425325</u>.
- Nelson, K. E., Hilbert, H., Gill, S. R., Beanan, M., Madupu, R., Khouri, H., Scanlan, D., Rizzo, M., Lauber, J., Heim, S., Weinel, C., DeBoy, R. T., Nelson, W., Hance, I., Tran, K., Lee, K., Düsterhöft, A., Paulsen, I. T., Holmes, M., Santos, V. A. P. M. d., Pop, M., Lee, P. C., Moazzez, A., Kosack, D., Tümmler, B., Eisen, J., Dodson, R. J., Fouts, D. E., Brinkac, L., Daugherty, S., White, O., Kolonay, J., Peterson, J., Holtzapple, E., Utterback, T., Moestl, D., Wedler, H., Stjepandic, D., Hoheisel, J., Straetz, M., Kiewitz, C., Timmis, K. N., & Fraser, C. M. (2002). Complete genome sequence and comparative analysis of the metabolically versatile *Pseudomonas putida* KT2440. *Environ. Microbiol.*, *4*(12), 799-808. https://doi.org/10.1046/j.1462-2920.2002.00366.x.
- Sapkota, S., Mergoum, M., & Liu, Z. (2020). The translucens group of *Xanthomonas translucens*: Complicated and important pathogens causing bacterial leaf streak on cereals. *Mol Plant Pathol*, 21(3), 291-302. https://doi.org/10.1111/mpp.12909
- Tschowri, N., Schumacher, M. A., Schlimpert, S., Chinnam, N. B., Findlay, K. C., Brennan, R. G., & Buttner, M. J. (2014). Tetrameric c-di-GMP mediates effective transcription factor dimerization to control *Streptomyces* development. *Cell*, 158(5), 1136-1147. <u>https://doi.org/10.1016/j.cell.2014.07.022</u>
- Widdick, D. A., Dodd, H. M., Barraille, P., White, J., Stein, T. H., Chater, K. F., Gasson, M. J., & Bibb, M. J. (2003). Cloning and engineering of the cinnamycin biosynthetic gene cluster from *Streptomyces cinnamoneus cinnamoneus* DSM 40005. *PNAS*, 100(7), 4316–4321 <u>https://doi.org/10.1073/pnas.0230516100</u>

4.4. Appendix to 3.4: Genome sequence and characterization of five bacteriophages

infecting *Streptomyces coelicolor* and *Streptomyces venezuelae*: Alderaan, Coruscant, Dagobah, Endor1 and Endor2

Article Genome sequence and characterization of five bacteriophages infecting *Streptomyces coelicolor* and *Streptomyces venezuelae*: Alderaan, Coruscant, Dagobah, Endor1 and Endor2

Aël Hardy, Vikas Sharma, Larissa Kever and Julia Frunzke*

Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany * Correspondence: j.frunzke@fz-juelich.de; Tel.: +49 2461 615430

Figure S1. Close-ups of phage plaques imaged using a Nikon SMZ18 stereomicroscope, before (upper row) and after (lower row) exposure to ammonia fumes. *S. coelicolor* M145 was infected by phages using GYM double agar overlays. The plates were incubated at 30°C overnight and then kept at room temperature for two (Dagobah and Endor2) or three days (Endor1). The ammonia fume test was performed as follows: the plates were inverted and exposed to ammonia fumes for 15 min by placing 5 ml of 20% ammonium hydroxide solution on the inner surface of the lid. Scale bar: 1 mm.

Figure S2. VIRIDC generated heatmap showing the intergenomic similarities of the newly sequenced phages with reference phages. For each phage pair, the fraction of aligned genome, the genome length ratio and the intergenomic similarities are displayed. The parameters used were the default ones.

Figure S3. Subclade dendrogram with *Streptomyces* phage Alderaan and its closely related actinophages(enlargement from Figure 5). The phage lifestyles shown are those indicated on PhagesDB.

Figure S4. Subclade dendrogram with *Streptomyces* phage Coruscant and its closely related actinophages (enlargement from Figure 5). The phage lifestyles shown are those indicated on PhagesDB.

Figure S5. Subclade dendrogram with *Streptomyces* phage Dagobah and its closely related actinophages (enlargement from Figure 5). The phage lifestyles shown are those indicated on PhagesDB. "None" corresponds to phages with no lifestyle prediction on PhagesDB.

Figure S6. Subclade dendrogram with *Streptomyces* phages Endor1 and Endor2 and their closely related actinophages (enlargement from Figure 5). The phage lifestyles shown are those indicated on PhagesDB.

Table S1: List of the functional annotation of protein ORFs within phage genomes is available underthe following hyperlink: https://doi.org/10.3390/v12101065

Acknowledgements

An erster Stelle möchte ich mich bei Frau Prof. Dr. Julia Frunzke bedanken, die mir die Möglichkeit gegeben hat, an diesen faszinierenden Projekten zu arbeiten sowie für ihr Vertrauen, ihre Hilfe und viele fachliche Ratschläge und motivierende Worte. Darüber hinaus möchte ich mich bei Prof. Dr. Ilka Maria Axmann als Co-Betreuerin bedanken.

Mein besonderer Dank gilt natürlich auch den ehemaligen und jetzigen Mitgliedern der AG Frunzke für die tolle Zusammenarbeit, eine fantastische Arbeitsatmosphäre und unzählige lustige Mittagspausen. Dabei möchte ich mich besonders bei Dr. Max Hünnefeld bedanken, der mich seit meiner Masterarbeit begleitet hat, mir immer hilfsbereit zur Seite stand und viele anregende Diskussionen mit mir geführt hat. Des Weiteren möchte ich Aileen Krüger dafür danken, dass sie von Beginn an nicht nur eine Kollegin, sondern vielmehr eine gute Freundin war, mit der man über alles reden kann. Mit ihr waren auch die schwierigeren Zeiten nur halb so schlimm, weil sie immer die richtigen, ermutigenden Worte gefunden hat. Vielen Dank auch an Cornelia Gätgens für ihren unermüdlichen Einsatz im Labor und viele hilfreiche Gespräche, sowohl im privaten wie auch im beruflichen Bereich. Ein spezieller Dank geht auch an Dr. Aël Hardy und Tom Luthe für die tolle Zusammenarbeit an diesen spannenden Projekten sowie an mein Proofreading-Team.

Von ganzem Herzen möchte ich auch meiner Familie, insbesondere meinen Eltern danken. Ohne ihre dauerhafte Unterstützung, ihre ermutigenden Worte und ihr Verständnis wäre ich heute nicht da, wo ich jetzt bin. Ein großes Dankeschön geht auch an meine Großeltern, die keine Sekunde an mir gezweifelt haben und mich unterstützt haben, wo immer sie konnten. Zu guter Letzt danke ich vor allem auch meinem Partner Philipp, der mir immer mit Rat und Tat zur Seite stand und mir auch in schwierigen Zeiten immer ein Lächeln ins Gesicht zaubern konnte.

Erklärung

Hiermit versichere ich an Eides Statt, dass die Dissertation von mir selbständig und ohne unzulässige fremde Hilfe unter Beachtung der "Grundsätze zur Sicherung guter wissenschaftlicher Praxis an der Heinrich-Heine-Universität Düsseldorf" erstellt worden ist. Die Dissertation wurde in der vorgelegten oder in ähnlicher Form noch bei keiner anderen Institution eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche unternommen.

d. Keng

Larissa Kever