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1 Introduction 

1.1 Continuous manufacturing  

1.1.1 Current state 

Continuous Manufacturing (CM) is an innovative approach for pharmaceutical manufacturing 
where material is simultaneously charged and discharged from the process [1]. In fact, input raw 
materials or mixtures are continuously fed into a process train while the processed output materials 
are continuously removed [2]. The continuous process allows to work with small equipment and 
the batch size is then proportional to the process run time. In an end-to-end continuous 
pharmaceutical manufacturing process, different process steps are sequenced together to form a 
continuous production line where product removal can occur at the same rate as the input of raw 
materials [2]. A pharmaceutical manufacturing process consisting of a combination of batch and 
continuous process steps is also considered as continuous manufacturing [2]. 

An increasingly number of recent publications from pharmaceutical science is focused on 
continuous manufacturing for drug product manufacturing and several pharmaceutical companies 
have invested for dedicated continuous manufacturing facilities [3]: Novartis [4, 5], Pfizer [6] and 
Eli Lilly [7]. Moreover, collaborations between industry and academy have been developed around 
the continuous manufacturing topic: for example, the Novartis/MIT partnership resulted in the 
production of Aliskiren in an end-to-end process which included continuous solid oral dose 
formulation [8].  

The regulatory administrations such as the FDA have been encouraging and supportive for the 
development and use of such a technology, with guidance and guidelines for industry [9]. 

1.1.2 Regulatory perspectives 

The regulatory agencies such as the Food and Drug Administration (FDA) or the European 
Medicines Agency (EMA) regulate pharmaceutical drug products to ensure a continuous supply 
of high-quality drugs over the world. They currently encourage a change in manufacturing 
practices in favor of cleaner, more flexible, and more efficient manufacturing of drug products, as 
supported by ICH Q8 (R2), Q9, Q10, and Q11 and the introduction of QbD concepts as well as 
science- and risk-based approaches to assure product quality [2, 10-18]. 

The starting point for discussions about continuous manufacturing versus batch manufacturing was 
the definition of a lot and of a batch [1]. According to the Code of Federal Regulations, 21 CFR 
210, a batch is defined by a specific quantity of a drug or other material that is intended to have 
uniform character and quality, within specified limits, and is produced according to a single 
manufacturing order during the same cycle of manufacture. Also, a lot is defined as a batch, or a 
specific identified portion of a batch, having uniform character and quality within specified limits. 
Thus, the definitions of batch and lot are applicable to both batch manufacturing and continuous 
manufacturing as they refer to the quantity of material intended to have uniform character & 
quality [1, 2, 16].  
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Continuous manufacturing is consistent with Quality by Design (QbD) efforts of FDA and ICH 
[15, 10] and has the potential to improve the assurance of quality but also agility, flexibility, cost 
and robustness in the development of pharmaceutical manufacturing processes [17]. Over the past 
decade, there have been significant advancements in science and engineering to support the 
implementation of continuous pharmaceutical manufacturing. Continuous manufacturing enable 
quality to be directly built into process design [1, 17]. In parallel, the progress in process analytical 
technology (PAT) for designing, analyzing, and controlling manufacturing led to scientific and 
regulatory readiness for continuous manufacturing [17, 18]. 

The FDA and ICH guidelines [11-14, 18] collectively reinforce the adoption of a more systematic 
and integrated framework in order to reach an increased level of process understanding and product 
knowledge. Process understanding, control strategies, plus on-line, in-line, or at-line measurement 
of critical quality attributes (CQA) can support control strategies that include real time quality 
evaluation, which would be equivalent to, or better than, laboratory-based testing on collected 
samples [18]. 

Both pharmaceutical industry and regulatory agencies gain more experience with continuous 
manufacturing over time, leading to new regulatory aspects to explore and also to early and 
frequent communication between both parties [2].  

The current regulatory documents suggest the following considerations for CM: FDA Guidance 
on Process Validation [19] encourages the use of quality risk management, and quality systems at 
all stages of the manufacturing process lifecycle linking product and process development; while 
the ICH Guidelines introduce the concept of continuous process verification thanks to PAT tools 
for process monitoring and/or control. Most recently, FDA Guidance on CM quality considerations 
[9] has been focusing on the CM process dynamics and control strategy. 

In its draft guidance from 2019 [9], the FDA defines the two key concepts for CM processes: the 
definition of batches and the understanding of the process dynamics in order to apply a control 
strategy. This control strategy should be based on the following: 

- Input materials control, in order to characterize the flow behavior and the residence time 
distribution (RTD), 

- Process monitoring, in order to gather accurate real-time information, 
- Material diversion, in order to waste of out-of-specification (OOS) material depending on 

process dynamics. 

With a great amount of generated data that should be evaluated in real time to make process 
decisions, CM processes imply the introduction of automated systems. According to the FDA [9], 
the design and validation of these automated systems will be particularly critical.  

Concerning process development, there is no particular pre-defined manufacturing strategy but 
some considerations should be included for regulatory submission: flow rate of material through 
the process, total process operation time, critical process parameters and their ranges, IPC points 
and also specific information about development and modeling of the continuous process where a 
robust control strategy is crucial for a consistent quality of product over time (e.g. residence time 
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distributions, system dynamics, disturbance propagation, information on model set up, 
maintenance, and model improvement) [2, 9]. 

Moreover, CM control strategy also includes several aspects [1, 2, 9, 13, 18, 19]:  

- State of control: to ensure the consistency of the final drug product quality and of the 
process performance over the production time through appropriate process attributes or 
ranges for monitoring or a multivariate process control approach. The detection of process 
disturbances and introduction of corrective actions to bring the process back into 
conformance could help to maintain the final drug product quality. Sudden or uncontrolled 
changes in a process variable should be considered as well as start-up, shutdown and 
transient phases. Process disturbances may occur during development on a reproducible 
operation for a certain period of time and criteria should be developed to define the state 
of control. 

- Raw materials and intermediates: to follow the quality attributes of raw materials and 
intermediates linked to the product CQAs along the process through deep product and 
process understanding with the use of PAT tools (e.g. in-line, at-line, or on-line). The 
determination of the characteristics of an intermediate product may be more difficult in a 
continuous process due to the limited sampling ports and high sampling frequencies. 

- Equipment: to ensure their performance with special maintenance, calibration and periodic 
review as equipment may need to run for long periods of time. 

- Process monitoring and sampling: to manage planned changes and respond to unplanned 
disturbances. Sampling strategy should be addressed: appropriate sampling frequency (i.e. 
appropriate to the dynamic response time of the parameter or attribute), sample acquisition 
time, flow rate, residence time distributions, “blind” times (e.g. refill of the hoppers), 
number of probes and their distribution have impact on the design of the test for quality 
along the process. 

- Traceability: materials flow along the line should be understood, documented and 
supported by data on system dynamics such as residence time distributions at relevant flow 
rates and operating conditions. If OOS material is produced, the tracking of material flow 
in the system is crucial for further process decisions that may end in material diversion. 

- Product collection or rejection: pre-defined criteria and procedures of collection of 
rejection should be established. In situations where the state of control is lost from process 
disturbances, a portion of the batch (or in worst case, the whole batch) may be rejected 
from the line. 

- Risk assessment and specifications: to ensure the product formed is of uniform quality and 
character. The understanding of the risks of the process helps to setup a risk mitigation 
strategy for a process robustness. 

The key in continuous manufacturing is to have clearly defined criteria, which describe state of 
control operation, and to understand the process dynamics for different aspects: sampling strategy, 
traceability of the materials, process monitoring with possible material diversion, etc. 
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1.1.3 Benefits 

Continuous manufacturing offers several advantages and opportunities for pharmaceutical 
manufacturing improvements [1-3, 16]. From an operator’s perspective, the first thing to notice is 
the significantly reduced size of the process operation units. In fact, the whole concept of 
continuous manufacturing lies in production over time. Batches and lots are defined by total 
production time. This way, CM allows to work with smaller equipment and facilities leading to a 
smaller ecological footprint, more flexibility, lower costs and more environmental friendly 
pharmaceutical production. It also leads to a safer and more efficient process: reduced manual 
handling with fewer processing steps and shorter turnover time leads to reduced risk of human 
error and reduced occurrence of deviations [16]. In fact, smaller size for reactors (e.g. extruders) 
allows to drastically change the surface-to-volume ratio in favor of increased heat removal 
capabilities leading to more control over the process and it limits the amount of material in the 
process line, which is safer with dangerous or toxic reagents [20, 21]. 

Continuous manufacturing allows enhanced development approach with quality-by-design (QbD) 
and process analytical technology (PAT) for on-line monitoring and control for increased product 
quality assurance in real-time. With the concept of residence time distribution, CM also facilitates 
real-time release testing (RTRT) and innovative manufacturing aspects such as risk-based control 
strategy that enables quality to be directly built into process design [22]. 

From an economical perspective, the use of continuous manufacturing can result in yield 
improvements, especially where synthetic routes are not possible in batch mode [3]. CM processes 
can be more efficient in energy savings and reduced solvent consumption, which lead both to more 
economical and more ecological processes. 

1.1.4 Challenges 

Continuous manufacturing is a new approach in the pharmaceutical industry. Many advantages 
have been presented in the upper section but it comes also with new challenges such as the 
development of more accurate and more appropriate process monitoring.  

The integrated process line requires to better understand the interactions between unit operations, 
to ensure stable operation and to understand the impacts of residence time distributions and of the 
propagation of changes and disturbances through system. It is also necessary to implement an 
integrated data acquisition system with analytical tools to the control system in order to support 
implementation of feed-back or feed-forward control with advanced data management tools [1]. It 
then raises the question of sampling. For satisfactory process monitoring, the operators need to 
“see” what is performed during the process, thus representative sampling procedures need to be 
considered in order to describe the process and to consistently assure product quality over time, 
with the definition of sample size, sampling frequency and location of sampling probes [1, 9].  

FDA supports the implementation of continuous manufacturing using a science and risk-based 
approach [9]. Enhanced process understanding is needed for further continuous manufacturing 
development. Mechanistic models for all processing steps could be very useful but are not 
systematically available yet and multivariate analysis for determination of drug product quality 
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should be implemented in the future. This is why, control strategy implementation should be highly 
supported with for example, appropriate in-process controls (IPC), real time release testing 
(RTRT) and/or automated systems for process monitoring and control. PAT should demonstrate 
the ability to detect and manage process disturbances.  

The beauty of continuous manufacturing implementation lies in the cross-sectional study and 
efforts across engineering, advanced analytical chemistry, process automation and process 
modeling technical functions [3]. In fact, process automation and control systems together with 
online PAT are required to check the state of control of some process parameters such as mass 
flow rates. Non-destructive on-line PAT tools can give feedback on process parameters in real-
time [3].  

1.2 Process units1 
The presented work in this thesis takes over some open questions left from the previous PhD 
student Victoria Pauli from the University of Düsseldorf in collaboration with the Continuous 
Manufacturing group at Novartis Pharma AG, Switzerland. The experimental part has been 
performed on the same process equipment thus parts of this section have been previously published 
in Victoria Pauli’s thesis [23] and papers [44, 46]. 

1.2.1 Connected process line 

Figure 1 shows a flow-chart of a typical fully connected wet granulation continuous manufacturing 
process line [1, 16, 23, 24]. The process units from dosing to drying will be further developed in 
the following sections. 

 
Figure 1: Flow-chart of a classic continuous wet granulation process line for film coated tablets and examples of 
equipment units. 

1.2.2 Feeding 

Multiple solid feeders can deliver to the next operation unit either individual formulation 
components or pre-mix of a part of the final formulation, both at a defined mass flow rate. Accurate 
and steady dosing is essential for the quality and robustness of final drug product. 

Typical powder feeders can either operate in gravimetric mode by loss-in-weight control or in 
volumetric mode by fixing the screw speed; nevertheless, this last option is not the preferred one 
as the flow properties of bulk powders can lead to wrong powder distribution, hence wrong solid 

                                                 
1 Parts of this section have been previously published in former PhD student Victoria Pauli’s thesis “Development and 
Implementation of a Redundant Process Control Strategy in Pharmaceutical Continuous Manufacturing” 
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ratio. The usual gravimetric feeding works with rotating screws dispensing powder from a hopper 
into the next unit operation with a defined ratio and a defined throughput from few grams to dozen 
of kilograms per hour (see section 1.3.1, page 20 for details concerning formulation). The actual 
feed rate is monitored by a weighing cell, associated with a control unit adjusting the screw speed 
according to the readings and the set points. [25-27].  

1.2.3 Blending 

When multiple solid feeders are setup in the line, a continuous blending unit is needed to ensure a 
proper content uniformity, bulk powder sizes, stickiness, moisture or any other physical or 
chemical property that needs to be homogenized in the final blend. Blend uniformity can be 
monitored by process control systems using PAT (see section 1.4.1, page 23 for further details).  

One of the typical blender designs is the convective continuous blender: fixed impellers on a 
rotating shaft induce the particle movement through a horizontal cylinder. Different types of 
impeller and cylinder are available depending on the process uses [28, 29]. Continuous mixers 
compared to batch blenders are superior in their ability to homogenize segregating mixtures [30]. 
In case of complex formulations, batch blending could be done in a large enough container by 
weighing all ingredients and blending by mechanical agitation over a suitable period of time. This 
is sometimes the preferred option as it would be too difficult to feed separately each ingredient in 
the continuous blender, as the process line growth is limited by room space. 

1.2.4 Granulation 

Depending on the product, the granulation step can either be wet or dry, respectively with or 
without a liquid in the process. Several techniques exist; for wet granulation: continuous twin-
screw wet granulation, spray drying or fluidised bed granulation, and for continuous dry 
granulation: twin-screw melt granulation or roller compaction to name a few [31-35]. All available 
methods for continuous wet granulation shared that after being delivered by powder feeders and/or 
continuous blender, the powders have to be wetted and agglomerated successively or 
simultaneously and that the resulting wet granules have to be dried. The most important and most 
frequently used granulation processes were relying on fluidized-bed or twin-screw granulation 
techniques [34, 36]. Fluidized-bed granulation offers agglomeration and drying in a single machine 
with the inconvenience of long process time for the agglomeration step [37]. Wet granulation can 
be done via twin-screw granulators but an additional drying step is required.  

Granulation is a major step of the process as it fixes a lot of parameters by agglomerating particles 
into granules; for example, the API content (i.e. the ratio between API and excipients) or the 
granules characteristics (e.g. bulk density, hardness, moisture, compressibility, etc), which can 
highly impact the final drug product quality attributes. It helps to increase homogeneity by 
reducing risk for segregation. Granulation improves the overall processability and flowability by 
enlarging the particles through the following agglomeration process: wetting, nucleation, 
coalescence, consolidation and attrition. Also, the resulting granules are free of dust: the amount 
of fine particles has been drastically reduced by agglomeration [38-41].  
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The used continuous wet granulation technique in this presented thesis is continuous twin-screw 
wet granulation (TSG), which consists in a horizontal barrel containing co-rotating screws and 
being continuously fed by the previous mentioned powder blend and by the granulation liquid. The 
design of the co-rotating screws is of high importance as it defines the shear forces applied to the 
materials while it travels through the barrel. 

The screw configuration together with the formulation are determinant to define the granules 
characteristics (e.g. porosity). The screw configuration can be adapted depending on the process 
needs by assembling different screw elements on a shaft. Other process parameters are involved 
in the granulation process like the total solid flow rate, the rotation speed of the co-rotating screws 
and the liquid-to-solid ratio (L/S). The total solid flow rate and the rotation speed have an impact 
on the material residence time and on the TSG fill-level, thus on the applied shear forces: granule 
size distribution can be impacted. L/S ratio has an impact on the agglomeration process: depending 
on the water amount, granules aspect can cover the range from powder to paste [42, 43]. 

These process parameters are dependent on the investigated formulation (materials and 
proportions) and they are engaged in the granules critical quality attributes (e.g. bulk/tapped 
density, particle size distribution) [43, 44]. This leads to a careful formulation and process 
development, evaluating each critical process parameter (CPP) for each CQA in order to draw 
process interactions and potential process models for advanced process control.  

Continuous wet granulation using twin-screw granulator at high temperature helped with a poorly 
compactible drug, with minimum amounts of excipients used, to enhance tabletability [45].  

1.2.5 Drying 

Once the wet granules have been created via TSG, they leave the barrel to the drying phase. 
Fluidized-bed dryers are largely used for continuous drying in pharmaceutical industries. Some 
studies investigated moisture content prediction [46-48] with good correlation between the 
observed and expected thermal energy loss via applied mass-energy balance principle or other 
mathematical models. 

Continuous fluidized bed drying consist in a vertical drying system supplied by air of pre-defined 
temperature and flow rate [47, 49]. Recently, two drying systems have been marketed: GEA 
ConsiGmaTM or Glatt GPCG 2 CM fluidized-bed dryer. The first one consists in a segmented 
fluidized-bed dryer containing six separated, identical, static drying chambers operated in a semi-
batch mode where wet granules are filled into the chambers by a rotating inlet valve [50]. The 
second one provides a fluidized-bed dryer with ten rotating chambers where wet granules are 
subsequently but continuously filled and are fluidized; eight chambers are simultaneously used for 
granules drying and the two remaining chambers are used either to discharge granules once drying 
is done or to wait for next granules to come from the extruder. In this case, the drying time of the 
material inside the fluidizing chamber is defined by the rotation speed of the dryer [44, 51]. 

After drying, granules can be processed further by sieving, milling or mixing with additional 
components before being compressed to produce tablets. Tablets can be coated. Those process 
operation steps are not described in this thesis as they are out of scope. 
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1.2.6 Powder transfer system 

Powder transfer systems (PTS) are necessary to ensure the continuous flow of wet or dry material 
across the process operation units. For short distances (e.g. between TSG and dryer), it might be 
sufficient to transfer wet granules by blowing pressurized air. For longer transfer distances or in 
case of upward transfer (e.g. from powder containers to dosing units when hoppers need to be 
refilled), vacuum PTS can be required. 

1.3 Pharmaceutical development 

1.3.1 Formulation  

The solid oral dosage forms like tablets are usually made up of two parts: the Active 
Pharmaceutical Ingredient (API) and a mix of excipients. The excipients have the function to 
guarantee the dosage, to support or enhance the stability of the drug product and the bioavailability 
of the API [52, 53]. In other words, defining the formulation of a drug product is equivalent to 
shape its behavior. Excipients recommendations for batch manufacturing are applicable to 
continuous manufacturing. 

Over the past decades, more attention was paid to the innocuity of the processed excipients mix as 
it should not interfere with the body and create adverse effects. Moreover, pharmaceutical 
industries seek for no interactions between excipients or with the API because it could potentially 
change the effectiveness of the medicine and even increase toxicity. With the large number of 
substances on the market and the diversity of their sources and process functions, the toxicity 
assessment of the excipients has been broadening [53-55]. The simpler the better, it has been 
suggested to simplify the formulations as much as possible by reducing the number of excipients 
to strictly meet the required functions [55]. 

The excipients can be classified based on their functions in dosage form. For solid dosage forms, 
there are various functions like binders, diluents, lubricants, disintegrating agent’s, plasticizers, 
etc. Some excipients like starch play different roles depending on the amount in the formulation 
[53]. 

The choice of the excipients mix in the formulation could be in agreement with the concept of 
QbD. The selected excipients should ideally be chemically stable, non-reactive (both to human 
body, to other excipients and to API), non-toxic, with low sensitivity to process or equipment and 
preferably economical [53].  

1.3.2 Critical Quality Attributes of solid oral dosage forms 

ICH Q8 guideline defined the critical quality attributes (CQA) as “a physical, chemical, biological, 
or microbiological property or characteristic that should be within an appropriate limit, range, or 
distribution to ensure the desired product quality” [11]. The identification of CQAs should be done 
through risk assessment [12], based on the experience gained in the laboratory phase for example, 
and it would result in a list of CQAs ranked in order of importance. Then, the product design and 
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design space can be defined. Thus, it is possible to carefully design the product formulation and 
process to meet the product attributes: critical material attributes (CMA) and critical process 
parameters (CPP) have a great impact on the CQAs and they contribute to identify and control the 
different sources of variability in CQAs [56].  

By evaluating each CPP for each CQA with the use of PAT tools, process interactions and potential 
process models can be drawn for advanced process control. Quality control strategy for continuous 
manufacturing should be based on the real-time assessment of the intermediates and final product 
CQA [43].  

1.3.3 Quality-by-Design  

In traditional batch mode, the quality is generally tested at the end of a process step, usually when 
product is discharged from the process unit, which leads to Quality-by-Testing (QbT). 
Pharmaceutical continuous manufacturing with the use of PAT tools is suitable for an enhanced 
development of Quality by Design (QbD): a comprehensive QbD approach allows for continuous 
improvement through product and process understanding to ensure better product quality [17, 56-
60].  

QbD is described by FDA guidance as “building in quality into the final product by understanding 
and controlling formulation and manufacturing variables: testing is used to confirm the quality of 
the product” [9]. ICH Q8 guideline supports the idea of defining QbD as a systematic approach 
and introduces the concept of design space [11]. In fact, QbD becomes more flexible with 
multidimensional combination and interaction of input variables (e.g. material attributes) and 
wider range of material attributes and process parameters. Thus the identification of the CQAs 
with their associated CMAs and CPPs is crucial for QbD implementation. 

Both regulatory perspectives align on the importance of QbD being tackled through deep process 
understanding (e.g. relationships between CPP and CQA). Several aspects need to be taken into 
account for a proper QbD: the identification of target product profile, the determination of product 
critical quality attributes with links to raw material attributes and to process parameters, risk 
assessment, design space, design and implementation of a control strategy and the product lifecycle 
management and continuous improvement [61, 62]. 

The control strategy should be based on CMAs and CPPs states, which should be observed and 
monitored via the appropriate PAT tools, in order to compensate their variability. 

1.3.4 Quality-by-Control 

One step forward is the Quality-by- control (QbC) concept, which is an important extension and 
complementary approach of QbD, where quality is built into the process via deep process 
knowledge and process modelling. This ultimate control strategy aims for an efficient and active 
control of the CPPs to achieve targeted CQAs, for more robustness of the process and less product 
quality variability. The active control advocated by QbC would be based on enhanced product and 
process knowledge as well as advanced model-based techniques including data reconciliation, 
model predictive control (MPC) and risk analysis [63]. 
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Continuous manufacturing offers the appropriate framework to develop QbC concept with regard 
to the design of continuous manufacturing, the amount of generated data in real-time and the 
possibility to build and control quality while drug product is being processed. Moreover, QbC aims 
for real-time automatic and optimal control of CQAs thanks to the identification of dynamic 
relationships between CQAs and CMAs or CPPs. It aims for real time release and minimized 
production of OOS products. 

The benefits would be significant with automatized process decisions and quality assurance [41]. 
It would also lead to more sustainable, more agile and adaptable processes in the pharmaceutical 
industry [42]. 

1.3.5 Industry 4.0 

Quality-by-Control can open the door to the next-generation smart manufacturing or Industry 4.0, 
which is based on digitalization and automation to improve manufacturing processes by evaluating 
real-time data. The concept of Industry 4.0 is driven by technological advancements, supports 
sustainable value creation and leads to more agile, smart and personalized pharma industry. It is 
thought to overcome the challenge of the increased amount of data collected in the pharmaceutical 
industry for data integrity, in particular with the introduction of artificial intelligence (AI) and 
cloud-computing [64].  

With the increased amount of data available, and the need to evaluate those data in real-time for 
continuous manufacturing, it is necessary to develop new ways as digitalization to collect, sort out, 
classify and treat data: “transforming current pharmaceutical manufacturing to Pharma 4.0 (i.e. 
Industry 4.0) requires a new approach to manufacturing and process data capture” [65]. These 
massive amounts of data produced in real-time could be used for different manufacturing 
objectives: for example, to increase process understanding, to improve process control strategies 
or to optimize production plan [66]. 

Applying Industry 4.0 as a new concept for sustainable and agile processes can improve the 
effectiveness of coordination and communication across different entities within the process line, 
mitigate waste and pollution at different stages and enable a more autonomous decision-making 
process [64].  

Continuous manufacturing combines the concept of continuous process improvement as defined 
in ICH Q10 and Q12 guidelines with the digitalization opportunities provided by Industry 4.0. 
Industry 4.0 aims to upgrade the entire operation system to become smarter, more flexible and 
sustainable processes; this is in agreement with the values promoted by continuous manufacturing. 
Moreover, one of the keys to Industry 4.0 application is the integration of PAT tools [18] for 
continuous improvement through process knowledge obtained from generated data. This would 
lead to advanced process control strategies via process monitoring, process modelling and process 
control in order to predict and anticipate failures such as OOS products. 
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1.4 Process control strategies  

1.4.1 Process analytical technology 

Continuous manufacturing is a highly innovative technology, capable of developing cutting edge 
process control strategies for pharmaceutical industry [9]. Several techniques have been developed 
in order to understand, monitor and control the process. Continuous manufacturing is designed to 
use an integrated systems approach for the control of pharmaceutical product quality in real-time. 
According to the FDA [67], quality of pharmaceutical drug products should be by design or should 
be built-in through a comprehensive understanding of the process. The tools proposed for process 
understanding are based on multivariate data analysis, real-time process analyzers, process control 
and continuous improvement systems towards Industry 4.0 [64].  

The risk-based regulatory approaches recognize the level of scientific understanding of how 
formulation and manufacturing process factors affect product quality and performance as well as 
the capability of process control strategies to prevent or mitigate the risk of producing a poor 
quality product. Indeed, product quality and performance are ensured through the design of 
effective and efficient manufacturing processes; moreover, product and process specifications are 
based on a mechanistic understanding of how formulation and process factors affect product 
performance for continuous real time quality assurance.  

The process analytical technologies (PAT) are aiming to develop and implement effective and 
efficient innovative approaches in pharmaceutical development, manufacturing and quality 
assurance. The final product quality can be ensured by means of PAT tools measuring critical 
quality attributes of raw and in-process materials [67]. FDA guidance gives the regulatory 
framework for PAT-tools. Figure 2 gives a schematic representation of the possible measurements 
methods with examples [68-70]: 

- in-line: measurement where the sample is not removed from the process stream and can be 
invasive or noninvasive, typical method: near-infrared spectroscopy (NIRS);  

- on-line: measurement where the sample is diverted from the manufacturing process, and 
may be returned to the process stream, investigated method: high-performance liquid 
chromatography (HPLC) [71] or focused beam reflectance measurement (FBRM) imaging 
(crystal size, shape) [72]; 

- at-line: measurement where the sample is removed, isolated from, and analyzed in close 
proximity to the process stream, typical methods: in-process control (IPC) for tablets such 
weight, thickness, and crushing force tests. 

Fast and non-destructive methods are preferred (e.g. in-line or on-line measurement techniques) 
but regular sampling of small amounts for potentially destructive at-line method can be considered 
as a reasonable PAT implementation. Pharmaceutical industry is using PAT tools to understand, 
monitor and/or control e.g. the API content, the LOD and the PSD as CQA of the intermediates 
and final drug products. 
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Figure 2: Schematic representation of the different PAT strategies with in-line, on-line and at-line 
measurements; adapted from [73]. 

1.4.2 Near-Infrared Spectroscopy 

Near-infrared spectroscopy (NIRS) is a molecular vibrational spectroscopic technique studying 
vibrational transitions in molecules [74]. It is a fast and non-destructive method that can be 
implemented in continuous manufacturing as in-line method in order to follow the different critical 
process and product attributes in real-time. It measures the vibrational properties of a given sample 
and absorption intensities are compared between sample and its reference, for example: 

- the comparison with API reference is calibrated to the sample API concentration, after the 
method being calibrated via HPLC as reference analytics; 

- the comparison with spectral water bands is calibrated to the sample moisture content after 
the method being calibrated via LOD measurements as reference analytics. 

In addition, this method does not require any sample preparation, which makes it easier to 
implement in a continuous process line [75].  

Concerning particle size distribution (PSD), several techniques have been investigated in different 
studies for at-line, on-line and in-line measurements:  

- focused beam reflectance measurements (FBRM) as at-line method where a focused laser 
beam scans across particles [36, 76],  

- laser diffraction (LD) where a dispersed sample passes through a laser beam and its reliable 
use is limited to opaque particles larger than 50 μm [77], 

- NIRS as in-line method where molecular vibrational transitions are measured and are 
calibrated to the PSD via Dynamic Image Analysis [78, 79], 

- Parsum probe as in-line method, based on the principle of spatial filter velocimetry, where 
the size and velocity can be simultaneously extracted from particles [80, 81]. 
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NIRS has been selected as preferred measurement method for PSD, leading to one single 
measurement method to follow critical quality attributes of final and intermediate products. The 
selected measurement method for the investigated wet granulation process in this thesis is NIRS 
in order to follow the API concentration, moisture content and PSD states along the continuous 
line: after calibration, NIRS as PAT tool can be applied in-line monitoring of process steps like 
blending (API blend uniformity), wet-granulation and drying (moisture content and PSD 
measurements), and tableting (API content uniformity) [79-85]. 

1.4.3 Deep learning 

Deep learning provides advanced analytics tools to treat and analyze the great amount of data 
generated by continuous manufacturing. It fits into the Industry 4.0 framework of analyzing big 
data with many sensors and increase the process knowledge. The synergy between PAT and 
process data science could create a superior monitoring framework of the continuous 
manufacturing line. Deep learning can help for process monitoring, to create a reliable and robust 
process modeling and to better understand the process via analytics for process optimization [86-
88]. 

1.4.4 Advanced process control  

In pharmaceutical industry, the usual way of control is the use of PID controllers: they can also be 
implemented in pharmaceutical continuous manufacturing for local controls (e.g. valves, airflow 
regulation) but they are limited in capabilities. Continuous manufacturing is seeking for several 
approaches in order to tackle the automatized process control. Among these methods, model 
predictive control (MPC) is of high interest due to its ability to predict future process events and 
take control actions to keep the final product quality in range.  

The main advantages of the MPC is its ability to systematically deal with multivariable dynamics, 
constraints and competing objectives [89]. MPC allows for operating the process close to the 
process constraints. It is the most widely used approach for the advanced control of complex 
dynamical systems. Model predictive control is a common technique used in the petrochemical 
industry [90, 91]. The pharmaceutical industries are not yet familiar with this real-time process 
control. Altough the continuous manufacturing is dealing with real-time challenge and the 
authorities are applying strict regulations to the final product quality, MPC could represent a 
potential key milestone in the adaptability and flexibility of the production mode in order to deliver 
drugs to patients even more efficiently.    

Simulation studies [92, 93] were conducted and highlighted the advantages of MPC compared to 
PI-controllers. MPC allows the most flexible and straightforward design approach in combination 
with a high-performance control strategy. In fact, constraints can be easily considered in the 
optimization problem description by specifying minimum and maximum levels on variables; the 
design of the controller is straightforward once the mathematical models are established; and the 
tuning of the controller is intuitive [94]. 
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1.5 Model predictive control (MPC)2  

1.5.1 Operating mode  

MPC is a class of control algorithms which relies on process models in order to make future plant 
outputs predictions while satisfying a set of constraints [95]. The aim of the MPC is to drive the 
predicted plant output as close as possible to the references, given by the operation team, which 
have clearly defined the purpose of the controller. The MPC design includes several items that 
guide the description for an accurate and efficient control function [94, 96]: the control objectives 
(e.g. improve the final product quality), the design level of operation mainly defined by normal 
operating ranges and classic disturbances, the constraints and the process interactions (e.g. key 
variables that drive some parameters). Figure 3 outlines the operating mode and gives a simplified 
version of the control algorithm. The operating mode [97-99] is as follows (see Figure 3 (a)): 

- At t=j, the MPC solves an optimization control problem over a finite prediction horizon of 
N steps upfront in order to determine the control actions to be implemented over this 
horizon; 

- At t=j+1, these determined control actions are implemented to the next time step only, 
while the whole optimization problem is solved again by the MPC and it results in new 
control actions; 

- At t=j+2, the new control actions are applied, etc. 

The iterative calculation of the optimal solution is based on measured input data and on predicted 
output data. Thus, the MPC is agile enough for the anticipation and the optimization of the process 
path and can implement control actions accordingly in order to avoid process events that could 
lead to fail the objectives.  

The cost function (see Figure 3 (b)) is defined to calculate the deviation of the plant outputs from 
set points and system states as a weighted sum of errors. The optimization control problem is then 
solved by the MPC for a minimized cost function. In other words, the MPC is able to minimize 
the process divergence from the set points at each time step. The plant model simulates the output 
for a given control action and can be described by different mathematical models (e.g. mechanistic 
models or kinetic models), either for a single or for a group of operation unit(s) [94].  

                                                 
2 Parts of this section have been previously published in Publication [22] and chapter 6, page 43. 
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Figure 3: (a) Operating mode of the MPC and (b) simplified version of its control algorithm – figure adapted from 
[94, 97-99]. (a): The set point is changed (solid red). The optimized past inputs (dashed orange) influenced the past 
states (solid orange). The predicted output is displayed for time j (dashed green) and updated for time j+1 (dashed 
blue). The MPC is implementing only the first predicted output giving the current state (solid green) as the horizon 
window is moving. 

1.5.2 Variables in MPC blocks 

The current state of the process is reflected in the plant model of the MPC control algorithm and 
it is described by the process variables. The careful allocation of the process variables into the 
appropriate category (see Table 1) is determining for the successful implementation of the MPC 
with suitable design on a production line [94, 95]. 

Table 1: Categories for variables to be used in the MPC design. 

Type of variable Abbr. Description  
Controlled variable CV Variables to be controlled: the control objectives are defined by 

CVs set points and constraints. In the pharmaceutical world, the 
CVs are also known as the CQAs. 

Manipulated 
variable 

MV Effective variables in manipulating the process: their conditions 
are modified to control the CVs. In the pharmaceutical world, 
MVs are equivalent to the CPPs. 

Disturbance 
variable 

DV Uncontrolled measured variables, which have an impact on CVs 
to take into account. 

 

Disturbance variables may be measured or unmeasured. Measured disturbances may be provided 
to the MPC block to warn it of the disturbance, so it can take immediate action and respond before 
the process is significantly disturbed. When unmeasured disturbances occur, the MPC block takes 
action to correct the symptoms of the disturbance, but only once the symptoms start to cause the 
process disturbance. In other words, unmeasured disturbances include all external effects that 
influence the process that are not measured, or where the measurement is too late to take effective 
action. The most likely DVs for a continuous wet granulation process are gathered in Table 2.  
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Table 2: Unmeasured disturbances in the continuous wet granulation process. 

Unmeasured Disturbance Notes 
Change in feed powder 
properties 

In the test process manual blends of powder are used and variability 
is eliminated. When part of a continuous cascade, this may be a 
significant source of unmeasured disturbance. 

Change in liquid 
properties 

Variability can be eliminated by use of pure solvent or by 
appropriate control of solvent properties. 

Mechanical failure Always a potential problem: control usually will be lost on the 
failure of process. The only failure control strategy that will be 
provided is the ability to manage poor solid feeder rate control. In 
this situation feed ratio control will take priority over total flow rate. 

LOD measurement 
failure 

This is not a true disturbance because only the control signal is 
affected and not the actual process but it may lead to wrong 
feedbacks. Nevertheless, this is probably the most likely source of 
disturbance to steady continuous operation. Signal validation and 
careful design for managing bad signals is essential. 

All other disturbances The MPC blocks will take action to correct any deviation from the 
specified operating point or allowed constraint envelope. 

 

The CQAs (label claim, loss-on-drying, particle size distribution, etc) can be controlled by means 
of the manipulation of several process parameters, continuously measured on-line thanks to PAT 
tools and analyzed through appropriate ways to handle real-time data. In pharmaceutical 
continuous manufacturing, the control function is at a high level of complexity due to the number 
of process parameters it needs to control (e.g. solid feed rates, rotation speeds). Each of those 
process parameters can impact one or more CQAs of the final drug product [94]. This is why the 
implemented controller on the continuous line needs to be carefully designed in order to take 
control actions to either maintain the controlled parameters as close as possible to the reference 
values, mitigate undesirable events or discard OOS products. 

1.5.3 Step tests and MPC models 

Pharmaceutical development is seeking for a consistent high process performance leading to high 
final product quality. As described in the FDA guidance [9], the process flow can be characterized 
by the residence-time distribution by means of the mean residence time calculation (MRT). The 
MPC relies on process models in order to predict how variables could respond to changes. Relevant 
models can be developed for each CQA-CPP pair, where kinetic models can be used to describe 
the process behavior; they are defined by three parameters (see Figure 4):  

- the dead time (DT), which corresponds to the difference between start time of the input 
step and start time of the observable response in the output; 

- the rising time (first order time constant, FOTC), which corresponds to 63.2% of the trend 
area; 
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- the process gain (G), which corresponds to the change in input divided by the change in 
output. In other words, it expresses for example how far the measured controlled variable 
moves or reacts to a change in manipulated variable. 

 
Figure 4: Illustration of a kinetic model with its gain and time constants. 

In order to investigate the model parameters, a step test is conducted for each CQA-CPP pair; in 
other words, for each CV-MV pair. The step test is a technique among others which allows to 
identify the process dynamics by characterizing the process models. The step test is interesting 
because it allows to excite the system in the time-domain while the shape of the step allows to 
screen the whole spectrum of frequencies in the frequency domain; jump from one domain to 
another is available with the Fourier transform [100]. The step test is the most powerful tool to 
extract as much information in one shot. 

The identification of accurate process models is made possible by a careful design of the step test 
(see Figure 5). The following recommendations should be followed:  

- the step height should exceed at least three times the average noise of the data; 
- the step length should be defined based on process knowledge and should be long enough 

to observe a reasonable plateau after the step; 
- the step repetitions should be of three at least. 

By this way, the three parameters describing the above mentioned kinetic models used in MPC 
predictions and control can be determined for each CV-MV pair. 

 
Figure 5: Step test design. The starting time of the step is defined as t0; for the step number X, t0-X is given. 
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2 Aims of the thesis 

The presented thesis aimed to investigate a continuous wet granulation line through process 
understanding and advanced process monitoring towards advanced process control. 

 How to enhance the process monitoring? 

With the investigated continuous manufacturing concept, the process units connected to each other 
from solid feeders to the dryer meaning the operators could be “blind” until the end of the 
processing units. One or several methods to verify the different critical quality attributes states 
could be necessary in order to provide safe drug product of highest quality: in-process tests are 
usual but are reliable on the sampling frequency. Process analytical tools could be provided; a fast 
and non-destructive method is preferred. Process data science can help in parallel. The thesis 
focused on the implementation of NIRS as PAT tool from a qualitative perspective to a quantitative 
monitoring of the process. 

 How to characterize the process flow? 

Last recommendations for continuous manufacturing from FDA and authorities considered the 
characterization of the process dynamics a critical step to achieve control strategy. Monitoring 
tools such as NIRS are able to tackle this issue by continuously recording the critical quality 
attributes. Deep learning techniques and residence time distributions could be potential key 
enablers for process flow characterization. 

 How to control the process? 

The FDA recognizes the challenge of continuous manufacturing to deal with real-time: process 
decisions should be done in real-time to achieve the best quality control possible, meaning efforts 
should be put on producing high quality drug products and out-of-specification products should be 
identified, sort out and wasted. Model predictive control (MPC) presents several benefits that could 
contribute to continuous manufacturing interests such as dealing with competing objectives and 
constraints. The chosen process control system should be adaptive to new drug products. 

 

The cumulative manuscript is arranged with five publications, which are presented to respond each 
of the above mentioned questions. Qualitative monitoring of the continuous wet granulation 
process is presented with the introduction of NIRS as PAT tool. Then, deep learning techniques 
have been applied for quantitative prediction of the plant outputs. Residence time distributions 
have been computed for dynamic prediction of time characteristics of the investigated process with 
the possibility to divert OOS products. Finally, a review of the literature presented the MPC as an 
interesting tool to achieve process control together with the last publication, demonstrating how to 
design and implement such a control tool on a continuous wet granulation line from solid feeders 
to the dryer. 
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The following chapters contain the results of the dissertation which have been published/submitted 
in international journals. Each chapter contains a short introduction and summary of the work 
together with the assignments of tasks of the authors. Figures, tables and schemes do not follow 
the numbering of the main text, but the numbering of the publication itself. Each publication has 
its own reference list. 

3 Continuous manufacturing process monitoring of pharmaceutical 
solid dosage form: A case study 

Yves Roggo1, Victoria Pauli1, Morgane Jelsch1, Laurent Pellegatti1, Frantz Elbaz1, Simon Ensslin1, 
Peter Kleinebudde2, Markus Krumme1 
1 Novartis Pharma AG, Continuous Manufacturing (CM) Unit, CH-4002, Basel, Switzerland 
2 Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Düsseldorf, 
Germany 

Journal of Pharmaceutical and Biomedical Analysis, 2020, 179: 112971. 

DOI: https://doi.org/10.1016/j.jpba.2019.112971 

 

3.1 Pretext 
This chapter is aimed to introduce process analytical tools (PAT) via near-infrared spectroscopy 
(NIRS) sensors, newly implemented on the line for process monitoring. It also investigates the 
impact of the three main factors of wet granulation on the tablet quality with a design of 
experiments (DoE), followed with in-process control (IPC) tests, NIRS as well as univariate and 
multivariate analysis of the process parameters. One step ahead process understanding, it 
introduces statistical process control (SPC), defined as the use of statistical techniques to control 
a process in order to monitor process behavior. 

This publication represents the starting point of the process monitoring presented in this thesis for 
a wet granulation line in pharmaceutical continuous manufacturing. NIRS as PAT tool allows here 
a qualitative process monitoring of the continuous production line. 

 

3.2 Evaluation of the authorship 
Author’s contribution to the publication: 

 Drew NIR models 
 Performed univariate data analysis 
 Performed statistical analysis 

Overall contribution of the author is estimated at 15% of this publication. 
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3.3 Abstract 
Continuous Manufacturing (CM) of pharmaceutical drug products is a rather new approach within 
the pharmaceutical industry. In the presented paper, a GMP continuous wet granulation line used 
for clinical production of solid dosage forms was investigated with a thorough monitoring strategy 
regarding process performance and robustness. The line was composed of the subsequent 
continuous unit operations feeding – twin-screw wet-granulation – fluid-bed drying – sieving and 
tableting; the formulation of a new pharmaceutical entity in development was selected for this 
study. In detail, a Design of Experiments (DoE) was used to evaluate the impact of the three main 
factors (amount of water, filling rate, and shear force in twin-screw granulator) on the tablet 
quality. The process was monitored via in-process control (IPC) tests (e.g. weight, hardness, 
disintegration, and loss-on-drying), Process Analytical Technologies (PAT), and through the 
analysis of the process parameters (multivariate process control). The tested formulation was very 
robust to the large process variation of the DoE: all IPC results were in specification, the PAT 
probes provided stable results for the content uniformity and no critical variations can be detected 
in the process parameters. An adequate monitoring strategy was presented and the robustness of 
the process with one formulation has been demonstrated. In summary, this continuous process in 
combination with smart formulation development allows the robust production of constant quality 
tablets. The synergy between PAT, process data science and IPC creates an adequate monitoring 
framework of the continuous manufacturing line. 

 

3.4 Graphical abstract 
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4 Deep learning for continuous manufacturing of pharmaceutical 
solid dosage form 

Yves Roggo1, Morgane Jelsch1, Philipp Heger1, Simon Ensslin1, Markus Krumme1 
1Novartis Pharma AG, Continuous Manufacturing Unit, 4002 Basel, Switzerland.  

European Journal of Pharmaceutics and Biopharmaceutics, 2020, 153: 95-105. 

DOI: https://doi.org/10.1016/j.ejpb.2020.06.002 

 

4.1 Pretext 
In this chapter, the same GMP continuous wet granulation line for production of solid dosage 
forms than in the last chapter (see section 3, page 39 for further details) is investigated with the 
aim of deep process understanding and increased process monitoring.  

Several critical process parameters were selected based on risk analysis and evaluated via step tests 
in order to probe the process and to characterize the impact on quality attributes. NIRS models 
were drawn for API concentration, LOD and PSD in order to perform a multivariate process 
analysis. The investigated deep learning techniques allowed the development of advanced 
quantitative prediction method for the investigated critical quality attributes. 

 

4.2 Evaluation of the authorship 
Author’s contribution to the publication: 

 Designed, planned, performed and evaluated the required step tests 
 Interpreted data and results 
 Performed statistical analysis 
 Prepared GMP environment related documents for production (process check-lists, API 

and excipients purchase orders, protocols) 

Overall contribution of the author is estimated at 45% of this publication. 
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4.3 Abstract 
Continuous Manufacturing (CM) of pharmaceutical drug products is a new approach within the 
pharmaceutical industry. In the presented paper, a GMP continuous wet granulation line for 
production of solid dosage forms was investigated. The line was composed of the subsequent 
continuous unit: operations feeding – twin-screw wet-granulation – fluid-bed drying – sieving and 
tableting. The formulation of a commercial entity was selected for this study. Several critical 
process parameters were evaluated in order to probe the process and to characterize the impact on 
quality attributes. Seven critical process parameters have been selected after a risk analysis: API 
and excipient mass flows of the two feeders, liquid feed rate and rotation speed of the extruder and 
rotation speed, temperature and airflow of the dryer. Eight quality attributes were controlled in real 
time by Process Analytical Technologies (PAT): API content after blender, after dryer, in tablet 
press feed frame and of tablet, LOD after dryer and PSD after dryer (three PSD parameters: x10 
x50 x90). The process parameter values were changed during production in order to detect the 
impact on the quality of the final product. The deep learning techniques have been used in order 
to predict the quality attribute (output) with the process parameters (input). The use of deep 
learning reduces the noise and simplify the data interpretation for a better process understanding. 
After optimization, three hidden layers’ neural network were selected with 6 hidden neurons. The 
activation function ReLU (Rectified Linear Unit) and the ADAM optimizer were used with 2500 
epochs (number of learning cycle). API contents, PSD values and LOD values were estimated with 
an error of calibration lower than 10%. The level of error allows an adequate process monitoring 
by DNN and we have proven that the main critical process parameters can be identified at a higher 
level of process understanding. The synergy between PAT and process data science creates a 
superior monitoring framework of the continuous manufacturing line and increase the knowledge 
of this innovative production line and the products that it makes. 

 

4.4 Graphical abstract 

 

  



Page | 43  
 

5 Automatic system dynamics characterization of a pharmaceutical 
continuous production line 

Morgane Jelsch1, Yves Roggo1, Ahmad Mohamad1, Peter Kleinebudde2, Markus Krumme1  
1 Novartis Pharma AG, Continuous Manufacturing (CM) Unit, CH-4002 Basel, Switzerland. 
2 Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany. 

European Journal of Pharmaceutics and Biopharmaceutics, 2022, 180: 137-148. 

DOI: https://doi.org/10.1016/j.ejpb.2022.09.010 

 

5.1 Pretext 
This chapter is aimed to address the characterization of the process dynamics. The interest of this 
publication is not only to understand and monitor the wet granulation process but also to define 
and monitor the process time characteristics. It is one step ahead in the direction of process control. 
By assessing the residence time distribution (RTD) along the process line, it is possible to 
characterize the process flow. Steps in API concentration have been done in order to easily follow 
the propagation of the state along the process (as a tracer; without any additional dye) and NIRS 
as PAT tool has been used to monitor the process. An automatic method for RTD calculation is 
suggested, allowing an accurate process dynamics assessment to be further used for control 
strategy and diversion strategy. 

 

5.2 Evaluation of the authorship 
Author’s contribution to the publication: 

 Designed, planned, performed and evaluated the required step tests 
 Calculated RTD characteristics “manually” 
 Interpreted data and results 
 Developed the automatic RTD method in collaboration with Yves 
 Wrote for paper publication 
 Prepared GMP environment related documents for production (process check-lists, API 

and excipients purchase orders, protocols) 

Overall contribution of the author is estimated at 60% of this publication. 
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5.3 Abstract 
Continuous Manufacturing (CM) of drug products is a new approach in the pharmaceutical 
industry. In the presented paper, a GMP continuous wet granulation line for production of solid 
oral dosage forms was investigated in order to assess the system dynamics of the line and to define 
the best control and diversion strategy. The following steps were involved in the continuous 
process: dosing / feeding, blending, twin-screw wet granulation, fluid-bed drying, sieving and 
tableting. Two drug products with two different drug substances were compared during this study: 
one drug substance as model drug compound and one formulation of a currently evaluated 
commercial drug product. Several step tests in API concentration were performed in order to 
characterize the process flow and assess the process dynamics. API content was monitored in real 
time by Process Analytical Technologies (PAT) thanks to three Near Infrared (NIR) probes located 
along the process and measuring the API content after blender, after dryer and in the tablet press 
feed frame. The process parameter values were changed during production in order to detect the 
impact on the quality of the final product. An automatic residence time distribution (RTD) 
computation method has been developed in order automate the RTD calculation on the basis of 
process data to further define and monitor the system dynamics with the final aim of out of 
specification material diversion during the continuous production. The RTD has been seen as a 
process fingerprint: a change in the RTD values implies a change in the process. 

 

5.4 Graphical abstract 
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6 Model predictive control in pharmaceutical continuous 
manufacturing: A review from a user's perspective 

Morgane Jelsch1, Yves Roggo1, Peter Kleinebudde2, Markus Krumme1 
1 Novartis Pharma AG, Basel, Switzerland 
2 Heinrich Heine University, Düsseldorf, Germany 

European Journal of Pharmaceutics and Biopharmaceutics, 2021, 159: 137-142. 

DOI: https://doi.org/10.1016/j.ejpb.2021.01.003  

 

6.1 Pretext 
This chapter is the starting point for advanced process control with Model Predictive Control 
(MPC). With the growing understanding of process dynamics and the appropriate control strategy, 
continuous manufacturing defines the framework for Quality-by-Design, introducing next Quality-
by-Control concept, which can be reached by soft sensors such as MPC. The publication highlights 
the numerous benefits of process control via MPC compared to usual PID controllers, and it gives 
a literature review of the MPC development in the pharmaceutical continuous manufacturing 
world. It can be seen as situational analysis of what is suggested by academies and industries. The 
paper shows the gaps in MPC development and MPC implementation in pharmaceutical 
continuous manufacturing. 

 

6.2 Evaluation of the authorship 
Author’s contribution to the publication: 

 Understanding of the MPC topic 
 Review of literature 
 Research and redaction 

Overall contribution of the author is estimated at 80% of this publication. 
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6.3 Abstract 
Pharmaceutical continuous manufacturing is considered as an emerging technology by the 
regulatory agencies, which have defined a framework guided by an effective quality risk 
management. With the understanding of process dynamics and the appropriate control strategy, 
pharmaceutical continuous manufacturing is able to tackle the Quality-by-Design paradigm that 
paves the way to the future smart manufacturing described by Quality-by-Control. The 
introduction of soft sensors seems to be a helpful tool to reach smart manufacturing. In fact, soft 
sensors have the ability to keep the quality attributes of the final drug product as close as possible 
to their references set by regulatory agencies and to mitigate the undesired events by potentially 
discard out of specification products. Within this review, challenges related to implementing these 
technologies are discussed. Then, automation control strategies for pharmaceutical continuous 
manufacturing are presented and discussed: current control tools such as the proportional integral 
derivative controllers are compared to advanced control techniques like model predictive control, 
which holds promise to be an advanced automation concept for pharmaceutical continuous 
manufacturing. Finally, industrial applications of model predictive control in pharmaceutical 
continuous manufacturing are outlined. Simulations studies as well as real implementation on 
pharmaceutical plant are gathered from the control of one single operation unit such as the tablet 
press to the control of a full direct compaction line. Model predictive control is a key to enable the 
industrial revolution or Industry 4.0. 

 

6.4 Graphical abstract 
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7 Advanced process automation of a pharmaceutical continuous wet 
granulation line: Perspectives on the application of a model 
predictive control from solid feeders to dryer 

Morgane Jelscha, Yves Roggoa, Mark Brewerb, Zsolt-Adam Géczia,b, Philipp Hegera, Peter 
Kleinebuddec, Markus Krummea  
a Novartis Pharma AG, Basel 
b Emerson Automation Solutions 
c Heinrich Heine University, Düsseldorf 

Powder Technology, 2023: 118936. 

DOI: https://doi.org/10.1016/j.powtec.2023.118936  

 

7.1 Pretext 
This chapter presents the development of an advanced process control method with model 
predictive control (MPC). As a new tool being introduced on the investigated continuous wet 
granulation line, the control objectives have been defined and the MPC has been designed and set-
up. The whole MPC structure had to be implemented on the live system. 

Through several step tests and two different drug products, deep process understanding and 
enhanced process dynamics were investigated to model the process and predict plant outputs in 
real-time. The MPC control system is able to keep the critical quality attributes within pre-defined 
ranges over time. Some process models are related to the drug product. 

 

7.2 Evaluation of the authorship 
Author’s contribution to the publication: 

 Deeply involved in the MPC design and MPC setup strategies 
 Designed, planned, performed and evaluated the required step tests 
 Calculated RTD characteristics 
 Drew MPC models, discussed with team 
 Designed, planned, performed and evaluated the MPC performance tests 
 On-the-fly evaluation of the MPC performance for tuning during production 
 Performed the reference analytics (LOD, PSD) and asked for support in HPLC 
 Summarized and wrap-up data and decisions for paper publication 
 Prepared GMP environment related documents for production (process check-lists, API 

and excipients purchase orders, protocols) 

Overall contribution of the author is estimated at 80% of this publication. 
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7.3 Abstract 
Pharmaceutical continuous manufacturing provides the appropriate tools (e.g. the understanding 
of process dynamics and appropriate and adaptable control strategy) in order to deal with Quality-
by-Design expectations and even to the future smart manufacturing described by Quality-by-
Control. Those tools form part of the given framework of the regulatory agencies led by an 
effective quality risk management. Soft sensors and control algorithms such as model predictive 
control are stepping stones for more agile processes and increased robustness by keeping the 
quality attributes of the final drug product in their acceptable ranges and by mitigating undesired 
events. The implementation of a model predictive control (MPC) system on a pharmaceutical 
continuous manufacturing plant for the wet granulation process is described. The control 
objectives and strategy are presented as well as the selected variables, the process dynamics 
identification, the MPC performance and its specific tuning where a commercial software has been 
used, setting the framework of this study. MPCs have been applied successfully on two 
pharmaceutical drug products (Diclofenac and Paracetamol): an accurate control of the API 
content and of the LOD was achieved in order to produce a constant quality of tablets on both drug 
products. In addition, some of the process parameters have been identified as mandatory to be step 
tested for each change of drug product, leading to a simplified MPC implementation. 

 

7.4 Graphical abstract 
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8 Discussion and outlook 

The following chapters aimed to answer the aims of the thesis, one by one. 

8.1 How to enhance the process monitoring? 
The continuous wet granulation process has been investigated to find new ways for process 
monitoring [101]. By means of design of experiments (DoE), the focus has been put on the 
following granulation parameters: amount of water, filling rate, and shear force in twin-screw 
granulator. The intermediates (i.e. dried granules) and final tablet quality attributes have been 
investigated.  

The usual way to monitor drug product quality was to perform in process control (IPC) tests, either 
at the end of the dryer collecting dried granules for loss-on-drying (LOD) or particle size 
distribution (PSD) measurements, or at the end of the processing operations in order to test final 
critical quality attributes of tablets (e.g. weight, thickness, diameter and hardness). 

The feed rate of the twin-screw granulator has been investigated as main factor influencing the 
filling rate in the granulator; the torque of the twin-screw granulator allows to follow the changes 
in shear force during granulation; respective inlet and outlet humidity in the dryer were reflecting 
the amount of water. In general, IPC results were in specification and no critical variations could 
be detected in the process parameters. 

Several process data analyses of the process parameters have been performed during this study 
giving enhanced process understanding: univariate and multivariate analyses of process data, with 
principal component analysis (PCA) allowed to investigate the process monitoring strategy with 
regard to process performance and robustness for stable drug product quality. With this increased 
process knowledge, correlations have been drawn between process parameters and quality 
attributes leading to the possibility of monitoring the drug product quality via univariate and 
multivariate analyses of process parameters. 

An extra layer to process monitoring is the introduction of PAT tools such as NIRS. Three NIR 
probes have been implemented in-line on the continuous wet granulation line in order to analyze 
dried granules and tablets in three locations of the continuous line for the respective monitoring of 
granules after the fluid-bed dryer, of sieved granules in the tablet press feed frame and of tablet 
content uniformity at the end of the tablet press. The results of this first implementation were 
satisfactory and encouraging. 

A process monitoring strategy has been proposed and focused on potential critical process 
parameters for granulation, which have been selected based on previous risk assessment [44]. 
Three ways to monitor the process have been studied: IPC tests, PAT measurements and univariate 
and multivariate analyses as process data science in order to introduce a potential statistical process 
control (SPC). Enhanced process understanding has been created with the analysis of the DoE 
concerning PSD and wet granulation process parameters. The torque of the twin-screw granulator 
is highly correlated with the PSD and can be followed for PSD monitoring. A more holistic 
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approach would have been appreciated, to not only focus on granulation but also to take into 
considerations blending, drying and tableting process parameters.  

DoE is a structured approach for conducting experiments, it can help to find the most suitable 
parameters in agreement with the required and desired objectives during product and process 
development. The design space is defined by the critical process parameters and critical quality 
attributes of intermediates and final drug product. DoE can be used for the implementation of 
Quality-by-Design where product and process understanding facilitates final product quality 
assurance [102]. 

The process data science provides a framework for qualitative monitoring of the continuous wet 
granulation line. The PAT probes provided stable results for the content uniformity and NIR is 
able to further provide quantitative monitoring of the continuous wet granulation process. 

In fact, quantitative NIR models can be developed for process data in order to predict critical 
quality attributes. By means of a DoE and partial least square (PLS) as process data science, robust 
NIR method gave acceptable prediction performance against material, instrument and process 
variation [103]. 

The second study presented in the dissertation investigated the quantitative process monitoring 
based on NIRS and deep learning techniques [104]. The test design took into consideration the 
critical process parameters of the whole continuous wet granulation process from solid feeders to 
the fluidized-bed dryer (FBD). The tablet press process parameters were out of scope. Four NIR 
probes recorded the API content along the line: after blender, after FBD, in the tablet press feed 
frame and at the end of the tablet press. LOD and PSD were recorded by NIRS after the dryer only.  

NIR models are sensitive to the formulation and drug product [105]. As the formulation have been 
updated for this study, new NIR models have been built with the production run data. 

Step tests of the critical process parameters have been performed with the following criteria: the 
step test have been designed in a way the operators can see a durable change in the linked critical 
quality attributes. The developed method with deep learning techniques allowed to define the 
relationships between CQAs and CPPs leading to enhanced process understanding for the 
continuous wet granulation process. It helped for data interpretation as well with noise reduction 
in the dataset. Correlations between CPPs and CQAs result of the deep learning method. 

Artificial neural networks (ANN) have been applied on the PAT data. The first set of data has been 
used to calibrate the developed deep learning technique while the second set of data has been used 
to validate the deep learning technique. The ANN models were conclusive for all API content 
records, for LOD and for PSD. The challenge in this method was to optimize the deep learning 
technique. Once it has been built it is reusable on an infinite amount of dataset.  

This multivariate advanced prediction method is quantitative. Process monitoring by deep neural 
networks is possible. It paves the way to more digitalization with quantitative prediction of plant 
outputs. 
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8.2 How to characterize the process flow? 
NIRS seems to be a suitable monitoring tool for pharmaceutical continuous manufacturing as it is 
a fast, non-destructive and adaptive PAT tool. With a high measurement frequency, NIRS is able 
to continuously record the critical quality attributes of intermediated and final drug product.  

According to FDA [9], one of the goals for continuous manufacturing is to apply a control strategy 
based, among others, on input materials control by means of a proper flow behavior 
characterization. In other words, continuous manufacturing needs the identification of the process 
dynamics.  

Step tests in API concentration have been performed on a continuous wet granulation line in order 
to assess the dynamics of the process [106]. The step test consists in changing a critical process 
parameter set point: it forms a step and not a ramp-up, where the operators would lose precious 
information about process dynamics. The step test should be accurately designed in step amplitude, 
step sign and step sequence. Several step tests can be suggested. 

The study showed that NIRS as PAT tool for real-time process monitoring was able to detect small 
API concentration change (+/- 7,5 %) as well as bigger changes (+/- 20 %). Two drug products 
were compared. API concentration has been used as a tracer. NIRS is a suitable tool to observe the 
propagation of events along the process with four observation points: after the blender, after the 
fluidized bed dryer, in the tablet press feed frame and after the tablet press. From visual 
observations, it is easy to see time lags between those observation points.  

The suggested method aimed to characterize those time lags with residence time distribution 
(RTD). With the increased number of step tests needed in continuous manufacturing (flow 
characterization and process modeling), it is suggested to automatize the RTD computation 
method. RTD is given by metrics defining the process dynamics and it can be determined by means 
of curve fitting on the filtered data.  

The developed method starts with a significance test for steps in order to discriminate real process 
steps from artefacts. Then, the signal is preprocessed by means of wavelet filter. A change point 
detection method is applied and RTD is computed. Process dynamics are described by RTD, given 
by mean residence time (MRT) and event propagation times at 5% and 95% of the step change 
(i.e. EPT5 and EPT95).  

The understanding of the RTD enables to develop the diversion and sampling strategies by tracking 
the material from the origin of disturbance to the points of diversion. RTD represents the 
fingerprint of the process. The automatized computation method has been developed in order to 
improve the process understanding and to propose an innovative monitoring strategy of a 
continuous manufacturing line. 

In another study [107], mean residence time computation has been used to select tracers with 
different material properties in powder systems. The highlighted challenge when using additional 
tracer to follow the propagation of a state is to select one with very close material properties to the 
produced formulation, otherwise differences in travel time can be seen between tracer and bulk 
material.  
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8.3 How to control the process? 
Continuous manufacturing in pharmaceutical applications deals with high quality standards for the 
produced drug products, compared to oil and gas industries where the ultimate goal would be to 
set the most profitable and cost-effective process parameters. 

Per definition, continuous manufacturing generates a lot a data that should be evaluated in real-
time to make process decisions. It would require an automated system, whose validation would be 
particularly critical according to FDA guidance [9].  

A literature review [94] highlighted the benefits of advanced process control techniques such as 
model predictive control (MPC) compared to usual PID (proportional integral derivative) 
controllers. The latter is more suitable to local control such as the control of valves while the first 
one is really suitable to the optimization of a control issue with several inputs and outputs, 
competing objectives and constraints. It applies a systematic approach of resolving the 
optimization issue at each time step (e.g. it could be every 1 second, if it is set so) while satisfying 
a set of constraints and applying the required control actions. Accurate process models are required 
for effective MPC actions. Such a control tool would move the pharmaceutical continuous 
manufacturing towards Quality-by-Control (QbC). 

The last study presented in the dissertation aimed to develop the MPC on a continuous wet 
granulation process [108]. Control objectives were defined to run the line at a specified production 
rate, whilst keeping the product assay, moisture content and particle size distribution within 
acceptable limits. The MPC variables have been carefully selected and are distributed in three 
categories (i.e. manipulated variables, controlled variables and disturbance variables). Several step 
tests were done to investigate process modeling, based on RTD computation. 

In a previous study [106], it has been proposed to define RTD by three characteristics: mean 
residence time (MRT) and event propagation times at 5% and 95% of the trend (respectively EPT5 
and EPT95). This concept has been re-used and applied to process modeling. Usually, MPC 
models deal with three characteristics: dead time, first order time constant and gain. In the MPC 
implementation study [108], it has been proposed that dead time would be associated with EPT5 
and first order time constant (which corresponds to 63,2% of the trend area) would be roughly 
estimated as MRT (which corresponds to 50% of the trend area). This difference in model 
characteristics may affect the MPC control actions for sure but the assumption was that the MPC 
will be able to deal with this. Several performance tests were done and were always conclusive, 
except for PSD models. 

Unfortunately, it was not possible to draw sufficiently strong model between PSD and its linked 
critical process parameters. This is mainly due to poor measurement method for PSD. In fact, 
measuring PSD via NIRS was part of a concept for integrated PAT tool: NIR probes would give 
several information with one single measurement. Even if it is possible to see differences in spectra 
while NIR models are prepared in laboratory (i.e. several samples of granules are prepared with 
varied API content, LOD and PSD), it becomes more difficult to grasp the PSD information from 
the continuous process line. The hypothesis is to say that with semi-continuous flow at the end of 
the fluidized bed dryer (due to the ejection of one rotating chamber after the other), dried granules 
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sit for a while in front of the NIR probe (which does not harm the LOD or API content 
measurement) and it results in having only a small portion of the produced granules being 
measured. In other words, the probability to see a representative sample is low at this point for the 
measurement of PSD of dried unsieved granules. 

The measurement method for PSD should be improved before taking any additional effort in 
modeling the PSD behavior.  

Other studies evaluated the implementation of MPC in a rotary tablet press of a continuous direct 
compaction process [63, 109] for example, or in an end-to-end continuous manufacturing pilot 
plant (from chemical synthesis to melt extrusion and tableting) [110]. 

Our study compared the process models of two different drug products (i.e. Diclofenac and 
Paracetamol) and pointed out that some process models were unchanged leading to a simplified 
MPC implementation. In fact, for a new product, it may be possible to re-assess only the process 
models that are dependent to the formulation or drug product.  

With regards to the control perspective, it has been highlighted that the ratio control of solid feeds 
worked really well and the process models are transferable from material to material. The ratio 
control of the liquid feed with regards to the sum of the two solid feeds also worked well given a 
satisfactory control of L/S ratio. The particle size distribution as one of the responses for the 
defined optimization objective of the MPC controller seemed to be overall insensitive within the 
tested range of wet granulator rotation speed. The control perspective seemed compromised. 
However, an insensitive process is not necessarily a disadvantage: it can be an asset for the 
robustness of process as no matter how deep the involved parameters would change, the PSD 
would still remain the same. The blender seemed also robust in itself, when the blender rotation 
speed is set above a critical rotation speed.  

These two insensitivities were represented by very low gains in related process models. The 
intrinsic uncertainty of insensitive processes was reflected in data by some noise. The 
recommendation for cases like that would be to not control the process in a closed-loop manner 
but rather run it with no control loop or open-loop. 

On the other hand, the control of the investigated process through the LOD response depicted a 
nice example for a sensitive process.  

The MPC controller could obviously keep the process stable even though the disturbance was 
significant. The process models parameters seemed to be sensitive to material. The biggest asset 
is that they can be easily tuned per product in the late stage development in one final run before 
drug product pre-validation.  

In addition, the LOD control action is a time-variable balanced superposition of three control 
actions: air flow, air temperature and rotation speed of the dryer. No other control strategy than 
MPC can support such a control challenge with finding the optimal trajectory in balancing the 
three manipulated variables over time and shifting the respective contributions to the overall 
control action. 
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To conclude, the overall strategy for the implementation of the MPC on a pharmaceutical 
continuous manufacturing line would be the following: 

1. Careful design of the MPC structure by properly setting the control objectives, the 
variables, the design level of operation and the constraints, limits and ranges; 

2. Assessment of the process dynamics by stepping the selected variables and MPC models 
generation for the selected CQA–CPP pair by identifying real world data; 

3. Validation and tuning of the above mentioned MPC models either by simulation or by real 
test on the plant; 

4. MPC implementation on the plant and MPC assessment of the product-dependency of this 
control system with different products. 

Pharmaceutical continuous manufacturing is ready to tackle the Industry 4.0 challenges with 
embedded NIRS as innovative process analytical technology, process data science, artificial 
intelligence in real-time, advanced process understanding (e.g. residence time model) and state of 
the art automation (e.g. MPC controller). 
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9 Summary 

Pharmaceutical industries are seeking for new production ways with the general objective of 
always improving the quality standards of drug products to be safer and potentially more effective 
for the patient. In that direction, regulatory authorities went through several steps in FDA 
guidances for industry or ICH harmonized guidelines: pharmaceutical development was 
encouraged and a framework for the management of quality risks and quality systems has been 
suggested. In parallel, PAT has been introduced as innovative tools for quality assurance. In 
addition, the growing interest for ecological issues foster “green” manufacturing; industries such 
as pharmaceutical manufacturing were seeking for more eco-friendly manufacturing with reduced 
footprint, but also flexible and agile manufacturing.  

Continuous manufacturing has been investigated by academies and pharmaceutical industries as it 
may provide the means to meet that demand. Flexible, agile, with reduced footprint and improved 
engineering systems, it may provide real-time quality assurance. The presented publications in this 
thesis aimed to provide meaningful data for continuous process monitoring and continuous process 
control.  

The goal was to set up suitable and adaptive tools for process monitoring in pharmaceutical 
continuous manufacturing in order to better understand the process. In-process control (IPC) tests 
were used (e.g. crushing force, weight, thickness, diameter of produced tablets) with the challenge 
of the sampling strategy: frequency, amount, potential destructive method applied for tablets in 
particular with crushing force test of tablets. Univariate and multivariate process parameters 
analyses introduced process data science. NIRS as new PAT tool was introduced on a continuous 
wet granulation and it has been demonstrated that it is a suitable method for qualitative process 
monitoring. 

Globally with IPC tests, it was possible to follow the drug product quality once being compressed 
into tablets (possible withdrawal of product could have been done a step before i.e. at the end of 
the dryer with poor additional value). With increased process knowledge, relationships between 
process parameters and quality attributes have been investigated leading to the possibility of 
monitoring the drug product quality via critical process parameters. An extra layer to process 
monitoring is the introduction of PAT tools such as NIRS. NIRS as a fast and non-destructive 
analytical method was particularly suitable to continuous manufacturing with the possibility to 
implement several probes along the process for monitoring of critical quality attributes of 
intermediates and final drug product. 

Deep learning techniques can be applied in parallel of PAT tools to monitor the process but also 
to increase process knowledge and process understanding by clearly assessing the relationships, 
links and correlations between critical process parameters and critical quality attributes. It paves 
the way to process modeling for quantitative predictions about plant outputs.  

Additional information can be provided by the evaluation of the propagation of a state. By 
introducing steps in API content, operators can follow the propagation of the API content along 
the continuous wet granulation line. It then plays the role of a tracer and its propagation can be 
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observed via NIR probes. Residence time distribution (RTD) can be calculated based on NIR data. 
Process modeling is now possible in the time dimension, assessing the process dynamics of the 
continuous wet granulation line. RTD information allows to characterize the process flow in order 
to further apply a control strategy, in agreement with the regulatory authorities.  

A literature review about model predictive control (MPC) highlighted benefits and challenges of 
this method for applied control strategy. It showed the gaps in literature, in particular the specific 
lack of study for pharmaceutical continuous wet granulation line from solid feeders to dryer. Some 
examples of simulated and/or implemented MPC have been given. 

A proper control strategy has been designed for the investigated wet granulation line with MPC as 
control framework. Control strategy starts with the proper definition of the control objectives, then 
control variables should be selected carefully in such a design. Deeper process modeling has been 
done with step tests for all assessed critical process parameters and RTD computation in order to 
build accurate process models. The MPC structure has been tested for its control performance with 
two drug products: Diclofenac and Paracetamol. This study allowed to compare the process models 
and some differences were highlighted where process models resulted in being dependent of the 
formulation or drug product. It leads to a simplified version of the MPC implementation, where 
some process models are pre-defined and some others need a re-assessment as soon as the 
formulation or drug product changes. 

It has been shown how a multivariate process of unknown sensitivity matrix can be characterized 
by the sequential step tests in a simple and comprehensive integral way and how this process can 
be driven through a meaningful stabilization against unplanned disturbances, that would translate 
into non-conforming material if uncontrolled.  
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