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Abstract

As the development of quantum computers progresses rapidly and larger physical
chips become available, an important next step is to demonstrate their usefulness as
computational devices. Unfortunately, current implementations operate below the
error-correction threshold, which means that algorithms are limited to short gate
sequences due to the gate noise. Established algorithms such as Shor’s algorithm are
therefore not yet implementable. As researchers, we are interested in a meaningful
quantum advantage, i.e. performing a computational task on a quantum device for
which the best known classical algorithms have infeasibly long runtimes. Prominent
candidates are variational quantum algorithms (VQAs), which are a hybrid quantum-
classical approach of solving an optimization problem. Here, a classical computer
can choose tunable parameters of a quantum circuit which creates a variational state
in order to minimize the expectation value of some cost observable. VQAs can be
used for both classical optimization problems as well as finding the ground state
energy of some quantum Hamiltonian.

In this thesis, we outline some challenges that VQAs must overcome to become
a viable tool. Namely, there is the problem that the optimization converges to
suboptimal local minima of the cost function. In our work, we show that the classical
training of VQAs is NP-hard. This implies that, at least for some cases, no polynomial-
time algorithm can converge to the global minima (assuming P # NP).

For VQAs, it is also important to find short circuit implementations to suppress
the physical noise in the system and make their implementation feasible on near-
term hardware. This means that the VQA ansatz must be expressive enough to
approximate the ground-state energy while still maintaining low complexity. In our
work, we show that finding the shortest circuit depth implementation is QCMA-hard,
even if one only wants to get close within multiplicative factor scaling with the
input size. Finally, there is the problem of the measurement effort required for
VOQAs. Here, the estimation of the gradient with respect to the tunable parameters
can act as a bottleneck, mainly because the shot-noise statistics require multiple
rounds of measurement. To alleviate this problem, we propose a gradient estimation
routine based on a Bayesian framework to reduce the overall measurement effort.
We motivate and numerically show that, for well-studied VQA proposals, the strategy
can significantly reduce the number of measurement rounds while maintaining the
same gradient quality.






Zusammenfassung

Da die Entwicklung von Quantencomputern rasch voranschreitet und immer grifZere
Systeme verfiigbar werden, besteht ein wichtiger nichster Schritt darin, ihren Nutzen
Zu demonstrieren. Leider arbeiten die derzeitigen Implementierungen unterhalb
der Fehlerkorrekturschwelle, was bedeutet, dass mégliche Algorithmen durch kurze
Gattersequenzen begrenzt sind. Etablierte Algorithmen wie der Shor-Algorithmus
kénnen daher noch nicht implementiert werden. Als Forscher sind wir an einem
sinnvollen Quantenvorteil interessiert, d.h. an der Liésung eines Problems auf
einem Quantengerit, fiir das die besten bekannten klassischen Algorithmen unaus-
fiihrbar lange Laufzeiten hitten. Ein Kandidat hierfiir sind Variationsquantenalgo-
rithmen (VQAs), die einen hybriden quanten-klassischen Ansatz zur Losung eines
Optimierungsproblems darstellen. Ein klassischer Computer kann Parameter eines
Quantenschaltkreises wihlen, die einen Variationszustand erzeugen um damit den
Erwartungswert einer Observablen zu minimieren. VQAs kinnen sowohl fiir klassis-
che Optimierungsprobleme als auch die Schiitzung der Grundzustandsenergie eines
Quanten-Hamiltonoperators verwendet werden.

In dieser Arbeit analysieren wir einige Herausforderungen, die VQAs iiberwinden
miissen, um ein niitzliches Werkzeug zu werden. Ein Problem ist, dass die Opti-
mierung zu suboptimalen lokalen Minima der Kostenfunktion konvergieren kann.
Wir zeigen, dass das klassische Training von VQAs NP-schwer ist. Dies impliziert,
dass kein Polynomialzeitalgorithmus immer gegen globale Minima konvergieren
kann (unter der Annahme, dass P # NP).

Fiir VQAs ist es auch wichtig, kurze Quantenschaltkreise zu finden, damit ihre Imple-
mentierung auf zeitnah verfiigbarer Hardware méglich wird. Dies bedeutet, dass der
VQA-Ansatz in der Lage sein muss die Grundzustandsenergie zu approximieren, aber
gleichzeitig eine geringe Komplexitit aufweisen muss. Wir zeigen, dass es QCMA-
schwer ist, eine Implementierung mit der geringsten Schaltkreistiefe zu finden, selbst
wenn man sie nur bis auf einen multiplikativen Faktor finden méchte. SchliefZlich
gibt es noch das Problem des Messaufwands, der fiir VQA Optimierungen erforderlich
ist. Die Schiitzung des Gradienten in Abhéingigkeit von den Parametern kann sehr
zeitaufwendig sein, auch weil aufgrund der Messstatistik mehrere Messrunden pro
Messeinsteillung erforderlich sind. Um den Messaufwand zu reduzieren, entwickeln
wir eine Gradientenschitzungsroutine, die auf einem Bayes'schen Rahmenwerk
basiert. Wir motivieren und zeigen numerisch, dass diese Strategie die Anzahl der
Messrunden bei gleichbleibender Gradientenqualitiit erheblich reduzieren kann.
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Introduction

Quantum information science is still a relatively new and rapidly evolving field. It
has been described as a new paradigm in computing, where quantum computers can
harness the power of quantum parallelism and entanglement to perform classically
impossible operations. Unfortunately, we can only probe parts of the quantum
state through destructive measurements, which can turn an entangled state into an
effectively unusable, random classical outcome. Thus, good quantum algorithms
must implement a quantum state in superposition, which constructively interferes to
have a high probability of obtaining the desired classical result after measurement.
This restriction is at the heart of quantum computers and the reason why we cannot
simply think of them as more powerful classical computers, but instead need a
nuanced understanding of their powers and limitations.

A good starting point is the idea of using quantum computers to simulate quantum
systems. This was also the application proposed by Richard Feynman in 1981 [1].
The most successful approaches along these lines are systems of ultracold atoms [2,
31, which have been used successfully to simulate many different condensed-matter
Hamiltonians and study their properties such as superfluidity or conductivity. How-
ever, these experiments are specialized for specific Hamiltonians and cannot be used
to simulate any physical system.

To this end, we want a universal quanturn computer, i.e. a device that can be used to
perform arbitrary tasks. To this end, researchers have defined a quantum version of
a Turing machine, which encapsulates the idea of a quantum computation. Since
quantum computers can also simulate any classical computation efficiently, this new
paradigm is at least as powerful as a classical computer. However, since any known
simulation of quantum mechanics requires exponentially many resources, a quantum
Turing machine could be much more powerful, leading to exponential speedups in
runtime.

Further theoretical discoveries were needed to develop consistent model of quantum
computing. In particular, the Solovay-Kitaev theorem [4] showed that, as long as
the available gate operations are universal, one can translate between two gate-sets
with at most poly-logarithmic time overhead.

The next key ingredient was to show that quantum error correction is indeed fea-
sible, i.e. using multiple noisy qubits to encode a single logical qubit, but with
significantly suppressed error rates. This effort culminated in the threshold theo-
rem [5], which shows that one can suppress errors in quantum computation with
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only poly-logarithmic overhead in resources, provided that the gate errors were
sufficiently small to begin with. This means that real-world implementations, which
will always contain some errors, can simulate an idealized quantum Turing machine
with moderate overhead. In practice, the ratio of physical qubits to logical qubits
may need to be on the order of 1000 : 1, meaning that current implementations
are only now starting to be able to perform first experiments with a single logical
qubit [6]. The developed framework allows to define a computational complexity
class called BQP, which describes all problems that can be solved on a quantum
computer using at most polynomially many qubits and gate operations.

The key question is whether one can show that this quantum class is more powerful
than the corresponding classical complexity class BPP, which describes problems
that can be solved on a classical computer. Since an affirmative result would show
an unconditional separation between the complexity classes P and PSPACE, an
important open question in computer science [7], one has to settle for candidate
problems that we know can be solved efficiently on a quantum computer, but we have
reason to believe cannot be efficiently solved on a classical computer. Almost 30 years
ago, Peter Shor [8] identified a family of problems in number theory, most notably
prime factorization and discrete logarithms, that could be solved in polynomial time
on a quantum computer, but for which the best classical algorithm, the General
Number Field Sieve (GNFS) [9], requires superpolynomial time, meaning that the
runtime grows faster than any polynomial. These problems are used in most public
key encryption algorithms in use today (RSA, Diffie-Hellman). The fact that no one
has been able to find an efficient classical algorithm to solve these problems, despite
a great deal of interest, is a strong indication that quantum computers are indeed
significantly more powerful than classical computers. However, it should also be
noted that the list of candidate problems has not grown significantly in the past
decades after these discoveries.

Before jumping to the conclusion that quantum computing is only a niche tool
for solving a handful of problems in cryptography, it should be noted that there
are complexity-theoretic reasons for this. As humans, we are mostly interested in
problems that we can verify, that is, we need to be able to evaluate a proposed
solution as either good or bad. Naturally these problems are encapsulated by the
complexity class NP. It so happens that many studied problems in NP are either
solvable in polynomial time (P) or NP-complete, i.e. as hard to solve as the most
difficult problems in NP. Only a handful of problems are so-called NP-intermediate,
not known to belong to either of the two groups. It is conjectured that quantum
computers cannot solve NP-complete problems [10] and since we do not need
quantum computers to solve problems for which efficient classical algorithms already
exist, NP-intermediate problems are the only remaining natural candidates for a
quantum speedup, some of which have been shown to run efficiently on a quantum

Chapter 1 Introduction



computer. For other NP-intermediate problems like graph isomorphism [11], even
with considerable research, there is no clear indication that quantum computers can
help solving these problems.

If we want to find more types of problems, where quantum computers will excel,
we need problems that can only be verified on a quantum computer. Natural
candidates are problems related to the time evolution of quantum systems [12]. For
example, we believe that questions like phase classifications/transitions, topological
transition, thermalization properties and many other problems are all efficiently
solvable only on a quantum computer [13]. There are also efficiently solvable
problems not directly related to quantum mechanics, most notably the computation
of certain Jones polynomials [14] used in knot theory, which we believe cannot even
be efficiently verified on a classical computer, but are known to be solvable on a
quantum computer.

While complexity theory may give us insights into the nature of quantum computa-
tion in the long run, on a more near term basis, a direct comparison with known
classical algorithms is very relevant. Known under the term quantum advantage, we
want to find a specific problem instance that an existing quantum device can solve,
but for which the best known classical algorithms would take an infeasible amount
of time.

Currently available implementations operate above the error-correction threshold
and a fully error corrected quantum device is still some time away. Since error
correction is believed to be a requirement for quantum devices to implement a
Quantum Fourier Transform (QFT), using Shor’s algorithm is currently impossible.
To obtain near term quantum advantage, we therefore must ask questions about the
power of non-error-corrected quantum computation. The time frame before fully
error- corrected quantum computers are available is called Noisy Intermediate-Scale
Quantum (NISQ) [15]. Much is still unknown about the computational complexity
of quantum devices without error correction. There is evidence that the task of
sampling from certain quantum distributions is indeed difficult [16] even in the
presence of noise and there have also been experimental implementations of this
random circuit sampling [17]. This type of quantum advantage may be undesirable
however, since it may be difficult to verify that the desired distribution was actually
sampled [18].

Another interesting contender are Variational Quantum Algorithms (VQAs), which
are a proposed framework for a hybrid, quantum-classical setup to solve either
combinatorial or ground state Hamiltonian problems. We will introduce them in
more detail in the following sections. In this context, a quantum advantage would
be a VQA experiment that finds a better approximation of the ground-state energy of
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a Hamiltonian, than what commonly used classical energy estimation algorithms can
obtain. However, it is not yet clear whether VQAs can actually be used on near-term
devices to gain a meaningful quantum advantage. In this thesis we explore the
viability of VQAs as a near term application of NISQ quantum computers as well as
the challenges involved.

Chapter 1 Introduction



Thesis Structure
This thesis is organised as follows:

* In chapter 2, we introduce the basics of complexity theory as well as the
relevant complexity classes that we are interested in. Since this work requires
a theoretical understanding of quantum computers, we also motivate the idea
of a quantum Turing machine with an introduction to quantum mechanics and
universal quantum computation.

* In chapter 3, we introduce VQAs, which describe a particular experimental
setup that uses a hybrid/quantum classical approach to solve combinatorial
and quantum chemical problems.

* Chapter 4 contains an overview of the difficulties that can arise when solving
VQA optimization problems. We also present our result, which includes both
an analysis of the required measurement effort and how to mitigate it, as
well as complexity theoretic hardness arguments related to the optimization
problem. This chapter also summarizes additional work done using machine
learning approaches to predict MBL phase transitions.

* In chapter 5, we conclude this thesis as well as mention remaining open
question and future research directions.

* The appendices A to D include the articles that were published during the
dissertation.






Introduction to complexity theory

Complexity theory is the study of how hard it is to perform a certain mathematical
task. Even before the advent of computers, we can think of multiplication by hand
and long division as computational algorithms to perform arithmetic operations
on numbers. For large numbers, it is more convenient to use a calculator, which
has made multiplication and division a non-issue for practical purposes. This is an
example of how increasing the available computational power has made a particular
task easier. Today's computers operate in the Tera FLOPS range, which means they
can perform a trillion multiplications/divisions per second. Alternatively, instead
of increasing the computational power, one can also find a better strategy to tackle
the algorithm in question. For multiplication, for example, there are algorithms that
require significantly fewer operations [19-21] than the naive multiplication by hand.
However, since they are quite complicated, these approaches become practical only
for very large numbers, which is why they are seldom used in practice.

Practically relevant speedups in computing time are often celebrated. For instance,
the Fast Fourier Transform (FFT) [22] is an algorithm that implements the discrete
Fourier transform in almost linear runtime with the number of elements, whereas
a naive implementation scales quadratically. In general, finding algorithms with
short running times is a very important goal. Especially for complicated problems, it
may be necessary to find efficient algorithms to make finding a solution practically
feasible, even with all the existing increases in computational power. It is not always
obvious which problems are easy to compute and which are hard. For example,
finding the shortest route through a maze can be done efficiently, but finding the
shortest route that passes through a given list of locations at least once, is potentially
very hard. For the latter problem, called the Traveling Salesman Problem (TSP),
the best known algorithms that guarantee to return the shortest route have running
times that scale exponentially with the number of locations. While for many practical
situations, there are decently fast approximation algorithms that find close to optimal
routes [23], for the exact case, it is still unknown if significantly faster algorithms
exist. Then there are also problems that we know require exponentially many
resources to solve. Here, complexity theory helps to group certain computational
problems and to find the relationship between them. The underlying framework also
allows us to ask mathematically precise questions about the nature of computation.
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In the following sections we present the complexity theoretic framework that has
been developed to analyze computational problems as well as introduce certain
complexity classes, including quantum complexity classes, that are used in this
thesis.

2.1 Definition of decision problems and Turing
machines

In this dissertation we focus on decision problems, which are problem that amount
to answering yes/no questions. Thus, a decision problem assigns either a YES or a
NO value to an input I £ S from a set of allowed inputs 5. Generally the problems
are defined with an alphabet ¥. For example, we can choose a binary alphabet
¥ = {0,1}. The input can be an arbitrary string

IeSc |J V=¥ 2.1
Hez+

here the associated N (I € {0,1}") is called the input, or instance length of I. This
allows the first, quite general definition of a decision problem.

Definition 1 (Decision Problem). A decision problem X is a bipartition of the set of
all inputs

sc |y V=3 (2.2)
Ne&,
into a set of YES instances (. Sy C 5) and NO instances (5, C 5). If I € Sy, we say that
the input I is in the language of X.

Since we can encode any input in binary strings, we can also think of decision
problems as a function on a subset of a binary strings to YES/NO or 1/0. An algorithm
that solves the decision problem is therefore an implementation of this function.

While allowing only YES/NO answer type problems seems restrictive, for more
general problems it is often possible to define decision versions with closely related
complexity.

Chapter 2 Introduction to complexity theory



For example we can have function problems, where the goal is to compute some
function

F:{0,1}" = {0,1}M (2.3)
T+ F(z). (2.49)

By defining a decision problem "Is the value of the a-th bit of F(z) a 17" (i.e. F(x), =
17) with input I = (z, a), we can obtain F(z) after M rounds of questioning.

Another example are optimization problems, where the goal is to minimize some cost
function F : {0,1} — R. We can define the decision problem "Does an x € {0, 1}
exist, such that F(x) < o?" with input [ = (z, ). A binary search strategy can find
the minimum value of F' with exponential precision in the number of calls to the
decision problem. For this reason, although the problems we are interested in are
mostly optimization problems, we can instead consider their respective decision
versions.

As a model of computation we use a (deterministic) Turing machine, which is a
concept similar to the execution of computer code on a powerful computer. A Turing
machine is described by

1. an internal state = € £ of fixed alphabet ¥ and size K,

2. an infinite tape which can be accessed with a head that can exchange bits
between the tape and the internal state as well as move along it,

3. a transition function (4), which depending on = can perform operations on the
head and change the internal state =. If no transition is defined, the Turing
machine halts.

Starting from an initial state =g, the Turing machine manipulates the tape according
to its transition function. The input I can be encoded as the initial state on the
infinite tape (single tape Turing machine) or on a second tape to which the Turing
machine also has access to (multi tape Turing machine). If the Turing machine halts,
there is also an additional condition which makes it either accept or reject the input
I.

The idealization of an infinitely long tape is advantageous, because it allows a single
Turing machine to handle arbitrary input size N. An example of a two tape Turing
machine is shown in fig. 2.1. We will not be concerned about the precise architecture
of the machine, but only require Turing completeness, which means that the machine

21 Definition of decision problems and Turing machines



10

1701 1 ]0 0 |1 |0

Kzt

Internal state

_ Accept/
Transition function > Reject

=

110 |0 |0 |1

Input (I)| 1

Fig. 2.1. — A two tape Turing machine. The Turing machine gets the input I on the input
tape. It can read bits of I into its finite internal state, or move along the tape.
Similarly, it has access to another working tape of infinite size, on which it can
read, as well as write and move along. Finally, the machine can also terminate
its operation to accept/reject the input I. Which operation is performed is
determined by the Turing machine's internal transition function, which can be
any function acting on the internal state and the tip.

can simulate any other Turing machine. For a more detailed introduction into Turing
machines see [24].

When we consider computational resources such as runtime (the number of transi-
tion steps performed by the Turing machine before it terminates) or required memory
(the size of the infinite tape that was accessed during the computation), they can
strongly depend on the precise architecture of Turing machine used. An example
of this is to consider how information is stored. In a single tape model, similar to
cassettes, one assumes a long tape where the tip physically moves along the tape,
meaning that accessing information from a bit in memory that is n positions takes a
linear (O(n)) amount of time. In contrast, many algorithms assume random-access
memory (RAM), which describes a memory system where any bit of information can
be accessed in constant (1)) time. Since accessing memory is present in almost all
algorithms, machines with a tape memory may experience significant time overhead
compared to those using BAM. Similar polynomial speedups are possible between
single and multiple tape Turing machines. In order to have an agnostic definition of
complexity, we compare resource use only up to polynomial overheads.

With this understanding, we are able to define our first complexity classes. In
fig. 2.2, all the complexity classes considered in this thesis are shown, as well as
their relationship to each other.

Chapter 2 Introduction to complexity theory



Fig. 2.2. — Complexity classes shown as a Venn diagram to show inclusions. Unconditional
proper subsets are only proven between P and EXP as well as NP and NEXP.
The black circle (BQP) shows all problems we call efficiently solvable, meaning
they can be solved in polynomial time on a quantum computer.

2.2 Basic complexity classes

Using the framework of deterministic Turing machines, we can define the first
complexity classes. First we consider time complexity.

Definition 2 (Complexity class P (or PTIME)). A decision problem is in P, if there
exists a deterministic Turing machine (T M), such that for all inputs I € S of size N,
T M terminates in polynomial time O(poly(/N')) and T accepts when I is a YES instance,
but T'M rejects when I is a NO instance.

Here polynomial time O(poly(/N)) means that there exists a problem size inde-
pendent exponent «, such that the Tuning machine terminates in at most O(N®)
time for all I € 5. We use the big-O notation to describe the scaling behavior.
g(n) = O(f(n)) means that for large n (¥n = np ) there exists a constant § € R
such that g(n) < # x f(n). From a complexity theoretic point of view, we call any
algorithm with a polynomial running time efficient, which is known as Cobham’s
thesis [25]. Note that if ng, o or 7 are very large, the algorithm may still be practi-
cally infeasible, so this is more a theoretical term, with only limited direct practical
implications. We can also define the class of problems which can be decided with at
most exponential runtime.

2.2 Basic complexity classes

11
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Definition 3 (Complexity class EXP (or EXPTIME)). A decision problemn is in EXP, if
there exists a deterministic Turing machine (T'M ), such that for all inputs I S of size
N, TM terminates in exponential time O(2P°Y")) and T M accepts when I is a YES
instance, but T M rejects when I is a NO instance.

As a consequence of the time hierarchy theorem [26] we know that P is a proper
subset of EXP, i.e. there are computational problems that can be solved only in
exponential time and for which no polynomial-time algorithm exists. Similarly, one
can define the class 2EXP for problems where the Turing machine terminates in
doubly exponential time D{sz{m}, or in general nEXP for n € M- times exponential
time. The class R, or decidable problems, describes problems for which there exists a
Turing machine that terminates with the correct result, without any time limit. This

gives the inclusion
PCEXPC2EXPC3EXPC ---C RH. (2.5)

Notably not every decision problem is in R. The halting problem, which asks whether
a Turing machine with a input I terminates in a finite amount of time or never
terminates is not in R. This is shown by a proof of contradiction: We consider a
Turing machine T which takes as input a description of another Turing machine
I =T, where T only halts if T does not halt and otherwise loops forever. Does T
halt if it is given itself T = T as input? Since T cannot both halt and not halt, this
implies that it is not possible to construct T. The only way how this can be true
is if there cannot exist a Turing machine which solves the halting problem for all
instances. This proof shows that there are well defined problems that cannot be
solved by a Turing machine.

When instead of time, we consider the amount of tape accessed during the algo-
rithm, we can define another class known as PSPACE.

Definition 4 (Complexity class PSPACE). A decision problem is in PSPACE, if there
exists a deterministic Turing machine (TM ), such that for all inputs I € 5 of size N,
TM terminates requiring only polynomial O(poly(N)) bits of tape and T M accepts
when I is a YES instance, but T' M rejects when I is a NO instance.

Similarly, the class EXPSPACE contains problems that require at most exponential
memory and in general the class nEXPSPACE requires at most n-times exponential
memory. We also have the following inclusion

P C PSPACE C EXP (2.6)

Chapter 2 Introduction to complexity theory



because a Turing machine can only access polynomially many bits in polynomial
time and because a Turing machine which accesses at most M = O(poly(N) bits of
memory can only be in at most O(2M) = O(2°°¥")) different states before it has to
return to a previous state. As such, it needs to terminate within O(2P°¥V) time steps
as it would otherwise loop forever. We do not know if these relations are proper
subsets. While it is strongly assumed to be the case, our known proof techniques
have been unable to show an unconditional separation of these classes. This also
holds for all sub-classes of PSPACE which we will consider moving forward.

Another complexity class is NP, which stands for nondeterministic polynomial time.

The name originates from considerations about nondeterministic Turing machines,
which we will not consider here. But there is also an alternative definition, which
describes problems where the YES instances can be verified with an additional
proof.

Definition 5 (Complexity class NP). A decision problem is in NP, if there exists a
deterministic Turing machine (T M), such that for all inputs I € 5 of size N, TM
terrninates in polynomial time (O(poly (N ))) and if I describes

* a Yes instance (I € Sy), there exists a proof p € {0, 1}M=CF¥N)) such that
TM accepts on input I' = (I, p).

* a NO instance (I € S,), for all p € {0,1}M, TM rejects on input I' = (I, p).

The class describes problems of the type: "Does there exist a solution to this
problem?”, or "dx : F(z) = TRUE?", where the function F can be computed in
polynomial time. In the YES case, one can verify that a proposed solution p = z=* is
indeed correct, i.e. verify that F'(z*) = TRUE holds. In the NO case all proofs are
rejected because, by definition, no such solution exists. An important example of
NP problems is the decision version of many optimization problems ("3z : F(z) < o
?") . Naturally, one can also define the class NEXP, where the proof string can be
exponentially large and the Turing machine can take exponentially long to terminate.
With the time hierarchy theorem, we also know that NEXP is strictly greater than
NP. We also have the inclusion

P C NP C PSPACE, 2.7)

since P is the class NP with an empty proof p and an algorithm can simply enumerate
all possible proofs, which takes exponential time, but only requires polynomial
space.

2.2 Basic complexity classes
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A related class is coNP, which describes decision problems where one can verify
the NO instances efficeintly.

Definition 6 (Complexity class coNP). A decision problem is in coNP, if there exists
a deterministic Turing machine (T M), such that for all inputs I € 5 of size N, TM
terrinates in polynomial time (O(poly (N))) and if I describes

* a NO instance (I € S,), there exists a proof p € {0,1}M=0C(polv(N)) sych that
TM accepts on input I' = (I, p).

* a YES instance (I € S,), forallp {0,1}M, TM rejects on input I' = (I, p).

A problem in NP can be transformed into a coNP problem by negating the formula-
tion of the question ("vz : F(x) = FALSE?"). However, there are good reasons to
think of them as two different classes. For instance, a problem can be in both classes
NP n coNP meaning that both the YES and NO instances can be efficiently verified.
The relation here is

P C NPrcoNP C NP. (2.8)

A relevant example of a problem in NP n coNP is the decision version of prime
factorization which asks whether an integer N has a prime factor less than some
threshold q. This is the problem which can be solved efficiently on a quantum
computer using Shor’s algorithm. A proof is a list of all prime factors p = (p1,....p)
with N = p; - ps - - - ;. In polynomial time, one can verify that all p; are indeed prime
and that this describes the correct decomposition. The proof allows us to determine
the smallest prime factor exactly and thus to verify both the YES and NO instances.
This means that prime factorization is in NP n coNP.

2.3 Reductions and completeness

In this section we introduce reductions and the notions of completeness and
hardness. The idea of a reduction is to use a solver for one problem to solve another
problem. We say that problem A is reducible to B (A <g B), if one can solve the
problem A by having access to a solver of E. Here R describes the type of reduction,
i.e. the general rules of how one is allowed to reduce A to E. There are several types
of reductions. A natural one is a Turing reduction where problem A is solved with an
algorithm that is allowed to make multiple calls to a solver of E. A polynomial-time
Turing reduction, also called a Cook reduction [27], requires that both the runtime of
the algorithm and the number of calls to the solver are polynomially bounded. While
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this captures our understanding of complexity, since it means that problem A can be
solved efficiently if problem B can be solved efficiently, it has the consequence that
problems in NP can be reduced to problems in coMP by negating the problem and
returning the opposite result. To still distinguish between these classes, it is useful
to use a more restrictive form of reductions known as a many-one reductions and
their polynomial time versions known as a Karp reductions [28].

Definition 7 (Karp Reduction). A decision problem A reduces to B under Karp re-
ductions (A <y B), if an instance in A can be solved by an algorithm that performs
polynomially many operations followed by a call to a solver for problem B and returning
the result from the solver without modification.

The main differences from a Turing reduction are that only one call to the subroutine
is allowed and that this result is also what the algorithm returns. The latter point
prevents the reduction of an NP problem to its complement in coNP. The idea is
that not only the complexity of the problems is similar, but also the structure itself,
i.e. an instance of A can be mapped as an instance of B. Many-one reductions are
therefore also refered to as mapping reductions. Based on Karp reductions, we can
define a concept of completeness.

Definition 8 (Completeness). A decision problem X < C in some cornplexity class C is
C-complete, if all other problems in C can be reduced to X by Karp reductions.

VY eC:Y < X (2.9

Completeness encapsulates that X is among the hardest problem in C, i.e. an
efficient solver for problem X can be used to solve all problems in C efficiently.
Karp reductions are preferred in the literature, but in principle Cook reductions can
also be used [29]. Not all complexity classes have complete problems, but all we
have introduced so far do indeed have them. This also motivates why we believe
prime factoring is not NP-complete, since its inclusion in coNP would imply that
NP = coNP. If we remove the requirement that the problem is in the complexity
class, we get something called hardness.

Definition 9 (Hardness). A decision problem X is C-hard, if all problem in C can be
reduced to X by Karp reductions.

YWeCY<gX (2.10)

2.3 Reductions and completeness
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As such an EXP-complete problem is also NP-hard, but unless NP = EXP, not NP-
complete. Colloquially, the notion of hardness is often also extended to non-decision
problems, like optimization problems. This is technically inaccurate since a Karp
reduction requires X to be a decision problem. In general, this means either that the
associated decision version is NP-hard or that there is a single call Turing reduction
from some NP-complete problem to the optimization problem. However, this second
definition implies that a coNP-complete problem is also NP-hard. To avoid these
complications, it is best to stick to decision problems and thus the above definition.

2.4 Probabilistic complexity classes

So far we have only looked at deterministic Turing machines and algorithms.
However, there are many practical algorithms, notably Monte Carlo algorithms, that
use randomness and sampling in their computation. This will also be important
for quantum computers, since quantum measurements are intrinsically random. If
we want to encapsulate a complexity class that also describes efficient probabilistic
algorithms, we need to change two aspects. First, we need to define a probabilistic
Turing machine. To do this, we need to add an operation that can flip a truly random
coin and write the result to memory. Second, we need to allow for a small probability
of failure. This is necessary because if the algorithm would work regardless of the
outcome of the coin toss, you could simply replace it with a coin that always writes
0 into memory, avoiding the need for randomness all together.

We can define the class of problems that can be solved in polynomial time on a
probabilistic Turing machine, which is called bounded probabilistic polynomial-time
or BPP. For classical computers, this describes the largest class of decision problems
that are considered to be efficiently solvable.

Definition 10 (Complexity class BPP). A decision problem is in BPP, if there exists
a probabilistic Turing machine (PT M}, such that for all inputs I € S of size N, TM
terrinates in polynomial time (O(poly (N))) and if I describes

* a YES instance (I € S,), PTM accepts with probability at least Placcepts] =

=11

* a NO instance (I € S,,), PTM accepts with probability at most P|accepts| < %
Here the probabilities are arbitrary. They only need to be a pair of constants,
independent of the input size (V) that are strictly greater and smaller than 1/2. This

is because running the algorithm multiple times and choosing the most common
result (majority vote) allows the probability of success to be exponentially close to 1.

Chapter 2 Introduction to complexity theory



It is not known if BPP and P are actually two distinct classes. The question is
related to whether there exist good pseudorandom number generators [30]. Mainly
given the success of derandomizing many probabilistic algorithms, most famously
prime testing [31], many researchers believe that the classes are indeed equivalent.
Currently, polynomial identity testing [32] is a remaining BPP problem that is not
known to be in P. We can define a larger class by allowing the probabilities of
success and failure to be arbitrarily close to %, called probabilistic polynomial time
or PP.

Definition 11 (Complexity class PP). A decision problem is in PP, if there exists a
probabilistic Turing machine (PT M), such that for all inputs I € 5 of size N, TM
terrninates in polynomial time (O(poly (N ))) and if I describes

* a YES instance (I € S,), PTM accepts with probability at least Placcepts] > %

* a NO instance (I € S,), PT M accepts with probability at most P|accepts| < %
The reason this class is assumed to be significantly larger is that the success
probability can be arbitrarily close to 1/2 and also depend on input size. We can see

this by showing that NP c PP. If we assume a problem X < NP, we can solve it in
the following way:

1. Pick a random bit string p € {0, 1}.

2. Check if p is accepted by the NP verifier.

3. If pis a valid proof, accept the instance, Placcepts| = 1.

4. If p is not a valid proof, accept with probability P|accepts] = % — EM-

Effectively, if p is a valid proof, we can be sure that it is a YES instance. If it is not, we

still do not know the answer, but it is ever so slightly more likely to be a NO instance.

If we setey = Eﬂlﬂ, even if there is only one valid proof we get the probabilities
YES: P[accepts| = P|[p is accepted] x 1 + P|p is rejected| (% - EM)

> 1y (I_L) (l_;) _1, 1 1

= aM oM 9 M 41 2 22M 41 2
1 1

oM+ < 3-

(o]

NO: Placcepts| =

b | =

This algorithm is very impractical, since it takes exponentially many rounds to
achieve any kind of certainty about the result.

24 Probabilistic complexity classes 17
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It also holds that PP is included in PSPACE, since one can simulate all possible
random outcomes with polynomial memory and accept if the average acceptance
rate is greater than 1/2. This gives final relationship

NP < PP c PSPACE. (2.11)

The last probabilistic class we introduce here is a natural generalization of NP
where the verifier has access to a probabilistic Turing machine. This class is called
Merlin-Arthur (MA).

Definition 12 (Complexity class MA). A decision problem is in MA, if there exists a
probabilistic Turing machine (PT M), such that for all inputs I € 5 of size N, PTM
terrinates in polynomial time (O(poly (N))) and if I describes

* a YES instance (I € S,), then there exists a proof p € {0, 1}M=0pelv(N)) such
that PT'M accepts on input I = (I, p) with probability at least P [accepts| = %

* a NO instance (T € 8,), forall p € {0,1}™, PTM accepts on input I' = (I, p)
with probability at most Placcepts] < 1.

It follows from this structure that P = BPP also implies NP = MA. The inclusions
here are

NP,BPP Cc MA C PP. (2.12)

The last inclusion follows with a similar algorithm as we saw for NP C PP.

2.5 Quantum complexity classes

Below we introduce the complexity classes that arise in quantum computing. To do
this we need to define a quantum Turing machine ()T M ). For this we can take a
traditional Turing machine and replace the classical tape with a quantum state, the
classical gate-set with a quantum gate-set and introduce the concept of a quantum
measurement to decide acceptance/rejection. A quantum state is represented in a
bra-ket notation, which describes column and row vectors respectively. A qubit can
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be described by a two dimensional complex vector. For a state |a) € Ha = C* we

have
g (1 __ [0
la) = (ﬂl) |0} = (n) 1) = (1) (2.13)

(al = (a5 a}) (0 =(1 o) (= (0 1) 2.14)

where (-)* refers to the complex conjugation and we also introduce the basis states
{l0},|1}}. To create multi-qubit systems we use the tensor product

(o)

aghy
s (2.15)
a1 bp

a1by

|a,b) = |a) ® |b) =

which makes the Hilbert space dimension of a quantum system scale exponentially
with the number of qubits. An n qubit state |a) € Hs ®@ --- @ Ha = C>" = C9 can be
represented as

la) = Y @ipinlit...in), (2.16)

ic{0,1}=

where a;,..;, € C are some complex coefficients. Quantum states are also normalized,
meaning that

3 aiei,f=1 (2.17)

ic{D,1}m

holds. Quantum gates are described by unitary operations U € U(d) c €% which
are linear maps with the additional condition UUT = 1, where (-)T is the Hermitian
conjugate. The gate is then the map |a} — U |a)}.

For physical systems, the time evolution is described by the Schridinger equation

8, [U(t)) = H [¥(t)) (2.18)

where H refers to the Hamiltonian or energy operator of the system, which is a
Hermitian operator H € C%¢ with H' = H. Throughout, we set the Planck constant
fi = 1. The unitary time evolution is then given by

W(2)) = e [W(0)) = U(z) [9(0)) - 2.19)

For this reason we also call H the generator of U/(t). Permutations, a discrete subclass
of the unitary groups are called classical gates. This is because they map basis states

25 Quantum complexity classes

19



20

to basis states. As an example, we have the X gate, which describes a NOT operation
or a bit flip

X:G [1}) X)) =0), X|o)=) (2.20)

Similarly two qubits gates can be defined, for example the controlled NOT operation
(CNOT), which flips the second bit, but only if the first bit is in the state 1

1000
0100

CNOT = . CNOT|i,j) = |i,j @1i) . 2.21
000 1 li,5) = |i,J ® i) (2.21)
0010

Here @ refers to addition modulo 2. For a universal quantum gate set, we also need
some non-classical gates. For example, the Hadamard gate (H) and the T gate are
both quantum gates without a classical counterpart.

H:L(l 1)? gy <=0+ _ 1y gy

vzl -1 V2 V2
T=G “) Tio)= o), T|) = 6% 1)

If a gate acts on a specific site in a larger Hilbert space we use the tensor product.

For example the matrix representation of a T' gate at position k in a n-qubit system
is

T =151 @T @ Lt . (2.22)

It can be shown that the set of gates T, H and CNOT acting on arbitrary qubits
are universal [33]. Since these gates describe a countable set of operations, but
the total number of unitaries is uncountable, we have to use a weaker version of
universality. Universal in the context of quantum computing means that for any
[l € U(2™) and any precision € > 0, one can find a sequence of gates from the
gate-set that implements the gate V, where ||I” — V|| < ¢, i.e. the gate-error can be
made arbitrarily small. Here || - || refers to some operator norm.

Finally, we also define the measurement operation A, which measures the k-
th qubit and returns the measured value. The absolute square of the amplitude
|asy...in|* = |{i1 - - -im|a)|* describes the probability of the post measurement state
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being |i; ...i,) after a full Z basis measurement is performed. As such the likelihood
of measuring 1 on site k is

PIM, =1]=(a|Mi|a) = 3 lag.i|?, (2.23)
I'.E{ﬂll}“l'i*=l

where M;, = |1){1|, describes the measurement operator M = |1){1| acting on site
k.

With this background we are able to define a quantum Turing machine. The key
components are

* The tape is replaced by a quantum state. A classical state is associated with
the corresponding basis state. The internal state of the Turing machine also
includes a quantum register.

* Logical operations are extended to include a universal quantum gate-set.

= For the final return, the Turing machine can measure a qubit in its internal
state and return the classical result.

Similar to classical Turing machines, there are different ways to define the exact
architecture. Popular alternative definitions include having both a quantum and a
classical memory or allowing multiple measurements during execution. However, it
can be shown that this does not affect the overall performance of such a machine
(within polynomial time overhead) because the quantum tape is able to simulate
both classical computation and intermediate measurements. With this in mind, we
can define the quantum analog of BPP called bounded quantum polynomial-time or
BQP.

Definition 13 (Complexity class BQP). A decision problem is in BQP, if there exists
a quantum Turing machine (QJT M), such that for all inputs I € S of size N, QT M
terrninates in polynomial time (O(poly (N ))) and if I describes

* a YES instance (I € S,), QT accepts with probability at least P[accepts] = 3‘}

* a NO instance (I € S,.), QT accepts with probability at most P[accepts| < %
This class describes the largest class of problems which can be solved in polynomial
time, at least according to our current understanding of physics. It is not trivial to
show that a (limited-memory) quantum Turing machine can be practically imple-
mented. The reason is that any errors occurring during the execution of quantum
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gates in real implementations could accumulate and lead to a wrong result. The
threshold theorem [5] shows that error correction is indeed possible, and thus also
long running quantum algorithms.

We can also define quantum generalizations of the class MA. First, the class QCMA
(quantum-classical Merlin-Arthur) describes problems that can be verified on a
quantum computer with a classical proof.

Definition 14 (Complexity class QCMA). A decision problem is in QCMA, if there
exists a quantum Turing machine (T M), such that for all inputs I € S of size N,
()T M terminates in polynomial time (O{poly(N})) and if I describes

* a YES instance (I € S,), there exists a proof p € {0,1}M=CPNN)) sych that
QMT accepts on input I' = (I, p) with probability at least P[accepts| = %

* a NO instance (I € S,), for all p € {0,1}™, QT'M accepts on input I' = (I, p)
with probability at most P[accepts] < 1.

This is the complexity class that best encapsulates VQAs, the main focus of this
thesis. Another, more popular generalization is the class QMA (Quantum Merlin-
Arthur). This describes a setup where the proof is given as a quantum state |p).

Definition 15 (Complexity class QMA). A decision problemn is in QMA, if there exists
a quantum Turing machine (QJT M), such that for all inputs I € S of size N, QT M
terrinates in polynomial time (O(poly (N))) and if I describes

* a YES instance (I € S,), there exists a proof state |p) € C2M=OFP N gch that
QT accepts on input I' = (I, |p)) with probability at least P[accepts| > %

* a NO instance (I € S,), for all states |p) 2", QT accepts on input I' = (I,|p))

with probability at most Placcepts] < 1.

The class is particularly relevant because the ground state energy problem (up to
polynomial precision) is @MA-complete [34]. We know that both classes contain
BQP and MA and it has also been shown that they are included in the class PP [35]

MA, BQP € QCMA c QMA C PP. (2.24)

Much is still unknown about the relationship between the two classes, QCMA and
QMA. For them to be meaningfully different, there has to be problem instances,
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for which a proof state |p) cannot be efficiently prepared on a quantum computer,
i.e. a superpolynomial number of gates is required to implement the proof state.
Otherwise, instead of |p), the proof could be a classical description of how to prepare
|p) instead. This has direct implications for the ground state problem. Since the
ground state can act as a proof state, QCMA # QMA implies that there are ground
states that cannot be prepared in polynomial time. Similar to the difficulties when
proving circuit lower bounds for classical problems, so far only linear circuit lower
bounds [36] are known.

25 Quantum complexity classes
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Variational quantum algorithms

Variational Quantum Algorithms (VQAs) [37-39], also referred to as Variational
Quantum Eigensolver (VQE), have gained prominence in recent years as candidate
algorithms for achieving useful quantum advantages on NISQ devices. They are
used to estimate the ground state energy of a quantum many-body Hamiltonian via
variational optimization. Unlike alternatives like the Quantum Phase Estimation
(QPE) algorithm [40], which requires very accurate quantum circuits, VQAs can
be run on near-term hardware. VQAs are a hybrid quantum-classical algorithm,
where the quantum hardware of VQAs prepares a variational quantum state by
applying a parameterized quantum circuit. To interface with a classical computer,
the expectation value of the parameterized state is estimated. Then a classical
computer, typically running a gradient descent based algorithm [41, 42] or Nelder-
Mead [43], is used to minimize the energy via repeated parameter updates and new
estimation of the energy functional. Detailed reviews of state of the art methods
are given in [44, 45]. VQAs can, in principle, be run on any circuit design and at
any depth, allowing for a hardware-tailored ansatz. It is hoped that the additional
classical optimization can be used to improve the performance of the still limited
capabilities of existing quantum hardware. In the following section we will define
VOQAs more rigorously as well as introduce a popular version known as the Quantum

Alternating Operator Ansatz (QAOA) [46, 471, which is inspired by the adiabatic
theorem.

3.1 Definition of VQAs
For each VQA instance we have three components which we will discuss.
* The initial state |¥y) € C*"
* The parameterized circuit [/(8), 8 € D c R"

» The cost observable O € C*"2", with O = Of
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Initial state Gates [ Generators Observable

Q,I,i%i :E

Fig. 3.1. — A graphical depiction of a VQA instance. Here the initial state is chosen as the all
zero state. The gate generators are depicted by individual colors.

|To) = [0)= G

A sketch of a VQA instance with the relevant components is shown in fig. 3.1.
The overall objective of the algorithm is to minimize the expectation value of the
parameterized state |¥(8)) := U(8) |¥y). The cost function is then given by

(0(8)) = (T,|UT(8)0U (8)%o) = (¥(6)|O]¥(8)) (3.1
(Omin) = min (0(8)) , (3.2)

which is minimized with a classical algorithm.

3.1.1 Intital state

The initial state |V} must be simple. For our complexity analysis this means that it
is easy to implement in polynomial time on a quantum computer. We assume that
the state is given by a circuit description of Ve, = [T{2; V;i, Where Vi are some
local unitaries. So we can write

W) = Verep [0) - (3.3)

For real life implementations, we could replace |0} with the actual initial state of the
physically existing hardware. In addition, it is necessary to ensure that V.., can
actually be implemented and that the overall circuit complexity is small enough to
keep noise to a minimum. Therefore it may be useful to set the initial state directly
as the all zero state (|¥p) = |0)) or some product state (|¥p) = |8}, s € {0,1}").

3.1.2 Circuit design
The circuit UU(#) is the key component in an VQA. Ideally, the circuit should

* be easy to implement with a small circuit depth. On hardware this means that
[7(8) should adhere to the hardware’s connectivity constraints as well as use
its natural gate-set.
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Fig. 3.2. — Two possible VQA settings in a variable VQA ansatz. The values {#,,....8.} de-
scribe the respective gate times, while the colour represents the type of generator
used, which are optimized as additional hyper parameters. In this setting, the
same generators can be reused multiple times. Thus the circuit depth L also
becomes an optimization parameter.

* be able to reach expectation values close to the ground state energy of O for
a good variational state. When we use Ann(0) to refer to the ground state
energy, this means (Omin) & Aqin(0).

* not be overparameterized. While we want the circuit to be able to reach low
energy states of (J, we do not want an excessively large parameter space (L)
since this makes the optimization procedures more expensive and harder to
implement on NISQ hardware.

In general, there are many ways to design the circuit. Which type is preferred
may depend on the hardware used as well as the structure of the problem at hand.
The parameters #; € i are used to represent some parameterization of the unitary.
Commonly one can assume that gates are generated by some time evolution with a
tunable Hamiltonian

U() = (X Bt Fo) (3.4)

Here #; can describe interaction strengths or the size of some external fields of a
physically existing Hamiltonian. Commeon proposals use a single parameter gate for
the circuit model, meaning a sequence of gates where each parameter #; describes
some effective evolution time of one generator H;

U(e) = HLbL  iHafs iH18 _ ﬁ eiHifhi (3.5)
i=1

This is a natural structure which is compatible with the quantum circuit model, if
each H; describes a local gate generator.
The order of the individual H; can either be fixed by the ansatz class, or be chosen
as part of the optimization procedure similar to how hyper parameters are chosen
in machine learning. This more variable approach is used for instance in adapt-
VOQA [48]. An example instance of this is shown in fig. 3.2.

3.1 Definition of VQAs
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3.1.3 Observables

Finally, the observable is usually constrained by the particular problem of interest.
It is often convenient to represent an observable in the Pauli basis. Here, we have
the four Pauli matrices

1 0 01
Eu:(ﬂ 1)=1, T =(1 I|:I)=4:r:._., (3.6)

0 —i 1 0
cr2=(i I|:I)=c:r!‘,., crg=(ﬂ _1)=G'_-H (3.7)

where the matrix representation is given in the Z or computational basis. Often the
idenitity (op) is not considered a Pauli matrix, but for our purposes it is beneficial to
include it. Pauli matrices have the interesting property of being both Hermitian and
unitary. They are also a basis for 2 x 2 matrices for any operator (J

() = agog + a101 4 aso9 + asos, (3.8)

where the constraint a; € B is equivalent to O being Hermitian. For multi-qubit
systems, we can consider tensor products of Pauli matrices, so-called Pauli-strings.
They are given as

Po=0p, 0, Q- Doy, , (3.9)

with k € {0,1,2,3}". In total there are 4" different Pauli-strings. We also use o, to
refers to a Pauli matrix «, acting at position i.

Pauli-strings form a basis for the operators in the 2 dimensional Hilbert space, i.e.
every observable can be represented as a linear combination of Pauli-strings

0= Y  ah. (3.10)

ke{0,1,23}"

where a € C*" for arbitrary operators, and a € R*" for Hermitian operators. The
locality or weight w(Fy) = [ refers to the number of non-identity Pauli matrices, i.e.
the Pauli-string acts non-trivially on [ sites. Importantly, there are only 4'(7) = O(n')
different [-local Pauli-strings. The definition of an [-local observable is that it can be
written as a linear combination of I-local Pauli-strings

0= Y  aP. (3.11)
kef0,1,23}"
wiFe)<l

If the observable acts trivially on at least n — [ sites we say that the observable
is strictly I-local. Constant [-local observables are often used when considering
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quantum computational problems since they can be describes with only polynomially
many parameters in the number of qubits.

There are two categories of observables that are proposed for VQAs.

Classical observables: The observable is chosen to represent an NP problem. The
general approach is to use a diagonal observable in the Z basis, also called an Ising
model

0=3 agoi+ 3 byoiol, (3.12)
i=1 ij=1

where o € B™, b € B™" defines the instance. [t is also possible to add higher locality
o terms if desired. This approach is feasible because finding the ground-state of such
an Ising model is NP-hard and its corresponding decision problem is NP-complete.
Thus an NP problem can be reduced to an Ising model, i.e. it can expressed by
an observable of the form in eq. (3.12). For example, the MaxCut problem can be
represented with the cost observable

_1 i Ay (1-diol), (3.13)

ij=1i<j

where A;; is the adjacency matrix of the graph.

Quantum observables: This category generally involves physically inspired Hamilto-
nians that come from diverse fields such as solid-state, particle, atomic or nuclear
physics [49] as well as molecular chemistry [50] or materials science [51]. Ground
state energies are important for determining chemical reaction energies, the sta-
bility of molecules or atoms and much more. Here, classical techniques such as
Hartree-Fock and Density Functional Theory (DFT) [52] are powerful tools that
have been used for many numerical studies. A quantum advantage in this context
would therefore be a VQA implementation that can significantly outperform the best
classically derived energy estimates for a given ground state energy problem. A local
observable can be represented as a sum of strictly local operators

0=>» 0, (3.14)
where the (J; act non-trivially on at most [ qubits. For practical purposes, the locality

constraint can be an obstacle. This is because most physical Hamiltonians involve

3.1 Definition of VQAs
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fermions, namely electrons. The orbital basis set discretization is often used to
obtain a discrete, local fermionic observable

0= .Zﬂmﬁﬁ.—;}c}qq, (3.15)
'I,J, 3

where c:f, c; are the fermionic creation and annihilation operators and O;;i € C

some coefficients resulting from the discretization of the Hamiltonian. Fermionic
systems obey the commuatiton relations

{q,c}} =85, {enc}=0, (3.16)

where {4, B} = AB + BC is the anti-commutator. This makes it difficult to find a
good Pauli basis representation of ¢;, which observes these relations. The most com-
mon approach is the Jordan-Wigner transformation [53] which uses the definition

c=(—0:)® - @(—0:)@0e_@1®---®1, (3.17)

where o_ acts on the i-th site and

g =Tz "0y _ (ﬂ u) . (3.18)

2 10

It can be verified that this definition recovers the desired commutation relations. This
means that a local fermionic observable O (eq. (3.15)) can be efficiently represented
in the Pauli basis, but are not necessarily be describable as a local observable. Finding
a good qubit representation for fermionic Hamiltonians is still a very active research
area [54, 55].

3.2 Measurements and measurement effort

A quantum device needs to have a measurement protocol to probe the prepared
quantum state. A good model for many architectures is that of the Z basis mea-
surement. This assumes that the device can perform a complete measurement in
the computational basis to obtain a classical string s € {0, 1}" corresponding to
the measurement outcome. If the architecture is not capable performing a full
basis measurement, as may be the case for NV-centers [56] and some quantum dot
implementations, the protocols described below must be modified.

For classical observables, compuational basis measurements suffice to estimate the
observable. For quantum observables, which have an eigenbasis different from the
compuational basis, additional steps must to be taken. In the following we describe
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measurement strategies for estimating the expectation value {0} = (¥|O|¥} from
basis measurements. Finding good strategies is very important because reducing
the number of required measurement setting and the total number of measurement
rounds, can greatly benefit the overall performance of a VQA, especially when the
state preparation is resource intensive. In general, the strategy is to decompose the
observable into terms O;

0=Y0, (3.19)

j=1
that can be efficiently measured. For this, each if?r,- must be diagonalizable
0; =U!D,;, (3:20)

where U; describes a unitary operator and I); is a diagonal operator. We require
that each entry of I); can be efficiently computed classically and that the unitary U;
is implementable on the physical device.

The problem of finding the best decomposition is generally very difficult. However,
simply finding some working measurement strategy is straightforward. One option is
to choose C"?rj = (J; since a local observable can be efficiently diagonalized. Similarly,
if [0;, O] = 0 holds for some i, k € [np]|, the observable if?rj = (J; + O can also be
used, since the observables can be measured simultaneously.

Due to hardware limitations, it might also be required to perform multiple mea-
surement for a single local term leading to n,, > ng. This might be the case if
the device is only able to perform local Pauli operations. There are also alternative
strategies such as classical shadows [57], which can be useful when estimating
multiple observables at once. Thus, the measurement strategy by the following
algorithm.

» For j € [nm):
1. Prepare the state to be measured: | )
2. Apply the unitary U;: U; |}
3. Perform a Z basis measurement. Get the measured string s € {0,1}".
4. Calculate the entry (D;)..
5. Repeat steps (1-4) m; times, setting o; as the average value of all (D;)..

* Return the estimate o = Z;':l 0.

3.2 Measurements and measurement effort
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This protocol uses m = Z; m; total measurement rounds and gives the correct
expectation value on average.

m
@) =% % (D)):pjs (3.21)

j=lag{D1}n

=3 > (D). (WU |sKs| U;|®) (3.22)
j=lag{D1}n
ﬂm o

= ) (P|0;|¥) (3.23)
j=1

= (v]|0|¥) , (3.24)

where p; . describes the probability of measuring s when the measurement setting is
chosen for the O; observable. This assumes that both the gate operations and the
basis measurements are performed without error, i.e. there is no systematic error. To
estimate the statistical error, we first calculate the variance of a single measurement
(single shot) of O;.

ag, = (03) — (0;)? (3.25)

3

2
= Z D?,spj,s - (Z Dj,apj,s) (326}
3.8 3.

= (¥|02|¥) — (¥]0;|¥)* (3.27)
(3.28)

The variance is in general state dependent. A useful first estimate is to use the
maximally mixed state
1

| UT| — o (3.29)

for which the estimate is

75, = Tr[07)/2" — Te[O;]? /2% (3.30)
This is also the result when | ¥} is a random state.according to the Haar measure. The
Haar measure describes a distribution that is invariant under any unitary application.
It is a convenient first estimate when |¥) does not have a sparse representation in
the eigenbasis of G‘j. In contrast, if the state is in an eigenstate of f}j, the variance
vanishes for this measurement setting. It is important to note that even if the state is
the ground state of O, the individual measurements of each G‘J— can still have large
variances, meaning that the final estimate will as well.

If we choose O; such that Tr[O;] = 0, the estimate for the variance w.rt. the
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maximally mixed state is o5, = Tr[O}]/2" or the mean squared entry of D;. For a
Pauli operator, this gives c.rj’; = 1 or for a sum of Pauli operators

np
0; =) aP; (3.31)
the variance is
a?:,j = Z e | . (3.32)

T

However any particular state |¥) will have deviations from this estimate. To obtain
estimation guarantees, Hoeffding’s inequalities can be used [58]

Repeated measurements can be described by a multinomial distribution, meaning
that the variance of the estimation after m; rounds of measurement is given by
o
0 =%, (3.33)

b R | Ly

For the total variance for the estimation routine this gives
= o, 3.3
T = g ?j . ( . 4}

If the total number of measurement rounds is fixed (m = ZJ- mj], we can find the
optimal measurement budget allocation using Lagrange multipliers. The Lagrange
function is given by

0'2— T
Ji=zﬁ+k(2mj—m). (3.35)
3

Taking the derivative w. r.t. m; yields the condition

o3
0=——3& +A, (3.36)
m;

which together with the measurement budget constraint gives the optimal measure-

ment budget allocation
Er.'j_;'
m; =m . (3.37)
Zj Gﬁj
The final measurement variance is therefore given by
Ny 2
2 M ] (3.38)
m

3.2 Measurements and measurement effort
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While the values of oo, area priori unknown, one can use the collected empirical
estimates of the variances to implement a near-optimal measurement strategy, at
least for a large measurement budget m =3 n.,. The total standard deviation scales
proportionally to the sum of the individual single shot standard deviations and not to
the variances. Therefore it is generally helpful to reduce the number of measurement
settings n,.

Exarnple: We can consider an observable given by a sparse, representation in the
Pauli basis O = ¥ 1'% F;, with Pauli operators F;. If one can measure each Pauli
operator simultaneously (as is the case for classical observables), then for a random
state one can expect a variance of

o2 =10 (3.39)

meaning the number of measurement rounds required scales proportional to the
number of Pauli terms in the observable. If each component is measured in an
individual measurement setting, as may be required if the Pauli operators do not
commute, we expect instead

2
o2 =0, (3.40)

i.e. the required measurement rounds scale quadratically with no. This shows that,
especially for large ng, efficient grouping can significantly reduce the measurement
effort. If the observable has ny = 100 local terms, and we want the estimate to be
within chemical accuracy, which can be around o,,, = 0.01, this requires between
m = 1,000,000 and m = 100, 000, 000 measurements depending on the method. Of
cause for a particular state |1}, the required rounds may be significantly reduced.

3.3 Quantum Alternating Operator Ansatz
(QAOA)

One particular VQA construction that has attracted a great deal of interest is known
as Quantum Alternating Operator Ansatz (QAOA). First proposed under the name
Quantum Approximate Optimization Algorithm as a specific quantum algorithm
to solve the MaxCut problem [46], it has been generalized to a broader class of
algorithms [47] which are inspired by the adiabatic theorem. We will motivate the
protocol by deriving the adiabatic theorem, which was first shown by Max Born in
1928 [59].

Chapter 3 Variational quantum algorithms



Fig. 3.3. — A graphical representation of the QAOA ansatz. The initial state is the ground
state of Hp, and the cost observable is H.. The gate generators are Hy and H,.

Theorem 1 (Adiabatic theorem). For two Hamiltonians Hy, and H., when one starts
in the ground state of Hy, |¥o) = |gs;) and time evolves under a Hamiltonian defined
by

Hy=(1—7)Hy +7H,, (3.41)

with a smooth transition from 7(t = 0) = 0to 7(t = T') = 1. If there are no level
crossings of the ground-state energy of H,, then the final state converges to the ground
state of H., | V) = |gs,.) for very long transition times T — oo and a nearly vanishing
change 7 — 0.

The intuitive reason here is that the large transition time ensures that any leakage
into higher energy states as H. changes are averaging out.

Proof sketch: We can derive the theorem by using the Schridinger equation for time
dependent Hamiltonians

i|W(t)) = H(t) [¥(t)) (3.42)
E;(t) |i(e)) = H(t) [i(2)) (3.43)

where the first expression describes the time evolution of the system, while the
second expression defines the time dependent energy eigenbasis of H (). We can
derive a differential equation for the change of the eigenstate by taking the time
derivative of eq. (3.43)

0= (Ei(t) — H{t)) |i(t)) + (Ei(t) — H(t))]i(t)) (3.44)

" * d *
= (Ei{t) - H®) lit) + 3 @)X 0] (Ba(t) — E5(9))li(2)) (3.45)
§=0

3.3 Quantum Alternating Operator Ansatz (QACA)
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We can use {i(t)|i(t)) = 0, which can be derived by taking the derivative of the nor-
malization constraint (i(¢)}i(t)}) = 1 and fixing the relative phase of the eigenvectors
at different times. With the pseudo inverse, this gives the solution

iy = > i) GOMOIO), (346)

j=0lji

The amplitude of a system being in a particular eigenstate at time ¢ is given as
ci(t) = (i(t)[¥(t)) - (3.47)

Using eq. (3.42) and eq. (3.46), we can derive the differential equation

= (i(t)[U(2)) + {i(e)| (1)) 3.48)
Z {E{fgf Eb Eii} (1Y) — i (@) H () V) (3.49)
_ (t)|AH|j(¢))
=70 2y By 0 + B0, (350

Thus, the evolution in the eigenbasis of H (t) is governed by a Schridinger equation
with a Hamiltonian

H.(t) = Ho(t) + T(t)V (1) (3.51)
n_q , . _
- gﬂ E;(t) [i(e)}i(t)] + ir(t) % % lie)}i(t)],  (3.52)

where the rate of change 7 is assumed to be very small. Here, H. is effectively a
diagonal Hamiltonian with small off-diagonal terms. As such a large energy barrier
Ay = Eq(t) — Ep(t) prevents any transition away from the ground state. This can be
shown more rigorously using the Riemann-Lebesgue lemma. With the upper bound
[(i(®)|AHj(t)}| < ||Hy — He||oo, we get the condition

ﬂﬂ

() € y—7— (3.53)
|He — Hel|oo
or when the transition rate is constant,
Hy, — H.||o
T> % . (3.54)

If the spectral gap is known, it is advisable to use a varying transition speed 7(t) o .ﬁf
However, even if the full spectra are known, finding an optimal transition speed
7(t) is not a trivial matter, since the analysis requires methods beyond the Riemann-
Lebesgue lemma. In the literature many different error approximation strategies
are used [60-62]. In practical implementations, the spectral gap A; will be mostly
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Fig. 3.4. — Sketch of a possible energy spectrum during an adiabatic transition. A large
spectral gap A, = E4(t) — Eg(t) allows the use of a quicker transition speed. A
level crossing (purple/green lines) means that the adiabatic transition converges
to a different eigenstate.

unknown. Thus, heuristic schemes are needed to find a good transition functions
T(t).

If the transition time T is shortened, this leads to state migration to higher energy
states. The error propagates first into the low energy excited states since AFE; =
E; — Ep will still be large enough to suppress transition to high energy states. As
such, reducing T within reason will reduce the fidelity to the ground state, but may
still give a sufficiently small expectation value.

For the purposes of quantum computation, one can discretize the evolution

1
lgs.) = lim T A e~ T((1-T)Hpt7He)gr |os, ) (3.55)
— T T —iT((1-L)Hy+L H,)
mhﬂ‘ma—‘ﬂnge |zss) (3.56)
b T i T 4 k
— lim lim i —E (-4 )Hy i A He
i o o TT (e e i) 37
rs g 020 Hog—i02p—1He | || —102Hp o—i61He lgsy) - (3.58)

Here the first line is simply the adiabatic theorem restated, using the time order
operator T, which is an operator used to solve the time dependent Schridinger
evolution.

The second line is a discretization of the time ordered evolution, which amounts to
solving the constant Hamiltonian Schridinger equation for very small time steps
T < 1.

3.3 Quantum Alternating Operator Ansatz (QACA)
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The next line is a first order trotterization. This allows us to describe the time
evolution of H, using only the evolution from H;, and H.. For this we also require
that T || H;|| < 1 with H; € {Hs, H.}.

If m and k are chosen sufficiently large, this gives us a strategy to prepare the ground
state |gs.) by only applying the time evolution of H; and H,. with computable phases

{31?32, - ,HQL.]'.

The outlined strategy is far from optimal. This is because there are many modifi-
cations that can reduce the number of required gates. We have already seen that
a varying transition speed 7(¢) can reduce the size of T'. It is also advisable to use
higher order and time dependent trotterization procedures [63] which allow for
significantly larger step sizes and therefore smaller k and m while maintaining the
same error guarantees. It should also be noted that unlike in original adiabatic
theorem, any leakages will also go into high energy states as the eigenstates of H.
are different to those of Hy and H.. This means that great care needs to be taken to
ensure that the correct @ are applied.

Following the discretization strategy outlined above, even with higher order trot-
terization strategies, the evolution times £; are generally very small. This means
the circuit consists of many gates, each very close to the identity gate and any
implementation error will lead to leakages into high energy regimes. On near term
devices, where gates are expensive to apply and individual gate errors are significant,
such algorithms become quickly infeasible.

The approach of QAOA is to instead let the evolution times 8 € R2L be classically
tunable parameters
|g} — E—iﬂzz.HaE—iBzL_iHﬂ .. ‘E—iﬂngE—imHn |g5b} \ (3.59)
with the objective function
(O(8)) = (0]H.|6) . (3.60)

For the initial vector 8; € RL one can choose an estimate obtained from the
discretized adiabatic theorem [64, 65], but then use VQA strategies to further
amplify the overlap with low energy states of H,. This allows to utilize the entire
available gate set, as this heuristic approach is able to operate without requiring
stringent error guarantees.

Overall QAOAs have the potential of greatly reducing the total gate count compared
other adiabatic approaches, making them more feasible to run on near term devices.

Chapter 3 Variational quantum algorithms



However, they do experience the same difficulties that are also present in general
VOQA setups.

3.3 Quantum Alternating Operator Ansatz (QAQA) 39






Results

During the optimization of VQA and QAOA instances, major challenges can arise.
These include (i) the convergence into persistent local minima which may not be
avoidable, (ii) a vanishing gradient with system size, which leads to significant
measurement overheads, (iii) for physical ground states, the ansatz class may need
a very large circuit complexity, making implentation difficult and infeasible on NISQ
devices. In the following, we will introduce these challenges in more detail as well
as summarize our contributions toward analyzing, understanding and potentially
mitigating them. Finally we also mention not directly related work about a machine
learning approach to classify quantum phase transitions. Similarly to VQAs, this
proposal can be also seen as using classical computation to boost the predictive
power of quantum measurement data. The full detail for each project is given in the
attached papers in the appendices.

4.1 Optimization and local minima

Approaches to solve VQAs are mostly based on local optimization strategies. This
means that one minimizes the cost function (O(#)) = (#|0|@) based on their local
behavior. A very basic and popular approach is gradient descent, where one chooses
to change the current parameters 8% along the direction of the steepest descent

- : i
04 =0 —n 55(0(0))

20 (4.1)

9ot
where n; describes a step size which can be chosen by some predetermined strategy,
or is itself optimized with a line search optimization. We discuss how to best estimate
the gradient in section 4.2. There are many versions and generalizations of this
approach. Some, like Newton’s method, also use second order information about the
Hessian of the cost function, while a popular intermediate method, BFGS, uses only
some second order information to improve upon gradient descent. There has also
been some research [66] showing that natural gradient decent [67] can work well
for VQAs. The issue with all local methods is that while they generally converge to
a local minimum, there is no guarantee that this minimum is close to the optimal
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Fig. 4.1. — A sketch of the problem of local minima in two dimensions. The current position
(red dot) has converged to a local minimum. However, there exists a significantly
smaller minimum (green dot), which the local optimization procedure is unable

to reach. This optimization error e,y is threrefore the difference between the
two minima.
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solution. Figure 4.1 shows an example of a sub-optimal convergence. For a single
layer, we obtain the cost function

{D{ﬁ'}} = {‘PuleﬂHﬂe—iﬂHITu} (4.2)
n
_ Z e i(hi— A7)0 {']fulﬁﬂﬂmrﬂ} (43
i,j=1
™ _
= Z el 9
k=1

where F; is the projector to the eigenspace of the eigenvalue A; of the generator
H =73, A;F;. The frequencies ;. describe all eigenvalue differences of the generator.
As such, the VQA cost function is given by a Fourier series. In general, especially if
the evolution is not periodic and many different frequencies (js;) contribute, even
a single layer can have many local minima. In the simplest case n, = 2, (wlog.
A = (0,1)), it follows that the time evolution is given by

{O(8)) = ay cos(8 + ¢g) + ag , (4.5)

with some real values (ag, aq, ¢y ). This trigonometric function has two local extrema
at # = —gp and # = 7™ — ¢p, where one describes a minimum and the other a
maximum. In the multidimensional case, where each generator has two energy
levels each, we obtain

(0(8)) = (9|O|0) (4.6)
= 3 e Tl (4| PLOP, W) @7
s,#c{0,1}E
L
= Y ascos (Z sifl; + t;f'Ja) ; (4.8)
s={-1,0,1}& i=1

where P, = P;:f_‘} .. .PJII:' is a product of projectors and a € R3", ¢ € [0, ETT:IEL are
real valued vectors. In general, for L layers, the cost function has at least 2 local
extrema, or points of vanishing gradient

L
Viel[l] : 0= % =_ Z 158; Sin (Z sifl; + t;éa) . (4.9)

J ae{—1,0,1}¢ i=1

The second derivative or Hessian is given by

2 L
Hjr = % =- Z 1585} CO8 (Z s + @&) . (4.10)
750k se{—1,0,1}& i=1

A local minimum is given when the Hessian H is positive definite (H = 0). Generally,
the vast amount of the 2° local extrema will describe saddle points, with only a
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vanishing fraction being true local minimum. While it is difficult to estimate the
number of local minima precisely, one can expect their number to grow quickly,
potentially even exponentially with the number of layers [68]. The optimization
can therefore be stuck in a far from optimal local minimum. We call the difference
between the global minimum and the value returned by some optimization algorithm
the optimization error. A common strategy to reduce this error is to reinitialize the
optimization with different parameters, with the goal of terminating in a different
local minima closer to the optimal value. This approach increases the overall run-
time significantly since the entire protocol is now run multiple times, but the strategy
works reliably if there is a significant likelyhood of a new initialization yielding
a low energy state. In contrast, if there are many far from optimal local minima,
reinitialization may not suffice to minimize the objective function. It may also be
difficult to estimate the optimization error. As such, finding good termination and
reinitialization criteria can be challenging.

4.1.1 Paper B - Training variational quantum algorithms is
NP-hard

In the paper B, we show a NP-hardness of VQAs. Studying the VQA optimization
problem with complexity theory can be useful. If we can show that the relevant
problem is NP-hard, then there cannot exist a polynomial time algorithm which
solves the required task (assuming P # NFP). In the particular case outlined above,
this implies that exponentially many reinitializations may be required in the worst
case.

We further define multiple decision versions of the VQA optimization problem and
then show their respective NP-hardness with Karp reductions. The decision versions
are so-called promise problems. The promise problems ask to decide between a YES
instance, where {Onn) < « for some o € R and a NO instance where (Opin) = 5.
The promise is that the expectation value is either smaller than « or greater than 3
and nothing in between. For intermediate values of (O n), the algorithm is effec-
tively free to accept/reject at will. The promise gap g =  — o corresponds to desired
precision of the optimization. If % = {)(poly(N)) is required for the problem, then a
solver of the decision problem can only be used to determine (O;,,) up to polynomial
precision. If sl? = const., then (Opyin) can only be determined up to constant precision.

First, we define a setting where the classical optimization routine has access to
the quantum expectation value, up to polynomial precision, through an oracle call.
In this framework, not only is the optimization problem hard, but finding any non
trivial approximation to the optimal value is NP-hard as well. As such, at least for
a generic enough ansatz class, any practical algorithms will need to be heuristic in

Chapter 4 Hesulis



nature and are unable to provide rigorous guarantees. Furthermore, the hardness is
not even a result of the exponential Hilbert space dimension. Even if we consider
qudit systems, where the Hilbert space dimension scales linearly in input size, we
obtain an approximate hardness result. This result is related to known hardness
results about multi-variable trigonometric polynomials [69]. The final category we
were interested in involves free fermionic systems. They describe fermionic systems
where there is no internal particle-particle interaction, effectively they are at most
quadratic in the creation and annihilation operators l[c:.' .ci). As such, the set of
operation that can be performed is significantly reduced. If the system is initialized
in a so-called Gaussian state the evolution remains in a family of states which can be
fully described with at most quadratically many real parameters w.r.t. the number of
Fermions, which is an exponential reduction in complexity. However, similarly to the
qudit case, this restricted scenario already suffices for the hardness of approximation
result.

In the paper we conclude that it is indeed the local minima present in the optimiza-
tion which are the cause of the NP-hardness.

4.2 Measurement effort

Another major bottleneck for the optimization of VQAs will be the required measure-
ment effort. When we consider gradient based methods, there are many components
which can contribute to a significant measurement overhead:

Multiple reinitialization to avoid local minima .

* Computation of the cost function and gradient for each optimization step
Tiopt steps

* Mulitple measurement settings for the estimation of the observable n,,

* Gradient estimation requires estimates of each partial derivative L

* Measurement at multiple measurement positions to determine the partial
derivative ngapivative

* Sufficient statistics in each measurements to obtain the required accuracy
nen o € 2 due to shot noise errors

4.2 Measurement effort
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Fig. 4.2. — A sketch of a barren plateau in two dimensions. The current position (red dot)
has an effectively vanishing gradient. As such, local optimizations routines are
unable to converge to a local minimum, or only with tremendous measurement
budgets.

The overall number of measurement rounds therefore is given by
Mot = Mreinit X T X N0 est X L X Ngarivarive X D{E_gj. (4.11)

Excluding the required measurement statistics, even with optimistic assumptions
about the convergence rate, one can already expect a full optimization to have of
the order of a thousand to a million different measurement positions, significantly
depending on the specific problem observable and VQA ansatz. State preparation and
measurement times vary massively between different implementations. Individual
gate times for super conducting qubits are generally on the order of 10~8s [70] with
measurement times on the order of 10~"s [71]. Trapped ion system are generally
slower by nearly 3 orders of magnitude [72]. For a full one shot implementation of
a circuit, one can therefore expect times of the order of microseconds to seconds.
Adding a large multiplicative factor to obtain sufficient sampling statistics for each
setting may therefore make the optimization procedure run incredibly slow, if not
make it outright infeasible to perform.
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421 Barren Plateaus

The problem of the measurement overhead is exacerbated by an effect that has
come to be known as barren plateus [73]. The phenomena describes the general
trend of VQA systems to have a gradient amplitude that is suppressed in the Hilbert
space dimension, meaning exponentially small in the number of qubits. Naturally,
this is a problem in local optimization schemes since determining the direction of an
exponentially small gradient requires exponentially many measurements. To derive
this suppressed behavior, we can estimate the amplitude of a gradient for some
generic state. For the analysis, we represent a generic state as one drawn randomly
from the Haar measure. We will motivate this assumption later. Explictly this means
that |@) is well described by

8} = U [¥o) (4.12)

where [V is a Haar random unitary. For the derivative w.r.t. the last layer, we obtain

a O(h)) — (O
(©/0) = 5= (0(0)) | = iy LLL— OO 4.1
= lim (8let0eHt _ 016) /h (4.14)
=i(6|[H,0]|8) , (4.15)

where [4, B] .= AB — BA is the commutator. For Haar random unitaries, we have
the following identities

f U |y e|UtdU = (4.16)
Haar

1

E?

1Tr(p) (dTe(AB) Tr(A)Tr(B

meU*AUpU*BUdUz d':’-“}( dz{_1}_ {dz}_ 1( })
Tr(A)Tr(B)  Tr(AB)

”( 21 _d(crz_ly)'

(4.17)

where d is the Hilbert space dimension and the integral is taken over all unitaries
according to the Haar measure. With this we obtain that the derivative vanishes in

expectation,

OO =1 [ (Wo|UTH, O)U|¥g) dv = i EELON

- 7 0. (4.18)

4.2 Measurement effort
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We can also derive the expected square of the gradient

(0" (0)) paar = /;{m (Uo|UT[H, O|U|¥) (To|UT[H, OU | Wp) dU (4.19)
_ Hmﬂmn} (dﬁﬁ ?F] _ ngff]]z) 4.20)
(o ? (L TUEOLY) @21
- TT“%W (4.22)
< 4IID{|E||1H [ ? (4.23)

which used that Tr([H, O]) = 0. The expected square of the gradient is therefore
suppressed by the Hilbert space dimension. Similar results also follow for derivatives
with respect to other layers. The assumption that |#)} is Haar random is generally not
satisfied. The technical requirement is only that the VQA circuit behaves as if it is
drawn from an approximate 2-design [74], which is significantly weaker and often
already occurs within quadratic cirucit complexity [73, 75]. This effect will always
occur if two aspects are satisfied: (1) The VQA circuit describes a universal gate-set
and (2) a random initialization is used for the initial parameters . To avoid barren
plateaus, one therefore either needs to find a good initialization which is not in the
barren plateau regime or use a set of generators which are not universal.

4.2.2 Paper C- Fast gradient estimation for variational
quantum algorithms

In the paper C we are developing algorithms to best estimate the partial derivative
of a cost function with a fixed measurement budget. In the literature, there are
generally two approaches used to find the partial derivative. The first is using a finite
difference methods like central differences

(0'(0)) = O®) ;f':_hm +0(h?), (4.29

which while being simple, has the problem that it does lead to systematic errors.
Alternatively, if the spectrum is a known discrete spectrum, the Parameter Shift
Rule (PSR]) [76, 77] can be used to find the gradient exactly. For a cost function as
defined in eq. (4.4), with A = {0, 1} one obtains

where the statement holds for all =*, but »* = = /2 is preferred since it gives the
best statistics. This result follows since, as we saw, the function is described by
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(O(#)) = ajcos(f + ¢o) + as. In general, if the cost function oscillates with n,
many different frequencies, 2n, measurement positions are required to find the
exact gradient. The optimal strategy can be obtained by inverting a discrete sine
transform.

When it comes to unitaries with an unknown spectrum, or many different eigen-
values, the PSR method becomes impractical, especially on a limited measurement
budget. For central differences, if h — 0, the statistics become very poor, since
(O(h)) ~ {O(—h)) means simply separating the two values already requires high
precision. Our proposal combines both approaches to find an optimal measurement
strategy depending on the available measurement rounds. The idea here is to use a
Bayesian framework that can also model systematic errors in the gradient estimation.
For this we use prior estimates to predict the expected size of the Fourier coefficient
of the cost function, which allows us to find the optimal measurement strategy for
the gradient. To obtain prior estimates of the coefficient from eq. (4.7)

(2 ) = (U|PyOP,|¥) (4.26)

we develop techniques based around design convergences properties and a scaling
analysis from smaller systems. Numerically, we also find very good agreement
with the theoretical predictions. In the regime before the 2-design convergence has
occurred, we develop interpolation methods which allow us to make sufficiently
accurate predictions for the purpose of the estimation procedure.

Our analysis shows that the PSR is the optimal strategy for very large measurement
budgets, while a central differences approach with a large step size h is preferable
when the measurement budget is relatively small. In the intermediate regime, we
use convex optimization methods to obtain the optimal measurement allocation
strategy. Here, with an increasing measurement budget, the number of positions
gradually increases with the overall strategy slowly approaching that of PSE. We
show in numerical simulations for a gradient descent optimization, that the overall
measurement effort can be reduced significantly by using our method while leading
the same quality of the result.

4.3 Efficient ansatz classes - circuit depth
optimization
As we saw in the previous section, allowing an ansatz class that spans too much of
the state space will lead to barren plateaus and therefore makes the VQA untrainable,

which can occur already with moderate circuit depth. An issue when the observable
{? describes some quantum many body Hamiltonian is that, when our complexity

4.3 Efficient ansar classes - circuit depth optimization
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theoretic assumptions are correct (QCMA # QMA), a low energy state of a physi-
cal Hamiltonian can have an exponentially high circuit complexity, meaning their
preparation is practically infeasible, especially on NISQ devices. Since finding circuit
lower and upper bounds is very hard in general [78], it is still an open question
which circuit depth will be required to prepare many practically relevant ground
states. Finding a sufficiently expressive ansatz with the shortest circuit complexity
istherefore another main challenge of VQAs.

4.3.1 Paper D - Optimizing the depth of variational quantum
algorithms is strongly QCMA-hard to approximate

In the paper D, we analyze the complexity of VQAs with a particular focus on
the number of required layers L. A natural question is to ask what the smallest
number of layers L, is to reach the ground state energy. Since the depth is now a
scaling parameter, we choose the circuit design where each layer can select from an
allowed gate set. In the paper we define the VQA decision problem and show a many-
one (Karp) reduction to the Quantum Monontone Satisfying Assignment (QMSA)
problem which is known to be QCMA-hard. Additionally we use the hardness of
approximation result for the Hamming weight of a QMSA solution to show a similar
hardness result w.r.t. the circuit depth of VQAs. As such, if BQP C QCMA, finding
the smallest number of layers cannot be done efficiently on a quantum computer.
More explicitly we show that for any polynomial time algorithm and for every e = 0
there have to exist at least some instances, where the ratio between the depth given
by the algorithm L., and the optimal depth L scales

Latg 5 g, (4.27)

'opt

where N is the encoding size of the VQA instance.

We saw that QAOAs convergence for arbitrarily large circuit depth L, but that it
is unclear by how much the depth can be reduced. In the paper, we also derive
the same hardness of approximation result for QAOAs. This gives an indication
that finding strategies which significantly outperform the adiabatic theorem may be
possible, but that finding them strategy may be potentially very difficult.

4.4 Many-body localization

In this section we discuss work on Many-Body Localization (MBL) [79], which is a
quantum mechanical, high energy phase transition between a localized phase (MBL),
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and a delocalized phase. A common physical model that is used both for numerical
and analytical studies is the Heisenberg Hamiltonian with a local random potential.
The Hamiltonian is given by

H= Z hiof + ofof +oloi +oi07,4, (4.28)
i=1

where the latter terms describe interaction terms, while the first term describes
a local magentic field. The amplitudes are sampled uniformly from an interval
hi € [—h,h], where h is the magnetic field strength. For small h the system ther-
malizes, meaning that a typical evolution creates correlations on large distances
and reaches high entanglement entropy states. This behavior is often analyzed
in the framework of the Eigenstate Thermalization Hypothesis (ETH), which is a
series of conditions which allow a reversible unitary evolution to be described in the
terminology of statistical physics, meaning irreversibility of time, agnosticity of the
initial state, convergence to local Gibbs ensembles, etc.
In contrast, for a large field strength h, the system experiences a transition into a lo-
calized phase called many body localization (MBL). Here, no long range correlations
can be observed and the system has localized eigenstates. This phase is still poorly
understood, mostly because many analytic approaches which work for Anderson
localization [80, 81], a similar phase but without particle-particle interaction, do
not work for the many-body case and numerical simulations are restricted to few
qubits, making an analysis of the scaling behavior into the thermodynamic limit
very difficult. It is assumed that the system has a phase transition for a magnetic
field strength of around h = 6. Especially for MBL in higher dimensions, near term
experiments can be a crucial tool to understand the MBL behavior beyond the limits
existing simulation algorithms.

441 Paper E - Scalable approach to many-body localization
via quantum data

The paper E is a project using machine learning to understand and predict the
behavior of MBL Hamiltonians. Our approach uses individual disorder realizations
(i.e. the vector h € [—h, h|™) to predict properties of the system. As is common in
numerical approaches [82], we use multiple indicators to characterize the system.
These indicators include correlation functions, entanglement entropies, as well as
expectation values for time evolved states. Spectral properties are also used since
they are affected by the transition. A machine learning algorithm uses numerically
obtained values for different magnetic fields

H = {hy,ha,--- ,hx} (4.29)

4.4 Many-body localization
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to learn values of the indicators and therefore also the MBL/ETH phase transition.
On finite sizes, the localization behavior will naturally depend on the particular
sample (k) of the magnetic field. As such our approach is also able to correlate
these indicators with a particular magnetic field distribution. With the help of
recurrent neural networks, we are able to learn the indicators for small system sizes
and generalize the prediction for larger system sizes. While this approach may be
susceptible to finite size effects present in the training data, it does offer a potential
path forward, especially when future quantum experiments can offer a more reliable
set of training data for larger system sizes. This project falls in the category of
classical learning algorithms using quantum data for training. In the future, when
quantum computers become more readily available, it will be an important task
to actually interpret the quantum measurement results. Currently, it is still very
difficult estimate the precise impact of the quantum data, since future experimental
and theoretical developments in quantum computing may have tremendous effects.
Instead one can focus on the much better understood classical data analysis tools
which will be required for the post-processing to show potential avenues for quantum
advantage with quantum data.
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Conclusion and open questions

There is still a lot unknown about the computational power of quantum computers.

While there is good evidence to suggest that they can significantly outperform
classical computers in practically relevant tasks, it is still unclear if they will be
broadly used or only utilized as a specialized tool. For quantum computation without
error correction (NISQ) the question of practical usefulness is still unresolved. Our
work focuses on one particular NISQ proposal, VQAs and we have derived specific
hardness results for them. Our results seem to imply that VQAs cannot be used not
a black box tool to solve arbitrary optimization problems. However, if the outlined
measurement bottleneck can be mitigated, they might proof themselves as a useful
to enhance the performance of other ground state reparation protocols.

Additionally, the work also opens up new questions and research directions. We
are currently looking at the question of how well a particular ansatz class for VQAs
can find low energy states. Indeed, we are working on showing that it is NEXP-hard
to decide if a particular ansatz contains low energy states or not. We are also
working on extending these results to more physics focused problems about time
evolving systems and thermalization. Similarly, we believe the Bayesian framework
introduced for the gradient estimation can be applied more widely, for instance in
the context of Hamiltonian learning [83, 84] and questions about the thermalization
of quantum systems.
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Activation of Nonlocality in Bound Entanglement
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We discuss the relation between entanglement and nonlocality in the hidden nonlocality scemario.
Hidden nonlocality signifies nonlocality that can be activated by applying local filters to a particular state
that admits a local hidden-variable model in the Bell scenario. We present a fully biseparable three-qubit
bound entangled state with a local model for the most general (nonsequential) measurements. This proves
for the first ime that bound entangled states can admit a local model for general measurements. We
furthermore show that the local model breaks down when suitable local filters are applied. Our results
demonstrate the first example of activation of nonlocality in bound entanglement. Hence, we show that
genuine hidden nonlocality does not imply entanglement distillability.

DOT: 10,1103 PhysRevLett. 124050401

Performing local measurements on cerain entang led
quantum states can lead to the phenomenon of quantum
nonlocality. That is, the comelations obined from the
measurements are not compatible with the principle of local
realism, wimessed by the violation of a so-called Bell
inequality [1]. Although entanglement and nonlocality
were extensively studied since the foundation of quantum
theory [2,3], the relation between both is still not fully
understood.

Afier the seminal work by Bell [1] as an answer to the
EPR-Gedankenexperiment [4], it was widely believed that
entanglement and nonlocality are just two different notions
of the inseparability of quanmm states. Indeed, for pure
entangled states nonlocality is a generc feature [3.6].
However, Wemer [7] showed that there exist mixed
entangled states (so-called Wemer states) which admit a
local model for projective measurements. Later, Bamrett [8]
extended this result by showing that certain Wemer states
admit a local model even when positive-operator valued
measures (POVMs), ie., most general nonsequential mea-
surements are considered. This displays the inequivalence
of entanglement and nonlocality in the Bell scenario.

It was first noticed by Popescu [9] and more recently by
Hirsch et al. [10] that some local entangled staies can
violate a Bell inequality when the observers apply judicious
local filters as probabilistic preselection before the Bell test.
This phenomenon is referred to as hidden nonlocality, or as
genuing hidden nonlocality when one considers an
entangled quantum state p with a local model even for
POVMs. However, it was shown that genuine hidden
nonlocality is not a general feature [11]. For example, a
particular two-qubit Wemer state remains local even after
arbitrary local filtering.

Note that hidden nonlocality is not the only extension of
the Bell scenaro. For instance, nonlocality can also be
superactivated [12,13] by allowing the parties to perform
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joint measurements on multiple copies of a local entangled
state. An even more general concept is that of entanglement
distillation [3]. In this scenario the parties have access (o
both local filiers and multiple copies of a given state, with
the goal to probabilistically obtain pure entangled states.
Distillable states can therefore always be seen as nonlocal
resource in the so-called asympiotic scenaro [14].
However, there exist entangled states which are not
distillable to pure entangled states. These states build the
famous set of bound entangled states [15], which were the
subject of various scientific works in the past [16-20].
Studying the nonlocal properties of bound entangled states
will approach the answer of the fundamental open question
of whether all entangled states are nonlocal resources.
Since bound entanglement is the weakest form of entan-
glement, it was conjectured by Peres [21] that bound
entangled states cannot lead to any nonlocal correlations
at all. However, nowadays we know that the Peres con-
jecture is false [22 23]: bound entangled states can violate a
Bell inequality. Despite these resulis and more advanced
scenarios [24], nothing is known about the activation of
local bound entanglement.

In this Letter, we answer the open question of whether
bound entangled states with genuine hidden nonlocality
exist in the affirmative. Specifically, we show that a certain
three-qubit bound entangled state with a local model for
POWVMs can violate a Bell inequality when local filters are
applied. This proves that genuine hidden quanmm non-
locality does not imply entanglement distillability. Our
resulis and possible extensions are visualized in Fig. 1.

Preliminaries.—Consider three distant parties Alice,
Bob, and Charlie sharing an entangled quantum state p.
The parties can perform local measurements via the
positive semidefinite operators M., My, and M, with
the settings x, y, z and the outcomes a, b, ¢. These operators
form POVMs, as they satisfy the completeness relation

© 2020 American Physical Society
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All BE-
states

FIG. 1.

Abstract overview of our results. We show that the set of
nonlocal bound entangled states (BE states) can be enlarged in the
hidden nonlocality scenario (HNL). This is the first step towards a
possible equivalence of all BE states and all nonlocal BE states.
Further enlargements of the set of nonlocal BE states could be
provided by superactivation (SA) and the asymptotic scenario
(Asymp.), similar to the case for distillable states. It is also an
open question, whether the set can be enlarged to all BE states in
such scenarios.

EﬂMﬂ|,=1 {and analogously for Bob and Charlie),
where 1 denotes the identty operator The resulting
statistics is given by

p(&bﬂxyz} = Tr[(Mﬂh @ Mbh- @ Mtk}p] (]}

The state p is said to be local (for {M,,}, {My,}, and
{M 4. }) if the distribution (1) admits alocal decomposition
of the following form:

plabelryz) = [ w(A)p(alxd)p(blyd)p(clcA)di. (2)

That is, the statistics can be explained by a local hidden-
vanable model (LHV), where 4 £ R is the shared local
hidden variable, distributed acconding to the density =(J)
such that [m(i)di= 1. The probability distributions
plalxd), p(b|yd), and p(c|zd) are typically called local
response functions in this context. A state p with such a
decomposition for all possible measurements cannot vio-
late any Bell inequality ; otherwise it does violate (at least)
one Bell inequality.

A concept which is easier to handle and necessary for
Bell nonlocality is the concept of quantum steering [25].
The steering scenario is an asymmetric scenario wherne one
or more parties remotely steer the state of the remaining
parties by performing measurements on their part of the
state. Here, we focus on the so-called one-sided steering
scenario where Alice tries o steer Bob and Chardie. We say
astate p demonstrates steering if its probability disribution
does not admit a decomposition of the form

plabelxyz) = fJr{}l}p{a|xﬂ}ﬁ{Mbb.o'f}Tr{Mrkﬁf}dl_
(3)

That is, the smatistics can be explained by a so-called local
hidden-state model (LHS), where the local response func-
tions of Bob and Chardie are obtained from measurements
on predetermined quantum states o2 and of, respectively.
The set of (unnomalized) conditional siates {o5(} that

Alice can prepare for Bob and Charlie, the so-called
assemblage, is given by

oht = Tra[(M,, ® 18® 1)p]. 4)

where Tr, denotes the partial trace and Tr{65C) = p(alx)
is the probability that Alice obains outcome a. Here, the
measurement sets of Bob and Chardie {M,,} and {M_ }
are assumed as tomographically complete. Further, note
that any LHS can be considered as an LHV, while the
converse does not hold [26]. An assemblage is said to
demonstrate steering if it does not admit the decomposition

3¢ = [ #()plalsapse, )

here p®C€ is a separable quantum state shared by Bob and
Chadie.

We present now the hidden nonlocality scenario in the
spirit of [10]. In this scenario the parties perform a
probabilistic preselection according to a desired ouicome
before the Bell west. Hence, they apply a sequence of
measurements on the shared state p; which can lead to
nonlocal correlations even if p; admits an LHV for
POVMs. In particular, this idea can be implemented by
the use of local filters given by arbitrary Kraus operators
F,, fulfilling FIF, <1,x€ {A,B, C} and acting on the
respective local Hilbert space of the observers. The state
which the parties share afier filtering is given by

o= Fy®Fz® Fep F, ® F, ® Fi.
Tr(Fy ® Fs @ FepF, @ Fy ® F.)'

(6)

where the success probability of the filiering is given by the
normalization factor. We say that a siate p; possesses
genuine hidden nonlocality if it admits an LHV for POVMs
but the state p for some judiciously chosen filiers F 4, Fg,
F violates a Bell inequality. Note that local invertible
filters do not change the entanglement character of a given
state [3], ie., bound entangled states remain bound
entangled. Nevertheless the filiers can increase the amount
of entanglement (probabilisically) between the parties
[27], which gives an infuitve reason why local filiers
can be useful. Further, by bound entangled states we mean
entangled states with positive partial transpose (PPT).
Methods.—In order to derive our results, we will solve
two main tasks: we show that the filtered state does violate
a Bell inequality and that the state before filtering admits a
local model for POVMs. The first task can be solved
efficiently by an iterative sequence of semidefinite pro-
grams (SDPs) [28], using the so-called seesaw [29] method.
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Consider a Bell inequality of the form

I = Z L'ﬂqu}.zp{abﬂxyz} <L, (7)

abexy,z

with given (real) coefficients ¢ ..,y and a local bound L.
The Bell operator according to this inequality is then
given by

H —_— Z L’ﬂkl"}?—Mﬂlx '@‘ Mbl}' '@‘ Mtk_' {E}

abexy:z

The goal is to maximize the quanmum value Q = Tr(Bp)
for PPT entangled states p. Optimizing such an expression
over all local measurements and the state is a problem,
which cannot be solved by an SDPin general. However, the
seesaw method provides a solution: we fix the measure-
ments for two of the parties for a given state p, such that the
problem becomes linear in the remaining party, let us say
Alice. We maximize the expression { subject to the
constraints My 20, 3, My = 1, which leads us 1o
the optimal measurements of Alice. This strategy is
iteratively applied over the individual parties and the state,
to optimize the quantum value O, without being guaranteed
that it is a global maximum.

The second task is more difficult to solve. Even though
there exist analytical constructions for LHVs, they mostly
restrict to certain classes of states with high symmetry or
they are restricted to projective measurements. Recently
in [3031] a method was presented to algorithmically
construct local models, again making use of SDPs. Here,
we only point out the main use of this construction (for
details see [30,31]). Consider a discrete set of measure-
ments {M,} associated with a so-called shrinking factor
0<n <1 and the target state p;. Further, consider the
following SDP:

given pp, (M, }.n
find g* = maxg

ST [(My, ® 1@ 1)y] = > Dyfalx)efC, ¥ ax
Fi
o 20,(65) 20 V¥ 4

i i
nx + (1 —rﬂZ@TrnLr} =gpL + (1 —q}m,
(9)

where the Hemmitian matrices y and &€ are the optimi-
zation variables. The SDP can be undersiood as follows.
The first constraint ensures that (not necessarily positive-
semidefinite quasistate) ¥ does admit an LHS for the
finite set of measurements {M,.}, where D;(alx) are
the deterministic strategies comesponding to Alice's set of
inputs and outputs. More specifically, D;(alx)=4,; .

where 4= d;d;---4, is a siring of length m,, where
m 4 is the number of Alice's settings. The (subnormalized)
states o€ have to be separable between Bob and Charlie
which is in general a nontrivial sk, but for two qubits can
simply be enforced by the partial transpose constraint
(oB€)Ts = 0 [32]. The last constraint contains the shrinking
factor() £ y < 1 and ensures that also a noisy version of the
target state p; admits an LHS, but this time for the
continuous set of measurements A (e.g., four-ouicome
POVMs) which was approximated by the discrete set
{Mﬂ|x} c M.

The SDP is based on the fact that the statistics from noisy
measurements on a noiseless state are equal to the statistics
of a noisy st with noiseless measurements, i.e.,

Tra[(Mi@ 1@ 1)y] = Try[(M, @ 1@ 1)p,]. (10)

where the target state is defined by

PL=W+(]_W};_A@'ﬁA£¥}= (11)

and the noisy measurements are given by

Mi= Mo+ (1-nTeM) -, (12)

for any M, € M.

Mote that becanse y admits an LHS for the discrete set
{M .}, by convexily it admits also a local model for the
noisy measurements M%. From the equality in (10) it
follows that p; does also admit an LHS for a set of
continuous noiseless measurements.

Here, the shrinking factor i is the largest number such
that all noisy measurements M’} can be writien as a convex
mixture of elements from the discrete set {M,}. i.e.,

Mi=) p:Map,

with ¥ . pr=1land p, =20 ¥ x

The shrinking factor can only be obtained analytically in
the case of qubit projective measurements, but for general
measurements it can be obtained by an SDP [31].

Results —We now display our main result by first pre-
senting a nonlocal three-qubit bound entangled state and ina
second step show that this state originates from local filiering
of a different state with an LHS model for POVMs. Note that
the following resulis were recovered from the numerical data
and are therefore exact in an analytical sense, unless indicated
differently. Consider the (real-valued) density matrix in the
basis {|000), |001), |010}, ...,|111)}45c given by

(13)

(14)

ML = (Fe;'}ls.e.jgs,
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with the following defining entries:

r“=ﬂ.ﬂ’2.90, r12=r13=r15=—ﬂ.m93,

Fig = Tg = iy = I'n = s = rys = —0.0083,
rig = ry = rs = ras = 0.0646,

Iy = ry = rss = 00412,

Fat = Fag = Py = Fyy = Fsg = rsy = —0.0335,
Fap = Fig = Fag = Fay = Fsg = rg7 = —0.0598,
rag = rgg = ryy = 01352,

Fgg = Tgg = Mg = ﬂ.ﬂ]ﬂ?., Fgg = 04418,

Mote that py is invarant under partial transpose with
respect o any pary, as well as invariant under permutation
of parties, by construction. Therefore, the state is PPT and
also biseparable with respect to any bipartite cut [23,33].
Mote further that gy has the same symmetry properties as
the family of states in [23] without being a member of this
family. Nevertheless, using the seesaw method it can be
shown to violate Sliwa’s inequality number 5 [34] (which
implies gy is entangled), which reads

I= {S}’m[ﬂl +A|_BZ—A2£2 _AlBlCI.

— A;B,Cy + A;B,0,)) £3, (15)
where sym[X] denotes the symmetrization of X over the
three parties, e.g. sym[A;B;] = A;B; +A,G +A,B+
Azcl +B|_C2+le‘:'|_. [‘Iﬁl’ﬂ', AJ,=BJ=CJ,JE{],2}, and
AJ:=M|_|J:—M2LI:. We choose Al = —ﬂ.?gﬂgd'z —0.61 ]9‘5},
Ay = —023440, + 0.97215,, which leads o a quanium
violation @ = 3.0152 > 3 of inequality (15). Note that the
maximal quantum wvalue achievable by PPT states only
allows violations up to O =~ 3.0187 [35].

Mext, we show that gy can orginate from a local s
by filtering. Consider the state p; defined via the relation

P = FA@FB@FEPLFI@FL@FE {]ﬁ}
Tr(Fs ® Fs ® FopuFy @ Fy ® FL)’

with the local filters

g _ [ 04310 —02971]
A7 |-0.2488  0.7291 |
. _ [0:0342 —00808]
B7 | 03664 0.8688 |°

[ 0.3268  —0.1873
Fo= _

[—0.1773  0.6440 |

For more details, see the Supplemental Materdal [36]. Note
that it is immediately clear that there exists a valid quantum
state p; fulfilling the above equation. This can be seen by

Monlocal bound
entangled state

FIG. 2. Schematic overview over the relevant sets of states. The
states in the shaded area are undistillable. Our results confirm the
existence of bound entangled states with an LHV for POVMs.
However, (invertible) local filters F are able to reveal the hidden
nonlocality of these states. They map a state p; from the set of
states admitting an LHV onto a nonlocal state oy

using the fact that the above local filiers are invertible
and the only constraint FTF < 1 can always be achieved,
since the filters F and ¢F map onto the same state for any
c € C\{0}.

In order to finally show that p; possesses genuine hidden
nonlocality, we need to show that it admits a local model for
all POVMs. Therefore, we use the same parametrization as
in [31] for Alice’s finite set of measurements {M,, }. It
consists of all relabellings of {P_, P_,0,0} where P isa
projector onto a verex of an icosahedron in the Bloch
sphere and P_ onio the opposite direction, as well as all
relabellings of the trivial set {1, 0,0,0}. This leads to a set
of 76 elements with a shrinking factor of = 0.673. Noke
that it is sufficient to consider only extremal POWVMs,
which for qubits have at most four outcomes [38]
The optimizaton for the LHS, according to (9) resuls in
g* = 1. The precision of this resuli is subject to the
standard precision of marLas [39] as well as the SDP
solvers sepumi [40] and Mosdk [41 ] for vaimip [42]. Hence, o,
admits a local model for POVMs without the need of
additional noise. For a graphical illustration of our main
resulis, see Fig. 2.

Conclusions and outlook—In the present Letier, we
have shown that a fully biseparable bound entangled state
of three qubits can admit a local model for POV Ms, but can
give rise to nonlocal comrelations when local filters were
applied before the Bell test. Hence, we have shown that
bound entangled states can possess genuine hidden non-
locality. This is the first example of activaton of non-
locality in bound enmnglement. Furthermore, this is also
the first example of an LHV of a bound entangled state for
all POVMs, while previous models were restricted to
projective measurements [31,43]. One important conclu-
sion of our resulis is that genuine hidden nonlocality (since
it also exists for bound entangled states) does not imply
entanglement distillability. Together with the result of [11]
it shows that genuine hidden nonlocality and entanglement

050401-4



PHY SICAL REVIEW LETTERS 124, 050401 (2020)

distillation are inequivalent. Note that since the local model
we have constructed is an LHS model, our resulis are also
relevant for the steering scenaro.

It would be interesting to know whether there exist also
bound entangled states without hidden nonlocality. Even
though we could not prove the existence of such states, we
found a bipartite bound entangled state with a local model
for POV Ms in the so-called filter nommal form [27], which
seems 0 play an important role for hidden nonlocality. We
think, therefore, that this state is a good candidate to show
bound entanglement without hidden nonlocality. For fur-
ther details, see the Supplemental Material [36]. In the
future, one should investgate the potential of bound
entangled states in the superactivation or even in the
asymptotic scenario. Even 20 years afier the Peres con-
jecture [21], we still leam what bound entangled states ane
useful for. In the spirit of these developments it seems to be
well motivated to state an “inverse Peres conjecmre™ all
bound entangled states are nonlocal mesources in the
asymptotic case, see Fig. 1.
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Details on the local state pp, —In order to give a useful representation of the
local state py, from (16) in the main text, one has to understand how to obtain
thisstate. Naturally, there is no hint which states one should investigate in order
to try to prove their locality or whether they possess penuine hidden nonlocality.
However, it becomes immediately clear when one imverts the problem and tries
to find a loeal state after we applied loeal filters on a nonloeal state. Since
we chocse the filters to be invertible, we can easily find filters which map the
local state onto the nonloeal state. The nonlocal state obtained by the see-saw
alporithm has by construction a high amount of symmetry, which we decrease by
the local filters and then apply the SDP techniques to find an THS. Afrerwards,
the inverted filters increase the symmetry of the state again. Therefore, py is
simply given by

_ Ga®Ge@Ge pNL Gl ®GL®GL
Tr(Ga ® Ge ® Ge pyvr. G @ GL @ GL)’

AL (51)

with the local mvertible filters

c. _ [0.7201 0.2071]
47 |0:2488 0.4310)°

o, _ [0-8688  0.0808
B~ |0.3664 0.0342|°

[0.6440 0.1873]

“c=loarr3 0.3268]-

and the nonlocal state pyp defined in Eq. (14) in the main text.

Logal bound entanglement in the filter normal form.—Here, we want to ex-
tend our outlook by presenting a bipartite bound entangled state which admits
an LHS for POVMs and is a pood candidate to show bound entanglement with-
out hidden nonlocality, as we will argue below. An important feature of this
state is that the state is already in the filter normal form [1], which means all
gingle-party reduced density matricies are maximally mixved. The filter normal
form does play an important role when it comes to hidden nonlocality. For
example, the filter normal form does maxdmize the violation of the CHSH in-
equality for two-qubits, as well as entanglement monotones [1]. Further, in [2] it
was shown that certain Werner states admit an LTHS model, even after arbitrary
local filtering. Werner states are also already in the filter normal form.



Intuitively, there is no obwious reason why local filters would still be able
to activate the nonloeality of such states because they cannot distinguish the
wseful part of a state from white noise. Consider the state, in filter normal form
given by

1 G
- A B
v s ; (4HY @ Hf (S2)

with dg = 2, dg = 4, the coeflicients £, and the traceless mutually orthonormal
matricies H, HE. Specifically, we choose

&1 = £ =1.3219, £ = 1.1348,

00 0 -1
Hfl=(1 ﬂ)’Hil:(ﬂ u):

and the matricies

Loy
HEA = \:F 1 ]
NG
for Alice’s subsystem, as well as
{0 0 0 —0.0983)
g5 _ | —0.6303 0 0 0
L 0 —0.4158 0 0
\ 0 0 —0.6303 0 )
{0 0.6303 0 0\
B _ 0 0 0.4158 0
2 0 0 0 0.6303
\ 0.0083 0 0 0 )
{ —0.4850 0 0 0\
HB 0 —0.5137 0 0
3= 0 0 0.5137 0
\ 0 0 0 0.4859 /

for Bob’s side. As one can quickly verify, o iz a PPT state. Newertheless, it can
be shown to be entangled by the SDP techniques presented in [3]. With the
methods described in the main text, we were able to show that o does admit
an LHS model for general POVMs on Alice’s side.

Az arpued above, this state 18 a good ecandidate to show bound entangle-
ment without hidden nonlocality. However, it is quite complicated to prove our
conjecture, due to the fact that many degrees of freedom are involved. If our
conjecture turns out to be true, other scenarios like the superactivation or the
asymptotic scenario have to be considered. If it turns out that o can show
hidden nonloeality, it would be the first example of a nonlocal bound entan-
gled state in the lowest possible dimension for two parties. So far the amallest
dimension for examples of nonlocal bound entangled states is 3 x 3 [4).
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Many optimization methods for training
variational quantum algorithms are based on
estimating gradients of the cost function. Due
to the statistical nature of quantum measure-
ments, this estimation requires many circuit
evaluations, which is a crucial bottleneck of the
whole approach. We propose a new gradient
estimation method to mitigate this measure-
ment challenpge and reduce the required mea-
surement rounds. Within a Bayeslan frame-
work and based on the generalized parame-
ter shift rule, we use prior information about
the circuit to find an estimation strategy that
minimizes expected statistical and systematic
errors simultaneously. We demonstrate that
this approach can significantly outperform tra-
ditional gradient estimation methods, reduc-
ing the required measurement rounds by up
to an order of magnitude for a common QAOA
setup. Our analysis also shows that an estima-
tlon via finite differences can outperform the
parameter shift rule in terms of gradient ac-
curacy for small and moderate measurement
budgets.

1 Introduction

It has been demonstrated that quantum devices
can outperform classical computers on computational
problems specifically tailored to the hardware [1, 2|.
While this has been an important milestone, the ulti-
mate goal is a useful quantum advantage, i.e. a similar
speedup for a problem with relevant applications. The
central practical challenge is that only noisy and inter-
mediate scale quantum (NISQ)) hardware is available
for the foreseeable future [3]. This restriction means
that quantum devices have limited qubit numbers and
can only run short quantum circuits, as the quantum
computation must be finished before noise effects be-
come too dominant. For this reason, great efforts are
being made to design quantum algorithms in a NISQ-
friendly way. One central idea in this effort is to trade
an increased number of circuit evaluations and addi-
tional classical computation for reduced qubit num-
bers and lower circuit depths.
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Jens N. Watty: jens.schneiderBuni-duesseldorf.de

Martin Kliesch: martin_kliesch@tuhh.de
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Figure 1: Sketch of the gradient estimation for VQA opti-
mization routines as shown in algorithm 1.

One of the leading approaches toward achieving
useful quantum advantages iz given by variational
quantum algorithms (V(QA=). They address the prob-
lem of estimating the ground state energy of a quan-
tum many-body Hamiltonian via a variational opti-
mization, as follows. The quantum part of V(A=
iz implemented using parametrized quantum circuits
(PQCs), which are used to prepare the variational
quantum states. In order to interface it with a clas
gical computer, the energy and the energy gradient
w.r.t. the variational parameters are typically esti-
mated. Then a classical computer, which typically
runs some gradient descent-based algorithm, is used
to minimize the energy via repeated parameter up-
dates and estimations of the energy functional

Several challenges oceur in this approach. First, on
the classical computation side, the optimization might
reach a barren plateau for the objective function [4]
or get stuck in local minima [5]. Barren plateaus
can sometimes be avoided by using smart initializa-
tions for the parameters [6]. Moreover, sophisticated
constructions of the quantum circnit family can help
to bypass such problematic regions in the parameter
space |7, 8| Local minima can at least partially be
avoided using natural gradients [9). Second, the mea-
surement effort of the quantum computer can pose a
critical bottleneck for VQQAs The reason is that

(i) many iterations steps are done in the classical

optimization,

(ii) several partial derivatives are needed for each
gradient update step,

(iii) multiple measurement settings might be needed
for the estimation of observables such as local




Hamiltonians,

(iv) quantum measurements are probabilistic, re-
quiring (}(1/¢?) measurement rounds for € ac-
curacy

and this can add up to a large number of total num-

ber of measurements rounds. Since quantum mea-

surements are destructive, one also needs to prepare
the entire variational state from scratch for each mea-
surement round.

In this work, we develop a new gradient estima-
tion algorithm that balances statistical and system-
atic errors which achieve a better gradient estimate
with fewer measurement rounds than conventional es-
timators. Specifically, we first characterize both the
statistical and systematic error that arise in the esti-
mation procedure, where for the systematic error, we
introduce a Bayesian framework using prior informa-
tion and assumptions about the system to estimate it.
Then, we develop allocator methods, which for a given
measurement budget determine an optimal strategy,
namely what and how often we want to measure each
circuit configuration, in order to minimize the total
error. The estimator then returns a gradient estimate
based on the measurement outcomes. A sketch of the
procedure is shown in figure 1.

The Bayesian approach takes advantage, but also
requires prior knowledge about the system We de-
velop strategies to obtain this prior information de-
pending on the circuit depth:

(i) For short circuit, we use experimental or numer-

ical fanalytical observations.

(ii) For higher depths, we use unitary 2-design prop-
erties of random circuits.

(iii) In the intermediate regime, we use an interpola-
tion of the two.

For the analysis in this paper we neglect all error
sources arising from imperfect quantum hardware and
only focus on noise due to finite measurements (ie.
shot noise). Additionally, we assume time periodic
unitaries, meaning that, without loss of generality, the
eigenenergics of the generators can be assumed to be
integers.

Finally, we demonstrate numerically that the
Bayesian approach outperforms previous parameter
shift rule (PSR) approaches in terms of gradient esti-
mation and VQA optimization accuracy.

1.1 Related work

There are several approaches to estimating gradients
in VQAs, notably the PSR [10, 11] is able to ob-
tain unbiased gradient estimates for generators with
only two distinct cingenwvalues Further generaliza-
tions were made in Ref. [12] for a wider class of
Hamiltonians. This approach often requires ancillary
qubits or unitaries generated by commuting genera-
tors with two eigenvalues. There are also general-
izations proposed for non-commuting generators [13]

in a stochastic framework. These approaches gener-
ally require measurement settings not contained in the
VQA-ansatz, but which can be assumed to be feasible
for real hardware. There are also unbiased estimators
for arbitrary periodic unitaries [14-17|, where all mea-
surements are contained in the ansatz class.

There are also strategies [18-21] that replace the
actual observable underlying the gradient estimation
with some surrogate observables. Another research
direction has been to find efficient estimation schemes
for the whole gradient 22, 23| instead of its individ-
ual partial derivatives and thus reducing the required
measurement resources.

We approach the gradient estimation differently.
Namely, we use that V(A= due to their setup expe-
rience some typical behavior, which can be analyzed
in advance and during the VQA optimization. This
allows us to also evaluate the performance of biased
estimation strategies, which under very reasonable as-
sumptions on measurement budget, can significantly
outperform their unbiased counterparts. We use the
general framework of periodic parametrized quantum
gates [15] but believe that a similar Bayesian reason-
ing can alzo benefit other VA ansatz classes and gra-
dient estimation strategies. It should therefore not be
regarded as a competitor to existing methods, but as
a complementary strategy to further reduce the mea-
surement effort of gradient estimation strategies.

1.2 MNotation

We use the notation [n| := {1,...,n}. The Pauli ma-
trices are denoted by X | ¥ and Z. An operator O
acting on subsystem j of a larger quantum system is
denoted by Oy, e.g. X is the Pauli- X-matrix acting
on subsystem 1. £p-norms including p = 0 are denoted
by || - ||lp- We use several symbols that are summarized
in section 8.

2 Variational quantum algorithms

In a VQA the goal is to find parameters & such that
a cost function is minimized. In general, this cost
function is given by

L
H Uaiﬁﬂ }l I’PD} 1

=1
(1)

where |¥p) is the initial state, Uy (#a) = e '%="= are
the unitary gates generated by Hy and O is the ob-
servable encoding the optimization problem. In this
work, we are considering unitaries that are T-periodic
in 8y (wlog T = 2x), which implies that all eigen-
values of H, are integers.

Estimating the gradient of G(#) w.rt # is an im-
portant task, as most optimization algorithms are gra-
dient descent based and thus require an efficient ap-

L ]
G(8) = (Tg| ]'[Ua{ﬂa}l o
=1




proximation of the gradient. Our strategy estimates
the gradient by the functions partial derivatives. For
thiz it is convenient to define the cost function at a
point shifted by a value of = in the parameter &

Filr) =G(@ +xe)

2
W @OT@W),
where g is the [-th canonical basis vector and the
other layers are absorbed into the observable as O
and the initial state as |[¥'). Furthermore, we used
that U7 (6 + ) = Up(6)0U;(x). For later reference, the
modified state and observable are

-1

1) = | ] Ualfa)

=1

L fre
{}’ = LH Uu ('H:!} Q |:DH Uu{gm:'
=l =1

The evaluation at point & is therefore just G(8) =
Fy(0) and %52 — F/(0). We will henceforth focus
only on the cstlma.tian of a single partial derivative
w.r.t. a parameter . In the interest of readability we
write [, and F instead of U}, and Fj, as well as |¥)}
and O instead of |¥') and O".

In this restricted view, we are now going to examine
the structure of the function F(z) more closely. The
parametrized unitary that defines this function has
the form

[¥o), and

'HII — c—iBH

Z P8 (4)

where H is a Hermitian generator and the F are the

projectors onto the eigenspaces corresponding to the

eigenvalues {A1,...,An, } of H in ascending order.
Using this notation, we obtain

F(z) = (¥|U'(z)OU ()| ¥)

% A=A ) (5)
= 3 SOMHPOP D),

=1

where each ¢;; = (¥|F;0F;|¥) is just a scalar. This
lets us rewrite the function as

L
I) = Z e'[-"-i—k.f}IE{j

L™

= Z C{,EI"’“’: -+ c;,e_l.f-"kz

i,7=1 k=1
= Z{ﬂg sin(ppr) + by ms':.f-‘kI}) E (6)
k=1

where ;. € {|A; — Ay|} are all possible eigenvalue dif-
ferences of the generator H |

k= Y, ey (7)

1,7 2ha — Ay =iy

and ¢ = E"ﬂ'—“ with a, b € B™ are Fourier coefficients.
For the total number of frequencies, it follows ny, =
Hue} = [’;"). The derivative at = =0 1is

Ty
=3 mas. ®)
k=1

For generators with two eigenvalues, where we can
set wlog pe € {0,v}, it has been shown that an
unbiased estimate for the partial derivative can be

obtained via

3 :=F'(0)

e ©)

which is known as the PSR [12].

In essence, we are going to generalize this method.
A helpful tool for this task is the antisymmetric pro-
jection

F(z) — F{ z)

flz) = Zﬂasm pez) . (10)

We are only considering symmetric measurement
schemes as symmetrizing an estimation method will
not make the prediction worse [15]. As such, we refer
only to the positive measurement positions = of f(x),
knowing that estimates of F(4+x) and F(—x) are re-
quired to determine it. We will also omit the g =0
frequency, since it does not affect the derivative. Ad-
ditionally, v == |||, refers to the spectral width of
the generator, meaning i C [v], since the periodic-
ity of U(x) implies that the entries of g are positive

integers.

3 Gradient estimation approach

The allocator decides the measurement resource al
location and how to generate the estimate In par-
ticular, we use a symmetric linear estimator of the
derivative which for a set of measurement positions
x € [0,7)" and number of measurements for each
position m £ M™ returns a gradient estimate

6= wy, (11)
=1

where 1y are the empirical estimates of f(r;) using my
measurement rounds. Since each r; requires 2 mea-
surement settings, the total number of settings is 2n,.
In the following we develop strategies to find optimal
T, m and w.

The error

ot =0 — 48 (12)

between our estimator guess & and the true derivative
4 is an important metric that we are going to use as




a figure of merit for choosing our estimation param-
eters. In practice, imperfections of current quantum
hardware and the lack of quantum error correction
will cause a significant noise level when evaluating the
cost function on the quantum device. However, even
on a perfect device, the measurement process intro-
duces a shot noise error as the estimates are deter-
mined by sampling from the underlying multinomial
distribution. We denote the expectation value over
the shot noise by (- ).

The expected error under shot noise can then be
written as

(o) = 3 walyeds — 8 (13)
i=1
= Z wy (Z g SlIl{M-If}) - Z prag (14)
i=1 k=1
— (5"w-p)a, (15)

where we have used the definition (Eq. (8)) of 4, the
unbiased nature of the estimate (y)s, = f(r;) and
Eq. (10) for f. We also defined the matrix 5T with
entries 5§, = sin(ppzy).

For the mean squared error this means

fm.a—<(zw1y=—5)>
+Z'wf ui)s — (w)3)

= £gyg + ‘:Egt.at.}a 3 (16)

where the first term describes the systematic error
resulting from the method not accurately determining
the derivative even for exact measurements and the
second term describes the statistical error arising from
measurement shot noise.

= [(5%w — )T

3.1 Estimating the statistical error

For the statistical error, each term (y2), — ()2 is
the variance for the measurement position x; resulting
from shot-noise errors. If the single shot variance at
position =; is o7, we find the expression

0'2
(yi)s — ()3 = ;’: (17)

where my is the number of measurement rounds per-

formed for r;; For a fixed measurement budget
=, my, the optimal measurement allocation
is given by

m =

Z ‘2"'-712 {2?21 |wyeg)? ’

2
'::fst.at.}s = -
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|w; |

with my = Mz . If one assumes constant
3 :_T.=1 [w;les
shot noise o; = o regardless of the measurement po-

sition which we will hence force do, this simplifies to

: ||
o B e
':ffm}s = ;"w"? with my = ”w—i

(18)
While oy or ¢ are unknown a priori, it is generally
possible to give a rough estimate of o beforechand and
to determine an estimate of oy after only a fow mea-
surement rounds are performed. For this reason, we
assume that o iz a known quantity in the following
sections.

3.2 Estimating the systematic error through a
Bayesian approach

Determining the systematic error is more challenging
because it depends explicitly on the Fourier coeffi-
cients @ which are not known. For our analysis we
assume that the estimator will be used for an ensem-
ble of multiple different positions 8, as one expects
to occur during a full gradient descent optimization
routine. Therefore, instead of finding the minimum
for a particular instance, we want to find a strategy
where the average total error over the entire ensemble
is minimized. The benefit of this approach is that the
average only requires knowledge of the general behav-
ior of the Fourier coefficients, not specific values of the
particular realization.

Formally, we assume that a distribution Dy over
the relevant positions & induces a distribution of the
Fourier coefficients . One natural distribution Dy is
the uniform distribution over all parameter points 8 €
[—, ), which can be motivated as a model for the
case of random initialization 8y. For an expectation
value over the distribution Dg, we write {- }g. In this
framework, taking the expectation value for Dy yiclds

(o = ([(s™w - wTa]’),
= (8w — p)T(aaT)g(5%w — p)  (19)
= (5w — p)TCa(5%w — ),

meaning that the estimation of the expected squared
systematic error requires knowledge of the second mo-
ment matrix

C, = (aaT)g € R*"n (20)

In the following, we derive properties of the of O
assuming the uniform distribution over 8.

First, we note that for a shift 8 — # + €z in the
layer I, the complex Fourier coefficients transform as
cp — cpet?* % see Eq. (6). As Dg is invariant under
such a shift, we have

{ck}a = lf" {ck}gdz = L /w ‘:C&Du‘"‘z}ﬂdz =10

D e J_ -

for all g # 0, implying that ¢ is centered around
cp = [ in expectation over #. Similarly for the second




moment, we compute

1
{Ekcp:la = E {ckﬂp}ﬂelu‘k-i-mjzdz _ [],
—x

1 _
{E;Cp}ﬂ =9, f’" {C:ﬂp}aelm* Beligy — ‘:ICklg}ﬂﬁkp:
—x

where dgp is the Kronecker delta.
From the Fourier expansion Eq. (6) and ap =
2Im(cg), it follows that

(ak)e =0

M
{arap)e = 2 bip(lex|*)e , .

meaning that 7, is a diagonal matrix with entries
{ak)e = 2(|ck|*)e given by the expected squares of
the Fourier coefficients.

What remains is determining (ai)g. It is worth
pointing out that while underestimating (ai)g can
lead to suboptimal results, even significantly overesti-
mating the amplitudes will still outperform methods,
where no prior assumptions are made, meaning rough
estimates of (a})g are already sufficient for good per-
formance. One way of estimating them is to use al-
ready existing empirical measurement data from pre-
vious optimization rounds or initial calibration. The
coeflicients can be estimated using a Fourier fit. An-
other strategy involves numerically simulating smaller
system sizes and extrapolating to the actual size used
in the VQA.

If the applied unitaries in the VQA are known,
{al)g can sometimes be derived theoretically. For in-
stance in appendix 1.2, we derive analytically exact
results for a VA with a single layer (L = 1). For a
small constant circuit depth, (ai}g can be computed
efficiently, using Monte Carlo sampling algorithms,
even for large system simes. This is convenient, as
the case for deep circuits, under certain assumptions,
{al)g can be approximated again using only the spec-
tral composition of the generator. This is shown in
the following.

Ergodic limit — barren plateaus

VQA optimization routines have to overcome a gon-
eral phenomenon known as barren plateaus. This term
describes the tendency of a gradient in V(A= to be
exponentially suppressed in the system size with in-
creasing circuit depth and for almost all parameters
8. This phenomenon has been extensively studied and
while mitigation techniques have been proposed [6-8],
it appears to be unavoidable, at least in the general
setup.

For the rigorous analysiz of barren plateaus, it is
beneficial to use the language of unitary #-designs.
Effectively, with increasing circuit depth, the overall
applied gate will appear more and more like a Haar-
random unitary, with respect to which the derivative
is suppressed by the Hilbert space dimension. This

assumes that the underlying generators describe a
universal gate set. For this effect to occur, we do
not need convergence to the Haar measure but con-
vergence to a unitary 2-design, which is significantly
quicker [24, 25]. For our purposes, such approximate
unitary 2-designs are sufficient since {a} }g can be ex-
pressed as a polynomial in U, U7 of degree (2,2). If
this condition is met, we can replace the expectation
value over all angles by the expectation value over all
unitaries. Hence, this condition can be summarized

by the ergodic assumption
(U (8)))6 = f I(U)dU, (29)

which holds for any polynomial T'(I7) of degree at most
(2,2) and where the integral is taken w.or.t. the Haar
probability measure on the unitary group.

Under this assumption we derive in appendix C that

‘:ﬂi}e = % Z

2 pe=hi—A;

with o3 = Tr[0?/d]-Tr[0O/d]?, where d is the Hilbert
space dimension and £; is a constant close to 1 that
depends only on d. Tr[P,/d| is the relative multi-
plicity of the eigenvalue A;. Notably, the factor of i
shows the exponential suppression of the derivative in
the systom size, meaning that gate sets drawn from
a 2-design experience barren plateaus. For L — oo
this result confirms the assumption that the relative
multiplicity of an eigenvalue difference py in the spec-
trum of the generator determines the expected size of
its respective Fourier coefficient. We will analyze the
strengths and limitations of this approach with an ex-

ample in section 5.1.

Te[P./d) Tx[Py/d]  (23)

4 Allocation methods

In this section, we derive several allocation methods
for a given measurement budget. A Python imple-
mentation of these methods is available on GitHub
26).

| '}'he estimation algorithm requires the values w, m
and ®. We have already seen that making assump-
tions about the ensemble of configurations allows us
to estimate the error using the second-moment matrix
g from Eq. (20) and an a priori shot noise estimate
a2, In the following, we devise explicit measurement
procedures by making use of the knowledge of these
quantities. In section 4.1, we show that using convex
optimization procedures, one can derive an optimal
measurement strategy, which we call Bayesian linear
gradient estimator (BLGE).

In section 42, we then consider the case where
the number of total measurements goes to infinity.
We call this method unbiased linear gradient estima-
tor (ULGE), as it does not require access to the es
timates of C; and o2 and yields an estimate with-




out systematic error. ULGE is an equivalent formu-
lation of a known method in literature [15]. In sec-
tion 4.2.1, we show strong similarity between ULGE
and another popular generalized PSR found in the
literature [12]. Finally, in section 4.3, we restrict the
number of measurement positions ny to 1 and derive
a strategy that is optimal under this constraint. We
call this method single Bayesian linear gradient esti-
mator (SLGE). We note that this solution coincides
with the result obtained for the non-restricted prob-
lem in the case where only very few total measure
ments are available for the gradient estimation.

4.1 Bayesian linear gradient estimator

For the linear estimator of a partial derivative we want
to minimize the expected squared error {f?nt}a’a by
finding suitable measurement positions & € [0, 7)"=
with weights w € B™= of our linear estimator, ie. we
wish to find the optimal solution of

(w*, ") = argmin{{eio)s0(w, @)} (24)

w T

with

2
(€ho)s0 = (57w — w)T Ca(S%w — ) + —|w]}

T n. 2 o2
= Z{ﬂi}ﬂ (Zwtsiﬂﬁikzﬂ) + ;”W"?
k=1 i=1

from Eq. (19) and Eq. (18). Since the cost function
is non-convex in T, a direct approach may not reach
the optimal solution. In appendix A1 we show that
instead, we can perform an equivalent maximization
problem which arises as and effective dual problem
after adding certain constraints:

(lor)se = max g(x) (25)

with

Tip

H-.Q m o 2
o) =3 (2matn = 2= = TS msinta )
k=1

k=1

where the last term refers to the L™-space norm.
Each dual variable {x;} has the interpretation as the

systematic error w.r.t. only one frequency component

2
A

(ehysde = ((STw)y — ) *(af)e = . (26)
{ai)e
Due to complementary slackness between the primal
and the dual problem, the global maxima positions of
the function

pu(x) = |im.- sin(jui)| (27)
k=1

are the set of optimal measurement positions #*. Hav-
ing determined those, we can proceed determining the

weights w* by solving the convex problem Eq. (24)
with the fixed positions * and obtain the measure-
ment budget m via Eq. (18). We also allow for ba-
sic post-processing, where after the measurements are
performed, we obtain updated weights w by replac
ing the statistical error in Eq. (24) by one using the
empirically determined shot-noise variances.

Egt.at. = Z w;zﬂ'e?mp,: E (28)
1

where crgmp refors to the empirical estimate of the
variance. All the steps are shown in algorithm 1, also
including the two other methods we consider in the
following section.

Algorithm 1 Gradient estimation

Allocator and estimator procedure for the three out-
lined strategies. M, (z) refers to performing physi-
cal measurement at position T using m measurement
rounds and estimating the expectation value and vari-
ance.
procedure ALLOCATOR(u.Cy.0,m)

if Bayesian then

K* + arg max|g(x)| & (25)
T* + arg max|pg- ()] & (27)
w* ¢ arg min (e, )s.6(w, T*)] e (24)

if Unbiased then
zt e I+ 3)

e e (arey)) > (36)
if Single then
* a.rgnﬂn[{ft?m}a,g{zj]
w* +— w(z*)
m + ROUND (m o)
return =*, w*, m
procedure ESTIMATOR(T, w, M)
foric{1,...,n.} do
Yiemp,1,4): g?emp,:,—) + M, (1)
Yiemp,1,— )+ Jf?emp,i,—) — My, (—x4)

B (40)

Hiwmp,i,+)~ ¥emp,i.—)
]

Yiemp,1)
2
”tmp.-'.+:‘;"<mp.-'.—>

2
J(Emp,i‘] =

if postprocess then

w* + argmin| (e, )o(w,z*)

,,LF] b (28)
E = yszw‘i
return 4

We also show that the number of measurement set-
tings is restricted by the number of frequency differ-
ences in the generator spectrum.

Theorem 1. For every optimization problem as de-
fined in Eq. (24), there erists an optimal BLGE strat-
egy that requires at most ny = ny unique (positive)
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Figure 2: Top left: The theoretical mean error {eq., )0 for
different measurement budgets for all three methods. Top
right: The theoretical relative correlation £2 for all methods.
Left: The measurement positions chosen by the different
methods for given total measurement budgets. The color
of the lines indicates the sign of the coefficient wy applied
to the value (red - positive; black - negative); the fainter
the color, the lower the absolute value of the coefficient w;.
ULGE is only shown once, since its allocation is independent
of m. Right: The proportion of the total error that is due to
the statistical error (blue) or the systematic error (shades of
orange) in the case of the BLGE. Used values throughout:
p=(1,2,345), 02 =1, {al}s = 0.1 x 107F&,

measurement positions. (Meaning 2ny, positions in

total)

In appendix A 2 we show that this follows directly
from the existence of a sparse solution for an #{-norm
minimization with a linear constraint.

As a quality measure, we define the relative corre-
lation () as

‘:35}2 ]
2, £
i ‘:52}9{32}&&’ 29

which iz the covariance between the real and the es
timated derivative scaled onto the interval Q2 € [0, 1].
Using the quadratic inequality we can find a relation-
ship between the error and the relative correlation

‘:Egut}a,ﬂ = ‘:52}3,8 + {Sz}a,ﬂ - E{E‘E}s,ﬂ
> ()09~ e

— (30)
{F}a,ﬂ
= ‘:52}3,8{1 - ﬂg} 3

where the lower bound is saturated by an optimal
rescaling of w. This allows us to think of {1 as an
expected relative accuracy.

Figure 2 shows the result of this method for ny =3
and prior estimates ({a})g,o?) inspired by the model
VQA defined in section 5, where small frequencies
contribute significantly more to the overall gradient
than large frequencies. We see that in the beginning,
the error (blue line, top left) plateaus and only starts
dropping once more than 10° measurement rounds
are performed. This occurs as the method returns
a very small puess to avoid being wrong, meaning
the error is just the expected size of the derivative.
For large measurement budgets, we have the expected
(edi)ap x % behavior. Similarly, for the relative cor-
relation plot (top right), © is increasing from a value
close to @1 = 0 for very few measurement rounds to
2 = 1 for m ~ 10* measurement rounds.

The bottom left plot show the measurement po-
sitions used in the BLGE. The y-axiz denotes the
measurement budget that the allocation method has
available. We see that ny, many positions only occur
for very large measurement budgets (107), while only
a single position (2 when also considering the nega-
tive measurement position) is returned for m < 10¢
measurements. For increasing m, the measurement
positions move further to the left with new ones be-
ing added on the right.

On the bottom right plot, the composition of the
error into statistical error (blue) as well as the differ-
ent systematic errors based on the different frequency
components (shades of orange), as defined in Eq. (26),
are shown for different measurement budgets m. For
fow measurements the largest contribution to the sys
tematic error error dominates with most of the error
coming from the Fourier coefficient a, as this is the
most significant component of f. As m increases, the
statistical error startzs becomes dominant while the
systematic error, first the small frequencies, vanishes.
This shows that as one might expect, the estimator
becomes more unbiased, as the measurement budget
increases.

In the next sections we analyze the behavior in the
two limits, the central differences behavior in small m
and the unbiased equidistant measurement strategy
for large m.

4.2 Unbiased linear gradient estimator

If we let m — oo, the method will use all resources

to make the systematic error vanish exactly, meaning

that the remaining minimization of the statistical er-

ror in Eq. (24) simplifies to the convex optimization
problem

2 o . 2 a1

{ftm.}a,ﬂ = Ew:.g'?:;:p”w”“ (31)

where we recall g C [v] with v the spectral width.

This method is equivalent to one without a system-




atic error, which has been studied before in more
depth [15]. Its behavior can be summarized in the
following theorem.

Theorem 2. For constant shot noise variance o2,

any unbiased gradient estimation m.;:t-'ﬂwd given by
Eq. (31) has an error (el )s8 = T and 0 <

2
ﬁj—_'_:'f,:,—, where tightness can be achieved with at
o+
maost ny = ny, measurement positions.

Proof. As the method should be unbiased for all fune-
tions anti-symmetric function f(r) with the allowed
frequencies, we can choose f(x) = sin(rz) to find an

upper-bound.:

f=v =3 wilp)e=Y wf@). (3

using |f(z;)| < 1 and the triangle equality it follows
that v < ||w||;. This means that the error for m

measurements is

2 2,2
o a i
':ffm.}a.ﬂ = ;kul = g (33)

Since there is no systematic error we also obtain

2_ (@
(6%)e + 222
m—0 m{p}ﬂ 1 a
= .ﬂ'ﬂ x ﬁ +G{m }
What remains to show is that there exists a closed
form solution for Eq. (31) which reaches this bound.

For this we choose the measurement positions x; =
I(i+ 1) with i € {0,...,v — 1} yielding

Sur = sm(g (i + %)M) . (35)

This describes the discrete sine transform (DST-II),
which by inversion yields w = S~ 'u

(=1)°

"R D)

We note that these coefficients were already derived in
literature [15] using Dirichlet kernels. One can verify
that ||w||y = v, i.e. that our choice of coefficients satu-
rates the lower bound we derived. We note that while
this closed form solution requires v many measure-
ment positions, since it is in the limit of the general
Bayesian method, there always exists a strategy with
at most ny many positions as shown in theorem 1. 0O

As can be scen in fipure 2, cspecially for small
m, BLGE performs significantly better than ULGE
for both the expected error and 2. This iz because
ULGE, in order to be unbiased, is very dependent on
shot noise, which leads to very significant statistical

errors.

(34)

(36)

421 Comparison with PSR for sums of commuting 2-
level generators

Even though the PSR in its simplest form is only valid
for unitaries with two-level generators, it is straight-
forward to extend it to generators H which are the
sum of commuting two-level generators Hy, e

H= i GHy, (37)
i=1

where with without loss of generality the cigenvalues
of all H; are A € {0,1} and n; is the number of gen-
erators.

As was shown by Ref. [12], PSR (Eq. (9)) together
with the product rule of differentiation yields an un-
biased estimate of the derivative

I D
=Y (% T (39)
i=1

2 ]

where Fj, ;. refers to applying an additional unitary
e'*¢H: during state preparation.

While these operations may create quantum states
outside the ansatw class of the VA, most physical
implementations can facilitate them. In total 2n; ex-
pressions are evaluated. If we assume shot noise that
is uniform over the parameter space with a variance
given by JE:I: = ﬂi_;* where myy is the mumber of
measurements at one position with the total number
of measurements m = EZlW + my_, the opti-
mal choice of measurement distribution is such that
Imye = Pmy_ == my x |{]. This yields a total error
of

Ty

(€doc)s.o =Z%ﬁ(2n:jg)

i=1
el €T, %

i~ 3

m e

(39)

where the second step optimizes over the measure-
ment budget m and ||{||; is an upper bound to the
spectral width »®. This is the same scaling as for
ULGE, which is also true for {1, as this method is
alzo unbiased.

4.3 Single Bayesian linear gradient estimator

For m — 0, w will be chosen small to minimize the
statistical error. As the £ norm term heavily pe-
nalizes multiple measurements, this leads to a strat-
egy with only a single measurement position method,
similar to finite differences. The method where the
measurement settings is restricted to ny = 1,we call
SLGE. The optimization problem Eq. (24) for SLGE
simplifies to

T, 3

()s0(w,x) = (af)e(wsin(uer) — pe)® + %wﬂ ;
k=1
(40)




(ei)sg (m—00) | 0 (m—0) | (dai)s/{eis)sg | #Meas. Pos. (2ng) | AC? | Priors?
BLGE o m{ele » L 01 2 In,, Yos | Yes
=T
SLGE o m2/3 mitde x L 02 2 Yes | Yes
azuﬂ m{ﬁz:'s TE
ULGE — —r X oy 2ny Yes No
PSR o mife 1L In, No | No

Table 1: Summary of the analyzed methods. The total error refers to the limit of many measurements, while the expression
for £ is valid in the setting of very few measurements. The notation @ — b indicates that the value a is valid for small
measurement budgets and b is valid for large measurement budgets. AC: Ansatz Class - “yes"” indicates that all expressions to

be evaluated are in the original ansatz class of the VQA.

which describes a quadratic polynomial in w and a
trigonometric polynomial in x, which can be min-
imized to numerical precision by finding roots of a
polynomial of degree 3. We show in appendix B 3,
that for m — oo, SLGE scales as

(*)s.0 0cm™ %, (41)

which is outperformed by the oc m™! scaling of the
previous methods. This shows that for the best per-
formance for a massive measurement budget, multiple
measurement positions are required. In contrast for
a small measurement budget, we derive the following
theorem in appendix B 4

Theorem 3. For an optimal SLGE {and therefore
BLGE) strategy, in the limit of small m, the relative
correlation (1) can be lower-bounded by

2 m{8%)e 1 2
0 = p i?;,; +O{m~) (42)
with the effective spectral width
Veff = {ﬂﬂ}ﬂf {‘52}3 = [15 V] 3 {43}

the expected ratio between the second derivative A and
first derivative § of F(x).

This theorem shows the strength of the strategy,
as Ve also takes into account the relative significance
of the individual eigenvalue differences. Notably, this
can be significantly smaller than the spectral width
when large cigenvalues are very rare, as is the case in
an exponential or Gaussian like distributions with a
long but negligible tail Thus we expect that in the
regime of small m, PSR and ULGE require a factor of
;":— more measurement rounds for the same quality.

For large m, one can ask when SLGE will be out-
performed by ULGE type methods. In the example
of used in figure 2, the crossover occurred only after
~ 10° measurements and € > 0.996, which is only
visible on the top right plot @ after extensive mag-
nification. This means that the regime where ULGE
takes over is only for very large m where the exact
derivative is basically known already. This behavior
is not specific to the selected priors, but actually holds
for any prior distributions.

Theorem 4. For any distribution of frequency am-
plitudes Dy, single shot noise variance o and a mea-
surement budget m, there erists an optimal SLGE
strateqy with a relative correlation of at least 99% that
of an unbiased method. (i.e. Qg = 0,990y )

The proof iz shown in appendix B.5. We show
this by constructing an explicit SLGE strategy which
achieves this bound for all possible distributions.
There we also proof the following corollary which
shows that even a deterministic SLGE method only
dependent on the spectral width v is already compet-
itive
Corollary 1. An SLGE algorithm measuring at po-

sition T = % has a relative correlation that is at

least 97.5% the relative correlation of ULGE, regard-
less of the underlying distribution (Dg, o®, m). (i.e.
Qg = 09750y)

The theorem and corollary show quantitatively that
the expected gains from using unbiased estimation
methods with multiple measurement positions w.r.t.
the relative correlation (1) are small, even for large
measurement budgets. It is also worth pointing out
that the theorem and corollary do not use the period-
icity of the unitary explicitly, meaning they also hold
for non-periodic unitaries with a generator of spectral
width .

4.4 Summary of the measurement budget al-
location methods

Table 1 summarizes the main methods discussed
above by comparing their error scalings, the number
of expressions that need to be evaluated, whether all
expressions are within the ansatz class of the VQA,
and whether prior estimates of the shot noise &2 and
the second-moment matrix O are needed.

5 Application to QAOAs

For our numerics, we use a popular quantum ap-
proximate optimization algorithm (QAOA) setup [27).
Here, the ground state of the problem Hamiltonian




H_. encodes the solution to the MaxCut problem on a
graph G = ([NV], E) with vertex set [N] and edge set
E. The MaxCutproblem is the problem of finding a
labelling of the vertex set that maximizes the number
of so-called cut edges. The allowed labels are 0 and 1
and an edge is cut if it connects two vertices that have
different labels. We identify the computational basis
states of our qubits with the two labels. H,. contains
terms for every edge in the graph, which are valued
at —1 if the edge is cut and 0 otherwise:

H. =% > (Z2;,-1), EC|N]x[N]. (44)

(i.7eE

The energy of the system described by H,. is mini-
mized by any state that corresponds to the maximal
number of edges being cut. We denote this maximal
number of cut edges by MaxCut(G).

In our numerical experiments the edge set E was
randomly generated by selecting a subset of 2N edges
from the set of all possible edges on N vertices.

The QAOA cost function is defined as

F(8) = (0|H|6), (45)

where the state |@)} is prepared using the parametrized
circuit

L
1) = | T] Us(62a—1)Uc(B2a) | [+)®Y  (46)

a=1

with U.(#) = exp(ifH,.) an evolution under H, and
Up(8) = exp(ifHp) an evolution under a mixing
Hamiltonian Hyp. In our setup the Hamiltonian is
given by

(47)

The number of times each unitary appears is referred
to as the circuit depth and labeled L and one pair of
unitaries Uy and U/, is referred to as one layer in the
following. The initial state that these unitaries are
applied to is |+)}®Y | the ground state of Hp. In order
to effectively compare the performance of QAOA on
different graph instances G and §' with MaxCut(G) #
MaxCut(G"), we introduce the approximation ratio

_ F(Ha'l.g} _ F(Hdg}
MaxCut(G) Amm(Hc) '

where B, is some (possibly intermediate) parame-
ter point determined by some optimization algorithm
and Amyp( - ) evaluates to the smallest eigenvalue of its
argument.

(48)

5.1 Deriving prior estimates

In this example, H. iz dependent on the graph in-
stance, hence the {a})s are too. Finding the exact
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Figure 3: Top: The dependence of {a} }e on the frequency e
for various circuit depths L and a system size N = 16 with
M = 32 edges as well as a uniform distribution over 8 and
all graphs for 2000 randomly sampled instances. The Fourier
decomposition is taken w.r.t. a layer in the bulk of the circuit,
specifically the [£]-th layer. The decomposition is for the
Hy gate (left) and the H, gate (right). The solid lines for
L = 1,50 represent analytical estimates. The black circles
show the estimate when we restrict the distribution to graphs
which are fully connected and exhibit no non-trivial graph au-
tomorphism. Bottom: The root of mean square-amplitude
of the partial derivative in dependence of the circuit depth.
The dashed line shows the Barren plateau limit.

cocflicients for a particular instance can be assumed
to be difficult, since determining the spectral width of
H. iz already an NP-hard task in general It is pos
sible, however, to sample from graph bipartitions to
find an approximate spectral distribution numerically.
To derive analytical estimates, we are extending our
distribution to also include all considered graph in-
stances
(-)s0 = {-)sp.c, (49)
where & indicates drawing the samples from the set
of all graphs with M edges and N vertices. This gen-
eralization makes it possible to estimate the priors
analytically, which we do in appendix D). The results
are shown in fizure 3. The plotted points represent a
mean over 2, 000 randomly chosen points and graph
instances. For L = 1 we derive analytical expres
sions for both Hamiltonians (dark blue line) in ap-
pendix 0.2, While this is a tedious problem, it is

10



efficiently solvable. For Uy, the specific structure of
the VQA means that only the Fourier coefficient for
= 2 does not vanish and in general, only even coeffi-
cients contribute. For I — co we obtain an analytical
estimate (cyan line) using the 2-design assumption in
appendix [D.1. While this estimate faithfully repro-
duces the bulk of the frequencies at L = 50 layers,
the empirical estimate for the first frequency is sig-
nificantly larger than the theoretical prediction. This
discrepancy arises from graph instances which corre-
spond to non-universal gate-set V(JAs instances. In
particular, this is the case when the graph is not fully
connected or has a non-trivial automorphism  The
additional black circles for the first frequency in the
figures shows the empirical estimate obtained when
we restrict the set G to only graphs which do not ex-
hibit these properties. As can be seen these instances
faithfully reproduce the 2-design prediction.

Figure 3c shows this comvergence of the expected
derivative. Numerically, the convergence appears to
be close to completed at L ~ 30 layers, which is con-
sistent with known 2-design convergence results in lit-
erature, where depth scales roughly on the order of the
number of qubits [28]. The dotted lines show the bar-
ren platean limit when the ergodic argument is used.
Again due to the existence of graphs with symme-
tries, the convergence is not exactly to the theoretical
2 design limit. For the intermediate layers, we can
argue (particularly for the case regarding H,.) that
the overall amplitude of the cocfficients decays expo-
nentially while the relative values transition from a
behavior like L = 1 to one more closely related to
L — co. It is our belief that a more rigorous un-
derstanding of ¢-design convergence within quantum
circuits could help to make a more quantitative assess-
ment than we are able to make at present. We note
that while quantifying the priors may be a worthwhile
theoretical pursuit, for practical applications it often
suffices to have a rough estimate of the amplitudes, as
even with significant overestimation of amplitudes our
method will still outperform traditional non-Bayesian
schemes. Also, since real implementations attempt to
avoid the barren plateau regimes, the gradient along
the optimization path may be significantly larger and
therefore not fully representative of the behavior of
the ensemble average.

5.2 MNumerical results

In this section, we first test the estimation accuracy
for the different gradient estimation strategies for ran-
domly selected angles 8. Afterwards, we demonstrate
their usefulness for gradient descent based VA opti-

mization
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Figure 4: A comparison of the different gradient estimation
methods for different measurement budget for the entire gra-
dient (mgy). The data was generated with a system size of
N = 18, graph instances with M = 36 edges, and a circuit
depth of I = 12 with {al} estimates as stated in Eq. (50).
Each data point represents an empirical mean over 300 to-
tal samples drawn from 30 different graph instances. 10
random parameter points were evaluated for each instance.
The measurement budget is distributed in such a way that
the H .-layers get twice the measurements of the Hj-layers.
Left: The average 2-norm distance between the exact gra-
dient and the estimate using the different methods. Right:
The average relative slope H.

521 Gradient quality for the different allocation meth-
ods

Figure 4 shows the quality of the estimated gradients
for the different optimization routines and a range of
measurement budgets. The size of the measurement
budget (mg) is the entire budget, ie. jointly for all
partial derivatives. The first value of my = 1296 is
just big enough to allow PSR and ULGE to have ex-
actly one measurement round per expression to be
evaluated, ie these methods cannot be run as in-
tended with a smaller measurement budget. For the
priors of the Fourier coefficients, we select

{ak)e|, = 107011 x Greog
oy (50)
ke

‘:ﬂ }ﬂlr_- = 10—9-3k—1.6

resulting from a rough exponential fit obtained from
figure 3. Figure 4a depicts the dependence of the 2-
norm difference between the exact and the estimated
gradient for different budget m,

IV —Vlz, (51)
where V is the exact gradient and V the estimate
generated by performing the estimation routine for
every component of the gradient. We note that for
very few measurements ULGE performs significantly
worse than PSR, This is because the required pos-
itive integer rounding for the individual number of
measurements at each site implies a far from optimal
allocation for ULGE, while PSR does not require any
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rounding. Besides this we see good agreement be-
tween the numerical results and what was predicted
from figure 2. Explicitly enforcing the condition that
only two position are to be evaluated as in SLGE
(section 43) only starts to make a significant dif
forence compared to BLGE at around 107 measure-
ments which may be already infeasible in a practical
experiment. This shows that while the asymptotic be-
havior is significantly worse, for practical purposes, a
correctly chosen finite differences model performs re-
markably well For fower measurements, ULGE and
PSR require already my = 10° measurements to out-
perform an estimator which returns the all zero vec-
tor.

For the purpose of gradient descent, one can argue
that the direction of the gradient is actually more im-
portant than its magnitude. In order to quantify this
notion we investigate the relative slope R, the ratio
between the slope in the direction of the actual gra-
dient and the slope in the direction of the estimated
gradient

VTV desc(V)

B=\rmor/ ~\deev)/* 2
<||~:r||2||vuﬂ>a <dnsc|[?}>ﬂ 52

where

d ]
wo-f(a)]
which indicates the slope in the direction of g. A value
of B = 0would indicate that the estimated gradient is
orthogonal to the actual gradient. A perfect estimator
would achieve a value of B = 1. The relative slope R
is similar in nature to () defined in Eq. (29) but differs
in the way that the ensemble averages are taken. Nu-
merically, the manner in which the averages are taken
does not qualitatively change our results. As with the
2 norm error, we see good agreement with the behav-
ior of R and the behavior predicted in figure 2 for (2.
This also justifies why {1 is indeed a good quality pa-
rameter for the estimation. For the fewest number of
measurements considered, PSR and ULGE struggle
to find any decreasing direction, while BLGE reliably
has a R = 20% overlap. The other methods require
nearly 100 times the number of measurements for the
same quality. Similarly to what we saw for 01, BLGE
and SLGE show basically identical performance with
regard to the quality measure B.

5.2.2 Parameter Optimization

We also simulated a complete parameter optimiza-
tion routine. Following the proposal from Zhou et
al. [6], we chose the initial parameters @ to resemble
an approximate linear annealing ramp, as this can sig-
nificantly improve performance compared to random
initialization. The exact initialization we used was

(even index Hy, odd H.)

m

(1]
6" = 55

(54)

4 — Sbieaz
L-1

><i+4).

Since the VQA starts from a specific initialization,
the uniformity assumption of our assumed distribu-
tion Dg might no longer be valid, meaning this also
tests the applicability of our approach outside of the
idealized conditions we assumed. For the update step,
we use a basic gradient descent routine

ﬂ{1+1‘] _ E{ﬂ _ q[i}ﬁ'[i‘] . {55)
Since the different methods return gradients with
massively different norms, a fixed step size will skew
the result heavily. To compensate, we use a back-
tracking line-search routine to find a good 5. It
starts with an initial step size that is significantly too
large. Then it repeatably measures the observable
at the proposed new point 8 — 5V and either
accepts the step size if the estimate decreased com-
pared to the current position 8" or halves the step
size 'Y — 5" /2 and repeats. The measurement bud-
get allocated for the line-search estimate is set to be
the same as for the gradient estimation. This line
search removes the dependence on the size of the re-
turned gradient without the algorithm becoming a full
swoeping algorithm.

N=18 L=12 N=12 L=30
03 — BLOE/SLGE
— ULGE
—_PER
—— Noisclos
0.z
b=
0.1
0 . 0

T T T T T T T — T
1 3 0 3o 100 1 3 10 30 100 JN 1000
Optimization iterations Oiptimisation iterations

Figure 5: The empirical average approximation ratic r over
the iterations of a gradient descent optimization with line
search for the different optimization routines. The results
are averaged over 23 different problem instances. We note
that in the considered measurement regimes BLGE and SLGE
are identical. Left: A shallow circuit with ¥ = 18, M =
36, L = 12 with the total measurement for each gradient
being my; = 3888, which corresponds to 6 measurements
for each generator in the PSR. The priors were taken as an
exponential ansatz as given in Eg. (50). Right: A deeper
circuit with N = 12, M = 24, L = 30, m, = 6480, which
also corresponds to 6 measurements for each generator. The
priors were taken as the barren plateau estimates Eg. (150)
and Eq. (154).

Figure 5 shows the numerical results of the opti-
mization routine using each of the gradient estimation
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routines. The cost function shown here is the approx-
imation ratio r as defined in Eq. {4%8), which is a com-
mon metric for QAOA numerics. We consider both a
case with a shallow circuit (L = 12) with N = 18 and
a deep circuit (L = 30) in the barren plateau regime,
but for a smaller system size of N = 12. In both these
cases we consider an overall measurement budget so
that each measurement setup for PSR is performed 3
times. This translates to my = 3888 for the shallow
circuit case and my = 6480 for the deep circuit. It is
alzo worth noting that with such a small measurement
budget, BLGE and SLGE are identical Additionally,
we plot the case for the exact gradient with an infinite
measurement budget in gray.

Figure 5 also shows that BLGE significantly outper-
forms the unbiased methods with comvergence being
nearly an order of magnitude faster and also reaching
a better minimal value.

6 Conclusion and outlook

We have shown that using a Bayesian approach in a
generalized PSK setting can significantly improve the
resulting quality of the estimation, which ultimately
improves the overall run time and results of the VOQA.
In particular, when dealing with barren plateaus, this
estimation tool may prove crucial for performance in
practical implementations. Our study also makes a
strong argument that central difference methods with
a reasonably chosen step size is a very good first strat-
egy that iz only outperformed by the unbiased PSR
for large measurement budgets.

Our work opens up several new research quests.

e In future work, we aim to formally extend our
framework to non-periodic unitaries.

¢ Understanding the sccond moment matrix and
its convergence into the barren platean regime
might allow us to develop strategies to mitigate
its effocts allowing V(QAs to be effective for more
ansatz classes. Such improved priors might come
from studies of approximate unitary 2-designs.

o Improved optimization methods, such as natu-
ral gradient estimation |9, 29, 30| or higher or-
der optimization procedures requiring second or-
der derivatives, may also benefit from introducing
prior assumptions into their estimation routines.

e In particular, for practical applications where
quantum computation is expensive and classi-
cal computation is cheap, using an adaptive es-
timator may be advantageous, ie. updating the
Fourier priors along the optimization path may
alzo help to improve the gradient quality further.
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8 Acronyms and list of symbols

BLGE Bayesian lincar gradient estimator _ . 5
NISQ noisy and intermediate scale quantum 1
PQC  parametrized quantum cirenit . _ . _ . 1
PSR parameter shift rule . . . . . . . . _ . 2
QAOA quantum approximate optimization
algorithm . . . . . .. ... .. 9

SLGE =ingle Bayesian linear gradient estimator 6
ULGE unbiased linear gradient estimator . . 5
VQA  variational quantum algorithm . . _ . 1

N: mumber of qubits/vertices ((QAOA)

L: number of layers of the VQA

A: eigenvalues of the gate generator

p: eigenvalue differences of the gate generator

g, by, cp: Fourier cocfficients

g Second moment matrix of the Fourier coef-
ficient aj
o: single shot shot noise
wy: weights of linear estimator
#: VQA parameters
: measurement position for given # € 8
n: number of (positive) measurement positions
my: number of measurement rounds for
m: total number m = 3" my
v: largest difference between two eigenvalues of
the unitary generator, ie maxp{pug}
d: derivative of the cost function w.rt. one pa-
rametor §
A: second derivative of the cost function w.r.t.
one parameter §
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Appendices

A Solving the Bayesian allocation problem

Here we derive the theoretic underpinningg of the Bayesian allocation method. Namely, we derive the effective
dual that is used for the numerical implementation and proof theorem 1, which concerns the sparsity of the
solution.

A1l Finding the dual problem

In this section, we derive the dual formulation, we use to find the optimal measurement positions as explained
in the main text. The minimization (Eq. (24)) we are interested in can be rewritten into a constraint problem

i e 2 a
R e (e} s 0T W) = . E{ﬂi}ﬂ (E wy sin(Tyug) — Fk) + J; llwll? (56)
= min i{az} zi + U—ﬂiﬂ (57)
TERns weRn= zER™ JER £ K85k T
n
> wysin(rope) — pr =z, |wlly <1, (58)
=1

where we introduced the variables z and [. If we keep ® fixed (it can be assumed to describe a fine grid covering
a complete period of the function), thiz describes a convex optimization problem. We proceed to derive the
dual g.

n, ] T, Tix
9@z, w k1) =Y (a)ezp + =1+ % (ZﬂHEﬁanﬂP&} — pe — zn:) —2r(l—[lwlly)  (59)
k=1 m k=1 i=1
g 2 ) Kk
Ty Aag)eze — 25 — zp = e (60)
g m
Bl ‘EHE dr=l= T—ﬂ (61)
Ty Ty
E = Irsgnfuy) + ?Enksm Typg) =T = Enksm{rﬁmj (62)

where the last step follows as g iz affine w.r.t. wy for the positive and negative axis. Equation (62) also implies
that either wy =0 or 7 = |E:;1 kg sin(Tyug )|, also known as complementary slackness.

M. o '
] _ o m
El[a:m,'r]l——kzﬂm—gf —ﬂgﬂk.ﬂk (63)
“'r-l
st. Vo: 12> Z kk sin( )| (64)

k=1
Since ® wants to minimize this expression, T needs to be maximized. As all measurement positions are allowed
and we impose no bound on n. mca.n.ing T can be distributed arbitrarily dense, it follows
|Z Ky sin(Tqpg)| — ||Z w sin(pe( ) lloo » (65)
k=1
where the infinity norm refers the absu]utc value maximum over the domain of the function, and we get
= |55, ke sin(ue( - )|, which leads to

Ty

2
Z{}

1e[n=]

glr) = = ||Z resin(u( - )12, —EZH;-.H;-

(66)
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We conclude that

(etot)a o = Jmax g(s), (67)

since the minimization of the primal is convex for fixed . Solving this requires maximizing a concave problem.

g has the same solution as minimizing

a2

Ty,
Z 2) "ia- + ||Z ki sin(ue( - ))|[3 —EZH&:PJ.- (68)
k=1 ﬂ'

k=1

with § = — g and £* — —B—T:H* which we find has better numerical stability, especially for large measurement
budgets m. Via complementary slackness, the final measurement positions #* are just the global maxima
positions of pg(x) = |E::1 #}, sin(zpg)|, which can be obtained by solving a trigonometric polynomial, which
has a most v maxima. To obtain w*, we solve the original problem for the now fixed measurement positions

T*.

A.2 Proof of theorem 1

Here we proof that the optimization problem has a sparse solution. Explicitly that ny = ny, positions suffices.
For this we assume that we have set of measurement positions & £ [0, 7)™ For the problem we assume to have

a2
(Ghon)s0 = (55w — )T Ca (5™ — p) + —|[w]}, (69)

and an optimal solution w* As such we can define {ei,g};,ﬂ = (§%w* — u)TCL(5w* — p) and y* = 5w
Thizs means the problem is equivalent as

2 2 = JZ . ?

(hdeo = ()20 + 2 ( min, ) . (70)

The latter term constrains an £1-norm optimization with n, linear constraints. It is well known that there exists

an optimal sparse solution where the number of non-vanishing entries is at most the number of constraints, which

are known as basic feasible solutions in LP literature. As this holds regardless of the actual value y*, there also

exists a sparse solution for the entire problem which proofs the theorem. O
The same alzo holds for the unbiased case, where y* = p a strict requirement.

B Single Bayesian linear gradient estimator (SLGE)

In the following section we derive various properties of our single measurement estimation strategy. In ap-
pendix B 1, we derive the optimal coefficient w for our estimator, which we use to rewrite the expected total
error of our estimator as a function of only the measurement position . Next in appendix B 3, we proof the
scaling in the limits of many measurements from Eq. (41). In appendix B4, we prove theorem 3, which is valid
for very foew measurements. Finally, in appendix B.5 we prove theorem 4 and corollary 1 from our main text,
which are about the relative performance of SLGE and ULGE.

B.1 Preliminaries

Recall that we can express the expected total error as

Thy 2
(el )s0(w, ) = (af)o(wsin(uez) — pe)® + m'wﬂ (1)
k=1
G_‘z
= [(wsin(uz) —p)°] + —w?, (72)

where we introduced the shorthand for the ensemble average

Thp

[o(m)] == _{a})ogus) , (73)

k

for an arbitrary function g.
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Given , the optimal coefficient w can be determined to be

Plugging w* into Eq. (72} yields

2y o o (sl [plin’o)] - psin@o)P + W5 -
l:: tot aﬂ{ } I.'u' ] [sinﬂﬂpzj]+%z [SIDE{JH-I}] +0_ |: :'

B.2 MNumerical optimization

We are now going to outline how to numerically choose the optimal value of = For the numerical minimization
we use Eq. (75). Here we assume that estimates of (a})s and o are known.
The derivative of Eq. (753) wrt = is

2 sin(ux)] [u? cos(ux)]  [sin® (ux)] + & ) — [psin(ur)]2[2p cos(uz) sin(pz)]
Oz (€for) s 0(x) = — ( ([sin®(u :|]1£}2 (76)
9 sin(uz)]

2
- — —5 x | [ cos(uz)] ([sinﬂ{'p.z}] + ”_) — [psin(pz)] Ju cos(ux) sin{p::]l]) )
{[sinﬂ{pﬂ::l] + %}2 h( m .

:;{:)

The relovant minima candidates are therefore the roots of the second factor - labeled h(x) - sinee roots of the
first factor always yield a maximum of (€2, ). g(x) (as the first factor appears in Eq. (75) with a negative sign).
We can rewrite h(z) explicitly as

a? 1
) = I cos(u)] fsin?uo)] + ) — lasinus)] s sin(2uo)] (r7)
i 1 ) . o?
=Y la)ela;)epy cos(prz) sin® (uiz) — 3 > (ai)elai)eprm sin(uez) sin(2pz) + — > {ap)ep cos(uer) ,
El k.l k
which can be solved efficiently using standard solvers as it only requires finding the roots of a trigonometric
polynomial of degree 3. From these candidate solutions, we can find the numerical exact optimal solution.

B.3 Limit for many measurements

In this section we determine the scaling of the expected total error in the limit of many measurements, ie. high
measurement accuracy, as stated in table 1.

For m — oo, the optimal measurement position becomes = — (1, since noiseless measurements lead to a finite
difference approximation which becomes exact when the measurement position approaches 0. This observation
justifies the use of a Taylor series expansion

21 fsin ()] — [ sin(ua)]? = $2° + O(=Y), (78)

where £ = _[p_“]_[p_ﬂﬁ[p_‘]_lp_‘l: which is non-negative. Plugging this expression into Eq. (75) yields

§<° + 2% + 0=

2 —
{Et.ut.}s,ﬂ(I = [Pﬂl 2, ﬂ +G|:I"} (79)
{Iﬁ 2
_ [:211“2 = O(m!,z% (80)
The expression is minimized by
Y6 f 2 1/6
- I(2)"
1/3 o2 2/3
(eron)s.a(x*) — 2[352]]1 ﬂ( ) — (82)
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For m — oo, taking the limit of Eq. (74), the single measurement scheme will converge to a standard central
differences method with coefficient w* ~ 11—, Therefore, the expected statistical error (€], )s 8 = wZ% becomes

G'ﬁ
— 2des (53)

meaning that for m — oo the statistical error makes up 2/3 of the total error.

{fgr.m.}a.ﬂ s p—

B.4 Limit for few measurements — proof of theorem 3

We are now going to turn our attention toward the regime of fow measurements. In this scenario statements
about the scaling of the total expected error do not make much sense since the SLGE strategy tends to return
very small gradient estimates in the case of low measurement accuracy. This means that the total expected error
becomes the expected magnitude of the partial derivative ((el,;)s 8 = (6%)g), where it plateaus, as can be seen in
figure 4. Instead, the relative correlation describes a useful quantity in this regime. One can straightforwardly

derive these simple expressions.

(8%)e = [17], (84)
(86) 56 = wlusin(uz)], (85)
-~ 0'2
(0%)s.0 = w’[sin®(u)] + —w®. (86)

Also, for the second derivative of the cost function F', which we denote as A, we get
(A%)e = ((OZF (0)))e = [] (87)

which uses that (a;)s = (bi)e resulting from the shift invariance assumption of Dg.
To proof theorem 3, proceed to derive a lower bound to the relative correlation (1) as defined in Eq. (29).
For m < ¢?/[sin?(uz)], we can approximate 02 as

- e T2 o
ﬂpsﬂ’:i’ﬁ‘: L, om?). (89)
using the fllowing lamma 1 for the lnst step.
0% >m [f[i!j] +0(m?) (90)
_ m% +Om?), (1)
Here we also insertad the definitions Eq. (84) and Eq. (87) O

Lemma 1. For any ensemble average over p = 0 with [u] # 0, the following statement holds

[Pﬂ]:i
r;tg.a:[psm pr)] = R (923
Proof. In order to prove that the maximum satisfies this inequality, it suffices to show that the inequality is
satisfied at some point z*. We choose to show this for =* = 34/ Ei} To this end, we demonstrate that for
z € [0,

| [#7]

holds, which gives the desired result for © = =*. As the inequality is satisfied for £ = 0, we will show the
general case by verifying that the left-hand side has a larger derivative than the right-hand side everywhere in
this interval which implies the original claim.

[psin(ue)] > | L2L i ( ] ) (93)
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Therefore, it remains to show that

[ cos(ur)] ]
[[p,ﬂ]] = ms( WI) =0. (94)

2 ] 2 ]
By defining pg = f:{ig.;:-“i = —i;;]—&{ﬂ Jolk this simplifies to
> prcos(uun) > con /3 pie) 0 (95)
1

T . . — poa_ ) .
for = € (ﬂ,—ﬂm]. Further substituting =’ == z,/3 ppp; as well as p : —&—\m yields

D> pocos(uz’) > cos(z’) > 0 (96)

for ' € [0, 3] with Y pep = 1. This inequality needs to hold for all p > 0, p' > 0 with 3, pr = 1. In the
interest of readability, we are going to drop the primes again from here on out.
To prove this final inequality, we reformulate the left-hand side as a minimization problem

I2
F(p) = pycos(per) + A (Z Pubii — 1) (97)
1 1
with Lagrange multiplier %J& for the constraint 3, pyui = 1. This gives the partial derivatives
ar
L - PE sin(pex) + Az pypty (98)
i
8*F
Iz —pux” cos(pr) + Axpy (99)
Hy
meaning that an extremal point satisfies
A= T pisin(pr) <1. (100)
=
as well as either
pe =0, or (101}
sine(pyr) = A. (102}
Since %i;- = pir2(A—1) is negative, ju; = 0 does not describe a local minimum. Therefore, gy > 0 holds.

Since S, psp =1 and 57, py = 1, there exists a pg < 1, meaning A = sinc(pat) = ginc(§) = %, which implies
that all p; have the same value since sine is injective on the considered interval. With the constraint, this yields
Hi= 1.

The second derivative at this point is

F
5T = gy (A — cos(z)) = pe(zsin(z) — = cos(z)) > 0 (103)
e |p—1
for 0 < = < 3, which - as the Hessian is diagonal - means that g = 1 is indeed the global minimum of F(g) in
the considered interval.
Since this minimal p satisfies Eq. (96), this concludes the proof of the lemma. O

B.5 Proof of theorem 4 and corollary 1

We derive a bound on the optimal ﬁngg— This expression can be written as
B

0 __ [psinuo)? 2] + 5 104
e (s =y R 17 .

() s

sin? (g x) + ol
IEII mlﬁ’l
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By defining a probability vector pg = {ai}gl%;r and o = E";ﬁ:]- we got

@ (Sente) d+a

106)
02 2 {
UB Y Pk (%) + 8
2
(Ekmﬂyﬂl) (1+a)
= (107)
>k Pk (wn(w*)) +a
by substituting pg — prr and © — v, we have the requirement that a > 0 and pj € [0,1]. and
@ (Teme) 1 a w0
Rw Y i (Nn{r@t*)) ta
(109)

or written as a problem we want to find the distribution for the worst relative correlation ratio using the best

SLGE strategy.
2 * 2
(_!‘—is ) = min ( max (—ﬂﬂs )) (1109
ﬂUB az0, pe[0, 1] o, g, p) ﬂun

pe[0 ™, 3 pi=1

ﬂﬂ
> min | max min — . (111)

=0 | xim) pe(0 1] ﬂUB

pe(01]™, ) pi=1
where we changed to order of optimization to find a lower bound. To solve the innermost bracket, we observe
2
that by defining 7(u) = ﬂfﬂl as a random variable that Ekpkﬂ_ﬁ‘—*l = (7}p and Ekp;,(ﬂ[g‘—"l) ={r2)p
are the first and second moment of T with {-}p the expectation value of the distribution spanned by p. This
means for the expression

0 (Ni+e)
Ogp  (Mp+a (112)

(113)

We also note that if we restrict = € [0, 7/2], 7 € [sin(z), |, meaning T is a bounded variable. We note that for
a given expectation value {r}p, the expression is minimized for a distribution with the largest possible second
moment. This is described by a distribution only on the boundary of the parameter space.

(T)p = gsin(z) + (1 - q)z (114)
(r?)p = gsin®(z) + (1 - g)z* (115)
for g £ [0,1].
2 . _ a
Qg /) — e>0xa)edm/2qef0,1] gsin®(x) + (1 —g)z? +a
if this expression is minimized for g, one obtains
g o % 41+ o Traln(T)—o Doy < i ..
(—gis ) (@,7) 2 {.{ oy 2o = snnz ) (117)
im ) else

where the latter is always at least 1 for £ = 7/2. Meaning that for o > %—ZT (15 is always at least as large as
Qugr. For o < “—12, we find a lower bound by choosing x(a) = 2a + 1, where = € [1, §|. This returns

%Y i (20 + D)sin(2a+1)—a
(ﬂ%a ) Z e A ) e T ein@ar D) = o (118)
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which means Qg > 0.990;5 showing theorem 4 O
To proof cecorollary 1 we use Eq. (117), but keep a fixed £ = «/2. This corresponds to a simple central
differences strategy at = = 5 in the original case. Here we get

(£)24(1+a} m2ma L9 T 5o (119)

Qg (m/2+1)2 = “(x/2+1)2 7

regardless of the underlying distribution (Dg, o). O

C Barren plateau and 2-design calculations
To find estimates of the size of the Fourier coefficients, we need to estimate (cy;c};)e given by

{esgcta)e = f (O|UT VIOV PU|0)(O|UTRVIOV PU|T)dVAD . (120)

Here U7 describes the ensemble of unitaries that are applied in the VQA before the layer of interest, V' the
unitaries after the layers, but before the measurement. We assume that both 7 and V' describe 2-designs. This
is useful because it allows us to use the identity for Haar random unitaries

_ 1Tr(p) (dTr(AB) Tr(A)Tr(B) Tr(A)Te(B) Tr(AB)
foAUpUTBUdU— E ( 71 21 )+p( 21 d(dz—l})’ (121)
where d iz the Hilbert space dimension. We set
py = PUIE)EIUTP, (122)
and use the identity Eq. (121) to obtain
(eucide ~ [ THVIOVp VIOV pralavav (123)
- = 1_ - f Te []1 T‘;I[Pf‘] (d Tr[0?] — Tx[O]?) prs + paa (Tr[0]? — Tr[0?)/d) ph] dU  (124)
d Tr[0?] — Tr[O)? Tr[0]? — Tx[0?)/d
= l[':fl:dL — 1}[ ] fTr[Pk‘l] Tr[le] dU + [ ] FE 1[0 ]f fTr[Ph‘.le] dU (125)

For the relevant terms, ie. the ones with i # j, it follows that Tr[pgp| = 0. For the first term to not vanish,
we require i = k and j =1. With Tt[|¥){¥|| =1 and Tr[FF] =0,

fTr[p“] Te[p,;] dU = f{w|UTP,U|~p}{w|UTE,U|w}dU (126)
_ é(df;[f{;] _ Tr[{;;]_TrI[le) N (Tr[{:;]_Trllel _ ;ﬁ?ﬂ) (127)
_ % (129)
This leads to
(el — T (L] THOL) (130)
~ VTP 0 Tr[do]Z}M'f—dﬁ_lj (131)
- L TPIRB 1402/ d) - To/a2) (132)
= %“Tr[P, /d) Tx[P,/d]od, (133)
(134)
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with £; = Ta-ﬁﬁ;"jf* o3 = Tr[0?/d] — Tr[O/d]* being the expected variance with respect to the maximally
mixed state and Tr[P] is the multiplicity of the eigenvalue A;. The final estimate is therefore

(alo= Y. ey (135)
121 pe=A—A;
ﬂ,‘z
—&-2 ) Te[P/d Te[Py/d] (136)

i fipe=Ai—A;
Similarly, one can obtain a shot noise estimate when measuring in the Hamiltonian eigenbasis by the one
design property

2
o = f{mu’fo“m@}du— (f{mmomw}du) (137)
= Tr[0?/d] — Tx[O/d)? = o3, . (138)
We note that when @ is not directly measured in its eigenbasis, the real shot noise variance might be significantly
large, as typically multiple different measurement setting are required.
C.1 Twirls of linear maps on operators with unitary 2-design

Given a linear map M on the vector space of operators and a probability distribution on the unitary group one
can define the twirl of M as T where

T(X) =EUM{UXU)U]. (130)

The distribution of unitaries is called a unitary 2-design if the expectation value above yields the same as the
similar one for the Haar measure (see, e.g. the tutorial [31] for details). In this case, T satisfies the invariance
condition T(X) = UIT(UXUT)U for all operators X and the expectation value can be evaluated as in the
following lemma,

Lemma 2 (Twirl of maps on operators [32, Appendix|). Let T : L(C%) — L(C?) be a linear map that safisfies
the invariance T(X) = MT(UXUN) U for all X € L(C%) and unitaries U € U(d). Then

Te[T(1)] — Te[T)/d Te[T| — Te[T(1))/d

TX)= o] Tr[X]1 + 1 X. (140)
In particular,
Tr dTr(AB Te(A) T (B Tr(A) Tr(B Tr(AB
fUiAUPUTBUdU= 1 d(P}( d‘z{_l ) _ {d;_ 1': }) 4 ( l:d'.!}_]_{ ) _ dl:dg_;'}) ) (141)

Proof. We denote the identity map by id and the completely dephasing channel by B(X) = Tr[X] 1/d. Due to
a standard argument [32, Appendix| relying on Schur’s lemma one can write

T=aR+bid (142)

for some coefficients a, b € C. Taking the trace of this equation and of T(1) = aR(1) + bid(1) results in
Tr[T] = a + bd?, (143)
Te[T(1)] = ad + bd. (144)

Solving for @ and b and inserting these coefficients in the ansatz Eq. (142) yields the statement Eq. (140).
Next, we take T to be the RHS of Eq. Eq. (141). Then T satisfies the lomma's invariance condition and one
can show that Tr[T| = Tr[A] Tr[B] and Tr[T(1)] = Tr[AB], which results in Eq. (141).
See also [31, Theorem 51] for more explicit calculations relying on the second moment operator of a unitary
2-design. |

D Analytical estimates for the Fourier coefficients of the QAOA Hamiltonian

As is mentioned in the main text, to obtain quantitative results for correlation matrix of the QAOA | we are
considering the expectation value over all graph instances

(-)sp = (-)epc- (145)
the ensemble is randomly chosen graphs with N vertices and M edges.
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D1 Casefor L — oo
For I. — oo using the derived quantity for the 2-design Eq. (23), we need to calculate the expression

2
o,
(aRlo=(— D  TlPy/dTe[P/d])c (146)
=24 —A;
over all graph instances. Since O = H, = %E(,JJE_E(Z,ZJ — 1), It follows with Tr(Z;2;) = 0 that Tr(O/d) =
—M/2. Equally, by only counting the terms which are proportional to the identity, we get Tr(0?/d) = MTE - % ,
meaning o5 = %J— This quantity is independent of the particular graph taken from the distribution.
We note that the VQA is invariant under the parity symmetry in the X-basis
I =0:® - @0¢ (147)

the state only lives in the even number of ones sector, which also halves the Hilbert space dimension d = 2V-1.

To find {uf_}gh, we first note that Hj is independent of the particular graph instance chosen. The eigenvalues
of Hy describe spin sectors with A; = —% +i and Tr(PE) = [T} Introducing the symmetry reduced subspace
means that

N .
weh - {{) Lo (148)
which gives the final expression
M N \(N
lapel, = —— > _ )( ) (149)
°o4.8 le{ﬂ,‘E,...N—k} +k/\J
M (2N)! (150)

T4 BNI (N RN+ R

For H,., determining the expression requires to take a distribution over the graph instances. Qualitatively, it
would already be sufficient to calculate (Tr(FPy))s individually, but for the sake of completeness we will derive
the full correlation between the two terms.

The relevant expression is

M
Gk = D_(Te(P) Te(P. e/ &, (151)
i=0
which can be calculated by solving a combinatorial problem. For this, we reformulate the question as asking
what the likelihood is that for two different partitions the fist cuts k edges and the second k + j edges. This
is because by design Tr(Pg)/d, describes the likelihood of a random partition having k edges cut. To find this
quantity, we classify the vertices according to the labels they receive in the to different bipartitions. This creates
the four sectors {(0,0),(0,1),(1,0),(1,1)}. The number of vertices in each sector is & = (so0, 501, 510, 511) Wwith
the probability for a particular & being

n 1
g) = — 152
p(8) (Suuf-!m,Sw,Su) qn’ (152)

as the process of choosing vertex labels is described by a multinomial distribution where each sector has prob-
ability p=1/4

Next, we sample the edges: From |[| = {’2‘) possible edges, By = sppsp + sp1s11 edges are cut only by the
first partition and Es = spgspy + 10511 are cut only by the second. We do not consider the cases where an edge
is cut by neither or both partitions as this will not affect the overall result. As the particular edges are chosen
randomly from I, the process is described by a multi hy pergeometric distribution

{Eﬂl}}{ﬂ-’:[ﬂj}{|F|—E1{IJ—E:[=}}

G= Y pla)— t+k - M—2i—k ‘ (153)
8 [n] 4 12 M) {M}
This yields
M
((akdede. = grv—gtr (154)

as the final result for H,.
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D.2 Case for one layer L =1

In the following section, we derive a single layer (L = 1) estimate by relating the underlying problem to a
graph problem. We note that the rigorous analysis performed here is excessive because, for practical purposes
simply sampling the derived graph problem for the particular graph instance will already give a reliable esti-
mate. However, for completeness, we derive exact analytic results for the (QAOA. We begin by defining three

observables

1
Oz =3 > 7,2, (155)
HeE
1
Oy =5 )_ YiY (156)
HeE
1
O =3 Y YiZ; + Z.Y;. (157)
HeE

Note that the derivative is not affected by replacing H. — O;; as this only describes a constant offset. The
cost function for the first layer can be subdivided into three parts according to

F(7,8) = {1+ cos(28))Cas () + (1 — cos(28))Cya () + 5 sin(28)Cy=() (158)
where
Cply) =Y (|0, )e1dimAs) (159)
1

M M-k
3 ( 3 wdo.,rn,ﬁ}e-h) (160)

=0\ =0

M
=Y Gyl (161)
k=0

with p € {2z, yy,yz} and |¥;) = Pf|+). We can quickly check that

Caz(y) = (T4|0; [T )e A=A (162)
1]

= (04]0:: %) = Y (+HIPO::Pil+) = (+10z:|+) =0, (163)

which means the expression simplifies to

F(3,6) = 5(1~ cos(26))Cyy () + 5 n(28)Coa ). (164)

The evolution of Hy, only has one non-vanishing frequency (a3)g. By integrating over 3 and v w.r.t. the correct
frequency we get

(Gl +(CyeP)y _ 3= IG5 PNy + UIG3I)

(a3)al, = (165)
3el, 3 2 g
and
0l ko2 ko2
(el =3 3{|Cyyl }1; (ICs= "} ? (166)
k=0
where
M M
(ICEP)y =3 (W0l Tesr) x S (U5 k|0p]Ty) . (167)
i=0 =0
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In the remainder of this section, we show how Eq. (167) can be interpreted as a graph problem and how to
calculate the expression for general graphs with N vertices and M edges. Similar to appendix D1 we interpret
a computational basis state a particular bi-partition of vertices with every qubit describing one vertex. We also
have to consider two partitions with the four cases labeled 8 = (spg, s01, 510, 511 ) with the same probability as
in Eq. (152). O, describes a certain graph operation which will be performed on both partitions. Only if the
number of edges cut changes by k in both partitions, will this partition pair contribute to {|C§|2}1.

For the action of O, with p € {yy,yz}, weuse Y = —iXZ torewrite YY = - XX x ZZ and ZY + Y Z =
—i(1X+1X)x £7 Effectively, X corresponds to moving a vertex to the other side of the respective bi-partition
and £ Z accumulates a sign if the edge vertices are on opposing sides. The overall sign is therefore determined
by the rule

+ Both edges cut their partition or both do not.

. 168
—  One edges cuts its partition the other does not. (168)

sign(Ey, Fa) = {

Each operator O, sums over all edges which gives M? different edge pairs to consider. There are weame = M
cases where the two edges considered are the same edge in the graph. When this is not the case, we will separate
into additional cases depending on whether the two edges share a vertex or not. This gives a total of three
cases:

1. The edges are the same edge: weame = M
2. The edges have a common vertex: weon = (M2 —M)2Y=2 where 2(N —2) is the number of possible edges

-1
that connect to the first edge. )
3. The edges have no overlapping vertex: wgp = M? — weame — Weon-
We then proceed to draw the corresponding vertices depending on each of the three cases, which means drawing
2,3 or 4 vertices, respectively. The probability of choosing an individual vertex from each set is

S';_f

galvy = (1, 7)) = Tal for the first vertex, and (169)
.. 5 -
gs(vr = (1, 7)) = ”;ﬁl , where 2= B\ w1} - (170)

sy is the sector distribution of vertices without the vertices in the set V. Additionally, if p = yz, we also
need to decide on which vertex the ¥V operation acts. For this we place each vertex into the edge sets E =
(EY ,E% EY EZ) € S, ¢ which encapsulates which operation operation is performed on them according to the
correct (p, £). If a vertex is shared, it enters in this edge set twice. We use the smaller indices for the first edge
and the shared edges also start from vy. 5, ; describes all legal operations, for instance

Syysame = {({v1,v2},0, {v1, v2},0)} (171)

S:l.nlz,l'-‘m = {{{t’l}a {t’ﬂ]’a {t’l}a {”3}}: {‘[U‘E}?{Ul}: {t’l]’a {1’3}}?{{”1}? {”2}7{1’3}?{1’1}:'7 ({1’2}: {'1-'1}:. {”3}7 {Ul}(:!l}?‘}j

Now, we are able to proceed to draw the remaining edges of the graph. Notably, they only contribute to
{|C§|2}T if they are connected to the drawn vertices with an X operation. To summarize, the steps are:
1. Select p € {yy, yz}.
Select a bipartitions & with the probability p(8) as defined in Eq. (152).
Select the relationship of the edges to each other £ € (same, con, sep).
Select 2 — 4 vertices from & according to the particular case £.
Select a vertex distribution according to the correct edge set E = (E} ,EY EY Ef) € Sp¢.
Draw the remaining edges of the graph from a hyper-geometric distribution to calculate the effect on the
vertices cut.
The final equation is given as

(ICx1%)e = 3 pl8)wegs(v1) - - - galvn, Jsign(E1, Ea)p(k|s, E), (173)
ac{0,... . N} E 8,=N
£c{same,con sep}
ve{0,1}3"
EcS, ¢

RN S

where p(k|s, E) is the probability of the changes on both bipartitions being k.
There are guaranteed changes which we label with F'(E), which arise from the effect of the already drawn
edges. This is only relevant if the edges share vertices on which one X operation operates, meaning £ = con
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and if p = yz also £ = same. The sign is determined by whether or not the other edge is cut in the bi-partition.
This can be calculated to be

FUE) = 8y iy 1 (~1)2wers ™ (174)
Fa(E) = 8ip, iy (1) 2vem ™, (175)

where wy refors to the labeling for the i-th partition. The edges themselves are drawn from a hyper-geometric
distribution. From the full edge set T’ with |['| = {:g} after the one/two edges are chosen 'y edges remain, with
Ty = {:{;r) — 1 for £ = same and |[y| = {j;} — 2 for the other cases. Similarly, the number of edges to select are
My=M—1and My = M—2 Any of these edges fits into one of 9 categories, either not affecting, increasing or
decreasing the value of the cut after performing the operation for each of the partitions. For this we define K, 5
with (o, ) € {—1,0,1}%. The number of edges drawn from each category is labeled X, 5. We can determine
K with the following rules

Ky omp = 3 Sp@m,1 & = 8\ (EYUEYUEZ) (176)
1={0,1} ve EY\EY
Ko1-2m = 3 EHp— & = 8\ (yuEy UEF) (177)
1e{0,1}veE  \EY
Kismi—a= 3, Swemn+t 2.  duswmb 8 = 8\ (gY UEY UEFUEZ) (178)
veEY NEY veEY weEY
Kop=ITel— Y Kag. (179)
a,fs{-1,01}*
(2. A)£(0,0)

Here Ey 1 Es refors to vertices that are shared by the two edges. The corresponding probability distribution is

1 Ky
g(k|s,E) = g(k|K (s, E), F(E)) = ™ x%rq { megm . (Xa::) (180)
' Eij Kiy=M, | B

2 s (Xs18—X 1m0+ Fi=k
P Ko —X, )+Fa=k

With this, we have all the ingredients to calculate {{ai}g}glb and {{uf_}g}glc, the result of which is plotted in
figure 3.
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The optimal depth of variational quantum algorithms is
QCMA-hard to approximate

Lennart Bittel® Sevag Gharibian' Martin Kliesch?

Abstract

Variational Quantum Algorithms (VQAs), such as the Quantum Approximate Opti-
mization Algorithm (QAOA) of |Farhi, Goldstone, Gutmann, 2014|, have seen intense study
towards near-term applications on quantum hardware A crucial parameter for VQQAs is
the depth of the variational “ansatz" used — the smaller the depth, the more amenable the
ansatz is to near-term quantum hardware in that it gives the circuit a chance to be fully ex-
ecuted before the system decoheres. In this work, we show that approximating the optimal
depth for a given VQQA ansatz is intractable. Formally, we show that for any constant € = 0,
it is (QCMA-hard to approximate the optimal depth of a VA ansatz within multiplicative
factor N'~¢ for N denoting the encoding size of the VQA instance. (Here, Quantum Clas-
sical Merlin- Arthur ((QCMA) is a quantum generalization of NP.) We then show that this
hardness persists in the even “simpler” QAOA-type settings. To our knowledge, this yields
the first natural QCMA-hard-to-approximate problems.

1 Introduction

In the current era of Noisy Intermediate Scale Quantum (NISQ)) devices, quantum hardware is
(as the name suggests) limited in size and ability. Thus, NISQ-era quantum algorithm design
has largely focused on hybrid classical-quantum setups, which ask: What types of computational
problems can a classical supercomputer, paired with a lour depth quantum computer, solve? This
approach, typically called Variational Quantum Algorithms (VQA), has been studied intensively
in recent years (see, e.g. |Cer+21; Bha+22] for reviews), with Farhi, Goldstone and Gutmann's
(Quantum A pproximate Optimization Algorithm ((QAOA) being a prominent example [FGG14].

More formally, V(JAs roughly work as follows. One first chooses a variational ansatz (i.e.
parameterization) over a family of quantum circuits. Then, one iterates the following two steps
until a “suitably good” parameter setting is found:

1. Use a classical computer to optimize the ansatz parameters variationally!.

2. Run the resulting parameterized quantum algorithm on a NIS(Q) device to evaluate the
“gquality” of the chosen parameters (relative to the computational problem of interest).

The essential advantage of this setup over more traditional quantum algorithm design tech-
niques (such as full Trotterization of a desired Hamiltonian evolution) is that one can attempt

*Institute for Theoretical Physics, Heinrich Heine University Diisseldorf, Germany. Email: lennart bittel@uni-
duesseldorf de.

"Department of Computer Science, and Institute for Photonic Quantum Systems, Paderborn University, Ger-
many. Email: sevag gharibian@uphb.de.

fInstitute for Theoretical Physics, Heinrich Heine University Diisseldorf, and Institute for Quantum-Inspired
and Quantum Optimization, Hamburg University of Technology, Germany. Email: martin kliesch@tuhh.de.

'In practice, this typically means heuristic optimization.



to minimize the depth of the ansatz used. (A formal definition of “depth” is given in Problem 1;
briefly, it is the number of Hamiltonian evolutions the ansatz utilizes.) This possibility gives
VQAs a potentially crucial advantage on near-term quantum hardware (i.e. noisy hardware with-
out quantum error correction), because a NIS(Q) device can, in principle, execute a low-depth
ansatz before the system decoheres, i.e. before environmental noise destroys the “quantumness”
of the computation. From an analytic perspective, low-depth ansatzes also have an important
secondary benefit — VQAs of superlogarithmic depth are exceedingly difficult to analyze via
worst-case complexity. Sufficiently low-depth setups, however, sometimes can be rigorously an-
alyzed, with the groundbreaking (QAOA work of [FGG14] for MAX-CUT being a well-known
example. Thus, estimating the optimal depth for a variational quantum algorithm (VQA) ap-
pears central to its use in near-term applications.

1.1 Owur results

In this work, we show that it is intractable to approximate the optimal depth for a given VQA
ansatz, even within large multiplicative factors. Moreover, this hardness also holds for the
restricted “simpler” case of the (JQAOA. To make our claim rigorous, we first define the VOQA
optimization problem we study. (Intuition to follow.)

Problem 1 (VQA minimization (MIN-VQA(kE,1))). For an n-qubit system:
o Input:

1. Set H = {H;} of Hamiltonians’, where H; acts non-trivially only on a subset® S; C [n]
of size |S;| =k.
2. An l-local observable M acting on a subset of [ qubits.
3. Imtegers 0 < m < m' representing circuit depth thresholds.
o Output:

1. YESifthere erists a list of at most m angles* (6,,...,8,,) € R™ and a list (Gy,...,G,)
of Hamiltonians from H (repetitions permitted) such that

[9) 1= G .G ... 0) )

satisfies (P|M|¢) < 1/3.

2. NO if for all lists of at most m' angles (fy,...,0,,) € R™ and all lists (G4, ..., Gp)
of Hamiltonians from H (repetitions permitted),

[th) = e®¥m!Crms ... e#1C10. .. 0) (2)
satisfies (Y| M|v) = 2/3.

For intuition, recall that a VA ansatz is a parameterization over a family of quantum circuits.
Above, the ansatz is parameterized by angles #;, and the family of quantum circuits is generated
by Hamiltonians H;. The aim is to pick a minimum-length sequence of Hamiltonian evolutions

2An n-qubit Hamiltonian H is a 2" x 2" Hermitian matrix. Any unitary operation [ on a quantum computer
can be generated via an appropriate choice of Hamiltonian H and evolution time t = 0, ie. U7 = e

3For Theorem 1, it will suffice to take k € O(1). In principle, however, containment in QCMA holds for any
k < n, s0 long as the H; are sparse in the standard Hamiltonian simulation sense [AT03]. By sparse, one means
that each row v of H; contains at most » non-zero entries, which can be computed in poly-time given r.

AThroughout Problem 1, for clarity we assume all angles are specified to poly(n) bits.



€?iCi, so that the generated state |/) has (say) low overlap with the target observable, M. For
clarity, throughout this work, by “depth” of a VQA ansatz, we are referring to the standard
VQA notion of the number of Hamiltonian evolutions m applied”. (In the setting of QAOA, the
“depth” is often referred to as the “level”, up to a factor of 2.)

We remark for Problem 1 that we do not restrict the order in which Hamiltonians H; are
applied, and any H; may be applied multiple times. Moreover, our results also hold if one defines
the YES case to maximize overlap with M (as opposed to minimize overlap).

Owur first result is the following,

Theorem 1. MIN-VQA(E,I) is QCMA-complete for k = 4,1 =2, and m < poly(n). Moreover,
for any € = 0, i@ is QCMA-hard to distinguish between the YES and NO cases of MIN-VQA
even if m'fm = N 1=¢ where N is the encoding size of the instance.

Here, Quantum-Classical Merlin-Arthur (QQCMA) is a quantum generalization of NP with a
classical proof and quantum verifier (formal definition in Definition 1). For clarity, the encoding
size of the instance is the number of bits required to write down a MIN-V(QQA instance, i.e. to
encode H = {H;}, M, m, m' (see Problem 1). Note the encoding size is typically dominated
by the encoding size of H, which may be assumed to scale as |H|, i.e. with the number® of
interaction terms H;, which can be asymptotically larger than the number of qubits, n. Thus,
simple gap amplification strategies such as taking many parallel copies of all interaction terms
do not suffice to achieve our hardness ratio of N1,

A direct consequence of Theorem 1 is that it is intractable (modulo the standard conjecture
that BQP # QCMA, which also implies P # QCMA) to compute the optimum circuit depth
within relative precision N1~¢ (proof given in Appendix A for completeness):

Corollary 2 (Depth minimization). In Problem 1, let mop: denote the minimum depth m such
that ()| M) < 1/3. Then, for any constant € > 0, computing estimate Mes; € [Mopt, N1 Mgpt]
is QCMA-hard.

On the other hand, even if a desired depth m = m' is specified in advance, it is also QCMA-
hard to find the minimizing angle and Hamiltonian sequences (#1,...,0y) and (G1,...,Gmn),
respectively, which follows directly from Theorem 1:

Corollary 3 (Parameter optimization). Consider Problem ! with input m = m'. Then the
problem of finding the angles (64, . ..,0y) that minimize the expectation value (|M |y} is QCMA-
hard.

We next turn to the special case of (JAOAs. As detailed shortly under “Previous work”, the
study of QAOA ansatzes was initiated by [FG(G14] in the context of quanfum approximation
algorithms for MAX CUT. In that work, a QQAOA is analogous to a VA, except there are only
two Hamiltonians H = {Hs, H.} given as input and M is one of those two observables (see
Problem 3 for a formal definition). For clarity, here we work with a more general definition of
QAOA than [FGG14], in which neither Hp nor H. need be diagonal in the standard basis. (In
this sense, our definition is closer to the more general (Quantum Alternating Operator Ansatz,

® Alternatively, one could consider the circuit depth of any simulation of the desired Hamiltonian sequence in
Problem 1. The downside of this is that it would be much more difficult to analyze — one would presumably first
need to convert each £%% to a circuit U; via a fixed choice of Hamiltonian simulation algorithm. One would
then need to characterize the depth of the concatenated cirenit U7, --- U7,

“Indeed, in the construction in the proof of Theorem 1, N € O{|H|).



also with acronym QAOA [Had-+19].) For our hardness results, it will suffice for Hy and H. to
be k-local Hamiltonians”. For QAOA, we show a matching hardness result:

Theorem 4. MIN-QAOA (k) is QCMA-complete for k = 4 and m < poly(n). Moreover, for any
€ = 0, it is QCMA-hard to distinguish between the YES and NO cases of MIN-QAOA even if
m'/m > N1=¢, where N is the number of strictly k-local terms comprising H, and H,.

Note that in contrast to MIN-VQA, which is parameterized by k (the Hamiltonians' locality)
and [ (the observable’s locality), MIN-QAOA is only parameterized by k. This is because in
QAOA, the “cost” Hamiltonian H, itself acts as the observable (in addition to helping drive
the computation), which will be one of the obstacles we will need to overcome. For context,
typically in applications of QAOA, H, encodes (for example [FGG14]) a MAX CUT instance.

To the best of our knowledge, Theorem 1 and Theorem 4 yield the first natural QCMA-hard
to approximate problems.

1.2 Previous work

Generally speaking, it is wellknown that VQA parameters are “hard to optimize”, both numer-
ically and from a theoretical perspective. We now discuss selected works from the (vast) VQA
literature, and clarify how these differ from our work.

1. Theoretical studies. As previously mentioned, in 2014, Farhi, Goldstone and Gutmann pro-
posed the Quantum Approximate Optimization Algorithm ((QAOA), a special case of VQA with
only two local Hamiltonians H = {Hp, H.} (acting on n qubits each). They showed that level-1
of the QAOA (what we call “depth 2" in Problem 1) achieves a 0.6924-factor approximation
for the NP-complete MAX CUT problem. Unfortunately, worst-case analysis of higher levels
has in general proven difficult, but Bravyi, Kliesch, Koenig and Tang [Bra+ 20| have shown an
interesting negative result — (QQAOA to any constant level/depth cannot outperform the classical
Goemans-Williams algorithm for MAX CUT [GW095]. Thus, superconstant depth is necessary if
QAOA is to have a hope of outperforming the best classical algorithms for MAX CUT. In terms
of complexity theoretic hardness, Farhi and Harrow [FH16] showed that even level-1 QAOA’'s
output distribution cannot be efficiently simulated by a classical computer.

Most relevant to this paper, however, is the work of Bittel and Kliesch [BEK21], which roughly
shows that finding the optimal set of rotation angles (the #; in Problem 1 and Problem 3) is
NP-hard. Let us clearly state how the present work differs from [BK21]:

1. [BK21] fixes both the depth of the VQA and the precise sequence of Hamiltonians H; to
be applied as part of the input. It then asks: What is the complexity of computing the
optimal rotation angles #; so as to minimize overlap with a given observable?

In contrast, our aim here is to study the complexity of optimizing the depth itself. Thus,
Problem 1 does not fix the depth m, nor the order/multiplicity of application of any of
the Hamiltonian terms.

2. |BK21] shows that optimizing the rotation angles in QQAOA is NP-hard, even if one is
allowed to work in time polynomial in the dimension of the system. (Formally, this is
obtained by reducing a MAX CUT instance of encoding size N to QAOA acting on log(N)

qubits.)

TA k-local n-qubit Hamiltonian H is a quantum analogue of a MAX-k-SAT instance, and can be written
H =%, H;, with each “quantum clause” H; acting non-trivially on some subset of k qubits. Strictly speaking,
each H; is tensored with the identity matrix on n — k qubits to ensure all operators in the sum have the correct
dimension.



In contrast, we work in the standard setting of allowing only poly-time computations in
the number of qubits, n, not the dimension. In return, we obtain stronger hardness results,
both in that NP C QCMA (and thus QCMA-hardness is a stronger statement than NP-
hardness®), and in that we show hardness of approximation up to any multiplicative factor
Ni-e,

2. Practical/numerical studies. For clarity, numerical studies are not directly related to our
work. However, due to the intense practical interest in VQA for the NIS() era, for completeness
we next survey some of the difficulties encountered when optimizing V(JAs on the numerical
side. For this, note that V{QAs are typically used to solve problems which can be phrased as
energy optimization problems (such as NP-complete problems like MAX CUT [FGG14]).

In this direction, two crucial problems can arise in the classical optimization part of the stan-
dard VQA setup: (i) barren plateaus [McC-+18], which lead to vanishing gradients, and (ii) local
minima [EK21], many of which can be highly non-optimal. Such unwanted local minima are also
called traps. In order to counterbalance these challenges, heuristic optimization strategies have
led to promising results in relevant cases but with not too many qubits. Initialization-dependent
barren plateaus [McC+ 18] can be avoided by tailored imitialization [Zho+20], and there are
indications that barren plateaus are a less significant challenge than traps [AK22]. In general,
the optimization can be improved using natural gradients [W(GK20], multitask learning type
approach [ZY20], optimization based on trigonometric model functions [KB22], neural network-
based optimization methods [Hiv+21], brick-layer structures of generic unitaries [SV(C22], and
operator poolbased methods [Gri+19; BK22]. ADAPT-VQEs [Gri+19] iteratively grow the
VQA'’s parametrized quantum circuit (PQC) by adding operators from a pool that have led to
the largest derivative in the previous step. This strategy allows one to avoid barren plateaus
and even “burrow” out of some traps [Gri+22]. CoVar [EK22] is based on similar ideas com-
plemented with estimating several properties of the variational state in parallel using classical
shadows [HKP20]. The optimization strategies are of a heuristic nature, and analytic results
are scarce. Finally, it has been numerically observed [TLM20; Wie+20] and analytically shown
|Lar+21] that VQA-type anséitze become almost free from traps when the ansatz is overparam-
eterized. Our work implies that these practical approaches cannot work for all instances and,
therefore, provides a justification to resort to such heuristics.

1.3 Techniques

We focus on techniques for showing QCMA-hardness of approximation, as containment in QCMA
is straightforward” for both MIN-VQA and MIN-QAOA.

To begin, recall that in a QCMA proof system (Definition 1), given a YES input, there
exists a poly-length classical proof y causing a quantum poly-size circuit V' to accept, and
for a NO input, all poly-length proofs y cause V' to reject. Our goal is to embed such proof
systems into instances of Problem 1 and Problem 3, while maintaining a large promise gap ratio
m'/m. To do so, we face three main challenges: (1) Where will hardness of approximation come
from? Typically, one requires a PCP theorem [AS98; Aro{ 98] for such results, which remains
a notorious open question for both QCMA and QMA'" [AAV13]. (2) Problem 1 places no
restrictions on which Hamiltonians are applied, in which order, and with which rotation angles.

®Note that for log(N )-size instances of QAOA as in [BK21], one cannot hope for more than NP-hardness,
since both Hamiltonians Hy and H: have polynomial dimension, and thus can be classically simulated efficiently.
Thus, such instances are verifiable in NP.

*The prover sends angles #;, and the verifier simulates each ™7 via known Hamiltonian simulation algo-
rithms [LC17].

Y Ouantum Merlin- Arthur (QMA) is QCMA but with a quantum proof.



How can one enforce computational structure given such flexibility? In addition, MIN-QQAOA
presents a third challenge: (3) How to overcome the previous two challenges when we are only
permitted two Hamiltonians, Hy and H,, the latter of which must also act as the observable?
To address the first challenge, we appeal to the hardness of approximation work of Umans [Uma99).

The latter showed how to use a graph-theoretical construct, known as a disperser, to obtain
strong hardness of approximation results for £f (the second level of the Polynomial-Time Hi-
erarchy). Hiding at the end of that paper is Theorem 9, which showed that the techniques
therein also apply to yield hardness of approximation within factor N/~ for a rather artifi-
cial NP-complete problem. Gharibian and Kempe [GK12| then showed that [Uma9%9] can be
extended to obtain hardness of appraximation results for a quantum analogue of X%, and also
obtained QCMA-hardness of approximation within N1—¢ for an even more artificial problem,
(QQuantum Monotone Minimum Satisfying Assignment (QMSA, Problem 2). Roughly, QMSA
asks — given a quantum circuit V' accepting a monotone set (Definition 2) of strings, what is
the smallest Hamming weight string accepted by V? Here, our approach will be to construct
many-one reductions from QMSA to MIN-VQA and MIN-QAOA, where we remark that main-
taining the N1~ hardness ratio (i.e. making the reduction approximation-ratio-preserving) will
require special attention.

1. The reduction for MIN-VQA. To reduce a given QMSA circuit V' = Vg ---¥; to a VQA
instance ({H;}, M, m,m'), we utilize a “hybrid Cook-Levin + Kitaev" circuit-to-Hamiltonian
construction, coupled with a pair of clocks (whereas Kitaev [K5V02] requires only one clock).
Here, a non-hybrid (ie. standard) circuit-to-Hamiltonian construction is a quantum analogue
of the Cook-Levin theorem, i.e. a map from quantum circuits V' to local Hamiltonians Hy,
so that there exists a proof |¢/) accepted by V if and only if Hy has a low-energy ' “history
state”, |{ps). A history state, in turn, is a quantum analogue of a Cook-Levin tablean, except
that each time step of the computation is encoded in superposition via a clock construction of
Feynman |[Fey86]. In contrast, our construction is “hybrid” in that it uses a clock register like
Kitaev, but does not produce a history state in superposition over all time steps, like Coole
Levin. A bit more formally, the Hamiltonians {H;} of our VQA instance act on four registers,
ABCD, denoting proof (A), workspace (B), clock 1 (C'), and clock 2 (D). To an honest prover,
these Hamiltonians {H;} may be viewed as being partitioned into two sets: Hamiltonians for
“setting proof bits", denoted P, and Hamiltonians for simulating gates from V', denoted ). An
example of a Hamiltonian in P is

P; = X5, ®|1K1g, ® [11]p,,, 3)

which says: If clock 1 (register C) is at time j and clock 2 (register D)) is at time |D| (more
on clock 2 shortly), then flip the jth qubit of register A via a Pauli X gate. An example of a
Hamiltonian in €} is

— i
Q= (V)ap @010, o asen T (V)aB @ 0N0Yg, o (4)

which allows the prover to apply gate V; of V' to registers AB, while updating clock 1 from time
|A| + j to |A| + 7 + 1. In this first (insufficient) attempt at a reduction, the honest prover for
MIN-VQA acts as follows: First, apply a subset of the P Hamiltonians to prepare the desired
input y to the QMSA verifier V in register A, and then evolve Hamiltonians ¢} through
to simulate gates V] through Vi on registers A and B. The observable M is then defined to

"By “energy” of a state |¢/) against Hamiltonian H, one means the expectation (1|H |y}, whose minimum
possible value is precisely Amin(H), i.e. the smallest eigenvalue of H.



measure the designated output qubit of B in the standard basis, conditioned on C' being at time
T.

The crux of this (honest prover) setup is that if we start with a YES (respectively, NO)
instance of QMSA, then the Hamming weight of the optimal y is at most g (respectively, at
least g'), for ¢'/g = Né,,‘;.m and Ngmsa the encoding size of the (JMSA instance. This, in
turn, means that the VQA prover applies at most g Hamiltonians from P (YES case), or at
least ¢ Hamiltonians from P (NO case). The problem is that the prover must also apply
Hamiltonians (J; through )y, in order to simulate the verifier, V', and so we have hardness ratio
m'/m = (¢’ + L)/(g + L) = 1 if L € w(g), as opposed to N1~¢!

To overcome this, we make flipping each bit of P “more costly” by utilizing a 2D clock setup.
This, in turn, will ensure the hardness ratio (g’ + L) /(g + L) becomes (roughly)

gID|+L ¢

I ESA s r for |D| € w(L), (5)
as desired. Specifically, to fHlip bit A; for any j, we force the prover to first sequentially increment
the second clock, D, from 1 to |D|. By Equation (3), F; can now flip the value of 4; — but
it cannot increment time in C' (i.e. we remain in time step j on clock 1). This next forces the
prover to decrement I) from |D| back to 1, at which point a separate Hamiltonian (not displayed
here) can increment clock C from j to j + 1. The entire process then repeats itself to flip bit
Ajty1. What is crucial for our desired approximation ratio is that we only have a single copy of
register [), i.e. we re-use it to flip each bit A;, thus effectively making C'D act as a 2D clock.
This ensures the added overhead to the encoding size of the VQQA instance scales as ||, not
|A| ||, which is what one would obtain if C'D encoded a 1D clock (i.e. if each A; had a separate
copy of I)).

Finally, to show soundness against provers deviating from the honest strategy above, we first
establish that any sequence of evolutions from {H;} keeps us in a desired logical computation
space, i.e. the span of vectors of form

8 = {Vaja+-Val)al0---0)s[F)cft)p |y € {0,114, s € {1,...,Cl}t € {1, IDI}}, (6)

for |y)a the “proof string” prepared via P-gates and 5 and t the unary representations of time
steps s and t in clocks 1 and 2, respectively. We then show that applying too few Hamiltonian
evolutions from {H;} results in a state with either no support on large Hamming weight strings
y (meaning the verifier V' must reject in the NO case), or no support on states with a fully
executed verification circuit V' = Vg ---V; (in which case we design V' to reject).

2 The reduction for MIN-QAOA. At a high level, our goal is to mimic the reduction to MIN-
VQA above. However, the fact that we have only two Hamiltonians at our disposal, Hy (driving
Hamiltonian) and H,. (cost Hamiltonian), and no separate observable M, complicates matters.
Very roughly, our aim is to alternate even and odd steps of the honest prover’s actions from
MIN-VQA, so that Hp simulates the even steps, and H, the odd ones. To achieve this requires
several steps:

1. First, we modify the MIN-VQA setup so that all the odd (respectively, even) local terms
H; pairwise commute. This ensures that the actions of exp(i#Hp) and exp(ifH.) can be
analyzed, since Hy and H_ will consist of sums of (now commuting) H; terms.

2. In MIN-VQA, all Hamiltonians satisfied H? = I, which intuitively means an honest prover
could use H; to either act trivially (#; = 0) or perform some desired action (#; = ). For
MIN-QAOA, we instead require a trick inspired by [EK21] — we introduce certain local
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terms &; (Equation (61)) with 3-cyclic behavior. In words, the honest prover can induce
three logical actions from such G, obtained via angles 8; € {0, /3, 27 /3}, respectively.

3. We next add additional constraints to Hp to ensure its unique ground state encodes the
correct start state (see Equation (57) of Problem 3). This is in contrast to MIN-VQA,
where the initial state |0---0) is fixed and independent of the H;.

4. Finally, the observable M is added as a local term to H,, but scaled larger than all other
terms in H.. This ensures that for any state |¢), |[(¥|H:. — M|¢)| is “small”, so that
measuring cost Hamiltonian H. once the QQAOA circuit finishes executing is “close” to
measuring M.

As for soundness, the high-level approach is similar to MIN-V(QA, in that we analyze a
logical space of computation steps, akin to Equation (6), and track Hamming weights of prepared
proofs in this space. The analysis, however, is more involved, as the construction itself is more
intricate than for MIN-V(A. For example, a new challenge for our MIN-QQAOA construction
is that evolving by a Hamiltonian (specifically, H.) does not necessarily preserve the logical
computation space. We thus need to prove that we may “round” each intermediate state in the
analysis back to the logical computation space, in which we can then track the Hamming weight
of the proof y (Lemma 5).

1.4 Open questions

We have shown that the optimal depth of a VOQA or (QAOA ansatz is hard to approximate,
even up to large multiplicative factors. A natural question is whether similar NP-hardness of
approximation results for depth can be shown when (e.g.) the cost Hamiltonian in QAOA is
classical, such as in [F(GG14]7 Since we aimed here to capture the strongest possible hardness
result, i.e. for QCMA, our Hamiltonians were necessarily not classical /diagonal. Second, although
our results are theoretical worst-case results, V(QAs are of immense practical interest in the
NISC) community. Can one design good heuristics for optimal depth approximation which often
work well in practice? Third, can one approximate the optimal depth for QAOA on random
instances of a computational problem? Here, for example, recent progress has been made by
Basso, Gamarnik, Mei and Zhou [Bas+22], Boulebnane and Montanaro [EM22], and Anshu and
Metger [AM22], which give analytical bounds on the success probability of QAOA at various
levels and on random instances of various constraint satisfaction problems, for instance size n
going to infinity. The bounds of [AM22], for example, show that even superconstant depth (i.e.
scaling as o(loglogn)) is insufficient for QAOA to succeed with non-negligible probability for a
random spin model. On a positive note, we remark that [BM22] give numerical evidence (based
on their underlying analytical bounds) that at around level 14, QAOA begins to surpass existing
classical SAT solvers for the case of random 8-SAT. Fourth, we have given the first natural
QCMA-hard to approximate problems. What other QQCMA-complete problems can be shown
hard to appraximate? A natural candidate here is the Ground State Connectivity problem [G515;
GMV1T, WBG20], whose hardness of approximation we leave as an open question. Finally, along
these lines, can a PCP theorem for (QCMA be shown as a first stepping stone towards a PCP
theorem for QQMAT

1.5 Organization

This paper is organized as follows. We begin with basic definitions and notation in Section 2.
In Section 3, we show Theorem 1. Section 4 shows Theorem 4.



2 Basic definitions and notation

We begin with notation, and subsequently define QQCMA.

2.1 MNotation

Throughout, the relation := denotes a definition, and [n] == {1,2,...,n}. We use |z| to specify
the length of a vector or string or the cardinality of set . The term I4 denotes the identity
operator/matrix on qubits with indices in register A. By ||H ||, we denote the spectral norm of
an operator H acting on C?, i.e. MAX| cd ﬂ[ﬁ;ﬁﬁ!—?, for || - ||» the standard Euclidean norm. The
trace norm of an operator is denoted by || - ||, &; refers to a computational basis state.

2.2 Complexity classes

Definition 1 (Quantum-classical Merlin-Arthur (QCMA)). Let II = (Il II,,) be a promise
problem. Then I1 € QCMA if and only if there is a polynomial p such that for any = € 11 there
erists a quantum circuit V; of size p(|x|) with one designated output qubit satisfying:

(i) If z € Ny there exists a string y € {0,1}0=) such that Pr[V, accepts y] > 2/3 and

(ii) if € My and all strings y € {0,1}*U=1) it holds that Pr[V, accepts y] < 1/3.
Often, it is helpful to separate the qubits into an a proof register A, which contains the clas-
sical proof |y}, and an ancilla/work register B, which is initialized in the |0} state. Then the
acceptance probability can be expressed as

Pr[V; accepts (z,y)] = {y;n|V§“3'*M':Bi3'V§“3|y;D}, (7)

where the measurement is given by an operator MP1) acting on the first qubit of the work
register B.

QCMA was first defined in [ANO2], and satisfies NP € QCMA € QMA. QCMA-complete
problems include Identity Check on Basis States (i.e. “does a quantum circuit act almost as the
identity on all computational basis states?”) [W.JB03] and Ground State Connectivity (GSCON)
(i.e. is the ground space of a local Hamiltonian “connected™) [(G515]. The latter remains hard
(specifically, QCMAgxp-hard) in the 1D translation-invariant setting [WBG20].

3 QCMA-hardness of approximation for VQAs

In this section, we show Theorem 1. We begin in Section 3.1 with relevant definitions and
lemmas. Section 3.2 proves Theorem 1.

3.1 Definitions and required facts

For convenience, we first restate Problem 1.
Problem 1 (VQA minimization (MIN-VQA(k,1))). For an n-qubit system:
o Input:

1. Set H = {H;} of Hamiltonians'?, where H; acts non-trivially only on a subset'?
Si C [n] of size |Si| = k.

2 An n-qubit Hamiltonian H is a 2" x 2" Hermitian matrix. Any unitary operation [/ on a quantum computer
can be generated via an appropriate choice of Hamiltonian H and evolution time t = 0, ie. U = e

YEor Theorem 1, it will suffice to take k& £ &(1). In principle, however, containment in QCMA holds for any
k < n, s0 long as the H; are sparse in the standard Hamiltonian simulation sense [AT03]. By sparse, one means
that each row v of H; contains at most » non-zero entries, which can be computed in poly-time given r.



2. An l-local observable M acting on a subset of [ qubits.
3. Imtegers 0 < m < m' representing circuit depth thresholds.

o Output:

1. YES if there exists a list of at most m angles'* (64, ...,60:;) € R™ and a list (G1,...,Gm)
of Hamiltonians from H (repetitions permitted) such that

W) == gtfmGm | .E'iﬁGt'.[]. - 0) (1)

satisfies (P|M|¢) < 1/3.
2. NO if for all lists of at most m' angles (6y,...,0,) € R™ and all kists (G1y...,Gy)
of Hamiltonians from H (repetitions permitted),
I‘l',b} — Eiﬂmrcmr . EiﬂiCi ID .. ﬂ) (2]
satisfies (P|M|) = 2/3.
We next require definitions and a theorem from [GK12].

Definition 2 (Monotone set). 4 set § C {0,1}" is called monotone if for any x € S, any string
obtained from x by flipping one or more zerces in x to one is also in 5.

Definition 3 (Quantum circuit accepting monotone set). Let V' be a quantum circuit consisting
of 1- and 2-qubit gates, which takes in an n-bit classical input register, m-qubit ancilla register
initialized to all zeroes, and outputs a single qubit, g. For any input x € {0,1}", we say V
accepts (respectively, rejects) x if measuring q in the standard basis yields 1 (respectively, 0)
with probability at least 1 — eq (If not specified, eg = 1/3). We say V accepts a monotone set if
the set § C {0,1}" of all strings accepted by V is monotone (Definition 2).

Problem 2 (QUANTUM MONOTONE MINIMUM SATISFYING ASSIGNMENT (QMSA)).
Given a quantum circuit V accepting a non-empty monotone set 5 C {0,1}", and integer thresh-
olds 0 < g < g’ <n, output:

o YES if there erists an x € {0,1}" of Hamming weight at most g accepted by V.
o NOif all z € {0,1}" of Hamming weight at most ¢’ are rejected by V.

Theorem 5 (Gharibian and Kempe |[GK12]). QMSA is QCMA-complete, and moreover it is
QCMA-hard to decide whether, given an instance of QMSA, the minimum Hamming weight
string accepted by V is at most g or at least ¢’ for g’ /g € O(N'—%) (where ¢’ > g).

In words, QMSA is QCMA-hard to approximate within N !¢ for any constant € > 0, where N
is the encoding size of the QMSA instance.

3.2 QCMA-completeness

Theorem 1. MIN-VQA(E,I) is QCMA-complete for k = 4,1 =2, and m < poly(n). Moreover,
for any € = 0, i@ is QCMA-hard to distinguish between the YES and NO cases of MIN-VQA
even if m'fm = N 1=¢ where N is the encoding size of the instance.

In words, it is QCMA-hard to decide whether, given an instance of MIN-VQA, the variational

circuit can prepare a “good” ansatz state with at most m evolutions, or if all sequences of m'
evolutions fail to prepare a “good” ansatz state, for m'/m € O(N'~<) (where m’ > m).

Y Throughout Problem 1, for clarity we assume all angles are specified to poly(n) bits.
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Proof. Containment in QQCMA is straightforward; the prover sends the angles #; and indices
of Hamiltonians H; to evolve, which the verifier then completes using standard Hamiltonian
simulation techniques [Llo96; LC17]. We now show QCMA-hardness of approximation. Let
II' = (V',g.¢") be an instance of QMSA, for V' = V{,---V] a sequence of L' 2-qubit gates
taking in nj, input bits and mj, ancilla qubits.

Preprocessing V'. To ease our soundness analysis, we would like to make two assumptions
about V' without loss of generality; these can be simply ensured as follows. Suppose V' takes in
ny, input qubits in register A’ and mjy, ancilla qubits in register B'. Apply each of the following
modifications in the order listed.

Assumption 6. V' only reads register A', but does not write to it. To achieve this, add nj,
ancilla qubits (initiakized to |0) ) to B', and prepend V' with nj, CNOT gates applied transversally
to copy input x from A' to the added ancilla qubits in B'. Update any subsequent gate which
acts on the original input x to instead act on its copied version in B'.

Assumption 7. The output qubit of V' is set to |0) until V] is applied. To achieve this, add
a single ancilla qubit to B' initialized to |0), and treat this as the new designated output qubit.
Append to the end of V' a CNOT gate from its original output wire to the new output wire.

Call the new circuit with all modifications V. V acts on ny = nj input qubits, my =
mj, + n}, + 1 ancilla qubits, and consists of L := L' 4+ n{, + 1 gates.

Proof organization. The remainder of the proof is organized as follows. Section 3.2.1 con-
structs the MIN-VQA instance. Section 3.2.2 proves observations and lemmas required for the
completeness and soundness analyses. Sections 3.2.3 and 3. 2.4 show completeness and soundness,
respectively. Finally, Section 3.2.5 analyzes the hardness ratio achieved by the reduction.

3.2.1 The MIN-VQA instance

We now construct our instance II of MIN-VQA as follows. Il acts on a total of n qubits, which
we partition into 4 registers: A (proof), B (workspace), C' (clock 1), and D) (clock 2). Register A
consists of ny qubits, B of my qubits, C' of L 4+ny + 1 qubits, and D of [L1+4] qubits for some
fixed 0 < 4 < 1 to be chosen later. Throughout, we use shorthand (e.g.) |A| for the number of

qubits in a register A.
Our construction will ensure C' (respectively, D)) always remains in the span of logical time

C . =D
steps, Te = {[8)}], (respectively, Tp = {[f})}}”]), defined as:
3) = 0= 1)[0)®* for1<s<|C] (8)
B = 0)® 0P for 1 <1< D). (9
For example for C, [1) = |1)|0)®I€11, [2) = |0)[1)]0)®I€=2, [3) = 100)]1)]0)®I€1-3, and so
forth. Note this differs from the usual Kitaev unary clock construction, which encodes time ¢
via |1)®¢|0)&N—t [KSV02]. This allows us to reduce the locality of our Hamiltonian.
Throughout, we use (e.g.) C; to refer to qubit j and C; ; and qubits i and j of register C. All

qubits not explicitly mentioned are assumed to be acted on by the identity. Define four families
of Hamiltonians as follows:

s (F') For propagation of the second clock, D, define 2-local Hamiltonians as

F; = |01)10|,_, + [10)01|,,  forall j € {1,...,|D| - 1}. (10)
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Figure 1: Sketch describing the VQA instance. A colored square (say, blue) at index j of a
register means that register’s jth qubit must be in |1) for any blue gates to act non-trivially. So,
for example, the G gates increment the first clock register ', but only if the D register is in the
state |1)p,. For the initial state, C; and I); are in the |1) state, marked by a black dot. The
gates F' increment the second clock register I). The P gates are controlled operations on the
C' register, which perform X operations on the A register, but only if I) is in the state |1) Dypy-
The () gates increment the clock register ', while also applying the circuit Vi,...,Vy on the
AB registers. The measurement operator M acts on the By and C|c| qubit.

s () For propagation of the first clock, €, define 3-local Hamiltonians as
G; = (|m}{m|cj:j+1 + |1EI}{D1|CM+1) @ [1)1|p, for all j € {1,...,]A[}. (11)
o (P) For each qubit j € {1,...,|A|} of A, define 3-local Hamiltonian as
Fj=X4;® |1:'{1|cji ® |1}':1|D|D|- (12)

s (()) For each gate V|, for k € {1,..., L}, let R}, denote the two qubits of AB which V}, acts
on. Define 4-local Hamiltonians as

Qui= (Vi)re ® 01X100, o+ (V)R ®10Y01g, o (13)

Denote the union of these four sets of Hamiltonians as Spgpg = FUGU PU (). Set a 2-local
observable

M =TI 1)1, @ [1)X1l¢,, (14)
where we assume without loss of generality that V outputs its answer on qubit Bj. Set m =
g-(2|D|—1)+|A|+ L, m'=¢"-(2|D| —1) 4+ |A| + L. To aid the reader in the remainder of
the proof, all definitions above are summarized in Figure 3.2.1.

It remains to choose our initial state. Strictly speaking, Problem 1 mandates initial state
|0---0)apcp. However, to keep notation simple, it will be convenient to instead choose

6} = [0---0) 4B [10C1Yy o [10/P-1y p = j0---0) ap[T)e|T)p, (15)

i.e. with the two clock registers C' and D) initialized to their starting clock state, |T} This
is without loss of generality — we may, in fact, start with any standard basis state as our
initial state without requiring major structural changes to our construction, as the following
observation states.
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Term | Description Properties
V' | Input QMSA instance’s verification circuit Vi=V/,.-- W/
L' | Number of 1- and 2-qubit gates in V'
ny, | Number of proof qubits taken in by V'
my, | Number of ancilla qubits taken in by V"’
g,g | YE5/NO thresholds for QMSA instance, resp.
vV QMSA verifier obtained from V' via Assump. 6 and 7 | V=V --- 1)
L Number of 1- and 2-qubit gates in V L=L"4+nj,+1
ny | Number of proof qubits taken in by V ny = ny,
my | Number of ancilla qubits taken in by V' my =my, +ny + 1
A | Proof register |A| = nv
B | Workspace register |B| = my
C | Clock 1 register Cl=L+ny+1
D | Clock 2 register |D| = [L*] for 4 chosen in
(56) to satisfy (54)
F Propagation terms for clock 2 Act on register 1),
[F|=|D| -1
G Propagation terms for clock 1 Act on registers C, D,
gl = 4]
P Hamiltonian terms for setting proof bits Act on registers A, C, D,
1P| = 4]
Q Hamiltonian terms for simulating verifier gates, V3 Act on registers A, B, C,
Q=L
M | Observable for MIN-VQA instance M:=1-1)1|g @® IlHllGIC’I
m,m’ | YES/NO thresholds for MIN-VQA instance, resp. m=g-(2|D|-1)+ |A| + L,
m'=g-(2|D|-1)+ |A| + L.

Figure 2: Terms used in the proof of Theorem 1.

Observation 8. Fir any standard basis state |z)agcp = X |0---0)apep, for

X=X{'® -0 X3}

(16)

with N = |A| + |B| + |C| + |D|. Consider the updated set Spopg = {XHX | H € Srarq},
where for simplicity we match H € Spapg with H' .= XHX € SE;.GP{;,. Then, for any m € M,
and any sequence (H: )i, of Hamiltonians draun from Srcpg,

EiﬂmHm . Eiﬂsz

EwiHil_.r}AEGD —

Moreover, each H and H' are the same locality.

Proof. The first claim follows since X2 = I, by Observation 9'%, and since |zyaBcD = T|D ---0} aBcD-

OmHhn . i02H3 0LHY |

(17)

-0} apcD.

The second claim also follows from X2 = I and the fact that X is a tensor product of operators
from set {I, X'}

This concludes the construction.

O

Y Note that conjugation by X will alter the clock encoding in Equations (18)-(21), but this alternation is
logically irrelevant since it is equivalent to a local change of basis applied simultaneously to all H £ Spapg and
to |0---0} apco-
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3.2.2 Helpful observations and lemmas

We next state and prove all observations and technical lemmmas for the later correctness analysis
of our construction.

Observation 9. Forall e R, and all F; e F, G; € G, P; € P and QQy € Q,

e = cos(6)(|01)01] + [10}10[)p, ;. + isin(8)F; + (I — |01)01] — |1010))p,,, (18)
L — (|n1}{1n|cjljﬂ + Ilﬂ}{ﬂllcj,,-ﬂ) ® [1{1] p, + i sin(6)C;+
(I _ (|n1}{1n|cj__j+1 + |1n}{n1|cj__j+1) ® |1}(1|Di) (19)

e = (cos(8)] +isin(0)X),, ® 1)1y, ® [1p,p,, + (I = [1)1g; ® 1K1 p,, ) (20)
e _ cos(0)ap @ (|O1)(01] + |1DH1DI}CI-¢I+'¢.|AI+H1 + isin(8)Qr+
Tap @ (I —|01)01] — |m}{1[}|}cl-4l+k.-l-4l+k+1 . (21)

For clarity, any register not erplicitly listed in eguations above is assumed to be acted on by
identity.

Proof. Follows straightforwardly via Taylor series expansion since

F? = (|01%01] + |10)10])p, ., for all j € {1,...,|D| — 1}, (22)
G3 = ([01}01] + |10)(10)c, ;.. ® [1X1]p, for all j € {1,...,|A]}, (23)
P} =1I4,® 11X1lg; ® [1X1lp forall j € {1,...,|A4|}, (24)
Qk = Inp ® (|01Y01] + [10)10) ¢y paprnss for all k € {1,...,L}. (25)

0

Definition 4 (Support only on logical time steps). We say state |¢')4pcp is supported only on
logical time steps if it can be written
1] 1D]

[V)aBep = Z Z ast|mst) aB[F)clt) D (26)

a=1 t=1
for unit vectors |ns) and 3", last|* = 1, and |5) € Te and |t) € Tp defined as in Equation ()
and Equation (9), respectively.
Observation 10. Recall that the initial state |¢) = |0---0)ap|1)c|1)p is supported only on

logical time steps. Then, for any m € M and sequence of evolutions exp(it;H;) for 8; € R and
Hj S SF'GPQ:

giftmtm . gifzHz 01 Hy |b) (27)
is supported only on logical time steps.

Proof. Consider any logical time step [§)c|t)p. By Equations (18)-(21), the set of possible
evolutions act as follows'®:

e ¢Fi: can map from [j)p to |m}n or vice versa for j € {1,...,[D| - 1}.
o G5 if [fip = |T)D, can map from E}G to I_’;‘—ﬁ}c or vice versa for j € {1,...,|4]}.

YWithout loss of generality, we focus on the non-trivial (ie. non-identity) action of each evolution, as any
trivial action immediately preserves logical time steps.
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e P acts invariantly (i.e. as identity) on C and D for all j € {1,...,|A|}.

e

e ¢Yi; can map from ||A| 4 j)c to ||JA| + j + 1)¢ (while applying V; to AB) or vice versa
(for V) for j € {1,...,L}. O

The following lemma tells us that any sequence of Hamiltonian evolutions exp(if,H,) on
initial state |¢) remains in a certain logical computation space.

Lemma 1. Define
S:={V_|,4|"‘ﬁly}glﬂ---[}}glg}clﬁﬂ y € {0, 1}|AI?SE {1,...,'0'}?‘5E{l?...,lﬂl}}, (28)

where we adopt the convention that the V gates are present only when s > |A|. Then, for any
me M,

I e*1+|¢) € Span(5) (29)
for any angles 0, € R and sequence of Hamiltonians Hy € Spopg-

Proof. For convenience, define
My.e6) = Va_pa) - - Vilw)al0) g[8} clt) o (30)

forse{1,...,|C|},t € {1,...,|D|},and y € {0,1}/4]. Observe first that |¢) = |0---0)ag[L)c|1)p =
Im0.1.1) € S. Thus, it suffices to prove Span(S) is closed under application of €% for any # € R
and H € Spepg.

Case 1: H =H; € F for j € {1,...,|D| — 1}. Equations (10) and (18) immediately yield
el My.st) = [Myse) for t & {j, 5+ 1}. Consider thus ¢ € {j,j + 1}. Restricted to this space,
e®H gets logically as

e = cos(8) Lapop +isin(®) Lapc ® (T + G| + i +11) - (31)

Thus, " maps
y,s5) > cos(B)|ny,s ;) + isin(B)[ny . 541), (32)
Iysg41) = isin(B)my. ;) + cos(B)|ny,q;41)- (33)

Case 2: H=H; € G for j € {1,...,|A|}. Equations (11) and (19) immediately yield
e |y o1) = |My,st) unless s € {j,j + 1} and t = 1. Consider thus s € {j,j+ 1} and ¢t = 1.
Restricted to this space, € acts logically as

e = cos(6)Iapcp + isin(f)Iap ® (|.m}{}| + |}T}{Jﬁ|)c @ Ip. (34)

Thus, " maps

IMyg1) =+ cos(B)lmyz1) +isin(E)]my e1), (35)
[Myg+1.1) = isin(8)|my,1) + cos(8)my.j41.1)- (36)
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Case 3: H = H; € P for j € {1,...,|A|}. By Equation (20), ¥ |ny.:) = |fy,s¢) unless
s = j and t = |D|. Consider thus s = j and t = |D)|. Restricted to this space, e maps

Iy,5,101) = cos(8) |y 5 pp) + isin(8)|ny ;0)) (37)
for y’ defined as y with its jth bit flipped. Since y in Equation (28) is not fixed, we conclude
e |ny .¢) € Span(S), as claimed.

Case 4: H = H; € . Equations (13) and (21) immediately yield e®H|n, .s) = |fys) for
s & {|A| + 4,]A| + j + 1}. Consider thus s € {|4| + j,|A| + j + 1}. Restricted to this space,
exp(ifH ) acts logically as

eH = cos(0)] ypep + isin(0)Q;. (38)

Thus, ¥ maps

|7y, 141+5.} > co8(8) My ja45.6) + Esn(B)V5Imy, |ap+5e)

= cos(0)|ny jaj44.e) +18in(0)|my aj4511.e) (39)
My 4| +i+1.60 fﬂiﬂ(ﬂﬂ‘?|ﬁy.|14|+j+1,t) + cos(8) |1y, 4454 1,6)
= isin(0)|my, aj+5.e) + cos(0) |y a4+541.8)5 (40)

where we have used Assumption 6 that gates V; never write to the proof register A (and thus y
remains unchanged under application of V). This yields the claim. O

Next, we relate the circuit depth of a state generated by our VQA to the Hamming weight
of the proof string y.

Lemma 2. Let (Hy)]L, be a sequence of Hamiltonians draumn from Spgpg which maps the
initial state (15) to

|6m) = T et | ). (41)

Suppose |¢m) has non-zero overlap with some |ny -:) with y of Hamming weight at least w and
s =|A|+1. Then, m = w(2|D|—1) + |A| with at least w(2|D|— 1)+ |A| of the H, draun from
FUGuUP.

FProof. By Lemma 1, |[¢m) € S. Repeating the following argument for any bit of y set to 1 will
yield a lower bound on the number of gates of 2w |D|, which is almost what we want.

Consider any index j € {1,...,|A|} such that y; = 1 (equivalently, in state |f, ;) the qubit
A; is set to 1). Since the qubit A; of the initial state |@) is set to |0), there must be an evolution
step u € {1,...,m} at which A; is mapped from!” |0) to |1). By Observation 9, only the
Hamiltonian P; € P can induce this mapping, and P; requires C' and D to be set to |}}C||E|) D
in order to act non-trivially. Let us analyze each of these two requirements in order.

First, to obtain |5) in C', there are only two possibilities:

e (Case a) We are in the initial state |¢) with no Hamiltonian evolutions applied yet and
j =1 (recall |¢) has C and D set to |1}<|1}p by definition), or

s (Case b) we are at a later evolution step at which C was updated to |3} from either j — 1
or j+ 1. Since 1 < j < |A|, by Observation 9, only operators G;_y (for j > 1) and G; can
effect this map. Both of these operators require I) set to |1).

YFor clarity, throughout this proof, by “mapped from |k} to |k')", we mean |k) is mapped to a state with
non-zero overlap with |k}, This suffices for Lemma 2, since it only cares about non-zero overlap with some
[77y.5.) -
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Thus, in both cases, D is also set to |T} So, assume one of the two cases has just occurred to
update C' to |E} -

The second requirement for F; to act non-trivially was that I) be set to |[D]). But since D
is currently set to |1) in the initial state, and since only operators in F' can change clock D (by
precisely one time  step per operator), we must apply at least |[)| — 1 operators in F to obtain
a state with |j)¢||D|)p. (To see that C must still be set to [j} at this point, observe that all
operators in Spopg \ F act invariantly unless D equals |T) or C' is at least ||W1}] Applying
P; is now necessary to flip A; from |0} to |1). We have thus reached an intermediate state at

which A; is |1) and C and D are [f)¢|[D|)p.

Finally, either all bits of y are now set correctly and C' must be updated to ||ﬂAT—_|:F1} (due to
the condition s = |4| 4+ 1), or we wish to repeat the argument above for the next index j' # j
for which we wish to map Ay from |0} to |1). In both cases, D) must first be reset back to |T}
(otherwise operators in & act invariantly, and these are precisely the operators which can update
C' to either j' or to |A| 4+ 1 as needed). Running the argument above regarding F in reverse,
we obtain that at least a number |D| — 1 of F-gates are needed to return D back to |1), and at
least one G-gate is needed to update C' from j to j' or to [4] + 1.

Summing all gate costs together, for each A; to be flipped from |0} to |1} and for C to be
updated to the next value of j', we require at least 2|D| gates. Thus, if |n,,,) has y with
Hamming weight at least w, at least 2w |D| gates from F UG U P are required. This is almost
what we want.

The final |A| — w gates required for the claim arise because one requires at least [4| G-gates
to map C' from its initial value of 1 to [A4| + 1, and above we have only accounted for w of these
G-gates (i.e. corresponding to all j with y; = 1). O

Finally, the next lemma ensures that any prover applying fewer than L Hamiltonians from
) cannot satisfy the YES case’s requirements for MIN-VQA.

Lemma 3. For any m € N, let (H,)T ; be any sequence of Hamiltonians draum from Spapg
and containing strictly fewer than L Hamiltonians from (). Then, for observable M = I —
1¥1|g, ® IlHllGICI’ the state |¢m) = ™ e®¥uHu|0...0) apc satisfies

(GmIMlgm) = 1. (42)

FProof. By Lemma 1, |¢) € S for 5 from Equation (28). Next, by Observation 9, Hamiltonians
from F U P act invariantly on clock ', and Hamiltonians from & can only increment €' from 1
(i.e. its initial value in |¢)) to |A|+ 1. The observable M, however, acts non-trivially only when
C is set to |C| = |A| + L + 1. The only Hamiltonians which can increment C' from |4| + 1 to
|A| + L 41 are those from (). Each such H, € () can map C from time |A|+ s to [A|+s+1or
vice versa, for s € {1,..., L}. Thus, since strictly fewer than L of the H, chosen are from @, it
follows that |¢r,) has no support on time step |C| = |[A|+ L +1, i.e. (Jap® |1}{1|CICI}|¢m} =0.
The claim now follows since we Assumption 7 says verifier V' = V¢, -- -V has its output qubit,
denoted By, set to |0) until its final gate V is applied. O

3.2.3 Completeness

With all observations and lemmas of Section 3.2.2 in hand, we are ready to prove completeness
of the construction. Specifically, in the YES case, there exists an input y £ {0, 1}|’L1I| of Hamming
weight at most g accepted with probability at least 2/3 by V. The honest prover proceeds as
follows.
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e (Prepare classical proof) Prepare state (up to global phase) i) = [y)4|0) g||ﬂAT—f1}c|F1”) D
as follows. Starting with |¢) = |0---0)ag|1)c|1)p:
1. Set j= 1.
2. fy; =1 then
— Apply, in order, unitaries exp(i(7/2)F1), exp(i(7/2)F2),. .., exp(i(m/2)F|p|_1)-
This maps registers C' and D) to 1 and |D)|, respectively.
— Apply exp(i(w/2)P;), which maps A; from 0 to 1.
— Apply, in order, unitaries exp(i(r/2)Fip), exp(i(r/2)Fip|_1)s.- -, exp(i(r/2)FY).
This maps registers C' and I? back to 1 and 1, respectively.
3. Apply unitary exp(i(7/2)&;), which maps C from j to j + 1.
4. Set j=j+1.
5. If j < |A| + 1, return to line 2 above.

This process applies g(2 |D| — 1) + |A| gates.

e (Simulate verifier) Prepare the sequence of states |1;) = ez etz |thp) by applying,

in order, unitaries exp(i(7/2)Q1), exp(i(7/2)Q2),. .., exp(i(7/2)()r). Since the jth step
of this process applies exp(i(7/2)@Q;), and since the state [1p) has clock C set to |A4| + 1,
Observation 9 and Equation (13) imply that

€3V, 1) = (Vi)r, @ 1141 +7+1) ([A] + Jlc) [95-1), (43)
i.e. we increment the clock from |[A| + j to |[A| + j + 1 and apply the jth gate V;. The
final state obtained is thus |¢r) = (V---Vi|g)alO)e) @ ||A| + L + l)clT}p. This process
applies L gates.

Since V accepts y with probability at least 2/3, we conclude (¢ |M|¢r) < 1/3, as desired. The
number of Hamiltonians from Spopgo we needed to simulate in this case is m = g(2|D| — 1) +
|A| + L, as desired.

3.2.4 Soundness

We next show soundness. Specifically, in the NO case, for all inputs y € {0, 1}l of Hamming
weight at most g’, V accepts with probability at most 1/3. So, consider any sequence of m’' =
¢'(2|D|-1)+|A|+L Hamiltonian evolutions producing state |¢,,) == II", e®«Hu |0 .. 0) 4 5|1)c|1) D
for arbitrary 8, € R and Hamiltonians H, € Spcpg. Lemma 1 says we may write

Icl 19

m) =D D ayatliyer) €Span(S) (44)

ye{lll].lﬂ-l a=1 t=1

with 32, oy ,31¢|2 = 1. Now, for the observable (14) follows that

(| M s} = 1= (] (1KLL, ® 1K1l ) b} =1 = (m1XL|,Im) for — (45)

m= 3 Y ayuridViVilalO)sllAl+ L+ 1)clfp,  (46)
ye{ﬂ,l}"“'| t=1
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where we have used Equation (44) and the fact that M projects onto time step |C| in register C.
Now, if we applied strictly less than L evolutions from (), Lemma 3 says we have no weight on
time step |C'|, so that (¢m/| M |dm') =1 = 2/3, as required in the NO case. If, on the other hand,
we applied at least L evolutions from @}, then we must have applied at most ¢'(2|D| — 1) + |A]|
evolutions from FUGUP (otherwise, we have a contradiction since m' = ¢'(2 |D|—1)+|A|+L).
Lemma 2 hence implies the right hand side of Equation (45) equals 1 — (n||1)1| g, [ny) for'®

|2

|7g) = Z Z oy AL 1VE - Vi) al0) B||A] + L+ 1)clt)p, (47)
y =t. HW(y)<g' t=1

where HW(y) denotes the Hamming weight of the bitstring y. But since any input y of Hamming
weight at most g’ is accepted with probability at most 1/3, we conclude {(¢|M|¢¢} = 2/3, as
claimed.

3.2.5 Hardness ratio
Finally, we show our reduction has the desired approximation ratio. Observe

m _ g2|D[-1)+]|A|+L _ g@2[L]-1)+]A[+L (48)
m  g(2|D|-1)+|A|+L  g(2[L™*] —1) +|A|+ L~

Since |A| < L by definition, and since we will choose § > 0 as a small constant, this ratio
scales asymptotically as g'/g. Recall now that Theorem 5 says that for any constant € > 0,
the QMSA instance II' = (V' g, g’} we are reducing from is (JCMA-hard to appraximate within
d'/g € O((N")'=), for N’ the encoding size of II'. Observe that

N' > 2L log(nfy), (49)

as I’ is the number of gates comprising V', and each gate V takes O(1) bits to specify (assuming
a constant-size universal gate set) and 2lognj, bits to indicate which pair of qubits V; acts on.
So it remains to compare N’ with the encoding size N of our MIN-V(QA instance II. For this,
observe that each Hamiltonian in Spgpg may be specified using O(log(|A|+|B|+|C|+|D])) bits,
since each H; requires O(1) bits to specify the 4-local matrix itself, and 4log(|A|+|B|+|C|+|D|)
bits to specify the (at most) 4-tuple of qubits on which H; acts. Similarly, M is specifiable using
O(log(|A| + |B| + |C| + |D|)) bits. Thus, N € O(|Srepg|log(|A| + |B| + |C| + |D])), where we
may bound

|Srepql =214+ L +|D| -1 (50)
=2ny + (L' +nf + 1) + (L' +nf, + N 1 (51)
<oy + (L' +nf +1)+ (2L + 1) —1 (52)
€ O(L"+9), (53)

where we have used that nj, € O(L') (otherwise, V' does not have enough time to read all nj,
of its input bits). Recall now that to obtain the hardness ratio of our claim, we must show the
following: For any desired constant € > 0, there exist ¢ > 0 and 4" > 0 such that

% > ENJ‘}I—&’ > N1-t EM}

®*Below, HW () denotes the Hamming weight of string y.
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Figure 3: Figure describing the QQAOA instance (see Figure 1 for further details). The border
color of each gate indicates if the generator belongs to Hy or H.. Compared to the previous
VQA instance, the P now only act at even time steps in C' and the even-indexed ; and the Fy
generator are combined into one generator, denoted by the red and dark green edges.

We know that for some ¢ € (1),
(N")'=¢ > (2L'log(n}, )" and N < ¢(L')*log(|A| + |B| + |C| + |D|)- (55)
Equation (54) thus holds if
1-—¢ S (1 —¢e)(logec+loglog(|A| + |B|+ |C|+ D)) — (1 - e’]loglog{n%}
1+4 — (1+4)log(L")
We conclude that for large enough I, for any desired € > 0, one can choose ¢/ > 0 and 4 > 0 so
that Equation (54) holds, as desired.

+(1—€). (56)

O

4 Extension of the hardness results to QAOAs

In this section, we prove Theorem 4, which is restated for convenience shortly. First, we define
the optimization problem MIN-QAOA covered by the theorem.

A Ek-local Hamiltonian is a sum of strictly k-local terms, i.e. Hermitian operators each of
which acts non-trivially on at most k qubtis. As mentioned previously, our definition of MIN-
QAOA is more general than that of [FGG14], and closer to that of [Had+19].

Problem 3 (QQAOA minimization (MIN-QQAOA (k))). For an n-qubit system:
o Input:
1. A set H = {Hy,H.} of k-local Hamiltonians.

2. A poly(n)-size quantum circuit U, preparing the ground state of Hy, denoted |gs;).
3. Integers 0 < m < m' representing thresholds for depth.
o Output:
1. YES if there erists a sequence of angles'” (8:)~, € R™, such that
) = eifmHbgim—1He . gibaHy if1 He o ) (57)
satisfies (| H.|) < 1.

Y Throughout Problem 3, for clarity we assume all angles are specified to poly(n) bits.
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2. NO if for all sequences of angles (6;)™, € R™
|‘I'.'IJ':I — EiEmIHb,Ewm'—lHﬂ . Eig‘szeiﬂiHelgsb)j |:58}

satisfies (Y| Hal) > 3.

Just as for MIN-VQA, by “optimal depth” of a QAOA, we mean the minimum number of Hamil
tonian evolutions m required above. The expectation value thresholds % and % are arbitrary
and can be changed by rescaling and shifting H..

Theorem 4. MIN-QAOA (k) is QCMA-complete for k = 4 and m < poly(n). Moreover, for any
€ = 0, it is QCMA-hard to distinguish between the YES and NO cases of MIN-QAOA even if
m'/m > N'=¢, where N is the number of strictly k-local terms comprising Hy, and H,.

Proof. Containment in QCMA is again straightforward and thus omitted. For QCMA-hardness
of approximation, we again use a reduction from an instance I = (V,g,g') of QMSA, for
V = Vi ---¥1 a sequence of L 2-qubit gates taking in ny input bits and my ancilla qubits. All
those terms are defined as in the proof of Theorem 1.

Proof organization. The proof is organized as follows. In Section 4.1 we explain the modi
fications of the VAC() instances to obtain the (QAOA instances of our construction. Section 4.2
provides notation preliminary technical results needed for the (QQCMA-completeness proof. Then,
completeness is shown in Section 4.3 and soundness in Section 4.4. Finally, in Section 4.5, we
analyze the hardness ratio achieved by the reduction.

4.1 Modifications of the VQA instances to obtain the QAOA instances

To specify our QAOA instance, we modify the set Spepg from the proof of Theorem 1 to
suit our reduction here as follows. The structural changes are illustrated in Figure 3. Briefly
recapping the proof techniques outline in Sectionl1.3, we: (1) implement the reduction with only
two generators by alternating even and odd steps of the honest prover's actions, so that H,
simulates the even steps, and H, the odd ones, (2) introduce terms &; (Equation (61)) with
J-cyclic behavior, i.e. allowing three logical actions, (3) add new constraints to Hj to ensure its
unique ground state encodes the correct start state (see Equation (57) of Problem 3), and (4)
add the observable O to H,. (scaled larger than other terms in H,) to obtain the correct cost
function. An undesired side effect of this is that evolution by H, allows one to leave the desired
logical computation space, 5. We show via Lemma 5 that the states obtained are still close to
the set, which suffices for our soundess analysis.

To begin, we use registers composed of |4] = ny, |B| = my, |C| = L + 2ny + 1, and
|D| = [L'*¥] qubits, respectively, where 0 < § < 1 is fixed by specified later. Without loss of
generality, we assume |[D| and L to be even. Additionally to the changes we outline, we also
add diagonal terms additional diagonal terms. This will be relevant for defining the initial state
later on.

s (F') We remove Fy,

F; = [01)10|p, ., +[10}01]p, .., — 2|00K00|,, forall j € {2,...,|D| —1}.  (59)
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s (&) We double the number of qubits & acts on,

G; = (J01X10lc, ,,, + 10§01l ., ) @ [1X1]p, — 2001001, ., p,
for all j € {1,3,...,2|A4] — 1}, (60)

G, = Vir,§{|n11[:r}{1mn:]| + |1001)(0110] + [1010}(1001|

— |1010)0110] — [0110)(1001] — [1001)1010[), 1, —2|0010)0010|c;, . p, ,

for all j € {2,4,...,2|A]}. (61)

While odd numbered gates can only change the clock, even numbered ones can still incre-
ment C', but also have the option of moving |1)p — |2} p, which is the operation performed
by Fl':g:' in the proof of Theorem 1 on MIN-VQA. The superscript (o) refers to the gates
of the previous VQA proof. The following relations hold:

X e . _n:!}.-:_.,.-.., e

e'5C4 [, Llep = 136 li,1)cp o |i+1,1)cp, (62)
I e . {n}.-:-.-.., i

3G 1o p =211 [i,1)cp x [i,2)c.p, (63)

where the last step means equality up to a phase.

s (P) For each qubit j € {1,...,|A|} of A, we define the flip operator, but now it only acts
on even values in the clock register.

P = Xa, ® [IN1]g,, @ [1X1]p,,, — 210000, ;, forall j€ {1,...,[A]}.  (64)

s (()) We shift the C-indices of the (}-gates because reading in the proof takes longer time

now,

— i
Qi = (Vi) @ |D1}{1D|G?|A|+k_3|.4|+k+l + (VR ® IlD}{DllCﬂlA|+k,2|A|+k+1 (65)
- Elﬂn}{mlczmuk,zmw&ﬂ‘ (66)

s (M), (Hp) We add these two operators

Hp = - ( z |OXOL4, + Z |D:'{D|3.-) @ [11]g, (67)

icflA]] ic| B]]
M =1 |1)1]g, ®[1X1lg,, (68)

to the set of generators.

To construct our desired (QAOA instance, we define a partition of all gates into two groups:

G1 = {Gilicq2a,.. 24 Y {Fiticgas.. p—1} U {Qi}ic(24,...L}: (69)
Go = {Gilicra,.. 24-1} Y {Fikic(2a. . p-2y U{Qibicpra, o1y U{Fiigay-  (70)

Intuitively, G; (respectively, G2) will be part of our Hamiltonian H (respectively, H.). Note also
that all operators in G (respectively, G2) pairwise commute, a fact we will use in our analysis.
Finally, in addition to Assumption 6 and Assumption 7 from VQA, we shall use the following.
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Assumption 11. The acceptance probability of V' in the YES (respectively, NO) case is at least
1 — eg (respectively, at most eg), where eg = O(N~1). This is achieved via standard parallel
repetition of V' k times, followed by a majority vote. This will increase the encoding size of
V' — for k repetitions, the new gate sequence length scales with L' = k(L + O(1)), and yields
E’Q = egm, For the precision we require, it suffices to set k = O(log(N)). Thus, our encoding
size increases by a multiplicative log factor, which does not affect our final approrimation ratio
caleulation.

4.1.1 The QAOA instance

The QAOA instance we use to prove Theorem 4 takes the generators

HE=ZP+HB? (71)
ety
Ho=k) T+M (72)
reGa

with m = g(2|D|—-2)+|C|—1 and m' = g'(2|D|—4)+|C|—1. Crucially, the generators/operators

comprising Hy, (respectively, H,) pairwise commute. The () gates are taken from a QMSA circuit

where using Assumption 11, we set the acceptance threshold of the circuit to ,/6g = ;1—51;; Also,
1

we set K = 57

ar
We prnceeldlby first characterizing the initial state and cost function as defined in Problem 3.

4.1.2 Preliminaries

Initial state Recall in Problem 3, the initial state should be a ground state of Hp (given as
input via a preparation circuit U;). We want this initial state to be

lgss) = 10,0,1,1) apep, (73)

which can trivially be prepared by a constant-sized circuit [7,. To see that we indeed obtain this
|zsp), note that for all generators except G1, M, which are not included in Hj, |gsy) is a ground
state of the generator. Moreover, the groundstate is unique because for each qubit, the state is
uniquely determined by one of the generators, which implies that the entire state is unique.

Fi|0,0,1, 1Y apcp = —2|0,0,1, Y apcp Vi€ {3,5,...,|D| — 1}, IF,. = 2,
G;10,0,1, VY apep = —2[0,0,1, Dapep Vie {2,4...,2|A]}, IGill. = 2,
Q:]0,0,1, 1Y apep = —2|0,0,1, T)apcp Vi€ {2,4...,L}, 1Qillc = 2,
Ho|0,0,1, ) apcp = —(|4] + |B|)|0,0,1,T) agcp, I1H|| . = [4] +|B].

Since the state (73) is a ground state of all the generators of Hy and the terms of Hp mutually
commute, it is also a ground state of Hp. Moreover, since every qubit is non-trivially supported
by at least one generator of Hy, it is also the unique ground state for the entire Hilbert space,
L.e., |gs,) represents the unique one-dimensional subspaces where each gate acts non-trivially.

Cost function In the QAOA setup, the measured observable is H,.. For our construction we
want to use the observable M. We can find an upper bound for the difference of these operators.
Namely, ¥|¥) € H

(|(He — M)|¥)| = £[(¥] Xreg, I'IT)| < 2k|G2| = 11—2 (74)

where we used (1) that ||g||c < 2 for all I' € Go, and (2) the definition of &.
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4.2 Preliminaries for the completeness proof

We first define the set of states comprising our logical computation space,

§ = {Viegaj-1---V1|y)al0---O) r|t)c[s)p| Y(y, t, 5) € Is} (75)
with
s = {cy,as} ye {01t {1,...,[Cls {E;“"'D'} ft;;i’:"”?"*'}} (76)

is the allowed index set. Here, the notation means that Vj is only applied if t > 2| 4|+ 1. Below,
will often write a state |¥g) € span(S) as

Us)= Y ayeaViga_1---Vil)al0---0)slticlE)p (77)
(y.ta)elg

= Z Oy t,a|Wy.t.0) (78)
(uta)els

We also define the function W, or observable, which is roughly intended to capture a lower bound
on the number of Hamiltonian evolutions required to prepare a given logical state |¥,; .):
W (y,t,s) = (2|D] — YHW (y) + t + (=1) ™12 (s + 5,1 — 2), (79)

for HW(y) the Hamming weight of y.
We next show a helpful lemma regarding the action of each Hamiltonian on our logical
computation space, S.

Lemma 4. The following two statements hold:
e For every |Wy:.) € S and H; € {Hp, H:}
oy . () g apld)
e, , ) = evesleilesd| 0, , ) (80)

for some phase o € R. In words, applying H; simulates application of a single gate

'), €Gi, T, € kGa U {M} up to global phase ay s, where KGa = {kI' | T € Go}.
e For every |¥,,,) € 5 and every gate I' € G; UGy U {Hy}, there erist amphitudes {a,; .}
such that
Eirglqry,t,s) = Z a’y,t,almy',t‘,s’) EBI]
(v t'a")els

Wiy a1 <Wiyt,s)+1
In words, the application of g can only increase value of the W-function by at most 1.

Proof. We proceed by case analysis. The first claim will follow if for every |¥,;.), |¥,:.)
()

u.ts comprising H;. To see why, define

is an eigenvector of all but (at most one) generator I’
H), = H; —T{),. Then:

y,t.a y,t.a

i0H ig(rii L} i) agpgld) e L T 1)
E’IEH' |‘L’y1g13} — EIE{FF"’I-‘_HF"’I) |‘Iry,ﬁ1s} — E1El"y'__¢__,e1ﬂHy'|¢__, |1I‘ry1t,a} — E'EPH:*-‘EIEQF‘-‘J|\I‘y1t13), EBE]

Where crﬂ‘a is the corresponding eigenvalue of H;‘ga = H; — FL‘L The second step uses

that all generators in H; commute with each other restricted to states where C and D) are in
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valid logical time states, which one can verify by direct calculation. As for the second claim of
the lemma, it will follow if every generator maps only between states |Uy .} < |V ¢ o} with
|W(y,t,s)—W(y',t',s")| < 1. To obtain these claims, we first list all non-trivial generator tran-
sitions of Hy, where one can transition between various states |V, ; ) listed below. For example,

in Equation (83) and Equation (84), F; can map |y) a[0) 5[2j)c[i)p to [5)4]0)8|2j)cli + 1)p and
vice versa. To the right of each of these states, we list the value of the W-function for that state
(which, recall, is only a function of (y,t, s)).

o (Fi,i€{3,5...,|D|—1}), ¥j € [|A]}, y € {0, 1}/
)al0)B[Z7)cip: W = (2|D| —HW(y) + 2j + (-1)¥a(i—2)  (83)
W) al0)p|Zf)cli + 1)p: W =(2|D| - 4HW(y) +2j + (—1)¥ea'(i—1)  (84)

o (Gi,ic{2,4...,2|A]|}), ¥y € {0, 1}

lw)al0)eli)cT)p: W = (2|D| - )HW(y) +i (85)
8)al0)gli + Del)p: W= (2|D|—4HW(y) +i+1 (86)
) al0)sfi)cP)p: W =(2|D] - 49HW(y) +i (87)

o (Q:i,ic{2,4,...,L}), ¥y € {0, 1}l
Vier---Vily)a|0)g|2 |Aﬂ7+ iyelip: W =(2|D|—4HW(y) +2]A|+14+i (88)
Vi---Vily)al0) |2 |Am+ iye[lip: W =(2|D|—4HW(y) +2]A| +2+i (89)

We note that, by Assumption 6, since V; can only be controlled via register A (as opposed
to acting on A as a target register), it cannot change the string y in A. Thus, W is only
affected via the change on the C register.

. {HUJ: Yy e {D: l}lAl
W)al0)sl)ell)p : W = (2|D] - 9HW(y) + 1 (90)

In all cases above, the change in W is at most 1, every logical state |l ;) in S is appears
in precisely one set, and Hp always acts trivially, proving the lemma for Hy. Repeating this
approach for H, yields a similar conclusion:

o (Fi,i€{2,4...,|D|-2}),Vj € [A]], y € {0,1}}
W)al0)&12i)cli)p: W = (2|D| — HW(y) + 25 + (-1)*#2*(i—2)  (91)
W) al0)p|Zf)cli + 1)p: W =(2|D| - 4HW(y) +2j + (—1)¥e2* (i —1)  (92)

e (Gi,ic{1,3...,2|4] —1}), ¥y € {0, 1}

lw)al0)eli)cl)p: W = (2|D| - )HW(y) +i (93)
8)al0)gli + Del)p: W= (2|D|—4HW(y) +i+1 (94)

o (Pyie{l,...,|A]}), ¥y € {{0,1}1l]y; = 0}
1410612 clDlp : W = (2|D] - )HW(y) + 2i + (D] - 2) (95)
lv®e)al0)sl2i)cl D)p: W = (2|D] —4)HW(y) +1) +2i — (1D -2)  (96)
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o (Qiic{1,3,...,L—1}),Vye {01}
Vit Vil)al0)sl2|A] + 1 +i)c[l)p: W =(2|D| - )HW(y) +2|A|+1+i (97)

——_ i

Vie--Vilp)al0)B|2|A] + 2+ i)e[T)p: W = (2|D] — )HW(y) + 2|A| +2+i (98)

o (M), Vy e {0,131
Vi Vily)alo)sllClicll)p : W = (2|D] — HW(y) +[C| (99)
Z,Vi---Vilal0)slClcDp : W = (2|D] - 9HW(y) +|C|  (100)
Note that the first claim of the lemma indeed holds for M, but since Zg, VL, - - - Vi |y) 4|0} 5| |E|)G|T} D&

span(S), the second claim does not (and thus why we write I' € G; U G2 U {Hp} in the second
claim). (|

With this we can proceed to show completeness and soundness.

4.3 Completeness

In the YES case, there exists a sequence of gates with proof y € {0, 1}/*| of Hamming weight at
most g accepted with probability at least 1—eg by V. We use shorthand (y); = (y1,...95-1.0,...,0)
to indicate the partially written proof string. Also, exp(ifH;) ~ exp(ifl') indicates which gener-
ator (I') in H; performs the non-trivial operation (as per Lemma 4, claim 1). The honest prover
proceeds as follows:

e (Prepare classical proof) Prepare state (up to global phase) [¢o) = |y} 4|0} 5|2 |A| + Le|D)p
as follows. Starting with |gs;) = |(¥)0,0,1, 1} agep:
1. Set j = 1.
2. Apply exp(ig=H.) ~ exp(i§Ga;_1) to map |2j — 1)c — |2j)c. This maps
|(¥);-1,0,25 — 1,1)apep  —  |(¥);-1.0,2j,1)aBcp. (101)
3. fy; =1 then
— Apply exp(i% H) ~ exp(i%Ga;), to map [1)p — [2)p, ie.
(4)i-1,0,2, )ascp  —  |()j-1,0,27,3) aBop. (102)

— Apply, in order, exp(ig H.) ~ exp(i5F2), exp(i5 Hp) ~ exp(izF3), ..., exp(izHy) ~

i

exp(igF|p|-1), in total || — 2 operations . This maps 2)p — ||D|)p, i.e.
(¥)i-1,0,27,2YaBcp = |(¥)j-1,0,25,|D|}aBcp. (103)
— Apply exp(ig;He) ~ exp(igFj), to map [0}4; — [1)4;, Le.
(4)-1:0,24, 1D agep = |(4)5 0,25, D) aBcp- (104)

— Apply, in order, exp(ifHp) ~ exp(iFFp_;).exp(igzH.) ~ exp(iFF|p_a) ---,
exp(ig. H.:) ~ exp(iz F2), in total |D| — 2 operations. This maps ||D|}p — |§}D,
Le.

|(1)7,0,27,|D))apcp  —  |(¥).0,27,2) ach. (105)
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— Apply exp(i2ZH}) ~ exp(iZZGy;), to map [2)p — [1)p and |25)c — |25 + 1)e,
3 3
Le.
1)7,0,25,2)apcp = |(#)7:0,25 + 1, 1) apcp (106)

4. else
— Apply exp(i§Hp) ~ exp(i§Ga;), to map [2f)c + |2 + 1)c , Le.

(¥)5-1,0,25, T)agep  —  |(¥)3,0,2j + 1,T) ancp. (107)
5. Set j = j+ 1.
6. If j < |A|, return to line 2 above.
This process applies 2g(|D| — 1) + 2| A| gates.

e (Simulate verifier) Apply in order, exp(ig H.) ~ exp(i5¢1) , exp(iFHp) ~ exp(igQa),
.. exp(iTHp) ~ exp(iF Q) for a total L gates. This implements the verification circuit,
1.e

19,0,2|A] + 1, 1) apep  —  |¥z) =Vi---V1|1,0,|C], 1) apcp- (108)

Since V' accepts proof y of the QMSA instance with probability at least 1 — eg, we conclude

1 1 1
(Wil Hoftr) < (WLIM¥L) + 75 S1-(1—e@) + 33 < 5 (109)

as desired, first the first inequality follows from Equation (74). The number of Hamiltonians
applied in this case is m = g(2|D| —2) 4+ 2|A| + L = g(2|D| — 2) + |C] — 1, as desired.

4.4 Soundness

In the proof of Theorem 1 for MIN-VQA, we showed that all Hamiltonian evolutions keep us
in our desired logical computation space, 5. In contrast, here for MIN-QQAOA, the M operator
(embedded in H.) does not necessarily preserve the space span(S) (see Claim 2 of Lemma 4).
We thus first require the following lemma, which allows us to “round” our intermediate state
back to one in S for our analysis and also establishes W (y, t, s) as a proper lower bound for the
number of gate applications required to reach the states in S.

Lemma 5 (Rounding lemma). In the NO case, after { = 1 applications of H. and Hy, the state

¢
[We) €T = {HEﬁH"E"IESb} | H; € {Hp, Hc}, 0 € ]R‘:} (110)

i=1

wrill be € < 4Cﬁ close to the span of § ie

V|¥¢) € T¢, 3|W%) € span(S) : ||[Le)(Te| — [WLNTZ |, < 4Cv/eEQ (111)
and it additionally holds that

|1B::) = Z ﬂy,t,sI‘Iry,E,s) - I{:l 12]
I:y,t,S}EIS
Wy,t8)<{4+1
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This lemma is needed because the time evolution of the observable M (in H.) may leave the
sub-space Span(S). The rounding step is possible, because in the NO case, the state in the By
register, after applying the circuit V' (5 = |D)|), is always close to |0) g, (using Assumption 11),
meaning the evolution in M only adds to a global phase.

Proof. For our construction we use
|‘Ir:;+1} _ Eiﬂl:‘l'l[:Hl:‘l'l_MéHc-ferﬂ)I\II'E} (113)

i.e. the same VA but without the M generator in H,.. We show the proof by induction. The
lemma statement holds trivially for the base case ¢ = 0, since

Vo) = [We_g) = [0,0,1, 1) apcp = Z Ayt o| Uy ta) (114)

(y.t.s)sls
Wiy, t.a)=<1

with W(0,1,1) = 1.
Induction step: For the norm inequality (Equation (111)), only M maps states outside of S,
meaning we only have to consider the action of H,. Then,

Tt} o] — [Or o N T4, = [|€F 1) Tele ™ — Ei(H”_M]EPI"cH‘I’E|E_i(H"_M}E”tr

= [N T| - E_iMﬂl‘I'E}{'I‘EIEWEHtI

[

WX W] — MR+ [N — [l

< [|jwtyws| - e—iM9|rIr::}{-1rg|emHtr + &leq,

where the second statement holds since [H., M| = 0 and by the unitary invariance of the trace
norm, the third by the triangle inequality, and the fourth by the induction hypothesis. Now, for
M we have the following non-trivial action:

e ML) — W) = N ay (TN 1)), ) (115)
(y,ta)els
= > ay, (e B — 1))y 0 4) (116)
ye{0,1}11
= {E_ig — 1} Z ﬂ!.l'1|'5'|11|1}{1|31|‘Ir!.l',|c|,1)’ {11?}
ye{0, 1}

where we used that M only acts non-trivially for t = |C'|. This means

Hpn::}{rlry —E_ngqfé}{@’cl&i”g”tr < zﬂe-i%‘i”ﬂpn::) - |er::)”2 (118)
<4 | Y layopilP(Wyo 1N e, [y 1) (119)

ye{0,1}14]
<4 [ 7 layelPeg <44, (120)

y={0, 1}

where the first line is a known norm inequality”” and we used that (Ty ca 1K g, ¥y 1) < €Q
is the acceptance probability of a QMSA NO instance. This shows the first claim of the lemma.
For the second claim, a similar induction setup, coupled with Lemma 4, yields

Pdue to [IlUNw] — [eNell,, = 24/1 — |(W]d)|* and [} — |8)]l, = /2 — 2Re((¥]8)) for all [¢)),|¢) € H and
VI—22 =2 -2r %rell1].
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WL, ) = et (e —Mbng, o) g (121)

= Y gy TET D, ) (122)
{y,t,s}EIs
Wiy,t,s)<¢+1
- Z Oy.t,s Z '5{"' :;"j. [ Uy o ot (123)
(w.ts)els iyt a"els
Wiy,t.8)=(+1 Wiy' ") =Wy, t.s)+1
= Z ﬂ;r,t,s Py.t,8), (124)
{y,t,s}EIs

Wiyts)<(+2

where the second and third statements follow from the first and second claims of Lemma 4,
respectively, and the last statement just recombines the a and b indices into new indices a’. O

We are finally ready to prove soundness. For this, we need to show that in the NO case, all
sequences of { < m' = g'(2|D|—4) + |C| — 1 gates produce cost function value (V;|H.|¥;) > %
This follows since for all { < m/,

1

(W[ Hel¥e) 2 (VM| Ve) — 15 (125)
2 (W | MW7) — [Te[M (W) We| — [N ]| - (126)
> (MWL) — [ M ||| 2K e - |~Ira>{ﬂfz|lit, -5 (127)
= (e | M|Wg) — 4m\,-"_—ﬁ (128)
> (W | M) — (129)
where the first statement follows from Equation (74), the third by Hélder’s inequality, the fourth

by Lemma 5, and the last since ,/6Q < gz By Lemma 4, we can expand |-.Ir } in the basis
W= Y ayes|Vuts) (130)

(y.t,s)els
Wiyta)<m'+1
which gives

(WL M) =1~ > lay o1 ¥y e 1111 5, [Py cp.1) 2 1 —€q (131)

ye {014 HW(y)<g'

as M only acts non-trivial on t = |C| and W(y, |C|,1) < m' + 1 reduces to HW(y) < ¢', and
in the NO case QMSA accepts such a y with at most eg probability. Combining the two results
we get

1 2
(Ue|He|¥g) 21 —eg — 5”3 (132)

which shows soundness for all gates-sequences of length { < m'.



4.5 Hardness ratio

The analysis is essentially identical to that for MIN-VQA, so we sketch it briefly. Since we set
|D| = [L'+*], we have that in ratio

m' _ ¢'(2|D|-4)+|C| -1
m g2 =)+ |0 =1’ (133)

the dominant term is again |D|. Thus, m'/m = g'/g > O((N")'~¢'), for N’ the encoding size of
the QMSA instance, and for any desired ¢ > 0. Since the encoding size of Hy, and H. can also
be seen to scale as O((L')1*?) (recall L' the number of gates in the original QMSA circuit V"),
we can apply Equation (55) and the surrounding appraximation ratio analysis from MIN-VQA
to argue again that N = O{{N’}l"‘ﬁi], for N the encoding size of our MIN-QAOA instance
with logarithmic overhead to satisfy Assumption 11 and only O(L) overhead for the changes
performed to the gate set. Thus, for any desired € > 0, we may choose ¢’ > 0 and & > 0 so that
g /g = (N")'=¢ > N1~ as desired.
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A Additional proofs

Proof of Corollary 2. Suppose there exists an algorithm A for computing estimate mag € Mgy,
N'*mgpt]. We show how to use A to decide MIN-VQA, yielding QCMA-hardness. Specifically,
given an instance II of MIN-VQA, run A. If A’s output is less than or equal to m', accept.
Otherwise, reject.

To see that this is correct, observe that in the YES case, m,,, < m. Since m'/m = N 1 A
outputs estimate ., <= m', from which we conclude II is cannot be a NO instance, and thus
must be a YES instance (due to the promise that II is either a YES or NO instance). Conversely,
in the NO case, Mest = Mgpty > m', from which we conclude IT is a NO instance. O
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Scalable approach to many-body localization via quantum data

Alexander Gresch,* Lennart Bittel, and Martin Kliesch
Quantum Technology Hesearch Group, Heinrich Heine University Disseldorf, Germany

We are interested in how quantum data can allow for practical solutions to otherwise difficult
computational problems. A notoriously difficult phenomenon from quantum many-body physics is
the emergence of many-body localization (MBL). So far, is has evaded a comprehensive analysis. In
particular, numerical studies are challenged by the exponential growth of the Hilbert space dimension.
As many of these studies rely on exact diagonalization of the system’s Hamiltonian, only small
system sizes are accessible.

In this work, we propose a highly flexible neural network based learning approach that, once
given training data, circumvents any computationally expensive step. In this way, we can efficiently
estimate common indicators of MBL such as the adjacent gap ratio or entropic quantities. Our
estimator can be trained on data from various system sizes at once which grants the ability to
extrapolate from smaller to larger ones. Moreover, using transfer learning we show that already a
two-dimensional feature vector is sufficient to obtain several different indicators at various energy
densities at once. We hope that our approach can be applied to large-scale quantum experiments to

provide new insights into quantum many-body physics.

I. INTRODUCTION

The goal of quantum computing is to efficiently solve
practically relevant problems that are intractable on clas-
sical computers. Many those problems require a fault-
tolerant, universal quantum computer. This requirement,
in turn, comes in conjunction with the need for quantum
error correction which yields a daunting overhead in the
qubit numbers. Both requirements exceed the current
available quantum hardware substantially. Hence, in the
meantime, the potential of hybrid quantum algorithms is
explored. They aim to optimally use the few dozens of
available qubits with no or little error mitigation schemes.
Most of their pragmatic approaches are centered around
variational quantum algorithms (VQAs) [1, 2]. These
algorithms provide heuristics for problems such as finding
the ground-state energy in the field of quantum chemistry
[3] or solving combinatorial problems [4]. Even though
the encountered practical constraints impose a tall hurdle,
those efforts appear promising for near-future applications.
Such hopes are furthermore fucled by the achievements in
the field of deep learning, especially during the last decade.
Diespite the absence of rigorous performance guarantees,
there has been a tremendous success of deep learning
methods in diverse fields ranging from computer vision,
natural language processing to finance and beyond [5].

Ower the last year, rigorous performance guarantees
for machine learning-hased approaches to quantum many-
body physics have been found [6—8]. These findings sug-
gost that machine learning algorithms are well suitable
to generalize efficiently on quantum data that is obtained
by quantum experiments or a quantum simulation. In
particular, with the recent development in hybrid quan-
tum algorithms such as the variational quantum eigen-
solver (VQE) [3, 9], variational methods become interest-
ing, viable experimental alternatives. Alterations to the

* alexander. gresch@ihhu de

originally proposed scheme allow for the study of a fow
eigenvalues and -states around a target energy [10] which
does not need to be the ground state [11]. The VQE's
setting suits the study of MBL quite well [12].

To demonstrate the importance of the quantum data,
difficult problems from quantum physics are needed.
These problems are rendered as such because of their ova-
sive behavior under analytical or numerical analyses. One
of such notoriously difficult problems is the phenomenon
of localization in interacting quantum many-body sys-
tems, known as MBL [13-15], see e.g. Refs. [16-18] for
reviews. It originates from the wellknown Anderson
model of non-interacting fermions in a disordered poten-
tial where localization occurs above a certain disorder
threshold [19]. The seminal works [13, 20] proved the sur-
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FIG. 1. Workflow for training our model architecture to
predict indicator values ¥ from the system's disorder vector
h. We pass the latter into a recurrent neural network as
in Fig. 2 which extracts general features of h in a scalable
fashion. These features can be augmented by the respective
energy density ¢ we are considering. Together, they are fed
into a fully-connected neural network that maps them to ¥.
They are compared to the results y obtained from exactly
diagonalizing the system’s Hamiltonian in the corresponding
energy density e



vival of the localization under the introduction of a weak
interaction in terms of a perturbation. This localization
can be pinpointed to the emergence of macroscopically
many conserved quantities [16, 21-24] that suppress the
flow of correlations through the system. In the regime of
strong interactions (or comversely, a negligible disordered
potential), MBL does not occur which indicates a phase
transition between the MBL phase and the delocalized
one. The latter can be explored deploying eg classi-
cally motivated ergodic arguments [25]. However, little
is known about the transition region between the two
phases and its underlying mechanism The emergence of
MBL connects to the fundamental question of thermaliza-
tion in quantum mechanics [26-28), possibly bridged by
the eigenstate thermalization hypothesis (ETH) [16, 29].
Numerical studies of the transition either apply exact diag-
onalization methods [14, 30, 31] or approximate methods
such as renormalization group techniques [32]. Around the
presumed transition region between the two phases, the
numerical methods suffer from the curse of dimensionality
because the Hilbert space dimension grows exponentially
with the chain length L. Moreover, a oumerical extrapo-
lation to the thermodynamic limit at which the transition
is expected to be chararacterized by a single value for the
critical disorder parameter k. is hampered by finito-size
effects [33].

A. Related works

The idea of applying neural networks (NNs) to physical
problems and, in particular, phase classification, arises as
a consequence of its success with feature extraction e g.
for conventional image classification, where the classifiers
could achieve a higher prediction accuracy than human
test groups [34]. It has led to a surge of explorations in
applying similar methods to difficult problems in (quan-
tum) many-body physics [35-35). The phenomenon of
MBL, in particular, has attracted many numerical ap-
proaches using machine learning [39-41] or deep learn-
ing [42-45]. The previous attempts typically utilized NNs
for the phase classification in order to extract a phase dia-
gram of the transition in an energy-density- and disorder-
parameter-resolved way. Employing a recurrent neural
network (RNN) to study the behavior of MBL was — to
the best of our knowledge — first accomplished by Ref. [43]
who trace the temporal evolution of an observable as a
phase classification task. In variation to those approaches,
we propose to employ an RNN to characterize a given
instance of the Hamiltonian’s components in terms of
quantum data. For the characterization, there has been
an explorative work done by Nieuwenburg, Baum, and Re-
fael [45] in the same direction. They show the learnability
of the adjacent gap ratio by means of convolutional NNs
from the disorder vector joined with the corresponding
disorder parameter, i.e. from h @ h [45, Appendix]. Their
efforts, however, resort to a proofof principle demonstra-
tion and use it for data augmentation. Moreover, their

architecture is not scalable in the system size I because
the output size of the convolutional layers grows linearly
with L. Such convolutional layers can be made scalable
with the input size as demonstrated by Saraceni, Cantori,
and Pilati [46]. They propose an architecture where the
mumber of extracted features does not grow with the in-
put size and can thus be mapped to a fixed output size.
Avpart from this last instance, all the previous methods
are restricted to a given, fixed chain length and therefore
not applicable to data from a larger system. Another
bottleneck is the fact that the typical input for these
approaches consists of heavily preprocessed data such as
the entanglement spectrum [42] or even a whole eigenvec-
tor of the Hamiltonian [44]. Both are obtained by exact
diagonalization and thus lack a feasible source of training
data from the transition regime for system sizes L Z 20

B. Owur contribution

In this work, we propose an NN-architecture that is
both applicable to data from different system sizes and not
necessitating any computationally costly preprocessing of
the input data. We accomplish this by directly presenting
the local disorder values h = (hy,...,kg) to an BNN.
This step lifts the system size constraint by treating h
as a sequence of inputs such that the sequence length
corresponds to the system size. The output of the RNN
serves as the extracted feature vector from the disorder
sequence. Typically, such features do not yet resemble the
indicators. Rather, they are global properties of the input
which are not tied to a specific regression task This view
is adapted from results in computer vision where the first
layers of image classifying networks merely detect edges
and corners, independent of the underlying classification
problem [47]. Hence, we use a final fully-connected NN as
sketched in Fig | that maps the extracted features to the
indicator estimates. With this choice for our architecture,
we can investigate in the features further by means of
transfer learning [48]. To this end, we show that a set of
features extracted from some indicators can be generalized
to other previously unseen indicators. Moreover, we show
that we can achieve this goal with only two features
of the input without a significant drop in performance.
Finally, we demonstrate the efficiency of our architecture
to enhance the resolution of the phase diagram of the test
data set. We achieve this because our trained network
is capable of predicting the indicator values for various
choices of the energy density € and disorder parameter h
at once.

We emphasize that this NN-based approach to the
phenomenon of MBL differs from previous attempts dras-
tically. Previously, NNs have been used for the classi-
fication task of preprocessed inputs [42-45]. Such an
ansatz depends completely on the availability of the pre-
processed input. We take a step further and demonstrate
that distinctive signatures of MBL, encoded in the indi-
cator values, are directly learnable from a given disorder



realization in a spin chain. That is, we only enter the
defining values of the Hamiltonian and regard the pro-
cessed indicators as targets, not as inputs to our NN. We
obtain these estimates for each disorder realization and
for various energy densities at once, i.e. we do not require
any averages beforchand.

C. Outline

In the next Section 11 A, we introduce artificial NNs
and in particular our model architecture that is based
on a recurrent variant. We proceed by introducing the
quantum many-body system of interest for the study of
MBL in Section [ B. As a test bed for our set-up, this will
be the disordered Heisenberg spin chain. To this end, we
present prominent indicators of MBL and their behavior
in each of the two phases. In Section 1T A we demon-
strate the scalability of our architecture to predict data
for system sizes beyond the training set. This includes a
quantitative benchmark of the quality of the network’s
output. As the next step, we emphasize in Section [I1B
by the means of transfor learning that the relevant global
features of the input are recognized. Moreover, this hints
towards a compatibility between the various indicators
which is understood in the study of Anderson localization
but remains unclear for MBL. Lastly, we show the nu-
merical efficiency of our method in Section [11 C to obtain
a high-resolution phase diagram of the MBL-transition.
We complement our work with a summary and an outlook
for future directions in Section I'V.

II. PRELIMINARIES

In the following, we start with providing the required
background of RNNs, accompanied by a physical model
featuring MBL, the Heisenberg spin chain.

A. Recurrent artificial neural networks

We use artificial NNs and in particular their recurrent
variant (RNN). NNz are loosely inspired by their biclog-
ical counterpart in the human brain. Effectively, they
serve as a black-box approach to a universal function
appraximator. They are modularily built by so-called pa-
rameterized layers, usually of the form y; = o(Wiyi—1+5)
where the parameters of the Ith layer (W, b)) are called
weights and biases, respectively. The linearity is broken
by a so-called activation function o which is a non-linear
function, usually applied element-wise to its argument.
This way, a predefined type of input x =: yy is processed
layer by layer. This is referred to as the foed-forward pass
of the NN. As a consequence, we can consider the NN
as a parameterized black-box function fp(x) = ¥ with
parameters § given by the weights and biases. In the
supervised learning setting, the input x is tied to a target
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value y of which ¥ is an estimation. The quality of the es-
timation is quantifiable by the so-called loss function. Its
gradient with respect to the network’s parameters £ can
be computed efficiently by the method of backpropagation
It is used in an update rule, such as gradient descent, for
the parameters to iteratively find a set of parameters that
minimizes the loss [47].

The key limitation of the plain-vanilla NN is the re-
striction in the fixed input shape. RNNs have a special
architecture that allows e.g for an arbitrary input and
output length. This feature is heavily utilized in the field
of natural language processing. The recurrent behavior of
a layer is achioved by the introduction of a hidden state
H. To this end, we regard the input x = (xy,x3,...,%7)
as a sequence of T individual inputs. The hidden state
can be repeatedly updated according to the network's
parameters # and the current input, ie. H; = H, (8, Hi—1)
with t =1,..., T Importantly, the same parameters 8
are used for every update of the hidden state. The final
hidden state Hp serves as the output of the recurrent
layer. A schematic is shown in Fig 2.

B. The model for MBL

A common model often consulted on for the study of
MEBL is the one-dimensional Heisenberg spin chain of
length I whose Hamiltonian reads as

L
H=JZ Z (.} (l+1}+zh13(-} (1)

i=1 ac{rpz} i=1

where D'_E_';?wz denotes the respective Pauli matrix acting on
the i-th site. We work with periodic boundary conditions,
ie ‘35:;1: = G’itij,.fz' The parameters h = (hq, ..., hg)
are the local disorder strengths which are sampled inde-
pendently from a uniform distribution over the interval

Hr Hr
1. T
-~ -
{:It} X1 X3 xll;"

FIG. 2. Scheme of an RNN cell as used in Fig. 1. On
the left, the cell is shown as a black-box that iterates over
an input sequence {x.} and produces an output state Hr.
Unfolding the cell results in the scheme on the right. An
initial hidden state Ho is evolved over T time steps during
which the sequence elements are fed into the network one after
another. The final evolved hidden state is released as the
network’s output. Each box on the right corresponds to the
same cell architecture, i.e. having the same weights and biases
for each time step. The recurrent cell can process inputs of
arbitrary sequence lengths T



h; € [—h,h] for each site i. The variable h is called
the disorder parameter. The nearest-neighbor interaction
strength J can be set to unity as we are only considering
its relation to the value of h, Le. we report values for h
in units of .J. _

We note that the total magnetization St = E:":l ot
commutes with the Hamiltonian (1), and we restrict our
considerations to the 5% = 0 sector and even chain
lengths L £ 2M. The dimensionality of this sector is
{Ijﬂ}' This model displays delocalized eigenstates for
h — 0 because the Hamiltonian becomes rotationally in-
variant in this limit. On the other hand, ie. for b — oo
the interaction term is negligible, and we recover the lo-
calization behavior of the Anderson model. In between
these limits, a phase transition from the delocalized phase
to the many-body localized one is therefore assumed.
Numerical studies report an estimation of the critical
disorder parameter h. of h, = 6', which has an addi-
tional slight dependence on the considered energy density
e(E) == (E — Emin)/(Emax — Emin) [15]. This mumerically
observed so-called mobility edge is debated from theoreti-
cal grounds and attributed to finite-size effects [24].

There are several properties of the two phases which are
shared with the Anderson metal-insulator transition. Such
properties like the system’s entanglement or its spectral
statistics are typically aimed to be summarized by a single
real number. Since it varies in its numerical value from
one phase to the other, it is referred to as an indicator for
many-body localization. This is not an order parameter as
there exists no mean-field theory for MBL [18]. Indicators
can be divided into three groups of origin: (i) spectral in-
dicators (function of the cigenvalues), (ii) functions of the
cigonvectors (e.g. entanglement entropies), and (iii) time-
averaged observables after a quench. As one example for a
spectral indicator, it is known that the distribution of the
spectral gaps of the Hamiltonian varies between the two
phases. In particular, for h — 0 the gaps are distributed
according to the Wigner-Dyson distribution whereas the
distribution is Poissonian in the MBL phase [13]. These
two limiting cases are incorporated by the adjacent gap
ratio (r). This ratio can be computed for the i-th spectral
ga.pﬁ.-=E;+1—E.-?-_='[]ﬂs

. min{d;1,4}
" maxn,0) @
Averaging over all elgenvalues close to a target energy
density and over different disorder realizations yields
{r)deine = 0.53 in the delocalized limit and {r}ypL =
21n(2) — 1 =2 0.39 in the MBL phase when h — oo
Localization is not only traceable by spectral statistics.
Another prominent measure is the half-chain entangle-
ment entropy [14]. To this end, we split the chain in
half and caleulate the reduced density matrix of the first

! Due to our definition of Eq. (1) via Pauli matrices, the critical
value is twice as large as typically reported in the literature.
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half ps := Trg|pag] by tracing out the second half of
the joint density matrix psp. The density operator is
constructed for each eigenstate |n) of the Hamiltonian, ie.
pag = |n}{n|. The entanglement entropy (S4) is given
by computing

54 = Tr[paIn(pa4)] (3)

and averaging again over cigenstates and disorder real-
mations. We normalize this quantity with the expected
maximal half-chain entropy which is the Page entropy [49].
In this way, the indicator varies from 1 in the delocalized
regime to approaching 0 in the MBL phase as entangle-
ment is suppressed by the local disorder. Moreover, we
note a volume-law scaling of the entanglement entropy
with respect to the system size in the delocalimed phase
but only an area-law scaling in the localized regime [50].

In addition, the eigenstates carry information about the
transport behavior of the spin which is a global conserved
quantity. The dynamical spin fraction {F) quantifies
the degree of relaxation of an initial inhomogeneous spin
density [14]. It is given as

(MTM)
(MT)(M)

L -
with M = Z ) exp (Ewi J E 1)

i=1

F=1-
(4)

where the expectation value is taken for all ecigenstates
close to a target energy. Again, we average F over many
disorder realizations. The persistent spin inhomogeneity
in the MBL phase means that {F) — 0 whereas in the
delocalized regime {(F) — 1.

III. RESULTS

In this work, we report on a highly flexible deep learn-
ing architecture whose workflow we depict in Fig 1 that
learns the quantum data obtained from an experiment
or a numerical study. In this way, predictions can be
made for single instances at various energy levels at once,
and we do not need any averages over input configu-
rations. Moreover, the set-up lifts the restriction of a
fixed system size for the available quantum data and only
requires the relevant parameters of the underlying Hamil-
tonian. We demonstrate that the set-up extracts global,
ie. task-independent features from the input which makes
it applicable to predicting a broad class of quantum data.
Thus, our approximation scheme serves as a computation-
ally cheap alternative to demanding numerical methods
such as exact diagonalization. We emphasize that, in a
broader sense, our method is not limited to the study of
MBL but applicable to many more problems in quantum
many-body physics.
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FIG. 3. Estimation of the indicator statistics by the RNN as
a function of the disorder parameter h for the L = 14 chain
at an energy density € = 0.5. We also provide the respective
standard deviations around the means which are reproduced
by the NN for the first two indicators as well.

A. Scalable indicator approximation

Ower the last two decades of approaching Anderson
localization analytically and subsequently MBL mostly
numerically, several properties of the phenomenon have
been demonstrated to be summarized by the aid of the
aforementioned indicators. We demonstrate that they can
be approximated efficiently by an NN. Intuitively, this
comes as no surprise for the indicator values are functions
of the Hamiltonian's parameters which are taken as the
input of the NN. The defining parameters of the Hamil-
tonian (1) are the local disorder values h = (hy, ... hy)
as we consider isotropic nearest-neighbor interactions of
relative unit strength. As we explain later in Section [11C,
our architecture is capable of estimating the indicators for
various values of the energy density e at once. For now,
however, we restrict ourselves to the infinite temperature
regime, i.o. with € = 0.5 fixed. In order to accommodate
disorder vectors of different lengths, we use an BNN ar-
chitecture that treats the disorder vector as a sequence
of the local disorder values. BNNs have specifically been
designed to handle variable sequence lengths by virtue
of their recursive design, see Fig. 2 and further details
in Appendix A. As loss function, we choose the mean-
squared-crror (MSE) between the obtained estimations of
the RNN and the actual values obtained by exact diago-
nalization of the Hamiltonian. As a framework for setting
up the NNs and its training, we rely on PyTorch [31].
We publish our data and the code for performing the
training of the NNz and for creating all here presented
plots online [52].

Figure 3 shows a plot of the learned indicator statistics
for I = 14 where the network has been trained on data
from chain lengths L = 10,12, We interleave the plot-
ting of the underlying target data with the corresponding

output from the NN_ For various values of the disorder
parameter h, we sampled disorder vectors that make up
different Hamiltonians. For each of these, we obtained
the vector of indicator values y from Section 1B via
exact diagonalization. Each of the disorder vectors was
fod into our NN to output an estimation ¥ of y. In the
plot, we show the mean and the standard deviation (that
results from different realizations of the disorder vector
sampled with the same disorder parameter h) of y and ¥y,
respectively. Especially the entanglement entropy Sa (3)
and the dynamical spin fraction F (4) show a good agree-
ment up to the second moment of the data distribution.
For the adjacent gap ratio r (2), only the mean is well
approximated which indicates that the dependence of r
on the level of the particular disorder realization may
be harder to learn. Importantly, we demonstrate that
our NN-architecture can be queried on data belonging to
an arbitrary chain length L. Here, we have trained on
smaller system sizes and find a qualitative agreement for
the larger system size, L = 14, in the plot.

Additionally, we can quantitatively benchmark the per-
formance of our network using the coefficient of determi-
nation R?. It is used as a benchmarking tool in linear
regression and is defined as

g 2alflE —u)? _ | _ MSE[f(X),Y]
>i(v — 9) Var[Y]

where the sum runs over all data point pairs {{z;,1;)} in
the test set, the mean over the targets y; is denoted by
4, f represents the NN and Var[l'] denotes the variance
of Y. So, it essentially compares the MSE of the network
outputs with the variance in the data For a non-linear
function f the second term on the right-hand-side is
unbounded from above and the corresponding R? value
will lie in the interval (—oo,1] which is unwanted for
a squared expression. The coefficient of determination
(5) can be transformed to a non-negative number by
mt.mducmg R im = 1/(2 - R%) e [0,1] [53]. Here,
R2 .. = 1 means an approximation being exact and le
constitutes a baseline value, which is attained for f being
the constant function that outputs the target mean. We
calculate the normalized coefficient indicator-wise for each
value of the disorder parameter h.

The result for the same energy density as in Fig. 3 is
presented in Fig. 4. We emphasize that the network has
not encountered any training data from the largest system
size, L = 14 Yet, it is qualitatively able to estimate val-
ues beyond its training set system sizes. This quantitative
observation corroborates our first qualitative one in Fig. 3.
Since the entanglement entropy and the dynamical spin
fraction have been well-matched, we see a large value of
R2 _ for values h Z 3 accordingly. The breakdown for
disorder parameter values below that can be attributed to
the vanishing variance in the test set for A — 0 due to the
vanishing disorder in the Hamiltonian. As a consequence,
it does not pose a threat to our set-up as it could easily
be circumvented by weighting the corresponding training

(5)
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FIG. 4. Normalized coefficient of determination B2, for
each MBL indicator as a function of the disorder parameter
h at an energy density € = 0.5. We average all results over
five independently trained models. The network has not en-
countered any data from the L = 14 chain (dashed line), yet
is capable of capturing the significant part of the indicator
statistics. The dotted line is plotted at Rm = 1/2 to serve
as a baseline. The breakdown of the quality for small disorder
parameter values is due to a vanishing variance in the test set
which is a consequence of the vanishing disorder in the system,
800 mMain text.

data accordingly. As we have scen already, the adjacent
gap ratio can only estimate the mean of the data distri-
bution faithfully Hence, the corresponding normalized
coefficient of determination barely exceeds the baseline
value. We attribute this to the unsteadiness in the def-
inition of the adjacent gap ratio caused by the division.
Here, similar Hamiltonians in terms of their respective
disorder vectors h can have very different spectra and,
in consequence, a very different spectral indicator value.
Moreover, it differs in the limit of vanishing disorder as
the spectral indicator can be sufficiently described by the
Wigner-Diyson distribution from random matrix theory.
We therefore do not observe a vanishing variance in our
numerics which explains the difference in the limit h — 0
compared to the other indicators.

Lastly, we experimented with the number of required
number of samples in the training set. This is a crucial
figure of merit since obtaining the training data always
poses a bottleneck in deep-learning approaches to quan-
tum many-body physics. Since ecach disorder realization
of a given disorder parameter value h is sampled from
a uniform distribution over the interval [—h, k], the cor-
responding variance for a single local disorder strength
h; increases quadratically with h. However, we found no
qualitative difference in the approximation quality when
considering a training set with a massively increased pro-

G

portion of data from the MBL side. As the bottleneck
of benchmarking our approach is the generation of the
training set (due to the cost intensity of the exact diagonal-
ization), we are interested in how the network copes with
a shrunken training data set. We refer to Appendix B for
the analysis and plots. In essence, we find that we can
shrink the training data set if we allow for more training
epochs in return. This way, we can reduce the training
data set down to a number close to the number of train-
able parameters in the network. These observations are
crucial for obtaining a data set from an actual experiment
in the future where determining indicator values for even
a single realization might be expensive.

B. Transfer learning

The common notion in deep learning is that there exists
a hierarchy of abstraction in what the different layers of
an NN are capable of identifying This view has been
corroborated by inspecting the first layers of state-of-the-
art image classifiers which correspond to edge and corner
detection [47]. Since such tasks are detached from the
actual classification task, the first layers are said to detect
task-unspecific, general featwres of the input and thus
regarded as feature extractors. Only the last layers of a
{deep) NN map these extracted features to the specific
problem at hand.

In this section, we inspect whether such a behavior
is exhibited by our proposed model We approach this
question with the aid of transfer learning [48]. The idea is,
assuming that the RNN actually extracts general features
of the disorder vector h, to keep the RNN fixed after
we have trained it on a set of MBL indicators. We can
now switch the targets in the training set, ie. exchange
the target indicators with some new indicators which the
network has not encountered before. As the RNN-output
is detached from the choice of the target indicators, we
only retrain the NN that maps the features to the newly
chosen indicators. If the output of the RNN corresponds
to features of the nput that are task-independent, the
prediction quality should be comparable to the case where
we retrain the full model from scratch on the new data.

We sclect the dynamical spin fraction F (4) as the
transfer target indicator. To this end, we train our model
on the adjacent gap ratio r (2) and on the entangloment
entropy S4 (3) for system sizes L = 10,12, Thus, we ex-
clude F explicitly from the training set. Once the training
succeeds, we keep the RNN's parameters fixed and only
retrain the subsequent NN to predict the spin fraction
given the output of the RWNN. We benchmark the predic-
tion quality with a model of the same architecture that is
trained to predict only F from scratch. Furthermore, we
compare both predictions with the previous model from
Fig. 4 that has been trained on all three indicators at once
and which we call the multitask network. A quantitative
comparison using the normalized codficient of determina-
tion (5) is given in Fig 5. The transferred features lead
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FIG. 5. Plot of the normalized coefficient of determination
(5) for the dynamical spin fraction 7. We compare the model
trained via transfer learning (gray line) with an uninitialized
model that learns from scratch (orange line) and the previously
trained model on all indicators at once (blue line). Once
again, we have excluded data for L = 14 from the training
set which is indicated by the dashed lines in the lower left
panel. The dotted line is plotted at B2, = 1/2 to serve as
a baseline. We averaged the outcome over five independent
training procedures.

to a comparable performance as a model that is retrained
from scratch and thus tailored to the specific indicator.
Additionally, the performance of the these two networks
is very similar to the multitask network. The differences
between any two curves is due to statistical errors. We
find a similar situation when selecting the adjacent gap
ratio or the entanglement entropy as the transfer target in-
dicator, respectively (data not shown). We can attribute
the congruence of all three different types of training to
the following two reasons. First, there appears no qualita-
tive difference in the learnability of each of the indicators.
Moreover, they scem to be compatible with each other
in the sense that they can all be obtained from the same
features. In our case, we are able to apply the transfer
learning scheme using only two features. We provide more
details in Appendix A. This indicates that the extracted
features are general enough to allow for the estimation of
a variety of indicators which, in turn, do not rely on a
specific set of features produced during a specific training
procedure.

C. Energy dependency

Lastly, we demonstrate that predictions from our
trained estimator recover the results from previous nu-
merical studies of MBL in the limit of averaging over

many disorder realizations. Namely, we recover the phase
diagram of the transition for various chain lengths L that
show the indicator values in dependence of the consid-
ered disorder parameter b and energy density e To this
end, we can generate predictions of unseen trial disorder
realizations, 1e. random instances of disorder vectors for
a given chain length and disorder parameter. These in-
stances are fed into our NN to accumulate a trial data
sot for various energy densities € at once. The latter is
straight-forwardly incorporated by augmenting the output
of the RNN by the corresponding value for €. Since we
solely focus on the network’s prediction, we do not need
to perform the exact diagonalization procedure for these
new instances. Therefore, generating this large data set is
efficient in the system size. The resulting phase diagram
for the dynamical spin fraction F is presented in Fig 6.

Most importantly, we are now able to generate images
of the phase diagram to an arbitrary resolution with
mumerical efficiacy. Moreover, we are not limited by the
initial resolution in the training data. This is becanse we
only require forward passes through the NN which scales
both linearly in the number of queried values for both the
disorder parameter and the energy density. We provide
further insights in Appendix C.

IV. CONCLUSION AND OUTLOOK

We have constructed a RNN architecture that approsd-
mates values for certain indicators for MBL directly from
the variable part of the Hamiltonian, i.e. the local disorder
strengths. The recurrent set-up ensures that the network
can process data for an arbitrary system size L and pro-
duce a good estimation output provided the trial system
size is not too far off the training set. Moreover, our
approach does not require any further computationally
expensive preprocessing of the input data. In this way, we
are able to characterize single disorder realizations by pro-

1 3 3 T 9 11 1 3 3 7 9 11
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FIG. 6. Phase diagram of the dynamical spin fraction
J- for various energy densities ¢, disorder parameter values
h and for a chain length of L = 14. In (a), we show the
qualitative diagram of the transition obtained by averaging
over many disorder realzations. It is faithfully reproduced by
the averaged predictions of the NN (b). Moreover, as the NN
allows to estimate data for arbitrary values of € and h we can
efficiently increase the resolution of the diagram.



viding the corresponding indicator values. By inspecting
the intermediate features of the RNN by means of transfer
learning, we observe that all considered indicators can be
derived from two features alone. Furthermore, they serve
as an archetype for various indicators at arbitrary energy
densities at once. This enables us to study the transition
region by means of phase diagrams that can be rendered
to an arbitrary resolution.

Outlook

With a training set that consists of indicator sets from
different system sizes, we envision an interplay between an
actual experiment and our architecture. The experiment
can address systems consisting of dozens of spins or qubits.
Thus, it delivers the training set for the architecture be-
yond what is reachable by exact diagonalwation studies.
As we demonstrated, our architecture is not inclined to a
specific data type. Thus, the experiment is not restricted
to a certain indicator but can provide the most amenable
one (such as the growth of the entanglement entropy [54],
the imbalance after a quench [54-57] or even character-
istics of the energy spectrum [58]) for the training set.
Motivated by our findings in Section [11 A we conjecture
that only a fow realizations per disorder parameter are
sufficient as to merely guide the extrapolation. In ad-
dition, the indicators are expected to become more and
more pronounced in their respective shape. Therefore, we
do not expect large deviations from the case of smaller
system sizes up to finite-size effects. The whole premise
of transfor learning relies on the assumption that the
additional data for a larger system size only serves as a
guidance for the overall learned structure on the training
set. This boosts training the NN significantly [48, 50].
Given experimental training input, the network can in
turn provide estimates for data outside of or in between
gaps in the training set which can be benchmarked by
the experiment in return [60, 61]. Other possibilities of
enriching the training set is to resort to numerical ap-
proximations, for example by tensor networks methods
which are well-suited deep within the MBL phase [62]
or yet another NN architecture to even speed up those
methods [63]. With the data at hand, a more detailed
examination of the compability of different indicators al-
lows to shed some light on their yet unknown coaction
towards MBL. Diving deeper into the interpretation of
the archetypical feature and the compatibility of various
indicators is an interesting research direction for future
works.

Our proposed scheme aims to bring together the of-
ten independent advances in experiments and numeries,
and we see possible research directions in the now scal-
able phase classification task and a better understanding
of the learning process of the recurrent feature extrac-
tor. Furthermore, the connection of our method with
a VQA is of broader interest ranging from applications
in condensed matter and statistical physics to the field
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of (hybrid) quantum computation or quantum machine
learning. Compared to the existing traditional numerical
methods, the interplay of a quantum experiment or its
simulation with our method may constitute a new type
of quantum advantage in the sense that we can obtain an
efficient classical method only via accessing a quantum
data set. Such a pairing provides a potentially power-
ful computational tool that is yet to be augmented with
experimental data in the future.



APPENDIX

In this appendix, we provide more details on our net-
work architecture and the training procedure. Starting
with Appendix A, we describe the generation of the data
sets and detail the architecture of our approach. In Ap-
pendix B, we examine the network’s performance under
a shrinking data set size. Finally, we give some more
comments on the obtained phase diagram in Section I[I11C
and its analysis in Appendix C.

A. Details on the network architecture and the
training procedure

We briefly describe how we set up the training and
the test set as well as the network architecture used
for the results in the main text. We set up a grid
for the disorder parameter h, ie we chose 30 values
h=105,1,1.5,...,15 which lie well around the assumed
critical disorder parameter value of h, = 6. For each chain
length I = 10,12, 14 we have sampled disorder vectors h
with entries h; independently and identieally distributed
from the uniform distribution, such that h; € [-h, k] for
a given disorder parameter value h. For each h and L,
this was done Nipgin = 1000 and Ny = 100 times for
the two data sets, respectively. Each of these disorder
vectors yields a realimation of the Hamiltonian (1). Its
eigenvalues and -vectors were found via exact diagonaliza-
tion. We have chosen a grid of N, = 19 energy densities
¢ = 0.05,0.1,0.15, .. .,0.95 and have kept the 100 next
closest eigenvalues and their corresponding eigenvectors
for calculating the three indicators from Section [TE.

The architecture of our proposed network scheme is
summarized in Fig 7 and we explain its choice in the

# parameters
) RNN 36
energy density NN 63 (220)
Total 99 (256)

output_size — 3

input_size = 2
hidden_size — 10
hidden_size — 31

FIG. 7. Details of our model architecture of Fig. 1. The
recurrent neural network as in Fig. 2 takes in the preprocessed
input iteratively. Afterwards, the final hidden state is fed into
the fully-connected NN. It can be augmented by the respective
energy density € as done for Section I11C. The corresponding
alterations in the network architecture are emphasized by the
gray font. The total number of trainable parameters (including
biases) are given in the table.
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following. The first part consists of an BNN-cell that
serves as a feature extractor of the input. The RNN is
presented each disorder parameter h; successively and
updates its hidden state according to its parameters and
the value of h;. The hidden state was initialized as zero.
After having fed in hj, the final updated hidden state is
released as the output of the RNN. We treat this output
as the feature vector of the disorder vector. Due to this
recursive procedure, RNNs can be unstable during train-
ing because of exploding or vanishing gradients in the
optimization procedure. In order to circumvent this prob-
lem, the long short-term memory (LSTM) cell [64] and
the gated recurrent unit (GRU) [65] have been proposed
with competing performance-efficiency trade-offs [66]. We
find the latter to be slightly better in performance during
training. Concerning the number of output features of
the RNN, we find qualitative good results when choos-
ing a feature dimension of 2. A larger dimensionality
does increase the performance of the indicator approx-
imation, however, we observe a severly decreased per-
formance when applying the transfer learning scheme
from Fig. 5. We have only used a single RNN coll of
depth one. Lastly, we have performed a computation-
ally inexpensive preprocessing of the disorder vector. We
regroup the elements of the disorder vector in pairs of
two, Le. transform according to [hi, ha, ha.... he] —
[(h1, h2), (ha, ha), ..., (hp—1,he), (he, h1)]. Regroupings
into even larger tuples are also possible. The pairing
in two, however, fits in well with the nearest-neighbor
interactions and the periodic boundary condition and, fur-
thermore, leads to the best performance. Afterwards, the
feature vector is augmented by the value for the energy
density € under consideration. Together, we map them
to the three indicator values by a fully-connected NN of
hidden size 10. As the loss we choose the mean-squared-
error (MSE) and train the model for Nopoens = 15 on
the training data We use the Adam optimizer with de-
fault ml;ms [67], a batch-size of 128 and a learning rate
=107

For the transfer learning scheme of Section IIIE and
for creating the model that is capable of dealing with
an arbitrary energy density e in Section II1C, the train-
ing consists of two stages: we first proceed as outlined
above This pretraining is necessary to facilitate an cas-
ier focussed training of the RNN to extract meaningful
features which we show in Fig. 8 Then, we fix the pa-
rameters of the RNN and thus the intermediate foatures,
and train the subsequent fully-connected NN on the full
training data for 30 more epochs with a decreased learn-
ing rate of 10~* following the Adam optimizer routine.
This fine-tuning of the NN yields a greater performance
compared to training the two components of the model
jointly The choice for the hyperparameters (architecture
of the two individual components, feature size, number
of hidden neurons and the optimizer parameters) above
has been determined on a held-out validation data set.
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FIG. 8. Typical features produced after the training averaged
over the training set. Error on the means are on the scale of
the line thickness. The crossing points vary from training to
training which makes retraining and averaging a necessity.

B. Examination of the data set size

In this section, we provide details on the results of See-
tion [T A. In particular, we investigate the performance
dependence on the size of the training data set. We can
test this quantitatively by decreasing the number of sam-
ples per disorder parameter Nypin. In this setting, half
a value in Ny, corresponds to a two-fold reduction in
the training set size. If we were to train now for a fixed
number of epochs Nopochs, that is, until the network en-
countered each data point Nopochs times during training,
we expect a better performance with a larger Nipgin. In
this case, the network receives more update iterations
to minimize the MSE objective, hence the performance
gain. For a fairer comparison, we track both the training
and the test loss during training after each npdate step.
Hence, the total number of iteration steps is to be made
a constant, i.¢. on a training set of twice the size we allow
the network to train for half the epochs. In this setting,
each training run allows the NN the same total amount
of update steps.

In particular, this has resulted in very long training
loops for a small Ny, as we have trained for several
hundreds of epochs. Due to the minibatching during
training, we track the actual number of received update
stops during training for various values of Ny, and
exclude the system size of I = 14 from the training
set. We set a value of Nopochs = 30 for training on
the largest data set size with Ny = 100 and adjusted
that value accordingly for smaller sizes. In all considered
cases, this leads to a convergence of the models and we
extract the remaining average MSE on both the training
and the test set after convergence. For each value of
Nirain, we reinitialize and train the model ten times. In
all cases, when we decreased the training set, we have
done so by always picking a random subset of the full
training data set for each training reinitialization. We
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show the two averaged losses in Fig. 9. This reveals
that shrinking the training set down to Ny == 3 (this
corresponds to a total ommber of training points of around
180) yields no qualitative increase of neither of the two
losses after training. This threshold is of the order or
trainable parameters of the model (cf Fig 7). Below it,
we observe a decroased training loss while the test loss is
increased. In this limit of scarce data, the model begins
to overfit the training data at the expense of a larger loss
on the test set. This small number is encouraging for
the model application to data that stoms from an actual
experiment as we have to repeat the same experiment only
a handful of times for each point in the phase diagram
we are interested in. This highlights the feasability of
our approach to actual data stemming from a quantum
experiment.

g
8 L=10: ® train - test
= T L =12 = train - test
= . L =14 = train - test
P
E.
& O
= o 8
7 " .
1.15-
£ I . e
] O LI ® §
] a *
g4 o e *
. O o
) u o .|:|
- [m]
£l B8 figggaig Bbe
P .
20— T T T
1 3 10 100
Nirain
FIG. 9. Dependence of the training and the test loss on

the size of the corresponding training set. Nirain denotes how
many realizations for each disorder parameter h and chain
length L have been included in the training set. Both losses
are reported after convergence (around 1.350 update steps).
We distinguish losses for different system size by color and the
train from the test loss by different symbols, respectively.
We have averaged over ten independent training procedures.
There is no qualitative improvement for a training set with
Nirain = 3 (vertical, dotted line). Below this threshold, the
network tends to overfit the available data, indicated by an
increasing test error despite a decreased train error. We have
exclided data for L = 14 from the training set, hence the
increased losses for this system sie.

C. Further details on the phase diagrams

In Section I11C, we highlight that our model is capable
of dealing with various values for the energy density e
Die to the choice of our architecture, € is taken as an input
feature for the subsequent fully-connected NN. We have
experimented with various ways in presenting different



values for € to our model. One initial alternative consists of
various fully-connected NNz that are individually trained
to predict the indicator values at a single € each. While
this, at first, has appeared beneficial with respect to the
validation loss, there are a few drawbacks of this approach.
The first one is the increased model complexity opposed
to our scheme now. Here, we only require one single NN
whereas the naive approach would require an NN for every
€ of interest. Secondly, this approach limits the resolution
of the prediction when in comes to obtaining the phase
diagram in Fig 6 as we require a data set for every € of
interest. Our approach circumvents both issues by the
introduction of € as an intermediate feature. This way,
we can set up a much tighter grid for both e as well as
the disorder parameter h and make predictions for cach
possible combination. To this end, we sample N = 100
new samples of disorder vectors h for each h and obtain
the feature value by feeding it to the RNN. Then, we
augment this value with every value of € of interest and
parse everything to the NN. Lastly, we average over N
and show this mean in dependence of € and h in the phase
diagram_ Since we only require forward passes through
our model, this procedure is highly efficient: the run time
is proportional to the chain length I and to the number of
queried values for both h and € and in that sense optimal.

We have also experimented with analysing the model's
predictions with a more quantitative measure such as the
finite-size scaling analysis (FS5A) [68]. This method is
aimed at mitigating the finite-size effocts in the data and
to obtain quantitative estimates of the critical disorder
parameter h. and the critical exponent of the transition
v. To this end, data from various chain lenghts is given
to the FS5A and fitted around the assumed value for
h.. We have tried to query our model at chain lengths
beyond those in the training set, ie. L > 14 but failed
to reproduce previous approaches [15] as we have not
observed signs of the e-dependent mobility edge in the
transition. We attribute this observation to two different
origins. First, we observe that the approximation is of
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higher quality around the transition region (cf. Fig. 4)
and significantly so in the middle of the spectrum (at
e ==z 0.5). The latter might leave a bias in the data at
cither side of the spectrum which is observed in the phase
diagram The second reason is due to our choice of the
RNN architecture as feature extractor. In Fig 8, we have
shown the typical feature vector produced by the RNN
after training. One important aspect is that there exdists
a cross-over point that is independent of the chain length
L of the input data but whose position depends on the
initialization of the network parameters. This introduces
a bias in the indicators since this cross-over is not apparent
in the training data. We have tried to average the output
over multiple retrainings (and therefore feature vectors)
and by increasing the number of features but failed to
lift this bias. However, we conjecture that with a more
carcful design of the RNN architecture, this is possible.
In any case, the investigation of finding the right feature
architecture is both interesting from a numerical and a
theoretical perspective as it helps to shine some light on
the nature of the MBL transition.
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