
Collaborative Knowledge Management

in the Life Sciences Network

Inaugural – Dissertation

zur

Erlangung des Doktorgrades der

Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Ingo Paulsen

aus Duisburg

Oktober 2007

Aus dem Institut für Informatik
der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen
Fakultät der Heinrich-Heine-Universität Düsseldorf

Referent: Prof. Dr. Arndt von Haeseler
Korreferent: Prof. Dr. Stefan Conrad

Tag der mündlichen Prüfung: 14.01.2008

Acknowledgments

I wish to thank my supervisor Arndt von Haeseler for his excellent advise, collaborations,

and his friendly behaviour. Also I want to thank Stefan Conrad for accepting the task

to read this thesis as a second reviewer.

Special thanks to Katrin, Indra, Dominic, and Jochen. Furthermore, I would like to

thank Tanja, Andrea, Markus, Alex, Simone, Nahal, Thomas L., Nicole, Thomas S.,

Lutz, Claudia, Anja, and all other Ontoverse project partners and colleagues of the

Bioinformatics Department in Düsseldorf.

I am grateful to my parents, my sister, my niece, my grandparents, and my aunt.

Financial support from the German Federal Ministry of Education and Research and

the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

i

Publications

Parts of this thesis have been published in the following articles and conference proceed-

ings:

1. Ingo Paulsen, Dominic Mainz, Katrin Weller, Indra Mainz, Jochen Kohl, Arndt

von Haeseler. (2007) Ontoverse: Collaborative Knowledge Management in the

Life Sciences Network. In: Proceedings of the Germany eScience Conference 2007,

Max Planck Digital Library, ID 316588.0.

2. Ingo Paulsen, Arndt von Haeseler. (2006) Invhogen: a database of homologous

invertebrate genes. Nucleic Acids Res., 34, D349-D353.

Other publications:

1. Jochen Kohl, Ingo Paulsen, Thomas Laubach, Achim Radtke, Arndt von Haeseler.

(2006) HvrBase++: a phylogenetic database for primate species. Nucleic Acids

Res., 34, D700-D704.

2. Katrin Weller, Dominic Mainz, Indra Mainz, Ingo Paulsen: Wissenschaft 2.0?

Social Software im Einsatz für die Wissenschaft. In: Marlies Ockenfeld (Hrsg.):

Information in Wissenschaft, Bildung und Wirtschaft, 29. Online-Tagung der DGI,

59. Jahrestagung der DGI, Proceedings, Frankfurt (Main): DGI, 2007, S. 121-136.

3. Katrin Weller, Indra Mainz, Ingo Paulsen, Dominic Mainz: Semantisches und

vernetztes Wissensmanagement für Forschung und Wissenschaft. Erscheint in:

WissKom 2007, Wissenschaftskommunikation der Zukunft, 4. Konferenz der Zen-

tralbibliothek im Forschungszentrum Jülich, Proceedings, 2007.

ii

Abstract

This thesis is about two topics: building a database of homologous invertebrate

genes named Invhogen, and the creation of an Internet platform, Ontoverse, for

collaborative ontology development and maintenance.

The first part of the thesis investigates the use of sequence similarity to group se-

quence entries into gene families. All gene families are explored by means of different

annotation aspects such as species distribution, sequence distribution, and descriptions

of the entries to characterize them with emphasis on Gene Ontology annotations. Tra-

ditional annotations written by scientists in natural language are partially suitable for

machine processing. Ontological annotations of sequence entries promise to additionally

represent knowledge computationally amenable to support the sequence based approach

by semantic components with ontologies.

These results regarding ontological annotation quality, among other motivations,

lead to the question how to bridge the two fields, database annotation and ontologies,

for successful resource annotation of biological sequence data. For this purpose, an

Internet-based application is created in the second part, that brings scientists (domain

experts) together to offer them ways to communicate among each other or with ontology

designers, which act as database curators in this special context. This collaborative

approach should allow experts and engineers to improve database annotations by mutual

understanding of the ontology’s inner structure or even by the use of completely new

designed ontologies, if special ontologies are desired for annotating sequence entries.

Furthermore, existing ontologies might be extended by experts’ knowledge to increase

annotation qualitites.

While the widest use of bio-ontologies is for conceptual annotations, they are also

used in a large range of other life science application scenarios which are manageable

via the Ontoverse platform. The main focus in the second part of the thesis is on the

architecture to manage scientific user communities and the integration of information

extraction results into ontologies (ontology population).

iii

iv

Contents

1 Introduction 1

2 Background 4

2.1 Semantic Web . 5

2.1.1 RDF, RDFS, OWL . 8

2.2 Ontologies . 11

2.2.1 Bio-Ontologies . 13

2.2.2 Ontologies of Bioinformatics Ontologies 15

2.3 Cocoa . 16

2.3.1 Design Patterns . 16

2.3.2 Objective-C . 17

2.3.3 Core Data . 17

2.4 Ruby . 19

2.5 Ruby on Rails . 20

2.5.1 MVC Architecture . 20

2.5.2 Components of Rails . 21

2.6 RESTful Development . 23

2.6.1 REST is a Conversation and Design 23

2.6.2 REST and Rails . 24

2.7 Resource-Oriented Architecture . 24

2.8 The Rails/ROA Design Procedure . 26

v

2.8.1 RESTful Architecture of Rails . 26

3 INVHOGEN 28

3.1 Introduction . 28

3.2 Methods . 30

3.2.1 Gene Family Building . 30

3.2.2 Naming of Gene Families . 31

3.2.3 Multiple Sequence Alignments & Phylogenetic Trees 32

3.3 Results . 34

3.3.1 Gene Family Distribution . 34

3.3.2 Species Distribution . 35

3.3.3 GO Term Annotations . 36

3.4 Graphical Interface: Jenfem . 45

3.4.1 Data Integration . 45

3.4.2 Data Modeling . 47

3.5 Discussion . 55

3.5.1 Other Approaches to Build Gene Families 55

3.5.2 Annotation Problems . 56

4 Ontoverse 60

4.1 Introduction . 60

4.2 The Need for Collaborative Ontology Development 61

4.2.1 Representing a Shared View . 61

4.2.2 Information Integration for Scientific Data 61

4.2.3 Experiences in Developing a BioInformatics Ontology for Tools

and Methods . 62

4.3 Editing and Maintaining Ontologies . 62

4.4 Ontology Wiki . 64

4.4.1 User Community and Collaboration 64

4.4.2 Key Aspects . 64

vi

4.5 Challenges and Tasks of Collaborative Ontology Development with On-

toverse . 66

4.5.1 Conceptual and Process Challenges and Tasks 66

4.5.2 Technical Challenges and Tasks . 71

4.6 Ontology Wiki Architecture . 73

4.6.1 Overview . 73

4.6.2 User Management System . 74

4.6.3 Building a News Blog . 81

4.6.4 Discussion Forum . 83

4.6.5 User Blog with Web Services Support 86

4.6.6 User Photos . 90

4.6.7 E-mail Messages and Newsletter 91

4.6.8 Friends Network . 93

4.6.9 Tagging and Searching . 95

4.6.10 Integrating other Web Applications 98

4.6.11 Ontology Projects . 100

4.6.12 Project Wiki . 102

4.6.13 Publication Database: PubDB . 106

4.6.14 Collaboration Architecture . 114

4.7 Usage Scenarios . 117

4.7.1 User Interaction/Networking . 117

4.7.2 Project Organization . 117

4.7.3 Ontology Population . 119

4.7.4 Ontology Editing . 120

5 Conclusion and Outlook 125

6 Fazit und Ausblick 128

vii

A Table & Database Schema 131

A.1 INVHOGEN . 131

A.1.1 Attributes Assignments of a Gene Family 131

A.2 Ontoverse . 131

A.2.1 Ontology Wiki Database Schema 131

viii

Chapter 1

Introduction

As molecular biology (and several years later genomic projects) became very popular in

life sciences, scientists began storing sequence information in dozens of large, publicly

shared DNA sequence, protein and structure databases. One of the most significant

data sources collaboratively maintained by the Swiss Institute of Bioinformatics and

the European Bioinformatics Institute (EBI) is the SWISS-PROT protein information

database [1]. Despite its origins as a simple sequence database, SWISS-PROT and

its supplement TrEMBL have grown to include a wide spectrum of information about

proteins in the form of annotations (e. g. three-dimensional structure, domains and sites,

post-translational modifications, sequence conflicts, variants, etc.). Links from protein

sequence entries to other large and disparate sources like organism specific databases,

2D-gel databases, 3D structure databases, genome annotation databases, enzyme and

pathway databases and so on lead to another variety of information in SWISS-PROT.

From these sources the Gene Ontology (GO) developed at the GO Consortium [2]

provides a framework for automatic functional annotation as an effective approach to as-

sociate individual sequences and related expression information with biological function.

For example, the Gene Ontology Annotation (GOA) [3] project provides assignments of

GO terms to SWISS-PROT and TrEMBL entries by a combination of electronic meth-

ods and manual annotation. Another research tool, Blast2GO (B2G) [4], enables GO

based data mining on sequence data for which no GO annotation is available to support

1

genomic research in non-model organisms. OntoBlast [5] and Goblet [6] assign GO terms

to a new sequence based on its similarity to a sequence with a known GO assignment.

The similarity between GO terms can be used to compute a similarity between data

entries that are annotated with these GO terms [7, 8].

Apart from annotating several database resources with e. g. GO, MGED (Microarray

and Gene Expression Data)1, or UMLS (Unified Medical Language System)2 ontologies

are used in a wide range of biomedical application scenarios [9]. For instance, they are

used for providing visualization combining biological annotation with microarray expres-

sion data [10], metabolic pathways [11], medical image searching [12] and metasearches

to biodiversity data [13].

Thesis outline

While Gene Ontology is generally accepted in life sciences, it also has some limitations

regarding its internal structure. The GO hierarchy has highly varied depths along dif-

ferent branches — from two levels to more than 20 levels. Some of the variation is

inherent in different functional families, while some may be an artifact of the uneven

contribution by different groups participating in GO’s development. This might be a

source for mis-annotations in databases by biologists with little background to analyze

and understand genes with the GO information.

Starting from this perspective, the main aim of this thesis is to develop concepts suit-

able to support scientists to collaboratively edit and maintain ontologies in life sciences.

To demonstrate the practical use of the presented ideas, the Ontoverse platform [14]

is developed.

The work presented in this thesis is outlined in the following. Background knowledge

is introduced in chapter 2. This includes on the one hand the current state of ontologies in

general and on the other hand ontologies in the life sciences with special regard to GO and

the NCBI Taxonomy database. In addition, technical requirements specific to graphical

1http://www.mged.org
2http://www.nlm.nih.gov/research/umls/

2

user interface (GUI) application and Web application development are presented for the

implementation of the applications described in the Chapters 3 and 4.

Chapter 3 shows the development of a database of homologous invertebrate genes

named Invhogen [15]. This database integrates invertebrate protein sequences and

annotations, taxonomic data, protein multiple sequence alignments (MSAs), and phy-

logenetic trees. With its graphical interface Jenfem, Invhogen allows one to rapidly

and easily select sets of homologous genes and evaluate homology relationships between

sequences. In the result section it is investigated amongst others if sequence similarity

within gene families is correlated with semantic similarity of GO terms, i. e. where se-

quence similarity is very high, so does the chance that these proteins are homologues, in

which case they are likely to be identically annotated.

In the first part of Chapter 4 the research project “Ontoverse – Collaborative

knowledge management in the life sciences network”, sponsored by the German Federal

Ministry of Education and Research, is presented. Its central objective is the devel-

opment of an Internet-based application for cooperative and interdisciplinary ontology

building in terms of a so-called ontology wiki. The architecture of this kind of wiki is

described in the second part of this chapter.

In the conclusion (Chapter 5) it is discussed how Ontoverse can contribute to fulfill

the necessities for ontology engineering, annotating, and integrating for an upcoming

Semantic Web.

3

Chapter 2

Background

The Semantic Web is a layer above the World Wide Web (WWW, Web) that adds

meaning to hypertext links. In bioinformatics the Semantic Web addresses the dramatic

increase of bioinformatics data available in Web-based systems and databases calls for

novel processing methods. Furthermore, the high degree of complexity and heterogeneity

of bioinformatics data and analysis requires semantic-based integration methods.

In this chapter at first XML (eXtensible Markup Language) and related technologies

are presented. XML introduces structure to web documents, thus supporting syntactic

interoperability. The structure of a document can be made machine-accessible through

DTDs and XML Schema. With RDF and RDF Schema one can express statements be-

tween Web-based resources and data; it is a standard data model for machine-processable

semantics. RDF Schema offers a number of modeling primitives for organizing RDF vo-

cabularies in typed hierarchies. OWL, the current proposal for a web ontology language

offers more modeling primitives, compared to RDF Schema, and has a clean, formal

semantics. After this a survey of bio-ontologies is provided. These ontologies are con-

cerned with biological and medical terminology and with ontologies for organizing other

ontologies.

The rest of this chapter shifts the focus to desktop and web application development.

The Cocoa framework and its Core Data infrastructure were used to implement a graph-

ical user interface to access the Invhogen database in Chapter 3. The Ruby on Rails

4

web application framework was chosen for the design of the Ontoverse platform in a

RESTful style (Section 2.6).

2.1 Semantic Web

To make web pages understandable by machines, additional semantic information needs

to be attached or embedded to the existing web data. Built upon the Resource Descrip-

tion Framework (RDF)1, the Semantic Web is aimed at extending the current Web so

that information can be given well-defined meaning using the description logic based

ontology definition language OWL, and thus enabling better cooperation between com-

puters and people. The Semantic Web can be viewed as a web of data that is similar to

a globally accessible database.

The core of the Semantic Web are ontologies. They are used to capture the concepts

and their relations in a domain for the purpose of information exchange and knowledge

sharing. Over the past few years, several ontology definition languages have emerged,

including RDF(S) and OWL. OWL is the newly released standard recommended by

W3C2.

The concept of the Semantic Web is to extend the current WWW such that context

and meaning are given to information [16]. Instead of information being produced for

machines, information will be produced for human consumption [17]. There are two

main aspects of Semantic Web development: (1) ontologies for consistent terminology

and (2) standards for interoperability (e. g. XML [18], RDF, HL73).

Levels of Semantics

Semantics is the study of the meaning of signs, such as terms or words. Depending on

the approaches, models, or methods used to add semantics to terms, different degrees

of semantics can be achieved. This section identifies and describes four representations

1http://www.w3.org/RDF/
2http://www.w3.org
3http://www.hl7.org/

5

that can be used to model and organize concepts to semantically describe terms, that

is, controlled vocabularies, taxonomies, thesauri, and ontologies. These four model rep-

resentations are illustrated in Figure 2.1.

Controlled Vocabularies A controlled vocabulary is a list of terms (e. g. words,

phrases, or notations) that have been enumerated explicitly. All terms in a con-

trolled vocabulary should have an unambiguous, non-redundant definition. Con-

trolled vocabularies are the simplest of all structured metadata methods and have

been extensively used for classification.

Taxonomies They are subject-based classifications that arrange the terms of a con-

trolled vocabulary into a hierarchy. The first users of taxonomies were biologists

to classify organisms according to their natural relationships.

Thesauri A thesaurus is a networked collection of controlled vocabulary terms with

conceptual relationships between them. A thesaurus is an extension of a taxonomy

by allowing terms to be arranged in a hierarchy and also allowing other statements

and relationships to be made about the terms.

Ontologies They are similar to taxonomies but use richer semantic relationships among

terms and attributes, as well as strict rules about how to specify terms and rela-

tionships. In computer science, ontologies have emerged from the area of artificial

intelligence. Ontologies have generally been associated with logical inferencing and

recently have begun to be applied to the Semantic Web.

Technologies

The Semantic Web identifies a set of technologies, tools, and standards to provide a solid

foundation for making the Web machine-readable. The Semantic Web infrastructure is

based on several layers, each corresponding to a specific technology, and is commonly

represented as ‘layer cake’. A visual representation of the different parts of the Semantic

Web architecture is displayed in Figure 2.2.

6

Figure 2.1: Levels of semantics with increasing ways of expressing from left to right (modified
from [19]).

Figure 2.2: A layered approach to the Semantic Web. Source: Tim Berners-Lee. Web for real
people, 2005. Available at http://www.w3.org/2005/Talks/0511-keynote-tbl/

7

The bottom layers in the layer cake, i. e. Unicode, URI (Uniform Resource Identifier),

and XML (Schema), consist of existing web standards and provide a syntactical basis for

Semantic Web languages. Unicode provides an elementary character-encoding scheme,

which is used e. g. by XML (a standard syntax for structuring and describing data

but not carrying any semantics). The URI standard provides a means to uniquely

identify and address abstract or physical resources on the Web. All concepts used in

the languages located higher in the layer cake can be specified using Unicode and are

uniquely identified by URIs.

SPARQL is the emerging standard for querying and accessing RDF stores (Subsec-

tion 2.1.1). The Semantic Web Rule Language (SWRL) [20] allows data derivation,

integration, and transformation.

The logic layer represents reasoning systems that infer new knowledge from ontolo-

gies and checks data consistency. The proof layer gives a proof of the logical reasoning

conclusion by tracing the deduction of the interference engine. The trustfulness of Se-

mantic Web information can be checked by the trust layer based on the signature and

encryption layer. The proof and trust layers are currently under development, but most

likely refer to the application and not to any specific language. For instance, the appli-

cation could prove some statement by using deductive reasoning, and a statement could

be trusted if it had been proven and digitally signed by some trusted third party.

2.1.1 RDF, RDFS, OWL

Resource Description Framework

At the top of XML the Resource Description Framework (RDF) is the first language

developed especially for the Semantic Web. RDF was developed to add machine-readable

metadata to existing data on the Web. RDF uses XML and it is at the base of the

Semantic Web, so that all the other languages corresponding to the upper layers are

built on top of it.

RDF is a general assertional model for representing explicit relationships between

Web-based resources and data through RDF triples of subject, predicate and object.

8

The subject is the ‘thing’ being described, a resource identified by a URI in a common

syntax regardless of the protocol is used to access the subject. The predicate is a

property type of the resource, such as an attribute, a relationship, or a characteristic.

The third component, object, is equivalent to the value of the resource property type for

the specific subject. Each triple in RDF makes a distinct assertion, joining other triples

will not change the meaning of the existing triples, regardless of the complexity of the

model in which it is included. Figure 2.3 describes three statements using RDF triples.

Figure 2.3: Graphical representation of three RDF statements.

RDF Schema

RDF Schema (RDFS) is a domain-neutral lightweight schema language to define vocab-

ularies for RDF. RDFS provides information about the interpretation of the statements

given in an RDF data model. RDFS does not say anything about the syntactical ap-

pearance of the RDF description.

RDFS builds on the RDF foundation to provide additional descriptive features [21].

RDFS makes it possible to define a class, subclass, and with an instance being defined

using rdfs:Class, rdfs:subClassOf and rdf:type respectively.

However, RDFS is not very expressive compared with other ontology languages, as

9

it allows only the representation of concepts, concept taxonomies, and properties. OWL

provides a richer set of vocabulary by further restricting on the set of triples that can

be represented.

OWL

OWL (Web Ontology Language) is the standard web ontology language recently rec-

ommended by W3C. It is intended to be used by applications to represent terms and

their interrelationships. OWL is used when information must be machine-processed and

can be used to represent an ontology [22], as the RDF structure is unable to support a

reasoner in using logical induction or deduction to infer new conclusions from statements.

OWL comes in three increasingly complex species: OWL Lite, OWL DL and OWL

Full. OWL Lite offers a minimum number of features that are necessary to specify

ontologies. It supports simple classifications, allowing only cardinalities of 0 or 1 and

only minimal contraints. OWL DL as a superset of OWL Lite, supports more complex

ontologies, but still has some restrictions to guarantee processing finishing in finite time

using a DL reasoner. OWL Full, a superset of OWL DL, removes some restrictions from

OWL DL, with no computational guarantees and the possibility of indefinite processing

time.

Classes An OWL document can include an optional ontology header and any number

of class, property, axiom, and individual descriptions. In an ontology defined by OWL,

a named class is described by a class identifier via rdf:ID. An anonymous class can

be described by value (owl:hasValue, owl:allValuesFrom, owl:someValuesFrom) or

cardinality (owl:maxCardinality, owl:minCardinality, owl:cardinality) restriction

on property (owl:Restriction); by exhaustive enumeration of all the individuals that

form the instances of this class (owl:oneOf); or by logical operations on two or more

other classes (owl:intersectionOf, owl:unionOf, owl:complementOf).

The three logical operators correspond to AND (conjunction), OR (disjunction) and

NOT (negation) in logic define classes of all individuals by standard set operations of in-

10

tersection, union, and complement, respectively. Three class axioms (rdfs:subClassOf,

owl:equivalentClass, owl:disjointWith) can be used for defining necessary and suf-

ficient conditions of a class.

Properties Two kinds of properties can be defined in an OWL ontology: object prop-

erty (owl:ObjectProperty) which links individuals to individuals, and datatype prop-

erty (owl:DatatypeProperty) which links individuals to data values. Similar to classes,

rdfs:subPropertyOf is used to define that one property is a subproperty of another

property. There are constructors to relate two properties (owl:equivalentProperty and

owl:inverseOf), to impose cardinality restrictions on properties (owl:FunctionalProperty

and owl:InverseFunctionalProperty), and to specify logical characteristics of proper-

ties (owl:TransitiveProperty and owl:SymmetricProperty). There are also construc-

tors to relate individuals (owl:sameAs, owl:sameIndividualAs, owl:differentFrom

and owl:AllDifferent).

The semantics of OWL is defined based on model theory in the way analogous to

the semantics of description logic (DL). With the set of vocabulary (mostly as described

above), one can define an ontology as a set of (restricted) RDF triples which can be

represented as an RDF graph.

2.2 Ontologies

The word ontology has been borrowed from philosophy, where it means a systematic

explanation of being. The knowledge engineering community has adopted ontology as

a key enabling technology since the nineties. One of the first definitions of ontology

given by Neches et al. [23], is as follows: “an ontology defines the basic terms and

relations comprising the vocabulary of a topic area as well as the rules for combining

terms and relations to define extensions to the vocabulary”. According to the above

definition, an ontology includes not only the terms that are explicitly defined in it, but

also the knowledge that can be inferred from it. Gruber [24] defined an ontology as

“an explicit specification of a conceptualization”, which has become one of the most

11

acceptable definitions to the ontology community. Guarino et al. [25] collected and

analyzed seven definitions of ontology and provided their corresponding syntactic and

semantic interpretations. They proposed to consider an ontology as “a logical theory

which gives an explicit, partial account of a conceptualization”, where conceptualization

is basically an idea of the world that a person or a group of people can have.

Ontologies consist of definitional aspects such as high-level schemas and assertional

aspects such as entities, attributes, interrelationships between entities, domain vocab-

ulary and factual knowledge — all connected in a semantic manner [26]. Ontologies

provide a common understanding of a particular domain. They allow the domain to

be communicated between people, organizations, and application systems. Ontologies

provide the specific tools to organize and provide a useful description of heterogeneous

content.

In addition to the hierarchical relationship structure of typical taxonomies, ontologies

enable cross-node horizontal relationships between entities, thus enabling easy modeling

of real-world information requirements. Jasper and Uschold [27] identify three major

uses of ontologies:

1. To assist in communication between human beings.

2. To achieve interoperability among software systems.

3. To improve the design and the quality of software systems.

An ontology is technically a model which looks very much like an ordinary object model

in object-oriented programming. It consists of classes, inheritance, and properties [28].

In many situations, ontologies are thought of as knowledge representation.

Description logics are logical formalisms for knowledge representation [29]. They pro-

vide a formal linear syntax to express the description of top-level concepts in a problem

domain; their relationships and the constraints on the concepts; and the relationships

that are imposed by pragmatic considerations in the domain of interest [30, 31]. DL

is divided into two parts: Abox (assertion component) and Tbox (terminological com-

12

ponent). “Tbox vocabularies define concepts that have associated Abox facts. The

combination of Tbox vocabularies and Abox facts represent a knowledge base” [32].

2.2.1 Bio-Ontologies

Ontologies have a very prominent role in bioinformatics since much of biology works by

applying prior knowledge to an unknown entity. Within the last decade the research

on ontologies has increased tremendously, and as a result more and more bio-ontologies

become available. Therewith, to be of public value an ontology has to be widely dissem-

inated and accepted by the field of knowledge that it models [33]. Moreover, in terms of

inter-operability between databases and different scientific communities, the standard of

ontologies becomes more and more important. The integration of information sources

in the life sciences is one of the most challenging goals of bioinformatics.

Gene Ontology

GO is one of the most significant ontologies for bioinformatics and biology. The objective

of GO is to supply a mechanism that guarantees consistent descriptions of gene products

in different databases. GO is rapidly acquiring the status of a de facto standard in the

field of gene and gene product annotations [34]. The GO effort includes the develop-

ment of controlled vocabularies that describe gene products, establishing associations

between the ontologies, the genes, and the gene products in the databases, and develop

tools to create, maintain, and use ontologies. GO has over 20,000 terms and it consists of

three distinct sub-ontologies that describe gene products in terms of their associated (1)

molecular functions, (2) biological processes, and (3) cellular components [35]. Molecular

function describes the tasks performed by individual gene products. Biological process

describes broad biological goals that are accomplished by ordered assemblies of molec-

ular functions. Cellular component encompasses subcellular structures, locations, and

macromolecular complexes.

An example of the GO hierarchy for the term ‘histone methyltransferase activity’ is

given in Figure 2.4. This shows the series of successively more restrictive concepts to

13

which this term belongs.

Figure 2.4: The GO hierarchy for histone methyltransferase activity. The brackets show the
total number of GO terms in the category at that level.

GO did not originally make use of a formal ontological framework such as XML or

RDF. To remedy this situation, the Gene Ontology Next Generation Project (GONG)4

is developing a staged methodology to change the current representation of the GO into

OWL. This allows one to take advantage of the richer formal expressiveness and the

reasoning capabilities of the underlying formal logic [36].

Microarray Gene Expression Data

Another well-known life science ontology is the Microarray Gene Expression Data (MGED)

ontology. MGED provides standard terms in the form of an ontology organized into

classes with properties for the annotation of microarray experiments [37]. These terms

provide an unambiguous description of how experiments were performed and enable

structured queries over elements of the experiments. The comparison between different

experiments is only feasible if there is standardization in the terminology to describe

experimental setup, mathematical post-processing of raw measurements, genes, tissues,

and samples. The adoption of common standards by the research community for de-

scribing data makes it possible to develop systems for the management, storage, transfer,

mining, and sharing of microarray data [38].

4http://www.gong.manchester.ac.uk/

14

Open Biomedical Ontologies

The Open Biomedical Ontologies (OBO)5 project forms an umbrella for a range of on-

tologies being designed for different biological and medical domains. The criteria for

inclusion are that the ontology is open, uses either GO or OWL syntax, has definitions

and unique identifiers, and complements other OBO ontologies. OBO contains vari-

ous bio-ontologies ranging from anatomy to development, genomics, proteomics, and

metabolomics, phenotype, taxonomic classification, and experimental conditions.

Biomedical Ontologies outside OBO Some other biomedical ontologies that were

developed before OBO was established are:

• EcoCyc6 is one of the oldest bio-ontologies and describes the metabolic and trans-

duction pathways of Escherichia coli K12, its enzymes, and its transport proteins.

• OpenGalen7 is an ontology used for medical information management.

• BioPAX8 describes biological pathways and it is implemented in OWL.

2.2.2 Ontologies of Bioinformatics Ontologies

With the proliferation of biological ontologies and databases, the ontologies themselves

need to be organized and classified.

TAMBIS

TAMBIS (Transparent Access To Multiple Bioinformatics Information Sources) [39] is

a project that aims to help scientists by building a homogenizing layer on top of various

biological information services. The TAMBIS Ontology (TaO) is a semantic network that

covers a wide range of bioinformatics concepts. It contains description of the principal

5http://obo.sourceforge.net/
6http://ecocyc.org/
7http://www.opengalen.org/
8http://www.biopax.org/

15

concepts of molecular biology and bioinformatics: macromolecules; their motifs, their

structure, function, cellular location, and the processes in which they act.

2.3 Cocoa

Cocoa is a complete set of classes and application programming interfaces (APIs) for

building Mac OS X applications and tools [40]. Cocoa is divided into two main frame-

works: Foundation framework and Application Kit.

The Foundation framework is a set of tools that represents fundamental data types,

accessing system services, messaging, threading, and more. The Application Kit pro-

vides the functionality to build GUIs for Cocoa applications. It provides access to the

standard interface components ranging from buttons, menus, and text fields to complete,

prepackaged interfaces for print dialogs, file operation dialogs, and alert dialogs. It also

provides higher-level functionality to implement multiple document applications, text

handling, and graphics.

2.3.1 Design Patterns

Cocoa uses many design patterns that are descriptions of common object-oriented pro-

gramming practices. Here is brief list of the design patterns which are used in the

Jenfem application (Section 3.4).

Model-View-Controller The Model-View-Controller (MVC)9 pattern is used exten-

sively in the Application Kit to separate an application into logically distinct units:

a model, which knows how to work with application data, the view, which is re-

sponsible for presenting the data to the user, and the controller, which handles

interaction between the model and the view.

Delegation In this pattern, one object, the delegate, acts on behalf of another ob-

ject. Delegation is used to alter the behavior of an object that takes a delegate.

Delegation minimizes the need to subclass objects to extend their functionality.

9http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html

16

Target/action The target/action pattern decouples user-interface components with

the objects (the targets) that implement their actions. In this pattern, an activated

control sends an action message to its target.

Key-value coding This pattern provides an interface for accessing an object’s proper-

ties indirectly by name.

Key-value observing A mechanism that allows objects to be notified of changes to

specific properties of other objects.

Cocoa Bindings Provides a way to keep an attribute of a view synchronised with a

property of a model object. Instead of connecting a control to instance variables

and action methods, it connects a control directly to an object’s value.

2.3.2 Objective-C

Cocoa’s native language is Objective-C [41]. The Foundation and Application Kit frame-

works are implemented in this language, and using Objective-C provides access to all

features of the frameworks.

Objective-C is a highly dynamic, message-based object-oriented language. Consisting

of a small number of additions to ANSI C, Objective-C is characterized by its deferral of

many decisions until runtime, supporting its key features of dynamic dispatch, dynamic

typing, and dynamic loading. These features support many of the design patterns Cocoa

uses. Because it is an extension of C, existing C code and libraries can work with Cocoa-

based applications.

2.3.3 Core Data

Core Data is a Cocoa framework and provides an infrastructure for managing object

graphs, including support for persistent storage to a variety of file formats [42]. Object-

graph management includes features such as undo and redo, validation, and ensuring the

integrity of object relationships. Object persistence means that Core Data saves model

objects to a persistent store and fetches them when required. The persistent store of a

17

Core Data application can range from XML files to SQL databases. Core Data is ideally

suited for applications that act as front-ends for relational databases.

Figure 2.5: Document management using Core Data.

The central concept of Core Data is the Managed Object (MO). A MO is simply a

model object that is managed by Core Data. One describes the MOs of a Core Data

application using a schema called a Managed Object Model (MOM). A MOM contains

descriptions of an application’s managed objects (also referred to as entities). Each

description specifies the attributes of an entity, its relationships with other entities, and

metadata such as the names of the entity and the representing class.

In a running Core Data application, an object known as a Managed Object Context

(MOC) is responsible for a graph of MOs. All MOs in the graph must be registered

with a MOC. The context allows an application to add objects to the graph and remove

them from it. It also tracks changes made to those objects, and thus can provide undo

and redo support. When someone saves changes made to MOs, the MOC ensures that

those objects are in a valid state. When a Core Data application wishes to retrieve data

18

from its external data store, it sends a fetch request — an object that specifies a set of

criteria — to a MOC. The context returns the objects from the store that match the

request after automatically registering them.

A MOC also functions as a gateway to an underlying collection of Core Data objects

called the persistence stack. The persistence stack mediates between the objects in

an application and external data stores. It consists of two different types of objects,

persistent stores and persistent store coordinators. Persistent stores are at the bottom

of the stack. They map between data in an external store and corresponding objects in

a MOC. They do not interact directly with MOCs, however. Above a persistence store

in the stack is a persistent store coordinator, which presents a facade to one or more

MOCs so that multiple persistence stores below it appear as a single aggregate store.

Figure 2.5 shows the relationships between objects in the Core Data architecture.

2.4 Ruby

Ruby is a dynamically typed programming scripting language created by Yukihiro Mat-

sumoto [43]. Ruby is completely object-oriented and allows to change classes and intro-

ducing new methods at runtime. It is a high-level programming language, less efficient

but more flexible than compiled languages. It offers the following characteristics:

Interpreted Scripting languages are usually interpreted and not compiled, allowing

quick turnaround development and making applications more flexible through run-

time programming.

Reflection The possibility of easily investigating data and code during runtime, and

runtime interrogation of objects instead of relying on their class definitions.

Metaprogramming Metaprogramming techniques allow code to be created, changed,

and added during runtime. In Ruby, it is possible to change the behaviour of all

objects during runtime and for example to add code to a single object (without

changing its class).

19

Dynamic typing Scripting languages are usually weakly typed, without prior restric-

tions on how a piece of data can be used. Ruby has the so-called duck-typing

mechanism in which object types are determined by their runtime capabilities

instead of by their class definition.

2.5 Ruby on Rails

Ruby on Rails (Rails) is an open source web application development framework written

in Ruby [44]. The goal of Rails is to develop web applications in an easy, straightforward

manner, and with as few lines of code as necessary. By default, Rails makes a lot

of assumptions and has a default configuration that works for most web applications.

It is easy to override any defaults, but they are designed to keep initial application

development simple.

2.5.1 MVC Architecture

Rails operates upon a subtly different variant of MVC architectural pattern called

Model2. Model2 uses the same principles of MVC but tailors them for stateless web

applications. This means that Rails applications are primarily split into three sections:

models, views, and controllers. In Rails, these components have the following roles:

• Models: These are used to represent forms of data used by the application and

contain the logic to manipulate and retrieve that data. In Rails, a model is rep-

resented as a class. Models are abstracted, idealized interfaces between controller

code and data.

• Views: These are the templates and HTML code that users of the web application

see. They turn data into a format that users can view. They can output data as

HTML for browsers, XML, RSS, Atom, and other formats.

• Controllers: Controllers form the logic binding together models, data, and views.

They process input and deliver data for output. Controllers call methods made

20

available by models and deliver it to the views. They contain methods known as

actions that, generally, represent each action relevant to that controller.

The basic relationship between these components is shown in Figure 2.6. The

browser, on the client, sends a request for a page to the controller on the server. The

controller retrieves the data it needs from the model in order to respond to the request.

The controller renders the page and sends it to the view. The view sends the page back

to the client for the browser to display.

Figure 2.6: Processing a page request in a Ruby on Rails architecture.

2.5.2 Components of Rails

The Rails framework consists of several different libraries:

Rails The core library of the Ruby on Rails framework that ties the other libraries

together.

ActionMailer A library that makes it easy to send e-mail from Rails applications.

ActionPack A library providing useful methods used in views and controllers to gen-

erate HTML and dynamic page elements, such as Ajax [45] and JavaScript, or

manage data objects.

ActiveRecord An object-relational mapper (ORM) that ties database tables to classes.

21

ActiveSupport A library that collects support and utility classes used by various Rails

features. For example, it supports methods for manipulating numbers, arrays,

hashes, and times.

ActionWebService Provides methods to make it easy to offer functionality from Rails

applications as a web service.

Figure 2.7 gives a schematic view of how Ruby and Rails fit these libraries together [46].

Figure 2.7: Schematic view of the Ruby on Rails framework.

22

2.6 RESTful Development

REST (REpresentational State Transfer) is a set of design criteria that was initially

proposed by Roy Fielding [47]. It allows to build full-featured and extensible web services

and applications on top of a small set of core, foundational operations. These operations

are the four basic HTTP request methods (GET, POST, PUT, and DELETE), and

the two auxiliaries (HEAD and OPTIONS). Web development has long ignored the full

HTTP specification and only used GET and POST for requesting and sending data to

and from dynamic web applications.

2.6.1 REST is a Conversation and Design

REST is about breaking down HTTP request to natural, human-language type structure

with verbs and nouns. The verbs are the aforementioned request methods, while the

nouns are URIs, unique identifiers for some resource10 accessible via the Web. Every

resource should have as few names as possible, and every name should be meaningful.

REST boils problems down to their bare essentials so that they can be addressed,

analyzed, and represented properly. REST provides a framework for simple but exten-

sible application design by mandating what actions an application can support against

a resource:

• GET: retrieve a representation of a resource

• POST: create a new resource

• PUT: modify an existing resource

• DELETE: delete an existing resource

Many other common requests can be built on top of these verbs. Search is really the

reading of resources that meet certain criteria.

10Something that can be stored on a computer and represented as a stream of bits.

23

2.6.2 REST and Rails

There are strong parallels between the REST verbs, the basic Rails controller actions,

Create, Read, Update, Delete (CRUD), and the Add, Change, Inquire, Delete

(ACID) operations of SQL. Table 2.1 shows how the verbs of ACID and HTTP corre-

spond to each other.

CRUD: create read update delete

HTTP: POST GET PUT DELETE

Rails: create find update destroy

SQL: INSERT SELECT UPDATE DELETE

Table 2.1: CRUD, HTTP, Rails, SQL verbs.

When a resource is requested, the actual resource itself is not sent back to the user.

Instead, a representation of that resource is sent back, often a web page describing the

resource, or an image of it, or an XML document that structures the resource or the

outcome of the action performed. This is represented in Figure 2.8.

With Rails, these various resource representations are built on top of controller ac-

tions, allowing requests for various forms of resources to share common processing logic.

The implementation is abstracted from the services provided.

2.7 Resource-Oriented Architecture

The Resource-Oriented Architecture (ROA) is a way of turning a problem into a RESTful

web service: an arrangement of URIs, HTTP, and XML that works like the rest of the

Web. It has the four concepts resources, their names, their representations, and the

links between them. Furthermore, it has the four properties addressability, statelessness,

connectedness, and the uniform interface which are defined the following [48]:

Addressability An application is addressable if it exposes the interesting aspects of

its data as resources. Since resources are exposed through URIs, an addressable

application exposes a URI for every piece of information it might conceivably serve.

24

Figure 2.8: Requesting a resource. The relationships between identifier, resource, and represen-
tation.

Statelessness Means that every HTTP request happens in complete isolation. When

the client makes an HTTP request, it includes all information necessary for the

server to fulfill that request. The server never relies on information from previous

request.

Connectedness A server can guide the client from one application state to another

by sending links and forms in its representation. This also holds true for resource

which should link to each other in their representations.

The Uniform Interface All interaction between clients and resources is mediated

through a few basic HTTP methods. Any resource will expose some or all of

these methods.

25

2.8 The Rails/ROA Design Procedure

2.8.1 RESTful Architecture of Rails

Routing

When an HTTP request comes in, Rails analyzes the requested URI and routes the

request to the appropriate controller class. As shown in the following example, the file

config/routes.rb tells Rails how to handle certain requests.

routes.rb

ActionController::Routing::Routes.draw do |map|

map.resources :projects do |project|

project.resources :members

end

end

That file declares the existence of two controller classes (ProjectsController and

MembersController), and tells Rails how to route incoming requests to those classes.

ProjectsController handles requests for the URI /projects, and for all URIs of

the form /projects/id.

MembersController handles requests for the URI /projects/project id/members,

and all URIs of the form /projects/project id/members/id.

Resources, Controllers, and Views

A Rails controller might expose a single list (or factory) resource, which responds to

GET and/or POST requests, and a large number of object resources, which respond to

GET, POST, and/or DELETE. The list resource often corresponds to a database table,

and the object resources to the rows in the table.

Each controller is a Ruby class, so sending an HTTP request to a class means calling

some particular method. Rails defines six standard methods per controller, as well as

exposing two special view templates through HTTP GET. The seven HTTP requests

made possible by the example above are:

26

1. GET /projects: A list of the projects. Rails calls the ProjectsController#index

method.

2. GET /projects/new: The form for creating a new project. Rails renders the view

in app/view/projects/new.rhtml.

3. POST /projects: Create a new project. Rails calls the ProjectsController#create

method.

4. GET /projects/id: A project. Rails calls ProjectsController#show.

5. GET /projects/id;edit: The form for editing a project’s state. Rails renders the

view in app/view/projects/edit.rhtml.

6. PUT /projects/id: Change a project’s state. Rails calls ProjectsController#update.

7. DELETE /projects/id: Delete a project. Rails calls ProjectsController#delete.

It is not necessary to expose all seven access points in every controller if not useful.

27

Chapter 3

INVHOGEN

This chapter describes the development of a database of homologous invertebrate genes

named Invhogen from two protein sequence resources. In the method section the

building steps, beginning from reducing inappropriate sequence entries and ended by

meaningful namings of gene families, are performed. The interesting questions about

the distribution of species and the annotation with GO terms in each gene family (GF)

are investigated in the result part.

Afterwards the creating process of the graphical interface from Invhogen named

Jenfem is pointed out. It allows one to rapidly and easily select homologous genes and

evaluate homology relationships between sequences.

Eventually, on the basis of the results, it is discussed how annotation quality as one

important part of knowledge resource can be improved by closer cooperation of scientists.

As a consequence this discussion leads to Chapter 4, in which the Ontoverse approach

is presented as a development and maintenance platform for multiple ontology projects.

3.1 Introduction

Genome projects [49] are generating an enormous amount of data in molecular and

evolutionary biology. One goal of functional genomics is to determine the function of

proteins predicted by these sequencing projects [50]. To overcome the problem of as-

28

signing protein functions to sequences one approach is to classify them into GFs on the

basis of the presence of shared features or by clustering using some similarity measures

under the assumption that proteins within the same GF possess similar or identical bio-

chemical functions. To determine the function of new proteins one can infer its function

or detect its functional regions by homology to other sequences. (If two proteins share

a significant sequence similarity, then one typically concludes that they are probable to

have similar function.) However, there are some cases where conserved structures within

a protein group do not necessarily imply that these proteins perform the same function

[51] owing to low-complexity sequences, multifunctional sequences and gene recruitment

[52].

GFs are generated using sequence clustering. Sequence clustering allows the detection

of all pair-wise sequence similarities within a given set of protein sequences. Proteins

are then clustered into families based on their sharing of significant sequence similarity

patterns. When sequence clustering is performed accurately, proteins within a family

may be considered as sharing a common evolutionary history and possibly similar or

identical functions [53].

Within a GF one has to distinguish between two types of homologies: genes are

said to be orthologues in two different species if gene copies originate from a common

ancestral gene after a speciation event. Paralogues are genes in a given species pair that

diverged after duplication of an ancestral gene [54]. The distinction between paralogy

and orthology is essential for molecular phylogeny since it is necessary to work with

orthologous genes to infer species phylogeny from gene phylogeny.

To address the problem of detecting homologous genes, the INVertebrate HOmol-

ogous GENes (Invhogen) database was built. This database complements the three

homologous databases Hovergen [55] devoted to vertebrates, Hobacgen [56] devoted

to prokaryotes and Hogenom devoted to completely sequenced organisms. Invhogen

contains the available invertebrate protein sequences from UniProt organized into fam-

ilies of homologous genes defined by sequence similarity. For many GFs Invhogen

provides an MSA, a phylogenetic tree and taxonomic information about the sequences.

29

3.2 Methods

The second release of Invhogen has been built from the invertebrate entries in UniProt

Release 5.5 [57] consisting of SWISS-PROT Release 47.5 and TrEMBL Release 30.5. The

data consist of 284,763 protein entries, 11,702 of them from SWISS-PROT and 273,061

from TrEMBL. From both sequence files a total of 174,958 invertebrate protein entries

were extracted. The SWISS-PROT/TrEMBL protein entries were used owing to their

high level of annotation and integration with other databases, and of their minimal level

of redundancy. By following the references in the database cross-reference (DR) field of

SWISS-PROT/TrEMBL annotations, the corresponding nucleotide sequences from [58]

were also integrated in the database structure.

For building the families, the BLASTP2 [59] program was applied to identify com-

mon regions between proteins, and to collect related proteins. A similarity search of

all proteins against each other was performed by filtering low complexity regions with

SEG [60], and using the BLOSUM62 amino acid similarity matrix [61] and an E-value

threshold of 10−4.

3.2.1 Gene Family Building

The results from BLASTP2 output are processed this way (Figure 3.2):

1. For each pair of sequences, high-scoring segment pairs (HSPs) that are not com-

patible within a global alignment are removed (Figure 3.1). The number of HSPs is

reduced from 23,901,247 HSPs to 20,933,392 HSPs. 7,114,334 HSPs are originated

from complete sequences and the rest belongs to fragments.

2. Two sequences in a pair are included in the same family if (right branch after HSP

cutting step):

• Both sequences are complete.

• The remaining HSPs cover at least 80% of the proteins length.

30

• Their similarity is greater or equal to 50% (two amino-acids are considered

similar if the BLOSUM62 similarity score is positive). This procedure re-

duces the risk of mis-assigning proteins with a complex evolutionary history

involving gene fissions and fusions, and domain shuffling [51].

After this procedure only 24.7% (1,712,191 from 6,934,240) of the HSPs are prospects

for building GFs.

3. Once families of complete protein sequences have been built, partial sequences or

fragments (longer than 100 amino acids [62] or at least 50% of the length of the

complete proteins) are included in the classification. A partial sequence matching

with a complete protein is included in its family if (left branch after HSP cutting

step):

• The remaining HSPs cover at least 80% of the partial protein length.

• Their similarity is greater or equal to 50%.

4. Short partial sequences (less than 100 amino acids and less than 50% of the length

of the complete proteins) are not included in the classification.

5. Remaining 1,139,450 HSPs from complete sequences and 5,220,240 from fragments

are combined for the clustering step into GFs, finally reduced due to redundancies

to 6,124,427 HSPs.

6. Transitive links to build the families: If two pairs of sequences named A + B and

B + C fulfill the conditions listed before, then A, B and C are integrated in the

same family, this even if the pair A + C does not fulfill these conditions.

3.2.2 Naming of Gene Families

GFs are named using a written program that parsed the sequence description (DE) and

similarity comment fields (SIMILARITY) of the SWISS-PROT/TrEMBL annotations.

In the first step DE entries are clustered into subgroups of similar word orders. Each

31

Figure 3.1: Removing incompatible HSPs. For each pair of sequences X and Y that hit each
other using BLASTP2, HSPs that are not compatible with a global alignment are removed. In
this example, hits H1 and H2 are compatible. However H3 and H4 are not compatible. Therefore,
only H1 and H2 are considered for further computations on similarity measures. Because H1 and
H2 are overlapping, the overlap is allocated to H1 and H2 is shortened accordingly. In a crossing-
over situation between H1 and H2 for the sequences X and Y, H1 will be used if length(H1) >

length(H2), otherwise, H2 is to take into account.

subgroup is named by assigning the most frequent position of every word and by join-

ing these words together. A family description is created by combining all subgroup

names considering only those with a large number of non-redundant entries in relation

to the other subgroups. In the second step particular families are completed by available

similarity comment lines for clarification reasons or if subgroup names are too differ-

ent among themselves. Manual expertise is used to specify the name for a GF if both

attempts failed to generate a meaningful name.

3.2.3 Multiple Sequence Alignments & Phylogenetic Trees

For each GF with at least four sequences, a MSA and a phylogenetic tree were built.

Protein sequences were aligned with ClustalW 1.82 [63] with default parameters. Phy-

logenetic trees were reconstructed with IQPNNI 2.6 [64] by considering the so-called

32

Figure 3.2: Reduction steps for HSPs of partial (left branch) and complete (right branch)
protein sequences from BLASTP2 output. Details are given in Section 3.2.1.

33

stopping rule with at most 100 iterations. The stopping rule decides whether it is proba-

ble (with a 95% confidence level) that a continuation of the search will lead to no further

improvement.

3.3 Results

3.3.1 Gene Family Distribution

The present version of Invhogen contains a total of 174,958 protein sequences (and

159,922 nucleic sequences) classified into 15,389 families. Among all the proteins in-

cluded in this release 132,556 (75.8%) are classified into 15,389 families containing at

least two sequences, and 42,402 (24.2%) partial proteins are not assigned to a family (so-

called singletons). Table 3.1 shows the distribution of families in Invhogen grouped by

family size in comparison with Hovergen. Table 3.2 displays the 10 largest families for

both databases. These families consist of genes coding for proteins (or protein subunits)

involved in protein translation, nucleotide biosynthesis, tissue development, and glycol-

ysis. Cytochrome c oxidase polypeptide I, Cytochrome b, and NADH dehydrogenase

subunit 1 are the only GFs that occur in both databases in the list of the top 10.

Family size No. of GFs INVHOGEN No. of GFs HOVERGEN

2 8,567 (55.7%) 3,219 (24.5%)

3 2,257 (14.7%) 1,788 (13.6%)

4 1,210 (7.8%) 1,369 (10.5%)

5-9 2,093 (13.6%) 3,677 (28.0%)

10-19 693 (4.5%) 1,928 (14.7%)

20-49 358 (2.3%) 832 (6.3%)

50-99 116 (0.8%) 182 (1.4%)

≥ 100 95 (0.6%) 149 (1.1%)

Total 15,389 (100%) 13,144 (100%)

Table 3.1: Distribution of GFs in Invhogen Release 2 and Hovergen Release 46.

34

GF Name INVHOGEN Sequences GF Name HOVERGEN

Cytochrome c oxidase polypeptide I 22,287 22,616 Cytochrome b

Cytochrome c oxidase polypeptide II 6,192 8,480 NADH dehydrogenase subunit 4

Cytochrome b 3,229 5,987 Family 1 of G-protein-coupled receptors

Elongation factor-1α 3,124 3,608 Class I histocompatibility antigen

NADH dehydrogenase subunit 1 1,586 2,990 ATP synthase subunit 6

NADH dehydrogenase subunit 5 1,568 2,291 ATP synthase subunit 8

WNT family 1,528 2,090 Cytochrome c oxidase polypeptide I

Serine peptidase 1,096 1,657 NADH dehydrogenase subunit 1

Homeobox protein 860 1,499 Zinc finger protein

Histone H3 836 1,314 NADH dehydrogenase subunit 6

Total 42,306 52,532

Table 3.2: Ten largest GFs of Invhogen Release 2 and Hovergen Release 46.

3.3.2 Species Distribution

Table 3.3 presents the invertebrate and vertebrate species for which the greatest number

of genes have been sequenced. Not surprisingly, species that are completely sequenced

(e. g. Drosophila melanogaster, Caenorhabditis elegans) are the most frequent. They

take up 44.5% of 132,556 protein sequences in Invhogen and 64.3% of the 214,379 se-

quences in Hovergen. Moreover, the distribution of all 22,053 species in Invhogen

among all families is non-uniform. The first three species from Table 3.3 are overrepre-

sented by at least 10,000 occurrences in number of sequences and appearance in families.

However, 11,162 species only contribute a total of one sequence (data not shown).

The percentages of different classified species in the 12 main invertebrate groups and

their representation in Invhogen are reported in Table 3.4. It is remarkable that the

proportions of molluscs (13.52%), echinoderms (1.5%), and cnidarians (2.07%) in Invho-

gen are at least twice higher than the proportions reported in the literature (molluscs:

6.68%, echinoderms: 0.67%, cnidarians: 0.86%) [65]. The proportion of sequences in

Invhogen for nematode sequences (22.56%) in comparison to all other species in Inv-

hogen is a disproportionately high — owing to the completely sequenced genomes of

C. elegans and C. briggsae — in comparison with the relative abundance of nematode

species reported in the literature (1.43%) and in Invhogen (1.61%), respectively.

35

Species INVHOGEN Sequences Species HOVERGEN

Drosophila melanogaster * 17,348 56,932 Homo sapiens *

Caenorhabditis elegans * 16,604 46,693 Mus musculus *

Caenorhabditis briggsae * 10,704 9,066 Rattus norvegicus *

Anopheles gambiae PEST * 8,423 7,577 Danio rerio *

Schistosoma japonicum 2,143 5,392 Xenopus laevis

Drosophila simulans 998 3,258 Gallus gallus

Anopheles gambiae 894 3,038 Bos taurus

Bombyx mori * 689 2,790 Sus scrofa

Drosophila yakuba 608 1,720 Macaca fascicularis

Ixodes scapularis 538 1,325 Oryctolagus cuniculus

Total 58,949 137,791

Table 3.3: The top 10 species in Invhogen Release 2 and Hovergen Release 46. (*) indicates
the organisms where the complete genomic sequence is published (Genomes OnLine Database).

3.3.3 GO Term Annotations

In this section GO term annotations are examined in the face of annotations in protein

sequences and on a GF distribution level. Furthermore, the annotation quantity is

distinguished between appearance and how often an individual GO term occurs.

GO Term Distribution in Protein Sequences

Table 3.5 shows the distribution of all possible GO terms within all protein sequence

entries in Invhogen. The number of GO terms are given in all odd columns indicated

by #T and the number of sequence entries in even columns marked with Occ. (The

number of 132,556 sequence entries results from the sum over all Occ. columns entries.)

It is apparent that every fourth sequence entry is not annotated by any GO term (25.6%)

at all and 44.3% of the sequences have references between one and five GO terms. From

the remaining 39,806 sequence entries 39,196 sequences are annotated with at most nine

GO terms, and only 0.46% (610 entries) have more than ten GO term references.

All protein sequences have a total of 489,717 GO terms with 3.69 annotations on

average. They are dispersed into the three sub-ontologies as follows: 178,995 cellular

components, 172,404 molecular function, 138,318 biological process.

36

Invertebrate No. of Species/Fraction No. of Sequences/Fraction

groups from Literature in INVHOGEN in INVHOGEN

Arthropods 900,000 85.86% 16,681 77% 81,896 62.36%

Urochordates 3,000 0.29% 65 0.30% 910 0.69%

Echinoderms 7,000 0.67% 326 1.50% 2,718 2.07%

Poriferans 9,000 0.86% 112 0.52% 398 0.30%

Nematodes 15,000 1.43% 348 1.61% 29,630 22.56%

Platyhelminths 20,000 1.91% 369 1.70% 4,296 3.27%

Cnidarians 9,000 0.86% 448 2.07% 1,629 1.24%

Molluscs 70,000 6.68% 2,930 13.52% 8,088 6.16%

Annelids 15,000 1.43% 369 1.70% 1,041 0.79%

Hemichordates 100 0.01% 3 0.01% 74 0.06%

Cephalochordates 25 0% 8 0.04% 608 0.46%

Ctenophorans 150 0.01% 6 0.03% 31 0.02%

Total 1,048,275 100% 21,665 100% 131,319 100%

Table 3.4: Distribution of the main classified invertebrate groups in Invhogen Release 2 and
from the literature [65].

Figure 3.3 represents the distribution of GO terms in all protein sequences. From

the intention that each gene product should be annotated by classifying it three times,

once within each sub-ontology [66], this distribution shows that 41.5% (55,081 entries)

are annotated at most twice and 47.2% (62,544 entries) more than three times.

#T Occ. #T Occ. #T Occ. #T Occ. #T Occ.

0 33,994 7 3,322 14 33 21 1 31 4

1 10,333 8 24,457 15 32 22 1 37 1

2 10,754 9 5,880 16 19 23 1 40 5

3 14,931 10 230 17 20 24 1 44 1

4 13,582 11 142 18 4 25 2 47 3

5 9,156 12 56 19 4 26 2 50 1

6 5,537 13 35 20 6 27 1 53 5

Table 3.5: Distribution of GO terms over the 132,556 sequence entries in Invhogen. #T
represents the number of a GO term assignment within a sequence entry and Occ. shows how
often each assignment counting appears in all Invhogen entries. For example, 10,333 sequence
entries are annotated by just one GO term.

Table 3.6 gives an overview of the term annotations separated by the three sub-

ontologies. As known from Table 3.5, e. g. 10,333 sequence entries have only one GO

37

Figure 3.3: GO term distribution in all 132,556 protein sequences. The exact values for occur-
rences of GO terms are listed in Table 3.5.

annotation. In this case 6,161 sequence entries are annotated with a molecular function,

2,412 entries with cellular components and 1,760 of them with some kind of biologi-

cal process. Table 3.6 also shows the composition for the very high number of 24,457

sequence entries with exactly eight occurrences. The first three largest values for all

sub-ontologies are placed in row number eight on the left side.

Figure 3.4 illustrates the percentage of the GO sub-ontologies within the 34 classes

with different numbers of annotation quantity. For the first seven numbers on the x-axis

biological process terms are more frequently used than molecular function terms and

cellular components (in this order). The highest appearances for the next two numbers

of GO terms are for cellular components. Beginning with ten sequences a large number

of GO term annotations are most commonly annotated with molecular functions.

GO Term Distribution in Gene Families

In addition to the distribution of GO terms on a sequence level Table 3.7 lists the

distribution of GO terms per GF. From a total of 15,389 GFs 6,477 of them (42%) have

38

#T P F C #T P F C

1 1,760 6,161 2,412 18 44 6 22

2 7,273 11,469 2,766 19 63 4 9

3 14,939 22,344 7,510 20 94 12 14

4 17,068 25,468 11,792 21 17 1 3

5 14,104 17,564 14,112 22 20 0 2

6 9,136 12,253 11,833 23 20 2 1

7 7,404 7,998 7,852 24 22 1 1

8 49,457 49,794 96,405 25 40 3 7

9 12,577 17,465 22,878 26 37 6 9

10 906 729 665 27 25 1 1

11 618 643 301 31 94 4 26

12 454 133 85 37 33 2 2

13 282 88 85 40 176 12 12

14 357 65 40 44 41 2 1

15 353 69 58 47 132 6 3

16 217 41 46 50 41 4 5

17 274 44 22 53 240 10 15

Table 3.6: Distribution of GO terms over the 132,556 sequence entries splitted into three
sub-ontologies (P indicates biological process, F means molecular function, and C cellular com-
ponent). The sum in each row for the three sub-ontologies is the same as the product of the
values from the two columns identicated by #T and Occ. in the corresponding row in Table 3.5.

no annotation. Similar as for the sequence entries most GFs have between one and four

term annotations (40%), 15.1% have five to nine annotations and 2.9% more than 10

with a maximum annotation number of 183 for GF INV000838. Figure 3.5 represents

the distribution of GO terms in all GFs.

Most Frequent Annotated GO Terms

Table 3.8 shows the distribution of the 15 most frequent GO terms which occur at

least once within a GF. Table 3.9 shows how often the 15 most frequent GO terms are

annotated in all GFs totally. For instance, GO term nucleus (GO:0005634) appears in

1,549 GFs 6,877 times. Approximately every sixth GF (from 8,912 being annotated)

carry this GO term 4,4 times on average. As the case of mitochondrion (GO:0005739),

it occurs in only 347 GFs (in table row number 18, data not shown) but if so very often

(119 times). Not surprisingly, the 15 most popular annotated GO terms are not far

39

Figure 3.4: Percentage of the GO sub-ontology terms for all annoted protein sequence entries.

distant from the GO ontology root entry. This means, that the majority of all GFs

are only annotated with more general GO terms, which does not distinguish them from

other GFs on a GO annotation level.

40

#T Occ. #T Occ. #T Occ. #T Occ. #T Occ. #T Occ. #T Occ.

0 6,477 7 353 14 24 21 3 29 4 41 1 53 1

1 1,633 8 246 15 27 22 10 30 1 42 2 54 1

2 1,478 9 154 16 16 23 3 31 2 43 1 55 1

3 1,783 10 84 17 14 24 5 33 2 44 1 59 2

4 1,268 11 65 18 14 25 5 34 1 47 1 66 1

5 950 12 49 19 21 26 2 38 1 49 2 117 1

6 622 13 43 20 9 27 2 40 1 52 1 183 1

Table 3.7: Distribution of all GO terms over the 15,389 GFs in Invhogen. #T represents
the number of a GO term assignment within a GF and Occ. shows how often each assignment
counting appears in all GFs. For example, 1,633 GFs are annotated by just one GO term.

.

Figure 3.5: GO term distribution within all 15,389 GFs. The exact values for the number of GFs
how often are assigned by GO terms are listed in Table 3.7.

41

GO Term Occ. Distance Description Sub-Ontology

0005634 1,549 4, 5, 6 nucleus cellular component

0016021 1,046 5 integral to membrane cellular component

0016020 896 3 membrane cellular component

0006355 736 8 regulation of transcription biological process

0005524 690 6 ATP binding molecular function

0003676 619 3 nucleic acid binding molecular function

0003677 595 4 DNA binding molecular function

0008270 588 6 zinc ion binding molecular function

0046872 498 4 metal ion binding molecular function

0003700 494 3, 5 transcription factor activity molecular function

0005515 492 3 protein binding molecular function

0016740 475 3 transferase activity molecular function

0006810 474 4, 5 transport biological process

0016787 450 3 hydrolase activity molecular function

0016491 402 3 oxidoreductase activity molecular function

Table 3.8: Distribution of the number of occurrences of individual GO terms within all 15,389
GFs. 1,549 GFs are annotated with GO term GO:0005634 nucleus at least once.

GO Term Occ. Distance Description Sub-Ontology

0005739 41,373 5, 6 mitochondrion cellular component

0016021 40,088 5 integral to membrane cellular component

0016491 39,070 3 oxidoreductase activity molecular function

0006118 37,211 5, 6 electron transport biological process

0006810 32,898 4, 5 transport biological process

0005746 30,342 6, 7, 8, 9 mitochondrial electron transport chain cellular component

0004129 29,661 5, 6, 7 cytochrome-c oxidase activity molecular function

0019866 28,022 4 inner membrane cellular component

0016020 13,605 3 membrane cellular component

0005634 6,877 4, 5, 6 nucleus cellular component

0005507 6,208 6 copper ion binding molecular function

0005525 5,510 6 GTP binding molecular function

0006412 4,776 6, 7 protein biosynthesis biological process

0046872 4,748 4 metal ion binding molecular function

0005524 4,346 6 ATP binding molecular function

Table 3.9: Distribution of the 15 most popular GO terms over all 15,389 GFs. 41,373 sequence
entries are annotated with GO term GO:0005739 mitochondrion.

.

42

Figure 3.6: Distribution of cellular component GO terms over all 15,389 GFs. 352 cellular
components from 1,695 cellular component terms in GO are assigned to at least one sequence
entry.

Figure 3.7: Distribution of molecular function GO terms over all 15,389 GFs. 1,193 molecular
functions from 7,594 molecular function terms in GO are assigned to at least one sequence entry.

43

Figure 3.8: Distribution of biological process GO terms over all 15,389 GFs. 1,622 biological
processes from 9,961 biological process terms in GO are assigned to at least one sequence entry.

44

3.4 Graphical Interface: Jenfem

Jenfem is based on the Core Data architecture. It allows users to easily access and

see the list of the GFs available in the database, the protein sequences of the genes

in the families, the corresponding protein MSAs and the maximum likelihood based

phylogenetic trees computed with these alignments. Furthermore, it offers a view which

shows all annotated GO terms for a selected GF.

3.4.1 Data Integration

As shown in Figure 3.9 there exist several sources of legacy data to efficiently import

them into the Jenfem application. The data consist of:

1. Protein sequence entries from SWISS-PROT/TrEMBL.

2. Phylogenetic trees in Newick format (if available for a GF).

3. Multiple sequence alignments (if available for a GF).

4. GO attributes.

5. Some entry fields from NCBI Taxonomy database.

The attributes taken from the GO and the taxonomy resources are listed in the data

schema in Figure 3.10. All these ‘flat’ data are imported to create the MOs (Section 2.3.3)

in a single pass, and then fixed up any relationships in a second pass.

45

F
ig

u
re

3.
9:

D
at

a
in

te
gr

at
io

n
in

to
th

e
J
e
n
fe

m
ap

p
li
ca

ti
on

.
F
iv

e
d
iff

er
en

t
d
at

a
re

so
u
rc

es
ar

e
u
se

d
to

st
or

e
th

em
in

th
e

C
or

e
D

at
a

sc
h
em

a
an

d
to

ga
in

ac
ce

ss
vi

a
th

e
gr

ap
h
ic

al
in

te
rf

ac
e.

A
n

ex
am

p
le

fo
r

a
co

m
p
le

te
sc

h
em

a
as

si
gn

m
en

t
is

gi
ve

n
in

T
ab

le
A

.1
.

46

3.4.2 Data Modeling

Data Modeling defines the data objects and their relationships, called a data schema. A

schema defines entities that contain properties. Properties can be values (here attributes)

or relationships to other entities. Entities (the containers defined in a data model) are

like a class definition in object-oriented programming: They define the form from which

any number of instances are created. It is different from a class in that it does not

contain code. It is just a description of data.

Data Schema

In Jenfem there are five entities GeneFamily, GeneFamilyEntry, GeneOntolo-

gyTerm, Taxonomy, and Sequence. The central entity in this data schema is Gene-

FamilyEntry which has connections with all other entities, one-to-one or one-to-many.

Each entity consists of a number of attributes and at least one relationship. Figure 3.10

shows the data schema with the five entities and the relationships between them. A

single arrowhead represents a to-one relationship and a double arrowhead a to-many

relationship. In both cases the arrow points to the destination entity. All relationships

have been flagged as being inverse relationships, representing both relationships as a

single line with two arrowheads. An inverse relationship does not just to make things

more tidy, it is actually used by Core Data to maintain data integrity.

47

F
ig

u
re

3.
10

:
D

at
a

sc
h
em

a
of

J
e
n
fe

m
.

L
in

es
b
et

w
ee

n
en

ti
ti
es

d
es

cr
ib

e
re

la
ti
on

sh
ip

s.
T

h
e

sh
ap

es
of

th
e

ar
ro

w
h
ea

d
s

in
d
ic

at
e

th
e

ki
n
d

of
re

la
ti
on

sh
ip

.

48

Name Type Description

alignment String Multiple Sequence Alignment

gfDescription String GF description

gfIdentifier String GF unique identifier

numberOfSequences Int16 Number of sequences

numberOfSpecies Int16 Number of species

phylogeneticTree String Phylogenetic tree

taxonomy String Path to all species or taxa within the GF

Table 3.10: GeneFamily table.

Data Tables

In the following each entity from the data schema is described in more detail. All tables

consist of three columns and represent each attribute’s name, its Core Data type and a

description of the attribute. Three Core Data types are used, namely String, Int16,

and Int32, where the last two are only differing in value range.

GeneFamily Table The GeneFamily table (Table 3.10) represents some aspects

which characterize each GF: The number of sequences and species, a protein MSA, and

a phylogenetic tree. The last two data representations are not specified if the number of

sequences in a GF was less than four or more than 400. Furthermore, this table has a

unique identifier and a description for each GF. A taxonomy string is used to allow not

only to search for species but also for higher taxa (query extension).

An instance of a GF has two or more sequence entries and zero, one, or more GO

term entries (represented by the relationships in Figure 3.10).

GeneFamilyEntry table The GeneFamilyEntry table (Table 3.11) contains at-

tributes regarding a sequence entry which belongs to a GF. This table collects some

important sequence entry fields from SWISS-PROT/TrEMBL like the accession num-

ber, the NCBI Taxonomy database ID [67, 68], entry name and description, and for

completeness the original sequence entry as a string value.

A GF entry is connected to all other entities in a one-to-one relationship to Se-

49

Name Type Description

accessionNumber String Accession number of a sequence entry

entryDescription String Description of a sequence entry

entryName String The entry name

taxID Int32 NCBI taxon identifier to which this gene product belongs

wholeEntry String Complete sequence entry from SWISS-PROT/TrEMBL

Table 3.11: GeneFamilyEntry table.

Name Type Description

identifier String The GO identifier

name String GO term name

subOntology String Indicates one of the three sub-ontologies (C, F or P)

quantity Int16 Number of occurrences within at least one GF

minDistance Int16 Minimum distance to GO’s root entry

maxDistance Int16 Maximum distance to GO’s root entry

Table 3.12: GeneOntologyTerm table.

quence, in a many-to-one relationship to Taxonomy and GeneFamily, and in a zero-

to-many relationship to GeneOntologyTerm.

GeneOntologyTerm Table The GeneOntologyTerm table (Table 3.12) repre-

sents some GO annotations for a given GF to show which GO terms all GF members

have in common. Each GO term here is specified by a name, an identifier, and a sub-

ontology (cellular component, molecular function or biological process). Additionally,

the total number of GO term occurrences is given, as well as the minimum and maximum

distances to GO’s root entry. (Each GO sub-ontology is structured as a directed acyclic

graph (DAG), wherein any term may have more than one parent as well as zero, one, or

more children.)

A single GO term can be related to GF entries or to a collection of GF entries

grouped into GFs.

50

Name Type Description

scientificName String Scientific name of a taxon

commonName String Common name

acronym String Acronym

equivalentName String Equivalent name

genbankAcronym String GenBank acronym

genbankCommonName String GenBank common name

misspelling String Misspelling(s) of a taxon

synonym String Synonym(s) of a taxon

rank String Rank of a taxon

quantity Int16 Number of occurrences within all GFs

taxID Int32 NCBI taxon identifier to which this GF entry belongs

parentIdentifier String The parent identifier

Table 3.13: NCBITaxonomy table.

NCBITaxonomy Table The NCBITaxonomy table (Table 3.13) stores the most

common attributes of each taxon from the NCBI Taxonomy database. Four of them

are mandatory (NCBI taxonomy identifier, parent identifier, rank, and scientific name).

All the other fields are filled with values if required, e. g. an organism can have several

different names (synonyms). The quantity attribute contains the number of occurrences

for each taxon within one or a collection of GFs.

A taxonomy entry can be linked to more than one GF entry within a given family.

In this case the total number of species is less than the number of sequences in a GF.

Sequence Table The Sequence table (Table 3.14) separately stores the protein se-

quences from all GF entries. Each sequence entry is composed of its sequence and

sequence type, its length in amino acids, and the molecular weight in Dalton.

A sequence belongs to one GF entry and each GF entry has exactly one sequence.

Jenfem

MVC Aspects Jenfem represents the view from the MVC design pattern (whereas

Core Data is responsible for the model part). In some respects every entity acts as a

51

Name Type Description

sequence String Sequence

type String Sequence type

length Int32 Length of the sequence

molecularWeight Int32 Molecular weight of the sequence

Table 3.14: Sequence table.

data resource for a controller which on the other end is responsible for the correct display

of the model in the view via Cocoa bindings.

Main Window The main window is organized in a master-detail interface. In the

master interface portion, a table view is used to display the collection of GFs. In the

detail interface portion, two views are used to display the GF entry’s attributes of the

selected GF. Figure 3.11 shows on the left side the table view of 17 GFs. In this example

GF INV000171 is selected for further inspection of its entries in the detailed views on

the right side. The table view on the top right displays all 32 entries and on the bottom

the sequence entry of the selected entry BGBP2 DROME.

Both table views in this window are connected with search fields to filter a collection

of objects. The search field above the master portion can be used to filter GFs with a

given description or to search for GFs with a certain taxon name. The other search field

filters GF entries depending on accession numbers or descriptions.

The buttons at the bottom of the main window are responsible for showing the

alignment and the phylogenetic tree (if available) for a selected GF. The buttons at the

top connect the main window with a taxonomy window of all taxa in Invhogen and a

window which displays all GO terms of a GF.

Multiple Sequence Alignment Window This window displays the alignment of a

given GF.

52

Phylogenetic Tree Window In this window the phylogenetic tree of a GF is dis-

played as a rectangular cladogram. At the bottom of this window the Newick tree format

is also shown.

GO Terms Window The main portion of this window is a table view representing

some details of every existing GO term in a GF (here INV000171). It shows that this GF

is annotated with 12 different GO terms (one cellular component term, four molecular

function terms, and seven biological process terms). All 32 sequences are annotated

with a total of 97 GO terms with the highest quantity of 22 occurrences for two GO

terms (GO:0004553, GO:0005975). The minimum distance of the GO root term is two

for GO:0005576 term and the maximum distance is nine for GO:0042830 term.

A search field at the top of the window enables filtering GO terms depending on

their descriptions.

53

F
ig

u
re

3.
11

:
In

v
h
o
g
e
n

gr
ap

h
ic

al
in

te
rf

ac
e.

W
h
en

a
u
se

r
se

le
ct

s
a

G
F

in
th

e
w

in
d
ow

on
th

e
to

p
le

ft
,
d
efi

n
it
io

n
s

of
al

l
G

F
m

em
b
er

s
ar

e
d
is

p
la

ye
d

on
th

e
ri

gh
t

si
d
e

of
th

e
m

ai
n

w
in

d
ow

.
F
u
rt

h
er

m
or

e,
th

e
p
ro

te
in

M
S
A

,
th

e
p
h
yl

og
en

et
ic

tr
ee

,
an

d
th

e
G

O
te

rm
an

n
ot

at
io

n
s

ar
e

sh
ow

n
in

th
e

ot
h
er

th
re

e
w

in
d
ow

s.

54

3.5 Discussion

Invhogen allows rapid selection of GFs according to various criteria. First, one can se-

lect homologous sequences for a user-defined set of taxa. The graphical interface provides

easy access to all the data (MSAs, phylogenetic trees, taxonomic data, sequence anno-

tations, GO annotations) required to interpret homology relationships between genes.

Thus, Invhogen is a useful tool for comparative genomics, phylogeny or molecular

evolutionary studies for invertebrates.

In the process of analyzing animal phylogenetic relationships, the approach used to

structure the available vertebrate sequence data in a database (Hovergen) has been

extended by a collection of all available invertebrate sequences. This work shows that

under the assumption of 1.1 million known animals (97% of them are invertebrates) [69]

only a small number of invertebrate species have proteins sequenced — and within these

species, a dozen contribute the majority of the invertebrate sequences to this database.

Invhogen has been built in the same way as Hovergen (to have a starting point for

comparative analysis).

3.5.1 Other Approaches to Build Gene Families

It is also noted, that further work is needed to define homologous GFs. Different ap-

proaches exist that have not yet been fully exploited for the applications suggested here.

Some approaches classify proteins into families using structural similarities [70] (struc-

tures available in Protein Data Bank (PDB) [71]), or grouping them into families on the

basis of the presence of shared domains or similar domain architecture [72] using domain

databases like Prodom [73], Pfam [74], and InterPro [75].

Apart from classification methods based on sequence alignments and motifs, sta-

tistical learning methods applying support vector machines (SVM) [76] are useful for

classifying diverse protein sequences. SVM and related approaches will complement

sequence similarity and clustering methods. Another approach is adopted by ontology-

driven systems to build families of specific proteins [77]. Ontologies are also useful for

55

pre-processing BLAST searches presenting a weighted list of GO terms associated with

similar sequences to give information about potential functions of unknown proteins.

However, it remains to be seen how approaches like OntoBlast [5] can be utilized

to reconstruct more reliable GFs. We hope that more sophisticated algorithms using

all available methods will substantially reduce the number of GFs with only very few

members (Table 3.1). Additionally the discrepancy between few often sequenced species

and many infrequent sequenced species should be kept in mind when generating GFs.

Moreover sequence sampling is biased towards a few model organisms. This may also

be the reason for a lot of GFs with few species. Thus for a better understanding of the

evolution of GFs one should sequence genes from a wide variety of taxa and not only

from a few well-known model organisms.

3.5.2 Annotation Problems

Besides the unbalanced distribution of the different organisms in Invhogen, two other

annotation issues arose in the course of building the invertebrate GFs: (i) inconsistent

nomenclature for protein sequence descriptions, and (ii) the lack and the (sometimes

poor) quality of GO terms annotations.

Gene Product Descriptions

The issues of consistent nomenclature apply to gene product descriptions as well as

organismal taxonomy [78]. For database queries to be meaningful it is important that

consistent names are used for the same source of data. It is not uncommon for the

same gene to have several different names in the sequence databases due to synonym

terms, acronyms, morphological and derivational variants, reinforced by the ad hoc use

of orthography such as capital, spaces, punctuation (e. g. NF-Kappa B, NF Kappa B,

NFkappaB and NF kappa B) and the inconsistent naming conventions (e. g. IL-2 has

many variants such as IL2, Interleukin 2 and interleukin-2). On the other hand, names

and their acronyms are often classified in different semantic classes, depending on a given

context.

56

For other kinds of data similar issues arise. Morphological data tends to be described

in an idiosyncratic fashion, although efforts are being made to standardize nomenclature

(Structure of Descriptive Data subgroup)1.

These inconsistencies for gene product names often were a challenge for naming

GFs (described in Section 3.2.2). It remains also a problem in a very common task

in information extraction, named entity recognition, where named expressions (such as

protein names, chemical compounds, diseases, symptoms etc.) have to be recognized

and classified.

GO Annotations

Analysis of how GO terms are used to annotate SWISS-PROT/TrEMBL reveals that

much of GO is either barely used or not used at all: As it is shown in the result section

every fourth sequence entry has no GO annotation (Table 3.5, Figure 3.3), and most

sequence entries are only annotated with few GO terms which appear by reason of their

general classification in many other GFs, e. g. nucleus in 1,549 GFs (Table 3.8). By this

it means that a large quantity of proteins are ‘under-annotated’, so a general term has

been assigned when a more specific term would be better. Figure 3.6 to Figure 3.8 point

out the distribution of all sub-ontology terms in Invhogen. 352 different annotated

cellular component GO terms from 1,695 cellular component terms in GO (20.8%) are

used in all sequence entries. Out of them only ten terms are presented more than 1,000

times, 195 terms are between four and 97 times, and 123 less or equal three times.

Both other diagrams in Figure 3.7 and Figure 3.8 have the same characteristics of term

distribution: 15.7% of all molecular function sub-ontology terms are annotated and

16.3% of all biological process sub-ontology terms, again with only a dozen of highly

distributed GO terms not far distant from the root GO term entry.

Reasons for the large number of weak (Table 3.7) and/or general annotations from the

researcher’s perspective — besides automatic approaches to annotate sequence entries

with GO terms — are the lack of biological knowledge, an incomplete understanding

1http://www.tdwg.org/sddhome.html

57

to match gene information with especially more specific GO terms, or mis-annotations

(e. g. due to spelling mistakes). As a consequence it might currently not be meaningful

to use annotated information from GO terms in protein sequence entries as additional

criterion to approve the relationships of sequences within each GF. However, for some

but not many small GFs there is a kind of ‘semantic’ support regarded from consistent

and specific GO term annotations.

Methods of Resolution In order to overcome the difficulties to better annotate

anonymous sequences with the GO vocabularies many tools and software programs have

been developed through an automatically or manually curated search for the associa-

tions between sequence entries and GO terms [5, 79, 80, 81]. Other programs are more

concentrated on visualizing, comparing, and plotting GO annotation results to find the

differences or anything new in sequence datasets [82, 83, 84].

The large-scale assignment of GO terms to SWISS-PROT/TrEMBL proteins using

electronic methods is a fast and efficient way of associating high-level terms to a large

number of proteins. To provide more reliable and specific annotation, the GOA project

[3] also makes use of manual curation using information extracted from published scien-

tific literature. This process is slower than the use of electronic techniques but provides

more accurate information as all annotation is validated by a team of skilled biologists.

Contribution to the GO project works similarly. One can send comments, questions

or suggestions regarding GO to a so-called GO helpdesk or one can subscribe to a number

of mailing lists to follow the development of different aspects of the GO project. To get

in touch with the GO curators there exists the GO curator requests tracker which allows

one to denote requests regarding annotation issues, bugs, or ideas to improve the project.

A drawback besides a lot of advantages of both contribution ways is that researchers

are not directly involved in the development of the database and the ontology, respec-

tively. One solution to address this kind of unilateral communication (in some way)

between scientists might be to offer all of them a common web platform which also inte-

grates social network aspects to enable knowledge elicitation for diverse domains and as

58

its central part an application to cooperatively develop ontologies in terms of an ontology

wiki. This Internet application called Ontoverse is described in the next chapter.

59

Chapter 4

Ontoverse

Ontoverse is a research project funded by the German Federal Ministry of Educa-

tion and Research, that offers an approach within the Ministry’s promotional focus on

eScience and knowledge management while concentrating on life sciences as the domain

of interest.

4.1 Introduction

Knowledge networking comprises two different aspects: collaborative knowledge man-

agement in communities (human networks) and effective information integration (data

networks). Thus, on the one hand techniques are regarded that help to structure and

interlink existing knowledge sources effectively with ontologies as the core technique.

And on the other hand, in knowledge networking people share their knowledge via social

networks.

The Ontoverse project aims at combining these two points of view: establishing

a platform, that provides tools for designing ontologies for annotating and interlinking

knowledge sources and that also helps people to build up social (scientific) networks. This

platform is called the Ontoverse ontology wiki. It comprises support for collaborative

ontology engineering, an ontology based publication management system and solutions

for knowledge exchange in scientific communities.

60

4.2 The Need for Collaborative Ontology Development

Recently, the optimization of storing, retrieving and integrating data is becoming a

popular focus for the WWW in general and a fundamental task for scientific contexts. For

the focused domain of interest, the life sciences, the particular problem is the integration

of heterogeneous data. For example, bioinformatics data not only consist of customary

textual items (scientific publications), but also comprise nucleotide sequences, amino acid

sequences, 3D structures of molecules and a manifold of other experimental results. Such

diverse biodata need to be stored and structured effectively. Recent progress in the life

sciences has already led to the accumulation of biodata that now demand classification,

accessibility and visualization.

4.2.1 Representing a Shared View

A shared understanding of a domain is needed as a basis for scientific discussions. If no

consensus on a domain of knowledge and its key components exists, definitions have to

be mentioned in every single discourse on that topic. Thus, ontologies form the basis

for communication within a community as well as for human-machine interaction [85].

It is most desirable to have ontologies produced collaboratively by a large community,

to ensure that they do indeed represent a shared view. Opinions and suggestions of a

broad community of domain experts should be regarded.

4.2.2 Information Integration for Scientific Data

Additionally to the management of the vast amount of biodata there is also an urgency

to collect scientific cognitions and make them multidisciplinarily accessible. GO for

example structures investigated genes and information about them (Section 2.2.1). This

addresses a main problem in genetics which is the multiple denotation of similar genes

which were found in different organisms. This problem leads back to the rapid increase

of knowledge. Scientists often specialize on single research domains, for most of them it

is hard to keep track of all new developments even in these limited areas, even harder it is

61

to recognize trends in other fields that might effect ones own research. Because of these

advantages a growing interest in ontologies can be noticed especially in the bioscience

community, resulting in different ontology projects GO and the National Center for

Biomedical Ontology [86] which includes the Open Biomedical Ontologies.

4.2.3 Experiences in Developing a BioInformatics Ontology for Tools

and Methods

Within the Ontoverse project an ontology, called BIO2Me, to gather experiences is

designed which are incorporated into the development of the platform [87]. For that

purpose the domain of bioinformatics tools has been chosen. Bioinformatics provides

tools for the efficient processing of experimental data (e. g. from genome sequencing),

sequence analysis, and structure prediction and visualization (amongst others) and by

now there is a variety of tools available which handle similar biological questions with

partly completely different computational methods. Without a structured overview,

even for experts in bioinformatics it is hard to decide which tool fits their individual

requirements best. Therefore, the knowledge about these tools have to be collected and

organized, for otherwise the full potential of existing tools is not be utilized. The goal of

BIO2Me is to provide information about certain bioinformatics tools and methods, and

to enable search for these tools within the ontology that meet the user’s needs.

The domain of BIO2Me eminently points out the need for collaborative ontology

engineering. To represent bioinformatics tools with their applications, the whole bioin-

formatics research field and biology itself have to be displayed adequately in a structured

way, as the application range of every tool has to be set into this context.

4.3 Editing and Maintaining Ontologies

Ontology engineering is a process of several phases; mainly a conceptualization phase, a

phase of actual editing the structural data, a maintenance phase that includes updates,

corrections and ontology enrichment, and as an optional last phase the reuse of the

62

ontology (other divisions are also possible, e. g. in [88]).

Every ontology project begins with a conceptualization, where basically the aim and

scope of the ontology as well as design guidelines are defined. It is useful to provide an

Ontology Requirement Specification Document (ORSD) [89] for that purpose, that can

be filled with the respective decisions. During this conceptualization phase, thematic

discussions of a domain community are extremely useful to capture the characteristics

of the domain.

While the conceptual phase forms the shared basis for further collaborative work, the

following steps of the engineering process profit from a vital community. Social tagging

and knowledge elicitation systems are integrated to collect suggestions for further con-

cepts. Even after a stable state is reached, ontologies kept in community environments

are furthermore be permanently maintained and updated.

It requires a lot of coordination, communication and support by adjusted tools to

enable such collaborative development of ontologies, especially in early phases when

the basic structure of the ontology is planned. Another major role for an interested

community is to interlink and classify current ontology projects to make them accessible

and traceable. This is a necessary condition to enable effective ontology reuse and to

prevent redundant projects.

A necessary element of supportive technology is a system to make all changes and

edits easily visible and traceable. This also includes an option for immediate notification

when changes on the ontology have been made. Further requirements for collaborative

work are discussed in [90].

Das et al. [91] provide an evaluation of some ontology editors with regard to multi-

user collaboration. A number of editors somewhat support this aspect and the web

application WebOnto [92] exceeds the requirements. But WebOnto is no longer under

development and the other multi-user editors like Chimaera [93] and Ontolingua [94],

also realized as web applications, are not available anymore. By now a new generation of

collaborative approaches has emerged, e. g. [95, 96, 97, 98], who all have slightly different

foci and aims, but have not yet implemented a running system.

63

4.4 Ontology Wiki

The Ontoverse approach implements an ontology wiki; i. e. an editor platform that

supports distributed work on structural (ontological) data as well as informal discussions

and annotations (proto-ontological data). Interested users can view and use ontologies,

join existing ontology projects or plan and start a project anew. All different phases

of ontology development like conceptualization, editing, maintenance and reuse are sup-

ported (see [91] for a survey of published ontology design methodologies). This also

connotes, that the ontology wiki is a platform for multiple ontology projects that have

to be administered diligently and provided in an easily accessible way.

4.4.1 User Community and Collaboration

Some approaches have been made to support collaborative ontology engineering e. g. in

[95, 99]. What is new in Ontoverse, is the explicit support of a social network closely

combined with a Web-based ontology editor. A focus is placed on the support of a

heterogeneous community. Potential users differ in their fields of interest and skills: On

the one hand knowledge and expertise is needed from domain experts (DEs). On the

other hand ontology languages can only be fully exploited by ontology designers (ODs).

4.4.2 Key Aspects

Major innovations in Ontoverse are:

• An open collaborative approach that takes into account all the people who have

expert knowledge in a certain knowledge area. The system brings together ODs

and DEs and regard their different states of knowledge. Within such an approach

to community collaboration, certain considerations on roles and their rights are

necessary as discussed in the last paragraph of Section 4.5.1.

• All different phases of ontology development are supported. The wiki encourages

thematic discussions and the adding of unstructured (proto-ontological) data in

the actual ontology editing process.

64

• Integrating the publication management system PubDB to store and manage the-

matic documents and adding information extraction functionalities (Section 4.6.13).

Scientific publications are one kind of knowledge source to gather information

about a domain. Within the Ontoverse project a publication database is used

as the knowledge source for an IE application that supports the community in

identifying relevant concepts, instances and relations from texts, which can then

be incorporated into the ontologies. In return, the newly developed ontologies

themselves help to retrieve relevant documents from publication databases. On-

toverse members can also tag arbitrary publications with their own keywords.

These tags are mapped whenever possible with the concepts, relations and indi-

viduals in the ontologies. Doing this the platform facilitates social search and DE

identification as described below.

• The identification of DEs whenever needed by the OD during the editing process

is supported. Registered DEs can define expertise in their profiles, which are then

used to identify fitting DEs in cases of support requests by ODs.

• A project’s ontology is subject to successional changes. To enable periodical con-

sistent and stable releases the system incorporates a release process. If project

members decide that it is time for a new release the current state of the ontology

is copied into a debugging branch (Figure 4.1).

Figure 4.1: Ontology debugging and release process. After certain time intervals an ontology
should be submitted to a disambiguity resolution process followed by a debugging stage where
inconsistencies are removed. The final stable ontology gets a fixed release number.

65

4.5 Challenges and Tasks of Collaborative Ontology De-

velopment with Ontoverse

Along with the benefits of collaborative ontology editing some new challenges emerge. In

order to identify the most important ones they are divided into conceptual and technical

categories. Nevertheless, because of the strong interdependencies between them this

separation remains to some degree artificial.

4.5.1 Conceptual and Process Challenges and Tasks

Figure 4.2: Schematic illustration of the Ontoverse ontology life-cycle process.

To offer an integrated ontology development platform that directly connects DEs

with ODs the Ontoverse project has to address important conceptual challenges. Par-

ticular objectives are the proper integration of both the inter-ontological (i. e. ontology

mapping and merging) and the intra-ontological (concerning the concepts and properties

inside one single ontology) data processing level, the connection of proto-ontological (i. e.

informal and semi-formal) and ontological (formal) data and the adequate management

66

of the community. Figure 4.2 illustrates the Ontoverse ontology life-cycle containing

the conceptual challenges that are discussed in the following.

Inter-Ontological and Intra-Ontological Level in Ontology Engineering

The assembling of ontological data can be conceptually divided into inter- and intra-

ontological stages. The intra-ontological level has to support tools and methods for

building up a knowledge base from scratch or by extension of a given ontology with

further concepts and relations. In Figure 4.2 the process steps Cooperative Ontology

Editing and Semi-automatical Ontology Extension belong to the intra-ontological engi-

neering level. The primary actors in these workflow steps are the ODs and an IE module

for (semi)-automatical ontology extension. The IE screens textual data to fill predefined

templates with facts that can be used to extend the knowledge base after being curated

by ODs. To ensure the correctness and quality of the ontology the designers can con-

sult DEs via synchronous and asynchronous communication channels. The process step

Knowledge Acquisition reflects this in Figure 4.2.

Conceptual Challenges

Classes vs. Instances One important design issue is whether a concept should be

represented as a class or an instance. In general, there is no clear division between classes

and instances, and a concept can be either one. Choosing between them represents a

design choice that is dependent on the purpose of the ontology [100].

Figure 4.3: Vertical vs. horizontal hierarchy construction.

67

Vertical vs. horizontal hierarchies The class vs. instances design issue is closely

connected to the vertical vs. horizontal construction of class hierarchies. Particularly

ontology design novices tend to model concepts in deep vertical hierarchies (Figure 4.3,

A). While such design can be technically correct in principle — this is not true for this

example by the way as proteins can also consist of more than one polypeptide — it has

always to be checked whether they are appropriate, too. In many cases it would be better

to identify properties of the concepts that allow to use the horizontal dimension as well.

The example could also be reorganized into a more horizontal structure (Figure 4.3, B).

Identification of corresponding concepts and properties To map or align ontolo-

gies the corresponding concepts and properties first have to be identified. Problems occur

when semantically similar concepts are using labels that cannot be identified through

pattern matching methods. In these cases correlating concepts have to be identified

and annotated manually. Another kind of aligning/mapping problems are semantically

asymmetrical correlations. Such kind of correlation exists, if in one ontology a single

concept and in another ontology a group of connected concepts represent the same sec-

tion of the domain. It can get even more complicated if the same domain knowledge has

been modelled in two largely different ways. The challenge in both cases is to narrow

down the relevant properties and related concepts.

Merging equivalent or semi-equivalent sub-structures After the identification

of the corresponding sub-structures in a merging project ODs have to decide how two

sub-structures could be merged the best way.

Proto-Ontological and Ontological Data

Ontoverse introduces a distinction of proto-ontological and ontological data, which are

both handled in the same tool. Ontological data refers to formalizations of ontological

elements. In contrast, proto-ontological data can be every piece of information not

yet being brought into formal structure. This ranges from the ORSD (Section 4.3),

68

over semi-formal concept graphs to the rating and annotation of concepts and relations

(Figure 4.2 steps Project description and Proto-Ontology Editing).

Managing the Community: Roles and Rights

From the user’s perspective, Ontoverse offers role management with different access

privileges. On the part of ontology development each registered user is capable of ini-

tiating a new project or to participate in existing ontology projects. Typically any

collaborative project should consist of several users with knowledge in ontology design

and/or the specific domain it was originally created for.

Figure 4.4 points out the natural structure of ontology projects in an organization

chart. Apart from the organization of the Ontoverse platform itself the ontology

building part is focussed on the interrelation between DEs and ODs. Every project is

administrated by a project administrator (PA), who is monitoring all the changes and

is responsible for conflict resolution within the ontology.

Figure 4.4: Every ontology project is administrated by a single group of PAs composed of one
or more members. Customarily both DEs and ODs are involved in ontology development.

69

Access rights are coupled to individual roles of specific projects. That means a user

can act as DE in one project and as OD or even PA in another. This comprises the

possibility for one user to play different roles in one project.

Ontology designers are mainly entrusted with the translation of domain knowledge

into a formal ontological representation (or transforming proto-ontological into ontolog-

ical data). This stage is established by a dialog with human experts in order to elicit

knowledge. In the following stage the OD codes the knowledge explicitly in the onto-

logy. This process iterates until the ontological coding is judged to be satisfactory by

the experts.

However, one difficulty in communication between ODs and DEs is that the knowl-

edge engineer does not always know the technical terms of the DE. Another problem

may be in expressing the knowledge in explicit terms. To overcome these difficulties the

support of proto-ontological data as modes of expression is needed. Functions of the

different user groups are summed up as follows:

Domain Experts:

• Collect knowledge, provide it informally (proto-ontological data) and discuss it.
Contribute new scientific findings.

• Collect publications relevant to actual topics of interest and tag them.

• Answer domain-specific questions posed by ODs.

• Discuss and benchmark existing ontologies.

Ontology Designers:

• Exploit the input contributed by DEs and transfer it into formal ontology languages
(ontological data).

• Discuss formal knowledge representations, edit and maintain them.

Project Administrators:

• Define aim and domain of a new ontology.

• Coordinate discussions and monitor the collaboration process.

• Release versions of an ontology.

70

Considering the user roles and potential workflows as well as general problems in collab-

orative systems, the following requirements for the platform can be derived.

• Elaborated communication channels, adjusted for discussions DE-DE, OD-OD and
DE-OD.

• User profiles and user networks: show fields of expertise, search for experts.

• Information on authorships, copyright guidelines.

• Collaboration guidelines and principles of ontology engineering.

• Community awareness features, tracing of changes.

4.5.2 Technical Challenges and Tasks

Besides social and interpersonal aspects, offering a system for cooperative work of large

user groups addresses some technical problems to resolve in order to provide a platform

on the Internet for designing ontologies in a collaborative way. Because of its inner

structure, RDF data is typically large-scale, highly interconnected and heterogeneous in

contrast to relational data. Thus, it is indispensable to manage such datasets cleverly

to allow cooperative development. Furthermore, the system should support graph-based

navigation, querying facilities, and editing functionality accompanying ontology gener-

ating processes.

Ontology Storage and Managing

Due to the fact that the requirements for storing RDF data efficiently are different from

relational databases two approaches exist to store and manage RDF data. The first

approach is based on relational databases which store RDF data in a persistent data

model by mapping the RDF model to the relational model. On the other hand there are

systems that implement a native store with their own index structure for RDF triples like

Jena2 [101], Redland [102], and YARS [103]. To record changes in an ontology, a network

equivalent of a shared ‘blackboard’ was needed. Remote programs can place objects on

the board, examine these objects or remove them. This is generally realized by a data

71

structure called a tuple space that is optimized for distributed programming [104]. The

implementation of this back-end part in Ontoverse is described in Section 4.6.14.

Visualization

The exploration of large datasets is generally an important but difficult problem. Visu-

alization techniques are useful in solving this problem. Data types to be visualized for

ontologies are hierarchies and graphs [105]. These data records have many relationships

(connections) to other objects (called nodes) and build ordered, hierarchical, or arbitrary

networks of relations representing such interdependencies. Ontology visualization also

needs to be tightly integrated with the Ontoverse system used to deal with the vast

amounts of information. The aim is to bring the benefits of visualization technology

to the user to allow a better, faster, and more intuitive handling of huge ontological

data. In viewing or editing large ontologies, one first needs to get an overview of the

graph structure. In the overview, the user is able to identify interesting regions to edit

or explore subgraphs within the ontology which are currently processed by other users.

Interaction techniques allow the user to directly interact with the graph and dynami-

cally change the visualizations, as well as select subsets of the data for further operations.

These techniques can be categorized based on the effects they have on the display. Nav-

igation techniques focus on modifying the projection of the data to smoothly navigate

through the ontology onto the screen. View enhancement methods like zooming or dis-

tortion [106] allow to adjust the level of detail on part or all of the visualization, modify

the mapping to emphasize some subset of the data, or collapse unrequested data. Selec-

tion techniques provide users with the ability to select interesting parts of the ontology

for operations such as highlighting or filtering.

In addition collaborative aspects into the visualization are incorporated. That is why

e. g. locked parts of the ontology are particularly marked in the graphs and changes are

notified. Additionally the view depends on the user role. The realization of ontology

editing and visualization in Ontoverse is also given in Section 4.6.14.

72

4.6 Ontology Wiki Architecture

4.6.1 Overview

From these goals in the aforementioned sections, a high-level list of requirements for the

ontology wiki is shown in the following and summarized in Figure 4.5:

• A system to allow users to create user accounts and add profiles about them-

selves: This requires them to log in with a username and a password (Section 4.6.2,

Page 75).

• News blog: This allows editors of the site to create news reports and publish them

on the front page (Section 4.6.3, Page 81).

• Discussion forum system: Forum moderators are able to create a number of forums

in which users can create new topics. Each topic can have any number of posts

(Section 4.6.4, Page 83).

• Blogging engine: This allows users to create their own blogs about their projects

and development experiences. It allows users to post blog entries using desktop

blogging clients as well as the Web (Section 4.6.5, Page 86).

• Photo gallery for each user of the site: This allows users to upload photos to their

profiles or to relevant projects (Section 4.6.6, Page 90).

• E-mail newsletter: The newsletter can be sent to all members of the site that opt

in to receiving e-mails from the site (Section 4.6.7, Page 91).

• Friendships system: This system allow users to add other users to a friends lists

or other types of relationship (Section 4.6.8, Page 93).

• Tagging and searching support: Projects, photos, and publications are taggable

to make it very easy for users to search and browse these objects (Section 4.6.9,

Page 95).

73

• Google Maps integration: Opens up the possibilities of embedding interactive,

scrollable maps for project members (Section 4.6.10, Page 98).

• Ontology projects and project’s wiki: The ontology building part of the ontology

wiki to manage and maintain ontology projects (Section 4.6.11, Page 100 and

Section 4.6.12, Page 102).

• Scientific publication database PubDB: The source for project-specific document

collections mainly to extract information (Section 4.6.13, Page 106).

Figure 4.5: Overview of the architectural components in the Ontoverse ontology wiki from a
user’s perspective (see also Table A.1).

4.6.2 User Management System

In this section, the user management system with user accounts and a role-based group

system is described. This allows users to create accounts and log in to the site. The On-

toverse administrator (OA) role maintains control to regulate who can administer the

74

Ontoverse platform. A web interface allows administrators to manage the permissions

of each user, including disabling accounts.

User Model

The User model holds the account information. It defines the information that will

be stored about the users and how a user’s input can be validated on sign-up. For the

log-in process a user needs a password. This password is stored in the user database

table using a one-way hashing algorithm [107]. By storing the hashed value of the user’s

password in the database, one can check that the user has entered the correct password

by calculating the hash of the entered password and comparing that to the hashed value

stored in the database. The required database fields for the Users table are shown in

Table 4.1 (some internal table fields are skipped in this table).

Name Type Description

id integer The primary key

login string A unique name that the user will use as a log-in name

email string The e-mail address is required for the confirmation pro-
cess after a user has signed up

crypted password string This will store the hash of the entered password

enabled boolean If a user wants to remove the account, it needs to be
disabled

created at datetime The date and time that the user was created

updated at datetime The date and time that the user was last updated

Table 4.1: Users database table.

Person Model

In contrast to the User model, the Person model holds the personal information for

completing a user’s profile with personal data (title, name, gender, home page, and so

on). Table 4.2 shows the complete structure of the Person model’s database.

One source for this kind of data might be extracted from publications (for more

details see Section 4.6.13).

75

Name Type Description

id integer The primary key

gender string The gender of a person

title string An academic title of a person

firstname string First name of a person

middlename string Middle name of a person

lastname string Last name of a person

birthday date A person’s birthday

initials string Initials of a person

email1 string First e-mail address

email2 string Alternative e-mail address

homepage string The person’s home page

Table 4.2: People database table.

Address Model

In addition to the Person model, the Address model represents address specific data.

Addresses table and People table are linked in a one-to-many relationship. The

required database fields for the Addresses table are shown in Table 4.3.

Name Type Description

id integer The primary key

street string Street

city string City

zip integer Zip code

state string State

country string Country

add info string Additional information (e. g. building)

lat string Latitude

lng string Longitude

Table 4.3: Addresses database table.

Department Model

The Department model contains information about a department’s name and orga-

nization, a description, and an entry for its home page. This model is linked in a

76

many-to-many relationship with the Address model and Person model, respectively.

The relationship between department and person is complemented by a history function

storing all previous departments of a single person (Figure 4.7). The required database

fields for the Departments table are shown in Table 4.4.

Name Type Description

id integer The primary key

name string Name of the department

organization string The department’s organization

description text Description of the department

homepage string The department’s home page

Table 4.4: Departments database table.

Account Management

The authentication system offers the following features required for authenticate users

onto the platform (Figure 4.6):

1. Sign up: In the sign-up form a user gives information about his profile.

2. Activation: He is being sent an e-mail to ensure he had given a legitimate e-mail

address.

3. Logging in: Users without an account first have to sign up for an account. If a

user logs in successfully he is redirected to the initial URL he entered before the

log-in page was invoked, basically the start page.

4. Failed log-in: An invalid log-in is redirected to the log-in form.

5. Reset password: A user has forgotten his password to the system. He clicks a link

to reset the password, and the system sends a link to create a new one by e-mail.

77

Figure 4.6: Authentication system in Ontoverse.

78

Role Model

In order to assign different permissions to different users, a Role model is created to

store the different roles of users on the site. This will not store what the role is capable

of, just the name (and description) of the role. The actual capabilities or restrictions

of each role is defined in the code. The required fields of the Roles table are shown in

Table 4.5.

Name Type Description

id integer The primary key

name string Name of the role

authorizable type string Authorizable type

authorizable id integer Authorizable ID

created at datetime The date and time that the role was created

updated at datetime The date and time that the role was last updated

Table 4.5: Roles database table.

User and Role models are linked together using a join table. This join table simply

stores the IDs of the two separate models and links them together. On the model site, a

many-to-many relationship is specified by stating that the User model has and belongs

to many roles, and the Role model has and belongs to many users (Figure 4.7).

Controllers

The authorization process decides whether a user is allowed access to some feature. It

is distinct from the authentication process, which tries to confirm a user is authentic.

Implementing this technology requires: a Users controller, a Session controller, and

an Admin controller.

Users Controller The Users controller provides the usual REST methods for ac-

cessing the User model: index, show, new, create, edit, update, and destroy. A user

is not actually deleted, but only disabled by setting the enabled field to false. To allow

79

Figure 4.7: Entity relationship diagram for users, user’s profiles, and roles.

to re-enable a user’s account, administrator permissions are required. The activation

functionality completes the signup procedure after user confirmation via e-mail.

Session Controller The Session controller needs the following methods to allow a

person to join the site, log in, and log out:

• The signup method allows users to enter their details to become new members of

the site.

• The login method checks e-mail address and passwords of the users to allow them

to log in to the site.

• The logout method logs out users from the site.

Admin Controller Through this controller roles are defined by administrator for the

whole platform (e. g. ‘editor’, ‘moderator’) and roles which are project-specific.

80

Other User Management System Extensions

• In the sign up form a security feature called CAPTCHA1 requires user to type the

letters shown in a distorted image, to catch a large portion of automated spam

bots.

• ‘Remember me’ allows to remember the log-in status of its users. A user does not

need to enter the log-in name and password each time visiting the site because the

web browser remembers them.

• The sign up procedure integrates OpenID2 into the user accounts system, allow-

ing users to log in with their existing OpenID identity. This provides people an

opportunity to sign on to multiple web sites using the same identity.

• After signing up successfully, Google Maps Geocoder3 tries to find out the coor-

dinates of the given address and stores them in the Addresses table if they are

available.

4.6.3 Building a News Blog

A news blog is built to be shown at the Ontoverse front page to keep the users informed

of developments at the site as well as keeping the site up to date. The basic functionality

of the news list allows administrator users or editors to create news reports, along with

an archive of them. Reports can be checked and edited by other editors before going

published.

A new role, called editor, is provided to create and edit news. This allows OAs to

give permissions to certain users to write and edit reports without giving them access

to editing other parts of the site.

The news report functionality provides RSS4 and Atom5 feeds of the report, along

1http://en.wikipedia.org/wiki/Captcha
2http://en.wikipedia.org/wiki/Openid
3http://maps.google.com/
4http://en.wikipedia.org/wiki/RSS (file format)
5http://en.wikipedia.org/wiki/Atom (standard)

81

with providing an API to the news feature. Both feeds let users to subscribe to the news

feed with an RSS newsreader and be automatically notified when a new report is posted.

Report Model

The individual news report uses a model called Report. Reports can be created, checked

and edited by administrators or editors. Editor users are able to add markup without

to write HTML in the reports. Each report belongs to one category which can be

created and maintained through a web interface. The necessary fields to implement its

functionality are shown in Table 4.6.

Name Type Description

id integer The primary key

title string Title of the news report

synopsis text A short synopsis that will be shown in a list of reports

body text The text of the report itself

published boolean Reports can be saved and edited before being published

created at datetime The date and time that the report was created

updated at datetime The date and time that the report was last updated

published at datetime The date and time that the report was published

category id integer Category of a report

user id integer ID of the user who created the report

Table 4.6: Reports database table.

Category Model

Each report belongs to one category, so a one-to-many relationship is defined — each

category can have many reports. A category consists only of a name field limited to

80 characters. Figure 4.8 shows the relationships among news reports, categories, and

users.

82

Figure 4.8: Entity relationship diagram for news reports, categories, and users.

Controllers

Report Controller The Report controller provides the normal REST CRUD ac-

tions. The new, create, edit, update, and destroy methods are needed for the user

who has the editor permission. Since reports can belong to a category, they should be

accessible by URLs such as categories/1/reports, which returns all of the reports

with category ID 1. An index view shows a full list of all reports and links for editors

to quickly add a new report or edit an existing one.

Categories Controller This controller allows users with the relevant permission to

add, edit, or delete categories. A user can get a list of all categories together with the

number of reports in each category. Clicking a category will take the user to the list of

reports within that category.

4.6.4 Discussion Forum

In this section, the discussion forum for the Ontoverse community is presented. It

enables users to discuss various aspect of general usages, project-specific themes, and

other topics. Only OAs and other nonadministrative users, called moderator, are capable

83

to create a number of forums. Within each of these forums, users can create topics. Each

topic then has any number of posts within it about that topic.

The forum structure consists of three models: Forum, Topic, and Post. A forum

has many topics, and a topic, many posts. In addition to this, each topic and each post

belong to the user who created them. For performing reasons the Forum and Topic

models make use of counter caches to speed up database queries.

Forum Model

The Forum model consists of a name and a description. Forums can be created, edited,

and deleted only by a moderator or OA. A counter cache stores the number of topics

per forum. Table 4.7 shows the complete structure of the Forum model’s database.

Name Type Description

id integer The primary key

name string Forum name

description text Description of the forum

created at datetime The date and time that the forum was created

updated at datetime The date and time that the forum was last updated

topics count integer The topic counter cache

Table 4.7: Forums database table.

Topic Model

The Topic model has the topic name along with the user ID of the user who created the

topic. Any logged-in user can create a new topic, but only moderators (or OAs) can edit

or delete topics. Deleting a topic will delete all of the posts within that topic. A counter

cache stores the number of posts per topic. The Topic model’s database structure is

shown in Table 4.8.

84

Name Type Description

id integer The primary key

name string Subject of the topic

created at datetime The date and time that the topic was created

updated at datetime The date and time that the topic was last edited

posts count integer The posts counter cache

forum id integer ID of the forum that this topic belongs to

user id integer ID of the user who created the topic

Table 4.8: Topics database table.

Post Model

Each post has a body, a text field containing the body of the post, and a user ID of the

user who created the post. Any logged-in user can create a post, only moderators (or

OAs) can edit or delete posts. Table 4.9 shows the Post model’s database structure.

Name Type Description

id integer The primary key

body text Body of the post

created at datetime The date and time that the post was created

updated at datetime The date and time that the post was last edited

topic id integer ID of the topic that this post belongs to

user id integer ID of the user who created this post

Table 4.9: Posts database table.

Figure 4.9 shows the relationships among forums, topics, and posts.

Figure 4.9: Entity relationship diagram for forums, topics, and posts.

85

Controllers

The Forum, Topic, and Post controllers are all standard REST-style controllers with

the basic CRUD functions of a REST resource. Since each topic belongs to a partic-

ular forum, and each post belongs to a particular topic, these resources are nested.

The topics resource is nested beneath a forum resource, assessable via URLs such as

/forums/1/topics and /forums/1/topics/1. The posts resource is nested beneath a

topic resource and, in turn, a forum resource. Therefore, the posts resource is assessable

via URLs such as /forums/1/topics/2/posts and /forums/1/topics/2/posts/2.

4.6.5 User Blog with Web Services Support

A blogging service allows each Ontoverse user to create a number of blog entries and

each entry can be commented by other members of the community. The blog structure

consists of the two models Entry and Comment. A user’s blog has many entries, and

an entry many comments. The User model is extended to hold attributes common to

an entire blog.

The blog service implements some features of established blog APIs, making it pos-

sible to use a desktop blogging client to add blog entries.

Entry Model

Each blog entry consists of a title and the body text and belongs to a user. A flag

defines whether the post has been published or if it is just a draft. The creation and

last-update time of the entry will also be stored. A counter cache keeps track of how

many comments there are for each entry. The database fields necessary for the Entry

model are shown in Table 4.10.

Comment Model

The Comment model holds the details of the comments left for each blog entry. Since

only registered users of the site are allowed to leave comments, the ID of the user who

86

Name Type Description

id integer The primary key

title string Title of the blog entry

body text Body text of the blog entry

created at datetime The date and time this entry was created

updated at datetime The date and time this entry was last updated

comments count integer The counter cache of the number of comments for this
entry

user id integer ID of the user to whom the entry belongs

Table 4.10: Entries database table.

left the comment is stored, along with details of the comment including which entry the

comment refers to, the body text, and the creation date and time. The database fields

necessary for this model are shown in Table 4.11.

Name Type Description

id integer The primary key

body text Body text of the comment

created at datetime The date and time this comment was created

entry id integer ID of the entry that this comment belongs to

user id integer ID of the user who created this comment

Table 4.11: Comments database table.

User Model (extended)

The User model is added by a number of fields to support the blogging features. Users

can set titles for their blogs and enable or disable commenting on their blogs. A counter

cache keeps track of the number of entries that a user has created in the blog. The

additional fields required for the existing User model are shown in Table 4.12.

Figure 4.10 shows the relationships among users, entries, and comments.

87

Name Type Description

blog title string Title of the user’s blog

enable comments boolean Blog can be enabled (true) or disabled (false)

entries count integer The counter cache of the number of entries created by
this user

Table 4.12: Users database table with additional fields (shortened).

Figure 4.10: Entity relationship diagram for users, entries, and comments.

Controllers

Blogs Controller The Blogs controller provides an entry portal to the blogs, listing

the ten most recently updated blogs.

Entries Controller The Entries controller provides access to the user’s blog. Each

collection of entries belongs to a specific user, and is nested within the users resource

via URLs such as /users/1/entries and /users/1/entries/2. For these features, a

standard REST-style controller is used. The new, create, edit, update, and destroy

methods are only accessible by the owner of the blog, allowing that user to maintain

and post to the personal blog. The show method displays a specific entry along with all

88

comments left for that entry, and the index action provides the standard blog view.

Comments Controller This controller just requires a create method to actually

save a new comment, and a destroy action to allow the owner of a blog to delete any

comments if desired. The other five standard REST-style methods are either accessible

by the Entries controller or not required.

Blogging Interface

The Blogger API6 provides some basic methods for blogging support as an XML-RPC

web service shown in Table 4.13.

Method Description

blogger.getUsersBlogs(appkey, login,
password)

Returns information about the blogs one
user have

blogger.getUserInfo(appkey, login,
password)

Returns information about a specific user

blogger.getPost(appkey, postid, login,

password)

Returns the content of a specific blog post

blogger.getRecentPosts(appkey, blogid,

login, password, number of posts)

Returns a list of the most recent blogs
posts in a particular blog

blogger.newPost(appkey, blogid, login,

password, content, publish)

Creates a new post on a particular blog

blogger.editPost(appkey, postid, login,

password, content, publish)

Changes the content of a blog post

Table 4.13: Blogging interface web service database table.

Backend Controller The Backend controller converts incoming method invocation

requests into the API method calls (dispatching) and takes care of sending back the

responses. Here layered dispatching is used, which allows to implement multiple APIs

with one controller. The overview about layered dispatching is given in Figure 4.11.

6http://code.google.com/apis/blogger/overview.html

89

Figure 4.11: Overview of layered dispatching with two APIs and one controller (e. g. Backend
controller).

4.6.6 User Photos

A photo gallery allows users to upload any photos to their gallery, where photos are

displayed in a thumbnail view. This will encourage users to get involved on the Onto-

verse platform and to make it more personal. Per default the latest uploaded photo

from a user is displayed on the user’s profile page as a thumbnailed version but it can

be exchanged by another photo.

The user images are stored as files on the server filesystem instead of using a database,

since filesystems are highly optimized to deliver static content such as images, while

database connections are potentially expensive.

The photo gallery feature consists of only one Photo model. Each photo belongs to

one user, and, in turn, a user has many photos.

Photo Model

Besides database fields required for photo upload, the Photo model consists of a title

and a description. Table 4.14 shows the complete structure of the Photo model’s

database.

90

Name Type Description

id integer The primary key

title string The title of the photo

body text Description of the photo

created at datetime The date and time the photo was uploaded

filename string The original file name of the uploaded photo

content type string The MIME type of the uploaded photo

size integer Size of the uploaded photo

height integer Height of the photo in pixel

width integer Width of the photo in pixel

thumbnail string Name of the size of a thumbnail

parent id integer ID of the thumbnails parent file

Table 4.14: Photos database table.

Controllers

Photo Controller The Photo controller enables access to view all photos on the site

at the root level. This resource only needs to implement an index action, since all the

other actions need to be accessed via a nested resource.

UserPhotos Controller The UserPhotos controller allows to display the pho-

tos from a specific user. This controller provides the usual REST CRUD actions ac-

cessible as a nested resource below the users resource such as /users/1/photos and

/users/1/photos/1. Only logged in users can upload photos or edit the attributes of

existing photos.

4.6.7 E-mail Messages and Newsletter

In this section, the e-mail message sending functionality and the e-mail newsletter feature

are described.

E-mail sending automatically directly to users is useful, such as sending a welcome

mail when they sign up, offering them to receive news articles as e-mails or mail to allow

them to reset their passwords. Furthermore, it can be used as an automated mailer

that informs users when someone joins an ontology project or left a new comment in

91

someone’s blog. For example, this enables a PA or the blog’s owner to quickly react to

the message.

The newsletter feature allow OAs to easily create and send newsletters or notices to

all users of the site. This could be necessary to notify users of upgrades or new features.

It is made possible for users to turn e-mail notifications on or off if users do not want to

have e-mail notifications or newsletters at all.

E-mail Messages

The e-mail should at least contain the e-mail address of recipients, the e-mail address

that the mail is to be sent from, a subject for the message, and of course a body text. It

can have both plain text and HTML parts, meaning that the mail displays only plain text

on text-based e-mail applications and as an HTML e-mail in applications that support

it. The HTML version of the same e-mail can have more interesting parts by adding

links to the author’s profile or the resource reference the e-mail originates from.

Newsletter

Newsletter Model The Newsletter model stores the e-mail subject, body text,

and the time and date that it was created. It also stores whether the newsletter has

been sent or not and if so, the date and time it was sent. This database structure is

shown in Table 4.15.

Name Type Description

id integer The primary key

subject string The e-mail subject line

body text Body of the e-mail

sent boolean Whether this newsletter has been sent or not

created at datetime The date and time this newsletter was created

Table 4.15: Newsletters database table.

92

Newsletter Controller The Newsletter controller permits OAs to create and edit

newsletters, which can then be sent by clicking a button on the newsletter display page.

All outgoing e-mails are queued in this database table, freeing the application from

having to wait for a remote SMTP server. The database table can be processed by a

separate application running as a daemon, or added to a scheduler.

4.6.8 Friends Network

A friendship system is implemented, offering users to easily add other users to their

friends list. This list can be viewed by any user, and furthermore, users can quickly see

the latest activities of their friends — this is limited to showing only simple information

about particular actions. This enables users to keep up to date with their friends’

activities.

The friendships are enhanced by adding metadata based on the XHTML Friendship

Network (XFN) microformat specification7, to specify the different kinds of relationships

one has with other users. Adding semantic information with microformats8 allow users

and applications to easily understand the relationships among other users and their

friends.

Friends Resource

The Friends resource represents the unique friends list for each user. This resource is

nested beneath the Users controller, accessible through URLs like /users/1/friends

and /users/1/friends/2. It provides the usual CRUD functions to view a list of all

of one’s friends, to display a friend page view, to allow to set friendships attributes

according to the XFN specification, and to remove a friendship.

7http://gmpg.org/xfn/
8http://microformats.org/

93

User Model (extended)

The User model is further extended by two fields to store the latest activity performed

by each user. An activity gets recorded by selectively choosing what to store and when

to store it inside the different models. The additional fields required for the existing

User model are shown in Table 4.16.

Name Type Description

last activity string Description of the last activity performed by the user

last activity at datetime The date and time that this activity was performed

Table 4.16: Users database table with two additional fields (shortened).

Friendship Model

The Friendship join model stores the friendships and the information about the rela-

tionships among users in a separate database table (Figure 4.12). This database schema

is shown in Table 4.17.

Figure 4.12: Friendship as a join model links together a user and a friend (both from User
model).

Friends Controller

The Friends controller allows a user to create, modify, remove, and view friends. To

add or edit new friendships, a user can select all XFN relationship values consisting

of groups of mutually exclusive characteristics. The index view shows a user’s list of

friends, along with the last activities and links to their profiles. The own friend list

view is completed by links to edit or remove each relationship. Every relationship in

94

Name Type Description

id integer The primary key

xfn friend boolean Someone you are a friend to

xfn acquaintance boolean Someone you have exchanged greetings with

xfn contact boolean Someone you know how to get in touch with

xfn met boolean Someone who you have actually met in person

xfn coworker boolean Someone a person works with, or works at the same or-
ganization as

xfn colleague boolean Someone in the same field of study/activity

xfn coresident boolean Someone who lives at the same address as you

xfn neighbor boolean Someone who lives nearby

xfn child boolean A person’s genetic offspring, or some that a person has
adopted and takes care of

xfn parent boolean One of your parents

xfn sibling boolean A brother or sister

xfn spouse boolean Someone you are married to

xfn kin boolean Another relative

user id integer ID of the creator and owner of this friendship

friend id integer The user to whom this friendship refers

Table 4.17: Friendships database table based on XFN.

the friends list, represented by a number of XFN attributes, has its own relevant icon to

highlight it.

4.6.9 Tagging and Searching

Tagging

Tags are keywords that are used to describe a particular object. Tagging is a very useful

way of categorizing items that makes it easy for users to search and browse objects. Tag

clouds display the most popular tags as the largest, so one can quickly see the most

popular topics, and make a great starting point to allow people to discover objects on

the site. Another usage for tags is to find related objects that share most of the same

tags as the current object. Currently projects, photos, and publications are extended by

tagging support.

95

Requirements

There are two ways to view the data. A user can view all tagged objects or only

user-specific objects. To view tags by all users, a normal REST resource is created to

retrieve tags from the corresponding model. To view tags that only belong to one user,

the REST resource is nested beneath the users resource such as /users/1/tags and

/users/1/tags/anatomy.

Relationships

Each model with tagging support is related to a Tag model through a third model called

Tagging. There are two database tables required. The first, Tags table, stores the tag

names and is shown in Table 4.18.

Name Type Description

id integer The primary key

name string Tag name

Table 4.18: Tags database table.

The Tagging table uses polymorphic associations, where a model is associated with

objects of more than one model class. This database table is shown in Table 4.19.

Figure 4.13 illustrates a polymorphic association.

Name Type Description

id integer The primary key

tag id integer ID of the tag

taggable id integer ID of the taggable object

taggable type integer The model name of the taggable object

created at datetime The date and time that this tagging was created

Table 4.19: Tagging database table.

96

Figure 4.13: Tagging of projects, photos, and publications by means of polymorphic association.

Controllers

Tags Controller The Tags controller is implemented to display all of the tags that

have been added to taggable objects on the site, regardless of user. These tags are

displayed as a tag cloud and can be limited to a smaller number of tags. Additionally

only objects are displayed that match a particular tag.

User Tags Controller This controller acts in a similar way to Tags controller, except

that it only shows tags and taggable objects for a specific user.

Taggable Objects Controllers These controllers offer methods for users to add and

remove tags from the corresponding taggable objects.

Searching

For performing searches on structured data, the kind of data in databases, a full-text

engine called Ferret9 is used when database loads get higher and there is more than

one database table involved in the search. Currently searching includes user names and

log-ins, project names and tagged objects.

9Ferret is a high-performance, full-featured text search engine library written for Ruby. It is inspired

by Apache Lucene Java project (http://lucene.apache.org/).

97

4.6.10 Integrating other Web Applications

Many web applications offer public APIs with REST, XML-RPC, or SOAP interfaces

to retrieve or save data on the site. Most Web 2.0 sites are moving toward REST

architectures to offer very simple and lightweight interfaces to their data.

Ontoverse integrates with some other web applications, creating what has become

known as a mashup, which is using parts of existing web applications to build something

new. Google Maps is used to allow users to add physical location data to their addresses

and their uploaded images.

Requirements

To store the geographical location, the Photo model needs extended by fields to store

the location data and also a preferences string, which will be set if the user wants this

location to be shown on the photo page. The required fields are shown in Table 4.20.

Name Type Description

geo lat decimal The latitude of the photo’s location

geo long decimal The longitude of the photo’s location

show geo boolean A user-settable option to determine if the location data
is displayed to others

Table 4.20: Required fields by the Photo model for mapping data.

Mapping features

Getting locations There are three possibilities to obtain the location of an object:

1. Asking the user to manually enter latitude and longitude coordinates.

2. Using Google Maps Geocoder, which accepts an address and returns the coordi-

nates of that point if traceable.

3. Allowing the user to drag and zoom in on the map to select a point on the map to

set the coordinates.

98

The first and third possibilities are available for addresses and images, whereas the

second one is only meaningful for address data.

Extended user’s profile Mapping support allows a user to navigate through all user’s

addresses or his own ontology projects. A filtering mechanism selectively hides and shows

groups of inhabitants or project members on the map. Figure 4.14 illustrates a user’s

profile together with his projects and the project’s members depending on the selected

project in the toolbar above.

Figure 4.14: The map area is divided into three parts, one of which displays the location of the
selected project member from the right side panel.

99

4.6.11 Ontology Projects

The building part and the connection to the other architectural parts of Ontoverse

is an ontology project. Each project includes one ontology and is characterized by a

name and description, information about its members, the creation data together with

the name of the founder, and of course the ontology itself.

Every registered user is allowed to start an ontology project from scratch or to join

an existing one with a given number of roles.

Project Model

In order to assign different projects to users, a Project model is created to store the

different projects of users on the site. The required fields of the Projects table are

shown in Table 4.21.

Name Type Description

id integer The primary key

name string Name of the project

description text Description of the project

ontology name string The name of the project’s ontology

subtitle string Subtitle of the project

abbreviation string Abbreviation or a short name for the project

created at datetime The date and time that the project was created

updated at datetime The date and time that the project was last updated

founder id integer ID of the user who created the project

Table 4.21: Projects database table.

Project and User models are linked together using a join model Members. This

model stores the IDs of the two separate models and links them together, and the date

and time of creation and update. On the model site, a many-to-many relationship is

specified by stating that a user has and belongs to many projects, and a project has and

belongs to many users (Figure 4.15).

100

Figure 4.15: Entity relationship diagram for users, members, projects, and project tags.

Controllers

Project Controller The generated Project controller is a CRUD controller that

manipulates the resource Project. This means that the controller belongs to exactly

one resource type and offers a designated action for each of the four CRUD operations.

(Additionally, the controller consists of the action index, to display a list of all resources

of this type, the new action, for opening the new form, and the edit action, for opening

the editing form.)

There are two ways to access ontology projects. An OA can access all projects with no

restrictions, whereas project members can only view their own projects or other projects

with limited access, i. e. mostly a general info profile. To view all projects, a normal

REST resource is created to retrieve projects from the corresponding model. To view

projects that only belong to one user or one member, the REST resource is nested be-

neath the users resource such as /users/1/projects and /users/1/projects/bio2me.

101

4.6.12 Project Wiki

Every ontology project has its own wiki page, which allows all project members to create,

edit, and display project relevant articles through a web inferface.

Features

The project wiki offers the following features:

• A revision system follows changes on any article beginning from the first revision.

It is easy to rollback to an earlier revision.

• Each revision is associated with an author, so it is possible to see who changed

what.

• A diff algorithm tracks changes through revisions and lists the differences between

two of them by means of variable colors.

• The article’s content is markable supported by a WYSIWYG editor.

• Previewing allows to see exactly how the page will appear when saved.

• Connection to the site’s general forum that can be used by members to discuss

article-related topics and to provide feedback about the article’s content.

Due to its design, this wiki is also suitable as a Content Management System (CMS)

for OAs. As the Ontoverse site requires a number of information pages about the

site’s contents, as well as FAQ (Frequently Asked Questions) and help pages, this CMS

supports to write and maintain pages, which do not change very often.

Internal structure

Each project page consists of a number of articles, which in turn, are dissected in many

segments. A project page includes a wiki main page as kind of table of contents where-

from all other article pages demerge. Per default, one article is set up for every project,

102

comprising the ORSD of this ontology project. Figure 4.16 illustrates the structure of a

project page.

Figure 4.16: Internal structure of a project wiki page.

Relationships

The project wiki is represented by three models: Article, Segment, and Attach-

ment. A project has many articles, and an article has many segments and attachments.

A single attachment can also be included in segments several times.

Article Model The Article model consists of a title and a content body. An article

can be created and edited by all project members, deletion is only allowed for PAs. The

Articles database table is shown in Table 4.22.

An auxiliary table called Changes is joined with the Projects and Articles tables

to keep track of article’s changes. Essentially it logs the change modes and a summary

about these changes.

103

Name Type Description

id integer The primary key

title string Title of the article

body string Content of the article

version integer The article’s version number

created at datetime The date and time that this article was created

updated at datetime The date and time that this article was updated

project id integer The project to which this article refers

creator id integer ID of the creator of this article

Table 4.22: Articles database table.

Segment Model Like an article, each segment has a title and a content body. Ta-

ble 4.23 shows the Segment model’s database structure.

Name Type Description

id integer The primary key

title string Title of the segment

body string Content of the segment

version integer The segment’s version number

created at datetime The date and time that this segment was created

updated at datetime The date and time that this segment was updated

creator id integer ID of the creator of a particular segment’s version

article id integer ID of the segment’s article

Table 4.23: Segments database table.

Attachment Model The Attachment model is similar to the Photo model in

Section 4.6.6. Instead of storing a user’s ID it stores a project ID, and a wiki ID.

Figure 4.17 shows the relationships among projects, articles, segments and attachments.

104

Figure 4.17: Entity relationship diagram for projects (with history of changes), articles, segments
and attachments.

105

4.6.13 Publication Database: PubDB

This section gives an overview of the publication database in Ontoverse, called PubDB,

to provide a document basis for building corpora with domain-relevant scientific publi-

cations. Each corpus is pre-annotated with XML tags and a prerequisite for IE:

Information Extraction The explosion of textual information requires new technolo-

gies that can recognize information originally structured for human consumption rather

than for data processing. Information extraction is associated with template based ex-

traction of information from language text, which was a popular task of the Message

Understanding Conferences (MUCs) in the late eighties and nineties [108]. During the

MUCs, there gradually arose a set of typical IE tasks [109, 110]. There are a number

of typical IE tasks that lately have been extensively researched with regard to open

domain IE. They include named entity recognition (NE), noun phrase coreference reso-

lution (CO), template element construction (TE), template relation construction (TR)

and scenario template production (ST).

NE is the recognition of names of people and organizations, place names, temporal

expressions, certain types of numerical expressions, and terminology extraction. CO

is the identification of (chains of) noun phrases that refer to the same object. It can

be differentiated between nominal and pronominal co-reference. TE adds information

(e. g. aliases, abbreviations, orthographical variants) to NE results using CO. TR is the

identification of relations (e. g. taxonomic relations, property relations, and other static

relations) between TE entities. ST aims at fitting the results of TE and TR into specified

event scenarios, meaning that ST determines the dynamic relations between TEs.

PubMedLoader

PubMedLoader accepts search strings or keywords as input and searches for appropri-

ate articles in PubMed10. At first only a list of PubMed IDs is returned not the whole

10PubMed is a very large corpus containing titles, abstracts, and other information about biomedical

research articles. PubMed Central (PMC). http://www.pubmedcentral.nih.gov

106

documents. A user can select in this list all articles he wants, and after this procedure

only those articles are fetched from PubMed and stored in PubDB. Figure 4.18 illustrates

this searching and storing process with PubMedLoader.

PubDB Database model

The PubDB database model is organized in a star schema, which contains a single fact ta-

ble (here Publications) plus a number of dimensional tables (Figure 4.19). These other

tables represent additional information about a publication like its journal, keywords,

and supplements with corresponding file types. All tables regarding the publication

database model are described in the following.

Publications Publications is the central table in the PubDB database schema. It is

connected to publication-specific tables but also to users, projects, people, and tags. Its

attributes reflect individual metadata for publications such as title, author(s), abstract,

journal, page numbers, and unique document identifiers. Other data resources in this

table represent publication keywords and supplements (Table 4.24).

Journals The Journals table contains the journal title (and its abbreviation), NLM’s

unique journal identifier, the ISO abbreviation, and the print and electronic International

Standard Serial Numbers (pISSNs and eISSNs) (Table 4.25).

Supplements and File Types The Supplements table stores supplemented mate-

rial which provides additional information about a publication (Table 4.26). FileTypes

table includes the associated file types (or formats) of the supplements (Table 4.27).

Keywords Keywords table stores all keywords and their general descriptions of all

publications in PubDB (Table 4.28).

107

Figure 4.18: This flow chart illustrates the scenario where publications from PubMed are being
stored into the Ontoverse publication database PubDB. At first a searcher expresses an infor-
mation need using a formal statement called a query. The query is then given to PubMed to
return a list of publications which satisfy the searcher’s needs. Afterwards the searcher selects
his favorite publications and fetches again to PubMed to return all publications in XML format.
Each returned publication is extracted by metadata to check for availability in PubDB. New
publications are stored in PubDB and existing publications in PubDB are updated by newer
versions.

108

Figure 4.19: Entity relationship diagram for publications, users, people (authors), projects, and
tagging (only relationships concerning publications are shown).

109

Name Type Description

id integer The primary key

title string The publication’s title

abstract text The abtract of the publication

pubmedID integer PubMed identifier (PMID)

refString string Identification information

path string Path to publication pdf file

filename string Name of pdf publication file

volume string The number of the journal volume in which a publication
is published

release date Publication release data

language string The language in which the publication was published

firstpage integer First page of the publication

lastpage integer Last page of the publication

DOI string Document Object Identifier

xmlData text Publication metadata in XML

journal id integer Journal ID

Table 4.24: Publications database table.

Name Type Description

id integer The primary key

title string Title of the journal

abbr string Title abbreviation

NlmId integer ID assigned by National Library of Medicine (NLM)

pubmedJID integer PubMed Journal ID

MedAbbr string Standard abbreviation for the journal’s title

ISOAbbr string ISO abbreviation

ISSN string International Standard Serial Number of the journal

ESSN string Electronic Standard Serial Number of the journal

Table 4.25: Journals database table.

Name Type Description

id integer The primary key

name string The name of the supplement

description text Supplement description

path string Supplement path in the file system

publication id integer Publication ID

filetype id integer File type ID

Table 4.26: Supplements database table.

110

Name Type Description

id integer The primary key

name string The name of the file type

description text File type description

type string The file type

extension string File type extension

common boolean File format well-known or not

Table 4.27: FileTypes database table.

Name Type Description

id integer The primary key

name string The name of the keyword

description text Description of the keyword

source string Keyword’s source

Table 4.28: Keywords database table.

111

Information Extraction Pipeline

Ontology Building Support The key idea behind IE in Ontoverse is to semi-

automatically maintain ontologies by adding new instances (ontology population), as

well as new concepts, properties and relations (ontology enrichment). This approach

can keep the instances of the domain ontology up to date, by periodically re-training

the IE system using a domain specific corpus.

Figure 4.20: Information extraction pipeline in Ontoverse.

112

IE Pipeline Processing A project member selects a publication for IE. It is checked

if this publication exists in pdf file format and if present it is converted into a plain

text file. After this either the full text or only the abstract is used for the following IE

tasks. Machinese Extractor (MEX)11 extracts terms and recognizes named entities. All

found entities are classified into sets of different types. MSEM semantically analyzes

these sets by providing semantic role recognition as well as grammatical, lexical and

sentential semantic features. The output file in XML is tagged with language specific

information and hence prepared for the final scenario template extraction task (after an

optional preprocessing step which definitely enumerates sentences if desired). After IE

with several templates a postprocessing step might be useful to convert the extracted

information in a special format (e. g. OWL or HTML with extracted regions colored).

Figure 4.20 illustrates the IE as pipeline process.

11MEX and Machinese Semantics (MSEM) are constituents of the Connexor Machinese product family.

http://www.connexor.com/

113

4.6.14 Collaboration Architecture

This section presents the middleware, and ontology editing and visualization concepts

of the Ontoverse platform. This is a short summary of the German e-Science paper

in [111]. These technologies described here do not represent the works of the author of

this thesis, but they are presented here for completeness.

Back-end

The back-end persistently stores large amounts of data and grants concurrent access

to it. Moreover it supports group and community awareness features, the management

of different branches of an ontology, conflict resolution means during merge processes,

and additional data like timestamps and other copyright information. The back-end is

represented by a layer, called SWAT Semantic Web Application Toolkit, and consists of

a blackboard architecture (SQLSpaces), several agents communicating with SQLSpaces,

and a client as an interface between SQLSpaces and the web application (Figure 4.21).

Figure 4.21: SWAT architecture.

SQLSpaces SQLSpaces is a flexible blackboard architecture with a virtual shared

memory implementation called a tuple space (cf. [104]), which works on a relational

database. A tuple space server provides access to several spaces, each representing an

114

independent data storage. SWAT makes sure that each ontology lies in its own space,

and are separated from messages exchanged by the agents.

Agents The agent architecture allows to implement several agents: An Inference Agent

is written in Prolog and offers solutions for some problems related to ontologies like con-

sistency checking. Another Prolog agent (Query Agent) translates tuple space operations

into SQL statements. In order to guarantee copyright protection and advanced security

features a Security Agent is capable of registering the data with timestamps.

Collaborative work

To support collaborative work on parts of ontologies two types of awareness modes are

supported.

Asynchronous Collaboration This type is needed when several users work on the

same ontology part, but not at the same time. A user check out a public version and

thus creates a private workspace unseeable for other users. On the SQLSpaces layer this

workspace is a branch of the public version that belongs to this specific user. When the

user finishes his work he can commit this version to the original version or to a newer

version. During the commit all differences between both versions are calculated and a

list of conflicts is generated that could not be solved automatically (optimistic locking

strategy). As soon as these conflicts are solved by the user the commit is executed and

the result is available as a new public version.

Synchronous Collaboration The synchronous mode supports users to share a pri-

vate workspace with other users, who will then also be able to modify the ontological

data in this workspace. To prevent conflicts, ontological entities are locked during edits

(pessimistic locking strategy). All changes are instantaneously visible for all users in

the same workspace. All participants of the shared workspace get immediately notified

about changes and write locks. If such a synchronous session is finished the private

workspace can be committed and will become a new public version.

115

Ontology Editor

The ontology editor allows users to edit, visualize, compare and merge ontologies within

an ontology project.

Editing offers a lightweight editor to change the structure of an ontology by adding,

changing, and deleting concepts, properties, and descriptions. Ontologies can be com-

pared and based on this comparison be merged into a new ontology.

Visualization consists of a graphical representation of an ontology as a touchgraph,

which gives a user the big picture of the ontology and let him navigate, zoom in and

out to discover clusters and interrelations of his interest. Furthermore the user interface

offers a visualization called SmartTree for presenting the concept hierarchy in combina-

tion with graph views, which are especially useful to explore the network structure of

large ontologies. Within the SmartTree, ontology concepts are presented as nodes and

instances as special leaf types with different graphical representations.

The following features are implemented in SmartTree:

Focus and context A selected concept representation gets a bigger scale value than

those concept representations in the distant areas inside the visualization. This

focuses the concept of interest, whereas connections to the other concepts remain

visual, so that the user has a better overview with respect to the concept hierarchy.

Property-Lines They connect the actual selected concept with concepts in the range of

the OWL object property, so that the user gets an impression about the semantic

information of the ontology.

Condense and Explode A flap mechanism for hiding subtrees in the concept hierar-

chy that the user is not interested in. The benefit for the user is to hide uninter-

esting parts of the concept hierarchy.

116

4.7 Usage Scenarios

This section describes four scenarios that deal with some functionalities of the On-

toverse platform in the context of social networking, ontology project organization,

ontology population from extracted information and collaborative ontology editing.

4.7.1 User Interaction/Networking

The registered user Indra invokes the Ontoverse site, logs in and is informed about

the newest project members and ontology projects on the Ontoverse main page. Fur-

thermore, she can gain insight about Ontoverse related news articles for all platform

members, upcoming events of general interest and also events regarding only the projects

she is associated with. In the following, one typical user activity is described in more

detail:

1. Indra opens the ‘Ontologies’ forum page and selects topic ‘Bio-Ontologies’. She

reads some messages and clicks on Katrin, the author of one interesting response

about her recently initiated ontology project called BIO2Me.

2. Katrin’s user profile is shown.

3. A geographical map is selected to display Katrin’s address. Indra can see that

another member of her projects has the same address.

4. Indra decides to add Katrin as a contact and she has to approve Indra’s request.

5. After confirmation Katrin is registered in Indra’s contact list (Figure 4.22).

4.7.2 Project Organization

In this story Katrin asks the project administrator of BIO2Me Indra for permissions to

join this project. After becoming a member she investigates the project wiki and wants

to extend some wiki articles. These steps are listened in more detail:

117

Figure 4.22: Contact list showing all contacts, types of relationships with the XFN icons and
the contacts’ latest activities.

1. Katrin searches for ‘BIO2Me’ on the main page and selects the project with its

complete name ‘BioInformatics Ontology for Tools and Methods’.

2. The project’s profile page is displayed with some statistics about memberships and

also project tags.

3. She decides to join BIO2Me as a domain expert.

4. Indra receives Katrin’s request, confirms it and registers her as domain expert.

5. Katrin enters the main wiki page, selects the ORSD of BIO2Me and updates the

section about ‘Domain experts’.

118

6. She browses the ontology classes (or concepts) and clicks on the wiki article

‘Class:Program’.

7. A new page with all superclasses and subclasses of ‘Program’ is opened. Addi-

tionally a concept graph (as attachment) is presented which shows relationships

between ‘Program’ and other classes within BIO2Me (Figure 4.23).

8. Katrin is interested in the concept ‘StrAl’ and navigates to its article page by

choosing this concept. After this the wiki article page ‘StrAl’ is opened and she

extends it by some annotations.

4.7.3 Ontology Population

Indra enters the site. As a project administrator of BIO2Me she has all rights to edit

this ontology in every respect. In this case she is interested in extending BIO2Me with

the newest programs or tools regarding structure alignments from IE results. To achieve

her goal the following steps are necessary:

1. Indra invokes the PubDB main page and enters the PubMed query string ‘structure

alignments’ into the search text field.

2. Two interesting results (‘MALIDUP’ and ‘StructSorter’) are selected and inserted

into PubDB.

3. She decides to have both articles automatically tagged with BIO2Me’s concept

entries.

4. After this both publications are also added to BIO2Me’s publication repository.

She selects a collection of articles for information extraction (Figure 4.24).

5. The IE task is started with a special template to detect hierarchical relationships

within publications.

6. She manually populates BIO2Me by meaningful extraction results via drag and

drop (Figure 4.25).

119

Figure 4.23: BIO2Me’s concept ‘Program’ wiki article page. It shows all superclasses and
subclasses of a program and a concept graph as an attachment of this project wiki. Class articles
are automatically generated from the ontology’s classes.

7. BIO2Me’s wiki page is updated with the new entries and Indra writes a message

about one doubtable result up for discussion. (In this case she is not really sure if

‘StructSorter’ is an instance of subclass ‘StructureAlignmentProgram’.)

4.7.4 Ontology Editing

Indra opens the ontology editor and explores the new structure alignment programs in

the graphical representation of BIO2Me (Figure 4.26). In the meantime the BIO2Me

member Ingo has also opened the ontology editor and adds the protein database Inv-

120

Figure 4.24: Project publication collection for the BIO2Me ontology. Two publications are
selected for an upcoming information extraction analysis.

hogen as an instance of subclass ‘DatabaseProtein’. During the editing process he gets

notified that some other parts of the ontology have changed. He decides to compare

both current ontology versions to see differences between them (Figure 4.27). As there

are different spellings for some structure alignment programs that may arouse naming

conflicts, BIO2Me’s project members have to agree about unique naming notations to

guarantee a successful ontology merging.

121

Figure 4.25: Information extraction results are presented in the lower right part of the IE-
Interface window. It shows that ‘MALIDUP’ and ‘StructSorter’ are alignment programs. Fur-
thermore, ‘MALIDUP’ is qualified as structure alignment program and therefore classified into
BIO2Me’s class hierarchy via drag and drop (tree representation on the left side). For the present
‘StructSorter’ is also ranked as structure alignment program (Figure 4.26).

122

Figure 4.26: On the left the ontology editor illustrates the class view and the properties of the
selected instance ‘MALIDUP’ at the bottom. ‘MALIDUP’ is highlighted in the graphical view
on the right side. This view shows all aligment programs in BIO2Me in the top half and other
classes below them.

123

Figure 4.27: String based comparison of two BIO2Me versions. Some classes have different
namings, e. g. STRAL and StrAl have only a value of 0.4 caused by upper and lower cases.
However, they represent the same instance.

124

Chapter 5

Conclusion and Outlook

The necessity for ontology engineering, annotating, and integrating is uncontested. On-

tologies are the core element for an upcoming Semantic Web. Furthermore, the so-called

Web 2.0 initiatives aim at interconnecting communities on the web and enabling fruitful

collaboration for private and business use as well as for scientific work in various re-

search areas. Combining Semantic technology and Web 2.0 aspects holds potential for

new methods in (scientific) knowledge management, communication and collaboration in

research and development. In this context several applications are developed which deal

with problems of knowledge processing, knowledge management and knowledge transfer.

This thesis also contributes to these fields of research focused on the life sciences

community. Especially, bioinformatics is characterized by a high degree of cooperation

among the researchers who contribute their part to the whole knowledge base of genomics

and proteomics. It results within the scope of the Ontoverse research project with the

objective to develop an Internet-based application for collaborative ontology engineering

in terms of an ontology wiki.

A motivation at the beginning of this thesis for the Ontoverse project was the

lack of high-value ontological annotations in sequence database entries. It might be

eligible that prospective annotations — particularly if implemented collaboratively —

reflect ontological representations more accurately not just to classify genes by sequence

data but also by semantic information. Semantic annotation of sequence data as a

125

new approach for knowledge production and data preparation is well supported by this

cooperative platform.

Against this background the main aspect in this thesis is the documentation of the

developed ontology wiki as integral part of the Ontoverse platform. This ontology wiki

as a Web 2.0 architecture manages the scientific user community and is interconnected

with the collaboration architecture consisting of the middleware and the visual ontology

editor.

To assist the community in populating ontologies, Ontoverse integrates informa-

tion extraction technologies that can propose new concepts and instances extracted from

scientific publications. IE screens textual data to fill predefined templates with facts

that can be used to extend knowledge bases after being curated by ontology designers.

The publication database PubDB includes project-specific text corpora. In return, the

newly developed ontologies themselves will help to retrieve relevant documents from the

database.

In the first part of this thesis the author developed a database of homologous inverte-

brate gene families and a graphical application to allow one to simultaneously handle all

the data available in Invhogen to analyze homology relationships: taxonomic informa-

tion, sequence annotations, multiple sequence alignments and phylogenetic trees. In the

second part the field of responsibility within the Ontoverse research project was the

implementation of the ontology wiki to manage user communities and ontology projects,

to maintain a publication database providing project-specific document collections and

enabling an interface for an information extraction application. IE results are integrated

into respective ontologies and added to the underlying ontology backend system.

Ontoverse is an ongoing project that started in October 2005. The features de-

scribed in this thesis are essential for a collaborative ontology development framework,

but we are working to extend and to improve Ontoverse. In particular, further

work needs to be spent on sophisticated awareness mechanisms in the user interface

to make the ODs and DEs aware of other people working in the same field. Further-

more, the integration of information extraction results into ontologies should be done

126

semi-automatically.

With BIO2Me we present the fundament of a structured knowledge base in the

field of bioinformatics tools and methods. The ontology so far covers the structure

for the classification of bioinformatics programs. It features relevant information about

the programs and therefore helps scientists to find adequate tools for their individual

purposes. We intend the extension of BIO2Me with contributions from a larger number

of experts on specific domains of the bioinformatics field, as building ontologies on such a

substantial domain demands the knowledge of many researchers. To enable sophisticated

queries in BIO2Me, we plan to develop an expert system operating on the basis of

BIO2Me. The expert system should find details of entered programs as well as programs,

that meet certain criteria.

In order to achieve the common goal, Ontoverse is a platform for collaborators to

work and share perspectives, to view common work, and to interactively evaluate and

critique each others’ contributions.

127

Chapter 6

Fazit und Ausblick

Die Notwendigkeit zur Entwicklung, Annotation und Integration von Ontologien als

Kernstück des Semantic Web ist unbestritten. Web 2.0 Technologien ermöglichen zu-

dem die Vernetzung von Nutzergemeinschaften im Netz und stellen diesen Plattformen

für die Zusammenarbeit bereit, sowohl für private als auch geschäftliche Zwecke und

wissenschaftliche Arbeiten in verschiedenen Forschungsbereichen. Die Kombination se-

mantischer Technologien mit Web 2.0 Ansätzen birgt Potential für neue Formen des

(wissenschaftlichen) Wissensmanagements, der Forschungszusammenarbeit und Kom-

munikation. In diesem Zusammenhang werden aktuell verschiedene Anwendungen ent-

wickelt, welche Probleme der Wissensaufbereitung, des Wissensmanagements und des

Wissenstransfers für Forschung und Entwicklung aufgreifen.

Vor diesem Hintergrund ist auch der Beitrag dieser Arbeit zu sehen, welche den

Einsatz von semantischen und kollaborativen Technologien speziell im Bereich der Life

Sciences zum Thema hat. Dies ist besonders für die Bioinformatik relevant. Diese zeich-

net sich durch ein hohes Maß an Kooperation zwischen Wissenschaftlern, beispielsweise

in den Bereichen Genomik und Proteomik, aus. Die Arbeit entstand im Rahmen des

Ontoverse Forschungsprojektes, dessen Ziel der Aufbau einer Internet-Plattform zur

kollaborativen Erstellung von Ontologien ist.

Ausgangspunkt dieser Arbeit war der Mangel an hochwertigen Annotationen in Se-

quenzdatenbankeinträgen. In gemeinsamer Zusammenarbeit soll die Annotationsqualität

128

durch Ontologieeinträge erhöht werden, damit Gene nicht nur anhand von Sequenzen,

sondern auch mit semantischen Informationen klassifiziert werden. Zur Umsetzung

dieser Ideen wird eine Kooperations-Plattform zur Erstellung fachspezifischer Ontolo-

gien benötigt.

Schwerpunkt dieser Arbeit ist die Implementierung einer solchen Plattform als grund-

legender Teil des Ontoverse Projektes. Ein sog. Ontologie-Wiki nutzt neueste Web 2.0

Technologien zur Verwaltung der Benutzer-Community. Weiterhin dient es als Bindeglied

sowohl zu der Kollaborations-Middleware (Backend) als auch zum graphischen Ontolo-

gieeditor.

Ontoverse integriert Technologien der Informationsextraktion und unterstützt so

die Community bei der Erweiterung von Ontologien um neue Konzepte und Instanzen,

die aus wissenschaftlichen Publikationen gewonnen werden.

Im ersten Teil der Arbeit wurde eine Datenbank für homologe Genfamilien von In-

vertebraten entwickelt (Invhogen). Eine graphische Benutzeroberfläche erlaubt die

Betrachtung aller relevanten Daten in Invhogen bei der Analyse homologer Beziehun-

gen: Informationen zu Taxonomien, Sequenzannotationen, multiple Sequenzalignments

und phylogenetische Bäume. Im zweiten Teil der Arbeit wurde ein Ontologie-Wiki für

die Benutzer- und Projektverwaltung entwickelt. Zusätzlich wurde eine Publikations-

datenbank implementiert, die Textkorpora aus wissenschaftlichen Publikationen verwal-

tet. Für die Integration von passenden Informationsextraktionsergebnissen in Ontologien

wurde eine Schnittstelle zur Connexor Software programmiert und die Kommunikation

mit dem Ontologie Backend zur Mitteilung der Ergebnisse gewährleistet.

Ontoverse ist ein laufendes Projekt, das im Oktober 2005 begonnen wurde. Die

Entwicklungen, die in dieser Arbeit beschrieben wurden, sind grundlegende Bestandteile

der Ontoverse Ontologieentwicklungsplattform, welche derzeit noch weiterentwickelt

und verbessert wird. Es wird besonders daran gearbeitet die Benutzerschnittstellen

und Kommunikationsformen zwischen Ontologiedesignern und Fachexperten zu erweit-

ern und das Auffinden potentieller Ontologieprojektmitglieder zu erleichtern. Weiter-

hin soll die Integration der Informationsextraktionsergebnisse in Ontologien nicht nur

129

manuell, sondern auch semiautomatisch erfolgen.

Mit BIO2Me wurde die Grundlage für eine Wissensbasis im Bereich bioinformatischer

Werkzeuge und Methoden geschaffen. Bislang bildet diese Ontologie hauptsächlich die

Struktur zur Klassifikation bioinformatischer Programme ab. BIO2Me bietet hierbei

relevante Informationen zu einzelnen Programmen und unterstützt Wissenschaftler auf

der Suche nach Programmen für ihre individuellen Verwendungszwecke. Die von uns

geplante Erweiterung der BIO2Me Ontologie bedarf der Mithilfe weiterer Fachexperten

aus verschiedenen Wissensbereichen, um die Domäne bioinformatischer Werkzeuge und

Methoden noch weiter reichend abzudecken. Zu einem späteren Zeitpunkt wird mit der

Erstellung eines Expertensystems begonnen, das den Zugriff auf die in der Ontologie

gespeicherten Informationen erleichtern wird.

Ontoverse dient als Plattform, um Wissenschaftler untereinander zu vernetzen

und bei der Bearbeitung von Forschungsfragen zu unterstützen. Wissen wird somit im

gemeinsamen Dialog interaktiv ausgearbeitet und bereitgestellt.

130

Appendix A

Table & Database Schema

A.1 INVHOGEN

A.1.1 Attributes Assignments of a Gene Family

Table A.1 shows the assignment of attribute values of the selected GF INV000805 from

Invhogen, and one of its six GF entries with the accession number P82706.

A.2 Ontoverse

A.2.1 Ontology Wiki Database Schema

Figure A.1 gives an overview of the Ontoverse ontology wiki database schema. The

types in all second columns represent migration types in Rails which are mapped to

individual database adapters, e. g. MySQL and Oracle. For instance, a column entry

declared to be :integer in a migration would have the underlying type int(11) in

MySQL and number(38) in Oracle.

131

G
e
n
e
F
a
m
il
y

Attribute Value

alignment IM03_DROME MKFLSLA--FVLGLLALANATPLNP--GNVIINGDCRVCNVRA--

Q9V8G2_DROME MKWMSLV--FLCGLLAMAVASPLNP--GNVIINGDCRHCNVRGG-
Q8IME0_DROME MKLLSIT--FLFGLLALASANPLSP--GNVIINGDCKVCNIRGD-
IM01_DROME MKFFSVVTVFVLGLLAVANAVPLSPDPGNVIINGDCRVCNVHGGK

IM02_DROME MKFFSVVTVFVFGLLALANAVPLSPDPGNVVINGDCKYCNVHGGK
Q9V8F7_DROME MRFFAIVTVFVLGLLALANAIPLSPDPGNVIINGDCVNCNVRGGK

*: :::. *: ****:* * **.* ***:***** **::.

gfDescription Immune-induced peptide 1,2,3 precursor

gfIdentifier INV000805

numberOfSequences 6

numberOfSpecies 1

phylogeneticTree (IM01 DROME:0.024937,IM02 DROME:0.097221,(Q9V8F7 DROME:0.122833,
((IM03 DROME:0.060520,Q9V8G2 DROME:0.258919):0.055613,Q8IME0

DROME:0.256255):0.055475):0.050067);

taxonomy Drosophila melanogaster Arthropoda Brachycera Diptera

Drosophila Drosophilidae Endopterygota Ephydroidea Hexapoda
Insecta Muscomorpha Neoptera Pterygota

G
e
n
e
F
a
m
il
y
E
n
t
r
y accessionNumber P82706

entryDescription Immune-induced peptide 1 precursor (DIM-1)

entryName IM01 DROME

taxID 7227

wholeEntry ID IM01_DROME STANDARD; PRT; 45 AA.
AC P82706; Q9V8F6;
...

//

G
O

T
e
r
m

identifier GO:0005576

minDistance 5

maxDistance 5

name defense response

quantity 2

subOntology Biological Process (P)

T
a
x
o
n
o
m
y

taxID 7227

parentIdentifier 32351

rank species

scientificName Drosophila melanogaster

genbankCommonName fruit fly

misspelling Drosophila melangaster

S
e
q
u
e
n
c
e type Protein

length 45

molecularWeight 4670

sequence MKFFSVVTVFVLGLLAVANAVPLSPDPGNVIINGDCRVCNVHGGK

Table A.1: Attribute values in GeneFamily, GeneFamilyEntry, GeneOntologyTerm
(GOTerm), Taxonomy, Sequence tables for GF INV000805, GO term GO:0005576, and one
of six GF entries (with accession number P82706).

132

F
ig

u
re

A
.1

:
D

at
ab

as
e

sc
h
em

a
of

th
e

O
n
t
o
v
e
r
se

on
to

lo
gy

w
ik

i.
T
ab

le
s

w
it
h

th
e

sa
m

e
co

lo
r

ar
e

gr
ou

p
ed

in
to

d
iff

er
en

t
p
ar

ts
of

th
e

ar
ch

it
ec

tu
re

.

133

Abbreviations

ACID Add, Change, Inquire, Delete

ANSI American National Standards Institute

API Application Programming Interface

BIO2Me BioInformatics Ontology for Tools and Methods

CMS Content Management System

CRUD Create, Read, Update, Delete

DE Domain expert

DL Description Logics

DNA Deoxyribonucleic acid

DTD Document Type Definition

EMBL European Molecular Biology Laboratory

GF Gene family

GO Gene Ontology

GUI Graphical User Interface

HOVERGEN HOmologous VERtebrate GENes

HSP High-scoring Segment Pair

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IE Information extraction

INVHOGEN INVertebrate HOmologous GENes

ISO International Organization for Standardization

MO Managed Object

MOC Managed Object Context

134

MOM Managed Object Model

MSA Multiple Sequence Alignment

MVC Model-View-Controller

NCBI National Center for Biotechnology Information

OA Ontoverse administrator

OD Ontology designer

ORSD Ontology Requirement Specification Document

OWL Web Ontology Language

PA Project administrator

RDF Resource Description Framework

RDFS RDF Schema

REST REpresentational State Transfer

ROA Resource-Oriented Architecture

RSS Really Simple Syndication

SMTP Simple Mail Transfer Protocol

SOAP Simple Object Access Protocol (originally)

SPARQL SPARQL Protocol and RDF Query Language

SQL Structured Query Language

SWRL Semantic Web Rule Language

TrEMBL Translated EMBL

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

WWW World Wide Web

WYSIWYG What You See Is What You Get

XFN XHTML Friendship Network

XHTML Extensible Hypertext Markup Language

XML Extensible Markup Language

XML-RPC XML Remote Procedure Call

YARS Yet Another RDF Store

135

Bibliography

[1] Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.C., Estreicher, A., Gasteiger,
E., Martin, M.J., Michoud, K., O’Donovan, C., Phan, I., Pilbout, S., Schneider,
M. (2003) The SWISS-PROT protein knowledge base and its supplement TrEMBL
in 2003. Nucleic Acids Res., 31, 365-370.

[2] Ashburner, M. et al. (2000) Gene Ontology: tool for the unification of biology.
Nat. Genet., 25, 25-29.

[3] Camon, E., Magrane, M., Barrell, D., Binns, D., Fleischmann, W., Kersey, P.,
Mulder, N., Oinn, T., Maslen, J., Cox, A. et al. (2003) The Gene Ontology An-
notation (GOA) project: implementation of GO in SWISS-PROT, TrEMBL and
InterPro. Genome Res., 13, 662-672.

[4] Conesa, A., Götz, S., Garćıa-Gómez, J.M., Terol, J., Talón, M., Robles, M. (2005)
Blast2GO: a universal tool for annotation, visualization and analysis in functional
genomics research. Bioinformatics, 21, 3674-3676.

[5] Zehetner, G. (2003) OntoBlast function: From sequence similarities directly to
potential functional annotations by ontology terms. Nucleic Acids Res., 31, 3799-
3803.

[6] Groth, D., Lehrach, H., Hennig, S. (2004) GOblet: a platform for Gene Ontology
annotation of anonymous sequence data. Nucleic Acids Res., 32, W313-W317.

[7] Lord, P., Stevens, R., Brass, A., Goble, C. (2003) Investigating semantic similar-
ity measures across the Gene Ontology: the relationship between sequence and
annotation. Bioinformatics, 19(10), 1275-1283.

[8] Jakonienė, V., Rundqvist, D., Lambrix, P. (2006) A method for similarity-based
grouping of biological data. 3rd International Workshop on Data Integration in
the Life Sciences, LNBI 4075, 136-151.

[9] Stevens, R., Goble, C.A., Bechhofer, S. (2000) Ontology-based Knowledge Repre-
sentation for Bioinformatics. Briefings in Bioinformatics, 1(4), 398-416.

[10] Cheng, J., Sun, S., Tracy, A., Hubbell, E., Morris, J., Valmeekam, V., Kimbrough,
A., Cline, M.S., Liu, G., Shigeta, R., Kulp, D., Siani-Rose, M.A. (2004) NetAffx

136

Gene Ontology Mining Tool: a visual approach for microarray data analysis. Bioin-
formatics, 20, 1462-1463.

[11] Mao, X., Cai, T., Olyarchuk, J.G., Wei, L. (2005) Automated genome annota-
tion and pathway identification using the KEGG Orthology (KO) as a controlled
vocabulary. Bioinformatics, 21(19), 3787-3793.

[12] Frankewitsch, T., Prokosch, U. (2001) Navigation in medical Internet image
databases. Med Inform Internet Med., 26(1), 1-15.

[13] Edwards, J.L., Lane, M.A., Nielsen, E.S. (2000) Interoperability of Biodiversity
Databases: Biodiversity on Every Desktop. Science, 289, 2312-2314.

[14] Paulsen, I., Mainz, D., Weller, K., Mainz, I., Kohl, J., von Haeseler, A. (2007)
Ontoverse: Collaborative Knowledge Management in the Life Sciences Network.
In: Proceedings of the Germany eScience Conference 2007, Max Planck Digital
Library, ID 316588.0.

[15] Paulsen, I., von Haeseler, A. (2006) Invhogen: a database of homologous inver-
tebrate genes. Nucleic Acids Res., 34, D349-D353.

[16] Gruetter, R., Eikemeier, C. (2004) Applying the Semantic Web to clinical process.
Proceedings of 49. Jahrestagung der Deutschen Gesellschaft für Medizinische In-
formatik, Biometrie und Epidemiologie, Innsbruck, Austria (26th–30th September
2004).

[17] Berners-Lee, T., Hendler, J., Lassila, O. (2001, May) The Semantic Web. Scientific
American, pp. 28-37.

[18] Decker, S., Melnik, S. (2000, September/October) The Semantic Web: The roles
of XML and RDF. IEEE Internet Computing.

[19] Cardoso, J. (Ed.) (2007) Semantic Web Services: Theory, Tools and Applications.
Information Science Reference. Hershey, New York.

[20] Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.
(2003) SWRL: A semantic web rule language combining OWL and RuleML. Avail-
able at http://www.daml.org/2003/11/swrl/

[21] Colomb, R. (2005) Ontology and the semantic web study book (Vol. 1). Brisbane:
University of Queensland.

[22] McGuinness, D.L., Van Harmelen, F. (Eds.) (2004, February) OWL Web onto-
logy language overview W3C recommendation. Retrieved December 20, 2005, from
http://www.w3.org/TR/owl-features/

[23] Neches, R., Fikes, R.E., Finin, T., Gruber, T.R., Senator, T., Swartout, W.R.
(1991) Enabling technology for knowledge sharing. AI Magazine, 12(3), 36-56.

137

[24] Gruber, T.R. (1993) A translation approach to portable ontologies. Knowledge
Acquisition, 5(2), 199-220.

[25] Guarino, N., Giaretta, P. (1995) Ontologies and knowledge bases: Towards a ter-
minological clarification. In Towards Very Large Knowledge Bases: Knowledge
Building and Knowledge Sharing, Mars N (ed). IOS Press: Amsterdam, pp. 25-32.

[26] Sheth, A. (2003, July) Semantic metadata for enterprise information integration.
DM Review.

[27] Jasper, R., Uschold, M. (1999) A framework for understanding and classifying
ontology applications. Paper presented at the IJCAI99 Workshop on Ontologies
and Problem-Solving Methods.

[28] Fensel, D. (2001) Ontologies: Silver bullet for knowledge management and elec-
tronic commerce. Berlin: Springer-Verlag. Retrieved October 24, 2006, from
http://www.cs.vu.nl/ dieter/ftp/paper/silverbullet.pdf

[29] Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(Eds.). (2003) The description logic handbook. Cambridge University Press.

[30] Gómez-Pérez, A. (2004) Ontology evaluation. In Handbook on Ontologies, Volume
10 of International Handbooks on Information Systems, chapter 13. Staab S, Studer
R (eds). Springer: pp. 251-274.

[31] Li, L., Horrocks, I. (2004) A software framework for matchmaking based on Seman-
tic Web technology. International Journal of Electronic Commerce, 8(4), 39-60.

[32] Lacy, L.W. (2005) OWL: Representing Information Using the Web Ontology Lan-
guage. Trafford Publishing.

[33] Bard, J.B., Rhee, S.Y. (2004) Ontologies in biology: design, applications and
future challenges. Nat Rev Genet., 5(3), 213-222.

[34] Kumar, A., Smith, B. (2004) On controlled vocabularies in bioinformatics: A case
study in gene ontology. Drug Discovery Today: BIOSILICO, 2, 246-252.

[35] Bodenreider, O., Aubry, M., Burgun, A. (2005) Non-lexical approaches to iden-
tifying associative relations in the gene ontology. Paper presented at the Pacific
Symposium on Biocomputing, Hawaii. World Scientific.

[36] Wroe, C.J., Stevens, R.D., Goble, C.A., Ashburner, M. (2003) A methodology to
migrate the gene ontology to a description logic environment using DAML+OIL.
Pac. Symp. Biocomput. pp. 624-635.

[37] MGED. (2005) Microarray gene expression data society. Retrieved October 24,
2006, from http://www.mged.org/

138

[38] Stoeckert, C.J., Causton, H.C., Ball, C.A. (2002) Microarray databases: Standards
and ontologies. Nature Genetics, 32, 469-473.

[39] Stevens, R., Baker, P., Bechhofer, S., Ng, G., Jacoby, A., Paton, N.W., Goble,
C.A., Brass, A. (2001) TAMBIS: Transparent Access to Multiple Bioinformatics
Information Sources. Bioinformatics, 16(2), 184-186.

[40] Hillegass, A. (2004) Cocoa Programming for Mac OS X, Second Edition. Addison-
Wesley.

[41] Cox, B., Novobilski, A. (1991) Object-Oriented Programming: An Evolutionary
Approach, Second Edition. Addison-Wesley.

[42] Apple Inc. (2006) Apple’s Developer Connection: Developing with Core Data.
http://developer.apple.com/macosx/coredata.html

[43] Thomas, D., Fowler, C., Hunt, A. (2005) Programming Ruby: The Pragmatic
Programmers’ Guide, Second Edition. The Pragmatic Programmers, LLC.

[44] Thomas, D., Heinemeier Hansson, D. (2006) Agile Web Development with Rails,
Second Edition. The Pragmatic Programmers, LLC.

[45] Garrett, J.J. (2005, February 18) Ajax: A New Approach to Web Applications.
Adaptive Path, LLC.

[46] Black, D.A. (2006) Ruby for Rails. Manning Publications Co.

[47] Fielding, R.T. (2000) Architectural styles and the design of network-based software
architectures. PhD Thesis, University of California, Irvine.

[48] Richardson, L., Ruby, S. (2007) RESTful Web Services. O’Reilly Media, Inc.

[49] Bernal, A., Ear, U., Kyrpides, N. (2001) Genomes OnLine Database (GOLD): a
monitor of genome projects world-wide. Nucleic Acids Res., 29, 126-127.

[50] Eisenberg, D., Marcotte, E.M., Xenarios, I., Yeates, T.O. (2000) Protein function
in the post-genomic era. Nature, 405, 823-826.

[51] Henikoff, S., Greene, E.A., Pietrokovski, S., Bork, P., Attwood, T.K., Hood, L.
(1997) Gene families: the taxonomy of protein paralogs and chimeras. Science,
278, 609-614.

[52] Orengo, C.A., Todd, A.E., Thornton, J.M. (1999) From protein structure to func-
tion. Curr. Opin. Struct. Biol., 9, 374-382.

[53] Heger, A., Holm, L. (2000) Towards a covering set of protein family profiles. Prog.
Biophys. Mol. Biol., 73, 321-337.

[54] Fitch, W.M., Margoliash, E. (1970) The usefulness of amino acid and nucleotide
sequences in evolutionary studies. Evolutionary Biology, 2, 67-109.

139

[55] Duret, L., Perrière, G., Gouy, M. (1999) HOVERGEN: database and software
for comparative analysis of homologous vertebrate genes. In Bioinformatics and
Systems, Letovsky, S. (ed.), Kluwer Academic Publishers, Boston, pp. 13-29.

[56] Perrière, G., Duret, L., Gouy, M. (2000) HOBACGEN: database system for com-
parative genomics in bacteria. Genome Res. 10, 379-385.

[57] Bairoch, A., Apweiler, R., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S.,
Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M.J., Natale, D.A.,
O’Donovan, C., Redaschi, N., Yeh, L.S. (2005) The Universal Protein Resource
(UniProt). Nucleic Acids Res., 33, D154-D159.

[58] Kanz, C., Aldebert, P., Althorpe, N., Baker, W., Baldwin, A., Bates, K., Browne,
P., van den Broek, A., Castro, M., Cochrane, G., Duggan, K., Eberhardt, R.,
Faruque, N., Gamble, J., Diez, F.G., Harte, N., Kulikova, T., Lin, Q., Lombard,
V., Lopez, R., Mancuso, R., McHale, M., Nardone, F., Silventoinen, V., Sobhany,
S., Stoehr, P., Tuli, M.A., Tzouvara, K., Vaughan, R., Wu, D., Zhu, W., Apweiler,
R. (2005) The EMBL Nucleotide Sequence Database. Nucleic Acids Res., 33, D29-
D33.

[59] Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W.,
Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: A new generation of protein
database search programs. Nucleic Acids Res., 25, 3389-3402.

[60] Wootton, J.C., Federhen, S. (1996) Analysis of compositionally biased regions in
sequence databases. Methods Enzymol., 266, 554-571.

[61] Henikoff, S., Henikoff, J.G. (1992) Amino acid substitution matrices from protein
blocks. Proc Natl Acad Sci., 89, 10915-10919.

[62] Nei, M. (1996) Phylogenetic analysis in molecular evolutionary genetics. Annu.
Rev. Genet., 30, 371-403.

[63] Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G.,
Thompson, J.D. (2003) Multiple sequence alignment with the Clustal series of
programs. Nucleic Acids Res., 31, 3497-3500.

[64] Vinh, L.S., von Haeseler, A. (2004) IQPNNI: Moving fast through tree space and
stopping in time. Mol. Biol. Evol., 21, 1565-1571.

[65] Hedges, S.B. (2002) The origin and evolution of model organisms. Nature Genet.,
3, 838-849.

[66] Fraser, A.G., Marcotte, E.M. (2004) A probabilistic view of gene function. Nat.
Genet., 36, 559-564.

[67] Wheeler, D.L., Chappey, C., Lash, A.E., Leipe, D.D., Madden, T.L., Schuler, G.D.,
Tatusova, T.A., Rapp, B.A. (2000) Database resources of the National Center for
Biotechnology Information. Nucleic Acids Res., 28, 10-14.

140

[68] Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Rapp, B.A., Wheeler,
D.L. (2000) GenBank. Nucleic Acids Res., 28, 15-18.

[69] May, R.M. (2000) The Dimensions of Life on Earth. In Raven, P.H. (ed.) Nature
and Human Society: The Quest for a Sustainable World, Chapter 1 Defining
Biodiversity. The National Academy of Sciences, Washington, pp. 30-45.

[70] Holm, L., Sander, S. (1996) Mapping the protein universe. Science, 273, 595-602.

[71] Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H.,
Shindyalov, I.N., Bourne, P.E. (2000) The Protein Data Bank. Nucleic Acids Res.,
28, 235-242.

[72] Geer, L.Y., Domrachev, M., Lipman, D.J., Bryant, S.H. (2002) CDART: protein
homology by domain architecture. Genome Res., 12, 1619-1623.

[73] Servant, F., Bru, C., Carrere, S., Courcelle, E., Gouzy, J., Peyruc, D., Kahn, D.
(2002) Prodom: automated clustering of homologous domains. Brief Bioinform.,
3, 246-251.

[74] Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, L., Eddy, S.R., Griffiths-
Jones, S., Howe, K.L., Marshall, M., Sonnhammer, E.L. (2002) The Pfam protein
families database. Nucleic Acids Res., 30, 276-280.

[75] Mulder, N.J., Apweiler, R., Attwood, T.K., Bairoch, A., Barrell, D., Bateman, A.,
Binns, D., Biswas, M., Bradley, P., Bork, P., et al. (2003) InterPro, progress and
status in 2005. Nucleic Acids Res., 33, D201-D205.

[76] Burges, C.J.C. (1998) A tutorial on Support Vector Machine for pattern recogni-
tion. Data Min. Knowl. Disc., 2, 121-167.

[77] Wolstencroft, K., McEntire, R., Stevens, R., Tabernero, L., Brass, A. (2005) Con-
structing ontology-driven protein family databases. Bioinformatics, 21, 1685-1692.

[78] Godfray, H.C.J. (2002) Challenges for taxonomy. Nature, 417, 17-19.

[79] Hennig, S., Groth, D., Lehrach, H. (2003) Automated Gene Ontology annotation
for anonymous sequence data. Nucleic Acids Res., 31, 3712-3715.

[80] Khan, S., Situ, G., Decker, K., Schmidt, C.J. (2003) GoFigure: automated Gene
Ontology annotation. Bioinformatics, 19, 2484-2485.

[81] Martin, D.M., Berriman, M., Barton, G.J. (2004) GOtcha: a new method for
prediction of protein function by the annotation of seven genomes. BMC Bioinfor-
matics, 5, 178.

[82] Young, A., Whitehouse, N., Cho, J., Shaw, C. (2005) OntologyTraverser: an R
package for GO analysis. Bioinformatics, 21, 275-276.

141

[83] Lee, J.S., Katari, G., Sachidanandam, R. (2005) GObar: a gene ontology based
analysis and visualization tool for gene sets. BMC Bioinformatics, 6, 189.

[84] Ye, J., Fang, L., Zheng, H., Zhang, Y., Chen, J., Zhang, Z., Wang, J., Li, S., Li,
R., Bolund, L., Wang, J. (2006) WEGO: a web tool for plotting GO annotations.
Nucleic Acids Res., 34, W293-W297.

[85] Studer, R., Benjamins, V.R., Fensel, D. (1998) Knowledge Engineering. Principles
and Methods. In: IEEE Transactions on Data and Knowledge Engineering, 25(1-
2), 161-197.

[86] Rubin, D.L., Lewis, S.E., Mungall, C.J., Misra, S., Westerfield, M., Ashburner,
M., Sim, I., Chute, C.G., Solbrig, H., Storey, M.A., Smith, B., Day-Richter, J.,
Noy, N.F., Musen, M.A. (2006) National Center for Biomedical Ontology: advanc-
ing biomedicine through structured organization of scientific knowledge. OMICS,
10(2), 185-198.

[87] Mainz, I. (2006) Entwicklung einer Prototypontologie für bioinformatische
Werkzeuge. Bachelorarbeit, Heinrich-Heine-Universität Düsseldorf.

[88] Fernández-López, M. (2001) Overview of methodologies for building ontologies. In
Proceedings of the IJCAI-99 Workshop on Ontologies.

[89] Sure, Y. (2002) A Tool-supported Methodology for Ontology-based Knowledge
Management, submitted to ISMIS 2002, Methodologies for Intelligent Systems.

[90] Noy, N.F., Chugh, A., Liu, W., Musen, M.A. (2006) A Framework for Ontology
Evolution in Collaborative Environments. 5th International Semantic Web Con-
ference, Athens, GA.

[91] Das, A., Wu, W., McGuinness, D. (2001, August) Industrial strength ontology
management. In Proceedings of the First Semantic Semantic Web Working Sym-
posium, SWWS-01, Stanford, USA.

[92] Domingue, J. (1998) Tadzebao and WebOnto: Discussing, Browsing, and Editing
Ontologies on the Web. 11th Knowledge Acquisition for Knowledge-Based Systems
Workshop, April 18th-23rd. Banff, Canada.

[93] McGuinness, D.L., Fikes, R., Rice, J., Wilder, S. (2000, July) The Chimaera
Ontology Environment. Proceedings of the The Seventeenth National Conference

on Artificial Intelligence, Austin, Texas.

[94] Farquhar, A., Fikes, R., Rice, J. (1996) The Ontolingua Server: a Tool for Collab-
orative Ontology Construction. Technical report, Stanford KSL, 96-126.

[95] Bao, J., Honavar, V. (2004) Collaborative Ontology Building with Wiki@nt. A
Multi-agent Based Ontology Building Environment. In Proceedings of the 3rd In-
ternational Workshop on Evaluation of Ontology-based Tools (EON), Hiroshima
2004, 1-10.

142

[96] Hepp, M., Bachlehner, D., Siorpaes, K. (2005) OntoWiki — Community-driven
Ontology Engineering and Ontology Usage based on Wikis. Proceedings of the
2005 International Symposium on Wikis (WikySym), San Diego.

[97] Pinto, H.S., Staab, S., Tempich, C. (2004) DILIGENT. Towards a fine-grained
methodology for Distributed, Loosely-controlled and Evolving Engineering of On-
tologies. In Proceedings of the 16th European Conference on Artificial Intelligence
(ECAI), 393-397.

[98] Zacharias, V., Braun, S. (2007) SOBOLEO — Social Bookmarking and
Lightweight Ontology Engineering. In Workshop on Social and Collaborative Con-
struction of Structured Knowledge (CKC), 16th International World Wide Web
Conference (WWW 2007), Banff, Alberata, Canada

[99] Fensel, D. (2004) Ontologies: Silver Bullet for Knowledge Management and Elec-
tronic Commerce. Springer-Verlag.

[100] Baclawski, K., Niu, T. (2006) Ontologies for Bioinformatics. The MIT Press.

[101] Wilkinson, K., Sayers, C., Kuno, H.A., Reynolds, D. (2003, September) Efficient
RDF Storage and Retrieval in Jena2. In Proceedings of SWDB03, 1st International
Workshop on Semantic Web and Databases, Co-located with VLDB 2003, Berlin,
131-150.

[102] Beckett, D. (2002) The design and implementation of the Redland RDF application
framework. Computer Networks, 39(5), 577-588.

[103] Harth, A., Decker, S. (2005) Optimized index structures for querying RDF from
the web. In LA-WEB.

[104] Gelernter, D. (1985) Generative communication in Linda. ACM Trans. Program.
Lang. Syst., 7(1), 80-112.

[105] Shneiderman B. (1996) The eye have it: A task by data type taxonomy for infor-
mation visualizations. In Proc. Visual Languages.

[106] Leung, Y., Apperley, M. (1994) A review and taxonomy of distortion-oriented
presentation techniques. In Proc. Human Factors in Computing Systems CHI ’94

Conf., Boston, MA, 126-160.

[107] Jenkins, B. (1997, September) Hash Functions. Dr. Dobb’s Journal, 1-5.

[108] Sundheim, B.M. (1992) Overview of the fourth Message Understanding evaluation
and Conference. In Proceedings of the Fourth Message Understanding Conference
(MUC-4) (pp. 3-21). San Mateo, CA: Morgan Kaufmann.

[109] Grishman, R., Sundheim, B. (1996) Message Understanding Conference 6: A brief
history. In Proceedings of the 16th International Conference on Computational
Linguistics (pp. 466-471). San Mateo, CA: Morgan Kaufmann.

143

[110] Cunningham, H. (1997) Information Extraction: A User Guide. Research memo
CS-97-02. Sheffield: University of Sheffield, ILASH.

[111] Malzahn, N., Weinbrenner, S., Hüsken, P., Ziegler, J., Hoppe, H.U. (2007) Col-
laborative Ontology Development — Distributed Architecture and Visualization.
In: Proceedings of the Germany eScience Conference 2007, Max Planck Digital
Library, ID 315470.0.

144

Die hier vorgelegte Dissertation habe ich eigenständig und ohne unerlaubte Hilfe ange-

fertigt. Die Dissertation wurde in der vorgelegten oder in ähnlicher Form noch bei keiner

anderen Institution eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche

unternommen.

Düsseldorf, den 31. Oktober 2007 Ingo Paulsen

