Collaborative Knowledge Management

in the Life Sciences Network

Inaugural — Dissertation

Zur
Erlangung des Doktorgrades der
Mathematisch-Naturwissenschaftlichen Fakultat

der Heinrich-Heine-Universitat Disseldorf

vorgelegt von
Ingo Paulsen

aus Duisburg

Oktober 2007

Aus dem Institut fir Informatik
der Heinrich-Heine-Universitat Diisseldorf

Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen
Fakultat der Heinrich-Heine-Universitat Diisseldorf

Referent: Prof. Dr. Arndt von Haeseler
Korreferent: Prof. Dr. Stefan Conrad

Tag der miindlichen Priifung: 14.01.2008

Acknowledgments

I wish to thank my supervisor Arndt von Haeseler for his excellent advise, collaborations,
and his friendly behaviour. Also I want to thank Stefan Conrad for accepting the task
to read this thesis as a second reviewer.

Special thanks to Katrin, Indra, Dominic, and Jochen. Furthermore, I would like to
thank Tanja, Andrea, Markus, Alex, Simone, Nahal, Thomas L., Nicole, Thomas S.,
Lutz, Claudia, Anja, and all other ONTOVERSE project partners and colleagues of the
Bioinformatics Department in Diisseldorf.

I am grateful to my parents, my sister, my niece, my grandparents, and my aunt.
Financial support from the German Federal Ministry of Education and Research and

the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Publications

Parts of this thesis have been published in the following articles and conference proceed-

ings:

1. Ingo Paulsen, Dominic Mainz, Katrin Weller, Indra Mainz, Jochen Kohl, Arndt
von Haeseler. (2007) ONTOVERSE: Collaborative Knowledge Management in the
Life Sciences Network. In: Proceedings of the Germany eScience Conference 2007,

Max Planck Digital Library, ID 316588.0.

2. Ingo Paulsen, Arndt von Haeseler. (2006) INVHOGEN: a database of homologous

invertebrate genes. Nucleic Acids Res., 34, D349-D353.
Other publications:

1. Jochen Kohl, Ingo Paulsen, Thomas Laubach, Achim Radtke, Arndt von Haeseler.
(2006) HVRBASE++: a phylogenetic database for primate species. Nucleic Acids
Res., 34, D700-D704.

2. Katrin Weller, Dominic Mainz, Indra Mainz, Ingo Paulsen: Wissenschaft 2.07
Social Software im Einsatz fiir die Wissenschaft. In: Marlies Ockenfeld (Hrsg.):
Information in Wissenschaft, Bildung und Wirtschaft, 29. Online-Tagung der DGI,
59. Jahrestagung der DGI, Proceedings, Frankfurt (Main): DGI, 2007, S. 121-136.

3. Katrin Weller, Indra Mainz, Ingo Paulsen, Dominic Mainz: Semantisches und
vernetztes Wissensmanagement fiir Forschung und Wissenschaft. FErscheint in:
WissKom 2007, Wissenschaftskommunikation der Zukunft, 4. Konferenz der Zen-

tralbibliothek im Forschungszentrum Jiilich, Proceedings, 2007.

ii

Abstract

This thesis is about two topics: building a database of homologous invertebrate
genes named INVHOGEN, and the creation of an Internet platform, ONTOVERSE, for
collaborative ontology development and maintenance.

The first part of the thesis investigates the use of sequence similarity to group se-
quence entries into gene families. All gene families are explored by means of different
annotation aspects such as species distribution, sequence distribution, and descriptions
of the entries to characterize them with emphasis on Gene Ontology annotations. Tra-
ditional annotations written by scientists in natural language are partially suitable for
machine processing. Ontological annotations of sequence entries promise to additionally
represent knowledge computationally amenable to support the sequence based approach
by semantic components with ontologies.

These results regarding ontological annotation quality, among other motivations,
lead to the question how to bridge the two fields, database annotation and ontologies,
for successful resource annotation of biological sequence data. For this purpose, an
Internet-based application is created in the second part, that brings scientists (domain
experts) together to offer them ways to communicate among each other or with ontology
designers, which act as database curators in this special context. This collaborative
approach should allow experts and engineers to improve database annotations by mutual
understanding of the ontology’s inner structure or even by the use of completely new
designed ontologies, if special ontologies are desired for annotating sequence entries.
Furthermore, existing ontologies might be extended by experts’ knowledge to increase
annotation qualitites.

While the widest use of bio-ontologies is for conceptual annotations, they are also
used in a large range of other life science application scenarios which are manageable
via the ONTOVERSE platform. The main focus in the second part of the thesis is on the
architecture to manage scientific user communities and the integration of information

extraction results into ontologies (ontology population).

iii

v

Contents

1 Introduction 1
2 Background 4
2.1 Semantic Webo 5
2.1.1 RDF,RDFS,OWL 8

2.2 Omntologies e 11
2.2.1 Bio-Ontologies 13

2.2.2 Ontologies of Bioinformatics Ontologies 15

2.3 C0Coa . ..o e 16
2.3.1 Design Patterns. o 16

2.3.2 Objective-C e 17

233 CoreData 17

24 Ruby e 19
25 RubyonRails. 20
2.5.1 MVC Architecture 20

2.5.2 Components of Rails 21

2.6 RESTful Development 23
2.6.1 REST is a Conversation and Design 23

2.6.2 REST and Rails 24

2.7 Resource-Oriented Architecture 24
2.8 The Rails/ROA Design Procedure 26

2.8.1 RESTful Architecture of Rails 26

3 INVHOGEN 28
3.1 Introduction L 28
3.2 Methods L 30

3.2.1 Gene Family Building 0000 30
3.2.2 Naming of Gene Families 31
3.2.3 Multiple Sequence Alignments & Phylogenetic Trees 32
3.3 Results.o 34
3.3.1 Gene Family Distribution 34
3.3.2 Species Distribution oL 35
3.3.3 GO Term Annotations 36
3.4 Graphical Interface: Jenfemo 45
3.4.1 Data Integrationo 45
3.4.2 Data Modelingo 47
3.0 Discussiono e 55
3.5.1 Other Approaches to Build Gene Families 55
3.5.2 Annotation Problems 56

4 Ontoverse 60
4.1 Introduction L 60
4.2 The Need for Collaborative Ontology Development 61

4.2.1 Representing a Shared View 61
4.2.2 Information Integration for Scientific Data 61

4.3
4.4

4.2.3 Experiences in Developing a Biolnformatics Ontology for Tools

and Methodso 62
Editing and Maintaining Ontologies 62
Ontology Wiki e 64
4.4.1 User Community and Collaboration 64
4.4.2 Key Aspectso 64

vi

4.5 Challenges and Tasks of Collaborative Ontology Development with ON-

TOVERSE oo 66
4.5.1 Conceptual and Process Challenges and Tasks 66
4.5.2 Technical Challenges and Tasks 71

4.6 Ontology Wiki Architecture 73
4.6.1 Overviewo 73

4.6.2 User Management System 74
4.6.3 Buildinga News Blog00, 81
4.6.4 Discussion Forum oo Lo 83
4.6.5 User Blog with Web Services Support 86
4.6.6 User Photos 90
4.6.7 E-mail Messages and Newsletter 91
4.6.8 Friends Networko 93
4.6.9 Tagging and Searching 0oL 95
4.6.10 Integrating other Web Applications 98
4.6.11 Omntology Projects 100
4.6.12 Project Wiki 102
4.6.13 Publication Database: PubDB 106
4.6.14 Collaboration Architecture 114

4.7 Usage Scenarioso e 117
4.7.1 User Interaction/Networking 117
4.7.2 Project Organization oL 117
4.7.3 Ontology Population 0. 119
4.7.4 Ontology Editing oo 120

5 Conclusion and Outlook 125
6 Fazit und Ausblick 128

vii

A Table & Database Schema 131

A1 INVHOGEN 131
A.1.1 Attributes Assignments of a Gene Family 131
A2 ONTOVERSE o i i it i ittt it e e e e 131
A.2.1 Ontology Wiki Database Schema 131

viii

Chapter 1

Introduction

As molecular biology (and several years later genomic projects) became very popular in
life sciences, scientists began storing sequence information in dozens of large, publicly
shared DNA sequence, protein and structure databases. One of the most significant
data sources collaboratively maintained by the Swiss Institute of Bioinformatics and
the European Bioinformatics Institute (EBI) is the SWISS-PROT protein information
database [1]. Despite its origins as a simple sequence database, SWISS-PROT and
its supplement TrEMBL have grown to include a wide spectrum of information about
proteins in the form of annotations (e. g. three-dimensional structure, domains and sites,
post-translational modifications, sequence conflicts, variants, etc.). Links from protein
sequence entries to other large and disparate sources like organism specific databases,
2D-gel databases, 3D structure databases, genome annotation databases, enzyme and
pathway databases and so on lead to another variety of information in SWISS-PROT.
From these sources the Gene Ontology (GO) developed at the GO Consortium |[2]
provides a framework for automatic functional annotation as an effective approach to as-
sociate individual sequences and related expression information with biological function.
For example, the Gene Ontology Annotation (GOA) [3] project provides assignments of
GO terms to SWISS-PROT and TrEMBL entries by a combination of electronic meth-
ods and manual annotation. Another research tool, Blast2GO (B2G) [4], enables GO

based data mining on sequence data for which no GO annotation is available to support

genomic research in non-model organisms. OntoBlast [5] and Goblet [6] assign GO terms
to a new sequence based on its similarity to a sequence with a known GO assignment.

The similarity between GO terms can be used to compute a similarity between data
entries that are annotated with these GO terms [7, §].

Apart from annotating several database resources with e. g. GO, MGED (Microarray
and Gene Expression Data)!, or UMLS (Unified Medical Language System)? ontologies
are used in a wide range of biomedical application scenarios [9]. For instance, they are
used for providing visualization combining biological annotation with microarray expres-
sion data [10], metabolic pathways [11], medical image searching [12] and metasearches

to biodiversity data [13].

Thesis outline

While Gene Ontology is generally accepted in life sciences, it also has some limitations
regarding its internal structure. The GO hierarchy has highly varied depths along dif-
ferent branches — from two levels to more than 20 levels. Some of the variation is
inherent in different functional families, while some may be an artifact of the uneven
contribution by different groups participating in GO’s development. This might be a
source for mis-annotations in databases by biologists with little background to analyze
and understand genes with the GO information.

Starting from this perspective, the main aim of this thesis is to develop concepts suit-
able to support scientists to collaboratively edit and maintain ontologies in life sciences.
To demonstrate the practical use of the presented ideas, the ONTOVERSE platform [14]
is developed.

The work presented in this thesis is outlined in the following. Background knowledge
is introduced in chapter 2. This includes on the one hand the current state of ontologies in
general and on the other hand ontologies in the life sciences with special regard to GO and

the NCBI Taxonomy database. In addition, technical requirements specific to graphical

"http://www.mged.org
2http://www.nlm.nih.gov/research/umls/

user interface (GUI) application and Web application development are presented for the
implementation of the applications described in the Chapters 3 and 4.

Chapter 3 shows the development of a database of homologous invertebrate genes
named INVHOGEN [15]. This database integrates invertebrate protein sequences and
annotations, taxonomic data, protein multiple sequence alignments (MSAs), and phy-
logenetic trees. With its graphical interface JENFEM, INVHOGEN allows one to rapidly
and easily select sets of homologous genes and evaluate homology relationships between
sequences. In the result section it is investigated amongst others if sequence similarity
within gene families is correlated with semantic similarity of GO terms, i.e. where se-
quence similarity is very high, so does the chance that these proteins are homologues, in
which case they are likely to be identically annotated.

In the first part of Chapter 4 the research project “ONTOVERSE — Collaborative
knowledge management in the life sciences network”, sponsored by the German Federal
Ministry of Education and Research, is presented. Its central objective is the devel-
opment of an Internet-based application for cooperative and interdisciplinary ontology
building in terms of a so-called ontology wiki. The architecture of this kind of wiki is
described in the second part of this chapter.

In the conclusion (Chapter 5) it is discussed how ONTOVERSE can contribute to fulfill
the necessities for ontology engineering, annotating, and integrating for an upcoming

Semantic Web.

Chapter 2

Background

The Semantic Web is a layer above the World Wide Web (WWW, Web) that adds
meaning to hypertext links. In bioinformatics the Semantic Web addresses the dramatic
increase of bioinformatics data available in Web-based systems and databases calls for
novel processing methods. Furthermore, the high degree of complexity and heterogeneity
of bioinformatics data and analysis requires semantic-based integration methods.

In this chapter at first XML (eXtensible Markup Language) and related technologies
are presented. XML introduces structure to web documents, thus supporting syntactic
interoperability. The structure of a document can be made machine-accessible through
DTDs and XML Schema. With RDF and RDF Schema one can express statements be-
tween Web-based resources and data; it is a standard data model for machine-processable
semantics. RDF Schema offers a number of modeling primitives for organizing RDF vo-
cabularies in typed hierarchies. OWL, the current proposal for a web ontology language
offers more modeling primitives, compared to RDF Schema, and has a clean, formal
semantics. After this a survey of bio-ontologies is provided. These ontologies are con-
cerned with biological and medical terminology and with ontologies for organizing other
ontologies.

The rest of this chapter shifts the focus to desktop and web application development.
The Cocoa framework and its Core Data infrastructure were used to implement a graph-

ical user interface to access the INVHOGEN database in Chapter 3. The Ruby on Rails

web application framework was chosen for the design of the ONTOVERSE platform in a

REST{ul style (Section 2.6).

2.1 Semantic Web

To make web pages understandable by machines, additional semantic information needs
to be attached or embedded to the existing web data. Built upon the Resource Descrip-
tion Framework (RDF)!, the Semantic Web is aimed at extending the current Web so
that information can be given well-defined meaning using the description logic based
ontology definition language OWL, and thus enabling better cooperation between com-
puters and people. The Semantic Web can be viewed as a web of data that is similar to
a globally accessible database.

The core of the Semantic Web are ontologies. They are used to capture the concepts
and their relations in a domain for the purpose of information exchange and knowledge
sharing. Over the past few years, several ontology definition languages have emerged,
including RDF(S) and OWL. OWL is the newly released standard recommended by
W3C2.

The concept of the Semantic Web is to extend the current WWW such that context
and meaning are given to information [16]. Instead of information being produced for
machines, information will be produced for human consumption [17]. There are two
main aspects of Semantic Web development: (1) ontologies for consistent terminology

and (2) standards for interoperability (e.g. XML [18], RDF, HL7?).

Levels of Semantics

Semantics is the study of the meaning of signs, such as terms or words. Depending on
the approaches, models, or methods used to add semantics to terms, different degrees

of semantics can be achieved. This section identifies and describes four representations

"http://www.w3.org/RDF/
*http://wuw.u3.org
Shttp://www.hl7.org/

that can be used to model and organize concepts to semantically describe terms, that
is, controlled vocabularies, taxonomies, thesauri, and ontologies. These four model rep-

resentations are illustrated in Figure 2.1.

Controlled Vocabularies A controlled vocabulary is a list of terms (e.g. words,
phrases, or notations) that have been enumerated explicitly. All terms in a con-
trolled vocabulary should have an unambiguous, non-redundant definition. Con-
trolled vocabularies are the simplest of all structured metadata methods and have

been extensively used for classification.

Taxonomies They are subject-based classifications that arrange the terms of a con-
trolled vocabulary into a hierarchy. The first users of taxonomies were biologists

to classify organisms according to their natural relationships.

Thesauri A thesaurus is a networked collection of controlled vocabulary terms with
conceptual relationships between them. A thesaurus is an extension of a taxonomy
by allowing terms to be arranged in a hierarchy and also allowing other statements

and relationships to be made about the terms.

Ontologies They are similar to taxonomies but use richer semantic relationships among
terms and attributes, as well as strict rules about how to specify terms and rela-
tionships. In computer science, ontologies have emerged from the area of artificial
intelligence. Ontologies have generally been associated with logical inferencing and

recently have begun to be applied to the Semantic Web.

Technologies

The Semantic Web identifies a set of technologies, tools, and standards to provide a solid
foundation for making the Web machine-readable. The Semantic Web infrastructure is
based on several layers, each corresponding to a specific technology, and is commonly
represented as ‘layer cake’. A visual representation of the different parts of the Semantic

Web architecture is displayed in Figure 2.2.

Semantics
Controlled vocabulary Taxonomy Thesaurus Ontology
q\ + /.\ + /'.\) /:
Structure, hierarchy, Equivalence, homographic, hierarchical, Relationships,
parent-child relationships and associative relationships constraints, rules

Figure 2.1: Levels of semantics with increasing ways of expressing from left to right (modified
from [19]).

()
S
S
=
©
c
2
0p)

RDF Core

:

Figure 2.2: A layered approach to the Semantic Web. Source: Tim Berners-Lee. Web for real
people, 2005. Available at http://www.w3.org/2005/Talks/0511-keynote-tbl/

The bottom layers in the layer cake, i.e. Unicode, URI (Uniform Resource Identifier),
and XML (Schema), consist of existing web standards and provide a syntactical basis for
Semantic Web languages. Unicode provides an elementary character-encoding scheme,
which is used e.g. by XML (a standard syntax for structuring and describing data
but not carrying any semantics). The URI standard provides a means to uniquely
identify and address abstract or physical resources on the Web. All concepts used in
the languages located higher in the layer cake can be specified using Unicode and are
uniquely identified by URIs.

SPARQL is the emerging standard for querying and accessing RDF stores (Subsec-
tion 2.1.1). The Semantic Web Rule Language (SWRL) [20] allows data derivation,
integration, and transformation.

The logic layer represents reasoning systems that infer new knowledge from ontolo-
gies and checks data consistency. The proof layer gives a proof of the logical reasoning
conclusion by tracing the deduction of the interference engine. The trustfulness of Se-
mantic Web information can be checked by the trust layer based on the signature and
encryption layer. The proof and trust layers are currently under development, but most
likely refer to the application and not to any specific language. For instance, the appli-
cation could prove some statement by using deductive reasoning, and a statement could

be trusted if it had been proven and digitally signed by some trusted third party.

2.1.1 RDF, RDFS, OWL

Resource Description Framework

At the top of XML the Resource Description Framework (RDF) is the first language
developed especially for the Semantic Web. RDF was developed to add machine-readable
metadata to existing data on the Web. RDF uses XML and it is at the base of the
Semantic Web, so that all the other languages corresponding to the upper layers are
built on top of it.

RDF is a general assertional model for representing explicit relationships between

Web-based resources and data through RDF triples of subject, predicate and object.

The subject is the ‘thing’ being described, a resource identified by a URI in a common
syntax regardless of the protocol is used to access the subject. The predicate is a
property type of the resource, such as an attribute, a relationship, or a characteristic.
The third component, object, is equivalent to the value of the resource property type for
the specific subject. Each triple in RDF makes a distinct assertion, joining other triples
will not change the meaning of the existing triples, regardless of the complexity of the

model in which it is included. Figure 2.3 describes three statements using RDF triples.

(subject, predicate, object)

N
\
\

4

Homologous Invertebrate
/ Genes Database

¥ Title

N
~
«-------

http://www.bi.uni-duesseldorf.de/

. ; Subject —— | Invertebrates Database
~invhogen/invhogen.html

Creator

Ingo Paulsen

Resource Property type Property value

Figure 2.3: Graphical representation of three RDF statements.

RDF Schema

RDF Schema (RDFS) is a domain-neutral lightweight schema language to define vocab-
ularies for RDF. RDFS provides information about the interpretation of the statements
given in an RDF data model. RDFS does not say anything about the syntactical ap-
pearance of the RDF description.

RDFS builds on the RDF foundation to provide additional descriptive features [21].
RDFS makes it possible to define a class, subclass, and with an instance being defined
using rdfs:Class, rdfs:subClass0f and rdf:type respectively.

However, RDFS is not very expressive compared with other ontology languages, as

it allows only the representation of concepts, concept taxonomies, and properties. OWL
provides a richer set of vocabulary by further restricting on the set of triples that can

be represented.

OWL

OWL (Web Ontology Language) is the standard web ontology language recently rec-
ommended by W3C. It is intended to be used by applications to represent terms and
their interrelationships. OWL is used when information must be machine-processed and
can be used to represent an ontology [22], as the RDF structure is unable to support a
reasoner in using logical induction or deduction to infer new conclusions from statements.

OWL comes in three increasingly complex species: OWL Lite, OWL DL and OWL
Full. OWL Lite offers a minimum number of features that are necessary to specify
ontologies. It supports simple classifications, allowing only cardinalities of 0 or 1 and
only minimal contraints. OWL DL as a superset of OWL Lite, supports more complex
ontologies, but still has some restrictions to guarantee processing finishing in finite time
using a DL reasoner. OWL Full, a superset of OWL DL, removes some restrictions from
OWL DL, with no computational guarantees and the possibility of indefinite processing

time.

Classes An OWL document can include an optional ontology header and any number
of class, property, axiom, and individual descriptions. In an ontology defined by OWL,
a named class is described by a class identifier via rdf:ID. An anonymous class can
be described by value (owl:hasValue, owl:allValuesFrom, owl:someValuesFrom) or
cardinality (owl:maxCardinality, owl:minCardinality, owl:cardinality) restriction
on property (owl:Restriction); by exhaustive enumeration of all the individuals that
form the instances of this class (owl:one0f); or by logical operations on two or more
other classes (owl:intersectionOf, owl:union0f, owl:complementOf).

The three logical operators correspond to AND (conjunction), OR (disjunction) and

NOT (negation) in logic define classes of all individuals by standard set operations of in-

10

tersection, union, and complement, respectively. Three class axioms (rdfs:subClassO0f,
owl:equivalentClass, owl:disjointWith) can be used for defining necessary and suf-

ficient conditions of a class.

Properties Two kinds of properties can be defined in an OWL ontology: object prop-
erty (owl:0bjectProperty) which links individuals to individuals, and datatype prop-
erty (owl:DatatypeProperty) which links individuals to data values. Similar to classes,
rdfs:subProperty0f is used to define that one property is a subproperty of another
property. There are constructors to relate two properties (owl:equivalentProperty and
owl:inverseOf), to impose cardinality restrictions on properties (owl:FunctionalProperty
and owl:InverseFunctionalProperty), and to specify logical characteristics of proper-
ties (owl:TransitiveProperty and owl:SymmetricProperty). There are also construc-
tors to relate individuals (owl:sameAs, owl:sameIndividualAs, owl:differentFrom
and owl:AllDifferent).

The semantics of OWL is defined based on model theory in the way analogous to
the semantics of description logic (DL). With the set of vocabulary (mostly as described
above), one can define an ontology as a set of (restricted) RDF triples which can be

represented as an RDF graph.

2.2 Ontologies

The word ontology has been borrowed from philosophy, where it means a systematic
explanation of being. The knowledge engineering community has adopted ontology as
a key enabling technology since the nineties. One of the first definitions of ontology
given by Neches et al. [23], is as follows: “an ontology defines the basic terms and
relations comprising the vocabulary of a topic area as well as the rules for combining
terms and relations to define extensions to the vocabulary”. According to the above
definition, an ontology includes not only the terms that are explicitly defined in it, but
also the knowledge that can be inferred from it. Gruber [24] defined an ontology as

“an explicit specification of a conceptualization”, which has become one of the most

11

acceptable definitions to the ontology community. Guarino et al. [25] collected and
analyzed seven definitions of ontology and provided their corresponding syntactic and
semantic interpretations. They proposed to consider an ontology as “a logical theory
which gives an explicit, partial account of a conceptualization”, where conceptualization
is basically an idea of the world that a person or a group of people can have.

Ontologies consist of definitional aspects such as high-level schemas and assertional
aspects such as entities, attributes, interrelationships between entities, domain vocab-
ulary and factual knowledge — all connected in a semantic manner [26]. Ontologies
provide a common understanding of a particular domain. They allow the domain to
be communicated between people, organizations, and application systems. Ontologies
provide the specific tools to organize and provide a useful description of heterogeneous
content.

In addition to the hierarchical relationship structure of typical taxonomies, ontologies
enable cross-node horizontal relationships between entities, thus enabling easy modeling
of real-world information requirements. Jasper and Uschold [27] identify three major

uses of ontologies:

1. To assist in communication between human beings.
2. To achieve interoperability among software systems.

3. To improve the design and the quality of software systems.

An ontology is technically a model which looks very much like an ordinary object model
in object-oriented programming. It consists of classes, inheritance, and properties [28].
In many situations, ontologies are thought of as knowledge representation.

Description logics are logical formalisms for knowledge representation [29]. They pro-
vide a formal linear syntax to express the description of top-level concepts in a problem
domain; their relationships and the constraints on the concepts; and the relationships
that are imposed by pragmatic considerations in the domain of interest [30, 31]. DL

is divided into two parts: Abox (assertion component) and Thox (terminological com-

12

ponent). “Tbox vocabularies define concepts that have associated Abox facts. The

combination of Thox vocabularies and Abox facts represent a knowledge base” [32].

2.2.1 Bio-Ontologies

Ontologies have a very prominent role in bioinformatics since much of biology works by
applying prior knowledge to an unknown entity. Within the last decade the research
on ontologies has increased tremendously, and as a result more and more bio-ontologies
become available. Therewith, to be of public value an ontology has to be widely dissem-
inated and accepted by the field of knowledge that it models [33]. Moreover, in terms of
inter-operability between databases and different scientific communities, the standard of
ontologies becomes more and more important. The integration of information sources

in the life sciences is one of the most challenging goals of bioinformatics.

Gene Ontology

GO is one of the most significant ontologies for bioinformatics and biology. The objective
of GO is to supply a mechanism that guarantees consistent descriptions of gene products
in different databases. GO is rapidly acquiring the status of a de facto standard in the
field of gene and gene product annotations [34]. The GO effort includes the develop-
ment of controlled vocabularies that describe gene products, establishing associations
between the ontologies, the genes, and the gene products in the databases, and develop
tools to create, maintain, and use ontologies. GO has over 20,000 terms and it consists of
three distinct sub-ontologies that describe gene products in terms of their associated (1)
molecular functions, (2) biological processes, and (3) cellular components [35]. Molecular
function describes the tasks performed by individual gene products. Biological process
describes broad biological goals that are accomplished by ordered assemblies of molec-
ular functions. Cellular component encompasses subcellular structures, locations, and
macromolecular complexes.

An example of the GO hierarchy for the term ‘histone methyltransferase activity’ is

given in Figure 2.4. This shows the series of successively more restrictive concepts to

13

which this term belongs.

all : all [219941]
® GO0:0003674 : molecular_function [143399]
© GO0O:0003824 : catalytic activity [45843]
@ G0:0016740 : transferase activity [14189]
8 G0:0016741 : transferase activity, transferring one-carbon groups [1353]
@ GO:0008168 : methyltransferase activity [1305]
© G0:0008276 : protein methyltransferase activity [154]
@ GO0:0042054 : histone methyltransferase activity [90]

Figure 2.4: The GO hierarchy for histone methyltransferase activity. The brackets show the
total number of GO terms in the category at that level.

GO did not originally make use of a formal ontological framework such as XML or
RDF. To remedy this situation, the Gene Ontology Next Generation Project (GONG)*
is developing a staged methodology to change the current representation of the GO into
OWL. This allows one to take advantage of the richer formal expressiveness and the

reasoning capabilities of the underlying formal logic [36].

Microarray Gene Expression Data

Another well-known life science ontology is the Microarray Gene Expression Data (MGED)
ontology. MGED provides standard terms in the form of an ontology organized into
classes with properties for the annotation of microarray experiments [37]. These terms
provide an unambiguous description of how experiments were performed and enable
structured queries over elements of the experiments. The comparison between different
experiments is only feasible if there is standardization in the terminology to describe
experimental setup, mathematical post-processing of raw measurements, genes, tissues,
and samples. The adoption of common standards by the research community for de-
scribing data makes it possible to develop systems for the management, storage, transfer,

mining, and sharing of microarray data [38].

‘http://www.gong.manchester.ac.uk/

14

Open Biomedical Ontologies

The Open Biomedical Ontologies (OBO)? project forms an umbrella for a range of on-
tologies being designed for different biological and medical domains. The criteria for
inclusion are that the ontology is open, uses either GO or OWL syntax, has definitions
and unique identifiers, and complements other OBO ontologies. OBO contains vari-
ous bio-ontologies ranging from anatomy to development, genomics, proteomics, and

metabolomics, phenotype, taxonomic classification, and experimental conditions.

Biomedical Ontologies outside OBO Some other biomedical ontologies that were

developed before OBO was established are:

e EcoCyct is one of the oldest bio-ontologies and describes the metabolic and trans-

duction pathways of Escherichia coli K12, its enzymes, and its transport proteins.
e OpenGalen” is an ontology used for medical information management.

e BioPAX® describes biological pathways and it is implemented in OWL.

2.2.2 Ontologies of Bioinformatics Ontologies

With the proliferation of biological ontologies and databases, the ontologies themselves

need to be organized and classified.

TAMBIS

TAMBIS (Transparent Access To Multiple Bioinformatics Information Sources) [39] is
a project that aims to help scientists by building a homogenizing layer on top of various
biological information services. The TAMBIS Ontology (TaO) is a semantic network that

covers a wide range of bioinformatics concepts. It contains description of the principal

Shttp://obo.sourceforge.net/
Shttp://ecocyc.org/
"http://www.opengalen.org/
Shttp://www.biopax.org/

15

concepts of molecular biology and bioinformatics: macromolecules; their motifs, their

structure, function, cellular location, and the processes in which they act.

2.3 Cocoa

Cocoa is a complete set of classes and application programming interfaces (APIs) for
building Mac OS X applications and tools [40]. Cocoa is divided into two main frame-
works: Foundation framework and Application Kit.

The Foundation framework is a set of tools that represents fundamental data types,
accessing system services, messaging, threading, and more. The Application Kit pro-
vides the functionality to build GUIs for Cocoa applications. It provides access to the
standard interface components ranging from buttons, menus, and text fields to complete,
prepackaged interfaces for print dialogs, file operation dialogs, and alert dialogs. It also
provides higher-level functionality to implement multiple document applications, text

handling, and graphics.

2.3.1 Design Patterns

Cocoa uses many design patterns that are descriptions of common object-oriented pro-
gramming practices. Here is brief list of the design patterns which are used in the

JENFEM application (Section 3.4).

Model-View-Controller The Model-View-Controller (MVC)? pattern is used exten-
sively in the Application Kit to separate an application into logically distinct units:
a model, which knows how to work with application data, the view, which is re-
sponsible for presenting the data to the user, and the controller, which handles

interaction between the model and the view.

Delegation In this pattern, one object, the delegate, acts on behalf of another ob-
ject. Delegation is used to alter the behavior of an object that takes a delegate.

Delegation minimizes the need to subclass objects to extend their functionality.

“http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index . html

16

Target/action The target/action pattern decouples user-interface components with
the objects (the targets) that implement their actions. In this pattern, an activated

control sends an action message to its target.

Key-value coding This pattern provides an interface for accessing an object’s proper-

ties indirectly by name.

Key-value observing A mechanism that allows objects to be notified of changes to

specific properties of other objects.

Cocoa Bindings Provides a way to keep an attribute of a view synchronised with a
property of a model object. Instead of connecting a control to instance variables

and action methods, it connects a control directly to an object’s value.

2.3.2 Objective-C

Cocoa’s native language is Objective-C [41]. The Foundation and Application Kit frame-
works are implemented in this language, and using Objective-C provides access to all
features of the frameworks.

Objective-C is a highly dynamic, message-based object-oriented language. Consisting
of a small number of additions to ANSI C, Objective-C is characterized by its deferral of
many decisions until runtime, supporting its key features of dynamic dispatch, dynamic
typing, and dynamic loading. These features support many of the design patterns Cocoa
uses. Because it is an extension of C, existing C code and libraries can work with Cocoa-

based applications.

2.3.3 Core Data

Core Data is a Cocoa framework and provides an infrastructure for managing object
graphs, including support for persistent storage to a variety of file formats [42]. Object-
graph management includes features such as undo and redo, validation, and ensuring the
integrity of object relationships. Object persistence means that Core Data saves model

objects to a persistent store and fetches them when required. The persistent store of a

17

Core Data application can range from XML files to SQL databases. Core Data is ideally

suited for applications that act as front-ends for relational databases.

t Persistent Document h

managedObjectContext 4]

open:
save:

\ /
A/
(Managed Object Context B
(Gene Family (Gene Family Entry P
Persistent Store Coordinator]
description: 14-3-3 protein entryName: 14331_ECHGR J
-

h y,

Persistent
Object Store

file

Gene Family
GF Entry

Figure 2.5: Document management using Core Data.

The central concept of Core Data is the Managed Object (MO). A MO is simply a
model object that is managed by Core Data. One describes the MOs of a Core Data
application using a schema called a Managed Object Model (MOM). A MOM contains
descriptions of an application’s managed objects (also referred to as entities). Each
description specifies the attributes of an entity, its relationships with other entities, and
metadata such as the names of the entity and the representing class.

In a running Core Data application, an object known as a Managed Object Context
(MOC) is responsible for a graph of MOs. All MOs in the graph must be registered
with a MOC. The context allows an application to add objects to the graph and remove
them from it. It also tracks changes made to those objects, and thus can provide undo
and redo support. When someone saves changes made to MOs, the MOC ensures that

those objects are in a valid state. When a Core Data application wishes to retrieve data

18

from its external data store, it sends a fetch request — an object that specifies a set of
criteria — to a MOC. The context returns the objects from the store that match the
request after automatically registering them.

A MOC also functions as a gateway to an underlying collection of Core Data objects
called the persistence stack. The persistence stack mediates between the objects in
an application and external data stores. It consists of two different types of objects,
persistent stores and persistent store coordinators. Persistent stores are at the bottom
of the stack. They map between data in an external store and corresponding objects in
a MOC. They do not interact directly with MOCs, however. Above a persistence store
in the stack is a persistent store coordinator, which presents a facade to one or more
MOGs so that multiple persistence stores below it appear as a single aggregate store.

Figure 2.5 shows the relationships between objects in the Core Data architecture.

2.4 Ruby

Ruby is a dynamically typed programming scripting language created by Yukihiro Mat-
sumoto [43]. Ruby is completely object-oriented and allows to change classes and intro-
ducing new methods at runtime. It is a high-level programming language, less efficient

but more flexible than compiled languages. It offers the following characteristics:

Interpreted Scripting languages are usually interpreted and not compiled, allowing
quick turnaround development and making applications more flexible through run-

time programming.

Reflection The possibility of easily investigating data and code during runtime, and

runtime interrogation of objects instead of relying on their class definitions.

Metaprogramming Metaprogramming techniques allow code to be created, changed,
and added during runtime. In Ruby, it is possible to change the behaviour of all
objects during runtime and for example to add code to a single object (without

changing its class).

19

Dynamic typing Scripting languages are usually weakly typed, without prior restric-
tions on how a piece of data can be used. Ruby has the so-called duck-typing
mechanism in which object types are determined by their runtime capabilities

instead of by their class definition.

2.5 Ruby on Rails

Ruby on Rails (Rails) is an open source web application development framework written
in Ruby [44]. The goal of Rails is to develop web applications in an easy, straightforward
manner, and with as few lines of code as necessary. By default, Rails makes a lot
of assumptions and has a default configuration that works for most web applications.
It is easy to override any defaults, but they are designed to keep initial application

development simple.

2.5.1 MVC Architecture

Rails operates upon a subtly different variant of MVC architectural pattern called
Model2. Model2 uses the same principles of MVC but tailors them for stateless web
applications. This means that Rails applications are primarily split into three sections:

models, views, and controllers. In Rails, these components have the following roles:

e Models: These are used to represent forms of data used by the application and
contain the logic to manipulate and retrieve that data. In Rails, a model is rep-
resented as a class. Models are abstracted, idealized interfaces between controller

code and data.

e Views: These are the templates and HTML code that users of the web application
see. They turn data into a format that users can view. They can output data as

HTML for browsers, XML, RSS, Atom, and other formats.

e (Controllers: Controllers form the logic binding together models, data, and views.

They process input and deliver data for output. Controllers call methods made

20

available by models and deliver it to the views. They contain methods known as

actions that, generally, represent each action relevant to that controller.

The basic relationship between these components is shown in Figure 2.6. The
browser, on the client, sends a request for a page to the controller on the server. The
controller retrieves the data it needs from the model in order to respond to the request.
The controller renders the page and sends it to the view. The view sends the page back

to the client for the browser to display.

Web Browser

@ sends request gets sent back

Model . gathers data ()ont_roller . renders
Business Logic and updates Application Logic
S— () ®

Figure 2.6: Processing a page request in a Ruby on Rails architecture.

2.5.2 Components of Rails

The Rails framework consists of several different libraries:

Rails The core library of the Ruby on Rails framework that ties the other libraries

together.
ActionMailer A library that makes it easy to send e-mail from Rails applications.

ActionPack A library providing useful methods used in views and controllers to gen-
erate HTML and dynamic page elements, such as Ajax [45] and JavaScript, or

manage data objects.

ActiveRecord An object-relational mapper (ORM) that ties database tables to classes.

21

ActiveSupport A library that collects support and utility classes used by various Rails

features. For example, it supports methods for manipulating numbers, arrays,

hashes, and times.

ActionWebService Provides methods to make it easy to offer functionality from Rails

applications as a web service.

Figure 2.7 gives a schematic view of how Ruby and Rails fit these libraries together [46].

Ruby

Rails framework

ActiveRecord

Support libraries

ActionPack

CGl Library

ERb (Embedded Ruby)

CGl data processing Templating system for
routines.

mixing static content
Parses incoming form with output from Ruby
data. code.

Figure 2.7: Schematic view of the Ruby on Rails framework.

22

2.6 RESTful Development

REST (REpresentational State Transfer) is a set of design criteria that was initially
proposed by Roy Fielding [47]. It allows to build full-featured and extensible web services
and applications on top of a small set of core, foundational operations. These operations
are the four basic HT'TP request methods (GET, POST, PUT, and DELETE), and
the two auxiliaries (HEAD and OPTIONS). Web development has long ignored the full
HTTP specification and only used GET and POST for requesting and sending data to

and from dynamic web applications.

2.6.1 REST is a Conversation and Design

REST is about breaking down HT'TP request to natural, human-language type structure
with verbs and nouns. The verbs are the aforementioned request methods, while the

10" accessible via the Web. Every

nouns are URIs, unique identifiers for some resource

resource should have as few names as possible, and every name should be meaningful.
REST boils problems down to their bare essentials so that they can be addressed,

analyzed, and represented properly. REST provides a framework for simple but exten-

sible application design by mandating what actions an application can support against

a resource:

e GET: retrieve a representation of a resource
e POST: create a new resource
e PUT: modify an existing resource

e DELETE: delete an existing resource

Many other common requests can be built on top of these verbs. Search is really the

reading of resources that meet certain criteria.

Something that can be stored on a computer and represented as a stream of bits.

23

2.6.2 REST and Rails

There are strong parallels between the REST verbs, the basic Rails controller actions,
CREATE, READ, UPDATE, DELETE (CRUD), and the ADD, CHANGE, INQUIRE, DELETE
(ACID) operations of SQL. Table 2.1 shows how the verbs of ACID and HTTP corre-

spond to each other.

CRUD: create read update delete
HTTP: POST GET pPUT DELETE
Rails: create find update destroy

SQL: INSERT SELECT UPDATE DELETE

Table 2.1: CRUD, HTTP, Rails, SQL verbs.

When a resource is requested, the actual resource itself is not sent back to the user.
Instead, a representation of that resource is sent back, often a web page describing the
resource, or an image of it, or an XML document that structures the resource or the
outcome of the action performed. This is represented in Figure 2.8.

With Rails, these various resource representations are built on top of controller ac-
tions, allowing requests for various forms of resources to share common processing logic.

The implementation is abstracted from the services provided.

2.7 Resource-Oriented Architecture

The Resource-Oriented Architecture (ROA) is a way of turning a problem into a RESTful
web service: an arrangement of URIs, HT'TP, and XML that works like the rest of the
Web. It has the four concepts resources, their names, their representations, and the
links between them. Furthermore, it has the four properties addressability, statelessness,

connectedness, and the uniform interface which are defined the following [48]:

Addressability An application is addressable if it exposes the interesting aspects of
its data as resources. Since resources are exposed through URIs, an addressable

application exposes a URI for every piece of information it might conceivably serve.

24

URI

http://www.ontoverse.org/users |

e Represents ----- .

Resource y

| Users in Ontoverse

Representation

Metadata
Content-type:
application/xhtml+xml

Data

<IDOCTYPE html| PUBLIC "...
"http://www.w3.org/...

<html xmiIns="http://www...

<head>

<title>Users in Ontoverse<t/title>

<htmi>
e —

Figure 2.8: Requesting a resource. The relationships between identifier, resource, and represen-
tation.

Statelessness Means that every HT'TP request happens in complete isolation. When
the client makes an HTTP request, it includes all information necessary for the
server to fulfill that request. The server never relies on information from previous

request.

Connectedness A server can guide the client from one application state to another
by sending links and forms in its representation. This also holds true for resource

which should link to each other in their representations.

The Uniform Interface All interaction between clients and resources is mediated
through a few basic HI'TP methods. Any resource will expose some or all of

these methods.

25

2.8 The Rails/ROA Design Procedure

2.8.1 RESTful Architecture of Rails
Routing

When an HTTP request comes in, Rails analyzes the requested URI and routes the
request to the appropriate controller class. As shown in the following example, the file

config/routes.rb tells Rails how to handle certain requests.

routes.rb
ActionController: :Routing: :Routes.draw do |mapl
map.resources :projects do |project]
project.resources :members
end
end

That file declares the existence of two controller classes (PROJECTSCONTROLLER and
MEMBERSCONTROLLER), and tells Rails how to route incoming requests to those classes.
PRrROJECTSCONTROLLER handles requests for the URI /projects, and for all URIs of
the form /projects/id.

MEMBERSCONTROLLER handles requests for the URI /projects/project_id/members,

and all URIs of the form /projects/project_id/members/id.

Resources, Controllers, and Views

A Rails controller might expose a single list (or factory) resource, which responds to
GET and/or POST requests, and a large number of object resources, which respond to
GET, POST, and/or DELETE. The list resource often corresponds to a database table,
and the object resources to the rows in the table.

Each controller is a Ruby class, so sending an HT'TP request to a class means calling
some particular method. Rails defines six standard methods per controller, as well as
exposing two special view templates through HT'TP GET. The seven HTTP requests

made possible by the example above are:

26

1. GET /projects: A list of the projects. Rails calls the ProjectsController#index

method.

2. GET /projects/new: The form for creating a new project. Rails renders the view

in app/view/projects/new.rhtml.

3. POST /projects: Create a new project. Rails calls the ProjectsController#create

method.
4. GET /projects/id: A project. Rails calls ProjectsController#show.

5. GET /projects/id;edit: The form for editing a project’s state. Rails renders the

view in app/view/projects/edit.rhtml.
6. PUT /projects/id: Change a project’s state. Rails calls ProjectsController#update.

7. DELETE /projects/id: Delete a project. Rails calls ProjectsController#delete.

It is not necessary to expose all seven access points in every controller if not useful.

27

Chapter 3

INVHOGEN

This chapter describes the development of a database of homologous invertebrate genes
named INVHOGEN from two protein sequence resources. In the method section the
building steps, beginning from reducing inappropriate sequence entries and ended by
meaningful namings of gene families, are performed. The interesting questions about
the distribution of species and the annotation with GO terms in each gene family (GF)
are investigated in the result part.

Afterwards the creating process of the graphical interface from INVHOGEN named
JENFEM is pointed out. It allows one to rapidly and easily select homologous genes and
evaluate homology relationships between sequences.

Eventually, on the basis of the results, it is discussed how annotation quality as one
important part of knowledge resource can be improved by closer cooperation of scientists.
As a consequence this discussion leads to Chapter 4, in which the ONTOVERSE approach

is presented as a development and maintenance platform for multiple ontology projects.

3.1 Introduction

Genome projects [49] are generating an enormous amount of data in molecular and
evolutionary biology. One goal of functional genomics is to determine the function of

proteins predicted by these sequencing projects [50]. To overcome the problem of as-

28

signing protein functions to sequences one approach is to classify them into GFs on the
basis of the presence of shared features or by clustering using some similarity measures
under the assumption that proteins within the same GF possess similar or identical bio-
chemical functions. To determine the function of new proteins one can infer its function
or detect its functional regions by homology to other sequences. (If two proteins share
a significant sequence similarity, then one typically concludes that they are probable to
have similar function.) However, there are some cases where conserved structures within
a protein group do not necessarily imply that these proteins perform the same function
[51] owing to low-complexity sequences, multifunctional sequences and gene recruitment
[52].

GFs are generated using sequence clustering. Sequence clustering allows the detection
of all pair-wise sequence similarities within a given set of protein sequences. Proteins
are then clustered into families based on their sharing of significant sequence similarity
patterns. When sequence clustering is performed accurately, proteins within a family
may be considered as sharing a common evolutionary history and possibly similar or
identical functions [53].

Within a GF one has to distinguish between two types of homologies: genes are
said to be orthologues in two different species if gene copies originate from a common
ancestral gene after a speciation event. Paralogues are genes in a given species pair that
diverged after duplication of an ancestral gene [54]. The distinction between paralogy
and orthology is essential for molecular phylogeny since it is necessary to work with
orthologous genes to infer species phylogeny from gene phylogeny.

To address the problem of detecting homologous genes, the INVertebrate HOmol-
ogous GENes (INVHOGEN) database was built. This database complements the three
homologous databases HOVERGEN [55] devoted to vertebrates, HOBACGEN [56] devoted
to prokaryotes and HOGENOM devoted to completely sequenced organisms. INVHOGEN
contains the available invertebrate protein sequences from UniProt organized into fam-
ilies of homologous genes defined by sequence similarity. For many GFs INVHOGEN

provides an MSA, a phylogenetic tree and taxonomic information about the sequences.

29

3.2 Methods

The second release of INVHOGEN has been built from the invertebrate entries in UniProt
Release 5.5 [57] consisting of SWISS-PROT Release 47.5 and TrEMBL Release 30.5. The
data consist of 284,763 protein entries, 11,702 of them from SWISS-PROT and 273,061
from TrEMBL. From both sequence files a total of 174,958 invertebrate protein entries
were extracted. The SWISS-PROT/TrEMBL protein entries were used owing to their
high level of annotation and integration with other databases, and of their minimal level
of redundancy. By following the references in the database cross-reference (DR) field of
SWISS-PROT /TrEMBL annotations, the corresponding nucleotide sequences from [58]
were also integrated in the database structure.

For building the families, the BLASTP2 [59] program was applied to identify com-
mon regions between proteins, and to collect related proteins. A similarity search of
all proteins against each other was performed by filtering low complexity regions with
SEG [60], and using the BLOSUM62 amino acid similarity matrix [61] and an E-value
threshold of 1074,

3.2.1 Gene Family Building

The results from BLASTP2 output are processed this way (Figure 3.2):
1. For each pair of sequences, high-scoring segment pairs (HSPs) that are not com-
patible within a global alignment are removed (Figure 3.1). The number of HSPs is

reduced from 23,901,247 HSPs to 20,933,392 HSPs. 7,114,334 HSPs are originated

from complete sequences and the rest belongs to fragments.

2. Two sequences in a pair are included in the same family if (right branch after HSP

cutting step):

e Both sequences are complete.

e The remaining HSPs cover at least 80% of the proteins length.

30

e Their similarity is greater or equal to 50% (two amino-acids are considered
similar if the BLOSUMG62 similarity score is positive). This procedure re-
duces the risk of mis-assigning proteins with a complex evolutionary history

involving gene fissions and fusions, and domain shuffling [51].

After this procedure only 24.7% (1,712,191 from 6,934,240) of the HSPs are prospects
for building GFs.

. Once families of complete protein sequences have been built, partial sequences or
fragments (longer than 100 amino acids [62] or at least 50% of the length of the
complete proteins) are included in the classification. A partial sequence matching
with a complete protein is included in its family if (left branch after HSP cutting
step):

e The remaining HSPs cover at least 80% of the partial protein length.
e Their similarity is greater or equal to 50%.

. Short partial sequences (less than 100 amino acids and less than 50% of the length

of the complete proteins) are not included in the classification.

. Remaining 1,139,450 HSPs from complete sequences and 5,220,240 from fragments
are combined for the clustering step into GF's, finally reduced due to redundancies

to 6,124,427 HSPs.

. Transitive links to build the families: If two pairs of sequences named A + B and
B + C fulfill the conditions listed before, then A, B and C are integrated in the

same family, this even if the pair A + C does not fulfill these conditions.

3.2.2 Naming of Gene Families

GF's are named using a written program that parsed the sequence description (DE) and

similarity comment fields (SIMILARITY) of the SWISS-PROT /TrEMBL annotations.

In the first step DE entries are clustered into subgroups of similar word orders. Each

31

Seq. X

Seq. Y

Seq. X

Seq. Y

Figure 3.1: Removing incompatible HSPs. For each pair of sequences X and Y that hit each
other using BLASTP2, HSPs that are not compatible with a global alignment are removed. In
this example, hits H1 and H2 are compatible. However H3 and H4 are not compatible. Therefore,
only H1 and H2 are considered for further computations on similarity measures. Because H1 and
H2 are overlapping, the overlap is allocated to H1 and H2 is shortened accordingly. In a crossing-
over situation between H1 and H2 for the sequences X and Y, H1 will be used if length(H1) >
length(H2), otherwise, H2 is to take into account.

subgroup is named by assigning the most frequent position of every word and by join-
ing these words together. A family description is created by combining all subgroup
names considering only those with a large number of non-redundant entries in relation
to the other subgroups. In the second step particular families are completed by available
similarity comment lines for clarification reasons or if subgroup names are too differ-
ent among themselves. Manual expertise is used to specify the name for a GF if both

attempts failed to generate a meaningful name.

3.2.3 Multiple Sequence Alignments & Phylogenetic Trees

For each GF with at least four sequences, a MSA and a phylogenetic tree were built.
Protein sequences were aligned with ClustalW 1.82 [63] with default parameters. Phy-
logenetic trees were reconstructed with IQPNNI 2.6 [64] by considering the so-called

32

O Complete and partial sequences
O Complete sequences

O Partial sequences

O No sequences

Fragments

HSPs cover at least

80% of protein length
~

Fragments
too short

Fragments
long enough

Not equal frigment pairs
Reduced frsigment pairs
6,359,690

HSPs

6,396,148
HSPs

6,124,427
HSPs

23,901,247

HSPs

HSP cutting (see Figure 3.1)

20,933,392
HSPs

Complete sequences

7,114,334
HSPs

1 HSP/Seq. >1 HSP/Seq.

6,761,084
HSPs

combine HSPs

6,934,240
HSPs

Finding gene family pairs ('80% 80% 50%!' rule)

Remove identical & symmetrical IDs

1,139,450
HSPs

Cluster
larger ——»
GFs

Figure 3.2: Reduction steps for HSPs of partial (left branch) and complete (right branch)

protein sequences from BLASTP2 output. Details are given in Section 3.2.1.

33

stopping rule with at most 100 iterations. The stopping rule decides whether it is proba-
ble (with a 95% confidence level) that a continuation of the search will lead to no further

improvement.

3.3 Results

3.3.1 Gene Family Distribution

The present version of INVHOGEN contains a total of 174,958 protein sequences (and
159,922 nucleic sequences) classified into 15,389 families. Among all the proteins in-
cluded in this release 132,556 (75.8%) are classified into 15,389 families containing at
least two sequences, and 42,402 (24.2%) partial proteins are not assigned to a family (so-
called singletons). Table 3.1 shows the distribution of families in INVHOGEN grouped by
family size in comparison with HOVERGEN. Table 3.2 displays the 10 largest families for
both databases. These families consist of genes coding for proteins (or protein subunits)
involved in protein translation, nucleotide biosynthesis, tissue development, and glycol-
ysis. Cytochrome c¢ oxidase polypeptide I, Cytochrome b, and NADH dehydrogenase
subunit 1 are the only GFs that occur in both databases in the list of the top 10.

Family size No. of GFs INVHOGEN No. of GFs HOVERGEN
2 8,567 (55.7%) 3,219 (24.5%)

3 2,257 (14.7%) 1,788 (13.6%)

4 1,210 (7.8%) 1,369 (10.5%)

5-9 2,093 (13.6%) 3,677 (28.0%)

10-19 693 (4.5%) 1,928 (14.7%)

20-49 358 (2.3%) 832 (6.3%)

50-99 116 (0.8%) 182 (1.4%)

> 100 95 (0.6%) 149 (1.1%)

Total 15,389 (100%) 13,144 (100%)

Table 3.1: Distribution of GFs in INVHOGEN Release 2 and HOVERGEN Release 46.

34

GF Name INVHOGEN Sequences GF Name HOVERGEN
Cytochrome c oxidase polypeptide I 22,287 22,616 Cytochrome b

Cytochrome c oxidase polypeptide 11 6,192 8,480 NADH dehydrogenase subunit 4
Cytochrome b 3,229 5,987 Family 1 of G-protein-coupled receptors
Elongation factor-1la 3,124 3,608 Class I histocompatibility antigen
NADH dehydrogenase subunit 1 1,586 2,990 ATP synthase subunit 6

NADH dehydrogenase subunit 5 1,568 2,291 ATP synthase subunit 8

WNT family 1,528 2,090 Cytochrome c oxidase polypeptide I
Serine peptidase 1,096 1,657 NADH dehydrogenase subunit 1
Homeobox protein 860 1,499 Zinc finger protein

Histone H3 836 1,314 NADH dehydrogenase subunit 6
Total 42,306 52,532

Table 3.2: Ten largest GFs of INVHOGEN Release 2 and HOVERGEN Release 46.

3.3.2 Species Distribution

Table 3.3 presents the invertebrate and vertebrate species for which the greatest number
of genes have been sequenced. Not surprisingly, species that are completely sequenced
(e.g. Drosophila melanogaster, Caenorhabditis elegans) are the most frequent. They
take up 44.5% of 132,556 protein sequences in INVHOGEN and 64.3% of the 214,379 se-
quences in HOVERGEN. Moreover, the distribution of all 22,053 species in INVHOGEN
among all families is non-uniform. The first three species from Table 3.3 are overrepre-
sented by at least 10,000 occurrences in number of sequences and appearance in families.
However, 11,162 species only contribute a total of one sequence (data not shown).

The percentages of different classified species in the 12 main invertebrate groups and
their representation in INVHOGEN are reported in Table 3.4. It is remarkable that the
proportions of molluscs (13.52%), echinoderms (1.5%), and cnidarians (2.07%) in INVHO-
GEN are at least twice higher than the proportions reported in the literature (molluscs:
6.68%, echinoderms: 0.67%, cnidarians: 0.86%) [65]. The proportion of sequences in
INVHOGEN for nematode sequences (22.56%) in comparison to all other species in INV-
HOGEN is a disproportionately high — owing to the completely sequenced genomes of
C. elegans and C. briggsae — in comparison with the relative abundance of nematode

species reported in the literature (1.43%) and in INVHOGEN (1.61%), respectively.

35

Species INVHOGEN Sequences Species HOVERGEN

Drosophila melanogaster * 17,348 56,932 Homo sapiens *
Caenorhabditis elegans * 16,604 46,693 Mus musculus *
Caenorhabditis briggsae * 10,704 9,066 Rattus norvegicus *
Anopheles gambiae PEST * 8,423 7,577 Danio rerio *

Schistosoma japonicum 2,143 5,392 Xenopus laevis
Drosophila simulans 998 3,258 Gallus gallus
Anopheles gambiae 894 3,038 Bos taurus

Bombyx mori * 689 2,790 Sus scrofa

Drosophila yakuba 608 1,720 Macaca fascicularis
Ixodes scapularis 538 1,325 Oryctolagus cuniculus
Total 58,949 137,791

Table 3.3: The top 10 species in INVHOGEN Release 2 and HOVERGEN Release 46. (*) indicates
the organisms where the complete genomic sequence is published (Genomes OnLine Database).

3.3.3 GO Term Annotations

In this section GO term annotations are examined in the face of annotations in protein
sequences and on a GF distribution level. Furthermore, the annotation quantity is

distinguished between appearance and how often an individual GO term occurs.

GO Term Distribution in Protein Sequences

Table 3.5 shows the distribution of all possible GO terms within all protein sequence
entries in INVHOGEN. The number of GO terms are given in all odd columns indicated
by #T and the number of sequence entries in even columns marked with Occ. (The
number of 132,556 sequence entries results from the sum over all Occ. columns entries.)
It is apparent that every fourth sequence entry is not annotated by any GO term (25.6%)
at all and 44.3% of the sequences have references between one and five GO terms. From
the remaining 39,806 sequence entries 39,196 sequences are annotated with at most nine
GO terms, and only 0.46% (610 entries) have more than ten GO term references.

All protein sequences have a total of 489,717 GO terms with 3.69 annotations on
average. They are dispersed into the three sub-ontologies as follows: 178,995 cellular

components, 172,404 molecular function, 138,318 biological process.

36

Invertebrate No. of Species/Fraction No. of Sequences/Fraction
groups from Literature in INVHOGEN in INVHOGEN

Arthropods 900,000 85.86% 16,681 7% 81,896 62.36%
Urochordates 3,000 0.29% 65 0.30% 910 0.69%
Echinoderms 7,000 0.67% 326 1.50% 2,718 2.07%
Poriferans 9,000 0.86% 112 0.52% 398 0.30%
Nematodes 15,000 1.43% 348 1.61% 29,630 22.56%
Platyhelminths 20,000 1.91% 369 1.70% 4,296 3.27%
Cnidarians 9,000 0.86% 448 2.07% 1,629 1.24%
Molluscs 70,000 6.68% 2,930 13.52% 8,088 6.16%
Annelids 15,000 1.43% 369 1.70% 1,041 0.79%
Hemichordates 100 0.01% 3 0.01% 74 0.06%
Cephalochordates 25 0% 8 0.04% 608 0.46%
Ctenophorans 150 0.01% 6 0.03% 31 0.02%
Total 1,048,275 100% 21,665 100% 131,319 100%

Table 3.4: Distribution of the main classified invertebrate groups in INVHOGEN Release 2 and
from the literature [65].

Figure 3.3 represents the distribution of GO terms in all protein sequences. From
the intention that each gene product should be annotated by classifying it three times,
once within each sub-ontology [66], this distribution shows that 41.5% (55,081 entries)

are annotated at most twice and 47.2% (62,544 entries) more than three times.

#T Occ. | #7T Occ. | #T Occ. | #T Occ. | #T Ocec.
0 33,994 7 3,322 14 33 21 1 31 4
1 10,333 8 24,457 15 32 22 1 37 1
2 10,754 9 5,880 16 19 23 1 40 5
3 14,931 10 230 17 20 24 1 44 1
4 13,582 11 142 18 4 25 2 47 3
5 9,156 12 56 19 4 26 2 50 1
6 5,537 13 35 20 6 27 1 53 5

Table 3.5: Distribution of GO terms over the 132,556 sequence entries in INVHOGEN. #T
represents the number of a GO term assignment within a sequence entry and Occ. shows how
often each assignment counting appears in all INVHOGEN entries. For example, 10,333 sequence
entries are annotated by just one GO term.

Table 3.6 gives an overview of the term annotations separated by the three sub-

ontologies. As known from Table 3.5, e.g. 10,333 sequence entries have only one GO

37

Distribution of GO Terms in all protein sequences
33994

5973
1049
184

32

1
0123456 7 8 91011121314151617 18 1920 21 22 23 24 25 26 27 31 37 40 44 47 50 53

Number of GO terms

Figure 3.3: GO term distribution in all 132,556 protein sequences. The exact values for occur-
rences of GO terms are listed in Table 3.5.

annotation. In this case 6,161 sequence entries are annotated with a molecular function,
2,412 entries with cellular components and 1,760 of them with some kind of biologi-
cal process. Table 3.6 also shows the composition for the very high number of 24,457
sequence entries with exactly eight occurrences. The first three largest values for all
sub-ontologies are placed in row number eight on the left side.

Figure 3.4 illustrates the percentage of the GO sub-ontologies within the 34 classes
with different numbers of annotation quantity. For the first seven numbers on the x-axis
biological process terms are more frequently used than molecular function terms and
cellular components (in this order). The highest appearances for the next two numbers
of GO terms are for cellular components. Beginning with ten sequences a large number

of GO term annotations are most commonly annotated with molecular functions.

GO Term Distribution in Gene Families

In addition to the distribution of GO terms on a sequence level Table 3.7 lists the
distribution of GO terms per GF. From a total of 15,389 GF's 6,477 of them (42%) have

38

#T P F C|#T P F C
1 1,760 6,161 2412 | 18 44 6 22
2 7273 11,469 2,766 | 19 63 4 9
3 14,939 22344 7510 | 20 94 12 14
4 17,068 25468 11,792 | 21 17 1 3
5 14,104 17,564 14,112 | 22 20 0 2
6 9,136 12,253 11,833 | 23 20 2 1
7 7404 7998 7852 | 24 22 1 1
8 49457 49,794 96,405 | 25 40 3 7
9 12,577 17,465 22878 | 26 37 6 9

10 906 729 665 | 27 25 1 1
11 618 643 301 31 94 4 26
12 454 133 8 | 37 33 2 2
13 282 88 85 | 40 176 12 12
14 357 65 40 | 44 41 2

15 353 69 58 | 47 132 6 3
16 217 41 46 | 50 41 4 5
17 274 44 22 | 53 240 10 15

Table 3.6: Distribution of GO terms over the 132,556 sequence entries splitted into three
sub-ontologies (P indicates biological process, F means molecular function, and C cellular com-
ponent). The sum in each row for the three sub-ontologies is the same as the product of the
values from the two columns identicated by #T and Occ. in the corresponding row in Table 3.5.

no annotation. Similar as for the sequence entries most GFs have between one and four
term annotations (40%), 15.1% have five to nine annotations and 2.9% more than 10
with a maximum annotation number of 183 for GF INV000838. Figure 3.5 represents

the distribution of GO terms in all GF's.

Most Frequent Annotated GO Terms

Table 3.8 shows the distribution of the 15 most frequent GO terms which occur at
least once within a GF. Table 3.9 shows how often the 15 most frequent GO terms are
annotated in all GF's totally. For instance, GO term nucleus (GO:0005634) appears in
1,549 GFs 6,877 times. Approximately every sixth GF (from 8,912 being annotated)
carry this GO term 4,4 times on average. As the case of mitochondrion (GO:0005739),
it occurs in only 347 GFs (in table row number 18, data not shown) but if so very often

(119 times). Not surprisingly, the 15 most popular annotated GO terms are not far

39

Percentage of the GO sub-ontologies

(il

(il

(it
l

100%

75%

123 45 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 31 37 40 44 47 50 53

Number of GO terms
B Molecular Function B Biological Process I Cellular Gomponent

50% } }
0% ‘ ‘

Figure 3.4: Percentage of the GO sub-ontology terms for all annoted protein sequence entries.

distant from the GO ontology root entry. This means, that the majority of all GF's
are only annotated with more general GO terms, which does not distinguish them from

other GFs on a GO annotation level.

40

#T Occ. | #T Occ. | #T Occ. | #T Occ. | #T Occ. | #T Occ. | #T Occ.
0 6,477 7 353 14 24 21 3 29 4 41 1 53
1 1,633 8 246 15 27 22 10 30 1 42 2 54
2 1,478 9 154 16 16 23) 31 2 43 1 55
3 1,783 10 84 17 14 24 5 33 2 44 1 59
4 1,268 11 65 18 14 25 5 34 1 47 1 66
5 950 12 49 19 21 26 2 38 1 49 2 117
6 622 13 43 20 9 27 2 40 1 52 1 183

— = N = e e

Table 3.7: Distribution of all GO terms over the 15,389 GFs in INVHOGEN. #T represents
the number of a GO term assignment within a GF and Occ. shows how often each assignment
counting appears in all GFs. For example, 1,633 GFs are annotated by just one GO term.

Distribution of GO Terms per gene family
6477

1500
347

80

012345678910 12 14 16 18 20 22 24 26 29 31 34 40 42 44 49 53 55 66 183

Figure 3.5: GO term distribution within all 15,389 GFs. The exact values for the number of GFs
how often are assigned by GO terms are listed in Table 3.7.

41

GO Term Occ. Distance Description Sub-Ontology
0005634 1,549 4,5,6 nucleus cellular component
0016021 1,046 5 integral to membrane cellular component
0016020 896 3 membrane cellular component
0006355 736 8 regulation of transcription biological process
0005524 690 6 ATP binding molecular function
0003676 619 3 nucleic acid binding molecular function
0003677 595 4 DNA binding molecular function
0008270 588 6 zinc ion binding molecular function
0046872 498 4 metal ion binding molecular function
0003700 494 3,5 transcription factor activity —molecular function
0005515 492 3 protein binding molecular function
0016740 475 3 transferase activity molecular function
0006810 474 4,5 transport biological process
0016787 450 3 hydrolase activity molecular function
0016491 402 3 oxidoreductase activity molecular function

Table 3.8: Distribution of the number of occurrences of individual GO terms within all 15,389

GFs. 1,549 GFs are annotated with GO term GO:0005634 nucleus at least once.

GO Term Occ. Distance Description Sub-Ontology
0005739 41,373 5,6 mitochondrion cellular component
0016021 40,088 5 integral to membrane cellular component
0016491 39,070 3 oxidoreductase activity molecular function
0006118 37,211 5,6 electron transport biological process
0006810 32,898 4,5 transport biological process
0005746 30,342 6,7,8,9 mitochondrial electron transport chain cellular component
0004129 29,661 5,6, 7 cytochrome-c oxidase activity molecular function
0019866 28,022 4 inner membrane cellular component
0016020 13,605 3 membrane cellular component
0005634 6,877 4,5,6 nucleus cellular component
0005507 6,208 6 copper ion binding molecular function
0005525 5,510 6 GTP binding molecular function
0006412 4,776 6,7 protein biosynthesis biological process
0046872 4,748 4 metal ion binding molecular function
0005524 4,346 6 ATP binding molecular function

Table 3.9: Distribution of the 15 most popular GO terms over all 15,389 GFs. 41,373 sequence

entries are annotated with GO term GO:0005739 mitochondrion.

42

Distribution of cellular component GO terms

50000

16946

SiueUodWO JEIN)e0 JO SEOUBLINOO0

6YE

eve
188
Lee
Gee
BLE
€1e
L0€
Loe
g6z
682
€82
L2
ke
S92
652
€52
e
Wwe
g€z
622
x4
Lie
e
soe
661
€61
81
313
SLb
691
€91
PA-13
=13
Sk
6EL
eek
P43
343
SHE
601

Number of cellular component

352 cellular

components from 1,695 cellular component terms in GO are assigned to at least one sequence

Figure 3.6: Distribution of cellular component GO terms over all 15,389 GFs.

entry.

Distribution of molecular function GO terms

40000

13863

4804

1665

~ 3 2
N] 3
) <

SUOKoUN JBINOBIOW JO SOUBLINSOO

24

Number of molecular function

Figure 3.7: Distribution of molecular function GO terms over all 15,389 GFs. 1,193 molecular
functions from 7,594 molecular function terms in GO are assigned to at least one sequence entry.

43

Distribution of biological process GO terms
40000

13863

4804

1665

577

200

69

Ocourrences of biological processes

24

Number of biological process

Figure 3.8: Distribution of biological process GO terms over all 15,389 GFs. 1,622 biological
processes from 9,961 biological process terms in GO are assigned to at least one sequence entry.

44

3.4 Graphical Interface: Jenfem

JENFEM is based on the Core Data architecture. It allows users to easily access and
see the list of the GFs available in the database, the protein sequences of the genes
in the families, the corresponding protein MSAs and the maximum likelihood based
phylogenetic trees computed with these alignments. Furthermore, it offers a view which

shows all annotated GO terms for a selected GF.

3.4.1 Data Integration

As shown in Figure 3.9 there exist several sources of legacy data to efficiently import

them into the JENFEM application. The data consist of:

1. Protein sequence entries from SWISS-PROT /TrEMBL.

2. Phylogenetic trees in Newick format (if available for a GF).
3. Multiple sequence alignments (if available for a GF).

4. GO attributes.

5. Some entry fields from NCBI Taxonomy database.

The attributes taken from the GO and the taxonomy resources are listed in the data
schema in Figure 3.10. All these ‘flat’ data are imported to create the MOs (Section 2.3.3)

in a single pass, and then fixed up any relationships in a second pass.

45

TV 9[qR], Ul UOALS ST JUSTUUSISSE RWOYDS 9)0[durod e 10] ojduwrexs Uy -odejIojul [eorydelsd oy} RIA SS900® Uresd 0) puw
RUIOYDS BIR(] 910) 9} Ul W) 9I0)S 0} PISTL 9T SIOINOSII B)CP JUIIOPIP 9Al] uorjedrjdde WHANH[97} OYUT UOIYeIFoIUL B)e(] (6 ¢ 9INTT

7 s — |3 2z emsoe 103 oL u Touwned 1 eun

B -R{TiiB} 38503 JRUBITBUTIB B

I 3UBpUSdR-330dsoyd- 1oX0pTIAd T-55513 U 03 SBUOTaE :ALTHVITAIS »n| 8

kio8T 3139510001 pub »| 2z

TDTIPUGUS03 T *3TWSHTd0IA3 3ib U3 §330KUBNNe uT HSNOINVITIISIH »n| %

0| sz

n| w”

n| €

R R R HlIT iy, BouIATe-7 »n| z
+ 39 = S30p3IN160X0-2 + 3303inds0-7 TALTATIIV DTLATWLY) - n| ®”

G sopads 121 » saouanbas 577 » saywey 96 £7 (ge6TIeTOz 710z i 7z BB | o7

= | T——— _t,'Abo1o1g BuTIoB1ISIAUT 1| 61

*1 uung "2'8 AONUNQ S BUGOH-UBBNA " S8UMO I dNGQ Y UDSPOY *rd) SEPERET o WHILA[D 3 WMsew B G Gk 141 8E
2 e a0 M0 Oy S 2 Due B0 B SDite %9 ¥ HEIGSS BUSSAGES o6 % o
4 Seieq "B HodusABQ 0 SX14RQ S ASIMED TP AuaUD Vi {9T6TSB6=PoNAd ‘€1969066=INITAIN X | o1

2N 103LJE-NIVHLS DM ST

“[wna .UuIOZuu; VIS 39Vl wuzw:dwm 301103 TONN 4y T
'3 Aoiseag " nibosepjeikeg " sjepusxeg "y nseg Wy Maleg vy | .] w| e
Q] UMPIEE D) UIOHUUBIA-SMBIPUY - H Uy "y juBkeqBy 16£20~0TXDL TN X0| 71

“DTDSOPIN "H'D UosiaN " lisH D3 Jeixed "0 aifod "Hl B v 20| ™
@' Jelald "W 80weYD "O'Y (87818 "O'H-'A 18604 "O'H UOPUBIE WH 20 et
"X UBUD "D BUBYZ "GN IBPUEA LT UBWLIOM "D’ UOUAS Vi o 6
“N'S UOSISPUSH "}y JSWINGUSY S SPIUOIL "I SIS "y 1 SBI0SD ¥
“4'H 8I1BD v H SUNSOH "M'd IN '3'S J8Iauds "D d SapieuRwY WY PR IOR I RORE CEER R B R oy fanrd Lol 2
" 9UABO0D "D SUBAT "Y'H IOH "I S SSHIUISD "T ' SWBPY WH “(1-SSOULEDSUD. S40300010X0 Sounanlo) Cy Ssbulepsuoil) 3054
1981.2'19%5' 182 (T°1*9°z H3) S1WSHTdOIAS <B50usSSUbLToUTUD a3b3andst 31dpgoud 30| 9
921101100 ‘Z€} = E Ngan xXd T°1° 23) ute104d >j)|-aseIa)suRAAYIEN 4S6000ANI (370pdn &.I.,E%mm 3507 ‘gy "18¥) S@OZ-d3S-E€T 10 &
ONAN038 30L0TIONN aseiysuenjAsouspe auUOIB § ¥ 956000ANI (330pdii 93U3NBSS 3501 ‘SE "1 L66T-AON-T8 10| ¥
1224=0MeL 1BON XO 1 5-2u1 | 292000ANI 3 ‘SE "13W) L66T-AON-TO 10| &
Saspemth L3 00 N 9-aul) o 299000ANI gzt |z
eiadig EEdoN 00 ety VY BBy flud IONONVIS IO UW aI| T
e106ieid ‘10054 ‘epodENGl ‘epodonny ‘eozeion ke o0 | | NS H(1'TT'Z 03 aseiajsuesdiawiAxoipdy suas 6S9000ANI _
A 1inss) JeiseBouBew BUdoseiq 50| | TEIRISUEIAApUN sieydsoyd-1-asoefeh aiqeqod 6T9000ANI 8TO000ANI 000
262480 0 NO ¥ 3)g t N [enu210d 8T9000ANI
Y Wiojos| 'Yd-E62700 30 BT
(arepdn uonelouue 15e1 'Sz ‘|91 1BINGILL) £002-100-10 10 03 [N ot & £L000ANT
(e1epdn aouanbes 1527 ‘EL '18I1BN3LL) 000Z-AVHFL0 10 @sesojsuEnjAsaony-geydly E£09000ANI
(PaIE=i0 ‘64 1NBWLL) 0002-AYW-40 10 |oy1jop 3jqRqosd S9Y000ANI s — s 7 pEsaeL a2 soLuEd @ T uwney T un
L S5EIRJSURIIAUIIL VNG 85YO00ANI

VY v2P ldd AMYNIWITIYd 3NOHd ISOABD Q1
- 2192q0id _

T 2SRIISURA FUISOUIPRIAYIAW
LR 5 il PEHA 94PSRE 01 13IVD 7990220 E4LZET”

T¥¥000ANI / f(urET9e”
ZPE00OANI

MY NRMAOYT ST T T TANMOTNT TSN

§ o it vitis psesay | 1) URRInsde aseiajsueniAyiau- Au! P 250522°0:(S2902%"0: (186990 "0+ (225822 0: (19+¥80°0:133V) #0810 SOTOR0" 0: Y8
.| etz 08100 T3IVOTHOSTO0 | §-bod i i inbian 80E000ANI BT ETA090) SErETT- 6 (ShPTZ0" bt 1aav PEEITD L700TH" 0 HIIVOERATION OhH
o sEz9 514030 YEIVISId0SD (T%'2'2°2 D7) 3sEa2)SUBNIAAPIA> BrEpIIEYdSOUg 6EZ000ANI 0°0:(ESS61E"Q-VIHS §I80SD “96+820° 0 (£88/+2 " 0: (96.0E0°0: (T0RBO0" 0- INOUT €
PSHOBT *'000000dDNYSNI 680D VDONV 628020 (-'T''2 D3) £-2. 2seARSURNIASOULEW-'T BI2G SBTO00ANI AdTSD ' TOGODO’ ©: IW0HA™6WOLSD) ' 9ETOZ0" 02 IHOHA THDABD) *S9626T"0: (98E958 " 0: 3V
6£29 "iedRdse 3qRqosg 290220 TIIVOOLVY IO ISBI3SURIIOUIWE PIDR-OUIWR-URL) -PAYIURIG 99T000ANI Q3VEHONSD' LIVEGO" 01 VIONY 90WdL0))) ‘8299TT 01 (6SE+ZT"0: (S2T990"0: VAT ¥
651, “nouwe axeuedsy YHONSD IVAIVPHINSD (SETT vz 03) osesojsuenjfuoimon|b-gereg T £ 6STO00ANI HIYSD‘$9¥180" 0: ¥IONY 628020) ' TT#S92 07 (ATE200" 0 INOUA¥8HIBN 10000001 (€6 -
2422 d£EE0ZHD 6W0I8D IWOHA 6WOLSD (SET'T'+'Z 33) 5-25Ea2jSuRIAUCININ|6-£8 8STOOOANI 2200°0:(T00000" 0 3A0HT ¥ CLAGD ' T000G0 "0 THOU™6ITWED) ‘100000 " 0: IHOXA VEMAZ | -
Gieh st symedey 1dNG6D e rancenill B e R e Reag et e FOTOTOAN 020)'6v1012"0:¥NHE TAASEND) 5642200 ¥aIV) THE 190 £09050 "0 13V IN) | ¢
£2eL 3sEadysuesjoUILY YAMALD INOYAYEMAZD PVN2IDGUBNTIID 21RydsoydouAd jAysijop 3jqeqosy 890000ANI HRIM2UBTO000ANI Qoo
6€29 104d [PanaLI0dAH ¥66£10 THIVIHE6LTO e ZaVNID6URN MeydsoydosAd jAydiop siqeqoid £90000ANI
£z2s *josi ‘Wd-EETHDD TODAGD IWOHATTIOAED aseipjsuRNOUILE Bleledsy. 4 STOO0OANI
aixeL uonduasaa uoI553Y. - aweN uondasag 22ads. s330aNb35 ¥ 520[1We} 2U3D. [= — |t 2 wzsqeL o[t T uwned T e
IsqUInY UoisserTY o (sserajsuen oo) (o) Cren) 1 e FNOHTHENALD ww
INOHQVEHIRO | 72
|bS"D0OTOYAU! & [SHTRO] INOYTYLLABD | 12
Vd PHAAGVAT SWLS T04NDT D AN T TT T -~~~ -~~~ IOKATEIWED | 07
id91IASVAISALY s VOONV 62800 | 6T
,,,,,,, IO TTGH =+ asusmto s ouian s IVOIVHHONGD | BT
IVATHADRMAAASTASVIIINIISS W o mme o oo o so mm e mnman 2o e VANNETASED
o 133v27990220
,,,,,,,, ¥8IVI THETSD
IO W == ST TFIDTILY
A — s z wdsoeLaO)s VeLUEY) | ST uwnEd 9 wun O IAHSHM -~~~ SHOMAY IS T THISASH -~~~ === ===~ PN HEELTD
E FUPE IR R U100 ST ONIAHSHI-~ -~ SHDUAYLS T TINSASH -~ == === == === HIVIELATID
6 5 | NODEVILOTINON VTN AV LALLISNSSU3Y -~ —==-===-=== T3393"y8T00
: SRETHEASETH | o < VYN TSV)Y LOSSSHNH 445 TN~ -~ ===~ ¥83¥37SId090
: TNV NOWNDD INVENZD| £ % STHAHNAHSS TUNTAK LIAASHLd- -~~~ == =--- -~ VOHDS“82805)
iBYEbUBT3E B114dosoud ¢ IWN JTATINITIS | @ VOONY90HaZD
< a1 9| + BIDIF3001DK0 = FIVUDIN|BOXO-7 + 530340dS0-7 1UOTIODBS LA V03V EHONSD
T a x| 303 10 STsK|D30)<, BUTITSFOURUOS THX/ TOQE/ D0 EW w77 703y, =3dA3030p b 2 WOU0TSOAGD
87534 W e 3LA IN0UOEAATEY
TSEzE a1 INR¥vd| 7 dNLOHHV3 JW0HO6HOLFD
2z [:
13158b0URRW B |1y d0s0iq 000 @ 6904000 0D Er I O —

U[E'8TO000ANI & | o

46

3.4.2 Data Modeling

Data Modeling defines the data objects and their relationships, called a data schema. A
schema defines entities that contain properties. Properties can be values (here attributes)
or relationships to other entities. Entities (the containers defined in a data model) are
like a class definition in object-oriented programming: They define the form from which
any number of instances are created. It is different from a class in that it does not

contain code. It is just a description of data.

Data Schema

In JENFEM there are five entities GENEFAMILY, GENEFAMILYENTRY, GENEONTOLO-
GYTERM, TAXONOMY, and SEQUENCE. The central entity in this data schema is GENE-
FAMILYENTRY which has connections with all other entities, one-to-one or one-to-many.
Each entity consists of a number of attributes and at least one relationship. Figure 3.10
shows the data schema with the five entities and the relationships between them. A
single arrowhead represents a to-one relationship and a double arrowhead a to-many
relationship. In both cases the arrow points to the destination entity. All relationships
have been flagged as being inverse relationships, representing both relationships as a
single line with two arrowheads. An inverse relationship does not just to make things

more tidy, it is actually used by Core Data to maintain data integrity.

47

‘drgsuoryeor jo
PULy o) 9)edIPUI SpRaYMOLIR 91} JO sodeys oy, SAIYSUOIIR[OI S(LIDSOP SOIIIJUD UDOMID(SOUIT “WHANH[JO RWOYDS BIR(] :(OT'E oINST

S3LIUTA|IWE AU
[sauuzAjiwe4auab) sal|lwe4auabes
sdiysuonedy a sdiysuolie|ay a
aixey Abojoiupgns
WAUOUAS Ainuenb
ILEBNDYIIUBIIS aweu
Juel duels|quiIwl
Auenb ajuelsigxew .
Jayluappuated Jaynuapl > swJa]AbojojuQausb
buijjadssiw SaINQLUNIY 4 —>> saLllugA|Iwe{auab
aweNuowwoMuequab . wiajABojougausn | sdiysuolie|dy 4
Awouoxe)
wAuoDYUequab A
aweNIua|eAInba 934 2118uabojiyd
mE.mzcoEEou sa1dadsi0i3quinu
wAuo.e saduanbasyoiaquinu
Jayhusp|yb
$INQUNY 4
R, >>(Awouoxex, uondinsaqyb
= = o > asuanbas JaWUBIE
swJajAbojoluQauab SINQLNY 4
[sauugAjwe4ausb) Alllwe 3usb e< _ Ajwegsusn
sdiysuoie|ay 4 sdiysuoiie|ay 4
. . adAy Aljugsjoym
3duanbas m__xﬂ
1ybrapie|nas|ow BIMENALIHS
y1bua) uonduissgAiue
SINQLNY 4 J3qWINNUOISS3IIE

SAINQLNY 4
AlugAjiwe4auan

3ouanbag

=

“ J

48

Name Type Description

alignment String Multiple Sequence Alignment
gfDescription String GF description

gfldentifier String GF unique identifier

numberOfSequences Intl6 ~ Number of sequences

numberOfSpecies Intl6 Number of species

phylogeneticTree String Phylogenetic tree

taxonomy String Path to all species or taxa within the GF

Table 3.10: GENEFAMILY table.

Data Tables

In the following each entity from the data schema is described in more detail. All tables
consist of three columns and represent each attribute’s name, its Core Data type and a
description of the attribute. Three Core Data types are used, namely String, Int16,

and Int32, where the last two are only differing in value range.

GeneFamily Table The GENEFAMILY table (Table 3.10) represents some aspects
which characterize each GF: The number of sequences and species, a protein MSA, and
a phylogenetic tree. The last two data representations are not specified if the number of
sequences in a GF was less than four or more than 400. Furthermore, this table has a
unique identifier and a description for each GF. A taxonomy string is used to allow not
only to search for species but also for higher taxa (query extension).

An instance of a GF has two or more sequence entries and zero, one, or more GO

term entries (represented by the relationships in Figure 3.10).

GeneFamilyEntry table The GENEFAMILYENTRY table (Table 3.11) contains at-
tributes regarding a sequence entry which belongs to a GF. This table collects some
important sequence entry fields from SWISS-PROT /TrEMBL like the accession num-
ber, the NCBI Taxonomy database ID [67, 68], entry name and description, and for
completeness the original sequence entry as a string value.

A GF entry is connected to all other entities in a one-to-one relationship to SE-

49

Name Type Description

accessionNumber String Accession number of a sequence entry

entryDescription String Description of a sequence entry

entryName String The entry name
taxID Int32 NCBI taxon identifier to which this gene product belongs
wholeEntry String Complete sequence entry from SWISS-PROT/TrEMBL

Table 3.11: GENEFAMILYENTRY table.

Name Type Description
identifier String The GO identifier
name String GO term name

subOntology String Indicates one of the three sub-ontologies (C, F or P)
quantity Int16 Number of occurrences within at least one GF

minDistance Intl6 ~ Minimum distance to GO’s root entry

maxDistance Intl6 Maximum distance to GO’s root entry

Table 3.12: GENEONTOLOGYTERM table.

QUENCE, in a many-to-one relationship to TAXONOMY and GENEFAMILY, and in a zero-

to-many relationship to GENEONTOLOGY TERM.

GeneOntologyTerm Table The GENEONTOLOGYTERM table (Table 3.12) repre-
sents some GO annotations for a given GF to show which GO terms all GF members
have in common. Each GO term here is specified by a name, an identifier, and a sub-
ontology (cellular component, molecular function or biological process). Additionally,
the total number of GO term occurrences is given, as well as the minimum and maximum
distances to GO’s root entry. (Each GO sub-ontology is structured as a directed acyclic
graph (DAG), wherein any term may have more than one parent as well as zero, one, or
more children.)

A single GO term can be related to GF entries or to a collection of GF entries

grouped into GFs.

50

Name Type Description

scientificName String Scientific name of a taxon
commonName String Common name

acronym String Acronym

equivalentName String Equivalent name

genbankAcronym String GenBank acronym
genbankCommonName String GenBank common name

misspelling String Misspelling(s) of a taxon

synonym String Synonym(s) of a taxon

rank String Rank of a taxon

quantity Int16 Number of occurrences within all GF's
taxID Int32 NCBI taxon identifier to which this GF entry belongs
parentldentifier String The parent identifier

Table 3.13: NCBITAXONOMY table.

NCBITaxonomy Table The NCBITAXoNOMY table (Table 3.13) stores the most
common attributes of each taxon from the NCBI Taxonomy database. Four of them
are mandatory (NCBI taxonomy identifier, parent identifier, rank, and scientific name).
All the other fields are filled with values if required, e.g. an organism can have several
different names (synonyms). The quantity attribute contains the number of occurrences
for each taxon within one or a collection of GFs.

A taxonomy entry can be linked to more than one GF entry within a given family.

In this case the total number of species is less than the number of sequences in a GF.

Sequence Table The SEQUENCE table (Table 3.14) separately stores the protein se-
quences from all GF entries. Each sequence entry is composed of its sequence and
sequence type, its length in amino acids, and the molecular weight in Dalton.

A sequence belongs to one GF entry and each GF entry has exactly one sequence.

Jenfem

MVC Aspects JENFEM represents the view from the MVC design pattern (whereas

Core Data is responsible for the model part). In some respects every entity acts as a

51

Name Type Description

sequence String Sequence
type String Sequence type
length Int32 Length of the sequence

molecularWeight Int32 Molecular weight of the sequence

Table 3.14: SEQUENCE table.

data resource for a controller which on the other end is responsible for the correct display

of the model in the view via Cocoa bindings.

Main Window The main window is organized in a master-detail interface. In the
master interface portion, a table view is used to display the collection of GFs. In the
detail interface portion, two views are used to display the GF entry’s attributes of the
selected GF. Figure 3.11 shows on the left side the table view of 17 GF's. In this example
GF INV000171 is selected for further inspection of its entries in the detailed views on
the right side. The table view on the top right displays all 32 entries and on the bottom
the sequence entry of the selected entry BGBP2_DROME.

Both table views in this window are connected with search fields to filter a collection
of objects. The search field above the master portion can be used to filter GFs with a
given description or to search for GFs with a certain taxon name. The other search field
filters GF entries depending on accession numbers or descriptions.

The buttons at the bottom of the main window are responsible for showing the
alignment and the phylogenetic tree (if available) for a selected GF. The buttons at the
top connect the main window with a taxonomy window of all taxa in INVHOGEN and a

window which displays all GO terms of a GF.

Multiple Sequence Alignment Window This window displays the alignment of a
given GF.

52

Phylogenetic Tree Window In this window the phylogenetic tree of a GF is dis-
played as a rectangular cladogram. At the bottom of this window the Newick tree format

is also shown.

GO Terms Window The main portion of this window is a table view representing
some details of every existing GO term in a GF (here INV000171). It shows that this GF
is annotated with 12 different GO terms (one cellular component term, four molecular
function terms, and seven biological process terms). All 32 sequences are annotated
with a total of 97 GO terms with the highest quantity of 22 occurrences for two GO
terms (GO:0004553, GO:0005975). The minimum distance of the GO root term is two
for GO:0005576 term and the maximum distance is nine for GO:0042830 term.

A search field at the top of the window enables filtering GO terms depending on

their descriptions.

53

"SMOPUTM 9917} IS0) Ul UMOTS oIe
suorjRioOUUR UL} ()X)) pue ‘9aI1) o110us30[AYd o) “YQN uejoId oY) ‘SIOULISLIN] *MOPUIM UIRWI 8} JO SPIS JYSLI o) U0 pasedsip
oIR SI9qUIOUL [Y) [[® JO suonIuygep ‘Yo doj oY) U0 MOPUIM dY} Ul J¥) © SJO9[9S IoSTL © U AN "0drJIojul [edlydels NEDOHAN] :T]'¢ 9InSL

i VIONY26+2T0
T AMAAAAGINIAGAGUNIHAIATOLLLIAGANADDVIAISTALNINAH VATLLISTAAAY. Nd¥1S 099920
TIVAFIEN6D
VINOHPII0LD
dTNId06A89D
ORNIdENBNED
LSLTTT6SANBD

. I i NSV TLMGAGDAS T TO NS VDT ANGHDY - ~AST-~——-3T 41T TITAUDOW-~ onwOR~E€22TD
6 T9DUBISIQ "XBW 7 13IUBISI “UILL « SADUALINII0 O 6 * SWIAY 0D ZT INIDASTSASASAAI SYASI AN TVOALADAADADIAST - -~ DI AVIAUYIY - NJdAH™d898
TAOHAVITHTIIVAAI SAY1IYAYIATATVAATIDIALS -~ -2 YATIATIANTANM- - 0nNIL™d898
T 5 TASHIYI1LTOTI0T SATINAAINTT IYAIAIADDA 1 11 TID12ISHYALH VOV INOYO €488
TAOHVAT15 49-004T SAHTONAATYITAVSAAAR DDVRGDIAS) L1V T T4 LAH- - NT0Td"dE98
DIOHAVATSAD-Q0dASAY IIAIATY I DIVAIANAGDIY-DITIIVI LY I TIASHI M-~ ISNYW 2d829
16unj o1 asuodsal 9 9 1 4 0296000 THIHAVATS49-F0dASAY IONAHTVI 1LV IAITATY -~~~ STIARAD DA~ 0rW08~d898
THOHAVATLAD-00dT SAYTONIATYITHWAIATTIYASN T- -~ - ANATI TAIASHTW- - ASNYW 1d898
asuodsa) sunuay| =jEuLl J0 Uoge(nbal 8 2 (3 4 TRROSEO00 TVHY D 19 L0dT SYAAOUNL AT I TV T L~ AYALDIASATTI-OHLHH- VOONY™26T02D
RUB1IRG BNUSOT-WIRID 03 35UOAS3) 35UBJAP £ z 1 4 0£80500 TV A TOGAD T SV UAN 43T IAGTS SDNTAOASTOVS T IATA T TN~ 14106 6TATSD
o631 Je|n|jpdRAX T z 6 2 9255000 UNANAVAANADITOAT SASIILITIIAL-dLdTNA-—--VLLIDIDTTINTIITI 1IN~ meanﬂnmum
wsijoqessu srespAy0qIE> s s z 4 S165000 IDIMASKED 12606 SAIO TN WINTS YA ~~~0 SDINST 11 Da T30~ e
- 1ASOIAIB-0 BuIZAI0IPAY *AIAIDE 35EI0IPAY S S z i 555000 3 bl
a6oyed 03 asuodsal dsuasep 6 Z 6 d 0€82¥00 TOTAILS THLIHADAINAY IVSYATIA 1 TL TN - == === === === === mmm oo VSIdS Z167¢D
Buipuiq [esaeq € € 6 4 £9€8000 v sio1sd
asuodsal aunw 9 I3 a ¢ 5569000 o
simtied joyaBouzed ysad oy ssuodes 9 S 1 d E196000 ISTITADVYVISATIIVA- 08NS 6AVHSD
6uipuiq apieyaoEsAjod 4 ¥ 1 4 eyzoeo0] | - 9TAVIVRY TINTTTS TINS TH- -~~~ ============~ VIONVZEVDED
Buipuiq apueipIEsAlodo v o 1 31 0EST000 SEIVSFRREY W03V 26180
uondiasag| umsig xen Humsiguw Anvend ABojoio ans wial :ﬂwﬁ%wﬁ ““um«xM kuww
TIATTTLY IAASTUNN- VIONV~ 912020
LWTTTSOTTTHANAN VIONY P¥0dD
LYTTISHT IO VIONY"Z602T0
swi3] 0D [TITR®] FYTNIALTISTIANAIAGAYNI SATIADT TV IAHYTOAN- - - === === == === Nd¥LS~@99920
0TAOAVIVIOVTI 1371Vl I10V4¥90N6D
ELED L ARRRb) VINOH PMI0LD
DT dCNId0EASD
““““““ AIATOVY YOIV TTMSYAIS -~~~ ONNId ENONED
\\\\\\\\\\\\ -dOATOWVIVIIVTTAASYASINNYS TS T IALN-- - - - === -==—-~ ASITT765ANED
P
1E60'C-T¥03Y LAIWGD'S 2ZA6LE0)))' 222021 0:(S066€9 0:008N: 0:(86082¢ 0'NJHLS 09992D'6Z 15010 juawubilp aouanbas aidiiinw (28 T) M IVISNTD.
6+£582 0:(65101 £'0:(05688E'0'IA LY ENDISD'E62625 0VSIdS 2L02.0)'082 18 Envgvgégm_m 2201.0'2¢1E¥0'0'ILNNT EAASED)) 6oy
4258810858680 0 €28bY 1 OVONOH #MI0LD' N3 06A €L0°6.1S17 GONN3A ENONED))
‘261862 0:3 10Vl $O0NEO))))) BIBREL 0100000 0 IORT 91DIBD' 100000 G 0L 24808100000 03NOHA LLDIBD))'2S81ST0:3NOHA 2E08) Juswubyy s>usnbss 3R 000
1diQ6 BINSD ————
VOONY 28100 ———
3WOHA edana 7
ISNYIN 1898
St s (Cawswubyy) (221) sapads GLT » seduanbas §OZ » 5
ISNVIN 24898 . — m;rmu—mﬁw[R D
A o] i pus apumioossiioced o, 1
OWN3L da9g wened e 'ujstosd Bupuig-eusioeq aaleBeu-weID, |
NOdAH dgog = 1M 007" 1d Aoig '8 Swmmﬂgﬁw
OWWOE €62210 g WEN "H-M 10UD 1~ UBH "H-T NAY "S- A WM WM

002bE8E00I 20!

EDtepie /pLOL01=100 ‘680.2801=PINANd ‘SOL06r0Z=3NITTIN X&)
YOONV $0d.0 ‘30V1S VININAOTIAIQ
YBONY 9130.0 QNY (8 WHO40S!) 3ONINO3S IAUOTTONN di
VOONY 10020

Lz2L=
VOONY ZE¥D.L0 BlIydoseIq ‘aepINdos0I] ‘BapIoIpAUTT 00
WAIVLAINSD

éaazzw,z
5 es00kuoeig ‘esardiq 'eioBhiaidopus ‘msadoan 00
3vaaY 26180 ‘0Bl
OGNS BAYMSD “1095U] '2padexaH ‘epodoiuY ReZEIS EGAmINT 00
(A Iini<) JersEBouEew Eyd0s0Iq SO

NdH1S 099920 VLYDOSAWENIHO ‘ZJEND=SWEN NO | | £'T°Z’€ 3)J0sindaid asepjuiwesodn|bouoineAH 3 6 12L000ANI
Selydmaamn JOSINORIA 2 LISIoN DUpLIG BLSI0RK SIMBOSULEID 30| | aniB-e10q-p'T-0puI) (5T '2'E 33) aseueaniBopu 1 z £69000ANI
VSIS 210240 (svepdn souenbes 1521 G4 o) b002-100-Gz 1a ||) PSBIAWOSI dleydsoyd-g-auiiesodn|6 3jqeqoid 3 9 999000ANI
0413 7L0420 C (pei=a10 'sp 1ok y002-100°58 10 N #3eydsoyd-g i} Z o1 Z99000ANI
AUNNT EASED it S B (-"£°T°s 23) asesawida 53 (Auoinni6-q 3 v TSI000ANI
VONOH PMZ00 5 1 apuey 10-1 aiqeq0id v s E£E9000ANI
dPN3d 06A890 E— - I e (6°T°€°S D3) asesawos| aeydsoyd-g-asodniy 6 T 2ZT9000ANI
LSIT ESANED © 899 TETTRE 099920 NAWLST09997D aseuaboiphyap asoony g1 25 6Z5000ANI
e 5 lzer u-weid gYHNGD INO¥QTEEDE Josinaud @101 Buipu|q wean|B-q-£ 12198 z z 2LTO00ANI
e 122 ywTyDD QIDISD IWONGTILDIED @101 Buipuiq uedNB-£' T-B1E 22 2 TZTO00ANI
AN gz ywlyDd LIDIBD IWOUTTLLDISO (SET'T'7 23 seiajsuenjfucinonio-geag 11 £ 65TO00ANI
e . {2z u-weid QSHNGD IWOYOTTdEDE (SET'T''2 D3) S-asesajsuenjAuoInINB-£8 £ £ 85TODOANI
S - : fZgL USWRID ¥AAGD. INOYQTZABDE ieuibeivdse-1-(Auwesodn|iAIade-N-riog)-(5IN 9 o SZT000ANI
e SOTL MG Z6V/TO VDONV Z6VZI0 | NDIDEUBWIYD d1eydsoydosdd [Aydiop 2iqeqoid [4 z 890000ANI

0912 g LAWSD TVGIVZAINSD| 2 @WNDIDGUEH 33eydsoydoiAd [ADIfop 3[G2q0xd [s

6STL " aAnEIng ZA618D IVAIV ZAGLED 1°1°€ 23) aseuoiejouodn|boydsoyd-g [erusiog s 9

.| 0ElZ ET-mPB 86MNGD ISNVATIDE | Ax0qiedap ‘aseuaboiphyap ateuodniBoydsoyd-g 3 3

2311 512UaBOIAld 000, v aixeL ondsaq uopssay sumy uondsag | aads sasuanbas v
Jaquiny Uojssa23Y) ani6 o) (oo) (exer) (peor)

1b5-000TouA & 000,

54

3.5 Discussion

INVHOGEN allows rapid selection of GF's according to various criteria. First, one can se-
lect homologous sequences for a user-defined set of taxa. The graphical interface provides
easy access to all the data (MSAs, phylogenetic trees, taxonomic data, sequence anno-
tations, GO annotations) required to interpret homology relationships between genes.
Thus, INVHOGEN is a useful tool for comparative genomics, phylogeny or molecular
evolutionary studies for invertebrates.

In the process of analyzing animal phylogenetic relationships, the approach used to
structure the available vertebrate sequence data in a database (HOVERGEN) has been
extended by a collection of all available invertebrate sequences. This work shows that
under the assumption of 1.1 million known animals (97% of them are invertebrates) [69]
only a small number of invertebrate species have proteins sequenced — and within these
species, a dozen contribute the majority of the invertebrate sequences to this database.
INVHOGEN has been built in the same way as HOVERGEN (to have a starting point for

comparative analysis).

3.5.1 Other Approaches to Build Gene Families

It is also noted, that further work is needed to define homologous GFs. Different ap-
proaches exist that have not yet been fully exploited for the applications suggested here.
Some approaches classify proteins into families using structural similarities [70] (struc-
tures available in Protein Data Bank (PDB) [71]), or grouping them into families on the
basis of the presence of shared domains or similar domain architecture [72] using domain
databases like Prodom [73], Pfam [74], and InterPro [75].

Apart from classification methods based on sequence alignments and motifs, sta-
tistical learning methods applying support vector machines (SVM) [76] are useful for
classifying diverse protein sequences. SVM and related approaches will complement
sequence similarity and clustering methods. Another approach is adopted by ontology-

driven systems to build families of specific proteins [77]. Ontologies are also useful for

55

pre-processing BLAST searches presenting a weighted list of GO terms associated with
similar sequences to give information about potential functions of unknown proteins.
However, it remains to be seen how approaches like OntoBlast [5] can be utilized
to reconstruct more reliable GFs. We hope that more sophisticated algorithms using
all available methods will substantially reduce the number of GFs with only very few
members (Table 3.1). Additionally the discrepancy between few often sequenced species
and many infrequent sequenced species should be kept in mind when generating GFs.
Moreover sequence sampling is biased towards a few model organisms. This may also
be the reason for a lot of GFs with few species. Thus for a better understanding of the
evolution of GF's one should sequence genes from a wide variety of taxa and not only

from a few well-known model organisms.

3.5.2 Annotation Problems

Besides the unbalanced distribution of the different organisms in INVHOGEN, two other
annotation issues arose in the course of building the invertebrate GFs: (i) inconsistent
nomenclature for protein sequence descriptions, and (ii) the lack and the (sometimes

poor) quality of GO terms annotations.

Gene Product Descriptions

The issues of consistent nomenclature apply to gene product descriptions as well as
organismal taxonomy [78]. For database queries to be meaningful it is important that
consistent names are used for the same source of data. It is not uncommon for the
same gene to have several different names in the sequence databases due to synonym
terms, acronyms, morphological and derivational variants, reinforced by the ad hoc use
of orthography such as capital, spaces, punctuation (e.g. NF-Kappa B, NF Kappa B,
NFkappaB and NF kappa B) and the inconsistent naming conventions (e.g. IL-2 has
many variants such as IL2, Interleukin 2 and interleukin-2). On the other hand, names
and their acronyms are often classified in different semantic classes, depending on a given

context.

56

For other kinds of data similar issues arise. Morphological data tends to be described
in an idiosyncratic fashion, although efforts are being made to standardize nomenclature
(Structure of Descriptive Data subgroup)!.

These inconsistencies for gene product names often were a challenge for naming
GFs (described in Section 3.2.2). It remains also a problem in a very common task
in information extraction, named entity recognition, where named expressions (such as
protein names, chemical compounds, diseases, symptoms etc.) have to be recognized

and classified.

GO Annotations

Analysis of how GO terms are used to annotate SWISS-PROT /TrEMBL reveals that
much of GO is either barely used or not used at all: As it is shown in the result section
every fourth sequence entry has no GO annotation (Table 3.5, Figure 3.3), and most
sequence entries are only annotated with few GO terms which appear by reason of their
general classification in many other GFs, e.g. nucleus in 1,549 GF's (Table 3.8). By this
it means that a large quantity of proteins are ‘under-annotated’; so a general term has
been assigned when a more specific term would be better. Figure 3.6 to Figure 3.8 point
out the distribution of all sub-ontology terms in INVHOGEN. 352 different annotated
cellular component GO terms from 1,695 cellular component terms in GO (20.8%) are
used in all sequence entries. Out of them only ten terms are presented more than 1,000
times, 195 terms are between four and 97 times, and 123 less or equal three times.
Both other diagrams in Figure 3.7 and Figure 3.8 have the same characteristics of term
distribution: 15.7% of all molecular function sub-ontology terms are annotated and
16.3% of all biological process sub-ontology terms, again with only a dozen of highly
distributed GO terms not far distant from the root GO term entry.

Reasons for the large number of weak (Table 3.7) and /or general annotations from the
researcher’s perspective — besides automatic approaches to annotate sequence entries

with GO terms — are the lack of biological knowledge, an incomplete understanding

"Mttp://www.tdwg.org/sddhome . html

57

to match gene information with especially more specific GO terms, or mis-annotations
(e.g. due to spelling mistakes). As a consequence it might currently not be meaningful
to use annotated information from GO terms in protein sequence entries as additional
criterion to approve the relationships of sequences within each GF. However, for some
but not many small GF's there is a kind of ‘semantic’ support regarded from consistent

and specific GO term annotations.

Methods of Resolution In order to overcome the difficulties to better annotate
anonymous sequences with the GO vocabularies many tools and software programs have
been developed through an automatically or manually curated search for the associa-
tions between sequence entries and GO terms [5, 79, 80, 81]. Other programs are more
concentrated on visualizing, comparing, and plotting GO annotation results to find the
differences or anything new in sequence datasets [82, 83, 84].

The large-scale assignment of GO terms to SWISS-PROT /TrEMBL proteins using
electronic methods is a fast and efficient way of associating high-level terms to a large
number of proteins. To provide more reliable and specific annotation, the GOA project
[3] also makes use of manual curation using information extracted from published scien-
tific literature. This process is slower than the use of electronic techniques but provides
more accurate information as all annotation is validated by a team of skilled biologists.

Contribution to the GO project works similarly. One can send comments, questions
or suggestions regarding GO to a so-called GO helpdesk or one can subscribe to a number
of mailing lists to follow the development of different aspects of the GO project. To get
in touch with the GO curators there exists the GO curator requests tracker which allows
one to denote requests regarding annotation issues, bugs, or ideas to improve the project.

A drawback besides a lot of advantages of both contribution ways is that researchers
are not directly involved in the development of the database and the ontology, respec-
tively. One solution to address this kind of unilateral communication (in some way)
between scientists might be to offer all of them a common web platform which also inte-

grates social network aspects to enable knowledge elicitation for diverse domains and as

58

its central part an application to cooperatively develop ontologies in terms of an ontology

wiki. This Internet application called ONTOVERSE is described in the next chapter.

59

Chapter 4

Ontoverse

ONTOVERSE is a research project funded by the German Federal Ministry of Educa-
tion and Research, that offers an approach within the Ministry’s promotional focus on
eScience and knowledge management while concentrating on life sciences as the domain

of interest.

4.1 Introduction

Knowledge networking comprises two different aspects: collaborative knowledge man-
agement in communities (human networks) and effective information integration (data
networks). Thus, on the one hand techniques are regarded that help to structure and
interlink existing knowledge sources effectively with ontologies as the core technique.
And on the other hand, in knowledge networking people share their knowledge via social
networks.

The ONTOVERSE project aims at combining these two points of view: establishing
a platform, that provides tools for designing ontologies for annotating and interlinking
knowledge sources and that also helps people to build up social (scientific) networks. This
platform is called the ONTOVERSE ontology wiki. It comprises support for collaborative
ontology engineering, an ontology based publication management system and solutions

for knowledge exchange in scientific communities.

60

4.2 The Need for Collaborative Ontology Development

Recently, the optimization of storing, retrieving and integrating data is becoming a
popular focus for the WWW in general and a fundamental task for scientific contexts. For
the focused domain of interest, the life sciences, the particular problem is the integration
of heterogeneous data. For example, bioinformatics data not only consist of customary
textual items (scientific publications), but also comprise nucleotide sequences, amino acid
sequences, 3D structures of molecules and a manifold of other experimental results. Such
diverse biodata need to be stored and structured effectively. Recent progress in the life
sciences has already led to the accumulation of biodata that now demand classification,

accessibility and visualization.

4.2.1 Representing a Shared View

A shared understanding of a domain is needed as a basis for scientific discussions. If no
consensus on a domain of knowledge and its key components exists, definitions have to
be mentioned in every single discourse on that topic. Thus, ontologies form the basis
for communication within a community as well as for human-machine interaction [85].
It is most desirable to have ontologies produced collaboratively by a large community,
to ensure that they do indeed represent a shared view. Opinions and suggestions of a

broad community of domain experts should be regarded.

4.2.2 Information Integration for Scientific Data

Additionally to the management of the vast amount of biodata there is also an urgency
to collect scientific cognitions and make them multidisciplinarily accessible. GO for
example structures investigated genes and information about them (Section 2.2.1). This
addresses a main problem in genetics which is the multiple denotation of similar genes
which were found in different organisms. This problem leads back to the rapid increase
of knowledge. Scientists often specialize on single research domains, for most of them it

is hard to keep track of all new developments even in these limited areas, even harder it is

61

to recognize trends in other fields that might effect ones own research. Because of these
advantages a growing interest in ontologies can be noticed especially in the bioscience
community, resulting in different ontology projects GO and the National Center for

Biomedical Ontology [86] which includes the Open Biomedical Ontologies.

4.2.3 Experiences in Developing a Biolnformatics Ontology for Tools

and Methods

Within the ONTOVERSE project an ontology, called BIO2Me, to gather experiences is
designed which are incorporated into the development of the platform [87]. For that
purpose the domain of bioinformatics tools has been chosen. Bioinformatics provides
tools for the efficient processing of experimental data (e.g. from genome sequencing),
sequence analysis, and structure prediction and visualization (amongst others) and by
now there is a variety of tools available which handle similar biological questions with
partly completely different computational methods. Without a structured overview,
even for experts in bioinformatics it is hard to decide which tool fits their individual
requirements best. Therefore, the knowledge about these tools have to be collected and
organized, for otherwise the full potential of existing tools is not be utilized. The goal of
BIO2Me is to provide information about certain bioinformatics tools and methods, and
to enable search for these tools within the ontology that meet the user’s needs.

The domain of BIO2Me eminently points out the need for collaborative ontology
engineering. To represent bioinformatics tools with their applications, the whole bioin-
formatics research field and biology itself have to be displayed adequately in a structured

way, as the application range of every tool has to be set into this context.

4.3 Editing and Maintaining Ontologies

Ontology engineering is a process of several phases; mainly a conceptualization phase, a
phase of actual editing the structural data, a maintenance phase that includes updates,

corrections and ontology enrichment, and as an optional last phase the reuse of the

62

ontology (other divisions are also possible, e.g. in [88]).

Every ontology project begins with a conceptualization, where basically the aim and
scope of the ontology as well as design guidelines are defined. It is useful to provide an
Ontology Requirement Specification Document (ORSD) [89] for that purpose, that can
be filled with the respective decisions. During this conceptualization phase, thematic
discussions of a domain community are extremely useful to capture the characteristics
of the domain.

While the conceptual phase forms the shared basis for further collaborative work, the
following steps of the engineering process profit from a vital community. Social tagging
and knowledge elicitation systems are integrated to collect suggestions for further con-
cepts. Even after a stable state is reached, ontologies kept in community environments
are furthermore be permanently maintained and updated.

It requires a lot of coordination, communication and support by adjusted tools to
enable such collaborative development of ontologies, especially in early phases when
the basic structure of the ontology is planned. Another major role for an interested
community is to interlink and classify current ontology projects to make them accessible
and traceable. This is a necessary condition to enable effective ontology reuse and to
prevent redundant projects.

A necessary element of supportive technology is a system to make all changes and
edits easily visible and traceable. This also includes an option for immediate notification
when changes on the ontology have been made. Further requirements for collaborative
work are discussed in [90].

Das et al. [91] provide an evaluation of some ontology editors with regard to multi-
user collaboration. A number of editors somewhat support this aspect and the web
application WebOnto [92] exceeds the requirements. But WebOnto is no longer under
development and the other multi-user editors like Chimaera [93] and Ontolingua [94],
also realized as web applications, are not available anymore. By now a new generation of
collaborative approaches has emerged, e. g. [95, 96, 97, 98], who all have slightly different

foci and aims, but have not yet implemented a running system.

63

4.4 Ontology Wiki

The ONTOVERSE approach implements an ontology wiki; i.e. an editor platform that
supports distributed work on structural (ontological) data as well as informal discussions
and annotations (proto-ontological data). Interested users can view and use ontologies,
join existing ontology projects or plan and start a project anew. All different phases
of ontology development like conceptualization, editing, maintenance and reuse are sup-
ported (see [91] for a survey of published ontology design methodologies). This also
connotes, that the ontology wiki is a platform for multiple ontology projects that have

to be administered diligently and provided in an easily accessible way.

4.4.1 User Community and Collaboration

Some approaches have been made to support collaborative ontology engineering e. g. in
[95, 99]. What is new in ONTOVERSE, is the explicit support of a social network closely
combined with a Web-based ontology editor. A focus is placed on the support of a
heterogeneous community. Potential users differ in their fields of interest and skills: On
the one hand knowledge and expertise is needed from domain experts (DEs). On the

other hand ontology languages can only be fully exploited by ontology designers (ODs).

4.4.2 Key Aspects
Major innovations in ONTOVERSE are:

e An open collaborative approach that takes into account all the people who have
expert knowledge in a certain knowledge area. The system brings together ODs
and DEs and regard their different states of knowledge. Within such an approach
to community collaboration, certain considerations on roles and their rights are

necessary as discussed in the last paragraph of Section 4.5.1.

e All different phases of ontology development are supported. The wiki encourages
thematic discussions and the adding of unstructured (proto-ontological) data in

the actual ontology editing process.

64

e Integrating the publication management system PubDB to store and manage the-
matic documents and adding information extraction functionalities (Section 4.6.13).
Scientific publications are one kind of knowledge source to gather information
about a domain. Within the ONTOVERSE project a publication database is used
as the knowledge source for an IE application that supports the community in
identifying relevant concepts, instances and relations from texts, which can then
be incorporated into the ontologies. In return, the newly developed ontologies
themselves help to retrieve relevant documents from publication databases. ON-
TOVERSE members can also tag arbitrary publications with their own keywords.
These tags are mapped whenever possible with the concepts, relations and indi-
viduals in the ontologies. Doing this the platform facilitates social search and DE

identification as described below.

e The identification of DEs whenever needed by the OD during the editing process
is supported. Registered DEs can define expertise in their profiles, which are then

used to identify fitting DEs in cases of support requests by ODs.

e A project’s ontology is subject to successional changes. To enable periodical con-
sistent and stable releases the system incorporates a release process. If project
members decide that it is time for a new release the current state of the ontology

is copied into a debugging branch (Figure 4.1).

Ambiguity Disintegration Debugging

Current version
(A
1st Release 2nd Release

0 1 2 3
Start Debugging/Branching 1 Debugging/Branching 2

N

Ontology Development

\/

Figure 4.1: Ontology debugging and release process. After certain time intervals an ontology
should be submitted to a disambiguity resolution process followed by a debugging stage where
inconsistencies are removed. The final stable ontology gets a fixed release number.

65

4.5 Challenges and Tasks of Collaborative Ontology De-

velopment with Ontoverse

Along with the benefits of collaborative ontology editing some new challenges emerge. In
order to identify the most important ones they are divided into conceptual and technical

categories. Nevertheless, because of the strong interdependencies between them this

separation remains to some degree artificial.

4.5.1 Conceptual and Process Challenges and Tasks

! f j E
Search/

Confirm/

Request OD DE Join
- Social
N f
é e Jes_’@]_wl_'[m_l':}
PA

Project Building Your Staff

Description)
Ontology . — '& -
Debugging/ owtology | User 630 Initiated
Versioning t:: J.\ requirement managene! Ontology
. spau‘\ieiﬂ"'{ - Project
Ontology -
Merging/Mapping Q&f -
Collaboration
’m Recruited Team of PEs & 07s
Ontology Editing
Reuse & - conceptual QzA
Integration - annotation
- rating Knowledge
IEﬁ:rm:Iﬁun -assurance Acquisition
xtraction
Template Query Gollaboration
| of00s |

| Filled Template Ontology Editing i
in OWL - formular ‘fc

. - visual

Semi-automatical - J

- Cooperative
Ontology Extension Ontology Editing

Ontology Extension Process

Figure 4.2: Schematic illustration of the ONTOVERSE ontology life-cycle process.

To offer an integrated ontology development platform that directly connects DEs
with ODs the ONTOVERSE project has to address important conceptual challenges. Par-
ticular objectives are the proper integration of both the inter-ontological (i.e. ontology
mapping and merging) and the intra-ontological (concerning the concepts and properties
inside one single ontology) data processing level, the connection of proto-ontological (i. e.

informal and semi-formal) and ontological (formal) data and the adequate management

66

of the community. Figure 4.2 illustrates the ONTOVERSE ontology life-cycle containing

the conceptual challenges that are discussed in the following.

Inter-Ontological and Intra-Ontological Level in Ontology Engineering

The assembling of ontological data can be conceptually divided into inter- and intra-
ontological stages. The intra-ontological level has to support tools and methods for
building up a knowledge base from scratch or by extension of a given ontology with
further concepts and relations. In Figure 4.2 the process steps Cooperative Ontology
Editing and Semi-automatical Ontology Extension belong to the intra-ontological engi-
neering level. The primary actors in these workflow steps are the ODs and an IE module
for (semi)-automatical ontology extension. The IE screens textual data to fill predefined
templates with facts that can be used to extend the knowledge base after being curated
by ODs. To ensure the correctness and quality of the ontology the designers can con-
sult DEs via synchronous and asynchronous communication channels. The process step

Knowledge Acquisition reflects this in Figure 4.2.

Conceptual Challenges

Classes vs. Instances One important design issue is whether a concept should be
represented as a class or an instance. In general, there is no clear division between classes
and instances, and a concept can be either one. Choosing between them represents a
design choice that is dependent on the purpose of the ontology [100].

A

{ owl:Thing }4 is,a{ Molecule }* is,a{ Polymer }‘ is_a { Biopolymer }* is_a { Polypeptide}’ is,a{ Protein }’ is,a{ Enzyme }

B
. /{ Molecule }« is_a«{ Protein }— is,a*{ Enzyme }
Is_a

owl:Thing
is_a
MoleculeConstitution is_a Polymer |[<+—is_a — Biopolymer [<+— is_a — Polypeptide

Figure 4.3: Vertical vs. horizontal hierarchy construction.

67

Vertical vs. horizontal hierarchies The class vs. instances design issue is closely
connected to the vertical vs. horizontal construction of class hierarchies. Particularly
ontology design novices tend to model concepts in deep vertical hierarchies (Figure 4.3,
A). While such design can be technically correct in principle — this is not true for this
example by the way as proteins can also consist of more than one polypeptide — it has
always to be checked whether they are appropriate, too. In many cases it would be better
to identify properties of the concepts that allow to use the horizontal dimension as well.

The example could also be reorganized into a more horizontal structure (Figure 4.3, B).

Identification of corresponding concepts and properties To map or align ontolo-
gies the corresponding concepts and properties first have to be identified. Problems occur
when semantically similar concepts are using labels that cannot be identified through
pattern matching methods. In these cases correlating concepts have to be identified
and annotated manually. Another kind of aligning/mapping problems are semantically
asymmetrical correlations. Such kind of correlation exists, if in one ontology a single
concept and in another ontology a group of connected concepts represent the same sec-
tion of the domain. It can get even more complicated if the same domain knowledge has
been modelled in two largely different ways. The challenge in both cases is to narrow

down the relevant properties and related concepts.

Merging equivalent or semi-equivalent sub-structures After the identification
of the corresponding sub-structures in a merging project ODs have to decide how two

sub-structures could be merged the best way.

Proto-Ontological and Ontological Data

ONTOVERSE introduces a distinction of proto-ontological and ontological data, which are
both handled in the same tool. Ontological data refers to formalizations of ontological
elements. In contrast, proto-ontological data can be every piece of information not

yet being brought into formal structure. This ranges from the ORSD (Section 4.3),

68

over semi-formal concept graphs to the rating and annotation of concepts and relations

(Figure 4.2 steps Project description and Proto-Ontology Editing).

Managing the Community: Roles and Rights

From the user’s perspective, ONTOVERSE offers role management with different access
privileges. On the part of ontology development each registered user is capable of ini-
tiating a new project or to participate in existing ontology projects. Typically any
collaborative project should consist of several users with knowledge in ontology design
and/or the specific domain it was originally created for.

Figure 4.4 points out the natural structure of ontology projects in an organization
chart. Apart from the organization of the ONTOVERSE platform itself the ontology
building part is focussed on the interrelation between DEs and ODs. Every project is
administrated by a project administrator (PA), who is monitoring all the changes and

is responsible for conflict resolution within the ontology.

Ontoverse
Administrator

administrates

‘4_

supports supports

Project Project

Administrator
(PA)

Administrator
(PA)

administrates administrates administrates
Ontology
Project 1

Domain Expert
(DE)

Ontology
Project 2

Ontology
Project 3

Ontology
Designer (OD)

Domain Expert
(DE)

Ontology
Designer (OD)

Domain Expert
(DE)

Ontology
Designer (OD)

Figure 4.4: Every ontology project is administrated by a single group of PAs composed of one
or more members. Customarily both DEs and ODs are involved in ontology development.

69

Access rights are coupled to individual roles of specific projects. That means a user
can act as DE in one project and as OD or even PA in another. This comprises the
possibility for one user to play different roles in one project.

Ontology designers are mainly entrusted with the translation of domain knowledge
into a formal ontological representation (or transforming proto-ontological into ontolog-
ical data). This stage is established by a dialog with human experts in order to elicit
knowledge. In the following stage the OD codes the knowledge explicitly in the onto-
logy. This process iterates until the ontological coding is judged to be satisfactory by
the experts.

However, one difficulty in communication between ODs and DEs is that the knowl-
edge engineer does not always know the technical terms of the DE. Another problem
may be in expressing the knowledge in explicit terms. To overcome these difficulties the
support of proto-ontological data as modes of expression is needed. Functions of the

different user groups are summed up as follows:

Domain Experts:

Collect knowledge, provide it informally (proto-ontological data) and discuss it.
Contribute new scientific findings.

Collect publications relevant to actual topics of interest and tag them.

Answer domain-specific questions posed by ODs.

Discuss and benchmark existing ontologies.
Ontology Designers:

e Exploit the input contributed by DEs and transfer it into formal ontology languages
(ontological data).

e Discuss formal knowledge representations, edit and maintain them.
Project Administrators:

e Define aim and domain of a new ontology.
e Coordinate discussions and monitor the collaboration process.

e Release versions of an ontology.

70

Considering the user roles and potential workflows as well as general problems in collab-

orative systems, the following requirements for the platform can be derived.

e Elaborated communication channels, adjusted for discussions DE-DE, OD-OD and
DE-OD.

User profiles and user networks: show fields of expertise, search for experts.

Information on authorships, copyright guidelines.

Collaboration guidelines and principles of ontology engineering.

e Community awareness features, tracing of changes.

4.5.2 Technical Challenges and Tasks

Besides social and interpersonal aspects, offering a system for cooperative work of large
user groups addresses some technical problems to resolve in order to provide a platform
on the Internet for designing ontologies in a collaborative way. Because of its inner
structure, RDF data is typically large-scale, highly interconnected and heterogeneous in
contrast to relational data. Thus, it is indispensable to manage such datasets cleverly
to allow cooperative development. Furthermore, the system should support graph-based
navigation, querying facilities, and editing functionality accompanying ontology gener-

ating processes.

Ontology Storage and Managing

Due to the fact that the requirements for storing RDF data efficiently are different from
relational databases two approaches exist to store and manage RDF data. The first
approach is based on relational databases which store RDF data in a persistent data
model by mapping the RDF model to the relational model. On the other hand there are
systems that implement a native store with their own index structure for RDF triples like
Jena2 [101], Redland [102], and YARS [103]. To record changes in an ontology, a network
equivalent of a shared ‘blackboard” was needed. Remote programs can place objects on

the board, examine these objects or remove them. This is generally realized by a data

71

structure called a tuple space that is optimized for distributed programming [104]. The

implementation of this back-end part in ONTOVERSE is described in Section 4.6.14.

Visualization

The exploration of large datasets is generally an important but difficult problem. Visu-
alization techniques are useful in solving this problem. Data types to be visualized for
ontologies are hierarchies and graphs [105]. These data records have many relationships
(connections) to other objects (called nodes) and build ordered, hierarchical, or arbitrary
networks of relations representing such interdependencies. Ontology visualization also
needs to be tightly integrated with the ONTOVERSE system used to deal with the vast
amounts of information. The aim is to bring the benefits of visualization technology
to the user to allow a better, faster, and more intuitive handling of huge ontological
data. In viewing or editing large ontologies, one first needs to get an overview of the
graph structure. In the overview, the user is able to identify interesting regions to edit
or explore subgraphs within the ontology which are currently processed by other users.

Interaction techniques allow the user to directly interact with the graph and dynami-
cally change the visualizations, as well as select subsets of the data for further operations.
These techniques can be categorized based on the effects they have on the display. Nav-
igation techniques focus on modifying the projection of the data to smoothly navigate
through the ontology onto the screen. View enhancement methods like zooming or dis-
tortion [106] allow to adjust the level of detail on part or all of the visualization, modify
the mapping to emphasize some subset of the data, or collapse unrequested data. Selec-
tion techniques provide users with the ability to select interesting parts of the ontology
for operations such as highlighting or filtering.

In addition collaborative aspects into the visualization are incorporated. That is why
e.g. locked parts of the ontology are particularly marked in the graphs and changes are
notified. Additionally the view depends on the user role. The realization of ontology

editing and visualization in ONTOVERSE is also given in Section 4.6.14.

72

4.6 Ontology Wiki Architecture

4.6.1 Overview

From these goals in the aforementioned sections, a high-level list of requirements for the

ontology wiki is shown in the following and summarized in Figure 4.5:

e A system to allow users to create user accounts and add profiles about them-
selves: This requires them to log in with a username and a password (Section 4.6.2,

Page 75).

e News blog: This allows editors of the site to create news reports and publish them

on the front page (Section 4.6.3, Page 81).

e Discussion forum system: Forum moderators are able to create a number of forums
in which users can create new topics. Each topic can have any number of posts

(Section 4.6.4, Page 83).

e Blogging engine: This allows users to create their own blogs about their projects
and development experiences. It allows users to post blog entries using desktop

blogging clients as well as the Web (Section 4.6.5, Page 86).

e Photo gallery for each user of the site: This allows users to upload photos to their

profiles or to relevant projects (Section 4.6.6, Page 90).

e E-mail newsletter: The newsletter can be sent to all members of the site that opt

in to receiving e-mails from the site (Section 4.6.7, Page 91).

e Friendships system: This system allow users to add other users to a friends lists

or other types of relationship (Section 4.6.8, Page 93).

o Tagging and searching support: Projects, photos, and publications are taggable
to make it very easy for users to search and browse these objects (Section 4.6.9,

Page 95).

73

e Google Maps integration: Opens up the possibilities of embedding interactive,

scrollable maps for project members (Section 4.6.10, Page 98).

e Ontology projects and project’s wiki: The ontology building part of the ontology
wiki to manage and maintain ontology projects (Section 4.6.11, Page 100 and

Section 4.6.12, Page 102).

e Scientific publication database PubDB: The source for project-specific document

collections mainly to extract information (Section 4.6.13, Page 106).

Posts

Departments

Addresses

=

Publications)
Articles H Segments J
b\

Tags [L Changes J LAtlachmentsJ

Figure 4.5: Overview of the architectural components in the ONTOVERSE ontology wiki from a
user’s perspective (see also Table A.1).

4.6.2 User Management System

In this section, the user management system with user accounts and a role-based group
system is described. This allows users to create accounts and log in to the site. The ON-

TOVERSE administrator (OA) role maintains control to regulate who can administer the

74

ONTOVERSE platform. A web interface allows administrators to manage the permissions

of each user, including disabling accounts.

User Model

The USER model holds the account information. It defines the information that will
be stored about the users and how a user’s input can be validated on sign-up. For the
log-in process a user needs a password. This password is stored in the user database
table using a one-way hashing algorithm [107]. By storing the hashed value of the user’s
password in the database, one can check that the user has entered the correct password
by calculating the hash of the entered password and comparing that to the hashed value
stored in the database. The required database fields for the USERS table are shown in

Table 4.1 (some internal table fields are skipped in this table).

Name Type Description

id integer The primary key

login string A unique name that the user will use as a log-in name

email string The e-mail address is required for the confirmation pro-
cess after a user has signed up

crypted_password string This will store the hash of the entered password

enabled boolean If a user wants to remove the account, it needs to be
disabled

created_at datetime The date and time that the user was created

updated_at datetime The date and time that the user was last updated

Table 4.1: USERS database table.

Person Model

In contrast to the USER model, the PERSON model holds the personal information for
completing a user’s profile with personal data (title, name, gender, home page, and so

on). Table 4.2 shows the complete structure of the PERSON model’s database.

One source for this kind of data might be extracted from publications (for more

details see Section 4.6.13).

75

Name

Type

Description

id

gender

title
firstname
middlename
lastname
birthday
initials
emaill
email2

homepage

integer The primary key

string
string
string
string
string
date

string
string
string

string

The gender of a person

An academic title of a person
First name of a person
Middle name of a person
Last name of a person

A person’s birthday

Initials of a person

First e-mail address

Alternative e-mail address

The person’s home page

Address Model

Table 4.2: PEOPLE database table.

In addition to the PERSON model, the ADDRESS model represents address specific data.
ADDRESSES table and PEOPLE table are linked in a one-to-many relationship. The

required database fields for the ADDRESSES table are shown in Table 4.3.

Name Type Description

id integer The primary key

street string Street

city string City

Zip integer Zip code

state string State

country string Country

add.nfo string Additional information (e.g. building)
lat string Latitude

Ing string Longitude

Table 4.3: ADDRESSES database table.

Department Model

The DEPARTMENT model contains information about a department’s name and orga-

nization, a description, and an entry for its home page. This model is linked in a

76

many-to-many relationship with the ADDRESS model and PERSON model, respectively.
The relationship between department and person is complemented by a history function
storing all previous departments of a single person (Figure 4.7). The required database

fields for the DEPARTMENTS table are shown in Table 4.4.

Name Type Description
id integer The primary key
name string Name of the department

organization string The department’s organization

description text Description of the department

homepage string ~ The department’s home page

Table 4.4: DEPARTMENTS database table.

Account Management

The authentication system offers the following features required for authenticate users

onto the platform (Figure 4.6):

1. Sign up: In the sign-up form a user gives information about his profile.

2. Activation: He is being sent an e-mail to ensure he had given a legitimate e-mail

address.

3. Logging in: Users without an account first have to sign up for an account. If a
user logs in successfully he is redirected to the initial URL he entered before the

log-in page was invoked, basically the start page.
4. Failed log-in: An invalid log-in is redirected to the log-in form.

5. Reset password: A user has forgotten his password to the system. He clicks a link

to reset the password, and the system sends a link to create a new one by e-mail.

7

v no account

(siGnuP)
[., SgnUpid o already have account » = = = = = = == coc-- .
Form
. . (h
invalid ACTIVATION

Activation
Form

POST
POST

A\
(LoGIN)
Login Form
Activation
Result invalid POST

Sign Up \
Result
J

i

(FORGOT PASSWORD) (RESET PASSWORD) F
Forgot Reset
Password Password Start Page

Form Form

invalid POST P0+ST

J

A
"
: Reset
f Result
.
. \
'
lecececcccccccccccccccccen forgot password = = == == cccccccaccncaaan.

Figure 4.6: Authentication system in ONTOVERSE.

78

Role Model

In order to assign different permissions to different users, a ROLE model is created to
store the different roles of users on the site. This will not store what the role is capable
of, just the name (and description) of the role. The actual capabilities or restrictions

of each role is defined in the code. The required fields of the ROLES table are shown in

Table 4.5.
Name Type Description
id integer The primary key
name string Name of the role
authorizable_type string Authorizable type
authorizable_id integer Authorizable ID
created_at datetime The date and time that the role was created
updated_at datetime The date and time that the role was last updated

Table 4.5: ROLES database table.

USER and ROLE models are linked together using a join table. This join table simply
stores the IDs of the two separate models and links them together. On the model site, a
many-to-many relationship is specified by stating that the USER model has and belongs

to many roles, and the ROLE model has and belongs to many users (Figure 4.7).

Controllers

The authorization process decides whether a user is allowed access to some feature. It
is distinct from the authentication process, which tries to confirm a user is authentic.
Implementing this technology requires: a USERS controller, a SESSION controller, and

an ADMIN controller.

Users Controller The USERS controller provides the usual REST methods for ac-
cessing the USER model: index, show, new, create, edit, update, and destroy. A user

is not actually deleted, but only disabled by setting the enabled field to false. To allow

79

users
departments login
« | name crypted_password
description salt
organization created_at
* homepage 0..1 | updated_at
addresses * last_login_at
country remember_token
city remember_token_expires_at
zip * activation_code
street people activated_at
state firsthame email
add_info middlename enabled
lat lastname ; person_id
Ing phone_office *
1 « | phone_private
birthday *
title roles
initials name
emaill deSCription
email2 authorizable_type
homepage authorizable_id
gender Created_at
updated_at
self

Figure 4.7: Entity relationship diagram for users, user’s profiles, and roles.

to re-enable a user’s account, administrator permissions are required. The activation

functionality completes the signup procedure after user confirmation via e-mail.

Session Controller The SESSION controller needs the following methods to allow a

person to join the site, log in, and log out:

e The signup method allows users to enter their details to become new members of

the site.

e The login method checks e-mail address and passwords of the users to allow them

to log in to the site.

e The logout method logs out users from the site.

Admin Controller Through this controller roles are defined by administrator for the

whole platform (e.g. ‘editor’, ‘moderator’) and roles which are project-specific.

80

Other User Management System Extensions

e In the sign up form a security feature called CAPTCHA! requires user to type the
letters shown in a distorted image, to catch a large portion of automated spam

bots.

e ‘Remember me’ allows to remember the log-in status of its users. A user does not
need to enter the log-in name and password each time visiting the site because the

web browser remembers them.

e The sign up procedure integrates OpenlD? into the user accounts system, allow-
ing users to log in with their existing OpenlD identity. This provides people an

opportunity to sign on to multiple web sites using the same identity.

e After signing up successfully, Google Maps Geocoder? tries to find out the coor-
dinates of the given address and stores them in the ADDRESSES table if they are

available.

4.6.3 Building a News Blog

A news blog is built to be shown at the ONTOVERSE front page to keep the users informed
of developments at the site as well as keeping the site up to date. The basic functionality
of the news list allows administrator users or editors to create news reports, along with
an archive of them. Reports can be checked and edited by other editors before going
published.

A new role, called editor, is provided to create and edit news. This allows OAs to
give permissions to certain users to write and edit reports without giving them access
to editing other parts of the site.

The news report functionality provides RSS* and Atom® feeds of the report, along

'http://en.wikipedia.org/wiki/Captcha
’http://en.wikipedia.org/wiki/Openid
Shttp://maps.google.com/
‘http://en.wikipedia.org/wiki/RSS_(file_format)
Shttp://en.wikipedia.org/wiki/Atom_(standard)

81

with providing an API to the news feature. Both feeds let users to subscribe to the news

feed with an RSS newsreader and be automatically notified when a new report is posted.

Report Model

The individual news report uses a model called REPORT. Reports can be created, checked
and edited by administrators or editors. Editor users are able to add markup without
to write HI'ML in the reports. FEach report belongs to one category which can be
created and maintained through a web interface. The necessary fields to implement its

functionality are shown in Table 4.6.

Name Type Description

id integer The primary key

title string Title of the news report

Synopsis text A short synopsis that will be shown in a list of reports
body text The text of the report itself

published boolean Reports can be saved and edited before being published
created_at datetime The date and time that the report was created

updated_at datetime The date and time that the report was last updated
published_at datetime The date and time that the report was published

category_id integer Category of a report

user_id integer ID of the user who created the report

Table 4.6: REPORTS database table.

Category Model

Fach report belongs to one category, so a one-to-many relationship is defined — each
category can have many reports. A category consists only of a name field limited to
80 characters. Figure 4.8 shows the relationships among news reports, categories, and

users.

82

users
login
gglltpted_password reports
created_at e
updated__ at f,fé‘;ps's
last_login_at 1 *oublished
remember_token published_at
rirtr)erpbﬁr_ctogen_em'fes—at created_at
act!vatlod_to e updated_at
:mlavilae _a user_id
enabled caleqond
person_id .

1

categories
name

Figure 4.8: Entity relationship diagram for news reports, categories, and users.

Controllers

Report Controller The REPORT controller provides the normal REST CRUD ac-
tions. The new, create, edit, update, and destroy methods are needed for the user
who has the editor permission. Since reports can belong to a category, they should be
accessible by URLs such as categories/1/reports, which returns all of the reports
with category ID 1. An index view shows a full list of all reports and links for editors

to quickly add a new report or edit an existing one.

Categories Controller This controller allows users with the relevant permission to
add, edit, or delete categories. A user can get a list of all categories together with the
number of reports in each category. Clicking a category will take the user to the list of

reports within that category.

4.6.4 Discussion Forum

In this section, the discussion forum for the ONTOVERSE community is presented. It
enables users to discuss various aspect of general usages, project-specific themes, and

other topics. Only OAs and other nonadministrative users, called moderator, are capable

83

to create a number of forums. Within each of these forums, users can create topics. Each
topic then has any number of posts within it about that topic.

The forum structure consists of three models: ForuM, Toric, and PosT. A forum
has many topics, and a topic, many posts. In addition to this, each topic and each post
belong to the user who created them. For performing reasons the FORUM and ToPIC

models make use of counter caches to speed up database queries.

Forum Model

The FORUM model consists of a name and a description. Forums can be created, edited,
and deleted only by a moderator or OA. A counter cache stores the number of topics

per forum. Table 4.7 shows the complete structure of the FOrRUM model’s database.

Name Type Description

id integer The primary key

name string Forum name

description text Description of the forum

created_at datetime The date and time that the forum was created
updated_at datetime The date and time that the forum was last updated
topics_count integer The topic counter cache

Table 4.7: FORUMS database table.

Topic Model

The TopriCc model has the topic name along with the user ID of the user who created the
topic. Any logged-in user can create a new topic, but only moderators (or OAs) can edit
or delete topics. Deleting a topic will delete all of the posts within that topic. A counter
cache stores the number of posts per topic. The TorPiC model’s database structure is

shown in Table 4.8.

84

Name Type Description

id integer The primary key
name string Subject of the topic
created_at datetime The date and time that the topic was created

updated_at datetime The date and time that the topic was last edited

posts_count integer The posts counter cache
forum_d integer ID of the forum that this topic belongs to
user_id integer ID of the user who created the topic

Table 4.8: Topics database table.

Post Model

Each post has a body, a text field containing the body of the post, and a user ID of the
user who created the post. Any logged-in user can create a post, only moderators (or

OAs) can edit or delete posts. Table 4.9 shows the POST model’s database structure.

Name Type Description
id integer The primary key
body text Body of the post

created_at datetime The date and time that the post was created
updated_at datetime The date and time that the post was last edited
topic_id integer ID of the topic that this post belongs to

user-_id integer ID of the user who created this post

Table 4.9: PosTs database table.

Figure 4.9 shows the relationships among forums, topics, and posts.

forums topics posts
name name body
description 1 « | created_at 1 « | created_at
created_at updated_at updated_at
updated_at posts_count topic_id
topics_count forum_id user_id
user_id

Figure 4.9: Entity relationship diagram for forums, topics, and posts.

85

Controllers

The ForumMm, Topric, and PoST controllers are all standard REST-style controllers with
the basic CRUD functions of a REST resource. Since each topic belongs to a partic-
ular forum, and each post belongs to a particular topic, these resources are nested.
The topics resource is nested beneath a forum resource, assessable via URLs such as
/forums/1/topics and /forums/1/topics/1. The posts resource is nested beneath a
topic resource and, in turn, a forum resource. Therefore, the posts resource is assessable

via URLs such as /forums/1/topics/2/posts and /forums/1/topics/2/posts/2.

4.6.5 User Blog with Web Services Support

A blogging service allows each ONTOVERSE user to create a number of blog entries and
each entry can be commented by other members of the community. The blog structure
consists of the two models ENTRY and COMMENT. A user’s blog has many entries, and
an entry many comments. The USER model is extended to hold attributes common to
an entire blog.

The blog service implements some features of established blog APIs, making it pos-

sible to use a desktop blogging client to add blog entries.

Entry Model

Fach blog entry consists of a title and the body text and belongs to a user. A flag
defines whether the post has been published or if it is just a draft. The creation and
last-update time of the entry will also be stored. A counter cache keeps track of how
many comments there are for each entry. The database fields necessary for the ENTRY

model are shown in Table 4.10.

Comment Model

The CoMMENT model holds the details of the comments left for each blog entry. Since

only registered users of the site are allowed to leave comments, the ID of the user who

86

Name Type Description

id integer The primary key

title string Title of the blog entry

body text Body text of the blog entry

created_at datetime The date and time this entry was created

updated_at datetime The date and time this entry was last updated

comments_count integer The counter cache of the number of comments for this
entry

user_id integer ID of the user to whom the entry belongs

Table 4.10: ENTRIES database table.

left the comment is stored, along with details of the comment including which entry the
comment refers to, the body text, and the creation date and time. The database fields

necessary for this model are shown in Table 4.11.

Name Type Description
id integer The primary key
body text Body text of the comment

created_at datetime The date and time this comment was created
entry_id integer ID of the entry that this comment belongs to

user_id integer ID of the user who created this comment

Table 4.11: COMMENTS database table.

User Model (extended)

The USER model is added by a number of fields to support the blogging features. Users
can set titles for their blogs and enable or disable commenting on their blogs. A counter
cache keeps track of the number of entries that a user has created in the blog. The

additional fields required for the existing USER model are shown in Table 4.12.

Figure 4.10 shows the relationships among users, entries, and comments.

87

Name Type Description

blog_title string Title of the user’s blog

enable_comments boolean Blog can be enabled (true) or disabled (false)

entries_count integer =~ The counter cache of the number of entries created by
this user

Table 4.12: USERs database table with additional fields (shortened).

users
login
crypted_password
salt entries
created_at title
updated_at 1 « | body
last_login_at created_at
remember_token updated_at
remember_token_expires_at comments_count
activation_code user_id
activated_at 1
email
enabled
person_id *
| blog_title comments
enable_comments body
entries_count created at

1 « | entry_id

user_id

Figure 4.10: Entity relationship diagram for users, entries, and comments.

Controllers

Blogs Controller The BLOGS controller provides an entry portal to the blogs, listing

the ten most recently updated blogs.

Entries Controller The ENTRIES controller provides access to the user’s blog. Each
collection of entries belongs to a specific user, and is nested within the users resource
via URLs such as /users/1/entries and /users/1/entries/2. For these features, a
standard REST-style controller is used. The new, create, edit, update, and destroy
methods are only accessible by the owner of the blog, allowing that user to maintain

and post to the personal blog. The show method displays a specific entry along with all

88

comments left for that entry, and the index action provides the standard blog view.

Comments Controller This controller just requires a create method to actually
save a new comment, and a destroy action to allow the owner of a blog to delete any
comments if desired. The other five standard REST-style methods are either accessible

by the ENTRIES controller or not required.

Blogging Interface

The Blogger APIS provides some basic methods for blogging support as an XML-RPC

web service shown in Table 4.13.

Method Description

blogger.getUsersBlogs (appkey, login, Returns information about the blogs one
password) user have

blogger.getUserInfo(appkey, login, Returns information about a specific user
password)

blogger.getPost (appkey, postid, login, Returns the content of a specific blog post
password)

blogger.getRecentPosts(appkey, blogid, Returns a list of the most recent blogs
login, password, number_of_posts) posts in a particular blog
blogger.newPost (appkey, blogid, login, Creates a new post on a particular blog
password, content, publish)

blogger.editPost (appkey, postid, login, Changes the content of a blog post
password, content, publish)

Table 4.13: Blogging interface web service database table.

Backend Controller The BACKEND controller converts incoming method invocation
requests into the API method calls (dispatching) and takes care of sending back the
responses. Here layered dispatching is used, which allows to implement multiple APIs

with one controller. The overview about layered dispatching is given in Figure 4.11.

Shttp://code.google.com/apis/blogger/overview.html

89

Remote Caller

ProjectService

\ e B
FindAlIProjects -

/& J
\

BloggerService

bIogger.getUservppkey, login, password) -

. J

Controller

Remote Caller

Figure 4.11: Overview of layered dispatching with two APIs and one controller (e.g. BACKEND
controller).

4.6.6 User Photos

A photo gallery allows users to upload any photos to their gallery, where photos are
displayed in a thumbnail view. This will encourage users to get involved on the ONTO-
VERSE platform and to make it more personal. Per default the latest uploaded photo
from a user is displayed on the user’s profile page as a thumbnailed version but it can
be exchanged by another photo.

The user images are stored as files on the server filesystem instead of using a database,
since filesystems are highly optimized to deliver static content such as images, while
database connections are potentially expensive.

The photo gallery feature consists of only one PHOTO model. Each photo belongs to

one user, and, in turn, a user has many photos.

Photo Model

Besides database fields required for photo upload, the PHOTO model consists of a title
and a description. Table 4.14 shows the complete structure of the PHOTO model’s

database.

90

Name Type Description

id integer The primary key

title string The title of the photo

body text Description of the photo

created_at datetime The date and time the photo was uploaded
filename string The original file name of the uploaded photo
content_type string The MIME type of the uploaded photo
size integer Size of the uploaded photo

height integer Height of the photo in pixel

width integer Width of the photo in pixel

thumbnail string Name of the size of a thumbnail

parent_id integer ID of the thumbnails parent file

Table 4.14: PHOTOS database table.

Controllers

Photo Controller The PHOTO controller enables access to view all photos on the site
at the root level. This resource only needs to implement an index action, since all the

other actions need to be accessed via a nested resource.

UserPhotos Controller The USERPHOTOS controller allows to display the pho-
tos from a specific user. This controller provides the usual REST CRUD actions ac-
cessible as a nested resource below the users resource such as /users/1/photos and
/users/1/photos/1. Only logged in users can upload photos or edit the attributes of

existing photos.

4.6.7 E-mail Messages and Newsletter

In this section, the e-mail message sending functionality and the e-mail newsletter feature
are described.

E-mail sending automatically directly to users is useful, such as sending a welcome
mail when they sign up, offering them to receive news articles as e-mails or mail to allow
them to reset their passwords. Furthermore, it can be used as an automated mailer

that informs users when someone joins an ontology project or left a new comment in

91

someone’s blog. For example, this enables a PA or the blog’s owner to quickly react to
the message.

The newsletter feature allow OAs to easily create and send newsletters or notices to
all users of the site. This could be necessary to notify users of upgrades or new features.
It is made possible for users to turn e-mail notifications on or off if users do not want to

have e-mail notifications or newsletters at all.

E-mail Messages

The e-mail should at least contain the e-mail address of recipients, the e-mail address
that the mail is to be sent from, a subject for the message, and of course a body text. It
can have both plain text and HT'ML parts, meaning that the mail displays only plain text
on text-based e-mail applications and as an HTML e-mail in applications that support
it. The HTML version of the same e-mail can have more interesting parts by adding

links to the author’s profile or the resource reference the e-mail originates from.

Newsletter

Newsletter Model The NEWSLETTER model stores the e-mail subject, body text,
and the time and date that it was created. It also stores whether the newsletter has
been sent or not and if so, the date and time it was sent. This database structure is

shown in Table 4.15.

Name Type Description

id integer The primary key

subject string The e-mail subject line

body text Body of the e-mail

sent boolean Whether this newsletter has been sent or not
created_at datetime The date and time this newsletter was created

Table 4.15: NEWSLETTERS database table.

92

Newsletter Controller The NEWSLETTER controller permits OAs to create and edit
newsletters, which can then be sent by clicking a button on the newsletter display page.

All outgoing e-mails are queued in this database table, freeing the application from
having to wait for a remote SMTP server. The database table can be processed by a

separate application running as a daemon, or added to a scheduler.

4.6.8 Friends Network

A friendship system is implemented, offering users to easily add other users to their
friends list. This list can be viewed by any user, and furthermore, users can quickly see
the latest activities of their friends — this is limited to showing only simple information
about particular actions. This enables users to keep up to date with their friends’
activities.

The friendships are enhanced by adding metadata based on the XHTML Friendship
Network (XFN) microformat specification”, to specify the different kinds of relationships
one has with other users. Adding semantic information with microformats® allow users
and applications to easily understand the relationships among other users and their

friends.

Friends Resource

The Friends resource represents the unique friends list for each user. This resource is
nested beneath the USERS controller, accessible through URLs like /users/1/friends
and /users/1/friends/2. It provides the usual CRUD functions to view a list of all
of one’s friends, to display a friend page view, to allow to set friendships attributes

according to the XFN specification, and to remove a friendship.

"http://gmpg.org/xfn/
Shttp://microformats.org/

93

User Model (extended)

The USER model is further extended by two fields to store the latest activity performed
by each user. An activity gets recorded by selectively choosing what to store and when
to store it inside the different models. The additional fields required for the existing

USER model are shown in Table 4.16.

Name Type Description

last_activity string Description of the last activity performed by the user

last_activity_at ~ datetime The date and time that this activity was performed

Table 4.16: USERS database table with two additional fields (shortened).

Friendship Model

The FRIENDSHIP join model stores the friendships and the information about the rela-

tionships among users in a separate database table (Figure 4.12). This database schema

is shown in Table 4.17.

users friendships users (friend)
1 * | xfn entries * 1{..
last_activity user_id last_activity
last_activity_at friend_id last_activity_at

Figure 4.12: Friendship as a join model links together a user and a friend (both from USER
model).

Friends Controller

The FRIENDS controller allows a user to create, modify, remove, and view friends. To
add or edit new friendships, a user can select all XFN relationship values consisting
of groups of mutually exclusive characteristics. The index view shows a user’s list of
friends, along with the last activities and links to their profiles. The own friend list

view is completed by links to edit or remove each relationship. Every relationship in

94

Name Type Description

id integer The primary key
xfn_friend boolean Someone you are a friend to

xfn_acquaintance boolean Someone you have exchanged greetings with

xfn_contact boolean Someone you know how to get in touch with

xfn_met boolean Someone who you have actually met in person

xfn_coworker boolean Someone a person works with, or works at the same or-
ganization as

xfn_colleague boolean Someone in the same field of study/activity

xfn_coresident boolean Someone who lives at the same address as you

xfn_neighbor boolean Someone who lives nearby

xfn_child boolean A person’s genetic offspring, or some that a person has
adopted and takes care of

xfn_parent boolean One of your parents

xfn_sibling boolean A brother or sister

xfn_spouse boolean Someone you are married to

xfn _kin boolean Another relative

user-_id integer ID of the creator and owner of this friendship

friend_id integer The user to whom this friendship refers

Table 4.17: FRIENDSHIPS database table based on XFN.

the friends list, represented by a number of XFN attributes, has its own relevant icon to

highlight it.

4.6.9 Tagging and Searching
Tagging

Tags are keywords that are used to describe a particular object. Tagging is a very useful
way of categorizing items that makes it easy for users to search and browse objects. Tag
clouds display the most popular tags as the largest, so one can quickly see the most
popular topics, and make a great starting point to allow people to discover objects on
the site. Another usage for tags is to find related objects that share most of the same
tags as the current object. Currently projects, photos, and publications are extended by

tagging support.

95

Requirements

There are two ways to view the data. A user can view all tagged objects or only
user-specific objects. To view tags by all users, a normal REST resource is created to
retrieve tags from the corresponding model. To view tags that only belong to one user,
the REST resource is nested beneath the users resource such as /users/1/tags and

/users/1/tags/anatomy.

Relationships

Each model with tagging support is related to a TAG model through a third model called
TAGGING. There are two database tables required. The first, TAGS table, stores the tag

names and is shown in Table 4.18.

Name Type Description

id integer The primary key

name string Tag name

Table 4.18: TAGs database table.

The TAGCING table uses polymorphic associations, where a model is associated with
objects of more than one model class. This database table is shown in Table 4.19.

Figure 4.13 illustrates a polymorphic association.

Name Type Description
id integer The primary key
tag-id integer ID of the tag

taggable_id integer ID of the taggable object
taggable_type integer The model name of the taggable object

created_at datetime The date and time that this tagging was created

Table 4.19: TAGGING database table.

96

Tagging
model

is tagged with is tagged with is tagged with

Project Object Publication Object

Figure 4.13: Tagging of projects, photos, and publications by means of polymorphic association.

Controllers

Tags Controller The TAGS controller is implemented to display all of the tags that
have been added to taggable objects on the site, regardless of user. These tags are
displayed as a tag cloud and can be limited to a smaller number of tags. Additionally

only objects are displayed that match a particular tag.

User Tags Controller This controller acts in a similar way to TAGS controller, except

that it only shows tags and taggable objects for a specific user.

Taggable Objects Controllers These controllers offer methods for users to add and

remove tags from the corresponding taggable objects.

Searching

For performing searches on structured data, the kind of data in databases, a full-text
engine called Ferret’ is used when database loads get higher and there is more than
one database table involved in the search. Currently searching includes user names and

log-ins, project names and tagged objects.

9Ferret is a high-performance, full-featured text search engine library written for Ruby. It is inspired

by Apache Lucene Java project (http://lucene.apache.org/).

97

4.6.10 Integrating other Web Applications

Many web applications offer public APIs with REST, XML-RPC, or SOAP interfaces
to retrieve or save data on the site. Most Web 2.0 sites are moving toward REST
architectures to offer very simple and lightweight interfaces to their data.

ONTOVERSE integrates with some other web applications, creating what has become
known as a mashup, which is using parts of existing web applications to build something
new. Google Maps is used to allow users to add physical location data to their addresses

and their uploaded images.

Requirements

To store the geographical location, the PHOTO model needs extended by fields to store
the location data and also a preferences string, which will be set if the user wants this

location to be shown on the photo page. The required fields are shown in Table 4.20.

Name Type Description

geo_lat decimal The latitude of the photo’s location
geo_long decimal The longitude of the photo’s location

show_geo boolean A user-settable option to determine if the location data
is displayed to others

Table 4.20: Required fields by the PHOTO model for mapping data.

Mapping features
Getting locations There are three possibilities to obtain the location of an object:
1. Asking the user to manually enter latitude and longitude coordinates.

2. Using Google Maps Geocoder, which accepts an address and returns the coordi-

nates of that point if traceable.

3. Allowing the user to drag and zoom in on the map to select a point on the map to

set the coordinates.

98

The first and third possibilities are available for addresses and images, whereas the

second one is only meaningful for address data.

Extended user’s profile Mapping support allows a user to navigate through all user’s
addresses or his own ontology projects. A filtering mechanism selectively hides and shows
groups of inhabitants or project members on the map. Figure 4.14 illustrates a user’s
profile together with his projects and the project’s members depending on the selected

project in the toolbar above.

ialals) Ontoverse
@« - e ﬂf) http:] fwww.ontoverse.net/users/map2 /2 v | ([G]* Google Q) &
Erste Schritte Aktuelle Nachrichten 3
I
LoGout |
Global Knowledge for Global Challenges
m Projects Users PubDB
In the News
Search
Ingo Paulsen W3C Gompletes Bridge
Botwaen HTMLI
 Semoc] Microformats and
User profile | User map Semantic Web
fituston The Worid Wide Web
7 - Consortium has compieted
Siecio Projects an importantlink between
S l Semantic Web and
All Morphologic Ontology Invertebrates Ontology Bioinformatics Ontology for Tools and Methods microformats
Hows communities..
Life2Me ActiveSem IKen Read more
Al Nave hide =
News Arties. = T Upcoming Events
Paulsen
Jichs bassap v . s’,aﬁﬂk —I— fpo mum Germany Web Intellige:
e 2nd - 5th Nov 2007
Help & Discussions Heinrich-Heine-Universitat Indra Mainz Siicon Valley, USA.
Universitatsstr. 1 Dusseldorf, Germany
A SN 40225 Disseldorf ISWC 2007
Hep Germany s ol emamie: 11ih - 15th Nov 2007
FAQ & Busan, Korea.
Fomms Dominic Mainz
Dusseldor, Germany BOT 0L
Diogs 5th- 7th Dec 2007
Al Photos Katrin Weller Genova, Haly.
Photo Tags Dusseldar, Germany BIONETICS 2007
Jochen Kohi 10th - 13th Dec 2007
My Ontoverse Dusseldor], Germany Budapest, Hungary.
Profie Ontoverse
Contacts
Phatos Ontoverse Workshop
New Blog Post 2nd Ontoverss Workshol
G aR 20th - 21st Nov 2007
it Dosseldor!, Germany
Projects.
Publicstions.
Admin Options
Nevaisttzrs
Roles
Pemissions.
‘October
a2l e 4| B 6
7 8 9 1091 12 13 wJ
14 SEEE T 20
21 22 23 24 25 28 27 | =
28 29 30 31 !i
|4
Fertig @

Figure 4.14: The map area is divided into three parts, one of which displays the location of the
selected project member from the right side panel.

99

4.6.11 Ontology Projects

The building part and the connection to the other architectural parts of ONTOVERSE
is an ontology project. Each project includes one ontology and is characterized by a
name and description, information about its members, the creation data together with
the name of the founder, and of course the ontology itself.

Every registered user is allowed to start an ontology project from scratch or to join

an existing one with a given number of roles.

Project Model

In order to assign different projects to users, a PROJECT model is created to store the
different projects of users on the site. The required fields of the PROJECTS table are

shown in Table 4.21.

Name Type Description

id integer The primary key

name string Name of the project

description text Description of the project

ontology _name string The name of the project’s ontology

subtitle string Subtitle of the project

abbreviation string Abbreviation or a short name for the project
created_at datetime The date and time that the project was created
updated_at datetime The date and time that the project was last updated
founder_id integer ID of the user who created the project

Table 4.21: PROJECTS database table.

PrOJECT and USER models are linked together using a join model MEMBERS. This
model stores the IDs of the two separate models and links them together, and the date
and time of creation and update. On the model site, a many-to-many relationship is
specified by stating that a user has and belongs to many projects, and a project has and

belongs to many users (Figure 4.15).

100

users
login
crypted_password members
salt «| Created_at
created_at updated_at
updated_at user_id_
last_login_at 1 project_id
remember_token *
remember_token_expires_at
activation_code
activated_at 1
email _
rojects
enabled namg J
person._id description
ontology_name
* | subtitle
tags I abbreviation
name created_at
description updated_at
founder_id

Figure 4.15: Entity relationship diagram for users, members, projects, and project tags.

Controllers

Project Controller The generated PROJECT controller is a CRUD controller that
manipulates the resource PROJECT. This means that the controller belongs to exactly
one resource type and offers a designated action for each of the four CRUD operations.
(Additionally, the controller consists of the action index, to display a list of all resources
of this type, the new action, for opening the new form, and the edit action, for opening
the editing form.)

There are two ways to access ontology projects. An OA can access all projects with no
restrictions, whereas project members can only view their own projects or other projects
with limited access, i.e. mostly a general info profile. To view all projects, a normal
REST resource is created to retrieve projects from the corresponding model. To view
projects that only belong to one user or one member, the REST resource is nested be-

neath the users resource such as /users/1/projects and /users/1/projects/bio2me.

101

4.6.12 Project Wiki

Every ontology project has its own wiki page, which allows all project members to create,
edit, and display project relevant articles through a web inferface.

Features

The project wiki offers the following features:

e A revision system follows changes on any article beginning from the first revision.

It is easy to rollback to an earlier revision.

e Fach revision is associated with an author, so it is possible to see who changed

what.

e A diff algorithm tracks changes through revisions and lists the differences between

two of them by means of variable colors.
e The article’s content is markable supported by a WYSIWYG editor.
e Previewing allows to see exactly how the page will appear when saved.

e Connection to the site’s general forum that can be used by members to discuss

article-related topics and to provide feedback about the article’s content.

Due to its design, this wiki is also suitable as a Content Management System (CMS)
for OAs. As the ONTOVERSE site requires a number of information pages about the
site’s contents, as well as FAQ (Frequently Asked Questions) and help pages, this CMS

supports to write and maintain pages, which do not change very often.

Internal structure

Fach project page consists of a number of articles, which in turn, are dissected in many
segments. A project page includes a wiki main page as kind of table of contents where-

from all other article pages demerge. Per default, one article is set up for every project,

102

comprising the ORSD of this ontology project. Figure 4.16 illustrates the structure of a

project page.

Project page

Main page

Figure 4.16: Internal structure of a project wiki page.

Relationships

The project wiki is represented by three models: ARTICLE, SEGMENT, and ATTACH-
MENT. A project has many articles, and an article has many segments and attachments.

A single attachment can also be included in segments several times.

Article Model The ARTICLE model consists of a title and a content body. An article
can be created and edited by all project members, deletion is only allowed for PAs. The

ARTICLES database table is shown in Table 4.22.

An auxiliary table called CHANGES is joined with the PROJECTS and ARTICLES tables
to keep track of article’s changes. Essentially it logs the change modes and a summary

about these changes.

103

Name Type Description

id integer The primary key

title string Title of the article

body string Content of the article
version integer The article’s version number

created_at datetime The date and time that this article was created
updated_at datetime The date and time that this article was updated
project_id integer The project to which this article refers

creator_id integer ID of the creator of this article

Table 4.22: ARTICLES database table.

Segment Model Like an article, each segment has a title and a content body. Ta-

ble 4.23 shows the SEGMENT model’s database structure.

Name Type Description

id integer The primary key

title string Title of the segment

body string Content of the segment
version integer The segment’s version number

created_at datetime The date and time that this segment was created
updated_at datetime The date and time that this segment was updated

creator_id integer ID of the creator of a particular segment’s version

article_id integer ID of the segment’s article

Table 4.23: SEGMENTS database table.

Attachment Model The ATTACHMENT model is similar to the PHOTO model in
Section 4.6.6. Instead of storing a user’s ID it stores a project ID, and a wiki ID.

Figure 4.17 shows the relationships among projects, articles, segments and attachments.

104

Figure 4.17: Entity relationship diagram for projects (with history of changes), articles, segments

and attachments.

105

changes projects
version name
mode description
summary ontology_name
updated_at subtitle
article_title abbreviation
creator_id created_at
project_id updated_at
article_id founder_id

*

[attachments | 1 articles [segments |
filename title title
content_type 1 | body body
thumbnail version *| version
size 1—,_ created_at creation_at
height updated_at updated_at
width project_id creator_id
wiki_article creator_id article_id
parent_id
project_id

4.6.13 Publication Database: PubDB

This section gives an overview of the publication database in ONTOVERSE, called PubDB,
to provide a document basis for building corpora with domain-relevant scientific publi-

cations. Each corpus is pre-annotated with XML tags and a prerequisite for Ik:

Information Extraction The explosion of textual information requires new technolo-
gies that can recognize information originally structured for human consumption rather
than for data processing. Information extraction is associated with template based ex-
traction of information from language text, which was a popular task of the Message
Understanding Conferences (MUCs) in the late eighties and nineties [108]. During the
MUCs, there gradually arose a set of typical IE tasks [109, 110]. There are a number
of typical IE tasks that lately have been extensively researched with regard to open
domain TE. They include named entity recognition (NE), noun phrase coreference reso-
lution (CO), template element construction (TE), template relation construction (TR)
and scenario template production (ST).

NE is the recognition of names of people and organizations, place names, temporal
expressions, certain types of numerical expressions, and terminology extraction. CO
is the identification of (chains of) noun phrases that refer to the same object. It can
be differentiated between nominal and pronominal co-reference. TE adds information
(e.g. aliases, abbreviations, orthographical variants) to NE results using CO. TR is the
identification of relations (e.g. taxonomic relations, property relations, and other static
relations) between TE entities. ST aims at fitting the results of TE and TR into specified

event scenarios, meaning that ST determines the dynamic relations between TEs.

PubMedLoader

PUBMEDLOADER accepts search strings or keywords as input and searches for appropri-

ate articles in PubMed!?. At first only a list of PubMed IDs is returned not the whole

1PubMed is a very large corpus containing titles, abstracts, and other information about biomedical

research articles. PubMed Central (PMC). http://www.pubmedcentral.nih.gov

106

documents. A user can select in this list all articles he wants, and after this procedure
only those articles are fetched from PubMed and stored in PubDB. Figure 4.18 illustrates

this searching and storing process with PUBMEDLOADER.

PubDB Database model

The PubDB database model is organized in a star schema, which contains a single fact ta-
ble (here PUBLICATIONS) plus a number of dimensional tables (Figure 4.19). These other
tables represent additional information about a publication like its journal, keywords,
and supplements with corresponding file types. All tables regarding the publication

database model are described in the following.

Publications PUBLICATIONS is the central table in the PubDB database schema. It is
connected to publication-specific tables but also to users, projects, people, and tags. Its
attributes reflect individual metadata for publications such as title, author(s), abstract,
journal, page numbers, and unique document identifiers. Other data resources in this

table represent publication keywords and supplements (Table 4.24).

Journals The JOURNALS table contains the journal title (and its abbreviation), NLM’s

unique journal identifier, the ISO abbreviation, and the print and electronic International

Standard Serial Numbers (pISSNs and eISSNs) (Table 4.25).

Supplements and File Types The SUPPLEMENTS table stores supplemented mate-
rial which provides additional information about a publication (Table 4.26). FILETYPES

table includes the associated file types (or formats) of the supplements (Table 4.27).

Keywords KEYWORDS table stores all keywords and their general descriptions of all

publications in PubDB (Table 4.28).

107

List with
PubMed IDs
and titles

query string search PubMed returns

select
favorite publications

v

List with
selected

PubMed fetch publications

returns

v

Publications

in XML

extract
metadata

v

Each

Publication

check

_ Already
>._in PubDB?

No
=I PubDB

Figure 4.18: This flow chart illustrates the scenario where publications from PubMed are being
stored into the ONTOVERSE publication database PubDB. At first a searcher expresses an infor-
mation need using a formal statement called a query. The query is then given to PubMed to
return a list of publications which satisfy the searcher’s needs. Afterwards the searcher selects
his favorite publications and fetches again to PubMed to return all publications in XML format.
Each returned publication is extracted by metadata to check for availability in PubDB. New
publications are stored in PubDB and existing publications in PubDB are updated by newer

- New
version?

Yes

versions.

108

journals publications people
name title firsthame
nimID abstract middlename
pubmedJID pubmedID lastname
medAbbr refString phone_office
isoAbbr path phone_private
ISSN filename birthday
ESSN volume title
release initials
language emaill
——— firstpage email2
name _ lastpage homepage
description DOIp gen depr 9
source
xmiData
journal_id
supplements license_id users
name * login
description crypted_password
path salt
publication_id * created_at
filetype_id - updated_at
projects -
* name last_login_at
1 description
fileTypes ontology_name
name subtitle
description abbreviation tags
type created_at name' -
extension updated_at description
common founder_id

Figure 4.19: Entity relationship diagram for publications, users, people (authors), projects, and
tagging (only relationships concerning publications are shown).

109

Name Type Description

id integer The primary key

title string The publication’s title

abstract text The abtract of the publication

pubmedID integer PubMed identifier (PMID)

refString string Identification information

path string Path to publication pdf file

filename string Name of pdf publication file

volume string The number of the journal volume in which a publication
is published

release date Publication release data

language string The language in which the publication was published
firstpage integer First page of the publication

lastpage integer Last page of the publication
DOI string Document Object Identifier
xmlData text Publication metadata in XML

journal_id integer Journal ID

Table 4.24: PUBLICATIONS database table.

Name Type Description

id integer The primary key

title string Title of the journal

abbr string Title abbreviation

NlmlId integer ID assigned by National Library of Medicine (NLM)

pubmedJID integer PubMed Journal ID

MedAbbr string Standard abbreviation for the journal’s title
ISOAbbr string ISO abbreviation

ISSN string International Standard Serial Number of the journal
ESSN string Electronic Standard Serial Number of the journal

Table 4.25: JOURNALS database table.

Name Type Description

id integer The primary key

name string The name of the supplement
description text Supplement description

path string Supplement path in the file system

publication_id integer = Publication ID
filetype_id integer File type ID

Table 4.26: SUPPLEMENTS database table.

110

Name Type Description

id integer The primary key

name string The name of the file type

description text File type description

type string The file type

extension string File type extension

common boolean File format well-known or not
Table 4.27: FILETYPES database table.

Name Type Description

id integer The primary key

name string The name of the keyword

description text Description of the keyword

source string ~ Keyword’s source

Table 4.28: KEYWORDS database table.

111

Information Extraction Pipeline

Ontology Building Support The key idea behind IE in ONTOVERSE is to semi-
automatically maintain ontologies by adding new instances (ontology population), as
well as new concepts, properties and relations (ontology enrichment). This approach
can keep the instances of the domain ontology up to date, by periodically re-training

the IE system using a domain specific corpus.

gEmm
PubDB provides Publication

Publication

is pdf file? Yes —» pdf2txt

Converts pdf file
No (use abftract only) into plain te)?t format

MEX/MSEM |

1
returns

Y

MSEM result
in XML

et
\i

Preprocessing
S
Scenario
Template
Extraction
S

Postprocessing IE Output

A4

Figure 4.20: Information extraction pipeline in ONTOVERSE.

112

IE Pipeline Processing A project member selects a publication for IE. It is checked
if this publication exists in pdf file format and if present it is converted into a plain
text file. After this either the full text or only the abstract is used for the following IE
tasks. Machinese Extractor (MEX)!! extracts terms and recognizes named entities. All
found entities are classified into sets of different types. MSEM semantically analyzes
these sets by providing semantic role recognition as well as grammatical, lexical and
sentential semantic features. The output file in XML is tagged with language specific
information and hence prepared for the final scenario template extraction task (after an
optional preprocessing step which definitely enumerates sentences if desired). After IE
with several templates a postprocessing step might be useful to convert the extracted
information in a special format (e.g. OWL or HTML with extracted regions colored).

Figure 4.20 illustrates the IE as pipeline process.

HMEX and Machinese Semantics (MSEM) are constituents of the Connexor Machinese product family.

http://www.connexor.com/

113

4.6.14 Collaboration Architecture

This section presents the middleware, and ontology editing and visualization concepts
of the ONTOVERSE platform. This is a short summary of the German e-Science paper
in [111]. These technologies described here do not represent the works of the author of

this thesis, but they are presented here for completeness.

Back-end

The back-end persistently stores large amounts of data and grants concurrent access
to it. Moreover it supports group and community awareness features, the management
of different branches of an ontology, conflict resolution means during merge processes,
and additional data like timestamps and other copyright information. The back-end is
represented by a layer, called SWAT Semantic Web Application Toolkit, and consists of
a blackboard architecture (SQLSpaces), several agents communicating with SQLSpaces,

and a client as an interface between SQLSpaces and the web application (Figure 4.21).

SQLSpaces

Inference
Agent

ontology | ¢—

Pad

Browser

A

command

SWAT Client > space

Display /
Manipullation auxiliary
\d ! Discussions / — > | __Space

1

Timestamp
Agent

Ontoverse |«——— Documents
Web Frontend

Figure 4.21: SWAT architecture.

SQLSpaces SQLSpaces is a flexible blackboard architecture with a virtual shared
memory implementation called a tuple space (cf. [104]), which works on a relational

database. A tuple space server provides access to several spaces, each representing an

114

independent data storage. SWAT makes sure that each ontology lies in its own space,

and are separated from messages exchanged by the agents.

Agents The agent architecture allows to implement several agents: An Inference Agent
is written in Prolog and offers solutions for some problems related to ontologies like con-
sistency checking. Another Prolog agent (Query Agent) translates tuple space operations
into SQL statements. In order to guarantee copyright protection and advanced security

features a Security Agent is capable of registering the data with timestamps.

Collaborative work

To support collaborative work on parts of ontologies two types of awareness modes are

supported.

Asynchronous Collaboration This type is needed when several users work on the
same ontology part, but not at the same time. A user check out a public version and
thus creates a private workspace unseeable for other users. On the SQLSpaces layer this
workspace is a branch of the public version that belongs to this specific user. When the
user finishes his work he can commit this version to the original version or to a newer
version. During the commit all differences between both versions are calculated and a
list of conflicts is generated that could not be solved automatically (optimistic locking
strategy). As soon as these conflicts are solved by the user the commit is executed and

the result is available as a new public version.

Synchronous Collaboration The synchronous mode supports users to share a pri-
vate workspace with other users, who will then also be able to modify the ontological
data in this workspace. To prevent conflicts, ontological entities are locked during edits
(pessimistic locking strategy). All changes are instantaneously visible for all users in
the same workspace. All participants of the shared workspace get immediately notified
about changes and write locks. If such a synchronous session is finished the private

workspace can be committed and will become a new public version.

115

Ontology Editor

The ontology editor allows users to edit, visualize, compare and merge ontologies within
an ontology project.

Editing offers a lightweight editor to change the structure of an ontology by adding,
changing, and deleting concepts, properties, and descriptions. Ontologies can be com-
pared and based on this comparison be merged into a new ontology.

Visualization consists of a graphical representation of an ontology as a touchgraph,
which gives a user the big picture of the ontology and let him navigate, zoom in and
out to discover clusters and interrelations of his interest. Furthermore the user interface
offers a visualization called SmartTree for presenting the concept hierarchy in combina-
tion with graph views, which are especially useful to explore the network structure of
large ontologies. Within the SmartTree, ontology concepts are presented as nodes and
instances as special leaf types with different graphical representations.

The following features are implemented in SmartTree:

Focus and context A selected concept representation gets a bigger scale value than
those concept representations in the distant areas inside the visualization. This
focuses the concept of interest, whereas connections to the other concepts remain

visual, so that the user has a better overview with respect to the concept hierarchy.

Property-Lines They connect the actual selected concept with concepts in the range of
the OWL object property, so that the user gets an impression about the semantic

information of the ontology.

Condense and Explode A flap mechanism for hiding subtrees in the concept hierar-
chy that the user is not interested in. The benefit for the user is to hide uninter-

esting parts of the concept hierarchy.

116

4.7 Usage Scenarios

This section describes four scenarios that deal with some functionalities of the ON-
TOVERSE platform in the context of social networking, ontology project organization,

ontology population from extracted information and collaborative ontology editing.

4.7.1 User Interaction/Networking

The registered user Indra invokes the ONTOVERSE site, logs in and is informed about
the newest project members and ontology projects on the ONTOVERSE main page. Fur-
thermore, she can gain insight about ONTOVERSE related news articles for all platform
members, upcoming events of general interest and also events regarding only the projects
she is associated with. In the following, one typical user activity is described in more

detail:

1. Indra opens the ‘Ontologies’ forum page and selects topic ‘Bio-Ontologies’. She
reads some messages and clicks on Katrin, the author of one interesting response

about her recently initiated ontology project called BIO2Me.
2. Katrin’s user profile is shown.

3. A geographical map is selected to display Katrin’s address. Indra can see that

another member of her projects has the same address.
4. Indra decides to add Katrin as a contact and she has to approve Indra’s request.

5. After confirmation Katrin is registered in Indra’s contact list (Figure 4.22).

4.7.2 Project Organization

In this story Katrin asks the project administrator of BIO2Me Indra for permissions to
join this project. After becoming a member she investigates the project wiki and wants

to extend some wiki articles. These steps are listened in more detail:

117

'0o006

Ontoverse

e - €

*) hitp://www.ontoverse.net/users/3 /friends

v | (G~ Google

Search

Search

Navigation

About Ontovarse
Cantact

News

Al News.

Naws Articles.
Naws Categaries

Help & Discussions
Guidafines

Haia

FAQ

Forums

Blogs

AlPhatos

Photo Tags

My Ontoverse
Profile

Cantacts
Photos

New Biag Post
Uplaad Proto
Prmjscts
Publications

Admin Options
Newslstiers.
Rolaz

Parmissions
October

2 2 & 8 ¢
7 8 0 101112 13

\J
1415 16 17 18 19 20 |
2122 23 24 26 26 27 | =

<
28,29 30 31 &
Fertig 9

ONTOVERSE

Global Knowledge for Global Challenges

Home Projects Users Search

My Contacts

Ingo Paulsen X -

Uploaded a photo 5 days ago [edit contact]

Dominic Mainz L~

Posted in the forum 7 days ago [edit contact]

Jochen Kohl L~
Wrote a blog entry 17 minutes ago [edit contact]

-

Katrin Weller £
A Posted in the forum 5 days ago [edit contact]

W3C Completes Bridge
Betwoan HTML!
Microformats and
Semantic Web

The World Wide Web
Consortlum has completed
an important ink betwaen
Semantic Web and
microformats
communities...

Read more

Web intelligence 07
2nd - 5th Nov 2007
Silicon Valiey, USA.
ISWC 2007
11ih - 15t Nov 2007
Busan, Korea.
SAMT 2007

511 - Tth Dec 2007
Genova, taly.
BIONETICS 2007

10th - 13th Dec 2007
Budapest, Hungary.

Ontoverse Workshop
2nd Ontoverse Workshop
20th - 21st Nov 2007
Dsseldorf, Germany

Figure 4.22:

the contacts’ latest activities.

Contact list showing all contacts, types of relationships with the XFN icons and

1. Katrin searches for ‘BIO2Me’ on the main page and selects the project with its

complete name ‘Biolnformatics Ontology for Tools and Methods’.

2. The project’s profile page is displayed with some statistics about memberships and

also project tags.

3. She decides to join BIO2Me as a domain expert.

4. Indra receives Katrin’s request, confirms it and registers her as domain expert.

5. Katrin enters the main wiki page, selects the ORSD of BIO2Me and updates the

section about ‘Domain experts’.

118

6. She browses the ontology classes (or concepts) and clicks on the wiki article

‘Class:Program’.

7. A new page with all superclasses and subclasses of ‘Program’ is opened. Addi-
tionally a concept graph (as attachment) is presented which shows relationships

between ‘Program’ and other classes within BIO2Me (Figure 4.23).

8. Katrin is interested in the concept ‘StrAl’ and navigates to its article page by
choosing this concept. After this the wiki article page ‘StrAl’ is opened and she

extends it by some annotations.

4.7.3 Ontology Population

Indra enters the site. As a project administrator of BIO2Me she has all rights to edit
this ontology in every respect. In this case she is interested in extending BIO2Me with
the newest programs or tools regarding structure alignments from IE results. To achieve

her goal the following steps are necessary:

1. Indrainvokes the PubDB main page and enters the PubMed query string ‘structure

alignments’ into the search text field.

2. Two interesting results (‘MALIDUP’ and ‘StructSorter’) are selected and inserted
into PubDB.

3. She decides to have both articles automatically tagged with BIO2Me’s concept

entries.

4. After this both publications are also added to BIO2Me’s publication repository.

She selects a collection of articles for information extraction (Figure 4.24).

5. The IE task is started with a special template to detect hierarchical relationships

within publications.

6. She manually populates BIO2Me by meaningful extraction results via drag and

drop (Figure 4.25).

119

Malalla)

Ontoverse =)
@ e 2% 15 hitp: www. ontoverse.net/wiki/show; 70 v | b (TG~ Google Q) 4
Erste Schritte Aktuelle Nachrichten &
A
LOGOUT
Global Knowledge for Global Challenges.
§ Home Projects Users PubDB Search katrin
Search -
Class: Program Edit| History | Last ehange
Load Editor
Search
Navigation
i Superclass(es):
Abaul Ontoverse
— + Class: Tool
Subclass(es):
News
» Class: Stemioc
AlNaws.

+ Class: AutoDock
» Class: Poland
» Class: MARNA

:"E‘”“E * Class: ADT

= + Class: PMcomp
FAQ
+ Class: TLara
» Class: TCoffee

Help & Discussions

Forums
Blogs

Al Photos » Class: Openbabel
Phato Tags » Class: StrAl
» Class: PMmulti
My Ontoverse » Class: MolecularOperatingEnvironment
frofia * Class: MAFFT
Cantacts » Class: ClustalW
Ehune Concept Graph

New Blog Post
Upload Photo
Projects

Publications

(Alignment Program,

Format Editor, Viewer
Data What does
it make?
What is the frnat type
input?

List Aftachments

I

License?
http:/ fontoverse.cs.uni-duesseldorf.de:3000,wiki/show/ 121 [}

NETEE

Figure 4.23: BIO2Me’s concept ‘Program’ wiki article page. It shows all superclasses and
subclasses of a program and a concept graph as an attachment of this project wiki. Class articles
are automatically generated from the ontology’s classes.

7. BIO2Me’s wiki page is updated with the new entries and Indra writes a message
about one doubtable result up for discussion. (In this case she is not really sure if

‘StructSorter’ is an instance of subclass ‘StructureAlignmentProgram’.)

4.7.4 Ontology Editing

Indra opens the ontology editor and explores the new structure alignment programs in
the graphical representation of BIO2Me (Figure 4.26). In the meantime the BIO2Me

member Ingo has also opened the ontology editor and adds the protein database INV-

120

Walalls)

Ontoverse (=]
- - @ " huep: / jwww.ontaverse.net/pubdb) publications /projectcacheprojectid=45 s ~ Google Q) 2
Erste Schritte Aktuelle Nachrichten
A
LoGOUT
L Global Knowledge for Global Challenges
b —~ | Home Projects Users PubDB Search indra
pear Project Literature Collection: Bioinformatics Ontology for Tools and Methods
Search
[~ MAFFT version &: in aceuracy of multiple sequence alignment
Navigation
[~ MUSCLE: a multiple sequence alignment method with reduiced time and space complexity
Abaut Ontoverse
Contact [wi free enerqy force field with charge-based
Kone I~ CLUSTAL W; Improving the sensitivity of multiple sequence alignment through sequence weighting, position-specific gap penaliies and welght matrix choice
AllNais [~ MAFET. a novel method for rapid multiple sequence allanment based on fast Fourler transform
Yty [~ MARNA: multiple alignment and consensus siructure prediciion of RNAS based on sequence siructure comparisons.
Nows Catagarae
[~ Ihe Blue Ohelisk. in chemical informatic
el Niscussion [~ Allgnment of RNA base pairing probability matrices
Guideiines
e [~ Thermal of double-stranded nucleic acids: prediction of critical for gradient gel nd chain reaction
R I Ac inference of RNA structure evolution.
Forums:
Blogs I~ T-Coffee: A novel method for fast and accurate muliiple sequence alignment,
£ Piictos [~ HurBase: of MDNA control region sequences from primates.
Fhoto Tags
N enhance alignment benchmark for sequence alignment programs.
An enhanced RNA ali benchmark & I
‘Ontoverse
y [~ SIRAL: alignment of non-coding RNA using base pairing probability vectors in quadratic time
Profis
Gt [~ MALIDUP: A database of manually constructed structure alinments for duplicated domain pairs.
i) F & method for updatinga protein siructure alignment database
New Biog Post
Upload Photo
Projects
o Restrict collection by: Publications per Site: (20
Search| Delete| Analyse
Admin Options
Nowsistiors
Roles | ¥
Pamissions .
Z

Figure 4.24:

selected for an upcoming information extraction analysis.

Project publication collection for the BIO2Me ontology. Two publications are

HOGEN as an instance of subclass ‘DatabaseProtein’. During the editing process he gets

notified that some other parts of the ontology have changed. He decides to compare

both current ontology versions to see differences between them (Figure 4.27). As there

are different spellings for some structure alignment programs that may arouse naming

conflicts, BIO2Me’s project members have to agree about unique naming notations to

guarantee a successful ontology merging.

121

"o00 Ontoverse

=)
&~ - e i‘\) hitp: / jwww.ontoverse.net/pubdb/publications/iextractor # (Gl Google Q) £
Erste Schritte Aktuelle Nachrichten 3
~
LOGOUT
@ ovrovixs:
— Home Projects Users PubDB Search m

Search .
|E-Interface: Class View
Search
Navigation Last updated:Thu Oct 25 |z:41:.i| +0200 2007
Areus Ot) OperatingSystem
SiIae ») BonformaticsTool (Class name:
» OData
News 2 ™ | [MACIDUP
P) Computationaliethod
Al News. ¥ 0Tl
News Articlss. 5
ot Celagoron % @ Database i
¥) Program Annotations:
Holp 8 Disciletione ¥ o StuctureAlignmentProg | | (&) (5]
Guideiines.
©PMcom
:: J4g rdfs:comment “This concept was extracted by indra on Thu Oct 25 12:37:48 +0200 2007."
e OMARNA
Blogs
i ©MALIDUP
Al Phatos
PhdloiTags © PMmulti
My Ontoverse © StrAl
Profie
i oT_Lara
Phato
Saed © Stemlog . .
i i Information Extraction results:
Upload Phota ¥ & SequenceAlignmentPrd
Prokcs For: MALIDUP, StructSorter
a ‘Add extracted
Futioetons ©ClustalWy Resulls of the information exiraction: concept to
SHicisoreh 3 &lignment prograr D textglear
Admin Options OMAFFT =isa > @l msem pdf fext clear
S ©MARNA ENELGUEN ~isa > @iiiEalgimentpoamm® msem odf text clear
Roles
Permisions StrAl L) | MALIDUP added to StructureAlignmentProgram.
©T_Coffee |8
e
@ Poland v
e e T}

Figure 4.25:

Information extraction results are presented in the lower right part of the IE-

Interface window. It shows that ‘MALIDUP’ and ‘StructSorter’ are alignment programs. Fur-
thermore, ‘MALIDUP’ is qualified as structure alignment program and therefore classified into
BIO2Me’s class hierarchy via drag and drop (tree representation on the left side). For the present
‘StructSorter’ is also ranked as structure alignment program (Figure 4.26).

122

[aXallal Ontoverse (=]
@ ¢ £2% '@ hup:/ jwww.ontoverse net/editorTproject_id=45 v Google Q)%
Erste Schritte Aktuelle Nachrichten 3
A~
LOGOUT
Global Knowledse for Global Challenges
Home Projects Users PubDB Search indra
Navigation ¥iew Compare Merge
Abau Coloies view | Compare | Merge |
Contact — 3
b iinbimaiedt o ‘Edu'Tnut Graph | Morcega |
News L BiologicalT ask Radius [4 ~lzoom =] 4T [i
Computationalitethat I
AlNews 2 Data -
umericalbetricaData
Sertriag ructuraiData
News Gategores SymbolcData
4 DataFormat
Help & Discusslons OperatingSystem
Tool
E:""”‘“ - Database
o
=/ Program
FAQ
i = Poland
Bioge - SequenceAlignmentProgram
AllPhotos =1 StructureAlignmentProgram
Pholo Tags 1+ MALIDUP
e MARNA offes
My Ontoverse 1 PMcomp
Prfia E‘tMm‘“‘t‘
Gantasts P Stemiac
SteAl | SequenceAll) -
Phates = StructSorter E
New Blog Past
Uplosd Phata
i e Description ' Propertias | instances |, B
Rubleations Object Properties
Datatyne Properties ml
Admin Options hasRuntimeComplexity string
T hasGUl
— hasDownloacLacation string
= isPublishecin string
Fersmina hasDocumentation
ek haseenchmark S
arcl isCommandLineProgram ndisics®
r hasD string
Search hasLicenseType
hasDocumentationLanguage language
hasMemoryComplexity string SymDoL
Project: hasiebService string
hasOy string
Tacis and Methoda gsysten
Projacts Hama structurs
Edltar
Wi Main Paga
Upload Attachmant
List Attachmants ~
Naturens¥ogifetnod Bt e
[l I3 vy
v
Applet thesis.ui.main MainFrame started Q 4

Figure 4.26: On the left the ontology editor illustrates the class view and the properties of the
selected instance ‘MALIDUP’ at the bottom. ‘MALIDUP’ is highlighted in the graphical view
on the right side. This view shows all aligment programs in BIO2Me in the top half and other

classes below them.

123

000

Ontoverse

=)
@ <@ 4O hpwwwontoverse retseditorrproject_id=45 v * Google Q)3
Erste Schritte Aktuelle Nachrichten 3,
=~
LOGOUT
Global Knowledge for Global Challenges
Ex Projects Users PubDB Search ingo
Navigation View Compare Merge ‘
About Ontovens View' Compare | Merge |
Cont
o List | Matrix |,
News 000 |
Alews 7 hins 18 StV ualeation ool <
Bivinfermatiecs Toal § I SystemsBiolagyTool I
e 1 BiologicalTask 14 10 BielogicalTask
News Categores. o 10 — cpine
1.0
Helpa. Slabomat 3 i DataFormat
<l = i OperatingSystem
Besipong ¥ Datsbiace 70 Toal
e DatabaseNucieizacii] W Datab:
- W Database
£40 Mo theon - Databasehucleicacid
i v szram i T DatabaseProtein I
Blogs Program
AlPhotos Poland 2 pgmam
1.0 s
Photo Tags 7/ SequenceAlignmentProgram 5 SequenceAlignmentProgram
Clustal_\W Lo Clustalw
My Ontoverse MAFET WAFFT
Profle MARNA = MARNA
s STRAL e strAl
TCoffee T-Coffee
Phales 1 10 L ——
N Biog P 7 StructursAlignmentProgram § StructureAlignmentProgram
Ul Phate MARNA [s d s i
Projects PMcamp = MARNA
Pubizstons iy £ [orihieamp I+
;TR‘AL Hl 7 70 D ool 2
)
Admin Options
Newsistiers Description Properties | instances |,
Description ' Properties | Instances |
Foles T lObject Properties
Permissians AT TS Datatype Properties
MAFFT ormplexity string
e asGUl
asDownloaglecation string
string
asDocumentation
asBenchmark
Project: CommandLineProgram
asDao Sting
Biainformalics Oni for
St ana ditnoda ™ asiicenseTupe
Projocts tisra Namespace asboc anguage language
i tp: urw.oroverse. oro/BI02 Me. owlé Complexity string
e string
x:.‘::m:zqn Is] string
Wiki Recent Changss
Uplosd Attachmant
List Attachmants W
v
Applet thesis.ui.main.MainFrame started o

Figure 4.27:

String based comparison of two BIO2Me versions. Some classes have different

namings, e.g. STRAL and StrAl have only a value of 0.4 caused by upper and lower cases.

However, they represent the same instance.

124

Chapter 5

Conclusion and Outlook

The necessity for ontology engineering, annotating, and integrating is uncontested. On-
tologies are the core element for an upcoming Semantic Web. Furthermore, the so-called
Web 2.0 initiatives aim at interconnecting communities on the web and enabling fruitful
collaboration for private and business use as well as for scientific work in various re-
search areas. Combining Semantic technology and Web 2.0 aspects holds potential for
new methods in (scientific) knowledge management, communication and collaboration in
research and development. In this context several applications are developed which deal
with problems of knowledge processing, knowledge management and knowledge transfer.

This thesis also contributes to these fields of research focused on the life sciences
community. Especially, bioinformatics is characterized by a high degree of cooperation
among the researchers who contribute their part to the whole knowledge base of genomics
and proteomics. It results within the scope of the ONTOVERSE research project with the
objective to develop an Internet-based application for collaborative ontology engineering
in terms of an ontology wiki.

A motivation at the beginning of this thesis for the ONTOVERSE project was the
lack of high-value ontological annotations in sequence database entries. It might be
eligible that prospective annotations — particularly if implemented collaboratively —
reflect ontological representations more accurately not just to classify genes by sequence

data but also by semantic information. Semantic annotation of sequence data as a

125

new approach for knowledge production and data preparation is well supported by this
cooperative platform.

Against this background the main aspect in this thesis is the documentation of the
developed ontology wiki as integral part of the ONTOVERSE platform. This ontology wiki
as a Web 2.0 architecture manages the scientific user community and is interconnected
with the collaboration architecture consisting of the middleware and the visual ontology
editor.

To assist the community in populating ontologies, ONTOVERSE integrates informa-
tion extraction technologies that can propose new concepts and instances extracted from
scientific publications. IE screens textual data to fill predefined templates with facts
that can be used to extend knowledge bases after being curated by ontology designers.
The publication database PubDB includes project-specific text corpora. In return, the
newly developed ontologies themselves will help to retrieve relevant documents from the
database.

In the first part of this thesis the author developed a database of homologous inverte-
brate gene families and a graphical application to allow one to simultaneously handle all
the data available in INVHOGEN to analyze homology relationships: taxonomic informa-
tion, sequence annotations, multiple sequence alignments and phylogenetic trees. In the
second part the field of responsibility within the ONTOVERSE research project was the
implementation of the ontology wiki to manage user communities and ontology projects,
to maintain a publication database providing project-specific document collections and
enabling an interface for an information extraction application. IE results are integrated
into respective ontologies and added to the underlying ontology backend system.

ONTOVERSE is an ongoing project that started in October 2005. The features de-
scribed in this thesis are essential for a collaborative ontology development framework,
but we are working to extend and to improve ONTOVERSE. In particular, further
work needs to be spent on sophisticated awareness mechanisms in the user interface
to make the ODs and DEs aware of other people working in the same field. Further-

more, the integration of information extraction results into ontologies should be done

126

semi-automatically.

With BIO2Me we present the fundament of a structured knowledge base in the
field of bioinformatics tools and methods. The ontology so far covers the structure
for the classification of bioinformatics programs. It features relevant information about
the programs and therefore helps scientists to find adequate tools for their individual
purposes. We intend the extension of BIO2Me with contributions from a larger number
of experts on specific domains of the bioinformatics field, as building ontologies on such a
substantial domain demands the knowledge of many researchers. To enable sophisticated
queries in BIO2Me, we plan to develop an expert system operating on the basis of
BIO2Me. The expert system should find details of entered programs as well as programs,
that meet certain criteria.

In order to achieve the common goal, ONTOVERSE is a platform for collaborators to
work and share perspectives, to view common work, and to interactively evaluate and

critique each others’ contributions.

127

Chapter 6

Fazit und Ausblick

Die Notwendigkeit zur Entwicklung, Annotation und Integration von Ontologien als
Kernstiick des Semantic Web ist unbestritten. Web 2.0 Technologien ermoglichen zu-
dem die Vernetzung von Nutzergemeinschaften im Netz und stellen diesen Plattformen
fiir die Zusammenarbeit bereit, sowohl fiir private als auch geschéaftliche Zwecke und
wissenschaftliche Arbeiten in verschiedenen Forschungsbereichen. Die Kombination se-
mantischer Technologien mit Web 2.0 Ansétzen birgt Potential fiir neue Formen des
(wissenschaftlichen) Wissensmanagements, der Forschungszusammenarbeit und Kom-
munikation. In diesem Zusammenhang werden aktuell verschiedene Anwendungen ent-
wickelt, welche Probleme der Wissensaufbereitung, des Wissensmanagements und des
Wissenstransfers flir Forschung und Entwicklung aufgreifen.

Vor diesem Hintergrund ist auch der Beitrag dieser Arbeit zu sehen, welche den
Finsatz von semantischen und kollaborativen Technologien speziell im Bereich der Life
Sciences zum Thema hat. Dies ist besonders fiir die Bioinformatik relevant. Diese zeich-
net sich durch ein hohes Maf§ an Kooperation zwischen Wissenschaftlern, beispielsweise
in den Bereichen Genomik und Proteomik, aus. Die Arbeit entstand im Rahmen des
ONTOVERSE Forschungsprojektes, dessen Ziel der Aufbau einer Internet-Plattform zur
kollaborativen Erstellung von Ontologien ist.

Ausgangspunkt dieser Arbeit war der Mangel an hochwertigen Annotationen in Se-

quenzdatenbankeintridgen. In gemeinsamer Zusammenarbeit soll die Annotationsqualitat

128

durch Ontologieeintrage erhoht werden, damit Gene nicht nur anhand von Sequenzen,
sondern auch mit semantischen Informationen klassifiziert werden. Zur Umsetzung
dieser Ideen wird eine Kooperations-Plattform zur Erstellung fachspezifischer Ontolo-
gien bendtigt.

Schwerpunkt dieser Arbeit ist die Implementierung einer solchen Plattform als grund-
legender Teil des ONTOVERSE Projektes. Ein sog. Ontologie-Wiki nutzt neueste Web 2.0
Technologien zur Verwaltung der Benutzer-Community. Weiterhin dient es als Bindeglied
sowohl zu der Kollaborations-Middleware (Backend) als auch zum graphischen Ontolo-
gieeditor.

ONTOVERSE integriert Technologien der Informationsextraktion und unterstiitzt so
die Community bei der Erweiterung von Ontologien um neue Konzepte und Instanzen,
die aus wissenschaftlichen Publikationen gewonnen werden.

Im ersten Teil der Arbeit wurde eine Datenbank fiir homologe Genfamilien von In-
vertebraten entwickelt (INVHOGEN). Eine graphische Benutzeroberfliche erlaubt die
Betrachtung aller relevanten Daten in INVHOGEN bei der Analyse homologer Beziehun-
gen: Informationen zu Taxonomien, Sequenzannotationen, multiple Sequenzalignments
und phylogenetische Bédume. Im zweiten Teil der Arbeit wurde ein Ontologie-Wiki fiir
die Benutzer- und Projektverwaltung entwickelt. Zusatzlich wurde eine Publikations-
datenbank implementiert, die Textkorpora aus wissenschaftlichen Publikationen verwal-
tet. Fiir die Integration von passenden Informationsextraktionsergebnissen in Ontologien
wurde eine Schnittstelle zur Connexor Software programmiert und die Kommunikation
mit dem Ontologie Backend zur Mitteilung der Ergebnisse gewahrleistet.

ONTOVERSE ist ein laufendes Projekt, das im Oktober 2005 begonnen wurde. Die
Entwicklungen, die in dieser Arbeit beschrieben wurden, sind grundlegende Bestandteile
der ONTOVERSE Ontologieentwicklungsplattform, welche derzeit noch weiterentwickelt
und verbessert wird. Es wird besonders daran gearbeitet die Benutzerschnittstellen
und Kommunikationsformen zwischen Ontologiedesignern und Fachexperten zu erweit-
ern und das Auffinden potentieller Ontologieprojektmitglieder zu erleichtern. Weiter-

hin soll die Integration der Informationsextraktionsergebnisse in Ontologien nicht nur

129

manuell, sondern auch semiautomatisch erfolgen.

Mit BIO2Me wurde die Grundlage fiir eine Wissensbasis im Bereich bioinformatischer
Werkzeuge und Methoden geschaffen. Bislang bildet diese Ontologie hauptséchlich die
Struktur zur Klassifikation bioinformatischer Programme ab. BIO2Me bietet hierbei
relevante Informationen zu einzelnen Programmen und unterstiitzt Wissenschaftler auf
der Suche nach Programmen fiir ihre individuellen Verwendungszwecke. Die von uns
geplante Erweiterung der BIO2Me Ontologie bedarf der Mithilfe weiterer Fachexperten
aus verschiedenen Wissensbereichen, um die Doméne bioinformatischer Werkzeuge und
Methoden noch weiter reichend abzudecken. Zu einem spéteren Zeitpunkt wird mit der
Erstellung eines Expertensystems begonnen, das den Zugriff auf die in der Ontologie
gespeicherten Informationen erleichtern wird.

ONTOVERSE dient als Plattform, um Wissenschaftler untereinander zu vernetzen
und bei der Bearbeitung von Forschungsfragen zu unterstiitzen. Wissen wird somit im

gemeinsamen Dialog interaktiv ausgearbeitet und bereitgestellt.

130

Appendix A

Table & Database Schema

A.1 INVHOGEN

A.1.1 Attributes Assignments of a Gene Family

Table A.1 shows the assignment of attribute values of the selected GF INV0O00805 from

INVHOGEN, and one of its six GF entries with the accession number P82706.

A.2 Ontoverse

A.2.1 Ontology Wiki Database Schema

Figure A.1 gives an overview of the ONTOVERSE ontology wiki database schema. The
types in all second columns represent migration types in Rails which are mapped to
individual database adapters, e.g. MySQL and Oracle. For instance, a column entry
declared to be :integer in a migration would have the underlying type int(11) in

MySQL and number (38) in Oracle.

131

Attribute Value
alignment IMO3_DROME MKFLSLA--FVLGLLALANATPLNP--GNVIINGDCRVCNVRA--
Q9V8G2_DROME MKWMSLV--FLCGLLAMAVASPLNP--GNVIINGDCRHCNVRGG-
Q8IMEO_DROME MKLLSIT--FLFGLLALASANPLSP--GNVIINGDCKVCNIRGD-
IMO1_DROME MKFFSVVTVFVLGLLAVANAVPLSPDPGNVIINGDCRVCNVHGGK
IMO2_DROME MKFFSVVTVFVFGLLALANAVPLSPDPGNVVINGDCKYCNVHGGK
. QOV8F7_DROME MRFFAIVTVFVLGLLALANATPLSPDPGNVIINGDCVNCNVRGGK
a KIorii. ok kkRkIk K Rk ok kkkRRRRk kKD,
E gfDescription Immune-induced peptide 1,2,3 precursor
£ | gfldentifier INV0O00805
S numberOfSequences 6
numberOfSpecies 1
phylogeneticTree (IMO1_DROME:0.024937,IMO2_DROME:0.097221, (QOV8F7_DROME:0.122833,
((IMO3_DROME:0.060520,Q9V8G2_DROME: 0.258919) :0.055613,Q8IMEO_
DROME:0.256255) :0.055475) :0.050067) ;
taxonomy Drosophila melanogaster Arthropoda Brachycera Diptera
Drosophila Drosophilidae Endopterygota Ephydroidea Hexapoda
Insecta Muscomorpha Neoptera Pterygota
5. | accessionNumber P82706
5 entryDescription Immune-induced peptide 1 precursor (DIM-1)
é entryName IMO1_DROME
é taxID 7227
é wholeEntry ID IMO1_DROME STANDARD; PRT; 45 AA.
= AC P82706; Q9V8F6;
//
identifier G0:0005576
= | minDistance 5
& maxDistance 5
8 name defense response
o quantity 2
subOntology Biological Process (P)
taxID 7227
E parentIdentifier 32351
S | rank species
S | scientificName Drosophila melanogaster
ﬁ genbankCommonName fruit fly
misspelling Drosophila melangaster
8 type Protein
Z | length 45
é’ molecularWeight 4670
A | sequence MKFFSVVTVFVLGLLAVANAVPLSPDPGNVIINGDCRVCNVHGGK
Table A.1: Attribute values in GENEFAMILY, GENEFAMILYENTRY, GENEONTOLOGYTERM

(GOTERM), TAXONOMY, SEQUENCE tables for GF INV000805, GO term GO:0005576, and one
of six GF entries (with accession number P82706).

132

"9.IM)oOIR
o} Jo fp,ﬁu& JUoIfIp ojul TUQZOMM oJe I0[0O owres o) UM SO[qeT, 'IIm %woﬁmvugo HSYHHAOLN(Q) 94} JO vwayods aseqeie(J TV O.HS,MTM

Buls NSS3 UE5j00q UOLIWOO
Buujs NSSI Bulis UOISUBIX
1abajuf Buijs 1Gqy0St — zebour | [adky
4ebajuy bulis Jqgypaw |~m@.m|, 1X8)] uonduosap
= uf ndl
swinerep JeBajul qirpawand || a1 | buuis aweu
X3] Apoq | * Jebajur qruu . Bums sadA 9]
Sitet o oD Y& parepdn Buis EE Jobor | obedise | L
* EEEY T pajeald sjeunol Jobajur disil
Jobauy [o|qezuoyine Buls obenbue| | +
n Bus | adAy_s|qeziioyine 280 ESEE]
_ 1Xa] uondiosap . Bus SWN|OA
1abajul pr_Jesn buuis aweu BuLs ENEREN
[__JoBeju/ | 1unoo SlusLIliod s9]04 Buis Ured
owperEp 1&_perepdn . Jios Bus Bumisyel | *
TR TE_Pojesio |- Jebajur | aipewqnd
Xo] Apoq o] J0BNSqE
Bulis EI . N * Bums Ei
somue - [___suonedjiand__
Jobojul pi—uos.sad suogeoyqnd —
EE JUNCO_SajUS *
ouieiEp 18K JSe|
1 Buuys Ruanoe el
UEs/00q SUSLILIOD_B|qeud 7 5OIN0S
i 2 Boig EEBmu_. Bu|
UB3j00q I
_.|m|:.5m [EwIoap @
awinarep 1e_pajeAioe 9] ojur ppe
x [bums | 5P00_UONEAIIOE | — [Buus]| EES
~eBeir orKioba1E | auwpeiep | Je_sendxa uayoj sequewar | 0 Buis 103118
I ZeBamr - Buis UBX0]_JoquiaLial . [Bumys diz
|m§mm. [7& porepdn]| ouwjorep Ve_ujboy ise| [Bums| __ Ao|
| _Swhsiep | 1e pajepdn | suneiep | 1o paiepdn]| Buis Kiunod
ouwa1ep 1&_pajeaso 4 s
[owneiep | 1@ poysnand | awneyep 1" pajeald sossalppe x
suinsiep 1e_paysiign: s s | *
UE5/00q PousHqn a.:.tgm 10MSSed pa a:bo Buws | —abedauioy "
Xa1 Apoq | * - {tﬂ - Buis | uoneziuebio
1] S15doufs uts <o ulbol [xe1| uondiosep
Bugs ol T ; BuLjs sweu | *
syodai ' - Sjuswedap
' *
i Jobajul pI_1opunoy
| . awnsjep ﬁl\vmumvm:
T RES T PI_winioy i * _ EEEg 18_pajeaio
ST I oidoT VT ! [Zebaiul priesn Jebajur | 2] _m“.mmw_.x m:tm UONBIABIGaE
awpeiEp | 18 perepdn SUBIED ! UE5/00g | 08D MOys mm:qmm " m: us l»mE
awnaiep | e pelean |* L ! [EWIO8p Buol 0eb SaSPUSL uls | suweu ADOJOJUO
1X8] Apoq | i jewoap | ye| 0ob | ! ! xa1 uondudsap
sisod ' BUijelEp | 18 pateaio * Buijs aweu
x ! o] Apog L ms_a._oa . .
! bus e
+ i sojoud - [Jebour]
[Jebaii| 1unco soidor ! [_(puaiy) siesn_| * JoBo1u prjoeloid
[ownerep | T&_perepdn ! EEED pr_j09l0.d | EEEY ye_pajepdn
[owpoiep| 1@ pawen | ' [J@Bojur| prJesn | R e pajeaid
xa] uonduosap - * ™ swnerep | 1 parepdn Jobajur UOISIOA
Buijs ENED] W EEE) 18 pajeald 8] Apoq b L
siaquiawl [9
suinioj i a Sa|oIIE Jobaju I jooloid
. Joba}Ul prjuased
i LIPS OSIBAOUQ - == == mmm oo oo mmmm oo oy '] Jabayuj | EENERR
PR Jobalu yIpIm
ETEE 1e_pajepdn uesj00q | painbas_uibo TR 18b2}u WBiay
EEEY T&_pejealo uesj00q | oljoads 10alqo aulleIEp Jabaju ES
PR [IES JoPajul | 1dwone puas ise| Buus Sj04_syunad PR Bus JreuquIngy
8] Apog [0} buiys uonoe x8) Buis odA|_jusuoo
buujs 100lgns [[Buus 19]|0JJu0d [buuis
SIo|9|SMau Siiewa suojssjued Sjuswbas SjUBWYOENE

133

Abbreviations

ACID
ANSI
API
BIO2Me
CMS
CRUD
DE

DL
DNA
DTD
EMBL
GF

GO

GUI
HOVERGEN
HSP
HTML
HTTP
IE
INVHOGEN
ISO

MO
MOC

Add, Change, Inquire, Delete

American National Standards Institute
Application Programming Interface
Biolnformatics Ontology for Tools and Methods
Content Management System

Create, Read, Update, Delete

Domain expert

Description Logics

Deoxyribonucleic acid

Document Type Definition

European Molecular Biology Laboratory
Gene family

Gene Ontology

Graphical User Interface

HOmologous VERtebrate GENes
High-scoring Segment Pair

Hypertext Markup Language

Hypertext Transfer Protocol
Information extraction

INVertebrate HOmologous GENes
International Organization for Standardization
Managed Object

Managed Object Context

134

MOM
MSA
MVC
NCBI

OA

oD
ORSD
OWL

PA

RDF
RDFS
REST
ROA

RSS
SMTP
SOAP
SPARQL
SQL
SWRL
TrEMBL
URI

URL
W3C
WWW
WYSIWYG
XFN
XHTML
XML
XML-RPC
YARS

Managed Object Model

Multiple Sequence Alignment
Model-View-Controller

National Center for Biotechnology Information
Ontoverse administrator

Ontology designer

Ontology Requirement Specification Document
Web Ontology Language

Project administrator

Resource Description Framework

RDF Schema

REpresentational State Transfer
Resource-Oriented Architecture

Really Simple Syndication

Simple Mail Transfer Protocol

Simple Object Access Protocol (originally)
SPARQL Protocol and RDF Query Language
Structured Query Language

Semantic Web Rule Language

Translated EMBL

Uniform Resource Identifier

Uniform Resource Locator

World Wide Web Consortium

World Wide Web

What You See Is What You Get

XHTML Friendship Network

Extensible Hypertext Markup Language
Extensible Markup Language

XML Remote Procedure Call

Yet Another RDF Store

135

Bibliography

Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.C., Estreicher, A., Gasteiger,
E., Martin, M.J., Michoud, K., O’Donovan, C., Phan, I., Pilbout, S., Schneider,
M. (2003) The SWISS-PROT protein knowledge base and its supplement TrEMBL
in 2003. Nucleic Acids Res., 31, 365-370.

Ashburner, M. et al. (2000) Gene Ontology: tool for the unification of biology.
Nat. Genet., 25, 25-29.

Camon, E., Magrane, M., Barrell, D., Binns, D., Fleischmann, W., Kersey, P.,
Mulder, N., Oinn, T., Maslen, J., Cox, A. et al. (2003) The Gene Ontology An-
notation (GOA) project: implementation of GO in SWISS-PROT, TrEMBL and
InterPro. Genome Res., 13, 662-672.

Conesa, A., Gotz, S., Garcia-Goémez, J.M., Terol, J., Talén, M., Robles, M. (2005)
Blast2GO: a universal tool for annotation, visualization and analysis in functional
genomics research. Bioinformatics, 21, 3674-3676.

Zehetner, G. (2003) OntoBlast function: From sequence similarities directly to
potential functional annotations by ontology terms. Nucleic Acids Res., 31, 3799-
3803.

Groth, D., Lehrach, H., Hennig, S. (2004) GOblet: a platform for Gene Ontology
annotation of anonymous sequence data. Nucleic Acids Res., 32, W313-W317.

Lord, P., Stevens, R., Brass, A., Goble, C. (2003) Investigating semantic similar-
ity measures across the Gene Ontology: the relationship between sequence and
annotation. Bioinformatics, 19(10), 1275-1283.

Jakoniené, V., Rundqvist, D., Lambrix, P. (2006) A method for similarity-based
grouping of biological data. 3rd International Workshop on Data Integration in
the Life Sciences, LNBI 4075, 136-151.

Stevens, R., Goble, C.A., Bechhofer, S. (2000) Ontology-based Knowledge Repre-
sentation for Bioinformatics. Briefings in Bioinformatics, 1(4), 398-416.

Cheng, J., Sun, S., Tracy, A., Hubbell, E., Morris, J., Valmeekam, V., Kimbrough,
A., Cline, M.S., Liu, G., Shigeta, R., Kulp, D., Siani-Rose, M.A. (2004) NetAffx

136

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

Gene Ontology Mining Tool: a visual approach for microarray data analysis. Bioin-
formatics, 20, 1462-1463.

Mao, X., Cai, T., Olyarchuk, J.G., Wei, L. (2005) Automated genome annota-
tion and pathway identification using the KEGG Orthology (KO) as a controlled
vocabulary. Bioinformatics, 21(19), 3787-3793.

Frankewitsch, T., Prokosch, U. (2001) Navigation in medical Internet image
databases. Med Inform Internet Med., 26(1), 1-15.

Edwards, J.L., Lane, M.A., Nielsen, E.S. (2000) Interoperability of Biodiversity
Databases: Biodiversity on Every Desktop. Science, 289, 2312-2314.

Paulsen, 1., Mainz, D., Weller, K., Mainz, I., Kohl, J., von Haeseler, A. (2007)
ONTOVERSE: Collaborative Knowledge Management in the Life Sciences Network.
In: Proceedings of the Germany eScience Conference 2007, Max Planck Digital
Library, ID 316588.0.

Paulsen, I., von Haeseler, A. (2006) INVHOGEN: a database of homologous inver-
tebrate genes. Nucleic Acids Res., 34, D349-D353.

Gruetter, R., Eikemeier, C. (2004) Applying the Semantic Web to clinical process.
Proceedings of 49. Jahrestagung der Deutschen Gesellschaft fiir Medizinische In-
formatik, Biometrie und Epidemiologie, Innsbruck, Austria (26th-30th September
2004).

Berners-Lee, T., Hendler, J., Lassila, O. (2001, May) The Semantic Web. Scientific
American, pp. 28-37.

Decker, S., Melnik, S. (2000, September/October) The Semantic Web: The roles
of XML and RDF. IEEE Internet Computing.

Cardoso, J. (Ed.) (2007) Semantic Web Services: Theory, Tools and Applications.
Information Science Reference. Hershey, New York.

Horrocks, 1., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.
(2003) SWRL: A semantic web rule language combining OWL and RuleML. Avail-
able at http://www.daml.org/2003/11/swrl/

Colomb, R. (2005) Ontology and the semantic web study book (Vol. 1). Brisbane:
University of Queensland.

McGuinness, D.L., Van Harmelen, F. (Eds.) (2004, February) OWL Web onto-
logy language overview W3C recommendation. Retrieved December 20, 2005, from

http://www.w3.org/TR/owl-features/

Neches, R., Fikes, R.E., Finin, T., Gruber, T.R., Senator, T., Swartout, W.R.
(1991) Enabling technology for knowledge sharing. AI Magazine, 12(3), 36-56.

137

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

[37]

Gruber, T.R. (1993) A translation approach to portable ontologies. Knowledge
Acquisition, 5(2), 199-220.

Guarino, N., Giaretta, P. (1995) Ontologies and knowledge bases: Towards a ter-
minological clarification. In Towards Very Large Knowledge Bases: Knowledge
Building and Knowledge Sharing, Mars N (ed). IOS Press: Amsterdam, pp. 25-32.

Sheth, A. (2003, July) Semantic metadata for enterprise information integration.
DM Review.

Jasper, R., Uschold, M. (1999) A framework for understanding and classifying
ontology applications. Paper presented at the IJCAI99 Workshop on Ontologies
and Problem-Solving Methods.

Fensel, D. (2001) Ontologies: Silver bullet for knowledge management and elec-
tronic commerce. Berlin: Springer-Verlag. Retrieved October 24, 2006, from
http://www.cs.vu.nl/ dieter/ftp/paper/silverbullet.pdf

Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(Eds.). (2003) The description logic handbook. Cambridge University Press.

Gémez-Pérez, A. (2004) Ontology evaluation. In Handbook on Ontologies, Volume
10 of International Handbooks on Information Systems, chapter 13. Staab S, Studer
R (eds). Springer: pp. 251-274.

Li, L., Horrocks, I. (2004) A software framework for matchmaking based on Seman-
tic Web technology. International Journal of Electronic Commerce, 8(4), 39-60.

Lacy, L.W. (2005) OWL: Representing Information Using the Web Ontology Lan-
guage. Trafford Publishing.

Bard, J.B., Rhee, S.Y. (2004) Ontologies in biology: design, applications and
future challenges. Nat Rev Genet., 5(3), 213-222.

Kumar, A., Smith, B. (2004) On controlled vocabularies in bioinformatics: A case
study in gene ontology. Drug Discovery Today: BIOSILICO, 2, 246-252.

Bodenreider, O., Aubry, M., Burgun, A. (2005) Non-lexical approaches to iden-
tifying associative relations in the gene ontology. Paper presented at the Pacific
Symposium on Biocomputing, Hawaii. World Scientific.

Wroe, C.J., Stevens, R.D., Goble, C.A., Ashburner, M. (2003) A methodology to
migrate the gene ontology to a description logic environment using DAML+OIL.
Pac. Symp. Biocomput. pp. 624-635.

MGED. (2005) Microarray gene expression data society. Retrieved October 24,
2006, from http://www.mged.org/

138

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Stoeckert, C.J., Causton, H.C., Ball, C.A. (2002) Microarray databases: Standards
and ontologies. Nature Genetics, 32, 469-473.

Stevens, R., Baker, P., Bechhofer, S., Ng, G., Jacoby, A., Paton, N.W., Goble,
C.A., Brass, A. (2001) TAMBIS: Transparent Access to Multiple Bioinformatics
Information Sources. Bioinformatics, 16(2), 184-186.

Hillegass, A. (2004) Cocoa Programming for Mac OS X, Second Edition. Addison-
Wesley.

Cox, B., Novobilski, A. (1991) Object-Oriented Programming: An Evolutionary
Approach, Second Edition. Addison-Wesley.

Apple Inc. (2006) Apple’s Developer Connection: Developing with Core Data.
http://developer.apple.com/macosx/coredata.html

Thomas, D., Fowler, C., Hunt, A. (2005) Programming Ruby: The Pragmatic
Programmers’ Guide, Second Edition. The Pragmatic Programmers, LLC.

Thomas, D., Heinemeier Hansson, D. (2006) Agile Web Development with Rails,
Second Edition. The Pragmatic Programmers, LLC.

Garrett, J.J. (2005, February 18) Ajax: A New Approach to Web Applications.
Adaptive Path, LLC.

Black, D.A. (2006) Ruby for Rails. Manning Publications Co.

Fielding, R.T. (2000) Architectural styles and the design of network-based software
architectures. PhD Thesis, University of California, Irvine.

Richardson, L., Ruby, S. (2007) RESTful Web Services. O’Reilly Media, Inc.

Bernal, A., Ear, U., Kyrpides, N. (2001) Genomes OnLine Database (GOLD): a
monitor of genome projects world-wide. Nucleic Acids Res., 29, 126-127.

Eisenberg, D., Marcotte, E.M., Xenarios, I., Yeates, T.O. (2000) Protein function
in the post-genomic era. Nature, 405, 823-826.

Henikoff, S., Greene, E.A., Pietrokovski, S., Bork, P., Attwood, T.K., Hood, L.
(1997) Gene families: the taxonomy of protein paralogs and chimeras. Science,
278, 609-614.

Orengo, C.A., Todd, A.E., Thornton, J.M. (1999) From protein structure to func-
tion. Curr. Opin. Struct. Biol., 9, 374-382.

Heger, A., Holm, L. (2000) Towards a covering set of protein family profiles. Prog.
Biophys. Mol. Biol., 73, 321-337.

Fitch, W.M., Margoliash, E. (1970) The usefulness of amino acid and nucleotide
sequences in evolutionary studies. Evolutionary Biology, 2, 67-109.

139

[55]

[56]

[57]

Duret, L., Perriere, G., Gouy, M. (1999) HOVERGEN: database and software
for comparative analysis of homologous vertebrate genes. In Bioinformatics and
Systems, Letovsky, S. (ed.), Kluwer Academic Publishers, Boston, pp. 13-29.

Perriere, G., Duret, L., Gouy, M. (2000) HOBACGEN: database system for com-
parative genomics in bacteria. Genome Res. 10, 379-385.

Bairoch, A., Apweiler, R., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S.,
Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M.J., Natale, D.A.,
O’Donovan, C., Redaschi, N., Yeh, L.S. (2005) The Universal Protein Resource
(UniProt). Nucleic Acids Res., 33, D154-D159.

Kanz, C., Aldebert, P., Althorpe, N., Baker, W., Baldwin, A., Bates, K., Browne,
P., van den Broek, A., Castro, M., Cochrane, G., Duggan, K., Eberhardt, R.,
Faruque, N., Gamble, J., Diez, F.G., Harte, N., Kulikova, T., Lin, Q., Lombard,
V., Lopez, R., Mancuso, R., McHale, M., Nardone, F., Silventoinen, V., Sobhany,
S., Stoehr, P., Tuli, M.A., Tzouvara, K., Vaughan, R., Wu, D., Zhu, W., Apweiler,
R. (2005) The EMBL Nucleotide Sequence Database. Nucleic Acids Res., 33, D29-
D33.

Altschul, S.F., Madden, T.L., Schéffer, A.A., Zhang, J., Zhang, Z., Miller, W.,
Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: A new generation of protein
database search programs. Nucleic Acids Res., 25, 3389-3402.

Wootton, J.C., Federhen, S. (1996) Analysis of compositionally biased regions in
sequence databases. Methods Enzymol., 266, 554-571.

Henikoff, S., Henikoff, J.G. (1992) Amino acid substitution matrices from protein
blocks. Proc Natl Acad Sci., 89, 10915-10919.

Nei, M. (1996) Phylogenetic analysis in molecular evolutionary genetics. Annu.
Rev. Genet., 30, 371-403.

Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G.,
Thompson, J.D. (2003) Multiple sequence alignment with the Clustal series of
programs. Nucleic Acids Res., 31, 3497-3500.

Vinh, L.S., von Haeseler, A. (2004) IQPNNI: Moving fast through tree space and
stopping in time. Mol. Biol. Evol., 21, 1565-1571.

Hedges, S.B. (2002) The origin and evolution of model organisms. Nature Genet.,
3, 838-849.

Fraser, A.G., Marcotte, E.M. (2004) A probabilistic view of gene function. Nat.
Genet., 36, 559-564.

Wheeler, D.L., Chappey, C., Lash, A.E., Leipe, D.D., Madden, T.L., Schuler, G.D.,
Tatusova, T.A., Rapp, B.A. (2000) Database resources of the National Center for
Biotechnology Information. Nucleic Acids Res., 28, 10-14.

140

[68]

[69]

[74]

[75]

Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Rapp, B.A., Wheeler,
D.L. (2000) GenBank. Nucleic Acids Res., 28, 15-18.

May, R.M. (2000) The Dimensions of Life on Earth. In Raven, P.H. (ed.) Nature
and Human Society: The Quest for a Sustainable World, Chapter 1 Defining
Biodiversity. The National Academy of Sciences, Washington, pp. 30-45.

Holm, L., Sander, S. (1996) Mapping the protein universe. Science, 273, 595-602.

Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H.,
Shindyalov, I.N., Bourne, P.E. (2000) The Protein Data Bank. Nucleic Acids Res.,
28, 235-242.

Geer, L.Y., Domrachev, M., Lipman, D.J., Bryant, S.H. (2002) CDART: protein
homology by domain architecture. Genome Res., 12, 1619-1623.

Servant, F., Bru, C., Carrere, S., Courcelle, E., Gouzy, J., Peyruc, D., Kahn, D.
(2002) Prodom: automated clustering of homologous domains. Brief Bioinform.,
3, 246-251.

Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, L., Eddy, S.R., Griffiths-
Jones, S., Howe, K.L., Marshall, M., Sonnhammer, E.L. (2002) The Pfam protein
families database. Nucleic Acids Res., 30, 276-280.

Mulder, N.J., Apweiler, R., Attwood, T.K., Bairoch, A., Barrell, D., Bateman, A.,
Binns, D., Biswas, M., Bradley, P., Bork, P.; et al. (2003) InterPro, progress and
status in 2005. Nucleic Acids Res., 33, D201-D205.

Burges, C.J.C. (1998) A tutorial on Support Vector Machine for pattern recogni-
tion. Data Min. Knowl. Disc., 2, 121-167.

Wolstencroft, K., McEntire, R., Stevens, R., Tabernero, L., Brass, A. (2005) Con-
structing ontology-driven protein family databases. Bioinformatics, 21, 1685-1692.

Godfray, H.C.J. (2002) Challenges for taxonomy. Nature, 417, 17-19.

Hennig, S., Groth, D., Lehrach, H. (2003) Automated Gene Ontology annotation
for anonymous sequence data. Nucleic Acids Res., 31, 3712-3715.

Khan, S., Situ, G., Decker, K., Schmidt, C.J. (2003) GoFigure: automated Gene
Ontology annotation. Bioinformatics, 19, 2484-2485.

Martin, D.M., Berriman, M., Barton, G.J. (2004) GOtcha: a new method for
prediction of protein function by the annotation of seven genomes. BMC' Bioinfor-
matics, 5, 178.

Young, A., Whitehouse, N., Cho, J., Shaw, C. (2005) OntologyTraverser: an R
package for GO analysis. Bioinformatics, 21, 275-276.

141

[83]

[84]

[85]

[36]

Lee, J.S., Katari, G., Sachidanandam, R. (2005) GObar: a gene ontology based
analysis and visualization tool for gene sets. BMC Bioinformatics, 6, 189.

Ye, J., Fang, L., Zheng, H., Zhang, Y., Chen, J., Zhang, Z., Wang, J., Li, S., Li,
R., Bolund, L., Wang, J. (2006) WEGO: a web tool for plotting GO annotations.
Nucleic Acids Res., 34, W293-W297.

Studer, R., Benjamins, V.R., Fensel, D. (1998) Knowledge Engineering. Principles
and Methods. In: IEEE Transactions on Data and Knowledge Engineering, 25(1-
2), 161-197.

Rubin, D.L., Lewis, S.E., Mungall, C.J., Misra, S., Westerfield, M., Ashburner,
M., Sim, I., Chute, C.G., Solbrig, H., Storey, M.A., Smith, B., Day-Richter, J.,
Noy, N.F., Musen, M.A. (2006) National Center for Biomedical Ontology: advanc-

ing biomedicine through structured organization of scientific knowledge. OMICS,
10(2), 185-198.

Mainz, 1. (2006) Entwicklung einer Prototypontologie fiir bioinformatische
Werkzeuge. Bachelorarbeit, Heinrich-Heine-Universitit Diisseldorf.

Fernandez-Lépez, M. (2001) Overview of methodologies for building ontologies. In
Proceedings of the IJCAI-99 Workshop on Ontologies.

Sure, Y. (2002) A Tool-supported Methodology for Ontology-based Knowledge
Management, submitted to ISMIS 2002, Methodologies for Intelligent Systems.

Noy, N.F., Chugh, A., Liu, W., Musen, M.A. (2006) A Framework for Ontology
Evolution in Collaborative Environments. 5th International Semantic Web Con-
ference, Athens, GA.

Das, A., Wu, W., McGuinness, D. (2001, August) Industrial strength ontology
management. In Proceedings of the First Semantic Semantic Web Working Sym-
posium, SWWS-01, Stanford, USA.

Domingue, J. (1998) Tadzebao and WebOnto: Discussing, Browsing, and Editing
Ontologies on the Web. 11th Knowledge Acquisition for Knowledge-Based Systems
Workshop, April 18th-23rd. Banff, Canada.

McGuinness, D.L., Fikes, R., Rice, J., Wilder, S. (2000, July) The Chimaera
Ontology Environment. Proceedings of the The Seventeenth National Conference
on Artificial Intelligence, Austin, Texas.

Farquhar, A., Fikes, R., Rice, J. (1996) The Ontolingua Server: a Tool for Collab-
orative Ontology Construction. Technical report, Stanford KSL, 96-126.

Bao, J., Honavar, V. (2004) Collaborative Ontology Building with Wiki@nt. A
Multi-agent Based Ontology Building Environment. In Proceedings of the 3rd In-

ternational Workshop on Evaluation of Ontology-based Tools (EON), Hiroshima
2004, 1-10.

142

[96]

[97]

98]

[100]
[101]

[102]

[103]

[104]

[105]

[106]

[107]
[108]

109

Hepp, M., Bachlehner, D., Siorpaes, K. (2005) OntoWiki — Community-driven
Ontology Engineering and Ontology Usage based on Wikis. Proceedings of the
2005 International Symposium on Wikis (WikySym), San Diego.

Pinto, H.S., Staab, S., Tempich, C. (2004) DILIGENT. Towards a fine-grained
methodology for Distributed, Loosely-controlled and Evolving Engineering of On-

tologies. In Proceedings of the 16th European Conference on Artificial Intelligence
(ECAI), 393-397.

Zacharias, V., Braun, S. (2007) SOBOLEO — Social Bookmarking and
Lightweight Ontology Engineering. In Workshop on Social and Collaborative Con-
struction of Structured Knowledge (CKC), 16th International World Wide Web
Conference (WWW 2007), Banff, Alberata, Canada

Fensel, D. (2004) Ontologies: Silver Bullet for Knowledge Management and Elec-
tronic Commerce. Springer-Verlag.

Baclawski, K., Niu, T. (2006) Ontologies for Bioinformatics. The MIT Press.

Wilkinson, K., Sayers, C., Kuno, H.A., Reynolds, D. (2003, September) Efficient
RDF Storage and Retrieval in Jena2. In Proceedings of SWDBO03, 1st International
Workshop on Semantic Web and Databases, Co-located with VLDB 2003, Berlin,
131-150.

Beckett, D. (2002) The design and implementation of the Redland RDF application
framework. Computer Networks, 39(5), 577-588.

Harth, A., Decker, S. (2005) Optimized index structures for querying RDF from
the web. In LA-WEB.

Gelernter, D. (1985) Generative communication in Linda. ACM Trans. Program.
Lang. Syst., 7(1), 80-112.

Shneiderman B. (1996) The eye have it: A task by data type taxonomy for infor-
mation visualizations. In Proc. Visual Languages.

Leung, Y., Apperley, M. (1994) A review and taxonomy of distortion-oriented
presentation techniques. In Proc. Human Factors in Computing Systems CHI °94
Conf., Boston, MA, 126-160.

Jenkins, B. (1997, September) Hash Functions. Dr. Dobb’s Journal, 1-5.

Sundheim, B.M. (1992) Overview of the fourth Message Understanding evaluation
and Conference. In Proceedings of the Fourth Message Understanding Conference
(MUC-4) (pp. 3-21). San Mateo, CA: Morgan Kaufmann.

Grishman, R., Sundheim, B. (1996) Message Understanding Conference 6: A brief
history. In Proceedings of the 16" International Conference on Computational
Linguistics (pp. 466-471). San Mateo, CA: Morgan Kaufmann.

143

[110] Cunningham, H. (1997) Information Extraction: A User Guide. Research memo
(CS-97-02. Sheffield: University of Sheffield, ILASH.

[111] Malzahn, N., Weinbrenner, S., Hiisken, P., Ziegler, J., Hoppe, H.U. (2007) Col-
laborative Ontology Development — Distributed Architecture and Visualization.
In: Proceedings of the Germany eScience Conference 2007, Max Planck Digital
Library, ID 315470.0.

144

Die hier vorgelegte Dissertation habe ich eigenstéindig und ohne unerlaubte Hilfe ange-
fertigt. Die Dissertation wurde in der vorgelegten oder in &hnlicher Form noch bei keiner
anderen Institution eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche

unternommen.

Diisseldorf, den 31. Oktober 2007 Ingo Paulsen

