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“Testing shows the presence, not the absence of bugs.” [I, p.16]
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Abstract

The safety of software systems is gaining importance due to the almost indispensable
integration of software in modern everyday life. Formal methods are a fundamental
approach for the design and verification of software and hardware systems, one of which
is the B-Method. This thesis is a selection of my co-authored manuscripts on the B-
Method and the PROB tool.

In the first part, a translation of a popular formal specification language called Alloy
to classical B is presented, which is automated by PROB. A difference between both
languages is that Alloy’s syntax is flexible and resembles object-oriented programming
languages while B’s syntax is strictly typed and rooted in set theory, mathematics, and
logic. In contrast to Alloy, B also allows defining infinite and arbitrarily nested sets and
relations. Further, B has operational semantics, which eases the definition of state-based
systems. Empirical results have shown benefits for performance and soundness of B and
PROB compared to Alloy when solving integer constraints, and benefits for performance
of the Alloy Analyzer compared to PROB when solving relational constraints. This work
contributed to an ongoing discussion in the Alloy community to integrate state-based
concepts in the core language of Alloy and Satisfiability Modulo Theories (SMT) in the
Alloy Analyzer. Besides that, this work improved the communication between the Alloy
and B communities.

The second part of this thesis deals with constraint solving, which is one of the most
important features of any formal verification tool. PROB’s constraint solver has proven
to be powerful for many problems. Yet, its use of plain saturation-based techniques often
prevents finding contradictions, especially when considering infinite domains. We pre-
sent additional constraint solving backends for PROB using techniques of SMT, which
enable to learn from conflicts and leverage the power of Boolean satisfiability solving.
In particular, we present an extended translation from B to SMT-LIB and integration
of Z3 in PROB as well as a custom implementation of SMT in PROB. Empirical results
have shown benefits of clause learning and abstractions to Boolean satisfiability solving
compared to PROB’s native constraint solver, especially when it comes to finding con-
tradictions. For instance, it can be possible to identify a contradiction in a formula’s
Boolean abstraction without interpreting any theory constraint for which the satisfia-
bility might be undecidable. Z3’s theory solvers have further shown benefits in solving
constraints involving infinite domains and integer arithmetic. The overall results, howe-
ver, have shown that no constraint solver is the best for solving all kinds of constraints.
For the verification of formal systems, it is thus beneficial to have a large portfolio of
different constraint solving backends, as is the case for the PROB tool.






Zusammenfassung

Die Sicherheit von Softwaresystemen gewinnt durch die fast unverzichtbare Integration
von Software in den modernen Alltag immer mehr an Bedeutung. Formale Methoden wie
die B-Methode sind ein grundlegender Ansatz fiir den Entwurf und die Verifikation von
Software- und Hardwaresystemen. Diese Arbeit ist eine Auswahl von Manuskripten zu
der B-Methode und dem PROB Werkzeug, an denen ich grundlegend mitgewirkt habe.

Im ersten Teil dieser Arbeit wird eine Ubersetzung einer populiren formalen Spe-
zifikationssprache namens Alloy in die klassische B Sprache vorgestellt, welche mittels
PrROB automatisiert wird. Ein Unterschied zwischen beiden Sprachen ist, dass die Syn-
tax von Alloy flexibel ist und objektorientierten Programmiersprachen éhnelt, wihrend
die Syntax von B streng typisiert ist und auf der Mengenlehre, Mathematik und Logik
basiert. Dariiber hinaus verfiigt B iiber eine operative Semantik, welche die Definiti-
on von zustandsbasierten Systemen erleichtert. Empirische Ergebnisse haben Vorteile
fiir die Leistung und Korrektheit von B und PROB im Vergleich zu Alloy beim Lésen
ganzzahliger Arithmetik gezeigt. Der Alloy Analyzer hat eine bessere Leistung im Ver-
gleich zu PROB beim Losen relationaler Einschriankungen gezeigt. Diese Arbeit hat zu
einer bestehenden Diskussion in der Alloy Community beziiglich der Integration von
zustandsbasiertem Verhalten in der Kernsprache von Alloy sowie der Verwendung von
Satisfiability Modulo Theories (SMT) beigetragen. Aulerdem hat diese Arbeit die Kom-
munikation zwischen der Alloy- und der B-Community verbessert.

Der zweite Teil dieser Arbeit befasst sich mit dem Constraint Solving, was eine der
wichtigsten Fahigkeiten eines formalen Verifikationswerkzeug ist. Der Constraint Solver
von PROB hat sich als leistungsfihig erwiesen. Die schiere Enumeration von Doménen
verhindert jedoch hiufig das Auffinden von Widerspriichen, insbesondere fiir unendliche
Doménen. Wir prasentieren zusétzliche Constraint Solving Backends fiir PROB basie-
rend auf SMT. Diese Techniken ermoglichen es, aus Konflikten zu lernen und die Vorteile
des Losens aussagenlogischer Formeln zu nutzen. Im Einzelnen présentieren wir eine er-
weiterte Ubersetzung von B nach SMT-LIB und Integration von Z3 in PROB sowie eine
manuelle Implementierung von SMT. Empirische Ergebnisse haben Vorteile des Lernens
von Klauseln und der Verwendung aussagenlogischer Abstraktionen im Vergleich zu
PRrOB’s Constraint Solver gezeigt, insbesondere fiir die Erkennung von Widerspriichen.
Beispielsweise ist es moglich, dass ein Widerspruch in der booleschen Abstraktion einer
Formel erkannt wird, ohne eine moglicherweise unentscheidbare Theoriebeschrinkung
zu interpretieren. Z3 hat aulerdem Vorteile fiir das Losen von Formeln mit unendlichen
Doménen und ganzzahliger Arithmetik gezeigt. Insgesamt wurde jedoch deutlich, dass
kein Constraint Solver der Beste ist, um alle Formeln zu l6sen. Fiir die Verifikation for-
maler Systeme ist es daher von Vorteil iiber ein Portfolio unterschiedlicher Constraint
Solver zu verfiigen, wie dies bei dem PROB Werkzeug der Fall ist.
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1. Motivation and Goals

Software has become a part of everyday life and is used in almost all areas. While
this is definitely an advantage and simplifies many tasks, the quality assurance often
suffers due to the high demand for software systems. Concrete reasons can be time and
cost pressure, ignorance, lack of experience or human errors. There are many possible
software bugs, each with a different severity regarding specific requirements. In the
context of software that interacts with humans, special attention must be paid to the
safety of software systems. Safety generally means that a software is guaranteed to avoid
any state that violates specific requirements. For instance, software used in autonomous
driving, railway or aerospace systems must meet precise formal requirements to ensure
the avoidance of potentially life-threatening situations.

Formal methods are a fundamental approach for the development and verification of
software (and hardware) systems in software engineering. The origins of the discipline
of software engineering date back to the 1970s [I3]. Up to the present time, language
and tool support for formal methods have improved significantly. Aside from being an
active area of research, formal methods have also been used in many practical areas.
For instance, the software of the first driverless metro in the city of Paris is an example
for a successful application of formal methods [I4]. In a similar approach, Siemens
designed and verified a software that has been installed on many international metro
lines, e.g., on the Canarsie Line in New York [I5]. Another recent example for the use of
formal methods in industry is the design and verification of a new approach to railway
interlocking, namely the ETCS Hybrid Level 3 [16]. In recent years, formal methods
have also been used for the verification of systems based on artificial intelligence such
as neural networks [I7-20] or machine learning in general [21H24].

There are many formal specification languages with different approaches for the design
and verification of systems. Most languages are based on the concepts of mathematics
and logic. While the syntax and semantics of a specification language are important for
the acceptance and use in the formal methods community, the most important feature
of a formal specification language is its tool support. In particular, efficient tools for the
actual verification of requirements are necessary. Constraint programming is a funda-
mental technique used in almost all tools for formal verification, which generally aims
at proving or disproving logical and mathematical formulas. Many different approaches
for solving constraints exist, each having its pros and cons. Verification tools thus often
provide different constraint solving backends.

The B-Method [25], 26] is a formal method for software development, which is actively
used in academia and industry. Its foundation is an expressive formal specification lan-
guage which is rooted in typed set theory, integer arithmetic, and first-order logic. One
feature of the B-Method is that a system’s amount of states can be infinite. While
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this allows for the specification of manifold systems, the use of unbounded domains of-
ten aggravates constraint solving. PROB [27-29] is an animator, model checker, and
constraint solver for the B-Method. Its constraint solver applies constraint logic pro-
gramming (CLP) [30] and defines a rich set of propagation rules for the B language.

PRrROB, and in particular the B-Method, has been used in many industrial applica-
tions [14H16], B1H37]. Further, PROB is certified T2 SIL4 according to the EN 50128
[38] standard defined by the European Committee for Electrotechnical Standardization
(CENELEC). Yet, the use of the B-Method in the formal methods community could
be greater. One criticism is that the B language is difficult to learn and requires deep
knowledge of mathematics and logic. Especially in the United States, other formal meth-
ods and tools such as Alloy [39, 40] and the Alloy Analyzer, TLA™ and the TLC model
checker [41] or Promela and the SPIN model checker [42] are more popular.

The first goal of this thesis is therefore to bring the formal methods community closer
together. For this, we deem a translation between Alloy and B to be suited. First
research questions (RQ) are:

RQ1: Which steps are necessary to automatically translate Alloy models into B?

RQ2: How does PROB compete in checking Alloy models compared to the Alloy
toolchain?

RQ3: What are significant strengths and weaknesses of SAT solving (Alloy Ana-
lyzer) compared to CLP (PrROB)?

RQ4: Which main use cases can be singled out in which both languages comple-
ment each other?

To answer these questions, we started with manually translating Alloy models to B
and working out their differences and similarities. This work finally manifested in a
formalization of a complete set of translation rules from Alloy 5 to classical B [43].
Based on that, we presented an automated integration of Alloy 5 in PROB enabling to
use its features for animation and verification [43, 44]. The performance of the Alloy
Analyzer and PROB were evaluated empirically using a set of publicly available Alloy
models.

At the heart of PROB is its constraint solver which is used for many tasks. PROB also
has backends to external constraint solvers such as Kodkod [45] [46], which translates
constraints to propositional logic and applies satisfiability (SAT) solving, or Z3 [47, 48],
which uses a modern constraint solving approach called satisfiability modulo theories
(SMT). Z3 has shown benefits for disproving B formulas but often fails to prove such due
to complex translations to SMT-LIB [48]. While PROB’s constraint solver implements
many sophisticated features such as coroutines for a delayed constraint propagation or
memoization, there are still many techniques which could improve constraint solving for
the B-Method such as conflict-driven clause learning (CDCL) or backjumping instead
of chronological backtracking.

The second goal of this thesis is thus to improve the performance and coverage of
PROB’s portfolio of constraint solving backends. We first ask:



RQ5: How can the performance and coverage of PROB’s integration of Z3 be
improved?

To answer this question, we extended the existing integration of Z3 in PROB to optionally
use lambda functions for the translation of specific B and Event-B operators to SMT-
LIB [49,50]. Additionally, a parallel integration of different Z3 constraint solvers as well
as a decomposition of constraints into independent components prior to the translation
was presented. Inspired by benefits of Z3, we further ask the following questions:

RQ6: Which steps are necessary to use PROB’s constraint solver as a theory
solver for SMT solving of B and Event-B constraints?

RQ7: What are significant benefits of a direct implementation of SMT solving in
PRrROB compared to using Z3?

RQ8: What are significant strengths and weaknesses of CLP and SMT for solving
B and Event-B constraints?

RQ9: How can the performance of PROB’s constraint solver in disproving integer
constraints over unbounded domains be improved?

For this, we presented a direct implementation of SMT solving in PROB’s Prolog core
to combine the strengths of PROB’s constraint solver for finding solutions with a CDCL
scheme to improve the identification of contradictions [50]. Empirical evaluations have
shown weaknesses of PROB’s constraint solver for disproving formulas over unbounded
integer domains. To counter this, we further presented an additional constraint solver
for the integer difference logic (IDL) and its integration in PROB’s new SMT solver [50].

We decided to implement the SMT solver in Prolog since PROB’s constraint solver is
implemented in Prolog. The use of Prolog thus allows for a fast and intuitive combination
of the SAT solver and PROB’s constraint solver for SMT solving. This decision leads to
the following final research question:

RQ10: What are significant features of Prolog that are specifically suitable or
unsuitable for implementing an SM'T solver?






2. Background

In this chapter, we provide an introduction to the most important background knowl-
edge which is necessary for this thesis. We start by introducing propositional logic and
predicate logic as well as a programming paradigm called logic programming. Afterward,
we introduce different concepts of satisfiability solving for propositional logic and predi-
cate logic followed by an introduction to formal methods in computer science. Here, we
focus on two prominent formal methods called the B-Method and Alloy. Furthermore,
we introduce the concepts of model checking and constraint solving which are essential
in the field of formal verification. Finally, we give an overview of the PROB tool, which
is the main tool used in this thesis.

2.1. Logic

Logic is a foundation of human knowledge. We humans gather knowledge in the form
of facts and experiences during our lifetime and are able to derive new knowledge by
combining existing one. This is called logical reasoning. In particular, logical reasoning
is the action of deducing knowledge from existing premises. There are different man-
ifestations of logic while propositional logic and predicate logic are most important in
mathematics and computer science.

2.1.1. Propositional Logic

In propositional logic, it is possible to reason over statements that can have exactly one
truth value, e.g., true (T) or false (L) [51H53]. Relations between statements can be
expressed using sentential connectives such as logical conjunction (A), disjunction (V),
implication (=) or equivalence (<) [51],[64]. The logical conjunction and disjunction are
commutative. Besides exact truth values, propositional logic allows defining variables
for truth values. Such variables are usually referred to as literals and can have a polarity
which is either positive or negative [51H53]. For instance, —A is a literal with negative
polarity.

Let ¢ be a propositional logic formula and V' (¢) be the set of variables occurring in
¢. An interpretation of a propositional logic formula is an assignment of its variables
p(¢) which can be generally defined as a partial function V(¢) + {T, L} [BIH55]. A
propositional logic formula ¢ is satisfiable if there exists an interpretation p(¢) which
makes the formula true. Such an interpretation p(¢) is called a model if it makes the
formula ¢ true and is a total function, i.e., all variables in V(¢) are assigned a truth
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value. The interpretation u(¢) is referred to as a partial model if only the variables
which are necessary to make ¢ true are assigned, i.e., ;(¢) is a partial function.

For processing, logical formulas are usually transformed to a normal form [56H58]. The
disjunctive normal form (DNF) is a disjunction of conjunctions while the conjunctive
normal form (CNF) is a conjunction of disjunctions [56H58]. The individual conjuncts
of the conjunctive normal form, i.e., the disjunctions, are called clauses. In order to
rewrite propositional logic formulas to either disjunctive or conjunctive normal form,
DeMorgan’s laws for propositional logic can be applied exhaustively [57-H59]. Afterward,
the laws of distributivity can be applied to distribute conjunctions over disjunctions or
vice versa.

The disjunctive normal form of a propositional logic formula describes the assignments
of variables which make the formula true within the conjunctions. It is thus possible
to directly read all (partial) models from a disjunctive normal form. However, for a
propositional logic formula with n variables, there exists 2" different assignments of
truth values. This leads to an exponential blowup in the size of a disjunctive normal
form in the worst case [50], which makes the generation of a disjunctive normal form not
scalable in general. The conjunctive normal form is more concise and is thus preferably
used as a canonical form in propositional logic.

Nevertheless, the conjunctive normal form can also experience an exponential blowup
in the amount of clauses related to the amount of subformulas when distributing disjunc-
tions over conjunctions by applying the law of distributivity [57, 60]. Furthermore, the
expansion of nested equivalences to disjunctions also leads to an exponential increase in
the amount of clauses, i.e., formulas of the form A; < Ay < --- < Ay, k € N. Tseitin
[60] thus proposed to introduce new variables for each subformula of a propositional
logic formula excluding single variables, which is also known as renaming. The new vari-
ables are each set to be equivalent to their corresponding subformula while all of these
equivalences are conjoined. Afterward, each equivalence is transformed to conjunctive
normal form independently. This transformation results in an equisatisfiable but not
equivalent propositional logic formula, i.e., it provides the same models for the original
variables. For instance, consider the following formula in conjunctive normal form:

(AAB)V(CADAEAF)
=(AVC)A(AVD)A(AVE)A(AVE)A (2.1)
(BVC)A(BVD)A(BVE)A(BVF)
The Tseitin transformation would introduce one new variable U for the complete formula

and two variables V and W for the two subformulas. This results in the following
equisatisfiable propositional logic formula:

WAWES (UVV)A(Us (AAB)A(VES (CADAEAF))

Each conjunct is then transformed to the conjunctive normal form. This ensures that the
amount of a CNF’s clauses increases linearly related to the amount of subformulas in the
worst case. Yet, the amount of clauses is not necessarily smaller than without rewriting.
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To that effect, several optimizations of the Tseitin transformation have been proposed
to date [6IH65]. Plaisted and Greenbaum [63] observed that new introduced variables do
not necessarily have to be equivalent to their corresponding propositional logic formula.
The use of an implication can be sufficient depending on the polarity of subformulas
[63]. However, the authors still introduced new variables for each subformula. Boy
de la Tour has proven several transformations to be useless in specific arrangements of
subformulas [66] and proposed to only introduce new variables for subformulas if this
transformation reduces the final amount of clauses in the conjunctive normal form [61].
For this, functions computing the amount of clauses of a logical formula after rewriting
to CNF with and without renaming were defined. Nonnengart et al. [64] presented
efficient algorithms for the improved transformation of Boy de la Tour [61]. Jackson
and Sheridan [65] also presented a compact conversion to conjunctive normal form with
renaming.

For the original formula in Equation (2.1]), it suffices to rename the right-hand side of
the disjunction introducing one fresh variable U as follows:

(AAB)VU)A(U& (CADAEAF))
=(AVUABVU)A(-CV-DV-EV-FVU)A(CV-U)A(DV-UA
(Ev=U) A (Fv-U)

The CNF contains one clause less than without renaming.

2.1.2. Predicate Logic

The predicate logic is an extension of the propositional logic which allows reasoning over
domain specific objects, function symbols, and predicates rather than just truth values
[54, [67H69]. A predicate describes properties and relations of one or more objects and
evaluates to either true or false. For instance, we are able to reason over the integers
and eq(1,2) can be a predicate describing the equality between two integers with an
arity of two and the functor eq. Furthermore, predicate logic introduces the concept of
existential (3) and universal (V) quantification, which allows quantifying over domain
specific variables or predicates [54, [67H69]. First-order logic (FOL) is a restricted form
of predicate logic which allows quantifying over domain specific objects, e.g., integers,
but not predicates [54, 67, [68]. For instance, the formula 3(z,p) : © € Z A p(x) uses
second-order logic since it quantifies a predicate.

A logic is decidable if all valid and invalid solutions can be enumerated for each
formula. FOL is undecidable in general [T0-72]. For instance, it is possible to describe
the behavior of an arbitrary Turing machine in FOL as well as the property that the
Turing machine halts for each input [72], which is known as the halting problem. Turing
has proven that the halting problem is undecidable leading to the conclusion that FOL is
also undecidable [72]. Church came to the same conclusion and presented an independent
and different proof [71]. Yet, for a given finite set of consistent axioms and a formula that
is implied by these axioms, it is possible to prove that the formula is valid under these
axioms by finite enumeration. Therefore, FOL is said to be complete and semi-decidable
[73].
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VAcc.(len([], Acc, Acc))
len([], Acc, Acc). V(T, Acc,NAcc, Len).(
len([_IT], Acc, Len) :- len([_IT], Acc, Len)\/

NAcc is Acc + 1,
len(T, NAcc, Len). ﬁ(NACC is Acc + 1)‘V

—len(T, NAcc, Len))

Figure 2.1.: An exemplary Prolog predicate computing the length of a list using an
accumulator for tail-recursion (left) and its corresponding representation in
first-order logic (right).

2.1.3. Programming in Logic

Logic programming is a programming paradigm that allows defining relations between
logical facts. Solutions can be found by using a corresponding proof engine. In con-
trast to that, one usually defines a sequence of instructions in imperative programming
languages or transformations on data structures in functional programming languages.

The first ideas of a logic programming language date back to the early 1970s [74]
which finally manifested in the Prolog programming language [75]. A core language has
first been standardized in 1995 [76, [77]. An overview of the last 50 years of Prolog has
recently been presented by Korner et al. [78].

Prolog is a dynamic and interpreted programming language. The main characteristics
of Prolog are the application of linear resolution restricted to horn clauses for prove, and
homoiconity. A horn clause is a clause with at most one positive literal. Prolog allows
defining formulas in first-order logic. Prolog rules consist of a body predicate implying a
head statement such as r :- p, q which is equivalent to r <= p/A¢q in propositional logic
[79, 80]. Furthermore, it is possible to define Prolog facts which are rules with an empty
body (i.e., the body is just a truth statement). A predicate can have arguments which
can be used for input, output or both. In the documentation of predicates, arguments
are prefixed with a + for inputs, - for outputs, and ? for arguments that can be both
[79, 80]. For instance, append([1,2], [2,3], C) is a standard Prolog predicate with
arguments asking which list results when appending the lists [1,2] and [2,3]. The
implementation of append/3 is implemented strictly logical which allows calling the
predicate with any combination of arguments such as append(A, B, [1,2,3]) asking
which two lists A and B can be appended to the list [1,2,3]. Figure shows an
example of a Prolog predicate computing the length of a list using an accumulator for
tail-recursion and its corresponding representation in first-order logic.

The concept of homoiconity states that a programming language defines a single data
type while its syntax is implemented in this data type. In Prolog, everything is a term.
A term has a functor and an arity which defines the amount of the term’s arguments
[79, R0]. For instance, abbreviated as p/2 for a predicate p with two arguments. Terms
are further divided in simple terms (no arguments) and compound terms (one or more
arguments) [79, 80]. Although there is only one data type, one usually distinguishes
between atoms, numbers, and lists in Prolog. Atoms are simple terms which are not

10
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Algorithm 2.1 Pseudocode of the unification algorithm by Robinson [9, [10].

Input two Prolog terms to be unified
Output a variable substitution (most-general unifier) making both terms equal, or false

1: procedure UNIFY (A, B)

2 k<« 0

3 90 S Z)

4 while true do

5: if A0, = B0, then

6: return 6,

7 else

8 find disagreement tuple < ay, by > of Af, and B,
9: k+—k+1

10: if a; is a variable that does not occur in b, then

11: 0, Gk,l{ak/bk}

12: else if b, is a variable that does not occur in a; then
13: 0 Qk_l{bk/ak}

14: else

15: return false

numbers. Lists can be written using square brackets such as [a, 2], which is syntactical
sugar only. Furthermore, a head-tail concatenation can be used to access one or more
front elements and a list of the tail elements. For instance, [a,2] = [H|T] results in
assigning H with a and T with [2]. The tail of a list can also be the empty list. Internally,
lists are represented as Prolog terms. For instance, the above list is represented as the
term ’ . (a,’.’ (2, [1)) in SICStus Prolog [81]. One benefit of homoiconity is that code
can be seen as data and executable code. For instance, one is able to dynamically adapt
or generate Prolog code and execute it. Another example for a homoiconic programming
language is LISP, where everything is a list.

A Prolog program generally consists of a list of horn clauses (aka knowledge base)
[79, 80]. The user makes queries to a Prolog interpreter in the form of predicates.
Prolog facts and rules can be dynamically added to or removed from the knowledge base
during the interpretation using assert/1 or retract/1. In order to find a solution, a
Prolog interpreter applies linear resolution for first-order logic [9) [I1] with unification
[10] as is described in the following.

Unification

The unification algorithm by Robinson [9] [10] is essential to apply the concept of res-
olution to first-order logic. A pseudocode representation of the unification algorithm
can be seen in Algorithm 2.1 The algorithm’s input are two terms and the output is
a substitution of variables that makes both terms equal or false if both terms cannot
be made equal. Substitutions allow substituting variables occurring in terms with other
values. For instance, the substitution {A/1,B/2} can be applied to the term p(A,B),

11



2. Background

i.e., p(A,B){A/1,B/2}, resulting in p(1,2). The algorithm starts with the empty sub-
stitution and checks if both terms are already equal. If this is not the case, a so-called
disagreement tuple is searched. A disagreement tuple (ay,bi), k € N, is a pair of sub-
terms a;, occurring in A and b, occurring in B that are not equal but at the same position
in both terms. The search for a disagreement tuple starts at the leftmost position in
both terms. For instance, the first disagreement tuple of the term f(A, 1) and f(a, B) is
(A, a) while (1, B) is the second one. Afterward, the algorithm tries to unify both terms
either by assigning a, to by if a; is a variable that does not occur in by, or by to ay if by
is a variable that does not occur in a;. The check for occurrence of a variable is usually
called the occurs-check. If the variables in a disagreement tuple cannot be made equal,
the algorithm fails indicating that both input terms cannot be unified. Otherwise, the
algorithm searches for disagreement tuples and assigns variables as long as both terms
are not equal. The final substitution is guaranteed to be minimal and is called the most-
general unifier. In general, a substitution © is more general than another substitution
® if there exists a substitution o such that ® = Go [9].

The occurs-check guarantees that no cyclic dependencies exist [9]. For instance, the
unification A = f(A) fails since the disagreement tuple is (A, f(A)) which would result
in a cyclic assignment f(f(f(f(f(...))))). By default, most Prolog implementations do not
apply the occurs-check because it is additional overhead. This is not a problem in
practice since one usually does not write cyclic variable dependencies. If this is done, it
can lead to unexpected behavior in the future due to failing unifications. However, when
debugging such code, it should be easy to recognize the cyclic dependency of variables.

Selective Linear Definite Clause Resolution

Most Prolog interpreters prove queries by contradiction using linear resolution [9] 11,
82, B3] with unification [I0]. Resolution is the process of deducing a formula A V C from
two clauses (A V B) A (=B V C) containing the same literal with positive and negative
polarity. This can be lifted to predicate logic by applying unification. For instance, we
can deduce the formula p(a) V q(a) from the clauses (p(a) V q(b)) A (—q(B) V q(a)) using
the unification {B/b}. A sequence of resolution steps is linear if the last deduced clause
of each step is directly used for the next deduction (depth-first search). As described
before, a Prolog program consists of a list of horn clauses, which can potentially be
used for linear resolution. The Prolog interpreter enforces an order of Prolog rules and
facts by selecting from top to bottom (selection rule), which is why the process is called
selective linear definite (SLD) clause resolution [79, [80].

Figure shows an exemplary SLD resolution tree for the Prolog query len([1,2],
0, L) using the predicate len/3 shown in Figure 2.1} Note that the resolution of the
built-in Prolog predicate is/2 is not shown in the figure. First, a Prolog query is negated
for the proof by contradiction. Afterward, the first clause for resolution is searched top
down in the list of horn clauses as can be seen in Figure 2.1 The first clause of len/3
cannot be used for resolution since the first argument of the query, i.e., [1,2], is not
equal to the empty list. The second clause of 1en/3 is the first clause for resolution with
the query deducing the formula —(NAcc is Acc + 1)V —len([2], NAcc, L). When

12
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—len([1,2], 0, L)

|

{-/1,T/[2], Acc/0, Len/L,NAcc/1}

|

—len([2], 1, L)

len([], Acc, Acc). ‘
ten([_IT], Acc, Len) :- {_/2,T"/]], Acc’ /1, Len’ /L, NAcc' /2}

NAcc is Acc + 1,
len(T, NAcc, Len).

—-len([], 2, L)

{Acc”/2,L/Acc"}

L

Figure 2.2.: An exemplary SLD resolution tree (right) for the Prolog query len([1,2],
0, L) using the predicate len/3 (left) shown in Figure 2.1} The resolution
of the built-in Prolog predicate is/2 is not shown in the tree.

skipping the evaluation of the built-in Prolog predicate is/2, this results in deducing
—len([2], 1, L). This resolution induced the unification of several variables as can
be seen on the edges of the tree in Figure[2.2] Afterward, the deduced clause is used for
the next resolution (linear) which again selects the second clause of len/3. Finally, the
formula —len([], 2, L) is contradictory to the base case of the predicate len/3. We
have thus found a solution since we enforce a proof by contradiction. The most-general
unifier can be extracted from the edges when following back the path to the root node.
In this example, the most-general unifier for the Prolog query is {L/2}, which does not
provide any choice points.

A choice point occurs if more than one Prolog rule is applicable for a specific goal
or subgoal [79, 80, 84]. Backtracking means to return to a previous choice point in a
search tree [79, 80, [84]. In chronological backtracking, the search always returns to the
last choice point. In Prolog, backtracking is either triggered by a search path that does
not result in a solution or by the user who requests to search for another solution. The
last choice point is searched bottom-up starting from the current state of the Prolog
interpreter. The search is performed lazily, i.e., paths of the search tree possibly leading
to a further solution are only evaluated upon request. Possible choice points can be
removed by using a so-called cut (!/0) in Prolog, which effectively prevents backtracking
over this cut on the same level in the search tree [79, 80, [84].

13
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Coroutines

Coroutines in Prolog can be used to suspend the execution of a predicate until a certain
condition is met. For instance, one can use when(+Condition, +Goal) to delay the call
of +Goal until the condition is met. In a condition, only a small subset of Prolog can
be used, which is nonvar/1, ground/1, conjunction, disjunction, and unification (=/2).
For instance, p(X,Y) :- when(nonvar(X), q(X,Y)) delays the call of q(X,Y) until X
is ground. In SICStus Prolog, it is possible to assign a block declaration for a predicate
using block/?, where only non-variable checks can be used in a condition [81]. For
instance, the above example predicate p/1 can be encoded using a block declaration as
follows:

:= block p(-,7).
pX,Y) :- qX,Y).

The dash indicates that the execution of the predicate is delayed until this argument
is ground. A question mark indicates that this argument is not involved in blocking a
predicate’s execution. While the conditions are more restricted, block declarations are
usually more efficient than using when/2 in SICStus Prolog [81].

2.2. Boolean Satisfiability Solving

The process of deciding the satisfiability of a propositional logic formula is called Boolean
satisfiability solving (SAT). This problem was the first one that has been proven to
be NP-complete by Stephen Cook [85] and Leonid Levin [86]. The NP-completeness
states that there does not exist an efficient decision procedure that is able to solve all
Boolean satisfiability problems in polynomial time or less. Nevertheless, there exist
decision procedures for the Boolean satisfiability problem which scale for most problems
in practice. One of the main foundations in SAT solving is the Davis-Putnam-Logemann-
Loveland (DPLL) algorithm [I1l 12]. Many improvements have been suggested to date
such as conflict-driven clause learning [87, [88], variable selection heuristics for branching
decisions [89, O0] or restarts [91] with phase saving [92].

In the following, we introduce the DPLL algorithm as well as the concept of watched-
literals. Other important features of modern SMT solvers are explained in Section
alongside our implementation in PROB.

2.2.1. DPLL Algorithm

The Davis-Putnam-Logemann-Loveland (DPLL) algorithm [IT} 12] is the foundation
of most SAT solvers. Its input is a propositional logic formula in conjunctive normal
form while the output is either a model of the input formula, i.e., an interpretation
that makes the formula true, or a statement indicating that the input formula is not
satisfiable. In its classical form, the key features of the DPLL algorithm are the so-called
unit propagation, variable selection, and resolution-based simplification of formulas.
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Algorithm 2.2 Pseudocode of the DPLL algorithm’s unit propagation [11, 12].

Input/Output a propositional logic formula ¢ in CNF set representation and a partial
assignment of variables p

1: procedure UNIT-PROPAGATION(®, 1)
2: for all c € ¢ do
if ¢ = {l} then
[T
b 6\o
p—pU{l=T}
else if ¢ = {-l} then
[+ L1
b 6\o
10: w—puU{l=_1}
11: return ¢, u

Algorithm 2.3 Pseudocode of the DPLL algorithm’s resolution-based simplification
procedure for propositional logic formulas [11} 12].

Input/Output a propositional logic formula ¢ in CNF set representation
1: procedure SIMPLIFY (¢)
2: for all c € ¢ do

3 for all v € c do

4 if v =T then

5 O+ o\c

6: break

7 else if v = 1 then

8 c«c\{v} > resolution

9

return ¢

The unit propagation states that all clauses of a conjunctive normal form that contain
a single literal should lead to the propagation of the literal occurring in a unit clauses
with its corresponding polarity. Such clauses are called unit clauses. The justification
for unit propagation is that there exists no other assignment for a unit clause to make it
true. A pseudocode algorithm of the unit propagation can be seen in Algorithm[2.2] The
input of the algorithm is a propositional logic formula in CNF represented as a set of
sets as described in Section [2.1.1] as well as a partial assignment of variables. The output
of the algorithm is a CNF without unit clauses and an updated partial assignment of
variables that have been set by unit propagation. The unit propagation traverses the
complete set of clauses. We assume that the variables occurring in a CNF are replaced
by their truth value by reference once they are propagated. For instance, the CNF
{{A},{—-A,B}} becomes {{T},{L,B}} after setting the variable A to true.

After setting the truth value of a variable, the DPLL algorithm simplifies a CNF of
a propositional logic formula by applying Boolean resolution as can be seen in Algo-
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2. Background

Algorithm 2.4 Pseudocode of the DPLL algorithm [1T} 12].

Input a propositional logic formula ¢ in CNF set representation and a partial assignment
of variables p
Output a model p of ¢ or L

1: procedure DPLL(¢, )

2: ¢, |4 <— UNIT-PROPAGATION(¢, 1)
3 ¢ <— SIMPLIFY(¢)

4: if & € ¢ then

5: return |
6
7
8
9

else if ¢ = & then
return u
else
: select any variable v occurring in ¢ > choice point

10: a$ T Va+ L > choice point
11: V< a
12: p— pU{v=ua}
13: ¢ < SIMPLIFY(¢)
14: return DPLL(¢, u)

rithm [2.3] This results in removing falsities from clauses since variables are set to their
truth values by reference after propagation. Clauses that contain a variable that is true
are removed from the set of clauses since they are already satisfied. For instance, the
CNF {{T},{L,B}} is simplified to {{B}}.

Algorithm shows a recursive pseudocode implementation of the DPLL algorithm
for Boolean satisfiability solving. The algorithm’s input is a propositional logic formula
in CNF represented as a set of sets as well as a partial assignment of variables. Its
output is either a model of the formula or 1, which indicates that the input formula is
contradictory. The DPLL algorithm starts by applying unit propagation and simplifying
a formula afterward. If the set of clauses contains an empty clause, the algorithm
has found a contradiction and returns a false statement as can be seen in line 5 of
Algorithm 2.4 An empty clause originates from the simplification of a unit clause by
resolution as can be seen in line 8 of Algorithm [2.3] For instance, the unit clause {A}
results in an empty clause after setting the variable A to false. The DPLL algorithm
has found a model of a satisfiable formula if the set of clauses is empty and returns
the current set of assignments as can be seen in line 7 of Algorithm 2.4 Otherwise,
an arbitrary variable is selected and assigned with an arbitrary truth value. Both of
these decisions provide a choice point which makes the DPLL algorithm complete when
applying backtracking.

In the following, we give an example of the DPLL algorithm to find a solution for the
propositional logic formula (CVB)A (-wAV-BVE)A(=AVCV-E)A(-BV-C)A(BV
—C)A(CVD)AD. For this, we use the set representation of the CNF as well as a binary
tree representation of the DPLL algorithm as can be seen in Figure 2.3 Variables are
selected lexicographically and first assigned to true for branching decisions. For variable
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2.2. Boolean Satisfiability Solving

{{Cv B}7 {_'Av _‘B7 E}7 {_'Av Cv _'E}’ {_'B7 _'C}v {B’ _'0}7 {C7 D}7 {D}}
{

wD=T
J
{{C,B},{—-A,-B,E},{-A,C,-E}, {—-B,~C},{B,-C}}
d:A=T d: A= 1
e ~.
{{C7 B}v {_‘B7 E}7 {C7 _'E}> {_'B’ _'C}’ {B> _'C}} {{07 B}7 {_'B’ _'0}7 {B7 _'C}}
{
d:B=T d: B=_1 d:B=T
pd ™~ !
{{E}v{cvﬂE}v{ﬂC}} {{C}v{E}v{CvﬁE}v{ﬁC}} {{_‘C}}
{ { {
w C=_1 wC=T w C=_1
! | !
{{E}, {-E}} {{E}, @} | contradiction @ | solution
{
w E=T
!

{2} | contradiction

Figure 2.3.: Example of the DPLL algorithm to find a solution for the propositional logic
formula (CVB)A(-=AV-BVE)A(-AVCV-E)A(-BV-C)A(BV-C)A
(CVvD)AD. Variables are selected lexicographically and first assigned with
true for branching decisions.

assignments in Figure [2.3] a prefixed “u:” stands for unit propagation and “d:” for
decision.

The DPLL algorithm first applies unit propagation since the clause {D} is a unit
clause and simplifies the formula by removing the clause {C,D} which is true due to
the propagation of D = T. Afterward, we can decide for a variable to be assigned next
and choose to assign A = T. Again, the current formula is simplified which results in
removing the negative literal A from the second and third clauses by resolution. The
resulting formula does not contain a unit clause and we thus decide to assign the variable
B with true next. This assignment causes the unit propagation C = L which itself causes
the unit propagation of E = T in the next step of the algorithm. This propagation results
in an empty clause, i.e., a contradiction has been found. The DPLL algorithm now
backtracks to the last choice point, which was the decision of B = T. This backtracking
causes the decision of B = 1. The resulting simplified formula contains a unit clause
which causes the unit propagation of C = T. Again, a contradiction has been found since
this propagation results in an empty clause in the set of clauses. The DPLL algorithm
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2. Background

now backtracks to the decision of A = 1 and simplifies the formula. Afterward, we
decide to assign B = T according to our variable selection heuristic. This results in a
single unit clause which propagates C = L. The set of clauses is now empty and we thus
have found a solution for the propositional logic input formula. The model found by the
DPLL algorithm can be extracted from the edges of the binary tree, i.e., the sequence of
assigned variables, which is the set of assignments {D =T, A= 1 B=T,C= 1L}. The
other variables do not participate in this partial model and can be selected arbitrarily
in order to derive a complete model.

It can be seen that the decision for the variable to assign as well as its polarity
influences the performance of the DPLL algorithm. For instance, we would have found
the same solution without any backtracking if we had decided to assign A = L first
instead of A = T. One simple improvement of the DPLL algorithm is the pure literal
elimination [I1, 12]. A literal is said to be pure if it occurs with the same polarity in
all clauses. In this case, a pure literal is set to its polarity assuming that this decision
leads to the most amount of simplifications. The application of the pure literal heuristic
would have lead to finding the solution of the example presented in Figure [2.3] without
any backtracking. Yet, the identification of pure literals is costly since the complete
set of clauses has to be traversed after each propagation of a variable. In general, the
decision for the assignment of variables (that are no pure literals) is one of the main
culprits for a possibly bad performance of the DPLL algorithm since it guides the overall
search. In Section [6.5.3] different variable selection heuristics are presented alongside
our implementation in PROB.

2.2.2. Watched Literals

Other bottlenecks for performance in the DPLL algorithm are the search for unit clauses
as well as the simplification of the set of clauses after the propagation of a variable. The
unit propagation and the clause simplification both traverse the complete set of clauses
as can be seen in line 2 of Algorithm and line 2 of Algorithm [2.3] To improve this,
Moskewicz et al. [89] proposed the watched literals scheme. The idea is to store pointers
to a subset of variables for each clause. After the propagation of a variable, the affected
clauses can be simplified by accessing the corresponding pointers of this variable by
reference without the need for iterating over the complete set of clauses. A unit clause is
identified if there is only one pointer to a variable in a clause. In practice, it is sufficient
to watch two literals for each clause to identify unit clauses which is referred to as the
two watched literals scheme [89]. The initial literals to be watched are usually chosen
arbitrarily for each clause.

It should be noted that the watched literals scheme does not guarantee the most
amount of simplifications for each clause. If a variable is propagated but not watched
in a specific clause, this clause will not be simplified. However, this is not an issue
since a clause will be simplified as soon as a variable that has already been propa-
gated is selected to be watched. In this case, the variable is not actually watched
but the clause gets simplified accordingly. For instance, consider the set of clauses
{{A,B},{=A,E},{A,C,D},{B,C,D,E}} where the two watched literals of each clause
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are underlined. For this, we have to iterate over the set of clauses once to set up the
watched literals. Since there are no unit clauses, we can start by deciding to assign the
variable A to true. This causes the first and third clause to be removed from the set of
clauses since the variable A is watched which makes these clauses evaluate to true. In the
second clause, the watched literal A has a negative polarity so that it is removed from
this clause by resolution. This results in the simplified set of clauses {{E}, {B,C, D, E}}.
The watched literals of each simplified clause are updated. Here, this is the case for the
first clause where it is noted that there exists no other literal to watch than E. Since
this literal is already watched, a unit clause is identified. The unit propagation assigns
E to true which results in the simplified set of clauses {{B,C,D, T}}. This assignment
causes no further simplification since the literal E, which is now true, is not watched
in the last remaining clause. We can thus decide to assign the literal B to true which
provides an overall solution for the satisfiability of this formula. The fact that clauses
are not necessarily simplified if a propagated literal is not watched does not affect the
completeness since the DPLL algorithm will find all solutions when backtracking.

SAT solvers that implement the two watched literals scheme do not apply the pure
literal elimination since this would again add the overhead of traversing the complete
set of clauses after each propagation, or watch the complete set of literals to achieve
the most amount of simplifications [93]. However, the identification of a pure literal
would then again require a linear search over all literals that a pointer refers to. Fur-
thermore, watching all literals thwarts the initial goal to improve the performance of
unit propagation.

2.3. Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) is the process of deciding the satisfiability of a
Boolean formula for some background theories, e.g., the integers or sets of integers.
The literature usually distinguishes between eager and lazy SMT solving, which will be
discussed in the following.

2.3.1. Eager SMT Solving

In eager SMT solving (aka bit-blasting), all theories are translated to propositional logic
while preserving the satisfiability. Afterward, a SAT solver is used to solve a Boolean
formula. If a solution exists, it is translated back to its corresponding theories (see, e.g.,
[04-97]). Ome benefit of an eager approach is that one can always use state-of-the-art
SAT solvers [98]. For instance, the Alloy language [40, [45] is translated to SAT and
has been successfully used for many applicationsﬂ Plagge and Leuschel [46] presented
a translation from a subset of the B language to Kodkod [45] which showed benefits for
finite relational constraints such as computing the relational closure. Finite sets can be
encoded as bit vectors. Therefor, one bit is introduced for each possible element of a
set to indicate its presence or absence in the set. Logic operations such as bitwise-and

le.g., see https://alloytools.org/applications.html
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or bitwise-or can then be used to implement the necessary semantics of set theory. For
instance, a set {1,2} € P({1,2,3}) can be encoded as a bit vector with three bits [1, 1, 0],
where the zero bit indicates the absence of the integer 3.

Yet, the eager approach to SMT solving is not always beneficial. One downside is that
usually only finite domains are supported, which are bounded by a predefined bit width.
Besides a lower expressiveness, finite domains entail the occurrence of integer overflows.
Despite that, it can be a noticeable overhead to create a CNF of a Boolean formula for
SAT solving, especially when encoding several full adders for integer arithmetic [43].

2.3.2. Lazy SMT Solving

In lazy SMT solving (aka DPLL(T) or CDCL(T)) [98-101], SAT solving is combined with
theory specific constraint solving. Therefore, a formula in predicate logic is abstracted
to a Boolean formula by replacing theory specific predicates with Boolean variables. For
instance, the formula * € Z Ax > y Ay > x can be abstracted to A A B A C with
A=zxe€Z,B=x >y, and C =y > z. Afterward, a SAT solver is used to solve the
Boolean abstraction. If a solution is found, it is translated back to predicate logic to
be sent to theory specific constraint solvers. For instance, we need a constraint solver
for linear integer arithmetic in the example above. Here, a SAT solver finds the only
solution A =T AB=TAC=T. If a Boolean variable is assigned a negative polarity,
its corresponding predicate is negated in predicate logic. The translated model is then
sent to the constraint solver for integer arithmetic which in this case would refute the
formula since it is not satisfiable. The SMT solver then backtracks into the SAT solver
and uses the found model for CDCL to prevent finding the same solution again in an
ongoing search [87, 88]. If the SAT solver finds a different solution, this interaction
between the SAT solver and the theory solver repeats until the theory solver reports
satisfiability. In this example, there exists no other Boolean model so that the formula
is found to be unsatisfiable.

Modern lazy SMT solvers implement different improvements such as early pruning or
theory propagation, which are discussed in Section [6.5.4] along our implementation in
ProOB. Furthermore, SAT and SMT solvers do not implement the pure-literal elimina-
tion of the classic DPLL algorithm anymore due to efficiency reasons [93,[99]. Techniques
such as non-chronological backtracking (backjumping) have proven to be more critical
for the performance of constraint solving.

Lazy SMT solving has been successfully applied for many different theorief?] The
main benefit compared to other constraint solving approaches is that lazy SMT solvers
benefit from advantages in SAT solving such as CDCL. Furthermore, it can be the case
that a SAT solver is able to disprove a formula’s Boolean abstraction so that no theory
solver has to be called, which might not be able to disprove the corresponding formula
in predicate logic.

If not stated otherwise, we always mean lazy SMT solving when referring to SMT
solving in the remainder of this thesis.

2¢.g., see https://smtlib.cs.uiowa.edu/benchmarks.shtml
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Figure 2.4.: The left-hand side shows a hypergraph representation of the constraint
re€l. 10Ny €3.5AN2€10.15A Ax > 2 Ny < xAx+y > 2. The right-hand
side shows a hypergraph of the same constraint but with consistent domains,
where consistent constraints have been removed.

2.4. Constraint Logic Programming

Constraint logic programming (CLP) [84] T02HI05] generally aims at solving first-order
logic formulas. The main concept is to maintain variable domains that are locally con-
sistent with all available constraints by applying algorithms to reduce the domains of
variables when new constraints are posted. A contradiction is identified if a domain
becomes empty, which usually triggers chronological backtracking. After the phase of
the domain consistency check, solutions can be found by enumerating the remaining do-
mains. Constraint logic programming allows reasoning over unbounded domains. Yet,
it is incomplete regarding the disproving of formulas over unbounded domains since un-
bounded domains cannot be enumerated exhaustively. For instance, a CLP solver is
usually not able to disprove the constraint x € Z A x > y A y > x since the domains of
x and y cannot be narrowed down.

In common Prolog implementations, a CLP(X) scheme is defined where X stands
for a specific theory. For instance, CLP(FD) allows reasoning over finite domain (FD)
integers [30]. Other systems allow reasoning over reals (CLP(R)), rationals (CLP(Q))
or Boolean values (CLP(B)).

A constraint can be represented as a directed graph G = (V, E) where a node is
introduced for each variable occurring in the constraint [84]. Constraints are represented
as directed edges depending on their arity. Let 7 be a function assigning variables to
nodes in V. Unary constraints, i.e., constraints referring to a single variable, result in
self loops labeled with the constraint. For a binary constraint referring to the variables
x and y, two directed edges (7(z),7(y)) and (7(y), 7(z)) are added to the graph [84]. A
binary constraint results in two edges since the constraint is supposed to hold in both
directions. For a k-nary constraint with £ > 2, an edge between all k variables pointing
in all directions is added to E making the graph G a hypergraph [84]. An exemplary
constraint graph containing a unary, binary, and ternary constraint can be seen on the
left-hand side of Figure [2.4]
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2.4.1. Domain Consistency

Constraint logic programming applies algorithms for the reduction of domains in order
to solve a constraint system. A classic notation of consistency is defined as follows
[84], 102, T03]. Let dom(v) be the domain of the variable v € V, and C, be the set
of unary constraints referring to the variable v, C,,, be the set of binary constraints
referring to the variables v,w € V, and Cy, _x, be the set of k-nary constraints with
k>2mne&eN k..., k, € V. The node-consistency states that a node v is consistent if
all of its domain values are consistent with all unary constraints, which can be formalized
as Vz.(z € dom(v) A ¢ € C, = ¢(x)). Arc-consistency defines that a binary constraint
is satisfiable for each assignment of variables occurring in this constraint. Let v,w € V/
be variables occurring in a binary constraint ¢ € C,,. The edge (v,w) € E is arc-
consistent if Vz.(z € dom(v) = Jy.(y € dom(w) = ¢(v,w)) holds. The same has to
apply for the edge (w,v). For k-nary edges, the definition is similar but using k& — 1
existentially quantified variables called k-consistency or path-consistency. For instance,
a ternary edge (u,v,w) is consistent if Vz.(x € dom(u) = I(y, 2).((y € dom(v) A z €
dom(w)) = ¢(u,v,w)) holds. Again, this definition has to hold in each direction, i.e.,
for the edges (v, u,w) and (w,u,v).

A relaxed definition of the domain consistency is the bounds consistency where only
the minimum and maximum value of a domain are checked for consistency [84, [103].
Hereby, it is not guaranteed that the values in between the bounds of a domain are
consistent.

There exist different algorithms to achieve consistent domains depending on the arity
of a constraint. In short, each universally quantified value which does not satisfy one of
the above definitions is removed from its domain [84] [102] 103]. Usually, a constraint
is checked for consistency as soon as it is added to the constraint system, which is why
constraint logic programming is said to be data-driven. A constraint is identified to be
inconsistent if the domain of a variable becomes empty during the reduction of domains.
At the right-hand side of Figure [2.4] a consistent constraint system represented as a
hypergraph is shown, which originates from the constraint system shown on the left-
hand side of Figure Here, the domain of the variable x has been reduced to the
interval 3..10 to achieve node-consistency regarding the constraint x > 2. Afterward,
the binary constraint y < z is already consistent but the ternary constraint z +y > z
leads to further reductions according to the definition of 3-consistency. In particular, the
domain of the variable x is reduced to the interval 6..10 and the domain of the variable z
to 10..14. It should be noted that a constraint solver based on CLP can apply arbitrary
algorithms for the reduction of domains.

2.4.2. Labeling

There are two different outcomes after reaching domain consistency in a constraint
system. On the one hand, it can be the case that all domains of variables contain
a single value, i.e., the constraint system only has a single solution. On the other
hand, consistent domains can contain several elements. In this case, a so-called labeling
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(aka grounding) is used to find ground values by enumerating the domains of variables,
i.e., assigning variables to domain values [30), [84], 102] 103]. The order of variables to
assign and elements of domains to enumerate can usually be guided by some heuristic
[30, 84], 102, T03], e.g., sorting variables lexicographically and enumerating domains in
ascending natural order.

For instance, the consistent constraint system shown on the right-hand side of Fig-
ure can be labeled to z = 6 Ay = 5 A z = 10. This can be achieved by successively
labeling the variables z, y, and z starting with propagating x = 6. Afterward, the
ternary constraint z 4+ y > 2z becomes binary. The arc-consistency then induces the
reduction of the domain of the variable y to the single value 5. Otherwise, the interme-
diate constraint 6 + y > z with y € 3..5 and z € 10..14 is not satisfiable. Subsequently,
the node-consistency induces the reduction of the domain of the variable z to the value
10 due to the intermediate unary constraint 11 > z with z € 10..14. Possible further
solutions can be enumerated by backtracking. In particular, the enumeration of variable
domains provides choice points. In the example from above, the last choice point is in
the enumeration of the domain of the variable x, which provides the assignment z = 7
after backtracking.

Algorithms for labeling can allow optimizing specific variable values. For instance,
one can define to minimize or maximize the value of a specific variable during labeling.

2.4.3. Constraint Reification

Different constraint systems and constraint solvers can be combined by using specific
operators for constraint reification, e.g., as is the case for SMT solving as described in
Section The constraint reification allows reflecting the truth value of a constraint
into a Boolean value. Usually, the provided operators comprise all common logical oper-
ators, i.e., the logical conjunction, disjunction, negation, implication, and equivalence.
For instance, a constraint reification is given by A = = > 0, where A is a Boolean
variable, and = is a reification constraint.

2.5. Formal Methods and Formalisms

Formal methods are an approach for the design and verification of software and hardware
systems. For software, this usually also involves generating executable code from verified
specifications. A key feature of the approach is the specification of system properties
which can be mathematically proven to hold for a system’s whole lifetime. In the follow-
ing, we give a brief overview of the most important theoretical aspects of formal methods
that are necessary for this thesis. Additionally, we introduce two prominent implemen-
tations of formal methods called the B-Method and Alloy. It should be noted that there
exist many more implementations of formal methods such as TLA" [41], Promela [42] or
the Vienna Development Method (VDM) [106], which are not discussed in this thesis.
One fundamental concept of state based formal methods are transition systems. A
transition system is a directed graph that consists of a set of states S, a set of actions, a
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Figure 2.5.: A program graph of the Euclidean algorithm using division [3] (left) as well
as a transition system that has been unfolded from the program graph for
the inital state m = 9,n = 6,7 = 0 (right). The actions enter and exit do
not have any effect on the evaluation of variables while rem is the action
r :=m mod n and red is the action m := n;n := r. The semicolon stands
for a sequential execution.

transition relation, a set of initial states, a set of atomic propositions AP, and a labeling
function L : S — P(AP) [107]. The power set of all atomic propositions in AP is defined
by P(AP), which defines all possible combinations of labels. Atomic propositions are
logical formulas corresponding to specified system properties. The labeling function
relates each state s of a transition system to a set of atomic propositions L(s). A state
s is said to satisfy a formula ® if L(s) makes ® true, i.e., s = ® = L(s) = @ [107].

Program graphs are directed graphs that can be used to describe a system’s general
behavior abstracted from explicit state changes [I07]. The nodes of a program graph
represent locations in a system instead of explicit states as it is the case for transition
systems. A program graph reasons over a set of variables and actions, and defines a so-
called effect function, which is a successor state relation resorting to the provided actions
[107]. Each action has a guard (also called precondition) that enables or disables the
action for a specific evaluation of variables. The edges in a program graph correspond
to an action with its corresponding guard, which are usually divided by a colon in visual
and textual representations. One is able to generate a transition system of a program
graph for one or more initial states. Here, a state in the transition system corresponds
to an evaluation of variables for an explicit execution in the program graph. Successor
states are computed by applying the effect function, i.e., evaluating the effect of actions
if their corresponding guard is satisfied in the current state. Edges of a transition system
are thus labeled with actions implying that their guard is true for the starting node’s
state. The complete set of a transition system’s states for one or more initial states is
referred to as its state space [107].

A program graph of the Euclidean algorithm using division [3] can be seen on the
left-hand side of Figure [2.5] We use the following definition of the Euclidean algorithm:
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“Given two positive integers m and n, find their greatest common divisor, that is, the
largest positive integer that evenly divides both m and n.

El. [Find remainder.] Divide m by n and let r be the remainder. (We will have
0<r<n.)

E2. [Is it zero?]| If r = 0, the algorithm terminates; n is the answer.
E3. [Reduce] Set m < n, n + r, and go back to step E1.” [3 p.2, Algorithm E]

We realized the go-to statement in E3 using a while loop with a condition that is always
true. The program graph defines four locations corresponding to the condition of the
while loop (I1), the computation of the remainder in the loop’s body (l2), the check
for termination in the loop’s body (l3), and the return statement after the loop (l4) of
the Euclidean algorithm using division. An exemplary transition system that has been
unfolded from the program graph for the initial state m = 9, n = 6 and r = 0 can
be seen on the right-hand side of Figure The transition system has been unfolded
exhaustively using the program graph’s actions until reaching location 4, which results
in n = 3. The actions enter and exit do not have any effect on the evaluation of variables,
i.e., they assign each variable to its current value (skip). The action rem corresponds to
r := m mod n and red corresponds to m := n;n := r, where the semicolon stands for a
sequential execution.

For a more detailed description of the theoretical foundations of formal methods and
model checking, we refer the reader to the work by Beier and Katoen [107] or Clarke et
al. [I08]. Of course, there is also other brilliant literature on this topic.

2.5.1. Linear Time Properties

One foundation in formal methods is the specification of linear time (LT) properties to
specify and verify certain behavior. There are different kinds of LT properties each being
defined over the set of atomic propositions AP [107]. A sequence of states in a transition
system is called a path fragment [107]. If a path fragment starts in an initial state and
either ends in a terminal state or is infinite, it is called a path of a transition system
[107]. A system’s behavior is represented by traces, which are sequences of labels from
paths. By definition, a linear time property is an w regular expression P(AP)“ [107],
where P(AP)¥ “denotes the set of words that arise from the infinite concatenation of
words in” P(AP) [107, p.100, Definition 3.10].

The main types of linear time properties are safety, liveness, and fairness properties.
Safety properties generally describe some bad behavior that should not happen [109],
and are possibly violated by finite paths. An invariant is a safety property that has to
hold in every reachable state of a transition system [107]. Every system that does not
do anything complies with all its safety properties. Thus, liveness properties are used to
describe good behavior of a system that should happen eventually. In contrast to safety
properties, liveness properties are violated in infinite time [107]. Fairness properties
are LT properties that can be used to rule out unrealistic behaviors of a system [107].
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Fairness is usually required to prove liveness properties. For instance, a system where
several processes demand access to a certain area might require a fairness constraint
to prevent the starvation of certain processes. There exist different kinds of fairness
constraints (weak, strong and unconditional) [107], which will not be discussed any
further here.

In the remainder of this thesis and especially in the tools presented in this thesis, we
are mainly concerned with safety properties and in particular invariants.

2.5.2. Linear Temporal Logic

Linear temporal logic (LTL) [I07] is a logical formalism for specifying safety and liveness
properties over a set of atomic propositions. Further, LTL is a subset of first-order logic.
Besides the common Boolean operators, LTL provides the timed operators X & (next)
and ® U U (until), where ® and ¥ are logical formulas. The next operator states that ®
has to hold in the next state, while ® U W states that ® has to be true until ¥ becomes
true (not necessarily including this state).

One is able to derive several more LTL operators using these two definitions [107].
For instance, a formula can be checked to finally hold using ¢ which is defined as ¢ ® =
true U P, or to hold in every state (globally) using (Jwhich is defined as O® = = (—®).
LTL operators can also be combined. For instance, [(1{ & states that ® has to hold
infinitely often, and ¢ J® states that ® eventually holds forever. Other common LTL
operators are ® W U = (& ¢ V)V O P (weak until) and & R ¥ = —~(=d U V)
(release) [107]. Note that it is also possible to encode fairness constraints in LTL [107],
which will not be discussed any further here.

2.5.3. Model Checking

In general, the goal of model checking is to verify that an LT property holds for a system.
Explicit-state model checking is concerned with verifying safety properties (in particular,
invariants) of finite systems by checking the complete state space exhaustively. If a state
violating a property is found, a finite path and trace leading to this counterexample is
returned [107]. A constraint solver is essential for model checking. It has to compute the
effect of state changes during animation and verify properties in each state for invariant
checking. The verification of properties in a single state can be a complex task, e.g.,
resulting in minutes being spent for constraint solving. All in all, explicit-state model
checking can be a sophisticated task taking days to terminate for large models depending
on the size of its state space and complexity of constraints to be checked.

Symbolic model checking is a different approach that does not view states explicitly
but symbolically [ITOHIT3]. Several states can be abstracted by predicates imposing
constraints on the domains of variables. For instance, consider a single machine variable
x. The explicit states = 0, = 1, and * = 2 can, e.g., be represented by the
predicate x € {0,1,2} or 0 < z < 2. State changes (actions) can be described by so-
called before-after predicates. Here, an action is described by a predicate BA, (v, v")
applying the action act to the variables in v and assigning the results to the variables
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in v/, which corresponds to the next state [114]. For instance, consider the action act
defined as x>0 : x:=x+1 with BA,({z},{2'}) := Jz.(x > 0N 2’ = 2 + 1). Let Acts
be the set of all actions. A state space can be represented symbolically by a monolithic
transition predicate T(v,v") = V,icacts BAact (v, v') [114]. There are different approaches
for symbolic model checking such as bounded model checking (BMC)[I15], interpolation
[116], k-induction [I17] or the IC3 algorithm [118]. While BMC can only be used to check
finite paths, the other approaches can also be used for checking infinite state spaces. In
contrast to explicit-state model checking, symbolic model checking can speed up the
verification process and allows checking infinite state spaces. Yet, the constraints can
get complex and hard to solve. For instance, this depends on the sizes of the variables’
domains and the amount of variables or actions. All in all, model checking requires a
complete constraint solver for the underlying specification language providing the best
possible performance.

There exist techniques for model checking of LTL properties based on infinite paths
and so-called lasso-traces [107], which also require constraint solving.

2.5.4. The B-Method

The B-Method [25] is a state-based formal method for hardware and software develop-
ment following the correct-by-construction approach. Here, the correctness refers to a
system’s specified LT properties. The development in B is incremental starting with an
abstract specification that is successively refined and decomposed. Hence, a model in B
consists of a collection of so-called machines. Machines are linked by proof obligations
which have to be discharged in order to ensure correct behavior of the whole system. The
concept of refinements generally increases the maintainability and eases the development
in B, especially for complex models.

The B-Method’s foundation is its rich specification language, which is based on first-
order logic, typed Zermelo—Fraenkel set theory with the axiom of choice [119] 120], and
integer arithmetic. The B language defines expressions, predicates, and substitutions.
Expressions can be seen as values or formulas evaluating to a discrete value such as an
integer, but do not have any side effect. Predicates, on the other hand, are logical formu-
las that evaluate to either true or false such as a conjunction. Here, it should be noted
that B distinguishes between the truth values of predicates and Boolean. Substitutions
are used to change the state of a machine, i.e., the set of machine variables. For a
complete definition of the B language, we refer the reader to the work by Jean-Raymond
Abrial [25]. After the validation or a formal model in B, it is usually transferred to
a low-level subset of B called B0 [I121]. For instance, sets and quantifiers are replaced
for translating to BO. There exist different code generators that are able to generate
executable code from formal models using BO [121H126].

The B language is nowadays referred to as classical B while Event-B [20] is its succes-
sor. Event-B extends and improves the classical B language, e.g., by renaming ambiguous
operators such as - or *, or by adding the operators finite and partition. Further, Event-
B puts the focus on systems modeling by extending the concept of refinement. Instead
of modeling single software or hardware components using the B-Method and classical
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B, Event-B enables the design of complete systems. Note that in Event-B preconditions
are called guards and substitutions are called actions while referring to nearly the same
concepts. For a detailed comparison of B and Event-B, we refer the reader to the work
by Michael Leuschel [127].

2.5.5. Alloy 5

Alloy is a formal specification language for modeling software systems [39, 40]. The Alloy
Analyzer is used to verify behavior and prove a system’s overall correctness regarding
specified properties by applying SAT solving. Further, the Alloy Analyzer can be used
for the visualization and animation of formal models. Note that recently a new version
of Alloy, namely Alloy 6, has been released. In Section [5.3] we give a brief introduction
to new features of Alloy 6. If not stated otherwise, we always refer to Alloy 5 when
writing Alloy in this thesis.

The Alloy language is based on first-order logic and n-ary finite relations. For instance,
sets are unary relations. The language resembles object-oriented programming languages
making it more accessible for software developers that have no experience in formal
modeling. Formulas are translated to propositional logic and SAT solvers are used for
constraint solving. This implies that only finite systems can be modeled. In particular,
one has to specify finite bounds for each domain.

Alloy has been used for many applications such as enterprise modeling, electronic
commerce or access control and security policies E]

2.6. ProB

ProB [28] 29] is a tool for designing, analyzing, and verifying formal models using
the B-Method. Its main features are the animation of formal models for analysis and
debugging, model checking for verification or model finding, and constraint solving,
which is used for many tasks such as computing state changes during animation or
verifying properties for model checking.

PROB is certified T2 SIL4 according to the EN 50128 [38] standard defined by the
European Committee for Electrotechnical Standardization (CENELEC). This is an im-
portant aspect in order to use PROB for the design and verification of safety critical
systems. For instance, PROB was used at Thales for the validation of the European
Train Control System (ETCS) hybrid level 3 principles in the context of railways [16].

Other use cases of PROB are, e.g., data validation [27, 128-130], constraint-based
inductive invariant and deadlock checking or test-case generation, which will not be
discussed any further here.

Besides the classical B language, PROB also supports other formal specification lan-
guages such as Event-B [26], Z [131], TLA™ [41} 132, 133] or Alloy 5 [39, 40, 43 [44].

3A list of applications using Alloy can be found here: https://alloytools.org/citations/
case-studies.html
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2.6. ProB

PROB supports explicit-state [29] and symbolic model checking [114]. Explicit-state
model checking can be a sophisticated task depending on the size of a model’s state
space. To improve the performance, PROB provides different techniques such as partial
order reduction [I34], [135] or operation caching [136]. For symbolic model checking,
PRrROB implements bounded model checking, k-induction as well as the IC3 algorithm
[114]. Constraints from symbolic model checking can be complex. It is thus crucial to
have a performant constraint solver.

PROB’s constraint solver is implemented in SICStus Prolog [81] and uses constraint
logic programming, in particular, for the enumeration of finite domain integers [30]. The
constraint solver uses coroutines for deterministic propagation and constraint reification.
In general, PROB’s constraint solving routine can be divided into a deterministic prop-
agation phase, where domains are reduced, and a grounding phase, where domains are
enumerated to find exact values. One important feature of PROB’s constraint solver is
that it is able to provide counterexamples for unsatisfiable constraints. This is particu-
larly desirable for debugging formal models to facilitate their repair.

Set cardinality constraints are frequently used in B and often pose complex constraints
depending on the set. For instance, computing the cardinality of a set comprehension
can be expensive if the actual set cannot be computed statically but depends on other
variables occurring in a constraint. To improve the performance, sets occurring in a
cardinality constraint are represented by bit vectors as soon as they are found to be
finite. Here, a bit is reserved for each element which is set to 1 if a specific element is
part of the set as is the case for eager SMT solving as described in Section [2.3.1] The
actual cardinality of a set can then simply be computed using a constraint summing the
elements of a bit vector as is provided by CLP(FD) [30]. Again, this is implemented
using coroutines in Prolog for a delayed constraint propagation.

PROB’s constraint solver implements many more sophisticated performance improve-
ments. One such improvement is called common subexpression elimination (CSE), which
is of interest in the context of SMT solving and thus also important for this thesis.
CSE aims at collecting syntactically equivalent subformulas (expressions or predicates)
in a formula to be replaced by a single new variable holding the subformula’s value.
This prevents multiple computations of the same subformula. For instance, the for-
mula f € Z+ (Z <+ Z) Nz € dom(f(a)) AN r = f(a)(x) can be optimized to be
fE€Z+ (Z<+~7Z)N(LETtBEt = f(a) IN z € dom(t) Ar = t(z) END). Here, the function
application f(a) has been lifted into a LET expression introducing a new variable ¢ to
prevent computing it twice.

A similar approach preventing multiple computations of the same subexpression is
memoization, which is implemented in PROB’s constraint solver for function applica-
tions as well as membership constraints. In contrast to CSE, this optimization is not
computed statically but dynamically by managing an internal data structure to look up
subexpressions that have already been evaluated.

Due to the complexity of constraint solving, there is probably no constraint solver
that is best for all types of constraints. PROB thus also has other additional constraint
solving backends, e.g., resorting to external constraint solvers such as Z3 [47, 48] or
Kodkod [45], [46]. Further, PROB provides an additional backend using constraint han-
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dling rules (CHR), which mainly aims to improve disproving of constraints, especially
over unbounded domains. Constraint handling rules [I37] provide a constraint store
and allow defining rules that are triggered when adding constraints to manipulate the
constraint store. This enables to implement constraint solvers, e.g., in Prolog [138-140)].
The CHR language is committed-choice, i.e., once a rule is applied it cannot be un-
done by backtracking. All available constraints are propagated until the constraint store
reaches a fix point, i.e., no further CHR can be propagated. A contradiction is detected
if the domain of a variable becomes empty. For PROB’s CHR backend, propagations
rules that are tailored towards finding contradictions were implemented, which are more
aggressive than the propagation rules of PROB’s native constraint solver. Yet, these
additional rules might slow down the search for finding solutions, which is the reason
why they are not used in the native constraint solver by default.
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3. Thesis Structure

This is a cumulative dissertation. The main part of this thesis (Chapter 4|and Chapter @
consists of two journal articles [43, [50] that originate from conference paper submissions
[44, 149] as can be seen in the following:

[43] Sebastian Krings, Michael Leuschel, Joshua Schmidt, David Schneider, and Marc
Frappier. Translating Alloy and Extensions to Classical B. Science of Computer
Programming, 188, 2020. doi: 10.1016/j.scico.2019.102378

[44] Sebastian Krings, Joshua Schmidt, Carola Brings, Marc Frappier, and Michael
Leuschel. A Translation from Alloy to B. In Proceedings ABZ (International
Conference on Rigorous State Based Methods), volume 10817 of Lecture Notes in
Computer Science, pages 71-86. Springer, 2018. doi: 10.1007/978-3-319-91271-4_6

[49] Joshua Schmidt and Michael Leuschel. Improving SMT Solver Integrations for
the Validation of B and Event-B Models. In Alberto Lluch Lafuente and Anas-
tasia Mavridou, editors, Proceedings FMICS (International Conference on Formal
Methods for Industrial Critical Systems), volume 12863 of Lecture Notes in Com-
puter Science, pages 1-19. Springer, 2021. doi: 10.1007/978-3-030-85248-1_7
(nominated for best paper award)

[50] Joshua Schmidt and Michael Leuschel. SMT Solving for the Validation of B and
Event-B Models. International Journal on Software Tools for Technology Transfer,
24(6):1043-1077, 2022. doi: 10.1007/s10009-022-00682-y

Furthermore, we provide additional experiments and considerations for each journal
article (Chapter [ and Chapter [7]). Last but not least, we present a final conclusion
answering the initial research questions.

The algorithms presented in this thesis are implemented in the PROB tool which is the
foundation of this work. The tool is available under the Eclipse Public License Version
1.0 and can be downloaded from https://prob.hhu.de/.

In the following, I state my contributions to each aforementioned publication, contri-
butions that explicitly originate from one of my co-authors, as well as adaptions that
were made for this thesis compared to the original articles.

A Translation from Alloy to B. The research idea of translating Alloy to B stems from
Sebastian Krings, who was also the initiator of writing the paper. The introduction [44],
Section 1], translation example [44, Section 2|, and conclusion [44] Section 7] originate
from Sebastian Krings. The description of improvements over existing Alloy tools [44]
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Section 6] originates from Michael Leuschel. Carola Brings was not involved in writing
the paper but worked out an initial proof of concept in her bachelor thesis [141]. Further,
the translation example [44, Section 2| originally stems from her thesis. Marc Frappier
was involved in proofreading and provided Alloy models for testing and improving the
software. I was involved in research as well as the formulation, description, and validation
of the fundamental translation rules from Alloy to B. Both the translation of orderings
[44, Section 4] and the empirical evaluation [44, Section 5] originate from me. Besides
that, I was also involved in proofreading. Furthermore, I presented the work at the
6th International Conference on Abstract State Machines, Alloy, B, TLA, VDM, and Z
(ABZ) in 2018 [142]. Besides the conference paper itself, I was a core developer of the
translation from Alloy to B covering the fundamental semantics as well as the integration
in PROB (the first version was implemented in Kotlin).

Translating Alloy and Extensions to Classical B. An extended version of the con-
ference paper [44] was submitted to the Science of Computer Programming journal on
invitation of the ABZ 2018 conference’s editors. This journal article is used as is in
Chapter |4 of this cumulative dissertation. Only the captions of figures and listings
were adapted grammatically without changing the semantics to match the remaining
thesis’ style. I was involved in the conceptualization of the article, research, investiga-
tion, validation, and formalization of the fundamental translation rules from Alloy to B
(Section . The following texts mainly originate from me:

— primer on B (Section |4.2.2)) and comparison of Alloy and B (Section {4.2.3)

— translation of field quantifications and sequences (9th paragraph in Section m
and following)

— translation of universe and identity (2nd paragraph in Section and following)

— translation of Alloy commands (4th paragraph in Section {4.4.14] and following)

— post-processing optimization rules (Section 4.4.16)

— translation of Alloy extensions (Section
— empirical evaluation (Section except Listing [4.6

Figure was created by Sebastian Krings, and Figure was created by Michael
Leuschel. The introduction in Section [4.I] translation example in Section first
paragraph in Section [4.4.4] and first three paragraphs in Section 4.4.14] as well as the
translations of connectives and simple predicates in Section [£.4.5 quantifications, set
comprehensions, and identifiers in Section 4.4.11] and fact, function, and predicate dec-
laration in Section originate from Sebastian Krings. The overview of the semantic
functions in Section and Section [1.4.2] discussion on representing tuples in Sec-
tion translations of Alloy’s Cartesian product in Section 4.4.8] domain and range
restriction in Section 4.4.9] and join operator in Section [4.4.10| as well as Section [4.6
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Listing[4.0], and Section [4.§ originate from Michael Leuschel. Section [4.9and Section [4.10]
mainly originate from Sebastian Krings and Michael Leuschel. The primer on Alloy in
Section [£.2.1 and the translation of multiplicity annotations in Section originate
from Marc Frappier. Further, Marc Frappier was involved in proofreading and provided
Alloy models for testing and improving the software. David Schneider was involved in
proofreading, improving the parser’s implementation, and testing the software. Besides
the aforementioned contributions, I was involved in proofreading, experimental evalua-
tion, and performance improvements. Further, I am a core developer of the final version
of the translation from Alloy and extensions to classical B in PROB using Prolog instead
of Kotlin.

Improving SMT Solver Integrations for the Validation of B and Event-B Models. 1
am the main author of the conference paper and the core developer of the presented new
integration of Z3 in PROB. Furthermore, I presented the work at the 26th International
Conference on Formal Methods for Industrial Critical Systems (FMICS) in 2021 [143].
Michael Leuschel was involved in proofreading the conference paper and validating the
software. The paper was nominated for the best paper award of the conference.

SMT Solving for the Validation of B and Event-B Models. An extended version of
the conference paper [49] was submitted to the International Journal on Software Tools
for Technology Transfer on invitation of the FMICS 2021 conference’s editors. This
journal article is mainly used as is in Chapter [6] of this cumulative dissertation. The
Venn diagrams in Section have been redrawn to match the remaining thesis’ style.
The contents of the diagrams were not adapted. The subsections “Basics of SAT &
SMT Solving” [50), Section 2.1] and “Watched Literals” [50], first paragraph in Section
5.3] have been removed since a more detailed description is provided in Chapter 2| Fur-
ther, the rules for rewriting set cardinality and power set constraints in Section [6.4.]]
have been extended. I am the main author of the journal article and the core devel-
oper of the presented new integration of Z3 in PROB and the direct implementation of
SMT solving in PROB including the additional theory solver for integer difference logic.
Michael Leuschel was involved in proofreading the journal article as well as validating
and improving the software.

33



3. Thesis Structure

Other peer-reviewed publications.
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[140]
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4. Translating Alloy and Extensions to
Classical B

Sebastian Krings, Michael Leuschel, Joshua Schmidt, David Schneider, Marc Frappier

Abstract In this article, we introduce a denotational translation of the specification
language Alloy to classical B. Our translation closely follows the Alloy grammar. Each
construct is translated into a semantically equivalent component of the B language.
In addition to basic Alloy constructs, our approach supports integers, sequences and
orderings. The translation is fully automated and our implementation can be used
in PROB. We evaluate the usefulness by applying AtelierB and PROB to translated
models, showing benefits for proof and constraint solving with integers and higher-order
quantification.

4.1. Introduction

Both B [25] and Alloy [40] are specification languages based on first-order logic. The
languages share several features, such as native support for integers, sets and relations
as well as user-defined types. However, there are also considerable differences. For
instance, one of B’s key concepts is to encode state changes by means of transitions,
effectively computing successor states featuring all variables. In contrast, Alloy allows
defining orderings over certain types.

Another difference between Alloy and B is tool support, especially when it comes to
available backends for constraint solving. For Alloy, the Alloy Analyzer [40] is used to
compute models by translating Alloy predicates to SAT using Kodkod [45]. The most
prominent constraint solver for B, PROB [27H29], however mainly relies on constraint
logic programming [104]. In particular, it uses the CLP(FD) library of SICStus Prolog
[30] and extends it to support constraints over infinite domains [I50]. Additionally,
PRrROB allows using other backends, such as SMT solvers [48] or, again, Kodkod [46].

The different constraint solving techniques show different performance characteristics
[151]. Certain predicates can be solved faster by using a particular backend or combina-
tion of backends; others cannot be handled by a particular solving technique at all. We
thus suppose that a translation from Alloy models to B models serves different purposes:

— It provides Alloy users access to a set of new backends, and might enable constraint
solving for Alloy models that cannot be handled efficiently by the Alloy Analyzer,

— it enables the application of the AtelierB provers [121] to Alloy models,

37



4. Translating Alloy and Extensions to Classical B

— it enables the usage of PROB as a second toolchain to validate the results of the
Alloy Analyzer,

— it provides new test cases and benchmarks to the B community and should aid in
improving PROB,

— it helps communication between the Alloy and B communities.
Our translation is integrated into PROB and is available at:
https://www3.hhu.de/stups/prob
Details about installing and using our translation can be found at:
https://github.com/hhu-stups/alloy2b-doc

This article is the extended version of our original ABZ submission [44]. For this
article we extend our former work [44] in different aspects:

— The informal, more intuitive description of the translation from Alloy to B has
been replaced by a formal description.

— We revised the translation of operations on orderings.

— The translation supports more Alloy constructs than the initial one. In particu-
lar, we added support for sequence operations, additional constraints on relations
defined in util/relation and completed the translation of the join operator as
well as all multiplicity annotations.

— We describe the tooling used in our translator in greater detail.
— Several special and edge cases are discussed more thoroughly.

— The empirical evaluation has been extended with more examples.

4.2. Introduction to Alloy and B

In the following, we give brief introductions to Alloy and B, discussing their approach
to modeling and their specific features. Afterward, we point out the main differences
between both languages.
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4.2. Introduction to Alloy and B

4.2.1. Primer on Alloy

The Alloy notation is based on first-order logic with n-ary finite relations as the only
type of terms. Sets are represented as unary relations. Basic sets and relations are
defined using signatures, a construct similar to classes in object-oriented programming
languages, which supports inheritance.

An Alloy specification consists of a set of signatures, noted sig, which basically define
sets and relations, and a set of constraints, noted fact, that are first-order formulae
which condition the values of sets and relations. A model can also contain assertions,
which should hold when the facts are satisfied. The declaration sig X {r : Y} declares
a signature (unary relation) X and a binary relation r which is a subset of the Cartesian
product X x Y. Alloy supports the usual operations on relations, such as union, intersec-
tion, difference, join, transitive closure, domain and range restriction. Fields (relations)
of a signature are accessed using a convenient object-like notation (e.g., z.r = y, with
r € X,yeY,and “7 denotes the relational join operator). Alloy provides a universal
type, noted univ, which is the union of all signatures. Int is the only predefined type; it
is represented by the interval —2"~!..2"~! —1, where n is the number of bits used to store
Int values. UML-like cardinality constraints can be defined on relations. Functions and
predicates can be declared.

Alloy specifications can be decomposed into modules. Predefined modules provide
support for Boolean, sequences, directed graphs, and total orderings on signatures.

The Alloy tool provides an editor, a model finder/enumerator and a model viewer
based on the dot package. Alloy uses SAT solvers to build models to verify the satisfia-
bility of axioms (facts) defined in an Alloy specification and to find counterexamples for
assertions which should follow from these axioms. Only finite models are explored; their
size is determined by a scope specified for each signature. Alloy facts and signatures are
translated into Boolean formulas using Kodkod [45].

4.2.2. Primer on B

The formal specification language B [25] is based on first-order-logic and set theory
and follows the correct-by-construction approach. B has initially been developed for
the specification and design of software systems. Specific properties can be proven
mathematically using theorem provers, e.g., using AtelierB [121], or be checked using a
model checker such as PROB [27-H29].

A formal model in B consists of a collection of machines, containing a high-level
abstract specification which is successively refined and decomposed. The development
in B is thus incremental, which increases the maintainability and eases the specification
of complex models.

A machine consists of variable and type definitions as well as initial values. A state is
defined by the current values of the machine variables. By defining machine operations,
one is able to specify transitions between states, effectively computing successor states
featuring all variables. A machine operation has a unique name and consists of a B
substitution (aka statement) defining the machine state after its execution. An operation
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can have a precondition, allowing or prohibiting execution based on the current state.
For instance, a valid machine operation o is defined by o = PRE x>0 THEN x:=x+1 END
using the single assignment substitution of B. Several variables can be assigned either
in parallel or in sequence.

To ensure a certain behavior, the user can define machine invariants, i.e., safety prop-
erties that have to hold in every reachable state. Hence, the correctness of a formal
model refers to the specified invariants. PROB further supports linear temporal logic
and fairness constraints, which enables the specification and verification of liveness prop-
erties.

In addition to the types explicitly provided by the B language such as INTEGER or BOOL,
one can provide user-defined sets. These sets can be defined by a finite enumeration of
distinct elements (the set is then referred to as an enumerated set) or left open (called
deferred sets). For instance, by defining a set S = {s} the element s is of type S and can
be accessed by name within the machine. Deferred sets are assumed to be non-empty
during proof and also finite for animation.

B is statically and strongly typed while PROB further executes runtime checks to
ensure well-definedness. Type domains can be unbounded, possibly resulting in a model
with an infinite state space. Further, B and PROB have support for higher-order quan-
tification, in particular, sets and relations can be nested arbitrarily.

Code generators can be used to derive executable code from B models, targeting
traditional programming languages such as C, C++ or Java.

4.2.3. Comparing Alloy and B

Although Alloy and B share common features, both languages have considerable dif-
ferences. Most notably, Alloy and B have a different understanding of states. In B,
state changes are encoded by means of operation executions, leading to successor states
featuring all variables. At its heart, Alloy only has a single constant state, there is no
concept of an operation. Alloy, however, allows defining orderings, allowing one to rea-
son about sequences of states. In contrast to B, a predicate can then access any state
in the sequence, not just the current state and its immediate successors.

Further, B is strongly typed, while Alloy only enforces the arities of an operation’s
arguments to match and provides the universal type, i.e., the union of all signatures.
On the one hand, strong typing is less error-prone than weak typing and enables a wide
range of code analysis techniques to be applied. For instance, PROB throws a well-
definedness error if a sequence operation is called on an improper sequence, whereas this
is permitted in Alloy (but might not always be desired). On the other hand, strong typing
possibly hinders a concise and idiomatic specification of software systems, especially in
the context of object-oriented programming languages.

In B, tuples are encoded as nested pairs. Thus, several encodings of tuples exist
and the modeler has to know which one is being used. For example, a triple can be
represented as either (z — (y — 2)) or ((x — y) — 2). In Alloy, tuples are flat. This
makes the join operator of Alloy powerful and enables expressing certain constructs more
concisely than is possible in B.

40



4.3. Translation Example

Listing 4.1: Signatures of the Own Grandpa model in Alloy.

module SelfGrandpas
abstract sig Person {
father : lone Man,
mother : lone Woman
}
sig Man extends Person { wife : lone Woman }
sig Woman extends Person { husband : lone Man }

N OO W

Alloy follows the small scope hypothesis, which states that most bugs can be found
by testing a program within a small scope [152], and bounds every domain. Hence, the
Alloy Analyzer is not able to generally prove properties for a model but show the absence
of counterexamples within a restricted scope. In contrast, domains can be unbounded
in B. Besides using AtelierB’s theorem provers, symbolic model checking techniques of
PROB can be used to verify properties on infinite state spaces [153].

B and PROB have support for higher-order quantification, in particular, sets and
relations can be nested arbitrarily. Higher-order specifications are also expressible in
Alloy but cannot be handled by the Alloy Analyzer (an error is thrown). Alloy* [154] is
an extension of Alloy which is able to do so.

4.3. Translation Example

In the following section, we introduce our translation on a simple Alloy model taken
from Chapter 4 in “Software Abstractions: Logic, Language, and Analysis” [40]. The
model is given in Listing [4.1] and Listing the translation is given in Listing and
Listing 4.4, Our translation will only use the following concepts of a B machine:

1. Deferred sets, introducing new types for Alloy signatures in the SETS clause.
2. Constants, introduced in the CONSTANTS clause.

3. Predicates about the constants and deferred sets defined in the PROPERTIES clause.
This includes typing predicates for the constants.

4. DEFINITIONS, aka B macros, to ease translating certain Alloy concepts.
5. B operations for Alloy assertion checks.

In particular, our translation does not use variables, invariants or assertions.

4.3.1. Translating Signatures

We first concentrate on the translation of Alloy’s signatures and fields in Listing {4.1] to
B types. An overview of the signatures and fields can be found in Figure |4.1]
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Listing 4.2: Signatures of the Own Grandpa model translated to B.

1 |MACHINE SelfGrandpas
2 | SETS
3 Person
4 | CONSTANTS
5 Man, Woman, father, mother, wife, husband
6 | PROPERTIES
7 father € Person -+ Man A
8 mother &€ Person + Woman A
9 Man C Person A
10 wife € Man -+ Woman A
11 Woman C Person A
12 husband € Woman + Man A
13 Man N Woman = & A
14 Man U Woman = Person
15 | END
mother father
Alloy: Person B Translation:
abstract sig Person { father €Person +Man A
father : lone Man, husband mother €Person +Woman A
mother : lone Woman — T Man cPerson A
Li Man extends Person { wife EMan »Worman
Wi lone Woman T wife—— busband Ewoman »Man A
Lig Woman extends Person { Man nWoman = A
husband : lone Man Man uWoman =Person
}

Figure 4.1.: Signatures and fields of the Own Grandpa model in Alloy and B.

In order to translate the Alloy module SelfGrandpas, we create a B machine with
the same name. Inside, the basic signature Person, defined in line 2 of the Alloy model,
is represented as a user-given set in line 3 of the B machine in Listing For the sake
of readability, the example translation uses the same identifiers as the Alloy module.
Of course, one has to ensure the translation is valid, e.g., identifiers do not collide with
B’s keywords. Deferred sets in B can have any size, just like signatures in Alloy. In
Section we show how a limit on the size of the signature is translated.

The signature features two fields, father and mother, each representing a relation
of members of Person to members of Man and Woman. The keyword lone states that
the relation is in fact a partial function, i.e., a 1-to-at-most-1 mapping. This can be
encoded into B using a partial function, as created by the + operator in lines 7 and 8
of Listing [4.2]

The extending signatures Man and Woman are subsets of Person. As user-given sets in
B are distinct, we introduce constants Man and Woman and assert the subset property in
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Listing 4.3: Facts and predicates of the Own Grandpa model in Alloy.

1]...

2 |fact Terminology A wife = “husband }

3 |fact SocialConvention {

4 no wife & *(mother + father) .mother

) no husband & *(mother + father).father

6 |

7 |fact Biology A

8 no p : Person | p in p. (mother + father)
91}

10 |fun grandpas[p : Person] : set Person {

11 let parent = mother + father + father.wife + mother.husband
12 | p.parent.parent & Man

13 |

14 |pred ownGrandpal[m : Man] {

15 m in grandpas [m]

16 |}

17 |run ownGrandpa for 4 Person

lines 9 and 11 of Listing As above, the fields wife and husband are translated into
partial functions in lines 10 and 12.

Since Person was declared abstract, two additional properties have to hold for the
sub-signatures: each element of Person has to be in one of the sub-signatures and the
two sub-signatures have to be disjoint. This partitioning of Person is encoded in B’s

set theory in lines 13 and 14 of Listing [4.2]

4.3.2. Translating Facts and Predicates

Alloy facts are added to the B machine’s PROPERTIES clause. For example, the Alloy
fact Terminology of Listing 4.3 stating that wife is the inverse of husband, can be
encoded in B using the relational inverse, see line 11 of Listing [4.4]

The first fact in SocialConvention states that your wife cannot be your mother or
the mother of your ancestors. The second fact asserts the same property for husband
and father. Both can be translated directly as far as set union, intersection, and closure
computation are concerned. The dot join in this case is interpreted as the relational
composition of the two relations, which is available in B by using the ; operator. Other
interpretations of the dot join operator are discussed later. The keyword no enforcing
the emptiness of a set is translated to equalities to the empty set in lines 12 and 13.

The Alloy fact Biology, stating that nobody can be their own ancestor, introduces a
quantified local variable p. Again, no enforces emptiness of the set. We translate the
fact into a negated existential quantification, which is able to introduce the variable.
Observe, that quantification in Alloy is over singleton sets only. More generally, we
translate the quantification no p : .S | P into =3p.({p} C S A P).

The function definition grandpas and the predicate definition ownGrandpa, both with
a parameter, are encoded as B definitions, permitting their reuse throughout the model.
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Listing 4.4: Facts and predicates of the Own Grandpa model translated to B.

1 |MACHINE SelfGrandpas

2 ]...

3 |DEFINITIONS

4 parent == mother U father U

5 (father ; wife) U (mother ; husband);

6 ownGrandpa(m) == {m} C Man A ({m} C grandpas(m));

7 grandpas (p) == {tmp | {p} C Person A

8 tmp € (parent[parent [{p}]] N Man)}
9 | PROPERTIES

10 .

11 wife = husband™! A

12 wife N (closure((mother U father)) ; mother) = @ A

13 husband N (closure((mother U father)) ; father) = & A
14 not (dp. ({p} C Person A

15 {p} C closurel((mother U father)) [{p}])) A

16 card(Person) < 4

17 |OPERATIONS

18 run_ownGrandpa = PRE dm.(ownGrandpa(m)) THEN skip END
19 | END

The predicate definition ownGrandpa only includes the application of grandpas as well
as a membership check and can thus be translated directly.

Translating grandpas however is not straightforward, as it includes a let expression,
which is not available in B[f] As an alternative to inlining, we again create a definition
named parent in order to hold the value of the newly introduced variable. Note that
this changes the scope in which the variable resides and might make renaming necessary
in order to avoid conflicts. Furthermore, observe that there are no free variables in the
definition of parent. Otherwise, those would be passed to the B definition as parameters.
As grandpas returns a set of Person, the definition again uses a set comprehension.

4.4. Formal Description of the Translation

The original paper by Daniel Jackson [44] (notably Figure 2) as well as Appendix C in
»Software Abstractions: Logic, Language and Analysis“ [40] provide a semantics of the
kernel of Alloy in terms of logical and set-theoretic operators. It introduces a function
M to give the meaning of formulas (aka predicates) and a function E that gives the
meaning of expressions. One of the rules defined by Jackson [40] gives the meaning of
the + operator as the set-theoretic union of the meaning of its arguments:

Elp +4qli = E[pliU E[q]q

The argument ¢ is an environment where some identifiers can be given a value. The
environment is used to deal with quantifiers and identifiers: quantifiers update the en-

'Let expressions are available in an extended version of B understood by PROB.
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vironment, while the function is applied when computing the meaning of an identifier r
as follows: E[r]i = i(r).

Our translation rules are an alternate specification of this semantics, using the B
operators and also using B quantification. Our translation rules are more comprehensive
and sometimes more involved due to the following reasons:

— The B language has a more restrictive syntax concerning set comprehensions and
always requires explicit quantification of all introduced identifiers, in contrast to
the “flexible” mathematical notation employed by Jackson [39] 40].

— In Alloy tuples are flat and Cartesian product is associative; in B Cartesian product
is not associative and tuples are represented as nested pairs.

— We have to provide the full translation for all operators. (Jackson [39] 40] presents
the kernel semantics and only a few translation rules for the full language to the
kernel language.)

— The translation by Jackson [39, 40] does not specify all aspects of encoding signa-
tures, which we have to deal with in an automated translation.

4.4.1. Overview of the Semantic Functions

We provide four semantic functions, one for expressions, one for predicates, and two for
declarations that introduce new quantified variables.

Each semantic function has an argument ¢ which is an environment storing different
information to be used during translation. In particular, the information is used for
optimization as it allows using more specialized encodings in certain situation. For in-
stance, the environment stores identifiers that are singleton sets. Thus, if x € 7, then x
is translated as {z}, whereas identifiers not in ¢ are translated as z. This information
is relevant to obtain a more effective encoding into B, using scalar values instead of set
values whenever possible. Note that, as we translate Alloy quantification to B quantifi-
cation, there is no need to store values for the quantified variables as in the functions
defined by Jackson [39, 40]. However, we also store information about identifiers which
are known to be total functions in . We are then able to translate specific Alloy con-
structs in a more idiomatic and, in terms of solving constraints, more efficient way. For
instance, when using total functions, we can translate element access using B’s function
application instead of using the relational image operator.

For the sake of readability and brevity, our translation rules only detail how identi-
fiers representing singleton sets are tracked. Identifiers for total functions are tracked
similarly.

In particular, we provide the following semantic functions:

1. E[A]i is the B encoding of the Alloy expression A given the environment 4.

2. M[A]i is the B encoding of the Alloy predicate A given the environment i.
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3. D[A]i is the B encoding of the Alloy quantification declaration A given the envi-
ronment i. [[A]i is the updated set of identifiers after processing the declaration

A.

4. F[A]i is the B encoding of the Alloy signature field declaration A given the envi-
ronment 7.

4.4.2. Example

Before presenting the rules in detail, we process a small sub-predicate from Section [4.3.2}

no wife & *(mother + father).mother
To translate this Alloy predicate to B we need the following semantic rules:

Mno p]i = Efp)i =9
Elp & q]i = Efp]in Efq]s
Elp +qli = E[p]iv E[q]i
E[z]i = =z for identifiers not occurring in ¢ (e.g., signature names and fields)
E[*p]i = closure(E[p]i)

Elp.q)i = (E[p]i; E[g]t) if both p and ¢ are binary relations

Note that closure is B’s transitive and reflexive closure operator on relations, while
“7 is the relational composition operator.

Here is a step-by-step application of these rules to obtain the B translation, where
1= Q.

1. M[no wife & *(mother + father).mother]:

2. F[wife & *(mother + father) .mother]i = &

3. Ewife]i N E[*(mother + father) .mother]i = &

4. wife N (E[*(mother + father)]i ; E[mother]:) = &

5. wife N (closure( E[(mother + father)]i) ; mother) = @
6. wife N (closure( Fmother]i U E[father]:) ; mother) = &

7. wife N (closure(mother U father) ; mother) = @
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4.4.3. Signature and Field Declarations

Since a signature declaration can be quite complex, let us start with the simplest one,
omitting everything optional, i.e., we only add a named signature to the model. A
signature has the properties of a set, containing atoms of the signature’s type. For the
translation to B, we create a new deferred set for each signature. In B, a deferred set
introduces a user-defined type as a finite and non-empty set.

Additionally, a signature can extend another signature by making use of either the in
or the extends keyword. In this case, we set up a subset of an already existing set, i.e.,
for each sub-signature S extending base signature S, we define a constant S and add
S C S, to the PROPERTIES clause.

For the extends keyword, we ensure that extending signatures are pairwise disjoint by
adding S; N Sy = @ for each combination of extending signatures Sy, Sg, with S; # So,
to the B machine’s PROPERTIES clause.

Next, base signatures can be declared as abstract: Abstract signatures are used for
the sole purpose of being extended by other signatures. They do not contain elements
which are not also elements of other sets [40]. In B, this property can be modeled by
adding the following constraint to the PROPERTIES section:

S= J s

S extends Sy

Alloy allows stating the cardinality of signatures using multiplicities. The quantifiers
lone (at most one) and some (at least one) are translated straightforwardly using cardi-
nality constraints in the B machine’s PROPERTIES section. In case of one (exactly one),
we define a signature as a singleton enumerated set in B instead of a deferred set.

An Alloy signature may contain a list of fields, i.e., relations defined over the signa-
ture’s elements. Since B natively supports relations, the translation is straightforward:
for a signature S with fields fs ;, each mapping an element of S to S}, we add a constant
fs; and state that fg; is a relation between S and S; by the B constraint fg; € S<.S;.
Note that in B relations and functions are sets of tuples, which is why we define a
membership constraint for fg ;.

We have to ensure that the names of the constants fs; are unique in terms of the
current model since fields of different signatures can have the same name in Alloy.
Otherwise, the resulting B machine might not be well-defined because of clashes between
constants with the same name but different types.

It is also possible to make use of quantifiers when declaring field variables: In this way
we can decide on the number of elements that are mapped to. The default quantification
for relations in Alloy is a mapping (Alloy quantifier one) while in B it is an 1-to-n
mapping (Alloy quantifier set). Therefore, if no quantifier is given in the Alloy model,
the translation to B has to be adapted, i.e., we add the constraint fg,; € S —.S;, stating
that fs; is a total function. The translation of the quantifier lone results in a partial
function. In case of set, no additional property is needed, since it is the default of B.
For the multiplicity some, we add the additional constraint dom(fs ;) = 5, i.e., the field
fs; is a total relation.
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Furthermore, a signature’s field can be defined as a sequence of atoms. We translate
a sequence ¢ as a partial function with a finite and coherent domain 0.. card(q) — 1 and
ensure that the maximum allowed length of sequences m € N is not exceeded. As a
signature can have several instances, the complete domain of a signature field that is a
sequence is defined as the Cartesian product of the signature and the partial function.
We explain the translation of Alloy sequences to B more precisely in Section [4.5.5]

Taken together, the formal translation of field quantifications for an exemplary signa-
ture S to B machine properties is as follows:

F[field : set Set]i = field € E[S]i < E[Set]i
F[field : one Set]i = field € E[S]i — E[Set]i
F[field : 1one Set]i = field € E[S]i - E[Set]i
F[field : some Set]i = field € E[S]i + E[Set]i A dom(field) = E[S]i

Ffield : seq Set]i = field € (E[S]i x 0..(m —1)) + E[Set]i A
Vs.(s € E[S]i = dom(field)[{s}] = 0..card(dom(field)[{s}]) — 1)

Flfield : Set]i = F[field : one Set]:

Besides constraining the quantification of signature fields, one can use the keyword
disj in combination with any multiplicity in order to define that distinct members of
a signature yield distinct field values. For instance, the signature sig S {f : disj e}
defines the signature field f to be disjoint for distinct members of S. This results
in the additional constraint all a,b : S | a ! = b implies no a.f & b.f [40]. We
straightforwardly translate the universal quantification and add it to the translated B
machine’s PROPERTIES section.

Alloy allows providing additional constraints on signature elements together with the
signature definition. However, aside of syntactical sugar, they do not differ from regular
constraints stated via fact declarations and are thus not considered further in this
section.

4.4.4. Universe and ldentity

Alloy features two special constants: univ, referring to the set of all instances of all
signatures and iden, the identity relation over the universe. Neither is available in B.
To translate univ, we could create a top-level set UNIVERSE and ensure that all base
signatures implicitly extend it. This negatively impacts PROB’s solving capabilities:
without distinct sets for different signatures, techniques such as symmetry reduction
cannot be applied as efficiently. PROB’s kernel becomes unable to reason on types and
thus has to perform more involved case distinctions. Further, in case integers are used in
an Alloy model, we would need to create a singleton set for each integer extending the set
UNIVERSE although B and PrROB have native support for real integers. In consequence,
we only create parent types for specific signatures if necessary.
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For instance, if two signatures S; and S5 have no parent type except for univ and
interact with each other using a union S7 + S5, we introduce an additional deferred
set in the translated B machine and declare membership for both signatures. The two
signatures are then defined as machine constants rather than deferred sets in B. For
above example, this results to S1 NSy = I A ST USy; = P being added to the B machine
properties where P is the introduced parent type, i.e., a deferred set in B.

To do so, we analyze an Alloy model prior to the translation and collect pairs of
signatures that interact with each other and have no parent type except for univ. All
collected pairs are merged to distinct sets of signature types where in each set at least
two signatures interact with each other. When translating an Alloy model, we define a
parent type for each set of signatures. In case all signatures of a model interact with each
other, our translation introduces one parent type for all signatures. Despite containing
integers, this type is equal to Alloy’s universal type given a specific model.

As we use the integer type of B to translate Alloy integers, which cannot be a subset of
a deferred set, we cannot translate interactions between signatures and integers straight-
forwardly. To do so, we would need to create a singleton set for each integer extending
the set UNIVERSE in B. To our knowledge, a binary interaction between a signature type
and integers is not needed in any reasonable Alloy model. However, it is allowed by the
Alloy Analyzer’s typechecker.

For binary operations, the translation of univ can be avoided in several typical use
cases, e.g., left and right joins with the universe can be translated into domain and range
computation.

Using UNIVERSE, we could translate iden to id(UNIVERSE). However, as we want
to avoid the universal type as much as possible, we again chose a more specialized
translation. That is, instead of translating into the identity over the universe, we rely
on the Alloy Analyzer’s typechecking information and translate into a more restricted
identity relation if possible without changing the semantics. For instance, the Alloy
expression iden & r, where T is a signature and » € T <> T, can be translated as
id(T)Nr.

However, we do not allow the keywords univ or iden for specific operators which we
cannot translate to an equivalent B expression without introducing the universal type in
B. We instead throw an error and do not translate the Alloy model to B. In particular,
these operators are equality, inequality and the subset relation in. For instance, consider
an Alloy model which defines a signature sig 7' { r : set T } . We translate the
signature as described in Section i.e., we introduce a deferred set in B, define the
field as a machine constant, and add E[r]i € E[T]i <> E[T]i to the machine properties.
The Alloy model further defines a basic signature R without any field as well as a
global fact T.r = T, i.e., the signature field r contains all possible elements. When
checking the assertion iden in (7r).r, the Alloy Analyzer finds a counterexample as the
identity relation of the signature R is not part of the dot join’s result. If following our
restricted translation of the keyword iden to B, we would translate the assertion into
a more restricted expression id(E[T]i) C ((E[r]i)~*; E[r]i) which does not provide a
counterexample in B, i.e., the translation would be semantically non-equivalent. An
equivalent behavior in B could be achieved by introducing the universal type and using
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id(UNIVERSE) rather than id(E[T]¢). Yet, we decided to not support the translation of
said expressions containing one of the keywords univ and iden.

4.4.5. Connectives and Simple Predicates

Let us first look at how to translate Alloy’s logical connectives. This part is very straight-
forward, as they have matching counterparts in B.

M[p and qfi = M{[p]i A M[q]i
M(p or qli = M[p]iV M[q]i
M][p implies ¢]i = M|[p]i = M|q]i
M[p equiv qfi = M[p]i < M[q]:
Mnot p]i = —M][pli
Similarly, equality and inequality in Alloy and B are identical:
M[p =qli = Elpli = E[q]i
M[p '=qli = Elpli # Elqli
The following unary expressions can be used to constrain a set’s cardinality:
Mf{no p]i = E[p]i =2
MTone p]i = card(E[p]i) =1
M{some p]i = card(E[p]i) > 0
M][lone p]i = card(E[p]i) <1

Now, to translate the in predicate, it is important to understand that Alloy only
operates on set values. This means, that it is translated using the B C predicate, and
not the € predicate.

M[p in q]i = E[p]i C E[q]i
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4.4.6. Simple Expressions

First, we need to translate simple identifiers not occurring in the environment i, e.g.,
signature names and fields. In general, identifiers are simply kept as they are. In the
presence of modules and namespaces, identifiers have the module names prefixed to avoid
ambiguity. This is already handled by the Alloy Analyzer’s parser and typechecker we
use as a frontend as is outlined in Section where we give technical details on the
implementation.

E[z]i = z for identifiers z not occurring in 4

In the following, we present simple translation rules, where one Alloy operator gets
translated to a B operator or constant:

E[none]i = @

Elp +q]i = E[p]iU E[q]i
Elp & q)i = E[p]in E]q]i
Elp - qli = Ep]i\ Elq]s
E[pli = (E[p]d)~

E['p]i = closurel(E[p]i)
E[*p]i = closure(E[p]i)
Elp ++ q]i = E[p]i < E[q]i

Note that the Alloy operators =, ~ and * are only allowed for binary relations. Hence,
we can translate them to the B counterparts. However, other Alloy operators also work
for relations of higher arity. As such we can encounter not just ordered pairs but tuples,
whose translation we discuss in the next subsection.

As discussed in the introductory example in Section [4.3] classical B does not feature a
let expression. This can either be resolved by using a definition as done in the example,
inlining, or by using the extended version of B understood by PROB. In our current
translation we use the let expression provided by PROB. Of course, a model can then
not be processed by other tools such as AtelierB anymore. To do so, PROB provides
a pretty-printer which rewrites B abstract syntax trees to native B as, for instance,
understood by AtelierB.

4.4.7. Representing Tuples

In Alloy tuples are flat and Cartesian product is associative. In B, Cartesian product is
not associative and tuples are represented as nested pairs. Hence, in B (e +— €3) — €3
is a different value and has a different type than e; — (ea — e3). Which encoding
should we use for an Alloy triple (e, eq,e3) within a ternary relation r? Both have
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their advantages and drawbacks, concerning the use of the B operators such as domain,
range, relational image or function application. The B language also provides a comma
notation for pairs, whose associativity corresponds to the first alternative:

(61, 62,63) = (61 — 62) — €3

We have finally chosen to use the first alternative, as it allows us to write set compre-
hensions of the form {xy,...,z, | P} to generate n-ary relations of the right type.

Another alternative would have been to allow all variations in our translation, keeping
track in the type system which associativity has been generated. It is not clear whether
this is worthwhile and it definitely makes the translation rules much more complex.

4.4.8. Cartesian Product

Due to the difference in the treatment of tuples, the Cartesian product in Alloy can also
behave differently than in B. When the second argument is a unary relation, we can reuse
the B Cartesian product, otherwise we need to compute it using a set comprehension.

For example, the following B Cartesian product between a ternary and a unary relation
works correctly:

{1—=2)—=3}x{4} ={(1+—2)—3)— 4}

However, for a ternary and binary relation it does not work, as the pairs in the result
are incorrectly nested:

{1—2)—3}x{d—5)}={{(1—2)—=3)—(4—5))}
Using a set comprehension we can compute the correct result:

{t,ql,q2 |t e {(1—2) — 3} A(ql,q2) € {(4+— 5)}} gives us a correctly encoded
tuple: {(((1+ 2)+ 3)+— 4) — 5}

This leads to the two following rules:

E[p -> q]i = E[p]i x E[q]i if q is a unary relation
E[[p —-> Q]]Z = {tvqla'”aqn ’ t e E[[p]]/l A (Qh“'7qn) S Eﬂq]]l} if q is an n-ary
relation with n > 1.

4.4.9. Domain and Range Restriction

The domain restriction can be translated as follows. For binary relations ¢ we can reuse
the corresponding B operator <, otherwise we need to compute the result using a set
comprehension:

Elp <: q]i = E[p]i < E[q]i if ¢ is a binary relation
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Elp<:4q)i = {q1,.--vqn | @ € E[p]i A (q1,-..,q,) € E[q]i} if q is an n-ary
relation with n > 2.

For range restriction the corresponding B operator > works for all arities, since ¢ must
be a unary relation in Alloy.

Elp :>q]i = E[pli> E[q]:

Yet, there are some special cases for domain and range restriction with iden or
univ. We thus encode the restriction of the identity relation to the domain p in B
as the binary relation that relates every element of p to itself, while a domain re-
striction on univ returns the domain itself. For the identity relation, the assertion
all p :univ | p <: iden = iden :> p holds (analogous for univ). This shows that
both expressions are equivalent, which we represent using the symbol =, resulting in the
following translation to B:

E[p <: iden]i = Eiden :> p]i = Az.(x € E[p]i | x)

E[p <:univ]i = Efuniv :> p]li = E[p]:

4.4.10. Join

The dot join p.q, one of the most important operators in Alloy, is also the most difficult to
translate. We have quite a lot of special cases below, trying to use existing B operators if
possible. First are three special cases, where one of the arguments is the Alloy universe.
These operations correspond to computing the domain and range of the Alloy relations:

E[puniv]i = dom(E[p]i) where p is an n-ary relation, n > 2

~

Eluniv.g]i = ran(E[q]i) if ¢ is a binary relation

Eluniv.g]i = {qo,...,qx | 3j.((4,q2,...,q) € E[q]i)} if ¢ is an n-ary relation,
n>2

Another typical pattern in Alloy is to use the join operator for relational image or
function application. The next three translation rules capture these patterns:

~

Elp.q]i = {E[q]i (pv)} if E[p]i = {pv}, p is a unary relation, ¢ is an n-ary
relation with n > 2, and ¢ is known to be a total function in pv.

Elp.q]i = FE[q]i [ E[p]i ] if p is a unary relation, ¢ is a binary relation
Elpqli = (E[p]i) [E[q]i] if ¢ is a unary relation, p is a binary relation

The translation rules above are optional, since the next three translation rules of the
join operator also cover the same cases, but lead to a less idiomatic B translation. The
first one uses B’s relational composition operator:

53



4. Translating Alloy and Extensions to Classical B

~

Elp.q]i = (E[p]i; E[q]i) if both p and ¢ are binary relations

relation

Elpqli = {t,q,..-,ax | 35.((t,7) € E[pli A (j, a2, -, ax) € E[g]i} in all other
cases (i.e., p is an n-ary relation with n > 1 and q is a k-ary relation with £ > 1).

One can observe that the join operator of Alloy is very elegant and flexible; together
with flat tuples, it provides an expressive construct. One could think about extending
the B relational composition operator to work more flexibly (i.e., also with sets and
n-ary relations). This would also make the translation to B easier.

Alloy further provides the box join operator y[x] which is just syntactic sugar for the
dot join operation x.y though.

4.4.11. Quantifications, Set Comprehensions and ldentifiers

Quantifications in Alloy can introduce a finite set of identifiers using the : operator for
unary sets S:

D[z : one SJi = {z} C E[S]i

D[z :set SJi = o C E[S]i

D[z : some S]i = z CE[S]iNx # &

Dz : lone S]i = z C E[S]i Acard(z) <1

Dz : S]i = D[z : one S]i if the arity of S is 1

Dz : S]i = M|z in S]i if the arity of S is greater than 1
D[zy,...,x : S]i = D[y : SJi A... A DJay : S]i for k > 1

D[disj x1,...,x, : S]i = D[z : SJiA... A D[xy, : STi A
card({z1,...,zx}) =k for k > 1

Both Alloy and B feature set comprehensions, consisting of local identifiers and a
constraining predicate. Translation is straightforward, as only the predicate has to be
translated according to the rules given above. However, we have to ensure that unique
names are used for the translation of local identifiers to avoid clashes between identifier
names for nested scopes.

We apply a separate function to compute updates to the environment by identifier
declaration, which is defined as follows:

Iz : one S]i = iU{z}
I[x :m S]i = i—{x} for m # one.
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I : S]i = iU {z} if arity of Sis 1, i — {z} otherwise

Given an environment i, we translate identifiers to B either as a singleton set or as a
raw identifier:

Elz]i = {z} if = € i (i.e., the environment ¢ states that x is a singleton set
identifier (e.g., quantified variables with multiplicity one)

~

Elz]i = x for x € i (i.e., x is a signature name or field)

In the following, x are the left-hand side arguments of the declaration Decl and
i’ = I[Decl]i holds:

M{[some Decl | P]i = 3a.(D[Decl]i A M[P]#)
M{[all Decl | P]i = Va.(D[Decl]i = M[P]i)
M{[no Decl | PJi = —3a.(D[Decl]i A M[P]i')
M{one Decl | P]i = card({z | D[Decl]i A M[P]i'}) = 1

MTJ1one Decl | P]li = card({z | D[Decl]i N M[P]i'}) <1

4.4.12. Conditionals

Alloy provides a conditional statement, which can either be treated as a predicate or as
an expression. We therefore provide the following two translation rules, one of which
uses the if-then-else expression of PROB:

M[p => q ELSE r]i = (M[p]i = MJq]i) A (=M][p]i = M]r]i)
E[p=> q ELSE r]i = IF M[p]i THEN E[q]i ELSE E[r]i END

Again, PROB is able to rewrite if-then-else expressions to be compatible to native B
as, e.g., understood by AtelierB.

4.4.13. Fact, Function & Predicate Declaration

Alloy’s fact declaration has an optional name and contains any number of predicates,
which pose additional constraints to be added to the model. We translate the expressions
as described above. The results are conjoined and added to the PROPERTIES section of
the B machine.

Alloy allows declaring functions and predicates for later reuse. As usual, a function
declaration takes a name, a (possibly empty) list of parameters and a body containing
the actual computation. Parameters are scoped and can only be referred to by the
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function itself. Furthermore, they are typed as subsets of an Alloy signature and can
again be quantified to constrain the set sizes]

Functions are listed in the DEFINITIONS section of the B machine if the machine
contains at least one invocation. Each function is translated into a single B defini-
tion with matching parameters, consisting of a set comprehension wrapping the actual
expression in the body to account for the expected return type. For instance, the
function declaration fun f [s : S] : S { body } is translated into the B definition
f(s) =={x | D[s: S]i Az € E[body]i}, where i’ = I[s : S]i as in Section [1.4.11] Syn-
tax and functionality of the predicate definition is slightly different. For the predicate
to evaluate to true or false instead of computing a value, we omit the set comprehension
resulting in a B predicate. For instance, the predicate declaration pred p [s : S| { body }
is translated into the B definition p(s) == D[s : S]i A M [body]i'.

Again, we have to ensure that unique names are used for the translation of local
identifiers in order to avoid clashes between identifier names in B for nested scopes.

Note that PROB inlines definitions to the positions where they are used, which ba-
sically is a text replacement. When loading a B machine in PROB, the machine’s
DEFINITIONS section is thus not present anymore.

4.4.14. Assertion Declaration and Run & Check Commands

In Alloy, assertions can be stated using the assert declaration. An assertion does not
immediately enforce further constraints. Rather, it can later be verified or falsified in
a given variable scope, using the run and check commands. To do so, assertions are
named and contain any number of predicates to be checked. For instance, assert a { }
is a named but empty assertion that is always true.

The run command instructs the Alloy Analyzer to search for variable states that
satisfy the model’s constraints. It can either refer to a named predicate introduced by
one of the declarations above or include an explicit Alloy predicate. The check command
is used to check an assertion by searching for a counterexample.

We introduce an operation to the B machine for each run command having the trans-
lated instructions of the command as its precondition. The operation’s substitution is a
skip, i.e., we only test if the operation can be executed without any effect on the model.
If the translated model satisfies the predicate to be checked, its specific operation is en-
abled. In case of a check command, we proceed analogously but negate the command’s
instructions within the precondition in order to search for a counterexample. That is,
the operation is enabled if a counterexample exists.

Together with the predicate to be checked, both run and check include a scope used to
control the search space. By default, the scope defines an upper bound for the cardinality
of a signature. The size can be set to a fixed value by using the keyword exactly. We
define the translated scope in the precondition of the corresponding operation. For
instance, the command run p for 3 9, for a predicate p and an unordered signature S,

translates to an operation run = PRE card(E[S]i) < 3 A M[p]i THEN skip END in

2Quantifiers are used for typing but do not enforce restrictions on possible models.
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B. In case of a check command, the only difference in the translation is to use =M [p]i.

The Alloy keywords Int and seq can be used to specify the bit width used to represent
integers and the maximum allowed length of sequences.

To execute an Alloy command with PROB one can, e.g., use constraint-based checking
as is explained in Section In short, constraint-based checking searches for a variable
state that satisfies the precondition of an operation considering the machine’s properties.

Given that the proof assistants for classical B do not require scopes we also support
translating commands without scopes, which can be set via a user preference in PROB.
While the resulting B machine does not mimic the Alloy model’s behavior exactly, it
allows for a more general proof, following the approach we show in Section [4.8.3]

4.4.15. Multiplicity Annotations

Alloy supports the multiplicity annotations some, one, lone and set. If no multiplicity
is given, the default multiplicity set is used.

When translating multiplicity annotations, the semantics are no longer denotational.
The predicate M|z in A -> one B]i cannot be encoded as Efz]Ji C EJA -> one B]j,
because the property of being a total function is not a closed subset. Hence, we translate
the multiplicity annotations as follows:

Mz in A -> Bli £ E[z]i € E[A]i < E[B]i
Mz in A -> some Bli = E[z]i € E[A]i ¢ E[B]i A dom(E[z]i) = E[A]i
Mz in A -> one Bli = Elz]i € E[A]i — E[B]:

Mz in A -> lone Bli = E[z]i € E[A]i + E[B]i

M[z in A some -> Bli = E[z]i € E[A]i > E[B]i A ran(E[z]i) = E[B]i

M|z in A some -> some Bli = E[z]i € E[A]i <> E[B]i A dom(E[z]i) =
E[A]i Aran(E[x]i) = E[B]i

M|z in A some -> lone B]i = E[z]i € E[A]i - E[B]i
M|z in A some -> one Bli = E[z]i € E[A]i - E[B]i
M|z in A lone -> Bli = (E[z]i)~' € E[B]i + E[A]i

M[z in A lone -> some B]i = (E[z]i)~! € E[B]i + E[A]i
M][z in A lone -> lone B]i = E[z]i € E[A]i - E[B]i
M][z in A lone -> one B]i = E[x]i € E[A]i — E[B]:
M[z in A one -> Bli = (E[z]i)~! € E[B]i — E[A]i

M|z in A one -> some Bli = (E[z]i)~' € E[B]i — E[A]i
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M|z in A one -> lone B]i = E[x]i € E[A]i = E[B]:
M]z in A one -> one B]i = E|z]i € E[A]i —~ E[B]i

Note that B does not provide operators for each multiplicity annotation that are
equivalent to Alloy’s definition, e.g., there is no operator to directly define a total relation
in B. We thus translate the corresponding multiplicity annotations to B as relations and
add additional constraints.

While PROB supports the translated predicates as typing predicates, AtelierB does
not support directly typing the inverse as done, for instance, in M [z in A lone -> B]i =
(E[z]i)~' € E[B]i + E[A]i. Instead, one has to type the relation itself and add any

~

restrictions on the inverse as additional constraints, e.g., M[x in A lone -> B]i =
E[z]i € E[A]i <> E[B]i A (E[x]i)~! € E[B]i + E[A]:.

4.4.16. Post-Processing Optimization Rules

As our translation has to be generalized and applicable to all possible Alloy constructs,
some translations might not be ideal for the PROB constraint solver, especially when
using singleton sets. For instance, our translation might define an identifier to be an
element of a specific set such as x € S. Yet, if this set is a singleton set S = {y}, the
membership relation can be replaced by a simple equality z = y.

In order to improve performance, PROB provides many rules to improve the repre-
sentation of abstract syntax trees prior to solving constraints, which is referred to as an
abstract syntax tree cleanup. In the following, we present the additional rewriting rules
that arose during the implementation of the translation from Alloy to B mostly caused
by the use of singleton sets:

{a}={y} ~ 2=y
{z} #{y} — 2 #y
ze{ytwa=y
zE{yt~a#y

{z} C{yt ~ 2=y
{z}tn{yt =0 ~az#y

{z}*+{y} ~ {r =y}

4.5. Translation of Alloy Extensions

Alloy provides several language extensions, for instance, supporting integers or additional
constraints for certain types. As the modules are specified in Alloy, we could directly
translate them as well. Yet, we aim to provide an idiomatic and more efficient translation
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to B for each module. The translation of Boolean operations such as Nand is trivial and
implemented using B’s logical operators. In the following, we present the translation of
the extensions we currently support besides Boolean operations.

4.5.1. Integers and Natural Numbers

An integer expression in Alloy is a set, just like any other expression. In order to deal
with operators that expect a scalar value, Alloy first evaluates the sum of the elements of
a set of integers before applying an operator. For instance, given s={x : Int | x=1 or

x=2}, the first operand in the alloy expression minus[s,4] evaluates to 3, so the result
is -1. Similarly, the predicate 3 > s returns false. Empty sets are evaluated to 0.

Since Alloy encodes constraints to SAT, each Alloy command defines a bit width n
used to store integers, i.e., the range —2"71..2"~! —1 with one bit being used to represent
the sign. Consequently, integer overflows might occur and the Alloy Analyzer may return
a model which is invalid outside the given scope. For example, a model might satisfy
plus[5,3] = -8 with a bit width of 4. It is also possible to divide by zero. An option
of the Alloy analyzer can be set to exclude models that entail an overflow or division
by 0. However, this slows down the analysis process. Thus, when a modeler presumes
that a model does not overflow, this option is usually set to off for efficiency reasons,
but there is the risk that an overflow goes undetected. Since B has native support for
full integers, overflows do not occur.

Although well-defined, the semantics of integers in Alloy is somewhat unnatural. For
instance, accepting non-singleton sets as arguments of integer operations is error-prone
and might not always be desired. As overflows are a stumbling block in the use of
integers in Alloy, we do not want to replicate this behavior by introducing a bit width in
B. However, we provide a PROB preference to translate into bounded integers without
overflows using PROB’s settings for MININT and MAXINT. Further, we do not want to
allow dividing by zero but throw a well-definedness error instead.

For the translation of integer operations, we use an additional semantic function
Eini[.]¢ that transforms a set of integers into a scalar expression. It uses the ¥ op-
erator of B which returns the sum of the elements of a set of integers or 0 if the set is
empty. For instance, ¥(z).(z € 1..4 | z) returns 10.

As mentioned above, we believe that accepting non-singleton sets as arguments of
integer operations is error-prone. We thus decided to provide a PROB preference which
enables a strict translation of integers, i.e., only accept singleton sets where integers are
expected. This preference is set by default. To do so, we use the definite description
operator, noted MU, which is defined as follows:

MU(z) = ({TRUE} x x)(TRUE)

For instance, MU ({1}) returns 1. Since the operator uses B’s function application, the
MU operator has the well-definedness condition that its argument x is a singleton set.
Otherwise, the function application would be undefined for empty sets or ambiguous for
non-singleton sets. MU does not exist in the B notation, but is supported by PROB.
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Let Nr be an integer constant. We have the following four rules for the semantic
function Ej[.Ji:

Eiqi[Nr]i = E[Nr]i for integer constants Nr

Eiipli = Nrif Ep]i = {Nr}

Eiip]li = MU(E[p]i) if PROB preference for a strict integer translation is set
Eiipli = ¥(2).(z € E[p]i | z) otherwise

Note that the first two rules of E;,,;[.]i are in principle redundant, they “only” improve
the performance of the translation (avoiding unnecessary ¥ or MU constructs).
Using this definition the integer operations are translated as follows:

E[Nr]i = {Nr} for integer constants Nr
El#pli = {card(E[p]i)}

E[min[p]li = {min(E[p]i)}
Elmaz[p]]i = {max(E[p]i)}

Elplus[p, qlli = {Einlpli + Eint[qli}
Elmullp, qlli = {Eim[pli * Emq]i}
Elminus[p,q]]i = {Ew[p]i — Eiilq]i}
Eldiv[p,qlli = {Eimlpli/Emlqli}

Efrem|p,ql]i = {Eim[p]i mod E;n.[q]i}
(currently only works for positive numbers)

Elnegate(p|li = {—Ein[pli}
Mleqlp,dlli = Eilpli = Eini]q]i
Mlgtlp,qlli = Eiu[pli > Eindla]i
Mlitlp,qli = Einlpli < Einlali
Mgtelp,qlli = Ein[pli > Eini]q]i
Mitelp,ql]i = Eilpli < Eimqli
MTzero[pl]i = Euulp]i =0
Mpos[pl]i = Eim[pli >0
Mneg[plli = Ein[pli <0
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M nonpos(p]li = Ein[p]i <0
Mnonneglplli = Eiu[pli > 0

E[signum[p]]i = IF E;.[p]i <0 THEN —1
ELSE IF E;.[p]: > 0 THEN 1 ELSE 0 END END

El[nest]i = succ

Elprev]i = pred

Elnestpl]i = Elp.neat]i

Elprevipl]i = Elp.prev]i

E[nestsp]]li = {x |z € ZAx > Enpli}
Eprevs[p]]li = {x |2z € ZAx < Em[p]i}
Ellarger(p,qlli = {max({Ein[p]i, Einilqli})}
Elsmaller[p,q]]i = {min({Ein[p]i, Eimila]i})}
E[min]i = MININT

E[maz]i = MAXINT

Note that MININT and MAXINT are user preferences of PROB. Further, we do not
consider Alloy’s bit width for the translation of nexts and prevs but return unbounded
sets of integers.

The definitions of division and modulo differ slightly between Alloy and B. B uses
a floored division [3]. More precisely, the definition of division in B [25] is n/m =
min({z|z € Z An < m xsucc(x)}). Furthermore, in B, z mod y is only defined if x is
non-negative and y is positive.

In contrast, the definition used by Alloy permits both cases. Alloy’s division rounds
towards zero in general, but permits a number of special cases. According to comments
in the Alloy utility module util/integer, there are three exceptions to the ,,round to
zero* definition of a/b. First, if a = 0, the division returns zero. Second, if a < 0Ab = 0,
the division returns 1; if @ > 0 A b = 0 it returns -1. Last, if a is the smallest negative
integer and b = —1, the division returns a. The different definitions of division and
modulo [I55] can easily be expressed in B by rewriting them to B’s floored division [114].
However, as mentioned above, we do not want to completely reproduce the behavior of
Alloy regarding integers.

The translation of operations on natural numbers as defined in the Alloy utility module
util/naturalf|is analogous to integers but considering the condition to be a positive
integer. PROB does not implement any special operations for natural numbers.

3See http://alloytools.org/quickguide/util.html
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4.5.2. Relations

Alloy provides a module for common operations and constraints on binary relations. We
translate the relational operations as follows where r is a binary relation with domain d
and codomain c:

E[dom[r]]i = dom(E[r]i)
E[ran[r]]i = ran(E[r]i)

MTtotal[r,d)]i = Va.(zx € E[d]i = E[r]i[{z}] # )

M [functionallr,d]]i = Vz.(z € E[d]i = card(E[r]i[{z}]) < 1)
M[function[r,d|]i = Vo.(x € E[d]i = card(E[r]i[{z}]) = 1)
M{ingective[r, c]]i = Vy.(y € E[ci = card((E[r]i)~"[{y}]) < 1)
M [surjectivelr,c]]i = Vy.(y € E[c]i = (E[r]i)"[{y}] # 2)
M{bijective[r, c]]i = Vy.(y € E[c]i = card((E[r]i)~'[{y}]) = 1)
M [bijection|r,d,dJi = M[function[r,d]]i A M[bijective[r, c]]i
M [refleivelr, s|]i = id(s) C E[r]i

M[irreflezive[r]]i = id(dom(E[r]i)) N E[r]i = @

M [symmetriclr]]i = (E[r]i)~* C E[r]i

M[antisymmetric[r]]i = ((E[r]i)~" N E[r]i) C id(dom(E[r]i))
M[transitive[r]li = (E[r]i ; E[r]i) € E[r]i

M[acyclic[r, s]Ji = Vz.(z € E[s]i = z — z & closurel (E[r]i))

~

M complete|r,s]]i = Y(x,y).(x € E[s]i Ay € E[s]i A
v#y =y (E[r]iv(E[r])™))

M{preorder[r,s]]i = M][reflexive[r, s]]i A M [transitive[r]]
M equivalence[r, s|]]i = M|preorder|r,s|]i A M [symmetric|r]]i
M partialOrder|r,s|]i = M/preorder|r,s]]i A M[antisymmetric|r]]i

MTtotalOrder[r,s|]i = M][partialOrder[r, s|]Ji A M[complete]r, s]]i
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4.5.3. Orderings

Alloy data types are universally based on relations. For instance, sets are unary relations
while scalars are singleton sets. Signatures are not ordered by default. Yet, Alloy allows
declaring a total order on signature elements by defining a signature to be ordered, and
offers several operations for element access on ordered signatures. For instance, for an
ordered Signature S,, S,/nexts(s) returns the set of all successors of s € S,,.

Initially, we translated ordered signatures to B sequences. Sequences are ordered sets
of pairs whose domains are finite and coherent sets 1..n, where n € N is the number
of elements. Usually, we translate an Alloy signature to a deferred set in B having
the same name as described in Section [£.4.3] An ordered signature S, can then be
represented by a sequence of type S,, i.e., a set of pairs of integers and S,. B directly
offers most of the operations on ordered signatures while others can be implemented
using set comprehensions.

However, PROB’s performance on predicates involving sequences can be lacking when
compared to (sets of) integers. In consequence, we switched to a different translation:
The scope of a signature is defined within the run or check statement of an Alloy model.
Assuming the ordered signature S, has size k € N, we translate it to an interval s..(s +
k—1), s € N, in B. The offset s is used to take into account that ordered signatures can
interact, e.g., when computing the union. We thus ensure that ordered signatures are
distinct by translating them into disjoint intervals.

Besides that, ordered signatures might interact with unordered ones in Alloy. We then
have to define the unordered signature as a set of integers as well to avoid type errors in
B. To do so, we check an Alloy model for interactions between ordered and unordered
signatures prior to the translation.

We expect the input values of operations on orderings to be singleton integer sets or
empty sets. When using integer intervals, the operations first and last can be translated
using min and max wrapped in a singleton set. For an ordered signature S,, we define
S,/next and S,/prev using the successor and predecessor relations of B. The operations
S,/nexts|e] and S, /prevs|e] are translated using set comprehensions.

We noticed that the relational operations on orderings such as S,/lt[el, 2] always
return true if the left-hand side is an empty set. If the left-hand side is non-empty and
the right-hand side is an empty set on the other hand, the relational operators always
return false. In the remaining cases, the relational operators behave as expected from
real integers.

In particular, we translate the operations on an ordered signature S, in Alloy as
follows:

E[S,]i = m..n, where m is the lower and n the upper bound of the corresponding
integer domain

E[S,/first]i = IF E[S,]i # @ THEN {min(E[S,]:)} ELSE @ END
E[S,/last]i = IF E[S,]i # @ THEN {max(E[S,]i)} ELSE @ END
E[S,/min[es|]]i = IF E[S,]i # @ THEN {min(E[es]i)} ELSE @ END
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E[S,/mazles]li = IF E[S,]i # @ THEN {max(E[es]i)} ELSE @ END

E[S,/neztle]]i = IF succ[E[e]i] C E[S,]: THEN succ[E[e]i]
ELSE @ END

E[S,/nezts|e]]i = {z |z € E[S,]i Amin({z} U E[e]i) # z}

E[S,/previe]]i = IF pred[E[e]i] C E[S,]i THEN pred[E]e]:]
ELSE @ END

E[S,/prevs(e]]i = {x |z € E[S,]i AN max({z} U E[e]i) # =}

E[S,/larger|el, e2]]i = IF Efel]iU E[e2]i # @ THEN
{max(E[el]i U E]e2]i)} ELSE @ END

E[S,/smaller|el, e2]]i = IF Efel]iU E[e2]i # @ THEN
{min(E[el]i U E[e2]i)} ELSE @ END

MI[S,/lt[el,e2]]i = (Elel]i=2)V (E[el]i # @ AN E[e2]i # & A
Ele1]i # E[e2]i A{min(E[el]i U E[e2]i)} = E[el]7))

M[S,/ltelel,e2]]i = (Elel]i=2)V (Elel]i # @ A E[e2]i # @ A
{min(E[e1]i U E[e2]i)} = E[el]i))

MI[S,/gtlel,e2]]i = (Elel]i=2)V (E[el]i # @ A E[e2]i # & A
Ele1]i # Efe2]i A {max(E[el]i U E[e2]i)} = E[el]i))

MI[S,/gtelel,e2]]i = (E[el]i=2)V (Elel]i # @ A E[e2]i # @ A
{max(E[el]i U E[e2]i)} = E[el]i))
4.5.4. Enumerations

In Alloy, an enumeration can be used to define a number of distinct singleton signatures
with a common ordered base signature. Enumerations are syntactical sugar, not provid-
ing new functionalities but enabling a less verbose specification. For instance, consider
the following enumeration S:

enum S { 51,52 }

The same behavior can be achieved by defining an abstract ordered signature S and
two singleton signatures S; and S; which extend S:

open util/ordering[S]
abstract sig S {}
one sig S1, S2 extends S {}
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In our current translation to B, we do not consider that enumerations are ordered.
We rather translate enumerations based on the declared signatures, i.e., we introduce a
deferred set S and two constants S; and Sy which are singleton subsets of S. Further-
more, we set the extending signatures to be distinct. For instance, for the signature Sy,
this is done using the additional constraint S; C S A card(S;) = 1A S NSy = .

Not translating enumerations as ordered signatures allows PROB to use advanced
optimization techniques such as symmetry reduction. In case a model relies on enumer-
ations being ordered, we could of course treat enumerations as ordered signatures and
translate as described in Section [4.5.3] In the future, our translator should check auto-
matically if an Alloy models makes use of the ordering of enumerations and translate
accordingly.

4.5.5. Sequences

In B, sequences are defined as partial functions with finite and coherent domains 1..n,
where n € N is the size of the sequence. Sequences are therefore defined as sets of pairs
and might be nested arbitrarily.

In Alloy, the field of a signature, the parameters of a quantification and the arguments
of a function can be defined as a sequence of atoms using the seq keyword. In contrast
to B, the elements of a sequence are enumerated from 0 to n — 1.

In consequence, we cannot straightforwardly translate sequences from Alloy to B. If
using B’s internal representation of sequences, we would need to increase each integer
value from Alloy accessing a sequence by one, and decrease each integer value by one
which is computed by a sequence operation or used within one. Moreover, there is no
counterpart to most of Alloy’s sequence operations in B, so we would have to manually
implement most of the operations anyway. We thus decided to retain the domain of a
sequence defined by Alloy. For the translation of a sequence, we define a partial function
with domain 0..n — 1 as described in Section [{.4.3] where n € N is the sequence’s
cardinality, and use manually implemented operations on sequences without resorting
to B’s sequence operations.

Alloy allows modifying a set of sequences using a set of elements rather than a single
element at a time. For instance, consider the signature sig T {s: seq Int} which
defines a field s as a sequence of integers. Assuming that T has a scope of exactly two,
i.e., T = {T$0, T$1} in the Alloy Evaluator, a call to T.s.insert[0,{1}+{2}] is
satisfiable. For instance, this results in inserting 1 at position 0 in T$0.s and inserting
2 at position 0 in T$1.s. As this behavior can also be achieved by accessing each field s
of T’s instances independently and cannot be described efficiently by a single expression
in B, we decided to only allow operations on sequences using single elements.

Therefore, we use an additional semantic function E,,.[.]¢ that transforms a singleton
set into a scalar expression. If the input is not a singleton set, a well-definedness error
is thrown by PROB. To do so, we use the definite description operator, noted MU,
described in Section 1.5.11 We then define the semantic function as follows:

Eoelz]i = vy if Ez]i = {y}
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Eonelz]i = MU(E[x]i)

It is very similar to the semantic function E;[.]¢, just replacing ¥ by the MU operator.
Again, the first rule is in principle redundant, but improves the performance of the
translation (avoiding the introduction of MU if possible).

By default, an Alloy model defines a maximum allowed length of sequences due to the
SAT encoding. The maximum size can be changed within the scope of a run or check
command by using the seq keyword.

Let m be the maximum allowed length of sequences of a specific run or check com-
mand, and ¢s be the cardinality of the set s in B, i.e., ¢s = card(E[s]i). The sequence
operations provided by Alloy are translated as follows:

E[s.first]i = E[s]i[{0}]
E[s.last]i = E[s]i[{cs — 1}]

Els.rest]i = IF E[s]i = @ THEN @
ELSE Az.(z € 0..(c; — 2) | E[s]i(z + 1)) END

E[s.elems]i = ran(E[s]i)

E[s.butlast]i = E[s]i[{c, — 2}]

M[s.isEmpty)i = E[s]i = @

M[s.hasDups]li = ¢, # card(ran(E[s]i))

Els.inds]i = 0..(c, — 1)

E[s.lastIdz]i = {c, —1}N0..(cs — 1)
E[s.afterLastIdz]i = {c,} N0..(m —1)

E[s.idzOf[x]]i = TF (E[s]i)"'[{ Eone[z]i}] # @ THEN
{min((E[s]i) " [{ Eone[=]i}])}

ELSE @ END

E[s.lastldzOf[z]]i = IF (E[s]i)"'[{ Eone[z]i}] # @ THEN

{max((E[s]))~'{ Eone[=]i}])}
ELSE @ END

E[s.indsOf[z]]i = (E[s]i) " [{ Eone[x]i}]

Els.append[t]]i = (0..(m — 1)) < (E]s]iU
Az.(z € cs.(cs+c — 1) | E[t]i(z — ¢)))

E[s.add[z]]i = IF ¢y <m THEN E[s]i U {cs — Ene[x]i}
ELSE E[s]i END
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E[s.delete[j]]i = IF (0 < Eiy[j]i) THEN
(0..(Eimlg]t — 1) < Es]i) UAz.(z € Eip[j]i--(cs — 2) | E[s]i(z + 1))
ELSE E[s]i END

E[s.setAt[j, x]]i = IF (Epn]j]i = 0A Eielj]i < ¢s) THEN
E[s]i < {Ein[jli = Eone[2]i} ELSE E[s]i END

E[s.insert[j,z]]i = 0.(m — 1) < ((0..(Euw[7]t — 1) < E[s]i) U {Emli]i —
Eonelx]i} UAXz.(2 € (Emlli]i + 1)..cs A (2 — 1) € dom(E][s]i) | E[s]i(z —1)))

~

E[s.subseq|from, to]]i =
IF Eipylfrom]i >0 A Eyylfrom]i < Eyyfto]i A Eiufto]i < ¢, THEN
Az.(z € 0..(Epi[to]i — Eii[from]i) | E[s]i(z + Eit[from]i))

ELSE @ END

Note that in several translations of sequence operations, e.g., in the translation of
s.append[t], we could use a set comprehension instead of a lambda expression. How-
ever, since lambda expressions constitute total functions, they improve performance
when solving constraints.

As can be seen in the translations, the maximum allowed length of sequences influences
the behavior of several operations. For instance, the result of appending two sequences is
truncated if it exceeds the scope of sequences. As described in Section 4.4.14] we usually
translate all commands into the same B machine. In case at least two commands define
a different maximum allowed length of sequences, our translation would possibly behave
differently than the Alloy model does as we can only consider a single scope at a time
when translating operations on sequences.

We thus analyze an Alloy model prior to the translation to determine if it uses se-
quences within differently scoped commands, ¢.e., commands that do not define a com-
mon maximum allowed length of sequences. If so, we only translate a single command
at a time which can be selected by the user within PROB’s graphical user interface.
Otherwise, all commands are translated into the same B machine.

Note that the Alloy Analyzer does not enforce that sequence operations are called
with well-defined sequencesﬁ In contrast, our translation to B provides static type
safety which improves error detection.

Further, we noticed that the Alloy Analyzer behaves inconsistently regarding the
evaluation of preconditions. The operations delete, setAt and insert are unsatisfiable
if their precondition is false while the other operations always succeed, e.g., returning the
input sequence if an operation’s precondition is false. To achieve a consistent behavior
regarding the use of preconditions, we decided to not fail for the mentioned operations
if their precondition is false but return the input sequence.

However, we could also translate operations to be unsatisfiable if their precondition is
false. As a B expression cannot fail without throwing an error, e.g., a well-definedness
error, we would need to pass a flag in the environment ¢ to inform the preceding predicate
to fail.

4See http://alloytools.org/quickguide/seq.html
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4.6. Tooling

In the following section, we first give an overview over the tooling used to automate the
translation from Alloy to B. Additionally, we give insight into the Prolog implementation
in Section and further implementation details.

4.6.1. Overview

As shown in Figure [4.2] our automatic translation relies on two software tools. The first
component is a small application (around 500 lines of code, not counting tests) written in
Kotlin and running on the JVM. Its purpose is to use the original parser and typechecker
of the Alloy Analyzer to parse Alloy files and pretty print the resulting abstract syntax
tree into a Prolog representation that can be loaded by PROB’s core. During this first
translation, some changes in representation are done in order to make all information
available to the Alloy Analyzer available to PROB as well, i.e., we extend the abstract
syntax tree with additional information.

Moreover, we generalize the types provided by the Alloy parser to their top-level
signatures. For instance, let S be a top-level signature, and S7, Sy are both signatures
that extend S. The type of the expression S; + Sy provided by the Alloy Analyzer’s
parser is a set (a relation with arity 1) of the two types Sy and Sy. For our translation
to B, it is more intuitive and necessary to use the most general type except for univ if
present. In the given example, the most general type is a set of type S. We are then
able to easily set up typing constraints for each Alloy construct during the translation
to B. Otherwise, we would need to generalize types on demand in Prolog. However, two
signatures might not have a parent type except for univ. Since we want to avoid the
universe type in B as described in Section [4.4.4] we define a parent type for each of such
signature collections as a deferred set in B.

Afterward, the Alloy abstract syntax tree is read by PROB and translated into PROB’s
internal representation of a B machine, following the translation rules discussed in Sec-
tion 4.4l The result is an untyped B abstract syntax tree, that is fed into the regular
B typechecker. Once typed, it can be used inside the model checker or animator as
well as in the constraint solver. Furthermore, all backends available to PROB consume
the same internal representation, 7.e., the resulting typed B abstract syntax tree can be
fed to them as well. For instance, a constraint solver which uses the Alloy Analyzer’s
Kodkod API [45] to translate B to SAT is available [46]. Furthermore, an integration
with the SMT solver Z3 [47] can be used to solve constraints [48], or a combination of
the CLP(FD) and SMT backends where both solvers share constraints [4§].

As described in Section [£.4.14] run and check commands are translated to B ma-
chine operations. To execute an Alloy command with PROB one can either use model
checking, i.e., try all possible ways to instantiate the constants of the B translation and
examine whether the operation is covered, or use constraint-based checking, e.g., using
the cbc_sequence command of PROB, which sends the operation’s precondition and
the machine’s properties to PROB’s constraint solver. In the latter case the machine’s
properties are considered as we translate several constraints in this machine section, for
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Figure 4.2.: A visualization of the different phases of the Translation from Alloy to B.

instance, constraints on the fields of signatures.

In order to use the generated B machine inside other B tools such as AtelierB, PROB
can export the internal representation to a regular B machine file. Further, we provide
a PROB preference to translate a single command into the B machine’s ASSERTIONS
section rather than creating a machine operation as described in Section As the
assertion of a check command is negated to search for a counterexample, we remove
the negation when adding the constraint to the B machine assertions. This enables
the generation of proof obligations in AtelierB. The command to be translated can be
selected by the user within PROB’s graphical user interface.

4.6.2. Prolog Encoding of Translation Rules

As stated above, we use a small Kotlin library to extract the AST generated by the
Alloy Analyzer’s parser and typechecker. The resulting file is then read by PROB’s
Prolog core.

The mathematical rules featured in our translation can quite often be translated to
Prolog clauses straightforwardly. In particular, the implementation usually consists of
single translation rules being implemented by a single corresponding Prolog clause. This
leads to an implementation that is close to the formal specification. In consequence, the
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4. Translating Alloy and Extensions to Classical B

Listing 4.5: Parts of the Prolog code that translates Alloy’s set union to B.

translate_binary_e_p(Binary,TBinary) :-
Binary =.. [Op,Argl,Arg2,_Type,P0S],
alloy_to_b_binary_operator (Op,B0Op),
translate_e_p (Argl ,TArgl),
translate_e_p (Arg2,TArg2),
translate_pos (P0OS,BP0OS),
TBinary =.. [BOp,BPOS,TArgl,TArg2].

alloy_to_b_binary_operator (plus,union).

O © 00O Uk Wi -

—_

implementation is comprehensible and can easily be reviewed, extended and adapted.
Take for example the rule for the Alloy plus operator:

Elp+4qli = E[p]iu E[q]s

Listing shows parts of the Prolog code translating the set union from Alloy to B,
where translate_e p is the Prolog name of the function ET.Js.

The code is somewhat more generic and factors several rules into one, namely all
binary operators that can be translated directly to B operators. Additional operators
that can be directly translated are given by Prolog facts further defining
alloy_to_b_binary_ operator. You can also see that the code translates Alloy’s position
information to B (for error messages). The keen observer will note that the environ-
ment ¢ is not present; it is currently encoded using assert /retract (i.e., as Prolog global
variables).

4.7. Empirical Evaluation

To validate the correctness of our translation we have applied it to a variety of math-
ematical laws (see Fig. and have checked that PROB does not find counterexamples
to those laws on the translated B machines.

Furthermore, we have translated several Alloy models to B. In the following, we give
a brief empirical evaluation of selected models, comparing the performance of the Alloy
Analyzer and PROB.

The benchmarks were run on an Intel Core i7-8750H CPU (2.2GHz) and 16 GB
of RAM. We use the median time of five independent checks. The runtime of the
Alloy Analyzer includes generating the conjunctive normal form and uses the SAT4J
backend. For the PROB constraint solver we purely use the CLP(FD) backend with
a linear enumeration order and without extensions such as Kodkod [46] or Z3 [4]].
Of course, despite constraint solving itself, processing an Alloy model using the Alloy
Analyzer’s parser, pretty printing the model to Prolog, transforming types as described
in Section [4.6] and translating the model to B needs some time. However, this is not a
bottleneck for performance. In the following, we thus assume each model to be loaded
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Listing 4.6: An exemplary Alloy model for checking of mathematical laws.

1 |abstract sig setX { }

2 |one sig V {

3 SS: set setX,

4 TT: set setX,

5 VV: set setX,

6 Empty: set setX

71}

8 |fact EmptySet { no V.Empty }
9 |assert Setlaws {

10 V.SS + V.SS = V.SS

11 no V.SS - V.SS

12 V.SS = V.SS & V.SS

13 V.SS - V.Empty = V.SS

14 V.Empty = V.SS - V.SS

15 V.Empty - V.SS = V.Empty
16 v.ss + V.TT = V.TT + V.SS
17

18 |}

19 | check SetLaws for 5 setX, 7 int

in the Alloy Analyzer and PROB, i.e., we only measure the impact of our translation
on finding solutions for a model’s constraints.

Since the Alloy Analyzer translates models to SAT, we assume it to be efficient for
mostly relational models. However, SAT encoding is often inefficient for integers, e.g.,
one has to encode arithmetic using binary adders. PROB on the other hand has native
support for integers, hopefully leading to better performance for arithmetic calculations.
In contrast, relations often cause a combinatorial explosion, which results in weaker
performance compared to the Alloy Analyzer. To explore both extremes, we chose
different models for performance comparison.

An exact opposite to our translation has been presented by Plagge and Leuschel [46],
which uses the Alloy Analyzer’s Kodkod API [45] to translate B to SAT. We further
solve the translated models using PROB with its Kodkod backend in order to investigate
if our translation from Alloy to B is needlessly complicated. If this is not the case, we
expect the runtime to be only slightly larger than the one of the Alloy Analyzer. Note
that in recent work [I56] we have shown that an integration of the Alloy and PROB
backends can be very useful for complex constraint satisfaction problems.

We start with translating an Alloy model of the river crossing puzzle, a type of trans-
port puzzle with the goal to carry several objects from one river bank to another. There
are constraints defining which objects are safe to be left alone, e.g., a fox cannot be left
alone with a chicken. The model is interesting for our performance evaluation as it uses
an ordered signature for states. The Alloy Analyzer finds a solution in 21 ms (6 ms only
SAT solving). Although the translated model is valid, PROB fails to find a solution in
less than 5 min.

The B machine defines three relations, two of which have an ordered signature for a
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Figure 4.3.: Visualization of the Alloy Analyzer’'s and PROB’s constraint solver’s run-
times for finding a single solution for the n queens puzzle with varying n.

domain. Using a total function instead of a relation improves performance: PROB now
finds a solution in about 7 s. After rewriting the model in idiomatic B style by hand,
PROB can solve it in about 80 ms. However, this translation is a manual optimization
using background knowledge and cannot simply be generalized. Using the Kodkod
backend of PROB does not improve performance significantly. This indicates that for
this specific model our translation is not performant which is most likely caused by the
translation of ordered signatures.

Besides the river crossing puzzle, we translated a model of the n queens problem as
it makes use of integer arithmetic. Here, the goal is to place n queens on a n % n chess
board without two queens threatening each other. The chess board is represented as
tuples of row and column, encoded as integers.

We evaluated the n queens model for n € 4..20 using PROB and the Alloy Analyzer
with the MiniSat and SAT4J backend. As a comparison, we also measured the time
that the Alloy Analyzer needs to generate the conjunctive normal form. The evaluation
in Figure shows that PROB is the fastest solver for the chosen model. PROB’s
runtime for solving the constraints ranges from 5 to 1328 ms. The time needed for
generating the conjunctive normal form is similar to the time PROB needs for solving
the constraints and ranges from 18 to 1028 ms. The solving time of the Alloy Analyzer
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gets worse when increasing the bit-width for n > 8 and n > 16. In Figure [4.3| we can
see that the runtime of each solver is increasing non-linearly, especially when using the
Alloy Analyzer with the SAT4J backend. On the one hand, this might be caused by
inaccuracies in our measurements. On the other hand, the constraints might be easier to
solve for specific configurations. PROB’s runtime for n = 20 is an outlier and the cause
of this performance drop needs to be investigated more thoroughly. As a comparison,
PROB can solve the translated model for n = 21 in about 100 ms. Further, when using
a randomized enumeration order, PROB can solve the translated model for n = 20 in
about 80 ms. Note that an idiomatic B version of the n queens puzzle for n = 20 can
be solved in around 20 ms by PROB. Altogether, it can be seen that integers are a
bottleneck for performance when encoding constraints to pure SAT problems.

As a rather simple benchmark, we translated a model of the knights and knaves puzzle.
The puzzle defines two types of humans, which either always tell the truth (knights) or
always lie (knaves). The goal is to determine the type of several persons from a set of
statements each made by one person. The model of the puzzle that we used contains
three individual settings with statements made by two or three persons. The model just
uses joins, set unions as well as one existential quantification. The Alloy Analyzer finds
a solution for the model in 10 ms (6 ms only SAT solving) while PROB needs 5 ms.
Solving the translated model with PROB and its Kodkod backend needs about 150 ms,
which is most likely caused by the additional overhead of translating B to Kodkod.

Furthermore, we translated a model of the so-called jobs puzzle [157], which defines
eight distinct jobs and four persons whose names imply their gender. The goal is to
allocate two different jobs to each person and establish the relationships between male
and female persons considering a set of constraints. For instance, a constraint states that
the husband of the chef is the telephone operator. Besides the common join operations,
the model uses a predicate from the extension util/relation, defines a field to be
quantified by some, and uses three quantifications as well as two cardinality constraints.
The Alloy Analyzer finds a solution in 23 ms (9 ms only SAT solving). The ProB
constraint solver is not able to find a solution within several minutes. As our translation
from Alloy to B has to be generalized, some translations considering certain arities
are currently not ideal for the PROB constraint solver. To counter this, we intend to
provide additional rules to rewrite B abstract syntax trees prior to solving constraints
as described in Section and improve the constraint solver in general. When using
the Kodkod backend of PROB, the translated model can be solved in about 50 ms.
This shows that the translated B model is not needlessly complicated but contains
specific constructs that cannot be handled efficiently by PROB’s CLP(FD) backend. As
a comparison, an idiomatic B version of the Jobs puzzle [158] can be solved by PROB’s
CLP(FD) backend in about 150 ms.

To obtain further benchmarks, we translated a model of the Zebra puzzle (also called
Einstein’s puzzle). The goal is to find a person owning a specific pet for given constraints
describing the preferences and houses of a group of five persons. There is only one
solution. The model defines one ordered signature, five unordered signatures, and uses
fifteen existential quantifications. The Alloy Analyzer finds the solution in 12 ms (5
ms only SAT solving). PROB on the other hand currently needs 748 ms to find the
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Table 4.1.: Performance evaluation of the Alloy Analyzer and PROB’s constraint solver.

Runtime in ms

Model

Alloy ProB
River Crossing Puzzle 21 > 300 000
4 Queens Puzzle 26 )
8 Queens Puzzle 91 8
12 Queens Puzzle 820 16
16 Queens Puzzle 1334 78
20 Queens Puzzle 6850 1328
Knights and Knaves Puzzle 10 5t
Jobs Puzzle 23 > 300000
Zebra Puzzle 12 748
Towers of Hanoi Puzzle 5201 > 300000

solution. Again, some constraints are not ideal for PROB and require improvements to
the post-processing described in Section [4.4.16| or the constraint solver itself. In this
case, using the Kodkod backend of PROB neither improves nor worsens performance.
Note that PROB can solve the original Z version of the Zebra puzzle in about 100 ms.

Lastly, we translated a model of the towers of Hanoi puzzle, with three stakes and
several discs with different sizes. The model we use defines three ordered signatures,
several joins and nested quantifiers. The Alloy Analyzer finds a solution in about 5.2 s
while PROB is currently not able to find a solution within several minutes. Using the
Kodkod backend of PROB does not improve performance significantly. In this case, our
translation of orderings as presented in Section is inefficient for constraint solving.
The Alloy model defines a signature field as a relation between three ordered signatures:
sig State { on : Disc => one Stake }. In our current translation to B, this results in a
possibly large set leading to a bad performance. To counter this, we want to investigate
the causes of performance loss more thoroughly and improve our translation wherever
possible. Moreover, we want to investigate a translation into a (symbolic or explicit)
model checking rather than a constraint satisfaction problem. That is, in case access on
ordered elements is linear, we can encode orderings as B machine states using machine
variables and operations on orderings as state transitions using machine operations.
Doing so, the PROB model checker can be used to find solutions for a model which uses
ordered signatures. Note that the PROB model checker can solve manually specified B
versions of the river crossing puzzle in about 100 ms and the towers of Hanoi puzzle in
about 250 ms.

In summary, we have translated several Alloy models of well-known logic puzzles to
classical B. As pointed out, our translation is not optimal for models using relational
operators or ordered signatures regarding PROB’s performance in solving constraints.
Yet, PROB outperforms the Alloy Analyzer for models using integers by several orders of
magnitude. Table summarizes the comparison of the Alloy Analyzer’s and PROB’s
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Listing 4.7: An Alloy model demonstrating the unsoundness of integers.

1 |open util/integer

2 |abstract sig setX { }

3 |one sig V {

4 SS: setX -> setX

5 |}

6 |assert Bug {

7 #(V.SS)>1 implies #(V.SS->V.S8S8)>3
8 #(V.SS->V.85)=0 iff no V.SS

91}

10 |// for 8 int Translation capacity exceeded
11 | check Bug for 3 setX, 7 int

runtimes in solving the presented models. We used a maximum solver timeout of 5
min. Further, we present the results using the translation as is without any manual
optimization of the generated B code and without using the Kodkod or Z3 backend of
PROB. The presented times of the Alloy Analyzer for solving the n queens puzzle are
the ones using the Minisat backend.

4.8. Improvements Over Existing Alloy Tools

Even though our translation cannot always compete with the Alloy Analyzer as we have
demonstrated in Section [4.7] it provides several interesting improvements and applica-
tions.

4.8.1. Integers

Mathematically speaking, the integers in Alloy are unsound when overflow detection is
turned off. In contrast, PROB has multi-precision integers without overflows’] According
to Milicevic and Jackson [I59] the Alloy Analyzer can detect models with overflows, but
to our knowledge cannot detect where an overflow has prevented a model being found.
For this purpose, an alternative to translating a model to B would be to use an SMT-
based backend for Alloy [160-162].

For example, for the model shown in Listing[4.7] Alloy 4.2 finds a counterexample, while
PROB correctly determines that no counterexample exists. If overflows are permitted
(the default), the Alloy Analyzer finds a counterexample for the first formula. If overflows
are forbidden, no counterexample is detected by the Alloy Analyzer for the first formula,
but then a counterexample is found for the second one. With higher integer ranges the
translation fails.

SCLP(FD) overflows are caught and handled by custom implementation.
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Listing 4.8: An exemplary Alloy model using higher-order quantification.

1 |open util/integer

2 |abstract sig setX { }
3 |one sig V {

4 SS: setX -> setX,
5 TT: setX -> setX
6 |}

7 |assert HO {

8 V.SS + V.SS = V.SS
9 all xx : V.SS | (xx in V.TT implies xx in V.SS & V.TT)
10 |}

11 | check HO for 3 setX

4.8.2. Higher-Order Quantification

The universal quantification shown in Listing [4.8] using the same signatures as in List-
ing [4.7] causes an error. The Alloy Analyzer states that analysis cannot be performed
since it requires higher-order quantification that could not be skolemized. PROB, on the
other hand, can check the validity of this assertion. An extension of Alloy called Alloy™
[154] might be able to handle this example. In the future, we would like to investigate
translating Alloy* models to B.

4.8.3. Proof

Finally, our translation to B also makes it possible to apply existing provers for the
language, such as AtelierB [121], to translated Alloy models. One could thus try to
develop a proof assistant for Alloy, similar to the work pursued by Ulbrich et al. [163]
via a translation to the first-order logic supported by Key.

In the example shown in Listing [4.9) we can prove the assertion using AtelierB’s
prover for any scope, by applying it to the translated B machine. We check that the
move predicate, removing one element from src and adding it to dst, preserves the
invariant src+dst=0bject, i.e., that the union of src and dst covers exactly Object.

Note that our translation does not (yet) generate an idiomatic B encoding, with move
as a B operation and srct+dst=0bject as an invariant: it generates a check operation
encoding the predicate add_preserves_inv with universal quantification. Listing
shows the B machine we have input into AtelierB. It was obtained by pretty-printing
from PROB. For the translation from Alloy to B, we enabled the preference to translate
a model without scopes described in the end of section Section as well as the
preference to translate a single command into the B machine assertions described in the
end of Section [4.6.1] (so that AtelierB generates the desired proof obligation).
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Listing 4.9: An exemplary Alloy model to prove an assertion in AtelierB.

sig Object {3}

sig Vars {
src,dst : Object

}

pred move (v, v’: Vars, n: Object) {
v.src+v.dst = Object
n in v.src

0 O Ui Wi

v’.src = v.src - n

9 v’.dst = v.dst + n

10 |}

11 |assert add_preserves_inv {

12 all v, v’: Vars, n: Object |

13 move [v,v’,n] implies wv’.src+v’.dst = Object
14 |}

15 | check add_preserves_inv for 3

4.9. Related and Future Work

Translations to Alloy have been pursued from B [164] [165] and also Z [166]. Rather than
translation directly to Alloy, a translation from B to Kodkod has been introduced and
implemented inside PROB[46].

Other formal languages have previously been translated to B as well, e.g., Z [167] and
TLAT[132]. A comparison between TLA"and Alloy has been presented by Macedo and
Cunha [I168§].

The original paper by Jackson [39] (notably Figure 2) provides a semantics of the
kernel of Alloy in terms of logical and set-theoretic operators. Our translation rules
can be seen as an alternate specification of this semantics, using the B operators and
also using B quantification. Future work could be a formal proof of the equality of the
different semantics given for Alloy.

Another, albeit less thorough approach, would be to implement a combined solver that
runs the Alloy Analyzer and PROB in conjunction and thus verifies the results using a
double chain.

While we strive for full support of the Alloy language, we currently do not provide
custom implementations for all available utility modules. In particular, we are missing
implementations for the translation of common operations on graphs and ternary rela-
tions. We currently just translate these modules using our tool as they are defined in
Alloy. Of course, the resulting translation might not be as efficient as providing custom
implementations.

Furthermore, we intend to translate Alloy* [154] and Electrum [169] (which is a tem-
poral extension of the Alloy modeling language) to B. As B and PROB have support for
higher-order quantification and linear temporal logic, translation should be straightfor-
ward.

While our translation of orderings, as presented in Section [£.5.3] allows translating
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Listing 4.10: A translated Alloy model to prove an assertion in AtelierB.

1 |MACHINE alloytranslation

2 |SETS /* deferred */

3 Object; Vars

4 | CONCRETE_CONSTANTS

5 src_Vars, dst_Vars

6 | PROPERTIES

7 src_Vars : Vars --> Object

8 & dst_Vars : Vars --> Object

9 | ASSERTIONS

10 t(v,v_,n).(v : Vars & v_ : Vars & n : Object
11 =>

12 (src_Vars[{v}] \/ dst_Vars[{v}] = Object &
13 v |-> n : src_Vars &

14 src_Vars[{v_3}] = src_Vars[{v}] - {n} &

15 dst_Vars[{v_3}] = dst_Vars[{v}] \/ {n}

16 =>

17 src_Vars [{v_}] \/ dst_Vars[{v_}] = Object)
18 )

19 |END

arbitrary Alloy models, the resulting B machine is often suboptimal for PROB’s solving
kernel as shown in Section [£.7] To improve performance, we want to investigate alterna-
tive translations of orderings. For instance, we could impose an order on the elements
of a signature S by defining a bijective function S »» 0..(card(S) — 1) allocating unique
indices to the elements. Further, we want to investigate a translation into a (symbolic or
explicit) model checking rather than a constraint satisfaction problem. In particular, we
intend to translate predicates over states and their successors into B operations. While
this is not possible in general, e.g., in the presence of predicates relating more than
two states, it would allow us to use symbolic model checking algorithms [I53] to find
solutions.

Near and Jackson [I70] presented an imperative extension of Alloy, i.e., making a
step towards B and its operations. Similarly, Frias et al. [I71) 172] extended Alloy
with actions. Cunha [I73] presented an approach using bounded model checking for
temporal properties in Alloy. It would be interesting to extend our translation and
produce idiomatic B machines with B operations from such Alloy models.

As soon as our translation relies more on operations, we want to investigate translating
into a set of models linked by refinement rather than translating an Alloy model into
a single B machine. However, since we currently do not impose any restrictions on the
Alloy model to be translated, it remains to be seen to what extent automatic refinement
techniques such as the one used in BART [I74] or the one introduced by Iliasov et al.
[I75] can be used efficiently.
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4.10. Conclusion

In summary, we have presented an automatic translation of Alloy to B, which provides
an alternative semantics definition of Alloy, and enables proof and constraint solving
tools of B to be applied to Alloy specifications. We have shown empirically that for
certain constraints, the B language tools in general and PROB in particular are superior
to the Alloy Analyzer and its SAT backend. For other constraints however, the Alloy
Analyzer outperforms PROB. As expected, different backends exhibit different strengths
and weaknesses. Using our translation, we make PROB’s backends available to Alloy
users, enabling them to experiment with technologies other than the ones employed by
the Alloy Analyzer.

The formal definition of the translation revealed both shortcomings and elegant fea-
tures of Alloy and B. One aspect where B is awkward is the treatment of tuples: many
encodings exist and the modeler has to know which one is being used. Associative tuples
with flexible join and projection operations (similar to database operations) would be a
very useful addition to B.

The object-oriented notation of Alloy makes specifications more modular and easier to
read than classical B and is closer to a UML-like model that most conventional designers
are familiar with. In B, one can use records or use B’s machine decomposition statements
such as INCLUDE, but the syntax is not as handy as Alloy’s.

Alloy allows expressing certain constructs in a much more concise fashion, showing
that B sometimes is not as expressive as desired. However, the same applies for Alloy as
well. Multiplicity annotations in Alloy are inspired from conceptual modelling notations,
but their mathematical representation relies on well-known classes of functions that the
B notation natively supports concisely. We have also shown that B can be much more
concise and expressive especially when dealing with integers.

Alloy is not tailored for transition system analysis since system behavior is analyzed
using bounded traces. PROB offers sophisticated tools for analyzing the transition graph
of a system by supporting invariant and deadlock checks, LTL[e|] and CTL, fairness
constraints, reachability analysis, and model-based testing.

In general, a comparison and translation such as the one presented in this article
should inspire the evolution of both languages. We hope that our translation can serve
as a vehicle of communication between the Alloy and B communities.
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5. Additional Experiments and
Considerations

In the following, we present an extended integration of Alloy in PROB’s graphical Tcl/Tk
user interface as well as additional experiments for the evaluation of our automated trans-
lation from Alloy to classical B using the Alloy Analyzer as well as different constraint
solving backends of PROB. Further, we point out limitations of our automated transla-
tion, describe the new major release of Alloy including mutable state and linear temporal
logic, and propose a possible translation from the new language constructs introduced
in Alloy 6 to B.

5.1. Extended Verification of Commands

Alloy commands are translated to B machine operations defining a command’s scope
in its precondition as described in Section [£.4.14] The scope of an Alloy command
constrains the sizes of signatures. Our translation introduces a deferred set in B for each
signature. One peculiarity of PROB is that it determines the cardinality of deferred
sets when loading a machine. PROB provides an option to define a global cardinality
for deferred sets while the user is also able to manually set the cardinality of a specific
deferred set using a B definition. Yet, these cardinalities cannot be set dynamically after
loading a machine in PROB. For the translation from Alloy to B, this means that we can
only translate commands which define the same scope in a single translated machine.
For instance, consider two Alloy commands constraining the same signature but setting
its scope to be one in the first and two in the second command. For the first translated
operation, PROB would assume a cardinality of one for the deferred set introduced for
the Alloy signature. The second command can then not be translated to B in the same
machine since the scope of one could lead to a spurious counterexample being found.
Conversely, translating the second command would apply a scope of two in PROB which
could result in different behavior for the first command.

We thus decided to translate an Alloy model for a specific command only, which we
refer to as the main command. By default, we use the first Alloy command that is
defined in a model. We first search for all commands that define the same scope as the
main command. Afterward, all these commands are translated into a single B machine.
This guarantees that a translated B machine defines scopes that are consistent with
the corresponding Alloy model. If a command to be checked is currently not translated
due to a different scope, we assign this command to be the new main command and
translate the Alloy model from scratch. Of course, this adds the additional overhead of
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Figure 5.1.: Checking an Alloy command in PROB Tecl/Tk via the main menu Verify
— Alloy Command. One can either use PROB’s constraint solver, its SM'T
solver or its integration of Z3 for the verification.

translating an Alloy model.

Besides that, we provide a purely constraint-based approach for checking Alloy com-
mands in PROB. By now, Alloy commands were verified by constraint-based checking.
Here, a state satisfying all invariants but allowing to transition into a state that violates
an invariant with a single B machine operation is searched as explained in Section [4.6
In PrROB, constraint-based checking uses constraint solving and explicit-state model
checking. This is not necessary in the case of translated Alloy models since our transla-
tion does not define state changes in B. Constraint-based checking for Alloy commands
thus always resulted in initializing a B machine (checking its properties) and checking if
a single machine operation is enabled. We thus provide a dedicated constraint solving
routine for checking Alloy commands. For this, we create a conjunction of a B ma-
chine’s properties and the precondition of a B machine operation corresponding to an
Alloy command to be checked. We allow using different constraint solving backends of
PROB for the verification. If a run command is satisfiable or a counterexample has been
found for a check command, we load the corresponding state in PROB as can be seen in
Figure (state properties section on the bottom left), which enables the translated B
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machine operation.

5.2. Additional Empirical Evaluation

The Alloy community provides a public Github repository [I76] containing Alloy mod-
els. For instance, many models are taken from Daniel Jackson’s book on Alloy [40].
To extend the performance evaluation of our translation from Alloy to B presented in
Section we selected a subset of 25 Alloy models. We deem these models to be
suited for a performance evaluation since they use different features of Alloy. We com-
pare the runtimes of the Alloy Analyzer and PROB’s constraint solver for running or
checking an Alloy model’s first command as can be seen in Table 5.1} For PROB, we
additionally use its interface to Kodkod (PrROB-Kodkod) [40], its parallel integration
of Z3 (PrROB-Z3), and PrROB’s SMT solver with (PROB-SMT) and without (PROB-
Raw-SMT) an additional static syntax analysis as well as with (PROB-Sym-SMT) and
without (PROB-Sym-Raw-SMT) static symmetry breaking as is presented in Chapter [6]
The use of PROB’s interface to Kodkod seems odd since constraint are translated back
to Alloy, but we want to investigate the impact and overhead of our translation from
Alloy to B. In the best case, PROB’s interface to Kodkod should provide a similar per-
formance as the Alloy Analyzer. A maximum constraint solver timeout of 5 min was
used. We use the median time out of three independent runs.

It can be the case that a constraint solver could not decide for the satisfiability (un-
known) but did not exceed the predefined timeout. Further, a constraint can be found
to be contradictory in the current scope of PROB without being refuted in general due
to the use of one or more deferred sets without a fixed size (indicated by unf.). PROB
assumes a cardinality for unfixed deferred sets when loading a B machine. For the
benchmarks, we use a maximum set size of 3, which can be set by preference in PROB.
If finding a contradiction for a constraint using an unfixed deferred set, it cannot decide
for the satisfiability since the constraint could be satisfiable when considering a larger
cardinality. In this case, we also state the time needed for solving a constraint. Besides
the time needed for constraint solving, we state the time needed for loading an Alloy
model excluding parsing in the Alloy Analyzer (CNF) and PROB (Alloy2B). The bench-
marks were run on a system with an Intel Core 17-8750H CPU (2.2GHz) and 16 GB of
RAM using PROB version 1.12.2 built from commit 05f1e64c, SICStus Prolog version
4.8.0, Z3 version 4.12.3 built from commit cc4acOe6, and the Alloy Analyzer version
6.1.0. The reason for using a pre-release version of Z3 is that we found and reported a
bug in Z3 version 4.12.2 [I77], where an erroneous rewriting rule implementing destruc-
tive equality resolution lead to finding solutions for unsatisfiable formulas. The bug has
been fixed but a stable release of version 4.12.3 was not present at the time of writing
this thesis.

First and foremost, it can be seen that the automated translation from Alloy to B is
not a bottleneck for performance. Yet, loading an Alloy model in PROB can take longer
than checking it, e.g., as is the case for the 13th or 19th benchmark in Table[5.1] This can
also be the case for the Alloy Analyzer, e.g., for the 25th benchmark in Table[5.1|or when
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Table 5.1.: Performance comparison of the Alloy Analyzer, PROB’s constraint solver

(PrOB), its backend to Kodkod (PrOB-Kodkod), its parallel backend to Z3
(PrROB-Z3), and its different SMT solver configurations using Alloy models

[T76] including the time needed for loading a model in the Alloy Analyzer
(CNF) and ProB (Alloy2B).

Runtime in ms

ProB
Alloy . Sym-Raw-
No. Model CNF Alloy2B ProB Kodkod 73 SMT Raw-SMT ) Sym-SMT
Analyzer SMT

1 com 16 193 5 >300000 > 300000 > 300000 > 300000 > 300000 > 300000 > 300000
2 paragraph_numbering 16 29 72 > 300000 unf. (280) > 300000 > 300000 > 300000 > 300000 > 300000
3 einstein_puzzle 16 182 7 14642 2158 > 300000 10977 11058 1499 1731
4 peano 2 142 2 unf. (79) unf. (45) unknown  unf. (44) unf. (44) unf. (89) unf. (50)
5 color_australia 2 148 3 2 3 unknown 4 4 15 25
6 address_book 3 169 4 15 84 unknown > 300000 > 300000 > 300000 > 300000
7 address_book_3a 5 213 3 >300000 > 300000 > 300000 > 300000 > 300000 > 300000 > 300000
8 crewalloc 4 155 3 812 867 unknown 76 80 101 105
9  birthday 2 230 2 >300000 unf. (41) unf. (244) > 300000 > 300000 > 300000 > 300000
10 abstract_memory 3 21 1 >300000 unf. (29) unknown > 300000 > 300000 > 300000 > 300000
11 cache_memory 4 170 2 >300000 > 300000 > 300000 > 300000 > 300000 > 300000 > 300000
12 origin_tracking 5 157 6 9786 9813 unknown > 300000 > 300000 > 300000 > 300000
13 java_types 2 236 2 120 104 unknown 191 105 120 106
14 railway 4 181 8 >300000 unf. (83) unknown > 300000 > 300000 > 300000 > 300000
15 syllogism 1 61 1 7 30 417 8 8 14 15
16 chord 18 297 13 > 300000 > 300000 unknown > 300000 > 300000 > 300000 > 300000
17 chord2 34 210 250 > 300000 > 300000 unknown > 300000 > 300000 > 300000 > 300000
18 chord_bug model 3 192 2 57 128 unknown 83 93 179 164
19  dijkstra_2_process 2 177 2 9 24 unknown 19 12 16 17
20 peterson 11 244 1 unf. (37) unf (81) unf (3917) unf. (143) unf. (142) unf. (2895) unf. (2755)
21 genealogy 5 157 4 > 300000 188 unknown > 300000 > 300000 > 300000 > 300000
22 handshake 12 143 89 > 300000 387  >300000 > 300000 > 300000 > 300000 > 300000
23 farmer 4 174 3 > 300000 > 300000 unknown > 300000 > 300000 > 300000 > 300000
24 ring_electionl 7 185 6 > 300000 > 300000 unknown > 300000 > 300000 > 300000 > 300000
25 overlapping ranges 126 160 1 27 43 440 287 253 555 474
Total Solved Constraints 25 10 12 2 8 8 8 8
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using integers as shown in Section [£.7] Since the time needed for solving a constraint is
dominant, we deem the limitation of translating Alloy models from scratch for loading
Alloy commands with different scopes as described in Section to be neglectable.

The Alloy Analyzer is able to solve each model faster than PROB’s constraint solving
backends. In particular, the Alloy Analyzer is the only constraint solver that is able to
solve each constraint. Unfortunately, PROB’s constraint solving backends fail to solve
many constraints within the predefined timeout. The models define many relations,
quantifiers, and function applications. Here, the suggested translation from Alloy to B
is often suboptimal and non-idiomatic for B, which corresponds to the results presented
in Section This is often not caused by non-idiomatic translation rules but the style
of modeling in Alloy, which is different compared to B. For instance, B does not define a
type describing the complete universe but uses concise functions and relations leading to
a better performance in PROB’s constraint solver. Besides that, several benchmarks use
the relational closure operator for which the Alloy Analyzer has already shown benefits
compared to PROB [46]. The models do not use integers for which the translation to B
showed benefits in Section [4.7]

Several benchmarks cannot be decided due to the use of unfixed deferred sets (unf.).
Alloy signatures are translated as deferred sets in B. If the scope of an Alloy signature is
not explicitly set, the defined scope (or default scope of 3) is set to be an upper bound.
PROB then assumes a fixed deferred set size when loading a B machine, e.g., the upper
bound. One solution would be to solve a constraint for each possible configuration
of deferred set cardinalities. Yet, the amount of combinations can grow exponentially
depending on the amount of deferred sets and their upper bounds. Thus, this is not a
proper solution in practice.

PRrOB’s interface to Kodkod is able to solve the most amount of constraints aside
from the Alloy Analyzer. Yet, 13 constraints cannot be decided, 6 of which contain
unfixed deferred sets. This shows that our translation from Alloy to B adds additional
complexity that aggravates constraint solving for Kodkod. The translation from B to
Kodkod does not add much overhead, which can be seen when comparing the runtimes
of PROB’s constraint solver and its interface to Kodkod.

PRrROB’s integration of Z3 is only able to solve 2 constraints. In the most cases, Z3
is not able to decide for the satisfiability (unknown) or exceeds the predefined timeout.
We deem quantifiers to be the reason for Z3’s bad performance. The Alloy models use
many quantifiers and the translation to B potentially adds more.

ProB’s SMT solver is superior to the integration of Z3 but does not allow solving
any constraint that cannot be decided by PROB’s constraint solver. For several bench-
marks, the SMT solver seems to be guided in a wrong direction leading to exceeding the
predefined timeout when grounding domains in the theory solver, i.e., PROB. Only for
the third benchmark, the SMT solver is able to solve the constraint faster than PROB’s
constraint solver, and faster than PROB’s backend to Kodkod when using static symme-
try breaking. Yet, computing symmetry breaking predicates can also add a considerable
overhead, e.g., as is the case for the 20th benchmark.

Our automated translation from Alloy to B has some limitations. To the best of our
knowledge, the translation rules presented in Section cover the complete semantics

85



5. Additional Experiments and Considerations

of Alloy’s core language version 5. However, Alloy’s syntax is more flexible than the
one of B and our automated translation might not cover specific cases, i.e., combina-
tions of operators. Further, we currently do not provide custom translations for the
Alloy extensions providing graphs, ternary multirelations, and time macros. The above
benchmark results lead to the conclusion that it is probably not worth it to translate
these modules to B. The Alloy Analyzer translates constraints to SAT which can be su-
perior to saturation-based solving as performed by PROB for constraints involving finite
relations [46]. For the verification of Alloy models, the Alloy Analyzer thus remains the
best choice. Yet, when it comes to solving constraints involving integers, the use of our
automated translation in PROB is beneficial as shown in Section [£.7] Furthermore, one
does not have to cope with integer overflows in PROB.

5.3. Translating Alloy 6 to B

One criticism of Alloy 5 is that it is difficult to model concurrent systems since there is
no concept of mutable states and temporal logic by default. For instance, this was one of
the main reasons why a developer team at Amazon decided to use TLA™ instead of Alloy
5 [I78]. To model state changes, Alloy 5 allows defining traces via a language extension.
However, using this extension is a tedious task and can be error-prone. Electrum [169] is
an extension of Alloy 5 that introduces operators for LTL as well as a tool, the Electrum
Analyzer [I79], to verify such properties. Alloy 5 was the latest release at the time
of the publication of our automated translation from Alloy to classical B presented in
Chapter [4

Alloy 6 is a major new release that natively supports mutable states and LTL. For the
support of LTL, the Electrum language extension was slightly adapted and integrated
in the Alloy 6 core language. Further, the Alloy Analyzer was extended to include the
Electrum Analyzer for verifying LTL properties. A major new keyword in Alloy 6 is
var, which allows defining signatures and /or signature fields, i.e., relations, as mutable
state.

The theoretical concept of mutable states in Alloy 6 follows the one of TLA™[41]:
Traces are infinite executions of state changes which can be referred to as lasso traces.
State changes are defined by predicates describing the next state of all mutable entities.
It should be noted that the next state relation in LTL is a total function, which is the
reason why all state variables have to be assigned in a state transition. In particular,
this possibly requires the definition of so-called frame conditions, which assign mutable
states that should not change when applying a specific predicate to their previous value.
A lasso trace either terminates in a state that loops to itself or any previous state. To
ensure the existence of lasso traces, i.e., at least one predicate for state change can be
applied in each state, a predicate that assigns all mutable states to their previous values
(skip) is necessary. Hereby, all traces in Alloy 6 are guaranteed to be lasso traces since
all scopes are finite in Alloy, i.e., a trace has to terminate after a finite amount of state
changes. For the verification of properties, the Alloy Analyzer provides bounded model
checking based on SAT solving as well as backends to the model checkers NuSMV [180]
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Listing 5.1: An idiomatic formal specification of the ,,Chameleon Puzzle“ [7] in classical
B.

MACHINE Chameleon

SETS

Colors = {blue,green,yellow}

VARIABLES cham

INVARIANT

cham : Colors --> NATURAL &

not (cham(blue) = 0 & cham(green)=0)

INITIALISATION cham := {blue |-> 13, green |-> 15, yellow |-> 17 }
9 | OPERATIONS
10 meet (cl,c2,c3) = PRE [cl,c2,c3]:perm(Colors) &

0 O Ui Wi =

11 cl:Colors & cham(c1)>0 & cham(c2)>0 THEN

12 cham := {c1|-> cham(cl1)-1, c2|-> cham(c2)-1, ¢3 |-> cham(c3)+2}
13 END

14 | END

and nuXmv [I81], which also support unbounded model checking. Unfortunately, the
integrations of external model checkers currently do not support integers.

In the following, we propose a translation of Alloy 6’s new features to classical B
while using the translation presented in Chapter |4 as a basis. It should be noted that
the existing semantics of Alloy 5 have not changed but were extended by mutable states
and LTL. Our presented translation from Alloy 5 to classical B is thus still valid for
Alloy 6. We use the so-called ,,Chameleon Puzzle“ as a translation example. The puzzle
first appeared in the Kvant magazine in 1985 [7], and is defined as follows:

45 chameleons live on an island, 13 of which are blue, 15 green and 17 yellow. If two
chameleons of different colors meet, they change their color to the third color. Show
that this doesn’t make it possible for all chameleons to be yellow at some point.

We modeled the puzzle in B as can be seen in Listing [5.1], and use a specification of
Peter Kriens presented in a Discourse forum for Alloy [8] as can be seen in Listing
for comparison. We adapted the Alloy model syntactically in order to emphasize the
new concepts of Alloy 6. In particular, we added a dedicated predicate for skipping a
state change, extracted a fact for the initialization of the mutable state, and added a
fact for the actual transition system (signature step). The presented Alloy model is not
optimized for performance but serves the sole purpose of an example for a translation
from Alloy 6 to classical B.

The Alloy specification defines a signature for chameleons providing a relation that
defines their color. This color is defined as a mutable state using the new keyword var
since the color of a chameleon can change over time. A manual translation of the Alloy
6 specification presented in Listing to classical B can be seen in Listing [5.3] The
Alloy constructs that do not use the keywords var, always or eventually are translated
according to our rules for translating Alloy 5 to classical B presented in Chapter [4l The
relation color_chameleon is defined as a machine variable instead of a constant due to
the new Alloy keyword var. The Alloy model’s initialization of variables requires model
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Listing 5.2: A formal specification of the ,,Chameleon Puzzle® [7] in Alloy 6 using muta-
ble state and linear temporal logic presented by Peter Kriens in a Discourse
forum for Alloy [§]. We adapted the model syntactically to emphasize the
new concepts of Alloy 6.

1 |enum Color { blue, green, yellow }

2 |sig Chameleon { var color: Color }

3 |fact init {

4 #Chameleon = 45

5 #color.blue = 13

6 #color.green = 15

7 #color.yellow = 17

8 |}

9 |pred meet[a, b : Chameleon] {

10 a.color != b.color and

11 let thirdColor = Color - a.color - b.color |

12 color’ = color ++ (a->thirdColor + b->thirdColor)
13 |}

14 |pred skip { color’ = color }

15 |fact step {

16 always ((some a, b : Chameleon | meet[a,b]l) or skip)
17 |}

18 |run { eventually Chameleon.color = yellow }

19 for 45 but 7 int, 361 steps

finding which can be achieved in B using the ANY substitution as can be seen in line 15
to 18 of Listing [5.3

Alloy predicates that change a mutable state can be translated as B machine opera-
tions. For instance, the Alloy predicate meet defined in line 9 to 13 of Listing can be
translated as can be seen in line 20 to 25 of Listing [5.3] For this, the Alloy predicate’s
guard has to be extracted to create the B machine operation’s precondition. Alloy’s next
state assignment can be translated using a single assignment substitution in B. Several
assignments can be translated using B’s sequential or parallel substitution assignment.
It should be noted that the assignment of a mutable state might be nested in Alloy as
can be seen in line 11 and 12 of Listing [5.2] In contrast to this, B machine variables are
explicitly assigned a value using a B expression as can be seen in line 12 of Listing
An automated translation thus possibly requires a preprocessing of Alloy predicates ex-
tracting each assignment, e.g., by rewriting to a normal form. Alternatively, B’s ANY
substitution can be used to translate predicates without any preprocessing. For instance,
the predicate skip defined in line 14 of Listing can be translated as the B machine
operation op = ANY color2 WHERE color2 = color THEN color := color2 END.
Therefor, only the next state assignment color’ has to be renamed to a new variable,
e.g., color2, while the Alloy predicate can be translated as is without any preprocessing.
Yet, this translation is less idiomatic, and a single assignment substitution in B would
be more readable and more performant.

A difference between state assignments in Alloy 6 and B is that Alloy allows assigning
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Listing 5.3: A manual translation of the Alloy 6 specification presented in Listing to
classical B mainly following our rules for translating Alloy 5 to classical B
presented in Chapter |Z|

1 |MACHINE chameleon_alloy_to_b

2 |SETS Color = {yellow,green, bluel}; Chameleon

3 | PROPERTIES

4 card(Chameleon) = 45 & card(Color) = 3 &

5 {yellow}/\{green} = {} & {yellowl}/\{blue} = {} &
6 {green}/\{blue} = {}

7 | VARIABLES

8 color_Chameleon

9 |DEFINITIONS

10 ASSERT_LTL == "F{color_Chameleon[Chameleon] = {yellowl}}"
11 | INVARIANT

12 color_Chameleon : Chameleon --> Color &

13 not (color_Chameleon[Chameleon] = {yellow})
14 | INITIALISATION

15 ANY c
16 WHERE ¢ : Chameleon --> Color
17 & card((c”) [{blue}]) = 13 & card((c”) [{green}]) = 15 &
card ((c™) [{yellowl}]) = 17
18 THEN color_Chameleon := c¢ END
19 | OPERATIONS
20 meet (a,b) =
21 PRE a : Chameleon & b : Chameleon & color_Chameleon[{al}] /=
color_Chameleon [{b}] THEN
22 color_Chameleon := color_Chameleon <+
23 (LET thirdColor BE thirdColor = (Color -
color_Chameleon[{a}] - color_Chameleon[{b}])
24 IN {a} * thirdColor \/ {b} * thirdColor END)
25 END
26 | END

any state while B only allows assigning the next state in a single machine operation.
Therefore, Alloy predicates assigning any previous or future state other than the next
state cannot be translated to B.

A main difference of a new translation from Alloy 6 to B compared to Alloy 5 is
the idiomatic use of state changes using B machine operations. This enables the use of
explicit-state, symbolic, and LTL model checking in PROB.

B and PrROB provide full support for LTL as is supported by Alloy 6. The Alloy
model’s run command defines an invariant using the keyword eventually. This property
can be translated as an LTL formula in PROB using a definition as can be seen in line
10 of Listing [5.3] However, it can be more efficient to negate the property and translate
it as a B machine invariant as can be seen in line 13 of Listing [5.3] This allows for
explicit-state model checking instead of LTL model checking. Frame conditions do not
have to be translated to B since a B operation skips all variables which are not explicitly
assigned by default.
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It should be noted that the proposed translation is not idiomatic in B. For instance, it
is more efficient to translate the chameleon population’s relation using a total function
relating an integer to each color as can be seen in line 6 of Listing [5.1 However, such
a model specific performance improvement can probably not be deduced automatically
from the Alloy model. The implementation of a general preprocessing extracting guards
and assignments from all kinds of Alloy predicates is a tedious and error-prone task, but
should be possible in practice. The alternative translation using B’s ANY substitution as
described above is straightforward, but requires some effort to be fully integrated in our
automated translation. An implementation of the proposed translation from Alloy 6 to
classical B in PROB is up to future work.

For the different chameleon puzzles, the runtimes of the Alloy Analyzer and PROB
differ a lot. We used the same system settings as in Section PRrOB is able to solve
the idiomatic B encoding presented in Listing using explicit-state invariant checking
in 236 ms. The B model contains 361 states. The Alloy Analyzer fails to check the
Alloy model within 10 min (23 steps of BMC using Minisat, 21 steps using NuSMV, and
15 steps using nuXmv were checked). Yet, the manually translated model presented in
Listing can also not be solved within 10 min by PROB using explicit-state, symbolic
or LTL model checking. We noted that the Alloy model defines a much larger state space
compared to the idiomatic B model containing many symmetries. For instance, the Alloy
model defines many different initializations for the signature of chameleons since each
chameleon (total: 45) is mapped to a color. Here, two chameleons can interchange
their colors leading to a different instantiation but still satisfying the initialization, i.e.,
the fact init in Listing 5.2l The idiomatic B model, on the other hand, defines a
single instantiation since it maps each color (total: 3) to a natural number. This again
shows that the approaches to solve a problem are often different in Alloy and B leading
to drastic performance differences in model finding and checking. For the translated
model, the performance of PROB’s explicit-state model checker can be improved by
using hash-based symmetry breaking. Nevertheless, the model can still not be checked
within 10 min.

For comparison, we created an alternative Alloy model of the chameleon puzzle defin-
ing a total function similar to the one defined in Listing [5.1 which can be seen in
Listing Although the model only defines a single instantiation, the Alloy Analyzer
was only able to check the model for 24 steps within 10 min using the Minisat backend.
NuSMV and nuXmv cannot be used since integers are currently not supported by the
Alloy Analyzer’s integration. In Listing [A.2] we present a manual translation of the
Alloy model to B mainly following our translation rules for Alloy 5. Note that we have
to use B’s MU operator to receive an integer from a singleton set of integers. For this,
the external predicate file CHOOSE.def has to be loaded. The model defines 362 states
and can be checked by PROB’s explicit-state model checker in around 216 ms and in
around 205 ms using its LTL model checker. This shows that a translation from Alloy
6 to B for model checking with PROB can be beneficial compared to using the Alloy
Analyzer’s backends.
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6. SMT Solving for the Validation of B
and Event-B Models

Joshua Schmidt and Michael Leuschel

Abstract PROB provides a constraint solver for the B-Method written in Prolog and
can make use of different backends based on SAT and SMT solving. One such backend
translates B and Event-B operators to SMT-LIB using the Z3 solver. This translation
uses quantifiers to axiomatize some operators, which are not well-handled by Z3. Several
relational constraints such as the transitive closure are not supported by this translation.

In this article, we substantially improve the translation to SMT-LIB by employing a
more constructive rather than axiomatized style using Z3’s lambda function. Thereby,
we are able both to translate more B and Event-B operators to SMT-LIB and improve
the overall performance. We further extend PROB’s interface to Z3 to run different
solver configurations in parallel.

In addition, we present a direct implementation of SMT solving in Prolog using
PROB'’s constraint solver as a theory solver. We hereby aim to combine the strengths
of conflict-driven clause learning for identifying contradictions with PROB’s constraint
solver for finding solutions. We deem this implementation to be worthwhile since PROB’s
constraint solver is tailored toward solving B and Event-B constraints, and we herewith
avoid the dependency on an external SMT solver.

Empirical results show that the new integration of Z3 has improved performance of
constraint solving and enables to solve several constraints which cannot be solved by
PROB'’s constraint solver. Furthermore, the direct implementation of SMT solving in
PROB shows benefits compared to PROB’s constraint solver and the integration of Z3.

6.1. Introduction

The B-Method [25] is a correct-by-construction approach for software development based
on formal refinement. Its foundation is an expressive formal language rooted in set-
theory, integer arithmetic, and first-order logic. The B language supports higher order
data types such as functions or arbitrarily nested relations, and is nowadays referred
to as classical B. Event-B [20] is its successor which, e.g., puts the focus on systems
modeling by extending refinement. In this article, we only refer to the B language
which covers predicates and expressions that are present in classical B and Event-B.
In particular, there is no need to differentiate between classical B and Event-B in the
context of constraint solving.
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PrOB [28, 29] is an animator, model checker, and constraint solver for the B-Method.
The constraint solver is used for many tasks and is the foundation of the PROB tool.
For instance, the constraint solver has to compute the effect of state changes during ani-
mation, find counterexamples to proof obligations during disproving or solve constraints
for symbolic model checking or program synthesis. One key feature of PROB is that it
computes all solutions of a constraint. For instance, this is important for a complete
state-space exploration during model checking or when computing set comprehensions.
This search is performed using chronological backtracking. A set comprehension in B is
a quantified formula describing the elements of a set using a constraint that has to be
satisfied by each element. The core of PROB is implemented in SICStus Prolog [81] us-
ing its library for constraint solving over the finite domain integers (CLP(FD)) [30] and
other features such as coroutines for deterministic propagation and constraint reifica-
tion. Coroutines in Prolog can be used to suspend computations until a certain condition
is met. Constraint logic programming (CLP) generally uses algorithms to reduce the
domain of variables when new constraints are posted and identifies a contradiction if a
domain becomes empty. After the phase of domain reduction, solutions can be found by
enumerating the remaining domains (aka grounding). PROB’s constraint solver handles
integer overflow by custom implementations to overcome the limited range of CLP(FD)
and deal with unbounded domains. It also supports symbolic representations for infi-
nite values. Of course, the PROB constraint solver might fail to solve constraints over
unbounded domains, e.g., due to a timeout or a virtual timeout, which is the case when
PRrOB detects that a domain cannot be enumerated exhaustively and all solutions are
required.

Other prominent constraint solvers such as Z3 [47] implement a conflict-driven clause
learning modulo theories (CDCL(T)) architecture, which combines SAT and theory solv-
ing called Satisfiability Modulo Theories (SMT). In contrast to CLP(FD) and PrROB’s
constraint solver, SMT solvers are able to learn from contradictions [87, [88] and pos-
sibly leave dead-end parts of the search tree earlier and more aggressively by applying
backjumping instead of chronological backtracking. The SMT-LIB standard [100, 182]
defines the input language for SMT solvers.

In prior work, Krings and Leuschel presented a high-level translation from B to SMT-
LIB to integrate the Z3 SMT solver into PROB [48]. The authors have shown that, on
the one hand, Z3 can be superior to PROB when disproving formulas, especially over
unbounded domains. On the other hand, Z3 often fails to find solutions for satisfiable
constraints involving relations or set comprehensions. The translation uses existing
operators in SMT-LIB or Z3 wherever possible [48]. Unfortunately, SMT-LIB does
not have native support for set comprehensions, which are frequently used in the B
language. The authors thus suggested translating B set comprehensions using a universal
quantification which constrains all the members of a set variable. Unfortunately, this
axiomatic translation often leads to complex constraints for which Z3 fails to find a
solution. Several other B operators are also not supported by the SMT-LIB standard
such as the relational composition, iteration and closure, or quantified union J, 4 and
intersection [, 4. As their axiomatic translation to SMT-LIB using universal quantifiers
is complex, these operators were not supported in [48].

94



6.1. Introduction

While trying to improve Z3’s performance and analyzing satisfiable B constraints
which can be solved by PROB’s constraint solver but not by Z3, we found an alternate
translation using lambda functions instead of quantifiers. It turned out that this al-
ternate approach can considerably improve performance. Take for example the (right)
relational override operator r < s, which joins two relations by adding tuples of s to r.
A tuple in r is replaced by a tuple in s if both tuples have the same first element. For
instance, a simple satisfiable constraint is given by f = {1 — 2} Ag = f < {2 — 3},
which has the solution ¢ = {1 — 2,2 — 3}. With the axiomatic translation Z3 is
not able to solve this constraint while Z3 can solve it when encoding the override op-
erator using a lambda function. Z3 supports such lambda functions, even though they
are not part of the latest SMT-LIB standard 2.6. Note that from version 3.0 lambda
functions will be part of the SMT-LIB standard as well. Nevertheless, we observed that
the axiomatic translation from B to SMT-LIB has benefits. In order to achieve the
best performance, we decided to run several configurations of the Z3 solver with both
translations in parallel.

While our empirical evaluation in Section shows that the new integration of Z3
improves performance and coverage compared to the prior integration [48], it still has
limitations. For example, it cannot deal well with constraints involving set cardinalities,
which are frequently used in B. B sets are translated as characteristic functions using
Z3’s array theory [I83]. This array theory allows defining nested and infinite sets, which
is important in the context of the B language. Unfortunately, Z3 does not provide a
cardinality constraint. B’s set cardinality is thus translated as a total bijection, which
itself is rewritten using universal quantification. For instance, the B predicate ¢ =
card(s) is encoded as an existentially quantified total bijection Jt.(t € s>»1..¢c)Ac >0
(—» is the symbol for a total bijection in B) [48]. A simple constraint for which the
integration of Z3 spends a disproportional amount of time to find a solution is z €
P(Z) A card(z) > 10. The reason for this is that Z3 often has trouble solving formulas
that contain many quantifiers. Other examples of constraints which have no direct
counterpart in SMT-LIB and exhibit similar performance issues are the power set or
maximum and minimum of a set of integers.

In this article, we thus also investigated a third approach to SMT solving. We ad-
ditionally implemented state-of-the-art SMT solving techniques directly in PROB to
tightly connect PROB’s constraint solving core for finding solutions with a CDCL(T)-
based learning scheme to prune the search space early and improve the identification
of contradictions. The PROB constraint solver is particularly strong at solving set car-
dinalities (for finite sets) which are encoded using bit vectors and coroutines while a
constraint of CLP(FD) that computes the sum of a list of integers is used to compute
the actual cardinality from a corresponding bit vector. Our expectations are thus that
the use of PROB’s constraint solver as the theory solver for an SMT solver enables to
overcome the aforementioned shortcomings of the integration of Z3. Furthermore, our
implementation can be of interest in the SMT community since the B language entails
well-definedness conditions which are not considered in common SMT solvers.

The presented constraint solving backends are integrated into PROB which is available
at:
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This article is the extended version of our original submission to the FMICS conference
[49]. We extend the former work in different aspects by providing

~ a brief introduction to B and SMT-LIB (Section [6.2),

— a more formal description of the translation from B to SMT-LIB by providing
constructive definitions for sorts in SMT-LIB (Section [6.4.1)),

— a decomposition of B constraints into independent components to investigate the
impact on constraint solving for the integration of Z3 (Section [6.4.3)),

— adirect implementation of SMT solving for B and Event-B in Prolog using PROB’s
constraint solver as a theory solver (Section [6.5]),

— an integration of an additional theory solver for integer difference logic alongside
PROB’s constraint solver (Section [6.6),

— and an extended empirical evaluation including a justification for the decision of
running different Z3 solvers in parallel, more benchmarks from bounded model
checking, and benchmarks from constraint-based proofs of inductive invariants as
well as for deadlock freedom (Section [6.7).

6.2. Background

In the following, we give a brief introduction to the B formal specification language and
the SMT-LIB language. We focus on the parts of the languages that we use for our
translation from B to SMT-LIB as well as our empirical evaluation.

6.2.1. Primer on B

The formal specification language B [25] is rooted in set-theory, integer arithmetic, and
first-order logic and follows the correct-by-construction approach. B has been developed
for the specification and design of software systems. Specific properties can be proven
mathematically using theorem provers, e.g., using AtelierB [121], or be checked using a
model checker such as PROB [27-H29]. The B language supports unbounded domains and
higher order data types such as arbitrarily nested relations. Nowadays, the B language
is referred to as classical B. Event-B [26] is the successor of classical B which improves
the language in several aspects and puts the focus on systems modeling by extending
refinement. Note again that in this article we only refer to the B language for the sake
of simplicity, which covers predicates and expressions that are present in classical B and
Event-B.

The development in classical B and Event-B is incremental starting with a high-
level abstract specification which is successively refined and decomposed to increase the
maintainability and ease the specification of complex models. A model thus consists of
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a collection of so-called machines. All refinement steps are linked by proof obligations
which have to be discharged in order to ensure that the refinement does not diverge from
the prior specification. A machine consists of variable and type definitions as well as
initial values. A state is defined by the current values of the machine variables. One can
specify transitions between states by defining machine operations (called events in Event-
B) that compute successor states including all variables. An operation (or event) can
have a precondition (called guard in Event-B), allowing or prohibiting execution based
on the current state. Certain behavior can be ensured by defining machine invariants,
which are safety properties that have to hold in every reachable state. The correctness
of a formal model thus refers to its specified invariants.

In addition to native B types such as Z or B, one can provide user-defined sets. These
sets can be defined by a finite enumeration of distinct elements (enumerated sets) or
left open (deferred sets). For instance, S = {s} defines an element s of type S, which
both can be accessed by name within the machine. Deferred sets are assumed to be
non-empty during proof and also finite for animation in PROB.

A set comprehension in B is a quantified formula constraining the elements of a set. If
quantifying two variables, the elements of a set comprehension are tuples. For instance,
the equations {z | x € 1.2} ={1,2} and {z,y |z € 1L.2Ay =0} ={(1—0),(2+— 0)}
are true in B. There is no limit to the amount of quantified variables other than that it is
a finite number. For instance, the elements of a set corresponding to a set comprehension
quantifying three variables are triples.

B is statically and strongly typed while PROB further executes runtime checks to
ensure well-definedness. For instance, a function application f(1) is well-defined if 1 is
an element of the domain of the function f. Other exemplary B operators that entail
a well-definedness condition are the minimum and maximum of a set of integers which
has to be non-empty or integer division. Type domains can be unbounded, possibly
resulting in a model with an infinite state space. While B has a strict type system,
there is no distinction between sets of pairs, relations, functions, and sequences. For
instance, the sequence [—1] is the function {1 — —1}, which is also a relation, which
in turn is a set of pairs. It is thus possible that sequences interact with sets of pairs
resulting in a set of pairs which is not a sequence anymore. For instance, the equation
[-1]U{3+— 2} ={1+— —1,3 — 2} is true in B, but the right-hand side of the equation
is not a well-defined sequence since the domain is not enumerated coherently.

6.2.2. Primer on SMT-LIB

The SMT-LIB initiative [I84] defines a standard input language for common SMT solvers
called SMT-LIB [182] as well as a set of benchmarks for different background theories.

The SMT-LIB language is based on many-sorted first-order logic with equality [182]
that allows defining sorts, i.e., types, and sorted terms. Its syntax is defined in a Lisp
style. Exemplary sorts are the integers (Int), Boolean (Bool) or arrays (Array). For
instance, (Array Int Bool) defines an array sort that maps integers to Boolean. SMT-
LIB allows defining function symbols that are associated with a rank. The rank of a
function symbol defines the sorts of the inputs as well as the output. In general, a func-
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tion symbol with rank oy - - - 0,0 has n inputs of sort oy - - - ,, and one output of sort o
[182]. One is able to introduce uninterpreted functions using the declare-fun keyword,
or interpreted functions using define-fun. For instance, (declare-fun x () Int) de-
clares an uninterpreted function z that returns an integer, ¢.e., x is an integer variable,
and (define-fun f ((x Int) (y Int)) Int (+ x y)) defines a function f that adds two
integers. All functions in SMT-LIB are total which entails that every function call is
well-defined. In fact, there is no concept of well-definedness in SMT-LIB. For instance,
the equality (= (div z 0) (div z 0)) is true for an arbitrary integer symbol x although
the division by zero is not defined in mathematics. It is possible to define recursive func-
tions using the define-fun-rec keyword. Furthermore, the SMT-LIB language allows
defining algebraic data types along arbitrary function declarations that have to hold
for a data type using the declare-datatype keyword. For instance, a tuple type that
provides two projection functions to access its first and second element can be declared
as follows:

(declare-datatype Tuple (par (X Y) ((tuple (first X) (second Y))))

Formulas in SMT-LIB are terms of sort Bool that can be asserted to hold using
the assert keyword. Such formulas can reason over function symbols that have been
declared beforehand. A dedicated SMT solver holds a stack of assertions that consists of
formulas, declarations, and definitions. Besides reasoning over globally declared function
symbols within an SMT formula, it is possible to reason over local function symbols using
different kinds of binders such as let, exists or forall. The scoping is defined to refer
to the last declaration of a function symbol. For instance, the following example shows
a simple SMT-LIB model that defines a global integer symbol = as well as an existential
quantifier that reasons over a local integer symbol x:

(declare-fun z () Int)

(assert (= x 1))

(assert (exists ((z Int)) (> x 1)))
(check-sat)

(get-model)

The keywords check-sat and get-model instruct a solver to check for the satisfiability
of all assertions and return a model for all global function symbols if the assertions are
satisfiable. For the above example, we receive a model stating that x is equal to 1 which
is represented in SMT-LIB as well. In particular, we receive a list of function definitions
for global function symbols ((define-fun z () Int 1)) as a model.

6.3. Former Z3 Integration

In the following we revise the workflow of the former integration of Z3 in PROB as well
as the high-level translation from B to SMT-LIB presented by Krings and Leuschel [4§].
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6.3.1. High-Level Translation

The former high-level translation [48] uses corresponding operators of SMT-LIB wherever
possible. B sets are translated as characteristic functions in SMT-LIB mapping set
elements to either true or false as defined by Z3’s array theory [183]. This theory allows
defining nested and infinite sets. For instance, for the predicate x C P(Z), the variable
x is defined as a characteristic function of sort (Array (Array Int Bool) Bool). All
logical B predicates (A, V, =, <), all integer expressions except for division (+, —,
mod, *xx, > > < <), simple set expressions (€, C, C, U, N, —), and quantifiers (V, 3)
are supported by SMT-LIB and can be translated with equivalent operators.

Since the B language does not distinguish between sets of pairs, relations, functions,
and sequences, all of these data types are translated as sets of pairs as is defined in B.
Unfortunately, this prevents us from using certain features of Z3 which would probably
be more efficient. For instance, B sequences could be directly translated as arrays in
SMT-LIB instead of rewriting them to sets of pairs beforehand. Yet, this translation to
arrays could only be performed if sequences only interoperate with other sequences since
B set operators can be called on sequences yielding a relation which is not a sequence
anymore.

Another difference between B and SMT-LIB is that B implements a concept of well-
definedness [I85] which is not present in SMT-LIB. Axioms for well-definedness ensure
that certain operators are only applied when they make sense and that the proof rules
of classical two-valued logic can be applied. For instance, B prohibits division by zero
while in SMT-LIB integer division is a total function, e.g., (= (div 1 0) (div 1 0)) is
true in SMT-LIB and not well-defined in B. The same applies if the divisor is a variable
that can be assigned to 0. Another difference is that B’s integer division rounds toward
zero while SMT-LIB follows Boute’s Euclidean definition [I55]. Boute defined division
as rounding to positive infinity when the divisor is negative and rounding to negative
infinity otherwise. B’s integer division a/b is thus translated to SMT-LIB as follows:

(ite (or (= (rem a b) 0) (> a 0)) (div a b)
(ite (> b 0) (+ (div a b) 1) (- (div a b) 1)))

For the well-definedness of a/b, we assert that b is not equal to zero. Other operators
with a well-definedness condition are, e.g., B’s function application or minimum and
maximum of a set of integers. For the translation of these operators, additional well-
definedness conditions are added.

A frequently used construct in B is set comprehension which has no direct coun-
terpart in SMT-LIB. Set comprehensions are thus rewritten as axiomatized formulas
using quantifiers [48]. In particular, an existentially quantified variable is defined for
each quantified variable of a set comprehension. For instance, the set comprehension
{x|x € ZANx >0} is encoded as a fresh existential integer set variable tmp alongside
the axiom Vv.(v € tmp < v > 0) [48].

Several B set operators which cannot be directly translated to SMT-LIB such as
the domain of a relation are rewritten as set comprehensions. For instance, dom(r) is
rewritten as {z | Jy.(x — y € r)}. Yet, the operators min(s), max(s), and card(s)
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cannot be rewritten as set comprehensions. These operators are instead translated as
identifiers which are axiomatized accordingly. For instance, the minimum of an integer
set min(s) is replaced by an identifier m which is axiomatized by Vz.(z : s = m <
z) A Jz.(r € s A\m = z). The maximum of an integer set is encoded analogously.

Computing the cardinality of a set in SMT-LIB is expensive due to the employed en-
coding of sets as characteristic functions. A total bijection has to be computed mapping
the elements of a set to a coherent interval of indices starting at 1 while the largest index
corresponds to the cardinality of the set. For instance, the B predicate ¢ = card(s) is
encoded as an existentially quantified total bijection Jt.(t € s 1..¢) Ac >0 [48]. It
has to be ensured that the variable c is greater than or equal to zero since the empty set
could have any negative cardinality otherwise. The authors refer to such rewritten pred-
icates as normalized B. A normalized predicate is then passed to the actual translator
to SMT-LIB.

B supports user-defined types in the form of deferred sets and enumerated sets as
described in Section [6.2.1] Such B types are translated to corresponding sorts in SMT-
LIB. Deferred sets are not limited in size but assumed to be non-empty for proof and
also finite for animation in PROB. For enumerated sets, the actual instances are given
which are defined as function symbols in SMT-LIB and axiomatized to be distinct.

The authors point out that several operators such as the relational closure or the gen-
eral union | J, .4 and intersection (1), of a nested set S cannot be translated effectively
to SMT-LIB using quantifiers [48], which is why they are not supported.

6.3.2. Workflow

The former integration [48] of Z3 in PROB provides two interfaces. First, full B predi-
cates can be translated to SMT-LIB and be solved by Z3. As described in Section [6.3.1}
several B operators are not supported by the former translation to SMT-LIB and thus,
are filtered before the translation. In particular, all top-level conjuncts that contain an
unsupported operator are removed. If a predicate uses unsupported operators, the result
of Z3 can thus only be used if a contradiction has been found. For instance, consider
the predicate P A Q where P is any unsatisfiable predicate and Q contains any predicate
that is not supported by the former integration of Z3, e.g., the quantified union. We
remove the top-level conjunct Q and only translate the contradicting predicate P to
SMT-LIB. The unsatisfiability of the overall formula is identified if Z3 is able to identify
the contradiction in P. Yet, if P is satisfiable, we cannot use the partial model since Q
has not been evaluated.

The second interface intertwines Z3 with PROB’s constraint solver by setting up con-
straints simultaneously and sharing intermediate results. All clauses learned by Z3 are
fed to PROB’s constraint solver as well, which lifts PROB’s search capabilities from back-
tracking to backjumping. The call to Z3 is delayed after the deterministic propagation
phase of PROB [48] since PROB’s constraint solver generally shows better performance
in model finding over B constraints than Z3. During this phase, PROB might infer new
constraints which are then added to Z3.
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6.4. New Z3 Integration

In the following we describe the new high-level translation from B to SMT-LIB as sup-
ported by Z3 as well as the new parallel solver integration.

6.4.1. High-Level Translation

For the formal description of the translation, we provide two semantic functions for B
expressions representing values and predicates representing a truth value. In particular,
Ele]i is the Z3 encoding of the B expression e, and P[p]i is the Z3 encoding of the
B predicate p. The variable ¢ is an environment which stores specific information of a
translation. The following example shows a series of rewriting steps, applying the rules
of Efe]i and P[e]i (shown further below):

Plz >y Ay >z]i = (and Efz > y]i Ely > z]i)
= (and (> Efz]i E[y]i)
(> Elyli El«]7))
= (and >z y) >y 2))

Global B variables such as E[z]i are translated as functions using the same name. That
means, Efz]i = z but as a side effect a global function symbol for the variable x has
been introduced in SMT-LIB. Locally quantified B variables are translated in the same
way but do not introduce a global function symbol in SMT-LIB.

The environment ¢ contains a list of translated Z3 expressions and function declara-
tions, a mapping from B expressions to B types ¥;, e.g., V;(—1) = Z, and a mapping
from Z3 expressions to Z3 sorts ®;, e.g., ®;(—1) = Int. For sets, i.e., arrays in SMT-LIB,
we introduce the operator P! yielding the type of the elements of a set. For instance,
P~!((Array Int Bool)) = Int for a basic set of integers, and P~'((Array (Array Int
Bool) Bool)) = (Array Int Bool) for a nested set of integers.

Furthermore, the environment stores a mapping from B tuple types to Z3 functions
2;, which allow accessing the elements of tuples in SMT-LIB. For instance, €;(¥;(1 —
2)) = [first; o,(Bp2]i), Second; o, (E[-2:)], Where first; o, (g2 and second; o, (E[1-2:)
are the projection functions of the Z3 tuple sort corresponding to the B type ¥;(1 — 2).
For better readability, we use the abbreviations first; ¢,) and second; ¢, With ¢ =
E[x — y]i for the projection functions of the Z3 tuple sort that has been introduced
for the B type V,(z + y). For instance, first;s,(epi-20) = u(¥i(1 — 2)).at(0) and
second; o,(e1-2]) = $4(Wi(1 + 2)).at(1). Furthermore, we drop the type information
of the projection functions if their argument is given. For instance, (first; ) ¢) =
(first; ¢) with ¢ = Efz — y]i. We refer to the Z3 sort of a tuple in SMT-LIB using
0;, e.g., ©;(Int, Int) corresponds to the Z3 sort of a tuple of integers. The types of the
elements of a tuple can be accessed using 6, and 6s, e.g., 61(0;(Int,Bool)) = Int and

05(0;(Int,Bool)) = Bool. Last but not least, we allow calling the semantic functions
on partially defined B operators, e.g., E[dom(S)]: = (E[dom]i E[S]q).
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Tuples

In B, tuples are encoded as nested pairs. Thus, several encodings of tuples exist and the
modeler has to know which one is being used. For instance, a triple can be represented
as either (z — (y — 2)) or ((z — y) — z). We use the first left-associative encoding
and introduce a unique Z3 sort for each tuple type occurring in a B predicate when
translating to SMT-LIB. For this, we declare a new data type using declare-datatype
as described in Section [6.2.2] B tuples are then translated using their corresponding Z3
sort’s constructor which is defined as follows:

El(z1,...;za)li = (tuple; o, ppegi),... sy El2ili o Elzn]i)

The Z3 function tuple; ¢, (g ]i),...0:(E[z.]:) 15 the constructor of the Z3 tuple sort which
has been introduced for B tuples of type W;(x; X - -+ X x,,), where n € N. For the sake
of readability, we drop the type information of the tuple constructor since the types are
implicitly given by the constructor’s arguments. In particular, we use
(tuple; Efzi]i ... E]x,]9).

B provides two projection functions to access the elements of a tuple which are trans-
lated as follows:

Elprj (Wi(2), Vi(y))(z = y)]i = (first; Ele— y[i)

Elprjs (Wi(x), Vi(y))(x = y)]i = (second; Efx — y[i)

Set Notation

As described in Section [6.3.2] the former high-level translation rewrites many set oper-
ators to B set comprehensions since they are not directly supported by SMT-LIB. Set
comprehensions themselves are then rewritten using B quantifiers which can be directly
translated to SMT-LIB. However, using many quantifiers can lead to unnecessarily com-
plex constraints for which Z3 is not able to find a model. Fortunately, Z3 provides
lambda functions which allow defining a set of variables that are constrained by an
expression. In general, a lambda function (lambda sorts body) in Z3 returns an expres-
sion of the sort (Array sorts range) where range is the sort of body. For instance, the
lambda function (lambda ((x Int)) (and (>= x 0) (<= z 2))) describes the set of integers
{0,1,2} as an array that maps integers to either true or false, i.e., the output has the
sort (Array Int Bool). For our translations, we consistently use such lambda functions
that constrain a single variable by a Boolean expression.

First and foremost, we suggest translating B set comprehensions using Z3’s lambda
function which we define as follows:

El{z | p}]i = (Lambda ((Ef«]i ®:(E[2]0))) Plpli)

El{x1,...,z, | p}i =
(lambda ((¢ @;(Exy x - -+ x z,]i))) R; (Plpl))

1, L1503 T
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The first case is a special case for a B set comprehension with a singleton result vari-
able since no tuple has to be created here. In the second case, R* is a semantic func-
tion that replaces the translated variables x,...,x, in the predicate p corresponding
to the position in the tuple ¢. For instance, as can be seen in the following exam-
ple, where z is translated as (first; c), y as (first;s,(g[yx-]:) (second; ¢)), and z as
(second; o,(E[yx2]i) (second; c)):

{z,y,2z|r e NAyeNAze N} =
(lambda ((c ®;(E[z x y x z]i)))
(and (>= (first; ¢) 0)
(>= (first; e, (g[yx-]i) (second; c)) 0

)
(>= (second; a,(E[yx-]i) (second; ¢)) 0))

A formal description of our syntax-directed translation rules for a subset of B’s set
operators can be seen in Figure [6.1
For the translation of the direct product ®, let
T1 be the sort ©;(0x(P~(®;(E[p]i))), 62(P~*(®:(E[q]i)))) and
T2 be ©;(6, (P~ (®;(E[p]i))), T1)):
Elp®qli = (lambda ((c T2))
(exists ((¢2 T1)) (and
(in (tuple, (first; c¢) (first; c¢2)) E[p]i)
(in (tuple,; (first; c¢) (second; c2)) E[q]i)
(= (second; ¢) ¢2)))
To translate the parallel product ||, let
T1 be the sort ©;(6; (P~ (®;(E[p]i))), 01(P~(®:(E[q]i)))) and
T2 be ©;(6>(P~(®:(E[p]i))), 62 (P~ (Ps( E[q]i)))):
Elp| ¢]i = (lambda ((c ©;(T1,T2)))
(exists ((c2 T1) (c3 T2)) (and
(in (tuple, (first; ¢2) (first; c¢3)) E[p])
(in (tuple, (second; ¢2) (second; ¢3)) E[q]7)
(= (first; ¢) ¢2) (= (second; ¢) ¢3)))

Finite Subsets

The finite set operators min, max, and card cannot be expressed efficiently using lambda
functions. We thus stick to the axiomatic translation using quantifiers for these operators
[48] as described in Section . While the same applies for the Event-B operator finite,
the operators describing all finite subsets ' and all finite non-empty subsets F; can be
expressed using lambda functions as is formalized in the following:

Elfinite(S)]): = E[3(b, f).(beNAf e S—0..b)]i
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E[m..n]i = (lambda ((k Int))
(and (>= k E[m]i) (<= k E[n]i)))
E[P(S)i =
(lambda ((z (Array ®,;(E[S]¢) Bool)))
(subset x E[S]i))
E[P.(S)]i =
(lambda ((z (Array ®,;(E[S]i) Bool)))
(and (subset = E[S]q)
(not (= z emptySet))))
Eid(S)]i = (lambda
((c ©:i(P~(@:(E[S]7)), P~ (2:(E[S]0)))))
(and (in (first; ¢) E[S]9)
(= (first; ¢) (second; ¢))))
E[S xT]i = (lambda
((c ©:i(P~H(@4(E[S]4)), P~ (®:(E[T]i)))))
(and (in (first; c¢) E[S]q)
(in (second; ¢) E[T7qi)))
E[dom(r)]i = (lambda
((z 02 (P71 (®:(E[r]0))))
(exists ((y 62(P~" (2i(E[r])))))
(in (tuple; z y) E[r]i)))
Efran(r)]i = (lambda
((y 62(P~H(®4(E[r]4)))))
(exists ((z 0, (P~ (®:(E[r]i)))))
(in (tuple; x y) E[r]i)))
E[r~']i = (lambda
((c ©:(2(P~H(2:(E[r]0))),
61(P~1(24(E[r]0)))))

(in (tuple, (second; ¢) (first; ¢)) E[r]i))

E[S<r]i = (lambda ((¢ P~ (®;(E[r]i))))
(and (in ¢ E]r]q)
(in (first; ¢) E[S]q))
E[S <r]i = (lambda ((¢ P~ (®;(E[r]i))))
(and (in ¢ E[r]i)
(not (in (first, ¢) E[S]i))))
E[r>T]i = (lambda ((c P~H(®;(E[r]i))))
(and (in ¢ E[r]i)
(in (second; ¢) E[T7]qi)))
E[reT]i = (lambda ((c P~ (®;(E[r]i))))
(and (in ¢ E[r]q)
(not (in (second; ¢) E[T]i))))
E[rl < r2]i = E[r2 U (dom(r2) < rl)]:

E[r[S]]i = (lambda ((y 2(P~"(2:(E[r]0)))))
(exists ((z P~H(®;(E[S]4))))
(and (in z E[S]q)
(in (tuple, z y) E[r]i))))
Efunion(S)]i = (lambda
((e PH®™H(@:(B[S]4)))
(exists ((sub P~ (®;(FE[S]i))))
(and (in sub E[S]¢) (in e sub))))
Efinter(S)]i = (lambda
((e PH®™H(@:(B[S]4)))
(forall ((sub P~(®;(E[S]i))))
(implies (in sub E[S]4) (in e sub))))
E[Az.(Pred | Expr)]i = (lambda
((c ©:(®i(E[z]i), ®i(E[Expr]i))))
(exists ((E[z]i ®;(E[z]i)))
(and P[Pred]i
(= ¢ (tuple; E[z]i E[Expr]i)))))

Figure 6.1.: A formal description of our syntax-directed translation rules for translating
a subset of B’s set operators to SMT-LIB as understood by Z3. In particular,
lambda functions are not part of the latest SMT-LIB standard version 2.6,
but are supported by Z3. The environment ¢ and the functions ©;, 61, 05,

®;, and P! are defined in the introduction of Section .

E[F(S)]i = (lambda
((x (Array ®,(E[S]:) Bool)))

(and (subset z E[S]i) (E[finite]i x)))
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E[F:(S)]i = (lambda
((z (Array ®,(E[S]i) Bool)))
(and (subset z E[S]i) (E[finite]i x)
(not (= = emptySet))))

Rewriting Set Cardinality and Power Set

Since Z3 often lacks performance when solving quantified formulas [48], we provide
special rewriting rules for B set cardinality and power set constraints to equivalent
representations which do not lead to quantified formulas in SMT-LIB. In particular, we
provide the following rewriting rules, where the set {z1,...,x,} with n € N contains at
least one variable:

SeP(R)=SCR

SeP(R)=SCRANS#@

S eF(R)=S C Rif R is finite
SeF(R)=SCRAS # o if R is finite

card(S) > 0 =card(S) > 1 =card(S) #0=5S # &
card(S) =0=card(S) <1=5=0

card({z1,...,2,}) = n=card({xy,...,2,}) >=n =
card({z1,...,z,}) > n — 1 = all different({x1, ..., x,})

card({x1,...,2,}) <n=card({z1,...,2,}) <n—1=

at_least_one_eq({x1,...,2,})
card({x1,...,2,}) <k =card({zy,...,2,}) <k+1=Tifk>n

card({x1,...,2,}) > k =card({xy,...,z,}) > k+1=Lifk>n

gel..n—1..nAcard(ran(q)) =n

q(i) #q(i +1)

i€l..n—1

Here, all_different is a constraint that sets up a pairwise distinction between all elements,
and at_least_one_eq is a constraint that enforces at least one equality between the set
elements using a disjunction of pairwise equalities. Furthermore, we replace set cardi-
nality constraints of enumerated sets that do not contain a variable with integer values.
For instance, we can simplify the B constraint s =1 .. 4 Acard(s) > 1 Ai = card(s) — 1
tos=1..4A1=3 to prevent sending any cardinality constraint to Z3. Such formulas
might not be written by hand but do often occur when using an automated translation
backend of PROB such as the integration [132] of TLA™ [41] in B.
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Relational Composition, lteration, and Closure

Some relational B operators such as the transitive and reflexive closure are more complex
to translate to SMT-LIB and are discussed in the following. The transitive and reflexive
closure 7* of a relation 7 € S <+ S can be mathematically defined as | J, 7" and the
transitive and not reflexive closure r* as (J, oy, . Here, the transitive and reflexive
closure is defined by the union of a relation’s iterations for all natural numbers.

The iteration of a relation r € S <+ S can be defined recursively using B’s forward
composition. This conforms to the formula ™ = r"~!;r! where the base case is r' =
r. One special case of the relational iteration’s definition in B is r® = id(S), which
is rewritten before the translation. B’s forward composition of two relations p ; ¢ is
defined by the set comprehension {x,y | Iz.(x — 2z € p Az — y € ¢)} which can be
straightforwardly translated to SMT-LIB using lambda functions. Let T1 be the sort
O, (E[p]i) and T2 be ®;(E[q]i). We then translate the forward composition p ;g as

follows:
(define-fun fcomp ((rl T1) (r2 T2))
(Array ©;(6,(P~'(T1)), 6,(P~'(T2))) Bool)
(1ambda ((c ©;(6; (P (T1)),6,(P(T2)))))
(exists ((z o(P~1(T1))))
(and (in (tuple, (first; ¢) z) rl)
(in (tuple, z (second; ¢)) 12)))))

Elp;qli = (fcomp Efp]i E[q]i)
Note that a relational backward composition can be described by a forward composition,
i.e., poq = q;p. We are able to define the iteration of a relation r as a recursive function
using the encoding of B’s forward composition in SMT-LIB as follows:
(define-fun-rec iterate ((rl ®;(E[r]i)) (n Int))
O, (E[r]i) (ite (=n 1) rl (fcomp (iterate rl (- n 1)) rl)))

E[r"]i = (iterate E[r]i E[n]:)

Due to the employed encoding of sets in SMT-LIB that introduces a sort for each type
of set, e.g., a set of the integers or a set of Boolean, we have to define the functions
iterate and fcomp for each type that they are applied to. We thus define unique names
for the different functions differing in the relation’s type and case split on these types
before translating to SMT-LIB.

Let union be a function passing its only argument to the lambda function for the
translation of B’s general union as defined in Section [6.4.1] The transitive and reflexive
closure of a relation r can then be translated to SMT-LIB straightforwardly:

E[r*]li = (union (lambda ((s ®;(E[r]i)))
(exists ((n Int)) (and (>=n 0) (= s (iterate E[r]i n)))))

B’s transitive and not reflexive closure r* is translated analogously but using n € Nj.
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Figure 6.2.: A workflow diagram of the new integration of Z3 in PROB running two 73
constraint solvers in parallel using the former and new translation from B
to SMT-LIB.

Corrigendum. In Z3, the use of lambda functions inside recursive definitions was
declared unsupported after a corresponding unsoundness was reported [I86]. A devel-
oper of Z3 stated that there is still a lot of work to be done before Z3 fully supports
lambda functions [186]. The translations of B’s relational iteration and closure to
SMT-LIB are thus currently unsupported in Z3 version 4.12.2, which is the latest
version at the time of writing this thesis. Their translations have been disabled in
PRrOB until Z3 provides corresponding support. In theory, the presented translations
remain valid, and we deem this issue to be an implementation detail within Z3.

6.4.2. New Workflow

The new workflow of PROB’s Z3 interface is supposed to replace the former interface
which sends full predicates to Z3 as described in Section [6.3.2] Note that PROB also
has an interface to Z3 where both solvers share constraints which we do not consider
here. A diagram of the workflow is presented in Figure [6.2]

Preprocessing

First, a formula is simplified by PROB as was the case for the former integration [48] of
73. For instance, formulas are rewritten to use a subset of operators such as only using
< but not >.

We decided to apply a static analysis to check syntactically for contradictions before
translating to SMT-LIB. The goal is to prevent that those contradictions are no longer
detected by Z3, e.g., after adding quantifiers. For this, we extended the simplification
rules of PROB to more aggressively replace variables by their value if this value is
explicitly given. For instance, the formula s = @ A card(s) > 1 can be rewritten as
s = & Acard(@) > 1 in a first phase. Afterward, the cardinality constraint can be
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replaced by the integer 0 which makes it obvious that the integer comparison is not
satisfied. We thus prevented the translation of a cardinality constraint to SMT-LIB. In
addition, we compute specific constraints such as the Cartesian product of finite sets up
to a predefined limit before the translation. This in turn prevents the introduction of
quantifiers or lambda functions in SMT-LIB.

To further extend the static syntax analysis, we decided to abstract a B formula to
a SAT formula as is done by lazy SMT solvers [99] and only translate a formula to
SMT-LIB if its SAT abstraction is satisfiable as can be seen in Figure [6.2] If it is not
satisfiable, we have avoided the overhead of translating B to SMT-LIB and calling the
external constraint solver. For instance, the formula x = y A x # y can be abstracted
to A A A where A =z = y. Note that this is not an eager SMT solving [99] where all
semantics are translated to propositional logic. We are now able to call a SAT solver to
find a solution for an abstracted B formula. For this, we use a small timeout of 50 ms
to prevent adding too much overhead due to SAT solving. In particular, a SAT solver
should be able to identify simple static contradictions fast.

Z3 Solver Integration

If the SAT abstraction is satisfiable, we apply both translations from B to SMT-LIB:
the preexisting one proposed by Krings and Leuschel [48] (Section |6.3.1)), and the new
one described in Section [6.4.1]

The former integration of Z3 always used the incremental solver where constraints can
be pushed on to the solver stack. While this is required when both PROB and Z3 run
simultaneously, this is not the case for the integration presented in this article, where
we send full predicates to Z3 only. In particular, using the incremental solver incurs an
additional overhead since constraints are internalized. We thus decided to run two non-
incremental Z3 solvers in parallel with the two different translations as described above.
Unfortunately, Z3’s incremental solver does not support an existential quantifier at the
top-level of a lambda expression.lﬂ This makes some of our new translation not applicable
for running PROB’s constraint solver and Z3 simultaneously and sharing constraints.

We use the result of the solver which answers first if a solution or a contradiction
has been found. The other solvers are then interrupted. If the fastest solver answers
unknown, we do not use this result but wait for another solver. The solver integration
returns unknown if all solvers did so as well, or if a formula cannot be translated to
SMT-LIB, e.g., because of a missing implementation. The return of unknown is not
shown in Figure 6.2}

Note that it is simple to add a Z3 solver configuration to the workflow. Our imple-
mentation is able to create a deep copy of a translation with all of its referenced 73
objects, which are stored in a so-called context in Z3. We then just have to create a new
solver object for a copied context and set the desired options.

173 throws the error “internalization of exists is not supported”.
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Postprocessing of Models

A model found by Z3 is represented in SMT-LIB. We parse a model and translate it to
B as was the case for the former workflow integration described in Section [6.3.2] Unfor-
tunately, Z3 often fails to compute explicit values from lambda functions or quantifiers
while it is able to find contradictions. For instance, for the formula s = union({{1},
{2}}), Z3 returns a model containing the translated lambda function of the general union
defined in Section while s could be set to {1,2}. However, Z3 is able to find con-
tradictions using the general union such as for @ = union({{1}, {2}}). We thus extend
the translation from SMT-LIB to B and the processing of found models to compute re-
maining quantifiers and lambda functions with PROB’s constraint solver. For instance,
the lambda function in the above example’s model returned by Z3 is translated as a
set comprehension in B which results in s = {e | f.(e € fA(f ={1} vV f = {2})}.
The PROB constraint solver is then called to compute an explicit value which results in
s ={1,2}.

6.4.3. Decomposition of Constraints

In recent work [49] we observed that Z3 often lacks performance for constraints contain-
ing many quantifiers.

We mainly attribute these performance issues to the use of set cardinality constraints
as well as the definition of functions, which are translated using quantifiers in SMT-LIB
to axiomatize their behavior. While Z3 is able to solve many constraints involving such
axiomatized translations, it often fails to solve constraints with many quantifiers. In
particular, the Z3 solver often answers unknown.

We thus decided to decompose constraints into components that use a distinct set
of variables prior to the translation to SMT-LIB and solve each of these components
independently using Z3. For instance, the B constraint + € N+ NAz # O Ay €
N—NAy # @ can be decomposed into two independent components © € N-+NAx # &
and y € N— N Ay # &. We suppose that Z3 is able to solve several small constraints
better than is the case for one large constraint. Furthermore, the performance should
increase for unsatisfiable constraints if a single component is already unsatisfiable in
which case not all components have to be solved.

Algorithm shows a pseudocode implementation of the solving routine that decom-
poses constraints into independent components prior to the translation to SMT-LIB. The
function DECOMPOSE used in line 2 is a function that decomposes a B constraint into
independent components where the output is a set of constraints. We iterate over the
set of components and solve each component with Z3 after translating a B constraint to
SMT-LIB (line 6 of Algorithm by applying the workflow described in Section [6.4.2]
If a component is unsatisfiable, we return from the solving routine by stating that a
contradiction has been found. In this case, we do not have to solve possibly remaining
components since the unsatisfiability of a single component implies the unsatisfiability of
the overall constraint. If a component is satisfiable, we combine the variable assignments
of this component’s solutions with the overall satisfiable variable assignments (line 12 of
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Algorithm 6.1 Pseudocode of the constraint solving routine for the integration of 73
in PROB that decomposes B constraints into independent components.

Input a B formula ¢
Output a satisfiable assignment of variables occurring in ¢, a false statement indicating
the unsatisfiability or unknown

1: procedure SOLVE_DECOMPOSED(¢)

2: C < DECOMPOSE(¢)

3 u<+ L

4: res <— @

5: for all c € C do

6: cres < SOLVE_WITH_Z3(c)

7 if cres = 1 then

8: return |

9: else if c_res = unknown then
10: u<+ T

11: else

12: res <— COMBINE_RESULTS(res, c_res)
13: if u=T then

14: return unknown

15: return res

Algorithm . This combination of solutions results in appending the lists of variable
bindings since each component refers to an independent set of variables.

The Z3 solver possibly answers unknown when solving a constraint. However, if 73 is
unable to decide for the satisfiability of a single component, it might be able to detect
the unsatisfiability of a remaining component which determines the unsatisfiability of
the overall constraint. We thus store the information that Z3 was unable to solve a
single component in a Boolean variable introduced in line 3 of Algorithm and do not
terminate the solving routine if Z3 is unable to decide for the satisfiability of a single
component (line 9 and 10 of Algorithm[6.1]). We return unknown if all components have
been solved and Z3 was unable to decide for the satisfiability of a single component
(line 13 and 14 of Algorithm [6.1)). Otherwise, the overall result is returned in line 15 of

Algorithm

6.5. SMT Solving in ProB

The integration of Z3 in PROB has shown benefits for solving B and Event-B constraints
[49]. Yet, the encoding of sets as characteristic functions in SMT-LIB is suboptimal for
several constraints such as the set cardinality or the minimum and maximum of a set of
integers. We thus decided to implement state-of-the-art SMT solving techniques directly
in PROB to tightly connect PROB’s constraint solving core for finding solutions with
a CDCL(T)-based learning scheme to prune the search space early and improve the
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Figure 6.3.: A generalized workflow diagram of the direct implementation of SMT solving
in PROB. The dashed paths represent an optional static syntax analysis and
symmetry breaking. The workflow diagram does not show the use of features
such as early pruning.

identification of contradictions. In the following, we describe our implementation of
the lazy SMT approach for the B language in PROB. In the process, we also describe
the standard techniques of SMT solving that we have implemented to address a broad
audience.

6.5.1. SMT Workflow in ProB

In Figure[6.3| we present the main workflow diagram of our integration of SMT solving in
PRrROB. The input to the SMT solver is a B formula and PROB’s constraint solver (PROB
CLP) is the only theory solver by default. Note that our SMT solver does not support the
SMT-LIB language as input like other SMT solvers usually do. The dashed paths in the
workflow diagram represent an optional static syntax analysis and symmetry breaking.
Both techniques are independent and can be applied together, alone or not at all. The
result of the workflow can be a satisfying assignment of variables (sat), a contradiction
(unsat) or a timeout, which can either be caused by the SAT or theory solver. The
specific stages and applied techniques of the workflow as well as our implementation are
discussed in the remainder of this section.

6.5.2. Preprocessing

First and foremost, B formulas need to be abstracted to SAT formulas for the Boolean
satisfiability part of the SMT solver. We transform a propositional logic formula to
conjunctive normal form as is the case for most SAT solvers. Additionally, we try to
improve SMT solving by deducing different constraints that minimize the search space
as explained in the following.
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SAT Abstraction

First, we rewrite formulas to only use conjunctions and disjunctions by rewriting impli-
cations and equivalences. We define two functions T2B(«) and B2T(5) which translate
a theory formula to propositional logic and vice versa. The function T2B replaces con-
juncts and disjuncts by unique Boolean variables. For instance, let a be the B predicate
r # y ANz = y. The Boolean abstraction is defined as T2B(a) = —A A A where
A = x = y. The negation has been lifted from the inequality to reduce the amount
of introduced Boolean variables. Furthermore, contradictions are possibly shifted from
the theory level to the Boolean level which improves the performance by preventing
unnecessary calls to a theory solver. We deem this to be one of the main improve-
ments of SMT solving compared to saturation-based solving as performed by PROB’s
constraint solver since the enumeration of theory domains is possibly prevented. This is
desirable in the context of the B language and especially PROB’s constraint solver since
domains can be unbounded, which possibly makes exhaustive domain enumeration and
disproving infeasible. In order to reduce the amount of introduced Boolean variables,
we normalize a formula by applying PROB’s internal rewriting rules for optimization
before calling the function T2B. For instance, the arguments of commutative operators
are sorted lexicographically, obvious tautologies and contradictions are removed, and a
subset of operators is used such as only using < but not >. Note that a quantifier in
an SMT formula is abstracted by a single Boolean variable, e.g., introducing a variable
A =Vr.(xr € N= x > 0). A resulting SAT abstraction thus does not contain any
quantifier.

A Boolean formula using only conjunctions and disjunctions can be transformed to
conjunctive normal form by applying DeMorgan’s laws as well as the distributive law.
Yet, rewriting disjunctions of nested conjunctions can lead to an exponential growth in
the amount of clauses of a conjunctive normal form [60], which obviously can impact
solver performance. Tseitin [60] has shown that the amount of clauses can be reduced
by introducing artificial Boolean variables for specific formulas, which we implement as
well. For instance, the distributive formula (A AB A C) VvV (D A E A F) can be rewritten
as (AABAC)VP)A(P & (DAEAF)). Furthermore, nested equivalences and
equivalences under disjunctions are rewritten in the same manner because they also
expand to disjunctions of conjunctions.

Static Symmetry Breaking

A lot of logical formulas contain symmetries which lead to redundant paths in the
search space [I87]. In general, a logical formula is a symmetry of another formula if
both formulas are syntactically equal except for variable permutations which maintain
satisfiability. The size of the search space can be reduced by breaking symmetries either
statically before the search or dynamically during the search. For instance, we can
deduce the symmetry breaking constraint x < y for the formula x < y Ay < x since
the variables x and y can be exchanged without changing the semantics. We assume
that B formulas often contain symmetries since the language is based on set theory and
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Figure 6.4.: A colored graph to find static symmetry breaking predicates for the formula
x <y Ay < x by computing graph automorphisms as proposed by Areces
et al. [I8§].

integer arithmetic, which provide several commutative operators. Breaking symmetries
supports the theory solver. We thus deem symmetry breaking to be a valuable technique
for an SMT solver in the context of the B language. While there exist techniques to
break symmetries for SAT formulas, it is a pitfall to use such techniques in the context of
SMT solving. The resulting symmetry breaking predicates for a SAT formula neglect the
theory and can thus lead to spurious contradictions. For instance, consider the formula
ANBVC)withA=2z€Z, B=x>1,and C =z mod2 = 0. It is valid to break
the symmetry for the variables B and C in propositional logic, e.g., allowing the partial
model B =T A C = L but forbidding B= L AC = T. Yet, it is not correct to break
this symmetry in the context of SM'T solving since the corresponding theory constraints
x> 1 and x mod 2 = 0 are not symmetric.

Areces et al. [I88] presented an algorithm to statically compute symmetry breaking
constraints for SMT formulas. The idea is to encode an SMT formula as a colored,
directed, and acyclic graph where symmetries of the formula are described by automor-
phism groups. A graph automorphism is an isomorphism from a graph onto itself, i.e.,
a bijective mapping h € G —» G such that (v,w) € E < (h(v), h(w)) € E for all edges
(v,w) € E. There exist polynomial algorithms for detecting automorphisms in graphs
with a bounded degree (number of a node’s incident edges) [189].

The process of symmetry breaking is split in two stages which are the creation and
coloring of the graph [I88]. A node is introduced for each interpreted and uninterpreted
symbol as well as for constants. For instance, the colored graph for the above exam-
ple © < y Ay < x can be seen in Figure [6.4 We prefixed each node by a number
as our implementation works with numbers instead of names for nodes. For the given
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example, we add one node for the uninterpreted symbols of the conjunction (number 0)
and integer comparison (number 2), one node for the complete interpreted conjunction
(number 1) and both integer comparisons (number 3 and 4), and one node for each
argument (number 7 to 10) as well as the identifiers (number 5 and 6), which are treated
as constants. The edges in the graph are set depending on the commutativity of op-
erators. If an operator is not commutative, its arguments are ordered by adding one
edge from the interpreted symbol node to the first argument’s node as well as an edge
from the first argument’s node to the second one and so on. For instance, the integer
comparisons in Figure [6.4] are not commutative so that the second argument can only
be reached through the first argument in the graph. Otherwise, one edge from the inter-
preted symbol node to each argument’s node is added as is the case for the conjunction
in Figure [6.4 The colors of the nodes are split into three classes for interpreted and
uninterpreted symbols as well as nodes for interpreted symbols’ arguments. Each unin-
terpreted symbol is assigned a unique color, e.g., nodes number 0 and 2 in Figure 6.4
We implemented this technique for B in PROB’s Prolog core and interface bliss [190]
using its C++4+ API to compute graph automorphisms. Each automorphism group is
represented as a set of generators by bliss. A symmetry breaking predicate is generated
for each set of generators, which allows for only one symmetric solution. For the above
example, bliss computes one automorphism group which is represented by the set of
generators {((3,4),(5,6),(7,9),(8,10))}. We can now generate a symmetry breaking
predicate by deciding a variable ordering, e.g., lexicographic, and computing the image
of each variable under the automorphism group. Here, the nodes with number 5 and
6 correspond to the variables x and y. The image of  under the automorphism group
is y so that we add the symmetry breaking constraint x < y. No symmetry breaking
predicate is added for the variable y since its image under the automorphism group is
the same variable .

Note that this technique also ensures finding nested symmetries. For instance, consider
the predicate z > 1V (x > yAy > x). The colored graph for symmetry breaking contains
a top-level disjunction which right-hand side is the colored graph presented in Figure
The disjunction’s left-hand side is a colored graph for the integer comparison constraint
pointing to a node for the variable z, which is independent of the disjunction’s right-
hand side. We thus find the same graph automorphism as before. Now, consider that
the disjunction’s left-hand side is the constraint x > 1. We then add an edge from
the disjunction’s left-hand side to the node of the variable x in the graph presented in
Figure This breaks the graph automorphism since the variables  and y cannot
be exchanged anymore without changing the semantics of the predicate. The described
technique thus correctly recognizes that this predicate does not contain any symmetries
between variables.

Besides searching for a constraint’s global symmetries, we further apply symmetry
breaking to locally quantified formulas.
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Static Syntax Analysis

Besides applying static symmetry breaking, we extend the static syntax analysis to
deduce constraints which imply one another but do not necessarily break symmetries.
For instance, we can deduce the constraint x < y = —(y < z) for the formula x < yAy <
x. This constraint moves the contradiction from the theory level to the SAT level of
the SMT solver which is not the case for the symmetry breaking constraint x < y. We
thus deem this additional static analysis to be valuable for SMT solving in the context
of B and PROB’s constraint solver since possibly more enumerations of domains in the
theory solver are prevented. Note that this syntax analysis only considers subformulas
that are present in the input formula and does not introduce new formulas. For instance,
we do not deduce the constraint © < y = —(y < x) since y < x is not part of the input
formula.

For this analysis, we only consider direct implications of pairs of formulas which share
at least one variable. Due to performance regards, we do not consider transitive or other
variable dependencies between formulas. Furthermore, we define a set of operators which
we want to check for whether they imply one another. In particular, we use the equality,
set membership, subset relations, and integer comparisons. We collect all candidate
constraints and group them by their types as well as the amount of used variables,
which is either one or two. Afterward, we check for all pairs of constraints c;, ¢y with
¢1 # ¢o in each set of candidates if ¢; = ¢y, ¢; = —¢a, €3 = ¢1, and/or ¢a = —cy. For the
above example, this results in solving the constraint V(z,y).(rt € ZAy € Z = (x <y =
—(y < x))). Alternatively, a counterexample can be searched for the negated formula
resulting in an existentially quantified formula. To prevent possible performance issues
due to the enumeration of (unbounded) domains, we use PROB’s prover [191] to prove
such constraints instead of its constraint solver. Therewith, we are able to drop the
universal or existential quantifier to prove the actual constraint.

6.5.3. SAT Solving

The problem of satisfiability solving is NP-completeness and many possible improve-
ments of decision procedures have been suggested to date. The basis of our SAT solver
is the solver presented by Howe and King [192] which implements the watched literals
scheme [89] by using coroutines in Prolog. We extend this implementation by different
variable selection heuristics, conflict-driven clause learning with the reduction of learned
clauses, and restarts with phase saving.

Conflict-Driven Clause Learning

The DPLL algorithm decides the value of a selected variable if no unit clause is present.
This decision poses a choice point and leads to backtracking when finding a conflict. Yet,
the last decision might not be the root cause of a conflict. In this case, chronological
backtracking leads to unnecessary overhead. Furthermore, a constraint solver should
not find the same conflict again in an ongoing search. The idea of conflict-driven clause
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Figure 6.5.: Exemplary conflict analysis using resolution for the formula (A v =BV
—~CV-D)A(DV-E)A(-AVDVF)A(EV—=F)A(CV-D) with the sequence
of variable assignments A4, B4, C4, =D, —E, and F. The clause (E V =F) is
a conflict. The superscript “d” indicates that this variable was assigned by
decision. The other variables were assigned by unit propagation. Each step
corresponds to a resolution between two clauses while the variables used for
resolution are underlined. The example shows the complete conflict analysis,
which can be stopped after deducing (—A Vv D).

learning (CDCL) [87, [88] is to analyze the root cause of a conflict clause to learn a
formula which prevents this conflict as well as a level in the search tree to backjump to.
Learning means to add a clause to the current set of clauses. We deem clause learning
to be one of the main improvements compared to PROB’s constraint solver since it
uses chronological backtracking and does not learn from conflicts. This often prevents
PROB’s constraint solver from disproving formulas, especially when using unbounded
domains. In fact, this is a general downside of plain saturation-based solvers.

The cause of a Boolean conflict in the DPLL algorithm can be analyzed by applying
resolution in a certain order or by building and analyzing an implication graph [87]. For
both of these techniques, we have to keep track of the sequence of variable assignments,
the clause which led to each specific assignment of a variable, the level of each variable
propagation, the assigned polarity, and the type of the propagation, which is either a
branching decision or a unit propagation. We decided to analyze conflicts by implement-
ing the concept of resolution, which is more performant since no implication graph has
to be built.

In both techniques, the idea is to trace the antecedent variable assignments that led
to a specific unit propagation which is involved in the conflict. For instance, consider
the propositional logic formula (-AV =BV -CVv-D)A(DV-E)A(-AVDVF)A(EV
—F)A(CV=D). Further, assume that the SAT solver made the sequence of assignments
A4 B4 C4, =D, -E, and F. A superscript “d” represents a variable assignment made by
decision while all other assignments are caused by unit propagation. The assignment of
variables constitutes a contradiction on decision level 2 where E V =F is the conflicting
clause. Conflict analysis is performed backwards starting from the conflicting clause.
The antecedent assignments of the unit propagation of F are the decision of A and the
unit propagation of =D due to the clause =A V D V F. When performing resolution
with this clause and the conflicting clause, we derive a new clause =A V D V E as can
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be seen in Figure [6.5] The analysis can be stopped once a clause has been derived
that contains only one variable which has been assigned on the conflict level. Variables
assigned by decision are not resolved by resolution. In the currently derived clause, the
variables D and E are both assigned on level 2 so that resolution is continued. For
instance, the variable E can be resolved by the clause D V —E resulting in =A vV D. This
clause contains only the variable D that has been assigned on the current conflict level.
We can thus terminate and learn the derived clause. The level in the search tree to
backjump to is the highest decision level in the learned clause other than the conflict
level. In our example, we backjump to the decision of A on level 0. This results in a unit
propagation which changes the assignment of the identified root cause of the conflict,
i.e., the assignment =D in our example. One special case is that we always backjump
to level 0 when learning a unit clause. This technique guarantees to find the shortest
backjump clause by stopping after the first unique implication point (UIP) [193]. A
unique implication point is a unit propagated variable assignment which is part of every
path between the last variable decision that occurred before the unit propagation and
the conflicting assignment. The complete conflict analysis for our example including one
more resolution can be seen in Figure[6.5] While the clause =A V =BV —=C prevents the
conflict, the clause learned at the first UIP is more concise. Furthermore, terminating
after the first UIP prevents unnecessary computations [193].

Reducing Learned Clauses

An SMT solver possibly uncovers many conflicts before deciding for satisfiability. While
learning clauses from conflicts reduces the search space, the accumulation of too many
clauses can slow down the search and can lead to an explosion of consumed memory. It
is thus important to forget learned clauses once in a while. Audemard and Simon [194]
proposed a technique to forget weak clauses which uses the measure of the literal block
distance (LBD) to definitely keep strong clauses that we implement. The literal block
distance of a clause is the number of different decision levels in this clause [194]. The
authors state that clauses with an LBD of two are most important because they connect
two decision levels. In particular, clauses with a small LBD, e.g., between two and five,
should not be removed. The half of all other clauses is removed occasionally considering
the amount of performed reductions of the set of learned clauses so far. In particular,
an SMT solver forgets fewer clauses over time. The LBD score of a clause is computed
and stored when it is learned and thus refers to the state of the search tree at that time.

Variable Selection Heuristics

The selection of the next variable and polarity to assign influences the performance of
SAT solving. Many variable selection heuristics have been proposed to date. Moskewicz
et al. evaluated different variable selection heuristics during the development of the SAT
solver Chaff and proposed an improved heuristic called the variable state independent
decaying sum (VSIDS) [89]. The VSIDS heuristic assigns a float value to each variable
where a variable with the highest score is assigned next. Initially, all values are set to
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the corresponding variable’s occurrences among all clauses, which is how we implement
it. Alternatively, all values can be initialized with a score of zero to only use knowledge
gained during an ongoing search. The main idea of the VSIDS heuristic is to favor
variables which took part in recent conflict analyses. In order to do so, the scores of
variables that were involved in conflict analyses are increased by a constant value for
every i-th conflict. The parameter ¢ is usually set to one. Furthermore, all scores are
periodically divided by a constant value, e.qg., by two, to favor variables that occurred in
recent conflict analyses. Note that it is also possible to store values as described above
for each variable with a specific polarity. As first tests did not show any performance
improvement but rather drawback, we decided to store values for variables only and
initially assign decision variables a positive polarity.

Biere proposed an improvement of the VSIDS heuristic called the exponential variable-
state independent decaying sum (EVSIDS) [90]. The heuristic adds f~* to each variable’s
score at each i-th conflict instead of a constant value. Here, f is a float between zero
and one which is usually around 0.9 [90]. This adaption favors variables occurring in
recent conflict analyses in the long run and thus does not require worsening scores as
is done in the VSIDS heuristic. This is a benefit since it prevents updating heuristic
values, which is additional overhead. Biere and Frohlich further proposed a heuristic
called the average conflict-index decision score (ACIDS) [195]. Here, a heuristic score s
is updated by adding (s + i)/2 at each i-th conflict. Similar to the EVSIDS heuristic,
this heuristic favors variables that occurred in recent conflict analyses but does not grow
as fast as the EVSIDS heuristic.

While many other heuristics have been built to improve the VSIDS heuristic, Biere
and Frohlich have shown empirically that the EVSIDS heuristic can perform as well as
other heuristics in practice [195]. We thus decided to use the EVSIDS heuristic in our
SAT solver by default. Furthermore, we achieved better results when only increasing the
scores of variables occurring in a computed backjump clause instead of all variables that
occurred during the conflict analysis. However, this generally depends on the respective
problem and can therefore be set using an option.

Restarts with Phase Saving

The decision for the next variable to assign during SAT solving is guided by a heuristic
and thus not necessarily the best decision for all problem instances. In order to recover
from bad branching decisions, modern SAT solvers implement restart policies for which
the solver backjumps to level 0 in the search tree. Here, the crucial point is to decide
how often a search should be restarted to guarantee converging to a solution.
Audemard and Simon [91] proposed a restart policy that includes knowledge gained
during a search by using the literal block distance of learned clauses (see Section [6.5.3).
The idea is to restart a search if new learned clauses do not provide much new knowledge.
This is implemented by comparing a current short-term average LBD score with a long
term average LLBD score. In order to prevent restarting right before a solution would
have been found, the authors further suggest tracking the size of the stack of variable
assignments. The idea is to recognize if a partial assignment is considerably closer to a
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model than was the case for any prior partial assignment [91].

Pipatsrisawat and Darwiche further observed that frequent restarts can decrease the
performance of SAT solving in some cases [02]. To counter this, the authors suggested
a partial component caching scheme for SAT solvers [92] which we implement as well.
Here, all variable assignments made by decisions are cached. A SAT solver then picks
the cached polarity first when deciding to branch on a variable. This guides the search
in a similar direction than before and prevents solving components of a formula again.
If no polarity is cached for a variable, the SAT solver uses the implemented heuristic
that assigns a polarity. We implement phase saving by asserting and retracting facts in
Prolog to cache variable assignments made by decision.

6.5.4. SMT Solving

The variables assigned in a (partial) model of a Boolean abstraction are conjoined and
translated to first-order logic using the function B2T defined in Section Afterward,
the derived SMT formula is solved by one or more theory solvers.

Early Pruning

One bottleneck for performance is to wait for the SAT solver to find a (partial) model
before sending formulas to the theory solvers. The implementation spends unnecessary
time in the SAT solver in cases where a theory solver can already decide for unsatisfia-
bility using a partial assignment. One important implementation detail is thus to send
a constraint to a theory solver as soon as its corresponding Boolean variable is assigned
by the SAT solver, this is called early pruning [I96]. Theory solvers need to be set up
incrementally for early pruning, which is possible with PROB’s constraint solver. We
implement early pruning by using coroutines in Prolog for each Boolean variable which
abstracts a B formula and use PROB’s constraint solver as the only theory solver by
default. Such a coroutine is defined to be triggered if the corresponding Boolean variable
is set to either true or false. In this case, the corresponding B formula or its negation is
incrementally added to PROB’s constraint solver. We ensure that the effect of coroutines
as well as incrementally adding constraints is undone on backtracking, which is simple
due to the nature of Prolog being based on backtracking.

One implementation detail is that we connect the SAT variables with the theory solver
after possible unit propagations on level 0 of the search tree since these variables can
be propagated to the theory solver directly. If we connect the SAT and theory solver
before the first unit propagations, we would add the additional overhead of registering
predicates in the theory solver for that the solver assumes that they can be either true
or false although their truth value is already established.

We refer to the phase of incrementally adding constraints to PROB’s constraint solver
as its deterministic propagation phase. Here, the solver is already able to identify theory
conflicts but does not ground domains to find an exact solution. It is therefore possible
that a conflict is only recognized after grounding the domains of all variables. We enter
the grounding phase of PROB’s constraint solver if the SAT solver reports satisfiability
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for the Boolean abstraction of the input formula. The SMT solver has found a model
if the SAT solver and the theory solver report satisfiability. If a contradiction is found
by a theory solver (theory conflict), the assignment of SAT variables can be used as a
conflict clause for conflict-driven clause learning as described in Section [6.5.3

Unsatisfiable Core

When learning from a theory conflict, not necessarily all assigned variables contribute to
the actual conflict. In order to learn strong clauses from theory conflicts, it is important
to find an unsatisfiable core of a theory conflict before translating it to propositional logic.
In particular, a minimal unsatisfiable core is desired. A locally minimal unsatisfiable
core of a formula is a subformula which still describes the contradiction but cannot be
reduced any further without making it satisfiable. The globally minimal unsatisfiable
core of a formula is the smallest formula of all local minima.

One key feature of PROB is that it retains the well-definedness of unsatisfiable cores
according to the B language. This is important in the context of clause learning from B
formulas since a theory solver would otherwise throw a well-definedness error or would
not be able to decide for the satisfiability of a formula when learning a not well-defined
clause. For instance, learning a unit clause which corresponds to a theory formula that
divides by zero would result in a well-definedness error.

PrROB implements a technique to find an unsatisfiable core by gradually removing
subformulas from the end of an unsatisfiable formula. Each derived formula is succes-
sively checked for satisfiability by PROB’s constraint solver. If a derived formula is
satisfiable, we know that the removed subformula is definitely part of the unsatisfiable
core. Otherwise, we can remove this subformula from the unsatisfiable core since it does
not contribute to the unsatisfiability of the overall formula. If removing a subformula
results in a well-definedness error, we know that we have to keep this subformula in
order to ensure the well-definedness of the unsatisfiable core. Furthermore, it can be
the case that the constraint solver is not able to decide for the satisfiability of a derived
formula within a reasonable amount of time. We thus use a small solver timeout (25ms)
to decide for the satisfiability of a derived formula to prevent exceeding the predefined
solver timeout, and keep a subformula if PROB’s constraint solver cannot decide for the
satisfiability in time. In this case, an unsatisfiable core might contain a subformula that
does not contribute to the unsatisfiability of the formula.

We deem it to be sufficient for conflict analysis to compute a locally minimal unsat-
isfiable core instead of a global minimum to save performance.

Another aspect to consider when learning from theory conflicts is the time that a
theory conflict is detected. When learning from Boolean conflicts in the SAT solver, the
last propagated variable is always part of the actual conflict. Yet, this is not necessarily
the case for theory conflicts, especially when using PROB’s constraint solver which
has to consider the well-definedness of constraints. We reify Boolean variables with
PROB’s constraint solver as explained in Section [6.5.4] which is part of the deterministic
propagation phase. Here, domains are not necessarily enumerated to prevent exceeding
the predefined solver timeout. When propagating a constraint, it can be the case that
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other constraints are sent to the solver afterward which allow for a stronger propagation.
For instance, consider the propagation of the two constraints r € 1.n — Z and = €
dom(r). The constraint solver is currently not able to decide for the satisfiability of
these constraints since the domain of r is unknown. After propagating another constraint
n = 0, the constraint solver is able to do so.

A conflict may not be detected until the domains of variables are grounded as described
in Section [6.5.4] especially when constraints entail a well-definedness condition such as
a function application. It can thus be the case that the Boolean propagation from the
SAT solver that caused the propagation of the conflicting theory constraints was not
on the last decision level. For instance, consider the two constraints from above but
let n be an element of the interval 0..2. The constraint solver can now first decide for
the satisfiability of all constraints after the variable n has been grounded. Yet, there
can be an arbitrary amount of other propagations in the SAT solver which do not affect
these constraints but are necessary to solve the whole Boolean formula. We thus do
not necessarily consider the last decision level of the SAT solver as the level where a
theory conflict occurred if the conflict is detected in the grounding phase after the SAT
solver has found a solution. Instead, we compute the maximum decision level of the
variables that are part of the unsatisfiable core of the theory conflict, which is then used
for conflict-driven clause learning.

Theory Propagation

Until now, the only knowledge passed from the theory solver to the SAT solver is gained
by theory conflicts. Yet, a theory solver might deduce formulas which provide new
knowledge for the SAT solver as well. Sending such formulas to the SAT solver is called
theory propagation [98| 197]. We extend the coroutines which are set up in Prolog
for each SAT variable to be triggered if the corresponding SMT formula becomes true
as well. For instance, let ® := z < 0 Az < 1 be a B predicate and A A B be the
corresponding propositional logic formula with A =z < 0 and B =z < 1. We set up
two coroutines for the SAT variables A and B that are reified with the corresponding
theory formulas. The SAT solver possibly starts with setting A to true which triggers
the corresponding coroutine to send the formula x < 0 to PROB’s constraint solver. In
this case, the solver is able to deduce that the formula x < 1 has to be true as well. This
triggers the other coroutine which now propagates knowledge from the theory solver
to the SAT solver by setting the variable B to true. Note that one important aspect
of theory propagation is to only deduce constraints which already occur in the original
formula. Otherwise, new SAT variables would need to be introduced for each new SMT
formula. This unnecessarily increases the search space since no new knowledge can be
gained by the SAT solver from such formulas. For instance, we do not want to deduce
x < 2 for the above example.

The Prolog code that is responsible for the theory propagation of a “less than” com-
parison in PROB’s constraint solver can be seen in Listing [6.1] The entry point is
the Prolog predicate check arith op/4. First, a coroutine check 1t/3 is set up which
is suspended as long as the first and second, or the second and third arguments are
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Listing 6.1: Prolog code for the implementation of the theory propagation for a “less
than” comparison in PROB’s constraint solver using coroutines.

1 |check_arith_op(’<’,X,Y,Res) :-

2 check_1t(X,Y,Res),

3 ( nonvar (Res) -> true

4 ; (X#<Y) #<=> RO1, prop_pred_01(Res,R01)).
5

6 |:- block prop_pred_01(-,-).

7 |prop_pred_01(A,B) :- B==1, !, A=pred_true.
8 |prop_pred_01(pred_true,1).

9 |prop_pred_01(pred_false ,0).

10

11 |:- block check_1t(-,7,-), check_1t(?,-,-).
12 | check_1t(X,Y,Res) :- nonvar (Res),!,

13 ( Res=pred_true -> lt_direct (X, Y)

14 ; lt_equal_direct(Y,X)).

15 | check_1t(X,Y,Res) :- X<Y, !, Res=pred_true.
16 | check_1t(_,_,pred_false).

variables (indicated by the dash in the block declaration). If the third argument is
nonvariable, we know the truth value of the integer comparison and enforce that the
Prolog variable X is lower than Y (line 13) or that Y is lower than or equal to X (line
14). Otherwise, both integer variables have concrete values and the integer comparison
is checked to set the result variable to either true (line 15) or false (line 16). In line 4 of
Listing a CLP(FD) constraint is set up to reify (#<=>) the integer comparison with
a two-valued result variable which is either 0 (false) or 1 (true). Afterward, a coroutine
prop_pred_01/2 is set up to be triggered if one of its two arguments becomes nonva-
riable. The first argument corresponds to the overall result of the integer comparison
returned in check_arith op/4 (line 1) while the second argument corresponds to the
reified two-valued variable. Here, the actual theory propagation is implemented which
reifies the truth value of the integer comparison in CLP(FD) with the integer compar-
ison’s result in PROB’s constraint solver. In our example above, check arith op/4 is
called for each integer comparison. After propagating x < 0 to PROB’s constraint solver,
CLP(FD) enforces the constraint X #< 1, which has been set up in line 4 of Listing
to be true as well. This triggers the corresponding two-valued variable to be set to 1
which unblocks the coroutine prop_pred_01/2 that now sets the overall result of the in-
teger comparison x < 1 to true. Thus, this truth value has been propagated by PROB’s
constraint solver which now triggers the coroutine that is connected to the SAT variable
to set this variable to true.

Explaining Theory Propagations

It can be the case that a conflict clause contains a SAT variable which has been propa-
gated by a theory solver when using theory propagation with CDCL. In the SAT solver,
this propagation is the same as a unit propagation since the theory propagation is a log-
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ical consequence of the current assignment of variables. In order to analyze a conflicting
assignment, we need to know which clause led to the unit propagation of a variable
as explained in Section [6.5.3] However, PROB’s constraint solver does not provide an
explanation for a theory propagation.

We thus implement a technique to find explanations for B formulas by computing an
unsatisfiable core. Let ¢ be an SMT formula which has been propagated by a theory
solver, and ® be the SMT formula corresponding to the current partial assignment
without ¢. In order to explain the propagation of ¢, we compute the unsatisfiable
core of ® A —=¢. For instance, let & := x < 10 A x > 1 and consider the formula
r < 10Ax > 1Ax > 0. Furthermore, assume that x < 10 and x > 1 have been
propagated by the SAT solver while ¢ := x > 0 has been propagated by a theory solver
after > 1 has been set. The unsatisfiable core of the formula z < 10 Az > 1A -2 >0
isz > 1A -z > 0. By removing the negated theory propagation, we can conclude that
x > 1 is the explanation for the theory propagation of x > 0. We are then able to add
the Boolean abstraction of the negated theory formula -z > 1V z > 0 to the SAT solver
which now enforces a unit propagation corresponding to the theory propagation.

Computing theory explanations by default is too expensive and not necessary in most
cases. We thus explain theory propagations lazily to improve performance, i.e., we only
explain a theory propagation if conflict-driven clause learning requires an explanation
for conflict analysis.

Well-Defined SMT Solving

The B language has many operators that entail a well-definedness condition. For in-
stance, a well-defined function application requires that the applied element is in the
domain of the function. Not well-defined constraints are neither true nor false in PROB’s
constraint solver. As explained in Section[6.5.4], the SMT solver sends single B predicates
to the theory solver via constraint reification. If a predicate is sent to PROB’s constraint
solver which is not well-defined, the SMT solver possibly reports unsatisfiability for sat-
isfiable constraints. The reason is that the SAT solver requires a variable to be either
satisfiable or unsatisfiable, which is not the case if a reified predicate is not well-defined.
For instance, consider the B formula (0 € dom (@) A (2(0) = a = =(2(0) < a)))Vb=0.
Note that functions in B are relations, which in turn are sets of pairs. The empty set
can thus be considered a function. While the function application in this formula is
not well-defined, the whole formula is well-defined since the not well-defined function
application is guarded by the corresponding well-definedness condition 0 € dom(&). In
B, constraints ensuring the well-definedness are placed before the operators that entail
the well-definedness condition. Yet, this structure usually gets lost when transforming a
B formula to conjunctive normal form as is required for SMT solving. Further, the SAT
solver might propagate a predicate that entails a well-definedness condition although
the well-definedness is not ensured yet. For instance, the SMT solver might start with
propagating the single predicate @(0) = a. In this case, PROB’s constraint solver would
neither confirm the satisfiability nor the unsatisfiability of this predicate since it is not
well-defined. This results in finding a spurious counterexample in the SAT solver. For
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the above example, the solver would report unsatisfiability for the whole formula after
evaluating the left-hand side of the disjunction although b = 0 is a solution.

We counter this issue by adding constraints that ensure the well-definedness for each
predicate that is reified with a SAT variable and entails a well-definedness condition.
This ensures that PROB’s constraint solver is able to decide for the satisfiability of a
predicate. For instance, for the above formula we would usually introduce four SAT
variables for the unique predicates occurring in the formula, i.e., A = 0 € dom(9),
B=9(0) =a, C=2(0) <a,and D =b=0. In order to ensure the well-definedness
of each predicate independently of the whole formula, we now adapt the predicates
that are reified with PROB’s constraint solver for the second and third predicate to be
0 € dom(2) A @(0) = a and 0 € dom(@) A &(0) < a.

Additionally, we enforce the well-definedness in the SAT solver by adding an implica-
tion for each predicate entailing a well-definedness condition to the conjunctive normal
form. This ensures the unit propagation of a well-definedness condition as soon as the
predicate entailing the condition is propagated by the SAT solver. For the above ex-
ample, this results in adding the implications B = A and C = A. If an input formula
is not well-defined, we introduce a new SAT variable for corresponding well-definedness
conditions. For instance, the above formula is not well-defined without the predicate
0 € dom(@). We then proceed in the same way as described above but introduce a
new SAT variable corresponding to the variable A, which is not present in the original
formula. PROB’s SMT solver thus always solves well-defined formulas.

6.6. Additional Theory Solver

In SMT solving, theory constraints are usually sent to a single dedicated theory solver.
Alternatively, constraints can be sent to several solvers which support the same theory
to improve performance by using the result of the fastest solver. The only prerequisite
is that a theory solver can be used incrementally as described in Section [6.5.4)

Empirical results have shown that PROB’s CLP(FD) backend sometimes lacks perfor-
mance for unsatisfiable constraints over unbounded integer domains. We thus decided
to integrate an alternative theory solver for the integer difference logic (IDL) [198] [199]
which does not enumerate domains but uses a solver based on graphs and negative cycle
detection [4]. We do not have evidence that such constraints often occur in B but see
that this alternative technique can improve constraint solving over unbounded integer
domains compared to CLP(FD). Moreover, this solver can be used as a fallback in cases
where PROB’s constraint solver generates a virtual timeout.

In the following, we describe the theoretical foundation of the implemented constraint
solver for IDL constraints and its integration in PROB’s SMT solver.

6.6.1. Integer Difference Logic Solver

Integer difference logic [198] [199] has shown to be useful, e.g., for reasoning about clocks
in timed systems. Atomic IDL constraints are of the form v; — v; < ¢, where v; and v;
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(= —=(v)
-1
Figure 6.6.: A graph representation of the integer difference logic constraint x € Z Az >
y Ay > x as suggested by Wang et al. [4]. The graph contains a negative
cycle which means that the corresponding constraint is unsatisfiable. The

constraints corresponding to the edges of the negative cycle are the unsat-
isfiable core.

are integer variables and c is a constant integer value. Conjunction and negation are the
only admitted logical operators.

Many integer constraints can be rewritten to integer difference logic (see Appendix
for a complete list of our rewriting rules). This might require the introduction of an
artificial variable for the constant 0. For instance, the integer constraint x < 1 can be
rewritten to x — zero < 0, where zero is the artificial variable.

Wang et al. presented a solver for integer difference logic based on weighted directed
graphs with an algorithm for incremental negative cycle detection [4].

Each node of a graph represents an integer variable. An edge (v;,v;) in a graph with
weight ¢ describes the constraint v; — v; < ¢, while the negated constraint is described
by the edge (v;, v;) with weight —c —1. A difference logic constraint system is satisfiable
if its corresponding graph does not contain a negative cycle. If this is the case, the
shortest path to a variable yields its solution. Otherwise, the conjunction of constraints
corresponding to the edges of the negative cycle is an unsatisfiable core. As can be seen,
this technique provides an unsatisfiable core for unsatisfiable formulas without further
computations. This makes this technique especially suited for conflict-driven clause
learning, where unsatisfiable cores have to be computed when a theory conflict occurs
(see Section [6.5.4)).

The authors further propose an incremental decision procedure based on the Bellman-
Ford algorithm [200} 201]. The algorithm uses the fact that any created cycle must use
the recently added edge [4].

For instance, consider the B constraint z € Z Ax > y Ay > x. PROB’s constraint
solver is not able to solve this constraint with its default CLP(FD) backend since the
domains of x and y cannot be narrowed down. The new theory solver first rewrites
constraints to integer difference logic if possible. The above constraint is rewritten to
y—x < -1 N x—y < —1. Afterward, we create nodes for the variables x and y
and edges for the two constraints as can be seen in Figure It can be easily seen
that the graph contains a negative cycle between the variables x and y, i.e., the path
[(z,y), (y,z)]. This means that the constraint is not satisfiable and the conjunction of
constraints corresponding to the edges of the negative cycle are an unsatisfiable core.
For our example, the unsatisfiable core is z > y Ay > z.
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6.6.2. Theory Solver Integration

We decided to use the aforementioned theory solver in addition to PROB’s constraint
solver, i.e., we send integer difference logic constraints to both theory solvers. For this,
we extend the coroutines which are set up for each reification between a SAT variable
and theory constraint to check if the constraint can be translated to integer difference
logic and distribute constraints accordingly.

We observed severe performance degradation when not all integer constraints can be
translated to IDL. For instance, consider the formula a — b < —1 A a x b > 10000.
The first conjunct can be sent to both theory solvers while the second one cannot be
rewritten to IDL. The graph-based solver for integer difference logic finds the partial
model a = 1 A b = 2 which is not accepted by PROB’s constraint solver because of the
constraint a x b > 10000. The graph-based solver would now enumerate nearly 10,000
partial models which are refuted by PROB’s constraint solver until finding a solution,
e.g.,a=1Ab=10001.

To solve this issue, we decided to integrate the integer difference logic solver as follows:
IDL constraints are sent to both theory solvers. In case the graph-based solver reports
unsatisfiability, the unsatisfiable core is extracted and used as a conflict clause. If the
SAT solver and both theory solvers report satisfiability in the deterministic propagation
phase, we first propagate the partial model found by the graph-based IDL solver to
PROB’s constraint solver. Hereby, we want to prevent a possible (virtual) timeout when
grounding domains. SMT solving is finished if this solution is accepted. Otherwise, we
do not backtrack in the graph-based solver but let PROB’s constraint solver enumerate
a solution. We fall back to the graph-based solver only if PROB’s constraint solver fails
to find a solution because of generating a virtual timeout due to unbounded integer
domains.

6.7. Empirical Evaluation

In the following, we present an empirical evaluation of the new integration of Z3 in PROB
including the new translation from B to SMT-LIB as well as the direct implementation
of SMT solving in PROB ]

6.7.1. Integration of Z3

We split the evaluation of the integration of Z3 in PROB in three categories. First, we
focus on the downsides of our employed translation of selected language constructs which
we deem to be responsible for a possibly bad performance when solving constraints.
Second, we present selected constraints for which the integration of Z3 is superior to
PROB’s constraint solver regarding constraint solving to emphasize specific strengths.

2The benchmarks can be found in the following Github repository to reproduce the results: https:
//github.com/Joshua27/prob_smt_benchmarks
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6.7. Empirical Evaluation

Third, we evaluate the performance of our translation using a variety of benchmarks
from bounded model checking.

Weaknesses of the Integration of Z3

The weaknesses of the integration of Z3 are mainly caused by the employed encoding
of sets. Most of B’s set theoretic operators are not supported by SMT-LIB such as
computing a power set or the cardinality of a set. As discussed in Section and
Section [6.4.1] this can lead to involved quantified constraints for which Z3 is not able
to find a solution. We thus employ several rewriting rules and a preprocessing phase to
prevent sending quantified formulas to Z3 if this is not necessary. The benefit of this
preprocessing is discussed in the following.

Finite Sets. The former and new translation from B to SMT-LIB both support infinite
sets. It could be shown by Krings and Leuschel [48] that Z3 is able to solve a variety of
B constraints over infinite domains which PROB’s constraint solver is not able to solve,
especially when a formula is a contradiction. However, the support for infinite domains
leads to involved translations for finite set constraints such as the minimum, maximum
or the cardinality of a finite set. For instance, the current translation searches for a total
bijection mapping sets to their cardinalities to compute the cardinality of a set [48]. A
total bijection is rewritten using B quantifiers before the translation to SMT-LIB.

Since Z3 lacks performance when solving quantified formulas, Z3 often fails to find
a solution for translated B constraints using set cardinalities. For instance, Z3 is not
able to solve the translation of g € 1 .. 3 —1 .. 3 A card(ran(q)) = 3. With the use of
the rewriting rule for the cardinality of range constraints defined in Section [6.4.1], Z3 is
able to solve the constraint in several ms as is PROB’s constraint solver. The rewriting
rule replaces the cardinality constraint with ¢(1) # ¢(2) A q¢(1) # q(3) A ¢(2) # q(3).
Of course, not all cardinality constraints can be replaced by equivalent constraints and
remaining quantifiers are still one of the main culprits for a possibly bad performance of
the presented translation from B to SMT-LIB. For instance, the integration of Z3 needs
around 20 s to find a solution for the predicate x € P(Z) A card(z) > 10, which can
be solved by PROB’s constraint solver in several ms. The reason is that Z3 spends a
lot of time to solve the existentially quantified total bijection that is introduced for the
translation of the set cardinality constraint as described in Section [6.3.1]

The translation of set constraints to SMT-LIB such as card, max or min could be
improved by focusing on finite sets only, e.g., as presented by Plagge and Leuschel
[46] for B by translating to Kodkod [45] or by Konnov et al. [202] for TLA™ [41] by
translating to SMT-LIB [I82]. Yet, we would then lose the ability to reason over B
constraints involving infinite sets.

Contradictions. Translations which result in quantifiers in SMT-LIB can become too
involved to be solved by Z3. In some cases this means that Z3 cannot find contradictions
in a translated SMT-LIB formula which are obvious in the corresponding B formula. For
instance, Z3 is not able to find the contradiction in the formula r € Z —»Z A1 ¢ Z — 7.
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Here, both bijections are translated as quantified formulas in SMT-LIB leading Z3 to
report unknown. We are able to detect the contradiction by abstracting the formula to
propositional logic and using a SAT solver as described in Section [6.4.2] In particular,
we lift negations from B operations before the abstraction which results in A A—A where
A =r € Z— Z. It can be seen that no translation to SMT-LIB is necessary in such
cases. Such constraints do often occur in bounded model checking, where invariants are
negated to check for counterexamples.

Strengths of the Integration of Z3

Weaknesses of the PROB constraint solver are often caused by the use of unbounded
integer domains. One motivating example which speaks in favor of the integration of
73 is the constraint + > y Ay > x. PROB’s constraint solver is not able to solve
this constraint with its default CLP(FD) backend since the integer domains of x and
y cannot be narrowed down. Although PROB’s constraint solver is able to solve this
constraint by using an additional backend that implements custom constraint handling
rules (CHR), the example shows a benefit of using Z3 for unbounded integer domains, in
particular for linear integer arithmetic. For example, Z3 is able to solve the constraint
V(z,y).(x € ZNy € Z = Fz.(x — z = y)) while PROB’s constraint solver is not. The
constraint is taken from the 14th SMT competition for quantified integer difference logic
[203]. Another constraint which cannot be disproven by PROB’s constraint solver but
using the integration of Z3 is —=((s2 = s U {0} As3 = sU {1} Asd =s2U {1} Asb =
s3 U {0}) = s4 = sb), which stems from a computation that occurred during partial
order reduction for B. Again, both constraints contain unbounded sets of the integers
which cannot be narrowed down by PROB’s constraint solver. The constraints further
indicate that this issue affects model finding as well as the disproving of formulas.

We further observed strengths of Z3 regarding the disproving of constraints involving
infinite relations. For instance, the integration of Z3 is able to solve the constraint
feEN»NAzeNAg=f<a{r—x+1} A—(g9 € N+ N) which cannot be solved by
PROB'’s constraint solver. Furthermore, this constraint can only be solved when using
the new translation from B to SMT-LIB which uses Z3’s lambda functions.

The integration of Z3 is also able to solve several constraints faster than PROB’s
constraint solver. Such constraints do not necessarily involve unbounded domains but
are related to the enumeration of domains as performed by PROB’s constraint solver.
For instance, the integration of Z3 is able to find a model for the constraint f = A\z.(z €
IL..onlz+ D) U{n+1— (n/2)} Ax = flz] ANz # @ An =20 in around 0.17 s while
PROB’s constraint solver is not able to solve the constraint within 60 s. The reason is
that CLP(FD) enumerates many values before finding a solution which does not seem
to be the case for Z3. It should be noted that the aforementioned strengths of Z3 are
not related to SMT solving but rather to its strong theory solvers, especially for linear
integer arithmetic.
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Table 6.1.: Bounded model checking (BMC) constraints from TLA" benchmarks com-
piled by Konnov et al. [202] as well as classical B and Event-B benchmarks
compiled by Krings and Leuschel [114] [I53]. BMC uses a bound of 25 and
sets up 26 constraints for depth 0...25 for each benchmark. We further
state the mean amount of independent components for all constraints of a

benchmark.
ProB-Z3
No. Name ProB (axiomatic) (constructive) (parallel) (peraliel & @ Com-
decomposed)  ponents
1 Prisoners-4 8 /2284 s 0/51s 0/49s 0/53s 0/727s 6
2 Bakery 2 / 2888 s 0/973s 1/94s 1/970s 1/1267s 1
3 Paxos-3 2 / 2888 s 0/110s 0/75s 0/126s 0/ 444 s 2
4 SimpleTwoPhase 26 /0.31s 25/0.96s  25/0.63s 25 /0.60 s 25/1s 29
5 TravelAgency 15 /1342s  0/183s 0/170s 0/184s  0/281s 10
6 LargeBranching 26 / 0.99 s 26 /81s 26 / 58 s 26 /134 s 26 /149 s 2
7 SearchEvents 3/2761s 2/2890s 20 /836s 20 / 876 s 20 / 842s 6
8 ABZ16.m4 26 /3s  26/18s 26 /17 s 2 /17s 26/ 18s 11
9 ABZI16.m5 26 /4s  25/23s 26/ 24 5 2/23s  26/25s 11
10 ABZ16.m6 25 /8s 18 /1021s 5/77s 18 /998 s 18 /1075 s 12
11 ABZ16.m7 26 / 8s 19 / 888 s 5/46s 19 /933 s 19 / 899 s 13
12 RO_GearDoor 26 / 0.36 s 26 /4s 26 /3s 26 /3s 26 /3s 1
13 R1_Valve 26 / 0.87 s 26 /8s 26 /8s 26 / 8s 26 /9s 5
14 R2_Outputs 26 / 2s 26 /15 26 /15 26 /15 26 / 16 s 11
15 R3_Sensors 12 /1727 s 26 / 32s 26 / 32s 26 / 32's 26 /33 s 17
16 R4 _Handle 5/2560s  1/49Ts  2/350s 2/565s  2/837s 17
17 R5_Switch 9/2142s 26/237Ts  26/21s 2 /274s 26 /344 25
18 R6_Lights 7/2344s 26 /344 s 26 / 385 s 26 / 382's 26 / 441 s 31
19 Lightbot 3/ 2762s 2 /1117s 11 / 1878 s 11 /1883 s 11 /1948 s 12
20 MO_AAI 2 /2904 s 26 /219 s 26 / 53 s 26 / 63 s 26 /74 6
21 MO_AAT 3/2761s  26/204s 26 /57s 2% /70s 26/ 76s 6
22 MO0_AOO 3 /2761 s 26 /13 s 26 /12 s 26 / 16s 26 / 23s 3
23 M0_VOO 3 /2761 s 26 / 21s 26 / 21s 26 / 24 s 26 / 31s 3
24 MO_VVI 3 /2761 s 26 / 224 26 / 52 s 26 / 61s 26/ 72s 6
25 MO_VVT 3/2779s 26 /212s 26 / 53 s 26 / 63 s 26/ 7ls 6
26 M1_AOOR 3/2762s 26 /36s  26/37s 2 /42s 26 /54s 13
27 MI1.VOOR 3/2761s 26 /32s  26/32s 2 /37s  26/44s 12
28 M2_AAI 3/2761s  26/197s 26 /50 s 2% /60s  26/65s 8
Total 325 /48737s 534 /9651s 537 /4736s 564 / 7913 s 564 / 9869 s

Solved constraints / Runtime s
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Figure 6.7.: A Venn diagram to visualize and compare the amount of BMC constraints
that can be solved by PROB’s constraint solver and Z3 using the former
axiomatic and the new constructive translation from B to SMT-LIB as can

be seen in Table .

Bounded Model Checking

For a more sophisticated performance evaluation, we decided to use constraints from
bounded model checking (BMC). In particular, we use the monolithic bounded model
checking implementation [I53] of PROB which sends a single formula to a selected con-
straint solving backend. The goal of bounded model checking is to verify a system’s prop-
erties symbolically by searching for a counterexample considering a maximum amount
of successive state changes. For instance, let I be a B or Event-B machine’s invariant,
v be a machine’s state of variables, init(v) be the machine initialization, and op be the
only machine operation. Further, let BA,,(v,v’) be the before-after predicate applying
the operation to the variables in v and assigning the results to the variables in ¢’. This
corresponds to a state change in the machine but represented as a predicate using fresh
variables v’. For a bound of 1, we set up the BMC constraint init(v) A BAy, (v, v") A =T,
where I’ is the machine invariant referring to the variables in v’. If the constraint is sat-
isfiable, its solution corresponds to a machine state that violates the machine invariant
and can be reached after a single state change. For our benchmarks, we check the B and
Event-B machines from a bound of 0 to 25, i.e., we solve 26 constraints for each machine.
We compare the amount of constraints that can be solved by a specific solver as well
as the time needed to decide for the satisfiability of all constraints. That means, the
presented runtimes are the sum of the times needed to solve all 26 constraints. We use a
maximum solver timeout of 2 min for each constraint and compare the PROB constraint
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Figure 6.8.: A visualization of the BMC benchmark results presented in Table show-
ing the amount of constraints that can be solved by a constraint solver
within a specific amount of time. We compare PROB’s constraint solver
and the four different configurations of the integration of Z3 in PROB. The
smallest constraint solver timeout is 1000 ms.

solver, its integration of Z3 using the former translation [48], the new translation as
described in Section [6.4.1], the parallel integration of Z3 as described in Section [6.4.2] as
well as the parallel integration of Z3 that iteratively solves independent components of
a constraint as described in Section [6.4.3, We did not investigate the effects of a larger
timeout since Z3 rather answers unknown than exceeding the solver timeout.

The evaluated benchmarks can be seen in Table [6.1] We use four TLA™ [41] bench-
marks compiled by Konnov et al. [202]. The authors used the benchmarks to evaluate
the performance of their symbolic model checker APALACHE for TLA' which trans-
lates to SMT-LIB. We use the translation from TLA™ to B [I32] to load TLA™ models
in PROB. Unfortunately, the integration of Z3 is not able to solve many constraints
of these benchmarks. We thus only use these four benchmarks which already exhibit
this trend. Additionally, we use a set of classical B and Event-B benchmarks compiled
by Krings and Leuschel [I53]. The benchmarks numbered 8 to 11 are taken from a
submission to the ABZ 2016 case study [204] by Hoang et al. [205], the benchmarks 12
to 18 from a submission to the ABZ 2014 landing gear case study [206] by Hansen et al.
[207], and the benchmarks 20 to 28 from a model of a pacemaker by Méry and Singh
[2]. We deem these models to be suited for a performance evaluation since they repre-
sent real-world examples. The classical B and Event-B models are correct according to
their specification. Thus, all BMC constraints pose a contradiction. Additionally, we
use three classical B machines for which a BMC constraint provides a counterexample
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(benchmarks 5 to 7), i.e., at least one constraint is satisfiable. Besides the amount of
solved constraints and runtimes of each solver we also state the mean amount of inde-
pendent components for each benchmark. The constraints of all benchmarks have an
average amount of 417 unique conjuncts or disjuncts and a median amount of 117. The
largest constraint contains 3275 unique conjuncts or disjuncts.

The benchmarks were run on a system with an Intel Core 17-8750H CPU (2.2GHz)
and 16 GB of RAM using PROB version 1.11.1, SICStus Prolog version 4.7.0, and Z3
version 4.8.16.

First and foremost, the benchmark’s evaluation shows that the new constructive trans-
lation using Z3’s lambda functions improves performance and coverage. Z3 is able to
solve many more constraints than is the case for the former axiomatic translation, e.g.,
for the benchmarks numbered 7 and 19. The 7th benchmark contains constraints that
provide a solution while the 19th benchmark does not. This shows that the constructive
translation improves performance for model finding as well as the disproving of con-
straints. Yet, Z3 is also able to solve several constraints only when using the axiomatic
translation. For instance, this is the case for the benchmarks numbered 10 and 11. We
therefore consider the decision to run two Z3 solvers with both translations in parallel
to be justified. Figure [6.7] shows a Venn diagram to compare the amount of constraints
that can be solved by a specific solver. It can be seen that Z3 is able to solve 27 con-
straints only when using the axiomatic translation and 27 constraints only when using
the constructive translation. The parallel integration of Z3 in PROB is able to solve
239 constraints that cannot be solved by PROB’s constraint solver as can be seen in
Table[6.1] Yet, PROB’s constraint solver is also able to solve 47 constraints that cannot
be solved by Z3.

A visualization of the benchmark results comparing the amount of constraints that
can be solved within a specific amount of time is shown in Figure[6.8| It can be seen that
all constraint solvers are not able to solve significantly more constraints for a timeout
larger than 1 minute. We thus deem the selection of a timeout of 2 min to be justified.

Surprisingly, the decomposition of constraints into independent components neither
improves the performance of constraint solving nor allows solving any more constraints
than is the case for the default parallel integration. Almost all constraints can be de-
composed into several independent components as can be seen in the last column of
Table [6.1] As expected, the computation of the independent components and indepen-
dent Z3 solver calls add some additional overhead. Apparently, the components that
pose a contradiction can still not be solved by Z3 as is the case for the whole constraint.
We assume that Z3 itself already divides constraints into independent components so
that our decomposition does not provide any improvement. The results further show
that the fact that Z3 is not able to decide for the satisfiability of a constraint is not nec-
essarily influenced by the size of a constraint but rather by the use of specific operators.
This approach is thus probably not worth it to be used in the future.

When comparing the runtimes of the integration of Z3 and PROB’s constraint solver,
it can be seen that Z3 is able to solve several constraints better. This does not only
affect the performance but more importantly the coverage of constraint solving as can be
seen in Figure [6.7] For the benchmarks numbered 7, 15 and 17 to 28 the integration of
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Figure 6.9.: A visualization of the BMC benchmark results presented in Table show-
ing the amount of constraints that can be solved by a constraint solver
within a specific amount of time. We compare PROB’s constraint solver
and the four different configurations of PROB’s SMT solver. The smallest
constraint solver timeout is 1000 ms.

73 is able to solve many more constraints than is the case for PROB’s constraint solver.
For benchmarks 19 to 28, PROB’s constraint solver is not able to narrow down the
domains to find a contradiction for most constraints but exceeds the predefined solver
timeout. The machines contain several unbounded domains over the natural numbers
and different integer arithmetic constraints. It can be the case that Z3 is able to solve
these constraints due to the Boolean abstraction of formulas or due to its strong theory
solvers, especially for linear integer arithmetic.

Nonetheless, PROB’s constraint solver is also able to solve several constraints better
than the integration of Z3. For the benchmarks numbered 1 to 3, 5, and 8 to 11, PROB’s
constraint solver is able to solve many constraints which cannot be solved by Z3. Here, it
should be noted that Z3 often gives up constraint solving (unknown) without exceeding
the predefined timeout, e.g., as is the case for the first benchmark.

All in all, it can be seen that the new integration of Z3 and translation from B
to SMT-LIB extends the power of PROB’s portfolio of constraint solving backends.
Since the decomposition of constraints into independent components does not improve
performance for our selected benchmarks, we prefer the plain parallel integration of 73
in PROB.
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Table 6.2.: The same set of BMC benchmarks as used in Table but comparing the
different configurations of PROB’s SMT solver with PROB’s constraint solver
and the new parallel integration of Z3.

ProB-7Z3 ProB

No. Name ProB (parallel SMT Raw-SMT Sym-SMT Sygﬁfp&w'
1 Prisoners-4 8 /2284 s 0/53s 10 /2214s 8 /2344 s 8/60s 8 /2338 s
2 Bakery 2 /2888 1/970s 16 /1344s 17 /132ls 17 /710s 17 /1541s
3 Paxos-3 2 /2888 s 0/126s 1/125s 1/125s 1/228s 1/229s
4 SimpleTwoPhase 26 / 0.31 s 26 / 0.60 s 26 / 0.56 s 26 /0.52s 26 /1s 26 /2s
5 TravelAgency 15 /1342 s 0/184s 4 /2861 s 2/ 2882s 3/399s 4 /2790 s
6 LargeBranching 26 / 0.99 s 26 / 134 s 26 /4s 26/5s 26 /5s 26 /6s
7 SearchEvents 3/2761s 20 / 876 s 18 / 1507 s 7 /2473 s 11 / 1268 s 7/ 2469 s
8 ABZ16.m4 26/ 3s 2% /17 s 2 /11 2 / 11 2% /9s 2% /9s
9 ABZ16.m5 26 /4s 26 / 23s 26/ 11s 26 /15 s 26 / 13s 26 /12s
10 ABZ16.m6 25 /8s 18 / 998 s 5/ 2563 s 13 / 2140 s 5/ 2553 s 11 /2230 s
11 ABZ16.m7 26/ 8s 19/933s  5/2672s  12/2206s  7/2577Ts  11/2262s
12 RO_-GearDoor 26 / 0.36 s 26 /3s 26/ 1s 26 /0.82s 26 / 0.84 s 26 / 0.85s
13 R1_Valve 26 / 0.87 s 26 /8s 26/2s 26 /3s 26 /3s 26 /3s
14 R2.Outputs 26 /2s 2 /155 2% /6 2% /5s 26 /55 2% /6
15 R3_Sensors 12 /1727 s 26 /32s 26 /41s 26 / 27s 26 / 68s 26 / 59s
16 R4 Handle 5/ 2560 s 2/565s  4/2732s  4/2732s  4/2878s 4 /3342s
17 Rb5_Switch 9 /2142 s 26 / 274 s 9 /2207 s 9 /2285 s 6 /1364 s 7 /2483 s
18 R6_Lights 7/2344s 26/ 382s 6 /2523 5 5/ 2563 s 7/ 1463 s 5/ 2606 s
19 Lightbot 3/2762s 11 /1883s  6/2472s 5 /2658 s 6/91s  4/2686s
20 MO_AAI 2/2004s 26 /63s 11/2120s 4 /2771s 6/791s  5/2703s
21 MO_AAT 3/2761s 26 /70s  8/2510s 3 /2796s 5/487Ts  3/2799s
22 M0_AOO 3/2761s 26 /16s  4/2752s  6/2572s  4/2390s 6 /2569 s
23 MO0_-VOO 3/ 2761 s 26 /24 s 13 /2222 s 5/ 2680 s 4/29s 4 /2689 s
24 MO_VVI 3/2761s 26 /6ls  9/2437s 4 /2743s 5/7Ts 527122
25 MO_VVT 3/2779s 26 / 63 s 10 / 2033 s 5 /2718 s 8 /1736 s 4/2741 s
26 M1_AOOR 3 /2762 s 26 / 42s 5/ 2703 s 4 /2786 s 3/ 143 s 3 /2795 s
27 M1.VOOR 3/ 2761 s 26 / 37s 8 /2288 s 6 /2533 s 6/288s 6 /2471 s
28 M2 AAI 3/2761s 26 /60s  10/2451s  4/268Ts  7/1510s 4 /2688 s
Total 325 /48737s 564 /7913 s 370 /44709 s 332 /47969s 331 /21047s 327 /49020 s

Solved constraints / Runtime s

6.7.2. Direct Implementation of SMT Solving in ProB

In the following we present an empirical evaluation of the direct implementation of SM'T
solving in PROB. Here, we compare the runtimes of the plain PROB constraint solver,
its integration of Z3 [49] (PROB-Z3) running two solvers in parallel without the decom-
position of constraints into independent components, the presented SMT solver using
PRrROB’s constraint solver as its only theory solver with and without static syntax anal-
ysis as described in Section (SMT, Raw-SMT), in addition to the static syntax
analysis using static symmetry breaking (Sym-SMT) as described in Section [6.5.2] and
using no static syntax analysis but static symmetry breaking (Sym-Raw-SMT). We use
a linear domain enumeration order for PROB’s constraint solver in each solver config-
uration to ensure that the propagation is deterministic. The benchmarks were run on
the same settings as used in Section [6.7.1
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Figure 6.10.: A Venn diagram to visualize and compare the amount of BMC constraints
that can be solved by PROB’s constraint solver, the parallel integration
of Z3 in PROB, and the best performing configuration of PROB’s SMT
solver, i.e., using static syntax analysis but no symmetry breaking.

Bounded Model Checking

We use the same set of benchmarks as used in Section for bounded model checking.
The evaluated benchmarks can be seen in Table [6.2]

When comparing the results of the SMT and Raw-SMT solver configurations, it can
be seen that the static syntax analysis improves the performance of constraint solving for
several benchmarks, in particular for the benchmarks numbered 1, 7, 10, 20, 21, 23, 25,
and 28. However, for some benchmarks the additional constraints seem to lead the SMT
solver in a wrong direction, e.g., for the benchmarks numbered 10 and 11. This can lead
to a constellation of theory constraints for which PROB’s constraint solver exceeds the
predefined solver timeout or the SAT solver spends a lot of time backtracking between
variable decisions. We suppose that the reason is that our decision heuristic is initialized
with the occurrences of variables among all clauses as described in Section [6.5.3] This
initialization changes when adding additional clauses which can lead the SAT solver in
a different direction than is the case for the original formula. Table [6.3| shows more
detailed statistics of the different SMT solver configurations. Here, it can be seen that
the additional static syntax analysis (SMT, Sym-SMT) reduces the amount of theory
propagations by several orders of magnitude compared to the other solver configurations
while the amount of Boolean decisions increases slightly. This shows that the deduced
constraints successfully pass knowledge from the theory to the SAT solver. Both SMT
solver configurations that do not use the static syntax analysis seem to often exceed
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Table 6.3.: Detailed statistics of the different configurations of PROB’s SMT solver con-
sidering all BMC constraints presented in Table Each cell presents two
values which are the maximum (top) and mean (bottom) values. The pre-
sented mean values have been rounded.

S B o
T i
e T far
Sym-SMT 39;% 1 36(;2?; 13 28?;3 gg;

the predefined timeout in the theory solver, which is probably correlated with the high
amount of theory propagations.

Adding symmetry breaking constraints does not improve the performance of constraint
solving for the selected benchmarks significantly. Only for the benchmarks numbered
2, 11, and 18, one more constraint can be solved. For the second benchmark, the
time needed for constraint solving can be reduced as can be seen when comparing the
SMT and Sym-SMT solver configurations in Table [6.2] We initially expected greater
performance improvements of static symmetry breaking, but it should be noted that
we do not know how many constraints contain symmetries. Furthermore, a symmetry
breaking constraint does not necessarily shift a contradiction to the Boolean level of SM'T
solving but possibly just supports the theory solver as explained in Section [6.5.2} It can
thus be the case that the theory solver or the SAT solver still exceeds a predefined
solver timeout if the responsible constraints are not affected by symmetry breaking.
Unfortunately, in some cases the performance of constraint solving is worse when adding
symmetry breaking predicates, e.g., for the benchmarks numbered 7 and 23. Again, we
suppose that the additional constraints lead the SMT solver in a wrong direction which
results in exceeding the predefined solver timeout due to the enumeration of domains in
the theory solver or backtracking between variable decisions in the SAT solver.

We cannot evaluate the usefulness of restarts since the SMT solver configurations do
not apply many restarts for the selected benchmarks. Yet, an SMT solver only restarts
a search if it recognizes that not much new knowledge can be gained from the current
search path as explained in Section [6.5.3] It can thus be a good sign that only a few
restarts were performed in our empirical evaluation. In Table [6.3] it can be seen that
the mean amount of restarts over all BMC constraints is 0 or 1. The maximum amount
of restarts when solving a constraint is 33.

The SMT solver configurations reduce the amount of learned clauses only a few times
for the selected benchmarks. In most cases, the total amount of conflicts is less than the
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threshold defined by the implemented policy as described in Section m (see Table .
In particular, we remove half of the learned clauses which have an LBD score higher than
5 after 4000 + 300 * x conflicts, where x is the amount of reductions performed so far.

The theory solver, i.e., PROB’s constraint solver, is able to deduce many constraints
which are propagated to the SAT solver as can be seen in Table We would need
to explain such theory propagations if they are necessary for a conflict analysis since
PROB'’s constraint solver does not provide an explanation by default as described in
Section [6.5.4] This would add the additional overhead of computing an unsatisfiable
core. Yet, the SMT solver configurations do not require a single explanation of a theory
propagation for the selected benchmarks.

The results of PROB’s SMT solver for the benchmarks numbered 20 to 28 are not
much better than the ones of using only PROB’s constraint solver. The integration of
73 is still the dominant solver. We suppose that Z3 is able to solve these constraints
better than the other solvers not because of conflict-driven clause learning but due to
its strong theory solvers for linear integer arithmetic.

Overall, PROB’s SMT solver is able to solve many constraints better than PROB’s
constraint solver, e.g., the benchmarks numbered 1, 2, 7, 15, 20, 23, and 28. In Fig-
ure [6.10] it can be seen that the constraint solver configuration PROB-SMT is able to
solve 17 constraints that cannot be solved by Z3 or PROB’s constraint solver, 22 con-
straints that cannot be solved by Z3, and 86 constraints that can be solved by Z3 but
not by PROB’s constraint solver.

In Figure [6.9, it can be seen that PROB’s constraint solver is able to solve more
constraints than PROB’s SMT solver for a timeout smaller than 40 s. However, for larger
timeouts, the SMT solver configuration using static syntax analysis but no symmetry
breaking has a better performance than the other constraint solvers. It could thus be
beneficial to combine the constraint solvers by first calling PROB’s constraint solver
with a timeout of around 20 s and resorting to PROB’s SMT solver if the timeout is
exceeded. The results show that CDCL can be beneficial to find contradictions in such
large constraints that contain many Boolean decisions as selected from bounded model
checking compared to plain saturation-based solving as performed by PROB’s constraint
solver. We thus deem this direct implementation of SMT solving in PROB to be of value
for constraint solving in B and Event-B, and to further increase the power of PROB’s
portfolio of constraint solving backends.

Inductive Invariant Proofs

In order to provide a more diverse performance evaluation, we decided to additionally
solve constraints from constraint-based proofs for the inductivity of invariants. The
goal is to prove that a classical B machine operation or event in Event-B is not able
to reach a state that violates the invariant. For this, a constraint is set up for each
machine operation or event which is solved independently. In contrast to bounded model
checking, the constraint-based proof for the inductivity of an invariant does not include
the machine’s initialization but allows any instantiation. These constraints thus often
contain larger or unbounded domains. Further, the constraints are considerably smaller
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Table 6.4.: A subset of the classical B and Event-B models from Table and Table
but checking the inductivity of the invariant I for each operation or event
op by solving the constraint I A BA,,(v,v") A =I'. The amount of machine
operations (events) is equal to the amount of constraints to be solved.

ProB-Z3 ProB
No. Name Ops. PrOB (parallel) SMT  Raw-SMT  Sym-SMT SygllfTaW'
1 Prisoners-4 3 1/120s 1/0.55s 1/120s 1/120s 1/120s 1/120s
2 Bakery 10 0/1081s 0/20s 1/961s 1/951s 1/962s 1/964s
3 Paxos-3 5 0/482s 0/4s 2/123s 2 /123s 2/124s 2/124 s
4 TravelAgency 10 6 /625 s 0/5s 6/791s 6/ 786 s 6 /800 s 6/783s
5 LargeBranching 2 2/0.01s 2/026s 2/001s 2/001s 2/0.01s 2/0.02s
6 SearchEvents 4 3/120s 4/1s 3/122s 4/3s 3/122s 4/2s
7 ABZ16.m4 19  19/016s 19/009s 19/0.05s 19/0.07s 19 /0.05s 19/0.12s
8 ABZ16m5 22 22/008s 22/01s 22/012s 22/015s 22/014s 22/0.13s
9 ABZ16.m6 24 24/017s 24/046s 24/045s 24 /037s 24 /15 24/ 1s
10 ABZ16.m7 26 26 /0.12s 26 /0.37s 26 / 0.52 s 26 / 0.37 s 26/ 1s 26/ 1s
11 RO_GearDoor 8§ 8/00ls 8/00ls 8/00ls 8/00ls 8/00ls 8/00Ls
12 RI1_Valve 16 16/002s 16 /0.01s 16 /0.01s 16/0.02s 16/0.02s 16/0.02s
13 R2.Outputs 24 24/004s 24/0.03s 24/0.03s 24/004s 24/004s 24/0.04s
14 R3_Sensors 24 24/008s 24/0.07Ts 24/0.07s 24/0.07s 24/01ls 24/0.13s
15 R4 Handle 32 32/0.36s 24 /45 32/6s  32/19s 32 /25 32/2s
16 R5_Switch 32 32 /0.15s 32/1s 32/035s 32/034s 32/038s 32/0.36s
17 R6_Lights 39 39 /0.24s 39/1s 39/064s 39/064s 39/0.75s 39/0.72s
18 Lightbot 7 6/120s 7/1s 7 /0.56s 7/0.57s 7/0.65s 7/ 1s
19 MO-AAI 6 6 /0.03s 6/1s 4/240s 5/121s 4/240s 5/120s
20 MO_AAT 6 6/0.03s 6/1s  4/240s  4/240s  4/240s  4/241s
21 MO0_AOO 4 4/002s 4/059s  3/120s 4/063s  3/120s  4/07s
22 MO_VOO 4 4/002s 4/066s  3/120s 4/1s  3/121s 4/1s
23 MO_VVI 6 6/0.1s 6/1s  4/240s  5/120s  4/241s  5/121s
24 MOVVT 6  6/0.03s 6/1s  4/242s  5/120s  4/24ls  5/120s
25 MI_AOOR 6 6/004s 6/099s  5/124s 6/2s 5/124s 6/2s
26 M1.VOOR 6 6/003s 6/098s  5/12s 6/2s  5/124s 6/2s
27 M2_AAI 7 6 /120 s 7/1s  5/240s  4/360s  5/240s  4/36ls
Total 332 / 2670s 321 /47s 323 /3817Ts 330 /2971s 323 /38255 330 / 2068 s

Solved constraints / Runtime s

than the ones of bounded model checking since they only consider a single machine
operation or event at once. We use a subset of the benchmarks used in Section [6.7.1
and Section with the same solver settings and compare the runtimes of PROB’s
constraint solver, the parallel integration of Z3 (PROB-Z3), as well as all four settings
of PROB’s SMT solver (SMT, Raw-SMT, Sym-SMT, Sym-Raw-SMT). We dropped the
benchmark SimpleTwoPhase from the evaluation since the B machine only provides a
single machine operation for which the constraint to prove the inductivity of the machine
invariant is a static contradiction. The benchmarks with the corresponding amount of
machine operations or events, i.e., the amount of constraints to be solved, can be seen
in Table The constraints of all benchmarks have an average amount of 23 unique
conjuncts or disjuncts and a median amount of 56. The largest constraint contains 72
unique conjuncts or disjuncts.

First and foremost, it can be seen that the different configurations of PROB’s SMT
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Table 6.5.: Detailed statistics of the different configurations of PROB’s SMT solver con-
sidering all constraints for inductive invariant proofs presented in Table [6.4]
Each cell presents two values which are the maximum (top) and mean (bot-
tom) values. The presented mean values have been rounded.

SMT 1; 2 345;% g;g 8 16g;
Raw-SMT 2‘1) 2 7289 ;g? 8 15357;
Sym-Raw-SMT o 2102837 0 73
Sym-SMT 1(1) 1 9659 ‘71;3; 8 3;15;

solver do not show crucial differences. The additional static syntax analysis and sym-
metry breaking do not improve but rather drop performance, e.g., for the benchmarks
numbered 19, 21, 23, 24, and 26. Only for the 27th benchmark one more constraint
can be solved when using the static syntax analysis. Further, the runtime for the 15th
benchmark reduces when using symmetry breaking. For the benchmarks numbered 2,
3, and 18, conflict-driven clause learning improves the coverage compared to PROB’s
constraint solver.

The integration of Z3 in PROB shows benefits for the benchmarks numbered 1, 6, and
27, where it is able to solve the maximum amount of constraints. For the 15th bench-
mark, Z3 is not able to solve 8 constraints which can be solved by the other constraint
solvers. These constraints contain several nested functions and set cardinalities which
result in quantified formulas in SMT-LIB.

Interestingly, PROB’s constraint solver is the dominant solver for the selected bench-
marks regarding performance since it is able to solve the constraints of the benchmarks
numbered 15 to 17 and 19 to 26 the fastest. Especially for the benchmarks numbered
19 to 26, it can be seen that PROB’s SMT solver lacks performance while PROB’s con-
straint solver alone is able to solve the constraints in a short amount of time. Here, the
SAT solver again guides the theory solver in an inconvenient direction which results in
exceeding the solver timeout as was the case for several benchmarks presented in Sec-
tion [6.7.2] Table [6.5] shows detailed statistics of the different SMT solver configurations
for the benchmarks presented in Table [6.4 It can be seen that the factor between the
amount of Boolean decisions and theory propagations is several orders of magnitude
higher than was the case for the benchmarks from bounded model checking. We thus
suppose that the advantage of PROB’s constraint solver can be attributed to the con-
straints’ smaller amount of Boolean decisions compared to the ones of bounded model
checking, where conflict-driven clause learning is not necessarily better than setting up
all theory constraints at once as is done by PROB’s constraint solver.

139



6. SMT Solving for the Validation of B and Event-B Models

Deadlock Freedom Proofs

In order to further enrich the diversity of the selected benchmarks for our empirical
evaluation, we decided to additionally use benchmarks from constraint-based proofs for
deadlock freedom. For this, a single constraint is solved for a classical B or an Event-B
machine to search for a state which has no successor state, i.e., a deadlock state. We
use the same models and settings as in Section [6.7.2] but this time we dropped the
benchmark R6_lights from the evaluation since the constraint to prove deadlock freedom
is a static contradiction. The evaluated benchmarks can be seen in Table [6.6. A dash
indicates that a constraint cannot be solved by a specific constraint solver within the
predefined timeout of 2 min. The constraints have a similar size than the ones used for
the proofs of the inductivity of invariants but are considerably smaller than the ones
of bounded model checking. In particular, the constraints of all benchmarks have an
average amount of 25 unique conjuncts or disjuncts and a median amount of 22. The
largest constraint contains 48 unique conjuncts or disjuncts.

First and foremost, it can be seen that PROB’s constraint solver is the dominant solver
for the presented benchmarks. It is able to solve all constraints except for the first and
second one. Yet, the other constraint solvers are not able to solve these constraints
within the predefined timeout too.

The four configurations of PROB’s SMT solver do not show significant differences in
general. Their results are mostly comparable to the results of PROB’s constraint solver.
The constraints do not lead to many Boolean decisions as can be seen in Table |6.7
While conflict-driven clause learning is not necessarily beneficial in such cases, it does
not seem to add too much overhead compared to registering all variables at once as is
done by PROB’s constraint solver.

The integration of Z3 in PROB is not able to solve 10 constraints in total. Here, Z3
does not exceed the predefined solver timeout but answers unknown in a short amount of
time. This shows that Z3’s inability to solve a constraint is not necessarily caused by the
size of a constraint but rather by the use of specific operators. We are not sure which
operators exactly reduce Z3’s performance, but we suppose that the main reason are
quantifiers introduced for the translations of set cardinality constraints and functions.

All in all, the benchmarks selected from proofs of deadlock freedom show that PROB’s
constraint solver is superior when it comes to solving constraints with a small amount
of Boolean decisions. In such cases, SMT solving usually does not improve performance.

Additional Theory Solver

The various machines (no. 20-28) of the pacemaker model in Table highlighted some
of the drawbacks of PROB’s default and our new SMT solver. Indeed, the pacemaker
model contains timing constraints, some over unbounded domains, and also has events
with an infinite number of parameter values. PROB’s constraint solver was not able to
narrow down these domains to a finite interval. We thus decided to combine our new
SMT solver with a new additional theory solver for integer difference logic as described
in Section and evaluate it on the pacemaker constraints from Table [6.2] We use
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Table 6.6.: A subset of the classical B and Event-B benchmarks used in Table and
Table but solving constraints to prove deadlock freedom. One constraint
is solved for each benchmark. A dash indicates that a constraint cannot be
solved by a specific constraint solver within the predefined timeout of 2 min.

ProB-7Z3 ProB
No. Name ProB (parallel) SMT Raw-SMT Sym-SMT Sygﬁj‘w'
1 Prisoners-4 - - - - - -
2 Bakery - - - - - -
3 Paxos-3 0.01 s 0.32 s 0.07 s 0.06 s 0.27 s 0.37 s
4 SimpleTwoPhase 0.01 s - 0.01 s 0.01 s 0.03 s 0.06 s
5 TravelAgency 0.03 s - 0.06 s 0.06 s 0.14 s 0.14 s
6 SimpleTwoPhase 0.01 s 12's 0.01 s 0.01 s 0.02 s 0.01 s
7 SearchEvents 0.01 s 0.61 s 0.01 s 0.01 s 0.02 s 0.12 s
8 ABZ16.m4 0.01 s 0.18 s 0.03 s 0.01 s 0.04 s 0.03 s
9 ABZ16.m5 0.01 s 0.18 s 0.03 s 0.02 s 0.04 s 0.03 s
10 ABZ16_m6 0.01 s - 0.03 s 0.03 s 0.06 s 0.08 s
11 ABZ16_m7 0.01 s - 0.03 s 0.02 s 0.05 s 0.04 s
12 RO_GearDoor 0.01 s - 0.01 s 0.01 s 0.01 s 0.01 s
13 Rl1_Valve 0.01 s - 0.01 s 0.01 s 0.02 s 0.02 s
14  R2_Outputs 0.01 s 0.18 s 0.01 s 0.01 s 0.03 s 0.02's
15 R3_Sensors 0.01 s - 0.02 s 0.01 s 0.04 s 0.03 s
16 R4_Handle 0.01 s 1s 1s 2s 1s 3s
17 R5_Switch 0.01 s 0.29 s 0.07 s 0.08 s 0.12 s 0.14 s
18 Lightbot 0.01 s - 0.05 s 0.06 s 0.07 s 0.09 s
19 MO_AAI 0.01 s 0.28 s 0.1s 0.07 s 0.11s 0.08 s
20 MO_AAT 0.01 s 0.28 s 0.03 s 0.03 s 0.04 s 0.04 s
21 MO0_AOO 0.01 s 0.25 s 0.01 s 0.01 s 0.03 s 0.02 s
22 MO0_VOO 0.01 s 0.18 s 0.01 s 0.01 s 0.02 s 0.02 s
23 MO_VVI 0.01 s 0.25 s 0.1s 0.07 s 0.11 s 0.07 s
24 MO_VVT 0.01 s 0.26 s 0.1s 0.07 s 0.12 s 0.07 s
25 MI1_AOOR 0.01 s 0.23 s 0.02 s 0.03 s 0.04 s 0.03 s
26 MI1_VOOR 0.01 s 0.28 s 0.02 s 0.02 s 0.03 s 0.03 s
27 M2_AAI 0.01 s 0.32s 0.03 s 0.04 s 0.07 s 0.13 s
Total 25 /027s 17/17.09s 25/187s 25/276s 25/254s 25/4.68s

Solved constraints / Runtime s
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Table 6.7.: Detailed statistics of the different configurations of PROB’s SMT solver con-
sidering all constraints for deadlock freedom proofs presented in Table
Each cell presents two values which are the maximum (top) and mean (bot-
tom) values. The presented mean values have been rounded.

SMT 8 1; 8 331?
Raw-SMT 515 22 8 4(5)3
Sym-Raw-SMT f 22 8 4g§
Sym-SMT 8 1; 8 331625

the same system settings as for the other empirical evaluations and use the additional
theory solver for integer difference logic for each configuration of PROB’s SMT solver
(columns 6 to 9 in Table [6.8). It should be noted that the other benchmarks presented
in Table do not contain any (or only very few) integer difference logic constraints.
The use of the additional theory solver would thus not make any difference.

The evaluated benchmarks are presented in Table It can be seen that the ad-
ditional theory solver for integer difference logic (SMT-IDL) allows solving 173 more
constraints than PROB’s constraint solver and 121 more constraints than PROB’s SM'T
solver with the default theory solver backend. The SMT solver configurations perform
many Boolean decisions as can be seen in Table [6.9} The additional static syntax anal-
ysis improves performance and enables more theory propagations in PROB’s constraint
solver, which seem to be beneficial for constraint solving regarding the selected set of
benchmarks. Yet, using the additional theory solver prevents solving 7 constraints in
total as can be seen in Figure [6.11 We assume that the unsatisfiable cores provided
by the integer difference logic solver lead the SMT solver in a different and in this case
unfavorable direction. Overall, the integration of Z3 is still the superior constraint solver
for the selected benchmarks.

While this brief empirical evaluation serves to demonstrate the usefulness of the ad-
ditional theory solver for PROB’s SMT solver, a more quantitative study is needed to
gain more insight on the general strengths of the different constraint solving backends.

6.8. Related Work

In the following, we describe different related work in the area of SMT solving for B and
first-order logic in general.
Déharbe et al. [208-210] presented an integration of an SMT solver for B and Event-
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Table 6.8.: A set of benchmarks from BMC of an Event-B model of a pacemaker by
Méry and Singh [2] comparing the different configurations of PROB’s SMT
solver using the new theory solver for IDL with PROB’s constraint solver and
the new parallel integration of Z3. All constraints contain at least one IDL

constraint.

ProB-Z3 ProB ProB
. . L ) . Sym-Raw-
No. Name ProB (parallel) SMT SMT-IDL Raw-SMT-IDL Sym-SMT-IDL SMT-IDL
1 MO_AAI 2 /2904 s 26 /63s 11 /21295 19 /1384 s 17 / 1382's 15 /636 s 16 / 1504 s
2 MOAAT 3/2761s 26/70s 8/2510s 24 /11225 15/ 1781 s 22/696s 16/ 1781 s
3 MO_AOO 3/2761s 26 / 16 s 4/2752s 25 /2281 s 20 / 8027 s 21 / 1507 s 20 / 7938 s
4 MO_VOO 3/2761s 26 /24s 13 /22225 26 / 203 s 19 / 1253 s 23 /223 s 19 / 1183 s
5 MO0O_-VVI 3 /2761 s 26 / 61 s 9/ 2437 s 20 / 1347 s 17 / 1447 s 16 / 684 s 17 / 1444 s
6 MOVVT 3/2779s 26 /63s 10 /2033s 19 / 1406 s 13 /1964 s 16 / 664 s 13 /1999 s
7 MI1_AOOR 3/2762s 26 / 42 s 5 /2703 s 24 /934 s 14 /1939 s 16 / 558 s 13 /1922 s
8 MI1_.VOOR 3 /2761s 26 / 37s 8/ 2288 s 21 /1307 s 15 /1727 s 17 / 880 s 15 / 1686 s
9 M2_AAI 3 /2761 s 26 /60s 10 /2451s 21 /1200 s 9/ 2178 s 16 / 859 s 9/2184s
Total 26 /25011s 234 /436s 78 /21525s 199 /11184s 139 /21698 s 162 / 6707 s 138 / 21641 s

Solved constraints / Runtime s

B by translating to SMT-LIB. The goal was to support automated theorem provers
by disproving single proof-obligations. The authors presented two translations which
support a subset of the B language. Sets are translated as uninterpreted characteristic
functions. One translation specifically interfaces an SMT solver and uses its lambda
expressions, but only basic sets are supported in this case. Our implementation uses
Z3’s array theory [I83] to translate sets which supports defining nested sets. In the
other translation, set operations are axiomatized to support nested sets. The axiomatic
translation presented by Krings and Leuschel [48] and described in Sectionis similar
to this translation, but uses Z3’s array theory [183] instead of uninterpreted functions.
An empirical evaluation by Déharbe et al. has shown that the amount of proof obligations
which can be proven automatically has improved [210]. Krings and Leuschel have shown
that their derived high-level translation improves the one by Déharbe et al. regarding
constraint solving [48].

The mathematical foundations of TLAT and B have quite a few similarities, and
translations between both formalisms exist [132, 133]. TLC [2I1] is an explicit state
model checker for TLA™ that relies on simple domain enumeration. Konnov et al. [202]
presented a translation from TLA™ to SMT-LIB to improve symbolic model checking
by interfacing to SMT solvers. The translation only supports finite sets, which avoids
many downsides of our translation from B to SMT-LIB. For instance, the authors suggest
translating a set membership as a disjunction of equalities, which is feasible for finite
sets only. Furthermore, quantifiers are unfolded, e.g., an existential quantification is
replaced by a disjunction. In the future, we plan to conduct an empirical comparison
with APALACHE’s SMT solver integration [202], which will require a fair translation of
TLA™ constraints to B and backwards, and isolating the constraint solving performed
by APALACHE from the symbolic verification algorithms.

Davidson et al. [212] presented a portfolio of constraint solving backends for the high-
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ProB-SMT

ProB

26
45

128

ProB-SMT-IDL

Figure 6.11.: A Venn diagram to visualize and compare the amount of BMC constraints
that can be solved by PROB’s constraint solver, PROB’s SMT solver with
static syntax analysis, and the same SMT solver configuration but addi-
tionally using the theory solver for integer difference logic (SMT-IDL).

level language Essence Prime. One backend interfaces different SM'T solvers including 73
by translating to SMT-LIB, and supports four different SMT-LIB logics for quantifier-
free formulas. The translation uses bit-blasting and only supports finite domains. Be-
sides that the authors’ tool enables to interface different SAT solvers by translating to
propositional logic or other constraint solvers using their specific input language. The
authors have shown that their SMT solver integration outperforms the baseline ap-
proaches for the selected benchmarks. In addition, they also emphasize the need for a
portfolio of constraint-solving backends to reliably solve various problems.

El Ghazi and Taghdiri [213] presented a translation from Alloy to SMT-LIB. Abbazzi
et al. [214] presented an integration of SMT solvers in the Alloy analyzer, as well as an
evaluation of different translations from Alloy to SMT-LIB. The Alloy analyzer usually
translates Alloy to Kodkod [45] which applies SAT solving. Yet, this eager approach to
SMT solving can result in large propositional formulas depending on the size of domains.
This possibly leads to bad performance. For instance, sets can be translated as bit vectors
where one bit is reserved for each domain element. The authors have shown performance
improvements of model finding for Alloy by translating to SMT-LIB. Furthermore, the
translation enables reasoning over infinite sets.

Weber [215] presented an SMT solver integration for the HOL4 theorem prover which
supports the first-order subset of the language. The translation to SMT-LIB employs
an axiomatized style for operators that are not supported by SMT-LIB such as the
minimum of a set of integers.

Bride et al. [216] conducted an empirical evaluation and comparison of SMT solving
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Table 6.9.: Detailed statistics of the different configurations of PROB’s SMT solver using
the additional theory solver for integer difference logic considering all BMC
constraints presented in Table [6.8f Each cell presents two values which are
the maximum (top) and mean (bottom) values. The presented mean values
have been rounded.

Solver Conflicts Theory Restarts Bogl@n
Propagations Decisions
3915 71479 25 302609
SMT-IDL 837 973 4 85307
Raw- 6551 35545 68 481976
SMT-IDL 1744 1085 10 141 389
Sym-Raw- 6520 35545 65 501815
SMT-IDL 1729 927 10 140248
Sym- 3391 59062 19 290 325
SMT-IDL 509 529 3 51411

and constraint logic programming for workflow nets. In particular, they interface Z3
and SICStus Prolog as is the case for our implementations. Their results show benefits
of SMT solving for unsatisfiable formulas, and benefits of constraint logic programming
for satisfiable ones, which fits also with our experience.

6.9. Future Work

In the future, we plan to provide alternative translations for B sequences using lambda
functions. Furthermore, the translation of B sequences to SMT-LIB can be improved by
translating sequences as finite arrays in SMT-LIB. Yet, this is only possible if sequences
interact among other sequences guaranteeing the well-definedness of resulting sequences.
This is not necessarily the case since B sequences are relations and might interact with
other relations which are not sequences as described in Section [6.3.1 We thus need
a static analysis to detect if a translation of sequences as finite arrays in SMT-LIB is
applicable for a constraint.

As discussed in Section [6.7.1], the support for infinite sets entails several suboptimal
translations, e.g., for set cardinality constraints. If only finite sets are used in a formula,
we are able to translate sets to a more concise representation, e.g., using a bit vector
encoding. Of course, we then have to provide translations for all set operators for this
new encoding of finite sets which requires some implementation effort. Yet, this might
not be worth it since PROB already provides an interface to Kodkod [45], 46] which has
shown to provide good performance on finite set operations [I49] and uses a bit vector
encoding of sets.

Furthermore, we plan to compile other configurations of the Z3 constraint solver to
run in parallel, e.g., using different solver tactics.

Another future work is to use other SMT solvers to solve SMT-LIB models. Currently,
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the new translation presented in this article uses Z3 specific lambda functions. Once the
SMT-LIB standard officially supports lambda functions we should be able to interface
to other SMT solvers as well for the new translation. It is worth mentioning that the
implementation of an automated translation which interfaces a solver specific program-
ming AP is a tedious and error-prone task. Mann et al. [217] presented a solver-agnostic
programming API for SMT solving which should be considered for future implementa-
tions.

Regarding our direct implementation of SMT solving in PROB we plan to implement
more sophisticated CNF rewriting rules to decrease the number of clauses and their size,
e.g., our implementation lacks a heuristic to reduce the introduction of artificial variables
[64], 218] as proposed by Tseitin [60]. Besides that the SAT solver’s branching heuristic
could use knowledge from theory constraints to improve the ordering (see benchmarks
19 to 27 in Table . This requires a more detailed analysis of selected constraints
to investigate whether we can deduce any rules to improve the branching heuristic. In
addition, we want to consider the model-constructing satisfiability calculus (mcSAT)
[219] framework in the future to investigate whether we can further improve the overall
performance and apply the presented ideas to set theory. Last but not least, there may
be some low-hanging fruit in our implementation to improve performance.

6.10. Conclusion

In conclusion, we have presented a formal description and implementation of a new
translation from B to SMT-LIB as well as a parallel integration of the Z3 constraint
solver in PROB. Empirical results have shown that the new translation and workflow
improves performance and coverage compared to the prior integration in PrROB [48]
by utilizing Z3’s lambda functions. The integration of Z3 is also able to decide a lot
of constraints where PROB’s constraint solver times out (see Section [6.7.1]). In most
cases, such constraints contain bounded or unbounded integer domains and function
applications. Besides improving the integration of Z3 in PROB we were able to identify
two bugs in Z3 involving lambdas using PROB’s regression tests.

Unfortunately, the integration of Z3 is not effective for constraints involving set car-
dinality or many quantifiers. We thus also developed a direct implementation of SMT
solving in PROB using its constraint solver as a theory solver (see Section [6.7.2). This
new approach was able to solve some constraints that neither PROB nor Z3 were able
to solve. The static syntax analysis in Section derives implied constraints and was
useful for identifying contradictions. Yet, the additional constraints can also be counter-
productive and lead to timeouts. Using a branching heuristic in the underlying SAT
solver that considers the style of the actual theory constraints could improve this issue
in the future. Adding static symmetry breaking predicates improved the performance
for some benchmarks, but not as much as initially expected. The empirical evaluation
has shown that the benefit of CDCL compared to plain saturation-based solving, as
performed by PROB’s constraint solver, is most notable for large constraints with many
disjunctions or implications. These occur for example in bounded model checking (see
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Section with a monolithic transition predicate (consisting of a disjunction of the
effect of a model’s individual operations).

The use of an additional theory solver for integer difference logic in PROB’s SMT solver
has shown to be beneficial for models involving timing constraints (see Section .
This theory solver also provides unsatisfiable cores without requiring further computa-
tions.

Generally, the integration of Z3 shows a better performance for most bounded model
checking constraints than PROB’s SMT solver. We mainly attribute these differences to
the strong theory solvers of Z3, especially for linear integer arithmetic (see Section .
The decomposition of constraints into independent components prior to the translation
to SMT-LIB did not improve performance for Z3 (see Section . Possibly, Z3 is able
to infer these components directly or indirectly during the solving process.

Last but not least, PROB’s constraint solver sometimes performs better than the
integration of Z3 or the new SMT solver, especially for checking inductivity of invariants
and deadlock freedom (see Section [6.7.2). These constraints are smaller than the ones
of bounded model checking, as there is no repeated inclusion of the transition predicate.

Finally, our empirical evaluation has shown that no constraint solver is the best for
all types of constraints. Hence, it is beneficial to have a diverse portfolio of constraint
solving backends for the B language. We could either call all available solvers in par-
allel or iteratively call different constraint solvers. Our empirical evaluation has shown
that it could be useful to first call PROB’s constraint solver with a small timeout and
successively resort to the integration of Z3 as well as PROB’s SMT solver if necessary.
Further, we could extend the machine learning backend in PROB that is able to predict
the best solver for a specific constraint as suggested by Dunkelau et. al [149] (see also
Healy et al. [220] for Why3) to combine the strengths of all presented backends into a
single constraint solving routine.

Acknowledgments We would like to thank the anonymous reviewers for their very
thorough and very useful feedback that helped improve this article.
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7. Additional Experiments and
Considerations

In the following, we first describe how PROB’s SMT solver and its integration of 73
handle deferred sets as is done by PROB. Further, we discuss drawbacks of Z3 regarding
memory consumption and mention peculiarities of the new constraint solving backends
regarding well-definedness.

One finding in Section was that Z3 often lacks performance for constraints in-
volving quantified formulas. We thus present an additional quantifier instantiation to
investigate the impact on the performance of PROB’s different constraint solving back-
ends.

During the development of PROB’s interface to Z3, we noted that Z3’s performance
and soundness in solving constraints using lambda functions fluctuates. After we iden-
tified a performance regression in a new version of Z3, a developer of Z3 stated that
“nested existentials under lambdas were not tested and sound in earlier versions” [221],
which surprised us. We thus revisit the empirical evaluation presented in Section [6.7.]]
to investigate the impact of recent changes in Z3 on its performance in solving translated
B and Event-B constraints. Besides that, we present a quantitative empirical evaluation
of PROB’s constraint solving backends involving more benchmarks than was the case in
Section 6.7

Last but not least, we describe how we assessed the soundness of the new constraint
solving backends.

7.1. Unfixed Deferred Sets

The B language allows defining custom types as deferred or enumerated sets. While
enumerated sets are finite and their elements are explicitly defined by name, deferred
sets are not limited in size. However, PROB assumes deferred sets to be non-empty
during proof and also finite for animation. The size of deferred sets is determined when
loading a machine in PROB, which can be set by option as described in Section In
this case, a deferred set is referred to as an unfixed deferred set. A fixed deferred set, on
the other hand, is a deferred set whose cardinality is explicitly defined in a B machine’s
properties. When finding a contradiction in a constraint that uses an unfixed deferred
set, PROB’s constraint solver is not able to decide for the satisfiability but indicates
that no solution could be found due to the use of unfixed deferred sets (unknown). The
reason is that the constraint could be satisfiable when changing the assumed size of
unfixed deferred sets. For instance, consider a B machine defining an unfixed deferred
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set S whose cardinality is assumed to be three by option. PROB’s constraint solver is
then not able to decide for the satisfiability of the membership to the total surjection
f € {1,2} — S since S is an unfixed deferred set and the constraint is satisfiable if
assuming a cardinality of two.

In PROB’s SMT solver, there are two possibilities for finding contradictions that might
be affected by the use of unfixed deferred sets, which are both referred to as theory
conflicts in SMT solving. First, it can be the case that the theory solver, i.e., PROB’s
constraint solver, refutes a single reified constraint that uses at least one unfixed deferred
set. Second, it can be the case that a contradiction is detected after grounding domains
in PROB’s constraint solver, i.e., after the SAT solver has found a solution for a formula’s
Boolean abstraction, while at least one unfixed deferred set is used in the overall theory
constraint. We deem such contradictions to be spurious counterexamples and log their
occurrence programatically. Apart from that, we proceed as usual in CDCL and learn
from such contradictions. If finding a solution for the overall constraint, learning from
spurious counterexamples is irrelevant. Yet, if the overall result of SMT solving is
a contradiction and at least one spurious counterexample has been found during the
search, the SMT solver cannot decide for the satisfiability and indicates that no solution
could be found due to the use of unfixed deferred sets (unknown). This behavior is
similar to the one of PROB’s constraint solver.

A considerable difference between PROB’s SMT solver and its constraint solver is that
the SMT solver is able to refute constraints that use unfixed deferred sets. First, it can
be the case that a contradiction is found by the SAT solver without entering the theory
solver. For instance, consider the extended constraint from above f € {1,2} - S Az =
1 Ax # 1, where S is an unfixed deferred set whose cardinality is again assumed to be
three. The contradiction x = 1 A x # 1 can be detected by the SAT solver since this
subformula is, e.g., abstracted to A A =A with A = = 1. This also applies for the
integration of Z3 since we check a formula’s Boolean abstraction prior to the translation
to SMT-LIB as described in Section [6.7.1] PROB’s constraint solver, on the other hand,
is not able to decide for the satisfiability due to the use of the unfixed deferred set
S. Second, it can be the case that clause learning leads to finding a contradiction but
without propagating any constraint containing an unfixed deferred set.

For PrROB'’s integration of Z3, we provide an option z3_solve _for_animation in which
case the cardinality of unfixed deferred sets in SM'T-LIB is defined according to the size
assumed by PROB. That means, Z3 behaves as PROB’s constraint solver and is possibly
not able to decide for the satisfiability of a constraint if a contradiction has been found
and unfixed deferred sets are used. This mode is particularly useful for animating a
model’s state space. If the option is set to false, Z3 does not restrict the size of unfixed
deferred sets and thus possibly behaves differently than PROB’s constraint and SMT
solver. This mode can be used for proving and disproving constraints. If a solution has
been found for a constraint but Z3 used a different deferred set size than is assumed
by PROB, a warning is presented to the user indicating that this solution does not
correspond to PROB’s current settings for deferred sets.

150



7.2. Memory Consumption of Z3

7.2. Memory Consumption of Z3

During the development of PROB’s interface to Z3, we noted that Z3 occasionally al-
locates memory that is not freed during the lifetime of our application. In the worst
case, this leads to an out-of-memory exception that kills the current system process.
We further observed that Z3 occasionally kills its system process due to reaching un-
expected code (assertion violation). Since the current integration of Z3 in PROB runs
on the main thread, this also leads to PROB being killed. Another finding is that Z3
sometimes consumes a lot of memory when instantiating quantifiers as described in Sec-
tion [7.6.1], which can also lead to throwing an out-of-memory exception or killing the
complete process [222]. We were able to improve but not remove this issue by throt-
tling specific parameters of Z3, e.g., limiting the maximum amount of iterations and
instantiations for model-based quantifier instantiation.

We analyzed our implementation that uses Z3’s C++ interface using Valgrind [223].
The tool did not find any memory leak or vulnerability in our implementation when run-
ning a subset of PROB’s unit and integration tests that use Z3. Unfortunately, Valgrind
slows down an application by several orders of magnitude. This makes it difficult to
investigate and reproduce memory leaks for large constraints. For instance, Z3 seems to
sometimes leak memory when solving dozens of constraints that use many quantifiers,
strings, and integer arithmetic at once. Further, the parallel use of different Z3 solvers
aggravates this issue. We were not able to find a minimal reproducible example for which
the analysis using Valgrind is feasible. Fortunately, the Z3 community is great and vig-
ilant. We found an issue in Z3’s Github repository that discusses a memory leak when
disposing a Z3 context [224]. Another user further emphasized this issue when using
several Z3 solvers in parallel (see Figure , which corresponds to our implementation
as described in Section Nikolaj Bjgrner, one of Z3’s main developers, confirmed the
issue’s existence and stated that the error’s location ,,within std::unordered_map con-
structor is very weird“ (see Figure [C.2). As of November 2023, the issue has not been
solved yet. One conclusion of the discussion is that it could possibly be caused by a
compiler bug or an error in the native C++ library for unordered maps in the release
builds from 2017.

PRrROB'’s interface to Z3 currently uses threads for parallelization that operate in the
same system process as PROB. In retrospective, it would have been beneficial for PROB
to run all instances of Z3 in their own system process. Z3’s memory management would
then not have any effect on PROB. For the future, we suggest using the C interface of
OMQ [225] to distribute the use of Z3 in PROB across several system processes. 0MQ,
an open-source networking library and concurrency framework, provides sockets that
allow sending atomic messages between system processes. In our application, we send
abstract syntax trees of B and Event-B constraints to Z3. To use OMQ, we thus have to
provide a wrapper for each function provided by our C++ interface to Z3 which receives
atomic data, e.g., a string, and transforms the data accordingly. This task is not difficult
but requires great diligence. Yet, it should be noted that our current implementation
that runs on the same system process as PROB is almost certainly faster than the new
proposal since no communication between different system processes is required.
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7(p) = WD(p) Ap T({x1,...,zn | q}) = {z1,... 20 | 7(Q)}
T(@ A Ad) = T(q) A AT(qn) 7(IF q; THEN @y ELSE q3 END) =
IF 7(q1) THEN 7(q2) ELSE 7(q3) END

(@1 V...Van) = 7(q1) V...V 7(dn) T(X(x1,...,20).(q | €)

)
(= q2) = 7(q1) = 7(q2) Sz, 2,).(WD(e) AT(q) | e
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V(z1,. .. xq).(7(q1 = q2))

Figure 7.1.: A formal description of our syntax-directed rules for adding all necessary
well-definedness conditions to B or Event-B predicates represented by the
function 7. p is an arbitrary predicate which is not a quantified formula, con-
junction, disjunction, implication or equivalence, q is an arbitrary predicate,
e is an arbitrary expression, and WD is a function returning a conjunction
of a predicate’s or expression’s well-definedness conditions.

7.3. Well-Definedness

ProB’s SMT solver enforces the well-definedness of constraints as described in Sec-
tion [6.5.4] The same applies for the integration of Z3, which, e.g., asserts divisors to be
unequal to zero. This changes the semantics compared to PROB’s constraint solver in
cases of a not well-defined input. In particular, it can be the case that the SMT solver
is able to solve a constraint while PROB’s constraint solver returns an error stating that
the input formula is not well-defined. For instance, the integration of Z3 reports unsat-
isfiability for the formula x € Z A 1 = 1/z since the well-definedness condition x # 0 is
added automatically while PROB reports a well-definedness error [226]. Both PROB’s
SMT solver and its integration of Z3 thus present the user a message indicating that
well-definedness conditions have been added. Here, the generation of well-definedness
conditions ensuring the finiteness of sets are skipped. For instance, one well-definedness
condition of card(S) is S € F(S). This condition is irrelevant for constraint solving in
PROB since all of its constraint solving backends report a (virtual) timeout if S € F(S)
cannot be proven. Further, well-definedness conditions defining the type of variables
are skipped since we work with typed abstract syntax trees, which already contain all
necessary typing information.

In Figure we present a formal description of our syntax-directed rules for adding
all necessary well-definedness conditions to B or Event-B predicates represented by the
function 7. It should be noted that so-called LET-expressions and if-then-else expres-
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sions (not standard B, only supported by PROB) as well as LET-predicates are expanded
prior to the application of 7. These rules are an addition to Section [6.5.4] and describe
how we actually enforce the well-definedness of B and Event-B constraints before apply-
ing PROB’s SMT solver and its integration of Z3. Full constraints are transformed for
73 while we apply 7 for each predicate that is reified with PROB’s constraint solver for
ProB’s SMT solver.

It is trivial to see that adding well-definedness conditions to an already well-defined
B or Event-B predicate using 7 cannot change its semantics. For this, an adequate
hypothesis is that a well-defined predicate contains all its necessary well-definedness
conditions. Otherwise, the predicate would not be well-defined. The concept of well-
definedness in B and Event-B requires that well-definedness conditions are conjuncted in
front of the predicate entailing the conditions. When adding well-definedness conditions
to a well-defined B or Event-B predicate according to the rules described in Figure [7.1],
these well-definedness conditions are duplicates since they are already present according
to the hypothesis. The well-definedness conditions added by 7 can thus be removed.
Therefore, the presented rules result in logical equivalent formulas when applied to well-
defined B or Event-B predicates.

7.4. Revisiting Empirical Evaluation

The benchmarks presented in Section do not use B’s relational iteration or closure
and are thus not affected by Z3’s missing support for lambda functions inside recursive
definitions as described in the corrigendum in Section [6.4.1] To update and revisit the
benchmarks presented in Table[6.1] we used the same system and software settings but Z3
version 4.12.3 built from commit cc4acOe6, PROB version 1.12.2 built from commit
05f1e64c, and SICStus Prolog version 4.8.0. The reason for using a pre-release version
of Z3 is that we found and reported a bug in Z3 version 4.12.2 [I77], where an erroneous
rewriting rule implementing destructive equality resolution lead to finding solutions for
unsatisfiable formulas. The bug has been fixed but a stable release of version 4.12.3
was not present at the time of writing this thesis.

The evaluated benchmarks can be seen in Table [7.1} A corresponding Venn diagram
can be seen in Figure[7.2] First and foremost, it can be seen that the overall performance
of the parallel integration of Z3 has decreased compared to using version 4.8.16 as was
the case in Section [6.7.1] Yet, we do not attribute these differences to changes in Z3 but
rather to the consideration of unfixed deferered sets. For the benchmarks numbered 10
and 11, Z3 is not able to solve most constraints due to the use of unfixed deferred sets,
which were not considered in Section [6.7.1] In total, 546 constraints can be solved using
the constructive translation from B to SMT-LIB, which are 6 constraints more compared
to using Z3 version 4.8.16. The total runtime when using the constructive translation
has increased, which might be attributed to the fact that additional implementations
for lambda functions have been provided in Z3 fixing prior bugs and making Z3 less
likely to give up constraint solving (unknown). Besides the benchmarks numbered 10
and 11, the performance of Z3 when using the axiomatic translation has improved, e.g.,

153



7. Additional Experiments and Considerations

Table 7.1.: The BMC constraints presented in Table but using updated versions of
ProB, Z3, and SICStus Prolog.

ProB-Z3

No. Name ProB (axiomatic) (constructive) (parallel) (parallel & @ Com-
decomposed) ~ ponents
1 Prisoners-4 8 /2196 s 11 /31s 12 / 106 s 12 /114 s 12 /204 s 6
2 Bakery 4/2771s  0/28%6s 5/2319s  5/2585s 5/ 2608 s 1
3 Paxos-3 2/2895s  0/352s 0/269s  0/434s  0/493s 2
4 SimpleTwoPhase 26 / 0.36 s 25 /1s 26/ 1s 26/ 1s 26/ 1s 29
5 TravelAgency 10 / 2226 s 1/1236s 1/76s 1/1336s 1/1124s 10
6 LargeBranching 26 /1s 26 / 59 s 26 /47 s 26 / 83 s 26 /125 s 2
7 SearchEvents 3 /2764 s 2/136s 20 / 797 s 20 / 800 s 20 / 820 s 6
8 ABZ16.m4 26 /0.03s 26/009s  26/009s 26/023s 26/ 081s 11
9 ABZ16.m5 25/0.02s 25/009s  25/006s 25/014s 25/0.71s 11
10 ABZ16.m6* 0/73s  2/11Ts 2/91s 2/122s  1/151s 12
11 ABZ16.m7* 0/8s  2/134s 2 /108 s 2/129s  1/173s 13
12 RO_GearDoor 26 /0.01s 26/0.04s 26 / 0.04 s 26 /0.16s 26 /0.06s 1
13 RI_Valve 26 /0.01s 26/003s  26/003s 26/008s 26/029s 5
14 R2.Outputs 26 /0.0ls 26/00ls 26/0.0ls 26/006s 26/067s 11
15 R3_Sensors 12 /1781s 26 / 22s 26 /23s 26 /24 26 /23 s 17
16 R4_Handle 6 /2691 s 5 /1234 s 6 /885s 5/ 1185 s 5/ 1253 s 17
17 Rb5_Switch 9/2213s 20 / 86 s 20 / 81's 19 /85 s 19 /115 s 25
18 R6_Lights 7/2439s  25/110s 95 /108s  25/110s 26 /14T s 31
19 Lightbot 3/2769s 2/1200s  12/1639s 12 /1816s 12/ 1821s 12
20 MO_AAI 2/2800s  26/55s 26 / 18 s 2% /23s  26/30s 6
21 MO_AAT 2/2800s 26 /46s 26 /17 s 2% /21s  26/27s 6
22 M0_AOO 3/ 2766 s 26 / 8s 26 / 8s 26 /9s 26/ 14s 3
23 M0_-VOO 3 /2765 s 26 / 7s 26/ 6s 26 / 8s 26 /128 3
24 MO_VVI 2/2888s 26 /41s 26 / 13 s 2 /17s  26/22s 6
25 MOVVT 2/2800s  26/65s 26/ 22's 2% /25s  26/35s 6
26 MI1_AOOR 3/ 2766 s 26 / 18s 26 /15 s 26 /21s 26 /25 s 13
97 M1.VOOR 3/2764s 26/ 14s 26 / 13 s 2% /16s  26/21s 12
28 M2.AAI 2/2889s  26/30s 26 /12 s 2 /14s  26/16s 8

Total 267 / 50415s 510 /7983 s 546 / 6679 s 544 / 8983 s 543 / 9265 s

Solved constraints / Runtime s
* many unknowns due to the use of unfixed deferred sets

for the benchmarks numbered 1 and 16. One considerable difference compared to the
empirical evaluation presented in Section [6.7.1] is that the axiomatic translation is now
not able to solve any of the selected benchmarks that cannot be solved when using the
constructive translation as can be seen in Figure [7.2] Further, Z3 is able to solve two
more constraints when using the constructive translation that cannot be solved when
parallelizing the use of both translations. It is not clear why this is the case since we
set random seeds for Z3 which should result in deterministic behavior. Yet, we are not
absolutely sure that this is always guaranteed.

PROB'’s constraint solver is able to solve fewer constraints compared to the results
presented in Table [6.1. For the benchmarks numbered 10 and 11, PROB is not able
to find a solution due to the use of unfixed deferred sets, which was not the case in
Section [6.7.1] While this needs to be investigated, it is not a loss of performance but
rather a configuration issue. The performance actually dropped for the benchmarks
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Figure 7.2.: A Venn diagram showing the amount of BMC constraints that can be solved
by PROB’s constraint solver and the different configurations of Z3 using
version 4.12.3 built from commit 1d62964c as can be seen in Table .

numbered 2 and 5.
All in all, concerns about a possible loss of performance for Z3 when using lambda
functions have not materialized.

7.5. Quantifier Instantiation

Finite quantifiers can be transformed to equivalent formulas that do not use a quan-
tification which is referred to as quantifier instantiation. A universal quantifier can be
rewritten as a conjunction of predicates corresponding to each combination of quantified
variables. For an existential quantifier, a disjunction is used. For instance, the universal
quantification Va.(x € 1.2 | Vy.(y € 1.2 | r(z) + (y — x) # r(y)) can be unfolded to
the conjunction (r(1) + (1 —1) # (1)) A(r(1)+ 2 —-1) # r(2)) A (r(2) + (1 —2) #
(1)) A (r(2) + (2 — 2) # r(2)). We observed that the Z3 constraint solver has difficul-
ties in solving quantified formulas (see Section , and expect that the instantiation
of quantifiers improves the performance of PROB’s integration of Z3. In the case of
PrROB’s SMT solver, quantifier instantiation changes a lot as well. A quantifier is usu-
ally abstracted as a single SAT variable in DPLL(T) (or CDCL(T)) as described in
Section [6.5.2] If instantiating quantifiers, several SAT variables are introduced for the
different predicates that have been instantiated from the quantifier. For instance, in the
example from above, four SAT variables are introduced when applying quantifier instan-
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Listing 7.1: B encoding of the n queens problem using two universal quantifiers that can
be transformed by quantifier instantiation.

n =10 &
queens : 1l..n >-> 1..n &
1(gq1).(gql:1..n =>
1(q2) .(g2:2..n & g2>q1l
=> queens (ql)+(q2-ql1) /= queens(g2) &
queens (q1)+(ql-92) /= queens(q2)))

SO W N

Table 7.2.: Performance evaluation of different configurations of the n queens problem
comparing PROB’s constraint solver, its parallel integration of Z3 (PROB-
Z3), and its SMT solver (PROB-SMT) with (suffix QI) and without quantifier

instantiation.
n PrOB PROB-Z3 PROB-SMT SAT variables PROB-QI ProB-Z3-QI ProB-SMT-QI
4 0.10s 0.16 s 0.04 s 14 0.10 s 0.16 s 0.04 s
6 0.01s 1.70 s 0.01s 32 0.01 s 0.10 s 0.01s
8 0.01s 0.09 s 0.01s 58 0.01 s 0.15s 0.01s
10 0.01s 1.98 s 0.01s 92 0.01 s 0.27 s 0.01 s
12 0.02s 3.67 s 0.01s 134 0.02 s 0.46 s 0.01s
14 0.02s 12.39 s 0.01 s 184 0.02 s 0.79 s 0.01s
16 0.03s 27.35 s 0.01s 242 0.03 s 1.19 s 0.01s
18 0.04s 29.28 s 0.01s 308 0.04 s 1.93 s 0.01s
20 0.05s - 0.01s 382 0.04 s 3.85 s 0.01s

tiation. Otherwise, only one SAT variable is used for the universal quantification. While
the instantiation of quantifiers can improve the performance, it can also slow down the
search depending on the size of finite domains. For instance, unfolding a quantifier that
results in thousands of instantiations might not be beneficial. For PROB’s constraint,
we do not expect performance improvements of quantifier instantiation since its theory
solver is already able to detect if quantified domains are finite and can be unfolded.
We implemented quantifier instantiation for universally and existentially quantified
formulas in PROB. For this, we use a limit for the maximum amount of a quantifier’s
instantiations to be unfolded, which can be computed by inspecting the domains of
quantified variables. For the integration of Z3, the quantifier instantiation is applied
after rewriting B or Event-B formulas that have no direct counterpart in SMT-LIB using
quantifiers. Listing shows a B encoding of the n queens problem using two universal
quantifiers that can be transformed by quantifier instantiation. We use this example as
a micro benchmark for an evaluation of the quantifier instantiation using a timeout of 1
min for each constraint solver. A performance evaluation of different configurations of
the n queens problem comparing PROB’s constraint solver, its integration of Z3 (PROB-
Z3), and its SMT solver (PROB-SMT) using static syntax analysis with (suffix QI) and
without quantifier instantiation can be seen in Table We also state the amount of
unique predicates occurring in a formula after quantifier instantiation (fifth column in
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Table 7.3.: Performance comparison of PROB’s constraint solver, its backend to Kodkod,
its parallel integration of Z3 (PROB-Z3), and its SMT solver (PROB-SMT)
for checking Alloy models with (suffix QI) and without quantifier instantia-

tion.
Runtime in ms
ProB

No. Model ProB Kodkod 73 SMT QI Kodkod-QI 73-Ql  SMT-QI
1 einstein_puzzle 14642 2158 > 300000 10977 29 348 3377 > 300000 2530

2 crewalloc 812 867 unknown 76 1734 2076  unknown 172

3 abstract_memory > 300000 wunf. (29) unknown > 300000 > 300000 > 300000 unf. (834) > 300000

4 cache_memory > 300000 > 300000 > 300000 > 300000 > 300000 > 300000 > 300000 > 300000

5 railway > 300000 unf. (83) unknown > 300000 > 300000 > 300000 unknown > 300000

6 dijkstra_2_process 9 24 unknown 19 11 36 369 16

7 chord > 300000 > 300000 unknown > 300000 > 300000 > 300000 wunknown > 300000

8 handshake > 300000 387 > 300000 > 300000 > 300000 > 300000 unknown 2552

9 farmer > 300000 > 300000 unknown > 300000 > 300000 > 300000 unknown > 300000
10 overlapping ranges 27 43 440 287 28 86 > 300000 269
Total Solved Constraints 4 5 1 4 4 4 1 5

Table[7.2)), which is the amount of SAT variables introduced for the Boolean abstraction
in SMT solving. The original formula without quantifier instantiation has three unique
predicates for all configurations of n.

First and foremost, it can be seen that both PROB’s constraint solver and PROB’s
SMT solver have no difficulties in solving the benchmarks. The integration of Z3, on the
other hand, shows performance drawbacks for an increasing size of quantified domains.
For n = 20, the integration of Z3 is not able to solve the constraint in 1 min. When
instantiating the quantifiers, the resulting formula has 382 unique predicates for n = 20
and can be solved in around 4 s by Z3. All in all, instantiating quantifiers increases the
performance of Z3 by several orders of magnitude for the selected benchmarks. This is
an interesting fact since the integration of Z3 already uses Z3’s model-based quantifier
instantiation. It seems that quantified formulas remain a difficult task for Z3. In contrast
to that, the instantiation of quantifiers neither has a positive nor negative effect on the
performance of PROB’s constraint solver or its SMT solver. Yet, this might be caused
by the already small runtime of both constraint solvers for the selected benchmarks.

In order to provide a more sophisticated performance evaluation of the quantifier
instantiation’s effect on the performance of constraint solving, we provide an evaluation
of a subset of constraints for checking Alloy commands in B used in Section [5.2} We
experienced that Alloy models often use quantifiers and thus, deem these constraints to
be adequate for this task. A solver timeout of 5 min was used. The benchmarks were
run on a system with an Intel Core 17-8750H CPU (2.2GHz) and 16 GB of RAM using
PROB version 1.12.0, SICStus Prolog version 4.7.0, and Z3 Version 4.12.3 built from
commit 1d62964c. The evaluated benchmarks can be seen in Table [7.3|

It can be seen that the instantiation of quantifiers does not fundamentally improve
the constraint solvers’ performance for the selected benchmarks. For PROB’s constraint
solver and its backend to Kodkod, instantiating quantifiers increases the total runtime.
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In particular, for the first benchmark in the case of PROB, and for the third and fifth
benchmark in the case of the backend to Kodkod. These results are as expected since
PROB already detects finite quantifiers that can be unfolded, and Kodkod is also not
known for having difficulties in solving finite quantifiers. It appears to be better to
not use quantifier instantiation for both solvers. For PROB’s SMT solver, instantiating
quantifiers improves the runtime for the first and eighth benchmark. In total, one
more constraint can be solved when using quantifier instantiation. Here, it should be
noted that the quantifier instantiation leads to more Boolean variables in the SAT solver,
which can improve the search compared to using a single Boolean variable for a complete
quantifier, e.g., by leading to more conflicts and clause learning. The integration of Z3 is
able to solve two more constraints when instantiating quantifiers, namely the benchmarks
numbered three and six. For the third benchmark, a contradiction has been found
but Z3 can actually not decide for the satisfiability due to the use of unfixed deferred
sets. Z3’s performance decreased for the tenth benchmark. Overall, instantiating too
many quantifiers does not seem to be beneficial. Due to the performance improvement
presented in Table [7.2] we decided to apply quantifier instantiation for Z3 by default.
However, we use a limit for unfolding quantifiers which can be set via an option in
ProB.

In Z3, it is possible to provide triggers for universal quantifiers defining patterns that
are used to find relevant instances, which is also known as E-matching [227]. In the
future, we want to investigate whether the use of triggers is more performant than
instantiating universal quantifiers prior to the translation to SMT-LIB, e.g., as was
recently presented by Rosalie Defourné for TLA™ [228]. Here, we can use our quantifier
instantiation to generate appropriate triggers.

7.6. Additional Empirical Evaluation

The empirical performance evaluation presented in Section |6.7| and Section [7.4] served
the purpose of showing general benefits of PROB’s constraint solver, its integration
of Z3, and its SMT solver. In order to gain a deeper insight in the strengths of the
different constraint solving backends, we provide a rather quantitative than qualitative
empirical evaluation in the following. For this, we use 150 classical B, Event-B, and
TLA"' models that are publicly available in PROB’s specification repository [229]. We
created constraints from bounded model checking and constraint-based checking as done
in Section Each model has at least 25 states, 1 invariant, and 1 machine operation
or event. Around 75% of the machines have at least 5 machine operations or events and
at least 10 invariants.

For the following empirical evaluations, we used the same software and system set-
tings as in Section [7.4 Unfortunately, we experienced several exceptions when using Z3
for the selected benchmarks (out-of-memory, assertion violation, segmentation fault).
Throttling specific parameters of Z3 as described in Section has mitigated the occur-

!The benchmarks can be found in the following Github repository to reproduce the results: https:
//github.com/Joshua27/cbc_benchmarks/
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rence of out-of-memory exceptions during quantifier instantiations. Yet, it can still be
the case that Z3 runs out of memory when generating quantifier instantiations. Further,
ProB’s SMT solver ran out of memory for a few benchmarks, which needs to be in-
vestigated more thoroughly. In the worst case, an out-of-memory exception of Z3 leads
to killing the main thread including PROB. This is always the case for an assertion
violation and segmentation fault since they cannot be caught by exception handling.
Corresponding benchmarks were removed from the evaluation.

PROB implements common subexpression elimination as described in Section [2.6]
This technique is similar to SMT solving in the sense that common variables and pred-
icates are pooled in order to be only solved once. Further, PROB’s constraint solver
provides an additional backend defining constraint-handling rules (CHR) to improve the
performance for finding contradictions. We consider both additional backends in the fol-
lowing evaluation. Last but not least, we also use static symmetry breaking for PROB’s
constraint solver to investigate the impact of symmetry breaking independently of SM'T
solving.

7.6.1. Bounded Model Checking

We used PROB to check 133 different models for a depth of 1, 5, and 10 state changes by
generating corresponding monolithic BMC constraints and searching for a solution, i.e.,
a counterexample to a machine invariant. In total, we gathered 399 distinct constraints.
The constraints of all benchmarks have an average amount of 196 unique conjuncts or
disjuncts, a median amount of 175, and a maximum amount of 2349. The evaluated
benchmarks can be seen in Table [D.1l and Table [D.2]

Figure [7.3| shows a Venn diagram including the best performing configurations of
PROB'’s constraint solver, its integration of Z3, and its SMT solver. It can be seen that
each constraint solver has its own benefits while the parallel integration of Z3 is able to
solve the most amount of constraints. In total, 60 constraints can be solved using 73
which cannot be solved using PROB’s constraint solver. 58 of these constraints are un-
satisfiable and 2 are satisfiable. Some of these constraints use linear integer arithmetic
and unbounded domains for which PROB’s CLP(FD) backend is not able to identify
contradictions within the predefined timeout. This again shows that Z3 has strong the-
ory solvers for linear integer arithmetic, which extend the constraint solving capabilities
of PROB. Further, we deem clause learning of Z3 to improve the identification of contra-
dictions compared to PROB’s constraint solver. 27 of the constraints that can be solved
by PROB’s constraint solver but not Z3 are satisfiable, which shows that Z3 often has
problems in finding solutions for satisfiable B and Event-B constraints. For instance, Z3
is often not able to decide for the satisfiability of constraints if set cardinality constraints
or functions are used as discussed in Section [6.7.1] This was one motivation to provide
a direct implementation of SMT solving in PROB using its constraint solver as a theory
solver. PROB’s constraint solver allows solving 18 constraints that cannot be solved by
the other constraint solvers while its SMT solver is able to do so for 2 constraints. In
total, the SMT solver allows solving 19 constraints that cannot be solved by Z3, of which
11 constraints are satisfiable. Compared to PROB’s constraint solver, the SMT solver
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Figure 7.3.: A Venn diagram showing the amount of BMC constraints that can be solved
by PROB’s constraint solver, its parallel integration of Z3, and its SMT
solver using the additional static analysis and symmetry breaking as can be

seen in Table and Table .

allows solving 21 constraints more in total. 20 of these constraints are a contradiction
and 1 is satisfiable. Here, we deem clause learning to improve the performance for find-
ing contradictions. Yet, PROB’s constraint solver is able to solve 42 constraints that
cannot be decided by the SMT solver, of which 28 constraints are satisfiable. The major
reason for this difference is that the SMT solver often propagates theory constraints
in an order that is inconvenient for PROB’s constraint solver. This leads to exceeding
the predefined timeout when grounding domains after finding a complete solution for a
formula’s Boolean abstraction without ever returning to the actual SMT solving routine.
For instance, PROB’s constraint solver is able to solve the benchmarks numbered 39 to
41 in several milliseconds while its SMT solver exceeds the predefined timeout. It seems
that SMT solving is not beneficial if PROB’s constraint solver is already able to solve
a constraint in a short amount of time. We investigated the use of the SMT solver’s
additional theory solver for the integer difference logic as described in Section [6.6] Un-
fortunately, the problems in grounding domains are not caused by the integer difference
logic but set theoretical constraints. In the future, we thus want to investigate the inte-
gration of an additional theory solver for first-order logic and, in particular, set theory
in PROB’s SMT solver. For instance, an interface to {log} [230] seems promising.

The constructive translation to SMT-LIB is superior to the axiomatic one for the
selected benchmarks since it is able to solve 22 more constraints in about half the time
as can be seen in Table [D.2l When using the axiomatic translation, Z3 is able to solve
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5 constraints that cannot be solved using the constructive translation, which are all
satisfiable. 6 constraints that can only be solved using the constructive translation are
satisfiable and 21 constraints are unsatisfiable. This shows that using lambda functions
instead of quantified formulas improves both proving and disproving of translated B and
Event-B constraints. Further, the parallel integration of both translations to SMT-LIB
is again justified. The decomposition of constraints into independent components does
not allow solving more constraints than the plain parallel integration. In particular, it
increases the total runtime and even prevents solving 14 constraints. Here, it can be the
case that Z3 failed to solve one component (unknown) leading to an overall failure while
it is able to solve the full constraint. In total, the translation to SMT-LIB failed for
16 constraints due to missing translations. For instance, we are not able to efficiently
encode the set of all natural numbers in SMT-LIB. The total runtime of the parallel
integration of Z3 is considerably larger than the one of the integration that only uses
the constructive translation to SMT-LIB. A reason is that we interrupt a solver instance
of 7Z3 if another instance has found a solution and wait for it to return to the main
procedure. Z3 only provides a soft interrupt that waits for specific program points in
order to clean up the memory. Thus, interrupting a solver instance of Z3 does not result
in an immediate interruption.

For PROB’s constraint solver, neither using CSE nor using the CHR backend allows
solving more constraints. Overall, it can be seen that PROB’s native constraint solver is
the best choice by default. Static symmetry breaking does not allow solving more con-
straints compared to PROB’s default constraint solver and slightly increases the total
runtime due to the computation of symmetry breaking predicates. Here, it should be
noted that computing graph automorphisms for symmetry breaking is in the complexity
class NP. We thus use a timeout of 10s for computing symmetry breaking predicates.
In total, 185 constraints contain symmetries. The maximum amount of computed sym-
metry breaking predicates is 45, the median is 2, and the mean is 4.9. Generally, we
deem symmetry breaking to be useful for finding contradictions and especially when
computing all solutions of a constraint. When computing a single solution, breaking
symmetries is not necessarily beneficial. For the selected benchmarks, it seems that
symmetric constraints are not a difficulty for constraint solving using PROB.

ProOB’s SMT solver does not allow solving more constraints in total compared to
its native constraint solver and its integration of Z3 for the selected benchmarks. The
additional static analysis improves both the performance and coverage, which can be
seen when comparing the total results of the SM'T and Raw-SMT as well as Sym-SMT
and Sym-Raw-SMT configurations in Table[D.2] When comparing the total results of the
SMT and Sym-SMT solver configurations, it can be seen that static symmetry breaking
improves both the performance and coverage of SMT solving. Here, it should be noted
that small differences in the theory solver can lead to finding other theory conflicts first,
which can fundamentally change the search path of the SMT solver.

For the selected benchmarks, PROB’s constraint solver is not able to decide for the
satisfiability of 39 constraints due to the use of unfixed deferred sets while its SM'T solver
using static analysis and symmetry breaking is not able to do so for 34 constraints and
the parallel integration of Z3 for 44 constraints.
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Figure 7.4.: A visualization of the BMC benchmark results presented in Table and
Table showing the amount of constraints that can be solved by a con-
straint solver within a specific amount of time.

Figure visualizes all considered constraint solvers’ runtimes. Most constraint
solvers are not able to solve fundamentally more constraints after around 100s. Only
PrOB’s SMT solver configurations are able to solve several more constraints after around
115s, and might be able to solve more constraints when increasing the predefined time-
out. Yet, the overall results already show benefits of each constraint solving backend
and, in particular, of Z3. When comparing the graphs of the SMT solver configura-
tions with and without the additional static syntax analysis, it can be seen that adding
the inferred constraints improves the performance from the beginning. Further, it can
be seen that PROB’s constraint solver is able to solve many constraints faster than its
SMT solver from the beginning. This again suggests that the order of theory constraints
propagated by the SMT solver is often suboptimal for PROB’s constraint solver.

7.6.2. Deadlock and Inductive Invariant Checking

Besides constraints from bounded model checking, we again use constraints for proving
deadlock freedom and the inductiveness of invariants as done in Section [6.7.2] In total,
we gathered 112 distinct constraints for deadlock checking, which is equal to the amount
of used models. The constraints of all benchmarks have an average amount of 27 unique
conjuncts or disjuncts and a median amount of 20. The largest constraint contains 123
unique conjuncts or disjuncts. The evaluated benchmarks can be seen in Table and
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Figure 7.5.: A Venn diagram showing the amount of constraints from deadlock freedom
proofs that can be solved by PROB’s constraint solver, its parallel integra-
tion of Z3 that decomposes constraints into independent components, and
its SMT solver without any additional syntax analysis as can be seen in

Table .

a corresponding Venn diagram in Figure [7.5]

PROB’s constraint solver is able to solve the most amount of constraints for the se-
lected benchmarks. Using CSE or the additional CHR backend does not improve the
performance. PROB’s SMT solver is able to solve more constraints than the integration
of Z3 in total, and is able to solve one constraint that cannot be decided by PROB’s con-
straint solver as can be seen in Figure [7.5] In total, PROB’s SMT solver configurations
have a runtime that is around one order of magnitude higher than the one of PROB’s
constraint solver. Again, we assume that the order of theory constraints propagated by
the SAT solver is not ideal leading to many conflicts being found. The SMT solver then
finally exceeds the predefined timeout while PROB is able to solve the constraints in a
short amount of time, e.g., for the benchmarks numbered 34 to 37, 52, 53, 86, 87, and
99. In particular, for the benchmarks numbered 35 to 37, the SMT solver configurations
without the static analysis are able to solve the constraints in one second while the
additional inferred constraints lead the SMT solver in a different direction resulting in
exceeding the predefined timeout.

A total of 34 constraints contain symmetries, one of which contains 18 symmetric
variables, which is the maximum amount of symmetric variables. The median amount of
symmetric variables in these constraints is 3, and the mean is 3.9. Breaking symmetries
neither improves the performance for PROB’s constraint solver nor its SMT solver.
Again, we deem symmetry breaking to show its full potential when searching for all
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Figure 7.6.: Venn diagrams showing the amount of constraints from inductive invariant
proofs that can be solved by PROB’s constraint solver, its integrations of
73, and its SMT solver without any additional static analysis as can be seen

in Table

solutions of a constraint or when finding contradictions. Apparently, contradictions can
already be found fast without breaking symmetries for the selected benchmarks.

For the integration of Z3, both translations to SMT-LIB show distinct benefits which
again justifies the use of parallelization. The constructive translation to SMT-LIB is
more likely to give up constraint solving (unknown), which can be seen when comparing
the total runtimes of the axiomatic and constructive solver configurations in Table [D.3
The decomposition of constraints into independent components decreases the total run-
time by around 200s compared to the plain parallel integration of Z3. Here, we deem
that several contradictions were found in one of the first components, which prevents
solving the remaining components afterwards. In total, the translation to SMT-LIB
failed for one constraint due to the use of unsupported operators when parallelizing
both translations.

PROB’s constraint solver and its SMT solver configurations are not able to decide
for the satisfiability of 19 constraints due to the use of unfixed deferred sets while the
parallel integration of Z3 is not able to do so for 21 constraints.

We further gathered 1302 constraints from 116 different models for inductive invariant
checking. Here, the benchmarks have an average amount of 59 unique conjuncts or
disjuncts, a median amount of 22, and a maximum amount of 353. The evaluated
benchmarks can be seen in Table [D.4

For PROB'’s constraint solver, CSE and the additional CHR backend do not allow
solving more constraints and slightly increase the total runtime for the selected bench-
marks. The constructive translation to SMT-LIB is superior to the axiomatic one since
it allows solving 32 more constraints in total. In particular, using lambda functions
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enables solving 52 constraints that cannot be decided when only resorting to quantifiers
as can be seen in the Venn diagram on the right-hand side of Figure Yet, the ax-
iomatic translation also has benefits since it allows solving 20 constraints that cannot
be decided when using lambda functions. The decomposition of constraints into inde-
pendent components (PROB-Z3-Dec) does not improve the performance for the selected
benchmarks. PROB’s SMT solver without any additional static analysis (PROB-Raw-
SMT) is superior to the different configurations of PROB’s constraint solver since it
allows solving 8 more constraints in total. Further, the SMT solver is able to decide for
the satisfiability of 26 constraints that cannot be decided by PROB as can be seen in the
Venn diagram on the left-hand side of Figure [7.6] 5 of these constraints are satisfiable
and 21 are unsatisfiable. This shows that SMT solving is often better suited for find-
ing contradictions compared to using CLP as is the case for PROB’s constraint solver.
However, PROB is able to decide for the satisfiability of 18 constraints that cannot be
decided by its SMT solver. 6 of these constraints are satisfiable and 12 are unsatisfiable.
In the case of the satisfiable constraints, the SMT solver seems to be guided in a direc-
tion that is inconvenient for the theory solver as is the case for the benchmarks from
bounded model checking presented in Section [7.6.1], which finally leads to exceeding the
predefined timeout. Again, we deem that an additional theory solver for first-order logic
and set theory might improve this issue. The SMT solving framework enables an easy
integration of different theory solvers alongside PROB’s constraint solver as presented in
Section [6.6] For the unsatisfiable constraints, PROB’s constraint solver seems to be able
to detect the contradiction when setting up all constraints at once while the SMT solver
is not able to check all Boolean assignments within the predefined timeout. For the
selected benchmarks, the additional static syntax analysis does not allow solving more
constraints and slightly increases the total runtime, which can be seen when comparing
the total results of the SMT and Raw-SMT configurations in Table Surprisingly,
static symmetry breaking decreases the performance of SMT solving since it prevents
solving several constraints and increases the total runtime. We deem that the additional
theory constraints guide the theory solver in a direction that is not beneficial for solving
the selected benchmarks. For PROB’s constraint solver, static symmetry breaking also
does not improve the performance. In total, 556 constraints contain symmetries. The
maximum amount of found symmetry breaking predicates is 37, the median is 4, and the
mean is 8. Further, PROB’s constraint solver is not able to decide for the satisfiability
of 79 constraints due to the use of unfixed deferred sets while its SMT solver is not able
to do so for 74 constraints and the parallel integration of Z3 for 82 constraints.

In summary, most constraints can be decided by each constraint solving backend as
can be seen in the Venn diagrams in Figure and Figure [7.6] Yet, each constraint
solver is able to solve constraints that cannot be decided by the other backends. This
again confirms that using different constraint solvers is beneficial.
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7. Additional Experiments and Considerations

7.7. Soundness

One of the most important aspects of constraint solving is soundness. We have neither
proven the soundness of PROB’s integration of Z3 nor its SMT solver. Different kinds of
tests were implemented to ensure certain behavior, which are described in the following.
In this context, we would like to draw the reader’s attention to a quote from Edsger
Wybe Dijkstra: “Testing shows the presence, not the absence of bugs.” [, p.16]

We provide unit tests for many Prolog predicates used in PROB’s integration of Z3
and its SMT solver. While unit tests are suitable to test single components, we deem
integration tests to be most important for testing a constraint solver. In particular,
we provide integration tests that send constraints to a constraint solver using its main
interface predicate. We hereby want to answer the following questions for a specific
constraint regarding a constraint solver’s different possible outcomes:

1. contradiction: Is the constraint indeed unsatisfiable?
2. solution: Is the found solution correct?
3. Was an error exception thrown when solving constraints regardless of the result?

Error exceptions can be thrown by the Prolog interpreter itself or by our own error
handling, e.g., if reaching unexpected code. We also catch Z3’s runtime exceptions and
throw corresponding errors in Prolog.

We implemented a constraint solving routine in PROB for both the integration of Z3
and PROB’s SMT solver where the results are checked with PROB’s constraint solver
according to the first two questions presented above. This routine can also be used
via PROB’s command-line interface either using the command cdclt-double-check,
z3-double-check, cdclt-free-double-check or z3-free-double-check. The first
two commands solve constraints considering the current machine’s state while the other
commands solve constraints without considering a state.

As of now, we have implemented 643 integration tests for PROB’s integration of Z3
and 683 integration tests for PROB’s SMT solver. The constraints stem from logic
puzzles, manual tests, (minimal) examples reproducing prior bugs, and benchmarks,
e.g., as presented in Section to check for consistency and a possible performance
regression. The tests are located in PROB’s test suite and are executed each night using
Gitlab CI/CDP] Note that the constraint solvers’ results for the benchmarks presented
in Section have been verified for consistency using PROB’s constraint solver as far as
it was able to do so within a predefined timeout. This verification was performed in our
programming module for benchmarking. We did not include all of these benchmarks in
PROB’s test suite due to the long time that is necessary to solve the constraints.

PRrROB’s test suite allows setting an option to fail if any error was thrown during a
test case, which enables to investigate the third question from above.

To provide a more diverse set of test cases, we decided to use a fuzzer for SICStus
Prolog that was tailored towards generating B and Event-B constraints [231]. The

2https://docs.gitlab.com/ee/ci/
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constraints are generated as abstract syntax trees as understood by PROB’s Prolog core
and accepted by all of PROB’s constraint solving backends [231]. The goal of fuzzing is
to test a program by generating (semi-)randomized inputs and inspecting the behavior
and results. If a fuzzer has found an input for which a test case fails, it shrinks this input
to find a minimal reproducible example. We implemented 10 different fuzzing tests for
PrOB’s SMT solver each generating 100 000 randomized B and Event-B constraints. In
each test, the fuzzer is guided to generate different kinds of constraints, e.g., using no
strings, no sets or a large amount of disjunctions or conjunctions. Further, intentionally
not well-defined B and Event-B constraints are generated to ensure that PRoOB’s SMT
solver and its integration of Z3 do not return any not well-defined result. We have found
fuzzing to be a useful approach to testing. We were able to find several bugs some of
which only occurred in rare special cases, which would probably not have been found
that easily using manually created test cases. The fuzzing tests are also executed each
night using Gitlab CI/CD.

During the development of PROB’s SMT solver, we extended PROB’s unsatisfiable
core computation as described in Section to optionally use Z3 or PROB’s SMT
solver for solving constraints. In this process, we noted that it is a useful method for
testing a constraint solver to let it compute an unsatisfiable core of a formula and verify
that the resulting formula is indeed a contradiction using a different constraint solver.

167






Part |V.

Conclusion

169






8. Translating Alloy and Extensions to
Classical B

The Alloy language has gained popularity in the formal methods community. We noted
that the Alloy Analyzer is able to solve complex relational constraints fast and provides
sophisticated features for the analysis and visualization of formal models. Yet, we also
recognized benefits of the B language, e.g., when using integers, and PROB regarding
tool support. The following research questions thus arose, which could be answered in
this thesis.

Which steps are necessary to automatically translate Alloy models into B?
We presented an automated integration of Alloy 5 in PROB using the Alloy Analyzer’s
parser and typechecker as well as a custom implementation transforming parsed models
into a Prolog representation. In Chapter 4, we presented a formal description of a trans-
lation from Alloy 5 and extensions to classical B. The translation rules are implemented
in PROB’s Prolog core using PROB’s typechecker for typing resulting abstract syntax
trees. While the presented translation rules cover the complete core language of Alloy
5, there might be models that are currently not supported by our implementation, e.g.,
due to type errors in B. Such errors will of course be corrected when reported. The Alloy
language is weakly typed and allows for a flexible application of operators, e.g., using
Alloy’s relational join operator. This often requires many special cases for our trans-
lation rules to match B’s typing. For instance, integers are singleton sets in Alloy and
arguments of arithmetic operations are implicitly summarized, which makes it possible
to add an integer and a set of integers. In B, this is not possible due to its strong typing.

Further, Alloy provides a universal type, noted univ, which has no direct counterpart
in B. While it is possible to introduce a corresponding universal type in B using a deferred
set, this prevents PROB to apply different techniques such as symmetry breaking since
no distinct sets for different signatures are present. In consequence, we decided to only
create parent types for specific signatures if necessary as described in Section [£.4.4]

Another flexible feature of Alloy is the keyword this, which is not available in B. For
translating Alloy to B, we have to make sure to wrap B data into a singleton set or
remove such before applying B operators including this depending on the underlying
value.

Our work has shown that the implementation of an automated translation from Alloy
5 to B is possible but a tedious and error-prone task requiring many special cases due
to the different kinds of typings.

In Section [5.3] we have shown that a translation from Alloy 6 to B is also possible.
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The new concept of state changes can be translated using B machine variables, and LTL
formulas as well as LTL model checking are supported by PROB. The declarative defi-
nition of state changes in Alloy 6 requires a preprocessing of Alloy predicates extracting
the actual assignments of state variables to achieve an idiomatic translation. The reason
is that B uses operational semantics explicitly assigning single variables. Alternatively,
B’s ANY substitution can be used, which does not require the extraction of assignments
from Alloy predicates. This translation to B is easier to implement but less readable
and performant than single assignments. A difference between Alloy 6 and B is that
Alloy allows assigning any state while B only allows assigning the next state in a single
machine operation. Therefore, Alloy predicates assigning any previous or future state
other than the next state cannot be translated to B. Apart from that, we do not see any
syntax elements or semantics that cannot be translated to B automatically. The Alloy
Analyzer can again be used for parsing and typechecking Alloy 6 models. However, it
should be noted that the recent version for Alloy 6 cannot be used for all Alloy 5 models
since a few syntactic changes have been introduced. For instance, the single quote has no
semantics in Alloy 5 but defines a mutable variable’s next state in Alloy 6. To support
both Alloy 5 and Alloy 6 in PROB, we thus have to integrate two different versions of
the Alloy Analyzer’s parser and typechecker.
In summary, the necessary steps we found for integrating Alloy into PROB include

— using the Alloy Analyzer’s parser and typechecker (different versions for Alloy 5
and Alloy 6),

— transforming parsed models into a Prolog representation,

— in case of Alloy 6, extracting variable assignments from stateful Alloy predicates
for single assignments, or resorting to a less idiomatic translation using B’s ANY
substitution,

— deciding for a translation of Alloy’s universal type,

— providing syntax-directed translation rules for all language constructs in PROB’s
Prolog core, and

— using PROB’s typechecker for verifying the translation’s typing.

How does ProB compete in checking Alloy models compared to the Alloy
toolchain? The empirical evaluation in Section has shown that PROB improves
the performance of solving integer constraints compared to the Alloy 5 Analyzer by
several orders of magnitude. A reason is that the Alloy Analyzer translates constraints
to SAT, where integers are encoded as bits. This entails that arithmetic operations are
also encoded in propositional logic, e.g., introducing a full-adder. Consequently, the size
of CNF's gets larger, and generating a CNF in the Alloy Analyzer can take longer than
loading and solving the translated B formula in PROB.

We decided to prevent Alloy’s univ type in B for efficiency. Instead, our imple-
mentation captures signatures that have a common base type and introduces artificial
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signatures for corresponding base types in the Alloy model as described in Section [4.4.4]
However, apart from solving integer constraints, PROB does not improve the perfor-
mance of constraint solving for Alloy models compared to the Alloy Analyzer as shown
in Section 4.7 and Section[5.2] The different concept of modeling in Alloy compared to B
renders constraint solving for translated models complex in PROB. Relational operators
are heavily used in Alloy since n-ary finite relations are the only type of terms. The
Alloy community seems to avoid the use of integers if possible since they are not well-
supported by the Alloy Analyzer and, in particular, by SAT solvers. The experiments
of translating Alloy 6 to B presented in Section further emphasized this trend. An
exemplary syntax-directed translation of an Alloy 6 model to B cannot be checked by
PROB in a reasonable amount of time. Yet, this is also the case for the Alloy Analyzer’s
model checking backends. Here, we deem the suggested model to be not optimal for
model checking since it defines many (symmetric) states. An idiomatic B model of the
same puzzle that uses integers and a total function instead of many relational operators
can be checked by PROB in a short amount of time. A corresponding model in Alloy
6 can still not be checked by the Alloy Analyzer’s model checking backends while a
syntax-directed translation to B can again be checked fast by PROB.

In summary, it is currently only possible to efficiently check a subset of Alloy models
using PROB, but first experiments show benefits of using the PROB model checker for
checking Alloy 6 models compared to the Alloy Analyzer’s backends.

What are significant strengths and weaknesses of SAT solving (Alloy Ana-
lyzer) compared to CLP (ProB)? One weakness of SAT solving involving background
theories (aka eager SMT solving) is the integer arithmetic. A bit width has to be de-
fined to translate integers to propositional logic and integer overflows might occur. In
Section [4.8.1) we have shown that the integer arithmetic in Alloy is unsound when the
overflow detection is turned off. Further, a translation to propositional logic is restricted
to finite domains. CLP and PROB’s constraint solver both support integers over un-
bounded domains and integer overflows do not occur.

For relational constraints over finite domains such as the transitive closure, a trans-
lation to propositional logic shows benefits compared to CLP. The Alloy Analyzer’s
backend to Kodkod is able to solve complex relational formulas in a short amount of
time as shown in Section Here, the concept of reducing and enumerating domains
as applied in CLP can result in many choice points possibly inducing a lot of backtrack-
ing, especially when disproving formulas. PROB’s constraint solver already implements
a bit vector encoding of sets whose cardinality has to be computed, which was in-
spired by translations to propositional logic as applied by Kodkod. This encoding is
applied lazily as soon as a set is known to be finite within the constraint solver. In
the future, it should be investigated whether such eager SMT encodings can also lift
PROB’s performance for solving specific relational constraints. For instance, neither
PROB'’s constraint solver nor its interface to Kodkod are able to prove the constraint
closure({1 — 2,2 — 3}) ¢ 1.3 > 1..3.

Further, a manual combination of SAT solving and CLP in PROB resorting to Kodkod
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where both constraint solvers share constraints has shown benefits [I56]. An automated
integration of both constraint solvers seems promising to be investigated in the future.
Our empirical evaluations have shown that it might be beneficial to automatically send
all finite relational constraints to Kodkod, e.g., a transitive closure, and let the remaining
constraints be solved by PROB.

[RQ4: Which main use cases can be singled out in which both languages com-
plement each other? The benefits of SMT for solving Alloy models was already es-
tablished prior to our work [213]. We further emphasized the need for sound integers
in Alloy including other constraint solving backends than SAT solving (aka eager SMT
solving), e.g., PROB, and contributed to an ongoing discussion on natively integrating
state changes in the Alloy language at that time. Afterward, different work on integrat-
ing SMT solvers in Alloy was presented [214], 232]. Further, the Alloy 6 language was
presented, which natively provides a declarative concept of state changes as well as na-
tive BMC and complete model checking via external model checkers. In Section [5.3 we
have shown that PROB’s explicit-state and LTL model checkers can improve the perfor-
mance of checking translated Alloy models compared to the Alloy Analyzer’s backends.
Yet, the style of modeling in Alloy often leads to non-idiomatic constraints in B causing
a bad performance of model checking, which is also the case for the Alloy Analyzer’s
backends. Besides using PROB’s model checker, we deem a native explicit-state model
checker to be beneficial for verifying state-based Alloy 6 models.

The B language could be more flexible to improve its accessibility for novices, e.g.,
by providing an operator similar to Alloy’s relational join operator. In B, one has to
remember many different syntactical symbols for the different types of functions. Alloy,
on the other hand, uses quantities such as some or one, which can be more accessible
in the beginning. However, in contrast to Alloy, the B language defines denotational
semantics, which we believe prevents confusion in the long term. The Alloy Analyzer
provides a vivid visualization of models called magic layout. Inspired by this, a similar
layout for visualizing B and Event-B models was integrated in PROB’s new graphical
user interface based on the Java platform [233], which is especially useful for visualizing
single states as is the case when using model finding. Yet, for visualizing state-based
models, we deem an interactive animator as provided by PROB to be more useful, and
suggest extending the Alloy Analyzer to integrate a similar animator in its graphical
user interface.
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9. SMT Solving for the Validation of B
and Event-B Models

An integration of the Z3 SMT solver in PROB revealed benefits for findings contradic-
tions in B formulas compared to PROB’s constraint solver, especially over unbounded
domains [48]. Yet, the translation uses many quantifiers for which Z3 often fails to find
solutions. The following research questions thus arose, which could be answered in this
thesis.

[RQ5:] How can the performance and coverage of ProB’s integration of Z3 be im-
proved? We found that Z3 supports lambda functions which can be used for many
translations of B operators to SMT-LIB as understood by Z3 and presented formalized
translation rules in Section [6.4 Different empirical evaluations in Section [6.7, Sec-
tion and Section have shown that using lambda functions instead of quantified
formulas improves the performance of Z3 for solving B and Event-B constraints, espe-
cially for model finding. We were also able to improve the coverage of the translation
by supporting B’s relational closure, iteration, and composition. These operators are
not supported by the initial axiomatic translation to SMT-LIB since their translations
using quantifiers are too involved. Unfortunately, Z3’s support for lambda functions was
unsound. This lead to Z3 disabling the use of lambda functions inside recursive defini-
tions after a corresponding software bug was reported [I86]. The translations presented
in Section [6.4.1] are thus currently not supported by Z3 version 4.12.2 but remain valid
in theory. Once Z3 provides full support for lambda functions, their implementation in
PROB can be activated again.

The empirical results have further shown that the initial axiomatic translation from
B to SMT-LIB also has benefits compared to the new constructive translation. We thus
presented a new parallel integration of different configurations of Z3 in PROB using
both translations to obtain the best performance. Further, we found that contradictions
that are obvious in B might become complex to spot by Z3 after translating to SMT-
LIB. For this, we decided to abstract B formulas to propositional logic as applied by
lazy SMT solvers and check if a resulting formula is satisfiable using a small timeout
(around 50 ms) as described in Section [6.7.1] If this is not the case, we have found
a contradiction and do not have to translate a formula to SMT-LIB. Additionally, we
found that a decomposition of constraints into independent components prior to the
translation can improve the performance for finding contradictions, e.g., as is the case
for the benchmarks from inductive invariant proofs presented in Section [7.6.2] Yet, this
depends on the order of components to be solved.
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Last but not least, instantiating quantifiers that reason over finite domains prior to
the translation to SMT-LIB can improve the performance of constraint solving for 73
as shown in Section [7.5]

[RQ6:| Which steps are necessary to use ProB’s constraint solver as a theory solver
for SMT solving of B and Event-B constraints? In Section we presented a
direct implementation of SMT solving in PROB using sophisticated features such as
early pruning, watched-literals, theory propagation, and restarts with phase saving. It
is easy to use PROB’s constraint solver as a theory solver with early pruning by using
coroutines for constraint reification in Prolog. One pitfall is to send not well-defined
predicates to PROB’s constraint solver as is usually done in SMT solving. In low level
Prolog code, the constraint solver does not report well-definedness errors. Thus, PROB’s
constraint solver neither confirms nor refutes the satisfiability of a formula if it is not well-
defined. This can lead to spurious counterexamples being found by the SMT solver since
possibly correct solutions of the SAT solver are refuted by the theory solver. We solved
this issue by adding all necessary well-definedness conditions to each theory constraint
that is reified with a Boolean variable as described in Section [6.5.4] and formalized in
Section [7.3] Further, we introduce implications for each well-definedness condition in
propositional logic to inform the SAT solver about B’s well-definedness. This information
allows for clause learning from well-definedness conditions and therewith improves the
performance of SAT solving for Boolean abstractions of B and Event-B constraints.

Another peculiarity of PROB’s constraint solver is that it implements theory propa-
gation but does not provide explanations for derived formulas, which are required for
SMT solving. We thus presented a method for lazily explaining theory propagations by
computing an unsatisfiable core as described in Section [6.5.4]

Last but not least, an important aspect to consider when solving B and Event-B con-
straints are so-called unfixed deferred sets. There are different points in SMT solving
where unfixed deferred sets can lead to spurious counterexamples being found whose
occurrences need to be logged. We found that learning from such spurious counterex-
amples can lead to finding solutions in which case the use of unfixed deferred sets is
irrelevant as described in Section [7.1} Yet, if refuting a formula after propagation one
or more unfixed deferred sets, the SMT solver has to indicate that no decision could be
made (unknown), which corresponds to the behavior of PROB’s constraint solver.

[RQ7: What are significant benefits of a direct implementation of SMT solving in
ProB compared to using Z3? First and foremost, the direct implementation of SMT
solving in PROB has the benefits of every proprietary software such as an increased
maintainability and extensibility. Compared to the integration of Z3, we do not have to
care for a high memory consumption, possible segmentation faults or assertion violations,
which possibly lead to killing Z3’s process.

Despite its benefits for solving many B constraints, the integration of Z3 fails to solve
many constraints that are easy to solve for PROB. For instance, Z3 is not able to find
a solution for x € P(Z) A card(x) > 10. The main benefit of using PROB as a theory
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solver in SMT solving is that it is tailored towards solving B and Event-B constraints
such as the set cardinality or relational composition. Further, the translation to SMT-
LIB does not support the complete B language, which is the case for PROB’s constraint
and SMT solver. While the empirical results generally show that no constraint solver
is the best for all types of constraints, PROB’s SMT solver was able to solve several
constraints better than PROB’s constraint solver and its integration of Z3 as can be
seen in Section [6.7.2] and Section [7.6] Further, a custom implementation of SMT solving
enables the integration of an additional theory solver alongside PROB’s constraint solver
as shown in Section [6.6]

[RQ8:] What are significant strengths and weaknesses of CLP and SMT for solv-
ing B and Event-B constraints? SMT solving has proven to be especially useful for
finding contradictions, e.g., due to CDCL and backjumping. Further, using a Boolean
abstraction of a FOL formula can prevent a possibly infeasible enumeration in the theory
solver if a contradiction can already be detected by the SAT solver. CLP, on the other
hand, is often better suited to find solutions for satisfiable constraints. For instance,
we experienced issues in PROB’s SMT solver where the SAT solver assigns variables in
an order that is inconvenient for the theory solver resulting in exceeding the predefined
timeout. Yet, when setting up all constraints at once, PROB’s constraint solver is able
to find a solution fast using CLP. In the future, this issue might be improved by using
knowledge from the theory solver for the variable branching heuristic in the SAT solver.
Weaknesses of CLP are the application of chronological backtracking and that it does
not learn from conflicts.

In summary, it can be seen that strengths of CLP are weaknesses of SMT solving and
vice versa. Both techniques thus appear to be a must-have for any portfolio of constraint
solvers.

How can the performance of ProB’s constraint solver in disproving integer
constraints over unbounded domains be improved? The empirical evaluations pre-
sented in this thesis have shown that PROB’s constraint solver lacks performance for find-
ing contradictions over unbounded integer domains. A reason is that CLP(FD) resorts
to the plain enumeration of domains at some point, which is not feasible for unbounded
domains. For instance, PROB is not able to disprove the formulas z € ZAx > yAy > x
aswellasx € ZANy—z <1ANz—y < =3ANz—2<1. We presented a graph-based
constraint solver for the integer difference logic as well as an integration in PROB’s SM'T
solver alongside PROB’s constraint solver as described in Section [6.6] In Section [6.7.2]
we have shown that the additional theory solver improves the performance of PROB’s
SMT solver. First, the IDL solver often enables faster proving and disproving of IDL
constraints compared to CLP(FD), especially over unbounded integer domains, since it
does not enumerate domains but computes shortest paths in a directed graph. Second,
it automatically provides unsatisfiable cores without any additional overhead.

In the future, we can try to integrate the graph-based IDL solver into PROB’s con-
straint solver for solving quantified formulas over unbounded integer domains. For in-

177



9. SMT Solving for the Validation of B and Event-B Models

stance, PROB is not able to prove the formula V(z,y).(x € ZAy € Z = Jz.(x — z = y)).
Instead, the constraint solver recognizes that the domains cannot be enumerated ex-
haustively since they are unbounded and generates a virtual timeout (unknown). Here,
it should be noted that the integration of the IDL solver in PROB’s SMT solver does not
affect solving quantified formulas since they are abstracted as a single Boolean variable.
In particular, the theory solver thus receives complete quantified formulas as is the case
for PROB’s native constraint solver.

[RQI0:] What are significant features of Prolog that are specifically suitable or
unsuitable for implementing an SMT solver? We have found Prolog to be a good,
but not perfect, fit for implementing an SMT solver. First and foremost, Prolog is fast
and able to perform millions of logical inferences per second due to the restriction to Horn
clauses and the application of linear resolution for proof. Prolog natively implements
backtracking and it is simple to extend its capabilities to backjumping for CDCL. For
instance, one can use dynamic assertions that are checked for existence at each choice
point deciding on whether a choice point is evaluated.

Modern Prolog implementations such as SICStus Prolog provide efficient data struc-
tures such as mutable dictionaries with amortized constant access on existing elements.
Further, the language allows defining dynamic assertions and mutable state. These
features are important for an efficient management of an SMT solver’s state, which is
often accessed and updated concurrently. Besides that, Prolog provides coroutines for
a delayed propagation, which renders the implementation of features such as watched
literals, early pruning, and theory propagation easy.

Additionally, Prolog allows for an intuitive and performant processing of abstract
syntax trees due to the applied concepts of SLD-resolution and unification. For instance,
Prolog implements definite clause grammars which allow defining concise and fast rules
for rewriting propositional logic formulas to CNF.

Last but not least, we deem debugging to be easier in Prolog compared to low-level
languages such as C. Prolog’s debugger (trace/0) provides different features such as
entering, skipping or redoing specific calls, and the debugger can be started at any
time during the interpretation. Yet, one downside is that large abstract syntax trees in
predicate calls often render them difficult to read.

Unfortunately, using Prolog also has some disadvantages for SMT solving. First,
modifications of watched literals after propagating a SAT variable are undone when
backtracking which is not necessary for SAT solving as was already pointed out by Howe
and King [192]. In particular, all predicate calls are undone and checked for choice points
during backtracking or backjumping. When using imperative programming languages,
backjumping can be implemented faster since one just has to unassign all variables, clear
the state, and change the current level of the search. Second, Prolog does not allow
storing variable references globally. Therefore, an environment with variable references
has to be used to set the references in learned clauses and theory conflicts during SM'T
solving. Searching for the corresponding variable references causes additional overhead.
Since the amount of learned clauses during SAT and SMT solving can become large, this
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overhead is definitely notable. Last but not least, most low-level languages provide more
sophisticated implementations for heaps than Prolog. For instance, it is not possible to
efficiently update the priority of an element when using SICStus Prolog’s default library
for heaps. SAT solvers usually use a heap for managing their decision heuristic and
often perform updates on existing elements. We therefore implemented an interface
to the C++ Boost library in SICStus Prolog providing fibonaccy heaps. This C+-+
interface is backtrackable, i.e., the effect of operations is undone when backtracking, by
maintaining a counter for each element stating the time it was last updated.

All in all; we deem SAT solving to be more efficient in low-level languages such as C.
Nevertheless, in the case of SMT solving with PROB’s constraint solver, using a SAT
solver implemented in C would require many interface calls between Prolog and C, which
is not the case for a pure Prolog implementation.
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10. Future Work

Besides the already presented future work, we want to mention two more possibilities to
improve the performance of solving B and Event-B formulas in PROB.

Instead of using constraint solving, theorem proving might be beneficial for proving
and disproving B and Event-B formulas. A reason is that theorem provers do not
enumerate domains but use techniques such as the superposition calculus [234]. Here, a
predefined set of rewriting rules is applied for simplifying formulas to finally disprove the
initial goal, i.e., receive a contradictory statement. For proving, the initial formula can
be negated. For instance, this can potentially improve the performance for proving or
disproving integer constraints and quantified formulas compared to PROB’s constraint
solver, especially over unbounded domains. Further, theorem provers do not have to take
care of so-called unfixed deferred sets since their proofs are generally valid and do not
have to make assumptions on the size of deferred sets. Yet, a disadvantage of theorem
provers is that they do not provide explicit models, which is required for many tasks
in PROB such as the animation of models or computing counterexamples for invalid
properties. One possibility for integrating automated theorem provers in PROB is to
translate constraints into the TPTP language [235] and use dedicated theorem provers.

In Section and Section [7.6] it could be shown that CDCL(T) improves the per-
formance for several constraints compared to plain saturation-based solving, especially
for finding contradictions. Instead of learning constraints as is done in CDCL, one
promising future work for improving the performance of constraint solving is to learn
behavior in PROB’s constraint solver. For instance, Zombori et al. [236] implemented re-
inforcement learning for guiding an automated theorem prover by learning from historic
data. Chalumeau et al. [237] presented a constraint solver implementing reinforcement
learning to learn branching decisions for certain types of constraints. PROB’s constraint
solver allows for a randomized enumeration of domains, which can improve the perfor-
mance of constraint solving. By default, domains are enumerated linearly. Yet, there is
no general domain enumeration order that is best for all types of constraints. It could
thus be useful to learn the enumeration order of domains for certain constellations of
constraints in PROB’s constraint solver, especially in its CLP(FD) backend. Besides
that, the application of certain rewriting or deduction rules in the constraint solver can
be learned. By using a randomized enumeration order, it is possible to generate many
simulations to implement search strategies such as a Monte-Carlo tree search.

PRrROB’s SMT solver would also benefit from such an improvement since PROB’s con-
straint solver is used as a theory solver. The SMT solver itself can possibly be further
improved by learning clause selections in the SAT solver. For instance, Jakubuv and Ur-
ban have shown that learning clause guidance can improve the performance of constraint
solving drastically [238].
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A. Alternative Alloy 6 Model of the
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16
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23
24
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29
30
31
32
33

34
35
36

Chameleon Puzzle

Listing A.1: Alloy 6 model of the ,,Chameleon Puzzle* [7].

enum colors {blue,green,yellow}

one sig population {
var chameleons: colors -> one Int

}

fact init {
(population.chameleons) [blue] = 13 and
(population.chameleons) [green] = 15 and
(population.chameleons) [yellow] = 17

}

pred meet[cl: colors, c2: colors] {
cl != ¢c2 and (population.chameleons)[cl] > O and (population.
chameleons) [c2] > O and
(let c3 = ((colors - cl) - c2) |
population.chameleons’ =
(((population.chameleons
++ (cl1->(minus [(population.chameleons) [c1],1]1)))
++ (c2->(minus [(population.chameleons) [c2],1]1)))
++ (c3->(plus[(population.chameleons) [c3],2]))

))

}
pred skip {

population.chameleons’ = population.chameleons
}
fact step {

always ((some cl,c2: colors meet [cl,c2]) or skip)
}
pred invariant {

eventually ((population.chameleons) [blue] = 0 and (population.

chameleons) [green] = 0)

}

run invariant for 7 Int, 361 steps
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A. Alternative Alloy 6 Model of the Chameleon Puzzle

Listing A.2: A manual translation of the Alloy 6 model presented in Listing |A.1| to
classical B.

1 MACHINE chameleon_alloy_to_b

2

3 SETS Color = {yellow,green,blue}; Population = {P}

4

5 PROPERTIES

6 card(Color) = 3 & card(Population) = 1 &

7 {yellow}/\{green} = {} & {yellow}/\{blue} = {} &

8 {green}/\{blue} = {}

9

10 VARIABLES

11 chameleons_P

12

13 DEFINITIONS

14 "CHOOSE.def";

15 ASSERT_LTL == "F{chameleons_P(blue) = 0 & chameleons_P(green) =
or"

16

17 INVARIANT

18 chameleons_P : Color --> INTEGER &

19 not (chameleons_P(blue) = O & chameleons_P(green) = 0)

20

21 INITIALISATION

22 chameleons_P := {blue |-> 13, green |-> 15, yellow |-> 17}
23

24 OPERATIONS

25 meet (cl,c2) =

26 PRE c1 : Color & c2 : Color & cl /= c2 & chameleons_P(cl) > 0 &
chameleons_P(c2) > 0O THEN

27 chameleons_P := chameleons_P <+

28 (LET ¢c3 BE <¢c3 = (Color - {c1,c2})

29 IN {c1 |-> (chameleons_P(cl) - 1),

30 c2 |-> (chameleons_P(c2) - 1),

31 MU(c3) |-> chameleons_P(MU(c3)) + 2}

32 END)

33 END

34 END
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B. Transformation Rules for Integer
Difference Logic

In Figure [B.1] we present the syntax-directed rules for rewriting a subset of integer
constraints into IDL as implemented in PROB’s graph-based constraint solver for IDL.
The translation is represented by the function W. Atomic IDL constraints are of the
form v; —v; < ¢, where v; and v; are integer variables and c is a constant integer value.
zero is the artifical variable introduced to rewrite formulas without a subtrahend to IDL
as described in Section [6.6.1]
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B. Transformation Rules for Integer Difference Logic

o
IN
|

y) =y —zero < —c
cl<y—c2)=zero—y < —c2—cl
cl<—y—c2)=y—zero < —c2—cl

=zr—-y<-—c

x—cl<c2)=x—zero<2+cl
x+cl<c2)=xz—zero<e2—cl

r4+cl<y—2)=x—y<—c2—cl

=r—y<c2+cl
c<x—y)=y—x<-c—1
r—y<c=x—y<c-—1
xr<c)=x—zero<c—1

—r<c)=zero—xr<c-—1

Ulel<y—c2)=zero—y < —c2—cl -1

Ulel<—y—c2)=y—zero< —c2—cl —1

S

r<y—c)=r—y< —c—1
v

)
r<yt+c=zx—y<c—1
v )

r—c<y)=xrz—-—y<c—1
U(rt+ce<y)=rz—y<—-—-c—1
U(r—cl<e2)=x—zero< 2+cl—1
U(rx+el<e2)=ax—zero<c2—cl—1
U(rz4cl<y—c2)=zx—y<—c2—cl—1
U(rz+cl<y+e2)=rxz—-—y<c2—cl—-1

)
U(rz—cl<y—e2)=z—y<-—-2+cl—-1
)

(

(

(

(

(

(

(

(

(

(

(
U(rz—cl<y+e2)=z—-y<c2+cl-1
UV(r—y=c)=x—y<cAhy—z<—c
V(r=y-—c)=¥(r—-y=—0
V(e=y+c)=V(r-y=c)
U(rz—cl=y—c2)=TV(z—y=—c2+cl)
U(xz—cl=y+e2)=V(z—y=-cl+c2)
U(rz+el=y—c2)=V(z—y=—c2—cl)
U(rz+cl=y+e2)=V(z—y=cl—c2)
Y(z=y)=V¥(z—-y=0)
U(—z=-y)=¥(y—z=0)
V(r—c=y)=¥(r-y=c
U(z4+c=y)=¥(x—y=—c)
Ulel=y—c2)=TV(y=-cl +2)
Ulel=y+2)=TV(y=rcl —2)
U(x—cl=c2)=¥(z=c2+cl)
U(z+cl=e2)=T(x=c2—rcl)

U(x =c)=¥(x—zero=c)
U(—z =c) = ¥(zero — z = ¢)

Figure B.1.: Syntax-directed rules for rewriting a subset of integer constraints into IDL

as implemented in PROB’s graph-based constraint solver for IDL.
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& ptr1120 commented on 13 Aug 2021

Hello,

| am also struggling with some kind of memory leak in using the z3 solver .Net Api.

| am using z3 in a web application scenario, where the application may run for multiple months without a restart and multiple
(parallel) users are using functionality powered by the z3 solver (each user having an individual Z3Context).

In this scenario, users can configure devices (basically a CSP with i.e. 200 boolean variables and i.e. 200 constraints among the
device properties and lots of solver.Check() calls during each configuration request of a user).

| think using z3 in such a scenario is reasonable (i.e. Microsoft Dynamics 365 also does it in a similar way) and will become more
and more important due to the excellent performance, interfaces, correctness, documentation, ... of the Z3 solver.

| noticed that without using parallel contexts the memory loss is much smaller, but not sure whether it is a false conclusion. | also
tried different versions of z3 (4.8.12, 4.8.10, 4.8.9) without remarkable differences.
In order to reproduce/minimize the problem, | used the following code which simulates the situation:

Figure C.1.: Excerpt from a comment on Github about a memory leak in Z3, especially
when using many Z3 solvers in parallel [5].

@ NikolajBjorner commented on 15 Aug 2021 Contributor

It is reproducible in C++ using release builds vs2017. It is not reproducible with C++ debug build so far.

Using the C++ bindings for root-causing is much simpler than the .NET bindings: fewer dependencies, fewer places to look,
simpler profiling.

It is very useful information to know it is reproducible on Linux.
| have been going into the direction that it is a compiler bugffeature/move semantics.

The .NET hindings use the same basic C API as the C++ bindings. They all call into the same code.

As the profiler will tell you, the memory increase is in the native code, not at the .NET level.

The exact location, within std::unordered_map constructor is very weird. | thought it was a decade+ since C++ STL had miss-
designed libraries (strings and xtree used to have static fields that, when the appropriate if-defs were absent, would not be thread
safe and exhibit other unsafe behavior).

Figure C.2.: An answer of Nikolaj Bjgrner, one of Z3’s core developers, on the issue
regarding the memory leak in Z3 as can be seen in Figure [6].

C. Discussion on Github about Z3’s
Memory Consumption

A user of Z3 started a discussion on Github regarding a memory leak when disposing
a 73 solver context [224]. Another user further emphasized this issue when using many
Z3 solvers in parallel as shown in Figure [C.I] We sometimes experience the same issue
and think that the description matches our use case. The answer of one of Z3’s core
developers shown in Figure is also of interest for our application.
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Table D.1.: First part of detailed results of the BMC benchmarks used in Section

PRrOB-Z3 ProB
No. Name (sxiomatic)  (constructive)  (parallel) .”u”:”f. PROB PROB-Sym PROB-CSE PROB-CHR SMT  Raw-SMT Sy:ﬁ?;»\— Sym-SMT
I B/ABCD/Broker/TransactionsSimple 2/80s 2/132s 1/216s 1/241 1/241s  1/241s 3/10s 1/248s 1/249s 3/10s
2 B/ABCD), TheSy ’ 2/12s 2/46s 2/131s 1/241 2/162s  1/24ls 1/244s 1/244s 1/2M4s
3 B/ABCD/USER_CLASS 0/201s 1/121 0/241s  1/12ls 0/242s 1/l44s 0/244s
4 B/ABCD/bookstore 0/2s / 125 0/127s  0/126s 0/243s 0/243s
5 B/BZTT/GSM.revue 0/4s : 1/241s  1/24ls 1/219s 1/282s
6 B/BDay/Parking.R2 3/1s 3/1s 3/1s  3/2s 2/12s
7 B/Benchmarks/Cruise_finite_k 3/4s 1/241s 1/289s 1/201s
8 B/Benchmarks/DSPO 3/1s 3/1s  3/1s  3/2s
9 B/Benchmarks/phoncbook7_err 0/31s : 1/124s
10 B/Benchmarks/tictac 3/40s
11 B/CBC/Enabling/OpCallSelect 3/1s 3/1
12 B/Demo/Bakeryler2 3/1s 3/1s
13 B/Demo/RussianPostalPuzzle2 3/8s 1/241
14 B/Demo/Simpson/Simpson_Four Slot 3/7Ts
15 B/Demmo/Simpson/Simpson_Four_Slot_CSP 1/13s
16 B/Demo/Simpson/Simpson_Four_Slot_Ordered 2/12s
7 B/Demoy/Simpson/Simpson_Four_Slot_Symm 0/29s
B/Demo/Simpson/Simpson_Four Slot TLC 3/5s
B/Demo/phonebooks 0/1s
B/Demo/scheduler_crr 1/2s
B/ErrorMachines/Onelnvariant Violation 3/1s
B/EventB/Boschminil m 3 3/2s
B/EventB/Bosch minilv2 m_3 3/2s :
B/EventB/Bosch mini2 m 3 3/1s 0/36ls  0/36ls
B/EventB/ETH Elevator/clevator10 3/39s 0 /361 / 36: 0/361s
B/EventB/ETH_Elevator/elevator5 3/2s 2/ 121
B/EventB/ETH_Elevator/elevator6 3/2s
B/EventB/ETH Elevator/elevatorT 3/2s
B/EventB/ETH_Elevator/clevator8 3/2s 3/2s 3/3
B/EventB/EventB_Projekt /lift_solution 2/37s 2/126s 0/248s
B/EventB/SiemensMiniPilot_Abrial mch 0 3/2s  3/2s  3/5s
B/Ivo/Bes rksEnablingAnal brial LandingGear3/m0.mch 3/3s 3/4s 3/3s
B/Ivo/BenchmarksEnablingAnalysis/Abrial LandingGear3/m1 mch 3/8s
B/Ivo/Bend blingAnalysis/Abrial L Gear3/m4_mch 3/57s 3/2s
B/Ivo/BenchmarksPGE/Pathological / AllEnabled Worst_Case_mch 1s 3/1s
B/Ivo/BenchmarksPOR/Concurrent /fact m_v1_mch /25 3/70s
B/Ivo/BenchmarksPOR,/Concurrent /factm_v2_mch 25 2/158's
B/Ivo/BenchmarksPOR/Concurrent /fact m_v3_mch 25 3/43s
B/Ivo/BenchmarksPOR,/Concurrent_Program_Development /conc_1_mch_finite /3s 1/285s

B/Ivo/BenchmarksPOR/Concurrent_Program_Development/conc_2_meh_finite
B/Ivo/BenchmarksPOR,/Concurrent_Program_Development /conc_3_mch_finite

B/Ivo/BenchmarksPOR/Sieve /sieve_parallel meh 0/133s 1/247s
B/Ivo/BenchmarksPOR /other/Concurrent Counters 3/1s
B/Ivo/NoDisablings_mx5 :

B/PerformanceTests/Generated /GeneratedMod 100
B/PerformanceTests/Partial FunInverse

0/249s
0/169s

0/363s
0/362s

47 B/PragmasUnits/CaseStudies/Abrial_Hybrid /hybridflight /f_m0
48 B/PragmasUnits/CaseStudies/Abrial Hybrid/hybrid_nuclear/C_m0

19  B/PragmasUnits/CaseStudies/Abrial_Hybrid /hybrid_nuclear/C_m0_internal

50 B/PragmasUnits/CaseStudies/Abrial_Hybrid /hybrid_nuclear/C_m0_internal saved

51 B/PragmasUnits/InternalRepresentation Tests/Case

52 B/PragmasUnits/InternalRepresentationTests/Case_internal

53 B/PragmasUnits/InternalRepresentationTests/Case_internal_saved

54 B/PragmasUnits/InternalRepresentationTests/Case_internal_saved_with_case

55 B/Puzzles/PartialSets

56 B/SchneiderBook/Chapter16/Mult

57 B/SchneiderBook/LabMaterial /records

58 B/Special/Dependency /SleepSet Algorithm /SleepSets

59 B/Special/PO_ModelChecking/APBMR4 0/ 145

60 B/Special/PO_ModelChecking/Scheduler_Rodin_Provers 1/241s 1/241s

61 B/Special/PO_ModelChecking/Simple_PO_Check 3/1s  3/2s

62 B/Special/PO_ModelChecking/ecarley_3_original 3/1s 2/186s

63 B/SymbolicModelChecking/DisjunctionInPropertics 3/1s  3/1s

64 B/SymbolicModelChecking/LightbotAbstract 2/130s 1/257 1/260s
65 B/SymbolicModelChecking/ TimingExampleSimpler VariablesEvenMoreLimited J2s 1/242 1/243s
66 B/SymbolicModelChecking/ TimingExampleSimpler_v2_Variable: 3/28s 1/243s 1/243s
67 B/SymmetryReduction/USB_4Endpoints 0/241s 0/ 2 0 /256
68 B/Tester/Any 3/1s 2/12Ts 2/127s
69 B/Tickets/110/Library mch 0/259s 0/241s 0/248s 0/254s
70 B/ Tickets/Guiziou_ClearSy/Machine_AvecPrintf 0/1s 0/5s 2/126s 2/122s 2 2/123s  2/122s

Solved constraints / Runtime s

D. Detailed Results of Additional
Constraint Solving Benchmarks

The detailed statistics of the additional benchmarks from BMC, deadlock freedom proofs,
and inductive invariant checking used in Section [7.6]can be seen in Table [D.1], Table D.2]
Table D.3], and Table[D.4 The paths stated in the benchmark names are relative to the
folder public_examples in PROB’s public specification repository [229].
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D. Detailed Results of Additional Constraint Solving Benchmarks

Table D.2.: Second part of the BMC benchmarks presented in Table [D.1} In total, 393
constraints were solved.

ProB-Z3
No. Name (wcomatic)  (consrucive) (et B PrOB-Sym  PROB-CSE  PROB-CHR SMT "’“{.‘."“L Sym-SMT
B/ Tickets/ Guiziou_ClearSy/Machine SansPrintt 2/121s  1/120s 2/157s 2/123s 2/122s 2/12s 2/122s 2/ 151 s 2/ 1525 2/ 1525

1
2 B/Tickets/Hansen20-Whilcne/Counter

3/119s 3/1s 3/1s 3/1s
73 U/llvk«:!n/Hmm‘uZﬂ Whilelne/Counter300 s 3/2s 3/1s 3/1s 3/1s
74 B/Tickets, 0-WhileIne/Counter5000 3/15s 3/17s 3/1s 3/1s 3/1s
7 [s/T;m«~/Tn~1muol/Houu-,Tx.\dm 0/3s 0/63s 0/188 5 071885 0/ 1485
76 CSPB/Bank3D 0/236s 0/280s 0/41s 0/1505 0/ 161
77 EventBPrologPackages/ Abrial AccessControl /mac2.me 0/5s 0/ 2445 1/2195 1/258 172625
78 EventBPrologPackages/Abrial AccessControl /maci_mch 0/65s 0/ 1475 0/ 2085 072635 0/261s
79 EventBPrologPackages/ AbrialCrsCtl/CrsCtlml meh 3/2s 3/2s 1/241s 1/21s 1/ 2028
80 EventBPrologPackages/ AbrialCrsCtl/CrsCtlm2_meh 3/2s 3/3s 1/ 2165 1/21s 1/216%
s1 tBPrologPackages/ AbrialCrsCtl/CrsCtl 3 mch 3/2s 3/2s 1/ 2118 1/21s 1/ 2028
82 EventBPrologPackages/ AbrialCrsCtl/CrsCtlmd_meh 3/2s 3/2s 1/2ms
83 EventBPrologPa brial BRP/DLK C /6 brp_FOL/b_4 meh 0/4s 0/4as 0/178 s
81 EventBPrologPackages/Abrial BRP/DLK Checking/ch6_brp.OK /b_5_meh 0/7s 0/8s 0/ 285
85 EventBPrologPackages/Abrial Modes /mode_m3_mch 3/0s 3/1s 3/0s
86 BventBPrologPackages/ Abrial Modes/modend.nch 3/0s 3/1s 3/1s
7 h2_car/m2Jights_mch 3/0s 3/1s 3/0s
88 EventBPrologPackages/ Abrial 'lm\(Iung/chZ,n\r/mL\nth 3/2s 3/2s 1/206s
89 EventBPrologPackages/ Abrial Teaching/ch2_car/m3 3/3s 3/3s 1/1395
90 EventBPrologPackages/ Abrial_Teac] I\m;,/(lMJtn)/blp,Z)kdntl.\luu(‘,m(h 3/3s 3/4s 3/395
91 EventBPrologPackages/ Abrial Teachingchd_brp/brp..nch 1/12s 1/11s 1/149s
92 hd_brp/brp_3_standalone-mel 3/10s 37105 371425
93 EventBPrologPackages/ Abrial_Train. Chﬂ/tmm_ﬂ‘\mh 1/128s 1/245 1/2155
94 EventBPrologPackages/ Abrial Trai train_1_prob POR nch 1/251s 1/202s 1/2435
95 EventBPrologPackages/ Abrial Train Ch17/train 1 prob meh 1/250s 172965 1/ 245
96 EventBPrologPackages/Advance/CAN_Bus/CB3FSMM_nch_v2_wo_finite_inv 3/8s 3/9s 2/1405
97 E /Binary vSea Lk 1/25s 1/256s 07361 s
95 a implmch_v: 1/154s 1/1795 0/ 3615
9 /Binary y_searcliml 3/2s 3/2s 2/131s
100 EventBPrologPackages/BinarySearch/binary_search_prob_meh 3/3s 3/3s 3/15s
101 E»clltBPlolong\rb\gt-«/Bnrlgu[’u//lu/ Bridge.nch 1/231s 1/21s 1/ 2028
102 /Dedale/1 20151 2 meh 3/425 3/80s 1/252s
103 B lale/LandingGe: 15/ B3nch 2/219s 2/2265 1/2135
104 EventBPrologPackages/Deploy /sl nch3_trains. 0/2s 0/2s 072435
105 EventBPrologPackages/Deploy /sd_mch9_schedule_mch 0/6s 0/7s 03835
106 E»cl\tBPlolung\rb\gt-q/E\cmBZh\m/l\llOJd.Umh 0/37s 0/213s 0/2455
107 Ev ologPackages,/EventB2Java/MIO refd_mch 0/19s 0/ 2445 071405
108 By clnﬁk’mlogl-‘(\rkngﬂ/b\vaZh\m/l\llOJdﬁJurh 0/75s 0/25ds 0/1505
109 EventBProlozPackages/HD_ABZ16/m5 nch 0/7s 0/10s 072435
110 EventBPrologPackages/OLSR /M1 3/1s 3/1s 3/1s
111 EwntBl“wlogl"nclmgt-«/PwufDu d/WD.POMC_Test.mch 3/1s 3/1s 3/1s
12 e finitel 3/7s 3/9s 1/263s
13 By a ProofD ! 3/4s 3/5s 1/ 105
114 Event] /ProofDi =] 0/6s 0/381s 2/Ts
115 Even 2 ProofDirected 3 autoproof 0/6s 0/376s 2/ 2435
116 Event] es/ProofDi 2 0/24s 0/ 2155 0/2525
ur f 3 0/ 2455 0/ 2165 072505
118 EventBPrologPackages/SSF/Bepi_Soton/Mo_ch /25 0/3s 0/215s
119 En‘ll\Bpmlogpmk)\go-«/SSF/B\‘plbuluu/M ch 3/3s 3/3s 2/ 1445
120 Even a SSF/DSAOC: lassicProB, _mch 0/2ATs 0/375s /2445
121 EwntBl“wlogl"mkngt-«/bwh\u,’qnnk-«on/q ) mch 0/6s 0/6s 0/280s
122 logPackages/Swap/Swapl_err_mch 3/1s 3/2s 271525
123 b T T —— /Swaplmch 3/1s 3/2s 3/2s 3/2s
124 Event] [Tests, U JapanesCharacters2_mch 0/1s 0/1s 3/2s 3/2s
125 EventBPrologPackages/ Tickets/Cansell RingLead /elect2_2_mch 3/1s 3/1s 3/1s 3/1s
126 Emel“wlogl“:\nkngt-«/Tom neer /ref5_entolmch 2/170s 2/181s 3/4s 3/4s
127 logPackages/ TopologyDiscovery /rmn_2 0/5s 0/6s 0/255 0/ 2435 0/243s 0/ 2445
128 bm.nsmlogmk,\m/.umrsmmdo\ master/M1 Mach-PartProc.Trans mch 0/31s 0/251s 0/ 2125 072655 072685 0/2125
129 Event] 12_Mach_PartProc Trans.with Events_mcl 0/60s 0/2%55s 03685 0/310s 073145 073635
130 TLC/InvariantViolation/countdown 0/1s 0/1s 1/2025 1/ 2415 1/ 2415 1/ 2418 1/ 2415
131 TLC/NoError/CAN_BUS tle 3/10s 3/ s 3/11s 1/2005 1/211s 1/ 202 1/ 2025
132 TLC/NoError/CSM 3/3s 3/3s 1/2115 271365 2/155s 2/1545 3/70s
133 TLC/NoError/safecap2349260319036854403 0/261s 0/303s 0/2125 0/215s 0/21s 0/216s 0/2165
Total 225 /10699 s 247 /52385 252 /93405 238/ 103175 227 /162025 227/ 164635 226 /16363 s 224/ 166075 202 /211445 195 /223615 196/ 224525 206 / 20967 s

Solved constraints / Runtime s
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Table D.3.: Detailed results of the benchmarks from deadlock freedom proofs used in
Section In total, 112 constraints were solved.

ProB-Z3 ProB
No. Name (omatie)  (constraei) (ot P E PrOB  PRoB-Sym PRroB-CSE ProB-CHR SMT  Rawsyp SViRav
dncomponed) " SMT
1 B/ABCD/ TheSystem_small 0/1s 125 1/1s U/1s  1/1s  1/1s /1s  1/1s  1/1s  1/1s  1/1s
2 B/ABCD/USER_CLASS 0/1s  0/1s  0/1s 0/1s  0/1s  0/1s 0/1s  0/1s  0/ls  0/1ls  0/1s
3 B/ABCD/baokstore 0/1s  0/1s  0/1s 0/1s  0/1s  0/1s 0/1s  0/1s  0/1s  0/1s  0/1s
4 B/BDay/Parking R2 Uls  1/1s 1/1s /ls  1/1s  1/1s VLs  1/1s 1/1s  1/1s  1/1s
5 B/Benchmarks/Cruise.finite_k Uls  1/1s 1/1s U/1s  1/1s  1/1s 1ts o 1/1s 1/1s 1/1s 1/1s
6 B/Benchmarks/DSPO 0/1s  0/1s  0/1s U/ls  1/1s  1/1s 1/1s 1/1s 1/1s 1/ls  1/1s
7 B/Benchmarks/phoncbookTerr 0/1s  0/1s  0/1s 0/1s  0/1s  0/1s 0/1s  0/ls  0/1s  0/1s  0/1s
8 B/Benchmarks/tictac 1/1s 1/1s 1/1s 1/1s 1/1s 1/1s 1/1s 1/1s 1/1s 1/1s 1/1s
9 B/Demo/Bakeryler2 1/1s 1/1s 1/1s 1/1s 1/1s 1/1s 1/1s 1/1s 1/1s 1/1s 1/1s
10 B/Demo/RussianPostalPuzzle2 1s o 1/1s o 1/1s 1/1s  1/1s  1/1s /s 1/1s 1/1s 1/1s  1/1s
11 B/Demo/Simpson/Simpson_Four_Slot 1/1s 1/1s 1/3s U/ts  1/1s  1/1s 1s1/1s 1/1s 1/1s 1/1s
12 B/Demo/Simpson,/Simpson_Four Slot Ordered 1/1s  1/1s 1/1s 1/1s  1/1s  1/1s 1/1s 1/1s 1/1s 1/1s
13 B/Demo/Simpson/Simpson_Four_Slot Symm 0/1s  0/1s 0/123s 0/1s  0/1s  0/1s 0/1s 0/1s  0/1s  0/1s
14 B/Demo/Simpson/Simpson_Four_Slot TLC 1/1s 1/1s 1/2s 1/1s 1/1s 1/1s 1/1s 1/1s 1/1s 1/1s
15 B/Demo/scheduler_err 0/1s  0/1s  0/1s 0/1s  0/1s  0/1s 0/1s 0/1s  0/1s  0/1s
16 B/EventB/Bosch_minil_m_3 /1s o 1/1s 1/1s 0/1s  0/1s  0/1s 0/1s 0/1s  0/1s  0/1s
7 B/EventB/Boschimini1v2.m_3 1/1s 1/1s 1/1s 0/1s  0/ls  0/1s 0/1s 0/1s  0/1s  0/1s
B/EventB/Bosch_mini2-m._3 1/1s 1/1s 0/1s  0/1s  0/1s 0/1s o/6ts  0/e2s  0/1s
B/EventB/ETH_Elevator /elevator10 1/1s 1/1s 1/1s 1/1s 1/1s 1/1s 1/1s 1/1s 1/1s
B/EventB/ETH_Elevator /elevators 1/1s 1/1s 1/1s 1/1s 1/1s 1/1s 1/1s 1/1s 1/1s
B/EventB/ETH Elevator elevator6 1/1s 1/1s 1/ls  1/1s  1/1s 1/1s /s 1/1s 1/1s
B/EventB/ETH Elevator /elevatorT 1/1s 1/1s 1/1s  1/1s  1/1s 1/1s 11s 1/1s 1/1s
B/EventB/ETH Elevator felevators 1/1s 1/1s 1/ls  1/1s  1/1s 1/1s 1/1s 1/1s 1/1s
B/EventB/EventB_Projekt/lift solution 1/1s 1/3s 1/1s  1/1s  1/1s 1/1s 1/1s
B/Ivo/! is/ ABZ Landing Gear_Journal /Ref1_C _mch 1/13s 1/2s 1/1s 1/2s 1/1s 1/1s 1/1s
B/Ivo/ BenchmarksEnabling Analysis/other/CAN_BUS 0/1s 0/3s ls  1/1s 1/1s 1/1s 1/1s
B/Ivo/BenchmarksPGE/Benchmarks/ Cruise finite] 1/1s 1/1s 1/1s  1/1s  1/1s 1/1s 1/1s
B/Ivo/BencliatlsPGE Pathological/ AllEuablo-Wors- Cos 1/1s 1/1s 1/ls  1/1s  1/1s 1/1s 1/1s
B/Ivo/ IE/P a Best_Case_mch 1/1s 115 U/1s 1725 1/1s 1/1s 1/2s
B/Ivo/BenchmarksPGE fother/CAN U 0/67s 0/67s 1/1s  1/1s  1/1s 1/1s 1/1s
B/Ivo/BenchmarksPOR,/Concurrent /fact m_v1mch 1/1s 1/1s 1/1s  1/1s  1/1s 1/1s 1/1s
B/Ivo/ BenchmarksPOR/Concurrent, fact-m_v2_uch 1/1s 1/1s U/ls  1/1s  1/1s 1/1s 1/1s
B/Ivo/ BenchmarksPOR /Concurrent fact-m_v3_umch 1/2s 1/1s  1/1s  1/1s 1/1s 1/1s
B/Ivo/BenchmarksPOR /Concurrent_Program_Development /conc__mh_fnite 0/ 14ds 1/5s  1/5s  1/1s 1/8s 0/127s
B/Ivo/BenchmarksPOR,/Coneurrent _Program Development /cone_2-mch finite 07147 1/1s  1/1s  1/1s 115 1/1s
B/Ivo/BenchmarksPOR/Concurrent Program Development /conc_3mch_finite 0/150s 1/1s 1/1s 1/1s 1/1s 1/1s
B/Ivo/BenchmarksPOR/Concurrent_Program_Development /conc_i_meh_fnite 071865 ls  1/1s 1/1s 1/1s 1/1s
B/Ivo/ BenchmarksPOR /Sicve/sicve_parallelmch 0/130s 1/ls  1/1s  1/1s 1/2s 1/2s
B/Ivo/ BenchmarksPOR /other/CSM 1/2s U/ls  1/1s  1/1s 1/1s 1/1s
B/Ivo/BenchmarksPOR /other/ConcurrentCounters 1/1s 1/ls  1/1s  1/1s 1/1s 1/1s
B/Ivo/NoDisablings_mx5 1/1s 1/1s 1/1s 1/1s 1/1s 1/1s
B/Ivo/SkippingComplexGuardsEvaluation_meh_mx5000 1/5s 1/1s  1/1s  1/1s 1/1s 1/1s
B/PragmasUnits/ CascStais/ Abrial Hybrid /b gt/ L0 1/1s U/ls  1/1s  1/1s 1/1s 1/1s
1/1s U/1s  1/1s  1/1s 1/1s 1/0s
1/1s 1/ls  1/1s  1/1s 1/1s 1/0s
1/0s 1/1s 1/1s 1/1s 1/1s 1/0s
ts, (Tests,/Cas 1/1s 1/1s 1/1s 1/1s 1/1s 1/0s
B/Special/Dependency /SleepSet Algorithm/SleepSets 1/1s Uls  1/1s  1/1s 1/1s 1/1s
B/Special/PO_Model Checking/APBMRA 1/4s 1/1s  1/1s  1/1s 1/1s 1/1s
Special/POModelChecking/Scheduler_Rodin_Provers 1/1s 1/1s  1/1s  1/1s 1/1s 1/1s
1/POModelChecking/Simple_PO_Check 1/1s 1/0s  1/1s  1/1s 1/1s 1/1s
B/ Specil/PO ModdChecking farles-3 s 0/123s 1/1s  1/1s  1/1s 1/1s 0/151s
B3/Special/POMoelChecking ey 3 riginl 0/20s 07125 /ls  1/1s 1/1s 1/1s 0/ 1525
JelCheckin ropertic U1s  1/1s U/1s  1/1s  1/1s 1/1s 1/1s
B 2 Var foreLimitcd 11s 1/1s 1/1s  1/1s  1/1s 1/1s 1/1s
B K 2 VariablesLimited 1/1s 1/1s U/ls  1/1s  1/1s 1/1s 1/1s
57 B/Tickets/110/Library. mch 0/1s 0/2s 0/1s 0/1s 0/1s 0/1s 0/1s
58 B/ Tickets/Guizion_ClearSy/Machine SansPrintf 1/1s  1/1s 1/1s  1/1s  1/1s 1/1s 1/1s
59 B/Tickets/Hansen20_WhileIne/Counter U/30s  1/81s 1/0s  1/1s 1/1s 1/1s 1/1s
B/ Tickets/Hansen20_Whilelne/Counter500 /s 1/1s 1/0s  1/1s  1/1s 1/1s 1/1s
B/ Tickets/Hansen20 Whilelne/Counter5000 1/3s  1/6s U/ls  1/1s  1/1s 1/1s 1/1s
CSPB/Bank3D 0/2s  1/4s 0/1s  0/1s  0/1s 0/1s 0/1s
EventBPrologPackages/ ABZ Landing Gear_Jownal/Refl Valve-err 1/1s  1/1s 1/1s  1/1s  1/1s 1/1s 1/1s
EventBPrologPackages/ABZ_Landing_Gear_ournal/Refl Valve_mch 1s  1/1s 1/1s  1/1s  1/1s 1/1s 1/1s
EventBPrologPackages/ABZ_Landing_Gear_Journal/Ref2-ControllerOutputs._meh 11s  1/1s U/1s  1/1s  1/1s 1/1s 1/1s
EventBPrologPackages/ ABZ Landing Gear_Journal/Ref3_ControllerSensors.mch 0/12s  0/3s 1/ls  1/1s  1/1s 1/1s 1/1s
EventBPrologPackages/ABZ Landing_Gear_Journal/Ref3_ControllerSensors_mch_eventh 0/18ls  0/3s U/ls  1/1s  1/1s 1/1s 1/1s
EventBPrologPackages/ ABZ Landing Gear_Jownal/Ref5_Switch_mch 1/41s  1/3s 1/1s  1/1s  1/1s 1/1s 1/1s
EventBPrologPackages/ ABZ_Landing_Gear_Journal/Ref6_Cockpit Lights_mch 1/185 1/1s  1/3s  1/1s 1/1s 1/1s
E»omBP.ologPackagm/Ab.ml—\ccmComml/mammh 0/2s 0/1s  0/1s  0/1s 0/1s 0/1s
EventBPrologPac AccessControl/mac4_mch 0/2s  0/ss  0/12s  0/4Ts  0/48s 0/83s
EvenBProlosPacke I ICrsCHl/CrsCtlamd_mch 1/1s T/1s  1/1s  1/1s 1/1s 1/1s
3 EventBPrologPackages/Abrial BRP/DLK_Checking/ch6_brp_F01/b_d_mch 0/1s 0/1s  0/1s  0/1s 0/1s 0/1s
74 EventBPrologPackages/Abrial BRP/DLK Checking /ch6_brp_OK /b_5.mch 0/1s 0/1s  0/1s  0/1s 0/12s 0/1225
75 BventBPrologPackages/ Abrial Modes/modem3_mch 1/1s /ls  1/1s  1/1s 1/1s 1/1s
76 EventBPrologPackages/Abrial_Modes/mode-md_meh 1/1s U/1s  1/1s  1/1s 1/1s 1/1s
7 BventBPrologPackages/Abrial Teaching/chd_brp/brp-2.standalone_mch 1/1s 1/ls  1/1s  1/1s 1/1s 1/1s
78 EventBPrologPackages/Abrial Teaching/chd_brp/brp_3.mch 0/1s 0/1s  0/ls  0/1s 0/l 0/12s
79 EventBPrologPackages/Abrial_Teaching /chd_brp,/brp_3 standalone_mch 1/1s 0/1s  0/ls  0/1s  0/129% 0/1s
80 EventBPrologPackages/Abrial Train Ch17/Train] Lukas Init TRK 0/12s  0/12s  0/124s  0/12s  0/128s 0/335
81 EventBPrologPackages/Abrial_Train Ch17/ Train]Lukas POR 0/12s  0/121s  0/12ls  0/12ls  0/12Ls 0/35s
82 EventBPrologPackages/Abrial Train Ch17/train0_mch 0/1235 0/7s  0/7s  0/1s 0/8s 0/1s
83 EventBPrologPackages/Abrial_Train Ch17/train_1_prob_POR_mch 0/125  0/121s  0/120s  0/12s  0/125 0/1525s
81 EventBPrologPackages/Abrial_Train Ch17 /train_L_prob_mch 0/12s  0/12s  0/12ls  0/1225  0/122s 0/33s
8 EventBPrologPackages/ Advance/CAN_Bus/CB3FSMM_meh_v2.wo_finiteinv 1/1s 1/1s  1/1s  1/1s 1/1s 1/1s
86 EventBP iges/BinarySearch /binary impl_inch 0/41s 1s  1/1s 1/1s 1/1s 0/ 1545
87 Bvent ) impl_meh_v2 0/41s U1s  1/1s  1/1s 1/1s 0/ 1905
88 EventBPrologPackages,/BinarySei y-search_mch 1/1s 1/ls  1/1s  1/1s 1/1s 1/31s
89 EventBPrologPac caxh/binay sarch.pro-mh 1/2s 1/1s  1/1s  1/1s 1/1s 1/1s
90 Eve gPackages Puzz] 0/1s 1/1s 1/1s 1/1s 1/1s 1/1s
91 BventBPrologPackages/ Deploy/s1 mch3_trains_mch 0/1s 0/1s 0/1s 0/1s 0/1s 0/1s
92 EventBPrologPackages/Deploy/s4_mch_schedule_mch 0/1s 0/1s  0/1s  0/1s 0/1s 0/1s
93 EventBPrologPackages/ Event B2Java/MIO refs_tch 0/1s 0/1s  0/ts  0/1s 0/1s 0/1s
91 EventBPrologPackages/Event B2Java/MIO refd_meh 0/1s 0/1s  0/1s  0/1s 0/1s 0/1s
95 EventBPrologPackages, Event B2 Java/MIO cf6mch 0/2s 0/1s  0/123s  0/1s 0/1s 0/1s
96 EventBPrologPackages/HD_ABZ16/m5_mch 1/1s 1/1s 1/1s 1/1s 1/1s 1/1s
97 EventBPrologPackages/OLSR/M2_corrected 0/1s 1/ls  1/1s 12 1/1s 1/1s
98 BventBPrologPackages/ProoMDiretcd/WD-POMC.Tetnch 1/1s U/1s  1/1s  1/1s 1/1s 1/1s
9 s/ P utoproof 0/ 1215 1/ls  1/1s  1/1s 1/1s 0/151s
100 EventBPrologPackages piS uwn/l\llJmh 1/1s 1/ls  1/1s  1/1s 1/1s 1/1s
101 EventBPrologPackages/SSF/Bepi_Soton/M2-mch 1/1s 1/1s 1/1s 1/1s 1/1s 1/1s 1/1s 1/1s
102 EventBPrologPackages/SSF/DSAOCSSv002/StuffForClassicProB/ModeProtocolMachineanch 0 /15 0/1s 0/1s  0/1%s  0/12%s 0/12%5s  0/1%s /335
103 EventBPrologPackages/Stefan/quicksort/qs9_mch 0/1s  0/1s 0/1s  0/125s  0/126s  0/124s  0/127s 1/1s
104 EventBPrologPackages/Swap/Swaplerr-mch 1/1s  1/1s 1/1s 1/ts  1/1s  1/1s 1/1s 1/1s
105 EventBPrologPackages/Swap/Swapl_mch 1/1s  1/1s 1/1s U/ls  1/1s  1/1s 1/1s 1/1s
106 EventBPrologPackages/ Tickets/Cansell RingLead /el 0/2s  0/7s 0/125 0/1s  0/1s  0/1s 0/1%s 0/1s
107 EventBPrologPackages/ Tickets/ProjectionDiagram, 1/1s 1/1s 1/1s 1/1s 1/1s 1/1s 1/1s 1/1s
108 EventBPrologPackages, Tokeneer/tefs._enrolmch 0/1s  0/1s 0/2s U/1s  1/9s  1/1s 1/1s 0/ 1215
100 BratBPrologPucages/ Topolog isovery /2 0/121s  0/121s 0/121s 0/1s  0/1s  0/1s 0/1s 0/1s
110 ter/M1 Mach_PartProc_Trans.mch 0/1s  0/1s  0/2s  0/1s 0/1s  0/ls  0/1s 0/1s 0/1s
111 Eva 5 aster/M2_Mach_PartProc_Trans_with_Events_mch 0/1s  0/ls  0/2s  0/Ls 0/1s  0/1s  0/1s 0/1s 0/1s
112 TLC/InvariantViolation/countdown 0/1s 0/1s 0/1s 0/1s 0/ 122 0/124s  0/217s  0/123s 0/31s
Total G1/25165 64/ 15605 06/ 26795 66/ 24335 79/ 10285 79/ 12335 79/ 1107s 70/ 1584s 70/ 28715 73/ 18285 73/ 2125 70/ 2015

Solved constraints / Runtime s

193



D. Detailed Results of Additional Constraint Solving Benchmarks

Table D.4.: Detailed results of the inductive invariant checking benchmarks used in Sec-
tion |7.6, In total, 1302 constraints were solved.

PrOB-Z3 ProB
No. Name (axomatic)  (conmrucivn) e PrOB  ProB-Sym  PRoB-CSE  PROB-CHR SMT Raw-SMT 5";‘;{‘;“' Sym-SMT
1 B/ABCD, TheSystem small 10/4s 9/3s 10/5s 9/4s 0/2s 10/2s 0/1s 10/2s 10/11s 0/11s 10/11s 10/ 118
2 B/ABCD/USER.CLASS 0/62s 0/21s 0/16s 0/19s 0/10s 0/8s 0/10s 0/12s 0/12s 0/1s 0/10s 0/1s
3 B/ABCD/bookstore 2/10s 2/6s 2/92s 3/1s 3/1s 3/2s 3/2s 3/4s 3/5s 3/5s
4 B/BZIT/GSMrevue 3 3 6/1s 6/3s 6/1s 6/2s 6/3s 6/3s
5 B/BDay/Parking R2 4/1s 4/1s A/1s 3 /425 3/52s
G B/Benchmarks/CSM 13/1s 13/1s 13/1s 183/1s 110815
7 B/nmdmmk\,m.u.wm.(u %/2s 2%/1s 2%/1s %/5
B himarks/DSPO 5/1s 5/1s 5/1s 5/1s
9 himarks/phonebook7_err 2/1s 2/1s 2/1s 2/3s
10 chmarks /spec 5/ 14s 5/11s 5/11s 6/44s
11 B/Benchmarks/tictac 0/243s 0/ 21435 0/ 2435 1/1295
12 B/Demo/Bakerylerr2 /1 6/1s 6/1s 6/1s
13 B/Demo/RussianPostalPuzzle2 5/1s 5/1s 5/1s 5/1s
14 B/Demo/Simpson,Simpson_Four Slot 9/1s 9/1s 9/1s 9/1s
15 mpson/Simpson_Four_Slot_Ordered 9/1s 9/1s 9/1s 9/1s
16 B/Demo/Simpson/Simpson_Four_Slot_Symm 0/30s 0/27s 0/32s 1/10s
17 B/Demo/Simpson/Simpson_Four Slot_TLC 9/1s 9/1s 9/1s 9/1s
18 B/Demo/phonebooks 1/1s 1/1s 1/1s 1/1s
19 B/Demo/scheduler err 1/1s 1/1s 1/1s 1/1s
20 B/ErrorMachines/Onelnvariant Violation 1/1s 1/1s 1/1s 1/1s
21 B/EventB/Bosch-minil.m_3 10 /2435 10/ 2435 102425 12 /1225
22 B/EventB/Bosch_minilv2-m_3 10/ 2125 10/ 212 1271225
23 B/EventB/Bosch-mini2.m_3 5/241s 6/121s 7/91s
24 B/EventB/ETH_Elevator/elevator10 u / 2404 s 14 /2403 s 15/ 1369 s 13 /157 s
25 B/EventB/ETH_Elevator/elevator5 9/121s 9/121s 10/31s 10/31s
2 B/EventB/ETH Elevator/clevatort 1271215 12/121s 13/01s 12/1215
27 B/EventB/ETH_Elevator/elevator? 15 /121 15 /121 16 /91s 15/ 121s
28 B/EventB/ETH_Elevator /elevator§ 4/ 241s U/ 2A4ls 15 /2125 15 /2125
29 B/EventB/EventB_Projekt /lift solution 21/3s 21/3s 21 /65 21/11s
30 B/EventB/SiemensMiniPilot_Abrial_mch_0 8/1s 8/1s 8/1s 8/1s
31 B/lvo/ L meh 6/1s 6/1s 6/1s
32 I Sear3/m1_mch T/1s 7/1s 7/1s
33 / Dris dingGear3/m2_mch 1n/1s 1U/1s 1n/1s
34 / dingGear3/md_meh 26/3s 26/1s 26/1s
35 B/Ivo/BenchmarksEnablingAnalysis/other/CAN_BUS 15 /6125 15 /601 s 14 /8635
36 B, / o finitel 2 /2s 26 /1s 26/5s
37 B/ IIEnabled Worst_Case_mch 6/1s 6/1s 6/1s
38 B, est Case_mch 2/1s 20/1s 21/2s
39 B/Ivo/BenchmarksPGE/abz_case_study/Ref4_ControllerHandle_mch 30/1s 30/1s 30/5s
0 B/ BenchmarksPGEother/CAN_BUS e 18 /4045 16/ 609 s 15/ 7818
41 B/Ivo/BenchmarksPOR,/Coneurrent fact_n 9/1s 9/1s 9/1s
42 B/Ivo/BenchmarksPOR/C \tl\nem,’h\cuu V21 mrl\ 9/1s 9/1s 9/1s
13 B/[\o/BmclmmmroR/Lo..nmnm/mcun\uml. 8/1s 8/1s 8/1s
I OR /other/Concurrent Counter 4/1s 4/1s 4/1s
45 B/Ivo/NoDisablings_mx5 6/1s 6/1s 6/1s
6 B/ 5000 16/1s 16/1s 7/1210s
B/PerformanceTests/Generated /GeneratedMod 100 100 /52 100 / 145 100/ 1s
B/PerformanceTests/PartialFunlnverse 2/1s 2/1s 2/1s
B/PragmasUnits CaseStndics/ Abvis Hybrid b gt/ Lm0 5/1s 5/1s 5/1s
B/PragmasUnits/InternalRepresentation Tests 3/1s 3/1s 3/1s
B/!"n\gm,ul,1||(~/lmmm\leplﬁvmauun‘l‘mh/(,,Lw internal 3/1s 3/1s 3/1s
B/Py t Tests/Case_internal_saved 3/1s 3/1s 3/1s
B/P Uj Tests/Case_internal saved_with_case 3/1s 3/1s 3/1s
B/Puzzles/PartialSets 3/1s 3/1s 3/1s
B/SchneiderBook /Chapter16/Mult 2/1s 2/1s 2/1s
B/SchneiderBook /LabMaterial /records. 3/1s 3/1s 3/1s
B/Simple/ TwoPurses 7/105s 7/98s 7/4s
B/Special/Dependency /SlecpSet Algorithm/SlecpSets 5/1s 5/2s 4/139s
B/Special/POModelChecking/APBMR1 0/1s 0/1s 0/1s
B/Special/PO_ModelChecking/Scheduler_Rodin_Provers 6/ 185 6/21s 6/7s
B/Special/PO_ModelChecking/Simple_PO_Check 3/1s 3/1s
B,’Spez ial, /P()J\ludel( he\ King carley 3 or xgllml 2/606s 2/605s 4/437s
1s 2/1s 2/1s
mluMmh»l(mmug/L.gmlmu\mnmq T/2Ts T/ T/1s
v 2.V 1 4/1s 4/1s 4/42s
B/S rwkm;,, s v2_VariablesLimited 4/1s 4/1s 4/42s
B/ Tester/Any 5/1s 5/1s 5
B/ Tickets/Guiziou_ClearSy/Machine_SansPrintf 3/1s 3/1s 3
B/ Tickets/Treharnel /House_Tracker 2/121s 2/121s 2/
CSPB/Bank3D 5/1205s 5/1204s 50
Even BZ Landing Gear /Ref3_Ce meh 24/1s 2 /1s 24/
Even BZ Landing_Gear/Ref5 o 30/1s 30/1s 30/ 1
1/ s 1/19s 1/97s 1/ 1/25
I /macd-mch 0/ 14145 0/14165 0/ 14525 0/ mx s 0/ wu: s 0/ 12065
E»nmupmh.gm«kqm/Anmlcm‘n/mcmm mch T/1s T/1s T/1s [1s 6/32s 6/31s
EventBPrologPackages/ AbrialCrsCtl/CrsCtlm2 meh 9/1s 9/1s Y 8/31s 8/35s
77 EventBPrologPacags/ AbrialCoCtl/CrCtLn.ch 9/1s 9/1s 9/1s 8/32s 8/31s
78 EventBPrologPackages/AbrialCrsCtl/CrsCtlmd_m 10/1s 0/1s 10/1s 8/ 1515 8/ 1518
79 E\ol\lBl’xu!ugl")\«kngv-«/t\bm\l BRP/DLK lemng/chﬁd:m FO1/b4-mch 1/361s 1/241s 1/361s 2/197s 2/176s
80 LBRP/DLK Check 6 brp_OK /b_5_meh 1/602s 1/841s /720 1/635s 25825
81 brial p 3mel 19/1s 19/1s 19/1s 19/1s 19/1s
82 B ' /Abrial 2 4mch 19/1s 19/1s 19/1s 19/1s 19/1s
83 EventBPrologPackages/Abrial_Teaching/chd_brp/brp-2_standalone_mch 10/1s 0/1s 0/1s 10/1s 0/1s
84 EventBPrologPackages/Abrial_Teaching/chd_brp,/brp_3_mch 12/1s 12/1s 12/1s 12/1s
8  EventBPrologPackages/ Abrial_Teaching/chd_brp/brp_3_standalonc_mch 14/1s 1/ /s /s
86 Ewl\tBl’n)long\rkAgm/’\«Imnr«'/C:\l\jl\»/( BIFSMM.mch_v2_wo.finite_inv 18 /1215 18/ 1215 18/ 1215 19 /1515
87 impl_me 6/243s 6/242s 6/ 2125 5/601s
88 S S impl_meh 6/243s 6/212 6/242 5/6025s
80 es v binary search_mch 12/1s 12/1s 12/1s 12/92s
90 ” v binary search_prob._mel 12/1s 12/1s 12/1s 12/1s
91 EventBPrologPackages/BridgePuzzle/Bridge-mch 3/1s 3/1s 3/1s 3/5s
92 EventBPrologPackages/Deploy /s1-mch3_trains-mch 2/1s 2/1s 2/1s 3/2s
93 EventBPrologPackages/EventB2Java/MIO_ref3_mch 2/1s 2/1s 2/1s 2/1s
94 EventBPrologPackages/ EventB2Java/MIO refi_meh 7/3s 7/3s 7/3s 7/4s
95 EventBPrologPackages/Event B2Java/MIO _ref6_mch 11/393s 11/ 404 s 11/300s 11/285s
96 EventBPrologPackages/HD_ABZ16/m5_mch 16/1s 16/1s 16/1s 16/1s
97 EventBPrologPackages/OLSR/M1_mch 5/1s 5/1s 5/1s 5/1s
98 EwutBP(u]ugpmkag«"«/()lﬂn /\murm ted 4/602s 4/ T6s 4/6025 3/753s
99 ¢ fDirected /WD _PO_MC_Test_mch 0/1s 0/1s 0/1s 1/1s
100 Es ackages/ProofDirected v3 2/ 4825 2/483s 2/481s 3/576s
101 Eve ackages/ProofDirected, v 3_autoproof 2/481s 2/483s 2/481s 2/482s
102 EventBPrologPackages/SSF /Bepi_Soton/M0_mch 0/1s 0/1s 0/1s 0/1s
103 EventBPrologPackages/SSF/Bepi_Soton/M2_mch 5/5s 5/2s 5/3s 5/195s
104 EventBPrologPackages/Stefan /ged /g6_mch_with_Gsmall_values 4/1s 4/2s /s 1/473s
105 EventBPrologPackages/Swap/Swapl_err_mch 5/1s 5/1s 5/1s 5/1s
106 EwntBl’m!ugP)\«kng«-«/Sw)\p/Sm\pl;u(h 5/1s 5/1s 5/1s 5/1s
107 tBPrologPackages/ Tickets/Cansell RingLead /elect2 2 mch 5/1s 5/1s 5/1s 5/1s
108 BPrologPackages, Tickets/ProjectionDiagram /m3_mch 5/21s 5/241s 5/241s T/6ls
109 rologPackages/ Tokeneer /ref5_enrol_mch 37/2s 37/ 1s 37/1s 37/1s
110 F'w‘l\',RPrologP(\dmgw/T()p(ﬂng)nwrn\\*n Jrm 2 2/5s 2/5s 2/4s 2/34s
111 EventBPrologPackages /arinc633model-master/M1 Mach_Part Proc_Trans.mch 0/2s 0/1s 0/1s 0/125
12 Ey /M2 Mach_PartProc_Trans_with_Events_mch 1/3s 1/2s 1/2s 1/47s
113 TLC/Laws/Set LawsPow 176195 1/62s 1/ 6508 0/71335
114 TLC/Laws/SubsetLaws 4/401s 5/360s 4/421s 0/601s
115 TLC/NoError/USB_4Endpoints 30/ 285 30/2s 30 /285 30/ 16
116 TLC, 5 2/ 8485 2/ 8475 2/ 8475 1,/ 303 3 /5675

Total 1046 / 14895 1066 / 3794 s 1066 / 45425 1013 / 143405 1013 / 144095 1013 / 146495 1013 / 14468 s 1021 / 128615 1021 / 127355 993 / 176985 999 / 17013 5

Solved constraints / Runtime s
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