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Abstract
Normal aging is accompanied by an interindividually variable decline in cognitive abilities and

brain structure. This variability, in combination with methodical differences and differences in

sample characteristics across studies, pose a major challenge for generalizability of results from

different studies. Therefore, the current study aimed at cross-validating age-related differences

in cognitive abilities and brain structure (measured using cortical thickness [CT]) in two large

independent samples, each consisting of 228 healthy older adults aged between 65 and

85 years: the Longitudinal Healthy Aging Brain (LHAB) database (University of Zurich, Switzer-

land) and the 1000BRAINS (Research Centre Jülich, Germany). Participants from LHAB showed

significantly higher education, physical well-being, and cognitive abilities (processing speed,

concept shifting, reasoning, semantic verbal fluency, and vocabulary). In contrast, CT values

were larger for participants of 1000BRAINS. Though, both samples showed highly similar age-

related differences in both, cognitive abilities and CT. These effects were in accordance with

functional aging theories, for example, posterior to anterior shift in aging as was shown for the

default mode network. Thus, the current two-study approach provides evidence that indepen-

dently on heterogeneous metrics of brain structure or cognition across studies, age-related

effects on cognitive ability and brain structure can be generalized over different samples, assum-

ing the same methodology is used.
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1 | INTRODUCTION

As we get older, our brain undergoes substantial structural changes

that seem to be related to changes in behavior (i.e., cognitive decline

in older adults). However, previous research has shown that it is far

from simple to bring the two domains—namely brain structure and

behavior—together (Fjell et al., 2006; Jockwitz et al., 2017; Liu et al.,

2011; Raz & Rodrigue, 2006; Ziegler, Dahnke, Gaser, & Alzheimer's

Disease Neuroimaging, 2012). One important reason for this is that

age-related changes in both domains are complex and insufficiently

understood. For example, large between-study heterogeneity of

designs and methods, differences in sample characteristics and the

generally larger interindividual variability in samples of older adults

hamper the extraction of consistent findings regarding age-related

changes in brain structure in the existing literature.

Still, what we can conclude from previous work so far is that

effects of age are not homogeneous across the brain, but depend

on (a) the functional properties of the brain region of interest (e.g.,Svenja Caspers and Lutz Jäncke contributed equally to this study.
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association cortices vs. primary sensory cortices), (b) the brain tissue

(e.g., gray and white matter), (c) the brain structure metric looked at

(e.g., brain volume-based vs. surface-based metrics or cortical thick-

ness [CT] vs. surface area), and (d) methodological choices made

during processing and analyses (e.g., differences in spatial smoothing)

(Dickie et al., 2013; Fjell et al., 2014; Fjell, McEvoy, et al., 2014;

Hogstrom, Westlye, Walhovd, & Fjell, 2013; Liem et al., 2015; O'Sullivan

et al., 2001; Salat et al., 2005; Sowell et al., 2003; Walhovd et al., 2011;

Ziegler, Dahnke, Jancke, et al., 2012).

Although there is a more solid database when it comes to cogni-

tive aging (Schaie (1993); Schaie and Willis (2010); Schaie, Willis, and

Caskie (2004); for reviews, see Harada, Love, and Triebel (2013);

Kaup, Mirzakhanian, Jeste, and Eyler (2011); Salthouse (2010) it has

also been established that—in analogy to brain aging—age-related

changes in cognitive abilities are complex. First, different cognitive

abilities are differentially sensitive to age effects. Abilities such as

processing speed, executive functions, episodic, and working memory

have shown to be more vulnerable to age-related decline as compared

to verbal memory and world knowledge (Habib, Nyberg, & Nilsson,

2007; Hedden & Gabrieli, 2004; Park & Reuter-Lorenz, 2009; Schaie

et al., 2004; Schaie & Willis, 2010). And second, several studies sug-

gest that cognitive performance follows nonlinear trends from early to

late adulthood with a higher interindividual variability in older adults

(Habib et al., 2007; Hartshorne & Germine, 2015; Hedden & Gabrieli,

2004). Hence, it is difficult to generalize results from one sample to

another and, therefore, to draw reliable conclusions. Considering, for

example, that lifespan trajectories of structural atrophy vary between

brain regions (Fjell et al., 2013; Hogstrom et al., 2013; Sowell et al.,

2003; Walhovd et al., 2011; Ziegler, Dahnke, Jancke, et al., 2012),

age-related differences in brain atrophy might not be replicable across

samples when they do not match with respect to age distributions or

other sample characteristics.

At this time, there is a clear progress toward brain imaging con-

sortia and multicenter studies, such as ENIGMA (Thompson et al.,

2014), the German National Cohort study (Nationale Kohorte; NAKO

(Bamberg et al., 2015; German National Cohort, 2014), ADNI

(Alzheimer's Disease Neuroimaging Initiative; Jack Jr. et al., 2008),

U.K. Biobank (Miller et al., 2016; Sudlow et al., 2015), or Lifebrain

(Walhovd et al., 2018). In the field of healthy aging, such projects use

data pooling procedures (i.e., joint analysis of data from different inde-

pendent samples) to fulfill the need for large sample sizes required to

identify protective and risk factors that in combination might explain

why some older adults develop neurodegenerative diseases, while

others retain their cognitive integrity until very old. What comes along

with this, however, is the necessity for a cross-validation of so far

established results concerning the aging brain. Thus, the question that

arises is whether independent samples of older adults that differ in

demographics and lifestyle factors would still show similar association

patterns between age, global and regional brain structure, and cogni-

tive performance. While in the field of genetics, replication studies are

already well established, it is not yet common practice in the field of

neuroimaging. Therefore, the current study analyzed age-related dif-

ferences in brain structure and cognitive ability in two large indepen-

dent but closely matched cohorts of older adults—both situated in

central Europe—to explore how similar results are when using the

same state-of-the-art methodological protocols and what factors may

explain potential between-study differences.

Regarding brain structure, we used mean CT for the two hemi-

spheres as a rough outcome measure. In addition to that, we decided to

focus on brain regions that constitute the default mode network (DMN),

a network that recently received much attention in aging research—

especially with regard to functional connectivity (e.g., Hafkemeijer,

van der Grond, & Rombouts, 2012). Because recent evidence from

our group suggests a structural correlate for age differences in

functional connectivity (Jockwitz et al., 2017), we were particularly

interested to validate such first findings and assessed regional

within-network differences of the age-brain structure relationships.

2 | METHODS

Participants included in the current research project were recruited

from two independent samples investigating brain–behavior relation-

ships in older adults located in the larger Zurich area (Switzerland) and

in the Ruhr district (Germany).

One sample comprised the ongoing Longitudinal Healthy Aging

Brain (LHAB) database project at the University Research Priority

Program “Dynamics of Healthy Aging” of the University of Zurich

(Zollig et al., 2011). LHAB investigates age-related dynamics of brain–

behavior relationships in healthy older adults. A particular focus is

placed on assessing and explaining interindividual variability in the

observed aging trajectories, thus a broad spectrum of factors that sup-

posingly influence such trajectories (i.e., lifestyle, sleep, and nutrition)

is collected. In LHAB, older adults from Zurich and surrounding areas

aged 65 and older (at baseline) are observed longitudinally with

between-measurement intervals of 1–2 years. Besides the eligibility

requirements for the MR acquisition, further exclusion criteria were

neurological and psychiatric diseases, a score on the Mini-Mental

State Examination of 26 and below and left handedness. LHAB partic-

ipants are German native speakers or at least as proficient in German

as it would be their native language. The study protocol was approved

by the local Ethics Committee (Kantonale Ethikkommission Zurich).

The initial sample of LHAB comprised 231 participants ranging from

64 to 87 years of age. Data acquisition in the LHAB project started in

2011. Currently, the data set covers an observation period of 4 years.

The second sample comprised 1000BRAINS at the Institute of

Neuroscience and Medicine, Research Centre Jülich, a longitudinal

population-based study that assesses variability in brain structure and

function during aging (Caspers et al., 2014). The 1000BRAINS sample

is drawn from the 10-year follow-up cohort of the Heinz Nixdorf

Recall Study, an epidemiological population-based study of risk factors

for atherosclerosis, cardiovascular disease, cardiac infarction, and

death (Schmermund et al., 2002) and the affiliated MultiGeneration

study. In 1000BRAINS, older adults aged 55 and older (at baseline)

from the Heinz Nixdorf Recall study and their relatives (spouses and

offspring; sampled from MultiGeneration study) are recruited, mea-

sured two times over a period of about 3–4 years. Exclusion from the

study was dependent on the eligibility requirements for the MR

acquisition based on the MR safety guidelines only (e.g., stents and

heart pacemaker led to exclusion from the study). The study protocol
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was approved by the University of Duisburg-Essen. The initial

sample of 1000BRAINS comprised 1,317 participants ranging from

18 to 87 years of age.

For the aim of the current study, we focused on the first time

point in both samples. Participants with missing values for the

whole neuropsychological and/or brain data were excluded.

Furthermore, participants were matched with respect to the age

ranges in the two samples. Therefore, we first excluded 666 partici-

pants from 1000BRAINS being younger than 64 years of age. After-

ward, we matched the two samples for gender and group size by

randomly selecting the same number of participants within each

age and gender group (64–69 years, 70–74 years, 75–79 years, and

80–85 years). This resulted in 228 participants for each of the two

final samples: (a) LHAB: mean age: 70.7 years ± 4.9, 114 males, and

114 females; (b) 1000BRAINS: mean age: 70.7 ± 5.0 years, 114 males,

and 114 females. For an overview of demographic variables of the two

samples, see Table 1. Both studies assessed years of formal education

as part of a structured anamnestic interview. In addition, all participants

filled in a questionnaire concerning their physical and mental well-being

(LHAB: SF12; 1000BRAINS: SF36). In both samples, physical and men-

tal health status scores (Ware, Keller, & Kosinski, 1995) were computed

using only the SF12 items in order to assure comparability. Further-

more, global cognition was assessed in both samples. While participants

from LHAB performed the Mini-Mental State Examination (Folstein,

Robins, & Helzer, 1983), participants from 1000BRAINS performed the

DemTect in order to estimate a global cognitive status for each partici-

pant (Kalbe et al., 2004).

2.1 | Cognitive performance

Participants from both LHAB and 1000BRAINS took part in a large

neuropsychological assessment consisting of tests in the domains

attention, executive functions, working memory, episodic memory,

and language functions. For comparison between the two samples,

the following tasks were chosen: Trail Making Test (TMT; proces-

sing speed and concept shifting; Morris et al. (1989)), Leistungsprü-

fungssystem 50+ (LPS50+) Subtest 3 (reasoning; Sturm, Willmes,

and Horn (1993)), Regensburger Wortflüssigkeitstest (RWT, seman-

tic condition (verbal fluency); Aschenbrenner, Tucha, and Lange

(2000)) and vocabulary tests (LHAB: Mehrfachwahl-Wortschatz-Intelli-

genztest (MWT-B; Lehrl (2005)), 1000BRAINS: Wortschatztest (WST);

Schmidt and Metzler (1992)). To extract comparable scores from the

two vocabulary tests, we calculated the ratio between the total

amount of words (MWT_B: 37 words; WST: 40 words) and the

amount of correctly identified words. Since the selected neuropsy-

chological tests were not normally distributed, all cognitive tests

were first rank-transformed and mean-centered afterward before

entering the statistical analysis. For a detailed test description,

administration differences between samples and mean values per

sample, see Table 2.

2.2 | Data acquisition

For LHAB, data were acquired on a 3.0T Philips Ingenia scanner

(Philips Medical Systems, Best, The Netherlands). T1-weighted struc-

tural brain images were measured per visits with: TR = 8.18 ms, TE =

3.8 ms, flip angle = 8�, field of view (FoV) = 240 × 240 mm, isotropic

voxel size = 1 × 1 × 1 mm, 160 slices per volume. For 1000BRAINS,

data were acquired on a 3.0T Tim-Trio MR scanner (Siemens Medical

System, Erlangen, Germany). The T1-weighted structural brain images

were scanned per visit with: TR = 2.25 s, TE = 3.03 ms, flip angle = 9�,

FoV = 256 × 256 mm, voxel resolution = 1 × 1 × 1 mm, 176 slices

per volume. In both studies, T1-imaging was part of a larger MR imag-

ing protocol (see Caspers et al., 2014; Zollig et al., 2011).

2.3 | Preprocessing

Anatomical images from both samples were preprocessed using the

same automated surface-based processing stream of the FreeSurfer

Software package (version 6.0.0). For the LHAB sample, this was

done via the FreeSurfer BIDS App (v6.0.0-2; Gorgolewski et al.

(2017). A detailed description of this pipeline is provided by Dale,

Fischl, and Sereno (1999) as well as on http://surfer.nmr.mgh.

harvard.edu. In short, the surface reconstruction pipeline includes

(a) the segmentation of the structural brain images into gray matter,

white matter, and cerebrospinal fluid, (b) motion correction,

(c) intensity normalization, (d) transformation into Talairach space,

(e) tessellation of gray/white matter boundary, and (f ) correction of

topological defects. The gray/white matter interface was then

(g) expanded to create the pial surface (boundary between gray mat-

ter and cerebrospinal fluid), which finally consists of about 150,000

vertices per hemisphere with an average surface area of 0.5 mm2.

Afterwards, (h) CT was calculated for each vertex as the shortest dis-

tance between the white matter surface and the corresponding

TABLE 1 Demographics of the two samples (1000BRAINS and LHAB). Mean values and SD of raw scores as well as group comparisons including

T statistics, p-values, and effect sizes

1000BRAINS LHAB
Levene test of
equal variances (F/p-value)

T test for equality
of means (T/p-value) Cohen's d

Age (years) 70.69 ± 4.95 70.69 ± 4.89 0.056/0.814 −0.005/0.996 <0.001

Gender 114 m/114 f 114 m/114 f NA <0.001/1.00 <0.001

Education (years) 13.51 (±3.76) 14.66 (±3.43) 0.398/0.529 −3.40/0.001 0.320

Physical WB 48.69 (±8.10) 51.06 (±7.21) 4.44/0.036 −3.31/0.001 0.309

Mental WB 54.39 (±6.83) 55.06 (±5.84) 8.38/0.004 −1.12/0.263 0.105

Dementia screening 14.55 (±3.76) (DemTect) 28.83 (±1.02) (MMSE) NA/NA NA/NA NA

LHAB = Longitudinal Healthy Aging Brain; WB = well-being. Note. NA: not applicable since different tests were used that are not directly comparable.
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vertex on the pial surface. No manual correction of the recon-

structed surfaces (white matter, pial surface) was performed in the

two studies.

For the purpose of the current study, mean measurements of

CT per hemisphere were extracted from FreeSurfer (Fischl and

Dale, 2000). In addition, CT was determined for six regions of

interest belonging to the DMN, a bilateral network composed of

the medial prefrontal cortex (anterior DMN), the posterior cingu-

late cortex/precuneus (medial posterior DMN) as well as the infe-

rior parietal lobule (lateral posterior DMN). Those regions have

been defined for the purpose of a previous study and are described

in detail by Jockwitz et al. (2017). In short, functional resting state

scans from 691 subjects in 1000BRAINS were preprocessed using

the preprocessing pipeline provided by the FSL software package

5.0 (including denoising strategies: FIX; Griffanti et al. (2014);

Salimi-Khorshidi et al. (2014)). Afterwards, the DMN was extracted

using an independent component analysis (ICA; MELODIC, imple-

mented in FSL). To provide high reliability, this procedure was

repeated 100 times (each sample consisted of 200 subjects).

Finally, the resulting probability map was thresholded at 95%

(using fslmaths, FSL) and binarized.

2.4 | Statistical analysis

The purpose of the current study was to compare age-related dif-

ferences in cognitive abilities and CT in two large independent

samples of older adults. Therefore, we first assessed general differ-

ences in sample characteristics (i.e., demographic variables), as well

as cognitive abilities and CT (i.e., mean CT per hemisphere and

regions of the DMN) using independent samples T tests. Thereaf-

ter, we assessed the following general linear models for each sam-

ple individually: (a) age-related differences in CT, (b) age-related

differences in cognitive abilities, and (c) the relation between CT

and cognitive abilities. To correct for possible factors that might

influence the relation between age and cognitive abilities and CT,

different models were set up including several covariates of no

interest. The BASE model included the factors age and gender. The

MAIN model was set up with age, gender, and education as factors,

and the SENS (sensitivity) model included the factors age, gender,

education as well as mental and physical well-being. Results were

corrected for multiple comparisons using the Bonferroni approach.

To test whether trajectories of age-related differences in the

different dependent variables (cognitive abilities and CT) are com-

parable between the two samples, we calculated correlations

between age and cognitive abilities and CT (while correcting for

gender and education; MAIN) and compared them using Fisher's

Z test (Eid, Gollwitzer, & Schmitt, 2011). Finally, in a supplementary

analysis, we assessed age-related differences in terms of cognitive

performance and CT in a joint analysis (pooled samples), with addi-

tionally including “sample” as covariate (for results, see Supporting

Information). The reason for this was an additional validation whether

the results obtained by the “individual analyses” versus the “joint analy-

sis” would be comparable in the current study.T
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3 | RESULTS

When matching the two independent samples for age and gender, the

two samples differed in both, demographic variables and cognitive

performance. For raw scores and T statistics and Cohen's d, see

Table 1 (Cohen's d < 0.5 = small; d < 0.8 = medium, and d > 0.8 =

large). In more detail, participants from LHAB generally had a signifi-

cantly higher formal education (years of education: T = −3.4;

p = 0.001; d = 0.32) and higher physical well-being (T = −3.31;

p = 0.001; d = 0.31) as compared to participants from 1000BRAINS.

Mental well-being, however, did not differ between the two samples

(T = −1.12; p = 0.263; d = 0.11).

With respect to cognitive abilities, we found that participants

from LHAB showed better performance as compared to partici-

pants from 1000BRAINS in all psychometric tests assessed

(processing speed: T = −2.89; p = 0.004; d = 0.271, concept shifting:

T = −2.30; p = 0.022; d = 0.215, verbal fluency: T = −5.21; p < 0.001;

d = 0.489, reasoning: T = −8.50; p < 0.001; d = 0.796 and vocabulary:

T = −12.10; p < 0.001; d = 1.08; for detailed information, see Table 2).

When comparing structural brain metrics, we observed higher

values for the participants from 1000BRAINS as compared to partici-

pants from LHAB, that is, total mean CT for right and left hemi-

spheres, (right: T = 6.13; p < 0.001; d = 0.714; left: T = 7.62;

p < 0.001; d = 0.574). The same was found for CT within the different

parts of the DMN (left aDMN: T = 7.11; p < 0.001; d = 0.665; right

aDMN: T = 5.02; p < 0.001; d = 0.470; left medial pDMN: T = 2.52;

p = 0.012; d = 0.236; right medial pDMN: T = 4.79; p < 0.001;

d = 0.448; left lateral pDMN: T = 6.93; p < 0.001; d = 0.649; right lat-

eral pDMN: T = 4.48; p < 0.001, d = 0.420).

In the following analyses, the relation between age and cognitive

performance and CT, respectively, was assessed using different

models (BASE, MAIN, and SENS). With respect to BASE (covariate:

gender), we found age-related differences for most of the cognitive

tasks (i.e., lower cognitive performance in older adults). Effect sizes,

measured using partial eta square were estimated as small to moder-

ate (partial eta square is measured as the proportion of the total vari-

ance explained by the independent variable while correcting for the

other independent variables, with partial eta square <0.01 is ranked as

small; <0.06 as medium and >0.14 as large (Field, 2005; Richardson,

2011). Performance on the vocabulary tests remained stable across

the ages in both samples. Almost all of these results remained signifi-

cant in the MAIN model (covariates: age, gender, years of education;

only exception: verbal fluency in 1000BRAINS did not survive correc-

tion for multiple comparisons) and in the SENS model (covariates: age,

gender, years of education, mental well-being, and physical well-being;

exceptions: verbal fluency and concept shifting did not survive correc-

tion for multiple comparisons). Importantly, age-related differences

were highly similar in the two samples (see Figure 1; results based on

MAIN model: Fisher's Z: processing speed <0.001 [p = 0.251];

concept shifting = −0.67 [p = 0.503]; reasoning = 1.28 [p = 0.200];

verbal fluency = 1.45 [p = 0.147]; vocabulary = −1.5 [p = 0.134]).

For profile plots showing the effects of the different covariates

(age, gender, years of education, mental well-being, and physical

well-being), see Figure 2. Table S1 (see Supporting Information)

contains the detailed statistics for the age differences in cognitive

performance and for the effects of the covariates of no interest

(gender, years of education, mental, and physical well-being).

In the second part of our analysis, we assessed age-related differ-

ences in mean CT within left and right hemisphere (Figure 3, for

effects sizes, see Figure 4, for statistics, see Table S2, Supporting

Information), as well as parts of the DMN (see Figure 5; left and right:

anterior DMN, medial posterior DMN, and lateral posterior DMN, for

effect sizes, see Figure 6, for statistics, see Figure S3, Supporting

Information). In our two samples, we find mean CT differences with

age for the two hemispheres (left hemisphere: F = 33.24 [p < 0.001],

right hemisphere: F = 40.15 [p < 0.001]; Table S2, see Supporting

Information). With respect to regional differences in the association

between CT and age, we found more pronounced age differences in

CT for the posterior as compared to the anterior parts of the DMN

(Table S3, see Supporting Information). For both samples, we found

that for the left and right medial and lateral posterior DMN CT was

smaller with higher age with a moderate effect size (partial eta

square ranged from 0.07 to 0.12 in 1000BRAINS and from 0.08 to

0.13 in LHAB). Again, these effects were highly similar in the two

samples (Fisher's Z: left medial posterior DMN = 0 [p = 1]; left

lateral posterior DMN = −0.34 [p = 0.734]; right medial posterior

DMN = −0.95 [p = 0.342]; right lateral posterior DMN = −0.82

[p = 0.412]; left anterior DMN = 0.11 [p = 0.913]; right anterior

DMN = 1.2 [p = 0.230]).

Moreover, we assessed the relation between age (and other

demographics), CT (of the DMN ROI's), and cognitive performance,

with age and CT of the six ROIs being independent variables and cog-

nitive performance being the dependent variable. Only the relations

between age and cognitive performance (partial eta square ranged

from 0.02 to 0.073 in 1000BRAINS and from 0.039 to 0.102 in LHAB)

and education and cognitive performance (partial eta square ranged

from 0.047 to 0.243 in 1000BRAINS and from 0.051 to 0.116 in

LHAB) remained significant even when including all covariates into

one model with small to moderate effect sizes. For all other factors,

none of the analyses revealed significant results (after correction for

multiple comparisons) in any of the two samples (Table S4; see Sup-

porting Information).

In subsequent analyses, we also assessed age-related differences

of CT and cognitive abilities in a joint analysis for the two samples to

additionally validate the results obtained by the individual analyses

of the two samples. Here, again, the pooled sample showed age-

related differences in both, cognitive abilities (exception: vocabulary)

as well as for the posterior parts of the DMN. In addition, the rela-

tion between CT and cognitive performance remained nonsignificant

even when the two samples were analyzed in one statistical model.

For a detailed overview of statistics, see Tables S1–S4 (Supporting

Information).

Furthermore, assessing nonlinear effects of age (age2) on CT and

cognitive performance (corrected for gender, education, physical, and

mental well-being) revealed no significant results after correction for

multiple comparisons (for statistics, see Tables S5 and S6, Supporting

Information). Finally, to rule out confounding of differences in data or

surface reconstruction quality, we performed a supplementary analy-

sis of the relation between age and CT in the DMN while including
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FIGURE 1 Relation between age and cognitive performance (residuals, corrected for gender and education) for the two samples,

including regression lines, 95% confidence intervals, correlation coefficients, corresponding p-values as well as the Fisher's Z test
statistic and corresponding p-value. 1000BRAINS is presented in blue and LHAB is presented in orange: (a) processing speed;
(b) vocabulary; (c) concept shifting; (d) verbal fluency; and (e) problem solving. LHAB = Longitudinal Healthy Aging Brain [Color figure can

be viewed at wileyonlinelibrary.com]
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quality measurements (contrast to noise ratio for general data quality

and Euler Numbers for quality of the surface reconstructions) as addi-

tional covariates to the SENS model. Age-related differences in CT

remained stable even when including these quality control parameters

to the general linear model, that is, age-related differences in CT for

all posterior parts of the DMN but not the anterior DMN. For detailed

statistics including group means and comparison, as well as general

linear models, see Tables S7 and S8, Supporting Information.

Taken together, participants from LHAB seem to show a general

superiority in cognitive performance as compared to participants from

1000BRAINS. However, the analysis of age-related differences in cog-

nitive performance and global and regional metrics of CT revealed

similar results in both samples.

4 | DISCUSSION

The present study assessed age-related differences in cognitive abili-

ties (processing speed, concept shifting, reasoning, verbal fluency,

and vocabulary) and brain structure (measured by global and regional

CT) in two closely matched samples of older adults. Despite signifi-

cant differences in demographics between the two independent

samples, we observed highly similar patterns of age-related differ-

ences in both, cognitive abilities and brain structure, when using the

same methodological approach.

4.1 | Comparability of independent samples of older
adults

In times of population aging, there is an increasing interest in asses-

sing risk and protective factors that promote brain and cognitive

health until old age. Especially in older adults, however, there is an

enormous amount of variability between individuals regarding brain

structure and cognitive abilities and the “biological age” does not

prove itself sufficient to explain this variability (Goh & Park, 2009;

Park & Reuter-Lorenz, 2009; Reuter-Lorenz & Cappell, 2008;

Reuter-Lorenz & Lustig, 2005; Reuter-Lorenz & Park, 2014). Previ-

ous research rather suggests that interindividual differences in vari-

ables such as education, lifestyle habits, or genetic markers should

be taken into consideration to explain why some older adults

exhibit decline (up to developing neurodegenerative diseases),

while others are able to retain their level of functioning until old

age (Barnard et al., 2014; Kohncke et al., 2016; Laukka et al., 2013;

Lovden et al., 2017; Raz et al., 2005; van Hooren et al., 2007). The

problem with identifying such factors is that single risk or protec-

tive factors only explain small parts of the interindividual variance

regarding cognitive performance and brain structure in the older

adult population, which necessitates large sample sizes to increase

statistical power to uncover these small effects (Button et al.,

2013). One promising approach here is the pooling of existing

data, that is, the joint analysis of different samples. Data pooling

with different samples covering the whole adult age range revealed

FIGURE 2 Profile plots of effect sizes (partial eta square) for cognitive performance with all covariates assessed: age, gender, education, physical

WB, and mental WB 1000BRAINS are presented in blue, LHAB is presented in orange and the pooled data set is represented in green. LHAB =
Longitudinal Healthy Aging Brain, WB = well-being [Color figure can be viewed at wileyonlinelibrary.com]
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age-related differences in terms of CT (Dickerson et al., 2008; Fjell

et al., 2009; Jahanshad & Thompson, 2017; Jovicich et al., 2013).

However, one has to keep in mind that data pooling across differ-

ent study populations, might lead to an intermixture of sample-

specific biological as well methodological variability which might

result in an absence of effects, especially when assessing heteroge-

neous populations such as older adults. Differences in demographics,

methods applied as well as scanner variability have been proposed

to be main factors that lead to the heterogeneity of results in terms

of brain structure and function in older adults in the field of neuro-

science (Afonso et al., 2017; Han et al., 2006; Hanggi et al., 2015;

Jancke, Merillat, Liem, & Hanggi, 2015; Kohncke et al., 2016; Liem

et al., 2015; Lovden et al., 2017; Trachtenberg et al., 2012). The two

samples used in the current study, LHAB and 1000BRAINS, repre-

sent such heterogeneous study populations consisting of older

adults. Therefore, in the interest of the current study, we individually

characterized and compared two different independent samples in

terms of demographics, cognitive abilities, and their relationship with

brain aging.

LHAB has its focus on healthy older adults excluding participants

with a history of neurological diseases and cognitive impairment

(Zollig et al. (2011). On the other hand, 1000BRAINS is conducted as

a population-based epidemiological cohort study, excluding subjects

only if they do not meet the eligibility requirements for the MR

acquisition based on the MR safety guidelines (Caspers et al. (2014).

Thus, although in the current study, we assured that the two samples

would not differ in their age ranges and gender distribution, the two

samples differed in several sample characteristics. Participants from

LHAB on average had more years of education, as well as a higher

physical well-being as compared to participants from 1000BRAINS.

This result is completely in line with the observations made by the

Organization for Economic Co-operation and Development, namely

FIGURE 4 Profile plots of effect sizes (partial eta square) for mean cortical thickness with all covariates assessed: age, gender, education, physical

WB, and mental WB 1000BRAINS are presented in blue, LHAB is presented in orange, and the pooled data set is represented in green. LHAB =
Longitudinal Healthy Aging Brain, WB = well-being [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Relation between age and mean cortical thickness (residuals, corrected for gender and education) for the two samples, including

regression lines, correlation coefficients, and corresponding p-values, as well as the Steiger's Z test statistic and corresponding p-value.
1000BRAINS is presented in blue and LHAB is presented in orange: (a) left hemisphere and (b) right hemisphere. LHAB = Longitudinal Healthy
Aging Brain [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 Relation between age and regional mean cortical thickness for parts of the DMN (residuals, corrected for gender and education) for

the two samples, including regression lines, correlation coefficients and corresponding p-values, as well as the Steiger's Z test statistic and
corresponding p-value. 1000BRAINS is presented in blue and LHAB is presented in orange: (a) DMN projected on a brain's surface consisting of
the anterior (a)DMN (medial PFC), medial posterior (p)DMN (PCC and precuneus) and the lateral pDMN (caudal IPL); (b) left anterior (a)DMN;
(c) right aDMN; (d) left medial posterior (p)DMN; (e) right medial pDMN; (f ) left lateral pDMN; and (g) right lateral pDMN. LHAB = Longitudinal
Healthy Aging Brain, PFC = prefrontal cortex, IPL = inferior parietal lobule, DMN = default mode network [Color figure can be viewed at
wileyonlinelibrary.com]
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that Switzerland compared to Germany is constantly ranked as being

superior in terms of job income and quality, health, life satisfaction,

as well as environmental and community factors (http://www.

oecdbetterlifeindex.org/countries/switzerland/).

In line with the predictions of the scaffolding theory of cognitive

aging (Goh & Park, 2009; Park & Reuter-Lorenz, 2009; Reuter-

Lorenz & Park, 2014), higher education as well as engagement in

physical activities (which seems to be related to higher physical well-

being as tested in the current studies; Bize, Johnson, and Plotnikoff

(2007)) have repeatedly been shown to protectively influence the neu-

rocognitive aging process. Both have been related to higher cognitive

functioning and less brain atrophy during normal as well as pathological

aging, such as mild cognitive impairment and Alzheimer's disease

(Afonso et al., 2017; Amieva et al., 2014; Miller, Taler, Davidson, &

Messier, 2012; Ritchie, Bates, Der, Starr, & Deary, 2013; Schneeweis,

Skirbekk, & Winter-Ebmer, 2014; Sofi et al., 2011; Tucker-Drob,

Johnson, & Jones, 2009; Zahodne et al., 2011). It is therefore plausi-

ble that participants from LHAB showed superior performances in all

cognitive tests assessed (processing speed, concept shifting, reason-

ing, verbal fluency, and vocabulary).

The comparison of CT between the two samples, however,

revealed higher global as well as regional CT values for participants

from 1000BRAINS. This result seems counterintuitive at first sight.

Based on the sample differences in terms of demographics and cogni-

tive abilities, one would have predicted participants from LHAB to

show thicker cortices given that the pertinent literature tends to show

positive associations between cognitive ability and the amount of gray

matter as measured with CT and gray matter volume or density in the

aging population (for an overview, see, e.g., Harada et al., 2013). From

our view, the most likely explanation is that these sample differences

in CT are due to the different MR scanners used. It has been shown

before that even when assessing structural 3D brain images from one

and the same person, CT values, but also other metrics, such as brain

volume differ between the different scanners (Bauer, Jara, Killiany, &

Alzheimer's Disease Neuroimaging, 2010; Dickerson et al., 2008;

Fortin et al., 2017; Han et al., 2006; Kruggel, Turner, Muftuler, &

Alzheimer's Disease Neuroimaging, 2010; Schlett et al., 2016;

Stonnington et al., 2008; Westlye et al., 2009). Thus, direct compari-

sons of brain metrics between different samples should only be exe-

cuted with caution.

4.2 | Generalizability of age-related differences in
cognitive abilities and CT

Within the scope of the current study, we decided to separately ana-

lyze the associations between age and brain structure and cognitive

abilities in the two samples and compared the resulting associations

using Fisher's Z. Although the two samples differed regarding both,

cognitive performance and CT, we revealed highly similar slopes for

age-related differences in global as well as regional CT. In line with

FIGURE 6 Profile plots of effect sizes (partial eta square) for regional mean cortical thickness (parts of the DMN) with all covariates assessed:

age, gender, education, physical WB, and mental WB. 1000BRAINS are presented in blue, LHAB is presented in orange, and the pooled data set is
represented in green. LHAB = Longitudinal Healthy Aging Brain, WB = well-being, DMN = default mode network [Color figure can be viewed at
wileyonlinelibrary.com]
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preceding studies examining global CT, higher age was associated with

lower mean CT in both hemispheres for the two samples (Lemaitre

et al., 2012; Long et al., 2012; Salat et al., 2004). Similarly, the age-

effect patterns found for cognitive ability did not differ across sam-

ples. Higher age was associated with lower cognitive functioning in all

cognitive tasks assessed, except in the vocabulary test, where no sig-

nificant relationship was revealed between age and ability scores.

The similarity of the cross-sectional age-effect patterns that we

observe across LHAB and 1000BRAINS indicates that the lower level of

education or physical well-being evident in 1000BRAINS does not con-

siderably enhance age differences (i.e., steeper slope in 1000BRAINS

sample). Put into the context of cognitive reserve, the between-sample

differences in cognitive ability together with the similarity of age slopes,

may suggest that participants from LHAB (with a higher education and

higher physical well-being) reach the criterion for cognitive impairment

later as compared to participants from 1000BRAINS, primarily because

they started off at higher levels of cognitive ability. However, by means

of the presently used cross-sectional data sets, this proposition cannot

be tested on the level of individual trajectories. More empirical studies in

the field of cognitive reserve and longitudinal changes of cognitive

abilities are necessary to shed more light on the role of cognitive

reserve—and education as one important proxy of it—in defining the

rate of cognitive decline (for a recent review, see Christie et al. (2017)).

To explore in more detail whether the relationship between age

and cognitive performance/CT would be differentially influenced by

the different covariates (education, physical, and mental well-being) in

the two samples, we set up different statistical models (BASE, MAIN,

and SENS). Although the different covariates seemed to explain differ-

ent amounts of variance in the cognitive abilities/CT in the two sam-

ples, age-related differences in cognition/CT remained highly similar

across samples. For example, mental well-being had a significant influ-

ence on processing speed for the sample of 1000BRAINS, but not

LHAB. Nevertheless, this difference obviously did not have a consid-

erable impact on the age-related differences in processing speed.

Thus, while education and physical well-being might influence the

general level of cognitive performance, it seems that these age-related

differences seem to be robust against the possible influences tested in

the current samples.

4.3 | Regional differences in CT

Beyond assessing mean CT for the two hemispheres, we also analyzed

age-related differences in regional CT (different parts of the DMN).

The choice of regions of interest was based on an earlier study of

Jockwitz et al. (2017). Herein, the authors aimed at assessing struc-

tural correlates for functionally established theories of the aging brain.

In detail, it has been shown that during performance of a memory task

(but also in the resting state), older in comparison to younger adults,

show stronger activation/connectivity patterns in the more anterior

parts of the DMN. At the same time, activation patterns in the more

posterior parts of the DMN were reported to be stronger in younger

compared to older participants. Thus, with increasing age, there seems

to be a shift in brain activation patterns from more posterior to more

anterior brain regions (posterior to anterior shift in aging [PASA]) that

helps to maintain cognitive performance as stable as possible (Davis,

Dennis, Daselaar, Fleck, & Cabeza, 2008; Jones et al., 2011).

In the current study, we exemplarily used the parts of the DMN

to assess regional generalizability of age-related differences in brain

structure and found age-related decreases in CT for all the posterior

parts of the DMN in both samples. In contrast to that, the anterior

parts of the DMN did not show age-related differences in any of the

two samples. This finding supports a previous study by Jockwitz et al.

(2017), in which the authors presented a structural correlate for the

posterior to anterior shift in activation patterns, namely a more pro-

nounced decrease in cortical folding for the posterior parts of the

DMN as compared to the more anterior parts of the DMN in a sample

of older adults (1000BRAINS). Moreover, the current results extend

previous results by showing that structural correlates for PASA can

also be generalized over different independent samples of older adults

with different demographical characteristics and different brain met-

rics used (local gyrification index vs. CT).

4.4 | Brain–behavior associations

In the current study, the associations between cognitive abilities and

CT were weak and did not survive correction for multiple comparisons.

This result was stable over the different statistical models used (BASE,

MAIN, SENS) as well as for the different samples (1000BRAINS, LHAB,

pooled sample of the two). This result is in line with previous studies

showing only weak associations between brain structure and cognitive

performance, especially when examining older adults (e.g., Gunning-

Dixon & Raz, 2000; de Mooij, Henson, Waldorp, & Kievit, 2017). This,

in turn accords with the scaffolding theory of aging stating that intrain-

dividual regulatory processes (e.g., changes in functional connectivity)

within older adults might compensate for structural brain decline

thereby keeping cognitive abilities relatively stable (Reuter-Lorenz &

Park, 2014). Thus, in the current study, the relation between CT and

cognitive abilities were expected to be rather weak. To explore this in

more detail, further longitudinal studies are warranted that assess both,

structural as well as functional changes in the course of aging in relation

to intraindividual changes in cognitive abilities.

Another reason, especially when comparing the current results to

the results reported in Jockwitz et al. (2017) for an absence of signifi-

cant relationships between cognitive abilities and CT could be due dif-

ferences in structural brain metrics used. The aforementioned study

of Jockwitz et al. (2017) used the local gyrification index as measure

for cortical atrophy in the regions of interest, measuring the complex-

ity of the brain composed of gray matter and structural connectivity.

The current study used CT as measure for cortical atrophy, since this

is one of the most often used brain metrics to study the effects of age

on brain structure. CT measures rather local gray matter differences

only. Thus, different structural brain metrics might result in different

results. Beyond that, it might still be possible that the chosen regions

of interest (DMN) might not be directly related to performance in the

neuropsychological tests assessed. Beyond that, it might still be

possible that the chosen regions of interest (DMN) might not be

directly related to performance in the neuropsychological tests

assessed. Although parts of the DMN have previously been associ-

ated with attention and executive functions, other tests, which
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were not available for the two samples, might be interesting to

investigate in this context for example, episodic memory function.

And finally, larger sample sizes might be necessary to obtain small

but significant results, as it has been the case in the aforemen-

tioned study of Jockwitz et al. (2017); n = 749.

4.5 | Pooled versus individual analyses

In the current study, we decided not to pool data of the two samples but

to analyze the samples individually with respect to age-related differ-

ences in cognitive performance and brain structure. While the results

were highly similar for the cross-sectional age trajectories in terms of CT

and cognitive performance, differences were found for the relation

between the other covariates included in the models (i.e., SENS) and cog-

nitive performance and CT, respectively. For example, when looking at

1000BRAINS, we found a moderate effect of mental well-being on

processing speed. On the other hand, for LHAB and for the pooled sam-

ple, there was no effect of mental well-being on processing speed. These

distinct outcomes might be the result of differences in sample character-

istics. The sample of 1000BRAINS is a population-based sample. In

contrast to that, the LHAB study only included participants without any

neurological and psychiatric diseases and a score on the Mini-Mental

State Examination of at least 26. These sample characteristics might be

one explanation why mental well-being plays a significant role in terms

of cognitive performance differences in 1000BRAINS but not in LHAB.

Previous studies often assessed age as independent factor in pooled data

analyses consisting of older adults (e.g., Fjell et al. (2009)). In the current

study, we could show that age revealed the strongest effects on both

cognitive performance and CT, and this seems to be highly similar even

in independent samples of older adults. Thus, for such robust effects data

pooling might be a good option to increase sample sizes and statistical

power (Button et al., 2013). However, other risk and protective factors

on the aging brain (such as mental well-being) might be study specific,

depending on the sample characteristics. Following, when samples are

highly heterogeneous, a pooled analysis might underestimate such influ-

ences. A combination of both, pooled and individual analyses seem to be

an optimal solution to explore influencing factors on the aging brain.

4.6 | Limitations and future directions

The study has several advantages as well as limitations which should be

addressed. First, the current study investigated CT as one metric of

brain structure. CT is a popular and sensitive metric in the frame of

age-related differences or changes in gray matter, for example, see Fjell

et al. (2009, 2013, 2015); Hogstrom et al., 2013. Given the upcoming

trend in data pooling procedures, we thought that CT would therefore

be of interest in the current cross-validation study. Nevertheless, in

future research, other estimated of gray and white matter as well as

functional connectivity should be validated between independent stud-

ies, to further evaluate the generalizability of results and advantages

and disadvantages of data pooling procedures. Second, with respect to

the current study, we decided to match the two samples with respect

to age and gender distributions and compare the correlations using

Fisher's Z. For the future, we suggest to further evaluate different

methodological approaches when cross-validating independent samples

with regard to brain metrics and or cognitive functions. First, different

matching procedures should be investigated and compared. For exam-

ple, future studies could not only match samples with regard to age and

gender, but also with respect to cognitive functioning using propensity

score matching. Furthermore, it would be useful to evaluate other sta-

tistical methods to cross validate age-related differences in brain struc-

ture and cognitive performance, especially when examining more than

two samples. Finally, future studies should explore the importance of

covariates. Since the choice of covariates to include into statistical

models is highly variable across studies (see Silberzahn et al., 2017),

future research should investigate this topic more intensively. For

example, the current study assessed education as one indicator for

socioeconomic status. Since socioeconomic status includes more than

education, for example, occupation and income, future research should

also assess other indicators and investigate the influence of these fac-

tors on cognition and brain structure.

Moreover, we are aware of the fact that scanner differences

might contribute to the differences in sample means in terms of CT in

the current study. One way to systematically explore this would be a

traveling phantom that can be used to assess scanner differences. The

current analyses investigated two independent samples of already

completed measurements. Therefore, a retrospective methodical vali-

dation was not feasible. However, we would suggest such quality con-

trol measurement for future studies with planned study comparisons.

Finally, we have to mention that PASA is just one explanation for

the results found in the current study. However, differences in image

quality between anterior and posterior parts of the brain might be also

responsible for the findings on age-related differences in CT. Future

studies should be designed to systematically investigate between-

subject variability across the different regions of the brain, its sources

(i.e., measurement quality) and implications for analysis of data result-

ing from regions with differing variability.

5 | CONCLUSIONS

Taken together, the current results show that when comparing age-

related differences in cognitive abilities and CT in two different and

independent samples within the same age range and composed of the

same gender distribution, age-related differences in cognitive perfor-

mance as well as global and regional CT can be generalized over dif-

ferent samples, assuming the same methodology is used. While data

pooling has the advantage to increase statistical power to uncover

small effects in the aging population, the current results show the use-

fulness of conducting separate analyses across samples consisting of

distinct study populations, with comparison of the overall trends

obtained in each analysis. Future multicenter studies and imaging con-

sortia might at least use a combination of the two approaches to

unravel the complexity of the aging brain in its entirety.
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Cross-sectional studies indicate that normal aging is accompanied by decreases in brain

structure. Longitudinal studies, however, are relatively rare and inconsistent regarding

their outcomes. Particularly the heterogeneity of methods, sample characteristics and

the high inter-individual variability in older adults prevent the deduction of general

trends. Therefore, the current study aimed to compare longitudinal age-related changes

in brain structure (measured through cortical thickness) in two large independent

samples of healthy older adults (n = 161 each); the Longitudinal Healthy Aging Brain

(LHAB) database project at the University of Zurich, Switzerland, and 1000BRAINS

at the Research Center Juelich, Germany. Annual percentage changes in the two

samples revealed stable to slight decreases in cortical thickness over time. After

correction for major covariates, i.e., baseline age, sex, education, and image quality,

sample differences were only marginally present. Results suggest that general trends

across time might be generalizable over independent samples, assuming the same

methodology is used, and similar sample characteristics are present.

Keywords: brain structure, aging, cognition, longitudinal change, old age, cortical thickess

INTRODUCTION

Normal aging can be accompanied by a decline in cognitive abilities (Hedden and Gabrieli, 2004)
and changes in brain structure (Sowell et al., 2003). Both phenomena show high inter-individual
variability, especially during later decades of life (Habib et al., 2007; Dickie et al., 2013). Results
derived from cross-sectional studies have revealed a negative relationship between age and brain
structure across adulthood, with differential effect sizes for specific brain regions (Fjell et al., 2009;
Jockwitz et al., 2019), depending on the functional properties of the brain region of interest as well
as the brain structure metric investigated (e.g., brain volume-based versus surface-based metrics
or cortical thickness versus surface area) (O’Sullivan et al., 2001; Sowell et al., 2003; Salat et al.,
2005; Walhovd et al., 2011; Ziegler et al., 2012; Dickie et al., 2013; Hogstrom et al., 2013; Fjell et al.,
2014a,b; Liem et al., 2015).

While the associations between brain structure and age are rather heterogenous across studies,
we recently showed consistent cross-sectional age associations for two different cohorts when
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applying the same analysis protocol [e.g., age range, processing of
the neuroimaging data (Jockwitz et al., 2019)]. At the same time,
cross-sectional studies inherit a potential problem concerning
the validity of inferences: Cross-sectional studies assess age-
related differences between individuals, which is not comparable
to age-related changes within individuals. One important
disadvantage of cross-sectional studies concerns interindividual
differences that might obscure intraindividual changes of aging
(Raz and Lindenberger, 2011).

Longitudinal studies are still relatively rare and inconsistent
with respect to their outcomes, preventing the deduction of
general trends of age-related changes in brain structure. When
comparing cross-sectional and longitudinal research designs,
different patterns were shown for structural brain aging (Hedden
and Gabrieli, 2004; Pfefferbaum and Sullivan, 2015). Large
between-study heterogeneity of designs and methods, differences
in sample characteristics and the generally larger inter-individual
variability in samples of older adults make it difficult to extract
general trends. However, general decreases in brain structure
have been reported, although to a lesser degree than those
reported in cross-sectional research designs [for a recent review,
see Oschwald et al. (2019)].

To extract general age trends for brain structure,
comparability between independent study samples is necessary.
A few studies have already performed comparability analyses of
cross-sectional age-related differences in brain structure metrics
(i.e., brain volume or cortical thickness) between different
samples, e.g., Fjell et al. (2009); Jockwitz et al. (2019). These
studies indicate that general associations between age and brain
structure are similar across independent samples, assuming that
the same methodology and analysis protocol was used. However,
such between study comparisons are lacking for investigations
of longitudinal aging trajectories, especially in the older adult
population, where inter-individual variability is particularly
high. With the growing trend of large imaging consortia, e.g.,
UK Biobank (Miller et al., 2016), ENIGMA (Thompson et al.,
2014), German National Cohort Study [NaKo; Bamberg et al.
(2015)], or ADNI [Alzheimer’s Disease Neuroimaging Initiative;
Jack et al. (2008)] which aim at pooling datasets from a variety
of study centers to increase sample size and statistical power, it
will be crucial to establish the validity of age-related changes in
brain structure. Therefore, the current study aimed to compare
longitudinal age-related changes in brain structure in two large
independent samples of healthy older adults: The Longitudinal
Healthy Aging Brain (LHAB) database project at the University
of Zurich (Switzerland; Zollig et al. (2011)] and 1000BRAINS at
the Research Centre Juelich (Germany; Caspers et al. (2014)].

MATERIALS AND METHODS

Participants included in the current research project were
recruited from two longitudinal studies investigating brain-
behavior relationships in older adults located in the larger Zurich
area (Switzerland) and in the Ruhr district (Germany).

The first sample comprised the ongoing LHAB database
project at the University Research Priority Program (URPP)

“Dynamics of Healthy Aging” of the University of Zurich (Zollig
et al., 2011). LHAB investigates age-related dynamics of brain-
behavior relationships in healthy older adults. A particular focus
is placed on assessing and explaining interindividual variability
in the observed aging trajectories. For this purpose, a broad
spectrum of factors assumed to influence such trajectories (e.g.,
lifestyle, sleep, and nutrition) is collected. In LHAB, older adults
from Zurich and surrounding areas are observed longitudinally
with between-measurement intervals of one to 2 years. Inclusion
criteria for study participation at baseline were age ≥ 64, right-
handedness, fluent German language proficiency, a score of
≥ 26 on the Mini Mental State Examination [MMSE; Folstein
et al. (1975)], no self-reported neurological disease of the central
nervous system and no contraindications to MRI. The study
was approved by the ethical committee of the canton of Zurich.
Participation was voluntary and all participants gave written
informed consent in accordance with the declaration of Helsinki.
The initial sample of LHAB was comprised of 232 participants
ranging from 64 to 87 years of age. Data acquisition in the
LHAB project started in 2011. Currently the dataset covers an
observation period of 7 years.

The second sample comprised 1000BRAINS at the Institute
of Neuroscience and Medicine, Research Centre Juelich.
1000BRAINS is a longitudinal population-based study that
assesses variability in brain structure and function during
aging with respect to various influencing factors (Caspers
et al., 2014). The 1000BRAINS sample is drawn from the
10-year follow-up cohort of the Heinz Nixdorf Recall Study,
an epidemiological population-based study of risk factors
for atherosclerosis, cardiovascular disease, cardiac infarction,
and death (Schmermund et al., 2002) and the affiliated
MultiGeneration study. In 1000BRAINS, adults aged 55 and older
(at baseline) from the Heinz Nixdorf Recall study and their
relatives (spouses and offspring; sampled from MultiGeneration
study) were recruited, and were examined two times over a
period of about 3 to 4 years. In contrast to the LHAB study,
inclusion in the study was only dependent on the eligibility
requirements for the MR acquisition based on the MR safety
guidelines (e.g., stents and heart pacemakers led to exclusion
from the study). The study protocol was approved by the
University of Duisburg-Essen. Participation was voluntary and all
participants gave written informed consent in accordance with
the declaration of Helsinki. The initial sample of 1000BRAINS
was comprised of 1,315 participants ranging from 18 to
87 years of age.

For the current study, we focused on two time points in both
samples (LHAB: baseline and 4-year follow-up; 1000BRAINS:
baseline and 3 to 4-years follow-up). Participants with missing
values for the brain data were excluded. In order to assure
comparability between the two samples, we matched them with
respect to baseline age and sex using propensity score matching
implemented in R (Stuart et al., 2011).

This resulted in 161 participants for each of the two final
samples with the following demographic characteristics: LHAB:
mean age = 69.9 ± 4.1; 85 females, mean interval = 4.2 ± 0.1;
1000BRAINS: mean age = 69.2 ± 4.6, 76 females, mean
interval = 3.7 ± 0.7. For an overview of demographic variables
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of the two samples at both timepoints, see Table 1. Education
was measured according to the international classification
of education (ISCED) and afterward divided into three
educational classes: 1. school and/or vocational training,
2. grammar school or vocational baccalaureate, specialized
secondary school/diploma, or commercial school degree, and 3.
Bachelor, Master, Doctorate or equivalent.

Data Acquisition
For LHAB, anatomical T1-weighted images of both timepoints
were acquired on a 3.0 T Philips Ingenia scanner (Philips
Medical Systems, Best, The Netherlands). T1-weighted structural
brain images were measured per visits with: TR = 8.18 ms,
TE = 3.8 ms, Flip Angle = 8◦, FoV = 240mm× 240mm, isotropic
voxel size = 1 mm × 1 mm × 1 mm, 160 slices per volume.
For 1000BRAINS, anatomical T1-weighted images of both
timepoints were acquired on a 3.0 Tesla TIM-Trio MR scanner
(SiemensMedical System, Erlangen, Germany). The T1-weighted
structural brain images were scanned per visit with: TR = 2.25 s,
TE = 3.03 ms, flip angle = 9◦, FoV = 256 mm × 256 mm, voxel
resolution = 1 mm × 1 mm × 1 mm, 176 slices per volume.
In both studies, T1-imaging was part of a larger MR imaging
protocol [see Caspers et al. (2014); Zollig et al. (2011)].

Preprocessing
Anatomical images from both samples were preprocessed
using the same automated surface-based processing stream
for longitudinal analyses of the FreeSurfer Software package
[1000BRAINS: version 6.0.0; LHAB: FreeSurfer BIDS App v6.0.0-
2; Gorgolewski et al. (2017)]. A detailed description of this
pipeline is provided by Reuter et al. (2012); Dale et al. (1999),
Fischl et al. (1999) as well as on http://surfer.nmr.mgh.harvard.
edu. In short, first the cross-sectional surface reconstruction
pipeline was applied to every subject, which includes (a) the
segmentation of the structural brain images into gray matter,
white matter, and cerebrospinal fluid, (b) motion correction,
(c) intensity normalization, (d) transformation into Talairach
space, (e) tessellation of the gray/white matter boundary, and
(f) correction of topological defects. The gray/white matter
interface was then (g) expanded to create the pial surface
(boundary between gray matter and cerebrospinal fluid), which
finally consists of about 150,000 vertices per hemisphere with
an average surface area of 0.5 mm2. Afterwards, each subject
was preprocessed using the longitudinal surface reconstruction
pipeline (Reuter et al., 2012) in which, based on the results
of the cross-sectional preprocessing pipeline, a within-subject

TABLE 1 | Demographics of the two samples and group comparisons

(Independent T-test for continuous and Wilxon-Cox test for categorical variables)

with corresponding T/W and p-values.

1000BRAINS LHAB T/W (P-Values)

Age (TP1) 69.2 ± 4.6 69.9 ± 4.1 −1.39 (0.166)

Sex 0.53 ± 0.5 0.47 ± 0.5 13685 (0.317)

ISCED 3 2.0 ± 1.0 2.3 ± 0.8 11000 (0.010)

Age (TP2) 72.9 ± 4.7 74 ± 4.1 −2.28 (0.024)

Intervall (TP1 – TP2) 3.7 ± 0.7 4.2 ± 0.1 −8.02 (<0.001)

anatomical template was built across the two timepoints.
Subsequently, cortical thickness was calculated based on the
cross-sectional as well as longitudinal information from each
subject. This procedure has previously been shown to be more
sensitive in calculating surface-based brain metrics, since, due
to the common template for the two timepoints, within-subject
variability is reduced (Reuter et al., 2012). No manual correction
of the reconstructed surfaces (white matter and pial surface) was
performed in the two studies.

Regions of Interest
For the current study, we used the widely used Desikan-Killiany
atlas (Desikan et al., 2006) as implemented in FreeSurfer to
extract cortical thickness from left and right cortices. Specifically,
for each of the 68 regions of interest (ROIs), mean cortical
thickness was calculated as the average shortest distance between
the white matter surface and the corresponding vertex within the
respective ROIs on the pial surface.

Cognitive Performance
Participants from both LHAB and 1000BRAINS took part in
a large neuropsychological assessment consisting of tests in
the domains attention, executive functions, working memory,
episodic memory and language functions. For comparison
between the two samples, the following tasks were chosen: Trail
Making Test A: processing speed, B: concept shifting;Morris et al.
(1989), LPS50+ subtest three [reasoning; Sturm et al. (1993)] and
[Regensburger Wortflüssigkeitstest (RWT), semantic condition
(verbal fluency); Aschenbrenner et al. (2000)]. For descriptives of
cognitive tasks, see Table 2.

Statistical Analysis
The purpose of the current research project was to compare
intra-individual changes in brain structure (cortical thickness)
across the ROIs of two independent population-based cohort
studies. We calculated annual percentage changes to estimate
yearly changes in cortical thickness and cognitive performance.
Annual percentage changes were calculated as the following:
[(Value at last measurement occasion in the study/Value at
baseline)1/(totalyearsinstudy)−1] × 100. Positive values represent
increases and negative values represent decreases. We next
identified outliers for all annual percentage changes (mean
annual percentage change± 3 SD) and excluded those values that
deviated more than 3 SD from the mean.

To examine whether the two samples showed similar changes
in cortical thickness over time, we first used a one sample
t-test to estimate general changes in cortical thickness for the
two groups separately. To investigate whether the two samples
differed concerning their variances, we conducted Levene’s test
for sample homogeneity. Finally, between sample differences
in cortical thickness annual percentage changes were assessed
using a General Linear Model (GLM) with cortical thickness
as the dependent variable and sample and sex as fixed factors.
Baseline age (TP1), education, and Euler number were included
as covariates of non-interest. Euler number represents a marker
of image quality that summarizes the topological complexity of
the reconstructed cortical surface (Rosen et al., 2018).
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TABLE 2 | Raw cognitive performance values for TP1 and 2, as well as the APC together with T and p-values for the APC (Sig. of APC; one sample T-test) and F and

p-values for sample homogeneity (Levene’s test).

1000BRAINS LHAB

Tp1 Tp2 APC Sig. of APC Tp1 Tp2 APC Sig. of APC Levene’s test

Processing speed 40.22 ± 12.46 41.12 ± 14.12 0.34 ± 7.06 0.61 (0.54) 37.16 ± 12.90 39.37 ± 16.15 1.07 ± 6.88 1.93 (0.056) 0.25 (0.614)

Concept shifting 93.20 ± 41.55 96.87 ± 43.33 0.84 ± 7.98 1.32 (0.188) 86.69 ± 33.86 94.22 ± 39.77 2.04 ± 6.83 3.63 (<0.001) 2.40 (0.122)

Verbal fluency 23.96 ± 6.67 22.81 ± 6.73 −1.31 ± 5.76 −2.81 (0.006) 26.06 ± 6.46 25.98 ± 5.83 0.17 ± 4.41 0.47 (0.633) 9.59 (0.002)

Reasoning 20.99 ± 4.65 20.56 ± 5.42 −0.13 ± 5.14 −0.31 (0.757) 24.02 ± 4.45 26.48 ± 4.75 2.35 ± 3.70 7.99 (<0.001) 10.66 (0.001)

Subsequently, we assessed the cortical thickness annual
percentage changes with the mentioned covariates (baseline age,
sex, education, and Euler number) separately for the two samples
to examine whether changes in cortical thickness would be driven
by one sample. Finally, we additionally assessed the relation
between annual percentage changes of cortical thickness and
cognitive performance for the two samples separately.

RESULTS

When matching the two samples for baseline age and sex, the
two samples did not differ in the respective variables (baseline
age: T = −1.39, p = 0.166; and sex: W = 13,685, p = 0.317).
However, we found significant differences in terms of education
(W = 11,000, p = 0.01), with participants included in LHAB
generally showing a higher formal education as compared
to participants included in 1000BRAINS. Furthermore, the
time intervals between the two measurements differed, with
a longer interval between measurements in the LHAB project
(1000BRAINS: 3.7± 0.7 years; LHAB: 4.2± 0.1 years; T =−8.02;
p < 0.001; for group differences, see Table 1). To address this
difference in time intervals we calculated annual percentage
changes of cortical thickness. Table 3 includes cortical thickness
values for the two hemispheres at both timepoints as well as
the annual percentage change in cortical thickness for the two
samples separately (for all ROIs see Supplementary Table 1).

Cortical Thickness
With respect to cortical thickness, the LHAB sample showed
slightly stronger annual percentage changes (i.e., decreases) in
cortical thickness over time as compared to 1000BRAINS (see
Figures 1A,B). On the other hand, we found 1000BRAINS to
generally show more variance between participants regarding the
annual percentage change in most of the ROIs (for Levene’s test,
Supplementary Table 1), although variances in mean CT did
not differ significantly between the two samples (see Table 3).
Figure 1C shows difference maps in terms of standard deviations
of the annual percentage changes. For example, one of the
most significant differences in standard deviations is observed
in the right postcentral gyrus (see Figure 1C for a density plot;
1000BRAINS: SD = 0.7, LHAB: SD = 0.5; Levene’s test: F = 14.64,
p < 0.001).

Next, we again used GLMs to examine sample differences in
annual percentage changes in cortical thickness with age, sex,
education and Euler number as covariates (for all significant

influences, see Table 4 and Supplementary Table 2). Overall,
after correcting for the different covariates and for multiple
comparisons, only very few sample differences in terms of annual
percentage change were present, i.e., inferior frontal gyrus pars
triangularis (lh: F = 13.67, rh: F = 16.54) and inferior frontal gyrus
pars opercularis (rh: F = 21.43) and transverse temporal gyrus (rh:
F = 20.47).

In addition, after correcting for the above-mentioned
variables, only a few regions showed significant intercepts (i.e.,
main effects of time), age effects or relations to sex, education
or the Euler number (almost no effects did survive correction
for multiple comparisons). Figure 2 shows age-related annual
percentage changes in cortical thickness for left and right
hemispheres. As one can see in the two plots, the annual
percentage change was not significantly related to baseline age for
the left hemisphere (F = 2.41; p = 0.121) but was at trend level for
the right hemisphere (F = 4.95; p = 0.027). The plots also show
that the relationship between age and annual percentage change
follows a linear, rather than a non-linear trend.

For a better understanding of the regional specificity of sample
differences in the cortical thickness annual percentage changes,
we projected the effect sizes (partial eta squared) of the sample
differences onto the brains surface (Figure 3). Effect sizes ranged
from 0 to 0.06, being interpreted as small to medium effects.
Regarding the covariates, we only found sporadic effects on
cortical thickness annual percentage change. After correcting
for these subtle, mostly non-significant influences, and even the
intercepts (i.e., main effects of annual percentage change) became
non-significant. To verify that these influences were not driven by
only one of the two samples, we further calculated the GLMs for
the two samples separately (see Supplementary Table 3).

Finally, we assessed the relation between annual percentage
changes of cortical thickness and cognitive performance for
the two samples separately, which, after correcting for multiple
comparisons, revealed non-significant results (see Tables 2, 5 and
Supplementary Table 4).

DISCUSSION

Generalizability and replicability of age effects on brain and
behavior are vital requirements to understand major aging
mechanisms in our older adult population. The complexity of the
aging process, in which the effect of single contributing factors,
i.e., lifestyle or genetics, is assumed to be highly individual and
rather small. To unravel even subtle brain-behavior relationships

Frontiers in Human Neuroscience | www.frontiersin.org 4 April 2021 | Volume 15 | Article 635687



Jockwitz et al. Brain Structure in Aging

TABLE 3 | Cortical thickness values for TP1 and 2, as well as the annual percentage change (APC) together with T and p-values for the APC (Sig. of APC; one sample

T-test) and F and p-values for sample homogeneity (Levene’s test).

1000BRAINS LHAB

Tp1 Tp2 APC Sig. of APC Tp1 Tp2 APC Sig. of APC Levene’s test

Mean CT left 2.46 ± 0.09 2.45 ± 0.09 −0.15 ± 0.45 −4.17 (<0.001) 2.4 ± 0.08 2.37 ± 0.09 −0.29 ± 0.45 −8.21 (<0.001) 0.17 (0.677)

Mean CT right 2.46 ± 0.09 2.45 ± 0.10 −0.14 ± 0.40 −4.49 (<0.001) 2.41 ± 0.08 2.38 ± 0.09 −0.3 ± 0.42 −9.07 (<0.001) 0.19 (0.664)

FIGURE 1 | Annual percentage changes (APC) in cortical thickness for (A) 1000BRAINS and (B) LHAB. Differences in SD between the two samples is shown in (C)

together with a corresponding density plot (D) showing the variance in cortical thickness for 1000BRAINS and LHAB within the postcentral gyrus.

TABLE 4 | F and p-values derived from general linear models assessing annual percentage changes in cortical thickness in relation to sample, age, sex, education, and

data quality (Euler number).

Intercept Age (TP1) Sex Education Euler Sample

Mean CT left 1.83 (0.177) 2.41 (0.121) 0.00 (0.966) 0.10 (0.756) 0.94 (0.334) 7.5 (0.007)

Mean CT right 4.35 (0.038) 4.95 (0.027) 0.44 (0.508) 0.95 (0.331) 0.32 (0.572) 8.85 (0.003)

during aging (Button et al., 2013; Wiseman et al., 2019) there
is an upcoming trend of data pooling approaches to increase
statistical power. However, data pooling procedures, particularly

in imaging consortia, require proof of generalizability of observed
age-related brain changes. The present study set out to meet
this need and assessed age-related changes in brain structure
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FIGURE 2 | Mean thickness annual percentage changes for the left (A) and right (B) hemispheres. With increasing age, there are slightly decreasing annual

percentage changes for both samples.

FIGURE 3 | Effect sizes of sample differences using partial eta square.

(measured by global and regional cortical thickness) in two
closely matched samples of older adults over an average time
period of three to four years. Despite significant differences
in demographics between the two independent samples, we
observed highly similar patterns of age-related changes in brain
structure, when using the same methodology and analysis.

Cross-sectional age-related atrophy patterns have been
reported by many previous studies (Walhovd et al., 2011; Storsve

et al., 2014; Jancke et al., 2015). From those studies we would have
expected to see a pattern of small but consistent cortical thickness
decline in our two studies.

Overall, this decrease was found for both studies (cf. Figure 1)
with participants included in the LHAB study showing a
slightly more pronounced decline in cortical thickness. Highest
annual percentage changes were found for pre- and postcentral
gyri together with medial and lateral temporal and parietal

Frontiers in Human Neuroscience | www.frontiersin.org 6 April 2021 | Volume 15 | Article 635687



Jockwitz et al. Brain Structure in Aging

TABLE 5 | F and p-values derived from general linear models assessing the relation between annual percentage changes in cortical thickness with annual percentage

changes in cognitive performance, calculated separately for the two samples, corrected for age, sex, education, and data quality (Euler number).

Processing speed Concept shifting Verbal fluency Reasoning

1000BRAINS LHAB 1000BRAINS LHAB 1000BRAINS LHAB 1000BRAINS LHAB

Mean CT left 0.21 (0.651) 5.45 (0.021) 1.27 (0.263) 0.31 (0.581) 0.26 (0.609) 0.00 (0.997) 2.40 (0.124) 1.03 (0.311)

Mean CT right 1.55 (0.215) 2.63 (0.107) 0.03 (0.864) 0.00 (0.971) 0.45 (0.505) 0.41 (0.522) 0.49 (0.484) 3.50 (0.063)

brain regions in both samples. In turn, the anterior cingulate
cortex showed slight increases in cortical thickness over time.
Importantly, the results are in line with previous longitudinal
studies on cortical thickness investigating the whole adult lifespan
(Storsve et al., 2014). Further, sample inhomogeneity testing
revealed a higher between-subject variance for 1000BRAINS as
compared to the LHAB study.

When adjusting the longitudinal effects of time for sex,
education, baseline age and data quality (Euler number), only
sporadic brain areas exhibited significant sample effects in annual
percentage changes, i.e., left and right inferior frontal gyrus,
pars triangularis, right inferior frontal gyrus pars opercularis and
the right transverse temporal gyrus. Here, participants included
in the LHAB study showed a more pronounced decrease over
time. Based on sample characteristics, e.g., higher education in
the LHAB sample, one would expect 1000BRAINS to show a
more pronounced cortical thinning. However, especially for the
inferior frontal gyrus (i.e., Broca’s region involved in language
functions), it has been shown that a higher brain reserve, in terms
of higher gray matter volume, may diminish during the aging
process, i.e., at older ages (Heim et al., 2019). If this holds true,
then it might be the case that participants of the two samples
assimilate during older ages in terms of brain structure. However,
further research is necessary to unravel this complex relationship
of age and brain structure.

Thus, the analysis of cortical thickness in two samples of
healthy older adults revealed only marginal changes over time
and only minimal sample differences. We are aware that our
models include more covariate variables (age, sex, education,
and data quality) than previous studies [e.g., Walhovd et al.
(2011); Storsve et al. (2014); Thambisetty et al. (2010)]. We
deliberately decided to include this set of variables since we
know from previous research that cross-sectionally, the factors
age, sex, education and data quality have an impact on brain
structure (Sowell et al., 2003; Jancke et al., 2015; Jockwitz et al.,
2019). Interestingly, when examining “raw annual percentage
changes,” these changes were partly in accordance with previous
studies investigating changes in cortical thickness over time
(Walhovd et al., 2011; Storsve et al., 2014). For example,
Storsve found a mean annual percentage change of −0.35
in a sample ranging from 23 – 87 years and Fjell et al.
(2014b) reported a mean annual percentage change of −0.59
in a sample of older adults. While we found a mean annual
percentage change of −0.29 for the LHAB study, in 1000BRAINS
this was slightly less pronounced, i.e., −0.15. In addition,
we showed that the investigated covariates, i.e., baseline age,
sex, education, and image quality, might be important in the

investigation of longitudinal changes of brain structure. As
an example, we found slightly negative relationships between
baseline age and annual percentage changes in cortical thickness
for the right hemisphere, which supports previous results (e.g.,
Fjell et al., 2009).

Finally, it has to be mentioned that neither of the two studies
showed significant relations between annual percentage changes
in cortical thickness and cognitive performance (i.e., processing
speed, concept shifting, verbal fluency, and reasoning). First,
these results complement previous results of our research
group. In this cross-sectional study, no relation between cortical
thickness and cognitive performance could be established in
neither of the two study samples (Jockwitz et al., 2019).
Likewise, other studies also revealed no associations between
cognitive performance and particularly cortical thickness (in
contrast to, e.g., brain volume [Cox et al., 2019], or white
matter [Ziegler et al., 2012]). Furthermore, research regarding
changes in both, brain structure and cognitive performance
is quite heterogeneous. In the literature review of Oschwald
et al. (2019) half of the studies revealed no association between
changes in brain structure and cognitive performance, which
fits to the current observation. In turn, those studies showing a
significant association between changes in particularly cortical
thickness and cognitive performance, differed from the current
study. First, other cognitive functions were investigated, such
as episodic memory or composite scores of executive functions
(Fjell et al., 2014b; Möller et al., 2016; Sala-Llonch et al.,
2017) and second, the above-mentioned studies included less
or no covariates. Thus, when correcting for major confounding
effects, cortical thickness changes were not related to cognitive
performance changes over time. This is also well in line with
the idea that in healthy older adults, correlations between
changes in brain structure and simultaneous changes in
cognitive performance are expectedly small and accompanied
by high amounts of variability due to potential compensation
mechanisms (Oschwald et al., 2019).

Methodological Considerations
The current study assessing longitudinal changes in brain
structure has several advantages as well as limitations that
we would like to address. With respect to the brain metric
used in the current study, we chose cortical thickness, since it
represents a prominent brain metric that seems to be sensitive
to the aging process. However, it should also be mentioned that
other metrics might be useful when comparing effects of aging,
i.e., brain volume or gray matter density (Jäncke et al., 2019).
Also, future studies may adopt Deformation-Field Morphometry
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methods, such as Tensor-based morphometry (TBM), in order to
compute longitudinal change in structural MRI data (Hua et al.,
2008). Furthermore, with regard to the atlas used in the current
study, i.e., Desikan-Killiany atlas, it needs to be stressed that
other atlases might be more sensitive to functionally dependent
changes in brain structure, such as the cytoarchitectonic Juelich
Brain Atlas (Amunts et al., 2020) or functionally derived brain
parcellations (Schaefer et al., 2018). In addition, future studies
should also investigate longitudinal changes in brain structure
and function with samples that are matched not only for age and
gender, but also education or cognitive abilities. In the current
study, we showed that covariates, such as age and education
might explain small parts of the changes seen over time. Future
studies should elaborate on these influencing factors to explore
intra-individual aging processes.

CONCLUSION

Taken together, the current study showed that age-related
changes in cortical thickness are relatively small, when adjusting
for the most common influencing factors. This effect was seen
in both independent studies, suggesting that general patterns
of longitudinal changes in brain structure may be generalizable
if the same methods are used and similar study populations
with similar age and sex distributions are selected. However,
fine-grained change patterns differ and the question whether
results can be generalized over different samples cannot easily
be answered because of the between-study differences regarding
demographics (e.g., age ranges and education) or methodology
(e.g., time intervals, different brain metrics, and such as brain
volume versus cortical thickness). Furthermore, differences in
covariates often hamper the extraction of generalizable age trends
in different samples. With our study, we contribute to the field by
showing that patterns of age-related changes in brain structure in
two independent cohorts of older adults are highly similar when
using the same methodological approach.
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There has been a longstanding debate about whether males and females differ in terms of cognitive abilities. 
Males are often supposed to outperform females in visual spatial tasks, while females outperform males in 
terms of verbal and episodic memory  tasks1–6. While these sex stereotypes are well accepted in our  society7, 
there is a non-negligible amount of studies showing exactly the opposite, namely that men and women do not 
differ in most of the cognitive tasks, also referred to as the “Gender Similarity Hypothesis”8,9. That is, cognitive 
performance differences on average show an effect size of d = 0.22 (range: 0.05–0.57) which is interpreted as 
rather small differences. Using a meta-synthesis approach, Zell et al.10, however, concluded that sex differences 
in terms of psychological and cognitive variables is rather small but stable across ages, generations and cultures.

Besides investigating sex differences in absolute cognitive performance outcome measures (i.e. females 
remember more words from a word list as compared to males), recent studies rather focussed on sex differences 
in cognitive processing styles, i.e. the way males and females solve a given cognitive  task11,12. For example, in 
spatial navigation tests, females were found to use local landmarks to find a specific route, while males rather 
construct cognitive maps of the  environment11,13,14. Interestingly, when males and females are instructed to 
actively choose a landmark-based style, females outperform males in this  task13. Similarly, in a verbal fluency 
task, Weiss et al.15 as well as Lanting et al.16 showed that the males’ processing strategy is typically characterized 
by a systematic and extensive scan of the word space of a given category before moving to the next one (e.g. listing 
jobs, males would first list all jobs within a hospital, then within an office etc.). In contrast, females switch more 
often between different categories. Changing the instructions, i.e. inducing more switches between categories, 
led to superior performance of  females12. Thus, based on previous research investigating specific cognitive tasks, 
it has been established that males and females use different cognitive processing strategies: Males seem to use 
a rather holistic processing style with a focus on global aspects of the task (i.e. having in mind the whole map 
of a city when performing a spatial navigation task). Females instead use a decomposed processing style with a 
focus on more local aspects of the task (i.e. remember more details of a given word list). Similar sex differences 
in terms of a global versus local focus have been found for other tasks such as mental rotation  tasks17, number-
comparison-task18 and Navon  paradigms19.

Although sex-related differences in cognitive processing styles do not necessarily result in differences in per-
formance in everyday life, i.e. males and females perform equally good in an everyday multitasking  paradigm20, 
they give rise to the question of whether males and females do not only differ in single cognitive abilities. Rather, 
the two sexes might generally differ in the overall composition of their cognitive abilities. So far, studies mostly 
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focus on cognitive profiles that are predefined based on specific cognitive theories or derived from data-driven 
approaches (e.g. principal component analyses)21–25. For example, single cognitive abilities are often categorized 
into cognitive domains, such as attention, memory and executive functions, based on correlations between 
performance in the tasks  administered21. Performance within the cognitive domains, then, together represent 
cognitive profiles. Typically, such approaches are based on an entire group including both, males and females. 
However, whether these cognitive components and profiles reflect the cognitive architecture equally well across 
the two sexes remains unclear. The relation between performance in distinct cognitive tasks might be differen-
tially related to each other in males and females and therefore might form different sex-specific cognitive profiles.

Particularly interesting in this aspect is the older adult population, since sex differences in cognitive perfor-
mance were found to persist until late adulthood and might even lead to differences in cognitive impairments 
during older age and  disease2,22,23. So far, the majority of studies investigate cognitive performance during aging 
while correcting for sex differences. Averaged over the two sexes, cognitive performance decline is well estab-
lished during the aging  process24–27 with a significant decline starting in the mid 50’s24, especially in the domains 
of executive functions, working memory and episodic memory. However, previous studies not only showed 
that sex-differences in cognitive performance persist until late  adulthood2,22,23, they also reported unbalanced 
prevalence in neurodegenerative diseases that are accompanied by different cognitive impairments, i.e. males 
rather suffer from MCI and Parkinson’s disease, while females are more often affected by Alzheimer’s  disease28,29. 
Potentially, different interrelations between cognitive functions might explain parts of these different age-related 
trajectories and therefore depict a promising research topic. To examine this, the current study took advantage 
of a large older adult population of males and females between 55 and 85 years from the 1000BRAINS cohort, 
matched for age and education, and examined the sex-specificity of cognitive profiles based on a large variety 
of neuropsychological functions. Using a data-driven approach, neuropsychological test performance was first 
decomposed into cognitive components. Afterwards the different component solutions were statistically com-
pared between the two sexes. Based on the sex-specific strategies found when investigating specific cognitive 
tasks (i.e. global versus local processing strategies), we would expect these differences to be also reflected in 
sex-specific cognitive profiles.

Subjects included in the current study were drawn from  1000BRAINS31, a population-based epi-
demiological cohort study, recruited from the Heinz-Nixdorf recall study that has been conducted in the Ruhr 
area in  Germany32. Along the line of being population-based, exclusion from the study was based on eligibil-
ity for MR measurements for scientific purposes. From the initial cohort of 1314 subjects, 968 subjects being 
55 years and older were selected to assess the older adult population. 20 subjects had to be excluded due to 
missing variables of interest for the current study  (DemTect33: n = 18; or information on education: n = 2). Fur-
thermore, subjects missing more than three values of the neuropsychological assessment (n = 2; for all other 
subjects missing values (ranging from 0 to 2.1% depending on the test) were replaced by the median of the 
respective age- (< 60; 60–64; 65–69; 70–74; 75–79; < 79) and sex-group. Subjects representing outliers (n = 83; 
outliermax > mean + 3*SD; outliermin < mean − 3*SD) in at least one of the cognitive variables were removed 
from the dataset. To establish similar demographic conditions in the two sex groups, propensity score match-
ing (method = "nearest", caliper = 0.25; implemented in R: matchit, version 3.0.3) was used to match males and 
females for age and education (measured by  ISCED30) which resulted in a final sample size of 676 subjects 
between 55 and 87 years of age: 338 males with a mean age of 66.9 years (SD = 6.7) and a mean ISCED score of 6.3 
(SD = 1.74) and 338 females with a mean age of 66 years (SD = 6.5) and a mean ISCED score of 6.1 (SD = 1.86). 
All participants gave written informed consent before participating in 1000BRAINS. All experiments were per-
formed in accordance with relevant named guidelines and regulations. The study protocol was approved by the 
local Ethics Committee of the University of Essen.

All subjects underwent intensive neuropsychological testing during 
their participation in  1000BRAINS31. In total, 16 different cognitive functions, namely selective attention, pro-
cessing speed, problem solving, concept shifting, susceptibility to interference, figural fluency, phonematic and 
semantic verbal fluency, vocabulary, verbal episodic memory, figural memory, visual-, visual-spatial- and verbal 
short-term/working memory were assessed. For cognitive functions and tests used, as well as raw mean scores 
for males and females, see Table 1.

First, sex differences in cognitive performance were examined for the different cogni-
tive functions assessed in 16 different neuropsychological tests using Independent Sample T-Tests. Effect sizes 
were calculated using Cohen’s d. Afterwards, we calculated z-scores for each variable followed by Pearson cor-
relations between all neuropsychological variables included in the current analysis for the whole group, as well 
as for males and females separately.

The major research question in this study concerned whether males and females would show different cog-
nitive profiles, i.e. different compositions of cognitive components. To investigate this, we divided our analyses 
in two parts (for an overview of analyses, see Fig. 1, part A and part B). In the first part (part A), we extracted 
cognitive components for both, the whole group (n = 676) including males and females, as it is commonly done 
in research investigating cognitive performance (e.g.  see46–51, as well as for males (n = 338) and females (n = 338) 
separately to identify commonalities as well as differences in cognitive profiles between the two sexes. For all the 
groups (whole, males and females) a two-step approach was applied:



(1) Data reduction We reduced the cognitive performance data into independent cognitive components by 
using exploratory principal component analysis (ePCA) with Varimax rotation (implemented in the “psych” 
package, R Studio), as one of the most commonly used technique for data  reduction52. The number of 
extracted components was based on the eigenvalue criterion (eigenvalue > 1). This resulted in three inde-
pendent data-driven component solutions: whole ePCA based on the whole group, male ePCA within 
males only, females ePCA within females.

(2) Component solution validation within respective groups To validate the obtained component solutions in 
their respective group (whole ePCA, male ePCA, females ePCA), a confirmatory factor analysis (CFA, 
implemented in the “lavaan” package, R Studio) was set up with Maximum Likelihood estimator with robust 
standard errors and a Satorra-Bentler scaled test statistic. In detail, each component solution represents a 
measurement model that is composed of a specific number of cognitive components, with each including a 
specific number of cognitive performance tests. In the current study, we based the measurement models on 
the component solutions obtained by ePCA and included all cognitive performance tests with a component 
loading of at least 0.453.

Table 1.  Descriptives of neuropsychological variables including cognitive functions, tasks used, mean and 
standard deviation (SD) and Min; Max values, T value of group comparison with corresponding p value and 
effect size measured with Cohen s d. Values written in bold indicate significant differences between groups 
(p < .05). STM = short-term memory, WM = working memory.

Cognitive Function Test description Females: mean ± SD (Min; Max) Males: mean ± SD (Min; Max) T-value p- value Cohen’s d
Age 65.99 ± 6.5 (55.2;85.4) 66.87 ± 6.65 (55.1;85.4) − 1.735 0.083 0.132
DemTect DemTect33: Global cognitive score 15.55 ± 2.22 (8;18) 14.17 ± 2.36 (8;18) 7.860 0.000 − 0.587

ISCED97 International Classification30: Education classifica-
tion 6.1 ± 1.86 (3;10) 6.29 ± 1.74 (3;10) − 1.370 0.171 0.109

Problem solving
Leistungsprüfungssystem 50 + (Subtest 3)34: Number 
of correctly identified non-matching figures among 
geometrical figures

20.39 ± 4.71 (8;35) 20.82 ± 5.13 (8;34) − 1.132 0.258 0.084

Visual STM Block-Tapping-Test35: Number of correctly repeated 
blocks, forwards 6.32 ± 1.76 (2;10) 6.57 ± 1.65 (2;10) − 1.937 0.053 0.154

Visual WM Block-Tapping-Test35: Number of correctly repeated 
blocks, backwards 4.69 ± 1.65 (1;10) 5.04 ± 1.7 (0;10) − 2.738 0.006 0.208

VisualSpatial STM
Visual pattern (Jülich version; similar to 36): Num-
ber of memorized patterns presented in a grid of 
black and white squares

7.32 ± 1.7 (4;12) 8.06 ± 1.68 (4;12) − 5.711 0.000 0.443

Verbal STM
Zahlennachsprechen (from Nürnberger Alters-
Inventar37): Number of correctly repeated digits, 
forwards

7.63 ± 1.84 (4;13) 7.66 ± 2.02 (4;13) − 0.179 0.858 0.013

Verbal WM
Zahlennachsprechen (from Nürnberger Alters-
Inventar37): Number of correctly repeated digits, 
backwards

6.79 ± 1.65 (2;12) 6.87 ± 1.77 (2;12) − 0.653 0.514 0.049

Figural memory Benton-Test38: Number of errors during free recall 
of 20 remembered figures

− 16.33 ± 7.57
(− 40; − 2)

− 16.17 ± 7.56
(− 36; − 1) − 0.275 0.784 − 0.021

Selective attention Alters-Konzentrations-Test39: Time(s) to recognize 
target figures among distractors

− 33.54 ± 8.74
(− 64.78; − 17)

− 33.66 ± 8.38
(− 65.87; − 18.22) 0.183 0.855 0.014

Interference

Farb-Wort-Interferenztest (Jülich version; similar 
to: Bäumler40; Stroop41): Time(s) to name ink 
color of words with color meaning but printed in 
a different color (subtracted by the time(s) to read 
color words)

− 39.63 ± 16.64 (− 110.6; − 9.47) − 43.36 ± 17.58 (− 109.97; − 3.66) 2.833 0.005 0.212

Figural fluency
Fünf-Punkte-Test (Jülich version; similar to: Regard 
et al.42): Number of unique drawn patterns by con-
necting five points in 3 min

26.15 ± 6.89 (4;44) 26.38 ± 7.22 (11;49) − 0.425 0.671 0.032

Episodic memory Verbaler Gedächtnistest43: Number of free recalled 
words in five trials from a list containing 15 words 45.76 ± 10.05 (2;66) 38.61 ± 10.01 (6;65) 9.262 0.000 − 0.714

Phonematic fluency Regensburger Wortflüssigkeitstest44: Number of 
produced words beginning with the letter “B” 19.32 ± 6.04 (4;37) 17.49 ± 5.93 (5;37) 3.992 0.000 − 0.310

Semantic fluency Regensburger Wortflüssigkeitstest44: Number of 
produced words belonging to the category “jobs” 24.47 ± 6.19 (11;44) 23.39 ± 6.76 (6;43) 2.153 0.032 − 0.159

Processing speed
Trail Making Test (taken from CERAD-Plus45): 
Time(sec.) to connect randomly arranged digits in 
ascending order

− 38.62 ± 11.71 (− 79.41; − 16.06) − 40.22 ± 13
(− 84.18; − 16.13) 1.677 0.094 0.123

Concept shifting
Trail Making Test (taken from CERAD-Plus45): 
Time(sec.) to alternately connect letters and num-
bers in ascending order (TMT B), then calculating:
TMT B-TMT A

− 48.71 ± 28.33 (− 183.44; − 1.78) − 54.28 ± 32.46 (− 166.6;0.67) 2.375 0.018 0.171

Vocabulary Wortschatztest46: Number of correctly identified 
real words among five pseudo-words 30.96 ± 4.34 (16;40) 30.8 ± 4.17 (16;40) 0.493 0.622 − 0.039



Figure 1.  Flowchart presenting the study design.



To examine model fit of the respective ePCA’s, we used comparative fit index (CFI), tucker lewis index (TLI), 
root mean square error of approximation (RMSEA) and standardized root mean square residual (SRMR). Qual-
ity of model fit was assessed based on frequently reported fit indices indicating excellent model fit at CFI > 0.95, 
TLI > 0.95, RMSEA =< 0.06, SRMR < 0.0954,55. All initial models were subsequently refined to increase model fit: 
From the initial model, we first modelled residual covariances (included when residual covariances were > 0.1) 
between variables and components, and afterwards, removed non-significant variables from the model, if present.

After this measurement model configuration, we attempted to validate the established models across the 
two sexes (Fig. 1, part B). To do so, we first examined measurement invariance for all three models (whole CFA, 
male CFA, female CFA). Measurement invariance addresses the question whether a scale measures the same 
attribute in different groups of subjects. Hence, in the current study, measurement invariance would test whether 
the different cognitive component solutions, i.e. cognitive profiles would be the same across males and females. 
Measurement invariance was tested with the following aspects: (1) configural invariance: the measurement mod-
els derived from the CFA would fit equally well in males and females (same data structure across variables); (2) 
loading invariance: loadings of variables onto a cognitive component would be the same for males and females 
(groups have the same factor loadings); (3) intercept invariance: males and females would show the same inter-
cept on the measured variables (groups have same intercepts of the observed variables); (4) mean invariance: 
males and females would show the same means on the measured variables (groups have the same means across 
the observed variables). In a second step, we applied a strict cross-validation by applying the sex-specific models 
to the other sex group only to test whether the male component solution would also obtain a good fit in females 
and vice versa. Model fit changes across the models were considered as significant with a change in CFI > 0.0156 
and a significant likelihood chi square difference test (p < 0.05).

The current study assessed sex differences in cognitive profiles between older males and females based on a 
large battery of cognitive tests assessing attention, memory, executive and language functions. Differences in 
performance between males and females were already observed at single test level in several of the 16 neuropsy-
chological tests used in the current study. For example, males performed significantly better in tasks requiring 
visual and visual-spatial abilities, e.g. visual-spatial memory, whereas females performed better in tasks requiring 
verbal abilities, such as episodic learning, phonematic and semantic fluency (see Table 1).

Investigating intercorrelations between cognitive performance scores of the different cognitive functions 
revealed a second interesting and important observation: While we overall found high intercorrelations between 
the assessed cognitive performances, these intercorrelations do not seem to be identical in males and females, 
already hinting at differences in cognitive profiles for the two sexes (for chord diagrams for the whole group, 
males and females separately as well differences between males and females, see Fig. 2, for Pearson correlation 
values between cognitive task, see Supplement, Tables S1–S3). Sex differences in cognitive performance cor-
relations are shown in Fig. 2d. Noticeably, females show higher correlations between verbal and non-verbal test 
performance while males show higher correlations between verbal, non-verbal and executive functions (e.g. 
interference, concept shifting and problem solving).

Based on the correlations between cognitive performance tests, ePCA 
was applied to individual cognitive performance measurements of the whole group as well as males and females 
separately. Extraction of components was based on the eigenvalue criterion (eigenvalue > 1, see Supplement, 
Table S4). Three components were extracted for the whole group (eigenvalues: 4.94, 1.48, 1.19) as well as when 
assessing males only (eigenvalues: 5.08, 1.58, 1.25). Regarding females only, the optimal component solution 
consisted of four cognitive components (eigenvalues: 4.97, 1.36, 1.09, 1.02). For all eigenvalues, see Supplement, 
Table S4.

For the whole group, the extracted components were dominated by the following functions: The first com-
ponent covered a variety of non-verbal cognitive functions such as visual working memory, attention, execu-
tive functions and memory. The second component included fluency as well as memory. The third component 
was dominated by verbal functions, such as verbal working memory and vocabulary (Fig. 3a, for component 
loadings of all groups, see Supplement, Table S5). Afterwards, we extracted fit values for the PCA-derived three-
component model using CFA. All variables were found to significantly contribute to the components (> 0.4), 
However, fit values of the initial model were not to be considered as of sufficient quality (CFI = 0.894; TLI = 0.866; 
RMSEA = 0.07, SRMR = 0.053). After model refinement via inclusion of residual covariances and exclusion of 
non-significant variables, the model improved significantly, but did not reach the threshold for being an excellent 
model in all fit indices (CFI = 0.941; TLI = 0.921; RMSEA = 0.054, SRMR = 0.045). The resulting model is shown 
in Fig. 3b (for results of the CFA for all groups, see Supplement, Table S6 and S7).

The male model (Fig. 3c,d), also a three-component model, consisted of a first component that included 
fluency, memory, attention and executive function, a second component that was dominated by visual work-
ing memory and executive functions and a third component including verbal working memory and executive 
functions. The initial male model revealed fit values not to be considered as of sufficient quality (CFI = 0.883, 
TLI = 0.854, RMSEA = 0.071, SRMR = 0.06). After additional refinement, the male model fitted on males revealed 
fit indices of: CFI = 0.94, TLI = 0.923, RMSEA = 0.051, SRMR = 0.049. This is a significant increase in model fit 
although it still does not reach the threshold for being an excellent model.

The female component solution (Fig. 3e,f) revealed one component dominated by visual memory and work-
ing memory, a second component including fluency and vocabulary and executive functions, a third component 
that consisted of executive functions and memory and a fourth component including verbal working memory 



and vocabulary (for variable loading on the different components, see Supplement, Table S5). The initial female 
model fitted on females revealed fit indices of: CFI = 0.964, TLI = 0.953, RMSEA = 0.037, SRMR = 0.039. Although 
this model fulfilled the requirements for being an excellent model, we additionally refined the model by the same 
conditions we did before. This resulted in an additional significant increase in model fit (CFI = 0.984, TLI = 0.979, 
RMSEA = 0.025, SRMR = 0.034).

Taken together, the investigation of data-driven cognitive components in the three groups (whole group, males 
and females) hint at different compositions of cognitive components in older males and females (i.e. three versus 
four components, for an additional overview of three versus four component solutions for the whole group, males 
and females, see Supplement, Figure S1). Comparing these to the again slightly different component solution 
derived from the whole group (including both males and females) raises the question of whether these so far 
descriptively compared differences would be statistically meaningful, which was tested afterwards.

In the second part of the study (Fig. 1, part B), we 
addressed the distinctiveness of cognitive components between males and females by using measurement invari-
ance and cross-validation. In detail, we started with the component solution that was derived from the whole 
group (including males and females) and tested whether this whole group cognitive component solution would 

Figure 2.  Chord diagrams of correlations between cognitive performance tests: (a) whole group, (b) females 
and (c) males, (d) differences in correlation coefficients between males and females: blue = males > females, 
red = females > males.



Figure 3.  Exploratory Principal Component Analysis (ePCA) and Confirmatory Factor Analysis (CFA): 
(a,c,e): ePCA for the whole group, males and females. (b,d,f): CFA for the whole group, males and females. PrbS 
problem solving, VsSTM visual spatial short-term memory, VsWM visual spatial working memory, VSS visual 
working memory, VrSTM verbal short-term memory, VrWM verbal working memory, FM figural memory, SA 
selective attention, In interference, FF figural fluency, EM episodic memory, PF phonemic fluency, ST semantic 
fluency, PrcS processing speed, CS concept shifting, Vc vocabulary.



be statistically the same across males and females, i.e. invariant (for CFA model estimates, see Supplement, 
Table  S8). Model fit indices did not reach the threshold for measurement invariance in terms of configural 
model (i.e. same data structure: CFI = 0.939, RMSEA = 0.055) and loading invariance (i.e. same factor loadings: 
CFI = 0.938, RMSEA = 0.053), it did even less so in the intercept (i.e. same intercept: CFI = 0.893, RSMEA = 0.067) 
and means invariance (i.e. same means: CFI = 0.871, RSMEA = 0.073). Thus, the cognitive component solution 
derived from the whole group, as it is often done in research investigating cognitive performance, does not seem 
to be completely generalizable over males and females. This, in turn, leads to the question which group (males or 
females) would fit better to the whole group component solution. While the model fit increased when the whole 
group model was applied to females only (whole group: CFI = 0.941; TLI = 0.921; RMSEA = 0.054, SRMR = 0.045; 
females: CFI = 0.962, TLI = 0.949, RSMEA = 0.043, SRMR = 0.043), it significantly decreased when investigating 
males only (CFI = 0.919, TLI = 0.892, RSMEA = 0.065, SRMR = 0.058). Thus, the current results indicate that the 
overall composition of cognitive components derived from the whole group is better suited for the female group 
as compared to the male group.

In a final cross validation, we applied the different cognitive component models obtained by either the whole 
group, males or females to the other groups, e.g. male component solution fitted onto the female group and vice 
versa (for fit indices, see Table 2). Applying the whole group model to males and females separately revealed an 
excellent model fit for the female group and a worse model fit for the male group. Applying the female cogni-
tive component model to the male group reveals an overall insufficient model fit, which underpins the results 
obtained by the examination of measurement invariance. In turn, applying the male component model to the 
female group revealed a reasonable fit, with excellent fit indices. Thus, while males’ cognitive performance does 
not seem to be sufficiently explained by the female model, female’s cognitive performance can be sufficiently 
composed into both, male and female component solutions, with a slightly better fit of the female cognitive com-
ponent model. Nevertheless, applying the male component solution to the female group revealed high covariances 
between the components (> 1), which indicates collinearity between the components. Thus, the validation of 
the component solutions indicate that separate cognitive component solutions might better describe a cognitive 
profile as compared to a common component solution.

Using a data-driven approach, the current study examined sex-specific cognitive profiles based on a large variety 
of cognitive functions in older males and females. Our results show that a general model consisting of cogni-
tive components that combine numerous cognitive tasks calculated based on the whole group (including both, 
males and females) fit unequally well on the two sexes. Males and females differ in terms of their composition 
of cognitive components, i.e. three components in males versus four components in females, with a generally 
better model fit in females. Thus, the current study found a rather decomposed (or local) cognitive profile in 
females while males seem to show a holistic (or global) cognitive profile, with more interrelations between dif-
ferent cognitive functions.

In a first step, we systematically examined sex differences in 16 different cognitive functions, namely selec-
tive attention, processing speed, problem solving, concept shifting, susceptibility to interference, figural fluency, 
phonematic and semantic verbal fluency, vocabulary, verbal episodic memory, figural memory, visual-, visual-
spatial- and verbal short-term/working memory. We showed that older women perform better in verbal fluency, 
verbal episodic memory, processing speed and interference while older men significantly performed better on 
visual and visual-spatial working memory tasks. Importantly, these differences were rather small with only visual 
short-term memory and episodic memory showing medium effect sizes. Hence, the results are in line with a large 
amount of previous studies showing that males and females differ in some but not all cognitive functions and 
that these differences tend to be  small5,9,10. Thus, in normal older adults, we were able to show that those tasks 
requiring high verbal versus visuospatial processing show the largest sex differences.

Further, de Frias et al.2 presented long-term sex differences in cognitive performance in a sample of adults 
with an age range from 35 to 80 years (at baseline). Over a period of ten years, women remained better in 
tasks assessing verbal episodic memory and verbal fluency, while men outperformed women in tasks assess-
ing visuospatial functions. Additionally, and in line with Maitland et al.57 and Pauls et al.58 we showed that sex 

Table 2.  Model fit indices for male and female refined models applied to the different groups. Values in bold 
reach the threshold for being an excellent model.

Model Group X2 CFI TLI RMSEA SRMR
WHOLE WHOLE 201.647 0.941 0.921 0.054 0.045
WHOLE MALES 165.421 0.919 0.892 0.065 0.058
WHOLE FEMALES 109.756 0.962 0.949 0.043 0.043
MALE WHOLE 221.151 0.95 0.935 0.045 0.04
MALE MALES 175.919 0.94 0.923 0.051 0.049
MALE FEMALES 142.817 0.959 0.947 0.04 0.043
FEMALE WHOLE 247.081 0.939 0.921 0.05 0.04
FEMALE MALES 207.401 0.917 0.891 0.061 0.051
FEMALE FEMALES 117.601 0.979 0.972 0.029 0.036



differences, especially in the verbal versus spatial domains remain stable even in older ages. Thus, the current 
study adds to the notion that, even in later decades of life, sex differences in verbal versus visuospatial cognitive 
functions persist.

The observed sex differences in cognitive performance might be due to different processing styles to solve 
cognitive problems. Men usually inspect new scenes in a more ‘global’ way (e.g. having in mind the whole map in 
a spatial navigation task), while women usually prefer to inspect tasks more locally (i.e. remember more details 
of a given word list)18,19,59. This might explain why men outperform women with respect to visual-spatial tasks 
and why women perform better in verbal episodic memory. Based on these task specific differences between the 
two sexes, the main goal was to investigate whether we could extend this global versus local phenomenon, to 
cognitive profiles in males and females, i.e. the relations between cognitive abilities. Using a data-driven ePCA 
we revealed a three-component solution for the whole including: (1) a non-verbal component composed of 
tasks including attention, executive functions and (working-) memory, (2) a mixed component including verbal 
and non-verbal fluency and memory functions and (3) a verbal short-term/working memory. This data-driven 
cognitive component solution shows the high complexity between cognitive functions, i.e. verbal fluency tasks 
require a large memory span and vice versa, an observation that has been found to be impaired in amnestic mild 
cognitive  performance60. It furthermore shows that cognitive components do not necessarily comply with the 
classical theory-driven cognitive domains of attention, executive functions, working and episodic memory and 
language functions, an observation that has already been described by  Harvey21.

Noticeably, CFA was used to examine the model fit indices of this component analysis and whether this 
component solution fit equally well to males and females. The overall model shows an acceptable, although 
not excellent fit (CFI > 0.95)54,55 for the whole group (even after refinement of the model by including residual 
covariances between cognitive variables and exclusion of non-significant variables). When examining meas-
urement invariance between the two sexes, thus whether a cognitive profile would fit equally well to males and 
females, we again found an acceptable but not excellent model fit already in the configural model (composition 
of the components), with further significant decreases when it comes to mean and intercept invariances. While 
some fit values do not differ from previous results obtained by Siedlecki et al.22, who interpreted a CFI value of 
0.941 as being acceptable, they are low as compared to other studies investigating measurement invariance in 
cognitive or psychological profiles between, e.g. healthy adults and Alzheimer patients or using longitudinal 
models of sex differences over the whole  adulthood61,62. These differences in model fit to the aforementioned 
studies might be due to differences in neuropsychological tests used or differences in group characteristics. In 
the current sample, normal older adults were examined that were matched for age and sex, since both factors 
are well known to correlate with cognitive  performance24,63. Thus, the sex-specific effects found in the current 
study regarding cognitive profiles line up with previous studies showing that sex differences exist, and might be 
of special importance for our society, but are of rather small effect  size10.

After stratifying the current sample for sex, we again performed an ePCA and obtained different component 
solutions for each group. While in the male group, three components were preferred (according to the Eigenvalue 
criterion), females’ cognitive performance was best described by a four-component solution. More importantly, 
the extracted components differed in their composition, i.e. cognitive tasks involved in the different components. 
While for the whole group, the first component was composed of heterogeneous but consistently non-verbal 
functions, verbal as well as non-verbal functions belong to the same component in males, additionally includ-
ing fluency, memory, attention and executive functions. The second male component contained visual working 
memory and executive functions and the third component consisted of verbal working memory and executive 
functions. Relating these results to the observations made regarding task specific differences in processing styles, 
i.e. global–local hypothesis of sex-differences11, one could argue that males’ holistic/global processing style to 
solve cognitive task, is in line with the current cognitive profile. Males show a quite holistic first component, 
including attention, executive functions, episodic memory and fluency tasks, hinting at higher interrelations 
between different cognitive abilities. Furthermore, since executive functions and/or attention depict essential 
parts in all three components it could be assumed that these functions serve as a higher order executive-attention 
system that monitors cognitive  performance63–66. Thus, this would mean that males rely strongly on their atten-
tional and executive functions, e.g. goal-directed planning, monitoring, mental flexibility, to process cognitive 
tasks belonging to different cognitive domains. In terms of a global way of cognitive processing, males potentially 
manage cognitive processing using one superordinate system that links different cognitive abilities. Likewise, if 
these functions decline, a decline of all other cognitive domains follow, as has been stated by theories, such as 
the frontal executive theory of  aging67. Investigating females only revealed a different picture compared to both 
the whole group or males only. Females’ cognitive performance within the functions examined is best decom-
posed into four cognitive components. In contrast to the males’ first component which was quite heterogeneous 
including fluency, executive functions and attention, in the females’ cognitive profile visual-verbal fluency and 
executive functions—attention—built separate components; together with a component composed of visual 
(working) memory and executive functions and another component dominated by verbal functions including 
working memory and vocabulary. Thus, females’ cognitive profiles consist of more subsystems as compared to 
males, with systems including different cognitive functions (i.e. [1] visual (working) memory/[2] fluency/[3] 
executive functions/[4] verbal (working) memory). Although these functions share covariances, they themselves 
represent distinct cognitive systems or modules. On the other hand, males might have a superordinate system, 
i.e. the attentional-executive-fluency-memory component, which includes several cognitive domains, thereby 
representing a stronger interplay of cognitive functions with a probably superordinate system (i.e. executive 
functions). Hence, this could be potentially related to a more global processing strategy during cognitive per-
formance, meaning that irrespective of the task (e.g. memory or fluency), males might activate similar cognitive 
processing strategies. In contrast to that, females would rather choose different processing strategies, depending 
on the cognitive task, e.g. visual versus verbal working memory. Together, similarly to the global versus local 



processing at single task  level11,12,15,18,68, cognitive profiles derived from either males or females seem to be dif-
ferentially composed along the global vs. local processing dichotomy in the current study.

Furthermore, focussing on the cross-validation model fit values, an additional support for the existence 
of sex-related cognitive profiles in line with these processing strategies became evident. While applying the 
female component solution to the female group reveals excellent fit values, the male component solution only 
reveals acceptable fit values when applied to the male group. These lower fit values might arise from the stronger 
interconnectedness of different cognitive functions in the male group, which has been shown when compar-
ing correlation strength between males and females (cf Fig. 2). For example, interference is correlated to both, 
verbal fluency as well as visual spatial short-term memory, which in turn is correlated with figural fluency. As a 
consequence, a clear division of cognitive functions into different (independent) cognitive domains, might not be 
possible in the male group. Thus, males’ cognitive abilities seem to be not fully suitable for a modular cognitive 
structure as compared to females. This again, would be in accordance with global versus local processing styles.

Importantly, the current study investigated an older adult population to examine sex-specific cognitive pro-
files. This population is of special interest when examining sex differences in cognitive performance and cognitive 
profiles since previous research has shown that first, sex-differences in cognitive functions remain stable until 
older ages, and second, pathological conditions with cognitive impairments differ in prevalence between males 
and  females28,57. However, research so far, most often includes sex as a covariate of non-interest when assessing 
cognitive impairment.

Previous studies often showed steeper decline in general cognitive functions in  males1,69. Similarly, in 
pathological conditions, such as Parkinson’s disease, males were reported to show a faster decline in cognitive 
 functions28. However, when it comes to Alzheimer’s disease, females show a faster decline in memory scores as 
compared to  males29. This observation might be related to distinct cognitive profiles in older males and females. 
If, within the ‘global’ cognitive profile of males, the executive-attentional monitoring system breaks down this 
would lead to a global decline in cognitive functions. Especially for the aging process, theories such as the 
prefrontal-executive  theory67 as well as the processing speed  theory70 of aging, stating that decreasing executive 
functions and attention, respectively, predict cognitive decline in a diversity of cognitive functions belonging to 
different  domains64. Thus, in males these two theories that try to explain cognitive performance decline during 
the aging process, would be in line with the current results. On the other hand, if females’ cognitive profiles 
are rather composed of different cognitive subsystems or modules (thus ‘local’ cognitive profile), impairments 
within the executive-attentional component would not necessarily lead to an impairment in other cognitive 
components. Hence, this would rather result in function-specific cognitive decline, e.g. executive impairment. 
These differences in cognitive profiles might thus serve as a possible explanation for why males show generally 
steeper decreases in overall cognitive abilities during  aging69.

The current study has several advantages and disadvantages. While we 
were able to show that cognitive profiles differ, when investigating males and females independent of each other, 
it is important to mention that the effects of sex differences are rather of smaller sizes, which becomes obvious 
when focussing on the differences in terms of intercorrelations between different cognitive tasks. Nevertheless, 
as stated by Zell et al.10, although effect sizes might be small, when investigating sex differences in cognitive per-
formance, these differences might be important to understand cognitive performance differences.

In addition, it has to be mentioned that the current study investigated these cognitive profiles in a sample 
ranging from 55 to 85 years of age. It might be the case that with increasing age, cognitive profiles change, espe-
cially when cognitive impairments arise, e.g. due to pathological conditions. Future studies should investigate 
this topic, especially using longitudinal data, to show whether cognitive profiles change in the course of the aging 
process, potentially also with respect to pathological conditions.

Further, it has to be mentioned that the set-up of cognitive profiles is not straightforward. We used a Princi-
pal Component Analysis with Varimax rotation method for extracting cognitive components in the two groups 
and extracted four factors for females and three factors for males, based on the Eigenvalue criterion (cut-off 
for selection of components being an Eigenvalue > 1). Nevertheless, the fourth Eigenvalue is only slightly above 
one for females (1.02) and the fourth Eigenvalue is only slightly below 1 (0.97) for males, which both are very 
close to the cut-off value. Further, the model refinement highly depends on the input data (in this case the cog-
nitive tasks used). Until now, there is no gold standard in this respect. More research is needed to address this 
important topic.

Finally, the question that arises when observing these differences is which factors might be responsible for the 
development of sex differences. From previous studies it is known that males and females differ in terms of brain 
structure and function, which might relate to differences in cognitive processing  strategies71,72. Furthermore, it 
has been shown that hormonal differences, but also genetic variations might be related to differences in cognitive 
and social behavior between the two  sexes73. Social factors, such as gender role models, significantly influence 
differences in cognitive performance, which is less pronounced in countries that promote gender  equality74. 
Further studies are warranted to examine this question.

Conclusively, males and females show not only differences in specific cognitive tasks but generally in cogni-
tive profiles across cognitive domains. Males are likely to use a more holistic way of processing, by integrating 
different cognitive functions to solve specific tasks. This could be, for example, a higher executive control and 
memory function in a verbal fluency task, which in turn, would result in larger clusters of the same category. 
Females, on the other hand are likely to process cognitive tasks in smaller, rather domain-specific subsystems. 
The results showed that older males and females exhibit different cognitive profiles, that are likely to be related to 



differences in cognitive decline across the aging process. Therefore, the current research stresses the importance 
to use sex-stratified analyses when assessing cognitive performance. Future research is warranted to extend the 
current results to pathological conditions, such as Alzheimer’s disease. Furthermore, differences in cognitive 
profiles might not only be important in basic research but, might also impact clinical prevention programs, i.e. 
cognitive training.

 1. McCarrey, A. C., An, Y., Kitner-Triolo, M. H., Ferrucci, L. & Resnick, S. M. Sex differences in cognitive trajectories in clinically 
normal older adults. Psychol. Aging 31, 166–175. https:// doi. org/ 10. 1037/ pag00 00070 (2016).

 2. de Frias, C. M., Nilsson, L. G. & Herlitz, A. Sex differences in cognition are stable over a 10-year period in adulthood and old age. 
Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 13, 574–587. https:// doi. org/ 10. 1080/ 13825 58060 06784 18 (2006).

 3. Maitland, S. B., Herlitz, A., Nyberg, L., Bäckman, L. & Nilsson, L. G. Selective sex differences in declarative memory. Mem. Cogn. 
32, 1160–1169 (2004).

 4. Mansouri, F. A., Fehring, D. J., Gaillard, A., Jaberzadeh, S. & Parkington, H. Sex dependency of inhibitory control functions. Biol. 
Sex Differ. 7, 11. https:// doi. org/ 10. 1186/ s13293- 016- 0065-y (2016).

 5. Halpern, D. F. et al. The science of sex differences in science and mathematics. Psychol. Sci. Public Interest 8, 1–51. https:// doi. org/ 
10. 1111/j. 1529- 1006. 2007. 00032.x (2007).

 6. Weiss, E. M., Kemmler, G., Deisenhammer, E. A., Fleischhacker, W. W. & Delazer, M. Sex differences in cognitive functions. Person. 
Individ. Differ. 35, 863–875. https:// doi. org/ 10. 1016/ s0264- 3707(03) 00061-9 (2003).

 7. Hirnstein, M., Coloma Andrews, L. & Hausmann, M. Gender-stereotyping and cognitive sex differences in mixed- and same-sex 
groups. Arch. Sex Behav. 43, 1663–1673. https:// doi. org/ 10. 1007/ s10508- 014- 0311-5 (2014).

 8. Hyde, J. S. The gender similarities hypothesis. Am. Psychol. 60, 581–592. https:// doi. org/ 10. 1037/ 0003- 066X. 60.6. 581 (2005).
 9. Hyde, J. S. Sex and cognition: gender and cognitive functions. Curr. Opin. Neurobiol. 38, 53–56. https:// doi. org/ 10. 1016/j. conb. 

2016. 02. 007 (2016).
 10. Zell, E., Krizan, Z. & Teeter, S. R. Evaluating gender similarities and differences using metasynthesis. Am. Psychol. 70, 10–20. 

https:// doi. org/ 10. 1037/ a0038 208 (2015).
 11. Pletzer, B., Scheuringer, A. & Scherndl, T. Global-local processing relates to spatial and verbal processing: implications for sex 

differences in cognition. Sci. Rep. 7, 10575. https:// doi. org/ 10. 1038/ s41598- 017- 11013-6 (2017).
 12. Scheuringer, A., Wittig, R. & Pletzer, B. Sex differences in verbal fluency: The role of strategies and instructions. Cogn Process 18, 

407–417. https:// doi. org/ 10. 1007/ s10339- 017- 0801-1 (2017).
 13. Saucier, D. M. et al. Are sex differences in navigation caused by sexually dimorphic strategies or by differences in the ability to use 

the strategies?. Behav. Neurosci. 116, 403–410. https:// doi. org/ 10. 1037/ 0735- 7044. 116.3. 403 (2002).
 14. Andersen, N. E., Dahmani, L., Konishi, K. & Bohbot, V. D. Eye tracking, strategies, and sex differences in virtual navigation. 

Neurobiol. Learn. Mem. 97, 81–89. https:// doi. org/ 10. 1016/j. nlm. 2011. 09. 007 (2012).
 15. Weiss, E. M. et al. Sex differences in clustering and switching in verbal fluency tasks. J. Int. Neuropsychol. Soc. 12, 502–509. https:// 

doi. org/ 10. 1017/ s1355 61770 60606 56 (2006).
 16. Lanting, S., Haugrud, N. & Crossley, M. The effect of age and sex on clustering and switching during speeded verbal fluency tasks. 

J. Int. Neuropsychol. Soc. 15, 196–204. https:// doi. org/ 10. 1017/ S1355 61770 90902 37 (2009).
 17. Peña, D., Contreras, M. J., Shih, P. C. & Santacreu, J. Solution strategies as possible explanations of individual and sex differences 

in a dynamic spatial task. Acta Physiol. (Oxf.) 128, 1–14. https:// doi. org/ 10. 1016/j. actpsy. 2007. 09. 005 (2008).
 18. Pletzer, B. Sex-specific strategy use and global-local processing: A perspective toward integrating sex differences in cognition. 

Front. Neurosci. 8, 425. https:// doi. org/ 10. 3389/ fnins. 2014. 00425 (2014).
 19. Roalf, D., Lowery, N. & Turetsky, B. I. Behavioral and physiological findings of gender differences in global-local visual processing. 

Brain Cogn. 60, 32–42. https:// doi. org/ 10. 1016/j. bandc. 2005. 09. 008 (2006).
 20. Hirnstein, M., Laroi, F. & Laloyaux, J. No sex difference in an everyday multitasking paradigm. Psychol. Res. 83, 286–296. https:// 

doi. org/ 10. 1007/ s00426- 018- 1045-0 (2019).
 21. Harvey, P. D. Domains of cognition and their assessment. Dialogues Clin. Neurosci. 21, 227–237. https:// doi. org/ 10. 31887/ DCNS. 

2019. 21.3/ pharv ey (2019).
 22. Siedlecki, K. L., Falzarano, F. & Salthouse, T. A. Examining gender differences in neurocognitive functioning across adulthood. J. 

Int. Neuropsychol. Soc. 25, 1051–1060. https:// doi. org/ 10. 1017/ S1355 61771 90008 21 (2019).
 23. Munro, C. A. et al. Sex differences in cognition in healthy elderly individuals. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. 

Cogn. 19, 759–768. https:// doi. org/ 10. 1080/ 13825 585. 2012. 690366 (2012).
 24. Hedden, T. & Gabrieli, J. D. Insights into the ageing mind: A view from cognitive neuroscience. Nat. Rev. Neurosci. 5, 87–96. https:// 

doi. org/ 10. 1038/ nrn13 23 (2004).
 25. Schaie, K. W. When does age-related cognitive decline begin? Salthouse again reifies the “cross-sectional fallacy”. Neurobiol. Aging 

30, 528–529. https:// doi. org/ 10. 1016/j. neuro biola ging. 2008. 12. 012 (2009) (discussion 530–533).
 26. Schaie, K. W. & Willis, S. L. The Seattle longitudinal study of adult cognitive development. ISSBD Bull. 57, 24–29 (2010).
 27. Habib, R., Nyberg, L. & Nilsson, L. G. Cognitive and non-cognitive factors contributing to the longitudinal identification of suc-

cessful older adults in the betula study. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 14, 257–273. https:// doi. org/ 10. 
1080/ 13825 58060 05824 12 (2007).

 28. Cholerton, B. et al. Sex differences in progression to mild cognitive impairment and dementia in Parkinson’s disease. Parkinsonism 
Relat. Disord. 50, 29–36. https:// doi. org/ 10. 1016/j. parkr eldis. 2018. 02. 007 (2018).

 29. Sohn, D. et al. Sex differences in cognitive decline in subjects with high likelihood of mild cognitive impairment due to Alzheimer’s 
disease. Sci. Rep. 8, 7490. https:// doi. org/ 10. 1038/ s41598- 018- 25377-w (2018).

 30. Organisation for Economic Co-operation and Development. Classifying educational programmes: manual for ISCED-97 imple-
mentation in OECD countries. 1999 edn, (Organisation for Economic Co-operation and Development, 1999).

 31. Caspers, S. et al. Studying variability in human brain aging in a population-based German cohort-rationale and design of 
1000BRAINS. Front. Aging Neurosci. 6, 149. https:// doi. org/ 10. 3389/ fnagi. 2014. 00149 (2014).

 32. Schmermund, A., Mohlenkamp S., Stang, A., Gronemeyer, D. & Seibel, R., et al. Assessment of clinically silent atherosclerotic 
disease and established and novel risk factors for predicting myocardial infarction and cardiac death in healthy middle-aged 
subjects: Rationale and design of the Heinz Nixdorf RECALL Study. Am Heart J 144, 212-18 (2002).

 33. Kalbe, E. et al. DemTect: A new, sensitive cognitive screening test to support the diagnosis of mild cognitive impairment and early 
dementia. Int. J. Geriatr. Psychiatry 19, 136–143. https:// doi. org/ 10. 1002/ gps. 1042 (2004).



 34. Sturm, W., Willmes, K. & Horn, W. Leistungsprüfungssystem für 50–90jährige (LPS 50+): Handanweisung (Hogrefe, Verlag für 
Psychologie, 1993).

 35. Schellig, D. Block-tapping-test (Swets Test Services Frankfurt, Frankfurt, 1997).
 36. Della Sala, S., Gray, C., Baddeley, A. & Wilson, L. Visual patterns test: A test of short-term visual recall. Thames Valley Test Company 

40 (1997).
 37. Oswald, W. & Fleischmann, U. The Nürnberger-Alters Inventory (Hogrefe, Göttingen, 1997).
 38. Benton, A. L., Sivan, A., Spreen, O. & Der Steck, P. Benton-Test Huber (Hogrefe, Göttingen, 2009).
 39. Der Gatterer, G. Alters-Konzentrations-Test 2nd edn. (Hogrefe, Göttingen, 2008).
 40. Bäumler, G. & Stroop, J. Farbe-Wort-Interferenztest Nach JR Stroop (FWIT) (Hogrefe, Verlag für Psychologie, 1985).
 41. Stroop, J. R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 18, 643 (1935).
 42. Regard, M., Strauss, E. & Knapp, P. Children’s production on verbal and non-verbal fluency tasks. Percept. Mot. Skills 55, 839–844 

(1982).
 43. Lux, S., Hartje, W., Reich, C. & Nagel, C. VGT: Verbaler Gedächtnistest: Bielefelder Kategorielle Wortlisten (Verlag Hans Huber, 

Göttingen, 2012).
 44. Aschenbrenner, S., Tucha, O. & Lange, K. Regensburger Wortflüssigkeits-Test (RWT) (Hogrefe, Göttingen, 2000).
 45. Morris, J. et al. The consortium to establish a registry for Alzheimer’s disease (CERAD). Part I. Clinical and neuropsychological 

assessment of Alzheimer’s disease. Neurology 39, 1159–1159 (1989).
 46. Schmidt, K. & Metzler, P. WST-Wortschatztest. Gött Beltz Test (1992).
 47. Finkel, D., Andel, R., Gatz, M. & Pedersen, N. L. The role of occupational complexity in trajectories of cognitive aging before and 

after retirement. Psychol. Aging 24, 563–573. https:// doi. org/ 10. 1037/ a0015 511 (2009).
 48. Jockwitz, C. et al. Influence of age and cognitive performance on resting-state brain networks of older adults in a population-based 

cohort. Cortex 89, 28–44 (2017).
 49. Stumme, J., Jockwitz, C., Hoffstaedter, F., Amunts, K. & Caspers, S. Functional network reorganization in older adults: Graph-

theoretical analyses of age, cognition and sex. NeuroImage 214, 116756 (2020).
 50. Heaton, R. K. et al. Reliability and validity of composite scores from the NIH Toolbox Cognition Battery in adults. J. Int. Neuropsy-

chol. Soc. 20, 588–598. https:// doi. org/ 10. 1017/ S1355 61771 40002 41 (2014).
 51. Gross, A. L. et al. Effects of education and race on cognitive decline: An integrative study of generalizability versus study-specific 

results. Psychol. Aging 30, 863–880. https:// doi. org/ 10. 1037/ pag00 00032 (2015).
 52. Wilhalme, H. et al. A comparison of theoretical and statistically derived indices for predicting cognitive decline. Alzheimers Dement 

(Amst) 6, 171–181. https:// doi. org/ 10. 1016/j. dadm. 2016. 10. 002 (2017).
 53. Stevens, J. P. Applied Multivariate Statistics for the Social Sciences (Routledge, Abingdon, 2012).
 54. Fournet, N. et al. Multigroup confirmatory factor analysis and structural invariance with age of the behavior rating inventory of 

executive function (BRIEF)–French version. Child Neuropsychol. 21, 379–398. https:// doi. org/ 10. 1080/ 09297 049. 2014. 906569 
(2015).

 55. Hu, L. T. & Bentler, P. M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alterna-
tives. Struct. Equ. Model. Multidiscipl. J. 6, 1–55 (1999).

 56. Chen, F. F. Sensitivity of goodness of fit indexes to lack of measurement invariance. Struct. Equ. Model. Multidiscip. J. 14, 464–504. 
https:// doi. org/ 10. 1080/ 10705 51070 13018 34 (2007).

 57. Maitland, S. B., Intrieri, R. C., Schaie, W. K. & Willis, S. L. Gender differences and changes in cognitive abilities across the adult 
life span. Aging Neuropsychol. Cognit. 7, 32–53. https:// doi. org/ 10. 1076/ anec.7. 1. 32. 807 (2010).

 58. Pauls, F., Petermann, F. & Lepach, A. C. Gender differences in episodic memory and visual working memory including the effects 
of age. Memory 21, 857–874. https:// doi. org/ 10. 1080/ 09658 211. 2013. 765892 (2013).

 59. Kimchi, R., Amishav, R. & Sulitzeanu-Kenan, A. Gender differences in global-local perception? Evidence from orientation and 
shape judgments. Acta Psychol (Amst) 130, 64–71. https:// doi. org/ 10. 1016/j. actpsy. 2008. 10. 002 (2009).

 60. Mueller, K. D. et al. Verbal fluency and early memory decline: results from the wisconsin registry for Alzheimer’s prevention. Arch. 
Clin. Neuropsychol. 30, 448–457. https:// doi. org/ 10. 1093/ arclin/ acv030 (2015).

 61. Maitland, S. B., Herlitz, A., Nyberg, L., Backman, L. & Nilsson, L. G. Selective sex differences in declarative memory. Mem. Cognit. 
32, 1160–1169. https:// doi. org/ 10. 3758/ bf031 96889 (2004).

 62. Johnson, D. K., Storandt, M., Morris, J. C., Langford, Z. D. & Galvin, J. E. Cognitive profiles in dementia: Alzheimer disease vs 
healthy brain aging. Neurology 71, 1783–1789. https:// doi. org/ 10. 1212/ 01. wnl. 00003 35972. 35970. 70 (2008).

 63. Scarmeas, N., Albert, S. M., Manly, J. J. & Stern, Y. Education and rates of cognitive decline in incident Alzheimer’s disease. J. 
Neurol. Neurosurg. Psychiatry 77, 308–316. https:// doi. org/ 10. 1136/ jnnp. 2005. 072306 (2006).

 64. Albinet, C. T., Boucard, G., Bouquet, C. A. & Audiffren, M. Processing speed and executive functions in cognitive aging: How to 
disentangle their mutual relationship?. Brain Cogn. 79, 1–11. https:// doi. org/ 10. 1016/j. bandc. 2012. 02. 001 (2012).

 65. Cahn-Weiner, D. A., Malloy, P. F., Boyle, P. A., Marran, M. & Salloway, S. Prediction of functional status from neuropsychological 
tests in community-dwelling elderly individuals. Clin. Neuropsychol. 14, 187–195. https:// doi. org/ 10. 1076/ 1385- 4046(200005) 14:2; 
1-Z; FT187 (2000).

 66. Mitchell, M. & Miller, L. S. Prediction of functional status in older adults: the ecological validity of four Delis–Kaplan executive 
function system tests. J. Clin. Exp. Neuropsychol. 30, 683–690. https:// doi. org/ 10. 1080/ 13803 39070 16798 93 (2008).

 67. West, R. L. An application of prefrontal cortex function theory to cognitive aging. Psychol. Bull. 120, 272–292. https:// doi. org/ 10. 
1037/ 0033- 2909. 120.2. 272 (1996).

 68. Scheuringer, A. & Pletzer, B. Sex differences in the Kimchi-Palmer task revisited: Global reaction times, but not number of global 
choices differ between adult men and women. Physiol. Behav. 165, 159–165. https:// doi. org/ 10. 1016/j. physb eh. 2016. 07. 012 (2016).

 69. Laws, K. R., Irvine, K. & Gale, T. M. Sex differences in cognitive impairment in Alzheimer’s disease. World J. Psychiatry 6, 54–65. 
https:// doi. org/ 10. 5498/ wjp. v6. i1. 54 (2016).

 70. Salthouse, T. A. The processing-speed theory of adult age differences in cognition. Psychol. Rev. 103, 403–428. https:// doi. org/ 10. 
1037/ 0033- 295x. 103.3. 403 (1996).

 71. Jancke, L., Sele, S., Liem, F., Oschwald, J. & Merillat, S. Brain aging and psychometric intelligence: A longitudinal study. Brain 
Struct. Funct. 225, 519–536. https:// doi. org/ 10. 1007/ s00429- 019- 02005-5 (2020).

 72. Young, K. D., Bellgowan, P. S. F., Bodurka, J. & Drevets, W. C. Functional neuroimaging of sex differences in autobiographical 
memory recall. Hum. Brain Mapp. 34, 3320–3332. https:// doi. org/ 10. 1002/ hbm. 22144 (2013).

 73. Ristori, J. et al. Brain sex differences related to gender identity development: Genes or hormones?. Int. J. Mol. Sci. https:// doi. org/ 
10. 3390/ ijms2 10621 23 (2020).

 74. Bonsang, E., Skirbekk, V. & Staudinger, U. M. As you sow, so shall you reap: Gender-role attitudes and late-life cognition. Psychol. 
Sci. 28, 1201–1213. https:// doi. org/ 10. 1177/ 09567 97617 708634 (2017).

This project was partially funded by the German National Cohort and the 1000BRAINS-Study of the Institute 
of Neuroscience and Medicine, Research Centre Jülich, Germany. We thank the Heinz Nixdorf Foundation 
(Germany) for the generous support of the Heinz Nixdorf Study. We thank the investigative group and the study 



staff of the Heinz Nixdorf Recall Study and 1000BRAINS. This project has received funding from the European 
Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 945539 (HBP SGA3; 
SC) as well as from the Initiative and Networking Fund of the Helmholtz Association (SC).

C.J. Investigation, Methodology, Formal analysis, Visualization, Writing—original draft, Writing—review and 
editing. L.W. Methodology, Formal analysis, Writing—review and editing. J.S. Data curation, Formal analysis; 
Writing—review and editing. S.C. Conceptualization, Supervision, Resources, Funding acquisition, Writing—
review and editing.

Open Access funding enabled and organized by Projekt DEAL.

 
The authors declare no competing interests.

Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 021- 84134-8.
Correspondence and requests for materials should be addressed to C.J.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021



Deep characterization of individual brain-phenotype
relations using a multilevel atlas
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Katrin Amunts1,3,4

Population neuroimaging allows for extracting general

principles of brain-phenotype relationships. Capturing

individual brain-behavior profiles in groups with pronounced

inter-individual variability, like the older adult population,

however, remains challenging. Therefore, deep

characterization is required to link multilevel brain, cognitive

and lifestyle data. We here proposed a use case of five older

males scoring low on a dementia screening test. We showed

quite heterogeneous individual cognitive, lifestyle and grey

matter atrophy profiles. Integrating additional regional genetic,

molecular and connectional data using a multilevel atlas

framework revealed (dis-) similarities between the atrophied

brain areas, thereby helping to explain the individual

phenomena and emphasizing the need for integrating

multifactorial and multilevel information on the way toward

individualized predictions.
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Introduction
One of the major goals in modern population neuroimag-

ing is the extraction of robust trends of brain-phenotype

relationships to understand general principles of human

brain organization under healthy conditions, and capture

transitions to disease. The challenge of extracting such

trends, however, lies in the high inter-individual variabil-

ity including variations at the level of behavior, brain

structure and function, and age-dependent changes [1,2].

During the last decade multicenter studies and imaging

consortia, such as ENIGMA (Enhancing Neuro Imaging

Genetics through Meta-Analysis [3]), UK Biobank [4],

Human Connectome Project [5], Rotterdam study [6],

ADNI (Alzheimer Disease Neuroimaging Initiative [7])

and NAKO (German National Cohort [8]) have been

established that capitalize on large sample sizes to

increase statistical power which in turn allows for a more

robust identification of various sources for inter-individ-

ual variability along the different levels.

The older adult population represents a prime example

for a particularly high inter-individual variability. Studies

have indicated signs of cognitive decline [9,10] and brain

atrophy [11] from early to late adulthood, but also adap-

tions of the brain’s functional network architecture

[12,13]. Focusing on older age, though, reveals high

inter-individual differences in these features going

beyond what can be explained by the factor ‘age’ alone

[1,14,15]. Rather, changes in brain structure and/or func-

tional connectivity have been associated with inter-indi-

vidual differences in cognitive performance [16], lifestyle

[17��,18], sex [3], genetic predispositions [19], and/or

environmental influences [20]. It has to be mentioned,

though, that the influence of such factors is typically

rather small. Smoking habits, for example, only explain

4% of the variability of cortical thinning in older adults

[21]. Furthermore, effects of different influencing factors

might interact and lead to (non-)additive effects. Along a

similar line of reasoning, the risk for developing neuro-

degenerative diseases, that is, Alzheimer’s disease (AD),

increases with age. Nevertheless, at the age of 70, 10% of

the population develop AD, while the remaining 90% do

not [22]. Previous studies additionally showed that pro-

dromal stages of AD, that is, subjective or mild cognitive

impairments do not necessarily convert into AD over time

[23,24], indicating that other factors than ‘age’ contribute

to the risk for developing such a neurodegenerative

disease. Thus, to finally understand normal and patho-

logical aging there is an urgent need to decode the factors

that drive this older adult population’s variability.

While population-based studies are essential and impor-

tant, for example, to build hypotheses and inform brain

modeling approaches, analyses on the group level lack an

important aspect: Inter-individual variability is often

regarded as some kind of unexplainable noise, that cannot

be explained by focusing on main effects. Instead, we
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emphasize to approach variability as a target of research,

to study the different factors contributing to variability in

more detail, and to quantify factors characterizing brain-

behavior relationships [25].

This requires deep, multifaceted analyses to consider

various influencing factors on the individual aging pro-

cess. Potentially important aspects that explain why some

subjects age at a faster rate as compared to others hence

require large, phenotypically deep and rich datasets —

both in terms of group size, and on the individual level.

This allows to derive ‘individual fingerprints’ of pheno-

typical characteristics and neuronal correlates. Secondly,

towards a holistic understanding of brain aging it is

necessary to link multilevel brain data, from the molecu-

lar and cellular to the systems network level. As many

molecular and cellular data are accessible only from post-

mortem tissue and not directly available for subjects of

large cohorts with systems level neuroimaging and phe-

notypic data, linkage through a common reference frame-

work can help to fill this gap. We here propose a use case

of how to integrate individual deep phenotypic charac-

terization and multilevel brain imaging using data of five

older males of a large population-based cohort study,

1000BRAINS [26], as an example. The here selected

subjects represent a group of interest. They were defined

a priori, based on a standardized dementia screening test

in contrast to a large group of age- and sex-matched

controls.

Inter-individual variability, deep phenotyping
and multilevel brain data: a use case
A use case will illustrate the relevance of individual deep

phenotypic characterization, based on cognitive, lifestyle

and grey matter atrophy profiles to obtain a deeper

understanding of normal and pathological aging, and to

develop indicators in the future to distinguish both from

each other. We a priori selected five male participants

from 1000BRAINS scoring low on a dementia screening

test and created individual profiles of cognitive perfor-

mance, lifestyle measurements and modulated grey mat-

ter volume (P1-5). Subsequently, regional genetic, molec-

ular and connectional data were drawn from a multilevel

atlas framework based on the Julich Brain atlas [38��] as
provided in EBRAINS (https://ebrains.eu/services/

atlases/brain-atlases/) to identify atrophied brain regions

(for a description, see Box 1 ).

Participants being at risk for dementia (DemTect Score

[27] �8, see Figure 1a) came from 1000BRAINS, a large

population-based cohort study assessing the inter-indi-

vidual variability during aging [26]. Healthy controls

(HC) were males from the same cohort, within the same

age-range (n = 323, mean age: 67.6 years � 6.4), but

performed adequate on the dementia screening test

(>12; mean DemTect score: 15.2 � 1.8). To examine

the variability of the ‘at risk’ participants (P1-5), we

created cognitive and lifestyle profiles, that is, individual

fingerprints using 19 cognitive [26,28,29] and 10 lifestyle

features [17��,30] (Figure 1b and c). Higher cognitive

scores indicate higher performance. Regarding lifestyle,

higher scores indicate protective behavior for the dietary

index (DI), social behavior (SOC) and physical activity

(SP) and risky behavior for alcohol consumption (ALC),

body related factors (BODY) and smoking habits (SMO).

In order to better assess the individual values (with regard

to interpretation and rating in, e.g., good or bad), we also

calculated the mean value and standard deviations

(dashed grey line in the figures) within the HC group.

Participants P1-5 performed at a ‘at risk’ level regarding

the dementia screening test and clearly scored below HC

(Figure 1a). At the same time, the cognitive and lifestyle

profiles were highly variable, and no common trends were

seen for participants P1-5. Differences, however, were

seen at an individual level. P1 and P3 generally per-

formed at a lower cognitive level (P1 especially in the

domains of attention and language and P3 in the domains

of executive functions and language). In turn, P2 and P5

remained within the normal range in almost all cognitive

tasks (P5 even performed at a higher level in the language

domain) and P4 showed single cognitive abilities to be

impaired, that is, executive functions and working mem-

ory (Figure 1b).

With respect to lifestyle, a similarly heterogenous picture

has been found (Figure 1c). P1 and P2 seem to be

centered around the mean of the HC, with a slightly

lower bodymass index (BMI) and a slightly healthier diet.

P3 had the highest BMI, while P5 had a high amount of

packyears (referring to smoking amount during the life-

span) and P4 followed healthier diet, together with a low

BMI and higher physical activity. The development of

dementia or mild cognitive impairment is assumed to be

related to impairments in at least one cognitive domain (e.

g. learning and memory), a high BMI, low physical

activity, unhealthier diet or high smoking (for recent

reviews, see Refs. [31,32]). The individual profiles, how-

ever, show that these general trends only partially reflect

the situation at the level of the individual subject.

Instead, a rather heterogenous picture emerges with each

individual showing a mixture of different protective and

potentially aversive lifestyle factors [33]. Hence, it rather

seems that each individual has its own cognitive/lifestyle

fingerprint hinting at multifactorial genesis of cognitive

impairment during older ages.

Beyond cognitive alterations and behavioral differences,

previous studies reported specific atrophy patterns in

healthy subjects during aging as compared to patients

suffering from (or being at risk for) dementia [11,34,35].

With respect to Alzheimer’s disease (AD), the medial

temporal lobe would be one of the first regions affected

[36], depending on the subtype [35]. In the current
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participants P1-5, we extracted therefore modulated grey

matter volumes values (using the CAT toolbox, SPM12,

[37]) for the cytoarchitectonically defined areas of the

Julich-Brain atlas [38��].

The analysis of the grey matter volume profiles (Figure 2a

and b) of P1 showed a variety of deviations from the

distribution of HC, across all brain regions. These obser-

vations fit to the behavioral profiles, since P1 also showed

the most pronounced cognitive impairments. This was

different from the lifestyle profile, which was centered

around the mean of the HC. In turn, P4 is characterized

by high physical activity, a healthy diet together with a

lower BMI and social integration in combination with

worse performance in some cognitive tasks. In turn, grey

matter volume values were centered around the mean of

HC. Although cognitively stable across all domains, this

was also true for P2, showing lower BMI and a rather

healthier diet. P3, with high BMI and selective cognitive

impairments, contrarily tended to have grey matter

volume values within the lower end of the normal range

of HC. P5, who showed a high amount of packyears

together with normal to high cognitive abilities, had

regionally variable grey matter volume, with some regions

showing volume comparable to the upper and some

comparable to the lower end of the HC distribution.

The comparison of the participants P1-5 showed, that

each of them showed individual rather than common

atrophy patterns. These individual profiles do not seem

to fit to the atrophy pattern observed in subjects with mild

cognitive impairments as shown in a group study (i.e.

medial temporal lobe, including the hippocampus [35]; cf.
Figure 2a and b). Thus, regardless of the information that

has been considered (i.e. cognitive, lifestyle and grey

matter atrophy), all of the five ‘at risk’ subjects seem

to have their own brain-phenotype profile. Putting these

results into the context of group analyses it needs to be

stressed that analyzing the older adult population on an

individual level should be an inevitable next step in the
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neuroscientific community, particularly when it comes to

individual treatment or prevention strategies [48].

Deep characterizations of the individual, however, are

challenging due to limited availability of individual data,

difficulties in integrating heterogenous multilevel infor-

mation of distinct levels of granularity in one reference

space as well as the choice of well suited methodological

and statistical approaches. While the current use case

described the individual profiles at various levels, that is,

cognition, lifestyle and grey matter volume, to decode the

aging brain and its underlying mechanisms, additional

information might be needed at molecular, cell and

system levels that is ranging from macro- to microscopic

scales. For example, cellular, molecular and genetic char-

acterizations of the affected brain regions would help to

gain insights at the most fundamental level. From a

network point of view, the question would be whether

the affected brain areas of P1 (e.g. left areas 3b, PF, PFt

and right area 45; cf. Figure 2c) would be structurally or
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Figure 1

(a)

(b)

(c)Dementia Screening Cognitive Performance

Lifestyle
Age
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Comparison of participants at risk for dementia (P1-5) with healthy controls (HC) scoring normal in dementia testing where the black line

represents the mean of HC and dashed grey lines represent two standard deviations from the mean of HC; (a) DemTect score for HC (grey dots)

compared to P1-5; (b) Lifestyle factors (from left to right: ALC = weekly alcohol consumption; BODY = body mass index, waist hip ratio;

DI = dietary index; SMO = packyears, cigarettes per day; SOC = family status, social integration index; SP = metabolic equivalent, walking stairs);

(c) Cognitive performance from top to down: ATT = attention (processing speed, selective attention); EXE = executive functions (concept shifting,

figural fluency, interference, problem solving); LAN = language (naming, phonemic verbal fluency, phonemic verbal fluency [switching condition],

semantic verbal fluency, semantic verbal fluency [switching condition], vocabulary; MEM = memory (episodic memory, figural memory);

WM = working memory (verbal short-term memory, verbal working memory, visuospatial short-term memory, visuospatial working memory, visual

working memory). All cognitive and lifestyle variables were standardized to facilitate comparability across variables. Discontinued lines between

tasks indicate that one task was not performed by the specific subject.
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(a) and (b) Grey matter volume [scaled] values of healthy subjects (HC) and participants at risk for dementia (P1-5) for the cytoarchitectonically

defined Julich-Brain areas ([38��]; www.julich-brain.org) for the left (a) and right (b) hemispheres: AM = Amygdala, BF = Basal Forebrain, BG = Basal

Ganglia, CB = Cerebellum, FL = Frontal Lobe, IN = Insula, LL = Limbic Lobe, OL = Occipital Lobe, PL = Parietal Lobe, SU = Subcortical,

TL = Temporal Lobe; dashed grey lines represent 2 standard deviations from the mean of the control group; circled data points represent

examples of brain regions that deviate more than 2 standard deviations below the mean of the HC (left areas PF, PFt, 3b and area 45 of the right-

hemispheric homologue of Broca’s region). (c) four selected brain regions showing low grey matter volume values in P1 (>2 standard deviations
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functionally connected. Receptor and genetic character-

izations of affected brain regions might additionally be of

special interest here, since both have been associated

with successful treatment response [49]. Such informa-

tion can be considered using the EBRAINS multilevel

brain atlas, provided by the Human Brain Project (HBP)

[50��]. This atlas provides a multitude of such data on

multiple levels of brain organization in a common refer-

ence space with a large number of macroscopic and

microscopic data from different sources (see Box 1).

We here show exemplarily data provided in EBRAINS for

a more in-depth analysis of the individual aging process of

participant P1. We assessed four different regions that

showed significant brain atrophy (left areas 3b, PF, PFt

and right area 45) using EBRAINS to gather multimodal

information about these areas.

First, receptor densities of neurotransmitter systems

(Figure 2d) show a regionally specific distribution in

the brain, are highly relevant for signal transduction in

the healthy brain, but also in the pathologically altered

brain, and serve as targets for drug therapy [51,52]. The

analysis of receptor data from the atlas indicates that

GABAB receptors seem to be highest in parietal areas

PF and PFt, followed by area 3b, and lowest in right area

45 of Broca’s region. In turn, the density of the cholinergic

receptor M1 for acetylcholine seem to be highest in right

area 45 compared to left hemispheric brain regions.

Secondly, regional differences in terms of the apolipro-

tein E (APOE) expression levels, a genetic component

that has frequently been associated with AD [53�], were
found. Specifically, right area 45 showed a higher APOE

expression as compared to the left hemispheric brain

regions (Figure 2e).

Third, EBRAINS provides deep information on struc-

tural connectivity patterns: Areas 3b, PF and PFt seem to

be highly inter-connected whereas right area 45 is only

connected to area PFt. Thus, these observations raise the

possibility of different networks to be affected in P1,

which, in turn, might be related to the general decline in

different cognitive domains (Figure 2f).

Fourth, this is further supported by information collected

from task-based functional imaging studies investigating

a variety of brain functions (Individual Brain Charting

(IBC) fMRI datasets [47]). Figure 2g shows exemplary

brain–behavior relationships for the selected brain

regions: While each brain region seems to be activated

during different cognitive tasks, there is also overlap in

terms of functions involved, that is, all four areas seem to

be involved in the mental process of recognition. Taken

together, the additional multilevel information combin-

ing microstructural as well as macrostructural information

allows for an in-depth characterization of brain–behavior

relationships.

Personalized versus group analyses
The current use case demonstrated the feasibility of

multilevel brain organizational information for enhancing

deep characterization of brain-phenotype relations on the

individual level. Characterizing the individual subject, in

contrast to group averages, might be the inevitable step

towards successful diagnostics and treatments, as previ-

ously described for, for example, epilepsy surgery [54–56]

or AD [57,58]. Group analyses follow the principle of ‘one

size fits all’ meaning that a group of patients suffering

from the same disease or symptom would be treated the

same way. Based on the current use case, we urgently

need to realize that the here presented individuals show

more differences than similarities regarding their indi-

vidual cognitive, lifestyle and brain atrophy fingerprints.

Following, these analyses emphasize the benefit of dif-

ferent treatment strategies on individual subjects, for

example, physical versus cognitive interventions or a

combination of both. The impact of personalized medi-

cine is very promising since it allows for individual

therapeutic approaches that could be preventive in

nature, rather than reactive. It can be expected that

individual diagnostics based on factors such as examined

in the present study, and /or other factors such as genetics,

could finally lead to less side effects after pharmacological

treatments [59]. Certainly, two aspects must be consid-

ered here. First, while it is desirable to characterize an

individual with as much data as possible, the question

arises as to which aspects are the most important, for

example, in order to tailor individual therapies. The

analysis of brain-phenotype relationships on the group

level, for example, relying on statistical comparisons, has

different constraints than examining such relations on the

individual level, for which tools are needed to estimate

the weighted influences and potential relevance of all

factors included in an individual fingerprint. Second,

since individualized science and personalized medicine

focus on individual trajectories, for example, during aging

or disease progress, longitudinal data would be highly

beneficial to better understand such processes.

Currently, methods and research infrastructure are being

built for handling and processing huge amounts of

158 Deep imaging — personalized neuroscience

below the mean of the control group) projected on a standard brain (MNI152): areas PF, PFt of the posterior parietal cortex: [39,40]; area 45: [41];

somatosensory area 3b: [42,43]. (d) Receptor fingerprints for the selected brain regions: [44,45]; (e) APOE gene expressions within the four

selected brain regions derived from the Allen brain atlas (https://alleninstitute.org/what-we-do/brain-science) analyzed with respect to the Julich

Brain areas using JuGEx tool [46��]; (f) Structural connectivity values (log transformed) between the selected brain regions; (g) Individual Brain

Charting (IBC) fMRI datasets with exemplary strong activations in the four selected brain regions (left areas PF, PFt, 3b and right 45) derived from

Ref. [47].
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individual data to enable predictions and simulations of

effects of factors such as age, sex or disease status on the

brain. Machine learning approaches, for example, have

the potential to successfully predict such factors on an

individual level based on respective training data [60].

Simulation tools, such as ‘The Virtual Brain’ (https://

www.thevirtualbrain.org), build neurobiologically

informed computational models based on potential dis-

ease or other relevant mechanisms (e.g. aging), requiring

multilevel data (for first applications, see Refs. [61�,62]).

Such ongoing efforts require bridging the gap between

cellular-molecular and systems level neuroscience. The

European Human Brain Project (HBP) aims at integrat-

ing information of the brain at multiple scales from

different research disciplines via EBRAINS (Box 1), an

interactive tool combining multilevel data from various

sources to enable enriching subject-specific analyses. The

importance of such a platform can be derived from the

current use case example: the five ‘dementia at risk’

subjects in the 1000BRAINS study showed individual

profiles for various phenotypes, which is accompanied by

individual brain atrophy patterns, for which multilevel

atlas information revealed commonalities and differences

at the connectional, genetic and molecular level poten-

tially explaining parts of the peculiarities.
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Abstract
The angular gyrus (AG) has been associated with multiple cognitive functions, such as language, spatial and memory func-

tions. Since the AG is thought to be a cross-modal hub region suffering from significant age-related structural atrophy, it 

may also play a key role in age-related cognitive decline. However, the exact relation between structural atrophy of the AG 

and cognitive decline in older adults is not fully understood, which may be related to two aspects: First, the AG is cytoarchi-

tectonically divided into two areas, PGa and PGp, potentially sub-serving different cognitive functions. Second, the older 

adult population is characterized by high between-subjects variability which requires targeting individual phenomena during 

the aging process. We therefore performed a multimodal (gray matter volume [GMV], resting-state functional connectivity 

[RSFC] and structural connectivity [SC]) characterization of AG subdivisions PGa and PGp in a large older adult popula-

tion, together with relations to age, cognition and lifestyle on the group level. Afterwards, we switched the perspective to the 

individual, which is especially important when it comes to the assessment of individual patients. The AG can be considered 

a heterogeneous structure in of the older brain: we found the different AG parts to be associated with different patterns of 

whole-brain GMV associations as well as their associations with RSFC, and SC patterns. Similarly, differential effects of 

age, cognition and lifestyle on the GMV of AG subdivisions were observed. This suggests each region to be structurally 

and functionally differentially involved in the older adult’s brain network architecture, which was supported by differential 

molecular and genetic patterns, derived from the EBRAINS multilevel atlas framework. Importantly, individual profiles 

deviated considerably from the global conclusion drawn from the group study. Hence, general observations within the older 

adult population need to be carefully considered, when addressing individual conditions in clinical practice.

Keywords Angular gyrus · Aging · Brain structure · Resting-state functional connectivity · Structural connectivity · 

Cognition · Lifestyle

Introduction

The angular gyrus (AG) is a heterogeneous brain struc-

ture that has been associated with a variety of cognitive 

functions, including language functions (i.e., semantic 

information processing), spatial and memory functions, 

number and attentional processing, social cognition as well 

as multisensory perception (Binder et al. 2009; Seghier 

2013; Humphreys et al. 2021). During the aging process, 

the AG has been shown to undergo substantial structural 

atrophy starting during midlife and continuing until older 

ages (Walhovd et al. 2005; Fjell et al. 2009, 2013; Jockwitz 

et al. 2017a). Furthermore, associations between gray matter 

volume (GMV) of the AG and subjective and mild cognitive 

impairment (MCI) as well as dementia have been reported 

(Yao et al. 2012; Quiroz et al. 2013; Oh et al. 2014; van de 

Mortel et al. 2021; Zhang et al. 2021). For example, Karas 

et al. (2008) showed that subjects who converted from MCI 

to Alzheimer’s disease showed higher atrophy in the left 

AG as compared to those who remained mild cognitively 
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impaired. Likewise, subjects suffering from subjective cog-

nitive impairment (Kim et al. 2019) were depicted by lower 

GMV within the AG, as well as lower structural network 

connectivity between the AG and superior parietal and pre- 

and postcentral gyri, which, in turn, was associated with 

their cognitive decline. Hirst et al. (2021) even highlighted 

the AG as possible cross-modal hub region associated with 

age-related changes in multisensory perception. Hence, pre-

vious results hint at a key role of the AG during the aging 

process with a potential relation to neurodegenerative dis-

eases and cognitive decline.

By exploring the key role of the AG during the aging pro-

cess, previous research often focused on the AG as a macro-

anatomical entity. Commonly, it is anatomically summarized 

together with the rostrally lying supramarginal gyrus as the 

inferior parietal lobule (Seghier 2013), or integrated into 

functional units such as the temporoparietal junction includ-

ing posterior parts of the temporal lobe (Schurz et al. 2017). 

Yet, these approaches disregard multimodal evidence that 

the AG is a composition of two micro-anatomically distinct 

structures. For instance, post-mortem cyto-architectonic 

analyses revealed the AG to be subdivided into a rostrally 

lying area PGa and a caudally lying area PGp, which were 

shown to be involved in distinct functional brain networks 

and hence related to different cognitive functions (Caspers 

et  al. 2006, 2008). Based on this multimodal evidence, 

the examination of these AGs subdivisions may be highly 

promising to further unravel the potential key role of the 

AG in terms of age-related differences and its association 

to behavior.

To this aim, when focusing on the older adult population, 

we are confronted with a particularly high inter-individual 

variability at the level of behavior, brain structure as well 

as brain function (Habib et al. 2007; Dickie et al. 2013). 

Precisely, from early to late adulthood, the factor ‘age’ is 

able to explain large parts of the variance in terms of both, 

cognitive abilities and brain structural parameters (Hedden 

and Gabrieli 2004; Schaie 2009). Focusing on samples of 

only older adults, however, reveals a quite different picture. 

Here, the factor ‘age’ alone is not able to explain large parts 

of the variance. Despite the consideration of other factors, 

such as lifestyle (Bittner et al. 2019; Hamer and Batty 2019), 

sex (Jahanshad and Thompson 2017; Jockwitz et al. 2021a, 

b), genetic predispositions (Honea et al. 2009; Caspers et al. 

2020), or environmental influences (de Prado Bert et al. 

2018; Nussbaum et al. 2020; Lucht et al. 2022), the high 

inter-individual heterogeneity remains only partly explained. 

In fact, to identify general brain–phenotype relations in the 

older adult population on the group level, where each factor 

might show small effect sizes, very large sample sizes are 

required (Button et al. 2013). On the other hand, averag-

ing behavior across large groups may suppress and under-

estimate differences on the individual level (Jockwitz et al. 

2021a, b). Identifying global trends in these large samples 

with high inter-individual variability comes at the cost of 

losing perspective on and neglecting the specific pattern of 

influencing factors of individual subjects, as is particularly 

important in case of personalized treatment considerations. 

As these individual profiles might deviate considerably from 

the global conclusion drawn from the group study, individual 

deep phenotyping approaches are required to uncover the 

relevance of different factors for each individual to explain 

observed differences in the aging AG.

Consequently, the investigation of a possible key role 

of AG in the aging brain requires the consideration of two 

essential aspects: first, a functionally meaningful definition 

of AG sub-regions, as available through the Julich-Brain 

atlas (Amunts et al. 2020), (i.e., areas PGa and PGp) and 

second, a specific focus on the diverse multimodal profiles of 

factors influencing the aging process of the AG sub-regions 

in individuals. The current study first employed a multi-

modal, multilevel (i.e., brain structure, functional and struc-

tural connectivity) characterization of the AG subdivisions 

PGa and PGp in a large population-based study of older 

adults. Such multimodal investigations have been proven 

to be useful since different brain modalities were found to 

be distinctively related to differences in brain structure. For 

example, previous studies revealed that during the aging 

process, global as well as regional GMV decreases would 

be associated with both, positive and negative changes in 

brain connectivity of functional networks sub-serving cogni-

tive functions in the older adult population (Jockwitz et al. 

2017; Stumme et al. 2020; Spreng et al. 2016; Reuter-Lorenz 

et al. 2011). We here built upon this principle and exam-

ined the association between GMV of the AG subparts and 

either GMV, resting-state functional connectivity [RSFC] 

or structural connectivity [SC] of all ROIs included in the 

Julich-Brain Atlas to explore brain–brain relationships in a 

systemic approach. Furthermore, we additionally consulted 

the EBRAINS (https:// ebrai ns. eu), a multilevel atlas frame-

work, to characterize the ROIs on the molecular and gene 

expressions level. Second, group analyses were conducted 

to assess the relation between AG structure and age, cogni-

tion and lifestyle. Finally, we switched to the “individual 

view”. For this purpose, we selected individuals who exhib-

ited either a particularly high or low GMV within the AG to 

subsequently highlight their respective individual cognitive 

and lifestyle profiles compared to the overall study sample.

Methods

Subjects

All subjects included in the current study were drawn from 

1000BRAINS (Caspers et al. 2014), a population-based 
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cohort study, recruited from the Heinz Nixdorf recall 

study that has been conducted in the Ruhr area in Germany 

(Schmermund et al. 2002). Exclusion from the study was 

based on eligibility for MR measurements for scientific pur-

poses. From the initial cohort of 1314 subjects, we selected 

subjects being 55 years and older (n = 969).

Furthermore, subjects being at risk for dementia [as meas-

ured using the DemTect; (Kalbe et al. 2004)] were excluded 

(n = 31). From these 938 subjects with available data sets 

for cognitive performance, brain structure (available for n 

= 878 subjects), RSFC (available for n = 829), SC (avail-

able for n = 685) and lifestyle (available for n = 499) have 

been selected. All participants gave written informed con-

sent before participating in 1000BRAINS. All experiments 

were performed in accordance with relevant guidelines and 

regulations. The study protocol was approved by the local 

Ethics Committee of the University of Essen.

Cognitive performance and lifestyle

All subjects underwent intensive neuropsychological test-

ing during their participation in 1000BRAINS. In total, 16 

different cognitive functions, namely selective attention, 

processing speed, reasoning, concept shifting, susceptibil-

ity to interference, figural fluency, phonematic and semantic 

verbal fluency (with and without switching between differ-

ent letters/semantic categories), vocabulary, verbal episodic 

memory, figural memory, visual, visual–spatial and verbal 

short-term (STM)/working memory (WM) were assessed. 

For detailed information, see (Caspers et al. 2014; Jockwitz 

Table 1  Variables included in the current study with mean of raw values and corresponding standard deviations (SD) respectively the proportion 
n (%)

Total brain volume; BMI body mass index; STM short-term memory; WM working memory

Variable Mean (SD) Variable Mean (SD)

Demographics Age (years) 67.4 (6.6) Cognition Selective attention  
(time in sec.)

34.76 (11)

Sex 1.46 (0.5) Processing Speed  
(time in sec.)

40.52 (14.37)

Education 6.41 (1.97) Reasoning (correct 
answers)

20.37 (5.09)

TBV 1473.55 (132.81) Interference (time in sec.) 43.34 (22.68)

GMV of AG Concept shifting  
(time in sec.)

55.41 (37.87)

lPGa 1.84 (0.26) Visual spatial STM  
(correct answers)

5.44 (0.88)

rPGa 2.95 (0.38) Visual spatial WM  
(correct answers)

4.66 (1.06)

lPGp 4.31 (0.53) Visual WM  
(correct answers)

7.65 (1.77)

rPGp 3.81 (0.47) Verbal STM  
(correct answers)

6.06 (1.07)

Lifestyle Verbal WM  
(correct answers)

4.65 (1.07)

Packyears 13.35 (21.78) Figural fluency  
(correct answers)

26.02 (7.26)

Dietary index 11.39 (18.34) Phonematic fluency  
(correct answers)

18.71 (6.58)

BMI 0.92 (0.1) Semantic fluency   
(correct answers)

23.76 (6.83)

Sports (metabolic equivalent) 37.69 (107.51) Phonematic fluency 
switch (correct answers)

18.86 (6.09)

Social integration index 11.97 (3.3) Semantic fluency 
switch (correct answers)

19.87 (4.79)

Alcohol consumption Yes (n =202; 40.5%); No (n = 297; 
59.5%)

Vocabulary  
(correct answers)

30.86 (4.9)

Smoking Never (n = 219; 43.9%); ever (n = 233; 
46.7%); current (n = 41; 8.2%)

Figural memory  
(correct answers)

8.59 (4.12)

Verbal memory  
(correct answers)

41.68 (10.29)
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et al. 2017). In terms of lifestyle behavior (Ainsworth et al. 

2011, Bittner et al. 2019), we assessed information regard-

ing alcohol consumption (yes-no), body mass index (BMI), 

dietary index (Frolich et  al. 2017), smoking behavior 

(never-ever-current), social integration (social integration 

index) and sports (metabolic equivalent, Ainsworth et al. 

(2011)). For an overview of parameters used, mean values 

and standard deviations, see Table 1.

Image acquisition

All brain images were acquired in the frame of the imag-

ing protocol of 1000BRAINS (Caspers et al. 2014) using 

a 3T Siemens Tim-TRIO MR scanner with a 32-channel 

head coil. For the purpose of the current study, the fol-

lowing sequences were of interest: (1) 3D high-resolution 

T1-weighted magnetization-prepared rapid acquisition 

gradient-echo (MPRAGE) (176 slices, slice thickness = 1, 

TR = 2250 ms, TE = 3.03 ms, FoV = 256 × 256  mm2, flip 

angle = 9°, voxel resolution = 1  mm3); (2) 300 gradient-

echo planar (EPI) images (slices = 36, slice thickness = 3.1 

mm, TR = 2200 ms, TE = 30 ms, FoV = 200 × 200  mm2, 

voxel resolution = 3.1  mm3; participants were instructed to 

keep their eyes closed, to relax and let their mind wander, 

but not to fall asleep, which was checked during a post-scan 

debriefing) and (3) diffusion-weighted images (DWI) with 

two different b-values: b = 1000 s/mm2 (HARDI subset, 

EPI, TR = 6.3 s, TE = 81 ms, 7 b0-images (interleaved) 

and 60 diffusion-weighted volumes, voxel resolution = 2.4 

 mm3) and b = 2700 s/mm2 (HARDI subset, EPI, TR = 8 s, 

TE = 112 ms, 13 b0-images (interleaved) and 120 diffusion-

weighted volumes, voxel resolution = 2.4  mm3).

Brain image analyses

Brain regions of interest

For the purpose of the current study, the regions of inter-

est included left and right PGa and PGp within the AG as 

defined by Caspers et al. 2006, 2008, 2013. Both areas, 

PGa and PGp are part of the cyto-architectonically defined 

Julich-Brain atlas (version 2.6; https:// search. kg. ebrai ns. eu/ 

insta nces/ Datas et/ 2eaa3 dc6- a21b- 41c1- b703- bf06f 82adf 

25 ; (Amunts et al. 2020). All other areas included in the 

Julich-Brain atlas served as regions for network analyses of 

AG alterations (for areas PGa and PGp, see Fig. 1A; for the 

Julich-Brain atlas as represented in EBRAINS, see Fig. 1B).

Brain structure

From the T1-weighted structural brain images, we extracted 

GMV (in ml) using the standalone version of the CAT12v8 

SPM12 toolbox, release 1853 (Franke and Gaser 2019)) for 

all cyto-architectonically defined areas of the Julich-Brain 

atlas as well as the total brain volume (TBV). This included 

(a) initial registration and bias field correction, (b) segmen-

tation into tissue probability maps (TPM) of gray matter, 

white matter, and cerebrospinal fluid, (c) a spatial normali-

zation to the standard template derived from 555 healthy 

subjects between 20 and 80 years of the IXI-database (http:// 

www. brain- devel opment. org) computed using the geodesic 

shooting and Gauss–Newton optimisation-based diffeomor-

phic registration (Ashburner and Friston 2011).

Resting-state functional connectivity

For each participant, the first four echo planar imaging (EPI) 

volumes were discarded. Using a two-pass procedure, all 

functional images were corrected for head movement by 

fist aligning all volumes to the first image and second to 

the mean image using affine registration. By the use of the 

“unified segmentation” approach (Ashburner and Friston 

2005), all functional images were spatially normalized to the 

MNI152 template (Holmes et al. 1998; Calhoun et al. 2017; 

Dohmatob et al. 2018). Additionally, ICA-based Automatic 

Removal Of Motion Artifacts [ICA-AROMA (Pruim et al. 

2015)] was applied to identify and remove motion-related 

independent components from functional MRI data. After-

ward, global signal regression was applied to minimize the 

relationship between motion and RSFC (Burgess et al. 2016; 

Ciric et al. 2017; Parkes et al. 2018). Lastly, all RS-fMRI 

images were bandpass-filtered (0.01–0.1 Hz). For RSFC, a 

mean time series were extracted for each region of interest 

using fslmeants (Smith et al. 2004) and correlated with the 

mean time series of the AG parts (left and right PGa and 

PGp) using Pearson’s correlations.

Structural connectivity

First, DWI data were corrected for eddy current and motion 

artifacts including interpolation of slices with signal drop-

outs (Andersson and Sotiropoulos 2015; Andersson et al. 

2016). Suboptimal volumes or datasets (ghosting, remain-

ing signal dropouts or very noisy data) were removed from 

further analysis. Afterwards, brain masks were created, all 

DWI data were rigidly aligned to the T1-weighted data set 

using mutual information as cost function (Wells et al. 1996) 

and resampled to 1.25mm. B-vectors were rotated according 

to the transformations.

Regarding distortion correction Anisotropic Power 

Maps (APM; Dell’Acqua et al. 2014) were computed from 

the b2700 DWI data in 1.25 mm space, which were used 

to compute the non-linear transformation from diffusion to 

anatomical T1 space taking EPI induced distortions into 

account. These non-linear transformations were used to 

transform the TPMs to diffusion space for computing an 
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optimally fitting brain mask for the DWI data in the absence 

of field maps and b0 volumes with opposite EPI readout 

directions. All transformation steps were computed using 

the Advanced Normalization Tools (ANTs) version 2.1.1 

(Avants et al. 2014).

The two datasets with b1000 and b2700 were merged 

into one single file and corrected for different echo times. 

This correction was computed by voxel-wise multiplying 

the b2700 data with the ratio of the non-diffusion-weighted 

data of the two datasets.

Fig. 1  A AG subdivisions PGa 
and PGp; B 3D Visualization 
of the Julich-Brain Atlas; C nor-
malized gene expressions of the 
two genes of interest: ATP2C2 
and FOXP2. Areas PGa is 
colored in red (light red = left 
PGa), areas PGp are colored in 
blue (lighter blue =left PGp), 
areas PFt (part of supramarginal 
gyrus, colored in grey, light 
grey = right PFt) serves as 
control region; D normalized 
receptor densities fingerprints 
for 15 receptors as reported by 
Caspers et al. (2013). Area PGa 
is colored in red, area PGp 
is colored in blue, area PFt 
is colored in grey and serves as 
control region
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Calculation of  CSD and  streamlines Local modeling and 

probabilistic streamline tractography were performed using 

the MRtrix software package (Tournier et  al. 2012), ver-

sion  0.3.15 (https:// www. mrtrix. org/). The constrained 

spherical deconvolution (CSD) local model was computed 

using multi-tissue CSD of multi-shell data (Jeurissen et al. 

2014) using all shells and a maximal spherical harmonic 

order of  8. Ten  million streamlines were computed with 

dynamic seeding in the gray-white matter interface for every 

subject using the probabilistic iFOD2 algorithm and the 

anatomically constrained tractography framework (Smith 

et al. 2012) with a maximal length of 250 mm and a cut-off 

value at 0.06. Afterwards, optimized Spherical-deconvolu-

tion Informed Filtering of Tractograms (SIFT2) was applied 

to match the whole-brain tractograms to the fixel-wise fiber 

densities (Smith et al. 2015).

Connectivity matrices Next, both maps were merged into 

one single file, dilated using fslmaths and transformed into 

diffusion native space using the SyN algorithm (ANTs 

2.1.1). The whole-brain atlas in diffusion native space, the 

whole-brain tractogram and the SIFT2 weights per stream-

line were then fed into tck2connectome (MRtrix 0.3.15). 

This resulted in a symmetric 248 × 248 matrix which con-

tained the sum of streamline weights per ROI combination 

per subject.

Statistical analyses based on the total sample

In the first part, we aimed at characterizing the AG subparts 

in terms of brain structure, functional and structural connec-

tivity. Therefore, GMV of the AG subdivisions were related 

to either region-wise whole-brain GMV, RSFC or SC (in 

parts of the Julich-Brain atlas). All three analyses were car-

ried out using multiple regression analyses (forward-selec-

tion approach with sex, education and TBV as additional 

predictors) with GMV of the respective AG subdivision as 

independent variable and (a) GMV, (b) RSFC between AG 

subdivision and all other parts for the Julich-Brain atlas and 

(c) SC between AG subdivision and all other parts for the 

Julich-Brain atlas as dependent variables.

Second, to assess brain–phenotype relations for the two 

subdivisions of the left and right AG (areas PGa and PGp), 

we calculated several multiple regression analyses: First, we 

assessed the influence of age on GMV of the AG subparts 

using the inclusion approach (with sex, education and TBV as 

additional predictors). For behavioral variables, we included 

either cognitive performance test scores or lifestyle variables 

as explanatory variables using forward-selection approaches 

(with age, sex, education and TBV as additional predictors).

To target individual subject assessments, we selected 

five subjects with low GMV and five subjects with high 

GMV (participants being within the highest or lowest 25% 

regarding GMV for all four parts of the AG). For these ten 

subjects, we created individual profiles regarding cognitive 

performance and lifestyle (visualized as bar plots). To do so, 

we calculated standard Z-scores to create comparable scores 

for all variables.

Consultation of multilevel atlas framework EBRAINS

In the frame of characterizing the AG subdivisions, we con-

sulted regional genetic and molecular data using EBRAINS 

(https:// ebrai ns. eu), a multilevel atlas framework, to explain 

the involvement of the AG subdivisions with respect to gen-

eral as well as individual phenomena of the aging process. In 

terms of genetic data, we explored the JuGex tool (Bludau 

et al. 2018; https:// ebrai ns. eu/ servi ce/ jugex/). Since previous 

research claimed the involvement of the AG in language 

processing, we focused on genetic expression of language-

related genes, i.e., FOXP2 and ATP2C2 (Lai et al. 2003; 

Newbury and Monaco 2010; Lambert et al. 2011; Unger 

et al. 2021a, b). While FOXP2 is supposed to be involved in 

the development of speech and language, ATP2C2 has been 

associated with dyslexia and other communication disorders 

(Lai et al. 2003; Newbury and Monaco 2010; Lambert et al. 

2011; Unger et al. 2021a, b).

Functional differences in the individual regions were 

additionally investigated with respect to their receptor den-

sity fingerprints, since the function of a cortical area requires 

a well-matched receptor balance. We thus focused on the 

receptor density profiles of the AG subdivisions, as exam-

ined by Caspers et al. (2013) with densities of 15 different 

receptors (glutamatergic (α-amino-3-hydroxy-5-methyl-

4-isoxazolepropionic acid [AMPA], kainate, N-methyl-

D-aspartate [NMDA]), γ-aminobutyric acid (GABA)ergic 

(GABAA-, GABAB-, GABAA-associated benzodiazepine-

binding sites), cholinergic (nicotinic, muscarinic M1, M2, 

M3), adrenergic (α1, α2), serotoninergic (5-HT1A, 5-HT2), 

and dopaminergic (D1)) which were measured in areas PGa 

and PGp in postmortem brains. We normalized the recep-

tor densities (measured in fmol/mg) across all brain regions 

within the inferior parietal lobule (areas supramarginal 

gyrus: PF, PFt, PFop, PFm, PFcm; AG: PGa and PGp) by 

calculating the mean density values for each receptor and 

dividing the region-specific density value by the mean value. 

Finally, we compared the normalized receptor densities 

between areas PGa and PGp and additionally used area PFt 

as a control region.

Results

We performed a multimodal characterization of the AG 

subdivisions including data regarding GMV, RSFC and 

SC together with genetic and molecular information. Using 
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demographics, cognition and lifestyle, we then identified 

brain–behavior relationships at the group level. Finally, we 

identified individual profiles for subjects showing low and 

high GMV in areas PGa and PGp (see Fig. 1A for brain 

regions of interest).

Group-derived relationships between GMV 
of the AG and its brain integration

For associations between GMV and brain metrics, again, 

several different forward-selection multiple regression anal-

yses were performed. We first addressed the relationship 

between GMV of the AG subdivision as dependent variables 

and GMV of all regions included in the Julich-Brain atlas. 

Fig. 2  Brain regions being significantly associated with GMV of the 
AG subdivisions (areas PGa and PGp) in terms of A GMV; B RSFC 
and C SC (irrespective of the direction of the effects). All associa-
tions with GMV of area PGa are colored in red, while associations 

with GMV of area PGp are colored in blue. Associations with both 
areas PGa and PGp are colored in pink. Results are shown for the left 
and right hemispheric AG subdivisions separately. lh left hemisphere, 
rh right hemisphere
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Figure 2A shows those brain regions significantly related to 

GMV of the AG subdivisions.

Each of the four regions investigated seems to be related 

to GMV of different brain regions, with both, positive and 

negative associations. For all associations between GMV of 

the AG subdivisions and other parts of the Julich-Brain atlas, 

please refer to Figs. 3, 4, 5, 6 as well as Suppl. Table S1 

(for exemplary scatterplots, see Figure S5), and for the com-

parison of associations between left and right areas PGa and 

PGp refer to Fig. 2A–C. Exemplarily, GMV of left PGa was 

Fig. 3  Significant associations between GMV of left area (l) PGa and GMV, RSFC and SC of those areas included in the Julich-Brain atlas

Fig. 4  Significant associations between GMV of right area (r) PGa and GMV, RSFC and SC of those areas included in the Julich-Brain atlas
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associated with GMV of other sub-regions of the left inferior 

parietal lobule, as well as with the left dorsolateral prefron-

tal and orbitofrontal cortex, while GMV of right PGa was 

associated with GMV of other sub-regions of the right infe-

rior parietal lobule. Moreover, GMV of left and right area 

PGp was additionally negatively associated with areas of the 

respective contralateral primary visual cortex.

In a next step, we addressed the association between 

GMV of AG regions and RSFC between AG and all other 

parts of the Julich-Brain Atlas (Fig. 2B; for positive and 

Fig. 5  Significant associations between GMV of left area (l) PGp and GMV, RSFC and SC of those areas included in the Julich-Brain atlas

Fig. 6  Significant associations between GMV of right area (r) PGp and GMV, RSFC and SC of those areas included in the Julich-Brain atlas
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negative associations, see Figs. 3, 4, 5, 6 and Table S2, for 

exemplary scatterplots, see Figure S5). In general, GMV 

of the left PGa was associated with RSFC between left 

PGa and left inferior parietal lobule and the intraparietal 

sulcus. GMV of the left PGp was associated with RSFC 

between left PGp and left inferior parietal lobule as well 

as the right dorsolateral prefrontal cortex. GMV of the 

right PGa was associated with RSFC between right PGa 

and left cingulate cortex, while GMV of right PGp showed 

widespread RSFC associations with parts of the left and 

right inferior parietal lobule, as well as parts of the tem-

poral lobe.

Likewise, we addressed the association between GMV 

of AG regions and SC between AG and all other parts of 

the Julich-Brain Atlas (Fig. 2C; for positive and negative 

associations, see Figs. 3, 4, 5, 6 and Table S3, for exemplary 

scatterplots, see Figure S5). Here, again, each AG subdivi-

sion revealed a distinct composition of SC patterns related 

to the GMV of the AG subdivisions. GMV of left PGa was 

associated with SC between left PGa and left inferior and 

superior parietal lobule and intraparietal sulcus. GMV of left 

PGp was associated with SC between PGp and left parietal 

lobule, and with the primary visual cortex. GMV of right 

PGa was associated with SC between right PGa and right 

inferior and superior parietal lobule and intraparietal sulcus, 

with additional connections to right dorsal premotor cortex. 

In turn, GMV of right PGp was associated with SC between 

right PGp and, right inferior parietal lobule and intrapari-

etal sulcus, and with the primary visual cortex and lateral 

occipital cortex.

Finally, we were interested whether the distinct involve-

ment of the AG subdivisions in brain metrics (i.e., GMV, 

RSFC, SC) would be reflected in its regional genetic and 

molecular architecture. This was assessed by integrating 

information from the EBRAINS multilevel atlas framework. 

Regarding the molecular composition of the inferior pari-

etal lobule, areas PGa and PGp show regional differences in 

receptor density fingerprints. Figure 1D represents the nor-

malized receptor density fingerprints of areas PGa and PGp 

as well as area PFt, as one exemplary control region within 

the supramarginal gyrus. In general, the normalized recep-

tor fingerprints of the two AG regions have a similar shape, 

whereas area PFt within the supramarginal gyrus is clearly 

differentiated from these two. For instance, area PFt showed 

a substantially lower receptor density of the D1 receptor, 

but also of the  GABAA receptor. Comparing the two AG 

regions, area PGp is characterized by high concentrations of 

the αlpha2 receptor as compared to area PGa, whereas area 

PGa shows exceptionally high concentrations of the nicotinic 

receptor compared to area PGp.

Since the AG is involved in language functions, we were 

additionally interested in whether this also manifests in dis-

tinct gene expressions. To do so, we additionally examined 

several gene expressions of language-related genes, using 

the JuGex tool in EBRAINS (Bludau et al. 2018). Figure 1C 

represents the normalized gene expressions for the AG parts 

as well as supra-marginal area PFt. Regarding ATP2C2, we 

found lower gene expressions within the two AG parts as 

compared to area PFt, while for FOXP2, we found oppo-

site patterns, i.e., higher gene expressions for areas PGa 

and PGp as compared to area PFt. Comparing the two AG 

sub-regions, we found lower gene expressions for FOXP2 

in area PGp compared to area PGa bilaterally and higher 

gene expressions of ATP2C2 in area PGp compared to PGa.

Group analyses of AG subdivisions in light of age, 
cognitive performance and lifestyle

Using multiple regression analyses, we examined the asso-

ciations between GMV of the left and right PGa and PGp 

and age (while adjusting for sex, education and TBV). We 

found age-related decreases in GMV for all four parts of the 

AG, with the highest age-related decrease for right PGa and 

the lowest decrease for the left PGa (Fig. 7A, Table 2).

For associations between GMV and behavioral factors, 

several different forward-selection multiple regression analy-

ses were performed. Regarding cognitive performance, we 

found relations between GMV of left PGa and figural and 

semantic verbal fluency, as well as verbal WM. In turn, 

GMV of left PGp correlated with semantic verbal fluency 

and visual WM. GMV of right PGa correlated with semantic 

and phonematic verbal fluency as well as with reasoning, 

while GMV of right PGp correlated with processing speed. 

Thus, in both hemispheres, the AG subdivisions correlated 

with partially distinct cognitive functions in the older adult 

population. While GMV of all regions of interest but the 

right PGp were related to semantic verbal fluency, we addi-

tionally found the two posterior regions (left and right PGp) 

to be related to visual WM and (visual) processing speed 

(for exemplary scatterplots, see Fig. 7B; for all scatterplots, 

see supplementary Figures S1–4, for regression coefficients, 

see Table 3).

In terms of the association between GMV and lifestyle, 

multiple regressions revealed left hemispheric parts of the 

AG (PGa and PGp) to be related to BMI, i.e., higher BMI 

being related to lower GMV. Additionally, GMV of right 

area PGa correlated positively with sports. Further, GMV 

of right area PGp was negatively related to BMI and alcohol 

consumption and positively to social integration. Thus, there 

seems to be an overall relation between GMV of the AG 

and BMI (except for right area PGa), while sports, alcohol 

consumption and social integration were rather specifically 

related to GMV of distinct AG sub-regions (for exemplary 

scatterplots, see Fig. 7B; for all scatterplots, see supplemen-

tary Figures S1–4, for regression coefficients, see Table 3).
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Fig. 7  A Age-related differences in GMV (z-scores) for areas lPGa, 
rPGa, lPGp and rPGp. B Cognitive performance (z-scores) and 
lifestyle-related differences in GMV (z-scores). The whole group is 

represented by gray dots including regression line and confidence 
interval. Selected individuals within the highest and lowest 25% are 
marked in orange and green triangles, respectively
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Group trends versus individual subjects

To go beyond group level insights, we addressed the “indi-

vidual view” bearing in mind the variability between GMV 

and cognitive abilities and lifestyle habits. We therefore tar-

geted exemplary individual subjects regarding their specific 

‘multilevel AG profile’ among those with either highest or 

lowest GMV (25% percentile groups). Scatterplots shown in 

Fig. 7A (age-related differences in GMV) and B (exemplary 

relations between AG GMV and cognitive performance or 

lifestyle habits, for all other scatterplots, see supplementary 

Figures S1–4) illustrate the selected subjects in the frame of 

the here examined sample. While subjects with, e.g., simi-

larly low GMV already cover the whole age range, we addi-

tionally looked at their individual cognitive performance and 

lifestyle profiles (Figure 8A, B). Comparing two individuals 

with a low GMV in all AG subdivisions, revealed additional 

differences: In terms of cognitive functioning, individual #3 

performs above average in reasoning and visual WM and 

below average in terms of semantic fluency. At the same 

time, individual #3 shows a slightly lower social integration 

index. In contrast, individual #4 shows an above average per-

formance in semantic and phonematic fluency together with 

a slightly above average BMI. When selecting two subjects 

with high GMV in the AG, we see a similar heterogene-

ous picture: Individual #5 shows a high performance in the 

semantic fluency task, and an above average engagement in 

sports. In turn, individual #7 shows a high performance in 

verbal WM together with all lifestyle variables being within 

the normal range (z-scores within 1 SD). Finally, comparing 

individual #5 with individual #10, both subjects perform low 

Table 2  Multiple regression models (inclusion) with GMV of the regions of interest as dependent variables (left and right PGa and PGp) and 
age, sex, education and TBV as predictors

The models include all predictors with standardized regression coefficients and p-values in brackets. TBV total brain volume

lPGa rPGa lPGp rPGp

Age −0.092 (0.023) −0.226 (<0.001) −0.121 (0.001) −0.131 (<0.001)

Sex −0.066 (0.167) −0.036 (0.441) −0.026 (0.562) −0.116 (0.007)

Education 0.019 (0.107) 0.034 (0.402) 0.038 (0.335) 0.009 (0.811)

TBV 0.422 (<0.001) 0.447 (<0.001) 0.525 (<0.001) 0.524 (<0.001)

Table 3  Multiple regression models (forward-selection) with GMV of the regions of interest as dependent variables (left and right PGa and 
PGp) and A) cognitive performance test scores and B) lifestyle variables as predictors

All models additionally include covariates of non-interest (age, sex, education, TBV). The models include all significant predictors with stand-
ardized regression coefficients and p-values in brackets. TBV total brain volume; WM working memory; BMI body mass index

A lPGa rPGa lPGp rPGp

Cognition TBV 0.445 (<.001) TBV 0.436 (<.001) TBV 0.533 (<.001) TBV 0.521 (<.001)

Figural fluency 0.111 (0.013) Age −0.158 
(<.001)

Semantic Flu-
ency

0.088 (0.024) Age −0.103 (0.009)

Semantic flu-
ency switch

0.118 (0.01) Semantic flu-
ency

0.192 (<.001) Visual WM 0.085 (0.034) Sex −0.134 (0.002)

Verbal WM −0.093 (0.031) Phonematic 
fluency 
switch

−0.135 
(0.005)

Processing 
speed

−0.08 (0.043)

Reasoning 0.114 (0.01)

B lPGa rPGa lPGp rPGp

Lifestyle TBV 0.457 (<.001) TBV 0.475 (<.001) TBV 0.550 (<.001) TBV 0.524 (<.001)

BMI −0.131 
(0.001)

Age −0.215 
(<.001)

Age −0.111 
(0.003)

Age −0.136 (<.001)

Sports 0.093 (0.017) BMI −0.078 
(0.039)

Sex −0.143 (0.001)

BMI −0.104 (0.004)

Alcohol −.099 (0.009)

Social integra-
tion

0.080 (0.025)
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in most of the cognitive tasks presented. However, individual 

#5 is one of the subjects with a low GMV, while individual 

#10 exhibited a high GMV. Thus, these individual profiles 

demonstrate that each individual shows its own cognitive 

and lifestyle fingerprint, with differential effects for different 

factors, not reflected by the general group trends.

Discussion

Aim of the current study was to characterize multimodal 

brain–phenotype relationships of the AG sub-regions in 

the older brain. Thereby, we first examined the GMV of 

the AG sub-regions and the relation to multilevel informa-

tion about GMV, RSFC and SC of the rest of the brain. We 

additionally made use of the multilevel atlas framework 

EBRAINS to enrich the here established results by molec-

ular, genetic and cellular information of these brain areas, 

to finally obtain a holistic understanding of the cyto-archi-

tectonically defined sub-regions, PGa and PGp. In a sec-

ond step, we conducted group analyses of AG subdivisions 

in light of age, cognitive performance and lifestyle in older 

subjects using multimodal sources of information. We 

finally switched the perspective toward the “individual” 

to carve out the peculiarities that individual profiles of 

this multimodal picture of the AG might reveal in contrast 

to the insight based on group-level inference, an essential 

aspect when it comes to medical conditions and treatment 

considerations.

Fig. 8  Comparison of selected individuals regarding their A cognitive 
performance (1 = Processing Speed – 2 = Reasoning – 3 = Visual 
WM – 4 = Verbal WM – 5 = Figural Fluency – 6 = Semantic Flu-
ency – 7 = Phonematic Verbal Fluency Switch – 8 = Semantic Ver-
bal Fluency Switch) and B lifestyle habits (A = Alcohol (yes-no) –  

B = Sports – C = BMI – D = Social Integration Index) for those vari-
ables showing significant influences on GMV of any of the AG sub-
divisions. All cognitive and lifestyle variables were standardized to 
facilitate comparability across variables
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Multimodal characterization AG sub-regions

With respect to brain–brain relationships, in the cur-

rent study, we performed regression analyses to examine 

the associations between GMV of the AG subdivisions 

and a) GMV of, and b) RSFC, and c) SC with all parcels 

of the Julich-Brain Atlas. The resulting patterns of these 

brain–brain relationships were found to be different for PGa 

and PGp as well as across modalities. With this, the current 

results support the notion of previous studies, reporting the 

AG to consist of different subdivisions (Caspers et al. 2006, 

2008) and emphasize the need to explore these individu-

ally. We here extended these observations by showing that 

the AG subdivisions exhibit individual spatial patterns of 

covariance for all three modalities investigated (GMV, RSFC 

and SC). Thus, with the current results based on an older 

adult population, we show multimodal evidence for a clear 

distinction of areas PGa and PGp in the AG.

Importantly, it has to be mentioned that spatial associa-

tion patterns were not only heterogeneous across the regions 

of interest, but also across the three modalities (GMV, 

RSFC, SC) within one ROI. In accordance with the notion 

of brain plasticity in even healthy older adults (for a review, 

see Reuter-Lorenz and Park 2014), differences in GMV of 

the AG subdivisions seem to, at least in part, affect GMV, 

RSFC and SC in a distinct way. For instance, we found GMV 

of left areas PGa and PGp to be associated with GMV of the 

left hemispheric parietal and dorsolateral prefrontal brain 

areas, possibly reflecting a frontoparietal network, involved 

in executive functions and working memory (Yeo et al. 

2011; Smith et al. 2009). Interestingly, focusing on left area 

PGp, we also found a frontoparietal association in terms 

of RSFC. Here, a lower GMV was related to higher RSFC 

between this area and the dorsolateral prefrontal cortex of 

the contralateral hemisphere. Aging studies, so far, have 

shown that a decrease in GMV in posterior brain regions 

might be related to a higher functional connections to fron-

tal brain regions, the so-called posterior to anterior shift in 

aging (Dolcos et al. 2002). These effects shown here are in 

line with this and might represent a compensatory mecha-

nism of the brain, to maintain cognitive performance as sta-

ble as possible in our older adult population. Furthermore, 

while the frontoparietal network is supposed to be a mainly 

lateralized brain network, we here found a GMV dependent 

difference in RSFC with the dorsolateral prefrontal cortex of 

the contralateral hemisphere. With regard to the aging popu-

lation and plasticity of the older adult brain, an increase in 

communication between the two hemispheres might reflect 

similar compensatory attempts for structural brain atrophy as 

discussed above to maintain cognitive performance as stable 

as possible [HAROLD, Cabeza et al. (2002); Jockwitz et al. 

(2017); Reuter-Lorenz and Lustig (2005); Holler-Wallscheid 

et al. (2017))]. Thus, the current results might, at least in 

part, represent multimodal evidence for the functionally 

derived aging theories in the older population.

In addition, both (left and right) areas PGp showed an 

association to GMV of the visual cortex. This fits to the 

results in terms of GMV patterns as well as in terms of SC, 

i.e., connectivity between areas PGp and the visual cortex in 

both analyses. Furthermore, Caspers et al. (2013) reported 

similar receptor distributions between area PGp and the vis-

ual cortex, which is in line with the current observations in 

terms of GMV and SC. The interaction of AG and the visual 

cortex, also known as dorsal visual stream, is essential for an 

intact visuomotor system and has already been reported to 

be age-sensitive (Yamasaki et al. 2012; Sciberras-Lim and 

Lambert 2017; Wu et al. 2020); i.e., substantially higher 

gray matter reduction for the dorsal visual stream as com-

pared to, e.g., the ventral visual stream (Ziegler et al. 2012). 

This multimodal perspective supports previous notions that 

area PGp might be closely linked to higher-order visual pro-

cessing, also during older ages.

Group analyses of AG subdivisions in light of age, 
cognitive performance and lifestyle

Based on the multimodal group results, the AG subdivi-

sions can be characterized by different properties in terms 

of gray matter, functional and structural connectivity. In 

terms of brain–phenotype relationships on the group level, 

we additionally found differential associations for the AG 

subdivisions. We found the most pronounced age-related 

GMV decreases in right PGa, followed by right PGp, left 

PGp and finally left PGa. Asymmetric differences concern-

ing age-related decreases in brain structure have been previ-

ously reported, also for the inferior parietal lobule and the 

AG itself (e.g., (Plessen et al. 2014; Jockwitz et al. 2017; 

Roe et al. 2021). This is in line with the so-called right 

hemi aging theory (Grady et al. 1994) stating that the right 

hemisphere, mainly responsible for visuospatial functions, 

declines earlier as compared to the left hemisphere. In a 

previous analysis, we could already establish that this rather 

global statement also holds true for the right versus left AG, 

at least in terms of cortical folding indices (Jockwitz et al. 

2017). We now could verify this effect also regarding GMV.

In terms of cognitive performance, previous studies 

reported the right AG to be associated with visual spatial 

attention, calculations, or self-processing (Corbetta and 

Shulman 2002; Arsalidou and Taylor 2011; Seghier 2013), 

while the left AG is rather involved in language functions, 

especially semantic processing and memory (Seghier 2013; 

Heim et al. 2019). In the current study, however, we revealed 

associations between semantic verbal fluency and GMV of 

both, left PGa/PGp and right PGa. This is only partially 

in line with and rather extends results obtained by a large 

meta-analysis investigating the semantic system in the brain 
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(Binder et al. 2009). While Binder et al. (2009) showed a 

lateralization of semantic language processing to the left 

hemisphere, we here showed a bilateral relation between 

GMV and verbal fluency in the older adult population. In 

terms of semantic language processing, this performance-

dependent GMV might serve as a structural correlate for 

the so-called HAROLD model (Cabeza et al. 2002), stating 

that older in comparison to younger adults recruit bilateral 

brain networks to maintain cognitive functions as stable as 

possible.

Interestingly, additionally focusing on the genetic infor-

mation extracted from EBRAINS, we found differential 

language-related gene expressions in areas PGa versus PGp. 

Generally, area PGa shows a higher expression of ATP2C2 

(with higher right as compared to left hemispheric expres-

sion) and a lower expression of FOXP2 as compared to area 

PGp. Since both genes are supposed to support successful 

language processing during the lifespan [i.e., FOXP2 is 

supposed to be involved in the development of speech and 

language, ATP2C2 has been associated with dyslexia and 

other communication disorders (Lai et al. 2003; Newbury 

and Monaco 2010; Lambert et al. 2011; Unger et al. 2021a, 

b)], the difference in gene expression may suggest a func-

tional diversity to exist between areas PGa and PGp. These 

results, indeed, align with the functional diversity found 

between these areas, especially in the right hemispheric AG, 

i.e., area PGa is related to semantic fluency, whereas area 

PGp shows no correlation with semantic fluency. Emphasiz-

ing that the current study focused on the older adult brain, it 

needs to be highlighted that the right hemisphere is supposed 

to be more age-sensitive as compared to the left hemisphere. 

Thus, we here might unravel gene-dependent differences in 

the two areas, which might become particularly function-

ally relevant during older ages, when aging effects on brain 

structure already start to unveil.

Differences with respect to the brain–behavior rela-

tionships, however, were not only present within the right 

AG. Rather, we found verbal WM to be related to GMV 

of left PGa and visual WM to be related to GMV in left 

PGp. Generally, the current results are in accordance with 

functional connectivity-based results showing an involve-

ment of the (left) AG during WM performance (Smith et al. 

2009; Rottschy et al. 2012; Vatansever et al. 2016; Marek 

and Dosenbach 2018; Yao et al. 2020). As already shown 

for verbal fluency, at least in the older adult population, 

there might be a regional difference in the involvement of 

left AG in WM, with left area PGa being related to verbal 

WM and left area PGp being related to visual WM. Here, 

it is particularly useful to additionally incorporate informa-

tion from the EBRAINS multilevel platform that supports 

the results found in the current sample of older adults. For 

instance, receptor fingerprints of the AG subdivisions show 

that especially the more posterior lying brain regions PGp 

bilaterally have receptor fingerprints similar to extra-striate 

cortices, which is in line with the current results.

These insights were supplemented by differences in life-

style habits in association with age-related AG subregion 

volume differences. We found a higher BMI to be associ-

ated with lower GMV in all areas except right area PGa. 

A negative association between widespread brain structure 

and BMI has been established in several studies (e.g., Taki 

et al. 2008; Kharabian Masouleh et al. 2020). Some stud-

ies showed a particular association with the inferior parietal 

lobule. For instance, Kurth et al. (2013) showed a negative 

association between BMI and GMV of the inferior parietal 

lobule and Cheke et al. (2016) reported reduced functional 

activity during an episodic memory task in the AG, which 

could be explained by reductions in brains structure, as 

found in the current study.

Furthermore, we found GMV of the two right hemi-

spheric AG parts to be associated with several other lifestyle 

variables. GMV of right area PGa was positively associated 

to sports and GMV of the right area PGp was negatively 

correlated with alcohol consumption and positively corre-

lated to social integration. Sports and social integration have 

been shown to be beneficial in terms of gray matter structure 

during the aging process (Erickson et al. 2015; Bittner et al. 

2019, 2021; Domingos et al. 2021). Particularly interest-

ing, we found a relation between structural atrophy of area 

PGp and the social integration index. With the right AG 

being associated with social cognition (Bitsch et al. 2018) 

and social integration (Park et al. 2021), the current results 

might hint at a special role of right area PGp in social behav-

ior during older ages.

Taken together, results derived from a large population-

based sample of older adults reveal quite heterogenous 

patterns for left and right areas PGa and PGp. We found a 

mixed picture of age differences in terms of GMV, together 

with differential relations to cognitive performance and life-

style. Together with the integration of information derived 

from EBRAINS, we highlight the need to investigate the 

AG subdivisions as different entities, rather than one macro-

anatomical structure, which might obscure specific rela-

tions between brain regional architecture and behavior and 

cognition.

Individual profiles

An important aim of the current study was to not only char-

acterize global alterations of areas PGa and PGp in the older 

adult population, but to also investigate individual profiles 

of subjects showing particularly high or low GMV of the 

AG subdivisions as an example of relevant deviations from 

global trends typically reported in group-level analyses. The 

question of the transition from the group level to the indi-

vidual subject tackles one of the most important topics when 
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it comes to modern neuroscience including precision medi-

cine. By amending the group results with individual subject 

profiles in the present study, we aimed at gaining further 

awareness of this topic in the neuroscientific community.

For instance, the group results suggested that lower GMV 

would be related to lower performance in the verbal flu-

ency tasks, together with a higher BMI. Looking at one of 

the individuals who showed low GMV in all AG subdivi-

sions, we see that this individual #4 shows an above average 

performance in semantic and phonematic fluency together 

with a slightly above average BMI. Similarly, comparing 

two subjects, one showing low GMV of the AG (individual 

#5) and the other one showing high GMV (individual #10), 

both subjects perform low in most of the cognitive tasks pre-

sented. Thus, bearing in mind the variability between GMV 

and cognitive abilities and lifestyle habits (cf. Fig. 7A and 

B) when examining this individual, e.g., in case of a medi-

cal examination, group trends could not easily be applied 

to this specific individual as some might fit more or less, 

while for other factors, there is considerable and differential 

deviation. Rather, these individual profiles demonstrate that 

each individual shows its own cognitive and lifestyle finger-

print, that is not necessarily reflected by the group effects. 

In fact, results from the current data suggest that individu-

als and their cognitive/lifestyle profiles may largely deviate 

from estimated group trends leading to the question what 

this would mean for future research in the field of cognitive 

neuroscience.

Group analyses aim at extracting general principles of 

brain–behavior relationships, e.g., the “average” association 

between GMV decrease and cognitive performance decline 

in older adults. Applying this “one size fits all” approach to 

clinical cases, e.g., a group of Alzheimer patients, and rely-

ing on this principle would mean that all patients would be 

treated the same way (Reitz 2016). However, from previous 

work, it is well known that neurodegenerative diseases might 

show individual peculiarities, where not every patient exhib-

its the same symptoms. Likewise, not every patient responds 

to the same treatment (Reitz 2016). The here presented 

results between the poles of group results and individual 

cognitive/lifestyle profiles tap into this conflict, by showing 

that even in a normal older adult population, each subject 

has his/her own individual fingerprint of brain and behavio-

ral particularities. Although principles derived from group-

level analyses, of course, build a guideline for the average 

subject or patient, the current individual dissimilarities stress 

that a characterization at the individual level, in contrast to 

group averages, will be an inevitable step toward successful 

diagnostics and treatments (Reitz 2016; Zimmermann et al. 

2016). Importantly, individual characterizations require rich 

datasets, including information on brain and behavior at dif-

ferent levels, such as molecular and genetics. Since this kind 

of information might not be accessible to every research 

group, the EBRAINS (Amunts et al. 2016) interactive tool 

combining multilevel data from various sources enables 

deep multifaceted characterizations of the brain at multiple 

level in one common framework. In the current study, we 

used EBRAINS to support the brain–behavior relationships 

presented here with both genetic and molecular findings to 

obtain a holistic characterization of the AG subdivisions.

Conclusion

Based on the multimodal group results, the AG can be 

considered as a structure heterogeneously affected in the 

aged brain: First, GMV, RSFC, and SC patterns provide 

multimodal evidence that the AG subdivisions seem to be 

involved in different brain networks sub-serving distinct cog-

nitive functions, which could further be supported by inte-

grating molecular and genetic information from EBRAINS. 

Second, age differentially affected GMV of the AG sub-

divisions, with the highest GMV decrease in rPGa. Third, 

the different AG parts showed distinct associations with 

cognitive abilities or lifestyle habits hinting at a functional 

specificity of each region. However, the individual profiles 

show that the relations identified at the group level are not 

necessarily transferable to the individual level. Hence, gen-

eral observations within the older adult population need to 

be carefully considered, especially when it comes to the 

assessment and treatment of individual patients.

Supplementary Information The online version contains supplemen-
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