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Abstract

In recent years, we have seen significant developments in quantum cryp-
tography and notably in quantum key distribution (QKD). A QKD protocol
enables two parties to generate a shared secret key via an insecure quantum
channel and an authenticated public classical channel. Though QKD pro-
vides information-theoretic security, it requires complete characterization
of the sources and devices. Such settings are vulnerable to side-channel
attacks. Device-independent quantum key distribution (DIQKD) is intro-
duced to avoid such problems offering the strictest form of security. A
DIQKD protocol does not depend on the intrinsic properties of the devices
and channels involved in the protocol and can be performed with untrusted
or uncharacterized devices. The central tenet behind a DIQKD protocol is the
observation of nonlocal correlations, certified by a Bell inequality violation.
The length of the final secure key depends on the Bell inequality and the
amount of its violation. Thus, the selection of a suitable Bell inequality in a
DIQKD protocol is essential. In most DIQKD protocols, the Bell inequality is
chosen beforehand. We introduce a DIQKD protocol where a Bell inequality
is designed from the complete measurement statistics which is one central
topic of this thesis. From the input-output probability distribution, we con-
struct an optimized Bell inequality that leads to the maximum Bell violation
for the particular measurement settings. We use this optimized Bell inequal-
ity and the corresponding violation to bound the secret key rate by upper
bounding the guessing probability (or lower bounding the min-entropy) us-
ing the NPA hierarchy [NPA07, NPA08]. We study our protocol for a general
Bell scenario, i.e. for any number of measurement inputs and measurement
outcomes and random measurement settings. We also perform finite-size
secret key analysis under the assumption of collective attacks.

In the second part, we introduce a novel method to estimate the guessing
probability, which is a crucial parameter in many device-independent cryp-
tographic processes and can also serve as a witness for nonlocal correlations.
We utilize neural network architectures and supervised machine learning
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to estimate the guessing probability from the measurement statistics. Addi-
tionally, we use deep learning models to select suitable Bell inequalities from
the input-output probability distribution that can then be used in a DIQKD
protocol. Our results offer a novel method and a proof of principle for the
relevance of deep learning for estimating the guessing probability, selecting
a suitable Bell inequality and broadening the understanding of nonlocality.
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Zusammenfassung

In den letzten Jahren gab es bedeutende Entwicklungen in der Quantenkryp-
tografie, insbesondere in der Quantenschlüsselverteilung (QKD). Ein QKD-
Protokoll ermöglicht es zwei Parteien, einen gemeinsamen geheimen Schlüs-
sel über einen unsicheren Quantenkanal und einen authentifizierten öf-
fentlichen klassischen Kanal zu erzeugen. Obwohl QKD informationstheo-
retische Sicherheit bietet, gilt dies nur, wenn eine vollständige Beschreibung
über alle im Protokoll verwendeten Geräte vorliegt. Da dies häufig nicht
gegeben ist, sind QKD Protokolle anfällig für so genannte Seitenkanalan-
griffe. Die geräteunabhängige Quantenschlüsselverteilung (DIQKD) wurde
eingeführt um solche Probleme zu vermeiden und bietet die strengste Form
der Sicherheit. Ein DIQKD-Protokoll hängt nicht von den intrinsischen
Eigenschaften der am Protokoll beteiligten Geräte und Kanäle ab und kann
mit nicht vertrauenswürdigen oder nicht charakterisierten Geräten durchge-
führt werden. Der zentrale Grundsatz eines DIQKD-Protokolls ist die
Beobachtung von nichtlokalen Korrelationen, die durch eine Verletzung
der Bellschen Ungleichung bestätigt werden. Die Länge des endgültigen
sicheren Schlüssels hängt von der Bell-Ungleichung und dem Ausmaß ihrer
Verletzung ab. Daher ist die Auswahl einer geeigneten Bell-Ungleichung
in einem DIQKD-Protokoll von entscheidender Bedeutung. In den meisten
DIQKD-Protokollen wird die Bell-Ungleichung im Voraus gewählt. In dieser
Arbeit stellen wir ein DIQKD-Protokoll vor, bei dem eine Bell-Ungleichung
aus der vollständigen Messstatistik entwickelt wird. Aus der Eingabe-
Ausgabe-Wahrscheinlichkeitsverteilung konstruieren wir eine optimierte Bell-
Ungleichung, die zur maximalen Bell-Verletzung für die jeweiligen Messein-
stellungen führt. Wir verwenden diese optimierte Bell-Ungleichung und die
entsprechende Verletzung, um eine untere Schanke an die Rate des geheimen
Schlüssels zu finden, indem wir die Erkennungswahrscheinlichkeit nach
oben begrenzen (oder die Min-Entropie nach unten begrenzen), indem wir
die NPA-Hierarchie verwenden. Wir untersuchen unser Protokoll für ein all-
gemeines Bell-Szenario, d. h. für eine beliebige Anzahl von Messeingängen
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und Messergebnissen und zufällige Messeinstellungen. Wir führen auch
eine Analyse des geheimen Schlüssels endlicher Länge unter der Annahme
von kollektiven Angriffen durch.

Im zweiten Teil stellen wir eine neuartige Methode zur Schätzung der
Erkennungswahrscheinlichkeit vor, die ein entscheidender Parameter in
vielen geräteunabhängigen kryptographischen Verfahren ist und auch als
Zeuge für nichtlokale Korrelationen dienen kann. Wir setzen neuronale
Netzwerkarchitekturen und überwachtes maschinelles Lernen ein, um die
Erkennungswahrscheinlichkeit aus den Messstatistiken zu schätzen. Darüber
hinaus verwenden wir Deep-Learning-Modelle, um geeignete Bell-Ungleichungen
aus der Eingabe-Ausgabe-Wahrscheinlichkeitsverteilung auszuwählen, die
dann in einem DIQKD-Protokoll verwendet werden können. Unsere Ergeb-
nisse bieten eine neuartige Methode und einen Grundsatzbeweis für die
Relevanz von Deep Learning für die Schätzung der Erkennungswahrschein-
lichkeit, die Auswahl einer geeigneten Bell-Ungleichung und die Erweiterung
des Verständnisses von Nichtlokalität.
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1
Introduction

Applications in the subject of cryptography enhance consumer access to
privacy, authentication, and confidentiality. Secure communication is an
important sub-field that aims to provide private communication between
parties while ensuring that no unauthorized party can access the message.
Numerous methods to encrypt messages arose over the years but were al-
ways broken afterwards. The field of cryptography has a long history of
successes and failures.

In 1917, Vernam introduced the so-called One-Time Pad encryption,
which protects against an eavesdropper with unlimited computational ca-
pacity [Ver26]. If the parties do not use the same key twice, this scheme
cannot theoretically be thwarted. Three decades later, Shannon demon-
strated the Vernam scheme’s efficacy, showing that no other encryption
technique utilizes a smaller key [Sha49]. A safe key distribution method is
needed to enable secure communication using encryption schemes. Due to
this limitation, most of today’s cryptographic applications rely on systems
whose security cannot be proven in theory and instead depends on our un-
derstanding of the complexity of particular tasks [RSA78]. Strictly speaking,
it is possible to beat these strategies, but it will take substantial computing
power. Quantum cryptography provides a solution to the issue of using
the principles of quantum mechanics for secret communication. Unques-
tionably, quantum key distribution (QKD), whose goal is to provide a safe
encryption key to the honest parties that desire to communicate, is the most
significant aspect of quantum cryptography. Bennet and Brassard proposed
the first QKD protocol in 1984, the famous BB84 protocol [BB84]. It uses the
no-cloning theorem [WZ82] and properties of quantum physics to establish

1



secure communication.
A decade after the discovery of QKD, Peter Shor made an important

discovery: large numbers can theoretically be factorized effectively [Sho99]
as long as several quantum systems can be manipulated coherently. The
current generation of conventional cryptographic methods is based on large
integer factorization. It is computationally challenging and time-consuming.
Shor’s algorithm makes it possible to solve a large number in polynomial
time. Even while quantum computers are not yet a reality, the mere thought
that they might be developed has sparked worries about how the secu-
rity of various cryptographic techniques may be in jeopardy. The cautious
approach accelerates QKD research. Numerous QKD techniques [Eke91,
Ben92, Bru98, Ren08, LMC05, GLLP04, SP00, SBPC+09, MQZL05, LCT14,
TLGR12, SARG04, IWY02, IWY03, GRZ+04, SBG+05, WBC+14, LGPRC13,
Lev15, TKI03, Koa04, KP03] have been proposed since the BB84 protocol.
Despite groundbreaking work and offering information-theoretic security
on paper, it is necessary to thoroughly characterize the apparatus, sources,
and/or the channel between the parties. Since the theoretical description is
needed to establish a secure key, these protocols are called device-dependent
(DD) QKD protocols. Any experimental deviation the theoretical descrip-
tion does not account for could allow a malicious eavesdropper to undermine
the protocol’s security.

Realistically, it is often not plausible to completely characterize a device.
The devices could even be prepared by a malicious eavesdropper (Eve).
Furthermore, QKD is also vulnerable to hacking attempts that we will call
"quantum hacking". Quantum hacking refers to attacks that force devices to
behave differently from the model used in the security proof. For example,
the security of many prepare-and-measure protocols (e.g. BB84) is required
to presume that the source’s emitting quantum states are well-characterized.
Ref.[VMH01, GFK+06] proposed the so-called Trojan horse attack where
Eve injects a bright light into the source utilized in the protocol by using
reflectivity. Thus it modifies the emitted signals and gathers additional
information about the modulation of the reflected light. Blinding attack
[Mak09, LWW+10] is another form of quantum hacking. In this attack, Eve
manipulates the detector by shining intense light into it, causing the detector
only to activate if the receiver selects the same basis as Eve. Furthermore,
some side-channels are opened without any active attacks by Eve. Interested
readers can look into [XMZ+20] to see a detailed description of the side-
channels and known attacks.

This calls for a new standard of security that is agnostic to the inter-
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CHAPTER 1. INTRODUCTION

nal working of the devices. In [MY98], the authors introduce a device-
independent (DI) way to certify the security of a cryptographic protocol
where the protocol is independent of the exact internal workings of the
quantum devices required for QKD. Security is established utilizing the
nonlocal nature of input-output correlations. Bell inequalities [BCP+14] are
indispensable for DI security as their violation verifies the quantum nature
of input-output correlations. The secret key length will also depend on the
estimated violation of the Bell inequality.

Therefore, in DIQKD, the selection of Bell inequalities has paramount
importance. The parties typically choose the Bell inequality before the
protocol’s commencement [PAB+09, MPA11, AFDF+18, AFRV19]. How-
ever, [DKB22a, BSS14, NSPS14] proposes a DIQKD scenario in which the
Bell inequality is created using the complete measurement statistics. In
[NSPS14, BSS14], the Bell inequality designed is designed from the measure-
ment statistics in such a way that it leads to the maximal device-independent
secret key rate (DISKR) for that specific setup in the asymptotic scenario. The
authors of [DKB22a] construct a Bell inequality that leads to the maximum
Bell violation for that particular measurement setting of Alice and Bob. The
optimized Bell inequality, tailored to the measurement statistics, and the
corresponding violation, can be used to bound the achievable DISKR by
solving semidefinite optimization problems. In [DKB22b], it is shown that
one can also utilize trained deep learning models to obtain an optimal Bell
inequality, which can then be employed in a DIQKD protocol. Deep learning
networks can also be exploited to directly estimate the guessing probabil-
ity. The introduction of deep learning makes the estimation of the optimal
Bell inequality and guessing probability faster while achieving a very high
degree of accuracy and low statistical error.

Structure of the thesis

This thesis aims to describe our research on Device-independent Quantum
Key Distribution and the selection of Bell inequalities clearly and comprehen-
sively. In order to achieve this, our manuscript displays the logical structure
below.

In Chap. 2, we introduce basic notions of many concepts in quantum
information theory and the required mathematical tools. The concepts of
quantum information theory are essential to comprehend the rest of this
thesis. We provide definitions for various entropies that encapsulate various

3



measures of information. These entropies and their operational meaning
will undoubtedly play a significant role in the latter part of this thesis.

Chap. 3 is devoted to Bell inequalities and nonlocality. First, we thor-
oughly discuss different types of correlation. Then, we discuss the Bell
inequalities and study the most famous Bell inequality, the CHSH inequal-
ity. After that, we present a numerical tool that derives a Bell inequality from
the measurement outcomes of an experiment. Finally, we finish the chapter
with a brief discussion of semi-definite programming and NPA hierarchy, a
numerical tool required to characterize the quantum correlations.

We introduce quantum key distribution (QKD) in Chap. 4. We define the
notions of security in the quantum cryptographic scenario and explain what
attacks an adversary can make. We then describe the steps of a generic QKD
protocol and create a platform for finite key security analysis. Additionally,
we describe the paradigmatic BB84 and Entanglement-based BB84 protocol
and prove its security under the most general circumstances.

The topic of Chap. 5 is Device-independent (DI) QKD. In recent years,
much research has been done into the DI security of quantum cryptog-
raphy systems. We discuss the assumptions made in a DIQKD protocol.
We clarify how a DIQKD protocol’s security relates to Bell inequality vio-
lations. From there, we present the Clauser-Horn-Shimony-Holt (CHSH)
inequality-based DIQKD protocol and provide an analytical expression for
the asymptotic secret key rate. We also present the analytical expression
of the asymptotic secret key rate in a more general Bell scenario pertinent
to this thesis. Additionally, we give a quick overview of the most current,
cutting-edge experimental realizations of DIQKD.

The choice of Bell inequality certainly plays a central role in DIQKD. In
Chap. 6, we introduce a DIQKD scenario in which an optimal Bell inequality
is constructed from the complete measurement statistics rather than fixing
a specific Bell inequality beforehand.

Chap. 7 introduces the machine learning approach to deal with the guess-
ing probability estimation problem. First, we provide a brief overview of
machine learning and a feed-forward neural network. We then use trained
deep learning models to estimate the guessing probability and the associ-
ated optimal Bell inequality from the random bipartite quantum probability
distribution.

We conclude with Chap. 8 and give an outlook for future research based
on our work.

The original publications of our research manuscripts are provided in
the appendices.
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2
Preliminaries

Quantum mechanics is the physical model we use to characterize the quantum-
cryptography protocols in this thesis. We presume the reader is familiar
with the fundamental ideas of quantum mechanics because this thesis does
not provide the opportunity to cover quantum mechanics and other related
topics in detail. We further assume that the reader is conversant with the
fundamentals of statistics, including random variables, expectations, prob-
ability distributions, and linear algebra. However, in this chapter, we will
quickly go through a few of those ideas using the Dirac notation, opera-
tors, quantum measurements, and the postulates of quantum mechanics.
We also briefly explain the density operator formalism, which is helpful
when approaching quantum mechanics from the viewpoint of information
theory. Finally, we also discuss the entropies that characterize information-
processing tasks prevalent in quantum cryptography. This chapter is mostly
inspired from [NC10, Ren08, Tom15, Wil13, Gra21].

2.1 Dirac Notation & Hilbert Spaces

In this thesis, we particularly consider discrete quantum systems with finite
𝑑 ∈ N inherent degrees of freedom.

Definition 2.1 (Hilbert Spaces). Quantum systems are associated with a Hilbert
space. A Hilbert space ℋ is a vector space equipped with a scalar product, denoted
by ⟨·|·⟩, over the field C of complex numbers that is complete with respect to the
norm induced by the scalar product.
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2.2. OPERATORS

The simplest conceivable Hilbert space is that of a single spin. It is
spanned by the two vectors |0⟩ and |1⟩ or |↑⟩ and |↓⟩; i.e. the spin points
up or down. The state of a quantum mechanical system with 𝑑 degrees of
freedom is represented by a 𝑑-dimensional normalized vector |𝜓⟩ of state
space ℋ . The notation |𝜓⟩ was introduced by Dirac in 1939 [Dir39]. This
vector symbol |𝜓⟩ is called a ket. To rigorously define the inner product of
the Hilbert space ℋ , we introduce the dual version of ℋ .

Definition 2.2 (Dual vectors). For a Hilbert space ℋ over the field C, the dual
space ℋ ∗ is the vector space of all linear maps ℋ → C. Elements of the dual space
are denoted by ⟨𝜙 | and are called the dual (or bra) vector.

The action of ⟨𝜙 | ∈ ℋ ∗ on a vector |𝜓⟩ ∈ ℋ can be written as:

⟨𝜙 | : |𝜓⟩ → ⟨𝜙 |𝜓⟩ ∈ C , (2.1)

i.e. they map the state to a scalar entity. This operation also defines the inner
product ⟨𝜙 |𝜓⟩ of the states |𝜓⟩, |𝜙⟩ ∈ ℋ . Two vectors |𝜓⟩, |𝜙⟩ ∈ ℋ is said to
be orthogonal if their inner product ⟨𝜙 |𝜓⟩ = 0. The inner product induces the
norm ∥.∥ on ℋ , via ∥ |𝜓⟩ ∥ :=

√︁
⟨𝜓 |𝜓⟩. We will call a state |𝜓⟩ normalized if

∥ |𝜓⟩ ∥ = 1. This orthogonality and normality lead to orthonormal states.

Definition 2.3 (Orthonormal States). A set of vectors {|𝜓𝑖⟩} is called orthonormal
and is exclusively composed of normalized and mutually orthogonal vectors: if
⟨𝜓𝑖 |𝜓 𝑗⟩ = 𝛿𝑖 𝑗 , where 𝛿𝑖 𝑗 is the Kronecker delta.

2.2 Operators
Definition 2.4 (Linear Operator). A linear operator 𝐿 is a linear map from Hilbert
space ℋ𝐴 to ℋ𝐵 that takes elements of ℋ𝐴, |𝜓⟩ ∈ ℋ𝐴 to ℋ𝐵 : 𝐿|𝜓⟩ ∈ ℋ𝐵. A
linear operator can be represented as a matrix in a pair of orthonormal bases for ℋ𝐴

and ℋ𝐵, {|𝑒𝑖⟩}𝑑𝐴𝑖=1 and {| 𝑓𝑗⟩}𝑑𝐵𝑗=1, respectively, where 𝑑𝐴 and 𝑑𝐵 are the dimensions
of ℋ𝐴 and ℋ𝐵. The matrix representation for 𝐿 is then given by

𝐿 =
∑︂
𝑖 , 𝑗

𝐿𝑖 , 𝑗 | 𝑓𝑗⟩ ⟨𝑒𝑖 | , (2.2)

where 𝐿𝑖 , 𝑗 = ⟨ 𝑓𝑗 |𝐿|𝑒𝑖⟩.

We define ℒ(ℋ𝐴 ,ℋ𝐵) as the set of linear operators from ℋ𝐴 to ℋ𝐵 and
ℒ(ℋ) as the set of linear operators that map from ℋ to ℋ . The adjoint or
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Hermitian conjugate of an operator that maps from ℋ𝐴 to ℋ𝐵 is denoted by
𝐿† and is defined by:

⟨𝜓 |𝐿|𝜙⟩ =
(︁
⟨𝜙 |𝐿† |𝜓⟩

)︁∗ for |𝜙⟩ ∈ ℋ𝐴 , |𝜓⟩ ∈ ℋ𝐵 , (2.3)

where * is the complex conjugate.
An operator 𝐿 ∈ ℒ(ℋ) is hermitian if 𝐿† = 𝐿. A positive semidefinite

operator 𝑀 is a linear operator, that is Hermitian and satisfies

⟨𝜓 |𝑀 |𝜓⟩ ≥ 0 , ∀𝜓 ∈ ℋ . (2.4)

A unitary operator𝑈 is a linear operator, that satisfies

𝑈𝑈† = 𝑈†𝑈 = 1 , (2.5)

where 1 is the identity operator. For an orthonormal basis {|𝑒𝑖⟩}, the identity
operator can be written as 1 =

∑︁
𝑖 |𝑒𝑖⟩⟨𝑒𝑖 |. A unitary transformation also links

any two orthonormal bases {𝑒𝑖}𝑑𝑖=1 and { 𝑓𝑖}𝑑𝑖=1 in the Hilbert space ℋ , i.e.

| 𝑓𝑖⟩ = 𝑈 |𝑒𝑖⟩ .

Two bases are called mutually unbiased if |⟨𝑒𝑖 | 𝑓𝑗⟩|2 = 1
𝑑
, for every 𝑖 and 𝑗.

Projectors are one specific type of linear operator. The projectors are
the operators Π ∈ ℒ(ℋ) that satisfy Π2 = Π. For a set of orthonormal
states {|𝜙𝑖⟩}, projector can be expressed as

∑︁
𝑖

|︁|︁𝜙𝑖⟩︁⟨︁𝜙𝑖 |︁|︁ that is not necessarily
complete, i.e.

∑︁
𝑖

|︁|︁𝜙𝑖⟩︁⟨︁𝜙𝑖 |︁|︁ ≤ 1.

Definition 2.5 (Eigenvalues & Eigenstates). Let 𝐴 ∈ ℒ(ℋ) is a linear operator
on a Hilbert space ℋ . If a scalar 𝑎 ∈ C and |𝑎⟩ ∈ ℋ with |𝑎⟩ ≠ 0 satisfy the
following equation

𝐴 |𝑎⟩ = 𝑎 |𝑎⟩ ,

then we say that 𝑎 is the eigenvalue of 𝐴 and |𝑎⟩ is eigenstate of 𝐴 belonging to the
eigenvalue 𝑎.

The eigenvalues {𝑎𝑖} of an operator 𝐴 ∈ ℒ(ℋ) are the solution of the
following characteristic equation:

det(𝐴 − 𝑎I) = 0 , (2.6)

where det is the determinant function for matrices. For a Hermitian operator
𝐴 ∈ ℒ(ℋ) on a finite 𝑑 dimensional Hilbert spaceℋ , the eigenvalues {𝑎𝑖} are

7



2.2. OPERATORS

real and the eigenstates form an orthonormal basis {|𝑎𝑖⟩𝑑𝑖=1}. The operator
𝐴 can also be represented in spectral decomposition form which reads:

𝐴 =

𝑑∑︂
𝑖=1

𝑎𝑖 |𝑎𝑖⟩⟨𝑎𝑖 | (2.7)

We will now discuss the trace function.

Definition 2.6 (Trace). Given an orthonormal basis {|𝑒𝑖⟩} for a Hilbert space ℋ ,
the trace of a Hermitian operator, 𝐴, is defined as

Tr(𝐴) =
∑︂
𝑖

⟨𝑒𝑖 |𝐴|𝑒𝑖⟩ . (2.8)

The trace is independent of the choice of orthonormal basis, since if the
basis is chosen to be the eigenvectors of 𝐴 then Tr(𝐴) is the sum of the
eigenvalues of 𝐴. We can write 𝐴 in the form of Eq. (2.7). Thus, for any
unitary𝑈 , it holds that

𝑈†𝐴𝑈 =
∑︂
𝑖

𝑎𝑖 | 𝑓𝑖⟩⟨ 𝑓𝑖 | , (2.9)

where | 𝑓𝑖⟩ = 𝑈 |𝑎𝑖⟩. Note that the set of states {|𝑎𝑖⟩} are orthonormal as:

⟨ 𝑓𝑖 | 𝑓𝑗⟩ = ⟨𝑎𝑖 |𝑈†𝑈 |𝑎 𝑗⟩
= ⟨𝑎𝑖 |𝑎 𝑗⟩
= 𝛿𝑖 𝑗 .

Thus, 𝑎𝑖 are the eigenvalues for𝑈†𝐴𝑈 as well as 𝐴. This means that for any
orthonormal basis {|𝑒𝑖⟩}, there exists a unitary 𝑈 such that |𝑒𝑖⟩ = 𝑈 |𝑎𝑖⟩ so
that

Tr(𝐴) =
∑︂
𝑖

⟨𝑒𝑖 |𝐴|𝑒𝑖⟩

=
∑︂
𝑖

⟨𝑎𝑖 |𝑈†𝐴𝑈 |𝑎𝑖⟩

=
∑︂

𝑎𝑖 .

Thus the trace does not depend on the basis {|𝑒𝑖⟩} used to calculate the trace.
The trace is linear such that

Tr(𝛼𝐴 + 𝛽𝐵) = 𝛼 Tr𝐴 + 𝛽 Tr 𝐵 .

8
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Moreover, the trace of a product of operators is invariant under cyclic per-
mutation of the operators, i.e.

Tr(𝐴𝐵𝐶) = Tr(𝐵𝐶𝐴) = Tr(𝐶𝐴𝐵)

for any 𝐴, 𝐵, 𝐶 ∈ ℒ(ℋ). However, the trace is not, in general, invariant
under non-cyclic permutations.

2.3 Density Operator Formalism
A convenient and practical description of quantum states is provided by the
density operator formalism. We call a density operator w.r.t. a fixed basis a
density matrix.

Definition 2.7 (Density operator). Let {|𝜓𝑖⟩} be a set of quantum states and {𝑝𝑖}
a probability distribution for 𝑖 = 1, · · · , 𝑛, i.e.

∑︁𝑛
𝑖=1 𝑝𝑖 = 1 and 𝑝𝑖 ∈ [0, 1] for all 𝑖.

The operator

𝜌 =

𝑛∑︂
𝑖=1

𝑝𝑖 |𝜓𝑖⟩ ⟨𝜓𝑖 | (2.10)

is called a mixed state if 𝑝𝑖 < 1 for all 𝑖. We call 𝜌 a pure state if there exists one
index 𝑖′ for which 𝑝𝑖′ = 1, i.e. 𝜌 = |𝜓⟩⟨𝜓 |.

The matrix representation of 𝜌 is called the density matrix. The set of all
density operators on a Hilbert space ℋ is denoted by 𝒮(ℋ). From Def. 2.7, it
follows that 𝒮(ℋ) is generated by a convex combination of all pure density
operators |𝜓⟩⟨𝜓 |. Moreover, a convex combination of any density operators,
𝜌 =

∑︁
𝑖 𝑝𝑖𝜌𝑖 , is also a density operator and represents a statistical ensemble

{𝑝𝑖 , 𝜌𝑖}, where 𝜌𝑖 may be pure or mixed. Thus a density operator can be
characterized by the following theorem.

Theorem 2.1 (Characterization of density operators). A Hermitian operator 𝜌
is a density operator for some ensemble {𝑝𝑖 , 𝜌𝑖} (i.e. 𝜌 =

∑︁
𝑖 𝑝𝑖𝜌𝑖) if and only if

𝜌 ≥ 0, and Tr(𝜌) = 1.

The criterion which determines whether a state 𝜌 is pure or mixed is
given by its purity, i.e. Tr(𝜌2). A state is pure if Tr(𝜌2) = 1, and mixed if
Tr(𝜌2) < 1. Since density operators provide an alternate formulation for
quantum mechanics, we will state the first postulate of quantum mechanics
in terms of density operators.

9
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Postulate 2.1. Quantum systems associated with a Hilbert space ℋ are known as
the state space. The state of a quantum system can be completely described by the
density operator 𝜌 ∈ 𝒮(ℋ) (i.e. positive operators with trace one on the Hilbert
space 𝐻). The density operator 𝜌 of a quantum system in a statistical ensemble
{𝑝𝑖 , 𝜌𝑖} reads:

∑︁
𝑖 𝑝𝑖𝜌𝑖 .

2.4 The Qubit, Pauli Operators and Bloch Sphere

In many quantum information applications, the fundamental quantum sys-
tem is a two-level system called quantum bit or qubit. Physical realizations
of qubits are, for example, two orthogonal polarizations of a photon, a pho-
ton that can be found in one of two distinct paths or the spin state of spin- 1

2
particles.

The state space of a qubit is a two-dimensional Hilbert space, ℋ2. The
commonly used basis for ℋ2 is the computational basis {|0⟩, |1⟩}. Thus, any
pure qubit state is represented by a superposition of the form:

|𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ with |𝛼 |2 + |𝛽 |2 = 1, 𝛼, 𝛽 ∈ 𝒞 . (2.11)

Pure quantum states that differ by a global phase factor are physically equiv-
alent, so we can consider the parameterization into the spherical coordinates:

|𝜓⟩ = cos 𝜃
2 |0⟩ + 𝑒 𝑖𝜙 sin 𝜃

2 |1⟩ , (2.12)

with 0 ⩽ 𝜃 ⩽ 𝜋 and 0 ⩽ 𝜙 ⩽ 2𝜋. The angles (𝜃, 𝜙) describe a unique
mapping of the pure quantum state |𝜓⟩ with a point on the surface of a three
dimensional sphere, also called Bloch sphere. See Fig. 2.1 for visualization.

Any mixed qubit state is represented by a density operator 𝜌 acting on
ℋ2 and can be expressed as a combination of the identity operator 1 and the
Pauli operators 𝜎𝑥 , 𝜎𝑦 and 𝜎𝑧 :

𝜌 =
1 + �⃗� · �⃗�

2 , �⃗� ∈ R3 :
∥︁∥︁�⃗�∥︁∥︁ ≤ 1 (2.13)

where �⃗� =
(︁
𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧

)︁𝑇 . The matrix representation of the Pauli operators
with respect to the computational basis reads:

𝜎𝑥 =

[︃
0 1
1 0

]︃
, 𝜎𝑦 =

[︃
0 −i
i 0

]︃
, 𝜎𝑧 =

[︃
1 0
0 −1

]︃
(2.14)

10
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Figure 2.1: Representation of a state |𝜓⟩ in a Bloch sphere.

Note that, depending on the context, we also indicate the Pauli operators
as 𝜎𝑥 = 𝜎1 = 𝑋, 𝜎𝑦 = 𝜎2 = 𝑌 and 𝜎𝑧 = 𝜎3 = 𝑍. The Pauli operators are
hermitian, traceless operators with eigenvalues ±1, and satisfy the following
relation:

𝜎𝑖𝜎𝑗 = 𝛿𝑖 , 𝑗1 +
3∑︂
𝑘=1

𝜀𝑖 𝑗𝑘𝜎𝑘 (2.15)

where 𝜀𝑖 𝑗𝑘 is the Levi-Civita symbol, which is equal to +1 (-1) if the triple
(𝑖 , 𝑗 , 𝑘) is a cyclic (anti-cyclic) permutation of (1, 2, 3), and zero otherwise.

The representation of Eq. (2.13) has great utility in many computations.
The vector

∥︁∥︁�⃗�∥︁∥︁ individuates a point inside the Bloch sphere. The purity of
a qubit state can be readily computed as: Tr

[︁
𝜌2]︁ =

(︂
1 +

∥︁∥︁�⃗�∥︁∥︁2
)︂
/2. Thus, the

norm of the vector 𝑟 indicates whether the state is pure or mixed. For pure
state,

∥︁∥︁�⃗�∥︁∥︁ = 1 and it lies on the surface of the Bloch sphere. For a mixed state,∥︁∥︁�⃗�∥︁∥︁ < 1, and it resides in the interior of the Bloch sphere. When
∥︁∥︁�⃗�∥︁∥︁ = 0, the

state is said to be maximally mixed and located at the centre of the Bloch
sphere.

2.5 Quantum Measurement

Some sort of interaction is required to extract information from a physical
system. A measurement describes the interaction of an apparatus with the
quantum system under study. It builds a bridge between quantum states
on one side and classical outcomes on the other. Here in this section, we

11
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describe a quantum measurement [NC10].

Postulate 2.2 (Quantum Measurement). A quantum measurement of a physical
quantity of a system in quantum state𝜌 is described by a set of measurement operators
{𝑀𝑚}, satisfying the completeness relation

∑︁
𝑚 𝑀

†
𝑚𝑀𝑚 = 1. The index 𝑚 refers

to the measurement outcome that may occur in the experiment. The probability of
observing the measurement outcome 𝑚 is given by

Pr(𝑚) = Tr
(︂
𝑀†
𝑚𝑀𝑚𝜌

)︂
, (2.16)

and the state of the system after the measurement is

𝜌𝑚 =
𝑀𝑚𝜌𝑀†

𝑚

Tr
(︁
𝑀†
𝑚𝑀𝑚𝜌

)︁ . (2.17)

Postulate 2.2 provides the most general description of a quantum mea-
surement. There are two special cases of quantum measurements which are
of particular interest in quantum information.

2.5.1 Projective Measurement
An observable is a Hermitian operator on the state space of the observed
system. The projective measurement can be specified by an observable 𝑀
with a spectral decomposition

𝑀 =
∑︂
𝑚

𝑚𝑃𝑚 , (2.18)

where𝑃𝑚 is the projector onto the eigenspace of the observable𝑀with eigen-
value 𝑚. The possible outcomes 𝑚 of the measurement correspond to the
eigenvalues of the observable. Projective measurements can be understood
as a special case of Postulate 2.2. Suppose the measurement operators in Pos-
tulate 2.2, in addition to satisfying the completeness relation

∑︁
𝑚 𝑃

†
𝑚𝑃𝑚 = 𝐼,

also satisfy the conditions that 𝑃𝑚 are orthogonal projectors, i.e. the 𝑃𝑚 are
Hermitian: 𝑃†

𝑚 = 𝑃𝑚 , and 𝑃𝑚𝑃𝑛 = 𝛿𝑚,𝑛𝑃𝑛 . If the projectors are all rank-one
𝑃𝑚 = |𝑚⟩⟨𝑚 |, the measurement is called a von Neumann measurement.
The average values for projective measurement outcomes can be directly
written as:

⟨𝑀⟩ :=
∑︂
𝑚

𝑚 Pr(𝑚) =
∑︂
𝑚

𝑚Tr [𝑃𝑚𝜌] = Tr[𝑀𝜌] . (2.19)

12
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2.5.2 Positive Operator-valued Measurement (POVM)
A positive operator-valued measurement (POVM) is defined by a set of
positive operators {𝐸𝑚}, 𝐸𝑚 ≥ 0 acting on the state space following the com-
pleteness relation:

∑︁
𝑚 𝐸𝑚 = 1. Then the probability of obtaining outcome

𝑚 when measuring the system in state 𝜌 is given by:

Pr(𝑚) = Tr [𝐸𝑚𝜌] . (2.20)

POVMs are a special case of Postulate 2.2. When the measurement operators
are given by 𝑀𝑚 =

√
𝐸𝑚 , which implies 𝑀†

𝑚𝑀𝑚 = 𝐸𝑚 , the Postulate 2.2
and the definition of POVM coincides. Note that POVM measurements also
include projective measurements, i.e. for 𝑀𝑚 = 𝑃𝑚 with 𝑃𝑚𝑃𝑛 = 𝛿𝑚,𝑛𝑃𝑚 we
find 𝐸𝑚 = 𝑃𝑚 .
Finally, we remark that, although projective measurements are particular
cases of POVMs, any POVM measurement on a 𝑑-dimensional Hilbert space
ℋ can be expressed as a projective measurement on a Hilbert space ℋ ′ of
higher dimension 𝑑′, i.e. 𝑑 < 𝑑′. This result is known as the Naimark extension
[DJR05, Per06, Par12].

2.6 Composition of Quantum System, Entangle-
ment and Separability

So far, we only consider a single quantum system. Now, we will discuss the
composite system achieved via the tensor or Kronecker product.

Postulate 2.3 (Composite system). Let ℋ𝑖 be the state space of the 𝑖𝑡ℎ subsystem
for 𝑖 = 1, · · · , 𝑛. Then the state space of the composite system ℋ is given by

ℋ = ℋ1 ⊗ ℋ2 ⊗ · · · ⊗ ℋ𝑛

The Postulate 2.3 allows us to introduce the concept of separability and
entanglement, which plays a vital role in many quantum information proto-
cols. Consider a bipartite scenario where Alice (Bob) prepares the pure state
𝜌𝐴 ∈ 𝒮(ℋ𝐴) (𝜌𝐵 ∈ 𝒮(ℋ𝐵)). The composite system 𝜌𝐴𝐵 ∈ 𝒮(ℋ𝐴 ⊗ ℋ𝐵) will
be called a product state if the global state can be written as

𝜌𝐴𝐵 = 𝜌𝐴 ⊗ 𝜌𝐵 . (2.21)

In terms of quantum state |𝜓𝐴⟩ ∈ ℋ𝐴 belongs to Alice and |𝜓𝐵⟩ ∈ ℋ𝐵 belongs

13



2.6. COMPOSITION OF QUANTUM SYSTEM, ENTANGLEMENT AND SEPARABILITY

to Bob, the composite state |𝜓𝐴𝐵⟩ ∈ ℋ𝐴𝐵 is a product state if the global state
can be written as

|𝜓𝐴𝐵⟩ = |𝜓𝐴⟩ ⊗ |𝜓𝐵⟩ . (2.22)

For brevity, |𝜓𝐴⟩ ⊗ |𝜓𝐵⟩ will be denoted as |𝜓𝐴𝜓𝐵⟩. Such product state can
be prepared independently by Alice and Bob by means of Local Operation
and Classical Communication. This statement does not hold for the pure non-
product state, i.e. they cannot be prepared locally and will show some
degree of correlation when measured. In the more complex case of mixed
states, suppose Alice and Bob locally prepare the state 𝜌𝑖

𝐴
∈ 𝒮(ℋ𝐴) and

𝜌𝑖
𝐵
∈ 𝒮(ℋ𝐵) with some probability 𝑝𝑖 . The state of the bipartite system will

be called a product state if it is a convex combination of the product states,
i.e. if it can be written as:

𝜌 =
∑︂
𝑖

𝑝𝑖𝜌
𝑖
𝐴 ⊗ 𝜌𝑖𝐵 . (2.23)

Definition 2.8 (Separability and Entanglement). A quantum state 𝜌𝐴𝐵 ∈
𝒮(ℋ𝐴 ⊗ℋ𝐵) is called separable if there exists a convex combination of pure product
states

|︁|︁𝜓𝑖
𝐴

⟩︁
⊗

|︁|︁𝜓𝑖
𝐵

⟩︁
, with

|︁|︁𝜓𝑖
𝐴

⟩︁
∈ ℋ𝐴 and

|︁|︁𝜓𝑖
𝐵

⟩︁
∈ ℋ𝐵, such that:

𝜌𝐴𝐵 =
∑︂
𝑖

𝑝𝑖
|︁|︁𝜓𝑖
𝐴 ,𝜓

𝑖
𝐵

⟩︁ ⟨︁
𝜓𝑖
𝐴 ,𝜓

𝑖
𝐵

|︁|︁ . (2.24)

Otherwise, 𝜌𝐴𝐵 is called entangled.

Examples of bipartite qubit entangled states are the Bell states|︁|︁𝜙±⟩︁ =
1√
2
(|00⟩ ± |11⟩) ,|︁|︁𝜓±⟩︁ =

1√
2
(|01⟩ ± |10⟩) .

(2.25)

They form a maximally entangled basis, known as the Bell basis, of four
dimensional Hilbert space of two qubits. A generalization of these Bell states
in the multipartite scenario is represented by Greenberger-Horne-Zeilinger
(GHZ) states [HHHH09].

Theorem 2.2 (Schimdt decomposition). Let |𝜓𝐴𝐵⟩ ∈ ℋ𝐴⊗ℋ𝐵 be the pure state of
a bipartite system. Then there exists an orthonormal basis {|𝛼𝑖⟩}, 𝑖 = {1, · · · , 𝑑𝐴},
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of ℋ𝐴 and an orthonormal basis
{︁|︁|︁𝛽 𝑗⟩︁}︁, 𝑗 = {1, · · · , 𝑑𝐵}, of ℋ𝐵 such that:

|𝜓𝐴𝐵⟩ =
𝑑∑︂
𝑘=1

𝜆𝑘 |𝛼𝑘 , 𝛽𝑘⟩ (2.26)

where𝜆𝑘 are positive real coefficients called Schmidt coefficients and 𝑑 ≤min (𝑑𝐴 , 𝑑𝐵)
is the Schmidt rank.

Proof. See [NC10] for detailed proof. □

The number of non-zero Schmidt coefficients is called the Schmidt rank.
If the Schmidt rank is one, the state |𝜓𝐴𝐵⟩ is separable. A state is entangled
if and only if its Schmidt rank is strictly bigger than 1. Given a state 𝜌𝐴𝐵
of a composite system, a natural question that arises is how the state of the
respective subsystems 𝜌𝐴 and 𝜌𝐵 can be accessed. To answer this question,
we introduce the reduced density operator.

Definition 2.9 (Reduced density operator). Let 𝜌𝐴𝐵 be the state of a bipartite
quantum system composed of two Hilbert spaces ℋ𝐴 and ℋ𝐵. Then the reduced
density operator representing the state on subsystem 𝐴 is given by:

𝜌𝐴 = tr𝐵[𝜌𝐴𝐵] , (2.27)

where tr𝐵 denotes the partial trace on subsystem 𝐵.

For a pure two-qubit state 𝜌AB =
|︁|︁𝜙+⟩︁ ⟨︁

𝜙+|︁|︁, with
|︁|︁𝜙+⟩︁ := 1√

2
(|00⟩ + |11⟩),

the reduced density matrix of system A is given by

𝜌A = tr𝐵[𝜌𝐴𝐵]

=

1∑︂
𝑖=0

(1 ⊗ ⟨𝑖 |𝐵)𝜌AB(1 ⊗ |𝑖⟩𝐵)

=
1
2(|0⟩⟨0| + |1⟩⟨1|)

=
1
21 .

(2.28)

Hence, the partial trace of a pure state can result in a completely mixed
state. This example leads us to a general statement regarding the inverse
transformation. Remarkably, every mixed state can be considered as the
reduced state of a pure entangled state in a larger system. This process is
called purification and is widely used in quantum cryptography.
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Theorem 2.3 (Purification). Let 𝜌𝐴 on ℋ𝐴 be the state of a quantum system
A. Then there exists an auxiliary system 𝐸 with state space ℋ𝐸 and a pure state
|𝜓𝐴𝐸⟩ ∈ ℋ𝐴 ⊗ ℋ𝐸, called a purification of 𝜌𝐴, such that:

Tr𝐸
[︁
|𝜓𝐴𝐸⟩ ⟨𝜓𝐴𝐸 |

]︁
= 𝜌𝐴 (2.29)

Proof. See [NC10] for detailed proof. □

Note that all purifications |𝜓𝐴𝐸⟩ of 𝜌𝐴 are related by unitaries on 𝐸.

2.7 Quantum Channels
Quantum channels (also called quantum operations) describe the general
evolution of a quantum state. The following provides a prescription of the
characterization of such evolution of a quantum state.

Postulate 2.4. The evolution of a closed quantum system is determined by a unitary
transformation 𝑈 . If 𝜌(𝑡1) is the state of a system at time 𝑡1, and 𝜌(𝑡2) is the state
of a system at time 𝑡2, then 𝜌(𝑡1) and 𝜌(𝑡2) follows:

𝜌(𝑡2) = 𝑈𝜌(𝑡1)𝑈† , (2.30)

where 𝑈 is the unitary operator on ℋ following 𝑈𝑈† = 𝑈†𝑈 = 1, with 1 being
the identity operator on ℋ .

The final state of a quantum system 𝜌 after a quantum operation ℰ is
given by ℰ(𝜌). A quantum channel ℰ needs to obey the following axiomatic
properties [NC10]:

• The probability with which the process described by 𝜀 occurs is speci-
fied by Tr(ℰ(𝜌)). Thus, for any state 𝜌, 0 ⩽ Tr(ℰ(𝜌)) ⩽ 1.

• ℰ is a convex linear map over the set of density operators. That trans-
lates to, for a set of probabilities {𝑝𝑖},

ℰ
(︃∑︂

𝑖

𝑝𝑖𝜌𝑖

)︃
=

∑︂
𝑖

𝑝𝑖ℰ(𝜌𝑖) .

• ℰ is a completely positive (CP) map. This means, for every input
state 𝜌, ℰ(𝜌) must be positive. Furthermore, for a composite state
𝜌𝐴𝐵 ∈ 𝒮(ℋ𝐴 ⊗ ℋ𝐵), the operator

(︁
1𝐴 ⊗ ℰ

)︁
(𝜌𝐴𝐵) ∈ 𝒮(ℋ𝐴 ⊗ ℋ𝐵) is also

positive.
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The first property represents the quantum measurement as a quantum op-
eration. The normalized state after the quantum operation is defined as
ℰ(𝜌)/Tr

(︁
ℰ(𝜌)

)︁
. A quantum channel is called trace-preserving if Tr

(︁
ℰ(𝜌)

)︁
=

Tr(𝜌) = 1, and non-trace preserving if Tr
(︁
ℰ(𝜌)

)︁
< 1. The second property

stems from the Postulate 2.1. If a system is in one of state from the ensemble
{𝑝𝑖 , 𝜌𝑖}, after applying the quantum information ℰ, it will be in the ensemble
{𝑝𝑖 , ℰ(𝜌𝑖)}. It specifies that the evolution of 𝜌 is consistent with each sub-
system 𝜌𝑖 . The third property ensures that a quantum channel produces a
valid density operator even when acting on a subsystem of a larger, possibly
entangled, system.
Quantum channels can be presented in an elegant way using Kraus opera-
tors.

Theorem 2.4 (Kraus Theorem). A quantum operationℰ(𝜌), 𝜌 ∈ 𝒮(ℋ), following
all three properties stated above can be represented by linear operators 𝐾𝑖 satisfying∑︂

𝑖

𝐾†
𝑖 𝐾𝑖 ≤ 1 , (2.31)

such that
ℰ(𝜌) =

∑︂
𝑖

𝐾𝑖𝜌𝐾
†
𝑖 . (2.32)

{𝐾𝑖}’s are called the Kraus operators. The number of Kraus operators cannot be
larger than 𝑑2, where 𝑑 is the dimension of ℋ .

The proof of the theorem can be found in [NC10]. Kraus decomposition of
a quantum channel is not unique. However, it provides us with an analytical
expression for a generic quantum channel.

2.7.1 Depolarizing Noise

An important example of a quantum channel is the depolarizing noise chan-
nel. Consider the depolarizing noise channel as ℰ𝑑𝑒𝑝𝑜𝑙 acting on 𝜌 ∈ 𝒮(ℋ).
Then the state after the operation ℰ𝑑𝑒𝑝𝑜𝑙(𝜌) reads:

ℰ𝑑𝑒𝑝𝑜𝑙(𝜌) = (1 − 𝑝)𝜌 + 𝑝

3

3∑︂
𝑖=1

𝜎𝑖𝜌𝜎
†
𝑖 , (2.33)
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with Kraus operators

𝑘0 =
√︁

1 − 𝑝1 ,

𝑘𝑖 =

√︂
𝑝/3𝜎𝑖 for 𝑖 ∈ {1, 2, 3} ,

(2.34)

and 𝑝 ∈ [0, 1] denotes the noise parameter. The resulting state of Eq. (2.33)
can be interpreted as follows: the state 𝜌 is unchanged with probability 1− 𝑝
or is affected by one of the qubit errors with probability 𝑝

3 each. In many
quantum information protocols, applications of ℰ𝑑𝑒𝑝𝑜𝑙 on the qubits are used
to test the robustness of the protocol against noise.

2.8 Entropy

Entropy measures are fundamental tools in classical and quantum informa-
tion. It quantifies the randomness, i.e. it measures how much uncertainty
there is in the state of a physical system from the observer’s perspective.
Here we review some entropy measures used in the remainder of this thesis.

Definition 2.10 (Shannon Entropy). Let {𝑝𝑥} be a probability distribution of a
random variable 𝑋 with possible outcomes {𝑥}. Then the Shannon entropy of 𝑋 (or
of the distribution {𝑝𝑥}) is given by:

𝐻(𝑋) = 𝐻 ({𝑝𝑥}) = −
∑︂
𝑥

𝑝𝑥 log 𝑝𝑥 (2.35)

In the definition (and throughout this thesis), logarithms indicated by
‘log’ are taken to base two, while ‘ln’ indicates a natural logarithm. 𝐻(𝑋)
quantifies how much information we gain, on average, after measuring/learn-
ing the value of𝑋. An alternative view is that𝐻(𝑋)measures the uncertainty
about X before we learn its value.
For a binary-valued random variable𝑋, the Shannon entropy is called binary
entropy and reads:

ℎ(𝑝) := −𝑝 log 𝑝 − (1 − 𝑝) log(1 − 𝑝) . (2.36)

Given two random variables 𝑋 (with possible outcomes {𝑥}) and 𝑌 (with
possible outcomes {𝑦}) jointly distributed according to {𝑝(𝑥, 𝑦)}, the joint
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Shannon entropy of 𝑋 and 𝑌 defined as:

𝐻(𝑋𝑌) =
∑︂
𝑥,𝑦

𝑝(𝑥, 𝑦) log 𝑝(𝑥, 𝑦) , (2.37)

and the conditional entropy reads:

𝐻(𝑋 |𝑌) = 𝐻(𝑋𝑌) − 𝐻(𝑌) . (2.38)

The conditional entropy of 𝑋 given 𝑌 quantifies how uncertain we are, on
average, is about the value of 𝑋, given that we learned the value of 𝑌.
Since the uncertainty on both random variables 𝑋 and 𝑌 is greater than the
uncertainty on 𝑌, the conditional entropy follows 𝐻(𝑋 |𝑌) ≥ 0. Finally, the
mutual information 𝐻(𝑋 : 𝑌) measures the amount of information we gain
on 𝑋 by observing the value of 𝑌.

𝐻(𝑋 : 𝑌) = 𝐻(𝑋) − 𝐻(𝑋 |𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋𝑌) . (2.39)

Shannon’s noiseless coding theorem provides an operational interpretation
of Shannon’s entropy. If a source is emitting a sequence of independent
and identically distributed random variables 𝑋1, 𝑋2, · · · , 𝑋𝑛 according to
a probability distribution 𝑃𝑋 , asymptotically the amount of bits needed
per source to store the data by encoding it in a bitstring without losing
information is given by𝐻(𝑋). If ℓ 𝜀compr(𝑋) is the minimum length (measured
in terms of bits) needed to compress 𝑋 such that 𝑋 can be recovered without
losing information, except for an error probability 𝜀, then the compression
rate

𝑟compr(𝑋) := lim
𝜀→0

lim
𝑛→∞

ℓ 𝜀compr (𝑋1𝑋2 · · ·𝑋𝑛)
𝑛

(2.40)

of the example is equal to 𝐻(𝑋) [KRS09]. While the Shannon entropy mea-
sures the uncertainty associated with a classical probability distribution,
the von Neumann entropy deals with the quantum states described by the
density operators.

Definition 2.11 (von Neumann Entropy). The von Neumann entropy of a quan-
tum state 𝜌 is defined as:

𝐻(𝜌) = −Tr[𝜌 log 𝜌] . (2.41)
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If {𝜆𝑖} are the eigenvalues of 𝜌, then von Neumann entropy can be written as

𝐻(𝜌) = −
∑︂
𝑖

𝜆𝑖 log𝜆𝑖 . (2.42)

Often, the von Neumann entropy of a system 𝐴 of state 𝜌 is denoted as
𝐻(𝐴)𝜌. One can interpret the von Neumann entropy of 𝜌 as the Shannon
entropy of the probability distribution defined by its eigenvalues.
Additionally, von Neumann entropy satisfies the following properties.

• For every state 𝜌 in 𝑑 dimensional Hilbert space, 0 ≤ 𝑆(𝜌) ≤ log2 𝑑.
𝐻(𝜌) = 0 for a pure state and 𝐻(𝜌) = log2 𝑑 if the state is maximally
mixed.

• Additivity: Let ℋ𝐴 and ℋ𝐵 be two Hilbert spaces. Suppose there are
density operators 𝜌 ∈ ℋ𝐴 and 𝜎 ∈ ℋ𝐵. Then additivity of the entropy
implies

𝐻(𝜌 ⊗ 𝜎) = 𝐻(𝜌) + 𝐻(𝜎).

• Subadditivity: Let 𝜌𝐴𝐵 be a bipartite state on tensor product Hilbert
space ℋ𝐴 ⊗ ℋ𝐵. Then subadditivity is described as

𝐻 (𝜌𝐴𝐵) ≤ 𝐻 (𝜌𝐴) + 𝐻 (𝜌𝐵) .

• Concavity: Let {𝑝𝑖} be a probability distribution, i.e. 0 ≤ 𝑝𝑖 ≤ 1 and∑︁
𝑖 𝑝𝑖 = 1. Then the concavity is described as

𝐻 (𝜌) ≥
∑︂
𝑖

𝑝𝑖𝐻 (𝜌𝑖) ,

where 𝜌 =
∑︁
𝑖 𝑝𝑖𝜌𝑖 .

• Strong subadditivity: Let 𝜌𝐴𝐵𝐶 ∈ ℋ𝐴⊗ℋ𝐵⊗ℋ𝐶 , the strong subadditivity
is described as

𝐻(𝜌𝐴𝐵𝐶) + 𝐻(𝜌𝐵) ≤ 𝐻(𝜌𝐴𝐵) + 𝐻(𝜌𝐵𝐶)

2.8.1 Holevo Bound
Now consider two parties, Alice and Eve. Suppose Alice has a random
variable 𝑋 with values {𝑥𝑖} according to a probability distribution {𝑝𝑖}.
Alice then prepares a quantum state, chosen from a set {𝜌𝑖} according to
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{𝑝𝑖}, and gives the state to Eve. Eve’s task is to access the value 𝑥𝑖 of 𝑋. Eve
performs a measurement described by POVM elements

{︁
𝐸𝑦

}︁
on the states

and obtains 𝑌. The amount of accessible information, i.e. the amount of
information that Eve can get about the variable 𝑋, is the maximum value
of the mutual information 𝐻(𝑋 : 𝑌) over all the possible measurements
that Eve can do. For any measurement, her accessible information is upper
bounded by the Holevo quantity 𝜒(𝑋 : 𝑌) [Hol73], i.e.

𝐻(𝑋 : 𝑌) ⩽ 𝜒(𝑋 : 𝑌) := 𝐻(𝜌) −
∑︂
𝑖

𝑝𝑖𝐻 (𝜌𝑖) , (2.43)

where 𝜌 =
∑︁
𝑖 𝑝𝑖𝜌𝑖 .

2.9 Min- and Max-Entropy
Min- and max- entropy was introduced in [Ren08]. It plays a crucial role in
the security of quantum cryptographic protocols.

Definition 2.12 (Min-entropy [Tom15, KRS09]). Let 𝜌𝐴𝐵 be a bipartite density
operator. The min-entropy of 𝐴 conditioned on 𝐵 is defined by

𝐻min(𝐴|𝐵)𝜌 := − log min
[︁
Tr(𝜎𝐵) : 𝜎𝐵 ≥ 0, (𝑖𝑑𝐴 ⊗ 𝜎𝐵) − 𝜌𝐴𝐵 ≥ 0

]︁
. (2.44)

An operational interpretation of the min-entropy, proposed in [KRS09],
suggests the importance of this entropy measure for quantum cryptography.
Consider the classical quantum state

𝜌𝐴𝐸 =
∑︂
𝑎

𝑝(𝑎)|𝑎⟩⟨𝑎 | ⊗ 𝜌𝑎𝐸 , (2.45)

Consider the classical-quantum state where {|𝑎⟩} forms an orthonormal
basis for system 𝐴 and can represent a classical random variable 𝐴 that
assumes value 𝑎 with probability 𝑝(𝑎), and 𝜌𝑎

𝐸
is a general quantum state

on system 𝐸 that may depend on the specific value of 𝑎. The guessing
probability, 𝑝guess(𝐴|𝐸), is the optimal probability with which someone that
has access to system 𝐸 can correctly guess the value of the variable 𝐴 :

𝑝guess(𝐴|𝐸)𝜌 = sup
{𝑀𝑎

𝐸}

∑︂
𝑎

𝑝(𝑎)Tr
(︁
𝑀𝑎
𝐸𝜌

𝑎
𝐸

)︁
, (2.46)

where the supremum is over all possible measurements, described by the set
of POVMs

{︁
𝑀𝑎
𝐸

}︁
on the system 𝐸. It was shown in [KRS09] that, similarly
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to the classical case, the conditional min-entropy 𝐻min(𝐴|𝐸) of a classical
variable 𝐴 is directly related to the guessing probability 𝑝guess(𝐴|𝐸)𝜌:

𝐻min(𝐴|𝐸)𝜌 = − log 𝑝guess (𝐴|𝐸)𝜌 . (2.47)

Definition 2.13 (Max-entropy [Tom15, KRS09]). Let 𝜌𝐴𝐵 be a bipartite density
operator and let 𝜌𝐴𝐵𝐶 be a purification of 𝜌𝐴𝐵. Then max-entropy of 𝐴 conditioned
on 𝐵 of the state 𝜌𝐴𝐵 is also defined as:

𝐻max(𝐴|𝐵)𝜌 = −𝐻min(𝐴|𝐶)𝜌 (2.48)

In general, the relation between min- and max-entropy and von Neumann
entropy of a bipartite density operator 𝜌𝐴𝐵 reads:

𝐻min(𝐴|𝐵) ≤ 𝐻(𝐴|𝐵) ≤ 𝐻max(𝐴|𝐵) . (2.49)

2.10 Smooth Min- and Max-Entropy
In quantum information processing and cryptographic tasks, one must deal
with 𝜖-error probability. Thus, 𝜖-smooth versions of min- and max- en-
tropies are introduced. The smooth entropies of a state 𝜌 are defined as
optimizations over the min- and max-entropies of states �̃� that is close to 𝜌

in the purified distance. Thus, we define the trace distance, and the purified
distance [Tom15, NC10] between two quantum states.

Definition 2.14 (Trace distance [Tom15]). The trace distance between two density
operators 𝜌, 𝜎 ∈ 𝒮(ℋ) is defined as:

𝛿(𝜌, 𝜎) = ∥𝜌 − 𝜎∥Tr =
1
2 ∥𝜌 − 𝜎∥1 , (2.50)

where ∥𝑋∥1 = Tr (|𝑋 |) = Tr
(︂√
𝑋†𝑋

)︂
.

The definition of trace distance can be extended to sub-normalized states
(positive operators with trace smaller or equal to 1). For two sub-normalized
density operators �̂� and �̂�, the generalized trace distance reads:

𝛿 (�̂�, �̂�) = ∥�̂� − �̂�∥Tr =
1
2 ∥�̂� − �̂�∥1 +

1
2 |Tr (�̂� − �̂�)| (2.51)

The trace distance is related to the distinguishability between two states.
The probability of distinguishing between two states 𝜌 and 𝜎 with a single
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measurement is bounded by 1
2(1 + 𝛿(𝜌, 𝜎)).

Definition 2.15 (Purified distance [Tom15]). For two sub-normalized density
operators �̂� and �̂�, the purified distance reads:

𝒟(�̂�, �̂�) :=
√︂

1 − 𝐹(�̂�, �̂�) , (2.52)

where 𝐹 is the generalized fidelity

𝐹(𝜌, 𝜎) :=
(︃
Tr(

√︂√︁
�̂��̂�

√︁
�̂�) +

√︂
(1 − Tr�̂�)(1 − Tr�̂�)

)︃2
. (2.53)

Now, We can define the smooth entropies.

Definition 2.16 (Smoothed min and max-entropy [Tom15, VDTR13]). For a
quantum state 𝜌𝐴𝐵 and 𝜖 ≥ 0, the smooth min-entropy of system 𝐴 conditioned on
𝐵 is defined as

𝐻𝜖
min(𝐴|𝐵) := max

�̃�𝐴𝐵∈ℬ𝜖(𝜌𝐴𝐵)
𝐻min(𝐴|𝐵)�̃�𝐴𝐵 , (2.54)

and, the smooth max-entropy of system 𝐴 conditioned on 𝐵 is defined as

𝐻𝜖
max(𝐴|𝐵) := min

�̃�𝐴𝐵∈ℬ𝜖(𝜌𝐴𝐵)
𝐻max(𝐴|𝐵)�̃�𝐴𝐵 . (2.55)

Sub-normalized operators are also taken into account in the optimization.
ℬ𝜖 is an 𝜖-ball of sub-normalized operators around the state 𝜌𝐴𝐵 defined in
terms of the purified distance, i.e.

ℬ𝜖(𝜌) = {�̃� ≥ 0 : Tr (�̃�) ≤ 1 and 𝒟 (𝜌, �̃�) ≤ 𝜖} (2.56)

Similar to Eq. (2.48), the duality relation also exists for smooth min- and
max- entropies [KRS09, Tom15]. Let 𝜌𝐴𝐵𝐶 be a pure quantum state, then

𝐻𝜖
max(𝐴|𝐵)𝜌 = −𝐻𝜖

min(𝐴|𝐶)𝜌 . (2.57)

The smooth min- and max- entropies satisfy some important properties.
One important property is the data-processing inequality [Tom15], which
reads:

𝐻𝜖
min(𝐴|𝐵)𝜌 ≤ 𝐻𝜖

min (𝐴|𝐵
′)𝜏 , (2.58)

𝐻𝜖
max(𝐴|𝐵)𝜌 ≤ 𝐻𝜖

max (𝐴|𝐵′)𝜏 , (2.59)
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where 𝜏𝐴𝐵′ = 𝐼𝐴 ⊗ ℰ (𝜌𝐴𝐵) and ℰ is a CPTP (𝐵, 𝐵′) channel. The data-
processing inequality states that if we process the quantum side information
𝐵 through a CP trace-preserving map ℰ, we always increase our uncertainty
on 𝐴. Another important property is the asymptotic equipartition property
(AEP) which links the smooth entropies to the Shannon/von Neumann
entropy:

lim
𝜖→0

lim
𝑛→∞

1
𝑛
𝐻𝜖

min(𝐴
𝑛 |𝐵𝑛)𝜌⊗𝑛 = 𝐻(𝐴|𝐵)𝜌 ,

lim
𝜖→0

lim
𝑛→∞

1
𝑛
𝐻𝜖

max (𝐴𝑛 |𝐵𝑛)𝜌⊗𝑛 = 𝐻(𝐴|𝐵)𝜌 .
(2.60)

Here we see that the smooth min- and max-entropies converge to the von
Neumann entropy in the limit of several copies of a quantum state.

Now, we will discuss the operational interpretation of smooth entropies
and their implication in quantum cryptographic schemes. Recall that, for
a random variable 𝑋 and 𝜀 ≥ 0, ℓ 𝜀compr(𝑋) (see Eq. (2.40)) is the minimum
length of encoding of the random variable 𝑋, from which the value of 𝑋 can
be recovered with probability at least 1 − 𝜀 without losing any information.
This quantity is actually equal to the 𝜀-smooth max-entropy of 𝑋

ℓ 𝜀compr(𝑋) = 𝐻𝜀′
max(𝑋) + 𝒪(log 1/𝜀) (2.61)

for some 𝜀′ ∈
[︁
𝜀
2 , 2𝜀

]︁
. This result generalizes Shannon’s noiseless coding

theorem Eq. (2.40) to a scenario where the number of realizations of 𝑋 is
finite. Shannon’s theorem can be recovered as an asymptotic limit of the
Eq. (2.61) for 𝑋 consisting of many independent and identically distributed
pieces 𝑋1, . . . , 𝑋𝑛 , i.e.

𝑟compr(𝑋) = lim
𝜀→0

lim
𝑛→∞

ℓ 𝜀compr (𝑋1 · · ·𝑋𝑛)
𝑛

(2.62)

= lim
𝜀→0

lim
𝑛→∞

1
𝑛
𝐻𝜀

max (𝑋1 · · ·𝑋𝑛) (2.63)

= 𝐻(𝑋) . (2.64)

Here we employ Eq. (2.40) for the first, Eq. (2.61) for the second and asymp-
totic equipartition property of Eq. (2.60) for the last equality.
Consider a cryptographic scenario where two parties, namely Alice and Bob,
want to establish a shared secret key over a noisy channel. In the presence of
noise, Bob has access to the probability distribution 𝑃(𝑋 |𝑌) of the possible
keys 𝑋 held by Alice conditioned on his noisy side information 𝑌. In a
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quantum key distribution (QKD) protocol, Alice and Bob perform an error
correction (EC) protocol. After the EC step, Alice and Bob share the same
secret key with high probability. The result of Eq. (2.61) can be used in this
scenario. During EC, Alice sends ℓ 𝜀compr (𝑋 |𝑌) amount of information to Bob
that allows him to correctly guess her key, with an error probability 𝜀. This
information is equal to ℓ 𝜀compr (𝑋 |𝑌) ≈ 𝐻𝜀′

max(𝑋 |𝑌) [Gra21].
Consider the same cryptographic scenario as above. Suppose that an

eavesdropper, Eve, has access to quantum side information𝐸 correlated with
Alice’s key 𝑋. The goal is to extract a secure key 𝑓 (𝑋). In a cryptographic
context, 𝑓 (𝑋) is distributed uniformly relative to the side information 𝐸 held
by Eve. In QKD protocol, this process is known as privacy amplification. The
maximum number of uniform and independent bits that can be extracted
from 𝑋 is directly given by the smooth min-entropy of 𝑋. Precisely, if
ℓ 𝜀extr(𝑋 |𝐸) is the maximum length of 𝑓 (𝑋), computed from 𝑋 and which is
𝜀-close to a bitstring 𝑍 uniform and independent of 𝐸 [KRS09], then it holds:

ℓ 𝜀extr(𝑋 |𝐸) = 𝐻𝜀′
min(𝑋 |𝐸) + 𝒪(log 1/𝜀) . (2.65)

Both error correction and privacy amplification are fundamental tasks in any
QKD protocol. We will discuss these processes in later chapters and express
the final secret key length in terms of smooth min- and max- entropy.
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3
Bell Inequalities and Nonlocality

Bell’s theorem [Bel64, BB04] states that quantum physics is incompatible
with local hidden-variable (LHV) theories [EPR35]. Via the LHV assump-
tions, Bell derived inequalities consisting of correlator functions bounded
in any LHV theory [Bel64]. A violation of such bounds by any correlations
unequivocally proves their non-classical nature of them. Quantum theory
allows for such correlations and therefore contradicts at least one of the
assumptions of an LHV theory. The merit of Bell inequalities lies in their
ability to identify nonlocal correlations.

This chapter is structured as follows. We start with discussing different
types of correlation in Sec. 3.1. In Sec. 3.2, we discuss Bell inequalities and
review the most famous Bell inequality, the CHSH inequality in Sec. 3.3.
Then we introduce a numerical tool that derives a Bell inequality from the
measurement outcomes of an experiment in Sec. 3.4. Finally, we finish the
chapter by introducing a numerical tool called NPA hierarchy to characterize
the quantum set in Sec. 3.5. We also provide a brief introduction to semi-
definite programming in that context.

3.1 Classical, No-signalling, and Quantum Cor-
relations

In this section, we present the mathematical characterization of different
kinds of correlations. Following [BCP+14], we consider a bipartite setting of
two distant observers, i.e. Alice and Bob. Alice and Bob perform measure-
ments on a shared physical system (e.g. an entangled particle) using the
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measurement device in their possession. Each party selects locally an input
(a measurement setting) that produces an output. Abstractly describing the
circumstance, we can say that Alice and Bob have access to a black box. Each
side chooses the inputs locally, and the box generates an output. This sce-
nario is referred to as a Bell scenario. Suppose, Alice performs measurement

Figure 3.1: Schematic description of a Bell scenario consisting of two parties,
Alice and Bob. A source S repeatedly distributes a state to both parties, which
perform measurements on their share of the global state specified by an input
𝑥 ∈ 𝑋 = {1, 2, · · · , 𝑚} (for Alice) and 𝑦 ∈ 𝑌 ∈ {1, 2, · · · , 𝑚} (for Bob). Each
measurement yields one of 𝑘 different outcomes 𝑎 ∈ 𝐴 = {1, 2, · · · , 𝑘} (for
Alice) and 𝑏 ∈ 𝐵 = {1, 2, · · · , 𝑘} (for Bob). This scenario is denoted as [𝑚, 𝑘]
Bell scenario.

specified by inputs 𝑥 ∈ 𝑋 = {1, · · · , 𝑚} and Bob performs the measurement
denoted by 𝑦 ∈ 𝑌 = {1, · · · , 𝑚}. The measurements produce the outputs
𝑎 ∈ 𝐴 = {1, · · · , 𝑘} (for Alice) and 𝑏 ∈ 𝐵 = {1, · · · , 𝑘} (for Bob), see Fig. 3.1
for visualization. We denote this scenario as [𝑚, 𝑘] Bell scenario. The Bell
setting is completely characterized by the set P := {𝑃(𝑎𝑏 |𝑥𝑦)} ⊂ R𝑚2𝑘2 of all
joint conditional probabilities, which we refer to as a behavior. Thus, the con-
straints are imposed by the conditions of positivity 𝑃(𝑎𝑏 |𝑥𝑦) ≥ 0 ∀𝑎, 𝑏, 𝑥, 𝑦;
and the normalization

∑︁𝑘
𝑎,𝑏=1 𝑃(𝑎𝑏 |𝑥𝑦) = 1 for all 𝑥 and 𝑦. The existence of

a given physical model behind the correlations obtained in a Bell scenario
translates into additional constraints on the behaviors 𝑃(𝑎𝑏 |𝑥𝑦). There are
three main types of correlation that can be distinguished.
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3.1.1 No-signalling Correlations

A first natural limitation on behaviors P are the no-signalling constraints
[Cir80, PR94]. They are expressed as

𝑘∑︂
𝑏=1

𝑃(𝑎𝑏 |𝑥𝑦) = 𝑃(𝑎 |𝑥) ∀𝑎, 𝑥, 𝑦 and

𝑘∑︂
𝑎=1

𝑃(𝑎𝑏 |𝑥𝑦) = 𝑃(𝑏 |𝑦) ∀𝑏, 𝑥, 𝑦 . (3.1)

These relations state that the marginal probability distribution of Alice is
independent of Bob’s input 𝑦 and vice versa. In particular, if Alice and Bob
are space-like separated, the no-signalling constraints in Eq. (3.1) guarantee
that Alice and Bob cannot use their devices for instantaneous signalling, pre-
venting a direct conflict with relativity. The set of all correlations satisfying
the no-signalling constraints forms a convex polytope 𝒩𝒮.

3.1.2 Classical Correlation

We say that a behavior P (={𝑃(𝑎𝑏 |𝑥𝑦)}) is local if one can write it in the
following form:

𝑃(𝑎, 𝑏 |𝑥, 𝑦) =
∫
Λ

𝑞(𝜆)𝑃(𝑎 |𝑥,𝜆)𝑃(𝑏 |𝑦,𝜆)𝑑𝜆 . (3.2)

where 𝜆 are the hidden variables that completely describe the system under
consideration. It takes value in a space Λ and is distributed according to the
probability density 𝑞(𝜆). 𝑃(𝑎 |𝑥,𝜆) (𝑃(𝑏 |𝑦,𝜆)) are local probability response
functions for Alice (Bob). Operationally 𝜆 can be conceived as the shared
randomness where Alice (Bob) will select an outcome 𝑎 (𝑏) based on her
(his) measurement setting 𝑥 (𝑦) and 𝜆.

The set of all probabilities with local/classical origin, i.e. the probabilities
that can be reproduced within a classical or locally real theory, forms a
convex polytope [Pit89, Fin82, Pit91]. We denote this polytope as 𝒫. The
polytope 𝒫 can be characterized by its extremal points v𝑝 ∈ R𝑚2𝑘2 , where
𝑝 = {1, 2, · · · , 𝑘2𝑚}, so-called vertices. The vertices v𝑝 have entries from
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the set {0,1} and correspond to the deterministic strategies1. Every classical
correlation P𝑐𝑙 ∈ 𝒫 can be written as a convex combination of all the vertices
of the extremal points, i.e.

P𝑐𝑙 =
𝑘2𝑚∑︂
𝑝=1

𝜆𝑝v𝑝 (3.3)

where 𝜆𝑥 ≥ 0 and
∑︁𝑘2𝑚

𝑝=1 𝜆𝑝 = 1. This subsequently implies that any correla-
tion that cannot be written in the form of Eq. (3.3) is nonlocal.

3.1.3 Quantum Correlation
Quantum correlations are the set of correlations that is achievable in quan-
tum mechanics. A behavior is quantum if there exist a quantum state
|Ψ𝐴𝐵⟩ ∈ ℋ𝐴 ⊗ ℋ𝐵 of arbitrary dimension and measurement operators
(POVM elements) {𝑀𝑎 |𝑥} and {𝑀𝑏 |𝑦} which describes the performed mea-
surement such that

𝑃(𝑎𝑏 |𝑥𝑦) = ⟨Ψ𝐴𝐵 |𝑀𝑎 |𝑥 ⊗ 𝑀𝑏 |𝑦 |Ψ𝐴𝐵⟩ . (3.4)

The set of all quantum behaviors forms a convex set𝒬, but it is not a polytope.
The boundaries of𝒬 are still unknown in spite of analytical efforts to describe
it [PPK+09, FSA+13].

The sets 𝒫, 𝒬 and 𝒩𝒮 are closed, bounded and convex, and obey the
following relation:

𝒫 ⊊ 𝒬 ⊊ 𝒩𝒮 . (3.5)

The local and no-signalling sets are polytopes. Thus, these can be character-

1In a deterministic strategy, the local response functions 𝑝(𝑎 |𝑥,𝜆) and 𝑝(𝑏 |𝑦,𝜆) only
take values from the set {0, 1}. In a deterministic model, the hidden variable 𝜆 specifies the
assignment of one of the potential outputs to each input. Let 𝜆 = (𝑎1 , . . . , 𝑎𝑚 ; 𝑏1 , . . . , 𝑏𝑚)
indicates an assignment of outputs correspond to their input; 𝑎𝑥 and 𝑏𝑦 denote the output
for each of the inputs 𝑥 = 1, . . . , 𝑚 and 𝑦 = 1, . . . , 𝑚. Then the corresponding deterministic
behavior/strategy P𝜆

det ∈ 𝒫 is denoted as:

𝑃𝜆
det(𝑎𝑏 |𝑥𝑦) =

{︄
1 if 𝑎 = 𝑎𝑥 and 𝑏 = 𝑏𝑦
0 otherwise.

For the [𝑚, 𝑘] Bell scenario, there are 𝑘2𝑚 possible output assignments. Therefore, 𝑘2𝑚 such
local deterministic strategies can exist; thus 𝜆 = {1, · · · , 𝑘2𝑚}.
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ized by the convex hull of a finite number of extremal points, the vertices.
However, the characterization of the quantum set is not so straightforward.
To characterize the quantum set, one needs to use the NPA hierarchy, which
we will discuss later in this chapter.

3.2 Bell Inequalities

In 1964, John Stewart Bell published an article on the EPR paradox [Bel64]
where he gave a precise mathematical characterization of local realism. It
enabled him to obtain the following result:

Theorem 3.1. No physical theory of local hidden variables can ever reproduce all
the predictions of quantum mechanics.

To demonstrate his conclusion, Bell derived an inequality that must be
fulfilled by all local correlations (as defined in Eq. (3.2)); but some quantum
correlations do not comply with this inequality. Namely, he presented a
hyperplane that separates a quantum behavior P𝑄 ∈ 𝒬 from the entire set
of local behaviors 𝒫. Since then, many such inequalities were derived and
termed ’Bell inequalities’. The boundaries (or facets) of the classical polytope
𝒫 sharply divide the classical and the quantum set and therefore represent
a Bell inequality. Bell inequalities that correspond to these facets of 𝒫 are
called the facet Bell inequalities [BCP+14]. There are also other types of Bell
inequalities that only act as a hyperplane, but not a facet of 𝒫. See Fig. 3.2
for visualization. The generic form of a Bell inequality is an inequality that
is linear in P [BCP+14]: ∑︂

𝑎,𝑏,𝑥,𝑦

𝐶(𝑎𝑏 |𝑥𝑦)𝑃(𝑎𝑏 |𝑥𝑦) ≤ ℐ𝐿 . (3.6)

We denote a Bell inequality as 𝐵 in this thesis. A Bell inequality 𝐵 is
specified by the coefficients 𝐶(𝑎𝑏 |𝑥𝑦) ∈ R (see Eq. (3.6)). Here, ℐ𝐿 is
the classical bound which is the maximal value over all local correlations.
We denote

∑︁
𝑎,𝑏,𝑥,𝑦 𝐶(𝑎𝑏 |𝑥𝑦)𝑃(𝑎𝑏 |𝑥𝑦) as the Bell value 𝐵[P], i.e. 𝐵[P] =∑︁

𝑎,𝑏,𝑥,𝑦 𝐶(𝑎𝑏 |𝑥𝑦)𝑃(𝑎𝑏 |𝑥𝑦). A behavior with classical origin (i.e. {𝑃(𝑎𝑏 |𝑥𝑦)} ∈
𝒫 or cannot be decomposed as Eq. (3.3)) cannot violate any of these Bell in-
equalities by design. Thus the violation of a Bell inequality certifies the
presence of nonlocality.
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Figure 3.2: Illustration of the sets of boxes. 𝒫, 𝒬, and 𝒩𝒮 denote the sets
of classical, quantum, and no-signalling correlations, respectively. All sets
are convex, 𝒫 and 𝒩𝒮 are polytopes, and the relation 𝒫 ⊊ 𝒬 ⊊ 𝒩𝒮 holds.
Bell inequalities can be used to separate classical correlations from quantum
ones. The solid line represents a facet Bell inequality. In contrast, the dotted
line represents a Bell inequality which is only a hyperplane, not a facet of 𝒫.

3.3 CHSH Inequality

Here, we discuss the most simple yet nontrivial Bell inequality, CHSH in-
equality [CHSH69]. It was introduced by John Clauser, Michael Horne, Abner
Shimony and Richard Holt in 1969 and is abbreviated as CHSH inequality.
It has significant importance in the cryptographic scenario. Most device-
independent quantum cryptographic protocols depend on a Bell inequality
violation. Therefore, these protocols are tailored to or directly depend on
the CHSH inequality since it is the most simple bipartite Bell scenario. For
this reason, we are paying close attention to this Bell setup.
In this case, the Bell scenario is defined as follows: Alice and Bob have two

measurement settings, and each measurement setting has two measurement
outcomes. Suppose Alice has the input settings 𝑥 ∈ 𝑋 = {0, 1}. Similarly,
Bob’s input settings are denoted as 𝑦 ∈ 𝑌 = {0, 1}. The output is denoted as
𝑎 ∈ 𝐴 = {0, 1} for Alice, and 𝑏 ∈ 𝐵 = {0, 1} Bob. Then, the CHSH inequality
reads:

𝒮CHSH := ⟨𝐴0𝐵0⟩ + ⟨𝐴0𝐵1⟩ + ⟨𝐴1𝐵0⟩ − ⟨𝐴1𝐵1⟩ ⩽ 2 , (3.7)

where
⟨𝐴𝑥𝐵𝑦⟩ = 𝑝(𝑎 = 𝑏 |𝑥𝑦) − 𝑝(𝑎 ≠ 𝑏 |𝑥𝑦) (3.8)
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Figure 3.3: Illustration of the CHSH inequality as a hyperplane and its
maximum attainable values for classical, quantum and no-signalling set.

represents the correlation of the outputs 𝑎 of Alice and 𝑏 of Bob when they
perform the measurement labeled by 𝑥 and 𝑦, respectively. In any LHV
model, the CHSH value 𝒮CHSH cannot exceed the value of 2. However, it
is not the case for correlations with a quantum origin, as we show in the
following. If Alice and Bob share the Bell state |𝜙+⟩ (see Eq. (2.25)) on which
they perform the following measurement settings:

𝐴0 = 𝜎𝑧 , 𝐴1 = 𝜎𝑥 ,

𝐵0 =
𝜎𝑧 + 𝜎𝑥√

2
, 𝐵1 =

𝜎𝑧 − 𝜎𝑥√
2

,
(3.9)

they obtain 𝒮CHSH = 2
√

2. It violates the classical bound and thus demon-
strates the nonlocality of quantum correlations. This value is the highest
achievable by a quantum behavior proven by Tsirelson [Cir80]. Here we
present the following theorem:

Theorem 3.2 (Tsirelson bound [Cir80]). Let {𝐴𝑥} and {𝐵𝑦}with 𝑥 ∈ {0, 1, · · · , 𝑚𝑎−
1} and 𝑦 ∈ {0, 1, · · · , 𝑚𝑏 − 1} be two sets of observables whose eigenvalues lie in
[−1, 1]. Then for any state |𝜓⟩ ∈ ℋ𝐴 ⊗ ℋ𝐵, there exist real normalized vectors
v0, · · · , v𝑚𝑎−1,w0, · · · ,w𝑚𝑏−1 ∈ R𝑚𝑎+𝑚𝑏 , such that for all 𝑥 ∈ {0, . . . , 𝑚𝑎 − 1}
and 𝑦 ∈ {0, . . . , 𝑚𝑏 − 1}2 the expectation value can be written as:⟨︁

𝐴𝑥𝐵𝑦
⟩︁
|𝜓⟩ = ⟨𝜓 |𝐴𝑥 ⊗ 𝐵𝑦 |𝜓⟩ = 𝒗𝑇𝑥𝒘𝑦 . (3.10)

Tsirelson proved the maximum quantum value for the CHSH inequality
using this theorem. We validate this using the method described in [EKB13].

2Note that, in our explanation of Bell scenarios in Sec. 3.1, we have used 𝑚𝑎 = 𝑚𝑏 = 𝑚.
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For CHSH scenario, 𝑚𝑎 = 𝑚𝑏 = 2. For this scenario, there exist unit vectors
𝒗0, 𝒗1,𝒘0,𝒘1 ∈ R4, such that

𝒮CHSH =

1∑︂
𝑥,𝑦=0

(−1)𝑥·𝑦 ⟨𝐴𝑥𝐵𝑦⟩|𝜓⟩

=

1∑︂
𝑥,𝑦=0

(−1)𝑥·𝑦𝒗𝑇𝑥𝒘𝑦

= 𝑽𝑇𝐺𝑾 ,

(3.11)

where 𝑽 = (𝒗0, 𝒗1)𝑇 , 𝑾 = (𝒘0,𝒘1)𝑇 , and 𝐺 =

(︃
1 1
1 −1

)︃
⊗ 14. 14 repre-

sents an identity matrix of dimension 4. An upper bound on Eq. (3.11) is
established by

𝑽𝑇𝐺𝑾 ≤ |𝑽𝑇𝐺𝑾 |
≤ |𝑽 |∥𝐺∥2 |𝑾 |
=
√

2
√

2
√

2 = 2
√

2 .

(3.12)

In Eq. (3.12), we introduce the Spectral norm ∥ · ∥2 which is a matrix norm
induced by the Euclidean vector norm. Since 𝐺 is symmetric, ∥𝐺∥2 is given
by its largest absolute eigenvalue, which is

√
2. We have used the following

relations: 𝑽 · (𝐺𝑾 ) ≤ |𝑽 | |𝐺𝑾 | and 𝐺𝑾 ≤ ∥𝐺∥2𝑾 to achieve the second
inequality of Eq. (3.12). The Euclidean norm of 𝑽 , |𝑽 | =

√︁
|𝒗1 |2 + |𝒗2 |2 =

√
2,

and 𝑾 , |𝑾 | =
√︁
|𝒘1 |2 + |𝒘2 |2 =

√
2 (because 𝒗1, 𝒗2, 𝒘1, 𝒘2 are unit vectors)

are used to achieve the equality of the second last step. The bound in
Eq. (3.12) is tight, as we already discussed the measurement settings and
the quantum state (see Eq. (3.9)) that can achieve the Bell value 2

√
2. For

no-signalling behavior, the Popescu-Rohrlich (PR) box [PR94] is given by:

𝑃PR(𝑎𝑏 |𝑥𝑦) = 1
2𝛿𝑎⊕𝑏,𝑥·𝑦 . (3.13)

𝑃PR(𝑎𝑏 |𝑥𝑦) achieves the maximal value𝒮CHSH = 4 for no-signalling behavior.
See Fig. 3.3 for a pictorial representation.
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3.4 Designing Bell Inequalities from Probability
Distribution

Bell inequalities are a versatile tool used in many quantum information-
theoretic tasks, such as nonlocality and entanglement detection, quantum
cryptography, etc. However, one cannot use one Bell inequality for every
task. Moreover, Bell inequality suited for one may not be optimal for an-
other. Thus, designing Bell inequalities appropriate for that specific task is
crucial. In this section, we discuss how we construct a Bell inequality from a
given probability distribution P that leads to the maximal violation for that
particular P.

Consider the [𝑚, 𝑘] Bell scenario (see Sec. 3.1 for details) where the par-

Figure 3.4: Schematic representation of a Bell inequality, specified by the
vector h defining a hyperplane, separates all vertices 𝑣𝑝 from the observed
probability distribution P (showed by the black point situated outside the
classical polytope 𝒫).

ties receive the measurement data that obeys the probability distribution P
which reads:

P := {𝑃(𝑎𝑏 |𝑥𝑦)} , (3.14)

where 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌, 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. Recall that the Bell inequalities
correspond to hyperplanes in the probability space that separate the classical
correlation polytope𝒫 from the set of all genuine quantum correlations𝒬\𝒫.
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Such hyperplanes are specified by a normal vector h ∈ R𝑚2𝑘2 . If P ∈ 𝒬 \ 𝒫,
there exists at least one hyperplane h that separates all the vertices v𝑝 of 𝒫
from the probability distribution P. If there exists no such hyperplane, then
the observed measurement statistics P ∉ 𝒫.

To obtain the hyperplane vector h (corresponding to the Bell inequality)
that leads to maximal Bell violation for the measurement data P, we need to
formulate the following optimization problem [DKB22a]:

max
h,𝑐

h𝑇P − 𝑐

subject to h𝑇v𝑝 ≤ 𝑐 ∀ 𝑝 ∈ {1, · · · , 𝑘2𝑚}
− 1 ≤ ℎ𝑖 ≤ 1 ∀ 𝑖 ∈ {1, · · · , 𝑚2𝑘2}

(3.15)

with the classical bound 𝑐. The additional constraint imposed on the ele-
ments of ℎ𝑖 of the hyperplane vector keeps the maximization bounded. The
hyperplane found in this manner has the form

h = {ℎ(𝑎𝑏 |𝑥𝑦)} , (3.16)

where 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌, 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. Thus, the Bell inequality found by the
optimization and specified by the hyperplane vector h is given as∑︂

𝑎,𝑏,𝑥,𝑦

ℎ(𝑎𝑏 |𝑥𝑦)𝑃(𝑎𝑏 |𝑥𝑦) ≤ 𝑐 . (3.17)

The Bell inequality, represented by Eq. (3.17), leads to the maximal Bell viola-
tion for P; see Fig. 3.4 for visualization. Note that, if P ∈ 𝒫, the optimization
problem of Eq. (3.15) is infeasible and no Bell inequality can be found.

This kind of construction of Bell inequality from the measurement data,
designed to attain the maximal Bell violation for that specific measurement
statistics, has significant importance. The Bell inequality derived in this
manner can be used to bound the device-independent detection efficiency
[SKB17]. This method can also be used to obtain the bounds on secret key
rates in device-independent QKD scenarios [DKB22a], which we will discuss
in detail in the latter part of this thesis.

3.5 NPA Hierarchy

Recall that we indicated in Sec. 3.1.3 that it is challenging to fully describe the
set of quantum correlations. Here, we illustrate a powerful and incredibly
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flexible versatile technique named the Navascués-Pironio-Acín (NPA) hier-
archy [NPA07, NPA08] that can be used to characterize the set of quantum
correlations 𝒬.

3.5.1 Introduction to Semidefinite Programming

First, we will quickly recap the basics of semidefinite programming (SDP)
[VB96]. We will follow the formulation of [NPA08, BBV04]. SDP is a subset
of convex optimization [BBV04], i.e. the task of optimizing convex functions
over convex sets. Many of the problems arising in quantum information
theory are of this kind: entanglement distillation [Rai01], distinguishing
separable and entangled states [DPS02], and the unambiguous discrimina-
tion of non-orthogonal quantum states [Eld03], to name just a few examples,
can be aided by SDP.
In SDPs, a linear objective function is optimized over convex constraint func-
tions. It can be formulated as

maximize: Tr(𝐹0𝑍) ,

subject to: Tr(𝐹𝑖𝑍) = 𝑐𝑖 , ∀𝑖 ∈ {1, · · · , 𝑠}
𝑍 ≥ 0 .

(3.18)

This is known as primal problem. The problem variable is the Hermitian
matrix 𝑍 ∈ 𝒞𝑟×𝑟 and the problem parameters or problem data are the Her-
mitian matrices 𝐹0, 𝐹𝑖 ∈ 𝒞𝑟×𝑟 and scalars 𝑐𝑖 . The variable 𝑍 is primal feasible
if Tr(𝐹𝑖𝑍) = 𝑐𝑖 ∀ 𝑖 ∈ {1, · · · , 𝑠} and 𝑍 ≥ 0. It is strictly primal feasible if 𝑍 > 0
instead of 𝑍 ≥ 0.
Every primal problem has it’s dual. The dual program is a minimization of a
linear function of x = (𝑥1, · · · , 𝑥𝑠)𝑇 subject to the restrictions imposed by an
affine combination of 𝐹𝑖 ,

minimize: c𝑇x ,

subject to: 𝐹(x) =
𝑠∑︂
𝑖=1

𝑥𝑖𝐹𝑖 − 𝐹0 ≥ 0 .

(3.19)

The variable x is dual feasible if 𝐹(x) ≥ 0 and strictly dual feasible if 𝐹(x) > 0.
The key property of the dual program is that it yields useful bounds on the
optimal value for the primal solution and vice versa. To see this, define the

37



3.5. NPA HIERARCHY

optimal primal solution

𝑝∗ := sup{Tr(𝐹0𝑍) |𝑍 ≥ 0, Tr(𝐹𝑖𝑍) = 𝑐𝑖 ∀ 𝑖 ∈ {1, · · · , 𝑠}} , (3.20)

and the optimal dual solution

𝑑∗ := inf{c𝑇x | 𝐹(x) ≥ 0} . (3.21)

Let us take a dual feasible point 𝑥 and a primal feasible point 𝑍. Then

c𝑇x − Tr(𝐹0𝑍) =
𝑠∑︂
𝑖=1

Tr(𝐹𝑖𝑍)𝑥𝑖 − Tr(𝐹0𝑍)

= Tr(𝐹(𝑥)𝑍) ≥ 0 . (3.22)

This proves that the optimal primal value 𝑝∗ and the optimal dual value
𝑑∗ satisfy 𝑝∗ ≤ 𝑑∗. This is called weak duality. For strong duality, it holds
𝑝∗ = 𝑑∗. The existence of a strictly feasible primal point 𝑍 or dual point x is
a sufficient condition for this strong duality [VB96], which is also known as
Slater’s theorem.
SDPs can be efficiently solved using with standard ready-to-use tools like
CVX [GB14], Mosek [ApS19], Sedumi [Stu99], SDPT3 [TTT99], Yalmip [Löf04]
etc. Now we will discuss the Navascués-Pironio-Acín Hierarchy, also known
as NPA hierarchy.

3.5.2 Navascués-Pironio-Acín Hierarchy

Ref. [NPA07, NPA08] address the following problem: Is a behavior P of
quantum origin? In other words, do there exist local measurement operators
and a quantum state that can reproduce the behavior P? Since the dimensions
of the quantum systems are unbounded, full characterization is difficult.
Therefore, a series of weaker conditions are considered rather than just
searching for a generic quantum realization for a given behavior. A behavior
is considered to be of quantum origin if it meets the requirements at all levels.
On the other hand, if a prerequisite is not met, we can discount a quantum
origin for the behavior.

Let |𝜓⟩ ∈ ℋ be a pure state and
{︁
𝐸𝑎 |𝑥

}︁
,
{︁
𝐸𝑏 |𝑦

}︁
be sets of projective

measurement operators belongs to Alice and Bob, respectively. Let us recall
that a quantum behavior is a set of conditional probabilities P := {𝑃(𝑎𝑏 |𝑥𝑦)}
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such that
𝑃(𝑎𝑏 |𝑥𝑦) =

⟨︁
𝜓

|︁|︁𝐸𝑎 |𝑥 ⊗ 𝐸𝑏 |𝑦 |︁|︁𝜓⟩︁
,

for all 𝑎, 𝑏, 𝑥, 𝑦.

Let’s define a set of observables plus the identity

ℰ = 1 ∪ {𝐸𝑎 |𝑥} ∪ {𝐸𝑏 |𝑦} . (3.23)

Let 𝒪 := {𝑂1, · · · , 𝑂𝑛} be a set of 𝑛 operators 𝑂𝑖 . Each 𝑂𝑖 is a linear
combination of products of the projectors in the set ℰ. Consider linear
equations of the form ∑︂

𝑖 𝑗

(𝐹𝑘)𝑖 𝑗 ⟨𝜓 |𝑂†
𝑖𝑂 𝑗 |𝜓⟩ = 𝑔𝑘(P) , (3.24)

where 𝑘 = {1, · · · , 𝑠}, and 𝑔𝑘(P) are linear functions of the probabilities,

𝑔𝑘(P) = (𝑔𝑘)0 +
∑︂
𝑎,𝑏,𝑥,𝑦

(𝑔𝑘)𝑎𝑏𝑥𝑦𝑃(𝑎𝑏 |𝑥𝑦) . (3.25)

Let 𝒮𝑞 be the set that contains operators which are nontrivial products of
the projectors 𝐸𝑎 |𝑥 and 𝐸𝑏 |𝑦 . The sets of 𝒮𝑞 are defined in the following way:

𝒮0 = {1}
𝒮1 = 𝒮0 ∪ {𝐸𝑎 |𝑥} ∪ {𝐸𝑏 |𝑦}
𝒮2 = 𝒮1 ∪ {𝐸𝑎 |𝑥𝐸𝑎′ |𝑥} ∪ {𝐸𝑎 |𝑥𝐸𝑏 |𝑦} ∪ {𝐸𝑏 |𝑦𝐸𝑏′ |𝑦}
𝒮3 = 𝒮2 ∪ · · ·

(3.26)

Thus, the set 𝒮𝑞 is the set of all products of observables up to length 𝑞. From
the construction itself, it is evident that

𝒮0 ⊆ 𝒮1 ⊆ 𝒮2 ⊆ 𝒮3 ⊆ · · · (3.27)

and every operator𝑂𝑖 ∈ 𝒪 can be written as a linear combination of operators
from 𝒮𝑞 for sufficiently large 𝑞.

Navascués, Pironio and Acín [NPA07, NPA08] proved that it is a necessary
and sufficient condition for an unspecified behavior P to have a quantum
realization if there exists a certificate Γ such that∑︂

𝑖 𝑗

(𝐹𝑘)𝑖 𝑗Γ𝑖 𝑗 = 𝑔𝑘(P) (3.28)
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where 𝑘 = {1, · · · , 𝑠} and Γ is a complex, hermitian positive semidefinite
matrix. The coefficients Γ𝑖 𝑗 is defined as:

Γ𝑖 𝑗 :=
⟨︁
𝜓

|︁|︁𝑂†
𝑖𝑂 𝑗

|︁|︁𝜓⟩︁
, (3.29)

which form the moment matrix Γ ∈ C𝑛×𝑛 associated to the set 𝒪.

The existence of such a certificate can be verified by the solution of the
following SDP [NPA08]:

maximize 𝜆

subject to Tr (𝐹𝑘Γ) = 𝑔𝑘(P), ∀𝑘 ∈ {1, . . . , 𝑠},
Γ − 𝜆1 ⩾ 0 .

(3.30)

A positive solution 𝜆 ⩾ 0 of this SDP implies the existence of positive
semidefinite matrix Γ ⪰ 𝜆1. On the other hand, a negative solution 𝜆 < 0
implies that the given behavior P has a non-quantum origin.

The Eq. (3.30) represents the primal problem of the SDP. As mentioned in
Sec. 3.5.1, one can solve Eq. (3.30) both in their primal and dual forms. The
dual of Eq. (3.30) is:

minimize
∑︂
𝑘

𝑦𝑘 𝑔𝑘(𝑃)

subject to 𝐹(𝑦) =
∑︂
𝑘

𝑦𝑘𝐹𝑘 ⪰ 0,∑︂
𝑘

𝑦𝑘 tr(𝐹𝑘) = 1 .

(3.31)

A certificate of order 𝑞, denoted as Γ𝑞 , is associated to the set 𝒮𝑞 . Recall
the set of operators 𝒮𝑞 follow Eq. (3.27). Thus, the family of certificate
Γ1, Γ2,· · · ,Γ𝑞 ,· · · represents a hierarchy of conditions a quantum probability
must follow. Each condition in the hierarchy is stricter than the previous
one. Let {P𝑞} define a set of behaviors for which a certificate of order 𝑞
exists. {P𝑞} defines an associated subspace 𝒬𝑞 of the probability space that
contains 𝒬. The existence of family of certificates Γ1, Γ2,· · · ,Γ𝑞 ,· · · will give
rise to the sequence

𝒬1 ⊇ 𝒬2 ⊇ · · · ⊇ 𝒬𝑞 ⊇ · · · (3.32)

of outer approximations of the quantum set 𝒬. Certificates of higher or-
der provide a more accurate approximation of the quantum set 𝒬 and
lim𝑞→∞ 𝒬𝑞 = 𝒬. Thus any non-quantum behavior P will fail at some level
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𝑞 < ∞.
Now, we can state the central result of [NPA08].

Theorem 3.3. Let P be a behavior such that there exists a certificate Γ𝑞 of order 𝑞
for all 𝑞 ⩾ 1. Then P belongs to 𝒬.

Proof. See Ref. [NPA08] for the proof. Also, see Fig. 3.5 for visualization. □

Figure 3.5: Geometrical interpretation of a quantum set. 𝑄 is the set of
all quantum behaviors. 𝑄𝑛 denotes the set of all behaviors for which a
certificate of order 𝑛 exists. Certificates of higher order provide a more
accurate approximation of the quantum set.

Note that the numerical resources to check whether the probability dis-
tribution P satisfies the criteria increase with the hierarchy because the size
of Γ𝑞 increases with the hierarchy (due to the addition of constraints). For-
tunately, the objective function of Eq. (3.30) (or Eq. (3.31)) often converges
(attains a high level of numerical precision) at a low hierarchy level (typically
2). Usually, the computation can be terminated once the desired level of nu-
merical precision is reached. The quantumness of a certain behavior is then
validated within this accuracy. As a constraint for an optimization task, one
can use the publicly downloadable MATLAB-toolbox QETLAB [Joh16] and
Python module ncpol2sdpa [Wit15] to test the fulfillment of the hierarchy to
some given level.

The NPA hierarchy has a wide range of applications. For example, it
enables us to establish an upper bound on the Tsirelon bound [Cir80] of any
given Bell inequality. It also helps us to bound the guessing probability of a
device-independent quantum key distribution protocol [MPA11], which we
will discuss in Chap. 5.
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4
General Concepts in Quantum Key

Distribution

The security of classical cryptographic protocols relies on the assumption
that the adversary has limited computational resources. Thus the security
is based on certain mathematical problems which are ’hard’ to solve. One
such example is the RSA encryption [RSA78], which is based on the fact that
prime factorization of large numbers cannot be done in polynomial time. In
contrast, the security of quantum cryptography relies on intrinsic principles
of nature, as described by quantum mechanics. Therefore, assuming that
quantum mechanics is correct, the security offered by quantum cryptogra-
phy is everlasting and secure against retroactive attacks.

Quantum key distribution (QKD) is a cryptographic task in which two (or
more) honest parties, Alice and Bob, wish to establish a shared secret string
of bits unknown to any third party, including a potential eavesdropper, Eve.
The security of a QKD protocol uses several ideas from quantum physics,
information theory, and computer science. Here we deconstruct the notion of
security for QKD into its parts and elaborate on the steps of the protocol. We
adopted the concepts of this chapter from [SBPC+09, Ren08, SR08a, SR08b,
Gra21]. First, we will discuss the types of attack an eavesdropper can perform
on QKD protocols in Sec. 4.1. Then, we precisely define security in Sec. 4.2.
In Sec. 4.3, we discuss the quantum and classical post-processing steps used
in QKD protocols. We will show how these results can be used to help
reduce the security definition to a different kind of problem. Afterwards,
we discuss the BB84 protocol (in Sec. 4.4) and the entanglement-based BB84
protocol (in Sec. 4.5) in detail, as it represents the origin of (bipartite) QKD.
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Then we conclude the chapter by calculating the asymptotic secret key rate
for the BB84 protocol in Sec. 4.6.

4.1 Eve’s Attack

In a bipartite cryptographic scenario, the involved parties, Alice and Bob,
aim to establish a secret key for secure communication. An adversary, Eve,
is a third party who can eavesdrop on the public communication between
the parties. Additionally, Eve may interfere with the quantum channels and
explore correlations with the established key between Alice and Bob. Here
we discuss what Eve can or cannot do since the security of a QKD protocol can
be proven under these circumstances. Three different classes of attacks for
Eve are considered in the literature [SBPC+09]: individual attacks, collective
attacks, and coherent attacks. The first two attack strategies pose some
restrictions to Eve, while the third one is the most general attack allowed by
quantum mechanics. When facing the task of proving security for a QKD
protocol, a first attempt may be made to prove security against individual
and collective attacks before proving the security under coherent attacks.

• Individual attacks: These attacks are the least powerful attacks for
Eve. The eavesdropper can only attack each round of the protocol
individually. In this case, she is assumed to have no quantum memory,
so her best strategy is to measure her quantum side information at each
round.

• Collective attacks: It assumes that Eve performs the same attack in
each round of the protocol; i.e. for different rounds, quantum side
information of Eve is identically and independently distributed (IID)
for different rounds. Different from individual attacks, Eve has a quan-
tum memory. Therefore, she can store her quantum side information
at each round and use it to carry out a global operation at the end of
the protocol.

• Coherent attacks: It is the most general type of attack. There are no
assumptions on the capabilities of the eavesdropper, except that the
laws of quantum mechanics bound her. Eve is allowed to perform
global operations on her quantum side information. In this case, the
states distributed to the parties in every round may have arbitrary
correlations with previous and future rounds.
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4.2 Security Definitions
Before we describe how to prove security, it is essential to define what we
mean by security. QKD’s goal is to ensure that Alice and Bob share a key that
no eavesdropper has any information about. This definition is too strong as
we can only achieve approximate security, which is adequate for practical
purposes. For this purpose, we need to define some security parameters
[Ren08, AFRV19, MvDR+19]. The security of quantum key distribution
can be split into two conditions: correctness and secrecy. The definition
of correctness is straightforwardly motivated since we want to ensure that
Alice’s and Bob’s keys are almost always the same. We just require that the
probability of their keys being different is low. To construct this definition,
we assume Alice’s and Bob’s keys at the end of the protocol as 𝐾𝐴 and 𝐾𝐵,
respectively. Then we define the correctness of the QKD protocol as the
following:

Definition 4.1 (Correctness). A QKD protocol is 𝜖𝑐𝑜𝑟𝑟-correct if the final key 𝐾𝐴
of Alice differs from the final key 𝐾𝐵 of Bob with probability at most 𝜖𝑐𝑜𝑟𝑟 , i.e.

Pr(𝐾𝐴 ≠ 𝐾𝐵) ≤ 𝜖𝑐𝑜𝑟𝑟 . (4.1)

The other aspect of the security of a QKD protocol is secrecy. Secrecy for
QKD is the notion that the eavesdropper, Eve, does not have any information
about Alice’s key. Secrecy is defined as the distance between the shared state
of Alice and Eve in the real protocol and the ideal protocol.

Definition 4.2 (Secrecy). For any 𝜖𝑠𝑒𝑐 ≥ 0, a QKD protocol is 𝜖𝑠𝑒𝑐-secret w.r.t
the adversary 𝐸 if the joint state of Alice’s key and Eve’s side information satisfies:

Pr(Ω) · 1
2
∥︁∥︁𝜌𝐾𝐴𝐸𝑇 |Ω − 𝜏𝐾𝐴 ⊗ 𝜌𝐸𝑇 |Ω

∥︁∥︁
1 ≤ 𝜖𝑠𝑒𝑐 , (4.2)

where 𝜌𝐾𝐴𝐸𝑇 |Ω is the state that describes the correlation between Alice’s final secret
key 𝐾𝐴 and the total information available to Eve 𝐸𝑇 given that the protocol did not
abort, while 𝜏𝐾𝐴 is the maximally mixed state on 𝐾𝐴. Here Pr(Ω) is the probability
of not aborting the protocol.

The definition of secrecy can be operationally interpreted as follows. Let
𝜌𝐾𝐴𝐸𝑇 |Ω be the final state of the real QKD protocol and 𝜏𝐾𝐴 ⊗𝜌𝐸𝑇 |Ω be the final
state of the ideal protocol, which acts exactly like the real protocol except
that it outputs a perfectly secret key for Alice, i.e. uniformly distributed
and independent of Eve’s system. Then, the real protocol is 𝜖𝑠𝑒𝑐-secure if
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a distinguisher, who has access to all the inputs and outputs of the real
and ideal protocols (including Eve’s system), cannot distinguish the two
protocols except for a probability at most 𝜖𝑠𝑒𝑐 [PR22].

The secrecy of Alice’s key 𝐾𝐴 alone does not guarantee that even Bob’s
key 𝐾𝐵 is secret unless we combine it with a statement on the correctness of
the protocol. Therefore we define the security of a QKD protocol as follows.

Definition 4.3 (Security). If a protocol is 𝜖𝑐𝑜𝑟𝑟-correct and 𝜖𝑠𝑒𝑐-secret, then it is
𝜖𝑠
𝑄𝐾𝐷

-correct and secret for any 𝜖𝑠
𝑄𝐾𝐷

≥ 𝜖𝑐𝑜𝑟𝑟 + 𝜖𝑠𝑒𝑐 .

Lastly, another necessary condition of QKD is completeness or robustness.
Completeness states that there should exist an honest implementation for
which the probability of aborting the protocol is minuscule (𝜖𝑐

𝑄𝐾𝐷
). Math-

ematically, it can be expressed as Pr(Ω) ≥ 1 − 𝜖𝑐
𝑄𝐾𝐷

, where Pr(Ω) is the
probability of not aborting the protocol.

Now that we state all the security definitions, we will define the secret
key rate of the QKD protocol.

Definition 4.4 (Secret key rate). Secret key rate 𝑟 is the ratio

𝑟 =
𝑙

𝑛
, (4.3)

where 𝑙 is the length of the secret key produced by a 𝜖-secure QKD protocol and 𝑛 is
the total number of uses of the quantum channel.

The above rate is evaluated in bits/round. Additionally, the time required
to perform one round (or use of the quantum channel) can also be taken into
account to present the secret key rate in bits/s.
The goal of the security analysis of a QKD protocol is to derive the secret key
rate as a function of these security parameters (Def. 4.1, Def. 4.2, Def. 4.3,
Def. 4.4) that Alice and Bob can estimate during the execution of the protocol.
Now we will discuss the structure of a general QKD protocol.

4.3 General QKD Protocol
Almost all QKD protocols follow the same general structure. We will focus
on bipartite QKD, where two parties, Alice and Bob, aim to share a secret
random string.
First, the protocol has a quantum stage where quantum states are prepared
and distributed. Then the parties perform local measurements. After that,
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the classical stages follow. The classical stage, usually called classical post-
processing, is generally divided into three parts, i.e. parameter estimation,
information reconciliation (also called error correction), and privacy amplifi-
cation. These steps are performed on measurement outcomes of the parties.
The parameter estimation step is used to estimate some global properties of
the shared string, which is crucial for calculating the secret key rate. Alice
and Bob performed the information reconciliation step to correct the errors
between their strings, which may have been caused by an eavesdropper or
noise in the channel and devices they used. In privacy amplification, Alice
and Bob ensure that any residual knowledge an eavesdropper has gained is
removed. Alice and Bob need to communicate classically for the classical
post-processing, and they need to know that an eavesdropper does not in-
terfere with this communication. Hence, they use an authenticated classical
channel.

The communication between Alice and Bob can happen in two ways.
The first way, called direct reconciliation, is if Alice only sends classical
information about her string to Bob, and Bob does not tell Alice anything
about his string. If the roles of Alice and Bob are reversed so that Bob
only sends classical information about his string to Alice, then this is called
reverse reconciliation. Direct and reverse reconciliation are one-way classical
post-processing. Even though the communication is one-way, the other
party, such as Bob, in direct reconciliation, may need to communicate some
auxiliary information to Alice, such as whether they should abort or continue
the protocol (see below for more information on aborting). They can also
implement post-processing by using two-way communication, where Alice
and Bob send information to each other about their strings. Typically one-
way communication is considered since it is usually easier to analyze and
sufficient to perform the post-processing. Throughout this thesis, we will
assume that direct reconciliation is being performed. Now we will discuss
all the general steps in detail.

4.3.1 Preparation, Distribution and Measurement
It is the quantum stage of the QKD protocol. In this step, a source distributes
the quantum state to Alice and Bob. Alternatively, Alice could prepare the
quantum state and send it to Bob. This step is repeated 𝑛 times.

Alice and Bob perform local measurements once they receive the quan-
tum state in every round of the protocol. Alice and Bob generally use one
of the two different sets of measurement settings. Alice and Bob choose one
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set of measurement settings that are more frequently employed. These mea-
surement rounds are called the key generation (KG) rounds. The outcomes of
KG rounds will constitute the final secret key between the parties. The other
set of measurements are used for test rounds, also referred to as parameter
estimation (PE) rounds. The outcomes of PE rounds will be used to estimate
some relevant parameters of the protocol. The parties use a pre-shared key
to determine whether a round is a KG round or a PE round. As an alterna-
tive, the parties can employ a sifting phase to select rounds that include the
same measurement setting [TL17].

The local measurements are specified by the inputs 𝑥𝑖 and 𝑦𝑖 , respectively,
for the 𝑖th round of the protocol once they receive the quantum state. The
local measurements produce classical outcomes. Alice and Bob record the
outcomes 𝑎𝑖 and 𝑏𝑖 , respectively. After 𝑛 rounds of measurement, Alice and
Bob hold the input bit strings 𝑋𝑛 and 𝑌𝑛 and the output bit strings 𝐴𝑛 and
𝐵𝑛 , respectively, which are the collections of the input and output of their
measurement.

Now we will discuss the classical steps of a QKD protocol in reverse
chronological order starting with privacy amplification and then information
reconciliation and parameter estimation.

4.3.2 Privacy Amplification
The last step of classical post-processing is privacy amplification. In this
step, Alice and Bob want to turn their equal string of bits, which may be
partially known to an eavesdropper, into a shorter, completely secure string
of bits. In order to do that, they are going to make use of a 2-universal family
of hash functions.
A hash function 𝑓 : {0, 1}𝑛 → {0, 1}ℓ is a function that maps a longer string
of bits into a shorter string, i.e. ℓ ≤ 𝑛. We will be interested in particular
families of hash functions that satisfy a property called 2-universality.

Definition 4.5 (2-universal hash function). Consider a family hash function
ℱ = { 𝑓 : {0, 1}𝑛 → {0, 1}ℓ

}︁
. ℱ will be called 2-universal if

Pr 𝑓 ∈ℱ
[︁
𝑓 (𝑥) = 𝑓 (𝑥′)

]︁
=

1
2ℓ
, (4.4)

for every two strings 𝑥, 𝑥′ ∈ {0, 1}𝑛 with 𝑥 ≠ 𝑥′ and 𝑓 is randomly chosen from
ℱ . There always exist a 2-universal family of hash functions [CW79] for ℓ ≤ 𝑛.

Now, we will state the Leftover Hashing Lemma [RW05, TSSR11, TLGR12,
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MvDR+19]. The Leftover Hashing Lemma guarantees that the resulting key
of Alice after the application of the hash function, i.e. after privacy amplifi-
cation, is almost uncorrelated from Eve’s side information. In particular, the
Leftover Hashing Lemma provides an upper bound on the distance between
the real state 𝜌𝐾𝐴𝐹𝐸 and the ideal state 𝜏𝐾𝐴⊗𝜌𝐹𝐸, which depends on the length
of the final key and Eve’s uncertainty about Alice’s bit-string before privacy
amplification.

Theorem 4.1 (Leftover Hashing Lemma). Let 𝜌𝐴𝑛𝐸 be a cq-state, where the
classical register 𝐴𝑛 stores an 𝑛-bit string, and let ℱ be a 2-universal family of hash
functions, from {0, 1}𝑛 to {0, 1}ℓ , that maps 𝐴𝑛 into 𝐾𝐴, then∥︁∥︁∥︁𝜌𝐾𝐴𝐹𝐸−𝜏𝐾𝐴⊗𝜌𝐹𝐸∥︁∥︁∥︁tr

≤ 1
22−

1
2(𝐻min(𝐴𝑛 |𝐸)𝜌−ℓ) , (4.5)

where 𝐹 is a classical register that stores the hash function 𝑓 (see Def. 4.5) .

Proof. See [Ren08, TSSR11, Tom15] for proof and more details. □

In general, the smooth min-entropy can be much higher than the min-
entropy. Thus, instead of min-entropy, we reframe the leftover hashing
lemma in terms of smooth min-entropy. However, we have to pay a linear
term in the security parameter for this relaxation.

Theorem 4.2 (Leftover Hashing Lemma with smooth min-entropy). Let 𝜌𝐴𝑛𝐸
be a classical quantum state. Let ℋ be a 2-universal family of hash functions, from
{0, 1}𝑛 to {0, 1}𝑙 , that maps the classical 𝑛-bit string 𝐴𝑛 into 𝐾𝐴. Then

∥𝜌𝐾𝐴𝐹𝐸 − 𝜏𝐾𝐴 ⊗ 𝜌𝐹𝐸∥tr ≤ 2−
1
2 (𝐻𝜖

min(𝐴
𝑛 |𝐸)𝜌−𝑙) + 2𝜖 . (4.6)

Proof. See [TSSR11, Tom15, TL17] for the proof and more detail. □

The Leftover hashing lemma provides a tool to bound the distance of the
state of the protocol after privacy amplification to the ideal state. Thus we
can write

Pr(Ω) ·
∥︁∥︁𝜌𝐾𝐴𝐸𝑇 |Ω − 𝜏𝐾𝐴 ⊗ 𝜌𝐸𝑇 |Ω

∥︁∥︁
tr

= ∥𝜌𝐾𝐴𝐸𝑇∧Ω − 𝜏𝐾𝐴 ⊗ 𝜌𝐹𝐸𝑇∧Ω∥tr

≤ 1
22−

1
2(𝐻𝜖

min(𝐴
𝑛 |𝐸𝑇 )𝜌∧Ω−ℓ) + 2𝜖

(4.7)

where 𝜌𝐾𝐴𝐸𝑇∧Ω = Pr(Ω) · 𝜌𝐾𝐴𝐸𝑇 |Ω is a subnormalized state. Note that, by
choosing

ℓ ≤ 𝐻𝜖
min (𝐴

𝑛 | 𝐸𝑇)𝜌 − 2 log
(︃

1
2𝜖𝑃𝐴

)︃
(4.8)
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we achieve a 𝜖𝑠𝑒𝑐-secret key with 𝜖𝑠𝑒𝑐 = 𝜖𝑃𝐴+2𝜖 (see Def. 4.2). Here we have
used, 𝐻𝜖

min (𝐴𝑛 | 𝐸𝑇)𝜌∧Ω ≥ 𝐻𝜖
min (𝐴𝑛 | 𝐸𝑇)𝜌 [TL17]. This is to deal with the

fact that usually, one can estimate the smooth min-entropy of the normalized
state rather than that of the subnormalized state conditioned on not aborting.

4.3.3 Information Reconciliation
In the previous section, we have seen that the key length is determined by
the smooth entropy of Alice’s string of raw bits conditioned on the informa-
tion available to the eavesdropper using the leftover hashing Lemma (see
Theorem 4.2). However, we have to make sure that the protocol is correct.
Alice and Bob try to correct the errors between their strings, which may
have been caused by an eavesdropper or noise in the channel and devices
they used. They want to communicate a minimal amount of relevant infor-
mation to each other over the classically authenticated channel so that they
can correct any errors. This step is often called the Error Correction (EC)
step. We will use the names Information Reconciliation and Error Correction
interchangeably.

Consider the following scenario at this point in the protocol. Alice has a
bitstring 𝐴𝑛 and Bob has a bitstring 𝐵𝑛 that may be different from 𝐴𝑛 , while
Eve has a quantum state 𝜌𝐸 that may have correlations with Alice and Bob’s
information. Alice wants to send some function of her key to Bob so that
Bob can use this information and 𝐵𝑛 to reconstruct 𝐴𝑛 . To do so, the parties
perform an EC procedure so that Bob can compute a guess �̂�𝑛 of Alice’s
bitstring 𝐴𝑛 . This error correction process reveals some information over
the public channel.

Note that Bob does not have access to Alice’s system, so neither Alice nor
Bob know if the error correction succeeded or not. We can use two-universal
hash functions for this checking procedure. The checking procedure will be
done in several steps such as

• Alice (uniformly at random) chooses a two-universal hash function
from a family of such functions and computes a hash 𝑓EC (𝐴𝑛) of length
⌈log

(︁ 1
𝜖𝐸𝐶

)︁
⌉. Alice then sends the hash function 𝑓EC and the hash values

(evaluation of the function) 𝑓EC (𝐴𝑛) to Bob over the public channel.

• Bob uses the function 𝑓EC and apply in his key to compute 𝑓EC(�̂�
𝑛).

• If the hash values are equal, i.e. 𝑓EC (𝐴𝑛) = 𝑓EC(�̂�
𝑛), then with high

probability, Alice’s and Bob’s keys are the same. Otherwise, they will

50



CHAPTER 4. GENERAL CONCEPTS IN QUANTUM KEY DISTRIBUTION

abort the protocol.

Due to the definition of the families of hash functions (Def. 4.5), it is clear that
the QKD protocol is 𝜖EC-correct. The defining feature of a two-universal hash
function is the probability that two outputs of length ⌈log

(︁ 1
𝜖𝐸𝐶

)︁
⌉ coincide,

given that the inputs are different, is small, namely: 2−⌈log
(︁

1
𝜖𝐸𝐶

)︁
⌉ . In formulas,

we have that:

Pr
[︂
𝑓EC (𝐴𝑛) = 𝑓EC

(︂
�̂�
𝑛
)︂
, 𝐴𝑛 ≠ �̂�

𝑛
]︂

≤ Pr
[︂
𝑓EC (𝐴𝑛) = 𝑓EC

(︂
�̂�
𝑛
)︂
| 𝐴𝑛 ≠ �̂�

𝑛
]︂

≤ 2−⌈log(1/𝜖EC)⌉

≤ 𝜖EC . (4.9)

For security, we need that the keys that are put through the hash function
in privacy amplification are correct. If the error-corrected keys after the
error correction step are the same (which happens with at least 1 − 𝜖EC
probability), then their hashes are guaranteed to be the same. This implies
that the protocol is 𝜖EC even after privacy amplification:

Pr [𝐾𝐴 ≠ 𝐾𝐵]

= Pr
[︂
𝐾𝐴 ≠ 𝐾𝐵 , 𝑓EC(𝐴𝑛) = 𝑓EC(�̂�

𝑛)
]︂

≤ Pr
[︂
𝐴𝑛 ≠ �̂�

𝑛
, 𝑓EC(𝐴𝑛) = 𝑓EC(�̂�

𝑛)
]︂

≤ 𝜖EC . (4.10)

This is how the protocol guarantees 𝜖EC correctness.

It is also important to know how much information has been leaked to Eve
during the error correcting code. Typically, all of the bits of communication
sent from Alice to Bob in the error correction protocol are considered to be
leaked bits of information to Eve. The amount of communication will depend
on the particular error correcting code used. Let𝑂𝐸𝐶 denotes all the classical
communication in the error correction step. It includes the communication
for the error correction, the hash function 𝑓𝐸𝐶 , and the hashed values of
Alice’s key, which are communicated via a public channel. Note that the
total information of Eve 𝐸𝑇 in Eq. (4.8) includes the classical communication
𝑂𝐸𝐶 and the side information of Eve 𝐸. To remove the dependence on the
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information exchanged by Alice and Bob during error correction [TLGR12]

𝐻𝜖
min (𝐴

𝑛 | 𝐸𝑂𝐸𝐶)𝜌 ≥ 𝐻𝜖
min (𝐴

𝑛 | 𝐸)𝜌 − leakEC , (4.11)

where leak𝐸𝐶 is the amount of bits communicated by Alice and Bob during
information reconciliation. One can also looks into [RW05, Ren08, SR08a,
SR08b, RR12, TMMPE14] for more detail.

The minimum leakage of a one-way information reconciliation protocol
can be bounded using max-entropy following [RW05, MvDR+19]

leakEC ≤ 𝐻
𝜖′EC

2
max (𝐴𝑛 | 𝐵𝑛) + log

(︃
8
𝜖′EC

+ 2
2 − 𝜖′EC

)︃
+ log

(︃
1
𝜖EC

)︃
. (4.12)

Now, the Asymptotic equipartition property [Tom15] reads:

Theorem 4.3 (Asymptotic equipartition property [TCR09]). Let 𝜌 = 𝜌⊗𝑛
𝐴𝐸

be
an IID state. Then for 𝑛 ≥ 8

5 log 2
𝜖2

𝐻𝜖
min(𝐴

𝑛 |𝐸𝑛)𝜌⊗𝑛
𝐴𝐸

> 𝑛𝐻(𝐴|𝐸)𝜌𝐴𝐸 −
√
𝑛𝛿(𝜖, 𝜒) ,

and similarly

𝐻𝜖
max(𝐴𝑛 |𝐸𝑛)𝜌⊗𝑛

𝐴𝐸
< 𝑛𝐻(𝐴|𝐸)𝜌𝐴𝐸 +

√
𝑛𝛿(𝜖, 𝜒) ,

where 𝛿(𝜖, 𝜒) = 4 log(𝜒)
√︂

log 2
𝜖2 and 𝜒 =

√︁
2−𝐻𝑚𝑖𝑛(𝐴|𝐸)𝜌𝐴𝐸 +

√︁
2𝐻𝑚𝑎𝑥(𝐴|𝐸)𝜌𝐴𝐸 + 1.

Using Theorem 4.3, the min-entropy of Eq. (4.11) and the max entropy of
Eq. (4.12) can be converted to 𝑛 single round von Neumann entropy under
the assumption of collective attacks. For coherent attacks, one can use the
Post-selection technique [CKR09], uncertainty principle [TR11] and entropy
accumulation theorem [DFR20].

Thus by combining Eq. (4.8), Eq. (4.11), Eq. (4.12) and by using Theorem
4.3, one obtains the following asymptotic secret key rate for a generic QKD
protocol:

𝑟∞ = lim
𝑛→∞

𝑙

𝑛
= 𝐻(𝐴|𝐸)𝜌 − 𝐻(𝐴|𝐵)𝜌 .

4.3.4 Parameter Estimation
The first step of classical post-processing is parameter estimation. Parameter
estimation can depend on the model of the protocol. Depending on the
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protocol, the parties need to estimate different parameters to gain statistical
knowledge about the output strings of their respective measurements.

In this step, the parties will use a small sample of the strings to estimate
a global property of those strings so that they can bound the 𝐻(𝐴|𝐸)𝜌 and
𝐻(𝐴|𝐵)𝜌, discussed in the previous section. These bounds are generally sta-
tistical inequalities that state that the statistical property of the sample must
be close to the statistical property of the entire set if a random subset of data
is known. In terms of sample size, the proximity is exponential.

Example 1: One example of parameter estimation is the Bell violation es-
timation which is an important step in device-independent QKD protocols
(for detailed discussion, see Chap. 5 and Chap. 6) which is then used to
bound the von Neumann entropy. Consider 𝐵 (specified by the coefficients
{ℎ(𝑎𝑏 |𝑥𝑦)}) is the Bell inequality the parties decided to use in the DIQKD
protocol, and 𝐵[P] is the Bell value corresponding to the probability distri-
bution P. In this scenario, the Bell inequality reads:∑︂

𝑎,𝑏,𝑥,𝑦

ℎ(𝑎𝑏 |𝑥𝑦)𝑃(𝑎𝑏 |𝑥𝑦) ≤ 𝑐 , (4.13)

with the Bell value 𝐵[P] = ∑︁
𝑎,𝑏,𝑥,𝑦 ℎ(𝑎𝑏 |𝑥𝑦)𝑃(𝑎𝑏 |𝑥𝑦). However, in an exper-

iment, the parties do not have access to probabilities but frequencies. To
carry out the Bell value estimation from the frequencies, Alice and Bob pub-
licly announce their measurement settings and outcomes of the parameter
estimation round’s data (see Sec. 4.3.1). They will calculate the Bell value
𝐵[P̂] using the frequencies P̂, where P̂ = {�̂�(𝑎𝑏 |𝑥𝑦)}. �̂�(𝑎𝑏 |𝑥𝑦) is defined as:

�̂�(𝑎𝑏 |𝑥𝑦) = 𝑁(𝑎, 𝑏, 𝑥, 𝑦)
𝑁(𝑥, 𝑦) ,

where 𝑁(𝑎, 𝑏, 𝑥, 𝑦) is the number of occurrences of the input-output pair.
𝑁(𝑥, 𝑦) is the number of instances when Alice chooses measurement 𝑥 ∈ 𝑋
and Bob chooses measurement 𝑦 ∈ 𝑌. The Bell value 𝐵[P̂] is a function of
the joint frequencies as

𝐵[P̂] =
∑︂

𝑎∈𝐴,𝑏∈𝐵,𝑥∈𝑋,𝑦∈𝑌
ℎ(𝑎𝑏 |𝑥𝑦)�̂�(𝑎𝑏 |𝑥𝑦) . (4.14)

To estimate the deviation of 𝐵[P̂] (the Bell value obtained by the frequencies)
from the real Bell value 𝐵[P], Alice and Bob use Hoeffding’s inequality
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[Hoe63, Hoe94].

Theorem 4.4. Let𝑋1, 𝑋2, · · · , 𝑋𝑛 be independent random variables strictly bounded
by the intervals [𝑎𝑖 , 𝑏𝑖], i.e. 𝑎𝑖 ≤ 𝑋𝑖 ≤ 𝑏𝑖 . We define

�̄� =
1
𝑛
(𝑋1 + 𝑋2 + · · · + 𝑋𝑛) .

Then, Hoeffding’s inequality reads

Pr
(︁
�̄� − 𝐸[�̄�] ≥ 𝑡

)︁
≤ exp

{︃
− 2𝑛2𝑡2∑︁𝑛

𝑖=1(𝑏𝑖 − 𝑎𝑖)2

}︃
.

Let 𝑐𝑖 := 𝑏𝑖 − 𝑎𝑖 and 𝑐𝑖 ≤ 𝐶 ∀ 𝑖. Then, Hoeffding’s inequality reads

Pr
(︁
�̄� − 𝐸[�̄�] ≥ 𝑡

)︁
≤ exp

{︃
−2𝑛2𝑡2

𝑛𝐶2

}︃
= exp

{︃
−2𝑛𝑡2

𝐶2

}︃
.

Let 𝜒(𝑒) be an indicator function for a particular event 𝑒, i.e. 𝜒(𝑒) = 1 if
the event 𝑒 is observed, 𝜒(𝑒) = 0 otherwise. We consider a random variable

�̂�𝑖 =
∑︂

𝑎∈𝐴,𝑏∈𝐵,𝑥∈𝑋,𝑦∈𝑌
ℎ(𝑎𝑏 |𝑥𝑦)

𝜒(𝑎𝑖 = 𝑎, 𝑏𝑖 = 𝑏, 𝑥𝑖 = 𝑥, 𝑦𝑖 = 𝑦)
�̂�(𝑥𝑖 = 𝑥, 𝑦𝑖 = 𝑦) ,

where, �̂�(𝑥𝑖 = 𝑥, 𝑦𝑖 = 𝑦) =
𝑁𝑥,𝑦

𝑁 is the input joint frequency distribution.
We get 1

𝑁

∑︁𝑁
𝑖=1 �̂�𝑖 = 𝐵[P̂] and 𝐸[ 1

𝑁

∑︁𝑁
𝑖=1 �̂�𝑖] = 𝐵[P], where 𝐸[·] denotes the

expectation value. Defining

𝑞min = min
𝑎,𝑏,𝑥,𝑦

ℎ(𝑎𝑏 |𝑥𝑦)
�̂�(𝑥𝑖 = 𝑥, 𝑦𝑖 = 𝑦) ,

𝑞max = max
𝑎,𝑏,𝑥,𝑦

ℎ(𝑎𝑏 |𝑥𝑦)
�̂�(𝑥𝑖 = 𝑥, 𝑦𝑖 = 𝑦) ,

we have 𝑞min ≤ �̂�𝑖 ≤ 𝑞max, where 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌. We
define, 𝛾 := 𝑞𝑚𝑎𝑥 − 𝑞𝑚𝑖𝑛 . By using Hoeffding’s inequality (see Theorem
4.4), the parties can bound the deviation 𝛿 of the Bell value obtained by the
frequencies from the asymptotic value by a probability:

Pr
(︃
𝐵[P] ≥ 𝐵[P̂] − 𝛿

)︃
≥ 1 − 𝜖, (4.15)
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with
𝜖 = exp

{︃(︃
− 2𝑁𝛿2

𝛾2

)︃}︃
. (4.16)

For a given 𝜖 of a QKD protocol, one can calculate the confidence interval
𝛿 using Theorem 4.4. The parties will use 𝐵[P̂] − 𝛿 as the Bell value in the
QKD protocol since the asymptotic Bell value 𝐵[P] is larger than 𝐵[P̂] − 𝛿

with 𝜖 error probability. For asymptotic scenario, 𝐵[P] and 𝐵[P̂] coincides
as 𝑁 → ∞, 𝜖, 𝛿 → 0 (see Eq. (4.16)).

Example 2: Another example of parameter estimation is to estimate the
QBER (Quantum bit error rate) 𝑄. To accomplish this step, Alice sends
Bob a small sample of her key generation measurement rounds’ outcomes
through the authenticated classical channel. She can also publicly announce
her string via a public channel. From the sample, the parties will calculate
the QBER �̂� of the key generation round and bound it by using the following
theorem:

Theorem 4.5. [GKB19, YC19] Let 𝒳𝑛+𝑘 be a random binary string of 𝑛 + 𝑘 bits,
𝒳𝑘 be a random sample (without replacement) of m entries from the string 𝒳𝑛+𝑘
and 𝒳𝑛 be the remaining bit string. Λ𝑘 and Λ𝑛 are the frequencies of bit value 1 in
string 𝒳𝑘 and 𝒳𝑛 , respectively. For any 𝜖1 > 0, it holds the upper tail inequality:

Pr[Λ𝑛 ≥ Λ𝑘 + 𝛾1(𝑛, 𝑘,Λ𝑘 , 𝜖1)] > 𝜖1 , (4.17)

where 𝛾1(𝑎, 𝑏, 𝑐, 𝑑) is the positive root of

ln
(︃
𝑏𝑐

𝑏

)︃
+ ln

(︃
𝑎𝑐 + 𝑎𝛾1(𝑎, 𝑏, 𝑐, 𝑑)

𝑎

)︃
= ln

(︃
(𝑎 + 𝑏)𝑐 + 𝑎𝛾1(𝑎, 𝑏, 𝑐, 𝑑)

𝑎 + 𝑏

)︃
+ ln 𝑑 .

For 𝜖2 > 0, we have the lower tail inequality:

Pr[Λ𝑛 ≤ Λ𝑘 − 𝛾2(𝑛, 𝑘,Λ𝑘 , 𝜖2)] > 𝜖2 , (4.18)

where 𝛾2(𝑎, 𝑏, 𝑐, 𝑑) is the positive root of

ln
(︃
𝑏𝑐

𝑏

)︃
+ ln

(︃
𝑎𝑐 − 𝑎𝛾2(𝑎, 𝑏, 𝑐, 𝑑)

𝑎

)︃
= ln

(︃
(𝑎 + 𝑏)𝑐 − 𝑎𝛾2(𝑎, 𝑏, 𝑐, 𝑑)

𝑎 + 𝑏

)︃
+ ln 𝑑 .

Using Theorem 4.5, the parties can deduce that the QBER characterizing
the key generation round is not larger than �̂�+𝛾 (estimated QBER + statistical
correction) with very high probability and use �̂� + 𝛾 as the QBER of the key
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generation rounds for the QKD protocol. In the asymptotic limit where both
𝑛 and 𝑘 diverge, we have that 𝑄 and �̂� coincide. If Alice and Bob see their
Bell violation or error rate exceeding the allowed threshold, they abort the
protocol. Otherwise, they continue.

Now, we will discuss the BB84 QKD protocol. It is probably the most
analyzed protocol, not only due to it being the first, but also due to its
simplicity and symmetry. The BB84 protocol has several security proofs
that apply under various assumptions [Ren08, KGR05, RGK05, TLGR12,
GLLP04]. Here, we mostly follow the protocol stated in [SBPC+09, Gra21].

4.4 BB84 Protocol
The quantum key distribution protocol that goes under the name BB84
[BB84] was proposed by Bennet and Brassard (hence the name). The security
principle lies in the fact that Alice encodes the key bits in non-orthogonal
states and sends them to Bob. Therefore if Eve attempts to learn the key
bits by intercepting the states in the quantum channel, she can not avoid
introducing noise as she cannot perfectly distinguish the states [NC10].

Let’s say Alice has a single photon source with well-defined spectral
properties in her possession. Alice and Bob align their polarizers in two
distinct polarization bases. One polarization base is specified by the hori-
zontal/vertical directions (0◦/90◦) which is associated with the eigenbasis
{|0⟩ , |1⟩} of Pauli operator 𝑍. The other polarization base is specified by the
diagonal/anti-diagonal directions (+45◦/−45◦), which is associated with the
eigenbasis {|+⟩ , |−⟩} of Pauli operator 𝑋, where |±⟩ = (|0⟩ ± |1⟩) /

√
2. Alice

and Bob equate the non-orthogonal states |0⟩ and |+⟩ (|1⟩ and |−⟩) with
the bit value 0(1). Any interference with the quantum channel by Eve to
gain information causes disturbance in the transmitted signal because of the
no-cloning theorem. Alice and Bob can identify the signal’s disturbance,
ensuring the protocol’s security. The BB84 protocol consists of the following
steps:

1. In every round of the protocol, the parties do the following:

• Alice chooses random bits 𝑥 and 𝑎.

• If 𝑥 = 0, Alice uses the 𝑍 -basis to encode 𝑎 (she prepares the state
|0⟩ if 𝑎 = 0, and prepares |1⟩ if 𝑎 = 1). Similarly, if 𝑥 = 1, Alice
uses the 𝑋 -basis to encode 𝑎 (she prepares the state |+⟩ if 𝑎 = 0,
and prepares |−⟩ if 𝑎 = 1).
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• Alice sends the prepared state to Bob through the insecure quan-
tum channel.

• Bob announces whether he received the state.
• Bob randomly chooses a bit 𝑦 and records the outcome 𝑏. If Bob

measures in the same basis Alice used to prepare the photon, he
learns the bit she encoded on that photon, provided that the signal
has not been altered. If Bob measures in the complementary basis,
he obtains a random bit since the two bases are mutually unbiased.

2. Sifting: Alice and Bob publicly announce their choices of basis, 𝑥 and
𝑦, and compare them. They discard the rounds in which Bob measured
in a different basis than the one prepared by Alice, i.e. when 𝑥 ≠ 𝑦. In
absence of errors due to noise or eavesdropping, the strings of Alice
and Bob would coincide.

3. Parameter estimation: Alice and Bob use a fraction of the rounds
(in which both measured in the same basis) in order to estimate the
quantum bit error rates (QBERs) 𝑄𝑋 and 𝑄𝑍.

𝑄𝑧 = 𝑃(𝑎 ≠ 𝑏 | 𝑥 = 𝑦 = 0) ,
𝑄𝑥 = 𝑃(𝑎 ≠ 𝑏 | 𝑥 = 𝑦 = 1) .

(4.19)

4. Information reconciliation: Alice and Bob perform one-way error
correction and communicate over the authenticated public channel in
order to correct their string of bits. At the end of this step, Alice and
Bob should hold the same bit-string.

5. Privacy amplification: Alice and Bob use an extractor on the error
corrected strings to generate shorter, but completely secret strings of ℓ
bits, which are their final keys.

Given that one party prepares and communicates quantum states while the
other measures them, the protocol above is described in a prepare-and-
measure form. The last three steps of the BB84 protocol are needed since the
channel between Alice and Bob might be noisy, and all the observed noise is
attributed to the actions of Eve to ensure security.

One example of an eavesdropping technique used by Eve is the intercept-
resend attack. Eve randomly selects the 𝑋 or 𝑍 basis for each round. Eve
cannot completely clone non-orthogonal states; thus, she must make a mea-
surement to gather information. By doing this, she unintentionally intro-
duces errors in rounds where Alice’s choice and her choice conflict. Eve’s
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interference appears in measurement results for Bob (who is awaiting a sig-
nal) in the absence of noise, which can only be explained by a third party’s
interaction.

An analogous entanglement-based explanation is far more practical when
demonstrating the security of a QKD system or calculating its key rate.

4.5 Entanglement Based Version

In the entanglement-based version of the BB84 protocol [Ben92], Alice is in
control of a quantum source and both parties hold measurement devices
with two inputs, 𝑥, 𝑦 ∈ {0, 1}. This protocol consists of the following steps:

1. In every round of the protocol, the parties do the following:

• A source prepares the Bell state
|︁|︁𝜙+⟩︁ and distributes to Alice and

Bob.

• Alice chooses an input 𝑥 ∈ {0, 1} uniformly at random. If 𝑥 = 0,
Alice measures her part of the system in the𝑍-basis. She measures
in the 𝑋-basis if 𝑥 = 1. Alice records her outcome 𝑎.

• Similarly, Bob chooses a random bit 𝑦. If 𝑦 = 0, Bob measures
her part of the system in the 𝑍-basis. If 𝑦 = 1 he measures in the
𝑋-basis. He also records his outcome 𝑏.

2. Classical post-processing: Classical post-processing step consists of
sifting, parameter estimation, error correction and privacy amplifica-
tion which are the same as the BB84 protocol (see Sec. 4.4) discussed
previously.

4.6 Asymptotic Secret-Key Rate of BB84 Protocol

Now we will calculate the secret key rate for the BB84 protocol, which
represents the value achievable by the secret key rate in the asymptotic limit
of infinitely many uses of the quantum channel. Here we only consider the
asymptotic secret key rate. The finite size effects are discussed in [Ren08,
SR08a, Gra21].

Assuming one-way classical post-processing, the asymptotic secret key
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rate of a QKD protocol is lower bounded by Devatek-Winter rate [DW05]

𝑟𝐷𝑊 ⩾ 𝐻(𝐴 : 𝐵) − 𝜒(𝐴 : 𝐸)

= 𝐻(𝐴 : 𝐵) −
(︄
𝐻 (𝜌E) −

∑︂
𝑎=±1

𝑃(𝑎)𝐻
(︁
𝜌E|𝑎

)︁)︄ (4.20)

which is the difference between the mutual information 𝐻(𝐴 : 𝐵), Eq. (2.39),
(between Alice and Bob) and the Holevo quantity 𝜒(𝐴 : 𝐸), Eq. (2.43), (be-
tween Alice and Eve). The reduced state 𝜌E =

∑︁
𝑎 𝑃(𝑎)𝐻

(︁
𝜌E|𝑎

)︁
of Eve is

a mixture of states 𝜌E|𝑎 , conditioned on the value of Alice’s signal. The
Devetak-Winter rate has the following interpretation: The mutual informa-
tion describes the amount of information shared by Alice and Bob. Due to
the action of Eve, this information is only partially secure, which is why the
Holevo quantity, an upper bound on Eve’s accessible information, is sub-
tracted. In this worst-case scenario, the security of the remaining information
is ensured. However, the Eq. (4.20) can be recast as [SR08a, SR08b, Ren08]

𝑟 = 𝐻(𝐴|𝐸) − 𝐻(𝐴|𝐵) . (4.21)

We have already seen this expression in Sec. 4.3.3. Now we will calculate the
secret key rate in terms of the estimated QBER 𝑄𝑧 and 𝑄𝑥 (see Sec. 4.4). We
use an asymmetric variant of the BB84 protocol in the computation, where
the raw key is only derived from 𝑍 basis measurements, and PE is applied
to the 𝑋 outcomes (together with a fraction of 𝑍 outcomes) for the purpose
of simplicity.

We assume that the marginal distributions of Alice’s and Bob’s outcomes
are symmetrized. This assumption does not alter the correlation of the raw
keys of Alice and Bob, as well as the observed QBERs. Indeed, if this is
not the case, Alice and Bob can symmetrize them by deciding to flip their
outcomes with a probability of 1/2 for each protocol round. They can agree
on which outcomes to flip over the classical public channel. Note that this
does not change Eve’s information since she listens to the public channel.
Hence security proof can be restricted to the symmetrized scenario. Due
to the symmetrization of the marginals, the conditional Shannon entropy
𝐻(𝐴|𝐵) can be expressed exclusively in terms of QBER 𝑄𝑧 as follows:

𝐻(𝐴|𝐵) = ℎ(𝑄𝑧) , (4.22)

where ℎ is the binary entropy, Eq. (2.36).
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For the calculation of the𝐻(𝐴|𝐸), we follow [RGK05, KGR05]. Due to the
symmetry of the BB84 protocol, it is not restrictive to assume that the final
state Alice and Bob share is Bell diagonal. That is,

�̃�AB = 𝜆00Φ00 + 𝜆01Φ01 + 𝜆10Φ10 + 𝜆11Φ11 , (4.23)

where Φ𝑖 𝑗 = |𝜙𝑖 𝑗⟩ ⟨𝜙𝑖 𝑗 |, and 0 ≤ 𝜆𝑖 𝑗 ≤ 1,
∑︁
𝑖 , 𝑗 𝜆𝑖 𝑗 = 1 for 𝑖 , 𝑗 ∈ {0, 1}. Here, we

relabelled the Bell states according to

|𝜙+⟩ → |𝜙00⟩ , (4.24)
|𝜙−⟩ → |𝜙10⟩ , (4.25)
|𝜓+⟩ → |𝜙01⟩ , (4.26)
|𝜓−⟩ → |𝜙11⟩ . (4.27)

The state �̃�AB can be obtained by the following operation:

�̃�AB =
1
4

(︂
𝜌𝐴𝐵 +𝑋 ⊗𝑋𝜌𝐴𝐵𝑋 ⊗𝑋 +𝑌 ⊗𝑌𝜌𝐴𝐵𝑌 ⊗𝑌 +𝑍 ⊗ 𝑍𝜌𝐴𝐵𝑍 ⊗ 𝑍

)︂
. (4.28)

The State �̃�𝐴𝐵 preserves the Bell diagonal elements, i.e.⟨︁
Φ𝑖 𝑗

|︁|︁𝜌𝐴𝐵|︁|︁Φ𝑖 𝑗

⟩︁
=

⟨︁
Φ𝑖 𝑗

|︁|︁�̃�𝐴𝐵|︁|︁Φ𝑖 𝑗

⟩︁
= 𝜆𝑖 𝑗 (4.29)

for 𝑖 , 𝑗 ∈ {0, 1}. The assumption about the Bell diagonal state is not re-
strictive because 𝐻(𝐴|𝐸)𝜌𝐴𝐵 ≥ 𝐻(𝐴|𝐸)�̃�𝐴𝐵 and the observed QBERs are also
unaffected; see [Gra21] for detailed explanation. Now given the parties share
�̃�𝐴𝐵, 𝑄𝑧 and 𝑄𝑥 relate to the Bell coefficients by

𝑄𝑧 = 𝜆01 + 𝜆11 ,

𝑄𝑥 = 𝜆10 + 𝜆11 .
(4.30)

The global pure state |𝜙𝐴𝐵𝐸⟩ of Alice, Bob and Eve given that Eve holds the
purifying system of �̃�𝐴𝐵 reads:

|𝜙𝐴𝐵𝐸⟩ =
1∑︂

𝑖 , 𝑗=0

√︂
𝜆𝑖 𝑗 |𝜙𝑖 𝑗⟩𝐴𝐵 ⊗ |𝑒𝑖 𝑗⟩𝐸 , (4.31)

where |𝑒𝑖 𝑗⟩𝐸 is an orthonormal basis in ℋ𝐸. From Eq. (4.31), 𝐻(𝐴|𝐸)�̃�𝐴𝐵 can
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be expressed as:

𝐻(𝐴|𝐸)�̃�𝐴𝐵 = 1 + ℎ(𝑄𝑧) − 𝐻({𝜆𝑖 𝑗}) , (4.32)

where 𝐻({𝜆𝑖 𝑗}) =
∑︁
𝑖 𝑗 = −𝜆𝑖 𝑗 log2 𝜆𝑖 𝑗 . Since we have to consider worst case

scenario, we have to minimize Eq. (4.32) with the constraints of QBER in
Eq. (4.30). The result of the minimization is as follows [SBPC+09]:

𝐻(𝐴|𝐸) = 1 + ℎ(𝑄𝑧) −
(︁
ℎ(𝑄𝑥) + ℎ(𝑄𝑧)

)︁
= 1 − ℎ(𝑄𝑥) .

(4.33)

Putting Eq. (4.33) and Eq. (4.22) together, we obtain the asymptotic key rate
for the BB84 protocol:

𝑟BB84 = 1 − ℎ(𝑄𝑥) − ℎ(𝑄𝑧) . (4.34)
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5
Device-independent Approach to

Quantum Key Distribution

There have been many different QKD protocols [Eke91, Ben92, Bru98, Ren08,
LMC05, GLLP04, SP00, SBPC+09, MQZL05, LCT14, TLGR12] introduced
since the advent of the QKD in 1984 with the famous BB84 protocol [BB84].
A complete description of the devices, sources, and/or communication
channels between the parties is required for the security of these device-
dependent protocols. For instance, if the devices are making measurements
in four dimensional systems instead of qubits, the protocol can be bro-
ken easily [PAB+09]. It is challenging to fully describe a device utilized in
the experiment in a real-world context. Even a malicious spy may have
prepared the device (Eve). Additionally, it was shown how to hack into
existing implementations to take advantage of experimental imperfections
[LWW+10, GLLL+11, ZFQ+08]. Device-independent quantum key distribu-
tion (DIQKD) was introduced to overcome these drawbacks. In DIQKD,
the security does not require any assumptions about the inherent properties
of the devices or the dimension of the Hilbert space of the quantum sig-
nals and thus claims the highest level of security in quantum cryptography.
This method of relaxing the assumptions about the underlying equipment
prevents the eavesdropper from being able to exploit the inadequacies of
the involved devices, thus effectively eliminating the threat of side-channel
attacks.

In DIQKD, the quantum apparatuses are treated as black boxes that
produce classical outputs given an input. The only relevant information is
the statistics of inputs and outputs. The security of DI protocols requires a
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DI witness to certify nonlocal correlations. Thus, it is crucial to incorporate
a Bell test (Bell inequality violation) in a DIQKD protocol. The observed Bell
violation quantifies the degree of nonlocality. Higher Bell violation equates
to a lower degree of correlation with any other system due to the monogamy
of entanglement [CKW00]. Monogamy was already explicitly established
in the Ekert protocol [Eke91]. This is the underlying physical basis that
provides DI security.

The concept of certifying a certain device behavior through input-output
correlations was initially proposed in [MY98]. The first quantitative step
towards formalizing the security of DIQKD was achieved by bounding the
information of a no-signalling eavesdropper about a single signal between
Alice and Bob [BHK05]. The subsequent publications assume that the de-
vices behave identically and independently (IID) throughout the measure-
ment rounds [ABG+07, AGM06, PAB+09, HR10, HRW10] to prove the se-
curity of the DIQKD protocol. However, the IID assumption (collective
attacks) is generally not justified in the DI scenario. The first security
proof in the fully DI scenario, i.e. without the IID assumption, is pre-
sented in [VV14]. Later DI protocols without the IID assumptions (co-
herent attack) are proved in [AFDF+18, AFRV19] using the entropy accu-
mulation [DFR20]. Recently, DIQKD protocols are also developed in the
directions of multiparty setting (also called conference key agreement) in
[RMW18, RMW19, HKB20, GMKB21].

We open this chapter with Sec. 5.1 discussing the assumptions of the
DIQKD scenario. Afterwards, we review the general structure of a DIQKD
protocol that uses CHSH violation as a Bell test in Sec. 5.2. In Sec. 5.3,
an analytical bound on the asymptotic secret key rate is specified based on
[PAB+09]. Sec. 5.4 outlines how numerical bounds on the DI secret key rate
can be achieved in a general Bell setting [MPA11] using NPA Hierarchy. We
end the chapter with a discussion about the current status of experimental
realizations of DIQKD in Sec. 5.5.

5.1 Assumptions of DIQKD
The assumptions made in a BB84 implementation are significantly loosened
in the device-independent situation. However, it is important to note which
assumptions remain in implementing a DI protocol. We assume [PAB+09,
AFDF+18]:

1. Alice’s and Bob’s physical locations are isolated. No unwanted infor-
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mation can leak out to the outside.

2. Alice and Bob each have access to independent and trusted random
number generators.

3. Trustworthy computers carry out the local classical computations, and
all classical public communication takes place over an authenticated
channel.

4. They have trusted classical devices (e.g. memories and computing de-
vices) to store and process the classical data generated by their quantum
apparatuses.

5. State preparation is independent of the measurements performed on
them.

6. Quantum Mechanics is correct.

Another presumption frequently employed in security proofs is that the
experiment rounds are independent and identically distributed (IID). The
IID implementation assumes that the devices behave independently and in
the same way in every round of the protocol. It also assumes that the states
are distributed in the same for every round of the protocol. In summary, the
state of the n rounds can be written as 𝜌𝐴𝑛𝐵𝑛𝐸 = 𝜌⊗𝑛

𝐴𝐵𝐸
. Note that collective

attacks from the eavesdropper assume the IID assumption, whereas coherent
attacks do not satisfy the same.

5.2 Device-independent Quantum Key Distribution
Protocol

The First ideas of device-independent QKD arouse from the E91 protocol
[Eke91], which uses the CHSH inequality [CHSH69] violation to check the
presence of an eavesdropper. Recall, the CHSH inequality reads:

𝒮CHSH := ⟨𝐴0𝐵0⟩ + ⟨𝐴0𝐵1⟩ + ⟨𝐴1𝐵0⟩ − ⟨𝐴1𝐵1⟩ , (5.1)

where ⟨𝐴𝑥𝐵𝑦⟩ = 𝑝(𝑎 = 𝑏 |𝑥𝑦) − 𝑝(𝑎 ≠ 𝑏 |𝑥𝑦) represents the correlation of
the outputs 𝑎 of Alice and 𝑏 of Bob when they perform the measurements
labeled by 𝑥 and 𝑦, respectively.
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Figure 5.1: Schematic representation of a DIQKD scenario. A source (usu-
ally assumed to be controlled by Eve) distributes states to Alice and Bob.
Alice can choose between two different measurements with 𝑥 ∈ {0, 1} with
outcomes 𝑎 ∈ {−1,+1}, while Bob can choose between three different mea-
surements 𝑦 ∈ {0, 1, 2}, also with outcomes 𝑏 ∈ {−1,+1}. A classical, au-
thenticated communication channel is also available to Alice and Bob. The
measurement devices in the DIQKD scenario are untrusted; therefore, they
are under Eve’s control in the worst case.

Now assume, Alice has an uncharacterized measurement device with
two inputs 𝑥 ∈ 𝑋 = {0, 1}, which outputs 𝑎 ∈ 𝐴 = {−1,+1} upon measure-
ment. Likewise, Bob has another uncharacterized measurement device with
three inputs 𝑦 ∈ 𝑌 = {0, 1, 2} with dichotomic outcomes 𝑏 ∈ 𝐵 = {−1,+1}.
See Fig. 5.1 for a pictorial representation. We presume that the device’s be-
havior conforms to the IID assumption, and Eve performs collective attacks.
Specifically, we assume that the total state shared by the three parties has
the product form |𝜓ABE⟩ = |𝜓𝐴𝐵𝐸⟩⊗𝑛 and Eve holds the purification.

The protocol involves the following steps:

1. In every round of protocol the parties do the following:

• An unknown state 𝜌𝐴𝐵 is distributed between Alice and Bob.

• In each round, the parties measure their share of quantum state
𝜌𝐴𝐵. There are two types of measurement rounds, the key genera-
tion rounds and the parameter estimation round. The parameter
estimation round’s measurement is much less frequent. A pre-
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shared random key determines the type of each round. Alice and
Bob choose the input (𝑥, 𝑦) = (0, 2) for key generation measure-
ment rounds. In parameter estimation measurement rounds, the
parties randomly choose their inputs 𝑥, 𝑦 ∈ {0, 1}.

• The parties record their inputs and outputs as (𝑥𝑖 , 𝑦𝑖) and (𝑎𝑖 , 𝑏𝑖),
respectively. After𝑁 rounds of measurement, Alice and Bob hold
the input bit strings 𝑋𝑁 and𝑌𝑁 and the output bit strings 𝐴𝑁 and
𝐵𝑁 , respectively.

2. Parameter estimation: Using the measurement outcomes of parameter
estimation measurement rounds, Alice and Bob estimate the CHSH
value 𝒮CHSH. They also use a portion of key generation rounds to
estimate the QBER, which reads:

𝑄 = 𝑝(𝑎 ≠ 𝑏 |𝑥 = 0, 𝑦 = 2) .

The rest of the rounds are used for the raw keys.

3. Information reconciliation: Alice and Bob implemented an one way
error correction protocol to correct their bit-strings. At the end of this
step, both Alice and Bob will have the same bit-string.

4. Privacy amplification: Alice and Bob utilize an extractor to convert
the error-corrected, partially secret bit-strings into shorter, fully secret
(unknown to the eavesdropper) strings of ℓ bits, which are their final
keys.

5.3 Asymptotic Device-independent Secret Key Rate
Consider the DIQKD protocol described above in Sec. 5.2. The asymptotic
secret-key rate generated by the protocol stated above is lower bounded by
the Devetak-Winter [DW05] rate:

𝑟∞ ⩾ 𝑟𝐷𝑊 = 𝐻 (𝐴0 : 𝐵2) − 𝜒 (𝐴0 : 𝐸) , (5.2)

which is the difference between the mutual information between Alice and
Bob and the Holevo quantity between Alice and Eve. We can assume w.l.o.g.
that the marginal probabilities are uniform, i.e. ⟨𝐴𝑥⟩ =

⟨︁
𝐵𝑦

⟩︁
= 0. It can be

achieved by classical post-processing and it has no impact on the values of
QBER𝑄 and the CHSH violation 𝒮CHSH. Therefore, the mutual information

67



5.4. QUANTIFYING DEVICE-INDEPENDENT SECRET KEY RATE VIA MIN-ENTROPY

is given by𝐻 (𝐴0 : 𝐵2) = 1− ℎ(𝑄), where ℎ is the binary entropy. The Holevo
quantity reads:

𝜒 (𝐴0 : 𝐸) = 𝐻 (𝜌E) −
1
2

∑︂
𝑎0=±1

𝐻
(︁
𝜌E|𝑎0

)︁
, (5.3)

where 𝜌𝐸 = TrAB
(︁
|𝜓𝐴𝐵𝐸⟩ ⟨𝜓𝐴𝐵𝐸 |

)︁
denotes Eve’s quantum state after tracing

out Alice and Bob’s share of the state, and 𝜌𝐸 |𝑎0 is Eve’s quantum state when
Alice has obtained the result 𝑎0 for the measurement 𝐴0.

The goal is now to upper bound the Holevo quantity in terms of CHSH
inequality violation 𝒮CHSH.

Theorem 5.1 (Upper bound of Holevo quantity). Let a quantum state |𝜓⟩𝐴𝐵𝐸
and the set of measurement operators {𝐴0, 𝐴1, 𝐵0, 𝐵1} yields the CHSH violation
of 𝒮CHSH. Then after Alice and Bob have symmetrized their marginals,

𝜒 (𝐴0 : 𝐸) ⩽ ℎ
⎛⎜⎜⎝

1 +
√︂
𝒮2

CHSH/4 − 1

2
⎞⎟⎟⎠ (5.4)

Proof. We refer the reader to Ref. [PAB+09] for the proof. □

From the upper bound of Holevo quantity, it follows:

𝑟∞ ⩾ 1 − ℎ(𝑄) − ℎ
⎛⎜⎜⎝

1 +
√︂
𝒮2

CHSH/4 − 1

2
⎞⎟⎟⎠ . (5.5)

5.4 Quantifying Device-independent Secret Key
Rate via Min-entropy

In this section, we describe how the min-entropy and NPA hierarchy (see
Sec. 3.5.2 for details) can be used to lower bound the DI secret key rate
(DISKR) in terms of an observed Bell inequality violation. We follow the
methods described in [MPA11]. The bipartite asymptotic DISKR can also be
expressed as [MvDR+19, AFDF+18]

𝑟∞ ⩾ 𝐻(𝐴|𝑋, 𝐸) − 𝐻(𝐴|𝐵) . (5.6)
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In a general Bell scenario, the conditional von Neumann entropy 𝐻(𝐴|𝑋, 𝐸)
is hard to calculate analytically. As already mentioned (see Eq. (2.49)),
conditional von Neumann entropy can be lower bounded by the condi-
tional min-entropy as: 𝐻(𝐴|𝑋, 𝐸) ≥ 𝐻min(𝐴|𝑋, 𝐸). In Eq. (2.47), we men-
tioned that min-entropy can be expressed in terms of guessing probability,
i.e. 𝐻min(𝐴|𝑋, 𝐸) = − log2 𝑝guess(𝐴|𝑋, 𝐸). Our objective is to find an upper
bound on 𝑝guess(𝐴|𝑋, 𝐸) to cover the worst-case scenario. Because − log2(𝑥)
is a monotonically decreasing function of 𝑥, it provides a lower bound on
𝐻min(𝐴|𝑋, 𝐸).

In [MPA11], it is shown that 𝑝guess(𝐴|𝑋, 𝐸) can be upper bounded as
a function of the Bell value. Let 𝒢 denote the Bell operator associated
with the DIQKD setting and 𝐵[P] be the observed Bell value (here 𝐵 is
the Bell inequality, and P is the probability distribution). We can write
𝑝guess(𝐴|𝑋, 𝐸) ⩽ 𝐺𝑥 (𝐵[P]), where 𝐺𝑥 is a concave and monotonically de-
creasing function of the Bell value 𝐵[P]. The bound 𝐺𝑥 (𝐵[P]) can always be
established with the NPA hierarchy [NPA07, NPA08] by solving the follow-
ing semidefinite programme:

max
𝜌AB ,{𝐴(𝑎 |𝑥)},{𝐵(𝑏 |𝑦)}

𝑝guess(𝐴|𝑋, 𝐸)

subject to: Tr (𝒢𝜌AB) = 𝐵[P] .
(5.7)

The solution of the SDP in Eq. (5.7) provides the maximum possible value for
𝑝guess(𝐴|𝑋, 𝐸) for a fixed parameter 𝐵[P]. The maximization is performed
over all states 𝜌𝐴𝐵 and observables 𝐴(𝑎 |𝑥), 𝐵(𝑏 |𝑦). The constraint corre-
sponds to the checking of a Bell inequality violation. This establishes the
existence of some randomness which is the fundamental tenet of the device-
independent paradigm. 𝒢 is the Bell operator, associated with the DIQKD
setting, defined as:

𝒢 =
∑︂
𝑎,𝑏,𝑥,𝑦

𝐶(𝑎𝑏 |𝑥𝑦)𝐴(𝑎 |𝑥)𝐵(𝑏 |𝑦) , (5.8)

where𝐶(𝑎𝑏 |𝑥𝑦) are the coefficients defining the Bell inequality𝐵 (see Eq. (3.6)).
This implies, a lower bound on the DI secret-key rate in the asymptotic limit
is given by

𝑟∞ ⩾ − log2 (𝐺𝑥 (𝐵[P])) − 𝐻(𝐴|𝐵) , (5.9)

where 𝐺𝑥 (𝐵[P]) is obtained from the solution of the SDP in Eq. (5.7).

We did not specify anything about the observables and states; merely an
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observed Bell inequality violation is required. Bounds by SDPs of the form
in Eq. (5.7) are thus device-independent and valid against the most general
adversary. They are, however, often overly pessimistic since we bound
min-entropy instead of von Neumann entropy. It is an open problem to
obtain tighter bounds in a general setting, numerically as well as analytically.
Recent developments are made where sophisticated methods of bounding
the conditional von Neumann entropy [TSG+21, SGP+21, BFF21a, BFF21b]
are introduced instead of bounds based on min-entropy. Another way to
proceed is to use a tailored Bell inequality (that depends on the measurement
statistics of Alice and Bob) for DIQKD [DKB22a, NSPS14, BSS14], which we
will discuss in the next chapter.

5.5 Experimental Realization of DIQKD
Contrary to the device-dependent QKD, implementing a DIQKD in an ex-
perimental setup is quite challenging. There are several issues with this
subject. One main bottleneck is to perform a detection loophole-free Bell
test at a significant spatial distance while achieving adequate Bell inequality
violation1 and a low QBER. Note that the devices must operate at a decent
clock-rate to suppress the finite-size effect to an acceptable tolerance level.

Loophole-free Bell test is the main ingredient of a DIQKD protocol.
All the Bell experiments performed so far can be divided into two broad
categories, i.e. Photonic experiments [LYL+18, LLR+21, LZZ+21, ZSB+20,
CMA+13, GVW+15, SZB+21, SMSC+15, BKG+18] and the Heralded entan-
glement system [NDN+22, ZvLR+21, RBG+17]. In the photonic experiments,
photon pair with entangled degrees of freedom is prepared, incorporating
polarisation via spontaneous parametric down-conversion. Then Alice and
Bob each measure their part of entangled photons using single-photon de-
tectors. Fully photonic systems realize a high clock-rate and low QBER,
but they experience low CHSH value. That’s why one could not gener-
ate a non-zero device-independent secret key using a photonic set even
though some achieve high enough CHSH violation for device-independent
randomness generation [BKG+18, ZSB+20, LLR+21]. However, recently in
[LZZ+21, LZZ+22], the authors performed a photonic DIQKD experiment
asymptotically secure when Eve is restricted to collective attacks. In this ex-

1All existing loophole-free Bell experiments, including all the DIQKD proof-of-principle
demonstrations, are based on the CHSH inequality to date.
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periment, the CHSH value𝒮CHSH ≈ 2.0472 is achieved using a post-selection
technique across a transmission distance of 220 meters while using single-
photon detectors with efficiency ≥ 87%.

On the other hand, loophole-free Bell experiments using heralded entan-
glement involve preparing an entangled state between a long-lived quan-
tum system and a photon. Examples of long-lived systems include trapped
ions [MMO+07], atoms [HKO+12], NV-centre [BHP+13] and quantum dots
[DSG+16]. Alice and Bob store the long-lived quantum system in their re-
spective isolated laboratories while sending the photonic system for a Bell
state measurement in a heralding station. A successful Bell state measure-
ment ensures Entanglement swapping. The long-lived systems can then be
measured. Detection efficiencies are high in this experimental setup com-
pared to the photonic systems. Therefore, heralded entanglement systems
provide high CHSH value and low QBER compared to the photonic systems.
However, the clock-rate is lacking in this scenario due to the slow herald-
ing rate. Recently using a trapped-ions-based heralded entanglement setup
[NDN+21, NDN+22], a non-zero device-independent secret key is generated
while achieving 𝒮CHSH ≈ 2.64 and QBER𝑄 ≈ 1.8% over 2 meters even when
the heralding rate is low. In [ZvLR+21, ZvLR+22], the authors demonstrate
another DIQKD setup using heralded entangled atoms. They were able to
generate an asymptotic DISKR of about 0.07 per entanglement generation
event when the parties were 400 m apart. However, when finite-size effects
are taken into account, the block size is too small to produce a DISKR.
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6
Device-independent Quantum Key

Distribution and Post-selection of
Bell Inequality

Device-independent quantum key distribution (DIQKD) protocols are based
on the violation of a loophole-free Bell inequality. Usually, a pre-specified
Bell inequality 𝐵 is chosen before performing the DIQKD protocol. For a
given input-output probability distribution P, the Bell value of a Bell inequal-
ity 𝐵 is denoted as 𝐵[P]. It is then possible, in principle, to compute an upper
bound on the length of the device-independent secret key rate (DISKR) of
the input-output behavior through the quantity 𝐵[P]. Thus, one can no-
tice that the choice of Bell inequality deeply influences the length of the
generated key. Therefore, different DIQKD protocols have been proposed,
where the Bell inequality is not agreed upon beforehand but constructed
from the observed probability distribution of the measurement outcomes
[DKB22a, NSPS14, BSS14]. In [NSPS14, BSS14], the Bell inequality, con-
structed from the measurement statistics, is designed in such a way that it
leads to the maximal DISKR for that precise setup in the asymptotic scenario.
The authors of [DKB22a] follow a two-step process. First, they construct a
Bell inequality from the input-output probability distribution that leads to
the maximum Bell violation for that particular measurement setting of Alice
and Bob. Then they use the optimized Bell inequality and the corresponding
violation to bound the DISKR.

The content of this chapter is based on the work in [DKB22a], and it
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Figure 6.1: Schematic representation of a DIQKD scenario with 𝑚 measure-
ment settings per party, where each measurement setting has 𝑑 outcomes.
A source (usually assumed to be controlled by Eve) distributes states to
Alice and Bob. Alice can choose between 𝑚 different measurements with
𝑥 ∈ {1, · · · , 𝑚} with outcomes 𝑎 ∈ {1, · · · , 𝑑}, while Bob can choose be-
tween 𝑚 + 1 different measurements 𝑦 ∈ {1, · · · , 𝑚 + 1}, also with outcomes
𝑏 ∈ {1, · · · , 𝑑}. An authenticated classical communication channel is also
available to Alice and Bob.

is a central result of this thesis. We start by describing a DIQKD protocol
where the Bell inequality is constructed from the measurement statistics, c.f.
Sec. 6.1. In Sec. 6.2, we provide the mathematical expression of the secret
key rate, including finite size effects. We end this chapter by explaining the
utility of this approach in Sec. 6.3.

6.1 DIQKD Protocol from a Post-selected Bell
Inequality

Here we follow the protocol of Ref. [DKB22a]. Consider the IID (identically
and independently distributed) scenario, where the devices will behave in-
dependently and identically in each round. The state distributed between
the parties is also the same for each round of the protocol. Alice has 𝑚
measurement inputs 𝑥 ∈ {1, · · · , 𝑚} and each of the inputs has 𝑑 corre-
sponding outputs 𝑎 ∈ {1, · · · , 𝑑}. Bob instead has 𝑚 + 1 measurement
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inputs 𝑦 ∈ {1, · · · , 𝑚 + 1}. Each measurement input of Bob also has 𝑑 out-
puts 𝑏 ∈ {1, · · · , 𝑑}. See Fig. 6.1 for a pictorial representation. The protocol
consists of the following steps:

1. In every round of the protocol, the parties do the following:

• A state 𝜌𝐴𝐵 is distributed between Alice and Bob.

• In each round of the protocol, the parties, according to a preshared
key 𝑇, choose a random 𝑇𝑖 = {0, 1} such that Pr(𝑇𝑖 = 1) = 𝜉.
Depending on 𝑇𝑖 , they then perform one of two different types of
measurement:

(a) If 𝑇𝑖 = 0, Alice and Bob choose the measurement input (𝑥 =

1, 𝑦 = 𝑚 + 1) and use the outcomes to generate the raw key.
We call these key generation (KG) rounds.

(b) If 𝑇𝑖 = 1, Alice and Bob choose the measurement inputs
𝑥 ∈ {1, · · · , 𝑚} and 𝑦 ∈ {1, · · · , 𝑚}, respectively, uniformly
at random. We use the outcome of these measurements for
parameter estimation. These cases will be denoted as param-
eter estimation (PE) rounds.

• The parties record their inputs and outputs as (𝑥𝑖 , 𝑦𝑖) and (𝑎𝑖 , 𝑏𝑖),
respectively. After𝑁 rounds of measurement, Alice and Bob hold
the input bit strings 𝑋𝑁 and𝑌𝑁 and the output bit strings 𝐴𝑁 and
𝐵𝑁 , respectively.

2. Alice and Bob publicly announce the outcomes of the PE rounds. They
randomly divide1 these outcomes into three sets. From the first set,
Alice and Bob estimate the frequencies P̂1 = {�̂�(𝑎𝑏 |𝑥𝑦)} (see Eq. (3.14)).
The protocol aborts if P̂1 ∈ 𝒫. Otherwise, they construct an optimal
Bell inequality B by solving the optimization problem of Eq. (3.15). The
Bell inequality B is specified by the coefficients {ℎ(𝑎𝑏 |𝑥𝑦)}𝑎,𝑏=1,··· ,𝑑

𝑥,𝑦=1,··· ,𝑚 .

From the measurement outcomes of the second set, the parties mea-
sure the Bell value 𝐵[P̂2]. The deviation of the estimated Bell value
𝐵[P̂2] from the real Bell value 𝐵[P] can be bounded using Hoeffding’s

1Alice is assumed to hold a random number generator. According to this random
number generator, she specifies to which set each PE round’s measurement outcomes
belong.
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Inequality (see Eq. (4.15)):

Pr
(︂
𝐵[P] ≥ 𝐵[P̂2] − 𝛿𝑒𝑠𝑡

)︂
≥ 1 − 𝜖𝑒𝑠𝑡 , (6.1)

where 𝜖𝑒𝑠𝑡 = exp
{︂(︂
−2𝑁𝜉𝛿2

𝑒𝑠𝑡

3𝛾2

)︂}︂
. 𝑁𝜉

3 is the number of measurement
rounds used to estimate the Bell value 𝐵[P̂2].
Alice and Bob calculate the Bell value 𝐵[P̂3] from the outcomes of the
third set. They use the Bell inequality B and corresponding violation
𝐵[P̂2] − 𝛿𝑒𝑠𝑡 as a hypothesis in the experiment. The protocol aborts if
the Bell value 𝐵[P̂3] is smaller than 𝐵[P̂2] − 𝛿𝑒𝑠𝑡 for an honest imple-
mentation.

3. To estimate the QBER 𝑄 of the key generation rounds, Alice and Bob
publicly announce the measurement outcomes of 𝑁𝜂 randomly sam-
pled key generation rounds. Using the tail inequality of the Theorem
4.5, the QBER of the raw key can be bounded as:

Pr
[︂
𝑄 ≥ �̂� + 𝛾𝑒𝑠𝑡

(︂
𝑁(1 − 𝜉 − 𝜂), 𝑁𝜂, �̂� , 𝜖

𝛾
𝑒𝑠𝑡

)︂]︂
> 𝜖

𝛾
𝑒𝑠𝑡 , (6.2)

where �̂� is the estimated QBER calculated from the sample Alice sends
to Bob and 𝛾𝑒𝑠𝑡

(︂
𝑁(1 − 𝜉 − 𝜂), 𝑁𝜂, �̂� , 𝜖

𝛾
𝑒𝑠𝑡

)︂
is the positive root of the

following equation:

ln
(︃
𝑁(1 − 𝜉 − 𝜂)�̂� + 𝑁(1 − 𝜉 − 𝜂)𝛾𝑒𝑠𝑡

𝑁(1 − 𝜉 − 𝜂)

)︃
+ ln

(︃
𝑁𝜂�̂�

𝑁𝜂

)︃
(6.3)

= ln
(︃
(𝑁(1 − 𝜉)�̂� + 𝑁(1 − 𝜉 − 𝜂)𝛾𝑒𝑠𝑡

𝑁(1 − 𝜉)

)︃
+ ln 𝜖

𝛾
𝑒𝑠𝑡 .

From the Eq. (6.2), one can conclude that QBER𝑄 of the key generation
rounds is smaller than estimated QBER �̂� plus a statistical correction
𝛾𝑒𝑠𝑡 with very high probability of 1 − 𝜖

𝛾
𝑒𝑠𝑡 .

4. Alice and Bob employ a one-way error correction (EC) protocol to
obtain identical raw keys 𝐾𝐴 and 𝐾𝐵 from their bit strings 𝐴𝑁 and
𝐵𝑁 . During the whole EC process, Alice communicates 𝑂𝐸𝐶 2 to Bob

2𝑂𝐸𝐶 denotes all the classical communication. It consists of the information leaked
during EC, the hash function, and the hash values that Alice sent to Bob to verify if EC is
successful.
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such that he can guess the outcomes 𝐴𝑁 of Alice. The probability with
which the EC protocol aborts for an honest implementation is at most
𝜖𝑐
𝐸𝐶

. If the EC does not abort, the parties obtain the error-corrected raw
keys 𝐾𝐴 (for Alice) and 𝐾𝐵 (for Bob). Given that the protocol does not
abort, the probability of Alice and Bob holding different raw keys is at
most 𝜖𝐸𝐶 , i.e. Pr(𝐾𝐴 ≠ 𝐾𝐵) ≤ 𝜖𝐸𝐶 . See also Sec. 4.3.3 and Appendix of
[DKB22a] for details.

The hash values of keys belonging to Alice and Bob are different with
a high probability if the QBER𝑄 of the key generation round is greater
than the estimated QBER �̂� + 𝛾𝑒𝑠𝑡 [Gra21]. Since this event, which
happens with probability at most 𝜖

𝛾
𝑒𝑠𝑡 , leads to the abortion of the

implement EC protocol, we can conclude that 𝜖𝐶
𝐸𝐶

≤ 𝜖
𝛾
𝑒𝑠𝑡 , with 𝜖𝐶

𝐸𝐶

being the abortion probability of the EC protocol.

5. Alice and Bob apply a privacy amplification protocol and obtain a
secure final key �̃�𝐴 = �̃�𝐵 of length ℓ .

6.2 Device-independent Secret Key Rate

As already discussed, to provide a lower bound on the DISKR, one has
to estimate two terms: the conditional von Neumann entropy 𝐻(𝐴|𝑋, 𝐸)
and the error correction information 𝐻(𝐴|𝐵) of the raw key. As already
mentioned in the previous chapter, 𝐻(𝐴|𝑋, 𝐸) can be bounded using the
guessing probability 𝑃guess(𝐴|𝑋, 𝐸) utilizing the min-entropy. The guessing
probability 𝑃guess(𝐴|𝑋, 𝐸) can be upper bounded by a function 𝐺𝑥 of the
estimated Bell violation 𝐵[P] [MPA11]

𝑃guess(𝐴|𝑋, 𝐸) ≤ 𝐺𝑥 (𝐵 [P]) . (6.4)

We recall that the protocol aborts if 𝐵[P̂3] < 𝐵[P̂2] − 𝛿𝑒𝑠𝑡 . Since 𝐵[P̂3]
is calculated from a finite number of rounds, we need to use Hoeffding’s
inequality to infer the real Bell violation. We define a confidence interval
𝛿𝑐𝑜𝑛 , and the associated error probability 𝜖𝑐𝑜𝑛 . We bound the probability of
wrongly accepting the hypothesis with the error probability 𝜖𝑐𝑜𝑛 by:

Pr
(︂
𝐵

[︁
P̂2

]︁
− 𝛿𝑒𝑠𝑡 ≥ 𝐵

[︁
P̂3

]︁
+ 𝛿𝑐𝑜𝑛

)︂
< 𝜖𝑐𝑜𝑛

⇒ Pr
(︂
𝐵

[︁
P̂2

]︁
− 𝛿𝑒𝑠𝑡 − 𝛿𝑐𝑜𝑛 ≥ 𝐵

[︁
P̂3

]︁ )︂
< 𝜖𝑐𝑜𝑛 . (6.5)
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Therefore, given that Alice and Bob do not abort the protocol, we infer
that the Bell violation of the system under consideration is higher than
𝐵[P̂2] − 𝛿𝑒𝑠𝑡 − 𝛿𝑐𝑜𝑛 (with maximum 𝜖𝑐𝑜𝑛 error probability). Considering the
worst possible scenario, we use the Bell violation 𝐵[P̂2]− 𝛿𝑒𝑠𝑡 − 𝛿𝑐𝑜𝑛 to upper
bound the guessing probability 𝑃guess(𝐴|𝑋, 𝐸) by solving the semi-definite
programme:

max:
𝜌𝐴𝐵 ,{𝐴(𝑎 |𝑥)},{𝐵(𝑏 |𝑦)}

𝑃guess(𝐴|𝑋, 𝐸)

subject to: Tr(𝜌𝒢) = 𝐵
[︁
P̂2

]︁
− 𝛿𝑒𝑠𝑡 − 𝛿𝑐𝑜𝑛 ,

(6.6)

using NPA hierarchy [NPA07, NPA08]. The Bell operator 𝒢 is given by

𝒢 =
∑︂
𝑎,𝑏,𝑥,𝑦

ℎ(𝑎𝑏 |𝑥𝑦)𝐴(𝑎 |𝑥)𝐵(𝑏 |𝑦) ,

where {ℎ(𝑎𝑏 |𝑥𝑦)} are the coefficients of the Bell inequality B. In Eq. (6.6),
𝐴(𝑎 |𝑥) and 𝐵(𝑏 |𝑦) are the measurement operators of Alice and Bob, respec-
tively, and 𝜌𝐴𝐵 is the state shared between them. Hence the conditional
min-entropy 𝐻min(𝐴|𝑋, 𝐸) can be bounded by [KRS09]

𝐻min(𝐴|𝑋, 𝐸)𝜌 = − log2 𝑃guess (𝐴|𝑋, 𝐸) (6.7)

≥ − log2 𝐺𝑥

(︂
𝐵

[︁
P̂2

]︁
− 𝛿𝑒𝑠𝑡 − 𝛿𝑐𝑜𝑛

)︂
,

where the function 𝐺 is defined in Eq. (6.4).
To bound the error correction information, we need to estimate the key

generation round’s QBER 𝑄. In Sec. 6.1, we show that we can upper bound
key generation round’s QBER with at least 1 − 𝜖

𝛾
𝑒𝑠𝑡 probability by �̂� + 𝛾𝑒𝑠𝑡 .

Considering the worst possible scenario, we can upper bound the von Neu-
mann entropy 𝐻(𝐴|𝐵) as:

𝐻(𝐴|𝐵) ≤ 𝑓
(︂
�̂� + 𝛾𝑒𝑠𝑡

)︂
, (6.8)

where 𝑓 (𝑥) = ℎ(𝑥)+𝑥 log2(𝑑−1). Here, 𝑑 is the number of outcomes per mea-
surement in the Bell scenario [BMF+16] and ℎ is the binary entropy function.

Using the bound on the min-entropy (see Eq. (6.7)) and the QBER (see
Eq. (6.8)), we can derive the finite-size secret key rate of a 𝜖𝑠

𝐷𝐼𝑄𝐾𝐷
-sound,

𝜖𝑐
𝐷𝐼𝑄𝐾𝐷

-complete DIQKD protocol for collective attacks. In fact either the
protocol in Sec. 6.1 aborts with probability higher than 1 − (𝜖𝑐𝑜𝑛 + 𝜖𝑐

𝐸𝐶
) or a
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(2𝜖𝐸𝐶 + 𝜖𝑠 + 𝜖𝑃𝐴))-correct-and-secret key of length

𝑙 ⩽𝑁
[︂
− log2 𝐺𝑥

(︂
𝐵

[︁
P̂2

]︁
− 𝛿est − 𝛿con

)︂
−(1 − 𝜉 − 𝜂) 𝑓

(︂
�̂� + 𝛾est

)︂
− (𝜉 + 𝜂) log2 𝑑

]︂
−
√
𝑁

(︄
4 log

(︂
2
√︁

2log2 𝑑 + 1
)︂ (︄√︄

log 8
𝜖′2EC

+
√︄

log 2
𝜖2
𝑠

)︄)︄
− log

(︄
8
𝜖′2EC

+ 2
2 − 𝜖′EC

)︄
− log 1

𝜖EC
− 2 log 1

2𝜖PA
.

(6.9)

can be generated. Here 𝜖𝑐
𝐷𝐼𝑄𝐾𝐷

≤ 𝜖𝑒𝑠𝑡 + 𝜖
𝛾
𝑒𝑠𝑡 (for an honest implementation)

and 𝜖𝑠
𝐷𝐼𝑄𝐾𝐷

≤ 2𝜖𝐸𝐶 + 𝜖𝑠 + 𝜖𝑃𝐴. The expression in Eq. (6.9) is derived in
[DKB22a] where we explain the complete secret key analysis in detail; also
see Appendix A. Table 6.1 lists all parameters of the DIQKD protocol.

6.3 Applications

The potential and versatility of this approach have been illustrated with
several examples for different numbers of measurement settings and dif-
ferent numbers of outcomes in [DKB22a], also see Sec. A. In the case of
the [2, 2] Bell scenario, this method recovers the standard CHSH inequality
when using a maximally entangled Bell state mixed with white noise and
the CHSH measurement settings; see Eq. (3.9) for details. Thus, the secret
key rate generated coincides with the one of [MPA11] in which a prede-
termined standard CHSH inequality is used. Though this method finds a
hyperplane equivalent to the CHSH inequality, it identifies the particular
facet Bell inequality with the maximal violation, which is then used in the
DIQKD protocol. Other facets (also equivalent to CHSH inequality) may
admit local hidden variable models leading to zero DISKR. For the [2, 𝑑] Bell
scenario (2 measurement settings per party, 𝑑 outcomes each), this method
recovers CGLMP inequality [CGL+02] when using the maximally entangled
state of two qudits affected by white noise with probability 𝑝, i.e. the state

𝜌 = (1 − 𝑝)|𝜓⟩⟨𝜓 | + 𝑝 1

𝑑2 , (6.10)

where |𝜓⟩ =
∑︁𝑑−1
𝑖=0

1√
𝑑
|𝑖𝑖⟩, and the measurement settings in Eq. (24) of

[DKB22a] (also see Appendix A). Similar to the previous case, this method
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Table 6.1: Parameters of the DIQKD protocol

𝑁 Number of measurement rounds in the protocol

𝜉 Fraction of parameter estimation rounds performd out
of the total number of rounds

𝜂 Fraction of measurement rounds used to estimate the
QBER

𝜖𝑠 Smoothing parameter

𝜖𝐸𝐶 , 𝜖′
𝐸𝐶

Error probabilities of the error correction protocol

𝜖𝑐
𝐸𝐶

Probability of abortion of error correction protocol

𝛿𝑒𝑠𝑡 Width of the statistical interval for the Bell violation
hypothesis test

𝜖𝑒𝑠𝑡 Error probability of the Bell violation hypothesis test

𝛿𝑐𝑜𝑛 Confidence interval for the Bell test

𝜖𝑐𝑜𝑛 Error probability of the Bell violation estimation

𝛾𝑒𝑠𝑡 Width of the statistical interval for the QBER estima-
tion

𝜖
𝛾
𝑒𝑠𝑡 Error probability of the QBER estimation

𝜖𝑃𝐴 Error probability of the privacy amplification protocol

𝜖𝑐
𝐷𝐼𝑄𝐾𝐷

Completeness parameter of the DIQKD protocol

𝜖𝑠
𝐷𝐼𝑄𝐾𝐷

Soundness parameter of the DIQKD protocol
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finds the facet with the maximal violation; again, other equivalent facets
may be subjected to local hidden variable models leading to a zero DISKR.

This procedure also has advantages w.r.t. the CHSH scenario (corre-
sponds to the [2, 2] Bell scenario) when the parties use non-optimal mea-
surement settings. In the case of [2, 2] Bell scenario, DISKR is calculated
via the analytical expression of Eq. (5.5) that uses the lower bound on the
von Neumann entropy and thus generates higher DISKR than bounds based
on min-entropy. However, suppose non-optimal measurement settings are
used. In that case, this method can generate higher DISKR by employing
additional measurement settings per party (making it a [3, 2] Bell scenario)
than using any subset of two measurement settings per party (and using the
analytical expression of Eq. (5.5)). Another edge of this method is even if the
measurement statistics obtained by two non-optimal measurement settings
per party lead to a zero DISKR, adding another measurement setting per
party and adopting this strategy can lead to a non-zero DISKR. Examples of
these cases are shown in [DKB22a].

Moreover, when applying this approach to random measurements sce-
nario where Alice’s and Bob’s device performs random measurements, the
probability of generating non-zero DISKR increases with the number of mea-
surement settings per party and decreases with the introduction of noise in
the shared state. This phenomenon is in coherence with nonlocal volume
[LCMA18, DRGP+17, dRGP+20, FP15, FDRV+18, BN18], which increases
when more measurement settings for each party are used for the pure bipar-
tite entangled state and shrinks with the introduction of noise in the shared
state.

As mentioned before, in [NSPS14, BSS14], the authors introduced another
approach to bound the DISKR by directly using the complete measurement
data. In the asymptotic regime, this procedure corresponds to constructing a
Bell inequality that leads to the maximal DISKR for the precise setup. How-
ever, small changes in the parameters (e.g. imperfections in the measure-
ment directions) or the measured probability distribution lead to different
Bell inequalities corresponding to the optimal secret key rate. On the other
hand, the Bell inequality derived from the approach of [DKB22a] is robust
and stable against small fluctuations of the measurement directions or in the
shared state. It can also generate a non-zero secret key by performing fewer
measurement rounds because of the smaller effect of statistical corrections
in the Bell inequality violation. The statistical corrections become insignif-
icant for a high number of measurement rounds, such that the method of
[NSPS14, BSS14] yields a higher secret key.
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The typical number of measurement rounds to generate a non-zero key
varies between 106 to 108 for the [𝑚, 2]Bell scenario and is of the order 106 for
the [2, 𝑑] Bell scenario. Note that the protocol in Sec. 6.1 uses min-entropy
to bound the von Neumann entropy. However, sophisticated methods of
bounding von Neumann entropy [BFF21a, BFF21b] could increase the se-
cret key rate. Other methods like advantage distillation [TLR20], noisy
pre-processing [HST+20], and random post-selection [XZZP21] can also be
applied in this framework to improve the DISKR generation.
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7
Upper bound on the Guessing

Probability using Machine Learning

Recent advances in machine learning (ML) have dramatically changed sci-
ence and society. Making computers act without being explicitly instructed
is the aim of machine learning. The self-driving car, fraud detection, speech
recognition, drug discovery, and predicting the 3-D structure of proteins
based on their genetic sequence are some areas where ML is being used
[Lav15, AlQ19]. Recently, ML has been heavily utilized in different domains
of physics, including quantum physics, such as phase transition [YAK18,
BCMT17, Wan16, CCMK17, Wet17, HSS17, VNLH17, CM17, DLS17], black
hole detection [AAA+16, Pas16], topological codes [TM17], glassy dynamics
[SCS+16], gravitational lenses [HLM17], anti-de Sitter/conformal field the-
ory (AdS/CFT) [HSTT18], string theory [CHKN17], Monte Carlo simulation
[LQMF17, HW17], tensor network [CCX+18, HM+21], many-body physics
[SRN17, CT17] and wave analysis [BBC+13]. Inspired by this progress,
techniques from machine learning have been used to solve analytically or
numerically complex problems in quantum information. In [CBC19], an
ensemble of multilayer perceptrons and genetic algorithms are combined
to detect and characterize nonlocality. In [KCC+20], the authors use neural
networks to solve the causal inference (whether an observed probability dis-
tribution can be reproduced using only classical resources) problem. They
encode the causal structure into the architecture of a neural network to see
whether the target distribution is ’learned’. The neural network serves as an
oracle, showing that if a behavior can be ’learned’, it is classical. In [Den18],
the authors use the restricted Boltzmann machine (RBM) architecture to
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find quantum nonlocality in many-body systems. In [BHVK19], the authors
used reinforcement learning to train AI to play Bell nonlocal games and
obtain maximal quantum Bell violation for various Bell inequalities. Since
Bell inequalities cannot be a reliable tool for entanglement detection, Bell
inequalities and feed-forward neural networks are blended to use them as
a dependable state classifier that can segregate an entangled state from a
separable one in [MY18]. Reinforcement learning with RBM is incorporated
to detect the entangled states [HPFP20]. Given the full tomographic data,
random states of two qutrits are classified as separable, entangled with posi-
tive partial transpose, or entangled with negative partial transpose using an
automated machine learning model [GCDM21]. In [LHL+18], the authors
use various classical machine learning techniques and ensemble training via
bootstrap aggregating (bagging) to detect entanglement in quantum states.
Inspired by these successes in implementing machine learning in quantum
information, we introduce deep learning methods to estimate the upper
bound of the guessing probability.

Measurement statistics of a Bell experiment are called ’nonlocal’ when-
ever the obtained correlations defy the underlying premises of local re-
alism [Bel64]. Device-independent quantum key distribution (DIQKD)
[ABG+07, PAB+09, AFRV19, AFDF+18, BHK05, MPA11, VV14, MRC+14,
AMP06, MvDR+19, HKB20, HR10] and device-independent randomness
generation (DIRNG) [PAM+10, NSBSP18, PM13, BSS14, NSPS14, BKB17,
AMP12, AM16, SC18] leverage these nonlocal correlations to certify the
private randomness generated from the quantum states. A key component
of DIQKD and DIRNG is the estimation of global and local randomness. The
assessment of the guessing probability is often a crucial problem in quanti-
fying randomness. Additionally, it can serve as an indicator of nonlocality.
The probability that an adversary will correctly predict the outcome of a
party’s measurement is known as the guessing probability. The adversary
cannot predict the outcome with certainty if the guessing probability is less
than 1. It suggests that the system contains intrinsic randomness. Bounding
the guessing probability is a difficult task. The guessing probability cannot
be calculated explicitly. One can upper bound the guessing probability by
solving a semidefinite optimization problem. Typically, the Bell inequality
and associated quantum Bell violation is used as a constraint in the opti-
mization of guessing probability [MPA11, PAM+10]. One needs to make
use of the hierarchical structure of the quantum correlation set (NPA hierar-
chy) [NPA07, NPA08] to resolve the semidefinite optimization problem. The
complexity of this optimization problem is increasing as the Bell scenario
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becomes more complex (more measurements and outcomes), making it ex-
ceedingly difficult computationally. To circumvent this problem, inspired
by the recent progress in utilizing ML in quantum information, we develop
deep learning models that can predict the guessing probability and the op-
timal Bell inequality (used to calculate the guessing probability) from the
quantum probability distribution. We use the supervised machine learning
method to develop deep learning models. First, we randomly sample prob-
ability distributions from the quantum correlation set and use it as the input
of the training data for supervised learning. With this data, we calculate
the upper bound of the guessing probability using the two-step method
of [DKB22a]; see also Sec. 3.4 and Sec. 5.4 for details. We use the optimal
Bell inequality and the guessing probability as the output of the training
data. After adequate training, the model can accurately identify the pattern
and estimate the guessing probability and the corresponding optimal Bell
inequality with high accuracy and low average statistical error.

This chapter’s content, an important result of this thesis, is based on
[DKB22b]. This chapter is organized as follows. We briefly introduce ma-
chine learning and feed-forward neural network in Sec. 7.1. We explain the
process of sampling quantum probability distribution from the quantum
correlation space in Sec. 7.2. This sampled quantum probability distribution
is then used as input data in the deep learning models. We illustrate the
deep learning models we used to assess the data in Sec. 7.3 and discuss the
utility and performance in Sec. 7.4.

7.1 Introduction to Machine Learning

Machine learning (ML) is a sub-field of artificial intelligence (AI) [SSBD14,
GBC16]. The goal of machine learning is to enable a computer to complete
a certain task without direct guidance from an outside source. In the words
of Mitchell: “A computer program is said to learn from experience E for some class
of tasks T and performance measure P, if the performance at tasks in T, as measured
by P, improves with E” [M+97]. Thus learning of the ’machine’ happens
whenever 𝑃(𝑇) ∝ 𝐸. In a nutshell, Machine learning is a technique used to
build intricate models to generate predictions for issues that are challenging
for fixed algorithms to handle. The machine learning model is frequently
viewed as a "black box", difficult or even impossible to comprehend, and
humans are content to accept the trained machine’s response as correct.

Here, we provide a brief but insightful description of the relevant steps
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of machine learning. These include the Tasks, the Experiences, the machine
learning algorithms, and also the performance measures for validation. The
structure of this discussion is inspired by [GBC16].

7.1.1 The Task, T
Machine learning enables us to tackle tasks that are too difficult to solve with
fixed programs written and designed by human beings. Machine learning
tasks are usually formulated regarding the machine’s ability to learn and
process an example. An example is a collection of features that have been
quantitatively measured from some object or event that we want the machine
learning system to process. Let’s say each instance of data consists of a set of
features. We represent the example as a vector x ∈ R𝑛 , and each entry of the
vector 𝑥𝑖 is one feature. For example, the features of an image are usually
the pixel values in that particular image.

Some examples of machine learning tasks are classification, regression,
denoising, anomaly detection, density estimation, imputation of missing
values, machine translation, etc. Here, we only focus on the two most com-
mon tasks: classification and regression. In a classification task, the program
trains itself to learn a function 𝑓 : R𝑛 → {1, · · · , 𝑘}, where 𝑘 is a finite and
(typically) pre-established integer number. The learned program determines
which of the 𝐾 categories the given input belongs to. In general, the model
returns a normalized probability distribution over the 𝑘 classes, and the sug-
gested class is the one with the highest probability. In a regression task, the
computer program is trained to predict a numerical value for a given output.
Therefore the algorithm aims to model an appropriate function 𝑓 : R𝑛 → R.

7.1.2 The Experience, E
Learning algorithms are broadly divided into three classes, supervised, un-
supervised learning, and reinforcement learning.

Algorithms for supervised machine learning are designed to learn from
the labelled examples. The training data for supervised learning algorithms
consists of inputs (X) and the desired results (y). The algorithm will look for
patterns in the data during training to predict the expected outputs, such
as 𝑦 = 𝑓 (𝑋). Because an algorithm learning from the training dataset can
be compared to a teacher supervising the learning process, it is known as
supervised learning. The algorithm iteratively produces predictions on the
training data and is corrected by the teacher because we know the right
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answers. When the algorithm performs to an acceptable standard, learning
ceases. The program’s primary objective is to estimate the 𝑝(𝑦 |𝑋) input-
output conditional probability distribution. Some examples of supervised
learning algorithms are Regression, Logistic Regression, Naive Bayes Clas-
sifiers, KNN (K nearest neighbors) [Alt92, Fix51, Dud78], Decision Trees
[Qui86, BFOS84], Random forest [Bre01, Ho95], XGBoost [CG16] etc. Since
supervised learning helps to optimize performance with the help of expe-
rience, it can be applied to solve various types of real-world computation
problems. However, one disadvantage of this learning method is the collec-
tion of labelled examples since collecting big data is quite challenging.

Algorithms for unsupervised learning deal with unlabelled data. The
model works independently to discover undetected patterns and informa-
tion. Unsupervised machine learning techniques aim to learn the proba-
bility distribution 𝑃(𝑥) of the examples 𝑥. K-Means Clustering, Principal
Component Analysis, and Hierarchical Clustering are some examples of
unsupervised learning algorithms.

Reinforcement learning is about taking a sequence of apt actions to
achieve the maximal reward in a particular situation. Neither data nor
label is available in this scenario. The artificial intelligence agent faces a
game-like circumstance; employs trial and error to come up with the final
solution. During the task, the AI agent gets either rewards or penalties for
every action it performs. The aim is to maximize the rewards throughout the
entire course. Note that only the reward policy is set; no hints are given to
the AI agent to solve the task. The model must determine how to complete
the objective, starting with entirely arbitrary trials and ending with sophis-
ticated strategies. Some autonomous driving functions that include rein-
forcement learning are trajectory optimization, motion planning, dynamic
pathing, controller optimization, and scenario-based learning policies for
highways. Another example of reinforcement learning was demonstrated
by Deepmind’s AlphaZero, which has defeated the best human player in the
board game Go [SSS+17].

7.1.3 The Performance, P
The learners’ ability to perform well for new inputs is a crucial component
of machine learning. We split the dataset into two sets to accomplish this.
To train the machine, we utilize samples from one set called the training set.
We evaluate the performance using the data from the second batch, which
typically accounts for 20%–25% of the total data. This set is called the test
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set.
One frequently assesses a learner’s performance in terms of a loss func-

tion. An event or the values of one or more variables are mapped onto a
real number that intuitively represents some "cost" related to the event via
a loss function. Because of this, we also refer to these functions as cost func-
tions and use both terms interchangeably. A loss function is what a machine
learning model aims to reduce during the training process.

For classification tasks, we measure accuracy as our performance measure.
The percentage of cases for which the model generates the correct output
is defined as accuracy. For regression tasks, one often uses Mean Squared
Error (MSE) or Mean Absolute Error (MAE), which corresponds to the mean
L1 and L2 norms, respectively, as loss functions. MSE is defined as:

𝑀𝑆𝐸(𝑦, �̂�) = 1
𝑁

𝑁∑︂
𝑖=0

(︁
𝑦𝑖 − �̂� 𝑖

)︁2
, (7.1)

and MAE reads:

𝑀𝐴𝐸(𝑦, �̂�) = 1
𝑁

𝑁∑︂
𝑖=0

|︁|︁𝑦𝑖 − �̂� 𝑖 |︁|︁ , (7.2)

where �̂� is the estimated output of the model.
Both MSE and MAE have benefits and drawbacks. The MSE is excellent

for guaranteeing that our trained model does not contain any outlier pre-
dictions with significant mistakes because the squaring component of the
MSE gives these errors more weight. However, the squaring portion of the
function amplifies the mistake if our model makes a single abysmal forecast.
As a result, the MSE cost function is less resistant to outliers due to this
characteristic. Thus, by lowering the MSE loss function, we can typically ac-
cept a number of minor errors throughout the learning process but no huge
errors. Since we are considering the absolute value in the case of MAE, all
errors will have the exact linear weighting. As a result, unlike the MSE, we
will not give our outliers much consideration, and our cost function offers a
broad understanding and assessment of how well our model is functioning.
However, occasionally, the outliers’ enormous errors have the same weight
as smaller errors. It could lead to our model performing most of the time
admirably while sometimes producing a few highly inaccurate forecasts.

Thus, ideal loss functions are varied from project to project. Since we
will perform a regression task, we train the model with the MSE loss func-
tion, which is implemented via the Python Scikit-learn package [PVG+11].
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However, we use both MSE and MAE as performance measures over the test
set.

7.1.4 Overfitting and Underfitting
An ML model generally has access to the training data. While training, we
calculate some error measures. It is called the training error. If a model
generalizes any new input data from the problem domain appropriately, it
is said to be a good machine learning model. The ability to perform well on
previously unseen data of an ML model is called generalization. During the
training process, our goal is to reduce the training error corresponding to
an optimization problem. However, machine learning is different from an
optimization process. It has to forecast future data that the data model has
never encountered. In an ML model, we want a lower generalization error, also
called test error, simultaneously. Before diving further, let us understand two
important terms: bias and variance. Building accurate models and avoiding
overfitting and underfitting errors would be easier with a thorough grasp of
these flaws.

• Bias: Bias is the difference between the model’s prediction and the ac-
tual value we are attempting to predict. High bias models oversimplify
the model and pay very little attention to the training data.

• Variance: Variance specifies the variation in the prediction if different
training data is used. Simply said, variance indicates how much a
random variable deviates from its predicted value. A model with a
significant variance pays close attention to the training data and does
not generalize to new data. As a result, these models have significant
error rates on test data while performing exceptionally well on training
data.

Underfitting: A machine learning model is underfitting when it cannot rec-
ognize the underlying pattern in the data. It refers to a model that neither
models the training data nor generalizes to new data. Its occurrence indi-
cates that our model or method does not adequately suit the data. It typically
occurs when we try to develop a linear model with fewer non-linear data or
when we have insufficient non-linear data to build an accurate model. The
machine learning model will likely produce a lot of incorrect predictions in
these circumstances since the rules are too simple and flexible such that one
can apply them to sparse data.
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Some reasons for underfitting are high bias and low variance, the small size
of the training dataset, the simple model, and uncleaned and noisy training
data. To reduce underfitting, one should take the following steps, e.g. in-
crease model complexity, increase the number of features, perform feature
engineering, remove noise from the data, and increase training duration.
Overfitting: When a statistical model fails to produce reliable predictions
on test data but fits the training data well, it is said to be overfitted. When
a model overfits, it learns the information and noise in the training data to
the point where it adversely affects the model’s performance on new data.
It indicates that the machine learns concepts from the noise or random fluc-
tuations in the training data, which don’t apply to new data. Thus, it poses
a difficulty for the models’ capacity to generalize.
The non-parametric and non-linear approaches are the root causes of over-
fitting since these types of machine learning algorithms have more latitude
in how they develop the model based on the dataset, making it possible for
them to produce highly irrational models. If we have linear data, employ-
ing a linear algorithm is one way to prevent overfitting; if we use decision
trees, utilizing parameters like the maximal depth is another. Overfitting is
a problem when the evaluation of machine learning algorithms on training
data differs from the evaluation of unknown data. Some common reasons
for overfitting are building complex models and huge size differences in
training and test data. One can employ numerous techniques to reduce
overfitting, such as increasing training data, reducing model complexity,
early stopping, and using dropouts in neural networks.
A model is said to have a good fit for the data when it provides predictions
with no error, which is the ideal situation. A sweet spot between overfitting
and underfitting allows for this condition. We must examine our model’s
performance over time as it gains knowledge from the training dataset to
comprehend it. Our model will continue to learn as time goes on, so the
training error and testing error data will continue to drop. The presence of
noise and less valuable features will make the model more prone to over-
fitting if it is allowed to learn for an excessively long time. As a result, the
test error will start to increase, and our model’s performance will decline.
We will halt just before the errors increase to get a good match. The model
is proficient at this point in both our unseen testing dataset and training
datasets.

Now we will discuss feed forward neural networks since we are going to
use them as our models later.
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7.1.5 Feed Forward Neural Network
Feed forward neural networks (FFNN) are the backbone of deep learning
which is a subfield of machine learning; also see Fig. 7.1. Deep learning deals
with algorithms inspired by the structure and function of the brain called
artificial neural networks. The basic unit of an artificial neural network is a

Figure 7.1: Deep learning (DL) is a sub-discipline of machine learning (ML)
which is a sub-field of artificial intelligence (AI).

single artificial neuron. It is a real-valued function of the form

𝐴𝑁(x) = 𝜙

(︄∑︂
𝑖

𝑤𝑖𝑥𝑖 + 𝑏
)︄
, (7.3)

where 𝑤𝑖 and 𝑏 is the weights and bias of corresponding input 𝑥𝑖 , and 𝜙 is a
real-valued function 𝜙 : R→ R. For visualization, see Fig. 7.2. The function
𝜙 is usually known as the activation function. There are many possible
activation functions that exist in the literature. Here we list some important
ones which are often used in practice.

• Linear: 𝜙(𝑥) = 𝑥.

• Sigmoid: 𝜙(𝑥) = 1
1+𝑒−𝑥 .

• Hyperbolic tangent: 𝜙(𝑥) = tanh(𝑥).

• Rectified Linear Unit (ReLu): 𝜙(𝑥) = max(0, 𝑥).

The activation function decides whether a neuron should be activated by
calculating the weighted sum and adding bias to it. The non-linear trans-
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Figure 7.2: Basic unit of a feed forward neural network. Here, 𝑥𝑖 denotes
the inputs, 𝑤𝑖 is the corresponding weight, 𝑏 is the bias. 𝜙 is the activation
function that introduces the nonlinearity in the output. The output of the
node reads: 𝜙

(︁ ∑︁
𝑖 𝑤𝑖𝑥𝑖 + 𝑏

)︁
.

formation of the input introduced by the activation function enables neural
networks to learn and carry out complex tasks [Cyb89, HSW89].

Artificial neurons can be combined to form a complex structure that can
perform complicated tasks. It can be achieved by connecting the output
of a neuron as an input to another. One can think of this as a graph 𝐺 =

(𝑉, 𝐸) where the nodes 𝑉 correspond to the artificial neurons and edges 𝐸
correspond to the connections between two neurons. This whole graph 𝐺

structure is called an artificial network. A typical artificial network consists
of an input, hidden, and output layer. The input layer is the first layer
where the data is fed into the network. The middle layers are called the
hidden layers, which is the defining feature of deep learning. The last layer
is called the output layer, which produces the result. Neural networks with
more than one hidden layer are called deep neural networks, and machine
learning of deep neural networks is called deep learning. Neural networks
with no loops are called feed forward neural networks (FFNN); see Fig. 7.3
for visualization. The output information of the neurons is always fed in
the forward direction; never fed back. It corresponds to a directed acyclic
graph.

An FFNN’s aim is approximating a function 𝑓 (X) by 𝑓 ∗(X, �⃗�) which maps
an input X to an output y returning the best values of the parameters �⃗�

(weights and biases) after the learning process. We have to fix a loss function
for the training process of the network. We use MSE as our loss function to
train the model. Evaluated on our whole training set, our MSE loss function
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Figure 7.3: Schematic representation of a Feed Forward Neural Network
(FFNN).

for training is defined as

ℒ𝑀𝑆𝐸(�⃗�) = 1
𝑚

∑︂
𝑥∈𝑋𝑡𝑟𝑎𝑖𝑛

(y𝑡𝑟𝑎𝑖𝑛 − 𝑓 ∗(X, �⃗�))2 , (7.4)

where 𝑚 is the size of the training set. In principle, one has to minimize the
loss, which is done using gradient descent. This is, by definition, comprised
of two steps: calculating gradients of the loss function and then updating
existing parameters in response to the gradients. This cycle is repeated
until reaching the minima of the loss function. Calculating the gradient
∇�⃗�ℒ

𝑀𝑆𝐸(�⃗�) is a tedious task with respect to the weight and bias parameters.
It can be achieved by back-propagation [GBC16, BW91, VMR+88, HN92,
LTHS88, CR95, F+88]. Following recent deep learning approaches, one can
use state of the art optimizers that minimize the loss function. For our pur-
pose, we use the ADAM optimizer [KB14], which uses the back-propagation
method to calculate the gradient, already contained in several deep learning
packages [Cho15, AAB+15].

7.2 Data Generation

A supervised machine learning technique is incorporated to obtain an up-
per bound of the guessing probability. Any supervised machine learning
approach’s first step is generating the training points. For this purpose, we
generate random input-output measurement statistics of a [𝑚, 𝑘] (i.e. 𝑚
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Figure 7.4: A sketch for the set of correlations. All classical probabilities
form a convex polytope 𝒫, which is embedded in the set 𝒬 of quantum
correlations, which in turn is a subset of the no-signalling polytope 𝒩𝒮. 𝑣1,
𝑣2, 𝑣3 and 𝑣4 are the vertices of the local polytope. 𝐵 (blue dashed line)
represents the facet Bell inequality which separates the classical polytope
from the quantum and no-signalling set.

measurement settings, 𝑘 outcomes each) Bell scenario. The input-output
measurement statistics or probability distribution is also called a ’behav-
ior’ [BCP+14], and we use these terms interchangeably. Since the guessing
probability for the local behaviors is always 1 (i.e. Eve can guess the right
outcome with probability 1), there is no need to train the machine to perform
well on local behaviors. Thus, we only generate random quantum bipartite
probability distribution and use it as the input (features) of the supervised
machine learning model. Weighted vertex sampling method [KCB+21] can be
employed to generate the quantum probability distribution.

To generate samples from the quantum set 𝒬, recall the set of prob-
abilities, satisfying classical and no-signalling conditions, form the convex
polytopes 𝒫 and𝒩𝒮, respectively (see Fig. 7.4 for illustration). For the [𝑚, 𝑘]
Bell scenario, the classical polytope 𝒫 is specified by 𝑘2𝑚 local vertices. How-
ever, the classical polytope can also be described by its facets. These facets
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represent the hyperplane (or Bell inequality) that separates any non-classical
(quantum and no-signalling) behavior from the classical ones. These facets
are called facet Bell inequalities or tight Bell inequalities [BCP+14]. Eight
facet Bell inequalities exist for the [2, 2] scenario, all equivalent to the CHSH
inequality [CHSH69]. For the [3, 2] Bell scenario, 648 facet Bell inequalities
are identified. It is done using the formulation of [Fuk03]. Using [Fuk03],
one can calculate all the facets of a convex polytope given its vertices. The
transformation from vertex representation to the facet representation of a
polytope is known as facet enumeration or convex hull problem, which uses
Gaussian and Fourier-Motzkin elimination 1. Note that all the 648 facet Bell
inequalities correspond to two classes of independent facet Bell inequali-
ties, i.e. the CHSH inequality and the 𝐼3322 inequality [CG04, PV10]. For
the [4, 2] Bell scenario, more than 10000 facet Bell inequalities [CC19] exist.
However, all facets correspond to 174 independent facet Bell inequalities
[CG19].

These facet Bell inequalities are spanned by some of the local vertices of
the classical polytope 2. These vertices provide the maximum classical bound
of the corresponding facet Bell inequality. Consider 𝑛 local vertices span a
facet Bell inequality. We denote these set of 𝑛 vertices as

{︁
𝑃ℒ
𝑖
(𝑎𝑏 |𝑥𝑦)

}︁𝑛
𝑖=1

and the PR-box of the corresponding facet Bell inequality as 𝑃PR(𝑎𝑏 |𝑥𝑦), see
Fig. 7.4 for better visualization. The PR-Box 𝑃PR(𝑎𝑏 |𝑥𝑦) can be defined as
the probability distribution that provides the maximal no-signalling bound
of the corresponding facet Bell inequality [BLM+05, PR94]. To generate a
behavior P from the set𝒩𝒮\𝒫, uniform random weighted mixtures of the 𝑛+
1 vertices (𝑛 vertices that span the facet Bell inequality and the corresponding
PR-box) with 𝑛-fold weight on the PR-box are taken. Formally, the sample
behavior P ∈ 𝒩𝒮 \ 𝒫 can be generated as:

𝑃(𝑎𝑏 |𝑥𝑦) :=
𝑛𝑤0𝑃

PR(𝑎𝑏 |𝑥𝑦) +∑︁𝑛
𝑖=1 𝑤𝑖𝑃

ℒ
𝑖
(𝑎𝑏 |𝑥𝑦)

𝑛𝑤0 +
∑︁𝑛
𝑖=1 𝑤𝑖

(7.5)

where the 𝑤𝑖 ∈ [0, 1] are uniformly drawn random numbers. While gen-
erating probability distributions, we consider all facet Bell inequalities for

1The list of facets consists of positivity constraints and the facet Bell inequalities. Since
physical theory never violates this condition, there is no particular interest in this constraint.
Only the facet Bell inequalities are chosen, discarding the positivity constraints.

2Eight local vertices span all the facet inequalities for the [2, 2] Bell scenario. For the
[3, 2] Bell scenario, facet Bell inequalities equivalent to the CHSH inequality is spanned by
thirty-two vertices. Twenty vertices span inequalities equivalent to the 𝐼3322 inequality.
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the [2, 2] and [3, 2] Bell scenario. However, since there are more than 10000
facet Bell inequalities for the [4, 2] Bell scenario, we only restrict ourselves
to generating probability distributions using the independent facet Bell in-
equalities.

From this set of samples, we only select the behaviors with 𝒬2 realization
(second level of NPA hierarchy), i.e. 𝑃(𝑎𝑏 |𝑥𝑦) ∈ 𝒬2 [NPA07, NPA08], to
generate random quantum probability distribution. Here, we presume that
𝒬2 provides a good approximation for the original quantum set 𝒬.

Following that, the guessing probability of the sampled correlation P is
estimated using the two-step method of [DKB22a] solving the optimization
problem of Eq. (5.7); see Sec. 3.4 and Sec. 5.4 for a detailed description.
Without loss of generality, one can calculate the guessing probability of
Alice’s first measurement setting. This two-step process will provide us
with two essential parameters: the upper bound of the guessing probability
𝑃∗
𝑔(𝑎 |𝑥, 𝐸) and the associated Bell inequality 𝐵 (specified by the hyperplane

vector {ℎ(𝑎𝑏 |𝑥𝑦)}) that is used to solve the optimization process.
The goal of the deep learning models is to predict the guessing probability

𝑃∗
𝑔(𝑎 |𝑥, 𝐸) and the optimal Bell inequality 𝐵 from the probability distribution

P using supervised machine learning. For the [𝑚, 𝑘]Bell scenario, the dataset
{X, y} is prepared with the input (feature)

X := {𝑃(𝑎𝑏 |𝑥𝑦)}𝑎,𝑏=1,··· ,𝑘
𝑥,𝑦=1,··· ,𝑚 . (7.6)

and the output (target)

y :=
[︂
{ℎ(𝑎𝑏 |𝑥𝑦)}𝑎,𝑏=1,··· ,𝑘

𝑥,𝑦=1,··· ,𝑚 , 𝑃
∗
𝑔(𝑎 |𝑥, 𝐸)

]︂
. (7.7)

7.3 Deep Learning Models

In this section, we discuss the deep learning models that are used to assess
the dataset {X, y}. Two types of neural network architectures are utilized
here: ’linear’ FFNN and ’nonlinear’ FFNN. The ’linear’ FFNN consists of
several layers (without any branching); see Fig. 7.5 for better visualization.
In this thesis, we refer to this neural network construction as NN1.

The input layer has 𝑚2𝑘2 neurons corresponding to the elements in
{𝑃(𝑎𝑏 |𝑥𝑦)}. The output layer has 𝑚2𝑘2 + 1 neurons (𝑚2𝑘2 neurons corre-
spond to the coefficients of the optimal Bell inequality {ℎ(𝑎𝑏 |𝑥𝑦)}, and one
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Figure 7.5: Schematic description of a linear neural network. It consists of
an input layer, several hidden layers and an output layer without branch-
ing. Hidden layers and the output layer are dense layers, meaning the
neurons of the layer are connected to every neuron of its preceding layer. In
this construction, input layer: {𝑃(𝑎𝑏 |𝑥𝑦)} (𝑚2𝑘2 neurons) and output layer:[︂
{ℎ(𝑎𝑏 |𝑥𝑦)}, 𝑃∗

𝑔(𝑎 |𝑥, 𝐸)
]︂

(𝑚2𝑘2 + 1 neurons).
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corresponds to the guessing probability 𝑃∗
𝑔(𝑎 |𝑥, 𝐸)) 3. While training the

FFNN, the dataset {X, y} is divided into two parts following the standard
approach. The first part of the dataset is for training and cross-validation
(80%) 4, and the second part is for testing (20%). The authors perform 100
rounds of training using the optimizer ADAM [KB14], of which the first 50
rounds have a fixed learning rate of 0.001. For the rest of the rounds, the
learning rate is reduced by 90% in every tenth round. The activation function
ReLu (Rectified linear unit) is utilized in the input and the hidden layers.
In the output layer, the linear activation function is used for 𝑚2𝑘2 neurons
that correspond to the optimal Bell inequality, and the sigmoid activation
function is incorporated for the neuron that corresponds to the guessing
probability. Mean Squared Error (MSE) (also see Eq. (7.1)) is used as the cost
function, which is minimized during the training process.

The second type of neural network architecture that is used is the non-
linear FFNN. In this network, two parallel submodels are incorporated to
interpret parts of the output that share the same input. Here, the input
layer has 𝑚2𝑘2 neurons corresponding to the elements of the input-output
probability distribution {𝑃(𝑎𝑏 |𝑥𝑦)}. Some hidden layers follow the input
layer. After that, one hidden layer is bifurcated into two, creating two
branches. The first branch of the network is for predicting the coefficients
of the optimal Bell inequality {ℎ(𝑎𝑏 |𝑥𝑦)}, and thus has 𝑚2𝑘2 neurons. The
second branch of the neural network is for predicting the guessing proba-
bility. Thus, the output layer will have only one neuron corresponding to
𝑃∗
𝑔(𝑎 |𝑥, 𝐸). In this thesis, we refer to this neural network construction as

NN2; see Fig. 7.6 for visualization. NN2 can be built using Keras functional
API [Cho15]. The activation function ReLu (Rectified linear unit) is used in
the input and the hidden layers for both branches of the network. The linear
activation function is used in the output layer of the first branch, while the
sigmoid activation function is used in the second branch. The other details
about the training of the network are the same as NN1 neural network stated
previously. Both NN1 and NN2 predicted an output of the form:

ypred :=
[︂
{ℎ(𝑎𝑏 |𝑥𝑦)pred}𝑎,𝑏=1,··· ,𝑘

𝑥,𝑦=1,··· ,𝑚 , 𝑃
pred
𝑔 (𝑎 |𝑥, 𝐸)

]︂
,

3If we only want to predict the upper bound of the guessing probability 𝑃∗
𝑔(𝑎 |𝑥, 𝐸)),

there is just one neuron in the output layer.
480% of this set is used for training while the rest 20% is utilized for the validation of

the model.
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Figure 7.6: Schematic diagram of a neural network where a hidden layer
is bifurcated into two different arms, which goes on predicting different
parts of the output separately. In this construction, input layer: {𝑃(𝑎𝑏 |𝑥𝑦)}
(𝑚2𝑘2 neurons), first output: {ℎ(𝑎𝑏 |𝑥𝑦)} (𝑚2𝑘2 neurons) and second output:
𝑃∗
𝑔(𝑎 |𝑥, 𝐸) (1 neuron).
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where {ℎ(𝑎𝑏 |𝑥𝑦)pred}𝑎,𝑏=1,··· ,𝑘
𝑥,𝑦=1,··· ,𝑚 are the coefficients of the predicted Bell in-

equality 𝐵pred and 𝑃pred
𝑔 (𝑎 |𝑥, 𝐸) is the predicted guessing probability.

7.4 Performance

Since the models predict two separate entities (the Bell inequality and guess-
ing probability), the performance of the neural networks is evaluated sepa-
rately for each entity. As a performance measure of predicting the guessing
probability, we use mean absolute error (MAE)

MAE
(︂
𝑃∗
𝑔(𝑎 |𝑥, 𝐸), 𝑃

pred
𝑔 (𝑎 |𝑥, 𝐸)

)︂
=

1
𝑁test

𝑁test∑︂
𝑖=1

|︁|︁|︁𝑃∗
𝑔(𝑎 |𝑥, 𝐸)𝑖 − 𝑃

pred
𝑔 (𝑎 |𝑥, 𝐸)𝑖

|︁|︁|︁ , (7.8)

and mean squared error (MSE)

MSE
(︂
𝑃∗
𝑔(𝑎 |𝑥, 𝐸), 𝑃

pred
𝑔 (𝑎 |𝑥, 𝐸)

)︂
=

1
𝑁test

𝑁test∑︂
𝑖=1

(︂
𝑃∗
𝑔(𝑎 |𝑥, 𝐸)𝑖 − 𝑃

pred
𝑔 (𝑎 |𝑥, 𝐸)𝑖

)︂2
.

(7.9)

𝑁test is the number of data points in the test set and 𝑃
pred
𝑔 (𝑎 |𝑥, 𝐸) is the

predicted guessing probability. In case of predicting the Bell inequality 𝐵

(characterized by its coefficients ℎ(𝑎𝑏 |𝑥𝑦)), we use MAE, which reads:

MAE
(︂
𝐵, 𝐵pred

)︂
=

1
𝑚2𝑘2

1
𝑁test

𝑁test∑︂
𝑖=1

𝑘∑︂
𝑎,𝑏=1

𝑚∑︂
𝑥,𝑦=1

|︁|︁|︁ℎ(𝑎𝑏 |𝑥𝑦)𝑖 − ℎ(𝑎𝑏 |𝑥𝑦)pred
𝑖

|︁|︁|︁ , (7.10)

and MSE, which reads:

MSE
(︂
𝐵, 𝐵pred

)︂
=

1
𝑚2𝑘2

1
𝑁test

𝑁test∑︂
𝑖=1

𝑘∑︂
𝑎,𝑏=1

𝑚∑︂
𝑥,𝑦=1

(︂
ℎ(𝑎𝑏 |𝑥𝑦)𝑖 − ℎ(𝑎𝑏 |𝑥𝑦)pred

𝑖

)︂2
,

(7.11)

as the performance measures, where 𝐵pred is the predicted Bell inequality.
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We test the performance of the deep learning models in two different
scenarios. The first case is when the deep learning models only predict
the upper bound of the guessing probability. The guessing probability
calculated from a trained DL model only estimates the upper bound with no
certification. Therefore, we cannot use this estimation to bound the secret key
rate. Nevertheless, the device-independent secret key rate can be bounded
using a Bell inequality that produces a non-zero Bell violation for specific
measurement data. Therefore, obtaining a Bell inequality with a non-zero
Bell violation from the measurement statistics verifies the nonlocality of
the input-output correlation and ensures that the guessing probability will
be less than one. Thus, in the second scenario, we predict the guessing
probability and the optimal Bell inequality (employed to bound the guessing
probability).

While forecasting the guessing probability 𝑃∗
𝑔(𝑎 |𝑥, 𝐸) only, the trained

deep learning model (NN1 neural network architecture with one output
neuron in the output layer, see Fig. 7.5 for visualization) predicts the guessing
probability with mean absolute error in the range of 10−3 to 10−2 (mean
squared error is in the range of 10−5 to 10−3). Such small errors without
the knowledge of Bell inequality violation or the structure of the quantum
correlations set are truly remarkable. The errors in the prediction of the
guessing probability increased with the complexity of the Bell scenario (i.e.
with the increased number of inputs and outputs) since it involves a more
complex quantum set, and the number of input neurons increased with 𝑚

and 𝑘 in the Bell scenario; see Appendix. B for a detailed description.
For the second scenario, deep learning models are trained to predict the

guessing probability 𝑃∗
𝑔(𝑎 |𝑥, 𝐸) as well as the optimal Bell inequality 𝐵 that

can be used to bound the guessing probability. Both NN1 (see Fig. 7.5) and
NN2 (see Fig. 7.6) neural network architectures are employed to perform this
task. Both neural network architectures predict the guessing probability and
the optimal Bell inequality with high accuracy and low error. For the task of
predicting the guessing probability, MAE ranges between 10−4 to 10−2 (MSE
ranges between 10−6 to 10−3). While predicting the optimal Bell inequality
𝐵, MAE ranges between 10−3 to 10−2 (MSE ranges between 10−4 to 10−2);
see Appendix. B for a detailed description. Note that the errors in the
prediction of the optimal Bell inequality increased with the complexity of
the Bell scenario since the neural network has to predict more coefficients of
the Bell inequality.

Another way to evaluate the quality of the predicted optimal Bell inequal-
ity 𝐵pred is to use them in upper bounding the guessing probability problem,
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also see Eq. (5.7). While looking into the probability of 𝑃∗
𝑔(𝑎 |𝑥, 𝐸) < 1 when

𝑃∗
𝑔(𝑎 |𝑥, 𝐸) is calculated from the predicted Bell inequality 𝐵pred, it is observed

that the predicted Bell inequality can generate 𝑃∗
𝑔(𝑎 |𝑥, 𝐸) < 1 with very high

probability (≈ 99.5% for the [2, 2] Bell scenario, ≈ 99% for the [3, 2] Bell
scenario, ≈ 94% for the [4, 2] Bell scenario). To further assess the predicted
Bell inequality from the trained networks, one can also look into the statisti-
cal errors between the true guessing probability 𝑃∗

𝑔(𝑎 |𝑥, 𝐸) and the guessing
probability obtained using the predicted Bell inequality. The MAE ranges
from 10−5 to 10−2, while the MSE ranges from 10−8 to 10−3; see Appendix. B
for a detailed description. Similar to the previous cases, the statistical errors
rise with the Bell scenario’s complexity. Our deep learning method is orders
of magnitude quicker compared to the usual classical solver once the deep
learning model is trained. When comparing the computational runtime for
the guessing probability estimation, we observe a speedup of 103 − 105 for
obtaining a prediction about a new instance compared to the runtime of
the usual method for solving the semi-definite optimization problem (using
the classical solver like Mosek); see Eq. (5.7) for details. When comparing
the runtime comparison of predicting the optimal Bell inequality, we see a
speedup of 103−104 compared to the runtime of the usual method for solving
the linear optimization problem (the classical solver like Mosek using PICOS
[SS22] python interface); see Eq. (3.15) for details. For runtime comparison
between the classical solver and the neural network approach, see Appendix
B. The difference in runtime is also increasing between our approach and
the classical solver method with the number of measurement settings 𝑚 (or
outcomes per measurement 𝑘) in the Bell scenario. This follows from the fact
that the number of variables in the optimization process of Eq. (5.7) increases
exponentially with the number of measurement settings (or outcomes per
measurement) in the Bell scenario. Thus, it takes more computational time
to perform a semi-definite program (or a linear program) using a classical
solver. Only the functional output is computed by a trained neural network
using its optimal weights and biases. The only factor influencing how long
it takes to compute the prediction task is the neural network size.

In a nutshell, using ML and DL methods provides an alternative route to
obtain the guessing probability. The fast processing of the guessing proba-
bility estimation is particularly relevant as it can be applied to randomness
certification. With current technology, the Bell test event rates are around
100 kHz, which results in new data every 10𝜇s [BKG+18]. As a result, on a
single CPU, it is already too fast for traditional SDP solvers. Implementing
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our deep learning strategy in those situations may be beneficial. The size of
a deep neural network that can process every event during an experiment
can be optimized. We also develop deep learning models and apply super-
vised machine learning to estimate the optimal Bell inequality, which can
be utilized to bound the secret key rate via upper bounding the guessing
probability for a DIQKD protocol.

While estimating the guessing probability and the optimal Bell inequality,
the statistical errors increase with the Bell scenario’s complexity (i.e. an
increase in the number of measurements per party). Since there are more
inputs and outputs in the Bell scenario, the neural network architectures
may not be able to generalize the complex system with a small number
of hidden layers and nodes in each layer. One can take two approaches
to reduce errors. Either one creates a larger dataset to train the model or
creates a sizeable neural network architecture with more hidden layers or
nodes in every layer. Nevertheless, employing a larger dataset for training
or training a more extensive neural network will take more time. In large
networks, overfitting is another concern. Additionally, the neural network’s
size affects how long a new instance takes to compute. Therefore, one has
to optimize the neural network architectures while balancing speed and
accuracy.

Applying neural network architectures to the Bell scenarios with more
measurement settings and outcomes is the logical next step. One can also
expand this approach to multipartite scenarios. Investigating several differ-
ent neural network architectures is another area that merits investigation for
future effort. Finally, beyond the benefit of speed, one may look for new Bell
inequalities using neural network architectures.
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8
Conclusion & Outlook

Two main novel topics constitute the core of this dissertation. On the one
hand, we discuss the device-independent (DI) quantum key distribution
(QKD) using post-selected Bell inequalities. On the other hand, we illus-
trate the utility of neural network architectures in predicting the guessing
probability and the optimal Bell inequality.

Due to data security concerns, quantum cryptography has recently at-
tracted much attention. This is because it successfully infuses the concepts
of quantum physics and computer science, which facilitates information-
theoretic secure communication between two parties. However, due to the
deviation between theoretical models and practical devices, the security
of such systems cannot be ensured. Therefore, we consider the device-
independent (DI) approach, where the security is independent of any pre-
sumptions regarding the fundamental characteristics of the devices and
quantum signals. Instead, it relies on a loophole-free Bell inequality vio-
lation. Thus the selection of a suitable Bell inequality has paramount im-
portance in DIQKD. In this context, we introduce a novel DIQKD protocol
in our article [DKB22a] (which is the content of Chap. 6), where the Bell
inequality is constructed from the measurement statistics of the experiment
instead of using a pre-specified one. Furthermore, the Bell inequality is
designed to lead to the maximum achievable Bell violation for that specific
measurement statistics. We employ a semidefinite programming technique
to upper bound the guessing probability while using the constructed Bell in-
equality and corresponding Bell violation as a constraint. The upper bound
of the guessing probability is then used to bound the device-independent se-
cret key rate (DISKR) by lower bounding the min-entropy. The hierarchical
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structure of the quantum correlation set, e.g. NPA hierarchy, is employed to
solve this optimization problem. Besides conceptualizing a DIQKD model
using post-selected Bell inequalities, we provide a detailed finite-size secret
key analysis of our proposed procedure. Our approach is flexible and can
be adapted for generalized Bell scenarios, i.e., 𝑛 parties, 𝑚 measurement set-
tings, and 𝑘 different outcomes for each measurement setting. Implementing
our method for non-optimal settings, one can generate higher DISKR than
the standard CHSH inequality. Moreover, compared to related approaches
[NSPS14, BSS14], our method yields a robust Bell inequality that is stable
against small fluctuations in the measurement settings or the shared state
and needs fewer measurement rounds to generate a non-zero DISKR. Our
systematic analysis is not exhaustive. Future research must use more so-
phisticated methods of bounding the conditional von Neumann entropy
[SGP+21, BFF21a, BFF21b], which could increase the secret key rate com-
pared to the bounds based on the min-entropy.

In [DKB22b] (which is the content of Chap. 7), we introduce a novel
method to estimate the guessing probability that uses trained deep learning
models to bypass the computationally complex and cumbersome semidefi-
nite optimization process. We have also built deep learning models to select
a suitable Bell inequality that can then be employed for DISKR calculation.
To generate the input data for the supervised machine learning process, we
have demonstrated a method for sampling random quantum probability dis-
tribution using facet Bell inequalities for different Bell scenarios. Following
our approach, one can estimate the guessing probability and the optimal Bell
inequality (that can be used to get the optimal guessing probability) with
extremely high precision and low average error. Moreover, our approach
requires minimal computational resources, and we get a speed-up of 103 to
105 for obtaining a new prediction (about guessing probability or optimal
Bell inequality) compared to the runtime of using a classical SDP solver.
This approach can also be expanded to multipartite scenarios. Beyond the
advantage of speed, one may use neural network architectures to look for
new Bell inequalities beneficial to the guessing probability estimation prob-
lem. However, our methodology does not account for uncertainty or offer
certifications of the output. It remains for future work to use techniques
like probabilistic modeling [Gha15] that can certify the correctness of the
model’s output.

Overall, our study fits into the global movement toward the quantum
revolution, which promises practical uses for quantum technology. We
hope that our doctoral work has aided in the ongoing effort to turn DIQKD
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protocols into practical cryptographic solutions and sparked an additional
fundamental investigation into the burgeoning subject of quantum cryptog-
raphy.
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In device-independent quantum key distribution (DIQKD) the security is not based on any assumptions about
the intrinsic properties of the devices and the quantum signals but on the violation of a Bell inequality. We
introduce a DIQKD scenario in which an optimal Bell inequality is constructed from the performed measurement
data rather than fixing beforehand a specific Bell inequality. Our method can be employed in a general way,
for any number of measurement settings and any number of outcomes. We provide an implementable DIQKD
protocol and perform finite-size security key analysis for collective attacks. We compare our approach with
related procedures in the literature and analyze the robustness of our protocol. We also study the performance of
our method in several Bell scenarios as well as for random measurement settings.

DOI: 10.1103/PhysRevA.105.032451

I. INTRODUCTION

Data security concerns are prevalent in the modern world.
One of the most prominent domains of quantum communi-
cation is quantum key distribution (QKD), which allows to
distribute a secure key between two (or more) parties, namely,
Alice and Bob, where the security is only based on the laws of
quantum mechanics. Since the inception of QKD [1], a variety
of QKD protocols [2–12] have been introduced. However, the
security of these device-dependent protocols needs complete
characterization of the devices, sources, and/or the channel
between the parties. In a realistic scenario, the device can be
not completely characterized or could even be prepared by a
malicious eavesdropper (Eve). Furthermore, hacking of exist-
ing implementations that exploit experimental imperfections
was demonstrated [13–15]. To overcome these drawbacks,
device-independent (DI) QKD was introduced [16], where the
security does not require any assumptions about the inherent
properties of the devices or the dimension of the Hilbert space
of the quantum signals. The security of DI protocols is based
on the observation of a loophole-free Bell inequality violation
[17–29] which guarantees the quantum nature of the observed
data. The length of the secret key will depend on the estimated
violation of the Bell inequality.

In this article we introduce a DIQKD scenario in which
the Bell inequality is not agreed upon beforehand but will
be constructed from the observed probability distribution of
the measurement outcomes. We follow a two-step process:
From the input-output probability distribution, we construct
a Bell inequality that leads to the maximum Bell violation for
that particular measurement setting of Alice and Bob. Then
we use this optimized Bell inequality and the corresponding
violation to bound the secret key rate. Note that in [30,31],
the authors introduced an alternative approach to bound the
device-independent secret key rate via a Bell inequality and

*Sarnava.Datta@hhu.de

the corresponding violation, which is also constructed from
the full measurement statistics. We will relate and compare
our method with theirs in the Results section (Sec. VI). In
particular, we show that our procedure is advantageous in the
nonasymptotic regime.

This paper is organized as follows. We start in Sec. II by
briefly reviewing classical and quantum correlations. Then we
explain how to obtain the optimal Bell inequality from the
observed probability distribution. We lay the framework to
provide a confidence interval for the Bell expectation value
in Sec. III. We provide an implementable DIQKD protocol in
Sec. IV and calculate the finite-size secret key rate in Sec. V.
In Sec. VI we illustrate our method with several examples.

II. GENERAL FRAMEWORK

In this section we review the concept of the classical corre-
lation polytope in Sec. II A, and, based on this, we explain in
Sec. II B how to construct Bell inequalities that are maximally
violated by the measurement data.

A. Set of correlations

Consider a setup for two parties1 (namely, Alice and Bob)
connected by a quantum channel. The parties perform local
measurements on a joint quantum state. Let us assume that
Alice and Bob have ma and mb measurement settings, re-
spectively. Alice’s set of measurement settings is denoted as
X = {1, . . . , ma}, and Bob’s set of measurement settings as
Y = {1, . . . , mb}. To estimate the probability distribution from
the experimental data, we have to use the measurement device
N times in succession. We assume that the devices behave
independently and identically (i.i.d.) in each round, i.e., the
results of the ith round are independent of the past i − 1

1Note that our method can be extended in a straightforward way to
n parties.
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rounds. The setting of the ith round is denoted as xi ∈ X for
Alice and yi ∈ Y for Bob. Each of these measurement settings
has d outcomes, which are denoted as ai ∈ A = {1, . . . , d}
for Alice and bi ∈ B = {1, . . . , d} for Bob. We call this the
[(ma, mb), d] scenario, i.e., two parties with (ma, mb) mea-
surement settings and d outcomes each. When both parties
have an equal number of measurement settings, i.e., ma =
mb = m, we will denote this as the [m, d] scenario. The joint
probability of getting outcome a when Alice is using the
measurement setting x ∈ X and b when Bob uses the mea-
surement setting y ∈ Y is denoted as P(Aa

xBb
y ). All these joint

probabilities will be collected in a probability vector

P := [
P
(
Aa

xBb
y

)]
, (1)

where x ∈ X , y ∈ Y , a ∈ A, and b ∈ B. The associated proba-
bility space is of dimension

Dd
ma,mb

:= mambd2. (2)

The set of all probabilities that represent a classical or lo-
cally real theory forms a convex polytope [32–34]. We denote
this polytope as P . Any probability distribution which is not
contained in P shows nonclassical or quantum behavior and
can be witnessed by the violation of a Bell inequality [35].
As illustrated in [36], the polytope of classical correlations
can be characterized by its extremal points vp, where p =
{1, 2, . . . , dma+mb}, and vp has entries from the set {0,1}. The
extremal points of the polytope correspond to deterministic
strategies. Every classical correlation Pcl ∈ P can be written
as a convex combination of all the deterministic strategies as

Pcl =
dma+mb∑

p=1

λpvp, (3)

where λp � 0 and
∑dma+mb

p=1 λp = 1. This subsequently implies
that every observed probability distribution which cannot be
decomposed as shown in Eq. (3) violates at least one Bell
inequality.

B. Designing Bell inequalities

Consider the [(ma, mb), d] scenario where the parties re-
ceive the measurement data P. In order to extract a secret key
from these classical measurement data, they need to violate
a Bell inequality. As shown in [36], this scenario can be
translated to a linear separation problem. For illustration, see
Fig. 1. Bell inequalities correspond to hyperplanes in the prob-
ability space that separate the classical correlation polytope
P from the set of all genuine quantum correlations Q \ P .
Such hyperplanes are specified by a normal vector h ∈ RDd

ma ,mb

with the dimension given in Eq. (2). If P ∈ Q \ P , there exists
at least one hyperplane h that separates all the vertices vp of
P from the observed probability distribution P. We set the
objective of the linear program to find the hyperplane vector
h corresponding to the Bell inequality which is maximally vi-
olated by the measurement data P. This optimization problem
can be formulated as

max
h,c

hT P − c

subject to hT vp � c ∀ p ∈ {1, . . . , dma+mb}

FIG. 1. A sketch for the set of correlations. All classical proba-
bilities form a convex polytope P , which is embedded in the set Q of
quantum correlations, which in turn is a subset of the nonsignaling
polytope N . The Bell inequality is specified by the vector h defining
a hyperplane which separates all vertices vp from the observed prob-
ability distribution P (the black point situated outside the classical
polytope P).

hT P > c

−1 � hi � 1 ∀ i ∈ {
1, . . . , Dd

ma,mb

}
, (4)

with the classical bound c. The additional constraint imposed
on the elements of hi of the hyperplane vector h keeps the
maximization bounded. The chosen boundaries of hi do not
influence the result of the optimization problem besides being
a global scaling factor. The hyperplane found in this manner
has the form

h = [
hab

AxBy

]
, (5)

where x ∈ X , y ∈ Y , a ∈ A, and b ∈ B. Thus the Bell inequal-
ity found by the optimization and specified by the hyperplane
vector h is given as

B[P] =
∑

a,b,x,y

hab
AxBy

P
(
Aa

xBb
y

)
� c. (6)

Equation (6) represents the Bell inequality that is maximally
violated by the observed probability distribution P. Note that
if P ∈ P , the optimization problem Eq. (4) is infeasible and
no Bell inequality can be found.

III. STATISTICAL FLUCTUATIONS
AND THEIR ESTIMATION

So far, we have concentrated on the ideal asymptotic
case, that is, using the exact probabilities as entries of the
observed probability distribution P. However, in a real ex-
periment one does not have access to probabilities but only
to frequencies that are subject to statistical uncertainties and
systematic errors. Since systematic errors mostly arise from
specific experimental settings, we solely focus on the theoret-
ical framework and concentrate on statistical fluctuations, as
they lead to uncertainties in the observed Bell violation.

Let Alice and Bob perform N rounds of measurements. The
number of instances when Alice chooses measurement x ∈ X
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and Bob chooses measurement y ∈ Y is denoted by Nx,y. In
a real experiment, instead of having access to joint probabil-
ities, we estimate them by the joint frequencies P̂(Aa

xBb
y ) =

N (a,b,x,y)
Nx,y

. Here N (a, b, x, y) is the number of occurrences of
the corresponding input-output pair.

The Bell value B[P̂] is a function of the joint frequencies,

B[P̂] = hab
AxBy

P̂(Aa
xBb

y ), (7)

see also Eq. (6). Let χ (e) be an indicator function for a
particular event e, i.e., χ (e) = 1 if the event e is observed,
χ (e) = 0 otherwise. We introduce a random variable

B̂i =
∑

a,b,x,y

hab
AxBy

χ (ai = a, bi = b, xi = x, yi = y)

p̂(xi = x, yi = y)
,

where p̂(xi = x, yi = y) = Nx,y

N is the input joint frequency
distribution. We get 1

N

∑N
i=1 B̂i = B[P̂]. Defining

qmin = min
a,b,x,y

hab
AxBy

p̂(xi = x, yi = y)
,

qmax = max
a,b,x,y

hab
AxBy

p̂(xi = x, yi = y)
,

we have qmin � B̂i � qmax. We define γ := qmax − qmin. By
using Hoeffding’s inequality [37] (see Lemma 2 in Ap-
pendix A), we can bound the deviation δ of the Bell value
obtained by the frequencies from the asymptotic value by a
probability:

Pr(B[P] � B[P̂] − δ) � 1 − ε, (8)

with

ε = exp

(
− 2Nδ2

γ 2

)
. (9)

For a given ε of a DIQKD protocol, one can calculate the
confidence interval δ for the Bell value using Eq. (9).

IV. DIQKD MODEL AND PROTOCOL

Let us state the DIQKD protocol. We consider the i.i.d.
scenario where the devices will behave independently and
identically in each round. The state distributed between the
parties is also the same for each round of the protocol. Alice
has m measurement inputs x ∈ {1, . . . , m}. Each of the inputs
has d corresponding outputs a ∈ {1, . . . , d}. Bob instead has
m + 1 measurement inputs y ∈ {1, . . . , m + 1}. Each mea-
surement input of Bob also has d outputs b ∈ {1, . . . , d}.

(1) In every round of the protocol, the parties do the fol-
lowing:

(a) A state ρAB is distributed between Alice and Bob.
(b) There are two types of measurement rounds,

namely, raw key generation rounds and parameter esti-
mation rounds. According to a preshared random key T ,
Alice and Bob choose a random Ti = {0, 1} such that
Pr(Ti = 1) = ξ . If Ti = 0, Alice and Bob choose the mea-
surement input (x = 1, y = m + 1) to generate the raw key.
Otherwise, Alice and Bob choose the measurement inputs
x ∈ {1, . . . , m} and y ∈ {1, . . . , m}, respectively, uniformly

at random. These cases will be denoted as parameter esti-
mation rounds.

(c) The parties record their inputs and outputs as (xi, yi )
and (ai, bi ). After N rounds of measurement, we denote the
input bit strings as X N and Y N and output bit strings as AN

and BN for Alice and Bob, respectively.
(2) Alice and Bob publicly reveal their measurement

outcomes of the parameter estimation rounds. They divide
the parameter estimation rounds’ data randomly into three
sets (Alice specifies to which set each parameter estimation
round’s data belongs, according to a random number generator
in her possession). From the first set, Alice and Bob estimate
the frequencies P̂1 = [P̂(Aa

xBb
y )] [see Eq. (1)]. If P̂1 is inside

the classical correlation polytope P , the protocol aborts. Oth-
erwise, they construct an optimal Bell inequality by solving
the linear optimization in Eq. (4). Then Alice and Bob use
the data from the second set to calculate the Bell value B[P̂2].
They then bound the deviation of this estimated Bell value
B[P̂2] from the real Bell value B[P] by [see Eq. (8)]

Pr(B[P] � B[P̂2] − δest ) � 1 − εest, (10)

where εest = exp (− 2Nξδ2
est

3γ 2 ) and Nξ

3 are the number of mea-

surement rounds used to estimate the Bell value B[P̂2].
The parties will use the Bell inequality and corresponding

violation B[P̂2] − δest as a hypothesis in the experiment. From
the data of the third set, the parties calculate the Bell value
B[P̂3]. For an honest implementation, the protocol aborts if
the Bell value B[P̂3] is smaller than B[P̂2] − δest.

(3) Furthermore, the parties need to estimate the Quan-
tum bit error rate (QBER) Q to bound the error correction
information. Alice and Bob publicly reveal the measurement
outcomes from Nη randomly sampled key generation rounds
to estimate the QBER. The QBER of the raw key can be upper
bounded with high probability using the tail inequality (see
Lemma 1 in Appendix A):

Pr
[
Q � Q̂ + γest

(
N (1 − ξ − η), Nη, Q̂, ε

γ
est

)]
> ε

γ
est, (11)

where γest(N (1 − ξ − η), Nη, Q̂, ε
γ
est ) is the positive root of

the following equation:

ln

(
N (1 − ξ − η)Q̂ + N (1 − ξ − η)γest

N (1 − ξ − η)

)
+ ln

(
NηQ̂

Nη

)

= ln

(
(N (1 − ξ )Q̂ + N (1 − ξ − η)γest

N (1 − ξ )

)
+ ln ε

γ
est. (12)

Thus we can deduce that the QBER Q is not larger than Q̂ +
γest (estimated QBER + statistical correction) with very high
probability of 1 − ε

γ
est.

(4) Alice and Bob use an one-way error correction (EC)
protocol to obtain identical raw keys KA and KB from their
bit strings AN and BN . During the process of error correction,
Alice communicates OEC (OEC denotes all the classical com-
munication in the error correction step) to Bob such that he
can guess the outcomes AN of Alice. If EC aborts, they abort
the protocol. In an honest implementation, this happens with
probability at most εc

EC. Otherwise, they obtain error-corrected
raw keys KA and KB [12,38–40]. The probability that Alice
and Bob do not abort but hold different raw keys KA �= KB is
at most εEC. For details, see Appendix B 1.
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When the real QBER Q is greater than Q̂ + γest (which
happens with probability ε

γ
est), the hashed values of keys

belonging to Alice and Bob (which is sent from Alice to
Bob to check if the error correction is successful, see Ap-
pendix B 1 for details) are different with high probability [38].
This results in the abortion of the implemented error correc-
tion protocol. Thus we can upper bound the error correction
abortion probability εc

EC by ε
γ
est.

(5) Alice and Bob apply a privacy amplification protocol
to obtain a secure final key K̃A = K̃B of length l that is close
to be uniformly random and independent of the adversary’s
knowledge.

V. SECRET KEY RATE

To provide a lower bound on the device-independent secret
key rate, one has to estimate two terms. One is the conditional
von Neumann entropy H (A|X, E ) and the other one is the
error correction information H (A|B) of the raw key [41]. To
estimate the latter, one can follow the footsteps of [25,42]; the
detailed derivation is shown in Appendix B. For the estimation
of the conditional von Neumann entropy H (A|X, E ), we lower
bound it by the conditional min-entropy Hmin(A|X, E ) =
− log2 Pg(A|X, E ) [see Eq. (B18)] [43], where Pg(A|X, E ) is
Eve’s guessing probability about Alice’s X -measurement re-
sults conditioned on her side information E . Pg(A|X, E ) can
be upper bounded by a function Gx of the estimated Bell
violation B[P] [26] by solving a semidefinite program [44],
i.e.,

Pg(A|X, E ) � Gx(B[P]). (13)

In real-life experiments, one does not have access to the
probabilities. Instead, one has to deal with the frequencies.
In Sec. IV we discussed that the protocol will abort if the
observed Bell violation B[P̂3] in the hypothesis testing is
smaller than B[P̂2] − δest. We need to take into account that
the observed Bell violation B[P̂3] is calculated from a finite
number of rounds. To infer the real Bell violation of the i.i.d.
implementation, we make use of Hoeffding’s inequality to
define a confidence interval δcon and the associated error prob-
ability εcon. We bound the probability of wrongly accepting
the hypothesis with the error probability εcon by

Pr(B[P̂2] − δest � B[P̂3] + δcon) < εcon

⇒ Pr(B[P̂2] − δest − δcon � B[P̂3]) < εcon. (14)

Therefore given that Alice and Bob do not abort the protocol,
we infer that the Bell violation of the system under consid-
eration is higher than B[P̂2] − δest − δcon (with maximum εcon

probability of error). We consider the worst possible scenario
and use the Bell violation B[P̂2] − δest − δcon to upper bound
the guessing probability Pg(A|X, E ) via a semidefinite pro-
gram

max:
ρ,{A(a|x)},{B(b|y)}

Pg(A|X, E )

subject to: Tr(ρG) = B[P̂2] − δest − δcon.

(15)

The guessing probability Pg(A|X, E ) is bounded by using
the NPA hierarchy [45,46] up to level 2 in the optimization
problem of Eq. (15). The optimization is performed using

standard tools YALMIP [47], CVX [48–50], NCPOL2SDPA [51],
and QETLAB [52]. Here we have used the SDPT3 [53] solver
for solving the optimization problem of Eq. (15). One can use
SEDUMI [54] or MOSEK [55] as possible alternatives. G is the
Bell operator, defined as

G =
∑

a,b,x,y

hab
AxBy

A(a|x)B(b|y).

A(a|x) and B(b|y) are measurement operators for Alice and
Bob, respectively, and ρ is the state shared between Al-
ice and Bob. Hence the conditional von Neumann entropy
Hmin(A|XY E , T = 1) can be bounded by

Hmin(A|XY E , T = 1)ρ = − log2 P(A|X, E ) (16)

� − log2 Gx(B[P̂2] − δest − δcon).

The function G is defined in Eq. (13). T = 1 specifies the
outcomes of the parameter estimation rounds which are used
for the estimation of the min-entropy.

To bound the error correction information, we need to
estimate the QBER Q, i.e., the probability that Alice’s and
Bob’s measurement outcomes in the key generation rounds
differ. In Sec. IV we have discussed that we can upper bound
the QBER Q of the raw key with at least 1 − ε

γ
est probability

by Q̂ + γest. In Appendix B we show that we can upper bound
the von Neumann entropy H (A|B) [20,38]:

H (A|B) � f (Q̂ + γest ), (17)

where f (x) = h(x) + x log2(d − 1). Here d is the number of
outcomes per measurement in the Bell scenario [56] and h is
the binary entropy function.

Using the bound on the min-entropy [see Eq. (16)] and
the QBER [see Eq. (17)], we derive the finite-size secret key
rate of a εs

DIQKD-sound, εc
DIQKD-complete (see Definition 6

and Appendix B for details) DIQKD protocol for collective
attacks. The statement is as follows [42]: Either the protocol
in Sec. IV aborts with probability higher than 1 − (εcon + εc

EC)
or an (2εEC + εs + εPA)-correct-and-secret key of length

l � N (− log2 Gx(B[P̂2] − δest − δcon)

− (1 − ξ − η) f (Q̂ + γest ) + (ξ + η) log2 d )

−
√

N

(
4 log2(2

√
2log2 d+1)

(√
log2

8

ε′2
EC

+
√

log2
2

ε2
s

))

− log2

(
8

ε′2
EC

+ 2

2 − ε′
EC

)
− log2

1

εEC
− 2 log2

1

2εPA
,

(18)

can be generated where εc
DIQKD � εest + ε

γ
est (for an honest

implementation) and εs
DIQKD � 2εEC + εs + εPA. The expres-

sion in Eq. (18) is derived in Appendix B. Table I lists all
parameters of the DIQKD protocol.

VI. RESULTS

In this section we illustrate the potential and the versatility
of our method with examples. We choose εc

DIQKD = 10−2,
εs

DIQKD = 10−5, εEC = 10−10 as DIQKD parameters for all the
examples shown in the following section.
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TABLE I. Parameters of the DIQKD protocol.

N Number of measurement rounds in the protocol

ξ Fraction of parameter estimation rounds for estimating the Bell violation
η Fraction of measurement rounds for estimating the QBER
εs Smoothing parameter
εEC, ε ′

EC Error probabilities of the error correction protocol
εc

EC Probability of abortion of error correction protocol
δest Width of the statistical interval for the Bell violation hypothesis test
εest Error probability of the Bell violation hypothesis test
δcon Confidence interval for the Bell test
εcon Error probability of the Bell violation estimation
γest Width of the statistical interval for the QBER estimation
ε

γ
est Error probability of the QBER estimation

εPA Error probability of the privacy amplification protocol
εc

DIQKD Completeness parameter of the DIQKD protocol
εs

DIQKD Soundness parameter of the DIQKD protocol

A. Scenario of m measurements each, two outcomes

We present the scenario with m measurement settings for
Alice and m + 1 for Bob (where the outcomes of only m mea-
surement settings are used in the parameter estimation). Each
of those measurement settings has two possible outcomes.
Let the shared state between Alice and Bob be a maximally
entangled Bell state |ψ〉 = 1√

2
(|00〉 + |11〉), mixed with white

noise of probability p, i.e.,

ρ = (1 − p)|ψ〉〈ψ | + p
1

4
, (19)

with p ∈ [0, 1]. Both parties use σz as key generation measure-
ments, resulting in the maximal possible correlation between
the outcomes of Alice and Bob.

In the case of m = 2, consider the measurement settings
of Alice and Bob that maximally violate the Clauser-Horne-
Shimony-Holt (CHSH) inequality [57], i.e.,

x = 1 ⇒ σz, x = 2 ⇒ σx,

y = 1 ⇒ σz + σx√
2

, y = 2 ⇒ σz − σx√
2

.
(20)

For the CHSH settings with different values of white noise p,
we recover the stable hyperplane stated in Table II. The secret
key rate as a function of the number of measurement rounds
for different values of white noise p is shown in Fig. 2. The
hyperplane in Table II is equivalent to the CHSH inequality
and consequently the key rate generated by our method coin-
cides with Ref. [26] that uses a predetermined standard CHSH

TABLE II. Optimized Bell inequality for the measurement set-
tings in Eq. (20), performed on a Bell state. Here the entries of the
hyperplane vector, see Eq. (5), are given in a tabular form. For their
explicit ordering see Appendix D.

1 –1 1 –1
–1 1 –1 1

1 –1 –1 1
–1 1 1 –1

inequality. Though our method finds a hyperplane equivalent
to the CHSH inequality, we identify the facet with the maxi-
mal violation which is then used in the DIQKD protocol. The
other facets (equivalent to CHSH inequality) may admit local
hidden variable models which lead to zero key.

In Refs. [30,31], the authors introduced an approach of
bounding the device-independent secret key rate (DISKR)
directly by using the measurement data. In the asymptotic
regime, this corresponds to using a Bell inequality that leads
to the maximal DISKR for the precise setup. However,
small changes in the parameters (e.g., imperfections on the
measurement directions) or on the measured probability dis-
tribution may lead to different Bell inequalities corresponding
to the optimal secret key rate. We compare our method with
Refs. [30,31] in the finite key regime. We study two different
Bell scenarios. For the [2,2] scenario, we consider the CHSH
settings [see Eq. (20)] and the noisy Bell state of Eq. (19) with
p = 0 [see graph (a) of Fig. 3] and p = 0.02 [see graph (b)
of Fig. 3]. For the [3,2] scenario (three measurement settings

FIG. 2. Secret key rate vs logarithm of the number of rounds N
using the measurement settings of Eq. (20). The state shared between
two parties is the noisy Bell state [defined in Eq. (19)], where the
noise is taken to be p = 0.0 (dashed red line), p = 0.02 (dotted blue
line), p = 0.05 (green solid line).
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FIG. 3. Achievable secret key rate as a function of the number
of measurement rounds N , comparing our method (dashed red line)
and the method of Refs. [30,31] (dotted blue line) for a noisy Bell
state with noise parameter p, see Eq. (19). Upper row: Measurement
settings of Eq. (20) for (a) p = 0 and (b) p = 0.02. Lower row:
Measurement settings of Eq. (21) for (c) p = 0 and (d) p = 0.02.

each, two outcomes per measurement), we consider the setting

x = 1 ⇒ σz,

x = 2 ⇒ sin
π

3
σx + cos

π

3
σz,

x = 3 ⇒ sin
2π

3
σx + cos

2π

3
σz,

y = 1 ⇒ sin
π

6
σx + cos

π

6
σz,

y = 2 ⇒ σx,

y = 3 ⇒ sin
5π

6
σx + cos

5π

6
σz,

(21)

and use the noisy Bell state [Eq. (19)] with p = 0, p = 0.02
[see graphs (c) and (d) of Fig. 3]. To analyze the robustness,
we incorporate fluctuations θ in the orientations in some mea-
surement settings of Eq. (21) such that

x = 1 ⇒ σz,

x = 2 ⇒ sin

(
π

3
− θ

)
σx + cos

(
π

3
− θ

)
σz,

x = 3 ⇒ sin

(
2π

3
+ θ

)
σx + cos

(
2π

3
+ θ

)
σz,

y = 1 ⇒ sin

(
π

6
+ θ

)
σx + cos

(
π

6
+ θ

)
σz,

y = 2 ⇒ σx,

y = 3 ⇒ sin

(
5π

6
− θ

)
σx + cos

(
5π

6
− θ

)
σz.

(22)

We use a noisy Bell state with p = 0.02 [see Eq. (19)]
as the shared state between Alice and Bob. We use two
approaches to compare the robustness of our method with
Refs. [30,31]. First, we set θ = π

60 [see Eq. (22)] and vary
the number N of measurement rounds (see Fig. 4). Next we

FIG. 4. Deviation of measurement direction. Secret key rate vs
logarithm of the number of rounds N for our method (dashed red line)
and the method of Refs. [30,31] (dotted blue line), with measurement
settings of Eq. (22) where θ = π

60 , using a noisy Bell state with p =
0.02 [see Eq. (19)].

compare the methods for a range of deviations θ for N = 1010

measurement rounds (see Fig. 5). We observe that the Bell
inequality derived from our approach is stable against small
fluctuations of the measurement directions or in the shared
state. Our method can also generate a nonzero secret key by
performing fewer measurement rounds in comparison with
Refs. [30,31] (see Figs. 3–5). This is because the effect of
statistical corrections in the Bell inequality violation [see
Eq. (10)] is smaller in our approach. A similar behavior is
also expected if the number of measurement settings per party
is increased. These statistical corrections become insignifi-
cant for a high number of measurement rounds, such that
the method of Refs. [30,31] yields a higher secret key in the
asymptotic regime.

We point out that our method can also have advantages
with respect to the CHSH scenario, when the DI secret key
rate is calculated via the analytical expression from Ref. [20]:
if nonoptimal measurement settings were used, we can in-

FIG. 5. Deviation of measurement direction. Secret key rate vs
deviation θ of the measurement settings in Eq. (22) for our method
(dashed red line) and the method of Refs. [30,31] (dotted blue line),
with N = 1010, using a noisy Bell state with p = 0.02 [see Eq. (19)].
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FIG. 6. Improvement for more than two measurement settings.
Secret key rate vs log N for our method with measurement settings
as given in Eq. (C1) (dashed red line) compared to the optimal subset
of two measurement settings per party (dotted blue line). Here the
secret key rate for any subset of two measurement settings per party
is calculated via the analytical expression in [20] using the CHSH
inequality. The shared state is a Bell state.

crease the key rate by employing additional measurement
settings. As an example, we consider the observed probability
distribution originating from the maximally entangled Bell
state and the set of measurement settings listed explicitly in
Appendix C, see Eq. (C1). With our method we can generate
a higher secret key rate (for certain N) than using any subset
of two measurement settings per party (and the analytical
expression of [20]). See Fig. 6 for an illustration.

If the probability distribution obtained by two nonoptimal
measurement settings per party does not lead to a nonzero
secret key, adding another measurement setting per party and
employing our strategy can be advantageous. For example,
with nonoptimal measurement settings in Eq. (C2) and the
maximally entangled Bell state, one cannot extract a secret
key, using our method or blindly using the CHSH inequality.
By adding another set of measurements for Alice and Bob, as
shown in Eq. (C3), our method leads to a nonzero secret key
rate.

B. Scenario of 2 measurements each, d outcomes

In this section we analyze the scenario where each party
has two measurement settings in the parameter estimation
rounds (Bob has an additional measurement setting which will
be used in key generation rounds), and each measurement has
d outcomes. The state shared between Alice and Bob is a max-
imally entangled state of two qudits, i.e., |ψ〉 = ∑d−1

i=0
1√
d
|ii〉,

which is affected by white noise with probability p, i.e.,

ρ = (1 − p)|ψ〉〈ψ | + p
1

d2
. (23)

We consider the measurement settings from Refs. [58,59].
The measurement is carried out in three steps. In the first
step Alice applies a unitary operation on her subsystem with
only nonzero terms in the diagonal equal to eι 
φx ( j), where x
denotes Alice’s measurement direction, i.e., x ∈ {1, 2}, and
j = 0, 1, 2, . . . , d − 1. Similarly, Bob applies a unitary opera-

TABLE III. Optimized Bell inequality for the measurement de-
scribed in the text, performed on a maximally entangled state of two
qutrits. Here the entries of the hyperplane vector, see Eq. (5), are
given in a tabular form. For their explicit ordering see Appendix D.

1 –1 0 –1 1 0
0 1 –1 0 –1 1
–1 0 1 1 0 –1

1 0 –1 1 –1 0
–1 1 0 0 1 –1
0 –1 1 –1 0 1

tion on his subsystem with only nonzero terms in the diagonal
equal to eι 
ϕy ( j), where y denotes Bob’s measurement direction,
i.e., y ∈ {1, 2, 3}. These unitary operations are denoted by
U ( 
φx ) and U (
ϕy) for Alice and Bob, respectively, where


φx ≡ [φx(0), φx(1), φx(2), . . . , φx(d − 1)],


ϕy ≡ [ϕy(0), ϕy(1), ϕy(2), . . . , ϕy(d − 1)].

The values of these phases are chosen as

φ1( j) = 0, φ2( j) = π

d
j,

ϕ1( j) = π

2d
j, ϕ2( j) = − π

2d
j, ϕ3( j) = 0,

(24)

with j = 0, 1, 2, . . . , d − 1. We use {x = 1, y = 3} for the key
generation rounds and {x ∈ (1, 2), y ∈ (1, 2)} for the pa-
rameter estimation rounds. The second step consists of Alice
carrying out a discrete Fourier transform UFT and Bob ap-
plying U ∗

FT . The matrix elements of the Fourier transform are
defined as (UFT ) jk = exp [( j − 1)(k − 1)2πι/d], (U ∗

FT ) jk =
exp [−( j − 1)(k − 1)2πι/d]. Thus the concatenated unitaries
for Alice and Bob are V ( 
φx ) ≡ UFT U ( 
φx ) and V (
ϕy) ≡
U ∗

FT U ( 
φy), respectively.
Finally, Alice and Bob carry out measurements in the com-

putational basis |i〉. For d = 3, we find via linear optimization,
see Eq. (4), the optimized Bell inequality as shown in
Table III. The details of this representation of the Bell inequal-
ity are explained in Table VII of Appendix D.

The hyperplane in Table III is equivalent to the CGLMP
inequality [59,60]. If the parties share the nonmaximally en-
tangled state

|�〉 ≡ |00〉 + 0.7923|11〉 + |22〉√
2 + 0.79232

, (25)

the CGLMP inequality is maximally violated, thus resulting in
a significantly higher secret key rate, as shown in Fig. 7. This
trend of generating a higher secret key rate using nonmaxi-
mally entangled states is also observed for higher dimensions
(i.e., d > 3).

Note that in this scenario with d outcomes the maximum
secret key rate is log2 d . For a fair comparison, we have
normalized the min-entropy [i.e., − log2 of the solution of the
optimization problem of Eq. (15)] by division with log2 d to
get a rate per qubit dimension.

Comparing the DIQKD protocol with measurement set-
tings as described around Eq. (24) for different d and the
corresponding d-dimensional maximally entangled state, see
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FIG. 7. Secret key rate vs log N when performing the measure-
ment described around Eq. (24) on a maximally entangled state of
two qutrits (dashed red line) and on the nonmaximally entangled state
given in Eq. (25) (dotted blue line).

Eq. (23), the minimum number of measurement rounds re-
quired to have a nonzero secret key rate decreases slightly
with increasing d , see Fig. 8. This follows from the fact that
the minimum number of measurement rounds required to have
a nonzero Bell violation decreases with increasing d . On the
other side, the secret key is decreasing with increasing d (see
Fig. 8) when the number of measurement rounds is sufficiently
high. The nonlocality of the resultant correlation is decreasing
with increasing d , which in turn results in the lower secret key.

C. Random measurement settings

In this section we analyze the case when Alice’s and Bob’s
devices perform random measurements. We specifically focus
on the fraction of events that leads to a nonzero secret key rate.
First consider the [m, 2] scenario, i.e., m measurement each,
with two outcomes. The state shared between the parties is the
noisy Bell state as in Eq. (19). We choose the raw key gener-

FIG. 8. Secret key rate vs log N when performing the mea-
surement described around Eq. (24) for d = 3 (dashed red line),
4 (dotted blue line), and 5 (solid green line) on a maximally en-
tangled state of two d-dimensional subsystems. The inset graph
shows a zoomed-in version in the region of low number of measure-
ment rounds, demonstrating the crossover of the curves.

TABLE IV. Approximate probability of achieving a nonzero se-
cret key rate in the [m, 2] scenario for different white noise levels
p in the noisy Bell state [see Eq. (19)]. The statistics are taken
over 105 realizations. Measurement settings of key generation rounds
are fixed to be σz for Alice and Bob. The remaining measurement
settings are performed in random orientation. For each realization,
1012 measurement rounds are used to compute the finite key.

(ma, mb) = 2 (ma, mb) = 3

p = 0% ∼28.6% ∼53.4%
p = 1% ∼18.3% ∼46.5%
p = 2% ∼10.8% ∼36.8%
p = 3% ∼6.4% ∼28.2%
p = 4% ∼3.9% ∼18.5%
p = 5% ∼2.2% ∼11.3%

ation measurement operators {x = 1 ⇒ σz, y = m + 1 ⇒ σz}
in order to achieve correlated outcomes in the key measure-
ment rounds and consequently have to exchange less error
correction information. The remaining measurement opera-
tors are chosen randomly. Alice and Bob perform general
unitary operators

U (φ,ψ, χ ) =
[

eιψ cos φ eιχ sin φ

−e−ιχ sin φ e−ιψ cos φ

]
(26)

with parameters ψ, χ ∈ [0, 2π ] and φ ∈ [0, π
2 ] and then mea-

sure in the computational basis {|0〉, |1〉}. This strategy is
equivalent to choosing a random measurement. In Table IV
we show the fraction of events that leads to a nonzero secret
key rate with random measurements. The statistics are based
on 105 realizations. For the [2,2] scenario, the optimization
in Eq. (4) will always lead to the CHSH inequality. Adding
another measurement setting per party (i.e., the [3,2] scenario)
significantly increases the probability of finding a hyperplane
that produces a nonzero secret key rate. The first explanation
of this fact is statistical. By increasing the number of settings,
we increase the probability that some of them violate a Bell
inequality even involving only two settings per party. Apart
from that, the optimization in Eq. (4) also provides some
hyperplanes for the [3,2] scenario that are independent of the
hyperplanes for the [2,2] scenario. From the higher chance
of Bell inequality violation, we obtain a higher chance of
achieving a nonzero key. This result also reverberates the

TABLE V. Approximate probability of achieving a nonzero se-
cret key rate in the [2, d] scenario for white noise of different
probability p added to the maximally entangled state of two qudits
[see Eq. (23)]. All other details are as in Table IV.

d = 3 d = 4
p = 0% ∼6.4% ∼2.5%
p = 1% ∼2.2% ∼0%
p = 2% ∼0.3% ∼0%
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results of the nonlocal volume2 in [61–66], which increases
for the pure bipartite entangled state when more measurement
settings for each party are used. We observe the same phe-
nomenon in our case, regarding the secret key rate. As the
nonlocal volume shrinks by adding noise, it also reduces the
probability of producing a nonzero key rate. Let us now
analyze the [2, d] scenario (i.e., d outcomes per measurement)
with random measurement settings. The shared state is a noisy
maximally entangled state of two qudits [see Eq. (23)]. We
compute the approximate probability for achieving a nonzero
secret key rate (see Table V). The statistics are based on 105

realizations. The measurements for key generation are in the
computational basis. The remaining measurement settings are
chosen randomly.

We observe that for d � 3, the probability to extract a
nonzero secret key is smaller compared to the case with only
two outcomes. This follows from the fact that the nonlocal
volume shrinks by increasing the dimension of the maximally
entangled state. This results in a smaller probability of gener-
ating nonlocal correlations and therefore a smaller chance of
a Bell inequality violation [65] and smaller probability of a
nonzero secret key.

VII. CONCLUSIONS

Several protocols for device-independent quantum key dis-
tribution (DIQKD) have the common feature that they rely on
the violation of a predetermined Bell inequality. We propose
a robust DIQKD procedure where a suitable Bell inequality
is instead constructed from the measurement data. This con-
structed Bell inequality leads to the maximum Bell violation
for the particular setup. Then we use the Bell inequality and its
corresponding violation to bound the secret key rate via lower
bounding the min-entropy.

We provide a finite-size key analysis of our proposed
procedure. We bound the statistical fluctuations of the Bell in-
equality violation by Hoeffding’s inequality. However, we do
not claim that our choice of concentration inequality [67–69]
is optimal for a finite number of measurement rounds. Note
that our method could also be implemented for the estimation
of global randomness in a device-independent randomness
generation protocol.

We have illustrated our method with several examples for
different numbers of measurement settings and different num-
bers of outcomes. Even though our procedure may identify
a specific Bell inequality of a known type in some cases, a
predefined version of this type of Bell inequalities would often
lead to zero key. Our procedure identifies the one Bell inequal-

2The nonlocal volume is a statistical measure of nonlocality intro-
duced in [61]. It is defined as the probability that the correlations,
generated from randomly chosen projective measurements made on a
given state |ψ〉, violate any Bell inequality (a witness of nonlocality)
by any extent. Generally, the nonlocal volume for a given state
|ψ〉 is obtained by

∫
d� f (|ψ〉, �), where one integrates over the

measurement parameters � [62]. f (|ψ〉, �) is an indicator function
that takes the value 1 if the resultant correlations, generated from
the state and measurements, are nonlocal. Otherwise, it will take the
value 0.

ity (out of all the equivalent ones) with maximal violation,
which then leads to a nonzero secret key rate.

We have also shown cases when our method yields a higher
secret key rate than using the standard CHSH inequality. In
comparison to related approaches (Refs. [30,31]), we provide
examples where our approach needs fewer numbers of mea-
surement rounds to generate a nonzero secret key. Using our
method, the typical number of measurement rounds to gener-
ate a nonzero key varies between 106 to 108 for the [m, 2] Bell
scenario and is of the order 106 for the [2, d] Bell scenario.
We further showed the performance of our method in the
case of random measurement settings. Our method employs
the observed measurement statistics, which can be affected
by inefficient detectors. In case of no-detection events, one
can follow our procedure by declaring no-detection as an
additional outcome. One could also account for detector ef-
ficiencies by using the approaches of Refs. [70–72].

Finally, future work should address the use of more sophis-
ticated methods of bounding the conditional von Neumann
entropy [73–75], which could increase the secret key rate, in
comparison to the bounds based on the min-entropy.
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APPENDIX A: DEFINITIONS

We start with the definition of some quantities that will help
us to derive the key rates for the DIQKD protocol.

Definition 1 (Min and max-entropy [76,77]). Let ρAB ∈
P (HA ⊗ HB) and σB ∈ P (HB). P (HB) is the set of positive-
semidefinite operators on the Hilbert space HB. The min-
entropy of ρAB conditioned on σB is

Hmin(ρAB|σB) := − log2 λ, (A1)

where λ is the minimum real number such that λ.(I ⊗ σB) −
ρAB � 0. The max-entropy of ρAB conditioned on σB is

Hmax(ρAB|σB) := log2 Tr
(
(I ⊗ σB)ρ0

AB

)
, (A2)

where ρ0
AB denotes the projector onto the support of ρAB.

Definition 2 (Smoothed min and max-entropy [76,78]). For
a quantum state ρAB and ε � 0, the smooth min-entropy of
system A conditioned on B is defined as

H ε
min(A|B) := max

ρ̃AB∈Bε (ρAB )
Hmin(A|B)ρ̃AB , (A3)

and the smooth max-entropy of system A conditioned on B is
defined as

H ε
max(A|B) := min

ρ̃AB∈Bε (ρAB )
Hmax(A|B)ρ̃AB . (A4)

Bε is an ε-ball of subnormalized operators around the state
ρAB defined in terms of the purified distance.
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Now we focus on the security parameters of quantum key
distribution. The security of quantum key distribution can be
split into two conditions.

Definition 3 (Correctness [5,25,42]). A DIQKD protocol
is εcorr-correct if the final key K̃A of Alice differs from the
final key K̃B of Bob with probability less than εcorr, i.e.,

Pr(K̃A �= K̃B) � εcorr. (A5)

Definition 4 (Secrecy [5,25,42]). For any εsec � 0, a
DIQKD protocol is εsec with respect to the adversary E if the
joint state satisfies

p(�) 1
2‖ρK̃AE |� − τK̃A

⊗ ρE‖1 � εsec, (A6)

where τK̃A
is the maximally mixed state on K̃A of the protocol.

Here p(�) is the probability of not aborting the protocol.
If a protocol is εcorr-correct and εsec-secret, then it is

εs
DIQKD-correct and secret for any εs

DIQKD � εcorr + εsec. The
correctness (see Def. 3) of the final key is ensured by the
error correction step. During error correction, Alice sends a
sufficient amount of information to Bob so that he can correct
his raw key. If Alice and Bob do not abort in this step, then
the probability that they end up with different raw keys is
guaranteed to be very small (below εEC). For the secrecy of the
protocol (see Def. 4) one needs to estimate how far the final
state describing Alice’s key and the eavesdropper’s system is
from the ideal one.

Definition 5 (Secret key rate [25,42]). If a protocol gener-
ates a correct and secret key of length l after n rounds, the
secret key rate is defined as

r = l

n
. (A7)

Any useful DIQKD protocol should not abort almost all the
time. This is apprehended by the concept of completeness.

Definition 6 (Security [25,42]). A DIQKD protocol is
(εs

DIQKD, εc
DIQKD, l )-secure if

(1) (Soundness) For any implementation of the protocol,
either it aborts with probability greater than 1 − εs

DIQKD or an
εs

DIQKD-correct and secret key of length l is obtained.
(2) (Completeness) There exists an honest implementation

of the protocol such that the probability of not aborting, p(�),
is greater than 1 − εc

DIQKD.
In the privacy amplification step, Alice and Bob want to

turn their equal string of bits, which may be partially known
to an eavesdropper, into a shorter completely secure string of
bits. For this step, a 2-universal family of hash functions is
needed.

Definition 7 (2-universal hash function). A family of hash
functions F = { f : {0, 1}n → {0, 1}�} is called 2-universal if
for every two strings x, x′ ∈ {0, 1}n with x �= x′ then

Pr f ∈F ( f (x) = f (x′)) = 1

2�
, (A8)

where f is chosen uniformly at random in F . The property
of 2-universality ensures a good distribution of the outputs.
For � � n there always exists a 2-universal family of hash
functions [79].

Now we will state the quantum leftover hashing lemma
[77,80]. It quantifies the secrecy of a protocol as a function of

a conditional entropy of the state before privacy amplification
and the length of the final key.

Theorem 1 (Leftover hashing lemma with smooth min-
entropy [25,42,80]). Let ρAnE be a classical quantum state. Let
F be a 2-universal family of hash functions, from {0, 1}n to
{0, 1}l , that maps the classical n-bit string An into KA. Then

‖ρKAFE − τKA ⊗ ρFE‖ � 2− 1
2 (H ε

min(An|E )ρ−l ) + 2ε,

where F is a classical register that stores the hash function f .
With the leftover hash lemma and the definition of secrecy

(see Def. 4), we express the length of a secure key as a
function of the entropy of Alice’s raw key conditioned on
Eve’s information before privacy amplification.

Theorem 2 (Key length [25,42]). Let P(�) be the proba-
bility that the DIQKD protocol does not abort for a particular
implementation. If the length of the key generated after pri-
vacy amplification is given by

l � H εs/P(�)
min (An|E )ρ|� − 2 log

1

2εPA
,

then the DIQKD protocol is εPA + εs secret.
In this paper we have considered the II D scenario (col-

lective attacks). In the assumption of collective attacks, the
distributed state and the behavior of Alice’s and Bob’s devices
are the same in every round of the protocol. Eve can carry
out arbitrary operations in her quantum side information. This
assumption implies that after n rounds of the protocol, the
state shared by Alice, Bob, and Eve is ρAnBnE = ρ⊗n

ABE . The
quantum asymptotic equipartition property [76,81] allows us
to bound the conditional smooth min-entropy of state ρ⊗

AE by
the conditional von Neumann entropy of the state ρAE .

Theorem 3 (Asymptotic equipartition property [81]). Let
ρ = ρ⊗n

AE be an IID state. Then for n � 8
5 log 2

ε2 ,

H ε
min(An|En)ρ⊗n

AE
> nH (A|E )ρAE − √

nδ(ε, χ ),

and similarly,

H ε
max(An|En)ρ⊗n

AE
< nH (A|E )ρAE + √

nδ(ε, χ ),

where δ(ε, χ ) = 4 log(χ )
√

log 2
ε2 and χ =

√
2−Hmin(A|E )ρAE +√

2Hmax(A|E )ρAE + 1.
Lemma 1 [82,83]. Let Xn+k be a random binary string of

n + k bits, Xk be a random sample (without replacement) of
m entries from the string Xn+k , and Xn be the remaining bit
string. �k and �n are the frequencies of bit value 1 in string
Xk and Xn, respectively. For any ε1 > 0, it holds the upper tail
inequality:

Pr[�n � �k + γ1(n, k,�k, ε1)] > ε1, (A9)

where γ1(a, b, c, d ) is the positive root of

ln

(
bc

b

)
+ ln

(
ac + aγ1(a, b, c, d )

a

)

= ln

(
(a + b)c + aγ1(a, b, c, d )

a + b

)
+ ln d.

For ε2 > 0, we have the lower tail inequality:

Pr[�n � �k − γ2(n, k,�k, ε2)] > ε2, (A10)
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where γ2(a, b, c, d ) is the positive root of

ln

(
bc

b

)
+ ln

(
ac − aγ2(a, b, c, d )

a

)

= ln

(
(a + b)c − aγ2(a, b, c, d )

a + b

)
+ ln d.

Lemma 2 [37]. Let X1, X2, . . . , Xn be independent random
variables strictly bounded by the intervals [ai, bi], i.e., ai �
Xi � bi. We define

X̄ = 1

n
(X1 + X2 + · · · + Xn).

Then Hoeffding’s inequality reads

Pr(X̄ − E [X̄ ] � t ) � exp

(
− 2n2t2∑n

i=1(bi − ai )2

)
.

Let ci := bi − ai and ci � C ∀ i. Then Hoeffding’s inequality
reads

Pr(X̄ − E [X̄ ] � t ) � exp

(
− 2n2t2

nC2

)
= exp

(
− 2nt2

C2

)
.

APPENDIX B: SECRET KEY ANALYSIS

Theorem 4 (Completeness). The DIQKD protocol stated
in Sec. IV is εest + ε

γ
est complete.

Proof. The protocol can abort in two instances. Either it
will abort if the error correction failed or if the estimated Bell
violation B[P̂3] is not high enough. The probability that the
error correction fails can only happen if the real QBER Q is
larger than Q̂ + γest, which happens with probability ε

γ
est, see

Sec. IV for details. The protocol also aborts if the estimated
Bell violation B[P̂3] is smaller B[P̂2] − δest ), see Sec. IV for
details. Thus, considering an honest implementation consist-
ing of IID rounds, we can bound the probability of abortion of
the protocol:

p(abort) = p((EC aborts) or (Bell test fails))

� p(EC aborts) + p(Bell test fails)

� p(QBER test fails) + p(Bell test fails)

= p(Q > Q̂ + γest ) + p(B[P̂3] < B[P̂2] − δest )

= ε
γ
est + εest, (B1)

where εest is defined in Eq. (10), and ε
γ
est is defined in Eq. (11).

Thus we get εc
DIQKD � εest + ε

γ
est.

For the soundness, we have to evaluate the correctness and
secrecy, defined in Def. 3 and Def. 4, respectively. In case of
correctness, if we have an error correction protocol that does
not abort, then Alice (Bob) will have the raw key KA (KB) after
the protocol. The string KB differs from KA with probability
less than εEC, and as the final keys K̃A and K̃B are equal if the
raw keys are equal, it follows that

P(K̃A �= K̃B) � P(KA �= KB) � εEC.

For secrecy, let us recall that � is defined as the event when
the protocol does not abort. This happens when the error cor-
rection protocol does not abort and achieved the required Bell
violation according to Alice’s and Bob’s outputs (and inputs).
Now define the event �̂ as the event � (protocol not aborting)
and the error correction being successful, i.e., KA = KB. Thus

‖ρK̃AE|� − τK̃A
⊗ ρE‖1 � ‖ρK̃AE|� − ρK̃AE|�̂‖1

+ ‖ρK̃AE|�̂ − τK̃A
⊗ ρE‖1

� εEC + ‖ρK̃AE|�̂ − τK̃A
⊗ ρE‖1. (B2)

The first inequality follows from the triangular inequality of
the trace distance [84]. ρK̃AE|� is the joint classical quantum
state of Alice and Eve if the protocol does not abort. ρK̃AE|�̂
is the joint classical quantum state of Alice and Eve if the
protocol does not abort and the error correction is successful.
When error correction succeeds, the probability of KA = KB is
higher than (1 − εEC). Conversely, the probability KA �= KB is
less than εEC. Thus the second inequality of Eq. (B2) comes
from

‖ρK̃AE|� − ρK̃AE|�̂‖1 � (1 − εEC)‖ρK̃AE|�̂ − ρK̃AE|�̂‖1

+ εEC‖ρK̃AE|�̂ − ρK̃AE|�̂c
‖1 � εEC, (B3)

where �̂c is defined as the event when the protocol does not
abort but error correction is not successful, i.e., KA �= KB.

Now we proceed to evaluate the term ‖ρK̃AE|�̂ − τK̃A
⊗ ρE‖1

of Eq. (B2). We will follow the path shown in [25,42].
Given that the protocol did not abort, the maximal length
of a secure key is determined by the smooth min-entropy
of Alice’s raw key conditioned on all information avail-
able to the eavesdropper (see the leftover hashing lemma in
Theorem. 1). In our protocol (see Sec. IV), it is given by
H εs

min(AN |X NY N T N EOEC)ρ|�̂ . Here we recall that OEC is the
information exchanged by Alice and Bob during the error
correction protocol. X N and Y N are the input bit strings (mea-
surement settings) for Alice and Bob, respectively. AN is the
output bit string of Alice. T N is the shared random key that
determines whether the round is a test or a key generation
round. �̂ is the event that the protocol does not abort and error
correction succeeds.

In order to bypass the conditioned state of
H εs

min(AN |X NY N T N EOEC)ρ|�̂ , we can start from the definition
of secrecy (see Def. 4). Then we have to bound the term

p(�)‖ρK̃AFE|� − τK̃A
⊗ ρFE‖1 = ‖ρK̃AFE∧� − τK̃A

⊗ ρFE∧�‖1,

(B4)
where ρK̃AFE∧� = p(�)ρK̃AFE|� is a subnormalized state. Here
we recall that F is the classical register that stores the hash
function f (see Def. 7).

Now using the leftover hashing lemma in Theorem 1, we
can generate an (εs + εPA)-secret key of length [42]

l � H εs
min(AN |E )ρ∧� − 2 log

1

2εPA
. (B5)
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In Ref. [85] it is proved that

H εs
min(AN |E )ρ∧� � H εs

min(AN |E )ρ. (B6)

Thus we proceed to estimate the quantity
H εs

min(AN |X NY N T N EOEC)ρ in order to bound the achievable
secret key of length l .

Using the chain rule relation for the smooth min-entropy
conditioned on classical information [76], we can write

H εs
min(AN |X NY N T N EOEC)ρ=H εs

min(AN |X NY N T N E )ρ−leakEC.

(B7)
Thus, in order to bound H εs

min(AN |X NY N T N EOEC)ρ , we have
to lower bound H εs

min(AN |X NY N T N E )ρ and upper bound
leakEC (the leakage due to the error correction).

1. Estimation of leakEC

Alice and Bob perform an EC procedure so that Bob can
compute a guess of Alice’s raw key AN . In order to verify if
EC is successful, Alice chooses a two-universal hash function
(uniformly at random) from the family of hash functions and
computes a hash of length log( 1

εEC
) from her raw keys AN .

Then she sends the chosen hash function and the hashed value
of her bits to Bob via a public channel. We denote all the
classical communication (information leaked during EC, hash
function, and the hashed value for verification) by OEC. Bob
computes the hash function on his key. If the hashed values
are equal, then Alice’s and Bob’s keys are the same with high
probability. If the hashed values are different, the parties will
abort the protocol. During this whole process the amount of
information about the key exposing to the adversary Eve is
termed as leakEC. In Ref. [77] the leakEC is bounded by

leakEC � H
ε′

EC
0 (AN |BN X NY N T N ) + log

1

εEC
, (B8)

where εc
EC = εEC + ε′

EC (see Table I). H0 is the Rényi entropy
introduced in Ref. [77]. In Ref. [76], it is denoted as H̄↑

0 .
If Alice and Bob do not abort, then their resultant bit string
is identical (KA = KB) with at least 1 − εEC probability. We

can bound the entropy H
ε′

EC
0 (AN |BN X NY N T N ) in the following

way:

H
ε′

EC
0 (AN |BN X NY N T N )

� H
ε′EC

2
max (AN |BN X NY N T N ) + log

(
8

ε′2
EC

+ 2

2 − ε′
EC

)

� NH (A|BXY T ) + 4
√

N log(2
√

2log2 d + 1)

√
log

8

ε′
EC

2

+ log

(
8

ε′2
EC

+ 2

2 − ε′
EC

)
. (B9)

For the definition of H ε
0 (A|B), see Ref. [77]. The first in-

equality of Eq. (B9) comes from Ref. [80] and Eq. (B11)
of Ref. [42]. The last inequality comes from the asymptotic
equipartition property (see Theorem 3), where we used the

relations

δ(ε, χ ) = 4 log(χ )

√
log

2

ε2

� 4 log(2
√

2log2 d + 1)

√
log

( 2

ε2

)
. (B10)

Here we have used χ � 2
√

2log2 d + 1, which comes from

χ =
√

2−Hmin(A|E )ρAE +
√

2Hmax(A|E )ρAE + 1

� 2
√

2Hmax(A|XY T E )ρ + 1

� 2
√

2log2 d + 1. (B11)

The first inequality of Eq. (B11) follows from the fact
that A is a classical register and therefore has positive
conditional min-entropy, which implies −Hmin(A|XY T E ) �
Hmin(A|XY T E ) � Hmax(A|XY T E ). For the second inequality
of Eq. (B11), we use Hmax(A|XY T E ) � log2 d .

Therefore, from Eqs. (B8) and (B9), we can bound the
leakage in the following way:

leakEC � NH (A|BXY T )

+ √
n(4 log(2

√
2log2 d + 1))

√
log

8

ε′2
EC

+ log

(
8

ε′2
EC

+ 2

2 − ε′
EC

)
+ log

1

εEC
. (B12)

Now we bound the single-round von Neumann entropy
H (A|BXY T ) as

H (A|BXY T ) = p(T = 0)H (A|BXY T = 0)

+ p(T = 1)H (A|BXY T = 1)

� (1 − ξ )H (A|BXY T = 0) + ξ log2 d

� (1 − ξ − η)H (A|BXY T =0)+(ξ + η) log2 d.

(B13)

See Table I for the details of ξ , η, and γest. For the first
equality, we have used that for the conditional von Neumann
entropy it holds that H (A|BX )ρ = ∑

x p(X = x)H (A|BX =
x). We divide the measurement rounds into key generation
(specified by T = 0) and parameter estimation (specified by
T = 1), for details see Sec. IV. The first inequality comes
from the fact that parameter estimation round’s measurements
were publicly communicated to estimate the Bell inequality
and the corresponding violation. η rounds of the raw key
generation measurement were communicated through a public
channel to estimate the QBER, which leads to the last inequal-
ity.

Now our goal is to estimate H (A|BXY T = 0). For di-
chotomic observables and uniform marginals, H (A|B) can
be expressed as h(Q) [20], where h is the binary entropy
function, h(p) := −p log2 p − (1 − p) log2(1 − p). Similarly
for the [(ma, mb), d] Bell scenario, H (A|B) can be expressed
as a function of the QBER, H (A|B) = −Q log2 Q − (1 −
Q) log2(1 − Q) + Q log2(d − 1) [56].

For our specific protocol (see Sec. IV), we bound
H (A|BXY T = 0) by a function of Q̂1 + γest (observed QBER
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TABLE VI. Bell inequality table for the [2,2] scenario.

h11
A1B1

h12
A1B1

h11
A1B2

h12
A1B2

h21
A1B1

h22
A1B1

h21
A1B2

h22
A1B2

h11
A2B1

h12
A2B1

h11
A2B2

h12
A2B2

h21
A2B1

h22
A2B1

h21
A2B2

h22
A2B2

+ estimated statistical error), see Sec. V for details:

H (A|BXY, T = 0) � f (Q̂ + γest ), (B14)

where f (x) = h(x) + x log2(d − 1) (d is the number of out-
comes per measurement in the Bell scenario) and h is the
binary entropy function. From Eqs. (B13) and (B14), it then
follows that

H (A|BXY T ) � (1 − ξ − η) f (Q̂ + γest ) + (ξ + η) log2 d.

(B15)
The leakage due to error correction is given by [from

Eqs. (B12) and (B15)]

leakEC � N[(1 − ξ − η) f (Q̂ + γest ) + (ξ + η) log2 d]

+
√

N

(
4 log(2

√
2log2 d + 1)

)√
log

8

ε′2
EC

+ log

(
8

ε′2
EC

+ 2

2 − ε′
EC

)
+ log

1

εEC
. (B16)

2. Estimation of min-entropy Hεs
min(AN|X NY NT NE )ρ

Finally, we lower bound H εs
min(AN |X NY N T N E )ρ . We use

the asymptotic equipartition property (see Theorem 3) to
lower bound the min-entropy of N rounds by the von Neu-
mann entropy of single rounds:

H εs
min(AN |X NY N T N E )ρ

� NH (A|XY T E )ρ − 4
√

N log(2
√

2log2 d + 1)

√
log

2

ε2
s

.

(B17)

Since Alice’s actions (and her device’s) are independent
of Bob’s choice of input, adding information about Y
(Bob’s input) does not increase (or decrease) the conditional
von Neumann entropy H (A|X, E )ρ . Since H (A|X, E )ρ and
H (A|XY E , T = 1)ρ are equivalent in our setup, we will use

both terms interchangeably. In the general scenario, the condi-
tional von Neumann entropy is hard to calculate analytically.
But the conditional von Neumann entropy can be lower
bounded by the conditional min-entropy as

H (A|XY T, E )ρ � Hmin(A|XY T, E )ρ. (B18)

The advantage of looking at the conditional min-entropy
is that we can express it as Hmin(A|XY E , T = 1)ρ =
− log2 Pg(A|X, E ) [43], where Pg(A|X, E ) is Eve’s guessing
probability about Alice’s X -measurement results A condi-
tioned on her side information E . Pg(A|X, E ) can be upper
bounded by a function Gx of the expected Bell viola-
tion B[P] [26] by solving a semidefinite program [44],
i.e., Pg(A|X, E ) � Gx(B[P]). For our specific protocol (see
Sec. IV), we will lower bound the min-entropy (via upper
bounding the guessing probability Pg(A|X, E ) using the Bell
inequality B and corresponding Bell value B[P̂2] − δest − δcon

(explained in Sec. V):

Hmin(A|XY E , T = 1)ρ � − log2 Gx(B[P̂2] − δest − δcon).
(B19)

Finally, putting Eqs. (B16) and (B19) together, we have either
the protocol mentioned in Sec. IV aborts with probability
higher than 1 − (εcon + εc

EC) or a (2εEC + εs + εPA)-correct
and secret key can be generated of length l . The length l is
bounded by

l � N[− log2 Gx(B[P̂2] − δest − δcon)

− (1 − ξ − η) f (Q̂ + γest ) − (ξ + η) log2 d]

−
√

N

(
4 log(2

√
2log2 d + 1)

(√
log

8

ε′2
EC

+
√

log
2

ε2
s

))

− log

(
8

ε′2
EC

+ 2

2 − ε′
EC

)
− log

1

εEC
− 2 log

1

2εPA
.

(B20)

TABLE VII. Bell inequality table for the [2,3] scenario.

h11
A1B1

h12
A1B1

h13
A1B1

h11
A1B2

h12
A1B2

h13
A1B2

h21
A1B1

h22
A1B1

h23
A1B1

h21
A1B2

h22
A1B2

h23
A1B2

h31
A1B1

h32
A1B1

h33
A1B1

h31
A1B2

h32
A1B2

h33
A1B2

h11
A2B1

h12
A2B1

h13
A2B1

h11
A2B2

h12
A2B2

h13
A2B2

h21
A2B1

h22
A2B1

h23
A2B1

h21
A2B2

h22
A2B2

h23
A2B2

h31
A2B1

h32
A2B1

h33
A2B1

h31
A2B2

h32
A2B2

h33
A2B2
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TABLE VIII. Bell inequality table for the [m, d] scenario.

h11
A1B1

. . . h1d
A1B1

. . . h11
A1Bm

. . . h1d
A1Bm

...
. . .

...
...

. . .
...

...
. . .

...

hd1
A1B1

. . . hdd
A1B1

. . . hd1
A1Bm

. . . hdd
A1Bm

. . . . . . . . .

...
. . .

...
...

. . .
...

...
. . .

...

. . . . . . . . .

h11
AmB1

. . . h1d
AmB1

. . . h11
AmBm

. . . h1d
AmBm

...
. . .

...
...

. . .
...

...
. . .

...

hd1
AmB1

. . . hdd
AmB1

. . . hd1
AmBm

. . . hdd
AmBm

APPENDIX C: MEASUREMENT SETTINGS

Here we list the explicit measurement settings employed in Sec. VI A.

x = 1 ⇒ σz, y = 1 ⇒
[

0.7064 −0.6632 + 0.2473i
−0.6632 − 0.2473i −0.7064

]
,

x = 2 ⇒
[ −0.1817 0.1307 + 0.9746i

0.1307 − 0.9746i 0.1817

]
, y = 2 ⇒

[ −0.6882 −0.2128 − 0.6936i
−0.2128 + 0.6936i 0.6882

]
,

x = 3 ⇒
[ −0.7746 0.6186 − 0.1315i

0.6186 + 0.1315i 0.7746

]
, y = 3 ⇒

[
0.4046 −0.1960 + 0.8932i

−0.1960 − 0.8932i −0.4046

]
.

(C1)

Using the following set of measurement settings for Alice and Bob in Eq. (C1), one can generate a higher secret key rate
employing our method than using any subset of two measurement settings per party using the standard CHSH inequality.

x = 1 ⇒ σz, y = 1 ⇒
[ −0.4091 −0.5937 + 0.6930i
−0.5937 − 0.6930i 0.4091

]
,

x = 2 ⇒
[

0.7019 0.5167 − 0.4903i
0.5167 + 0.4903i −0.7019

]
, y = 2 ⇒

[ −0.6133 −0.2514 + 0.7488i
−0.2514 − 0.7488i 0.6133

]
.

(C2)

Using the following measurement settings in Eq. (C2) and the state in Eq. (19) with no white noise, one cannot extract a
secret key using our method or blindly using the CHSH inequality.

x = 3 ⇒
[ −0.1457 −0.9777 + 0.1513i
−0.9777 − 0.1513i 0.1457

]
, y = 3 ⇒

[ −0.9020 −0.3795 − 0.2056i
−0.3795 + 0.2056i 0.9020

]
. (C3)

However, by adding another set of measurements for Alice and Bob mentioned in Eq. (C3), it is possible to achieve a nonzero
secret key rate using our method.

APPENDIX D: TABULAR REPRESENTATION OF BELL INEQUALITY

Here we introduce an alternative representation of the hyperplane vector [see Eq. (5)]. We rearrange the entries (coefficients
of the Bell inequality) in a tabular construction. For the [2,2] Bell scenario, it is represented in Table VI.

This representation is used in Table II. Similarly, we reorder the elements of the hyperplane vector for the [2,3] Bell scenario
in the following way (see Table VII):

This tabular representation is used to describe the Bell inequality in Table III. For the generalized [m, d] scenario, the
reordered hyperplane vector is represented in Table VIII.
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The estimation of the guessing probability has paramount importance in quantum cryptographic
processes. It can also be used as a witness for nonlocal correlations. In most of the studied scenarios,
estimating the guessing probability amounts to solving a semi-definite programme, for which potent
algorithms exist. However, the size of those programs grows exponentially with the system size,
becoming infeasible even for small numbers of inputs and outputs. We have implemented deep
learning approaches for some relevant Bell scenarios to confront this problem. Our results show
the capabilities of machine learning for estimating the guessing probability and for understanding
nonlocality.

I. INTRODUCTION

Whenever the statistics of a measurement on a com-
posite quantum state contradict the assumptions of local
realism, thus violating a Bell-type inequality, the cor-
relations are referred to as nonlocal [1]. These nonlo-
cal correlations are used to certify private randomness in
device-independent quantum key distribution (DIQKD)
[2–13] and device-independent randomness generation
(DIRNG) [14–22]. For quantifying randomness, estimat-
ing the guessing probability is often an important task.
The guessing probability is the probability with which
an adversary can guess an outcome of another party’s
measurement. If the guessing probability is less than 1,
the adversary cannot predict the outcome with certainty.
This implies the presence of intrinsic randomness in the
system. However, bounding the guessing probability is
not an easy task. Typically it is not possible to explic-
itly compute the guessing probability, but one can only
provide an upper bound by solving a semi-definite op-
timization problem. Usually, one bounds the guessing
probability from a given Bell inequality, and the corre-
sponding quantum violation [7, 14]. Here, one needs to
use the hierarchical structure of the quantum correlations
[23, 24] to solve the semi-definite optimization problem.
The complexity of this optimization problem is increas-
ing and becoming computationally demanding with the
number of settings and outcomes.

In this paper, motivated by the outstanding recent
progress in utilizing machine learning in the field of quan-
tum information [25–34], we develop deep learning (DL)
models that predict the guessing probability along with
the optimal Bell inequalities (used to upper bound the
guessing probability) from an observed probability distri-
bution using supervised machine learning. A crucial ele-
ment of supervised machine learning is to generate sam-
ple data input and output to train the model. Here, we
sample random quantum probability distributions and
use them as the input of the training data. With this

∗ Sarnava.Datta@hhu.de

data, using the two-step method of Ref. [35], we esti-
mate the upper bound of the guessing probability and
the optimal Bell inequality, and use it as the output of
the training data. After sufficient training, our DL ap-
proach can recognize the pattern and predict the guess-
ing probability and the optimal Bell inequality with high
accuracy and low average statistical error.

We organize this work as follows. We start in Sec. II
by explaining the generalized Bell set-up, types of cor-
relations and Bell inequalities. We introduce the guess-
ing probability and show how to estimate it by solving
a semi-definite programme in Sec. III. We introduce our
deep learning approach in Sec. IV. We discuss how to
sample quantum probability distributions from the quan-
tum correlation space, which are then used as input for
supervised learning. We build several deep learning mod-
els for predicting the guessing probability and the Bell
inequality for various Bell scenarios and measure their
efficiency to show the model’s utility.

II. GENERALIZED BELL SET-UP

In this section, we introduce a generalized Bell set-
up. In each measurement round, two parties, Alice and
Bob, share a quantum state ρAB acting on HA ⊗ HB .
In the presence of an eavesdropper Eve, her side in-
formation E is described via the purification of the
joint system ρABE acting on HA ⊗ HB ⊗ HE where
TrE (ρABE) = ρAB . Each party selects locally an in-
put (a measurement setting) which produces an output
(a measurement outcome). We refer to this scenario as
a Bell scenario. Alice performs measurements specified
by her input x ∈ X = {1, · · · ,m}, where each input
has k possible outcomes a ∈ A = {1, · · · , k}. Simi-
larly, Bob performs measurements specified by his in-
put y ∈ Y = {1, · · · ,m} and produces the outputs
b ∈ B = {1, · · · , k}. We denote this scenario as [m, k]
Bell scenario, i.e. m measurement settings with k out-
comes each; see Fig. 1 for visualization. After many
repetitions, the conditional probability P (ab|xy) can be
estimated. The Bell scenario is completely character-
ized by the set P := {P (ab|xy)} ⊂ Rm

2k2 of all joint
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FIG. 1: Schematic description of a Bell scenario
consisting of two parties, Alice and Bob. For further

explanation, see the main text.

conditional probabilities which we refer to as a behavior
[36]. Thus, the following constraints are imposed: pos-
itivity P (ab|xy) ≥ 0 ∀ a, b, x, y and the normalization∑k
a,b=1 P (ab|xy) = 1 for all x and y. We say the behav-

ior is no-signaling if the input-output correlation obeys

k∑

b=1

P (ab|xy) = P (a|x) ∀a, x, y and

k∑

a=1

P (ab|xy) = P (b|y) ∀b, x, y .
(1)

The set of all correlations satisfying the no-signaling con-
straints forms a convex polytope NS. A behavior is said
to be local if it can be written as a convex mixture of de-
terministic strategies [37, 38]. The set of all local correla-
tions forms a convex polytope P. There exist inequalities
of the form [36]

∑

a,b,x,y

CabxyP (ab|xy) ≤ IL , (2)

which separate the set of all local correlations (in other
words, the convex polytope P) from the nonlocal be-
haviors. These inequalities are called Bell inequali-
ties. A Bell inequality is specified by the coefficients
Cabxy ∈ R. We denote a Bell inequality as B, and∑
a,b,x,y CabxyP (ab|xy) as the Bell value B[P] in this pa-

per. Here, IL is the classical bound, which is the maximal
value over all local behaviors. Thus, a behavior with a
classical origin, i.e. {P (ab|xy)} ∈ P, cannot violate this
inequality.

The Born rule of quantum theory postulates that a
behavior is quantum if there exists a quantum state ρAB
acting on a joint Hilbert space HA ⊗ HB of arbitrary

dimension and measurement operators (POVM elements)
{Ma|x} with Ma|x ≥ 0 and

∑
aMa|x = 1 ∀x, and {Mb|y}

with analogous properties such that

P (ab|xy) = Tr(ρABMa|x ⊗Mb|y) . (3)

The set of all quantum correlations forms a convex set
Q. If a behavior {P (ab|xy)} ∈ Q \ P, it violates at least
one Bell inequality of the form in Eq. (2). The sets P, Q

FIG. 2: A pictorial representation for the set of
correlations. All classical probabilities form a convex

polytope P, which is embedded in the set Q of quantum
correlations, which in turn is a subset of the

no-signaling polytope NS. v1 and v2 are vertices of the
local polytope. B (blue dashed line) represents the Bell
inequality which separates the classical polytope from

the quantum and no-signaling set.

and NS obey the following relation: P ( Q ( NS; see
Fig. 2 for a pictorial representation.

III. GUESSING PROBABILITY

In an adversarial black box scenario framework, the ad-
versary Eve tries to guess some outcomes obtained by Al-
ice and Bob. The probability that Eve can correctly guess
the outcome is called the guessing probability. Here, we
denote the guessing probability as Pg(a|x,E), which is
the guessing probability of Eve about Alice’s outcome a
corresponding to her measurement setting x. In Ref.[7],
it is shown that Pg(a|x,E) can be upper bounded by a
function Gx of the observed Bell value B[P] of a partic-
ular Bell inequality B by semi-definite programming, i.e.
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Pg(a|x,E) ≤ Gx(B[P]). One crucial element to bound
the guessing probability Pg(a|x,E) is to choose a suit-
able Bell inequality. We follow the two-step procedure
of [35] where the Bell inequality is constructed from the
input-output probability distribution P that leads to the
maximum Bell violation for that particular measurement
statistics.

This is achieved by solving the linear program:

max
h,c

hTP− c ,

subject to hTvp ≤ c ∀ p ∈ {1, · · · , k2m} ,
hTP > c ,

− 1 ≤ hi ≤ 1 ∀ i ∈ {1, · · · ,m2k2} .

(4)

Here h is the hyperplane specifying the Bell inequality
B, P denotes the measurement data, vp corresponds to
the p vertices of the classical polytope P and c is the
classical bound. Thus the Bell inequality B found by the
optimization of Eq. (4) and specified by the hyperplane
vector h is given as:

∑

a,b,x,y

habxyP (ab|xy) ≤ c , (5)

where a ∈ A, b ∈ B, x ∈ X, y ∈ Y . We will
use the Bell inequality B and corresponding Bell value
B[P] =

∑
a,b,x,y habxyP (ab|xy) to upper bound the

guessing probability Pg(a|x,E) by solving the following
semidefinite program [7]:

max
ρAB ,{A(a|x)},{B(b|y)}

Pg(a|x,E)

subject to: Tr(ρABG) = B[P] .

(6)

In the optimization problem of Eq. (6), the guessing prob-
ability is bounded using the NPA-hierarchy [23, 24] up
to level 2. The optimization is performed using standard
tools YALMIP [39], CVX [40, 41] and QETLAB [42].
Note that, A(a|x) and B(b|y) are the measurement oper-
ators of Alice and Bob, respectively, and ρAB is the state
shared between them. G is the Bell operator defined as:

G =
∑

a,b,x,y

habxyA(a|x)B(b|y) . (7)

Let us denote P ∗g (a|x,E) as the upper bound of the guess-
ing probability, which is the solution to the optimization
problem of Eq. (6).

IV. MACHINE LEARNING APPROACH

Providing an upper bound for the guessing probability
by solving a semi-definite program is a computationally
demanding task. It becomes arduous when the Bell sce-
nario raises its complexity, i.e. for an increased number of
measurement inputs and/or outputs in the Bell scenario.

Thus, in this paper, we approach solving the problem
via machine learning (ML) (see Ref. [43] for detailed
discussions on the concepts of machine learning) so that
the trained model can estimate the guessing probability
P ∗g (a|x,E) from the input-output probability distribu-
tion {P (ab|xy)}. We are going to use the supervised
learning technique. In a supervised ML approach, the
first step is generating the training points. We use ran-
dom bipartite quantum probability distributions as the
supervised ML model’s input (features), after generat-
ing them from facet Bell inequalities using the weighted
vertex sampling method [44]. Since the guessing proba-
bility for local behaviors is always 1 (i.e. Eve can guess
the right outcome with probability 1), we do not need to
train the machine to perform well on those. Thus we only
take samples from the nonlocal part of the no-signaling
set, i.e. NS \ P. To single out the input-output correla-
tion with a quantum realization, we reduce the samples
using the NPA hierarchy to approximate the quantum
realizable probability distribution.

Explicitly, we generate samples from the quantum set
Q as follows. For the [m, k] Bell scenario (i.e. m mea-
surements, k outcomes each), the classical polytope P is
specified by k2m local vertices. The classical polytope
can also be described by its facets, which represent the
hyperplanes (or Bell inequalities) that separate any non-
classical (quantum and no-signaling) behavior from the
classical ones. These facets are called facet Bell inequali-
ties or tight Bell inequalities [36]; see Fig. 2 for a pictorial
representation. For the [2, 2] scenario, eight facet Bell in-
equalities exist, all equivalent to the CHSH inequality
[45]. For the [3, 2] Bell scenario, there are 648 facet Bell
inequalities. These facet Bell inequalities are found us-
ing the formulation of Ref. [46] 1. Note that all the 648
facet Bell inequalities correspond to two classes of inde-
pendent facet Bell inequalities, i.e. the CHSH inequali-
ties and the I3322 inequalities [47, 48]. We consider all
facet Bell inequalities for the [2,2] and [3,2] Bell scenario
while generating training points for the supervised ma-
chine learning problem. For the [4, 2] Bell scenario, there
are 174 independent facet Bell inequalities [49]. Since
there are many (>10000) equivalent facets [50], we will
only consider the independent ones. These facet Bell in-
equalities are spanned by some of the local vertices of the
classical polytope 2. These vertices provide the maximum

1 Using Ref. [46], one can calculate all the facets of a convex
polytope given its vertices. The transformation from the vertex
representation to the facet representation of a polytope is known
as facet enumeration or convex hull problem, which uses Gaus-
sian and Fourier-Motzkin elimination. The list of facets consists
of positivity constraints and the facet Bell inequalities. Here, we
only focus on the facet Bell inequalities alone.

2 For the [2, 2] Bell scenario, all the facet inequalities are spanned
by eight local vertices. For the [3, 2] Bell scenario, facet Bell
inequalities, equivalent to the CHSH inequality, are spanned by
thirty-two vertices. Twenty vertices span the inequalities equiv-
alent to the I3322 inequality.
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classical bound of the corresponding facet Bell inequal-
ity. Consider the case that n local vertices span a facet
Bell inequality, where we denote the set of n vertices as{
PLi (ab|xy)

}n
i=1

. We denote the PR-box of the corre-
sponding facet Bell inequality as PPR(ab|xy), see Fig. 2
for visualization. The PR-Box PPR(ab|xy) can be defined
as the probability distribution that provides the maxi-
mal no-signaling bound of the corresponding facet Bell
inequality [51, 52]. We take uniformly random weighted
mixtures of the n + 1 vertices (n vertices that span the
facet Bell inequality and the corresponding PR-box) with
an n-fold weight on the PR-box. Formally, the sample
behavior from the set NS \ P can be generated as:

P := P (ab|xy) = nw0P
PR(ab|xy) +∑n

i=1 wiP
L
i (ab|xy)

nw0 +
∑n
i=1 wi

(8)
where the wi ∈ [0, 1] with i = 0, 1, · · · , n, are uniformly
drawn random numbers. This process is done for all facet
inequalities. From this set of samples, we only select
the ones with a Q2 realization (the second level of NPA
hierarchy [23, 24]). Here we work under the assumption
that Q2 provides a good approximation for the original
quantum set Q.

We store the probability distribution {P (ab|xy)} and
use it as the input (features) of the supervised machine
learning problem, i.e.

X := {P (ab|xy)}a,b=1,··· ,k
x,y=1,··· ,m . (9)

We calculate the guessing probability of each input P
using the two-step method (see Sec. III for details), and
use it as the output (target), i.e.

y = P ∗g (a|x,E) . (10)

Without loss of generality, we have always calculated the
guessing probability of Alice’s first measurement setting.
We use a deep neural network to assess the dataset and
make predictions. We fed the input-output pair {X, y}
(see Eq. (9) and Eq. (10)) into an artificial neural network
(ANN) to learn the best possible fit. For an elaborate
explanation of an artificial neural network, see Ref. [43].
Following the standard approach, we divide the dataset
into two parts. The first part of the dataset is for training
and validation (80%), and the second is for testing (20%).
We choose a ’linear’ 3 ANN with several layers as our
model; see Fig. 3 for visualization.

3 Here, linear means that there is no branching in the hidden layers
of the neural network architecture.

FIG. 3: Schematic description of a ’linear’ neural net-
work. It consists of an input layer, several hidden layers
and an output layer without branching. The hidden lay-
ers and the output layer are dense layers, meaning that
the neurons of the layer are connected to every neuron of
its preceding layer.

The input layer hasm2k2 neurons corresponding to the
elements in {P (ab|xy)}. The output (last) layer has only
one neuron since we only have to predict one element: the
guessing probability P ∗g (a|x,E). We perform 100 rounds
of training using the optimizer ADAM [53], of which the
first 50 rounds have a fixed learning rate of 0.001. For
the next 50 rounds, we reduce the learning rate by 90%
in every tenth round. We choose the activation function
ReLu (Rectified linear unit) 4 in the input and the hidden
layers while using the sigmoid activation function5 in the
output layer. The ReLu activation function introduces
non-linearity and the sigmoid activation function keeps
the output within the range of [0,1]. The mean squared
error (MSE) 6 is used as our loss function, which is min-
imized during the training process. The trained model

4 Relu activation function: φ(x) = max(0, x)
5 sigmoid activation function: φ(x) = 1

1+e−x

6 MSE(y, ŷ) = 1
N

∑N
i=0 (yi − ŷi)

2, where y is the original output
and ŷ is the estimated output of the model.
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Metrics

Bell
Scenario [2,2] [3,2] [4,2]

MSE 0.00007 0.007 0.009
MAE 0.0003 0.01 0.025

TABLE I: Performance measures for different Bell
scenarios when estimating P ∗g (a|x,E) from the
probability distribution P (ab|xy). MAE: Mean

Absolute Error (see Eq. (11)), MSE: Mean Squared
Error (see Eq. (12))

generates the predicted value of the guessing probability
P pred
g (a|x,E). To check the efficiency of our approach,

we have used the mean absolute error (MAE)

MAE
[
P ∗g (a|x,E), P pred

g (a|x,E)
]

=
1

Ntest

Ntest∑

i=1

∣∣P ∗g (a|x,E)i − P pred
g (a|x,E)i

∣∣ ,
(11)

and the mean squared error (MSE)

MSE
[
P ∗g (a|x,E), P pred

g (a|x,E)
]

=
1

Ntest

Ntest∑

i=1

(
P ∗g (a|x,E)i − P pred

g (a|x,E)i
)2
,

(12)

as a performance measure. Ntest is the number of data
points in the test set. We analyze the results for different
bipartite Bell scenarios and list the errors in Table I.
The average error is in the order of 10−4 to 10−2. Such
high accuracy and small error without knowing the Bell
inequality are truly remarkable. We also compare the

Time
per sample

Bell
Scenario [2,2] [3,2] [4,2]

Mosek 95ms 496ms 1568 ms
Neural Network 27µs 35µs 49µs

TABLE II: Runtime per sample comparison for SDP
solver Mosek and the neural network method for

estimating the guessing probability for different Bell
scenarios.

runtime performance of the neural network model with
the frequently used SDP solver Mosek [54] (that can be
used to upper bound the guessing probability by solving
the optimization problem of Eq. (6)) in Table II. The
Mosek task is generated and solved using the Ncpol2sdpa
[55]. The results are evaluated over 10000 unknown
samples and performed on a personal computer 7 under

7 Specifications: Intel(R) Core(TM) i7-10510U Processor,
2.30GHz Frequency, 16.0 GB RAM

comparable conditions. Once the neural network is
trained, we get a speed-up of 103 − 105 for obtaining
a prediction about a new instance, compared to the
runtime of the usual method for solving the optimization
problem; see Table II. This follows from the fact that
the number of variables in the optimization process of
Eq. (6) increases exponentially with the number of mea-
surement settings (or outcomes per measurement) in the
Bell scenario. Thus, it takes more computational time
to perform the SDP using a classical solver like Mosek.
A trained neural network only calculates the functional
output using the optimized weights and biases. Only
the neural network size affects the computational time
needed to complete the prediction task.

However, the upper bound on the guessing probability
calculated from a trained machine learning model only
provides an estimate of its real value. Thus, we cannot
use this estimate to bound the secret key rate. The pre-
dicted Bell inequality on the other side that generates
a non-zero Bell violation (for a particular measurement
statistics) can be used to bound the guessing probability
(see Sec. III for details) and the secret key rate. That’s
why in the next step, we use deep learning to predict the
associated optimal Bell inequality B, which is then used
to upper bound the guessing probability (see Sec. III for
details). For this purpose, we again use the neural net-
work architecture where supervised learning is incorpo-
rated. We start by preparing the dataset where our input
features are

X := {P (ab|xy)}a,b=1,··· ,k
x,y=1,··· ,m . (13)

Note that, the input is identical to Eq. (9). The outputs
are now the coefficients of the optimal Bell inequality
B (specified by {habxy}a,b=1,··· ,k

x,y=1,··· ,m, see Eq. (4)) and the
guessing probability P ∗g (a|x,E), i.e.

y :=
[
{habxy}a,b=1,··· ,k

x,y=1,··· ,m, P
∗
g (a|x,E)

]
. (14)

Here we use two types of neural network architectures.
The first neural network is a usual ’linear’ feed forward
neural network (see [43] for details, schematically rep-
resented in Fig. 3). For [m, k] Bell scenario, the input
layer has m2k2 neurons (corresponds to the elements of
{P (ab|xy)}). The input layer is followed by several hid-
den layers. Unlike in the previous scenario, the output
layer has m2k2+1 neurons in this case, where m2k2 neu-
rons correspond to the coefficients of the Bell inequal-
ity habxy, and one neuron corresponds to the guessing
probability P ∗g (a|x,E). In this paper, we denote this
construction of the ’linear’ deep neural network as NN1.
Following the standard approach, we divide the dataset
{X,y} (see Eq. (13) and Eq. (14)) into two sets; the first
part of the dataset is for training and validation (80%),
and the second part is for testing (20%). Similar to the
training of the previous network, we perform 100 rounds
(first 50 rounds with a 0.001 learning rate and then re-
duce the learning rate by 90% in every tenth round) of
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training using the gradient solver ADAM. Similar to the
previous scenario, we use the activation function ReLu
in the input and the hidden layers. In the output layer,
the linear activation function 8 is used for m2k2 neurons
that correspond to the optimal Bell inequality and the
sigmoid activation function is incorporated for the neu-
ron that corresponds to the guessing probability. As the
cost function, we use the Mean Squared Error (MSE)
which is minimized during the training process.

In addition, we use another neural network architec-
ture with two parallel sub-models (by using branching) to
interpret parts of the output that share the same input.
In this construction, the input layer has m2k2 neurons
corresponding to the elements of the probability distri-
bution {P (ab|xy)} of the [m, k] Bell scenario. The input
layer is followed by hidden layers consisting of multiple
neurons. Then we bifurcate one hidden layer to create
two branches. Several hidden layers then follow both
branches; see Fig. 4 for visualization. The first branch of
the network is for predicting the coefficients of the opti-
mal Bell inequality {habxy}a,b=1,··· ,k

x,y=1,··· ,m and thus has m2k2

neurons. The second branch of the network is for predict-
ing the guessing probability. Thus, the output layer will
have only one neuron corresponding to P ∗g (a|x,E). In
this paper, we refer to this neural network as NN2 which
is built using the Keras functional API [56]. In NN2,
we use the ReLu activation function in the input and all
the hidden layers. The linear activation function is used
in the output layer of the first branch (which predicts
the coefficients of the Bell inequality) while the sigmoid
activation function is used in the second branch (which
predicts the guessing probability). The other details of
the training steps are the same as for the NN1 neural
network stated previously. Both NN1 and NN2 predict
the Bell inequality Bpred (specified by the predicted co-
efficients {hpred

abxy}
a,b=1,··· ,k
x,y=1,··· ,m) and the guessing probability

P pred
g (a|x,E).

Since the neural networks NN1 and NN2 predict two
separate entities (the optimal Bell inequality and the
guessing probability), we evaluate their performance sep-
arately. We use the mean absolute error (see Eq. (11))
and mean squared error (see Eq. (12)) as our performance
measure of predicting the guessing probability. The er-
rors for different bipartite Bell scenarios are listed in Ta-
ble III.

8 Linear activation function: φ(x) = x

FIG. 4: Schematic diagram of a neural network where a
hidden layer is bifurcated into two different arms which
predict different parts of the output separately. In our
scenario, input layer: {P (ab|xy)} (m2k2 neurons), first
output: {habxy} (m2k2 neurons) and second output:

P ∗g (a|x,E) (1 neuron).

ANN Metrics [2,2] [3,2] [4,2]

NN1
MSE 8.2×10−6 0.002 0.009
MAE 0.001 0.02 0.07

NN2
MSE 1.9×10−7 0.001 0.002
MAE 0.0003 0.013 0.027

TABLE III: Statistical errors of the predicted guessing
probability P pred

g (a|x,E) with respect to the guessing
probability P ∗g (a|x,E) for different Bell scenarios for NN1

and NN2. Here the neural network is trained for pre-
dicting the guessing probability P ∗g (a|x,E) and the Bell
inequality B from the probability distribution P (ab|xy).

Note that, for estimating the guessing probability, NN2

yields lower statistical errors than NN1. The reason
lies in the structure of the neural network architectures.
Since we create a branch in the neural network only to
estimate the guessing probability, the NN2 neural net-
work assigns more nodes to only estimate the guessing
probability than NN1. In the case of predicting the
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optimal Bell inequality B (characterized by its coeffi-
cients {habxy}a,b=1,··· ,k

x,y=1,··· ,m), we use the performance mea-
sure MSE, which reads:

MSE
[
B,Bpred]

=
1

m2k2
1

Ntest

Ntest∑

i=1

k∑

a,b=1

m∑

x,y=1

(
(habxy)i − (hpred

abxy)i

)2
,

(15)
and MAE, which reads:

MAE
[
B,Bpred]

=
1

m2k2
1

Ntest

Ntest∑

i=1

k∑

a,b=1

m∑

x,y=1

∣∣∣(habxy)i − (hpred
abxy)i

∣∣∣ .

(16)
The errors are listed in Table IV.

ANN Metrics [2,2] [3,2] [4,2]

NN1
MSE 0.0004 0.0007 0.014
MAE 0.001 0.002 0.067

NN2
MSE 0.0003 0.0005 0.015
MAE 0.0009 0.002 0.069

TABLE IV: Statistical errors of the coefficients of the
predicted Bell inequality Bpred (predicted by the
trained deep learning models NN1 and NN2),
{hpred

abxy}
a,b=1,··· ,k
x,y=1,··· ,m with respect to the original

coefficients {habxy}a,b=1,··· ,k
x,y=1,··· ,m for different Bell scenarios.

Another way to evaluate the quality of the predicted
Bell inequality is to use it for upper bounding the guess-
ing probability problem (see Eq. (6)). First, we estimate
the probability of P ∗g (a|x,E) < 1, where P ∗g (a|x,E) is
calculated from the predicted Bell inequality Bpred and
the input-output probability distribution {P (ab|xy)} of
the test set. We present the results in Table V. We

ANN [2,2] [3,2] [4,2]
NN1 99.5% 98.7% 93.4%
NN2 99.6% 99.4% 94.6%

TABLE V: Probability of Pg(a|x,E) < 1 when using
the Bell inequality Bpred (predicted by the trained deep

learning models NN1 and NN2).

also look into the statistical errors between the original
guessing probability P ∗g (a|x,E) from the test set and the
guessing probability calculated from the predicted Bell
inequality Bpred. We use MAE and MSE as the perfor-
mance measures listed in Table VI. The high probability
of generating P ∗g (a|x,E) < 1 with the predicted Bell in-
equalities (see Table V) and the small statistical errors
(see Table VI) demonstrate the quality and accuracy of
the predicted Bell inequality.

We again compare the computational runtime of pre-
dicting the optimal Bell inequality using the standard
linear optimization of Eq. (4) with the neural network

ANN Metrics [2,2] [3,2] [4,2]

NN1
MSE 1.7 ×10−8 0.002 0.006
MAE 6.3 ×10−5 0.014 0.038

NN2
MSE 1.5 ×10−8 0.002 0.004
MAE 4.1 ×10−5 0.014 0.031

TABLE VI: Statistical errors between the guessing
probability calculated from the predicted Bell inequality
and the original guessing probability from the test set

for various Bell scenarios and neural network
constructions.

NN1 and NN2. The runtime for different methods is
shown in Table VII. Similar to the previous scenario,

Time
per sample

Bell
Scenario [2,2] [3,2] [4,2]

LP 95 ms 159 ms 379 ms
NN1 29 µs 40 µs 57 µs
NN2 31 µs 41 µs 55 µs

TABLE VII: Runtime per sample comparison for
estimation of the optimal Bell inequality using linear

programming of Eq. (4) and the neural network method
for different Bell scenarios. LP stands for linear

programming which is performed using the Mosek
solver.

the runtimes are evaluated over 10000 unknown sam-
ples and performed on the same personal computer in
the same condition. The linear programming of Eq. (4)
is performed with the Mosek solver using PICOS [57]
python interface. We notice a significant speed-up when
using the trained neural network models compared to the
Mosek solver. This again follows from the fact that the
number of variables in the optimization process of Eq. (4)
increases with the number of measurement settings (or
outcomes per measurement) in the Bell scenario while
the computational time for the neural networks only de-
pends on its size.

V. DISCUSSION & CONCLUSION

Estimating the guessing probability is a cornerstone for
device-independent quantum key distribution and device-
independent randomness generation. This paper intro-
duces a novel method to estimate the guessing probabil-
ity using trained deep learning models to bypass the com-
putationally complex and cumbersome semi-definite op-
timization process. Computation with the trained deep
learning models is significantly faster than using a con-
ventional solver. With current technology, Bell test event
rates are around 100 kHz, which results in new data ev-
ery 10µs [58]. This frequency is too high for conven-
tional SDP solvers on a single CPU. For those cases, our
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deep learning approach improves the computation signif-
icantly. In principle, optimizing the size of a deep neural
network that can process each event as the experiment is
being conducted is possible.

The deep learning model only provides an estimation of
the upper bound of the guessing probability. But it will
not provide a certification. Thus, additionally, our DL
model provides an estimation of the optimal Bell inequal-
ity for which the Bell violation using the measurement
statistics certifies the nonlocality of input-output correla-
tions and guarantees that the guessing probability will be
less than one. Our trained deep learning models, which
significantly speed up the prediction of the Bell inequality
compared to a conventional linear program solver, predict
a Bell inequality that can generate Pg(a|x,E) < 1 with a
very high probability. The mean average error between
the guessing probability calculated from the predicted
Bell inequality and the optimal Bell inequality (calcu-
lated using Eq. (4)) is in the order of 10−5− 10−2 (mean
squared error is in the order of 10−8−10−3) which shows
the quality of this approach such that it can efficiently
be used in a DIQKD or DIRNG protocol.

We also demonstrate a method for sampling random
quantum correlations (correlations which have a realiza-
tion of NPA hierarchy level of 2) using the facet Bell in-
equalities, which is then used as input in the supervised
machine learning process. Note that, while generating
probability distributions, we consider all facet Bell in-
equalities for the [2, 2] and [3, 2] Bell scenario. However,
since there are more than 10000 facet Bell inequalities for
the [4, 2] Bell scenario, we only restrict ourselves to gen-
erating probability distributions using the independent
facet Bell inequalities.

To illustrate the benefits of our method, we have ap-
plied it to several relevant Bell scenarios. Note that we
design and train our neural networks to minimize statis-
tical errors. However, we do not claim that our choice
of the trained neural network is optimal for estimating
the guessing probability and the associated optimal Bell
inequality from the measurement statistics. Other con-
structions of neural networks will lead to different results.

We observed that the statistical errors in the estima-
tion of the guessing probability and the optimal Bell in-
equality increase with the complexity of the Bell scenario
(i.e., the increase in the number of measurements per
party). Since there are more inputs and outputs, our

neural network architecture might not be able to gen-
eralize the extensive system with a limited number of
hidden layers and nodes in each layer. To decrease the
errors, one can take two steps. First, one can generate a
larger dataset to train the model. Second, one can build
a more extensive neural network architecture (i.e., more
hidden layers or nodes in every layer). However, using
a larger dataset for training or/and training a more ex-
tensive neural network will result in significantly more
computational time. There is also the possibility of over-
fitting in an extensive network. A larger neural network
architecture will also take more time to predict new in-
stances. Therefore, one has to change the network archi-
tecture to optimize the speed and precision of a specific
scenario.

Note that while comparing the runtime for the Mosek
optimization solver with the trained neural network for
the estimation of the guessing probability (see Table II),
we implement the NPA hierarchy of level 2. The differ-
ence in computational runtime between the methods will
be much more pronounced with increasing hierarchy.

Our research demonstrates the applicability of deep
learning techniques for Bell nonlocality and upper bound-
ing the guessing probability. We believe that this strat-
egy will create several research lines. The logical next
step is to apply our approach to Bell scenarios with a
higher number of measurement settings and outcomes.
It is also possible to expand our framework to a multi-
partite scenario. Another direction worth exploring for
future work is investigating other neural network con-
structions. Beyond the advantage in speed, one could
use neural network architectures to search for new Bell
inequalities. Also, recall that our methodology does not
account for uncertainty or offers certification of the out-
put. It remains for future work to use techniques like
probabilistic modeling [59] that can certify the correct-
ness of the model’s output.
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