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Health-related data being collected by smartphones offer a promising complementary

approach to in-clinic assessments. Despite recent contributions, the trade-off between

privacy, optimization, stability and research-grade data quality is not well met by existing

platforms. Here we introduce the JTrack platform as a secure, reliable and extendable

open-source solution for remote monitoring in daily-life and digital-phenotyping. JTrack

is an open-source (released under open-source Apache 2.0 licenses) platform for remote

assessment of digital biomarkers (DB) in neurological, psychiatric and other indications.

JTrack is developed andmaintained to comply with security, privacy and the General Data

Protection Regulation (GDPR) requirements. A wide range of anonymized measurements

from motion-sensors, social and physical activities and geolocation information can be

collected in either active or passive modes by using JTrack Android-based smartphone

application. JTrack also provides an online study management dashboard to monitor

data collection across studies. To facilitate scaling, reproducibility, data management and

sharing we integrated DataLad as a datamanagement infrastructure. Smartphone-based

Digital Biomarker data may provide valuable insight into daily-life behaviour in health

and disease. As illustrated using sample data, JTrack provides as an easy and reliable

open-source solution for collection of such information.
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INTRODUCTION

Neurological and psychiatric diseases typically present with symptoms that are complex, atypical,
fluctuant in disease progression, and display high variability between patients (1). Current
diagnostic and efficacy evaluation methods often rely on in-clinic visits and subjective evaluation
by patients, caregivers or clinicians. In-clinic evaluation methods are often costly, time-consuming
and limited in their quality and quantity of observations (2). In addition, they are often prone to
high inter- and intra-rater variability (3). The aforementioned drawbacks of traditional diagnosis
methods may affect the diagnostic process especially in the early stage of the disease where there is
a lag between the onset of the pathological process and the onset of symptoms (4).

Psychiatric and neurological diseases are typically long-term illnesses that cause significant
fluctuations in symptoms over time. Therefore, recall and reporting biases are the key difficulties
in evaluating respective diseases in episodic in-clinic visits. Remote monitoring of patients in
their everyday-life using sensor-based at smart technologies is rapidly evolving and may assist
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clinicians in facilitating early diagnosis and evaluating and
adjusting interventions. There has been an evolving interest in
using newly emerged smart sensor technologies for monitoring
of patients (5–10).

Modern smartphones and wearables are equipped with
various sensors including motion (i.e., acceleration, gyroscope),
location [i.e., Global Positioning System (GPS)], environment
(i.e., barometer, temperature, light) and health sensors (i.e., heart
rate) (11, 12). This rich combination of sensors along with their
ability to collect ecological momentary assessments (EMA), and
information about social interaction (i.e., social media, messaging
and phone calls) have made smartphones a potential alternative
to in-clinic evaluation for various types of assessments (13, 14).
Such health-related information being collected in clinical trials
are often referred to as digital-biomarkers (DB) (15). DBs can
provide objective, ecologically valid, and invaluable information
for better understanding of specific diseases. In addition, DBs
enable frequent assessments from larger target populations over
longer periods of time and may thus provide detailed insight into
inter- and intra-individual disease variability in daily-life (16).

Several contributions enabling the use of smartphones as
an assessment tool have been recently introduced. The first set
are commercial devices such as Fitbit1, Garmin2, Apple3 and
Samsung4 devices. The main focus of these applications is to
provide feedback on the daily activity of users by visualizing and
showing notification regarding their heart rate, number of steps
and kind of activity. However, most of these devices provide
limited access to the raw data and do not support high-frequency
data collection. A second type are applications and platforms
developed by researchers such as AWARE (17), RADAR-base
(18), Beiwe (19), mCerebrum (20), mPower (21) and many
others. The main focus of these mostly open-source platforms
is to enable data collection for research applications as well as
to facilitate data sharing and reproducibility. Yet, these software
packages are often limited by an often narrow focus to some
specific clinical indications or with respect to privacy aspects.
Also, these once in a while updated platformsmake some of them
unstable for the rapidly growing smartphone ecosystem.

Whilst there are several platforms that are able to collect
context-driven data, the trade-off between privacy, optimization,
stability and research-grade data quality is not well met
yet. Thus, we aim to fill this gap by introducing the
JTrack platform. JTrack was developed as an Android-
based application for smartphones and an online server-side
dashboard. JTrack application comprises the following main
categories of components: sensor data, location data, Human
Activity Recognition (HAR), and smartphone and application
usage monitoring. Each component has the option to be
used for active (with user interaction) and passive (without
user interaction) monitoring. The dashboard side is an online
platform to create and manage studies, integrating DataLad (22)
infrastructures to facilitate management and sharing of collected

1https://www.fitbit.com/global/us/home (accessed November 23, 2020).
2https://www.garmin.com/en-US/ (accessed November 23, 2020).
3https://www.apple.com/ (accessed November 23, 2020).
4https://www.samsung.com/us/ (accessed November 23, 2020).

data. JTrack is a modular open-source with a high level of
optimization, security and privacy making JTrack a practical
solution for clinicians and researchers to collect, manage, and
share digital biomarker data.

METHODS

General Description
Here we introduce the main components of the JTrack platform
(Figure 1) comprised of the JTrack app (Figure 2) and an online
dashboard interface (Figure 3). The smartphone application
JTrack was developed for smartphones with the Android
operation system (OS). The reason for selecting Android was a
wider range of users5 (73%) and fewer restrictions which were
necessary for technical aspects of application development.

JTrack enables passive 7/24 data collection running in the
background. Active data collection is enabled through simple
interaction (i.e., start and stop recording, i.e., before and after
execution of a specific task). All collected data are recorded
locally in the application and then synchronized on a periodic
basis (i.e., connection to the Internet, have enough battery
charge). All local data are deleted from the phone storage
upon successful data transfer. To minimize the risk of data
loss, we implemented auto-start functionality (without user
interaction) to resist unwanted application crashes or operating
system reboots, and all the crashes are reported via the
Firebase dashboard6.

On the server side, the JTrack dashboard was developed as
an online web-application where study owners can create and
manage studies. The dashboard consists of a front-end interface
and a back-end API which is integrated with DataLad (22) as a
data-management tool. The dashboard provides an overview of
received data including sanity checks such as MD5 for received
data, and embedded validity checking methods.

QR-Code Authentication
To provide a convenient and secure way of activation we
implemented a QR-code method. The QR-code for each subject
is generated as a pdf file from the dashboard. Each QR-code
contains all the necessary information such as user ID, Study ID,
and address of the target server or an optional authentication
method (e.g., OAuth2). To join a study, the one-time QR-
code needs to be scanned using the QR-scanner embedded in
the JTrack app. Additional backup QR-codes are provided for
scenarios in which users may want to leave and re-join or need
to switch their device.

Location Service
Location service provides an update on visited location data such
as longitude, latitude, and altitude. This service operates as a part
of the passive recording. The location data can be inquired based
on pre-defined periods (i.e., 10min). To ensure anonymization,
for each user, a random value is generated during activation on
the phone, which shifts the latitude to a random place on the

5https://gs.statcounter.com/os-market-share/mobile/worldwide (accessed August

19, 2020).
6https://firebase.google.com (accessed November 23, 2020).
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FIGURE 1 | JTrack Platform overview.

globe. In addition, all recorded coordinates are rotated using a
randomly generated fixed degree around this initial coordinate to
ensure that even if the true installation location is known no other
coordinates can be derived. These values remain on the phone
throughout the study and are deleted upon deinstallation of the
app. To keep a high accuracy, each data point is first transferred
fromWGS-84 to Cartesian coordinates. After the transformation
using the generated value, the coordinates are transferred back to
their native space. Since this transformation occurs before actual
recording, all the collected data is relative and cannot be used to
recover the user’s actual location. Furthermore, we used a fused
method that provides more accurate data (median accuracy of 14
meters) by combining GPS and network information.

Human Activation Recognition
Inertial Measurement Unit (IMU) sensors of smartphones or
wearables can be used to differentiate between human activities.
Several studies described reliable algorithms for HAR (23,
24). Nowadays, these algorithms are routinely deployed in
commercial devices, as well as in a wide range of research areas
from medicine to military. JTrack uses the Google Play Activity
Recognition Service7 for HAR, which recognizes up to six types of
activity (walking, running, still, on bicycle, on vehicle or tilting).
JTrack can record the detected activity and the assigned certainty
with a pre-specified frequency of 5min. The HAR module is
computationally lightweight, optimized and does not require
direct access to raw sensor data.

7https://developers.google.com/location-context/activity-recognition (accessed

June 23, 2020).

Application Usage Statistic
JTrack can collect the statistic of user’s interactions with the
smartphone. This data includes the name of the application and
the amount of time it is used in the foreground since the previous
midnight. Phone calls and SMS are treated as applications with
same usage statistics being collected as above. No content of the
applications, messages or phone calls (including phone numbers)
is collected at any stage.

Sensors
Various sensors are embedded in any modern smartphones
which are classified as hardware implementation (i.e.,
accelerometer, gyroscope, barometer) or software
implementation (i.e., rotation sensor). JTrack enables collection
of data from most of the available sensors depending on
the device model and version of Android. Among these,
accelerometer, gyroscope and gravity sensors are the most
important sensors for researchers focusing on motion
analysis (6, 25–29). As a default, JTrack provides recording
of accelerometer and gyroscope data in the passive collection
mode. Other sensors can be added upon the researcher’s choice
by using the provided template module which requires minimal
coding effort. For each sensor, sampling frequency in Hz can be
adjusted using the dashboard when creating a new study.

Dashboard
When creating a new study in the dashboard, all aspects of
a study such as study name, duration, number of subjects,
recording frequency, and categories of data to be collected
can be customized. After creating a study, the dashboard will
generate QR-codes which are used for enrolment into the study.

Frontiers in Public Health | www.frontiersin.org 3 November 2021 | Volume 9 | Article 763621
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FIGURE 2 | JTrack Application Environment. (A) opening page of the application, (B) requesting for camera permission, (C) QR-Code scanner, (D) requesting for

location permission, (E) requesting for an activity detection permission, (F) referring to ask for usage permission which is used for application usage module, (G)

detecting a custom optimization and asking for disabling it, (H) the main menu of the application, where users may access the administration menu, leave a study, get

information about the application and do manual synchronization, (I) administration menu, here we have access to the main setting of application, the information

provided here is for further administration from study owners and most of the information is catch from sever during Installation.

The dashboard also provides management tools on an ongoing
study producing information such as a number and time of
received data for each sensor/modality and status (i.e., active,
not active) of each participant in a particular study. We also
implemented several quality controls including highlighting of
missing data.

Furthermore, to assist study managers to establish further
interaction with participants, we embedded a messaging
method in the dashboard which allows to send a push
notification directly to the participants’ phone, either by

selecting specific subject numbers or all participants within a
particular study. Layered design (backend, frontend and data
management layer) also makes the Dashboard flexible and
extendable for further interaction and integration with third-
party applications.

Performance, Security and Privacy
At all stages of the development, attention was paid to security
and privacy as a main priority. In this context, we designed the
JTrack platform to comply with GDPR and Google Developer

Frontiers in Public Health | www.frontiersin.org 4 November 2021 | Volume 9 | Article 763621
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FIGURE 3 | JTrack Dashboard Environment. (A) main menu, (B) here a new study can be created by specifying its details such as duration of the study, number of

users, and list of data categories to be collected, (C) currently ongoing studies and details of the selected study can be found here. Also, the generated QR-Code can

be downloaded here, (D) to accomplish more interaction with users participated in a particular study, a message as a push notification can be sent to a target user(s),

(E) details of received data, date of registration, date left, duration within in study and quality control by color-labeling for sent data for users in a selected study can be

monitored here.

Policies8. No sensitive data such as name, phone number, phone
contacts or actual location are recorded at any stage. All the
collected data transferred via Hypertext Transfer Protocol Secure
(HTTPS) protocol and checked for any inconsistency using MD5
sanity checksum.

Concerning patient privacy, all users using JTrack are
provided with clear information on what is been recorded and
why. Permission requests for each module need to be approved
during installation and activation. All participants may also stop
and leave a study at any time directly from the app. Also, remote
configuration and one-step recording allow clinicians to gain
optimum control over the collected data without the need to
collect any identifying information.

To reduce battery and memory usage, we provided several
built-in optimizations such as:

• Detecting still period of the phone to pause recordings.
• Delete locally stored data right after synchronization with

the server.
• Scheduled synchronization based on predefined criteria such

as access to a Wi-Fi connection.

8https://developer.android.com/distribute/play-policies (accessed December

2, 2020).

• Detect and provide a possibility to bypass performance
optimizations (i.e., battery and memory) policies of phone
manufacturers introduced on-top of the Android OS.

To reduce data loss due to crashes or reboots, automatic re-
starting is implemented alongside with Firebase integration to
obtain performance and crash reports. Information about phone
manufacturer, model, and OS version are among the optional
recorded data (not active by default), which can be used to
analyse and handle cross-sensor variability.

Pilot Study
In a pilot experiment, we collected in a cohort of healthy
volunteers (N = 21, age: 26.1 ± 6.9, 7 female) for 2 weeks on a
daily basis passively recorded data for application usage, location
and activity recognition aside with self-reported estimates for
these parameters [for application usage: time spent (in minutes)
with the phone: total, social media and messenger]; for location
and activity: walking/running distance (in meters). To test
for associations between passively recorded and self-reported
measures, we computed Pearson correlations across all subjects
and time-points to compare both types of measures (i.e., merging
location and activity recognition co compute distance covered
by foot).
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FIGURE 4 | Data sample for activity and location modules. (A) traveled distance and relative geolocation information for different days, (B) distribution of different

physical activates during a different time of different days, (C) type of activity data combined with geolocation information.
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FIGURE 5 | Data sample for application usage module and sensors. (A) amount of time spent in different application types for a day, (B) distribution of different type

of application usage during a study. (C) raw data recorded from the acceleration sensor, (D) raw data recorded from the Gyroscope sensor.

Frontiers in Public Health | www.frontiersin.org 7 November 2021 | Volume 9 | Article 763621
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FIGURE 6 | Results of the pilot study comparing self-reported and passively recorded measures of daily behaviour. (A) Correlation plot between self-reported distance

walking/running and distance estimates derived from fusion of location and activity recognition data. (B) Correlation matrix comparing self-reported measures of

different smartphone usages and estimates derived from passively recorded app usage information.

RESULTS

To illustrate the utility of the JTrack application sample data

were collected in the beta testing phase. Figures 4, 5 display such

sample data collected for a single subject for different modalities.

We provided sample data for each modality (i.e., location data,

activity recognition, application usage and raw sensors data) also
we further show a possible combination of the recorded data (i.e.,
location data with activity recognition data) in Figure 4C. Other
combinations such as time and location (e.g., extracting amount
of time spend outside of common residual place), location and
application usage (e.g., extracting pattern of social interaction
and applications used in-home condition) and activity and raw

sensor data (e.g., extracting driving behaviour) are among the
possible ways of making inference. Figure 5B also shows the daily
phone and application usage (i.e., social media, phone calls, and
online messaging platform) for a pilot participant.

In a pilot experiment, we further tested for associations
between these passively recorded measures and self-reported
estimates of specific behaviours. The self-reported distance
covered by walking/running per day significantly correlated (r
= 0.53; p < 001) with the information derived from passive
monitoring (Figure 6A). Similarly, the time spent with the
phone in total, communication and social platform significantly
correlated with the passively-recorded estimates of respective
phone usage measures (r= 0.38–0.49; all p < 0.001) (Figure 6B).

Frontiers in Public Health | www.frontiersin.org 8 November 2021 | Volume 9 | Article 763621
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TABLE 1 | Comparison of existing frameworks with JTrack.

Framework Location

Anonymization

Official app Stores Data Management Remote Configuration Activation Customized

OS Detection

AWARE (17) NO NO SQL YES Text-based NO

RADAR-base (18) YES YES MongoDB YES QR-Code NO

Beiwe (19) NO YES PostgreSQL NO Text-based NO

mCerebrum (20) NO NO MySQL NO Text-based NO

JTrack (this study) YES YES DataLad YES QR-Code YES

Comparison to Other Platforms
Table 1 shows how the JTrack platform compares to other similar
and related platforms in terms of some key features such as
security and privacy, activation, management and also stability.
AWARE (17) is a platform for remote assessment of a wide
range of phone sensors, activity and self-reported data. AWARE
also supports additional plugins for external sensors and new
data. However, this ability also requires a further declaration
of permissions which limits control over privacy. mCerebrum
(20) is another platform for remote assessment supporting a
wide range of high-frequency sensors with a focus on energy-
optimization. However, this platform has not been updated in
while (latest update is May 2018 in their GitHub repository),
questioning its performance on new versions of Android-OS.
Beiwe (19) is the next platform supporting remote monitoring
and DBs assessments which has a flexible study portal, modeling
and data analysis tools. Nevertheless, this platform does not
have local data storage and makes use of Amazon Web Services
(AWS) cloud computing infrastructure. Such public cloud-based
solutions are often more cost effective and convenient to use
since as they simplify the build and maintenance process (this
is particularly evident when the number of users and the data
collected are small to medium sized), yet they may also raise data
privacy questions and require additional deployment procedures.
Another drawback of this platform is the collection of identifiable
data such as phone number, media access control (MAC) address
of WIFI and Bluetooth devices. RADAR-base (18) is the last
open-source platform in the list. It has a well-organized structure
which is using Confluent and Apache Kafka services and flexible
study portal. Nevertheless, the deployment and adaptation
of this platform require heavy configuration. Concerning
the convenient registration, it requires text-based registration.
Location data being collected in background is considered as a
big concern in terms of privacy which is also frequently regulated
by Google Developer Policies9 and restricted by recent updates in
Android OS. Among all the compared platforms only RADAR-
base provides relative location. There are several alternative
variants of these platforms that may strengthen some of the
basic capabilities, such as Health Outcomes through Positive
Engagement and Self-Empowerment (HOPES) which is based
on the Beiwe platform (30) and AWARE-Light which is based
on the aware framework. While these additional enhancements

9https://developer.android.com/distribute/play-policies (accessed December

2, 2020).

may address some of the shortcomings of the specific underlying
platform, here we only focused on the comparisons to the
core versions.

Easy one-step registration and authentication via QR-Code,
as well as remote configuration, make JTrack more practical in
both the usage and management aspects. Battery and memory
optimizations offered by Android OS or phone manufacturers
can affect the stability and consistency of data collected, JTrack
provides built-in detection and circumventionmethods for better
stability that are not provided by comparator platforms at
this level.

DISCUSSION

We developed JTrack as an open-source, smartphone-based
platform for digital phenotyping. JTrack consists of a smartphone
application and an online dashboard enabling remote data
collection and study management. JTrack provides a flexible and
modular environment for collection of various types of sensor
and smartphone usage data with particular attention being paid
to patient privacy as well as compliance with GDPR regulations.

From the functionality perspective, most of the solutions
described above were developed with the focus on specific
applications, i.e., a specific disease [i.e., RADAR-base (18)
and Beiwe (19)]. Their application is therefore limited to the
respective primary context. In contrast, some other platforms
were developed to collect as much information as possible
with little attention to data privacy [i.e., AWARE (17)]. Such
frameworks violate GDPR andGoogle Play Store policies limiting
their deployment for many clinical applications. JTrack aims
to fill this gap by providing a customizable platform that can
be deployed across different indications whilst paying large
attention to privacy and security policies. JTrack aims to comply
with GDPR regulations as well as with the Google Play Store
policies. It only requires minimal access to the device information
and avoids collection of identifiable or sensitive data.

Developing an application for smartphones always requires
dealing with variation in devices (e.g., manufacture, screen
size, available sensors) as well as the variation of operation
systems (OS) versions. Different manufacturers may add further
OS optimizations such as limiting background processes.
This may cause inconsistencies in performance of monitoring
applications. We introduced several layers to detect, report and
prevent the side effects of these variations. JTrack is actively
maintained and covers up to 84.9% of Android smartphones

Frontiers in Public Health | www.frontiersin.org 9 November 2021 | Volume 9 | Article 763621
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[Minimum Software Development Kit (SDK) 23] dealing
currently with Android optimizations from eight main Android
smartphone manufactures. Although the JTrack platform is
now only available for the Android environment, which may
introduce selection bias and limit participants to having an
Android smartphone, an iOS version of JTrack is currently in
development, with similar capabilities and will be made publicly
available in the same GitHub repository and under the same
open-source license.

Potential applications for JTrack include but are not limited
to monitoring of motion information in diseases associated
with alterations of gait and other motor functions affecting
phone use. Similarly, the ability to track phone usage allows
for monitoring of different types of behaviour, i.e., phone-based
social interaction. As such, JTrack may be useful to track such
behaviours in healthy participants as well its alterations by
specific disorders.

Finally, to facilitate the reusability, JTrack is released
under open-source Apache 2.0 licenses. All modules
including online-management dashboard can be adopted
and extended. It has been designed with modular structure
to enable flexibility and customization to support new data
and sensors.

Variations in device model, Android version, network quality,
and other technical features may have negative effects on the
performance of JTrack. Despite the effort to minimize crashes
and data loss, there is no guarantee for such. During the
development process, we used different third-party services (e.g.,
Google Play Service), any change or deprecation in these services,
or Android policies may also affect the functionalities of JTrack
partly or as a whole. Lastly, JTrack was designed and tested
for smartphones. It may be used on other devices such as
wearables (i.e., smartwatches) or tablets but further tests should
be considered beforehand.

JTrack is an active and open-source project which is
continuously maintained. We consistently improve and add new

features to the platform. The features described here are part of
the v1 release. Newer versions may differ and include additional
functionalities at the time this article is published.
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Abstract: There are currently no standard methods for evaluating gait and balance performance
at home. Smartphones include acceleration sensors and may represent a promising and easily
accessible tool for this purpose. We performed an interventional feasibility study and compared
a smartphone-based approach with two standard gait analysis systems (force plate and motion
capturing systems). Healthy adults (n = 25, 44.1 ± 18.4 years) completed two laboratory evaluations
before and after a three-week gait and balance training at home. There was an excellent agreement
between all systems for stride time and cadence during normal, tandem and backward gait, whereas
correlations for gait velocity were lower. Balance variables of both standard systems were moderately
intercorrelated across all stance tasks, but only few correlated with the corresponding smartphone
measures. Significant differences over time were found for several force plate and mocap system-
obtained gait variables of normal, backward and tandem gait. Changes in balance variables over time
were more heterogeneous and not significant for any system. The smartphone seems to be a suitable
method to measure cadence and stride time of different gait, but not balance, tasks in healthy adults.
Additional optimizations in data evaluation and processing may further improve the agreement
between the analysis systems.

Keywords: gait; balance; training; biomarkers; motion capturing; smartphone; IMU; video-based;
home-based

1. Introduction

Gait and balance are impaired in aging, but also in various orthopedic and in particular
neurological disorders. This impairment is often associated with reduced walking speed,
increased gait variability or increased postural sway [1–3] and can lead to considerable
constraints in daily life (e.g., bradykinesia/akinesia and freezing of gait in Parkinson’s
disease [4], unstable and wide-based gait in ataxias [5,6]). Identifying and assessing these
constraints in daily life and providing suitable therapeutic (training) options such as
physiotherapy is highly important.
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There is an increasing demand to monitor physiological functions and disease-related
symptoms independent of the physical presence of the respective participants or patients
at the study site. Enabling study participation in a home-based setting, e.g., for human
physiological monitoring [7,8] or by using wearables as measurement devices for assessing
gait and balance [9,10], is an interesting and promising approach. Inertial measurement
units (IMUs) consisting of accelerometers, gyrometers and magnetometers are routinely
embedded in the hardware of smartphones. Due to their broad availability and the conve-
nient option to implement applications, they may provide an attractive hands-on tool for
measuring gait and balance in home-based settings. However, this set-up has been applied
only recently in the field of motion analyses [10,11] and is not yet part of the standard
clinical tools of measuring gait and balance.

Currently, the most commonly used instruments for gait and balance analysis are force
plates (pressure-sensitive walkways) and body-worn motion capturing (mocap) systems
based on IMU or optical data [12]. All these stationary systems allow the detection of
abnormal or altered gait patterns in various neurological disorders such as Parkinson’s
disease (PD, [13]), multiple sclerosis (MS) or ataxias [14]. Using force plates (GAITRite,
5.1 m), it was shown that PD patients have a longer stride duration, a shorter stride
length and greater variability in both, compared to healthy controls [13]. In addition,
stride length and velocity were reduced in ataxia patients (force plate and body-worn
sensors; [14]). These gait analysis systems were also able to detect performance changes
after interventions. For example, Conradsson et al. [15] found improved gait velocity
and stride length in normal gait after a ten-week balance training in PD patients. They
measured normal walking with a GAITRite 9 m electronic walkway with and without
a cognitive task and used the averaged result of six trials. Similarly, Giardini et al. [16]
used the averaged results of four trials of normal walking at usual speed on a GAITRite
4.5 m electronic walkway and showed that two forms of physical exercise training (balance
exercises and mobile platform training) improved gait speed in patients with PD, whereas
only the balance exercises led to improved cadence and stride length.

Although the completion time of the Timed-Up-and-Go (TUG) test is used as a stan-
dard for quantifying functional mobility in a clinical context [17], electronic assessment of
balance has increasingly been used in research [18]. The most commonly used instrument
is a force plate (similar to gait analysis), however, an increasing number of technologies,
whose reliability and validity was described in Baker et al. [19], are being used on a regular
basis (e.g., inertial sensors). For balance tasks, center of mass or center of pressure data
are commonly used to determine the area of postural sway, path length and mean veloc-
ity [20,21]. Morenilla et al. [22] described altered sway areas and velocities in PD patients
when examining normal stance on a tri-axis force plate (Kistler). They found significant
increases in total sway area and in mean anteroposterior and mediolateral displacement for
PD patients. Moreover, Sun et al. [23] reported that both a new inertial body-worn sensor
and a force plate were able to discriminate between subjects with severe MS and healthy
control. However, only the force plate was able to distinguish subjects with mild MS from
healthy control and patients with severe MS. Studies using force plates were also able to
detect changes in performance after training interventions [24,25], i.e., patients with chronic
stroke showed improved sway distance after participation in a virtual reality reflection
therapy [26], and children with cerebral palsy showed decreased sway area and sway path
after 12 weeks of training with a gaming balance board [27].

Thus, these stationary analysis systems of gait and balance are obviously able to detect
performance differences between different groups in addition to shifts in performance
over time or after intervention. They stand out in terms of their accuracy and ease of use.
However, whether this also holds true for smartphone-based evaluation of gait and balance
is still a topic of intensive research. In contrast to force plates and whole-body IMUs, the
smartphone relies on a single sensor estimating velocity from acceleration and, in addition,
gravitational influences and high-frequency noise must be filtered out. The advantage
of smartphones would lie in their high disposability and saving of resources. Here we
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compared smartphone-based assessment of gait and balance tasks before and after three
weeks of training to two commonly applied stationary gait analysis systems. We evaluated
the feasibility of this approach to draw conclusions about the agreement of the three gait
analysis systems and their ability to detect changes after a training intervention.

2. Materials and Methods

In this interventional feasibility study, smartphone-based evaluation of gait and bal-
ance was combined with two common stationary gait analysis systems requiring a labo-
ratory environment: a zebris force plate and a Xsens mocap system with inertial sensors.
Overall, 25 participants were recruited into the study. Two applications (apps, “JTrack EMA”
and “JTrack Social”) were installed on the smartphones of the participants (screenshots
are available in Far et al. [28]). Both apps were developed at the Forschungszentrum
Jülich [28]. JTrack EMA was developed for collection of ecological momentary assessments,
so that common clinical questionnaires can be easily implemented into the app. JTrack
Social was developed for customizable gathering of sensor data, including accelerometer
information, using sensors embedded in any modern smartphone. Data were collected
during a three-week video-based training intervention, which was performed at home
and included twelve gait and balance training sessions, each lasting 20 min (see Figure 1).
Participants were asked to indicate how many of the training videos they performed in
total. Nevertheless, no verification of this information could take place. The present study
was a feasibility study of a combined assessment and training protocol for gait and balance
in healthy subjects. Written informed consent was obtained by all participants. The study
was approved by the ethics committee of the Psychology faculty of the Heinrich Heine
University Düsseldorf.

Figure 1. Overview of study design.

2.1. Participants

Twenty-five participants were recruited via notices at universities, supermarkets and
social media, and via newspaper. Participants had to be aged between 20 and 70 years,
needed to walk safely without a walking aid, and did not report joint problems (osteoarthri-
tis, endoprostheses) or other neurological, muscular or other medical problems affecting
gait (e.g., falls, deep brain stimulation).

2.2. Gait Analysis Systems

The following three gait analysis systems (see also Figure 2) were used for assessment
of gait and balance tasks in this study:

• The zebris FDM force plate (4.24 m, zebris Medical GmbH, Isny, Germany, https://ww
w.zebris.de/en/medical/stand-analysis-roll-analysis-and-gait-analysis-for-the-prac
tice, accessed on 30 June 2022) with the Noraxon® myoPressure software (Noraxon
U.S.A., Inc., Scottsdale, AZ, USA, https://www.noraxon.com/our-products/myopres
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sure/, accessed on 30 June 2022). This uses capacitive pressure sensors to capture the
pressure distribution in gait and balance.

• The Xsens mocap system consists of the MVN Awinda hardware and MVN Analyze
software (Xsens Technologies B.V., Enschede, The Netherlands, https://www.xsens.co
m/motion-capture, accessed on 30 June 2022). It consists of 17 IMUs attached to each
distinctive segment of the body fixed with body straps, which record angular velocity,
acceleration, atmospheric pressure and the Earth’s magnetic field with a frequency of
60 Hz.

• Individual Android-based smartphones of the participants on which the JTrack So-
cial app was installed [28]. During all measurements, the accelerometer data of the
smartphone were recorded using this app. The smartphone was placed in a waist bag.

Figure 2. Representation of the three gait analysis systems used in the study.

2.2.1. Force Plate Feature Extraction

The zebris FDM force plate uses capacitive pressure sensors to capture the pressure
distribution in gait and balance. No preprocessing was performed on the force and pressure
data, which were recorded with a frequency of 100 Hz. Gait or balance reports are created
automatically in the Noraxon myoPressure™ software, by selecting “Report” → “Bilateral
Gait Report” for gait tasks and “Report” → “Stance Report” for stance tasks. The software
uses the vertical ground reaction force to determine gait phases such as the heel strike or
toe off. Movements in the beginning and at the end of the tasks that were not part of the
task were unselected for all tasks. Apart from this, the entire distance walked on the force
plate was included in the analysis. Feet positions were checked manually for tandem gait,
since the software frequently was not able to distinguish the order of the left and right feet
in this task. If foot positions were wrong according to the synchronized video, they were
switched manually (left feet contacts were exchanged for right feet contacts).

In the report, stride time (s) describes the time between two heel contacts on the same
side of the body. Cadence is the number of steps performed per second. The average
velocity calculated for the force plate is the average stride length divided by the average
stride time. Step width (cm) is the lateral distance between the center of the left and
right heel.
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2.2.2. Mocap System Feature Extraction

The Xsens mocap system computes the full-body motion based on constraints from a
biomechanical model of the human skeleton with the help of sensor fusion algorithms. To
configure the biomechanical model, body dimensions such as foot length, hip height and
shoulder width of each participant were collated. The attached IMUs of the system are
self-contained and light weight, so that they do not restrict subjects in their freedom of
movement. After placing the system on a participant, a calibration process was performed
as described in the MVN User Manual [29], i.e., to calculate the orientations of the sensors
with respect to the corresponding segments. Quantities regarding the accuracy of the
tracker and the MVN fusion engine can be found in the MVN User Manual [29]. A detailed
description of the system is given in Schepers et al. [30].

The data were recorded with the Xsens MVN 2020.2 software and stored in the mvnx
format after reprocessing in HD. A Python script was used to extract the position of the
pelvis and both feet (foot segments located between the ankles within the Xsens model, see
section 23.6.10 in the MVN User Manual [29]). The pelvis data were used to approximate
the center of mass (COM, sensor position at the lower back on top of the sacrum). Data are
given in the x-direction (anterior–posterior), in the y-direction (medial–lateral) and in the
z-direction (vertical). The definition of axes also applies to the data of the left and right foot.
The following procedures were separately repeated for each participant and each task.

Data were visualized to check for plausibility and to avoid including errors. Since the
data contained turns at the end and at the beginning (most anterior and most posterior
points, x-axis) of each lane, the first and last meters in the x-direction were excluded from
the data. Data were then split into separate lanes (6 lanes for normal gait, 6 lanes for
backward gait, 4 lanes for tandem gait) that every participant walked. IMU sensors showed
a drift after a few lanes of walking, resulting in a mismatch between the correct direction of
travel and the sensor-based detected direction of the x-axis as the main walking direction.
This was corrected by rotating the data within the moving plane (x–y) to maximize the
conformance between the walking direction and the x-axis. To calculate the time between
two consecutive steps of the participant (step time), the vertical component of the COM
data was used. As the COM moved up and down in cyclic movements, its peaks were
used as markers for a step cycle. The height to find the peaks (scipy.signal, find_peaks) was
adapted for each participant by visually checking the output plots. To avoid technical errors
and enable single step detection during the tandem gait, an individual minimum distance
between two consecutive peaks was required. The time between two steps (inter-step time)
was calculated by subtracting the times of two neighboring peaks.

The step frequency (cadence), defined as the number of steps per second, is the inverse
of the inter-step time.

Velocity as distance per time was calculated separately for each lane using the differ-
ence between the first and the last data point for position and time.

To calculate the lateral distance between both feet during steps (step width), the
vertical z-axis and the y-axis (medial–lateral displacement) of the feet were considered. The
time frame with the lowest foot position of each foot (mid-stance phase) was marked by
searching for the minima in the z-direction (vertical axis). Its position in the y-direction
at the same time frame was used to determine the distance between the left and right
feet. Height and width in the find_peaks function were again adapted individually for
each participant.

For the balance tasks, data import and inspection were performed in a similar way as
described for the gait tasks. For each participant, the time span for analysis was selected
in a way such that movements in the beginning or at the end of the balance task were
excluded. Analysis was performed on the pelvis data (COM). The total path length that was
traveled by the COM of the participant was calculated by summing the distance between all
successive points in the path within the moving plane (x–y). The sway velocity described
the number of millimeters the COM of the participant moved per second.
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The area of an ellipse around the COM path was calculated by multiplying the antero-
posterior sway and the mediolateral sway with pi.

2.2.3. Smartphone Feature Extraction

The JTrack Social app was installed on the individual Android-based smartphones of
the participants and placed in a waist bag during the measurement (placed at the lower
belly to approximate the COM while also ensuring simple handling).

All analyses of the JTrack Social app data were performed in MATLAB. The ac-
celerometer data for each smartphone were recorded using the highest frequency pro-
vided for the respective smartphone (the recorded frequencies ranged between 100 and
252 Hz). All recorded gait and balance data were visually quality checked by removing
non-tasks and, where identifiable, turn periods from the recordings. For normal gait
data, manual step labeling was performed to obtain reference data for automated step
labeling using a dedicated open-source MATLAB toolbox implemented for that purpose
(https://github.com/juryxy/step_detector, accessed on 30 June 2022).

All accelerometer data were band-pass filtered in the range of 0.8–20 Hz to remove the
gravitational component and the high frequency noise. Step detection for gait data was
performed using the findpeaks function on the Euclidean norm of the accelerometer data.
For this function, the following two parameters can be optimized for step detection—the
minimum peak height (further expressed as standard deviation (SD) relative to the mean
signal) and the minimum peak distance (in seconds). As the zebris FDM force plate was
able to directly capture steps using pressure sensors, it was considered as closest to the
ground truth together with the manually labeled data for normal gait. To identify optimum
parameter combinations for smartphone step detection, we performed a grid search for
the above parameters (peak height: 1.5 SD in steps of 0.1 to 3.0 SD; peak distance: 0.2 s in
steps of 0.02 to 0.44 s), testing for correlations between the mean stride intervals (MSIs)
obtained using these settings and MSIs derived using the ground truth provided by the
force plate and manual labeling (Figure A1, Appendix A). For normal and backward gait,
the optimum parameters providing the closest overall correlation to the ground truth were
a minimum peak height of 2.3 SD and minimum peak distance of 0.38 s. For tandem
gait, the optimum peak height was 2.7 SD and minimum peak distance was 0.42 s. Using
these optimum parameters for step detection, the following features were computed using
dedicated MATLAB scripts: stride time, cadence and velocity. To compute the mean
velocity, we performed a step-wise double integration of accelerometer data to velocity and
displacement using the first point as a reference. Thereby, the above band-pass filter was
re-applied at each step to ensure that the residual gravitational and potential reintroduced
high-frequency effects were removed from the data. Mean velocity (in m/s) was then
computed as distance covered during the gait tasks divided by time.

For stance tasks, accelerometer data were transformed into displacement. The gravita-
tional and high-frequency components were removed from acceleration and displacement
data using band-pass filtering as for the gait tasks. Mean velocity was computed as point-
by-point displacement divided by time. As the smartphone had no specific fixation of the
phone orientation (except for a waist bag), the orientation of sensors with respect to the x-
and y-plane differed across phones. To obtain an estimate of postural sway, we therefore
performed a principal component analysis to determine the main directions of the sway
in the three-dimensional space. The ellipsoid volume encompassing the 95% confidence
interval of all points across the three principal components was computed as an estimate of
postural sway around the COM (Figure A2, Appendix A).

An additional app, the JTrack EMA app (Biomarker Development, INM-7,
Forschungszentrum Jülich), was used for the retrieval of questionnaires.
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2.3. Study Tasks
2.3.1. Gait and Balance Tasks

For all gait tasks, participants were asked to walk safely across the force plate, then
turn around behind the plate and walk back to the starting position. The walks were
repeated several times with the number of iterations varying between tasks (for details see
Table 1). For tandem gait, participants walked in a straight (imaginary) line by placing one
foot in front of the other, placing the heel of one foot about a hand’s width in front of the
toes of the previous foot to enable separate foot detection by the force plate software. In
the balance tasks, the participants were asked to keep their balance for as long as possible
without leaving their position or holding up (maximum of 30 s). Participants performed all
tasks without wearing shoes.

Table 1. Gait and balance tasks.

Task Content

Normal gait (NG) 10 m × 4.24 m normal (forward) gait

Backward gait (BG) 6 m × 4.24 m backward gait

Tandem gait (TG) 4 m × 4.24 m tandem gait (walk on one line
placing one foot in front of the other)

Narrow stance (NS) Balancing in a narrow stance (feet close together)

Tandem stance (TS) Balancing in a tandem stance (feet in one line)

Narrow stance with eyes closed (NSEc) Balancing in a narrow stance with eyes closed

Single leg stance (SS) Balancing on one leg

2.3.2. Questionnaires

Age, gender, body height, body weight, profession and years of education were
retrieved in a demographic questionnaire during the first laboratory visit. To assess de-
pression and anxiety, the German versions of the depression module of the patient health
questionnaire (PHQ-9 [31], German version: [32]) and the hospital anxiety and depression
scale ([33], German version: HADS-D [34]) were used. Additionally, general habitual
well-being (FAHW [35]) and self-efficacy, optimism and pessimism (SWOP-K9 [36]) were
assessed. To assess self-efficacy in relation to falls, the (modified) German version of the
Activities-Specific Balance Confidence scale was used (ABC-D [37]).

The “PHQ_stress” and “PHQ_depression” subscores were selected from the PHQ-9
questionnaire. Although the depression and anxiety variables were used as exclusion
criteria, the stress variable ranged from 0 to 20 and served as a covariate to describe the
population. The anxiety subscore of the HADS-D had a cut-off value of >10 points and
a depression subscore of >8 points. In the FAHW score, a total score of 38 to 50 or 35 to
47 (men and women, respectively) was defined as “average” according to the authors of
the questionnaire. Additionally, the score contains a row of “smiley” icons, ranging from
a happy face to a sad face. This was included in the evaluation by assigning a 1 to the
happiest smiley and a 7 to the saddest smiley. The SWOP-K9 questionnaire contained
items on self-efficacy (SWOP-SE), optimism (SWOP-OP) and pessimism (SWOP-PS), with
scores ranging from 5 to 20, 2 to 8 and 2 to 8, respectively. For the ABC-D questionnaire,
the scale was adapted to a 4-point response scale (not confident at all, somewhat less
confident, somewhat confident, absolutely confident) so that a score between 16 (maximum
confidence) and 64 (minimum confidence) could be achieved.

2.3.3. Training at Home

Gait and balance training was performed four times per week for 20 min by in-
struction via provided videos. The videos were produced by a physical therapy practice
(PhysioStützpunkt, Köln, Germany) and uploaded to Vimeo (https://vimeo.com/, ac-
cessed on 30 June 2022). In each video, an experienced physiotherapist explained and
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demonstrated various tasks to improve gait and balance and instructed the participants to
follow along. This included strength training, coordination training, stability training and
mobility. The twelve videos progressed from simple to more demanding tasks and also
included suggestions to reduce or increase the level of difficulty. Videos could be paused
or repeated at any time, but participants were instructed to perform each training session
only once until their second study visit was completed.

2.4. Statistical Analyses

From the set of extractable variables of each gait analysis system and each gait task,
three variables were selected that were consistently available across all systems (see Table 2):
Gait velocity (average velocity across all straight distances covered in the task, measured in
meters per second), stride time (average duration of one stride defined as two consecutive
steps in seconds) and cadence (average number of steps that are performed within one
second). Additionally, step width was extracted from the force plate gait report and from
the mocap system data, as this is an important variable to detect abnormal gait patterns
(e.g., broadened base of support in cerebellar ataxias, see [3]). However, the step width
cannot be derived from the acceleration data of the smartphone and was therefore not
extracted from the smartphone data. For the balance tasks, the center of mass (COM) sway
area (area of an ellipse enclosing all data points in the x- and y-direction) and the velocity of
the COM (average distance in millimeters that the participant traveled per second) were
chosen. These two variables showed good reliability in previous studies (e.g., [38,39]) and
are commonly used for examining balance performance [20,21,40]. Both variables were
available for all three gait analysis systems.

Table 2. Overview of gait and balance variables of all gait analysis systems used for statistical
analysis.

Output Variable Description Unit

Gait

Stride time Time to complete one stride (two steps) s

Cadence Number of steps per second s−1

Velocity Speed of movement m/s

Step width * Lateral distance of left and right foot (center of heel)
at one step m

Balance

COM ellipse area (ellipsoid volume
for smartphone)

Ellipse, enclosing 95% of all data points (100% in the
mocap system) during a stance task (mediolateral

and anteroposterior displacement)
mm2 (mm3)

COM velocity Speed of movement during a stance task
(mediolateral and anteroposterior displacement) mm/s

* not obtained with the smartphone.

Correlations between the questionnaire scores, between the individual variables within
one gait analysis system, and between variables in all gait analysis systems, were calculated
with the Pearson correlation coefficient. In this context, a correlation between 0.10 and
0.39 was described as weak, 0.40 to 0.69 as moderate and 0.70 to 1.00 as strong [40].
To analyze changes over time between the questionnaire scores and gait and balance
variables at the first and second study visit (T1 and T2), either an ordinary paired-sample
t-test was performed if the data scores were normally distributed, or a Wilcoxon rank
test, if the data were not normally distributed. For all statistical analyses, a p-value of
<0.05 was considered significant. Since results were corrected for multiple comparisons
using a Bonferroni correction, the resulting p-values of <0.013 (force plate, mocap system)
and <0.017 (smartphone) were considered significant when reporting changes over time.
Boxplots of all gait and balance variables were checked and extreme outliers were excluded
(>3 ∗ IQR above quartile 3).
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3. Results

3.1. Participants

A total of 25 participants (age 44.0 ± 18.4 years) took part in the first study visit (T1,
52% female, 92% right-handed, see Table 3). One participant had missing data from the
mocap system due to technical problems.

Table 3. Demographic information of all participants (n = 25). Education included school years plus
years up to the highest graduation achieved (e.g., German Abitur equals 12 years of education). The
HADS-D anxiety score had a cut-off value of >10 and the HADS-D depression score had a cut-off
value of >8. The PHQ stress score had a maximum of 20 points.

Mean ± SD Range (Min.–Max.)

Age [years] 44.1 ± 18.4 20–71
Body height [cm] 172.3 ± 9.9 154–193

Body weight (n = 17) [kg] 67.6 ± 14.2 43–97
Education [years] 15.2 ± 3.2 10–25

HADS-D Anxiety [score] 3.3 ± 2.8 0–9
HADS-D Depression [score] 2.6 ± 2.6 0–10

PHQ Stress [score] 2.8 ± 2.1 0–8

For the second study visit, four participants dropped out (injury independent of the
study (one), technical difficulties (one) and time constraints (two)). This led to a sample
of 21 participants at T2 with an average age of 44.7 ± 19.4 years (57% female, 95% right-
handed). All subjects reported having performed each of the training videos (12/12).

All demographic variables and questionnaire scores except the ABC-D score were nor-
mally distributed. Because one participant showed a depressive mood (HADS-depression
score 10), all analyses were conducted with and without this subject. Since results did not
differ, data from this participant were not excluded from further analyses.

Of the gait and balance variables, 8 of 33 gait variables were not normally distributed
and 21 of 24 balance variables were not normally distributed. Accordingly, non-parametric
statistical tests were selected for these variables. For detailed specifications of the variables,
please see Table A2 (Appendix A).

3.2. Questionnaires

No differences between the questionnaires obtained at both study visits were found
between T1 and T2 (Table 4, p > 0.09).

Table 4. Descriptive statistics of the questionnaire scores at the first and second study visit (T1, n = 25,
and T2, n = 21). SE = self-efficacy (possible range: 5 to 20), OP = optimism (possible range: 2 to
8), PS = pessimism (possible range: 2 to 8). Activities-Specific Balance Confidence scale (ABC-D,
possible range: 16 to 64), general habitual well-being (FAHW, average reference values between
35 and 50, smiley score ranging from 1 to 7).

T1 T2

Questionnaire
[Score]

Mean ± SD
Range

(Min.–Max.)
Mean ± SD

Range
(Min.–Max.)

SWOP-SE 3.080 ± 0.49 2.0–3.8 3.229 ± 0.4485 2.2–4.0
SWOP-OP 3.240 ± 0.631 2.0–4.0 3.119 ± 0.7891 1.5–4.0
SWOP-PS 1.740 ± 0.614 1.0–3.0 1.667 ± 0.7130 1.0–3.0
ABC-D * 17.96 ± 2.574 16–28 17.76 ± 2.343 16–24
FAHW 59.12 ± 16.821 21–83 54.55 ± 25.310 −5–86

FAHW Smiley 2.04 ± 0.611 1–3 2.25 ± 0.786 1–4
* The ABC-D scores were not normally distributed. A Wilcoxon rank test was performed.
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3.3. Gait and Balance Performance
3.3.1. Conformity of the Systems

Significant correlations between corresponding gait variables (stride time, cadence,
velocity) across the three systems were present during all gait tasks. For the velocity
variable during the backward and tandem gait, the correlations involving the smartphone
were weak and did not all reach significance; correlations for the other two variables
were significant.

For normal gait (Table 5), strong correlations were found between the three corre-
sponding gait variables (stride time, cadence, velocity) of the force plate, mocap system
and smartphone, except for one moderate correlation of velocity between the mocap sys-
tem and smartphone. Step width was moderately correlated between the force plate and
mocap system.

Table 5. Between-system correlations for normal gait between the force plate, mocap system and
smartphone at T1 (first measurement time). Correlation after Pearson.

Normal Gait
Force Plate

(n = 23)
Mocap System

(n = 22)
Force Plate

(n = 24)

Sm
ar

tp
ho

ne

Stride time 0.977 ** 0.962 **

M
oc

ap
sy

st
em Stride time 0.981 **

Cadence 0.942 ** 0.934 ** Cadence 0.992 **

Velocity 0.705 ** 0.648 ** Velocity 0.925 **

Step width Step width 0.430 *
* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed).
n = number of participants included in the analysis.

For backward gait (Table 6), strong correlations were found between the stride time
variables of all systems and for cadence between the force plate and smartphone. The
remaining correlations regarding cadence and velocity were moderate or even showed no
correlation for velocity between the mocap system and smartphone.

Table 6. Between-system correlations for backward gait between the force plate, mocap system and
smartphone at T1 (first measurement time). Correlation after Pearson.

Backward Gait
Force Plate

(n = 23)
Mocap System

(n = 22)
Force Plate

(n = 24)

Sm
ar

tp
ho

ne

Stride time 0.936 ** 0.706 **

M
oc

ap
sy

st
em Stride time 0.731 **

Cadence 0.919 ** 0.685 ** Cadence 0.687 **

Velocity 0.508 * −0.019 Velocity 0.453 *

Step width Step width 0.361
* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed).
n = number of participants included in the analysis.

For tandem gait (Table 7), correlations were again strong between stride time and
cadence variables across all three systems. However, for velocity, only moderate correlation
was found between the force plate and the mocap system, but not between the smartphone
and the two standard systems.

For balance tasks, moderate to strong significant correlations were found between the
corresponding variables of the force plate and mocap system (see Table 8). For smartphone
data, only three variables reached statistical significance (moderate correlations between
the ellipse variables in tandem stance and the velocity variables in narrow stance with eyes
closed between the force plate and smartphone, and a moderate correlation between the
velocity variables in single leg stance between the mocap system and smartphone).
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Table 7. Between-system correlations for tandem gait between the force plate, mocap system and
smartphone at T1 (first measurement time). Correlation after Pearson.

Tandem Gait
Force Plate (n

= 17)
Mocap System

(n = 19)
Force Plate

(n = 19)

Sm
ar

tp
ho

ne

Stride time 0.875 ** 0.899 **

M
oc

ap
sy

st
em Stride time 0.901 **

Cadence 0.794 ** 0.869 ** Cadence 0.861 **

Velocity 0.149 0.365 Velocity 0.618 **

Step width Step width −0.150
** Correlation is significant at the 0.01 level (2-tailed). n = number of participants included in the analysis.

Table 8. Between-system correlations for the stance tasks at T1. Cor. = correlation after Pearson.
NS = narrow stance. TS = tandem stance. NSEc = narrow stance with eyes closed. SS = single leg
stance. The number of participants included in each analysis varied between 14 and 24.

Force Plate Mocap System Force Plate

Sm
ar

tp
ho

ne

Narrow stance
Ellipse −0.072 0.093

M
oc

ap
sy

st
em

Narrow stance
Ellipse 0.697 **

Velocity 0.186 0.190 Velocity 0.673 **

Tandem stance
Ellipse 0.550 * 0.315

Tandem stance
Ellipse 0.483 *

Velocity 0.008 0.123 Velocity 0.468 *

Narrow stance
eyes closed

Ellipse 0.120 −0.058 Narrow stance
eyes closed

Ellipse 0.782 **

Velocity 0.580 * 0.210 Velocity 0.752 **

Single leg
stance

Ellipse 0.453 0.479 Single leg
stance

Ellipse 0.672 **

Velocity 0.243 0.528 * Velocity 0.706 **

* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed).

3.3.2. Reference Values

To put the outcome values of the gait tasks in context, reference values from the
literature are given in Table 9.

Table 9. Overview of values of gait variables found in the literature versus results of this study. A
value description is given, unless values are mean ± SD.

Literature Own Results

Values System Reference
(Force Plate,

Mocap System,
Smartphone)

N
or

m
al

ga
it

stride time [s]

1.16 (0.92–1.41) (median
(5th–95th percentiles)) zebris force plate Pawik et al., 2021 [41]

1.18, 1.20 and 1.20
1.09 ± 0.08 zebris force plate Kasović et al.,

2020 [42]

cadence [steps/s]
1.83 ± 0.17 zebris force plate Kasović et al.,

2020 [42] 1.66, 1.70 and 1.67
1.72 ± 0.17 GAITRite force plate Rao et al., 2011 [43]

velocity [m/s]
1.25 ± 0.14 zebris force plate Kasović et al.,

2020 [42] 0.98, 0.97 and 1.18
0.94 ± 0.25 GAITRite force plate Rao et al., 2011 [43]

step width [cm]

11.65 ± 2.85 zebris force plate Kasović et al.,
2020 [42]

11.64 and 10.65–13 (usual walking base) Whittle, 2007 [44]

11 ± 4 GAITRite force plate Rao et al., 2011 [43]
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Table 9. Cont.

Literature Own Results

Values System Reference
(Force Plate,

Mocap System,
Smartphone)

Ba
ck

w
ar

d
ga

it

stride time [s] 1.2 ± 0.1 zebris force plate Gimunová et al.,
2021 [45] 1.22, 1.21 and 1.23

cadence [steps/s] 1.68 ± 0.15 zebris force plate Gimunová et al.,
2021 [45] 1.66, 1.66 and 1.67

velocity [m/s]
0.87 ± 0.12 zebris force plate Gimunová et al.,

2021 [45]
0.69, 0.66 and 0.55

0.98 ± 0.23 GAITRite force plate Edwards et al.,
2020 [46]

step width [cm] 16.8 ± 4.87 zebris force plate Gimunová et al.,
2021 [45] 18.08 and 11.86

Ta
nd

em
ga

it

cadence [steps/s]

0.8 ± 0.05 (estimated
mean ± SD at
1 km/h speed)

zebris ultrasound
system

Kronenbuerger et al.,
2009 [47]

1.23, 1.19 and 1.23
0.87 ± 0.29 GAITRite force plate Rao et al., 2011 [43]

velocity [m/s] 0.27 ± 0.13 GAITRite force plate Rao et al., 2011 [43] 0.45, 0.4 and 0.20

step width [cm] 3.5 ± 2.6 GAITRite force plate Rao et al., 2011 [43] 2.24 and 2.44

3.3.3. Differences over Time—Force Plate

Since not all variables were normally distributed, p-values either refer to t-tests (no
indication) or to Wilcoxon-rank tests (indicated by “(W)”).

For normal gait, a significant difference was found in all variables between T1 and
T2: stride time (p = 0.003, Figure 3A), cadence (p = 0.002, Figure 3B), velocity (p = 0.002,
Figure 4A) and step width (p(W) = 0.004, Figure 4B). For the backward gait, only the
velocity variable (p = 0.005, Figure 4A) remained significant after correcting for multiple
comparisons. For tandem gait, none of the variables remained significant after correcting
for multiple comparisons.

For the stance tasks, none of the variables remained significant after correcting for
multiple comparisons (Figures 5A and 4B).

The exact values for all tasks and gait analysis systems are reported in Table A1,
Appendix A.

3.3.4. Differences over Time—Mocap System

In contrast to the force plate, a significant difference in normal gait was found in only
two of four variables: stride time (p = 0.002, Figure 3C) and cadence (p = 0.001, Figure 3D).
For the backward gait, only the velocity variable (p = 0.007, Figure 4C) remained significant
after correcting for multiple comparisons—similar to the results of the force plate. For the
tandem gait, a significant difference was found for two of four variables: for the stride
time (p = 0.003, Figure 3C) and the cadence (p = 0.001, Figure 3D). No significant effect was
found for the step width (Figure 4D); however, this may be related to the initial calibration
procedure: the closer the participants’ feet were in the “neutral position”, the smaller the
absolute values of the step width were in the later analysis.

Similar to the force plate, the mocap system analysis did not reveal a significant
difference between T1 and T2 for any of the stance tasks.
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Figure 3. Graphical representation of the mean values of stride time and cadence for all three
gait analysis systems at T1 and T2 (before and after training). Significant differences over time
(after Bonferroni correction) are highlighted by an asterisk. BG = backward gait, NG = normal gait,
TG = tandem gait.
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Figure 4. Graphical representation of the mean values of velocity and step width for all three
gait analysis systems at T1 and T2 (before and after training). Significant differences over time
(after Bonferroni correction) are highlighted by an asterisk. BG = backward gait, NG = normal gait,
TG = tandem gait.
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Figure 5. Graphical overview over the balance variables (center of mass ellipse area and velocity) in all
three gait analysis systems at both measurement times (first measurement, T1, second measurement,
T2). COM = center of mass, NS = narrow stance, TS = tandem stance, NSEc = narrow stance with
eyes closed, SS = single leg stance.

3.3.5. Differences over Time—JTrack Smartphone Platform

In contrast to both the force plate and mocap systems, none of the variables of nor-
mal gait, backward gait or tandem gait remained significant after correcting for multiple
comparisons (Figures 3E,F and 4E). Compared to the other gait analysis systems, the smart-
phone had a much higher variability of the velocity values, e.g., velocity values of the
backward gait at T1 were 0.69 ± 0.09 m/s for the force plate and 0.55 ± 0.43 m/s for the
smartphone (see Table A1, Appendix A).
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Similar to both the force plate and mocap systems, the smartphone analysis showed
no significant differences between T1 and T2 for any of the stance tasks (Figure 5E,F).

4. Discussion

Here, we performed an interventional feasibility study and compared three systems for
the monitoring of home-based gait and balance training in healthy adults. In particular, we
assessed the applicability of smartphone-based data collection in comparison to standard
methods and the capability of the methods to detect performance changes after training.

4.1. Conformance of the Three Gait Analysis Systems

Gait variables obtained with both standard analysis systems (force plate and mocap)
showed moderate to strong intercorrelations, except for step width. However, the strength
varied depending on the performed gait task with excellent correlations for normal gait.
Step detection during backward or tandem gait was more challenging and error-prone
compared to normal gait, since feet were placed more cautiously and slowly, resulting in
lower force and acceleration values, in addition to atypical movement patterns. In line
with this, step width values correlated moderately between both systems for normal but
not for backward gait. For tandem gait, the correlation between the step width values of
both systems even revealed negative values, due to the calibration process of the mocap
system [29]: if participants placed their feet in a very narrow stance during the “neutral
position”, required for the calibration process, the absolute values of the step width were
much lower in the later analysis. This led to incorrect lateral positions of the feet and even
to negative step width values in the tandem gait. For future studies using mocap systems,
a standardized stance position of the participants is therefore highly recommended.

The JTrack based smartphone evaluation using accelerometer data showed strong
correlations for the stride time and cadence variables of all gait tasks with both standard
systems. Velocity, however, showed only moderate to strong correlations for normal and
backward gait, and weak correlations for tandem gait. Taken together, all three gait analysis
systems showed excellent agreement during normal gait, followed by the tandem gait task
and a substantially lower agreement for the backward gait task. The agreement was better
for the gait variables of stride time and cadence than for velocity. The less accurate velocity
estimation via smartphone relied on a single sensor estimating velocity from acceleration
using the first recorded value as a reference. As this first value was not calibrated in our
study (i.e., no fixed position was taken of the phone when recording started), this may
lead to biases in estimation of the initial velocity. It also explains the lack of correlation
with other systems for tandem gait, for which the velocity was substantially lower, thereby
increasing the impact of noise.

The strong correlations of smartphone-based gait variables with standard gait analysis
systems found in our study are in contrast to Steins et al. [48], who described only moderate
agreement between an iPod touch and an Xsens sensor when investigating the reliability
of inertial sensors of smart devices during normal gait in healthy adults. Nevertheless,
other studies suggested that smart devices are an acceptable method for assessing gait in
rheumatic patients [49] and have the potential for future use in the clinic [13].

The stance variables of ellipse area and velocity showed moderate to strong correla-
tions between the two standard force plate and mocap systems (see Section 3.3), in spite
of large differences in the absolute values obtained with these methods (see Table A2,
Appendix A). In contrast, only weak to moderate correlations were found between the
smartphone and both other systems. This might be due to specific aspects of data acqui-
sition and analysis. Force plates can directly register the foot print and determine the
respective variables from position data. In contrast, the smartphone uses accelerometer
information with respect to the first recorded value and thus only infers position data
through double integration. Thereby, gravitational influences and high-frequency noise
must be filtered out using band-pass filtering, which may lead to additional biases in
position estimation. The mocap system uses multiple sensors, e.g., directly on the feet,
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and, in addition to the accelerometer data, also considers angular velocity, atmospheric
pressure and magnetic field data, and a biomechanical model. This contrasts with the
smartphone analyses, which relied on a single sensor near the COM. This enables the
mocap system to determine the positions of the sensors relative to one another and to better
estimate the gravitational and the noise components. Since the position and orientation of
the smartphone were not fixed when recording started, the initial estimates may be biased,
affecting all derived measures. Moreover, as the three axes in space were not fixed, it is
difficult to determine an area in mm2 in a standardized manner. Accordingly, the ellipse
volume was computed in mm3, introducing an additional source of variation.

Taken together, stride time and cadence seem to be variables that are robust to mea-
surement with a smartphone, whereas other gait and stance variables are subject to some
limitations.

4.2. Questionnaires

Since physical activity has a significant impact on mental well-being and vice versa,
the objective motor assessment in this study was accompanied by a set of questionnaires
addressing different aspects of subjective participant-reported outcome measures (e.g.,
depression- and anxiety-related symptoms, general well-being, stress, self-efficacy, opti-
mism, pessimism and balance confidence).

Contrary to our expectations, the questionnaire scores did not differ between the
pre- and post-training study visits. Physical therapy or exercises can reduce fatigue and
improve one’s emotional life [50] and mental health, in a manner that is even similar to
psychotherapy. By comparison, our participants already had above-average FAHW scores
at their first visit (reference values are given in [35]), indicating that the general well-being
was already at a high level before the training and hence left less room for improvement.

Due to several constraints (study duration, compliance), a three-week period was
chosen as the training interval in this study. Although Mikkelsen et al. [51] reported that
exercising for 15 min three times per week already reduced depressive symptoms, most
studies chose a longer time period for the training program or a longer duration for each
unit to maximize the effectiveness of balance training and to prevent falls [52,53]. In the
more specific context of home-based training, the highest effectiveness of video-based
rehabilitation programs was found after at least four weeks [54]. Nevertheless, although a
higher training volume or frequency can lead to better training results, it may also reduce
compliance, as the subjective cost may exceed the perceived benefit of the training. In
Haines et al. [55], a drop in compliance was found after three weeks. In our study, all
subjects reported having performed each of the training videos, but verification of this
information was not possible, impeding a valid statement regarding compliance.

4.3. Gait Performance

Mean values of stride time, cadence, velocity and step width obtained in our study
were comparable to those found in the literature for normal gait in healthy adults (see
Table 9). Similarly, stride time and cadence values during backward gait were comparable
between the literature [45] and between all three gait analysis systems. However, in
our study, velocity values were 20–60% lower during backward gait compared to the
literature ([45,46] measured on force plates). For step width, force plate values during
backward gait were in line with the literature [45], whereas the mocap system values
were lower (~29%), which is likely related to the calibration, as mentioned in Section 4.1.
For tandem gait, Kronenbuerger et al. [47] reported lower cadence values in tandem gait
compared to our study (~34%, see Table 9), but they used a different study setting with
predetermined gait speed. Rao et al. [43] used a force plate in healthy older adults (mean
age 84 years) and also found slightly lower values for cadence, velocity and step width
in the tandem gait compared to our values, likely related to the age difference between
both cohorts. Importantly, in a tandem gait, the heel of one foot is normally placed directly
in front of the toes of the other foot. In our study, a hand’s width of space had to be left
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between the feet to allow the force plate to distinguish between both feet. This difference
may explain the higher cadence and velocity values found in our study.

There were significant improvements for some of the variables between the pre- and
post-training study visits. For normal gait, the force plate analysis revealed improvement
in all gait variables after training, whereas the mocap system only revealed an improve-
ment in two variables after training (stride time, cadence) and the smartphone did not
show a significant improvement. For backward gait, an improvement was shown for the
velocity variable of both force plate and mocap systems. For tandem gait, an improvement
after training was found for the two variables of stride time and cadence in the mocap
system only.

In the best case, all systems would have shown significant changes over time in
the same variables. However, the differences between the systems may result from (a)
reduced statistical power due to a lower number of valid values included in the statistical
analysis (as for the smartphone data), and (b) higher variability observed for smartphone
data; both of which affect the outcome of the statistical tests. Regarding the two standard
systems, the force plate detected more changes in normal gait over time in healthy adult
subjects undergoing a training period of three weeks. By comparison, only the mocap
system detected changes in tandem gait. One reason for these differences could be that
the hardware and software used for the force plate are more accurate for normal walking
(because it uses position data, see Section 4.1), but had difficulties distinguishing right and
left feet in the tandem gait, whereas the manual detection of steps in the tandem gait was
more controllable in the mocap system analysis. Nevertheless, a general improvement in
gait variables was observed across all gait analysis systems.

The observed improvements were expected and desirable changes in terms of im-
proved gait performance after a training intervention, and have also been described in
several patient studies with various disorders such as PD [15,56] and stroke [57], or for
healthy (mostly older) adults after different kinds of training [58–62].

Of note, the observed improvement between pre- and post-training visits is most
probably caused by the training performed between these visits. However, a control group
undergoing the measurements at T1 and T2 without any training in the interim was missing
and, therefore, a learning effect cannot be entirely excluded. To confirm and substantiate
the positive effects of this study, further investigation, including a control group, would be
reasonable in future.

4.4. Balance Performance

For normal stance, mean values of balance performance (ellipse area) measured with
a force plate were comparable with corresponding values of healthy adults in the liter-
ature [20,63]. Although, for narrow stance, the velocity values of our study were also
comparable or slightly higher than the values of the studies cited above, the values for
the ellipse area differed. This is most likely due to methodological differences regarding
the calculation of this variable, which is not specified in the studies mentioned above. Po-
marino et al. [63] mentioned, however, that their balance measures were averaged over the
recording time. In our study, averaged ellipse area values for normal stance were 24 mm2,
50.7 mm2 and 3.3 mm3 (force plate, mocap system and smartphone, respectively), which
again is comparable to or slightly lower than in the studies by Nusseck and Spahn [20] and
Pomarino et al. [63], who measured with force plates.

For the other stance tasks, reference values for healthy adults in the literature are
scarce. One study reported an ellipse area of 138 mm2 for the single leg stance in a control
group of older adults [64], whereas we found values of 878 mm2, 3860 mm2 and 384 mm3

in our study (averaged values per second: 29 mm2, 129 mm2 and 13 mm3). However, it
is unclear if the values were indeed averaged in the cited study. If so, the values in our
study were lower compared to those in the literature, possibly due to a lower mean age
of the participants. Values for the velocity balance variable were only reported separately
for mediolateral and anteroposterior directions [64] and are thus not comparable to our
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values. Terra et al. [38] examined the same stance tasks we used in PD patients, using a
force plate, and described an increase in the values for the COM ellipse area and velocity
with the level of difficulty of the respective stance tasks, ranging from narrow stance to
narrow stance with eyes closed, followed by tandem stance and, finally, single leg stance.
This is consistent with our results regarding the velocity variable obtained with the force
plate, whereas, for the other systems, the order of the stance tasks varied (see Figure 5).

Regarding the training effects, the statistical analysis did not show a significant im-
provement in balance performance between pre- and post-training measurements from T1
to T2 (see Figure 5). In contrast to the gait tasks, where small improvements in performance
were observed for all variables (even though not always reaching statistical significance),
the pattern of observed changes in stance tasks was more heterogeneous (see Table A1,
Appendix A). In contrast, an improvement was reported in the literature for different
patient groups, e.g., for PD patients [65] or for children with cerebral palsy [21,27] and
healthy older adults [66], and for younger adults [67] after a training intervention. Cadore
et al. [68] also summarized in their review that most balance trainings in older adults with
physical frailty led to enhancements in balance. However, methods, outcome measures
and training interventions were highly heterogeneous among the cited studies, impeding
their comparability.

4.5. Summary

Agreement between the three gait analysis systems was higher for gait variables than
for balance variables. With the exception of the step width variable, both standard methods
showed an excellent agreement between the values of the analyzed gait variables, especially
for the normal gait task, followed by tandem and backward gait tasks. In particular, for the
stride time and cadence variables, values obtained with the smartphone showed a strong
correlation with values obtained with both standard systems, whereas correlations for the
gait velocity variable were considerably weaker, especially for tandem and backward gait.
Improvements (by percentage change) were consistently visible across all gait tasks and
all three applied gait analysis systems. However, significant changes over time were only
found for gait variables obtained from the force plate and mocap systems. In contrast,
changes in balance variables over time yielded a highly heterogeneous pattern without clear
improvement across stance tasks and applied systems. Furthermore, participant-reported
outcome measures did not reveal any changes over time, which may be due to the already
high level of “general well-being” at the study onset.

According to the results of our research, there is a high level of agreement between
the devices used in the laboratory and smartphones. This finding is consistent with the
findings of earlier studies [69,70]. The fact that smartphones and smartwatches can be put
to use in everyday settings is the primary advantage of using such devices. Because of this
capability, patients can be monitored in (near) real time and over extended time periods
such as months and years. In addition, the vast number of people who own smartphones
makes it possible to use these devices as an excellent source for crowdsourcing, regardless
of the physical location of the users. However, there are additional considerations such as
misunderstanding and following of instructions, effect of motivation, learning effects and
misplacement or orientation of devices for at-home usage settings and self-administered
protocols, both of which have the potential to affect the validity and reliability of the data
collected [71].

Since improvements were found only for gait performance, the applicability of smart-
phones as a measurement system seems to be particularly useful in disorders in which
the gait is impaired, such as PD and ataxia [13,14]. Stride time and cadence measured
with the smartphone were found to have a high agreement with the measurements of
the standard analysis systems and are variables that differentiate patients from healthy
controls [13] or that might improve after an intervention [15]. For this reason, they seem to
be eligible variables for future smartphone studies in home-based environments. Future
studies should investigate the most effective intervention program and should combine a
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longer time frame for exercise interventions with major efforts to maintain or even improve
study compliance.

5. Conclusions

Our analysis showed that measuring gait and balance performance in healthy adults
with wearable devices, such as smartphones, produced comparable results for the stride
time and cadence variables compared to measurements with standard gait analysis systems
such as the force plate or mocap systems, whereas results for gait velocity were less
convincing. Potentially, adjustments may have to be made in the data evaluation for the
calculation of velocity to achieve better agreement.

Although the positive influence of three weeks of gait and balance training on gait
performance in healthy adults was noteworthy, comparable improvements were found for
all three gait analysis systems in gait parameters. However, only the force plate and the
mocap systems were able to detect significant changes over time during the gait tasks. In
contrast to the motor performance, no improvement was found for the questionnaire scores.
To ensure that the improvement is indeed the effect of the training and not a test–retest
effect, a further study including a control group which does not take part in a training
intervention is required.

Reference values for gait and balance variables in healthy adults are currently scarce
in the literature. For future analyses, the number of comparable gait and balance variables
can be increased to obtain a more detailed overview of reference values of healthy adults
and to compare these values with patient data (e.g., patients with movement disorders).
Ellis et al. [13] also suggested that many more consecutive steps (e.g., more than 100 steps)
are required to reliably detect differences in gait performance. This is not possible when
using force plates with a limited length, but seems to be an interesting set-up for further
smartphone-based analyses.
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Appendix A

Appendix A.1. Gait Performance

In Table A1, values of all gait variables are displayed before training (T1) and after
training (T2) for all three systems. Significant differences in time were found for normal
gait (force plate). In detail, significant differences within the post-hoc test were found for all
variables within normal gait and two variables within backward gait (force plate); two vari-
ables within normal gait, one within backward gait and three within tandem gait (mocap
system); and two variables within normal gait and one within tandem gait (smartphone).

Table A1. Differences in mean between the first (T1) and second study visit (T2) for the gait variables
of all three gait analysis systems. The percentage change is indicated in “Δ %”. Bold font indicates
a significant difference in time (T1-T2, p < 0.013 for the force plate and mocap systems, p < 0.017
for smartphone) and bold plus italic font indicates a difference in time in the Wilcoxon rank test
(p < 0.013/p < 0.017). Italic font indicates the implementation of a Wilcoxon rank test. An asterisk
marks all significant values in general. Min. = minimum, max. = maximum, SD = standard deviation.

T1 T2 p Δ %

n Mean± SD Range n Mean ± SD Range

Fo
rc

e
pl

at
e

NG

stride time
[s] 25 1.20 ± 0.13 0.97–1.55 20 1.13 ± 0.10 0.91–1.29 0.003 * −6.15

Cadence
[steps/s] 25 1.70 ± 0.17 1.30–2.08 20 1.80 ± 0.18 1.55–2.20 0.002 * 5.89

Velocity
[m/s] 25 0.98 ± 0.14 0.64–1.28 20 1.09 ± 0.12 0.92–1.42 0.002 * 11.01

step width
[cm] 25 11.64 ± 2.60 7–16 20 10.65 ± 2.50 7–15 0.004 * −8.51

BG

stride time
[s] 25 1.22 ± 0.13 1.04–1.56 20 1.17 ± 0.12 0.94–1.37 0.027 −4.01

Cadence
[steps/s] 25 1.66 ± 0.16 1.32–1.92 20 1.73 ± 0.18 1.47–2.12 0.028 4.24

Velocity
[m/s] 25 0.69 ± 0.09 0.53–0.86 20 0.76 ± 0.09 0.61–0.92 0.005 * 9.43

step width
[cm] 25 18.08 ± 3.19 10–24 20 17.45 ± 3.20 12–24 0.203 −3.48

TG

stride time
[s] 20 1.66 ± 0.31 1.19–2.44 19 1.61 ± 0.35 1.00–2.44 0.031 −2.93

Cadence
[steps/s] 21 1.23 ± 0.24 0.68–1.68 19 1.33 ± 0.26 0.85–2.02 0.019 8.59

Velocity
[m/s] 21 0.45 ± 0.12 0.22–0.72 18 0.49 ± 0.13 0.25–0.83 0.027 7.81

step width
[cm] 21 2.24 ± 1.04 1–5 19 2.00 ± 0.94 1–4 0.624 −10.71

M
oc

ap
sy

st
em NG

stride time
[s] 24 1.18 ± 0.13 0.94–1.51 21 1.11 ± 0.10 0.93–1.28 0.002 * −6.36

Cadence
[steps/s] 24 1.71 ± 0.18 1.32–2.13 21 1.82 ± 0.17 1.56–2.14 0.001 * 6.42

Velocity
[m/s] 24 0.97 ± 0.15 0.59–1.27 21 1.03 ± 0.17 0.65–1.39 0.071 6.48

step width
[cm] 24 10.60 ± 3.42 5.30–15.99 21 9.27 ± 3.48 1.88–16.83 0.266 −12.5
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Table A1. Cont.

T1 T2 p Δ %

n Mean± SD Range n Mean ± SD Range

BG

stride time
[s] 24 1.21 ± 0.11 1.03–1.46 21 1.16 ± 0.11 0.94–1.35 0.073 −4.45

Cadence
[steps/s] 24 1.66 ± 0.15 1.37–1.95 21 1.74 ± 0.18 1.48–2.14 0.074 4.79

Velocity
[m/s] 24 0.66 ± 0.12 0.31–0.84 21 0.75 ± 0.10 0.58–0.89 0.007 * 13.91

step width
[cm] 24 11.86 ± 3.40 6.24–19.67 21 11.53 ± 3.70 2.45–17.88 0.676 −2.79

TG

stride time
[s] 24 1.76 ± 0.42 1.17–3.11 21 1.49 ± 0.23 1.00–1.96 0.003 * −15.33

Cadence
[steps/s] 24 1.19 ± 0.25 0.64–1.70 20 1.35 ± 0.18 1.02–1.69 0.001 * 12.72

Velocity
[m/s] 24 0.40 ± 0.17 0.15–0.98 20 0.44 ± 0.13 0.19–0.80 0.024 10.28

step width
[cm] 22 2.44 ± 1.06 0.72–5.67 21 2.84 ± 1.73 0.81–7.48 0.601 16.1

Sm
ar

tp
ho

ne

NG

stride time
[s] 23 1.20 ± 0.12 1.00–1.46 16 1.14 ± 0.10 0.94–1.31 0.019 −5.26

Cadence
[steps/s] 23 1.67 ± 0.18 1.32–2.09 16 1.76 ± 0.16 1.52–2.08 0.019 5.39

Velocity
[m/s] 23 1.18 ± 0.51 0.03–2.11 16 1.33 ± 0.39 0.73–2.11 0.639 12.71

BG

stride time
[s] 23 1.23 ± 0.09 1.08–1.42 15 1.23 ± 0.13 1.05–1.43 0.93 0

Cadence
[steps/s] 23 1.62 ± 0.11 1.40–1.84 15 1.62 ± 0.17 1.33–1.89 0.884 0

Velocity
[m/s] 23 0.55 ± 0.43 0.07–1.26 15 0.62 ± 0.44 0.07–1.40 0.084 12.73

TG

stride time
[s] 19 1.67 ± 0.27 1.40–2.47 15 1.51 ± 0.20 1.21–1.99 0.065 −10.6

Cadence
[steps/s] 19 1.23 ± 0.17 0.82–1.43 15 1.35 ± 0.18 1.00–1.65 0.048 9.76

Velocity
[m/s] 19 0.20 ± 0.22 0.01–0.66 15 0.31 ± 0.25 0.06–0.82 0.333 55

* Correlation is significant, p-levels vary.

Appendix A.2. Balance Performance

Significant differences between balance variables measured at the first and second
study visit were less frequent than those between gait variables. Significant differences in
time were found only for tandem stance (force plate). Significant differences in the post-hoc
test were present for the COM velocity in the tandem stance (force plate).
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Table A2. Differences in mean between the first (T1) and second study visit (T2) for the balance
variables of all three gait analysis systems. Bold font indicates a significant difference in time (T1-T2,
p < 0.05) and italic font indicates a difference in time in the post-hoc test only (p < 0.05). An asterisk
marks all significant values in general. COM = center of mass, min. = minimum, max. = maximum,
NS = narrow stance, NSEc = narrow stance with eyes closed, SD = standard deviation, SS = single leg
stance, TS = tandem stance.

T1 T2 p Δ %

n Mean ± SD Range n Mean ± SD Range

Fo
rc

e
pl

at
e

NS

COM ellipse
[mm2]

25 719.92 ± 307.54 206.0–1439.0 20 688.30 ± 352.60 256.0–1826.0 0.121 −4.39

COM velocity
[mm/s] 25 15.60 ± 4.02 9.0–23.0 20 16.30 ± 5.30 8.0–31.0 0.744 4.49

TS

COM ellipse
[mm2]

25 1430.44 ± 853.08 336.0–3348.0 19 1075.21 ± 594.77 227.0–2314.0 0.277 −24.83

COM velocity
[mm/s] 24 52.33 ± 17.93 28.0–107.0 20 50.15 ± 29.78 22.0–135.0 0.025 −4.17

NSEc

COM ellipse
[mm2]

24 981.33 ± 366.76 296.0–1622.0 20 960.10 ± 400.45 345.0–1730.0 0.526 −2.16

COM velocity
[mm/s] 25 27.64 ± 7.48 11.0–42.0 20 25.60 ± 8.52 12.0–48.0 0.094 −7.38

SS

COM ellipse
[mm2]

20 878.05 ± 221.37 439.0–1255.0 20 977.80 ± 447.48 394.0–2345.0 0.601 11.36

COM velocity
[mm/s] 24 53.63 ± 26.48 24.0–111.0 20 47.85 ± 21.84 22.0–109.0 0.082 −10.78

M
oc

ap
sy

st
em

NS

COM ellipse
[mm2]

24 1521.86 ± 772.73 312.2–3628.9 21 1358.79 ± 727.22 522.4–3527.5 0.145 −10.72

COM velocity
[mm/s] 24 6.58 ± 1.53 4.76–10.48 20 6.44 ± 1.48 3.7–10.1 0.232 −2.13

TS

COM ellipse
[mm2]

23 1515.35 ± 948.28 263.6–4095.1 20 1397.48 ± 681.17 376.2–2609.4 0.575 −7.78

COM velocity
[mm/s] 22 8.55 ± 1.81 5.1–11.6 21 9.32 ± 3.77 4.4–19.3 0.881 9.01

M
oc

ap
sy

st
em

NSEc

COM ellipse
[mm2]

23 1730.55 ± 655.97 754.3–3138.0 21 1542.95 ± 829.00 528.7–3467.2 0.167 −10.84

COM velocity
[mm/s] 24 8.72 ± 2.41 5.47–16.37 21 7.76 ± 2.03 3.9–11.4 0.075 −11.01

SS

COM ellipse
[mm2]

20 3859.69 ± 3862.79 466.0–15,835.0 18 2710.43 ± 2320.89 434.8–10,074.4 1 −29.78

COM velocity
[mm/s] 21 13.07 ± 6.45 6.6–28.9 20 11.85 ± 4.17 6.4–21.9 0.557 −9.33

Sm
ar

tp
ho

ne

NS

COM ellipse
[mm2]

16 97.74 ± 119.94 0.2–415.9 11 785.18 ± 1224.51 0.0–3510.4 0.753 703.34

COM velocity
[mm/s] 21 48.20 ± 27.31 12.5–112.5 12 62.96 ± 27.88 34.1–114.8 0.333 30.62

TS

COM ellipse
[mm2]

18 967.22 ± 1345.26 1.0–4402.8 7 165.23 ± 147.48 15.9–393.2 0.043 −485.38

COM velocity
[mm/s] 20 59.57 ± 37.42 18.8–168.8 10 72.73 ± 46.74 15.6–178.2 0.953 22.09

NSEc

COM ellipse
[mm2]

16 49.05 ± 42.87 0.3–156.0 9 500.58 ± 715.16 24.3–1989.0 0.173 920.55

COM velocity
[mm/s] 22 54.67 ± 35.23 12.1–139.8 9 49.46 ± 34.13 22.9–128.5 0.26 −10.53

SS

COM ellipse
[mm2]

16 383.69 ± 495.16 15.9–1818.6 9 591.83 ± 724.82 10.9–1743.2 0.31 54.25

COM ellipse
[mm2]

16 97.74 ± 119.94 0.2–415.9 11 785.18 ± 1224.51 0.0–3510.4 0.753 703.34
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Appendix A.3. Parameter Optimization

Figure A1. Results of MSI correlation analyses for smartphone step detection parameter optimization.
(A) Correlation matrix between MSI for backward gait derived from force plate and smartphone
data. (B) Correlation matrix between MSI for tandem gait derived from force plate and smartphone
data. (C) Correlation matrix between MSI for normal gait derived using force plate and smartphone
data. (D) Correlation matrix between MSI for normal gait derived from manual labeling and the
automated step detection using smartphone data. Yellow box highlights the final parameters used
for subsequent cross-platform comparisons.
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Appendix A.4. Ellipsoid Calculation

Figure A2. Exemplary visualization of the principal component-based ellipsoid calculation for
balance data collected using the JTrack smartphone platform.
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Abstract

Background: Digital biomarkers (DB), as captured using sensors embedded in modern smart devices, are a promising technology
for home-based sign and symptom monitoring in Parkinson disease (PD).

Objective: Despite extensive application in recent studies, test-retest reliability and longitudinal stability of DB have not been
well addressed in this context. We utilized the large-scale m-Power data set to establish the test-retest reliability and longitudinal
stability of gait, balance, voice, and tapping tasks in an unsupervised and self-administered daily life setting in patients with PD
and healthy controls (HC).

Methods: Intraclass correlation coefficients were computed to estimate the test-retest reliability of features that also differentiate
between patients with PD and healthy volunteers. In addition, we tested for longitudinal stability of DB measures in PD and HC,
as well as for their sensitivity to PD medication effects.

Results: Among the features differing between PD and HC, only a few tapping and voice features had good to excellent test-retest
reliabilities and medium to large effect sizes. All other features performed poorly in this respect. Only a few features were sensitive
to medication effects. The longitudinal analyses revealed significant alterations over time across a variety of features and in
particular for the tapping task.

Conclusions: These results indicate the need for further development of more standardized, sensitive, and reliable DB for
application in self-administered remote studies in patients with PD. Motivational, learning, and other confounders may cause
variations in performance that need to be considered in DB longitudinal applications.

(J Med Internet Res 2021;23(9):e26608) doi: 10.2196/26608
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Introduction

Parkinson disease (PD) is primarily characterized by motor
signs and symptoms, including tremor at rest, rigidity, akinesia,
and postural instability [1]. Although standard in-clinic
assessments such as the Unified Parkinson's Disease Rating

Scale (UPDRS) are popular, they are influenced by interrater
variability by relying on self-reporting by patients and caregivers
or clinicians’ judgement [2]. In addition, they are costly and
limited with respect to observation frequency.

The emergence of new technologies has led to a variety of
sensors (ie, acceleration, gyroscope, GPS, etc) embedded in
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smart devices for daily use (ie, smartphone, smartwatch). Such
sensor data, alongside other digital information recorded
passively or when executing prespecified tasks, may provide
valuable insight into health-related information. Such
applications are now commonly referred to as digital biomarkers
(DB) [3-5]. DB being collected frequently over a long period
of time can provide an objective, ecologically valid, and more
detailed understanding of the inter- and intra-individual
variability in disease manifestation in daily life.

Numerous DB have been proposed for PD diagnosis as well as
for assessing agreement between clinical rating scales such as
UPDRS and sensor-driven data to quantify disease severity or
intervention effects [4,6-9]. Despite these various proof of
concept studies, many technical challenges with respect to DB
deployment remain unaddressed. DB measures are prone to
large variation caused by technical and procedural differences,
including but not limited to placement/orientation, recording
frequency of the devices, and environmental and individual
variation (ie, due to motivation, medication, or other aspects)
[10-12]. Other factors such as the effect of users' familiarity
with technology and the impact of learning on the performance
of measured DB in remote and self-administered PD assessment
are other important sources of variation that have not been
addressed so far. All of these factors may limit the sensitivity
and reliability of DB measurements for any of the above PD
clinical applications. DB longitudinal variation is therefore an
important attribute that should be quantified and addressed. The
reliability of DB assessment has been broadly studied for gait,
balance, voice, and tapping data [13-18]. However, the existing
studies typically focused on a single or a few aspects of PD,
and most of them established the test-retest reliability in a
standardized clinical setting, limiting the translatability of their
findings to at-home applications. Among the studies that
evaluated DB assessments for remote monitoring of PD, only
one reported the test-retest reliability [4]. No PD studies
systematically evaluated the test-retest reliability and
longitudinal sensitivity of DB in a fully unsupervised and
self-administered PD longitudinal setting.

Although various factors such as medication, disease severity,
learning effects, bias from self-reporting, inconsistent disease
severity, motivational impacts, and design protocols in
self-administered studies can affect the long-term stability of
DB, little attention has been paid to evaluating the reliability
and longitudinal stability of DB in loosely controlled
self-administered settings in daily life. Here, we aimed to
address these open questions by assessing the test-retest
reliability and longitudinal stability of gait, balance, speech,
and tapping tasks in patients with PD and a control cohort
consisting of healthy volunteers (HC) in an unsupervised and
self-administered daily life setting using the large-scale m-Power
data set [19].

Methods

Study Cohort
To address the open questions on the performance of DB
measures in PD when collected in a self-administered setting
in daily life, we first performed a comprehensive literature

search identifying 773 DB features reported in previous studies
to cover PD-related alterations in gait characteristics, tremor,
postural instability, voice, and finger dexterity. We evaluated
the longitudinal stability and test-retest reliability of these
features as collected using 4 commonly applied PD tasks (gait,
balance, voice, and tapping) in daily life using smartphone in
a large cohort of self-reported patients with PD and healthy
controls, the m-Power study [19-22]. In addition, we evaluated
their sensitivity to learning and medication effects.

Enrolment in the m-Power study was open to adult participants
who own an iPhone, are living in the United States, and are
comfortable enough with English to read the instructions in the
app. Participants were asked to download the app and complete
a one-time demographic survey during registration.
Demographic data include but are not limited to age, sex, health
history, and previous PD clinical diagnosis. They also were
asked to fill out a survey with selected questions from the
UPDRS Section I (nonmotor experience) and Section II (motor
experience), as well as the Parkinson’s Disease Questionnaire
(PDQ-8). All the participants were suggested to complete each
task (walking, tapping, voice, and memory) up to 3 times a day
for up to 6 months. In addition, self-reported patients with PD
were asked to complete the task before medication, after
medication, and at another time when they were feeling at their
best. 

Ethical oversight of the m-Power study was obtained from the
Western Institutional Review Board. Prior to signing an
electronically rendered traditional informed consent form,
prospective participants had to pass a 5-question quiz evaluating
their understanding of the study aims, participant rights, and
data sharing options. After completing the e-consent process
and electronically signing the informed consent form,
participants were asked for an email address to which their
signed consent form was sent and allowing for verification of
their enrolment in the study. Participants were given the option
to share their data only with the m-Power study team and
partners (“share narrowly”) or to share their data more broadly
with qualified researchers worldwide, and they had to make an
active choice to complete the consent process (no default choice
was presented). The data used in our study consist of all
individuals who chose to have their data shared broadly.

Data Preprocessing
The m-Power data set is assessed outside of a clinical
environment with limited quality control and supervision. All
information, including the health history, disease diagnosis,
duration, treatment, and survey outcomes, are self-reported. To
address these, we excluded participants who did not specify
their age, sex, and information on professional diagnosis (if
they belong to the PD or HC group) and those with empty, null,
or corrupted files. The participants are assigned to the PD or
HC group according to their response to the question “Have
you been diagnosed by a medical professional with Parkinson
disease?” There was a significant difference in the age and sex
distribution between HC and PD groups. Particularly, age
slanted toward younger and male individuals in HC. To reduce
the impact of age, we restricted the age range for our analysis
to between 35 and 75 years. The demographic details are
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provided in Table 1, and the overall overview of preprocessing steps is displayed in Figure 1A.

Figure 1. Overview of statistical analyses and the preprocessing scheme. (A) Flowchart of preprocessing steps. (B) Flowchart of statistical analyses.
(C) Flowchart of number of features at each selection step. HC: healthy controls; ICC: intraclass correlation coefficients; PD: Parkinson disease;
rm-ANOVA: repeated-measures analysis of variance.

J Med Internet Res 2021 | vol. 23 | iss. 9 | e26608 | p. 3https://www.jmir.org/2021/9/e26608
(page number not for citation purposes)

Sahandi Far et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX



Table 1. Characteristics of study cohorts after data cleaning.

TappingVoiceBalanceGaitCharacteristic

PDHCPDHCPDHCPDbHCa

Sex,c n

63013705711042401668399655Male

340304322249211155211152Female

59.9 (9)46.9 (10.1)60.1 (9)47.7 (10.40)60.3 (8.90)48.9 (10.70)60.3 (8.90)49 (10.60)Age (years),c mean (SD)

12.54 (7.73)N/A12.58 (7.70)N/A12.53 (7.07)N/A12.60 (7.11)N/AeUPDRS,d mean (SD)

4.95 (3.27)N/A4.93 (3.25)N/A4.9 (3.11)N/A4.90 (3.12)N/AUPDRS I, mean (SD)

7.56 (5.70)N/A7.61 (5.70)N/A7.7 (5.40)N/A7.76 (5.41)N/AUPDRS II, mean (SD)

5.3 (4.96)N/A5.28 (5.01)N/A7.07 (4.70)N/A5.13 (4.72)N/APDQ-8,f mean (SD)

aHC: healthy controls.
bPD: Parkinson disease.
cP<.001 (two-sample, two-tailed t test for age and chi-square test for sex with 95% confidence) for all tasks.
dUPDRS: Unified Parkinson's Disease Rating Scale.
eN/A: not applicable.
fPDQ: Parkinson’s Disease Questionnaire.

Feature Extraction 
To identify features that are commonly used for the walking,
voice, and tapping tasks for PD applications, we performed a
comprehensive literature search in PubMed with the following
terms: ((Parkinson's disease) AND (walking OR gait OR balance
OR voice OR tapping) AND (wearables OR smartphones)).
Based on this search, we identified a total of 773 features related
to gait (N=423), balance (N=183), finger dexterity (N=43), and
speech impairment (N=124). All of these features were
computed for the m-Power study [23]. A detailed explanation
of the extracted features, including the respective references, is
provided in Tables S1-S4 in Multimedia Appendix 1. For
features sharing the same variance (high pairwise correlation:
Spearman ρ>0.95), only one of the features was selected
randomly for further analyses to reduce the amount of redundant
information for each task. Figure 1C summarizes the feature
extraction process and the number of features at each selection
step.

Gait and Balance
Impairments in gait speed, stride length, and stride time
variability are common changes that are linked to PD [24-27].
Instability in postural balance is also considered to be one of
the well-reported characteristics associated with PD [15,28-30].
Both were assessed by a walking task. The gait part consisted
of 20 steps walking in a straight line, followed by the balance
part of a 30-second stay still period. Given a heterogeneity of
gait signal lengths across participants, we used a fixed length
signal of 10 seconds and selected data from participants who
met this criterion, which resulted in 28,150 records from 1417
unique participants. In addition to the accelerometer signals (x,
y, and z), their average, the step series, position along the three
axes by double integration, and velocity and acceleration along
the path were used for feature extraction [31,32] (Table S1 in
Multimedia Appendix 1). For balance, we used a 15-second

time window, trimming the first 5 and the last 10 seconds of
the 30-second records to reduce the noise due to the
between-task transition period, resulting in 29,050 records from
1435 unique participants. Feature extraction covered signals
related to tremor acceleration predicted to fall in the 4-7 Hz
band and postural acceleration (nontremor) falling in the 0-3.5
Hz band [33] (Table S2 in Multimedia Appendix 1).

Voice
PD may also affect breathing and results in alterations in speech
and voice. Reduced volume, hoarse quality, and vocal tremor
are commonly reported for PD using voice analysis [16,34,35].
In this task, participants said “aaaah” for about 10 seconds. For
voice, 49,676 records were selected, belonging to 2184 unique
participants. Voice features were computed from fundamental
frequency, amplitude, and period signals, trimming the first and
the last 2 seconds of the 10-second interval (Table S3 in
Multimedia Appendix 1).

Tapping
Impairment in finger dexterity is another sign associated with
PD [36,37]. In the m-Power study, participants were asked to
tap as fast as possible for 20 seconds with the index and middle
fingers on the screen of their phone (positioned on a flat
surface). Screen pixel coordinate (x, y) and timestamp of taped
points plus acceleration sensor data were collected for this task.
Overall, 55,894 recordings were selected, belonging to 2644
unique participants. Features were computed based on the
intertapping distance and interval (Table S4 in Multimedia
Appendix 1).

Statistical Analysis 
For features to be considered usable for biomarker purposes in
longitudinal studies, several criteria are important, including
sensitivity to disease signs and symptoms, good test-retest
reliability, and robustness against the effects of learning and
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other longitudinal confounders. To address these criteria, we
adopted a stepwise statistical procedure (see Figure 1B for a
summary of statistical analyses).

As DB measures are frequently not normally distributed,
Mann-Whitney U tests were used to identify all features that
significantly differ between PD and HC at the first
administration (baseline) (P<.05). Effect sizes (Cohen d) were
computed for these features to provide an estimate of the
magnitude of differentiation between PD and HC.

Next, intraclass correlation coefficients (ICC, type 1-1) were
used to determine the test-retest reliability of features showing
a significant differentiation between PD and HC. We used ICC
type 1-1 in our study because individuals were not tested under
the same conditions (ie, same device), and reliability was
determined from a single measurement. ICC values of 0-0.40
were considered to be poor, 0.40-0.59 to be fair, 0.60-0.74 to
be good, and 0.75-1.00 to be excellent [38]. To assess the
reliability of each feature, ICC values were computed for
different time points versus baseline (one hour [0-6 hours], one
day [calendric day], one week [7 calendric days], or one month
apart [30 calendric days]), as well as for different repeats versus
baseline (baseline vs second, third, fourth, and fifth repeat). We
then focused our analyses on the top 10 features (as they provide
a representative subset of the best performing features) with the
highest median ICC values for each group (PD, HC) and tested
for their longitudinal stability over time. Results for all features
are reported in Multimedia Appendix 1. Features from the PD
group are further referred to as “PD features,” those from the
HC group only as “HC features,” and overlapping features from
both groups as “common features.” We computed
repeated-measures analyses of variance (rm-ANOVA) using a
mixed factorial design with a between-subject factor diagnosis
and a within-subject factor repetition (first, second, third, fourth,
and fifth) including their interaction (Equation S1 in Multimedia
Appendix 1). Participants who had at least 4 repetitions after

baseline (463 for gait, 597 for balance, 1085 for voice, and 1333
for tapping) were included in these analyses. To assess the
effects of age and sex on the longitudinal stability of the most
reliable features, we repeated all analyses while controlling for
age and sex as covariates (Equation S2 in Multimedia Appendix
1). Also, we assessed the impact of elapsed time between
repetitions by computing rm-ANOVA using a mixed factorial
design with a between-subject factor diagnosis and a
within-subject factor elapsed time (calculated as a time
difference of each repetition from the baseline in hours) and
controlling for age and sex (Equation S3 in Multimedia
Appendix 1).

Lastly, we assessed the impact of PD medication by computing
rm-ANOVA in the PD group with the within-subject factor
medication (ie, before, after, and at best) (Equation S4 in
Multimedia Appendix 1). Participants with PD who had at least
one marked task for each of the 3 PD medication conditions (ie,
before, after, and at best) were included in treatment effect
analysis (188 for gait, 189 for balance, 280 for voice, and 338
for tapping).

Results

Differentiation Between PD and HC
First, we aimed to restrict the test-retest reliability analyses of
the initial 773 features to those which significantly differ
between PD (N=610 to 970 depending on the task, Table 1) and
HC (N=807 to 1674). For this, we performed group comparisons
for all computed features for gait, balance, voice, and tapping
tasks. Overall, 66 out of 423 gait, 59 out of 183 balance, 60 out
of 124 voice, and 25 out of 43 tapping features differed
significantly (all Ps<.05) between PD and HC at baseline (Figure
1C) with small (gait and balance) to medium effect sizes for
gait, balance, and voice and small to large effect sizes for the
tapping task (Figure 2 and Tables S5-S8 in Multimedia
Appendix 1).
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Figure 2. Effect size (Cohen d) for the most reliable features in the Parkinson disease and healthy control groups selected from different time points
and repetitions. a: accelerometer average signal; iqr: interquartile range; min: minimum value; PeakEnerg: peak of energy; x: accelerometer mediolateral
signal; y: accelerometer vertical signal; z: accelerometer anteroposterior signal. (A) Gait task. cov: coefficient of variation; FB: freezing band; frec_peak:
frequency at the peak of energy; FreezeInd: freeze index; kur: kurtosis; LB: locomotor band; MSI: mean stride interval; RatioPower: sum of the power
in the freezing and locomotor band; skew: skewness; zcr: zero-crossing rate. (B) Balance task. buttonNoneFreq: frequency of tapping outside the button;
CFREQ: centroidal frequency; F50: frequency containing 50% of total power; FRQD: frequency of dispersion of the power spectrum; HF: high frequency
(>4 Hz); LF: low frequency (0.15-3.5 Hz); MF: medium frequency (4-7 Hz); post: postural; Power: energy between 3.5-15 Hz; RHL: ratio between
power in high frequency and low frequency; rms: root mean square; TotalPower: energy between 15-3.5 Hz; trem: tremor; VHF: very high frequency
(>7 Hz). (C) Voice task. c_mean: mean of the MFCC; gqc: glottis quotient close; log: energy of the signal and the first and second derivatives of the
MFCC; MFCC: Mel-frequency cepstral coefficients; p95: 95th percentile; shbd: shimmer. (D) Tapping task. corXY: correlation of X and Y positions;
cv: coefficient; DriftLeft: left drift; DriftRight: right drift; mad: median absolute deviation; numberTaps: number of taps; sd: standard deviation; TapInter:
tap interval.

Test-Retest Reliability
Next, we identified the top 10 features with highest median
test-retest reliability (as measured using ICC) separately for PD
and HC across different time points (one hour, one day, one
week, or one month apart) and repetitions (all participants with
5 repetitions of the task) (Tables S5-S8 in Multimedia Appendix
1, Figure 1B). This procedure resulted in 12 to 15 features
(including shared ones) being selected for each task (Figure 3,
Figures S1 and S2 in Multimedia Appendix 1). ICC analyses
revealed poor to good test-retest reliability for these most
reliable features from the gait and balance tasks and good to

excellent reliability for features from voice and tapping tasks
(Figure 3). The average ICC across the best performing features
selected from different repetitions was lower at the fifth
repetition compared to the first; it dropped from 0.11 to 0.09
for gait, from 0.21 to 0.13 for balance, from 0.39 to 0.24 for
voice, and from 0.3 to 0.23 for tapping. The average ICC across
the best performing features selected from different time points
was also lower at one month compared to one hour apart,
decreasing from 0.13 to 0.07 for gait, from 0.2 to 0.12 for
balance, from 0.33 to 0.26 for voice, and from 0.32 to 0.19 for
tapping.
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Figure 3. Median ICC values for the most reliable features in the Parkinson disease and healthy control groups. a: accelerometer average signal; ICC:
intraclass correlation coefficient; iqr: interquartile range; min: minimum value; PeakEnerg: peak of energy; x: accelerometer mediolateral signal; y:
accelerometer vertical signal; z: accelerometer anteroposterior signal. (A) Median ICC values across different time points for the best performing
features. (B) Median ICC values across different repetitions for the best performing features. Gait task—cov: coefficient of variation; FB: freezing band;
frec_peak: frequency at the peak of energy; FreezeInd: freeze index; kur: kurtosis; LB: locomotor band; MSI: mean stride interval; RatioPower: sum
of the power in the freezing and locomotor band; skew: skewness; zcr: zero-crossing rate. Balance task—buttonNoneFreq: frequency of tapping outside
the button; CFREQ: centroidal frequency; F50: frequency containing 50% of total power; FRQD: frequency of dispersion of the power spectrum; HF:
high frequency (>4 Hz); LF: low frequency (0.15-3.5 Hz); MF: medium frequency (4-7 Hz); post: postural; Power: energy between 3.5-15 Hz; RHL:
ratio between power in high frequency and low frequency; rms: root mean square; TotalPower: energy between 15-3.5 Hz; trem: tremor; VHF: very
high frequency (>7 Hz). Voice task—c_mean: mean of the MFCC; gqc: glottis quotient close; log: energy of the signal and the first and second derivatives
of the MFCC; MFCC: Mel-frequency cepstral coefficients; p95: 95th percentile; shbd: shimmer. Tapping task—corXY: correlation of X and Y positions;
cv: coefficient; DriftLeft: left drift; DriftRight: right drift; mad: median absolute deviation; numberTaps: number of taps; sd: standard deviation; TapInter:
tap interval.
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Repetition Effects
Next, we evaluated the longitudinal stability of these most
reliable features. Using rm-ANOVA, we tested for the main
effects of diagnosis, repetition (first, second, third, fourth, and
fifth), and their interaction (Figures 4 and 5, Tables S9 and
S10-S13 in Multimedia Appendix 1). A significant main effect
of diagnosis across all time points was observed for 6 out of 15
gait features, 11 out of 15 balance features, 8 out of 12 voice
features, and 11 out of 12 tapping features. A significant effect
of repetition was found for 8 out of 15 gait features, 8 out of 15
balance features, 4 out of 12 voice features, and 10 out of 12

tapping features. A significant diagnosis-by-repetition
interaction effect was identified for 3 out of 15 gait features, 0
out of 15 balance features, 3 out of 12 voice features, and 9 out
of 12 tapping features. Further, we tested for the main effects
of the elapsed time between repetitions and its interaction with
diagnosis (Tables S18-S21 in Multimedia Appendix 1). A
significant main effect of elapsed time was observed for 1 out
of 15 gait features, 2 out of 15 balance features, 5 out of 12
voice features, and 5 out of 12 tapping features. A significant
diagnosis-by-time interaction effect was observed only in 1 out
of 15 balance features and 3 out of 12 tapping features.
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Figure 4. Mean value of the best performing baseline features across different time points, calculated for PD and HC separately. a: accelerometer
average signal; HC: healthy controls; iqr: interquartile range; min: minimum value; PD: Parkinson disease; PeakEnerg: peak of energy; x: accelerometer
mediolateral signal; y: accelerometer vertical signal; z: accelerometer anteroposterior signal. (A) Gait task. cov: coefficient of variation; FB: freezing
band; frec_peak: frequency at the peak of energy; FreezeInd: freeze index; LB: locomotor band; MSI: mean stride interval; RatioPower: sum of the
power in the freezing and locomotor band; skew: skewness; zcr: zero-crossing rate. (B) Balance task. buttonNoneFreq: frequency of tapping outside
the button; CFREQ: centroidal frequency; F50: frequency containing 50% of total power; FRQD: frequency of dispersion of the power spectrum; HF:
high frequency (>4 Hz); LF: low frequency (0.15-3.5 Hz); MF: medium frequency (4-7 Hz); post: postural; Power: energy between 3.5-15 Hz; RHL:
ratio between power in high frequency and low frequency; rms: root mean square; TotalPower: energy between 15-3.5 Hz; trem: tremor; VHF: very
high frequency (>7 Hz). (C) Voice task. c_mean: mean of the MFCC; gqc: glottis quotient close; log: energy of the signal and the first and second
derivatives of the MFCC; MFCC: Mel-frequency cepstral coefficients; p95: 95th percentile; shbd: shimmer. (D) Tapping task. corXY: correlation of
X and Y positions; cv: coefficient; DriftLeft: left drift; DriftRight: right drift; mad: median absolute deviation; numberTaps: number of taps; sd: standard
deviation; TapInter: tap interval.
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Figure 5. Mean value of the best performing baseline features across repetitions, calculated for PD and HC separately. a: accelerometer average signal;
HC: healthy controls; iqr: interquartile range; min: minimum value; PD: Parkinson disease; PeakEnerg: peak of energy; x: accelerometer mediolateral
signal; y: accelerometer vertical signal; z: accelerometer anteroposterior signal. (A) Gait task. cov: coefficient of variation; FB: freezing band; frec_peak:
frequency at the peak of energy; FreezeInd: freeze index; kur: kurtosis; LB: locomotor band; MSI: mean stride interval; RatioPower: sum of the power
in the freezing and locomotor band; skew: skewness; zcr: zero-crossing rate. (B) Balance task. buttonNoneFreq: frequency of tapping outside the button;
CFREQ: centroidal frequency; F50: frequency containing 50% of total power; FRQD: frequency of dispersion of the power spectrum; HF: high frequency
(>4 Hz); LF: low frequency (0.15-3.5 Hz); MF: medium frequency (4-7 Hz); post: postural; Power: energy between 3.5-15 Hz; RHL: ratio between
power in high frequency and low frequency; rms: root mean square; TotalPower: energy between 15-3.5 Hz; trem: tremor; VHF: very high frequency
(>7 Hz). (C) Voice task. c_mean: mean of the MFCC; gqc: glottis quotient close; log: energy of the signal and the first and second derivatives of the
MFCC; MFCC: Mel-frequency cepstral coefficients; p95: 95th percentile; shbd: shimmer. (D) Tapping task. corXY: correlation of X and Y positions;
cv: coefficient; DriftLeft: left drift; DriftRight: right drift; mad: median absolute deviation; numberTaps: number of taps; sd: standard deviation; TapInter:
tap interval.

J Med Internet Res 2021 | vol. 23 | iss. 9 | e26608 | p. 10https://www.jmir.org/2021/9/e26608
(page number not for citation purposes)

Sahandi Far et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX



In an additional sensitivity analysis, we further tested if the
between-group differences and group-by-repetition interaction
remain significant when controlling for age and sex. The results
(Tables S14-S17 in Multimedia Appendix 1) show that a
significant effect of diagnosis was still identified for 2 out of 6
gait features, 8 out of 11 balance features, 1 out of 8 voice
features, and 10 out of 11 tapping features. A significant effect
of repetition was still found for 6 out of 8 gait features, 7 out
of 8 balance features, 3 out of 4 voice features, and 10 out of
10 tapping features. Also, a significant main effect of
diagnosis-by-repetition was still observed for 1 out of 3 gait
features, 1 out of 1 balance feature, and 8 out of 10 tapping
features.

Medication Effects 
Lastly, we tested which of the most reliable features identified
above also display sensitivity to PD medication. For this we
compared the conditions reported by the patients as being before
PD medication, after PD medication, or at best. A significant
effect of PD medication was only observed for 2 out of 15 gait
features, 1 out of 15 balance features, 2 out of 12 voice features,
and 1 out of 12 tapping features (Figure S3, Tables S9 and
S10-S13, medication column, in Multimedia Appendix 1).

Discussion

Principal Findings
Here we assessed the longitudinal test-retest reliability and
stability of DB measures related to gait, balance, voice, and
finger dexterity impairments in PD. We found a wide range of
test-retest reliabilities across tasks and features ranging from
poor to excellent, with highest reliabilities observed for voice
followed by the tapping task. Only a few features had medium
to large effect sizes for differentiation between PD and HC. For
all tasks, a substantial percentage of features displayed
significant longitudinal alterations in their mean values over
time.

Overall, tapping and voice tasks revealed a better performance
compared to gait and balance tasks with respect to test-retest
reliability and observed effect sizes. Balance and gait tasks
displayed consistently poor test-retest reliabilities as well as
low effect sizes for differentiation between PD and HC, calling
into question their usability for home-based applications. In
contrast, best performing voice features displayed fair to
excellent test-retest reliabilities across repetitions but also over
weeks and months.

Unlike some previous studies that showed good performance
and moderate to excellent correlation of gait and balance features
with clinical score [4,39], the overall poor performance of these
tasks in the m-Power study may be explained by the nature of
these tasks, which requires strict supervision and monitoring.
Both may not be sufficiently achieved in the self-administered
setting of the m-Power study. Overall, acceleration-related
features in the gait task and tremor-related features and those
selected from frequency domain in the balance task displayed
the best performance for the respective task [23,40]. The features
related to Mel-frequency cepstral coefficients for the voice task
displayed the highest effect sizes for this task, which is in line

with previous studies showing its ability in identifying
pathological speech [41,42]. In line with previous studies,
features related to intertapping interval and precision of the
tapping task (eg, number of taps, taps drift) displayed the best
performance among all [43,44].

Most features showed a decrease in test-retest reliability with
longer periods of time. This may reflect a consequence of the
repetition effects and the group-by-repetition interaction
observed in the analyses of variance for a substantial proportion
of the features. Features selected from the tapping task were
less sensitive to the effect of age and sex compared to other
tasks. Overall, the effects of age and sex were not significant
for most of the features. The analysis of elapsed time between
repetitions also revealed that the time difference between
repetitions did not have a significant effect on most of the
features. ICC values obtained from the PD and HC groups were
largely similar, suggesting that other non-PD related sources of
variation may have played a larger role in the observed low ICC
values. Determining these reasons requires more controlled
experiments than provided by the m-Power study.

Despite a significant difference at baseline, several features did
not differentiate PD and HC when using data from all time
points. This effect became most pronounced for the gait task,
likely due to its poor test-retest reliability performance.
Differential learning, variation in motivation, medication,
reduced adherence to task instructions, and other physical and
environmental parameters may contribute to this loss of
differentiation [2,10,12]. While a clear differentiation of
motivation versus learning effects on the often-abstract DB
features is difficult in an observational study design, a possible
way to provide inference on this issue is to compare the direction
of alterations in PD and HC. Assuming that alterations in PD
relative to HC reflect impairment, movement of a feature state
toward PD is likely to reflect worsening due to reduced
motivation, disease progression, or other similar factors. In
contrast, movements toward HC is likely to reflect improvement
and is therewith compatible with a learning effect. We find a
mixture of both effects for most tasks, suggesting the presence
of both aspects in DB longitudinal data. These observations are
also in line with previous studies showing that training may
reduce motor impairment in PD [45-47]. In particular, for the
tapping task the difference between PD and HC disappears for
several features, which is primarily due to a shift in performance
in HC. These findings may point to a differential change in
motivation across groups. While differential learning has been
previously reported [45,48-52], the differential change in
motivation is an important novel aspect to consider when
comparing DB measures between PD patients and HC.
Understanding the sources leading to this variability of DB
measures over time is a vital and open question that needs to
be systematically addressed to enable their application for
specific clinical questions.

Most patients with PD take dopaminergic medication to alleviate
their motor functions. However, the responsiveness to PD
medication highly varies between patients. Besides good
reliability and the ability to differentiate PD and HC, another
important and desired quality of an effective DB is therefore to
monitor PD medication response. Among the most reliable
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features from each task, only a few displayed significant but
weak sensitivity to different medication conditions. One possible
reason for this poor performance of DB measures in our study,
as compared to some previous reports [20], might be the
self-reported nature of the medication status in the m-Power
data set, which likely introduced some noise variation (ie,
different drugs and differences in time after administration).
Nonetheless, our findings point to the need for further
optimization of DB measures to increase their sensitivity to PD
medication effects.

The self-administered design of the m-Power data set is also
the major limitation of our study. In such an uncontrolled setting,
accuracy in reporting the diagnosis and demographics, defining
the medication status, and ensuring correct understanding of
and compliance with the instructions may all have introduced
variation into the study measures. The reported ballpark
estimates for test-retest reliability and ability of the respective
measures to differentiate between PD and HC therefore need
to be carefully considered when interpreting our results. Another

limitation of our study is the moderate adherence of participants
in the m-Power study, which limited the number of participants
who could be included in our analyses. Differences in age as
well as lack of standardization of the time of day when the
assessments were conducted are further sources of variation
that may affect the generalizability of our findings [53]. Future
studies may make inferences about the impact of different
confounders such as comorbidities and disease severity on the
longitudinal stability of DB. Also, further research is needed to
establish the longitudinal stability of DB in the context of their
relationship to clinical rating scales such as UPDRS.

Nonetheless, our findings clearly demonstrate the need for
further optimization of DB tasks as well as for introducing
careful monitoring and quality control procedures to enable
integration of DB measures into clinically relevant applications.

Data Availability
The m-Power data set used for this paper is available upon
registration from Synapse [54].
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ABSTRACT Smartphone-based digital biomarker (DB) assessments provide objectivemeasures of daily-life
tasks and thus hold the promise to improve diagnosis and monitoring of Parkinson’s disease (PD). To date,
little is known about which tasks perform best for these purposes and how different confounds including
comorbidities, age and sex affect their accuracy. Here we systematically assess the ability of common self-
administered smartphone-based tasks to differentiate PD patients and healthy controls (HC) with and without
accounting for the above confounds. Using a large cohort of PD patients and healthy volunteers acquired in
the mPower study, we extracted about 700 features commonly reported in previous PD studies for gait,
balance, voice and tapping tasks. We perform a series of experiments systematically assessing the effects of
age, sex and comorbidities on the accuracy of the above tasks for differentiation of PD patients and HC using
several machine learning algorithms. When accounting for age, sex and comorbidities, the highest balanced
accuracy on hold-out data (73%) was achieved using random forest when combining all tasks followed by
tapping using relevance vector machine (67%). Only moderate accuracies were achieved for other tasks
(60% for balance, 56% for gait and 53% for voice data). Not accounting for the confounders consistently
yielded higher accuracies of up to 77% when combining all tasks. Our results demonstrate the importance
of controlling DB data for age and comorbidities.

INDEX TERMS Digital biomarkers, machine learning, Parkinson’s disease, smartphones, wearable devices.

I. INTRODUCTION
Diagnosis of Parkinson’s disease (PD) still often relies on
in-clinic visits and evaluation based on clinical judgement
as well as patient and caregiver reported information. This
lack of objective measures and the need for in-clinic visits
result in the often late and initially inaccurate diagnosis [1].
Recent studies have identified digital assessments as such
promising objective biomarkers for PD symptoms including
bradykinesia [2], [3], freezing of gait [4], [5], impaired dex-
terity [6], balance and speech difficulties [7]–[9]. Most of
these results were obtained with a moderate number of par-
ticipants and in a standardized and controlled clinical setting,
reducing generalizability and limiting an interpretation with
respect to applicability of these measures to an at-home self-
administered setting [10]–[12].

The associate editor coordinating the review of this manuscript and

approving it for publication was Masood Ur-Rehman .

Asmost relevant sensors deployed in these in-clinic studies
are also embedded in modern smartphones, this opens the
possibility to collect such objective, reliable and quantitative
information as digital biomarkers (DB) in an at-home setting
and therewith to facilitate diagnosis, health monitoring or
treatment management using low-cost, simple and portable
technology [13]. Indeed, recent studies applying machine
learning algorithms to these high-dimensional data sug-
gested a good diagnostic sensitivity of the respective digital
assessments for detection of Parkinson’s disease [14]–[17].
However, such at-home assessments create a range of new
challenges including selection bias, confounding and sources
of noise that need to be understood and dealt with to ensure
good reliability of respective outcomes to a level that is
sufficient for at home data collection [18]. For example,
age, sex and comorbidities are known confounding factors
that impact many measures of disease symptoms across neu-
rodegenerative diseases including PD [19]–[23]. Yet, several
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TABLE 1. Demographics for PD and HC subjects for each experiment. Those cases where age or sex are significantly different between PD and HC are
indicated with an asterisk (2 sample t-test for age and Chi-square for sex with 95% confidence).

studies eluded the importance of matching and controlling
for these variables [24]–[26], including age, sex [24], [27] or
comorbidities which might induce motor (i.e. bradykinesia,
tremor or rigidity) and non-motor (i.e. fatigue, restless legs or
sleep) symptoms [25]. Other potential data collection biases
include small sample sizes [14], [28], inclusion of several
recordings per subject [15], [24] or signals of different time
lengths [27], which may potentially lead the classifier to
detect the idiosyncrasies of each subject rather than spe-
cific PD related symptoms, as demonstrated by Neto et al.
[29]–[31]. In addition, replicability of results is rarely per-
formed in current studies, which may lead to lack of gen-
eralizability. Despite the considerable promise for DB in
healthcare, these issues limit comparability across studies,
hindering interpretation and obstructing translation to the
clinic.

Recently, a large dataset of at-home smartphone-based
assessments of commonly applied PD tasks including gait,
balance, finger tapping and voice evaluations was collected
in the mPower study providing a unique resource to examine
DB in the study of PD [32], [33]. Indeed, several studies

applying machine learning (ML) algorithms have employed
this dataset in the study of PD diagnosis, achieving quite
different results across studies. Whilst plausible, the impact
of the aforementioned confounds on ML-based detection of
PD using different at-home digital assessments has not been
yet systematically established and has indeed been ignored in
many previous studies [15], [24], [27], [34], [35].
Here we systematically explore the influence of accounting

for age, sex and comorbidities in the detection of PD in a large
at-home dataset. Concretely, we use the mPower dataset to
evaluate the ability of common DB task (gait, balance, voice,
tapping) for differentiation between PD and HC. In addition,
we identify potential DB of Parkinson’s disease. With this
work, we aim to outline practical suggestions to guide future
studies practices and improve comparability across studies.

II. METHODS
A. DATA
Data used in this work were derived from the mPower
study [32]. MPower is a mobile application-based study to
monitor indicators of PD progression and diagnosis by the
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FIGURE 1. Illustration of signal processing and feature extraction based on the raw data for each task.
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TABLE 2. List of experiments indicating their corresponding processing steps.

TABLE 3. Balanced accuracy results for CV and holdout datasets and chance level at 95%.

collection of data in subjects with and without PD. Using this
app, subjects were presented with a one-time demographic
survey about general demographic topics and health history.
Completion of the Movement Disorder Society’s Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS) and the
Parkinson’s Disease Questionnaire short form (PDQ-8) sur-
veys used for PD assessment was requested at baseline as
well as monthly throughout the course of the study. Due to
the length of theMDS-UPDRS instrument, subjects were pre-
sented only a subset of questions focusing largely on themon-
itor symptoms of PD [32]. Participants had to select ‘‘true’’
or ‘‘false’’ to the following question ‘‘Have you been diag-
nosed by a medical professional with Parkinson Disease?’’.
According to this answer, they were classified as Parkinson’s
Disease (PD) or Healthy Control (HC). Subjects who did not
answer this question were discarded from further analysis.
All subjects were presented with different tasks including
gait, balance, voice and tapping, which they could complete
up to 3 times per day. Subjects who self-identified as having
a professional diagnosis of PD were asked to perform these

tasks (1) immediately before taking their medication, (2) after
taking their medication and (3) at some other time (Table 8).
Subjects who self-identified as not having a diagnosis of PD
could complete these tasks at any time during the day. In the
gait task, subjects were asked to walk 20 steps in a straight
line. In the balance task they were required to stand still
for 30 seconds. During the voice activity task, subjects were
requested to say ‘Aaah’ into the microphone for 10 seconds.
Finally, during the tapping task participants were instructed to
alternatively tap two points on the screen within a 20 seconds
interval. We additionally excluded those subjects who gave
no information about their age, sex or had inconsistencies
in their clinical data (e.g. self-reported healthy controls who
answered questions about PD diagnosis or PD medication).
Since the mPower dataset is strongly slanted toward young
HC (Table 15), we restricted our analysis to those subjects
within the age range of 35 to 75 years old. This cleaning step
resulted in the exclusion of 40-50% of the data depending on
the task. To avoid ‘‘learning effects’’ and biases due to several
recordings, we only considered the first recording of each
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FIGURE 2. A) ROC curves and AUC values for 4 different classifiers for each task, during the main experiment (E3: no
comorbidities, matched). B) Balanced accuracy distributions for each task and experiment (E1-E6). E1: all data. E2: age and
sex matched. E3: no comorbidities, age and sex matched. E4: no comorbidities, age and sex matched, controlled for age.
E5: no comorbidities, age and sex matched, controlled for sex. E6: no comorbidities, age and sex matched, controlled for
age and sex.
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FIGURE 3. A) ROC curves at 95% CI during CV. B) ROC curves at 95% CI during validation of holdout set and at
the chance level. C) Scaled average weights of features for each task for the main experiment (E3: no
comorbidities, matched). Gait) acc - average acceleration, acc_path – acceleration along path,
AP – anteroposterior, FB – freezing band, LB – locomotor band, ML – mediolateral, pos – position, V – vertical,
vel – velocity. Balance) trem – tremor, post – postural, dist – distance, LF – low frequency, MF – medium
frequency, VHF – very high frequency, RHL – ratio between high and low frequency, F95 –frequency containing
95% of the power spectrum. Voice) c – cepstral coefficient, d – 1st derivative of cepstral coefficient, dd – 2nd

derivative of cepstral coefficient. Tapping) TapInter – tap interval. For details on features refer to Appendix A.
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TABLE 4. List of gait features.

subject in the analyses. Further details about data cleaning
can be found in Appendix A. Demographic details are shown
in Table 1.

B. PRE-PROCESSING
The tri-axial accelerometer integrated in the smartphone
records acceleration in the 3 axes (vertical, mediolateral and
anteroposterior) during the gait and balance tasks. A 4th order
20 Hz cut-off low-pass Butterworth filter was applied to the
3 accelerometer signals. An additional 3rd order 0.3 Hz cut-
off high-pass Butterworth filter was applied to minimize the
acceleration variability due to respiration [36]. Signals were
then standardized to eliminate the gravity component while
maintaining the information from outlier data. According to
Pittman et al. [24], 30% of the devices were not held in the
correct position and therefore, we additionally calculated the
average acceleration signal. Several signals were extracted

from the gait recordings including the step series, position
along the 3 axes calculated by double integration, velocity
and acceleration along the path [37] (Figure 1).
Two additional signals were considered for the balance task

(Figure 1). Tremor frequency in PD is estimated to fall in
the 4-7 Hz band [38], whereas postural acceleration measures
(tremor-free) fall in the 0-3.5 Hz interval. To extract tremor-
free measures of postural acceleration, we applied a 3.5 Hz
cut-off low-pass Butterworth filter [39].
Voice was recorded at a sample rate of 44.1 Kbps.

Pre-processing included a downsampling to 25 KHz and a
noise reduction using a 2nd order Butterworth filter with a
low-pass frequency at 400 Hz. The fundamental frequency
signal was calculated using a Hamming window of 20 ms
with 50% overlap, and verified with the software Praat
(Figure 1). Time, frequency and amplitude series were
extracted from the voice signals.
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TABLE 5. List of balance features.
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TABLE 6. List of voice features.

Tapping recordings consist of the {x,y} screen pixel coor-
dinates and timestamp for each tap on the screen. Both the
inter-tapping interval (time) and the {x,y} inter-tap distance
series were computed (Figure 1). Further details about pre-
processing for each task can be found in Appendix A.

C. FEATURE EXTRACTION
A comprehensive search was conducted in PubMed
(https://pubmed.ncbi.nlm.nih.gov/) with the following search
terms ((Parkinson’s disease) AND (walking OR gait OR
balance OR voice OR tapping) AND (wearables OR smart-
phones)) to identify features commonly applied for each task
and corresponding signals generated. Based on the results of
this search, 423, 183, 124 and 43 features were identified and
computed using Matlab R2017a from gait [40], [42], [43],
balance [7], [36], [39], [44], voice [25], [26], [45] and tapping
data [15], [32], [46], respectively (Table 4-Table 7).

D. MACHINE LEARNING ALGORITHMS
As a different ML algorithm may provide the best perfor-
mance for a given task, we evaluated four commonly applied
algorithms for differentiation between PD and HC:

1) Least Absolute Shrinkage and Selection Operator
(LASSO) is a linear method commonly used to deal
with high-dimensional data. LASSO applies a regular-
ization process, where it penalizes the coefficients of
the regression variables shrinking some of them to zero.
During the feature selection process, those variables
with non-zero coefficients are selected to be part of the
model [47]. LASSO performs well when dealing with
linearly separable data and avoiding overfitting.

2) Random Forest (RF) uses an ensemble of decision
trees, where each individual tree outputs the classes.
The predicted class is decided based on majority
vote. Each tree is built based on a bootstrap training
set that normally represents two thirds of the total
cohort. The left out data is used to get an unbiased
estimate of the classification error and get estimates
of feature importance. RF runs efficiently in large
datasets and deals very well with data with complicated
relationships [48].

3) A Support Vector Machine (SVM) with Radial Basis
Function (RBF) kernel with Recursive Feature Elimi-
nation (SVM-RFE). An SVM is a linear method whose
aim is to find the optimal hyperplane that separates
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TABLE 7. List of tapping features.

between classes. When data is linearly non-separable,
it may be transformed to a higher dimensional space
using a non-linear transformation function that spreads
the data apart such that a linear hyperplane can be
found in that space. Here, we used a radial basis
kernel function. RFE is a feature selection method
that ranks features according to importance, improv-
ing both efficiency and accuracy of the classification
model. This model is known to remove effectively
non-relevant features and achieve high classification
performance [49].

4) Relevance Vector Machine (RVM), which follows the
same principles of SVM but provides probabilistic
classification. The Bayesian formulation prevents from
tuning the hyper-parameters of the SVM. Nonethe-
less, RVMs use an expectation maximization (EM)-
like learning that can lead to local minima unlike the
standard sequential optimization (SMO)-based algo-
rithms used by SVMs, that guarantee to find a global
optima [50].

E. FRAMEWORK
The following six experiments were performed to address
the questions on the impact of age, sex and comorbidities
that may influence task performance on the classification
accuracy for each task and on the combination of all tasks
for differentiation between PD and HC (Table 2):

1) Experiment 1 (E1: all) includes all subjects only
restricting the age range (35-75 years old).

2) Experiment 2 (E2: matched) includes subjects after an
age and sex matching between PD and HC, where we
strictly match one HC for each PD subject with the
same age and where possible with the same sex.

3) Experiment 3 (E3: no comorbidities, matched)
excludes all comorbidities that may affect task perfor-
mance (see Appendix A) and strictly matches for age
and where possible sex on the remaining subjects.

4) Experiments 4-6 (E4-6): Three additional experiments
assess if controlling for age and sex impacts the results.
These experiments exclude comorbidities, match for
age and sex and control for age and/or sex applying
multiple regression. For this, age and gender were
included as covariates in a multiple regressions using
the features for each modality as dependent variables.
The estimated beta coefficients for each covariate were
used to regress out the estimated effects of age and sex
on the respective feature. The resulting residuals for
each feature were used for subsequent classification.
Experiment 4 (E4): no comorbidities, matched, con-
trolled for age; Experiment 5 (E5): no comorbidities,
matched, controlled for sex; Experiment 6 (E6): no
comorbidities, matched, controlled for age and sex.

As the performance obtained after removing comorbidi-
ties and matching for age and sex (E3) provides a rel-
atively unbiased estimate for differentiation between PD
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TABLE 8. Medication status at the time of performing the tasks.

and HC, these results were used for selection of the best
performing ML algorithm for each task and interpretation
of the main outcomes throughout this work. Demographic
and clinical information for each experiment are provided
in Table 1.

Additionally, to compare the performance of our anal-
yses to those in the literature, we performed an analysis
including all data without restricting age range (Table 15)
and an analysis including all data and both age and sex as
features.

F. MODEL PERFORMANCE
Data leakage occurs when information of the holdout test
set leaks into the dataset used to build the model, leading to
incorrect or overoptimistic predictions. Therefore, in every
experiment and task, data was initially split into 2/3 of data to
build the predictive model and 1/3 of holdout data to validate
this model. To build the model, we performed 1000 repeti-
tions of 10-fold cross-validation (CV) in the 2/3 of the data for
each classifier to avoid data leakage and increase robustness.
The parameter Lambda of the LASSOmodel was set to 1 and
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TABLE 9. Cross-validation classification performances for each of the tasks (gait, balance, voice, tapping and multimodal features) for four different
classifiers.

the number of trees for RF to 100. A nested cross-validation
was implemented to tune the parameters of the SVM-RFE
classifier. The procedure consists of an inner CV to select
the best parameters of the model following a grid search
for the regularization constant (C) ranging from 2−7 to 27

and for gamma (γ ) ranging from 2−4 to 24 for the SVM.
Then, the outer loop is used to assess the model selected in
the inner CV. Extensive parameter optimization was applied
only on SVM-RFE classifier, given that the other algorithms
have already embedded optimization and that 1000 repeti-
tions of 10-fold cross-validation and multiple experiments

would have taken based on the estimated from a single run
each at least several months on the high-throughput cluster
available to us. For each model, we report the following
measures of predictive performance: balanced accuracy (BA),
sensitivity, specificity, positive (PPV) and negative predictive
value (NPV), mean receiver operating characteristic (ROC)
curves with 95% confidence intervals and area under the
curve (AUC). Comparisons betweenmodels are based on BA.
Once the best predictive model with the highest cross-

validation BA was identified using the CV dataset,
it was validated using the holdout dataset, reporting the
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TABLE 10. Classification performance for the gait task.

aforementioned performance metrics. In addition, to test
whether the BA of the predictive model is higher than chance
level (0.5 for binary classification), we ran 1000 permutations
randomly permuting the predicted classes, reporting BA at
95% confidence intervals.

III. RESULTS
A. CLASSIFIER SELECTION AND RESULTS FOR THE
CV DATASET
Four different classifiers (random forest: RF, Least Absolute
Shrinkage and Selection Operator: LASSO, support vector
machine: SVM, relevance vector machine: RVM-RFE) were
applied to each of the four tasks and their combination dur-
ing the main experiment (E3: no comorbidities, matched for
age and sex). Table 9 provides detailed information on the
classification performance for each ML algorithm and

each task. The ROC curves and corresponding AUC val-
ues for the four classifiers for each of the tasks during the
cross-validation (CV) step are displayed in Figure 2A. RF,
RVM and SVM-RFE performed similarly across all tasks,
whereas LASSO was the classifier performing the poorest.
Best performance was achieved on the combination of all
tasks using RF (balanced accuracy (BA)): 69.6%), followed
by tapping using RVM (BA: 67.9%), balance using RF (BA:
60%), voice using RVM (BA: 56.7%) and gait using SVM-
RFE (BA: 56.5%).

B. COMPARISON OF EXPERIMENTS IN THE
CROSS-VALIDATION SETTING
ML algorithms performing best for each task in the main
experiment (E3: no comorbidities, matched for age and sex)
were applied to corresponding task data of the other five
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TABLE 11. Classification performance for the balance task.

experiments (E1: all subjects, E2: matched for age and sex,
E4-6: same as E3 but additionally regressing out the effects
of age and/or sex). Classification performance for each task
and experiment during the CV and over holdout sets is sum-
marized in Table 3 and Table 10-Table 14. BA distributions
for each experiment and task during the CV are displayed in
Figure 2B.

In the CV, E1 (all data) resulted in the highest but
modest BA for all tasks (gait: 56.6%; balance: 61.8%;
voice: 62.5%; tapping: 74.8; multimodal combining all
four tasks: 73.9%). Removal of comorbidities in E3 had
a marginal effect on BA as compared to E2 (matched
for age and sex) with increased BA for gait (E2: 50.3%;
E3: 56.5%), voice (E2: 53.9%; E3: 56.7%) and tapping
(E2: 66.8%; E3: 67.9%) but lower BA for balance

(E2: 60.4%; E3: 60.0%). After additionally regressing out
the effects of age and/or sex (E4-E6) the change in the BA
was negligible for all tasks (< 1%) except for voice when
regressing out sex (E3: 56.7%; E5: 60%) and both age and
sex (E3: 56.7%; E6: 59.2%) (Table 3, Tables 10–14).
Analyses including all data without trimming for age range

led to the highest accuracy of 74.4% using tapping data,
followed by 72.7% for the multimodal case and 58%, 52.9%
and 51% for balance, voice and gait data respectively. In all
cases specificity was close to 100% whereas sensitivity was
exceedingly low (Table 16-Table 20). When including both
age and sex as additional features, accuracy increased to
80.8% for tapping data, 75.3% for the multimodal case and
73.1%, 69% and 57% for voice, balance and gait data respec-
tively with high specificities and low sensitivities.
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TABLE 12. Classification performance for the voice task.

C. RESULTS FOR THE HOLDOUT DATASET
Best performing classifiers trained on the 2/3 of the initial
dataset used for cross-validation were applied to the 1/3
holdout dataset. Results for the holdout dataset were highly
similar to the CV results (Table 3, Tables 10–14). All results
are summarized in Figure 3 and Table 3. The multimodal
combination of all tasks resulted in the best performance
for differentiation of PD and HC in the holdout cohort
(BA: 73.5%) followed by the tapping features (67.2%). Voice
features achieved the lowest BA of 53% followed by gait
(55.7%) and balance (59.9%) features (Table 3). For the base
experiment E3, the difference in BA between CV and holdout
sets was less than 1% for all tasks except for a 3.7% reduction
in BA for voice data and a 3.9% increase for the multimodal
feature combination. Exclusion of comorbidities resulted in

only minor changes for gait, balance and tapping (<2%) with
a 6.8% drop only observed using voice data and a 3.5%
increase for the multimodal case. BA performance for all
tasks increased by 1.4% (gait) to 7.4% (voice) for all tasks
when using the dataset only restricting the age range (E1)
as compared to E3. No systematic effects of additionally
controlling for age and/or sex prior to classification (E4-E6)
were observed with BA changes being small and inconsistent
across tasks and experiments.
Analyses including all data without trimming for age range

reached the highest accuracy in the holdout set of 73.3% using
multimodal features, followed by 71.1% for the tapping task
and 55.8%, 52.6% and 51.6% for balance, voice and gait data
respectively (Table 16-Table 20). When including both age
and sex as additional features, accuracy in the holdout data

VOLUME 10, 2022 28375



M. Goñi et al.: Smartphone-Based DB for PD in Remotely-Administered Setting

TABLE 13. Classification performance for the tapping task.

raised to 78.9% for tapping data, 75.9% for the multimodal
case and 74.6%, 66% and 58.3% for voice, balance and gait
data respectively with very high specificities and very low
sensitivities.

D. PREDICTIVE FEATURES
Best performance during CV for the main experiment E3 was
achieved using the multimodal set of features. Figure 3 shows
the scaled average absolute feature weights for RVM and
SVM-RFE and the scaled average importance scores for RF,
calculated with the out-of-bag (OOB) permuted predictor
delta error across 1000 repetitions during the CV. Features
with the highest importance scores belong to the tapping
task followed by the balance task. Tapping features with the
highest importance scores comprised the range of intertap

interval (100), maximum value of the intertap interval
(99.8) and Teager-Kaiser energy operator of the intertap
interval (83.2). Balance features with highest importance
scores were the power ratio between high (3.5-15 Hz) and
low (0.15-3.5 Hz) frequency for anteroposterior acceleration
(31.5) and energy in the medium frequency band for medio-
lateral acceleration (25.3). Gait and voice tasks had the least
contributions in terms of importance scores.

IV. DISCUSSION
Here, we systematically evaluated the ability of four com-
monly applied DB tasks to differentiate between PD and HC
in a self-administered remote setting. Our findings indicate
that, depending on the constellation, not accounting for con-
founds in PD digital biomarker task data may lead to under-
but also over-optimistic results.
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TABLE 14. Classification performance for the multimodal features.

TABLE 15. Demographics for PD and HC subjects including all data.

A. IDENTIFICATION OF PARKINSON’S DISEASE
Out of the four evaluated machine learning algorithms,
similar performance was achieved for all classifiers except
LASSO which showed the poorest performance. Whereas
some previous studies using the mPower dataset selected
different algorithms according to tasks [25], [26], others

simply applied a single classifier [27], [29]. No single classi-
fier performed best for all four tasks in our study. This is in
line with previous research showing that the selection of the
classifier depends mainly on the type and complexity of the
data [51], [52]. For instance, RF, RVMandGaussian SVMare
non-linear algorithms, offering more flexibility regarding the
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TABLE 16. Classification performance for the gait task.

TABLE 17. Classification performance for the balance task.

type of data. On the contrary, LASSO is a linear classifier and
thus, its performance depends on whether the data is linearly
separable. Whereas the generalizability of this observation is
limited by the use of only one linear classifier, it may point to
a better usability of non-linear approaches for classification
of digital assessments.

For discrimination of PD and HC, combination of all tasks
reached a BA of 74%, followed by tapping that achieved
67%, outperforming other tasks which were close to chance
level. These results are in line with previous literature using
the mPower dataset, where tapping reached the highest accu-
racies and gait and voice were closer to chance level [29].

Several studies reported higher accuracies for this type of data
[24], [27]. Yet, these studies followed certain ‘‘optimistic’’
approaches as discussed below.

B. POTENTIAL CONFOUNDERS
Exclusion of comorbidities resulted in increased accuracies
by a few percent, suggesting that other diseasesmay addmore
variability to the signal. Prediction performances consider-
ably decreased for all tasks after matching for age and sex
indicating the importance of controlling for such confounds
in DB data. When including all data without trimming age
range, accuracies greatly increase. Nonetheless, specificity
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TABLE 18. Classification performance for the voice task.

TABLE 19. Classification performance for the tapping task.

values are exceedingly high whereas sensitivity values are
vastly low. This indicates a greater prediction ability for the
HC group, which is considerably larger than the PD group for
subjects under 35 years old. Including age and sex as part of
the features resulted in further accuracy increases, yet with
very low sensitivities. Since the dataset is strongly slanted
toward young HC, the model is most likely distinguishing HC
based on age and gender in this case. Such effects may also
explain the high accuracies in some of the previous studies
using mPower dataset, where no proper matching for these
confounds was performed, age and/or sex were used as fea-
tures despite a large imbalance across groups or non-balanced

accuracies were reported [24], [26], [27], [34]. In example,
in the overall mPower dataset HC outnumber PD by a factor
of five and age and sex alone provide a high discrimination
accuracy between PD and HC with PD being on average
28 years older and more often female (34% of PD vs 19%
of HC). Our findings are also in line with previous studies
demonstrating a similarly strong decrease in accuracies when
accounting for respective confounds. Neto et al. [53] studied
the effect of confounders on gait data. They reached very high
accuracy when not accounting for confounders, compared
with a very modest accuracy when using unconfounded mea-
sures. Schwab and Karlent [25] performed analysis with all
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TABLE 20. Classification performance for the multimodal features.

the tasks from the mPower dataset with and without including
age and sex, the latter resulting in a similarly low accuracy as
in our study.

For all classification experiments, we used only one
recording per subject to prevent the classifier from detect-
ing the idiosyncrasies of each subject rather than spe-
cific PD related symptoms [29]–[31]. Single measures are
likely to contain more noise due to higher variation in task
administration as well as in individual performance in a
poorly-controlled setting [54]. Using multiple time points
may therefore further increase the discrimination between
PD and HC as demonstrated in several previous studies
[29]–[31]. Yet, our results in this respect highlight the need
of further understanding and better control of the individ-
ual parameters which impact the task performance during a
single administration.

C. PREDICTORS OF PARKINSON’S DISEASE
Features with largest weights in the multimodal discrimina-
tion between PD and HC were derived from the tapping task.
These features mostly related to the inter-tapping interval
(time), presumably reflecting bradykinesia-like symptoms.
These results are in line with previous studies, where tapping
features related to speed and accuracy had the strongest cor-
relation with clinical scores [55], [56]. Balance task features
related to tremor measures had larger weights than postu-
ral ones. In addition, features from the frequency domain
had greater weights than spatiotemporal features. Spatiotem-
poral features have been extensively studied and applied,
due to their ease of computation and interpretability [57].
However, these features offer information limited primarily
to leg movement, whilst frequency features add information
regarding asymmetry and variability. Furthermore, balance
features with higher weights belonged to the mediolateral

and anteroposterior signals, related to stability. Even though
gait had limited contribution to the classification accuracy,
acceleration features had the highest weights from this task.
This observation is in linewith previous findingswhere accel-
eration proved to better capture PD-related gait changes [58].
In line with some previous studies, features with the highest
weights from the voice task were all based on Mel Frequency
Cepstral Coefficients which can detect subtle changes in
speech articulation that are common in PD [59], [60].

D. LIMITATIONS AND FURTHER RESEARCH
Whereas sensors-integrated in smartphones open new oppor-
tunities for at-home continuous, reliable, non-invasive and
low-cost monitoring of PD, our finding highlight the need
for further development, optimization and standardization of
specific measures for such applications.
The interpretation of our findings is limited by several

aspects, including the lack of standardization, poor control
of environmental and medication effects during performance
of the tasks and intentionally or unintentionally incorrect
information provided by the participants. In addition, removal
of comorbidities and matching for age and sex led to exclu-
sion of about 50% of data, which may affect the training of
classifiers [53].
Further use of smartphones in the detection of Parkinson’s

disease symptoms include detection of hypomimia from face
expressions, socializing and lifestyle behavior and typing
patterns among others [61], [62].

APPENDIX A
SUPPLEMENTARY METHODS
A. DATA CLEANING
MPower dataset offers demographic, PDQ8 and MDS-
UPDRS surveys and task-based data. The demographics table
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contains data for 6805 subjects. In order to establish a diag-
nosis, participants had to select ‘‘true’’ or ‘‘false’’ to the
following question ‘‘Have you been diagnosed by a medical
professional with Parkinson Disease?’’. According to this
answer, they are classified as Parkinson’s Disease (PD) or
Healthy Control (HC). Some subjects left this question unan-
swered and thus they were discarded from further analysis.
Those subjects classified as PD which did not completed the
PDQ8 and MDS-UPDRS questionnaire were also excluded.
Subjects with no information on age, sex or any task data
were also removed, resulting in 6614 subjects. Those empty,
null or corrupted files for each task were deleted, resulting
in 2807 subjects with gait and balance data, 4925 with voice
data and 6366 with tapping data. Since a large number of
subjects are HC under 35 years old, our analysis focused on
a subset of subjects within the age range of 35 to 75 years
old, leading to 1435 subjects with gait and balance data,
2186 subjects with voice data and 2644 subjects with tapping
data. Finally, all subjects with inconsistencies for each of
the tasks were discarded (i.e., subjects that reported not to
have been diagnosed with Parkinson’s disease but filled in
PD medication questions, year of diagnosis of PD, surgery
or deep brain stimulation). This last elimination resulted in
1416 subjects with gait and balance data, 2153 subjects with
voice data and 2600 subjects with tapping data.

B. SIGNALS LENGTH
Gait task consists of walking 20 steps in a straight line.
In order to analyse the same signal length for each subject,
we examined how many subjects had gait data for different
time durations. We observed that after 10 seconds, partici-
pation was dropping heavily. Therefore, we selected a time
length of 10 seconds and discarded those participants with
shorter signals. Following the same reasoning, we chose
voice signals of 7 seconds, trimming the first second and last
two seconds, and tapping signals of 20 seconds. Similarly,
balance task consists of standing still for 30 seconds although
just 20 seconds were selected. Nonetheless, whereas gait,
voice and tapping are independent tasks, and therefore they
are started by the user, balance task starts straight after the
gait task. This is, as soon as the gait task ends, the app plays
out loud ‘‘turn around and stand still for 30 seconds’’. As a
result, most of the balance recordings include initial slots of
noise, which most likely coincide with the time that subjects
listen to the instructions, react, turn around and start the
task. Therefore, we trimmed the first 5 seconds of the signal,
resulting in balance signals of 15 seconds for all subjects.
Final number of subjects consisted of 1397 subjects with gait
data, 1415 subjects with balance data, 2150 subjects with
voice data and 2600 subjects with tapping data.

C. PRE-PROCESSING AND SIGNAL EXTRACTION
Gait and balance data consists on vertical (V), anteropos-
terior (AP) and mediolateral (ML) acceleration signals. For
these 3 gait acceleration signals, we applied a Butterworth
low pass filter with cut-off frequency at 20 Hz followed by

a 3◦ order high pass filter at 0.3 Hz. According to
Pittman et al. [24], around 30% of devices were not held
in the correct position. Therefore, the greatest gravitational
displacement is not always along the vertical axis. Then,
we standardized these three signals and calculated an addi-
tional average acceleration signal. Based on the standardized
acceleration signal, we extracted the step series. We calcu-
lated position signals along the three axes by double integrat-
ing the acceleration signals and the average position. Then,
we extracted velocity and acceleration along the path by
derivation [37].
Balance acceleration signals were filtered with a low pass

Butterworth filter at 20 Hz. Since tremor in PD usually falls in
the 4-7Hz frequency band [38], [39], the interval 0-3.5 Hz is
considered for tremor-free or postural acceleration measures.
Hence, we applied a Butterworth filter at 3.5 Hz to extract
postural acceleration measures. We also calculated the aver-
age of the tremor acceleration in the 3 axes and the average
of the postural acceleration in the 3 axes.
Voice signals were recorded at a sample frequency of

44.1 KHz. We downsampled the signal to 25KHz, applied
a second order Butterworth filter with cut-off frequency
at 400 Hz followed by a pre-emphasis FIR filter for noise
reduction and correct for distortions. We extracted the fun-
damental frequency (f0) series, which was verified with the
Praat software.
Tapping recordings consists of the {x,y} screen pixel coor-

dinates and timestamp for each tap on the screen. Signals
derived out of these recordings were the inter-tapping inter-
val (time) and the {x,y} inter-tap distance series.

D. FEATURE EXTRACTION
1) GAIT

We extracted 11 signals from the original accelerome-
ter recordings during gait tasks. These are V, AP and
ML acceleration, the step series, the average of the
acceleration in the three axes, the V, AP and ML posi-
tion, the average position in the three axes, the velocity
and the acceleration along the path. Table 4 collects a
list of features extracted for these signals along with
their acronyms.

2) BALANCE
Balance signals consist in the V, AP and ML tremor
acceleration (4-7 Hz), the average of these 3 signals, the
V, AP and ML postural acceleration (0-3.5 Hz) and the
average of these 3 signals. We extracted displacement-
related postural features from ML, AP and average
of both distance signals, following the formulation in
Martinez-Mendez et al. [36] (Table 5).

3) VOICE
Most of voice features were extracted following the
formulation in Tsanas et al. [45]. Tsanas et al. state
that the period (T) signal provides different infor-
mation than f0. Therefore, we additionally extracted
the T series. Further signals include glottis quotient
and 14Mel Frequency Cepstral Coefficients (MFCCs),
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including the 0th coefficient and the log-energy of the
signal, along with their associated delta and delta-delta
coefficients as applied in the Voicebox Matlab Tool-
Box [63] (Table 6).

4) TAPPING
We considered a set of features computed from the
inter-tapping interval (time) and the {x,y} inter-tap
distance signals, according to Bot et al. [46] (Table 7).

E. COMORBIDITIES
Comorbidities selected for removal in the experiments
E3-E6 include ‘‘Alzheimer Disease or Alzheimer demen-
tia’’, ‘‘Dementia’’, ‘‘Schizophrenia or Bipolar Disorder’’,
‘‘Alcoholism’’, ‘‘Multiple Sclerosis’’, ‘‘Leukemia or Lym-
phoma’’, ‘‘Acute Myocardial Infarction/Heart Attack’’,
‘‘Stroke/Transient Ischemic Attack’’, ‘‘Breast Cancer’’,
‘‘Colorectal Cancer’’, ‘‘Prostate Cancer’’, ‘‘Lung Cancer’’,
‘‘Endometrial/Uterine Cancer’’, ‘‘Any other kind of can-
cer OR tumor’’, ‘‘Heart Failure/Congestive Heart Fail-
ure’’, ‘‘Ischemic Heart Disease’’. These comorbidities were
removed since they may lead to brain damage or to undertake
chemotherapy or other therapy, which might induce brain
changes.

F. MEDICATION STATUS
Table 8 shows the number of subjects that performed the
task just before taking their medication, after taking their
medication, at another random time, number of those who
were not taking any medication and number of those who did
not give any information about their medication status.

G. SELECTION OF THE BEST CLASSIFIER DURING THE
MAIN EXPERIMENT (NO COMORBIDITIES; MATCHED)
Table 9 shows the classification performance for the four
classifiers under consideration for each task.

APPENDIX B
SUPPLEMENTARY RESULTS
Table 10-Table 14 summarize the results for each task (gait,
balance, voice, tapping) and the combination of all the tasks,
for the experiment 1 (all data), experiment 2 (matched data),
experiment 3 (no comorbidities and matched data), exper-
iment 4 (no comorbidities, matched, controlled for age),
experiment 5 (no comorbidities, matched, controlled for sex)
and experiment 6 (no comorbidities, matched, controlled for
age and sex).

A. ADDITIONAL EXPERIMENTS
Our results may differ to those in the current literature using
the mPower dataset since we follow different approaches.
To explain these discrepancies and compare with the liter-
ature, we included two additional experiments including all
data without trimming for age range and all data including
both age and sex as features in the analyses (Table 15).
Classification performances for both additional experiments
for each tasks are summarized in Table 16-Table 20.
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