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Summary (German)

Der wachsende Trend zur individuellen Gesundheitsversorgung und Digitalisierung im
Gesundheitswesen, z.B. mit Hilfe von remote monitoring (Ferniilberwachung), hat zu
einem verstirkten Interesse an der Verwendung integrierter Sensoren in bspw.
Smartphones und Smartwatches, in klinischen Studien gefiihrt. Die von solchen Geréten
erfassten gesundheitsbezogenen Daten werden als digitale Biomarker (DB) bezeichnet.
Im Gegensatz zu bisherigen klinischen Evaluationsmethoden liefern DB kostengiinstige,
objektive und dkologisch valide Daten. Mit Hilfe von DB ist es besser mdglich, innerhalb
klinischer Studien, eine groBere und vielfdltigere Population zu untersuchen. Dariiber
hinaus liefern DB Daten mit hoher zeitlicher und rdumlicher Auflosung, was zu einem
besseren Verstdndnis des Krankheitsverlaufs und -fortschritts beitragen kann.

Aufgrund des Mangels an objektiven Bewertungsinstrumenten, stehen neurodegenerative
Krankheiten im Fokus der DB-Forschung. Fiir die Erforschung DB eignet sich die
Parkinson Krankheit (PD), hinsichtlich des heterogenen Eintrittsalters, der
Symptompravalenz, der Schweregradprogression und der vielseitigen Symptome
besonders gut. Es erscheint notwendig, die Verwendung DB in die klinische Diagnostik
von Parkinson zu integrieren. Diese Integration, v.a. in der hduslichen Umgebung, stellt
jedoch eine praktische Herausforderungen dar. Dariiber hinaus ist die longitudinale
Stabilitdit von DB, die innerhalb solcher Umgebungen erhoben wurden, noch nicht
ausreichend erforscht worden - bisherige Studien beschrianken sich auf Laborsituationen.
Ziel dieser Arbeit ist es, Erkenntnisse dariiber zu erlangen, wie remote monitoring in einer
héuslichen Umgebung in Kombination mit einer Plattform zur Datenerhebung genutzt
werden kann, um die Evaluation von Parkinson zu verbessern.

Der erste Teil der Arbeit befasst sich mit der Plattform ,,JTrack", die fiir das remote
monitoring von Krankheiten entwickelt wurde. ,,JTrack® eignet sich dafiir, mehrere
Aspekte eines Krankheitsbildes zu erfassen und stellt somit ein umfassendes
Messinstrument fiir klinische Studien dar. Zudem wird die Ubereinstimmung der mit
,»JTrack" erfassten Daten mit zwei gingigen stationdren Systemen zur Analyse von Gang
und Gleichgewicht bewertet, um das Potenzial des Einsatzes von Smartphones und
insbesondere von ,,JTrack" in kiinftigen klinischen Studien darzulegen.

Im zweiten Teil wird beschrieben, inwieweit hdufig berichtete Merkmale von PD, als
Biomarker verwendet werden konnen. Zu diesem Zweck wurde zunéchst die Test-Retest-
Zuverldssigkeit und die longitudinale Stabilitdit dieser Merkmale untersucht.
AnschlieBend wurden Algorithmen des maschinellen Lernens verwendet, um zu
bewerten, inwiefern diese Merkmale verwendet werden konnen, um zwischen PD und
gesunden Kontrollprobanden zu unterscheiden. AuBerdem wurde der Einfluss
verschiedener Storfaktoren wie Komorbiditdten, Alter und Geschlecht auf die
Vorhersageleistung der maschinellen Lernalgorithmen untersucht. Dazu wurden
verschiedenen Aufgaben (z.B. Gang, Gleichgewicht) der m-Power-Datenbank
verwendet, die im unkontrollierten, hduslichen Umfeld von den Patienten durchgefiihrt
und mit Hilfe des remote monitorings erfasst wurden.

Insgesamt werden innerhalb dieser Arbeit die Moglichkeiten und Grenzen der
Verwendung von Smartphones fiir die Diagnose von PD diskutiert. Es werden zudem



mogliche beeinflussende Faktoren im Zusammenhang mit DB bei Fern- und
selbstverwalteten Erfassungsmethoden dargestellt. Es wird auBerdem verdeutlicht, dass
kontrolliertere, standardisiertere, empfindlichere und zuverldssigere DB entwickelt
werden miissen, bevor sie in klinischen Anwendungen (Apps) eingesetzt werden sollten.
SchlieBlich wird eine neue DB-Plattform fiir das remote monitoring vorgestellt, die fiir
verschiedene Arten von Krankheiten genutzt werden kann.



Summary

The growing trend of personalised health care and remote monitoring has led to increased
interest in using embedded sensors in portable smart devices (smartphones and
smartwatches) in clinical studies. Health-related data collected from such devices are
referred to as Digital Biomarkers (DBs). Unlike traditional in-clinic assessment methods,
DBs provide cost-effective, objective, and ecologically valid data. DBs enable clinical
studies to recruit a larger and more diverse population. Furthermore, DBs provide high
temporal and spatial resolution data, which increase the chance of gaining a
comprehensive understanding of disease progression.

Neurodegenerative diseases, due to their lack of accessible and objective assessment
tools, have been a primary focus for the DBs research community. Parkinson's disease
(PD) is particularly well-suited for studying DBs due to its heterogeneous onset age,
symptom prevalence, severity progression rate, and multiple aspects of the disease.
Therefore, there is a need to integrate DBs and remote assessment into the routine clinical
evaluation of PD. However, using DBs for PD in non-controlled, at-home settings poses
practical challenges that have hindered this goal. Additionally, the longitudinal stability
of DBs collected in such settings has not yet been thoroughly investigated, with previous
studies limited to in-lab settings. Thus, this thesis aims to provide insight into how remote
monitoring in an at-home environment alongside the data collection methods can be
leveraged to improve the way PD is assessed.

The first section of this dissertation focuses on introducing a platform named "JTrack",
designed for remote disease monitoring and to address technical aspects such as security,
privacy, modularity, and reusability. This platform aims to provide a comprehensive
solution for clinical studies involving multiple aspects of various diseases. In addition,
this section assesses the agreement between features collected through "JTrack" with two
widely used stationary systems for analysing gait and balance, demonstrating the potential
of using smartphones and particularly the "JTrack" platform in future clinical studies.
The second part of this thesis investigates the potential of using various commonly
reported features in PD studies as biomarkers. To do this, we first investigate these
features' test-retest reliability and longitudinal stability, considering how the timescale
may affect their stability. Next, we use various machine learning algorithms to assess the
ability of these features to differentiate between PD and HC. Also, we evaluated the
influence of different confounding factors such as comorbidities, age, and sex on the
prediction performance of the machine learning algorithms. For this, the various tasks
(gait, balance, voice, and tapping) of the m-Power database, collected remotely and in a
self-managed setting, were investigated.

Overall, this thesis discusses the potential and limitations of using smartphones for remote
assessment of PD. It examines the possible sources of confounding factors related to DBs
in remote and self-managed collection methods. It also highlights the need to develop
more controlled, standardised, sensitive, and reliable DBs before taking them into any
clinical application. This thesis also introduces a new DBs platform for remote
assessment, which can be leveraged for various types of disease.



List of Abbreviations

DB Digital Biomarker

PD Parkinson's Disease

HC Healthy Control

GDPR General Data Protection Regulation

MDS-UPDRS Movement Disorder Society's Unified Parkinson's Disease Rating
Scale

IMU Inertial Measurement Unit
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Introduction

The challenges (e.g., time constrain, accessibility, cost, limited availability, and in-
frequent visits) associated with current in-clinic visit assessment methods have motivated
the development of novel disease assessment techniques using sensor-embedded smart
devices. Various sensors have recently been incorporated into wearables and
smartphones. This rich combination of built-in sensors, processing power, wireless
connection capability, and customisable applications opens the door to collecting
objective and quantifiable health-related data. The data acquired via smart devices in
clinical studies are referred to as digital biomarkers (DBs) (1-3). DBs can provide cost-
effective, objective, and ecologically valid health-related data. Furthermore, real-time
longitudinal data collection from a larger population allows a better understanding of
disease evolution and variation between individuals.

In clinical trials, two major deployment models for DBs can be outlined. The first,
consists of samples obtained in a controlled environment, for example, a clinical or
movement laboratory, using devices designed for this particular purpose (4,5). The
second approach brings together commercially accessible hardware (such as smartphones
and smartwatches) with custom applications to be used in loosely controlled and self-
administrated in-home settings (6—8). The main benefit of the second approach is the
capacity to monitor patients in (near) real-time remotely and for extended periods of time,
such as months and years. Additionally, smartphones are practical tools for
crowdsourcing due to their widespread use. Although there are already many platforms
designed for at-home disease monitoring (9-13), the majority of them have several
shortcomings, including a lack of memory and energy optimisation, an easy-to-use user
interface, security, and privacy, and a lack of availability in official application
distribution stores. One of the main challenges posed by these platforms is maintaining
the confidentiality of the collected data (14), which is consistently targeted in
cyberattacks. Therefore, it is strongly recommended that no identifying information be
collected (or use proper anonymising and encryption methods) in the first place. Another
challenge is the large amount of data generated, which requires the creation of efficient
data storage and streaming methods, not only at the device level but also at the storage

endpoint. Smartphones often have limited internal storage capacity and access to low-



cost (free) connectivity, so it is important to have automatic synchronisation strategies to
maximise memory usage efficiency.

Additionally, the flexible and modular design of DBs platforms to accommodate a wide
variety of sensor types is another key feature that should not be overlooked. These
platforms should allow researchers and clinicians to easily add or remove different types
of sensors (data sources). However, most of the existing platforms are designed to focus
on a specific aspect of a disease, which negatively affects their reusability and flexibility.
Nevertheless, there is a gap between the tools available and needed for this purpose,
which motivated us to introduce our platform, "JTrack".

DBs have been used in the assessment of various diseases, from heart disease and diabetes
to cancers and chronic pain. In particular, DBs have been extensively used to measure
and monitor the progression of certain neurodegenerative disorders, such as Parkinson's
Disease (PD), one of the very well-suited neurodegenerative diseases for DBs studies (6).
Given different aspects of the disease such as motor, speech, and sensory disturbances
which are highly heterogeneous across patients and disease stages (15), remote
monitoring in PD is a powerful way to better understand the feasibility of deploying such
methods as a complement to traditional in-clinic visits (6,16).

PD is the second most prevalent neurodegenerative disorder of the elderly, involving
approximately 9.4 million people over the age of 60 worldwide in 2020 (17). This
complex progressive movement disease is essentially characterised by motor signs, such
as muscle rigidity, rest tremor, akinesia, and postural instability (18). However, diverse
non-motor symptoms, including sleep disorders, psychiatric disorders, and sensory
disturbances are also present in PD (18,19).

PD is classically characterised by a gradual loss of dopaminergic neurons in the substantia
nigra, a region of the midbrain responsible for movement control, as well as an abnormal
accumulation of Alpha-synuclein (a-synuclein) aggregates called Lewy bodies, which
blocks dopamine's production and transmission, and subsequent loss of dopamine in the
striatum (20-22). Nevertheless, increasing evidence has apparently shown that PD is a
multisystem disorder and the substantia nigra is not the only or the first brain region
damaged in PD. The degenerative process in PD is much more extensive that affects the
whole nervous system (21,23).

From a neuropathological point of view, while the motor symptoms of PD are mainly
attributed to the degeneration of dopaminergic neurons in the nigrostriatal system, the

non-motor symptoms such as sleep abnormality, loss of smell, depression, and mood



disorders are associated with a start of a-synuclein aggregates beyond the nigrostriatal
dopaminergic system (21,24). Furthermore, the symptomatic phase of PD, which is
mainly characterised by the above-mentioned motor symptoms, is not evident until
approximately 60—70% of dopaminergic neurons in the substantia nigra have already
degenerated (25), whereas the prodromal stage of the disease is often characterised by
non-motor symptoms which may precede the appearance of characteristic motor
symptoms by several years (21).

The exact aetiology of PD is unknown to date, but several genetic risk factors have now
been characterised, which cause a rare familial form of PD (26). There is also some
evidence that environmental factors (i.e., viruses and bacteria, toxic chemicals, heavy
metals, and free radicals) may cause the deterioration of dopamine-producing neurons,
leading to the development of PD, although the role of these remains unclear (27).
Furthermore, recent studies suggest that viral or chemical exposure may cause
inflammation in the olfactory system and gut leading to the initial a-synuclein misfolding,
aggregation, and propagation to the brain (28).

Treatment of PD predominantly focuses on symptomatic relief with drugs aiming to either
restore the level of dopamine in the striatum or to act on dopamine receptors (19,20).
Although many other drugs are also being used to target specific symptoms, the non-
motor symptoms of PD often go unrecognised and therapeutic management of these
symptoms remains challenging, negatively impacting patients' quality of life (19).
Finally, PD is one of the world's fastest-growing neurological disorders, yet much is
unknown about its current global economic burden. The direct and indirect burden of PD
is estimated to exceed $79 billion in the US by 2037 (for an estimated 1.6 million patients)
(29). The prevalence of PD increases with age, which is considered the most significant
risk factor for the development and progression of PD (27). This means that society and
the economy will be confronted with severe challenges as the proportion of older people
in the total population continues to rise over the coming decade. Therefore, taking new
approaches for early diagnosis and accurate interventions and monitoring the progression
is needed to improve the efficiency and accuracy of treatments in patients suffering from
PD.

Despite the recent interest and novel approaches to facilitate the diagnosis of PD, there
are still insufficient biomarkers to assist this process. The frequently used methods often
rely on in-clinic visits and subjective evaluation of patients combining clinician-rated

systems such as the Movement Disorder Society's Unified Parkinson's Disease Rating



Scale (MDS-UPDRS) and self-reported information (30,31). These in-person visits are
limited in terms of travel distance and distribution of specialised physicians and
professional healthcare personnel which are often expensive and inaccessible to most
people. Furthermore, the quality and quantity of observations that these approaches
produce are frequently inadequate, and they also have a strong potential for a large degree
of inter- and intra-rater variability (8,32,33). In addition, they are affected by several
different recall biases, which can introduce errors and limit the usefulness of findings
based on these reports (34). Nevertheless, these restrictions result in poor diagnostic
accuracy for PD, particularly in the early stages of the disease, and this continues to be a
significant impediment to patient care (35).

Digital sensors such as Inertial Measurement Unit (IMU) have been widely used for
motion analysis and are the most frequently used sensor in PD studies (33). Due to the
fact that a large number of motor-UPDRS questions are directly related to particular gait
and postural instability symptoms, this domain has received the most attention from IMU
sensor-based research. Unlike more complex methods such as walking carpets, IMU
sensors provide high-resolution data with low cost and ease of use.

Most of the research on DBs for PD focuses on discovering features that can differentiate
between PD and Healthy Control (HC) and correlating these features to clinical scores
such as the MDS-UPDRS. In addition, it is desired to have clinically accepted and
interpretable features that can also identify symptom severity and medication state
(on/off) (for a detailed review see (33)).

In this regard, features such as the number and symmetry of steps, gait speed, cadence,
gait variability, and freezing of gait are among the most frequently reported features for
gait analysis (5,36-44). The jerkiness of posture, high-frequency power, and total
distance moved are among the features extracted for postural instability assessment
(38,45-48). Other features extracted from frequency and spatiotemporal-related aspects
of a signal are also reported frequently.

IMU sensors are also frequently used to analyse tremor-related symptoms, and features
such as temporal and frequency domain-related features, entropy, root mean square, and
signal amplitude are widely reported (2,4,49-51). IMU sensors, combined with
touchscreens, are also commonly used to assess bradykinesia-related symptoms and the
most common features are the number of taps, speed of tap, and temporal variability of
taps as frequency domain-oriented features (49,50,52). In excess of motor symptoms,

voice dysfunction is a frequently reported symptom related to PD (53) that may be caused



by the rigidity or bradykinesia of the laryngeal muscles in PD that can result in several
abnormalities, including reduced voice volume, breathy voice, poor articulation, jerky
speech, and incomplete glottic closure. (53-56). The embedded microphone in
smartphones makes voice assessment simple nowadays and features such as Mel-
Frequency-Cepstral-Coefficients, Harmonics-to-Noise-Ratio, shimmer, and jitter are
among the features that different researchers have reported (15,54,57-61).

Several tasks are designed to aid the objective assessment of PD symptoms using
smartphones, such as spirography, sway task, tapping task, and Time-Up-and-Go (TUG).
These tasks can also be used with passive monitoring of daily activities, which does not
require user interaction with an application. Passive data collection may provide
comprehensive insights into PD symptoms through features such as daily activity, time-
in-bed, and the number of sit-to-stand transitions (62,63). However, passive monitoring
approaches also necessitate the investigation of advanced algorithms to remove a
substantial amount of noise and classify huge amounts of unlabelled data (64).

The use of digital sensors in clinical settings has demonstrated their feasibility in
objectively assessing PD symptoms (2). However, the majority of these studies were
conducted in a controlled in-clinic environment with a small cohort size (6), which limits
the diversity of the study cohort in terms of disease stages and severity of symptoms.
Moreover, these studies often lack longitudinal data with higher temporal resolution. Age
and disease duration are the two major timescales that affect PD's clinical manifestation
(17), and longitudinal studies of PD, particularly in those who do not yet exhibit any
motor symptoms but only pre-motor symptoms, would play a key role in gaining a more
accurate insight of disease course and onset. To address these issues and move toward
personalised health, it is necessary to shift toward using at-home and self-managed data
collection methods in longitudinal studies with large and diverse populations.

However, many sources of variability can influence the validity and reliability of DBs,
leading to invalid results and hindering the interpretation and translation of clinical trials.
These sources of variability include sensor-level (measurement) variability (i.e.,
recording frequency, placement, quality, etc.) and individual-level variability (i.e.,
gender, medication, disease manifestation, etc.). The use of at-home-based data collection
introduces an additional source of variabilities, such as selection bias, the effect of
learning and motivation, the inclusion of multiple recordings for each participant, and the
ability to follow instructions (6,65). Furthermore, there is still a lack of clarity on whether

the impact of these variations remains the same throughout the course of the disease or



whether they have varying effects. When taking into consideration the heterogeneous
character of PD, this challenge also receives an additional layer of difficulty (64). In
addition, the impact of these variabilities when using the machine learning approaches
investigated in automated PD classification—which may result in overly optimistic
results—has not been addressed properly thus far.

To address these open questions and examine the concepts introduced above, the m-
Power dataset, assessed outside of clinical environments in self-administered settings, is

being investigated (66).

Ethics protocols

The ethics protocols were approved by the Ethics Committee of Heinrich Heine
University Diisseldorf (Studien-Nr.: 2020-1077-andere Forschung erstvotierend
Comparison of passive monitoring and self-reported social behaviour using smartphone
based assessments), And the ethics committee of the Psychology faculty of the Heinrich
Heine University Diisseldorf. (DU01-2021-01).

Aims and Organization of this Thesis

Due to the shortcomings and difficulties of current in-clinic visits, there is currently an
active interest in leveraging DBs obtained from smartphones and wearable technology in
the remote assessment of diseases like PD. These biomarkers can be used to classify
diseases or assess the severity of their symptoms, and at-home assessment methods aim
to maximise ecological validity and provide improved insight into disease progress and
onset (67). Thus, in this thesis, I aim to contribute to this field by pursuing the following
steps. First, I introduce a reusable and open-source platform to collect research-grade
context-driven data while prioritising privacy and security concerns. Second, in a
collaboration project, we assessed the agreement of data collected from this platform with
advanced stationary platforms (force plate and motion capture systems), which are
accepted as the gold standard for motion analysis. Third, I evaluated the longitudinal
sensitivity and test-retest reliability of commonly reported features extracted from the m-
Power dataset—the remote study of PD in a self-administrated at-home protocol and then
assessed if the longitudinal behaviour of these potential DBs differed between disease

groups and if this fluctuation was related to disease or other confounding factors that may



have had a contribution. Finally, we investigated these potential DBs to evaluate the
sensitivity and specificity of different machine learning algorithms on the differentiation
of PD from HC and what and how confounding factors affect this performance.

The following articles were published as part of my doctoral work and represent the main

structure of this dissertation.

Study 1: In the first study, I addressed and aimed to fill the gap in the trade-off between
privacy, optimisation, stability, and research-grade data quality that were not well met in
previously introduced platforms where we're able to collect context-driven data. In this
study, the "JTrack" platform was introduced as a single solution for digital phenotyping.
"JTrack" comprises a smartphone application and an online dashboard enabling remote
data collection and study management. It gives a flexible and modular environment for
collecting sensor and smartphone usage data, with privacy and General Data Protection

Regulation (GDPR) compliance as top priorities.

Study 2: In this study, we assessed the feasibility of using smartphones for gait and
balance analysis. In this context, we examined the agreement between gait and balance
features derived using smartphones and two widely used stationary gait analysis systems
(e.g., force plate and motion capture systems) that are considered the gold standard in this
field. In particular, we intend to assess the viability of adopting smartphone-based gait

and balance studies in lieu of advanced techniques designed for laboratory use.

Study 3: The third study was devoted to investigating the longitudinal stability and test-
retest reliability of various features extracted in Study 4. Despite its importance, little
attention has been paid to evaluating the test-retest reliability and longitudinal stability of
DBs in a loosely controlled self-administered setting. Therefore, in this study, I invested
different sources of variation in the long-term performance of DBs such as the repetition,

learning, and medication effects.

Study 4: In this study, we investigated various features derived from common tasks (i.e.,
gait, balance, voice, tapping) of the m-Power database performed in a self-administered
setting for a remote assessment of PD. In this context, we have evaluated the specificity
and sensitivity of various machine learning algorithms in differentiating PD and HC. We

subsequently explored the influence of different confounding variables such as age, sex,



and comorbidities on the classification performance for each task and the combination of

all tasks.
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JTrack: A Digital Biomarker Platform
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Juergen Dukart "2
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Health-related data being collected by smartphones offer a promising complementary
approach to in-clinic assessments. Despite recent contributions, the trade-off between
privacy, optimization, stability and research-grade data quality is not well met by existing
platforms. Here we introduce the JTrack platform as a secure, reliable and extendable
open-source solution for remote monitoring in daily-life and digital-phenotyping. JTrack
is an open-source (released under open-source Apache 2.0 licenses) platform for remote
assessment of digital biomarkers (DB) in neurological, psychiatric and other indications.
JTrack is developed and maintained to comply with security, privacy and the General Data
Protection Regulation (GDPR) requirements. A wide range of anonymized measurements
from motion-sensors, social and physical activities and geolocation information can be
collected in either active or passive modes by using JTrack Android-based smartphone
application. JTrack also provides an online study management dashboard to monitor
data collection across studies. To facilitate scaling, reproducibility, data management and
sharing we integrated Datal.ad as a data management infrastructure. Smartphone-based
Digital Biomarker data may provide valuable insight into daily-life behaviour in health
and disease. As illustrated using sample data, JTrack provides as an easy and reliable
open-source solution for collection of such information.

Keywords: mobile toolkit, mobile sensing, remote monitoring, health science, biomarkers

INTRODUCTION

Neurological and psychiatric diseases typically present with symptoms that are complex, atypical,
fluctuant in disease progression, and display high variability between patients (1). Current
diagnostic and efficacy evaluation methods often rely on in-clinic visits and subjective evaluation
by patients, caregivers or clinicians. In-clinic evaluation methods are often costly, time-consuming
and limited in their quality and quantity of observations (2). In addition, they are often prone to
high inter- and intra-rater variability (3). The aforementioned drawbacks of traditional diagnosis
methods may affect the diagnostic process especially in the early stage of the disease where there is
a lag between the onset of the pathological process and the onset of symptoms (4).

Psychiatric and neurological diseases are typically long-term illnesses that cause significant
fluctuations in symptoms over time. Therefore, recall and reporting biases are the key difficulties
in evaluating respective diseases in episodic in-clinic visits. Remote monitoring of patients in
their everyday-life using sensor-based at smart technologies is rapidly evolving and may assist
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clinicians in facilitating early diagnosis and evaluating and
adjusting interventions. There has been an evolving interest in
using newly emerged smart sensor technologies for monitoring
of patients (5-10).

Modern smartphones and wearables are equipped with
various sensors including motion (i.e., acceleration, gyroscope),
location [i.e., Global Positioning System (GPS)], environment
(i.e., barometer, temperature, light) and health sensors (i.e., heart
rate) (11, 12). This rich combination of sensors along with their
ability to collect ecological momentary assessments (EMA), and
information about social interaction (i.e., social media, messaging
and phone calls) have made smartphones a potential alternative
to in-clinic evaluation for various types of assessments (13, 14).
Such health-related information being collected in clinical trials
are often referred to as digital-biomarkers (DB) (15). DBs can
provide objective, ecologically valid, and invaluable information
for better understanding of specific diseases. In addition, DBs
enable frequent assessments from larger target populations over
longer periods of time and may thus provide detailed insight into
inter- and intra-individual disease variability in daily-life (16).

Several contributions enabling the use of smartphones as
an assessment tool have been recently introduced. The first set
are commercial devices such as Fitbit!, Garmin?, Apple3 and
Samsung* devices. The main focus of these applications is to
provide feedback on the daily activity of users by visualizing and
showing notification regarding their heart rate, number of steps
and kind of activity. However, most of these devices provide
limited access to the raw data and do not support high-frequency
data collection. A second type are applications and platforms
developed by researchers such as AWARE (17), RADAR-base
(18), Beiwe (19), mCerebrum (20), mPower (21) and many
others. The main focus of these mostly open-source platforms
is to enable data collection for research applications as well as
to facilitate data sharing and reproducibility. Yet, these software
packages are often limited by an often narrow focus to some
specific clinical indications or with respect to privacy aspects.
Also, these once in a while updated platforms make some of them
unstable for the rapidly growing smartphone ecosystem.

Whilst there are several platforms that are able to collect
context-driven data, the trade-off between privacy, optimization,
stability and research-grade data quality is not well met
yet. Thus, we aim to fill this gap by introducing the
JTrack platform. JTrack was developed as an Android-
based application for smartphones and an online server-side
dashboard. JTrack application comprises the following main
categories of components: sensor data, location data, Human
Activity Recognition (HAR), and smartphone and application
usage monitoring. Each component has the option to be
used for active (with user interaction) and passive (without
user interaction) monitoring. The dashboard side is an online
platform to create and manage studies, integrating DataLad (22)
infrastructures to facilitate management and sharing of collected

lhttps://wwwAﬁtbit,com/global/us/home (accessed November 23, 2020).
2hnps://www.garmin.com/en—US/ (accessed November 23, 2020).
3https://www.apple.com/ (accessed November 23, 2020).
“https://www.samsung.com/us/ (accessed November 23, 2020).

data. JTrack is a modular open-source with a high level of
optimization, security and privacy making JTrack a practical
solution for clinicians and researchers to collect, manage, and
share digital biomarker data.

METHODS

General Description

Here we introduce the main components of the JTrack platform
(Figure 1) comprised of the JTrack app (Figure 2) and an online
dashboard interface (Figure 3). The smartphone application
JTrack was developed for smartphones with the Android
operation system (OS). The reason for selecting Android was a
wider range of users® (73%) and fewer restrictions which were
necessary for technical aspects of application development.

JTrack enables passive 7/24 data collection running in the
background. Active data collection is enabled through simple
interaction (i.e., start and stop recording, i.e., before and after
execution of a specific task). All collected data are recorded
locally in the application and then synchronized on a periodic
basis (i.e., connection to the Internet, have enough battery
charge). All local data are deleted from the phone storage
upon successful data transfer. To minimize the risk of data
loss, we implemented auto-start functionality (without user
interaction) to resist unwanted application crashes or operating
system reboots, and all the crashes are reported via the
Firebase dashboard®.

On the server side, the JTrack dashboard was developed as
an online web-application where study owners can create and
manage studies. The dashboard consists of a front-end interface
and a back-end API which is integrated with DataLad (22) as a
data-management tool. The dashboard provides an overview of
received data including sanity checks such as MD5 for received
data, and embedded validity checking methods.

QR-Code Authentication

To provide a convenient and secure way of activation we
implemented a QR-code method. The QR-code for each subject
is generated as a pdf file from the dashboard. Each QR-code
contains all the necessary information such as user ID, Study ID,
and address of the target server or an optional authentication
method (e.g., OAuth2). To join a study, the one-time QR-
code needs to be scanned using the QR-scanner embedded in
the JTrack app. Additional backup QR-codes are provided for
scenarios in which users may want to leave and re-join or need
to switch their device.

Location Service

Location service provides an update on visited location data such
as longitude, latitude, and altitude. This service operates as a part
of the passive recording. The location data can be inquired based
on pre-defined periods (i.e., 10 min). To ensure anonymization,
for each user, a random value is generated during activation on
the phone, which shifts the latitude to a random place on the

®https://gs.statcounter.com/os-market- share/mobile/worldwide (accessed August
19, 2020).
Chttps://firebase.google.com (accessed November 23, 2020).
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globe. In addition, all recorded coordinates are rotated using a
randomly generated fixed degree around this initial coordinate to
ensure that even if the true installation location is known no other
coordinates can be derived. These values remain on the phone
throughout the study and are deleted upon deinstallation of the
app. To keep a high accuracy, each data point is first transferred
from WGS-84 to Cartesian coordinates. After the transformation
using the generated value, the coordinates are transferred back to
their native space. Since this transformation occurs before actual
recording, all the collected data is relative and cannot be used to
recover the user’s actual location. Furthermore, we used a fused
method that provides more accurate data (median accuracy of 14
meters) by combining GPS and network information.

Human Activation Recognition

Inertial Measurement Unit (IMU) sensors of smartphones or
wearables can be used to differentiate between human activities.
Several studies described reliable algorithms for HAR (23,
24). Nowadays, these algorithms are routinely deployed in
commercial devices, as well as in a wide range of research areas
from medicine to military. JTrack uses the Google Play Activity
Recognition Service” for HAR, which recognizes up to six types of
activity (walking, running, still, on bicycle, on vehicle or tilting).
JTrack can record the detected activity and the assigned certainty
with a pre-specified frequency of 5min. The HAR module is
computationally lightweight, optimized and does not require
direct access to raw sensor data.

7https://developers.google.com/location- context/activity-recognition  (accessed

June 23, 2020).

Application Usage Statistic

JTrack can collect the statistic of user’s interactions with the
smartphone. This data includes the name of the application and
the amount of time it is used in the foreground since the previous
midnight. Phone calls and SMS are treated as applications with
same usage statistics being collected as above. No content of the
applications, messages or phone calls (including phone numbers)
is collected at any stage.

Sensors

Various sensors are embedded in any modern smartphones
which are classified as hardware implementation (ie.,
accelerometer,  gyroscope, ~ barometer) or  software
implementation (i.e., rotation sensor). JTrack enables collection
of data from most of the available sensors depending on
the device model and version of Android. Among these,
accelerometer, gyroscope and gravity sensors are the most
important sensors for researchers focusing on motion
analysis (6, 25-29). As a default, JTrack provides recording
of accelerometer and gyroscope data in the passive collection
mode. Other sensors can be added upon the researcher’s choice
by using the provided template module which requires minimal
coding effort. For each sensor, sampling frequency in Hz can be
adjusted using the dashboard when creating a new study.

Dashboard

When creating a new study in the dashboard, all aspects of
a study such as study name, duration, number of subjects,
recording frequency, and categories of data to be collected
can be customized. After creating a study, the dashboard will
generate QR-codes which are used for enrolment into the study.
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The dashboard also provides management tools on an ongoing
study producing information such as a number and time of
received data for each sensor/modality and status (i.e., active,
not active) of each participant in a particular study. We also
implemented several quality controls including highlighting of
missing data.

Furthermore, to assist study managers to establish further
interaction with participants, we embedded a messaging
method in the dashboard which allows to send a push
notification directly to the participants’ phone, either by

selecting specific subject numbers or all participants within a
particular study. Layered design (backend, frontend and data
management layer) also makes the Dashboard flexible and
extendable for further interaction and integration with third-
party applications.

Performance, Security and Privacy

At all stages of the development, attention was paid to security
and privacy as a main priority. In this context, we designed the
JTrack platform to comply with GDPR and Google Developer
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Policies®. No sensitive data such as name, phone number, phone
contacts or actual location are recorded at any stage. All the
collected data transferred via Hypertext Transfer Protocol Secure
(HTTPS) protocol and checked for any inconsistency using MD5
sanity checksum.

Concerning patient privacy, all users using JTrack are
provided with clear information on what is been recorded and
why. Permission requests for each module need to be approved
during installation and activation. All participants may also stop
and leave a study at any time directly from the app. Also, remote
configuration and one-step recording allow clinicians to gain
optimum control over the collected data without the need to
collect any identifying information.

To reduce battery and memory usage, we provided several
built-in optimizations such as:

Detecting still period of the phone to pause recordings.

Delete locally stored data right after synchronization with
the server.

Scheduled synchronization based on predefined criteria such
as access to a Wi-Fi connection.

Shttps://developer.android.com/distribute/play-policies  (accessed ~December

2,2020).

e Detect and provide a possibility to bypass performance
optimizations (i.e., battery and memory) policies of phone
manufacturers introduced on-top of the Android OS.

To reduce data loss due to crashes or reboots, automatic re-
starting is implemented alongside with Firebase integration to
obtain performance and crash reports. Information about phone
manufacturer, model, and OS version are among the optional
recorded data (not active by default), which can be used to
analyse and handle cross-sensor variability.

Pilot Study

In a pilot experiment, we collected in a cohort of healthy
volunteers (N = 21, age: 26.1 & 6.9, 7 female) for 2 weeks on a
daily basis passively recorded data for application usage, location
and activity recognition aside with self-reported estimates for
these parameters [for application usage: time spent (in minutes)
with the phone: total, social media and messenger]; for location
and activity: walking/running distance (in meters). To test
for associations between passively recorded and self-reported
measures, we computed Pearson correlations across all subjects
and time-points to compare both types of measures (i.e., merging
location and activity recognition co compute distance covered
by foot).
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RESULTS

To illustrate the utility of the JTrack application sample data
were collected in the beta testing phase. Figures 4, 5 display such
sample data collected for a single subject for different modalities.
We provided sample data for each modality (i.e., location data,
activity recognition, application usage and raw sensors data) also
we further show a possible combination of the recorded data (i.e.,
location data with activity recognition data) in Figure 4C. Other
combinations such as time and location (e.g., extracting amount
of time spend outside of common residual place), location and
application usage (e.g., extracting pattern of social interaction
and applications used in-home condition) and activity and raw

sensor data (e.g., extracting driving behaviour) are among the
possible ways of making inference. Figure 5B also shows the daily
phone and application usage (i.e., social media, phone calls, and
online messaging platform) for a pilot participant.

In a pilot experiment, we further tested for associations
between these passively recorded measures and self-reported
estimates of specific behaviours. The self-reported distance
covered by walking/running per day significantly correlated (r
= 0.53; p < 001) with the information derived from passive
monitoring (Figure 6A). Similarly, the time spent with the
phone in total, communication and social platform significantly
correlated with the passively-recorded estimates of respective
phone usage measures (r = 0.38-0.49; all p < 0.001) (Figure 6B).
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TABLE 1 | Comparison of existing frameworks with JTrack.

Framework Location Official app Stores Data Management Remote Confii i Activati C
Anonymization 0OS Detection

AWARE (17) NO NO saL YES Text-based NO

RADAR-base (18) YES YES MongoDB YES QR-Code NO

Beiwe (19) NO YES PostgreSQL NO Text-based NO

mCerebrum (20) NO NO MySQL NO Text-based NO

JTrack (this study) YES YES Datalad YES QR-Code YES

Comparison to Other Platforms

Table 1 shows how the JTrack platform compares to other similar
and related platforms in terms of some key features such as
security and privacy, activation, management and also stability.
AWARE (17) is a platform for remote assessment of a wide
range of phone sensors, activity and self-reported data. AWARE
also supports additional plugins for external sensors and new
data. However, this ability also requires a further declaration
of permissions which limits control over privacy. mCerebrum
(20) is another platform for remote assessment supporting a
wide range of high-frequency sensors with a focus on energy-
optimization. However, this platform has not been updated in
while (latest update is May 2018 in their GitHub repository),
questioning its performance on new versions of Android-OS.
Beiwe (19) is the next platform supporting remote monitoring
and DBs assessments which has a flexible study portal, modeling
and data analysis tools. Nevertheless, this platform does not
have local data storage and makes use of Amazon Web Services
(AWS) cloud computing infrastructure. Such public cloud-based
solutions are often more cost effective and convenient to use
since as they simplify the build and maintenance process (this
is particularly evident when the number of users and the data
collected are small to medium sized), yet they may also raise data
privacy questions and require additional deployment procedures.
Another drawback of this platform is the collection of identifiable
data such as phone number, media access control (MAC) address
of WIFI and Bluetooth devices. RADAR-base (18) is the last
open-source platform in the list. It has a well-organized structure
which is using Confluent and Apache Kafka services and flexible
study portal. Nevertheless, the deployment and adaptation
of this platform require heavy configuration. Concerning
the convenient registration, it requires text-based registration.
Location data being collected in background is considered as a
big concern in terms of privacy which is also frequently regulated
by Google Developer Policies” and restricted by recent updates in
Android OS. Among all the compared platforms only RADAR-
base provides relative location. There are several alternative
variants of these platforms that may strengthen some of the
basic capabilities, such as Health Outcomes through Positive
Engagement and Self-Empowerment (HOPES) which is based
on the Beiwe platform (30) and AWARE-Light which is based
on the aware framework. While these additional enhancements

“https://developer.android.com/distribute/play-policies  (accessed ~December

2,2020).

may address some of the shortcomings of the specific underlying
platform, here we only focused on the comparisons to the
core versions.

Easy one-step registration and authentication via QR-Code,
as well as remote configuration, make JTrack more practical in
both the usage and management aspects. Battery and memory
optimizations offered by Android OS or phone manufacturers
can affect the stability and consistency of data collected, JTrack
provides built-in detection and circumvention methods for better
stability that are not provided by comparator platforms at
this level.

DISCUSSION

We developed JTrack as an open-source, smartphone-based
platform for digital phenotyping. JTrack consists of a smartphone
application and an online dashboard enabling remote data
collection and study management. JTrack provides a flexible and
modular environment for collection of various types of sensor
and smartphone usage data with particular attention being paid
to patient privacy as well as compliance with GDPR regulations.
From the functionality perspective, most of the solutions
described above were developed with the focus on specific
applications, i.e., a specific disease [i.e., RADAR-base (18)
and Beiwe (19)]. Their application is therefore limited to the
respective primary context. In contrast, some other platforms
were developed to collect as much information as possible
with little attention to data privacy [i.e., AWARE (17)]. Such
frameworks violate GDPR and Google Play Store policies limiting
their deployment for many clinical applications. JTrack aims
to fill this gap by providing a customizable platform that can
be deployed across different indications whilst paying large
attention to privacy and security policies. JTrack aims to comply
with GDPR regulations as well as with the Google Play Store
policies. It only requires minimal access to the device information
and avoids collection of identifiable or sensitive data.
Developing an application for smartphones always requires
dealing with variation in devices (e.g., manufacture, screen
size, available sensors) as well as the variation of operation
systems (OS) versions. Different manufacturers may add further
OS optimizations such as limiting background processes.
This may cause inconsistencies in performance of monitoring
applications. We introduced several layers to detect, report and
prevent the side effects of these variations. JTrack is actively
maintained and covers up to 84.9% of Android smartphones
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[Minimum Software Development Kit (SDK) 23] dealing
currently with Android optimizations from eight main Android
smartphone manufactures. Although the JTrack platform is
now only available for the Android environment, which may
introduce selection bias and limit participants to having an
Android smartphone, an iOS version of JTrack is currently in
development, with similar capabilities and will be made publicly
available in the same GitHub repository and under the same
open-source license.

Potential applications for JTrack include but are not limited
to monitoring of motion information in diseases associated
with alterations of gait and other motor functions affecting
phone use. Similarly, the ability to track phone usage allows
for monitoring of different types of behaviour, i.e., phone-based
social interaction. As such, JTrack may be useful to track such
behaviours in healthy participants as well its alterations by
specific disorders.

Finally, to facilitate the reusability, JTrack is released
under open-source Apache 2.0 licenses. All modules
including online-management dashboard can be adopted
and extended. It has been designed with modular structure
to enable flexibility and customization to support new data
and sensors.

Variations in device model, Android version, network quality,
and other technical features may have negative effects on the
performance of JTrack. Despite the effort to minimize crashes
and data loss, there is no guarantee for such. During the
development process, we used different third-party services (e.g.,
Google Play Service), any change or deprecation in these services,
or Android policies may also affect the functionalities of JTrack
partly or as a whole. Lastly, JTrack was designed and tested
for smartphones. It may be used on other devices such as
wearables (i.e., smartwatches) or tablets but further tests should
be considered beforehand.

JTrack is an active and open-source project which is
continuously maintained. We consistently improve and add new
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Abstract: There are currently no standard methods for evaluating gait and balance performance
at home. Smartphones include acceleration sensors and may represent a promising and easily
accessible tool for this purpose. We performed an interventional feasibility study and compared
a smartphone-based approach with two standard gait analysis systems (force plate and motion
capturing systems). Healthy adults (1 = 25, 44.1 + 18.4 years) completed two laboratory evaluations
before and after a three-week gait and balance training at home. There was an excellent agreement
between all systems for stride time and cadence during normal, tandem and backward gait, whereas
correlations for gait velocity were lower. Balance variables of both standard systems were moderately
intercorrelated across all stance tasks, but only few correlated with the corresponding smartphone
measures. Significant differences over time were found for several force plate and mocap system-
obtained gait variables of normal, backward and tandem gait. Changes in balance variables over time
were more heterogeneous and not significant for any system. The smartphone seems to be a suitable
method to measure cadence and stride time of different gait, but not balance, tasks in healthy adults.
Additional optimizations in data evaluation and processing may further improve the agreement
between the analysis systems.

Keywords: gait; balance; training; biomarkers; motion capturing; smartphone; IMU; video-based;
home-based

1. Introduction

Gait and balance are impaired in aging, but also in various orthopedic and in particular
neurological disorders. This impairment is often associated with reduced walking speed,
increased gait variability or increased postural sway [1-3] and can lead to considerable
constraints in daily life (e.g., bradykinesia/akinesia and freezing of gait in Parkinson’s
disease [4], unstable and wide-based gait in ataxias [5,6]). Identifying and assessing these
constraints in daily life and providing suitable therapeutic (training) options such as
physiotherapy is highly important.
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There is an increasing demand to monitor physiological functions and disease-related
symptoms independent of the physical presence of the respective participants or patients
at the study site. Enabling study participation in a home-based setting, e.g., for human
physiological monitoring [7,8] or by using wearables as measurement devices for assessing
gait and balance [9,10], is an interesting and promising approach. Inertial measurement
units (IMUs) consisting of accelerometers, gyrometers and magnetometers are routinely
embedded in the hardware of smartphones. Due to their broad availability and the conve-
nient option to implement applications, they may provide an attractive hands-on tool for
measuring gait and balance in home-based settings. However, this set-up has been applied
only recently in the field of motion analyses [10,11] and is not yet part of the standard
clinical tools of measuring gait and balance.

Currently, the most commonly used instruments for gait and balance analysis are force
plates (pressure-sensitive walkways) and body-worn motion capturing (mocap) systems
based on IMU or optical data [12]. All these stationary systems allow the detection of
abnormal or altered gait patterns in various neurological disorders such as Parkinson’s
disease (PD, [13]), multiple sclerosis (MS) or ataxias [14]. Using force plates (GAITRite,
5.1 m), it was shown that PD patients have a longer stride duration, a shorter stride
length and greater variability in both, compared to healthy controls [13]. In addition,
stride length and velocity were reduced in ataxia patients (force plate and body-worn
sensors; [14]). These gait analysis systems were also able to detect performance changes
after interventions. For example, Conradsson et al. [15] found improved gait velocity
and stride length in normal gait after a ten-week balance training in PD patients. They
measured normal walking with a GAITRite 9 m electronic walkway with and without
a cognitive task and used the averaged result of six trials. Similarly, Giardini et al. [16]
used the averaged results of four trials of normal walking at usual speed on a GAITRite
4.5 m electronic walkway and showed that two forms of physical exercise training (balance
exercises and mobile platform training) improved gait speed in patients with PD, whereas
only the balance exercises led to improved cadence and stride length.

Although the completion time of the Timed-Up-and-Go (TUG) test is used as a stan-
dard for quantifying functional mobility in a clinical context [17], electronic assessment of
balance has increasingly been used in research [18]. The most commonly used instrument
is a force plate (similar to gait analysis), however, an increasing number of technologies,
whose reliability and validity was described in Baker et al. [19], are being used on a regular
basis (e.g., inertial sensors). For balance tasks, center of mass or center of pressure data
are commonly used to determine the area of postural sway, path length and mean veloc-
ity [20,21]. Morenilla et al. [22] described altered sway areas and velocities in PD patients
when examining normal stance on a tri-axis force plate (Kistler). They found significant
increases in total sway area and in mean anteroposterior and mediolateral displacement for
PD patients. Moreover, Sun et al. [23] reported that both a new inertial body-worn sensor
and a force plate were able to discriminate between subjects with severe MS and healthy
control. However, only the force plate was able to distinguish subjects with mild MS from
healthy control and patients with severe MS. Studies using force plates were also able to
detect changes in performance after training interventions [24,25], i.e., patients with chronic
stroke showed improved sway distance after participation in a virtual reality reflection
therapy [26], and children with cerebral palsy showed decreased sway area and sway path
after 12 weeks of training with a gaming balance board [27].

Thus, these stationary analysis systems of gait and balance are obviously able to detect
performance differences between different groups in addition to shifts in performance
over time or after intervention. They stand out in terms of their accuracy and ease of use.
However, whether this also holds true for smartphone-based evaluation of gait and balance
is still a topic of intensive research. In contrast to force plates and whole-body IMUs, the
smartphone relies on a single sensor estimating velocity from acceleration and, in addition,
gravitational influences and high-frequency noise must be filtered out. The advantage
of smartphones would lie in their high disposability and saving of resources. Here we
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compared smartphone-based assessment of gait and balance tasks before and after three
weeks of training to two commonly applied stationary gait analysis systems. We evaluated
the feasibility of this approach to draw conclusions about the agreement of the three gait
analysis systems and their ability to detect changes after a training intervention.

2. Materials and Methods

In this interventional feasibility study, smartphone-based evaluation of gait and bal-
ance was combined with two common stationary gait analysis systems requiring a labo-
ratory environment: a zebris force plate and a Xsens mocap system with inertial sensors.
Overall, 25 participants were recruited into the study. Two applications (apps, “JTrack EMA”
and “JTrack Social”) were installed on the smartphones of the participants (screenshots
are available in Far et al. [28]). Both apps were developed at the Forschungszentrum
Julich [28]. JTrack EMA was developed for collection of ecological momentary assessments,
so that common clinical questionnaires can be easily implemented into the app. JTrack
Social was developed for customizable gathering of sensor data, including accelerometer
information, using sensors embedded in any modern smartphone. Data were collected
during a three-week video-based training intervention, which was performed at home
and included twelve gait and balance training sessions, each lasting 20 min (see Figure 1).
Participants were asked to indicate how many of the training videos they performed in
total. Nevertheless, no verification of this information could take place. The present study
was a feasibility study of a combined assessment and training protocol for gait and balance
in healthy subjects. Written informed consent was obtained by all participants. The study
was approved by the ethics committee of the Psychology faculty of the Heinrich Heine
University Diisseldorf.

| Measurement 1 Laboratory Gait/balance tasks + questionnaires |

|Questi0nnaires ‘ ‘smartphone ‘ ]motion capturing system ‘ ‘force plate |

] Week 1 ] ‘ Training video 1-4 (each 20 min) ]

IWeek 2 l lTraining video 5-8 (each 20 min) ]

IWeek 3 l [Training video 9-12 (each 20 min) ]

' M t2 Lab y Gait/balance tasks + questionnaires |

lQuestionnaires ‘ [smartp}\one ‘ ]motion capturing system ‘ [force plate |

Figure 1. Overview of study design.

2.1. Participants

Twenty-five participants were recruited via notices at universities, supermarkets and
social media, and via newspaper. Participants had to be aged between 20 and 70 years,
needed to walk safely without a walking aid, and did not report joint problems (osteoarthri-
tis, endoprostheses) or other neurological, muscular or other medical problems affecting
gait (e.g., falls, deep brain stimulation).

2.2. Gait Analysis Systems

The following three gait analysis systems (see also Figure 2) were used for assessment
of gait and balance tasks in this study:

e The zebris FDM force plate (4.24 m, zebris Medical GmbH, Isny, Germany, https://ww
w.zebris.de/en/medical/stand-analysis-roll-analysis-and-gait-analysis-for-the-prac
tice, accessed on 30 June 2022) with the Noraxon® myoPressure software (Noraxon
U.S.A,, Inc., Scottsdale, AZ, USA, https:/ /www.noraxon.com/our-products/myopres
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sure/, accessed on 30 June 2022). This uses capacitive pressure sensors to capture the
pressure distribution in gait and balance.

e The Xsens mocap system consists of the MVN Awinda hardware and MVN Analyze
software (Xsens Technologies B.V., Enschede, The Netherlands, https://www.xsens.co
m/motion-capture, accessed on 30 June 2022). It consists of 17 IMUs attached to each
distinctive segment of the body fixed with body straps, which record angular velocity,
acceleration, atmospheric pressure and the Earth’s magnetic field with a frequency of
60 Hz.

e Individual Android-based smartphones of the participants on which the JTrack So-
cial app was installed [28]. During all measurements, the accelerometer data of the
smartphone were recorded using this app. The smartphone was placed in a waist bag.

Waist bag with
smartphone

17 Xsens
sensors

Zebris force
plate

Figure 2. Representation of the three gait analysis systems used in the study.

2.2.1. Force Plate Feature Extraction

The zebris FDM force plate uses capacitive pressure sensors to capture the pressure
distribution in gait and balance. No preprocessing was performed on the force and pressure
data, which were recorded with a frequency of 100 Hz. Gait or balance reports are created
automatically in the Noraxon myoPressure™ software, by selecting “Report” — “Bilateral
Gait Report” for gait tasks and “Report” — “Stance Report” for stance tasks. The software
uses the vertical ground reaction force to determine gait phases such as the heel strike or
toe off. Movements in the beginning and at the end of the tasks that were not part of the
task were unselected for all tasks. Apart from this, the entire distance walked on the force
plate was included in the analysis. Feet positions were checked manually for tandem gait,
since the software frequently was not able to distinguish the order of the left and right feet
in this task. If foot positions were wrong according to the synchronized video, they were
switched manually (left feet contacts were exchanged for right feet contacts).

In the report, stride time (s) describes the time between two heel contacts on the same
side of the body. Cadence is the number of steps performed per second. The average
velocity calculated for the force plate is the average stride length divided by the average
stride time. Step width (cm) is the lateral distance between the center of the left and
right heel.
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2.2.2. Mocap System Feature Extraction

The Xsens mocap system computes the full-body motion based on constraints from a
biomechanical model of the human skeleton with the help of sensor fusion algorithms. To
configure the biomechanical model, body dimensions such as foot length, hip height and
shoulder width of each participant were collated. The attached IMUs of the system are
self-contained and light weight, so that they do not restrict subjects in their freedom of
movement. After placing the system on a participant, a calibration process was performed
as described in the MVN User Manual [29], i.e., to calculate the orientations of the sensors
with respect to the corresponding segments. Quantities regarding the accuracy of the
tracker and the MVN fusion engine can be found in the MVN User Manual [29]. A detailed
description of the system is given in Schepers et al. [30].

The data were recorded with the Xsens MVN 2020.2 software and stored in the mvnx
format after reprocessing in HD. A Python script was used to extract the position of the
pelvis and both feet (foot segments located between the ankles within the Xsens model, see
section 23.6.10 in the MVN User Manual [29]). The pelvis data were used to approximate
the center of mass (COM, sensor position at the lower back on top of the sacrum). Data are
given in the x-direction (anterior-posterior), in the y-direction (medial-lateral) and in the
z-direction (vertical). The definition of axes also applies to the data of the left and right foot.
The following procedures were separately repeated for each participant and each task.

Data were visualized to check for plausibility and to avoid including errors. Since the
data contained turns at the end and at the beginning (most anterior and most posterior
points, x-axis) of each lane, the first and last meters in the x-direction were excluded from
the data. Data were then split into separate lanes (6 lanes for normal gait, 6 lanes for
backward gait, 4 lanes for tandem gait) that every participant walked. IMU sensors showed
a drift after a few lanes of walking, resulting in a mismatch between the correct direction of
travel and the sensor-based detected direction of the x-axis as the main walking direction.
This was corrected by rotating the data within the moving plane (x-y) to maximize the
conformance between the walking direction and the x-axis. To calculate the time between
two consecutive steps of the participant (step time), the vertical component of the COM
data was used. As the COM moved up and down in cyclic movements, its peaks were
used as markers for a step cycle. The height to find the peaks (scipy.signal, find_peaks) was
adapted for each participant by visually checking the output plots. To avoid technical errors
and enable single step detection during the tandem gait, an individual minimum distance
between two consecutive peaks was required. The time between two steps (inter-step time)
was calculated by subtracting the times of two neighboring peaks.

The step frequency (cadence), defined as the number of steps per second, is the inverse
of the inter-step time.

Velocity as distance per time was calculated separately for each lane using the differ-
ence between the first and the last data point for position and time.

To calculate the lateral distance between both feet during steps (step width), the
vertical z-axis and the y-axis (medial-lateral displacement) of the feet were considered. The
time frame with the lowest foot position of each foot (mid-stance phase) was marked by
searching for the minima in the z-direction (vertical axis). Its position in the y-direction
at the same time frame was used to determine the distance between the left and right
feet. Height and width in the find_peaks function were again adapted individually for
each participant.

For the balance tasks, data import and inspection were performed in a similar way as
described for the gait tasks. For each participant, the time span for analysis was selected
in a way such that movements in the beginning or at the end of the balance task were
excluded. Analysis was performed on the pelvis data (COM). The total path length that was
traveled by the COM of the participant was calculated by summing the distance between all
successive points in the path within the moving plane (x-y). The sway velocity described
the number of millimeters the COM of the participant moved per second.
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The area of an ellipse around the COM path was calculated by multiplying the antero-
posterior sway and the mediolateral sway with pi.

2.2.3. Smartphone Feature Extraction

The JTrack Social app was installed on the individual Android-based smartphones of
the participants and placed in a waist bag during the measurement (placed at the lower
belly to approximate the COM while also ensuring simple handling).

All analyses of the JTrack Social app data were performed in MATLAB. The ac-
celerometer data for each smartphone were recorded using the highest frequency pro-
vided for the respective smartphone (the recorded frequencies ranged between 100 and
252 Hz). All recorded gait and balance data were visually quality checked by removing
non-tasks and, where identifiable, turn periods from the recordings. For normal gait
data, manual step labeling was performed to obtain reference data for automated step
labeling using a dedicated open-source MATLAB toolbox implemented for that purpose
(https:/ /github.com/juryxy/step_detector, accessed on 30 June 2022).

All accelerometer data were band-pass filtered in the range of 0.8-20 Hz to remove the
gravitational component and the high frequency noise. Step detection for gait data was
performed using the findpeaks function on the Euclidean norm of the accelerometer data.
For this function, the following two parameters can be optimized for step detection—the
minimum peak height (further expressed as standard deviation (SD) relative to the mean
signal) and the minimum peak distance (in seconds). As the zebris FDM force plate was
able to directly capture steps using pressure sensors, it was considered as closest to the
ground truth together with the manually labeled data for normal gait. To identify optimum
parameter combinations for smartphone step detection, we performed a grid search for
the above parameters (peak height: 1.5 SD in steps of 0.1 to 3.0 SD; peak distance: 0.2 s in
steps of 0.02 to 0.44 s), testing for correlations between the mean stride intervals (MSIs)
obtained using these settings and MSIs derived using the ground truth provided by the
force plate and manual labeling (Figure A1, Appendix A). For normal and backward gait,
the optimum parameters providing the closest overall correlation to the ground truth were
a minimum peak height of 2.3 SD and minimum peak distance of 0.38 s. For tandem
gait, the optimum peak height was 2.7 SD and minimum peak distance was 0.42 s. Using
these optimum parameters for step detection, the following features were computed using
dedicated MATLAB scripts: stride time, cadence and velocity. To compute the mean
velocity, we performed a step-wise double integration of accelerometer data to velocity and
displacement using the first point as a reference. Thereby, the above band-pass filter was
re-applied at each step to ensure that the residual gravitational and potential reintroduced
high-frequency effects were removed from the data. Mean velocity (in m/s) was then
computed as distance covered during the gait tasks divided by time.

For stance tasks, accelerometer data were transformed into displacement. The gravita-
tional and high-frequency components were removed from acceleration and displacement
data using band-pass filtering as for the gait tasks. Mean velocity was computed as point-
by-point displacement divided by time. As the smartphone had no specific fixation of the
phone orientation (except for a waist bag), the orientation of sensors with respect to the x-
and y-plane differed across phones. To obtain an estimate of postural sway, we therefore
performed a principal component analysis to determine the main directions of the sway
in the three-dimensional space. The ellipsoid volume encompassing the 95% confidence
interval of all points across the three principal components was computed as an estimate of
postural sway around the COM (Figure A2, Appendix A).

An additional app, the JTrack EMA app (Biomarker Development, INM-7,
Forschungszentrum Jiilich), was used for the retrieval of questionnaires.
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2.3. Study Tasks
2.3.1. Gait and Balance Tasks

For all gait tasks, participants were asked to walk safely across the force plate, then
turn around behind the plate and walk back to the starting position. The walks were
repeated several times with the number of iterations varying between tasks (for details see
Table 1). For tandem gait, participants walked in a straight (imaginary) line by placing one
foot in front of the other, placing the heel of one foot about a hand’s width in front of the
toes of the previous foot to enable separate foot detection by the force plate software. In
the balance tasks, the participants were asked to keep their balance for as long as possible
without leaving their position or holding up (maximum of 30 s). Participants performed all
tasks without wearing shoes.

Table 1. Gait and balance tasks.

Task Content

Normal gait (NG) 10 m x 4.24 m normal (forward) gait
Backward gait (BG) 6 m x 4.24 m backward gait

Tndem i 1 g 28m e i e on el
Narrow stance (NS) Balancing in a narrow stance (feet close together)
Tandem stance (TS) Balancing in a tandem stance (feet in one line)

Narrow stance with eyes closed (NSEc) Balancing in a narrow stance with eyes closed

Single leg stance (SS) Balancing on one leg

2.3.2. Questionnaires

Age, gender, body height, body weight, profession and years of education were
retrieved in a demographic questionnaire during the first laboratory visit. To assess de-
pression and anxiety, the German versions of the depression module of the patient health
questionnaire (PHQ-9 [31], German version: [32]) and the hospital anxiety and depression
scale ([33], German version: HADS-D [34]) were used. Additionally, general habitual
well-being (FAHW [35]) and self-efficacy, optimism and pessimism (SWOP-K9 [36]) were
assessed. To assess self-efficacy in relation to falls, the (modified) German version of the
Activities-Specific Balance Confidence scale was used (ABC-D [37]).

The “PHQ_stress” and “PHQ_depression” subscores were selected from the PHQ-9
questionnaire. Although the depression and anxiety variables were used as exclusion
criteria, the stress variable ranged from 0 to 20 and served as a covariate to describe the
population. The anxiety subscore of the HADS-D had a cut-off value of >10 points and
a depression subscore of >8 points. In the FAHW score, a total score of 38 to 50 or 35 to
47 (men and women, respectively) was defined as “average” according to the authors of
the questionnaire. Additionally, the score contains a row of “smiley” icons, ranging from
a happy face to a sad face. This was included in the evaluation by assigning a 1 to the
happiest smiley and a 7 to the saddest smiley. The SWOP-K9 questionnaire contained
items on self-efficacy (SWOP-SE), optimism (SWOP-OP) and pessimism (SWOP-PS), with
scores ranging from 5 to 20, 2 to 8 and 2 to 8, respectively. For the ABC-D questionnaire,
the scale was adapted to a 4-point response scale (not confident at all, somewhat less
confident, somewhat confident, absolutely confident) so that a score between 16 (maximum
confidence) and 64 (minimum confidence) could be achieved.

2.3.3. Training at Home

Gait and balance training was performed four times per week for 20 min by in-
struction via provided videos. The videos were produced by a physical therapy practice
(PhysioStiitzpunkt, Koln, Germany) and uploaded to Vimeo (https://vimeo.com/, ac-
cessed on 30 June 2022). In each video, an experienced physiotherapist explained and
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demonstrated various tasks to improve gait and balance and instructed the participants to
follow along. This included strength training, coordination training, stability training and
mobility. The twelve videos progressed from simple to more demanding tasks and also
included suggestions to reduce or increase the level of difficulty. Videos could be paused
or repeated at any time, but participants were instructed to perform each training session
only once until their second study visit was completed.

2.4. Statistical Analyses

From the set of extractable variables of each gait analysis system and each gait task,
three variables were selected that were consistently available across all systems (see Table 2):
Gait velocity (average velocity across all straight distances covered in the task, measured in
meters per second), stride time (average duration of one stride defined as two consecutive
steps in seconds) and cadence (average number of steps that are performed within one
second). Additionally, step width was extracted from the force plate gait report and from
the mocap system data, as this is an important variable to detect abnormal gait patterns
(e.g., broadened base of support in cerebellar ataxias, see [3]). However, the step width
cannot be derived from the acceleration data of the smartphone and was therefore not
extracted from the smartphone data. For the balance tasks, the center of mass (COM) sway
area (area of an ellipse enclosing all data points in the x- and y-direction) and the welocity of
the COM (average distance in millimeters that the participant traveled per second) were
chosen. These two variables showed good reliability in previous studies (e.g., [38,39]) and
are commonly used for examining balance performance [20,21,40]. Both variables were
available for all three gait analysis systems.

Table 2. Overview of gait and balance variables of all gait analysis systems used for statistical
analysis.

Output Variable Description Unit
Stride time Time to complete one stride (two steps) s
Cadence Number of steps per second s1
Gait Velocity Speed of movement m/s
Step width * Lateral distance of left and right foot (center of heel) m
at one step
. L Ellipse, enclosing 95% of all data points (100% in the
COM elh};(s)i ::::r(telkl\lgrsl:)ld volume mocap system) during a stance task (mediolateral mm? (mm?)
Balance P and anteroposterior displacement)

Speed of movement during a stance task

COM velocity (mediolateral and anteroposterior displacement)

mm/s

* not obtained with the smartphone.

Correlations between the questionnaire scores, between the individual variables within
one gait analysis system, and between variables in all gait analysis systems, were calculated
with the Pearson correlation coefficient. In this context, a correlation between 0.10 and
0.39 was described as weak, 0.40 to 0.69 as moderate and 0.70 to 1.00 as strong [40].
To analyze changes over time between the questionnaire scores and gait and balance
variables at the first and second study visit (T1 and T2), either an ordinary paired-sample
t-test was performed if the data scores were normally distributed, or a Wilcoxon rank
test, if the data were not normally distributed. For all statistical analyses, a p-value of
<0.05 was considered significant. Since results were corrected for multiple comparisons
using a Bonferroni correction, the resulting p-values of <0.013 (force plate, mocap system)
and <0.017 (smartphone) were considered significant when reporting changes over time.
Boxplots of all gait and balance variables were checked and extreme outliers were excluded
(>3 * IQR above quartile 3).
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3. Results
3.1. Participants

A total of 25 participants (age 44.0 = 18.4 years) took part in the first study visit (T1,
52% female, 92% right-handed, see Table 3). One participant had missing data from the
mocap system due to technical problems.

Table 3. Demographic information of all participants (1 = 25). Education included school years plus
years up to the highest graduation achieved (e.g., German Abitur equals 12 years of education). The
HADS-D anxiety score had a cut-off value of >10 and the HADS-D depression score had a cut-off
value of >8. The PHQ stress score had a maximum of 20 points.

Mean + SD Range (Min.-Max.)
Age [years] 441+ 184 20-71
Body height [cm] 1723 £9.9 154-193

Body weight (n = 17) [kg] 67.6 +14.2 43-97

Education [years] 152 +3.2 10-25
HADS-D Anxiety [score] 33+28 0-9
HADS-D Depression [score] 26+26 0-10
PHQ Stress [score] 28+21 0-8

For the second study visit, four participants dropped out (injury independent of the
study (one), technical difficulties (one) and time constraints (two)). This led to a sample
of 21 participants at T2 with an average age of 44.7 & 19.4 years (57% female, 95% right-
handed). All subjects reported having performed each of the training videos (12/12).

All demographic variables and questionnaire scores except the ABC-D score were nor-
mally distributed. Because one participant showed a depressive mood (HADS-depression
score 10), all analyses were conducted with and without this subject. Since results did not
differ, data from this participant were not excluded from further analyses.

Of the gait and balance variables, 8 of 33 gait variables were not normally distributed
and 21 of 24 balance variables were not normally distributed. Accordingly, non-parametric
statistical tests were selected for these variables. For detailed specifications of the variables,
please see Table A2 (Appendix A).

3.2. Questionnaires

No differences between the questionnaires obtained at both study visits were found
between T1 and T2 (Table 4, p > 0.09).

Table 4. Descriptive statistics of the questionnaire scores at the first and second study visit (T1, n = 25,
and T2, n = 21). SE = self-efficacy (possible range: 5 to 20), OP = optimism (possible range: 2 to
8), PS = pessimism (possible range: 2 to 8). Activities-Specific Balance Confidence scale (ABC-D,
possible range: 16 to 64), general habitual well-being (FAHW, average reference values between
35 and 50, smiley score ranging from 1 to 7).

T1 T2
Questionnaire Range Range
[Score] Mean £ SD (Min.-Max.) Mean £ SD (Min.-Max.)

SWOP-SE 3.080 & 0.49 2.0-38 3.229 £ 0.4485 22-4.0
SWOP-OP 3.240 + 0.631 2.0-4.0 3.119 + 0.7891 1.5-4.0
SWOP-PS 1.740 £+ 0.614 1.0-3.0 1.667 + 0.7130 1.0-3.0
ABC-D* 17.96 £ 2.574 16-28 17.76 £2.343 16-24
FAHW 59.12 + 16.821 21-83 54.55 + 25.310 —5-86

FAHW Smiley 2.04 £0.611 1-3 2.25+0.786 14

* The ABC-D scores were not normally distributed. A Wilcoxon rank test was performed.
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3.3. Gait and Balance Performance
3.3.1. Conformity of the Systems

Significant correlations between corresponding gait variables (stride time, cadence,
velocity) across the three systems were present during all gait tasks. For the velocity
variable during the backward and tandem gait, the correlations involving the smartphone
were weak and did not all reach significance; correlations for the other two variables
were significant.

For normal gait (Table 5), strong correlations were found between the three corre-
sponding gait variables (stride time, cadence, velocity) of the force plate, mocap system
and smartphone, except for one moderate correlation of velocity between the mocap sys-
tem and smartphone. Step width was moderately correlated between the force plate and
mocap system.

Table 5. Between-system correlations for normal gait between the force plate, mocap system and
smartphone at T1 (first measurement time). Correlation after Pearson.

Nomaica Pl Moap S Foe e
) Stride time 0.977 ** 0.962 ** E Stride time ~ 0.981 **
2 Cadence 0.942 ** 0.934 ** E\ Cadence 0.992 **
% Velocity 0.705 ** 0.648 ** 5‘ Velocity 0.925 **
V‘E Step width Eo Step width 0.430 *

* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed).
n =number of participants included in the analysis.

For backward gait (Table 6), strong correlations were found between the stride time
variables of all systems and for cadence between the force plate and smartphone. The
remaining correlations regarding cadence and velocity were moderate or even showed no
correlation for velocity between the mocap system and smartphone.

Table 6. Between-system correlations for backward gait between the force plate, mocap system and
smartphone at T1 (first measurement time). Correlation after Pearson.

Backward Gait F(z:lci Iz’l;;te Moc(;p= SZ);s)tem F(:l;lci l;;te

o Stride time 0.936 ** 0.706 ** é Stride time ~ 0.731 **
% Cadence 0.919 ** 0.685 ** % Cadence 0.687 **
= Velocity 0.508 * —0.019 g‘ Velocity 0.453 *
C”E Step width EO Step width 0.361

* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed).
n = number of participants included in the analysis.

For tandem gait (Table 7), correlations were again strong between stride time and
cadence variables across all three systems. However, for velocity, only moderate correlation
was found between the force plate and the mocap system, but not between the smartphone
and the two standard systems.

For balance tasks, moderate to strong significant correlations were found between the
corresponding variables of the force plate and mocap system (see Table 8). For smartphone
data, only three variables reached statistical significance (moderate correlations between
the ellipse variables in tandem stance and the velocity variables in narrow stance with eyes
closed between the force plate and smartphone, and a moderate correlation between the
velocity variables in single leg stance between the mocap system and smartphone).
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Table 7. Between-system correlations for tandem gait between the force plate, mocap system and
smartphone at T1 (first measurement time). Correlation after Pearson.

Tandem Gait Forci Il’l7a:te (n Moc(a:lp_ Sl};s)tem Fc::lci E‘I;;te
) Stride time 0.875 ** 0.899 ** % Stride time ~ 0.901 **
% Cadence 0.794 ** 0.869 ** % Cadence 0.861 **
é Velocity 0.149 0.365 @‘ Velocity 0.618 **
& Step width S Step width ~ —0.150

** Correlation is significant at the 0.01 level (2-tailed). 7 = number of participants included in the analysis.

Table 8. Between-system correlations for the stance tasks at T1. Cor. = correlation after Pearson.
NS = narrow stance. TS = tandem stance. NSEc = narrow stance with eyes closed. SS = single leg
stance. The number of participants included in each analysis varied between 14 and 24.

Force Plate  Mocap System Force Plate
N Ellipse —0.072 0.093 N Ellipse 0.697 **
ArrowW stance el ocity 0.186 0.190 arrow stance e ocity 0.673 %
¢ Ellipse 0.550 * 0.315 GE, Ellipse 0.483 *
3 Tandem stance - k3 Tandem stance -
= Velocity 0.008 0.123 = Velocity 0.468 *
= Narrow stance Ellipse 0.120 —0.058 g Narrow stance Ellipse 0.782 **
& eyes closed Velocity 0.580 * 0.210 g eyes closed Velocity 0.752 **
Single leg Ellipse 0.453 0.479 Single leg Ellipse 0.672 **
stance Velocity 0.243 0.528 * stance Velocity 0.706 **
* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed).
3.3.2. Reference Values
To put the outcome values of the gait tasks in context, reference values from the
literature are given in Table 9.
Table 9. Overview of values of gait variables found in the literature versus results of this study. A
value description is given, unless values are mean + SD.
Literature Own Results
(Force Plate,
Values System Reference Mocap System,
Smartphone)
1.16 (0.92-1.41) (median . .
(5th-95¢h percentiles)) zebris force plate Pawik et al., 2021 [41]
stride time [s] K - ! 1.18,1.20 and 1.20
. asovic et al.,
1.09 + 0.08 zebris force plate 2020 [42]
. Kasovic et al.,
1.83 +0.17 zebris force plate
- cadence [steps/s] 2020 [42] 1.66,1.70 and 1.67
ED 1.72 £0.17 GAITRIite force plate Rao et al., 2011 [43]
< Ps
g . 125+ 0.14 zebris force plate Kasovi¢ ?t al,
2 velocity [m/s] 2020 [42] 098,097 and 1.18
0.94 £ 0.25 GAITRIite force plate Rao et al., 2011 [43]
. Kasovic¢ et al.,
11.65 £ 2.85 zebris force plate 2020 [42]
step width [em] 5-13 (usual walking base) Whittle, 2007 [44] 11.64 and 10.6

11+4 GAITRIite force plate Rao et al., 2011 [43]
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Table 9. Cont.

Literature Own Results
(Force Plate,
Values System Reference Mocap System,
Smartphone)
. . . Gimunova et al.,
stride time [s] 1.2+0.1 zebris force plate 2021 [45] 1.22,1.21 and 1.23
= . Gimunova et al.,
g cadence [steps/s] 1.68 +0.15 zebris force plate 2021 [45] 1.66,1.66 and 1.67
k]
=] - .
§ 0.87 £0.12 zebris force plate Glmzlgzl;)‘ﬁ;]t al,
¢ velocity [m/s] e - . 0.69, 0.66 and 0.55
m . wards et al.,
0.98 +0.23 GAITRIite force plate 2020 [46]
step width [cm] 16.8 + 4.87 zebris force plate Gimunov etal, 18.08 and 11.86
2021 [45]
0.8 4 0.05 (estimated zebris ultrasound Kronenbuerger et al.,
- mean + SD at
T system 2009 [47]
50 cadence [steps/s] 1 km/h speed) 1.23,1.19 and 1.23
g 0.87 +£0.29 GAITRIite force plate Rao et al., 2011 [43]
[Eﬁ velocity [m/s] 0.27 +£0.13 GAITRIite force plate Rao et al., 2011 [43] 0.45,0.4 and 0.20
step width [cm] 35426 GAITRIite force plate Rao et al., 2011 [43] 2.24 and 2.44

3.3.3. Differences over Time—Force Plate

Since not all variables were normally distributed, p-values either refer to f-tests (no
indication) or to Wilcoxon-rank tests (indicated by “(W)”).

For normal gait, a significant difference was found in all variables between T1 and
T2: stride time (p = 0.003, Figure 3A), cadence (p = 0.002, Figure 3B), velocity (p = 0.002,
Figure 4A) and step width (p(W) = 0.004, Figure 4B). For the backward gait, only the
velocity variable (p = 0.005, Figure 4A) remained significant after correcting for multiple
comparisons. For tandem gait, none of the variables remained significant after correcting
for multiple comparisons.

For the stance tasks, none of the variables remained significant after correcting for
multiple comparisons (Figures 5A and 4B).

The exact values for all tasks and gait analysis systems are reported in Table A1,
Appendix A.

3.3.4. Differences over Time—Mocap System

In contrast to the force plate, a significant difference in normal gait was found in only
two of four variables: stride time (p = 0.002, Figure 3C) and cadence (p = 0.001, Figure 3D).
For the backward gait, only the velocity variable (p = 0.007, Figure 4C) remained significant
after correcting for multiple comparisons—similar to the results of the force plate. For the
tandem gait, a significant difference was found for two of four variables: for the stride
time (p = 0.003, Figure 3C) and the cadence (p = 0.001, Figure 3D). No significant effect was
found for the step width (Figure 4D); however, this may be related to the initial calibration
procedure: the closer the participants’ feet were in the “neutral position”, the smaller the
absolute values of the step width were in the later analysis.

Similar to the force plate, the mocap system analysis did not reveal a significant
difference between T1 and T2 for any of the stance tasks.
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Figure 3. Graphical representation of the mean values of stride time and cadence for all three
gait analysis systems at T1 and T2 (before and after training). Significant differences over time
(after Bonferroni correction) are highlighted by an asterisk. BG = backward gait, NG = normal gait,
TG = tandem gait.
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Figure 4. Graphical representation of the mean values of velocity and step width for all three
gait analysis systems at T1 and T2 (before and after training). Significant differences over time
(after Bonferroni correction) are highlighted by an asterisk. BG = backward gait, NG = normal gait,
TG = tandem gait.
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Figure 5. Graphical overview over the balance variables (center of mass ellipse area and velocity) in all
three gait analysis systems at both measurement times (first measurement, T1, second measurement,
T2). COM = center of mass, NS = narrow stance, TS = tandem stance, NSEc = narrow stance with
eyes closed, SS = single leg stance.

3.3.5. Differences over Time—]JTrack Smartphone Platform

In contrast to both the force plate and mocap systems, none of the variables of nor-
mal gait, backward gait or tandem gait remained significant after correcting for multiple
comparisons (Figures 3E,F and 4E). Compared to the other gait analysis systems, the smart-
phone had a much higher variability of the velocity values, e.g., velocity values of the
backward gait at T1 were 0.69 & 0.09 m/s for the force plate and 0.55 £ 0.43 m/s for the
smartphone (see Table A1, Appendix A).
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Similar to both the force plate and mocap systems, the smartphone analysis showed
no significant differences between T1 and T2 for any of the stance tasks (Figure 5E,F).

4. Discussion

Here, we performed an interventional feasibility study and compared three systems for
the monitoring of home-based gait and balance training in healthy adults. In particular, we
assessed the applicability of smartphone-based data collection in comparison to standard
methods and the capability of the methods to detect performance changes after training.

4.1. Conformance of the Three Gait Analysis Systems

Gait variables obtained with both standard analysis systems (force plate and mocap)
showed moderate to strong intercorrelations, except for step width. However, the strength
varied depending on the performed gait task with excellent correlations for normal gait.
Step detection during backward or tandem gait was more challenging and error-prone
compared to normal gait, since feet were placed more cautiously and slowly, resulting in
lower force and acceleration values, in addition to atypical movement patterns. In line
with this, step width values correlated moderately between both systems for normal but
not for backward gait. For tandem gait, the correlation between the step width values of
both systems even revealed negative values, due to the calibration process of the mocap
system [29]: if participants placed their feet in a very narrow stance during the “neutral
position”, required for the calibration process, the absolute values of the step width were
much lower in the later analysis. This led to incorrect lateral positions of the feet and even
to negative step width values in the tandem gait. For future studies using mocap systems,
a standardized stance position of the participants is therefore highly recommended.

The JTrack based smartphone evaluation using accelerometer data showed strong
correlations for the stride time and cadence variables of all gait tasks with both standard
systems. Velocity, however, showed only moderate to strong correlations for normal and
backward gait, and weak correlations for tandem gait. Taken together, all three gait analysis
systems showed excellent agreement during normal gait, followed by the tandem gait task
and a substantially lower agreement for the backward gait task. The agreement was better
for the gait variables of stride time and cadence than for velocity. The less accurate velocity
estimation via smartphone relied on a single sensor estimating velocity from acceleration
using the first recorded value as a reference. As this first value was not calibrated in our
study (i.e., no fixed position was taken of the phone when recording started), this may
lead to biases in estimation of the initial velocity. It also explains the lack of correlation
with other systems for tandem gait, for which the velocity was substantially lower, thereby
increasing the impact of noise.

The strong correlations of smartphone-based gait variables with standard gait analysis
systems found in our study are in contrast to Steins et al. [48], who described only moderate
agreement between an iPod touch and an Xsens sensor when investigating the reliability
of inertial sensors of smart devices during normal gait in healthy adults. Nevertheless,
other studies suggested that smart devices are an acceptable method for assessing gait in
rheumatic patients [49] and have the potential for future use in the clinic [13].

The stance variables of ellipse area and velocity showed moderate to strong correla-
tions between the two standard force plate and mocap systems (see Section 3.3), in spite
of large differences in the absolute values obtained with these methods (see Table A2,
Appendix A). In contrast, only weak to moderate correlations were found between the
smartphone and both other systems. This might be due to specific aspects of data acqui-
sition and analysis. Force plates can directly register the foot print and determine the
respective variables from position data. In contrast, the smartphone uses accelerometer
information with respect to the first recorded value and thus only infers position data
through double integration. Thereby, gravitational influences and high-frequency noise
must be filtered out using band-pass filtering, which may lead to additional biases in
position estimation. The mocap system uses multiple sensors, e.g., directly on the feet,
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and, in addition to the accelerometer data, also considers angular velocity, atmospheric
pressure and magnetic field data, and a biomechanical model. This contrasts with the
smartphone analyses, which relied on a single sensor near the COM. This enables the
mocap system to determine the positions of the sensors relative to one another and to better
estimate the gravitational and the noise components. Since the position and orientation of
the smartphone were not fixed when recording started, the initial estimates may be biased,
affecting all derived measures. Moreover, as the three axes in space were not fixed, it is
difficult to determine an area in mm? in a standardized manner. Accordingly, the ellipse
volume was computed in mm?, introducing an additional source of variation.

Taken together, stride time and cadence seem to be variables that are robust to mea-
surement with a smartphone, whereas other gait and stance variables are subject to some
limitations.

4.2. Questionnaires

Since physical activity has a significant impact on mental well-being and vice versa,
the objective motor assessment in this study was accompanied by a set of questionnaires
addressing different aspects of subjective participant-reported outcome measures (e.g.,
depression- and anxiety-related symptoms, general well-being, stress, self-efficacy, opti-
mism, pessimism and balance confidence).

Contrary to our expectations, the questionnaire scores did not differ between the
pre- and post-training study visits. Physical therapy or exercises can reduce fatigue and
improve one’s emotional life [50] and mental health, in a manner that is even similar to
psychotherapy. By comparison, our participants already had above-average FAHW scores
at their first visit (reference values are given in [35]), indicating that the general well-being
was already at a high level before the training and hence left less room for improvement.

Due to several constraints (study duration, compliance), a three-week period was
chosen as the training interval in this study. Although Mikkelsen et al. [51] reported that
exercising for 15 min three times per week already reduced depressive symptoms, most
studies chose a longer time period for the training program or a longer duration for each
unit to maximize the effectiveness of balance training and to prevent falls [52,53]. In the
more specific context of home-based training, the highest effectiveness of video-based
rehabilitation programs was found after at least four weeks [54]. Nevertheless, although a
higher training volume or frequency can lead to better training results, it may also reduce
compliance, as the subjective cost may exceed the perceived benefit of the training. In
Haines et al. [55], a drop in compliance was found after three weeks. In our study, all
subjects reported having performed each of the training videos, but verification of this
information was not possible, impeding a valid statement regarding compliance.

4.3. Gait Performance

Mean values of stride time, cadence, velocity and step width obtained in our study
were comparable to those found in the literature for normal gait in healthy adults (see
Table 9). Similarly, stride time and cadence values during backward gait were comparable
between the literature [45] and between all three gait analysis systems. However, in
our study, velocity values were 20-60% lower during backward gait compared to the
literature ([45,46] measured on force plates). For step width, force plate values during
backward gait were in line with the literature [45], whereas the mocap system values
were lower (~29%), which is likely related to the calibration, as mentioned in Section 4.1.
For tandem gait, Kronenbuerger et al. [47] reported lower cadence values in tandem gait
compared to our study (~34%, see Table 9), but they used a different study setting with
predetermined gait speed. Rao et al. [43] used a force plate in healthy older adults (mean
age 84 years) and also found slightly lower values for cadence, velocity and step width
in the tandem gait compared to our values, likely related to the age difference between
both cohorts. Importantly, in a tandem gait, the heel of one foot is normally placed directly
in front of the toes of the other foot. In our study, a hand’s width of space had to be left
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between the feet to allow the force plate to distinguish between both feet. This difference
may explain the higher cadence and velocity values found in our study.

There were significant improvements for some of the variables between the pre- and
post-training study visits. For normal gait, the force plate analysis revealed improvement
in all gait variables after training, whereas the mocap system only revealed an improve-
ment in two variables after training (stride time, cadence) and the smartphone did not
show a significant improvement. For backward gait, an improvement was shown for the
velocity variable of both force plate and mocap systems. For tandem gait, an improvement
after training was found for the two variables of stride time and cadence in the mocap
system only.

In the best case, all systems would have shown significant changes over time in
the same variables. However, the differences between the systems may result from (a)
reduced statistical power due to a lower number of valid values included in the statistical
analysis (as for the smartphone data), and (b) higher variability observed for smartphone
data; both of which affect the outcome of the statistical tests. Regarding the two standard
systems, the force plate detected more changes in normal gait over time in healthy adult
subjects undergoing a training period of three weeks. By comparison, only the mocap
system detected changes in tandem gait. One reason for these differences could be that
the hardware and software used for the force plate are more accurate for normal walking
(because it uses position data, see Section 4.1), but had difficulties distinguishing right and
left feet in the tandem gait, whereas the manual detection of steps in the tandem gait was
more controllable in the mocap system analysis. Nevertheless, a general improvement in
gait variables was observed across all gait analysis systems.

The observed improvements were expected and desirable changes in terms of im-
proved gait performance after a training intervention, and have also been described in
several patient studies with various disorders such as PD [15,56] and stroke [57], or for
healthy (mostly older) adults after different kinds of training [58-62].

Of note, the observed improvement between pre- and post-training visits is most
probably caused by the training performed between these visits. However, a control group
undergoing the measurements at T1 and T2 without any training in the interim was missing
and, therefore, a learning effect cannot be entirely excluded. To confirm and substantiate
the positive effects of this study, further investigation, including a control group, would be
reasonable in future.

4.4. Balance Performance

For normal stance, mean values of balance performance (ellipse area) measured with
a force plate were comparable with corresponding values of healthy adults in the liter-
ature [20,63]. Although, for narrow stance, the velocity values of our study were also
comparable or slightly higher than the values of the studies cited above, the values for
the ellipse area differed. This is most likely due to methodological differences regarding
the calculation of this variable, which is not specified in the studies mentioned above. Po-
marino et al. [63] mentioned, however, that their balance measures were averaged over the
recording time. In our study, averaged ellipse area values for normal stance were 24 mm?,
50.7 mm? and 3.3 mm? (force plate, mocap system and smartphone, respectively), which
again is comparable to or slightly lower than in the studies by Nusseck and Spahn [20] and
Pomarino et al. [63], who measured with force plates.

For the other stance tasks, reference values for healthy adults in the literature are
scarce. One study reported an ellipse area of 138 mm? for the single leg stance in a control
group of older adults [64], whereas we found values of 878 mm?, 3860 mm? and 384 mm?>
in our study (averaged values per second: 29 mm?, 129 mm? and 13 mm?). However, it
is unclear if the values were indeed averaged in the cited study. If so, the values in our
study were lower compared to those in the literature, possibly due to a lower mean age
of the participants. Values for the velocity balance variable were only reported separately
for mediolateral and anteroposterior directions [64] and are thus not comparable to our
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values. Terra et al. [38] examined the same stance tasks we used in PD patients, using a
force plate, and described an increase in the values for the COM ellipse area and velocity
with the level of difficulty of the respective stance tasks, ranging from narrow stance to
narrow stance with eyes closed, followed by tandem stance and, finally, single leg stance.
This is consistent with our results regarding the velocity variable obtained with the force
plate, whereas, for the other systems, the order of the stance tasks varied (see Figure 5).

Regarding the training effects, the statistical analysis did not show a significant im-
provement in balance performance between pre- and post-training measurements from T1
to T2 (see Figure 5). In contrast to the gait tasks, where small improvements in performance
were observed for all variables (even though not always reaching statistical significance),
the pattern of observed changes in stance tasks was more heterogeneous (see Table A1,
Appendix A). In contrast, an improvement was reported in the literature for different
patient groups, e.g., for PD patients [65] or for children with cerebral palsy [21,27] and
healthy older adults [66], and for younger adults [67] after a training intervention. Cadore
et al. [68] also summarized in their review that most balance trainings in older adults with
physical frailty led to enhancements in balance. However, methods, outcome measures
and training interventions were highly heterogeneous among the cited studies, impeding
their comparability.

4.5. Summary

Agreement between the three gait analysis systems was higher for gait variables than
for balance variables. With the exception of the step width variable, both standard methods
showed an excellent agreement between the values of the analyzed gait variables, especially
for the normal gait task, followed by tandem and backward gait tasks. In particular, for the
stride time and cadence variables, values obtained with the smartphone showed a strong
correlation with values obtained with both standard systems, whereas correlations for the
gait velocity variable were considerably weaker, especially for tandem and backward gait.
Improvements (by percentage change) were consistently visible across all gait tasks and
all three applied gait analysis systems. However, significant changes over time were only
found for gait variables obtained from the force plate and mocap systems. In contrast,
changes in balance variables over time yielded a highly heterogeneous pattern without clear
improvement across stance tasks and applied systems. Furthermore, participant-reported
outcome measures did not reveal any changes over time, which may be due to the already
high level of “general well-being” at the study onset.

According to the results of our research, there is a high level of agreement between
the devices used in the laboratory and smartphones. This finding is consistent with the
findings of earlier studies [69,70]. The fact that smartphones and smartwatches can be put
to use in everyday settings is the primary advantage of using such devices. Because of this
capability, patients can be monitored in (near) real time and over extended time periods
such as months and years. In addition, the vast number of people who own smartphones
makes it possible to use these devices as an excellent source for crowdsourcing, regardless
of the physical location of the users. However, there are additional considerations such as
misunderstanding and following of instructions, effect of motivation, learning effects and
misplacement or orientation of devices for at-home usage settings and self-administered
protocols, both of which have the potential to affect the validity and reliability of the data
collected [71].

Since improvements were found only for gait performance, the applicability of smart-
phones as a measurement system seems to be particularly useful in disorders in which
the gait is impaired, such as PD and ataxia [13,14]. Stride time and cadence measured
with the smartphone were found to have a high agreement with the measurements of
the standard analysis systems and are variables that differentiate patients from healthy
controls [13] or that might improve after an intervention [15]. For this reason, they seem to
be eligible variables for future smartphone studies in home-based environments. Future
studies should investigate the most effective intervention program and should combine a
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longer time frame for exercise interventions with major efforts to maintain or even improve
study compliance.

5. Conclusions

Our analysis showed that measuring gait and balance performance in healthy adults
with wearable devices, such as smartphones, produced comparable results for the stride
time and cadence variables compared to measurements with standard gait analysis systems
such as the force plate or mocap systems, whereas results for gait velocity were less
convincing. Potentially, adjustments may have to be made in the data evaluation for the
calculation of velocity to achieve better agreement.

Although the positive influence of three weeks of gait and balance training on gait
performance in healthy adults was noteworthy, comparable improvements were found for
all three gait analysis systems in gait parameters. However, only the force plate and the
mocap systems were able to detect significant changes over time during the gait tasks. In
contrast to the motor performance, no improvement was found for the questionnaire scores.
To ensure that the improvement is indeed the effect of the training and not a test-retest
effect, a further study including a control group which does not take part in a training
intervention is required.

Reference values for gait and balance variables in healthy adults are currently scarce
in the literature. For future analyses, the number of comparable gait and balance variables
can be increased to obtain a more detailed overview of reference values of healthy adults
and to compare these values with patient data (e.g., patients with movement disorders).
Ellis et al. [13] also suggested that many more consecutive steps (e.g., more than 100 steps)
are required to reliably detect differences in gait performance. This is not possible when
using force plates with a limited length, but seems to be an interesting set-up for further
smartphone-based analyses.
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Appendix A
Appendix A.1. Gait Performance

In Table A1, values of all gait variables are displayed before training (T1) and after
training (T2) for all three systems. Significant differences in time were found for normal
gait (force plate). In detail, significant differences within the post-hoc test were found for all
variables within normal gait and two variables within backward gait (force plate); two vari-
ables within normal gait, one within backward gait and three within tandem gait (mocap
system); and two variables within normal gait and one within tandem gait (smartphone).

Table A1. Differences in mean between the first (T1) and second study visit (T2) for the gait variables
of all three gait analysis systems. The percentage change is indicated in “A %”. Bold font indicates
a significant difference in time (T1-T2, p < 0.013 for the force plate and mocap systems, p < 0.017
for smartphone) and bold plus italic font indicates a difference in time in the Wilcoxon rank test
(p <0.013/p < 0.017). Italic font indicates the implementation of a Wilcoxon rank test. An asterisk
marks all significant values in general. Min. = minimum, max. = maximum, SD = standard deviation.

[cm]

T1 T2 p A%
n Mean+ SD Range n Mean + SD Range
Stridles]ﬁme 25 1204013 097155 20 1134010  091-129  0.003*  —6.15
[Csi’:‘]fs“/cs"] 25 1704017 130208 20 1804018 155220  0.002* 5.89
NG -
V[erlf’/cgy 25 0.98 +0.14 0.64-1.28 20 1.09 4+ 0.12 0.92-1.42 0.002 * 11.01
Stelfcxl]dth 25 11.64 % 2.60 7-16 20 10.65 + 2.50 7-15 0.004 * —8.51
Strid[i]ﬁme 25 1.22 +0.13 1.04-1.56 20 1.17 +0.12 0.94-1.37 0.027 —4.01
[
= Cadence 25 1.66+0.16 1.32-1.92 20 173+0.18 1.47-2.12 0.028 424
a. [steps/s]
g B¢ Neloar
5 © oaty 25 0694009  0.53-0.86 20 0764009  0.61-0.92 0.005 * 9.43
= [m/s]
Stelfcmi]d“‘ 25  18.08 +3.19 10-24 20 17454320 12-24 0.203 —348
Smd[es]ﬁme 20  1.66+0.31 1.19-2.44 19 1614035 1.00-2.44 0.031 —2.93
[(;taedpes“fse] 21 123+024 068168 19 133026  0.85-2.02 0.019 8.59
TG -
V[eéf’/c;'iy 21 0454012 0.22-0.72 18 0.49+0.13 0.25-0.83 0.027 7.81
SteF[’Cxi]dth 21 224+1.04 1-5 19 2.00+0.94 1-4 0.624 —~10.71
S“id[es]ﬁme 24 1184013 094151 21 1114010 093128  0.002*  —636
g NG Cadence
< 24 1714018 1.32-2.13 21 1824017 1.56-2.14 0.001 * 6.42
ES [steps/s]
& V[erilo/cgy 24 0974015 0.59-1.27 21 1.03+0.17 0.65-1.39 0.071 6.48
=]
= stepwidth o) 45604340 530-1599 21 9274348  188-1683 0.266 125
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Table A1. Cont.

T1 T2 p A%
n Mean+ SD Range n Mean + SD Range
Strid[eslﬁme 24 1214011 1.03-1.46 21 116+0.11 0.94-1.35 0.073 —4.45
[(;fgfsf‘/csﬁ 24 1664015 1.37-1.95 21 1744018 1.48-2.14 0.074 4.79
BG -
V[enlq";gy 24 0664012  0.31-0.84 21 0754010  0.58-0.89 0.007 * 13.91
Ste}[’cgi]dth 24 11864340 6241967 21  1153+370  245-17.88 0.676 -2.79
Strid[es]ﬁme 24 176 + 042 1.17-3.11 21 1494023 1.00-1.96 0.003*  —15.33
[Sfed;s“/“se] 24 1194025  0.64-1.70 20 1354018  1.02-1.69 0.001 * 12.72
TG .
V[i?/cs‘iy 24 0404017  0.15-0.98 20 0444013 0.19-0.80 0.024 10.28
Stelfcxi]d‘h 22 2444106  0.72-5.67 21 284+173  0.81-748 0.601 16.1
Stridles]ﬁme 23 1204012 100-146 16 1144010  094-131 0.019 ~526
NG [(;fed]jsn/csﬁ 23 1.67 £0.18 1.32-2.09 16 1.76 £ 0.16 1.52-2.08 0.019 5.39
V[eéf’/cgy 23 1184051  0.03-211 16 1.33+£039  073-211 0.639 12.71
© Stridles]ﬁme 23 1234009  1.08-142 15 123+£013  1.05-143 0.93 0
: Cad
aaence
% BG [steps/s] 23 1624011 1.40-1.84 15 1.62+£017  1.33-1.89 0.884 0
& \Eerg)/cgy 23 0554043  007-126 15 0.62+£044  0.07-140 0.084 12.73
Stridleslﬁme 19 1674027 1.40-2.47 15 1514020 1.21-1.99 0.065 —-10.6
G [Csfedrfsn/“sj 19 1.23 £0.17 0.82-1.43 15 1.35+0.18 1.00-1.65 0.048 9.76
V[erg’/“g}’ 19 020022  001-066 15 0314025  006-082 0333 55

* Correlation is significant, p-levels vary.

Appendix A.2. Balance Performance

Significant differences between balance variables measured at the first and second
study visit were less frequent than those between gait variables. Significant differences in
time were found only for tandem stance (force plate). Significant differences in the post-hoc
test were present for the COM velocity in the tandem stance (force plate).
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Table A2. Differences in mean between the first (T1) and second study visit (T2) for the balance
variables of all three gait analysis systems. Bold font indicates a significant difference in time (T1-T2,
p < 0.05) and italic font indicates a difference in time in the post-hoc test only (p < 0.05). An asterisk
marks all significant values in general. COM = center of mass, min. = minimum, max. = maximum,
NS = narrow stance, NSEc = narrow stance with eyes closed, SD = standard deviation, SS = single leg
stance, TS = tandem stance.

T1 T2 » A%
n Mean + SD Range n Mean + SD Range
CO[I:Anﬂi‘]pse 25 719.92 430754  2060-1439.0 20 68830+ 35260  256.0-18260  0.121 —4.39
NS :
COM velocity g 15.60 + 4.02 9.0-23.0 20 16.30 + 5.30 8.0-31.0 0.744 4.49
[mm/s]
CO[]:’IH ;1;']"59 25 143044 + 853.08  336.0-3348.0 19 107521 +59477  227.0-23140 0277  —24.83
TS~ COMuvelod
& [mr‘t’f/‘s’]“ty 24 52.33 4 17.93 28.0-107.0 20 50.15 + 29.78 22.0-135.0 0.025 417
a
o -
£ CO[IIAnsi‘]PSC 24 98133436676  296.0-16220 20  960.10 40045  345.0-1730.0  0.526 —2.16
=9
NSEc -
COM velocity 5 27.64 +7.48 11.0420 20 25.60 + 8.52 120480 0094  -7.38
[mm/s]
Cohl\flii‘]f’se 20 87805422137 439.0-12550 20  977.80+447.48  394.0-23450  0.601 11.36
55 TCOMvelod
[mr‘r'f/‘s)]c“y 24 53.63 + 26.48 240-1110 20 47.85 + 21.84 220-1090 0082  —1078
Coa/lnii‘]lose 24 152186477273  312.2-36289 21 135879472722 522435275 0145  —10.72
g NS -
£ COM velocity 6.58 + 1.53 4.76-10.48 20 6.44 + 1.48 3.7-10.1 0.232 213
3 [mm /5]
2 -
g Cog\rflii‘]r’se 23 15153594828  263.6-40951 20 139748 £ 68117  3762-2609.4 0575 —7.78
= TS COMuvelod
velocity o, 8.55 +1.81 5.1-11.6 21 9.32+3.77 44193 0.881 9.01
[mm/s]
Coh“ilenli‘]lf’se 23 173055 £ 65597  7543-3138.0 21  1542.95+829.00  528.7-34672  0.167  —10.84
e NSEc COM velodi
= velocity 5y 872 + 241 547-1637 21 7.76 +2.03 3.9-11.4 0075  —11.01
2 [mm/s]
2 -
g CO[I:Anii‘]pse 20 3859.69 £ 386279  466.0-158350 18 271043 £2320.89 4348-100744 1 —2978
= 5 TCoMvelod
velocity 5 13.07 + 6.45 6.6-28.9 20 11.85 + 4.17 6.4-21.9 0.557 -9.33
[mm/s]
CO[]:’IH ;1;']?’59 16 97.74 +119.94 0.2-4159 11 785.18 4 1224.51 00-35104 0753 70334
NS oM veloci
[mr‘t’f/‘s’]“ty 21 4820 + 27.31 12.5-1125 12 62.96 + 27.88 34.1-114.8 0.333 30.62
CO[IIAnsi‘]PSC 18 967.22 134526 1.0-4402.8 7 16523 +147.48 159-3932  0.043  —48538
TS
° -
£ COMvelocity 5, 59.57 + 37.42 18.8-168.8 10 72.73 + 46.74 15.6-178.2 0.953 22.09
£ [mm/s]
§ Cohl\ii;‘]f’se 16 49.05 + 42.87 03-156.0 9 50058 4 715.16 243-1989.0 0173 92055
® NSE G velon
velocity o, 54.67 + 35.23 12.1-139.8 9 49.46 + 34.13 22.9-1285 0.26 —10.53
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Coa/lnii‘]lf’se 16 383.69+49516  159-18186 9 5918372482  109-17432  0.31 54.25
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Appendix A.3. Parameter Optimization
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Figure A1l. Results of MSI correlation analyses for smartphone step detection parameter optimization.
(A) Correlation matrix between MSI for backward gait derived from force plate and smartphone
data. (B) Correlation matrix between MSI for tandem gait derived from force plate and smartphone
data. (C) Correlation matrix between MSI for normal gait derived using force plate and smartphone
data. (D) Correlation matrix between MSI for normal gait derived from manual labeling and the
automated step detection using smartphone data. Yellow box highlights the final parameters used
for subsequent cross-platform comparisons.
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Appendix A.4. Ellipsoid Calculation

%107
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Figure A2. Exemplary visualization of the principal component-based ellipsoid calculation for
balance data collected using the JTrack smartphone platform.
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Abstract

Background: Digital biomarkers (DB), as captured using sensors embedded in modern smart devices, are a promising technology
for home-based sign and symptom monitoring in Parkinson disease (PD).

Objective: Despite extensive application in recent studies, test-retest reliability and longitudinal stability of DB have not been
well addressed in this context. We utilized the large-scale m-Power data set to establish the test-retest reliability and longitudinal
stability of gait, balance, voice, and tapping tasks in an unsupervised and self-administered daily life setting in patients with PD
and healthy controls (HC).

Methods: Intraclass correlation coefficients were computed to estimate the test-retest reliability of features that also differentiate
between patients with PD and healthy volunteers. In addition, we tested for longitudinal stability of DB measures in PD and HC,
as well as for their sensitivity to PD medication effects.

Results: Among the features differing between PD and HC, only a few tapping and voice features had good to excellent test-retest
reliabilities and medium to large effect sizes. All other features performed poorly in this respect. Only a few features were sensitive
to medication effects. The longitudinal analyses revealed significant alterations over time across a variety of features and in
particular for the tapping task.

Conclusions: These results indicate the need for further development of more standardized, sensitive, and reliable DB for
application in self-administered remote studies in patients with PD. Motivational, learning, and other confounders may cause
variations in performance that need to be considered in DB longitudinal applications.

(J Med Internet Res 2021;23(9):¢26608) doi: 10.2196/26608
KEYWORDS

health sciences; medical research; biomarkers; diagnostic markers; neurological disorders; Parkinson disease; mobile phone

Scale (UPDRS) are popular, they are influenced by interrater
variability by relying on self-reporting by patients and caregivers
or clinicians’ judgement [2]. In addition, they are costly and
limited with respect to observation frequency.

Introduction

Parkinson disease (PD) is primarily characterized by motor
signs and symptoms, including tremor at rest, rigidity, akinesia,

and postural instability [IA]-A Although Standf“d in»clipic The emergence of new technologies has led to a variety of
assessments such as the Unified Parkinson's Disease Rating  sensors (ie, acceleration, gyroscope, GPS, etc) embedded in
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smart devices for daily use (ie, smartphone, smartwatch). Such
sensor data, alongside other digital information recorded
passively or when executing prespecified tasks, may provide
valuable insight into health-related information. Such
applications are now commonly referred to as digital biomarkers
(DB) [3-5]. DB being collected frequently over a long period
of time can provide an objective, ecologically valid, and more
detailed understanding of the inter- and intra-individual
variability in disease manifestation in daily life.

Numerous DB have been proposed for PD diagnosis as well as
for assessing agreement between clinical rating scales such as
UPDRS and sensor-driven data to quantify disease severity or
intervention effects [4,6-9]. Despite these various proof of
concept studies, many technical challenges with respect to DB
deployment remain unaddressed. DB measures are prone to
large variation caused by technical and procedural differences,
including but not limited to placement/orientation, recording
frequency of the devices, and environmental and individual
variation (ie, due to motivation, medication, or other aspects)
[10-12]. Other factors such as the effect of users' familiarity
with technology and the impact of learning on the performance
of measured DB in remote and self-administered PD assessment
are other important sources of variation that have not been
addressed so far. All of these factors may limit the sensitivity
and reliability of DB measurements for any of the above PD
clinical applications. DB longitudinal variation is therefore an
important attribute that should be quantified and addressed. The
reliability of DB assessment has been broadly studied for gait,
balance, voice, and tapping data [13-18]. However, the existing
studies typically focused on a single or a few aspects of PD,
and most of them established the test-retest reliability in a
standardized clinical setting, limiting the translatability of their
findings to at-home applications. Among the studies that
evaluated DB assessments for remote monitoring of PD, only
one reported the test-retest reliability [4]. No PD studies
systematically evaluated the test-retest reliability and
longitudinal sensitivity of DB in a fully unsupervised and
self-administered PD longitudinal setting.

Although various factors such as medication, disease severity,
learning effects, bias from self-reporting, inconsistent disease
severity, motivational impacts, and design protocols in
self-administered studies can affect the long-term stability of
DB, little attention has been paid to evaluating the reliability
and longitudinal stability of DB in loosely controlled
self-administered settings in daily life. Here, we aimed to
address these open questions by assessing the test-retest
reliability and longitudinal stability of gait, balance, speech,
and tapping tasks in patients with PD and a control cohort
consisting of healthy volunteers (HC) in an unsupervised and
self-administered daily life setting using the large-scale m-Power
data set [19].

Methods
Study Cohort

To address the open questions on the performance of DB
measures in PD when collected in a self-administered setting
in daily life, we first performed a comprehensive literature
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search identifying 773 DB features reported in previous studies
to cover PD-related alterations in gait characteristics, tremor,
postural instability, voice, and finger dexterity. We evaluated
the longitudinal stability and test-retest reliability of these
features as collected using 4 commonly applied PD tasks (gait,
balance, voice, and tapping) in daily life using smartphone in
a large cohort of self-reported patients with PD and healthy
controls, the m-Power study [19-22]. In addition, we evaluated
their sensitivity to learning and medication effects.

Enrolment in the m-Power study was open to adult participants
who own an iPhone, are living in the United States, and are
comfortable enough with English to read the instructions in the
app. Participants were asked to download the app and complete
a one-time demographic survey during registration.
Demographic data include but are not limited to age, sex, health
history, and previous PD clinical diagnosis. They also were
asked to fill out a survey with selected questions from the
UPDRS Section I (nonmotor experience) and Section I (motor
experience), as well as the Parkinson’s Disease Questionnaire
(PDQ-8). All the participants were suggested to complete each
task (walking, tapping, voice, and memory) up to 3 times a day
for up to 6 months. In addition, self-reported patients with PD
were asked to complete the task before medication, after
medication, and at another time when they were feeling at their
best.

Ethical oversight of the m-Power study was obtained from the
Western Institutional Review Board. Prior to signing an
electronically rendered traditional informed consent form,
prospective participants had to pass a 5-question quiz evaluating
their understanding of the study aims, participant rights, and
data sharing options. After completing the e-consent process
and electronically signing the informed consent form,
participants were asked for an email address to which their
signed consent form was sent and allowing for verification of
their enrolment in the study. Participants were given the option
to share their data only with the m-Power study team and
partners (“share narrowly”) or to share their data more broadly
with qualified researchers worldwide, and they had to make an
active choice to complete the consent process (no default choice
was presented). The data used in our study consist of all
individuals who chose to have their data shared broadly.

Data Preprocessing

The m-Power data set is assessed outside of a clinical
environment with limited quality control and supervision. All
information, including the health history, disease diagnosis,
duration, treatment, and survey outcomes, are self-reported. To
address these, we excluded participants who did not specify
their age, sex, and information on professional diagnosis (if
they belong to the PD or HC group) and those with empty, null,
or corrupted files. The participants are assigned to the PD or
HC group according to their response to the question “Have
you been diagnosed by a medical professional with Parkinson
disease?” There was a significant difference in the age and sex
distribution between HC and PD groups. Particularly, age
slanted toward younger and male individuals in HC. To reduce
the impact of age, we restricted the age range for our analysis
to between 35 and 75 years. The demographic details are
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provided in Table 1, and the overall overview of preprocessing

Sahandi Far et al

steps is displayed in Figure 1A.

Figure 1. Overview of statistical analyses and the preprocessing scheme. (A) Flowchart of preprocessing steps. (B) Flowchart of statistical analyses.
(C) Flowchart of number of features at each selection step. HC: healthy controls; ICC: intraclass correlation coefficients; PD: Parkinson disease;

rm-ANOVA: repeated-measures analysis of variance.
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Table 1. Characteristics of study cohorts after data cleaning.

Sahandi Far et al

Characteristic Gait Balance Voice Tapping
HC? pDP HC PD HC PD HC PD

Sex,"n

Male 655 399 668 401 1042 571 1370 630

Female 152 211 155 211 249 322 304 340
Age (years) S mean (SD) 49 (10.60)  60.3(8.90) 489 (10.70) 60.3(8.90) 47.7(10.40) 60.1(9) 46.9 (10.1) 599 (9)
UPDRS ¢ mean (SD) N/AC 12,60 (7.11)  N/A 12,53 (707) N/A 12.58 (7.70) N/A 12.54 (7.73)
UPDRS I, mean (SD) N/A 490 (3.12) N/A 493.11)  N/A 493(325) N/A 495 (3.27)
UPDRS II, mean (SD) N/A 776 (541) N/A 77(540)  N/A 761(570) N/A 7.56 (5.70)
PDQ-8." mean (SD) N/A 5.13(472) N/A 707 (470)  N/A 528(501) N/A 5.3 (4.96)

2HC: healthy controls.
PD: Parkinson disease.

€P<.001 (two-sample, two-tailed # test for age and chi-square test for sex with 95% confidence) for all tasks.

4UPDRS: Unified Parkinson's Disease Rating Scale.
N/A: not applicable.

fPDQ: Parkinson’s Disease Questionnaire.

Feature Extraction

To identify features that are commonly used for the walking,
voice, and tapping tasks for PD applications, we performed a
comprehensive literature search in PubMed with the following
terms: ((Parkinson's disease) AND (walking OR gait OR balance
OR voice OR tapping) AND (wearables OR smartphones)).
Based on this search, we identified a total of 773 features related
to gait (N=423), balance (N=183), finger dexterity (N=43), and
speech impairment (N=124). All of these features were
computed for the m-Power study [23]. A detailed explanation
of the extracted features, including the respective references, is
provided in Tables S1-S4 in Multimedia Appendix 1. For
features sharing the same variance (high pairwise correlation:
Spearman p>0.95), only one of the features was selected
randomly for further analyses to reduce the amount of redundant
information for each task. Figure 1C summarizes the feature
extraction process and the number of features at each selection
step.

Gait and Balance

Impairments in gait speed, stride length, and stride time
variability are common changes that are linked to PD [24-27].
Instability in postural balance is also considered to be one of
the well-reported characteristics associated with PD [15,28-30].
Both were assessed by a walking task. The gait part consisted
of 20 steps walking in a straight line, followed by the balance
part of a 30-second stay still period. Given a heterogeneity of
gait signal lengths across participants, we used a fixed length
signal of 10 seconds and selected data from participants who
met this criterion, which resulted in 28,150 records from 1417
unique participants. In addition to the accelerometer signals (x,
y, and z), their average, the step series, position along the three
axes by double integration, and velocity and acceleration along
the path were used for feature extraction [31,32] (Table S1 in
Multimedia Appendix 1). For balance, we used a 15-second
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time window, trimming the first 5 and the last 10 seconds of
the 30-second records to reduce the noise due to the
between-task transition period, resulting in 29,050 records from
1435 unique participants. Feature extraction covered signals
related to tremor acceleration predicted to fall in the 4-7 Hz
band and postural acceleration (nontremor) falling in the 0-3.5
Hz band [33] (Table S2 in Multimedia Appendix 1).

Voice

PD may also affect breathing and results in alterations in speech
and voice. Reduced volume, hoarse quality, and vocal tremor
are commonly reported for PD using voice analysis [16,34,35].
In this task, participants said “aaaah” for about 10 seconds. For
voice, 49,676 records were selected, belonging to 2184 unique
participants. Voice features were computed from fundamental
frequency, amplitude, and period signals, trimming the first and
the last 2 seconds of the 10-second interval (Table S3 in
Multimedia Appendix 1).

Tapping

Impairment in finger dexterity is another sign associated with
PD [36,37]. In the m-Power study, participants were asked to
tap as fast as possible for 20 seconds with the index and middle
fingers on the screen of their phone (positioned on a flat
surface). Screen pixel coordinate (x, y) and timestamp of taped
points plus acceleration sensor data were collected for this task.
Overall, 55,894 recordings were selected, belonging to 2644
unique participants. Features were computed based on the
intertapping distance and interval (Table S4 in Multimedia
Appendix 1).

Statistical Analysis

For features to be considered usable for biomarker purposes in
longitudinal studies, several criteria are important, including
sensitivity to disease signs and symptoms, good test-retest
reliability, and robustness against the effects of learning and
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other longitudinal confounders. To address these criteria, we
adopted a stepwise statistical procedure (see Figure 1B for a
summary of statistical analyses).

As DB measures are frequently not normally distributed,
Mann-Whitney U tests were used to identify all features that
significantly differ between PD and HC at the first
administration (baseline) (P<.05). Effect sizes (Cohen d) were
computed for these features to provide an estimate of the
magnitude of differentiation between PD and HC.

Next, intraclass correlation coefficients (ICC, type 1-1) were
used to determine the test-retest reliability of features showing
a significant differentiation between PD and HC. We used ICC
type 1-1 in our study because individuals were not tested under
the same conditions (ie, same device), and reliability was
determined from a single measurement. ICC values of 0-0.40
were considered to be poor, 0.40-0.59 to be fair, 0.60-0.74 to
be good, and 0.75-1.00 to be excellent [38]. To assess the
reliability of each feature, ICC values were computed for
different time points versus baseline (one hour [0-6 hours], one
day [calendric day], one week [7 calendric days], or one month
apart [30 calendric days]), as well as for different repeats versus
baseline (baseline vs second, third, fourth, and fifth repeat). We
then focused our analyses on the top 10 features (as they provide
arepresentative subset of the best performing features) with the
highest median ICC values for each group (PD, HC) and tested
for their longitudinal stability over time. Results for all features
are reported in Multimedia Appendix 1. Features from the PD
group are further referred to as “PD features,” those from the
HC group only as “HC features,” and overlapping features from
both groups as “common features” We computed
repeated-measures analyses of variance (rm-ANOVA) using a
mixed factorial design with a between-subject factor diagnosis
and a within-subject factor repetition (first, second, third, fourth,
and fifth) including their interaction (Equation S1 in Multimedia
Appendix 1). Participants who had at least 4 repetitions after
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baseline (463 for gait, 597 for balance, 1085 for voice, and 1333
for tapping) were included in these analyses. To assess the
effects of age and sex on the longitudinal stability of the most
reliable features, we repeated all analyses while controlling for
age and sex as covariates (Equation S2 in Multimedia Appendix
1). Also, we assessed the impact of elapsed time between
repetitions by computing rm-ANOVA using a mixed factorial
design with a between-subject factor diagnosis and a
within-subject factor elapsed time (calculated as a time
difference of each repetition from the baseline in hours) and
controlling for age and sex (Equation S3 in Multimedia
Appendix 1).

Lastly, we assessed the impact of PD medication by computing
rm-ANOVA in the PD group with the within-subject factor
medication (ie, before, after, and at best) (Equation S4 in
Multimedia Appendix 1). Participants with PD who had at least
one marked task for each of the 3 PD medication conditions (ie,
before, after, and at best) were included in treatment effect
analysis (188 for gait, 189 for balance, 280 for voice, and 338
for tapping).

Results

Differentiation Between PD and HC

First, we aimed to restrict the test-retest reliability analyses of
the initial 773 features to those which significantly differ
between PD (N=610 to 970 depending on the task, Table 1) and
HC (N=807 to 1674). For this, we performed group comparisons
for all computed features for gait, balance, voice, and tapping
tasks. Overall, 66 out of 423 gait, 59 out of 183 balance, 60 out
of 124 voice, and 25 out of 43 tapping features differed
significantly (all Ps<.05) between PD and HC at baseline (Figure
1C) with small (gait and balance) to medium effect sizes for
gait, balance, and voice and small to large effect sizes for the
tapping task (Figure 2 and Tables S5-S8 in Multimedia
Appendix 1).
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Figure 2. Effect size (Cohen d) for the most reliable features in the Parkinson disease and healthy control groups selected from different time points
and repetitions. a: accelerometer average signal; iqr: interquartile range; min: minimum value; PeakEnerg: peak of energy; x: accelerometer mediolateral
signal; y: accelerometer vertical signal; z: accelerometer anteroposterior signal. (A) Gait task. cov: coefficient of variation; FB: freezing band; frec_peak:
frequency at the peak of energy; Freezelnd: freeze index; kur: kurtosis; LB: locomotor band; MSI: mean stride interval; RatioPower: sum of the power
in the freezing and locomotor band; skew: skewness; zcr: zero-crossing rate. (B) Balance task. buttonNoneFreq: frequency of tapping outside the button;
CFREQ: centroidal frequency; F50: frequency containing 50% of total power; FRQD: frequency of dispersion of the power spectrum; HF: high frequency
(>4 Hz); LF: low frequency (0.15-3.5 Hz); MF: medium frequency (4-7 Hz); post: postural; Power: energy between 3.5-15 Hz; RHL: ratio between
power in high frequency and low frequency; rms: root mean square; TotalPower: energy between 15-3.5 Hz; trem: tremor; VHF: very high frequency
(>7 Hz). (C) Voice task. c_mean: mean of the MFCC; gqc: glottis quotient close; log: energy of the signal and the first and second derivatives of the
MFCC; MFCC: Mel-frequency cepstral coefficients; p95: 95th percentile; shbd: shimmer. (D) Tapping task. corXY: correlation of X and Y positions;
cv: coefficient; DriftLeft: left drift; DriftRight: right drift; mad: median absolute deviation; numberTaps: number of taps; s
tap interval.
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Best Performing Features

Test-Retest Reliability

Next, we identified the top 10 features with highest median
test-retest reliability (as measured using ICC) separately for PD
and HC across different time points (one hour, one day, one
week , or one month apart) and repetitions (all participants with
5 repetitions of the task) (Tables S5-S8 in Multimedia Appendix
1, Figure 1B). This procedure resulted in 12 to 15 features
(including shared ones) being selected for each task (Figure 3,
Figures S1 and S2 in Multimedia Appendix 1). ICC analyses
revealed poor to good test-retest reliability for these most
reliable features from the gait and balance tasks and good to
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excellent reliability for features from voice and tapping tasks
(Figure 3). The average ICC across the best performing features
selected from different repetitions was lower at the fifth
repetition compared to the first; it dropped from 0.11 to 0.09
for gait, from 0.21 to 0.13 for balance, from 0.39 to 0.24 for
voice, and from 0.3 to 0.23 for tapping. The average ICC across
the best performing features selected from different time points
was also lower at one month compared to one hour apart,
decreasing from 0.13 to 0.07 for gait, from 0.2 to 0.12 for
balance, from 0.33 to 0.26 for voice, and from 0.32 to 0.19 for
tapping.
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Figure 3. Median ICC values for the most reliable features in the Parkinson disease and healthy control groups. a: accelerometer average signal; ICC:
intraclass correlation coefficient; iqr: interquartile range; min: minimum value; PeakEnerg: peak of energy; x: accelerometer mediolateral signal;
accelerometer vertical signal; z: accelerometer anteroposterior signal. (A) Median ICC values across different time points for the best performing
features. (B) Median ICC values across different repetitions for the best performing features. Gait task—cov: coefficient of variation; FB: freezing band;
frec_peak: frequency at the peak of energy; Freezelnd: freeze index; kur: kurtosis; LB: locomotor band; MSI: mean stride interval; RatioPower: sum
of the power in the freezing and locomotor band; skew: skewness; zcr: zero-crossing rate. Balance task —buttonNoneFreq: frequency of tapping outside
the button; CFREQ: centroidal frequency; F50: frequency containing 50% of total power; FRQD: frequency of dispersion of the power spectrum; HF:
high frequency (>4 Hz); LF: low frequency (0.15-3.5 Hz); MF: medium frequency (4-7 Hz); post: postural; Power: energy between 3.5-15 Hz; RHL:
ratio between power in high frequency and low frequency; rms: root mean square; TotalPower: energy between 15-3.5 Hz; trem: tremor; VHF: very
high frequency (>7 Hz). Voice task —c_mean: mean of the MFCC:; gqc: glottis quotient close; log: energy of the signal and the first and second derivatives
of the MFCC; MFCC: Mel-frequency cepstral coefficients; p95: 95th percentile; shbd: shimmer. Tapping task—corXY: correlation of X and Y positions;
cv: coefficient; DriftLeft: left drift; DriftRight: right drift; mad: median absolute deviation; numberTaps: number of taps; sd: standard deviation; TapInter:
tap interval.
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Repetition Effects

Next, we evaluated the longitudinal stability of these most
reliable features. Using rm-ANOVA, we tested for the main
effects of diagnosis, repetition (first, second, third, fourth, and
fifth), and their interaction (Figures 4 and 5, Tables S9 and
S10-S13 in Multimedia Appendix 1). A significant main effect
of diagnosis across all time points was observed for 6 out of 15
gait features, 11 out of 15 balance features, 8 out of 12 voice
features, and 11 out of 12 tapping features. A significant effect
of repetition was found for 8 out of 15 gait features, 8 out of 15
balance features, 4 out of 12 voice features, and 10 out of 12
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tapping features. A significant diagnosis-by-repetition
interaction effect was identified for 3 out of 15 gait features, 0
out of 15 balance features, 3 out of 12 voice features, and 9 out
of 12 tapping features. Further, we tested for the main effects
of the elapsed time between repetitions and its interaction with
diagnosis (Tables S18-S21 in Multimedia Appendix 1). A
significant main effect of elapsed time was observed for 1 out
of 15 gait features, 2 out of 15 balance features, 5 out of 12
voice features, and 5 out of 12 tapping features. A significant
diagnosis-by-time interaction effect was observed only in 1 out
of 15 balance features and 3 out of 12 tapping features.
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Figure 4. Mean value of the best performing baseline features across different time points, calculated for PD and HC separately. a: accelerometer
average signal; HC: healthy controls; igr: interquartile range; min: minimum value; PD: Parkinson disease; PeakEnerg: peak of energy; x: accelerometer
mediolateral signal; y: accelerometer vertical signal; z: accelerometer anteroposterior signal. (A) Gait task. cov: coefficient of variation; FB: freezing
band; frec_peak: frequency at the peak of energy; Freezelnd: freeze index; LB: locomotor band; MSI: mean stride interval; RatioPower: sum of the
power in the freezing and locomotor band; skew: skewness; zcr: zero-crossing rate. (B) Balance task. buttonNoneFreq: frequency of tapping outside
the button; CFREQ: centroidal frequency; F50: frequency containing 50% of total power; FRQD: frequency of dispersion of the power spectrum; HF:
high frequency (>4 Hz); LF: low frequency (0.15-3.5 Hz); MF: medium frequency (4-7 Hz); post: postural; Power: energy between 3.5-15 Hz; RHL:
ratio between power in high frequency and low frequency; rms: root mean square; TotalPower: energy between 15-3.5 Hz; trem: tremor; VHF: very
high frequency (>7 Hz). (C) Voice task. c_mean: mean of the MFCC; gqc: glottis quotient close; log: energy of the signal and the first and second
derivatives of the MFCC; MFCC: Mel-frequency cepstral coefficients; p95: 95th percentile; shbd: shimmer. (D) Tapping task. corXY: correlation of
X and Y positions; cv: coefficient; DriftLeft: left drift; DriftRight: right drift; mad: median absolute deviation; numberTaps: number of taps; sd: standard
deviation; Taplnter: tap interval.

(EY] (B)
Gait Task Balance Task
Freezelnd a Freezelnd 2 PeakEnerg_FB x Power FB z PeakEnerg VHF trem z Power trem z  TotalPower post z  mean_post y

0.79 (B4 82667 245322 36096 232033 283650 006

as2p g 094 S 61301 m;mf.@ mn,_/h/mmpcnmu#‘:ﬁ no#
| e ——

045 0.67 39935 161684 5852 103372 152506 =001
fE5F: 5E83if s 3 s:ifii 3538 2:13:i¢ § £31:5:i¢%
§og3: 3e3: jsii: jsgis §Es %3 $5333 3 I FEER
fdfEy 22%1% AN 8% 2388y 23°:8% ;. £3%%%

skew z - - Power LBy RatioPower y ms_post a” L : FREQD_post X

044 122 327765 555546 105 on

u.wf.'__'\é lwm;wwuﬂwlsﬁ# ﬂﬂsb- uhw

-0.23 113 234088 427524 0.84 065
Es5§% £:33§% B iii i:izii £3i31% 513 L FERE
§E5EE fEiii §23iF SE3%i% IERE R iz RN
digEis j§ii: isiy: iziiz 23823 §:% v 3% 8:i

5§ H g g 5 g s 8¢ g § 3 & § 8
frec_peak LB z fqr.y cov.a PeakEnerg LB & iqr_post_y min_post_y RHL_trem_z RHL_trem_a

178 139 0.65 124575 048 131
'“M 12 w W)% “Sii“p‘ u?gbh""_\ -omﬁ I il
128 116 055 73946 0.08 030
s ErEs §EEES L P EE i S B ES
EEIE % SE2&EE 813 F EESEE gy z ¥ E5 5425
IHHEBHEH B HH SHE
d2fgy dzcry dzcpy 4Tty LR igls3

H -] r
rx ©  frec peak LBa Freezelnd x - PeakEnerg VHF ° 8
o 141 164 34616 132476 119
n:: mb’% Iy ! 25%@ 10169 sy """ w7635 e i UIM:
= ————r
; 0.07 095 0.06 P 084
fEryes gsris rErics o B a s AR
§ §E3fF §Efii gi3i it $1F iif:t
o d3fgy d3%gy 43835 g 2 85 2g8y2
2 £ g R LR i3 i 343
© (D)
Volee Task Tapping Task
¢ mean MFCC1 ¢ mean MFCCI2 ¢ mean MFCCB shdb iar_Taplnter sd DriftRight  bultonNoneFreq  min Taplnter
035 ~045 -053 480 022 952 006 0.05
——
,“-.";:7 -mﬂ: S s — P susw ™ as
gt ——— N———t
-0.93 -074 -0.80 229 013 6.58 001 0.00
£ 5 1537 48513 8 5YE P353f EpEif fibic
,fg‘z zfg‘z ifg‘z éfg‘s Eig‘s Efé‘s
< E TR I8 ST i 4% Sk
P95 gac ¢ mean MFCC6 numberTaps corXy median DriftRight  median_DriftLeft
047 170.85 =033 1205 1216
ug)@_ﬂ mm"_/_. —onM |uu>z mu%_—;

9217 =002 B0 B2 850
SR EE] 5 s ssrpus s rds  §hpus
1E51¢ i f fEF§E i §E3i9 ififig
L z : o gzp:zs 3 §Z3s3 jrgcs
23°%% E°%% gy 23°t% #3°Fy #3°4%
¢ mean_ MFCC) c.mean MFCC5 ¢ mean MFCC3 ¢ mean MFCCY mad v Taplnter sd_DriftLeft

=050 -0.04 -1.77 0.08 7.64 & 201
———

D Rp AT e R = m% m;b_:z m,;,’ m?(_’;-

~0.98 -0.51 -2.54 -0.31 564 58.96 684
55 5 . 5 AR EE B E ] ey s 25  s5EAs
£333F igzaig ipiii fEeig £333¢ §33% £:33§3 £:3i%
jsei: iezi: jLEi: Poii: i385% g;: IEE R gwggx

LA SO I | LA L 5 & g ST g ]
Background Colors: PD Feature HC Feature Common Features Lines: =—e= HC —e— PD
Time
https://www.jmir.org/2021/9/e26608 J Med Internet Res 2021 | vol. 23 liss. 9 126608 | p. 9

X S L FO (page number not for citation purposes)
.

RenderX



JOURNAL OF MEDICAL INTERNET RESEARCH

Sahandi Far et al

Figure 5. Mean value of the best performing baseline features across repetitions, calculated for PD and HC separately. a: accelerometer average signal;
HC: healthy controls; iqr: interquartile range; min: minimum value; PD: Parkinson disease; PeakEnerg: peak of energy; x: accelerometer mediolateral
signal; y: accelerometer vertical signal; z: accelerometer anteroposterior signal. (A) Gait task. cov: coefficient of variation; FB: freezing band; frec_peak:
frequency at the peak of energy; Freezelnd: freeze index; kur: kurtosis; LB: locomotor band; MSI: mean stride interval; RatioPower: sum of the power
in the freezing and locomotor band; skew: skewness; zcr: zero-crossing rate. (B) Balance task. buttonNoneFreq: frequency of tapping outside the button;
CFREQ: centroidal frequency; F50: frequency containing 50% of total power; FRQD: frequency of dispersion of the power spectrum; HF: high frequency
(>4 Hz); LF: low frequency (0.15-3.5 Hz); MF: medium frequency (4-7 Hz); post: postural; Power: energy between 3.5-15 Hz; RHL: ratio between
power in high frequency and low frequency; rms: root mean square; TotalPower: energy between 15-3.5 Hz; trem: tremor; VHF: very high frequency
(>7 Hz). (C) Voice task. c_mean: mean of the MFCC; gqc: glottis quotient close; log: energy of the signal and the first and second derivatives of the
MFCC; MFCC: Mel-frequency cepstral coefficients; p95: 95th percentile; shbd: shimmer. (D) Tapping task. corXY: correlation of X and Y positions;
cv: coefficient; DriftLeft: left drift; DriftRight: right drift; mad: median absolute deviation; numberTaps: number of taps; sd: standard deviation; TapInter:

tap interval.

Mean Value

(A)
Gait Task
Freezelnd x Freezelnd z PeakEnerg FB x frec peak LB a
147 117 b wos0 134 ¥
e = 5;’:’ -4
124 0.95 57197 120
102 0.72 4015 1.06
sz T oa ] sz sz ]
£3833 ZfRRER ZARRE EERESE
i i i i

qr.y

Y EEE
%
2
=
PoakEnerg LB a Power LBy kur x
oav B
124285 302707 512
w122 268994 el
73060 235201 407
S3E38 fEESE EXREE3
4 H 2
©
Voice Task
< mean MFCCl ¢ mean MFCC12 ¢ mean MFCC8 shdb
041 ol 048 b4 -0.35 438 %
(pu—— ———— ———
—ozls/,_.—o—o —DEON -ﬂenw 3.57,
———t—
-0.93 -071 -05, 277
IR T E 88 T e 55 R
EEEZZ EREE3 22E53 LR
i ] ] ]
2 2 a 2
mean_gqc P95 aqc mean MFCCI0 ¢ mean MFCC5
.
12189 157.80 Y ~0.05 Il -0.10 i
—t—at— Aty
109.09 135 50pmae ™" —0.24 0.2
Sttty ——— ———
v6.28 naw 042 048
§33:55 £3288 £3ES: §3Ess
2 3 1 g
- & E a

© mean MFCC6 ¢ mean MFCC7 ¢ mean MFCCO ¢ mean MFCC3
av
o

0.30 052 H ~-0.05 1.94
on\_,,ﬂ R E lpe —ulbh’a - |1’¢
004

~a91 -026 240
£RE3d 23ERE: F3EI: E3Red
[ 8 % H
2 2 - a
Background Colors: PD Feature HC Feature

(B)
Balance Task
CFREQ postz  Power LF temz  RHL tremz  TotalPower post z

118 ' 28202 = 714 . usor 4

1.05, 224554 Jasv:nxlsaN

091 167004 0,57t —e—t 54200
- BEE] - BEE K L - B
EFES8 EEES8 FFESE EREE:
£ a 5 4 : : e
L & E L

rms _post a F50_post x F50 post x 2 TotalPower post y

105 o o 082 112912 =

o oI o wsa

084 070 057 20130,
t3E55 fHES: SEEsE fREpiz
LR ER £85%3 R R ER £REF2F
2 2 3 H
2 i E 2

iqr post ¥ min_post y RHL trem a F50 past a

049 D -024 2 147 ! 0.80

1N oy W sl

013 Y 081 065
JAEEs pREE 1ines piRes
2 2 a 2

Powor MF trom 2 mean_post y Power_trom 2

ne * 006 ea 216 G
——— ———

321 oz 168214
—t———

sa3a1 -o0t 120195!
fFESE E£EES5S EEESE
EEEZE LR BN 25553
H H 3
& &

(D)

Tapping Task
iar Tapinter sd DriftRight  buttonNoneFreq  mad Taplnter

019 *" a7 006 AT o
iy — P

.16 788 004 o
———— ———

013 659 o0l
3 s = s == v = < =
§EE2E (REEd EREEd LREId
] H § :

a 2 2 H
numberTaps  median DriftRight median_DriftLeft

s T onum Y -0.36 b et %7

12264 10.00 -0 WW 10.50
[

14 827 061! &80
SEESE EEESE LEEBESE EEEZZ
i i % §

) 2 £ d
mad DriftRight min Taplnter mad DrftLeft ov_Taplnter

730 *4¥ 08 e 730 oX 7 o

w;.‘:;' | S .,,273-4 mv:y

525 nnn\—‘-. 5.66 5018
s v e a4 s sve s s 3 5 T EE
2EEdf EFEERes EEEss EREzi
H 3 i 5
4 2 3 £
Common Features Lines: —e— HC == PD

+ Significant Main Effect of Diagnose 4 Significant Main Effect of Repelition ¥ Significant Interaction

Time (Repeat)

https://www.jmir.org/2021/9/e26608

XSL-FO

RenderX

J Med Internet Res 2021 1 vol. 23 Fiss. 9126608 | p. 10
(page number not for citation purposes)



JOURNAL OF MEDICAL INTERNET RESEARCH

In an additional sensitivity analysis, we further tested if the
between-group differences and group-by-repetition interaction
remain significant when controlling for age and sex. The results
(Tables S14-S17 in Multimedia Appendix 1) show that a
significant effect of diagnosis was still identified for 2 out of 6
gait features, 8 out of 11 balance features, 1 out of 8 voice
features, and 10 out of 11 tapping features. A significant effect
of repetition was still found for 6 out of 8 gait features, 7 out
of 8 balance features, 3 out of 4 voice features, and 10 out of
10 tapping features. Also, a significant main effect of
diagnosis-by-repetition was still observed for 1 out of 3 gait
features, 1 out of 1 balance feature, and 8 out of 10 tapping
features.

Medication Effects

Lastly, we tested which of the most reliable features identified
above also display sensitivity to PD medication. For this we
compared the conditions reported by the patients as being before
PD medication, after PD medication, or at best. A significant
effect of PD medication was only observed for 2 out of 15 gait
features, 1 out of 15 balance features, 2 out of 12 voice features,
and 1 out of 12 tapping features (Figure S3, Tables S9 and
S10-S13, medication column, in Multimedia Appendix 1).

Discussion

Principal Findings

Here we assessed the longitudinal test-retest reliability and
stability of DB measures related to gait, balance, voice, and
finger dexterity impairments in PD. We found a wide range of
test-retest reliabilities across tasks and features ranging from
poor to excellent, with highest reliabilities observed for voice
followed by the tapping task. Only a few features had medium
to large effect sizes for differentiation between PD and HC. For
all tasks, a substantial percentage of features displayed
significant longitudinal alterations in their mean values over
time.

Overall, tapping and voice tasks revealed a better performance
compared to gait and balance tasks with respect to test-retest
reliability and observed effect sizes. Balance and gait tasks
displayed consistently poor test-retest reliabilities as well as
low effect sizes for differentiation between PD and HC, calling
into question their usability for home-based applications. In
contrast, best performing voice features displayed fair to
excellent test-retest reliabilities across repetitions but also over
weeks and months.

Unlike some previous studies that showed good performance
and moderate to excellent correlation of gait and balance features
with clinical score [4,39], the overall poor performance of these
tasks in the m-Power study may be explained by the nature of
these tasks, which requires strict supervision and monitoring.
Both may not be sufficiently achieved in the self-administered
setting of the m-Power study. Overall, acceleration-related
features in the gait task and tremor-related features and those
selected from frequency domain in the balance task displayed
the best performance for the respective task [23,40]. The features
related to Mel-frequency cepstral coefficients for the voice task
displayed the highest effect sizes for this task, which is in line
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with previous studies showing its ability in identifying
pathological speech [4142]. In line with previous studies,
features related to intertapping interval and precision of the
tapping task (eg, number of taps, taps drift) displayed the best
performance among all [43 44].

Most features showed a decrease in test-retest reliability with
longer periods of time. This may reflect a consequence of the
repetition effects and the group-by-repetition interaction
observed in the analyses of variance for a substantial proportion
of the features. Features selected from the tapping task were
less sensitive to the effect of age and sex compared to other
tasks. Overall, the effects of age and sex were not significant
for most of the features. The analysis of elapsed time between
repetitions also revealed that the time difference between
repetitions did not have a significant effect on most of the
features. ICC values obtained from the PD and HC groups were
largely similar, suggesting that other non-PD related sources of
variation may have played a larger role in the observed low ICC
values. Determining these reasons requires more controlled
experiments than provided by the m-Power study.

Despite a significant difference at baseline, several features did
not differentiate PD and HC when using data from all time
points. This effect became most pronounced for the gait task,
likely due to its poor test-retest reliability performance.
Differential learning, variation in motivation, medication,
reduced adherence to task instructions, and other physical and
environmental parameters may contribute to this loss of
differentiation [2,10,12]. While a clear differentiation of
motivation versus learning effects on the often-abstract DB
features is difficult in an observational study design, a possible
way to provide inference on this issue is to compare the direction
of alterations in PD and HC. Assuming that alterations in PD
relative to HC reflect impairment, movement of a feature state
toward PD is likely to reflect worsening due to reduced
motivation, disease progression, or other similar factors. In
contrast, movements toward HC is likely to reflect improvement
and is therewith compatible with a learning effect. We find a
mixture of both effects for most tasks, suggesting the presence
of both aspects in DB longitudinal data. These observations are
also in line with previous studies showing that training may
reduce motor impairment in PD [45-47]. In particular, for the
tapping task the difference between PD and HC disappears for
several features, which is primarily due to a shift in performance
in HC. These findings may point to a differential change in
motivation across groups. While differential learning has been
previously reported [4548-52], the differential change in
motivation is an important novel aspect to consider when
comparing DB measures between PD patients and HC.
Understanding the sources leading to this variability of DB
measures over time is a vital and open question that needs to
be systematically addressed to enable their application for
specific clinical questions.

Most patients with PD take dopaminergic medication to alleviate
their motor functions. However, the responsiveness to PD
medication highly varies between patients. Besides good
reliability and the ability to differentiate PD and HC, another
important and desired quality of an effective DB is therefore to
monitor PD medication response. Among the most reliable
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features from each task, only a few displayed significant but
weak sensitivity to different medication conditions. One possible
reason for this poor performance of DB measures in our study,
as compared to some previous reports [20], might be the
self-reported nature of the medication status in the m-Power
data set, which likely introduced some noise variation (ie,
different drugs and differences in time after administration).
Nonetheless, our findings point to the need for further
optimization of DB measures to increase their sensitivity to PD
medication effects.

The self-administered design of the m-Power data set is also
the major limitation of our study. In such an uncontrolled setting,
accuracy in reporting the diagnosis and demographics, defining
the medication status, and ensuring correct understanding of
and compliance with the instructions may all have introduced
variation into the study measures. The reported ballpark
estimates for test-retest reliability and ability of the respective
measures to differentiate between PD and HC therefore need
to be carefully considered when interpreting our results. Another
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limitation of our study is the moderate adherence of participants
in the m-Power study, which limited the number of participants
who could be included in our analyses. Differences in age as
well as lack of standardization of the time of day when the
assessments were conducted are further sources of variation
that may affect the generalizability of our findings [53]. Future
studies may make inferences about the impact of different
confounders such as comorbidities and disease severity on the
longitudinal stability of DB. Also, further research is needed to
establish the longitudinal stability of DB in the context of their
relationship to clinical rating scales such as UPDRS.

Nonetheless, our findings clearly demonstrate the need for
further optimization of DB tasks as well as for introducing
careful monitoring and quality control procedures to enable
integration of DB measures into clinically relevant applications.
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Equation S1. y ~ diagosis * repetition + (1|subject)

Equation S2. y ~ diagosis * repetition + age + sex + (1|subject)
Equation S3. y ~ diagosis * eleapse_time + age + sex + (1|subject)
Equation S4. y ~ medication + (1|subject)

Where y is the response.
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Common Features

Time

HC Feature
Coefficient of Variation, zcr- Zero-Crossing Rate, LB- Locomotor

PD Feature

Background Colors:
different time points. Intraclass Correlation Coefficient ICC (1-1) values with a 95% confidence

interval across different time points vs baseline. (a) Gait Task: Freezelnd- Freeze Index,
the Power in the Freezing and Locomotor Band, frec_peak- Frequency at the Peak of Energy,

PeakEnerg- Peak of Energy, skew- Skewness, MSI- Mean Stride Interval, RatioPower - Sum of
igr- Interquartile Range, cov-

Figure S1. Test-retest reliability for the most reliable features in PD and HC selected from



Band, FB- Freezing Band, a- Accelerometer Average Signal,x- Accelerometer Mediolateral
Signal, y- Accelerometer Vertical Signal, z- Accelerometer Anteroposterior Signal, (b) Balance
Task: PeakEnergy- Peak of energy, TotalPower- Energy between .15-3.5 Hz, Power- Energy
between 3.5-15Hz, rms- Root Mean Square, F50- Frequency Containing 50% of Total Power,
FRQD- Frequency of Dispersion of the Power Spectrum, igr- Interquartile Range, min- Minimum
Value, CFREQ- Centroidal Frequency, RHL- Ratio Between Power in High Frequency and Low
Frequency, MF- Medium Frequency (4-7Hz), VHF- Very High Frequency (>7Hz) , HF- Hight
Frequency (>4Hz), LF- Low Frequency (0.15-3.5Hz), trem- Tremor, post- Postural, a-
Accelerometer Average Signal, x- Accelerometer Mediolateral Signal, y- Accelerometer Vertical
Signal, z- Accelerometer Anteroposterior Signal, Hz- Hertz, (c) Voice task : c_mean_MFCC1-12-
Mean Value of Mel Frequency Cepstral Coefficients 1-12, gqc- Glottis Quotient Close, p95- 95th
Percentile, (d) Tapping Task: igr- Interquartile Range, Taplnter- Tap Interval, buttonNoneFreq:
Frequency of Tapping outside the Button, numberTaps- Number of Taps, DriftRight- Right Drift,
corXY- Correlation of X and Y Positions, DriftLeft- Left Drift, mad- Median Absolute Deviation,
min- Minimum, cv- Coefficient, Sd- Standard Deviation.
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Figure S2. Test-retest reliability for the most reliable features in PD and HC selected from
different repetitions. Intraclass Correlation Coefficient ICC (1-1) values with a 95% confidence
interval across different repetition vs baseline. (a) Walking Task: Freezelnd- Freeze Index,
PeakEnerg- Peak of Energy, frec_peak- Frequency at the Peak of Energy, skew- Skewness, iqr-
Interquartile Range, cov- Coefficient of Variation, zcr- Zero-Crossing Rate, kur-Kurtosis, LB-
Locomotor Band, FB- Freezing Band, a- Accelerometer Average Signal, x- Accelerometer
Mediolateral Signal, y- Accelerometer Vertical Signal, z- Accelerometer Anteroposterior Signal,
(b) Balance Task: PeakEnergy - Peak of energy, TotalPower- Energy between .15-3.5 Hz, Power-
Energy between 3.5-15Hz, rms- Root Mean Square, F50- Frequency Containing 50% of Total
Power, FRQD- Frequency of Dispersion of the Power Spectrum, iqr- Interquartile Range, min-
Minimum Value, CFREQ- Centroidal Frequency, RHL- Ratio Between Power in High Frequency



and Low Frequency, MF- Medium Frequency (4-7Hz), VHF- Very High Frequency (>7Hz) , HF-
Hight Frequency (>4Hz), LF- Low Frequency (0.15-3.5Hz), trem- Tremor, post- Postural, a-
Accelerometer Average Signal, x- Accelerometer Mediolateral Signal, y- Accelerometer Vertical
Signal, z- Accelerometer Anteroposterior Signal, Hz- hertz, (c) Voice Task: c_mean_MFCC1-12-
Mean Value of Mel Frequency Cepstral Coefficients 1-12, shbd- Shimmer, gqc- Glottis Quotient
Close, p95- 95th Percentile, (d) Tapping Task: Tapping Task: igr- Interquartile Range, Tapinter-
Tap Interval, buttonNoneFreq: Frequency of Tapping Outside the Button, numberTaps-
Number of Taps, DriftRight- Right Drift, corXY- Correlation of X and Y Positions, DriftLeft- Left
Drift, mad- Median Absolute Deviation, min- Minimum, cv- Coefficient, Sd- Standard Deviation.
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Figure S3. Mean Value of the best performing features at different medication conditions. (a)
Gait Task: Freezelnd- Freeze Index, PeakEnerg- Peak of Energy, frec_peak- Frequency at the
Peak of Energy, skew- Skewness, iqr- Interquartile Range, cov- Coefficient of Variation, zcr-
Zero-Crossing Rate, kur-Kurtosis, LB- Locomotor Band, FB- Freezing Band, a- Accelerometer
Average Signal, x- Accelerometer Mediolateral Signal, y- Accelerometer Vertical Signal, z-
Accelerometer Anteroposterior Signal, (b) Balance Task: PeakEnergy - Peak of energy,
TotalPower- Energy between .15-3.5 Hz, Power- Energy between 3.5-15Hz, rms- Root Mean
Square, F50- Frequency Containing 50% of Total Power, FRQD- Frequency of Dispersion of the
Power Spectrum, igr- Interquartile Range, min- Minimum Value, CFREQ- Centroidal Frequency,
RHL- Ratio Between Power in High Frequency and Low Frequency, MF- Medium Frequency (4-
7Hz), VHF- Very High Frequency (>7Hz) , HF- Hight Frequency (>4Hz), LF- Low Frequency (0.15-



3.5Hz), trem- Tremor, post- Postural, a- Accelerometer Average Signal, x- Accelerometer
Mediolateral Signal, y- Accelerometer Vertical Signal, z- Accelerometer Anteroposterior Signal,
Hz- hertz, (c) Voice Task: c_mean_MFCC1-12- Mean Value of Mel Frequency Cepstral
Coefficients 1-12, shbd- Shimmer, ggc- Glottis Quotient Close, p95- 95th Percentile, (d) Tapping
Task: Tapping Task: iqr- Interquartile Range, Tapinter- Tap Interval, buttonNoneFreq:
Frequency of tapping outside the button, numberTaps- Number of Taps, DriftRight- Right Drift,
corXY- Correlation of X and Y Positions, DriftLeft- Left Drift, mad- Median Absolute Deviation,
min- Minimum, cv- Coefficient, Sd- Standard Deviation.

Table S1. Gait Features.

Feature Units Feature description Signal
acronym (acronym)
numSteps Number of steps during the 10 seconds gait

signal.
MSI S Mean Stride Interval, calculated as the

duration of a stride averaged over all

strides[1,2].
StrideVar % Stride Variability, calculated as the standard

deviation divided by the mean stride of the

stride interval. Measures consistency and

stability[1,2].
mean msA-2 Mean value of the observations[3,4]. Mediolateral,
min msh-2 Minimum value of the observations. vertical, )

; ) anteroposterior,
max ms”-2 Maximum value of the observations. and average
median ms”-2 Median. Middle value among a dataset[3,4].  acceleration (x,
sd ms”-2 Standard deviation, calculated as the sum of y,2,2)

squares differences between the individual Mediolateral,
values and the mean. Measures tical
variability([3,4]. vertical, :
’ anteroposterior,
var (ms~2)A2  Variance, calculated as the square of the and average
standard deviation. Measures variability. postural
range msA-2 Range of the observations. acceleration
_ _ (post_x, post _y,
iqr ms”-2 Interquartile range, calculated as the post _z, post_a)
difference between 75% and 25 percentiles. - -
Measures dispersion[3,4]. .
_ velocity (vel)
rms ms”-2 Root mean square of the observations.
cov Coefficient of variation, calculated as the acceleration
standard deviation of the signal divided by along path (acc)
the mean.
skew Skewness. Describes the asymmetry of a
signal. A negative value indicates that the
distribution is concentrated on the right,
while a positive one is concentrated in the
left[2-4].
kur Kurtosis. Measures if data is heavy or light-
tailed to a normal distribution[2,3].
zcr Zero-crossing rate. Rates sign-changes along

a signal[4].




ApEn

Entropy. Measures uncertainty, ranging from

0-1 where 0 indicates randomness and 1
maximum regularity[2,4].

PeakEnerg_LB psd Peak of energy in the locomotor band (0.5-3
Hz)[1,5].

frec_peak_LB Hz Frequency at the peak of energy in the
locomotor band (0.5-3 Hz)[5].

Power_LB psd Power of the locomotor band (0.5-3 Hz)[5].

PeakEnerg_FB psd Peak of energy in the freezing band (3-
8Hz)[6].

frec_peak_FB Hz Frequency at the peak of energy in the
freezing band (3-8 Hz).

Power_FB psd Power in the freezing band (3-8 Hz).

Freezelnd Freeze Index. Calculated as the ratio
between the power in the freezing band (3-8
Hz) and the power in the locomotor band
(0.5-3 Hz)[6].

RatioPower psd Sum of the power in the freezing (3-8 Hz)
and locomotor band (3-8 Hz)[7]

ar Coefficient of a 15t order autoregressive
model. An autoregressive model forecasts
when there is some correlation between
current values and their preceding ones.

COEFCEPS_(1- mel 20 Mel Frequency Cepstral Coefficients.

20)

Represent the short-term power

spectrum[6]
Table S2. Balance Features.
Acronym units Description Signal
(acronym)
mean ms”~-2 Mean value of the observations. Mediolateral,
min msh-2 Minimum value of the observations. vertical, .

: ) anteroposterior,
max ms”-2 Maximum value of the observations. and average
median ms”-2 Median value of the observations. tremlor .
sd ms”-2 Standard deviation, calculated as the sum ?tcrceemer)?tlon

of squares differences between the vt
Ay trem_y, trem_z,
individual values and the mean. Measures
e trem_a)
variability.
var mg”2 Variance, calculated as the square of the Mediolateral,
standard deviation. Measures variability. vertical,
range msA-2 Range of the observations. gggegsgl?;;”or'
iqr msh-2 Interquartile range, calculated as the postural
difference between 75" and 25 acceleration
percentiles. Measures dispersion. (post_x, post _y,
rms msh-2 Root mean square of the observations. post _z, post_a)
cov msAh-2 Coefficient of variation, calculated as the
standard deviation of the signal divided by
the mean.
skew Skewness. Describes the asymmetry of a

signal. A negative value indicates that the
distribution is concentrated on the right,




while a positive one is concentrated in the
left.

kur Kurtosis. Measures if data is heavy or light-
tailed to a normal distribution.

zcr Zero-crossing rate. Rates sign-changes
along a signal.

ApEn Entropy. Measures uncertainty, ranging
from 0-1 where 0 indicates randomness and
1 maximum regularity.

Power_MF psd Power of the medium frequency band 4- Mediolateral,
7Hz [8]. vertical,

PeakEnerg_VHF psd Peak of energy in the very high frequenc anteroposterior,

& P band (>7Hz) gy yhig q ¥ and average
I tremor
frec_peak_HF Hz Frequency at the peak of energy in high acceleration
frequency band (>4Hz)[8]. (trem_x,

Power psd Power between 3.5-15Hz trem_y, trem_z,

Power_LF psd Power in the low frequency band (0.15- trem_a)
3.5Hz)

RHL Ratio between the power between 3.5-
15Hz and power between 0.15-3.5Hz[8].

CFREQ Hz Centroidal frequency for postural Mediolateral,
measures. Also known as zero-crossing vertical,
frequency[8-10]. anteroposterior,

FREQD Hz Frequency of dispersion of the power and avelrage
spectrum for postural measures[8—10]. postural

acceleration
(post_x, post _y,
post _z, post_a)
Mediolateral-
anteroposterior
average
postural
acceleration
(post_x_z)

jerk mA2/sh2  Average jerk. Measures vibration as the Mediolateral,
rate of change in acceleration. Calculated as vertical,
the derivative of acceleration with respect  anteroposterior,
to timel[8,9]. and average

TotalPower pwd Energy between 0.15-3.5Hz for postural postural
measures[9]. acceleration

— . (post_x, post _y,

F50 Hz Frequency containing 50% of the total post _z, post_a)
power for postural measures([8,9].

F95 Hz Frequency containing 95% of the total Mediolateral-
power for postural measures([8,9]. anteroposterior

average
postural
acceleration
(post_x_z)

MDIST mm Represents the average distance from the Mediolateral,
center to each AP and ML points[8,10]. anteroposterior

RDIST mm Root Mean Square distance from the mean and average of

center[9,10].

mediolateral




TOTEX

Total excursions is the total length of the and
path. Calculated as the sum of distances anteroposterior
between consecutive points[10]. distance (dist_x,

MVELO

mm/s

Mean velocity is the average velocity of the  dist_zdist_x_z)
center path, calculated as the TOTEX
divided by the time[8,10].

MFREQ

mm/s

The mean frequency is the rotational
frequency with a radius equal to the mean
distance[9,10].

AREA_CC

mmA2

The 95% confidence circle area is the area average of
of a circle enclosing all points in the AP-ML  mediolateral
plane with 95% confidence[9,10]. and

AREA_CE

mmA”2

The 95% confidence ellipse area is the area gpteroposterior
of an ellipse enclosing all points in the AP- istance
ML plane with 95% confidence[8-10]. (dist_x_z)

AREA_SW

mmA2/s

Sway area calculated as the area enclosing
the acceleration path[8-10].

FD

The fractal dimension indicates the degree
to which a curve fills the enclosed metric
space[9,10].

FD_CC

Fractal dimension based on the 95%
confidence circle area[9,10].

FD_CE

Fractal dimension based on the 95%
confidence ellipse area[9,10].

Table S3. Voice Features

acronym Units description Signal
(acronym)
amp psd”0.5 Average amplitude[11].
shim % Absolute shimmer[4,11,12].
shdb db Shimmer in logarithmic domain[11].
apqs3 % 3 point amplitude perturbation quotient in
percentage[11].
apg5 % 5 point amplitude perturbation quotient in
percentage[11].
fm Hz Frequency modulation[11].
hnr_mean db Mean of the harmonic to noise ratio, which
indicates the amount of noise[4,11,12].
hnr_std db Standard deviation of the harmonic to noise
ratio[11].
rpde Recurrence period density entropy.
Characterizes the deviation from signal
periodicity[4,11].
DFA Detrended Fluctuation Analysis, which
describes turbulent noise[4,11].
mean Mean value[4,11]. fundamental
sd Standard deviation[4,11]. frequency (f0),
amplitude

(amp), Teager
Kaiser Energy
Operator of
the




fundamental
frequency
(tkeo), open
quotient (oq),
glottis
quotient open
(gao),

glottis
quotient
closed (gqc)
jitt Absolute jitter[4,11]. fundamental
jitta Relative or local jitter[11]. freguency (fo),
rap Relative average perturbation[11]. period (T)
ppag5 St Perturbation quotient using 5 point
(cycles)[11].
range Range[11]. Teager Kaiser
: ; Energy
p25 Hz"2 25 percentile of the Teager-Kaiser Energy
Operator[11]. ?h%erator of
p75 Hz"2 75™ percentile of the Teager-Kaiser Energy fundamental
Operator[11]. frequency
ApEn Pitch Period Entropy. Quantifies the impaired  (tkeo),
control of stable pitch during a sustained
phonation[4,11].
p5 Hz"2 5% percentile[11]. Teager Kaiser
(teko) Energy
p95 Hz"2 95" percentile[11]. &%erator of
fundamental
frequency
(tkeo), open
quotient (oq),
glottis
quotient open
(gqo),
glottis
quotient
closed (gqc)
c_mean db, mel, Mean of the MFCCs coefficients, log-energy of log energy
1st and the signal and the first and second derivatives (log),
2nd of the MFCCs[4,11,12]. ot order
derivative cepstral
of mel coefficient
c_std db, mel,  Standard deviation of the MFCCs coefficients,  (Oth),
1st and log-energy of the signal and the first and 1-12th Mel
2nd second derivatives of the MFCCs[11,12]. Frequency
derivative Cepstral
of mel

Coefficients
(MFCC_(1-12),
1-14t deltas
(d_(1-14)),

1-14t™ delta-
delta (dd_(1-
14))




Table S4. Tapping Features.

acronym units description Signal
(acronym)
numberTaps Number of taps[13,14].
buttonNone Frequency of tapping outside the button
[13,14].
corxyY Correlation between X and Y position of tap on
screen coordinates [13,14].
mean S Mean value of the observations[4,13,14]. Intertap
min s Minimum value of the observations[4,13,14]. I(%eprlnatler)
max s Maximum value of the observations[4,13,14]. Leftdrift
median s Median value of the observations[4,13,14]. (F{DrgtL(jEfEc),
mad S Median absolute deviation[13,14]. (IggriftRightt)
sd S Standard deviation[4,13,14].
range S Range of the observations[4,13,14].
iqr s Interquartile range [13,14].
cv Coefficient of variation [4,13,14].
skew Skewness[13,14].
kur Kurtosis[13,14].
tkeo Teager-Kaiser Energy Operator. Measures Intertap
energy variation[4,13,14]. interval
dfa Detrended Fluctuation Analysis. Measures (Taplinter)
changes in the signal[4,13,14].
arl Coefficient of an autoregressive model at lag 1.
Indicates associations between intertap
intervals[4,13,14].
ar2 Coefficient of an autoregressive model at lag 2.
Indicates associations between intertap
intervals[4,13,14].
fatiguel0 Increase in the mean intertap interval from the
first 10% to the last 10% taps [4,13,14].
fatigue25 Increase in the mean intertap interval from the
first 25% to the last 25% taps[4,13,14].
fatigue50 Increase in the mean intertap interval from the

first 50% to the last 50 % taps[4,13,14].

Table S5. Results from Mann-Whitney U test, Cohen’s d and Median ICC for Gait task. Median
ICC across different time points and different repetitions for PD and HC.

Feature Name Mann-Whitney  |Cohens’d| Median ICC
U test Time Point Repetition
P Value HC PD HC PD
frec_peak LB_a <0.001 0.3564 0.3213 0.2922 0.4335 0.3019

Freezelnd_z

<0.001 0.281 0.3706  0.2629

0.3807 0.3129




iqr_x <0.001 0.2801 0.2242 0.2217 0.2521 0.2769
MSI <0.001 0.2619 0.15 0.2869 0.24 0.231

numSteps <0.001 0.2295 0.1417 0.2519 0.218  0.2265
median_acc <0.001 0.225 0.2452  0.1278 0.1907 0.1501
PeakEnerg_LB_x <0.001 0.2223 0.2338 0.2157 0.2458 0.2515
min_z 0.001 0.2205 0.2101 0.171 0.2324 0.2106
ApEn_pos_z 0.003 0.2127 0.0521 0.1015 0.0599 0.1263
Power_LB_x 0.001 0.2105 0.2141 0.2541 0.2726  0.3131
Power_FB_z <0.001 0.2088 0.4055 0.2066 0.3187  0.317

ApEn_pos_a 0.006 0.2047 0.0239 0.1807 0.0461 0.1396
mean_a 0.029 0.1903 0.138 0.18 0.1776  0.2488
iqr_acc 0.003 0.1833 0.0641 0.2097 0.1114 0.2566
mean_acc 0.004 0.1818 -0.0834 0.0573 0.0267 -0.0259
rms_acc 0.012 0.1736 -0.0149 0.1103 0.1055 0.1264
rms_y 0.013 0.1707 0.1466 0.1984 0.2373 0.228

PeakEnerg_LB_a <0.001 0.1674 0.3301 0.3331 0.3356 0.3769
RatioPower_y 0.029 0.1646 0.1631 0.2649 0.2408 0.2981
kur_pos_z 0.003 0.1628 0.1048 0.055 0.0521 0.0607
frec_peak_FB_vel 0.004 0.1609 0.0693 0.0929 0.0728 0.1018
|_q1r(iz 0.005 0.1603 0.2659 0.2444 0.2908 0.3284
skew_z 0.003 0.1589 0.3317 0.1838 0.3627 0.2843
frec_peak_FB_a 0.001 0.1574 0.1287 0.1786 0.1707 0.1602
median_a 0.023 0.157 0.1741  0.262 0.2448 0.3192
Freezelnd_x 0.003 0.1568 0.2882 0.2689 0.3965 0.255

Power_LB_z <0.001 0.1553 0.2284 0.2034 0.3033 0.2472
max_acc 0.022 0.1538 0.1236 0.1021 0.1352 0.133

zCr_x 0.002 0.1503 0.3311 0.3121 0.4098 0.3866
Power_LB_y 0.036 0.1424 0.2764 0.3183 0.3445 0.3732
Power_FB_acc 0.019 0.1416 0.1886 0.1934 0.1689 0.2459
kur_pos_a 0.034 0.1407 0.0457 0.0972 0.0852 0.1431
iqr_y 0.019 0.1357 0.2813 0.3066 0.3125 0.367

Freezelnd_a 0.039 0.1321 0.2859 0.2453 0.321 0.2287




Power_FB_vel 0.009 0.1301 0.0782 0.132 0.1196 0.1779
kur_x 0.029 0.1295 0.268 02131 0.3992 0.3336
frec_peak_LB_z 0.001 0.129 0.2095 03273 0.3098 0.3143
COEFCEPS20_pos 0.008 0.1284 0.0739 0.0609 0.0456 0.0069
EéEFCEPW_z 0.004 0.1243 -0.0383 0.057 -0.0183 0.038
PeakEnerg_FB_x 0.039 0.122 03281 0.1444 0.3445 0.2341
skew_vel 0.013 0.1213 0.1296 0.1193 0.0878 0.1066
cov_vel 0.013 0.1188 0.101 0.1169 0.0748 0.114
COEFCEPS1_pos_ 0.017 0.1173 -0.0056 -0.0537 0.0362 0.0325
X

iqr_pos_z 0.021 0.1137 0.0342 0.0343 0.0799 0.0666
cov_a 0.009 0.1129 0.4435 0.4726 0.4793 0.5028
Freezelnd_pos_a 0.022 0.1108 0.0767 0.0169 0.1282 0.0308
COEFCEPS9_z 0.04 0.1107 -0.007 -0.0297 -0.0125 -0.0148
PeakEnerg_LB_z 0.004 0.1076 0.2642 0.2013 0.2253 0.2781
COEFCEPSS_z 0.045 0.107 0.0796 0.0194 -0.003 -0.0192
COEFCEPS6_z 0.05 0.1062 -0.1046 0.0624 -0.0412 0.0281
frec_peak_LB_y <0.001 0.1048 0.175 0.1178 0.2701 0.1949
ApEn_vel 0.015 0.1028 0.1951 0.1016 0.1224  0.069
ApEn_pos_x 0.015 0.0968 -0.0401 0.0387 -0.0158 0.0714
median_y 0.043 0.0926 0.1698 0.2399 0.2648 0.3101
COEFCEPS10_z 0.036 0.0922 -0.0703 -0.0739 0.0019 -0.0175
PeakEnerg_LB_po <0.001 0.0904 0.0393 0.0388 0.0533 0.0057
S z

COEFCEPS1_pos_ 0.048 0.0882 0.0508 0.0852 0.0656 0.0644
a

zcr_pos_z 0.049 0.0814 0.0262 0.1287 0.0571 0.1752
RatioPower_pos_ 0.002 0.075 -0.0051 0.0112 0.0302 -0.0045
zZ

RatioPower_pos_ 0.038 0.0726 -0.0101 -0.0107 0.0188 -0.0098
a

Power_FB_pos_z 0.014 0.0721 -0.0136 0.008 0.0269 -0.0055
ApEn_pos_y 0.037 0.0656 0.088  0.121 0.0823  0.099
kur_vel 0.039 0.0587 0.2061 0.0857 0.0866 0.0433
cov_acc 0.048 0.037 -0.0013 -0.0008 -0.0096 -0.003




min_pos_x 0.021 0.0359 -0.0302 0.0342 -0.0335 0.0243

min_pos_y 0.023 0.0027 -0.0083 0.0136 -0.023 -0.0153

PD- Parkinson’s Disease, HC- Healthy Control, frec_peak- Frequency at the Peak of Energy,
Freezelnd- Freeze Index, iqr-Interquartile Range, MSI- Mean Stride Interval, numSteps- Number
of Steps, PeakEnerg- Peak of Energy, ApEn- Entropy, rms- Root Mean Square, RatioPower - Sum
of the Power in the Freezing and Locomotor Band, skew- Skewness, min- Minimum Value, cov-
Coefficient of Variation, zcr- Zero-Crossing Rate, kur-Kurtosis, COEFCEPS (1-20)- Mel Frequency
Cepstral Coefficients, ar- Coefficient of a 1st Order Autoregressive Model, LB- Locomotor Band,
FB- Freezing Band, vel- Velocity, acc- Acceleration Along Path, a- Accelerometer Average Signal,
x- Accelerometer Mediolateral Signal, y- Accelerometer Vertical Signal, z- Accelerometer
Anteroposterior Signal.

Table S6. Results from Mann-Whitney U test, Cohen’s d and Median ICC for features from
Balance task. Median ICC across different time points and different repetitions for PD and HC.
Features are selected based on Mann-Whitney U test that significantly differ between PD and
HC at the first administration (baseline) (P<.05).

Feature Name Mann-Whitney |Cohens'd| Median ICC

U Test Time Point Repetition

P Value HC PD HC PD
Power_MF_trem_z <0.001 0.337 0.2808 0.2956 0.3016 0.2844
PeakEnerg_VHF_tr 0.028 0.3129 0.2521 0.3188 0.159 0.2677
em_x
PeakEnerg_VHF_tr <0.001 0.2942 0.3225 0.2267 0.2318 0.205
em_z
RHL_trem_z <0.001 0.2679 0.2891 0.5605 0.2936 0.1331
RHL_trem_a 0.004 0.2517 0.4071 0.3245 0.4463 0.294
Power_trem_y <0.001 0.2441 0.0492 0.1998 0.1737 0.1535
F95_post_y <0.001 0.2402 0.1742 0.1308 0.2351 0.1838
Power_trem_z 0.006 0.2317 0.2601 0.2376 0.2824 0.2763
median_trem_a <0.001 0.2203 0.0973 0.1609 0.1475 0.1638
Power_LF_trem_z <0.001 0.2186 0.2016 0.1727 0.2414 0.1817
CFREQ_post_z 0.008 0.2057 0.3047 0.2654 0.3369 0.2716
F95_post_x 0.002 0.1956 0.1938 0.1679 0.2122 0.1707
MFREQ_dist_x <0.001 0.1915 0.0429 0.0269 0.0494 0.0648
igr_post_y <0.001 0.1873 0.1721 0.2481 0.1837 0.2804
mean_trem_a <0.001 0.1851 0.1015 0.1805 0.1317 0.2164
kur_trem_x <0.001 0.1799 0.0749 0.0185 0.0634 0.0222
F95_post_a 0.012 0.1776 0.1597 0.1905 0.2026 0.2202

ApEn_trem_x <0.001 0.1757 0.0841 0.091 0.1253  0.0905




zcr_post_y <0.001 0.1733 0.2208 0.2434 0.2412 0.1457
median_post_a <0.001 0.1724 0.1195 0.0992 0.1907 0.1524
iqr_trem_x 0.002 0.1699 0.16 0.1447 0.1766 0.1522
FD_CC_dist_x_z <0.001 0.1638 0.0852 -0.0044 0.0214 0.0247
F50_post_y 0.001 0.1631 0.1875 0.209 0.2339  0.2354
Power_LF_trem_x 0.01 0.1608 0.1362 0.1831 0.2339 0.1794
range_trem_y <0.001 0.1585 0.1733 0.0855 0.2059 0.1177
MVELO_dist_x 0.006 0.1573 0.1408 0.1285 0.2058 0.1832
mean_post_y 0.007 0.1532 0.3668 0.2441 0.3952 0.2764
min_post_y <0.001 0.1521 0.2216 0.2646 0.2126 0.2841
iqr_post_x 0.007 0.1449 0.1677 0.1459 0.1918 0.1951
kur_post_x 0.002 0.1391 0.0707 0.0247 0.0703  0.0539
rms_trem_a 0.004 0.1372 0.1666 0.152 0.1892  0.2266
ApEn_post_a 0.004 0.1361 0.0435 0.1382 0.1055 0.1037
skew_post_a <0.001 0.1317 0.0291 0.1097 0.0483 0.0813
AREA_CC_dist_x_z 0.013 0.1306 0.1307 0.0011 0.0632 0.0322
FD_dist_x_z 0.003 0.1303 0.0781 -0.0472 0.019 0.0282
cov_trem_a <0.001 0.1289 0.0988 0.032 0.1202 0.0325
TotalPower_post_x 0.011 0.1277 0.156 0.0493 0.1804 0.0726
K/IZFREO._dist_x_z 0.001 0.1261 0.0836 -0.0104 0.0415 0.0331
max_post_y <0.001 0.1245 0.1192 0.2187 0.2363 0.2089
F50_post_x <0.001 0.1243 0.2149 0.253 0.1823 0.29

cov_post_a 0.009 0.1199 0.0641 0.0677 0.0992 0.0634
range_trem_x 0.05 0.1195 0.1877 0.2015 0.2212 0.1329
ApEn_trem_y 0.001 0.1146 0.0886 0.0736 0.1512 0.1158
FD_CE_dist_x_z 0.007 0.1055 0.1519 0.0453 0.0895 0.0774
mean_post_z 0.031 0.0994 0.1935 0.1906 0.1498 0.1938
F50_post_a 0.003 0.0988 0.2095 0.2191 0.243 0.2912
Power_LF_trem_a 0.005 0.0982 0.217 0.0347 0.185 0.0634
max_post_z 0.027 0.0939 0.207 0.1773 0.1862 0.2413
rms_post_a 0.028 0.0925 0.2293 0.1188 0.2554 0.1798
F50_post_x_z 0.006 0.0882 0.2172 0.2453 0.2351 0.3015




FREQD_post_x 0.005 0.0848 0.1709 0.2444 0.1828 0.2444
TotalPower_post_z 0.014 0.0837 0.226 0.1239 0.2691 0.192
FREQD_post_x_z 0.019 0.0811 0.1243 0.1909 0.1926 0.1707
TotalPower_post_y <0.001 0.0805 0.132 0.1737 0.216 0.2851
kur_post_a <0.001 0.0717 0.0227 0.0732 0.0094 0.0578
max_trem_z 0.038 0.0709 0.0628 0.0578 0.0982 0.1206
jerk_post_y <0.001 0.0421 0.0474 0.0484 0.181 0.1174
kur_trem_a 0.012 0.0349 0.0081 0.0034 0.0014 -0.0098
kur_trem_y 0.022 0.0233 0.0305 -0.0257 0.0612 -0.0137

PD- Parkinson’s Disease, HC- Healthy Control, PeakEnergy - Peak of energy, TotalPower- Energy
between 15-3.5 Hz, rms- Root Mean Square, F50- Frequency Containing 50% of Total Power,
F95- Frequency containing 95% of the total power, FRQD- Frequency of Dispersion of the Power
Spectrum, MFREQ- Mean Frequency, igr- Interquartile Range, kur- Kurtosis, zcr- Zero-Crossing
Rate, ApEn- Entropy, skew- Skewness, jerk- Average jerk, MVELO- Mean velocity, FD- Fractal
Dimension, FD_CE- Fractal Dimension based on the 95% Confidence Ellipse Area, min-
Minimum Value, CFREQ- Centroidal Frequency, RHL- Ratio Between Power in High Frequency
and Low Frequency, dist- Distance, MF- Medium Frequency (4-7Hz), VHF- Very High Frequency
(>7Hz), HF- Hight Frequency (>4Hz), LF- Low Frequency (0.15-3.5Hz), trem- Tremor, post-
Postural, a- Accelerometer Average Signal, x- Accelerometer Mediolateral Signal, y-
Accelerometer Vertical Signal, z- Accelerometer Anteroposterior Signal, Hz- Hertz.

Table S7. Results from Mann-Whitney U test, Cohen’s d and Median ICC for features from
Voice task. Median ICC across different time points and different repetitions for PD and HC.
Features are selected based on Mann-Whitney U test that significantly differ between PD and
HC at the first administration (baseline) (P<.05).

Feature Name  Mann-Whitney |Cohens'd| Median ICC
U Test Time Point Repetition
P Value HC PD HC PD
mean_gqc <0.001 0.5049 0.6737  0.7093 0.6797 0.7476
p5_gqc <0.001 0.412 0.3308 0.37 0.3169 0.4305
¢_mean_MFCC1 <0.001 0.4028 0.5158  0.4304 0.5874 0.5071
p95_gqc <0.001 0.354 0.6699  0.6128 0.6779 0.6494
std_tkeo <0.001 0.3033 0.4022 0.3972 0.4577 0.4393
p95_tkeo <0.001 0.2919 0.318 0.3387 0.3596 0.397
c_std_d11 <0.001 0.278 0.3747  0.3887 0.4209 0.4159
hnr_std <0.001 0.2738 0.2193  0.2973 0.2553 0.3413
c_std_d12 <0.001 0.2717 0.3335 0.4011 0.4497 0.4253
p75_tkeo <0.001 0.2679 0.4344  0.2648 0.4264 0.3476




c_std_d13 <0.001 0.2634 0.3766  0.3868 0.4272 0.4303
c_std_d8 <0.001 0.2491 0.3019 0.345 0.3748 0.3711
c_std_d9 <0.001 0.2445 0.3108 0.3664 0.3589 0.3817
c_mean_MFCC10 <0.001 0.2403 0.5648 0.6197 0.6255 0.6454
c_std_d10 <0.001 0.2401 0.3423 0.389 0.4058 0.4132
c_std_d7 <0.001 0.2309 0.3589  0.3308 0.3779 0.3758
c_std_dd11 <0.001 0.2282 0.4119 0.4281 0.4627 0.4498
c_std_d5 <0.001 0.2196 0.3335 0.2868 0.3318 0.3435
c_std_d14 <0.001 0.2193 0.3474  0.3912 0.3987 0.4291
c_std_d6 <0.001 0.2186 0.3699  0.3492 0.3717 0.3718
c_mean_MFCC12 <0.001 0.2154 0.4902 0.433 0.5362 0.4977
c_std_dd5 <0.001 0.2048 0.373 0.369 0.4207 0.4006
c_std_d3 <0.001 0.202 0.2891 0.3135 0.2862 0.3391
c_std_d4 <0.001 0.2008 0.3006  0.3027 0.3129 0.3435
c_std_dd10 <0.001 0.1976 0.4096  0.4436 0.4759 0.4647
c_std_dd9 <0.001 0.1942 0.3812  0.4232 0.4336 0.4327
c_std_dd8 <0.001 0.1932 0.3741  0.4008 0.454 0.4177
c_std_dd12 <0.001 0.1923 0.4006 0.446 0.4961 0.4601
c_std_MFCC1 0.026 0.1883 0.2528 0.251 0.2488 0.3304
c_std_MFCC5 0.001 0.1853 0.2922  0.2074 0.3001 0.2461
c_std_dd7 <0.001 0.1842 0.3847  0.3989 0.4603 0.4339
c_std_dd13 <0.001 0.1821 0.3979  0.4326 0.4806 0.4675
c_std_ddé <0.001 0.182 0.3975 0.3964 0.4414 0.4133
DFA <0.001 0.1792 0.0577 0.0833 0.0365 0.1416
c_mean_Oth 0.002 0.1675 0.1974  0.2609 0.2692 0.2913
c_mean_d13 <0.001 0.1673 0.1084  0.1388 0.1036 0.127
fm 0.001 0.1648 0.3646  0.3997 0.3755 0.3536
c_std_dd4 0.002 0.1631 0.3667 0.3165 0.3905 0.3851
c_mean_MFCC7 0.001 0.1615 0.5329  0.5577 0.6043 0.5592
c_mean_d4 0.002 0.1597 0.0228  0.1646 0.0771 0.1991
shdb 0.03 0.1552 0.3822  0.4779 0.5244 0.523
c_std_dd3 0.001 0.1495 0.3525 0.3232 0.3634 0.3412
ApEn_fo <0.001 0.148 0.0964 0.145 0.1605 0.2034




c_std_dd14 0.006 0.1447 0.3701  0.4477 0.4625 0.4762
c_mean_d3 0.001 0.1344 0.1441  0.1025 0.1508 0.1771
c_std_MFCC11 0.016 0.1323 0.231  0.2937 0.3196 0.3401
c_std_d1 0.031 0.1292 0.2985 0.3704 0.2786 0.3606
c_std_MFCC6 0.005 0.1261 0.2722  0.2996 0.3064 0.333
c_mean_MFCC5 0.008 0.1228 0.5375 0.5294 0.5745 0.5899
c_mean_MFCC9 0.004 0.1209 0.4986  0.4885 0.5747 0.5466
c_std_MFCC9 0.014 0.1172 0.2365 0.2543 0.285 0.2889
rpde 0.002 0.1161 0.3277 0.3635 0.3636 0.3956
c_std_MFCC7 0.041 0.1087 0.2765  0.3007 0.3085 0.3234
c_mean_MFCC8 0.048 0.0999 0.4376  0.5004 0.5097 0.524
c_std_MFCC8 0.028 0.0934 0.1816  0.3283 0.2736 0.3469
c_mean_MFCC6 0.019 0.081 0.5523  0.5853 0.587 0.5872
c_mean_d2 0.002 0.0781 0.1124  0.1832 0.1251 0.2258
c_mean_d6 0.039 0.0725 0.1365 0.1728 0.1582 0.1926
c_mean_MFCC3 0.02 0.0706 0.4717 0.5061 0.5486 0.5317
c_mean_d1 0.005 0.0705 0.1218  0.1949 0.1002 0.2329

PD- Parkinson’s Disease, HC- Healthy Control, c_mean- Mean of the MFCCs Coefficients, log-
Energy of the Signal and the First and Second Derivatives of the MFCCs, MFCC- Mel Frequency
Cepstral Coefficients, c_std- Standard Deviation of the MFCCs Coefficients, gqc- Glottis
Quotient Close, fm- Frequency Modulation, std - Standard Deviation, tkeo- Teager Kaiser
Energy Operator, p5- 5th percentile, p75- 75th Percentile, p95- 95th Percentile, shbd- Shimmer,
hnr- Harmonic to Noise Ratio, d- Delta, d-d- Delta-Delta, DFA- Detrended Fluctuation Analysis,
fO- Fundamental Frequency, ApEn- Pitch Period Entropy, rpde- Recurrence Period Density
Entropy, T- Period.

Table S8. Results from Mann-Whitney U test, Cohen’s d and Median ICC for features from
Tapping task. Median ICC across different time points and different repetitions for PD and HC.
Features are selected based on Mann-Whitney U test that significantly differ between PD and
HC at the first administration (baseline) (P<.05).

Feature Name Mann-Whitney |Cohens'd | Median ICC
U test Time Point Repetition
P Value
HC PD HC PD
numberTaps <0.001 1.179 0.6896 0.6411 0.6895 0.7004
max_Taplnter <0.001 0.6177 0.1792 0.2758 0.1838 0.2909
range_Taplinter <0.001 0.5821 0.1297 0.2741 0.1628 0.2809




ar2_Taplinter <0.001 0.5322 0.3102 0.2777  0.3286 0.3243

arl_Tapinter <0.001 0.5282 0.3039 0.2938 0.3193  0.3217
sd_Tapinter <0.001 0.5154 0.2779 0.2258  0.3023  0.3459
buttonNoneFreq <0.001 0.4455 0.3076 0.3658  0.3453  0.4613
mad_Taplnter <0.001 0.3701 0.3294  0.305 0.3488  0.3751
median_DriftRight <0.001 0.3542 0.6796 0.5393  0.4578  0.5345
mad_DriftRight <0.001 0.3468 0.4492 0.4259 0.466 0.4822
median_DriftLeft <0.001 0.2912 0.51 0.5269  0.5202  0.5292
min_Taplnter <0.001 0.2857 0.2751 0.3967 0.4364  0.4605
sd_DriftRight <0.001 0.2842 0.4088 0.2833  0.4066  0.3227
iqr_Taplinter <0.001 0.2785 0.4353 0.3046  0.4745 0.3506
mad_DriftLeft <0.001 0.2725 0.4603 0.4723  0.4801 0.4591
sd_DriftLeft <0.001 0.2694 0.3654 0.4028 0.3932  0.2981
skew_Taplnter <0.001 0.2315 0.1461 0.1855 0.1614  0.2029
skew_DriftLeft <0.001 0.208 0.0637 0.1046 0.092 0.1149
kur_DriftLeft <0.001 0.1913 0.0299 0.063 0.0924  0.0827
kur_DriftRight <0.001 0.1842 0.1257 0.0258  0.1567  0.0796
kur_Taplnter <0.001 0.1695 0.092 0.1072 0.1043  0.1117
cv_Taplnter <0.001 0.1586 0.4259 0.4212 0.4716  0.4547
corXY 0.001 0.114 0.624 0.5737 0.5804  0.5324
tkeo_Taplnter <0.001 0.0905 0.0437 0.0275  0.0439 0.0988
cv_DriftLeft 0.014 0.0113 0.0981 0.135 0.1078 0.162

PD- Parkinson’s Disease, HC- Healthy Control, igr- Interquartile Range, TapInter- Tap Interval,
buttonNoneFreq: Frequency of Tapping Outside the Button, numberTaps- Number of Taps,
DriftRight- Right Drift, corXY- Correlation of X and Y Positions, DriftLeft- Left Drift, mad- Median
Absolute Deviation, min- Minimum, max- Maximum, skew- Skewness, kur- Kurtosis, teko-
Teager-Kaiser Energy Operator, cv- Coefficient, Sd- Standard Deviation, ar (1-2)- Coefficient of
an Autoregressive Model at Lag (1-2).

Table S9. Results from an analysis of ANOVA for repeated measurements on the most reliable
features in PD and HC selected from different repetition.

Features Diagnosis (PD, Repetition Diagnosis x Medication
HC) Repetition
F P F P F P n=188

Gait Task




frec_peak_LB_a 23.202 <0.001 0.767 0.547 0.276  0.894 0.358

Freezelnd_z 3.877 0.049 0.665 0.616 1.012 0.4 0.422

Power_FB_z 0.144 0.704  10.235 <0.001 4.719 <0.001 0.08

PeakEnerg_LB_a 10.268  0.001 9.974  <0.001 3.02 0.017 0.376

iqr_z 0.109 0.742 6.849 <0.001 1.102 0.354 0.806

skew_z 9.226 0.002 2.749 0.027 0.267  0.899 0.192
median_a 1.003 0.317 13.362 <0.001 2.814 0.024 0.058
Freezelnd_x 2.681 0.102 0.954 0.432 0.406  0.804 0.151
zer_x 4.987 0.026 4.387 0.002 0.827  0.508 0.58

Power_LB_y 0.256 0.613 2.985 0.018 0.792 0.53 0.156
iqr_y 0 1.0 2.28 0.059 1.223  0.299 0.01

kur_x 2.438 0.119 0.418 0.796 1.969  0.097 0.375
frec_peak_LB_z 1.013 0.315 2.198 0.067 0.705  0.589 0.449
PeakEnerg_FB_x 9.421 0.002 12.071 <0.001 0.979 0.418 0.028
cov_a 1.463 0.227 1.341 0.252 1.493  0.202 0.844

Balance Task

Features F P F P F P n=189
Power_MF_trem_z  29.608 <0.001  1.096 0.357 0.549 0.7 0.192
RHL_trem_z 19.372 <0.001  1.848 0.117 1.712  0.145 0.349
RHL_trem_a 29.005 <0.001 1.442 0.217 0.254  0.907 0.108
Power_trem_z 13.015 <0.001  2.885 0.021 0.526  0.717 0.143
Power_LF_trem_z 15.785 <0.001 5.59 <0.001 0.901 0.462 0.614
CFREQ_post_z 9.483 0.002 1.532 0.19 0.772  0.544 0.066
iqr_post_y 33.914 <0.001 10.249 <0.001 0.609 0.656 0.245
mean_post_y 5.178 0.023  11.917 <0.001 0.328  0.859 <0.001
min_post_y 20.291 <0.001 16.579 <0.001 0.882 0.474 0.555
F50_post_x 0.975 0.324 0.631 0.641 1372 0.241 0.285
F50_post_a 0.048 0.827 0.607 0.657 11 0.355 0.561
rms_post_a 16.826 <0.001 5.588 <0.001 0.869  0.482 0.603
F50_post_x_z 0.006 0.938 0.157 0.96 1421  0.224 0.106




TotalPower_post_z 2.378 0.124 3.339 0.01 0.404  0.806 0.684

TotalPower_post_y  14.926 <0.001 7.7 <0.001 0.091 0.985 0.958

Voice Task
Features F P F P F P n=280
mean_ggqc 92.952 <0.001 3.284 0.011 2.551  0.037 0.108
c_mean_MFCC1 38.813 <0.001 24.89 <0.001 1.836 0.119 0.611
p95_gqc 59.181 <0.001 1.531 0.19 1.706  0.146 0.016

¢_mean_MFCC10 22916 <0.001 0.796 0.528 0.586  0.673 0.257

c_mean_MFCC12 10.811  0.001 2.232 0.063 1.304  0.266 0.012

¢_mean_MFCC7 13.614 <0.001  1.009 0.401 1.73 0.14 0.182
shdb 7.787 0.005 1.985 0.094 0.538  0.708 0.375
c_mean_MFCC5 7.142 0.008 2.813 0.024 0.198  0.939 0.084
c_mean_MFCC9 1.264 0.261 1.554 0.184 0.205  0.936 0.186
c_mean_MFCC8 1.373 0.242 1.375 0.24 0.552  0.698 0.676
c_mean_MFCC6 0.936 0.334 2.035 0.087 1.011 0.4 0.982
c_mean_MFCC3 1.886 0.17 7.87 <0.001 6.754 <0.001 0.249

Tapping Task

F P F P F P n=338

numberTaps 539.151 <0.001 123.309 <0.001 4.444 0.001 <0.001

buttonNoneFreq 50.866 <0.001 4.93 <0.001 2.344  0.052 0.929

mad_Taplinter 87.645 <0.001 0.721 0.578 4.172 0.002 0.593

median_DriftRight 8.987 0.003 9.747 <0.001 6.351 <0.001 0.88

mad_DriftRight 8.9 0.003 10.605 <0.001 6.353 <0.001 0.846

median_DriftLeft 4.491 0.034 3.107 0.015 2.769  0.026 0.683

min_Taplnter 44,616 <0.001 11.437 <0.001 0.388 0.818 0.226
sd_DriftRight 4.338 0.037 6.689 <0.001 3.516 0.007 0.279
iqr_Taplinter 53.591 <0.001 1.054 0.378 2,553  0.037 0.319
mad_DriftLeft 2.594 0.108  11.145 <0.001 6.06  <0.001 0.548
cv_Tapinter 8.054 0.005 6.815 <0.001 1.702  0.146 0.232
corXY 5.935 0.015 21.815 <0.001 2.541  0.038 0.874

HC- Healthy Controls, PD- Parkinson’s Disease, M- Male, F- Female, S.D- Standard Deviation,
Gait Task: Freezelnd- Freeze Index, PeakEnerg- Peak of Energy, frec_peak- Frequency at the



Peak of Energy, skew- Skewness, iqr- Interquartile Range, cov- Coefficient of Variation, zcr-
Zero-Crossing Rate, kur-Kurtosis, LB- Locomotor Band, FB- Freezing Band, a- Accelerometer
Average Signal, x- Accelerometer Mediolateral Signal, y- Accelerometer Vertical Signal, z-
Accelerometer Anteroposterior Signal, Balance Task: PeakEnergy - Peak of energy, TotalPower-
Energy between .15-3.5 Hz, Power- Energy between 3.5-15Hz, rms- Root Mean Square, F50-
Frequency Containing 50% of Total Power, FRQD- Frequency of Dispersion of the Power
Spectrum, igr- Interquartile Range, min- Minimum Value, CFREQ- Centroidal Frequency, RHL-
Ratio Between Power in High Frequency and Low Frequency, MF- Medium Frequency (4-7Hz),
VHF- Very High Frequency (>7Hz) , HF- Hight Frequency (>4Hz), LF- Low Frequency (0.15-3.5Hz),
trem- Tremor, post- Postural, a- Accelerometer Average Signal, x- Accelerometer Mediolateral
Signal, y- Accelerometer Vertical Signal, z- Accelerometer Anteroposterior Signal, Hz- Hertz,
Voice Task: c_mean_MFCC1-12- Mean Value of Mel Frequency Cepstral Coefficients 1-12,
shbd- Shimmer, gqc- Glottis Quotient Close, p95- 95th Percentile, Tapping Task: Tapping Task:
igr- Interquartile Range, Taplinter- Tap Interval, buttonNoneFreq: Frequency of Tapping Outside
the Button, numberTaps- Number of Taps, DriftRight- Right Drift, corXY- Correlation of X and Y
Positions, DriftLeft- Left Drift, mad- Median Absolute Deviation, min- Minimum, cv- Coefficient,
Sd- Standard Deviation.

Table S10. Results from an analysis of ANOVA for repeated measurements on the features
from Gait task. Features are selected based on Mann-Whitney U test that significantly differ
between PD and HC at the first administration (baseline) (P<.05).

Feature Name Medication diagnosis Repetition Diagnosis x
(PD, HC) Repetition
F P F P F P F P
frec_peak_LB_a 1.03 0.358 23.202 <0.001 0.767 0.547 0.276 0.894
Freezelnd_z 0.864 0.422 3.877 0.049 0.665 0.616 1.012 0.4
iqr_x 0.348 0.706 1.502 0.221 12.892 <0.001 1.77 0.132
MSI 0.637 0.529 14.831 <0.001 0.61 0.655 0.113 0.978
numSteps 0.696 0.499 17.274 <0.001 1.038 0.386 0.067 0.992
median_acc 0.074 0.928 9.673 0.002 2.833 0.023 1.262 0.283
PeakEnerg_LB_x 0.104 0.901 0.003 0.954 12.381 <0.001 1.703 0.147
min_z 0.564 0.57 5.477 0.02 2.724 0.028 3.282 0.011
ApEn_pos_z 0.249 0.779 13.714 <0.001 0.701 0.591 1.472 0.208
Power_LB_x 1.85 0.159 0.215 0.643 8.244 <0.001 1.845 0.118
Power_FB_z 2549 0.08 0.144 0.704 10.235 <0.001 4.719 <0.001
ApEn_pos_a 1.239 0.291 2417 0121 2913 0.02 1.005 0.404
mean_a 3.781 0.024 1.053 0.305 14.267 <0.001 4.027 0.003
iqr_acc 3.521 0.031 0.014 0.904 10.881 <0.001 2.116 0.076

mean_acc 0.411 0.663 9.221 0.002 1353 0.248 0.227 0.923




rms_acc 3.682 0.026 0.088 0.767 8.63 <0.001 4.71 <0.001
rms_y 3.048 0.049 0.433 0.511 6.438 <0.001 4.419 0.001
PeakEnerg_LB_a 0.982 0.376 10.268 0.001 9.974 <0.001 3.02 0.017
RatioPower_y 2,183 0.114 1.898 0.169 8.466 <0.001 3.447 0.008
kur_pos_z 0.724 0.486 10.965 <0.001 0.923 045 2.679 0.03

frec_peak FB_vel 10 0.34 0.712 7.353 0.007 3.544 0.007 1.017 0.397
iqr_z 0.215 0.806 0.109 0.742 6.849 <0.001 1.102 0.354
skew_z 1.658 0.192 9.226 0.002 2.749 0.027 0.267 0.899
frec_peak_FB_a 1.067 0.345 10.735 0.001 1.114 0.348 0.357 0.839
median_a 2.875 0.058 1.003 0.317 13.362 <0.001 2.814 0.024
Freezelnd_x 1.899 0.151 2.681 0.102 0.954 0.432 0.406 0.804
Power_LB_z 0.264 0.768 9.674 0.002 11.043 <0.001 1.32 0.26

max_acc 0.167 0.846 2783 0.096 1306 0.265 3.298 0.011
zer_x 0.546 0.58 4.987 0.026 4.387 0.002 0.827 0.508
Power_LB_y 1.865 0.156 0.256 0.613 2.985 0.018 0.792 0.53

Power_FB_acc 0.771 0.463 1.372 0.242 9.907 <0.001 5.476 <0.001
kur_pos_a 0.934 0.394 0.885 0.347 4982 <0.001 2.408 0.047
iqr_y 4641 0.01 0 1.0 228 0.059 1223 0.299
Freezelnd_a 0.105 09 2124 0.146 1102 0.354 0.584 0.674
Power_FB_vel 0.797 0.452 0.585 0.445 1.37 0.242 1374 0.24

kur_x 0.984 0.375 2438 0.119 0418 0.796 1.969 0.097
frec_peak_LB_z 0.802 0.449 1.013 0.315 2.198 0.067 0.705 0.589
COEFCEPS20_pos_y 0.227 0.797 0 1.0 3391 0.009 051 0.729
COEFCEPS7_z 0.11 0.896 1.377 0.241 0.548 0.7 2725 0.028
PeakEnerg_FB_x 3.604 0.028 9.421 0.002 12.071 <0.001 0.979 0.418
skew_vel 0.582 0.559 20913 <0.001 3.57 0.007 299 0.018
cov_vel 0.67 0.512 12.713 <0.001 2.013 0.09 2.824 0.024
COEFCEPS1_pos_x 0.171 0.843 13.528 <0.001 3.217 0.012 0.333 0.856
iqr_pos_z 0.65 0.523 3476 0.063 6916 <0.001 0.898 0.464
cov_a 0.17 0.844 1463 0227 1341 0.252 1.493 0.202
Freezelnd_pos_a 0.355 0.702 0 1.0 2.16 0.071 1.584 0.176
COEFCEPS9_z 0.153 0.858 0.365 0.546 0.749 0559 1.771 0.132
PeakEnerg_LB_z 0.13 0878 6.525 0.011 11.047 <0.001 0.405 0.805




COEFCEPS8_z 0.086 0.918 0 1.0 0.996 0.408 2.3 0.057
COEFCEPS6_z 0.675 0.51 0.54 0.463 0463 0.763 1.135 0.338
frec_peak_LB_y 0.396 0.674 1.887 0.17 3.161 0.013 0.116 0.977
ApEn_vel 0.54 0.583 18.003 <0.001 2.215 0.065 2.301 0.056
ApEn_pos_x 0.846 0.43 11.025 <0.001 1.571 0.179 2071 0.082
median_y 0.556 0.574 0.268 0.605 2.994 0.018 0.024 0.999
COEFCEPS10_z 0.231 0.794 0.108 0.742 0.859 0.488 1.824 0.122
PeakEnerg_LB_pos_z 0.381 0.683 4.483 0.035 3.138 0.014 0.575 0.681
COEFCEPS1_pos_a 0.496 0.609 3.953 0.047 1476 0.207 0.818 0.514
zCr_pos_z 0.546 0.58 0 1.0 0 1.0 5.182 <0.001
RatioPower_pos_z 0.483 0.617 2316 0.129 3.968 0.003 0.359 0.838
RatioPower_pos_a 1.356 0.259 1.389 0.239 7.854 <0.001 0.326 0.861
Power_FB_pos_z 0.491 0.613 1.871 0.172 4.19 0.002 0.321 0.864
ApEn_pos_y 0.214 0.807 4.055 0.045 2.091 0.079 0.558 0.693
kur_vel 0.449 0.639 14.725 <0.001 1.367 0.243 2.074 0.082
cov_acc 0.433 0.649 0.175 0.676 1.029 0.391 0.864 0.485
min_pos_x 4193 0.016 0.692 0.406 2.735 0.027 0.908 0.458
min_pos_y 2354 0.096 0.069 0.793 6.382 <0.001 1.057 0.377

PD- Parkinson’s Disease, HC- Healthy Control, frec_peak- Frequency at the Peak of Energy,
Freezelnd- Freeze Index, igr-Interquartile Range, MSI- Mean Stride Interval, numSteps- Number
of Steps, PeakEnerg- Peak of Energy, ApEn- Entropy, rms- Root Mean Square, RatioPower - Sum
of the Power in the Freezing and Locomotor Band, skew- Skewness, min- Minimum Value, cov-
Coefficient of Variation, zcr- Zero-Crossing Rate, kur-Kurtosis, COEFCEPS (1-20)- Mel Frequency
Cepstral Coefficients, ar- Coefficient of a 1st Order Autoregressive Model, LB- Locomotor Band,
FB- Freezing Band, vel- Velocity, acc- Acceleration Along Path, a- Accelerometer Average Signal,
x- Accelerometer Mediolateral Signal, y- Accelerometer Vertical Signal, z- Accelerometer

Anteroposterior Signal.

Table S11. Results from an analysis of ANOVA for repeated measurements on the features
from Balance task. Features are selected based on Mann-Whitney U test that significantly
differ between PD and HC at the first administration (baseline) (P<.05).

Feature Name Medication Diagnosis Repetition diagnosis x

(PD, HC) Repetition

F P F P F P F P

Power_MF_tre 1.657 0.192 29.608 <0.001 1.096 0.357 0.549 0.7
m_z

PeakEnerg_ VHF  0.643 0.526 31.861 <0.001 0.165 0.956 0.345 0.848

_trem_x




PeakEnerg_VHF  0.934  0.394 26.313 <0.001 0.927 0.447 0.775 0.542
_trem_z

RHL_trem_z 1.055 0.349 19.372 <0.001 1.848 0.117 1712 0.145
RHL_trem_a 2.235 0.108 29.005 <0.001 1.442 0.217 0.254 0.907
Power_trem_y 0.618 0.54 25.883 <0.001 5.182 <0.001 0.295 0.882
F95_post_y 0.337 0.714 17.64 <0.001 6.648 <0.001 0.241 0.915
Power_trem_z 1956 0.143 13.015 <0.001 2.885 0.021 0.526 0.717
median_trem_a  1.993  0.138 41.154 <0.001 0.738 0.566 0.471 0.757
Power_LF_trem 0.488 0.614 15.785 <0.001 559 <0.001 0.901 0.462

z
EFREQ_post_z 2.744 0.066 9.483 0.002 1.532 0.19 0.772  0.544
F95_post_x 1179 0309 3.449 0.064 3.528 0.007 0.317 0.867
MFREQ_dist_x 0.153  0.858 19.47 <0.001 0 1.0 0.341 0.851
iqr_post_y 1.41 0.245 33.914 <0.001 10.249 <0.001 0.609 0.656
mean_trem_a 1.037 0.355 34.677 <0.001 1.947 0.1 0.934 0.443
kur_trem_x 1231 0.293 3.437 0.064 1804 0.125 0.427 0.789
F95_post_a 2.29 0.103 4361 0.037 0.532 0.712 0.198 0.939
ApEn_trem_x 0.806 0.447 9.629 0.002 4.215 0.002 0.137 0.969
zcr_post_y 0.05 0.952 16.755 <0.001 0 1.0 -1.081 1
median_post_a 1.58 0.207 30.751 <0.001 3.102 0.015 0.698 0.593
iqr_trem_x 3391 0.035 7.537 0.006 2.05 0.085 0.343 0.849
FD_CC_dist_ x_z 1.485 0.228 17.237 <0.001 0.948 0.435 0.819 0.513
F50_post_y 0.611  0.543 13.841 <0.001 4.862 <0.001 2.136 0.074
Power_LF_trem 0317 0.729 3.233 0.073 3.255 0.011 1.005 0.404
X

:ange_trem_y 0.621 0.538 16.464 <0.001 12.134 <0.001 0.764 0.548
MVELO_dist_x 5.03 0.007 11.829 <0.001 12.194 <0.001 0.455 0.769
mean_post_y 4806 0.009 5178 0.023 11917 <0.001 0.328 0.859
min_post_y 0.59 0.555 20.291 <0.001 16.579 <0.001 0.882 0.474
iqr_post_x 6.234 0.002 6.785 0.009 8.167 <0.001 0.463 0.763
kur_post_x 1.217 0.297 6.657 0.01 2.837 0.023 0.282 0.89
rms_trem_a 0.253  0.777 22949 <0.001 2.598 0.035 0.798 0.527
ApEn_post_a 0.817 0.442 5012 0.026 6.458 <0.001 0.616 0.651
skew_post_a 0.981 0.376 16.017 <0.001 3.468 0.008 0.685 0.602




AREA_CC_dist_x 0.229 0.796 21.152 <0.001 2.189 0.068 1.096 0.357
z

FD_dist_x_z 2931 0.055 7.317 0.007 1.018 0.39% 1.194 0.311

cov_trem_a 2753  0.065 14.523 <0.001 1.629 0.164 0.562 0.69

TotalPower_pos  0.188 0.829 4.258 0.039 1.226 0.298 0.496 0.738
tx_z

MFREQ_dist_x_  0.474  0.623 14.312 <0.001 0 1.0 -0.011 1

z

max_post_y 2302 0.102 14.466 <0.001 13.553 <0.001 0.769 0.545
F50_post_x 1.259 0.285 0975 0.324 0.631 0.641 1372 0.241
cov_post_a 2.224 0.11  12.355 <0.001 2.121 0.076 0.056 0.994

range_trem_x 0.251 0.778 1.748 0.187 2.225 0.064 0.5 0.735

ApEn_trem_y 0.825 0439 1051 0.001 3.458 0.008 0.994 0.409

FD_CE_dist_x_z  2.346  0.097 0.523 0.47 1.258 0.284 0.383 0.821

mean_post_z 1.368 0.256 1.085  0.298 1.66 0.156  1.065 0.372

F50_post_a 0.579 0561 0.048 0.827 0.607 0.657 1.1 0.355

Power_LF_trem 1381 0.253 9.566  0.002 1.45 0.215 1.072  0.369
a

max_post_z 3.408 0.034 0.884 0347 6.177 <0.001 0531 0.713

rms_post_a 0.507 0.603 16.826 <0.001 5.5883 <0.001 0.869 0.482

F50_post_x_z 2256 0.106 0.006 0.938 0.157 096 1421 0.224

FREQD_post x ~ 1.612 0.201 2.621 0106 0571 0.684 1.002 0.405

TotalPower_pos  0.38 0.684 2378 0.124 3.339 0.01 0.404  0.806
tz
FREQD_post_x_  0.951  0.387 0.258 0.612 0.194 0.942 0.084 0.987
z
TotalPower_pos  0.043  0.958 14.926 <0.001 7.7 <0.001 0.091 0.985
ty

kur_post_a 1.7 0.184 11.701 <0.001 2.441 0.045 2.134 0.074
max_trem_z 1.652 0.193 1.857 0.174 2.054 0.084 0.54 0.706
jerk_post_y 0375 0.688 7.077 0.008 2766 0.026 0.632 0.64
kur_trem_a 0.071  0.932 0 1.0 2942 0.019 0.856 0.49
kur_trem_y 0.054 0947 0406 0524 2859 0.022 1539 0.188

PD- Parkinson’s Disease, HC- Healthy Control, PeakEnergy - Peak of energy, TotalPower- Energy
between 15-3.5 Hz, rms- Root Mean Square, F50- Frequency Containing 50% of Total Power,
F95- Frequency containing 95% of the total power, FRQD- Frequency of Dispersion of the Power
Spectrum, MFREQ- Mean Frequency, igr- Interquartile Range, kur- Kurtosis, zcr- Zero-Crossing
Rate, ApEn- Entropy, skew- Skewness, jerk- Average jerk, MVELO- Mean velocity, FD- Fractal
Dimension, FD_CE- Fractal Dimension based on the 95% Confidence Ellipse Area, min-



Minimum Value, CFREQ- Centroidal Frequency, RHL- Ratio Between Power in High Frequency
and Low Frequency, dist- Distance, MF- Medium Frequency (4-7Hz), VHF- Very High Frequency
(>7Hz), HF- Hight Frequency (>4Hz), LF- Low Frequency (0.15-3.5Hz), trem- Tremor, post-
Postural, a- Accelerometer Average Signal, x- Accelerometer Mediolateral Signal, y-
Accelerometer Vertical Signal, z- Accelerometer Anteroposterior Signal, Hz- Hertz.

Table S12. Results from an analysis of ANOVA for repeated measurements on the features
from Voice task. Features are selected based on Mann-Whitney U test that significantly differ
between PD and HC at the first administration (baseline) (P<.05).

Feature Name Medication Diagnosis Repetition Diagnosis x
(PD, HC) Repetition
F P F P F P F P
mean_gqc 2,239 0.108 92.952 <0.001 3.284 0.011 2.551 0.037
p5_gqc 0.114 0.892 49.446 <0.001 1938 0.101 0.545 0.703

c_mean_MFCC1 0.492 0.611 38.813 <0.001 24.89 <0.001 1.836 0.119

p95_gac 4.158 0.016 59.181 <0.001 1.531 0.19 1.706  0.146
std_tkeo 0.176 0.838 2.341 0.126  3.392  0.009 1.89 0.109
p95_tkeo 0.543 0.581 4.843 0.028 1932 0.102 0.874 0.478
c_std_d11 1.651 0.193 3.892 0.049 0 1.0 0.786 0.534
hnr_std 0.836 0.434 13.227 <0.001 18.399 <0.001 1.165 0.324
c_std_d12 1.265 0.283 4.053 0.044 0 1.0 4,556  0.001
p75_tkeo 3.092 0.046 1.517 0.218 2435 0.045 2.042 0.086
c_std_d13 2121  0.121 4497 0.034 0 1.0 -2.873 1.0

c_std_d8 0.72 0.487 2.962 0.086 0 1.0 1.201 0.308
c_std_d9 1.669 0.189 3.243 0.072 0 1.0 0.978 0.418

c_mean_MFCC10 1.361 0.257 22916 <0.001 0.796 0.528 0.586 0.673

c_std_d10 2,649 0.072 0 1.0 0 1.0 2.912 0.02
c_std_d7 1.583 0.206 2.291 0.13 0 1.0 2.004 0.091
c_std_dd11 2.3 0.101 0 1.0 0 1.0 6.108 <0.001
c_std_d5 1988 0.138 8873 0.003 6.115 <0.001 0.912 0.456
c_std_d14 1.869  0.155 0 1.0 0 1.0 3.318 0.01
c_std_d6 0.49 0.613 5343 0.021 0 1.0 0.173  0.952

c_mean_MFCC12 4491 0.012 10.811 0.001 2.232 0.063 1.304 0.266

c_std_dd5 2.368  0.095 0 1.0 0 1.0 6.746  <0.001

c_std_d3 2208 0.111 12446 <0.001 2.773 0.026 2.114 0.076




c_std_d4 1.978 0.139 6.739 0.01 3.227 0.012 0.614 0.653
c_std_dd10 3.345 0.036 0 1.0 0 1.0 6.864 <0.001
c_std_dd9 2.126 0.12 0 1.0 0 1.0 6.709 <0.001
c_std_dd8 1.622 0.198 0 1.0 0 1.0 6.034 <0.001
c_std_dd12 1.96 0.142 0 1.0 0 1.0 6.84  <0.001
c_std_MFCC1 0.931 0.395 13.851 <0.001 16.376 <0.001 1.183 0.316
c_std_MFCC5 2,659 0.071 1814 0.178 4.874 <0.001 1.613 0.168
c_std_dd7 3.237 0.04 0 1.0 0 1.0 7.599 <0.001
c_std_dd13 3.163 0.043 0 1.0 0 1.0 6.79  <0.001
c_std_dd6 1.27 0.282 0 1.0 0 1.0 5.008 <0.001
DFA 0.298 0.742 10.114 0.002 1763 0.133 1.062 0.374
c_mean_0Oth 0.815 0.443 26.062 <0.001 43.877 <0.001 1.754 0.135
c_mean_d13 0.43 0.651 0 1.0 0 1.0 3.693  0.005
fm 2,782 0.063 0.054 0.816 4.34 0.002 1546 0.186
c_std_dd4 3.189 0.042 0 1.0 0 1.0 0.546  0.702
¢_mean_MFCC7 1.71 0.182 13.614 <0.001 1.009 0.401 1.73 0.14

c_mean_d4 1.792  0.168 0 1.0 0 1.0 9.902 <0.001
shdb 0.982 0375 7.787 0.005 1985 0.094 0.538 0.708
c_std_dd3 4 0.019 0 1.0 0 1.0 4.832 <0.001
ApEn_fo 0.552 0.576 4946 0.026 5313 <0.001 1.242 0.291
c_std_dd14 2.764  0.064 0 1.0 0 1.0 10.367 <0.001
c_mean_d3 0.123 0.884 0 1.0 0 1.0 9.723  <0.001
c_std_MFCC11 0.292 0.747 0.139 0.709 3.71 0.005 0.946 0.436
c_std_d1 0.414 0661 1.638 0.201 6.838 <0.001 1.692 0.149
c_std_MFCC6 0.936 0393 1.571 0.21 5.619 <0.001 1.651 0.159
¢_mean_MFCC5 2483 0.084 7.142 0.008 2.813 0.024 0.198 0.939
c_mean_MFCC9 1.686 0.186 1.264 0.261 1554 0.184 0.205 0.936
c_std_MFCC9 0.865 0.422 0.041 0.84 4202 0.002 0.825 0.509
rpde 0.274 0.761 4.674 0.031 23.492 <0.001 5.175 <0.001
c_std_MFCC7 1.206 0.3 0.45 0.502 4.679 <0.001 1.148 0.332
c_mean_MFCC8  0.392 0.676 1373 0.242 1.375 0.24 0.552  0.698
c_std_MFCC8 0.084 0919 0.154 0.695 2876 0.022 0.919 0.452
c_mean_MFCC6 0.018 0.982 0936 0.334 2035 0.087 1.011 0.4




c_mean_d2 1.782  0.169 0 1.0 0 1.0 6.742 <0.001
c_mean_d6 0.515 0.598 0 1.0 0 1.0 3.16 0.013
¢_mean_MFCC3 1.393 0.249 1.886 0.17 7.87 <0.001 6.754 <0.001
c_mean_d1 1.664 0.19 0 1.0 0 1.0 7.083 <0.001

PD- Parkinson’s Disease, HC- Healthy Control, c_mean- Mean of the MFCCs Coefficients, log-
Energy of the Signal and the First and Second Derivatives of the MFCCs, MFCC- Mel Frequency
Cepstral Coefficients, c_std- Standard Deviation of the MFCCs Coefficients, gqc- Glottis
Quotient Close, fm- Frequency Modulation, std - Standard Deviation, tkeo- Teager Kaiser
Energy Operator, p5- 5th percentile, p75- 75th Percentile, p95- 95th Percentile, shbd- Shimmer,
hnr- Harmonic to Noise Ratio, d- Delta, d-d- Delta-Delta, DFA- Detrended Fluctuation Analysis,
fO- Fundamental Frequency, ApEn- Pitch Period Entropy, rpde- Recurrence Period Density

Entropy, T- Period.

Table S13. Results from an analysis of ANOVA for repeated measurements on the features
from Tapping task. Features are selected based on Mann-Whitney U test that significantly
differ between PD and HC at the first administration (baseline) (P<.05).

Feature Name Medication Diagnosis Repetition Diagnosis x
(PD, HC) Repetition
F P F P F P F P

numberTaps 4.903 0.008 539.151 <0.001 123.309 <0.001 4.444 0.001
max_TaplInter 0.784 0.457 296.6 <0.001 4.609 0.001 1.233 0.294
range_Taplnter 0.768 0.464 271.738 <0.001 3.207 0.012 1.308 0.264
ar2_Taplnter 0.219 0.803 159.025 <0.001 6.706 <0.001 2.583 0.035
arl_Tapinter 0.194 0.824 268.543 <0.001 10.484 <0.001 3.829 0.004
sd_Taplinter 1 0.369 212428 <0.001 3.804 0.004 1.424 0.223
buttonNoneFreq ~ 0.073 0.929 50.866 <0.001 4.93 <0.001 2.344 0.052
mad_Taplinter 0.524 0.593 87.645 <0.001 0.721 0.578 4.172 0.002
median_DriftRight 0.128 0.88  8.987 0.003 9.747 <0.001 6.351 <0.001
mad_DriftRight 0.167 0.846 8.9 0.003 10.605 <0.001 6.353 <0.001
median_DriftLeft 0.382 0.683 4.491 0.034 3.107 0.015 2.769 0.026
min_Taplnter 1.49 0.226 44.616 <0.001 11.437 <0.001 0.388 0.818
sd_DriftRight 1.279 0.279 4.338  0.037 6.689 <0.001 3.516 0.007
iqr_TaplInter 1.145 0.319 53,591 <0.001 1.054 0.378 2.553 0.037
mad_DriftLeft 0.603 0.548 2594 0.108 11.145 <0.001 6.06 <0.001
sd_DriftLeft 0.297 0.743 4586  0.032 3.469 0.008 2.217 0.065
skew_Taplnter 2.064 0.128 77.596 <0.001 1.117 0.346 2.171  0.07




skew_DriftLeft 2,606 0.075 33.216 <0.001 1.021 0.395 0.684 0.603

kur_DriftLeft 1.888 0.152 29.675 <0.001 1.196 0.31 0.414 0.799
kur_DriftRight 1.34 0.262 55.612 <0.001 2.173 0.069 1.553 0.184
kur_TaplInter 1.672 0.189 45.738 <0.001 0.864 0.484 0.88 0.475
cv_Taplnter 1.466 0.232 8.054 0.005 6.815 <0.001 1.702 0.146
corXY 0.135 0.874 5.935 0.015 21.815 <0.001 2.541 0.038
tkeo_Taplinter 0.373 0.689 26.888 <0.001 0.424 0.792 0.388 0.817
cv_DriftLeft 2.424 0.089 0.005 0.944 0.573 0.682 1.793 0.127

PD- Parkinson’s Disease, HC- Healthy Control, igr- Interquartile Range, Tapinter- Tap Interval,
buttonNoneFreq: Frequency of Tapping Outside the Button, numberTaps- Number of Taps,
DriftRight- Right Drift, corXY- Correlation of X and Y Positions, DriftLeft- Left Drift, mad- Median
Absolute Deviation, min- Minimum, max- Maximum, skew- Skewness, kur- Kurtosis, teko-
Teager-Kaiser Energy Operator, cv- Coefficient, Sd- Standard Deviation, ar (1-2)- Coefficient of
an Autoregressive Model at Lag (1-2).

Table S14. Results from an analysis of ANOVA for repeated measurements on the features
from Gait task controlling for age and sex covariates. Features are selected based on Mann-
Whitney U test that significantly differ between PD and HC at the first administration
(baseline) (P<.05).

Feature Name diagnosis Repetition Diagnosis x

(PD, HC) Repetition
F P F P F P
frec_peak_LB_a 6.944 0.008 1.952 0.163  0.993 0.319
Freezelnd_z 7.058 0.008 5.454 0.02  3.621 0.057

iar_x 0.036 0.85 15.089  <0.001  0.041 0.84
MSI 3.067 0.08 0.45 0.502  0.017 0.897
numSteps 2.087 0.149 0.603 0.438  0.016 0.899
median_acc 2.8 0.094 0.024 0.877  0.408 0.523
PeakEnerg_LB_x 1.405 0.236 12.693 <0.001  0.008 0.927
min_z 11.446 0.001 0.621 0.431 5301 0.021
ApEn_pos_z 5.645 0.018 0.435 051  2.665 0.103
Power_LB_x 0.832 0.362 7.791 0.005  0.001 0.974
Power_FB_z 1.26 0.262 22277  <0.001 4.67 0.031
ApEn_pos_a 0.327 0.567 2.596 0.107  0.207 0.649
mean_a 0.091 0.762 14.784  <0.001  0.961 0.327

iqr_acc 0.228 0.633 16.093 <0.001  2.586 0.108




mean_acc 2.736 0.098 455 0.033 0.79 0.374
rms_acc 0.367 0.545 8.371 0.004  1.099 0.295
rms_y 0.47 0.493 5.649 0.018 1.738 0.188
PeakEnerg_LB_a 0.222 0.637 11.596 0.001  0.531 0.466
RatioPower_y 0.035 0.851 8.374 0.004 1.148 0.284
kur_pos_z 5.757 0.016 1.125 0.289  3.633 0.057
frec_peak_FB_vel 10 7657 0.006 0.503 0.478  2.496 0.114
iar_z 0.054 0.816 5.862 0.016  0.353 0.552
skew_z 1.17 0.28 3.897 0.048  0.053 0.818
frec_peak_FB_a 2.47 0.116 0.422 0.516  0.221 0.638
median_a 1.059 0.304 11.019 0.001 0.1 0.74

Freezelnd_x 0.696 0.404 0.046 0.831  0.227 0.633
Power_LB_z 6.087 0.014 7.609 0.006 0.134 0.715
max_acc 3.393 0.066 0.688 0.407 1.754 0.186
zcr_x 0.341 0.559 3.604 0058 0 0.99

Power_LB_y 0.701 0.402 2.285 0.131 0.111 0.739
Power_FB_acc 0.008 0.927 11.015 0.001 0.7 0.403
kur_pos_a 0.242 0.623 6.086 0.014  0.566 0.452
iar_y 0.005 0.946 1.366 0.243  0.276 0.599
Freezelnd_a 0.266 0.606 2.779 0.096  0.332 0.565
Power_FB_vel 0.001 0.971 0.545 0.461  0.001 0.975
kur_x 0.434 0.51 0.295 0.587  1.733 0.188
frec_peak_LB_z 2.132 0.144 7.517 0.006  1.52 0.218
COEFCEPS20_pos_y 0.592 0.442 2.244 0.134  0.697 0.404
COEFCEPS7_z 4.786 0.029 4.437 0.035 7.071 0.008
PeakEnerg_FB_x 1.881 0.17 8.074 0.005  0.076 0.783
skew_vel 1.274 0.259 3.714 0.054  0.369 0.543
cov_vel 3.082 0.079 0.861 0.354  0.162 0.687
COEFCEPS1_pos_x 2.37 0.124 2.696 0.101  0.043 0.836
iqr_pos_z 1.162 0.281 10.471 0.001  0.629 0.428
cov_a 1.337 0.248 0.003 0.958  1.068 0.302
Freezelnd_pos_a 0.655 0.418 4.943 0.026  2.571 0.109
COEFCEPS9_2z 3.211 0.073 1.042 0.307  2.587 0.108




PeakEnerg_LB_z 4.942 0.026 5.678 0.017  0.342 0.559

COEFCEPS8_z 4.642 0.031 3.393 0.066  4.737 0.03
COEFCEPS6_z 3.364 0.067 3.745 0.053  4.44 0.035
frec_peak_LB_y 0.108 0.742 2.233 0.135  0.017 0.895
ApEn_vel 0.47 0.493 2.22 0.136  0.527 0.468
ApEn_pos_x 1.058 0.304 0.527 0.468  0.003 0.958
median_y 0.04 0.842 4.124 0.042  0.055 0.815
COEFCEPS10_z 1.739 0.187 0.256 0.613  1.947 0.163
PeakEnerg LB_pos_z 1927 0.165 6.041 0.014  0.454 0.5
COEFCEPS1_pos_a 2.811 0.094 0.217 0.641  1.267 0.26
2cr_pos_z 0.51 0.475 7.114 0.008  0.962 0.327
RatioPower_pos_z 0.811 0.368 5.956 0.015 0.14 0.708
RatioPower_pos_a 0.811 0.368 11.062 0.001  0.479 0.489
Power_FB_pos_z 0.647 0.421 6.161 0.013  0.116 0.733
ApEn_pos_y 0.363 0.547 2.754 0.097  0.099 0.753
kur_vel 0.223 0.636 0.957 0328 0.621 0.431
cov_acc 0.078 0.781 0.001 0.976  0.092 0.762
min_pos_x 0.001 0.979 3.915 0.048  0.132 0.716
min_pos_y 1.527 0.217 10.666 0.001  1.791 0.181

PD- Parkinson’s Disease, HC- Healthy Control, frec_peak- Frequency at the Peak of Energy,
Freezelnd- Freeze Index, igr-Interquartile Range, MSI- Mean Stride Interval, numSteps- Number
of Steps, PeakEnerg- Peak of Energy, ApEn- Entropy, rms- Root Mean Square, RatioPower - Sum
of the Power in the Freezing and Locomotor Band, skew- Skewness, min- Minimum Value, cov-
Coefficient of Variation, zcr- Zero-Crossing Rate, kur-Kurtosis, COEFCEPS (1-20)- Mel Frequency
Cepstral Coefficients, ar- Coefficient of a 1st Order Autoregressive Model, LB- Locomotor Band,
FB- Freezing Band, vel- Velocity, acc- Acceleration Along Path, a- Accelerometer Average Signal,
x- Accelerometer Mediolateral Signal, y- Accelerometer Vertical Signal, z- Accelerometer
Anteroposterior Signal.

Table S15. Results from an analysis of ANOVA for repeated measurements on the features
from Balance task controlling for age and sex covariates. Features are selected based on
Mann-Whitney U test that significantly differ between PD and HC at the first administration
(baseline) (P<.05).
Feature Name Diagnosis Repetition diagnosis x Repetition
(PD, HC)
F P F P F P

Power_MF_tre
m_z

13.924 <0.001 1.713 0.191 0.442 0.506




PeakEnerg_VHF

“trem. x 9.384 0.002 0.469 0.494 0.259 0.611
Efrzkriiirg—VHF 6.816 0.009 0.168 0.682 0.106 0.745
RHL_trem_z 1.821 0.177 0.127 0.721 1.904 0.168
RHL_trem_a 9.039 0.003 0.254 0.614 0.24 0.624
Power_trem_y 13.351 <0.001 3.324 0.068 0.653 0.419
F95_post_y 1.028 0.311 4.288 0.038 0.011 0.916
Power_trem_z 9.023 0.003 4.007 0.045 0.363 0.547
median_trem_a 11 706 0.001 0.562 0.454 0.01 0.92
Pi’wer—LF—trem 2.945 0.086 7.861 0.005 0.267 0.606
CFREQ_post_z 7.946 0.005 0.048 0.826 2.48 0.115
F95_post_x 0.03 0.863 3.62 0.057 0.032 0.859
MFREQ_dist_x 3.866 0.049 0.051 0.821 0.041 0.839
igr_post_y 12.53 <0.001 6.415 0.011 1.226 0.268
mean_trem_a 10.042 0.002 2.076 0.15 0.001 0.98
kur_trem_x 0.68 0.41 0.024 0.878 0.471 0.492
F95_post_a 0.473 0.492 0.561 0.454 0.031 0.86
ApEn_trem_x 1.082 0.298 1.172 0.279 0.091 0.763
zcr_post_y 4.644 0.031 2.524 0.112 0.001 0.971
median_post_a 13753 <0.001 1.11 0.292 0.959 0.327
iqr_trem_x 1.52 0.218 2.875 0.09 0.163 0.686
FD_CC_dist x .z 5802 0.016 1.641 0.2 1.19 0.275
F50_post_y 0.082 0.775 11.891 0.001 2.087 0.149
P)‘(""’er—LF—trem 3.671 0.055 6.652 0.01 1.175 0.279
range_trem_y 10.445 0.001 4.427 0.035 1.457 0.228
MVELO_dist_x 2.023 0.155 16.408 <0.001 0.043 0.835
mean_post_y 0.169 0.681 21.508 <0.001 0.221 0.638
min_post_y 6.601 0.01 10.242 0.001 0.389 0.533
iqr_post_x 2.773 0.096 8.123 0.004 0.196 0.658
kur_post_x 0.667 0.414 0.241 0.624 0.056 0.813
rms_trem_a 7.56 0.006 1.993 0.158 0 0.986
ApEn_post_a 0.019 0.89 0.304 0.581 0.949 0.33




skew_post_a 1.915 0.166 0.243 0.622 0.082 0.775
AREA_CC_dist_

Y 6.846 0.009 0.303 0.582 0.691 0.406
FD_dist_x_z 5.323 0.021 2.363 0.124 2.494 0.114
cov_trem_a 1.552 0.213 0.274 0.6 0 0.994
I";a'zpwer—pos 0.701 0.403 0 0.995 0 0.988
L\AFREQ—diSt—X— 3.421 0.064 0.81 0.368 0.364 0.546
max_post_y 9.211 0.002 6.602 0.01 1.224 0.269
F50_post_x 1.008 0.315 2.508 0.113 1.285 0.257
cov_post_a 1.915 0.166 0.238 0.626 0 0.987
range_trem_x 0.846 0.358 4,672 0.031 0.925 0.336
ApEn_trem_y 0.042 0.838 0.031 0.861 1.655 0.198
FD_CE_dist_x_z 0.222 0.638 1.003 0.317 0.596 0.44
mean_post_z 2.909 0.088 0.82 0.365 3.05 0.081
F50_post_a 0.002 0.966 0.028 0.867 0.001 0.974
Pgwer—LF—trem 1.369 0.242 0.167 0.683 0.003 0.958
max_post_z 0.452 0.502 13.973 <0.001 0.765 0.382
rms_post_a 7.417 0.007 2.16 0.142 0.535 0.464
F50_post_x_z 0.012 0.913 0.03 0.862 0.007 0.931
FREQD_post_x 0.414 0.52 2.813 0.094 2.632 0.105
I°Ztalpower—p°s 0.251 0.616 5.167 0.023 0.102 0.75
:REQD—pOSt—X— 0.271 0.602 0.259 0.611 0.205 0.65
If;alpower-pos 5.136 0.024 4.032 0.045 0.116 0.733
kur_post_a 2.183 0.14 0.604 0.437 0.07 0.791
max_trem_z 0.366 0.545 3.539 0.06 0.49 0.484
jerk_post_y 4.462 0.035 2.007 0.157 0.247 0.619
kur_trem_a 1.351 0.245 0.26 0.61 0.286 0.593
kur_trem_y 1.349 0.246 0.001 0.977 0.433 0.511

PD- Parkinson’s Disease, HC- Healthy Control, PeakEnergy - Peak of energy, TotalPower- Energy
between 15-3.5 Hz, rms- Root Mean Square, F50- Frequency Containing 50% of Total Power,
F95- Frequency containing 95% of the total power, FRQD- Frequency of Dispersion of the Power
Spectrum, MFREQ- Mean Frequency, igr- Interquartile Range, kur- Kurtosis, zcr- Zero-Crossing
Rate, ApEn- Entropy, skew- Skewness, jerk- Average jerk, MVELO- Mean velocity, FD- Fractal



Dimension, FD_CE- Fractal Dimension based on the 95% Confidence Ellipse Area, min-
Minimum Value, CFREQ- Centroidal Frequency, RHL- Ratio Between Power in High Frequency
and Low Frequency, dist- Distance, MF- Medium Frequency (4-7Hz), VHF- Very High Frequency
(>7Hz), HF- Hight Frequency (>4Hz), LF- Low Frequency (0.15-3.5Hz), trem- Tremor, post-
Postural, a- Accelerometer Average Signal, x- Accelerometer Mediolateral Signal, y-
Accelerometer Vertical Signal, z- Accelerometer Anteroposterior Signal, Hz- Hertz.

Table S16. Results from an analysis of ANOVA for repeated measurements on the features
from Voice task controlling for age and sex covariates. Features are selected based on Mann-
Whitney U test that significantly differ between PD and HC at the first administration
(baseline) (P<.05).

Feature Name Diagnosis Repetition Diagnosis x
(PD, HC) Repetition
F P F P F P

mean_gaqc 2.682 0.102 20.802 <0.001 9.344 0.002
p5_gac 3.736 0.053 0.638 0.425 0.01 0.921
c_mean_MFCC1 19.933 <0.001 17.793 <0.001 5.558 0.018
p95_gac 0.263 0.608 10.682 0.001 5.969 0.015
std_tkeo 0.005 0.942 0.215 0.643 2.366 0.124
p95_tkeo 0.075 0.785 0.448 0.503 0.996 0.318
c_std_d11 2.403 0.121 8.726 0.003 5.208 0.023
hnr_std 3.659 0.056 8.595 0.003 3.808 0.051
c_std_d12 6.39 0.012 19.707 <0.001 14.38 <0.001
p75_tkeo 0.544 0.461 0.035 0.852 3.077 0.079
c_std_d13 4.411 0.036 9.512 0.002 8.334 0.004
c_std_d8 2.207 0.137 6.708 0.01 6.044 0.014
c_std_d9 3.096 0.079 12.871 <0.001 5.54 0.019
c_mean_MFCC10 3742 0.053 0.892 0.345 0.147 0.702
c_std_d10 2.394 0.122 11.998 0.001 7.408 0.007
c_std_d7 3.362 0.067 12.585 <0.001 8.865 0.003
c_std_dd11 1.264 0.261 8.035 0.005 7.171 0.007
c_std_d5 4,501 0.034 6.582 0.01 4.272 0.039
c_std_d14 3.095 0.079 9.011 0.003 6.748 0.009
c_std_d6 4.115 0.043 8.333 0.004 4.673 0.031
c_mean_MFCC12 0039 0.843 0.958 0.328 0.021 0.884

c_std_dd5 2.417 0.12 6.101 0.014 4911 0.027




c_std_d3 10.323 0.001 3.912 0.048 5.943 0.015
c_std_d4 2.603 0.107 1.899 0.168 1.285 0.257
c_std_dd10 0.896 0.344 9.493 0.002 8.42 0.004
c_std_dd9 1.996 0.158 13.165 <0.001 8.368 0.004
c_std_dd8 1.061 0.303 7.266 0.007 7.507 0.006
c_std_dd12 2.707 0.1 15.194 <0.001 12.525 <0.001
c_std_MFCC1 4.081 0.043 8.317 0.004 3.379 0.066
c_std_MFCC5 0.458 0.499 0.054 0.816 6.062 0.014
c_std_dd7 1.648 0.199 12.355 <0.001 10.179 0.001
c_std_dd13 2.037 0.154 9.669 0.002 9.633 0.002
c_std_ddé 2.063 0.151 8.666 0.003 6.784 0.009
DFA 5.291 0.021 2.569 0.109 0.686 0.408
c_mean_Oth 0.004 0.952 63.748 <0.001 0.271 0.602
c_mean_d13 2.171 0.141 0.185 0.667 1.415 0.234
fm 0.006 0.94 2.907 0.088 1.257 0.262
c_std_dd4 0.986 0.321 2.298 0.13 1.526 0.217
c_mean_MFCC7 0.178 0.673 1.267 0.26 4,599 0.032
c_mean_d4 0.562 0.453 26.502 <0.001 8.242 0.004
shdb 0.005 0.944 0.087 0.769 0.595 0.441
c_std_dd3 8.805 0.003 8.041 0.005 10.768 0.001
ApEn_f0 0.025 0.875 5.173 0.023 0.089 0.765
c_std_dd14 1.961 0.162 10.961 0.001 11.192 0.001
¢_mean_d3 4.019 0.045 7.308 0.007 0.455 0.5

c_std_MFCC11 0.121 0.728 0.613 0.434 3.232 0.072
c_std_d1 2.081 0.149 0.033 0.856 3.754 0.053
c_std_MFCC6 0.446 0.504 0.55 0.458 3.634 0.057
c_mean_MFCC5 1.023 0.312 5.317 0.021 0.415 0.519
c_mean_MFCC9 0.676 0.411 3.936 0.047 0.266 0.606
c_std_MFCC9 0.258 0.611 2.172 0.141 0.693 0.405
rpde 1.348 0.246 55.031 <0.001 3.912 0.048
c_std_MFCC7 0.064 0.801 1.815 0.178 2.478 0.116
c_mean_MFCC8 4.007 0.045 2.391 0.122 0.23 0.632
c_std_MFCC8 0.125 0.724 0.585 0.444 1.576 0.209




c_mean_MFCC6 4.507 0.034 7.557 0.006 3.609 0.058
c_mean_d2 0.486 0.486 6.366 0.012 7.916 0.005
c_mean_d6 0.428 0.513 4818 0.028 4.267 0.039
c_mean_MFCC3 5.996 0.014 45.224 <0.001 16.228  <0.001

c_mean_d1 0.372 0.542 8.089 0.004 8.215 0.004

PD- Parkinson’s Disease, HC- Healthy Control, c_mean- Mean of the MFCCs Coefficients, log-
Energy of the Signal and the First and Second Derivatives of the MFCCs, MFCC- Mel Frequency
Cepstral Coefficients, c_std- Standard Deviation of the MFCCs Coefficients, gqc- Glottis
Quotient Close, fm- Frequency Modulation, std - Standard Deviation, tkeo- Teager Kaiser
Energy Operator, p5- 5th percentile, p75- 75th Percentile, p95- 95th Percentile, shbd- Shimmer,
hnr- Harmonic to Noise Ratio, d- Delta, d-d- Delta-Delta, DFA- Detrended Fluctuation Analysis,
fO- Fundamental Frequency, ApEn- Pitch Period Entropy, rpde- Recurrence Period Density

Entropy, T- Period.

Table S17. Results from an analysis of ANOVA for repeated measurements on the features
from Tapping task controlling for age and sex covariates. Features are selected based on
Mann-Whitney U test that significantly differ between PD and HC at the first administration

(baseline) (P<.05).

Feature Name Diagnosis Repetition Diagnosis x

(PD, HC) Repetition

F P F P F P

numberTaps 173.949  <0.001  270.014  <0.001 4.113 0.043
max_Taplnter 87.799 <0.001 3.689 0.055 0.731 0.393
range_Taplinter 80.469 <0.001 1.652 0.199 0.92 0.338
ar2_Taplnter 64.885 <0.001 22.39 <0.001 4.956 0.026
arl_Taplinter 70.435 <0.001 18.438 <0.001 0.414 0.52
sd_Taplinter 69.546 <0.001 2.817 0.093 0.345 0.557
buttonNoneFreq 19.865 <0.001 12.57 <0.001 1.617 0.204
mad_Taplnter 25.648 <0.001 3.08 0.079 1.046 0.306
median_DriftRight 16 128 <0.001 54.313 <0.001 20.345 <0.001
mad_DriftRight 15.047 <0.001 52.104 <0.001 16.997  <0.001
median_DriftLeft 9.186 0.002 14.847  <0.001 9.512 0.002
min_Taplnter 10.072 0.002 29.031 <0.001 0.952 0.329
sd_DriftRight 7.7 0.006 36.815 <0.001 12.629 <0.001
igqr_Taplinter 13.74 <0.001 4.417 0.036 1.163 0.281
mad_DriftLeft 9.532 0.002 53.309 <0.001 21.249 <0.001
sd_DriftlLeft 3.802 0.051 13.604  <0.001 4.779 0.029




skew_Taplnter 13.569 <0.001 0.109 0.742 0.322 0.57

skew_DriftLeft 10.641 0.001 0.329 0.566 0.543 0.461
kur_DriftLeft 7.054 0.008 0.056 0.813 0.159 0.69
kur_DriftRight 5.379 0.02 10.3 0.001 3.462 0.063
kur_Taplnter 6.747 0.009 0.796 0.372 0.001 0.978
cv_Taplinter 1.777 0.183 7.905 0.005 1.254 0.263
corXy 12.801  <0.001  39.047  <0.001 3.865 0.049
tkeo_Taplnter 2.802 0.094 0.042 0.837 0.571 0.45
cv_DriftLeft 5.924 0.015 4.297 0.038 3.211 0.073

PD- Parkinson’s Disease, HC- Healthy Control, igr- Interquartile Range, Tapinter- Tap Interval,
buttonNoneFreq: Frequency of Tapping Outside the Button, numberTaps- Number of Taps,
DriftRight- Right Drift, corXY- Correlation of X and Y Positions, DriftLeft- Left Drift, mad- Median
Absolute Deviation, min- Minimum, max- Maximum, skew- Skewness, kur- Kurtosis, teko-
Teager-Kaiser Energy Operator, cv- Coefficient, Sd- Standard Deviation, ar (1-2)- Coefficient of
an Autoregressive Model at Lag (1-2).

Table S18. Results from an analysis of rm-ANOVA for elapse-time between repetition on the
features from Gait task with controlling for age and sex covariates. Features are selected
based on Mann-Whitney U test that significantly differ between PD and HC at the first
administration (baseline) (P<.05).

Feature Name diagnosis Elapsed-time Diagnosis x Elapsed-
(PD, HC) time

F P F P F P
frec_peak_LB_a 6.944 0.008 0.587 0.444 0514 0.474
Freezelnd_z 7.058 0.008 2.381 0.123  4.074 0.044
iar_x 0.036 0.85 0.468 0.494  2.821 0.093
MSI 3.067 0.08 0.027 0.87 0312 0.577
numSteps 2.087 0.149 0.052 0.819  0.429 0.513
median_acc 2.8 0.094 1.017 0.313  2.433 0.119
PeakEnerg_LB_x 1.405 0.236 0.238 0.626  1.68 0.195
min_z 11.446 0.001 0.038 0.846  0.03 0.862
ApEn_pos_z 5.645 0.018 0.024 0.876  1.011 0.315
Power_LB_x 0.832 0.362 0.908 0.341  3.932 0.047
Power_FB_z 1.26 0.262 0.033 0.855  0.044 0.833
ApEn_pos_a 0.327 0.567 2.002 0.157 2.41 0.121

mean_a 0.091 0.762 0.869 0.351 1.93 0.165




iqr_acc 0.228 0.633 0.102 0.749  0.161 0.688
mean_acc 2.736 0.098 0.029 0.864  0.132 0.716
rms_acc 0.367 0.545 0.079 0.778  0.284 0.594
rms_y 0.47 0.493 0.201 0.654 1.118 0.29
PeakEnerg_LB_a 0.222 0.637 0.101 0.751  0.197 0.657
RatioPower_y 0.035 0.851 0.157 0.692  1.339 0.247
kur_pos_z 5.757 0.016 0.08 0.777 0514 0.474
frec_peak_FB_vel 7.657 0.006 1.89 0.169  2.779 0.096
iar_z 0.054 0.816 2.288 013 2123 0.145
skew_z 1.17 0.28 0.327 0.567  0.001 0.981
frec_peak_FB_a 2.47 0.116 2.913 0.088  0.279 0.598
median_a 1.059 0.304 1.682 0.195  2.464 0.117
Freezelnd_x 0.696 0.404 1.935 0.164  4.066 0.044
Power_LB_z 6.087 0.014 0.255 0.614 1.424 0.233
max_acc 3.393 0.066 0.162 0.687  0.821 0.365
zcr_x 0.341 0.559 0.023 0.88  3.326 0.068
Power_LB_y 0.701 0.402 0.585 0.444  2.772 0.096
Power_FB_acc 0.008 0.927 0.637 0.425  0.143 0.705
kur_pos_a 0.242 0.623 1.089 0.297  1.446 0.229
iar_y 0.005 0.946 1.297 0.255  2.27 0.132
Freezelnd_a 0.266 0.606 0 0.989  0.507 0.477
Power_FB_vel 0.001 0.971 1.025 0311  1.475 0.225
kur_x 0.434 0.51 0.112 0.738  1.005 0.316
frec_peak_LB_z 2.132 0.144 0.542 0.462  0.213 0.644
COEFCEPS20_pos_y 0.592 0.442 1.671 0.196  2.712 0.1
COEFCEPS7_z 4.786 0.029 0.004 0.95  0.048 0.827
PeakEnerg_FB_x 1.881 0.17 0.107 0.744  0.044 0.833
skew_vel 1.274 0.259 0.352 0.553  1.082 0.298
cov_vel 3.082 0.079 0.124 0.725  0.335 0.563
COEFCEPS1_pos_x 237 0.124 0.133 0.715  0.998 0.318
iqr_pos_z 1.162 0.281 0.456 0.5 0.007 0.933
cov_a 1.337 0.248 1.743 0.187  1.226 0.268
Freezelnd_pos_a 0.655 0.418 0.058 0.81  0.204 0.651




COEFCEPS9_z 3.211 0.073 0.194 0.659  0.033 0.856
PeakEnerg_LB_z 4,942 0.026 0.969 0.325 1917 0.166
COEFCEPS8_z 4.642 0.031 0.367 0.545  0.301 0.584
COEFCEPS6_z 3.364 0.067 0 0.988  0.032 0.859
frec_peak LB_y 0.108 0.742 0 0.994  0.113 0.737
ApEn_vel 0.47 0.493 0.531 0.466  1.529 0.216
ApEn_pos_x 1.058 0.304 0.064 0.8 4.145 0.042
median_y 0.04 0.842 0.232 0.63  0.657 0.418
COEFCEPS10_z 1.739 0.187 4.545 0.033  3.519 0.061
PeakEnerg LB_pos_z 1927 0.165 0.886 0.347 0.123 0.726
COEFCEPS1_pos_a 2.811 0.094 1.017 0.313 223 0.135
2cr_pos_z 0.51 0.475 0.2 0.654  0.019 0.889
RatioPower_pos_z 0.811 0.368 0.792 0.374  0.076 0.782
RatioPower_pos_a 0.811 0.368 1.351 0.245 0.384 0.535
Power_FB_pos_z 0.647 0.421 0.812 0.367  0.083 0.773
ApEn_pos_y 0.363 0.547 0.664 0.415 0.621 0.431
kur_vel 0.223 0.636 0.747 0.387  1.305 0.253
cov_acc 0.078 0.781 0.002 0.965  0.143 0.706
min_pos_x 0.001 0.979 0.025 0.876  0.012 0.913
min_pos_y 1.527 0.217 0.197 0.657  0.137 0.711

PD- Parkinson’s Disease, HC- Healthy Control, frec_peak- Frequency at the Peak of Energy,
Freezelnd- Freeze Index, igr-Interquartile Range, MSI- Mean Stride Interval, numSteps- Number
of Steps, PeakEnerg- Peak of Energy, ApEn- Entropy, rms- Root Mean Square, RatioPower - Sum
of the Power in the Freezing and Locomotor Band, skew- Skewness, min- Minimum Value, cov-
Coefficient of Variation, zcr- Zero-Crossing Rate, kur-Kurtosis, COEFCEPS (1-20)- Mel Frequency
Cepstral Coefficients, ar- Coefficient of a 1st Order Autoregressive Model, LB- Locomotor Band,
FB- Freezing Band, vel- Velocity, acc- Acceleration Along Path, a- Accelerometer Average Signal,
x- Accelerometer Mediolateral Signal, y- Accelerometer Vertical Signal, z- Accelerometer

Anteroposterior Signal.

Table $29. Results from an analysis of rm-ANOVA for elapsed-time between repetition on the
features from Balance task with controlling for age and sex covariates. Features are selected

based on Mann-Whitney U test that significantly differ between PD and HC at the first

administration (baseline) (P<.05).

Feature Name Diagnosis
(PD, HC)

Elapsed-time

diagnosis x Elapsed-

time

F

P

p

P




Power_MF_tre

o 13.924 <0.001 0.854 0.355 1.034 0.309
ifrzkriiirg—VHF 9.384 0.002 0.005 0.942 0.752 0.386
Eteraeﬁifrg—VHF 6.816 0.009 0.012 0.912 0.303 0.582
RHL_trem_z 1.821 0.177 0.008 0.93 0.019 0.891
RHL_trem_a 9.039 0.003 0.187 0.666 0.284 0.594
Power_trem_y 13.351 <0.001 0.795 0.373 0.39 0.533
F95_post_y 1.028 0.311 2.783 0.095 2.708 0.1

Power_trem_z 9.023 0.003 2.267 0.132 3.226 0.073
median_trem_a 11706 0.001 0.431 0.512 0.009 0.925
P‘;""er—LF—trem 2.945 0.086 3.484 0.062 1.019 0.313
CFREQ_post_z 7.946 0.005 0.522 0.47 0.136 0.712
F95_post_x 0.03 0.863 0.8 0.371 2.23 0.135
MFREQ_dist_x 3.866 0.049 0.472 0.492 0.325 0.568
igr_post_y 12.53 <0.001 0.177 0.674 1.407 0.236
mean_trem_a 10.042 0.002 1.606 0.205 0.125 0.724
kur_trem_x 0.68 0.41 0.128 0.72 0.022 0.883
F95_post_a 0.473 0.492 0.734 0.392 0.035 0.852
ApEn_trem_x 1.082 0.298 0.156 0.693 0.128 0.72
zcr_post_y 4.644 0.031 0.231 0.631 0.848 0.357
median_post_a 13 753 <0.001 3.774 0.052 2.274 0.132
iqr_trem_x 1.52 0.218 0.712 0.399 0.114 0.736
FD_CC_dist x z 5802 0.016 0.006 0.941 0.102 0.75
F50_post_y 0.082 0.775 13.787 <0.001 9.119 0.003
P)‘(""’er—LF—trem 3.671 0.055 0 0.998 1.853 0.174
range_trem_y 10.445 0.001 0.562 0.453 0.284 0.594
MVELO_dist_x 2.023 0.155 0.559 0.455 0.016 0.899
mean_post_y 0.169 0.681 2.854 0.091 2.325 0.127
min_post_y 6.601 0.01 0.24 0.624 1.263 0.261
iqr_post_x 2.773 0.096 1.81 0.179 0.601 0.438
kur_post_x 0.667 0.414 0.173 0.678 0.002 0.967
rms_trem_a 7.56 0.006 2.954 0.086 0.245 0.621




ApEn_post_a 0.019 0.89 0.207 0.65 0.072 0.788

skew_post_a 1.915 0.166 0.184 0.668 0.001 0.977
QRZEA-CC—diSt— 6.846 0.009 4.776 0.029 4.564 0.033
FD_dist_x_z 5.323 0.021 0.139 0.709 0.096 0.756
cov_trem_a 1.552 0.213 0.577 0.447 0.318 0.573
I°;alzp°wer—p°5 0.701 0.403 5.833 0.016 1.417 0.234
L\ﬂFREQ-diSt-X- 3.421 0.064 0.023 0.88 0 1

max_post_y 9.211 0.002 0.495 0.482 1.869 0.172
F50_post_x 1.008 0.315 0.488 0.485 0.09 0.764
cov_post_a 1.915 0.166 1.204 0.273 0.451 0.502
range_trem_x 0.846 0.358 0.17 0.68 0.143 0.705
ApEn_trem_y 0.042 0.838 4.86 0.028 5.292 0.021
FD_CE_dist_x_z 0.222 0.638 0.824 0.364 0.018 0.892
mean_post_z 2.909 0.088 3.298 0.069 4.407 0.036
F50_post_a 0.002 0.966 2.051 0.152 0.404 0.525
Pgwer—LF—trem 1.369 0.242 3.606 0.058 0.424 0.515
max_post_z 0.452 0.502 8.326 0.004 6.825 0.009
rms_post_a 7.417 0.007 6.689 0.01 3.242 0.072
F50_post_x_z 0.012 0.913 1.016 0.313 0.157 0.692
FREQD_post_x 0.414 0.52 1.239 0.266 0.249 0.618
I°Ztalpower—p°s 0.251 0.616 7.714 0.006 3.893 0.049
:REQD—pOSt—X— 0.271 0.602 0.158 0.691 0.572 0.45
I_";alpower-pos 5.136 0.024 0.121 0.728 1.147 0.284
kur_post_a 2.183 0.14 0.023 0.878 0.01 0.92
max_trem_z 0.366 0.545 2.946 0.086 4.203 0.04
jerk_post_y 4.462 0.035 0.089 0.766 0.12 0.729
kur_trem_a 1.351 0.245 0.042 0.838 0.01 0.919
kur_trem_y 1.349 0.246 0.194 0.66 0.479 0.489

PD- Parkinson’s Disease, HC- Healthy Control, PeakEnergy - Peak of energy, TotalPower- Energy
between 15-3.5 Hz, rms- Root Mean Square, F50- Frequency Containing 50% of Total Power,
F95- Frequency containing 95% of the total power, FRQD- Frequency of Dispersion of the Power



Spectrum, MFREQ- Mean Frequency, igr- Interquartile Range, kur- Kurtosis, zcr- Zero-Crossing
Rate, ApEn- Entropy, skew- Skewness, jerk- Average jerk, MVELO- Mean velocity, FD- Fractal
Dimension, FD_CE- Fractal Dimension based on the 95% Confidence Ellipse Area, min-
Minimum Value, CFREQ- Centroidal Frequency, RHL- Ratio Between Power in High Frequency
and Low Frequency, dist- Distance, MF- Medium Frequency (4-7Hz), VHF- Very High Frequency
(>7Hz), HF- Hight Frequency (>4Hz), LF- Low Frequency (0.15-3.5Hz), trem- Tremor, post-
Postural, a- Accelerometer Average Signal, x- Accelerometer Mediolateral Signal, y-
Accelerometer Vertical Signal, z- Accelerometer Anteroposterior Signal, Hz- Hertz.

Table S20. Results from an analysis of rm-ANOVA for elapsed-time between repetition on the
features from Voice task with controlling for age and sex covariates. Features are selected
based on Mann-Whitney U test that significantly differ between PD and HC at the first
administration (baseline) (P<.05).

Feature Name Diagnosis Elapsed-time Diagnosis x
(PD, HC) Elapsed-time
F P F P F P

mean_gqc 2.682 0.102 0.864 0.353 0.33 0.566
pS_gqc 3.736 0.053 0.43 0.512 0.13 0.719
c_mean_MFCC1 19933 <0.001 0.222 0.637 3.691 0.055
p95_gac 0.263 0.608 0.004 0.95 0.01 0.921
std_tkeo 0.005 0.942 0.707 0.401 0.011 0.915
p95_tkeo 0.075 0.785 0.264 0.607 0.073 0.786
c_std_d11 2.403 0.121 2.202 0.138 0.06 0.806
hnr_std 3.659 0.056 0.111 0.739 0.046 0.831
c_std_d12 6.39 0.012 5.903 0.015 2.081 0.149
p75_tkeo 0.544 0.461 0.821 0.365 0.417 0.519
c_std_d13 4.411 0.036 4.223 0.04 1.025 0.311
c_std_d8 2.207 0.137 4.926 0.027 1.566 0.211
c_std_d9 3.096 0.079 3.292 0.07 0.379 0.538
c_mean_MFCC10 3743 0.053 0.786 0.375 0.002 0.961
c_std_d10 2.394 0.122 5.104 0.024 1.247 0.264
c_std_d7 3.362 0.067 4.4 0.036 1.44 0.23
c_std_dd11 1.264 0.261 1.162 0.281 0.249 0.618
c_std_d5 4.501 0.034 3.478 0.062 1.019 0.313
c_std_d14 3.095 0.079 1.319 0.251 0.483 0.487

c_std_dé 4.115 0.043 2.967 0.085 0.698 0.404




c_mean_MFCC12 (039 0.843 1.216 0.27 0.082 0.775
c_std_dd5 2.417 0.12 2.163 0.141 0.482 0.488
c_std_d3 10.323 0.001 0.543 0.461 0.072 0.788
c_std_d4 2.603 0.107 0.538 0.463 0 0.989
c_std_dd10 0.896 0.344 2.078 0.149 0.234 0.628
c_std_dd9 1.996 0.158 2.366 0.124 0.034 0.854
c_std_dd8 1.061 0.303 3.2 0.074 0.784 0.376
c_std_dd12 2.707 0.1 3.411 0.065 0.646 0.422
c_std_MFCC1 4.081 0.043 0.091 0.762 0.511 0.475
c_std_MFCC5 0.458 0.499 0.019 0.889 0 0.996
c_std_dd7 1.648 0.199 2.823 0.093 0.428 0.513
c_std_dd13 2.037 0.154 3.453 0.063 0.653 0.419
c_std_ddé 2.063 0.151 1.882 0.17 0.717 0.397
DFA 5.291 0.021 0.388 0.534 0.225 0.635
c_mean_Oth 0.004 0.952 6.935 0.008 1.78 0.182
c_mean_d13 2.171 0.141 0.01 0.922 0.211 0.646
fm 0.006 0.94 0.34 0.56 0.264 0.607
c_std_dd4 0.986 0.321 0.293 0.588 0.032 0.858
c_mean_MFCC7 0.178 0.673 0.661 0.416 2.161 0.142
c_mean_d4 0.562 0.453 1.98 0.159 0.006 0.939
shdb 0.005 0.944 0.248 0.618 0.001 0.972
c_std_dd3 8.805 0.003 0.82 0.365 0.273 0.602
ApEn_f0 0.025 0.875 2.595 0.107 0.225 0.635
c_std_dd14 1.961 0.162 1.393 0.238 0.461 0.497
¢_mean_d3 4.019 0.045 0.733 0.392 11.176 0.001
c_std_MFCC11 0.121 0.728 0.485 0.486 2.227 0.136
c_std_d1 2.081 0.149 0.013 0.908 0.312 0.577
c_std_MFCC6 0.446 0.504 0.521 0.47 2.602 0.107
c_mean_MFCC5 1.023 0.312 8.88 0.003 3.676 0.055
c_mean_MFCC9 0.676 0.411 7.4 0.007 1.474 0.225
c_std_MFCC9 0.258 0.611 0.243 0.622 1.114 0.291
rpde 1.348 0.246 7.508 0.006 1.289 0.256
c_std_MFCC7 0.064 0.801 0.03 0.863 0.118 0.731




c_mean_MFCC8 4.007 0.045 6.575 0.01 0.554 0.457

c_std_MFCC8 0.125 0.724 0.98 0.322 0.057 0.812
c_mean_MFCC6 4.507 0.034 5.187 0.023 0.884 0.347
c_mean_d2 0.486 0.486 0.971 0.324 1.459 0.227
c_mean_d6 0.428 0.513 1.936 0.164 3.473 0.062
c_mean_MFCC3 5.996 0.014 12.14 <0.001 2.928 0.087
¢_mean_d1 0.372 0.542 1.09 0.296 1.326 0.249

PD- Parkinson’s Disease, HC- Healthy Control, c_mean- Mean of the MFCCs Coefficients, log-
Energy of the Signal and the First and Second Derivatives of the MFCCs, MFCC- Mel Frequency
Cepstral Coefficients, c_std- Standard Deviation of the MFCCs Coefficients, gqc- Glottis
Quotient Close, fm- Frequency Modulation, std - Standard Deviation, tkeo- Teager Kaiser
Energy Operator, p5- 5th percentile, p75- 75th Percentile, p95- 95th Percentile, shbd- Shimmer,
hnr- Harmonic to Noise Ratio, d- Delta, d-d- Delta-Delta, DFA- Detrended Fluctuation Analysis,
fO- Fundamental Frequency, ApEn- Pitch Period Entropy, rpde- Recurrence Period Density
Entropy, T- Period.

Table S21. Results from an analysis of rm-ANOVA for elapsed-time between repetition on the
features from Tapping task with controlling for age and sex covariates. Features are selected
based on Mann-Whitney U test that significantly differ between PD and HC at the first
administration (baseline) (P<.05).

Feature Name Diagnosis Elapsed-time Diagnosis x
(PD, HC) Elapsed-time
F P F P F P
numberTaps 173.949  <0.001 21.87 <0.001 0.039 0.844
max_Taplnter 87.799 <0.001 0.589 0.443 0.124 0.725
range_Taplnter 80.469 <0.001 0.534 0.465 0.094 0.76
ar2_Taplinter 64.885 <0.001 3.462 0.063 0.832 0.362
arl_Taplinter 70.435 <0.001 1.603 0.206 0.026 0.873
sd_Taplinter 69.546 <0.001 0.793 0.373 0.555 0.456
buttonNoneFreq 19.865 <0.001 2.614 0.106 0.994 0.319
mad_Taplnter 25.648 <0.001 4.582 0.032 6.289 0.012
median_DriftRight 16 128 <0.001 4.486 0.034 1.344 0.246
mad_DriftRight 15.047 <0.001 3.759 0.053 1.349 0.246
median_DriftLeft 9.186 0.002 1.933 0.164 0.62 0.431
min_TaplInter 10.072 0.002 0.056 0.813 0.477 0.49
sd_DriftRight 7.7 0.006 4.143 0.042 2.29 0.13

igr_Taplinter 13.74 <0.001 4.865 0.027 5.282 0.022




mad_DriftLeft 9.532 0.002 4.29 0.038 1.26 0.262
sd_DriftLeft 3.802 0.051 2.639 0.104 0.144 0.705
skew_Taplnter 13.569 <0.001 0.147 0.702 0.164 0.686
skew_DriftLeft 10.641 0.001 0.008 0.93 2.264 0.132
kur_DriftLeft 7.054 0.008 0.352 0.553 1.516 0.218
kur_DriftRight 5.379 0.02 0.482 0.488 0.025 0.875
kur_Taplnter 6.747 0.009 0.623 0.43 0.039 0.844
cv_Taplinter 1.777 0.183 1.436 0.231 4.9 0.027
corXy 12.801 <0.001 3.85 0.05 0.787 0.375
tkeo_Taplnter 2.802 0.094 0.002 0.962 3.785 0.052
cv_DriftLeft 5.924 0.015 0.025 0.875 1.907 0.167

PD- Parkinson’s Disease, HC- Healthy Control, igr- Interquartile Range, TapInter- Tap Interval,
buttonNoneFreq: Frequency of Tapping Outside the Button, numberTaps- Number of Taps,
DriftRight- Right Drift, corXY- Correlation of X and Y Positions, DriftLeft- Left Drift, mad- Median
Absolute Deviation, min- Minimum, max- Maximum, skew- Skewness, kur- Kurtosis, teko-
Teager-Kaiser Energy Operator, cv- Coefficient, Sd- Standard Deviation, ar (1-2)- Coefficient of

an Autoregressive Model at Lag (1-2).
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ABSTRACT Smartphone-based digital biomarker (DB) assessments provide objective measures of daily-life
tasks and thus hold the promise to improve diagnosis and monitoring of Parkinson’s disease (PD). To date,
little is known about which tasks perform best for these purposes and how different confounds including
comorbidities, age and sex affect their accuracy. Here we systematically assess the ability of common self-
administered smartphone-based tasks to differentiate PD patients and healthy controls (HC) with and without
accounting for the above confounds. Using a large cohort of PD patients and healthy volunteers acquired in
the mPower study, we extracted about 700 features commonly reported in previous PD studies for gait,
balance, voice and tapping tasks. We perform a series of experiments systematically assessing the effects of
age, sex and comorbidities on the accuracy of the above tasks for differentiation of PD patients and HC using
several machine learning algorithms. When accounting for age, sex and comorbidities, the highest balanced
accuracy on hold-out data (73%) was achieved using random forest when combining all tasks followed by
tapping using relevance vector machine (67%). Only moderate accuracies were achieved for other tasks
(60% for balance, 56% for gait and 53% for voice data). Not accounting for the confounders consistently
yielded higher accuracies of up to 77% when combining all tasks. Our results demonstrate the importance
of controlling DB data for age and comorbidities.

INDEX TERMS Digital biomarkers, machine learning, Parkinson’s disease, smartphones, wearable devices.

I. INTRODUCTION

Diagnosis of Parkinson’s disease (PD) still often relies on
in-clinic visits and evaluation based on clinical judgement
as well as patient and caregiver reported information. This
lack of objective measures and the need for in-clinic visits
result in the often late and initially inaccurate diagnosis [1].
Recent studies have identified digital assessments as such
promising objective biomarkers for PD symptoms including
bradykinesia [2], [3], freezing of gait [4], [5], impaired dex-
terity [6], balance and speech difficulties [7]-[9]. Most of
these results were obtained with a moderate number of par-
ticipants and in a standardized and controlled clinical setting,
reducing generalizability and limiting an interpretation with
respect to applicability of these measures to an at-home self-
administered setting [10]-[12].

The associate editor coordinating the review of this manuscript and

approving it for publication was Masood Ur-Rehman
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As most relevant sensors deployed in these in-clinic studies
are also embedded in modern smartphones, this opens the
possibility to collect such objective, reliable and quantitative
information as digital biomarkers (DB) in an at-home setting
and therewith to facilitate diagnosis, health monitoring or
treatment management using low-cost, simple and portable
technology [13]. Indeed, recent studies applying machine
learning algorithms to these high-dimensional data sug-
gested a good diagnostic sensitivity of the respective digital
assessments for detection of Parkinson’s disease [14]-[17].
However, such at-home assessments create a range of new
challenges including selection bias, confounding and sources
of noise that need to be understood and dealt with to ensure
good reliability of respective outcomes to a level that is
sufficient for at home data collection [18]. For example,
age, sex and comorbidities are known confounding factors
that impact many measures of disease symptoms across neu-
rodegenerative diseases including PD [19]-[23]. Yet, several

see https://creativec org/licenses/by/4.0/
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TABLE 1. Demographics for PD and HC subjects for each experiment. Those cases where age or sex are significantly different between PD and HC are
indicated with an asterisk (2 sample t-test for age and Chi-square for sex with 95% confidence).

Gait Balance Voice Tapping Multimodal
PD HC PD HC PD HC PD HC PD HC
Experiment 1 (all)
N 610 787 612 803 893 1257 970 1630 597 742
Male/ 399/ 640/ 401/ 653/ 571/ 1018/ 630/ 1336/ 390/ 607/
female 211%* 147* 211% 150* 322% 239% 340% 294* 207* 135%
Age (meantsd)  60.3 £ 49.04 60.29 + 489+ 60.13 = 47.65 = 59.85+ 46.84 = 60.36 = 49.22+
8.94* 10.71% 8.94% 10.72% 8.97* 10.41* 9.05* 10.05* 8.86* 10.78%
UPDRS 1317+ 13.14 = 13.48 = 13.44 13.15+7.8
mean+sd (n) 7.78 (350) 7.78 (351) 7.93 (566) 7.89 (588) (344) °
UPDRS I 5.66 +3.64 5.64 +3.64 5.64 +3.63 5.63+3.63 5.64 +3.64
meansd (n) (361) - (362) (586) N (608) ° (355) -
UPDRS II 7.59+5.18 7.58+5.18 7.9+5.53 7.86 +5.49 7.59+5.21
meanzsd (n) (350) B (351) B (572) 3 (594) B (344) B
Experiment 2 (i hed)
N 373 373 376 376 534 534 608 608 361 361
Male/ 278/ 286/ 280/ 288/ 379/ 394/ 435/ 450/ 270/ 278/
female 95 87 96 88 155 140 173 158 91 83
Age (mean+sd) 57.09 = 56.54 56.38 56.38 = 5718+ 57.18 +
57.09+9.4 04 571494 57.1+94 56.54+93 93 923 923 936 936
UPDRS 1438 + 13.61 = 13.76 = 13.7+8.08 1437+
mean+sd (n) 8.48(206) 834(202) 8.21(324) (349) ° 8.51(190)
UPDRS I 6.16+3.91 5.73+3.85 5.84+3.78 7.8+3.71 5.99+3.82
mean=sd (n) (213) ° (207) ° (333) ° (361) i (198) °
UPDRS II 8.27+5.66 7.95+5.49 7.98+5.6 7.97+5.53 8.45+5.69
meanzsd (n) (206) (202) (328) B (352) - (190)

Experiment 3 (no comorbidities, matched), experiment 4 (no comorbidities, matched, age controlled), experiment 5 (no comorbidities, matched, sex

controlled) and experiment 6 (no comorbiditi hed, controlled)
N 317 317 320 320 446 446 507 507 306 306
Male/ 230/ 244/ 232/ 246/ 314/ 332/ 359/ 371/ 223/ 238/
female 87 73 88 74 132 114 148 130 83 68
Age (meantsd)  56.34+ 56.34 £ 56.37+ 56.37+ 55.71+ 55.71+ 56.45 £ 56.45 £
9.42 9.42 9.41 9.41 36+9.31 36£9.31 9.22 9.22 9.37 9.37
UPDRS 1336 + 13.53 + 1342+ 13.56 + 13.5+7.95
meansd (n) 7.94 (166) 7.99 (174) 7.63 (275) 7.62 (296) (165) °
UPDRS | 5.77+3.71 5.84+3.71 5.56+3.52 5.81£3.54 5.86+3.65
meanzsd (n) (172) B (179) B (284) B (304) B (172) B
UPDRS IT 7.65+5.4 7.77 £5.44 7.95 541 7.85+5.34 7.75+5.38
meanzsd (n) (166) 3 (174) B (278) B (301) B (165) B

studies eluded the importance of matching and controlling
for these variables [24]-[26], including age, sex [24], [27] or
comorbidities which might induce motor (i.e. bradykinesia,
tremor or rigidity) and non-motor (i.e. fatigue, restless legs or
sleep) symptoms [25]. Other potential data collection biases
include small sample sizes [14], [28], inclusion of several
recordings per subject [15], [24] or signals of different time
lengths [27], which may potentially lead the classifier to
detect the idiosyncrasies of each subject rather than spe-
cific PD related symptoms, as demonstrated by Neto et al.
[29]-[31]. In addition, replicability of results is rarely per-
formed in current studies, which may lead to lack of gen-
eralizability. Despite the considerable promise for DB in
healthcare, these issues limit comparability across studies,
hindering interpretation and obstructing translation to the
clinic.

Recently, a large dataset of at-home smartphone-based
assessments of commonly applied PD tasks including gait,
balance, finger tapping and voice evaluations was collected
in the mPower study providing a unique resource to examine
DB in the study of PD [32], [33]. Indeed, several studies
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applying machine learning (ML) algorithms have employed
this dataset in the study of PD diagnosis, achieving quite
different results across studies. Whilst plausible, the impact
of the aforementioned confounds on ML-based detection of
PD using different at-home digital assessments has not been
yet systematically established and has indeed been ignored in
many previous studies [15], [24], [27], [34], [35].

Here we systematically explore the influence of accounting
for age, sex and comorbidities in the detection of PD in a large
at-home dataset. Concretely, we use the mPower dataset to
evaluate the ability of common DB task (gait, balance, voice,
tapping) for differentiation between PD and HC. In addition,
we identify potential DB of Parkinson’s disease. With this
work, we aim to outline practical suggestions to guide future
studies practices and improve comparability across studies.

Il. METHODS

A. DATA

Data used in this work were derived from the mPower
study [32]. MPower is a mobile application-based study to
monitor indicators of PD progression and diagnosis by the

VOLUME 10, 2022
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TABLE 2. List of indicating their ding processing steps.
Exclude comorbidities ~ Age & sex Control for age Control for sex Control for age
hing & sex
El - - - - -
E2 - X - - -
152) X X - - -
E4 X X X - -
ES X X - X -
E6 X X X X X
E: Experiment
TABLE 3. Balanced accuracy results for CV and holdout datasets and chance level at 95%.
Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Experiment 6
cvV H C cvV H C cvV H C Ccv H C cv H C cvV H C
56.6 57.1]52.6 50.3 54.8 |50 56.5 55.7149.9 56.5 54.8 |50 56.4 56.2| 50 56.7 53.850.1
i (54.3- (51.1- | (47.2- (47.1- | (53.3- (46.6- | (53.3- (46.7- | (53.1- (46.4- | (53.3- (46.9-
Gait 58.9) 54.2) |53.6) 52.6) |59.7) 53.4) |59.5) 53.3) |59.7) 53.6) |59.9) 53.2)
61.8 502|604 49.8 | 60 49.9 ]60.6 50.1 | 60.1 50.1 60.2 50.2
Balance (60.4- | 64.7 | (45.7- | (58.6- | 58 | (43.2- | (57.6- | 59.9 | (43.4- | (57.2- | 61.3 | (43.4- | (56.5- | 61.3 | (43.4- | (57.0- | 59.9 | (42.9-
63.4) 54.4) | 62.4) 56) 62.3) 56.6) | 63.8 56.6) |63.3) 57.6) |63.6 57.1)
62.5 50 539 50.1 56.7 50 56.9 50 60 49.8 |59.2 50.2
Voice (61.3- | 60.4 | (46.5- | (51.5- | 59.8 | (44.7- | (54.4- |53 | (43.6- | (54.7- | 58.1 | (44.6- | (57.7- | 60.1 | (43.9- | (57.1- | 59.1 | (43.6-
63.6) 53.5) |56.2) 55.3) |58.9) 55.7) |59.1) 56.1) | 62.1) 55.4) |61.2) 55.7)
74.8 50 66.8 499 679 50.1 68.8 50 68.7 502 | 688 50
Tapping (74.4- | 72.9 | (47- [ (66- | 66.8 | (45.1- | (67- 67.2 | (44.1- | (67.9- | 66.9 | (44.4- | (67.6- | 68.9 | (45.3- | (67.8- | 68.1 | (45-
75.2) 52.9) |67.6) 55) | 68.9) 55.9) | 69.8) 55) | 69.7) 55.3) |69.8) 55.6)
73.9 50 69.4 50.1 69.6 50 69.2 50.2 68 50 69.9 50
Multimodal (72.4- | 76.9 | (45.1- | (67- |70 | (44.2- [ (66.9- | 73.5 | (43.1- | (66.2- | 73 | (43.6- | (65- | 69.1 |(43.6- | (67.2- | 70.6 | (43.1-
75.5) 54.9) |71.9) 56.7) | 72.4) 56.9) |71.8) 56.4) | 70,8) 57.4) |72.8) 56.9)

collection of data in subjects with and without PD. Using this
app, subjects were presented with a one-time demographic
survey about general demographic topics and health history.
Completion of the Movement Disorder Society’s Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS) and the
Parkinson’s Disease Questionnaire short form (PDQ-8) sur-
veys used for PD assessment was requested at baseline as
well as monthly throughout the course of the study. Due to
the length of the MDS-UPDRS instrument, subjects were pre-
sented only a subset of questions focusing largely on the mon-
itor symptoms of PD [32]. Participants had to select “true”
or “false” to the following question ‘“Have you been diag-
nosed by a medical professional with Parkinson Disease?”.
According to this answer, they were classified as Parkinson’s
Disease (PD) or Healthy Control (HC). Subjects who did not
answer this question were discarded from further analysis.
All subjects were presented with different tasks including
gait, balance, voice and tapping, which they could complete
up to 3 times per day. Subjects who self-identified as having
a professional diagnosis of PD were asked to perform these

28364

tasks (1) immediately before taking their medication, (2) after
taking their medication and (3) at some other time (Table 8).
Subjects who self-identified as not having a diagnosis of PD
could complete these tasks at any time during the day. In the
gait task, subjects were asked to walk 20 steps in a straight
line. In the balance task they were required to stand still
for 30 seconds. During the voice activity task, subjects were
requested to say ‘Aaah’ into the microphone for 10 seconds.
Finally, during the tapping task participants were instructed to
alternatively tap two points on the screen within a 20 seconds
interval. We additionally excluded those subjects who gave
no information about their age, sex or had inconsistencies
in their clinical data (e.g. self-reported healthy controls who
answered questions about PD diagnosis or PD medication).
Since the mPower dataset is strongly slanted toward young
HC (Table 15), we restricted our analysis to those subjects
within the age range of 35 to 75 years old. This cleaning step
resulted in the exclusion of 40-50% of the data depending on
the task. To avoid “learning effects” and biases due to several
recordings, we only considered the first recording of each

VOLUME 10, 2022
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FIGURE 3. A) ROC curves at 95% CI during CV. B) ROC curves at 95% CI during validation of holdout set and at
the chance level. C) Scaled average weights of features for each task for the main experiment (E3: no

comorbidities, matched). Gait) acc - average acceleration, acc_path - acceleration along path,
AP - anteroposterior, FB - freezing band, LB -
velocity. Balance) trem - tremor, post -
frequency, VHF - very high fi
95% of the power spectrum. Voice) n: - cepstral coefficient, d - 15t derivative of cepstral coeffl:lent dd 2"d
derivative of cepstral coefficient. Tapping) Taplinter - tap interval. For details on features refer to Appendix A.
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TABLE 4. List of gait features.

Feature acronym Feature description

Signal (acronym)

numSteps Number of steps during the 10 seconds gait signal.
MSI Mean Stride Interval, calculated as the duration of a stride averaged
over all strides [58], [64].
StrideVar Stride Variability, calculated as the standard deviation divided by the
mean stride of the stride interval. Measures consistency and stability
[58], [64].
mean Mean value of the observations [15], [40].
min Minimum value of the observations.
max Maximum value of the observations.
median Median. Middle value among a dataset [15], [40].
sd Standard deviation, calculated as the sum of squares differences
between the individual values and the mean. Measures variability [15],
[40].
var Variance, calculated as the square of the standard deviation. Measures
variability.
range Range of the observations.
iqr Interquartile range, calculated as the difference between 75" and 25"
percentiles. Measures dispersion [15], [40].
ms Root mean square of the observations.
cov Coefficient of variation, calculated as the standard deviation of the
signal divided by the mean. . . .
. . . vertical, anteroposterior, mediolateral and
skew Skewness. Describes the asymmetry of a signal. A negative value .
oo ST b . average acceleration
indicates that the distribution is concentrated on the right, while a (acc_V, ace_AP, ace ML, acc)
positive one is concentrated in the left [15], [40], [58]. - T
kur Kurtosis. Measures if data is heavy or light-tailed to a normal . . .
P vertical, anteroposterior, mediolateral and
distribution [40], [58]. .
. . . average position
zer Zero-crossing rate. Rates sign-changes along a signal [15]. (pos_ V. pos_ AP, pos ML, pos)
ApEn Entropy. Measures uncertainty, ranging from 0-1 where 0 indicates POS_V, pos_AL, pos_¥L, p

randomness and 1 maximum regularity [15], [58].
PeakEnerg LB
frec_peak LB
Power_LB
PeakEnerg_FB
frec_peak FB

Power of the locomotor band (0.5-3 Hz) [41].
Peak of energy in the freezing band (3-8Hz) [42].

Peak of energy in the locomotor band (0.5-3 Hz) [41], [64].
Frequency at the peak of energy in the locomotor band (0.5-3 Hz) [41].

velocity (vel)

acceleration along path (acc_path)

Frequency at the peak of energy in the freezing band (3-8 Hz).

Power_FB Power in the freezing band (3-8 Hz).

Freezelnd Freeze Index. Calculated as the ratio between the power in the freezing
band (3-8 Hz) and the power in the locomotor band (0.5-3 Hz) [42].

RatioPower Sum of the power in the freezing (3-8 Hz) and locomotor band (3-8 Hz)
[43]

ar Coefficient of a 1™ order autoregressive model. An autoregressive

model forecasts when there is some correlation between current values

and their preceding ones [40].
coefceps_(1-20)
power spectrum [42]

20 Mel Frequency Cepstral Coefficients. Represent the short-term

subject in the analyses. Further details about data cleaning
can be found in Appendix A. Demographic details are shown
in Table 1.

B. PRE-PROCESSING

The tri-axial accelerometer integrated in the smartphone
records acceleration in the 3 axes (vertical, mediolateral and
anteroposterior) during the gait and balance tasks. A 4™ order
20 Hz cut-off low-pass Butterworth filter was applied to the
3 accelerometer signals. An additional 3" order 0.3 Hz cut-
off high-pass Butterworth filter was applied to minimize the
acceleration variability due to respiration [36]. Signals were
then standardized to eliminate the gravity component while
maintaining the information from outlier data. According to
Pittman et al. [24], 30% of the devices were not held in the
correct position and therefore, we additionally calculated the
average acceleration signal. Several signals were extracted
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from the gait recordings including the step series, position
along the 3 axes calculated by double integration, velocity
and acceleration along the path [37] (Figure 1).

Two additional signals were considered for the balance task
(Figure 1). Tremor frequency in PD is estimated to fall in
the 4-7 Hz band [38], whereas postural acceleration measures
(tremor-free) fall in the 0-3.5 Hz interval. To extract tremor-
free measures of postural acceleration, we applied a 3.5 Hz
cut-off low-pass Butterworth filter [39].

Voice was recorded at a sample rate of 44.1 Kbps.
Pre-processing included a downsampling to 25 KHz and a
noise reduction using a 2nd order Butterworth filter with a
low-pass frequency at 400 Hz. The fundamental frequency
signal was calculated using a Hamming window of 20 ms
with 50% overlap, and verified with the software Praat
(Figure 1). Time, frequency and amplitude series were
extracted from the voice signals.
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TABLE 5. List of balance features.

Acronym Description Signal (acronym)
mean Mean value of the observations.
min Minimum value of the observations.
max Maximum value of the observations.
median Median value of the observations.
sd Standard deviation, calculated as the sum of squares differences
between the individual values and the mean. Measures variability.
var Variance, calculated as the square of the standard deviation. Measures
variability.
range Range of the observations. vertical, anteroposterior, mediolateral and
iqr Interquartile range, calculated as the difference between 75" and 25" average tremor acceleration (trem_V,
percentiles. Measures dispersion. trem_AP, trem_ML, trem)
ms Root mean square of the observations.
cov Coefficient of variation, calculated as the standard deviation of the vertical, anteroposterior, mediolateral and
signal divided by the mean. average postural acceleration (post_V, post
skew Skewness. Describes the asymmetry of a signal. A negative value _AP, post _ML, post)
indicates that the distribution is concentrated on the right, while a
positive one is concentrated in the left.
kur Kurtosis. Measures if data is heavy or light-tailed to a normal
distribution.
zer Zero-crossing rate. Rates sign-changes along a signal.
ApEn Entropy. Measures uncertainty, ranging from 0-1 where 0 indicates
randomness and 1 maximum regularity.
Power MF Power of the medium frequency band (4-7Hz) [39].

PeakEnerg VHF
frec_peak HF

Peak of energy in the very high frequency band (>7Hz)
Frequency at the peak of energy in the high frequency band (>4Hz)
[39].

vertical, anteroposterior, mediolateral and
average tremor acceleration (trem_V,

Power Power between 3.5-15Hz
Power LF Power in the low frequency band (0.15-3.5Hz) trem_AP, trem_ML, trem)
RHL Ratio between the power between 3.5-15Hz and power between 0.15-
3.5Hz [39].
CFREQ Centroidal frequency for postural measures. Also known as zero- anteroposterior, mediolateral and average
crossing frequency [36], [39], [44]. postural acceleration (post _AP, post _ML,
FREQD Frequency of dispersion of the power spectrum for postural measures post)
[36], [39], [44].
mediolateral-anteroposterior average
postural acceleration (ML_AP_post)
jerk Average jerk. Measures vibration as the rate of change in
acceleration. Calculated as the derivative of acceleration with respect vertical, anteroposterior, mediolateral and
to time [36], [39]. average postural acceleration (post_V, post
TotalPower Energy between 0.15-3.5Hz for postural measures [36]. _AP, post _ML, post)
F50 Frequency containing 50% of the total power for postural measures
[36], [39]. mediolateral-anteroposterior average
F95 Frequency containing 95% of the total power for postural measures postural acceleration (ML_AP_post)
[36], [39].
MDIST Represents the average distance from the center to each AP and ML
points [39], [44].
RDIST Root Mean Square distance from the mean center [44].
TOTEX Total excursions is the total length of the path. Calculated as the sum mediolateral, anteroposterior and average
of distances between consecutive points [44]. of mediolateral and anteroposterior
MVELO Mean velocity is the average velocity of the center path, calculated as  distance (ML-dist, AP_dist, ML_AP_dist)
the TOTEX divided by the time [39], [44].
MFREQ The mean frequency is the rotational frequency with a radius equal to
the mean distance [36], [44].
AREA_CC The 95% confidence circle area is the area of a circle enclosing all
points in the AP-ML plane with 95% confidence [36], [44].
AREA_CE The 95% confidence ellipse area is the area of an ellipse enclosing all
points in the AP-ML plane with 95% confidence [36], [39], [44].
AREA_SW Sway area calculated as the area enclosing the acceleration path [36], i T
[39]. [44]. average of rf}edlc?ldterdl and )
FD The fractal dimension indicates the degree to which a curve fills the anteroposterior distance (ML_AP._dist)
enclosed metric space [36], [44].
FD_CC Fractal dimension based on the 95% confidence circle area [36], [44].
FD_CE Fractal dimension based on the 95% confidence ellipse area [36],

[44].
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TABLE 6. List of voice features.

Feature Feature description Signal (acronym)
acronym
amp Average amplitude [45].
shim Absolute shimmer [15], [26], [45].
shdb Shimmer in logarithmic domain [45].
apq3 3 point amplitude perturbation quotient in percentage [45].
apqs 5 point amplitude perturbation quotient in percentage [45].
fm Frequency modulation [45].
hnr_mean Mean of the harmonic to noise ratio, which indicates the
amount of noise [15], [26], [45].
hnr_std Standard deviation of the harmonic to noise ratio [45].
rpde Recurrence period density entropy. Characterizes the
deviation from signal periodicity [15], [45].
DFA Detrended Fluctuation Analysis, which describes turbulent
noise [15], [45].
mean Mean value [15], [45]. fundamental frequency (f0), amplitude (amp), Teager
sd Standard deviation [15], [45]. Kaiser Energy Operator of the fundamental frequency
(tkeo_f0), open quotient (oq), glottis quotient open (gqo),
glottis quotient closed (gqc)
jitt Absolute jitter [15], [45].
jitta Relative or local jitter [45]. .
rap Relative average perturbation [45]. fundamental frequency (f0), period (T)
ppgs Perturbation quotient using 5 point (cycles) [45].
range Range [45].
tkeo_p25 25" percentile of the Teager-Kaiser Energy Operator [45].
tkeo_p75 75" percentile of the Teager-Kaiser Energy Operator [45]. fundamental frequency (f0)
ApEn Pitch Period Entropy. Quantifies the impaired control of

stable pitch during a sustained phonation [15], [45].

pS 5™ percentile [45].

Teager Kaiser Energy Operator of the fundamental

p95 95" percentile [45]. frequency (tkeo_f0), open quotient (oq), glottis quotient
open (gqo), glottis quotient closed (gqc)
c_mean Mean of the Mel Frequency Cepstral Coefficients (MFCCs)
coefficients, log-energy of the signal and the first and second " . i
A log energy (log), 0" order cepstral coefficient (0th), 1-12!
derivatives of the MFCCs [15], [20], [45]. Mel Frequency Cepstral Coefficients (MFCC_(1-12), 1-14%
c_std Standard deviation of the MFCCs coefficients, log-energy of Y = ?

the signal and the first and second derivatives of the MFCCs

[26], [45].

deltas (d_(1-14)), 1-14" delta-delta (dd_(1-14))

Tapping recordings consist of the {x,y} screen pixel coor-
dinates and timestamp for each tap on the screen. Both the
inter-tapping interval (time) and the {x,y} inter-tap distance
series were computed (Figure 1). Further details about pre-
processing for each task can be found in Appendix A.

C. FEATURE EXTRACTION

A comprehensive search was conducted in PubMed
(https://pubmed.ncbi.nlm.nih.gov/) with the following search
terms ((Parkinson’s disease) AND (walking OR gait OR
balance OR voice OR tapping) AND (wearables OR smart-
phones)) to identify features commonly applied for each task
and corresponding signals generated. Based on the results of
this search, 423, 183, 124 and 43 features were identified and
computed using Matlab R2017a from gait [40], [42], [43],
balance [7], [36], [39], [44], voice [25], [26], [45] and tapping
data [15], [32], [46], respectively (Table 4-Table 7).

D. MACHINE LEARNING ALGORITHMS

As a different ML algorithm may provide the best perfor-
mance for a given task, we evaluated four commonly applied
algorithms for differentiation between PD and HC:
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Least Absolute Shrinkage and Selection Operator
(LASSO) is a linear method commonly used to deal
with high-dimensional data. LASSO applies a regular-
ization process, where it penalizes the coefficients of
the regression variables shrinking some of them to zero.
During the feature selection process, those variables
with non-zero coefficients are selected to be part of the
model [47]. LASSO performs well when dealing with
linearly separable data and avoiding overfitting.
Random Forest (RF) uses an ensemble of decision
trees, where each individual tree outputs the classes.
The predicted class is decided based on majority
vote. Each tree is built based on a bootstrap training
set that normally represents two thirds of the total
cohort. The left out data is used to get an unbiased
estimate of the classification error and get estimates
of feature importance. RF runs efficiently in large
datasets and deals very well with data with complicated
relationships [48].

A Support Vector Machine (SVM) with Radial Basis
Function (RBF) kernel with Recursive Feature Elimi-
nation (SVM-RFE). An SVM is a linear method whose
aim is to find the optimal hyperplane that separates
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TABLE 7. List of tapping features.

Feature Feature description Signal (acronym)
acronym
nTaps Number of taps [46], [65].
buttonNone Frequency of tapping outside the button [46], [65].
corXY Correlation between X and Y touchscreen coordinates [46],
[65].
mean Mean value of the observations [15], [46], [65].
min Minimum value of the observations [15], [46], [65].
max Maximum value of the observations [15], [46], [65].
median Median value of the observations [15], [46], [65].
:(‘fd g’f:g;:: ;3:‘:/2‘:;0‘1?1‘*;‘]""[‘Zg]"ﬁ[]égf i3 Iggrfttzg it;lttcrval (Taplnter), Leftdrift (DriftLeft), Right drift
range Range of the observations [15], [46], [65]. (DriftRight)
iqr Interquartile range [46], [65].
cov Coefficient of variation [15], [46], [65].
skew Skewness [46], [65].
kur Kurtosis [46], [65].
tkeo Teager-Kaiser Energy Operator. Measures energy variation
[15], [46]. [65].
dfa Detrended Fluctuation Analysis. Measures changes in the
signal [15], [46], [65].
arl Coefficient of an autoregressive model at lag 1. Indicates
associations between intertap intervals [15], [46], [65].
ar2 Coefficient of an autoregressive model at lag 2. Indicates Intertap interval (Taplnter)
associations between intertap intervals [15], [46], [65]. P P
fatiguel0 Increase in the mean intertap interval from the first 10% to
the last 10% taps [15], [46], [65].
fatigue25 Increase in the mean intertap interval from the first 25% to
the last 25% taps [15], [46], [65].
fatigue50 Increase in the mean intertap interval from the first 50% to

the last 50 % taps [15], [46], [65].

4

=

between classes. When data is linearly non-separable,
it may be transformed to a higher dimensional space
using a non-linear transformation function that spreads
the data apart such that a linear hyperplane can be
found in that space. Here, we used a radial basis
kernel function. RFE is a feature selection method
that ranks features according to importance, improv-
ing both efficiency and accuracy of the classification
model. This model is known to remove effectively
non-relevant features and achieve high classification
performance [49].

Relevance Vector Machine (RVM), which follows the
same principles of SVM but provides probabilistic
classification. The Bayesian formulation prevents from
tuning the hyper-parameters of the SVM. Nonethe-
less, RVMs use an expectation maximization (EM)-
like learning that can lead to local minima unlike the
standard sequential optimization (SMO)-based algo-
rithms used by SVMs, that guarantee to find a global
optima [50].

E. FRAMEWORK

The following six experiments were performed to address
the questions on the impact of age, sex and comorbidities
that may influence task performance on the classification
accuracy for each task and on the combination of all tasks
for differentiation between PD and HC (Table 2):
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Experiment 1 (El: all) includes all subjects only
restricting the age range (35-75 years old).
Experiment 2 (E2: matched) includes subjects after an
age and sex matching between PD and HC, where we
strictly match one HC for each PD subject with the
same age and where possible with the same sex.
Experiment 3 (E3: no comorbidities, matched)
excludes all comorbidities that may affect task perfor-
mance (see Appendix A) and strictly matches for age
and where possible sex on the remaining subjects.
Experiments 4-6 (E4-6): Three additional experiments
assess if controlling for age and sex impacts the results.
These experiments exclude comorbidities, match for
age and sex and control for age and/or sex applying
multiple regression. For this, age and gender were
included as covariates in a multiple regressions using
the features for each modality as dependent variables.
The estimated beta coefficients for each covariate were
used to regress out the estimated effects of age and sex
on the respective feature. The resulting residuals for
each feature were used for subsequent classification.
Experiment 4 (E4): no comorbidities, matched, con-
trolled for age; Experiment 5 (E5): no comorbidities,
matched, controlled for sex; Experiment 6 (E6): no
comorbidities, matched, controlled for age and sex.

As the performance obtained after removing comorbidi-
ties and matching for age and sex (E3) provides a rel-
atively unbiased estimate for differentiation between PD
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TABLE 8. Medication status at the time of performing the tasks.

PD/Total Before After Another No Med Empty

All 653/2711 154 166 259 63 11

Gait cv 436/2711 99 120 169 39 9
Holdout 217/903 55 46 90 24 2
All 655/2747 156 166 257 64 12

Balance cv 437/1832 103 99 186 41 8
El Holdout 218/915 53 67 71 23 4
All 965/4799 222 229 396 94 24
Voice cv 644/3200 140 159 265 62 18
Holdout 321/1599 82 70 131 32 6
All 1054/6221 237 237 446 106 28
Tapping cv 703/4148 156 157 299 72 19
Holdout 351/2073 81 80 147 34 9

All 373/746 91 101 135 39 7

Gait cv 249/498 62 70 86 28 3
Holdout 124/248 29 31 49 11 4

All 376/752 99 96 139 36 6

Balance cv 251/502 68 60 97 21 5
E2 Holdout 125/250 31 36 42 15 1
All 534/1068 135 131 205 48 15
Voice cv 356/712 94 89 127 34 12
Holdout 178/356 41 42 78 14 3

All 608/1216 134 135 262 59 18
Tapping Ccv 406/812 83 92 182 39 10
Holdout 202/404 51 43 80 20 8

All 317/634 82 84 117 28 6

Gait cv 212/424 54 53 82 19 4
Holdout 105/210 28 31 35 9 2

All 320/640 76 89 116 32 7

Balance cv 214/428 48 53 87 22 4
E3 Holdout 106/212 28 36 29 10 3
All 446/892 112 103 190 34 7

Voice cv 298/596 75 71 125 21 6
Holdout 148/296 37 32 65 13 9
All 507/1014 124 112 211 44 16

Tapping Ccv 338/676 80 70 147 30 11
Holdout 169/338 44 42 64 14 5

All 317/634 82 84 117 28 6

Gait Ccv 212/424 54 53 82 19 4
E4-6 Holdout 105/210 28 31 35 9 2
All 320/640 76 89 116 32 7

Balance cv 214/428 48 53 87 22 4
Holdout 106/212 28 36 29 10 3

All 446/892 112 103 190 34 7

Voice cv 298/596 75 71 125 21 6
Holdout 148/296 37 32 65 13 1
All 507/1014 124 112 211 44 16

Tapping Ccv 338/676 80 70 147 30 11
Holdout 169/338 44 42 64 14 5

Before - “Immediately before taking their medication”, After - “After taking their medication (when they are feeling at their best)”, Another - “At some
other time”, No Med - “I don’t take Parkinson’s medication”, Empty - question unanswered

and HC, these results were used for selection of the best
performing ML algorithm for each task and interpretation
of the main outcomes throughout this work. Demographic
and clinical information for each experiment are provided
in Table 1.

Additionally, to compare the performance of our anal-
yses to those in the literature, we performed an analysis
including all data without restricting age range (Table 15)
and an analysis including all data and both age and sex as
features.
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F. MODEL PERFORMANCE

Data leakage occurs when information of the holdout test
set leaks into the dataset used to build the model, leading to
incorrect or overoptimistic predictions. Therefore, in every
experiment and task, data was initially split into 2/3 of data to
build the predictive model and 1/3 of holdout data to validate
this model. To build the model, we performed 1000 repeti-
tions of 10-fold cross-validation (CV) in the 2/3 of the data for
each classifier to avoid data leakage and increase robustness.
The parameter Lambda of the LASSO model was set to 1 and
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TABLE 9. Cross-validation classification performances for each of the tasks (gait, balance, voice, tapping and multimodal features) for four different

classifiers.
% (95% CI) Gait Balance Voice Tapping Multimodal
Balanced Accuracy 50,14 53.49 55.38 (52.60; 64.29 48.35 (44.85,
(48;52.12) (51.4: 55.49) 57.72) (63.02; 65.61) 51.96)
Sensitivity 71.07 47.39 54.55 (48.66; 4.80 53.37(37.75;
(65.33; 74.76) (44.63;5047)  59.06) (63.02; 66.72) 68.14)
Specificity 2022 59.58 56.2 (52.85; 63.7 4333 (29.66;
LASSO (25:33.96) (5631;6238)  60.4) (61.54; 65.83) 58.33)
PPV 50.1 53.97 55.46 (52.82; 64.14 48.45 (45.16;
(48.55; 51.51) (516, 56.23) 57.69) (62.82; 65.58) 51.76)
NPV 50.8 53,11 55.32(52.59; 64.47 48.14 (43.96;
(46.73; 53.84) (5125;5499)  57.81) (63.11; 65.92) 52.37)
AUC 4926 5475 57.37(54.83; 7171 4639 (42.05;
(45.95; 52.36) (51.84:5723)  59.27) (70.2: 73.05) 50.73)
Balanced Accuracy 54,24 59.95 56.19 (53.27; 6536 69.59 (6691,
(51.42; 56.84) (57.59:6227)  59.4) (64.05; 66.64) 72.43)
Sensitivity 52.43 6028 54.84 (50.84; 63.05 69.57 (65.69;
(48.59; 55.9) (57.01;63.79)  59.06) (61.24; 64.79) 73.53)
Specificity 56.04 59.63 57.53 (53.69; 67.67 69.61 (65.69;
- (52.36; 59.67) (5631;6285)  61.91) (65.68; 69.68) 73.53)
PPV 544 9.9 5637 (53.33; 66.11 69.61(66.67;
(51.47; 57.09) (57.54;6223)  59.6) (64.67; 67.52) 72.86)
NPV 54.09 60.03 56.03 (53.19; 64.68 69.6 (66.67; 72.8)
(51.38; 56.67) (5771;6251)  59.12) (63.32; 65.95)
AUC 55.75 64.62 59.32(56.71; 71.68 76.01 (73.79;
(51.73; 59.28) (61.72:6751)  62.11) (70.23; 73.04) 78.19)
Balanced Accuracy  55.42 57.07 56.7 (54.36; 67.89 67.02 (63.48;
(53.18; 57.67) (5491; 59) 58.89) (67.01; 68.86) 70.59)
Sensitivity 55.54 54.05 57.74 (54.7; 6434 65.43 (60.29;
(52.36; 58.73) (51.4; 57.01) 60.74) (63.17; 65.39) 70.1)
Specificity 5531 60.09 55.66 (52.35; 7143 (70.12; 68.6 (63.73;
M (52.12; 58.26) (5724;6285)  58.89) 72.78) 73.78)
PPV 55.42 5754 56.57 (54.26; 69.25 (68.14; 67.6 (63.9; 71.69)
(53.22; 57.62) (5523;59.69)  58.63) 70.42)
NPV 55.44 56.68 56.85 (54.47; 66.7 66.51 (62.74;
(53.14; 57.72) (54.59;58.52)  59.03) (65.8:67.55) 70.07)
AUC 5639 58.18 60.67 (58.87; 74.17 73.32(70.19;
(53.55; 59.44) (55.27: 60.9) 62.4) (73.27,75.01) 76.54)
Balanced Accuracy | 56.5 56.19 56(53.2:58.6)  65.83 68.36 (65.47;
(533:59.7) (52.57: 59.6) (6376 67.97) 7141)
Sensitivity 56.56 56.17 55.56 (53.02; 67.61 69.23 (6; 72.63)
(53.38; 59.9) (52.53;59.63)  58.16) (65:70.26)
Specificity 5638 5621 56.44 (53.44; 64.05 67.48 (64.52;
(53.14; 59.6) (5252;5995)  59.21) (62.24; 65.94) 70.79)
SVM-RFE 55y 55.81 56.3 59.63 (55.37; 60.02 65.92 (61.77;
(50.94; 60.85) (50: 62.62) 63.59) (57.1; 63.02) 70.59)
NPV 57.11 56.06 5229 (47.65; 7123 70.69 (66.67;
(52.36; 61.79) (50.47;62.15)  56.54) (67.46; 74.56) 74.51)
AUC 58.49 58.4 59.36 (56.3; 71.95 74.74 (12.29;
(5555, 61.57) (54.35; 62.1) 61.85) (70.01; 73.75) 77.23)

AUC - Area Under the Curve, NPV — Negative Predictive Values, PPV — Positive Predictive Values, RF — Random Forest, RVM — Relevance
Vector Machine, SVM-RFE — Support Vector Machine-Recursive Feature Elimination

the number of trees for RF to 100. A nested cross-validation
was implemented to tune the parameters of the SVM-RFE
classifier. The procedure consists of an inner CV to select
the best parameters of the model following a grid search
for the regularization constant (C) ranging from 277 to 27
and for gamma (y) ranging from 2~* to 2* for the SVM.
Then, the outer loop is used to assess the model selected in
the inner CV. Extensive parameter optimization was applied
only on SVM-RFE classifier, given that the other algorithms
have already embedded optimization and that 1000 repeti-
tions of 10-fold cross-validation and multiple experiments
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would have taken based on the estimated from a single run
each at least several months on the high-throughput cluster
available to us. For each model, we report the following
measures of predictive performance: balanced accuracy (BA),
sensitivity, specificity, positive (PPV) and negative predictive
value (NPV), mean receiver operating characteristic (ROC)
curves with 95% confidence intervals and area under the
curve (AUC). Comparisons between models are based on BA.

Once the best predictive model with the highest cross-
validation BA was identified using the CV dataset,
it was validated using the holdout dataset, reporting the
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TABLE 10. Classification performance for the gait task.

Experiment 1 Experiment 2 Experiment 3
cv Ccv
CcvV Chance Chance Chance
©5% CI) Holdout 95% CI) (CQS% Holdout 95% CI) (CQS% Holdout 95% CI)
Balanced 56.56 57.11 52.63 50.33 54.84 50.03 56.5 55.71 49.92
accuracy (%) (54.34; (51.12; (47.19; (47.13; (53.3; (46.63;
58.85) 54.21) 53.62) 52.58) 59.7) 53.36)
Sensitivity (%) 52.63 39.41 31.41 50.34 50 45.21 56.56 56.19 50.33
(49.52; (26.11; (47.15; (38.71; (53.38; (43.81;
55.89) 36.45) 53.75) 50.81) 59.9) 57.14)
Specificity (%) 60.49 74.81 73.86 50.33 59.68 54.85 56.38 5524 49.52
(59.12; (71.97; (47.15; (54.35; (53.14; (49.45;
62.02) 76.13) 53.54) 55.56) 59.6) 49.58)
PPV (%) 38.22 54.79 50 49.68 55.36 50 55.81 55.66 50
(34.64; (50; 50) (45.38; (50; 50) (50.94; (50; 50)
42.02) 54.22) 60.85)
NPV (%) 73.32 61.44 56.35 50.98 54.41 50.05 57.11 55.77 49.85
(70.1; (52.98; (46.19; (44.12; (52.36; (43.27;
76.19) 59.56) 55.82) 55.15) 61.79) 56.73)
AUC (%) 59.45 59.88 50.03 50.98 56.5 50.07 58.49 55.85 49.95
(57.41; (44.42; (47.84; (42.9;56.99) | (55.55; (41.48;
61.38) 55.17) 54.13) 61.57) 57.74)
Experiment 4 Experiment 5 Experiment 6
cv (€)%
CcvV Chance Chance Chance
(95% CI) Holdout (95% CI) (CQS% Holdout (95% CI) (CQS% Holdout (95% CI)
Balanced 56.48 54.76 49.97 56.4 56.19 50 56.65 53.81 50.05
accuracy (%) (53.3; (46.7;53.31) | (53.07; (46.43; (53.3; (46.85;
59.46) 59.68) 53.57) 59.91) 53.19)
Sensitivity (%) 56.56 54.29 49.46 56.46 56.19 49.99 56.71 51.43 47.71
(53.24; (42.86; (53.08; (42.86; (53.32; (40.95;
59.66) 56.19) 59.95) 57.14) 60.05) 54.29)
Specificity (%) 56.39 5524 50.48 56.35 56.19 50 56.58 56.19 52.39
(53.16; (50.42; (52.93; (50; 50) (53.24; (52.1; 52.75)
59.43) 50.55) 59.62) 59.91)
PPV (%) 55.82 54.81 50 56 56.19 50 56.12 54 50
(51.42; (50; 50) (50.94; (50; 50) (51.42; (50; 50)
60.38) 60.38) 60.38)
NPV (%) 57.12 54.72 49.94 56.82 56.19 49.99 57.15 53.64 50.08
(52.36; (43.4; 56.6) (52.36; (42.86; (52.83; (43.64;
61.79) 61.32) 57.14) 61.79) 56.36)
AUC (%) 58.51 56.25 49.99 582 56.1 50.02 58.33 55.99 50.07 (42.16;
(55.51; (41.91; (54.83; (42.65; (55.25; 57.99)
61.3) 58.25) 61.24) 58.05) 61.52)

AUC — Area Under the Curve, CV — Cross-Validation, NPV — Negative Predictive Values, PPV — Positive Predictive Values

aforementioned performance metrics. In addition, to test
whether the BA of the predictive model is higher than chance
level (0.5 for binary classification), we ran 1000 permutations
randomly permuting the predicted classes, reporting BA at
95% confidence intervals.

1Il. RESULTS

A. CLASSIFIER SELECTION AND RESULTS FOR THE

CV DATASET

Four different classifiers (random forest: RF, Least Absolute
Shrinkage and Selection Operator: LASSO, support vector
machine: SVM, relevance vector machine: RVM-RFE) were
applied to each of the four tasks and their combination dur-
ing the main experiment (E3: no comorbidities, matched for
age and sex). Table 9 provides detailed information on the
classification performance for each ML algorithm and
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each task. The ROC curves and corresponding AUC val-
ues for the four classifiers for each of the tasks during the
cross-validation (CV) step are displayed in Figure 2A. RF,
RVM and SVM-RFE performed similarly across all tasks,
whereas LASSO was the classifier performing the poorest.
Best performance was achieved on the combination of all
tasks using RF (balanced accuracy (BA)): 69.6%), followed
by tapping using RVM (BA: 67.9%), balance using RF (BA:
60%), voice using RVM (BA: 56.7%) and gait using SVM-
RFE (BA: 56.5%).

B. COMPARISON OF EXPERIMENTS IN THE
CROSS-VALIDATION SETTING

ML algorithms performing best for each task in the main
experiment (E3: no comorbidities, matched for age and sex)
were applied to corresponding task data of the other five
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TABLE 11. Classification performance for the balance task.

\ Experiment 1 Experiment 2 Experiment 3
Ccv cv
CcvV Chance Chance Chance
(95% CI) Holdout 95% CI) (C915)% Holdout 95% CI) (CQIS)% Holdout (95% CI)
Balanced 61.82 64.73 50.15 60.42 58 49.81 59.95 59.91 49.93
accuracy (%) (60.41; (45.68; (58.57; (43.2; 56) (57.59; (43.4; 56.6)
63.4) 54.38) 62.35) 62.27)
Sensitivity (%) | 44.96 50.25 33.72 57.72 58 49.81 60.28 65.57 55.59
(42.89; (28.43; (54.78; (43.2; 56) (57.01; (49.06;
47.43) 38.73) 60.36) 63.79) 62.26)
Specificity (%) | 78.68 79.21 66.59 63.11 58 49.81 59.63 54.25 4427
(76.96; (62.55; (60.36; (44; 56) (56.31; (37.74;
80.41) 70.41) 66.14) 62.85) 50.94)
PPV (%) 61.63 64.87 43.54 61.02 58 49.81 59.9 58.9 49.94
(59.37; (36.94; (58.98; (43.31;56.1) | (57.54; (44.07;
64.05) 49.69) 63.14) 62.23) 55.93)
NPV (%) 65.26 67.57 56.8 59.89 58 49.81 60.03 61.17 49.92
(64.21; (53.5;59.94) | (58.1; (43.31;56.1) | (57.71; (42.71;
66.46) 61.72) 62.51) 57.61)
AUC (%) 67.02 70.45 50.15 65.15 61.02 49.86 64.61 63.09 49.99
(65.38; (44.85; (62.85; (42.16; (61.72; (42.18;
68.73) 51.19) 67.43) 57.21) 67.51) 57.44)
\ Experiment 4 Experiment 5 Experiment 6
Ccv cv
CcvV Chance Chance Chance
(95% CI) Holdout 95% CI) (C915)% Holdout 95% CI) (CQIS)% Holdout (95% CI)
Balanced 60.58 61.32 50.11 60.12 61.32 50.08 60.24 59.91 50.2
accuracy (%) (57.24; (43.4; 56.6) (56.54; (43.4;57.55) | (57.01; (42.93;
63.79) 63.32) 63.55) 57.08)
Sensitivity (%) | 60.67 66.04 54.82 59.72 61.32 50.08 60.06 58.49 48.78
(55.84; (48.11; (54.67; (43.4;57.55) | (55.14; (41.51;
65.42) 61.32) 64.02) 64.95) 55.66)
Specificity (%) | 60.49 56.6 45.39 60.5 61.32 50.08 60.42 61.32 51.61
(56.08; (38.68; (56.08; (43.4; 57.55) | (56.08; (44.34;
64.95) 51.89) 64.95) 64.95) 58.49)
PPV (%) 60.57 60.34 50.1 60.2 61.32 50.08 60.29 60.19 50.2
(57.11; (43.97; (56.63; (43.4;57.55) | (57.05; (42.72;
63.92) 56.03) 63.5) 63.57) 57.28)
NPV (%) 60.61 62.5 50.12 60.04 61.32 50.08 60.22 59.63 50.19
(57.11; (42.71; (56.49; (43.4;57.55) | (56.81; (43.12;
63.98) 57.29) 63.33) 63.7) 56.88)
AUC (%) 65.45 63.59 50.08 64.96 62.76 50.06 65.24 62.65 50.28
(62.32; (41.98; (61.84; (42.24; (62.32; (42.04;
68.41) 56.94) 67.77) 58.54) 68.02) 58.05)

AUC — Area Under the Curve, CV — Cross-Validation, NPV — Negative Predictive Values, PPV — Positive Predictive Values

experiments (E1: all subjects, E2: matched for age and sex,
E4-6: same as E3 but additionally regressing out the effects
of age and/or sex). Classification performance for each task
and experiment during the CV and over holdout sets is sum-
marized in Table 3 and Table 10-Table 14. BA distributions
for each experiment and task during the CV are displayed in
Figure 2B.

In the CV, El (all data) resulted in the highest but
modest BA for all tasks (gait: 56.6%; balance: 61.8%;
voice: 62.5%; tapping: 74.8; multimodal combining all
four tasks: 73.9%). Removal of comorbidities in E3 had
a marginal effect on BA as compared to E2 (matched
for age and sex) with increased BA for gait (E2: 50.3%;
E3: 56.5%), voice (E2: 53.9%; E3: 56.7%) and tapping
(E2: 66.8%; E3: 67.9%) but lower BA for balance
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(E2: 60.4%; E3: 60.0%). After additionally regressing out
the effects of age and/or sex (E4-E6) the change in the BA
was negligible for all tasks (< 1%) except for voice when
regressing out sex (E3: 56.7%; E5: 60%) and both age and
sex (E3: 56.7%; E6: 59.2%) (Table 3, Tables 10-14).

Analyses including all data without trimming for age range
led to the highest accuracy of 74.4% using tapping data,
followed by 72.7% for the multimodal case and 58%, 52.9%
and 51% for balance, voice and gait data respectively. In all
cases specificity was close to 100% whereas sensitivity was
exceedingly low (Table 16-Table 20). When including both
age and sex as additional features, accuracy increased to
80.8% for tapping data, 75.3% for the multimodal case and
73.1%, 69% and 57% for voice, balance and gait data respec-
tively with high specificities and low sensitivities.
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TABLE 12. Classification performance for the voice task.

\ Experiment 1 Experiment 2 Experiment 3
cv cv

CcvV Chance Chance Chance
(95% CI) Holdout 95% CI) (C915)% Holdout 95% CI) (CQIS)% Holdout 95% CI)

Balanced 62.49 60.41 49.99 (46.46; | 53.94 59.83 50.05 (44.66; | 56.7 53.04 49.98 (43.58;

accuracy (%) (61.33; 53.5) (51.48; 55.34) (54.36; 55.74)
63.62) 56.18) 58.89)

Sensitivity (%) 46.54 44.44 32.25(28.11; | 50.43 56.74 46.96 (41.57; || 57.74 52.03 48.97 (42.57;
(44.63; 36.36) (47.05; 52.25) (54.7; 54.73)
48.49) 53.65) 60.74)

Specificity (%) | 78.43 76.37 67.73 (64.8; 57.45 62.92 53.14 (47.75; | 55.66 54.05 50.99 (44.6;
(77.15; 70.64) (53.93; 58.43) (52.35; 56.76)
79.71) 60.67) 58.89)

PPV (%) 60.55 57.14 41.47 (36.15; | 54.24 60.48 50.05 (44.31; || 56.57 53.1 49.98 (43.45;
(58.79; 46.75) (51.62; 55.69) (54.26; 55.86)
62.19) 56.67) 58.63)

NPV (%) 67.35 65.98 58.51(55.98; | 53.68 59.26 50.04 (44.97; | 56.85 52.98 49.98 (43.71;
(66.5; 61.03) (51.36; 55.03) (54.47; 55.63)
68.19) 55.76) 50.03)

AUC (%) 68.99 66.95 49.93 (45.49; | 55.5 62.48 50.14 (44.18; | 60.67 54.99 50.01 (43.02;
(68.14; 54.03) (53.36; 56.09) (58.87; 56.65)
69.79) 57.6) 62.4)

\ Experiment 4 Experiment 5 Experiment 6
(&% Ccv

CcvV Chance Chance Chance
(95% CI) Holdout 95% CI) (C915)% Holdout 95% CI) (CQIS)% Holdout (95% CI)

Balanced 56.85 58.11 49.98 (44.6; 59.99 60.14 49.82(43.92; | 59.15 59.12 50.15 (43.58;

accuracy (%) 54.7; 56.08) (57.72; 55.41) (57.05; 55.74)
59.06) 62.08) 61.24)

Sensitivity (%) 56.64 53.38 45.25(39.87; | 59.55 53.38 43.06 (37.16; | 58.83 58.78 49.82 (43.24;
(53.69; 51.35) (56.38; 48.65) (56.04; 55.41)
59.56) 62.42) 61.41)

Specificity (%) 57.06 62.84 54.71 (49.32; | 60.43 66.89 56.58 (50.68; | 59.46 59.46 50.49 (43.92;
(54.03; 60.81) (57.38; 62.16) (56.71; 56.08)
60.07) 63.42) 62.42)

PPV (%) 56.88 58.96 49.98 (44.03; | 60.08 61.72 49.79 (42.97; | 59.21 59.18 50.15 (43.54;
(54.59; 56.72) (57.76; 56.25) (57; 55.78)
59.25) 62.2) 61.36)

NPV (%) 56.82 57.41 49.98 (45.06; | 59.91 58.93 49.84 (44.64; || 59.09 59.06 50.15 (43.62;
(54.64; 55.56) (57.69; 54.76) (57.02; 55.71)
59.06) 62) 61.23)

AUC (%) 58.44 59.13 50.03 (43.7; 63.3 61.64 49.85(43.28; || 61.72 63.26 50.25 (43.32;
(56.37; 56.47) (61.25; 56.58) (59.65; 57.15)
60.38) 65.05) 63.53)

AUC — Area Under the Curve, CV — Cross-Validation, NPV — Negative Predictive Values, PPV — Positive Predictive Values

C. RESULTS FOR THE HOLDOUT DATASET

Best performing classifiers trained on the 2/3 of the initial
dataset used for cross-validation were applied to the 1/3
holdout dataset. Results for the holdout dataset were highly
similar to the CV results (Table 3, Tables 10-14). All results
are summarized in Figure 3 and Table 3. The multimodal
combination of all tasks resulted in the best performance
for differentiation of PD and HC in the holdout cohort
(BA: 73.5%) followed by the tapping features (67.2%). Voice
features achieved the lowest BA of 53% followed by gait
(55.7%) and balance (59.9%) features (Table 3). For the base
experiment E3, the difference in BA between CV and holdout
sets was less than 1% for all tasks except for a 3.7% reduction
in BA for voice data and a 3.9% increase for the multimodal
feature combination. Exclusion of comorbidities resulted in
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only minor changes for gait, balance and tapping (<2%) with
a 6.8% drop only observed using voice data and a 3.5%
increase for the multimodal case. BA performance for all
tasks increased by 1.4% (gait) to 7.4% (voice) for all tasks
when using the dataset only restricting the age range (E1)
as compared to E3. No systematic effects of additionally
controlling for age and/or sex prior to classification (E4-E6)
were observed with BA changes being small and inconsistent
across tasks and experiments.

Analyses including all data without trimming for age range
reached the highest accuracy in the holdout set of 73.3% using
multimodal features, followed by 71.1% for the tapping task
and 55.8%, 52.6% and 51.6% for balance, voice and gait data
respectively (Table 16-Table 20). When including both age
and sex as additional features, accuracy in the holdout data
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TABLE 13. Classification performance for the tapping task.

\ Experiment 1 Experiment 2 Experiment 3
cv cv
cv Chance o Chance o Chance
(95% CI) Holdout 95% CI) 85) % Holdout (95% CI) gS) % Holdout 95% CI)
Balanced 74.81 729 49.99 66.78 66.83 49.86 67.89 67.16 50.09
accuracy (%) (74.41; (46.98;52.9) | (65.95; (45.05; (67.01; (44.08;
75.23) 67.55) 54.95) 68.86) 55.92)
Sensitivity (%) | 61.09 57.59 28.86 63.77 59.9 42.93 64.34 68.05 50.98
(60.36; (25.08; (62.56; (38.12; (63.17; (44.97;
61.75) 32.51) 64.9) 48.02) 65.39) 56.81)
Specificity (%) | 88.52 88.21 71.13 69.8 73.76 56.8 71.43 66.27 49.21
(88.13; (68.88;73.3) | (68.6; (51.98; (70.12; (43.2;55.03)
88.91) 70.94) 61.88) 72.78)
PPV (%) 76.01 74.4 37.29 67.86 69.54 49.84 69.25 66.86 50.09
(75.38; (32.4;42) (66.88; (44.25; (68.14; (44.19;
76.71) 68.74) 55.75) 70.42) 55.81)
NPV (%) 79.26 71.76 62.7 65.83 64.78 49.88 66.7 67.47 50.1
(78.95; (60.71; (65.01; (45.65; (65.8; (43.98;
79.56) 64.61) 66.55) 54.35) 67.55) 56.02)
AUC (%) 83.48 84.42 50.01 73.36 74.97 49.88 74.17 77.51 50.13
(83.14; (46.37; (72.56; (44.38; (73.27; (43.63;
83.77) 53.95) 73.99) 55.73) 75.01) 56.88)
\ Experiment 4 Experiment 5 Experiment 6
cv cv
CcvV Chance Chance Chance
(95% CI) Holdout 95% CI) (C915)% Holdout 95% CI) (CQIS)% Holdout 95% CI)
Balanced 68.8 66.86 49.98 68.66 68.93 50.23 68.8 68.05 49.97
accuracy (%) (67.9; (44.38; (67.6; (45.27; (67.75; (44.97;
69.75) 55.03) 69.68) 55.33) 69.75) 55.62)
Sensitivity (%) | 65.45 66.27 49.39 65.86 68.64 49.94 65.6 67.46 49.38
(64.35; (43.79; (64.65; (44.97; (64.35; (44.38;
66.86) 54.44) 67.01) 55.03) 66.86) 55.03)
Specificity (%) | 72.16 67.46 50.57 71.46 69.23 50.53 72 68.64 50.56
(70.71; (44.97; (69.97; (45.56; (70.56; (45.56;
73.52) 55.62) 72.93) 55.62) 73.37) 56.21)
PPV (%) 70.16 67.07 49.98 69.78 69.05 50.23 70.09 68.26 49.97
(69.03; (44.31; (68.53; (45.24; (68.85; (44.91;
71.31) 55.09) 71.02) 55.36) 71.23) 55.69)
NPV (%) 67.62 66.67 49.98 67.67 68.82 50.23 67.67 67.84 49.97
(66.8; (44.44; (66.62; (45.29; (66.71; (45.03;
68.63) 54.97) 68.6) 55.29) 68.58) 55.56)
AUC (%) 74.88 78.05 50 74.41 77.95 50.15 74.82 78.38 49.99
(73.97; (44.41; (73.5; (44.24; (73.94; (44.11;
75.7) 56.22) 75.22) 56.09) 75.58) 56.22)

AUC — Area Under the Curve, CV — Cross-Validation, NPV — Negative Predictive Values, PPV — Positive Predictive Values

raised to 78.9% for tapping data, 75.9% for the multimodal
case and 74.6%, 66% and 58.3% for voice, balance and gait
data respectively with very high specificities and very low
sensitivities.

D. PREDICTIVE FEATURES

Best performance during CV for the main experiment E3 was
achieved using the multimodal set of features. Figure 3 shows
the scaled average absolute feature weights for RVM and
SVM-REFE and the scaled average importance scores for RF,
calculated with the out-of-bag (OOB) permuted predictor
delta error across 1000 repetitions during the CV. Features
with the highest importance scores belong to the tapping
task followed by the balance task. Tapping features with the
highest importance scores comprised the range of intertap
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interval (100), maximum value of the intertap interval
(99.8) and Teager-Kaiser energy operator of the intertap
interval (83.2). Balance features with highest importance
scores were the power ratio between high (3.5-15 Hz) and
low (0.15-3.5 Hz) frequency for anteroposterior acceleration
(31.5) and energy in the medium frequency band for medio-
lateral acceleration (25.3). Gait and voice tasks had the least
contributions in terms of importance scores.

IV. DISCUSSION

Here, we systematically evaluated the ability of four com-
monly applied DB tasks to differentiate between PD and HC
in a self-administered remote setting. Our findings indicate
that, depending on the constellation, not accounting for con-
founds in PD digital biomarker task data may lead to under-
but also over-optimistic results.
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TABLE 14. Classification performance for the multimodal features.

\ Experiment 1 Experiment 2 Experiment 3
cv cv
CcvV Chance Chance Chance
(95% CI) Holdout 95% CI) (C915)% Holdout (95% CI) (CQIS)% Holdout 95% CI)
Balanced 73.85 76.88 50.04 (45.13; | 69.39 70 50.08 (44.17; | 69.59 73.53 50.04 (43.14;
accuracy (%) (72.41; 54.88) (67.01; 56.67) (66.91; 56.86)
75.47) 71.89) 72.43)
Sensitivity (%) | 67.09 68.34 38.61(33.17; | 66.67 65 45.08 (39.17; || 69.57 77.45 53.96 (47.06;
(64.57; 43.97) (63.07; 51.67) (65.69; 60.78)
69.6) 70.12) 73.53)
Specificity (%) | 80.61 85.43 61.47 (57.09; | 72.12 75 55.08 (49.17; | 69.61 69.61 46.12(39.22;
(78.59; 65.79) (68.47; 61.67) (65.69; 52.94)
82.53) 75.52) 73.53)
PPV (%) 73.57 79.07 44.67 (38.37; | 70.53 72.22 50.09 (43.52; | 69.61 71.82 50.04 (43.64;
(71.52; 50.87) (67.71; 57.41) (66.67; 56.36)
75.63) 73.18) 72.86)
NPV (%) 75.29 77.01 55.41 (51.46; | 68.4 68.18 50.07 (44.7; 69.6 75.53 50.04 (42.55;
(73.92; 59.31) (65.97; 56.06) (66.67; 57.45)
76.79) 70.97) 72.8)
AUC (%) 8225 85.63 49.96 (44.69; | 76.01 78.81 50.02 (42.89; || 76.01 80.49 50.08 (42.04;
(81.39; 55.2) (74.21; 57.43) (73.79; 58.23)
83.15) 77.94) 78.19)
\ Experiment 4 Experiment 5 Experiment 6
Ccv cv
CcvV Chance Chance Chance
(95% CI) Holdout 95% CI) (C915)% Holdout (95% CI) (CQIS)% Holdout (95% CI)
Balanced 69.24 73.04 50.18 (43.63; | 68.03 69.12 50.02 (43.63; | 69.86 70.59 50.01 (43.14;
accuracy (%) (66.18; 56.37) (64.95; 57.35) (67.16; 56.86)
71.81) 70.83) 72.79)
Sensitivity (%) | 67.88 70.59 47.72 (41.18; | 65.77 63.73 44.62 (38.24; || 65.98 61.76 41.18 (34.31;
(63.73; 53.92) (61.77; 51.96) (62.26; 48.04)
71.57) 69.61) 69.61)
Specificity (%) | 70.6 75.49 52.62 (46.08; | 70.3 7451 55.41(49.02; | 73.74 79.41 58.83 (51.96;
(66.18; 58.82) (65.69; 62.75) (69.61; 65.69)
74.51) 74.51) 77.94)
PPV (%) 69.8 74.23 50.18 (43.3; 68.91 71.43 50.02 (42.86; | 71.56 75 50.01 (41.67;
(66.5; 56.7) (65.37; 58.24) (68.27; 58.33)
72.82) 72.21) 75.28)
NPV (%) 68.75 71.96 50.16 (43.93; | 67.26 67.26 50.02 (44.25; | 68.43 67.5 50 (44.17;
(65.85; 56.08) (64.39; 56.64) (65.84; 55.83)
71.71) 70.19) 71.27)
AUC (%) 74.78 80.27 50.04 (42.59; | 73.49 76.68 50.04 (41.42; | 75.83 77.58 50 (42.26;
(72.53; 58.06) (71.17; 58.59) (73.72; 57.92)
76.97) 75.83) 78.15)
AUC — Area Under the Curve, CV — Cross-Validation, NPV — Negative Predictive Values, PPV — Positive Predictive Values
TABLE 15. Demographics for PD and HC subjects including all data.
Gait Bal Voice Tapping Multimodal
PD HC PD HC PD HC PD HC PD HC
N 653 2058 655 2092 965 3834 1054 5167 640 1940
Male/ 3108 + 4190 + 1582 +
female 436 +217 1678 + 38 438 £217 438 +385 629 + 336 726 697 + 357 977 427 +£213 358
Age 60.45 + 3477+ 60.44 = 3476 + 60.33 £ 3277+ 59.77 32.18+ 60.51 + 34.84 +
(meantsd) 10.72 14.29 10.71 14.23 11.04 13.12 11.42 12. 53 10.69 14.41

A. IDENTIFICATION OF PARKINSON'’S DISEASE

Out of the four evaluated machine learning algorithms,
similar performance was achieved for all classifiers except
LASSO which showed the poorest performance. Whereas
some previous studies using the mPower dataset selected
different algorithms according to tasks [25], [26], others
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simply applied a single classifier [27], [29]. No single classi-

fier performed best for all four tasks in our study. This is in
line with previous research showing that the selection of the
classifier depends mainly on the type and complexity of the
data [51], [52]. For instance, RF, RVM and Gaussian SVM are
non-linear algorithms, offering more flexibility regarding the
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TABLE 16. Classification performance for the gait task.

Additional experiment: Additional experiment:
All data All data + age + gender
CcvV
cv Chance Chance
(95% CI) Holdout (95% CI) (C915)% Holdout (95% CI)
Balanced 50.95 51.55 50.01 (49.13; | 57.2 58.25 50.01 (48.54;
accuracy (%) (50.29; 50.95) (55.81; 51.57)
51.63) 58.68)
Sensitivity (%) 2.74 3.69 1.35(0; 16.19 17.51 5(2.77;
(1.61; 2.77) (13.3; 7.37)
4.13) 19.27)
Specificity (%) 99.16 99.42 98.68 (98.25; | 98.21 98.98 95.02 (94.32;
(98.8; 99.13) (97.63; 95.77)
99.6) 98.76)
PPV (%) 50.8 66.67 24.34(0; 50) | 74.26 84.44 24.12 (13.33;
(33.33; (68.28; 35.56)
66.67) 80.66)
NPV (%) 76.24 76.54 75.97 (75.65; | 78.67 79.14 75.97 (75.41;
(75.99; 76.32) (78.11; 76.57)
76.49) 79.26)
AUC (%) 66.08 67.81 49.93 (45.49; | 86.49 88.43 50.01 (45.45;
(64.67; 54.46) (85.66; 54.51)
67.52) 87.32)
TABLE 17. Classification performance for the balance task.
Additional experiment: Additional experiment:
All data All data + age + gender
CcvV
(6)% Chance Chance
(95% CI) Holdout (95% CI) (C915)% Holdout (95% CI)
Balanced 58.04(57 5575 49.99 (48.22; | 69.03 65.97 50.07 (47.6;
accuracy (%) .02; 51.53) (67.41; 52.41)
59.1) 70.53)
Sensitivity (%) 19.12 14.22 5.46 (2.75; 419 36.24 12.02 (8.26;
(17.16; 7.8) (38.9; 15.6)
21.28) 45.08)
Specificity (%) 96.96 97.27 94.53 (93.69; | 96.16 95.7 88.12 (86.94;
(96.34; 95.27) (95.56; 89.24)
97.56) 96.77)
PPV (%) 66.35 62 23.78 (12; 77.36 72.48 24.05 (16.51;
(61.03; 34) (74.48; 31.19)
71.31) 80.26)
NPV (%) 79.28 78.38 76.17 (75.49; | 84.09 82.75 76.21 (75.19;
(78.88; 76.76) (83.35; 77.17)
79.71) 84.8)
AUC (%) 73.42 72.05 49.98 (45.45; | 89.46 89.57 49.99 (45.79;
(72.51; 54.5) (88.93; 54.5)
74.34) 90.02)

type of data. On the contrary, LASSO is a linear classifier and
thus, its performance depends on whether the data is linearly
separable. Whereas the generalizability of this observation is
limited by the use of only one linear classifier, it may point to
a better usability of non-linear approaches for classification
of digital assessments.

For discrimination of PD and HC, combination of all tasks
reached a BA of 74%, followed by tapping that achieved
67%, outperforming other tasks which were close to chance
level. These results are in line with previous literature using
the mPower dataset, where tapping reached the highest accu-
racies and gait and voice were closer to chance level [29].
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Several studies reported higher accuracies for this type of data
[24], [27]. Yet, these studies followed certain ““optimistic”
approaches as discussed below.

B. POTENTIAL CONFOUNDERS

Exclusion of comorbidities resulted in increased accuracies
by a few percent, suggesting that other diseases may add more
variability to the signal. Prediction performances consider-
ably decreased for all tasks after matching for age and sex
indicating the importance of controlling for such confounds
in DB data. When including all data without trimming age
range, accuracies greatly increase. Nonetheless, specificity
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TABLE 18. Classification performance for the voice task.

Additional experiment: Additional experiment:
All data All data + age + gender
CvV
Ccv Chance Chance
(95% CI) Holdout (95% CI) (C915)% Holdout (95% CI)
Balanced 5291 52.57 50.03 (49.26; | 73.12 74.6 50 (48.09;
accuracy (%) (52.13; 51.01) (71.9; 52.19)
53.68) 74.35)
Sensitivity (%) 7.59 6.23 2.17 (0.94; 50.68 53.89 14.58 (11.53;
(6.06; 3.74) (48.29; 18.07)
9.16) 53.11)
Specificity (%) 98.24 98.9 97.89 (97.57; | 95.55 95.31 85.43 (84.66;
(97.93; 98.28) (95.11; 86.31)
98.55) 96.01)
PPV (%) 52.05 58.82 20.49 (8.82; 74.18 74.25 20.08 (15.88;
(45.24; 35.29) (72.28; 24.89)
58.7) 76.2)
NPV (%) 80.84 80.77 79.93 (79.68; | 88.49 89.17 79.93 (79.21;
(80.58; 80.26) (88; 89) 80.75)
81.1)
AUC (%) 73.23 74.91 50.09 (46.63; | 91.39 91.16 49.99 (46.49;
(72.43; 53.52) (91.05; 53.58)
74.01) 91.72)
TABLE 19. Classification performance for the tapping task.
Experiment 7 Experiment 8
Ccv
cv Chance o Chance
(95% CT) Holdout (95% CT) E;)IS)A) Holdout (95% CT)
Balanced 74.42 71.08 50.03 (48.27; | 80.81 78.91 50 (48.22;
accuracy (%) (73.79; 51.87) (79.99; 51.82)
74.99) 81.58)
Sensitivity (%) 52.65 45.87 10.9 (7.98; 65.68 61.25 13.22 (10.26;
(51.49; 13.96) (64.01; 16.24)
53.77) 67.28)
Specificity (%) 96.18 96.28 89.16 (88.56; | 95.94 96.57 86.78 (86.18;
(95.91; 89.78) (95.68; 87.4)
96.43) 96.24)
PPV (%) 73.75 71.56 17.01 (12.44; | 76.76 78.47 16.94 (13.14;
(72.41; 21.78) (75.53; 20.8)
75.15) 78.17)
NPV (%) 90.87 89.72 83.08 (82.52; | 93.2 92.44 83.07 (82.49;
(90.66; 83.66) (92.9; 83.66)
91.07) 93.49)
AUC (%) 89.39 88.64 50.04 (46.6; 94.51 94.78 50.12 (46.59;
(89.08; 53.56) (94.29; 53.37)
89.71) 94.72)

values are exceedingly high whereas sensitivity values are
vastly low. This indicates a greater prediction ability for the
HC group, which is considerably larger than the PD group for
subjects under 35 years old. Including age and sex as part of
the features resulted in further accuracy increases, yet with
very low sensitivities. Since the dataset is strongly slanted
toward young HC, the model is most likely distinguishing HC
based on age and gender in this case. Such effects may also
explain the high accuracies in some of the previous studies
using mPower dataset, where no proper matching for these
confounds was performed, age and/or sex were used as fea-
tures despite a large imbalance across groups or non-balanced
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accuracies were reported [24], [26], [27], [34]. In example,
in the overall mPower dataset HC outnumber PD by a factor
of five and age and sex alone provide a high discrimination
accuracy between PD and HC with PD being on average
28 years older and more often female (34% of PD vs 19%
of HC). Our findings are also in line with previous studies
demonstrating a similarly strong decrease in accuracies when
accounting for respective confounds. Neto ez al. [53] studied
the effect of confounders on gait data. They reached very high
accuracy when not accounting for confounders, compared
with a very modest accuracy when using unconfounded mea-
sures. Schwab and Karlent [25] performed analysis with all
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TABLE 20. Classification performance for the multimodal features.

Experiment 7 Experiment 8
Ccv

cv Chance Chance
©95% CI) Holdout ©5% CI) (CQIS)% Holdout ©5% CI)

Balanced 72.67 73.26 50.07 (47.2; 75.34 75.88 50.06 (47.32;

accuracy (%) (71.82; 52.97) (74.44; 53.06)
73.48) 76.19)

Sensitivity (%) 49.44 49.77 14.89 (10.8; 54.66 55.63 16.79 (12.68;
(47.78; 19.25) (53.05; 21.13)
50.94) 56.32)

Specificity (%) 95.91 96.75 85.25(83.75; | 96.03 96.13 83.32 (81.89;
(95.52; 86.69) (95.67; 84.83)
96.33) 96.41)

PPV (%) 79.95 83.46 2497 (17.83; | 81.96 82.58 24.93 (18.82;
(78.26; 32.28) (80.51; 31.69)
81.67) 83.51)

NPV (%) 85.18 85.38 75.23 (73.98; | 86.52 86.79 75.23 (74;
(84.77; 76.5) (86.08; 76.57)
85.57) 86.95)

AUC (%) 88.99 89.22 50.15 (45.55; | 92.39 92.15 50.03 (45.74;
(88.46; 54.75) (91.97; 54.63)
89.48) 92.81)

the tasks from the mPower dataset with and without including
age and sex, the latter resulting in a similarly low accuracy as
in our study.

For all classification experiments, we used only one
recording per subject to prevent the classifier from detect-
ing the idiosyncrasies of each subject rather than spe-
cific PD related symptoms [29]-[31]. Single measures are
likely to contain more noise due to higher variation in task
administration as well as in individual performance in a
poorly-controlled setting [54]. Using multiple time points
may therefore further increase the discrimination between
PD and HC as demonstrated in several previous studies
[29]-[31]. Yet, our results in this respect highlight the need
of further understanding and better control of the individ-
ual parameters which impact the task performance during a
single administration.

C. PREDICTORS OF PARKINSON'S DISEASE

Features with largest weights in the multimodal discrimina-
tion between PD and HC were derived from the tapping task.
These features mostly related to the inter-tapping interval
(time), presumably reflecting bradykinesia-like symptoms.
These results are in line with previous studies, where tapping
features related to speed and accuracy had the strongest cor-
relation with clinical scores [55], [56]. Balance task features
related to tremor measures had larger weights than postu-
ral ones. In addition, features from the frequency domain
had greater weights than spatiotemporal features. Spatiotem-
poral features have been extensively studied and applied,
due to their ease of computation and interpretability [57].
However, these features offer information limited primarily
to leg movement, whilst frequency features add information
regarding asymmetry and variability. Furthermore, balance
features with higher weights belonged to the mediolateral
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and anteroposterior signals, related to stability. Even though
gait had limited contribution to the classification accuracy,
acceleration features had the highest weights from this task.
This observation is in line with previous findings where accel-
eration proved to better capture PD-related gait changes [58].
In line with some previous studies, features with the highest
weights from the voice task were all based on Mel Frequency
Cepstral Coefficients which can detect subtle changes in
speech articulation that are common in PD [59], [60].

D. LIMITATIONS AND FURTHER RESEARCH

‘Whereas sensors-integrated in smartphones open new oppor-
tunities for at-home continuous, reliable, non-invasive and
low-cost monitoring of PD, our finding highlight the need
for further development, optimization and standardization of
specific measures for such applications.

The interpretation of our findings is limited by several
aspects, including the lack of standardization, poor control
of environmental and medication effects during performance
of the tasks and intentionally or unintentionally incorrect
information provided by the participants. In addition, removal
of comorbidities and matching for age and sex led to exclu-
sion of about 50% of data, which may affect the training of
classifiers [53].

Further use of smartphones in the detection of Parkinson’s
disease symptoms include detection of hypomimia from face
expressions, socializing and lifestyle behavior and typing
patterns among others [61], [62].

APPENDIX A

SUPPLEMENTARY METHODS

A. DATA CLEANING

MPower dataset offers demographic, PDQ8 and MDS-
UPDRS surveys and task-based data. The demographics table
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contains data for 6805 subjects. In order to establish a diag-
nosis, participants had to select “true” or ‘“false” to the
following question “Have you been diagnosed by a medical
professional with Parkinson Disease?”. According to this
answer, they are classified as Parkinson’s Disease (PD) or
Healthy Control (HC). Some subjects left this question unan-
swered and thus they were discarded from further analysis.
Those subjects classified as PD which did not completed the
PDQS8 and MDS-UPDRS questionnaire were also excluded.
Subjects with no information on age, sex or any task data
were also removed, resulting in 6614 subjects. Those empty,
null or corrupted files for each task were deleted, resulting
in 2807 subjects with gait and balance data, 4925 with voice
data and 6366 with tapping data. Since a large number of
subjects are HC under 35 years old, our analysis focused on
a subset of subjects within the age range of 35 to 75 years
old, leading to 1435 subjects with gait and balance data,
2186 subjects with voice data and 2644 subjects with tapping
data. Finally, all subjects with inconsistencies for each of
the tasks were discarded (i.e., subjects that reported not to
have been diagnosed with Parkinson’s disease but filled in
PD medication questions, year of diagnosis of PD, surgery
or deep brain stimulation). This last elimination resulted in
1416 subjects with gait and balance data, 2153 subjects with
voice data and 2600 subjects with tapping data.

B. SIGNALS LENGTH

Gait task consists of walking 20 steps in a straight line.
In order to analyse the same signal length for each subject,
we examined how many subjects had gait data for different
time durations. We observed that after 10 seconds, partici-
pation was dropping heavily. Therefore, we selected a time
length of 10 seconds and discarded those participants with
shorter signals. Following the same reasoning, we chose
voice signals of 7 seconds, trimming the first second and last
two seconds, and tapping signals of 20 seconds. Similarly,
balance task consists of standing still for 30 seconds although
just 20 seconds were selected. Nonetheless, whereas gait,
voice and tapping are independent tasks, and therefore they
are started by the user, balance task starts straight after the
gait task. This is, as soon as the gait task ends, the app plays
out loud “turn around and stand still for 30 seconds”. As a
result, most of the balance recordings include initial slots of
noise, which most likely coincide with the time that subjects
listen to the instructions, react, turn around and start the
task. Therefore, we trimmed the first 5 seconds of the signal,
resulting in balance signals of 15 seconds for all subjects.
Final number of subjects consisted of 1397 subjects with gait
data, 1415 subjects with balance data, 2150 subjects with
voice data and 2600 subjects with tapping data.

C. PRE-PROCESSING AND SIGNAL EXTRACTION

Gait and balance data consists on vertical (V), anteropos-
terior (AP) and mediolateral (ML) acceleration signals. For
these 3 gait acceleration signals, we applied a Butterworth
low pass filter with cut-off frequency at 20 Hz followed by
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a 3° order high pass filter at 0.3 Hz. According to
Pittman et al. [24], around 30% of devices were not held
in the correct position. Therefore, the greatest gravitational
displacement is not always along the vertical axis. Then,
we standardized these three signals and calculated an addi-
tional average acceleration signal. Based on the standardized
acceleration signal, we extracted the step series. We calcu-
lated position signals along the three axes by double integrat-
ing the acceleration signals and the average position. Then,
we extracted velocity and acceleration along the path by
derivation [37].

Balance acceleration signals were filtered with a low pass
Butterworth filter at 20 Hz. Since tremor in PD usually falls in
the 4-7Hz frequency band [38], [39], the interval 0-3.5 Hz is
considered for tremor-free or postural acceleration measures.
Hence, we applied a Butterworth filter at 3.5 Hz to extract
postural acceleration measures. We also calculated the aver-
age of the tremor acceleration in the 3 axes and the average
of the postural acceleration in the 3 axes.

Voice signals were recorded at a sample frequency of
44.1 KHz. We downsampled the signal to 25KHz, applied
a second order Butterworth filter with cut-off frequency
at 400 Hz followed by a pre-emphasis FIR filter for noise
reduction and correct for distortions. We extracted the fun-
damental frequency (f0) series, which was verified with the
Praat software.

Tapping recordings consists of the {x,y} screen pixel coor-
dinates and timestamp for each tap on the screen. Signals
derived out of these recordings were the inter-tapping inter-
val (time) and the {x,y} inter-tap distance series.

D. FEATURE EXTRACTION
1) GAIT
We extracted 11 signals from the original accelerome-
ter recordings during gait tasks. These are V, AP and
ML acceleration, the step series, the average of the
acceleration in the three axes, the V, AP and ML posi-
tion, the average position in the three axes, the velocity
and the acceleration along the path. Table 4 collects a
list of features extracted for these signals along with
their acronyms.
BALANCE
Balance signals consist in the V, AP and ML tremor
acceleration (4-7 Hz), the average of these 3 signals, the
V, AP and ML postural acceleration (0-3.5 Hz) and the
average of these 3 signals. We extracted displacement-
related postural features from ML, AP and average
of both distance signals, following the formulation in
Martinez-Mendez et al. [36] (Table 5).
3) VOICE
Most of voice features were extracted following the
formulation in Tsanas ef al. [45]. Tsanas et al. state
that the period (T) signal provides different infor-
mation than f0. Therefore, we additionally extracted
the T series. Further signals include glottis quotient
and 14 Mel Frequency Cepstral Coefficients (MFCCs),

2
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including the 0™ coefficient and the log-energy of the
signal, along with their associated delta and delta-delta
coefficients as applied in the Voicebox Matlab Tool-
Box [63] (Table 6).
4) TAPPING

We considered a set of features computed from the
inter-tapping interval (time) and the {x,y} inter-tap
distance signals, according to Bot et al. [46] (Table 7).

E. COMORBIDITIES

Comorbidities selected for removal in the experiments
E3-E6 include “Alzheimer Disease or Alzheimer demen-
tia”, “Dementia”, “Schizophrenia or Bipolar Disorder”,
“Alcoholism™, “Multiple Sclerosis”, “Leukemia or Lym-
phoma”, “Acute Myocardial Infarction/Heart Attack”,
“Stroke/Transient Ischemic Attack”, “Breast Cancer”,
“Colorectal Cancer”, “Prostate Cancer”, “Lung Cancer”,
“Endometrial/Uterine Cancer”, “Any other kind of can-
cer OR tumor”, “Heart Failure/Congestive Heart Fail-
ure”, “Ischemic Heart Disease”. These comorbidities were
removed since they may lead to brain damage or to undertake
chemotherapy or other therapy, which might induce brain
changes.

F. MEDICATION STATUS

Table 8 shows the number of subjects that performed the
task just before taking their medication, after taking their
medication, at another random time, number of those who
were not taking any medication and number of those who did
not give any information about their medication status.

G. SELECTION OF THE BEST CLASSIFIER DURING THE
MAIN EXPERIMENT (NO COMORBIDITIES; MATCHED)
Table 9 shows the classification performance for the four
classifiers under consideration for each task.

APPENDIX B

SUPPLEMENTARY RESULTS

Table 10-Table 14 summarize the results for each task (gait,
balance, voice, tapping) and the combination of all the tasks,
for the experiment 1 (all data), experiment 2 (matched data),
experiment 3 (no comorbidities and matched data), exper-
iment 4 (no comorbidities, matched, controlled for age),
experiment 5 (no comorbidities, matched, controlled for sex)
and experiment 6 (no comorbidities, matched, controlled for
age and sex).

A. ADDITIONAL EXPERIMENTS

Our results may differ to those in the current literature using
the mPower dataset since we follow different approaches.
To explain these discrepancies and compare with the liter-
ature, we included two additional experiments including all
data without trimming for age range and all data including
both age and sex as features in the analyses (Table 15).
Classification performances for both additional experiments
for each tasks are summarized in Table 16-Table 20.
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General Discussion

DBs collected using smart devices are a promising tool for accurate, continuous, and
unobstructed monitoring of PD symptoms in patients' daily life. Nonetheless, for DBs to
be successfully implemented in clinical settings, it is crucial to establish an open-source
infrastructure, standardised evaluation pipelines, and the development of reliable DBs. In
a series of manuscripts, I addressed some of the known major challenges in this context,
and in the following section, I discuss the key outcomes.

The primary objective of the work presented in the first manuscript was to develop an
open-source, modular platform for digital phenotyping with a focus on privacy and
security (68). The resulting solution, "JTrack", was developed based on these criteria to
facilitate unobstructed and remote sensor-based psychiatric and neurological disorders
monitoring. At the same time, it addresses the major shortcomings of existing platforms.
"JTrack" complies with GDPR security and privacy regulations, making it trustworthy
and available through official application stores (Google Play and Apple Store). This is
in contrast to some evaluated platforms that lack this level of trust and security as they
rely on online distribution methods.

Additionally, "JTrack" reduces the impact of technical failures and missing data through
optimal battery and memory use. Lastly, while the motor manifestations of
neurodegenerative diseases, particularly PD, are the most studied, the non-motor
manifestations are barely studied using remote monitoring methods, owing to the
difficulty of collecting and integrating relative modules in current platforms. In this
regard, the modular architecture and reusability functionalities of "JTrack" enable the
researchers to easily add or remove their required features from a list of collected data.
In the second manuscript (68), we compared "JTrack" with two stationary gait analysis
systems (a force plate and a motion capture system). We found a high level of agreement
between data collected from single accelerometer sensors using the "JTrack" application
and stationary analysis systems, demonstrating the utility of smartphones in future clinical
studies of gait. We have shown that features such as stride time and cadence variables,
clinically meaningful outcomes of locomotor tasks, can be accurately derived from
smartphones and used in a normal-gait analysis. However, we came to the conclusion that
measuring in particular stance variables has limitations, such as the need for initial

calibration or a device's fixed orientation and position in the reference recording.
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The DBs are inherently prone to different sources of variation. Recent studies that have
demonstrated the feasibility of using DBs in PD have mainly focused on in-laboratory
settings, therefore, validation and reliability studies are still lacking for home
environments. In the third manuscript (69), we addressed this issue by evaluating the test-
retest reliability and longitudinal stability of DBs for PD as measured in a large-scale m-
Power study using a self-administered setting (66). We observed a significant change in
the longitudinal performance of most DBs, resulting in poor differentiation between PD
and HC. We attributed this finding to the presence of differential learning and variation
in motivation between the two groups. Motivation and learning effects are two barely
studied sources of confounds that impact the longitudinal stability of DBs. Although
learning has been identified as a crucial factor that can influence a participant's
performance over time (70-72), the effect of motivation on DBs' reliability remains
understudied. Our study found evidence for both aspects, highlighting the need for an
investigation that explores the effect of motivation alteration and how it differs from
learning effects. We also noted that a decrease in motivation could impact adherence to
the study, as evidenced by the limited records of most participants during the course of
the study in the m-Power dataset.

Initial investigation of the m-Power dataset indicates that using the self-administration
enrolment method may lead to several biases, such as the recruitment of younger and
healthier subjects. This may be explained by the recruitment restrictions of m-power
(owning an iPhone, speaking English, and residing in the United States) targeting a young
and healthy population with a higher smartphone adaptation rate (73). Therefore,
demographic factors such as age, technological savvy (primarily among the elderly), and
socioeconomic status may influence the profile of participation in smartphone-based
remote monitoring programs. Hence, it is crucial to consider selection bias in such
research.

Additionally, the data collected from participants' self-reports may introduce several
biases stemming from incorrect data entry. The ability to follow or understand
instructions required for completing tasks is another concept that can be a source of bias.
This is more pronounced for complex tasks such as gait and balance. Task instructions
such as "take ten steps and turn around" and "start walking for ten steps after you hear a
beep sound" may be misunderstood or entirely ignored by the participants. This effect
was observed in the m-Power dataset, where many participants had shorter signal lengths

or held devices in the wrong positions. In addition, the results of the third manuscript
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show a smaller effect size and poor reliability for these tasks. (6,74). It suggests that
additional supplemental materials, such as audio counselling or video tutorials, during or
before such tasks could help participants complete them.

The real-time and longitudinal nature of remote monitoring approaches makes them an
excellent complement to patient recall for the estimation of treatment effect evaluation,
with the potential to be utilised in personalised and precision medicine. However, our
results indicate that the majority of extracted DBs were not sensitive enough to different
treatment conditions. One potential explanation is the presence of confounding factors
such as the absence of accurate treatment reporting time, treatment type, dosage, and
disease severity that must all be considered. Thus, there is a need for more sensitive DBs
in a remote and self-administered context as well as carefully constructed settings and
evaluation procedures in this response.

Upon further inspection of manuscripts published using the m-Power data set, it became
clear that there was a vast divergence of outcomes from different groups. One of the most
potential explanations for this disparity is the lack of a standard pipeline for analysis,
standardised benchmarks, performance measures, and neglect of confounding
factors. Therefore, in the fourth manuscript (75), we investigated these confounding
factors and their influence on the performance of machine learning methods.

Different machine learning algorithms search for particular trends and patterns in the data,
and it's possible that a single algorithm may not be the optimal solution for all datasets or
use cases. Thus, comprehensive experiments and the assessment of multiple machine-
learning algorithms are required. We show this principle in the fourth paper by comparing
the performances of different machine-learning algorithms. We also show that different
sources of confounding factors can lead to over or underfitting results, which is consistent
with previous research (58,76).

Considering that PD is a complex disease affecting many health domains, using a single
task or a limited number of features could be another reason for the discrepancy in
previous studies. Therefore, considering multiple aspects such as sleep behaviour,
genotyping, and mood tracking to extract more reliable DBs may increase the
performance of machine learning methods in differentiating PD from non-PD groups
(15).

The large volume of data collected from smartphones typically consists of repeated
measurements from a participant. The assignment of repeated measures from the same

individual (record-wise) to training and test sets is a common practice in machine learning
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methods. However, this potentially misleads the algorithm into learning the unique
feature associated with a subject resulting in a very optimistic performance. Thus to avoid
this, it is recommended to use subject-wise data separation rather than record-wise.
(65,77). Finally, the outcome of the fourth manuscript suggests that the lack of
considering the above-mentioned factors could lead to a lack of reproducibility and

generalizability in the results.

Conclusion and future direction

In conclusion, in this thesis, I have highlighted the potential of using DBs in clinical
studies, enabling a diverse range of research and clinical applications such as disease
monitoring and diagnosis. I also pointed out that developing successful assessment tools
require close collaboration between medical professionals, analytical experts, computer
engineers, and legal experts, which cannot be achieved without a broad management
operation. Therefore, the availability of an open-source and modular platform enables
clinicians and researchers to incorporate such a tool into their studies quickly. In addition,
concerns such as privacy, performance, security, and data ownership are among the
fundamental factors that have the potential to influence this partnership. Therefore, tools
should be most sensitive to these issues.

I also showed that the reliability (test-retest) and longitudinal stability of DBs extracted
in an unsupervised manner is a major challenge regarding their clinical use. The
complexity of self-administered and at-home protocols, along with factors such as
environmental changes, loss of motivation, age and gender differences, and the influence
of comorbidities, are factors that can cause DBs to become unstable over time, which
have not been well addressed in previous studies. Therefore, more comprehensive
mechanisms for the development and analysis of DBs collected under these conditions,
as well as the development of more reliable DBs, need to be addressed in future studies.
Also, study participation and adherence are other critical challenges associated with
uncontrolled protocols, improved study protocols and using intelligent notification
combined with passive monitoring methods may improve this issue.

Finally, before the widespread deployment of DBs technologies in clinical practice,
remote assessment platforms need to be upgraded to be compatible with various operating
systems and devices. Integrating innovative embedded sensors and wearable devices

should also be implemented in future updates of DB platforms. In addition, combining
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behavioural data with sensor-based data is among the things that may reveal more

information about the disease.
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