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Zusammenfassung 

Die Magnetresonanztomographie (MRT) in den Neurowissenschaften ist eine der 

leistungsfähigsten nicht-invasiven Methoden zur Messung des menschlichen Gehirns. In 

Neuroimaging-Studien wird die MRT eingesetzt, um strukturelle und funktionelle 

Eigenschaften des Gehirns zu erfassen. In den computergestützten Neurowissenschaften 

werden bei der Ganzhirnmodellierung MRT-Daten als Grundlage verwendet, so dass Forscher 

die simulierte Ganzhirndynamik in silico untersuchen können, indem sie die freien Parameter 

von Ganzhirnmodellen erforschen. Allerdings gibt es für die MRT-Datenverarbeitung keine 

standardisierte Methode, da es keine Referenzdaten des menschlichen Gehirns gibt. Die 

Verwendung unterschiedlicher Softwares und Datenverarbeitungsparameter kann daher zu 

widersprüchlichen Ergebnissen und unterschiedlichen Schlussfolgerungen in verschiedenen 

Studien führen. Außerdem sind die Auswirkungen der Datenverarbeitung auf Ganzhirnmodelle 

noch nicht eindeutig geklärt. Daher habe ich drei Studien durchgeführt, die variierende Ansätze 

zur MRT-Datenverarbeitung für die Modellierung des gesamten Gehirns berücksichtigen und 

die Auswirkungen der Datenverarbeitungsparameter auf die Ganzhirnmodelle untersuchen. In 

Studie 1 wurden verschiedene Datenverarbeitungen verwendet, um das strukturelle Konnektom 

zu berechnen, das die Ganzhirnmodelle beeinflussen kann. In der Folge führten beeinflussten 

diese unterschiedlichen Ganzhirnmodelle die Simulationsergebnissen stark, und die Probanden 

wurden auf der Grundlage empirischer und simulierter Daten geschichtet. In Studie 2 wurden 

verschiedene Parzellierungsschemata des Gehirns für die Datenverarbeitung verwendet. 

Empirische und simulierte Ergebnisse aus verschiedenen Parzellierungsschemata zeigten 

interindividuelle Variabilität anhand von Datenvariablen. Vor diesem Hintergrund wurde in 

Studie 3 eine variierende funktionelle Datenverarbeitung für die dynamische Modellierung des 

gesamten Gehirns verwendet. Die empirischen und simulierten Ergebnisse unter verschiedenen 

Bedingungen wurden zur Klassifizierung von Parkinson-Patienten und gesunden Probanden 

verwendet. Dabei wurde die Klassifizierungsleistung durch die Bedingungen der funktionellen 

Datenverarbeitung beeinflusst. Außerdem verbesserte die Ganzhirnmodellierung die Leistung, 

wenn die empirischen Daten um die Simulationsergebnisse ergänzt wurden. Aus diesen Studien 

geht hervor, dass sich unterschiedliche Parameter der MRT-Datenverarbeitung nicht nur auf 

die empirischen Daten auswirken, sondern auch zu unterschiedlichen Simulationsergebnissen 

bei der dynamischen Modellierung des gesamten Gehirns führen.  
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Summary 

Magnetic resonance imaging (MRI) in neuroscience is one of the most powerful non-invasive 

methods to measure the human brain. Neuroimaging studies have been using MRI to extract 

structural and functional properties from the brain. In computational neuroscience, whole-brain 

modeling employs MRI data as a backbone and allows researchers to scrutinize simulated 

whole-brain dynamics in silico by exploring free parameters of whole-brain models. However, 

MRI data processing has no standardized method because of the lack of ground truth of the 

human brain. Thus, using different softwares and data processing parameters can induce 

inconsistent results and lead to different conclusions across studies. Besides, the impact of data 

processing on whole-brain models has not been clearly understood. Therefore, I performed 

three studies considering conditions of MRI data processing for whole-brain modeling and 

investigated the impact of data processing parameters on whole-brain models. In study 1, varied 

data processing was used to calculate the structural connectome, which can directly influence 

whole-brain models. Subsequently, these different whole-brain models strongly influenced 

simulated results and the subjects were stratified based on empirical and simulated data. In 

study 2, different brain parcellation schemes were used for data processing. Empirical and 

simulated results from different parcellation schemes showed inter-individual variability via 

data variables. In these respects, in study 3, varied functional data processing was used for 

whole-brain dynamical modeling. Afterwards, the empirical and simulated results with 

different conditions were used for the classification of patients with Parkinson’s disease against 

healthy subjects. The classification performance was affected by the functional data processing 

conditions. Furthermore, whole-brain modeling improved the performance when the empirical 

data are complemented by the simulation results. From these studies in the thesis, varying MRI 

data processing parameters does not only impact empirical data but also leads to different 

simulation results in whole-brain dynamical modeling and its application. 
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1 Introduction 

Thousands of neuroimaging studies have been using magnetic resonance imaging (MRI) data 

for the human brain research because it provides in vivo (within the living) large-scale (in 

millimeters) structural and functional whole-brain information. MRI employs several protocols 

to measure brains and obtains different attributes, such as T1-weighted image (T1w) for brain 

anatomy (Destrieux et al., 2010; Fischl et al., 2002; Fischl et al., 2004), diffusion-weighted 

image (DWI) for movement of water molecules in the brain (Mori and Zhang, 2006), and echo-

planar image (EPI) for blood oxygenation-level dependent (BOLD) signals (Ogawa et al., 1992; 

Stehling et al., 1991). Structural MRI, such as T1w, scans static brains and can be used to 

calculate areas or volumes of brain regions. Functional MRI records the changes of image 

intensities in pixels (in 2 dimensions) or voxels (in 3 dimensions) across sequential measures 

(through time) which represents brain dynamics, such as changes of brain activity that responses 

to the circumstances and causes cognitive functions and behavior. Brain activity represents 

responses of neurons in the brain. Changes of neural responses through time evoke variations 

of oxygenation of hemoglobin in red blood cells and, subsequently, it results in fluctuations of 

BOLD responses (Buxton et al., 2004; Logothetis et al., 2001). With these structural and 

functional MRI data, researchers who are interested in the brain and related topics, such as 

neuroscience, cognitive science, psychology, neurology, and psychiatry, have investigated the 

human brain and delineated relationships with human behavior or clinical symptoms. 

Most raw MRI data, firstly measured through an aperture (an MRI scanner), is not directly 

applicable for further analysis but needs additional calculations to have a result that researchers 

can use for their work, for example, diffusion tensor imaging for microstructural features of the 

brain (Le Bihan et al., 2001), perfusion-weighted imaging for dynamics of cerebral blood flow 

in stroke patients (Lee et al., 2020; Neumann-Haefelin et al., 1999; Schlaug et al., 1999), 

functional MRI for task-driven activities of the brain (Knutson et al., 2000). Here, calculation 

of MRI data for further analysis is termed “data processing” in this dissertation. In other words, 

data processing utilizes MRI data for brain research or clinical application. Depending on 

research questions, raw MRI data are processed by long-take data processing procedure consists 

of serial calculations. A serial data processing is called “pipeline”, where the output of one data 

processing is the input of the next one. A pipeline can have tens of data processing steps (Fig. 

1), and these steps can be rearranged based on various purposes. However, we cannot 

concatenate or switch data processing steps in any orders because pipelines should keep “data 

fidelity”. Data fidelity is the proportion of information in processed data against the information 
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of directly measured data, i.e., “ground truth”, see the reference for an example of data fidelity 

in image processing (Gupta et al., 2021). For instance, if randomly generated noise is added to 

MRI data, its data fidelity will drop after adding the noise. Although maintaining data fidelity 

during MRI data processing is important for investigation, it has not been rigorously scrutinized 

in neuroimaging studies because obtaining ground truth from in vivo human brains is difficult. 

If the ground truth is available, MRI data processing or a pipeline can be validated based on 

whether the data processing brings out the information from the raw data. In other words, the 

validation is to evaluate data processing through agreement between directly measured data 

(ground truth) and processed data as to whether the data processing is applicable for further 

analysis (Fischl et al., 2002; Lee et al., 2020; Niedworok et al., 2016). With this respect, data 

fidelity can be estimated via calculating similarity, such as Pearson correlation coefficient or 

Dice coefficient, between ground truth and processed data. So, a validated data processing or 

pipeline can be expected to process data in maintaining data fidelity. Consequently, researchers 

can evidently interpret the results of brain MRI data processed by the validated pipeline or data 

Figure 1 Workflow of an MRI pipeline for whole-brain connectome. (1) Preprocessing of structural T1w and 
DWI. (2) Calculation of whole-brain tractography using DWI. (3) Atlas labeling and transformation to DWI space. 
(4) Reconstruction of structural connectome. (5) Preprocessing of functional EPI. Abbreviations: AC-PC = 
anterior-posterior commissures; DWI = diffusion-weighted image; EPI = echo-planar image; T1w = T1-weighted 
image. 
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processing. The issue of validation should be considered in popular MRI processing such as a 

robust preprocessing pipeline for functional MRI (Esteban et al., 2019), voxel-based 

morphometry (Ashburner and Friston, 2000), statistical parametric mapping (Penny et al., 

2011), human connectome (Sporns, 2011; Sporns et al., 2005), and whole-brain connectivity 

networks (Park and Friston, 2013). 

1.1 Difficulty in validation of MRI data processing 

One of the main issues of brain MRI data processing is that it has not been standardized upon 

a consensus among neuroimaging studies (Lindquist, 2020; Maier-Hein et al., 2017; Parkes et 

al., 2018). The lack of consensus causes that MRI data processed by different pipelines from 

separate studies can be different from each other (Botvinik-Nezer et al., 2020; Schilling et al., 

2021). Subsequently, the different results performed by different pipelines using the same MRI 

data can impact data fidelity. To resolve this discrepancy, we can compare between ground 

truth and processed data and choose one that shows the highest agreement among data 

processing conditions (Maffei et al., 2022; Schilling et al., 2019). As mentioned, obtaining 

ground truth in brain MRI studies is difficult, nevertheless a few neuroimaging studies designed 

experiments to obtain ground truth for validation. Here are two validation examples of brain 

MRI studies using ground truth: the association of evoked neural responses to BOLD responses 

(neurovascular coupling) from in vivo animal studies (Bernal-Casas et al., 2017; Logothetis et 

al., 2001) and comparing anatomical (axonal) connectivity in white matter from post-mortem 

ex vivo brains with reconstructed streamlines connecting brain regions (Jones et al., 2021; 

Maffei et al., 2022; Yendiki et al., 2022). Even though the validation using ground truth has 

limitation in in vivo human brain, there are possible ways to obtain ground truth. For example, 

there is a direct way to measure electrical neural responses in the human brain in vivo, but only 

for severe clinical cases that need brain surgical operations such as electrocorticography (ECoG) 

for patients with epilepsy (Kuruvilla and Flink, 2003). However, the validation approach using 

ground truth in doing likewise is difficult to be generally applied to healthy participants or non-

clinical cases.  

1.2 Unclear impact of data processing parameters 

One aspect that should be considered is that processed data can differ when we use different 

parameter values for data processing. Especially neuroimaging data processing, such as the 

MRI data processing in Fig. 1, has many parameters besides some of them can be essential for 

validation of the data processing. Because of a chain of data processing, small changes of some 
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of the parameters in the pipeline can also gradually impact the empirical data and its validation. 

Moreover, the lack of standardized MRI data processing makes the impact of the parameters 

complicated (Lindquist, 2020). For instance, measured (empirical) BOLD responses can differ 

when the pipeline works with different parameters of data processing for functional MRI, such 

as different temporal filters (Baria et al., 2011; Wee et al., 2012) and denoising methods (Parkes 

et al., 2018). Even so, these studies addressed the impact of data processing conditions on 

results what the researchers are interested in, but there are still unclear issues about 

experimental conditions concerning the effect of different data processing parameter values on 

conclusions of brain research. Many neuroimaging studies have been using likewise different 

or non-standardized parameters for further analysis without considering the impact of data 

processing parameters. For example, whole-brain tractography (WBT) for structural 

connectome (Sporns et al., 2005) has used an arbitrary turning angle criterion for streamlines 

(Soares et al., 2013) and different numbers of streamlines from 10 thousand to 10 million 

(Bajada et al., 2019; Hagmann et al., 2008; Prasad et al., 2013; Proix et al., 2016). Furthermore, 

there are several software tools to process DWI data (Soares et al., 2013) and tracking 

algorithms to calculate streamlines (Yeh et al., 2021) although it is still under debate (Maffei et 

al., 2022). Therefore, brain research using MRI data needs a systematic investigation of the 

impact of parameters of MRI data processing. 

1.3 Data-driven approach for generative models 

The data-driven approach belongs to systematic ways to investigate the impact of data 

processing parameters on empirical data via considering the parameters as variables, and 

besides, we can formulate study designs with experimental parameter conditions, such as 

control (fixed) and manipulated (varied) variables. In this way, we can probe results driven by 

the parameter conditions and investigate the impact of the parameters on the processed data and 

further analysis. If we use some parameter values from our experiences or the literature, we 

cannot address how the data processing parameters impact the results. In the data-driven 

approach, on the contrary, we vary the parameters on purpose as variables (free parameters) 

covering applicable ranges and obtain the results corresponding to the varied parameters. For 

example, when a pipeline processes data with several evenly distributed parameter values, the 

processed data will be calculated separately for all tested parameter values. Subsequently, each 

processed data can be tested step-by-step, i.e., each parameter value has a value of evaluation 

for comparison between the processed and empirical data. Thus, we can illustrate the 

trajectories of varied parameters versus tested results. With these evaluation values, the data-
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driven approach searches for an optimal parameter value leading to the best evaluation (the 

highest similarity), see the reference for an example of the data-driven approach via varying 

parameter values (Lee et al., 2020).  

In addition, the data-driven approach is applicable for hidden variables in a generative model 

that mimics empirical data. In other words, when we use generative models in the data-driven 

approach, it is easy to apply hidden variables which represent the neuroscientific or biological 

circumstances to manipulating free parameters rather than experimental studies. For example, 

the Balloon-Windkessel model (Buxton et al., 1998; Friston et al., 2003; Havlicek et al., 2015) 

simulates BOLD signals using neural responses. This model contains neurovascular coupling 

factors as the hidden variables, which are not directly measurable from in vivo human brain, 

i.e., it is difficult to manipulate parameter values in experiments, such as cerebral blood flow, 

cerebral blood volume and deoxyhemoglobin content. This model generates the neurovascular 

coupling dynamics during the calculation of BOLD responses. When we apply the data-driven 

approach for these neurovascular coupling factors, i.e., the hidden variables as free parameters, 

the simulated BOLD responses can also be used to search for the optimal parameter values of 

the model, leading to the simulated BOLD signals that show the highest similarity with the 

empirical BOLD signals. For instance, dynamic causal modeling (Friston et al., 2003) simulates 

task-related BOLD responses based on the task design during functional MRI acquisition and 

varies the hidden variables of the Balloon-Windkessel model to estimate the optimal parameter 

values to reach out the highest explained variance between simulated and empirical BOLD 

signals (Friston et al., 2003; Stephan et al., 2007). 

After the data-driven approach for the Balloon-Windkessel model, the optimal parameters of 

the model can also be used for further analysis or data-driven approaches again. For instance, 

Havlicek et al. (2015) found optimal parameter values of the neurovascular coupling using 

dynamic causal modeling, and researchers who are interested in simulated BOLD signals can 

apply the optimal parameter values as constant in their simulation and introduce free parameters 

of other models for the data-driven approach (Havlicek and Uludag, 2020; Polimeni and Lewis, 

2021). In doing likewise, Maffei et al. (2022) also reported that using an optimized pipeline for 

DWI preprocessing as a standardized data processing minimizes discrepancies of tracking 

results across different algorithms and improves performance in a challenge to reconstruct 

axonal bundles in white matter. With predefined optimal parameters, therefore, we can 

systematically extend simulation models and explore simulated results driven by free 

parameters of additional data processing or computational models.  
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Searching for optimal parameter values of a given model is to fit the model to the optimal one 

that simulates data showing the highest similarity with the empirical data, i.e., model fitting. 

Owing to free parameters during the data-driven approach, model fitting can be systematically 

probed via using methodologically unlimited parameter variations. Besides, other empirical 

data can also be used for model fitting. For example, functional connectivity (FC), which is 

calculated by Pearson correlation coefficient of BOLD signals between two brain regions, can 

be used for model fitting (Deco et al., 2015; Honey et al., 2009; Naskar et al., 2021). To this 

end, we obtain empirical FC using empirical BOLD signals between brain regions in resting-

state (task-free) functional MRI and calculate simulated FC using simulated BOLD signals with 

the same brain regions as for the empirical FC. Afterwards, we compare simulated FC with 

empirical FC in separate results by using varied parameter values of models that we are 

interested in. Consequently, we search for the optimal parameters of the models that result in 

the highest similarity between simulated FC and empirical FC. 

1.4 Whole-brain dynamical modeling 

In the data-driven approach, whole-brain in vivo neuroimaging research including human 

subjects is limited because it is not feasible to perform many conditions corresponding to the 

number of varied parameter conditions in experimental study. On the contrary, whole-brain in 

silico modeling (performing on computer or computer simulation that simulates brain activity 

based on the entire brain connectivity) is suitable for applying parameter variation for the data-

driven approach (Popovych et al., 2019). Thus, whole-brain dynamical modeling based on 

model fitting using free parameters allows us to apply the systematic investigation for 

understanding the brain as a whole system. By doing so, we can scrutinize simulated results in 

various perspectives based on free parameters and different objectives for model fitting. 

The advantage of building whole-brain in silico models is that it allows us to investigate the 

human brain as synthetic entities in experimental virtual intervention for clinical conditions that 

researchers are eager to see (An et al., 2022; Bansal et al., 2018; Owen et al., 2013). For instance, 

Owen et al. (2013) performed virtual corpus callosotomy on empirical structural networks of 

healthy subjects, i.e., cutting (turning non-zero values into zeros) the corpus callosum to split 

connections between hemispheres in the structural networks in silico. Afterwards, they 

compared the simulated structural networks of the virtual corpus callosotomy with empirical 

structural networks of patients with agenesis of the corpus callosum. As a result, it showed that 

graph-theoretical network properties of the simulated structural networks of the healthy subjects 

shift toward the empirical structural networks of the patients. 
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In addition, we can also introduce whole-brain computational models that simulate activity of 

the entire brain and explore simulated data in various conditions. To this end, studies in 

computational neuroscience have used the empirical large-scale whole-brain structural 

connectome (axonal connections and path lengths in the white matter) that provides the brain 

architecture as a backbone of whole-brain computational models, and whole-brain 

computational models have been developed for simulation of the brain dynamics based on the 

broad spectrum of updating neural activity (Cabral et al., 2012; Honey et al., 2009; Jirsa et al., 

2017; Moran et al., 2013; Roberts et al., 2019; Sanz-Leon et al., 2015; Zimmermann et al., 

2018). Besides Buzsaki (2006) considered the brain activities of each region as harmonized 

signals. Similarly, we can apply mathematical models about coupled oscillators for whole-brain 

models (Breakspear et al., 2010; Kuramoto, 1984; Rodrigues et al., 2016). With various 

computational or mathematical models, we can investigate simulated brain dynamics in 

different perspectives. Furthermore, we can easily manipulate parameter values of the whole-

brain models and find which parameters are important for a better understanding of the brain 

dynamics.  

As an example, The Virtual Brain (TVB) for large-scale whole-brain dynamics (Sanz-Leon et 

al., 2015) is applicable to whole-brain computational modeling in the data-driven approach. 

TVB provides various models of coupled oscillators such as Kuramoto (Kuramoto, 1984), Hopf 

bifurcation (Kuznetsov et al., 1998), and Fitzhugh-Nagumo type (Fitzhugh, 1961; Nagumo et 

al., 1962) and neural activities such as Jansen-Rit (Jansen and Rit, 1995), Wilson-Cowan 

(Wilson and Cowan, 1972), Wong-Wang (Deco et al., 2013; Wong and Wang, 2006), and 

Larter-Breakspear (Breakspear et al., 2003). These computational or mathematical models in 

TVB can be built based on whole-brain architecture derived from the structural connectome, 

and whole-brain computational models can also be utilized for investigating the impact of 

different modeling approaches on simulated results. However, TVB reconstruction pipeline for 

MRI data has only a few options for data processing parameters. For instance, it provides three 

parcellation atlases, i.e., Desikan-Killiany (Desikan et al., 2006), Destrieux (Destrieux et al., 

2010), and parcellation for virtual epileptic patients (Jirsa et al., 2017), cf. recent studies of brain 

connectivity used around 20 parcellations (Domhof et al., 2021; Messe, 2020).  

Regarding the impact of data processing parameters on whole-brain dynamical models, i.e., the 

main question of this dissertation, study designs here should be formulated by systematic 

approaches for manipulating data processing parameters. As a consequence, I develop an MRI 

pipeline that has manipulable parameters (free parameters), which is available for the data-
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driven approach. With this, I can vary data processing parameters of the pipeline. After that, I 

search for optimal parameters of the whole-brain computational models via model fitting and 

obtain simulated brain responses helping me to answer research questions. By doing this, I 

establish a systematic whole-brain dynamical modeling against empirical data, and the 

simulation results will provide a way of delineating the impact of data processing parameters 

on whole-brain modeling. From a futuristic perspective in computational neuroscience, the 

cumulation through iterations of the whole-brain dynamical modeling via the data-driven 

approach will allow us to contemplate a whole-brain system across scales in brain cartography 

(Frackowiak and Markram, 2015) from microscale (individual neurons or neuronal populations) 

to macroscale (brain parcels) that can compute behavioral or cognitive processes like the human 

brains (Kriegeskorte and Douglas, 2018).  

1.5 Whole-brain simulation in computational neuroscience  

Hodgkin and Huxley (1952) proposed simulation of membrane potentials in individual neurons. 

Since this, researchers in computational neuroscience have developed many simulation models 

to mimic empirical neural responses in the brain. However, the main impediment to building 

models is the enormous number of neurons and thousands of synaptic connections of each 

neuron. The human brain contains around 86 billion neurons on average (Herculano-Houzel, 

2012). Accordingly, reconstruction of neuronal circuits using the entire neurons for such a 

whole-brain neuronal system is immense and complex processing. For instance, neocortical 

neuronal microcircuits of 31 thousand neurons (only 0.036 % of the entire human brain) 

required enormous resources (Markram et al., 2015). Despite the current technological advance, 

it is still impossible to reconstruct whole-brain system using the entire neurons in the human 

brain. 

1.5.1 Scale reduction of whole-brain simulation to macroscale 

In spite of the difficulty, an alternative way to straighten it out is to reduce the scale from 

microscale to mesoscale or even further to macroscale (Sporns et al., 2005). This approach 

requires the entire central nervous system in multi-scale and multi-level entities across spatial 

scales while spanning life called human cerebral cartography (Frackowiak and Markram, 2015). 

To scale the micro-level down to the meso-level, we need to show that a reduced model 

represents the functional properties of a group of neurons. For instance, electrophysiological 

research of the sensory cortex in animal studies confirmed the column-columnar organization 

representing a receptive field, such as the orientation selectivity to visual stimuli via interacting 
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among tens of neurons (Hubel and Wiesel, 1962) as a group of neurons in a columnar formation 

(Mountcastle, 1997). In other words, the column-columnar organization model allows us to 

reduce nearly 100 neurons into a single minicolumn for each receptive field (see Minicolumn 

in Mesoscale in Fig. 2). The scale reduction regarding minicolumns was already mentioned 

more than 15 years ago (Sporns et al., 2005). However, the human brain still has sub-billion 

minicolumns, and the current technology has not reached that computational power. Therefore, 

by integrating the functional representations of minicolumns, we can further reduce them into 

a group of minicolumns, called neural groups or populations in the cortex (see Neural 

population in Mesoscale in Fig. 2), that also represent a collection of receptive fields such as a 

pinwheel structure of visual orientations in striate cortex of cat (Maldonado et al., 1997) and a 

center-surround modulation for facilitation and suppression via interacting among cortical 

columns in primary visual cortex of cat and monkey (Series et al., 2003). Following this scale 

reduction (Fig. 2), we can further scale them down to the level of computationally or technically 

manageable scales in animal studies, for instance, whole-brain neural activity in a single-cell 

level measured by the light-sheet microscopy (Keller and Ahrens, 2015), a reduced model for 

a barrel cortical column of mice (Jung et al., 2019), and a brain-wide modeling using calcium 

imaging (Rosch et al., 2018). 

For the in vivo human brain, it needs further scaling down to the MRI spatial resolution on a 

millimeter-scale, i.e., the macroscale (or large-scale). In the literature, it is stated that slightly 

less than 150 thousand neurons in a cortical column distribute beneath one squared millimeter 

cortical surface area (Herculano-Houzel, 2012), see also Neocortex in Mesoscale (Fig. 2). When 

we assume that the hundreds of thousand neurons play a role as a functional unit in a columnar 

formation (a form of neural columns) in the cerebral cortex, we can reconstruct the cortical 

surface with these cortical functional units. For instance, Spiegler et al. (2016) rendered the 

cortical surface of each hemisphere from T1w data and created 8,192 vertices on a mesh of 

cortical surface in each hemisphere. They also included 116 nodes for subcortical areas. 

Subsequently, they reconstructed a surface-based whole-brain model, following that each 

vertex plays as a neural mass model connected with other vertices (Spiegler and Jirsa, 2013). 

Thus, the total number of simulation nodes in the surface-based whole-brain model was 16,500. 

However, they executed the whole-brain model for only one second with 40 microseconds for 

time integration because the model had many simulation nodes. Although this approach scales 

down around 52 million times to the macroscale and assumes drastic scale reduction regarding 

cortical columns as functional units, it still needs more computational power. To obtain 

simulated whole-brain dynamics in appropriate time lengths, therefore, it is inevitable to build 
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a large-scale (macroscale with sub-thousand nodes) whole-brain model representing the human 

brain. 

1.5.2 Large-scale human connectome for whole-brain modeling 

Almost two decades ago, Sporns et al. (2005) introduced the human “connectome” to 

understand brains as a large-scale network consisting of interconnected brain regions that cover 

the entire human brain (see Macroscale in Fig. 2). To reconstruct the human connectome, we 

define brain regions with a certain criterion. For instance, brain parcellation schemes or brain 

atlases provide a way to split neocortical surfaces into tens or hundreds of parcels (Eickhoff et 

al., 2018). Various parcellation schemes have been developed for brain research based on 

functional properties (Schaefer et al., 2018; Shen et al., 2013), structural shapes (Desikan et al., 

2006; Destrieux et al., 2010), and cytoarchitectonic variations (Amunts et al., 2020; Brodmann, 

1909; von Economo and Koskinas, 1925). With this, we can split the brain into separate regions 

as network nodes and estimate connectivity or coupling strength between the brain regions as 

network edges. There are several ways to calculate whole-brain connectivity with different 

points of view (Park and Friston, 2013), i.e., structural and functional connections. For the 

structural connectome, the pipeline in Fig. 1 processes T1w and DWI data in modules 1 to 4 

and calculates WBT containing streamlines that delineate anatomical connections through 

white matter of the brain, i.e., axonal bundles. Subsequently, streamlines connecting brain 

regions were extracted by using a given parcellation scheme, and we obtain the number of 

streamlines for all pairs of brain regions from the entire brain and averaged path lengths of them, 

i.e., structural connectivity (SC). For the functional connectome, the pipeline in Fig. 1 processes 

Figure 2 Schematic illustration of scale reduction for simulation models in computational neuroscience from the 
microscale to the macroscale. The numbers of nodes in the middle indicate the number of simulation units that 
shows how it strongly reduces from the entire neurons in the human brain. 
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T1w and EPI data in modules 1, 3, and 5. After that, we can extract BOLD signals from the 

processed EPI data using the given parcellation scheme, which is the same as in the processing 

of SC. Then, we can calculate FC using the BOLD signals. More precisely, we apply the 

Pearson correlation coefficient to cross-correlate the given BOLD signals. Now the human 

connectome, i.e., the whole-brain SC and FC, covers a computationally applicable scale (a 

large-scale) for dynamical modeling with hundreds of nodes. Thus, many simulation studies of 

the human brain have used the large-scale (or macroscale) whole-brain connectome for model 

validation such as the comparison between empirical FC and simulated FC (Deco et al., 2015; 

Honey et al., 2009; Naskar et al., 2021). 

1.5.3 Data processing influences the human connectome 

As aforementioned, in the whole-brain simulation, SC (streamline counts and averaged path 

lengths) provides a backbone of the whole-brain model that describes how strongly brain 

regions are coupled (interacting) with delays via streamline counts (coupling strengths) and 

averaged path lengths (delays). Although the estimated streamlines have around 30% of the 

false positive and false negative connections in the monkey brain (Girard et al., 2020), this is 

the method by which we can extract the large-scale structural connectome from the human brain. 

Recently, MRI processing pipelines and tracking algorithms have been systematically tested 

across around ten research teams, and the best performance showed 80% of true positive rate 

with only 5% false positive rate (Maffei et al., 2022). In addition, the averaged path lengths 

between brain regions allow us to apply delayed coupling (or neural signal propagation speed) 

to the whole-brain model based on the results of neurophysiological measures in the literature 

(Caminiti et al., 2013). Hence, varying data processing parameters in the SC pipeline (module 

1 to 4 in Fig. 1) results in different SC and subsequently changes the backbone of the whole-

brain model. Consequently, simulated whole-brain dynamics will be affected. From the 

perspective of the data-driven approach, varying data processing parameters in the SC pipeline 

impacts the simulated results and also allows us to investigate the impact of data processing 

parameters on whole-brain dynamical modeling. 

The FC pipeline can also be tested via doing likewise. Sporns (2011) pointed that FC can also 

be critically affected by the choice of data or signal processing (Baria et al., 2011; Parkes et al., 

2018; Wee et al., 2012). Thus, empirical FC and simulated FC represent dynamics of brain 

activity differently when we use different statistical or data processing methods for BOLD and 

FC calculation. Accordingly, we can also vary data processing parameters in the FC pipeline 

(modules 1, 3, and 5 in Fig. 1) for the data-driven approach. Therefore, by manipulating data 



 
12 

processing parameters in the SC and FC pipelines, we can explore whole-brain dynamical 

models and also search for the optimal conditions and parameter values corresponding to the 

highest agreement between empirical data and simulated results for model fitting.  

In addition to the data processing parameters in the SC and FC pipelines, a brain parcellation 

scheme can also impact the results of both pipelines because SC and FC are calculated by using 

a region-based analysis. In other words, the large-scale whole-brain connectome of the human 

brain can show different results when we use different parcellation schemes (Domhof et al., 

2021; Messe, 2020). Besides, as the aforementioned analysis for the human connectome, there 

are various parcellation schemes (functional, structural, and cytoarchitectural) to split cortical 

surfaces of the human brain into various levels of granularity, i.e., how small brain regions are 

(Eickhoff et al., 2018). Parcellation schemes as different scale-reduction perspectives for large-

scale whole-brain connectome can also be study- or data-dependent approaches that reflect a 

given condition of study design or data modality. Therefore, one of the challenges in human 

connectome research is also to select an appropriate parcellation scheme for whole-brain 

dynamical modeling. 

1.6 Ethics protocols 

The ethics protocols were approved by the Ethics Committee of Heinrich Heine University 

Düsseldorf (Study number: 4039 and 2018-317_1-RetroDEuA). 

1.7 Aims of thesis 

Currently, the lack of a consensus or standardized MRI processing and the unknown impacts 

of data processing parameters on the empirical whole-brain connectome are limiting factors in 

neuroimaging study. Due to this, the impact of MRI data processing parameters on whole-brain 

dynamical modeling should be tested by systematic approaches. The current thesis, therefore, 

hypothesizes that varying MRI data processing parameter values impacts whole-brain 

dynamical modeling. To this end, I formulate three research questions for the thesis focusing 

on the consequences of data processing parameters on empirical data and simulated results for 

whole-brain dynamical modeling. First, how does structural MRI data processing impact 

empirical structural architecture and whole-brain dynamical modeling? With this question, I 

investigate the impact of structural data processing parameters on whole-brain dynamical 

modeling and establish a structural pipeline for SC as a backbone of whole-brain models. 

Second, how do parcellation schemes influence empirical and simulated data variables? This 
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question is to scrutinize the impact of parcellation schemes with varied granularity on simulated 

results focusing on personalized whole-brain models. Third, which functional data processing 

is optimal for clinical application based on whole-brain model fitting? For the third question, 

finally, I apply the developed MRI pipeline (Fig. 1) and whole-brain dynamical modeling to 

clinical data and investigate clinical applications based on whole-brain model fitting with 

different functional data processing conditions.  

The workflow in Fig. 3 illustrates experimental designs of how data processing steps proceed 

with the considered research questions regarding variations of data processing parameters. The 

green boxes indicate data processing steps of experimental conditions for the empirical whole-

brain connectome. The red boxes are about whole-brain models for simulated whole-brain 

dynamics. Afterwards, the model validation (orange box) compares simulated FC with 

empirical data and searches for the optimal model parameter corresponding to the maximal 

correspondence between simulated and empirical data. In the end of the hypothesis testing (blue 

box), I perform statistical analyses of results and address the impacts of data processing 

parameters on whole-brain dynamical modeling and their clinical applications. 

1.7.1 Study 1: Impact of structural data processing on modeling 

Figure 3 Illustration of workflow in the current project. The shaded workflows indicate the data processing for 
each study. Data processing parameters are varied in the green boxes. The red boxes are about whole-brain models 
for simulation. The orange boxes are about model validation. Afterwards, statistical analyses (blue boxes) are 
performed for hypothesis testing of each study. 
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The first study is to investigate the impact of structural data processing parameters on SC and 

simulated results (see Study 1 in Fig. 3). As aforementioned, the reconstruction of WBT does 

not have optimal parameters in tracking algorithms, for instance, turning angles for streamline 

tracking or the number of streamlines of WBT. Furthermore, different numbers of streamlines 

have been used for WBT from 10 thousand to 10 million (Bajada et al., 2019; Hagmann et al., 

2008; Prasad et al., 2013; Proix et al., 2016). Thus, I consider different WBT density conditions 

with two parcellation schemes, i.e., functional and structural parcellation atlases. By doing so, 

the first study shows the impact of WBT densities on empirical structural architecture and 

corresponding whole-brain dynamical modeling for young and healthy participants. 

1.7.2 Study 2: Impact of data processing of parcellation on modeling 

The second study inquires how the parcellation schemes influence empirical and simulated data 

variables (see Study 2 in Fig. 3). The considered experimental conditions are about different 

granularities of brain parcellation and varied tissue thresholding criteria. To this end, the study 

contains two functional atlases with varied granularities (different numbers of parcels) and one 

structural atlas with varied tissue thresholding criteria (different sizes of the same parcel). In 

addition, two whole-brain models for all considered conditions are used for whole-brain 

dynamical modeling. In consequence, the second study shows that the parcellation schemes 

influence empirical and simulated results with inter-subject and inter-parcellation variability. 

1.7.3 Study 3: Impact of functional data processing on modeling in clinical data 

In the third study, I apply a convolution-based two-population model to generate electrical 

signals for local brain dynamics (Jansen and Rit, 1995; Lopes da Silva et al., 1974) and employ 

different temporal filtering conditions for empirical and simulated BOLD signals with two brain 

parcellation schemes, i.e., structural and functional ones (see Study 3 in Fig. 3). In addition to 

the functional data processing conditions with the two parcellation schemes, I introduce a new 

model-fitting approach to detect group differences between healthy subjects and patients with 

Parkinson’s disease. This approach can also provide a way of training machines to classify 

subjects into healthy control or the disease. To this end, I apply a machine learning method to 

train a classifier using empirical and simulated data for the patient classification. With the 

classification performance, I discuss the impact of signal processing (functional data processing) 

of BOLD signals on whole-brain dynamical modeling and corresponding classification results.  
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a b s t r a c t 

Dynamical modeling of the resting-state brain dynamics essentially relies on the empirical neuroimaging data uti- 

lized for the model derivation and validation. There is however still no standardized data processing for magnetic 

resonance imaging pipelines and the structural and functional connectomes involved in the models. In this study, 

we thus address how the parameters of diffusion-weighted data processing for structural connectivity (SC) can 

influence the validation results of the whole-brain mathematical models informed by SC. For this, we introduce 

a set of simulation conditions including the varying number of total streamlines of the whole-brain tractography 

(WBT) used for extraction of SC, cortical parcellations based on functional and anatomical brain properties and 

distinct model fitting modalities. The main objective of this study is to explore how the quality of the model 

validation can vary across the considered simulation conditions. We observed that the graph-theoretical network 

properties of structural connectome can be affected by varying tractography density and strongly relate to the 

model performance. We also found that the optimal number of the total streamlines of WBT can vary for differ- 

ent brain atlases. Consequently, we suggest a way how to improve the model performance based on the network 

properties and the optimal parameter configurations from multiple WBT conditions. Furthermore, the population 

of subjects can be stratified into subgroups with divergent behaviors induced by the varying WBT density such 

that different recommendations can be made with respect to the data processing for individual subjects and brain 

parcellations. 

1. Introduction 

Some 15 years ago, the human brain connectome was introduced to 

understand functional brain states which are emerged by structural ar- 

chitecture ( Sporns et al., 2005 ). Over more than a decade, researchers 

have been investigating the human connectome to elucidate the rela- 

tionship between structure and function ( Goñi et al., 2014; van den 

Heuvel and Sporns, 2011; Sporns, 2011; Suárez et al., 2020 ). Recently, 

network neuroscience provides integrative perspectives to validate bio- 

physically realistic models via structural connectome ( Bassett et al., 

2018 ). However, the lack of ground truth and golden standards for the 

calculation of the human connectome caused a central body of ongo- 

ing debates in the literature to validate the macroscopic structural and 

functional connectivity from neuroimaging data of the human brain 

( Lindquist, 2020; Maier-Hein et al., 2017; Parkes et al., 2018 ). In ad- 

dition, no consensus method has been accepted so far as a standardized 

approach for calculating the whole-brain connectome ( Schilling et al., 

2019; Sotiropoulos and Zalesky, 2019 ). Many studies have investigated 

the effects of the data processing on the obtained results with respect 
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E-mail addresses: k.jung@fz-juelich.de (K. Jung), s.eickhoff@fz-juelich.de (S.B. Eickhoff), o.popovych@fz-juelich.de (O.V. Popovych). 

to reproducibility with different methodologies for structural architec- 

ture ( Bassett et al., 2011; Buchanan et al., 2014; Cammoun et al., 2012; 

Dennis et al., 2012; Messaritaki et al., 2019; Owen et al., 2013; Roine 

et al., 2019 ), functional homogeneity ( Bellec et al., 2015; Thirion et al., 

2014 ), and cortical resolutions for brain modeling ( Proix et al., 2016 ). 

These studies reported good-to-excellent reliability or stable outcome 

( Dennis et al., 2012; Owen et al., 2013 ), recommendation ( Messaritaki 

et al., 2019; Roine et al., 2019 ), and limitations ( Buchanan et al., 2014 ). 

At this stage, researchers summarized the influence of data processing 

for structural brain network measures ( Qi et al., 2015 ). Nevertheless, 

most of the used techniques, algorithms and parameters for processing 

the neuroimaging data remain at the level of the best practice lacking a 

solid theoretical foundation. 

Without the ground truth, a model-based approach can be a pos- 

sible way to investigate the impact of the data processing on the 

observed brain dynamics and reveal the corresponding mechanisms 

( Popovych et al., 2019 ). At this, it is assumed that the considered mathe- 

matical models derived from the interactions between brain regions can 

closely simulate the dynamics of the brain responses. By comparing the 

simulated and empirical data, we can address the model performance 
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as given by the results of the model fitting and thoroughly explore the 

model parameters and dynamics. Consequently, we can apply the model 

validation to evaluate the data processing by searching for the optimal 

model parameters that provide the best fitting of the model against the 

empirical data ( Cabral et al., 2011; Endo et al., 2020; Zimmermann 

et al., 2018 ). Such an evaluation procedure can be repeated for sev- 

eral modeling conditions, where the parameters of the data processing 

are varied. In this manner, we can systematically approach the optimal 

modeling condition and data parameters used for the data processing, 

which enhances the agreement between the simulated and empirical 

data. 

Previous studies have used different whole-brain tractography 

(WBT) densities ranging from 5K to 100M tracked streamlines for the 

human connectome ( Bajada et al., 2019; Hagmann et al., 2008; Honey 

et al., 2009; Prasad et al., 2013; Proix et al., 2016; Roine et al., 2019 ). 

In particular, Roine et al. (2019) tested the reproducibility of graph- 

theoretical measures across varied streamline densities from 10K to 

100M and concluded that tractography density should be sufficiently 

high for excellent reproducibility. High tractography density is also ben- 

eficial for highlighting subtle clinical differences, and already 15K-20K 

streamlines may be sufficient to differentiate between patients with 

Alzheimer’s disease or mild cognitive impairment from healthy con- 

trols ( Prasad et al., 2013 ). However, the impact of the WBT density 

on the human connectome is still unclear. Besides, the derivation of the 

whole-brain models essentially relies on the underlying network calcu- 

lated from the whole-brain empirical structural connectivity (SC). The 

latter provides the brain architecture serving as a backbone for the mod- 

eling of brain dynamics ( Cabral et al., 2011; Endo et al., 2020; Honey 

et al., 2009; Zimmermann et al., 2018 ). It is however difficult to eval- 

uate whether the selected parameters of the data processing for WBT 

density (e.g., the number of WBT streamlines) are reliably reflecting the 

brain architecture, and what are the optimal values for modeling, e.g., 

for maximal similarity between simulated and empirical data. In this 

study, we address the latter problem and search for the optimal config- 

urations which could lead to the optimal SC extraction resulting in the 

best fit between the simulated and empirical data. 

The broad spectrum of the computational models used for simula- 

tion of the brain dynamics ranges from the micro- to the macro-scale 

( Deco et al., 2008; Endo et al., 2020; Freeman, 1987; Hodgkin and Hux- 

ley, 1952; Jansen and Rit, 1995; Wilson and Cowan, 1973 ). Besides 

the sophisticated computational modeling concepts, the responses of 

brain regions can be considered as a harmonized signal ( Buzsaki, 2011 ). 

Thus, we can also use simple mathematical models of coupled oscilla- 

tors to generate oscillating brain activity ( Breakspear et al., 2010; Ku- 

ramoto, 1984; Rodrigues et al., 2016 ). In particular, systems of coupled 

phase and generic limit-cycle oscillators were suggested by previous 

studies for modeling cortical oscillations of the resting-state blood oxy- 

gen level-dependent (BOLD) dynamics ( Breakspear et al., 2010; Cabral 

et al., 2011; Deco and Kringelbach, 2016; Deco et al., 2017; Fukushima 

and Sporns, 2018; Ponce-Alvarez et al., 2015 ). These studies reported 

the maximal agreement between simulated and empirical data as given 

by the Pearson correlation between simulated and empirical functional 

connectivity (FC) in the range between 0.3 and 0.7. In this study, we 

consider such a system of coupled phase oscillators to model the slow 

oscillations of the resting-state BOLD dynamics. 

The main topic of the current study is to investigate the impact of 

the WBT streamline number used for calculation of SC and the average 

streamline path-length (PL) between brain regions on the simulation re- 

sults. We considered a system of coupled phase oscillators with delayed 

coupling ( Yeung and Strogatz, 1999 ), where the anatomical information 

about brain structural architecture (SC and PL) from diffusion-weighted 

MRI (dwMRI) was used for its derivation, i.e., to build the model net- 

work and approximate the coupling weights and time delay between the 

network nodes. The latter are the brain regions parceled according to a 

given brain atlas/brain parcellation. We considered two distinct brain 

parcellations based on anatomical and functional brain properties. We 

systematically explored the model parameter space of two free param- 

eters of global coupling and global delay in order to fit the model to 

empirical data. We also used two model fitting modalities as given by 

1) similarity (Pearson correlation) between simulated and empirical FC 

as a goodness-of-fit of the model and 2) similarity between simulated 

FC and empirical SC to probe the dynamics of the model as related to its 

structural network. The obtained simulation results were compared with 

each other across subjects and simulation conditions, which allowed us 

to scrutinize the effects of structural architecture modulated by varying 

WBT density and brain parcellations on the model validation against 

empirical data. The used approach can also lead to a better understand- 

ing of the properties of the obtained data influenced by selected data 

processing, which can play a key role for the brain modeling as well as 

data analytics. 

2. Materials and methods 

The current study considered 351 unrelated subjects (172 

males, age 28.5 ± 3.5 years) from the Human Connectome 

Project (HCP) S1200 dataset ( Van Essen et al., 2013 ). HCP data 

( https://www.humanconnectome.org ) were acquired using protocols 

approved by the Washington University institutional review board 

(Mapping the Human Connectome: Structure, Function, and Heri- 

tability; IRB #201204036). Informed consent was obtained from sub- 

jects. Anonymized data are publicly available from ConnectomeDB 

( https://db.humanconnectome.org ). In the current study, resting-state 

functional MRI (fMRI), T1-weighted image (T1) and diffusion-weighted 

images (DWI) from 3T connectome scanners (modified Siemens PRISMA 

with higher gradient strength) were used for investigation. Resting-state 

fMRI was acquired with 2 mm isotropic voxels, T1 was in 0.7 mm 

isotropic voxels, and DWI consisted of 90 directions for 1000, 2000 and 

3000 s/ 𝑚𝑚 

2 b-values in total 270 weighted directions with 1.25 mm 

isotropic voxels. 

We reconstructed SC and PL by using six WBT densities and two at- 

lases for individual subjects, then calculated simulated FC from BOLD 

signals generated by the computational model composed of coupled 

phase oscillators with delayed coupling. We explored two free param- 

eters of the model for each subject and condition and validated the 

model through the two model fitting modalities. We also calculated 

graph-theoretical network properties of SC and PL over considered con- 

ditions and compared the network properties with the goodness-of-fit of 

the model. The individual subjects were stratified into groups based on 

three criteria derived by the network properties and modeling results. 

The workflow of the current study is illustrated in Fig. 1 . 

2.1. Preprocessing of MRI data and connectivity extraction 

The current study used an in-house pipeline for the extraction of SC 

and PL matrices from the DWIs. The pipeline consists of four modules: 

preprocessing of MRI and DWI data, WBT calculation, atlas transfor- 

mation and connectivity reconstruction. The pipeline is publicly avail- 

able ( https://github.com/inm7/vbc _ dwmri ). It was optimized for paral- 

lel processing on high-performance computational clusters ( Jülich Su- 

percomputing Centre, 2018 ). 

The pipeline was created with functions of Freesurfer ( Dale et al., 

1999 ), FSL ( Smith et al., 2004 ), ANTs ( Tustison et al., 2010 ), and 

MRtrix3 ( Tournier et al., 2019 ). Freesurfer was used for processing the 

T1 including bias-field correction, tissue segmentation, cortical (sur- 

face) reconstruction, volume-surface converting, and surface deforma- 

tion for parcellation as well as for the correction of the eddy-current 

distortions and head-motion in DWIs using the corresponding b-vectors 

and b-values. MRtrix3 performed de-noising and bias-field correction 

on the DWIs. The pre-processed images were used for co-registration 

between the T1 and the DWIs and linear and non-linear transformation 

by functions of FSL. Linear and non-linear transformation matrices and 

images for registration from the standard MNI space to the native space 

2 



K. Jung, S.B. Eickhoff and O.V. Popovych NeuroImage 237 (2021) 118176 

Fig. 1. Workflow of the current study. (a) The whole-brain tractography (WBT) was generated by an in-house pipeline. Structural connectivity (SC) and average 

path-length (PL) between brain regions were reconstructed based on a given brain parcellation/brain atlas (6 WBTs and 2 atlases). (b) The empirical BOLD signals 

were extracted for each brain region from the ICA-FIX preprocessed HCP data, and the empirical functional connectivity (FC) was calculated between BOLD signals 

by Pearson correlation coefficient. (c) By using the empirical SC and PL matrices, the whole-brain network was reconstructed. The network nodes representing the 

brain regions were equipped with the phase oscillators ( Eq 1 ) coupled with the coupling weights ( Eq 2 ) and time delays ( Eq 3 ) extracted from the empirical SC and 

PL matrices, respectively. The natural frequencies of the oscillators were extracted from empirical BOLD signals. The model generated simulated BOLD signals used 

for the calculation of the simulated FC. (d) The simulated FC was compared with empirical FC and SC, and the model was validated by optimizing its parameters 

for the best correspondence/fitting between the simulated and empirical data. At this, the impact of the data processing on the model validation was evaluated and 

described. 

and vice versa were estimated. Through the image registration, gray 

matter, white matter, cortical/subcortical, cerebellar and cerebrospinal 

fluid masks were generated in the native DWI space. 

The WBT calculation module included only MRtrix3 functions, 

where the response functions for spherical deconvolution were esti- 

mated using multi-shell-multi-tissue constrained deconvolution algo- 

rithm ( Jeurissen et al., 2014 ). Fiber oriented distributions (FOD) were 

estimated from the DWIs using spherical deconvolution, and the WBT 

was created through the fiber tracking by the second-order integration 

over the FOD by a probabilistic algorithm ( Tournier et al., 2010 ). In the 

latter step, we used six different numbers of total streamlines for varying 

WBT density: 10K, 50K, 100K, 500K, 2M, and 10M, where the “K ” and 

“M ” letters stand for thousand (Kilo-) and million (Mega-), respectively. 

The tracking parameters were set as default values of tckgen function 

from MRtrix documentation ( https://mrtrix.readthedocs.io ), where the 

following values were used: step size = 0.625 mm, angle = 45 degrees, 

minimal length = 2.5 mm, maximal length = 250 mm, FOD amplitude 

for terminating tract = 0.06, maximum attempts per seed = 50, maxi- 

mum number of sampling trials = 1000, and down sampling = 3. 

The atlas transformation module applied the linear and non-linear 

transformation matrix and images to atlases that were sampled in the 

standard MNI space. We used the Schaefer atlas with 100-area parcella- 

tion ( Schaefer et al., 2018 ) and the Harvard-Oxford atlas with 96 cortical 

regions ( Desikan et al., 2006 ). After the transformation, the labeled vox- 

els in the gray matter mask were selected for a seed and a target region. 

Consequently, the tck2connectome function of MRtrix3 reconstructed SC 

and PL (count and path-length matrices in Fig 1 a). 

For the empirical FC, the BOLD signals were extracted from the 

resting-state fMRI data processed by ICA-FIX as provided by HCP repos- 

itory ( Griffanti et al., 2014 ). During the ICA-FIX, a weak high-pass 

filtering (2000 s high-pass filter) was applied for detrending-like ef- 

fect ( Smith et al., 2013 ). The Schaefer atlas and the Harvard-Oxford 

atlas were applied for the parcellation of the processed fMRI into 

brain regions within the standard MNI 2 mm space (6th-generation in 

FSL). Empirical FC was calculated using Pearson correlation coefficient 

across BOLD signals extracted as mean signals of the parceled brain re- 

gions. There were four resting-state fMRI sessions (1200 volumes, TR = 

720 ms) which consist of two different phase-encoding directions (left 

and right) scanned in different days. In addition, a concatenated BOLD 

signal was generated by using all four z-scored BOLD signals from the 

above four fMRI sessions, which resulted in five empirical FCs calcu- 

lated for BOLD signals from the four fMRI sessions and the concatenated 

BOLD signals for each subject. Finally, 12 simulation conditions (6 WBTs 

× 2 atlases) were tested by simulation of the mathematical whole-brain 

model, where the model parameters were optimized for the best fit be- 

tween simulated and empirical data. 

2.2. Mathematical whole-brain model 

We simulated a whole-brain dynamical model of 𝑁 coupled phase 

oscillators ( Cabral et al., 2011; Kuramoto, 1984; Yeung and Strogatz, 
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1999 ) 

�̇� 𝑖 ( 𝑡 ) = 2 𝜋𝑓 𝑖 + 

𝐶 

𝑁 

𝑁 ∑
𝑗=1 

𝑘 ij sin 
(
𝜑 𝑗 

(
𝑡 − 𝜏ij 

)
− 𝜑 𝑖 ( 𝑡 ) 

)
+ 𝜂𝑖 , 

𝑖 = 1 , 2 , … , 𝑁. (1) 

The number of oscillators 𝑁 corresponds to the number of brain regions 

parceled as defined by a given brain atlas, where 𝜑 𝑖 ( 𝑡 ) models the phase 
of the mean BOLD signal of the corresponding region, and the simulated 

BOLD was calculated as sin 
(
𝜑 𝑖 ( 𝑡 ) 

)
. 𝐶 is a global coupling which scales 

the level of couplings of the whole-brain network. 𝜂𝑖 is an independent 

noise perturbing oscillator 𝑖 , which is sampled from a random uniform 

distribution from the interval [-0.3,0.3]. The natural frequencies 𝑓 𝑖 were 

estimated from the empirical data as frequencies of the maximal spectral 

peaks (restricted to the frequency range from 0.01 Hz to 0.1 Hz) of the 

empirical BOLD signals of the corresponding brain regions. 𝑘 𝑖𝑗 stands for 

the coupling strength between oscillators 𝑖 and 𝑗, and 𝜏𝑖𝑗 approximates 

the time delay of the signal propagation between oscillators 𝑖 and 𝑗. 

They were calculated from the empirical SC and PL and determined by 

the following equations: 

𝑘 𝑖𝑗 = 

𝑤 𝑖𝑗 

< 𝑊 > 

, (2) 

where 𝑤 𝑖𝑗 is the number of streamlines between 𝑖 
𝑡ℎ and 𝑗 𝑡ℎ parceled 

regions and < 𝑊 > is an averaged number of streamlines over all con- 

nections except self-connections, and 

𝜏𝑖𝑗 = 

𝐿 𝑖𝑗 

< 𝑉 > 

= 𝜏𝐿 𝑖𝑗 , (3) 

where 𝜏 is a global delay (unit: 𝑠 ∕ 𝑚 ) which is a reciprocal of an average 

speed of signal propagation < 𝑉 > through the whole-brain network. 

The time step of the numerical integration of Eq 1 by the stochastic Heun 

method was fixed to 0.04 s, and the simulated signals were generated for 

3500 seconds after skipping 500 seconds of the transient. The simulated 

BOLD signals and the corresponding simulated FCs were calculated from 

the phases downsampled to TR = 0.72 s, which is the repetition time of 

HCP fMRI. 

The considered mathematical model ( Eq 1 ) has two main free pa- 

rameters: the global coupling 𝐶 and the global time delay 𝜏. The global 

coupling ranged from 0 to 0.504 in evenly discretely distributed 64 val- 

ues, and the global delay was from 0 to 423 s/m in evenly discretely 

distributed 48 values. Therefore, 3072 (64 × 48) simulations were per- 

formed for each subject to calculate the simulated FCs that were com- 

pared with empirical functional and structural data for each simulation 

condition. A total of 12,939,264 (64 × 48 × 12 × 351) simulations of 

model ( Eq 1 ) were performed in this study for 351 subjects with 12 

conditions (6 WBTs × 2 atlases). 

We explored the 2-dimensional model parameter space as men- 

tioned above and found the optimal parameter values for the best corre- 

spondence between simulated and empirical data. The correspondence 

was calculated by Pearson correlation coefficient between simulated FC 

(sFC) and empirical FC (eFC) and SC (eSC) depending on the model fit- 

ting modality. For each subject and simulation condition, 5 parameter 

planes of the functional similarity or functional model fitting modality (cor- 

relation between sFC and eFC) were obtained corresponding to 5 eFCs. 

In addition, one parameter plane of the structure-functional similarity or 

structure-functional model fitting modality (correlation between sFC and 

eSC) was also calculated. From each parameter plane, we selected the 

optimal ( 𝐶, 𝜏) -parameter point, where the maximal correlation between 
the simulated and the empirical data was reached. For the functional 

model fitting the maximal similarity can be referred to as goodness-of-fit 

of the model. 

2.3. Effects of different WBT conditions 

We revealed the effects of the varying WBT density on the model- 

ing results by evaluating its impact on 1) the graph-theoretical network 

properties of empirical structural connectome, 2) patterns of the optimal 

model parameters in the model parameter space, and 3) model perfor- 

mance as given by the quality of the model fitting over simulation con- 

ditions. Based on the results from the three approaches, we introduced 

three criteria (see below) for differentiation of the influence of the WBT 

density on the modeling results for individual subjects. To do this, we 

stratified the entire subject population by splitting it into several sub- 

groups according to the mentioned criteria based on (i) the relationships 

between the network properties and the results of the functional model 

fitting over WBT conditions, (ii) distributions of the optimal model pa- 

rameters of the structure-functional model fitting, and (iii) positive and 

negative slopes (increments) of the goodness-of-fit values (model per- 

formance) across the two extreme cases of the considered 10K and 10M 

WBT streamlines for individual subjects. 

2.3.1. Structural architecture and network properties over WBT conditions 

To investigate the impact of the varying WBT density on the archi- 

tecture of structural networks, we calculated graph-theoretical network 

properties from SC and PL for each subject, WBT condition and atlas. 

The considered 6 network properties (4 local properties and 2 global 

properties) included the weighted node degree, clustering coefficient, 

betweenness centrality, local efficiency, global efficiency and modular- 

ity, which were calculated by the brain connectivity toolbox version 

2019-03-03 in Matlab ( Rubinov and Sporns, 2010 ). For the local prop- 

erties, both the average (Avg.) and the standard deviation (S.D.) were 

calculated. 

For every subject, we calculated the Pearson correlation between the 

values of a given network measure and the maximal functional model 

fitting (goodness-of-fit) values across varied WBT densities. Then, for 

every considered network measure, we split the subjects into two sub- 

groups with positive and negative correlations. After that, we performed 

the two-sample one-tail t -test to compare the functional model fitting be- 

tween the split subgroups. Based on the results of the t -test, we selected 

the network properties, where one of the subgroups showed significantly 

higher functional model fitting than the other subgroup (Fig. A5 in Sup- 

plementary materials). Finally, we overlapped all selected subgroups 

with higher goodness-of-fit over all selected network properties and re- 

ferred to this group as pattern 1. Consequently, the rest of subjects were 

united into the second group referred to as pattern 2. We thus stratified 

all subjects into two groups/patterns with potentially different impact 

of the WBT conditions on the modeling results. 

2.3.2. Impact of time delay on the model fitting 

For another stratification criterion, the optimal model parameters of 

the maximal correspondence between sFC and eSC were divided into 

two clusters as suggested by the bimodal distribution splitting small 

and large values of the optimal time delay ( Fig 6 ). Since subjects can 

move between the parameter clusters when the total number of the WBT 

streamlines varies from 10M to 10K, we separated the subjects into five 

classes: Always staying in cluster 1 (From 1 to 1) or in cluster 2 (From 

2 to 2), only once moving either from cluster 1 to cluster 2 (From 1 

to 2) or in opposite direction (From 2 to 1), and performing multiple 

switching between the two clusters (Multiple). This approach based on 

the distribution of the optimal model parameters was used as the second 

criterion for stratification of subjects. 

2.3.3. Variation of the model performance 

The last stratification criterion was based on the behavior of the opti- 

mal goodness-of-fit values when the number of WBT streamlines varied. 

To quantify it, we calculated the increment of the maximal similarity be- 

tween sFC and eFC matrices of the concatenated session for every indi- 

vidual subject when the number of the WBT streamlines increases from 

10K to 10M. Then, all subjects were divided into two subgroups exhibit- 

ing either positive or negative slopes (increments) of the goodness-of-fit 

behavior versus the number of WBT streamlines ( Fig 7 ). According to 
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Table 1 

Sensitivity of the considered graph-theoretical network properties to the variation of the WBT 

density as revealed by the non-parametric one-way analysis of variance (Kruskal-Wallis ANOVA) 

test. The corresponding p-values are presented in the right columns of the tables, where the bold 

p-values indicate that the respective network property significantly changes (Bonferroni corrected 

𝑝 < . 05 ) when the number of WBT streamlines varies in the range indicated in the left columns of 

the tables. The results are shown for the Schaefer atlas (upper table) and the Harvard-Oxford atlas 

(lower table), and the abbreviations in the upper rows denote the network properties. WD: average 

weighted node degree, CC: average clustering coefficient, BC: average betweenness centrality, LE: 

average local efficiency, GE: global efficiency, and MQ: modularity Q. 

Schaefer atlas WD CC BC LE GE MQ 

10K, 50K, 100K, 500K, 2M, 10M < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

50K, 100K, 500K, 2M, 10M < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

100K, 500K, 2M, 10M < 0.001 < 0.001 0.009 < 0.001 < 0.001 < 0.001 

500K, 2M, 10M 0.994 < 0.001 0.920 < 0.001 0.999 0.011 

2M, 10M 0.916 < 0.001 0.929 < 0.001 0.947 1.000 

Harvard-Oxford atlas WD CC BC LE GE MQ 

10K, 50K, 100K, 500K, 2M, 10M < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

50K, 100K, 500K, 2M, 10M < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

100K, 500K, 2M, 10M 0.992 < 0.001 0.012 < 0.001 1.000 < 0.001 

500K, 2M, 10M 0.996 < 0.001 1.000 < 0.001 1.000 0.005 

2M, 10M 1.000 < 0.001 1.000 < 0.001 1.000 0.913 

this criterion, the subjects were stratified into two subgroups demon- 

strating the best functional model fitting for either maximal or minimal 

number of the WBT streamlines considered. Consequently, we used all 

three criteria for the three-step stratification analysis ( Fig 8 ). 

3. Results 

We investigate all three stratification criteria mentioned in the Meth- 

ods ( Section 2.3 ) and apply them to subject differentiation. This provides 

an insight into the impact of the WBT density on the model performance 

for individual subjects and suggests optimal configurations of the data 

processing parameters. To follow the stratification steps, the obtained 

results will be presented in parallel for the two considered brain parcel- 

lations based on the Schaefer and Harvard-Oxford atlases and compared 

between them. 

3.1. Impacts of WBT density on structural connectome 

Figure 2 illustrates the similarities between SC and PL ( Fig 2 a and 

c) and behavior of the weighted node degree, clustering coefficient, be- 

tweenness centrality, local and global efficiencies and modularity calcu- 

lated from the normalized SC matrix over 6 WBT conditions (10K, 50K, 

100K, 500K, 2M, and 10M streamlines) for the two atlases ( Fig 2 b and 

d). The similarity of the eSC matrices to the 10M case remains relatively 

high except for the largest drop at 10K ( Fig 2 a1 and c1). On the other 

hand, the PL matrices have low similarity over the 6 WBT conditions, 

very quickly deviate from the 10M case, exhibit practically no correla- 

tion already for 100K and weakly anti-correlate for 10K ( Fig 2 a2 and 

c2). We also performed a non-parametric one-way analysis of variance 

(Kruskal-Wallis ANOVA) test over the WBT conditions ( Table 1 ). 

By increasing the number of streamlines from 10K to 10M, the num- 

ber of network edges increases, and the nodes become densely con- 

nected, which resulted in monotonically increasing average binarized 

(discarded weights of edges) node degrees as expected (Fig. A1 in Sup- 

plementary materials). However, the weighted node degree based on 

the normalized count matrices (SC divided by its mean) used in model 

( Eq 1 ) shows relatively stationary behavior across the WBT conditions, 

especially, for dense WBT ( Fig 2 b1 and d1 and Table 1 WD). Decreas- 

ing the number of streamlines, for example, from 10M to 10K (by 1000 

folds) resulted in the corresponding reduction of the averaged weighted 

node degree of the normalized SC by 6% and 33% for the Schaefer and 

Harvard-Oxford atlases, respectively ( Fig 2 b1 and d1). Similar station- 

ary behavior can also be observed for the average betweenness centrality 

and the global efficiency, especially, for dense WBT conditions ( Fig 2 b3, 

b5, d3, and d5 and Table 1 BC and GE). The network modularity shows 

a weak monotonic increase when the WBT density increases ( Fig 2 b6 

and d6). For these network measures, relatively moderate changes were 

observed when the number of streamlines varies from 10M to 10K. This 

indicates that the connectivity in the model is still relatively strong, and 

some other properties of the network architecture are to a large extent 

preserved even for the extreme case of 10K WBT. 

On the other hand, the average clustering coefficient, local efficiency 

and their variances strongly decrease when the WBT density increases 

( Fig 2 b2, b4, d2, and d4 and Table 1 CC and LE). In summary, WBT 

density modulates the graph-theoretical network properties and results 

in similar tendencies at the group level through varying WBT density 

for both atlases. In particular, the clustering coefficient and the local 

efficiency are significantly different across the WBT conditions already 

between 2M and 10M cases ( Table 1 CC and LE), where very high sim- 

ilarities of SC can be observed ( Fig 2 a1 and c1). 

3.2. Impacts of WBT density on model fitting 

Figure 3 shows the obtained parameter planes and the distributions 

of the optimal model parameters over all subjects and simulated condi- 

tions for the two fitting modalities (sFC versus eFC and sFC versus eSC). 

The goodness-of-fit between sFC and eFC was observed for small delays 

for both atlases. This is illustrated in Fig 3 a-d, where the red dots de- 

picting large similarity values are concentrated on the left side of the 

parameter plane demonstrating, however, different cluster shapes for 

the Schaefer and the Harvard-Oxford atlases. We also note here that the 

latter atlas could lead to a stronger fit between the sFC and eFC, compare 

Fig 3 a and c. In contrast, in the case of the structure-functional model 

fitting between sFC and eSC ( Fig 3 e-h), both atlases demonstrate a sim- 

ilar range of the correspondence (correlation) between simulated and 

empirical data, however, the maximal similarity can also be attained 

for large delay. 

During the model validation for individual subjects under the 12 

considered conditions (6 WBTs × 2 atlases), we also searched for the 

optimal model parameter, where the maximal similarity between sFC 

and empirical data (eFC and eSC) was achieved. The distributions of 

such optimal parameters are depicted in Fig 3 b, d, f, and h for the two 

fitting modalities and the two brain atlases. In agreement with these re- 

sults, the best fit between sFC and eFC is attained for small delays ( Fig 3 

b and d), whereas the strongest structure-function correspondence be- 

tween sFC and eSC can also be observed for large delays ( Fig 3 f and h). 
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Fig. 2. Impact of the WBT density on the structural architecture. Network measures of the structural connectome and similarity between them calculated for 

different WBT densities (numbers of streamlines) for (a, b) the Schaefer atlas and (c, d) the Harvard-Oxford atlas. (a, c) Similarity of the connectivity matrices 

(a1, c1) SC and (a2, c2) PL calculated for different tractography densities by Pearson correlation across all subjects. (b, d) Variations of the network properties 

calculated from the normalized SC matrix versus WBT density. The plot indices stand for 1: average weighted node degree, 2: average clustering coefficient, 3: 

average betweenness centrality, 4: average local efficiency, 5: global efficiency, and 6: modularity as indicated in the plot titles. In each plot the thin gray lines depict 

the behavior of the illustrated quantities for individual subjects together with the box plots, where the red lines, blue boxes and red pluses indicate the medians, the 

interquartile ranges, and the outliers, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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Fig. 3. Parameter planes and the distributions of the optimal model parameters ( 𝐶, 𝜏) for the two model fitting modalities between simulated and empirical 
data. Parameter planes are averaged (1–3) over all subjects (n = 351) separately for simulation conditions (10K, 500K, and 10M WBT densities) as indicated in 

the plots (see supplementary Fig. A10 for all conditions). The correspondence between the simulated and empirical data was calculated between (a-d) simulated 

FC and empirical FC and (e-h) simulated FC and empirical SC for (a, b, e, f) the Schaefer atlas and (c, d, g, h) the Harvard-Oxford atlas. The Pearson correlation 

between the connectivity matrices is depicted by color ranging from small (blue) to large (red) values. (b, d, f, h) Distributions of the optimal model parameters of 

the best model fitting calculated for all individual subjects and simulation conditions. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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Fig. 4. Results of the model fitting to the empirical data versus 12 simulation conditions (6 WBTs ×2 atlases). The distributions of the maximal similarities 

for individual subjects between (a) simulated FC and empirical FC and (b) simulated FC and empirical SC are shown as violin plots for 12 conditions of the WBT 

streamline numbers indicated on the horizontal axes for the Schaefer atlas (blue violins) and the Harvard-Oxford atlas (orange violins). The results of the pairwise 

comparisons between the conditions (Wilcoxon signed rank one-tail test) are also indicated with the corresponding p-values in the cases of statistically significant 

differences (Bonferroni corrected 𝑝 < . 05 ). For the box plots the red lines, blue boxes and red pluses indicate the medians, the interquartile ranges, and the outliers, 

respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

In the latter case, the parameter distributions apparently demonstrate a 

two-cluster shape of small and large delays, which is addressed in detail 

below. 

Together with the optimal model parameters for individual subjects, 

we also collected the corresponding maximal similarities between the 

simulated and empirical data, which are illustrated in Fig 4 for the 12 

simulated conditions and for the two fitting modalities of the correspon- 

dence between sFC and eFC ( Fig 4 a) and between sFC and eSC ( Fig 4 b). 

Results of the functional model fitting in all conditions ( Fig 4 a) were 

not from the normal distributions, where the null hypothesis was re- 

jected by 𝜒2 goodness of fit test with 𝑝 < . 05 . Also in the case of the 
structure-functional model fitting ( Fig 4 b) many conditions were not 

from the normal distributions. Therefore, Kruskal-Wallis test was used 

for testing significant difference in all conditions (across tractography 

densities). Consequently, we performed Wilcoxon signed rank one-tail 

test to evaluate whether the maximal similarities between the simulated 

and empirical data for one condition are significantly higher or lower 

than those for the other conditions (see 𝑝 values in Fig 4 ). 

For the functional model fitting (sFC versus eFC) and the Schaefer at- 

las ( Fig 4 a, blue violins), the models with 2M and 10M WBTs performed 

better than with the other WBTs, and the performance of the model de- 

creased when the number of streamlines decreased. On the other hand, 

the functional model fitting for the Harvard-Oxford atlas revealed the 

optimal condition at 50K or 100K WBT ( Fig 4 a, orange violins). Fur- 

thermore, the model could fit better to eFC for the Harvard-Oxford atlas, 

which was also observed in Fig 3 . For the structure-functional model fit- 

ting (sFC versus eSC), the situation is different, where 2M or 10M WBTs 

are preferable for the strongest correspondence between the simulated 

and empirical data for both atlases demonstrating approximately similar 

extent of the maximal model fitting ( Fig 4 b, see also Fig 3 ). 

3.3. Relationships between network properties and the functional model 

fitting 

As discussed above, the WBT density modulates the structural con- 

nectome. Consequently, it can also influence the dynamics of the model 

( Figs 3 and 4 ). In this section, we investigate the effects of the graph- 

theoretical network properties modulated by WBT density on the model 

performance. 

For each of the considered 6 network properties, we tested the re- 

lationships between their values and the maximal similarity between 

sFC and eFC as given by the Pearson correlation across 6 WBT con- 

ditions for each individual subject. The considered network properties 

demonstrate a pronounced agreement with the goodness-of-fit values at 

the level of individual subjects ( Fig 5 a1 and b1). Some distributions 

of the correlation coefficients are significantly shifted from zero except 
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Fig. 5. Relationships between the network properties and the results of the functional model fitting. Correlation between the network properties and maximal 

similarity between sFC and eFC for individual subjects and fitting results for stratified subjects are shown for (a) the Schaefer atlas and (b) the Harvard-Oxford atlas. 

(a1, b1) Distributions of the Pearson correlation coefficients calculated across 6 WBT conditions for individual subjects between a given network property indicated 

on the horizontal axes and the goodness-of-fit values. The gray dots represent the values for individual subjects, and the box plots illustrate the medians (red lines), 

the interquartile ranges (blue boxes) and the outliers (red pluses). The asterisks on the x-axes indicate statistically significant differences in the goodness-of-fit values 

between the two subgroups of subjects with positive and negative correlations ( 𝑝 < . 05 of two-sample one-tail t -test). (a2, b2) The results of the functional model 
fitting versus different numbers of the WBT streamlines for the two subject subgroups of pattern 1 and pattern 2 as indicated in the legends based on the statistically 

significant split of the subjects for the network properties marked by asterisks in plots a1 and b1, see the Methods Section 2.3.1 for details. The error bars indicate 

the standard error, and the asterisks denote the simulation conditions, where the pattern 1 and 2 exhibit significantly different extend of the similarity between 

simulated and empirical data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

for Avg. WD, S.D. BC, and GE for the Schaefer atlas and S.D. BC for 

the Harvard-Oxford atlas (see Fig 5 for abbreviations). The presented 

results are reproducible to retest over individual 5 sessions (4 fMRI ses- 

sions and the concatenated case) and merged data of the goodness-of-fit 

values (see supplementary Fig. A2). Based on the results illustrated in 

Fig 5 a1 and b1 and supplementary Fig. A2, we can conclude that the 

changes in the model performance for the individual subjects are related 

to the changes in the network properties across different WBTs. 

The distributions of the correlation coefficients between the network 

properties and the goodness-of-fit values may differ for different atlases 

( Fig 5 a1 and b1) indicating a complex relationship between the struc- 

tural connectome and modeling results. To address such relationships in 

more detail, we split the subjects into two subgroups of positive or nega- 

tive correlation for every considered network metric. Then we intersect 

the groups with highest goodness-of-fit for the network metrics marked 

by asterisks in Fig 5 a1 and b1 with significant difference between the 

subgroups and stratify the subjects into two patterns as explained in 

Methods ( Section 2.3.1 , see also Figs. A3 - A5 in Supplementary mate- 

rials). 

Based on the results of the tests, for the Schaefer atlas, we selected 

subjects exhibiting positive correlation with the standard deviation of 

weighted node degree (S.D. WD+) and negative correlation with the 

average betweenness centrality (Avg. BC-) for pattern 1, which have sig- 

nificantly higher values of the goodness-of-fit of the model than those of 

the complementing subgroups (S.D. WD- and Avg. BC+), respectively. 

The intersection of the two selected subgroups, i.e., S.D. WD+ (n = 93) 

∩ Avg. BC- (n = 329) = 82, constituted the stratified pattern 1, whereas 

the rest of the subjects (n = 269) were grouped into pattern 2. 

We found that the two patterns of the split subjects subgroups 

demonstrate significantly different quality of the goodness-of-fit of the 

model depending on the WBT conditions ( Fig 5 a2). For statistical test- 

ing of the differences between the patterns 1 and 2, 𝜒2 goodness of fit 

test was used to test for a normal distribution for each condition of pat- 

tern 1 and pattern 2. The Wilcoxon rank sum one-tail test was then used 

for a non-parametric test of the difference between the patterns if the 

null-hypothesis for a normal distribution was rejected by the 𝜒2 test. 

Otherwise, two-sample one-tail t -test was used for comparing normal 

distributions of pattern 1 and pattern 2. The significant differences be- 

tween the patterns are indicated by asterisks in Fig 5 a2, which is the case 

for any WBT density. We also found that the fitting values for both pat- 

terns 1 and 2 monotonically increase for higher WBT density ( Fig 5 a2). 

In addition, we tested the changes of the goodness-of-fit of the model 

for each pattern when the WBT density varies by using Wilcoxon signed 

rank test. As a result, for the Schaefer atlas, 500K or more streamlines 

of the pattern 1 and 2M or more streamlines of the pattern 2 showed 

significantly higher goodness-of-fit values than for any sparser WBT con- 

ditions. 

For stratification for the Harvard-Oxford atlas, we selected subjects 

from the intersection of the following subgroups derived as above of pos- 

itive and negative correlations with the network metrics, which showed 

significantly higher goodness-of-fit values than the complementing sub- 

groups: Avg. CC-, S.D. CC-, Avg. BC-, Avg. LE-, S.D. LE-, GE+, and MQ+ 

(see Fig 5 for abbreviations). As above, the sign “+ ” or “- ” after the 

property name indicates the corresponding subgroups of subjects ex- 

hibiting positive or negative correlations with the considered network 

properties, respectively. Such an intersection of the subgroups resulted 

in a stratified pattern 1 containing 173 subjects complemented by the 

others, i.e., 178 subjects of pattern 2. 

We here found that patterns 1 and 2 exhibit different behavior of 

the goodness-of-fit values when the WBT density varies ( Fig 5 b2). Pat- 

tern 1 monotonically increases for large WBT density as before, whereas 

pattern 2 apparently demonstrates a non-monotonic behavior with an 
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Fig. 6. Clusters of the optimal model parameters of the maximal similarity between simulated FC and empirical SC. The optimal parameters for (a) the 

Schaefer atlas and (b) the Harvard-Oxford atlas from Fig 3 f and h, respectively, (n = 2106 values for 351 subjects and 6 WBTs) were split into two subgroups 

as illustrated in the two lower plots, where the one- and two-dimensional distributions of the optimal parameters are depicted. The upper plots with error bars 

show the maximal similarity of the functional model fitting between simulated FC and empirical FC of the concatenated fMRI session for the subjects from the two 

clusters versus the number of the WBT streamlines. The alluvial plots to the right schematically illustrate the interchange of the cluster members when the number 

of streamlines varies from 10M to 10K. The white numbers in each WBT step indicate the number of subjects in the clusters. 

optimal point at 50K of the WBT streamlines. Statistical testing with 

Wilcoxon signed rank test demonstrated that 100K or more streamlines 

of pattern 1 showed significantly higher goodness-of-fit values than any 

sparser WBT condition. However, 50K streamlines of pattern 2 is the op- 

timal condition that shows significantly higher correspondence between 

the simulated and empirical data than for any other condition, sparser 

of denser WBT. 

Based on the presented results, we can conclude that the optimal 

number of the WBT streamlines should be considered large ( ∼500K- 
10M) for the Schaefer atlas ( Fig 5 a2). Interestingly, the best goodness- 

of-fit of the model for the Harvard-Oxford atlas can be reached for 

much sparser WBT at ∼50K streamlines for more than 50% of subjects 

( Fig 5 b2). 

3.4. Effects of time delay on model validation 

Based on the clustered distributions of the optimal model parame- 

ters of the maximal structure-functional similarity between sFC and eSC 

( Fig 3 f and h), we divided the optimal parameter points and the corre- 

sponding subjects into two clusters ( Fig 6 ). In such a way, the cluster of 

parameter points with small delay (cluster 1) was split from the other 

points characterized by relatively large delay (cluster 2) based on their 

bimodal distributions ( Fig 6 , the red dotted lines in the histograms in 

the bottom plots). By dividing the subjects into the two subgroups corre- 

sponding to the above clustering of their optimal parameters, we found 

that the goodness-of-fit values of the functional model fitting are signifi- 

cantly higher in cluster 2 than in cluster 1 consistently for all simulation 

conditions (all WBTs and both atlases), see Fig 6 (upper plots). Similar 

effects can also be observed for the structure-functional model fitting be- 

tween sFC and eSC (see Fig. A6 a2 and b2 in Supplementary materials). 

The time delay in coupling thus played a constructive role in the model 

validation against empirical data and led to a better correspondence for 

structure-functional as well as functional model fitting. 

These results also establish a connection between the two fitting 

modalities and the time delay, where the impact of the latter was not 

observed in the distributions of the optimal parameters of the functional 

similarity between sFC and eFC ( Fig 3 b and d) and can only be revealed 

by mediation of the structure-functional correspondence. Another corre- 

spondence can be established between the values of the optimal global 

delays and the natural frequencies of the phase oscillators ( Eq 1 ). To 

evaluate such a dependence, the broadly distributed positive global de- 

lays in cluster 2 were correlated with the mean natural frequencies ⟨𝑓 𝑖 ⟩
averaged over all oscillators ( Eq 1 ). The mean natural frequency of the 

model is also varying across subjects, and we found a well-pronounced 

negative correlation between the mean natural frequencies and the opti- 

mal delays for the maximal structure-functional similarity between sFC 

and eSC (see Figs. A7 and A8 in Supplementary materials). This indicates 

that subjects with slow BOLD oscillations are modeled by system ( Eq 1 ) 

with large optimal delay if the best correspondence between structure 

and function has to be achieved. 

When the number of the WBT streamlines varies, subjects may ex- 

change their membership in the two clusters ( Fig 6 , the vertical alluvial 

plots). Interestingly, for the Schaefer atlas, the ratio of subjects in the 

two clusters is gradually changing when WBT is getting sparser (from 

10M to 10K), where more and more subjects move to cluster 1 approx- 

imately balancing the subgroup sizes at 10K case ( Fig 6 a, the alluvial 

plot). In contrast, there are only small exchanges of the subjects between 

clusters for the Harvard-Oxford atlas keeping the group sizes approxi- 

mately constant for all WBT conditions ( Fig 6 b, the alluvial plot). Cluster 

2 contains most of the subjects as is for both atlases for the case of 10M 

of the WBT streamlines. We used the splitting of the subjects into the 

discussed two clusters as the second criterion of the stratification anal- 

ysis. 

It is also important to observe that the structure-functional corre- 

spondence between the empirical connectomes eFC and eSC exhibited 

weak opposite relationships between parameter clusters and across the 
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Fig. 7. Subject stratification according to the model performance across 6 WBTs. (a, b) Goodness-of-fit values of the functional correspondence between 

simulated FC and empirical FC for (a) the Schaefer atlas and (b) the Harvard-Oxford atlas and for the two groups of the subjects stratified according to the third 

criterion (see Methods Section 2.3.3 ). The latter is based on the behavior (positive/negative slopes) of the maximal similarity versus the WBT conditions (see text 

for details) as indicated in the legends, where the number of subjects in each group is also pointed out. The asterisks indicate the statistically significant differences 

between the two subject groups ( 𝑝 < . 05 , two-sample one-tail t -test for normal distributions and Wilcoxon rank sum one-tail test for non-parametric test). 

number of the WBT streamlines as compared to the correspondence be- 

tween simulated and empirical data (see Fig. A6 a1 and b1 in Supple- 

mentary materials). This indicates a nontrivial character of the reported 

results that do not directly follow from the empirical structure-function 

correspondence. 

3.5. WBT-Induced changes of model performance 

In the previous sections, we observed that the behavior of the 

goodness-of-fit values versus the WBT conditions is not akin to that of 

the other atlas. We, therefore, explicitly searched for such divergent dy- 

namics and looked for the subjects with the best model performance 

for the most sparse or the most dense WBT. The subjects are then split 

into two subgroups based on the opposite behavior of the model per- 

formance when the number of WBT streamlines varies, see Methods 

( Section 2.3.3 ) for detail. Figure 7 illustrates the different dynamics of 

the goodness-of-fit values of the two subgroups of subjects for the two 

atlases. 

As reported before, the maximal similarity between sFC and eFC 

monotonically increases for the Schaefer atlas when the WBT is getting 

denser ( Figs. 4 - 6 ). We thus explicitly searched for such conditions, i.e., 

when the goodness-of-fit was larger for 10M case than for 10K case, and 

the corresponding line of the model performance had a positive slope. 

We found that the subjects split very unevenly according to such crite- 

rion, and most of them (n = 339) exhibited positive slope, where the sim- 

ilarity between simulated and empirical data monotonically increases 

when the number of streamlines increases ( Fig 7 a). Each split subgroup 

was tested for a normal distribution by 𝜒2 goodness of fit test over WBT 

densities. The null hypothesis of the 𝜒2 test was rejected for each sub- 

group and each condition. Therefore, we performed Wilcoxon signed 

rank test. As a result, for the subject subgroup with the positive slope 

the case of 2M or more WBT streamlines showed significantly higher 

goodness-of-fit of the model than any sparser WBT condition ( Fig 7 a, 

red curve). 

In the case of the Harvard-Oxford atlas, the goodness-of-fit values 

may exhibit a non-monotonic behavior and attained the maximal values 

at 50K WBTs ( Figs. 4 and 5 ). After stratification according to the third 

criterion, the both subgroups contain large fractions of the entire subject 

population with the positive slope (n = 248) and the negative slope (n 

= 103) ( Fig 7 b). For the statistic analysis, the null hypothesis of the 𝜒2 

test was not rejected, and we thus performed the two-sample paired t - 

test. The test resulted in the subgroup with the positive slope showed 

significantly higher goodness-of-fit of the model with 100K or more WBT 

streamlines than any sparser WBT condition ( Fig 7 b, red curve). On the 

other hand, the subgroup with the negative slope showed significantly 

higher goodness-of-fit of the model with 50K or less WBT streamlines 

than any denser WBT condition ( Fig 7 b, blue curve). 

3.6. Stratification analysis 

As investigated in the previous sections, the entire subject popula- 

tion can first be split into two groups based on the two patterns of the 

relationships between network properties and the functional model per- 

formance ( Fig 5 ). Second, the subjects can be split based on the clus- 

tered distribution of the optimal parameters of the structure-functional 

maximal similarity between sFC and eSC ( Fig 6 ). Third, different be- 

havior of the goodness-of-fit values of the best correspondence between 

sFC and eFC can result in positive and negative slopes versus the WBT 

conditions, which can also be used for subject stratification ( Fig 7 ). By 

combining all three approaches, we illustrated stratification results in 

the alluvial plots in Fig 8 . Here the proportions of the stratified subjects 

are shown when the above stratifying criteria are consequently applied 

to the entire subject population for each atlas. The stratified subjects 

show different extent and behavior of the goodness-of-fit values of the 

functional model fitting over the WBT conditions ( Fig 8 ). 

In the case of the Schaefer atlas, according to the first criterion, we 

can expect that subjects of pattern 1 form a relatively small fraction 

(23%) of the entire subject population, but they have shown higher 

goodness-of-fit ( Fig 5 a2 and Fig 8 a2). The second stratification step in 

Fig 8 reflects the interchanging behavior between the parameter clusters 

observed in Fig 6 a. In particular, the stratified group 3 (parameter clus- 

ter 2 of large delay) show better performance than the stratified group 2. 

Finally, the third criterion practically does not differentiate the subjects 

into positive and negative slopes, see also Fig 7 . The declining curves of 

the goodness-of-fit when the number of the WBT streamlines decreases 

imply that the optimal number of the total streamlines for the simula- 

tion should be considered large, for example, more than 500K: 2M or 

10M of the WBT streamlines ( Fig 8 a2). 

For the Harvard-Oxford atlas, subjects stratified into pattern 1 by 

the first criterion show a monotonic increment of the goodness-of-fit 

for dense WBT as expected ( Fig 8 b2, see also Fig 5 b2). In addition, we 

can also expect that the subjects from pattern 2 will have the maximal 

model performance for sparse WBTs ( Fig 5 b2 and Fig 8 b2). In the second 

stratification step, the overwhelming majority of subjects from pattern 

1 were sorted to the group of persistent members of cluster 2, i.e., the 

subgroup with large delay for the best structure-functional model fitting 
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Fig. 8. Stratification analysis with three criteria for two atlases. (a1) The alluvial plot shows all stratified subjects via three criteria and (a2) the bottom plot 

shows goodness-of-fits through 6 WBT conditions for large stratified groups ( > 35) in the case of the Schaefer atlas. (b) The plots by the same analyses for the 

Harvard-Oxford atlas. 

( Fig 8 b1, see also Fig 6 ). Finally, the subjects in pattern 2 can still be split 

into two subgroups with the inclining and the declining curves of the 

goodness-of-fit values by the third criterion ( Fig 8 b2, stratified groups 2 

and 3). This can further refine the differentiation of subjects of the best 

model performance at sparse WBT density (see also Fig 7 ). 

The model evaluation with the Harvard-Oxford atlas shows different 

optimal conditions than that for the Schaefer atlas ( Fig 8 b2). The opti- 

mal streamline number may depend on the stratification subgroups to 

which the subject belongs, and which exhibited very different behavior 

of the goodness-of-fit when the number of streamlines varied ( Fig 8 b2). 

For example, the optimal number of streamlines for a better model per- 

formance could range from 10M to 100K for the subjects from subgroup 

1 in Fig 8 b2 (solid red curve). On the other hand, for more than 20% 

of subjects (n = 80) of the entire subject population, i.e., for those from 

the stratified group 3 ( Fig 8 b2, dashed blue curve), the optimal condi- 

tions are at ∼50K WBT streamlines, and more streamlines may lead to 

the degradation of the quality of the model validation. For other 18% 

of subjects (n = 66, group 3 in Fig 8 b2, solid blue curve) a sparse WBT 

can also be a reasonable option. 

4. Discussion 

The purpose of the current study was to explore how the process- 

ing of the neuroimaging data can influence the dynamics and valida- 

tion of the whole-brain mathematical dynamical models informed by the 

empirical data. We considered several simulation conditions based on 

varying data processing parameters, such as the number of total stream- 

lines of WBT and brain atlases. While the latter defined how the brain 

is parceled into several brain regions that are considered as network 

nodes in the model, the former influenced the underlying SC (stream- 

line counts) and PL (streamline path lengths) used for the calculation of 

the coupling weights and time delays in the coupling between nodes. 

A straightforward interpretation of the investigated number of WBT 

streamlines as a count of anatomical fiber bundles should be made with 

caution which was extensively discussed by Jones et al. (2013) . Instead, 

the reconstructed streamlines can be considered as a good guess of the 

white matter connectivity ( Caminiti et al., 2013; Jones et al., 2013; Ver- 

gani et al., 2014 ). We discussed how the WBT density can influence the 

structural information fed to the model and the corresponding model- 

ing results for the considered brain atlases. We found that the parcella- 

tion with different atlases showed similar changes of the architecture of 

the structural networks, but distinct trends of the goodness-of-fit of the 

model to the empirical data across the number of WBT streamlines. Con- 

sequently, we suggested optimal configurations of the considered data 

and model parameters for the best model fit at the group level as well as 

for personalized models of individual subjects based on the properties 

of the empirical and simulated data. 

The applied model-based approach followed the line of research sug- 

gested and developed in many modeling studies, see, for example, the 

papers ( Breakspear et al., 2010; Cabral et al., 2011; Deco et al., 2017; 

Fukushima and Sporns, 2018; Honey et al., 2009; Ponce-Alvarez et al., 

2015; Popovych et al., 2019 ) and references therein. The potential of 

the whole-brain dynamical models to explain the properties of the brain 

dynamics and structure-function relationship was demonstrated by a de- 

tailed investigation of the correspondence between empirical and simu- 

lated brain connectomes. At this, the connectivity patterns of the under- 

lying structural network as related to the inter-node coupling strengths 

and delays can play a crucial role for observing a pronounced structure- 

function agreement ( Popovych et al., 2011; Ton et al., 2014 ). It is thus 

important to extract the empirical SC and PL used for evaluation of pa- 
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rameters of the model connectivity as plausible as possible in order to 

obtain biologically realistic modeling results ( Knock et al., 2009 ). With 

this respect, the structure-functional model fitting can be higher than 

the functional goodness-of-fit as we observed in the current study. One 

possible explanation might be related to that the empirical SC serves as 

the underlying backbone of the whole-brain modeling, and simulated FC 

generated by such models may better replicate the underlying network 

structure than empirical FC. However, additional investigation is neces- 

sary to clarify this question. The current study focuses on the impact of 

tractography density on the modeling. 

4.1. Evaluating structural architecture for modeling 

Within the framework of the modeling approach, the model parame- 

ters can be varied in a broad range and sense to evaluate their impact on 

the simulated dynamics. As related to the discussed network topology, 

beyond the variation of the global coupling strength, the network edges 

approximating the anatomical connections between brain regions can 

be removed to obtain a better fit between simulated and empirical FC 

( Cabral et al., 2012 ). Aiming at the best correspondence between simu- 

lated and empirical data, new inter-region anatomical connections were 

allowed to be created, or existing structural connections to be rewired 

according to algorithms based on the differences between the simulated 

and empirical FC including the gradient-descent method ( Deco et al., 

2019; 2014 ). The model connectivity can be composed of both empiri- 

cal SC extracted from dwMRI data and local intra-cortical connections 

incorporated into the model based on the distance-dependent approxi- 

mations ( Proix et al., 2016 ). 

Among many possible ways of SC variation for the best model fit- 

ting, which might also require additional justifications, we propose to 

stay within the framework of realistically extracted signals from dwMRI 

data and consider the well-established approaches for the data process- 

ing. In this study, we used state-of-the-art techniques for calculation of 

WBT and SC ( Tournier et al., 2019 ) and investigated the impact of a 

constructive parameter for the structural connectome, the number of 

extracted streamlines on graph-theoretical measures of SC, and their in- 

fluence on the modeling results. 

As discussed in Fig 2 and Table 1 , the variation of the WBT density 

affects the properties of the model networks calculated from the struc- 

tural connectome, especially, the PL matrices, where the edges with rel- 

atively small numbers of streamlines are sensitive to reducing the total 

number of tracking trials. Therefore, SC extracted from relatively sparse 

WBT with small number of streamlines may not guarantee a higher re- 

producibility with stable network properties, where some edges will be 

disconnected or reconnected from time-to-time, when streamlines will 

be generated. We, nevertheless, considered an extreme case of 10K WBT 

streamlines in this study to illustrate the effects observed for very sparse 

WBT density. 

4.2. Graph-theoretical network properties across conditions 

For the extraction of the brain structural and functional connectomes 

and for setting up the model network, we used two paradigmatically 

distinct brain atlases. These are the Schaefer atlas ( Schaefer et al., 2018 ) 

that is based on functional MRI data, and the Harvard-Oxford atlas of 

anatomy-related parcellation ( Desikan et al., 2006 ) that is based on the 

landscape of gyri and sulci on the cortical surface. We found that the 

graph-theoretical properties of the structural networks built based on 

these two parcellations are changing with similar tendencies across the 

considered WBT conditions for both atlases ( Fig 2 and Table 1 ). 

Some of the considered network properties exhibit high sensitivity 

to the variations of the WBT density, for example, the clustering coeffi- 

cient (CC) or the local efficiency (LE), see Table 1 . On the other hand, 

the weighted node degree (WD) or the global efficiency (GE) manifested 

significant changes only when the number of the calculated WBT stream- 

lines was decreased from 10M to 100K or 50K, i.e., 100–200 times. 

The sensitivity was stronger for the Schaefer atlas. These findings might 

be of importance when the discussed network properties influence the 

modeling results. We also found that the mentioned network metrics 

(CC and LE) with sensitive dependence on the WBT density strongly 

anti-correlate with the goodness-of-fit of the model for the Schaefer at- 

las ( Fig 5 a1), while the dependence is weak with insensitive network 

measures (WD and GE). Given the impact of the WBT density on the 

properties of the structural networks ( Fig 2 ), this may explain the clear 

monotonic behavior of the goodness-of-fit for the Schaefer atlas versus 

the number of streamlines ( Fig 5 a2). The situation is different for the 

Harvard-Oxford atlas, where the relationship with CC and LE is in aver- 

age less pronounced, whereas the correlation with WD and GE is more 

enhanced ( Fig 5 b1). This may explain the apparently mixed behavior of 

the goodness-of-fit for this brain atlas ( Fig 5 b2). 

In summary, some of the network metrics are characterized by differ- 

ent relationships with the results of the model validation for the varying 

WBT density for different parcellations, see also supplementary Figs. A3 

and A4 for the relationships of all considered network properties. There- 

fore, even if the tractography density modulates the graph-theoretical 

network properties in similar changes for the considered atlases as we 

observed, it can however influence the dynamics of mathematical mod- 

els in different ways depending on the used brain parcellation. 

4.3. Role of time delay in the modeling 

It is interesting to note here that the best agreement between sim- 

ulated and empirical functional data (sFC and eFC) was attained for 

the considered model at small (zero) delays ( Fig 3 ). It is therefore safe 

to consider such a type of model simulating ultra slow BOLD dynam- 

ics without delay in coupling ( Deco et al., 2019; 2017; Ponce-Alvarez 

et al., 2015 ). Nevertheless, the goodness-of-fit for the model with de- 

lay (including zero delay) exhibits around 9% larger values than that 

without delay (zero delay only), see Fig. A9 a and b in Supplementary 

materials. On the other hand, the role of delay in coupling is apparent 

for the structure-functional (sFC-eSC) model fitting, where the corre- 

spondence between sFC and eSC is also enhanced by around 14% for 

the model with delay when compared to the case without delay (Fig. 

A9 c and d in Supplementary materials). 

We also reported on the clustered distributions of the optimal model 

parameters for the structure-functional model fitting sFC-eSC and their 

behavior (migration between clusters) when the WBT density varies for 

the two considered brain atlases ( Fig 6 ). Such a behavior of the opti- 

mal parameters might be related to the performance of the model at 

the group level. Indeed, we observed that subjects from the parameter 

cluster with large delay demonstrated better quality of the model vali- 

dation for both functional and structure-functional model fittings ( Fig 6 

and supplementary Fig. A6). In other words, if the optimal parameters 

for the maximal sFC-eSC correspondence have a large delay, we might 

expect a better correspondence between sFC and eFC. Accordingly, we 

might also expect that the group-averaged goodness-of-fit for the Schae- 

fer atlas will decay faster than that for the Harvard-Oxford atlas when 

the number of streamlines decreases as observed in Fig 4 . This is be- 

cause parameter points (subjects) migrate to the cluster with small de- 

lay, and fewer optimal parameter points with large delay can be found 

for a sparser WBT for the Schaefer atlas. These arguments can suggest a 

possible mechanism associated with the impact of time delay in coupling 

on the model fitting results. 

The values of the optimal non-zero delays for the structure-functional 

fitting modality can be influenced by the natural frequencies of oscilla- 

tors ( Eq 1 ) demonstrating relatively strong negative correlations with 

the structure-functional model fitting as illustrated in supplementary 

Figs. A7 and A8. Therefore, the average frequency of BOLD oscillation 

for a given subject can influence the values of the optimal delay for the 

best structure-functional correspondence. The parameter of the global 

delay scales the average velocity of signal propagation between brain re- 

gions. Consequently, the optimal speed of the signal propagation in the 
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brain as revealed by the modeling results can be regulated by the mean 

intrinsic time scale of oscillatory activity of individual brain regions. 

4.4. Stratification analysis and optimal conditions 

The problem of the optimal number of the total WBT streamlines was 

also addressed in this study beyond the group-level analysis and aimed 

at the best fitting of the personalized models for individual subjects. To 

investigate the impact of the WBT density at the level of individual sub- 

jects, we stratified the entire subject population into smaller subgroups 

with more homogeneous (heterogeneous) model dynamics within (be- 

tween) subgroups. One of the stratification approaches is to show the ef- 

fect of the graph-theoretical network properties modulated by the WBT 

density on performance of the model. We found that such correlations 

for individual subjects are well-pronounced for the Schaefer atlas, but 

they are somewhat less expressed for the Harvard-Oxford atlas ( Fig 5 a1 

and b1). Nevertheless, the stratification can be designed by combining 

the splitting results for different network properties, which resulted in 

a clear differentiation of the impact of the WBT streamline number on 

the model validation across stratified subgroups and brain parcellations 

( Fig 5 ). 

Another approach to stratification of the subjects was based on the 

clustering of the optimal delay for the structure-functional model fit- 

ting discussed above. It can provide an informed view on the validation 

results for the functional model fitting ( Fig 6 ). One more stratification 

approach is illustrated in Fig 7 , where the subjects were split into two 

subgroups of qualitatively different individual behavior of the goodness- 

of-fit versus the streamline number. Based on the obtained results, we 

can propose to use the large number ( ∼2M-10M) of the WBT streamlines 

for the best functional model validation, if the Schaefer atlas was used 

for the brain parcellation. 

On the other hand, the recommendation is completely opposite for 

more than 20% of subjects for the brain parcellation based on the 

Harvard-Oxford atlas ( Fig 8 b2, blue dashed curve 3). For such sub- 

jects, the large number of streamlines can lead to a lower quality of 

the model fitting as compared to rather sparse WBT containing, for ex- 

ample, only 50K streamlines. Differentiating the subjects according to 

the discussed stratification criteria can help to design an individual data 

processing workflow and configurations of parameters for the optimal 

personalized modeling of the brain dynamics. In particular, based on 

the obtained results, we can suggest a personalized optimal number of 

the WBT streamlines for the considered brain parcellation for the better 

model performance at the modeling of the resting-state brain dynamics. 

Based on the results of the stratification analysis, we may suggest a 

few tentative guidelines to possible evaluation of personalized optimal 

number of the WBT streamlines for the whole-brain model of the resting- 

state brain dynamics. 

• Around 50K WBT streamlines can be considered as a sparse WBT 

condition. 
• More than 2M WBT streamlines can be considered as a dense WBT 

condition. 
• Graph-theoretical network properties of the structural connectome 

can influence the goodness-of-fit of the model over different tractog- 

raphy densities. Such relationships to the data variables may con- 

tribute to the mechanism of the fitting variability and subject strat- 

ification into qualitatively different subgroups. 
• Modeling with time delay in coupling can enhance goodness-of-fit 

of the model. 
• A dense WBT is not always the best condition for the whole-brain 

modeling. 
• Brain parcellation may affect the optimal parameters of the data pro- 

cessing and should be taken into account already at early stages of 

the data analytics. 

To understand the underlying mechanism of the stratification results, 

more detailed investigation aimed at quantitative validations and gen- 

eralization of the results should be performed. From the results of the 

current study we can already conclude that optimal configurations of 

the data processing and quantitative guidelines are important for per- 

sonalized data processing and modeling. 

4.5. Limitations and future direction 

Although we used the data with high quality of the data pre- 

processing and physiological noise reduction, however, we note that 

the reported results were obtained from the neuroimaging data of young 

adults with relatively narrow age ranges. In order to generalize our con- 

clusions, they have to be verified for other datasets with broader dis- 

tribution of the phenotypic parameters and other data quality such as 

clinical-grade scans. 

The current study used empirical FC based on the resting-state 

fMRI measurements for evaluation of the model performance. Regard- 

ing other data modalities, future works can include electrophysiological 

data with electrical modeling for general outcomes. Furthermore, other 

fitting modalities can also be possible metrics to evaluate whole-brain 

modeling, for instance, dynamic FC or effective connectivity. Detailed 

investigation under such conditions can contribute to a better coverage 

and optimization of the model validation for personalized modeling. 

5. Summary and conclusion 

We found that varying number of total streamlines for WBT affects 

the network properties of the structural connectome and performance 

of the mathematical modeling of the resting-state brain dynamics. The 

results showed that a dense WBT is not always the best condition for 

the whole-brain mathematical modeling represented by a system of in- 

teracting oscillators with time delay in coupling. We also demonstrated 

that the optimal parameters of the data processing may be affected by 

the utilized brain parcellation that should be taken into account already 

at early steps of the data processing workflow. The present study did 

not aim to provide any quantitative conclusion concerning the optimal 

number of WBT streamlines, but rather to illustrate possible qualitative 

effects caused by the varying WBT density on the structural connectome 

and modeling results in combination with functional and anatomical 

brain parcellations. Our results can contribute to a better understand- 

ing of the interplay between the data processing and model parameters 

and their influence on data analytics of dwMRI and modeling of the 

resting-state fMRI data. 
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a b s t r a c t 

Modern approaches to investigate complex brain dynamics suggest to represent the brain as a functional network 

of brain regions defined by a brain atlas, while edges represent the structural or functional connectivity among 

them. This approach is also utilized for mathematical modeling of the resting-state brain dynamics, where the 

applied brain parcellation plays an essential role in deriving the model network and governing the modeling 

results. There is however no consensus and empirical evidence on how a given brain atlas affects the model 

outcome, and the choice of parcellation is still rather arbitrary. Accordingly, we explore the impact of brain 

parcellation on inter-subject and inter-parcellation variability of model fitting to empirical data. Our objective 

is to provide a comprehensive empirical evidence of potential influences of parcellation choice on resting-state 

whole-brain dynamical modeling. We show that brain atlases strongly influence the quality of model validation 

and propose several variables calculated from empirical data to account for the observed variability. A few classes 

of such data variables can be distinguished depending on their inter-subject and inter-parcellation explanatory 

power. 

1. Introduction 

Investigation of brain dynamics during task-evoked and resting-state 

activity is frequently based on the inspection of corresponding func- 

tional networks that are collections of brain regions with enhanced syn- 

chronization among them ( Bolt et al., 2017; Cole et al., 2014; Park and 

Friston, 2013 ). Neither nodes nor edges of such networks can uniquely 

be defined, especially, for the resting-state brain activity. State-of-the- 

art approaches range from voxel-wise nodes resulting in huge networks 

defined by the number of voxels in the underlying neuroimaging data 

to nodes encircling entire brain regions either as neuronal foci co- 

activated during a specific task or parcellated according to other cri- 

teria ( Stanley et al., 2013 ). In the latter case, the brain regions are 

defined based on a certain brain parcellation ( Eickhoff et al., 2018b; 

Stanley et al., 2013; Thirion et al., 2014 ), which reduces the dimension- 

ality of the brain data by merging hundred thousands of voxels from 

∗ Corresponding author at: Institute of Neuroscience and Medicine (INM-7), Research Centre Juelich, Juelich, Germany. 

E-mail address: o.popovych@fz-juelich.de (O.V. Popovych). 

high-resolution neuroimaging data into a few hundreds up to thousand 

of brain regions. A unified brain parcellation could improve the inter- 

pretability and comparability of results for different subjects and studies 

and increase the effective signal-to-noise ratio. However, there are many 

ways to parcellate the brain into separate regions (or parcels), which is 

actively debated in the literature ( Eickhoff et al., 2018b; Stanley et al., 

2013; Thirion et al., 2014 ). There is a sparse empirical evidence for the 

effect of a particular atlas choice, but see Refs. ( Messe, 2019; Pervaiz 

et al., 2020; Zimmermann et al., 2019 ) for recent reports. 

The great variety of possible techniques for creating brain parcella- 

tions and existing brain atlases makes the choice of a particular parcel- 

lation for a given analysis very difficult ( Eickhoff et al., 2018a ). At least 

two paradigmatically distinct approaches can be used for the parcella- 

tion, where the brain regions are defined based either on their anatom- 

ical or functional properties. For example, the cortex can be parcellated 

into regions according to its folding properties, e.g., into gyral-based 

https://doi.org/10.1016/j.neuroimage.2021.118201 . 
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parcels encircled by tracing from the depth of one sulcus to another 

( Desikan et al., 2006 ). A very different parcellation approach is based 

on the brain function, where the patterns of the resting-state functional 

connectivity (FC) can be used to group the voxels (or vertices) into 

parcels of similar connectivity ( Schaefer et al., 2018; Shen et al., 2013 ). 

The latter can be evaluated either according to a global similarity mea- 

sure combined with abrupt changes in the local gradient of the whole- 

brain intrinsic FC ( Schaefer et al., 2018 ) or based on the graph theory 

with application of a multigraph clustering approach to the resting-state 

FC ( Shen et al., 2013 ). From the above anatomical and functional ap- 

proaches to brain parcellation, one may assume that the latter could 

be more appropriate for calculation of the whole-brain FC, where the 

parcels are suspected to be composed of voxels with higher functional 

homogeneity. However, the detailed effects of these two distinct par- 

cellation techniques on the results of data analysis and modeling can 

hardly be predicted by a simple theoretical reasoning. 

Utilizing a brain parcellation is essential for dynamical modeling of 

brain activity, where the brain regions are represented as nodes of a 

network model ( Honey et al., 2009 ). The selected brain parcellation is 

involved in the extraction of the structural connectivity (SC), inferred 

from diffusion-weighted magnetic resonance imaging (dwMRI), which 

serves as proxies for anatomical connections between brain regions at 

the meso- and macroscopic level ( Hagmann et al., 2010 ). This SC can 

then be used to estimate the coupling strength and communication de- 

lay between the nodes of the model network contributing in such a way 

to the model derivation ( Deco et al., 2011; Ghosh et al., 2008 ). Further- 

more, the selected parcellation can be used to extract the blood oxygen 

level-dependent (BOLD) signals inferred from functional magnetic reso- 

nance imaging (fMRI) and calculate the empirical FC. The latter can be 

compared to simulated FC calculated from simulated BOLD time series 

generated by the derived model, thus validating the simulation results 

against the empirical data ( Cabral et al., 2011; Deco and Jirsa, 2012 ). 

As a consequence, this process crucially depends on the empirical data 

used for the model derivation (e.g., SC) and fitting (e.g., FC), which in 

turn is affected by the data processing, in particular, by the selected 

brain parcellation ( Messe, 2019; Pervaiz et al., 2020; Popovych et al., 

2019; Zimmermann et al., 2019 ). 

In this study we therefore simulate the resting-state brain activity 

using dynamical mathematical models to investigate the effects of brain 

parcellations. Functional and anatomical brain atlases with different res- 

olutions are used for model validation against empirical resting-state 

functional and structural connectivity data. We consider three represen- 

tatives from the above parcellation classes as given by the anatomical 

Harvard-Oxford atlas ( Desikan et al., 2006 ) and the functional Schae- 

fer ( Schaefer et al., 2018 ) and Shen ( Shen et al., 2013 ) atlases. The ef- 

fects of brain parcellation are studied in detail with two systems of cou- 

pled phase and limit-cycle oscillators suggested for modeling cortical 

oscillations and resting-state BOLD dynamics ( Breakspear et al., 2010; 

Cabral et al., 2011; Deco et al., 2019; 2017; Fukushima and Sporns, 

2018; Ponce-Alvarez et al., 2015 ). The effects are investigated by an ex- 

tensive exploration of the model parameter space. The models are fitted 

against empirical data of individual subjects for a set of varying condi- 

tions, in particular, the granularity of the parcellation for Schaefer and 

Shen atlases and the maximal probability threshold for Harvard-Oxford 

atlas affecting the size of brain regions. 

The number of parcels is an important parameter, which may influ- 

ence the results of the mathematical modeling, the empirical structure- 

function relationship as well as the prediction of human behavior from 

the patterns of brain connectivity ( Honey et al., 2009; Messe, 2019; Per- 

vaiz et al., 2020; Proix et al., 2016; Zimmermann et al., 2019 ) and de- 

serves a systematic modeling investigation ( Popovych et al., 2019 ). In 

the paper ( Proix et al., 2016 ) the authors explored the impact of parcella- 

tions and local connectivity on the dynamics of neural mass models with 

and without delays, where the different parcellations were obtained by 

randomly splitting the brain regions of the Desikan-Killiany atlas into 

smaller subregions. It was in particular identified that spatial attractors 

of slow brain dynamics were qualitatively not affected by the number of 

regions in the cortical parcellation, whereas the parcellation granular- 

ity influenced their critical range in the global coupling strength. On the 

other hand, the richness of fast dynamics of the response to perturba- 

tions increased only if delays were considered in the model, suggesting 

an optimal parcellation scale, which can be decomposed into only a few 

spatial patterns. The work of Zimmermann et al. (2019) exposed a sub- 

ject specificity to the association between empirical structural and func- 

tional connectomes for six different datasets and brain parcellations. It 

was however shown that intra-subject specificity of the SC-FC fit was 

achieved only for one of the considered cases indicating that select- 

ing an appropriate brain parcellation was critical to provide enough 

statistical information to individually link SC and FC. The structure- 

function relationships between empirical SC and FC were also investi- 

gated for several brain parcellations with various spatial resolutions by 

Messe (2019) revealing a significant effect of brain parcellation on the 

SC-FC correlation driven by the number of brain regions. In the paper 

( Pervaiz et al., 2020 ) the impact of brain parcellation on the predic- 

tive power of data-driven models was analyzed regarding the relation- 

ship between whole brain functional connectivity patterns and behav- 

ioral traits in an attempt to find the optimal parcellation among other 

conditions. 

In this study we analyze the parcellation-induced differences of 

model validation against empirical data for two approaches to brain 

parcellation based on anatomical or functional brain data. Furthermore, 

we test for an effect on two different models of limit-cycle and phase os- 

cillators distinguished whether the amplitude of the simulated BOLD 

signals is taken into account or not, respectively. We consider func- 

tional and structure-functional fitting modalities for the model vali- 

dation against empirical data. We aim to evaluate whether and how 

different parcellations may influence the modeling results and suggest 

possible approaches to explain inter-subject and inter-parcellation vari- 

ation of model fitting. In our approach, we study the contribution of 

different features of the experimental data, which can vary with the 

pre-processing and chosen parcellation, to the ability of mathematical 

models to make an individualized link between simulated and empir- 

ical connectomes. We demonstrate that the considered atlases lead to 

substantially different results when comparing the model fit for parcel- 

lations within and between the anatomical and functional parcellation 

families. This is especially the case for the quality of the model vali- 

dation, structure of the model parameter space and reliability of the 

fitting results. To understand the origin of the observed behavior of the 

model fitting, we also evaluate how the properties of the empirical data 

used for model derivation and validation may influence the modeling 

results ( Messe et al., 2014 ). We show that several data variables calcu- 

lated from the empirical neuroimaging data can be classified into a few 

correlative types depending on their contribution to the model fitting 

for individual subjects and for the brain parcellations from the same 

or different brain atlases. In this respect, the variation of the fitting re- 

sults for personalized models across subjects and parcellations can, to a 

greater extent, be accounted for by the variation of the considered data 

variables. 

2. Methods and materials 

2.1. Empirical data 

Empirical SC and FC used for the derivation and validation of the 

mathematical models were extracted for 272 healthy unrelated subjects 

(144 females, average age 28.5 ± 3.5 [mean ± std] years) from the Hu- 

man Connectome Project (HCP; https://www.humanconnectome.org/ ) 

( Van Essen et al., 2013 ) S1200 public release with complete dwMRI and 

resting-state fMRI data. 

Structural connectivity Empirical SC approximating the anatomical ax- 

onal tracts in the brain ( Conturo et al., 1999 ) was extracted from pre- 
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processed dwMRI data. To do this, we developed an in-house pipeline 

consisting of FSL version 5.0 ( Jenkinson et al., 2012 ), Freesurfer 6.0 

( Fischl et al., 2001 ), ANTs 3.0 ( Tustison et al., 2014 ), and MRtrix3 

3.0 ( Tournier et al., 2019 ). The main pre-processing steps included de- 

noising, bias-field correction, removal of eddy-current-induced distor- 

tions and motion correction (dwMRI), normalization of image inten- 

sity (T1-weighted image), co-registering the diffusion data with the T1- 

weighted image, estimation of the transformation function from the 

MNI standard template to the native diffusion space, and segmentation 

and application of tissue masks in the diffusion space. Then the whole- 

brain tractography (WBT) was calculated by the probabilistic fiber track- 

ing algorithm (iFOD2) based on the multi-shell-multi-tissue constrained 

spherical deconvolution algorithm ( Jeurissen et al., 2014 ), which was 

realized in MRtrix3, where 10 million streamlines were obtained. The 

tracking algorithm used voxels in the white-mater mask for seeding of 

tracts with the maximal angle in 45 degrees between successive steps. 

Finally, the resulting SC was extracted from the calculated WBT accord- 

ing to a given brain parcellation defining a set of brain regions (parcels), 

where any two parcels were selected as seed and target regions for the 

compression of WBT to the parcellation-based SC. The output is two 

𝑁 ×𝑁 matrices of SC containing the empirical streamline counts (eSC) 

and the averaged empirical streamline path lengths (ePL) between any 

pair from 𝑁 brain regions of the considered brain parcellation. 

Resting-state functional connectivity The empirical FC was calculated 

from the resting-state fMRI data which was ICA FIX denoised as pro- 

vided by the HCP repository ( Glasser et al., 2013; Griffanti et al., 2014; 

Salimi-Khorshidi et al., 2014 ). Similar to the extraction of the empirical 

SC, also for the calculation of the empirical FC, the brain was split into 

a set of regions according to a given brain parcellation, and the mean 

BOLD signals (averaged over all voxels in any region) were calculated 

for all parcels. The extracted BOLD signals were then cross-correlated by 

Pearson correlation resulting in 𝑁 ×𝑁 empirical FC (eFC) matrices for 

each subject. The HCP repository provided 4 resting-state fMRI sessions 

(1200 volumes, TR = 720 ms) for each considered subject correspond- 

ing to the scans with two different phase-encoding directions repeated 

on two different days. This accordingly resulted in 4 eFC matrices for 

each subject. Additionally, the BOLD signals from all 4 scanning sessions 

were concatenated, and 5 eFC matrices were obtained in total for each 

subject. 

Brain parcellation The empirical SC and FC were calculated for 11 

brain parcellations using the Schaefer and Shen atlases based on the 

resting-state functional connectivity ( Schaefer et al., 2018; Shen et al., 

2013 ), and the Harvard-Oxford atlas based on the anatomy of corti- 

cal folding ( Desikan et al., 2006 ). Several variations of these atlases 

were considered: the Schaefer atlas with 100, 200, 400 and 600 cortical 

parcels (denoted as S100, S200, S400 and S600, respectively), the Shen 

atlas with 79, 156 and 232 cortical regions (denoted as Shen79, Shen156 

and Shen232), and the probabilistic Harvard-Oxford atlas with 96 non- 

overlapping cortical parcels with thresholds at 0%, 25%, 35%, and 45% 

of the maximal probability (denoted as HO96 0%, HO96 25%, HO96 

35%, and HO96 45%, respectively). For higher thresholding, voxels that 

did not reach the threshold level were excluded, and for 45% threshold 

the left supracalcarine cortex region contained no supra threshold voxels 

reducing the number of parcels to 95 for HO96 45%. 

Finer granularity for the Schaefer and Shen atlases and larger thresh- 

old for the Harvard-Oxford atlas led to smaller brain regions of the cor- 

responding parcellations as illustrated in Fig. 1 A. The main difference 

between the considered atlases is that the brain regions are more homo- 

geneous in size for the Schaefer and Shen atlases than for the Harvard- 

Oxford atlas. However, the size spread decayed together with the aver- 

age size such that the relations between them little changed for vary- 

ing granularity and probability threshold, albeit overall differences be- 

tween the three parcellation families [ Fig. 1 B]. The variation of the at- 

lases, their parcellation granularity and probability threshold affected 

Fig. 1. Variation of the region size for the considered brain parcellations. ( A ) 

Distributions of the region size (the number of 1 mm isocubic voxels) and ( B ) 

the corresponding relations between the mean or median and the spread of the 

region size are depicted versus all considered parcellations. The spread of the 

region size is reflected by the standard deviation (STD) or interquartile range 

(IQR) as indicated in the legends. 

the properties of the empirical data used for the model derivation and 

validation as discussed in Section 3.3 below. 

2.2. Models and simulated data 

In this study we considered two models. The first model is an ensem- 

ble of coupled phase oscillators of Kuramoto type ( Kuramoto, 1984 ) 

�̇� 𝑗 ( 𝑡 ) = 2 𝜋𝑓 𝑗 + 

𝐶 

𝑁 

𝑁 ∑
𝑛 =1 

𝑤 𝑗𝑛 sin ( 𝜑 𝑛 ( 𝑡 − 𝜏𝑗𝑛 ) − 𝜑 𝑗 ( 𝑡 )) + 𝜂𝑗 , (1) 

𝑗 = 1 , 2 , … , 𝑁, 

where 𝜑 𝑗 are the phases, 𝑁 is the number of oscillators, 𝑓 𝑗 are the nat- 

ural frequencies (frequencies of the uncoupled oscillators, measured in 

hertz (Hz), and the time 𝑡 in the model and delay in coupling are thus 

measured in seconds), and 𝐶 is the parameter of the global coupling. Pa- 

rameters 𝑤 𝑗𝑛 and 𝜏𝑗𝑛 represent the individual coupling weight and prop- 

agation delay in the coupling, respectively, from oscillator 𝑛 to oscillator 

𝑗, and 𝜂𝑗 is an independent noise uniformly distributed in the interval 

[−0 . 3 , 0 . 3] . This system was used to model by the observable 𝑥 𝑗 = sin ( 𝜑 𝑗 ) 
the dynamics of the empirical BOLD signal of the 𝑗th brain region (par- 

cel) according to a given brain parcellation as explained above, where 

the number of oscillators 𝑁 in model (1) was equal to the number of 

brain parcels. 

Another investigated model is a system of coupled generic limit-cycle 

(LC) oscillators that are the normal form of the supercritical Hopf bifur- 
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Fig. 2. Examples of model (1) validation against empirical data. Fitting of the simulated FC (sFC) to eFC (upper row, A-C ) and to eSC (lower row, D-F ) for S100 

parcellation. ( A, D ) Similarity (Pearson correlation coefficient) between the simulated and empirical data is encoded in color versus parameters of the global delay 

𝜏 and coupling 𝐶, where the optimal parameter points of the best fit are indicated by white circles, and the next 4 largest values are depicted by blue diamonds. 

The corresponding sFC matrices of the best fit compared with eFC and eSC, respectively, are depicted in the middle column ( B and E ), whereas the corresponding 

eFC matrix and normalized by its mean eSC matrix are shown in the right column of the upper ( C ) and lower ( F ) row, respectively. The simulated and empirical FC 

matrices are shown in the same scale for comparison. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

cation ( Kuznetsov, 1998 ) 

�̇� 𝑗 ( 𝑡 ) = 

(
𝑎 𝑗 + i2 𝜋𝑓 𝑗 − |𝑧 𝑗 ( 𝑡 ) |2 

)
𝑧 𝑗 ( 𝑡 ) 

+ 

𝐶 

𝑁 

𝑁 ∑
𝑛 =1 

𝑤 jn 

(
𝑧 𝑛 
(
𝑡 − 𝜏jn 

)
− 𝑧 𝑗 ( 𝑡 ) 

)
+ 𝜉𝑗 , 

𝑗 = 1 , 2 , … , 𝑁, (2) 

where 𝑧 𝑗 ( 𝑡 ) = 𝑥 𝑗 ( 𝑡 ) + i 𝑦 𝑗 ( 𝑡 ) are the complex variables of individual oscil- 
lators, and i = 

√
−1 is the imaginary unit. Without coupling ( 𝐶 = 0 ), all 

oscillators of ensemble (2) independently and uniformly rotate around 

the origin on the limit cycles with individual radii 
√
𝑎 𝑗 and with indi- 

vidual natural frequencies 𝑓 𝑗 measured in Hz. The independent complex 

noise 𝜉𝑗 is uniformly distributed in the interval [−0 . 3 , 0 . 3] . The empirical 
BOLD signal of region 𝑗 was modeled by the variable 𝑥 𝑗 ( 𝑡 ) . 

The model parameters 𝑓 𝑗 , 𝑎 𝑗 , 𝑤 𝑗𝑛 and 𝜏𝑗𝑛 are extracted from the em- 

pirical data for each individual subject, and the personalized models 

(1) and (2) were simulated separately for each subject. The natural fre- 

quencies 𝑓 𝑗 of the phase and LC oscillators were calculated from the 

empirical BOLD signals extracted from the corresponding brain regions 

as the frequencies of the maximal spectral peaks discarding the frequen- 

cies below 0.01 Hz and above 0.1 Hz. Similar approach for defining the 

local model parameters was also used in other studies for the phase and 

LC oscillators ( Deco et al., 2019; 2017; Ponce-Alvarez et al., 2015 ). The 

amplitude parameters 𝑎 𝑗 of LC oscillators (2) were selected proportion- 

ally to the extent of time fluctuations of empirical BOLD signals of indi- 

vidual parcels. For this, the normalized standard deviation 𝑠𝑡𝑑( BOLD 𝑗 ) 
was used to calculate 𝑎 𝑗 such that the mean and the standard deviation 

over all parcels were ⟨𝑎 𝑗 ⟩ = 0 . 5 and 𝑠𝑡𝑑( 𝑎 𝑗 ) = 0 . 4 , respectively. 
The coupling weights 𝑤 𝑗𝑛 and delays 𝜏𝑗𝑛 were derived from the eSC 

and ePL, respectively. The parameters 𝑤 𝑗𝑛 were calculated as the nor- 

malized number of SC streamlines 𝑤 𝑗𝑛 = 𝑘 𝑗𝑛 ∕ 
⟨
𝑘 𝑗𝑛 

⟩
, where 𝑘 𝑗𝑛 is the 

number of streamlines connecting regions 𝑗 and 𝑛 , and ⟨⋅⟩ denotes the en- 
semble averaging over the entire 𝑁 ×𝑁 matrix with zero diagonal. The 

matrix of the streamline counts 𝑒𝑆𝐶 = 

{
𝑘 𝑗𝑛 

}
thus defined the coupling 

weights and the graph of the model network. The delays 𝜏𝑗𝑛 were calcu- 

lated as 𝜏𝑗𝑛 = 𝐿 𝑗𝑛 ∕ 𝑉 , where 𝐿 𝑗𝑛 is the average path length of the stream- 

lines connecting regions 𝑗 and 𝑛 , and 𝑉 is an average velocity of signal 

propagation. The matrix 𝑒𝑃 𝐿 = 

{
𝐿 𝑗𝑛 

}
can thus be used to calculate the 

delays 𝜏𝑗𝑛 in the coupling, which can be rewritten as 𝜏𝑗𝑛 = 𝜏 ⋅ 𝐿 𝑗𝑛 ∕ 
⟨
𝐿 𝑗𝑛 

⟩
, 

where 𝜏 = 

⟨
𝐿 𝑗𝑛 

⟩
∕ 𝑉 is the global (or average) delay. In models (1) and 

(2) the self-connections were excluded ( 𝑤 𝑗𝑗 = 0 ) by putting the diagonal 
elements in the matrices eSC and ePL to zero: 𝑘 𝑗𝑗 = 𝐿 𝑗𝑗 = 0 . The param- 
eters of the global coupling 𝐶 and the global delay 𝜏 can be used to 

scale the extent of the coupling in the system and the average velocity 

𝑉 , respectively, and were varied to fit the model to empirical data. 

2.2.1. Model validation 

For each set of the model parameters, the models (1) and (2) were 

numerically simulated, and the matrix of the simulated functional con- 

nectivity (sFC) was calculated by Pearson correlation between the sim- 

ulated BOLD signals 𝑥 𝑗 , 𝑗 = 1 , 2 , … , 𝑁 . sFC was compared with the ma- 

trices of the empirical connectivity eFC and eSC, where the similarity 

between them was calculated by Pearson correlation, i.e., corr (sFC , eFC) 
or corr (sFC , eSC) between the corresponding upper triangular parts. The 
model fitting for the phase oscillators (1) is illustrated in Fig. 2 . For 

given eFC and eSC [ Fig. 2 C and F], the model parameters 𝜏 and 𝐶 were 

varied, and the similarity between sFC and the empirical connectivity 

matrices was calculated for each parameter point ( 𝜏, 𝐶) [ Fig. 2 A and D]. 

Among all tested parameter values, the optimal values were selected cor- 

responding to the best model fit, i.e., where the similarity is maximal 

[ Fig. 2 A and D, while circles]: 

Fit ( sFC , eFC ) = max 
( C , 𝜏) 

corr ( sFC , eFC ) , 

Fit ( sFC , eSC ) = max 
( 𝐶, 𝜏) 

corr ( sFC , eSC ) . (3) 

The goodness-of-fit values Fit (sFC , eFC) of the functional model fitting 
can be used to evaluate the similarity between the simulated patterns 

of synchronization between oscillators of systems (1) and (2) and the 

resting-state BOLD dynamics as given by eFC matrix. On the other 
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hand, the structure-functional model fitting Fit (sFC , eSC) evaluates how 

strongly the model dynamics can replicate the underlying network struc- 

ture as for the structure-function relationship in the brain ( Honey et al., 

2009; Messe, 2019; Park and Friston, 2013; Zimmermann et al., 2019 ) 

and for which parameters and dynamical regimes. Examples of the cor- 

respondence between sFC and empirical data are illustrated in Fig. 2 , 

compare sFC matrices in Fig. 2 B and E with eFC and eSC in Fig. 2 C and 

F, respectively. For further analysis, optimal model parameters were se- 

lected from each parameter space as in Fig. 2 A and D (white circles) 

together with the corresponding maximal similarity values Fit ( ⋅, ⋅) , i.e., 
goodness-of-fit of the model defined by Eq. (3) . 

As mentioned above, the two models were simulated for 11 brain 

parcellations (4 for the Schaefer atlas, 4 for the Harvard-Oxford atlas 

and 3 for the Shen atlas) defining 11 simulation conditions for each sub- 

ject. Simulation for each condition resulted in 5 parameter planes like in 

Fig. 2 A and D of comparison between sFC and eFC (each subject had 5 

eFCs), and one plane of comparison between sFC and eSC. Each param- 

eter plane spanned the range [0 , 94] × [0 , 0 . 945] of the coupling delay 𝜏
and strength 𝐶, respectively, and contained a grid of 48 × 64 parameter 
points. For each of these parameter points the models were numerically 

simulated (model run) for random initial conditions by the stochastic 

Heun integration method with fixed Δ𝑡 = 0 . 06 s integration step during 
4000 s, where the last 3500 s were used for sFC evaluation (the first 500 

s were skipped as transient). From each parameter plane one optimal 

parameter point ( 𝜏, 𝐶) was extracted and collected for further analysis 
[ Fig. 2 A and D, white circles], where the maximal similarities (3) were 

reached. For the considered 272 subjects we analyzed 272 × 5 = 1360 

maximal similarities Fit 𝑖 (sFC , eFC) ( 𝑖 = 1 , 2 , … , 1360 ) and 272 values of 
Fit 𝑖 (sFC , eSC) ( 𝑖 = 1 , 2 , … , 272 ) and the corresponding optimal parame- 
ters ( 𝜏𝑖 , 𝐶 𝑖 ) for each of 11 simulation conditions (brain parcellations) 
and 2 models. These values were derived from more than 18 millions of 

model runs. 

For statistical analyses, we related the vectors Fit 𝑖 ( ⋅, ⋅) (we omit the 

subscripts in what follows) across subjects between different brain par- 

cellations and models to evaluate the similarity and interdependencies 

between modeling results with regard to simulation conditions (parcel- 

lations and models) as well as statistical properties of the empirical data. 

The similarity was evaluated by the Pearson correlation coefficients and 

their statistical significance as provided by the corrcoeff function in Oc- 

tave. Fischers z-transform was applied to the correlation coefficients be- 

fore (and after) performing arithmetic operations (e.g., averaging) and 

testing. For multivariate analysis the standard multiple linear regression 

model (MLR) was employed. 

3. Results 

In what follows we first illustrate the results of the model fitting 

for all considered subjects, parcellations, fitting modalities and models. 

Then we present two approaches to evaluate and explain the impact of 

brain parcellations on the inter-subject and inter-parcellation variability 

of the obtained modeling results. As our first approach, the results of the 

model fitting, i.e., the Fit-values of the maximal similarity (3) and the 

corresponding optimal model parameters ( 𝜏, 𝐶) were compared across 
individual subjects and between different brain parcellations and mod- 

els. We evaluated the inter-parcellation variability of the fitting patterns 

across individual subjects. In the second approach, several data variables 

were calculated from individual empirical data and used to account for 

the variation of the goodness-of-fit across subjects for each of the consid- 

ered brain parcellations as well as among them. Thereby, we assess the 

influence of individual data properties on intra- and inter-parcellation 

variability of the model fitting. 

3.1. Results of model fitting 

The distributions of the maximal similarity Fit(sFC, eFC) of the fitting 

sFC to eFC are illustrated in Fig. 3 A and E for the considered brain atlases 

and the two simulation models. The impact of the atlases is apparent 

when comparing the differences between Fit(sFC, eFC) for the Schaefer 

atlas (S100-S600, blue violins), the Harvard-Oxford atlas (HO96 0%- 

45%, yellow - dark red violins) and the Shen atlas (Shen79-Shen232, 

green violins). In the latter cases (HO96 and Shen) the both models 

demonstrate much higher fitting to the empirical data with up to 80% 

of the relative increase of Fit(sFC, eFC) with respect to S100-S600 cases 

[supplementary Table A.1]. The differences in the model fitting can also 

be observed between the parcellations of the same type, i.e., from the 

same atlas. In particular, the best fit for the Schaefer atlas was obtained 

for S200 case providing an optimal spatial scale for this brain atlas. For 

other atlases Fit(sFC, eFC) monotonically decays when the threshold for 

HO96 atlas or the number of parcels for the Shen atlas increases [ Fig. 3 A 

and E]. 

Results of a systematic statistical testing of Fit(sFC, eFC) for all 

considered simulation conditions (11 parcellations) are illustrated in 

Fig. 3 B and F, where the 𝑝 -values of the paired Wilcoxon signed-rank 

test are depicted in color for comparisons between different parcel- 

lations. The dark color (darker than yellow) at the intersection of a 

particular row and column of the shown matrices indicates that the 

goodness-of-fit for the condition from the vertical axis Fit (row) is statisti- 
cally larger (with 𝑝 < . 05 at least) than Fit (column) for the condition from 

the horizontal axis accordingly. For example, Fit (S200) > Fit (S100) as well 
as Fit (S200) > Fit (S400) and Fit (S200) > Fit (S600) , where the cells at the inter- 
section of the row “S200 ” and columns “S100 ”, “S400 ” and “S600 ” are 

dark and marked by “> ” implying 𝑝 < . 05 . We also confirm that the qual- 

ity of the model fitting decays for larger probability threshold for HO96 

atlas and for more parcels for the Shen atlas [ Fig. 3 B and F]. Shen79 

provides the best fit for both models, whereas the lowest goodness-of-fit 

was obtained for S100 for the phase model and for S400 and S600 for 

the LC model, see the row “Shen79 ” and columns “S100 ”, “S400 ” and 

“S600 ” in Fig. 3 B and F. The effect size associated with the presented 

𝑝 -values is illustrated in supplementary Fig. A.1. 

The maximal similarity Fit(sFC, eFC) is achieved at the optimal 

model parameters as illustrated in Fig. 2 A (white circle). Distributions of 

the optimal model parameters ( 𝜏, 𝐶) for the model fitting to the empiri- 
cal functional data eFC for all subjects are shown as one-dimensional his- 

tograms in Fig. 3 C and G, and as two-dimensional histograms in Fig. 3 D 

and H for a few selected parcellations. We found that Fit(sFC, eFC) is 

attained at the optimal parameters remarkably concentrated towards 

small delay 𝜏 and moderate values of coupling 𝐶 for all considered brain 

parcellations and models. Somewhat broader distribution of the optimal 

coupling can be observed for the Shen atlas for the phase model but not 

for the LC model [ Fig. 3 C6 and G6]. Further examples of the param- 

eter planes averaged over all subjects are illustrated in supplementary 

Fig. A.2 together with the distributions of the optimal model parame- 

ters taking into account up to 5 largest similarity values per individual 

parameter plane [ Fig. 2 A and D, white circles and blue diamonds]. 

The situation is different for the structure-function relationship, 

where sFC is fitted to eSC (count matrix) [ Fig. 2 D-F] as illustrated in 

Fig. 4 . In particular, the maximal similarity monotonically decays in 

a well-pronounced manner when the granularity of the Schaefer and 

Shen atlases decreases for both models [ Fig. 4 A and E, blue and green 

violins, supplementary Table A.1 ]. In contrast, Fit(sFC, eSC) increases 

for larger threshold for HO96 atlas and the LC model [ Fig. 4 E and F, 

yellow-red violins]. On the other hand, the behavior of the Fit-values is 

non-monotonic for the phase model, where the thresholds of 25% and 

35% are optimal for the structure-functional model fitting for HO96 at- 

las and phase model [ Fig. 4 A and B]. The highest and the lowest corre- 

spondence between the simulated and empirical data was obtained for 

Shen79 and S600, respectively, for both models, see also supplementary 

Fig. A.1 for effect size. 

The distributions of the optimal model parameters for Fit(sFC, eSC) 

also exhibit a deviation from those for Fit(sFC, eFC) as illustrated in 

Fig. 4 (compare to Fig. 3 ). Interestingly, the best structure-functional 

model fitting can be achieved for small and very well localized values 

5 



O.V. Popovych, K. Jung, T. Manos et al. NeuroImage 236 (2021) 118201 

Fig. 3. Results of the functional model fitting for ( A - D ) phase model (1) and ( E - H ) LC model (2) . ( A, E ) Distributions of the maximal similarity values Fit(sFC, 

eFC) as violin plots for the considered brain parcellations denoted on the horizontal axes as introduced in Methods, where the medians and the interquartile ranges 

are also shown. ( B, F ) Outcomes of statistical tests, where the 𝑝 -values (corrected for multiple comparisons) of the paired Wilcoxon signed-rank test of the Fit(sFC, 

eFC) values between the parcellations indicated on the axes are depicted by color in logarithmic scale (see color bar). The null hypothesis is rejected with 𝑝 < . 05 
(indicated by arrow on the color bar) in favor of the alternative hypothesis Fit (row) > Fit (column) for parcellations in the row and column, respectively, where the 

corresponding cell is dark (small 𝑝 -value) and contains the inequality sign “> ”. ( C,D,G,H ) Distributions of the corresponding optimal model parameters, where the 

one- and two-dimensional histograms of the occurrence frequency of the optimal parameters are, respectively, plotted as step-wise curves ( C, G ) and depicted in 

color ( D, H ) ranging from white (small values) to black (large values) for the parcellations indicated in the legends and plots. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 

of the global coupling 𝐶 and for broadly distributed delay 𝜏 [ Fig. 4 C 

and D] when compared to the functional fitting modality. The latter 

property is somewhat reduced for the LC model as compared to the 

phase model [ Fig. 4 G and H]. Nevertheless, positive delay in coupling 

is still important to obtain the best model fitting in this case for both 

models, see supplementary Fig. A.2 for more details and comparison 

between the phase and LC models. 

3.2. Inter-parcellation variability of fitting results 

To explore the variability of the fitting results over brain parcella- 

tion, in this section we analyze the similarity among the goodness-of- 

fit vectors Fit( ⋅, ⋅) (3) collected for all subjects and fMRI scan sessions 

(see Methods) calculated for different parcellations and models. The Fit- 

values were correlated across subjects for any two parcellations for the 
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Fig. 4. Results of the structure-functional model fitting for ( A - D ) phase model (1) and ( E - H ) LC model (2) . ( A, E ) Distributions of the maximal similarity values 

Fit(sFC, eSC) for the considered brain parcellations, where the medians and the interquartile ranges are also shown. ( B, F ) Outcomes of statistical tests, where the 

corrected for multiple comparisons 𝑝 -values of the paired Wilcoxon signed-rank test of the Fit(sFC, eSC) values between the parcellations indicated on the axes are 

depicted by color in logarithmic scale (see color bar). The null hypothesis is rejected with 𝑝 < . 05 (indicated by arrow on the color bar) in favor of the alternative 

hypothesis Fit (row) > Fit (column) for parcellations in the row and column, respectively, where the corresponding cell is dark (small 𝑝 -value) containing the inequality 

sign “> ”. ( C,D,G,H ) Distributions of the corresponding optimal model parameters, where the one- and two-dimensional histograms of the occurrence frequency are, 

respectively, plotted as step-wise curves ( C, G ) and depicted in color ( D, H ) ranging from white (small values) to black (large values) for the parcellations indicated 

in the legends and plots. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

same as well as different models to evaluate how strongly the variation 

of the brain parcellation and model can affect the inter-subject patterns 

of the goodness-of-fit and assess the reliability of the fitting results. 

The pairwise correlations of the maximal similarity Fit(sFC, eFC) be- 

tween any two of the considered brain parcellations are shown for the 

phase model in Fig. 5 A and LC model in Fig. 5 B. We observe that the 

fitting results are well correlated for parcellations within the same at- 

las/parcellation family, i.e., among S100-S600 parcellations and within 

HO96 and Shen atlases. The average intra-atlas correlations are 0.82 for 

the phase model [ Fig. 5 A] and 0.86 for the LC model [ Fig. 5 B]. On the 

other hand, the similarity of the model fitting patterns between different 

atlases is reduced, which holds for both models, and the corresponding 

average inter-atlas correlations are 0.59 and 0.71, for the phase and LC 

models, respectively. The inter-subject patterns of the goodness-of-fit 

Fit(sFC, eFC) are preserved for both dynamical models as illustrated in 

Fig. 5 C, where the phase model was used for parcellations on the vertical 
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Fig. 5. Correspondence between the patterns of the inter-individual variation of the fitting results (Fit-values (3) ) for the considered parcellations and models. The 

vectors of the Fit-values collected over all subjects and scans (see Methods for details) were Pearson correlated with each other for any two parcellations (indicated 

on the axes) for ( A - C ) Fit(sFC, eFC) and ( D - F ) Fit(sFC, eSC), and for ( A, D ) phase model and ( B, E ) LC model. In plots ( C and F ) the correspondence between 

the phase model (parcellations on the vertical axes) and LC model (parcellations on the horizontal axes) is illustrated. The results are depicted by color, and their 

magnitudes are indicated in the plots. The crossed out cells indicate that the corresponding correlation does not reach the statistical significance with 𝑝 < . 05 . The 
heavy red lines delineate the parcellations from the same atlas (parcellation family). (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

axis, and the LC model was simulated for parcellations on the horizontal 

axis. As for the inter-parcellation correspondence of the fitting results 

for the same model [ Fig. 5 A and B], similar amount of stronger intra- 

and weaker inter-atlas correlation is observed for the between-model 

comparison [ Fig. 5 C]. 

The same conclusion can be drawn for the structure-functional model 

fitting Fit(sFC, eSC) as illustrated in Fig. 5 D for the phase model and in 

Fig. 5 E for the LC model. Here, the parcellations from the same atlas also 

agree much better with each other than for the parcellations from dif- 

ferent atlases. The results also demonstrate that Fit-values obtained for 

HO96 parcellations and the LC model [ Fig. 5 E] are relatively dissimilar 

to the other two atlases of brain parcellations. Furthermore, the similar- 

ity Fit(sFC, eSC) seems to be sensitive to the model used for simulation 

as illustrated in Fig. 5 F. The fitting results of the LC model for S100- 

S600 parcellations weakly correlate with those obtained for all other 

parcellations for the phase model. For other atlases, the fitting results 

of LC model are either practically independent of those obtained for the 

phase model (for the Shen atlas), or even weakly anti-correlate with the 

other model (for HO96 atlas) even for the same brain parcellation/atlas 

[ Fig. 5 F]. 

Changing the brain parcellation can also influence the values of the 

optimal parameters, where the maximal similarity (3) is achieved. The 

pairwise parameter differences are illustrated in supplementary Fig. A.3 

for the considered parcellations and models. Similar to the correlation 

between the Fit-values [Fig. 5] , the parcellations from the same atlas are 

expected to lead to smaller variations of the optimal parameters than 

between those from different atlases. Interestingly, the variation of the 

optimal parameters is larger for the functional model fitting modality, 

especially, for the between-model comparison than for the structure- 

function correspondence. In the latter case the parameter distance be- 

tween models remarkably mimics the similarity patterns of the corre- 

lation between fitting results, compare Fig. 5 F and supplementary Fig. 

A.3F. 

3.3. Data variables 

In the next Section 3.4 we evaluate how the maximal model-data 

similarity (3) obtained for the optimal model parameters depends on 

selected statistical properties of the empirical data used for the model 

derivation and validation. To this end, we calculated several data vari- 
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Fig. 6. Variation of the data variables extracted for the considered brain parcellations. In columns 1 and 2 , the distributions of the data variables (indicated on the 

vertical axes) for all subjects/fMRI sessions are depicted versus the parcellations (indicated on the horizontal axes). In column 3 , the correspondence between the data 

variables among all considered parcellations is illustrated. For any two parcellations (indicated on the axes), the Pearson cross-correlation between the corresponding 

data variables was calculated across all subjects for ( A3 ) 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑( BOLD )] , ( B3 ) 𝑠𝑡𝑑[ 𝑎𝑣𝑒𝑟 ( eFC )] , ( C3 ) 𝑐𝑜𝑟𝑟 ( eFC , eSC ) , and ( D3 ) 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑( eSC )] as indicated in the titles 
of the plots. The results are depicted by color, and their magnitudes are also printed in the plots. The crossed out cells indicate that the corresponding correlation 

does not reach the statistical significance with 𝑝 < . 05 . The heavy red lines delineate the parcellations from the same atlas (parcellation family). (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

ables (or indices) for each subject and fMRI scan session. For the em- 

pirical BOLD signals we calculated the standard deviation of their time 

fluctuations 𝑠𝑡𝑑( BOLD ) averaged over all parcels 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑( BOLD )] . Since 
the BOLD signals were extracted as mean signals averaged over all 

voxels in the parcels, the latter data variable may reflect the extent 

of synchronization of BOLD dynamics within the individual brain re- 

gions. Indeed, the amplitude of the mean signal is expected to increase 

with enhanced synchronization as the theory of synchronization implies 

( Kuramoto, 1984 ). On the other hand, calculating the variability of time 

fluctuations among parcels 𝑠𝑡𝑑 [ 𝑠𝑡𝑑 ( BOLD )] may give an insight into the 

difference of individual parcels in this respect. 

Smaller brain regions, e.g., for finer granularity (Schaefer, Shen) or 

larger probability threshold (HO96) can be suspected to be more homo- 

geneous with respect to the BOLD dynamics. We observed that mean 

BOLD signals exhibit enhanced fluctuations for smaller parcels demon- 

strating larger standard deviation 𝑠𝑡𝑑( BOLD ) [ Fig. 6 A1], where the dis- 
tributions of 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑( BOLD )] exhibit the behavior inverse to that of the 
parcels’ size versus the considered brain parcellations [ Fig. 1 A]. The 

same holds for 𝑠𝑡𝑑 [ 𝑠𝑡𝑑 ( BOLD )] [ Fig. 6 A2, but see Shen232]. Our calcu- 
lations thus indicate that the intra-region dynamical homogeneity (syn- 

chronization) may increase together with the inter-region variability of 

it. However, a systematic investigation of the collective dynamics of 

9 



O.V. Popovych, K. Jung, T. Manos et al. NeuroImage 236 (2021) 118201 

BOLD signals within parcels is necessary to assess the intra-region dy- 

namical homogeneity ( Schaefer et al., 2018 ). Interestingly, the distri- 

butions of both mentioned data variables across individual subjects ex- 

hibit very similar patterns for any of the considered atlases and strongly 

correlate across subjects for any pair of parcellations, see Fig. 6 A3 for 

𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑( BOLD )] , where the minimal correlation 𝑟 ≈ 0 . 96 is attained for 
S600. 

Additional data variables can be calculated from eFC by evaluation 

of its column-wise mean 𝑎𝑣𝑒𝑟 ( eFC ) and the standard deviation 𝑠𝑡𝑑( eFC ) , 
where the former represents the average functional connectivity (syn- 

chronization) of a region to the rest of the brain (i.e., other regions), 

and the latter stands for the extent of variation of the individual con- 

nections of a given brain region. Evaluating the mean and the standard 

deviation once more across all brain regions we obtain four data vari- 

ables: 𝑎𝑣𝑒𝑟 [ 𝑎𝑣𝑒𝑟 ( eFC )] , 𝑠𝑡𝑑[ 𝑎𝑣𝑒𝑟 ( eFC )] , 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑( eFC )] , and 𝑠𝑡𝑑[ 𝑠𝑡𝑑( eFC )] . 
The distributions of the first two are illustrated in Fig. 6 B1 and B2, 

where the total average inter-region synchronization 𝑎𝑣𝑒𝑟 [ 𝑎𝑣𝑒𝑟 ( eFC )] in 
the brain decays with decreasing region size, which is also in agree- 

ment with the behavior observed for BOLD signals [ Fig. 6 A2]. The inter- 

region variation of the regional synchronization to the rest of the brain 

𝑠𝑡𝑑[ 𝑎𝑣𝑒𝑟 ( eFC )] does not demonstrate very pronounced dynamics with 
respect to the considered parcellations [ Fig. 6 B2]. However, the inter- 

parcellation patterns of its distribution appears to be similar to those 

observed for the functional similarity Fit(sFC, eFC) [ Fig. 3 A and E]. An 

example of the cross-parcellation correlation for the later data variable 

is illustrated in Fig. 6 B3, where the level of correlation is still very high 

with 𝑟 ≳ 0 . 91 except for S100 which distinguishes from the other parcel- 

lations. 

Further data variables can be the extent of correlation between the 

empirical connectivity matrices eFC, eSC and ePL, which may influ- 

ence the quality of the model fitting and are denoted as 𝑐𝑜𝑟𝑟 ( eFC , eSC ) , 
𝑐𝑜𝑟𝑟 ( eFC , ePL ) and 𝑐𝑜𝑟𝑟 ( eSC , ePL ) . Examples of the distributions of these 
variables are shown in Fig. 6 C1 and C2, where both illustrated variables 

apparently demonstrate a monotonic behavior with respect to the par- 

cel size, but in opposite directions, i.e., 𝑐𝑜𝑟𝑟 ( eFC , eSC ) decreases, and 
𝑐𝑜𝑟𝑟 ( eFC , ePL ) increases when the region size decays. The impact of the 
state-of-the-art brain parcellations on the structure-function relationship 

𝑐𝑜𝑟𝑟 ( eFC , eSC ) was investigated by Messe (2019) , and a similar global 

decrease in correlation with decreasing the parcellation granularity and 

regions size was reported. For these data variables the difference be- 

tween the atlases becomes more pronounced, where the correspondence 

(correlation) between the data indices for the parcellations of the same 

atlas are stronger than for those from different atlases [ Fig. 6 C3] as was 

shown for the results of the model validation and optimal parameters 

[ Fig. 5 and supplementary Fig. A.3]. 

This effect is further enhanced for the data variables derived from 

SC matrices, for example, for 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑( 𝑒𝑆𝐶)] [ Fig. 6 D3]. The data vari- 
ables 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑( eSC )] and 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑( ePL )] calculated from the eSC and ePL 

matrices normalized by their mean as used in the models always attain 

larger values for finer granularity/smaller brain regions [ Fig. 6 D1 and 

D2]. This is similar to the variables 𝑐𝑜𝑟𝑟 ( eFC , ePL ) [ Fig. 6 C2] and those 
derived from BOLD signals [ Fig. 6 A1 and A2]. This is however in con- 

trast to the data variables calculated from eFC, where the behavior is 

different [ Fig. 6 B1, B2 and C1]. The observed increase of the average 

inter-region variability of SC matrices [ Fig. 6 D1 and D2] might be sus- 

pected when the brain is parcellated into smaller regions that stronger 

deviate from each other with respect to individual connectivity prop- 

erties. However, a detailed investigation is necessary to clarify the un- 

derlying mechanisms of the illustrated behavior of the considered data 

variables [Fig. 6] . 

Further considered data variables in the form 𝑠𝑡𝑑[ 𝑎𝑣𝑒𝑟 ( ⋅)] and 
𝑠𝑡𝑑 [ 𝑠𝑡𝑑 ( ⋅)] were calculated from the eSC and ePL matrices. The natural 

frequencies 𝑓 𝑖 of the models (1) and (2) extracted from the frequency 

spectra of the empirical BOLD signals (see Methods) were also taken 

into account, and the mean 𝑎𝑣𝑒𝑟 ( 𝑓 𝑖 ) and the standard deviation 𝑠𝑡𝑑( 𝑓 𝑖 ) 
were involved in the analysis. 

3.4. Correlation between data variables and model fitting 

The variation of the empirical data illustrated in Fig. 6 may influence 

the observed variability of the modeling results [ Figs. 3 and 4 ]. There- 

fore, to inquire into where the variance of the fitting results across sub- 

jects and parcellations may come from, we investigate how the discussed 

data variables and the maximal similarity (3) correlate with each other. 

Several such correlative relationships are illustrated in the scatter plots 

in Fig. 7 A–C, where, together with linear regressions for individual par- 

cellations (color dots and dashed lines), the joint linear regression for 

all data points in the plots (for all 11 parcellations) is also shown by 

solid black lines. The observed distinct constellations between the in- 

dividual (color dashed) and joint (black solid) regression lines can be 

used to differentiate between a few classes of the data variables with 

respect to their relationships to the overall model fitting. For example, 

for the data variable 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑( BOLD )] [ Fig. 7 A] we found that the joint 
correlation indicated in the plot appears to be much smaller than the 

correlative relationships obtained separately for each individual par- 

cellation. Therefore, the variation of the mentioned data variable can 

relatively well account for the variability of the model fitting across in- 

dividual subjects for a given parcellation, i.e., for the intra-parcellation 

inter-subject variance. However, its explanatory power for the variation 

of Fit(sFC, eFC) across considered parcellations is limited. We may thus 

refer to such data indices as intra-parcellation variables. 

Another class of the data variables can be illustrated by the data in- 

dex 𝑐𝑜𝑟𝑟 ( eFC , eSC ) [ Fig. 7 B]. Here, the joint correlation between the em- 
pirical data and the model goodness-of-fit across subject data from dif- 

ferent parcellations can be much higher than the correspondence across 

subjects within individual parcellations. In the considered example, the 

across-subject correlations between the empirical data and results of 

the model fitting are mostly small and negative for individual parcel- 

lations. Therefore this data variable can hardly explain the variance of 

the model fitting across subjects for a given brain parcellation. Never- 

theless, the joint correlation for the data merged over all parcellations is 

much stronger contributing to our understanding of the variance of the 

fitting results across different parcellations. We may thus refer to such 

data indices as inter-parcellation variables. 

For some other data variables, for example, for 𝑠𝑡𝑑[ 𝑎𝑣𝑒𝑟 ( eFC )] the 
joint correlation is comparable to the relatively large correlations for 

individual parcellations [ Fig. 7 C]. The explanatory power of such vari- 

ables can thus be extended from single to many parcellations. This in- 

dicates that such data variables can therefore well account for both the 

variability of the model fitting across subjects within individual parcel- 

lations and the differences of Fit-values across parcellations. We may 

thus refer to such data indices as the variables of both intra- and inter- 

parcellation types. 

The correlations across subjects and scanning sessions between the 

similarity Fit(sFC, eFC) and all mentioned data variables are shown in 

Fig. 7 D for all considered parcellations. One in particular observes that 

there are several data variables that only weakly correlate with Fit(sFC, 

eFC), which may indicate that the results of the model fitting may little 

depend on them. Such conclusion could be made for the mean of the 

natural frequencies 𝑎𝑣𝑒𝑟 ( 𝑓 𝑖 ) , average variability of eFC 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑( eFC )] 
(except for S100 and S200), and also for the data indices derived from 

eSC and ePL. Notably, the extent of the empirical structure-function re- 

lationship 𝑐𝑜𝑟𝑟 ( eFC , eSC ) also little correlates with the correspondence 
between simulated and empirical functional data, see also Fig. 7 B. Put 

otherwise, increasing/decreasing the agreement between the empirical 

structure (eSC) and function (eFC) seems not to essentially influence the 

quality of the model fitting (the similarity between sFC and eFC) or may 

even have a negative effect. This takes place in spite of that the network 

model is constructed from eSC and its output is compared with eFC. 

Other data variables consistently exhibit (anti-)correlation with 

Fit(sFC, eFC) ranging from moderate to relatively strong for most of 

the parcellations. This for instance applies to the spread of the natural 

frequencies 𝑠𝑡𝑑( 𝑓 𝑖 ) , amplitude 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑( BOLD )] of the BOLD signals and 
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Fig. 7. Relationship between the fitting results (3) of the phase model (1) and empirical data. ( A-C ) Scatter plots and the corresponding linear regression (straight 

lines) are shown for a few selected data variables from Fig. 6 indicated on the vertical axes versus the maximal similarity Fit(sFC, eFC) (horizontal axes). Each dot 

represents one subject/MRI session, and color corresponds to that used to differentiate between the parcellations in Fig. 6 . The black solid lines depict the joint 

linear regressions for all data in the plots, and the joint correlations 𝑟 are also indicated. ( D, E ) Pearson correlation across individual subjects between the maximal 

similarity Fit(sFC, eFC) and several data variables indicated on the horizontal axis. The correlation was calculated for ( D ) different individual parcellations indicated 

on the vertical axis and ( E ) joint data merged over a few combinations of the considered parcellations as indicated on the vertical axis: all parcellations of the Schaefer 

atlas, Harvard-Oxford atlas, Shen atlas and all 11 considered parcellations (last row). The correlation is depicted by color, and its magnitude is indicated in the plot. 

The crossed out cells indicate that the corresponding correlation does not reach the statistical significance with 𝑝 < . 05 . 

some properties of eFC [ Fig. 7 D]. These data variables may be used to 

provide an initial guess of the pattern of the functional model fitting for 

new subjects that supposed to be included in the analysis. However, the 

correlation between eFC and ePL matrices 𝑐𝑜𝑟𝑟 ( eFC , ePL ) seems to have 
a different impact on the model validation for different atlases, where 

Fit(sFC, eFC) is practically independent of this data index for the Schae- 

fer atlas, which is distinct for other atlases [ Fig. 7 D]. Such effects may 

also be useful for understanding the observed differences in the qual- 

ity of the model fitting for individual subjects and may also be applied 

for explaining the impact of the considered brain parcellations on the 

model fitting [ Fig. 3 A]. 

The above classification of the data variables with respect to their 

intra- or inter-parcellation correlative relationships with the modeling 

results [ Fig. 7 A–C] can be evaluated by comparing the individual corre- 

lations in Fig. 7 D to the joint correlation calculated for the data merged 

over the considered parcellations for simultaneous analysis. This is illus- 

trated in Fig. 7 E for the phase model and functional model fitting. More 

systematic comparison of the individual and joint correlations between 

the results of the model fitting (3) and the data variables is summarized 

in Fig. 8 for both models (1) and (2) and both fitting modalities Fit(sFC, 

eFC) and Fit(sFC, eSC). Much larger individual (joint) correlation than 

the joint (individual) one is indicative for an intra- (inter-) parcellation 

data variable. 

The constellation obtained for the phase model [ Fig. 8 A] is well pre- 

served also for the LC model [ Fig. 8 B, see also supplementary Fig. A.4 for 

individual and joint correlations]. The correlation patterns are different 

for the structure-functional fitting modality [ Fig. 8 C and D], where the 

results obtained for the phase and LC models may deviate from each 

other, see also supplementary Fig. A.5 for individual and joint corre- 

lations for the structure-functional fitting modality Fit(sFC, eSC). Al- 

though most of the considered data indices exhibiting large correlation 

are of inter-parcellation type [Fig. 8] , still there are a few data variables 

of intra-parcellation type like 𝑠𝑡𝑑 ( 𝑓 𝑖 ) , 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑 ( BOLD )] or 𝑠𝑡𝑑 [ 𝑠𝑡𝑑 ( eFC )] 
for the functional similarity Fit(sFC, eFC) or 𝑠𝑡𝑑( 𝑓 𝑖 ) (phase model) and 
𝑎𝑣𝑒𝑟 ( 𝑓 𝑖 ) (LC model) for Fit(sFC, eSC). The most pronounced data vari- 
ables of both types for Fit(sFC, eFC) are given by the total average inter- 

region synchronization 𝑎𝑣𝑒𝑟 [ 𝑎𝑣𝑒𝑟 ( eFC )] or inter-region variation of the 
regional synchronization 𝑠𝑡𝑑[ 𝑎𝑣𝑒𝑟 ( eFC )] [ Fig. 8 A,B]. 

3.5. Multiple linear regression model 

The variation of the model fitting across subjects and brain parcella- 

tions can be investigated by combining several data variables in a MLR 

model, where they serve as independent (explanatory) variables, and 

the maximal similarity Fit(sFC, eFC) is the MLR output, i.e., the depen- 

dent variable. The calculated data variables can be used in the MLR 

model to evaluate which variation of the Fit-values across subjects and 

parcellations can be explained by the individual empirical data used for 

the model derivation and validation. The results of such a regression 

with respect to all data variables [Fig. 7] are illustrated in Fig. 9 for in- 

vestigated individual parcellations as well as for the joint data merged 

over all parcellations. The fraction of the explained variance increases 

when more data variables get involved in the regression, see Fig. 9 A–

C and compare the indicated 𝑅 

2 -values to the correlation coefficients 

in Figs. 7 and 8 . The results of the model fitting for the anatomical 

Harvard-Oxford and the functional Shen atlases seem to be somewhat 

better explained by the empirical data used for the model derivation 

than for the functional Schaefer atlas [ Fig. 9 E, but see Shen232 for LC 

model]. The strongest regression results are obtained for the joint re- 

gression for the data merged over all considered parcellations [ Fig. 9 D 

and E]. 

The weights of the discussed data variables within the maximal sim- 

ilarity Fit(sFC, eFC) as reflected by the regression coefficients [ Fig. 9 

A2-D2] highlight several data variables that are of importance for under- 
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Fig. 8. Correlation between the Fit-values (3) and data variables from Fig. 7 jointly for all considered brain parcellations. For the data variables indicated on the 

horizontal axes, the joint correlation for the data merged over all considered parcellations [ Fig. 7 E, last row] is depicted by empty bars. The hatched bars represent 

the correlation for individual parcellations from Fig. 7 D averaged over all parcellations and significant values (i.e., excluding the crossed out cells in Fig. 7 D) as 

indicated in the legends. The data is shown for ( A, B ) functional fitting Fit(sFC, eFC) and ( C, D ) structure-functional fitting Fit(sFC, eSC), and for ( A, C ) phase model 

(1) and ( B, D ) LC model (2) as indicated in the titles of the plots. 

standing of the modeling results. All regression coefficients for the inter- 

dependency between Fit(sFC, eFC) and the data variables are shown in 

Fig. 10 for both models including the case of joint data (last rows in the 

plots). Comparing the obtained results for individual parcellations and 

models, we observe that the regression coefficients well agree between 

the two models. There are several data indices that consistently and 

strongly contribute to the Fit-values and seem to have a major impact on 

the model fitting for many parcellations, see Figs. 9 and 10 . In particular, 

the variables 𝑠𝑡𝑑 [ 𝑎𝑣𝑒𝑟 ( eFC )] , 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑 ( eFC )] and 𝑐𝑜𝑟𝑟 ( eFC , eSC ) have the 
most notable regression coefficients. At the level of individual parcella- 

tions, there is also a minor impact of other variables, for example, the 

natural frequencies 𝑠𝑡𝑑( 𝑓 𝑖 ) , average total connectivity 𝑎𝑣𝑒𝑟 [ 𝑎𝑣𝑒𝑟 ( eFC )] 
and its variability 𝑠𝑡𝑑 [ 𝑠𝑡𝑑 ( eFC )] as well as structure-function relation- 
ship with ePL matrix 𝑐𝑜𝑟𝑟 ( eFC , ePL ) . For the inter-parcellation variance 
of Fit(sFC, eFC), additional variables can be taken into account, that 

are 𝑐𝑜𝑟𝑟 ( eFC , ePL ) and 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑( eSC )] as suggested by the MLR model 

[Fig. 10] . 

Similar results can also be obtained for the structure-functional 

model fitting and the maximal similarity Fit(sFC, eSC) [supplementary 

Fig. A.6]. Here we however find that Fit(sFC, eSC) less consistently de- 

pends on the data variables over individual parcellations and with a 

reduced agreement between different models as reflected by the MLR 

coefficients. The only data indices that reliably contribute to the inter- 

individual variation of the Fit-values for most of the parcellations are 

those extracted from the natural frequencies 𝑎𝑣𝑒𝑟 ( 𝑓 𝑖 ) and 𝑠𝑡𝑑( 𝑓 𝑖 ) , while 
the latter is again less reliable for the LC model [supplementary Fig. 

A.6 A and B]. The fractions of the Fit(sFC, eSC) variance explained by 

the data variables for individual parcellations is reduced as compared 

to the functional model fitting [compare Fig. 9 E and supplementary Fig. 

A.6 D]. However, the inter-parcellation variance as reflected by the joint 

data can still be relatively well accounted for by the empirical data [sup- 

plementary Fig. A.6 C], and the largest MLR coefficients of the joint data 

for both models are obtained for the structural connectome eSC and ePL 

[supplementary Fig. A.6 A and B]. 

3.6. Group-level inter-parcellation variations 

In the previous sections the interdependence between the results of 

the model validation and empirical data were evaluated by correlation 

of the Fit-values with the data variables across individual subjects ei- 

ther for any parcellation separately or for joint data merged over all 

considered parcellations. While the former approach investigates the 

inter-subject intra-parcellation variance, the latter also considers the 

variation of the variables among parcellations. The inter-parcellation 

variation of the fitting results can also be addressed at the group level 

only, i.e, separated from the inter-subject variations. This can be accom- 

plished when the data calculated for individual subjects is compressed 

into single values, for example, to medians, see Figs. 3 and 4 . The be- 

havior of the group-averaged values across individual parcellations can 

provide an informed expectation on how a given parcellation may in 

average influence the considered variables, for example, the Fit-values 

or the data indices. 

In this section we correlate the medians of the Fit-values and the 

considered data variables across parcellations. The results of the calcu- 

lations are illustrated in Fig. 11 . Several data variables exhibit strong 

correspondence with the Fit-values for both models. However, only a 

few of them are significantly correlated as indicated by hatched bars for 

the phase model and empty bars with heavy borders for the LC model 

[ Fig. 11 A and D]. For the functional modal fitting, only two data indices 

𝑠𝑡𝑑[ 𝑎𝑣𝑒𝑟 ( eFC )] and 𝑐𝑜𝑟𝑟 ( eFC , eSC ) significantly and strongly contribute 
to the inter-parcellation variance of Fit(sFC, eFC) at the group level for 

both models [ Fig. 11 A], see also Fig. 11 B and C for the corresponding 

scatter plots, where the fraction of the explained variance can reach 93% . 

For the structure-functional model fitting, more data variables signif- 

icantly correlate with the maximal similarity Fit(sFC, eSC) [ Fig. 11 D]. 

However, only four of them fulfill this requirement for both models si- 

multaneously: 𝑐𝑜𝑟𝑟 ( eFC , eSC ) that also contributes to Fit(sFC, eFC), as 
well as data variables 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑 ( eSC )] , 𝑠𝑡𝑑 [ 𝑎𝑣𝑒𝑟 ( ePL )] and 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑( ePL )] 
calculated from the structural connectome as given by eSC and ePL ma- 
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Fig. 9. Modeling the maximal similarity Fit(sFC, eFC) by the multiple linear regression (MLR) model with data variables from Fig. 7 as independent variables. ( A1 

- D1 ) Scatter plots with regression lines of the Fit-values predicted by MLR versus Fit(sFC, eFC) obtained by simulations of the phase model (1) . The diagonals are 

depicted by thin black lines for comparison. ( A2 - D2 ) The corresponding regression coefficients with the standard deviation for z-scored data obtained from the 

model fitting for parcellations ( A ) S200 and ( B ) HO96 0%, ( C ) Shen79 and ( D ) for joint data merged over all considered parcellations as indicated in the corresponding 

scatter plots. The gray bars indicate the regression coefficients, where the statistical significance with 𝑝 < . 05 was not achieved. The fractions of the explained variance 
𝑅 

2 are also shown in the scatter plots and in plot ( E ) for all individual parcellations for both phase and LC models as indicated in the legend. The dashed lines depict 

𝑅 

2 for the joint data also indicated in the legend. 

trices. Again, the fraction of the explained variance can reach 93% for 

the data index calculated from eSC, see Fig. 11 D-F also for the corre- 

sponding scatter plots. Interestingly, for the structure-functional fitting 

modality also the data indices derived from eFC matrices seem to signif- 

icantly contribute to the fitting values Fit(sFC, eSC) for the phase model 

[ Fig. 11 D], although the corresponding 𝑝 -values are close to the signif- 

icance threshold of 0.05 after correction for multiple comparisons. 

4. Discussion 

We investigated the impact of data parameters used for the pre- 

processing of the empirical neuroimaging data on the structure and dy- 

namics of whole-brain dynamical models derived from and validated 

against empirical data. In this study we focused on brain parcellations 

and considered three brain atlases as defined by the functional Schaefer 

atlas with 100, 200, 400 and 600 cortical regions ( Schaefer et al., 2018 ), 

functional Shen atlas with 79, 156 and 232 cortical regions ( Shen et al., 

2013 ), and the anatomical Harvard-Oxford atlas of 96 cortical regions 

with a few thresholds of the maximal probability ( Desikan et al., 2006 ) 

that also influenced the region size. Here we did not aim to suggest 

an optimal atlas, which is a complex task given the numerous existing 

parcellation approaches, brain atlases and multiplicity of possible opti- 

mization criteria. Instead, we illustrated possible effects that the consid- 

ered brain parcellations can have on the modeling results. For this we 

analyzed the results of the model validation for two fitting modalities 

as given by the maximal similarities Fit(sFC, eFC) and Fit(sFC, eSC) and 

for two models of coupled phase and limit-cycle oscillators. We also sug- 

gested an approach to account for the parcellation-induced inter-subject 

and inter-parcellation variability of the fitting results. 

We compared the distributions of the Fit-values and the correspond- 

ing optimal parameters for individual subjects and reported on pro- 

nounced differences in the model fitting between the considered brain 

parcellations. In particular, Fit(sFC, eFC) for the Schaefer atlas is much 

smaller than that for the Harvard-Oxford and Shen atlases [Fig. 3] . The 

latter atlases seem to provide appropriate parcellations for high corre- 

spondence between simulated and empirical functional data. The better 
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Fig. 10. Regression coefficients of the MLR model for Fit(sFC, eFC), for all considered parcellations including the joint data as indicated on the vertical axes and for 

( A ) phase model and ( B ) LC model. The values are depicted by color, and they magnitudes are shown in the plots. The crossed out cells indicate that the corresponding 

coefficient does not reach the statistical significance with 𝑝 < . 05 . 

fitting for HO96 0% as compared to S100 was also observed for the 

model of coupled phase oscillators simulating the high-frequency elec- 

trical activity of brain regions in 𝛼 and 𝛾 frequency bands ( Manos et al., 

2019 ). For the structure-functional model fitting Fit(sFC, eSC) the sit- 

uation is different, and the difference between the atlases is less pro- 

nounced [Fig. 4] . 

We demonstrated that the best correspondence Fit(sFC,eFC) between 

simulated and empirical FCs was achieved at 200 parcels for the Schae- 

fer atlas [Fig. 3] suggesting that an optimal spatial scale may exist, see 

also ( Arslan et al., 2018; Proix et al., 2016 ). However, the best func- 

tional model fitting for the other brain atlases was achieved at the coars- 

est granularity (Shen atlas) or smallest probability threshold (Harvard- 

Oxford atlas), where the parcel size is maximal. On the other hand, the 

maximal values of the structure-functional model fitting Fit(sFC, eSC) 

were achieved at the largest region size for the Schaefer and Shen at- 

lases [Fig. 4] . For the Harvard-Oxford atlas, Fit(sFC, eSC) exhibited ei- 

ther non-monotonic behavior with the optimal probability thresholds at 

25%–35% for the phase model or even monotonically increased for the 

LC model when the region size decreased. We thus observed a remark- 

able exchange of the distribution patterns of Fit(sFC, eFC) and Fit(sFC, 

eSC) between the Schaefer and Harvard-Oxford atlases and different be- 

havior of the Fit-values with respect to the parcel size. These findings 

complicate the problem of the optimal spatial scale of brain parcellation. 

The corresponding distributions of the optimal model parameters 

however manifest very similar shapes for the same fitting modality 

also for different atlases and parcellations, but differ across fitting 

modalities [ Figs. 3 and 4 ]. In particular, the optimal parameters for 

Fit(sFC, eFC) are strongly concentrated towards zero delay, whereas the 

structure-function correspondence Fit(sFC, eSC) for many subjects was 

also achieved for large delay, especially, for the phase model. This is 

accompanied by a narrow interval of the coupling strength in the latter 

case, whereas this parameter can broadly be distributed for the func- 

tional fitting, especially, for the Shen atlas and phase model. Therefore, 

the direct modeling of the resting-state BOLD dynamics by slowly os- 

cillating phase or limit-cycle oscillators can safely be performed by sys- 

tems without delay ( Deco et al., 2019; 2017; Ponce-Alvarez et al., 2015 ), 

however, only for the fitting of the simulated and empirical functional 

data. 

The impact of the brain parcellations on the model validation can 

be investigated by evaluation of how the fitting results Fit ( ⋅, ⋅) calcu- 
lated for individual subjects and a given parcellation agree with those 

found for other parcellations. We thus correlated Fit-values for different 

parcellations across subjects and calculated the distance between the 

corresponding optimal model parameters. It appeared that Fit-values 

for the parcellations within the same atlas better correlate with each 

other than across different atlases for both fitting modalities Fit(sFC, 
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Fig. 11. Correlation between the results of the model fitting and data variables at the group level. ( A, D ) Pearson correlation across pacellations between the medians 

evaluated over all subjects of the data variables and the corresponding medians of ( A ) Fit(sFC, eFC) and ( D ) Fit(sFC, eSC). The hatched bars for the phase model and 

empty violet bars with heavy borders for the LC model stand for statistically significant ( 𝑝 < . 05 ) correlation coefficients. ( B,C,E,F ) Scatter plots of the medians of 

the data variables versus ( B, C ) Fit(sFC, eFC) and ( E, F ) Fit(sFC, eSC) with the corresponding regression lines. Each plot symbol corresponds to one of the considered 

parcellations. The fractions of the explained variance (squared correlation) for both models are indicated in the legends. 

eFC) and Fit(sFC, eSC) and both considered models [Fig. 5] . The same 

is true for the distance between the optimal parameters, where they less 

deviate from each other for the parcellations from the same atlas than 

between atlases [supplementary Fig. A.3]. It is interesting to note that 

neither different numbers of brain regions for the Schaefer and Shen 

atlases nor different level of thresholding for the Harvard-Oxford atlas 

can cause differences in the cross-subject correspondence in the model 

fitting larger than those between different atlases even for parcellations 

with similar region size. The inter-atlas differences cannot simply be re- 

duced to differentiation between anatomical and functional parcellation 

approaches considered in this study. This indicates that a parcellation 

family (atlas) shares some particular properties that are reflected in the 

results of the model fitting and preserved even for varying other “inter- 

nal ” parcellation parameters (e.g., granularity or probability threshold 

affecting region size). This conclusion is also preserved for between- 

model comparison for Fit(sFC, eFC), whereas the structure-functional 

fitting results Fit(sFC, eSC) obtained for the LC model demonstrated en- 

hanced sensitivity, especially, for the Harvard-Oxford atlas [Fig. 5] . 

To understand the origin of the observed variation of the fitting re- 

sults across subjects and brain parcellations, we suggested to evaluate 

how the Fit-values depend on a few data variables (or data indices) re- 

flecting some statistical properties of the empirical data used for the 

model derivation and validation. The performed regressive analysis be- 

tween Fit-values and data variables suggested that the latter can be split 

into a few classes depending on their explanatory power for ( i ) inter- 

subject Fit-variance for individual parcellations; ( ii ) inter-subject Fit- 

variance across parcellations for joint data; and ( iii ) both inter-subject 

Fit-variance within individual parcellations and across them [ Figs. 7 

and 8 ]. 

The bivariate analysis provided correlation between Fit-values and 

individual data variables, where the squared correlation with Fit(sFC, 

eFC) across subjects can reach 𝑅 

2 = 64% for individual parcellations 

and 35% for joint data merged over all considered parcellations [ Fig. 7 

and supplementary Fig. A.4]. For the structure-functional model fitting 

Fit(sFC, eSC), this quantity may range up to 40% for the variance across 

subjects for individual parcellations and about 62% for joint data [sup- 

plementary Fig. A.5]. The inter-subject fluctuations of the Fit-values 

may be better accounted for if several data variables are used in the 

MLR model [Fig. 9] . With the multivariate approach, the inter-subject 

variance of Fit(sFC, eFC) and Fit(sFC, eSC) can be explained up to 77% 
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and 56% within individual parcellations and up to 76% and 77% for joint 

data, respectively [ Fig. 9 and supplementary Fig. A.6]. Finally, if the 

variance of the fitting results across parcellations is considered at the 

group level only (as medians), the individual data variables correlate 

with the fitting values up to 𝑅 

2 = 93% [Fig. 11] . 

Evaluating the effect that a given parcellation can have on the data 

variables, which reliably, strongly and significantly correlate with the 

fitting values as investigated in this study, can help to explain and pre- 

dict the results of the model fitting before involving computationally 

expensive model simulations. This can be addressed by investigating 

the properties of the empirical data extracted for varying brain par- 

cellation. Decrease of the region size due to finer granularity or larger 

cutting threshold seems to cause two main effects, where both ( i ) the 

intra-region dynamical homogeneity and ( ii ) inter-region heterogeneity 

appeared to increase. This can be concluded from the behavior of the 

mean BOLD signals of the brain regions and the extent of total synchro- 

nization between regions 𝑎𝑣𝑒𝑟 [ 𝑎𝑣𝑒𝑟 ( eFC )] [Fig. 6] . The inter-region het- 
erogeneity seems to increase for smaller regions also for the structural 

connectome as demonstrated by the data variables derived from eSC, 

ePL. Here, the empirical structure-function relationship 𝑐𝑜𝑟𝑟 ( eFC , eSC ) 
decays with decreasing region size as was also reported by Messe (2019) . 

It is interesting to note that the correspondence between structure and 

function is larger for the Harvard-Oxford atlas and the coarsest granu- 

larity of the Shen atlas as compared to the Schaefer atlas. Investigation 

of the impact of brain parcellations on the data variables should also 

take into account inter-subject spatial variability (shape and location) 

of brain regions, which seems to influence the cross-subject variability 

of the resting-state fMRI data and functional connectivity ( Bijsterbosch 

et al., 2018; Kong et al., 2018 ). 

Among the considered data variables only a few indeed exhibit 

relatively strong interdependencies with the Fit-values across subjects 

and parcellations [ Figs. 7–11 ]. These sets of the data variables may 

vary for different fitting modalities and models. Here, the behavior of 

𝑐𝑜𝑟𝑟 ( eFC , eSC ) is of special interest, because the empirical structure- 
function correspondence might be suspected to underlie the model fit- 

ting results Fit(sFC, eFC) and Fit(sFC, eSC). Our investigations how- 

ever showed that 𝑐𝑜𝑟𝑟 ( eFC , eSC ) only weakly anti-correlate with Fit- 
values across subjects for practically all of the considered parcella- 

tions [ Fig. 7 and supplementary Figs. A.4 and A.5]. On the other hand, 

𝑐𝑜𝑟𝑟 ( eFC , eSC ) relatively strongly correlates with the Fit-values for joint 
data [Fig. 8] and can thus potentially be used to explain the varia- 

tion of the fitting results between atlases, especially, if the prediction 

is performed at the group-averaged level [Fig. 11] . In addition to the 

variable of the structure-function relationship, the attention might also 

be paid to other data indices including the average BOLD amplitude 

𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑( BOLD )] , the total synchronization 𝑎𝑣𝑒𝑟 [ 𝑎𝑣𝑒𝑟 ( eFC )] , variability 
of the regional synchronization 𝑠𝑡𝑑[ 𝑎𝑣𝑒𝑟 ( eFC )] and the average variabil- 
ity of inter-region structural connectivity 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑( eSC )] . Further data in- 
dices derived from the path length matrices ePL and natural frequencies 

𝑓 𝑖 might also be of importance, especially, for the structure-functional 

model fitting Fit(sFC, eSC). 

Examining the similarities and differences in the interdependencies 

between the Fit-values and data variables for individual parcellations, 

joint and group-averaged data we may reveal the properties that are cru- 

cial for understanding the impact of brain parcellations on the empirical 

and simulated data. In this study we presented several interesting ob- 

servations that require further detailed investigation and explanation, 

which could contribute to the mechanisms influencing the modeling re- 

sults. In the first turn, this concerns the counter-intuitive negative de- 

pendencies (or their absence) between the empirical structure-function 

relationship and fitting results at the subject level in contrast to the 

group level as discussed above. Understanding the relationship between 

the fitting results and other data variables, especially, for different fit- 

ting modalities is also important. In this respect, we observed that the 

parcellation-induced variability of the structure-functional model fitting 

across subjects appears to be sensitive to the model and parcellation 

considered, whereas the functional fitting is relatively robust against 

different parcellations and models [Fig. 5] . Another issue relates with 

the mechanism of how the parcellation granularity and region size in- 

fluence the correspondence between empirical and simulated functional 

and structural connectomes, which was found to be a difficult problem 

already for empirical data ( Messe, 2019 ). We suggested to address these 

questions by separating the inter-subject and inter-parcellation variabil- 

ity of the modeling results and their investigation by inspecting the data 

indices computed from the empirical data. This approach needs to be 

confirmed and refined for more parcellations, models and datasets. 

In this study we used the HCP dataset, where the data quality is close 

to a perfect physiological noise reduction. Examining different process- 

ing strategies and their parameters can be an object of investigation for 

further studies. In addition, other measures of similarity between sim- 

ulated and empirical data can be used to verify the obtained results, 

for example, the amount of metastability or similarity between simu- 

lated and empirical dynamic FC ( Deco et al., 2017 ). The generalization 

of the reported results should be based on profound hypothesis testing 

involving sophisticated statistical methods for evaluation and compar- 

ison of correlation ( Wilcox and Rousselet, 2018 ). On the other hand, 

instead of similarity measures based on correlative relationships one 

may utilize linear models that could resolve some issues connected with 

heteroscedasticity of the data ( Thirion et al., 2015 ). Some other data 

indices may be calculated from empirical data. For example, the graph- 

theoretical network properties of the empirical connectome may be in- 

volved in the analysis as well ( Rubinov and Sporns, 2010 ). Selecting and 

investigating a few most important data variables with respect to their 

impact on the modeling results, and on a data-driven analysis of brain 

networks, could advance our understanding of the results’ variability 

across subjects and parcellations. 
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OV Popovych et al.: Inter-subject and inter-parcellation variability of whole-brain dynamical modeling

Appendix A. Supplementary Figures

Phase oscillators Phase oscillators LC oscillators LC oscillators

Parcellation Fit(sFC, eFC) Fit(sFC, eSC) Fit(sFC, eFC) Fit(sFC, eSC)

S100 0.25 ± 0.07 0.52 ± 0.05 0.28 ± 0.08 0.56 ± 0.04

S200 17 ± 24 % -14 ± 8 % 7 ± 17 % -20 ± 5 %

S400 10± 23 % -27 ± 7 % -4 ± 17 % -30 ± 5 %

S600 14± 26 % -33 ± 6 % -4 ± 17 % -37 ± 5 %

HO96 0% 76 ± 47 % 3 ± 10 % 75 ± 44 % -6 ± 11 %

HO96 25% 72 ± 49 % 5 ± 10 % 73 ± 43 % -3 ± 11 %

HO96 35% 69 ± 46 % 5 ± 11 % 68 ± 42 % -1 ± 12 %

HO96 45% 61 ± 42 % 3 ± 12 % 59 ± 39 % 1 ± 12 %

Shen79 80 ± 56 % 8 ± 11 % 80 ± 48 % 6 ± 9 %

Shen156 61 ± 46 % -7 ± 9 % 52 ± 36 % -11 ± 7 %

Shen232 43 ± 37 % -15 ± 8 % 24 ± 29 % -13 ± 8 %

Table A.1: Relative change of the best model fit (mean ± standard deviation, in %) with respect to the case S100 (the

corresponding fitting values for S100 are included in the top row) for the two model fitting modalities Fit(sFC,eFC)

[Fig. 3] and Fit(sFC, eSC) [Fig. 4], and the two considered models of coupled phase and limit-cycle (LC) oscillators as

indicated in the first row.
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Phase oscillators: Fit(sFC, eFC)
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Limit-cycle oscillators: Fit(sFC, eFC)

0.0
-0.2
0.2
0.2
-2.2
-1.9
-2.1
-1.9
-1.6
-1.1
-0.6

0.2
0.0
0.4
0.4
-2.0
-1.8
-1.9
-1.7
-1.4
-1.0
-0.5

-0.2
-0.4
0.0
0.0
-2.3
-2.0
-2.3
-2.1
-1.6
-1.2
-0.8

-0.2
-0.4
-0.0
0.0
-2.3
-1.9
-2.2
-2.1
-1.5
-1.1
-0.8

2.2
2.0
2.3
2.3
0.0
0.1
0.3
0.7
-0.2
0.8
1.7

1.9
1.8
2.0
1.9
-0.1
0.0
0.2
0.5
-0.3
0.7
1.5

2.1
1.9
2.3
2.2
-0.3
-0.2
0.0
0.4
-0.4
0.5
1.5

1.9
1.7
2.1
2.1
-0.7
-0.5
-0.4
0.0
-0.7
0.2
1.2

1.6
1.4
1.6
1.5
0.2
0.3
0.4
0.7
0.0
0.7
1.2

1.1
1.0
1.2
1.1
-0.8
-0.7
-0.5
-0.2
-0.7
0.0
0.7

0.6
0.5
0.8
0.8
-1.7
-1.5
-1.5
-1.2
-1.2
-0.7
0.0

S
10

0

S
20

0

S
40

0

S
60

0

H
O

96
 0

%

H
O

96
 2

5%

H
O

96
 3

5%

H
O

96
 4

5%

S
he

n7
9

S
he

n1
56

S
he

n2
32

B S100
S200
S400
S600

HO96 0%
HO96 25%
HO96 35%
HO96 45%

Shen79
Shen156
Shen232 -1

-0.5

0

0.5

1
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Figure A.1: Effect size as given by Cohen’s d values of the paired comparison across subjects of the fitting values (A,

B) Fit(sFC, eFC) and (C, D) Fit(sFC, eSC) between different parcellations and for (A, C) phase model and (B, D)

limit-cycle model. The differences Fit(column) − Fit(row) were examined for the Fit-values calculated for the parcellations

indicated on the horizontal axes (columns) and vertical axes (rows), respectively. The corresponding cells of the table

contain the calculated Cohen’s d values explicitly indicated and depicted by color. The corresponding p-values of the

paired Wilcoxon signed-rank test are illustrated in Figs. 3 and 4.
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LC model: Fit(sFC,eFC)
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Figure A.2: Examples of parameter planes and distributions of the optimal parameters of similarity corr(sFC, eFC)

(two upper rows) and corr(sFC, eSC) (four lower rows) for limit-cycle model (2) and phase model (1) as indicated on

top of the plots and for parcellations indicated in the plots. The colored panels (uneven rows) are parameter planes

of the model-data similarity averaged over all subjects/fMRI scans, where individual planes were first normalized by

their maximal values. The black curses delineate the contour lines of 90% of maximum. The distribution of the optimal

parameters (2Dim histograms in even rows) were calculated from all 5 values of the largest similarity values detected for

every individual parameter plane, see Fig. 2A and D (white circles and blue diamonds).
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Phase model: parameter distance for Fit(sFC,eFC)
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Figure A.3: Correspondence between the inter-individual variation of the optimal model parameters where the best

correspondence between simulated and empirical data is achieved for the considered parcellations and models. Relative

differences between the optimal parameters P1 = (τ1, C1) and P2 = (τ2, C2) for a given subject/fMRI session and for

two different parcellations were calculated as
〈
‖(P1 − P2) / [(P1 + P2) /2]‖

〉
with element-wise division and averaging

〈·〉 over all subjects/fMRI sessions. The calculation results performed for any two parcellations (indicated on the axes)

are illustrated for (A - C) Fit(sFC, eFC) and (D - F) Fit(sFC, eSC), and for (A, D) phase model and (B, E) LC

model. In plots (C and F) the correspondence between the phase model (parcellations on the vertical axes) and LC

model (parcellations on the horizontal axes) is illustrated. The results are depicted by color, and their magnitudes are

indicated in the plots. The heavy red lines delineate the parcellations from the same atlas (parcellation family).
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Fit(sFC, eFC) for LC model
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Figure A.4: Relationship between the fitting results (3) of LC model (2) and empirical data. (A, B) Pearson correlation

across individual subjects between the maximal similarity Fit(sFC, eFC) and several data variables indicated on the

horizontal axis. The correlation was calculated for (A) different individual parcellations indicated on the vertical axis

and (B) joint data merged over a few combinations of the considered parcellations as indicated on the vertical axis:

all parcellations of the Schaefer atlas, Harvard-Oxford atlas, Shen atlas and all 11 considered parcellations (last row).

The correlation is depicted by color, and its magnitude is indicated in the plot. The crossed out cells indicate that the

corresponding correlation does not reach the statistical significance with p < 0.05.
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Figure A.5: Relationships between the results of the structure-functional model fitting and empirical data. Pearson

correlation between the maximal similarity Fit(sFC, eSC) and several statistical properties (data variables) extracted

from the empirical data (see text for details) indicated on the horizontal axes for different parcellations and their

combinations (vertical axes). The correlation was calculated for (A, B) phase model (1) and (C, D) LC model (2), and

for (A, C) different individual parcellations and (B, D) joint data merged over a few combinations of the considered

parcellations (vertical axes): all parcellations of the Schaefer atlas, Harvard-Oxford atlas, Shen atlas and all 11 considered

parcellations (last row). The correlation is depicted by color, and its magnitude is indicated in the plot. The crossed

cells indicate that the corresponding correlation does not reach the statistical significance with p < 0.05.
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Whole-brain dynamical modelling  
for classification of Parkinson’s disease

Kyesam Jung,1,2 Esther Florin,3 Kaustubh R. Patil,1,2 Julian Caspers,4 

Christian Rubbert,4 Simon B. Eickhoff1,2 and Oleksandr V. Popovych1,2

Simulated whole-brain connectomes demonstrate enhanced inter-individual variability depending on the data processing and model-
ling approach. By considering the human brain connectome as an individualized attribute, we investigate how empirical and simulated 
whole-brain connectome-derived features can be utilized to classify patients with Parkinson’s disease against healthy controls in light 
of varying data processing and model validation. To this end, we applied simulated blood oxygenation level-dependent signals derived 
by a whole-brain dynamical model simulating electrical signals of neuronal populations to reveal differences between patients and 
controls. In addition to the widely used model validation via fitting the dynamical model to empirical neuroimaging data, we invented 
a model validation against behavioural data, such as subject classes, which we refer to as behavioural model fitting and show that it can 
be beneficial for Parkinsonian patient classification. Furthermore, the results of machine learning reported in this study also demon-
strated that the performance of the patient classification can be improved when the empirical data are complemented by the simulation 
results. We also showed that the temporal filtering of blood oxygenation level-dependent signals influences the prediction results, 
where filtering in the low-frequency band is advisable for Parkinsonian patient classification. In addition, composing the feature space 
of empirical and simulated data from multiple brain parcellation schemes provided complementary features that improved prediction 
performance. Based on our findings, we suggest that combining the simulation results with empirical data is effective for inter-indi-
vidual research and its clinical application.
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Introduction
For decades, large-scale whole-brain connectivity acquired 
from non-invasive in-vivo MRI has actively been used to 
study the human brain as an integrative complex system.1

Accordingly, anatomical (or structural) and functional con-
nectivities between brain regions have been used. Previous 
studies have shown that the structural architecture shapes 
the temporal synchronization between the blood oxygen-
ation level-dependent (BOLD) signals in selected networks, 
for instance the default mode network.2,3 However, the 
structure-function correspondence is not high for whole- 
brain connectivity.4–6 The correspondences between the 
brain connectomes of the same and different subjects, sam-
ples or data modalities7,8 have been considered to investigate 
the inter-individual differences9 or diagnostic classification 
between healthy controls (HCs) and patients.4,10–12

Connectivity relationships are also commonly used 
when brain dynamics are modelled by mathematical whole- 
brain dynamical models. In particular, finding the strongest 

correspondence (the highest similarity) between empirical 
functional connectivity (eFC) and simulated functional con-
nectivity (sFC) has been used for model validation.13–15

Such a correspondence of the simulated data to the empirical 
data may undergo qualitative changes when parameters of a 
given model vary and the validation procedure consists in 
finding the most pronounced agreement between the data 
and the model fitted by searching for optimal parameter 
points.

Previous studies utilizing the discussed whole-brain model-
ling showed that the employed modelling approach was applic-
able to clinical research. The variability of the model parameters 
between diseased and healthy states has been investigated for 
brain disorders including schizophrenia,16–19 Alzheimer’s dis-
ease,20 Parkinson’s disease21,22 and stroke patients.23 For in-
stance, Saenger et al.22 showed that therapeutic deep brain 
stimulation in Parkinson’s disease can be modelled by the nor-
mal form of a Hopf bifurcation model.24 Detailed simulations 
of neuronal dynamics may also provide a way to test prognostic 
outcomes in silico throughout virtual operations and optimize 
the setup and parameters of therapeutic interventions.25–28
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There are, however, no well-established standards for 
model validation against empirical data. Several fitting mo-
dalities have been suggested in the literature, including the 
fitting of the grand-averaged empirical and simulated FC ma-
trices, fitting the dynamical FCs, maximization of the meta-
stability and structure-functional model fitting.6,13,24,29,30

On that account, it is necessary to investigate, which param-
eter points of a given dynamical mode and which model fitting 
modalities are the most suitable to answer a given research 
question by the modelling approach. For example, it was ob-
served that the distributions of the optimal model parameters 
differ when using only functional or structure-functional 
model fitting and may lead to subject stratifications showing 
different model fitting values and optimal parameter points.30

It is also well known that varying parameters of MRI data 
processing influence the empirical structural and functional 
connectomes and their analyses.31–34 This subsequently af-
fects model validation.6,30,35 Therefore, the impact of data 
processing on the results of model validation should be care-
fully considered, especially in clinical applications.

In Parkinson’s disease research, the eFC of the resting- 
state networks was already being used in machine learning 
approaches to subject classification.36,37 When sFC is in-
volved, it is essential to extract relevant features for 
Parkinson’s disease classification from simulation results 
via searching in a given model parameter space for the opti-
mal model. To do this, we considered two aspects of para-
meters regarding dynamical models and data processing. 
First, we find the model parameters that reveal the most 
prominent differences in connectome correspondence be-
tween Parkinson’s disease and HC. Such an approach can 
be used for model validation. Here, we aim at a diagnostic 
classification of patients from healthy subjects, where the 
model fitting to behavioural (phenotypical) data might be 
an alternative approach for model validation. We attempt 
to provide a way to reveal and maximize the group difference 
in simulated results by varying the parameters of dynamical 
models. For instance, the disease status of the subjects can be 
used for behavioural fitting, as we show in this study. 
Second, we consider different temporal filters of BOLD sig-
nals, which are known to influence FC properties.38,39 In 
particular, the altered frequency bands were found to retain 
Parkinson’s disease-related neural changes.40 The frequen-
cies of empirical BOLD signals, when included in the whole- 
brain mathematical models, may influence the optimal 
model parameters and the quality of the model fitting.6,30

In this context, investigation of the impact of temporal filter-
ing conditions on the model validation in Parkinson’s disease 
data is important.

In the current study, we advance the classification of clin-
ical data by application of machine learning to empirical and 
simulated connectomes. The functional connectomes were 
calculated from empirical and simulated BOLD signals, re-
spectively, filtered in broad-, low- and high-frequency bands 
for two different brain parcellations as given by the 
Schaefer41 and Desikan–Killiany42 brain atlases. As com-
pared with purely empirical studies, we take the next step 

based on the two aspects of parameters for model fitting mo-
dality and data processing and employ the simulated data to 
improve the prediction results in a machine learning setting.

The current study employs whole-brain dynamical model-
ling of the resting-state functional MRI data based on the 
Jansen–Rit model type of interacting excitatory and inhibi-
tory neuronal populations.43,44 The simulated FCs generated 
for the optimal model parameters based on model fitting mo-
dalities were used to calculate the connectome relationships 
(Pearson’s correlation) with empirical structural and func-
tional connectivities. We also introduced a simple but effect-
ive method for model validation against behavioural data 
more suitable for differentiation between patients with 
Parkinson’s disease and HCs than the conventionally used 
model fit to neuroimaging data. Consequently, the persona-
lized features derived from the connectome relationships 
were used in this study for classification of Parkinson’s dis-
ease and HC using machine learning. We in particular 
show that complementing empirical data with simulated 
FC can improve the prediction performance for unseen sub-
jects. Our results suggest that the personalized whole-brain 
models can serve as an additional source of information rele-
vant for disease diagnosis and possibly for their treatment as 
well.

Materials and methods
We performed three main steps to obtain the whole-brain 
connectivities eFC, eSC (empirical streamline counts), ePL 
(empirical average path length) and sFC. Figure 1 schematic-
ally illustrates the data processing and simulation workflow. 
We applied four temporal filtering conditions to empirical 
and simulated resting-state BOLD signals. Subsequently, 
we considered three types of connectivity relationship corre-
sponding to the correlation between eFC and eSC, the correl-
ation between eSC and sFC and the correlation between eFC 
and sFC. Since sFC was calculated by varying the two free 
model parameters of global coupling and global delay, the 
correlations involving sFC change, as illustrated by the 
eFC-sFC correlation landscape in the parameter space in 
Fig. 1 (the rightmost colour plot). We used these three con-
nectivity relationships as features for the Parkinson’s disease 
classification via a machine learning approach. To this end, 
we trained Parkinson’s disease classifiers and evaluated their 
performance based on prediction probabilities obtained on 
unseen subjects.

Subjects and demography

The three considered whole-brain connectivities (eFC, eSC 
and sFC) were calculated for 51 (30 males) HC and 65 (45 
males) patients with Parkinson’s disease, see Table 1 for 
the demography. Patients and controls were included in an 
MRI data pool acquired at the University Hospital 
Düsseldorf, Germany, which was also used in several recent 
studies,36,37,45,46 where additional details about the data 
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can be found. All patients were diagnosed with Parkinson’s 
disease by an experienced movement disorder specialist. All 
HC subjects had no history of any neurological or psychi-
atric disease and no abnormalities were detected in cranial 
MRI. The ages of 116 subjects (mean: 58.9 years and stand-
ard deviation: 10.3 years) are in a normal distribution (the 
null hypothesis was not rejected by a 2 goodness-of-fit test 
with P = 0.15). The age of patients was significantly higher 

than that of controls (Wilcoxon rank-sum two-tail test). 
The age of male patients was significantly higher than 
that of male controls, but the age of females was not from 
distributions with different medians. There was no age dif-
ference between females and males (Table 1). The study was 
approved by the local ethics committee and performed in 
accordance with the Declaration of Helsinki. All subjects 
provided written informed consent prior to study inclusion.

Figure 1 Data processing and simulation overview. First (upper box), brain parcellations in the native space of T1w were prepared and 
applied to the processed functional MRI data, BOLD signals were extracted from the corresponding brain regions and filtered according to four 
temporal filtering conditions (right bottom box) and four respective eFCs were calculated. Second (middle box), the parcellations were also used 
for the calculation of the structural connectivity by extracting streamlines from the WBT reconstructed using DWIs, where the number and length 
of streamlines connecting any two brain regions were collected into matrices of eSC and ePL. Third (lower box), the structural connectome (eSC 
and ePL) was used to build a brain network for the whole-brain modelling that simulates BOLD signals, which were filtered according to the 
considered filtering conditions (right bottom box) and used to calculate sFC. Subsequently, we calculated connectivity relationships (Pearson’s 
correlation) using these three connectivity matrices: (i) corr (eFC, eSC); (ii) corr (sFC, eSC); and (ii) corr (eFC, sFC). Model parameters for global 
coupling and global delay were varied to validate the model against empirical data. In particular, the correspondence (correlation) between eSC 
and eFC and sFC was calculated for each parameter point, resulting in similarity landscapes in the model parameter space, see the example of the 
relationship between eFC and sFC in the rightmost colour plot. The most pronounced correspondence (correlation) between the empirical and 
simulated connectomes was selected, together with the respective optimal model parameters, as a result of the neuroimaging model fitting for 
further analysis.

Table 1 Demography of subjects included in the study

Groups Mean (standard deviation) years Statistical tests P-values

All subjects 2 goodness-of-fit test

All 58.93 (10.25) 116 subjects 0.149
HC Patients Wilcoxon rank-sum two-tail test

All 55.02 (9.69) 62.00 (9.62) 51 HC versus 65 patients 0.000
Female 56.52 (9.40) 60.80 (8.96) 21 HC versus 20 patients 0.201
Male 53.97 (9.74) 62.53 (9.85) 30 HC versus 45 patients 0.001

Females Males Wilcoxon rank-sum two-tail test

All 58.61 (9.43) 59.11 (10.67) 41 females versus 75 males 0.751
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MRI acquisition

Structural and functional MRI data were acquired using a 3 T 
scanner (Siemens Trio). A structural brain image was acquired 
using a 3D T1-weighted image (T1w) sequence (TR = 2.3 s, 
TE = 2.96 ms, TI = 900 ms, flip-angle = 9°, field-of-view = 
240 × 256 mm2 in sagittal, the number of slices = 160, voxel 
dimension = 240 × 256 × 160, voxel size = 1.0 × 1.0 × 1.1 
mm3). Diffusion-weighted images (DWI) comprised a single 
non-weighted (B0) image and weighted (B = 1000 s/mm2) 
images with 64 directions (TR = 6.7 s, TE = 81 ms, phase en-
coding: anterior to posterior, field-of-view = 216 × 216 mm2 

in axial, the number of slices = 55, voxel dimension = 90 × 
90 × 55, voxel size = 2.4 × 2.4 × 2.4 mm3). Resting-state func-
tional MRI was obtained using an echo-planar imaging se-
quence during 663 s (TR = 2.21 s, TE = 30 ms, field-of-view 
= 200 × 200 mm2 in axial, the number of slices = 36, voxel di-
mension = 64 × 64 × 36, voxel size = 3.125 × 3.125 × 3.565 
mm3). To prevent the distraction of streamline tracking, arte-
fact volumes of DWI were removed from the data based on 
evaluation by two raters.

Preprocessing of MRI

For the personalized data processing, we developed a contain-
erized in-house pipeline to process structural and functional 
MRI in the native spaces. The pipeline consists of five mod-
ules: preprocessing of structural MRI (T1w and DWI), whole- 
brain tractography (WBT) calculation, atlas transformation, 
reconstruction of structural connectivity (eSC and ePL) and 
preprocessing of functional MRI. The pipeline comprises 
Freesurfer,47 FSL,48 ANTs,49 MRtrix350 and AFNI.51 It is 
publicly available (https://jugit.fz-juelich.de/inm7/public/vbc- 
mri-pipeline).

The preprocessing module of structural MRI performed 
the following steps: bias-field correction for T1w, alignment 
of anterior-posterior commissures of T1w, recon-all by 
Freesurfer, removing the Gibbs ringing artefacts of DWIs, 
bias-field correction for DWIs, corrections of head motion, 
b-vector rotations and eddy distortion of DWIs and 
co-registration between averaged DWI and T1w. This mod-
ule segmented subcortical areas based on voxel intensities 
of the T1w. It also prepared labelling annotations using a 
brain atlas, for which a classifier was available from the lit-
erature. The annotation can also be created based on a sub-
ject cohort by capturing region data either drawn by 
neuroanatomists or according to dedicated algorithms.52

The WBT calculation module included only MRtrix3 
functions. They estimated response functions for spherical 
deconvolution using the constrained deconvolution algo-
rithm.53 Fibre oriented distributions (FODs) were esti-
mated from the DWIs using spherical deconvolution, and 
the WBT was created through the fibre tracking by the 
second-order integration over the FOD by a probabilistic 
algorithm.54 In the latter step, we used 10 million total 
streamlines for the WBT density. The tracking parameters 
of the tckgen function were set as in the previous study:30

step size = 0.625 mm, angle = 45°, minimal length = 2.5 mm, 
maximal length = 250 mm, FOD amplitude for terminating 
tract = 0.06, maximum attempts per seed = 50, the maximum 
number of sampling trials = 1000 and downsampling = 3 
(FOD samples per steps−1).

The atlas transformation module annotated labels using a 
classifier to parcel cortical regions in the native T1w space using 
Freesurfer. In the present study, we applied two atlas classifiers 
for brain parcellations, the Schaefer atlas with 100 parcels41

and the Desikan–Killiany atlas with 68 parcels.42 Both atlases 
provide cortical parcellations, where the former is based on 
functional MRI data, while the latter is labelled by gyral-based 
anatomical parcellation. After this, the subcortical areas seg-
mented by the preprocessing module were included and com-
bined with the labelled cortical parcels. Finally, the pipeline 
transformed the labelled image (cortical parcels and subcortical 
regions) from the T1w to DWI native spaces.

The reconstruction module calculated the matrices of the 
streamline counts (SCs) and the matrices of the average 
path lengths (PLs) of the streamlines extracted between any 
two parcellated brain regions from the calculated WBT 
with the transformed, labelled image in the DWI space.

The preprocessing module of functional MRI performed 
slice time correction, head motion correction, re-slicing in 
a 2 mm iso-cubic voxel space, intensity normalization, de- 
trending with filtering of very slow fluctuations out (high 
pass), co-registration to the T1w and calculation of regres-
sors for the white matter, cerebrospinal fluid (CSF) and brain 
global signals as well as for the head motion. The pipeline 
also transformed the labelled image of the brain parcellation 
generated in the native T1w space to the functional MRI na-
tive space. Finally, we performed a nuisance regression with 
the prepared regressors (white matter, CSF and the brain glo-
bal signals, as well as head motions).

Post-processing of functional MRI

After preprocessing of MRI, we extracted mean BOLD sig-
nals based on the annotated atlas labels and applied three 
temporal band-pass filtering conditions in the frequency 
ranges of (0.01,0.1) Hz (broad-frequency band; BF), 
(0.01,0.05) Hz (low-frequency band; LF) and (0.05,0.1) 
Hz (high-frequency band; HF). Therefore, four filtering con-
ditions were considered: no filtering (NF), BF, LF and HF. 
The filtering was done using a script in the Python program-
ming language (version 3.8, Python Software Foundation, 
https://www.python.org/) using the SciPy (version 1.5) signal 
processing module55 and NumPy56 (version 1.19) for the 
temporal band-pass filtering. We used the Butterworth digit-
al filter of order 6, scipy.signal.butter.

Whole-brain model

Convolution-based two-population model for 

electrical signals

The whole-brain resting-state dynamics considered in this 
study was simulated by a system of N coupled neuronal 
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models representing the mean brain regional activity. 
Each region contains two populations for each neuronal 
type (excitatory and inhibitory) that interact with each 
other via postsynaptic potentials (PSPs).43 The considered 
convolution-based model is of the Jansen–Rit type44,57 and 
simulates the PSP signals involving other brain regions that 
interact with time delay in coupling according to the calcu-
lated structural connectivity, i.e. SC and PL matrices. The 
following set of differential equations describes the mean dy-
namics of the excitatory and inhibitory PSPs of region n = 1, 
2, …, N,

ẏn,e(t) = zn,e(t), (1) 

ẏn,i(t) = zn,i(t), (2) 

żn,e(t) = Pn,e(t) − 2aRnzn,e(t) − a2R2
nyn,e(t) + n,e, (3) 

żn,i(t) = Pn,i(t) − 2bRnzn,i(t) − b2R2
nyn,i(t) + n,i,

n = 1, 2, . . . , N.
(4) 

Here, zn,e, zn,i, yn,e and yn,i are the excitatory postsynaptic 
current, the inhibitory postsynaptic current, the excitatory 
PSP (EPSP) and the inhibitory PSP (IPSP) of the brain region 
n, respectively, where the subscripts e and i stand for excita-
tory and inhibitory, accordingly. The model (1)–(4) is a sys-
tem of driven harmonic oscillators in a critical damping 
regime, where the system quickly returns to its steady state 
after perturbation without undershooting. Parameters a 
and b represent the reciprocal of the time constants of the 
PSP kernel for the two populations for EPSP and IPSP, re-
spectively. n,e and n,i are independent noise sampled 
from a random uniform distribution between −1.5 and 
1.5 V/s2. For frequency of oscillations, we also introduced 
a scaling factor R. By increasing R, the spectral power of 
the PSP signals shifts to higher frequencies. Perturbation 
Pn,e drives EPSP oscillations regarding input signals 
from other regions, i.e. it models the coupling between 
the network nodes/brain regions and Pn,i perturbs IPSP 
oscillations by the input from the excitatory population in 
the same region n,

Pn,e(t) = AaR2
n e

C
N

∑N

m≠n

Cnmym,e(t − nm) − Ceiyn,i(t)

( )
, (5) 

Pn,i(t) = BbR2
n i(Cieyn,e(t)), n = 1, 2, · · · , N. (6) 

A and B are the maximum amplitudes of the PSP kernels for 
EPSP and IPSP, respectively. N is the total number of brain 
regions/network nodes for the whole-brain model. In 
Equation (5), C is a global coupling parameter, which scales 
the couplings throughout the whole-brain network. Cnm is 
the strength of the individual coupling from region m to re-
gion n, which is realized via weighting the EPSP signal of the 
m-th network node ym,e considered with time delay nm. 
Parameter Cei weights an input coming from the inhibitory 
population of the same brain region, i.e. IPSP yn,i. The 

individual time delays and coupling strengths between re-
gions m and n can be estimated from the empirical data as

nm = globalLnm, Cnm = wnm

W
, (7) 

where the averaged path length Lnm (from the matrix PL) of 
the reconstructed streamlines between regions n and m is 
scaled by a global delay parameter global. Cnm in 
Equation (7) calculates an individual coupling strength by 
taking into account the SC matrix, where the number of 
streamlines wnm between the two regions was normalized 
by an averaged number of streamlines W calculated over 
all connections except for the self-connections. As follows 
from Equation (5), the coupling between brain regions is 
realized between the excitatory populations, where the de-
layed EPSP signals from the other brain regions composed 
the coupling term. Together with the intra-regional coup-
ling by the IPSP signal from the inhibitory population, the 
total PSP input to the excitatory population is converted 
by a nonlinear sigmoid function e(v) given in Equation (8) be-
low to an averaged firing density. The inhibitory population in 
region n received an input EPSP signal weighted by parameter 
Cie from the excitatory population of the same region only, 
which was again converted to an averaged firing density by 
the following sigmoid function i(v):

e(v) = Fe

1 + er(v0−v) , i(v) = Fi

1 + er(v0−v) . (8) 

In Equation (8) of the mentioned sigmoid functions, the par-
ameter r is a slope, v0 is a half of the maximal neural activity 
and parameters Fe and Fi are the maximal firing densities of 
the excitatory and inhibitory populations, respectively. 
Parameter values of the considered two-population model 
Equations (1)–(8) are given in Table 2.

Simulated BOLD signals

We calculated the regional BOLD signals using the corre-
sponding EPSP signals simulated by the electrical model 
Equations (1)–(8) introduced in the previous section. 
Several examples of the time courses of the EPSP signals gen-
erated by the considered model and their power spectra are 
illustrated in Supplementary Fig. 1. Neurovascular coupling 
and hemodynamic responses constitute the process reflected 
in the Balloon–Windkessel (BW) model that was utilized to 
convert the simulated neural activity to BOLD signals,58–60

see details in the Supplementary material.

Model validation: neuroimaging and 
behavioural model fitting

In this study, we considered two model fitting approaches: 
neuroimaging model fitting and behavioural model fitting. 
The former is well known in the literature and consists of val-
idation of the model via comparing simulated data against 
neuroimaging empirical data. In this study, the Pearson’s 
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correlation coefficient between eFC and sFC (comparing the 
upper triangle without self-connections of the connectivity 
matrices) was calculated and denoted as goodness-of-fit 
(GoF) values. Searching for the maximal GoF in a given par-
ameter space is a well-established approach for model valid-
ation in whole-brain modelling studies.13–15 In this study, we 
optimized the coupling and delay model parameters to maxi-
mize the GoF value on a parameter grid of 64 × 43 points (64 
global couplings and 43 global delays) densely covering the 
parameter plane, respectively. In addition, we also consid-
ered the connectivity relationship between eSC and sFC as 
for separate neuroimaging model fitting. In consequence, 
two types of neuroimaging model fitting (eFC versus sFC 
and eSC versus sFC) were used in this study. As this proced-
ure fits the model to the connectivity derived from the empir-
ical neuroimaging data, we term it neuroimaging model 
fitting.

We also introduce behavioural model fitting as a proced-
ure to validate a model against behavioural data, for ex-
ample, optimizing the model to reflect some behavioural 
(phenotypical) properties to the best possible extent. In this 
study, we optimized the parameters of the model to max-
imally differentiate between Parkinson’s disease patients 
and HC subjects. For this, we calculated the effect size based 
on the z-statistics of the Wilcoxon rank-sum two-tail test as 
given by the Rosenthal formula, i.e. the normal z-statistics 
divided by the square root of the number of observations61

of the difference between the (neuroimaging) GoF values of 
the HC and Parkinson’s disease subject groups. The effect 
size was calculated for every parameter point in the consid-
ered parameter space of 64 × 43 grid and represented as a 
parameter map. In this way we obtained a parameter land-
scape of the group differences and were able to investigate 
the differentiation of GoF values of Parkinson’s disease pa-
tients from those of HC subjects. This parameter landscape 
reflects the relation of the model GoF to the behavioural 

data (in this study, to the differentiation based on clinical 
measures), and we thus used this approach as behavioural 
model fitting. To evaluate the parameter areas of significant 
group difference, we performed the Wilcoxon rank-sum 
two-tail test and obtained a corresponding P-value parameter 
map. Due to the multiple comparisons over the parameter 
points, we applied the random-field thresholding scheme62,63

using a 2D Gaussian kernel smoothing. Subsequently, we 
obtained a Z-score map and thresholded it to retain statistic-
ally significant parameter areas (alpha = 0.05). Finally, we 
searched for the optimal model parameters within the signifi-
cant parameter areas corresponding to the maximal effect 
size. We considered two connectivity relationships (eFC 
versus sFC and eSC versus sFC) for the behavioural model 
fitting.

Random sampling for optimal 
parameters

We performed a random sampling to test the stability of the 
optimal parameter points for the behavioural model fitting. 
To do this, the stability of the results was assessed by sex- 
balanced stratified subsampling. After a random sampling 
of 72 subjects (36 HC subjects and 36 Parkinson’s disease 
patients) out of 116 subjects, we applied the behavioural 
model fitting to the sampled subjects and found optimal 
parameters corresponding to the largest effect size. The 
subsampling and the corresponding calculations were re-
peated 1000 times.

Regularized (least absolute shrinkage 
and selection operator) logistic 
regression

The current task is to train a binary classifier (Parkinson’s 
disease versus HC) using 10 features (five connectivity 

Table 2 Parameter values of the electrical model and the BW model

Electrical model Variables Values BW model Variables Values

Max. sigmoid (excitatory) Fe 100 s−1 Echo time TE 30 ms
Reciprocal of the time constant of the EPSP kernel a 100a s−1 Mean-transit-time tMTT 2b s
Max. EPSP A 3.25a mV Net oxygen extraction fraction at rest E0 0.4b

Max. sigmoid (inhibitory) Fi 50 s−1 Venous blood volume fraction V0 4b %
Reciprocal of the time constant of the IPSP kernel b 50a s−1 Frequency offset for 3 T 0 80.6b s−1

Max. IPSP B 22a mV Ratio of intra/extra-vascular signal 0.3b

Slope of sigmoid r 0.56a mV−1 Sensitivity (regression slope) r0 25b s−1

50% neural activity v0 6a mV Steady state flow-volume relationship 0.38b

Intra-regional coupling 
(from excitatory to inhibitory)

Cie 6 Rate constant for damped oscillations 0.64b Hz

Intra-regional coupling 
(from inhibitory to excitatory)

Cei 6 Rate constant for damped oscillations 0.32b Hz

Scaling factor R 2.2 Values of initial conditions [s, f, v, q] [0,1,1,1]c

Amplitude of noise 1.5 V/s2

aValues from Jansen and Rit study.44

bValues from Havlicek et al.58

cValues empirically determined based on the trajectories generated by the BW model. 
EPSP, excitatory postsynaptic potential; IPSP, inhibitory postsynaptic potential.
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relationships from two parcellation schemes), which are of 
lower dimension than observations (116 subjects). We con-
sidered a simple regularized logistic regression that is a 
sparse method possessing good interpretability and is 
known to work well in many applications.64–66 There might 
be other methods that could give better accuracy.67 The 
main goal of the current study was however to compare 
the prediction results between several computational condi-
tions including data processing and model validation. This 
could be demonstrated using such a linear (interpretable) 
machine learning method without an exhaustive search 
for the methods and conditions for the best performance. 
Thus, logistic regression is applicable to the current study. 
To this end, we used a regularized logistic regression with 
the least absolute shrinkage and selection operator 
(LASSO) for training and classification of HC versus 
Parkinson’s disease subjects.68 To avoid an overfit, the 
training error included the deviance and an L1-penalty.69

We used the lassoglm function for the logistic LASSO re-
gression and the glmval function for predicted probability 
calculation in the Statistics and Machine Learning 
Toolbox of MATLAB R2020b.

Confound regression for 
age-controlled features

We used a cross-validation (CV) scheme to train the logistic 
LASSO regression for Parkinson’s disease classification. As 
for a degenerative disease,70,71 features for Parkinson’s dis-
ease classification should be controlled by an age effect via 
a confound regression. Due to a random sampling from the 
same cohort and the usage of the same data for model val-
idation and model training, it is important to prevent pos-
sible data leakage during the CV procedure, especially for 
behavioural model fitting as it uses data across subjects. 
Otherwise, the trained models might be biassed due to the 
usage of the results of the behavioural model fitting derived 
from Parkinson’s disease classification against HC. In this 
respect, we followed the ideas of the cross-validated con-
found regression72 as illustrated in Fig. 2. Specifically, we 
applied the CV-consistent approach to features derived 
from the empirical result, neuroimaging and behavioural 
model fitting. Accordingly, the subjects were split into 
training and test sets (Fig. 2, green and orange blocks in 
the outer loop) and the optimal parameter point of the be-
havioural model fitting was calculated on the training set 
at every iteration of the outer CV loop (Fig. 2, the green 
box with the Circle 1). Then the respective connectome re-
lationships were calculated for every subject. Next, the age 
was regressed out for these subjects (cross-validated con-
found regressions in Fig. 2, Circles 1 and 2) from the ob-
tained features of connectivity relationships used for 
subject classification. The optimal model parameters and 
the regression coefficients obtained for the training set 
were then used for the connectome calculation and the 
age regression for the test subjects.

Nested cross-validation

In order to avoid over-optimistic results of CV,73 we used 
nested CV to train the logistic LASSO regression for 
Parkinson’s disease classification (Fig. 2). In the outer loop, 
we randomly split the subjects into five subsets. One subset 
of 20% of subjects was considered as a test set (unseen sub-
jects, the orange box in the outer loop in Fig. 2) and the other 
four subsets were pulled together and composed a training 
set (the green boxes in the outer loop in Fig. 2). As explained 
above, we first applied the cross-validated model fitting and 
confound regression to the features in the training set (Fig. 2, 
the green box with the Circle 1). Subsequently, the training 
set (age-controlled) was split into ten subsets for the nested 
CV in the inner loop. A logistic LASSO regression model 
was trained with the hyperparameters minimizing the 
10-fold CV error. This model was then applied to predict 
the test set. As follows from the aforementioned, the age- 
controlled training and test sets were used for model training 
and prediction, respectively. The training and testing proced-
ure we performed can be summarized as follows: 

(i) Randomly split the entire subject cohort into five 
subgroups.

(ii) Select one group as a test set and compound the others 
into a training set.

(iii) Perform the cross-validated (behavioural) model fit-
ting using the training set and extract respective con-
nectome relationships corresponding to the optimal 
model parameters.

(iv) Perform the cross-validated confound (age) regression 
for the training set from the features based on the con-
nectome relationships used for classification.

(v) Train the logistic LASSO regression model in the inner 
loop with a 10-fold CV that minimizes errors in the 
prediction model.

(vi) Apply the trained best model to predict the test set with 
age regression, where the optimal model parameters of 
the model fitting and age regression coefficients ob-
tained for the training set were used (Fig. 2, the dashed 
arrow in the outer loop).

(vii) Calculate the model performance using a confusion 
matrix and an receiver operating characteristic 
(ROC) curve.

(viii) Perform Steps (ii)–(vii) for the other four subsets split 
in Step (i) as test sets in the outer CV loop (five predic-
tion results).

(ix) Repeat Steps (i)–(viii), 50 times (250 prediction results 
in total).

Evaluation of prediction performance

For Parkinson’s disease classification based on the discussed 
machine learning approach, we considered five features for 
each of the two parcellation schemes (Schaefer and 
Desikan–Killiany atlases), i.e. 10 features in total: corr 
(eFC, eSC) as an empirical feature, corr (eFC, sFC) and 
corr (eSC, sFC) as simulated features for each model fitting, 
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i.e. the neuroimaging model fitting and the behavioural mod-
el fitting. To investigate the impact of simulated results on 
the Parkinson’s disease prediction, we composed the consid-
ered features into three conditions: (i) empirical features only 
(shuffle simulated features); (ii) simulated features only 
(shuffle empirical features); and (iii) all features (no shuf-
fling). The shuffling was performed by a random re- 
distribution of the values of a given feature among subjects 
such that the correspondence of the feature to individual sub-
jects was destroyed. By focusing on some features (connec-
tome relationships and parcellations), the other features 
were shuffled. For example, to focus on the empirical fea-
tures of the Schaefer atlas, four simulated features (eFC ver-
sus sFC and eSC versus sFC for two model fitting modalities) 
of the Schaefer atlas and all five features (one empirical and 
four simulated features) of the Desikan–Killiany atlas were 
shuffled. The shuffling was performed for every feature sep-
arately, randomizing feature values across subjects while re-
taining distributional properties (Supplementary Fig. 2). 
After feature selection, model training and application of 
the trained model to the unseen test subject set, we calculated 
a confusion matrix from the prediction results and plotted a 
ROC curve.74 The latter was calculated from the prediction 
results obtained by varying the subject classification thresh-
old of a predicted probability from 0 to 1. Then, we calcu-
lated the prediction performance (accuracy, sensitivity, 
specificity and balanced accuracy) and the area under a curve 
(AUC) of the ROC curve.

In addition to the prediction considering the cross- 
validated confound regression with subjects’ ages using the 
entire cohort, we also applied the same approach to a ba-
lanced subject configuration by excluding the 17 oldest 

Parkinson’s disease patients from 116 subjects. Thus, the ba-
lanced cohort has no significant age difference between 
Parkinson’s disease and HC groups with balanced group 
sizes (see Supplementary Table 1). Subsequently, we ana-
lysed the prediction performances of the balanced subject co-
hort (99 subjects).

Statistical analysis

Statistical analysis was performed using functions in the 
Statistics and Machine Learning Toolbox of MATLAB 
R2020b. We set significance level at P < 0.05. We applied 
the Bonferroni correction to prevent multiple comparison is-
sues when the test was used multiple times. Statistical tests 
used in the results were mentioned in each legend of figures 
and tables. We also scrutinized the prediction probabilities 
for individual subjects to evaluate the model’s performance. 
Here, the trained model estimated the predicted probabilities 
for each subject in the test set. Subsequently, we calculated a 
fraction of actual positives and showed relationships using 
probability calibration. The ideal case is to have the same va-
lues for the fraction of positives and the predicted probabil-
ity, i.e. the graph should align to the diagonal. In clinical 
applications, the tight correspondence between predicted 
probabilities and the fraction of actual positives provides 
high trustworthiness for diagnosis.75 To this end, we used 
the Brier score76 to calculate the mean-squared error of 
each predicted probability against an ideal case. We also 
used the Wasserstein distance to show how much cost is re-
quired to turn a given distribution of the predicted probabil-
ities into a uniform one.77 In other words, this metric was 
used to evaluate how well predicted probabilities were 

Figure 2 Schematic illustration of cross-validated model fitting, cross-validated confound regression and nested CV. The boxes 
under the ‘Training set’ in the leftmost plot illustrate randomly split subject subgroups used for training the model in the 5-fold outer loop and in 
the 10-fold inner loop. The box under the ‘Test set’ in the outer loop depicts the testing subject subgroup used for evaluation of the prediction 
performance of the trained model as given by accuracy, sensitivity, specificity, balanced accuracy and area under the ROC curve. P, positive as 
patients; N, negative as controls; TP, true positive; FP, false positive; TN, true negative; FN, false negative.
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uniformly distributed. Thus, a lower Wasserstein distance 
means that the predicted probabilities are relatively better ca-
librated than those of a higher one. Accordingly, we further 
evaluated the model’s performance regarding individual pre-
dicted probabilities in addition to the integrative perform-
ance from the confusion matrix.

Results
In this study, we investigated the application of simulation 
results from whole-brain dynamical models to Parkinson’s 
disease classification using relationships between empirical 
and simulated connectomes as features. The whole-brain dy-
namical model of the Jansen–Rit type was used to simulate 
the electrical neuronal activity and was validated against em-
pirical data by means of neuroimaging or behavioural model 
fitting. Accordingly, we calculated the connectome relation-
ships involving the simulated connectomes corresponding to 
the optimal model parameters of the two fitting modalities 
and used them as features for Parkinson’s disease classifica-
tion. We show that complementing the empirical data by si-
mulated data improves the prediction performance as 
compared with the case where only empirical data were used.

Neuroimaging model fitting

We calculated sFC using simulated BOLD signals for each 
parameter point and obtained the similarity (Pearson’s cor-
relation) values between eFC and sFC. Figure 3 shows the 
corresponding landscapes of the GoF values in the delay- 
coupling ( global, C) parameter space averaged over all 
subjects, the distributions of the maximal GoF values and 
corresponding optimal model parameters for individual sub-
jects for the Schaefer atlas (Fig. 3A-D) and the Desikan– 
Killiany atlas (Fig. 3E-H). We calculated eFC and sFC for 
the different frequency ranges of the corresponding filtered 
BOLD signals, i.e. NF, BF, LF and HF conditions (see 
Materials and methods for details). The profiles of the par-
ameter landscapes were different between the considered 
brain atlases. The Schaefer atlas showed a unimodal distri-
bution containing maximal GoF values (the dashed circle 
in Fig. 3A) for the optimal global delays in the biologically 
feasible range78 from 0.06 to 0.25 s/m (Fig. 3D). On the 
other hand, the maximal GoF for the Desikan–Killiany atlas 
posited a bi-modal distribution (the dashed circles in Fig. 3E) 
with well-separated peaks along the global coupling param-
eter (Fig. 3G, compare with Fig. 3C). Moreover, stronger 
global coupling of the maximal GoF values was accompan-
ied by a widespread global delay (the upper dashed circle 
in Fig. 3E) that may get out of the biologically feasible range 
as compared with the weaker global couplings (the lower 
dashed circle in Fig. 3E).

Furthermore, we observed that applying temporal filtering 
to BOLD signals diminished GoF values over the entire par-
ameter landscape (Fig. 3B and F). In particular, the narrow 
frequency bands (LF and HF) resulted in significantly lower 

maximal GoF values than in the cases of the broader (BF) or 
entire frequency (NF) range; see Table 3 for statistical 
results.

Effect size of group comparisons for 
behavioural model fitting

The behavioural model fitting resulted in effect sizes of group 
difference between HC and Parkinson’s disease (Fig. 4A–B
for eFC-sFC correlation, see Supplementary Fig. 3 for 
eSC-sFC correlation). Furthermore, we also observed that 
the distributions of the optimal parameter points corre-
sponding to the maximal effect sizes are densely concen-
trated in the parameter space across repeated subsampling 
(1000 times) and filtering conditions (Fig. 4C–D, distribu-
tions in blue). Interestingly, the distributions of the optimal 
parameters derived from the behavioural model fitting 
were strikingly different from those determined by the neu-
roimaging model fitting (Fig. 4C–D, distributions in orange 
for the neuroimaging and in blue for the behavioural fitting). 
Both sets of optimal parameters are located in the biological-
ly plausible range of time delay.78

Group difference between healthy 
controls and patients

The empirical structure-function relationships corr(eFC, 
eSC) for HC and Parkinson’s disease subject groups were 
found to be from distributions with different medians for 
the Schaefer atlas and all considered filtering conditions 
and for the LF condition only for the Desikan–Killiany atlas 
(Fig. 5, the first row). The group differences obtained by in-
volving the simulated connectomes in the neuroimaging 
model fitting were small and non-significant for both atlases 
and all filtering conditions (Fig. 5, the second and third 
rows). On the other hand, for behavioural model fitting, 
we observed that Parkinson’s disease patients exhibited 
stronger agreements between empirical and simulated con-
nectomes than HC subjects and can thus be better differen-
tiated from HC (Fig. 5, the fourth and fifth rows).

Temporal filtering may influence the group differences for 
the empirical and also for the simulated connectomes as illu-
strated in Fig. 5, see the first row for the Desikan–Killiany at-
las, in particular and Supplementary Fig. 4. In addition, we 
calculated the explained variances of the five connectivity re-
lationships between each other for the same and different fil-
tering conditions, which resulted in relatively low similarities 
for the simulated results (Supplementary Fig. 5). 
Accordingly, the temporal filtering can influence the consid-
ered connectivity relationships and may lead to dissimilar 
patterns of connectome relationships across subjects.

Prediction performance

We used the five whole-brain connectivity relationships as 
features for Parkinson’s disease classification using machine 
learning based on the logistic LASSO regression algorithm. 
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The feature space constituted three feature conditions with 
ten features (five connectivity relationships for two atlases), 
see Supplementary Fig. 2. After the nested CV, the trained 
best models were relatively well balanced, with a slight ten-
dency towards overfitting for some of the used performance 
measures (13.4% decreased balanced accuracy and 1.1% de-
creased AUC of test performance from training one, see 
Supplementary Fig. 6).

Figure 6 shows the prediction performance for each of the 
investigated conditional cases of brain parcellations, fre-
quency bands and feature conditions. The first important ob-
servation is that involvement of the simulated connectomes 
can improve the classification of Parkinson’s disease and 
HC, see Fig. 6 and compare blue dots (empirical features) 
to red dots (simulated features) and to yellow dots (all fea-
tures) (see Supplementary Fig. 7 for the differences). In the 
latter case, where the empirical features are complemented 
by the simulated ones, the prediction performance can only 
be enhanced as compared with purely empirical features, 
which we observed for most feature conditions and perform-
ance measures (Fig. 6A–C). Interestingly, the performance 
further improved when using features from both atlases 
(Fig. 6 and Supplementary Fig. 7).

We also investigated how the prediction performance var-
ies depending on the filtering conditions (Fig. 6D). The effect 
of the temporal filtering was prominent of the empirical fea-
tures for the Schaefer atlas, where the performance was sig-
nificantly increased for the LF condition compared with the 

others (Fig. 6D, the ‘Emp.’ column for the Schaefer atlas). On 
the other hand, the HF condition showed low performances 
on the empirical features, in particular, with very low speci-
ficities down to zero (Fig. 6B and D) and very high sensitiv-
ities up to 1 (Supplementary Fig. 8), where the LF filtering 
seems again to be a beneficial condition for Parkinson’s dis-
ease prediction. Summarizing, the temporal filtering condi-
tions influenced the model performance and the LF 
band-pass filtering resulted in the most effective prediction 
relying on the connectome relationships. The other consid-
ered narrow-band HF filtering condition is not advisable 
for Parkinson’s disease classification. However, involving 
the simulated connectomes is still of advantage also under 
this condition as compared with using only empirical 
features.

We also compared the prediction performance when the 
simulated connectomes obtained from the neuroimaging 
and behavioural model fittings were considered separately. 
This resulted in two additional feature conditions (see 
Supplementary Fig. 8). The neuroimaging model fitting in 
most cases led to a weaker prediction performance compared 
with the behavioural model fitting or to the composite case 
when the features of both fittings are merged. This justifies 
the introduction of the behavioural model fitting for subject 
classification.

Furthermore, we applied the current approach to the ba-
lanced subject configuration (99 subjects, see Supplementary 
Table 1 for the demography). The prediction performance 
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Figure 3 Results of the neuroimaging model fitting. (A–D) The Schaefer atlas and (E–H) the Desikan–Killiany atlas. (A, E) Parameter 
landscapes of the similarity (Pearson’s correlation) between eFC and sFC, i.e. goodness-of-fit (GoF) values averaged over the entire subject 
cohort. The landscapes are illustrated for each filtering condition (NF, BF, LF and HF, see Materials and methods for details). The dashed circles 
delineate the hills with large GoF values. Distributions of (B, F) the maximal GoF values, (C, G) optimal coupling parameters and (D, H) the 
respective optimal delays corresponding to the maximal GoF values for each filtering condition. The distributions of the maximal GoF values are 
significantly different across filtering conditions (P = 0.000 for the Schaefer atlas and P = 0.000 for the Desikan–Killiany atlas; Kruskal–Wallis 
non-parametric one-way analysis of variance test). Post-hoc: Significantly different filtering conditions are NF > BF, NF > LF, NF > HF, BF > LF and 
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the electrophysiological conduction speed. The middle lines in interquartile box plots indicate the medians of distributions, and the red plus signs 
are the outliers.
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was consistent with the main findings of the entire cohort (116 
subjects, Fig. 6). In other words, complementing empirical 
data with simulated results using LF filtering involving multi- 
parcellation (concatenating both atlases) is advisable for 
Parkinson’s disease classification (Supplementary Fig. 9).

Figure 6 shows the well-known measures characterizing 
the prediction performance as median values and interquar-
tile ranges of distributions. Although these measures clearly 
reflect how well the machine learning approach is commonly 
working, we may also be interested in how every test is per-
forming for the classification of individual unseen subjects. 
In this respect, Fig. 7 illustrates the results of classification/ 
prediction probabilities of all tests performed on individual 

subjects from the test sets. The prediction probabilities 
were collected and related to the probability calibration 
curves.

We can interpret the probability calibration plots 
(Fig. 7A–C) according to two aspects. Feature conditions 
using simulated results (red and yellow curves) resulted in 
predictions that are more closely aligned with the ideal 
case (the diagonal black line) than the empirical relationship. 
Indeed, for the Schaefer atlas and the multi-parcellation case, 
the distance to the diagonal as given by the mean-squared er-
ror of the predicted probabilities against the actual classes 
calculated according to the Brier score76 is minimal for the 
composed features, including the empirical and simulated 
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Figure 4 Parameter maps of the effect size of the difference between goodness-of-fit (GoF) values (eFC-sFC correlation) of 

healthy and Parkinsonian groups used for the behavioural model fitting. The filtering conditions are indicated in the plots for (A) the 
Schaefer atlas and (B) the Desikan–Killiany atlas. Effect sizes in the ( global, C )-parameter plane were calculated by a non-parametric Wilcoxon 
rank-sum two-tailed test between patients and controls in the GoF values for each parameter point. (C, D) Distributions of optimal parameters 
derived from the neuroimaging model fitting (orange, all subjects, n = 116) and the behavioural model fitting (blue, repeated subsampling, n = 1000) 
for (C) the Schaefer atlas and (D) the Desikan–Killiany atlas.
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Figure 5 Differentiation between healthy and Parkinsonian subjects as reflected by the relationships between empirical and 

simulated connectomes. (Left) The Schaefer atlas and (Right) the Desikan–Killiany atlas. The simulated connectomes are calculated for the 
optimal model parameters of the neuroimaging and behavioural model fitting as indicated on the vertical axis. Summary tables of the effect sizes 
(numbers) of the differences between Parkinsonian and healthy subject groups are calculated by the Rosenthal formula and shown in negative for 
HC < Parkinson’s disease and positive for HC > Parkinson’s disease. The significant cases are indicated by rectangles as given by the Bonferroni 
corrected P-values of the Wilcoxon rank-sum two-tail test.
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connectomes for the LF filtering condition (Fig. 7E). As a se-
cond aspect, the prediction probabilities derived from the 
empirical features are more narrowly distributed around 
0.5 (blue curves in Fig. 7D) compared with the case of all fea-
tures (yellow curves in Fig. 7D). This can be quantified by the 
minimum cost of turning the observed distribution into a 
uniform distribution using the Wasserstein distance77

(Fig. 7F). In the latter case, the predicted probabilities de-
rived from all features show widely spreading distribution 
that also reach the low and high probability values, which in-
dicates high confidence.75 In other words, in our predictive 
modelling, the prediction results, where the empirical data 
were complemented by simulated features, were better cali-
brated in some cases as compared with the case of the empir-
ical data only (Fig. 7C). As mentioned above, the 
Wasserstein distance in Fig. 7F clearly shows which filtering 
condition and which feature condition can be the best bene-
ficial configuration for Parkinson’s disease classification. In 
particular, the LF filtering of the BOLD signals and involving 
of the simulated connectomes together with the empirical 
ones for the Schaefer atlas and multi-parcellation case can 
improve the prediction results and the confidence of the pre-
diction model. The same conclusion was drawn above based 
on the Brier scores, which confirm their robustness and may 
be relevant for the application of the discussed modelling and 
prediction approaches to clinical data and disease diagnosis.

Discussion
The main objective of this study is to effectively apply whole- 
brain dynamical modelling and the derived simulated connec-
tomes to Parkinson’s disease classification. Whole-brain simu-
lations allow us to explore various regimes of brain dynamics 
corresponding to different values of free model parameters. 
To extract features from the simulated results, it is essential 
to evaluate which model fitting is appropriate. The detected 
optimal model parameters can differ when we use different 
model fitting approaches. In other words, whole-brain dy-
namics with proper model parameters can disclose group dif-
ferences between Parkinson’s disease and HC subjects and 
provide a way to extract effective features for Parkinson’s dis-
ease classification. In this study, we introduced the behaviour-
al model fitting approach and showed that it captured 
differences between Parkinson’s disease and HC better than 
the conventionally used neuroimaging model fitting ap-
proach. Then, we applied it to Parkinson’s disease classifica-
tion. Based on our findings, we can conclude that using 
proper model validation in whole-brain dynamical modelling 
may provide effective features to machine learning and pro-
vide information complementary to empirical features.

In addition to whole-brain dynamical modelling for classi-
fication, data processing is also important because, as we 
have shown, different data processing influences model 
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Figure 6 Summary of the performance of Parkinson’s disease classification using the three different feature conditions: 

empirical features (left distribution), simulated features (middle distribution) and all features (right distribution) after incorporating the age 
controlling and the behavioural model fitting during the nested CV (Fig. 2). The median values of the balanced accuracy, specificity and AUC of the 
ROC curves for all considered parcellations and filtering conditions are shown in each panel for (A) balanced accuracy and (B) specificity and (C) 

AUC. The error bars indicate the interquartile range of 250 tests represented as data points in the plots across 50 iterations of the outer loop 
(5-fold) of the nested CV procedure (Fig. 2). The horizontal brackets connecting two coloured distributions indicate significantly different 
performance between feature conditions (Bonferroni corrected P < 0.05; Wilcoxon signed-rank two-tail test). (D) Effect sizes between filtering 
conditions for each feature condition. The signs ‘<’ and ‘>’ indicate which condition is significantly larger than the other. For example, ‘<’ sign for 
‘NF-LF’ indicated on the vertical axes means NF < LF for a given feature condition indicated on the horizontal axes. The Wilcoxon signed-rank 
two-tail test was used for comparisons across feature and filtering conditions (Bonferroni corrected statistics). The Desikan–Killiany atlas is 
shortend as ‘Desikan’.
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validation.6,30,35,79 In this respect, we investigated how tem-
poral filtering of BOLD signals and brain parcellation influ-
ence empirical and simulated results regarding model fitting, 
group difference and prediction performance. Based on our 
results, we can conclude that the resting-state whole-brain si-
mulations with appropriate data processing and model valid-
ation reflect personal traits of individual subjects, which may 
contribute to disease classification based on the whole-brain 
connectivity relationships with potential relevance in 
medicine.

Effect of temporal filtering on model 
fitting and prediction

The effect of temporal filtering on functional MRI has been 
the focus of neuroimaging research for a long time.80–83

One related study considered different temporal filters for 
MRI data processing and reported distinguishable BOLD 
dynamics in task-driven and resting-state brain activity 

between low and high-frequency band-pass filtering.38

Furthermore, temporal filtering can influence the classifica-
tion performance for patients with Alzheimer’s disease as 
compared across several low- and high-band-pass filtering 
conditions.39 In this study, we found that the neuroimaging 
model fitting resulted in significantly different distributions 
of the maximal GoF values for individual subjects under dif-
ferent filtering conditions. Furthermore, the empirical 
structure-function connectivity relationship and the max-
imal GoF values of the neuroimaging model fitting were di-
minishing for the narrower filtering bands (Supplementary 
Fig. 4).

Another study investigated Parkinson’s disease classifica-
tion via machine learning on brain networks derived from 
the empirical resting-state FC with a high pass temporal fil-
tering (> 0.01 Hz) of BOLD signals,36 which corresponds 
to the case of the NF condition in our study. According to 
our prediction results, we suggest to consider the low- 
frequency band-pass filtering, i.e. the LF condition, which 

Table 3 Comparisons between goodness-of-fit values of the considered filtering conditions (Bonferroni corrected 

P-values of the Wilcoxon signed-rank two-tail test) and the corresponding effect sizes by Rosenthal formula61

P (effect size) NF versus BF NF versus LF NF versus HF BF versus LF BF versus HF LF versus HF

Schaefer 0.000 (0.70) 0.000 (0.84) 0.000 (0.86) 0.000 (0.81) 0.000 (0.70) 0.998 (0.04)
Desikan–Killiany 0.000 (0.66) 0.000 (0.77) 0.000 (0.85) 0.000 (0.69) 0.000 (0.70) 0.838 (0.10)

Bold fonts indicate that the goodness-of-fit values are significantly different between filtering conditions.
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Figure 7 Performance of the trained prediction model regarding the predicted probabilities for individual subjects. (Top row) 
Plots of the probability calibrations from 5800 predictions for (A) the Schaefer atlas, (B) Desikan–Killiany atlas, and (C) multiple atlases, where the 
fraction of true positives is plotted versus the probability of them predicted by the trained model for individual subjects. The sizes of the circles 
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the predicted probabilities (5800 predictions) for each feature condition, as indicated in the legend. The case of the LF band-pass filtering condition 
is illustrated in plots (A–D). (E) Table of the Brier scores (mean-squared error to the correct classes) for all considered filtering and feature 
conditions. (F) Tables of the Wasserstein distances between distributions of predicted probabilities and a uniform distribution for all conditions. 
Desikan, Desikan–Killiany; Emp., empirical features; Sim., simulated features; All, empirical and simulated features.



Brain modelling for Parkinson’s disease                                                                        BRAIN COMMUNICATIONS 2023: Page 15 of 19 | 15

can improve the differentiation and classification of 
Parkinson’s disease also for the case when only empirical fea-
tures are used.

An appropriate selection of the filtering condition (broad- 
or narrow-, high- or low-frequency band) appears to be 
important for the prediction performance, as reflected by 
several integrative measures considered in this study. In par-
ticular, a detailed evaluation of individual tests indicates that 
selecting a proper band-pass filter for the empirical and simu-
lated BOLD signals can improve the prediction performance 
(Figs. 6 and 7).

In a broader perspective, changing parameter values or al-
gorithms in a data processing pipeline can affect empirical re-
sults such as structural and functional connectivities, which 
in turn influence simulation results. In previous studies, 
for instance, we reported the impact of data processing 
on simulated results by whole-brain dynamical modelling: 
WBT densities,30 region granularities,6 parcellation 
schemes,6,30,79,84 whole-brain simulation models6,79,84 and 
model fitting approaches.6,30 In the current study, we 
showed that applying temporal filtering to BOLD signals 
and using different brain parcellations and their combina-
tions, as well as the neuroimaging and behavioural types of 
model fitting, can impact empirical and simulated results 
and their classification performance. Subsequently, we there-
fore investigated the impact of the considered parameter con-
ditions of the data processing and model simulation on 
classification performance. By doing so, the conditional pipe-
line, which gives the highest performance, can be considered 
as contributing to the extent of the data and model personal-
ization, which is important for subject classification based on 
clinical or behavioural data and their simulations.

Biophysical interpretation of model 
parameters

Under the assumption that the resting-state brain activity is 
governed by a complex dynamical system, we can interpret 
the optimal model parameters of the neuroimaging model fit-
ting as parameters of that system with potential neuroscien-
tific/physical meaning. Since the optimal parameters were 
determined by distinct model validations, they can differ 
when a given model fitting approach changes as observed 
in our previous studies6,30 and demonstrated by the results 
in the current study (Fig. 4C–D). Furthermore, the parcella-
tions also impact on the locations of the optimal parameters. 
For instance, the optimal global coupling parameters derived 
from the behavioural model fitting suggest weaker optimal 
couplings than those from the neuroimaging model fitting 
for the Schaefer atlas (Fig. 4C). On the other hand, the situ-
ation for the Desikan–Killiany atlas is opposite (Fig. 4D).

In our model, we used the reconstructed PLs of the tracto-
graphy streamlines in the white matter, which approximate 
the actual lengths of the anatomical axonal connections in 
the brain. The considered model simulates the electrical ac-
tivity of the excitatory and inhibitory neuronal populations 
in the brain regions, as reflected by the dynamics of the 

respective PSP signals. We can thus evaluate and interpret 
the optimal model parameters for the propagation of the si-
mulated electrical signals (EPSP) along the brain pathways. 
We, in particular, found that the neuroimaging model fitting 
resulted in the optimal delay of the signal propagation in the 
electrophysiologically plausible range78 (Fig. 3D and H). 
This confirms the applicability of the used dynamical model 
for simulating brain dynamics. Furthermore, the optimal de-
lay of the behavioural model fitting obtained from repeated 
subsampling for different subject configurations is located 
in the same biologically reasonable range as well, which va-
lidates the behavioural model fit (Fig. 4C–D). Further para-
meters of the considered model and the simulated electrical 
PSP signals (Table 2) may have biologically plausible inter-
pretations and ranges. Here we may mention, for example, 
the excitation-inhibition balance of the intra-regional coup-
ling or the time constants responsible for controlling slow or 
fast oscillations of electrical neuronal activity.

In Parkinson’s disease research, a neural model generating 
such oscillations in a certain frequency range is essential to 
engaging the pathological neural activity during rest. 
Previous studies reported that the resting-state cortico- 
cortical FC of Parkinson’s disease patients changed in the 
8–10 Hz range (in the alpha-rhythm) for early-stage and 
moderately advanced Parkinson’s disease patients85 and 
cortico-cortical coupling for oscillations between 10 
and 35 Hz correlated with the severity of Parkinson’s disease 
in the electroencephalogram study.86 High oscillatory syn-
chrony in the basal ganglia at frequencies of 8–35 Hz was 
also associated with Parkinson’s disease based on spectral 
power changes between off- and on-drug (levodopa 
dose).87 With this respect, we may also investigate the rela-
tionship between frequencies of neural activity and models 
by varying the scale factor R of the current whole-brain dy-
namical model.

Exploring parameter landscapes

The neuroimaging model fitting is a well-established model 
validation as though maximizing GoF values of the model 
is the main objective of the model validation. Nevertheless, 
brain dynamics for non-optimal model parameters may 
also provide additional useful properties. They can contrib-
ute to the application of the dynamical models to analyse 
the brain and behaviour. In particular, brain modelling 
with virtual brains or in silico models for brain abnormalities 
has been used for clinical purposes.26–28 To this end, we ex-
plored the parameter landscapes of GoF values and searched 
for parameter points that provide optimal GoF values to ef-
fectively answer the current research question. As we re-
ported in the results, there exist hotspots of the densely 
located optimal model parameters, where either neuroima-
ging or behavioural model fitting is the most effective, al-
though these hotspots may not coincide (Fig. 4C-D, the 
distributions in blue and orange). This should be linked to 
the definition of the atlas and, hence, regions. We also ob-
served an impact of brain parcellations on the distributions 



16 | BRAIN COMMUNICATIONS 2023: Page 16 of 19                                                                                                              K. Jung et al.

of the optimal parameters.6,30,79,84 A detailed investigation 
of this phenomenon will require considering more parcella-
tion schemes to systematically describe their influence on 
the modelling results, as we already initiated in our previous 
studies.6,30,79,84 Therefore, a systematic exploration of par-
ameter landscapes allows us to find proper model parameters 
for a given purpose, which may be different in locations and 
other properties from one modelling condition and research 
question to another. Accordingly, we conclude that explor-
ing parameter landscapes of the whole-brain dynamical 
models using behavioural/phenotypical measures might re-
veal optimal model parameters best suited for research goals 
related to inter-individual variability and prediction 
approaches.

Classification of Parkinsonian 
patients

In this study, we did not aim at obtaining the highest pre-
diction accuracy, which might have required extensive 
testing of many simulation and prediction conditions, fea-
ture spaces, and learning algorithms. Nevertheless, the ob-
tained prediction performance (65.2% as median accuracy 
using empirical features) is comparable with that reported, 
for example, in the study of Plaschke et al.36 which had 
a median accuracy of 65.5% over considered brain 
networks.

When we considered the simulated data for Parkinson’s 
disease classification, the features from the neuroimaging 
model fitting had much lower performance in most consid-
ered cases as compared with the features from the behaviour-
al model fitting (Supplementary Fig. 8). Therefore, we 
suggest that the behavioural model fitting can be used to val-
idate the model against behavioural data for probing the si-
mulated whole-brain dynamics to improve the model 
correspondence to phenotypical characteristics of subjects 
and prediction results. Such an approach may be of crucial 
importance in clinical research and the reported results 
showed promising confirmations.

In this study, we also explored the impact of a few data 
processing choices and model simulation on the differenti-
ation and prediction performance. For example, composing 
predictive features including empirical and simulated con-
nectomes from multiple brain atlases can provide comple-
mentary features leading to even better prediction 
performance (Supplementary Fig. 7). We further showed 
that also filtering conditions of empirical and simulated 
BOLD signals can play an important role in model validation 
and subject classification, where in particular, prediction 
specificity may vary significantly across filtering conditions 
as well as the number of false positives of the trained model 
can be reduced by appropriate filtering (Fig. 6).

Modern neuroimaging research dedicated to prediction 
analysis and based on machine learning techniques has 
shown enhanced performance for clinical data and in radi-
ology in particular.67,88 Those predictive results and devel-
oped approaches have faced the issue of translation of their 

analysis and interpretation of the obtained outcomes to clin-
ical application.89 In this respect, the current study illu-
strated the characteristics of individual prediction 
probabilities to bridge the gap between modelling and pre-
diction results and their translation for diagnosis in clinical 
research. The analysis included in the present study explored 
the calibration of the predicted probabilities for individual 
subjects and provided additional reliable information for 
the interpretation of the classification results. This can be 
achieved when the prediction probabilities are considered 
at the level of individual subjects, for example, when new, 
unseen patients are tested for diagnostic purposes. 
Furthermore, the discussed probability analysis delivered 
additional evidence that the whole-brain simulation results 
can be useful for complementing empirical data for predic-
tion and classification in clinical research. Consequently, in-
volving the whole-brain dynamical models in the training of 
machine learning models can improve individual prediction, 
which can potentially help a clinician better gauge a diagno-
sis during the examination of individual patients.

Future work

For further studies, other phenotypical properties can be 
used for the behavioural model fitting, for instance, age or 
sex. Of course, cognitive or clinical scores such as the 
Montreal Cognitive Assessment, Mattis dementia rating 
scales and the unified Parkinson’s disease rating scales are 
also applicable. The suggested approach to behavioural 
model fitting is similar to the brain mapping of various be-
havioural or phenotypic measures on the cortical surface 
and can thus be generalized. In other words, we can map 
the parameter space using cognitive or clinical scores, which 
can be referred to as phenotypical mapping on the model 
parameter space like the behavioural model fitting that we 
introduced in the present study.

Summary
We simulated whole-brain resting-state dynamics and calcu-
lated the relationships between structural and functional em-
pirical and simulated connectomes for a variety of conditions 
and data processing, options including brain parcellation 
and temporal filtering of BOLD signals. We introduced the 
behavioural model fitting paradigm and found that the ensu-
ing modelling results can lead to enhanced differentiation of 
disease and control groups and improved classification of 
Parkinsonian patients by machine learning approaches. 
Thus, the involvement of simulated connectomes, especially, 
in combination with empirical ones, is of great advantage, 
where the individual probabilities approach the ideal case 
as compared with the purely empirical feature space. We 
showed that band-pass filtering in the low-frequency band 
can have a beneficial effect on the prediction performance. 
On the other hand, the high-frequencies of the empirical 
and simulated BOLD signals should be considered with care 
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and may not immediately be recommended for subject-level 
classification. In addition, we demonstrated that the predic-
tion performance can differ for different or multiple brain par-
cellation schemes. Our findings can contribute to a better 
understanding of empirical and simulated whole-brain dy-
namics and their relationship to disease. They further suggest 
an avenue for application of the results of whole-brain simu-
lations for cognitive or clinical investigation of inter- 
individual differences and disease diagnosis.
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Supplementary material 
 

Simulated BOLD signals 

The neurovascular coupling describes that the changes of the induced signals  driven by 
the EPSP input link to the changes in the cerebral blood flows (CBF)  as the blood inflow 

,       (1) 

.           (2) 

Equations 1 and 2 govern the dynamics of the induced signal and CBF, respectively. 
Parameters  and  are the rate constants that regulate ultra-slow endogenous fluctuations at 
around 0.09 Hz.1 The normalized neural response, i.e.,  divided by the amplitude  of 
the parameter in the electrical model, drives the induced slow fluctuation. Consequently, CBF 
signals simultaneously influence the changes of the cerebral blood volume (CBV)  and 
deoxyhemoglobin content (DOH)  as described by the following equations: 

,        (3) 

.       (4) 

The mean transit time  scales both differential equations for passing a bolus of the blood 
through the vein. To estimate CBV changes, Equation 3 models a difference between the blood 
inflow  and the blood outflow . Subsequently, we can calculate the changes of 
DOH using the dynamics of CBF and CBV by regarding oxygen extraction fraction  in 
Equation 4. Parameter  is the net oxygen extraction fraction at rest, 

,          (5) 

.         (6) 

Equation 5 provides the relationship between CBF and CBV, where Grubb et al.2 empirically 
found  is 0.38. Equation 6 is a non-linear function of CBF, and describes an effect of CBF on 
the oxygen extraction fraction, see the reference1 for details. Using CBV and DOH, we can 
calculate simulated BOLD signals : 

,      (7) 

where  is the resting blood volume fraction, and parameters , , and  depend on the 
magnetic field strength as follows: 

 , ,  .   (8) 

Parameters , , , and  are the frequency offset for 3 T scanner, the echo time, the ratio 
of intra/extra-vascular signal, and the sensitivity of changes in intra-vascular signal relaxation 
rate with changes in oxygen saturation, respectively.1 The parameter values of the BW model 
for BOLD signals are given in Table 2. 
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Supplementary Figure 1. Examples of (A, C) time courses of the simulated excitatory post-synaptic potentials (EPSP) and 
(B, D) their spectral power distributions of a few brain regions for (A, B) isolated (global coupling = 0) and (C, D) coupled 
cases for the Schaefer atlas. In the latter case, global coupling = 45 and global delay = 0.2 are the optimal model parameters 
of the neuroimaging model fitting. The peaks of the maximal spectral power for the isolated regions in (B) are around 13 Hz. 
The dotted horizontal lines in (C) indicate the maximum EPSP (3.25 mV), which is the specified value as the maximal EPSP 
kernel in Table 2. 

 

 
Supplementary Figure 2. Features and feature conditions used for PD classification. Ten connectivity relationships listed in 
the plot were used during machine-learning training and testing for PD classification as features. To investigate the impact of 
simulated results on the prediction performance, we considered 9 feature conditions as illustrated in the right part of the plot. 
Here, a few features of interest were selected (green bars), while the other features were randomly shuffled across subjects 
(gray bars). Shuffling is done for each feature separately, i.e., shuffling within a feature gives the same distribution of the 
values but randomized feature values across subjects, which destroys the correspondence between the (brain) feature and 
behavioral labels (PD or HC). The shuffled feature is supposed to not contribute to classification performance, but we always 
keep the same number (ten) of features in all feature conditions of the machine-learning experiments. Abbreviations: FC = 
functional connectivity; PD = Parkinson’s disease; SC = streamline count. 
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Supplementary Figure 3. Parameter maps of the effect size of the difference of eSC-sFC correlation values between PD and 
HC subject groups used for the behavioral model fitting. The filtering conditions are indicated in the plots for (A) the Schaefer 
atlas and (B) the Desikan-Killiany atlas. Effect sizes in the ( )-parameter plane were calculated by a non-parametric 
Wilcoxon rank-sum two-tailed test between HC and PD subject groups in the eSC-sFC correlation values for each parameter 
point. (C, D) Distributions of optimal parameters derived from the neuroimaging model fitting (orange, all subjects, n=116) 
and the behavioral model fitting (blue, repeated sub-sampling, n=1000) for (C) the Schaefer atlas and (D) the Desikan-Killiany 
atlas. Abbreviations: PD = Parkinson’s disease; HC = healthy controls; NF = no filtering; BF = broad band ([0.01,0.1] Hz); 
LF = low-frequency band ([0.01,0.05] Hz); HF = high-frequency band ([0.05,0.1] Hz). 

 

 
Supplementary Figure 4. Comparison of connectivity correspondences between HC and PD subject groups as reflected by 
the connectivity relationships of empirical and simulated results for (A-E) the Schaefer atlas and (F-J) the Desikan-Killiany 
atlas for (A, F) the empirical structure-function relationship (eFC vs. eSC), (B, C, G, H) functional (eFC vs. sFC) and structure-
function (eSC vs. sFC) relationships for the neuroimaging model fitting, and (D, E, I, J) connectome relationships (eFC vs. 
sFC and eSC vs. sFC) for the behavioral model fitting. Abbreviations: NF = no filtering; BF = broad band ([0.01,0.1] Hz); LF 
= low-frequency band ([0.01,0.05] Hz); HF = high-frequency band ([0.05,0.1] Hz); FC = functional connectivity; SC = 
streamline count. 
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Supplementary Figure 5. Explained variances (EV, squared correlation r2) between five connectivity relationships for (A) 
the Schaefer atlas and (B) the Desikan-Killiany atlas. The five connectivity relationships are corr(eSC, eFC) (empirical), 
corr(eFC, sFC) (neuroimaging), corr(eSC, sFC) (neuroimaging), corr(eFC, sFC) (behavioral), and corr(eSC, sFC) (behavioral). 
Due to the four considered temporal filtering conditions of NF, BF, LF, and HF indicated in the plots, the intra-/inter-condition 
EVs were obtained using 20 connectivity relationships (see the axes). The green boxes are for the same types of connectivity 
relationships under different filtering conditions. Abbreviations: NF = no filtering; BF = broad band ([0.01,0.1] Hz); LF = low-
frequency band ([0.01,0.05] Hz); HF = high-frequency band ([0.05,0.1] Hz). 

 

 
Supplementary Figure 6. Differences of model performance between training and test sets (Training – Test) for PD prediction 
including all filtering conditions and all features for the (A) Schaefer atlas, (B) Desikan-Killiany atlas, and (C) multiple atlases, 
i.e., the Schaefer and Desikan-Killiany atlases. The considered performance measures are indicated in the plots. The green 
vertical lines indicate zero differences. The positive differences are overfitting cases, and the negative ones are underfitting. 
Abbreviation: AUC = area-under-curve. 
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Supplementary Figure 7. Comparisons of the prediction performance between the feature conditions used for the subject 
classification, see Supplementary Figure 2. The differences in the performance measures are illustrated as box plots for (A-C) 
“All features” versus “Empirical features” (All - Empirical) for the Schaefer, Desikan-Killiany, and multiple (Schaefer and 
Desikan-Killiany) atlases as indicated on the top of the plot (A) and for (D-F) “All features” for the multiple atlases versus 
“All features” for single atlases (All(multiple) – All (single)) as indicated on top of plot (D). The performance measures are 
(A, D) balanced accuracy, (B, E) specificity, and (C, F) AUC of ROC curves. The filtering conditions are given on the 
horizontal axes. The purple boxes depict significantly different performance (Wilcoxon signed-rank two-tail test and 
Bonferroni corrected p < .05). Abbreviations: NF = no filtering; BF = broad band ([0.01,0.1] Hz); LF = low-frequency band 
([0.01,0.05] Hz); HF = high-frequency band ([0.05,0.1] Hz). 
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Supplementary Figure 8. Prediction performance as given by the balanced accuracy, accuracy, specificity, sensitivity, and 
AUC of ROC curves using optimal simulated connectomes (corresponding to the optimal model parameters) from the 
behavioral fitting only (purple) and from the neuroimaging fitting only (green) as additional feature conditions to those 
presented in Supplementary Figure 2 (also depicted here for comparison, see the legend). The error bars indicate interquartile 
ranges, and the heights of bars are the medians. The filtering conditions are indicated in the plots. Abbreviations: NF = no 
filtering; BF = broad band ([0.01,0.1] Hz); LF = low-frequency band ([0.01,0.05] Hz); HF = high-frequency band ([0.05,0.1] 
Hz); SCH = Schaefer; DK = Desikan-Killiany, Emp. = Empirical features, Sim. = Simulated features, All = All features, Neuro. 
= Simulated features from the neuroimaging model fitting only, and Behav. = Simulated features from the behavioral model 
fitting only. 
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Supplementary Figure 9. Summary of the performance of PD classification using the three different feature conditions: 
empirical features (blue bars), simulated features (red bars), and all features (yellow bars) for the balanced subject 
configuration (n=99, Supplementary Table 1) controlled for the balanced age and sex and size of subject groups (HC versus 
PD). (A) Median values of the balanced accuracy, accuracy, sensitivity, specificity and area-under-curve (AUC) of the receiver 
operating characteristics (ROC) curves for all considered parcellations and filtering conditions are shown in each panel. The 
error bars indicate the interquartile range across iterations of the outer loop of the nested cross-validation procedure (see Fig. 
2 in the main text). The black lines connecting two conditions indicate significantly different performance between feature 
conditions. (B) Effect sizes between filtering conditions for each feature condition. The signs ‘<’ and ‘>’ indicate which 
condition is significantly larger than the other. For example, ‘<’ sign for ‘NF-LF’ indicated on the vertical axes means NF < 
LF for a given performance indicated on the horizontal axes. The Wilcoxon signed-rank two-tail test was used for comparisons 
across feature and filtering conditions (Bonferroni corrected statistics). Abbreviations: PD = Parkinson’s disease; NF = no 
filtering; BF = broad band ([0.01,0.1] Hz); LF = low-frequency band ([0.01,0.05] Hz; HF = high-frequency band ([0.05,0.1] 
Hz). 

 

References 
1. Havlicek M, Roebroeck A, Friston K, Gardumi A, Ivanov D, Uludag K. Physiologically 

informed dynamic causal modeling of fMRI data. NeuroImage. 2015;122:355-372. 

2. Grubb RL, Jr., Raichle ME, Eichling JO, Ter-Pogossian MM. The effects of changes in 
PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke. 
1974;5(5):630-639. 



 
93 

5 Discussion 

The main objective of this dissertation is to delineate and investigate the impact of data 

processing on whole-brain dynamical modeling via the systematically planned workflow 

illustrated in Fig. 3. From the results of the three studies in this project, the impact on the 

modeling involves four aspects: data processing parameters, optimal model parameters, 

personalized whole-brain models, and model fitting approaches. Based on these aspects, this 

dissertation formulates whole-brain models as a mathematical or biophysical in silico 

framework for interacting among brain regions via the whole-brain connectome. Subsequently, 

the following sections discuss our findings from the performed studies and address the impact 

of data processing on the whole-brain modeling and its applications. 

5.1 Impact of data processing 

Whole-brain models generate brain dynamics based on empirical data as a backbone of intrinsic 

interactions between brain regions. Whole-brain simulation studies, however, have used study-

specific data processing or one from the literature. Due to no consensus pipeline for MRI data 

processing, various data processing parameters can affect empirical data. Thus, the effect of 

data processing parameters should be carefully tested by systematically prepared experiments. 

Otherwise, empirical data and analyzed results can be less reliable, and subsequently, the 

corresponding conclusions will be less replicable across studies. Therefore, we performed 

simulation experiments with systematically designed conditions based on the current project 

workflow and investigated the impact of MRI data processing parameters on the whole-brain 

dynamical models. 

5.1.1 Impact of structural pipeline on modeling 

In study 1, varying WBT density (the number of streamlines in the WBT) affects whole-brain 

structural architecture, such as SC and their graph theoretical network properties. As mentioned, 

SC is used for whole-brain models, thus using different SCs can affect simulated results. For 

instance, previous studies have shown that manipulating SC edges could result in a better fit for 

model validation (Cabral et al., 2012; Deco et al., 2014; Proix et al., 2016). Because of many 

possible ways of SC variation for the model validation, we should consider data processing 

parameters of the structural pipeline on top of state-of-the-art techniques for WBT calculation 

(Tournier et al., 2019). For example, average path lengths of streamlines between brain regions 

are sensitive to disconnection or re-connection of edges across WBT density conditions rather 
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than streamline counts. Therefore, long-range or interhemispheric connections have relatively 

small numbers of streamlines and can influence the structural connectome while varying WBT 

density. Accordingly, simulated BOLD signals by whole-brain models will differ across applied 

structural pipeline conditions. In addition, the simulated FCs calculated by the simulated BOLD 

signals from the varied WBT density conditions impact whole-brain dynamical modeling. 

In study 1, we suggested that the applicable range of WBT density is 50,000 streamlines as a 

sparse one and 2,000,000 streamlines as a dense one. Some of the considered graph-theoretical 

network properties are highly sensitive to the varied WBT densities in this range. Therefore, 

using different WBT densities can clearly impact model validation because it provides the brain 

network architecture serving as a backbone for the modeling of brain dynamics (Cabral et al., 

2011; Endo et al., 2019; Honey et al., 2009; Zimmermann et al., 2018). Correspondingly, we 

addressed the relationship between graph-theoretical network properties and goodness-of-fit 

(GoF, i.e., similarity between empirical and simulated data) values across varied WBT densities. 

In addition to the impact of the WBT densities, we applied different parcellation schemes for 

the modeling and found that the results have different patterns across the WBT density 

conditions when we use different parcellation schemes. Thus, WBT densities and brain 

parcellation schemes are intermingled as a mutual impact on the modeling. I will discuss this 

in the subsection 5.1.3 later. 

5.1.2 Impact of functional pipeline on modeling 

Data processing parameters in the functional pipeline influence BOLD signals and, accordingly, 

empirical FC will be affected by the different BOLD signals (Caballero-Gaudes and Reynolds, 

2017). For instance, signal processing of BOLD signals has been an issue in neuroimaging 

research for a long time (Boubela et al., 2013; Friston et al., 2000; Vergara et al., 2017; Zuo et 

al., 2010). The literature showed that applying temporal filters with different frequency ranges 

influences empirical BOLD signals and FC for healthy subjects (Baria et al., 2011) and patients 

(Hou et al., 2014; Wee et al., 2012). In study 3, we also observed that temporal filtering with 

different frequency ranges for empirical and simulated BOLD signals influences empirical and 

simulated FC and subsequently impacts model fitting results. Based on the correspondence 

between empirical and simulated data, we trained a prediction model for classification of 

patients with Parkinson’s disease using a machine learning method and observed that the 

prediction performances are clearly different across the temporal filtering conditions. So 

applying the temporal filtering conditions for BOLD signals influences empirical and simulated 

FC simultaneously. Therefore, data processing parameters in the functional pipeline do not only 
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affect empirical FC but also impact the results of whole-brain model fitting. In addition to the 

impact of the functional processing parameters, we applied two parcellation schemes to whole-

brain dynamical modeling and found that the prediction performances are also different across 

parcellation schemes. In consequence, different temporal filtering conditions and brain 

parcellation schemes impact the whole-brain dynamical modeling and the patient classification. 

I will discuss this in the next subsection. 

5.1.3 Impact of parcellation schemes on modeling 

As we reviewed brain parcellation schemes in the recent study (Domhof et al., 2021), various 

parcellation schemes have been published using different criteria and algorithms, such as 

cytoarchitectures regarding cell distribution (Pijnenburg et al., 2021; Scholtens et al., 2018), 

structural architectures based on gyri- or sulci-formation in the neocortex (Desikan et al., 2006; 

Destrieux et al., 2010; Tzourio-Mazoyer et al., 2002), and functional analyses of resting-state 

or task-driven functional MRI (Craddock et al., 2012; Schaefer et al., 2018; Shen et al., 2013; 

Urchs et al., 2019). However, choosing an optimal parcellation scheme is still under debate, 

and it can be study-dependent in considering research methods and questions.  

In study 1, we used two parcellation schemes and found the mutual impact on the model 

validation in two factors: WBT densities and parcellation schemes. With the 12 configurations 

of conditions (6 WBT densities and 2 parcellation schemes), whole-brain dynamical modeling 

resulted in different maximal GoF profiles across WBT density conditions for each parcellation 

scheme. One remarkable observation is that the cortical parcellation exhibits differentiable 

modeling behavior across subjects, such as subject stratification in study 1 and parcellation-

induced variation at group and subject level summarized by our recent study (Domhof et al., 

2021). Consequently, we infer that individual subjects can have different results of whole-brain 

dynamical modeling when disparate brain parcellation schemes are used for data processing. 

In study 2, we also used three parcellation schemes with varied region-granularity (the number 

of parcels of the neocortex) and region-probability conditions (different region sizes with the 

same number of parcels). We observed that using disparate parcellation schemes provides 

different results of whole-brain dynamical model fitting because the brain parcellation is used 

to calculate empirical FC and SC. In other words, parcellation schemes are not only related with 

empirical data, but also simultaneously influencing simulated FC derived by the whole-brain 

models that employed empirical data as a backbone. Therefore, it is difficult to understand how 

brain parcellation schemes impact whole-brain dynamical modeling. For instance, our findings 
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in study 2, which was focusing on the impact of varying parcellation schemes, showed different 

relationships between data variables of empirical connectome (FC and SC) and maximal GoF 

values across individuals, i.e., inter-subject variability. Besides, the results also showed 

different correspondences of maximal GoF values between the empirical data variables and 

brain parcellation families, i.e., inter-parcellation variability. Although this dissertation does 

not assert which parcellation scheme is generally optimal for whole-brain dynamical modeling 

in the data-driven approach, these findings support the argument about the impact of data 

processing of using different parcellation schemes on whole-brain dynamical modeling. 

5.2 Optimal model parameters in data processing and analyses 

Optimizing parameters of whole-brain models means searching for parameter values in the 

parameter space (free parameters) corresponding to the model that gives the maximal GoF value 

(or the minimal value of a loss function) against empirical data. Simulated data derived by the 

optimal model can provide properties of whole-brain dynamics complying with the applied 

model fitting (or applied objective function). Therefore, optimal model parameters can be 

different when we consider various model fitting approaches, for instance, similarity between 

simulated FC and empirical FC and similarity between simulated FC and empirical SC. With 

this, whole-brain models with different optimal parameters can represent different dynamics of 

simulated data depending on the applied model fitting. In the three studies of this thesis, we 

considered a couple of model fitting approaches for whole-brain modeling and investigated 

optimal model parameters in each case. 

5.2.1 Optimal delay plays a role in varied tractography densities 

In the literature of computational neuroscience, some researchers used whole-brain models 

without delay in coupling for ultraslow BOLD dynamics (Deco et al., 2019; Ponce-Alvarez et 

al., 2015). In study 1, we employed free parameters of delayed coupling between regions based 

on empirical path lengths (the anatomical white-matter path lengths of streamlines between 

brain regions) for the Kuramoto model (Kuramoto, 1984; Yeung and Strogatz, 1999) and 

performed whole-brain dynamical modeling to find optimal couplings and delays. As a result, 

whole-brain models with the optimal parameters (couplings and non-zero delays) exhibited 

enhanced GoF values compared to the models with zero delays. Although structural architecture 

showed similar tendencies of the graph-theoretical network properties across varied WBT 

densities, the distributions of optimal delays differently behave when we use disparate 

parcellation schemes via the model fitting to the empirical SC, i.e., searching for the maximal 
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correspondence between empirical SC and simulated FC. Furthermore, the optimal model 

parameters based on the different model fitting approaches can also play roles in distinct 

behaviors between the two parcellation schemes. Consequently, varying WBT density can 

reveal the changing distributions of optimal delays in whole-brain dynamical modeling. 

In addition to the impact of varying WBT density on the distributions of optimal delays, the 

optimal parameter values can also be related with apparent criteria for subject stratification. For 

instance, stratified subjects based on different patterns of optimal delays showed discrete 

maximal GoF values between the two distributions of optimal delays across WBT densities, 

i.e., small delays (nearly zero) and large delays. Furthermore, we also observed that the optimal 

delays have negative correlations with natural frequencies of oscillators corresponding to the 

maximal spectral peaks (the most dominant frequency) of empirical BOLD signals of each 

region. Therefore, the optimal signal propagation speeds of the model can be regulated by the 

mean intrinsic temporal frequencies of oscillators of the brain regions. Consequently, structural 

data processing parameters does not impact only optimal parameters but also reveals 

relationships between subject stratification and whole-brain dynamical modeling. 

5.2.2 Optimal parameter distributions in whole-brain models 

In study 2, we also observed similar distributions of optimal model parameter points when we 

use various parcellation schemes for whole-brain dynamical modeling using the model fitting 

to empirical SC, and besides, we used two different whole-brain models, i.e., a coupled phase 

oscillator model (Kuramoto, 1984; Yeung and Strogatz, 1999) and a coupled generic limit-cycle 

oscillator model (Kuznetsov et al., 1998). As a result, by using the both models, we found that 

the optimal model parameter points distribute in similar locations on the parameter space across 

two model conditions (the phase oscillators and the generic limit-cycle oscillators) and different 

parcellation schemes with regional granularity or region-probability conditions. On the other 

hand, in study 3, we observed that optimal model parameter points corresponding to the 

maximal GoF values were located in different hot spots from the results in studies 1 and 2 when 

we applied a convolution-based (critically damped oscillators) two-population model (Jansen 

and Rit, 1995; Lopes da Silva et al., 1974) for electrical neural responses. Moreover, the optimal 

model parameters were located in a range where optimal delays are biologically feasible 

(Caminiti et al., 2013). On the contrary, the other two models in the published studies 1 and 2 

showed that the distributions of optimal model parameter values were almost zero delays via 

the same model fitting approach, i.e., the model fitting to empirical FC. As a consequence of 

the results, these studies of the thesis show a manifest effect of that using different whole-brain 
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models can influence model-fitting results showing different distributions of optimal model 

parameter points in whole-brain dynamical modeling. In addition, disparate whole-brain 

models of mathematical or biophysical neural updates can result in different landscapes of 

model-fitting values across data processing parameters. Consequently, using different types of 

whole-brain models allows us to investigate the impact of data processing parameters on whole-

brain dynamical modeling. 

5.2.3 Exploring parameters with model fitting approaches 

Exploring a given free parameter space with several model fitting approaches can also provide 

a way to reveal effective and latent simulated results for answering research questions. In light 

of the unlimited number of whole-brain models with free parameters, exploring a landscape of 

model-fitting values using different objective functions allows us to investigate the impact of 

data processing parameters on whole-brain dynamical modeling in more details. For instance, 

one model parameter point can be optimal in terms of revealing a pronounced difference 

between subject groups, and another distinct parameter point can disclose relationships (e.g., 

correlation) between simulated data and behavioral measures. With this, we can also apply 

varied data processing parameters for whole-brain dynamical modeling, and subsequently 

simulated results can be influenced by the data processing conditions. By doing so, we can 

show how the whole-brain dynamical modeling can be affected by varying data processing 

parameters regarding model fitting approaches, which can reveal relationships between 

simulated data and objective functions connected with research questions. 

In study 3, we reported that optimal model parameter points were distributed in different areas 

on the applied parameter space when we introduced a new model fitting approach compared to 

the model fitting that we used in studies 1 and 2. The new model fitting searches for optimal 

model parameter values corresponding to the maximal difference between healthy subjects and 

patients with Parkinson’s disease. In addition to the different distributions of optimal model 

parameter points, we found that using different parcellation schemes for whole-brain dynamical 

modeling affects the distributions. With this, we showed that the simulated result derived by 

the new model fitting leads to a better performance for patient classification. At the same time, 

we also reported that the data processing parameters impact the classification performance. 

Thus, we addressed that whole-brain dynamical modeling can exhibit different simulated 

results via varying model fitting approaches with different objective functions. Furthermore, 

we illustrated how simulated results can be utilized by varying data processing parameters.  
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5.3 Personalized whole-brain modeling 

In the previous sections, we discussed the impact of data processing on whole-brain modeling. 

An intriguing point we have observed is that varying data processing parameters did not induce 

the same inter-subject changes of simulated results in whole-brain dynamical modeling. In other 

words, introducing data processing parameter conditions induces different simulated results 

across subjects (inter-subject variability). Therefore, we can consider individualized optimal 

data processing configurations, which give the best model fitting values for each subject. The 

optimal data processing configuration, here, can be a personalized data processing for whole-

brain dynamical modeling. In this section, we discuss the impact of data processing on inter-

individual variability of model fitting as personalized modeling and show an example of clinical 

applications. 

In study 1, we reported the impact of varying WBT density on whole-brain modeling. We found 

that subjects can be stratified via the following three criteria from data processing and model 

fitting, and subsequently, the major subgroups throughout the stratification showed different 

simulation results. First, the relationship between graph-theoretical network properties of 

structural connectome in varied WBT densities allows us to split subjects into two groups that 

are showing positive or negative correlations with the maximal GoF values. Second, we split 

subjects into two groups based on the optimal delay profiles across WBT density conditions. 

Third, we also split subjects into two groups that are showing positive or negative slopes of 

maximal GoF values across WBT density conditions. With these criteria, we demonstrated that 

the three steps with regard to the criteria for whole-brain dynamical modeling can involve the 

impact of data processing in subject-specific manners. 

In study 2, we also discussed inter-subject variability through varied parcellation schemes based 

on relationships between maximal GoF values and empirical data variables. Furthermore, the 

multiple linear regression showed that the empirical data variables are correlated with the 

maximal GoF values of individuals. Although the results of the multiple linear regression of 

empirical data variables estimated the maximal GoF values, in contrast, the contribution of the 

empirical data variables was various in the results of each parcellation scheme. These results 

clearly showed that choosing a parcellation scheme is crucial for inter-subject variability. 

As a clinical application, in study 3, we varied functional data processing (different temporal 

filters for empirical and simulated BOLD signals) with two parcellation schemes. With this, we 

investigated the impact of the functional data processing on whole-brain dynamical modeling 
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for patient classification of Parkinson’s disease. We examined classification performances 

derived from the considered data processing conditions and showed that the performances 

differed across the data processing conditions, i.e., temporal filtering and parcellation scheme 

conditions. Furthermore, we suggested that the low-frequency bandpass filtering with multiple 

parcellation schemes could be an advisable conditional configuration of whole-brain dynamical 

modeling for classification of patients with Parkinson’s disease. Therefore, we assert that data 

processing should be optimally configured for a better performance because data processing 

impacts inter-subject variability, which induces different prediction performances. 

5.4 Utilizing model fitting approaches for further analysis 

Whole-brain simulation results in different dynamics across model parameters. In particular, 

we observed that some ranges in a free parameter space depict apparent changes of model fitting 

results when model parameters vary. Usually, one model fitting searches for the optimal model 

parameter point in the parameter space as a single point. For instance, the neuroimaging model 

fitting searches for the optimal parameters corresponding to the maximal GoF value, i.e., the 

maximal similarity between empirical and simulated connectomes. This is a well-established 

model fitting in the literature (Deco et al., 2015; Honey et al., 2009; Naskar et al., 2021). 

However, whole-brain dynamical models with non-optimal model parameter points can also 

reveal additional traits with different model fitting approaches for answering research questions. 

For instance, when we use different objectives for whole-brain model fitting, it can show 

different model parameter values as optimal ones. In studies 1 and 2, we have already shown 

that different model fitting methods, i.e., similarity between empirical FC and simulated FC 

and similarity between empirical SC and simulated FC, have different distributions of optimal 

model parameters. Based on the subject-stratification results using the two neuroimaging model 

fitting approaches in study 1, we suggested that applying multiple model-fitting methods can 

be possible metrics to utilize whole-brain dynamical modeling. This way can also contribute to 

a better understanding of whole-brain model fitting for personalized modeling. In other words, 

we can utilize model fitting approaches for further analysis. 

In study 3, we used the neuroimaging model fitting methods for the maximal correspondence 

between empirical and simulated data. In addition, we introduced a novel model fitting 

approach, termed behavioral model fitting, which searches for the optimal model parameter 

points corresponding to the maximal group difference between healthy subjects and patients 

with Parkinson’s disease. Through this, we again explored the parameter space and found 

optimal points corresponding to the connectome relationships, which effectively answer the 
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research question that we had, i.e., which model (parameter points) can show the largest effect 

size for the group difference between healthy subjects and patients. As reported in study 3, we 

found two hotspots of densely located optimal model parameters, where either neuroimaging 

or behavioral model fitting is the most effective, although these hotspots did not coincide. 

Therefore, we suggested that applying a proper model fitting approach allows us to find the 

optimal parameters of whole-brain models for answering research questions. Consequently, we 

used simulation data derived by whole-brain models with the optimal parameters to improve 

the classification of patients with Parkinson’s disease. 

The concept of the behavioral model fitting has a great potential for further applications. For 

example, demographical or phenotypical properties can be used for this method, such as age, 

sex, or group difference of cohorts. Of course, cognitive or clinical measures such as the 

Montreal cognitive assessment, Mattis dementia rating scales, the unified Parkinson’s disease 

rating scales are also applicable to search for the optimal model parameter points corresponding 

to the strongest relationship with simulated results. The suggested concept of the model fitting 

approach is similar to the brain mapping of various behavioral or phenotypical measures on the 

cortical surfaces (Glasser et al., 2016; Huth et al., 2016; Raichle, 2009) and can thus be 

generalized. Consequently, we can map the parameter space using cognitive or clinical scores, 

which can be referred to as phenotypical mapping on the model parameter space like the 

behavioral model fitting of the group difference that we scrutinized in study 3. 

5.5 Conclusion 

The thesis aims to disclose the impact of data processing on whole-brain dynamical modeling. 

Due to the lack of ground truth of the human brain, neuroimaging studies of MRI have been 

using a pipeline with study-specific data processing parameters for a given research question 

or those from the literature, which has no consensus among studies. Therefore, I proposed the 

study workflow of an MRI processing pipeline which is able to fully control data processing 

parameters that can influence the empirical whole-brain connectome. With this, the hypothesis 

here is that varying data processing parameters impact whole-brain dynamical modeling. In this 

project, I verified the hypothesis by showing that conditional data processing with varied 

parameter values impacts the results of whole-brain dynamical modeling. Accordingly, the 

three performed simulation experiments in this dissertation delineate the proof of the concepts 

of this assertion.  
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The three studies in the dissertation focused on experimental conditions including structural 

data processing, functional data processing, and model fitting approach. Furthermore, the 

effects of these conditions can also intermingle because they are not independent but implanted 

in the pipeline. In other words, to generalize the impact of data processing on the whole-brain 

dynamical modeling, we should consider configurations of the conditions, which cover all 

possible cases for data-driven approaches. At the same time, empirical and simulated results 

across experimental conditions can differ. Moreover, the simulated results showed inconsistent 

relationships via different model fitting approaches. For instance, GoF values or effect sizes of 

group differences showed different landscapes across data processing conditions, such as the 

varied WBT densities, temporal filters for BOLD signals, and brain parcellation schemes. 

We can further infer that the data-driven approach provides subject-specific features across data 

processing conditions and individual subjects, which implies inter-individual variability via the 

whole-brain dynamical modeling. If we use the same data processing parameters for the entire 

cohort of subjects, the optimal model parameter points can be found by a model fitting. Then, 

the optimal model parameters can represent subject-specific variability. Furthermore, by using 

different (or optimal) data processing configurations doing likewise in this project, we can also 

enhance the subject-specific variability. Therefore, optimizing data processing parameters also 

means that inter-individual variability goes to personalized whole-brain modeling. In other 

words, to have the best fitting, each subject might need a subject-specific data processing as a 

personalized pipeline. Hence, we can apply this attribute for subject stratification or subject 

classification, as we showed in the published studies. Remarkably, the impacts of data 

processing evidently differed across parcellation conditions. Thus, we should always consider 

the impact of parcellation schemes that can make the inter-individual variability more 

complicated. It does not mean that we need the best brain parcellation scheme, but we can 

optimize a way of using parcellation schemes. For instance, we demonstrated in study 3 that 

using multiple parcellation schemes provides complementing features of inter-individual 

variability from each parcellation scheme. 

Exploring a free parameter space for whole-brain dynamical modeling can provide a potential 

way to answer research questions via using phenotypic or cognitive measures for model fitting. 

Utilizing model fitting also allows us to investigate latent entities of whole-brain models via 

model fitting with varying hidden model parameters. Then, we can delineate relationships 

between the optimal hidden parameters and results of model fitting, which can be applied to 

any kind of measures. Besides, the free parameter space has unlimited sizes. Thus, we should 
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apply a systematic approach for whole-brain dynamical modeling. With varied data processing 

and their impacts on the simulation results, this dissertation outlines the systematic data-driven 

approach for whole-brain dynamical modeling. Conclusively, we can contribute to a better 

understanding of the human brain and develop an advanced model for further applications. 
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