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Overview

The False Discovery Rate (FDR) is a rather young paradigm in controlling errors of a multiple test

procedure. Especially in the context of genetics and microarray analyses, the FDR has become

a very popular error control criterion over the last decade, becauseit is less restrictive than the

classical Family Wise Error Rate (FWER). This is especially important since in several of today’s

application fields like genome-wide association (GWA) studies, sometimes ten thousands or even

some hundred thousands of hypotheses have to be tested simultaneously and the analyses (at least

at a first stage) have mainly explorative character so that in this stage of the analysis one is of-

ten more interested in getting some significances than in avoiding a few false ones. Instead of

controlling the probability of making at least one false rejection, the FDR controls theexpected

proportionof falsely rejected (true) null hypotheses among all rejections. Due to the massive mul-

tiplicity of some of the current applications, asymptotic considerations become more and more

relevant. Therefore, in this work special focus will be laid on the asymptoticbehaviour of the

False Discovery Rate with the numbern of hypotheses tending to infinity. Other applications in-

clude astronomy (cf., e. g., [176]) and proteomics, cf. Application 2.4.

The remainder of this work is organized as follows. In Chapter 1, some theoretical foundations

will be presented, including a formal definition of the FDR. Most of the results in that chapter

are already known so that it has a repetitious character. Furthermore, some notational aspects are

covered.

Chapter 2 then deals with a popular FDR controlling multiple test procedure, namely the linear

step-up procedure based on Simes’ critical values introduced in the pioneering article by Ben-

jamini and Hochberg from 1995, see [13]. Since it is well known that this method controls the

FDR for positively dependent test statistics being at hand, we study its asymptotic conservative-

ness in some special distributional situations.

In Chapter 3 we present and investigate a new rejection curve designed toasymptotically exhaust

the whole FDR levelα under some extreme parameter configurations.
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Besides these theoretical considerations, we will apply some of the test procedures presented in

Chapters 2 and 3 to real life data and investigate FDR "at work".

Chapter 4 contains a systematic (numerical) comparison of some recently developed test proce-

dures which aim at improving the linear step-up procedure. Under various distributional settings,

we investigate their behaviour with respect to type I error and power. Thisallows us to discuss

assets and drawbacks of each of the considered procedures.

In Chapter 5, finally, our results will be summarized and we give an outlook on some pursuing

issues.

Some numerical computations and computer simulations referring to the theoretical results in

Chapters 2 and 3 are presented in the Appendix. Moreover, we briefly discuss some notions of

positive dependency there.

The research that has lead to this work has been part of the first periodof a research project

sponsored by the Deutsche Forschungsgemeinschaft (DFG), grantNo. FI 524/3-1, under the re-

sponsibility of my advisor Helmut Finner and of Prof. Guido Giani. In the application to this grant,

the aims of Chapters 2 and 3 have already been formulated and parts of the elaborations in these

chapters are joint work with Helmut Finner and Markus Roters as well. Main results of Chapter

2 are pre-published in [86] and [88]. An article containing the main results of Chapter 3 has been

accepted for publication, see [87]. I am grateful to the DFG for financing my tenure at the German

Diabetes Center from July 2005 to April 2007 and to Helmut Finner for providing me with the

interesting topics and for some valuable preliminary notes from his treasure chest.
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Chapter 1

Introduction

1.1 Multiple testing and False Discovery Rate

The goal of multiple testing consists of testingn > 1 hypotheses simultaneously and controlling

some kind of overall error rate. The most conservative and highly intuitive method is controlling

the Family Wise Error Rate (FWER) in the strong sense. The Family Wise Error isdefined as the

event that at least one false rejection among then individual tests is performed and the FWER (in

the strong sense) for a multiple test procedureϕ = (ϕ1, . . . , ϕn) is the probability for the latter

event and it can therefore loosely by defined as

FWERn(ϕ) = P (∃ 1 ≤ i ≤ n : {ϕi = 1 andHi is true}) . (1.1)

There also exists a definition of the FWER in theweak senseaiming at error control under the

global hypothesis that alln null hypotheses are true. However, we only consider the FWER in the

strong sense here. A rather simple and naive method for controlling the FWER is the Bonferroni

procedure, where each individual testϕi is carried out at levelαi = α/n. Due to subadditivity,

we immediately get the FWER-controlling property of the Bonferroni method, because of

FWERn(ϕ) ≤
n∑

k=1

αk,

with αk denoting the individual level forϕk. The disadvantage of the Bonferroni method is that

these individual levels become extremely small for a large number of hypothesesn at hand which

results in a very low power of the Bonferroni method for largen. Therefore, many improvements

of the Bonferroni method have been developed. The maybe most advanced method towards con-

structing a multiple levelα-test consists in the so-calledpartitioning principledeveloped by Finner

and Straßburger, see [94].

It shall be mentioned here that a multiple test procedureϕ = (ϕ1, . . . , ϕn) which controls the

3



4 1.1. MULTIPLE TESTING AND FALSE DISCOVERY RATE

FWER at a pre-specified levelα can also be used to perform a levelα-test for the global intersec-

tion hypothesisH0 =
⋂n

i=1Hi (assumingH0 6= ∅). We simply rejectH0 iff there exists an index

1 ≤ k ≤ n with ϕk = 1. The type I error controlling property of this test method is immediate

if we keep in mind thatϕ has the property that the right-hand side of (1.1) is bounded byα. If

the testϕ is constructed according to the Bonferroni method, the corresponding intersection hy-

pothesis testψ (say) simply becomesψ = 1{p1:n≤α/n}, wherep1:n denotes the smallestp-value,

cf. Section 1.2. One improvement with respect to power has been developed by Simes, cf. [264],

for independentp-values. We mention it here because its critical values will be used in a different

context later. Simes’ method is described in Algorithm 2.1 at the beginning of Chapter 2.

A more radical approach towards gaining of power in a multiple testing problemis relaxation of

the underlying error measure. Especially for large values ofn, controlling the FWER may be a

much too conservative goal, especially if we consider a screening experiment where it is more

important to get some significances than to avoid a few false ones. A more liberal and nowadays

widely used error measure in the latter situation is the False Discovery Rate (FDR). In contrast

to the FWER, not the probability of performing at least one false rejection is controlled, but the

expected proportionof falsely rejected hypotheses with regard to all rejected hypotheses. Inorder

to formalize this task, we need some notation.

Definition 1.1

Let (Ω,A, {Pϑ : ϑ ∈ Θ}) denote a statistical experiment andNn = {1, . . . , n} ⊂ N. Let

ϕ = (ϕ1, . . . , ϕn) be a multiple test procedure for the family(H1, . . . , Hn) of hypotheses with

∅ 6= Hi ⊂ Θ for all i ∈ Nn. A hypothesisHk, k ∈ Nn, is called true ifϑ ∈ Hk and false

otherwise. Then we define

Rn(ϕ) = |{i ∈ Nn : ϕi = 1}|, (1.2)

Vn(ϕ) = |{i ∈ Nn : ϕi = 1 and Hi is true}|, (1.3)

FDRn(ϕ) = Eϑ

(
Vn(ϕ)

Rn(ϕ) ∨ 1

)
, (1.4)

and say thatϕ controls the FDR at a pre-chosen level of significanceα ∈ (0, 1) iff

sup
ϑ∈Θ

FDRn(ϕ) ≤ α.

The ratioVn(ϕ)/[Rn(ϕ) ∨ 1] is called the false discovery proportion (FDP).

If it is clear which procedureϕ is investigated, the argumentϕ is often dropped and we simply

writeVn = Vn(ϕ) andRn = Rn(ϕ). The meaning of the quantitiesVn andRn is illustrated in the

following table.

False Discovery Rate and Asymptotics, Thorsten Dickhaus



CHAPTER 1. INTRODUCTION 5

Test decision

Hypothesis 0 1

true Un Vn n0

false Tn Sn n1

n−Rn Rn n

Table 1.1: Quantities in a multiple test procedure

It is important to notice thatVn is unobservable, because it contains information about the validity

of the hypotheses in the family. Another measurement of type I errors is theexpected error rate

(EER), which will be considered in Chapter 2 together with the FDR. It is sometimes also called

per comparison error rate(PCER) and is defined as the expected proportion of type I errors with

regard to the size of the family of hypotheses, as formalized in the following definition.

Definition 1.2 (Expected Error Rate)

For givenϑ ∈ Θ, we define the expected error rate (EER) of a multiple test procedureϕ by

EERn(ϕ) = Eϑ

[
Vn(ϕ)

n

]
.

Moreover, in a multiple test problem type I errors and type II errors (counted byTn in the nomen-

clature introduced in Table 1.1) can occur simultaneously. Subject to type I error rate control

(measured by the FWER or the FDR, for example), it may also be worthy to introduce a mea-

surement formultiple powerin order to compare different (e. g., FDR-controlling) test procedures

with each other. In the literature, there is no common agreement on how to define multiple power.

One possibility that is frequently encountered in the literature (cf., e. g., [43]) is to define the

power of a multiple testϕ as the expected proportion of false hypotheses that can be rejected with

ϕ, formally expressed in the following definition.

Definition 1.3 (Multiple power)

For givenϑ ∈ Θ, we define the quantity

β̄ϑ(ϕ) = Eϑ

[
Sn(ϕ)

n1 ∨ 1

]

as power of a multiple test procedureϕ.

We will use this power definition throughout this work, although we are aware of the fact that

it has weaknesses. Especially, Definition 1.3 does not take into accounthow falsethe rejected

false hypotheses are, i.e., how far the corresponding alternative parameters are away from the null

parameters. Establishing a power definition based on the latter considerations would offer the

possibility to measure the "statistical resolution" ofϕ which is interesting as well.

False Discovery Rate and Asymptotics, Thorsten Dickhaus



6 1.1. MULTIPLE TESTING AND FALSE DISCOVERY RATE

The following two short remarks establish a well known connection betweenthe FDR and the

FWER.

Remark 1.4

Definition (1.4) can equivalently be expressed as

FDRn(ϕ) = Eϑ

(
Vn(ϕ)

Rn(ϕ)
| Rn(ϕ) > 0

)
· Pϑ(Rn(ϕ) > 0).

Remark 1.5

If all hypotheses are true, it holds:

FDRn(ϕ) = Pϑ(Rn(ϕ) > 0) = Pϑ(Vn(ϕ) > 0) = FWERn(ϕ).

In general, we have thatVn(ϕ)/[Rn(ϕ) ∨ 1] ≤ 1{Vn(ϕ)>0} and therefore it holds

FDRn(ϕ) = Eϑ

(
Vn(ϕ)

Rn(ϕ) ∨ 1

)
≤ Eϑ

(
1{Vn(ϕ)>0}

)
= FWERn(ϕ).

Starting in 1995 with the famous article by Benjamini and Hochberg ([13]), over the last decade a

variety of FDR-controlling procedures has been developed, although the general idea for applying

this error measure is older. Since the defining equation (1.4) is a highly complicated construct,

proofs of FDR-control of a certain multiple test procedure often are technically cumbersome and

partly need strong assumptions about the dependency structure of the underlying test statistics.

In the next chapter, we focus on the well known and widely spread linearstep-up procedureϕLSU

based on Simes’ critical values originally proposed in [13] and study some itsproperties in detail.

Before doing so, we will finish our introductory comments with a short survey of some recent

developments in the rapidly growing field of FDR-research which has become one of the leading

research topics in (bio-)statistics and (bio-)informatics in the past few years. As said before, due to

the rising complexity and massive multiplicity encountered especially in genomics and cosmologic

applications, asymptotic FDR-considerations with the number of tests growing toinfinity have

attracted special attendance. Early valuable convergence investigationswith respect to the number

of type I errors can be found in [91] and [92] for independent test statistics. Initiated by the

work of John D. Storey (cf. [271], [272], [273], [275]), procedures relying on estimation of the

proportion of true null hypotheses have recently received particular attention. Although not much

discussed yet, such test procedures can behave very conservatively in certain situations like in

discrete models or in case of composite null hypotheses. We will explain and study this further in

Section 3.8 and in Chapter 4.

Another data-adaptive approach consists of multi-stage testing. On the onehand, such a strategy

can be utilized to use the number of rejections in the first step of the procedure as an estimate for

the number of true null hypotheses in the following stages (cf, e. g., [15]), on the other hand, it is

False Discovery Rate and Asymptotics, Thorsten Dickhaus



CHAPTER 1. INTRODUCTION 7

possible to reduce the complexity of the test problem iteratively in order to increase the power for

each remaining individual test in each step (cf. [323]). Moreover,empirical Bayesapproaches are

discussed in order to estimate the posterior probability for the validity of a specific null hypothesis

given itsp-value (for a definition of thep-value, see Section 1.2 below). These estimation tech-

niques are known aslocal fdr-theory (cf., e.g., [23], [69], [72], [73], [75]). Bayesian criterions

for comparing the quality of FDR-controlling test procedures can be found in [102] and [103], for

example.

For dependent test statistics, only few results concerning FDR-controlare available yet. Decisive

for models with positive dependency (see Appendix B) assumptions were the works of S. K. Sarkar

(especially [237]) and Benjamini and Yekutieli (see [17]), which proved the conservativity ofϕLSU

under certain assumptions independently from each other. The FDR-behavior of the linear step-up

procedure for certain kinds of exchangeable test statistics will be the topicof Chapter 2. If positive

dependency cannot be assumed and / or if there is insufficient knowledge about the distribution of

the test statistics, up to now resampling techniques are often used to simulate this distribution (cf.

[67], [68], [297]) under the null hypotheses.

1.2 The concept ofp-values

Instead of explicitly carrying out a particular statistical test, statistical software systems often re-

port so-calledp-values, because they do not depend on a pre-defined significance level. These

p-values are sometimes referred to asobservedlevels of significance. To formalize how we un-

derstand ap-value, consider again a statistical experiment(Ω,A, {Pϑ : ϑ ∈ Θ}) and assume

we have a testϕ for the pair of hypothesesH0 versusH1 concerning the parameterϑ ∈ Θ

relying on a test statisticT = T (X1, . . . , Xk), where theXi, i = 1, . . . , k, are i.i.d. Pϑ-

distributed random variables mappingΩ onto R, representing the experiment. For given real-

izations(x1, . . . , xk) in a sample of sizek, the correspondingp-value denotes the smallest level of

significanceαmin(x1, . . . , xk), for which the null hypothesis is rejected given the actual observed

data. If we denote the rejection region ofϕ for a given levelα with Γα, then thep-value for the

realizationsx = (x1, . . . , xk) computes as

p(ϕ, x) = inf
{Γα: T (x) ∈ Γα}

P
∗(T ∈ Γα),

whereP∗ is chosen such thatP∗(T ∈ Γα) = supϑ∈H0
Pϑ(T ∈ Γα) if H0 consists of more than one

element. Often, a unique measureP∗ yielding the aforementioned supremum exists; e. g., ifϑ is a

location parameter and the test problem is of the structureH0 : {ϑ ≤ ϑ0} versusH1 : {ϑ > ϑ0},

we typically haveP∗ = Pϑ0 . If especially the test statisticT tends to larger values under the

alternative and the testϕ is of the formϕ(X1, . . . , Xk) = 1[c,∞)(T (X1, . . . , Xk)), the definition

False Discovery Rate and Asymptotics, Thorsten Dickhaus



8 1.2. THE CONCEPT OFP -VALUES

of thep-value given above simplifies to

p(ϕ, x) = P
∗(T ≥ T (x1, . . . , xk)).

Obviously, this is the probability under the null hypothesis of the event that the test statisticT

has a value that is not more likely forH0 than the valueT (x1, . . . , xk) for the actually observed

realizations and therefore indeed equals the smallest level of significancewhich leads to rejection

of H0 in case of having observed(x1, . . . , xk).

It is also possible to comprehend thep-values themselves as random entities (cf., e. g., [234]). If

we again assumeϕ(X1, . . . , Xk) = 1[c,∞)(T (X1, . . . , Xk)), the tuple of datax = (x1, . . . , xk)

in this interpretation is assigned to the probability of the test statisticT exceeding the fixed deter-

ministic valueT (x1, . . . , xk). The formal description

x = (x1, . . . , xk) 7→ p(ϕ, x) = P
∗(T ≥ T (x1, . . . , xk)) = 1 − FP∗(T (x1, . . . , xk))

together with the principle of quantile transformation yields immediately, that the random entity

p(ϕ, x) in this consideration is uniformly distributed on the interval[0, 1] under the null hypothe-

sis, if P∗ is continuous andH0 consists of only one element. This statement means reworded, that

the number of rejections of a levelα-test averagesα · 100% of the performations, if always the

circumstances of the null hypothesis are at hand.

The latter consideration becomes a deeper meaning in a multiple testing procedure with many (say

n) hypotheses to be tested. If we have drawn samples for each individualtest problem, it is pos-

sible to compute the correspondingp-values and their ecdf.Fn(·) (say). If the graph ofFn then

significantly deviates from the bisecting line on the unit interval, this can give information about

how many of then hypotheses are wrong. Moreover, many multiple test procedures are defined in

terms ofp-values.

In case thatP∗ is a discrete probability measure orH0 is a composite null hypothesis, we obtain

thatp(ϕ, x) underH0 is stochastically larger than a UNI[0, 1]-distributed random variable.

Remark 1.6 (Multiple test procedures in terms ofp-values)

Consider a multiple test procedureϕ consisting ofn one-sided testsϕi(Ti) = 1[ci,∞)(Ti) for

i = 1, . . . , n with test statisticsTi, i = 1, . . . , n which are i.i.d. with continuous cdf.FT under the

null hypotheses. Thenϕ can equivalently be expressed byn one-sided testsϕ′
i(Pi) = 1(0,αi](Pi)

for i = 1, . . . , n in terms of the correspondingp-valuesPi (regarded as random entities with cdf.

FP and therefore written with capital letter here) and critical valuesα1, . . . , αn, iff the following

condition holds:

P(T1 ≥ ci) = 1 − FT (ci) = FP (αi) = P(P1 ≤ αi) for all i = 1, . . . , n. (1.5)

Therefore, the modeling of the underlying distributional situation can be done either byFT or by

FP . Since many multiple test procedures are defined in terms ofp-values, it is sometimes useful

False Discovery Rate and Asymptotics, Thorsten Dickhaus



CHAPTER 1. INTRODUCTION 9

not to model the distribution of the test statistics, but the distribution of thep-values. Moreover,

expressing the test problem in terms ofp-values has the advantage that this makes it independent

of the scale of the original test statistics sincep-values always have support[0, 1].

1.2.1 p-value adjustment for multiplicity

In a multiple testing context, it may be considered as appropriate not only to report an observed

level of significance for each particular hypothesis separately without taking the multiplicity into

account, but to provide a per-hypothesis observed significance levelwith regard to a multiple error

measure. This can be done by finding a suitableadjustmentto apply to the original (sometimes

called raw)p-values in that way that thei-th adjustedp-valuep(adj)
i has the property that for a given

overall level of significanceα it holds

p(adj)
i < α is equivalent toi-th hypothesis can be rejected

while keeping an underlying overall error rate. For example, the Bonferroni-adjustedp-value

p(Bonf.-adj.)
i (say) for hypothesisHi is simply given byp(Bonf.-adj.)

i = n · pi, wherepi denotes thei-th raw

p-value. If thenp(Bonf.-adj.)
i < α, hypothesisHi can be rejected while keeping the FWER. The dual

problem consists of finding adjusted critical values for the underlying teststatistics.

In the quite popular article by Ge, Dudoit and Speed [100], a nice overview of multiple testing

concepts, various error rates and correspondingp-value adjustments is given. In Section 2.2, the

authors present various error rates and in Section 2.3, the defining equations for the corresponding

adjustedp-values are given. Sections 3 and 4 then especially deal with several FWER controlling

procedures and resultingp-value adjustments. In Section 5, finally, the same investigations are

done for the FDR as underlying error measure.

In our work, we will not further consider this technique ofp-value adjustment. We describe

multiple test procedures controlling the FDR or the FWER, respectively, by suitable critical values

for the rawp-values.

False Discovery Rate and Asymptotics, Thorsten Dickhaus



Chapter 2

FDR control with Simes’ critical values

The first article dealing systematically with the FDR has been published in 1995 by Benjamini and

Hochberg, see [13]. The authors give some motivation, the formal definition of the FDR reported

in Definition 1.1 and present a multiple test procedure designed to control theFDR in case that the

test statistics are independent under the null hypotheses. This procedure, described in Algorithm

2.2 below, employs critical values for the orderedp-values which were originally introduced in a

different context. More specifically, in 1986, R. J. Simes proposed the following test algorithm for

the global intersection hypothesisH0:

Algorithm 2.1 (Simes’ test for the intersection hypothesisH0 =
⋂n

i=1Hi)

1. Compute thep-valuesp1, . . . , pn for each individual test.

2. Denote the orderedp-values byp1:n ≤ . . . ≤ pn:n.

3. RejectH0 if there exists an index1 ≤ k ≤ n, such thatpk:n ≤ αk = kα/n.

For the remainder of this work, we will confer to the critical valuesαk = kα/n for thep-values

used in this algorithm asSimes’ critical values. Simes (1986) proved that his Algorithm 2.1

controls the type I error with respect to the global hypothesisH0 at levelα if the underlying test

statistics (and, consequently, the correspondingp-values) are i.i.d. He furthermore conjectured

that this property is preserved for positively correlated test statistics. This conjecture was proven

by S. K. Sarkar in 1998, see [236].

Benjamini and Hochberg employed Simes’ critical values in the context of FDRcontrol. They

developed the linear step-up test procedureϕLSU which works as follows.

Algorithm 2.2 (The linear step-up test procedureϕLSU)

1. Compute thep-valuesp1, . . . , pn for each individual test.

2. Denote the orderedp-values byp1:n ≤ . . . ≤ pn:n.

10
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3. Determinek = max{i : pi:n ≤ αi}.

4. If such ak exists, reject the hypothesesH1:n, . . . , Hk:n corresponding top1:n, . . . , pk:n.

Otherwise, reject no hypotheses.

In [13], the authors proved that, assuming thatn0 hypotheses are true and the othern−n0 hypothe-

ses are false,ϕLSU controls the FDR at leveln0α/n ≤ α in case of independence of the vector of

p-values corresponding to true null hypotheses from the vector ofp-values corresponding to false

null hypotheses and i.i.d. UNI[0, 1]-distributedp-values under then0 true null hypotheses. Later

investigations even revealed that

FDRn =
n0

n
α ∀n > 1, α ∈ (0, 1),

i.e., the so-calledBenjamini-Hochberg boundn0α/n for the FDR is exactly obtained for any size

of the family of hypotheses under the aforementioned assumptions. Different proofs of this fact

can be found in [91], [237], [275] or [17]. In [17], the FDR controlling property ofϕLSU was

extended to the case of PRDS test statistics (cf. Definition B.7).

In the following, we are interested in the asymptotic sharpness of the Benjamini-Hochberg bound

in the latter situation. We investigate some examples of multivariate PRDS distributionsand study

the FDR behaviour ofϕLSU for n tending to infinity. First, we present a general theoretical frame-

work, the Dirac-exchangeable setup, and then apply the resulting formulas to some concrete dis-

tributional examples. For this reason, a slight re-formulation of Algorithm 2.2in terms of the ecdf.

of thep-values given in the following remark will be helpful.

Remark 2.3

Algorithm 2.2 can equivalently be expressed as

1. Compute thep-valuesp1, . . . , pn for each individual test.

2. LetFn denote the ecdf. of thep-values, that is,

Fn(t) =
1

n

n∑

i=1

1[0,t](pi), t ∈ [0, 1].

3. Computet∗ = sup{t ∈ [0, α] : Fn(t) ≥ t/α}.

4. Reject allHi with correspondingpi ≤ t∗.

We will call t∗ the largest crossing pointand denote the functiont→ t/α for t ∈ [0, α] by Simes’

line, the continuous version of the set of Simes’ critical values.

This type of connection between critical values of a multiple test procedure and the ecdf. of

p-values is indicated in [250]. The aforementioned algorithm can be carriedout in practice by

False Discovery Rate and Asymptotics, Thorsten Dickhaus



12

drawingFn and Simes’ line together in one graph and determiningt∗. The following figure shows

an example withα = 0.05.

Figure 2.1:F50(t) and Simes’line on[0, α].

The abscissat∗ of the largest crossing point determines the threshold for thep-values and the value

Rn/n of its ordinate reflects the proportion of hypotheses that are rejected by the linear step-up

procedure. The simplicity and intuitivity of this algorithm has lead to a wide spread of ϕLSU over

the last decade. How it works in practice shall be demonstrated with two reallife applications. Of

course, it has to be conceded that the dependency assumptions guaranteeing FDR control of the

linear step-up procedure are difficult to verify in practical applications.Especially in quantitative

trait analyses (e.g., when processing gene expression data), often negative dependency of some

kind is likely to occur. For example, overexpression at one gene locus can lead to underexpression

at another, linked locus. Therefore, it seems possible thatϕLSU does not control the FDR strictly

in the following application examples. However, in both cases we investigate situations where our

statistical analyses can be viewed as screening instruments at a first stageof an analysis which

includes more stringent error control methods at later stages.

Application 2.4 (Evaluation of a proteomics experiment)

In a proteomics experiment carried out in the biochemical department of ourresearch institute,

1330 protein spots from two groupsA andB were detected and matched by a spot detection

software. The protein material consisted of pooled tissue from two different mice stems under

investigation in a diabetes-specific context. Tissue differences with regard to different spot inten-

sities in the two groups should be found out. GroupA was processed on four independent sheets

and groupB was processed on three independent sheets (the fourth sheet for groupB was defect).

In some data cleaning and preparation steps, we filtered out only spots with aminimal measure-

ment number of three per group, i.e., all measurements for groupB had to be successful and there

False Discovery Rate and Asymptotics, Thorsten Dickhaus
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was only one missing measurement allowed in groupA. Furthermore, intensities below0.5 were

excluded because of lacking courtesy and relevance. In such quantitative trait analyses, often a

log-normal distribution for the intensity ratios is assumed. Therefore, the remaining intensities

were transformed by applying the natural logarithm. After these steps,n = 393 spots remained.

After some diagnostic plots, it turned out that the normal distribution assumptionfor the remaining

log-intensities was justified and therefore, we carried out two-sided two-samplet-tests for the

logarithmic intensity differences per spot and collected the correspondingp-values. This resulted

in a multiple testing problem of dimensionn = 393. As significance levels for the FDR, we chose

α1 = 0.05 andα2 = 0.1.

Figure 2.2: Proteomics example: Simes’ line and ecdf. of393 p-values

Figure 2.2 shows the caseα2 = 0.1. Simes’ line and the ecdf. of the obtainedp-values are

displayed. Obviously, we have a unique crossing point of the two objects on (0, α) and with the

Benjamini-Hochberg procedure we got47 rejections in case ofα1 = 0.05 and64 rejections in

case ofα2 = 0.1.

A discussion with the head of the proteomics department showed a good accordance of our "de-

tected" spots with the ones found by a commercial proteomics analysis software and with the spots

that were identified by experts in the department.

Application 2.5 (Adenocarcinoma data Notterman et al.)

Our second application concerns a data set taken over from the literature. In the article [203] from

2001, Notterman et al. published data from a cancer research project. The aim was detecting

differentially expressed gene and R(D)NA profiles in tumor tissue in comparison with normal

(healthy) tissue. To this end, a case-control study was carried out. In groupA, there were18

adenocarcinomic cancer patients and groupB consisted of18 (paired) healthy patients. From these

36 individuals, expression data for7457 different RNA, DNA and gene entities was collected. The

False Discovery Rate and Asymptotics, Thorsten Dickhaus
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complete data is available as supplementary material to [203].

After some Affymetrix preprocessing (cf. the "Materials and Methods" section in [203]), the

comparison between the two groups was performed by applyingt-tests to the log-transformed

data. This lead ton = 7457 p-values. Again, we analysed this multiple testing problem utilizing

ϕLSU at FDR levelα = 0.1. Figure 2.3 illustrates Simes’ line with parameterα = 0.1 and the ecdf.

of the obtainedp-values.

Figure 2.3: Notterman example: Simes’ line and ecdf. of7457 p-values

Again, the concave shape ofF7457 leads to a unique crossing point on(0, α). With the Benjamini-

Hochberg procedure, the hypotheses corresponding to the1582 smallestp-values get rejected with

a thresholding value of0.0212.

Before we start our main theoretical investigations, we motivate our goal ofinvestigating the

sharpness of the Benjamini-Hochberg bound and present one (maybe surprising) example, how

slight modifications of thep-value distribution can have an enormous effect on the resulting FDR

behaviour.

Example 2.6

Assume that independentp-values for a multiple test procedure of family sizen are not uniformly

distributed on the unit interval under the null hypotheses, but their support shall be bounded by

some valuebn > 0 on its left side, i.e.,Pi ∼ UNI[bn, 1] if Hi is true. Then, clearly,P(Vn = j) = 0

for all 0 < j <
⌈

nbn

α

⌉
for the linear step-up procedure. We will show that this has a large impact

on the FDR behaviour ofϕLSU. Noting that
{
Pi ≤

kα

n

}
=

{
Pi − bn
1 − bn

≤ kα− nbn
n(1 − bn)

}
=

{
U ≤ kα− nbn

n(1 − bn)

}
,

whereU denotes a UNI[0, 1]-distributed random variable for suchk with kα/n ≥ bn and0 for

False Discovery Rate and Asymptotics, Thorsten Dickhaus
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smaller values ofk, we obtain the transformed critical values

α̃k:n =
kα− nbn
n(1 − bn)

corresponding to UNI[0, 1]-distributed, transformed randomp-values fork ≥
⌈

nbn

α

⌉
. In other

words, this test problem can equivalently be regarded as one with UNI[0, 1]-distributedp-values

under the null hypotheses which have to be compared with theα̃k:n’s in step-up manner. For the

sake of simplicity, we only treat the casen0 = n and note that

P(Vn > 0) =
n∑

j=⌈nbn
α ⌉

P(Vn = j).

In [92], the exact distribution ofVn in case ofϕLSU and UNI[0, 1]-distributedp-values is given as

P(Vn = j) =

(
n

j

)
(1 − β)(1 − β + (n− j)τ)n−j−1(β − (n− j)τ)j ,

if the critical values for thePk:n are of the structureγk:n = β − (n − k)τ . For ourα̃k:n’s from

above we have in this nomenclature

β =
α− bn
1 − bn

and τ =
α

n(1 − bn)
.

The authors also derived the limiting distribution ofVn with n tending to infinity, which is ex-

ponentially decreasing and has most of its distributional mass in the small outcomes. Choosing

bn = 1/n has the effect thatVn ∈ {0}∪{⌈1/α⌉ , . . . , n} almost surely for everyn > 1 and results

in very small values for the probabilityP(Vn > 0), even for very largen and in the limiting case.

This is due to of the limiting distribution properties stated before, because small outcomes forVn

with large mass are almost surely not realized. This effect is rather surprising, sincebn tends to

0 and therefore the distribution of thep-values tends to UNI[0, 1] in this situation and one should

assume that the FDR should tend to its boundα for largen. This, however, is not the case.

As we will see, the fractional structure of the FDP leads to some more surprising results. Our

first major goal consists of computation of the FDR ofϕLSU under positive dependence or, more

precisely, exchangeability under the null hypotheses. This will be done quite generally in the

following Section 2.1 before we investigate specific distributional settings in Sections 2.2 (expo-

nential distributions), 2.3 (normal distributions) and 2.4 (t-distributions).

2.1 General theoretical framework in the exchangeable setup

In this section, we present our basic statistical model with exchangeable test statistics. It will be

the basis for the concrete applications carried out in the following sections.

Let thereforeXi, i = 1, . . . , n, be real-valued independent random variables with supportX .

Moreover, letZ be a further real valued random variable, independent of theXi’s, with supportZ
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whose cdf. will be denoted denoted byWZ . Denote the cdf. ofXi byWi. Suppose the cdf.Wi

depends on a parameterϑi ∈ [ϑ0,∞), whereϑ0 is known. Without loss of generality it will be

assumed thatϑ0 = 0. Consider the multiple testing problem

Hi : ϑi = 0 versusKi : ϑi > 0, i = 1, . . . , n.

Suppose thatTi = g(Xi, Z) (with supportT ) is a suitable real-valued test statistic for testingHi,

that is, it will be assumed thatTi tends to larger values ifϑi increases. The setsX ,Z andT are

assumed to be intervals. Suppose thatg is continuous, strictly increasing in the first argument and

strictly monotone or constant in the second argument.

Examples which will play a role in the remainder areTi = g(Xi, Z) = Xi − Z (Sections 2.2 and

Section 2.3) andTi = g(Xi, Z) = Xi/Z (Section 2.4).

In case thatHi is true, the cdf. ofXi will be denoted byWX and the cdf. ofTi will be denoted by

WT . ForZ = z, we definep-valuespi = pi(z) as a function ofz by

pi(z) = 1 −WT (g(xi, z)), i = 1, . . . , n.

The ecdf. of thesep-values is denoted byFn(·|z). Clearly, the Glivenko-Cantelli lemma applies.

The orderedp-valuesp1:n ≤ · · · ≤ pn:n are given bypi:n = 1−WT (g(xn−i+1:n, z)), i = 1, . . . , n.

2.1.1 Two models with exchangeable test statistics

Assuming that all hypotheses are true, the limiting ecdf. of thep-values will be denoted by

F∞(·|z). For the sake of simplicity it will be assumed that the model implies thatF∞(x|z) is

continuous inx ∈ [0, 1] and differentiable from the right atx = 0 with F∞(0|z) = 0 for all

z ∈ Z. Finally, letg1 : T × Z → X be such that for allx ∈ X , z ∈ Z, w ∈ T

g(x, z) = w iff x = g1(w, z),

and letg2 : X × T → Z be such that for allx ∈ X , z ∈ Z, w ∈ T

g(x, z) = w iff z = g2(x,w).

We refer to this setup as theEX(1) model. In practical examples, the conditions concerning the

functionsg, g1 andg2 need to be fulfilled only for arguments belonging to sets of measure1, for

example, ifg(x, z) = x/z. The following lemma provides a formula for computing the limiting

ecdf.F∞ and the defining equation for a point of intersection with Simes’ line in this model.

Lemma 2.7

Given EX(1), it holds forPZ-almost allz ∈ Z

F∞(t|z) = 1 −WX(g1(W
−1
T (1 − t), z)), t ∈ (0, 1).

False Discovery Rate and Asymptotics, Thorsten Dickhaus



CHAPTER 2. FDR CONTROL WITH SIMES’ CRITICAL VALUES 17

Moreover, the limiting empirical cdf crosses (or contacts) the Simes line, that is,F∞(t|z) = t/α

for somet ∈ (0, α), if

W−1
X (1 − t/α) = g1(W

−1
T (1 − t), z),

or equivalently,

z = z(t) = g2(W
−1
X (1 − t/α),W−1

T (1 − t)).

Proof: We make use of the representation

Fn(t|z) =
1

n

n∑

k=1

1[0,t](pk(z)), t ∈ [0, 1].

This representation implies thatlimn→∞ Fn(t|z) = PHk
(pk(z) ≤ t) = 1−PHk

(WT (g(Xi, z)) <

1 − t) = 1 − PHk
(g(Xi, z) < W−1

T (1 − t)) = 1 − PHk
(Xi < g1(W

−1
T (1 − t), z)) = 1 −

WX(g1(W
−1
T (1 − t), z)), sinceWX is assumed to be continuous. Furthermore, the Glivenko-

Cantelli lemma guarantees that this convergence is almost surely.�

Remark 2.8

GivenZ = z, the p-valuespi(z), i = 1, . . . , n, may underH0 =
⋂n

i=1Hi be interpreted as

realizations of conditionally i.i.d. random variables with common cdf.F∞(·|z).

In case that a proportionζn = n0/n of hypotheses is true and the rest is false, that is,n0 hypotheses

are true andn1 = n − n0 hypotheses are false, we make the following additional assumption in

order to avoid additional limiting considerations. It will be assumed that underan alternative

Ki : ϑi > 0 the parameter valueϑi = ∞ is possible. Moreover, forϑi = ∞ it will be assumed

that thep-valuepi has a Dirac distribution with point mass in0. In this case, the ecdf. of the

p-values will be denoted byFn(·|z, ζn). We refer to this situation as theD-EX(ζn) model.

Lemma 2.9

Given D-EX(ζn) with limn→∞ ζn = ζ ∈ (0, 1], the limiting cdf of the p-values is given by

F∞(t|z, ζ) = (1 − ζ) + ζ(1 −WX(g1(W
−1
T (1 − t), z))), t ∈ (0, 1), z ∈ Z.

Moreover,F∞ crosses (or contacts) the Simes line, that is,F∞(t|z, ζ) = t/α for somet ∈ (α(1−
ζ), α), if

W−1
X ((1 − t/α)/ζ) = g1(W

−1
T (1 − t), z),

or equivalently,

z = z(t|ζ) = g2(W
−1
X ((1 − t/α)/ζ),W−1

T (1 − t)).

Note thatF∞(t|z) = F∞(t|z, 1).
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Proof: Denote the set of indices corresponding to true hypotheses withI0. In analogy to the

EX(1) model, we notice that

Fn(t|z, ζn) =
1

n

n∑

k=1

1[0,t](pk(z)), t ∈ [0, 1]

=
1

n


∑

k∈I0

1[0,t](pk(z)) +
∑

k∈∁I0

1[0,t](pk(z))




=
n0

n


 1

n0

∑

k∈I0

1[0,t](pk(z))


+

n1

n
.

This representation (together with the assertion of Lemma 2.7) implies thatlimn→∞ Fn(t|z, ζn) =

(1 − ζ) + ζPHk
(pk(z) ≤ t) = (1 − ζ) + ζ(1 −WX(g1(W

−1
T (1 − t), z))). �

Remark 2.10

Under the assumptions of Lemma 2.9, the Glivenko-Cantelli lemma again yields

lim
n→∞

sup
t∈[0,1]

|Fn(t|z, ζn) − F∞(t|z, ζ)| = 0 almost surely for allz ∈ Z.

Moreover,

E[F∞(t|Z, ζ)] =

∫
F∞(t|z, ζ)wZ(z)dλ1(z) = 1 − ζ + ζt for all t ∈ [0, 1].

2.1.2 Largest crossing points and computation of EER and FDR

In order to characterize the asymptotic behavior of the linear step-up algorithm in a D-EX(ζn)

model, the largest crossing point of the limiting ecdf. of the conditionalp-values and Simes’ line

is of crucial importance. Forlimn→∞ ζn = ζ ∈ (0, 1], we therefore define

t(z|ζ) = sup{t ∈ [α(1 − ζ), α] : F∞(t|z, ζ) = t/α}. (2.1)

If there exists anǫ > 0 such thatF∞(t|z, ζ) > t/α for all t ∈ [t(z|ζ)−ǫ, t(z|ζ)) andF∞(t|z, ζ) <
t/α for all t ∈ (t(z|ζ), t(z|ζ) + ǫ], thent(z|ζ) will be called the largest crossing point (LCP) of

F∞(·|z, ζ) and Simes’ line. The set of LCPs will be denoted byCζ . Moreover, setDζ = {z ∈
Z : t(z|ζ) ∈ Cζ}. Note that there may be some boundary points (BPs)t(z|ζ) satisfying (2.1).

However, it will be assumed thatPZ(Dζ) = 1. In practical examples,Cζ is a finite union of

intervals.

Obviously, forζ ∈ (0, 1) we always have a well-defined LCP or BPt(z|ζ) ≥ α(1 − ζ) > 0. For

ζ = 1 the LCP may be0 for a large set ofz-values which makes the calculation of the limiting

EER and limiting FDR much subtler.
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For the remainder of this chapter, we make use of the notation

FDRn(ζn|z) = E[
Vn

Rn ∨ 1
|Z = z], FDRn(ζn) = E[

Vn

Rn ∨ 1
]

FDR∞(ζ|z) = lim
n→∞

FDRn(ζn|z), FDR∞(ζ) = lim
n→∞

FDRn(ζn),

and the corresponding expressions for EER. Moreover, the notationVn(z), Rn(z) will be used if

Z = z is given.

The further considerations heavily depend on an assumption about the proportionζn = n0/n of

true hypotheses and its limitζ for n tending to infinity. As we will point out, it makes a crucial

difference for the FDR computation if we assume all hypotheses to be true (ζn ≡ 1 or ζ = 1) or if

we haveζ ∈ (0, 1). We therefore subdivide this section according to these two cases.

2.1.3 All LCPs greater than zero

We first consider the caseζ ∈ (0, 1). As the following theorem and its proof point out, here the

asymptotic FDR- and EER-behavior for a givenz ∈ Z can directly be deduced from the LCP

t(z|ζ).

Theorem 2.11

Given D-EX(ζn) with limn→∞ ζn = ζ ∈ (0, 1), it holds for allz ∈ Dζ

lim
n→∞

Vn(z)

n
=

t(z|ζ)
α

− (1 − ζ) a. s., (2.2)

lim
n→∞

Vn(z)

Rn(z) ∨ 1
= 1 − α(1 − ζ)

t(z|ζ) a. s. (2.3)

Proof: We will show that the proportion of rejected hypothesesRn(z)/n converges almost surely

to t(z|ζ)/α. This then immediately implies (2.2) and (2.3).

Therefore, note thatRn(z) = sup{k ∈ {1, . . . , n} : k/n ≤ Fn(kα/n|z, ζn)} and that for any

n ∈ N, z ∈ Z it holdsRn(z)/n ∈ [0, 1]. The latter statement implies that any subsequence

(Rnk
(z)/nk)k∈N

of Rn(z)/n has a convergent subsequence. With a subsequence technique simi-

lar to the proof of Lemma A.2 in [91], it can now be shown that the limits of all theseconvergent

subsequences have the same valueη(z) (say) and thatη(z) has to fulfill the defining equation

F∞(η(z)α|z, ζ) = η(z). Recalling our definition oft(z|ζ), the assertion is proven.�

Remark 2.12

Under the assumptions of Theorem 2.11 it holds

EER∞(ζ|z) = E

[
lim

n→∞
Vn(z)

n

]
=
t(z|ζ)
α

− (1 − ζ), (2.4)

FDR∞(ζ|z) = E

[
lim

n→∞
Vn(z)

Rn(z) ∨ 1

]
= 1 − α(1 − ζ)

t(z|ζ) . (2.5)
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It remains to calculate EER∞(ζ) and FDR∞(ζ). This may be done in two ways. The first is to in-

tegrate (2.2) and (2.3) with respect toZ = zdPZ . In this case the main problem is the computation

of t(z). In general,t(z) cannot be determined explicitly and, furthermore, its numerical calcula-

tion can be very cumbersome. The second possibility seems more convenientand is summarized

in the following theorem.

Theorem 2.13

Under the assumptions of Theorem 2.11 suppose thatF∞(t|z) is strictly decreasing inz for t ∈
(0, α]. LetCζ,1 = {t/α− 1 + ζ : t ∈ Cζ} andCζ,2 = {1 − α(1 − ζ)/t : t ∈ Cζ}. Define

Gζ,1(u) = 1 −WZ(z(α(u+ 1 − ζ)|ζ)) for u ∈ Cζ,1,

Gζ,2(u) = 1 −WZ(z(
α(1 − ζ)

1 − u
|ζ)) for u ∈ Cζ,2,

and continue these functions on[0, ζ] by linear interpolation.

Then

EER∞(ζ) =

∫

Cζ,1

udGζ,1(u), (2.6)

FDR∞(ζ) =

∫

Cζ,2

udGζ,2(u). (2.7)

Proof: For ζ ∈ (0, 1) andt ∈ Cζ we get from (2.2) in Theorem 2.11 and from the antitonicity of

F∞(t|z) in z ∈ Z that

{z ∈ Dζ : lim
n→∞

Vn(z)

n
>

t

α
− (1 − ζ) a. s.} = {z ∈ Dζ : z < z(t|ζ)}.

Therefore, the substitutionu = t/α− (1 − ζ) yields

WZ(z(α(u+ 1 − ζ)|ζ)) = P
Z({z ∈ Dζ : lim

n→∞
Vn(z)

n
>

t

α
− (1 − ζ) a. s.})

= 1 −Gζ,1(u)

for all u ∈ Cζ,1. Moreover,

P
Z

(
{z ∈ Dζ : lim

n→∞
Vn(z)

n
∈ Cζ,1 a. s.}

)
= 1.

Hence,Gζ,1 as defined in the theorem is the cdf. oflimn→∞ Vn(Z)/n which implies (2.6). Simi-

larly, we obtain from (2.3) in Theorem 2.11 that

lim
n→∞

Vn(z)

Rn(z) ∨ 1
> 1 − α(1 − ζ)

t
a. s. iff z < z(t|ζ).

Therefore, a similar argumentation as before yields thatGζ,2 as defined in the theorem is the cdf.

of limn→∞ Vn(Z)/(Rn(Z) ∨ 1), and (2.7) follows. �

Theorem 2.13 is a key step towards computation of EER∞(ζ) and FDR∞(ζ) in D-EX(ζn) models

with ζn → ζ ∈ (0, 1). In practical examples, it remains to determine the setsCζ,1 andCζ,2 and to

evaluate the corresponding integrals.
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2.1.4 Some LCPs equal to zero

If an LCP is equal to zero, the behavior of the FDR heavily depends on thegradient in zero of the

cdf. of thep-value distribution. The next lemma covers the finite case. It has mainly preparing

character, but will be also be applied directly in Section 2.2.

Lemma 2.14

Letα ∈ (0, 1), 0 < γ < 1/α, n0, n ∈ N, n0 ≤ n and letξ1, . . . , ξn0 be i.i.d. random variables

with values in[0, 1] with cdf. Fξ satisfyingFξ(t) = γt for all t ∈ [0, α]. Furthermore, let

ξn0+1, . . . , ξn be random variables with values in[0, 1], independent of(ξj : 1 ≤ j ≤ n0). For

ci = iα/n, i = 1, . . . , n, defineR′
n = max{k ≤ n : ξk:n ≤ ck} andV ′

n = |{i ∈ {1, . . . , n0} :

ξi ≤ cR′

n
}| (with cR′

n
= −∞ for R′

n = −∞). Then

E

(
V ′

n

R′
n ∨ 1

)
=
n0

n
γα. (2.8)

Proof: For1≤ i ≤ n0, denote the(n−1)-dimensional random vector(ξ1, . . . , ξi−1, ξi+1, . . . , ξn)

by ξ(i), define for1 ≤ k < n the setsD(i)
k (α) = {ξ(i)k:n−1 > ck+1, . . . , ξ

(i)
n−1:n−1 > cn} and set

D
(i)
0 (α) = ∅, D(i)

n (α) = Ω. Then the left hand side of (2.8) (cf., e.g., Lemma 3.2 and formula

(4.4) in [237]) is equal to

1

n

n0∑

i=1

P(ξi ≤ cn) +

n0∑

i=1

n∑

j=2

[
P(ξi ≤ cj−1)

j − 1
− P(ξi ≤ cj)

j

]
P(D

(i)
j−1(α)).

Noting thatP(ξi ≤ cn) = γα for all 1 ≤ i ≤ n0 andP(ξi ≤ cj)/j = γα/n for all 1 ≤ j ≤ n, the

assertion follows immediately. �

The following result extends Lemma 2.14 and is a helpful tool in case that LCPs are in0.

Lemma 2.15

Under the assumptions of Lemma 2.14, but only supposing thatFξ(t) = γt for all t ∈ [0, t∗]

for somet∗ ∈ (0, α), letAn(t∗) = {Fn(t) < t/α ∀t ∈ (t∗, α]}, whereFn denotes the ecdf. of

ξ1, . . . , ξn. Then, settingr = max{i ∈ N0 : iα/n ≤ t∗},

E

(
V ′

n

R′
n ∨ 1

1An(t∗)

)
=
n0

n
γαP(D(1)

r (α)). (2.9)

Proof: It is clear thatAn(t∗) = {R′
n ≤ r}, hence, forr > 0, the left-hand-side of (2.9) is now

equal to

1

r

n0∑

i=1

P(ξi ≤ cr)P(D(i)
r (α)) +

n0∑

i=1

r∑

j=2

[
P(ξi ≤ cj−1)

j − 1
−P(ξi ≤ cj)

j

]
P(D

(i)
j−1(α)).

The assertion follows in similarity to the proof of Lemma 2.14. �

The next theorem is an important step for the understanding of the asymptoticbehavior of both

EER and FDR in D-EX-(ζn) models given a fixed valueZ = z such that the LCP is in0.
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Theorem 2.16

Given D-EX(ζn) with limn→∞ ζn = 1, let z ∈ Z such thatF∞(t|z) < t/α for all t ∈ (0, α].

Then, setting

γ(z) = lim
t→0+

F∞(t|z)
t

,

it holds

EER∞(ζ|z) = 0, (2.10)

FDR∞(ζ|z) = αγ(z). (2.11)

Proof: The assumptions concerningF∞ imply that limn→∞Rn(z)/n = 0 almost surely. Noting

thatVn(z)/n ≤ Rn(z)/n for all n ∈ N, (2.10) is obvious.

In order to prove (2.11), we nestF∞ between two cdf’s being linear in a neighborhood of zero.

To this end, lett∗ ∈ (0, α] be fixed,B = [0, t∗), mℓ(t
∗) = inft∈B\{0} F∞(t|z)/t, mu(t∗) =

supt∈B\{0} F∞(t|z)/t, and

Fℓ(t) = mℓ(t
∗)t · 1B(t) + F∞(t|z) · 1Bc(t),

Fu(t) = mu(t∗)t · 1B(t) + max{mu(t∗)t∗, F∞(t|z)} · 1Bc(t).

This results inFℓ(t) ≤ F∞(t|z) ≤ Fu(t) for all t ∈ [0, 1]. Forn ∈ N, let the eventAn(t∗) be

defined as in Lemma 2.15. Then

FDRn(ζn|z) = E

(
Vn(z)

Rn(z) ∨ 1
1An(t∗)

)
+ E

(
Vn(z)

Rn(z) ∨ 1
1Ac

n(t∗)

)

= Λn + λn (say).

With rn = max{i ∈ N0 : iα/n ≤ t∗} we obtain similarly to the argumentation in the proof of

Lemma 2.14 that

Λn = E

(
Vn(z)

Rn(z) ∨ 1
1{Rn(z)≤rn}

)

= n0

rn∑

j=1

P(p1(z) ≤ αj)

j

[
P(D

(1)
j (α)) − P(D

(1)
j−1(α))

]
.

Due to the pointwise order ofFℓ, F∞ andFu, we get

ζnmℓ(t
∗)αP(D

(1)
rn (α)) ≤ Λn ≤ ζnmu(t∗)αP(D

(1)
rn (α)),

ζnmℓ(t
∗)αP(D

(1)
rn (α)) + λn ≤ FDRn(ζn|z) ≤ ζnmu(t∗)αP(D

(1)
rn (α)) + λn.

Sinceζn → 1, P(D
(1)
rn (α)) → 1 and P(An(t∗)) → 1 for n → ∞, we obtainλn → 0 and

mℓ(t
∗)α ≤ lim infn→∞ FDRn(ζn|z) ≤ lim supn→∞ FDRn(ζn|z) ≤ mu(t∗)α. The assertion

now follows by noticing thatlimt∗→0+ mℓ(t
∗) = limt∗→0+ mu(t∗) = γ(z). �
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Remark 2.17

In [92], the distribution and expectation ofVn has been computed for uniformp-values under the

assumption that all hypotheses are true. Assumingζn = 1 for all n ∈ N, the nesting method

described before together with the technique in [92] may be used to prove

lim
n→∞

E[Vn(z)] =
αγ(z)

(1 − αγ(z))2
.

It is important to note that the latter formula is only valid forζn = 1. If in contrastn1 tends to

infinity while limn→∞ n1/n = 0 andγ(z) > 0, we get thatE[Vn(z)] diverges to infinity in this

case even ifγ(z) < 1/α. To see this, we utilize the assertion of Lemma 4.3 in [91], which is

E[Vn] ≥ n1α

ζ−1
n − α

for uniformly on [0, 1] distributedp-values. Obvious modifications lead to the assertion for

E[Vn(z)].

In order to get a complete picture forζ = 1, the following theorem puts things together.

Theorem 2.18

Given D-EX(ζn) with limn→∞ ζn = 1, suppose thatF∞(t|z) is strictly decreasing inz for t ∈
[0, α]. Moreover, letG1,1 be defined according toGζ,1 in Theorem 2.13 and letE0 = {z ∈ Z :

t1(z) = 0} andE1 = Z \ E0. Then

EER∞(1) =

∫

C1\{0}
udG1,1(u), (2.12)

FDR∞(1) = P
Z(E1) + α

∫

E0

γ(z)dPZ(z). (2.13)

Proof: Using the disjoint decompositionZ = E0 + E1, we obtain

EER∞(ζ) = lim
n→∞

∫

Z

Vn(z)

n
dPZ(z)

=

∫

E0

lim
n→∞

Vn(z)

n
dPZ(z) +

∫

E1

lim
n→∞

Vn(z)

n
dPZ(z)

= A1 +A2 (say).

Now, Theorem 2.16 immediately yieldsA1 = 0 and in analogy to the argumentation in the proof

of Theorem 2.13 we get thatA2 =
∫
C1,1\{0} udG1,1(u). Therefore, (2.12) is proven. Applying

the same decomposition (together with the considerations in Theorem 2.16) to FDR∞(ζ) and

observing thatlimn→∞ Vn(z)/(Rn(z) ∨ 1) = 1 if z ∈ E1 (similar to (2.3) withζ = 1) finally

proves (2.13). �

In the remaining sections of this chapter, we will apply our general results tosome concrete well-

known and often used distributional settings.
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2.2 Exchangeable exponentially distributed variables

The exponential distribution often arises in reliability and life time analysis. For example, consider

the situation that we haven (technical) systems consisting of several independent components each

and we are interested in testing the reliability of these systems with respect to a reference system.

In order to describe this task formally, we denote the times until failure of eachindividual compo-

nent with(Xi,j)i=1,...,n;j=1,...,m(i) and assume that theXi,j ’s are independent random variables,

each underlying an exponential distribution with parameterλi,j . If we then define the reliability

of thei-th entire system, denoted byYi, by the minimum failure time of all components belonging

to thei-th system, we obtain that

Yi ∼ Exp


λi =:

m(i)∑

j=1

λi,j


 .

Furthermore, we denote the minimum time until failure of the components of the reference system

with Y0 and assume thatY0 ∼ Exp(λ0), independent of theYi’s. Consequently, we get that

E(Yi) =
1

λi
mean expected survival time of systemi and

E(Y0) =
1

λ0
mean expected survival time of the reference system.

A well known and often arising multiple test problem is now given by

Hi = { 1

λi
=

1

λ0
} vs. Ki = { 1

λi
>

1

λ0
} for i = 1, . . . , n.

A parametric approach towards this test problem consists of applying Cox’sF -test, cf. e. g. [166],

pp. 236-237. However, non-parametric techniques are more commonly used in this setting.

In order to fit in our general setup, we investigate a slightly different testproblem, involving

the two-parametric exponential distribution. Under the general frameworkgiven in Section 2.1,

we assume that theXi follow an exponential distribution with scale parameterλ and location

parameterϑi andZ is exponentially distributed with scale parameterλ and location parameter0.

The underlying test problems shall beHi : {ϑi = 0} vs. Ki : {ϑi > 0} and the test statistics

shall be given byTi = Xi − Z. Noting that large values ofTi favour the alternativeKi, the

correspondingp-values for a given realizationt∗ of Ti are given by

pi(t
∗) = PHi

(Ti ≥ t∗) = 1 −WT (t∗),

with WT denoting the cdf. of the differenceXi − Z of two independent exponentially distributed

random variables. We will now study the behaviour of the FDR in this setup, denoted as the D-

EX-EXP model. The next two auxiliary results prepare the computation of the limiting ecdf. of

thep-values in such a D-EX-EXP model.
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Lemma 2.19(Distribution of the difference of two exponentially distributed random variables)

LetX ∼ Exp(0, λ1) andZ ∼ Exp(0, λ2) be two independent exponentially distributed random

variables. Then the cdf. of the difference is given by

P(X − Z ≤ t) =





λ1
λ1+λ2

exp(λ2 t) for t ≤ 0

λ1
λ1+λ2

+ λ2
λ1+λ2

(1 − exp(−λ1 t)) for t > 0.

Proof: Computation of the cross-correlation function ofX andZ. �

Lemma 2.20(Conditional probability for the difference in the exponential case)

Assume thatX ∼ Exp(0, λ1) andZ ∼ Exp(0, λ2), independent ofX. Denoted the difference of

X andZ byT = X − Z.

Then it holds:

P(T > W−1
T (1 − t)|Z = z) =





exp(−λ1 z) · λ1+λ2
λ2

t for 0 ≤ t ≤ λ2
λ1+λ2

,

exp(−λ1 z) ·
[

λ1+λ2
λ1

· (1 − t)
]−λ1

λ2 for λ2
λ1+λ2

< t ≤ u(z),

1 for u(z) < t ≤ 1,

with u(z) = 1 − λ1
λ1+λ2

exp(−λ2 z).

Proof: Analogously to the notation in Section 2.1, denote the (unconditional) cdf. ofT by WT

and the cdf. ofX byWX . Then we obtain (due to the fact thatX andZ are independent) that

P(X − Z > W−1
T (1 − t)|Z = z) = P(X − z > W−1

T (1 − t)) = P(X > W−1
T (1 − t) + z)

= 1 −WX(W−1
T (1 − t) + z).

Noticing thatWX(x) = 0 for x < 0, we haveP(X − Z > W−1
T (1 − t)|Z = z) = 1 if

W−1
T (1− t) + z < 0. DeducingW−1

T from Lemma 2.19, we therefore obtain the assertion for the

caseu(z) < t ≤ 1. AssumingW−1
T (1 − t) + z ≥ 0, we have

1 −WX(W−1
T (1 − t) + z) = exp(−λ1z) exp(−λ1W

−1
T (1 − t)).

ObtainingW−1
T from Lemma 2.19 and plugging in the resulting expressions for the differentcases,

we obtain the assertion in the remaining two cases.�

If we now return to our test problem in the D-EX-EXP model, we obtain by combining the argu-

ments of Lemmas 2.19 and 2.20 that

pi(t) = PHi
(Ti ≥ t) = 1 −WT (t) =





1 − 1
2 exp(λt) for t ≤ 0,

1
2 exp(−λt) for t > 0, and

F∞(t|z) = 2 exp(−λz)t for 0 ≤ t ≤ 1/2.

This reveals, thatF∞(t|z) for givenz ∈ Z is a linear function int on [0, 1/2]. For the computation

of the False Discovery Rate in such a situation, a simple consequence of Lemma2.14 is helpful.
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Corollary 2.21 (False Discovery Rate for linear conditional limiting ecdf.’s)

Consider our general D-EX(ζn) model. Assume thatF∞(t|z) = m(z)t ∀t ≤ α, wherem(z) is

the slope of a straight line depending only onz, andm(z) < 1/α for all z ∈ Z. Then it holds:

(i) FDRn(ζn|z) = α ζn m(z) ∀n ≥ 1.

(ii) FDRn(ζn) = α ζn
∫
m(z) dPZ(z) dz.

Proof:

ad (i): We will apply Lemma 2.14. Therefore, we setFξ(t) = F∞(t|z) and note that thepi(z)’s

are conditionally i.i.d. withp1(z) ∼ F∞(·|z) if Hi is true.

ad (ii): Follows immediately from (i) via integrating with respect toZ. �

Applying the latter corollary, we finally get the FDR results in the D-EX-EXP model by plugging

in m(z) = 2 exp(−λz) as follows.

Corollary 2.22

In the D-EX-EXP(ζn) model, the FDR computes as

FDRn(ζn|z) = 2α ζn exp(−λz),

FDRn(ζn) = αζn

∫ ∞

0
2λ exp2(−λz)dz

= αζn for any n > 1, α < 1/2, λ > 0.

This has the interpretation that in this special case, the FDR of the linear step-up procedure based

on Simes’ critical values exactly equals the Benjamini-Hochberg bound for any sizen of the family

of hypotheses ifα < 1/2, although the underlying test statistics (and therefore the corresponding

p-values) are not independent.

Remark 2.23

It is remarkable that the MTP2 property holds in this setting so that the Benjamini-Hochberg bound

for the FDR applies. This is an immediate consequence of Proposition 3.7. in [148], because the

the pdf. of the Exp(λ) distribution is PF2 for anyλ > 0, cf. [147].

The following Figure 2.4 displaysF∞(t|z) in case ofλ = 1 for different values ofz together

with Simes’ line forα = 0.1. It is remarkable that the angle betweenF∞(t|z) and Simes’ line

determines the limiting FDR.
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Figure 2.4:F∞(t|z) for z = 0.5, z = 1.0 andz = 2.0 in case ofλ = 1 together with Simes’ line

for α = 0.1

Remark 2.24

From Lemma 2.19, it follows that the one-dimensional marginal cumulative distribution function

of an individualTi under the corresponding null hypothesisHi in case ofλ = 1 can be expressed

by

WT (t) =





1/2 exp(t) for t ≤ 0,

1 − 1/2 exp(−t) for t > 0.

The corresponding distribution is the well-known double-exponential or Laplace distribution. It

may be interesting to have a brief look on the multivariate Laplace distribution with the same

correlation structure as present for ourTi. In [164], the density functionwn for the multivariate

Laplace distribution in dimensionn was given in the context of copulas as

wn(z) =
Γ(n/2)

Γ(n)

1

2πn/2
√

det(Σn)
exp

(
−
√
ztΣ−1

n z

)
, z ∈ R

n

with Σn denoting then× n-dimensional correlation matrix under the assumption that then com-

ponents are standardized. For ourTi we have Var(Ti) = 2 for all i = 1, . . . , n as well as

ρ(Ti, Tj) = 1/2 for all i 6= j and, therefore, in the corresponding multivariate Laplace case

the MTP2 property does hold as well. The latter result is due to the fact that the multivariate

Laplace distribution belongs to the class of spherical (elliptical) distributions (cf. [152]) for which

the MTP2 condition is equivalent to the property that the correlation matrix is invertible and its

off-diagonal elements are non-negative (this fact can e. g. be deduced from Theorem 3 in [230] in

connection with the generalization methods derived in [152]). Since in our case it holds

Σn = (σi,j)i,j=1,...,n with σi,j =
1

2
(1 + δi,j) ,

the assertion is obvious.
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2.3 Exchangeable normally distributed variables

Our next concrete example treats the case of exchangeable normally distributed variables and has

very high practical relevance. Our notation will be as follows.

Notation 2.25(D-EX-N(ζn) model)

Let Xi ∼ N (0, 1), i = 0, . . . , n, be independent standard normal random variables and let

Ti = ϑi +
√
ρ̄Xi − √

ρX0 with ϑi ≥ 0, i = 0, . . . , n, whereρ ∈ (0, 1) is assumed to be known

and ρ̄ = 1 − ρ. ThenT = (T1, . . . , Tn) is multivariate normally distributed with mean vector

ϑ = (ϑ1, . . . , ϑn), Var[Ti] = 1 for i = 1, . . . , n, and Cov(Ti, Tj) = ρ for 1 ≤ i 6= j ≤ n.

Consider the multiple testing problemHi : ϑi = 0 versusKi : ϑi > 0, i = 1, . . . , n. For

ρ ∈ (0, 1) the distribution ofT is MTP2 so that the Benjamini-Hochberg bound applies, cf. [17]

or [237].

In the following we use the notation introduced in the Section 2.1. Note thatZ is replaced byX0

andWX = WX0 = WT = Φ. Suitable p-values for testing theHi’s are given bypi = pi(x) =

1−Φ(ϑi +
√
ρ̄xi −√

ρx0), i = 1, . . . , n. Again we addϑi = ∞ to the model such thatpi = 0 a.

s. ifϑi = ∞, i = 1, . . . , n. We denote the corresponding D-EX(ζn) model by D-EX-N(ζn).

Remark 2.26

This setup includes the well-known many-one multiple comparisons problem which usually reads

as follows. LetY i· ∼ N(νi, σ
2/mi), i = 0, . . . , n, denote independently normally distributed

sample means withσ2 > 0 (known),m1 = · · · = mn andνi ≥ ν0 for i = 1, . . . , n. Suppose one

is interested in testing̃Hi : νi = ν0 versusK̃i : νi > ν0 for i = 1, . . . , n by using the test statistics

Wi = (1/m0 +1/m1)
−1/2(Y i·−Y 0·)/σ, i = 1, . . . , n. ThenE[Wi] = (1/m0 +1/m1)

−1/2(νi−
ν0)/σ = ϑi (say), Var[Wi] = 1 and Cov(Wi,Wj) =

√
m/(m+m0) = ρ (say).

Our policy in the remainder of this chapter will be to express the EER and the FDR in the D-EX-

N(ζn) models with respect to the correlationρ. First of all, we now determine the EER-values and

FDR-values for the extreme casesρ = 0 (independence) and full dependency, i.e.ρ = 1.

Theorem 2.27(FDR and EER in case ofρ = 1 in the D-EX-N(ζn)-model)

In the case of full dependency in the D-EX-N(ζn)-model, i.e.ρ = 1, we obtain

FDRn(ζn) = α ζn = EERn(ζn) for any n ∈ N.

Proof: The test statisticsTi simplify in case ofρ = 1 to Ti = ϑi − X0 and therefore the cor-

responding conditionalp-values arepi(x0) = 1 − Φ(ϑi − x0). Since in our D-EX-N(ζn)-model

it holdsϑi = 0 for all i ∈ I0 andϑi = ∞ for all i ∈ ∁I0, whereI0 denotes the set of indices
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corresponding to true null hypotheses, it follows

Fn(t|x0, ζn) =
1

n

n∑

i=1

1[0,t](pi(x0))

= (1 − ζn) + ζn1[0,t](Φ(x0)).

This representation ofFn implies, that the conditional ecdf. of thep-values is a step function with

exactly one step att = Φ(x0) for everyn ∈ N in case ofρ = 1. Consequently, it follows for the

LCP t∗(x0) of Fn and Simes’ line in this setting, that

t∗(x0) =




α (1 − ζn) for x0 > Φ−1(α)

α for x0 ≤ Φ−1(α)

and the number of falsely rejected hypotheses in our model is given as

Vn(x0) =





0 for x0 > Φ−1(α)

n0 for x0 ≤ Φ−1(α).

Noting thatVn(x0) can only realize these two values in this setting, EERn(ζn) can immediately

be expressed via a discrete expectation formula, i.e.

EERn(ζn) = ζn P(Vn = n0) = ζn P(X0 ≤ Φ−1(α)) = α ζn.

SinceRn(x0) = Vn(x0) + n1, it holds

Vn(x0)

Rn(x0) ∨ 1
=





0 for x0 > Φ−1(α),

ζn for x0 ≤ Φ−1(α),

and the assertion for FDRn(ζn) follows analogously.�

Remark 2.28(FDR and EER forρ = 0)

(i) In case ofρ = 0, we are in the i.i.d. situation originally investigated by Benjamini and

Hochberg. As stated before, in this situation the False Discovery Rate has the value

FDRn(ζn) = α ζn for all n ∈ N.

(ii) As pointed out in [91], it holds for the limiting EER in the independent case,i.e. ρ = 0, that

EER∞(ζ) = α(1 − ζ)/(1 − αζ).

In case ofρ ∈ (0, 1), however, the computation of FDR∞(ζ) and EER∞(ζ) becomes substantially

more difficult. We first focus on the caseζ = 1 (the proportion of true hypotheses tends to one).
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2.3.1 The special caseζ = 1

Utilizing Lemma 2.9, we obtain that the conditional ecdf. of thep-values givenX0 = x0 has the

limit F∞(·|x0) with formal representation

F∞(t|x0) = 1 − Φ

(
Φ−1(1 − t)√

1 − ρ
+

√
ρ

1 − ρ
x0

)
. (2.14)

Some important properties of this limiting conditional ecdf. are listed in the followinglemma,

which can be verified by elementary analytic calculations.

Lemma 2.29

The functionF∞(·|x0) defined in (2.14) has the following properties.

(i) For any fixedt ∈ [0, 1], F∞(t|x0) is non-increasing inx0.

(ii) limt↓0(∂/∂t)F∞(t|x0) = 0.

(iii) F∞(t|x0) is convex fort ∈ [0,Φ(x0/
√
ρ)] and concave fort ∈ [Φ(x0/

√
ρ), 1].

From these considerations, it can be concluded thatF∞ has (depending onx0) either zero or

exactly two points of intersection or exactly one boundary point with Simes’ lineon the interval

[0, α]. These three possible situations shall be demonstrated in the following figurewith ρ = 0.90.

Figure 2.5:F∞(t|x0) for x0 = −1.92, x0 ≈ −2.06453 andx0 = −2.2 together with Simes’ line

on [0, α]

The constellation corresponding to the curve in the middle, i.e. the existence ofexactly one bound-

ary point of the two objects resulting from the special outcomeX0 = x̄0 (say) is of particular

importance for the computation of the False Discovery Rate, because it holds:
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Theorem 2.30(The FDR in case ofζ = 1 andρ ∈ (0, 1))

Let x̄0 be the value ofX0 for which the limiting conditional ecdf.F∞(·|x0) of thep-values has

exactly one boundary point with Simes’ line on the interval[0, α] and sett2 = t(x̄0). Then the

limiting Expected Error Rate and False Discovery Rate compute as follows:

EER∞(1) = t2Φ(x̄0)/α+

∫ 1

t2/α
Φ(x0(αt|1)) dt, (2.15)

FDR∞(1) = P(X0 ≤ x̄0) = Φ(x̄0). (2.16)

Proof: We will apply Theorem 2.18. Therefore, we have to determine the setC1 of largest crossing

points and the corresponding setsE0 andE1 for the x0-values. We note that for every given

t ∈ (0, α), it is possible to determine the correspondingx0 = x0(t), so thatF∞(·|x0) intersects

Simes’ line in the point(t, t/α). Regarding this valuex0(t) as a function oft, we obtain after

equatingF∞(t|x0) = t/α and solving forx0:

x0(t) =

√
1 − ρ

ρ
Φ−1(1 − t

α
) − Φ−1(1 − t)√

ρ
, t ∈ (0, α).

Studying the analytic properties of the functionx0(t) yields limt↓0 x0(t) = limt↑α x0(t) = −∞
and sincex0(·) is a continuous concave function, it exists a unique maximumx̄0 of x0(t) on

(0, α). It is worth noting that this implies that there is exactly one abscissat2 for which x0(t)

equalsx̄0. This can geometrically be interpreted as the boundary point situation. Furthermore,

as stated before, for a fixedt ∈ (0, α), the limiting conditional ecdf.F∞(t|x0) (regarded as a

function ofx0) is non-increasing inx0. Therefore, no intersection ofF∞(·|x0) and Simes’ line

occurs for valuesX0 > x̄0 and for valuesX0 < x̄0, we obtain two points of intersection, the

larger of which is larger thant2. Consequently, it holds

C1 = {0} ∪ (t2, α), E1 = (−∞, x̄0] and E0 = (x̄0,∞).

Theorem 2.18 then immediately yields the formula for EER∞(1) by plugging in the actual cdf.

G1,1 = Φ. For the computation of FDR∞(1), we recall thatlimt↓0(∂/∂t)F∞(t|x0) = 0 for any

x0 ∈ R. Therefore, the second summand in (2.13) vanishes and we finally obtain (2.16).�

After this preparing considerations, computation of the FDR in case ofζ = 1 is equivalent to

the task of computing the boundary point(t∗, t∗/α) of the limiting conditional ecdf.F∞(·|x0)

and Simes’ line on(0, α) as well as the correspondinḡx0 = x0(t
∗) for given valuesα andρ.

Necessary and sufficient conditions for having a boundary point ofF∞(·|x0) and Simes line at the

point t are, that functional and derivative value of the two objects at the pointt are equal. This

means, formally expressed,

F∞(t|x0) =
t

α
, (2.17)

d

dt
F∞(t|x0) =

1

α
. (2.18)
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If we now define the distance functiond(·|x0) by d(t|x0) := F∞(t|x0) − t/α and furthermore

substituteu := Φ−1(1 − t) ⇔ t = 1 − Φ(u) = Φ(−u), we obtain

d(u|x0) = Φ

(
− u√

1 − ρ
−
√

ρ

1 − ρ
x0

)
− Φ(−u)

α
as well as (2.19)

d

du
d(u|x0) =

ϕ(u)

α
− 1√

1 − ρ
ϕ

(
u√

1 − ρ
+

√
ρ

1 − ρ
x0

)
(2.20)

and the conditions (2.17) and (2.18) from above read re-formulated

d(u|x0) = 0, (2.21)

d

du
d(u|x0) = 0. (2.22)

This is a system of two equations in the two variablesu andx0. Equation (2.22) corresponds to a

quadratic form and can be solved explicitly foru. The solutions are given by

u1,2 =
−x0√
ρ

±
√

1 − ρ

ρ

√
x2

0 − 2 ln

(√
1 − ρ

α

)
.

Since for a fixedx0 the largest crossing or boundary point (or, more exactly, the one with the

largest abscissa int) decides over the retention and rejection of hypotheses in the linear step-up

procedure, the smaller value

u2 =
−x0√
ρ

−
√

1 − ρ

ρ

√
x2

0 − 2 ln(

√
1 − ρ

α
) (2.23)

is the demanded solution, because the transformation fromt to u was a strictly decreasing one.

Pluggingu2 into (2.21), we get the following defining equation forx̄0:

Φ

(
1√
ρ

[
x̄0 +

√
1 − ρ

√
x̄2

0 − 2 ln(
√

1−ρ
α )

])

Φ

(
1√
ρ

[√
1 − ρ x̄0 +

√
x̄2

0 − 2 ln(
√

1−ρ
α )

]) = α. (2.24)

Unfortunately, it is not possible to solve (2.24) analytically forx̄0. Therefore, a numerical algo-

rithm has to be employed to determine the valuex̄0 approximately. This can be done e.g. by the

well-known Newton-Raphson iteration method, which computesx̄0 up to an arbitrary precision.

For its application, we can define the distance betweenF∞(u2|x0) and Simes’ line as a function

d̃ (say) ofx0, given by

d̃(x0) = Φ

(
1√
ρ

[
√

1 − ρ x0 +

√
x2

0 − 2 ln(

√
1 − ρ

α
)

])

− 1

α
Φ

(
1√
ρ

[
x0 +

√
1 − ρ

√
x2

0 − 2 ln(

√
1 − ρ

α
)

])
,
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and additionally use its derivative

d

dx0
d̃(x0) = ϕ

(√
1 − ρ

ρ
x0 +

1√
ρ

√
x2

0 − 2 ln(

√
1 − ρ

α
)

)

×



√

1 − ρ

ρ
+

1√
ρ

x0√
x2

0 − 2 ln(
√

1−ρ
α )




− 1

α
ϕ

(
x0√
ρ

+

√
1 − ρ

ρ

√
x2

0 − 2 ln(

√
1 − ρ

α
)

)

×



√

1

ρ
+

√
1 − ρ

ρ

x0√
x2

0 − 2 ln(
√

1−ρ
α )




in each iteration step.

Remark 2.31

It may be asked why the method described above should be preferred over a numerical (grid)

search for the maximum ofx0(t) on (0, α). A first answer from the practical point of view is

that the numerical computation ofΦ(·) is substantially more feasible than the one ofΦ−1(·), but

we also give a theoretical one. That is to say that it is possible to give an upper bound for the

FDR in the considered setup by employing the explicit solutions foru1,2. In case ofu1 being

equal tou2, i.e. the distance functiond(u|x0) having a saddle point inu∗ := u1 = u2, the

corresponding valuex∗0, for which the discriminant

√
x2

0 − 2 ln
(√

1−ρ
α

)
of the quadratic equation

(2.22) for determiningu1,2 vanishes, is larger than the exact solutionx̄0. Consequently, it holds

FDR≤ Φ(x∗0). However,x∗0 can be computed very easily and we obtainx∗0 = −
√

2 ln(
√

1−ρ
α ) for

ρ ≤ 1 − α2.

If we now letρ ↓ 0, it even reveals that the limiting FDR has the corresponding right side limit

Φ(−
√

−2 ln(α)), at least forα < 1/2.

Theorem 2.32(Limiting value of the FDR forρ ↓ 0 in the D-EX-N(ζn)-model withζ = 1)

For α ∈ (0, 1/2), it holds in the D-EX-N(ζn) model:

lim
ρ↓0

FDR∞(1) = Φ(−
√
−2 ln(α)).

Proof: From geometric considerations, we have that for anyρ ∈ (0, 1) there exists a unique

solution(u, x0) = (uρ, x0,ρ) (say) of (2.21) and (2.22). Moreover, notice thatα ∈ (0, 1/2] implies

uρ > 0 because oft ∈ (0, α) and the substitutionu = Φ−1(1− t) and therefore (see 2.23)x0,ρ <

0. Sinceuρ has to be a real number in (2.23), we furthermore obtain thatlim supρ→0+ x0,ρ ≤
−
√
−2 ln(α). We will now additionally show thatlim infρ→0+ x0,ρ ≥ −

√
−2 ln(α). To this end,

for δ ∈ (0, α), we consider the ansatzx0 = x0(δ) = −
√
−2 ln(δ) < −

√
−2 ln(α) = x0(α)
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covering the entire range of possible values forx0,ρ and define

u = u(ρ, δ) =
−x0(δ)√

ρ
and w = w(ρ, δ) =

u(ρ, δ)√
ρ̄

+

√
ρ

ρ̄
x0(δ).

Then we get from (2.19) thatd(u(ρ, δ)|x0(δ)) = Φ(−w)−Φ(−u)/α. Employing the asymptotic

relationship(x→ ∞) Φ(−x)/ϕ(−x) ∼ 1/x for Mills’ ratio (cf. [193]), we get

Φ(−u)
Φ(−w)

∼ w

u

ϕ(u)

ϕ(w)
=
w

u
exp((w2 − u2)/2).

Sinceexp((w(ρ, δ)2 −u(ρ, δ)2)/2) = δ < α independent ofρ andlimρ→0+ w(ρ, δ)/u(ρ, δ) = 1,

we obtain thatlimρ→0+ d(u(ρ, δ)|x0(δ)) > 0 for all δ ∈ (0, α) and consequently conclude that

lim infρ→0+ x0,ρ ≥ −
√
−2 ln(α). Together with the resultlim supρ→0+ x0,ρ ≤ −

√
−2 ln(α)

from above, we finally obtainlimρ→0+ x0,ρ = −
√
−2 ln(α) and the assertion follows from for-

mula (2.16).�

Remark 2.33

Note that the latter result implies a discontinuity of the FDR (looked at with respect to its de-

pendence onρ), because forρ = 0 it holds FDR = α as stated above. In practice, it is often

assumed that there may be some kind of weak dependence between test statistics (cf. e. g. [275])

being close to independence in some sense. However, Theorem 2.32 suggests that for largen

and smallρ > 0 the actual FDR may be much smaller than in the independence model if only a

small number of hypotheses is false. For example, forα = 0.05 it is −
√
−2 ln(α) ≈ −2.4477

andΦ(−
√

−2 ln(α)) ≈ 0.0072. This seems to be quite contradictory to the weak dependence

paradigm. A deeper view into this matter however reveals that if we change theorder of limits,

the results again become what one would expect. More specifically, we have that

lim
ρ→0+

(
lim

n→∞
FDRn(1)

)
= Φ(−

√
−2 ln(α)) << α, but

lim
n→∞

(
lim

ρ→0+
FDRn(1)

)
= α.

Taking this into consideration, one may argue that Theorem 2.32 has mainly academic value since

the first order of limit has no practical application. A nice visual illustration ofthe discrepancy of

the two results is given in Appendix A.1.

Remark 2.34

If ζ equals 1, there exists for any value ofρ ∈ (0, 1) an x̄0, such that the functionF∞(t|x̄0) and

the Simes line have a boundary point.

As a summarization, the following figure illustrates the graph of the FDR- and EER- curves with

regard toρ in case ofζ = 1.
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Figure 2.6: FDR∞(1) and EER∞(1) for varying values ofρ ∈ [0, 1] andα = 0.05

It becomes obvious that the EER is always bounded by the FDR. This factis immediately clear if

we consider the representations

FDRn(1) = P(Vn > 0) =
n∑

i=1

P(Vn = i),

EERn(1) = E

(
Vn

n

)
=

n∑

i=1

i

n
P(Vn = i) ≤ FDRn(1),

which hold for alln ∈ N. Furthermore, it is illustrated that the two entities converge against the

same limiting valueα for ρ→ 1 as proven in Theorem 2.27.

2.3.2 The general caseζ < 1

We will now lay focus on the more general caseζ < 1. Recall that the underlying model assump-

tion is now that a proportionζ of the hypotheses are true and the remaining proportion(1 − ζ) of

the hypotheses are totally wrong withp-values equal to zero almost surely (according to the Dirac-

exchangeable model definition). As a consequence, the limiting conditional ecdf. F∞(·|x0, ζ) of

thep-values is now given by

F∞(t|x0, ζ) = (1 − ζ) + ζ

(
1 − Φ

(
Φ−1(1 − t)√

1 − ρ
+

√
ρ

1 − ρ
x0

))
.

Most of the substantial properties of the graph of this function are preserved from the caseζ =

1, but there is one major change: Now,F∞(·|x0, ζ) always starts above Simes’ line, because

obviously it holdsF∞(0|x0, ζ) = 1 − ζ > 0. Therefore, the two objects always have at least

one point of intersection. For some valuesx0, together with certain parameter constellations forζ

andρ, however, we may get two ore three points of intersection, but never morethan three. The

following figure illustrates the three possible scenarios for the example caseζ = 0.9 andρ = 0.95.
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Figure 2.7:F∞(t|x0, ζ) for x0 = −1.88, x0 ≈ −1.95738, andx0 = −2.12 on [0, α] in case of

ζ = 0.9 andρ = 0.95.

Again, for a givent ∈ (0, α), it is possible to determine the valuex0(t), such that the limiting con-

ditional ecdf. and Simes’ line cross each other in the point(t, t/α). A straightforward calculation

yields

x0(t) =

√
1 − ρ

ρ
Φ−1

(
1 − t/α

ζ

)
− Φ−1(1 − t)√

ρ
, t ∈ (0, α).

The computation of the FDR, however, is more complicated in this case. The actual FDP, i.e. the

proportion of falsely rejected null hypotheses with respect to all rejectedhypotheses for a given

x0, has now the limit

lim
n→∞

Vn(x0)

Rn(x0) ∨ 1
=
t(x0)/α− (1 − ζ)

t(x0)/α
= 1 − α (1 − ζ)

t(x0)
,

wheret(x0) denotes the largest point of intersection ofF∞(·|x0, ζ) and Simes’ line. The FDR is

defined as the expectation of this ratio and therefore it holds

FDR∞(ζ) = E

(
lim

n→∞
Vn(x0)

Rn(x0) ∨ 1

)
= 1 − α (1 − ζ) · E

(
1

t(x0)

)
. (2.25)

Again, the boundary point situation is of crucial interest. If it occurs fora certainx̄0, the function

F∞(·|x̄0, ζ) intersects Simes’ line at a pointt1 ∈ (α(1 − ζ),Φ(x̄0/
√
ρ)) and touches Simes’

line at the boundary pointt2 ∈ (Φ(x̄0/
√
ρ), α) with t1 < t2. ForX0 > x̄0, we have exactly

one point of intersection (automatically the largest) and itst-coordinate lies in the intervalI1 :=

(α(1 − ζ), t1). ForX0 < x̄0, however, three points of intersection occur and the largest crossing

point abscissa, which is relevant for the computation of the FDR, comes from the intervalI2 :=

(t2, α). Summarized, there are the two disjoint intervalsI1 andI2 of possible largest crossing

point abscissas and thereforet1 andt2, respectively, provide integration bounds for the expectation

formula (2.25) for the computation of the limiting FDR.
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For the determination of the boundary point, we utilize a technique analogue to the caseζ = 1

described above. With our already introduced notation, we obtain here

d(u|x0, ζ) = (1 − ζ) + ζ

(
Φ(− u√

1 − ρ
−
√

ρ

1 − ρ
x0)

)
− Φ(−u)

α
,

d

du
d(u|x0, ζ) =

ϕ(u)

α
− ζ√

1 − ρ
ϕ

(
u√

1 − ρ
+

√
ρ

1 − ρ
x0

)

and

u2 =
−x0√
ρ

−
√

1 − ρ

ρ

√
x2

0 − 2 · ln(

√
1 − ρ

αζ
). (2.26)

Plugging thisu2 into the equationd(u|x0, ζ) = 0, which represents the condition for the distance

function (in analogy to the caseζ = 1), results in a determining equation forx̄0 given by

Φ

(
1√
ρ

[
x̄0 +

√
1 − ρ

√
x̄2

0 − 2 ln
(√

1−ρ
αζ

)])

(1 − ζ) + ζΦ

(
1√
ρ

[√
1 − ρ x̄0 +

√
x̄2

0 − 2 ln
(√

1−ρ
αζ

)]) = α. (2.27)

Also (2.27) cannot be solved analytically forx̄0 and therefore only an approximative numerical

solution can be computed via root-finding iteration methods using the functions

d̃(x0|ζ) = (1 − ζ) + ζ Φ


 1√

ρ


√1 − ρ x0 +

√
x2

0 − 2 ln(

√
1 − ρ

αζ
)






− 1

α
Φ


 1√

ρ


x0 +

√
1 − ρ

√
x2

0 − 2 ln(

√
1 − ρ

αζ
)






and

d

dx0
d̃(x0|ζ) = ζ ϕ



√

1 − ρ

ρ
x0 +

1√
ρ

√
x2

0 − 2 ln(

√
1 − ρ

αζ
)




×



√

1 − ρ

ρ
+

1√
ρ

x0√
x2

0 − 2 ln(
√

1−ρ
αζ )




− 1

α
ϕ


 x0√

ρ
+

√
1 − ρ

ρ

√
x2

0 − 2 ln(

√
1 − ρ

αζ
)




×



√

1

ρ
+

√
1 − ρ

ρ

x0√
x2

0 − 2 ln(
√

1−ρ
αζ )


 .

With this (approximate) solution for̄x0, t2 is given immediately by back substitution, i.e.t2 =

Φ(−u2). For the smaller point of intersection and itst-coordinatet1, we convert the formulas for
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the distance function and its derivative with respect tou into the simple form

d(u|x̄0, ζ) = Φ

(
u√

1 − ρ
+

√
ρ

1 − ρ
x̄0

)
− 1

αζ
(Φ(u) + α− 1) and

d

du
d(u|x̄0, ζ) =

ϕ
(

u√
1−ρ

+
√

ρ
1−ρ x̄0

)

√
1 − ρ

− ϕ(u)

αζ

and apply an iteration method for root-finding in an environment ofΦ−1(1 − α(1 − ζ)). Having

obtainedt1 = Φ(−u1) in this manner, the limiting EER and FDR finally compute as given in the

following theorem.

Theorem 2.35

Given model D-EX-N(ζn) with limn→∞ ζn = ζ ∈ (0, 1), the set of LCP’s is given by

Cζ = (α(1 − ζ), t1) ∪ (t2, α) and EER∞(ζ) and FDR∞(ζ), respectively, compute as

EER∞(ζ) =
t2 − t1
α

· Φ(x0 (t1|ζ)) +

∫ t1/α

1−ζ
Φ(x0 (α t|ζ)) dt+

∫ 1

t2/α
Φ(x0 (α t|ζ)) dt,

FDR∞(ζ) = (z2 − z1) · Φ
(
x0

(
α (1 − ζ)

1 − z1
|ζ
))

+

∫ z1

0
Φ

(
x0

(
α (1 − ζ)

1 − z
|ζ
))

dz +

∫ ζ

z2

Φ

(
x0

(
α (1 − ζ)

1 − z
|ζ
))

dz,

wherezi = 1 − α(1 − ζ)/ti, i = 1, 2.

Proof: The assertions follow from the general Theorem 2.13 via integration by parts. Denote the

pdf. corresponding toGζ,1 by gζ,1 and notice thatCζ,1 = (0, t1/α−(1−ζ))∪(t2/α−(1−ζ), ζ).
From Theorem 2.13, we get

EER∞(ζ) =

∫ t1/α−(1−ζ)

0
ugζ,1(u)du+

∫ ζ

t2/α−(1−ζ)
ugζ,1(u)du.

SinceWZ = WX0 = Φ, x0(t1|ζ) = x0(t2|ζ) andlimt↑α x0(t|ζ) = −∞, we get

EER∞(ζ) =

[
t1
α

− (1 − ζ)

]
[1 − Φ(x0(t1|ζ))] + ζ

−
[
t2
α

− (1 − ζ)

]
[1 − Φ(x0(t1|ζ))] −

(
t1
α

− (1 − ζ)

)
− ζ

+
t2
α

− (1 − ζ) +

∫ t1/α−(1−ζ)

0
Φ(x0(α(u+ 1 − ζ)|ζ))du

+

∫ ζ

t2/α−(1−ζ)
Φ(x0(α(u+ 1 − ζ)|ζ))du

=
t2 − t1
α

Φ(x0(t1|ζ)) +

∫ t1/α

1−ζ
Φ(x0(αt|ζ))dt+

∫ 1

t2/α
Φ(x0(αt|ζ))dt.
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In order to compute FDR∞(ζ), note that forz ∈ (0, z1) ∪ (z2, ζ)

Gζ,2(z) = 1 − Φ(x0(
α(1 − ζ)

1 − z
|ζ)).

In view of limt↓α(1−ζ) x0(t|ζ) = ∞, it is Gζ,2(z1) = Gζ,2(z2), Gζ,2(0) = 0 andGζ,2(ζ) = 1.

Denoting the corresponding pdf ofGζ,2 by gζ,2, we obtain

FDR∞(ζ) =

∫ z1

0
zgζ,2(z)dz +

∫ ζ

z2

zgζ,2(z)dz

= z1Gζ,2(z1) + ζGζ,2(ζ) − z2Gζ,2(z2) −
∫ z1

0
Gζ,2(z)dz −

∫ ζ

z2

Gζ,2(z)dz

= (z2 − z1)Φ(x0(
α(1 − ζ)

1 − z1
|ζ))

+

∫ z1

0
Φ(x0(

α(1 − ζ)

1 − z
|ζ))dz +

∫ ζ

z2

Φ(x0(
α(1 − ζ)

1 − z
|ζ))dz,

and the formulas given in the theorem are proven.�

Remark 2.36

In contrast to the situation regarded in Remark 2.34, there are parameter combinations forζ < 1

andρ, so that for every value ofx0 only exactly one point of intersection ofF∞(t|x0) and the

Simes line is at hand. Such a constellation can be detected by noticing that the function x0(t)

then decreases monotonously on the whole range[α (1 − ζ), α] of possible arguments. In this

situation, the abscissa of the demanded (largest) crossing point can lie anywhere in this interval

and therefore it then holds

EER∞(ζ) =

∫ 1

1−ζ
Φ(x0 (αt)) dt,

FDR∞(ζ) =

∫ ζ

0
Φ

(
x0

(
α(1 − ζ)

1 − z

))
dz.

This can be formally interpreted ast1 = t2.

For α < 1/2, there is another way of detecting such a situation. First we notice thatα < 1/2

implies u2 > 0 in (2.26) and consequentlyx0 < 0. Now, t1 = t2 (no tangent point possible

for (ρ, ζ)) is equivalent tod(u2(x0)|x0, ζ) ≥ 0 for x0 = −
√

2 ln(
√
ρ̄/(αζ)). To see this, we

notice thatF∞(t|x0, ζ) has a unique abscissat∗ with same derivative as Simes’ line, because the

discriminant in (2.26) vanishes forx0 = x0, and it holdst∗ = Φ(x0/
√
ρ), i.e., t∗ is the abscissa

of the point of inflection ofF∞(·|x0, ζ). If now x0 < x0 < 0, no tangent point can occur, because

d(u2(x0)|x0, ζ) > d(u2(x0)|x0, ζ) ≥ 0. On the other hand, ifx0 < x0 < 0, no tangent point can

occur because we obtain a negative discriminant in (2.26) for such anx0.
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Figure 2.8: EER∞(ζ) in the D-EX-N(ζn) model forα = 0.05 andζ = 0.1, 0.2, 0.3, 0.4, 0.5

(left graph) andζ = 0.6, 0.7, 0.8, 0.9, 0.95, 0.975, 1 (right graph).

We end this section with a depictive representation of EER∞(ζ) and FDR∞(ζ) in our D-EX-N(ζ)

model. We start with EER∞(ζ) in Figure 2.8. Forρ → 0, EER∞(ζ) tends toα(1 − ζ)/(1 − αζ)

as expected, see Remark 2.28 and forρ → 1, EER∞(ζ) tends toαζ according to Theorem 2.27.

Moreover, it seems that EER∞(ζ) is increasing inρ with largest values for largeρ andζ. If ρ is

not too large (< 0.9), EER∞(ζ) is largest forζ ≈ 1/2.

Figure 2.9: FDR∞(ζ) in the D-EX-N(ζn) model forα = 0.05 andζ = 0.1, 0.2, 0.4, 0.6, 0.8, 0.9

(left graph) andζ = 0.95, 0.96, 0.97, 0.98, 0.99, 0.995, 0.999, 0.9999, 0.99999, 1 (right

graph).

Figure 2.9 displays FDR∞(ζ) for various values ofζ for ρ ∈ [0, 1]. Forζ ∈ (0, 1), the FDR tends
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to the Benjamini-Hochberg bound forρ → 0 andρ → 1. For ρ = 1 we have total dependence

so that FDRn(ζn) = ζnα in the D-EX-N(ζn) model, again according to Theorem 2.27. For large

values ofζ the computation of FDR∞(ζ) is extremely cumbersome. The main reason is that the

BP’s are very close to zero so that an enormous numerical accuracy is required. Finally, it is

interesting to note that forζ = 1, FDR∞(ζ) is the true level of Simes’ [264] global test for the

intersection hypothesis.

2.4 Exchangeable studentized normal variables

The last distributional setting we investigate deals with equi-correlated studentized normal vari-

ables formally introduced in the following definition of the D-EX-t(ζn) model.

Notation 2.37(D-EX-t(ζn) model)

LetXi ∼ N (ϑi, σ
2), i = 1, . . . , n, be independent normal random variables and letνS2/σ2 ∼

χ2
ν be independent of theXi’s. Without loss of generality we assumeσ2 = 1 and the cdf. of

√
νS will be denoted byFχν . Again we consider the multiple testing problemHi : ϑi = 0

versusKi : ϑi > 0, i = 1, . . . , n. Let Ti = Xi/S, i = 1, . . . , n. Then(T1, . . . , Tn) has a

multivariate equi-correlatedt-distribution. The cdf. (pdf.) of a univariate (central)t-distribution

with ν degrees of freedom will be denoted byFtν (ftν ) and aβ-quantile of thetν-distribution will

be denoted bytν,β. With respect to the notation introduced in Section 2.1,Z is replaced byS,

WX = Φ,WS(s) = Fχν (s/
√
ν) andWT = Ftν .

Suitablep-values (as a function ofs) are defined bypi(s) = 1−Ftν (xi/s). Again we addϑi = ∞
to the model such thatpi = 0 a. s. ifϑi = ∞. We denote the corresponding D-EX(ζn) model by

D-EX-t(ζn). It is outlined in [17] by employing PRDS arguments that the Benjamini-Hochberg

bound applies in this model forα ∈ (0, 1/2).

Computation of the asymptotic False Discovery Rate and the asymptotic Expected Error Rate,

respectively, can be done in the D-EX-t(ζn) model quite similarly to the description in Chapter

2.3 for the D-EX-N(ζn) model. Again, the largest crossing point of the conditional limiting ecdf.

F∞(·|s, ζ) of thep-values and Simes’ line determines the limiting proportion of rejected hypothe-

ses in the linear step-up procedure. Therefore, we first give the explicit representation ofF∞ in

this case, namely

F∞(t|s, ζ) =





1 − Φ(s · F−1
tν (1 − t)) for ζ = 1,

(1 − ζ) + ζ (1 − Φ(s · F−1
tν (1 − t))) for ζ 6= 1.

(2.28)

As the following figures show, this function behaves very similarly to its analogue in the normal

case treated before. Again, we will first take a closer look at the situationζ = 1.
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Figure 2.10:F∞(t|s, 1.0) for ν = 1 ands = 0.015, s ≈ 0.026710 ands = 0.04 on [0, α/2]

For s2 < (ν + 1)/ν, we again obtain that the limiting ecdf. is first convex and then concave.

Due to the same argumentation as in the normal case, we have to investigate the boundary point

situation (depicted in Figure 2.10 by the curve in the middle) and determine the corresponding

value s̄. The limiting FDR then computes as FDR∞(1) = P(S ≤ s̄) = Fχ2
ν
(νs̄2), because the

derivative ofF∞(·|s, ζ) in the origin is zero andF∞(t|s, ζ) is non-increasing ins for any fixedt.

Formally, we can state the following properties ofF∞(t|s) = F∞(t|s, 1) which will be helpful in

what follows.

Lemma 2.38

The functionF∞(·|s) = F∞(·|s, 1) defined in (2.28) has the following properties.

(i) For any fixedt ∈ [0, 1], F∞(t|s) is non-increasing ins.

(ii) limt↓0(∂/∂t)F∞(t|s) = 0.

(iii) Defining a(s, ν) =
√

(ν + 1)/s2 − ν, F∞(t|s) is convex fort ∈ [0, Ftν (−a(s, ν))] and

concave fort ∈ [Ftν (−a(s, ν)), 1] for s2 < (ν + 1)/ν.

In case ofζ 6= 1, too, most of the essential characteristics ofF∞ are preserved, as the following

figure for ζ = 0.95 shows. The crucial difference again consists in the fact thatF∞(0|s, ζ) =

1 − ζ > 0 for ζ < 1 such that an LCP larger that zero is guaranteed.
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Figure 2.11:F∞(t|s, 0.95) for ν = 1 ands = 0.025, s = 0.03180 ands = 0.04 on [0, α (1−ζ/2)]

Since the value ofs determines if and whereF∞ and Simes’ line have a crossing or a boundary

point, it is again of interest to give a formal representation ofs(t) so that the functional values of

the two objects coincide att. We obtain

s(t) =
Φ−1 (1/ζ − t/(αζ))

F−1
tν (1 − t)

(2.29)

and notice that crossing or boundary points (forα < 1/2) can consequently only occur in the

interval(α(1 − ζ), α(1 − ζ/2)) ∋ t, because only strictly positive values fors are possible. The

limits of s(t) are given in the following lemma.

Lemma 2.39

Let tu = α (1 − ζ) andto = α (1 − ζ/2). Thens(t) as defined in (2.29) has the following limits:




limt↓tu s(t) = limt↑to s(t) = 0 for ζ = 1,

limt↓tu s(t) = ∞ and limt↑to s(t) = 0 for ζ 6= 1.

Furthermore, we give (for the determination of extrema) the derivative ofs(t) with respect tot:

d

dt
s(t) =

1
(
F−1

tν (1 − t)
)2 ·

(
Φ−1(1/ζ − t/(αζ))

ftν (F−1
tν (1 − t))

− F−1
tν (1 − t)

αζϕ(Φ−1(1/ζ − t/(αζ)))

)
.

Therefore, for points with horizontal tangent to the curves(t) the condition

αζΦ−1(1/ζ − t/(αζ)) · ϕ(Φ−1(1/ζ − t/(αζ)))

F−1
tν (1 − t) · ftν (F−1

tν (1 − t))
= 1 (2.30)

must hold. Condition (2.30) simplifies in the special caseν = 1, because it can in this case

entirely be expressed by elementary functions andΦ. Moreover, forν = 1 the t1-distribution is

the well-known Cauchy distribution so that we devote one subsection to this special case.
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2.4.1 The special caseν = 1

It is well known that in case ofν = 1, Student’st-distribution with one degree of freedom coin-

cides with the Cauchy distribution with characteristics as given in the following lemma.

Lemma 2.40(Cauchy distribution)

Letf denote the pdf. and letF denote the cdf. of the Cauchy distribution. Then it holds:

f(y) =
1

π (1 + y2)
, (2.31)

F (y) =
1

2
+

arctan(y)

π
, (2.32)

F−1(y) = tan(π (y − 1

2
)) = t1,y. (2.33)

Plugging in the thereby obtained quantiles for Student’st-distribution with one degree of freedom

into the formal representation ofs(t) in (2.29) yields

s(t) =
Φ−1(1/ζ − t/(αζ))

tan(π(1
2 − t))

and, consequently,

d

dt
s(t) =

1

tan2(π (1
2 − t))

[
π(1 + tan2(π (

1

2
− t))) · Φ−1(

1

ζ
− t

αζ
) − tan(π (1

2 − t))

αζϕ(Φ−1(1
ζ − t

αζ ))

]
.

Therefore, the conditionddt s(t) = 0 is equivalent to

π(1 + tan2(π (
1

2
− t))) · Φ−1(

1

ζ
− t

αζ
) =

tan(π (1
2 − t))

αζϕ(Φ−1(1/ζ − t/(αζ)))
. (2.34)

Substitutingu := Φ−1(1/ζ − t/(αζ)), we gett = α(1 − ζ Φ(u)) and (2.34) reads re-formulated

αζπuϕ(u) ·
[
1 + tan2(π (1

2 − α(1 − ζ Φ(u))))
]

tan(π(1/2 − α(1 − ζ Φ(u))))
= 1. (2.35)

Computation of an approximate numerical solution of (2.35) with respect tou and following back

substitution enables us immediately to determine an arbitrary precise numerical value of the lim-

iting FDR for ζ = 1 in the Cauchy case ofν = 1. We obtain

ū ≈ 0.751350,

t̄ ≈ 0.011311,

s̄ ≈ 0.026710 and, finally,

FDR∞(1) ≈ 0.021309.
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Remark 2.41

If ν is not equal to1, the same computational steps have to be carried out using the target equation

(2.30). Although conceptionally the same, this is numerically much more cumbersome, because

F−1
tν for arbitraryν makes numerical problems.

Remark 2.42

The limiting EER in case ofζ = 1 can (according to Theorem 2.18) be computed as

EER∞(1) = t̄ · Fχ2
ν

(
νs̄2
)

+

∫ 1/2

t̄/α
Fχ2

ν

(
νs2 (αz)

)
dz.

Remark 2.43

Due to the limits at the boundaries of the domain ofs(t) and its uniform flexional behaviour, the

values̄ is a global maximum ofs(t) in case ofζ = 1.

Again, this property is no longer preserved in the general caseζ 6= 1. Then, either two points

with horizontal tangent occur (corresponding to a minimum and a maximum ofs(t)) or there are

no roots of the derivative ofs(t) at all. Clearly, numerical algorithms can only detect one of the

two extrema in the first situation. But since we know the flexion ofs(t) in case ofζ 6= 1, too, a

suitable choice of the initial value for the applied algorithm guarantees that thesmaller solution

in u and consequently the larger solution int will be found. This is then the maximum ofs(t)

and is of crucial interest for the further steps towards FDR and EER computation. The remaining

computational steps can then be carried out in analogy to Chapter 2.3.

2.4.2 The general caseν > 1 and ζ < 1

In order to determine the local maximum̄s of s(t) (which corresponds to the boundary point

situation) in the general case, we apply the substitutionu := F−1
tν (1 − t), equivalent tot =

1 − Ftν (u), and achieve the following representations fors(u) and its derivative with respect to

the newly introduced variableu:

s(u) =
1

u
Φ−1

(
1

ζ
− 1 − Ftν (u)

αζ

)
and (2.36)

d

du
s(u) =

1

u2


 uftν (u)

αζϕ
(
Φ−1

(
1
ζ − 1−Ftν (u)

αζ

)) − Φ−1

(
1

ζ
− 1 − Ftν (u)

αζ

)
 . (2.37)

With the transformed boundsuu := F−1
tν (1−to) anduo := F−1

tν (1−tu), the point with horizontal

tangent ons(u) with the smaller abscissau2 is demanded. Since the roots of (2.37) cannot be

determined analytically, a numerical algorithm for maximum searching in a neighborhood ofuu

has to be employed. The so obtained numerical value foru2 provides the valuēs = s(u2). Via

back substitution, we also immediately get the abscissa of the boundary point expressed int-

coordinates ast2 = 1 − Ftν (u2). Again, thist2 is one of the two necessary integration bounds
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for the expectation formulas expressing FDR∞(ζ) and EER∞(ζ). In order to compute the lower

boundt1, we consider the distanced(u|s̄) between the conditional limiting ecdf. and Simes’ line

in the boundary point situation as a function of the transformed variableu and obtain

d(u|s̄) = (1 − ζ) + ζ Φ(−s̄u) − 1 − Ftν (u)

α
.

Applying a root finding algorithm to the latter function in a suitable neighborhoodof uo with result

u1 yieldst1 = 1 − Ftν (u1) and with the transformations

zi = 1 − α (1 − ζ)

ti
for i = 1, 2, and

z3 =
ζ

2 − ζ
,

the limiting FDR and EER can finally (according to Theorem 2.13) be computed as

FDR∞(ζ) = (z2 − z1) · Fχ2
ν

(
νs2

(
α(1 − ζ)

1 − z1

))

+

∫ z1

0
Fχ2

ν

(
νs2

(
α(1 − ζ)

1 − z

))
dz +

∫ z3

z2

Fχ2
ν

(
νs2

(
α(1 − ζ)

1 − z

))
dz,

EER∞(ζ) =
t2 − t1
α

· Fχ2
ν

(
νs2(t1)

)

+

∫ t1/α

1−ζ
Fχ2

ν

(
νs2 (αt)

)
dt+

∫ 1−ζ/2

t2/α
Fχ2

ν

(
νs2 (αt)

)
dt.

However, if s(t) decreases monotonously on the entire interval[tu, to] or it holds d
du s(u) >

0 for all u in the interval[uu, uo], respectively, there is no possible choice fors leading to a

boundary point situation. Consequently, the largest crossing point ofF∞ and Simes’ line can then

lie anywhere in the interval[tu, to] and it holds (t1 = t2)

FDR∞(ζ) =

∫ z3

0
Fχ2

ν

(
νs2

(
α(1 − ζ)

1 − z

))
dz,

EER∞(ζ) =

∫ 1−ζ/2

1−ζ
Fχ2

ν

(
νs2 (αt)

)
dt.

Again, an alternative approach towards determinings̄ consists of working with the distance func-

tion d(u|s) and its derivative with respect tou. In the boundary point situation, both objects must

simultaneously equal zero for a tuple(ū, s̄). In case ofζ = 1, this is equivalent to the pair of

equations

αΦ(−s̄ū) = Ftν (−ū) (2.38)

s̄αϕ(s̄ū) = ftν (ū). (2.39)

From (2.38) und (2.39), asymptotic results forν → ∞ can be deduced as follows.
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Lemma 2.44

Let s̄ = 1 − (− ln(α))1/2ν−1/2 + o(ν−1/2) andū =
√

2 (− ln(α))
1
4 ν

1
4 + o(ν−1/4).

Then it holds:

lim
ν→∞

ftν (ū)

ϕ(s̄ū)
= α.

Proof: Noting thats̄2 = 1 − 2 (− ln(α))
1
2 ν−

1
2 + o(ν−1/2) andū2 = 2 (− ln(α))

1
2 ν

1
2 + o(1),

we obtain for the product that̄u2s̄2 = 2(− ln(α))
1
2 ν

1
2 + 4 ln(α) + o(1) and, consequently,

ϕ(s̄ū) =
1√
2π

exp(−(− ln(α))
1
2 ν

1
2 − 2 ln(α) − o(1)) =

1√
2πα2 exp(

√
− ln(α))

√
νo(1)

.

Furthermore, we have

ftν (ū) =
1√

νB(ν
2 ,

1
2)

(
1 +

2(− ln(α))
1
2

ν
1
2

+ o(ν−1)

)− ν+1
2

and therefore we get for the ratio of both expressions

ftν (ū)

ϕ(s̄ū)
=

√
2π√

νB(ν
2 ,

1
2)
α2 exp

(√
− ln(α) + o(ν−1/2)

)√ν
(

1 +
2(− ln(α))

1
2

ν
1
2

+ o(ν−1)

)− ν+1
2

.

Since

lim
ν→∞

√
2π√

νB(ν
2 ,

1
2)

= 1,

it remains to study the expression

gα(ν) = exp
(√

− ln(α) + o(ν−1/2)
)√ν

(
1 +

2(− ln(α))
1
2

ν
1
2

+ o(ν−1)

)− ν+1
2

. (2.40)

Substitutingn =
√
ν anda =

√
− ln(α) we obtain a new functionha (say), given by

ha(n) =
(
exp(a+ o(n−1))

)n
(

1 +
2a

n
+ o(n−2)

)−n2+1
2

,

which has the same limiting behaviour forn → ∞ asgα(ν) for ν → ∞. Taking the natural

logarithm in the definition ofha(n) results in

ln(ha(n)) = n(a+ o(n−1)) − n2 + 1

2
ln

(
1 +

2a

n
+ o(n−2)

)
.

Now we make use of the series expansion

ln(1 + β) =
∞∑

k=0

(−1)k βk+1

k + 1

and obtain the representation

ln(ha(n)) = na+ o(1) − n2

2

[
2a

n
− 2a2

n2
+ o(n−2)

]
− 1

2
ln

(
1 +

2a

n
+ o(n−2)

)
. (2.41)
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Equation 2.41 immediately yieldslimn→∞ ln(ha(n)) = a2 and therefore it holds

limn→∞ ha(n) = exp(a2). Back substitution yields

lim
ν→∞

gα(ν) =
1

α

and this completes the proof.�

Remark 2.45

An analogous calculation even yields, that for any fixed constantk ∈ R, it holds:

lim
ν→∞

ftν (kū)

ϕ(ks̄ū)
= αk2(2−k2). (2.42)

Lemma 2.44 shows that the chosen values fors̄ andū satisfy the condition (2.39) asymptotically,

becausēs tends to1 with ν tending to infinity.

Furthermore, it can be shown that the tuple(ū, s̄) also satisfies (2.38) asymptotically and that it

is the unique solution of the pair of equations (2.38) and (2.39). This is the task of the following

lemma.

Lemma 2.46

Letα ∈ (0, 1/2) and define

s = sν(x) = 1 − ν−1/2(− ln (x))1/2 + o(ν−1/2), x ∈ (0, 1/2).

Then, given model D-EX-t(ζn) with limn→∞ ζn = ζ = 1, it holds for sufficiently largeν that

F∞(·|sν(x)) has (i) two CP for allx ∈ (0, α), and, (ii) no CP for allx ∈ (α, 1/2).

Proof: For s2 < (ν + 1)/ν, the unique point of inflection ofF∞(·|s) on (0, 1/2) is given by

t∗(ν|s) = Ftν (−a(s, ν)) with a(s, ν) = ((ν + 1)/s2 − ν)1/2. Hence, it suffices to show that

F∞(t∗(ν|sν(x))|sν(x)) > t∗(ν|sν(x))/α for x ∈ (0, α)

for sufficiently largeν and that the derivative ofF∞(·|sν(x)) in t= t∗(ν|sν(x)) is less than1/α

for all x ∈ (α, 1/2) for sufficiently largeν. Therefore, the assertion follows if

lim
ν→∞

Ftν (−a(sν(x), ν))

Φ(−sν(x)a(sν(x), ν))
< α for x ∈ (0, α), (2.43)

lim
ν→∞

ftν (a(sν(x), ν))

sν(x)ϕ(sν(x)a(sν(x), ν))
> α for x ∈ (α, 1/2). (2.44)

Forxν ∈ (0,∞) with limν→∞ x4
ν/ν = β ∈ [0,∞] it is shown in [88] that

lim
ν→∞

ftν (xν)

ϕ(xν)
= lim

ν→∞
Ftν (−xν)

Φ(−xν)
= exp(β/4).

Note that foru→ ∞ ands→ 1 it holds (Mills’ ratio)

Ftν (−u)
Φ(−su) ∼ Ftν (−u)

Φ(−u)
ϕ(u)

ϕ(su)
.

False Discovery Rate and Asymptotics, Thorsten Dickhaus



CHAPTER 2. FDR CONTROL WITH SIMES’ CRITICAL VALUES 49

It can easily be verified thatlimν→∞ a(sν(x), ν)
4/ν = −4 ln(x) andlimν→∞ a(sν(x), ν)

2(1 −
sν(x)

2) = −4 ln(x). As a consequence, (2.43) follows by noting that

lim
ν→∞

Ftν (−a(sν(x), ν))

Φ(−sν(x)a(sν(x), ν))

= lim
ν→∞

[
Ftν (−a(sν(x), ν))

Φ(−a(sν(x), ν))

ϕ(−a(sν(x), ν))

ϕ(−sν(x)a(sν(x), ν))

]

= exp(−4 ln(x)/4) lim
ν→∞

exp(−1

2
a(sν(x), ν)

2(1 − sν(x)
2))

=
1

x
exp(2 ln(x))

= x.

An analogous calculation yields (2.44). Hence, Lemma 2.46 is proved. �

Noticing that the FDR in case ofζ = 1 can be computed as

P(S ≤ s̄) = Fχ2
ν
(νs̄2),

we finally obtain that FDR∞(1) for ν → ∞ in the D-EX-t(ζn) model withlimn→∞ ζn = 1 tends

to the same limiting value as the one given in Theorem 2.32 forρ → 0 in the D-EX-N(ζn) model

treated in Section 2.3.

Theorem 2.47

In the D-EX-t(ζn) model, it holds:

lim
ν→∞

FDR∞(1) = Φ(−
√
−2 ln(α)).

Proof: The χ2
ν-distribution has expectationµχ2

ν
= ν and varianceσ2

χ2
ν

= 2ν. Therefore, the

transformed variable
νS2 − µχ2

ν

σχ2
ν

=
νS2 − ν√

2ν

is standardized with expectation0 und variance1. Now it holds

νs̄2 − ν√
2ν

= −
√
−2 ln(α) + o(1)

and according to the Central Limit Theorem we finally get

lim
ν→∞

P(
νS2 − ν√

2ν
≤ νs̄2 − ν√

2ν
) = lim

ν→∞
P

(
νS2 − ν√

2ν
≤ −

√
−2 ln(α) + o(1)

)

= Φ(−
√
−2 ln(α)). �

Again, we close this section with two figures displaying EER∞(ζ) and FDR∞(ζ), respectively,

in the D-EX-t(ζn) model.
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Figure 2.12: EER∞(ζ) in the D-EX-t(ζn) model forα = 0.05 and differentζ ’s.

Figure 2.12 displays EER∞(ζ) for various values ofζ. It seems that EER∞(ζ) is decreasing inν.

For ν → ∞, EER∞(ζ) again tends to the valueα(1 − ζ)/(1 − αζ) as expected, cf. [91]. Note

that EER∞(ζ) is close to this limit ifν is not too small. As expected, forζ ≈ 1/2 andν not too

small, EER∞(ζ) is largest.

Figure 2.13: FDR∞(ζ) in the D-EX-t(ζn) model forα = 0.05 and differentζ ’s.

In Figure 2.13, FDR∞(ζ) is displayed for various values ofζ. Except forζ = 1, the FDR tends

to the Benjamini-Hochberg boundαζ for increasing degrees of freedom. The limit forν → 0 is

not clear. In the latter case the density of thet-distribution becomes more and more flat making

the computation of FDR∞(ζ) extremely difficult. But anyhow, looking at0 < ν < 1 has only

academic value.
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As in the D-EX-N(ζ) model withζ = 1, FDR∞(ζ) is the true level of Simes’ global test for the

intersection hypothesis, cf. [264].

2.5 Conclusions

The investigations in this chapter show that the false discovery proportion FDP= Vn/[Rn ∨ 1]

of the LSU-procedure can be very volatile in case of dependentp-values, that is, the actual FDP

may be much larger (or smaller) than in the independent case. The same is truefor Vn, Vn/n, Rn

andRn/n. Under mild assumptions, the ecdf. of thep-values converges to a fixed curve under

independence (cf. [91]), which implies convergence ofVn/n andRn/n to a fixed value. On the

other hand, the shape of the ecdf. of thep-values under exchangeability heavily depends on the

(realization of the) disturbance variableZ. In the latter case, the limit distribution ofVn/n and

Rn/n typically has positive variance. It is often assumed that there may be some kind of "weak

dependence" between test statistics (cf., e. g., [275]) being close to independence in some sense.

The results in Theorems 2.32 and 2.47 and the numerical calculations reflected in Figures 2.9

and 2.13 suggest that for largen andζn → 1 small deviations from independence (smallρ or

largeν) may result in a substantially smaller FDR than the Benjamini-Hochberg bound. However,

simulations for smallρ and largeν show that FDRn(ζn) approaches its limit FDR∞(1) only for

unrealistically large values ofn if ζn → 1 (cf. Appendix A.1). A possible explanation may be

that limρ→0+ FDRn(1) = α, limν→∞ FDRn(1) = α, hence the order of limits plays a severe

role. Moreover, for smallρ it seems thatn has to be very large such that the ecdf. reproduces the

shape ofF∞ close to0. Forζ < 1, the FDR∞-curves in Figures 2.9 and 2.13 reflect the FDR for

realistically largen (e.g.n = 1000) very well. The reason is that the shape behavior ofF∞ close

to 0 is not that crucial as forζ = 1.

Section 2.2 shows that the FDR under dependency may also have the same behavior as in the

independent case. Therefore, it seems very difficult to predict whathappens with EER, FDR and

FDP in models with more complicated dependency structure, e.g., in a multivariate normal model

with arbitrary covariance matrix. In any case, results of the LSU-procedure, or more general, of

any FDR-controlling procedure, should be interpreted with some care under dependency taking

into account that the FDR refers to an expectation and that the procedureat hand may lead to

much more false discoveries than expected.

Finally, with slight modifications of the methods presented in this chapter one canalso treat statis-

tics likeTi = |Xi−Z| orTi = |Xi|/Z. Somewhat more effort will be necessary if the disturbance

variableZ is two-dimensional, as for example inTi = |Xi − Z1|/Z2.
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Chapter 3

A new rejection curve

This chapter deals with a new method for gaining power in a multiple test situation bydiscussing

procedures based on a new and in some sense (cf. Section 3.6) asymptotically optimal rejection

curve. The fact that the FDR of the original linear step-up procedure isbounded byn0α/n if n0

hypotheses are true and the remainingn1 = n−n0 hypotheses are false implies that the pre-defined

error level is not entirely exhausted forn0 < n by this method which raises the possibility of

improving the Benjamini-Hochberg procedure with regard to power. We will tackle this problem

from the perspective of rejection curves, which will be formally introduced in Definition 3.2 below,

and no longer use Simes’ line for determining the indices of hypotheses to be rejected, but another,

more sophisticated function oft ∈ [0, 1], parametrized by the pre-defined FDR-levelα.

3.1 Notation and preliminaries

Before we can state the main results of this chapter, we need some additional notation. Especially,

we have to distinguish carefully between several probability measures anddata models which we

formalize in this section.

Notation 3.1 (General setup for Chapter 3)

Let (Ω,A, {Pϑ : ϑ ∈ Θ}) denote a statistical experiment and let(Hn)n∈N be a sequence of null

hypotheses with∅ 6= Hn ⊂ Θ. The corresponding alternatives are given byKn = Θ \ Hn. Let

(pn)n∈N denote a sequence ofp-values withpn : (Ω,A) −→ ([0, 1],B), whereB denotes the

Borel-σ-field over[0, 1]. Let I0 = I0(ϑ) = {i ∈ N : ϑ ∈ Hi}, I1 = I1(ϑ) = N \ I0 = {i ∈
N : ϑ 6∈ Hi} and In,j = In,j(ϑ) = Ij ∩ Nn, j = 0, 1. As usual, let ap-valuepi for testing

Hi satisfy0 < Pϑ(pi ≤ x) ≤ x for all ϑ ∈ Hi, i ∈ N andx ∈ (0, 1]. We also assume that

for everyϑ ∈ Θ and i ∈ I0(ϑ) there is a probability measurePϑi defined on(Ω,A) for which

the sequence(pn)n∈N has the same distribution underPϑi as the sequence(pi
n)n∈N underPϑ, the

only difference between these two sequences ofp-values being thatpi
i ≡ 0. This is a technical

assumption which will be used in Section 3.5 for the determination of upper bounds for the FDR.
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Notice that thePϑi ’s need not be contained in{Pϑ : ϑ ∈ Θ}. For a non-empty setI0 ⊆ N we

denote byI ′0 the setI0 \ {min I0} in the sequel. For notational convenience, we introduceFn,j ,

j = 0, 1, as the ecdf.’s of thep-values corresponding to the true (j = 0) and the false (j = 1)

hypotheses, respectively. Finally, letHn = (Hi : i ∈ Nn) and letϕ(n) = (ϕi : i ∈ Nn) denote a

non-randomized multiple test procedure forHn.

The original linear step up-procedure by Benjamini and Hochberg for independentp-values em-

ploying Simes’ critical values for the familyHn = {Hi : i ∈ Nn} of dimensionn will conse-

quently be abbreviated byϕLSU
(n). As outlined in Remark 2.3, this procedure can be rewritten in terms

of the empirical cdfFn of thep-valuesp1, . . . , pn. Let t(ϕLSU
(n)) = sup{t ∈ [0, 1] : Fn(t) ≥ t/α}.

ThenϕLSU
(n) rejectsHi iff pi ≤ t(ϕLSU

(n)). The rejection curverα(t) = t/α is Simes’ line, cf. Remark

2.3. Notice thatαLSU
i:n = r−1

α (i/n). More generally, many multiple test procedures can be described

in terms of the ecdf.Fn of thep-values and a rejection curver defined as below.

Definition 3.2 (Critical value function and rejection curve)

Let ρ : [0, 1] → [0, 1] be non-decreasing, continuous withρ(0) = 0 and positive values on(0, 1].

Define critical valuesαi:n = ρ(i/n) ∈ (0, 1] for i = 1, . . . , n. We callρ a critical value function.

Moreover,r defined byr(x) = inf{u : ρ(u) = x} for x ∈ [0, 1] (inf ∅ = ∞), will be called a

rejection curve.

For illustrative purposes, a plot ofFn together with the rejection curver is useful in order to

demonstrate the decision procedure. Note that we have (cf. [250]) the following relationship

between the ecdf.Fn of distinct p-valuesp1, . . . , pn, the orderedp-values, the critical values

αi:n = ρ(i/n) and the rejection curver:

Fn(pi:n) ≥ r(pi:n) if and only if pi:n ≤ αi:n. (3.1)

In analogy to the notation in Chapter 2, a pointt = pi:n satisfyingFn(pi:n) ≥ r(pi:n) and

Fn(pi+1:n) < r(pi+1:n) is called a crossing point (CP) betweenFn and r. We consider test

procedures which determine one of the CPs as a thresholdt∗ in order to reject allHi with pi ≤ t∗.

It is immediately clear that the proportion(Rn − Vn)/(n1 ∨ 1) of rejected false null hypotheses

with respect to all false null hypotheses is non-decreasing in the threshold t∗. Therefore, we look

for procedures which maximizet∗ for any given set ofp-values subject to FDR control, because

this leads to maximization of the multiple power defined in Definition 1.3 as the expectation of the

aforementioned ratio.

In order to formally express upper bounds and least favorable parameter configurations for the

FDR, we finally introduce the Dirac-uniform models as follows.

Definition 3.3 (Dirac-uniform models)

We assume that the measurable space(Ω,A) is large enough to accommodate probability mea-

suresPI0 , I0 ⊆ N, under which allp-valuespi, i ∈ I0, are i.i.d. uniformly distributed on[0, 1],
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and all pi, i ∈ I1, follow a Dirac distribution with point mass1 at 0. We refer toPI0 as a Dirac-

uniform configuration. Under eachPI0 , theExtended Glivenko-Cantelli Theorem(cf. [262], p.

105) applies for the ecdfFn (say) of thep-values, that is,

lim
n→∞

sup
t∈[0,1]

|Fn(t) − (
n1(n)

n
+
n0(n)

n
t)| = 0 [PI0 ], (3.2)

wherenj = nj(n) = |Ij ∩Nn|, j = 0, 1. Notice that thePI0 ’s need not be contained in{Pϑ : ϑ ∈
Θ}.

As in Chapter 2, letζn = n0(n)/n denote the proportion of true hypotheses among the firstn

hypotheses. We refer to this situation as theDirac-uniform finite model, DUn(ζn).

Now suppose that

lim
n→∞

ζn = ζ ∈ [0, 1].

Then (3.2) implies that, forn tending to infinity, the empirical distribution functionFn of the

observedp-values converges to

F∞(t|ζ) = (1 − ζ) + ζt for all t ∈ [0, 1] [PI0 ].

This situation will be called theDirac-uniform asymptotic model, DU∞(ζ) for short.

3.2 Motivation and heuristic derivation

Our new rejection curve has the representation

fα(t) =
t

t(1 − α) + α
, t ∈ [0, 1].

Figure 3.1 displays this new rejection curve together with Simes’ line and several limiting ecdf.’s

F∞(·|ζ) of p-values under Dirac-uniform configurations with limiting proportionζ of true hy-

potheses. The motivation for choosingfα as "asymptotically optimal rejection curve" reveals, if

we investigate the points of intersection of eachF∞(·|ζ) andfα on (0, 1) for ζ ∈ (α, 1). It holds

that

F∞(t|ζ) = fα(t) iff t =
α (ζ − 1)

ζ (α− 1)
= tζ (say).

If we now consider a single-step multiple test procedureϕSS(tζ) (say), which rejects all hypotheses

with p-values smaller than or equal totζ , we get for the asymptotic FDR ofϕSS(tζ) in the DU∞(ζ)

model that

FDR∞
ζ (ϕSS(tζ)) =

ζtζ
(1 − ζ) + ζtζ

≡ α, independent ofζ ∈ (α, 1).
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Figure 3.1: Simes-line,fα and limiting ecdf.’s of Dirac-uniform configurations

For ζ ∈ [0, α) one may settζ = 1, which implies that all hypotheses are rejected and

FDR∞
ζ (ϕSS(1)) = ζ < α. Since Dirac-uniform configurations can be viewed as least favorablefor

certain stepwise multiple test procedures (see Section 3.4 below), the latter considerations show

that the choice offα as rejection curve is asymptotically optimal in the sense that the FDR levelα

is fully exhausted in the least favorable case. In other words (since FDR∞
ζ (ϕSS(t)) andβ̄ϑ(ϕSS(t))

are both increasing int), tζ is the largest possible threshold for givenζ ∈ (α, 1) such that the

asymptotic FDR is still controlled byα and it therefore maximizes the asymptotic power under the

constraint of asymptotic FDR control. But, since the proportion of true hypotheses is unknown in

practice, we have to find suitable test procedures that automatically generate the correct threshold.

Typical candidates are stepwise test procedures which choose a CP ofFn and a rejection curve as

rejection threshold. Therefore, such stepwise test procedures based onfα are the topic of the next

section.

3.3 Procedures based on the new rejection curve

Before deriving the announced test procedures based onfα, we start with some properties of this

new rejection curve.

Lemma 3.4(Properties of the new rejection curve)

Comparing the Simes-linerα(t) = t/α and the new rejection curvefα(t), we obviously have

rα(t) > fα(t) for t > 0 and the derivative int = 0 is 1/α for both curves. Moreover, notice that

fα obeys the symmetry property

f−1
α (t) =

αt

1 − (1 − α)t
= 1 − fα(1 − t) for all t ∈ [0, 1],
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wheref−1
α denotes the inverse function offα. Clearly,f−1

α is a critical value function.

Furthermore,fα is differentiable on[0, 1] and it holds

d

dt
fα(t) =

α

(t(1 − α) + α)2
.

The question is how to implement the new rejection curvefα, which will be called the asymp-

totically optimal rejection curve (AORC), not only in the Dirac-uniform models but also in more

general models into a multiple test procedure which controls the FDR-levelα strictly or at least

asymptotically. The critical values induced byfα are given by

αi:n = f−1
α (

i

n
) =

i
nα

1 − i
n(1 − α)

=
iα

n− i(1 − α)
, i = 1, . . . , n. (3.3)

Remember that

Fn(pi:n) ≥ fα(pi:n) if and only if pi:n ≤ αi:n.

It is tempting to useα1:n ≤ · · · ≤ αn:n in a step-up procedure for testingn hypotheses. Unfor-

tunately,αn:n = 1, so that this procedure always rejects all hypotheses. This pitfall is dueto the

fact thatfα(1) = Fn(1). Therefore, we need some adjustment with respect tofα or the step-up

procedure. In the remainder of this section, we consider some candidatesfor asymptotic FDR

control avoiding the aforementioned pitfall. They will again be studied in Corollary 3.19 which

proves asymptotic FDR control for the procedures proposed in the following three examples.

Example 3.5(Step-up-down procedures)

An interesting class of procedures based on critical values0 < α1:n ≤ · · · ≤ αn:n ≤ 1 are

step-up-down (SUD) procedures introduced in [280] and studied in [237] in terms of FDR control.

For λn ∈ Nn a SUD-procedureϕSUD
n,λn

= (ϕ1, . . . , ϕn) of orderλn is defined as follows. If

pλn:n ≤ αλn:n, setmn = max{j ∈ {λn, . . . , n} : pi:n ≤ αi:n for all i ∈ {λn, . . . , j}}, whereas

for pλn:n > αλn:n, putmn = sup{j ∈ {1, . . . , λn} : pj:n ≤ αj:n} (sup ∅ = −∞). Defineϕi = 1

if pi ≤ αmn:n andϕi = 0 otherwise(α−∞:n = −∞). Note thatλn = 1 yields a step-down

(SD) procedure andλn = n yields a SU-procedure. The order of a SUD-procedure can be defined

in terms of a fixed parameterλ ∈ [0, 1] by settingλn = inf{j ∈ Nn : αj:n ≥ λ} (inf ∅ =

n). Thenλ = 0 (λ = 1) corresponds to a SD- (SU-) procedure. A SUD-procedure of order

λn = λn(λ), λ ∈ [0, 1), based onfα resolves the problems around the pointt = 1 in an elegant

way. It is obvious in view of Lemma 3.4 that in case ofλ ≥ α the new step-up-down procedure

based onfα rejects at least all hypotheses rejected by the linear step-up procedure, possibly more.

Therefore, one cannot expect that the FDR-level is controlled in the finite case. However, it will

be shown that the FDR is controlled asymptotically. Note thatϕSUD
n,λn

is component-wise non-

decreasing inλ. For the computation of the starting indexλn(λ), notice that

αj:n ≥ λ iff
jα

n− j(1 − α)
≥ λ iff j ≥ nλ

α+ λ(1 − α)
,
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such that we choose the starting indexλn(λ) =
⌈

nλ
α+λ(1−α)

⌉
. For example, if we setλ = 1/2, we

obtainλn(1/2) =
⌈

n
1+α

⌉
and the choiceλ = α leads toλn(α) =

⌈
n

2−α

⌉
.

Application 3.6 (Applications 2.4 and 2.5 revisited)

We return to our introductory example applications 2.4 and 2.5. In both cases, the actual ecdf.’s

have concave shape such that we obtain a unique crossing point ofF393 in the proteomics example

andF7457 in the adenocarcinoma example, respectively, withfα on (0, 1) (cf. Figures 3.2 and 3.3

below). In such cases, all step-up-down procedures with parametersλ ∈ (0, 1) are equivalent.

Figure 3.2: Proteomics example: Simes’ line, optimal rejection curve and ecdf.of p-values on

[0, 0.2]

Figure 3.3: Notterman example: Simes’ line, optimal rejection curve and ecdf. of p-values on

[0, 0.2]
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In order to demonstrate the differences between the results of the linear step-up procedure and

a step-up-down procedure based onfα, the figures only cover the subinterval[0, 2α] ∋ t for a

better resolution. It becomes apparent that a step-up-down procedure based onfα leads to more

rejections than the linear step-up procedure.

More specifically, with the Benjamini-Hochberg procedure, we got47 rejections in case ofα1 =

0.05 and64 rejections in case ofα2 = 0.1 in our proteomics example. Using a step-up-down

procedure of orderλn =
⌊

n
2−αi

⌋
, i = 1, 2, with critical values based on the AORC, we obtain53

rejections forα1 and74 rejections forα2.

In the adenocarcinoma example, the hypotheses corresponding to the1582 smallestp-values got

rejected byϕLSU, while a step-up-down procedure of orderλn =
⌊

n
2−α

⌋
with critical values based

on the AORC withα = 0.1 rejects1772 hypotheses. The thresholding values are0.0212 for the

Benjamini-Hochberg procedure and0.0303 for the step-up-down procedure based onf0.1.

Example 3.7(Adjusted step-up procedures based onfα)

As noted before, a step-up procedure based onαi:n = f−1
α (i/n) cannot work. Therefore, some

adjustment offα in a step-up procedure is necessary. We first consider the case where the adjusted

rejection curvef adj
α satisfies thatf adj

α (x)/x is non-increasing inx, an important property for the

calculation of the FDR. One may specify someκ ∈ (0, 1) and define a new rejection curve

f adj
α,κ(x) =

{
fα(x), 0 ≤ x < κ,

h(x), κ ≤ x ≤ 1,
(3.4)

such thatf adj
α (x)/x is non-increasing inx andf adj

α (x∗) = 1 for somex∗ < 1. For example, one

may chooseh(x) = ax+ b with a ≤ fα(κ)/κ (which impliesx∗ ≥ κ/fα(κ)) andfα(κ) = h(κ).

We consider two possible choices ofh (h1 andh2 say) and refer to the resulting rejection curves

asf (i)
α,κ, i = 1, 2. Let

h1(x) = f ′α(κ)(x− κ) + fα(κ)

=
α

(α+ κ(1 − α))2
x+

κ2(1 − α)

(α+ κ(1 − α))2
, x ∈ [κ, 1).

Thenh′1(x) = f ′α(κ), h1(κ) = fα(κ) andh1(x
∗) = 1 for x∗ = κ(1 − α)(2 − κ) + α. If we want

to pre-definex∗, we have to chooseκ = κ(x∗) = arg (fα(x) + f ′α(x)(x∗ − x) = 1), leading to

κ = 1 −
√

1 − x∗

1 − α
.
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The resulting modified curve and modified critical values are given by

f adj
α,κ(x) =




fα(x) for x ≤ κ,

fα(κ) + (x− κ)f ′α(κ) for x > κ,

f adj
α,κ

−1(u) =





uα
1−u(1−α) for u ≤ fα(κ),

1/f ′α(κ) (u+ κf ′α(κ) − fα(κ)) for u > fα(κ),

αadj
i:n = f adj

α,κ
−1(i/n) =





iα
n−i(1−α) for i/n ≤ fα(κ),

1/f ′α(κ) (i/n+ κf ′α(κ) − fα(κ)) for i/n > fα(κ).

The largest possible slope ofh in (3.4) isa = fα(κ)/κ. This leads to the second choice, that is,

h2(x) = xfα(κ)/κ. This is close to the truncated step-up procedure in Example 3.8 below. Note

thath2(x
∗) = 1 if x∗ = κ(1 − α) + α. For example, suppose thatκ = f−1

α (i/n) for some fixed

i ∈ Nn. Then the step-up critical values are given by

γj:n =





f−1
α (j/n), 1 ≤ j ≤ i,

j
n

κ
fα(κ) , i+ 1 ≤ j ≤ n.

Example 3.8(Truncated step-up procedures based onfα)

Let κ ∈ (0, 1) be fixed and define

ρα(x) =

{
f−1

α (x), 0 ≤ x ≤ fα(κ),

κ, fα(κ) < x ≤ 1.

With γi:n = min{f−1
α (i/n), κ} we haveγj:n = ρα(i/n) for j = i, . . . , n. Hence, the truncated

step-up procedure is well defined in terms ofρα. It is worth mentioning that this type of procedure

differs substantially from the adjusted procedures discussed in Examples3.5 and 3.7, because the

monotonicity behavior of the ratioρα(x)/x changes atx = fα(κ), which makes FDR calculation

much subtler.

In Figure 3.4, the three possible adjustments mentioned in Examples 3.7 and 3.8 are illustrated.

The parametersκ1, κ2 andκ3 are chosen such that all three curves have the property that no

hypothesis withp-value larger than0.5 can be rejected (no critical value larger than0.5 occurs).
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Figure 3.4: Simes-line,f (1)
α,κ1 , f (2)

α,κ2 , the truncated version offα with κ3 = 1/2 andfα

3.4 LFC results and upper FDR bounds

Suppose thatRn andϕ(n), respectively, are defined in terms ofp-valuesp1, . . . , pn and critical

valuesαi:n = ρ(i/n) for some critical value functionρ and consider the following three sets of

possible assumptions.

The first two assumptions concern the structure of the test procedure (test assumptions):

(T1) ∀i ∈ Nn : pi ≤ α1:n impliesϕi = 1.

(T2) ∀j ∈ Nn : Rn = j implies ∀i ∈ Nn : [ϕi = 1 ⇔ pi ≤ αj:n ].

The second set of assumptions concerns properties of distributions ofp-values andRn (distribu-

tional assumptions):

(D1) ∀ϑ ∈ Θ : ∀j ∈ Nn : ∀i ∈ In,0(ϑ) : Pϑ(Rn ≥ j|pi ≤ t) is non-increasing int ∈ (0, αj:n].

(D2) ∀ϑ ∈ Θ : ∀j ∈ Nn : ∀i ∈ In,0(ϑ) : ∀t ∈ (0, αj:n] : Pϑ(Rn ≥ j|pi ≤ t) ≤ Pϑi(Rn ≥ j).

(D3) ∀ϑ ∈ Θ : ∀i ∈ In,0(ϑ) : pi ∼ U([0, 1]).

Finally we have two possible independence assumptions:

(I1) ∀ϑ ∈ Θ : Thepi’s, i ∈ In,0(ϑ), are iid.

(I2) ∀ϑ ∈ Θ : (pi : i ∈ In,0) and(pi : i ∈ In,1) are independent random vectors.

The simple structure of step-up tests often simplifies derivations concerning properties of these

tests. Ifϕ(n) is a step-up-down test, the properties of a step-up-test remain valid in the step-up
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branch of such a procedure. For example, it is important to note (cf. [237], p. 248) that in case

of a step-up-down test of orderλn and assuming (D3) and (I1)-(I2), we get for allϑ ∈ Θ and all

i ∈ In,0(ϑ)

∀j = 1, . . . , λn : ∀t ∈ (0, αj:n] : Pϑ(Rn ≥ j|pi ≤ t) = Pϑi(Rn ≥ j), (3.5)

∀j = 1, . . . , λn : ∀t ∈ (0, αj:n] : Pϑ(Rn = j|pi ≤ t) = Pϑi(Rn = j). (3.6)

Forλn = n, i.e., for a step-up test, we even get

∀j = 1, . . . , n : ∀t ∈ (0, αj:n] : Pϑ(Rn ≥ j|pi ≤ t) = Pϑi(Rn ≥ j).

Assumptions (T1) and (T2) concern possible structures of test procedures. Step-up-down tests

satisfy both of these assumptions.

The monotonicity assumption in (D1) is somewhat weaker than the PRDS-assumption (PRDS:

positive regression dependency on subsets). More precisely, fromtheP
pi

ϑ -almost sure antitonicity

of the factorized conditional probabilityPϑ(Rn ≥ j|pi = t) in t ∈ [0, αj:n] we obtain the property

formulated in (D1), where the equality in the condition is replaced by an inequality. This type of

conclusion is indicated in [171] and can be proved in an easy way by usingWijsman’s inequal-

ity, cf. [306]. Anyhow, (D1) is the decisive condition for dependentp-values in order to prove

FDR-control or to derive upper bounds for the FDR. Examples of distributions being PRDS are

extensively studied in [17] and [237]. Important examples are multivariatenormal distributions

with positive correlations and (absolute valued) multivariatet-distributions, cf. the discussion of

the examples in Chapter 2.

Property (D2) will only be used under (I1) and (I2), i.e., if thep-values are independent, and is an

important tool for deriving LFC results. In case of dependency, (D2)is often violated.

Assumptions (D3) and (I1) concern the distribution ofp-values under the corresponding null hy-

potheses.

To demonstrate the usefulness and the essentiality of the derived set of assumptions and the equal-

ities (3.5) and (3.6), we present a new proof for FDR control of the classical Benjamini-Hochberg

procedure which unifies, simplifies and slightly extends the results and the proofs given in [17]

and [237], respectively.

Theorem 3.9

Letα ∈ (0, 1) and letϕ(n) be a multiple test procedure forHn defined in terms of Simes’ critical

valuesαi:n = iα/n, i = 1, . . . , n. Letϑ ∈ Θ such thatn0 hypotheses are true and the remaining

ones are false. If (T1), (T2) and (D1) are satisfied, then

FDRϑ(ϕ(n)) ≤
n0

n
α,

with ” = ” if ϕ(n) is a step-up test and (D3), (I1) and (I2) are satisfied in addition.
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Proof: Consider the following chain of (in)equalities:

FDRϑ(ϕ(n)) =
∑

i∈In,0(ϑ)

n∑

j=1

1

j
Pϑ(Rn = j, ϕi = 1)

=
∑

i∈In,0(ϑ)

n∑

j=1

1

j
Pϑ(pi ≤ αj:n)Pϑ(Rn = j|pi ≤ αj:n) (3.7)

≤
∑

i∈In,0(ϑ)

n∑

j=1

αj:n

j
Pϑ(Rn = j|pi ≤ αj:n) (3.8)

≤
∑

i∈In,0(ϑ)

[α1:nPϑ(Rn ≥ 1|pi ≤ α1:n) (3.9)

+
n∑

j=2

[
αj:n

j
− αj−1:n

j − 1

]
Pϑ(Rn ≥ j|pi ≤ αj:n)]

=
n0

n
α. (3.10)

Equation (3.7) holds under (T2), and "=" holds in (3.8) if (D3) holds. Inequality (3.9) holds under

the assumption (D1) with "=" if ϕ(n) is a step-up test and (D3), (I1) and (I2) hold. Finally, (3.10)

is a consequence of (T1). �

Remark 3.10

The key step in the proof is (3.9), wherePϑ(Rn ≥ j|pi ≤ αj−1:n) is replaced byPϑ(Rn ≥
j|pi ≤ αj:n) for j = 2, . . . , n according to assumption (D1). In case of dependency or in case of

a non-step-up test the difference between these quantities may sum up to a considerable amount,

that is, the FDR may be much smaller than the upper boundn0α/n in such cases. For a detailed

investigation of the latter phenomenon, cf. [86].

One of the main problems in order to ensure FDR-control of a multiple test procedure is to find

least favorable parameter configurations (LFCs). Obviously, LFCs are no issue for the LSU pro-

cedure if (D3), (I1) and (I2) hold true. To date it looks like that step-upprocedures are easier to

cope with than step-down or step-up-down procedures. One reason for this is that Dirac-uniform

configurations can often be viewed as least favorable for certain step-up procedures. This fact is

based on the following important result.

Theorem 3.11(Benjamini and Yekutieli (2001), cf. [17])

If (D3), (I1) and (I2) are fulfilled, a step-up procedure with critical valuesα1:n ≤ · · · ≤ αn:n has

the following properties:

(1) If the ratio αi:n/i is increasing ini, as (pi : i ∈ In,1) increases stochastically, the FDR

decreases.
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(2) If the ratio αi:n/i is decreasing ini, as (pi : i ∈ In,1) increases stochastically, the FDR

increases.

Hence, under the assumptions of Theorem 3.11, the Dirac-uniform configurations, where allp-

values under alternatives are almost surely0, can be viewed as LFCs if the ratioαi:n/i is increas-

ing in i. More precisely, on the parameter subspace, where exactlyn0 (n1) hypotheses are true

(false), the FDR becomes largest if thep-values under alternatives are almost surely0. Therefore,

it suffices to consider all Dirac-uniform configurations in order to check whether the FDR is con-

trolled at levelα. Notice that the critical values induced byfα as given in (3.3) fulfill the important

ratio condition.

Unfortunately, the method of proof given in [17] does not seem to work for SD and SUD- proce-

dures. However, we show below that Dirac-uniform configurations often provide upper bounds.

To this end, we defineq(x) = ρ(x)/x for all x ∈ (0, 1] and assume that

q(0) = lim sup
x↓0

q(x) <∞. (3.11)

Moreover, we define the (continuous) functionq by q(x) = max0≤t≤x q(t), x ∈ [0, 1]. Hence,q is

the upper isotonic envelope or, in other words, the least isotonic majorant of q. For the derivation

of upper FDR bounds, we now introduce the following additional conditions.

(A1) If (p1, . . . , pn) is stochastically not greater underϑ1 ∈ Θ than underϑ2 ∈ Θ, thenϕ(n) is

stochastically not greater underϑ2 ∈ Θ than underϑ1 ∈ Θ.

(A2) q = q, that is,ρ(x)/x is non-decreasing forx ∈ (0, 1].

Note thatαi:n/i is non-decreasing ini if (A2) holds. In case thatρ is differentiable on(0, 1), (A2)

is equivalent toρ′(x) ≥ q(x) for x ∈ (0, 1). Clearly, under (A2),q(0) can and will be defined as

limx↓0 q(x). In what follows,q is essential in deriving upper bounds for the FDR. Note thatq 6= q

for the truncated step-up procedure introduced in Example 3.8. Ifq 6= q, the bounds for the FDR

based onq may be not that sharp.

The following theorem is the main result of this section and a valuable tool for proving FDR

control of SUD-tests. It provides upper bounds for the FDR of stepwise test procedures under in-

dependence of thep-values. For SU-tests, these bounds are sharp if Dirac-uniform configurations

belong to the set of possible data models.

Theorem 3.12

Letϑ ∈ Θ such thatn0 ∈ N hypotheses are true and the remaining ones are false. Leti0 = min I0

(andI ′0 = I0 \ {i0} as defined before). If (T1)-(I2) are satisfied, then

FDRϑ(ϕ(n)) ≤ n0

n

n∑

j=1

q(j/n)Pϑi0 (Rn/n = j/n) (3.12)

=
n0

n
Eϑi0 q(Rn/n), (3.13)
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with equality in (3.12) ifϕ(n) is a step-up test and (A2) holds in addition. If (T1)-(I2) and (A1) are

fulfilled, then

FDRϑ(ϕ(n)) ≤
n0

n
EI′0

q(Rn/n). (3.14)

Proof: Let bj = Pϑ(Rn ≥ j|pi0 ≤ αj:n) and∆q(j/n) = q(j/n)−q((j−1)/n) for j = 1, . . . , n.

Then, proceeding as in the proof of Theorem 3.9 we get for fixedϑ ∈ Θ under (D1)-(D3), (I1)

and (I2)

FDRϑ(ϕ(n)) =
n0

n

n∑

j=1

q(j/n)Pϑ(Rn = j|pi0 ≤ αj:n)

≤ n0

n

n∑

j=1

q(j/n)Pϑ(Rn = j|pi0 ≤ αj:n) (3.15)

≤ n0

n


q(1/n)b1 +

n∑

j=2

∆q(j/n)bj


 (3.16)

≤ n0

n


q(1/n)Pϑi0 (Rn ≥ 1) +

n∑

j=2

∆q(j/n)Pϑi0 (Rn ≥ j)


 (3.17)

=
n0

n

n∑

j=1

q(j/n)Pϑi0 (Rn/n = j/n),

which proves (3.12). In view ofPϑi0 (Rn > 0) = 1 according to (T1), (3.13) follows immedi-

ately. If ϕ(n) is a step-up test, which implies (3.5) forλn = n, we have equality in (3.16) and

(3.17), henceq = q yields equality in (3.15). Finally, in order to prove (3.14), we use the same

argumentation as in the proof of Theorem 3.11 given in [17], i.e., that stochastic increase in the

distribution of the random vector(p1, . . . , pn) can be characterized by the increase of the expec-

tation of all non-decreasing functions (in case the expectation exists). Tothis end, we note that

obviouslyRn = |{i ∈ Nn : ϕi = 1}| is a non-decreasing function ofϕ(n) and hence, due to (A1),

is stochastically non-increasing in(p1, . . . , pn). The isotonicity ofq completes the proof. �

Inequality (3.14) will be a helpful tool in order to calculate upper FDR bounds and to prove FDR

control, because it only makes use of the distribution ofRn under Dirac-uniform configurations.

Especially for SUD-tests, this distribution can be handled analytically.

3.5 Asymptotic FDR control for procedures based on the AORC

This section deals with conditions for asymptotic FDR control for procedures based on the new

rejection curve. A major result will be that the example procedures presented in Section 3.3 control

the FDR asymptotically. Theorems 3.13 and 3.16 provide sufficient conditionsfor asymptotic

False Discovery Rate and Asymptotics, Thorsten Dickhaus



CHAPTER 3. A NEW REJECTION CURVE 65

FDR control. If the underlying procedure leads to a determinable limiting proportion of rejected

hypotheses, Theorems 3.15 and 3.17 even give explicit values for the resulting FDR.

Theorem 3.13

Supposeϕ(n) is based onρ ≤ f−1
α and that (T1)-(I2) and (A1) are fulfilled. If for all non-empty

setsI0 ⊆ N and all subsequences(nk)k∈N ⊆ N with limk→∞ ζnk
= ζ for someζ ∈ [0, 1] it holds

lim sup
k→∞

Rnk

nk
≤ fα(tζ) [PI′0

], (3.18)

then

lim sup
n→∞

sup
ϑ∈Θ

FDRϑ(ϕ(n)) ≤ α. (3.19)

Proof: Let, for notational convenience,Pm,n refer to a Dirac-uniform configuration such that the

first m p-values are iid uniformly distributed and the remaining ones follow a Dirac distribution

with point mass in0, 0 ≤ m ≤ n, n ∈ N. Then we have from inequality (3.14)

∀n ∈ N : sup
ϑ∈Θ

FDRϑ(ϕ(n)) ≤ max
1≤n0≤n

n0

n
En0−1,nq(Rn/n).

Since for eachn ∈ N the maximum in this inequality is attained at some valuen0(n) (say), we get

lim sup
n→∞

sup
ϑ∈Θ

FDRϑ(ϕ(n)) ≤ lim sup
n→∞

ζnEn0(n)−1,nq(Rn/n),

whereζn = n0(n)/n, n ∈ N. We now may extract a subsequence(nk)k∈N of N with

limk→∞ ζnk
= ζ for someζ ∈ [0, 1] such that

lim sup
n→∞

ζnEn0(n)−1,nq(Rn/n) = lim
k→∞

ζnk
En0(nk)−1,nk

q(Rnk
/nk)

≤ ζ lim sup
k→∞

En0(nk)−1,nk
q∗(Rnk

/nk),

whereq∗ denotes theq-function corresponding to the critical value functionf−1
α . Similarly as in

[91], pp. 1003-1004, we are able to select from(nk)k∈N a further subsequence (without loss of

generality with the same name) and construct a global setI ⊆ N with the property|I ∩ Ink
| =

n0(nk) for all k ∈ N. (At this point it should be noted that the definition of the setsMk at the

bottom of p. 1003 in [91] has a typo at its right end in that the termk(nk) has to be replaced by

nk.) Now we obtain from (3.18)

ζ lim sup
k→∞

En0(nk)−1,nk
q∗(Rnk

/nk) = ζ lim sup
k→∞

EI′q
∗(Rnk

/nk)

≤ ζEI′q
∗(lim sup

k→∞
Rnk

/nk)

= ζq∗(fα(tζ))

= min{α, ζ} ≤ α,

hence the assertion of the theorem, i.e., (3.19) follows. �
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Remark 3.14

Asymptotic FDR control for procedures based onfα in the latter theorem is established under

the strong assumption (I1), i.e., independence of thep-values under the null hypotheses. We will

present one counterexample which suggests that step-up-down procedures based onfα fail to con-

trol the FDR under PRDS. To this end, we return to the D-EX-EXP model investigated in Section

2.2 and choose (without loss of generality) the scale parameter of the underlying exponential dis-

tribution equal to1. Recall that the representation of the limiting ecdf.F∞(·|z, ζ) of thep-values

pi(z) in the D-EX-EXP(ζn) model withζn → ζ ∈ (0, 1) is given by

F∞(t|z, ζ) =





(1 − ζ) + 2ζ exp(−z)t for 0 ≤ t ≤ 1/2,

(1 − ζ) + ζ exp(−z)/(2 − 2t) for 1/2 < t ≤ u(z),

1 for u(z) < t ≤ 1,

whereu(z) = 1 − 1/2 exp(−z). For the step-up-down procedure, we chooseλ = 1/2. Noting

thatfα(1/2) = 1/(1 + α) andF∞(1/2|z, ζ) = (1 − ζ) + ζ exp(−z), it is immediately clear that

F∞(1/2|z, ζ) > fα(1/2) if and only if z < z∗ = − ln
((

(1 + α)−1 − (1 − ζ)
)
/ζ
)

and therefore

Rn(z)/n tends to1 in this situation. In the other case, i.e., forz ≥ z∗, the LCP betweenfα and

F∞(·|z, ζ) lies in (0, 1/2]. Equatingfα(t) = F∞(t|z, ζ) in the latter case, we obtain the LCP

t(z|ζ) as

t(z|ζ) =
1

4

ζ(α− 1) − α+ 2 ζ exp(−z)α+
√
D(α, ζ, z)

ζ exp(−z) (α− 1)
,

where

D(α, ζ, z) =
[
(1 + 4 exp(−2z) − 4 exp(−z)) ζ2 + (4 exp(−z) − 2) ζ + 1

]
α2

+
[
(4 exp(−z) − 2) ζ2 + (2 − 8 exp(−z)) ζ

]
α+ ζ2

by straightforward calculation. Now, we can immediately calculate the limiting FDR in case of

ζ ∈ (0, 1) by

FDR∞(ζ) = ζP(Z < z∗) + ζ

∫ ∞

z∗

t(z|ζ)
fα(t(z|ζ)) exp(−z)dz.

Settingα = 0.05, for example, we obtain by numerical integration

FDR∞(0.1) ≈ 0.069, FDR∞(0.2) ≈ 0.085,

FDR∞(0.3) ≈ 0.089, FDR∞(0.5) ≈ 0.093,

FDR∞(0.7) ≈ 0.094, FDR∞(0.9) ≈ 0.095.

These values could be reproduced by corresponding computer simulations.

Simulations also indicate that a step-up-down procedure of orderλ = α based on the AORC fails

to control the FDR at levelα in Dirac-exchangeable normal models as well. In a simulation setup

analogous to the setup forϕLSU presented in Appendix A.1 below for a D-EX-N(0.5) model, we

choseα = 5.0% and obtained simulated FDR values larger than5.5% for all ρ ∈ [0.4, 0.8] and
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even FDR values larger than6.0% for ρ ∈ [0.6, 0.7]. With the crossing point techniques derived

in Chapter 2, numerical calculation of the theoretical FDR values is possible in this case as well.

If we sharpen assumption (3.18), we can even give explicit values for the FDR.

Theorem 3.15

Letϑ ∈ Θ, ϕ(n) be based onρ ≤ f−1
α and assume (T2), (D3), (I1) and

lim
n→∞

ζn = ζ ∈ [0, 1]. (3.20)

If lim
n→∞

Rn/n = r∗ [Pϑ] for somer∗ ∈ (0, fα(tζ)], then it holds

lim
n→∞

FDRϑ(ϕ(n)) = ζρ(r∗)/r∗ = ζq(r∗) ≤ min{α, ζ}. (3.21)

Proof: From (T2) and forn0, n ∈ N we get the representation

Vn = n0Fn,0(ρ(Rn/n))1{Rn>0}.

From this we obtain the inequality chain

|Vn/n− ζnρ(Rn/n)| ≤ ζn|Fn,0(ρ(Rn/n)) − ρ(Rn/n)| ≤ sup
t∈[0,1]

|Fn,0(t) − t|.

Hence, using the Glivenko-Cantelli property (3.2) together with the remaining assumptions of

the theorem and the continuity ofρ, we finally see thatVn/n convergesPϑ-almost surely to

ζρ(r∗). Thus, due tor∗ > 0, we havelimn→∞ Eϑ[Vn/(Rn ∨ 1)] = ζρ(r∗)/r∗. The right-

hand side inequality in (3.21) is obtained by noting thatζf−1
α (t)/t is increasing int ∈ (0, fα(tζ)]

to ζtζ/fα(tζ) = min{α, ζ} at t = fα(tζ). �

The remaining caser∗ = 0 is treated in the following two theorems.

Theorem 3.16

Letϑ ∈ Θ, ϕ(n) be based onρ ≤ f−1
α and assume (T1)-(I2), (A1), (3.20) and

∀ε > 0 : lim inf
n→∞

inf
ε≤t≤1

(t− Fn(ρ(t))) > 0 [Pϑ]. (3.22)

Then it holds

lim sup
n→∞

FDRϑ(ϕ(n)) ≤ ζ lim sup
x↓0

q(x) = ζq(0) = ζq(0) ≤ ζα. (3.23)

Proof: To avoid triviality, we assumeI0(ϑ) 6= ∅. Then, from (3.12) and (3.13) we have that

lim sup
n→∞

FDRϑ(ϕ(n)) ≤ ζ lim sup
n→∞

Eϑi0 q(Rn/n). (3.24)

Since due to (T1) and (T2) we have for alln ∈ N

Fn(ρ(Rn/n)) = Rn/n,
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(3.22) implies that for every fixedε > 0 we obtainlim supn→∞Rn/n ≤ ε Pϑ-almost surely, i.e.,

limn→∞Rn/n = 0 Pϑ-almost surely. Now, since for alln ∈ N the maximum absolute difference

on the unit interval of the ecdfFn (corresponding to the sequence ofp-values(pn)n∈N) and the

ecdfF i0
n (say) (corresponding to the sequence ofp-values(pi0

n )n∈N defined in Section 3.1) is at

most1/n, condition (3.22) also holdsPϑi0 -almost surely, which entails thatlimn→∞Rn/n = 0

Pϑi0 -almost surely. Hence, due to the continuity ofq we havelimn→∞ Eϑi0 q(Rn/n) = q(0) =

q(0) ≤ limt↓0 f−1
α (t)/t = α. In view of inequality (3.24), this completes the proof. �

Theorem 3.17

Under the assumptions of Theorem 3.16 letϕ(n) be a SUD-test of orderλn with

lim infn→∞ λn/n > 0 and the condition (3.22) be replaced by

∀ε > 0 : lim inf
n→∞

inf
ε≤t≤K

(t− Fn(ρ(t))) > 0 [Pϑ] (3.25)

for someK ∈ [0, 1] fulfilling K > L = lim supn→∞ λn/n in case ofL < 1 andK = 1 otherwise.

Supposing thatlimx↓0 q(x) exists, we have

lim
n→∞

FDRϑ(ϕ(n)) = ζ lim
x↓0

q(x) = ζq(0) = ζq(0) ≤ ζα. (3.26)

Proof: Again, to avoid triviality, we assumeI0(ϑ) 6= ∅. Equation (3.26) can be shown by utilizing

the notation introduced in the proof of Theorem 3.12 and the decomposition

FDRϑ(ϕ(n)) = ζn

λn∑

j=1

q(j/n)Pϑ(Rn = j|pi0 ≤ αj:n)

+ ζn

n∑

j=λn+1

q(j/n)Pϑ(Rn = j|pi0 ≤ αj:n)

= Mn +mn (say).

In view of Theorem 3.12 and the structure of a SUD-test, we obtain by applying (3.6) that

Mn = ζnEϑi0

[
q(Rn/n)1{Rn/n≤λn/n}

]
,

mn ≤ ζnEϑi0

[
q(Rn/n)1{Rn/n>λn/n}

]
.

From (3.25) it follows thatPϑ-almost surelyFn(ρ(λn/n)) < λn/n ≤ K and consequently

Rn/n < λn/n ≤ K holds true for eventually alln ∈ N. Therefore, again due to (3.25), in

analogy to the proof of Theorem 3.16 we conclude thatlimn→∞ Rn/n = 0 Pϑi0 -almost surely,

which finally entailslimn→∞ 1{Rn/n>λn/n} = 0 Pϑi0 -almost surely. Together with the bounded-

ness ofq this entails thatlimn→∞mn = 0. Moreover, exploiting the continuity ofq atx = 0 we

see thatlimn→∞Mn = ζq(0) = ζq(0), which altogether yields the desired result. �
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Remark 3.18

One cannot expect to obtain exact values for the limiting FDR under the quite general assumptions

of Theorem 3.15 ifr∗ = 0. To see this, consider the caseζn ≡ 1 in which the FDR is equal to

the family-wise error rate (FWER). Forζn ≡ 1 it was shown in [91] that the FWER is equal

to α for anyn ∈ N in case of a linear step-up procedure, while it tends to1 − exp(−α) < α

for a linear step-down procedure. We therefore have to know more about the structure of the

underlying procedure in order to compute the limiting FDR in case ofr∗ = 0. The limiting

behavior for procedures based onfα (or its modifications) satisfying the assumptions of Theorem

3.17 is in accordance with the linear SU-procedure and should be expected, since the difference

of the critical valuesαi:n − iα/n tends to zero fori ∈ o(n). Therefore, the local behavior around

zero should not differ much for largen.

Returning to our proposed example procedures, we finally obtain the following properties of these

tests.

Corollary 3.19 (Examples 3.5, 3.7, 3.8 continued)

Assume the distributional assumptions (D3), (I1) and (I2) hold. Then the SUD-procedure based

on fα with parameterλ ∈ [0, 1) and the SU-procedures based onf (i)
α,κ, i = 1, 2, as well as the

truncated SU-procedure asymptotically control the FDR at levelα. More precisely, if condition

(3.20) is fulfilled, i.e.,limn→∞ ζn = ζ ∈ [0, 1], then

(i) for the SUD-procedure the upper boundα for the limiting FDR is sharp forζ ∈ [α, 1].

(ii) for the SU-procedures based onf (i)
α,κ, i = 1, 2, the upper boundα for the limiting FDR is

sharp forζ ≥ ζ∗(κ) = α/(κ(1 − α) + α). In case ofζ < ζ∗(κ), an upper bound for the

asymptotic FDR is given byζt̃ζ/(1 − ζ + ζt̃ζ), wheret̃ζ denotes the unique solution of the

equationF∞(t|ζ) = hi(t), i = 1, 2, on(0, tζ). For finiten, the upper bound given in (3.14)

is sharp.

(iii) for the truncated SU-procedure the upper boundα for the limiting FDR is sharp forζ ≥
ζ∗(κ). In case ofζ < ζ∗(κ), an upper bound for the asymptotic FDR is given byζκ/(1 −
ζ + ζκ).

Proof: First of all, as mentioned before, a step-up-down test has the structuralproperties (T1),

(T2) and (A1). Moreover, assumptions (D3), (I1) and (I2) imply the crucial monotonicity proper-

ties (D1) and (D2) for a step-up-down test. Hence, in order to apply Theorem 3.13, it remains

to check the validity of condition (3.18). To this end, for notational convenience and with-

out loss of generality, we work under condition (3.20). We make use of (3.2), i.e., that the

ecdf Fn convergesPI′0
-almost surely to its limitF∞(·|ζ) uniformly in t ∈ [0, 1]. Since un-

der (T1) and (T2) we have the identityFn(ρ(Rn/n)) = Rn/n for all n ∈ N, (3.2) leads to
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limn→∞(F∞(ρ(Rn/n)|ζ) − Rn/n) = 0 PI′0
-almost surely. From this we conclude that (PI′0

-

almost surely) the only possible accumulation points of the sequence(Rn/n)n∈N consist of the

solutions of the equationF∞(ρ(t)|ζ) = t in t ∈ [0, 1]. If, as in Examples 3.7 and 3.8, this solution

is unique, then the sequence(Rn/n)n∈N necessarily converges to this solutionr∗ = r∗(ζ) ∈ [0, 1]

(say)PI′0
-almost surely.

If, however, as in Example 3.5, the equationF∞(ρ(t)|ζ) = t has the solutiont = 1 and exactly

one further (smaller) solution in[0, 1), we have to excludet = 1 as a possible accumulation point

of (Rn/n)n∈N in the latter case in order to prove thePI′0
-almost sure convergence of(Rn/n)n∈N

to the smallest solutionr∗ = r∗(ζ) (say) of the aforementioned equation. To this end, we only

consider values ofζ leading to the two distinct solutionsr∗(ζ) and 1. For critical value functions

ρ with ρ(t) ≤ f−1
α (t) for all t ∈ [0, 1] it is then evident thatF∞(ρ(t)|ζ) < t for all t ∈ (r∗, 1).

Moreover, notice that, by definition ofλn(λ), we have the inequalitiesλn(λ) − 1 ≤ nr(λ) ≤
λn(λ) for all n ∈ N. Now, if λ > ρ(r∗), this, together with condition (3.2), yields thatPI′0

-almost

surelyFn(ρ(λn(λ)/n)) < λn(λ)/n and consequentlyRn < λn(λ) holds true for eventually all

n ∈ N. This entailslim supn→∞Rn/n ≤ lim supn→∞ λn(λ)/n = r(λ) < 1 PI′0
-almost surely,

which is just what we wanted to show. Finally, ifλ ≤ ρ(r∗), we may choose aλ′ > ρ(r∗)

and compare the number of rejections of the corresponding SUD-procedures. Since this number is

non-decreasing with increasing parameter we eventually arrive atlim supn→∞Rn/n ≤ r(λ′) < 1

PI′0
-almost surely. Since for all procedures under investigation it holdsρ(t) ≤ f−1

α (t) for all

t ∈ [0, 1] we conclude thatr∗ = r∗(ζ) ≤ fα(tζ). Hence, Theorem 3.13 applies. As a consequence,

the example procedures asymptotically control the FDR.

In case of the SUD-procedure in (i), we useρ = f−1
α and obtainr∗ = fα(tζ). Hence, the upper

boundα for the asymptotic FDR is sharp in (i) under Dirac-uniform configurations. The sharpness

of the upper boundα for the asymptotic FDR in (ii) and (iii) is due to the fact that under Dirac-

uniform configurations withζ ≥ ζ∗(κ) we obtainr∗ = fα(tζ).

Finally, the sharpness of the upper bounds for the finiten FDR in (ii) is a consequence of (A2),

which is fulfilled for f (i)
α,κ, i = 1, 2. Sharpness here means that the upper bound given in (3.14) is

exactly attained for finiten under Dirac-uniform configurations. �

3.6 Asymptotic optimality of the AORC

The latter Corollary 3.19 means reworded that procedures based onfα fulfilling the assumptions of

Theorem 3.15 asymptotically exhaust the whole FDR levelα under Dirac-uniform configurations.

Moreover, the rejection curvefα cannot be improved in the sense of the following theorem, which

is another consequence of Theorem 3.13. In order to formalize "optimality", let α ∈ (0, 1),

λ ∈ [0, 1] andMλ denote the set of rejection curvesr with the property that for allI0 ⊆ N with
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limn→∞ ζn = ζ for someζ ∈ [0, 1] it holds

lim sup
n→∞

FDRI0

(
ϕ

SUD(r)
n,λn

)
≤ lim sup

n→∞
sup
ϑ∈Θ

FDRϑ

(
ϕ

SUD(r)
n,λn

)
≤ α, (3.27)

whereϕSUD(r)
n,λn

is the step-up-down procedure of orderλn = λn(λ) based onr. It should be

noted that the first inequality in (3.27) is not very restrictive since many statistical models satisfy

the "model continuity assumptions" (SA) formulated in [91], due to which, at least for SUD-

procedures such asϕSUD(r)
n,λn

, the corresponding FDR values FDRI0

(
ϕ

SUD(r)
n,λn

)
can be approximated

arbitrarily closely by the values FDRϑ
(
ϕ

SUD(r)
n,λn

)
for some suitably chosenϑ ∈ Θ, n ∈ N.

In terms of power it is immediately clear that, wheneverr1, r2 ∈ Mλ with r1 ≤ r2, then

ϕ
SUD(r1)
n,λn

≥ ϕ
SUD(r2)
n,λn

. Therefore, a smaller rejection curve typically leads to a more powerful test

procedure in the sense that more (never less) false hypotheses can berejected.

Theorem 3.20(Asymptotic optimality offα)

(i) Let λ ∈ [0, 1] andr ∈ Mλ. Then

∀t ∈ [0, λ] : r(t) ≥ fα(t). (3.28)

If λ < 1, then it holds for anyτ ∈ (λ, 1] that

∀t ∈ (λ, τ ] : r(t) ≤ fα(t) ⇒ ∀t ∈ (λ, τ ] : r(t) = fα(t). (3.29)

(ii) If λ < 1 and r ∈ Mλ is such that, for everyζ ∈ (α, 1), the equationF∞(ρ(t)|ζ) =

1 − ζ + ζρ(t) = t has at most one solution in (0,1), it even holdsr(t) ≥ fα(t) for all

t ∈ [0, 1].

(iii) If λ = 1 and assuming (D3), (I1) and (I2), it holds

inf
r∈M1

r = fα.

Moreover, for anyϑ ∈ Θκ = {ϑ ∈ Θ : lim infn→∞ ζn(ϑ) > α/(κ(1−α)+α)}, κ ∈ (0, 1),

the power of anỹfα ∈ M1 with f̃α(t) = fα(t) for all t ∈ [0, κ] is asymptotically not smaller

than the power of any otherr ∈ M1, that is,

lim inf
n→∞

[
β̄ϑ(ϕSUD(f̃α)

n,n ) − β̄ϑ(ϕSUD(r)
n,n )

]
≥ 0 for all ϑ ∈ Θκ. (3.30)

Proof: In order to prove part (i), assume that for an arbitrary chosen rejection curver ∈ Mλ it

holdsr(t∗) < fα(t∗) for somet∗ ∈ (0, λ). Consider now a Dirac-unifom configurationPI0 with

limn→∞ ζn = ζ andζ ∈ (α, 1) chosen such thatr(t∗) < F∞(t∗|ζ) < fα(t∗). Then it is obvious

that property (3.27) is violated, because (with self-explaining notation) it followsPI0-almost surely

lim inf
n→∞

R(r)
n /n ≥ F∞(t∗|ζ) > F∞(tζ |ζ) = fα(tζ)
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and consequently

lim inf
n→∞

FDRI0

(
ϕ

SUD(r)
n,λn

)
≥ ζt∗/(1 − ζ + ζt∗) > ζtζ/(1 − ζ + ζtζ) = α,

due to the fact that the functionx 7→ ζx/(1 − ζ + ζx) is strictly increasing inx ∈ (0, 1) and

t∗ > tζ . Hence, for allt ∈ (0, λ) we haver(t) ≥ fα(t), from which the assertion follows.

Now assume that we haver(t) ≤ fα(t) for all t ∈ (λ, τ ] andr(t∗) < fα(t∗) for somet∗ ∈ (λ, τ).

Consider now the Dirac-unifom asymptotic model DU∞(ζ∗) with ζ∗ ∈ (α, 1) chosen such that

fα(λ) < F∞(λ|ζ∗), F∞(t∗|ζ∗) < fα(t∗) andinfλ≤t≤t∗(F∞(t|ζ∗) − r(t)) > 0, which is possible

due to the left-continuity of the rejection curver. Then the argumentation is the same as before.

Part (ii) and the first assertion of part (iii) can be proven similarly.

For the proof of (3.30), we assume (in order to avoid triviality)n1(n) > 0 for all n ∈ N, define

Sn = Rn − Vn and denote the set of all̃fα ∈ M1 with f̃α(t) = fα(t) for all t ∈ [0, κ] by Sκ.

Then we have (with self-explaining notation as before) the inequality

∀n ∈ N : ∀f̃α ∈ Sκ : ∀r ∈ M1 :

(
Sn(f̃α)

n1
− Sn(r)

n1

)
1{t∗n(r)≤κ} ≥ 0,

which holds true due to (3.28) and the fact thatSn is non-decreasing int∗n. Now, for fixedϑ ∈ Θκ,

we utilize the chain of inequalities

t∗n(r|Pϑ) ≤ t∗n(r|DUn(ζn(ϑ))) ≤ t∗n(f̃α|DUn(ζn(ϑ))) < κ

which holdsPϑ-almost surely for eventually alln ∈ N, leading tolim supn→∞ t∗n(r|Pϑ) < κ and

consequently to1{t∗n(r)≤κ} → 1 [Pϑ] for all ϑ ∈ Θκ. Therefore, we obtainPϑ-almost surely

lim inf
n→∞

(
Sn(f̃α)

n1
− Sn(r)

n1

)
≥ 0 for all ϑ ∈ Θκ, f̃α ∈ Sκ, r ∈ M1. (3.31)

Taking expectation in (3.31) and utilizing Fatou’s lemma, we finally arrive at assertion (4.1). �

Theorem 3.20 shows that in the class of SU-procedures with rejection curve r ∈ M1 we always

haver ≥ fα. In the class of truncated SU-procedures with parameterκ ∈ (0, 1), the truncated

procedure based onfα is the best choice. More generally, if we restrict attention to the subspace

Θκ ⊂ Θ described in (iii) of Theorem 3.20,fα is the asymptotically uniformly best choice on[0, κ]

for a step-up procedure. For SUD-procedures with parameterλ < 1, fα leads to the asymptotically

uniformly best choice of critical values on the step-up part, see (3.28). On the step-down part of

a SUD-procedure,fα cannot be uniformly improved by somer ∈ Mλ whateverr does on the

step-up part, see (3.29) withτ = 1. For arbitraryτ ∈ (λ, 1], assertion (3.29) states that a rejection

curver ∈ Mλ cannot be first smaller and then larger thanfα on the interval(λ, 1]. It seems

possible thatMλ contains anr which is first larger and then smaller on the step-down part. But

this would imply that the SUD-procedure based onr is asymptotically less powerful than the
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SUD-procedure based onfα on someΘκ. If we restrict attention to rejection curvesr ∈ Mλ

described in (ii) of Theorem 3.20, thenfα is the best choice. These considerations may justify to

call fα the asymptotically optimal rejection curve (AORC).

In view of these asymptotic results, it is natural to ask how largen has to become in order to

achieve a reasonable behavior of the FDR of the proposed procedures. As already mentioned in

Example 3.5, the asymptotic exhaustion of the whole FDR level has to be traded off with a slightly

liberal behavior of the procedures based onfα in the finite case. In order to illustrate this effect,

we consider the SU-procedures based onf
(i)
α,κ, i = 1, 2, where the upper bound given in (3.14)

is sharp in the DUn(ζn)-model. Due to the pointwise order of these two rejection curves (cf.

Figure 3.4) it is clear that a SU-procedure based onf
(2)
α,κ is more liberal in the DUn(ζn)-model.

We therefore present results for this procedure. Figure 3.5 depicts thebehavior of this procedure

under DU configurations with varying number of true hypotheses forn = 100, 500 and1000. For

n = 100, there is a notable violation of the FDR levelα = 5% for 12 ≤ n0 ≤ 35. The largest

FDR under Dirac-uniform is attained forn0 = 16 with numerical value0.05801. For the two

larger values ofn, the actual level does not exceedα by much.

Figure 3.5: Actual DU-FDR of the SU-procedure based onf
(2)
0.05,κ2

depending onn0

The method of computing the FDR for a SU(D)-procedure in case of an underlying Dirac-uniform

configuration will be described in the next section. Moreover, we will give some brief suggestions

for modifications offα in the finite case. However, this will not be emphasized to much, because

on the one hand, the AORC is designed for the asymptotic case and on the other hand, we have to

keep in mind that the FDR values under Dirac-uniform reflect an unrealisticworst case scenario.

For realistic alternatives, we get much smaller realized FDRs so that the original AORC may safely

be used in the finite case for e.g.n ≥ 500.

A detailed numerical study of the FDR behavior of the example procedures presented in Examples
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3.5, 3.7 and 3.8 in case of a finite number of hypotheses at hand is given in Appendix A.2.

3.7 FDR control for a fixed number of hypotheses

In this section we briefly discuss some possibilities to achieve strict FDR control for a finite num-

ber of hypotheses for procedures related to the AORC. It would be attractive to find critical values

close to (3.3) for step-up-down procedures as described in the previous sections such that the FDR

is strictly controlled. As shown before, an upper bound for the FDR of a step-up procedure with

critical values satisfying thatαi:n/i is non-decreasing ini is obtained in one of the Dirac-uniform

configurations. This bound is sharp if the corresponding Dirac-uniform configuration belongs to

the model. For step-up-down procedures with parameterλn ∈ {1, . . . , n − 1} it is not known

whether Dirac-uniform configurations are least favorable. However, Dirac-uniform configurations

also yield an upper bound for the FDR in this case.

More specifically, under the assumptions of Theorem 3.12, the aforementioned upper bound for a

fixedn0 is given by (see (3.14))

b(n0, n) =
n0

n
EI′0

[q(Rn/n)] , n0 = 1, . . . , n,

with I ′0 defined as in Theorem 3.9. Hence, the upper bound for the FDR is givenby b∗n =

max1≤n0≤n b(n0, n).

Lemma 3.21

For a SUD-procedure with critical valuesαi:n of orderλn satisfying (T1)-(A2),b(n0, n) is given

by

b(n0, n) = n0

n0∑

j=1

αn1+j:n

n1 + j
Pn0−1,n(Vn = j − 1), (3.32)

wherePm,n refers to a Dirac-uniform configuration such thatm p-values are iid uniformly dis-

tributed and the remaining ones follow a Dirac distribution. Ifλn = n, which corresponds to a

SU-procedure,b(n0, n) can alternatively be calculated by

b(n0, n) =

n0∑

j=1

j

n1 + j
Pn0,n(Vn = j) = FDRI0

(
ϕSUD(~α)

n,n

)
(3.33)

and it even holds equality in every summand, i.e.,

Pn0,n(Vn = j) =
n0

j
αn1+j:nPn0−1,n(Vn = j − 1) for j = 1, . . . , n0. (3.34)

Proof: In order to prove (3.32), keep in mind that the expectation in (3.14) refersto a Dirac-

uniform configuration with(n0 − 1) true hypotheses and(n1 + 1) false hypotheses and since

pj ∼ ε0 for all j ∈ In,1, we haveRn = Vn + (n + 1) PI′0
-almost surely. Straightforward
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calculation now yields

n0

n
EI′0

[
q

(
Rn

n

)]
=

n0

n
EI′0

[
ρ(Rn/n)

Rn/n

]
= n0EI′0

[
αRn:n

Rn

]

= n0EI′0

[
αVn+n1+1:n

Vn + n1 + 1

]

= n0

n0−1∑

k=0

αk+n1+1:n

k + n1 + 1
Pn0−1,n(Vn = k)

= n0

n0∑

j=1

αn1+j:n

n1 + j
Pn0−1,n(Vn = j − 1),

which is (3.32). Equality (3.34) and consequently the left-hand side equalityof (3.33) are imme-

diate consequences of the representation of the pmf. ofVn for a step-up test given in Corollary

3.23. The right-hand side equality in (3.33) is obtained by noticing that in a Dirac-uniform model

with n0 true hypotheses andn1 false hypotheses, we haveRn = Vn + n1 PI′0
-almost surely and it

therefore holds

FDRI0

(
ϕSUD(~α)

n,n

)
= EI0

[
Vn

Rn ∨ 1

]
= EI0

[
Vn

(Vn + n1) ∨ 1

]

=

n0∑

j=1

j

j + n1
Pn0,n(Vn = j),

according to the discrete expectation formula.�

Formulas for the pmf. ofVn under Dirac-uniform configurations can be obtained in terms of the

joint cdf. of order statistics. For SUD-procedures the computation of the pmf. of Vn becomes

numerically difficult for larger values ofn. A way out is to simulate the upper bound.

For the derivation of the pmf. ofVn, we use the following considerations. Under the assumption

that0 ≤ c1:n ≤ · · · ≤ cn:n ≤ 1, n ∈ N, a general recursive formula for the joint cdf.F k
n of the

order statisticsU1:n, . . . , Un−k:n, 0 ≤ k ≤ n, of n i.i.d. UNI[0, 1]-distributed random variablesUi

is given by

F k
n (c1:n, . . . , ck:n) = 1 −

n−k−1∑

j=0

(
n

j

)
Fj(c1:n, . . . , cj:n)(1 − cj+1:n)n−j , (3.35)

with F 0
n = Fn andF 0

0 ≡ Fn
n ≡ 1. This is essentially Bolshev’s recursion, which is proved in

different ways in [262], pp. 366-367, and in [89].

Formula (3.35) (fork = 0) may be used to calculate the pmf. ofVn for a SUD-procedure of order

r under Dirac-uniform configurations and yields the following result.
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Lemma 3.22

For the pmf. ofVn of a step-up-down procedure of orderr based on critical values0 ≤ α1:n ≤
. . . ≤ αn:n ≤ 1 under a Dirac-uniform configuration withn0 true hypotheses andn1 = n − n0

false hypotheses, we obtain thatPn0,n(Vn = j)/
(
n0

j

)
is equal to





Fj(αn1+1:n, . . . , αn1+j:n)ᾱn0−j
n1+j+1:n, if r ≤ n1,

Fn0−j(ᾱr:n, . . . , ᾱr:n︸ ︷︷ ︸
n−r+1

, ᾱr−1:n, . . . , ᾱn1+j+1:n)αj
n1+j:n, if r > n1 ∧ j ≤ r − n1,

Fj(αr:n, . . . , αr:n︸ ︷︷ ︸
r−n1

, αr+1:n, . . . , αn1+j:n)ᾱn0−j
n1+j+1:n, if r > n1 ∧ j > r − n1,

whereᾱj = 1 − αj , j = 1, . . . , n.

Proof: For notational convenience, we denote thep-values corresponding to true hypotheses by

p(0)-values. It is remarkable that the vector of orderedp-values(p1:n, . . . , pn:n) is almost surely

of the form(p1:n = 0 = . . . = 0 = pn1:n︸ ︷︷ ︸
n1

, pn1+1:n = p
(0)
1:n, . . . , p

(0)
n0:n = pn:n).

Case 1,r ≤ n1: In this case, we necessarily fall into the step-down branch of the test procedure,

because at least the firstr components of the vector of orderedp-values are0 such thatpr:n ≤ αr:n

is true with probability1. Consequently, the event{Vn = j} can be expressed as

{Vn = j} = {pn1+1:n ≤ αn1+1:n, . . . , pn1+j:n ≤ αn1+j:n}

∩ {pn1+j+1:n > αn1+j+1:n}.

Since the second event implies that all orderedp-values with ordered indicesn1 + j+1 or greater

are larger thanαn1+j+1:n, the event means that(n0 − j) p(0)-values are greater thanαn1+j+1:n.

Since we have
(
n0

j

)
possibilities to choose thesep(0)-values and allp-values are assumed to be

independent, we immediately obtain the result.

Case 2,r > n1 andj ≤ r − n1: In order to get into this case, we must havepr:n > αr:n and fall

into the step-up branch of the procedure. Consequently, we can write

{Vn = j} = {pr:n > αr:n, pr−1:n > αr−1:n, . . . , pn1+j+1:n > αn1+j+1:n}

∩ {pn1+j:n ≤ αn1+j:n}.

Sincepn1+j:n ≤ αn1+j:n automatically implies thatp(0)
k:n ≤ αn1+j:n for all k = 1, . . . , j, we can

again choosej out of then0 p
(0)-values to fulfill this relationship.

Case 3,r > n1 andj > r − n1: In this third case, we fall into the step-down branch of the proce-

dure, resulting in

{Vn = j} = {pr:n ≤ αr:n, pr+1:n ≤ αr+1:n, . . . , pn1+j:n ≤ αn1+j:n}

∩ {pn1+j+1:n > αn1+j+1:n}.
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The assertion then follows in analogy to the step-down considerations under case 1.�

Corollary 3.23

For an SU-procedure with critical valuesα1:n ≤ · · · ≤ αn:n under a Dirac-uniform configuration

with n0 true hypotheses, we get (see also [92])

Pn0,n(Vn = j) =

(
n0

j

)
Fn0−j(1 − αn:n, . . . , 1 − αn−n0+j+1:n)αj

n−n0+j:n. (3.36)

This result is immediate if we consider the caser = n in Lemma 3.22. Alternatively, the pmf. of

Vn in this case can be calculated by iteratively applying (3.34).

3.7.1 Simultaneousβ-adjustment

Here, we mention one ad-hoc possibility to obtain a valid set of critical values for a SU- or SUD-

procedure guaranteeing strict FDR control, that is, we adjust the criticalvalues given in (3.3) in a

suitable way. For example, we can try to find a suitableβn > 0 such that the choice

αi:n =

i
n+βn

α

1 − i
n+βn

(1 − α)
=

iα

n+ βn − i(1 − α)
, i = 1, . . . , n, (3.37)

yields a SU-procedure (or SUD-procedure) controlling the FDR at level α. The critical values

(3.37) correspond to the rejection curve

f̃α(t) = (1 +
βn

n
)fα(t), t ∈ [0, α/(α+ β/n)].

Technically, the determination of the minimalβn can be done by a grid search. Starting with

βn = ε for someε > 0, we evaluate (3.33) for all possible values ofn0 and check if the condition

max1≤n0≤n b(n0, n) ≤ α is fulfilled. If not, we updateβn by iteratively addingε until no violation

of the FDR levelα occurs any more. For example, forα = 0.05, an SU-procedure withn = 100

and the choiceβ100 = 1.76 leads to strict FDR control (we choseε = 0.01).

Figure 3.6:f̃α for n = 10, 50, 200 together withfα
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Figure 3.6 depicts the modified curves̃fα for n = 10, 50 and200 together withfα. The left

picture in Figure 3.7 shows the minimum values forβn that have to be used to ensure strict FDR

control for SU-procedures based onfα andf (i)
α,κ, i = 1, 2, respectively, for varyingn. In the right

picture of Figure 3.7, the corresponding factors1 + βn/n are displayed. It is easy to prove that

limn→∞ βn/n = 0 in all three cases.

Figure 3.7:βn and1 + βn/n for SU-procedures based onfα, f (1)
α,κ1 andf (2)

α,κ2

Remark 3.24

In [15] (Remark to Definition 7), an SD-procedure with the universal adjustment constantβn ≡
1.0 was proposed.

3.7.2 Multivariate optimization problem

A more advanced approach towards finding a valid set of critical values(γi:n)i=1,...,n (say) re-

lated to the AORC for a finite number ofp-values leading to strict FDR control may consist in

comprehending this as a multivariate optimization problem under constraints.

Formally, this problem can be expressed by the task to find the minimum of the target function

d((γ1:n, . . . , γn:n)) =

(
n∑

i=1

|f−1
α (i/n) − γi:n|p

)1/p

(3.38)

for somep ∈ (0,∞], i.e., minimize theLp-distance of the set of critical values (γ1:n, . . . , γn:n) ∈
(0, 1)n and the critical values originating from the AORC under the constraints

FDRn0,n(ϕSU(~γ)) ≤ α ∀n0 = 1, . . . , n, and (3.39)

γi+1:n

i+ 1
≥ γi:n

i
∀i = 1, . . . , n− 1. (3.40)
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Of course, this problem can only be solved numerically by employing iteration techniques. In

order to find the global minimum of (3.38) under the constraints (3.39) and (3.40), it is necessary

to utilize a simplex-typed algorithm which is rather complex and goes beyond the scope of this

work. Anyhow, we will at least present one simple algorithm to obtain a valid set of critical values

which are close to the
(
f−1

α (i/n)
)
i=1,...,n

and works as follows.

Algorithm 3.25

1. We start with(γi:n)i=1,...,n =
(
f−1

α (i/n)
)
i=1,...,n

. These critical values obviously minimize

the functiond((γ1:n, . . . , γn:n)) unconditionally, but they violate constraint (3.39).

2. Now we search for the smallest possible positive constants(εi)i=1,...,n, such that the critical

values

(f−1
α (i/n) − εi)i=1,...,n or (3.41)

((1 − εi)f
−1
α (i/n))i=1,...,n, (3.42)

respectively, fulfill the constraints (3.39) and (3.40). Theεi’s can be found via a grid search.

Under the multiplicative ansatz (3.42) with the special choiceεi = iε for someε > 0, it can be

shown that constraint (3.40) is fulfilled if

ε ≤ min
i

(∆qi/∆αi), (3.43)

where

∆qi =
f−1

α ((i+ 1)/n)

i+ 1
− f−1

α (i/n)

i
and

∆αi = f−1
α ((i+ 1)/n) − f−1

α (i/n).

Of course, the latter policy is closely linked to theβ-adjustment method described before and

does not lead to the global solution of the minimization problem. Anyhow, it is simple and

easy to implement and the obtained critical values remain pretty close to their initial values
(
f−1

α (i/n)
)
i=1,...,n

. The following figure depicts the solutions of Algorithm 3.25 with ansatz

(3.42) for a step-up test withn = 25 (left picture) andn = 50 (right picture) together withfα.
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Figure 3.8: Critical values obtained by Algorithm 3.25 forn = 25 andn = 50.

Remark 3.26

Kwong et al. (cf. [161]) have also developed an algorithm for finding avalid set of critical

values for step-up tests under Dirac-uniform configurations based onthe distribution ofVn given

in (3.36). For smalln, the results are very similar to the results obtained by Algorithm 3.25. For

largern, however, their solutions do not converge to
(
f−1

α (i/n)
)
i=1,...,n

, but the sets of critical

values often show some peculiar behavior, for example that they lie on several distinct lines (cf.

Figure 3.9).

Figure 3.9: Critical values obtained by Kwong et al. (2002) forn = 16 andn = 32.

This is due to the fact that the underlying target equations of the algorithm are given by

FDRn0,n(ϕSU(~γ)) = α ∀n0 = 1, . . . , n, (3.44)
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which cannot be fulfilled under the constraints (3.40) for largern. The iterative structure of the

algorithm in [161] implies that the critical values in case of nonexistence of a solution of (3.44)

under (3.40) are simply linearly increasing in order to fulfill at least (3.40).

3.8 Connection to Storey’s approach

The AORC and methods based on it are by far not the only discussed improvements of the orig-

inal linear step-up procedure. In 2004, John D. Storey et al. (cf. [275]) proposed a method in

order to gain power by presenting a data-adaptive testing algorithm relyingon an estimator for the

proportion of true hypothesesπ0 (in Storey’s nomenclature) which works as follows.

Algorithm 3.27 (Storey’s method)

1. Choose an FDR levelα and a tuning parameterλ ∈ [0, 1).

2. Compute thep-valuesp1, . . . , pn for each individual test and denote their ecdf. byFn.

3. Compute the estimator̂π0(λ) = (1−Fn(λ))/(1−λ) for the proportionπ0 of true hypothe-

ses.

4. Denote byF̂DRλ(t) = π̂0(λ)t/(Fn(t)∨n−1) an estimator function for the FDR of a single-

step procedure with thresholdt ∈ [0, 1].

5. Choose the valuetα(F̂DRλ) = sup{0 ≤ t ≤ 1 : F̂DRλ(t) ≤ α} as threshold for the

p-values and reject all hypotheses withp-values lower than or equal totα(F̂DRλ).

This algorithm was quickly implemented into software and is nowadays widely spread. If we only

consider sucht-values withFn(t) ≥ 1/n for the moment and notice that

tα(F̂DRλ) = sup{0 ≤ t ≤ 1 :
π̂0(λ)t

Fn(t)
≤ α}

= sup{0 ≤ t ≤ 1 : Fn(t) ≥ π̂0(λ)

α
t},

it becomes obvious that Algorithm 3.27 corresponds to the Benjamini-Hochberg method whereα

is replaced byα/π̂0(λ) leading to larger critical values if̂π0(λ) < 1. For the special choiceλ = 0,

we obtainπ̂0(0) ≡ 1, hence, the original linear step-up procedure. For the remainingt-values with

Fn(t) < 1/n, Algorithm 3.27 leads to determining

sup{t ∈ [0, p1:n) : nπ̂0(λ)t ≤ α} < p1:n.

Hence, we reject nothing in this case and this completes the proof that Algorithm 3.27 is equivalent

to an adjusted linear step-up procedure.
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Now, the question is near at hand whether Storey’s approach and the methods and critical values

based on the asymptotically optimal rejection curve have something in common. Especially, it is

of interest whether the rejection regions induced by the AORC can be derived by Storey’s method

for a special choice ofλ. To see that this is not the case, we may define

π̂AORC
0 (t) = 1 − Fn(t)(1 − α),

and can (in analogy to Storey et al. (2004)) construct a point estimate forthe FDR of a single-step

procedure with givent ∈ (0, 1) by

F̂DRAORC(t) =
t

Fn(t)
π̂AORC

0 (t) = t

[
1

Fn(t)
− (1 − α)

]
.

Finding a crossing point ofFn andfα on (0, 1) is then (similarly to Storey’s approach) equivalent

to equatingF̂DRAORC(t) = α, because

F̂DRAORC(t) = α

⇐⇒ α/t = 1/Fn(t) − (1 − α)

⇐⇒ Fn(t) = 1
α/t+(1−α)

⇐⇒ Fn(t) = fα(t).

This calculation shows that the rejection regions coming from the AORC cannot be embedded

in Storey’s framework, because we do not employ a scalar estimatorπ̂0(λ), but an "estimator

function" π̂0(t) if we use his notation, i.e., the estimation ofπ0 has to be done for every thresh-

old t separately. This characterizes the difference between a fixed rejectioncurve approach and

Storey’s variable rejection threshold depending on the data and the resulting estimator̂π0(λ). Both

approaches are not transferable into another.

The latter observation shows that both test methods are in competition and makesit interesting

to discuss assets and drawbacks of both procedures and to compare their performance in various

distributional settings. A systematic comparison of both methods and some othersunder several

setups is the topic of the following Chapter 4.

In general, one can summarize the pro’s and con’s of the two methods described before, especially

in comparison with the original linear step-up procedure which both methods claim to improve, as

follows.

Pro linear step-up:

• Actual FDR ofϕLSU depends only on the proportion of true nulls, not on the values of the

alternative parameters

• Theoretically valid under positive dependency

• Easy and intuitive
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Contra linear step-up:

• Not α-exhausting forn0 < n

• Often low power for small proportions of true null hypotheses

Pro Storey method:

• Flexible with respect to concrete underlyingp-value distribution

• If π̂0(λ) is a good estimate forπ0, the resulting procedure is close to the optimal "oracle

procedure" (see Chapter 4 below)

Contra Storey method:

• The realized estimatêπ0(λ) can be greater than1 (this happens especially if discretep-

values are involved); then the procedure is less powerful than the linearstep-up procedure

• The estimator̂π0(λ) introduces a new variance component which makes the FDP of such a

procedure even more volatile, especially under dependency

• The choice of a good tuning parameterλ is a sensible issue

Pro AORC-based procedures:

• Works for anyζ and is even theoretically optimal under Dirac-uniform configurations

• No tuning parameter necessary

• No estimation ofζ necessary (implicitly covered)

• Even the adjusted critical values for a step-up test based onfα are an almost uniform im-

provement of Simes’ critical values. For example, forn = 100 andα = 0.05 we obtain

with theβ100 = 1.76 adjustment described in Subsection 3.7.1 that only the smallest critical

valueα1:n is smaller than its Simes’ counterpartα/n, while all other99 αj:n’s are larger

thanjα/n.

• Theoretically valid and often superior to Storey’s approach if the underlying p-values are

stochastically larger than a UNI[0, 1]-distributed random variable (cf. Chapter 4).

Contra AORC-based procedures:

• Fail to control the FDR under positive dependency

• Designed to control the FDR even under the worst case scenario of infinitely large alternative

parameters and therefore often not powerful for realistic alternatives/ small effect sizes
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• Not flexible with regard to the actual data, i.e., no data-dependent critical values (fixed

rejection curve drawback)

On the whole, one should expect that Storey’s method works better in caseof strictly continuous

distributions and smaller effect sizes while the AORC-based procedures will behave better if we

have extreme parameter configurations. A comparison is not really fair because both methods

are designed to achieve different goals or, in other words, have different underlying optimality

criterions. However, on a descriptive basis it may be interesting to study their behaviors under

various circumstances in more detail. This is the topic of the next chapter.
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Chapter 4

Power study for some FDR-controlling

test procedures

In Chapter 3, we have seen that there are improvements of the Benjamini-Hochberg method with

which wecangain power while (at least asymptotically) keeping the FDR levelα. Here, we are

now concerned withhow muchgain of power is possible with these methods.

Using the nomenclature introduced in Table 1.1, we recall our formal definition of the power of a

multiple test procedureϕ = (ϕ1, . . . , ϕn), which was given in Definition 1.3 as

powern(ϕ) = Eϑ

(
Sn

n1 ∨ 1

)
. (4.1)

Supposing that the proportionζn = n0/n of true hypotheses converges withlimn→∞ ζn = ζ, we

can herewith calculate the asymptotic power of a multiple test procedureϕ based on a rejection

curver leading to the rejection region[0, t∗] for 0 < ζ < 1 by

power∞(ϕ) = lim
n→∞

Sn

n1 ∨ 1
= lim

n→∞
Rn/n− Vn/n

(n1 ∨ 1)/n

=
r(t∗) − ζt∗

1 − ζ
. (4.2)

Obviously, under the Dirac-uniform configurations DU(ζ), we have (finite and asymptotic) power

equal to1.

In order to make our comparison as fair as possible, we only consider step-up procedures based

on rejection curves, namely

r(1)(t) = t/α Benjamini-Hochberg procedure,

r(2)(t) = π̂0(λ)t/α Storey procedure,

r(3)(t) = f
(2)
α,κ2(t) adjusted AORC-based procedure,

r(4)(t) = n0t/(nα) "Oracle" procedure,

where the tuning parameterλ was chosen equal to0.5 andκ2 = (1/2−α)/(1−α). Both choices

imply that the maximum possible rejection threshold for procedures (2) and (3) is equal to1/2.
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As stated before (cf. Section 3.8), the crucial difference between these two procedures is the fact

that the AORC-based procedure utilizes a fixed, deterministic rejection curve while in Storey’s

method the rejection curve is a random object estimated from the observed data. Of course, the

"oracle" procedure is impracticable and only serves as a benchmark, because it has maximum

power. Loosely formulated, we want to find out three things:

(i) How much power gain is possible with Storey’s method and with the AORC-based method

with respect toϕLSU under which parameter configurations ?

(ii) Which of the two improvements is more powerful in which cases ?

(iii) How far are the two improvements away from optimal power under which parameter con-

figurations ?

Our simulation setup is as follows. For three different choices ofn, i.e.,n = 40 (moderate problem

size),n = 400 (large problem size) andn = 4000 (asymptotic case, justification see below), we

consider the proportionsζn = 90%, 75%, 50%, 25% and10% and investigate the power and the

realized FDR of the step-up procedures based on the rejection curvesr(i), i = 1, . . . , 4, under

varying parameter constellations. The FDR level is chosen asα = 5% and the quantities FDRn

and powern are estimated by their average values inB = 10, 000 Monte Carlo replications, i.e.,

F̂DRn =
1

B

B∑

b=1

qb with qb =
vn,b

rn,b ∨ 1
,

p̂owern =
1

B

B∑

b=1

sn,b

n1
,

where the entities written in lowercase letters denote the realizations of the corresponding random

variables defined in Table 1.1. We subdivide our power study into two parts, namely the simple

hypotheses case and the composite hypotheses case.

4.1 Simple hypotheses case

For illustrative purpose, we again study the one-sided normal means problem

Hi : {µ = 0} vs. Ki : {µ > 0}, i = 1, . . . , n,

with test statisticsTi ∼ N (0, σ2) i.i.d., i = 1, . . . , n0 for the true hypotheses andTj ∼ N (µ, σ2)

i.i.d., j = n0 + 1, . . . , n for the false hypotheses with0 < n0 < n. For the sake of simplicity and

without loss of generality, we assume unit variance, i.e.,σ2 = 1. Moreover, we addµ = ∞ to the

model such that Dirac-uniform configurations can be covered in this framework as well. Suitable

p-values for testingHi versusKi are then given bypi(t) = PHi
(Ti > t) = 1 − Φ(t) and for
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the distribution functions of thepi(Ti) underHi andKi, respectively, we get fort ∈ [0, 1] the

representations

G0(t) = t, (4.3)

G1(t) = P0(Tn0+1 > Φ−1(1 − t)) = 1 − Φ(Φ−1(1 − t) − µ), (4.4)

F∞(t|ζ, µ) = ζt+ (1 − ζ)(1 − Φ(Φ−1(1 − t) − µ)). (4.5)

We now investigate the power and the realized FDR of the step-up procedures based on the rejec-

tion curvesr(i), i = 1, . . . , 4, in case of

µs = 0.5 small / minor effect,

µr = 2.0 realistic / relevant effect, and

µa = 5.0 p− value approximately∼ ε0.

The following tables list our simulation results for each considered value ofζn separately.

ζn = 0.9 µs = 0.5 µr = 2.0 µa = 5.0

n 40 400 4000 40 400 4000 40 400 4000

F̂DR
(1)

n
4.40% 4.42% 4.29% 4.04% 4.49% 4.52% 4.62% 4.51% 4.50%

p̂ower
(1)
n

0.66% 0.090% 0.012% 19.58% 12.08% 10.36% 99.27% 99.29% 99.27%

F̂DR
(2)

n
4.85% 4.65% 4.57% 4.80% 5.06% 4.98% 5.21% 5.01% 5.00%

p̂ower
(2)
n

0.71% 0.094% 0.012% 20.80% 13.11% 11.40% 99.34% 99.36% 99.35%

F̂DR
(3)

n
4.53% 4.45% 4.29% 4.37% 4.59% 4.56% 5.25% 5.01% 5.00%

p̂ower
(3)
n

0.68% 0.090% 0.012% 20.27% 12.28% 10.47% 99.39% 99.36% 99.35%

F̂DR
(4)

n
4.87% 4.96% 4.92% 4.71% 5.09% 5.01% 5.10% 5.00% 5.00%

p̂ower
(4)
n

0.73% 0.10% 0.013% 20.82% 13.23% 11.46% 99.38% 99.36% 99.35%

Table 4.1: Power study in the simple hypotheses case - Results forζn = 0.9

Utilizing (4.2) and the explicit formula forF∞(t|ζ, µ), we can additionally calculate the asymp-

totic power of the four procedures for the interesting caseµr = 2.0 numerically and get (for

ζn → ζ = 0.9) the values

power(1)∞ ≈ 10.14%, power(2)∞ ≈ 11.22%,

power(3)∞ ≈ 10.25%, power(4)∞ ≈ 11.28%.

In this sense, it seems justified to call the setupn = 4000 already the "asymptotic case". As

expected, the linear step-up procedure performs nearly equally well than its competitors here.

Storey’s method is close to the oracle procedure, because the assumption of a UNI[0, 1] distribution

for the p-values under the null hypotheses holds true and the choice ofλ is appropriate (in the

linear part of the limiting ecdf. of thep-values). For small family sizes and large parameter

values, Storey’s method and the AORC-based step-up test both tend to anti-conservativity.
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ζn =0.75 µs = 0.5 µr = 2.0 µa = 5.0

n 40 400 4000 40 400 4000 40 400 4000

F̂DR
(1)

n
3.65% 3.96% 3.87% 3.80% 3.76% 3.74% 3.70% 3.72% 3.75%

p̂ower
(1)
n

0.62% 0.098% 0.013% 26.80% 22.93% 22.51% 99.74% 99.73% 99.72%

F̂DR
(2)

n
4.09% 4.28% 4.27% 4.98% 4.95% 4.90% 4.94% 4.98% 5.00%

p̂ower
(2)
n

0.71% 0.11% 0.015% 31.11% 28.09% 27.79% 99.80% 99.81% 99.81%

F̂DR
(3)

n
3.76% 3.96% 3.88% 4.33% 4.01% 3.97% 5.13% 5.00% 5.00%

p̂ower
(3)
n

0.65% 0.098% 0.013% 28.68% 24.18% 23.62% 99.81% 99.81% 99.81%

F̂DR
(4)

n
4.92% 5.04% 5.18% 5.02% 5.03% 4.98% 4.94% 4.98% 5.00%

p̂ower
(4)
n

0.85% 0.13% 0.019% 31.90% 28.48% 28.10% 99.81% 99.81% 99.81%

Table 4.2: Power study in the simple hypotheses case - Results forζn = 0.75

Again, we additionally report the asymptotic power of the four proceduresin case ofµr = 2.0

under the parameter configurationζn → ζ = 0.75. We obtain

power(1)∞ ≈ 22.45%, power(2)∞ ≈ 27.74%,

power(3)∞ ≈ 23.55%, power(4)∞ ≈ 28.05%.

Here, with shrunkenζn, the improvements ofϕLSU begin to considerably outperform the linear

step-up procedure. Again, the Storey procedure shows a superior behavior. The AORC-based

step-up method is not much more powerful thanϕLSU, becauseζn is too large to lead to substantial

power gain by the procedure based onfα. It is remarkable that even the fullyα-exhausting oracle

procedure can hardly detect small effects likeµs = 0.5 in such a normal means-comparisons

problem.

ζn = 0.5 µs = 0.5 µr = 2.0 µa = 5.0

n 40 400 4000 40 400 4000 40 400 4000

F̂DR
(1)

n
2.34% 2.56% 2.46% 2.51% 2.50% 2.50% 2.49% 2.49% 2.50%

p̂ower
(1)
n

0.68% 0.11% 0.015% 37.55% 36.29% 36.14% 99.89% 99.88% 99.89%

F̂DR
(2)

n
2.86% 3.15% 3.12% 4.79% 4.81% 4.80% 4.98% 4.98% 5.00%

p̂ower
(2)
n

0.90% 0.14% 0.020% 51.72% 52.46% 52.49% 99.95% 99.96% 99.96%

F̂DR
(3)

n
2.38% 2.57% 2.46% 3.46% 3.19% 3.15% 5.33% 5.01% 5.00%

p̂ower
(3)
n

0.73% 0.11% 0.015% 44.50% 42.01% 41.62% 99.96% 99.97% 99.96%

F̂DR
(4)

n
4.71% 4.97% 5.13% 5.01% 5.03% 5.02% 5.02% 4.98% 5.00%

p̂ower
(4)
n

1.5% 0.26% 0.040% 54.35% 53.82% 53.70% 99.96% 99.97% 99.96%

Table 4.3: Power study in the simple hypotheses case - Results forζn = 0.5
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Considering onlyµr = 2.0 and lettingζn → ζ = 0.5, we now get the asymptotic power values

power(1)∞ ≈ 36.14%, power(2)∞ ≈ 52.51%,

power(3)∞ ≈ 41.62%, power(4)∞ ≈ 53.71%.

It becomes apparent that the improvements with the step-up test based on theAORC grow with

decreasingζ. Moreover, the general detectability of any of the considered procedures increases

with increasing proportion of false hypotheses.

ζn = 0.25 µs = 0.5 µr = 2.0 µa = 5.0

n 40 400 4000 40 400 4000 40 400 4000

F̂DR
(1)

n
1.17% 1.43% 1.15% 1.24% 1.25% 1.25% 1.27% 1.25% 1.25%

p̂ower
(1)
n

0.75% 0.11% 0.017% 46.17% 45.53% 45.48% 99.94% 99.94% 99.94%

F̂DR
(2)

n
1.69% 1.87% 1.62% 4.37% 4.42% 4.39% 4.99% 4.99% 5.00%

p̂ower
(2)
n

1.15% 0.18% 0.029% 74.65% 77.28% 77.53% 99.99% 100% 100%

F̂DR
(3)

n
1.20% 1.43% 1.14% 3.35% 2.30% 2.24% 6.48% 5.06% 5.00%

p̂ower
(3)
n

0.80% 0.11% 0.017% 65.17% 60.87% 60.56% 100% 100% 100%

F̂DR
(4)

n
4.89% 5.05% 5.04% 4.94% 5.01% 5.00% 5.00% 4.99% 5.00%

p̂ower
(4)
n

4.75% 1.20% 0.034% 80.54% 80.50% 80.51% 100% 100% 100%

Table 4.4: Power study in the simple hypotheses case - Results forζn = 0.25

Underµr = 2.0 and forζn → ζ = 0.25, we obtain

power(1)∞ ≈ 45.47%, power(2)∞ ≈ 77.57%,

power(3)∞ ≈ 60.52%, power(4)∞ ≈ 80.51%

as asymptotic power values. For such low proportions ofζn, the weakness of the linear step-up

procedure (does not exhaustα resulting in poor power) can be seen clearly. Both the AORC-based

procedure and the Storey procedure show a much more performant behavior, whereby the latter

procedure still remains close to the oracle procedure and is the undisputedbest choice of the three

procedures under investigation that can be carried out in practice.

The last settingζn = 0.1 seems irrelevant for practical considerations. It is mainly included to

show that the adjustment offα works as expected, because here we obtain crossing points of the

limiting ecdf. of thep-values and the resulting rejection curve in the linearly continued part off̃α.

Indeed, this "protection" works and even under the extreme valueµa = 5.0 no violation of the

FDR-level occurs with the AORC-based test.
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ζn =0.1 µs = 0.5 µr = 2.0 µa = 5.0

n 40 400 4000 40 400 4000 40 400 4000

F̂DR
(1)

n
0.62% 0.58% 0.42% 0.49% 0.50% 0.50% 0.51% 0.50% 0.50%

p̂ower
(1)
n

0.82% 0.12% 0.019% 50.36% 49.94% 49.84% 99.95% 99.95% 99.95%

F̂DR
(2)

n
0.86% 0.80% 0.67% 3.36% 3.55% 3.55% 4.03% 4.92% 5.00%

p̂ower
(2)
n

1.44% 0.23% 0.040% 88.78% 92.86% 93.26% 100% 100% 100%

F̂DR
(3)

n
0.65% 0.59% 0.42% 3.87% 1.96% 1.59% 4.83% 4.86% 4.93%

p̂ower
(3)
n

0.88% 0.12% 0.019% 88.16% 80.58% 78.56% 100% 100% 100%

F̂DR
(4)

n
4.88% 4.98% 5.00% 4.98% 4.99% 5.00% 4.96% 5.01% 5.00%

p̂ower
(4)
n

32.18% 25.08% 24.02% 97.15% 97.13% 97.12% 100% 100% 100%

Table 4.5: Power study in the simple hypotheses case - Results forζn = 0.1

Finally, the asymptotic power values in case ofµr = 2.0 andζn → ζ = 0.1 are (numerically)

given by

power(1)∞ ≈ 49.85%, power(2)∞ ≈ 93.33%,

power(3)∞ ≈ 78.41%, power(4)∞ ≈ 97.13%.

On the whole, we have shown that in this setting with high practical relevance,the proposed

improvements ofϕLSU considerably outperform the original Benjamini-Hochberg method if the

proportion of true nulls is bounded away from1. It has to be conceded that Storey’s method under

these regularity circumstances (strictly continuous distributions, simple null hypotheses) performs

very well and is preferable over the AORC-based method considered here.

4.2 Composite hypotheses case

Here, we assume now that the null hypotheses are composite in the one-sided normal means prob-

lem. More precisely, we consider the multiple test problem

Hi : {µ ≤ 0} vs. Ki : {µ > 0}, i = 1, . . . , n,

whereµ is the expectation of a normal distribution and the test statistics are of the form

Ti ∼ N (0, σ2) i.i.d., i = 1, . . . , n0/2,

Tj ∼ N (−µ, σ2) i.i.d., j = n0/2 + 1, . . . , n0, and

Tk ∼ N (µ, σ2) i.i.d., k = n0 + 1, . . . , n,

with 0 < n0 < n. This means that for the first half of the true hypotheses, we are at the boundary

of the null hypotheses while for the second half of the true hypotheses weare far in the inside of

the corresponding hypothesisHj . Again, we setσ2 = 1. Typically, as described in Section 1.2,

the probabilitiespi(t) = P0(Ti > t) = 1 − Φ(t) at the boundary of theHi’s are used asp-values
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for testingHi versusKi. The distribution functions of thepi(Ti) underHi andKi, respectively,

now have fort ∈ [0, 1] the representations

G0(t) =
1

2
t+

1

2
(1 − Φ(Φ−1(1 − t) + µ)), (4.6)

G1(t) = 1 − Φ(Φ−1(1 − t) − µ), (4.7)

F∞(t|ζ, µ) =
ζ

2

(
t+ (1 − Φ(Φ−1(1 − t) + µ))

)

+ (1 − ζ)(1 − Φ(Φ−1(1 − t) − µ)). (4.8)

Again, we investigate the power and the realized FDR of the step-up procedures based on the

rejection curvesr(i), i = 1, . . . , 4, in case ofµr = 2.0 (the realistic / relevant effect already used

in the previous section). The following table lists our simulation results for the considered values

of ζn.

µr =2.0 F̂DR
(1)

n
andp̂ower

(1)
n

F̂DR
(2)

n
andp̂ower

(2)
n

n 40 400 4000 40 400 4000

ζn = 0.1
0.24% 0.26% 0.25% 1.24% 1.34% 1.34%

50.17% 49.87% 49.77% 84.57% 88.27% 88.61%

ζn = 0.25
0.63% 0.63% 0.62% 1.51% 1.56% 1.55%

46.02% 45.42% 45.30% 66.33% 68.38% 68.54%

ζn = 0.5
1.25% 1.28% 1.25% 1.60% 1.66% 1.64%

37.57% 35.95% 35.86% 42.45% 42.28% 42.32%

ζn = 0.75
1.89% 1.86% 1.88% 1.89% 1.86% 1.88%

26.62% 22.46% 22.13% 26.64% 22.46% 22.13%

ζn = 0.9
2.22% 2.17% 2.29% 2.22% 2.17% 2.29%

19.13% 11.72% 10.07% 19.13% 11.72% 10.07%

µr =2.0 F̂DR
(3)

n
andp̂ower

(3)
n

F̂DR
(4)

n
andp̂ower

(4)
n

n 40 400 4000 40 400 4000

ζn = 0.1
1.56% 0.82% 0.75% 2.60% 2.60% 2.59%

83.73% 78.00% 77.10% 96.88% 96.93% 96.92%

ζn = 0.25
1.35% 1.13% 1.10% 2.49% 2.53% 2.51%

62.92% 60.12% 59.75% 80.21% 80.01% 79.95%

ζn = 0.5
1.71% 1.59% 1.55% 2.46% 2.52% 2.51%

43.93% 41.31% 41.09% 53.79% 53.11% 53.05%

ζn = 0.75
2.08% 2.01% 2.00% 2.48% 2.50% 2.50%

28.55% 23.59% 23.16% 31.56% 27.80% 27.54%

ζn = 0.9
2.34% 2.21% 2.31% 2.42% 2.41% 2.54%

19.67% 11.89% 10.18% 20.20% 12.74% 11.15%

Table 4.6: Power study in the composite hypotheses case - Results forµr = 2.0
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Apparently, forζ ≥ 0.75, the Storey method is almost always equivalent to the Benjamini-

Hochberg step-up procedure and therefore gets outperformed by thestep-up procedure based on

r(3). This is due to the fact that the estimatorπ̂0 used in Storey’s approach is almost always equal

to 1 in such cases.

It may be argued that the numerical power gain by the AORC-based procedure is not very large, but

obviously we might have chosen a different parameter configuration such that the results would

have been more impressing. However, focus should have been laid on thefact that the data-

adaptive method developed by Storey is no improvement of the linear step-upprocedure at all in

case of composite null hypotheses and large proportion of true nulls.

4.3 Summary

Returning to our initial questions, we can now give the following answers.

(i) In test problems with continuous test statistics, simple null hypotheses and moderate alter-

native parameter values, Storey’s approach seems to be the method of choice from today’s

perspective.

(ii) If, under the assumptions listed under (i), the alternative parameters grow larger, the AORC-

based methods perform equally well with respect to power and FDR control. Moreover, they

have the advantage that no tuning parameter is necessary.

(iii) For composite hypotheses, the AORC-based methods are preferable,especially if the pro-

portion of true null hypotheses is not too large and some parameter values belonging to true

null hypotheses are assumed to lie inside of the null hypotheses’ parameterspace.

(iv) If the multiple test problem employs discrete test statistics and the correspondingp-values

are not uniformly distributed on the unit interval but stochastically larger, both methods

are most likely to have low power. This is due to the fact that crossing points of the ecdf.

of the p-values and the underlying rejection curves are decisive objects determining the

decision rule. One way to face this problem is to userandomizedp-values in such a situation

again leading to UNI[0, 1]-distributedp-values under null hypotheses. This approach has

been worked out for the example application of testing for Hardy-Weinberg equilibrium in

genetics studies in [95].
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Chapter 5

Concluding remarks and outlook

With this work, two main aspects should have been worked out.

First of all, the calculations in Chapter 2 illustrate that the false discovery proportion FDP is a very

volatile quantity (a random variable with possibly large variance) under positive dependency. In

the i.i.d. case,Rn/n converges almost surely (cf. Lemma A.2 in [91] or Theorem 5 in [275]),

while under dependency it typically has positive variance. We have seenthis clearly in our D-

EX-models, where (depending onZ = z) in some casesRn(z)/n (determined by the ordinate

of the largest crossing point) was close to zero while in other cases it was close to1. We are not

the only ones who have discovered this effect. Recently, under researchers working on this field

even some doubt has arisen if control of the FDR is a reasonable error handling criterion under

dependency at all. Indeed, controlling only the expectation of the FDP when it is highly variable

is quite unsatisfactory, because we can only state that theaverageproportion of false significances

is bounded byα, but can make no statement about the individual experiment that we evaluate.

Consequently, it was suggested not only to look at the first moment of the FDP, but try to construct

confidence intervals taking the second moment into consideration as well or even look at the

whole distribution of the FDP. Two remunerative references for this topic are [104] and [170]. In

the latter article, alternatively, usage of the so-calledk-FWER was proposed. Here, the probability

P(Vn > k) is controlled at levelα for some integerk ≥ 0. The authors argue that this is a good

tradeoff between relaxation of the error rate and keeping courtesy to theexperimenter in a way

that we are able to guarantee onlyk false significances with statistical certainty(1−α). Stepwise

test procedures fork-FWER control are developed in [170] as well.

In Chapters 3 and 4, we have pointed out that the classical Benjamini-Hochberg procedureϕLSU

from 1995 (in some sources even calledthe FDR procedureor something similar) gives room for

improvements, but this room is limited. Especially if the proportionζn of true hypotheses is close

to 1, it is hard to outperformϕLSU to a considerable amount. This is also reflected in the shape

of our asymptotically optimal rejection curvefα which starts with the same derivative as Simes’
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line in 0 and deviates from it only moderately with growing argument. However, with procedures

based onfα it is possible to reject hypotheses withp-values larger thanα while keeping the FDR

level and this leads to a substantial gain in power for smaller values ofζn where the ecdf. of the

p-values typically has a concave shape and often intersectsfα at a larger abscissa thanα. One

may argue that small values ofζn (many false hypotheses at hand) seem quite artificial and are not

encountered in the relevant application fields where we e.g. scan maybe100, 000s of SNPs to find

a dozen candidates, but even in the microarray analyses framework, situations withζn ≈ 0.6 are

not unusual if we test for Hardy-Weinberg disequilibrium in strata, for example.

In future research, it may be interesting to study some more complicated dependency concepts than

exchangeability in more detail, e.g. investigate two-sidedt-type test statistics of the formTi =

|Xi−X0|/S. Also, it may be of interest how the FDR behaves under more realistic configurations

of the alternative parameters than the Dirac-models. Determination of least favorable parameter

configurations for step-up-down test procedures remains a very challenging issue.

As far as the AORC is concerned, it may be worth to study the behavior of procedures based on

fα in PRDS situations. As shown in Remark 3.14, further adjustments offα will be necessary

to implement FDR-controlling procedures in such a setup. Exact proofs for FDR control under

dependency for any stepwise test procedure based on critical valuesdifferent from Simes’ critical

valuesαk are very complicated, because the key expressionPϑ(Rn = j|pi ≤ αj:n) is hard to

handle and the difference[αj:n/j − αj−1:n/(j − 1)] appearing in all the proofs in Chapter 3 only

vanishes for critical values with the structure of Simes’αk’s. Anyhow, it seems possible that FDR

control for AORC-based procedures can be proved under other well-defined dependency structures

such as, e. g., block dependence as relevant in GWA analyses. This maybe investigated in future

research.

Finally, the exact solution of the minimization problem given in Subsection 3.7.2 employing some

simplex-type algorithm can lead to an optimal set of critical values even for any finite n.
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Appendix A

Numerical simulations and calculations

A.1 Simulations for FDR under dependency

In this section, we present some simulations for the FDR behavior ofϕLSU under the D-EX-N

models introduced in Section 2.3. The setup for these simulations has been chosen as follows. For

givenζ and for varyingρ, we generatednζ = 1000ζ test statisticsTi, i = 1, . . . , nζ as given in the

introductory part of Section 2.3 withϑi = 0 for all i = 1, . . . , nζ and computed the corresponding

p-values. Then(1−ζ) remainingp-values were set equal to zero. This was done independently in

m = 10, 000 simulation runs. Denoting the FDP for a linear step-up procedure with suchp-values

for a particular run byQn = Vn/(Rn ∨ 1), we estimated FDR∞(ζ) (for oneρ) by

̂FDR∞(ζ) =
1

m

m∑

j=1

q(j)n = Q̄n,m,

where the indexj indicates thej-th of them = 10, 000 simulation runs andq(j)n denotes thej-th

realization ofQn. The following figures show the results forζ = 0.2, 0.4, 0.6, 0.8, 0.9 and1.0

depending onρ.

Figure A.1: Simulation for the FDR ofϕLSU in the D-EX-N model withζ = 0.2 andζ = 0.4
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96 A.1. SIMULATIONS FOR FDR UNDER DEPENDENCY

Figure A.2: Simulation for the FDR ofϕLSU in the D-EX-N model withζ = 0.6 andζ = 0.8

The simulated data points are represented by the small dots while the solid curves reflect the

theoretical values. It can be seen that the values obtained by simulation reproduce the shape of the

theoretical FDR∞-curves forζ < 1.0 remarkably well, especially for largerζ ’s where the bulged

shape of the FDR∞-curve becomes more and more distinct.

Figure A.3: Simulation for the FDR ofϕLSU in the D-EX-N model withζ = 0.9 andζ = 1.0

For ζ = 1.0 and largerρ’s, this is still the case while for smallerρ’s the simulated data points

have much larger ordinates than they-coordinates of the FDR∞(1)-curve at the corresponding

abscissas. This phenomenon is due to the fact that here the FDR behaviorin the limiting case

differs substantially from the finite case. This becomes clear if we considerthe caseρ → 0+,

where the order of limits plays a severe role, because it holds

False Discovery Rate and Asymptotics, Thorsten Dickhaus



APPENDIX A. NUMERICAL SIMULATIONS AND CALCULATIONS 97

lim
n→∞

(
lim

ρ→0+
FDRn(1)

)
= α, but (A.1)

lim
ρ→0+

(
lim

n→∞
FDRn(1)

)
= Φ(−

√
−2 ln(α)) << α. (A.2)

Obviously, the limit given in (A.2) cannot be reproduced by any simulation. Consequently, it turns

out thatn has to be unrealistically large in order to reflect the limiting behavior for smallerρ’s

adequately ifζ = 1.0. Forζ < 1, such artefacts do not occur and the simulation gives valid results

even for moderaten ∼ 1000 as relevant in practice.

A.2 Adjusted procedures based on the AORC

In this section, we refer again to the example procedures based on the AORC presented in Exam-

ples 3.5, 3.7 and 3.8. In Corollary 3.19, it has been shown that the proposed procedures asymptot-

ically control the FDR under any parameter configuration if the distributional assumptions (D3)-

(I2) for thep-values hold and the proportionζn of true hypotheses converges to someζ ∈ [0, 1]

for n → ∞. However, in the finite case the procedures do not strictly control the FDR(cf. the

discussion around Figure 3.5). Here, we now numerically investigate how liberal the procedures

really are forn ranging from5 to 1000.

A.2.1 SUD-procedure, Example 3.5

We investigate the SUD-procedure based on the original AORC with parameter λn =
⌈

n
2−α

⌉
. The

FDR level was set toα = 5%. As already mentioned in Section 3.7, the evaluation of the pmf. of

Vn for an SUD-procedure using the formula derived in Lemma 3.22 becomes numerically difficult

for larger values ofn. Therefore, we employed computer simulations for the results forn ≥ 100

with M = 10000 Monte Carlo replications.

In case of an SUD-procedure, it is not clear if Dirac-uniform configurations are least favor-

able. Therefore, the following table lists the upper boundb∗n = b(n∗0, n) = max
n0∈Nn

b(n0, n)

as well as the maximal FDR under Dirac-uniform configurations, namely FDRn∗∗

0 ,n(ϕ(n)) =

max
n0∈Nn

FDRn0,n(ϕ(n)), together with the corresponding values forn∗0 andn∗∗0 .
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n n∗0 b(n∗0, n) n∗∗0 FDRn∗∗

0 ,n(ϕ(n)) n n∗0 b(n∗0, n) n∗∗0 FDRn∗∗

0 ,n(ϕ(n))

5 2 40.0% 1 20.0% 70 8 7.31% 8 5.92%

10 2 20.0% 1 10.49% 100 10 6.70% 12 5.72%

15 3 15.04% 2 8.72% 150 16 6.18% 18 5.50%

20 3 12.42% 3 7.77% 200 19 5.97% 23 5.41%

25 4 10.97% 3 7.20% 250 23 5.81% 23 5.36%

30 4 10.02% 4 6.90% 300 28 5.70% 31 5.33%

35 5 9.31% 5 6.62% 400 34 5.58% 39 5.26%

40 5 8.84% 5 6.47% 500 39 5.47% 48 5.25%

50 6 8.13% 6 6.21% 750 61 5.35% 63 5.16%

60 7 7.65% 7 6.04% 1000 77 5.28% 81 5.13%

Table A.1: Results for the SUD-procedure, cf. Example 3.5

It turns out that forn ≥ 500, the FDR level violation is lower than0.5% for this procedure.

A.2.2 SU-procedure based onf (1)
0.05,κ1

, Example 3.7

In this subsection, we investigate the adjusted AORCf
(1)
0.05,κ1

with κ1 chosen such thath1(1/2) =

1 (no hypothesis withp-value larger than0.5 is rejected) and implement this curve into an SU-test.

The usage of an SU-test has the advantage that Dirac-uniform configurations are known to be least

favorable. Therefore, it suffices to calculate FDRn∗

0,n(ϕ(n)) = max
n0∈Nn

FDRn0,n(ϕ(n)) in order to

achieve an upper bound for the FDR of such a procedure. All results were obtained by numerical

evaluation of the pmf. formula given in Corollary 3.23.

n n∗0 FDRn∗

0,n(ϕ(n)) n n∗0 FDRn∗

0,n(ϕ(n))

10 3 9.66% 150 27 5.34%

20 5 7.38% 200 36 5.26%

30 7 6.60% 250 44 5.21%

40 9 6.20% 300 53 5.18%

50 10 5.98% 400 70 5.13%

60 12 5.83% 500 86 5.11%

70 14 5.71% 750 128 5.07%

100 19 5.51% 1000 170 5.06%

Table A.2: Results for the SU-procedure based onf
(1)
0.05,κ1

, cf. Example 3.7

If we accept a FDR level violation of0.5% under the quite unrealistic worst case scenario of a
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Dirac-uniform configuration, we are already "on the safe side" forn > 100.

A.2.3 SU-procedure based onf (2)
0.05,κ2

, Example 3.7

In analogy to Subsection A.2.2, we now focus on the second possible AORCadjustment discussed

in Example 3.7, namelyf (2)
0.05,κ2

. Again, κ2 is chosen such thath2(1/2) = 1 and we use the

resulting critical values in an SU-test.

Table A.3 again displays the maximum FDR values, i.e., FDRn∗

0,n(ϕ(n)) = max
n0∈Nn

FDRn0,n(ϕ(n))

for differentn making use of the result in Corollary 3.23.

n n∗0 FDRn∗

0,n(ϕ(n)) n n∗0 FDRn∗

0,n(ϕ(n))

10 3 9.71% 150 22 5.58%

20 5 8.09% 200 28 5.45%

30 6 7.02% 250 34 5.38%

40 8 6.71% 300 40 5.33%

50 9 6.38% 400 52 5.26%

60 11 6.21% 500 64 5.21%

70 12 6.06% 750 92 5.15%

100 16 5.80% 1000 120 5.12%

Table A.3: Results for the SU-procedure based onf
(2)
0.05,κ2

, cf. Example 3.7

As expected (κ2 > κ1 so that more critical values originate from the original AORC), this proce-

dure shows a more liberal behavior with respect to FDR control and the numbern of tests has to

be approximately200 in order to guarantee an FDR less than0.055 under Dirac-uniform configu-

rations.

A.2.4 SU-procedure with truncated curve, Example 3.8

Finally, we use the truncated version offα, discussed in Example 3.8, withκ = 1/2 in an SU test

and choose the FDR level asα = 5%.

As before, the following table displays FDRn∗

0,n(ϕ(n)) = max
n0∈Nn

FDRn0,n(ϕ(n)) together with the

valuen∗0 leading to this maximum.
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n n∗0 FDRn∗

0,n(ϕ(n)) n n∗0 FDRn∗

0,n(ϕ(n))

10 3 9.71% 150 22 5.63%

20 5 8.25% 200 28 5.49%

30 6 7.12% 250 33 5.42%

40 8 6.81% 300 39 5.36%

50 9 6.46% 400 50 5.28%

60 10 6.30% 500 62 5.23%

70 12 6.13% 750 89 5.17%

100 16 5.86% 1000 116 5.13%

Table A.4: Results for the truncated SU-procedure withκ = 1/2, cf. Example 3.8

All values are very close to the corresponding values in Table A.3. This is due to the fact thatκ2

is very close to1/2 such that the truncated curve andf (2)
0.05,κ2

do only differ on the small interval

(κ2, 1/2) as depicted in Figure 3.4.
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Appendix B

Concepts of positive dependency

Proofs for FDR control often rely on assumptions about the correlation structure of the test statis-

tics. Some special structures have been systematically covered in the past and especially concepts

of positive dependencyof some kind have useful properties. This section presents some of them.

The following definition has preparing character.

Definition B.1 (Increasing / decreasing set)

Let (Ω,≤) be an ordered set and assume thatD, C are subsets ofΩ.

The setD is calledincreasing :⇔ ∀y ∈ Ω : [x ∈ D ∧ y ≥ x⇒ y ∈ D].

Analogously, the setC is calleddecreasing :⇔ ∀y ∈ Ω : [x ∈ C ∧ y ≤ x⇒ y ∈ C].

Examples for increasing sets according to this definition as subsets of the set of real numbersR

are rays of the formD = [u,∞[ orD =]u,∞[, respectively or correspondent constructs in higher

dimensions as subsets of anRn for n > 1 if we define the underlying order relations component-

wise. Decreasing sets are thereforeC =]−∞, o] orC =]−∞, o[ in R and their higher-dimensional

analogues, for example.

Remark B.2

If D is a closed, increasing subset of the target space of a real valued random variableX : Ω → R,

so it obviously exists a minimal subsetb(D) of D (the bound ofD), so that for allω ∈ Ω with

X(ω) ∈ D it exists anx ∈ b(D) with X(ω) ≥ x. In the same way we can express the event that

X maps to a decreasing subsetC of its target space:{ω : X(ω) ∈ C} = {ω : ∃ x ∈ b(C) :

X(ω) ≤ x}. In the special case of ray- or rectangle-shaped sets mentioned above, b(D) or b(C),

respectively, only consist of one single point (a vertex). Inversely formulated, this consideration

yields that every event of the form{X ≥ u} can be interpreted as an entry ofX into a ray-shaped,

increasing set bounded byu and an analogue event{X ≤ o} gets the meaning thatX maps into a

ray-shaped decreasing set bounded byo.

After these preparing considerations, it is possible to put the concepts ofpositive dependency
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developed by Lehmann in 1966 (see [171]), T. K. Sarkar in 1969 ([244]) and Benjamini and

Yekutieli in 2001 ([17]) into a common context. First, we recall Lehmann’s definition of "positive

regression dependency" in the bivariate case:

Definition B.3 (Positive regression dependency in the bivariate case, Lehmann (1966))

LetX andY be real-valued random variables.

Y is calledpositively regression dependent on X, if

P(Y ≤ y | X = x) is non-increasing inx.

This concept can be generalized to the multivariate casen ≥ 2 in the following way:

Definition B.4 (Positive regression dependency in the multivariate case (PRD))

LetX be a random vector withn ≥ 2 componentsXi : Ωi → R.

The multivariate distribution ofX is calledpositive regression dependent (PRD), if for all indices

i = 1, . . . , n and for every increasing setD ⊂ im(X)

P(X ∈ D | Xi = x) is non-decreasing inx. (B.1)

Remark B.5

Since the complement∁D of an increasing setD is a decreasing set, (B.1) is equivalent to the

postulation that the conditional probabilityP(X ∈ ∁D | Xi = x) has to be non-increasing inx.

Thereby, Lehmann’s Definition B.3 (together with the preparing remarks dealing with decreasing

sets) is contained in Definition B.4 by settingn = 2. However, Definition B.4 is a little more

general, because (in contrast to Lehmann) it makes no further assumptions about the explicit shape

of the increasing (or decreasing, respectively) sets into whichX maps.

Remark B.6

In [244], Theorem 2.3, a similar generalization of Lehmann’s definition is given in the context of

reliability analysis. It is shown that the property

P(Xj > xj , j = 1, . . . , i− 1| Xi = ui) is non-decreasing inui, i = 2, . . . , n (B.2)

implies

P

(
n⋂

i=1

{Xi > xi}
)

≥
n∏

i=1

P(Xi > xi),

which is a useful relation in order to compute lower bounds for the reliability ofe. g. technical

systems. It is clear that (B.2) is somewhat weaker than (B.1).

A further attenuation of the PRD property of a multivariate distribution is presented in the arti-

cle [17] by Benjamini and Yekutieli from 2001. The authors introduce the concept of "positive

regression dependency on subsets" (PRDS) as follows.
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Definition B.7 (Positive regression dependency on subsets (PRDS), see [17])

LetX be a random vector withn ≥ 2 componentsXi : Ωi → R.

The multivariate distribution ofX is calledpositive regression dependent on a subset I0 of the

set of indicesNn = {1, . . . , n}, if for every increasing setD ⊂ im(X) and for every indexi ∈ I0

P(X ∈ D|Xi = x) is non-decreasing inx. (B.3)

Therefore, condition (B.1) does not need to hold for all indicesi ∈ Nn, but only for those in the

subsetI0 of indices. The authors point out that the PRDS condition is an appropriatetechnical

tool to prove FDR-control of various stepwise test procedures if the underlying test statistics are

dependent. For this purpose, the subsetI0 typically consists of the indices of test statistics corre-

sponding to the true null hypotheses.

However, the verification of the PRDS property for a special distribution occurring in practice may

lead to technical difficulties due to the structure of condition (B.3) which is defined via conditional

probabilities. The following condition of "multivariate total positivity of order 2" (MTP2) is easier

to manage.

Definition B.8 (Multivariate total positivity of order 2 (MTP2))

For n ≥ 2, letX be a random vector with componentsXi : Ωi → Xi ⊆ R, i = 1, . . . , n, and

let f denote the jointn-dimensional probability density function of the variablesX1, . . . , Xn with

respect to some product measure
⊗n

i=1 µi.

The multivariate distribution ofX is calledmultivariate totally positive of order 2 (MTP2), if for

all x, y ∈ im(X)

f(x) · f(y) ≤ f(min(x, y)) · f(max(x, y)), (B.4)

where the minimum or maximum, respectively, is being taken component-wise.

This condition of multivariate total positivity of order2 is the strictest of all concepts of depen-

dency introduced here, because it holds:

Theorem B.9(Implications of concepts of dependency)

For the properties of multivariate distributions introduced in Definitions B.4, B.7and B.8, it holds:

(i) Multivariate total positivity of order 2 implies positive regression dependency.

(ii) Positive regression dependency implies positive regression dependency on subsets.

Proof: Part (ii) is obvious.

In order to prove part (i), let the increasing setD ⊂ X = im(X) be arbitrary chosen but fixed.

Without loss of generality, we seti = 1 in (B.1) and writeX = (X1, X
(1)), i.e., we setX(1) =

(X2, . . . , Xn) and, analogously,X = X1 ⊗ X (1). The joint pdf.f(X1, X
(1)) will be regarded as
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aµ1 ⊗ µ(1)-density of(X1, X
(1)). Finally, letu1, u2 ∈ X1 with u1 < u2 be arbitrary chosen but

fixed and describe theu1- andu2-cuts ofD andX , respectively, by

Duj
= {x(1) ∈ X (1) : (uj , x

(1)) ∈ D}, j = 1, 2,

Xuj
= {x(1) ∈ X (1) : (uj , x

(1)) ∈ X}, j = 1, 2.

With these definitions, we now have to show that

P(X ∈ D | X1 = u1) ≤ P(X ∈ D | X1 = u2). (B.5)

To this end, we make use of the fact that for allx ∈ Du1 and for ally ∈ Xu2 \ Du2 we have

the relationship(u2, x)
T ≥ (u1, y)

T , which holds true due to the property thatD is increasing.

Therefore, the MTP2 condition for the joint pdf.f yieldsf(u1, x)f(u2, y) ≤ f(u2, x)f(u1, y).

Integrating with respect toµ(1), we obtain
∫

Du1

f(u1, x)dµ
(1)(x) ·

∫

Xu2\Du2

f(u2, y)dµ
(1)(y)

≤
∫

Du1

f(u2, x)dµ
(1)(x) ·

∫

Xu2\Du2

f(u1, y)dµ
(1)(y). (B.6)

Due to the subset relationDu1 ⊆ Du2 , we have that the right-hand side of (B.6) is lower than or

equal to ∫

Du2

f(u2, x)dµ
(1)(x) ·

∫

Xu1\Du1

f(u1, y)dµ
(1)(y).

If we now divide the resulting inequality chain by
∫

X (1)

f(u1, ξ)dµ
(1)(ξ) ·

∫

X (1)

f(u2, η)dµ
(1)(η),

we arrive at
∫

Du1

f(u1, x)∫
X (1) f(u1, ξ)dµ(1)(ξ)

dµ(1)(x) ·
∫

Xu2\Du2

f(u2, y)∫
X (1) f(u2, η)dµ(1)(η)

dµ(1)(y)

≤
∫

Du2

f(u2, x)∫
X (1) f(u2, η)dµ(1)(η)

dµ(1)(x) ·
∫

Xu1\Du1

f(u1, y)∫
X (1) f(u1, ξ)dµ(1)(ξ)

dµ(1)(y). (B.7)

Inequality (B.7) can be re-written in terms of conditional expectations yielding

E

(
1Du1

◦X(1)|X1 = u1

)
E

(
1Xu2\Du2

◦X(1)|X1 = u2

)

≤ E

(
1Du2

◦X(1)|X1 = u2

)
E

(
1Xu1\Du1

◦X(1)|X1 = u1

)
. (B.8)

Because of

E

(
1Xu1\Du1

◦X(1)|X1 = u1

)
= E

(
1Xu1

◦X(1)|X1 = u1

)
− E

(
1Du1

◦X(1)|X1 = u1

)
,

E

(
1Xu2\Du2

◦X(1)|X1 = u2

)
= E

(
1Xu2

◦X(1)|X1 = u2

)
− E

(
1Du2

◦X(1)|X1 = u2

)
,
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relation (B.8) is equivalent to

E

(
1Du1

◦X(1)|X1 = u1

)
≤ E

(
1Du2

◦X(1)|X1 = u2

)
. (B.9)

Rewriting (B.9) in terms of conditional probabilities yields

P
X(1)|X1=u1(Du1) ≤ P

X(1)|X1=u2(Du2),

which is equivalent to (B.5), hence, the PRD property of the distribution ofX. �

Remark B.10

(i) If in Definition B.8 especiallyn = 2, i.e.,X underlies a bivariate totally positive distribution

of order2, this property is denoted by TP2. In this special case, the defining condition for

the bivariate probability density function ofX simplifies to

f(x1, y2)f(x2, y1) ≤ f(x1, y1)f(x2, y2) (B.10)

for all (x1, y1)
T ≤ (x2, y2)

T ∈ im(X) ⊆ R2.

(ii) The TP2 property may also be employed for the characterization of one-parametric families

of probability density functions{fϑ, ϑ ∈ Θ}, interpreting the real-valued parameterϑ as

second argument and re-writing the pdf.’s asfϑ(x) = f(x, ϑ). If then the TP2 property

(B.10) holds forf(x, ϑ), this is equivalent to the fact thatfϑ(x) has an isotone likelihood

ratio with respect toϑ ∈ Θ in the identity. Furthermore, the corresponding family{Pϑ, ϑ ∈
Θ} of probability measures underlies a stochastic ordering, because for thecdf.’s it holds

Fϑ1(x) ≥ Fϑ2(x) ∀x ∈ R, if ϑ1 < ϑ2.

Example B.11(TP2 property on subintervals)

Let T = {Pν | ν ∈ (0,∞]} be the family of Student’st-distributions withν degrees of freedom

for 0 < ν <∞ (for short:tν-distributions) together with its limiting distributionP∞, namely the

standard normal distribution. Then the corresponding pdf.’s have the form

fν(x) =





Γ(ν/2+1/2)
Γ(ν/2)

1√
ν π

(
1 + x2

ν

)−ν/2−1/2
for 0 < ν <∞, x ∈ R

1√
2π

exp (−x2/2) for ν = ∞, x ∈ R.

T is no TP2-family, but it has a monotone likelihood ratio forx ∈ I1 = (−∞,−1) as well as for

x ∈ I2 = (0, 1). The case0 < ν1 < ν2 < ∞ is treated and proven in [270]. In the caseν2 = ∞,

i.e., the combination of the standard normal distribution with atν-distribution with0 < ν < ∞,

we obtain the corresponding likelihood ratio function

q(x) :=
f∞(x)

fν(x)
=

√
ν

2

Γ
(

ν
2

)

Γ
(

ν
2 + 1

2

) exp (−x
2

2
)

(
ν + x2

ν

)ν/2+1/2
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and because of

d

dx
q(x) =

√
ν

2

Γ
(

ν
2

)

Γ
(

ν
2 + 1

2

) exp (−x
2

2
)
(ν + x2)ν/2−1/2

ν(ν/2+1/2)
x (1 − x2),

q(x) is isotone inx ∈ I1 andx ∈ I2. The TP2 property is therefore valid forT on the subintervals

I1 andI2.

Some deeper investigations concerning structural properties of thetν-distributions can be found

in [93]. They are useful for some of the derivations in Section 2.4.

Example B.12(MTP2 for binary variables)

In [9], the MTP2 property is investigated for binary variables. The authors establish a connection

between MTP2 and the odds ratio as follows.

Let X = (X1, . . . , Xn) be a random vector withn > 2 components taking only binary values,

i.e.,X : Ω → {0, 1}n. ThenX is MTP2 if and only if for all {j1, j2} ⊂ {1, . . . , n}, it holds

ln

(
P(Xj1 = 0, Xj2 = 0|{Xk}k∈K) · P(Xj1 = 1, Xj2 = 1|{Xk}k∈K)

P(Xj1 = 0, Xj2 = 1|{Xk}k∈K) · P(Xj1 = 1, Xj2 = 0|{Xk}k∈K)

)
≥ 0, (B.11)

whereK ≡ K(j1, j2) = {1, . . . , n} \ {j1, j2}. It should be mentioned that this is a special appli-

cation of a more general result given in [181]. The meaning of equation (B.11) can be interpreted

in an epidemiological setup. If for exampleXj1 denotes the status of a certain disease,Xj2 an

exposition status and{Xk}k∈K the states of a set of binary covariates, then (B.11) means that

the logarithmic odds ratio for the exposure-disease relationship is always non-negative, i.e., we

have no protective factors or all covariates are coded in that way that their effect on the disease is

harmful, respectively.

Remark B.13

The concept of total positivity is a widely studied, important issue with variousstatistical ap-

plications. For a deeper study, the works of S. Karlin ([147]), Karlin and Rinott ([148], [149]),

and Cohen and Sackrowitz ([45]) are recommendable. One special application field consists in

reliability and life testing (cf. [8] and [244]).

The dissertation of Astrid Heinicke ([121]) gives a good overview of various concepts of depen-

dency.
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Abstract

The false discovery rate (FDR) is a rather young error control criterion in multiple testing prob-

lems. Initiated by the pioneering paper by Benjamini and Hochberg from 1995, it has become

popular in the 1990ies as an alternative to the strong control of the family-wiseerror rate, espe-

cially if a large system of hypotheses is at hand and the analysis has mainly explorative character.

Instead of controlling the probability of one or more false rejections, the FDRcontrols the ex-

pected proportion of falsely rejected hypotheses among all rejections. One typical application with

strong impact on the development of the FDR is the first step (screening phase) of a microarray

experiment where the experimenter aims at detecting a few candidate genes or SNPs potentially

associated with a disease, which are than further analyzed using more stringent error handling

methods. Especially due to such nowadays’ applications with families of ten thousands or even

some hundred thousands of hypotheses at hand, asymptotic considerations (with the number of

hypotheses to be tested simultaneously tending to infinity) become more and more relevant.

In this work, the behavior of the FDR is mainly studied from a theoretical pointof view. After

some fundamental issues as a preparation in Chapter 1, focus is laid in Chapter 2 on the asymp-

totic behaviour of the linear step-up procedure originally introduced by Benjamini and Hochberg.

Since it is well known that this procedure strongly controls the FDR under positive dependency,

we investigate the asymptotic conservativeness of this procedure under various distributional set-

tings in depth. The results imply that, depending on the strength of positive dependence among the

test statistics and the proportion of true nulls, the FDR can be close to the pre-specified error level

or can be very small. Typically, the latter case leads to low power of the linear step-up procedure

which raises the possibility for improvements of the algorithm.

One improvement of Benjamini and Hochberg’s procedure is presented and discussed in Chapter

3. Instead of using critical values increasing linearly (or, in other words, a linear rejection curve),

we derive a non-linear and in some sense asymptotically optimal rejection curve leading to the

full exhaustion of the FDR level under some extreme parameter configurations. This curve is then

implemented into some stepwise multiple test procedures which control the FDR asymptotically

or (with slight modifications) for a finite number of hypotheses. For the proof of FDR control for

procedures employing non-linear critical values, some new methodology ofproof is worked out.

Chapter 4 then compares the newly derived methods with the original linear step-up procedure

and other improved procedures with respect to multiple power. The results inthis comparisons

section are based on computer simulations. It turns out that certain procedures perform better in

certain distributional setups or in other words that one can choose the appropriate FDR controlling

algorithm to serve the purpose of detecting the most relevant alternatives most properly.

Besides all these theoretical and methodological topics, we are also concerned with some prac-

tical aspects of FDR. We apply FDR controlling procedures to real life dataand illustrate the

functionality, assets and drawbacks of the different methods using thesedata sets.



Kurzfassung

Die "False Discovery Rate" (FDR) ist ein recht junges Fehlerkontrollkriterium in multiplen Test-

problemen. Beginnend mit dem Artikel von Benjamini und Hochberg aus demJahre 1995 wurde

es in den 1990er Jahren als Alternative zur Kontrolle des multiplen Niveausbeliebt, insbesondere

bei Vorliegen eines sehr mächtigen Hypothesensystems und vornehmlich explorativem Charakter

der Analyse. Die FDR kontrolliert nicht die Wahrscheinlichkeit einer einzigen fälschlichen Ver-

werfung einer Nullhypothese, sondern den erwarteten Anteil fälscherlicherweise verworfener Hy-

pothesen an allen Verwerfungen. Ein typisches Beispiel mit starkem Einfluss auf die Entwicklung

der FDR ist der erste Schritt (die "Screeningphase") eines Microarray-Experimentes, in dem der

Experimentator einige potenziell mit einer Erkrankung assoziierten Kandidatengene oder SNPs

detektieren möchte, welche dann unter stringenterer statistischer Fehlerkontrolle weiter analysiert

werden. Wegen aktueller Anwendungen mit aus mehreren zehntausenden oder gar einigen hun-

derttausenden simultan zu prüfender Hypothesen bestehender Familien gewinnen asymptotische

Überlegungen (gegen unendlich strebende Hypothesenzahl) immer mehr an Relevanz.

In dieser Arbeit wird das Verhalten der FDR vornehmlich vom theoretischen Standpunkt aus un-

tersucht. Nach einigen Vorüberlegungen in Kapitel 1 wird der Fokus in Kapitel 2 auf das asympto-

tische Verhalten der von Benjamini und Hochberg eingeführten linearen step-up Prozedur gelegt.

Da bekannt ist, dass sie die FDR unter positiver Abhängigkeit kontrolliert,untersuchen wir, wie

konservativ sich die Prozedur in entsprechenden Verteilungsmodellen asymptotisch verhält. Die

Resultate zeigen, dass (je nach Grad der Abhängigkeit und Anteil wahrer Nullhypothesen) die

FDR nahe dem vorgegebenen Niveau, aber auch sehr klein sein kann. Letzterer Fall hat eine

geringe Güte der Prozedur zur Folge und eröffnet Raum für Verbesserungen des Algorithmus’.

Eine Verbesserung der Benjamini-Hochberg Prozedur wird in Kapitel 3 eingeführt und disku-

tiert. Anstatt linear wachsende kritische Werte (oder anders ausgedrückt eine Ablehngerade)

zu benutzen, entwickeln wir eine nichtlineare und in gewissem Sinne asymptotisch optimale

Ablehnkurve, um das FDR-Niveau unter extremen Modellannahmen ganzauszuschöpfen. Die

Kurve dient zur Herleitung schrittweiser Tests, die die FDR asymptotisch oder (mit leichten Mod-

ifikationen) für eine finite Anzahl an Hypothesen kontrollieren. Zum Beweis der FDR-Kontrolle

für Prozeduren, die auf nicht-linearen kritischen Werten basieren, wird eine neue Beweistechnik

ausgearbeitet. Kapitel 4 vergleicht die neu entwickelten Methoden mit der ursprünglichen step-

up Prozedur und anderen Verbesserungen hinsichtlich eines multiplen Gütemaßes. Die Aussagen

dieser Vergleichsstudie basieren auf Computersimulationen. Es zeigt sich,dass bestimmte Tests

unter gewissen Verteilungsannahmen Vorteile besitzen bzw. ein geeignetesFDR- kontrollierendes

Verfahren ausgewählt werden kann, um gewisse Alternativen bestmöglich zu erkennen.

Neben diesen theoretisch-methodischen Aspekten beschäftigen sich einige Anwendungsbeispiele

auch mit der praktischen Seite der FDR. Wir wenden FDR-kontrollierende Prozeduren auf Real-

daten an und diskutieren Funktionsweise sowie Vor- und Nachteile der jeweiligen Testprozeduren

anhand dieser Datensätze.
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