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Overview

The False Discovery Rate (FDR) is a rather young paradigm in controliiogseof a multiple test
procedure. Especially in the context of genetics and microarray asalyse FDR has become
a very popular error control criterion over the last decade, bedaiséess restrictive than the
classical Family Wise Error Rate (FWER). This is especially important sincevieral of today’s
application fields like genome-wide association (GWA) studies, sometimes tesatiaior even
some hundred thousands of hypotheses have to be tested simultanedubly analyses (at least
at a first stage) have mainly explorative character so that in this stage ahtlysis one is of-
ten more interested in getting some significances than in avoiding a few false hstead of
controlling the probability of making at least one false rejection, the FDR alsntine expected
proportionof falsely rejected (true) null hypotheses among all rejections. Due to thsiveanul-
tiplicity of some of the current applications, asymptotic considerations become amal more
relevant. Therefore, in this work special focus will be laid on the asympbaiaviour of the
False Discovery Rate with the numbef hypotheses tending to infinity. Other applications in-
clude astronomy (cf., e. g., [176]) and proteomics, cf. Application 2.4.

The remainder of this work is organized as follows. In Chapter 1, somedties foundations
will be presented, including a formal definition of the FDR. Most of the Itesa that chapter
are already known so that it has a repetitious character. Furthernoone, rtational aspects are
covered.

Chapter 2 then deals with a popular FDR controlling multiple test proceduneglypahe linear
step-up procedure based on Simes’ critical values introduced in the pitmeeticle by Ben-
jamini and Hochberg from 1995, see [13]. Since it is well known that thithotecontrols the
FDR for positively dependent test statistics being at hand, we study ispastic conservative-
ness in some special distributional situations.

In Chapter 3 we present and investigate a new rejection curve desigasgniptotically exhaust
the whole FDR levelk under some extreme parameter configurations.



Besides these theoretical considerations, we will apply some of the testdures presented in
Chapters 2 and 3 to real life data and investigate FDR "at work".

Chapter 4 contains a systematic (numerical) comparison of some recentlgmil¢est proce-
dures which aim at improving the linear step-up procedure. Under \&adiatributional settings,
we investigate their behaviour with respect to type | error and power. dllois us to discuss
assets and drawbacks of each of the considered procedures.

In Chapter 5, finally, our results will be summarized and we give an outloogoone pursuing
issues.

Some numerical computations and computer simulations referring to the theloretiglis in
Chapters 2 and|3 are presented in the Appendix. Moreover, we brisflyss some notions of
positive dependency there.

The research that has lead to this work has been part of the first primdesearch project
sponsored by the Deutsche Forschungsgemeinschaft (DFG),Nparkl 524/3-1, under the re-
sponsibility of my advisor Helmut Finner and of Prof. Guido Giani. In the apfilhn to this grant,
the aims of Chapters 2 and 3 have already been formulated and parts #tibegons in these
chapters are joint work with Helmut Finner and Markus Roters as well. Mzsalts of Chapter
are pre-published in [86] and [88]. An article containing the main resti®hapter 3 has been
accepted for publication, see [87]. | am grateful to the DFG for finaneig tenure at the German
Diabetes Center from July 2005 to April 2007 and to Helmut Finner forigiog me with the
interesting topics and for some valuable preliminary notes from his treasaest c



Chapter 1

Introduction

1.1 Multiple testing and False Discovery Rate

The goal of multiple testing consists of testing> 1 hypotheses simultaneously and controlling
some kind of overall error rate. The most conservative and highly inguitiethod is controlling
the Family Wise Error Rate (FWER) in the strong sense. The Family Wise Erefirsed as the
event that at least one false rejection amongtledividual tests is performed and the FWER (in
the strong sense) for a multiple test procedyre- (¢4, ..., p,) is the probability for the latter
event and it can therefore loosely by defined as

FWER,(¢) =P(31<i<n:{p;, =1andH;istrue}). (1.1)

There also exists a definition of the FWER in theeak sensaiming at error control under the
global hypothesis that atl null hypotheses are true. However, we only consider the FWER in the
strong sense here. A rather simple and naive method for controlling theRFgviEe Bonferroni
procedure, where each individual testis carried out at levely;, = «/n. Due to subadditivity,

we immediately get the FWER-controlling property of the Bonferroni methochie of

FWER, (¢) <) ey,
k=1

with «; denoting the individual level fop,. The disadvantage of the Bonferroni method is that
these individual levels become extremely small for a large number of hygesthet hand which
results in a very low power of the Bonferroni method for largelrherefore, many improvements
of the Bonferroni method have been developed. The maybe most adivarethod towards con-
structing a multiple levak-test consists in the so-call@drtitioning principledeveloped by Finner
and StralBburger, see [94].

It shall be mentioned here that a multiple test procedure (¢4, ..., p,) which controls the

3



4 1.1. MULTIPLE TESTING AND FALSE DISCOVERY RATE

FWER at a pre-specified levelcan also be used to perform a lewetest for the global intersec-
tion hypothesig?y, = (i, H; (assumingHy # (). We simply rejectH iff there exists an index

1 < k < nwith ¢ = 1. The type | error controlling property of this test method is immediate
if we keep in mind thatp has the property that the right-hand side|of (1.1) is bounded.blf

the testy is constructed according to the Bonferroni method, the correspondingent®n hy-
pothesis test) (say) simply becomeg = 1y, <q/n}, Wherepy, denotes the smallegtvalue,

cf. Section 1.2. One improvement with respect to power has been destddggimes, cf. [264],
for independenp-values. We mention it here because its critical values will be used in addiffer
context later. Simes’ method is described in Algorithm 2.1 at the beginning apt€h?2.

A more radical approach towards gaining of power in a multiple testing proldegiaxation of
the underlying error measure. Especially for large values, afontrolling the FWER may be a
much too conservative goal, especially if we consider a screeningimaerwhere it is more
important to get some significances than to avoid a few false ones. A moral lével nowadays
widely used error measure in the latter situation is the False Discovery RaR).(FDcontrast
to the FWER, not the probability of performing at least one false rejectionong@led, but the
expected proportionf falsely rejected hypotheses with regard to all rejected hypothesesdén
to formalize this task, we need some notation.

Definition 1.1

Let (2, A4,{Py : ¥ € O}) denote a statistical experiment ad, = {1,...,n} C N. Let
¢ = (p1,...,p,) be a multiple test procedure for the familyfy, ..., H,) of hypotheses with
0 # H; c ©forall i € N,. A hypothesisH,k € N, is called true ifd € Hj and false
otherwise. Then we define

Ru(p) = Hi€N,:pi=1}, (1.2)
Vile) = |{ieN,:p; =1 and H; istrue}|, (1.3)
FDR,(¢) = E <m> , (1.4)

and say thatp controls the FDR at a pre-chosen level of significance (0, 1) iff

sup FDR,(¢) < a.
V€O

The ratioV,,(¢)/[R.(¢) V 1] is called the false discovery proportion (FDP).

If it is clear which procedure is investigated, the argumegtis often dropped and we simply
write V,, = V,,(p) andR,, = R,,(¢). The meaning of the quantitié$, and R, is illustrated in the
following table.

False Discovery Rate and Asymptotics, Thorsten Dickhaus



CHAPTER 1. INTRODUCTION 5

Test decision
Hypothesis 0 1
true U, Vo | no
false T, Sn | n
n—R, R, | n

Table 1.1: Quantities in a multiple test procedure

Itis important to notice thal, is unobservable, because it contains information about the validity
of the hypotheses in the family. Another measurement of type | errors iexected error rate
(EER), which will be considered in Chapter 2 together with the FDR. It is siomes also called
per comparison error raf®CER) and is defined as the expected proportion of type | errors with
regard to the size of the family of hypotheses, as formalized in the followifigitien.

Definition 1.2 (Expected Error Rate)
For givend € ©, we define the expected error rate (EER) of a multiple test procedbse

Vn(¢)] '

n

EER () = Ey [

Moreover, in a multiple test problem type | errors and type Il errorsriteaiby7,, in the nomen-
clature introduced in Table 1.1) can occur simultaneously. Subject to typerl @te control
(measured by the FWER or the FDR, for example), it may also be worthy talinteoa mea-
surement fomultiple powerin order to compare different (e. g., FDR-controlling) test procedures
with each other. In the literature, there is no common agreement on how te daiitiple power.

One possibility that is frequently encountered in the literature (cf., e. g]) [43o define the
power of a multiple tesp as the expected proportion of false hypotheses that can be rejected with
v, formally expressed in the following definition.

Definition 1.3 (Multiple power)
For givend € ©, we define the quantity

as power of a multiple test proceduge

We will use this power definition throughout this work, although we are ewéithe fact that
it has weaknesses. Especially, Definition 1.3 does not take into achounfalsethe rejected
false hypotheses are, i.e., how far the corresponding alternativeetma are away from the null
parameters. Establishing a power definition based on the latter consideratioifd offer the
possibility to measure the "statistical resolution‘oivhich is interesting as well.

False Discovery Rate and Asymptotics, Thorsten Dickhaus



6 1.1. MULTIPLE TESTING AND FALSE DISCOVERY RATE

The following two short remarks establish a well known connection betwlee®DR and the
FWER.

Remark 1.4
Definition (1.4) can equivalently be expressed as
Vi
FOR() = B (2 Rofi) > 0) - Balla(i) > 0.
Ru(p)
Remark 1.5

If all hypotheses are true, it holds:
FDR,(¢) = Py(Rn(p) > 0) = Py(Va(p) > 0) = FWER,(¢).

In general, we have thaf, (v)/[Rn(¢) V 1] < 1y, (,)>0y @nd therefore it holds

FDR, (¢) = Ey (%

Starting in 1995 with the famous article by Benjamini and Hochberg ([13Br the last decade a

> < Ey (1{v,(p)>0}) = FWER,(¢p).

variety of FDR-controlling procedures has been developed, althoeghetiieral idea for applying
this error measure is older. Since the defining equation (1.4) is a highly catgaliconstruct,
proofs of FDR-control of a certain multiple test procedure often areniealy cumbersome and
partly need strong assumptions about the dependency structure ofdedyiny test statistics.
In the next chapter, we focus on the well known and widely spread Istegrup procedure-="

based on Simes'’ critical values originally proposed in [13] and study sorpeoiperties in detail.

Before doing so, we will finish our introductory comments with a short sunfesome recent
developments in the rapidly growing field of FDR-research which hasrbeame of the leading
research topics in (bio-)statistics and (bio-)informatics in the past fevsyéa said before, due to
the rising complexity and massive multiplicity encountered especially in genondaamologic
applications, asymptotic FDR-considerations with the number of tests growimdiridy have
attracted special attendance. Early valuable convergence investigaiibmespect to the number
of type | errors can be found in [91] and [92] for independent téstistics. Initiated by the
work of John D. Storey (cf. [271], [272], [273], [275]), pratgres relying on estimation of the
proportion of true null hypotheses have recently received partictitmteon. Although not much
discussed yet, such test procedures can behave very consgwaticertain situations like in
discrete models or in case of composite null hypotheses. We will explaintadyl this further in
Section 3.8 and in Chapter 4.

Another data-adaptive approach consists of multi-stage testing. On tHendesuch a strategy
can be utilized to use the number of rejections in the first step of the prazadwan estimate for
the number of true null hypotheses in the following stages (cf, €. g.,,[@B}he other hand, it is

False Discovery Rate and Asymptotics, Thorsten Dickhaus



CHAPTER 1. INTRODUCTION 7

possible to reduce the complexity of the test problem iteratively in order teaserthe power for
each remaining individual test in each step (cf. [323]). Moreoempirical Bayespproaches are
discussed in order to estimate the posterior probability for the validity of afepeall hypothesis
given itsp-value (for a definition of the-value, see Sectidn 1.2 below). These estimation tech-
niques are known alcal fdrtheory (cf., e.qg., [23], [69], [72], [73], [75]). Bayesian criten®

for comparing the quality of FDR-controlling test procedures can beddufiLl02] and [103], for
example.

For dependent test statistics, only few results concerning FDR-cangr@vailable yet. Decisive
for models with positive dependency (see Appendix B) assumptions weveoitks of S. K. Sarkar
(especially [237]) and Benjamini and Yekutieli (see [17]), which prbtree conservativity op-sV
under certain assumptions independently from each other. The FDaR4bebf the linear step-up
procedure for certain kinds of exchangeable test statistics will be thedbficapter 2. If positive
dependency cannot be assumed and / or if there is insufficient kngevidzbut the distribution of
the test statistics, up to now resampling techniques are often used to simulaistthistibn (cf.
[67], [68], [297]) under the null hypotheses.

1.2 The concept op-values

Instead of explicitly carrying out a particular statistical test, statistical sosgastems often re-
port so-calledp-values, because they do not depend on a pre-defined significaete Tdhese
p-values are sometimes referred toaservedevels of significance. To formalize how we un-
derstand a-value, consider again a statistical experimént A, {Py : ¥ € O}) and assume
we have a tesip for the pair of hypothese#/, versusH; concerning the parametér € ©
relying on a test statistid = T(Xy,...,Xx), where theX;,i = 1,...,k, are i.i.d. Py-
distributed random variables mappifgonto R, representing the experiment. For given real-
izations(x1, ..., xx) in a sample of sizé&, the corresponding-value denotes the smallest level of
significancen,,(z1, - - . , ), for which the null hypothesis is rejected given the actual observed
data. If we denote the rejection regiongffor a given levelx with T, then thep-value for the
realizationse = (z1, ..., ;) computes as

plpa)= il BT ETa),
whereP* is chosen such th&@' (1" € I'y) = supyep, Po(T € T's) if Ho consists of more than one
element. Often, a unique measiliteyielding the aforementioned supremum exists; e. gt,ifa
location parameter and the test problem is of the strudilyre {9 < ¥y} versusH; : {¥ > vy},
we typically haveP* = Py,. If especially the test statisti€ tends to larger values under the
alternative and the tesgtis of the formp (X1, ..., Xy) = 1. o) (T(X1, . .., X)), the definition

False Discovery Rate and Asymptotics, Thorsten Dickhaus



8 1.2. THE CONCEPT ORP-VALUES

of the p-value given above simplifies to
ple,z) =P(T > T(x1,...,x1)).

Obviously, this is the probability under the null hypothesis of the event tleatet$t statistic”

has a value that is not more likely féf, than the valué'(z1, ..., x;) for the actually observed
realizations and therefore indeed equals the smallest level of signifiedmncle leads to rejection

of Hyp in case of having observed, ..., ;).

It is also possible to comprehend theralues themselves as random entities (cf., e. g., [234]). If
we again assume( Xy, ..., Xi) = 1j o) (T(X1, ..., X)), the tuple of data: = (z1,...,7)

in this interpretation is assigned to the probability of the test stafiségceeding the fixed deter-
ministic valueT'(z1, .. ., z). The formal description

x=(z1,...,2%) — plp,x) =P(T >T(x1,...,2)) =1 — Fp«(T(x1,...,2%))

together with the principle of quantile transformation yields immediately, that trdorarentity
p(p, x) in this consideration is uniformly distributed on the interjgall] under the null hypothe-
sis, if P* is continuous and{, consists of only one element. This statement means reworded, that
the number of rejections of a levettest averagesa - 100% of the performations, if always the
circumstances of the null hypothesis are at hand.

The latter consideration becomes a deeper meaning in a multiple testing peegttiumany (say
n) hypotheses to be tested. If we have drawn samples for each indivéhtgdroblem, it is pos-
sible to compute the correspondipgralues and their ecdfF,,(-) (say). If the graph of, then
significantly deviates from the bisecting line on the unit interval, this can giegrration about
how many of the: hypotheses are wrong. Moreover, many multiple test proceduresfaredim
terms ofp-values.

In case thalP* is a discrete probability measure Hy is a composite null hypothesis, we obtain
thatp(p, =) underH is stochastically larger than a UNI 1]-distributed random variable.

Remark 1.6 (Multiple test procedures in terms pfvalues)

Consider a multiple test procedugeconsisting ofn one-sided tests;(7;) = 1, ) (Ti) for

1 =1,...,nwith test statistic§;,i = 1, ..., n which are i.i.d. with continuous cdf under the
null hypotheses. Thep can equivalently be expressed hyne-sided testg;(F;) = 1(gq,(F;)
fori =1,...,ninterms of the correspondingvaluesP; (regarded as random entities with cdf.
Fp and therefore written with capital letter here) and critical values . ., o, iff the following
condition holds:

P(Tl > Cl‘) =1- FT(CZ‘) = Fp(ai) = P(Pl < Odi) forall ¢ = 1,...,n. (15)

Therefore, the modeling of the underlying distributional situation can be édher byf7 or by
Fp. Since many multiple test procedures are defined in termsvalues, it is sometimes useful

False Discovery Rate and Asymptotics, Thorsten Dickhaus



CHAPTER 1. INTRODUCTION 9

not to model the distribution of the test statistics, but the distribution opthalues. Moreover,
expressing the test problem in termsgpe¥alues has the advantage that this makes it independent
of the scale of the original test statistics sipeealues always have suppd@t 1].

1.2.1 p-value adjustment for multiplicity

In a multiple testing context, it may be considered as appropriate not only ¢ot i@p observed
level of significance for each particular hypothesis separately withkintgahe multiplicity into
account, but to provide a per-hypothesis observed significancendéhalegard to a multiple error
measure. This can be done by finding a suitalgistmento apply to the original (sometimes
called raw)p-values in that way that thieth adjusteg-valuep®”

7

has the property that for a given
overall level of significance it holds

&Y < « is equivalent toi-th hypothesis can be rejected

while keeping an underlying overall error rate. For example, the Boyrierndjustedp-value

(Bonf.-adj.)
7

P2 (say) for hypothesig#; is simply given byp = n - p;, wherep; denotes the-th raw
p-value. If themp®"*¥ < «, hypothesisH; can be rejected while keeping the FWER. The dual
problem consists of finding adjusted critical values for the underlyingstatistics.

In the quite popular article by Ge, Dudoit and Speed [100], a nice owerefenultiple testing
concepts, various error rates and corresponginglue adjustments is given. In Section 2.2, the
authors present various error rates and in Section 2.3, the definiafj@tpifor the corresponding
adjustedp-values are given. Sections 3 and 4 then especially deal with seveERFNtrolling
procedures and resultingvalue adjustments. In Section 5, finally, the same investigations are
done for the FDR as underlying error measure.

In our work, we will not further consider this technique pfvalue adjustment. We describe
multiple test procedures controlling the FDR or the FWER, respectivelyitgtde critical values

for the rawp-values.

False Discovery Rate and Asymptotics, Thorsten Dickhaus



Chapter 2

FDR control with Simes’ critical values

The first article dealing systematically with the FDR has been published in 39B8rjamini and
Hochberg, see [13]. The authors give some motivation, the formalitiefirof the FDR reported
in Definition/1.1 and present a multiple test procedure designed to contieDiRen case that the
test statistics are independent under the null hypotheses. This precddacribed in Algorithm
2.2 below, employs critical values for the ordegedalues which were originally introduced in a
different context. More specifically, in 1986, R. J. Simes proposedilmfing test algorithm for
the global intersection hypothedi:

Algorithm 2.1 (Simes’ test for the intersection hypothe&ls = (", H;)
1. Compute the-valuesp, ..., p, for each individual test.

2. Denote the orderegvalues bypi., < ... < pnn.

3. RejectH if there exists an index < k£ < n, such thapy., < ay = ka/n.
For the remainder of this work, we will confer to the critical valugs= k«a/n for the p-values
used in this algorithm asimes’ critical values Simes (1986) proved that his Algorithm 2.1
controls the type | error with respect to the global hypothégjsat levelq« if the underlying test
statistics (and, consequently, the corresponginglues) are i.i.d. He furthermore conjectured

that this property is preserved for positively correlated test statistids. cbmjecture was proven
by S. K. Sarkar in 1998, see [236].

Benjamini and Hochberg employed Simes’ critical values in the context of E@fol. They
developed the linear step-up test procede® which works as follows.

Algorithm 2.2 (The linear step-up test procedus€")
1. Compute the-valuesp, ..., p, for each individual test.

2. Denote the orderegvalues bypi., < ... < pnn.

10



CHAPTER 2. FDR CONTROL WITH SIMES’ CRITICAL VALUES 11

3. Determinek = max{i : p;.p, < a;}.

4. If such ak exists, reject the hypothesés, ., ..., Hx., corresponding t®i.,, ..., Pr:n.
Otherwise, reject no hypotheses.

In [13], the authors proved that, assuming th@hypotheses are true and the otherny hypothe-
ses are falsey"Y controls the FDR at leveloa/n < « in case of independence of the vector of
p-values corresponding to true null hypotheses from the vectprvalues corresponding to false
null hypotheses and i.i.d. UNI, 1]-distributedp-values under the, true null hypotheses. Later
investigations even revealed that

FDR, = La ¥n > 1,a € (0,1),

n

i.e., the so-calle®enjamini-Hochberg boundya /n for the FDR is exactly obtained for any size
of the family of hypotheses under the aforementioned assumptions. Differeofs of this fact
can be found in [91], [237], [275] or [17]. In [17], the FDR corlting property of ©-¥ was
extended to the case of PRDS test statistics (cf. Definition B.7).

In the following, we are interested in the asymptotic sharpness of the Benjaindtiberg bound

in the latter situation. We investigate some examples of multivariate PRDS distribatidrsudy
the FDR behaviour op-*" for n tending to infinity. First, we present a general theoretical frame-
work, the Dirac-exchangeable setup, and then apply the resulting fatwutome concrete dis-
tributional examples. For this reason, a slight re-formulation of Algorithnir2t@ms of the ecdf.

of thep-values given in the following remark will be helpful.

Remark 2.3
Algorithm|2.2 can equivalently be expressed as

1. Compute the-valuesps, ..., p, for each individual test.

2. LetF;,, denote the ecdf. of the-values, that is,

1 n
Fo(t) = - Z 19,4(pi),t € [0,1].
=1

3. Compute* = sup{t € [0,a] : F,(t) > t/a}.
4. Reject allH; with corresponding; < t*.

We will call t* the largest crossing poirdnd denote the function— ¢/a for t € [0, o] by Simes’
line, the continuous version of the set of Simes’ critical values.

This type of connection between critical values of a multiple test procechaelee ecdf. of
p-values is indicated in [250]. The aforementioned algorithm can be cawtiedh practice by

False Discovery Rate and Asymptotics, Thorsten Dickhaus



12

drawingF,, and Simes’ line together in one graph and determinind he following figure shows
an example witle = 0.05.
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Figure 2.1:F5(t) and Simes’line or0, «].

The absciss#" of the largest crossing point determines the threshold foptveues and the value
R, /n of its ordinate reflects the proportion of hypotheses that are rejectecelingar step-up
procedure. The simplicity and intuitivity of this algorithm has lead to a wide spoéa"" over
the last decade. How it works in practice shall be demonstrated with twbfesapplications. Of
course, it has to be conceded that the dependency assumptionstegeiagfDR control of the
linear step-up procedure are difficult to verify in practical applicatidspecially in quantitative
trait analyses (e.g., when processing gene expression data), offativaedependency of some
kind is likely to occur. For example, overexpression at one gene loculgead to underexpression
at another, linked locus. Therefore, it seems possibleghdtdoes not control the FDR strictly
in the following application examples. However, in both cases we investigadisita where our
statistical analyses can be viewed as screening instruments at a firsbbtganalysis which
includes more stringent error control methods at later stages.

Application 2.4 (Evaluation of a proteomics experiment)

In a proteomics experiment carried out in the biochemical department akeaarch institute,
1330 protein spots from two groupd and B were detected and matched by a spot detection
software. The protein material consisted of pooled tissue from two differgce stems under
investigation in a diabetes-specific context. Tissue differences withdégalifferent spot inten-
sities in the two groups should be found out. Groupras processed on four independent sheets
and groupB was processed on three independent sheets (the fourth sheatdfpiywas defect).

In some data cleaning and preparation steps, we filtered out only spots mitliraal measure-
ment number of three per group, i.e., all measurements for gBoligd to be successful and there

False Discovery Rate and Asymptotics, Thorsten Dickhaus
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was only one missing measurement allowed in grdug-urthermore, intensities belows were
excluded because of lacking courtesy and relevance. In such gtieatitait analyses, often a
log-normal distribution for the intensity ratios is assumed. Therefore, thairéng intensities
were transformed by applying the natural logarithm. After these steps393 spots remained.
After some diagnostic plots, it turned out that the normal distribution assunfptitime remaining
log-intensities was justified and therefore, we carried out two-sided angpke ¢-tests for the
logarithmic intensity differences per spot and collected the correspopeimatues. This resulted
in a multiple testing problem of dimensien= 393. As significance levels for the FDR, we chose
a1 = 0.05 andasy = 0.1.

Figure 2.2: Proteomics example: Simes’ line and ecdB98fp-values

Figure 2.2 shows the case = 0.1. Simes’ line and the ecdf. of the obtaingd/alues are
displayed. Obviously, we have a unique crossing point of the two object8,a) and with the

Benjamini-Hochberg procedure we gt rejections in case af; = 0.05 and64 rejections in

case ofuy = 0.1.

A discussion with the head of the proteomics department showed a goadiaace of our "de-
tected" spots with the ones found by a commercial proteomics analysis sofim@with the spots
that were identified by experts in the department.

Application 2.5 (Adenocarcinoma data Notterman et al.)

Our second application concerns a data set taken over from the literittine article [203] from
2001, Notterman et al. published data from a cancer research projeetaii was detecting
differentially expressed gene and R(D)NA profiles in tumor tissue in cosgramwith normal
(healthy) tissue. To this end, a case-control study was carried outroupgl, there werel8
adenocarcinomic cancer patients and grBugpnsisted of 8 (paired) healthy patients. From these
36 individuals, expression data fé457 different RNA, DNA and gene entities was collected. The

False Discovery Rate and Asymptotics, Thorsten Dickhaus



14

complete data is available as supplementary material to [203].

After some Affymetrix preprocessing (cf. the "Materials and Methodstise in [203]), the
comparison between the two groups was performed by applytegts to the log-transformed
data. This lead ta = 7457 p-values. Again, we analysed this multiple testing problem utilizing
¢V at FDR leveln = 0.1. Figure 2.3 illustrates Simes’ line with parametet= 0.1 and the ecdf.

of the obtaineg-values.
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Figure 2.3: Notterman example: Simes’ line and ecdfi47 p-values

Again, the concave shape Bf,5; leads to a unique crossing point @h «). With the Benjamini-
Hochberg procedure, the hypotheses corresponding tiG#2smallesip-values get rejected with
a thresholding value df.0212.

Before we start our main theoretical investigations, we motivate our gomivestigating the
sharpness of the Benjamini-Hochberg bound and present one (maresiag) example, how
slight modifications of the-value distribution can have an enormous effect on the resulting FDR
behaviour.

Example 2.6

Assume that independemvalues for a multiple test procedure of family sizare not uniformly
distributed on the unit interval under the null hypotheses, but their stippall be bounded by
some valué,, > 0 onits left side, i.e.P; ~ UNI[b,, 1] if H; istrue. Then, clearh?(V,, = j) =0
forall0 < j < [%1 for the linear step-up procedure. We will show that this has a large impact
on the FDR behaviour gf*sV. Noting that

P'<k:7a B PZ-—bn<k:a—nbn B U<ka—nbn
Tn ) l1=by, " n(l-=byJ “n(l-="by) [’

whereU denotes a UND, 1]-distributed random variable for suéhwith ka/n > b,, and0 for
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smaller values of;, we obtain the transformed critical values

ko — nb,
n(l —by,)

Qpp =
corresponding to UNO, 1]-distributed, transformed randopvalues fork > [%] In other
words, this test problem can equivalently be regarded as one witfDUNHdistributedp-values
under the null hypotheses which have to be compared witiihgs in step-up manner. For the
sake of simplicity, we only treat the casg = n and note that

n

P(Vo>0)= >  P(V,=j).

=[]

In [92], the exact distribution o}, in case ofp"sY and UNI0, 1]-distributedp-values is given as
. n N Nm—ie N
P =) = (1) A= B 5+ (0= G (0= e

if the critical values for theP;.,, are of the structurey.,, = 5 — (n — k)7. For ourdy.,’s from
above we have in this nomenclature

a—>b «
" and T =

=1, n(l—bp)

The authors also derived the limiting distribution WBf with n tending to infinity, which is ex-
ponentially decreasing and has most of its distributional mass in the small owc&@heosing
b, = 1/n has the effectthat,, € {0} U{[1/a],...,n} almost surely for every > 1 and results
in very small values for the probabili§(V;, > 0), even for very large: and in the limiting case.
This is due to of the limiting distribution properties stated before, because smediroes forV,
with large mass are almost surely not realized. This effect is ratherisiagprsinceb,, tends to
0 and therefore the distribution of thevalues tends to UNO, 1] in this situation and one should
assume that the FDR should tend to its bourfdr largen. This, however, is not the case.

As we will see, the fractional structure of the FDP leads to some more sagprissults. Our
first major goal consists of computation of the FDR®® under positive dependence or, more
precisely, exchangeability under the null hypotheses. This will be daite generally in the
following Section 2.1 before we investigate specific distributional settingsdhid®es 2.2 (expo-
nential distributions), 2.3 (normal distributions) and| 24listributions).

2.1 General theoretical framework in the exchangeable setup

In this section, we present our basic statistical model with exchangeab#agstics. It will be
the basis for the concrete applications carried out in the following sections.

Let thereforeX;, i = 1,...,n, be real-valued independent random variables with support
Moreover, letZ be a further real valued random variable, independent okifse with supportZ
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whose cdf. will be denoted denoted By;. Denote the cdf. ofX; by W;. Suppose the cdfi¥;
depends on a paramet@y € [¢y, co), wheredy is known. Without loss of generality it will be
assumed that, = 0. Consider the multiple testing problem

H;:9,=0 versusK; :9; >0,i=1,...,n.

Suppose thdl; = g(X;, Z) (with support7) is a suitable real-valued test statistic for testfiig
that is, it will be assumed th&f; tends to larger values if; increases. The sefs, Z and7 are
assumed to be intervals. Suppose thet continuous, strictly increasing in the first argument and
strictly monotone or constant in the second argument.

Examples which will play a role in the remainder &te= g(X;, Z) = X; — Z (Sections 2.2 and
Section 2.3) and; = ¢(X;, Z) = X;/Z (Section 2.4).

In case thaf; is true, the cdf. ofX; will be denoted byi'x and the cdf. off; will be denoted by
Wr. For Z = z, we definep-valuesp; = p;(z) as a function ot by

pl(z) =1- WT(Q(.TZ, Z))7 t=1,...,n.
The ecdf. of thesp-values is denoted by, (|z). Clearly, the Glivenko-Cantelli lemma applies.

The ordereg-valuespy.,, < --- < pp.p are given byp;., = 1-Wr(g(xn—it1:n,2))st = 1,...,n.

2.1.1 Two models with exchangeable test statistics

Assuming that all hypotheses are true, the limiting ecdf. of ghalues will be denoted by
F(:|z). For the sake of simplicity it will be assumed that the model implies thatz|z) is
continuous inx € [0, 1] and differentiable from the right at = 0 with F,,(0]z) = 0 for all
z € Z. Finally, letg; : 7T x Z — X besuchthatforalk € X,z € Z,we T

g(z,2) =wiff x = g1(w, 2),
and letgs : X x 7 — Zbesuchthatforalbk e X,z€ Z,weT
g(.%’,Z) =wiff z = 92($7w)'

We refer to this setup as theX(1) model In practical examples, the conditions concerning the
functionsg, g1 andg-. need to be fulfilled only for arguments belonging to sets of meakuia
example, ifg(z, z) = x/z. The following lemma provides a formula for computing the limiting
ecdf. I, and the defining equation for a point of intersection with Simes’ line in this model.

Lemma 2.7
Given EX1), it holds forPZ-almost allz € Z

Fxo(tlz) = 1= Wx(g1(Wp'(1-1),2)), t€(0,1).
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Moreover, the limiting empirical cdf crosses (or contacts) the Simes lia¢jshf . (t|z) = t/«
for somet € (0, ), if

W)El(l - t/a) = gl(Wjjl(l - t)72)7

or equivalently,
2= 2(t) = g2(Wx' (1 = t/a), Wy (1 = 1)),
Proof: We make use of the representation

n

Faltl) =~ 3" 1o (e()). 1 € 0,1]
k=1
This representation implies thiin,, .. F;,(t|2) = P, (pr(2) <t) = 1—Py, (Wr(9(Xi, 2)) <
1—1) = 1-Py,(9(Xi2) < Wp'(1 1) = 1= P, (X; < u(Wr' (1= 1),2)) = 1
Wx (g1(W5(1 — t),2)), sinceWy is assumed to be continuous. Furthermore, the Glivenko-
Cantelli lemma guarantees that this convergence is almost sikely.

Remark 2.8
Given Z = z, thep-valuesp;(z), i = 1,...,n, may underH, = (., H; be interpreted as
realizations of conditionally i.i.d. random variables with common &df.(-|z).

In case that a proportiafy, = ng/n of hypotheses is true and the rest is false, thatjsiypotheses

are true anch; = n — ng hypotheses are false, we make the following additional assumption in
order to avoid additional limiting considerations. It will be assumed that uadealternative

K; : 9; > 0the parameter valug; = oo is possible. Moreover, faf; = oo it will be assumed
that thep-value p; has a Dirac distribution with point mass i In this case, the ecdf. of the
p-values will be denoted b¥,, (-|z, ;). We refer to this situation as the-EX(¢,,) model.

Lemma 2.9
Given D-EX(,) with lim,, .o ¢, = ¢ € (0, 1], the limiting cdf of the p-values is given by

Foo(t’z7<) = (1 - C) + C(l - WX(QI(WITI(I - t)7z))>7 te (07 1)7 z€Z.

Moreover,F,, crosses (or contacts) the Simes line, thafis,(t|z, () = t/a for somet € («(1 —
(), a), if
Wil (L= t/a)/Q) = a(Wr ' (1= 1), 2),

or equivalently,
2= 2(t|¢) = g2(Wx ' (1 = t/a) /C), W' (1 = 1)).

Note thatFi (t|2) = Fo(t]2,1).

False Discovery Rate and Asymptotics, Thorsten Dickhaus



18 2.1. GENERAL THEORETICAL FRAMEWORK IN THE EXCHANGEABLE SBJP

Proof: Denote the set of indices corresponding to true hypotheseswithn analogy to the
EX(1) model, we notice that

FaltlG) = =S gy(onl)),t € 0,1]
k=1

= % (Z Log(or(2) + > 1[07t}(pk(z)))

kely k’GGIo

_ mo (L m
= (nokzl[o,t}(m(z))) +
€lo

This representation (together with the assertion of Lemma 2.7) impliekithat. . F,,(t]z, () =
(1 =0+ CPu,(pr(2) <) = (1= O + (1 = Wx(g1(Wr (1 = 1),2))). B

Remark 2.10
Under the assumptions of Lemma 2.9, the Glivenko-Cantelli lemma again yields

lim sup |F,(t|z,(n) — Fool(t|2,¢)| = 0 almost surely for alk € Z.
N0 ¢eo,1]

Moreover,

E[Fs(tZ,¢)] = /Foo(tz, Quwz(2)d\'(z) =1 — ¢+ (tforallt € [0,1].

2.1.2 Largest crossing points and computation of EER and FDR

In order to characterize the asymptotic behavior of the linear step-upitalgoin a D-EX((,,)
model, the largest crossing point of the limiting ecdf. of the conditipredlues and Simes’ line
is of crucial importance. Fdim,,_., ¢, = ¢ € (0, 1], we therefore define

t(2[¢) = sup{t € [a(1 = (), o] : Foo(t|z,¢) = t/a}. (2.1)

If there exists am > 0 such thatF, (¢|z,() > t/aforallt € [t(2]()—¢,t(2]¢)) andF (t]2, () <
t/aforallt € (¢(z]C),t(z|C) + €], thent(z|¢) will be called the largest crossing point (LCP) of
Fi(-]z,¢) and Simes’ line. The set of LCPs will be denoteddy. Moreover, setD; = {z €

Z : t(z|¢) € C¢}. Note that there may be some boundary points (BPs)) satisfying (2.1).
However, it will be assumed th&@?(D;) = 1. In practical examples(; is a finite union of
intervals.

Obviously, for¢ € (0, 1) we always have a well-defined LCP or BR|¢) > «(1 — ¢) > 0. For

¢ = 1 the LCP may bé for a large set ot-values which makes the calculation of the limiting
EER and limiting FDR much subtler.
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For the remainder of this chapter, we make use of the notation

R,V1 R,Vv1

FDR.(¢[2) = lim FDR,(¢al2), FDRw(¢) = lim FDR,(G),

FDR,(Col2) = E[ |Z = z], FDR,(Cn) = E[

and the corresponding expressions for EER. Moreover, the noféticn, R,,(z) will be used if
Z = zis given.

The further considerations heavily depend on an assumption aboutapertion(,, = ng/n of
true hypotheses and its limjtfor n tending to infinity. As we will point out, it makes a crucial
difference for the FDR computation if we assume all hypotheses to be(iyue { or { = 1) or if
we have( € (0,1). We therefore subdivide this section according to these two cases.

2.1.3 Al LCPs greater than zero

We first consider the casge (0,1). As the following theorem and its proof point out, here the
asymptotic FDR- and EER-behavior for a givene Z can directly be deduced from the LCP

£(z[€).

Theorem 2.11
Given D-EX(,,) with lim,, . ¢, = ¢ € (0, 1), it holds for allz € D,

m ) HED e, 2.2)
n—oo N o

o Vale) _al=Q)

R N T S T o R 23)

Proof: We will show that the proportion of rejected hypothe#gsz)/n converges almost surely

to t(z|¢)/«. This then immediately implies (2.2) and (2.3).

Therefore, note thaR,,(z) = sup{k € {1,...,n} : k/n < F,(ka/n|z,{,)} and that for any

n € N,z € Z it holds R,(z)/n € [0,1]. The latter statement implies that any subsequence
(R, (2) /1) ey OF Rn(2)/n has a convergent subsequence. With a subsequence technique simi-
lar to the proof of Lemma A.2 in [91], it can now be shown that the limits of all tleeswergent
subsequences have the same vaj(® (say) and thag)(z) has to fulfill the defining equation
F(n(2)alz,¢) = n(z). Recalling our definition of(z|¢), the assertion is provell

Remark 2.12
Under the assumptions of Theorem 2.11 it holds

EER.(C]2) = E [nhggo V"f)] ) (2.4)
FDR.(C|z) = E [nli_{go an(z()Z)vl] —1- at((1z|_§)o (2.5)
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It remains to calculate EER(¢) and FDR,(¢). This may be done in two ways. The firstis to in-
tegrate/(2.2) and (2.3) with respectdo= zdPZ. In this case the main problem is the computation
of t(z). In general{(z) cannot be determined explicitly and, furthermore, its numerical calcula-
tion can be very cumbersome. The second possibility seems more conwmdestsummarized

in the following theorem.

Theorem 2.13

Under the assumptions of Theorem 2.11 supposeRhdt|z) is strictly decreasing in for ¢ €

(0,a]. LetCep ={t/a—1+(¢:t e CclandCeo = {1 —a(l —()/t:t € C¢}. Define
Gea(u) = 1-=Wz(z(a(u+1-)[C)) foru e Ce 1,

(1-¢)

[0
Gea(u) = 1—Wz(a( - ¢)) foru € C¢ o,

and continue these functions @h (] by linear interpolation.
Then

EER.(C) — /C wdGe (u), (2.6)
¢,1

FDR.(¢) = /C udGe¢a(u). (2.7)
¢,2

Proof: For¢ € (0,1) andt € C; we get from/(2.2) in Theorem 2.11 and from the antitonicity of
F(t|z) in z € Z that

Va t
{z € D¢: lim TEZ)>a_(1_C)a'3'}:{ZEDC:Z<Z(t|<)}'
Therefore, the substitutiom= ¢/« — (1 — () yields
VA . Val(2) t
Wz(z(a(u+1-)|¢)) = P°({z€ D¢: nhjgo i (1-¢)a.s.})
= 1- Ggl(u)
forall u € C¢ 1. Moreover,
PZ <{z € D¢ - lim V”TEZ) € Ceqa s.}) =1

Hence G ; as defined in the theorem is the cdf.lofi, .~ V,,(Z)/n which implies|(2.6). Simi-
larly, we obtain from((2.3) in Theorem 2.11 that
Val2) _,_all=Q)

Therefore, a similar argumentation as before yields that as defined in the theorem is the cdf.
of limy, 00 Vo (Z2)/(Rn(Z) V 1), and|(2.7) follows. [ |

Theorem 2.13 is a key step towards computation of EER and FDR.(¢) in D-EX(¢,) models
with ¢, — ¢ € (0,1). In practical examples, it remains to determine the égtsandC¢ » and to
evaluate the corresponding integrals.
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2.1.4 Some LCPs equal to zero

If an LCP is equal to zero, the behavior of the FDR heavily depends agréukent in zero of the
cdf. of thep-value distribution. The next lemma covers the finite case. It has mainly fimgpa
character, but will be also be applied directly in Section 2.2.

Lemma 2.14

Leta € (0,1),0 < v < 1/a, ng,m € N, ny < nand letéy, ..., &, beiid. random variables
with values in[0, 1] with cdf. F¢ satisfyingF¢(t) = ~t for all t € [0,a]. Furthermore, let
&no+1, - - -, &n bE random variables with values {6, 1], independent of¢; : 1 < j < ng). For
¢ =ia/n,i=1,...,n,defineR], = max{k < n: &, < c}tandV, = |[{i € {1,...,n0} :
& < cre }| (Withcg, = —oo for R], = —oc). Then

V/ no
E n = —a. 2.8
<R;Z \Y 1> n ¢ (2.8)
Proof: Forl< i < ng, denote thén—1)-dimensional random vectéy, . ..,&—1,&+1,---,&n)

by ¢, define for1 <k < nthe setsD(l (a) = {f,m L > Ck+1»-~-7€7(31;n_1 > ¢, } and set
D((f)( ) =0, Dn ( ) = Q. Then the left hand side of (2.8) (cf., e.g., Lemma 3.2 and formula
(4.4) in [237]) is equal to
i ¢ P& < ¢ i
fZP <o) 1303 [ G =omn) P& S )] pp) (o)),

=1 j=2 ‘7_1 J

Noting thatP(¢; < ¢,) = yaforall1 <i < ngandP(§ < c¢;)/j =~va/nforalll < j <n,the
assertion follows immediately. |

The following result extends Lemma 2/14 and is a helpful tool in case thas la@Pin0.

Lemma 2.15

Under the assumptions of Lemma 2.14, but only supposingffaj = ~t for all t € [0,¢*]
for somet* € (0,«), let A, (t*) = {F,(t) < t/a ¥Vt € (t*,a]}, whereF,, denotes the ecdf. of
&, ..., &n. Then, setting = max{i € Ny : ia/n < t*},

Vr; no (1)
E RV [Lane) | = el (D (a)). (2.9)

Proof: Itis clear that4,,(t*) = {R), < r}, hence, for- > 0, the left-hand-side of (2.9) is now
equal to

(& <cj-1) PG <) (i)
,ngcr +zz[ = =2 B(D,(a).
=1 j=2
The assertion follows in similarity to the proof of Lemma 2.14. |

The next theorem is an important step for the understanding of the asympabtwior of both
EER and FDR in D-EX,,) models given a fixed valug = z such that the LCP is if.
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Theorem 2.16
Given D-EX(,,) with lim,, .o ¢, = 1, let z € Z such thatF.(t|z) < t/a forall ¢ € (0, a].
Then, setting

7<Z):t£?+W’

it holds
EER.(C]z) = 0, (2.10)
FDRx(([z) = a(2). (2.11)

Proof: The assumptions concernidg, imply thatlim,,_., R, (z)/n = 0 almost surely. Noting
thatV,,(z)/n < R,(z)/nforalln € N, (2.10) is obvious.

In order to prove/(2.11), we ne#t, between two cdf’s being linear in a neighborhood of zero.
To this end, let* € (0,a] be fixed, B = [0,t*), m(t*) = infyep\ (o) Foo(t|2)/t, mu(t*) =
SUPe g\ {0} Foo (t|z)/t, and

Fut) = me(t)t 1p(t) + Fxo(t|2) - 1pe(t),
Fo(t) = mu(t)t- 15(t) + max{ma(t*)t*, Fxo(t|2)} - 1pe(t).

This results inFy(t) < Fy(t|z) < F,(t) forallt € [0,1]. Forn € N, let the event4,,(t*) be
defined as in Lemma 2.15. Then

FDRn(Cn|Z) = K <R7L(Z)\/11A"(t*)) +E <Rn(2’)\/11A%(t*)>

= A+ )\, (say)

With r,, = max{i € Ny : iar/n < t*} we obtain similarly to the argumentation in the proof of
Lemma 2.14 that

Va(2)
b = B et

Due to the pointwise order df,, F,, andF,,, we get

Ay < Cuma(t)aP(DY) (@),
FDR, (Gal2) < G (t)aP(DEY () + An.

Cum(t*)aP(D{Y ()
Cnmy (t*)aIP’(DSI) (@) + An

ININ

Since¢, — 1, P(DY(a)) — 1 andP(A,(t*)) — 1 for n — oo, we obtain), — 0 and
me(t*)a < liminf, o FDR,((,|2) < limsup,,_ . FDR,((n|2) < my(t*)a. The assertion
now follows by noticing thatim,-_,o+ mg(t*) = limy«_,g+ my, (t*) = v(2). [
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Remark 2.17
In [92], the distribution and expectation &}, has been computed for uniforpavalues under the
assumption that all hypotheses are true. Assunjing= 1 for all n € N, the nesting method
described before together with the technique in [92] may be used to prove
: ay(2)

nh_)rgloE[Vn(z)] = A=y
It is important to note that the latter formula is only valid fgr = 1. If in contrastn; tends to
infinity while lim,,_.., n1/n = 0 and~(z) > 0, we get thatE[V,,(z)] diverges to infinity in this
case even ify(z) < 1/a. To see this, we utilize the assertion of Lemma 4.3 in [91], which is

ni«o
E[V,] >
| ]_Cﬁl—a

for uniformly on [0, 1] distributed p-values. Obvious modifications lead to the assertion for
E[V,(2)].

In order to get a complete picture for= 1, the following theorem puts things together.

Theorem 2.18

Given D-EX(,,) with lim,,_,~ ¢, = 1, suppose thaf',,(¢|z) is strictly decreasing irx for ¢ €
[0, a]. Moreover, letG; be defined according t6': ; in Theorem 2.13 and ley = {z € Z :
ti(z) =0}andE; = Z\ Ey. Then

EER (1) = / udG1,1(u), (2.12)
ci\{0}
FDR.(1) = IP’Z(El)+a/ v(2)dP? (). (2.13)
Ey

Proof: Using the disjoint decompositiofi = Fy + E;, we obtain

EER.(¢) = lim MdIPZ(z)

n—oo |z n

_ / lim V"(z)dIF’Z(z)+ / lim Mdﬁ”z(z)
E

o n— oo n B n—oo n

= Ay + Ay (say)

Now, Theorem 2.16 immediately yields; = 0 and in analogy to the argumentation in the proof
of Theorem 2.13 we get that, = fcl,l\{O} udGq 1(u). Therefore,[(2.12) is proven. Applying
the same decomposition (together with the considerations in Theorem 2.16)Rq (E[P and
observing thatim,, ., V;,(2)/(R,(z) V 1) = 1if z € E; (similar to (2.3) with¢ = 1) finally
proves|(2.13). [

In the remaining sections of this chapter, we will apply our general resusisne concrete well-
known and often used distributional settings.
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2.2 Exchangeable exponentially distributed variables

The exponential distribution often arises in reliability and life time analysis. ¥amgle, consider

the situation that we have(technical) systems consisting of several independent components each
and we are interested in testing the reliability of these systems with respectfesence system.

In order to describe this task formally, we denote the times until failure of imadridual compo-

nent with (X ;);—1
each underlying an exponential distribution with paramaigt If we then define the reliability

..... nij=1,..,m(i) and assume that thg; ;'s are independent random variables,
of thei-th entire system, denoted b¥, by the minimum failure time of all components belonging
to thei-th system, we obtain that

m(i)
Y, ~ Exp >\z = Z )\i,j
j=1
Furthermore, we denote the minimum time until failure of the components of thenefesystem
with Y, and assume thafy ~ Exp()\o), independent of th&;’s. Consequently, we get that

1 . .
EY;) = mean expected survival time of systeimand

E(Yy) =

Ai
1 . .

o mean expected survival time of the reference system.
0

A well known and often arising multiple test problem is now given by
1 1 1 1
H={—=—}vs. K;={—>—}fori=1,...,n.
ISl v, {5, 75} fors n

A parametric approach towards this test problem consists of applying Eetest, cf. e. g. [166],
pp. 236-237. However, non-parametric techniques are more commadyiruthis setting.

In order to fit in our general setup, we investigate a slightly different pesblem, involving
the two-parametric exponential distribution. Under the general framegiwvek in Section 21,
we assume that th&’; follow an exponential distribution with scale parameieand location
parameter); and” is exponentially distributed with scale parameteand location parametéx
The underlying test problems shall B : {¢; = 0} vs. K; : {¢; > 0} and the test statistics
shall be given byl; = X; — Z. Noting that large values df; favour the alternatives;, the
corresponding-values for a given realizatiott of T; are given by

pi(t?) =Pu, (T 2 t7) = 1 = Wr (),

with W denoting the cdf. of the differenc¥; — Z of two independent exponentially distributed
random variables. We will now study the behaviour of the FDR in this setepoteéd as the D-
EX-EXP model. The next two auxiliary results prepare the computation of the Igretialf. of
the p-values in such a D-EX-EXP model.
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Lemma 2.19(Distribution of the difference of two exponentially distributed random \aeis)
Let X ~ Exp(0, A1) and Z ~ Exp(0, A\2) be two independent exponentially distributed random
variables. Then the cdf. of the difference is given by

A1 Ao t for t <0
P(X —Z<t)={ Mt exp(A2 1) =

A5+ 1220 (1—exp(=Ar 1)) for ¢ > 0.

Proof: Computation of the cross-correlation functionfandZ. i

Lemma 2.20(Conditional probability for the difference in the exponential case)

Assume tha ~ Exp(0, A1) andZ ~ Exp(0, \2), independent oX. Denoted the difference of
XandZbyT =X — Z.

Then it holds:

exp(—A1 z) - 22 ¢ for 0 <t < 23,
A

P(T >Wr'(1-1)|Z=2) = exp(—Ap 2) - M%f‘?-(l—t) 2 for Al’f/\2<t§u(z),

1 for u(z) <t <1,

withu(z) =1 — /\111& exp(—Ag 2).

Proof: Analogously to the notation in Section 2.1, denote the (unconditional) cdf. tmf W
and the cdf. ofX by Wx. Then we obtain (due to the fact th&tandZ are independent) that

PX-Z>W ' (1-t)Z=2) = P(X—2>W;'(1—1)=P(X>W; (1—1t)+2)
= 1-Wx(W;'(1—1t)+2).

Noticing thatWx (z) = 0 for 2 < 0, we haveP(X — Z > W;'(1 —t)|Z = 2) = 1if
W (1—1t)+ 2z < 0. DeducingV,;,* from Lemma 2.19, we therefore obtain the assertion for the
caseu(z) < t < 1. AssumingW' (1 — ¢) + z > 0, we have

L-Wx(Wit(1—t)+2) = exp(—\2)exp(=M\Wit(1—1t)).

ObtainingWT‘1 from Lemma 2.19 and plugging in the resulting expressions for the diffeeesats,
we obtain the assertion in the remaining two cailiks.

If we now return to our test problem in the D-EX-EXP model, we obtain by damg the argu-
ments of Lemmas 2.19 and 2/20 that
1— 3 exp(At) for t <0,
pi(t) =Pp,(T; 2 ) =1 -Wp(t) =
3 exp(—At)  for ¢t >0, and
Fo(tlz) = 2exp(—Az)t for 0 <t <1/2.

This reveals, thak', (¢|z) for givenz € Z is alinear function irt on [0, 1/2]. For the computation
of the False Discovery Rate in such a situation, a simple consequence of L2d+ria helpful.
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Corollary 2.21 (False Discovery Rate for linear conditional limiting ecdf.’s)
Consider our general D-EX[,) model. Assume thdt.(t|z) = m(z)t vVt < «, wherem(z) is
the slope of a straight line depending only arandm(z) < 1/a for all z € Z. Then it holds:

(i) FDR,(¢nl2) = a ¢ m(2z) Vn > 1.
(i) FDR,(¢n) = a ¢ [ m(z) dPZ(2) dz.

Proof:

ad (i): We will apply Lemma 2.14. Therefore, we ski(t) = F..(t|z) and note that the;(z)’s
are conditionally i.i.d. withp; (z) ~ Foo(-|2) if H; is true.

ad (ii): Follows immediately from (i) via integrating with respectio &

Applying the latter corollary, we finally get the FDR results in the D-EX-EXP pidy plugging
inm(z) = 2exp(—Az) as follows.

Corollary 2.22
In the D-EX-EXR(,,) model, the FDR computes as

FDR,(Cnlz) = 2a(, exp(—Az),
FDR,((,) = agn/ooerpo(—Az)dz
0

= af, foranyn>1,a<1/2,X>0.

This has the interpretation that in this special case, the FDR of the lineanstemcedure based

on Simes’ critical values exactly equals the Benjamini-Hochberg bounafsiaen of the family

of hypotheses ifv < 1/2, although the underlying test statistics (and therefore the corresponding
p-values) are not independent.

Remark 2.23

Itis remarkable that the MTfproperty holds in this setting so that the Benjamini-Hochberg bound
for the FDR applies. This is an immediate consequence of Proposition 3.748h [Hecause the
the pdf. of the Exp\) distribution is P for any A > 0, cf. [147].

The following Figure 2.4 display$’,(t|z) in case ofA = 1 for different values of: together
with Simes’ line forax = 0.1. It is remarkable that the angle betweEg, (¢|z) and Simes’ line
determines the limiting FDR.
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Figure 2.4:F(t|z) for z = 0.5, z = 1.0 andz = 2.0 in case of\ = 1 together with Simes’ line
fora=0.1

Remark 2.24
From Lemma 2.19, it follows that the one-dimensional marginal cumulative distsibfunction
of an individualT; under the corresponding null hypothesgigin case ofA = 1 can be expressed
by

W (t) = 1/2 exp(t) for t <0,

1—1/2 exp(—t) for ¢t > 0.

The corresponding distribution is the well-known double-exponentialagidce distribution. It
may be interesting to have a brief look on the multivariate Laplace distribution watlsdime
correlation structure as present for dir In [164], the density functiom,, for the multivariate

Laplace distribution in dimensiomwas given in the context of copulas as

I'(n/2) 1 o n
wp(z2) = () 27rn/z\/(mexp (—\/z anz>,zER

with 33,, denoting the: x n-dimensional correlation matrix under the assumption that:tbem-

ponents are standardized. For dijrwe have VafT;) = 2 foralli = 1,...,n as well as
p(T;,T;) = 1/2 for all i # j and, therefore, in the corresponding multivariate Laplace case
the MTR, property does hold as well. The latter result is due to the fact that the midtear
Laplace distribution belongs to the class of spherical (elliptical) distributicing1(52]) for which

the MTR, condition is equivalent to the property that the correlation matrix is invertibéieitsn
off-diagonal elements are non-negative (this fact can e. g. be dddram Theorem 3 in [230] in
connection with the generalization methods derived in [152]). Since inase it holds

. 1
Yp = (Ui»j)i,jzl,...,n with 055 = 5 (1 + (51‘7]‘) ,

the assertion is obvious.
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2.3 Exchangeable normally distributed variables

Our next concrete example treats the case of exchangeable normallyutéstrifariables and has
very high practical relevance. Our notation will be as follows.

Notation 2.25(D-EX-N(¢,,) model)

Let X; ~ N(0,1), 7 = 0,...,n, be independent standard normal random variables and let
T; = 9 +/pX; — /pXoWithd; > 0,i = 0,...,n, wherep € (0,1) is assumed to be known
andp = 1 — p. ThenT = (13,...,T,) is multivariate normally distributed with mean vector
¥ = (V1,...,9,), VarT;] = 1fori =1,...,n, and Co7;,Tj) = pforl < i # j < n.
Consider the multiple testing probleid; : ¢; = 0 versusK; : ¥%; > 0,7 = 1,...,n. For

p € (0,1) the distribution ofT" is MTP, so that the Benjamini-Hochberg bound applies, cf. [17]
or [237].

In the following we use the notation introduced in the Sectioh 2.1. Not&lmteplaced byX
andWx = Wx, = Wr = ®. Suitable p-values for testing thié;’s are given byp; = p;(z) =

1 —®(9; + /px; — \/pro),i = 1,...,n. Again we add}; = oo to the model such that = 0 a.
s.if¥; = 00,4 =1,...,n. We denote the corresponding D-E£X) model by D-EX-K(,,).

Remark 2.26

This setup includes the well-known many-one multiple comparisons problennwhilly reads
as follows. LetY; ~ N(v;,0%/m;), i = 0,...,n, denote independently normally distributed
sample means with? > 0 (known),m; = --- = m,, andy; > vy fori = 1,...,n. Suppose one
is interested in testingf; : v; = 1 versusk; : v; > 1y fori = 1,...,n by using the test statistics
Wi = (1/mo+1/my)"Y2(Y; =Yo.)/o,i=1,...,n. ThenE[W;] = (1/mg+1/m1)~"/?(v; —
v) /o = 9; (say), VafW;] = 1 and Co\W;, W;) = \/m/(m + mg) = p (say).

Our policy in the remainder of this chapter will be to express the EER and tReifrihe D-EX-
N(¢,) models with respect to the correlatipnFirst of all, we now determine the EER-values and
FDR-values for the extreme cases- 0 (independence) and full dependency, pe= 1.

Theorem 2.27(FDR and EER in case gf = 1 in the D-EX-N(¢,,)-model)
In the case of full dependency in the D-EX¢N)-model, i.e.p = 1, we obtain

FDR,(¢n) = a ¢, = EER,({,) forany n € N.

Proof: The test statisticg; simplify in case ofp = 1to T; = 9¥; — X and therefore the cor-
responding conditional-values arep;(xo) = 1 — ®(¥; — xo). Since in our D-EX-N(,,)-model
it holds¥; = 0 for all i € I, and¥; = oo for all i € CIy, wherel, denotes the set of indices
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corresponding to true null hypotheses, it follows

Faltlro G) = 3 Loy (pilao)
=1
= (1-G)+ Cnl[o,t}(®($0))-

This representation df,, implies, that the conditional ecdf. of tevalues is a step function with
exactly one step at= ®(x) for everyn € N in case ofp = 1. Consequently, it follows for the
LCPt*(z) of F,, and Simes’ line in this setting, that

. a(l—¢,) for zp > @ 1(a)
t*(wo) =
o for zo < @ 1(a)
and the number of falsely rejected hypotheses in our model is given as

Vn (x()) =

0 for mgp > & ()
ng for zg < @7 (a).

Noting thatV},(z¢) can only realize these two values in this setting, EER) can immediately
be expressed via a discrete expectation formula, i.e.

EER,(Cn) = Gu P(Vi, = ng) = ¢ P(Xo < q)_l(a)) =« (.

SinceR,,(zo) = Vi (x0) + n1, it holds

Vi (20) 0 for zp > & (a),
Ry (z0) V 1 G for zp < @7 (a),

and the assertion for FOR(, ) follows analogouslyl

Remark 2.28(FDR and EER fop = 0)

(i) In case ofp = 0, we are in the i.i.d. situation originally investigated by Benjamini and
Hochberg. As stated before, in this situation the False Discovery Rate damlie
FDR,(¢n) = a ¢, foralln € N.

(ii) As pointed outin [91], it holds for the limiting EER in the independent casep = 0, that
EER.(¢) = a(1 - ¢)/(1 — ().

In case ofp € (0, 1), however, the computation of FRR () and EER,(¢) becomes substantially
more difficult. We first focus on the cage= 1 (the proportion of true hypotheses tends to one).
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2.3.1 The special casé =1

Utilizing Lemma 2.9, we obtain that the conditional ecdf. of thealues givenX, = z( has the
limit Fi (+|zo) with formal representation

—1/1 _
Fooltlzg) =1 — @ <q)\/1(1_7pt) /1 r px0> . (2.14)

Some important properties of this limiting conditional ecdf. are listed in the followéngma,

which can be verified by elementary analytic calculations.

Lemma 2.29
The functionFi (-|z¢) defined in((2.14) has the following properties.

(i) Forany fixedt € [0, 1], Fio(t|xo) iS non-increasing incg.
(II) limtw(ﬁ/&t)Foo(ﬂxo) = 0.
(iii) Fiuo(t|zo) is convex for € [0, ®(xo/,/p)] and concave fot € [®(x0/\/p), 1].

From these considerations, it can be concluded Hathas (depending om) either zero or
exactly two points of intersection or exactly one boundary point with Simes'dinthe interval
[0, a]. These three possible situations shall be demonstrated in the following\ighre = 0.90.

1.0

0.8—
- e

0.6— A

0.4— P

- v

0.2— /

— /

T T T T T 1 T T T
0.0 0.01 0.02 0.03 0.04 0.05

Figure 2.5:F(t|zo) for zp = —1.92, 9 ~ —2.06453 andzy = —2.2 together with Simes’ line
on [0, o

The constellation corresponding to the curve in the middle, i.e. the existergacify one bound-
ary point of the two objects resulting from the special outcakiie= Z (say) is of particular
importance for the computation of the False Discovery Rate, because it holds
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Theorem 2.30(The FDR in case of = 1 andp € (0,1))
Let zy be the value ofX(, for which the limiting conditional ecdfF(-|x¢) of thep-values has
exactly one boundary point with Simes’ line on the intef@ak] and setto = ¢(zo). Then the

limiting Expected Error Rate and False Discovery Rate compute as follows:
1

EER.(1) — t2<1>(x0)/a+/t/ ® (zo(at|1)) dt, (2.15)
FDR.(1) = P(Xo < Zo) = 2(Zo). (2.16)

Proof: We will apply Theorem 2.18. Therefore, we have to determine th€'set largest crossing
points and the corresponding sdfs and F; for the zy-values. We note that for every given
t € (0,«), it is possible to determine the corresponding= z((t), so thatF(-|xo) intersects
Simes’ line in the pointt, ¢/«). Regarding this value(¢) as a function of, we obtain after
equatingl i (t|z¢) = t/a and solving forz:

_ -101 —
zo(t) = ,llppq)l(l — é) — (I’\(lfpt),t € (0,a).

Studying the analytic properties of the functiof(t) yieldslim o xo(t) = limyq 20(t) = —00
and sincez(-) is a continuous concave function, it exists a unique maximugnof zy(¢) on
(0, ). It is worth noting that this implies that there is exactly one absdiggar which x(t)
equalszy. This can geometrically be interpreted as the boundary point situation. effuntine,
as stated before, for a fixede (0, «), the limiting conditional ecdf.F(t|x¢) (regarded as a
function of zp) is non-increasing iny. Therefore, no intersection df(-|zp) and Simes’ line
occurs for valuesXy > zo and for valuesXy < Zy, we obtain two points of intersection, the
larger of which is larger thaty. Consequently, it holds

C1 = {0} U (t2,), E1 = (—00,Zo] and Ey = (Zo, 00).

Theorem 2.18 then immediately yields the formula for EER) by plugging in the actual cdf.
G1,1 = ®. For the computation of FDR(1), we recall thalim, o(0/0t) Fs (t|zg) = 0 for any
xo € R. Therefore, the second summand in (2.13) vanishes and we finally obta6).@

After this preparing considerations, computation of the FDR in case ©of 1 is equivalent to
the task of computing the boundary poifit, t* /«) of the limiting conditional ecdf.Fu.(-|z¢)
and Simes’ line on0, «) as well as the corresponding = z,(t*) for given valuesa and p.
Necessary and sufficient conditions for having a boundary poifAtdf|xo) and Simes line at the
point ¢ are, that functional and derivative value of the two objects at the pant equal. This
means, formally expressed,

Foo(tlmg) = —, (2.17)

t
«
d 1
—Fo(t = —. 2.18
GFltlzo) = (2.1
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If we now define the distance functiaii-|zo) by d(t|z¢) := Fx(t|xo) — t/a and furthermore
substituteu := ®~1(1 —t) &t = 1 — ®(u) = ®(—u), we obtain

d(ulzg) = @ (—\/;L_ip —/ 1fp:c0) - (I)(;u) as well as (2.19)

d _ p(u) 1 u P
%d(u\xo) R - pgo <\/1 = + T px()) (2.20)

and the conditions (2.17) and (2.18) from above read re-formulated

d(ulzg) = 0, (2.21)
L duley) = 0 (2.22)

This is a system of two equations in the two variahleendxy. Equation (2.22) corresponds to a
guadratic form and can be solved explicitly far The solutions are given by

_ 1_ 11—,
u1,2=ﬂ:|: - x%—21n< p).
N/ a

Since for a fixedr( the largest crossing or boundary point (or, more exactly, the one with the

largest abscissa it) decides over the retention and rejection of hypotheses in the linear gtep-u
procedure, the smaller value

) 1—p V1i—p
ug—\/p—”p\/x%—ﬂn( - ) (2.23)

is the demanded solution, because the transformation frtmm, was a strictly decreasing one.

Pluggingus into (2.21), we get the following defining equation fay:

o (\}ﬁ [.@0 +VT=p /5 - QID(\/?)D
oo

= a. (2.24)

Unfortunately, it is not possible to solve (2124) analytically fgr Therefore, a numerical algo-
rithm has to be employed to determine the vaiyeapproximately. This can be done e.g. by the
well-known Newton-Raphson iteration method, which computesp to an arbitrary precision.
For its application, we can define the distance betweftus|zp) and Simes’ line as a function
d (say) ofzo, given by

d(z0) — @(\;ﬁ
_1¢(1
a \vo

False Discovery Rate and Asymptotics, Thorsten Dickhaus

«

xo—l—\/l—p\/x%—ﬂn( 1—p)]>’

(0}

\/l—p:vg+\/x(2)—21n( ; 1—p)‘>




CHAPTER 2. FDR CONTROL WITH SIMES’ CRITICAL VALUES 33

and additionally use its derivative

dd:co d(zo) = S0( /1; P$0+;ﬁ\/x3—2ln(ﬂa—p)>

in each iteration step.

Remark 2.31

It may be asked why the method described above should be prefereech awumerical (grid)
search for the maximum afy(¢) on (0, ). A first answer from the practical point of view is
that the numerical computation &f-) is substantially more feasible than the onebof! (), but
we also give a theoretical one. That is to say that it is possible to give per lgpund for the
FDR in the considered setup by employing the explicit solutionsufgr. In case ofu; being
equal touy, i.e. the distance functiod(u|zy) having a saddle point in* := u; = ug, the

corresponding valugj, for which the discriminan{/:z:% —2In (—Vla_p) of the quadratic equation
(2.22) for determining:; » vanishes, is larger than the exact solutign Consequently, it holds
FDR < ®(xf). Howeverxj can be computed very easily and we obtgjn= —1/21In(¥ 1=0) for

«
p<1—a?

If we now letp | 0, it even reveals that the limiting FDR has the corresponding right side limit
®(—+/—21In(«a)), at least forx < 1/2.

Theorem 2.32(Limiting value of the FDR fop | 0 in the D-EX-N((,)-model with¢ = 1)
For a € (0,1/2), it holds in the D-EX-NK,,) model:

lpi% FDR (1) = ®(—+/—21In(a)).

Proof: From geometric considerations, we have that for ang (0,1) there exists a unique
solution(u, zo) = (u,, o) (say) of(2.21) and (2.22). Moreover, notice that (0,1/2] implies
u, > 0 because of € (0, a) and the substitution = ®~!(1 — ¢) and therefore (see 2.28) , <
0. Sinceu, has to be a real number in (2/23), we furthermore obtainlihatup,, o+ zo, <
—+/—21In(c). We will now additionally show thaim inf,, .+ 29, > —+/—2In(c). To this end,
for § € (0,a), we consider the ansatz = z0(0) = —/—2In(0) < —y/—2In(a) = z¢(a)
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covering the entire range of possible valuesafgy, and define

—20(9) and w = w(p,d) = ulp.9) + Bmo(d).

VP Vi V5

Then we get from (2.19) thak(u(p, §)|z0(0)) = ®(—w) — ®(—u)/a. Employing the asymptotic
relationship(z — oo) ®(—x)/¢o(—x) ~ 1/x for Mills’ ratio (cf. [193]), we get

u=u(p,0) =

P(—u) Lw p(u) _ Eex w? — 2
B ™ o] = u P —)/2),

Sinceexp((w(p, §)* —u(p,6)*)/2) = § < a independent op andlim,, o+ w(p, §)/u(p,d) = 1,
we obtain thatim,_,y+ d(u(p, d)|xe(d)) > 0 forall § € (0,a) and consequently conclude that

liminf, .o+ 20, > —+/—2In(a). Together with the resulimsup,_,o+ 29, < —v/—21In(a)
from above, we finally obtaitim,,_,o+ zo, = —+/—2In(«) and the assertion follows from for-
mula (2.16).1

Remark 2.33

Note that the latter result implies a discontinuity of the FDR (looked at with rédpédts de-
pendence om), because fop = 0 it holds FDR = « as stated above. In practice, it is often
assumed that there may be some kind of weak dependence between tésissteti®. g. [275])
being close to independence in some sense. However, Theorem 2@&suthat for large

and smallp > 0 the actual FDR may be much smaller than in the independence model if only a
small number of hypotheses is false. For examplepfer 0.05 it is —/—21In(a) ~ —2.4477
and®(—+/—21In(a)) ~ 0.0072. This seems to be quite contradictory to the weak dependence
paradigm. A deeper view into this matter however reveals that if we changedbke of limits,

the results again become what one would expect. More specifically, veetiaty

lim ( lim FDRn(l))

pﬂo-ﬁ- n—oo

&(—y/—2In(a)) << a, but

lim <1im FDRn(1)> =

n—oo p—>0+

Taking this into consideration, one may argue that Theorem 2.32 has maanlgra value since
the first order of limit has no practical application. A nice visual illustratiothefdiscrepancy of
the two results is given in Appendix A.1.

Remark 2.34
If ¢ equals 1, there exists for any valueE (0, 1) anz, such that the functiod, (¢|z¢) and
the Simes line have a boundary point.

As a summarization, the following figure illustrates the graph of the FDR- arRl EHrves with
regard top in case off = 1.
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Figure 2.6: FDR,(1) and EER,(1) for varying values op € [0, 1] anda = 0.05

It becomes obvious that the EER is always bounded by the FDR. Thiis faeinediately clear if
we consider the representations

FDR,(1) =P(V,, > 0) = zn:P(Vn =),
i=1

Vi oy :
EER,(1)=E | — = —P(V, = 1) < FDR,(1),
R =E() = 3 [Ew =0 <FOR()
which hold for alln € N. Furthermore, it is illustrated that the two entities converge against the

same limiting valuex for p — 1 as proven in Theorem 2.27.

2.3.2 The general casé < 1

We will now lay focus on the more general case 1. Recall that the underlying model assump-
tion is now that a proportiog of the hypotheses are true and the remaining propoftion ¢) of
the hypotheses are totally wrong withvalues equal to zero almost surely (according to the Dirac-
exchangeable model definition). As a consequence, the limiting conditiodl &, (-|z, ) of
the p-values is now given by
(1 -t
Foo(t|xg,C):(1—()+C(1—<I>< \/1(_7/))+ 1fpxo>).

Most of the substantial properties of the graph of this function are preddrom the caseé =

1, but there is one major change: NoW,(-|xo, () always starts above Simes’ line, because
obviously it holdsF,,(0|xo,{) = 1 — ¢ > 0. Therefore, the two objects always have at least
one point of intersection. For some valugs together with certain parameter constellations(for
andp, however, we may get two ore three points of intersection, but never thanethree. The
following figure illustrates the three possible scenarios for the exampl€ cage9 andp = 0.95.
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T T T 1 T 1 T T T ]
0.0 0.01 0.02 0.03 0.04 0.05
t

Figure 2.7: Foo (t|zo, ¢) for xyp = —1.88, zp ~ —1.95738, andzp = —2.12 on [0, o] in case of
¢ =0.9andp = 0.95.

Again, for a givert € (0, «), itis possible to determine the valug(t), such that the limiting con-
ditional ecdf. and Simes’ line cross each other in the p@int/«). A straightforward calculation

2o(t) = \/7 o1 <1 _Ct/o‘> _ q)_l%_ D te0,0).

The computation of the FDR, however, is more complicated in this case. Tted BEIR, i.e. the

yields

proportion of falsely rejected null hypotheses with respect to all rejdugedtheses for a given
2o, has now the limit

fim V(o) t@)/a—(1-¢ _, a(l-(
n—o0 Ry (20) V 1 t(zo)/a t(xo)

wheret(xo) denotes the largest point of intersectionfaf (-|xo, ) and Simes’ line. The FDR is
defined as the expectation of this ratio and therefore it holds

Vi (x 1

FDR,(¢() =E (nlggo W) =1-a(1-¢)-E <t($0)> . (2.25)
Again, the boundary point situation is of crucial interest. If it occursafeertainz, the function
Fyo(-|Z0,() intersects Simes’ line at a point € (a(1 — (), ®(Zo//p)) and touches Simes'’
line at the boundary point, € (®(zo//p), ) with t; < t5. For Xoq > Zo, we have exactly
one point of intersection (automatically the largest) and-teordinate lies in the intervdl :=
(a(1—¢),t1). For Xy < zo, however, three points of intersection occur and the largest crossing
point abscissa, which is relevant for the computation of the FDR, comestfre intervally :=
(t2, ). Summarized, there are the two disjoint intervalsand I, of possible largest crossing
point abscissas and therefafeandt,, respectively, provide integration bounds for the expectation
formula (2.25) for the computation of the limiting FDR.
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For the determination of the boundary point, we utilize a technique analogue tase = 1
described above. With our already introduced notation, we obtain here

dalen ) = (=0 ¢ (a(-e = [T ) - 20,

d  p(u) ¢ v P
%d(uhﬁoao = T _\/1p¢<\/1,0+ 1—Pm0>

_xo Y \/ — 2 1In( 1g) (2.26)

Plugging thisu, into the equatlomi(u|:po, ) = 0, which represents the condition for the distance

and

function (in analogy to the cage= 1), results in a determining equation feg given by

q><¢15 [;mm 953_2111(;4_‘7)])
10+ (s [V m sy 5 —2m (42)) )

Also (2.27) cannot be solved analytically fog and therefore only an approximative numerical

= a. (2.27)

solution can be computed via root-finding iteration methods using the functions
~ 1
d(zol¢) = (1-¢)+C® (

7 |:\/1px0+\/:r(2)2ln( LCP)]>

i‘l’(k {xomp%gﬂn@ﬁ])

0+\/ — 21In( viZp ))
=, 1w
()
1 x  [1—p vi-p
_ a(p(\/ﬁ—i- p\/%%—an( ))
1 1—p
X(\[”” b\ “T))

With this (approximate) solution fatg, ¢ is given immediately by back substitution, i.&, =

and

5|
S8

J(JfoK) = C@(

®(—ug). For the smaller point of intersection and étsoordinate;, we convert the formulas for
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the distance function and its derivative with respeai toto the simple form

d(u|Zo, () = @(\/llt_ip%—,/lfpa_:())—alc(@(u)—ka—l) and

o (A5 V5 ™) o
Vi g

and apply an iteration method for root-finding in an environmen®of(1 — o (1 — ¢)). Having

d ~
- d(ul0. )

obtainedt; = ®(—w;) in this manner, the limiting EER and FDR finally compute as given in the
following theorem.

Theorem 2.35
Given model D-EX-R;,,) with lim,,_,~ ¢, = ¢ € (0,1), the set of LCP’s is given by
Ce = (a(1 =), t1) U (t2, ) and EER,(¢) and FDR(¢), respectively, compute as

_ t1/a 1

EER.() = 2" & (2o (h])) + / B (o (a 0)) dt + / B (0 (o 1]C)) dt,
« 1-¢ ta/a

FORL(G) = (o2 21)- @ (0 (2 ) )

Lo o (P00 Y [ o (2 00)

wherez; =1 — a(1 —()/t;,i =1,2.

Proof: The assertions follow from the general Theorem 2.13 via integration thg. daenote the
pdf. corresponding t6/¢ ; by g¢ ;1 and notice tha€ ; = (0,¢1/a—(1—())U(ta/a—(1—-(), ().
From Theorem 2.13, we get

t1/a—(1-C) ¢
EER.(O) = | uge (w)du+ [ uge 1 (u)du.
0 t2/a—(1-C)

SinceWy = Wx, = ®, xo(t1]¢) = xo(t2]¢) andlimyq 2o (t|¢) = —oo, we get

EERL() = |2 - (1-0)| - 2an(nle))] +¢
-[2-0-0|u-emol- (2-0-0) ¢

t1/a—(1-C)
+72_(1_§)+/0 @ (zo(a(u+1—)|C))du

¢
4 / B(zo(alu+1 - )0))du
t2/a—(1-C)

1

Ban(atl())dt + [ Dlao(atle))dr

t2/a

ty — 1 ti/a

= B R0+ [
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In order to compute FDR(¢), note that forz € (0, 21) U (22, ()

Gealz) =1 - 0oLy,

In view of hmtia(l—C) :Bo(ﬂ() = 00, it is G<72(Zl) = GQQ(ZQ), GQQ(O) =0 andG@(() = 1.
Denoting the corresponding pdf 6f; » by g¢ 2, we obtain

21 ¢
/ zggg(z)dz—k/ 2gc2(z)dz
0

22

FDR(¢)

21 ¢
= ZlGQQ(Zl) + CGQQ(C) — ZQGC’Q(ZQ) — /0 GCQ(Z)dZ - / GC’Q(Z)dZ

= (- me(C D)
21
- all — ¢ a1
+ [ et T+ [ et T,

and the formulas given in the theorem are pro\lin.

Remark 2.36

In contrast to the situation regarded in Remark 2.34, there are parametiginations for¢ < 1
andp, so that for every value af, only exactly one point of intersection d@f (¢|z¢) and the
Simes line is at hand. Such a constellation can be detected by noticing thahtieriu:(¢)
then decreases monotonously on the whole rdng@ — (), o] of possible arguments. In this
situation, the abscissa of the demanded (largest) crossing point canvieneyin this interval
and therefore it then holds

1
EER.(O) = | Pl ety

FDR.(¢) = /OC(I)(% (O‘(ll__f)))dz.

This can be formally interpreted as= t,.

Fora < 1/2, there is another way of detecting such a situation. First we noticenthatl/2
impliesus > 0 in (2.26) and consequently, < 0. Now, ¢; = t» (no tangent point possible
for (p,()) is equivalent tad(ua(zg)|zy, ) > 0 for zp = —+/21In(y/p/(a()). To see this, we
notice thatf' (t|z,, ¢) has a unique abscisgsawith same derivative as Simes’ line, because the
discriminant in|(2.26) vanishes fa = z,, and it holdst* = ®(z,/,/p), i.e.,t* is the abscissa
of the point of inflection off (-|zy, ¢). If now zy < z, < 0, no tangent point can occur, because
d(uz(xo)|xo, ) > d(u2(zg)|zg,¢) > 0. On the other hand, if, < xo < 0, no tangent point can
occur because we obtain a negative discriminant in (2.26) for sueh.an
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EER_(0)
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Figure 2.8: EER,(¢) in the D-EX-N((,,) model fora = 0.05 and¢ = 0.1, 0.2, 0.3, 0.4, 0.5
(left graph) and’ = 0.6, 0.7, 0.8, 0.9, 0.95, 0.975, 1 (right graph).

We end this section with a depictive representation of EEfR and FDR,(¢) in our D-EX-N(¢)
model. We start with EER (¢) in Figure 2.8. Fop — 0, EER,(¢) tends tox(1 — ¢)/(1 — a()
as expected, see Remark 2.28 andger 1, EER,(¢) tends toa¢ according to Theorem 2.27.
Moreover, it seems that EER() is increasing irp with largest values for large and(. If pis
not too large £ 0.9), EER(¢) is largest for{ ~ 1/2.

FDR__(C)

0.05—

0.04—

o.oz—\J

0.01

0.0

0.0

0.2 0.4 0.6

P (Correlation)

FDR_(0)

0.05

0.4 0.6
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Figure 2.9: FDR,(¢) in the D-EX-N(¢,,) model fora = 0.05 and¢ = 0.1, 0.2, 0.4, 0.6, 0.8, 0.9
(left graph) and; = 0.95, 0.96, 0.97, 0.98, 0.99, 0.995, 0.999, 0.9999, 0.99999, 1 (right

graph).

Figure 2.9 displays FDR(() for various values of for p € [0,1]. For¢ € (0,1), the FDR tends
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to the Benjamini-Hochberg bound fpr— 0 andp — 1. Forp = 1 we have total dependence
so that FDR ({,,) = (,«a in the D-EX-N((,,) model, again according to Theorem 2.27. For large
values of¢ the computation of FDR (¢) is extremely cumbersome. The main reason is that the
BP’s are very close to zero so that an enormous numerical accuraeguged. Finally, it is
interesting to note that fof = 1, FDR.(() is the true level of Simes’ [264] global test for the
intersection hypothesis.

2.4 Exchangeable studentized normal variables

The last distributional setting we investigate deals with equi-correlated sizel@mormal vari-
ables formally introduced in the following definition of the D-E¥Xt) model.

Notation 2.37(D-EX-t({,) model)

LetX; ~ N (9;,0%),i = 1,...,n, be independent normal random variables anduét /o2 ~

x2 be independent of th&,’s. Without loss of generality we assumé = 1 and the cdf. of
v/vS will be denoted byF,,. Again we consider the multiple testing probléf : 9¥; = 0

versusk; : ¢¥; > 0,7 = 1,...,n. LetT; = X;/S,i = 1,...,n. Then(Ty,...,T,) has a
multivariate equi-correlated-distribution. The cdf. (pdf.) of a univariate (centratgistribution

with v degrees of freedom will be denoted By (f;,) and a/3-quantile of thef, -distribution will

be denoted by, 5. With respect to the notation introduced in Section Z1lis replaced bysS,

Wx =@, Ws(s) = Fy, (s/v/v)andWr = F, .

Suitablep-values (as a function af) are defined by;(s) = 1 — F}, (z;/s). Again we add}; = co

to the model such that; = 0 a. s. if¥; = co. We denote the corresponding D-E£X) model by
D-EX-t(¢,). Itis outlined in [17] by employing PRDS arguments that the Benjamini-Hexth
bound applies in this model fer € (0,1/2).

Computation of the asymptotic False Discovery Rate and the asymptotic Expected=Bte,
respectively, can be done in the D-EX;t) model quite similarly to the description in Chapter
2.3 for the D-EX-N(,,) model. Again, the largest crossing point of the conditional limiting ecdf.
F(+]s, ¢) of thep-values and Simes’ line determines the limiting proportion of rejected hypothe-
ses in the linear step-up procedure. Therefore, we first give tHeigxppresentation of,, in

this case, namely

1—®(s-F Y (1—1) for¢ =1,

(2.28)
(1-Q+C¢cU-2(s-F,'(1-1) for¢#1.

Foo(ts; ¢) = {

As the following figures show, this function behaves very similarly to its aneddg the normal
case treated before. Again, we will first take a closer look at the situatieri.
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S N B ) B I
0 0.004 0.008 0.012 0.016 0.020 0.024
t

Figure 2.10:F(t|s, 1.0) for v = 1 ands = 0.015, s ~ 0.026710 ands = 0.04 on [0, /2]

For s> < (v + 1)/v, we again obtain that the limiting ecdf. is first convex and then concave.
Due to the same argumentation as in the normal case, we have to investigataridariggoint
situation (depicted in Figure 2.10 by the curve in the middle) and determine thesponding
values. The limiting FDR then computes as FRR1) = P(S < 5) = F,2(v5%), because the
derivative of F.(+|s, ¢) in the origin is zero and'»(t|s, ) is non-increasing i3 for any fixedt.
Formally, we can state the following propertiesiof, (¢|s) = Fuo(t|s, 1) which will be helpful in
what follows.

Lemma 2.38
The functionFi (-|s) = Fi(-|s, 1) defined in[(2.28) has the following properties.

(i) Forany fixedt € [0, 1], F,(t|s) is non-increasing irs.

(II) hmtio(a/at)Foo(ﬂS) =0.

(i) Defining a(s,v) = /(v +1)/s*> — v, Fx(t|s) is convex fort € [0, F;, (—a(s,v))] and

concave fott € [F}, (—a(s,v)), 1] for s? < (v +1)/v.

In case of{ # 1, too, most of the essential characteristicggf are preserved, as the following
figure for( = 0.95 shows. The crucial difference again consists in the fact Bat0|s, () =
1 — ¢ > 0for ¢ < 1suchthatan LCP larger that zero is guaranteed.
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Figure 2.11:F(t|s,0.95) forv = 1 ands = 0.025, s = 0.03180 ands = 0.04 on [0, a (1—(/2)]

Since the value of determines if and wherg,, and Simes’ line have a crossing or a boundary
point, it is again of interest to give a formal representatior(of so that the functional values of
the two objects coincide at We obtain

_ 2T (1/C—t/(ag))

ST

(2.29)

and notice that crossing or boundary points @ 1/2) can consequently only occur in the
interval (a(1 — ¢),a(1 — ¢/2)) > t, because only strictly positive values foare possible. The
limits of s(¢) are given in the following lemma.

Lemma 2.39
Lett, = a (1 —¢) andt, = a (1 — ¢/2). Thens(t) as defined in (2.29) has the following limits:

hmtitu S(t) = hmtTto S(t) = O fOI‘ < = 17
limy ¢, s(t) = oo and limyyy, s(t) =0 for ¢ # 1.

Furthermore, we give (for the determination of extrema) the derivatigé¢tofvith respect ta:

dypo L (LY@ F,'(1-1)
dt (Fola—0)° \ fu(F, 0—1)  alp(@ 1/~ t/(al))) )

Therefore, for points with horizontal tangent to the cusye the condition

aC® 1 (1/¢ —t/(aQ)) - (@1 (1/¢ — t/(a()))
Fo'1—t)- fu, (F ' (1—1))

must hold. Condition[ (2.30) simplifies in the special case- 1, because it can in this case

=1 (2.30)

entirely be expressed by elementary functions @ndoreover, forv = 1 thet;-distribution is
the well-known Cauchy distribution so that we devote one subsection to #itaspase.
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2.4.1 The special case = 1

It is well known that in case of = 1, Student’st-distribution with one degree of freedom coin-
cides with the Cauchy distribution with characteristics as given in the followimgna.

Lemma 2.40(Cauchy distribution)
Let f denote the pdf. and I&t denote the cdf. of the Cauchy distribution. Then it holds:

fly) = ﬁ(llﬂﬂ) (2.31)
Fly) = ;+amti”(y), (2.32)
Fly) = tan(r (y— ) = try. (2.33)

2

Plugging in the thereby obtained quantiles for Studentisstribution with one degree of freedom
into the formal representation eft) in (2.29) yields

(/¢ —t/ ()
) = e — 1))

and, consequently,

i (L gy Lty tenlr (s -
7T(1+t ( (2 t))) ¢ (C ac) ag(p(@—l(%_

dt s(t) = tan?(m (1 — 1))

D)
)

Therefore, the conditiod; s(¢) = 0 is equivalent to

1 t tan(m (% — 1))

2 1_ B S G g
(14 tan™(r (5 =) - 27z = 17) aCe(®~1(1/¢ —t/(a()))’

Substitutingu := ®~1(1/¢ — t/(a()), we gett = a(1 — ¢ ®(u)) and (2.34) reads re-formulated

(2.34)

alrup(u) - [1 + tan?(m (% —a(l-¢ @(u))))]
tan(m(1/2 — a(1 — ¢ ©(u))))

Computation of an approximate numerical solution of (2.35) with respeacttud following back

= 1. (2.35)

substitution enables us immediately to determine an arbitrary precise numetiegab¥ghe lim-
iting FDR for ¢ = 1 in the Cauchy case of = 1. We obtain

a ~ 0.751350,

Q

0.011311,

s 0.026710 and, finally,

%

FDR.(1) ~ 0.021309.
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Remark 2.41

If v is not equal td, the same computational steps have to be carried out using the targetequatio
(2.30). Although conceptionally the same, this is numerically much more cuntherdmecause
F;l for arbitraryr makes numerical problems.

Remark 2.42

The limiting EER in case of = 1 can (according to Theorem 2.18) be computed as
1/2

EER (1) =1 F\2 (1/52) +/ Fy» (V82 (az)) dz.

t/o
Remark 2.43
Due to the limits at the boundaries of the domairs@f) and its uniform flexional behaviour, the
values is a global maximum o(t) in case off = 1.

Again, this property is no longer preserved in the general ¢agel. Then, either two points
with horizontal tangent occur (corresponding to a minimum and a maximuitt pfor there are

no roots of the derivative of(¢) at all. Clearly, numerical algorithms can only detect one of the
two extrema in the first situation. But since we know the flexios@j in case of¢ # 1, too, a
suitable choice of the initial value for the applied algorithm guarantees thaimh#er solution

in w and consequently the larger solutiontimill be found. This is then the maximum &f¢)

and is of crucial interest for the further steps towards FDR and EER gt@atipn. The remaining
computational steps can then be carried out in analogy to Chapter 2.3.

2.4.2 Thegeneralcase > 1and( <1

In order to determine the local maximumnof s(t) (which corresponds to the boundary point
situation) in the general case, we apply the substitution= Ft;1(1 — t), equivalent tot =

1 — F;,(u), and achieve the following representations §6s) and its derivative with respect to
the newly introduced variable:

s(u) = %cp-l Q _ 1_52(“)) and (2.36)
4oy = L wfy, (u) - <1_1—Fty(u)>
7u (W 2 \ oo (@_1 (% ~ H:fg(“))) : ”; . (2.37)

With the transformed bounds, := F,_'(1—t,) andu, := F, '(1—t,), the point with horizontal
tangent ons(u) with the smaller abscissa is demanded. Since the roots of (2.37) cannot be
determined analytically, a numerical algorithm for maximum searching in a neigbbd ofu,,

has to be employed. The so obtained numerical valuefgrovides the value = s(uz). Via
back substitution, we also immediately get the abscissa of the boundary gphetssed in-
coordinates as, = 1 — F; (u2). Again, thist, is one of the two necessary integration bounds
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for the expectation formulas expressing FRR) and EER,(({). In order to compute the lower
boundt;, we consider the distane&u|s) between the conditional limiting ecdf. and Simes’ line
in the boundary point situation as a function of the transformed variabted obtain
~ 3 1—F (u

d(uls) = (1= ¢) + ¢ ®(—5u) - Oj”
Applying a root finding algorithm to the latter function in a suitable neighborladad with result
uy yieldst; = 1 — F, (u1) and with the transformations
a(l-¢)

i

zi = 1— for i =1,2, and

v o= S
3 5 _ (’
the limiting FDR and EER can finally (according to Theorem 2.13) be computed as
1—
FDR.(C) = (22— 21) Fy <V52 (M)>

1—21

[ e () e [ o (52

EER.(¢) = a=h - F2 (vs*(t1))

(07

t1/a 1-¢/2
+/ F.2 (vs® (at)) dt + / F.2 (vs® (at)) dt.
1-¢ to/a

However, if s(¢t) decreases monotonously on the entire intefyglt,] or it holds % s(u) >

0 for all » in the interval|u,, u,], respectively, there is no possible choice foleading to a
boundary point situation. Consequently, the largest crossing poifif,aind Simes’ line can then
lie anywhere in the intervat,, ¢,] and it holds {; = ¢5)

FDR.(¢) = /ongX’% <y32 <O‘(11_f)>>dz,

1—¢/2
EER.(¢) = /1< Fy2 (vs® (at)) dt.

Again, an alternative approach towards determirsingnsists of working with the distance func-
tion d(u|s) and its derivative with respect ta In the boundary point situation, both objects must
simultaneously equal zero for a tuple, 5). In case of¢ = 1, this is equivalent to the pair of
equations

ad(—su) = Fy, (—u) (2.38)
sap(sa) = fi,(a). (2.39)

From (2.38) und (2.39), asymptotic results for~ co can be deduced as follows.

False Discovery Rate and Asymptotics, Thorsten Dickhaus



CHAPTER 2. FDR CONTROL WITH SIMES’ CRITICAL VALUES a7

Lemma 2.44
Lets = 1 — (~In(a))/2v/2 4+ o(v~1/?) anda = v/2 (~ In(a)) vi + o(v=1/4).

Then it holds: B
lim ft”@ =«
v—oo p(51)
Proof: Noting thats? = 1 — 2 (—In(a))2 v~ 2 + o(v~/2) anda? = 2 (—In(a))z v2 + o(1),
we obtain for the product thafs? = 2(—In(a))2v2 + 41n(a) + o(1) and, consequently,
(5) = = exp(~(~ In(@) b3 — 2In(a) ~ o(1)) :
SU) = exXp(—(—1Inlo vz — ni«) — o = .
4 V2T P V2ma2 exp(y/— In(a))v?o(1)
Furthermore, we have
2(~In(a))? o
1 2
Jo,(W) = —=——~ 1—1—7 o(v™1
=BG D A T
and therefore we get for the ratio of both expressions
_ v+l
fo@ Vo, L\ (L 2=t )
o = —QC exp —In(a) + o(v 14+ ——F"—+o0(v
o)~ epg o (VR o) EEER
Since
lim —Y2" 4
o UBGE)
it remains to study the expression
NG 2(—1In(a))? -
0av) = exp (v/~Tn(a) + 0w~ (1 AR o<v-1>)  (2a0)
V2

Substitutingn = /v anda = y/— In(«) we obtain a new functioh, (say), given by
n2+1

ha(n) = (exp(a + o(n~1)))" (1 + %‘L n o(n_Q)) o

which has the same limiting behaviour far — oo asg,(v) for v — oo. Taking the natural

)

logarithm in the definition ofi,(n) results in

n2 a
In(hg(n)) = nla +o(n ™) = " F L <1 + % + 0(n2)> .

Now we make use of the series expansion
ﬂk—i—l

n(l+f) = Z) k:+1

and obtain the representation

? [2a 2;'2 + o(n_2)] — %111 <1 + 2% + o(n_2)> - (241)
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Equation 2.41 immediately yieldan,, .. In(h,(n)) = a? and therefore it holds
lim,, o0 ha(n) = exp(a?). Back substitution yields

1
lim go(v) = —
[0

V—00

and this completes the prodl

Remark 2.45
An analogous calculation even yields, that for any fixed congtaniR, it holds:

m fr, (ku) o (2-k2)

v—oo p(ks)

(2.42)

Lemma 2.44 shows that the chosen valuessfand satisfy the condition (2.39) asymptotically,
because tends tol with v tending to infinity.

Furthermore, it can be shown that the tuples) also satisfies (2.38) asymptotically and that it
is the unique solution of the pair of equations (2.38) and (2.39). This is tkefdke following

lemma.

Lemma 2.46
Leta € (0,1/2) and define

s=s,(x)=1—v 2 (=In ()2 +o(r™?), z € (0,1/2).

Then, given model D-EX4;,) with lim,,_,, {, = ¢ = 1, it holds for sufficiently larges that
F(+sy(z)) has (i) two CP for allz € (0, «v), and, (ii) no CP for allx € (o, 1/2).

Proof: Fors? < (v + 1)/v, the unique point of inflection of",.(-|s) on (0,1/2) is given by
t*(v|s) = Fy, (—a(s,v)) with a(s,v) = ((v 4 1)/s> — v)'/2. Hence, it suffices to show that

Foo(t" (V|su(2))|su(x)) > t*(v|sy(x))/afor z € (0, a)

for sufficiently larger and that the derivative af . (+|s, (x)) in t =t*(v|s,(z)) is less than /«
forall x € («, 1/2) for sufficiently largev. Therefore, the assertion follows if
B, (—a(sy(2), 7))
lim =
v & (s, (@)als, (@), 1))

fo (a(sy (), v))
v—00 Sl,(af‘)(p(sl/(l')a(sy(x)a l/))

< aforze (0,q), (2.43)

> aforz e (a,1/2). (2.44)

Forz, € (0,00) with lim,, .o, 2} /v = 3 € [0, o0] it is shown in [88] that

fo(wy) o B (=7
v=oo p(xy)  voee (-,

= exp(3/4).
Note that foru — oo ands — 1 it holds (Mills’ ratio)

Fu(—u)  Fiy(—u) o
D(—su) O(—u) p(su)’
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It can easily be verified thatm, ... a(s,(z),v)*/v = —41In(z) andlim, . a(s,(x),v)?(1 —
s,(x)?) = —4In(z). As a consequence, (2143) follows by noting that

-~ F, (—a(sy(z),v))
V—00 CI)(—S,,(JU)CL(SV(JU)a V))

_ i | FeEals(@)v) - e(=alsy(@),v))
v—00 (I)(_CL(SV(.T),I/)) QD(—SV(.T)Q(SV(gj)?V))

= exp(—4In(z)/4) lim exp(—%a(sy(x),u)Q(l —5,(2)?))

V—00

1
= - 21
— exp(2In(z))
= X.
An analogous calculation yields (2.44). Hence, Lemma 2.46 is proved. |

Noticing that the FDR in case @f= 1 can be computed as
P(S < 5) = F\2(v5°),

we finally obtain that FDR,(1) for v — oo in the D-EX-{(,,) model withlim,,_,, ;, = 1 tends
to the same limiting value as the one given in Thedrem 2.32 fer 0 in the D-EX-N(¢,,) model
treated in Section 2.3.

Theorem 2.47
In the D-EX-{(,,) model, it holds:

lim FDR (1) = ®(—+v/—2 In(x)).

V—00

Proof: The y2-distribution has expectatiop,. = v and variancer?, = 2v. Therefore, the
14 Xy XV

transformed variable )
vS®— e vS*—v

%2 V2v

is standardized with expectatiorund variancd. Now it holds

2

N =—yv/—2In(a) +0(1)

and according to the Central Limit Theorem we finally get

I/SQ—V<I/§2—I/ (VS2—V

lim P = limP
V—00 ( V2 T A 2v ) V—00 vV 2u

= &(—y/—2In(x)). W

Again, we close this section with two figures displaying EER) and FDR(¢), respectively,
in the D-EX-{(,,) model.

< —v/—2In(a) + 0(1)>

False Discovery Rate and Asymptotics, Thorsten Dickhaus



50 2.4, EXCHANGEABLE STUDENTIZED NORMAL VARIABLES

EER (O EER_ ()

0.020— 0.020 —

0.016— 0.016 —

0.012— 0.012—E

0.008— 0.008 —|

0.004— 0.004—L
0 I N N N I N O B 0 T 1 T 7 T 17T 17T
0 20 40 60 80 100 0 20 40 60 80 100

U/ (degrees of freedom) U (degrees of freedom)

Figure 2.12: EER,(() in the D-EX-t(,,) model fora = 0.05 and different’s.

Figure 2.12 displays EER(() for various values of. It seems that EER(() is decreasing im.
Forv — oo, EER.(() again tends to the valug(l — ¢)/(1 — a() as expected, cf. [91]. Note
that EER. () is close to this limit ifv is not too small. As expected, fgr~ 1/2 andv not too
small, EER.(() is largest.

FDR_(C) FDR__(C)

0.05— 0.05—

0.04— 0.04—

0.03— 0.03—

0.02— 0.02—

0.01— 0.01—

OT—T T T 1 T 1 T ] “rrTTr T T T T
0 10 20 30 40 0 20 40 60 80 100

U (degrees of freedom) U (degrees of freedom)

Figure 2.13: FDR,(¢) in the D-EX-{(¢,,) model foraw = 0.05 and different’s.

In Figure 2.13, FDR,(¢) is displayed for various values gf Except for¢ = 1, the FDR tends
to the Benjamini-Hochberg boune for increasing degrees of freedom. The limit for— 0 is
not clear. In the latter case the density of thaistribution becomes more and more flat making
the computation of FDR ({) extremely difficult. But anyhow, looking d < v < 1 has only
academic value.
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As in the D-EX-N¢) model with¢ = 1, FDR(¢) is the true level of Simes’ global test for the
intersection hypothesis, cf. [264].

2.5 Conclusions

The investigations in this chapter show that the false discovery proporbéh=FV,,/[R,, V 1]

of the LSU-procedure can be very volatile in case of depengeatues, that is, the actual FDP
may be much larger (or smaller) than in the independent case. The samefes WiyeV,, /n, R,
and R, /n. Under mild assumptions, the ecdf. of thevalues converges to a fixed curve under
independence (cf. [91]), which implies convergencé/pfn andR,,/n to a fixed value. On the
other hand, the shape of the ecdf. of fhealues under exchangeability heavily depends on the
(realization of the) disturbance variabte In the latter case, the limit distribution &, /n and

R, /n typically has positive variance. It is often assumed that there may be sochefKiweak
dependence" between test statistics (cf., e. g., [275]) being close foeindence in some sense.
The results in Theorems 2.32 and 2.47 and the numerical calculations fiedégures 2.9
and 2.13 suggest that for largeand¢,, — 1 small deviations from independence (smalbr
larger) may result in a substantially smaller FDR than the Benjamini-Hochberg bowwlevér,
simulations for smalp and larger show that FDR((,,) approaches its limit FDR(1) only for
unrealistically large values of if ¢, — 1 (cf. Appendix A.1). A possible explanation may be
thatlim, o+ FDR,(1) = a, lim, .. FDR,(1) = «, hence the order of limits plays a severe
role. Moreover, for smalp it seems that has to be very large such that the ecdf. reproduces the
shape off’,, close to0. For¢ < 1, the FDR.-curves in Figures 2.9 and 2.13 reflect the FDR for
realistically largen (e.g.n = 1000) very well. The reason is that the shape behaviaFgfclose

to 0 is not that crucial as fof = 1.

Section 2.2 shows that the FDR under dependency may also have the dawmmibas in the
independent case. Therefore, it seems very difficult to predict hdggpens with EER, FDR and
FDP in models with more complicated dependency structure, e.g., in a multivasrat@lrmodel
with arbitrary covariance matrix. In any case, results of the LSU-praregedr more general, of
any FDR-controlling procedure, should be interpreted with some carer wtggpendency taking
into account that the FDR refers to an expectation and that the procatibhesnd may lead to
much more false discoveries than expected.

Finally, with slight modifications of the methods presented in this chapter onelsaltreat statis-
ticslikeT; = |X; — Z| orT; = | X;|/Z. Somewhat more effort will be necessary if the disturbance
variableZ is two-dimensional, as for exampleh = |X; — Z1|/Z>.
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Chapter 3

A new rejection curve

This chapter deals with a new method for gaining power in a multiple test situatidistyssing
procedures based on a new and in some sense (cf. Section 3.6) asyatiptofitmal rejection
curve. The fact that the FDR of the original linear step-up procedureusided bynga/n if ng
hypotheses are true and the remaining= n—ng hypotheses are false implies that the pre-defined
error level is not entirely exhausted fep < n by this method which raises the possibility of
improving the Benjamini-Hochberg procedure with regard to power. We veiléathis problem
from the perspective of rejection curves, which will be formally introdliceDefinition 3.2 below,
and no longer use Simes'’ line for determining the indices of hypotheseséjelotad, but another,
more sophisticated function ofe [0, 1], parametrized by the pre-defined FDR-lexel

3.1 Notation and preliminaries

Before we can state the main results of this chapter, we need some addititatadm Especially,
we have to distinguish carefully between several probability measuredgaaadnodels which we
formalize in this section.

Notation 3.1 (General setup for Chapter 3)

Let (22, A, {Py : ¥ € ©}) denote a statistical experiment and (é{,,),,cy be a sequence of null
hypotheses withh # H,, C ©. The corresponding alternatives are givenky = © \ H,,. Let
(pn)nen denote a sequence pfvalues withp,, : (2, 4) — ([0, 1], B), where B denotes the
Borel-o-field over[0,1]. Letly = Ip(¥) = {i e N: 9 € H;}, ) = [1(¥) =N\ Iy = {i €
N:9 ¢ Hi}and I, ; = I,,;(9) = I; NN,, j = 0,1. As usual, let g-valuep; for testing
H; satisfy0 < Py(p; < z) < zforall ¥ € H;, i € Nandz € (0,1]. We also assume that
for everyy € © andi € Iy(¥) there is a probability measur@,: defined on(2,.4) for which
the sequencé, ),en has the same distribution undBy,: as the sequena@?,),.cn underPy, the
only difference between these two sequencesvafues being thap! = 0. This is a technical
assumption which will be used in Section 3.5 for the determination of uppedbkdar the FDR.
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Notice that theP,:’s need not be contained Py : ¥ € ©}. For a non-empty sefy C N we
denote byl the set/;, \ {min I} in the sequel. For notational convenience, we introdégg,

j = 0,1, as the ecdf’s of thp-values corresponding to the tru¢ & 0) and the false{ = 1)

hypotheses, respectively. Finally, ¥ét, = (H; : i € N,,) and lety,,y = (¢ : i € N,,) denote a
non-randomized multiple test procedure fdy,.

The original linear step up-procedure by Benjamini and Hochberg ttepgandenp-values em-
ploying Simes’ critical values for the famil§#,, = {H; : i € N,,} of dimensionn will conse-
guently be abbreviated tqyzfs As outlined in Remark 2.3, this procedure can be rewritten in terms
of the empirical cdfF;, of thep-valuesps, ..., py. Lett(gpkf;)’) =sup{t € [0,1] : F,,(t) > t/a}.
Thengokf;; rejectsH,; iff p; < t(go'if:;). The rejection curve, (t) = t/« is Simes’ line, cf. Remark
2.3. Notice thattV = r_1(i/n). More generally, many multiple test procedures can be described
in terms of the ecdfF;, of thep-values and a rejection curvalefined as below.

Definition 3.2 (Critical value function and rejection curve)

Letp : [0,1] — [0, 1] be non-decreasing, continuous wjif0) = 0 and positive values of0, 1].

Define critical valuesy;., = p(i/n) € (0,1] for: = 1,...,n. We callp a critical value function.
Moreover,r defined byr(z) = inf{u : p(u) = x} for z € [0,1] (inf ) = oo), will be called a
rejection curve.

For illustrative purposes, a plot df,, together with the rejection curveis useful in order to
demonstrate the decision procedure. Note that we have (cf. [250])ptlosving relationship
between the ecdf.F;, of distinct p-valuespq, ..., p,, the orderedp-values, the critical values
a;., = p(i/n) and the rejection curve

Fn(pi:n) > T(pi:n) if and Only ifpi:n < Qg (31)

In analogy to the notation in Chapter 2, a point p;., satisfying F,,(p;.) > r(pi.n) and
Fy(pit1:n) < 7(pit1:) is called a crossing point (CP) betweéh andr. We consider test
procedures which determine one of the CPs as a threshoidrder to reject allH; with p; < t*.

It is immediately clear that the proportidi,, — V;,)/(n1 Vv 1) of rejected false null hypotheses
with respect to all false null hypotheses is non-decreasing in the tHdeshd herefore, we look
for procedures which maximiz& for any given set op-values subject to FDR control, because
this leads to maximization of the multiple power defined in Definition 1.3 as the expectiitioe
aforementioned ratio.

In order to formally express upper bounds and least favorable ptegacmnfigurations for the

FDR, we finally introduce the Dirac-uniform models as follows.

Definition 3.3 (Dirac-uniform models)
We assume that the measurable spgeeA) is large enough to accommodate probability mea-
suresPy,, Iy C N, under which allp-valuesp;, i € Iy, are i.i.d. uniformly distributed of0, 1],
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and allp;, i € I, follow a Dirac distribution with point mass at 0. We refer taP;, as a Dirac-
uniform configuration. Under eadhy,, the Extended Glivenko-Cantelli Theore(of. [262], p.
105) applies for the ecdf,, (say) of thep-values, that is,

lim sup |F,(t) — (nl(n) + no(n)
n—00 4c(0.1] n n

t)| =0 [Plo]a (32)

wheren; = nj(n) = |I;NN,], j = 0, 1. Notice that théP;,’s need not be contained §P : ¥ €
O©}.

As in Chapter 2, let,, = ng(n)/n denote the proportion of true hypotheses among thefirst
hypotheses. We refer to this situation as Bieac-uniform finite model, DY((,).

Now suppose that

Tim G, = ¢ € [0,1],

Then [(3.2) implies that, fon tending to infinity, the empirical distribution functiofi, of the
observed-values converges to

Foo(t]¢) = (1 = ¢) +¢tforall t € [0,1] [Pp].

This situation will be called th®irac-uniform asymptotic model, DIJ({) for short.

3.2 Motivation and heuristic derivation

Our new rejection curve has the representation

t

falt) = m,t € [0,1].

Figure 3.1 displays this new rejection curve together with Simes’ line andaéieiting ecdf.'s
F(|¢) of p-values under Dirac-uniform configurations with limiting proportiorf true hy-
potheses. The motivation for choosilfig as "asymptotically optimal rejection curve" reveals, if
we investigate the points of intersection of ed¢h(-|¢) and f, on (0, 1) for ¢ € (a, 1). It holds
that

. a(¢—1)
Fo(tl0) = fo(t) iff t = —>—2
() = fa(®) O
If we now consider a single-step multiple test procedpif®<) (say), which rejects all hypotheses
with p-values smaller than or equaltg we get for the asymptotic FDR gf<) in the DU (€)
model that

=t¢ (say)

Cte

———> = q, independentoff € (a,1).
(1) + Cic P Loy

FDR?(@SS“C)) =
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S N N I B O
0.0 0.2 04 0.6 0.8 1.0

Figure 3.1: Simes-linef,, and limiting ecdf.'s of Dirac-uniform configurations

For( € [0, ) one may set, = 1, which implies that all hypotheses are rejected and
FDRgo(goss(l)) = ( < a. Since Dirac-uniform configurations can be viewed as least favofable
certain stepwise multiple test procedures (see Section 3.4 below), the lattédemations show
that the choice of,, as rejection curve is asymptotically optimal in the sense that the FDRdevel
is fully exhausted in the least favorable case. In other words (sincegﬂ?(DF?(t)) and By (M)
are both increasing in), t¢ is the largest possible threshold for givere (a, 1) such that the
asymptotic FDR is still controlled by and it therefore maximizes the asymptotic power under the
constraint of asymptotic FDR control. But, since the proportion of true thgses is unknown in
practice, we have to find suitable test procedures that automatically ¢eetieaorrect threshold.
Typical candidates are stepwise test procedures which choose afGRantl a rejection curve as
rejection threshold. Therefore, such stepwise test procedured tiagg are the topic of the next
section.

3.3 Procedures based on the new rejection curve

Before deriving the announced test procedures basef one start with some properties of this
new rejection curve.

Lemma 3.4(Properties of the new rejection curve)

Comparing the Simes-line,(t) = t/a and the new rejection curvé, (t), we obviously have
ra(t) > fo(t) for t > 0 and the derivative it = 0 is 1/« for both curves. Moreover, notice that
fo Obeys the symmetry property

at

i 1 — fo(1—t)forall ¢t €0,1],

fa (1) =
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wheref; ! denotes the inverse function pf. Clearly, £, ! is a critical value function.
Furthermore,f, is differentiable ori0, 1] and it holds

d o
alV= i rar

The question is how to implement the new rejection cufyewhich will be called the asymp-
totically optimal rejection curve (AORC), not only in the Dirac-uniform modeis &lso in more
general models into a multiple test procedure which controls the FDR-esgictly or at least
asymptotically. The critical values induced lfiy are given by

« Xe’

in = [l (=) = " = i= n
%m—ﬁxgg—l_ 0 a) noii—a) 1,...,n. (3.3)

Remember that
Fn(pi:n) > fa(pi:n) if and Only ifpi:n < Qo

It is tempting to usey;., < --- < an., in a step-up procedure for testimghypotheses. Unfor-
tunately,a,,., = 1, so that this procedure always rejects all hypotheses. This pitfall isodiie

fact thatf,(1) = F,(1). Therefore, we need some adjustment with respegt, tor the step-up
procedure. In the remainder of this section, we consider some candidatsymptotic FDR
control avoiding the aforementioned pitfall. They will again be studied in [Goxo3.19 which

proves asymptotic FDR control for the procedures proposed in the folipthiree examples.

Example 3.5(Step-up-down procedures)

An interesting class of procedures based on critical vaflues a1, < -+ < ap., < 1 are
step-up-down (SUD) procedures introduced in [280] and studied3iri [i& terms of FDR control.
For A\, € N, a SUD—proceduraofL‘fgn = (¢1,...,pn) Of order ), is defined as follows. If
Danin < Q) m, SEtMy, = max{j € {\n,...,n} : pin < aip foralli € {\,,...,j}}, whereas
for pa,.n > ax,m, PUtmy, =sup{j € {1,..., A\n} : pjon < @i} (sup ) = —o0). Definep; =1

if pi < am,.n @andy; = 0 otherwise(a_., = —o0). Note that\,, = 1 yields a step-down
(SD) procedure and,, = n yields a SU-procedure. The order of a SUD-procedure can beedefin
in terms of a fixed parameter € [0,1] by setting), = inf{j € N, : aj, > A} (inf( =
n). ThenA = 0 (A = 1) corresponds to a SD- (SU-) procedure. A SUD-procedure agrord
An = An(N), A €[0,1), based ory,, resolves the problems around the pairt 1 in an elegant
way. It is obvious in view of Lemma 3.4 that in case)of> « the new step-up-down procedure
based ory, rejects at least all hypotheses rejected by the linear step-up procpdssébly more.
Therefore, one cannot expect that the FDR-level is controlled in the iase. However, it will
be shown that the FDR is controlled asymptotically. Note t;h%ﬁ"ﬁn iS component-wise non-
decreasing in\. For the computation of the starting ind&x()), notice that

D W || A — iff j>— -~
Wi = A n—jl—a)— a+A1—-ao)

False Discovery Rate and Asymptotics, Thorsten Dickhaus



CHAPTER 3. ANEW REJECTION CURVE 57

such that we choose the starting index\) = {#?—a)w For example, if we set = 1/2, we
obtain\,(1/2) = 12 | and the choica = a leads to\, (a) = [ 52 |.

Application 3.6 (Applications 2.4 and 2|5 revisited)

We return to our introductory example applications 2.4/and 2.5. In both chseactual ecdf.'s
have concave shape such that we obtain a unique crossing p@isgah the proteomics example
and Fr457 in the adenocarcinoma example, respectively, vitlon (0, 1) (cf. Figures 3.2 and 3.3
below). In such cases, all step-up-down procedures with parameter$, 1) are equivalent.

0.9

0.8
0.7 P i i
0.6
0.5

0.4 - —

Figure 3.2: Proteomics example: Simes’ line, optimal rejection curve and etgkfvalues on
[0,0.2]

Figure 3.3: Notterman example: Simes’ line, optimal rejection curve and edds-values on
[0,0.2]
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In order to demonstrate the differences between the results of the linpanpsigrocedure and
a step-up-down procedure based fon the figures only cover the subintenjél 2a] > ¢ for a
better resolution. It becomes apparent that a step-up-down preckdsed ory,, leads to more
rejections than the linear step-up procedure.

More specifically, with the Benjamini-Hochberg procedure, we4jotejections in case af; =
0.05 and 64 rejections in case afie = 0.1 in our proteomics example. Using a step-up-down
procedure of ordek,, = LﬁJ ,1 = 1,2, with critical values based on the AORC, we obtaih
rejections fora; and74 rejections foras,.

In the adenocarcinoma example, the hypotheses correspondingitésthemallestp-values got
rejected by, while a step-up-down procedure of ordgr = {ﬁJ with critical values based
on the AORC witha = 0.1 rejects1772 hypotheses. The thresholding values @12 for the
Benjamini-Hochberg procedure afd303 for the step-up-down procedure basedfgn.

Example 3.7(Adjusted step-up procedures basedfgh

As noted before, a step-up procedure basedgn= f;'(i/n) cannot work. Therefore, some
adjustment off,, in a step-up procedure is necessary. We first consider the case thbexdjusted

rejection curvef2¥ satisfies thatf2%(x)/z is non-increasing i, an important property for the
calculation of the FDR. One may specify some (0, 1) and define a new rejection curve

oLRKR - (3.4)
’ h(z), k<zx<l1,

adj (x):{ fa(x)a 0<l’<l€,

such thatf2%(z)/z is non-increasing i and f2%(z*) = 1 for somez* < 1. For example, one
may choosé(z) = ax + bwith a < f,(x)/k (Which impliesz* > k/ fo(k)) and fo (k) = h(k).
We consider two possible choices/o{h; andhs say) and refer to the resulting rejection curves
asfl), i=1,2. Let

hi(z) = fo(r)(@—K)+ fa(K)

B o' k2(1 —a)
= arri—or Y arsao oy FERD-

Thenh(z) = f.(k), hi(k) = fa(k) andhy(z*) = 1 for z* = k(1 — @)(2 — k) + «. If we want
to pre-definer*, we have to choose = k(z*) = arg (fo(x) + f,(z)(x* — 2) = 1), leading to
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The resulting modified curve and modified critical values are given by

: fa(z) for z <k,
fad(x) = {
fa(k)+ (x —r)fL(k) for x>k,

L) = {1(1) for u < fa(r),
’ 1/ f4(K) (u+ 5fo(K) = fa(k)) TOr u> fo(k),

ot = .7 afm) = {n;ﬁa) for i/n < fu(x).

1/fo (k) (i/n+ K fo(k) = fa(k)) fori/n> fa(k).

The largest possible slope bfin (3.4) isa = f,(x)/x. This leads to the second choice, that is,
ho(x) = xf,(k)/k. This is close to the truncated step-up procedure in Example 3.8 below. Note
thaths(z*) = 1if 2* = k(1 — a) + «. For example, suppose that= f,!(i/n) for some fixed

i € N,,. Then the step-up critical values are given by

Yin =

Example 3.8(Truncated step-up procedures based.gn
Letx € (0,1) be fixed and define

With ., = min{f;(i/n), x} we havey,., = pa(i/n) for j =i,...,n. Hence, the truncated
step-up procedure is well defined in termsgf It is worth mentioning that this type of procedure
differs substantially from the adjusted procedures discussed in Exatplaad 3.7, because the
monotonicity behavior of the ratip, (x)/x changes at = f,(x), which makes FDR calculation
much subtler.

In Figure 3.4, the three possible adjustments mentioned in Examples 3.7 ané 8l8sarated.
The parameters, ko and k3 are chosen such that all three curves have the property that no
hypothesis withp-value larger thaf.5 can be rejected (no critical value larger thiah occurs).
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Figure 3.4: Simes-linejﬂl, f,)@ the truncated version ¢f, with k3 = 1/2 and f,,

3.4 LFC results and upper FDR bounds

Suppose thatz, and (., respectively, are defined in terms @#aluespy, ..., p, and critical
valuesa;., = p(i/n) for some critical value functiop and consider the following three sets of
possible assumptions.

The first two assumptions concern the structure of the test procedstragsumptions):

(T1) Vi e Ny, : p; < aq., impliesy; = 1.
(T2) VjeN,: R, =jimpliesVie N, : [¢; =1 p; < oo |

The second set of assumptions concerns properties of distributigngatfies andR,, (distribu-
tional assumptions):

(Dl) V9 € ©:VjeN,:Viel,ov): Py(R, > jlp; <t)isnon-increasing im € (0, aj.p].
(D2) V9 € ©: Vj €N, : Vi€ I,o(9): Yt € (0, jn] : Py(Rn > jlpi < 1) < Pyi(Rp > 7).
(D3) V¥ € ©: Vi€ I,0(9) : pi ~U([0,1]).
Finally we have two possible independence assumptions:

(11) V9 € © : Thep;’s, i € I,(v), areiid.

(12) VO € ©: (p;:i€ I,0)and(p; : i € I, 1) are independent random vectors.

The simple structure of step-up tests often simplifies derivations concerropgnties of these
tests. Ify(,) is a step-up-down test, the properties of a step-up-test remain valid in fhefste
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branch of such a procedure. For example, it is important to note (cf],[p3 248) that in case
of a step-up-down test of ordey, and assuming (D3) and (11)-(12), we get for dllc © and alll
1€ In70(’l9)

Vi=1,..., 0 : Vt € (0,ajun] : Po(Rn > jlpi <t) = Pyi(R,>75), (3.5)

Vi=1,..., 0 VL€ (0,a5m] : Py(Rp = jlpi <t) = Pyi(Rn=3). (3.6)
For \,, = n, i.e., for a step-up test, we even get

Vi=1,....,n: Vte (0,a;n): Py(Ry > jlpi <t) =Pyi(Ry > j).

Assumptions (T1) and (T2) concern possible structures of test puoegd Step-up-down tests
satisfy both of these assumptions.

The monotonicity assumption in[(D1) is somewhat weaker than the PRDS-assur{ifRDS:
positive regression dependency on subsets). More precisely}tfi@h -almost sure antitonicity
of the factorized conditional probabiliy (R, > j|p; =t)int € [0, a;.,] we obtain the property
formulated in (D1), where the equality in the condition is replaced by an iriéguEhis type of
conclusion is indicated in [171] and can be proved in an easy way by Wgisghan’s inequal-
ity, cf. [306]. Anyhow, (D1) is the decisive condition for dependgntalues in order to prove
FDR-control or to derive upper bounds for the FDR. Examples of digidhs being PRDS are
extensively studied in [17] and [237]. Important examples are multivaniateal distributions
with positive correlations and (absolute valued) multivartatistributions, cf. the discussion of
the examples in Chapter 2.

Property (D2) will only be used under (11) and (12), i.e., if thealues are independent, and is an
important tool for deriving LFC results. In case of dependency, {Bajten violated.
Assumptions (D3) and/(I1) concern the distributiorpefalues under the corresponding null hy-
potheses.

To demonstrate the usefulness and the essentiality of the derived sstiofi®ns and the equal-
ities (3.5) and (3.6), we present a new proof for FDR control of thesidakBenjamini-Hochberg
procedure which unifies, simplifies and slightly extends the results and dloéspyiven in [17]
and [237], respectively.

Theorem 3.9

Leta € (0,1) and lety(,,) be a multiple test procedure fdt,, defined in terms of Simes’ critical
valuesw;., = ia/n,i =1,...,n. Letd € © such thatny hypotheses are true and the remaining
ones are false. If (T1),(T2) and/(D1) are satisfied, then

n
FDRﬁ(QO(n)) < ;Oa’

with” = "if ¢ (,,) is a step-up test and (D3), (11) and (I2) are satisfied in addition.
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Proof: Consider the following chain of (in)equalities:

FDRy(o(n) = > Z “Py(Rn = j, i = 1)

i€l 0(7.9) j= 1

= Z Z Pﬁ pz < 78 n)Pﬁ(R - J’pz < aj:n) (37)
1€ln0(9) j= 1

Qjn
> Z Py (R = jlpi < jen) (3.8)
1€y 0(9) J=1

Z [alznpﬁ(Rn > 1‘171 < al:n) (39)
iGInyo(ﬁ)

IN

IN

+Z |: g aj 1n:| ]P)ﬂ(Rn > ]|pz < aj:n)]

= 0, (3.10)

n

Equation|(3.7) holds under/(T2), ang™ holds in (3.8) if (D3) holds. Inequality (3.9) holds under
the assumption (D1) with=2" if ¢, is a step-up test and (D3), (11) and|(12) hold. Finally, (3.10)

is a consequence of((T1). |
Remark 3.10

The key step in the proof is (3.9), wheBy(R,, > jlpi < aj_1.,) is replaced byPy(R, >

Jlpi < aj.q) for j = 2,...,n according to assumption (D1). In case of dependency or in case of

a non-step-up test the difference between these quantities may sum uprtsidecable amount,
that is, the FDR may be much smaller than the upper beyad» in such cases. For a detailed
investigation of the latter phenomenon, cf.|[86].

One of the main problems in order to ensure FDR-control of a multiple teseguoe is to find
least favorable parameter configurations (LFCs). Obviously, LFEsaiissue for the LSU pro-
cedure if (D3), (I11) and [(I2) hold true. To date it looks like that stegpupcedures are easier to
cope with than step-down or step-up-down procedures. One reastmid is that Dirac-uniform
configurations can often be viewed as least favorable for certairugt@pecedures. This fact is
based on the following important result.

Theorem 3.11(Benjamini and Yekutieli (2001), cf. [17])

If (D3), (I11) and (12) are fulfilled, a step-up procedure with criticallvasay., < --- < ay., has
the following properties:

(1) If the ratio «;., /3 is increasing ini, as (p; : ¢ € I, 1) increases stochastically, the FDR
decreases.
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(2) If the ratio «;., /i is decreasing in, as (p; : i € I;) increases stochastically, the FDR
increases.

Hence, under the assumptions of Theorem 3.11, the Dirac-uniformgcoafions, where alp-
values under alternatives are almost sufelgan be viewed as LFCs if the ratig.,, /i is increas-
ing in i. More precisely, on the parameter subspace, where exagtly,) hypotheses are true
(false), the FDR becomes largest if thevalues under alternatives are almost sutelyherefore,
it suffices to consider all Dirac-uniform configurations in order to &hebether the FDR is con-
trolled at leveky. Notice that the critical values induced Ky as given in((3.3) fulfill the important
ratio condition.
Unfortunately, the method of proof given in [17] does not seem to workSD and SUD- proce-
dures. However, we show below that Dirac-uniform configuratiotsnoprovide upper bounds.
To this end, we defing(x) = p(z)/x for all z € (0, 1] and assume that

q(0) = limsup g(x) < oo. (3.12)

10

Moreover, we define the (continuous) functphy g(x) = maxo<i<, q(t), € [0,1]. Hencegis
the upper isotonic envelope or, in other words, the least isotonic majdranfor the derivation
of upper FDR bounds, we now introduce the following additional conditions

(A1) If (p1,...,pn) is stochastically not greater undeér € © than undets € ©, theny,,) is
stochastically not greater undés € © than under}; € ©.

(A2) ¢ =7, thatis,p(z)/z is non-decreasing far € (0, 1].

Note thato;.,, /7 is non-decreasing ihif (A2) holds. In case that is differentiable or(0, 1), (A2)

is equivalent tq/(x) > ¢(z) for z € (0,1). Clearly, under (A2)¢(0) can and will be defined as
limz o ¢(z). In what follows,g is essential in deriving upper bounds for the FDR. Note ghatg
for the truncated step-up procedure introduced in Example 38+, the bounds for the FDR
based org may be not that sharp.

The following theorem is the main result of this section and a valuable toolrfaring FDR
control of SUD-tests. It provides upper bounds for the FDR of steptest procedures under in-
dependence of the-values. For SU-tests, these bounds are sharp if Dirac-uniformgemafions
belong to the set of possible data models.

Theorem 3.12
Lety € © such thathg € N hypotheses are true and the remaining ones are falseyl-etmin /7,
(andIfy = Iy \ {io} as defined before). If (T1)-(12) are satisfied, then

n

FDRy(p(n) < > a(i/m)Byi(Ru/n = /) (3.12)
j=1
no _
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with equality in(3.12) ifp(,,) is a step-up test and((A2) holds in addition. If (T1)-(12) and (A1) are
fulfilled, then

n —
FDRy (¢()) <~ Ep(Rn/n). (3.14)
Proof: Letb; = Py(Rn > jlpi, < ajm) andAg(j/n) =1q(j/n)—q((j—1)/n)forj=1,....n

Then, proceeding as in the proof of Theorem 3.9 we get for fiked © under (D1)-(D3), (1)
and (12)

FOR() = 3 ali Pt = = 010

j=

< % nl ]/n Pﬁ n — j|pio < aj:n) (315)
=

< % -q(l/n)bl + Zn; Aq(j/n)bj] (3.16)
L 7=

< % -Q(l/n)Pﬁio(Rn > 1)+ Z:AQU/”)PWO (Rn > j)] (3.17)

j=

n
ng )
= q(j/n)Pyio (Ry/n = j/n),
Jj=1

which proves|[(3.12). In view dPyi, (R, > 0) = 1 according to (T1), (3.13) follows immedi-
ately. If o, is a step-up test, which implies (3.5) fa, = n, we have equality in (3.16) and
(3.17), hencey = 7 yields equality in[(3.15). Finally, in order to prove (3.14), we use the same
argumentation as in the proof of Theorem 3.11 given in [17], i.e., that astichincrease in the
distribution of the random vectdp;, . .., p,) can be characterized by the increase of the expec-
tation of all non-decreasing functions (in case the expectation existshigend, we note that
obviouslyR,, = |{i € N, : ¢; = 1}| is a non-decreasing function ¢f,,) and hence, due to (A1),

is stochastically non-increasing (py, - . ., p, ). The isotonicity of completes the proof. N

Inequality [(3.14) will be a helpful tool in order to calculate upper FDR latsuand to prove FDR
control, because it only makes use of the distributiogfunder Dirac-uniform configurations.
Especially for SUD-tests, this distribution can be handled analytically.

3.5 Asymptotic FDR control for procedures based on the AORC

This section deals with conditions for asymptotic FDR control for procexdbesed on the new
rejection curve. A major result will be that the example procedures pieganSection 3.3 control
the FDR asymptotically. Theorems 3/13 and 3.16 provide sufficient conditowrssymptotic
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FDR control. If the underlying procedure leads to a determinable limiting ptiopoof rejected
hypotheses, Theorems 3.15 and 3.17 even give explicit values forsihiéimg FDR.

Theorem 3.13
Supposey,,) is based orp < f 1 and that (T1)-(12) and (A1) are fulfilled. If for all non-empty
setsly C N and all subsequencés;,),eny C N with limy_. ¢, = ¢ for some( € [0, 1] it holds

limsup% < falte) [Pr], (3.18)
k—oo Tk 0
then
lim sup sup FDRy(¢(,)) < o (3.19)
n—oo 9eO

Proof: Let, for notational convenienc®,, ,, refer to a Dirac-uniform configuration such that the
first m p-values are iid uniformly distributed and the remaining ones follow a Dirac digtoiy
with point mass ir), 0 < m < n, n € N. Then we have from inequality (3.14)
n _
Vn € N : sup FDRy(¢(,)) < max —OEnO,l,nq(Rn/n).

€O 1<no<n N

Since for eachh € N the maximum in this inequality is attained at some valy@:) (say), we get

lim sup sup FDRQ?(@(TL)) < limsup CnEno (n)—l,nq(Rn/n)v

n—oo 1Yee n—oo
where(,, = no(n)/n, n € N. We now may extract a subsequenieg) <y of N with
limy o0 n, = ¢ for some( € [0, 1] such that

lim sup CnEno(n)—l,nq(Rn/n) = k:li»Hc}o <nkEn0(nk)—1,nk6(Rnk /nk)

n—oo

< ClimsupEpg(n)—1,0, 0 (B /78),

k—00
whereg* denotes thg-function corresponding to the critical value functign'. Similarly as in
[91], pp. 1003-1004, we are able to select from.)xcn @ further subsequence (without loss of
generality with the same name) and construct a global setN with the property/ N I,,, | =
no(ng) for all k& € N. (At this point it should be noted that the definition of the skfg at the
bottom of p. 1003 in [91] has a typo at its right end in that the té(my, ) has to be replaced by
ni.) Now we obtain from/(3.18)

¢ lim SUPEno(nk)—l,nﬁ*(Rnk/nk) = (limsupEpg*(Ry, /nk)

k—o0 k—oo

< (Epg*(limsup Ry, /nk)

k—o0
= Ca*(fa(tﬁ))
= min{a> C} <a

hence the assertion of the theorem, ile., (3.19) follows. |
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Remark 3.14

Asymptotic FDR control for procedures based finin the latter theorem is established under
the strong assumption (I1), i.e., independence opthalues under the null hypotheses. We will
present one counterexample which suggests that step-up-dowrpreséased of, fail to con-
trol the FDR under PRDS. To this end, we return to the D-EX-EXP modestigeted in Section
2.2 and choose (without loss of generality) the scale parameter of theyingexponential dis-
tribution equal tol. Recall that the representation of the limiting ecHf(-|z, () of thep-values
pi(z) in the D-EX-EXR(,,) model with¢,, — ¢ € (0, 1) is given by

(1 —=¢) + 2Cexp(—=2)t for 0 <t<1/2,
Foo(t]2,0) = S (1 = ¢) + Cexp(—2)/(2 —2t) for 1/2 <t < u(z),
1 for u(z) <t <1,

whereu(z) = 1 — 1/2 exp(—z). For the step-up-down procedure, we choase 1/2. Noting
thatf,(1/2) = 1/(1 4+ o) andFo(1/2|2,¢) = (1 — () + (exp(—z), it is immediately clear that
Fuo(1/2]2,¢) > fa(1/2) ifand onlyif z < 2* = —In (((1 + a)~' — (1 = ¢)) /¢) and therefore
R, (z)/n tends tol in this situation. In the other case, i.e., foe> z*, the LCP betweerf, and
Fx(+]2,Q) lies in (0,1/2]. Equatingf,(t) = Fuo(t|z,() in the latter case, we obtain the LCP

t(z|¢) as

1¢(a—1) —a+2Cexp(—z)a+/D(a,(,2)
t=10) =5 Coxp(—2) (@ — 1) !

where

D(a,(,2) = [(1+4exp(—22) —4dexp(—2))(* + (dexp(—2) — 2) ¢ + 1] o?
+[(4exp(—2) =2) ¢* + (2 = 8exp(—2)) (] a + ¢

by straightforward calculation. Now, we can immediately calculate the limiting FDR$e of
¢€(0,1) by
FDR(¢) = CP(Z < 2*) + C/ f !C)) exp(—z)dz.

Settinga = 0.05, for example, we obtain by numerical integration

FDR.(0.1) ~ 0.069, FDR.(0.2) ~ 0.085,
FDR,(0.3) ~ 0.089, FDR,(0.5) ~ 0.093,
FDR.(0.7) ~ 0.094, FDR.(0.9) ~ 0.095.

These values could be reproduced by corresponding computer simslation

Simulations also indicate that a step-up-down procedure of drdern. based on the AORC fails

to control the FDR at levelk in Dirac-exchangeable normal models as well. In a simulation setup
analogous to the setup fet presented in Appendix A.1 below for a D-EX{®5) model, we
chosea = 5.0% and obtained simulated FDR values larger thé&iv for all p € [0.4,0.8] and
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even FDR values larger than0% for p € [0.6,0.7]. With the crossing point techniques derived
in Chapter 2, numerical calculation of the theoretical FDR values is possibl&sicate as well.

If we sharpen assumption (3.18), we can even give explicit valuesddfEiR.

Theorem 3.15
Lety € O, ¢,y be based op < ;! and assume (T2), (D3), (I11) and

lim ¢, = ¢ € [0,1]. (3.20)

If lim R,/n=r" [Py]forsomer* € (0, fo(t¢)], then it holds

lim FDRy(p() = Cp(r)/r* = Ca(r) < minfa, C}. (3.21)

Proof: From (T2) and fomg, n € N we get the representation

From this we obtain the inequality chain
[Va/n = Gup(Bn/n)| < Col Fno(p(Bn/n)) — p(Rn/n)| < P |[F0(t) — 1.
te|0,

Hence, using the Glivenko-Cantelli property (3.2) together with the rengiagsumptions of
the theorem and the continuity @f we finally see thal/,/n convergesPy-almost surely to
Cp(r*). Thus, due tor* > 0, we havelim,,_,. Ey[V,,/(R, V 1)] = {p(r*)/r*. The right-
hand side inequality in (3.21) is obtained by noting that ! (¢) /¢ is increasing irt € (0, fo(t¢)]
to (te/ fa(te) = min{a, C} att = fo(t¢). [

The remaining case* = 0 is treated in the following two theorems.

Theorem 3.16
Lety € ©, ¢(,) be based op < f;! and assume (T1):(12), (A1), (3.20) and

Ve > 0: liminf gtlil(t — Fo(p(t)) >0 [Py]. (3.22)
Then it holds
im sup FDRy () < Clim sup(z) = Ca(0) = G7(0) < Go. (3.23)

Proof: To avoid triviality, we assumé) () # (). Then, from/|(3.12) and (3.13) we have that
lim sup FDRy((,)) < ¢ limsup Eyio g( Ry /n). (3.24)

Since due to (T1) and (T2) we have for alk N

Fo(p(Rp/n)) = Ry /n,

False Discovery Rate and Asymptotics, Thorsten Dickhaus



68 3.5. ASYMPTOTIC FDR CONTROL FOR PROCEDURES BASED ON THE ADR

(3.22) implies that for every fixed > 0 we obtainlim sup,, .., R,/n < & Py-almost surely, i.e.,
lim,, o R,/n = 0 Py-almost surely. Now, since for all € N the maximum absolute difference
on the unit interval of the ecdfF;, (corresponding to the sequencepefalues(p,).cn) and the
ecdf F'o (say) (corresponding to the sequencepafalues(p®),cy defined in Section 3]1) is at
most1/n, condition [(3.22) also holdB,:,-almost surely, which entails théin,, .., R,/n = 0
Py, -almost surely. Hence, due to the continuitygoive havelim,, o EyioG(Ry/n) = g(0) =
q(0) < limyjo 5 1(t)/t = a. In view of inequality [(3.24), this completes the proof. |

Theorem 3.17
Under the assumptions of Theorem 3.164g}y be a SUD-test of ordek,, with
liminf,, . A\n/n > 0 and the condition (3.22) be replaced by
Ve > 0:liminf inf (¢t — F,(p(t))) >0 [Py] (3.25)

n—oo e<t<K

forsomeK € [0, 1] fulfilling K > L = limsup,,_,., An,/nincaseofL < 1andK = 1 otherwise.
Supposing thalim, o ¢(x) exists, we have

Jim FDRy(o()) = Clgfg q(z) = (q(0) = ¢q(0) < Ca (3.26)

Proof: Again, to avoid triviality, we assumkg(¢) # ). Equation|(3.26) can be shown by utilizing
the notation introduced in the proof of Theorem 3.12 and the decomposition

An

FDRy(¢(m) = Cn Y a(i/n)Po(Rn = jlpiy < atjin)
j=1

n

G Y ali/m)Py(Ra = jlpie < ajin)
= M, +m, (say).
In view of Theorem 3.12 and the structure of a SUD-test, we obtain by imgp($.6) that

M, = gnEﬁio [Q(Rn/n)l{Rn/ng)\n/n}]a

IN

CnEoyio [@(Rn/n) 1{Rn/n>>\n/n}:| .

mp

From (3.25) it follows thatPy-almost surelyF, (p(\n./n)) < A,/n < K and consequently
R,/n < A\p/n < K holds true for eventually ath € N. Therefore, again due to (3.25), in
analogy to the proof of Theorem 3/16 we conclude that,_.., R,/n = 0 Pyi,-almost surely,
which finally entailslimy, —.oc 1(g, /n>x,/n} = 0 Pyio-almost surely. Together with the bounded-
ness ofg this entails thatim,, .., m,, = 0. Moreover, exploiting the continuity af atz = 0 we
see thatim,, .., M,, = (q(0) = (g(0), which altogether yields the desired result. |
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Remark 3.18

One cannot expect to obtain exact values for the limiting FDR under the qnra assumptions
of Theorem 3.15 if* = 0. To see this, consider the cage = 1 in which the FDR is equal to
the family-wise error rate (FWER). Fa@j, = 1 it was shown in|[91] that the FWER is equal
to a for anyn € N in case of a linear step-up procedure, while it tend$ to exp(—a) < «
for a linear step-down procedure. We therefore have to know moretdbe structure of the
underlying procedure in order to compute the limiting FDR in case*o&= 0. The limiting
behavior for procedures based fin(or its modifications) satisfying the assumptions of Theorem
is in accordance with the linear SU-procedure and should be edpsttee the difference
of the critical valuesy;.,, — ia/n tends to zero fof € o(n). Therefore, the local behavior around
zero should not differ much for large

Returning to our proposed example procedures, we finally obtain the fotigeoperties of these
tests.

Corollary 3.19 (Examples 3.5, 3.7, 3.8 continued)

Assume the distributional assumptions (D3), (11) and (12) hold. TherStiD-procedure based
on f, with parameter\ € [0,1) and the SU-procedures based ﬁﬁL i = 1,2, as well as the

truncated SU-procedure asymptotically control the FDR at leweMore precisely, if condition

(3.20) is fulfilled, i.e.}im,, .~ ¢, = ¢ € [0,1], then

(i) for the SUD-procedure the upper boundor the limiting FDR is sharp fot € [a, 1].

(ii) for the SU-procedures based Q‘él?€ 1 = 1,2, the upper bound for the limiting FDR is
sharp for¢ > ¢*(k) = a/(k(1 — a) + «). In case off < (*(x), an upper bound for the
asymptotic FDR is given it /(1 — ¢ + ¢ic), wheret. denotes the unique solution of the
equationF (t|¢) = hs(t), i = 1,2, 0n(0,t¢). For finiten, the upper bound given in (3.14)
is sharp.

(iii) for the truncated SU-procedure the upper boumdor the limiting FDR is sharp fof >
(*(k). In case off < (*(x), an upper bound for the asymptotic FDR is given(ly (1 —

¢+ Cr).

Proof: First of all, as mentioned before, a step-up-down test has the struptoerties (T1),
(T2) and (A1). Moreover, assumptions (D3), (11) and (12) imply thec@l monotonicity proper-
ties (D1) and (D2) for a step-up-down test. Hence, in order to apply/Eme 3.13, it remains
to check the validity of condition (3.18). To this end, for notational conwesgeand with-
out loss of generality, we work under condition (3.20). We make use .@j,(8e., that the
ecdf F, convergesP’;-almost surely to its limitfoo (-[¢) uniformly in ¢ € [0,1]. Since un-
der (T1) and (T2) we have the identify,(p(R,/n)) = R,/n for all n € N, (3.2) leads to
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imy, o0 (Foo (p(Rn/n)[¢) — Rn/n) = 0 Pr-almost surely. From this we conclude that(-
almost surely) the only possible accumulation points of the sequ@dgcgén),en consist of the
solutions of the equatiof., (p(¢)|¢) = tint € [0, 1]. If, as in Examples 3|7 and 3.8, this solution
is unique, then the sequen®,,/n),cn necessarily converges to this solution= r*(¢) € [0, 1]
(say)P I(/]-almost surely.

If, however, as in Example 3.5, the equatibr (p(t)|¢) = ¢ has the solution = 1 and exactly
one further (smaller) solution if), 1), we have to exclude= 1 as a possible accumulation point
of (R, /n)nen in the latter case in order to prove thg -almost sure convergence @&, /n)nen

to the smallest solution* = r*(¢) (say) of the aforementioned equation. To this end, we only
consider values of leading to the two distinct solutions (¢) and 1. For critical value functions

p with p(t) < f1(¢) for all t € [0,1] it is then evident thaf, (p(t)[¢) < t forall t € (r*,1).
Moreover, notice that, by definition of, (), we have the inequalities, (\) — 1 < nr(A) <
An(A) forall n € N. Now, if A > p(r*), this, together with condition (3.2), yields tH&;{)-aImost
surely By, (p(An(N)/n)) < An(X)/n and consequentlR,, < A, (A) holds true for eventually all

n € N. This entailsim sup,,_,,, Bn/n < limsup,, o, An(A)/n = 7(A) < 1 Pp-almost surely,
which is just what we wanted to show. Finally, if < p(r*), we may choose &’ > p(r*)

and compare the number of rejections of the corresponding SUD-pnaedince this number is
non-decreasing with increasing parameter we eventually arriwaatip,,_, . R,,/n < r(\) <1
Pj;-almost surely. Since for all procedures under investigation it hplds < £ 1(¢) for all

t € [0, 1] we conclude that* = r*({) < fa(t¢). Hence, Theorem 3.13 applies. As a consequence,
the example procedures asymptotically control the FDR.

In case of the SUD-procedure in (i), we yse= f, ! and obtain* = f,(t;). Hence, the upper
boundc for the asymptotic FDR is sharp in (i) under Dirac-uniform configuratiore Jharpness
of the upper bound for the asymptotic FDR in (ii) and (iii) is due to the fact that under Dirac-
uniform configurations witl{ > (*(x) we obtain* = f,(t¢).

Finally, the sharpness of the upper bounds for the finif€DR in (ii) is a consequence of [(A2),
which is fulfilled forfc(;fL, 1 = 1,2. Sharpness here means that the upper bound given in (3.14) is
exactly attained for finitee under Dirac-uniform configurations. |

3.6 Asymptotic optimality of the AORC

The latter Corollary 3.19 means reworded that procedures basgdfoliilling the assumptions of
Theorem 3.15 asymptotically exhaust the whole FDR levehder Dirac-uniform configurations.
Moreover, the rejection curvg, cannot be improved in the sense of the following theorem, which
is another consequence of Theorem 3.13. In order to formalize "optimalgyx € (0,1),

A € [0,1] and M, denote the set of rejection curvesvith the property that for ally C N with
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lim,, .~ ¢, = ¢ for some( € [0, 1] it holds

lim sup FDRy, (gozui(r)> < lim sup sup FDRy ( SUD(T)) < a, (3.27)

n—o0 n—oo J€O

Wherewf:’;( ") is the step-up-down procedure of orde; = \,(\) based onr. It should be

noted that the first inequality in (3.27) is not very restrictive since many stafisnodels satisfy
the "model continuity assumptions" (SA) formulated in [91], due to which, astléor SUD-

SUD

procedures such as, A the corresponding FDR values FQI{@SUD ”) can be approximated

arbitrarily closely by the values FDg‘:<gosu'° ) for some suitably choseh e ©, n € N.

In terms of power it is immediately clear that, wheneverr, € M, with ri < ry, then

suD(71) SUD(r2)
n,An > (pn,

procedure in the sense that more (never less) false hypotheses regadbed.

Therefore, a smaller rejection curve typically leads to a more powerful tes

Theorem 3.20(Asymptotic optimality off,,)
(i) Letx € [0,1] andr € M. Then

Vit e [0,A]: r(t) > falt). (3.28)
If A < 1, then it holds for any € (A, 1] that

Ve (\7]: r(t) < fot) =Vt e (A, 7] :7r(t) = falt). (3.29)

(i) If A < 1andr € M, is such that, for every € («,1), the equationfF(p(t)|() =
1 — ¢+ (p(t) = t has at most one solution in (0,1), it even holds) > f,(¢) for all
t €10,1].

(i) If A =1 and assuming (D3), (11) and (12), it holds

inf r=
reMi fa

Moreover, forany) € O, = {9 € O : liminf, . (, (V) > a/(k(1—a)+a)}, k € (0,1),
the power of any’,, € M with fa(t) = fa(t)forall ¢t € [0, ] is asymptotically not smaller
than the power of any otherc M, that is,

lim inf Bﬁ(gpgugfa ) — Bo(¢S2n)| >0 forall ¥ € ©,. (3.30)

Proof: In order to prove part (i), assume that for an arbitrary chosen refectiover € M, it

holdsr(t*) < f.(t*) for somet* € (0, A). Consider now a Dirac-unifom configuratidi, with

lim,, o ¢, = ¢ and(¢ € (a, 1) chosen such that(t*) < Fo(t*|¢) < fo(t*). Then it is obvious

that property (3.27) is violated, because (with self-explaining notatioaljafisP;, -almost surely
liminf RY) /n > Foo(*[¢) > Foo(tc[¢) = faltc)

n—oo
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and consequently

lim inf FDRy, (gof;fi(”) > ¢t /(1= C+Ct) > Cte /(1= + Cte) = o,

n—o00 n

due to the fact that the functian — (x/(1 — ¢ + (x) is strictly increasing inc € (0,1) and

t* > t¢. Hence, for alk € (0, \) we haver(t) > f,(t), from which the assertion follows.

Now assume that we havét) < f,(t) forall t € (\, 7] andr(t*) < f,(t*) for somet* € (A, 7).
Consider now the Dirac-unifom asymptotic model RU*) with ¢* € (a, 1) chosen such that
Ja(A) < Foo(A[CF), Fo (t*|C*) < fa(t*) andinfy<;<i« (Foo (t|C*) — 7(t)) > 0, which is possible
due to the left-continuity of the rejection curve Then the argumentation is the same as before.
Part (ii) and the first assertion of part (iii) can be proven similarly.

For the proof of((3.30), we assume (in order to avoid trivialityn) > 0 for all n € N, define

S, = R, — V, and denote the set of afl, € M; with fa(t) = fa(t) for all t € [0, k] by S.
Then we have (with self-explaining notation as before) the inequality

r3 Sn ~oz Sn
VneN: Vfy €8t VreM;: ( o) _ (T)) 1 (my<n} > 0,

ny n

which holds true due to (3.28) and the fact tRatis non-decreasing itf,. Now, for fixedd € ©,,
we utilize the chain of inequalities

5 (r[Pg) < £ (rIDUn(Ga(9))) < £5(falDUn(Ga(9))) < &

which holdsPy-almost surely for eventually afi € N, leading tolim sup,, ., ¢} (r|Py) < x and
consequently td (- (<} — 1 [Py] for all ¥ € ©. Therefore, we obtaify-almost surely
lim inf (S”(f“) — S"(r)> >0 forall ¥ € O,, fo € Sk, 7 € Mj. (3.31)

n—oo ni ni

Taking expectation in (3.31) and utilizing Fatou’s lemma, we finally arrive s¢rtion (4.1). W

Theorem 3.20 shows that in the class of SU-procedures with rejectioe cur M, we always
haver > f,. In the class of truncated SU-procedures with parameter (0, 1), the truncated
procedure based ofy, is the best choice. More generally, if we restrict attention to the subspace
©,. C © described in (iii) of Theorem 3.2(,, is the asymptotically uniformly best choice {ih ]

for a step-up procedure. For SUD-procedures with parametet, f, leads to the asymptotically
uniformly best choice of critical values on the step-up part, see (3.28th&step-down part of

a SUD-proceduref, cannot be uniformly improved by somee M, whateverr does on the
step-up part, see (3.29) with= 1. For arbitraryr € (), 1], assertion (3.29) states that a rejection
curver € M, cannot be first smaller and then larger th&non the interval(\, 1]. It seems
possible thatM, contains an- which is first larger and then smaller on the step-down part. But
this would imply that the SUD-procedure basedrois asymptotically less powerful than the
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SUD-procedure based ofy, on someO,,. If we restrict attention to rejection curvese M
described in (ii) of Theorem 3.20, thef is the best choice. These considerations may justify to
call f., the asymptotically optimal rejection curve (AORC).

In view of these asymptotic results, it is natural to ask how largeas to become in order to
achieve a reasonable behavior of the FDR of the proposed prosed\sealready mentioned in
Example 3.5, the asymptotic exhaustion of the whole FDR level has to be triadtha slightly
liberal behavior of the procedures basedfgnn the finite case. In order to illustrate this effect,
we consider the SU-procedures basedfé)fﬂzg, 1 = 1,2, where the upper bound given in (3.14)
is sharp in the DY(¢,,)-model. Due to the pointwise order of these two rejection curves (cf.
Figure 3.4) it is clear that a SU-procedure based,&& is more liberal in the DY(¢,,)-model.
We therefore present results for this procedure. Figure 3.5 depicketiavior of this procedure
under DU configurations with varying number of true hypotheses fer100, 500 and1000. For

n = 100, there is a notable violation of the FDR level= 5% for 12 < ny < 35. The largest
FDR under Dirac-uniform is attained far, = 16 with numerical valu€).05801. For the two
larger values ofi, the actual level does not exceedy much.

0.0 | T
0 50 100 150 20

T 1
Ny

Figure 3.5: Actual DU-FDR of the SU-procedure baseqfé)%g@ depending omy

The method of computing the FDR for a SU(D)-procedure in case of aerlytmaly Dirac-uniform
configuration will be described in the next section. Moreover, we wikgome brief suggestions

for modifications off,, in the finite case. However, this will not be emphasized to much, because
on the one hand, the AORC is designed for the asymptotic case and on thhanbewe have to
keep in mind that the FDR values under Dirac-uniform reflect an unrealstist case scenario.
For realistic alternatives, we get much smaller realized FDRs so that thead WgMRC may safely

be used in the finite case for exg.> 500.

A detailed numerical study of the FDR behavior of the example proceduessied in Examples
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3.5,3.7 and 3.8 in case of a finite number of hypotheses at hand is giveapendix A.2.

3.7 FDR control for a fixed number of hypotheses

In this section we briefly discuss some possibilities to achieve strict FDR ¢dmti@finite num-
ber of hypotheses for procedures related to the AORC. It would betttao find critical values
close to[(3.3) for step-up-down procedures as described in the pseséwtions such that the FDR
is strictly controlled. As shown before, an upper bound for the FDR t¢éjp-8p procedure with
critical values satisfying that;.,, /i is non-decreasing ihis obtained in one of the Dirac-uniform
configurations. This bound is sharp if the corresponding Dirac-umiftwnfiguration belongs to
the model. For step-up-down procedures with paramgtee {1,...,n — 1} it is not known
whether Dirac-uniform configurations are least favorable. How&ieac-uniform configurations
also yield an upper bound for the FDR in this case.

More specifically, under the assumptions of Theorem 3.12, the aforemedtigper bound for a
fixed ng is given by (see (3.14))

n
b(no,n) = Ey; [g(Ra/n)], no=1,....n,

with I, defined as in Theorem 3.9. Hence, the upper bound for the FDR is bivéi) =

maXji<ng<n b(no, n)

Lemma 3.21
For a SUD-procedure with critical values;.,, of order \,, satisfying (T1)-(A2)b(ng,n) is given
by

Qp "p .
b(ng,n) = no Z nllfj Pry—1,n(Va =37 — 1), (3.32)
=1

wherelP,, ,, refers to a Dirac-uniform configuration such that p-values are iid uniformly dis-
tributed and the remaining ones follow a Dirac distribution. A\lf = n, which corresponds to a
SU-procedure)(ng, n) can alternatively be calculated by

no

j | .
bno,m) = D -t Puga(Va = j) = FORy, (757 (3.33)
=1

and it even holds equality in every summand, i.e.,

no

Pno,n(Vn = ]) = 7an1+j;npn0,1’n(vn = j — 1) forj = 1, ..., Q. (334)

Proof: In order to prove[(3.32), keep in mind that the expectation in (3.14) rédeasDirac-
uniform configuration with(ny — 1) true hypotheses angh; + 1) false hypotheses and since
pj ~ g0 forall j € I,,;, we haveRr,, = V,, + (n+ 1) IP’Ié-almost surely. Straightforward
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calculation now yields

)

Opq+ .
- OZ ntl+]n no—1,n(V =7 = 1),

which is (3.32). Equality (3.34) and consequently the left-hand side equ#i{8:33) are imme-
diate consequences of the representation of the pm¥,, dbr a step-up test given in Corollary
3.23. The right-hand side equality in (3.33) is obtained by noticing that in a®iniform model
with ng true hypotheses and, false hypotheses, we ha¥g, = V,, + n1 P Ié—almost surely and it
therefore holds

- Va Va
o, 455 - 5] ]
no

= Z .L]P)no,n(vn = ])7

]:lj-i-m

according to the discrete expectation formulia.

Formulas for the pmf. o¥/, under Dirac-uniform configurations can be obtained in terms of the
joint cdf. of order statistics. For SUD-procedures the computation of tie pf V,, becomes
numerically difficult for larger values of. A way out is to simulate the upper bound.

For the derivation of the pmf. df;,, we use the following considerations. Under the assumption
that0 < ¢, < -+ < en < 1, n € N, a general recursive formula for the joint cdf,’f of the
order statisticé/;.,, ..., Up—km, 0 < k < n, of ni.i.d. UNI|0, 1]-distributed random variabld$;

is given by

n—k—1
n s
Fylj(clsna cee 7Ck:n) =1- Z <j>}7j(cl:n7 ) Cj:n)(]- - Cj+l:n)n j’ (335)
§=0
with Y = F, andF) = F" = 1. This is essentially Bolshev’s recursion, which is proved in
different ways in [262], pp. 366-367, and in [89].
Formula(3.35) (folk = 0) may be used to calculate the pmf.1gf for a SUD-procedure of order
r under Dirac-uniform configurations and yields the following result.
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Lemma 3.22

For the pmf. ofl/, of a step-up-down procedure of ordebased on critical valued < ay., <
... < ap.n < 1 under a Dirac-uniform configuration withg true hypotheses and;, = n — nyg
false hypotheses, we obtain tfaf, . (V.. = j)/("}) is equal to

( .
~10—] ;
Fj(anﬁ-l:na ceey an1+j:n)an1+j+1;n7 if r < nq,

_ o _ j . .
Fno—j(arzny vy Oy O Ty v v vy an1+j+1:n)an1+j;n) if r > nmAJ<r—ni,
——————

n—r+1

~no—j i :
Fi(op, ..oy Qpiny O g1, - - ,()zn1+j;n)04n1+j+1:n, ifr>niAj>r—nq,
~————
T—n1

wherea; =1—-a;,7=1,...,n.

Proof: For notational convenience, we denote thealues corresponding to true hypotheses by

p©-values. It is remarkable that the vector of ordepedhlues(pi.p, - - . , Pnn) IS @lmost surely

0 0
of the form(p1., =0=... =0 = Ppyn, Py +1n = p(lzr)l, ... ,pﬁlo);n = Dnen)-

ni
Case 1y < ni: In this case, we necessarily fall into the step-down branch of the testguoe,

because at least the firscomponents of the vector of ordergdialues aré® such thap,.., < au..n
is true with probabilityl. Consequently, the evefit;,, = j} can be expressed as

{Vn = ]} = {pn1+1:n < Oni41my - -+ s Pni+jn < an1+j:n}

N {pn1+j+1:n > an1+j+1:n}'

Since the second event implies that all orderadlues with ordered indices, + j + 1 or greater
are larger thamy,, 1 j+1.,, the event means théto — j) p©-values are greater than,, 4 j 1.,
Since we have"?) possibilities to choose thegé”)-values and alp-values are assumed to be
independent, we immediately obtain the result.

Case 2y > n; andj < r — nq: In order to get into this case, we must havg, > «;., and fall

into the step-up branch of the procedure. Consequently, we can write
{V = .7} = {pr:n > Qpipy Pr—1m > Op—1in,y - - - s Pni+j+1n > an1+j+1:n}

N {pn1+j:n < an1+j:n}-

Sincepy, +j:n < oy, +5:n aUtomatically implies thagb,(f% < ap+jnforallk =1,...,7, we can
again chooseé out of theng p(?)-values to fulfill this relationship.
Case 3r > n; andj > r — nq: In this third case, we fall into the step-down branch of the proce-

dure, resulting in
{Vn = ]} = {pT:n < Ay Pr4-1:n < Qry1:my - -5 Pny+jn < an1+j:n}

O APni+j+1m > Qnytjtim}
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The assertion then follows in analogy to the step-down considerations cexske 1 B

Corollary 3.23
For an SU-procedure with critical values;.,, < --- < ay., Under a Dirac-uniform configuration
with ng true hypotheses, we get (see also [92])

. n .
Pno,n(Vn = J) = < ]0> FTLO*j(l — Qpiny o v oy 1-— an*n0+j+15n)ai—ng+j:n' (336)

This result is immediate if we consider the case n in Lemma 3.22. Alternatively, the pmf. of
V,, in this case can be calculated by iteratively applying (3.34).

3.7.1 Simultaneous’-adjustment

Here, we mention one ad-hoc possibility to obtain a valid set of critical vatwes $U- or SUD-
procedure guaranteeing strict FDR control, that is, we adjust the cnadaés given in (3.3) in a
suitable way. For example, we can try to find a suitable> 0 such that the choice

7 .
n+ﬁna 283 .
iy = , = - ,i=1,...,n, (3.37)
im 1_n+lﬁn(1_a) n—|—ﬁn—2(1—a)

yields a SU-procedure (or SUD-procedure) controlling the FDR at leveThe critical values

(3.37) correspond to the rejection curve

falt) = (1 + 2210, t € 0.0/(a+ 5/m).

Technically, the determination of the minimd), can be done by a grid search. Starting with
Bn = e for somes > 0, we evaluate (3.33) for all possible values®gfand check if the condition
maxi<n,<n b(no,n) < ais fulfilled. If not, we updates,, by iteratively adding until no violation

of the FDR level occurs any more. For example, for= 0.05, an SU-procedure with = 100
and the choice} oo = 1.76 leads to strict FDR control (we chose= 0.01).

1.0

e I N I I B I B B
0.0 0.2 0.4 0.6 0.8 1.0
t

Figure 3.6:f, for n = 10, 50, 200 together withf,,
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Figure[ 3.6 depicts the modified curvgs for n = 10,50 and 200 together withf,. The left
picture in Figure 3.7 shows the minimum values firthat have to be used to ensure strict FDR
control for SU-procedures based ﬁpandféfl, 1 = 1,2, respectively, for varying. In the right
picture of Figure 3.7, the corresponding factors 3, /n are displayed. It is easy to prove that
lim,,_,o B,/n = 0 in all three cases.

Bn 7] 1+8./n
2.0—] —
— 1.12—
1.6— |
1.08—
1.2—]
1.04—
BT—T T 1T T 17 T 1 T T T ] LSS I N B I B B
0 40 80 120 160 200 40 80 120 160 200
n n

Figure 3.7:3,, and1 + (3, /n for SU-procedures based gh, fc(f%l andj'}gfi2

Remark 3.24
In [15] (Remark to Definition 7), an SD-procedure with the universqlistchent constant,, =
1.0 was proposed.

3.7.2 Multivariate optimization problem

A more advanced approach towards finding a valid set of critical vatygs),_, _,, (say) re-
lated to the AORC for a finite number pfvalues leading to strict FDR control may consist in
comprehending this as a multivariate optimization problem under constraints.

Formally, this problem can be expressed by the task to find the minimum of tles tangtion

n

1/p
d((’Yl:na cee a’Vn:n)) = (Z \f;l(z/n) - ’7i:n|p> (338)

=1

for somep € (0, oo, i.e., minimize thel,,-distance of the set of critical valuesi(,., . .., Yn:n) €
(0,1)™ and the critical values originating from the AORC under the constraints

FDRyn (™) < ¥ng =1,...,n, and (3.39)
Yokt 5 Yo gy (3.40)
1+1 ]
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Of course, this problem can only be solved numerically by employing iteratidmigues. In
order to find the global minimum of (3.38) under the constraints (3.39) ad@)3t is necessary
to utilize a simplex-typed algorithm which is rather complex and goes beyondtpe ©f this
work. Anyhow, we will at least present one simple algorithm to obtain a velidfcritical values

which are close to théf, ' (i/n)),_, . and works as follows.

L.,

Algorithm 3.25

1. We start With(yi.p ),y ,, = (le(i/”))i:L...,n- These critical values obviously minimize

-----

the functiond((v1.n, - - -, Yn:n)) Unconditionally, but they violate constraint (3.39).

2. Now we search for the smallest possible positive constapts ; _,,, such that the critical

values

(fa'(i/n) = €i)i=1,..n OF (3.41)

(1= &) ft(i/n))izt, . (3.42)

respectively, fulfill the constraints (3.39) and (3.40). Efie can be found via a grid search.

Under the multiplicative ansatz (3.42) with the special cheice- ic for somes > 0, it can be
shown that constraint (3.40) is fulfilled if

e < min(Agi/Awi), (3.43)

where

PRl (LR VO N el VL R

1+ 1 7
Aoy = [ ((i+1)/n) = fo ' (i/n).

Of course, the latter policy is closely linked to tideadjustment method described before and
does not lead to the global solution of the minimization problem. Anyhow, it is simpie a
easy to implement and the obtained critical values remain pretty close to their iratisdsy
(fa'(i/n)),_, . The following figure depicts the solutions of Algorithm 3.25 with ansatz
(3.42) for a stép’-up test with = 25 (left picture) andr = 50 (right picture) together witlf,,.

False Discovery Rate and Asymptotics, Thorsten Dickhaus



80 3.7. FDR CONTROL FOR A FIXED NUMBER OF HYPOTHESES

L1l

OO T T T T T T T T T[T T T T T T1TT1] OO T TT T T T T T[T T T T[T 11T
0.0 0.25 0.5 0.75 1.0 0.0 0.25 0.5 0.75 1.0

Figure 3.8: Critical values obtained by Algorithm 3.25 foe= 25 andn = 50.

Remark 3.26

Kwong et al. (cf. [161]) have also developed an algorithm for findingakd set of critical
values for step-up tests under Dirac-uniform configurations baségeodistribution ofl/, given

in (3.36). For smalh, the results are very similar to the results obtained by Algorithm 3.25. For
largern, however, their solutions do not converge(;fgl(i/n))izl o but the sets of critical
values often show some peculiar behavior, for example that théy 7Iie oraseN&inct lines (cf.

Figure 3.9).

1.0—

0.9—

0.8—

0.7—

0.6—

OO TTTTTTTT[TTTT[TTTT[TTTT] O TTTTTTTTT[TTTI T TTTT[TTTT]
0.0 0.1 02 03 0.4 0.5 0.0 0.1 0.2 0.3 0.4 05

Figure 3.9: Critical values obtained by Kwong et al. (2002)fcr 16 andn = 32.

This is due to the fact that the underlying target equations of the algorithmian by

FDR,yn(¢7)) = a Vng =1,...,n, (3.44)
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which cannot be fulfilled under the constraints (3.40) for langeiThe iterative structure of the
algorithm in [161] implies that the critical values in case of nonexistence ofwdisn of (3.44)
under[(3.40) are simply linearly increasing in order to fulfill at least (3.40)

3.8 Connection to Storey’s approach

The AORC and methods based on it are by far not the only discussed impent®of the orig-

inal linear step-up procedure. In 2004, John D. Storey et al. (cf5]j2oroposed a method in
order to gain power by presenting a data-adaptive testing algorithm relgiag estimator for the
proportion of true hypotheses (in Storey’s nomenclature) which works as follows.

Algorithm 3.27 (Storey’s method)
1. Choose an FDR level and a tuning parameterec [0, 1).
2. Compute the-valuesp, ..., p, for each individual test and denote their ecdf. iy

3. Compute the estimatagp(A) = (1 — F,,(A\))/(1 — A) for the proportionr, of true hypothe-
ses.

4. Denote b)F/D\R,\(t) = 70(A)t/(F,(t) vn~!) an estimator function for the FDR of a single-
step procedure with threshaolds [0, 1].

5. Choose the valug,(FDRy) = sup{0 < ¢ < 1 : FDR\(t) < «} as threshold for the

p-values and reject all hypotheses witvalues lower than or equal tg(F/D\RA).

This algorithm was quickly implemented into software and is nowadays widedadpif we only
consider such-values withF,,(¢t) > 1/n for the moment and notice that

= fio(A)¢
+(FDR)) = <t<1: <
tal \) sup{0 <t < ) S al
= swpfo<t<1:Fu) > Ny
«

it becomes obvious that Algorithm 3.27 corresponds to the Benjamini-Hognbethod wherex
is replaced byy/7o()) leading to larger critical valuesify(\) < 1. For the special choick = 0,
we obtainmy(0) = 1, hence, the original linear step-up procedure. For the remainmgues with
F,(t) < 1/n, Algorithm|3.27 leads to determining

sup{t € [0,p1.n) : no(N)t < a} < pro.

Hence, we reject nothing in this case and this completes the proof that Am@ifty is equivalent

to an adjusted linear step-up procedure.
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Now, the question is near at hand whether Storey’s approach and thedsiett critical values
based on the asymptotically optimal rejection curve have something in commoeci&gp it is
of interest whether the rejection regions induced by the AORC can beeddyy Storey’s method
for a special choice of. To see that this is not the case, we may define

7R(t) =1 — Fo(t)(1 — ),

and can (in analogy to Storey et al. (2004)) construct a point estimatief&iDR of a single-step
procedure with givem € (0,1) by

t ~ AORC _ 1
Fm D=t [an - C“)] |

Finding a crossing point af,, and f, on (0, 1) is then (similarly to Storey’s approach) equivalent

F/D\RAORc(t) ==

to equating:/D\RAORc(t) = «, because

F/D\RAORC(t) = a
— aft = 1/F,(t)—(1—a)
= RO = gwmee
— F,(t) = fa(t).

This calculation shows that the rejection regions coming from the AORC td®embedded
in Storey’s framework, because we do not employ a scalar estimatan, but an "estimator
function" 71y (¢) if we use his notation, i.e., the estimationmf has to be done for every thresh-
old ¢ separately. This characterizes the difference between a fixed rejectiea approach and
Storey’s variable rejection threshold depending on the data and the rggdtimatorry()\). Both
approaches are not transferable into another.

The latter observation shows that both test methods are in competition and iniakesesting
to discuss assets and drawbacks of both procedures and to compapetfeemance in various
distributional settings. A systematic comparison of both methods and some otltkmsseveral
setups is the topic of the following Chapter 4.

In general, one can summarize the pro’s and con’s of the two method#desefore, especially
in comparison with the original linear step-up procedure which both methoids tamprove, as
follows.

Pro linear step-up:

e Actual FDR of oY depends only on the proportion of true nulls, not on the values of the
alternative parameters

e Theoretically valid under positive dependency

e Easy and intuitive
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Contra linear step-up:

e Not a-exhausting forg < n

o Often low power for small proportions of true null hypotheses
Pro Storey method:

o Flexible with respect to concrete underlyipgyalue distribution

e If 7o(\) is a good estimate fory, the resulting procedure is close to the optimal "oracle
procedure"” (see Chapter 4 below)

Contra Storey method:

e The realized estimatéq(\) can be greater thah (this happens especially if discrepe
values are involved); then the procedure is less powerful than the Btegaup procedure

e The estimatotity()\) introduces a new variance component which makes the FDP of such a
procedure even more volatile, especially under dependency

e The choice of a good tuning paramefeis a sensible issue
Pro AORC-based procedures:
e Works for any¢ and is even theoretically optimal under Dirac-uniform configurations
¢ No tuning parameter necessary
e No estimation of. necessary (implicitly covered)

e Even the adjusted critical values for a step-up test basefl, @re an almost uniform im-
provement of Simes’ critical values. For example, foe= 100 anda = 0.05 we obtain
with the 8199 = 1.76 adjustment described in Subsection 3.7.1 that only the smallest critical
valuea;., is smaller than its Simes’ counterparfn, while all other99 «;.,’s are larger
thanja/n.

e Theoretically valid and often superior to Storey’s approach if the unihgrly-values are
stochastically larger than a UM 1]-distributed random variable (cf. Chapter 4).

Contra AORC-based procedures:
e Fail to control the FDR under positive dependency

e Designed to control the FDR even under the worst case scenario dighyfiarge alternative
parameters and therefore often not powerful for realistic alternatimesll effect sizes
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84 3.8. CONNECTION TO STOREY’S APPROACH

¢ Not flexible with regard to the actual data, i.e., no data-dependent critidaey (fixed
rejection curve drawback)

On the whole, one should expect that Storey’s method works better iro€atictly continuous

distributions and smaller effect sizes while the AORC-based procediilidsetvave better if we

have extreme parameter configurations. A comparison is not really feaubedoth methods
are designed to achieve different goals or, in other words, haveafhffeinderlying optimality

criterions. However, on a descriptive basis it may be interesting to studybtbleaviors under
various circumstances in more detail. This is the topic of the next chapter.
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Chapter 4

Power study for some FDR-controlling
test procedures

In Chapter 3, we have seen that there are improvements of the Benjaminbé&tganethod with
which we cangain power while (at least asymptotically) keeping the FDR leveHere, we are
now concerned witthow muchgain of power is possible with these methods.
Using the nomenclature introduced in Table 1.1, we recall our formal defirofithe power of a
multiple test procedure = (i1, . .., ¢,), which was given in Definition 1.3 as

power, () = Ey (nIS\T; 1> ) (4.1)

Supposing that the proportiah = ny/n of true hypotheses converges with,, ., {, = ¢, we
can herewith calculate the asymptotic power of a multiple test procedbeaesed on a rejection
curver leading to the rejection regidn, t*] for 0 < ¢ < 1 by

powet,(p) = lim =07 = M = S
r(t*) — ¢t
e (4.2)

Obviously, under the Dirac-uniform configurations QY (we have (finite and asymptotic) power
equal tol.

In order to make our comparison as fair as possible, we only consideugtpmcedures based
on rejection curves, namely

1

(1)
(2)
®3)
(4)

<

= t/a Benjamini-Hochberg procedure

<

(t)

(t) = 7o(N)t/a Storey procedure

(t) fff%z (t)  adjusted AORC-based procedure
r@(t) = ngt/(na) "Oracle" procedurge

r3

where the tuning paramet&mwas chosen equal t5 andxy = (1/2 — ) /(1 — «). Both choices
imply that the maximum possible rejection threshold for procedures (2) grid €gjual tol /2.
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86 4.1. SIMPLE HYPOTHESES CASE

As stated before (cf. Section 3.8), the crucial difference betweee tivesprocedures is the fact
that the AORC-based procedure utilizes a fixed, deterministic rejectior auinite in Storey’s
method the rejection curve is a random object estimated from the obsengedQfecourse, the
"oracle" procedure is impracticable and only serves as a benchmarkydee it has maximum
power. Loosely formulated, we want to find out three things:

(i) How much power gain is possible with Storey’s method and with the AOR@¢ehasethod
with respect tap"sY under which parameter configurations ?

(i) Which of the two improvements is more powerful in which cases ?

(iif) How far are the two improvements away from optimal power under whiglampater con-
figurations ?

Our simulation setup is as follows. For three different choices @&.,n = 40 (moderate problem
size),n = 400 (large problem size) and = 4000 (asymptotic case, justification see below), we
consider the proportions, = 90%, 75%, 50%, 25% and10% and investigate the power and the
realized FDR of the step-up procedures based on the rejection atifvgs= 1,...,4, under
varying parameter constellations. The FDR level is chosem as5% and the quantities FDR
and powey are estimated by their average valuesir= 10,000 Monte Carlo replications, i.e.,

= _Unb
FDR, = — E o with gp = Y 1
1 5 S
_— b
ower, = — E o
p r, B 2y )

where the entities written in lowercase letters denote the realizations of tlespgonding random
variables defined in Table 1.1. We subdivide our power study into two,paatsely the simple
hypotheses case and the composite hypotheses case.

4.1 Simple hypotheses case
For illustrative purpose, we again study the one-sided normal meangprob
Hi:{p=0} vs. K;: {u>0},i=1,...,n,

with test statistic; ~ N (0,0?) i.i.d.,i = 1,...,ng for the true hypotheses afly ~ N (u, o?)
iid.,j =ng+1,...,n forthe false hypotheses with< ng < n. For the sake of simplicity and
without loss of generality, we assume unit variance, #:& = 1. Moreover, we adgh = oo to the
model such that Dirac-uniform configurations can be covered in thsdwneork as well. Suitable
p-values for testingd; versusk; are then given by;(t) = Py,(T; > t) = 1 — ®(¢) and for
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the distribution functions of the;(7;) under H; and K, respectively, we get for € [0,1] the

representations
Go(t) = t, (4.3)
Gi(t) = Po(Tpys1 >0 1 —1)=1— 0@ 11 —t)— p), (4.4)
Fo(tlGn) = ¢+ (1= — (@7 (1 1) — p)). (4.5)

We now investigate the power and the realized FDR of the step-up presblased on the rejec-

tion curvesr) i = 1,...,4, in case of

s = 0.5 small/ minor effect
u = 2.0 realistic / relevant effect, and
e = 5.0 p — value approximately- ¢g.

The following tables list our simulation results for each considered valgg séparately.

G =09 1e = 0.5 1 = 2.0 o = 5.0
10 | 400 | 4000 | 40 400 | 4000 | 40 | 400 | 4000
FOR. | 4.40% | 4.42% | 4.20% | 4.04% | 4.49% | 4.52% | 4.62% | 4.51% | 4.50%
powet” | 0.66% | 0.000% | 0.012% | 19.58% | 12.08% | 10.36% | 99.27% | 99.29% | 99.27%
FDR. | 4.85% | 4.65% | 4.57% | 4.80% | 5.06% | 4.98% | 5.21% | 5.01% | 5.00%
powet? | 0.71% | 0.094% | 0.012% | 20.80% | 13.11% | 11.40% | 99.34% | 99.36% | 99.35%
FDR | 4.53% | 4.45% | 4.29% | 4.37% | 4.50% | 4.56% | 5.25% | 5.01% | 5.00%

powet. | 0.68% | 0.090% | 0.012% | 20.27% | 12.28% | 10.47% | 99.39% | 99.36% | 99.35%

FDR. | 4.87% | 4.96% | 4.92% | 471% | 5.00% | 501% | 5.10% | 5.00% | 5.00%
powet.” | 0.73% | 0.10% | 0.013% | 20.82% | 13.23% | 11.46% | 99.38% | 99.36% | 99.35%

T

Table 4.1: Power study in the simple hypotheses case - Resul}s fo010.9

Utilizing (4.2) and the explicit formula foF',, (¢|¢, ), we can additionally calculate the asymp-
totic power of the four procedures for the interesting case= 2.0 numerically and get (for
¢n — ¢ = 0.9) the values

powe&) ~ 10.14%, powe&) ~ 11.22%,
poweﬁf? ~ 10.25%, powe&) ~ 11.28%.

In this sense, it seems justified to call the setup= 4000 already the "asymptotic case". As
expected, the linear step-up procedure performs nearly equally wallith@ompetitors here.
Storey’s method is close to the oracle procedure, because the assurhptidNIg0, 1] distribution

for the p-values under the null hypotheses holds true and the choigeiofippropriate (in the
linear part of the limiting ecdf. of the-values). For small family sizes and large parameter
values, Storey’s method and the AORC-based step-up test both tend tmasirvativity.
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Cpn=0.75 fs = 0.5 [ty = 2.0 fta = 5.0
n 40 400 4000 40 400 4000 40 400 | 4000

FOR. | 3.65% | 3.96% | 3.87% | 3.80% | 3.76% | 3.74% | 3.70% | 3.72% | 3.75%
powet) | 0.62% | 0.008% | 0.013% | 26.80% | 22.93% | 22.51% | 99.74% | 99.73% | 99.72%
—

FDR, | 4.09% | 4.28% | 4.27% | 4.98% | 4.95% | 4.90% | 4.94% | 4.98% | 5.00%
powel”) | 0.71% | 0.11% | 0.015% | 31.11% | 28.09% | 27.79% | 99.80% | 99.81% | 99.81%

FOR. | 3.76% | 3.96% | 3.88% | 4.33% | 4.01% | 3.97% | 5.13% | 5.00% | 5.00%
powet” | 0.65% | 0.008% | 0.013% | 28.68% | 24.18% | 23.62% | 99.81% | 99.81% | 99.81%
FOR | 4.92% | 5.04% | 5.18% | 5.02% | 5.03% | 4.98% | 4.94% | 4.98% | 5.00%
powet”) | 0.85% | 0.13% | 0.019% | 31.90% | 28.48% | 28.10% | 99.81% | 99.81% | 99.81%

Table 4.2: Power study in the simple hypotheses case - Resulfs fo10.75

Again, we additionally report the asymptotic power of the four procediresse ofu,. = 2.0
under the parameter configuration— ¢ = 0.75. We obtain

powe&) ~  22.45%, powe&) ~ 27.74%,
poweff? 23.55%, powe&) ~ 28.05%.

%

Here, with shrunkenr,,, the improvements oY begin to considerably outperform the linear
step-up procedure. Again, the Storey procedure shows a supehawibr. The AORC-based
step-up method is not much more powerful thaft, becaus€,, is too large to lead to substantial
power gain by the procedure basedfan It is remarkable that even the fully-exhausting oracle
procedure can hardly detect small effects like = 0.5 in such a normal means-comparisons

problem.

(o =05 s = 0.5 [ty = 2.0 Lta = 5.0
n 40 400 | 4000 40 400 4000 40 400 | 4000
—

FDR, | 2.34% | 2.56% | 2.46% | 2.51% | 2.50% | 2.50% | 2.49% | 2.49% | 2.50%
powet,” | 0.68% | 0.11% | 0.015% | 37.55% | 36.29% | 36.14% | 99.89% | 99.88% | 99.89%

FDR. | 2.86% | 3.15% | 3.12% | 4.79% | 4.81% | 4.80% | 4.98% | 4.98% | 5.00%

powet” | 0.90% | 0.14% | 0.020% | 51.72% | 52.46% | 52.49% | 99.95% | 99.96% | 99.96%

FDR. | 2.38% | 2.57% | 2.46% | 3.46% | 3.19% | 3.15% | 5.33% | 5.01% | 5.00%
powet” | 0.73% | 0.11% | 0.015% | 44.50% | 42.01% | 41.62% | 99.96% | 99.97% | 99.96%
FDR. | 4.71% | 4.97% | 5.13% | 5.01% | 5.03% | 5.02% | 5.02% | 4.98% | 5.00%
powet.) | 1.5% | 0.26% | 0.040% | 54.35% | 53.82% | 53.70% | 99.96% | 99.97% | 99.96%

Table 4.3: Power study in the simple hypotheses case - Resulfs fo10.5
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Considering only,. = 2.0 and letting(,, — ¢ = 0.5, we now get the asymptotic power values

powe&) ~ 36.14%, powe&) 52.51%,
poweﬁf? ~ 41.62%, powe&) ~ 53.71%.

%

It becomes apparent that the improvements with the step-up test based A@RI@&grow with
decreasing. Moreover, the general detectability of any of the considered proesdncreases
with increasing proportion of false hypotheses.

o = 0.25 fs = 0.5 [y = 2.0 fia = 5.0

n 40 400 4000 40 400 4000 40 400 4000
— (1

EOR | 1.17% | 1.43% | 1.15% | 1.24% | 1.25% | 1.25% | 1.27% | 1.25% | 1.25%

n

powel") | 0.75% | 0.11% | 0.017% | 46.17% | 45.53% | 45.48% | 99.94% | 99.94% | 99.94%

—=(2)

FDR, 1.69% | 1.87% | 1.62% | 4.37% | 4.42% | 4.39% | 4.99% | 4.99% | 5.00%

powet”) | 1.15% | 0.18% | 0.029% | 7T4.65% | 77.28% | 77.53% | 99.99% | 100% | 100%

— (3
FDRi) 1.20% | 1.43% | 1.14% | 3.35% | 2.30% | 2.24% | 6.48% | 5.06% | 5.00%

powet” | 0.80% | 0.11% | 0.017% | 65.17% | 60.87% | 60.56% | 100% | 100% | 100%
@

FDR, | 4.80% | 5.05% | 5.04% | 4.94% | 5.01% | 5.00% | 5.00% | 4.99% | 5.00%
powet.) | 4.75% | 1.20% | 0.034% | 80.54% | 80.50% | 80.51% | 100% | 100% | 100%

Table 4.4: Power study in the simple hypotheses case - Resulfs 010.25

Underu, = 2.0 and for¢,, — ¢ = 0.25, we obtain

powe&) ~ 45.47%, powe&) ~ T77.57%,
powet.) 60.52%, powetd ~ 80.51%

Q

as asymptotic power values. For such low proportiong,ofthe weakness of the linear step-up
procedure (does not exhaustesulting in poor power) can be seen clearly. Both the AORC-based
procedure and the Storey procedure show a much more performaticmehvhereby the latter
procedure still remains close to the oracle procedure and is the undigpasgiechoice of the three
procedures under investigation that can be carried out in practice.

The last setting,, = 0.1 seems irrelevant for practical considerations. It is mainly included to
show that the adjustment ¢f, works as expected, because here we obtain crossing points of the
limiting ecdf. of thep-values and the resulting rejection curve in the linearly continued pdft.of
Indeed, this "protection” works and even under the extreme vaJue 5.0 no violation of the
FDR-level occurs with the AORC-based test.
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(,=0.1 ws = 0.5 wr = 2.0 e = 5.0

10 | 400 | 4000 | 40 100 | 4000 | 40 | 400 | 4000
FDR. | 0.62% | 0.58% | 0.42% | 0.49% | 0.50% | 0.50% | 0.51% | 0.50% | 0.50%
powet! | 0.82% | 0.12% | 0.019% | 50.36% | 49.94% | 49.84% | 99.95% | 99.95% | 99.95%
FDR. | 0.86% | 0.80% | 0.67% | 3.36% | 3.55% | 3.55% | 4.03% | 4.92% | 5.00%

13

powet. | 1.44% | 0.23% | 0.040% | 83.78% | 92.86% | 93.26% | 100% | 100% | 100%

— (3
FDRi ) 0.65% | 0.59% | 0.42% | 3.87% | 1.96% | 1.59% | 4.83% | 4.86% | 4.93%

powet” | 0.88% | 0.12% | 0.019% | 83.16% | 80.58% | 78.56% | 100% | 100% | 100%
—@

FDR, | 4.88% | 4.98% | 5.00% | 4.98% | 4.99% | 5.00% | 4.96% | 5.01% | 5.00%
powet.” | 32.18% | 25.08% | 24.02% | 97.15% | 97.13% | 97.12% | 100% | 100% | 100%

Table 4.5: Power study in the simple hypotheses case - Resuls fo10.1

Finally, the asymptotic power values in caseuef= 2.0 and¢,, — ¢ = 0.1 are (numerically)
given by

poweb) ~ 49.85%, powetd) ~ 93.33%,

powe@) ~ 78.41%, powe&) ~ 97.13%.

On the whole, we have shown that in this setting with high practical relevaheeproposed
improvements ofp"*Y considerably outperform the original Benjamini-Hochberg method if the
proportion of true nulls is bounded away frdmlt has to be conceded that Storey’s method under
these regularity circumstances (strictly continuous distributions, simple nuithgses) performs
very well and is preferable over the AORC-based method considered he

4.2 Composite hypotheses case

Here, we assume now that the null hypotheses are composite in the odesideal means prob-
lem. More precisely, we consider the multiple test problem

Hi:{p<0}vs. K;: {u>0},i=1,...,n,

wherey is the expectation of a normal distribution and the test statistics are of the form

T, ~ N(0,02%) Li.d., i=1,...,n0/2,
T, ~ N(-p,0%) iid, j=mnog/2+1,...,n9, and
T, ~ N(p,o?) iid., k=no+1,...,n,

with 0 < ng < n. This means that for the first half of the true hypotheses, we are at threlboy
of the null hypotheses while for the second half of the true hypothesesemar in the inside of
the corresponding hypothesis;. Again, we set? = 1. Typically, as described in Section 1.2,
the probabilitiew;(t) = Po(T; > t) = 1 — ®(t) at the boundary of thél;’s are used ag-values
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for testing H; versusK;. The distribution functions of thg;(7;) underH; and K;, respectively,
now have fort € [0, 1] the representations

Go(t) = %t + %(1 — (M1 —t) + ), (4.6)
Gi(t) = 1-®(@ (1 —1t)—p), (4.7)

Faoltle) = 5 (e+ (1= 0(@7' (1= 0)+ )
+ (1= - 2@ (L —1t) — ). (4.8)

Again, we investigate the power and the realized FDR of the step-up pnasetased on the
rejection curvesV) i = 1,... .4, in case ofu, = 2.0 (the realistic / relevant effect already used
in the previous section). The following table lists our simulation results for theidered values

of ¢,.

[ =2.0 FOR. andpowst.” FDR_ andpowst”
n 40 400 4000 40 400 4000
— 0.24% | 0.26% | 0.25% | 1.24% | 1.34% | 1.34%
50.17% | 49.87% | 49.77% | 84.57% | 88.27% | 88.61%
G — 025 0.63% | 0.63% | 0.62% | 1.51% | 1.56% | 1.55%
46.02% | 45.42% | 45.30% | 66.33% | 68.38% | 68.54%
¢ 05 1.25% | 1.28% | 1.25% | 1.60% | 1.66% | 1.64%
37.57% | 35.95% | 35.86% | 42.45% | 42.28% | 42.32%
‘¢ — o015 1.89% | 1.86% | 1.88% | 1.89% | 1.86% | 1.88%
26.62% | 22.46% | 22.13% | 26.64% | 22.46% | 22.13%
¢ — 09 2.22% | 2.17% | 2.29% | 2.22% | 2.17% | 2.29%
" 19.13% | 11.72% | 10.07% | 19.13% | 11.72% | 10.07%
[ =2.0 FOR. andpowet” FDR. andpowet.”
n 40 400 4000 40 400 4000
1.56% | 0.82% | 0.75% | 2.60% | 2.60% | 2.59%
o =01 83.73% | 78.00% | 77.10% | 96.88% | 96.93% | 96.92%
‘. — 025 1.35% | 1.13% | 1.10% | 2.49% | 2.53% | 2.51%
62.92% | 60.12% | 59.75% | 80.21% | 80.01% | 79.95%
¢ 05 1.71% | 1.59% | 1.55% | 2.46% | 2.52% | 2.51%
43.93% | 41.31% | 41.09% | 53.79% | 53.11% | 53.05%
¢ —om 2.08% | 2.01% | 2.00% | 2.48% | 2.50% | 2.50%
28.55% | 23.59% | 23.16% | 31.56% | 27.80% | 27.54%
2.34% | 2.21% | 2.31% | 2.42% | 2.41% | 2.54%
=091 10 679% | 11.80% | 10.18% | 2020% | 12.74% | 11.15%

Table 4.6: Power study in the composite hypotheses case - Resylts$oR.0
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Apparently, for¢ > 0.75, the Storey method is almost always equivalent to the Benjamini-
Hochberg step-up procedure and therefore gets outperformed Bjei@ip procedure based on
r3). This is due to the fact that the estimatorused in Storey’s approach is almost always equal
to 1 in such cases.

It may be argued that the numerical power gain by the AORC-baseddaneeis not very large, but
obviously we might have chosen a different parameter configuratidm that the results would
have been more impressing. However, focus should have been laid dacththat the data-
adaptive method developed by Storey is no improvement of the linear steppogdure at all in
case of composite null hypotheses and large proportion of true nulls.

4.3 Summary
Returning to our initial questions, we can now give the following answers.

() In test problems with continuous test statistics, simple null hypotheses aneéraie alter-
native parameter values, Storey’s approach seems to be the methodoefftbm today’s
perspective.

(ii) If, under the assumptions listed under (i), the alternative parametanslgrger, the AORC-
based methods perform equally well with respect to power and FDR ¢oltooeover, they
have the advantage that no tuning parameter is necessary.

(iif) For composite hypotheses, the AORC-based methods are prefeeapksially if the pro-
portion of true null hypotheses is not too large and some parameter valioeging to true
null hypotheses are assumed to lie inside of the null hypotheses’ parapater.

(iv) If the multiple test problem employs discrete test statistics and the comdsp p-values
are not uniformly distributed on the unit interval but stochastically largeth Imethods
are most likely to have low power. This is due to the fact that crossing padirtsececdf.
of the p-values and the underlying rejection curves are decisive objects detegntive
decision rule. One way to face this problem is to tes&omizegh-values in such a situation

again leading to UND, 1]-distributedp-values under null hypotheses. This approach has
been worked out for the example application of testing for Hardy-Wegnbeguilibrium in
genetics studies in [95].
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Chapter 5

Concluding remarks and outlook

With this work, two main aspects should have been worked out.

First of all, the calculations in Chapter 2 illustrate that the false discovepoption FDP is a very
volatile quantity (a random variable with possibly large variance) undetiy@sglependency. In
the i.i.d. caseR,/n converges almost surely (cf. Lemma A.2in [91] or Theorem 5 in [275]),
while under dependency it typically has positive variance. We have théeolearly in our D-
EX-models, where (depending ¢h = z) in some case®,(z)/n (determined by the ordinate
of the largest crossing point) was close to zero while in other cases itloasstol. We are not
the only ones who have discovered this effect. Recently, under obsgaworking on this field
even some doubt has arisen if control of the FDR is a reasonable amdlifig criterion under
dependency at all. Indeed, controlling only the expectation of the FDR wiehighly variable
is quite unsatisfactory, because we can only state thatwheageproportion of false significances
is bounded byy, but can make no statement about the individual experiment that we &alua

Consequently, it was suggested not only to look at the first moment of tRelieDtry to construct
confidence intervals taking the second moment into consideration as welkorl@ok at the
whole distribution of the FDP. Two remunerative references for this tagi¢l®4] and [170]. In
the latter article, alternatively, usage of the so-calldeWER was proposed. Here, the probability
P(V,, > k) is controlled at levely for some integek > 0. The authors argue that this is a good
tradeoff between relaxation of the error rate and keeping courtesy Exgierimenter in a way
that we are able to guarantee oRljalse significances with statistical certairity— o). Stepwise
test procedures far-FWER control are developed in [170] as well.

In Chapters 3 and|/4, we have pointed out that the classical Benjaminibidmcprocedure'sV

from 1995 (in some sources even callée FDR procedurer something similar) gives room for
improvements, but this room is limited. Especially if the proportjgrof true hypotheses is close

to 1, it is hard to outperformp"s¥ to a considerable amount. This is also reflected in the shape
of our asymptotically optimal rejection curyg, which starts with the same derivative as Simes’
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line in 0 and deviates from it only moderately with growing argument. However, witbgatures
based ory,, itis possible to reject hypotheses withvalues larger than while keeping the FDR
level and this leads to a substantial gain in power for smaller valugs where the ecdf. of the
p-values typically has a concave shape and often interggcts a larger abscissa than One

may argue that small values ¢f (many false hypotheses at hand) seem quite artificial and are not
encountered in the relevant application fields where we e.g. scan mag#0s of SNPs to find

a dozen candidates, but even in the microarray analyses framewosgkigsituwith(,, ~ 0.6 are

not unusual if we test for Hardy-Weinberg disequilibrium in strata, kaneple.

In future research, it may be interesting to study some more complicatedddgmmsrconcepts than
exchangeability in more detail, e.g. investigate two-sititgbe test statistics of the forf;, =
|.Xi — Xo|/S. Also, it may be of interest how the FDR behaves under more realistic coafigns
of the alternative parameters than the Dirac-models. Determination of leasalide parameter
configurations for step-up-down test procedures remains a vellgcbmg issue.

As far as the AORC is concerned, it may be worth to study the behavioiockdures based on
fo in PRDS situations. As shown in Remark 3.14, further adjustments, @fill be necessary
to implement FDR-controlling procedures in such a setup. Exact proofsOD& control under
dependency for any stepwise test procedure based on critical hfieeent from Simes’ critical
valuesay, are very complicated, because the key expresBigiR, = jlp; < «j.,) is hard to
handle and the differende;.,,/j — a;j_1.,/(j — 1)] appearing in all the proofs in Chapter 3 only
vanishes for critical values with the structure of Simeg’s. Anyhow, it seems possible that FDR
control for AORC-based procedures can be proved under othedefined dependency structures
such as, e. g., block dependence as relevant in GWA analyses. Thisenmayestigated in future
research.

Finally, the exact solution of the minimization problem given in Subsection 3.7.2ogimg some
simplex-type algorithm can lead to an optimal set of critical values even fofiite n.
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Appendix A

Numerical simulations and calculations

A.1 Simulations for FDR under dependency

In this section, we present some simulations for the FDR behavigt8funder the D-EX-N
models introduced in Section 2.3. The setup for these simulations has besem esdfollows. For
given( and for varyingp, we generated( = 1000( test statisticd;,i = 1,...,n( as givenin the
introductory part of Section 2.3 with, = O forall: = 1, ..., n¢ and computed the corresponding
p-values. Thei(1 — ¢) remainingp-values were set equal to zero. This was done independently in
m = 10,000 simulation runs. Denoting the FDP for a linear step-up procedure withysualues

for a particular run byy,, = V,,/(R,, v 1), we estimated FDR (¢) (for onep) by

— 1

FD (C)::;;EE:qu::(?mn“
=1

where the indey indicates thej-th of them = 10, 000 simulation runs aanﬁ denotes thg-th
realization ofQ,,. The following figures show the results for= 0.2,0.4,0.6,0.8,0.9 and 1.0

depending omn.
FDRoo (0.2) and FDR4 (0.2) FDR.(0.4) and FDR4 (0.4)
0.011— 0.024—
0.010—
0.009— Y
00 02 04 06 08 1.0 00 02 04 06 08 1.0
P P

Figure A.1: Simulation for the FDR @$*" in the D-EX-N model with{ = 0.2 and{ = 0.4
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96 A.1. SIMULATIONS FOR FDR UNDER DEPENDENCY

FDR.(0.6) and FDR.(0.6)

FDR.(0.8) and FDR4(0.8)

Figure A.2: Simulation for the FDR af"" in the D-EX-N model with{ = 0.6 and¢ = 0.8

The simulated data points are represented by the small dots while the solid caflest the
theoretical values. It can be seen that the values obtained by simulatioduep the shape of the
theoretical FDR,-curves for{ < 1.0 remarkably well, especially for largéis where the bulged
shape of the FDR -curve becomes more and more distinct.

FDR..(0.9) and FDR+(0.9)

FT T 7T
00 02 04 06 08 10

p

FDRo (1.0) and FDRoo(1.0)

0.05— :e-,o
P ’ﬂ’e

Figure A.3: Simulation for the FDR af"" in the D-EX-N model with( = 0.9 and¢ = 1.0

For { = 1.0 and largerp’s, this is still the case while for smallers the simulated data points
have much larger ordinates than tixoordinates of the FDR(1)-curve at the corresponding
abscissas. This phenomenon is due to the fact that here the FDR behatierlimiting case
differs substantially from the finite case. This becomes clear if we conlidetasep — 0T,
where the order of limits plays a severe role, because it holds
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lim (lim FDRn(l)) = «, but (A1)
n—oo p_>0+
lim, (T}LrgOFDRn(l)> — ®(—\/2ln(a)) << a. (A.2)

Obviously, the limit given in (A.2) cannot be reproduced by any simulatiams&quently, it turns

out thatn has to be unrealistically large in order to reflect the limiting behavior for smaker
adequately i = 1.0. For{ < 1, such artefacts do not occur and the simulation gives valid results
even for moderate ~ 1000 as relevant in practice.

A.2 Adjusted procedures based on the AORC

In this section, we refer again to the example procedures based on thé p@Rented in Exam-
ples 3.5, 3.7 and 3.8. In Corollary 3/19, it has been shown that the moposcedures asymptot-
ically control the FDR under any parameter configuration if the distributiossimptions (D3)-
(12) for the p-values hold and the proportiaf of true hypotheses converges to so¢ne [0, 1]
for n — oo. However, in the finite case the procedures do not strictly control the €bRhe
discussion around Figure 3.5). Here, we now numerically investigate hevalithe procedures
really are forn ranging fromb to 1000.

A.2.1 SUD-procedure, Example 3.5

We investigate the SUD-procedure based on the original AORC with pamaigete [#1 . The
FDR level was set tae = 5%. As already mentioned in Section 3.7, the evaluation of the pmf. of
V,, for an SUD-procedure using the formula derived in Lemma 3.22 beconmesriually difficult

for larger values ofi. Therefore, we employed computer simulations for the results for100

with M = 10000 Monte Carlo replications.

In case of an SUD-procedure, it is not clear if Dirac-uniform configjons are least favor-
able. Therefore, the following table lists the upper boufid= b(n§,n) = max b(ng,n)

as well as the maximal FDR under Dirac-uniform configurations, namely,FDRy,)) =
max FDRy, »(4(,)), together with the corresponding values fgrandng*.

noENy,
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98 A.2. ADJUSTED PROCEDURES BASED ON THE AORC

n | ng | b(ng,n) | ng* | FDRyzx n(0(n)) n | ng | b(ng,n) | ng* | FDRu n(@@m))
512 | 40.0% | 1 20.0% 0 | 8| 731% | 8 5.92%
10 2 | 20.0% | 1 10.49% 100 | 10 | 6.70% | 12 5.72%
15| 3 | 15.04% | 2 8.72% 150 | 16 | 6.18% | 18 5.50%
20 | 3 | 12.42% | 3 7.77% 200 |19 | 5.97% | 23 5.41%
251 4 | 1097% | 3 7.20% 250 | 23 | 5.81% | 23 5.36%
30 | 4 | 10.02% | 4 6.90% 300 | 28 | 5.70% | 31 5.33%
35| 5 | 9.31% 5 6.62% 400 | 34 | 5.58% | 39 5.26%
40 | 5 | 8.84% 5 6.47% 500 | 39 | 5.47% | 48 5.25%
50 | 6 | 8.13% 6 6.21% 750 | 61 | 5.35% | 63 5.16%
60 | 7 | 7.65% 7 6.04% 1000 | 77 | 5.28% | 81 5.13%

Table A.1: Results for the SUD-procedure, cf. Example 3.5

It turns out that fom > 500, the FDR level violation is lower thai5% for this procedure.

A.2.2 SU-procedure based orfyy; .., Example/3.7

In this subsection, we investigate the adjusted Aq%tém with x; chosen such that; (1/2) =

1 (no hypothesis witlp-value larger tha®.5 is rejected) and implement this curve into an SU-test.
The usage of an SU-test has the advantage that Dirac-uniform caifans are known to be least
favorable. Therefore, it suffices to calculate ERR(¢(,)) = max FDRy, (¢ (n)) in order to
achieve an upper bound for the FDR of such a procedure. All resalts abtained by numerical
evaluation of the pmf. formula given in Corollary 3.23.

n | ng | FDRu n(m)) || n | ng | FDRys n(om))
10 3 9.66% 150 27 5.34%
20 5 7.38% 200 36 5.26%
30 7 6.60% 250 44 5.21%
40 9 6.20% 300 53 5.18%
50 | 10 5.98% 400 70 5.13%
60 | 12 5.83% 500 | 86 5.11%
70 | 14 5.71% 750 | 128 5.07%
100 | 19 5.51% 1000 | 170 5.06%

Table A.2: Results for the SU-procedure basedﬁ&m, cf. Example 3.7

If we accept a FDR level violation df.5% under the quite unrealistic worst case scenario of a
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Dirac-uniform configuration, we are already "on the safe side’:for 100.

A.2.3 SU-procedure based orfé.%)&@, Example 3.7

In analogy to Subsection A.2.2, we now focus on the second possible AdfR€tment discussed
in Example 3.7, namel;féifg)m. Again, x is chosen such thdt;(1/2) = 1 and we use the
resulting critical values in an SU-test.

Table A.3 again displays the maximum FDR values, i.e., FDRy(n)) = nrgleaﬁ FDRy n(#(n))
for differentn. making use of the result in Corollary 3.23.

n | ny | FDRy: n(omy) | | ng | FDRy: n(0@m))
10 3 9.71% 150 22 5.58%
20 5 8.09% 200 28 5.45%
30 6 7.02% 250 34 5.38%
40 8 6.71% 300 | 40 5.33%
50 9 6.38% 400 52 5.26%
60 | 11 6.21% 500 | 64 5.21%
70 | 12 6.06% 750 | 92 5.15%
100 | 16 5.80% 1000 | 120 5.12%

Table A.3: Results for the SU-procedure basedﬁ&m, cf. Example 3.7

As expectedAo > k1 so that more critical values originate from the original AORC), this proce-
dure shows a more liberal behavior with respect to FDR control and tinéern of tests has to
be approximatel00 in order to guarantee an FDR less ttiafb5 under Dirac-uniform configu-

rations.

A.2.4 SU-procedure with truncated curve, Example 3.8

Finally, we use the truncated version £f, discussed in Example 3.8, with= 1/2 in an SU test
and choose the FDR level as= 5%.
As before, the following table displays FRR.(¢ () = max FDRy,.n(¢(n)) together with the

noENy
valueng leading to this maximum.
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n | ng | FDRys n(ewmy) | n | ng | FDRu: n(om))
10 | 3 9.71% 150 | 22 5.63%
20 5 8.25% 200 | 28 5.49%
30 | 6 7.12% 250 | 33 5.42%
40 | 8 6.81% 300 | 39 5.36%
90 9 6.46% 400 50 5.28%
60 | 10 6.30% 500 62 5.23%
70 | 12 6.13% 750 89 5.17%
100 | 16 5.86% 1000 | 116 5.13%

Table A.4: Results for the truncated SU-procedure with 1/2, cf. Example 3.8

All values are very close to the corresponding values in Table A.3. Thisdgalthe fact thats
is very close tal /2 such that the truncated curve afé%)&m do only differ on the small interval
(r2,1/2) as depicted in Figure 3.4.
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Appendix B

Concepts of positive dependency

Proofs for FDR control often rely on assumptions about the correlatiantare of the test statis-
tics. Some special structures have been systematically covered in thagasipecially concepts

of positive dependencgf some kind have useful properties. This section presents some of them.
The following definition has preparing character.

Definition B.1 (Increasing / decreasing set)

Let (€2, <) be an ordered set and assume tii{tC' are subsets df.

The setD is calledincreasing: & Vy € Q: [zr € DAy >z =y € D).
Analogously, the set' is calleddecreasing: < Vy € Q: [z € C Ay <z =y e (].

Examples for increasing sets according to this definition as subsets ofttbersal number®R

are rays of the fornD = [u, oo[ or D =]u, co[, respectively or correspondent constructs in higher
dimensions as subsets of Bff for n > 1 if we define the underlying order relations component-
wise. Decreasing sets are therefére=]—oo, o] or C' =]—o0, o[ in R and their higher-dimensional
analogues, for example.

Remark B.2

If Dis aclosed, increasing subset of the target space of a real valumhtamriableX : 2 — R,

so it obviously exists a minimal subsigtD) of D (the bound ofD), so that for allw € Q with
X(w) € Ditexists anr € b(D) with X (w) > z. In the same way we can express the event that
X maps to a decreasing subgebf its target space{w : X(w) € C} = {w : 3z € b(C) :

X (w) < z}. In the special case of ray- or rectangle-shaped sets mentioned abbyer b(C'),
respectively, only consist of one single point (a vertex). Inversaigntilated, this consideration
yields that every event of the forflX > «} can be interpreted as an entry.Xfinto a ray-shaped,
increasing set bounded lyand an analogue evefiX < o} gets the meaning th&€ maps into a
ray-shaped decreasing set bounded by

After these preparing considerations, it is possible to put the concemssitive dependency
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developed by Lehmann in 1966 (see [171]), T. K. Sarkar in 19694{)24nd Benjamini and
Yekutieli in 2001 ([17]) into a common context. First, we recall Lehmannfinden of "positive
regression dependency" in the bivariate case:

Definition B.3 (Positive regression dependency in the bivariate case, Lehman®)}196
Let X andY be real-valued random variables.
Y is calledpositively regression dependent on X, if

P(Y <y | X = z) is non-increasing ir.
This concept can be generalized to the multivariate ease2 in the following way:

Definition B.4 (Positive regression dependency in the multivariate case (PRD))

Let X be a random vector with > 2 componentsy; : ; — R.

The multivariate distribution ok is calledpositive regression dependent (PRD), if for all indices
i =1,...,n and for every increasing sé? C im(X)

P(X € D| X; = x) is non-decreasing in. (B.1)

Remark B.5

Since the complemerftD of an increasing seb is a decreasing set, (B.1) is equivalent to the
postulation that the conditional probabill(X € CD | X; = z) has to be non-increasing in
Thereby, Lehmann’s Definition B.3 (together with the preparing remarébrdewith decreasing
sets) is contained in Definition B.4 by setting= 2. However, Definition B.4 is a little more
general, because (in contrast to Lehmann) it makes no further assusmiout the explicit shape
of the increasing (or decreasing, respectively) sets into wHichaps.

Remark B.6
In [244], Theorem 2.3, a similar generalization of Lehmann’s definitionvergin the context of
reliability analysis. It is shown that the property

P(X; > z;,j=1,...,i— 1] X; = v;) isnon-decreasing in;,i = 2,...,n (B.2)
implies
i=1 =1

which is a useful relation in order to compute lower bounds for the reliability. @f. technical
systems. It is clear that (B.2) is somewhat weaker than (B.1).

A further attenuation of the PRD property of a multivariate distribution is priegkin the arti-
cle [17] by Benjamini and Yekutieli from 2001. The authors introduce threcept of "positive
regression dependency on subsets" (PRDS) as follows.
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Definition B.7 (Positive regression dependency on subsets (PRDS), see [17])

Let X be a random vector with > 2 componentsy; : 2; — R.

The multivariate distribution o is calledpositive regression dependent on a subset I of the
set of indicesN,, = {1,...,n}, if for every increasing seb C im(X) and for every index € I,

P(X € D|X; = x) is non-decreasing in. (B.3)

Therefore, condition (B.1) does not need to hold for all indicesN,,, but only for those in the
subsetl, of indices. The authors point out that the PRDS condition is an appropectaical
tool to prove FDR-control of various stepwise test procedures if tlieying test statistics are
dependent. For this purpose, the suligaypically consists of the indices of test statistics corre-
sponding to the true null hypotheses.

However, the verification of the PRDS property for a special distribut@uoing in practice may
lead to technical difficulties due to the structure of condition (B.3) which isddfvia conditional
probabilities. The following condition of "multivariate total positivity of ordér(BITP,) is easier

to manage.

Definition B.8 (Multivariate total positivity of order 2 (MTE)

For n > 2, let X be a random vector with componeXs : Q; — X; C R,i =1,...,n, and
let f denote the jointi-dimensional probability density function of the variablégs, . . . , X,, with
respect to some product meas@g ; j;.

The multivariate distribution oX is calledmultivariate totally positive of order 2 (MTPy), if for
all z,y € im(X)

where the minimum or maximum, respectively, is being taken component-wis

This condition of multivariate total positivity of orderis the strictest of all concepts of depen-
dency introduced here, because it holds:

Theorem B.9(Implications of concepts of dependency)
For the properties of multivariate distributions introduced in Definitions B.4,8d B.8, it holds:

() Multivariate total positivity of order 2 implies positive regression depemgen
(i) Positive regression dependency implies positive regression depeyda subsets.

Proof: Part (ii) is obvious.

In order to prove part (i), let the increasing detC X = im(X) be arbitrary chosen but fixed.
Without loss of generality, we sét= 1 in (B.1) and writeX = (X, X(1), i.e., we setx (1) =
(Xs,...,X,) and, analogouslyy = X; @ X1, The joint pdf. f (X1, X)) will be regarded as
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au; @ pM-density of(X1, X(M). Finally, letu;,us € X; with u; < ug be arbitrary chosen but
fixed and describe the, - andus-cuts of D and X', respectively, by

D,, = {z1) e 2, (uj,x(l)) eD}, j=1,2,
Xy, = {z® e 2D (u;,2W) e X}, j=1,2.
With these definitions, we now have to show that
P(X e D| X, =u) <P(X € D| X; = uy). (B.5)

To this end, we make use of the fact that forale D,, and for ally € X, \ D,, we have
the relationshig(us, )T > (u1,%)”, which holds true due to the property thatis increasing.
Therefore, the MTR condition for the joint pdf.f yields f(u1, x) f (u2,y) < f(ug,x)f(u1,y).
Integrating with respect ta"), we obtain

F(ur, 2)dpu V() - /X L fm )

D,
<[ fluga)du®(a)- / f(aur, ) dpD (). (8.6)
Du1 ‘X“2\D“'2

Due to the subset relatioR,, C D,,,, we have that the right-hand side of (B.6) is lower than or

equal to
/ f(ug, x)dp™) (z) - / f (1, y)dp ™ (y).
Dy, Xy \Duy

If we now divide the resulting inequality chain by

/ £ (ur, ) / F (s ) (),

we arrive at
f(u1, @) (1) f(u2,y) (1)
d . d
o T 5@ o TorFom )
f(uz, ) ) flui,y) (1)
d . d . B.7
= Duy Sy fluz,m)du® (n) we) /Xul\Du1 Sy fur, €)du(€) #0w)- (B)

Inequality [(B.7) can be re-written in terms of conditional expectations yielding
E (1Du1 o XM |x, = u1> E (1)@2\%2 o XM |x, = UQ)
<E (1% o XWX, = u2) E (1%1\[,“1 o XWX, = u1> . (B.8)
Because of
E (1Xu1\Du1 o XWX, = u1> - E (1Xu1 o XWX, = u1> _E <1Du1 o XWX, = ul) ,

E <1Xu2\Du2 o XWX, = u2> = E (1Xu2 o XWX, = uQ) _E (1% o XWX, = ug) ,
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relation [(B.8) is equivalent to
E (1Du1 o XWX, = u1> <E (1% o XWX, = ug) . (B.9)
Rewriting (B.9) in terms of conditional probabilities yields
PX(1)|X1:u1(Du1) < PXUMXlqu(DuQ)’
which is equivalent ta (B.5), hence, the PRD property of the distributiaki .l

Remark B.10
() Ifin DefinitionB.8 especiallyn = 2, i.e., X underlies a bivariate totally positive distribution
of order2, this property is denoted by TPIn this special case, the defining condition for
the bivariate probability density function &f simplifies to

flxr,y2) f(@o,y1) < fz, 1) f (22, y2) (B.10)
for all (:rl,yl)T < (xg,yg)T € |m(X) - R2.

(i) The TP, property may also be employed for the characterization of one-paranahilicfs
of probability density functiong fy,9 € ©}, interpreting the real-valued parametens
second argument and re-writing the pdf’s @¢x) = f(x,9). If then the TB property
(B.10) holds forf(z, ), this is equivalent to the fact thgp(x) has an isotone likelihood
ratio with respect ta@) € © in the identity. Furthermore, the corresponding famiBy, ¥ €
©} of probability measures underlies a stochastic ordering, because faftisat holds

Fy, (x) > Fg2 (a;) Ve e R, if ¢ < ¥s.

Example B.11(TP; property on subintervals)

Let7T = {P, | v € (0,00]} be the family of Student’¢-distributions withv degrees of freedom
for 0 < v < oo (for short: ¢, -distributions) together with its limiting distributioR.,, namely the
standard normal distribution. Then the corresponding pdf.'s haveothe f

—v/2-1/2
Dlv/241/2) 1 <1+§) 2 for 0<v<oo, zeR
fo(@) =

T(w/2) vor

\/% exp (—22/2) for v =00, z € R.

7 is no TR-family, but it has a monotone likelihood ratio fare I; = (—oco, —1) as well as for
x € I = (0,1). The caséd < 11 < v, < o is treated and proven in [270]. In the case= o,
i.e., the combination of the standard normal distribution with-distribution with0 < v < oo,
we obtain the corresponding likelihood ratio function

:foo(w) v F(%) 2 <l/—|—:c2>”/2+1/2

1= “Varg+n P
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and because of

d v I (%) 72 (v+ 1.2)1//2—1/2 )

el — T N\2) _Z 1—

R e
q(z)isisotone inz € I; andzx € I,. The TR property is therefore valid fof on the subintervals
I, and .
Some deeper investigations concerning structural properties of ttlistributions can be found
in [93]. They are useful for some of the derivations in Section 2.4.

Example B.12(MTP; for binary variables)

In [9], the MTR, property is investigated for binary variables. The authors establishreectian
between MTR and the odds ratio as follows.

Let X = (Xy,...,X,) be arandom vector with > 2 components taking only binary values,
e, X :Q—{0,1}". ThenX is MTP; if and only if for all {1, 72} C {1,...,n}, it holds

IP><‘XJ'1 = Ovij = 1|{Xk}keK) 'P(le = 1’Xj2 = OHXk}kEK) -

whereK = K(ji1,j2) = {1,...,n} \ {j1,72}. It should be mentioned that this is a special appli-
cation of a more general result given in [181]. The meaning of equaBidirL] can be interpreted

in an epidemiological setup. If for example;, denotes the status of a certain diseasg, an
exposition status an¢lX } < the states of a set of binary covariates, then (B.11) means that
the logarithmic odds ratio for the exposure-disease relationship is alvemysegative, i.e., we
have no protective factors or all covariates are coded in that way tsagtifect on the disease is
harmful, respectively.

Remark B.13

The concept of total positivity is a widely studied, important issue with vargiaistical ap-
plications. For a deeper study, the works of S. Karlin ([147]), Karlid &inott ([148], [149]),
and Cohen and Sackrowitz ([45]) are recommendable. One speciaaiom field consists in
reliability and life testing (cf. [8] and [244]).

The dissertation of Astrid Heinicke ([121]) gives a good overview afotgs concepts of depen-
dency.
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Abstract

The false discovery rate (FDR) is a rather young error control critaérionultiple testing prob-
lems. Initiated by the pioneering paper by Benjamini and Hochberg frorb,1i9%as become
popular in the 1990ies as an alternative to the strong control of the familyesiserate, espe-
cially if a large system of hypotheses is at hand and the analysis has maitdyative character.
Instead of controlling the probability of one or more false rejections, the EdRrols the ex-
pected proportion of falsely rejected hypotheses among all rejectiomstyPical application with
strong impact on the development of the FDR is the first step (screenirsg)bfa microarray
experiment where the experimenter aims at detecting a few candidate gesl®® potentially
associated with a disease, which are than further analyzed using mogestrarror handling
methods. Especially due to such nowadays’ applications with families of tesahdsa or even
some hundred thousands of hypotheses at hand, asymptotic conside(atith the number of
hypotheses to be tested simultaneously tending to infinity) become more andetevsant.

In this work, the behavior of the FDR is mainly studied from a theoretical pafiniew. After
some fundamental issues as a preparation in Chapter 1, focus is laid ite€Cham the asymp-
totic behaviour of the linear step-up procedure originally introduced lmjé®eini and Hochberg.
Since it is well known that this procedure strongly controls the FDR undsitipe dependency,
we investigate the asymptotic conservativeness of this procedure witerss/distributional set-
tings in depth. The results imply that, depending on the strength of positiemdepce among the
test statistics and the proportion of true nulls, the FDR can be close to tlspecédied error level
or can be very small. Typically, the latter case leads to low power of the litesup procedure
which raises the possibility for improvements of the algorithm.

One improvement of Benjamini and Hochberg'’s procedure is presentediscussed in Chapter
3. Instead of using critical values increasing linearly (or, in other wadimear rejection curve),
we derive a non-linear and in some sense asymptotically optimal rejectioa l®ading to the
full exhaustion of the FDR level under some extreme parameter configusafitiis curve is then
implemented into some stepwise multiple test procedures which control the FDiptasically
or (with slight modifications) for a finite number of hypotheses. For thefasbBDR control for
procedures employing non-linear critical values, some new methodolqgyof is worked out.
Chapter 4 then compares the newly derived methods with the original lineaugtemcedure
and other improved procedures with respect to multiple power. The resuhgsinomparisons
section are based on computer simulations. It turns out that certain presgaerform better in
certain distributional setups or in other words that one can choose thepaigpe FDR controlling
algorithm to serve the purpose of detecting the most relevant alternativaproperly.

Besides all these theoretical and methodological topics, we are alsorcedaogith some prac-
tical aspects of FDR. We apply FDR controlling procedures to real life dathillustrate the
functionality, assets and drawbacks of the different methods using da¢ssets.



Kurzfassung

Die "False Discovery Rate" (FDR) ist ein recht junges Fehlerkontroltiwite in multiplen Test-
problemen. Beginnend mit dem Artikel von Benjamini und Hochberg ausJddme 1995 wurde
es in den 1990er Jahren als Alternative zur Kontrolle des multiplen Nivegliebt, insbesondere
bei Vorliegen eines sehr méchtigen Hypothesensystems und vornehnpichagivem Charakter
der Analyse. Die FDR kontrolliert nicht die Wahrscheinlichkeit einer eiezitilschlichen Ver-
werfung einer Nullhypothese, sondern den erwarteten Anteil falkcherweise verworfener Hy-
pothesen an allen Verwerfungen. Ein typisches Beispiel mit starkem &rdluf die Entwicklung
der FDR ist der erste Schritt (die "Screeningphase") eines Micrgé&xperimentes, in dem der
Experimentator einige potenziell mit einer Erkrankung assoziierten Katetigane oder SNPs
detektieren méchte, welche dann unter stringenterer statistischer FeltteHeoweiter analysiert
werden. Wegen aktueller Anwendungen mit aus mehreren zehntanseteiegar einigen hun-
derttausenden simultan zu prufender Hypothesen bestehender Famiieneye asymptotische
Uberlegungen (gegen unendlich strebende Hypothesenzahl) immer mktevanz.

In dieser Arbeit wird das Verhalten der FDR vornehmlich vom theoretis&tandpunkt aus un-
tersucht. Nach einigen Vortiberlegungen in Kapitel 1 wird der Fokus pit&le2 auf das asympto-
tische Verhalten der von Benjamini und Hochberg eingefihrten lineaeprup Prozedur gelegt.
Da bekannt ist, dass sie die FDR unter positiver Abhangigkeit kontrolliatersuchen wir, wie
konservativ sich die Prozedur in entsprechenden Verteilungsmodslemptotisch verhalt. Die
Resultate zeigen, dass (je hach Grad der Abhangigkeit und Anteil wislthypothesen) die
FDR nahe dem vorgegebenen Niveau, aber auch sehr klein sein katrterer Fall hat eine
geringe Giite der Prozedur zur Folge und eréffnet Raum fir Vieeoesgen des Algorithmus’.

Eine Verbesserung der Benjamini-Hochberg Prozedur wird in Kapiteh@eéihrt und disku-
tiert. Anstatt linear wachsende kritische Werte (oder anders ausdgedriine Ablehngerade)
Zu benutzen, entwickeln wir eine nichtlineare und in gewissem Sinne asyroptajgimale
Ablehnkurve, um das FDR-Niveau unter extremen Modellannahmen @asmischépfen. Die
Kurve dient zur Herleitung schrittweiser Tests, die die FDR asymptotisah(odileichten Mod-
ifikationen) fur eine finite Anzahl an Hypothesen kontrollieren. Zum Bswler FDR-Kontrolle
fur Prozeduren, die auf nicht-linearen kritischen Werten basiered, auire neue Beweistechnik
ausgearbeitet. Kapitel 4 vergleicht die neu entwickelten Methoden mit dpriunglichen step-
up Prozedur und anderen Verbesserungen hinsichtlich eines multiptem&ges. Die Aussagen
dieser Vergleichsstudie basieren auf Computersimulationen. Es zeigtlaghpestimmte Tests
unter gewissen Verteilungsannahmen Vorteile besitzen bzw. ein geeigidgekontrollierendes
Verfahren ausgewdahlt werden kann, um gewisse Alternativen bebtm@g erkennen.

Neben diesen theoretisch-methodischen Aspekten beschaftigen sieghAmvigndungsbeispiele
auch mit der praktischen Seite der FDR. Wir wenden FDR-kontrollierenolseBuren auf Real-
daten an und diskutieren Funktionsweise sowie Vor- und Nachteile deiligemeTestprozeduren
anhand dieser Datenséatze.
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