
False Discovery Rate and Asymptotics

I n a u g u r a l - D i s s e r t a t i o n

zur

Erlangung des Doktorgrades der

Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Thorsten-Ingo Dickhaus

aus Berlin-Kreuzberg

Januar 2008



Aus dem Institut für Biometrie und Epidemiologie des

Deutschen Diabetes-Zentrums, Leibniz-Institut an der

Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der

Mathematisch-Naturwissenschaftlichen Fakultät der

Heinrich-Heine-Universität Düsseldorf

Referent: Prof. Dr. Arnold Janssen

Korreferent: PD Dr. Helmut Finner

Tag der mündlichen Prüfung: 15. Januar 2008



Contents

Overview 1

1 Introduction 3
1.1 Multiple testing and False Discovery Rate . . . . . . . . . . . . . . . . . . . . . 3

1.2 The concept of p-values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 p-value adjustment for multiplicity . . . . . . . . . . . . . . . . . . . . . 9

2 FDR control with Simes’ critical values 10
2.1 General theoretical framework in the exchangeable setup . . . . . . . . . . . . . 15

2.1.1 Two models with exchangeable test statistics . . . . . . . . . . . . . . . 16

2.1.2 Largest crossing points and computation of EER and FDR . . . . . . . . 18

2.1.3 All LCPs greater than zero . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.4 Some LCPs equal to zero . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Exchangeable exponentially distributed variables . . . . . . . . . . . . . . . . . 24

2.3 Exchangeable normally distributed variables . . . . . . . . . . . . . . . . . . . . 28

2.3.1 The special case ζ = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2 The general case ζ < 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Exchangeable studentized normal variables . . . . . . . . . . . . . . . . . . . . 41

2.4.1 The special case ν = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.2 The general case ν > 1 and ζ < 1 . . . . . . . . . . . . . . . . . . . . . 45

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 A new rejection curve 52
3.1 Notation and preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Motivation and heuristic derivation . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Procedures based on the new rejection curve . . . . . . . . . . . . . . . . . . . . 55

3.4 LFC results and upper FDR bounds . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Asymptotic FDR control for procedures based on the AORC . . . . . . . . . . . 64

3.6 Asymptotic optimality of the AORC . . . . . . . . . . . . . . . . . . . . . . . . 70

3.7 FDR control for a fixed number of hypotheses . . . . . . . . . . . . . . . . . . . 74

i



3.7.1 Simultaneous β-adjustment . . . . . . . . . . . . . . . . . . . . . . . . 77

3.7.2 Multivariate optimization problem . . . . . . . . . . . . . . . . . . . . . 78

3.8 Connection to Storey’s approach . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Power study for some FDR-controlling test procedures 85
4.1 Simple hypotheses case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Composite hypotheses case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Concluding remarks and outlook 93

A Numerical simulations and calculations 95
A.1 Simulations for FDR under dependency . . . . . . . . . . . . . . . . . . . . . . 95

A.2 Adjusted procedures based on the AORC . . . . . . . . . . . . . . . . . . . . . 97

A.2.1 SUD-procedure, Example 3.5 . . . . . . . . . . . . . . . . . . . . . . . 97

A.2.2 SU-procedure based on f (1)
0.05,κ1

, Example 3.7 . . . . . . . . . . . . . . . 98

A.2.3 SU-procedure based on f (2)
0.05,κ2

, Example 3.7 . . . . . . . . . . . . . . . 99

A.2.4 SU-procedure with truncated curve, Example 3.8 . . . . . . . . . . . . . 99

B Concepts of positive dependency 101

List of Tables 107

List of Figures 108

Bibliography 109

ii



List of Abbreviations and Symbols

AORC Asymptotically Optimal Rejection Curve

B(p, q) Beta function, B(p, q) = Γ(p)Γ(q)/Γ(p+ q)

BP Boundary Point

dxe Smallest integer larger than or equal to x

χ2
ν Chi-square distribution with ν degrees of freedom

{M Complement of the set M

CP Crossing Point

cdf. Cumulative distribution function

δi,j Kronecker symbol

ecdf. Empirical cumulative distribution function

εa Dirac measure in point a

=d Equality in distribution

EER Expected Error Rate

FX Cumulative distribution function of a real-valued

random variable X

FDR False Discovery Rate

FWER Family Wise Error Rate

bxc Largest integer lower than or equal to x

Γ(·) Gamma function, Γ(x) =
∫∞
0 tx−1e−tdt, x > 0

im(X) Image of the random entity X

iii



i.i.d. independent and identically distributed

1M Indicator function of set M

LCP Largest Crossing Point

L(X) Law of distribution of random variable X

LFC Least Favorable Configuration

λλ Lebesgue measure

MTP2 Multivariate total positivity of order 2

Nn {1, . . . , n}

N (µ, σ2) Normal distribution with parameters µ and σ2

Φ Cumulative distribution function of the N (0, 1) distribution

ϕ(·) Probability density function of the N (0, 1) distribution

PRD Positive regression dependency

PRDS Positive regression dependency on subsets

pdf. Probability density function

pmf. Probability mass function

SD Step-down

SU Step-up

SUD Step-up-down

UNI[a, b] Uniform distribution on the interval [a, b]

iv



Overview

The False Discovery Rate (FDR) is a rather young paradigm in controlling errors of a multiple test

procedure. Especially in the context of genetics and microarray analyses, the FDR has become

a very popular error control criterion over the last decade, because it is less restrictive than the

classical Family Wise Error Rate (FWER). This is especially important since in several of today’s

application fields like genome-wide association (GWA) studies, sometimes ten thousands or even

some hundred thousands of hypotheses have to be tested simultaneously and the analyses (at least

at a first stage) have mainly explorative character so that in this stage of the analysis one is of-

ten more interested in getting some significances than in avoiding a few false ones. Instead of

controlling the probability of making at least one false rejection, the FDR controls the expected

proportion of falsely rejected (true) null hypotheses among all rejections. Due to the massive mul-

tiplicity of some of the current applications, asymptotic considerations become more and more

relevant. Therefore, in this work special focus will be laid on the asymptotic behaviour of the

False Discovery Rate with the number n of hypotheses tending to infinity. Other applications in-

clude astronomy (cf., e. g., [176]) and proteomics, cf. Application 2.4.

The remainder of this work is organized as follows. In Chapter 1, some theoretical foundations

will be presented, including a formal definition of the FDR. Most of the results in that chapter

are already known so that it has a repetitious character. Furthermore, some notational aspects are

covered.

Chapter 2 then deals with a popular FDR controlling multiple test procedure, namely the linear

step-up procedure based on Simes’ critical values introduced in the pioneering article by Ben-

jamini and Hochberg from 1995, see [13]. Since it is well known that this method controls the

FDR for positively dependent test statistics being at hand, we study its asymptotic conservative-

ness in some special distributional situations.

In Chapter 3 we present and investigate a new rejection curve designed to asymptotically exhaust

the whole FDR level α under some extreme parameter configurations.
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Besides these theoretical considerations, we will apply some of the test procedures presented in

Chapters 2 and 3 to real life data and investigate FDR "at work".

Chapter 4 contains a systematic (numerical) comparison of some recently developed test proce-

dures which aim at improving the linear step-up procedure. Under various distributional settings,

we investigate their behaviour with respect to type I error and power. This allows us to discuss

assets and drawbacks of each of the considered procedures.

In Chapter 5, finally, our results will be summarized and we give an outlook on some pursuing

issues.

Some numerical computations and computer simulations referring to the theoretical results in

Chapters 2 and 3 are presented in the Appendix. Moreover, we briefly discuss some notions of

positive dependency there.

The research that has lead to this work has been part of the first period of a research project

sponsored by the Deutsche Forschungsgemeinschaft (DFG), grant No. FI 524/3-1, under the re-

sponsibility of my advisor Helmut Finner and of Prof. Guido Giani. In the application to this grant,

the aims of Chapters 2 and 3 have already been formulated and parts of the elaborations in these

chapters are joint work with Helmut Finner and Markus Roters as well. Main results of Chapter

2 are pre-published in [86] and [88]. An article containing the main results of Chapter 3 has been

accepted for publication, see [87]. I am grateful to the DFG for financing my tenure at the German

Diabetes Center from July 2005 to April 2007 and to Helmut Finner for providing me with the

interesting topics and for some valuable preliminary notes from his treasure chest.
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Chapter 1

Introduction

1.1 Multiple testing and False Discovery Rate

The goal of multiple testing consists of testing n > 1 hypotheses simultaneously and controlling

some kind of overall error rate. The most conservative and highly intuitive method is controlling

the Family Wise Error Rate (FWER) in the strong sense. The Family Wise Error is defined as the

event that at least one false rejection among the n individual tests is performed and the FWER (in

the strong sense) for a multiple test procedure ϕ = (ϕ1, . . . , ϕn) is the probability for the latter

event and it can therefore loosely by defined as

FWERn(ϕ) = P (∃ 1 ≤ i ≤ n : {ϕi = 1 and Hi is true}) . (1.1)

There also exists a definition of the FWER in the weak sense aiming at error control under the

global hypothesis that all n null hypotheses are true. However, we only consider the FWER in the

strong sense here. A rather simple and naive method for controlling the FWER is the Bonferroni

procedure, where each individual test ϕi is carried out at level αi = α/n. Due to subadditivity,

we immediately get the FWER-controlling property of the Bonferroni method, because of

FWERn(ϕ) ≤
n∑

k=1

αk,

with αk denoting the individual level for ϕk. The disadvantage of the Bonferroni method is that

these individual levels become extremely small for a large number of hypotheses n at hand which

results in a very low power of the Bonferroni method for large n. Therefore, many improvements

of the Bonferroni method have been developed. The maybe most advanced method towards con-

structing a multiple level α-test consists in the so-called partitioning principle developed by Finner

and Straßburger, see [94].

It shall be mentioned here that a multiple test procedure ϕ = (ϕ1, . . . , ϕn) which controls the

3



4 1.1. MULTIPLE TESTING AND FALSE DISCOVERY RATE

FWER at a pre-specified level α can also be used to perform a level α-test for the global intersec-

tion hypothesis H0 =
⋂n

i=1Hi (assuming that H0 is not empty). We simply reject H0 iff there

exists an index 1 ≤ k ≤ n with ϕk = 1. The type I error controlling property of this test method is

immediate if we keep in mind that ϕ has the property that the right-hand side of (1.1) is bounded

by α. If the test ϕ is constructed according to the Bonferroni method, the corresponding intersec-

tion hypothesis test ψ (say) simply becomes ψ = 1{p1:n≤α/n}, where p1:n denotes the smallest

p-value, cf. Section 1.2. One improvement with respect to power has been developed by Simes,

cf. [264], for independent p-values. We mention it here because its critical values will be used in

a different context later. Simes’ method is described in Algorithm 2.1 at the beginning of Chapter

2.

A more radical approach towards gaining of power in a multiple testing problem is relaxation of

the underlying error measure. Especially for large values of n, controlling the FWER may be a

much too conservative goal, especially if we consider a screening experiment where it is more

important to get some significances than to avoid a few false ones. A more liberal and nowadays

widely used error measure in the latter situation is the False Discovery Rate (FDR). In contrast

to the FWER, not the probability of performing at least one false rejection is controlled, but the

expected proportion of falsely rejected hypotheses with regard to all rejected hypotheses. In order

to formalize this task, we need some notation.

Definition 1.1
Let (Ω,A, {Pϑ : ϑ ∈ Θ}) denote a statistical experiment and Nn = {1, . . . , n} ⊂ N. Let ϕ =

(ϕ1, . . . , ϕn) be a multiple test procedure for the family (H1, . . . ,Hn) of non-empty hypotheses

with Hi ⊂ Θ for all i ∈ Nn. A hypothesis Hk, k ∈ Nn, is called true if ϑ ∈ Hk and false

otherwise. Then we define

Rn(ϕ) = |{i ∈ Nn : ϕi = 1}|, (1.2)

Vn(ϕ) = |{i ∈ Nn : ϕi = 1 and Hi is true}|, (1.3)

FDRn(ϕ) = Eϑ

(
Vn(ϕ)

Rn(ϕ) ∨ 1

)
, (1.4)

and say that ϕ controls the FDR at a pre-chosen level of significance α ∈ (0, 1) iff

sup
ϑ∈Θ

FDRn(ϕ) ≤ α.

The ratio Vn(ϕ)/[Rn(ϕ) ∨ 1] is called the false discovery proportion (FDP).

If it is clear which procedure ϕ is investigated, the argument ϕ is often dropped and we simply

write Vn = Vn(ϕ) and Rn = Rn(ϕ). The meaning of the quantities Vn and Rn is illustrated in the

following table.

False Discovery Rate and Asymptotics, Thorsten Dickhaus



CHAPTER 1. INTRODUCTION 5

Test decision

Hypothesis 0 1

true Un Vn n0

false Tn Sn n1

n−Rn Rn n

Table 1.1: Quantities in a multiple test procedure

It is important to notice that Vn is unobservable, because it contains information about the validity

of the hypotheses in the family. Another measurement of type I errors is the expected error rate

(EER), which will be considered in Chapter 2 together with the FDR. It is sometimes also called

per comparison error rate (PCER) and is defined as the expected proportion of type I errors with

regard to the size of the family of hypotheses, as formalized in the following definition.

Definition 1.2 (Expected Error Rate)

For given ϑ ∈ Θ, we define the expected error rate (EER) of a multiple test procedure ϕ by

EERn(ϕ) = Eϑ

[
Vn(ϕ)
n

]
.

Moreover, in a multiple test problem type I errors and type II errors (counted by Tn in the nomen-

clature introduced in Table 1.1) can occur simultaneously. Subject to type I error rate control

(measured by the FWER or the FDR, for example), it may also be worthy to introduce a mea-

surement for multiple power in order to compare different (e. g., FDR-controlling) test procedures

with each other. In the literature, there is no common agreement on how to define multiple power.

One possibility that is frequently encountered in the literature (cf., e. g., [43]) is to define the

power of a multiple test ϕ as the expected proportion of false hypotheses that can be rejected with

ϕ, formally expressed in the following definition.

Definition 1.3 (Multiple power)

For given ϑ ∈ Θ, we define the quantity

β̄ϑ(ϕ) = Eϑ

[
Sn(ϕ)
n1 ∨ 1

]
as power of a multiple test procedure ϕ.

We will use this power definition throughout this work, although we are aware of the fact that

it has weaknesses. Especially, Definition 1.3 does not take into account how false the rejected

false hypotheses are, i.e., how far the corresponding alternative parameters are away from the null

parameters. Establishing a power definition based on the latter considerations would offer the

possibility to measure the "statistical resolution" of ϕ which is interesting as well.

False Discovery Rate and Asymptotics, Thorsten Dickhaus



6 1.1. MULTIPLE TESTING AND FALSE DISCOVERY RATE

The following two short remarks establish a well known connection between the FDR and the

FWER.

Remark 1.4
Definition (1.4) can equivalently be expressed as

FDRn(ϕ) = Eϑ

(
Vn(ϕ)
Rn(ϕ)

| Rn(ϕ) > 0
)
· Pϑ(Rn(ϕ) > 0).

Remark 1.5
If all hypotheses are true, it holds:

FDRn(ϕ) = Pϑ(Rn(ϕ) > 0) = Pϑ(Vn(ϕ) > 0) = FWERn(ϕ).

In general, we have that Vn(ϕ)/[Rn(ϕ) ∨ 1] ≤ 1{Vn(ϕ)>0} and therefore it holds

FDRn(ϕ) = Eϑ

(
Vn(ϕ)

Rn(ϕ) ∨ 1

)
≤ Eϑ

(
1{Vn(ϕ)>0}

)
= FWERn(ϕ).

Starting in 1995 with the famous article by Benjamini and Hochberg ([13]), over the last decade a

variety of FDR-controlling procedures has been developed, although the general idea for applying

this error measure is older. Since the defining equation (1.4) is a highly complicated construct,

proofs of FDR-control of a certain multiple test procedure often are technically cumbersome and

partly need strong assumptions about the dependency structure of the underlying test statistics.

In the next chapter, we focus on the well known and widely spread linear step-up procedure ϕLSU

based on Simes’ critical values originally proposed in [13] and study some its properties in detail.

Before doing so, we will finish our introductory comments with a short survey of some recent

developments in the rapidly growing field of FDR-research which has become one of the leading

research topics in (bio-)statistics and (bio-)informatics in the past few years. As said before, due to

the rising complexity and massive multiplicity encountered especially in genomics and cosmologic

applications, asymptotic FDR-considerations with the number of tests growing to infinity have

attracted special attendance. Early valuable convergence investigations with respect to the number

of type I errors can be found in [91] and [92] for independent test statistics. Initiated by the

work of John D. Storey (cf. [271], [272], [273], [275]), procedures relying on estimation of the

proportion of true null hypotheses have recently received particular attention. Although not much

discussed yet, such test procedures can behave very conservatively in certain situations like in

discrete models or in case of composite null hypotheses. We will explain and study this further in

Section 3.8 and in Chapter 4.

Another data-adaptive approach consists of multi-stage testing. On the one hand, such a strategy

can be utilized to use the number of rejections in the first step of the procedure as an estimate for

the number of true null hypotheses in the following stages (cf, e. g., [15]), on the other hand, it is

False Discovery Rate and Asymptotics, Thorsten Dickhaus



CHAPTER 1. INTRODUCTION 7

possible to reduce the complexity of the test problem iteratively in order to increase the power for

each remaining individual test in each step (cf. [323]). Moreover, empirical Bayes approaches are

discussed in order to estimate the posterior probability for the validity of a specific null hypothesis

given its p-value (for a definition of the p-value, see Section 1.2 below). These estimation tech-

niques are known as local fdr-theory (cf., e.g., [23], [69], [72], [73], [75]). Bayesian criterions

for comparing the quality of FDR-controlling test procedures can be found in [102] and [103], for

example.

For dependent test statistics, only few results concerning FDR-control are available yet. Decisive

for models with positive dependency (see Appendix B) assumptions were the works of S. K. Sarkar

(especially [237]) and Benjamini and Yekutieli (see [17]), which proved the conservativity of ϕLSU

under certain assumptions independently from each other. The FDR-behavior of the linear step-up

procedure for certain kinds of exchangeable test statistics will be the topic of Chapter 2. If positive

dependency cannot be assumed and / or if there is insufficient knowledge about the distribution of

the test statistics, up to now resampling techniques are often used to simulate this distribution (cf.

[67], [68], [297]) under the null hypotheses.

1.2 The concept of p-values

Instead of explicitly carrying out a particular statistical test, statistical software systems often re-

port so-called p-values, because they do not depend on a pre-defined significance level. These

p-values are sometimes referred to as observed levels of significance. To formalize how we un-

derstand a p-value, consider again a statistical experiment (Ω,A, {Pϑ : ϑ ∈ Θ}) and assume

we have a test ϕ for the pair of hypotheses H0 versus H1 concerning the parameter ϑ ∈ Θ

relying on a test statistic T = T (X1, . . . , Xk), where the Xi, i = 1, . . . , k, are i.i.d. Pϑ-

distributed random variables mapping Ω onto R, representing the experiment. For given real-

izations (x1, . . . , xk) in a sample of size k, the corresponding p-value denotes the smallest level of

significance αmin(x1, . . . , xk), for which the null hypothesis is rejected given the actual observed

data. If we denote the rejection region of ϕ for a given level α with Γα, then the p-value for the

realizations x = (x1, . . . , xk) computes as

p(ϕ, x) = inf
{Γα: T (x) ∈ Γα}

P∗(T ∈ Γα),

where P∗ is chosen such that P∗(T ∈ Γα) = supϑ∈H0
Pϑ(T ∈ Γα) ifH0 consists of more than one

element. Often, a unique measure P∗ yielding the aforementioned supremum exists; e. g., if ϑ is a

location parameter and the test problem is of the structure H0 : {ϑ ≤ ϑ0} versus H1 : {ϑ > ϑ0},

we typically have P∗ = Pϑ0 . If especially the test statistic T tends to larger values under the

alternative and the test ϕ is of the form ϕ(X1, . . . , Xk) = 1[c,∞)(T (X1, . . . , Xk)), the definition

False Discovery Rate and Asymptotics, Thorsten Dickhaus



8 1.2. THE CONCEPT OF P -VALUES

of the p-value given above simplifies to

p(ϕ, x) = P∗(T ≥ T (x1, . . . , xk)).

Obviously, this is the probability under the null hypothesis of the event that the test statistic T

has a value that is not more likely for H0 than the value T (x1, . . . , xk) for the actually observed

realizations and therefore indeed equals the smallest level of significance which leads to rejection

of H0 in case of having observed (x1, . . . , xk).

It is also possible to comprehend the p-values themselves as random entities (cf., e. g., [234]). If

we again assume ϕ(X1, . . . , Xk) = 1[c,∞)(T (X1, . . . , Xk)), the tuple of data x = (x1, . . . , xk)

in this interpretation is assigned to the probability of the test statistic T exceeding the fixed deter-

ministic value T (x1, . . . , xk). The formal description

x = (x1, . . . , xk) → p(ϕ, x) = P∗(T ≥ T (x1, . . . , xk)) = 1− FP∗(T (x1, . . . , xk))

together with the principle of quantile transformation yields immediately, that the random entity

p(ϕ, x) in this consideration is uniformly distributed on the interval [0, 1] under the null hypothe-

sis, if P∗ is continuous and H0 consists of only one element. This statement means reworded, that

the number of rejections of a level α-test averages α · 100% of the performations, if always the

circumstances of the null hypothesis are at hand.

The latter consideration becomes a deeper meaning in a multiple testing procedure with many (say

n) hypotheses to be tested. If we have drawn samples for each individual test problem, it is pos-

sible to compute the corresponding p-values and their ecdf. Fn(·) (say). If the graph of Fn then

significantly deviates from the bisecting line on the unit interval, this can give information about

how many of the n hypotheses are wrong. Moreover, many multiple test procedures are defined in

terms of p-values.

In case that P∗ is a discrete probability measure or H0 is a composite null hypothesis, we obtain

that p(ϕ, x) under H0 is stochastically larger than a UNI[0, 1]-distributed random variable.

Remark 1.6 (Multiple test procedures in terms of p-values)

Consider a multiple test procedure ϕ consisting of n one-sided tests ϕi(Ti) = 1[ci,∞)(Ti) for

i = 1, . . . , n with test statistics Ti, i = 1, . . . , n which are i.i.d. with continuous cdf. FT under the

null hypotheses. Then ϕ can equivalently be expressed by n one-sided tests ϕ′i(Pi) = 1(0,αi](Pi)

for i = 1, . . . , n in terms of the corresponding p-values Pi (regarded as random entities with cdf.

FP and therefore written with capital letter here) and critical values α1, . . . , αn, iff the following

condition holds:

P(T1 ≥ ci) = 1− FT (ci) = FP (αi) = P(P1 ≤ αi) for all i = 1, . . . , n. (1.5)

Therefore, the modeling of the underlying distributional situation can be done either by FT or by

FP . Since many multiple test procedures are defined in terms of p-values, it is sometimes useful

False Discovery Rate and Asymptotics, Thorsten Dickhaus



CHAPTER 1. INTRODUCTION 9

not to model the distribution of the test statistics, but the distribution of the p-values. Moreover,

expressing the test problem in terms of p-values has the advantage that this makes it independent

of the scale of the original test statistics since p-values always have support [0, 1].

1.2.1 p-value adjustment for multiplicity

In a multiple testing context, it may be considered as appropriate not only to report an observed

level of significance for each particular hypothesis separately without taking the multiplicity into

account, but to provide a per-hypothesis observed significance level with regard to a multiple error

measure. This can be done by finding a suitable adjustment to apply to the original (sometimes

called raw) p-values in that way that the i-th adjusted p-value p(adj)
i has the property that for a given

overall level of significance α it holds

p(adj)
i < α is equivalent to i-th hypothesis can be rejected

while keeping an underlying overall error rate. For example, the Bonferroni-adjusted p-value

p(Bonf.-adj.)
i (say) for hypothesis Hi is simply given by p(Bonf.-adj.)

i = n · pi, where pi denotes the i-th raw

p-value. If then p(Bonf.-adj.)
i < α, hypothesis Hi can be rejected while keeping the FWER. The dual

problem consists of finding adjusted critical values for the underlying test statistics.

In the quite popular article by Ge, Dudoit and Speed [100], a nice overview of multiple testing

concepts, various error rates and corresponding p-value adjustments is given. In Section 2.2, the

authors present various error rates and in Section 2.3, the defining equations for the corresponding

adjusted p-values are given. Sections 3 and 4 then especially deal with several FWER controlling

procedures and resulting p-value adjustments. In Section 5, finally, the same investigations are

done for the FDR as underlying error measure.

In our work, we will not further consider this technique of p-value adjustment. We describe

multiple test procedures controlling the FDR or the FWER, respectively, by suitable critical values

for the raw p-values.

False Discovery Rate and Asymptotics, Thorsten Dickhaus



Chapter 2

FDR control with Simes’ critical values

The first article dealing systematically with the FDR has been published in 1995 by Benjamini and

Hochberg, see [13]. The authors give some motivation, the formal definition of the FDR reported

in Definition 1.1 and present a multiple test procedure designed to control the FDR in case that the

test statistics are independent under the null hypotheses. This procedure, described in Algorithm

2.2 below, employs critical values for the ordered p-values which were originally introduced in a

different context. More specifically, in 1986, R. J. Simes proposed the following test algorithm for

the global intersection hypothesis H0:

Algorithm 2.1 (Simes’ test for the intersection hypothesis H0 =
⋂n

i=1Hi)

1. Compute the p-values p1, . . . , pn for each individual test.

2. Denote the ordered p-values by p1:n ≤ . . . ≤ pn:n.

3. Reject H0 if there exists an index 1 ≤ k ≤ n, such that pk:n ≤ αk = kα/n.

For the remainder of this work, we will confer to the critical values αk = kα/n for the p-values

used in this algorithm as Simes’ critical values. Simes (1986) proved that his Algorithm 2.1

controls the type I error with respect to the global hypothesis H0 at level α if the underlying test

statistics (and, consequently, the corresponding p-values) are i.i.d. He furthermore conjectured

that this property is preserved for positively correlated test statistics. This conjecture was proven

by S. K. Sarkar in 1998, see [236].

Benjamini and Hochberg employed Simes’ critical values in the context of FDR control. They

developed the linear step-up test procedure ϕLSU which works as follows.

Algorithm 2.2 (The linear step-up test procedure ϕLSU)

1. Compute the p-values p1, . . . , pn for each individual test.

2. Denote the ordered p-values by p1:n ≤ . . . ≤ pn:n.

10
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3. Determine k = max{i : pi:n ≤ αi}.

4. If such a k exists, reject the hypotheses H1:n, . . . ,Hk:n corresponding to p1:n, . . . , pk:n.

Otherwise, reject no hypotheses.

In [13], the authors proved that, assuming that n0 hypotheses are true and the other n−n0 hypothe-

ses are false, ϕLSU controls the FDR at level n0α/n ≤ α in case of independence of the vector of

p-values corresponding to true null hypotheses from the vector of p-values corresponding to false

null hypotheses and i.i.d. UNI[0, 1]-distributed p-values under the n0 true null hypotheses. Later

investigations even revealed that

FDRn =
n0

n
α ∀n > 1, α ∈ (0, 1),

i.e., the so-called Benjamini-Hochberg bound n0α/n for the FDR is exactly obtained for any size

of the family of hypotheses under the aforementioned assumptions. Different proofs of this fact

can be found in [91], [237], [275] or [17]. In [17], the FDR controlling property of ϕLSU was

extended to the case of PRDS test statistics (cf. Definition B.7).

In the following, we are interested in the asymptotic sharpness of the Benjamini-Hochberg bound

in the latter situation. We investigate some examples of multivariate PRDS distributions and study

the FDR behaviour of ϕLSU for n tending to infinity. First, we present a general theoretical frame-

work, the Dirac-exchangeable setup, and then apply the resulting formulas to some concrete dis-

tributional examples. For this reason, a slight re-formulation of Algorithm 2.2 in terms of the ecdf.

of the p-values given in the following remark will be helpful.

Remark 2.3
Algorithm 2.2 can equivalently be expressed as

1. Compute the p-values p1, . . . , pn for each individual test.

2. Let Fn denote the ecdf. of the p-values, that is,

Fn(t) =
1
n

n∑
i=1

1[0,t](pi), t ∈ [0, 1].

3. Compute t∗ = sup{t ∈ [0, α] : Fn(t) ≥ t/α}.

4. Reject all Hi with corresponding pi ≤ t∗.

We will call t∗ the largest crossing point and denote the function t→ t/α for t ∈ [0, α] by Simes’

line, the continuous version of the set of Simes’ critical values.

This type of connection between critical values of a multiple test procedure and the ecdf. of

p-values is indicated in [250]. The aforementioned algorithm can be carried out in practice by

False Discovery Rate and Asymptotics, Thorsten Dickhaus
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drawing Fn and Simes’ line together in one graph and determining t∗. The following figure shows

an example with α = 0.05.

Figure 2.1: F50(t) and Simes’line on [0, α].

The abscissa t∗ of the largest crossing point determines the threshold for the p-values and the value

Rn/n of its ordinate reflects the proportion of hypotheses that are rejected by the linear step-up

procedure. The simplicity and intuitivity of this algorithm has lead to a wide spread of ϕLSU over

the last decade. How it works in practice shall be demonstrated with two real life applications. Of

course, it has to be conceded that the dependency assumptions guaranteeing FDR control of the

linear step-up procedure are difficult to verify in practical applications. Especially in quantitative

trait analyses (e.g., when processing gene expression data), often negative dependency of some

kind is likely to occur. For example, overexpression at one gene locus can lead to underexpression

at another, linked locus. Therefore, it seems possible that ϕLSU does not control the FDR strictly

in the following application examples. However, in both cases we investigate situations where our

statistical analyses can be viewed as screening instruments at a first stage of an analysis which

includes more stringent error control methods at later stages.

Application 2.4 (Evaluation of a proteomics experiment)

In a proteomics experiment carried out in the biochemical department of our research institute,

1330 protein spots from two groups A and B were detected and matched by a spot detection

software. The protein material consisted of pooled tissue from two different mice stems under

investigation in a diabetes-specific context. Tissue differences with regard to different spot inten-

sities in the two groups should be found out. Group A was processed on four independent sheets

and group B was processed on three independent sheets (the fourth sheet for group B was defect).

In some data cleaning and preparation steps, we filtered out only spots with a minimal measure-

ment number of three per group, i.e., all measurements for group B had to be successful and there

False Discovery Rate and Asymptotics, Thorsten Dickhaus
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was only one missing measurement allowed in group A. Furthermore, intensities below 0.5 were

excluded because of lacking courtesy and relevance. In such quantitative trait analyses, often a

log-normal distribution for the intensity ratios is assumed. Therefore, the remaining intensities

were transformed by applying the natural logarithm. After these steps, n = 393 spots remained.

After some diagnostic plots, it turned out that the normal distribution assumption for the remaining

log-intensities was justified and therefore, we carried out two-sided two-sample t-tests for the

logarithmic intensity differences per spot and collected the corresponding p-values. This resulted

in a multiple testing problem of dimension n = 393. As significance levels for the FDR, we chose

α1 = 0.05 and α2 = 0.1.

Figure 2.2: Proteomics example: Simes’ line and ecdf. of 393 p-values

Figure 2.2 shows the case α2 = 0.1. Simes’ line and the ecdf. of the obtained p-values are

displayed. Obviously, we have a unique crossing point of the two objects on (0, α) and with the

Benjamini-Hochberg procedure we got 47 rejections in case of α1 = 0.05 and 64 rejections in

case of α2 = 0.1.

A discussion with the head of the proteomics department showed a good accordance of our "de-

tected" spots with the ones found by a commercial proteomics analysis software and with the spots

that were identified by experts in the department.

Application 2.5 (Adenocarcinoma data Notterman et al.)

Our second application concerns a data set taken over from the literature. In the article [203] from

2001, Notterman et al. published data from a cancer research project. The aim was detecting

differentially expressed gene and R(D)NA profiles in tumor tissue in comparison with normal

(healthy) tissue. To this end, a case-control study was carried out. In group A, there were 18

adenocarcinomic cancer patients and groupB consisted of 18 (paired) healthy patients. From these

36 individuals, expression data for 7457 different RNA, DNA and gene entities was collected. The

False Discovery Rate and Asymptotics, Thorsten Dickhaus
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complete data is available as supplementary material to [203].

After some Affymetrix preprocessing (cf. the "Materials and Methods" section in [203]), the

comparison between the two groups was performed by applying t-tests to the log-transformed

data. This lead to n = 7457 p-values. Again, we analysed this multiple testing problem utilizing

ϕLSU at FDR level α = 0.1. Figure 2.3 illustrates Simes’ line with parameter α = 0.1 and the ecdf.

of the obtained p-values.

Figure 2.3: Notterman example: Simes’ line and ecdf. of 7457 p-values

Again, the concave shape of F7457 leads to a unique crossing point on (0, α). With the Benjamini-

Hochberg procedure, the hypotheses corresponding to the 1582 smallest p-values get rejected with

a thresholding value of 0.0212.

Before we start our main theoretical investigations, we motivate our goal of investigating the

sharpness of the Benjamini-Hochberg bound and present one (maybe surprising) example, how

slight modifications of the p-value distribution can have an enormous effect on the resulting FDR

behaviour.

Example 2.6
Assume that independent p-values for a multiple test procedure of family size n are not uniformly

distributed on the unit interval under the null hypotheses, but their support shall be bounded by

some value bn > 0 on its left side, i.e., Pi ∼ UNI[bn, 1] ifHi is true. Then, clearly, P(Vn = j) = 0

for all 0 < j <
⌈

nbn
α

⌉
for the linear step-up procedure. We will show that this has a large impact

on the FDR behaviour of ϕLSU. Noting that{
Pi ≤

kα

n

}
=
{
Pi − bn
1− bn

≤ kα− nbn
n(1− bn)

}
=
{
U ≤ kα− nbn

n(1− bn)

}
,

where U denotes a UNI[0, 1]-distributed random variable for such k with kα/n ≥ bn and 0 for
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smaller values of k, we obtain the transformed critical values

α̃k:n =
kα− nbn
n(1− bn)

corresponding to UNI[0, 1]-distributed, transformed random p-values for k ≥
⌈

nbn
α

⌉
. In other

words, this test problem can equivalently be regarded as one with UNI[0, 1]-distributed p-values

under the null hypotheses which have to be compared with the α̃k:n’s in step-up manner. For the

sake of simplicity, we only treat the case n0 = n and note that

P(Vn > 0) =
n∑

j=dnbn
α e

P(Vn = j).

In [92], the exact distribution of Vn in case of ϕLSU and UNI[0, 1]-distributed p-values is given as

P(Vn = j) =
(
n

j

)
(1− β)(1− β + (n− j)τ)n−j−1(β − (n− j)τ)j ,

if the critical values for the Pk:n are of the structure γk:n = β − (n − k)τ . For our α̃k:n’s from

above we have in this nomenclature

β =
α− bn
1− bn

and τ =
α

n(1− bn)
.

The authors also derived the limiting distribution of Vn with n tending to infinity, which is ex-

ponentially decreasing and has most of its distributional mass in the small outcomes. Choosing

bn = 1/n has the effect that Vn ∈ {0}∪{d1/αe , . . . , n} almost surely for every n > 1 and results

in very small values for the probability P(Vn > 0), even for very large n and in the limiting case.

This is due to of the limiting distribution properties stated before, because small outcomes for Vn

with large mass are almost surely not realized. This effect is rather surprising, since bn tends to

0 and therefore the distribution of the p-values tends to UNI[0, 1] in this situation and one should

assume that the FDR should tend to its bound α for large n. This, however, is not the case.

As we will see, the fractional structure of the FDP leads to some more surprising results. Our

first major goal consists of computation of the FDR of ϕLSU under positive dependence or, more

precisely, exchangeability under the null hypotheses. This will be done quite generally in the

following Section 2.1 before we investigate specific distributional settings in Sections 2.2 (expo-

nential distributions), 2.3 (normal distributions) and 2.4 (t-distributions).

2.1 General theoretical framework in the exchangeable setup

In this section, we present our basic statistical model with exchangeable test statistics. It will be

the basis for the concrete applications carried out in the following sections.

Let therefore Xi, i = 1, . . . , n, be real-valued independent random variables with support X .

Moreover, let Z be a further real valued random variable, independent of the Xi’s, with support Z
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whose cdf. will be denoted denoted by WZ . Denote the cdf. of Xi by Wi. Suppose the cdf. Wi

depends on a parameter ϑi ∈ [ϑ0,∞), where ϑ0 is known. Without loss of generality it will be

assumed that ϑ0 = 0. Consider the multiple testing problem

Hi : ϑi = 0 versus Ki : ϑi > 0, i = 1, . . . , n.

Suppose that Ti = g(Xi, Z) (with support T ) is a suitable real-valued test statistic for testing Hi,

that is, it will be assumed that Ti tends to larger values if ϑi increases. The sets X ,Z and T are

assumed to be intervals. Suppose that g is continuous, strictly increasing in the first argument and

strictly monotone or constant in the second argument.

Examples which will play a role in the remainder are Ti = g(Xi, Z) = Xi − Z (Sections 2.2 and

Section 2.3) and Ti = g(Xi, Z) = Xi/Z (Section 2.4).

In case that Hi is true, the cdf. of Xi will be denoted by WX and the cdf. of Ti will be denoted by

WT . For Z = z, we define p-values pi = pi(z) as a function of z by

pi(z) = 1−WT (g(xi, z)), i = 1, . . . , n.

The ecdf. of these p-values is denoted by Fn(·|z). Clearly, the Glivenko-Cantelli lemma applies.

The ordered p-values p1:n ≤ · · · ≤ pn:n are given by pi:n = 1−WT (g(xn−i+1:n, z)), i = 1, . . . , n.

2.1.1 Two models with exchangeable test statistics

Assuming that all hypotheses are true, the limiting ecdf. of the p-values will be denoted by

F∞(·|z). For the sake of simplicity it will be assumed that the model implies that F∞(x|z) is

continuous in x ∈ [0, 1] and differentiable from the right at x = 0 with F∞(0|z) = 0 for all

z ∈ Z . Finally, let g1 : T × Z → X be such that for all x ∈ X , z ∈ Z, w ∈ T

g(x, z) = w iff x = g1(w, z),

and let g2 : X × T → Z be such that for all x ∈ X , z ∈ Z, w ∈ T

g(x, z) = w iff z = g2(x,w).

We refer to this setup as the EX(1) model. In practical examples, the conditions concerning the

functions g, g1 and g2 need to be fulfilled only for arguments belonging to sets of measure 1, for

example, if g(x, z) = x/z. The following lemma provides a formula for computing the limiting

ecdf. F∞ and the defining equation for a point of intersection with Simes’ line in this model.

Lemma 2.7
Given EX(1), it holds for PZ-almost all z ∈ Z

F∞(t|z) = 1−WX(g1(W−1
T (1− t), z)), t ∈ (0, 1).
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Moreover, the limiting empirical cdf crosses (or contacts) the Simes line, that is, F∞(t|z) = t/α

for some t ∈ (0, α), if

W−1
X (1− t/α) = g1(W−1

T (1− t), z),

or equivalently,

z = z(t) = g2(W−1
X (1− t/α),W−1

T (1− t)).

Proof: We make use of the representation

Fn(t|z) =
1
n

n∑
k=1

1[0,t](pk(z)), t ∈ [0, 1].

This representation implies that limn→∞ Fn(t|z) = PHk
(pk(z) ≤ t) = 1−PHk

(WT (g(Xi, z)) <

1 − t) = 1 − PHk
(g(Xi, z) < W−1

T (1 − t)) = 1 − PHk
(Xi < g1(W−1

T (1 − t), z)) = 1 −
WX(g1(W−1

T (1 − t), z)), since WX is assumed to be continuous. Furthermore, the Glivenko-

Cantelli lemma guarantees that this convergence is almost surely. �

Remark 2.8
Given Z = z, the p-values pi(z), i = 1, . . . , n, may under H0 =

⋂n
i=1Hi be interpreted as

realizations of conditionally i.i.d. random variables with common cdf. F∞(·|z).

In case that a proportion ζn = n0/n of hypotheses is true and the rest is false, that is, n0 hypotheses

are true and n1 = n − n0 hypotheses are false, we make the following additional assumption in

order to avoid additional limiting considerations. It will be assumed that under an alternative

Ki : ϑi > 0 the parameter value ϑi = ∞ is possible. Moreover, for ϑi = ∞ it will be assumed

that the p-value pi has a Dirac distribution with point mass in 0. In this case, the ecdf. of the

p-values will be denoted by Fn(·|z, ζn). We refer to this situation as the D-EX(ζn) model.

Lemma 2.9
Given D-EX(ζn) with limn→∞ ζn = ζ ∈ (0, 1], the limiting cdf of the p-values is given by

F∞(t|z, ζ) = (1− ζ) + ζ(1−WX(g1(W−1
T (1− t), z))), t ∈ (0, 1), z ∈ Z.

Moreover, F∞ crosses (or contacts) the Simes line, that is, F∞(t|z, ζ) = t/α for some t ∈ (α(1−
ζ), α), if

W−1
X ((1− t/α)/ζ) = g1(W−1

T (1− t), z),

or equivalently,

z = z(t|ζ) = g2(W−1
X ((1− t/α)/ζ),W−1

T (1− t)).

Note that F∞(t|z) = F∞(t|z, 1).

False Discovery Rate and Asymptotics, Thorsten Dickhaus



18 2.1. GENERAL THEORETICAL FRAMEWORK IN THE EXCHANGEABLE SETUP

Proof: Denote the set of indices corresponding to true hypotheses with I0. In analogy to the

EX(1) model, we notice that

Fn(t|z, ζn) =
1
n

n∑
k=1

1[0,t](pk(z)), t ∈ [0, 1]

=
1
n

∑
k∈I0

1[0,t](pk(z)) +
∑
k∈Ic

0

1[0,t](pk(z))


=

n0

n

 1
n0

∑
k∈I0

1[0,t](pk(z))

+
n1

n
.

This representation (together with the assertion of Lemma 2.7) implies that limn→∞ Fn(t|z, ζn) =

(1− ζ) + ζPHk
(pk(z) ≤ t) = (1− ζ) + ζ(1−WX(g1(W−1

T (1− t), z))). �

Remark 2.10
Under the assumptions of Lemma 2.9, the Glivenko-Cantelli lemma again yields

lim
n→∞

sup
t∈[0,1]

|Fn(t|z, ζn)− F∞(t|z, ζ)| = 0 almost surely for all z ∈ Z.

Moreover,

E[F∞(t|Z, ζ)] =
∫
F∞(t|z, ζ)wZ(z)dλ1(z) = 1− ζ + ζt for all t ∈ [0, 1].

2.1.2 Largest crossing points and computation of EER and FDR

In order to characterize the asymptotic behavior of the linear step-up algorithm in a D-EX(ζn)

model, the largest crossing point of the limiting ecdf. of the conditional p-values and Simes’ line

is of crucial importance. For limn→∞ ζn = ζ ∈ (0, 1], we therefore define

t(z|ζ) = sup{t ∈ [α(1− ζ), α] : F∞(t|z, ζ) = t/α}. (2.1)

If there exists an ε > 0 such that F∞(t|z, ζ) > t/α for all t ∈ [t(z|ζ)−ε, t(z|ζ)) and F∞(t|z, ζ) <
t/α for all t ∈ (t(z|ζ), t(z|ζ) + ε], then t(z|ζ) will be called the largest crossing point (LCP) of

F∞(·|z, ζ) and Simes’ line. The set of LCPs will be denoted by Cζ . Moreover, set Dζ = {z ∈
Z : t(z|ζ) ∈ Cζ}. Note that there may be some boundary points (BPs) t(z|ζ) satisfying (2.1).

However, it will be assumed that PZ(Dζ) = 1. In practical examples, Cζ is a finite union of

intervals.

Obviously, for ζ ∈ (0, 1) we always have a well-defined LCP or BP t(z|ζ) ≥ α(1 − ζ) > 0. For

ζ = 1 the LCP may be 0 for a large set of z-values which makes the calculation of the limiting

EER and limiting FDR much subtler.
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For the remainder of this chapter, we make use of the notation

FDRn(ζn|z) = E[
Vn

Rn ∨ 1
|Z = z], FDRn(ζn) = E[

Vn

Rn ∨ 1
]

FDR∞(ζ|z) = lim
n→∞

FDRn(ζn|z), FDR∞(ζ) = lim
n→∞

FDRn(ζn),

and the corresponding expressions for EER. Moreover, the notation Vn(z), Rn(z) will be used if

Z = z is given.

The further considerations heavily depend on an assumption about the proportion ζn = n0/n of

true hypotheses and its limit ζ for n tending to infinity. As we will point out, it makes a crucial

difference for the FDR computation if we assume all hypotheses to be true (ζn ≡ 1 or ζ = 1) or if

we have ζ ∈ (0, 1). We therefore subdivide this section according to these two cases.

2.1.3 All LCPs greater than zero

We first consider the case ζ ∈ (0, 1). As the following theorem and its proof point out, here the

asymptotic FDR- and EER-behavior for a given z ∈ Z can directly be deduced from the LCP

t(z|ζ).

Theorem 2.11
Given D-EX(ζn) with limn→∞ ζn = ζ ∈ (0, 1), it holds for all z ∈ Dζ

lim
n→∞

Vn(z)
n

=
t(z|ζ)
α

− (1− ζ) a. s., (2.2)

lim
n→∞

Vn(z)
Rn(z) ∨ 1

= 1− α(1− ζ)
t(z|ζ)

a. s. (2.3)

Proof: We will show that the proportion of rejected hypotheses Rn(z)/n converges almost surely

to t(z|ζ)/α. This then immediately implies (2.2) and (2.3).

Therefore, note that Rn(z) = sup{k ∈ {1, . . . , n} : k/n ≤ Fn(kα/n|z, ζn)} and that for any

n ∈ N, z ∈ Z it holds Rn(z)/n ∈ [0, 1]. The latter statement implies that any subsequence

(Rnk
(z)/nk)k∈N of Rn(z)/n has a convergent subsequence. With a subsequence technique simi-

lar to the proof of Lemma A.2 in [91], it can now be shown that the limits of all these convergent

subsequences have the same value η(z) (say) and that η(z) has to fulfill the defining equation

F∞(η(z)α|z, ζ) = η(z). Recalling our definition of t(z|ζ), the assertion is proven. �

Remark 2.12
Under the assumptions of Theorem 2.11 it holds

EER∞(ζ|z) = E
[

lim
n→∞

Vn(z)
n

]
=
t(z|ζ)
α

− (1− ζ), (2.4)

FDR∞(ζ|z) = E
[

lim
n→∞

Vn(z)
Rn(z) ∨ 1

]
= 1− α(1− ζ)

t(z|ζ)
. (2.5)
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It remains to calculate EER∞(ζ) and FDR∞(ζ). This may be done in two ways. The first is to in-

tegrate (2.2) and (2.3) with respect to Z = zdPZ . In this case the main problem is the computation

of t(z). In general, t(z) cannot be determined explicitly and, furthermore, its numerical calcula-

tion can be very cumbersome. The second possibility seems more convenient and is summarized

in the following theorem.

Theorem 2.13
Under the assumptions of Theorem 2.11 suppose that F∞(t|z) is strictly decreasing in z for t ∈
(0, α]. Let Cζ,1 = {t/α− 1 + ζ : t ∈ Cζ} and Cζ,2 = {1− α(1− ζ)/t : t ∈ Cζ}. Define

Gζ,1(u) = 1−WZ(z(α(u+ 1− ζ)|ζ)) for u ∈ Cζ,1,

Gζ,2(u) = 1−WZ(z(
α(1− ζ)

1− u
|ζ)) for u ∈ Cζ,2,

and continue these functions on [0, ζ] by linear interpolation.

Then

EER∞(ζ) =
∫

Cζ,1

udGζ,1(u), (2.6)

FDR∞(ζ) =
∫

Cζ,2

udGζ,2(u). (2.7)

Proof: For ζ ∈ (0, 1) and t ∈ Cζ we get from (2.2) in Theorem 2.11 and from the antitonicity of

F∞(t|z) in z ∈ Z that

{z ∈ Dζ : lim
n→∞

Vn(z)
n

>
t

α
− (1− ζ) a. s. } = {z ∈ Dζ : z < z(t|ζ)}.

Therefore, the substitution u = t/α− (1− ζ) yields

WZ(z(α(u+ 1− ζ)|ζ)) = PZ({z ∈ Dζ : lim
n→∞

Vn(z)
n

>
t

α
− (1− ζ) a. s. })

= 1−Gζ,1(u)

for all u ∈ Cζ,1. Moreover,

PZ

(
{z ∈ Dζ : lim

n→∞

Vn(z)
n

∈ Cζ,1 a. s. }
)

= 1.

Hence, Gζ,1 as defined in the theorem is the cdf. of limn→∞ Vn(Z)/n which implies (2.6). Simi-

larly, we obtain from (2.3) in Theorem 2.11 that

lim
n→∞

Vn(z)
Rn(z) ∨ 1

> 1− α(1− ζ)
t

a. s. iff z < z(t|ζ).

Therefore, a similar argumentation as before yields that Gζ,2 as defined in the theorem is the cdf.

of limn→∞ Vn(Z)/(Rn(Z) ∨ 1), and (2.7) follows. �

Theorem 2.13 is a key step towards computation of EER∞(ζ) and FDR∞(ζ) in D-EX(ζn) models

with ζn → ζ ∈ (0, 1). In practical examples, it remains to determine the sets Cζ,1 and Cζ,2 and to

evaluate the corresponding integrals.
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2.1.4 Some LCPs equal to zero

If an LCP is equal to zero, the behavior of the FDR heavily depends on the gradient in zero of the

cdf. of the p-value distribution. The next lemma covers the finite case. It has mainly preparing

character, but will be also be applied directly in Section 2.2.

Lemma 2.14
Let α ∈ (0, 1), 0 < γ < 1/α, n0, n ∈ N, n0 ≤ n and let ξ1, . . . , ξn0 be i.i.d. random variables

with values in [0, 1] with cdf. Fξ satisfying Fξ(t) = γt for all t ∈ [0, α]. Furthermore, let

ξn0+1, . . . , ξn be random variables with values in [0, 1], independent of (ξj : 1 ≤ j ≤ n0). For

ci = iα/n, i = 1, . . . , n, define R′n = max{k ≤ n : ξk:n ≤ ck} and V ′
n = |{i ∈ {1, . . . , n0} :

ξi ≤ cR′
n
}| (with cR′

n
= −∞ for R′n = −∞). Then

E
(

V ′
n

R′n ∨ 1

)
=
n0

n
γα. (2.8)

Proof: For 1≤ i ≤ n0, denote the (n−1)-dimensional random vector (ξ1, . . . , ξi−1, ξi+1, . . . , ξn)

by ξ(i), define for 1 ≤ k < n the sets D(i)
k (α) = {ξ(i)k:n−1 > ck+1, . . . , ξ

(i)
n−1:n−1 > cn} and set

D
(i)
0 (α) = ∅, D(i)

n (α) = Ω. Then the left hand side of (2.8) (cf., e.g., Lemma 3.2 and formula

(4.4) in [237]) is equal to

1
n

n0∑
i=1

P(ξi ≤ cn) +
n0∑
i=1

n∑
j=2

[
P(ξi ≤ cj−1)

j − 1
− P(ξi ≤ cj)

j

]
P(D(i)

j−1(α)).

Noting that P(ξi ≤ cn) = γα for all 1 ≤ i ≤ n0 and P(ξi ≤ cj)/j = γα/n for all 1 ≤ j ≤ n, the

assertion follows immediately. �

The following result extends Lemma 2.14 and is a helpful tool in case that LCPs are in 0.

Lemma 2.15
Under the assumptions of Lemma 2.14, but only supposing that Fξ(t) = γt for all t ∈ [0, t∗]

for some t∗ ∈ (0, α), let An(t∗) = {Fn(t) < t/α ∀t ∈ (t∗, α]}, where Fn denotes the ecdf. of

ξ1, . . . , ξn. Then, setting r = max{i ∈ N0 : iα/n ≤ t∗},

E
(

V ′
n

R′n ∨ 1
1An(t∗)

)
=
n0

n
γαP(D(1)

r (α)). (2.9)

Proof: It is clear that An(t∗) = {R′n ≤ r}, hence, for r > 0, the left-hand-side of (2.9) is now

equal to

1
r

n0∑
i=1

P(ξi ≤ cr)P(D(i)
r (α)) +

n0∑
i=1

r∑
j=2

[
P(ξi ≤ cj−1)

j − 1
−P(ξi ≤ cj)

j

]
P(D(i)

j−1(α)).

The assertion follows in similarity to the proof of Lemma 2.14. �
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The next theorem is an important step for the understanding of the asymptotic behavior of both

EER and FDR in D-EX-(ζn) models given a fixed value Z = z such that the LCP is in 0.

Theorem 2.16
Given D-EX(ζn) with limn→∞ ζn = 1, let z ∈ Z such that F∞(t|z) < t/α for all t ∈ (0, α].

Then, setting

γ(z) = lim
t→0+

F∞(t|z)
t

,

it holds

EER∞(ζ|z) = 0, (2.10)

FDR∞(ζ|z) = αγ(z). (2.11)

Proof: The assumptions concerning F∞ imply that limn→∞Rn(z)/n = 0 almost surely. Noting

that Vn(z)/n ≤ Rn(z)/n for all n ∈ N, (2.10) is obvious.

In order to prove (2.11), we nest F∞ between two cdf’s being linear in a neighborhood of zero.

To this end, let t∗ ∈ (0, α] be fixed, B = [0, t∗), m`(t∗) = inft∈B\{0} F∞(t|z)/t, mu(t∗) =

supt∈B\{0} F∞(t|z)/t, and

F`(t) = m`(t∗)t · 1B(t) + F∞(t|z) · 1Bc(t),

Fu(t) = mu(t∗)t · 1B(t) + max{mu(t∗)t∗, F∞(t|z)} · 1Bc(t).

This results in F`(t) ≤ F∞(t|z) ≤ Fu(t) for all t ∈ [0, 1].

For n ∈ N, let the event An(t∗) be defined as in Lemma 2.15.

Then

FDRn(ζn|z) = E
(

Vn(z)
Rn(z) ∨ 1

1An(t∗)

)
+ E

(
Vn(z)

Rn(z) ∨ 1
1Ac

n(t∗)

)
= Λn + λn (say).

With rn = max{i ∈ N0 : iα/n ≤ t∗} we obtain similarly to the argumentation in the proof of

Lemma 2.14 that

Λn = E
(

Vn(z)
Rn(z) ∨ 1

1{Rn(z)≤rn}

)

= n0

rn∑
j=1

P(p1(z) ≤ αj)
j

[
P(D(1)

j (α))− P(D(1)
j−1(α))

]
.

Due to the pointwise order of F`, F∞ and Fu, we get

ζnm`(t∗)αP(D(1)
rn (α)) ≤ Λn ≤ ζnmu(t∗)αP(D(1)

rn (α)),

ζnm`(t∗)αP(D(1)
rn (α)) + λn ≤ FDRn(ζn|z) ≤ ζnmu(t∗)αP(D(1)

rn (α)) + λn.
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Since ζn → 1, P(D(1)
rn (α)) → 1 and P(An(t∗)) → 1 for n → ∞, we obtain λn → 0 and

m`(t∗)α ≤ lim infn→∞ FDRn(ζn|z) ≤ lim supn→∞ FDRn(ζn|z) ≤ mu(t∗)α. The assertion

now follows by noticing that limt∗→0+ m`(t∗) = limt∗→0+ mu(t∗) = γ(z). �

Remark 2.17
In [92], the distribution and expectation of Vn has been computed for uniform p-values under the

assumption that all hypotheses are true. Assuming ζn = 1 for all n ∈ N, the nesting method

described before together with the technique in [92] may be used to prove

lim
n→∞

E[Vn(z)] =
αγ(z)

(1− αγ(z))2
.

It is important to note that the latter formula is only valid for ζn = 1. If in contrast n1 tends to

infinity while limn→∞ n1/n = 0 and γ(z) > 0, we get that E[Vn(z)] diverges to infinity in this

case even if γ(z) < 1/α. To see this, we utilize the assertion of Lemma 4.3 in [91], which is

E[Vn] ≥ n1α

ζ−1
n − α

for uniformly on [0, 1] distributed p-values. Obvious modifications lead to the assertion for

E[Vn(z)].

In order to get a complete picture for ζ = 1, the following theorem puts things together.

Theorem 2.18
Given D-EX(ζn) with limn→∞ ζn = 1, suppose that F∞(t|z) is strictly decreasing in z for t ∈
[0, α]. Moreover, let G1,1 be defined according to Gζ,1 in Theorem 2.13 and let E0 = {z ∈ Z :

t1(z) = 0} and E1 = Z \ E0. Then

EER∞(1) =
∫

C1\{0}
udG1,1(u), (2.12)

FDR∞(1) = PZ(E1) + α

∫
E0

γ(z)dPZ(z). (2.13)

Proof: Using the disjoint decomposition Z = E0 + E1, we obtain

EER∞(ζ) = lim
n→∞

∫
Z

Vn(z)
n

dPZ(z)

=
∫

E0

lim
n→∞

Vn(z)
n

dPZ(z) +
∫

E1

lim
n→∞

Vn(z)
n

dPZ(z)

= A1 +A2 (say).

Now, Theorem 2.16 immediately yields A1 = 0 and in analogy to the argumentation in the proof

of Theorem 2.13 we get that A2 =
∫
C1,1\{0} udG1,1(u). Therefore, (2.12) is proven. Applying
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the same decomposition (together with the considerations in Theorem 2.16) to FDR∞(ζ) and

observing that limn→∞ Vn(z)/(Rn(z) ∨ 1) = 1 if z ∈ E1 (similar to (2.3) with ζ = 1) finally

proves (2.13). �

In the remaining sections of this chapter, we will apply our general results to some concrete well-

known and often used distributional settings.

2.2 Exchangeable exponentially distributed variables

The exponential distribution often arises in reliability and life time analysis. For example, consider

the situation that we have n (technical) systems consisting of several independent components each

and we are interested in testing the reliability of these systems with respect to a reference system.

In order to describe this task formally, we denote the times until failure of each individual compo-

nent with (Xi,j)i=1,...,n;j=1,...,m(i) and assume that the Xi,j’s are independent random variables,

each underlying an exponential distribution with parameter λi,j . If we then define the reliability

of the i-th entire system, denoted by Yi, by the minimum failure time of all components belonging

to the i-th system, we obtain that

Yi ∼ Exp

λi =:
m(i)∑
j=1

λi,j

 .

Furthermore, we denote the minimum time until failure of the components of the reference system

with Y0 and assume that Y0 ∼ Exp(λ0), independent of the Yi’s. Consequently, we get that

E(Yi) =
1
λi

mean expected survival time of system i and

E(Y0) =
1
λ0

mean expected survival time of the reference system.

A well known and often arising multiple test problem is now given by

Hi = { 1
λi

=
1
λ0
} vs. Ki = { 1

λi
>

1
λ0
} for i = 1, . . . , n.

A parametric approach towards this test problem consists of applying Cox’s F -test, cf. e. g. [166],

pp. 236-237. However, non-parametric techniques are more commonly used in this setting.

In order to fit in our general setup, we investigate a slightly different test problem, involving

the two-parametric exponential distribution. Under the general framework given in Section 2.1,

we assume that the Xi follow an exponential distribution with scale parameter λ and location

parameter ϑi and Z is exponentially distributed with scale parameter λ and location parameter 0.

The underlying test problems shall be Hi : {ϑi = 0} vs. Ki : {ϑi > 0} and the test statistics

shall be given by Ti = Xi − Z. Noting that large values of Ti favour the alternative Ki, the

corresponding p-values for a given realization t∗ of Ti are given by

pi(t∗) = PHi(Ti ≥ t∗) = 1−WT (t∗),
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with WT denoting the cdf. of the difference Xi − Z of two independent exponentially distributed

random variables. We will now study the behaviour of the FDR in this setup, denoted as the D-

EX-EXP model. The next two auxiliary results prepare the computation of the limiting ecdf. of

the p-values in such a D-EX-EXP model.

Lemma 2.19 (Distribution of the difference of two exponentially distributed random variables)

Let X ∼ Exp(0, λ1) and Z ∼ Exp(0, λ2) be two independent exponentially distributed random

variables. Then the cdf. of the difference is given by

P(X − Z ≤ t) =


λ1

λ1+λ2
exp(λ2 t) for t ≤ 0

λ1
λ1+λ2

+ λ2
λ1+λ2

(1− exp(−λ1 t)) for t > 0.

Proof: Computation of the cross-correlation function of X and Z. �

Lemma 2.20 (Conditional probability for the difference in the exponential case)

Assume that X ∼ Exp(0, λ1) and Z ∼ Exp(0, λ2), independent of X . Denoted the difference of

X and Z by T = X − Z.

Then it holds:

P(T > W−1
T (1− t)|Z = z) =


exp(−λ1 z) · λ1+λ2

λ2
t for 0 ≤ t ≤ λ2

λ1+λ2
,

exp(−λ1 z) ·
[

λ1+λ2
λ1

· (1− t)
]−λ1

λ2 for λ2
λ1+λ2

< t ≤ u(z),

1 for u(z) < t ≤ 1,

with u(z) = 1− λ1
λ1+λ2

exp(−λ2 z).

Proof: Analogously to the notation in Section 2.1, denote the (unconditional) cdf. of T by WT

and the cdf. of X by WX . Then we obtain (due to the fact that X and Z are independent) that

P(X − Z > W−1
T (1− t)|Z = z) = P(X − z > W−1

T (1− t)) = P(X > W−1
T (1− t) + z)

= 1−WX(W−1
T (1− t) + z).

Noticing that WX(x) = 0 for x < 0, we have P(X − Z > W−1
T (1 − t)|Z = z) = 1 if

W−1
T (1− t) + z < 0. Deducing W−1

T from Lemma 2.19, we therefore obtain the assertion for the

case u(z) < t ≤ 1. Assuming W−1
T (1− t) + z ≥ 0, we have

1−WX(W−1
T (1− t) + z) = exp(−λ1z) exp(−λ1W

−1
T (1− t)).

ObtainingW−1
T from Lemma 2.19 and plugging in the resulting expressions for the different cases,

we obtain the assertion in the remaining two cases. �

If we now return to our test problem in the D-EX-EXP model, we obtain by combining the argu-
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ments of Lemmas 2.19 and 2.20 that

pi(t) = PHi(Ti ≥ t) = 1−WT (t) =

1− 1
2 exp(λt) for t ≤ 0,

1
2 exp(−λt) for t > 0, and

F∞(t|z) = 2 exp(−λz)t for 0 ≤ t ≤ 1/2.

This reveals, that F∞(t|z) for given z ∈ Z is a linear function in t on [0, 1/2]. For the computation

of the False Discovery Rate in such a situation, a simple consequence of Lemma 2.14 is helpful.

Corollary 2.21 (False Discovery Rate for linear conditional limiting ecdf.’s)

Consider our general D-EX(ζn) model. Assume that F∞(t|z) = m(z)t ∀t ≤ α, where m(z) is

the slope of a straight line depending only on z, and m(z) < 1/α for all z ∈ Z . Then it holds:

(i) FDRn(ζn|z) = α ζn m(z) ∀n ≥ 1.

(ii) FDRn(ζn) = α ζn
∫
m(z) dPZ(z) dz.

Proof:
ad (i): We will apply Lemma 2.14. Therefore, we set Fξ(t) = F∞(t|z) and note that the pi(z)’s

are conditionally i.i.d. with p1(z) ∼ F∞(·|z) if Hi is true.

ad (ii): Follows immediately from (i) via integrating with respect to Z. �

Applying the latter corollary, we finally get the FDR results in the D-EX-EXP model by plugging

in m(z) = 2 exp(−λz) as follows.

Corollary 2.22
In the D-EX-EXP(ζn) model, the FDR computes as

FDRn(ζn|z) = 2α ζn exp(−λz),

FDRn(ζn) = αζn

∫ ∞

0
2λ exp2(−λz)dz

= αζn for any n > 1, α < 1/2, λ > 0.

This has the interpretation that in this special case, the FDR of the linear step-up procedure based

on Simes’ critical values exactly equals the Benjamini-Hochberg bound for any size n of the family

of hypotheses if α < 1/2, although the underlying test statistics (and therefore the corresponding

p-values) are not independent.

Remark 2.23
It is remarkable that the MTP2 property holds in this setting so that the Benjamini-Hochberg bound

for the FDR applies. This is an immediate consequence of Proposition 3.7. in [148], because the

the pdf. of the Exp(λ) distribution is PF2 for any λ > 0, cf. [147].
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The following Figure 2.4 displays F∞(t|z) in case of λ = 1 for different values of z together

with Simes’ line for α = 0.1. It is remarkable that the angle between F∞(t|z) and Simes’ line

determines the limiting FDR.

Figure 2.4: F∞(t|z) for z = 0.5, z = 1.0 and z = 2.0 in case of λ = 1 together with Simes’ line

for α = 0.1

Remark 2.24
From Lemma 2.19, it follows that the one-dimensional marginal cumulative distribution function

of an individual Ti under the corresponding null hypothesis Hi in case of λ = 1 can be expressed

by

WT (t) =

1/2 exp(t) for t ≤ 0,

1− 1/2 exp(−t) for t > 0.

The corresponding distribution is the well-known double-exponential or Laplace distribution. It

may be interesting to have a brief look on the multivariate Laplace distribution with the same

correlation structure as present for our Ti. In [164], the density function wn for the multivariate

Laplace distribution in dimension n was given in the context of copulas as

wn(z) =
Γ(n/2)
Γ(n)

1
2πn/2

√
det(Σn)

exp
(
−
√
ztΣ−1

n z

)
, z ∈ Rn

with Σn denoting the n × n-dimensional correlation matrix under the assumption that the n

components are standardized. For our Ti we have Var(Ti) = 2 for all i = 1, . . . , n as well as

ρ(Ti, Tj) = 1/2 for all i not equal to j and, therefore, in the corresponding multivariate Laplace

case the MTP2 property does hold as well. The latter result is due to the fact that the multivariate

Laplace distribution belongs to the class of spherical (elliptical) distributions (cf. [152]) for which

the MTP2 condition is equivalent to the property that the correlation matrix is invertible and its
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off-diagonal elements are non-negative (this fact can e. g. be deduced from Theorem 3 in [230] in

connection with the generalization methods derived in [152]). Since in our case it holds

Σn = (σi,j)i,j=1,...,n with σi,j =
1
2

(1 + δi,j) ,

the assertion is obvious.

2.3 Exchangeable normally distributed variables

Our next concrete example treats the case of exchangeable normally distributed variables and has

very high practical relevance. Our notation will be as follows.

Notation 2.25 (D-EX-N(ζn) model)

Let Xi ∼ N (0, 1), i = 0, . . . , n, be independent standard normal random variables and let

Ti = ϑi +
√
ρ̄Xi −

√
ρX0 with ϑi ≥ 0, i = 0, . . . , n, where ρ ∈ (0, 1) is assumed to be known

and ρ̄ = 1 − ρ. Then T = (T1, . . . , Tn) is multivariate normally distributed with mean vector

ϑ = (ϑ1, . . . , ϑn), Var[Ti] = 1 for i = 1, . . . , n, and Cov(Ti, Tj) = ρ for 1 ≤ i, j ≤ n with i not

equal to j. Consider the multiple testing problem Hi : ϑi = 0 versus Ki : ϑi > 0, i = 1, . . . , n.

For ρ ∈ (0, 1) the distribution of T is MTP2 so that the Benjamini-Hochberg bound applies, cf.

[17] or [237].

In the following we use the notation introduced in the Section 2.1. Note that Z is replaced by X0

and WX = WX0 = WT = Φ. Suitable p-values for testing the Hi’s are given by pi = pi(x) =

1−Φ(ϑi +
√
ρ̄xi −

√
ρx0), i = 1, . . . , n. Again we add ϑi = ∞ to the model such that pi = 0 a.

s. if ϑi = ∞, i = 1, . . . , n. We denote the corresponding D-EX(ζn) model by D-EX-N(ζn).

Remark 2.26
This setup includes the well-known many-one multiple comparisons problem which usually reads

as follows. Let Y i· ∼ N(νi, σ
2/mi), i = 0, . . . , n, denote independently normally distributed

sample means with σ2 > 0 (known), m1 = · · · = mn and νi ≥ ν0 for i = 1, . . . , n. Suppose one

is interested in testing H̃i : νi = ν0 versus K̃i : νi > ν0 for i = 1, . . . , n by using the test statistics

Wi = (1/m0 +1/m1)−1/2(Y i·−Y 0·)/σ, i = 1, . . . , n. Then E[Wi] = (1/m0 +1/m1)−1/2(νi−
ν0)/σ = ϑi (say), Var[Wi] = 1 and Cov(Wi,Wj) =

√
m/(m+m0) = ρ (say).

Our policy in the remainder of this chapter will be to express the EER and the FDR in the D-EX-

N(ζn) models with respect to the correlation ρ. First of all, we now determine the EER-values and

FDR-values for the extreme cases ρ = 0 (independence) and full dependency, i.e. ρ = 1.

Theorem 2.27 (FDR and EER in case of ρ = 1 in the D-EX-N(ζn)-model)

In the case of full dependency in the D-EX-N(ζn)-model, i.e. ρ = 1, we obtain

FDRn(ζn) = α ζn = EERn(ζn) for any n ∈ N.
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Proof: The test statistics Ti simplify in case of ρ = 1 to Ti = ϑi − X0 and therefore the cor-

responding conditional p-values are pi(x0) = 1 − Φ(ϑi − x0). Since in our D-EX-N(ζn)-model

it holds ϑi = 0 for all i ∈ I0 and ϑi = ∞ for all i ∈ {I0, where I0 denotes the set of indices

corresponding to true null hypotheses, it follows

Fn(t|x0, ζn) =
1
n

n∑
i=1

1[0,t](pi(x0))

= (1− ζn) + ζn1[0,t](Φ(x0)).

This representation of Fn implies, that the conditional ecdf. of the p-values is a step function with

exactly one step at t = Φ(x0) for every n ∈ N in case of ρ = 1. Consequently, it follows for the

LCP t∗(x0) of Fn and Simes’ line in this setting, that

t∗(x0) =

α (1− ζn) for x0 > Φ−1(α)

α for x0 ≤ Φ−1(α)

and the number of falsely rejected hypotheses in our model is given as

Vn(x0) =

0 for x0 > Φ−1(α)

n0 for x0 ≤ Φ−1(α).

Noting that Vn(x0) can only realize these two values in this setting, EERn(ζn) can immediately

be expressed via a discrete expectation formula, i.e.

EERn(ζn) = ζn P(Vn = n0) = ζn P(X0 ≤ Φ−1(α)) = α ζn.

Since Rn(x0) = Vn(x0) + n1, it holds

Vn(x0)
Rn(x0) ∨ 1

=

0 for x0 > Φ−1(α),

ζn for x0 ≤ Φ−1(α),

and the assertion for FDRn(ζn) follows analogously. �

Remark 2.28 (FDR and EER for ρ = 0)

(i) In case of ρ = 0, we are in the i.i.d. situation originally investigated by Benjamini and

Hochberg. As stated before, in this situation the False Discovery Rate has the value

FDRn(ζn) = α ζn for all n ∈ N.

(ii) As pointed out in [91], it holds for the limiting EER in the independent case, i.e. ρ = 0, that

EER∞(ζ) = α(1− ζ)/(1− αζ).

In case of ρ ∈ (0, 1), however, the computation of FDR∞(ζ) and EER∞(ζ) becomes substantially

more difficult. We first focus on the case ζ = 1 (the proportion of true hypotheses tends to one).
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2.3.1 The special case ζ = 1

Utilizing Lemma 2.9, we obtain that the conditional ecdf. of the p-values given X0 = x0 has the

limit F∞(·|x0) with formal representation

F∞(t|x0) = 1− Φ
(

Φ−1(1− t)√
1− ρ

+
√

ρ

1− ρ
x0

)
. (2.14)

Some important properties of this limiting conditional ecdf. are listed in the following lemma,

which can be verified by elementary analytic calculations.

Lemma 2.29
The function F∞(·|x0) defined in (2.14) has the following properties.

(i) For any fixed t ∈ [0, 1], F∞(t|x0) is non-increasing in x0.

(ii) limt↓0(∂/∂t)F∞(t|x0) = 0.

(iii) F∞(t|x0) is convex for t ∈ [0,Φ(x0/
√
ρ)] and concave for t ∈ [Φ(x0/

√
ρ), 1].

From these considerations, it can be concluded that F∞ has (depending on x0) either zero or

exactly two points of intersection or exactly one boundary point with Simes’ line on the interval

[0, α]. These three possible situations shall be demonstrated in the following figure with ρ = 0.90.

Figure 2.5: F∞(t|x0) for x0 = −1.92, x0 ≈ −2.06453 and x0 = −2.2 together with Simes’ line

on [0, α]

The constellation corresponding to the curve in the middle, i.e. the existence of exactly one bound-

ary point of the two objects resulting from the special outcome X0 = x̄0 (say) is of particular

importance for the computation of the False Discovery Rate, because it holds:
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Theorem 2.30 (The FDR in case of ζ = 1 and ρ ∈ (0, 1))

Let x̄0 be the value of X0 for which the limiting conditional ecdf. F∞(·|x0) of the p-values has

exactly one boundary point with Simes’ line on the interval [0, α] and set t2 = t(x̄0). Then the

limiting Expected Error Rate and False Discovery Rate compute as follows:

EER∞(1) = t2Φ(x̄0)/α+
∫ 1

t2/α
Φ (x0(αt|1)) dt, (2.15)

FDR∞(1) = P(X0 ≤ x̄0) = Φ(x̄0). (2.16)

Proof: We will apply Theorem 2.18. Therefore, we have to determine the setC1 of largest crossing

points and the corresponding sets E0 and E1 for the x0-values. We note that for every given

t ∈ (0, α), it is possible to determine the corresponding x0 = x0(t), so that F∞(·|x0) intersects

Simes’ line in the point (t, t/α). Regarding this value x0(t) as a function of t, we obtain after

equating F∞(t|x0) = t/α and solving for x0:

x0(t) =
√

1− ρ

ρ
Φ−1(1− t

α
)− Φ−1(1− t)

√
ρ

, t ∈ (0, α).

Studying the analytic properties of the function x0(t) yields limt↓0 x0(t) = limt↑α x0(t) = −∞
and since x0(·) is a continuous concave function, it exists a unique maximum x̄0 of x0(t) on

(0, α). It is worth noting that this implies that there is exactly one abscissa t2 for which x0(t)

equals x̄0. This can geometrically be interpreted as the boundary point situation. Furthermore,

as stated before, for a fixed t ∈ (0, α), the limiting conditional ecdf. F∞(t|x0) (regarded as a

function of x0) is non-increasing in x0. Therefore, no intersection of F∞(·|x0) and Simes’ line

occurs for values X0 > x̄0 and for values X0 < x̄0, we obtain two points of intersection, the

larger of which is larger than t2. Consequently, it holds

C1 = {0} ∪ (t2, α), E1 = (−∞, x̄0] and E0 = (x̄0,∞).

Theorem 2.18 then immediately yields the formula for EER∞(1) by plugging in the actual cdf.

G1,1 = Φ. For the computation of FDR∞(1), we recall that limt↓0(∂/∂t)F∞(t|x0) = 0 for any

x0 ∈ R. Therefore, the second summand in (2.13) vanishes and we finally obtain (2.16). �

After this preparing considerations, computation of the FDR in case of ζ = 1 is equivalent to

the task of computing the boundary point (t∗, t∗/α) of the limiting conditional ecdf. F∞(·|x0)

and Simes’ line on (0, α) as well as the corresponding x̄0 = x0(t∗) for given values α and ρ.

Necessary and sufficient conditions for having a boundary point of F∞(·|x0) and Simes line at the

point t are, that functional and derivative value of the two objects at the point t are equal. This

means, formally expressed,

F∞(t|x0) =
t

α
, (2.17)

d

dt
F∞(t|x0) =

1
α
. (2.18)

False Discovery Rate and Asymptotics, Thorsten Dickhaus



32 2.3. EXCHANGEABLE NORMALLY DISTRIBUTED VARIABLES

If we now define the distance function d(·|x0) by d(t|x0) := F∞(t|x0) − t/α and furthermore

substitute u := Φ−1(1− t) ⇔ t = 1− Φ(u) = Φ(−u), we obtain

d(u|x0) = Φ
(
− u√

1− ρ
−
√

ρ

1− ρ
x0

)
− Φ(−u)

α
as well as (2.19)

d

du
d(u|x0) =

ϕ(u)
α

− 1√
1− ρ

ϕ

(
u√

1− ρ
+
√

ρ

1− ρ
x0

)
(2.20)

and the conditions (2.17) and (2.18) from above read re-formulated

d(u|x0) = 0, (2.21)

d

du
d(u|x0) = 0. (2.22)

This is a system of two equations in the two variables u and x0. Equation (2.22) corresponds to a

quadratic form and can be solved explicitly for u. The solutions are given by

u1,2 =
−x0√
ρ
±
√

1− ρ

ρ

√
x2

0 − 2 ln
(√

1− ρ

α

)
.

Since for a fixed x0 the largest crossing or boundary point (or, more exactly, the one with the

largest abscissa in t) decides over the retention and rejection of hypotheses in the linear step-up

procedure, the smaller value

u2 =
−x0√
ρ
−
√

1− ρ

ρ

√
x2

0 − 2 ln(
√

1− ρ

α
) (2.23)

is the demanded solution, because the transformation from t to u was a strictly decreasing one.

Plugging u2 into (2.21), we get the following defining equation for x̄0:

Φ
(

1√
ρ

[
x̄0 +

√
1− ρ

√
x̄2

0 − 2 ln(
√

1−ρ
α )

])
Φ
(

1√
ρ

[√
1− ρ x̄0 +

√
x̄2

0 − 2 ln(
√

1−ρ
α )

]) = α. (2.24)

Unfortunately, it is not possible to solve (2.24) analytically for x̄0. Therefore, a numerical algo-

rithm has to be employed to determine the value x̄0 approximately. This can be done e.g. by the

well-known Newton-Raphson iteration method, which computes x̄0 up to an arbitrary precision.

For its application, we can define the distance between F∞(u2|x0) and Simes’ line as a function

d̃ (say) of x0, given by

d̃(x0) = Φ

(
1
√
ρ

[√
1− ρ x0 +

√
x2

0 − 2 ln(
√

1− ρ

α
)

])

− 1
α

Φ

(
1
√
ρ

[
x0 +

√
1− ρ

√
x2

0 − 2 ln(
√

1− ρ

α
)

])
,
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and additionally use its derivative

d

dx0
d̃(x0) = ϕ

(√
1− ρ

ρ
x0 +

1
√
ρ

√
x2

0 − 2 ln(
√

1− ρ

α
)

)

×

√1− ρ

ρ
+

1
√
ρ

x0√
x2

0 − 2 ln(
√

1−ρ
α )


− 1

α
ϕ

(
x0√
ρ

+
√

1− ρ

ρ

√
x2

0 − 2 ln(
√

1− ρ

α
)

)

×

√1
ρ

+
√

1− ρ

ρ

x0√
x2

0 − 2 ln(
√

1−ρ
α )


in each iteration step.

Remark 2.31
It may be asked why the method described above should be preferred over a numerical (grid)

search for the maximum of x0(t) on (0, α). A first answer from the practical point of view is

that the numerical computation of Φ(·) is substantially more feasible than the one of Φ−1(·), but

we also give a theoretical one. That is to say that it is possible to give an upper bound for the

FDR in the considered setup by employing the explicit solutions for u1,2. In case of u1 being

equal to u2, i.e. the distance function d(u|x0) having a saddle point in u∗ := u1 = u2, the

corresponding value x∗0, for which the discriminant
√
x2

0 − 2 ln
(√

1−ρ
α

)
of the quadratic equation

(2.22) for determining u1,2 vanishes, is larger than the exact solution x̄0. Consequently, it holds

FDR ≤ Φ(x∗0). However, x∗0 can be computed very easily and we obtain x∗0 = −
√

2 ln(
√

1−ρ
α ) for

ρ ≤ 1− α2.

If we now let ρ ↓ 0, it even reveals that the limiting FDR has the corresponding right side limit

Φ(−
√
−2 ln(α)), at least for α < 1/2.

Theorem 2.32 (Limiting value of the FDR for ρ ↓ 0 in the D-EX-N(ζn)-model with ζ = 1)

For α ∈ (0, 1/2), it holds in the D-EX-N(ζn) model:

lim
ρ↓0

FDR∞(1) = Φ(−
√
−2 ln(α)).

Proof: From geometric considerations, we have that for any ρ ∈ (0, 1) there exists a unique

solution (u, x0) = (uρ, x0,ρ) (say) of (2.21) and (2.22). Moreover, notice that α ∈ (0, 1/2] implies

uρ > 0 because of t ∈ (0, α) and the substitution u = Φ−1(1− t) and therefore (see 2.23) x0,ρ <

0. Since uρ has to be a real number in (2.23), we furthermore obtain that lim supρ→0+ x0,ρ ≤
−
√
−2 ln(α). We will now additionally show that lim infρ→0+ x0,ρ ≥ −

√
−2 ln(α).
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To this end, for δ ∈ (0, α), we consider the ansatz x0 = x0(δ) = −
√
−2 ln(δ) < −

√
−2 ln(α) =

x0(α) covering the entire range of possible values for x0,ρ and define

u = u(ρ, δ) =
−x0(δ)√

ρ
and w = w(ρ, δ) =

u(ρ, δ)√
ρ̄

+
√
ρ

ρ̄
x0(δ).

Then we get from (2.19) that d(u(ρ, δ)|x0(δ)) = Φ(−w)−Φ(−u)/α. Employing the asymptotic

relationship (x→∞) Φ(−x)/ϕ(−x) ∼ 1/x for Mills’ ratio (cf. [193]), we get

Φ(−u)
Φ(−w)

∼ w

u

ϕ(u)
ϕ(w)

=
w

u
exp((w2 − u2)/2).

Since exp((w(ρ, δ)2−u(ρ, δ)2)/2) = δ < α independent of ρ and limρ→0+ w(ρ, δ)/u(ρ, δ) = 1,

we obtain that limρ→0+ d(u(ρ, δ)|x0(δ)) > 0 for all δ ∈ (0, α) and consequently conclude that

lim infρ→0+ x0,ρ ≥ −
√
−2 ln(α). Together with the result lim supρ→0+ x0,ρ ≤ −

√
−2 ln(α)

from above, we finally obtain limρ→0+ x0,ρ = −
√
−2 ln(α) and the assertion follows from for-

mula (2.16). �

Remark 2.33
Note that the latter result implies a discontinuity of the FDR (looked at with respect to its de-

pendence on ρ), because for ρ = 0 it holds FDR = α as stated above. In practice, it is often

assumed that there may be some kind of weak dependence between test statistics (cf. e. g. [275])

being close to independence in some sense. However, Theorem 2.32 suggests that for large n

and small ρ > 0 the actual FDR may be much smaller than in the independence model if only a

small number of hypotheses is false. For example, for α = 0.05 it is −
√
−2 ln(α) ≈ −2.4477

and Φ(−
√
−2 ln(α)) ≈ 0.0072. This seems to be quite contradictory to the weak dependence

paradigm. A deeper view into this matter however reveals that if we change the order of limits,

the results again become what one would expect. More specifically, we have that

lim
ρ→0+

(
lim

n→∞
FDRn(1)

)
= Φ(−

√
−2 ln(α)) << α, but

lim
n→∞

(
lim

ρ→0+
FDRn(1)

)
= α.

Taking this into consideration, one may argue that Theorem 2.32 has mainly academic value since

the first order of limit has no practical application. A nice visual illustration of the discrepancy of

the two results is given in Appendix A.1.

Remark 2.34
If ζ equals 1, there exists for any value of ρ ∈ (0, 1) an x̄0, such that the function F∞(t|x̄0) and

the Simes line have a boundary point.

As a summarization, the following figure illustrates the graph of the FDR- and EER- curves with

regard to ρ in case of ζ = 1.
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Figure 2.6: FDR∞(1) and EER∞(1) for varying values of ρ ∈ [0, 1] and α = 0.05

It becomes obvious that the EER is always bounded by the FDR. This fact is immediately clear if

we consider the representations

FDRn(1) = P(Vn > 0) =
n∑

i=1

P(Vn = i),

EERn(1) = E
(
Vn

n

)
=

n∑
i=1

i

n
P(Vn = i) ≤ FDRn(1),

which hold for all n ∈ N. Furthermore, it is illustrated that the two entities converge against the

same limiting value α for ρ→ 1 as proven in Theorem 2.27.

2.3.2 The general case ζ < 1

We will now lay focus on the more general case ζ < 1. Recall that the underlying model assump-

tion is now that a proportion ζ of the hypotheses are true and the remaining proportion (1− ζ) of

the hypotheses are totally wrong with p-values equal to zero almost surely (according to the Dirac-

exchangeable model definition). As a consequence, the limiting conditional ecdf. F∞(·|x0, ζ) of

the p-values is now given by

F∞(t|x0, ζ) = (1− ζ) + ζ

(
1− Φ

(
Φ−1(1− t)√

1− ρ
+
√

ρ

1− ρ
x0

))
.

Most of the substantial properties of the graph of this function are preserved from the case ζ =

1, but there is one major change: Now, F∞(·|x0, ζ) always starts above Simes’ line, because

obviously it holds F∞(0|x0, ζ) = 1 − ζ > 0. Therefore, the two objects always have at least

one point of intersection. For some values x0, together with certain parameter constellations for ζ

and ρ, however, we may get two ore three points of intersection, but never more than three. The

following figure illustrates the three possible scenarios for the example case ζ = 0.9 and ρ = 0.95.
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Figure 2.7: F∞(t|x0, ζ) for x0 = −1.88, x0 ≈ −1.95738, and x0 = −2.12 on [0, α] in case of

ζ = 0.9 and ρ = 0.95.

Again, for a given t ∈ (0, α), it is possible to determine the value x0(t), such that the limiting con-

ditional ecdf. and Simes’ line cross each other in the point (t, t/α). A straightforward calculation

yields

x0(t) =
√

1− ρ

ρ
Φ−1

(
1− t/α

ζ

)
− Φ−1(1− t)

√
ρ

, t ∈ (0, α).

The computation of the FDR, however, is more complicated in this case. The actual FDP, i.e. the

proportion of falsely rejected null hypotheses with respect to all rejected hypotheses for a given

x0, has now the limit

lim
n→∞

Vn(x0)
Rn(x0) ∨ 1

=
t(x0)/α− (1− ζ)

t(x0)/α
= 1− α (1− ζ)

t(x0)
,

where t(x0) denotes the largest point of intersection of F∞(·|x0, ζ) and Simes’ line. The FDR is

defined as the expectation of this ratio and therefore it holds

FDR∞(ζ) = E
(

lim
n→∞

Vn(x0)
Rn(x0) ∨ 1

)
= 1− α (1− ζ) · E

(
1

t(x0)

)
. (2.25)

Again, the boundary point situation is of crucial interest. If it occurs for a certain x̄0, the function

F∞(·|x̄0, ζ) intersects Simes’ line at a point t1 ∈ (α(1 − ζ),Φ(x̄0/
√
ρ)) and touches Simes’

line at the boundary point t2 ∈ (Φ(x̄0/
√
ρ), α) with t1 < t2. For X0 > x̄0, we have exactly

one point of intersection (automatically the largest) and its t-coordinate lies in the interval I1 :=

(α(1 − ζ), t1). For X0 < x̄0, however, three points of intersection occur and the largest crossing

point abscissa, which is relevant for the computation of the FDR, comes from the interval I2 :=

(t2, α). Summarized, there are the two disjoint intervals I1 and I2 of possible largest crossing

point abscissas and therefore t1 and t2, respectively, provide integration bounds for the expectation

formula (2.25) for the computation of the limiting FDR.
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For the determination of the boundary point, we utilize a technique analogue to the case ζ = 1

described above. With our already introduced notation, we obtain here

d(u|x0, ζ) = (1− ζ) + ζ

(
Φ(− u√

1− ρ
−
√

ρ

1− ρ
x0)
)
− Φ(−u)

α
,

d

du
d(u|x0, ζ) =

ϕ(u)
α

− ζ√
1− ρ

ϕ

(
u√

1− ρ
+
√

ρ

1− ρ
x0

)
and

u2 =
−x0√
ρ
−
√

1− ρ

ρ

√
x2

0 − 2 · ln(
√

1− ρ

αζ
). (2.26)

Plugging this u2 into the equation d(u|x0, ζ) = 0, which represents the condition for the distance

function (in analogy to the case ζ = 1), results in a determining equation for x̄0 given by

Φ
(

1√
ρ

[
x̄0 +

√
1− ρ

√
x̄2

0 − 2 ln
(√

1−ρ
αζ

)])
(1− ζ) + ζΦ

(
1√
ρ

[√
1− ρ x̄0 +

√
x̄2

0 − 2 ln
(√

1−ρ
αζ

)]) = α. (2.27)

Also (2.27) cannot be solved analytically for x̄0 and therefore only an approximative numerical

solution can be computed via root-finding iteration methods using the functions

d̃(x0|ζ) = (1− ζ) + ζ Φ

 1
√
ρ

√1− ρ x0 +

√
x2

0 − 2 ln(
√

1− ρ

αζ
)


− 1
α

Φ

 1
√
ρ

x0 +
√

1− ρ

√
x2

0 − 2 ln(
√

1− ρ

αζ
)


and

d

dx0
d̃(x0|ζ) = ζ ϕ

√1− ρ

ρ
x0 +

1
√
ρ

√
x2

0 − 2 ln(
√

1− ρ

αζ
)


×

√1− ρ

ρ
+

1
√
ρ

x0√
x2

0 − 2 ln(
√

1−ρ
αζ )



− 1
α
ϕ

 x0√
ρ

+
√

1− ρ

ρ

√
x2

0 − 2 ln(
√

1− ρ

αζ
)


×

√1
ρ

+
√

1− ρ

ρ

x0√
x2

0 − 2 ln(
√

1−ρ
αζ )

 .

With this (approximate) solution for x̄0, t2 is given immediately by back substitution, i.e. t2 =

Φ(−u2). For the smaller point of intersection and its t-coordinate t1, we convert the formulas for
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the distance function and its derivative with respect to u into the simple form

d(u|x̄0, ζ) = Φ
(

u√
1− ρ

+
√

ρ

1− ρ
x̄0

)
− 1
αζ

(Φ(u) + α− 1) and

d

du
d(u|x̄0, ζ) =

ϕ
(

u√
1−ρ

+
√

ρ
1−ρ x̄0

)
√

1− ρ
− ϕ(u)

αζ

and apply an iteration method for root-finding in an environment of Φ−1(1 − α(1 − ζ)). Having

obtained t1 = Φ(−u1) in this manner, the limiting EER and FDR finally compute as given in the

following theorem.

Theorem 2.35
Given model D-EX-N(ζn) with limn→∞ ζn = ζ ∈ (0, 1), the set of LCP’s is given by

Cζ = (α(1− ζ), t1) ∪ (t2, α) and EER∞(ζ) and FDR∞(ζ), respectively, compute as

EER∞(ζ) =
t2 − t1
α

· Φ (x0 (t1|ζ)) +
∫ t1/α

1−ζ
Φ (x0 (α t|ζ)) dt+

∫ 1

t2/α
Φ (x0 (α t|ζ)) dt,

FDR∞(ζ) = (z2 − z1) · Φ
(
x0

(
α (1− ζ)
1− z1

|ζ
))

+
∫ z1

0
Φ
(
x0

(
α (1− ζ)

1− z
|ζ
))

dz +
∫ ζ

z2

Φ
(
x0

(
α (1− ζ)

1− z
|ζ
))

dz,

where zi = 1− α(1− ζ)/ti, i = 1, 2.

Proof: The assertions follow from the general Theorem 2.13 via integration by parts. Denote the

pdf. corresponding toGζ,1 by gζ,1 and notice that Cζ,1 = (0, t1/α−(1−ζ))∪(t2/α−(1−ζ), ζ).
From Theorem 2.13, we get

EER∞(ζ) =
∫ t1/α−(1−ζ)

0
ugζ,1(u)du+

∫ ζ

t2/α−(1−ζ)
ugζ,1(u)du.

Since WZ = WX0 = Φ, x0(t1|ζ) = x0(t2|ζ) and limt↑α x0(t|ζ) = −∞, we get

EER∞(ζ) =
[
t1
α
− (1− ζ)

]
[1− Φ(x0(t1|ζ))] + ζ

−
[
t2
α
− (1− ζ)

]
[1− Φ(x0(t1|ζ))]−

(
t1
α
− (1− ζ)

)
− ζ

+
t2
α
− (1− ζ) +

∫ t1/α−(1−ζ)

0
Φ(x0(α(u+ 1− ζ)|ζ))du

+
∫ ζ

t2/α−(1−ζ)
Φ(x0(α(u+ 1− ζ)|ζ))du

=
t2 − t1
α

Φ(x0(t1|ζ)) +
∫ t1/α

1−ζ
Φ(x0(αt|ζ))dt+

∫ 1

t2/α
Φ(x0(αt|ζ))dt.
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In order to compute FDR∞(ζ), note that for z ∈ (0, z1) ∪ (z2, ζ)

Gζ,2(z) = 1− Φ(x0(
α(1− ζ)

1− z
|ζ)).

In view of limt↓α(1−ζ) x0(t|ζ) = ∞, it is Gζ,2(z1) = Gζ,2(z2), Gζ,2(0) = 0 and Gζ,2(ζ) = 1.

Denoting the corresponding pdf of Gζ,2 by gζ,2, we obtain

FDR∞(ζ) =
∫ z1

0
zgζ,2(z)dz +

∫ ζ

z2

zgζ,2(z)dz

= z1Gζ,2(z1) + ζGζ,2(ζ)− z2Gζ,2(z2)−
∫ z1

0
Gζ,2(z)dz −

∫ ζ

z2

Gζ,2(z)dz

= (z2 − z1)Φ(x0(
α(1− ζ)
1− z1

|ζ))

+
∫ z1

0
Φ(x0(

α(1− ζ)
1− z

|ζ))dz +
∫ ζ

z2

Φ(x0(
α(1− ζ)

1− z
|ζ))dz,

and the formulas given in the theorem are proven. �

Remark 2.36
In contrast to the situation regarded in Remark 2.34, there are parameter combinations for ζ < 1

and ρ, so that for every value of x0 only exactly one point of intersection of F∞(t|x0) and the

Simes line is at hand. Such a constellation can be detected by noticing that the function x0(t)

then decreases monotonously on the whole range [α (1 − ζ), α] of possible arguments. In this

situation, the abscissa of the demanded (largest) crossing point can lie anywhere in this interval

and therefore it then holds

EER∞(ζ) =
∫ 1

1−ζ
Φ (x0 (αt)) dt,

FDR∞(ζ) =
∫ ζ

0
Φ
(
x0

(
α(1− ζ)

1− z

))
dz.

This can be formally interpreted as t1 = t2.

For α < 1/2, there is another way of detecting such a situation. First we notice that α < 1/2

implies u2 > 0 in (2.26) and consequently x0 < 0. Now, t1 = t2 (no tangent point possible

for (ρ, ζ)) is equivalent to d(u2(x0)|x0, ζ) ≥ 0 for x0 = −
√

2 ln(
√
ρ̄/(αζ)). To see this, we

notice that F∞(t|x0, ζ) has a unique abscissa t∗ with same derivative as Simes’ line, because the

discriminant in (2.26) vanishes for x0 = x0, and it holds t∗ = Φ(x0/
√
ρ), i.e., t∗ is the abscissa

of the point of inflection of F∞(·|x0, ζ). If now x0 < x0 < 0, no tangent point can occur, because

d(u2(x0)|x0, ζ) > d(u2(x0)|x0, ζ) ≥ 0. On the other hand, if x0 < x0 < 0, no tangent point can

occur because we obtain a negative discriminant in (2.26) for such an x0.
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Figure 2.8: EER∞(ζ) in the D-EX-N(ζn) model for α = 0.05 and ζ = 0.1, 0.2, 0.3, 0.4, 0.5

(left graph) and ζ = 0.6, 0.7, 0.8, 0.9, 0.95, 0.975, 1 (right graph).

We end this section with a depictive representation of EER∞(ζ) and FDR∞(ζ) in our D-EX-N(ζ)

model. We start with EER∞(ζ) in Figure 2.8. For ρ→ 0, EER∞(ζ) tends to α(1− ζ)/(1− αζ)

as expected, see Remark 2.28 and for ρ → 1, EER∞(ζ) tends to αζ according to Theorem 2.27.

Moreover, it seems that EER∞(ζ) is increasing in ρ with largest values for large ρ and ζ. If ρ is

not too large (< 0.9), EER∞(ζ) is largest for ζ ≈ 1/2.

Figure 2.9: FDR∞(ζ) in the D-EX-N(ζn) model for α = 0.05 and ζ = 0.1, 0.2, 0.4, 0.6, 0.8, 0.9

(left graph) and ζ = 0.95, 0.96, 0.97, 0.98, 0.99, 0.995, 0.999, 0.9999, 0.99999, 1 (right

graph).

Figure 2.9 displays FDR∞(ζ) for various values of ζ for ρ ∈ [0, 1]. For ζ ∈ (0, 1), the FDR tends
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to the Benjamini-Hochberg bound for ρ → 0 and ρ → 1. For ρ = 1 we have total dependence

so that FDRn(ζn) = ζnα in the D-EX-N(ζn) model, again according to Theorem 2.27. For large

values of ζ the computation of FDR∞(ζ) is extremely cumbersome. The main reason is that the

BP’s are very close to zero so that an enormous numerical accuracy is required. Finally, it is

interesting to note that for ζ = 1, FDR∞(ζ) is the true level of Simes’ [264] global test for the

intersection hypothesis.

2.4 Exchangeable studentized normal variables

The last distributional setting we investigate deals with equi-correlated studentized normal vari-

ables formally introduced in the following definition of the D-EX-t(ζn) model.

Notation 2.37 (D-EX-t(ζn) model)

Let Xi ∼ N (ϑi, σ
2), i = 1, . . . , n, be independent normal random variables and let νS2/σ2 ∼

χ2
ν be independent of the Xi’s. Without loss of generality we assume σ2 = 1 and the cdf. of
√
νS will be denoted by Fχν . Again we consider the multiple testing problem Hi : ϑi = 0

versus Ki : ϑi > 0, i = 1, . . . , n. Let Ti = Xi/S, i = 1, . . . , n. Then (T1, . . . , Tn) has a

multivariate equi-correlated t-distribution. The cdf. (pdf.) of a univariate (central) t-distribution

with ν degrees of freedom will be denoted by Ftν (ftν ) and a β-quantile of the tν-distribution will

be denoted by tν,β . With respect to the notation introduced in Section 2.1, Z is replaced by S,

WX = Φ, WS(s) = Fχν (s/
√
ν) and WT = Ftν .

Suitable p-values (as a function of s) are defined by pi(s) = 1−Ftν (xi/s). Again we add ϑi = ∞
to the model such that pi = 0 a. s. if ϑi = ∞. We denote the corresponding D-EX(ζn) model by

D-EX-t(ζn). It is outlined in [17] by employing PRDS arguments that the Benjamini-Hochberg

bound applies in this model for α ∈ (0, 1/2).

Computation of the asymptotic False Discovery Rate and the asymptotic Expected Error Rate,

respectively, can be done in the D-EX-t(ζn) model quite similarly to the description in Chapter

2.3 for the D-EX-N(ζn) model. Again, the largest crossing point of the conditional limiting ecdf.

F∞(·|s, ζ) of the p-values and Simes’ line determines the limiting proportion of rejected hypothe-

ses in the linear step-up procedure. Therefore, we first give the explicit representation of F∞ in

this case, namely

F∞(t|s, ζ) =

1− Φ(s · F−1
tν (1− t)) for ζ = 1,

(1− ζ) + ζ (1− Φ(s · F−1
tν (1− t))) for ζ < 1.

(2.28)

As the following figures show, this function behaves very similarly to its analogue in the normal

case treated before. Again, we will first take a closer look at the situation ζ = 1.
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Figure 2.10: F∞(t|s, 1.0) for ν = 1 and s = 0.015, s ≈ 0.026710 and s = 0.04 on [0, α/2]

For s2 < (ν + 1)/ν, we again obtain that the limiting ecdf. is first convex and then concave.

Due to the same argumentation as in the normal case, we have to investigate the boundary point

situation (depicted in Figure 2.10 by the curve in the middle) and determine the corresponding

value s̄. The limiting FDR then computes as FDR∞(1) = P(S ≤ s̄) = Fχ2
ν
(νs̄2), because the

derivative of F∞(·|s, ζ) in the origin is zero and F∞(t|s, ζ) is non-increasing in s for any fixed t.

Formally, we can state the following properties of F∞(t|s) = F∞(t|s, 1) which will be helpful in

what follows.

Lemma 2.38
The function F∞(·|s) = F∞(·|s, 1) defined in (2.28) has the following properties.

(i) For any fixed t ∈ [0, 1], F∞(t|s) is non-increasing in s.

(ii) limt↓0(∂/∂t)F∞(t|s) = 0.

(iii) Defining a(s, ν) =
√

(ν + 1)/s2 − ν, F∞(t|s) is convex for t ∈ [0, Ftν (−a(s, ν))] and

concave for t ∈ [Ftν (−a(s, ν)), 1] for s2 < (ν + 1)/ν.

In case of ζ < 1, too, most of the essential characteristics of F∞ are preserved, as the following

figure for ζ = 0.95 shows. The crucial difference again consists in the fact that F∞(0|s, ζ) =

1− ζ > 0 for ζ < 1 such that an LCP larger that zero is guaranteed.
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Figure 2.11: F∞(t|s, 0.95) for ν = 1 and s = 0.025, s = 0.03180 and s = 0.04 on [0, α (1−ζ/2)]

Since the value of s determines if and where F∞ and Simes’ line have a crossing or a boundary

point, it is again of interest to give a formal representation of s(t) so that the functional values of

the two objects coincide at t. We obtain

s(t) =
Φ−1 (1/ζ − t/(αζ))

F−1
tν (1− t)

(2.29)

and notice that crossing or boundary points (for α < 1/2) can consequently only occur in the

interval (α(1 − ζ), α(1 − ζ/2)) 3 t, because only strictly positive values for s are possible. The

limits of s(t) are given in the following lemma.

Lemma 2.39
Let tu = α (1− ζ) and to = α (1− ζ/2). Then s(t) as defined in (2.29) has the following limits:limt↓tu s(t) = limt↑to s(t) = 0 for ζ = 1,

limt↓tu s(t) = ∞ and limt↑to s(t) = 0 for ζ < 1.

Furthermore, we give (for the determination of extrema) the derivative of s(t) with respect to t:

d

dt
s(t) =

1(
F−1

tν (1− t)
)2 ·

(
Φ−1(1/ζ − t/(αζ))
ftν (F−1

tν (1− t))
−

F−1
tν (1− t)

αζϕ(Φ−1(1/ζ − t/(αζ)))

)
.

Therefore, for points with horizontal tangent to the curve s(t) the condition

αζΦ−1(1/ζ − t/(αζ)) · ϕ(Φ−1(1/ζ − t/(αζ)))
F−1

tν (1− t) · ftν (F−1
tν (1− t))

= 1 (2.30)

must hold. Condition (2.30) simplifies in the special case ν = 1, because it can in this case

entirely be expressed by elementary functions and Φ. Moreover, for ν = 1 the t1-distribution is

the well-known Cauchy distribution so that we devote one subsection to this special case.
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2.4.1 The special case ν = 1

It is well known that in case of ν = 1, Student’s t-distribution with one degree of freedom coin-

cides with the Cauchy distribution with characteristics as given in the following lemma.

Lemma 2.40 (Cauchy distribution)

Let f denote the pdf. and let F denote the cdf. of the Cauchy distribution. Then it holds:

f(y) =
1

π (1 + y2)
, (2.31)

F (y) =
1
2

+
arctan(y)

π
, (2.32)

F−1(y) = tan(π (y − 1
2
)) = t1,y. (2.33)

Plugging in the thereby obtained quantiles for Student’s t-distribution with one degree of freedom

into the formal representation of s(t) in (2.29) yields

s(t) =
Φ−1(1/ζ − t/(αζ))

tan(π(1
2 − t))

and, consequently,

d

dt
s(t) =

1
tan2(π (1

2 − t))

[
π(1 + tan2(π (

1
2
− t))) · Φ−1(

1
ζ
− t

αζ
)−

tan(π (1
2 − t))

αζϕ(Φ−1(1
ζ −

t
αζ ))

]
.

Therefore, the condition d
dt s(t) = 0 is equivalent to

π(1 + tan2(π (
1
2
− t))) · Φ−1(

1
ζ
− t

αζ
) =

tan(π (1
2 − t))

αζϕ(Φ−1(1/ζ − t/(αζ)))
. (2.34)

Substituting u := Φ−1(1/ζ − t/(αζ)), we get t = α(1− ζ Φ(u)) and (2.34) reads re-formulated

αζπuϕ(u) ·
[
1 + tan2(π (1

2 − α(1− ζ Φ(u))))
]

tan(π(1/2− α(1− ζ Φ(u))))
= 1. (2.35)

Computation of an approximate numerical solution of (2.35) with respect to u and following back

substitution enables us immediately to determine an arbitrary precise numerical value of the lim-

iting FDR for ζ = 1 in the Cauchy case of ν = 1. We obtain

ū ≈ 0.751350,

t̄ ≈ 0.011311,

s̄ ≈ 0.026710 and, finally,

FDR∞(1) ≈ 0.021309.
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Remark 2.41
If ν is not equal to 1, the same computational steps have to be carried out using the target equation

(2.30). Although conceptionally the same, this is numerically much more cumbersome, because

F−1
tν for arbitrary ν makes numerical problems.

Remark 2.42
The limiting EER in case of ζ = 1 can (according to Theorem 2.18) be computed as

EER∞(1) = t̄ · Fχ2
ν

(
νs̄2
)

+
∫ 1/2

t̄/α
Fχ2

ν

(
νs2 (αz)

)
dz.

Remark 2.43
Due to the limits at the boundaries of the domain of s(t) and its uniform flexional behaviour, the

value s̄ is a global maximum of s(t) in case of ζ = 1.

Again, this property is no longer preserved in the general case ζ < 1. Then, either two points

with horizontal tangent occur (corresponding to a minimum and a maximum of s(t)) or there are

no roots of the derivative of s(t) at all. Clearly, numerical algorithms can only detect one of the

two extrema in the first situation. But since we know the flexion of s(t) in case of ζ < 1, too, a

suitable choice of the initial value for the applied algorithm guarantees that the smaller solution

in u and consequently the larger solution in t will be found. This is then the maximum of s(t)

and is of crucial interest for the further steps towards FDR and EER computation. The remaining

computational steps can then be carried out in analogy to Chapter 2.3.

2.4.2 The general case ν > 1 and ζ < 1

In order to determine the local maximum s̄ of s(t) (which corresponds to the boundary point

situation) in the general case, we apply the substitution u := F−1
tν (1 − t), equivalent to t =

1 − Ftν (u), and achieve the following representations for s(u) and its derivative with respect to

the newly introduced variable u:

s(u) =
1
u

Φ−1

(
1
ζ
− 1− Ftν (u)

αζ

)
and (2.36)

d

du
s(u) =

1
u2

 uftν (u)

αζϕ
(
Φ−1

(
1
ζ −

1−Ftν (u)
αζ

)) − Φ−1

(
1
ζ
− 1− Ftν (u)

αζ

) . (2.37)

With the transformed bounds uu := F−1
tν (1−to) and uo := F−1

tν (1−tu), the point with horizontal

tangent on s(u) with the smaller abscissa u2 is demanded. Since the roots of (2.37) cannot be

determined analytically, a numerical algorithm for maximum searching in a neighborhood of uu

has to be employed. The so obtained numerical value for u2 provides the value s̄ = s(u2). Via

back substitution, we also immediately get the abscissa of the boundary point expressed in t-

coordinates as t2 = 1 − Ftν (u2). Again, this t2 is one of the two necessary integration bounds
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for the expectation formulas expressing FDR∞(ζ) and EER∞(ζ). In order to compute the lower

bound t1, we consider the distance d(u|s̄) between the conditional limiting ecdf. and Simes’ line

in the boundary point situation as a function of the transformed variable u and obtain

d(u|s̄) = (1− ζ) + ζ Φ(−s̄u)− 1− Ftν (u)
α

.

Applying a root finding algorithm to the latter function in a suitable neighborhood of uo with result

u1 yields t1 = 1− Ftν (u1) and with the transformations

zi = 1− α (1− ζ)
ti

for i = 1, 2, and

z3 =
ζ

2− ζ
,

the limiting FDR and EER can finally (according to Theorem 2.13) be computed as

FDR∞(ζ) = (z2 − z1) · Fχ2
ν

(
νs2

(
α(1− ζ)
1− z1

))
+
∫ z1

0
Fχ2

ν

(
νs2

(
α(1− ζ)

1− z

))
dz +

∫ z3

z2

Fχ2
ν

(
νs2

(
α(1− ζ)

1− z

))
dz,

EER∞(ζ) =
t2 − t1
α

· Fχ2
ν

(
νs2(t1)

)
+
∫ t1/α

1−ζ
Fχ2

ν

(
νs2 (αt)

)
dt+

∫ 1−ζ/2

t2/α
Fχ2

ν

(
νs2 (αt)

)
dt.

However, if s(t) decreases monotonously on the entire interval [tu, to] or it holds d
du s(u) >

0 for all u in the interval [uu, uo], respectively, there is no possible choice for s leading to a

boundary point situation. Consequently, the largest crossing point of F∞ and Simes’ line can then

lie anywhere in the interval [tu, to] and it holds (t1 = t2)

FDR∞(ζ) =
∫ z3

0
Fχ2

ν

(
νs2

(
α(1− ζ)

1− z

))
dz,

EER∞(ζ) =
∫ 1−ζ/2

1−ζ
Fχ2

ν

(
νs2 (αt)

)
dt.

Again, an alternative approach towards determining s̄ consists of working with the distance func-

tion d(u|s) and its derivative with respect to u. In the boundary point situation, both objects must

simultaneously equal zero for a tuple (ū, s̄). In case of ζ = 1, this is equivalent to the pair of

equations

αΦ(−s̄ū) = Ftν (−ū) (2.38)

s̄αϕ(s̄ū) = ftν (ū). (2.39)

From (2.38) und (2.39), asymptotic results for ν →∞ can be deduced as follows.
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Lemma 2.44
Let s̄ = 1− (− ln(α))1/2ν−1/2 + o(ν−1/2) and ū =

√
2 (− ln(α))

1
4 ν

1
4 + o(ν−1/4).

Then it holds:

lim
ν→∞

ftν (ū)
ϕ(s̄ū)

= α.

Proof: Noting that s̄2 = 1 − 2 (− ln(α))
1
2 ν−

1
2 + o(ν−1/2) and ū2 = 2 (− ln(α))

1
2 ν

1
2 + o(1),

we obtain for the product that ū2s̄2 = 2(− ln(α))
1
2 ν

1
2 + 4 ln(α) + o(1) and, consequently,

ϕ(s̄ū) =
1√
2π

exp(−(− ln(α))
1
2 ν

1
2 − 2 ln(α)− o(1)) =

1√
2πα2 exp(

√
− ln(α))

√
νo(1)

.

Furthermore, we have

ftν (ū) =
1

√
νB(ν

2 ,
1
2)

(
1 +

2(− ln(α))
1
2

ν
1
2

+ o(ν−1)

)− ν+1
2

and therefore we get for the ratio of both expressions

ftν (ū)
ϕ(s̄ū)

=
√

2π
√
νB(ν

2 ,
1
2)
α2 exp

(√
− ln(α) + o(ν−1/2)

)√ν
(

1 +
2(− ln(α))

1
2

ν
1
2

+ o(ν−1)

)− ν+1
2

.

Since

lim
ν→∞

√
2π

√
νB(ν

2 ,
1
2)

= 1,

it remains to study the expression

gα(ν) = exp
(√

− ln(α) + o(ν−1/2)
)√ν

(
1 +

2(− ln(α))
1
2

ν
1
2

+ o(ν−1)

)− ν+1
2

. (2.40)

Substituting n =
√
ν and a =

√
− ln(α) we obtain a new function ha (say), given by

ha(n) =
(
exp(a+ o(n−1))

)n(1 +
2a
n

+ o(n−2)
)−n2+1

2

,

which has the same limiting behaviour for n → ∞ as gα(ν) for ν → ∞. Taking the natural

logarithm in the definition of ha(n) results in

ln(ha(n)) = n(a+ o(n−1))− n2 + 1
2

ln
(

1 +
2a
n

+ o(n−2)
)
.

Now we make use of the series expansion

ln(1 + β) =
∞∑

k=0

(−1)k βk+1

k + 1

and obtain the representation

ln(ha(n)) = na+ o(1)− n2

2

[
2a
n
− 2a2

n2
+ o(n−2)

]
− 1

2
ln
(

1 +
2a
n

+ o(n−2)
)
. (2.41)
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Equation 2.41 immediately yields limn→∞ ln(ha(n)) = a2 and therefore it holds

limn→∞ ha(n) = exp(a2). Back substitution yields

lim
ν→∞

gα(ν) =
1
α

and this completes the proof. �

Remark 2.45
An analogous calculation even yields, that for any fixed constant k ∈ R, it holds:

lim
ν→∞

ftν (kū)
ϕ(ks̄ū)

= αk2(2−k2). (2.42)

Lemma 2.44 shows that the chosen values for s̄ and ū satisfy the condition (2.39) asymptotically,

because s̄ tends to 1 with ν tending to infinity.

Furthermore, it can be shown that the tuple (ū, s̄) also satisfies (2.38) asymptotically and that it

is the unique solution of the pair of equations (2.38) and (2.39). This is the task of the following

lemma.

Lemma 2.46
Let α ∈ (0, 1/2) and define

s = sν(x) = 1− ν−1/2(− ln (x))1/2 + o(ν−1/2), x ∈ (0, 1/2).

Then, given model D-EX-t(ζn) with limn→∞ ζn = ζ = 1, it holds for sufficiently large ν that

F∞(·|sν(x)) has (i) two CP for all x ∈ (0, α), and, (ii) no CP for all x ∈ (α, 1/2).

Proof: For s2 < (ν + 1)/ν, the unique point of inflection of F∞(·|s) on (0, 1/2) is given by

t∗(ν|s) = Ftν (−a(s, ν)) with a(s, ν) = ((ν + 1)/s2 − ν)1/2. Hence, it suffices to show that

F∞(t∗(ν|sν(x))|sν(x)) > t∗(ν|sν(x))/α for x ∈ (0, α)

for sufficiently large ν and that the derivative of F∞(·|sν(x)) in t= t∗(ν|sν(x)) is less than 1/α

for all x ∈ (α, 1/2) for sufficiently large ν. Therefore, the assertion follows if

lim
ν→∞

Ftν (−a(sν(x), ν))
Φ(−sν(x)a(sν(x), ν))

< α for x ∈ (0, α), (2.43)

lim
ν→∞

ftν (a(sν(x), ν))
sν(x)ϕ(sν(x)a(sν(x), ν))

> α for x ∈ (α, 1/2). (2.44)

For xν ∈ (0,∞) with limν→∞ x4
ν/ν = β ∈ [0,∞] it is shown in [88] that

lim
ν→∞

ftν (xν)
ϕ(xν)

= lim
ν→∞

Ftν (−xν)
Φ(−xν)

= exp(β/4).

Note that for u→∞ and s→ 1 it holds (Mills’ ratio)

Ftν (−u)
Φ(−su)

∼ Ftν (−u)
Φ(−u)

ϕ(u)
ϕ(su)

.
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It can easily be verified that limν→∞ a(sν(x), ν)4/ν = −4 ln(x) and limν→∞ a(sν(x), ν)2(1 −
sν(x)2) = −4 ln(x). As a consequence, (2.43) follows by noting that

lim
ν→∞

Ftν (−a(sν(x), ν))
Φ(−sν(x)a(sν(x), ν))

= lim
ν→∞

[
Ftν (−a(sν(x), ν))
Φ(−a(sν(x), ν))

ϕ(−a(sν(x), ν))
ϕ(−sν(x)a(sν(x), ν))

]
= exp(−4 ln(x)/4) lim

ν→∞
exp(−1

2
a(sν(x), ν)2(1− sν(x)2))

=
1
x

exp(2 ln(x))

= x.

An analogous calculation yields (2.44). Hence, Lemma 2.46 is proved. �

Noticing that the FDR in case of ζ = 1 can be computed as

P(S ≤ s̄) = Fχ2
ν
(νs̄2),

we finally obtain that FDR∞(1) for ν →∞ in the D-EX-t(ζn) model with limn→∞ ζn = 1 tends

to the same limiting value as the one given in Theorem 2.32 for ρ→ 0 in the D-EX-N(ζn) model

treated in Section 2.3.

Theorem 2.47
In the D-EX-t(ζn) model, it holds:

lim
ν→∞

FDR∞(1) = Φ(−
√
−2 ln(α)).

Proof: The χ2
ν-distribution has expectation µχ2

ν
= ν and variance σ2

χ2
ν

= 2ν. Therefore, the

transformed variable
νS2 − µχ2

ν

σχ2
ν

=
νS2 − ν√

2ν

is standardized with expectation 0 und variance 1. Now it holds

νs̄2 − ν√
2ν

= −
√
−2 ln(α) + o(1)

and according to the Central Limit Theorem we finally get

lim
ν→∞

P(
νS2 − ν√

2ν
≤ νs̄2 − ν√

2ν
) = lim

ν→∞
P
(
νS2 − ν√

2ν
≤ −

√
−2 ln(α) + o(1)

)
= Φ(−

√
−2 ln(α)). �

Again, we close this section with two figures displaying EER∞(ζ) and FDR∞(ζ), respectively,

in the D-EX-t(ζn) model.
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Figure 2.12: EER∞(ζ) in the D-EX-t(ζn) model for α = 0.05 and different ζ’s.

Figure 2.12 displays EER∞(ζ) for various values of ζ. It seems that EER∞(ζ) is decreasing in ν.

For ν → ∞, EER∞(ζ) again tends to the value α(1 − ζ)/(1 − αζ) as expected, cf. [91]. Note

that EER∞(ζ) is close to this limit if ν is not too small. As expected, for ζ ≈ 1/2 and ν not too

small, EER∞(ζ) is largest.

Figure 2.13: FDR∞(ζ) in the D-EX-t(ζn) model for α = 0.05 and different ζ’s.

In Figure 2.13, FDR∞(ζ) is displayed for various values of ζ. Except for ζ = 1, the FDR tends

to the Benjamini-Hochberg bound αζ for increasing degrees of freedom. The limit for ν → 0 is

not clear. In the latter case the density of the t-distribution becomes more and more flat making

the computation of FDR∞(ζ) extremely difficult. But anyhow, looking at 0 < ν < 1 has only

academic value.
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As in the D-EX-N(ζ) model with ζ = 1, FDR∞(ζ) is the true level of Simes’ global test for the

intersection hypothesis, cf. [264].

2.5 Conclusions

The investigations in this chapter show that the false discovery proportion FDP= Vn/[Rn ∨ 1]

of the LSU-procedure can be very volatile in case of dependent p-values, that is, the actual FDP

may be much larger (or smaller) than in the independent case. The same is true for Vn, Vn/n, Rn

and Rn/n. Under mild assumptions, the ecdf. of the p-values converges to a fixed curve under

independence (cf. [91]), which implies convergence of Vn/n and Rn/n to a fixed value. On the

other hand, the shape of the ecdf. of the p-values under exchangeability heavily depends on the

(realization of the) disturbance variable Z. In the latter case, the limit distribution of Vn/n and

Rn/n typically has positive variance. It is often assumed that there may be some kind of "weak

dependence" between test statistics (cf., e. g., [275]) being close to independence in some sense.

The results in Theorems 2.32 and 2.47 and the numerical calculations reflected in Figures 2.9

and 2.13 suggest that for large n and ζn → 1 small deviations from independence (small ρ or

large ν) may result in a substantially smaller FDR than the Benjamini-Hochberg bound. However,

simulations for small ρ and large ν show that FDRn(ζn) approaches its limit FDR∞(1) only for

unrealistically large values of n if ζn → 1 (cf. Appendix A.1). A possible explanation may be

that limρ→0+ FDRn(1) = α, limν→∞ FDRn(1) = α, hence the order of limits plays a severe

role. Moreover, for small ρ it seems that n has to be very large such that the ecdf. reproduces the

shape of F∞ close to 0. For ζ < 1, the FDR∞-curves in Figures 2.9 and 2.13 reflect the FDR for

realistically large n (e.g. n = 1000) very well. The reason is that the shape behavior of F∞ close

to 0 is not that crucial as for ζ = 1.

Section 2.2 shows that the FDR under dependency may also have the same behavior as in the

independent case. Therefore, it seems very difficult to predict what happens with EER, FDR and

FDP in models with more complicated dependency structure, e.g., in a multivariate normal model

with arbitrary covariance matrix. In any case, results of the LSU-procedure, or more general, of

any FDR-controlling procedure, should be interpreted with some care under dependency taking

into account that the FDR refers to an expectation and that the procedure at hand may lead to

much more false discoveries than expected.

Finally, with slight modifications of the methods presented in this chapter one can also treat statis-

tics like Ti = |Xi−Z| or Ti = |Xi|/Z. Somewhat more effort will be necessary if the disturbance

variable Z is two-dimensional, as for example in Ti = |Xi − Z1|/Z2.
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Chapter 3

A new rejection curve

This chapter deals with a new method for gaining power in a multiple test situation by discussing

procedures based on a new and in some sense (cf. Section 3.6) asymptotically optimal rejection

curve. The fact that the FDR of the original linear step-up procedure is bounded by n0α/n if n0

hypotheses are true and the remaining n1 = n−n0 hypotheses are false implies that the pre-defined

error level is not entirely exhausted for n0 < n by this method which raises the possibility of

improving the Benjamini-Hochberg procedure with regard to power. We will tackle this problem

from the perspective of rejection curves, which will be formally introduced in Definition 3.2 below,

and no longer use Simes’ line for determining the indices of hypotheses to be rejected, but another,

more sophisticated function of t ∈ [0, 1], parametrized by the pre-defined FDR-level α.

3.1 Notation and preliminaries

Before we can state the main results of this chapter, we need some additional notation. Especially,

we have to distinguish carefully between several probability measures and data models which we

formalize in this section.

Notation 3.1 (General setup for Chapter 3)

Let (Ω,A, {Pϑ : ϑ ∈ Θ}) denote a statistical experiment and let (Hn)n∈N be a sequence of non-

empty null hypotheses with Hn ⊂ Θ. The corresponding alternatives are given by Kn = Θ \Hn.

Let (pn)n∈N denote a sequence of p-values with pn : (Ω,A) −→ ([0, 1],B), where B denotes the

Borel-σ-field over [0, 1]. Let I0 = I0(ϑ) = {i ∈ N : ϑ ∈ Hi}, I1 = I1(ϑ) = N \ I0 = {i ∈
N : ϑ ∈ Ki} and In,j = In,j(ϑ) = Ij ∩ Nn, j = 0, 1. As usual, let a p-value pi for testing

Hi satisfy 0 < Pϑ(pi ≤ x) ≤ x for all ϑ ∈ Hi, i ∈ N and x ∈ (0, 1]. We also assume that

for every ϑ ∈ Θ and i ∈ I0(ϑ) there is a probability measure Pϑi defined on (Ω,A) for which

the sequence (pn)n∈N has the same distribution under Pϑi as the sequence (pi
n)n∈N under Pϑ, the

only difference between these two sequences of p-values being that pi
i ≡ 0. This is a technical

assumption which will be used in Section 3.5 for the determination of upper bounds for the FDR.

52



CHAPTER 3. A NEW REJECTION CURVE 53

Notice that the Pϑi’s need not be contained in {Pϑ : ϑ ∈ Θ}. For a non-empty set I0 ⊆ N we

denote by I ′0 the set I0 \ {min I0} in the sequel. For notational convenience, we introduce Fn,j ,

j = 0, 1, as the ecdf.’s of the p-values corresponding to the true (j = 0) and the false (j = 1)

hypotheses, respectively. Finally, let Hn = (Hi : i ∈ Nn) and let ϕ(n) = (ϕi : i ∈ Nn) denote a

non-randomized multiple test procedure for Hn.

The original linear step up-procedure by Benjamini and Hochberg for independent p-values em-

ploying Simes’ critical values for the family Hn = {Hi : i ∈ Nn} of dimension n will conse-

quently be abbreviated byϕLSU
(n). As outlined in Remark 2.3, this procedure can be rewritten in terms

of the empirical cdf Fn of the p-values p1, . . . , pn. Let t(ϕLSU
(n)) = sup{t ∈ [0, 1] : Fn(t) ≥ t/α}.

Then ϕLSU
(n) rejects Hi iff pi ≤ t(ϕLSU

(n)). The rejection curve rα(t) = t/α is Simes’ line, cf. Remark

2.3. Notice that αLSU
i:n = r−1

α (i/n). More generally, many multiple test procedures can be described

in terms of the ecdf. Fn of the p-values and a rejection curve r defined as below.

Definition 3.2 (Critical value function and rejection curve)

Let ρ : [0, 1] → [0, 1] be non-decreasing, continuous with ρ(0) = 0 and positive values on (0, 1].

Define critical values αi:n = ρ(i/n) ∈ (0, 1] for i = 1, . . . , n. We call ρ a critical value function.

Moreover, r defined by r(x) = inf{u : ρ(u) = x} for x ∈ [0, 1] (inf ∅ = ∞), will be called a

rejection curve.

For illustrative purposes, a plot of Fn together with the rejection curve r is useful in order to

demonstrate the decision procedure. Note that we have (cf. [250]) the following relationship

between the ecdf. Fn of distinct p-values p1, . . . , pn, the ordered p-values, the critical values

αi:n = ρ(i/n) and the rejection curve r:

Fn(pi:n) ≥ r(pi:n) if and only if pi:n ≤ αi:n. (3.1)

In analogy to the notation in Chapter 2, a point t = pi:n satisfying Fn(pi:n) ≥ r(pi:n) and

Fn(pi+1:n) < r(pi+1:n) is called a crossing point (CP) between Fn and r. We consider test

procedures which determine one of the CPs as a threshold t∗ in order to reject all Hi with pi ≤ t∗.

It is immediately clear that the proportion (Rn − Vn)/(n1 ∨ 1) of rejected false null hypotheses

with respect to all false null hypotheses is non-decreasing in the threshold t∗. Therefore, we look

for procedures which maximize t∗ for any given set of p-values subject to FDR control, because

this leads to maximization of the multiple power defined in Definition 1.3 as the expectation of the

aforementioned ratio.

In order to formally express upper bounds and least favorable parameter configurations for the

FDR, we finally introduce the Dirac-uniform models as follows.

Definition 3.3 (Dirac-uniform models)

We assume that the measurable space (Ω,A) is large enough to accommodate probability mea-

sures PI0 , I0 ⊆ N, under which all p-values pi, i ∈ I0, are i.i.d. uniformly distributed on [0, 1],
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and all pi, i ∈ I1, follow a Dirac distribution with point mass 1 at 0. We refer to PI0 as a Dirac-

uniform configuration. Under each PI0 , the Extended Glivenko-Cantelli Theorem (cf. [262], p.

105) applies for the ecdf Fn (say) of the p-values, that is,

lim
n→∞

sup
t∈[0,1]

|Fn(t)− (
n1(n)
n

+
n0(n)
n

t)| = 0 [PI0 ], (3.2)

where nj = nj(n) = |Ij ∩Nn|, j = 0, 1. Notice that the PI0’s need not be contained in {Pϑ : ϑ ∈
Θ}.

As in Chapter 2, let ζn = n0(n)/n denote the proportion of true hypotheses among the first n

hypotheses. We refer to this situation as the Dirac-uniform finite model, DUn(ζn).

Now suppose that

lim
n→∞

ζn = ζ ∈ [0, 1].

Then (3.2) implies that, for n tending to infinity, the empirical distribution function Fn of the

observed p-values converges to

F∞(t|ζ) = (1− ζ) + ζt for all t ∈ [0, 1] [PI0 ].

This situation will be called the Dirac-uniform asymptotic model, DU∞(ζ) for short.

3.2 Motivation and heuristic derivation

Our new rejection curve has the representation

fα(t) =
t

t(1− α) + α
, t ∈ [0, 1].

Figure 3.1 displays this new rejection curve together with Simes’ line and several limiting ecdf.’s

F∞(·|ζ) of p-values under Dirac-uniform configurations with limiting proportion ζ of true hy-

potheses. The motivation for choosing fα as "asymptotically optimal rejection curve" reveals, if

we investigate the points of intersection of each F∞(·|ζ) and fα on (0, 1) for ζ ∈ (α, 1). It holds

that

F∞(t|ζ) = fα(t) iff t =
α (ζ − 1)
ζ (α− 1)

= tζ (say).

If we now consider a single-step multiple test procedure ϕSS(tζ) (say), which rejects all hypotheses

with p-values smaller than or equal to tζ , we get for the asymptotic FDR of ϕSS(tζ) in the DU∞(ζ)

model that

FDR∞ζ (ϕSS(tζ)) =
ζtζ

(1− ζ) + ζtζ
≡ α, independent of ζ ∈ (α, 1).
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Figure 3.1: Simes-line, fα and limiting ecdf.’s of Dirac-uniform configurations

For ζ ∈ [0, α) one may set tζ = 1, which implies that all hypotheses are rejected and

FDR∞ζ (ϕSS(1)) = ζ < α. Since Dirac-uniform configurations can be viewed as least favorable for

certain stepwise multiple test procedures (see Section 3.4 below), the latter considerations show

that the choice of fα as rejection curve is asymptotically optimal in the sense that the FDR level α

is fully exhausted in the least favorable case. In other words (since FDR∞ζ (ϕSS(t)) and β̄ϑ(ϕSS(t))

are both increasing in t), tζ is the largest possible threshold for given ζ ∈ (α, 1) such that the

asymptotic FDR is still controlled by α and it therefore maximizes the asymptotic power under the

constraint of asymptotic FDR control. But, since the proportion of true hypotheses is unknown in

practice, we have to find suitable test procedures that automatically generate the correct threshold.

Typical candidates are stepwise test procedures which choose a CP of Fn and a rejection curve as

rejection threshold. Therefore, such stepwise test procedures based on fα are the topic of the next

section.

3.3 Procedures based on the new rejection curve

Before deriving the announced test procedures based on fα, we start with some properties of this

new rejection curve.

Lemma 3.4 (Properties of the new rejection curve)

Comparing the Simes-line rα(t) = t/α and the new rejection curve fα(t), we obviously have

rα(t) > fα(t) for t > 0 and the derivative in t = 0 is 1/α for both curves. Moreover, notice that

fα obeys the symmetry property

f−1
α (t) =

αt

1− (1− α)t
= 1− fα(1− t) for all t ∈ [0, 1],
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where f−1
α denotes the inverse function of fα. Clearly, f−1

α is a critical value function.

Furthermore, fα is differentiable on [0, 1] and it holds

d

dt
fα(t) =

α

(t(1− α) + α)2
.

The question is how to implement the new rejection curve fα, which will be called the asymp-

totically optimal rejection curve (AORC), not only in the Dirac-uniform models but also in more

general models into a multiple test procedure which controls the FDR-level α strictly or at least

asymptotically. The critical values induced by fα are given by

αi:n = f−1
α (

i

n
) =

i
nα

1− i
n(1− α)

=
iα

n− i(1− α)
, i = 1, . . . , n. (3.3)

Remember that

Fn(pi:n) ≥ fα(pi:n) if and only if pi:n ≤ αi:n.

It is tempting to use α1:n ≤ · · · ≤ αn:n in a step-up procedure for testing n hypotheses. Unfor-

tunately, αn:n = 1, so that this procedure always rejects all hypotheses. This pitfall is due to the

fact that fα(1) = Fn(1). Therefore, we need some adjustment with respect to fα or the step-up

procedure. In the remainder of this section, we consider some candidates for asymptotic FDR

control avoiding the aforementioned pitfall. They will again be studied in Corollary 3.19 which

proves asymptotic FDR control for the procedures proposed in the following three examples.

Example 3.5 (Step-up-down procedures)

An interesting class of procedures based on critical values 0 < α1:n ≤ · · · ≤ αn:n ≤ 1 are

step-up-down (SUD) procedures introduced in [280] and studied in [237] in terms of FDR control.

For λn ∈ Nn a SUD-procedure ϕSUD
n,λn

= (ϕ1, . . . , ϕn) of order λn is defined as follows. If

pλn:n ≤ αλn:n, set mn = max{j ∈ {λn, . . . , n} : pi:n ≤ αi:n for all i ∈ {λn, . . . , j}}, whereas

for pλn:n > αλn:n, put mn = sup{j ∈ {1, . . . , λn} : pj:n ≤ αj:n} (sup ∅ = −∞). Define ϕi = 1

if pi ≤ αmn:n and ϕi = 0 otherwise (α−∞:n = −∞). Note that λn = 1 yields a step-down

(SD) procedure and λn = n yields a SU-procedure. The order of a SUD-procedure can be defined

in terms of a fixed parameter λ ∈ [0, 1] by setting λn = inf{j ∈ Nn : αj:n ≥ λ} (inf ∅ =

n). Then λ = 0 (λ = 1) corresponds to a SD- (SU-) procedure. A SUD-procedure of order

λn = λn(λ), λ ∈ [0, 1), based on fα resolves the problems around the point t = 1 in an elegant

way. It is obvious in view of Lemma 3.4 that in case of λ ≥ α the new step-up-down procedure

based on fα rejects at least all hypotheses rejected by the linear step-up procedure, possibly more.

Therefore, one cannot expect that the FDR-level is controlled in the finite case. However, it will

be shown that the FDR is controlled asymptotically. Note that ϕSUD
n,λn

is component-wise non-

decreasing in λ. For the computation of the starting index λn(λ), notice that

αj:n ≥ λ iff
jα

n− j(1− α)
≥ λ iff j ≥ nλ

α+ λ(1− α)
,
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such that we choose the starting index λn(λ) =
⌈

nλ
α+λ(1−α)

⌉
. For example, if we set λ = 1/2, we

obtain λn(1/2) =
⌈

n
1+α

⌉
and the choice λ = α leads to λn(α) =

⌈
n

2−α

⌉
.

Application 3.6 (Applications 2.4 and 2.5 revisited)

We return to our introductory example applications 2.4 and 2.5. In both cases, the actual ecdf.’s

have concave shape such that we obtain a unique crossing point of F393 in the proteomics example

and F7457 in the adenocarcinoma example, respectively, with fα on (0, 1) (cf. Figures 3.2 and 3.3

below). In such cases, all step-up-down procedures with parameters λ ∈ (0, 1) are equivalent.

Figure 3.2: Proteomics example: Simes’ line, optimal rejection curve and ecdf. of p-values on

[0, 0.2]

Figure 3.3: Notterman example: Simes’ line, optimal rejection curve and ecdf. of p-values on

[0, 0.2]
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In order to demonstrate the differences between the results of the linear step-up procedure and

a step-up-down procedure based on fα, the figures only cover the subinterval [0, 2α] 3 t for a

better resolution. It becomes apparent that a step-up-down procedure based on fα leads to more

rejections than the linear step-up procedure.

More specifically, with the Benjamini-Hochberg procedure, we got 47 rejections in case of α1 =

0.05 and 64 rejections in case of α2 = 0.1 in our proteomics example. Using a step-up-down

procedure of order λn =
⌊

n
2−αi

⌋
, i = 1, 2, with critical values based on the AORC, we obtain 53

rejections for α1 and 74 rejections for α2.

In the adenocarcinoma example, the hypotheses corresponding to the 1582 smallest p-values got

rejected by ϕLSU, while a step-up-down procedure of order λn =
⌊

n
2−α

⌋
with critical values based

on the AORC with α = 0.1 rejects 1772 hypotheses. The thresholding values are 0.0212 for the

Benjamini-Hochberg procedure and 0.0303 for the step-up-down procedure based on f0.1.

Example 3.7 (Adjusted step-up procedures based on fα)

As noted before, a step-up procedure based on αi:n = f−1
α (i/n) cannot work. Therefore, some

adjustment of fα in a step-up procedure is necessary. We first consider the case where the adjusted

rejection curve f adj
α satisfies that f adj

α (x)/x is non-increasing in x, an important property for the

calculation of the FDR. One may specify some κ ∈ (0, 1) and define a new rejection curve

f adj
α,κ(x) =

{
fα(x), 0 ≤ x < κ,

h(x), κ ≤ x ≤ 1,
(3.4)

such that f adj
α (x)/x is non-increasing in x and f adj

α (x∗) = 1 for some x∗ < 1. For example, one

may choose h(x) = ax+ b with a ≤ fα(κ)/κ (which implies x∗ ≥ κ/fα(κ)) and fα(κ) = h(κ).

We consider two possible choices of h (h1 and h2 say) and refer to the resulting rejection curves

as f (i)
α,κ, i = 1, 2. Let

h1(x) = f ′α(κ)(x− κ) + fα(κ)

=
α

(α+ κ(1− α))2
x+

κ2(1− α)
(α+ κ(1− α))2

, x ∈ [κ, 1).

Then h′1(x) = f ′α(κ), h1(κ) = fα(κ) and h1(x∗) = 1 for x∗ = κ(1− α)(2− κ) + α. If we want

to pre-define x∗, we have to choose κ = κ(x∗) = arg (fα(x) + f ′α(x)(x∗ − x) = 1), leading to

κ = 1−
√

1− x∗

1− α
.
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The resulting modified curve and modified critical values are given by

f adj
α,κ(x) =

fα(x) for x ≤ κ,

fα(κ) + (x− κ)f ′α(κ) for x > κ,

f adj
α,κ

−1(u) =


uα

1−u(1−α) for u ≤ fα(κ),

1/f ′α(κ) (u+ κf ′α(κ)− fα(κ)) for u > fα(κ),

αadj
i:n = f adj

α,κ
−1(i/n) =


iα

n−i(1−α) for i/n ≤ fα(κ),

1/f ′α(κ) (i/n+ κf ′α(κ)− fα(κ)) for i/n > fα(κ).

The largest possible slope of h in (3.4) is a = fα(κ)/κ. This leads to the second choice, that is,

h2(x) = xfα(κ)/κ. This is close to the truncated step-up procedure in Example 3.8 below. Note

that h2(x∗) = 1 if x∗ = κ(1 − α) + α. For example, suppose that κ = f−1
α (i/n) for some fixed

i ∈ Nn. Then the step-up critical values are given by

γj:n =


f−1

α (j/n), 1 ≤ j ≤ i,

j
n

κ
fα(κ) , i+ 1 ≤ j ≤ n.

Example 3.8 (Truncated step-up procedures based on fα)

Let κ ∈ (0, 1) be fixed and define

ρα(x) =

{
f−1

α (x), 0 ≤ x ≤ fα(κ),

κ, fα(κ) < x ≤ 1.

With γi:n = min{f−1
α (i/n), κ} we have γj:n = ρα(i/n) for j = i, . . . , n. Hence, the truncated

step-up procedure is well defined in terms of ρα. It is worth mentioning that this type of procedure

differs substantially from the adjusted procedures discussed in Examples 3.5 and 3.7, because the

monotonicity behavior of the ratio ρα(x)/x changes at x = fα(κ), which makes FDR calculation

much subtler.

In Figure 3.4, the three possible adjustments mentioned in Examples 3.7 and 3.8 are illustrated.

The parameters κ1, κ2 and κ3 are chosen such that all three curves have the property that no

hypothesis with p-value larger than 0.5 can be rejected (no critical value larger than 0.5 occurs).
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Figure 3.4: Simes-line, f (1)
α,κ1 , f (2)

α,κ2 , the truncated version of fα with κ3 = 1/2 and fα

3.4 LFC results and upper FDR bounds

Suppose that Rn and ϕ(n), respectively, are defined in terms of p-values p1, . . . , pn and critical

values αi:n = ρ(i/n) for some critical value function ρ and consider the following three sets of

possible assumptions.

The first two assumptions concern the structure of the test procedure (test assumptions):

(T1) ∀i ∈ Nn : pi ≤ α1:n implies ϕi = 1.

(T2) ∀j ∈ Nn : Rn = j implies ∀i ∈ Nn : [ϕi = 1 ⇔ pi ≤ αj:n ].

The second set of assumptions concerns properties of distributions of p-values and Rn (distribu-

tional assumptions):

(D1) ∀ϑ ∈ Θ : ∀j ∈ Nn : ∀i ∈ In,0(ϑ) : Pϑ(Rn ≥ j|pi ≤ t) is non-increasing in t ∈ (0, αj:n].

(D2) ∀ϑ ∈ Θ : ∀j ∈ Nn : ∀i ∈ In,0(ϑ) : ∀t ∈ (0, αj:n] : Pϑ(Rn ≥ j|pi ≤ t) ≤ Pϑi(Rn ≥ j).

(D3) ∀ϑ ∈ Θ : ∀i ∈ In,0(ϑ) : pi ∼ U([0, 1]).

Finally we have two possible independence assumptions:

(I1) ∀ϑ ∈ Θ : The pi’s, i ∈ In,0(ϑ), are iid.

(I2) ∀ϑ ∈ Θ : (pi : i ∈ In,0) and (pi : i ∈ In,1) are independent random vectors.

The simple structure of step-up tests often simplifies derivations concerning properties of these

tests. If ϕ(n) is a step-up-down test, the properties of a step-up-test remain valid in the step-up
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branch of such a procedure. For example, it is important to note (cf. [237], p. 248) that in case

of a step-up-down test of order λn and assuming (D3) and (I1)-(I2), we get for all ϑ ∈ Θ and all

i ∈ In,0(ϑ)

∀j = 1, . . . , λn : ∀t ∈ (0, αj:n] : Pϑ(Rn ≥ j|pi ≤ t) = Pϑi(Rn ≥ j), (3.5)

∀j = 1, . . . , λn : ∀t ∈ (0, αj:n] : Pϑ(Rn = j|pi ≤ t) = Pϑi(Rn = j). (3.6)

For λn = n, i.e., for a step-up test, we even get

∀j = 1, . . . , n : ∀t ∈ (0, αj:n] : Pϑ(Rn ≥ j|pi ≤ t) = Pϑi(Rn ≥ j).

Assumptions (T1) and (T2) concern possible structures of test procedures. Step-up-down tests

satisfy both of these assumptions.

The monotonicity assumption in (D1) is somewhat weaker than the PRDS-assumption (PRDS:

positive regression dependency on subsets). More precisely, from the Ppi

ϑ -almost sure antitonicity

of the factorized conditional probability Pϑ(Rn ≥ j|pi = t) in t ∈ [0, αj:n] we obtain the property

formulated in (D1), where the equality in the condition is replaced by an inequality. This type of

conclusion is indicated in [171] and can be proved in an easy way by using Wijsman’s inequal-

ity, cf. [306]. Anyhow, (D1) is the decisive condition for dependent p-values in order to prove

FDR-control or to derive upper bounds for the FDR. Examples of distributions being PRDS are

extensively studied in [17] and [237]. Important examples are multivariate normal distributions

with positive correlations and (absolute valued) multivariate t-distributions, cf. the discussion of

the examples in Chapter 2.

Property (D2) will only be used under (I1) and (I2), i.e., if the p-values are independent, and is an

important tool for deriving LFC results. In case of dependency, (D2) is often violated.

Assumptions (D3) and (I1) concern the distribution of p-values under the corresponding null hy-

potheses.

To demonstrate the usefulness and the essentiality of the derived set of assumptions and the equal-

ities (3.5) and (3.6), we present a new proof for FDR control of the classical Benjamini-Hochberg

procedure which unifies, simplifies and slightly extends the results and the proofs given in [17]

and [237], respectively.

Theorem 3.9
Let α ∈ (0, 1) and let ϕ(n) be a multiple test procedure for Hn defined in terms of Simes’ critical

values αi:n = iα/n, i = 1, . . . , n. Let ϑ ∈ Θ such that n0 hypotheses are true and the remaining

ones are false. If (T1), (T2) and (D1) are satisfied, then

FDRϑ(ϕ(n)) ≤
n0

n
α,

with ” = ” if ϕ(n) is a step-up test and (D3), (I1) and (I2) are satisfied in addition.
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Proof: Consider the following chain of (in)equalities:

FDRϑ(ϕ(n)) =
∑

i∈In,0(ϑ)

n∑
j=1

1
j
Pϑ(Rn = j, ϕi = 1)

=
∑

i∈In,0(ϑ)

n∑
j=1

1
j
Pϑ(pi ≤ αj:n)Pϑ(Rn = j|pi ≤ αj:n) (3.7)

≤
∑

i∈In,0(ϑ)

n∑
j=1

αj:n

j
Pϑ(Rn = j|pi ≤ αj:n) (3.8)

≤
∑

i∈In,0(ϑ)

[α1:nPϑ(Rn ≥ 1|pi ≤ α1:n) (3.9)

+
n∑

j=2

[
αj:n

j
− αj−1:n

j − 1

]
Pϑ(Rn ≥ j|pi ≤ αj:n)]

=
n0

n
α. (3.10)

Equation (3.7) holds under (T2), and "=" holds in (3.8) if (D3) holds. Inequality (3.9) holds under

the assumption (D1) with "=" if ϕ(n) is a step-up test and (D3), (I1) and (I2) hold. Finally, (3.10)

is a consequence of (T1). �

Remark 3.10
The key step in the proof is (3.9), where Pϑ(Rn ≥ j|pi ≤ αj−1:n) is replaced by Pϑ(Rn ≥
j|pi ≤ αj:n) for j = 2, . . . , n according to assumption (D1). In case of dependency or in case of

a non-step-up test the difference between these quantities may sum up to a considerable amount,

that is, the FDR may be much smaller than the upper bound n0α/n in such cases. For a detailed

investigation of the latter phenomenon, cf. [86].

One of the main problems in order to ensure FDR-control of a multiple test procedure is to find

least favorable parameter configurations (LFCs). Obviously, LFCs are no issue for the LSU pro-

cedure if (D3), (I1) and (I2) hold true. To date it looks like that step-up procedures are easier to

cope with than step-down or step-up-down procedures. One reason for this is that Dirac-uniform

configurations can often be viewed as least favorable for certain step-up procedures. This fact is

based on the following important result.

Theorem 3.11 (Benjamini and Yekutieli (2001), cf. [17])

If (D3), (I1) and (I2) are fulfilled, a step-up procedure with critical values α1:n ≤ · · · ≤ αn:n has

the following properties:

(1) If the ratio αi:n/i is increasing in i, as (pi : i ∈ In,1) increases stochastically, the FDR

decreases.
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(2) If the ratio αi:n/i is decreasing in i, as (pi : i ∈ In,1) increases stochastically, the FDR

increases.

Hence, under the assumptions of Theorem 3.11, the Dirac-uniform configurations, where all p-

values under alternatives are almost surely 0, can be viewed as LFCs if the ratio αi:n/i is increas-

ing in i. More precisely, on the parameter subspace, where exactly n0 (n1) hypotheses are true

(false), the FDR becomes largest if the p-values under alternatives are almost surely 0. Therefore,

it suffices to consider all Dirac-uniform configurations in order to check whether the FDR is con-

trolled at level α. Notice that the critical values induced by fα as given in (3.3) fulfill the important

ratio condition.

Unfortunately, the method of proof given in [17] does not seem to work for SD and SUD- proce-

dures. However, we show below that Dirac-uniform configurations often provide upper bounds.

To this end, we define q(x) = ρ(x)/x for all x ∈ (0, 1] and assume that

q(0) = lim sup
x↓0

q(x) <∞. (3.11)

Moreover, we define the (continuous) function q by q(x) = max0≤t≤x q(t), x ∈ [0, 1]. Hence, q is

the upper isotonic envelope or, in other words, the least isotonic majorant of q. For the derivation

of upper FDR bounds, we now introduce the following additional conditions.

(A1) If (p1, . . . , pn) is stochastically not greater under ϑ1 ∈ Θ than under ϑ2 ∈ Θ, then ϕ(n) is

stochastically not greater under ϑ2 ∈ Θ than under ϑ1 ∈ Θ.

(A2) q = q, that is, ρ(x)/x is non-decreasing for x ∈ (0, 1].

Note that αi:n/i is non-decreasing in i if (A2) holds. In case that ρ is differentiable on (0, 1), (A2)

is equivalent to ρ′(x) ≥ q(x) for x ∈ (0, 1). Clearly, under (A2), q(0) can and will be defined

as limx↓0 q(x). In what follows, q is essential in deriving upper bounds for the FDR. If (A2) is

violated, the bounds for the FDR based on q may be not that sharp. For example, this is the case

for the truncated step-up procedure introduced in Example 3.8.

The following theorem is the main result of this section and a valuable tool for proving FDR

control of SUD-tests. It provides upper bounds for the FDR of stepwise test procedures under in-

dependence of the p-values. For SU-tests, these bounds are sharp if Dirac-uniform configurations

belong to the set of possible data models.

Theorem 3.12
Let ϑ ∈ Θ such that n0 ∈ N hypotheses are true and the remaining ones are false. Let i0 = min I0
(and I ′0 = I0 \ {i0} as defined before). If (T1)-(I2) are satisfied, then

FDRϑ(ϕ(n)) ≤ n0

n

n∑
j=1

q(j/n)Pϑi0 (Rn/n = j/n) (3.12)

=
n0

n
Eϑi0 q(Rn/n), (3.13)
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with equality in (3.12) if ϕ(n) is a step-up test and (A2) holds in addition. If (T1)-(I2) and (A1) are

fulfilled, then

FDRϑ(ϕ(n)) ≤
n0

n
EI′0

q(Rn/n). (3.14)

Proof: Let bj = Pϑ(Rn ≥ j|pi0 ≤ αj:n) and ∆q(j/n) = q(j/n)−q((j−1)/n) for j = 1, . . . , n.

Then, proceeding as in the proof of Theorem 3.9 we get for fixed ϑ ∈ Θ under (D1)-(D3), (I1)

and (I2)

FDRϑ(ϕ(n)) =
n0

n

n∑
j=1

q(j/n)Pϑ(Rn = j|pi0 ≤ αj:n)

≤ n0

n

n∑
j=1

q(j/n)Pϑ(Rn = j|pi0 ≤ αj:n) (3.15)

≤ n0

n

q(1/n)b1 +
n∑

j=2

∆q(j/n)bj

 (3.16)

≤ n0

n

q(1/n)Pϑi0 (Rn ≥ 1) +
n∑

j=2

∆q(j/n)Pϑi0 (Rn ≥ j)

 (3.17)

=
n0

n

n∑
j=1

q(j/n)Pϑi0 (Rn/n = j/n),

which proves (3.12). In view of Pϑi0 (Rn > 0) = 1 according to (T1), (3.13) follows immedi-

ately. If ϕ(n) is a step-up test, which implies (3.5) for λn = n, we have equality in (3.16) and

(3.17), hence q = q yields equality in (3.15). Finally, in order to prove (3.14), we use the same

argumentation as in the proof of Theorem 3.11 given in [17], i.e., that stochastic increase in the

distribution of the random vector (p1, . . . , pn) can be characterized by the increase of the expec-

tation of all non-decreasing functions (in case the expectation exists). To this end, we note that

obviously Rn = |{i ∈ Nn : ϕi = 1}| is a non-decreasing function of ϕ(n) and hence, due to (A1),

is stochastically non-increasing in (p1, . . . , pn). The isotonicity of q completes the proof. �

Inequality (3.14) will be a helpful tool in order to calculate upper FDR bounds and to prove FDR

control, because it only makes use of the distribution of Rn under Dirac-uniform configurations.

Especially for SUD-tests, this distribution can be handled analytically.

3.5 Asymptotic FDR control for procedures based on the AORC

This section deals with conditions for asymptotic FDR control for procedures based on the new

rejection curve. A major result will be that the example procedures presented in Section 3.3 control

the FDR asymptotically. Theorems 3.13 and 3.16 provide sufficient conditions for asymptotic
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FDR control. If the underlying procedure leads to a determinable limiting proportion of rejected

hypotheses, Theorems 3.15 and 3.17 even give explicit values for the resulting FDR.

Theorem 3.13
Suppose ϕ(n) is based on ρ ≤ f−1

α and that (T1)-(I2) and (A1) are fulfilled. If for all non-empty

sets I0 ⊆ N and all subsequences (nk)k∈N ⊆ N with limk→∞ ζnk
= ζ for some ζ ∈ [0, 1] it holds

lim sup
k→∞

Rnk

nk
≤ fα(tζ) [PI′0

], (3.18)

then

lim sup
n→∞

sup
ϑ∈Θ

FDRϑ(ϕ(n)) ≤ α. (3.19)

Proof: Let, for notational convenience, Pm,n refer to a Dirac-uniform configuration such that the

first m p-values are iid uniformly distributed and the remaining ones follow a Dirac distribution

with point mass in 0, 0 ≤ m ≤ n, n ∈ N. Then we have from inequality (3.14)

∀n ∈ N : sup
ϑ∈Θ

FDRϑ(ϕ(n)) ≤ max
1≤n0≤n

n0

n
En0−1,nq(Rn/n).

Since for each n ∈ N the maximum in this inequality is attained at some value n0(n) (say), we get

lim sup
n→∞

sup
ϑ∈Θ

FDRϑ(ϕ(n)) ≤ lim sup
n→∞

ζnEn0(n)−1,nq(Rn/n),

where ζn = n0(n)/n, n ∈ N. We now may extract a subsequence (nk)k∈N of N with

limk→∞ ζnk
= ζ for some ζ ∈ [0, 1] such that

lim sup
n→∞

ζnEn0(n)−1,nq(Rn/n) = lim
k→∞

ζnk
En0(nk)−1,nk

q(Rnk
/nk)

≤ ζ lim sup
k→∞

En0(nk)−1,nk
q∗(Rnk

/nk),

where q∗ denotes the q-function corresponding to the critical value function f−1
α . Similarly as in

[91], pp. 1003-1004, we are able to select from (nk)k∈N a further subsequence (without loss of

generality with the same name) and construct a global set I ⊆ N with the property |I ∩ Ink
| =

n0(nk) for all k ∈ N. (At this point it should be noted that the definition of the sets Mk at the

bottom of p. 1003 in [91] has a typo at its right end in that the term k(nk) has to be replaced by

nk.) Now we obtain from (3.18)

ζ lim sup
k→∞

En0(nk)−1,nk
q∗(Rnk

/nk) = ζ lim sup
k→∞

EI′q
∗(Rnk

/nk)

≤ ζEI′q
∗(lim sup

k→∞
Rnk

/nk)

= ζq∗(fα(tζ))

= min{α, ζ} ≤ α,

hence the assertion of the theorem, i.e., (3.19) follows. �
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Remark 3.14
Asymptotic FDR control for procedures based on fα in the latter theorem is established under

the strong assumption (I1), i.e., independence of the p-values under the null hypotheses. We will

present one counterexample which suggests that step-up-down procedures based on fα fail to con-

trol the FDR under PRDS. To this end, we return to the D-EX-EXP model investigated in Section

2.2 and choose (without loss of generality) the scale parameter of the underlying exponential dis-

tribution equal to 1. Recall that the representation of the limiting ecdf. F∞(·|z, ζ) of the p-values

pi(z) in the D-EX-EXP(ζn) model with ζn → ζ ∈ (0, 1) is given by

F∞(t|z, ζ) =


(1− ζ) + 2ζ exp(−z)t for 0 ≤ t ≤ 1/2,

(1− ζ) + ζ exp(−z)/(2− 2t) for 1/2 < t ≤ u(z),

1 for u(z) < t ≤ 1,

where u(z) = 1 − 1/2 exp(−z). For the step-up-down procedure, we choose λ = 1/2. Noting

that fα(1/2) = 1/(1 + α) and F∞(1/2|z, ζ) = (1− ζ) + ζ exp(−z), it is immediately clear that

F∞(1/2|z, ζ) > fα(1/2) if and only if z < z∗ = − ln
((

(1 + α)−1 − (1− ζ)
)
/ζ
)

and therefore

Rn(z)/n tends to 1 in this situation. In the other case, i.e., for z ≥ z∗, the LCP between fα and

F∞(·|z, ζ) lies in (0, 1/2]. Equating fα(t) = F∞(t|z, ζ) in the latter case, we obtain the LCP

t(z|ζ) as

t(z|ζ) =
1
4
ζ(α− 1)− α+ 2 ζ exp(−z)α+

√
D(α, ζ, z)

ζ exp(−z) (α− 1)
,

where

D(α, ζ, z) =
[
(1 + 4 exp(−2z)− 4 exp(−z)) ζ2 + (4 exp(−z)− 2) ζ + 1

]
α2

+
[
(4 exp(−z)− 2) ζ2 + (2− 8 exp(−z)) ζ

]
α+ ζ2

by straightforward calculation. Now, we can immediately calculate the limiting FDR in case of

ζ ∈ (0, 1) by

FDR∞(ζ) = ζP(Z < z∗) + ζ

∫ ∞

z∗

t(z|ζ)
fα(t(z|ζ))

exp(−z)dz.

Setting α = 0.05, for example, we obtain by numerical integration

FDR∞(0.1) ≈ 0.069, FDR∞(0.2) ≈ 0.085,

FDR∞(0.3) ≈ 0.089, FDR∞(0.5) ≈ 0.093,

FDR∞(0.7) ≈ 0.094, FDR∞(0.9) ≈ 0.095.

These values could be reproduced by corresponding computer simulations.

Simulations also indicate that a step-up-down procedure of order λ = α based on the AORC fails

to control the FDR at level α in Dirac-exchangeable normal models as well. In a simulation setup

analogous to the setup for ϕLSU presented in Appendix A.1 below for a D-EX-N(0.5) model, we

chose α = 5.0% and obtained simulated FDR values larger than 5.5% for all ρ ∈ [0.4, 0.8] and

False Discovery Rate and Asymptotics, Thorsten Dickhaus



CHAPTER 3. A NEW REJECTION CURVE 67

even FDR values larger than 6.0% for ρ ∈ [0.6, 0.7]. With the crossing point techniques derived

in Chapter 2, numerical calculation of the theoretical FDR values is possible in this case as well.

If we sharpen assumption (3.18), we can even give explicit values for the FDR.

Theorem 3.15
Let ϑ ∈ Θ, ϕ(n) be based on ρ ≤ f−1

α and assume (T2), (D3), (I1) and

lim
n→∞

ζn = ζ ∈ [0, 1]. (3.20)

If lim
n→∞

Rn/n = r∗ [Pϑ] for some r∗ ∈ (0, fα(tζ)], then it holds

lim
n→∞

FDRϑ(ϕ(n)) = ζρ(r∗)/r∗ = ζq(r∗) ≤ min{α, ζ}. (3.21)

Proof: From (T2) and for n0, n ∈ N we get the representation

Vn = n0Fn,0(ρ(Rn/n))1{Rn>0}.

From this we obtain the inequality chain

|Vn/n− ζnρ(Rn/n)| ≤ ζn|Fn,0(ρ(Rn/n))− ρ(Rn/n)| ≤ sup
t∈[0,1]

|Fn,0(t)− t|.

Hence, using the Glivenko-Cantelli property (3.2) together with the remaining assumptions of

the theorem and the continuity of ρ, we finally see that Vn/n converges Pϑ-almost surely to

ζρ(r∗). Thus, due to r∗ > 0, we have limn→∞ Eϑ[Vn/(Rn ∨ 1)] = ζρ(r∗)/r∗. The right-

hand side inequality in (3.21) is obtained by noting that ζf−1
α (t)/t is increasing in t ∈ (0, fα(tζ)]

to ζtζ/fα(tζ) = min{α, ζ} at t = fα(tζ). �

The remaining case r∗ = 0 is treated in the following two theorems.

Theorem 3.16
Let ϑ ∈ Θ, ϕ(n) be based on ρ ≤ f−1

α and assume (T1)-(I2), (A1), (3.20) and

∀ε > 0 : lim inf
n→∞

inf
ε≤t≤1

(t− Fn(ρ(t))) > 0 [Pϑ]. (3.22)

Then it holds

lim sup
n→∞

FDRϑ(ϕ(n)) ≤ ζ lim sup
x↓0

q(x) = ζq(0) = ζq(0) ≤ ζα. (3.23)

Proof: To avoid triviality, we assume I0(ϑ) to be non-empty. Then, from (3.12) and (3.13) we

have that

lim sup
n→∞

FDRϑ(ϕ(n)) ≤ ζ lim sup
n→∞

Eϑi0 q(Rn/n). (3.24)

Since due to (T1) and (T2) we have for all n ∈ N

Fn(ρ(Rn/n)) = Rn/n,
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(3.22) implies that for every fixed ε > 0 we obtain lim supn→∞Rn/n ≤ ε Pϑ-almost surely, i.e.,

limn→∞Rn/n = 0 Pϑ-almost surely. Now, since for all n ∈ N the maximum absolute difference

on the unit interval of the ecdf Fn (corresponding to the sequence of p-values (pn)n∈N) and the

ecdf F i0
n (say) (corresponding to the sequence of p-values (pi0

n )n∈N defined in Section 3.1) is at

most 1/n, condition (3.22) also holds Pϑi0 -almost surely, which entails that limn→∞Rn/n = 0

Pϑi0 -almost surely. Hence, due to the continuity of q we have limn→∞ Eϑi0 q(Rn/n) = q(0) =

q(0) ≤ limt↓0 f
−1
α (t)/t = α. In view of inequality (3.24), this completes the proof. �

Theorem 3.17
Under the assumptions of Theorem 3.16 let ϕ(n) be a SUD-test of order λn with

lim infn→∞ λn/n > 0 and the condition (3.22) be replaced by

∀ε > 0 : lim inf
n→∞

inf
ε≤t≤K

(t− Fn(ρ(t))) > 0 [Pϑ] (3.25)

for someK ∈ [0, 1] fulfillingK > L = lim supn→∞ λn/n in case ofL < 1 andK = 1 otherwise.

Supposing that limx↓0 q(x) exists, we have

lim
n→∞

FDRϑ(ϕ(n)) = ζ lim
x↓0

q(x) = ζq(0) = ζq(0) ≤ ζα. (3.26)

Proof: Again, to avoid triviality, we assume a non-empty index set I0(ϑ). Equation (3.26) can be

shown by utilizing the notation introduced in the proof of Theorem 3.12 and the decomposition

FDRϑ(ϕ(n)) = ζn

λn∑
j=1

q(j/n)Pϑ(Rn = j|pi0 ≤ αj:n)

+ ζn

n∑
j=λn+1

q(j/n)Pϑ(Rn = j|pi0 ≤ αj:n)

= Mn +mn (say).

In view of Theorem 3.12 and the structure of a SUD-test, we obtain by applying (3.6) that

Mn = ζnEϑi0

[
q(Rn/n)1{Rn/n≤λn/n}

]
,

mn ≤ ζnEϑi0

[
q(Rn/n)1{Rn/n>λn/n}

]
.

From (3.25) it follows that Pϑ-almost surely Fn(ρ(λn/n)) < λn/n ≤ K and consequently

Rn/n < λn/n ≤ K holds true for eventually all n ∈ N. Therefore, again due to (3.25), in

analogy to the proof of Theorem 3.16 we conclude that limn→∞ Rn/n = 0 Pϑi0 -almost surely,

which finally entails limn→∞ 1{Rn/n>λn/n} = 0 Pϑi0 -almost surely. Together with the bounded-

ness of q this entails that limn→∞mn = 0. Moreover, exploiting the continuity of q at x = 0 we

see that limn→∞Mn = ζq(0) = ζq(0), which altogether yields the desired result. �
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Remark 3.18
One cannot expect to obtain exact values for the limiting FDR under the quite general assumptions

of Theorem 3.15 if r∗ = 0. To see this, consider the case ζn ≡ 1 in which the FDR is equal to

the family-wise error rate (FWER). For ζn ≡ 1 it was shown in [91] that the FWER is equal

to α for any n ∈ N in case of a linear step-up procedure, while it tends to 1 − exp(−α) < α

for a linear step-down procedure. We therefore have to know more about the structure of the

underlying procedure in order to compute the limiting FDR in case of r∗ = 0. The limiting

behavior for procedures based on fα (or its modifications) satisfying the assumptions of Theorem

3.17 is in accordance with the linear SU-procedure and should be expected, since the difference

of the critical values αi:n − iα/n tends to zero for i ∈ o(n). Therefore, the local behavior around

zero should not differ much for large n.

Returning to our proposed example procedures, we finally obtain the following properties of these

tests.

Corollary 3.19 (Examples 3.5, 3.7, 3.8 continued)

Assume the distributional assumptions (D3), (I1) and (I2) hold. Then the SUD-procedure based

on fα with parameter λ ∈ [0, 1) and the SU-procedures based on f (i)
α,κ, i = 1, 2, as well as the

truncated SU-procedure asymptotically control the FDR at level α. More precisely, if condition

(3.20) is fulfilled, i.e., limn→∞ ζn = ζ ∈ [0, 1], then

(i) for the SUD-procedure the upper bound α for the limiting FDR is sharp for ζ ∈ [α, 1].

(ii) for the SU-procedures based on f (i)
α,κ, i = 1, 2, the upper bound α for the limiting FDR is

sharp for ζ ≥ ζ∗(κ) = α/(κ(1 − α) + α). In case of ζ < ζ∗(κ), an upper bound for the

asymptotic FDR is given by ζt̃ζ/(1− ζ + ζt̃ζ), where t̃ζ denotes the unique solution of the

equation F∞(t|ζ) = hi(t), i = 1, 2, on (0, tζ). For finite n, the upper bound given in (3.14)

is sharp.

(iii) for the truncated SU-procedure the upper bound α for the limiting FDR is sharp for ζ ≥
ζ∗(κ). In case of ζ < ζ∗(κ), an upper bound for the asymptotic FDR is given by ζκ/(1 −
ζ + ζκ).

Proof: First of all, as mentioned before, a step-up-down test has the structural properties (T1),

(T2) and (A1). Moreover, assumptions (D3), (I1) and (I2) imply the crucial monotonicity proper-

ties (D1) and (D2) for a step-up-down test. Hence, in order to apply Theorem 3.13, it remains

to check the validity of condition (3.18). To this end, for notational convenience and with-

out loss of generality, we work under condition (3.20). We make use of (3.2), i.e., that the

ecdf Fn converges PI′0
-almost surely to its limit F∞(·|ζ) uniformly in t ∈ [0, 1]. Since un-

der (T1) and (T2) we have the identity Fn(ρ(Rn/n)) = Rn/n for all n ∈ N, (3.2) leads to
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limn→∞(F∞(ρ(Rn/n)|ζ) − Rn/n) = 0 PI′0
-almost surely. From this we conclude that (PI′0

-

almost surely) the only possible accumulation points of the sequence (Rn/n)n∈N consist of the

solutions of the equation F∞(ρ(t)|ζ) = t in t ∈ [0, 1]. If, as in Examples 3.7 and 3.8, this solution

is unique, then the sequence (Rn/n)n∈N necessarily converges to this solution r∗ = r∗(ζ) ∈ [0, 1]

(say) PI′0
-almost surely.

If, however, as in Example 3.5, the equation F∞(ρ(t)|ζ) = t has the solution t = 1 and exactly

one further (smaller) solution in [0, 1), we have to exclude t = 1 as a possible accumulation point

of (Rn/n)n∈N in the latter case in order to prove the PI′0
-almost sure convergence of (Rn/n)n∈N

to the smallest solution r∗ = r∗(ζ) (say) of the aforementioned equation. To this end, we only

consider values of ζ leading to the two distinct solutions r∗(ζ) and 1. For critical value functions

ρ with ρ(t) ≤ f−1
α (t) for all t ∈ [0, 1] it is then evident that F∞(ρ(t)|ζ) < t for all t ∈ (r∗, 1).

Moreover, notice that, by definition of λn(λ), we have the inequalities λn(λ) − 1 ≤ nr(λ) ≤
λn(λ) for all n ∈ N. Now, if λ > ρ(r∗), this, together with condition (3.2), yields that PI′0

-almost

surely Fn(ρ(λn(λ)/n)) < λn(λ)/n and consequently Rn < λn(λ) holds true for eventually all

n ∈ N. This entails lim supn→∞Rn/n ≤ lim supn→∞ λn(λ)/n = r(λ) < 1 PI′0
-almost surely,

which is just what we wanted to show. Finally, if λ ≤ ρ(r∗), we may choose a λ′ > ρ(r∗)

and compare the number of rejections of the corresponding SUD-procedures. Since this number is

non-decreasing with increasing parameter we eventually arrive at lim supn→∞Rn/n ≤ r(λ′) < 1

PI′0
-almost surely. Since for all procedures under investigation it holds ρ(t) ≤ f−1

α (t) for all

t ∈ [0, 1] we conclude that r∗ = r∗(ζ) ≤ fα(tζ). Hence, Theorem 3.13 applies. As a consequence,

the example procedures asymptotically control the FDR.

In case of the SUD-procedure in (i), we use ρ = f−1
α and obtain r∗ = fα(tζ). Hence, the upper

bound α for the asymptotic FDR is sharp in (i) under Dirac-uniform configurations. The sharpness

of the upper bound α for the asymptotic FDR in (ii) and (iii) is due to the fact that under Dirac-

uniform configurations with ζ ≥ ζ∗(κ) we obtain r∗ = fα(tζ).

Finally, the sharpness of the upper bounds for the finite n FDR in (ii) is a consequence of (A2),

which is fulfilled for f (i)
α,κ, i = 1, 2. Sharpness here means that the upper bound given in (3.14) is

exactly attained for finite n under Dirac-uniform configurations. �

3.6 Asymptotic optimality of the AORC

The latter Corollary 3.19 means reworded that procedures based on fα fulfilling the assumptions of

Theorem 3.15 asymptotically exhaust the whole FDR level α under Dirac-uniform configurations.

Moreover, the rejection curve fα cannot be improved in the sense of the following theorem, which

is another consequence of Theorem 3.13. In order to formalize "optimality", let α ∈ (0, 1),

λ ∈ [0, 1] and Mλ denote the set of rejection curves r with the property that for all I0 ⊆ N with
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limn→∞ ζn = ζ for some ζ ∈ [0, 1] it holds

lim sup
n→∞

FDRI0

(
ϕ

SUD(r)
n,λn

)
≤ lim sup

n→∞
sup
ϑ∈Θ

FDRϑ

(
ϕ

SUD(r)
n,λn

)
≤ α, (3.27)

where ϕSUD(r)
n,λn

is the step-up-down procedure of order λn = λn(λ) based on r. It should be

noted that the first inequality in (3.27) is not very restrictive since many statistical models satisfy

the "model continuity assumptions" (SA) formulated in [91], due to which, at least for SUD-

procedures such as ϕSUD(r)
n,λn

, the corresponding FDR values FDRI0

(
ϕ

SUD(r)
n,λn

)
can be approximated

arbitrarily closely by the values FDRϑ

(
ϕ

SUD(r)
n,λn

)
for some suitably chosen ϑ ∈ Θ, n ∈ N.

In terms of power it is immediately clear that, whenever r1, r2 ∈ Mλ with r1 ≤ r2, then

ϕ
SUD(r1)
n,λn

≥ ϕ
SUD(r2)
n,λn

. Therefore, a smaller rejection curve typically leads to a more powerful test

procedure in the sense that more (never less) false hypotheses can be rejected.

Theorem 3.20 (Asymptotic optimality of fα)

(i) Let λ ∈ [0, 1] and r ∈Mλ. Then

∀t ∈ [0, λ] : r(t) ≥ fα(t). (3.28)

If λ < 1, then it holds for any τ ∈ (λ, 1] that

∀t ∈ (λ, τ ] : r(t) ≤ fα(t) ⇒ ∀t ∈ (λ, τ ] : r(t) = fα(t). (3.29)

(ii) If λ < 1 and r ∈ Mλ is such that, for every ζ ∈ (α, 1), the equation F∞(ρ(t)|ζ) =

1 − ζ + ζρ(t) = t has at most one solution in (0,1), it even holds r(t) ≥ fα(t) for all

t ∈ [0, 1].

(iii) If λ = 1 and assuming (D3), (I1) and (I2), it holds

inf
r∈M1

r = fα.

Moreover, for any ϑ ∈ Θκ = {ϑ ∈ Θ : lim infn→∞ ζn(ϑ) > α/(κ(1−α)+α)}, κ ∈ (0, 1),

the power of any f̃α ∈M1 with f̃α(t) = fα(t) for all t ∈ [0, κ] is asymptotically not smaller

than the power of any other r ∈M1, that is,

lim inf
n→∞

[
β̄ϑ(ϕSUD(f̃α)

n,n )− β̄ϑ(ϕSUD(r)
n,n )

]
≥ 0 for all ϑ ∈ Θκ. (3.30)

Proof: In order to prove part (i), assume that for an arbitrary chosen rejection curve r ∈ Mλ it

holds r(t∗) < fα(t∗) for some t∗ ∈ (0, λ). Consider now a Dirac-unifom configuration PI0 with

limn→∞ ζn = ζ and ζ ∈ (α, 1) chosen such that r(t∗) < F∞(t∗|ζ) < fα(t∗). Then it is obvious

that property (3.27) is violated, because (with self-explaining notation) it follows PI0-almost surely

lim inf
n→∞

R(r)
n /n ≥ F∞(t∗|ζ) > F∞(tζ |ζ) = fα(tζ)
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and consequently

lim inf
n→∞

FDRI0

(
ϕ

SUD(r)
n,λn

)
≥ ζt∗/(1− ζ + ζt∗) > ζtζ/(1− ζ + ζtζ) = α,

due to the fact that the function x → ζx/(1 − ζ + ζx) is strictly increasing in x ∈ (0, 1) and

t∗ > tζ . Hence, for all t ∈ (0, λ) we have r(t) ≥ fα(t), from which the assertion follows.

Now assume that we have r(t) ≤ fα(t) for all t ∈ (λ, τ ] and r(t∗) < fα(t∗) for some t∗ ∈ (λ, τ).

Consider now the Dirac-unifom asymptotic model DU∞(ζ∗) with ζ∗ ∈ (α, 1) chosen such that

fα(λ) < F∞(λ|ζ∗), F∞(t∗|ζ∗) < fα(t∗) and infλ≤t≤t∗(F∞(t|ζ∗)− r(t)) > 0, which is possible

due to the left-continuity of the rejection curve r. Then the argumentation is the same as before.

Part (ii) and the first assertion of part (iii) can be proven similarly.

For the proof of (3.30), we assume (in order to avoid triviality) n1(n) > 0 for all n ∈ N, define

Sn = Rn − Vn and denote the set of all f̃α ∈ M1 with f̃α(t) = fα(t) for all t ∈ [0, κ] by Sκ.

Then we have (with self-explaining notation as before) the inequality

∀n ∈ N : ∀f̃α ∈ Sκ : ∀r ∈M1 :

(
Sn(f̃α)
n1

− Sn(r)
n1

)
1{t∗n(r)≤κ} ≥ 0,

which holds true due to (3.28) and the fact that Sn is non-decreasing in t∗n. Now, for fixed ϑ ∈ Θκ,

we utilize the chain of inequalities

t∗n(r|Pϑ) ≤ t∗n(r|DUn(ζn(ϑ))) ≤ t∗n(f̃α|DUn(ζn(ϑ))) < κ

which holds Pϑ-almost surely for eventually all n ∈ N, leading to lim supn→∞ t∗n(r|Pϑ) < κ and

consequently to 1{t∗n(r)≤κ} → 1 [Pϑ] for all ϑ ∈ Θκ. Therefore, we obtain Pϑ-almost surely

lim inf
n→∞

(
Sn(f̃α)
n1

− Sn(r)
n1

)
≥ 0 for all ϑ ∈ Θκ, f̃α ∈ Sκ, r ∈M1. (3.31)

Taking expectation in (3.31) and utilizing Fatou’s lemma, we finally arrive at assertion (4.1). �

Theorem 3.20 shows that in the class of SU-procedures with rejection curve r ∈ M1 we always

have r ≥ fα. In the class of truncated SU-procedures with parameter κ ∈ (0, 1), the truncated

procedure based on fα is the best choice. More generally, if we restrict attention to the subspace

Θκ ⊂ Θ described in (iii) of Theorem 3.20, fα is the asymptotically uniformly best choice on [0, κ]

for a step-up procedure. For SUD-procedures with parameter λ < 1, fα leads to the asymptotically

uniformly best choice of critical values on the step-up part, see (3.28). On the step-down part of

a SUD-procedure, fα cannot be uniformly improved by some r ∈ Mλ whatever r does on the

step-up part, see (3.29) with τ = 1. For arbitrary τ ∈ (λ, 1], assertion (3.29) states that a rejection

curve r ∈ Mλ cannot be first smaller and then larger than fα on the interval (λ, 1]. It seems

possible that Mλ contains an r which is first larger and then smaller on the step-down part. But

this would imply that the SUD-procedure based on r is asymptotically less powerful than the
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SUD-procedure based on fα on some Θκ. If we restrict attention to rejection curves r ∈ Mλ

described in (ii) of Theorem 3.20, then fα is the best choice. These considerations may justify to

call fα the asymptotically optimal rejection curve (AORC).

In view of these asymptotic results, it is natural to ask how large n has to become in order to

achieve a reasonable behavior of the FDR of the proposed procedures. As already mentioned in

Example 3.5, the asymptotic exhaustion of the whole FDR level has to be traded off with a slightly

liberal behavior of the procedures based on fα in the finite case. In order to illustrate this effect,

we consider the SU-procedures based on f (i)
α,κ, i = 1, 2, where the upper bound given in (3.14)

is sharp in the DUn(ζn)-model. Due to the pointwise order of these two rejection curves (cf.

Figure 3.4) it is clear that a SU-procedure based on f (2)
α,κ is more liberal in the DUn(ζn)-model.

We therefore present results for this procedure. Figure 3.5 depicts the behavior of this procedure

under DU configurations with varying number of true hypotheses for n = 100, 500 and 1000. For

n = 100, there is a notable violation of the FDR level α = 5% for 12 ≤ n0 ≤ 35. The largest

FDR under Dirac-uniform is attained for n0 = 16 with numerical value 0.05801. For the two

larger values of n, the actual level does not exceed α by much.

Figure 3.5: Actual DU-FDR of the SU-procedure based on f (2)
0.05,κ2

depending on n0

The method of computing the FDR for a SU(D)-procedure in case of an underlying Dirac-uniform

configuration will be described in the next section. Moreover, we will give some brief suggestions

for modifications of fα in the finite case. However, this will not be emphasized to much, because

on the one hand, the AORC is designed for the asymptotic case and on the other hand, we have to

keep in mind that the FDR values under Dirac-uniform reflect an unrealistic worst case scenario.

For realistic alternatives, we get much smaller realized FDRs so that the original AORC may safely

be used in the finite case for e.g. n ≥ 500.

A detailed numerical study of the FDR behavior of the example procedures presented in Examples
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3.5, 3.7 and 3.8 in case of a finite number of hypotheses at hand is given in Appendix A.2.

3.7 FDR control for a fixed number of hypotheses

In this section we briefly discuss some possibilities to achieve strict FDR control for a finite num-

ber of hypotheses for procedures related to the AORC. It would be attractive to find critical values

close to (3.3) for step-up-down procedures as described in the previous sections such that the FDR

is strictly controlled. As shown before, an upper bound for the FDR of a step-up procedure with

critical values satisfying that αi:n/i is non-decreasing in i is obtained in one of the Dirac-uniform

configurations. This bound is sharp if the corresponding Dirac-uniform configuration belongs to

the model. For step-up-down procedures with parameter λn ∈ {1, . . . , n − 1} it is not known

whether Dirac-uniform configurations are least favorable. However, Dirac-uniform configurations

also yield an upper bound for the FDR in this case.

More specifically, under the assumptions of Theorem 3.12, the aforementioned upper bound for a

fixed n0 is given by (see (3.14))

b(n0, n) =
n0

n
EI′0

[q(Rn/n)] , n0 = 1, . . . , n,

with I ′0 defined as in Theorem 3.9. Hence, the upper bound for the FDR is given by b∗n =

max1≤n0≤n b(n0, n).

Lemma 3.21
For a SUD-procedure with critical values αi:n of order λn satisfying (T1)-(A2), b(n0, n) is given

by

b(n0, n) = n0

n0∑
j=1

αn1+j:n

n1 + j
Pn0−1,n(Vn = j − 1), (3.32)

where Pm,n refers to a Dirac-uniform configuration such that m p-values are iid uniformly dis-

tributed and the remaining ones follow a Dirac distribution. If λn = n, which corresponds to a

SU-procedure, b(n0, n) can alternatively be calculated by

b(n0, n) =
n0∑

j=1

j

n1 + j
Pn0,n(Vn = j) = FDRI0

(
ϕSUD(~α)

n,n

)
(3.33)

and it even holds equality in every summand, i.e.,

Pn0,n(Vn = j) =
n0

j
αn1+j:nPn0−1,n(Vn = j − 1) for j = 1, . . . , n0. (3.34)

Proof: In order to prove (3.32), keep in mind that the expectation in (3.14) refers to a Dirac-

uniform configuration with (n0 − 1) true hypotheses and (n1 + 1) false hypotheses and since

pj ∼ ε0 for all j ∈ In,1, we have Rn = Vn + (n + 1) PI′0
-almost surely. Straightforward
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calculation now yields

n0

n
EI′0

[
q

(
Rn

n

)]
=

n0

n
EI′0

[
ρ(Rn/n)
Rn/n

]
= n0EI′0

[
αRn:n

Rn

]
= n0EI′0

[
αVn+n1+1:n

Vn + n1 + 1

]

= n0

n0−1∑
k=0

αk+n1+1:n

k + n1 + 1
Pn0−1,n(Vn = k)

= n0

n0∑
j=1

αn1+j:n

n1 + j
Pn0−1,n(Vn = j − 1),

which is (3.32). Equality (3.34) and consequently the left-hand side equality of (3.33) are imme-

diate consequences of the representation of the pmf. of Vn for a step-up test given in Corollary

3.23. The right-hand side equality in (3.33) is obtained by noticing that in a Dirac-uniform model

with n0 true hypotheses and n1 false hypotheses, we have Rn = Vn + n1 PI′0
-almost surely and it

therefore holds

FDRI0

(
ϕSUD(~α)

n,n

)
= EI0

[
Vn

Rn ∨ 1

]
= EI0

[
Vn

(Vn + n1) ∨ 1

]

=
n0∑

j=1

j

j + n1
Pn0,n(Vn = j),

according to the discrete expectation formula. �

Formulas for the pmf. of Vn under Dirac-uniform configurations can be obtained in terms of the

joint cdf. of order statistics. For SUD-procedures the computation of the pmf. of Vn becomes

numerically difficult for larger values of n. A way out is to simulate the upper bound.

For the derivation of the pmf. of Vn, we use the following considerations. Under the assumption

that 0 ≤ c1:n ≤ · · · ≤ cn:n ≤ 1, n ∈ N, a general recursive formula for the joint cdf. F k
n of the

order statistics U1:n, . . . , Un−k:n, 0 ≤ k ≤ n, of n i.i.d. UNI[0, 1]-distributed random variables Ui

is given by

F k
n (c1:n, . . . , ck:n) = 1−

n−k−1∑
j=0

(
n

j

)
Fj(c1:n, . . . , cj:n)(1− cj+1:n)n−j , (3.35)

with F 0
n = Fn and F 0

0 ≡ Fn
n ≡ 1. This is essentially Bolshev’s recursion, which is proved in

different ways in [262], pp. 366-367, and in [89].

Formula (3.35) (for k = 0) may be used to calculate the pmf. of Vn for a SUD-procedure of order

r under Dirac-uniform configurations and yields the following result.
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Lemma 3.22
For the pmf. of Vn of a step-up-down procedure of order r based on critical values 0 ≤ α1:n ≤
. . . ≤ αn:n ≤ 1 under a Dirac-uniform configuration with n0 true hypotheses and n1 = n − n0

false hypotheses, we obtain that Pn0,n(Vn = j)/
(
n0

j

)
is equal to

Fj(αn1+1:n, . . . , αn1+j:n)ᾱn0−j
n1+j+1:n, if r ≤ n1,

Fn0−j(ᾱr:n, . . . , ᾱr:n︸ ︷︷ ︸
n−r+1

, ᾱr−1:n, . . . , ᾱn1+j+1:n)αj
n1+j:n, if r > n1 ∧ j ≤ r − n1,

Fj(αr:n, . . . , αr:n︸ ︷︷ ︸
r−n1

, αr+1:n, . . . , αn1+j:n)ᾱn0−j
n1+j+1:n, if r > n1 ∧ j > r − n1,

where ᾱj = 1− αj , j = 1, . . . , n.

Proof: For notational convenience, we denote the p-values corresponding to true hypotheses by

p(0)-values. It is remarkable that the vector of ordered p-values (p1:n, . . . , pn:n) is almost surely

of the form (p1:n = 0 = . . . = 0 = pn1:n︸ ︷︷ ︸
n1

, pn1+1:n = p
(0)
1:n, . . . , p

(0)
n0:n = pn:n).

Case 1, r ≤ n1: In this case, we necessarily fall into the step-down branch of the test procedure,

because at least the first r components of the vector of ordered p-values are 0 such that pr:n ≤ αr:n

is true with probability 1. Consequently, the event {Vn = j} can be expressed as

{Vn = j} = {pn1+1:n ≤ αn1+1:n, . . . , pn1+j:n ≤ αn1+j:n}

∩ {pn1+j+1:n > αn1+j+1:n}.

Since the second event implies that all ordered p-values with ordered indices n1 + j+1 or greater

are larger than αn1+j+1:n, the event means that (n0 − j) p(0)-values are greater than αn1+j+1:n.

Since we have
(
n0

j

)
possibilities to choose these p(0)-values and all p-values are assumed to be

independent, we immediately obtain the result.

Case 2, r > n1 and j ≤ r − n1: In order to get into this case, we must have pr:n > αr:n and fall

into the step-up branch of the procedure. Consequently, we can write

{Vn = j} = {pr:n > αr:n, pr−1:n > αr−1:n, . . . , pn1+j+1:n > αn1+j+1:n}

∩ {pn1+j:n ≤ αn1+j:n}.

Since pn1+j:n ≤ αn1+j:n automatically implies that p(0)
k:n ≤ αn1+j:n for all k = 1, . . . , j, we can

again choose j out of the n0 p
(0)-values to fulfill this relationship.

Case 3, r > n1 and j > r − n1: In this third case, we fall into the step-down branch of the proce-

dure, resulting in

{Vn = j} = {pr:n ≤ αr:n, pr+1:n ≤ αr+1:n, . . . , pn1+j:n ≤ αn1+j:n}

∩ {pn1+j+1:n > αn1+j+1:n}.
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The assertion then follows in analogy to the step-down considerations under case 1. �

Corollary 3.23
For an SU-procedure with critical values α1:n ≤ · · · ≤ αn:n under a Dirac-uniform configuration

with n0 true hypotheses, we get (see also [92])

Pn0,n(Vn = j) =
(
n0

j

)
Fn0−j(1− αn:n, . . . , 1− αn−n0+j+1:n)αj

n−n0+j:n. (3.36)

This result is immediate if we consider the case r = n in Lemma 3.22. Alternatively, the pmf. of

Vn in this case can be calculated by iteratively applying (3.34).

3.7.1 Simultaneous β-adjustment

Here, we mention one ad-hoc possibility to obtain a valid set of critical values for a SU- or SUD-

procedure guaranteeing strict FDR control, that is, we adjust the critical values given in (3.3) in a

suitable way. For example, we can try to find a suitable βn > 0 such that the choice

αi:n =
i

n+βn
α

1− i
n+βn

(1− α)
=

iα

n+ βn − i(1− α)
, i = 1, . . . , n, (3.37)

yields a SU-procedure (or SUD-procedure) controlling the FDR at level α. The critical values

(3.37) correspond to the rejection curve

f̃α(t) = (1 +
βn

n
)fα(t), t ∈ [0, α/(α+ β/n)].

Technically, the determination of the minimal βn can be done by a grid search. Starting with

βn = ε for some ε > 0, we evaluate (3.33) for all possible values of n0 and check if the condition

max1≤n0≤n b(n0, n) ≤ α is fulfilled. If not, we update βn by iteratively adding ε until no violation

of the FDR level α occurs any more. For example, for α = 0.05, an SU-procedure with n = 100

and the choice β100 = 1.76 leads to strict FDR control (we chose ε = 0.01).

Figure 3.6: f̃α for n = 10, 50, 200 together with fα
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Figure 3.6 depicts the modified curves f̃α for n = 10, 50 and 200 together with fα. The left

picture in Figure 3.7 shows the minimum values for βn that have to be used to ensure strict FDR

control for SU-procedures based on fα and f (i)
α,κ, i = 1, 2, respectively, for varying n. In the right

picture of Figure 3.7, the corresponding factors 1 + βn/n are displayed. It is easy to prove that

limn→∞ βn/n = 0 in all three cases.

Figure 3.7: βn and 1 + βn/n for SU-procedures based on fα, f (1)
α,κ1 and f (2)

α,κ2

Remark 3.24
In [15] (Remark to Definition 7), an SD-procedure with the universal adjustment constant βn ≡
1.0 was proposed.

3.7.2 Multivariate optimization problem

A more advanced approach towards finding a valid set of critical values (γi:n)i=1,...,n (say) re-

lated to the AORC for a finite number of p-values leading to strict FDR control may consist in

comprehending this as a multivariate optimization problem under constraints.

Formally, this problem can be expressed by the task to find the minimum of the target function

d((γ1:n, . . . , γn:n)) =

(
n∑

i=1

|f−1
α (i/n)− γi:n|p

)1/p

(3.38)

for some p ∈ (0,∞], i.e., minimize the Lp-distance of the set of critical values (γ1:n, . . . , γn:n) ∈
(0, 1)n and the critical values originating from the AORC under the constraints

FDRn0,n(ϕSU(~γ)) ≤ α ∀n0 = 1, . . . , n, and (3.39)

γi+1:n

i+ 1
≥ γi:n

i
∀i = 1, . . . , n− 1. (3.40)
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Of course, this problem can only be solved numerically by employing iteration techniques. In

order to find the global minimum of (3.38) under the constraints (3.39) and (3.40), it is necessary

to utilize a simplex-typed algorithm which is rather complex and goes beyond the scope of this

work. Anyhow, we will at least present one simple algorithm to obtain a valid set of critical values

which are close to the
(
f−1

α (i/n)
)
i=1,...,n

and works as follows.

Algorithm 3.25

1. We start with (γi:n)i=1,...,n =
(
f−1

α (i/n)
)
i=1,...,n

. These critical values obviously minimize

the function d((γ1:n, . . . , γn:n)) unconditionally, but they violate constraint (3.39).

2. Now we search for the smallest possible positive constants (εi)i=1,...,n, such that the critical

values

(f−1
α (i/n)− εi)i=1,...,n or (3.41)

((1− εi)f−1
α (i/n))i=1,...,n, (3.42)

respectively, fulfill the constraints (3.39) and (3.40). The εi’s can be found via a grid search.

Under the multiplicative ansatz (3.42) with the special choice εi = iε for some ε > 0, it can be

shown that constraint (3.40) is fulfilled if

ε ≤ min
i

(∆qi/∆αi), (3.43)

where

∆qi =
f−1

α ((i+ 1)/n)
i+ 1

− f−1
α (i/n)
i

and

∆αi = f−1
α ((i+ 1)/n)− f−1

α (i/n).

Of course, the latter policy is closely linked to the β-adjustment method described before and

does not lead to the global solution of the minimization problem. Anyhow, it is simple and

easy to implement and the obtained critical values remain pretty close to their initial values(
f−1

α (i/n)
)
i=1,...,n

. The following figure depicts the solutions of Algorithm 3.25 with ansatz

(3.42) for a step-up test with n = 25 (left picture) and n = 50 (right picture) together with fα.
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Figure 3.8: Critical values obtained by Algorithm 3.25 for n = 25 and n = 50.

Remark 3.26
Kwong et al. (cf. [161]) have also developed an algorithm for finding a valid set of critical

values for step-up tests under Dirac-uniform configurations based on the distribution of Vn given

in (3.36). For small n, the results are very similar to the results obtained by Algorithm 3.25. For

larger n, however, their solutions do not converge to
(
f−1

α (i/n)
)
i=1,...,n

, but the sets of critical

values often show some peculiar behavior, for example that they lie on several distinct lines (cf.

Figure 3.9).

Figure 3.9: Critical values obtained by Kwong et al. (2002) for n = 16 and n = 32.

This is due to the fact that the underlying target equations of the algorithm are given by

FDRn0,n(ϕSU(~γ)) = α ∀n0 = 1, . . . , n, (3.44)
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which cannot be fulfilled under the constraints (3.40) for larger n. The iterative structure of the

algorithm in [161] implies that the critical values in case of nonexistence of a solution of (3.44)

under (3.40) are simply linearly increasing in order to fulfill at least (3.40).

3.8 Connection to Storey’s approach

The AORC and methods based on it are by far not the only discussed improvements of the orig-

inal linear step-up procedure. In 2004, John D. Storey et al. (cf. [275]) proposed a method in

order to gain power by presenting a data-adaptive testing algorithm relying on an estimator for the

proportion of true hypotheses π0 (in Storey’s nomenclature) which works as follows.

Algorithm 3.27 (Storey’s method)

1. Choose an FDR level α and a tuning parameter λ ∈ [0, 1).

2. Compute the p-values p1, . . . , pn for each individual test and denote their ecdf. by Fn.

3. Compute the estimator π̂0(λ) = (1−Fn(λ))/(1−λ) for the proportion π0 of true hypothe-

ses.

4. Denote by F̂DRλ(t) = π̂0(λ)t/(Fn(t)∨n−1) an estimator function for the FDR of a single-

step procedure with threshold t ∈ [0, 1].

5. Choose the value tα(F̂DRλ) = sup{0 ≤ t ≤ 1 : F̂DRλ(t) ≤ α} as threshold for the

p-values and reject all hypotheses with p-values lower than or equal to tα(F̂DRλ).

This algorithm was quickly implemented into software and is nowadays widely spread. If we only

consider such t-values with Fn(t) ≥ 1/n for the moment and notice that

tα(F̂DRλ) = sup{0 ≤ t ≤ 1 :
π̂0(λ)t
Fn(t)

≤ α}

= sup{0 ≤ t ≤ 1 : Fn(t) ≥ π̂0(λ)
α

t},

it becomes obvious that Algorithm 3.27 corresponds to the Benjamini-Hochberg method where α

is replaced by α/π̂0(λ) leading to larger critical values if π̂0(λ) < 1. For the special choice λ = 0,

we obtain π̂0(0) ≡ 1, hence, the original linear step-up procedure. For the remaining t-values with

Fn(t) < 1/n, Algorithm 3.27 leads to determining

sup{t ∈ [0, p1:n) : nπ̂0(λ)t ≤ α} < p1:n.

Hence, we reject nothing in this case and this completes the proof that Algorithm 3.27 is equivalent

to an adjusted linear step-up procedure.
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Now, the question is near at hand whether Storey’s approach and the methods and critical values

based on the asymptotically optimal rejection curve have something in common. Especially, it is

of interest whether the rejection regions induced by the AORC can be derived by Storey’s method

for a special choice of λ. To see that this is not the case, we may define

π̂AORC
0 (t) = 1− Fn(t)(1− α),

and can (in analogy to Storey et al. (2004)) construct a point estimate for the FDR of a single-step

procedure with given t ∈ (0, 1) by

F̂DRAORC(t) =
t

Fn(t)
π̂AORC

0 (t) = t

[
1

Fn(t)
− (1− α)

]
.

Finding a crossing point of Fn and fα on (0, 1) is then (similarly to Storey’s approach) equivalent

to equating F̂DRAORC(t) = α, because

F̂DRAORC(t) = α

⇐⇒ α/t = 1/Fn(t)− (1− α)

⇐⇒ Fn(t) = 1
α/t+(1−α)

⇐⇒ Fn(t) = fα(t).

This calculation shows that the rejection regions coming from the AORC cannot be embedded

in Storey’s framework, because we do not employ a scalar estimator π̂0(λ), but an "estimator

function" π̂0(t) if we use his notation, i.e., the estimation of π0 has to be done for every thresh-

old t separately. This characterizes the difference between a fixed rejection curve approach and

Storey’s variable rejection threshold depending on the data and the resulting estimator π̂0(λ). Both

approaches are not transferable into another.

The latter observation shows that both test methods are in competition and makes it interesting

to discuss assets and drawbacks of both procedures and to compare their performance in various

distributional settings. A systematic comparison of both methods and some others under several

setups is the topic of the following Chapter 4.

In general, one can summarize the pro’s and con’s of the two methods described before, especially

in comparison with the original linear step-up procedure which both methods claim to improve, as

follows.

Pro linear step-up:

• Actual FDR of ϕLSU depends only on the proportion of true nulls, not on the values of the

alternative parameters

• Theoretically valid under positive dependency

• Easy and intuitive

False Discovery Rate and Asymptotics, Thorsten Dickhaus



CHAPTER 3. A NEW REJECTION CURVE 83

Contra linear step-up:

• Not α-exhausting for n0 < n

• Often low power for small proportions of true null hypotheses

Pro Storey method:

• Flexible with respect to concrete underlying p-value distribution

• If π̂0(λ) is a good estimate for π0, the resulting procedure is close to the optimal "oracle

procedure" (see Chapter 4 below)

Contra Storey method:

• The realized estimate π̂0(λ) can be greater than 1 (this happens especially if discrete p-

values are involved); then the procedure is less powerful than the linear step-up procedure

• The estimator π̂0(λ) introduces a new variance component which makes the FDP of such a

procedure even more volatile, especially under dependency

• The choice of a good tuning parameter λ is a sensible issue

Pro AORC-based procedures:

• Works for any ζ and is even theoretically optimal under Dirac-uniform configurations

• No tuning parameter necessary

• No estimation of ζ necessary (implicitly covered)

• Even the adjusted critical values for a step-up test based on fα are an almost uniform im-

provement of Simes’ critical values. For example, for n = 100 and α = 0.05 we obtain

with the β100 = 1.76 adjustment described in Subsection 3.7.1 that only the smallest critical

value α1:n is smaller than its Simes’ counterpart α/n, while all other 99 αj:n’s are larger

than jα/n.

• Theoretically valid and often superior to Storey’s approach if the underlying p-values are

stochastically larger than a UNI[0, 1]-distributed random variable (cf. Chapter 4).

Contra AORC-based procedures:

• Fail to control the FDR under positive dependency

• Designed to control the FDR even under the worst case scenario of infinitely large alternative

parameters and therefore often not powerful for realistic alternatives / small effect sizes
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• Not flexible with regard to the actual data, i.e., no data-dependent critical values (fixed

rejection curve drawback)

On the whole, one should expect that Storey’s method works better in case of strictly continuous

distributions and smaller effect sizes while the AORC-based procedures will behave better if we

have extreme parameter configurations. A comparison is not really fair because both methods

are designed to achieve different goals or, in other words, have different underlying optimality

criterions. However, on a descriptive basis it may be interesting to study their behaviors under

various circumstances in more detail. This is the topic of the next chapter.
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Chapter 4

Power study for some FDR-controlling
test procedures

In Chapter 3, we have seen that there are improvements of the Benjamini-Hochberg method with

which we can gain power while (at least asymptotically) keeping the FDR level α. Here, we are

now concerned with how much gain of power is possible with these methods.

Using the nomenclature introduced in Table 1.1, we recall our formal definition of the power of a

multiple test procedure ϕ = (ϕ1, . . . , ϕn), which was given in Definition 1.3 as

powern(ϕ) = Eϑ

(
Sn

n1 ∨ 1

)
. (4.1)

Supposing that the proportion ζn = n0/n of true hypotheses converges with limn→∞ ζn = ζ, we

can herewith calculate the asymptotic power of a multiple test procedure ϕ based on a rejection

curve r leading to the rejection region [0, t∗] for 0 < ζ < 1 by

power∞(ϕ) = lim
n→∞

Sn

n1 ∨ 1
= lim

n→∞

Rn/n− Vn/n

(n1 ∨ 1)/n

=
r(t∗)− ζt∗

1− ζ
. (4.2)

Obviously, under the Dirac-uniform configurations DU(ζ), we have (finite and asymptotic) power

equal to 1.

In order to make our comparison as fair as possible, we only consider step-up procedures based

on rejection curves, namely

r(1)(t) = t/α Benjamini-Hochberg procedure,

r(2)(t) = π̂0(λ)t/α Storey procedure,

r(3)(t) = f
(2)
α,κ2(t) adjusted AORC-based procedure,

r(4)(t) = n0t/(nα) "Oracle" procedure,

where the tuning parameter λ was chosen equal to 0.5 and κ2 = (1/2−α)/(1−α). Both choices

imply that the maximum possible rejection threshold for procedures (2) and (3) is equal to 1/2.
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As stated before (cf. Section 3.8), the crucial difference between these two procedures is the fact

that the AORC-based procedure utilizes a fixed, deterministic rejection curve while in Storey’s

method the rejection curve is a random object estimated from the observed data. Of course, the

"oracle" procedure is impracticable and only serves as a benchmark, because it has maximum

power. Loosely formulated, we want to find out three things:

(i) How much power gain is possible with Storey’s method and with the AORC-based method

with respect to ϕLSU under which parameter configurations ?

(ii) Which of the two improvements is more powerful in which cases ?

(iii) How far are the two improvements away from optimal power under which parameter con-

figurations ?

Our simulation setup is as follows. For three different choices of n, i.e., n = 40 (moderate problem

size), n = 400 (large problem size) and n = 4000 (asymptotic case, justification see below), we

consider the proportions ζn = 90%, 75%, 50%, 25% and 10% and investigate the power and the

realized FDR of the step-up procedures based on the rejection curves r(i), i = 1, . . . , 4, under

varying parameter constellations. The FDR level is chosen as α = 5% and the quantities FDRn

and powern are estimated by their average values in B = 10, 000 Monte Carlo replications, i.e.,

F̂DRn =
1
B

B∑
b=1

qb with qb =
vn,b

rn,b ∨ 1
,

p̂owern =
1
B

B∑
b=1

sn,b

n1
,

where the entities written in lowercase letters denote the realizations of the corresponding random

variables defined in Table 1.1. We subdivide our power study into two parts, namely the simple

hypotheses case and the composite hypotheses case.

4.1 Simple hypotheses case

For illustrative purpose, we again study the one-sided normal means problem

Hi : {µ = 0} vs. Ki : {µ > 0}, i = 1, . . . , n,

with test statistics Ti ∼ N (0, σ2) i.i.d., i = 1, . . . , n0 for the true hypotheses and Tj ∼ N (µ, σ2)

i.i.d., j = n0 + 1, . . . , n for the false hypotheses with 0 < n0 < n. For the sake of simplicity and

without loss of generality, we assume unit variance, i.e., σ2 = 1. Moreover, we add µ = ∞ to the

model such that Dirac-uniform configurations can be covered in this framework as well. Suitable

p-values for testing Hi versus Ki are then given by pi(t) = PHi(Ti > t) = 1 − Φ(t) and for
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the distribution functions of the pi(Ti) under Hi and Ki, respectively, we get for t ∈ [0, 1] the

representations

G0(t) = t, (4.3)

G1(t) = P0(Tn0+1 > Φ−1(1− t)) = 1− Φ(Φ−1(1− t)− µ), (4.4)

F∞(t|ζ, µ) = ζt+ (1− ζ)(1− Φ(Φ−1(1− t)− µ)). (4.5)

We now investigate the power and the realized FDR of the step-up procedures based on the rejec-

tion curves r(i), i = 1, . . . , 4, in case of

µs = 0.5 small / minor effect,

µr = 2.0 realistic / relevant effect, and

µa = 5.0 p− value approximately ∼ ε0.

The following tables list our simulation results for each considered value of ζn separately.

ζn = 0.9 µs = 0.5 µr = 2.0 µa = 5.0

n 40 400 4000 40 400 4000 40 400 4000

F̂DR
(1)

n 4.40% 4.42% 4.29% 4.04% 4.49% 4.52% 4.62% 4.51% 4.50%

p̂ower(1)n 0.66% 0.090% 0.012% 19.58% 12.08% 10.36% 99.27% 99.29% 99.27%

F̂DR
(2)

n 4.85% 4.65% 4.57% 4.80% 5.06% 4.98% 5.21% 5.01% 5.00%

p̂ower(2)n 0.71% 0.094% 0.012% 20.80% 13.11% 11.40% 99.34% 99.36% 99.35%

F̂DR
(3)

n 4.53% 4.45% 4.29% 4.37% 4.59% 4.56% 5.25% 5.01% 5.00%

p̂ower(3)n 0.68% 0.090% 0.012% 20.27% 12.28% 10.47% 99.39% 99.36% 99.35%

F̂DR
(4)

n 4.87% 4.96% 4.92% 4.71% 5.09% 5.01% 5.10% 5.00% 5.00%

p̂ower(4)n 0.73% 0.10% 0.013% 20.82% 13.23% 11.46% 99.38% 99.36% 99.35%

Table 4.1: Power study in the simple hypotheses case - Results for ζn = 0.9

Utilizing (4.2) and the explicit formula for F∞(t|ζ, µ), we can additionally calculate the asymp-

totic power of the four procedures for the interesting case µr = 2.0 numerically and get (for

ζn → ζ = 0.9) the values

power(1)
∞ ≈ 10.14%, power(2)∞ ≈ 11.22%,

power(3)
∞ ≈ 10.25%, power(4)∞ ≈ 11.28%.

In this sense, it seems justified to call the setup n = 4000 already the "asymptotic case". As

expected, the linear step-up procedure performs nearly equally well than its competitors here.

Storey’s method is close to the oracle procedure, because the assumption of a UNI[0, 1] distribution

for the p-values under the null hypotheses holds true and the choice of λ is appropriate (in the

linear part of the limiting ecdf. of the p-values). For small family sizes and large parameter

values, Storey’s method and the AORC-based step-up test both tend to anti-conservativity.
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ζn =0.75 µs = 0.5 µr = 2.0 µa = 5.0

n 40 400 4000 40 400 4000 40 400 4000

F̂DR
(1)

n 3.65% 3.96% 3.87% 3.80% 3.76% 3.74% 3.70% 3.72% 3.75%

p̂ower(1)n 0.62% 0.098% 0.013% 26.80% 22.93% 22.51% 99.74% 99.73% 99.72%

F̂DR
(2)

n 4.09% 4.28% 4.27% 4.98% 4.95% 4.90% 4.94% 4.98% 5.00%

p̂ower(2)n 0.71% 0.11% 0.015% 31.11% 28.09% 27.79% 99.80% 99.81% 99.81%

F̂DR
(3)

n 3.76% 3.96% 3.88% 4.33% 4.01% 3.97% 5.13% 5.00% 5.00%

p̂ower(3)n 0.65% 0.098% 0.013% 28.68% 24.18% 23.62% 99.81% 99.81% 99.81%

F̂DR
(4)

n 4.92% 5.04% 5.18% 5.02% 5.03% 4.98% 4.94% 4.98% 5.00%

p̂ower(4)n 0.85% 0.13% 0.019% 31.90% 28.48% 28.10% 99.81% 99.81% 99.81%

Table 4.2: Power study in the simple hypotheses case - Results for ζn = 0.75

Again, we additionally report the asymptotic power of the four procedures in case of µr = 2.0

under the parameter configuration ζn → ζ = 0.75. We obtain

power(1)
∞ ≈ 22.45%, power(2)∞ ≈ 27.74%,

power(3)
∞ ≈ 23.55%, power(4)∞ ≈ 28.05%.

Here, with shrunken ζn, the improvements of ϕLSU begin to considerably outperform the linear

step-up procedure. Again, the Storey procedure shows a superior behavior. The AORC-based

step-up method is not much more powerful than ϕLSU, because ζn is too large to lead to substantial

power gain by the procedure based on fα. It is remarkable that even the fully α-exhausting oracle

procedure can hardly detect small effects like µs = 0.5 in such a normal means-comparisons

problem.

ζn = 0.5 µs = 0.5 µr = 2.0 µa = 5.0

n 40 400 4000 40 400 4000 40 400 4000

F̂DR
(1)

n 2.34% 2.56% 2.46% 2.51% 2.50% 2.50% 2.49% 2.49% 2.50%

p̂ower(1)n 0.68% 0.11% 0.015% 37.55% 36.29% 36.14% 99.89% 99.88% 99.89%

F̂DR
(2)

n 2.86% 3.15% 3.12% 4.79% 4.81% 4.80% 4.98% 4.98% 5.00%

p̂ower(2)n 0.90% 0.14% 0.020% 51.72% 52.46% 52.49% 99.95% 99.96% 99.96%

F̂DR
(3)

n 2.38% 2.57% 2.46% 3.46% 3.19% 3.15% 5.33% 5.01% 5.00%

p̂ower(3)n 0.73% 0.11% 0.015% 44.50% 42.01% 41.62% 99.96% 99.97% 99.96%

F̂DR
(4)

n 4.71% 4.97% 5.13% 5.01% 5.03% 5.02% 5.02% 4.98% 5.00%

p̂ower(4)n 1.5% 0.26% 0.040% 54.35% 53.82% 53.70% 99.96% 99.97% 99.96%

Table 4.3: Power study in the simple hypotheses case - Results for ζn = 0.5
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Considering only µr = 2.0 and letting ζn → ζ = 0.5, we now get the asymptotic power values

power(1)
∞ ≈ 36.14%, power(2)∞ ≈ 52.51%,

power(3)
∞ ≈ 41.62%, power(4)∞ ≈ 53.71%.

It becomes apparent that the improvements with the step-up test based on the AORC grow with

decreasing ζ. Moreover, the general detectability of any of the considered procedures increases

with increasing proportion of false hypotheses.

ζn = 0.25 µs = 0.5 µr = 2.0 µa = 5.0

n 40 400 4000 40 400 4000 40 400 4000

F̂DR
(1)

n 1.17% 1.43% 1.15% 1.24% 1.25% 1.25% 1.27% 1.25% 1.25%

p̂ower(1)n 0.75% 0.11% 0.017% 46.17% 45.53% 45.48% 99.94% 99.94% 99.94%

F̂DR
(2)

n 1.69% 1.87% 1.62% 4.37% 4.42% 4.39% 4.99% 4.99% 5.00%

p̂ower(2)n 1.15% 0.18% 0.029% 74.65% 77.28% 77.53% 99.99% 100% 100%

F̂DR
(3)

n 1.20% 1.43% 1.14% 3.35% 2.30% 2.24% 6.48% 5.06% 5.00%

p̂ower(3)n 0.80% 0.11% 0.017% 65.17% 60.87% 60.56% 100% 100% 100%

F̂DR
(4)

n 4.89% 5.05% 5.04% 4.94% 5.01% 5.00% 5.00% 4.99% 5.00%

p̂ower(4)n 4.75% 1.20% 0.034% 80.54% 80.50% 80.51% 100% 100% 100%

Table 4.4: Power study in the simple hypotheses case - Results for ζn = 0.25

Under µr = 2.0 and for ζn → ζ = 0.25, we obtain

power(1)
∞ ≈ 45.47%, power(2)∞ ≈ 77.57%,

power(3)
∞ ≈ 60.52%, power(4)∞ ≈ 80.51%

as asymptotic power values. For such low proportions of ζn, the weakness of the linear step-up

procedure (does not exhaust α resulting in poor power) can be seen clearly. Both the AORC-based

procedure and the Storey procedure show a much more performant behavior, whereby the latter

procedure still remains close to the oracle procedure and is the undisputed best choice of the three

procedures under investigation that can be carried out in practice.

The last setting ζn = 0.1 seems irrelevant for practical considerations. It is mainly included to

show that the adjustment of fα works as expected, because here we obtain crossing points of the

limiting ecdf. of the p-values and the resulting rejection curve in the linearly continued part of f̃α.

Indeed, this "protection" works and even under the extreme value µa = 5.0 no violation of the

FDR-level occurs with the AORC-based test.
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ζn =0.1 µs = 0.5 µr = 2.0 µa = 5.0

n 40 400 4000 40 400 4000 40 400 4000

F̂DR
(1)

n 0.62% 0.58% 0.42% 0.49% 0.50% 0.50% 0.51% 0.50% 0.50%

p̂ower(1)n 0.82% 0.12% 0.019% 50.36% 49.94% 49.84% 99.95% 99.95% 99.95%

F̂DR
(2)

n 0.86% 0.80% 0.67% 3.36% 3.55% 3.55% 4.03% 4.92% 5.00%

p̂ower(2)n 1.44% 0.23% 0.040% 88.78% 92.86% 93.26% 100% 100% 100%

F̂DR
(3)

n 0.65% 0.59% 0.42% 3.87% 1.96% 1.59% 4.83% 4.86% 4.93%

p̂ower(3)n 0.88% 0.12% 0.019% 88.16% 80.58% 78.56% 100% 100% 100%

F̂DR
(4)

n 4.88% 4.98% 5.00% 4.98% 4.99% 5.00% 4.96% 5.01% 5.00%

p̂ower(4)n 32.18% 25.08% 24.02% 97.15% 97.13% 97.12% 100% 100% 100%

Table 4.5: Power study in the simple hypotheses case - Results for ζn = 0.1

Finally, the asymptotic power values in case of µr = 2.0 and ζn → ζ = 0.1 are (numerically)

given by

power(1)
∞ ≈ 49.85%, power(2)∞ ≈ 93.33%,

power(3)
∞ ≈ 78.41%, power(4)∞ ≈ 97.13%.

On the whole, we have shown that in this setting with high practical relevance, the proposed

improvements of ϕLSU considerably outperform the original Benjamini-Hochberg method if the

proportion of true nulls is bounded away from 1. It has to be conceded that Storey’s method under

these regularity circumstances (strictly continuous distributions, simple null hypotheses) performs

very well and is preferable over the AORC-based method considered here.

4.2 Composite hypotheses case

Here, we assume now that the null hypotheses are composite in the one-sided normal means prob-

lem. More precisely, we consider the multiple test problem

Hi : {µ ≤ 0} vs. Ki : {µ > 0}, i = 1, . . . , n,

where µ is the expectation of a normal distribution and the test statistics are of the form

Ti ∼ N (0, σ2) i.i.d., i = 1, . . . , n0/2,

Tj ∼ N (−µ, σ2) i.i.d., j = n0/2 + 1, . . . , n0, and

Tk ∼ N (µ, σ2) i.i.d., k = n0 + 1, . . . , n,

with 0 < n0 < n. This means that for the first half of the true hypotheses, we are at the boundary

of the null hypotheses while for the second half of the true hypotheses we are far in the inside of

the corresponding hypothesis Hj . Again, we set σ2 = 1. Typically, as described in Section 1.2,

the probabilities pi(t) = P0(Ti > t) = 1− Φ(t) at the boundary of the Hi’s are used as p-values
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for testing Hi versus Ki. The distribution functions of the pi(Ti) under Hi and Ki, respectively,

now have for t ∈ [0, 1] the representations

G0(t) =
1
2
t+

1
2
(1− Φ(Φ−1(1− t) + µ)), (4.6)

G1(t) = 1− Φ(Φ−1(1− t)− µ), (4.7)

F∞(t|ζ, µ) =
ζ

2
(
t+ (1− Φ(Φ−1(1− t) + µ))

)
+ (1− ζ)(1− Φ(Φ−1(1− t)− µ)). (4.8)

Again, we investigate the power and the realized FDR of the step-up procedures based on the

rejection curves r(i), i = 1, . . . , 4, in case of µr = 2.0 (the realistic / relevant effect already used

in the previous section). The following table lists our simulation results for the considered values

of ζn.

µr =2.0 F̂DR
(1)

n and p̂ower(1)n F̂DR
(2)

n and p̂ower(2)n

n 40 400 4000 40 400 4000

ζn = 0.1
0.24% 0.26% 0.25% 1.24% 1.34% 1.34%

50.17% 49.87% 49.77% 84.57% 88.27% 88.61%

ζn = 0.25
0.63% 0.63% 0.62% 1.51% 1.56% 1.55%

46.02% 45.42% 45.30% 66.33% 68.38% 68.54%

ζn = 0.5
1.25% 1.28% 1.25% 1.60% 1.66% 1.64%

37.57% 35.95% 35.86% 42.45% 42.28% 42.32%

ζn = 0.75
1.89% 1.86% 1.88% 1.89% 1.86% 1.88%

26.62% 22.46% 22.13% 26.64% 22.46% 22.13%

ζn = 0.9
2.22% 2.17% 2.29% 2.22% 2.17% 2.29%

19.13% 11.72% 10.07% 19.13% 11.72% 10.07%

µr =2.0 F̂DR
(3)

n and p̂ower(3)n F̂DR
(4)

n and p̂ower(4)n

n 40 400 4000 40 400 4000

ζn = 0.1
1.56% 0.82% 0.75% 2.60% 2.60% 2.59%

83.73% 78.00% 77.10% 96.88% 96.93% 96.92%

ζn = 0.25
1.35% 1.13% 1.10% 2.49% 2.53% 2.51%

62.92% 60.12% 59.75% 80.21% 80.01% 79.95%

ζn = 0.5
1.71% 1.59% 1.55% 2.46% 2.52% 2.51%

43.93% 41.31% 41.09% 53.79% 53.11% 53.05%

ζn = 0.75
2.08% 2.01% 2.00% 2.48% 2.50% 2.50%

28.55% 23.59% 23.16% 31.56% 27.80% 27.54%

ζn = 0.9
2.34% 2.21% 2.31% 2.42% 2.41% 2.54%

19.67% 11.89% 10.18% 20.20% 12.74% 11.15%

Table 4.6: Power study in the composite hypotheses case - Results for µr = 2.0
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Apparently, for ζ ≥ 0.75, the Storey method is almost always equivalent to the Benjamini-

Hochberg step-up procedure and therefore gets outperformed by the step-up procedure based on

r(3). This is due to the fact that the estimator π̂0 used in Storey’s approach is almost always equal

to 1 in such cases.

It may be argued that the numerical power gain by the AORC-based procedure is not very large, but

obviously we might have chosen a different parameter configuration such that the results would

have been more impressing. However, focus should have been laid on the fact that the data-

adaptive method developed by Storey is no improvement of the linear step-up procedure at all in

case of composite null hypotheses and large proportion of true nulls.

4.3 Summary

Returning to our initial questions, we can now give the following answers.

(i) In test problems with continuous test statistics, simple null hypotheses and moderate alter-

native parameter values, Storey’s approach seems to be the method of choice from today’s

perspective.

(ii) If, under the assumptions listed under (i), the alternative parameters grow larger, the AORC-

based methods perform equally well with respect to power and FDR control. Moreover, they

have the advantage that no tuning parameter is necessary.

(iii) For composite hypotheses, the AORC-based methods are preferable, especially if the pro-

portion of true null hypotheses is not too large and some parameter values belonging to true

null hypotheses are assumed to lie inside of the null hypotheses’ parameter space.

(iv) If the multiple test problem employs discrete test statistics and the corresponding p-values

are not uniformly distributed on the unit interval but stochastically larger, both methods

are most likely to have low power. This is due to the fact that crossing points of the ecdf.

of the p-values and the underlying rejection curves are decisive objects determining the

decision rule. One way to face this problem is to use randomized p-values in such a situation

again leading to UNI[0, 1]-distributed p-values under null hypotheses. This approach has

been worked out for the example application of testing for Hardy-Weinberg equilibrium in

genetics studies in [95].
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Chapter 5

Concluding remarks and outlook

With this work, two main aspects should have been worked out.

First of all, the calculations in Chapter 2 illustrate that the false discovery proportion FDP is a very

volatile quantity (a random variable with possibly large variance) under positive dependency. In

the i.i.d. case, Rn/n converges almost surely (cf. Lemma A.2 in [91] or Theorem 5 in [275]),

while under dependency it typically has positive variance. We have seen this clearly in our D-

EX-models, where (depending on Z = z) in some cases Rn(z)/n (determined by the ordinate

of the largest crossing point) was close to zero while in other cases it was close to 1. We are not

the only ones who have discovered this effect. Recently, under researchers working on this field

even some doubt has arisen if control of the FDR is a reasonable error handling criterion under

dependency at all. Indeed, controlling only the expectation of the FDP when it is highly variable

is quite unsatisfactory, because we can only state that the average proportion of false significances

is bounded by α, but can make no statement about the individual experiment that we evaluate.

Consequently, it was suggested not only to look at the first moment of the FDP, but try to construct

confidence intervals taking the second moment into consideration as well or even look at the

whole distribution of the FDP. Two remunerative references for this topic are [104] and [170]. In

the latter article, alternatively, usage of the so-called k-FWER was proposed. Here, the probability

P(Vn > k) is controlled at level α for some integer k ≥ 0. The authors argue that this is a good

tradeoff between relaxation of the error rate and keeping courtesy to the experimenter in a way

that we are able to guarantee only k false significances with statistical certainty (1−α). Stepwise

test procedures for k-FWER control are developed in [170] as well.

In Chapters 3 and 4, we have pointed out that the classical Benjamini-Hochberg procedure ϕLSU

from 1995 (in some sources even called the FDR procedure or something similar) gives room for

improvements, but this room is limited. Especially if the proportion ζn of true hypotheses is close

to 1, it is hard to outperform ϕLSU to a considerable amount. This is also reflected in the shape

of our asymptotically optimal rejection curve fα which starts with the same derivative as Simes’
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line in 0 and deviates from it only moderately with growing argument. However, with procedures

based on fα it is possible to reject hypotheses with p-values larger than α while keeping the FDR

level and this leads to a substantial gain in power for smaller values of ζn where the ecdf. of the

p-values typically has a concave shape and often intersects fα at a larger abscissa than α. One

may argue that small values of ζn (many false hypotheses at hand) seem quite artificial and are not

encountered in the relevant application fields where we e.g. scan maybe 100, 000s of SNPs to find

a dozen candidates, but even in the microarray analyses framework, situations with ζn ≈ 0.6 are

not unusual if we test for Hardy-Weinberg disequilibrium in strata, for example.

In future research, it may be interesting to study some more complicated dependency concepts than

exchangeability in more detail, e.g. investigate two-sided t-type test statistics of the form Ti =

|Xi−X0|/S. Also, it may be of interest how the FDR behaves under more realistic configurations

of the alternative parameters than the Dirac-models. Determination of least favorable parameter

configurations for step-up-down test procedures remains a very challenging issue.

As far as the AORC is concerned, it may be worth to study the behavior of procedures based on

fα in PRDS situations. As shown in Remark 3.14, further adjustments of fα will be necessary

to implement FDR-controlling procedures in such a setup. Exact proofs for FDR control under

dependency for any stepwise test procedure based on critical values different from Simes’ critical

values αk are very complicated, because the key expression Pϑ(Rn = j|pi ≤ αj:n) is hard to

handle and the difference [αj:n/j − αj−1:n/(j − 1)] appearing in all the proofs in Chapter 3 only

vanishes for critical values with the structure of Simes’ αk’s. Anyhow, it seems possible that FDR

control for AORC-based procedures can be proved under other well-defined dependency structures

such as, e. g., block dependence as relevant in GWA analyses. This may be investigated in future

research.

Finally, the exact solution of the minimization problem given in Subsection 3.7.2 employing some

simplex-type algorithm can lead to an optimal set of critical values even for any finite n.
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Appendix A

Numerical simulations and calculations

A.1 Simulations for FDR under dependency

In this section, we present some simulations for the FDR behavior of ϕLSU under the D-EX-N

models introduced in Section 2.3. The setup for these simulations has been chosen as follows. For

given ζ and for varying ρ, we generated nζ = 1000ζ test statistics Ti, i = 1, . . . , nζ as given in the

introductory part of Section 2.3 with ϑi = 0 for all i = 1, . . . , nζ and computed the corresponding

p-values. The n(1−ζ) remaining p-values were set equal to zero. This was done independently in

m = 10, 000 simulation runs. Denoting the FDP for a linear step-up procedure with such p-values

for a particular run by Qn = Vn/(Rn ∨ 1), we estimated FDR∞(ζ) (for one ρ) by

̂FDR∞(ζ) =
1
m

m∑
j=1

q(j)n = Q̄n,m,

where the index j indicates the j-th of the m = 10, 000 simulation runs and q(j)n denotes the j-th

realization of Qn. The following figures show the results for ζ = 0.2, 0.4, 0.6, 0.8, 0.9 and 1.0

depending on ρ.

Figure A.1: Simulation for the FDR of ϕLSU in the D-EX-N model with ζ = 0.2 and ζ = 0.4
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96 A.1. SIMULATIONS FOR FDR UNDER DEPENDENCY

Figure A.2: Simulation for the FDR of ϕLSU in the D-EX-N model with ζ = 0.6 and ζ = 0.8

The simulated data points are represented by the small dots while the solid curves reflect the

theoretical values. It can be seen that the values obtained by simulation reproduce the shape of the

theoretical FDR∞-curves for ζ < 1.0 remarkably well, especially for larger ζ’s where the bulged

shape of the FDR∞-curve becomes more and more distinct.

Figure A.3: Simulation for the FDR of ϕLSU in the D-EX-N model with ζ = 0.9 and ζ = 1.0

For ζ = 1.0 and larger ρ’s, this is still the case while for smaller ρ’s the simulated data points

have much larger ordinates than the y-coordinates of the FDR∞(1)-curve at the corresponding

abscissas. This phenomenon is due to the fact that here the FDR behavior in the limiting case

differs substantially from the finite case. This becomes clear if we consider the case ρ → 0+,

where the order of limits plays a severe role, because it holds
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lim
n→∞

(
lim

ρ→0+
FDRn(1)

)
= α, but (A.1)

lim
ρ→0+

(
lim

n→∞
FDRn(1)

)
= Φ(−

√
−2 ln(α)) << α. (A.2)

Obviously, the limit given in (A.2) cannot be reproduced by any simulation. Consequently, it turns

out that n has to be unrealistically large in order to reflect the limiting behavior for smaller ρ’s

adequately if ζ = 1.0. For ζ < 1, such artefacts do not occur and the simulation gives valid results

even for moderate n ∼ 1000 as relevant in practice.

A.2 Adjusted procedures based on the AORC

In this section, we refer again to the example procedures based on the AORC presented in Exam-

ples 3.5, 3.7 and 3.8. In Corollary 3.19, it has been shown that the proposed procedures asymptot-

ically control the FDR under any parameter configuration if the distributional assumptions (D3)-

(I2) for the p-values hold and the proportion ζn of true hypotheses converges to some ζ ∈ [0, 1]

for n → ∞. However, in the finite case the procedures do not strictly control the FDR (cf. the

discussion around Figure 3.5). Here, we now numerically investigate how liberal the procedures

really are for n ranging from 5 to 1000.

A.2.1 SUD-procedure, Example 3.5

We investigate the SUD-procedure based on the original AORC with parameter λn =
⌈

n
2−α

⌉
. The

FDR level was set to α = 5%. As already mentioned in Section 3.7, the evaluation of the pmf. of

Vn for an SUD-procedure using the formula derived in Lemma 3.22 becomes numerically difficult

for larger values of n. Therefore, we employed computer simulations for the results for n ≥ 100

with M = 10000 Monte Carlo replications.

In case of an SUD-procedure, it is not clear if Dirac-uniform configurations are least favor-

able. Therefore, the following table lists the upper bound b∗n = b(n∗0, n) = max
n0∈Nn

b(n0, n)

as well as the maximal FDR under Dirac-uniform configurations, namely FDRn∗∗
0 ,n(ϕ(n)) =

max
n0∈Nn

FDRn0,n(ϕ(n)), together with the corresponding values for n∗0 and n∗∗0 .
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n n∗0 b(n∗0, n) n∗∗0 FDRn∗∗
0 ,n(ϕ(n)) n n∗0 b(n∗0, n) n∗∗0 FDRn∗∗

0 ,n(ϕ(n))

5 2 40.0% 1 20.0% 70 8 7.31% 8 5.92%

10 2 20.0% 1 10.49% 100 10 6.70% 12 5.72%

15 3 15.04% 2 8.72% 150 16 6.18% 18 5.50%

20 3 12.42% 3 7.77% 200 19 5.97% 23 5.41%

25 4 10.97% 3 7.20% 250 23 5.81% 23 5.36%

30 4 10.02% 4 6.90% 300 28 5.70% 31 5.33%

35 5 9.31% 5 6.62% 400 34 5.58% 39 5.26%

40 5 8.84% 5 6.47% 500 39 5.47% 48 5.25%

50 6 8.13% 6 6.21% 750 61 5.35% 63 5.16%

60 7 7.65% 7 6.04% 1000 77 5.28% 81 5.13%

Table A.1: Results for the SUD-procedure, cf. Example 3.5

It turns out that for n ≥ 500, the FDR level violation is lower than 0.5% for this procedure.

A.2.2 SU-procedure based on f
(1)
0.05,κ1

, Example 3.7

In this subsection, we investigate the adjusted AORC f
(1)
0.05,κ1

with κ1 chosen such that h1(1/2) =

1 (no hypothesis with p-value larger than 0.5 is rejected) and implement this curve into an SU-test.

The usage of an SU-test has the advantage that Dirac-uniform configurations are known to be least

favorable. Therefore, it suffices to calculate FDRn∗
0,n(ϕ(n)) = max

n0∈Nn

FDRn0,n(ϕ(n)) in order to

achieve an upper bound for the FDR of such a procedure. All results were obtained by numerical

evaluation of the pmf. formula given in Corollary 3.23.

n n∗0 FDRn∗
0,n(ϕ(n)) n n∗0 FDRn∗

0,n(ϕ(n))

10 3 9.66% 150 27 5.34%

20 5 7.38% 200 36 5.26%

30 7 6.60% 250 44 5.21%

40 9 6.20% 300 53 5.18%

50 10 5.98% 400 70 5.13%

60 12 5.83% 500 86 5.11%

70 14 5.71% 750 128 5.07%

100 19 5.51% 1000 170 5.06%

Table A.2: Results for the SU-procedure based on f (1)
0.05,κ1

, cf. Example 3.7

If we accept a FDR level violation of 0.5% under the quite unrealistic worst case scenario of a

False Discovery Rate and Asymptotics, Thorsten Dickhaus



APPENDIX A. NUMERICAL SIMULATIONS AND CALCULATIONS 99

Dirac-uniform configuration, we are already "on the safe side" for n > 100.

A.2.3 SU-procedure based on f
(2)
0.05,κ2

, Example 3.7

In analogy to Subsection A.2.2, we now focus on the second possible AORC adjustment discussed

in Example 3.7, namely f (2)
0.05,κ2

. Again, κ2 is chosen such that h2(1/2) = 1 and we use the

resulting critical values in an SU-test.

Table A.3 again displays the maximum FDR values, i.e., FDRn∗
0,n(ϕ(n)) = max

n0∈Nn

FDRn0,n(ϕ(n))

for different n making use of the result in Corollary 3.23.

n n∗0 FDRn∗
0,n(ϕ(n)) n n∗0 FDRn∗

0,n(ϕ(n))

10 3 9.71% 150 22 5.58%

20 5 8.09% 200 28 5.45%

30 6 7.02% 250 34 5.38%

40 8 6.71% 300 40 5.33%

50 9 6.38% 400 52 5.26%

60 11 6.21% 500 64 5.21%

70 12 6.06% 750 92 5.15%

100 16 5.80% 1000 120 5.12%

Table A.3: Results for the SU-procedure based on f (2)
0.05,κ2

, cf. Example 3.7

As expected (κ2 > κ1 so that more critical values originate from the original AORC), this proce-

dure shows a more liberal behavior with respect to FDR control and the number n of tests has to

be approximately 200 in order to guarantee an FDR less than 0.055 under Dirac-uniform configu-

rations.

A.2.4 SU-procedure with truncated curve, Example 3.8

Finally, we use the truncated version of fα, discussed in Example 3.8, with κ = 1/2 in an SU test

and choose the FDR level as α = 5%.

As before, the following table displays FDRn∗
0,n(ϕ(n)) = max

n0∈Nn

FDRn0,n(ϕ(n)) together with the

value n∗0 leading to this maximum.
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n n∗0 FDRn∗
0,n(ϕ(n)) n n∗0 FDRn∗

0,n(ϕ(n))

10 3 9.71% 150 22 5.63%

20 5 8.25% 200 28 5.49%

30 6 7.12% 250 33 5.42%

40 8 6.81% 300 39 5.36%

50 9 6.46% 400 50 5.28%

60 10 6.30% 500 62 5.23%

70 12 6.13% 750 89 5.17%

100 16 5.86% 1000 116 5.13%

Table A.4: Results for the truncated SU-procedure with κ = 1/2, cf. Example 3.8

All values are very close to the corresponding values in Table A.3. This is due to the fact that κ2

is very close to 1/2 such that the truncated curve and f (2)
0.05,κ2

do only differ on the small interval

(κ2, 1/2) as depicted in Figure 3.4.
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Appendix B

Concepts of positive dependency

Proofs for FDR control often rely on assumptions about the correlation structure of the test statis-

tics. Some special structures have been systematically covered in the past and especially concepts

of positive dependency of some kind have useful properties. This section presents some of them.

The following definition has preparing character.

Definition B.1 (Increasing / decreasing set)

Let (Ω,≤) be an ordered set and assume that D, C are subsets of Ω.

The set D is called increasing :⇔ ∀y ∈ Ω : [x ∈ D ∧ y ≥ x⇒ y ∈ D].

Analogously, the set C is called decreasing :⇔ ∀y ∈ Ω : [x ∈ C ∧ y ≤ x⇒ y ∈ C].

Examples for increasing sets according to this definition as subsets of the set of real numbers R
are rays of the form D = [u,∞[ or D =]u,∞[, respectively or correspondent constructs in higher

dimensions as subsets of an Rn for n > 1 if we define the underlying order relations component-

wise. Decreasing sets are thereforeC =]−∞, o] orC =]−∞, o[ in R and their higher-dimensional

analogues, for example.

Remark B.2
IfD is a closed, increasing subset of the target space of a real valued random variableX : Ω → R,

so it obviously exists a minimal subset b(D) of D (the bound of D), so that for all ω ∈ Ω with

X(ω) ∈ D it exists an x ∈ b(D) with X(ω) ≥ x. In the same way we can express the event that

X maps to a decreasing subset C of its target space: {ω : X(ω) ∈ C} = {ω : ∃ x ∈ b(C) :

X(ω) ≤ x}. In the special case of ray- or rectangle-shaped sets mentioned above, b(D) or b(C),

respectively, only consist of one single point (a vertex). Inversely formulated, this consideration

yields that every event of the form {X ≥ u} can be interpreted as an entry of X into a ray-shaped,

increasing set bounded by u and an analogue event {X ≤ o} gets the meaning that X maps into a

ray-shaped decreasing set bounded by o.

After these preparing considerations, it is possible to put the concepts of positive dependency
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developed by Lehmann in 1966 (see [171]), T. K. Sarkar in 1969 ([244]) and Benjamini and

Yekutieli in 2001 ([17]) into a common context. First, we recall Lehmann’s definition of "positive

regression dependency" in the bivariate case:

Definition B.3 (Positive regression dependency in the bivariate case, Lehmann (1966))

Let X and Y be real-valued random variables.

Y is called positively regression dependent on X , if

P(Y ≤ y | X = x) is non-increasing in x.

This concept can be generalized to the multivariate case n ≥ 2 in the following way:

Definition B.4 (Positive regression dependency in the multivariate case (PRD))

Let X be a random vector with n ≥ 2 components Xi : Ωi → R.

The multivariate distribution ofX is called positive regression dependent (PRD), if for all indices

i = 1, . . . , n and for every increasing set D ⊂ im(X)

P(X ∈ D | Xi = x) is non-decreasing in x. (B.1)

Remark B.5
Since the complement {D of an increasing set D is a decreasing set, (B.1) is equivalent to the

postulation that the conditional probability P(X ∈ {D | Xi = x) has to be non-increasing in x.

Thereby, Lehmann’s Definition B.3 (together with the preparing remarks dealing with decreasing

sets) is contained in Definition B.4 by setting n = 2. However, Definition B.4 is a little more

general, because (in contrast to Lehmann) it makes no further assumptions about the explicit shape

of the increasing (or decreasing, respectively) sets into which X maps.

Remark B.6
In [244], Theorem 2.3, a similar generalization of Lehmann’s definition is given in the context of

reliability analysis. It is shown that the property

P(Xj > xj , j = 1, . . . , i− 1| Xi = ui) is non-decreasing in ui, i = 2, . . . , n (B.2)

implies

P

(
n⋂

i=1

{Xi > xi}

)
≥

n∏
i=1

P(Xi > xi),

which is a useful relation in order to compute lower bounds for the reliability of e. g. technical

systems. It is clear that (B.2) is somewhat weaker than (B.1).

A further attenuation of the PRD property of a multivariate distribution is presented in the arti-

cle [17] by Benjamini and Yekutieli from 2001. The authors introduce the concept of "positive

regression dependency on subsets" (PRDS) as follows.
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Definition B.7 (Positive regression dependency on subsets (PRDS), see [17])

Let X be a random vector with n ≥ 2 components Xi : Ωi → R.

The multivariate distribution of X is called positive regression dependent on a subset I0 of the

set of indices Nn = {1, . . . , n}, if for every increasing set D ⊂ im(X) and for every index i ∈ I0

P(X ∈ D|Xi = x) is non-decreasing in x. (B.3)

Therefore, condition (B.1) does not need to hold for all indices i ∈ Nn, but only for those in the

subset I0 of indices. The authors point out that the PRDS condition is an appropriate technical

tool to prove FDR-control of various stepwise test procedures if the underlying test statistics are

dependent. For this purpose, the subset I0 typically consists of the indices of test statistics corre-

sponding to the true null hypotheses.

However, the verification of the PRDS property for a special distribution occurring in practice may

lead to technical difficulties due to the structure of condition (B.3) which is defined via conditional

probabilities. The following condition of "multivariate total positivity of order 2" (MTP2) is easier

to manage.

Definition B.8 (Multivariate total positivity of order 2 (MTP2))

For n ≥ 2, let X be a random vector with components Xi : Ωi → Xi ⊆ R, i = 1, . . . , n, and

let f denote the joint n-dimensional probability density function of the variables X1, . . . , Xn with

respect to some product measure
⊗n

i=1 µi.

The multivariate distribution of X is called multivariate totally positive of order 2 (MTP2), if for

all x, y ∈ im(X)

f(x) · f(y) ≤ f(min(x, y)) · f(max(x, y)), (B.4)

where the minimum or maximum, respectively, is being taken component-wise.

This condition of multivariate total positivity of order 2 is the strictest of all concepts of depen-

dency introduced here, because it holds:

Theorem B.9 (Implications of concepts of dependency)

For the properties of multivariate distributions introduced in Definitions B.4, B.7 and B.8, it holds:

(i) Multivariate total positivity of order 2 implies positive regression dependency.

(ii) Positive regression dependency implies positive regression dependency on subsets.

Proof: Part (ii) is obvious.

In order to prove part (i), let the increasing set D ⊂ X = im(X) be arbitrary chosen but fixed.

Without loss of generality, we set i = 1 in (B.1) and write X = (X1, X
(1)), i.e., we set X(1) =

(X2, . . . , Xn) and, analogously, X = X1 ⊗ X (1). The joint pdf. f(X1, X
(1)) will be regarded as
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a µ1 ⊗ µ(1)-density of (X1, X
(1)). Finally, let u1, u2 ∈ X1 with u1 < u2 be arbitrary chosen but

fixed and describe the u1- and u2-cuts of D and X , respectively, by

Duj = {x(1) ∈ X (1) : (uj , x
(1)) ∈ D}, j = 1, 2,

Xuj = {x(1) ∈ X (1) : (uj , x
(1)) ∈ X}, j = 1, 2.

With these definitions, we now have to show that

P(X ∈ D | X1 = u1) ≤ P(X ∈ D | X1 = u2). (B.5)

To this end, we make use of the fact that for all x ∈ Du1 and for all y ∈ Xu2 \ Du2 we have

the relationship (u2, x)T ≥ (u1, y)T , which holds true due to the property that D is increasing.

Therefore, the MTP2 condition for the joint pdf. f yields f(u1, x)f(u2, y) ≤ f(u2, x)f(u1, y).

Integrating with respect to µ(1), we obtain∫
Du1

f(u1, x)dµ(1)(x) ·
∫
Xu2\Du2

f(u2, y)dµ(1)(y)

≤
∫

Du1

f(u2, x)dµ(1)(x) ·
∫
Xu2\Du2

f(u1, y)dµ(1)(y). (B.6)

Due to the subset relation Du1 ⊆ Du2 , we have that the right-hand side of (B.6) is lower than or

equal to ∫
Du2

f(u2, x)dµ(1)(x) ·
∫
Xu1\Du1

f(u1, y)dµ(1)(y).

If we now divide the resulting inequality chain by∫
X (1)

f(u1, ξ)dµ(1)(ξ) ·
∫
X (1)

f(u2, η)dµ(1)(η),

we arrive at∫
Du1

f(u1, x)∫
X (1) f(u1, ξ)dµ(1)(ξ)

dµ(1)(x) ·
∫
Xu2\Du2

f(u2, y)∫
X (1) f(u2, η)dµ(1)(η)

dµ(1)(y)

≤
∫

Du2

f(u2, x)∫
X (1) f(u2, η)dµ(1)(η)

dµ(1)(x) ·
∫
Xu1\Du1

f(u1, y)∫
X (1) f(u1, ξ)dµ(1)(ξ)

dµ(1)(y). (B.7)

Inequality (B.7) can be re-written in terms of conditional expectations yielding

E
(
1Du1

◦X(1)|X1 = u1

)
E
(
1Xu2\Du2

◦X(1)|X1 = u2

)
≤ E

(
1Du2

◦X(1)|X1 = u2

)
E
(
1Xu1\Du1

◦X(1)|X1 = u1

)
. (B.8)

Because of

E
(
1Xu1\Du1

◦X(1)|X1 = u1

)
= E

(
1Xu1

◦X(1)|X1 = u1

)
− E

(
1Du1

◦X(1)|X1 = u1

)
,

E
(
1Xu2\Du2

◦X(1)|X1 = u2

)
= E

(
1Xu2

◦X(1)|X1 = u2

)
− E

(
1Du2

◦X(1)|X1 = u2

)
,
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relation (B.8) is equivalent to

E
(
1Du1

◦X(1)|X1 = u1

)
≤ E

(
1Du2

◦X(1)|X1 = u2

)
. (B.9)

Rewriting (B.9) in terms of conditional probabilities yields

PX(1)|X1=u1(Du1) ≤ PX(1)|X1=u2(Du2),

which is equivalent to (B.5), hence, the PRD property of the distribution of X . �

Remark B.10

(i) If in Definition B.8 especially n = 2, i.e.,X underlies a bivariate totally positive distribution

of order 2, this property is denoted by TP2. In this special case, the defining condition for

the bivariate probability density function of X simplifies to

f(x1, y2)f(x2, y1) ≤ f(x1, y1)f(x2, y2) (B.10)

for all (x1, y1)T ≤ (x2, y2)T ∈ im(X) ⊆ R2.

(ii) The TP2 property may also be employed for the characterization of one-parametric families

of probability density functions {fϑ, ϑ ∈ Θ}, interpreting the real-valued parameter ϑ as

second argument and re-writing the pdf.’s as fϑ(x) = f(x, ϑ). If then the TP2 property

(B.10) holds for f(x, ϑ), this is equivalent to the fact that fϑ(x) has an isotone likelihood

ratio with respect to ϑ ∈ Θ in the identity. Furthermore, the corresponding family {Pϑ, ϑ ∈
Θ} of probability measures underlies a stochastic ordering, because for the cdf.’s it holds

Fϑ1(x) ≥ Fϑ2(x) ∀x ∈ R, if ϑ1 < ϑ2.

Example B.11 (TP2 property on subintervals)

Let T = {Pν | ν ∈ (0,∞]} be the family of Student’s t-distributions with ν degrees of freedom

for 0 < ν <∞ (for short: tν-distributions) together with its limiting distribution P∞, namely the

standard normal distribution. Then the corresponding pdf.’s have the form

fν(x) =


Γ(ν/2+1/2)

Γ(ν/2)
1√
ν π

(
1 + x2

ν

)−ν/2−1/2
for 0 < ν <∞, x ∈ R

1√
2π

exp (−x2/2) for ν = ∞, x ∈ R.

T is no TP2-family, but it has a monotone likelihood ratio for x ∈ I1 = (−∞,−1) as well as for

x ∈ I2 = (0, 1). The case 0 < ν1 < ν2 <∞ is treated and proven in [270]. In the case ν2 = ∞,

i.e., the combination of the standard normal distribution with a tν-distribution with 0 < ν < ∞,

we obtain the corresponding likelihood ratio function

q(x) :=
f∞(x)
fν(x)

=
√
ν

2
Γ
(

ν
2

)
Γ
(

ν
2 + 1

2

) exp (−x
2

2
)
(
ν + x2

ν

)ν/2+1/2
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and because of

d

dx
q(x) =

√
ν

2
Γ
(

ν
2

)
Γ
(

ν
2 + 1

2

) exp (−x
2

2
)
(ν + x2)ν/2−1/2

ν(ν/2+1/2)
x (1− x2),

q(x) is isotone in x ∈ I1 and x ∈ I2. The TP2 property is therefore valid for T on the subintervals

I1 and I2.

Some deeper investigations concerning structural properties of the tν-distributions can be found

in [93]. They are useful for some of the derivations in Section 2.4.

Example B.12 (MTP2 for binary variables)

In [9], the MTP2 property is investigated for binary variables. The authors establish a connection

between MTP2 and the odds ratio as follows.

Let X = (X1, . . . , Xn) be a random vector with n > 2 components taking only binary values,

i.e., X : Ω → {0, 1}n. Then X is MTP2 if and only if for all {j1, j2} ⊂ {1, . . . , n}, it holds

ln
(

P(Xj1 = 0, Xj2 = 0|{Xk}k∈K) · P(Xj1 = 1, Xj2 = 1|{Xk}k∈K)
P(Xj1 = 0, Xj2 = 1|{Xk}k∈K) · P(Xj1 = 1, Xj2 = 0|{Xk}k∈K)

)
≥ 0, (B.11)

where K ≡ K(j1, j2) = {1, . . . , n} \ {j1, j2}. It should be mentioned that this is a special appli-

cation of a more general result given in [181]. The meaning of equation (B.11) can be interpreted

in an epidemiological setup. If for example Xj1 denotes the status of a certain disease, Xj2 an

exposition status and {Xk}k∈K the states of a set of binary covariates, then (B.11) means that

the logarithmic odds ratio for the exposure-disease relationship is always non-negative, i.e., we

have no protective factors or all covariates are coded in that way that their effect on the disease is

harmful, respectively.

Remark B.13
The concept of total positivity is a widely studied, important issue with various statistical ap-

plications. For a deeper study, the works of S. Karlin ([147]), Karlin and Rinott ([148], [149]),

and Cohen and Sackrowitz ([45]) are recommendable. One special application field consists in

reliability and life testing (cf. [8] and [244]).

The dissertation of Astrid Heinicke ([121]) gives a good overview of various concepts of depen-

dency.
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Abstract

The false discovery rate (FDR) is a rather young error control criterion in multiple testing prob-

lems. Initiated by the pioneering paper by Benjamini and Hochberg from 1995, it has become

popular in the 1990ies as an alternative to the strong control of the family-wise error rate, espe-

cially if a large system of hypotheses is at hand and the analysis has mainly explorative character.

Instead of controlling the probability of one or more false rejections, the FDR controls the ex-

pected proportion of falsely rejected hypotheses among all rejections. One typical application with

strong impact on the development of the FDR is the first step (screening phase) of a microarray

experiment where the experimenter aims at detecting a few candidate genes or SNPs potentially

associated with a disease, which are than further analyzed using more stringent error handling

methods. Especially due to such nowadays’ applications with families of ten thousands or even

some hundred thousands of hypotheses at hand, asymptotic considerations (with the number of

hypotheses to be tested simultaneously tending to infinity) become more and more relevant.

In this work, the behavior of the FDR is mainly studied from a theoretical point of view. After

some fundamental issues as a preparation in Chapter 1, focus is laid in Chapter 2 on the asymp-

totic behaviour of the linear step-up procedure originally introduced by Benjamini and Hochberg.

Since it is well known that this procedure strongly controls the FDR under positive dependency,

we investigate the asymptotic conservativeness of this procedure under various distributional set-

tings in depth. The results imply that, depending on the strength of positive dependence among the

test statistics and the proportion of true nulls, the FDR can be close to the pre-specified error level

or can be very small. Typically, the latter case leads to low power of the linear step-up procedure

which raises the possibility for improvements of the algorithm.

One improvement of Benjamini and Hochberg’s procedure is presented and discussed in Chapter

3. Instead of using critical values increasing linearly (or, in other words, a linear rejection curve),

we derive a non-linear and in some sense asymptotically optimal rejection curve leading to the

full exhaustion of the FDR level under some extreme parameter configurations. This curve is then

implemented into some stepwise multiple test procedures which control the FDR asymptotically

or (with slight modifications) for a finite number of hypotheses. For the proof of FDR control for

procedures employing non-linear critical values, some new methodology of proof is worked out.

Chapter 4 then compares the newly derived methods with the original linear step-up procedure

and other improved procedures with respect to multiple power. The results in this comparisons

section are based on computer simulations. It turns out that certain procedures perform better in

certain distributional setups or in other words that one can choose the appropriate FDR controlling

algorithm to serve the purpose of detecting the most relevant alternatives most properly.

Besides all these theoretical and methodological topics, we are also concerned with some prac-

tical aspects of FDR. We apply FDR controlling procedures to real life data and illustrate the

functionality, assets and drawbacks of the different methods using these data sets.



Kurzfassung

Die "False Discovery Rate" (FDR) ist ein recht junges Fehlerkontrollkriterium in multiplen Test-

problemen. Beginnend mit dem Artikel von Benjamini und Hochberg aus dem Jahre 1995 wurde

es in den 1990er Jahren als Alternative zur Kontrolle des multiplen Niveaus beliebt, insbesondere

bei Vorliegen eines sehr mächtigen Hypothesensystems und vornehmlich explorativem Charakter

der Analyse. Die FDR kontrolliert nicht die Wahrscheinlichkeit einer einzigen fälschlichen Ver-

werfung einer Nullhypothese, sondern den erwarteten Anteil fälscherlicherweise verworfener Hy-

pothesen an allen Verwerfungen. Ein typisches Beispiel mit starkem Einfluss auf die Entwicklung

der FDR ist der erste Schritt (die "Screeningphase") eines Microarray-Experimentes, in dem der

Experimentator einige potenziell mit einer Erkrankung assoziierten Kandidatengene oder SNPs

detektieren möchte, welche dann unter stringenterer statistischer Fehlerkontrolle weiter analysiert

werden. Wegen aktueller Anwendungen mit aus mehreren zehntausenden oder gar einigen hun-

derttausenden simultan zu prüfender Hypothesen bestehender Familien gewinnen asymptotische

Überlegungen (gegen unendlich strebende Hypothesenzahl) immer mehr an Relevanz.

In dieser Arbeit wird das Verhalten der FDR vornehmlich vom theoretischen Standpunkt aus un-

tersucht. Nach einigen Vorüberlegungen in Kapitel 1 wird der Fokus in Kapitel 2 auf das asympto-

tische Verhalten der von Benjamini und Hochberg eingeführten linearen step-up Prozedur gelegt.

Da bekannt ist, dass sie die FDR unter positiver Abhängigkeit kontrolliert, untersuchen wir, wie

konservativ sich die Prozedur in entsprechenden Verteilungsmodellen asymptotisch verhält. Die

Resultate zeigen, dass (je nach Grad der Abhängigkeit und Anteil wahrer Nullhypothesen) die

FDR nahe dem vorgegebenen Niveau, aber auch sehr klein sein kann. Letzterer Fall hat eine

geringe Güte der Prozedur zur Folge und eröffnet Raum für Verbesserungen des Algorithmus’.

Eine Verbesserung der Benjamini-Hochberg Prozedur wird in Kapitel 3 eingeführt und disku-

tiert. Anstatt linear wachsende kritische Werte (oder anders ausgedrückt eine Ablehngerade)

zu benutzen, entwickeln wir eine nichtlineare und in gewissem Sinne asymptotisch optimale

Ablehnkurve, um das FDR-Niveau unter extremen Modellannahmen ganz auszuschöpfen. Die

Kurve dient zur Herleitung schrittweiser Tests, die die FDR asymptotisch oder (mit leichten Mod-

ifikationen) für eine finite Anzahl an Hypothesen kontrollieren. Zum Beweis der FDR-Kontrolle

für Prozeduren, die auf nicht-linearen kritischen Werten basieren, wird eine neue Beweistechnik

ausgearbeitet. Kapitel 4 vergleicht die neu entwickelten Methoden mit der ursprünglichen step-

up Prozedur und anderen Verbesserungen hinsichtlich eines multiplen Gütemaßes. Die Aussagen

dieser Vergleichsstudie basieren auf Computersimulationen. Es zeigt sich, dass bestimmte Tests

unter gewissen Verteilungsannahmen Vorteile besitzen bzw. ein geeignetes FDR- kontrollierendes

Verfahren ausgewählt werden kann, um gewisse Alternativen bestmöglich zu erkennen.

Neben diesen theoretisch-methodischen Aspekten beschäftigen sich einige Anwendungsbeispiele

auch mit der praktischen Seite der FDR. Wir wenden FDR-kontrollierende Prozeduren auf Real-

daten an und diskutieren Funktionsweise sowie Vor- und Nachteile der jeweiligen Testprozeduren

anhand dieser Datensätze.
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