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I am walking a road that has been walked before,

but to me it is new. It leads to the place where I

was born and raised, which soon now I will

discover for the first time.

- William Nicholson, The Society of Others
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Zusammenfassung

Die Untersuchung des Zusammenhangs zwischen Gehirn und Verhalten ist ein

essentieller Aspekt der Neurowissenschaften. Die interindividuelle Variabilität

psychometrischer Messwerte mit der unterindividuellen Variabilität von Gehirnbilddaten

in Beziehung zu setzen wird eine vor allem in letzter Zeit immer beliebtere

Untersuchungsmethode. Insbesondere Vorhersageansätze mit Kreuzvalidierung können

nützlich sein, um verallgemeinerbare Beziehungen zwischen Gehirn und Verhalten auf

datengesteuerte Weise zu identifizieren. Dennoch bleibt zu klären, welche

Gehirn-Verhaltens-Beziehungen aus den Vorhersagemodellen interpretiert werden

können, sowie die Verallgemeinerbarkeit der Modelle auf völlig neue Kohorten. In dieser

Arbeit versuchen wir, die Lücke der Interpretierbarkeit zu schließen, indem wir einen auf

regionaler Konnektivität basierenden psychometrischen Vorhersageansatz entwickeln.

Dies umfasst ein regionenbezogenes Vorgehen, bei dem für jede Hirnregion ein

Vorhersagemodell geschätzt und bewertet wird. Die Vorhersagegenauigkeit jedes

regionenspezifischen Modells ist ein direkter Hinweis auf die Assoziation dieser

Gehirnregion mit der vorhergesagten psychometrischen Messung. In Studie 1 haben wir

dese Vorgehensweise auf eine Reihe psychometrischer Variablen aus einer großen

gesunden Kohorte angewendet. Wir konnten zeigen, dass der Ansatz hilfreich ist, um

sowohl regionenspezifische psychometrische Vorhersageprofile als auch psychometrische

Vorhersagemuster für das gesamte Gehirn zu erstellen. In Studie 2 haben wir die

Nützlichkeit des Ansatzes bei der Bewertung der kohortenübergreifenden

Replizierbarkeit und Generalisierbarkeit in Bezug auf die aus den Vorhersagemodellen

abgeleiteten Beziehungen zwischen Gehirn und Verhalten gezeigt, anstatt nur auf der

Grundlage der Vorhersagegenauigkeit. In Studie 3 untersuchten wir systematisch

bestehende psychometrische Vorhersagestudien und fassten die Trends auf diesem

Gebiet zusammen, welche die Verwendung großer Kohorten und eine externe

Validierung forderten. Insgesamt hat unsere Arbeit gezeigt, wie wichtig

Interpretierbarkeit und Verallgemeinerbarkeit für psychometrische Vorhersagen sind.

Wir empfehlen die Verwendung mehrerer großer Kohorten zur Bewertung der

Interpretierbarkeit und Verallgemeinerbarkeit.
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Summary

The study of brain-behavior relationships is a fundamental aspect of neuroscience.

Recently, it has become increasingly popular to investigate brain-behavior relationships

by relating the interindividual variability in psychometric measure to the interindividual

variability in brain imaging data. In particular, prediction approaches with

cross-validation can be useful for identifying generalizable brain-behavior relationships

in a data-driven manner. Nevertheless, it remains to be ascertained what brain-behavior

relationships can be interpreted from the prediction models, and how generalizable the

models are to fully new cohorts. In this work, we attempt to fill in the gap of

interpretability by developing a region-wise connectivity-based psychometric prediction

(CBPP) framework. This framework involves a region-wise approach where a prediction

model is estimated and evaluated for each brain region. The prediction accuracy of each

region-wise model is a direct indication of that brain region’s association with the

psychometric measure predicted. In study 1, we applied the framework to a range of

psychometric variables from a large healthy cohort and demonstrated the helpfulness of

the framework in constructing region-wise psychometric prediction profiles or

psychometric-wise prediction pattern across the brain. In study 2, we demonstrated the

usefulness of the framework in assessing cross-cohort replicability and generalizability in

terms of brain-behavior relationships derived from the prediction models, instead of just

based on prediction accuracies. In study 3, we systematically examined existing

psychometric prediction studies, summarizing the trends in the field, calling for the use

of large cohorts and external validation. Overall, our work suggested the importance of

interpretability and generalizability for psychometric prediction, recommending the use

of multiple large cohorts in evaluating the interpretability and generalizability.
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BOLD blood-oxygen-level dependent
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1 Introduction

Human brain organization and behavior are inherently and intricately related. On one

hand, behavioral traits like cognitive performance are often attributed to brain

organization. Higher scores in cognitive tests may reflect more efficient information

processing due to better organized brain networks. On the other hand, behavioral

decisions and outcomes like alcohol consumption or sleep quality can influence brain

organization in the long run. This complex relationship can also be observed between

brain organization and clinical diagnosis. One fundamental aspect of neuroscience is to

study these brain-behavior relationships, ultimately aiming to disentangle the

underlying mechanisms or to inform clinical decisions.

Näıvely, brain-behavior relationships can involve assigning behavioral functions to

brain regions. For instance, the motor cortex can be neatly divided into sections

responsible for facial, arm, body and leg movements, each of which can be further

divided into more fine-grained regions, such as the mouth, nose, and eyes for the facial

section. However, when considering more complex cognitive or associative functions,

such rigid assignments no longer suffice. Broadly speaking, we can relate the frontal

cortex to executive function and working memory, the temporal cortex to memory,

language and recognition, and the parietal cortex to attention modulation. Neither are

these general relationships sufficient for uncovering the mechanism of these behavioral

functions, nor are they specific enough for any clinical or practical application.

Complex functions intuitively require complex mechanisms. In order to understand

complex cognitive or associative functions, neuroscientists started to consider the whole

brain, or distributed brain networks, to be responsible for these functions. With each

brain region as a node in a network, the brain can be seen as an information processing

system, the efficiency of which can be related to a person’s cognitive abilities. Following,

the interactions between brain regions may be as important as, if not more important

than, the individual functions of brain regions (Bressler, 1995, Tononi et al., 1998). The

two perspectives represented by the highly specialized motor regions and the distributed
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cognition network are not necessarily contradictory. They demonstrate the two principles

of human brain organization: segregation and integration (Tononi et al., 1994, Friston,

2011, Fox and Friston, 2012), the combination of which forms the basis of our current

understanding of the complex mechanisms of the human brain.

The interactions between brain regions, or brain connectivity, have been formally

studied with different neuroimaging modalities and methods. These are mostly grouped

under structural connectivity (SC), functional connectivity (FC), and effective

connectivity (Friston, 1994). SC refers to the physical connections between brain

regions, while FC refers to the statistical dependence between the signals observed from

the different brain regions. Finally, effective connectivity measures aim to infer the

causal effects between brain regions based on FC measures. The study of SC based on

ex vivo neuroimaging data has been challenging, as the connections of interest lie

beneath the cortex, i.e., inside the white matter. The study of FC, on the other hand,

benefits from the more developed functional Magnetic Resonance Imaging (fMRI)

techniques.

In particular, resting-state fMRI scans, where subjects lie in the scanner without

performing any task (Biswal et al., 1995), are easy to collect from a large group of

subjects (Arbabshirani et al., 2013, Scheinost et al., 2014, Finn, 2021). The resting-state

functional connectivity (RSFC) is often thought to reflect not the brain connectivity

specific to any task, but the intrinsic connectivity of the brain (Fox and Raichle, 2007,

Mueller et al., 2013). It has therefore become popular to use RSFC for biomarker

identification and psychometric prediction, assuming the existence of some

connectivity-behavior relationships. In recent years, as more large samples of

resting-state data became available, connectivity-based psychometric prediction (CBPP)

has grown into its own field (Finn et al., 2015, Rosenberg et al., 2016, Dubois et al.,

2018a, Dadi et al., 2019, Pervaiz et al., 2020, Yeung et al., 2022).

1.1 Functional Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a non-invasive scanning technique, based on the

interaction of nuclei in atoms in human organs with the electromagnetic field in the

scanner (Ombao, 2016). A nucleus with an odd number of protons and neutrons has a

net nuclear spin, and will align its spin axis in the presence of an external magnetic field.

For human brain imaging, the interaction is measured between the hydrogen atoms in
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water and fats and the in-scanner electromagnetic field. Structural brain MRI images

measured this way are useful for their high spatial resolution, as well as good distinction

between different tissue types which contain different proportion of water and fats.

Following, fMRI was developed to provide proxy measures of functional activities in

the brain, the most popular technique being the blood-oxygen-level dependent (BOLD)

imaging. Here, we will only consider the BOLD technique, and use the terms fMRI and

BOLD interchangeably. As the name suggests, the BOLD signals track the regional blood

oxygenation level in the brain. It can be reasonably assumed that increased blood flow to

brain regions reflects an increase in neuronal activity in the brain regions. The increase in

blood flow leads to an increase in the ratio of oxygenated blood to deoxygenated blood in

the region. Oxygenated hemoglobin take a longer time to lose magnetization and hence

cause stronger BOLD signals, while deoxygenated hemoglobin result in weaker BOLD

signals. Therefore, a stronger BOLD signal reflects an increase in blood flow, which in

turn reflects an increase in neuronal activity in the brain region.

A popular fMRI design is task-based fMRI, where a behavioral task is performed

by the participant while lying in the scanner. The neuronal responses represented by the

BOLD signals during the investigated task can be compared to the signals during a

baseline task. This contrast is considered the activation map for the investigated task.

For example, to find the activation for working memory task, the contrast can be

computed between the 2-back task signals and 0-back task signals. The 2-back task

tests the participant’s working memory by presenting a sequence of stimuli and, for each

stimulus, asking the participant if it is the same as the stimulus from two stimulus ago,

requiring both sustained attention and working memory. On the other hand, the 0-back

task simply requires the participant to respond when a specific stimulus appears,

involving sustained attention but not working memory (Miller et al., 2009). The brain

regions activated for the 2-back task but not the 0-back task can hence be mapped to

the working memory function specifically. It is common to establish mapping between

brain regions and behavioral functions through activation studies based on task fMRI.

Alternatively, a more recent form of fMRI design called the resting-state fMRI has

become widely adopted. As the participants only need to lie in the scanner, without falling

asleep and without any task design, resting-state fMRI data are very easy to collect. The

state of “rest” may be considered to be more similar to the everyday state of our brains.

While we may not be actively performing any specific task, our brains are still supporting
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our consciousness and are ready to start working on a task when the need comes. It is

possible that human brains in this ”resting state” show the intrinsic brain organization

from which brain networks specific to tasks arise. As a result, resting-state fMRI data,

especially RSFC, have been used to investigate a wide range of behavioral functions, as

well as to probe the properties of the brain’s intrinsic organization.

Compared to other popular techniques for studying brain functional activities like

electroencephalography (EEG), BOLD images are lacking in temporal resolution and

temporal accuracy. This is because blood oxygen level changes always are lagging behind

actual activity onsets and offsets, doing so in a slow and smooth fashion. Commonly,

a hemodynamic response function is used to model the changes in blood flow after the

initial activity onset, describing the process of blood flow gradually increasing, peaking for

a short duration, and then returning to baseline (Soares et al., 2016). It must be reiterated

that fMRI techniques measures functional activities indirectly, in this case through the

proxy measure of blood oxygenation level. Therefore, the regional BOLD signals are no

reflection of how the brain regions actually function. The co-activation of a brain region

based on fMRI data does not imply that the brain region is responsible for carrying out the

mechanism of the investigated behavioral function. Direct brain-behavior relationships

require more substantial evidence than only fMRI results to establish.

The advantage of fMRI is the finer spatial resolution, making it easier to localize

the functional activities. While there are multiple levels and varying interpretation of

functional units of the brain, some reasonable functional units to examine include neurons,

cortical columns, brain circuits, and in some cases brain networks. The units (i.e., voxels)

in fMRI images are, quite obviously, arbitrary. Depending on the exact spatial resolution,

one voxel may correspond to multiple cortical columns and may hence cover multiple

functional units. In addition, blood vessels do not supply blood to each cortical column

separately, meaning that the actual activation in a neuron may lead to related blood

flow changes in multiple voxels. This intrinsic smoothness of the fMRI data is widely

recognized, and provides the basis of some fMRI data analysis techniques. For instance,

the high similarity of neighbouring voxels lets us group them into parcels, so as to reduce

the dimensionality of the data. Being able to compute parcel-to-parcel (instead of voxel-to-

voxel) RSFC makes RSFC-based analysis and predictions much more viable to implement.
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1.2 Connectivity-based Psychometric Prediction

CBPP studies explore brain-behavior relationships by relating inter-individual variability

in RSFC to inter-individual variability in psychometric measures. Essentially, machine

learning algorithms have been employed to predict behavioral performance, for instance,

fluid intelligence (Finn et al., 2015, Ferguson et al., 2017, Greene et al., 2018, Gao et

al., 2019, Maglanoc et al., 2020, Pan et al., 2021, Sen and Parhi, 2021). The standard

protocol consists of first denoising the resting-state fMRI data, then parcellating the

brain into brain regions with an atlas, followed by computing the Pearson’s correlation

between each pair of brain regions’ mean timeseries. Finally, machine learning models are

estimated using these correlation values as independent variables and the psychometric

variables as dependent variables.

The prediction approach of investigating brain-behavior relationships is sometimes

seen as an opponent to the association approach. In an association study, traditionally, a

general linear model is fitted on the neuroimaging features and the behavioral measure(s),

determining the features that are associated with the behavioral measure(s). In contrast,

prediction models always need to be evaluated on unseen test data not used in estimating

the model, either using a cross-validation scheme or a external set of validation data. This

makes the prediction approach more exciting for its potential utility, especially for clinical

applications (Bzdok et al., 2021). However, it has become more and more common to

use machine learning algorithms with cross-validation or external validation in association

studies to find more generalizable associations (Genon et al., 2022). Fundamentally, it

should not be forgotten that both approaches examine the relationship between inter-

individual variability in neuroimaging features and that in psychometric variables. Despite

methodological differences, insights discovered by the two approaches should validate each

other rather than contradicting.

Not unlike other fields, CBPP studies were pioneered by promising yet

over-optimistic results. Conceptually, CBPP is promising for both practical applications

and revealing neurobiological insights (Haufe et al., 2014, Bzdok and Ioannidis, 2019).

Nevertheless, the assumption of the existence of connectivity-behavior relationships is

easily forgotten, or often ill-defined. The intricate nature of brain-behavior relationships

implies that the relationship between any connectivity feature and psychometric variable

may be mediated by confounding factors, such as age, or education. Demographic and
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physiological factors can influence both RSFC and the psychometric variable, making it

hard to extract neurobiological insights from the relationships learnt by the model.

Furthermore, if the contribution of neurobiological factors cannot be assessed

independently from confounding factors, the usefulness of CBPP cannot be properly

established. Practically, an individual’s cognitive abilities can be estimated based on the

individual’s education level or cognitive impairment based on age. The utility of any

CBPP model has to be based on additional predictive power not already explained by

non-neurobiological features.

Moreover, each step of the standard procedure may be implemented differently in

different studies. Due to the large number of options available at each step, there is no

guarantee that prediction outcomes from different studies are comparable. This is further

complicated with the use of different datasets involving cohorts of varying demographics,

as well as data collected and processed by differing teams. These concerns motivate the

call for model interpretability, requiring the model(s) to be examined not only for the

prediction accuracy, but also the brain-behavior association derived. Potentially, such

models may allow the contributions of confounding factors, implementation decisions,

cohort idiosyncrasies, and the neurobiological features to be disentangled. Most crucially,

the impact of these factors should be assessed and represented transparently.

This work attempts to disentangle some of the factors involved in, or confounding,

brain-behavior relationships, using a region-wise approach. For each brain region, a

machine learning model is estimated and tested for psychometric prediction using the

region’s RSFC to all other regions. The relative predictive accuracies of the region-wise

models are hence a direct reflection of their connectivity profile’s involvement in

predicting the target psychometric variable. The distribution of these model accuracies

across the brain was observed to change when certain confounding factors were

controlled, or when different denoising strategies were used, capturing the effect of these

factors. Furthermore, using this distribution to represent the brain-behavior association

derived from the models, we then demonstrated that achieving similar prediction

accuracies in different cohorts does not mean the same brain-behavior associations were

learnt. While some consistent patterns of brain-behavior association can be identified

using different cohorts, the consistency relies on the similarity of data collection and

processing protocols used in the different cohorts. Overall, we demonstrated how

interpretable models can help to disentangle factors confounding brain-behavior
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relationships learnt, which in turn improves the neurobiological insights that can be

extracted from the models.

1.3 Factors Influencing Brain-behavior Relationships Modelled

1.3.1 Denoising

The fMRI technique measures brain activity indirectly using the BOLD signals, which

are affected by both neural and non-neural sources (Power et al., 2017). Therefore, before

processing any fMRI data, preprocessing is needed to remove the noise from non-neural

sources. These sources commonly include head motion, imaging artifacts, as well as signal

location (Esteban et al., 2019).

The first step of preprocessing usually includes motion correction, slice-timing

correction, and susceptibility distortion correction. It may also be recommended to

remove the first few frames (or time points) in the fMRI data, if they are detected as

non-steady state volumes. The sequence of these steps can be different in different

preprocessing pipelines and implementations. In particular, there is no consensus on

whether motion correction or slice-timing correction should be performed first. As for

susceptibility distortion correction, it is not always possible to perform this correction as

it requires field maps or pairs of scans with opposite phase encoding directions (Poldrack

et al., 2011, Glasser et al., 2013). Without susceptibility distortion correction, signal loss

or distortion may be commonly observed in the anterior prefrontal cortex and

orbitofrontal cortex (Poldrack et al., 2011).

Next, the fMRI image need to be aligned to the anatomical T1w image, and to a

standard template. The co-registration to the anatomical image is usually done with

simple linear registration as the native fMRI image and the T1w image of the same

individual are expected to be similar. The T1w image can be aligned to the standard

space with an affine registration followed by a nonlinear registration (Jenkinson et al.,

2002, Andersson et al., 2007, Avants et al., 2009). Alternatively, the fMRI data can be

mapped onto a surface mesh, which represents the cerebral cortex as a 2-dimensional

sheet. The surface system may be preferred for respecting the cortical topography

(Anticevic et al., 2008, Ghosh et al., 2010, Tucholka et al., 2012), but suffers from not

being applicable to subcortical regions in many cases. The accuracy of spatial alignment

during preprocessing directly affects the quality of the neuroimaging features extracted
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based on the transformed images.

The fMRI data in the standard space can be considered minimally usable,

although further denoising would be done in most cases. For instance, motion scrubbing

may be done by regressing out volumes with high motion, simply removing them, or

re-estimating these volumes based on their neighbors (Lemieux et al., 2007, Power et al.,

2012, Satterthwaite et al., 2013). Another group of popular techniques is the

Independent Component Analysis (ICA) based denoising strategies, namely the

FMRIB’s ICA-based X-noiseifier (ICA-FIX) and ICA-based Automatic Removal of

Motion Artifacts (ICA-AROMA). These techniques involve extracting ICA components

from the fMRI data and then removing the noisy components, which may be

motion-related noise or artifacts from other sources, based on a previously trained

machine learning model (Griffanti et al., 2014, Pruim et al., 2015b, Pruim et al., 2015a).

As the last step of preprocessing, a standard practice is to implement nuisance

regression to control for signals from non-neural nuisance sources, including the 24

motion parameter, white matter signals, cerebrospinal fluid signals, and occasionally the

global signal.

Regarding the more sophisticated denoising techniques, there is no consensus or

evidence on which one should be preferred. Some may argue that motion scrubbing

introduces artificial modifications to the fMRI timeseries, potentially disrupting the

temporal information in the data. The reliance of the ICA-based techniques on

previously trained models means that the noise identified may be affected by the type of

noise existing in the data used in these previously trained models. Finally, while the

neurobiological implications of removing the global signal are still not clear, it has been

shown that global signal regression may improve CBPP performance for many

psychometric variables (Li et al., 2019).

On one hand, it is intuitive that difference in preprocessing choices would impact

the brain-behavior relationships learnt by the model. On the other hand, the influences

of preprocessing choices on the neuroimaging features are generally not straightforward.

More research is still required to elucidate the effect of each preprocessing step on the

neurobiological information in the fMRI data processed.
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1.3.2 Brain Atlases and Connectivity Computation

Before connectivity can be computed between brain regions from the fMRI data, the

location and boundary for each brain region of interest must be defined. As it is not

computationally feasible to use voxel-wise (or vertex-wise) data for prediction purposes,

the data dimensionality needs to be reduced by defining brain regions encompassing

groups of voxels (or vertices). This is typically done using a group atlas, providing the

same definition of brain regions (or parcels) for all subjects in a study. Alternatively,

individualized parcellations can be used to define brain regions suiting each subject’s

topography separately. The latter can cause heavy computation and storage demands,

but have been shown to improve CBPP accuracies slightly (Kong et al., 2019, Kong

et al., 2021).

The choice of the group atlas to use could impact both the prediction performance

and model interpretation in a CBPP study. First, the coordinate system where the

atlas was developed and the brain coverage need to be appropriate for the data present.

While many researchers prefer the surface coordinate system, surface-based data and atlas

usually suffer from a lack of subcortical coverage, as well as surface mapping failures when

data quality is sub-optimal. Second, the granularity (i.e., the number of parcels) of the

atlas to use reflects the assumption made on the number of functional brain regions in the

human brain. In particular, for the cerebral cortex, the estimate for the number of brain

regions is between 300 to 400 (Van Essen et al., 2012). Finally, the modality of the data

used for estimating the atlas should, intuitively, match the modality of the data used for

prediction.

With a chosen atlas, one summary signal needs to be extracted for each parcel.

The simple and common way is to compute the average BOLD signal across all voxels

or vertices inside a parcel. Alternatively, if an ICA map is used for parcellation, where

components can overlap with each other, dual regression is usually employed for estimating

the summary signal (Hacker et al., 2013, Nickerson et al., 2017). In either case, the data

dimensionality is reduced to the number of parcels × the number of time points. Then,

FC can be computed between all pairs of parcels, resulting in a connectivity matrix with

the size of the number of parcels × the number of parcels. In a typical whole-brain CBPP

model, the input features include the upper or lower triangular part of the connectivity

matrix, excluding the diagonal elements.
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FC is most commonly computed as the Pearson’s correlation coefficient between

two brain regions’ fMRI signals, i.e.,

r =

∑

(xi − x̄)(yi − ȳ)
√

∑

(xi − x̄)2
∑

(yi − ȳ)2
,

where r is the correlation coefficient, and x and y are the two signals. To make sure

that FC values are comparable across different subjects, the Fisher’s z transformation is

applied to each correlation value. This transforms each r value into

z =
1

2
ln(

1 + r

1− r
),

leading to a approximately normal distribution of the transformed correlation values.

Another technique for computing connectivity is partial correlation, where each

correlation coefficient between a pair of brain regions is computed while controlling for

the effects of all other brain regions’ signals. This method may be considered as

measuring only the direct connection between two brain regions, removing the effect of

indirect connection through other brain regions (Bijsterbosch and Beckmann, 2017, Lim

et al., 2019). Furthermore, the connectivity matrix can be projected into tangent space,

which allows the application of classification algorithms requiring a Riemannian

manifold, as well as improving the prediction power (Pervaiz et al., 2020).

The neurobiological implications of the tangent space projection, and to some extent

the partial correlation method, are not well understood. While both have been shown

to improve prediction performance, they may be less desirable when interpretability is

concerned. For instance, the individual connectivity values in tangent space may not

represent the connection between the pairs of brain regions anymore.

1.3.3 Machine Learning Models

CBPP studies generally make use of regression models to predict continuous psychometric

variables. The type of regression algorithm used include simple linear algorithms like

multiple linear regression and ridge regression (RR), sparse algorithms like least absolute

shrinkage and selection operator (LASSO) and relevance vector regression, more complex

linear algorithms like elastic net (EN), as well as nonlinear algorithms like kernel regression

and deep neural networks.
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When a machine learning model is trained, it learns the parameters defining a

relationship between the input features and the target psychometric variable to predict.

In the case of a linear model, the relationship is simply,

ŷi =
∑

p

wpxp,i + c,

where yis are the target psychometric variable for subject i, xp,is are the pth input features

for subject i and wps the corresponding weight, and c is a constant. A more complex model

may consider nonlinear terms, e.g.,

ŷi =
∑

p

(wpxp,i + upx
2

p,i) +
∑

p,j ̸=i

vpxp,ixp,j + c,

where ups and vps are the weights for the nonlinear terms. In the simplest case, the weights

in the equation are estimated by minimizing the squared error, with a loss function of

L =
∑

i

(yi − ŷi).

Additional terms can be added to the loss function to enforce specific constraints and to

apply regularization to reduce overfitting.

The choice of the model to use in a CBPP study hence reflects the assumption

made on the relationships between the neuroimaging features and the psychometric

variable. As it is common to assume a linear relationship between neuroimaging features

and psychometric variable, linear models are usually considered more biologically

plausible. Nevertheless, nonlinear models may be preferable when prediction

performance is the main goal. Ideally, a nonlinear model should be able to capture the

actual brain-behavior relationships with sufficient training data in a data-driven

manner, even when the true underlying relationship is linear.

Moreover, the assumption made on the brain-behavior relationships is reflected by

the confound controlling strategy. A confound is a variable that influences both the

independent and the dependent variables. Not accounting for confounding effects will

hence lead to false positives in the brain-behavior relationships derived, which are actually

confound-behavior relationships. Common confounding variables considered in CBPP

studies include age, gender, handedness, brain size, and in-scanner movement. Usually,

the confounding variables are controlled by regressing them out from the input features,
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harmonization, stratified sampling, or re-weighting. Sometimes, when the confounding

variables also contain some neurobiological effects of interest, it may also be desirable to

include the confounding variables as input features. Overall, the way that confounds are

dealt with is essentially a reflection of the assumed causal relationships between the input

neuroimaging features, the confounding variables, and the psychometric variables.

Another contention in model selection is whether to impose sparsity restrictions

or not. The concept of sparsity involves picking only a small subset of input features

to be actually used in model, assuming that the actual relationship between the input

features and the target psychometric variable only involves this subset of input features.

The validity of this assumption is naturally dependent on the type of neuroimaging data

and psychometric variable in question. Again, a specific motor function may be related

to certain features from a specific brain region, while higher cognitive functions tend to

involve a distributed network of brain regions. In the latter case, it may not be suitable

to use a model that enforces sparsity. A popular algorithm in CBPP studies, EN, makes a

compromise between the L1 (or ridge) regularization constraints, which helps to prevent

overfitting, and the L2 (or lasso) regularization constraints, which promotes sparsity,

resulting in a loss function in the form of

L =
∑

i

(yi − ŷi)
2 + αλ

∑

p

|wp|+ α(1− λ)
∑

p

w2

p,

where α determines the extent of regularization in general, and λ determines the trade-off

between L1 (second term) and L2 (third term) regularization. The extent of sparsity is

determined by tuning the hyperparameter λ using nested cross-validation in the training

set, making no prior assumption on sparsity.

Finally, overfitting is a general issue in machine learning, when the model has

captured so much information specific only to the training data that it fails to generalize

to the test data. This can happen due to many reasons, for example, the lack of

regularization, an overly high number of model parameters, and an insufficient amount

of training data. When dealing with RSFC features, the input feature dimension is

usually in the order of thousands to tens of thousands. Assuming no sparsity constraint,

at least one model parameter needs to be estimated for each input feature, making the

number of model parameters in RSFC-based predictions inherently high. To prevent

overfitting, either the model implementation needs to be specially designed for
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high-dimensional data, or feature selection needs to be carried out before training the

model to reduce the number of input features.

A popular method of feature selection is to compute the Pearson’s correlation

between the input features and the target psychometric variable in the training data,

selecting features where the correlation is statistically significant or selecting the top

features ranked by the correlation coefficients (Finn et al., 2015, Dubois et al., 2018a,

Yeung et al., 2022). Similar to the sparsity constraints, this approach relies on the

assumption that complex brain-behavior relationships are not underrepresented by the

reduced set of features. In our work, we approach the overfitting issue from a different

angle. By estimating a model for each brain region using only the connectivity between

the region and other brain regions, the number of features for each region-wise model is

only in the order of hundreds. This helps to prevent overfitting without the need for

feature selection. Finally, brain regions where the region-wise model performed

relatively better than the others can be picked. Features from these brain regions can be

pooled for estimating a final model, accounting for interaction of features between brain

regions and hence optimizing for overall prediction performance.

Machine learning often seems to promise data-driven solutions. In ideal scenarios,

machine learning models should be able to learn the underlying relationships

automatically with enough training data, computational power, and time. During actual

implementations concerning neuroimaging data, however, human decisions are usually

still required to train a proper model. As every decision made when building the model

can affect the assumed brain-behavior relationship to learn, it is crucial to record the

model parameters faithfully and present them transparently. Furthermore, in order to

understand what brain-behavior relationships are captured by the model, interpretable

models may be preferable sometimes, in comparison to the powerful but less

interpretable deep neural network models. It may be tempting to follow the hype of

deep learning which has achieved substantial success in the field of computer vision as

well as natural language processing. When studying brain-behavior relationships,

nevertheless, black-box models which are difficult to interpret and to trust can be

dangerous in actual application. Unfair models may wrongly associate intelligence with

racial or gender factors, while clinical models plagued by confounds may cause wrong

treatments to be delivered to patients. In the long run, the CBPP field must proceed

cautiously, to eventually bring predictive modeling to practical usefulness.
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1.4 Issues and Potential Solutions

Despite the potential of CBPP approaches in terms of practical utility and providing

neurobiological insights, they have been limited in several aspects in the current state.

First, the prediction accuracies tend to be low when sufficiently large datasets are involved

(Sui et al., 2020, Genon et al., 2022, Yeung et al., 2022), raising questions about the

applicability of CBPP models to the general population. Many studies have investigated

factors and potential solutions for improving psychometric prediction performance (Dadi

et al., 2019, Li et al., 2019, Pervaiz et al., 2020, Finn and Bandettini, 2021, Rasero et al.,

2021), which will not be the focus in this work. Second, CBPP models tend to be difficult

to interpret due to their multivariate nature, limiting both the validity of the models

themselves and any potential insights to be derived from the models (Scheinost et al.,

2019). Third, the replicability of CBPP results and the generalizability of CBPP models

across different neuroscience cohorts have not been established (Sui et al., 2020, Genon

et al., 2022).

1.4.1 Interpretability

The difficulty in interpreting CBPP models is a result of the difficulty in quantifying

each feature’s contribution to the prediction, as well as the difficulty in the meaningful

representation of RSFC features in alignment to brain mapping literature.

A popular yet misleading approach to quantify each feature’s contributions is to

simply use the weight assigned to each feature by the machine learning algorithm, where

a larger weight signifies higher importance of the feature. Noting that almost all

machine learning models employed in CBPP approaches were discriminative, or

backward, models, the relationship between the weight and feature importance may

actually be the opposite (Haufe et al., 2014). An alternative would be to use the weights

assigned by a sparse algorithm to represent binary feature contribution; a sparse

algorithm only assigns weights to a small set of features, which can then be considered

contributing features. Nevertheless, such interpretations are inherently dependent on the

designs of the machine learning algorithms. As RSFC features are highly correlated, an

outcome of the complexity in brain-behavior relationship itself (Genon et al., 2018a,

Genon et al., 2018b), they may cause weight assignment to be unstable (Zou and Hastie,

2005, Hastie et al., 2009).
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The region-wise CBPP framework proposed in this work is designed to directly

quantify each brain region’s contribution to the prediction. A region-wise model is

estimated and evaluated using each brain region’s RSFC profile (i.e., connectivity edges

between this region and all other regions), while a whole-brain model is estimated and

evaluated using all region-to-region RSFC. Each brain region’s contribution to the

prediction is, therefore, the ratio of its region-wise model’s prediction accuracy to the

whole-brain model’s accuracy. Besides the straightforward and data-driven

interpretation, the region-wise approach is also intended for easier and meaningful

representation of the findings. By aggregating edge-based features by brain regions,

visualization of region-wise prediction contribution becomes really convenient. The set

of relevant brain regions, where relatively higher region-wise contribution was observed,

can be compared with brain mapping literature for validation.

1.4.2 Replicability and Generalizability

External validation is an important concept in predictive modeling, as a model can only

be predictive (and useful for practical applications) if it can predict outcomes in unseen

data (Scheinost et al., 2019, Poldrack et al., 2020). It is not necessary to implement

such validations in completely new samples, as cross-validation within a single cohort is

possible and usually the more feasible choice (Yeung et al., 2022). Nevertheless, As many

large-scale neuroscience datasets has become publicly available (Nooner et al., 2012, Van

Essen et al., 2013, Sudlow et al., 2015, Karcher and Barch, 2021), it is now viable to

assess the cross-cohort replicability and generalizability of CBPP models.

Replicability and generalizability are two aspects of the same issue. Replicability

means that the results obtained from CBPP models in one cohort should be similar to

those obtained in a different cohort. From the perspective of the neuroscience field, this

also means that results obtained from one study should be replicable by another research

group. Generalizability means that the CBPP models estimated based on one cohort

should be able to predict outcome in a different cohort too. This is often achieved by

evaluating the model in out-of-sample test data (Beaty et al., 2018, He et al., 2020, Jiang

et al., 2020).

Furthermore, replicability and generalizability of CBPP models can be

investigated from two directions, focusing on either the prediction accuracy or the

derived brain-behavior association pattern. In this work, the focus is on the less
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examined latter direction. As the region-wise prediction contribution map can be used

as a representation of the brain-behavior association pattern derived from the

region-wise CBPP framework, the replicability and generalizability of the patterns can

be simply computed as correlation between the relevant maps. For instance, replicability

of the prediction pattern may be evaluated as the correlation between prediction maps

generated in different cohorts. Generalizability may be evaluated by estimating a

prediction model in one cohort and test it in another, where generalizability can thus be

measured by the correlation between the prediction map generated in the training

cohort and that generated in the test cohort. The motivation is that the replicability

and generalizability of interpretations of CBPP models are essential to their utility in

potential practical applications. Addressing these issues are not only beneficial to the

validity of the region-wise CBPP framework, but also to the field of psychometric

prediction in general.

1.5 Ethics Protocols

The ethics protocols were approved by the Ethics Committee of Heinrich Heine University

Düsseldorf (4039 and 2018-317-RetroDEuA).

1.6 Aims of Thesis

The aim of this work is to improve the interpretability of connectivity-based models for

psychometric prediction. The interpretability here refers to the ability to reveal brain-

behavior associations based on psychometric prediction results. Conceptually, this is

achieved by implementing prediction for brain regions separately, in the proposed region-

wise CBPP framework. The framework hence allows interpretation based on each brain

region’s relation to the investigated behavior. The research question in interest is the

attribution of behavioral traits to sets of brain regions, identified in a data-driven manner.

In study 1, the framework was established and demonstrated with two applications,

presenting brain-behavior relationships by constructing a psychometric prediction profile

for each brain region, as well as by constructing a prediction performance variation map

across brain regions for each psychometric variable. To validate the framework, the brain-

behavior associations derived are aligned with brain mapping literature. In study 2, the

framework was utilized so as to investigate the replicability and generalizability of CBPP,

in terms of both prediction performance and the brain-behavior relationships derived,
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in multiple cohorts. Overall, the region-wise CBPP framework addresses the concerns

of CBPP model interpretation, demonstrating the validity and replicability of certain

brain-behavior relationships derived from the framework. In study 3, we performed a

literature survey on existing psychometric prediction studies based on neuroimaging data.

By reporting the trends across these studies, known and new issues can be identified and

addressed in future studies.
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5 Discussion

In this work, we have developed and validated the region-wise CBPP framework focusing

on interpretability. In study 1, we developed the framework based on a preliminary

evaluation of existing approaches and parameters used in previous CBPP studies. We then

demonstrated two applications of the region-wise framework, for constructing individual

brain region’s psychometric profile and for constructing individual psychometric variable’s

prediction pattern. Both psychometric profiles and prediction patterns can be aligned to

brain mapping literature. Furthermore, they were helpful in investigating the effect of

denoising strategies and confound controlling strategies. In study 2, we investigated the

cross-cohort replicability and generalizability of the prediction pattern of fluid cognition

and openness. We demonstrated the usefulness of the region-wise framework in assessing

the prediction replicability and generalizability in terms of brain-behavior association

derived from the prediction models, and not only in terms of prediction accuracy. While

a low to moderate extent of replicability and generalizability was found for fluid cognition

predictions, we noticed that higher replicability and generalizability inevitably rely on

higher similarity in terms of data collection protocols in the different cohorts. Finally, in

study 3, we found a negative correlation between prediction accuracies and the training

sample size, as well as a lack of proper cross-validation implementation and external

validations. These trends may be further reflections on the prevalence of overfitting

problems and a general lack of generalizability in existing CBPP models developed.

5.1 Region-wise Psychometric Profiles and Psychometric-wise
Prediction Patterns

The region-wise psychometric profiles are constructed by evaluating region-wise models

across a range of psychometric variables. A brain region’s associations with different

types of behavioral measures are hence represented by its region-wise model’s varying

predictive power for these behavioral measures, presented in study 1 in a radar plot. We

demonstrated that while similar psychometric profiles can be found between parcels in the

same location but different hemispheres, the small differences in their psychometric profile
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can be related to their functional differences revealed in brain mapping literature. For

instance, while both the left and right Broca region showed predictive power for working

memory, the left Broca showed higher predictive power than the right Broca for language

task performance. This is in line with brain mapping literature, showing the involvement

of both Broca regions in phonological memory (Salmon et al., 1996, Smith and Jonides,

1999, Zurowski et al., 2002, Rogalsky and Hickok, 2011), as well as the left Broca region’s

specific involvement in language function (Clos et al., 2013, Karolis et al., 2019).

The psychometric-wise prediction patterns are constructed by evaluating region-

wise models from every brain region for a single psychometric variable. A psychometric

variable’s associations with different brain regions are hence represented by the predictive

power of these different brain regions, presented in study 1 as a map of prediction accuracy

distribution across the brain. Again, we demonstrated that these prediction patterns are

well aligned to brain mapping literature. For instance, while the prediction pattern for

2-back task performance is similar to the prediction pattern for 2-back task performance

only involving face tasks, the latter revealed additional predictive power in the visual

regions, as well as right ventral temporal regions responsible for face processing (Sams

et al., 1997, Nakamura et al., 2000. Nelson, 2001).

It is important to note that full alignment should not be expected between

prediction patterns (or psychometric profiles) and brain mapping literature. This is

because brain mapping results are usually based on activation experiments, focusing on

regions that consistently activate for a behavioral test. On the other hand, prediction

models relate individual variability in neuroimaging features to individual variability in

behavioral measures, and hence tend to highlight features with high individual

variability. Conceptually, the brain regions that are identified by both the region-wise

approach and brain mapping literature may be consistently involved in the behavioral

function, but in different ways or to different extents in different participants. The brain

regions identified in the prediction pattern that do not align with brain mapping

literature may still be related to the predicted behavior, but not consistently so in every

individual. The brain mapping literature is not necessarily the ground truth to compare

the prediction patterns against. Ultimately, the validity of the brain regions identified

by the region-wise approach need to be assessed based on known neural mechanisms, as

well as fully explainable model mechanisms.
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5.2 Region-wise and Whole-brain Approaches in Complement

The region-wise CBPP framework was developed not to be a competitor to whole-brain

approaches, but to be used in complement with the latter. Considering complex

behavioral functions arising from distributed brain networks, a region-wise model

estimated using only connectivity to one brain region would not have been optimal for

prediction performance. Instead, the best way to model such behavioral functions would

be to include all potentially useful features in a global (or whole-brain) model, as well as

modeling the interaction between these features. In this case, the region-wise approach

can still be useful in two ways. First, the region-wise models can be estimated and

validated on the training set. Regions where the region-wise models obtained

statistically significant prediction accuracies can be selected to use in the global model.

Second, for the selected regions, their region-wise model can be evaluated in the test set

along with the global model. The prediction accuracies of these region-wise model can

be compared to the global model, resulting in a fractional value of the ratio of

region-wise model accuracy to global model accuracy.

The region-to-global fractional value represent the contribution of the RSFC features

of a brain region, in the context of the global model. As RSFC features are highly

correlated, it is possible for multiple brain regions to have similar contribution to the same

psychometric variable. In our examination of complex behavioral measure, represented by

the cognition composite scores, we found widespread regions with moderate contribution.

Mostly, these regions showed accuracies that are about half of the whole-brain model

accuracies. This aligns with the assumption that the composite measures of cognition are

related to distributed brain networks, and not dominated by any individual brain region

(Dubois et al., 2018b). On the other hand, for more specific measures like cognitive

flexibility and working memory performance, we found that certain region-wise models

could perform as well as the whole-brain models. This may suggest that interindividual

variability of behavioral functions like working memory may depend on a specific network

of connected brain regions.

In a follow-up analysis, we also found cases where certain region-wise models

performed better than the corresponding whole-brain model (figure 1, figure 2). In

particular, all best region-wise models across different granularities were better than the

corresponding whole-brain model for several measures including agreeableness, emotion
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recognition, anger affect, fear affect, episodic memory (picture sequence), executive

function (card sort), processing speed, and dexterity. This may suggest that these

psychometric measures are related only to a small subset of all the RSFC features. The

region-wise models benefited from the reduced number of features, for both reduced

overfitting and underfitting. Further investigation could analyze if whole-brain models

for these psychometric measures can be improved by only including features from the

significant region-wise models.
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Figure 1: Accuracy differences between the whole-brain model and the best region-

wise models for personality (red), emotion (orange), and in-scanner task (olive)

measures. Black bars inside the boxes represent the median accuracy different across different

parcellations. Black diamond-shape markers represent outliers.

5.3 Effects of Prediction Implementation Decisions

Our results provided evidence for the benefit of ICA-FIX for prediction studies, both in

terms of prediction accuracy and in terms of brain-behavior associations derived. For the

prediction patterns derived, models using ICA-FIX denoised data showed significantly

higher variance across parcels than models using minimally processed data. For both

psychometric profiles and prediction patterns, the Euclidean distances between profiles

across psychometric variables or between patterns across parcels were also significantly

larger using ICA-FIX denoised data. We hence conclude that ICA-FIX denoising helps

to preserve interindividual variability in regional RSFC features while removing global

artifacts, making it easier to establish psychometric profiles specific to individual parcels

and prediction patterns specific to individual psychometric variables.
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Figure 2: Accuracy differences between the whole-brain model and the best region-

wise models for cognition (green), sensory (purple), and motor (blue) measures.

Black bars inside the boxes represent the median accuracy different across different parcellations.

Black diamond-shape markers represent outliers.

When examining surface-based parcellations of different granularity level

(100-parcel to 400-parcel), we found that more parcels with relatively better predictive

power can be identified at 200-parcel and 300-parcel granularity. For both replicability

and generalizability analyses, better results were obtained with higher granularity

(232-parcel, 350-parcel, and 450-parcel) than lower granularity (116-parcel). These

evidence aligns with the commonly acknowledged hypothesis stating that there are

300-400 cortical brain regions (Van Essen et al., 2012). While these brain regions may

still be divided into smaller functional units, our results suggest that a granularity of

about 300 parcels would lead to the optimal representation of functional units for CBPP

studies. It is also possible that higher granularities leads to better predictions in general.

Future analyses could assess the effect of granularity on prediction performance up to,

for instance, 1000 parcels. However, it should be noted that higher granularity also

means larger connectivity matrix and hence higher number of features. Adding more

features with higher granularity may not help to improve prediction performance, if

feature selection is required to restrict the number of features.

Regarding RSFC computation methods, we found that partial correlation

improved prediction performance if ICA-FIX denoising was not applied, but mostly

results in similar prediction performance as Pearson’s correlation otherwise. A plausible

explanation is that the regression step in computing partial correlation removed similar
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global artifacts that ICA-FIX did. Nevertheless, we also found that partial correlation

causes regional psychometric profiles to be very similar to each other, possibly due to

the aggressive regression. As RSFC features are high correlated, suggesting that parcels

in similar functional networks may have similar connectivity profiles naturally, removing

the common variance between these parcels during partial correlation may have caused

loss of region-specific information. As a result, Pearson’s correlation may still be the

best choice for computing RSFC if interpretability is the concern.

Lastly, we tested different linear models and found that a simple implementation

of the Support Vector Regression (SVR) is as good as the more complex EN, when

prediction accuracies were assessed as the Pearson’s correlation between predicted and

observed values. However, if an accuracy measure assessing absolute error was used, EN

and RR are then the best choice most of the time. The lower accuracies from SVR is

expected as the implementation of SVR used the ’fitrlinear’ function from Matlab,

which is highly efficient with high-dimensional input features but may compromise the

prediction accuracies. For RR and EN, a potential factor influencing brain-behavior

relationships that was not investigated in our study would be the hyperparameter

tuning method. As the hyperparameter tuning steps in both study 1 and 2 were done by

optimizing the correlation-based accuracy, further investigations would be needed to

know if the hyperparameter tuning implementation by absolute error-based accuracy

would influence the prediction accuracies.

5.4 Region-wise Approaches for Feature Selection and
Data-driven Discovery

In order to train a proper model in the presence of highly correlated RSFC features, the

number of features should be restricted to roughly
√
N in a dataset ofN subjects (Jain and

Waller, 1978). This limits the application of CBPP models to clinical population or locally

acquired datasets where smaller sample sizes are more common, leading to higher risk of

overfitting and less generalizable models. Usually, a priori knowledge is used to select

regions of interest, based on canonical networks defined based on meta-analysis or RSFC-

derived atlases (Nostro et al., 2018, Chen et al., 2021, Pläschke et al., 2020). However,

our results demonstrated that brain regions that are functional hubs and/or with high

interindividual variability in terms of RSFC tend to have predictive region-wise models,

at least for cognition measures. These regions may be overlooked in canonical networks
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as they are not directly related to the target psychometric variable. In comparison, we

consider the region-wise CBPP framework a more systematic and data-driven approach

for feature/region selection.

Our results of key regions identification highlighted the importance of hub regions

in psychometric predictions, potentially suggesting the crucial role of information

processing in cognitive tasks. The widespread set of brain regions identified for cognition

composite scores, each contributing up to half of the accuracy of the whole-brain model,

may support the global view of brain-behavior relationships where distributed networks

and not localized regions are responsible for behaviors. While our results are not direct

evidence for confirming any hypothesis, they could help to guide future investigations.

Nevertheless, it should be noted that feature selection based on region-wise CBPP

is still limited by the generalizability of the region-wise models themselves. In our

examination of fluid cognition prediction, we found a set of key brain regions with

decent generalizability. On the other hand, in our examination of the openness measure,

which is also one of the most well predicted psychometric variables in healthy

population, we found little replicability in the region-wise prediction patterns across

different cohorts. Therefore, the key regions selected by the region-wise framework in

one study sample cannot always be assumed to be useful in a different sample.

Potentially, key regions where the relationships with the psychometric variable can be

theoretically explained may be safer to use for guiding feature selection in a new sample.

5.5 General Limitations of the Field

A major critique of the CBPP field as a whole is the low prediction accuracies. This

poses limitations on both potential applications of the developed models as well as the

validity of model interpretations. After all, the brain-behavior relationships learnt by

a model can only be worth interpreting if the model can actually predict the target

behavioral measure sufficiently. The low prediction accuracies are partially due to the

limited amount of variance shared between RSFC and psychometric variables in healthy

population (Scheinost et al., 2019), independent of demographic factors like age. For

practical utility, it may be worthwhile to assess the prediction performance of multimodal

prediction combining features from task, structural and diffusion MRI. Further along

the line, complementing data using MRI with data using other imaging techniques (e.g.,

EEG, functional near-infrared spectroscopy, and positron emission tomography) may be
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considered.

Other possible causes of the low prediction accuracies include low reliability of the

psychometric measures, noisy neuroimaging data, and insufficient sample size. The

quality of the psychometric and neuroimaging data relies on the data collection team,

any preprocessing applied, as well as any inherent shortcomings of the behavioral tests

or imaging techniques performed. While some are pessimistic about the future of

psychometric prediction because of their lack of confidence in the psychometric and

neuroimaging data, others suggest that predictions will still be viable with larger sample

size, evidenced by the effect of big data in the field of computer vision. Nevertheless, big

data inevitably mean big computational cost, placing a financial constraint on future

research.

Finally, the limited replicability of prediction results and generalizability of

prediction models to new cohorts remain to be tackled. Our results suggested that

cross-cohort replicability and generalizability may depend on the similarity of the

cohorts, in terms of data collection and processing protocols. By standardizing these

protocols in the community, it may be possible to generally improve the replicability

and generalizability. However, certain requirements on imaging resolution, motion

artifacts controlling, and scan duration may be difficult to meet, especially in children,

older adults, and clinical population. To this end, better preprocessing strategies that

can standardize imaging quality post-hoc may be the potential solution.

5.6 Towards Multi-cohort Analysis and External Validation

In study 3, we found a curious negative correlation between prediction accuracy and

sample size similar to Sui et al., 2020, mostly for studies using cross-validation in single

cohorts. This is likely a result of overfitting models and peculiar subject selection in

smaller samples, which also tend to be locally recruited samples. The higher prediction

accuracies in smaller samples do not necessarily imply better trained models, but possibly

reflections of publication bias. As only 25% of the surveyed studies used external test sets,

we cannot assess the generalizability of the models with exceptionally high accuracies

to test if they were indeed overfitting. Nevertheless, this negative correlation was not

statistically significant between external validation accuracy and the external test sample

size, suggesting that the use of external validation may be the way to address this issue.

In general, using large open datasets can be helpful in providing more generalizable
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results, as well as external or hold-out test sets (Turner et al., 2018, Scheinost et al.,

2019, Marek et al., 2022). The lower prediction accuracies associated with larger sample

sizes are often due to the more population-representative samples. They are more accurate

representations of the achievable prediction performance in practical applications, and are

hence more useful for future studies to refer to. The use of multiple cohorts comprising

different age range, ethnicity (Li et al., 2022), and socioeconomic backgrounds will further

improve the generalizability of prediction models derived. Some studies with excitingly

high prediction accuracies tend to be used as benchmarks that new prediction models

need to be compared against. However, we argue that models trained on multiple large

cohorts covering different sample characteristics and accounted for confounding factors

properly should be preferable as benchmarks, despite the potentially lower accuracies.

As the ultimate goals of CBPP models are practical application and scientific

discovery, the replicability of discoveries and model generalizability may be as important

as the prediction accuracies. From the model training perspective, these goals may be

best approached by the use of multiple large datasets, potentially covering similar

demographics as the whole target population for the practical application. From the

evaluation perspective, external validation is crucial in proving the usefulness of the

model.

5.7 The Potential and Pitfalls of Interpretable Models

We have demonstrated that an interpretable CBPP framework can be helpful for both

feature selection and discovering neurobiological insights. By providing data-driven

feature selection, interpretable models can be used in conjunction with more complex

but hard-to-interpret models to garner both interpretability and predictive power. The

insights provided by the model interpretation can be validated against and/or help to

validate biomarkers, activation maps, brain-wide associations, etc. Furthermore, the

interpretable region-wise framework allowed us to assess replicability and

generalizability in terms of the brain-behavior association derived from the models,

instead of only in terms of prediction accuracies. We believe that interpretable models

are useful and important for future developments in psychometric prediction.

Nevertheless, the region-wise approach is limited by the same general limitations

faced by the whole field. Without sufficient predictive power and generalizability, models

may not be considered worth interpreting in the first place. The prediction accuracy of
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the model affects not just the model interpretation based on the region-wise approach, but

also other types of model interpretation methods. For instance, regression weights can

be transformed to interpretable activation values using the Haufe transformation (Haufe

et al., 2014), allowing model interpretation based on each connectivity between each pair

of brain regions. However, regression weights assigned by the prediction model can only

be informative of the underlying brain-behavior relationships if the model is predictive

enough. In study 2, we also demonstrated that the prediction patterns formed by the

Haufe transformed weights are not replicable across cohorts, and tend to be affected by

cohort-specific idiosyncrasies.

Alternatively, feature selection can be done by picking features that are

significantly correlated with the target psychometric variable in the training set. Across

cross-validation splits, features that are consistently selected may be considered related

to the target psychometric measure (Jiang et al., 2018, Jiang et al., 2020). It would

seem that these features’ relationships with the target psychometric measure are not

reliant on the prediction model, which is built after feature selection. Nevertheless, the

statistical significance tests on the correlation between features and psychometric

variables tend to be lenient. In the case where no real relationships exist between the

neuroimaging features and the psychometric measure, it may still be possible to select a

set of features that are lowly associated to the psychometric measure due to noise. In

the end, the validity of the brain-behavior associations represented by these selected

features would still depend on the predictive power of the prediction model. As it has

also been shown that this method of feature selection can be unstable across

cross-validation splits (O’Connor et al., 2021), it is unclear how generalizable these

selected features would be.

5.8 Conclusion

In this work, we have developed and validated a region-wise CBPP framework for

improving the interpretability of psychometric prediction models. We demonstrated two

applications of the framework for constructing individual brain region’s psychometric

prediction profiles and for representing the prediction pattern representing the derived

brain-behavior relationships for a psychometric variable. We then demonstrated the

usefulness of the region-wise framework in examining cross-cohort replicability and

generalizability of CBPP models. Finally, we presented the trends and issues in current
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psychometric prediction studies, with a recommendation on the use of larger sample size

and external validation. Overall, we hope to highlight the importance of model

interpretability and generalizability, as well as the potentials of interpretable models. In

order to reach the goal of practical applications, CBPP models still need to be improved

in terms of predictive power, transparency, and generalizability.
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