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I Summary

English

PGRMC1, a highly conserved heme binding protein, is comprehensively involved in cell

signaling and metabolism and often upregulated in cancer. In breast cancer, PGRMC1

is associated with enhanced tumor growth, increased metastasis, therapy resistance and

poor prognosis, which indicates the protein’s role in carcinogenesis. Overexpression of

PGRMC1 promotes proliferation in luminal A breast cancer cells, indicating that the

mode of action of PGRMC1 depends on the ERα status of these cells. However, the

mechanisms by which PGRMC1 drives tumor progression are not well understood. Previ-

ous research showed that PGRMC1 is involved in processes related to cholesterol and fatty

acid synthesis, which are often disrupted during cancer progression. The aim of this study

was to investigate the involvement of PGRMC1 in lipid homeostasis to detect new mecha-

nisms by which PGRMC1 alters cancer metabolism and signaling. In an extension of our

previous results on the interplay of PGRMC1 with SCD1 and FDFT1, we examined the

interaction of PGRMC1 with CYP51A1 in different breast cell lines. In addition, we deter-

mined the mRNA and protein expression of essential genes involved in lipid metabolism

by real-time RT-PCR and western blot analysis. To explore the functional impact of

PGRMC1 overexpression on lipid homeostasis, IF-staining for lipid droplets followed by

flow cytometry was used to assess cellular lipid content. Additionally, mass spectrome-

try was used to quantify levels of cholesterol and lathosterol. With regard to the role of

cholesterol as a precursor for steroid hormones, we studied the effect of PGRMC1 on E2

levels and ERα downstream signaling among others using ELISA analysis, IF-staining and

real-time RT-PCR. Supplementary, a possible dependence of cholesterol and E2 content on

PGRMC1 phosphorylation-status was investigated. Moreover, the influence of PGRMC1

on lipid raft formation was analyzed via flow cytometry. Since many studies show that

growth hormone receptors are enriched in lipid rafts, IF-staining was used to determine

co-localization of HER2 and lipid rafts. Furthermore, alteration of EGFR/HER2 signaling

through PGRMC1 overexpression was explored via western blot. Finally, the impact of

PGRMC1 on cell viability upon depletion of cholesterol and fatty acids induced by sim-

vastatin was investigated. This work demonstrated that PGRMC1 interacts with enzymes

of the mevalonate pathway and alters the expression of pivotal proteins involved in lipid

homeostasis, lipid uptake and lipid synthesis, possibly leading to higher levels of neutral

lipids, cholesterol, steroid hormones and lipid rafts in HR+ breast cancer. Furthermore,

PGRMC1 modifies ERα and EGFR signaling. Overexpression of PGRMC1 results in a

greater sensitivity to a treatment with simvastatin, suggesting PGRMC1 as a target for

lipid lowering therapeutic approaches. In summary, PGRMC1 may play an important role

in the proliferation and progression of cancer by altering lipid metabolism and activating

key oncogenic signaling pathways, such as ERα and EGFR signaling. This work under-

lines the potential of PGRMC1 as a target for anti-cancer therapy.



German

PGRMC1 ist ein hoch konserviertes, Häm bindendes Protein, das in unterschiedliche Si-

gnalwege und metabolische Vorgänge involviert und in Krebszellen hochreguliert ist. Im

Mammakarzinom ist PGRMC1 unter anderem mit erhöhtem Tumorwachstum, verstärkter

Metastasierung, Therapieresistenz und einer schlechten Prognose assoziiert. Überexpression

von PGRMC1 steigert die Zellproliferation im Mammakarzinom des Luminal A Sub-

typs, was darauf hinweist, dass die Wirkungsweise von PGRMC1 zumindest teilweise

mit dem Hormonrezeptorstatus der Zelle zusammenhängt. Die Mechanismen, durch die

PGRMC1 die Tumorprogression vorantreibt, sind jedoch nach wie vor unklar. Ziel die-

ser Arbeit ist es, Funktionen von PGRMC1 im Bereich der Lipidhomöostase zu identi-

fizieren und neue Prozesse zu erschließen, mittels derer PGRMC1 den Krebsstoffwechsel

und die Signalübertragung verändert. In Fortsetzung unserer früheren Arbeiten zur Rolle

von PGRMC1 im Mevalonatweg wurde die Interaktion von PGRMC1 mit CYP51A1 in

verschiedenen Zelllinien untersucht. Außerdem wurde die mRNA- und Protein-Expression

von wichtigen Genen des Lipidstoffwechsels mittels real-time RT-PCR und Western Blot in

Brustkrebszellen bestimmt. Um funktionelle Auswirkungen der PGRMC1-Überexpression

auf die Lipid-Homöostase zu ermitteln, wurde der zelluläre Lipidgehalt mittels Durchflus-

szytometrie analysiert und der Cholesterin- und Lathosterolgehalt mittels Massenspektro-

metrie quantifiziert. Im Hinblick auf die Rolle von Cholesterin als Vorläufer für Steroidhor-

mone wurde die Wirkung von PGRMC1 auf den E2-Spiegel und die ERα-Signalgebung

unter anderem durch ELISA-Analysen, IF-Färbung und real-time RT-PCR untersucht.

Verschiedene Studien konnten die regulierende Wirkung unterschiedlicher Phosphorylie-

rungen von PGRMC1 auf dessen Funktionsweise zeigen, sodass im Weiteren untersucht

wurde, ob der zelluläre Cholesterin- und E2-Gehalt mit dem Phosphorylierungsstatus

von PGRMC1 zusammenhängt. Der Einfluss von PGRMC1 auf die Bildung von Lipid

Rafts wurde anschließend mittels Durchflusszytometrie beurteilt. Da Wachstumshormon-

rezeptoren häufig in Lipid Rafts angereichert sind, wurde die Co-Lokalisation von HER2

und Lipid Rafts mit Hilfe von IF-Färbungen ermittelt. Außerdem konnte gezeigt werden,

dass PGRMC1 die EGFR/HER2-Signalübertragung im Mammakarzinom verändert. An-

knüpfend wurde die Auswirkung von PGRMC1 auf die Viabilität von Brustkrebszellen im

Rahmen einer Simvastatin-Behandlung analysiert. Zusammenfassend konnte im Rahmen

dieser Arbeit gezeigt werden, dass PGRMC1 mit Enzymen des Mevalonatstoffwechsels

interagiert und die Expression von Schlüsselproteinen der Lipidhomöostase, Lipidaufnah-

me und Lipidsynthese verändert, was verbunden ist mit höheren zellulären Spiegeln von

neutralen Lipiden, Cholesterin, Steroidhormonen und Lipid Rafts im ER+ Mammakarzi-

nom. Darüber hinaus verändert PGRMC1 die Signalübertragung von ERα und EGFR.

PGRMC1-Überexpression erhöht die Empfindlichkeit gegenüber der Behandlung mit Sim-

vastatin, sodass PGRMC1 als Target für lipidsenkende Therapieansätze im Rahmen mul-

timodaler Behandlungsregime in den Fokus rückt.
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1 Introduction

1.1 Breast Cancer Epidemiology

Despite the inevitable progress of scientific research, cancer is still one of the most

dreaded diseases and its diagnosis and treatment pose major challenges for many

physicians and scientists. The WHO estimates that approximately 10 million deaths

in 2020 were due to malignancies, making cancer a leading cause of death world-

wide [1,2]. While in countries with poor medical care and nutrition (mainly due

to infectious diseases spread by deficient sanitation and drinking water) and a lack

of preventative health services like vaccines, people are at greater risk of develop-

ing certain types of cancer like malignant tumors of the liver, stomach and cervix,

higher-income countries tend to have higher rates of prostate, breast and colorectal

cancer [1]. With about 2.3 million cases and 685,000 deaths in 2020, breast cancer

has surpassed lung cancer to become the most common form of cancer and also the

leading cause of death from cancer globally in women (Figure 1) and it is even esti-

mated that case numbers will reach 4.4 million in 2070 [1,3]. The annual increase of

breast cancer incidence by about 0.5%, among other things, is due to the growing

proportion of older people in first world countries, the ongoing decline in fertility

rates and the increase in obesity in affluent societies [4].
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Figure 1: Top cancer per country in females
Estimated crude rates of (a) incidence and (b) mortality, worldwide in 2020.

Data source: GLOBOCAN 2020, Graph production: Cancer Today © International Agency for

Research on Cancer 2021

While breast cancer is the most common malignant tumor in women, it is also

one of the tumor types for which the best screening and treatment options exist.

The 5 year relative survival rate in breast cancer is about 90% in high-income

countries (67% for all cancer types); survival is only higher for prostate cancer

(98%) and melanoma of the skin (93%) [1]. Since there are more lost disability-

adjusted life years (DALYs) by women to breast cancer than any other cancer type,
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and women in all countries and at all ages can be affected, many researchers explore

cancer development, e.g., by focusing on molecular, clinical, or social epidemiological

processes in an effort to improve diagnostics and treatment.

1.2 Breast Cancer Risk Factors

Breast cancer is influenced by numerous factors including demography, heredity,

lifestyle, cancer subtype, reproductive and hormonal history, pre-existing diseases,

breast histology, and environment. Although especially external factors account for

the increase in breast cancer incidence, the risk factors with the largest impact on

breast cancer are gender and age. Thus, breast cancer primarily affects menopausal

women; even so, younger women tend to have larger and more aggressive tumors.

Approximately 1% of all cases occur in men. Hormonal imbalance, exposure to

radiation, family history of breast cancer, and mutation of the BRCA2 gene are

some of the major risk factors associated with male breast cancer [5]. Furthermore,

hormonal regulation plays a significant part in cancer development. Accordingly,

younger age during menarche, age of menopause over 50 years, nulliparity or first

childbirth in older age, and different pregnancy characteristics (e.g., first pregnancy

placental abruption or preterm delivery) increase the risk of developing breast cancer

[6,7,8,9]. The importance of hormonal regulation in carcinogenesis is also evidenced

by many studies working out the link between breast cancer risk and hormonal

therapy, e.g., in the form of contraceptive pills [10,11], ovulation-stimulating drugs

[12], or postmenopausal hormone replacement therapy [13]. Another detrimental

factor regarding breast cancer development and prognosis is a history of radiation

or chemotherapy exposure [14,15]. While the majority of breast cancer cases are

due to acquired somatic genetic and epigenetic alterations, about 10% of all breast

cancers have a hereditary condition, caused by inherited germline mutations in high-

penetrance, moderate-penetrance, and low-penetrance breast cancer susceptibility

genes [16]. Family anamnesis plays a decisive role in tumor development and pro-

gression [17]. While several genetic alterations result in an increase in breast cancer

incidence and mortality, about 40% of hereditary breast cancer cases are related to

mutations in the tumor suppressor genes BRCA1 and BRCA2, and by the age of

80 the cumulative risk amounts to 72% for BRCA1 and 69% for BRCA2 carriers

[18,19]. Furthermore, many studies have addressed how lifestyle factors like alcohol

consumption, smoking, diet and nutrition, physical activity, and Vitamin D intake

affect breast cancer risk [20,21,22,23,24].

2



1.3 Obesity and Breast Cancer

Obesity has been recognized as a major issue for breast cancer development, out-

come and management. The WHO has defined that obesity as measured by the

individually calculated BMI is an excess accumulation of adipose tissue and divided

in class I-III with a BMI of 30 or more at baseline [25]. With 600 million obese adults

worldwide, the health implications of obesity are becoming a major concern in both

developed and developing countries [26]. Obesity is the most important modifiable

risk factor especially for HR+ breast cancer in post-menopausal women [27]. In

contrast, some studies and meta-analyses indicate no change or even a decrease

in breast cancer risk for overweight or obese pre-menopausal women [27,28,29,30].

Nevertheless, different studies show that high weight during adulthood increases

post-menopausal breast cancer risk and obesity at diagnosis of early pathogenesis

correlates with reduced breast cancer survival also in pre-menopausal women [31,-

32,33]. In comparison to women with normal weight, relative risk for breast cancer

is increased by 12% in overweight women (BMI 25–29.9kg/m2) and even by 16%

in obese women (BMI ≥ 30kg/m2) [29]. Interestingly, post-menopausal hormone

replacement therapy attenuates the relationship between obesity and breast cancer

development, possibly by reducing adipose tissue estrogen production [34]. With ref-

erence to hormone replacement, the Women’s Health Initiative demonstrated that

estrogen–progestogen preparations increase the risk of post-menopausal breast can-

cer compared with estrogen alone [35,36].

1.4 Breast Cancer Classification and Therapy

Breast cancer is extremely heterogeneous and can be classified in many ways, e.g.,

based on clinical behavior, histology, or biological features. Since recent therapeutic

approaches build on molecular biological tumor characteristics, molecular stratifi-

cation, e.g., regarding genomic drivers, is crucial for effective clinical management.

One commonly used classification relies upon molecular biological categorization

based on gene expression profiles (Figure 2). This system classifies breast cancers

into four subtypes, mostly based on HR and HER2 status [37,38]. By using the

Ki-67 labeling index assessed by immunohistochemical assays, breast cancer sub-

types can be further graduated. Ki-67 was identified in the early 1980s as a nuclear

antigen associated with cell proliferation. Except from G0 phase, it is expressed in

certain phases of the cell cycle namely S, G1, G2, and M phases [39,40].
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Subtype ER PR HER2 Ki-67

Luminal A + +/- - <14%

Luminal B + +/- +/- ≥ 14%

Non luminal, HER2+ - - + ≥ 14%

Triple negativ - - - ≥ 14%

Figure 2: Molecular breast cancer subtypes
Breast cancer can be subtyped into four distinct subtypes: luminal A, luminal B, non luminal

(HER2+) and triple negative breast cancer. This is based on (IHC-)expression levels of Ki-67 and

ER, PR, and HER2 status [37,41].

The above classification addresses molecular heterogeneity of breast tumors in

accordance with their clinical and pathological characteristics and provides prognos-

tic and predictive information for specific therapies. While the more differentiated

luminal A tumors are often associated with lobular histology, luminal B tumors

mostly present as invasive ductal carcinoma. Tumors with high expression of HER2

comparatively exhibit larger tumor size and higher rates of nodal metastasis. Com-

pared to other subtypes of breast cancer, the most undifferentiated triple negative

breast cancers (TNBC) tend to occur at a younger age and, in Black or Hispanic

women, present as medullary or metaplastic carcinoma, are larger in size (but with

less nodal metastasis), and show a high proliferative index [42,43]. In a descending

order from above classification, molecular subtypes also have a different locoregional

and systemic recurrence pattern. Luminal A, the subtype with the lowest rate of

relapse, often recurs in the bones or soft tissues. In contrast the non-luminal types

frequently metastasize to visceral organs. There is also a high proportion of bone

metastasis in luminal A and HER2-enriched tumors. While TNBC often present

with lung metastasis, they rarely metastasize to bones. The central nervous system

is a preferred site of recurrence for HER2-enriched tumors. Luminal A subtypes are

associated with longer DFS and OS than the more proliferative and less differenti-

ated other subtypes [42,43].

Treatment options are determined by different factors including the tumor spe-

cific molecular signature, TNM stage, and grading. Treatment for nonmetastatic

cancer consists of local therapy in form of surgical resection, removal of axillary

lymph nodes, and, when required, radiation and systemic therapy, which can be

neoadjuvant, adjuvant, or both. Based on the molecular subtype of tumors, stan-

dard therapy comprises endocrine treatment (e.g., aromatase inhibitors for women

after menopause, SERMS such as tamoxifen, or SERDs such as fulvestrant), HER2-

directed antibody therapy (e.g., trastuzumab) and conventional chemotherapy (e.g.,
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combinations like cyclophosphamide, doxorubicin and, where appropriate, docetaxel

or cyclophosphamide, methotrexate, and fluorouracil). While HR+ breast tumors

undergo endocrine treatment, the only effective treatment for TNBC is chemother-

apy [44]. Presently, metastatic breast cancer has usually no curative treatment

options, so that achieving symptom palliation and prolonging life are primary treat-

ment goals. Systemic therapy of metastatic breast cancer typically follows the same

principles as non-metastatic breast cancer. Surgery and radiation only see use for

palliation. In addition to conventional therapies, newer types of treatment are tar-

geted toward a tumor’s unique genetic code. Examples of such therapies include

inhibition of PARP enzyme, e.g., by olaparib specifically in BRCA-deficient cells

used for treatment of refractory metastatic breast cancer [45] and checkpoint in-

hibitor immunotherapy, e.g., the PD-1 antibody pembrolizumab, for tumors with

mismatch repair deficiency or high microsatellite instability [46].

1.5 Breast Cancer Signaling

Deregulation of growth and survival signaling are key factors in breast cancer devel-

opment, progression, and metastasis. Many different signaling pathways contribute

to the heterogeneous pathogenesis of breast tumors including ATM, ERK, P53,

PI3K/AKT, PPAR, PTEN, hedgehog and Wnt/β-catenin. Furthermore, different

cytokines and inflammatory pathways are modified in cancer cells, e.g., NF-kB,

TGF-β, TNF, iNOS, IL6, IL9 and IL15 [47,48,49,50,51,52,53]. The ERα along with

the receptor tyrosine kinase signaling are two signaling cascades frequently altered

in breast cancer (Figure 3).

1.5.1 ERα Signaling

The highly conserved nuclear HR is involved in a variety of functions in different

organs, e.g., as estrogen dependent inhibition of apoptosis and necrosis in cardiac

and endothelial cells or modification of glucose and lipid metabolism in hepatocytes

[54,55]. ERα activation occurs primarily when the main estrogen hormone – 17β-

estradiol (E2) – binds to the globular ligand binding domain of the ERα containing

a hormone binding site, dimerization interface and section for coactivation or repres-

sion, leading to a translocation of both to the nucleus. The E2-ERα complex, on

the one hand, can further bind to estrogen response elements (EREs) in the DNA,

leading to the transcription of specific genes or, on the other hand, can recruit

coactivator complexes, resulting in chromatin remodeling via acetylation of histones

[56]. Since the ligand binding domain exhibits a wider ligand cavity, not only can E2

activate the receptor but also, e.g., other hormones, metabolic molecules, and syn-

thetic structures [57,58]. There are distinct mechanisms for ERα activation even in
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the absence of E2 [58,59]. For example, cross coupling of cellular kinases and ERα

signaling results in phosphorylation of the ER on serine or/and tyrosine residues

[60,61,62].

1.5.2 ErbB Signaling

The ErbB family of receptor tyrosine kinases includes a total of four members:

ErbB1/EGFR, ErbB2/HER2, ErbB3, and ErbB4 [63]. These members form homo-

and heterodimeric cell-surface receptors with special extracellular domains that con-

fer individual ligand-binding specificity, leading to downstream signaling via tyrosine

phosphorylation [64]. Various polypeptide hormones containing a 6-kDa domain

which is homologous to EGF are able to modulate ErbB activation and signaling,

including amphiregulin, betacellulin, EGF, epiregulin, neuregulin (neuregulin-1, -

2, -3, and -4), and TGF-α [65]. Unlike other ErbB receptors, HER2 does not

have known ligands and is activated either by heterodimerization with ligand bound

EGFR, ErbB3, or ErbB4 family receptors or via ligand independent homodimer-

ization. Several pathways are activated downstream of ErbB receptor activation

leading to cell proliferation, growth, and survival, as well as invasion and angiogen-

esis [66]. Among the most important signaling cascades are the PI3K/AKT (PKB),

RAS/RAF/MEK/ERK1/2 and the phospholipase C (PLCγ) pathways [67]. EGFR

and HER2 are particularly involved in cell transformation, and mutations, ampli-

fications and overexpression occur in several types of carcinoma, including breast

cancer.
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Figure 3: : Overview of HER and ERα signaling
The figure illustrates the downstream signaling of the human epidermal growth factor receptor

(HER) family and ERα, including MAPK and PI3K/Akt pathways.

Abbreviation: AC: adenylate cyclase; AKT: protein kinase B; CaMK: Ca2+/calmodulin-dependent

protein kinase; CREB: cAMP response element-binding protein; DAG: diacylglycerol; DLC1:

deleted in liver cancer 1; EGFR: epidermal growth factor receptor; Elk1: ETS domain-

containing protein; ERα: estrogen receptor α; ERE: estrogen-response element; ERK: extracel-

lular signal-regulated kinase; E2: estradiol; FAK: focal adhesion kinase; HER: human epider-

mal growth factor receptor; HIF1: hypoxia-inducible factor 1; IKK: IκB kinase; IP3: Inositol-

1,4,5-trisphosphat; JAK: Janus kinase; MAPK: mitogen-activated protein kinase; MEK: mitogen-

activated protein kinase kinase; mTOR: mammalian target of rapamycin; NF-κB: nuclear fac-

tor NF-κ-B; P: indicates phosphorylation; PDK1: 3-phosphoinositide-dependent protein kinase-

1; PIP2: phosphatidylinositol-4,5-bisphosphate; PIP3: phosphatidylinositol-3,4,5-trisphosphate;

PI3K: phosphoinositide 3-kinase; PKA: protein kinase A; PKC: protein kinase C; PTEN:

phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase; RTK: receptor tyrosine kinase; STAT: sig-

nal transducer and activator of transcription, TF: transcription factor; TFRE: transcription factor

regulatory element

1.6 Lipids

Energy production within cancer cells differs from that of non-malignant cells. De-

pending on tumor type and differentiation, malignant cells use numerous mecha-

nisms for energy production. In addition to the Warburg effect, which outlines the

metabolic change from oxidative phosphorylation to aerobic glycolysis, cancer cells

can take advantage of alterations in lipid metabolism for energy demand, e.g., in-

volving changes in lipid-synthesis/-catabolism, and fatty acid oxidation [68,69].
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1.6.1 Lipid Classification

While most mammalian cells meet their lipid requirements through the uptake of free

fatty acids (FFAs) and lipoproteins, such as low-density lipoproteins (LDLs), the de

novo biosynthesis of fatty acids and cholesterol is restricted to certain cells, including

cells from the liver, adipose tissue, and lactating breast tissue, as well as cancer cells.

Lipids are classified into seven categories (Figure 4): fatty acids, triglycerides, waxes,

phospholipids, sphingolipids, lipopolysaccharides, and isoprenoids (e.g., steroids,

carotenoids) [70].

CofactorsFat-soluble
vitamins

Signaling
molecule

 Biological
membranes

Lipid classes
and

functions

Lipolysis and
β-Oxidation

Hormones Energy storageFatty acids
SFAs UFAs Triglycerides
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LPS

Iso
pr

en
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s

Figure 4: : Lipid classes overview
Lipids can be categorized into seven groups: fatty acids, triglycerides, waxes, phospholipids, sphin-

golipids, lipopolysaccharides and isoprenoids. Lipids have a variety of functions, including energy

production or storage, and are components of vitamins, hormones, cofactors, signaling molecules

and membranes.

Fatty acids are usually unbranched monocarboxylic hydrocarbons with a car-

boxylic acid at the end of a hydrocarbon chain. Saturated fatty acids (SFAs) contain

no double bonds, and their carbon chain is completely filled with hydrogen atoms.

Unsaturated fatty acids (UFAs) have one or more double bonds, which cause the

carbon chain to bend [70]. Triacylglycerols are composed of glycerol and three fatty

acids esterified with glycerol. When they are liquid at room temperature, they are

called oils; when they are solid, they are called fats. Membrane forming lipids, in-

cluding phospholipids, sphingolipids, and glycolipids, consist of a hydrophilic and

a hydrophobic part [70]. The amphiphilic property of these lipids enables them

to form into micelles or bilayers in polar solvents such as water. Isoprenoids, e.g.,

steroids, terpenes, and terpenoids, are compounds made up of isoprene units [70].

The basic structure of all steroids is a system of four, usually trans-connected car-

bon rings, three hexagonal and one pentagonal. Cholesterol, which is used to create
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steroid hormones in the body, is the most well known example. Cholesterol is an

important component in all human cell membranes with the exception of the inner

membrane of mitochondria. It is usually present in esterified form as the cholesterol

ester of fatty acids [70].

1.6.2 Lipid Metabolism

Lipid metabolism is a dynamic balance between the synthesis and degradation of

lipids in cells, including the breakdown and storage of fats for energy and the syn-

thesis of structural and functional lipids. Figure 5 provides a schematic illustration

of the basic components in the lipid metabolism of eukaryotic cells. Because of their

hydrophobic nature triglycerides and cholesterol must be transported through the

blood using amphipathic lipoproteins, e.g., chylomicrons, LDLs or VLDLs. LDL

receptors (LDLRs) bind to LDLs, which deliver cholesterol to most peripheral tis-

sues. LDLRs are located on the plasma membrane of most cells, capture LDLs, and

rapidly degrade them in the lysosome [71]. Lipoprotein lipase breaks down chylomi-

cron particles to release triglycerides, which are broken down into fatty acids and

glycerol by enzymes before entering cells. Three groups of proteins facilitate LCFA

transport: fatty-acid translocase (FAT/CD36), plasma membrane-associated fatty-

acid binding protein (FABP), and fatty-acid transport proteins (FATP) [72]. Fatty

acid catabolism takes place in different cell compartments. After ATP-dependent

reaction of the fatty acid and a coenzyme A, acyl-CoA can traverse the mitochon-

drial membrane and can be used for β-oxidation, mainly generating acetyl-CoA,

NADH, and FADH, which in turn contribute in the citric acid cycle to produce

energy [73]. Besides lipid catabolism, triacylglycerols, membrane lipids, and choles-

terol are synthesized through a variety of pathways. Acetyl-CoA is the main pre-

cursor for both fatty acids and cholesterol. Acetyl-CoA can emerge via intrami-

tochondrial metabolism (β-oxidation or glycolysis) or different extramitochondrial

pathways, e.g., via the ATP citrate lyase (ACLY), which converts citrate derived

from the TCA cycle to acetyl-CoA. In the synthesis of fatty acids, acetyl-CoA car-

boxylase (ACC) converts acetyl-CoA to malonyl-CoA. Fatty acid synthase (FASN)

catalyzes the repeated condensation of acetyl-CoA and malonyl-CoA to form a 16-

carbon fatty acid chain. The 16-carbon fatty acid chain is then cleaved to generate

long-chain fatty acids, such as palmitic acid. Adding a double bond by stearoyl-

CoA desaturase (SCD) produces monounsaturated fatty acids [74]. After elonga-

tion and desaturation of the initial fatty acids, there is a pool of fatty acids with

varying degrees of saturation. These essential fatty acids can be acquired through

dietary means as well. Further modifications result in the formation of different

lipid classes, for example sphingolipids, eicosanoids, or phospholipids [70]. Choles-

9



terol biosynthesis is governed by the series of addition and conversion processes

catalyzed by 3-hydroxy-3-methylglutarate-CoA synthase (HMGCS) and 3-hydroxy-

3-methylglutaryl-CoA reductase (HMGCR). The conversion of HMG-CoA to meval-

onic acid and its subsequent addition of acyl groups creates farnesyl-pyrophosphate,

an important intermediate for protein prenylation [75].
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Figure 5: : Energy metabolism overview
Rough overview of energy metabolism in human cells. 1 lipid uptake 2 lipolysis 3 β-oxidation 4

TCA cycle 5 fatty acid synthesis 6 sphingolipid synthesis 7 eicosanoid synthesis 8 phospholipid

synthesis 9 mevalonate pathway and cholesterol de novo synthesis 10 glycolysis 11 glutaminolysis

Abbreviation: ACAT: acetyl-CoA acetyltransferase; ACC: acetyl-CoA carboxylase; ACLY: ATP-

citrate synthase; AGPAT: 1-acylglycerophosphate acyltransferase; ATP: adenosine triphosphate;

CDP-DAG: cytidine diphosphate diacylglycerol; CD36: cluster of differentiation 36; COX: cy-

tochrome c oxidase; DAG: diacylglycerol; DGAT: diglyceride acyltransferase; ELOVL: fatty acid

elongase; FA: fatty acid; FABPs: fatty acid binding proteins; FASN: fatty acid synthase; FATPs:

fatty acid transport proteins; FFA: free fatty acids; GPAT: glycerol-3-phosphate O-acyltransferase;

HMGCR: 3-hydroxy-3-methylglutaryl-coenzyme A reductase; HMGCS: hydroxymethylglutaryl-

CoA synthase; LC-FACS: long chain fatty acyl-CoA synthetase; LDLR: low density lipoprotein

receptor; LPA: lysophosphatidic acid; PA: phosphatidic acid; PC: phosphatidylcholine; PE: phos-

phatidylethanolamine; PG: phosphoglycerat; PGE2: prostaglandin E2; PGH2: prostaglandin H2;

PI: phosphatidylinositol; PS: phosphatidylserine; SCD: stearoyl-CoA desaturase; TAG: triacylglyc-

erol; α-KG: α-ketoglutarate
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While levels of cholesterol are normal, a protein complex consisting of INSIG1/-

SREBP1A/SCAP1 is bound to the endoplasmic reticulum in an inactive form.

In situations of low intracellular sterol, decreased cholesterol level in endoplasmic

reticulum membranes, and phosphatidylcholine level in golgi membranes activate

SREBPs, which bind to the promoters of the genes implicated in de novo fatty acid

synthesis and cholesterol biosynthesis [76].

1.6.3 Deregulation of Lipid Metabolism in Cancer

Following on the observation that neoplastic tissues showed aberrant activation of

de novo lipogenesis, numerous studies have confirmed that inhibition of different en-

zymes within the fatty acid biosynthesis pathway can block cancer cell growth. How-

ever, there are numerous individual differences in the regulation of lipid metabolism.

Using gene expression data from breast cancer samples and a genome-scale human

metabolic model, Jerby et al. [77] found that fatty acid biosynthesis is a feature of

early stages of cancer development. In contrast, later stage tumors show reduced

proliferation as well as activated antioxidant pathways. Lipid droplets are subcellu-

lar organelles composed of a monolayer of phospholipid that covers a hydrophobic

core. They contain neutral lipids, mainly triacylglycerol (TAG) and cholesteryl es-

ters (CEs), as well as proteins, which vary depending on the cell type and external

stimuli [78,79]. Lipid droplets, formerly believed to serve only as a storage system

for energy, have been found to have diverse roles within cells, including ER stress,

ROS detoxification, and protein dynamics. Furthermore, expression of lipid droplets

are correlated to stemness features in breast cancer cell lines [80].

Lipid rafts are low density, detergent resistant sphingolipid- and cholesterol-rich

microdomains, in which a variety of membrane proteins, e.g., caveolins and flotillins

are enriched and compartmentalized. Because of their small size (100-200 nm), lipid

rafts present a challenge to visual observation. However, for example, fluorescence

microscopy provides an opportunity to locate lipid rafts by using dyes like Laurdan or

Filipin, which intercalate between domains or head-labeled dyes, such as Texas Red

[81,82]. Furthermore, lipid rafts can be visualized via the B subunit of the cholera

toxin, which binds to GM1, a ganglioside which is highly enriched in lipid rafts [83].

Proteins often found in lipid rafts include proteins with a hydrophobic membrane-

spanning sequence or transmembrane domain, glycosylphosphatidylinositol-anchored

proteins, doubly acylated proteins (e.g., SRC family kinases), palmitoylated type-

I transmembrane proteins (e.g., CD44), and receptor tyrosine kinases with two

transmembrane subunits (e.g., insulin receptor or EGFR) [84,85,86,87,88,89]. Sev-

eral growth factor receptors, T-cell receptors, and the TNF receptor superfam-

ily have been shown to interact with lipid rafts. Consequently, some signaling
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molecules are redistributed after the activation of those receptors. Therefore, these

microdomains act as platforms for cellular signaling and mediate transport of raft-

associated molecules via internalization and cell trafficking. Further, lipid rafts

influence various cellular functions, among others the regulation of apoptosis and

cell proliferation [90,91,92,93]. Different research groups found elevated levels of

lipid rafts in cancer cells. Li et al. [94] showed that different prostate and breast

cancer cell lines stain much more intensively for cholesterol and GM1 than their

non-cancerous counterpieces. In addition, higher numbers of lipid rafts have been

found in malignant melanoma and renal carcinoma cells [95,96]. Moreover, lipid

rafts regulate metastasis mechanisms, such as cell adhesion, migration and EMT, in

a complex manner. For example, two research groups showed that disruption of lipid

rafts leads to reversion of TGF-β1 induced EMT in breast cancer and gastric cancer

[97,98]. Another group found an attenuation of EMT and EMT-associated pacli-

taxel resistance in NSCLC via simvastatin induced inhibition of integrin-β3/FAK

signaling [99]. Furthermore, Tisza et al. [100] showed that in breast cancer lipid

raft destabilization enhances stem cell properties and EMT-induced remodeling.

1.7 Progesterone Receptor Membrane Component 1

Progesterone Receptor Membrane Component 1 (PGRMC1) belongs to the membrane-

associated progesterone receptor (MAPR) family (including the homologous proteins

PGRMC1, PGRMC2, Neudesin and Neuferricin), which share a cytochrome b5

(cytb5) related heme-binding domain. Dependent on factors like dimerization/multi-

merization or posttranslational modifications, PGRMC1 plays a role in various cel-

lular mechanisms and pathways and is expressed not only in different tissues and

cells but also in diverse compartments, such as the cytoplasm, the plasma mem-

brane, the inner acrosomal membrane, the nucleus/nucleolus, and the mitochondria

[101,102,103,104,105,106,107,108]. In high concentrations PGRMC1 has been found

in the liver and kidneys, as well as the brain, breast, heart, lung, pancreas and repro-

ductive tissues [109,110,111]. Studies done in 1996 by Meyer et al. [112] and Selmin

et al. [113], respectively, discovered PGRMC1 independently of each other. While

Meyer et al. [112] isolated the protein as high affinity progesterone binding site

from porcine liver membranes, the group of Selmin [113] purified the upregulated

PGRMC1 from the livers of rats treated with dioxin and termed it 25-Dx. PGRMC1

has a highly conserved structure. Homologous proteins have also been discovered

in other eukaryotes, among others the yeast homolog DAP1 in S. cerevisiae, the

nematode homolog VEM-1 in C. elegans, and the plant homolog AT2G24940 in A.

thaliana [114,115,116,117].
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1.7.1 Structure and Modifications

The main splice variant (195 amino acids) of PGRMC1 has a calculated mass of

21.7 kDa and an experimental mass of 25 kDa, which accounts to different post-

translational modifications (Figure 6a). PGRMC1 comprises a short N-terminal

luminal or extracellular domain (residues 1–20), a single membrane spanning do-

main (residues 21–42), and a long cytoplasmic domain (residues 43–195) [101,102,-

105,118] (Figure 6b). The C-terminal region contains a cytochrome b5-like motif

heme-binding domain (amino acids 70–130). While in most cytochrome b5 proteins

the heme iron molecule is bound via histidine residues in a hexacoordinate fashion, in

PGRMC1 heme is coordinated in a pentacoordinate fashion with the hydroxyl group

of a tyrosine residue [110,119,120,121,122,123]. Via heme-heme stacking PGRMC1

is able to form homodimers, which leads to interaction with other proteins, e.g.,

receptor proteins or cytochrome P450 enzymes. Carbon monoxide (CO) binds to

the sixth coordination site of the heme in PGRMC1 and thus interferes with dimer-

ization (Figure 6c). Phosphorylation of Y113 may facilitate membrane trafficking

functions of PGRMC1, but concurrently impedes heme binding and homodimer-

ization due to steric interference, indicating a reciprocal regulation [123,124]. The

numerous functions of PGRMC1 seem to be regulated by a variety of PTM, includ-

ing phosphorylation, ubiquitination, acetylation, and SUMOylation [107,124,125].

The phosphosite database (PSD) indicates that S57, Y113, Y180 and S181 are the

most commonly detected phosphorylation sites in PGRMC1 [126]. Differential phos-

phorylation of PGRMC1 in HR+ and HR- breast cancer indicates that not only the

expression level but also PTM of PGRMC1 may play a role in (breast cancer) cell

homeostasis [127]. PGRMC1 includes predicted binding site motifs for SH2 and

SH3 domain containing proteins, with several other phosphorylation sites, e.g., at

S57, T178, and S181 thought to regulate these sites. PGRMC1 contains two tar-

get sequences (Y139, Y180) that require tyrosine phosphorylation for SH2 domain

containing proteins to bind, thereby inducing conformational changes in the recep-

tor and subsequent facilitating downstream signaling [120,124]. Phosphorylation of

S181 and T178, by contrast, may sterically inhibit phosphorylation of Y180 and at-

tenuate protein interaction. Furthermore, PGRMC1 phosphorylation of S57 might

impair binding of SH3 domain containing proteins to the PGRMC1 SH3 target se-

quence P63 [124]. Potential proximity stimulated tripartite signaling platforms are

formed by juxtaposition of the SH3 target motif adjacent to S57 and the SH2 target

motifs containing Y139 and T178/Y180/S181 on the folded protein surface [120,-

125].
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(a)
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Figure 6: PGRMC1 structure
(a) Primary structure of PGRMC1. The leading splice variant of PGRMC1 contains 195 amino

acids, each letter represents one amino acid. A 1-letter code is used to denote each amino acid

[128,129]. (b) Secondary structure of PGRMC1. The protein consists of a N-terminal extracellular

domain (EC), an helical transmembrane domain (TMH) and a cytoplasmic domain (C) with a

cytochrome b5-like domain (cytb5 domain) which incorporates a heme binding element (heme

binding). Following peptide motifs are depicted: Src homology 3 (SH3) target sequence at P63,

Src homology 2 (SH2) target sequences at Y139 and Y180 [120,124]. The most commonly detected

phosphorylation sites S57, Y113, Y139, T178, Y180 and S181 according to the phosphosite database

are also shown [130]. (c) Crystallographic structure of the cytosolic domain of PGRMC1 [123].

The dimerization of PGRMC1 is mediated by stacking of two heme domains. The open surface

of the heme, whose iron is five-coordinated by Y113, mediates dimerization. Heme-dependent

dimerization of PGRMC1 is disrupted by CO binding to the sixth coordination site of the heme.

1.7.2 General Functions

PGRMC1 has a plethora of functions, including heme and progesterone binding, reg-

ulation of cytochrome P450 enzymes, cell proliferation and migration, involvement

in apoptosis and cell cycle control, cholesterol/steroid synthesis, angiogenesis, hy-

poxic biology, autophagy promotion, and vesicle trafficking. PGRMC1 has diverse
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effects based on cell type, cellular location of the protein and post-translational

modifications. As previously described, one of the better-understood functions of

PGRMC1 is binding of heme and the interaction with cytochrome P450 enzymes

(CYPs) [111,131,132,133,134]. Crystallographic analyses of Kabe et al. [123] showed

that dimerization of PGRMC1 via heme-heme stacking is responsible for interac-

tion with different cytochrome P450 enzymes and activation of the EGFR. They

further showed, that by facilitating its degradation, PGRMC1 leads to resistance

to the chemotherapeutic agent doxorubicin [123]. Via altering enzymatic activity

of CYPs, PGRMC1 might also influence susceptibility of cancer cells to cytostatic

agents such as paclitaxel and cisplatin [132,135,136,137]. In addition, PGRMC1

regulates cholesterol and steroid synthesis by interacting with CYPs [110,111,138,-

139]. Furthermore, a recent study revealed that PGRMC1 binds and stabilizes a

broad range of cytochromes P450 in a heme independent manner [140]. PGRMC1

has been implicated in the regulation of intracellular protein translocation among

other things via its YXXψ motifs, which are associated with vesicle transport and

endocytosis [115,141]. Although the name of PGRMC1 would suggest that it is

primarily involved in progesterone metabolism, the overall role of this molecule in

progesterone signaling is comparatively small. Progesterone (P4), a steroid primar-

ily synthesized from cholesterol by steroidogenic tissues in the gonads, placenta,

adrenal cortex, and brain, regulates carbohydrate, lipid, and protein metabolism

[142,143]. There is some debate over whether P4 is the natural ligand for PGRMC1

[120,144]. However, spectroscopic and mutagenesis studies showed that progesterone

binds to PGRMC1 in both the ferric and deoxyferrous states, preferably at a site

located within a segment composed of a part of the transmembrane domain and the

initial segment of the C-terminal domain. Thereby, P4 binding introduces changes

in the heme, possibly due to its colocalization with the heme in the putative heme-

/ligand-binding cleft [112,118,122,145]. PGRMC1 has been linked to P4-dependent

activities in many cell systems. For instance, PGRMC1 has been shown to induce

P4-dependent anti-apoptotic action in different tissue types, e.g., via interaction

with serpin 1 mRNA binding protein 1 (SERBP1) in granulosa cells [135,146,147,-

148]. In addition, PGRMC1 interacts with the extracellular signal-regulated ki-

nase 5 (ERK5) to regulate P4-induced secretion of brain-derived neurotrophic factor

(BDNF) in glial cells [149]. Furthermore, SUMOylated PGRMC1 has been shown to

inhibit T cell factor/lymphoid enhancer factor TCF/LEF-mediated transcriptional

activity by P4 [150]. PGRMC1 directly interacts with tubulin and stabilizes micro-

tubules. Via its effect on microtubule dynamics PGRMC1 influences mitosis and

cell motility [151]. In human pluripotent stem cells, PGRMC1 inhibits the p53 and

Wnt/β-catenin pathways to enhance self-renewal and suppress early differentiation

[152]. In addition, PGRMC1 provoked autophagy, inter alia, via interaction with
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microtubule-associated proteins 1 light chain 3 (LC3), which is a crucial component

of the degradative activity of autophagy [153].

1.7.3 Involvement in Cell Metabolism

Metabolic functions of PGRMC1 in lipid homeostasis and glycolysis have been shown

to be important by previous studies. Mass spectrometric analysis identified hex-

okinases, which are the first rate-limiting enzymes of glycolysis and the pentose

phosphate pathway, as potential PGRMC1 interacting proteins [154]. The differ-

ent isoenzymes of hexokinase (HK1-4) differ in substrate specificity, tissue-specific

expression, and intracellular localization [155,156]. Sabbir et al. [157] noted that

P4-PGRMC1 signaling causes rapid induction of aerobic glycolysis in line with the

Warburg effect in human embryonic kidney-derived cells (HEK293), which was as-

sociated with the post-translational modification of a 70 kDa fraction of PGRMC1

protein predominantly located in the ER and mitochondria. In contrast, P4 treat-

ment in HEPG2 cells decreased glycolysis and PGRMC1 was not degraded. Interac-

tion of PGRMC1 with hexokinases and translocation of HK1/2 to the endoplasmic

reticulum, mitochondria, and nuclear compartments following P4 treatment are cell

type specific. Dependent on cell type, there is also a difference in PGRMC1 half-life

and PTMs under basal conditions and after P4 treatment. Moreover, PGRMC1

has been shown to mediate the placental P4-dependent shift from aerobic towards

anaerobic glucose metabolism in gestational diabetes [158]. Further, PGRMC1 has

been reported to maintain plasma membrane pools of the insulin receptor (IR) and

to modulate IR signaling and function. PGRMC1 interacts with the IR and de-

creases insulin binding at the cell surface in cancer cells. PGRMC1 also elevates the

plasma membrane levels of GLUT4 and GLUT1, which are two principle glucose

transporters [159]. Similar results were obtained in a study of PGRMC1 in adipose

tissue, which showed that the heme-dimerized PGRMC1 interacts with low-density

lipoprotein receptors (VLDLR and LDLR) or GLUT4 and regulate their transloca-

tion to the plasma membrane, facilitating lipid uptake and accumulation, as well as

de-novo fatty acid synthesis. In addition, in insulin induced adipogenesis PGRMC1

gene expression is transactivated by transcription factors such as ATF/CREB and

PPARγ [160]. Contrary to these findings, other groups reported that in hepatic

cells PGRMC1 inhibits de novo lipogenesis, suppresses fatty liver development, and

promotes pancreatic insulin secretion [161,162]. By forming a complex with the

Sigma-2 Receptor/Transmembrane Protein 97 (TMEM97) and LDLR, PGRMC1

leads to efficient uptake of lipoproteins such as LDL and apolipoprotein E (apoE)

[163,164]. The TMEM97, PGRMC1, and LDLR complex mediates cellular uptake

of Aβ42 via apoE dependent and independent mechanisms and seems to have impli-
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cations in neurodegenerative diseases such as Alzheimer’s disease [163,164,165,166].

Studies by Thejer et al. [167,168] revealed that phosphorylation of PGRMC1 causes

pleiotropic plasticity-related changes in mitochondrial form and function, as well

as in PI3K/AKT activity, migration, and glucose consumption. PGRMC1 also has

functions related to the synthesis of sex hormones and the metabolism of choles-

terol and drugs [141]. Suchanek et al. [169] found that PGRMC1 directly interacts

with INSIG and SCAP, thereby contributing to cholesterol homeostasis. In addi-

tion, PGRMC1/INSIG2 signaling exerts regulatory effects in atypical antipsychotics-

induced lipid disturbances in the liver [170]. Furthermore, PGRMC1 interacts with

and activates the CYP-monooxygenase lanosterol demethylase (CYP51A1), which is

induced by SREBP2 as part of the cholesterol synthesis mechanism [171]. PGRMC1

also influences the ATP-independent incorporation of cholesterol into the membrane

and its stepwise conversion into estrogens by aromatase [139].

1.7.4 Role in Breast Cancer

PGRMC1 mRNA and protein is overexpressed in many solid cancer types, in-

cluding colon, pancreas, lung, ovary, cervix and breast cancer, and it contributes

to tumor progression through induction of cancer cell proliferation, metastasis,

and chemoresistance [123,131,135,147,172,173,174,175,176,177]. Different studies

showed the considerable role of PGRMC1 in breast cancer. Indeed, mechanisms

behind its regulatory function are complex and affected by multiple factors. Inter-

estingly, PGRMC1 expression and phosphorylation differ between HR+ and HR-

breast cancer. While PGRMC1 expression is elevated in HR- tumors, phosphory-

lation of PGRMC1 occurs predominantly in HR+ tumors [127]. In line with this,

PGRMC1 expression correlates with lymph node metastasis, larger tumor size and

poorer overall and tumor-free survival [178,179,180]. In vitro and in vivo anal-

ysis showed that higher expression of PGRMC1 fuels cancer cell proliferation and

metastasis [146]. In addition, PGRMC1 is linked to resistance to chemotherapeutics

like doxorubicin, cisplatin, and paclitaxel, for instance via interaction with EGFR

and CYP enzymes, leading to degradation of the drugs [123,135,136,147,181,182].

Furthermore, PGRMC1 induction is linked to hypoxia and PGRMC1 is overex-

pressed in hypoxic areas surrounding necrotic tumor tissue. Corresponding cells

also abundantly express GLUT1, leading to enhanced rates of anaerobic metabolism

[127,171,183]. Another mechanism by which PGRMC1 impacts carcinogenesis is its

activation of intracellular signaling pathways, e.g., via the AKT kinase [184].
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1.8 Aims of Thesis

The objective of this work is to get a deeper insight into the mechanisms by which

PGRMC1 regulates lipid homeostasis and oncogenic signaling in breast cancer.

PGRMC1 has been implicated in signaling pathways for proliferation, differentia-

tion, invasion, migration, and cell survival in prior studies. Nevertheless, the role of

PGRMC1 in lipid metabolism and oncogenic signaling, particularly in breast cancer,

remains unclear. Previous studies from our laboratory have focused on the interac-

tion between PGRMC1 with proteins from the mevalonate pathway. In this study,

we specifically focused on how PGRMC1 affects lipid synthesis, uptake and regu-

lation. We performed the experiments in two HR+ breast cancer cell lines (MCF7

and T47D) and in one triple negative breast cancer cell line (MDA-MB-231). In ad-

dition to the interaction of PGRMC1 with proteins involved in lipid metabolism, we

sought to investigate the influence of PGRMC1 on downstream signaling in the con-

text of altered lipid metabolism. We further examined whether the transcriptomic

and proteomic alterations induced by PGRMC1 were accompanied by changes in

metabolite levels. Therefore, levels of cholesterol and E2 were measured in PGRMC1

overexpressing and control cells also under consideration of post-translational mod-

ifications. A special focus was placed on PGRMC1-dependent expression of lipid

droplets and lipid rafts. In light of this, we assessed the alteration of levels and

localization of cell growth associated receptors such as HER2 and ERα in PGRMC1

expressing cells. Furthermore, effects of PGRMC1 expression on EGFR signaling

were examined. In order to investigate the effect of lipid depletion on breast cancer

cells and to confirm our hypothesis, we treated the cell lines with simvastatin and

measured treatment response by quantification of viability. Understanding the way

PGRMC1 interferes with key metabolic regulatory mechanisms could provide valu-

able information on how we can better diagnose, classify, and then treat diseases

such as breast cancer in the future.
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Abstract

Background: PGRMC1 (progesterone receptor membrane component 1) is a highly conserved heme binding
protein, which is overexpressed especially in hormone receptor-positive breast cancer and plays an important role
in breast carcinogenesis. Nevertheless, little is known about the mechanisms by which PGRMC1 drives tumor
progression. The aim of our study was to investigate the involvement of PGRMC1 in cholesterol metabolism to
detect new mechanisms by which PGRMC1 can increase lipid metabolism and alter cancer-related signaling
pathways leading to breast cancer progression.

Methods: The effect of PGRMC1 overexpression and silencing on cellular proliferation was examined in vitro and in
a xenograft mouse model.
Next, we investigated the interaction of PGRMC1 with enzymes involved in the cholesterol synthesis pathway such
as CYP51, FDFT1, and SCD1. Further, the impact of PGRMC1 expression on lipid levels and expression of enzymes
involved in lipid homeostasis was examined. Additionally, we assessed the role of PGRMC1 in key cancer-related
signaling pathways including EGFR/HER2 and ERα signaling.

Results: Overexpression of PGRMC1 resulted in significantly enhanced proliferation. PGRMC1 interacted with key
enzymes of the cholesterol synthesis pathway, alters the expression of proteins, and results in increased lipid levels.
PGRMC1 also influenced lipid raft formation leading to altered expression of growth receptors in membranes of
breast cancer cells. Analysis of activation of proteins revealed facilitated ERα and EGFR activation and downstream
signaling dependent on PGRMC1 overexpression in hormone receptor-positive breast cancer cells. Depletion of
cholesterol and fatty acids induced by statins reversed this growth benefit.
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Conclusion: PGRMC1 may mediate proliferation and progression of breast cancer cells potentially by altering lipid
metabolism and by activating key oncogenic signaling pathways, such as ERα expression and activation, as well as
EGFR signaling. Our present study underlines the potential of PGRMC1 as a target for anti-cancer therapy.

Keywords: PGRMC1, Breast cancer, Tumor progression, Cholesterol, Lipids, Estrogen receptor α, HER2, EGFR, Breast
cancer signaling pathway

Background
With approximately 25% of all new cancer cases, breast
cancer is the most common cancer in women [1] and re-
sponsible for the highest fraction of cancer death [2].
Therefore, the investigation of underlying mechanisms
on molecular levels and the discovery of new therapy ap-
proaches are research goals of utmost significance.
Progesterone receptor membrane component 1

(PGRMC1) is a highly conserved protein, which is pri-
marily found in the liver and kidney but also expressed
in various tissues such as brain, breast, lung, pancreas,
and reproductive tissues [3–5].
PGRMC1 has been confirmed to play a role in carcino-

genesis especially in breast cancer and may therefore rep-
resent a target for cancer therapy [6]. In many studies,
upregulation of PGRMC1 protein and mRNA was de-
tected in malignancies including colon, lung, ovary, cervix,
and breast [7–11]. Besides, PGRMC1 expression correlates
with metastasis to lymph nodes, larger tumor size, and
poorer overall- and tumor-free survival [9, 12]. Further,
interactions of PGRMC1 or its homologous proteins with
cytochrome P450 enzymes (CYPs) have been reported, for
example by stably binding heme in its cytb5 related do-
main [3, 5, 13–15]. PGRMC1 leads to resistance against
chemotherapeutic agents like doxorubicin, cisplatin, and
paclitaxel [13, 16, 17]. Moreover, different authors discuss
an involvement of PGRMC1 in cholesterol synthesis via
interaction with CYPs [3, 5, 18]. The role of cholesterol in
cancer is still not fully evaluated. Many studies describe an
association of high plasma and endogenous cholesterol
levels with (breast) cancer development and progression
[19–21], pointing towards a major role in cancer. Elevated
cholesterol and steroid levels may affect carcinogenesis in
different ways, e.g., in saturating the increased require-
ment for membrane components due to abundant cell
growth [22]. Furthermore, high cholesterol levels result in
an increase in the size and number of lipid rafts. Since
lipid rafts contain several signaling molecules, differences
in lipid rafts are modulating signaling cascades [23, 24],
such as EGFR and HER2 signaling and expression [25]. In
addition, cholesterol is the precursor of steroid hormones
like estradiol (E2), the important growth factor for hor-
mone receptor-positive breast cancer [26].
The aim of the present study was to investigate the

impact of PGRMC1 on lipid metabolism, lipid raft

formation, and its contribution to breast cancer progres-
sion and cancer-associated signaling pathways in hormone
receptor-positive (MCF7) and hormone receptor-negative
(MDA-MB-231) cells. For this purpose, interaction of
PGRMC1 with enzymes of the mevalonate pathway was
evaluated. Subsequently, effects of PGRMC1 expression
on cholesterol and lipid levels were investigated. A
special focus was placed on PGRMC1-dependent
expression and signaling of ERα and EGFR/HER2. To
explore the impact of modified lipid and steroid
metabolism (due to PGRMC1 expression), breast can-
cer cell growth was further explored by PGRMC1
overexpression and -silencing.

Methods
Cells and cell culture
MCF7, T47D, and MDA-MB-231 cells were purchased
from the ATCC (Manassas, Virginia). Cells were main-
tained in RPMI 1640 medium (Thermo Fisher Scientific,
Waltham, Massachusetts), supplemented with 10% (v/v)
fetal bovine serum (Thermo Fisher Scientific, Waltham,
Massachusetts), 100 units/mL penicillin/streptomycin
(Thermo Fisher Scientific, Waltham, Massachusetts),
and 0.025 mol/L HEPES (Thermo Fisher Scientific, Wal-
tham, Massachusetts) in a humidified incubator at 37 °C
with 5% CO2. Cells (passage number ≤ 25) were authen-
ticated regularly by Microsynth AG (Balgach,
Switzerland) using STRS analysis. The last authentica-
tion was performed on May 22, 2018.

Transfection of cell lines
Cells were transfected with the expression vector
pcDNA3.1/Hygro(+) (Thermo Fisher Scientific, Wal-
tham, Massachusetts), containing 3x HA-tagged (3x hu-
man influenza hemagglutinin-tagged) PGRMC1, using
Lipofectamine™ 2000 transfection reagent (Thermo
Fisher Scientific, Waltham, Massachusetts) (MCF7/
PGRMC1, T47D/PGRMC1 and MDA-MB-231/
PGRMC1). As a control, we used cells transfected with
the “empty” vector (MCF7/EVC, T47D/EVC, and MDA-
MB-231/EVC). Stable transfection was verified by PCR,
western blot, and immunofluorescence staining, to iso-
late PGRMC1-over-expressing clones.
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siRNA silencing of endogenous PGRMC1
For silencing of endogenous PGRMC1 in MCF7 cells,
FlexiTube GeneSolution for PGRMC1 (Qiagen, Hilden,
Germany) was used, containing four siRNAs that specif-
ically target human PGRMC1 mRNA. Cells were har-
vested after cultivation for 24 h, 48 h, and 72 h at 37 °C
to verify silencing by western blot analysis.
For MTT assays, cells were pre-incubated with siRNA

against PGRMC1 for 24 h at 37 °C in cell culture flasks
to silence the endogenous protein. Subsequently, the
cells were seeded in 96-well plates and again treated
with siRNA. Cell viability was measured after 24 h, 48 h,
and 72 h at 37 °C of incubation.

MTT assay
Cells (5 × 104 cells per well) were seeded in triplicates in
96-well plates in complete medium. Cells were either
grown (for different timespans) in full medium without
or with treatment. Afterwards cells were incubated with
0.25 mg/ml MTT solution for 3 h. After 1 h of incuba-
tion with DMSO, absorption at 540 nm was determined
with TECAN Spark®.

Quantification of lathosterol and cholesterol
Cholesterol and lathosterol were quantified by gas
chromatography-mass spectrometry analysis as de-
scribed previously (Maier et al., 2009), with minor
modifications.

Western blot analysis
Samples for western blot analysis and the respective mo-
lecular weight marker were loaded onto Mini-
PROTEAN® Precast Gel and separated via SDS-Page at
150 V. We activated the PVDF membrane with metha-
nol. Transmission of proteins was performed for 16 h at
4 °C and 10mA in blotting buffer. Afterwards, unspecific
binding was blocked by incubation of the PVDF mem-
brane with the transferred proteins with blocking solu-
tion for 1 h at room temperature. Primary antibody in
respective concentration was added in blocking solution
and incubated for 16 h at 4 °C. Subsequently, a second-
ary antibody was applied in 20% blocking solution at
room temperature. Proteins were detected using Amer-
sham™ ECL™ Western Blotting Detection Reagent.

Co-immunoprecipitation
Immunoprecipitation of HA-tagged PGRMC1 and HA-
tagged PGRMC1-variants was performed using the
Pierce™ HA-Tag IP/Co-IP Kit according to the manufac-
turer’s instructions. Cells overexpressing GFP-tagged
PGRMC1 were used as a negative control. Cell pellets
were resuspended in Co-IP lysis buffer. An amount of
500-μg protein was incubated with anti-HA agarose
slurry at 4 °C overnight. For elution, proteins were

denatured in sample buffer at 95 °C for 5 min and the
eluent was supplemented with 1M DTT. The elution of
PGRMC1 and mutual interaction partners was analyzed
directly via mass spectrometry (explained in the supple-
ments), SDS-PAGE, and western blot.

Proximity ligation assay (PLA)
The PLA procedure was performed using the Duolink®
PLA Kit. Cells were grown in chamber slides. Incubation
with the primary antibody cocktail containing anti-
PGRMC1 antibody and antibody against one of the pos-
sible interaction partners (or rabbit isotype IgG as nega-
tive control) was performed overnight at 4 °C.
Additionally, staining with anti-cytokeratin antibody

for 1 h was performed after amplification. Afterwards,
cells were stained with DAPI for 10 min and analyzed by
fluorescence microscopy within 1 week.

Reverse phase protein array (RPPA)
RPPA using Zeptosens technology was used for analysis
of signaling protein expression and activity profiling.
RPPA assay images were analyzed using ZeptoVIEW

Pro 3.1 array analysis software. Sample signals were
quantified as protein-normalized, blank-corrected mean
fluorescence intensities (NFI) of the single spots applying
linear fits and interpolation to the mean of the four
printed sample dilutions (eight spots per sample).

qRT-PCR
RNA was isolated from a cell pellet of 0.5 × 106 cells
using the RNeasy Mini Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s specifications.
Reverse transcription of RNA into cDNA was per-

formed with the Omniscript RT kit (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions.
For qPCR, QuantiFast SYBR Green PCR kit (Qiagen,
Hilden, Germany) and RT [2] qPCR Primer assays for
ESR1, HER2, TFF1, Myc, CCND1, PGR, SCD, FASN,
HMGS1, SREBF1, SREBF2, LDLR, ACAT1, and PDH
(Qiagen, Hilden, Germany) were used according to the
manufacturer’s specifications. qPCR was performed
using the LightCycler® 480 System (Roche, Penzberg,
Germany).

Estradiol ELISA
Supernatants of MCF7/EVC and MCF7/PGRMC1 cells
were analyzed for 17β-Estradiol (E2) concentrations
using a commercially available kit (ab108667, Abcam
plc, Cambridge, UK) according to the manufacturer’s
specifications.

Staining for lipid rafts and HER2
Co-staining of HER2 with lipid rafts was performed in
PGRMC1 overexpressing MCF7 and MDA-MB-231 cells
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and their respective empty vector controls. Cells were
seeded in a chamber slide for 24 h. Afterwards, the
medium was removed, and the cells were incubated for
another 24 h with medium containing stripped FCS and
were then incubated for 24 h with medium containing
normal FCS. Staining of lipid rafts was performed using
Vybrant™ Alexa Fluor™ 488 Lipid Raft Labeling Kit.
Afterwards, cells were fixed with 4% formaldehyde for
10 min. DAKO® protein block was used to block unspe-
cific binding sites for 1 h. Following this, cells were
stained with antibodies specific for HER2 (ab16901) over
night at 4 °C followed by an anti-mouse secondary-
antibody (Alexa Fluor 549 labeled) for 1 h. As negative
control mouse isotype IgG was used. After this, staining
with DAPI was performed. Subsequently cells were ex-
amined by fluorescence microscopy using Axioplan 2
Imaging (Carl Zeiss Microscopy GmbH, Jena, Germany).
For analyzing the amounts of lipid rafts and HER2 via
flow cytometry, cells were seeded in culture flasks and
synchronized as described above. Staining and fixation
was performed as described above. The emission (488
nm wavelength) was detected via high throughput flow
cytometry (CyAn, Beckman Coulter, Brea, USA).

Staining of lipid droplets
For visualizing of lipid droplets in PGRMC1 overex-
pressing MCF7, T47D, and MDA-MB-231 cells and
their respective empty vector controls via fluorescence
microscopy, the cells were grown in chamber slides for
24 h. Afterwards cells were stained with BODIPY™ 493/
503 (Sigma-Aldrich, St. Louis, Missouri) solubilized in
FCS-free medium and 2% BSA for 30 min. Cells were
fixed with 4% formaldehyde for 10 min, stained with
DAPI, and examined by fluorescence microscopy. For
analyzing amounts of lipid droplets via flow cytometry,
cells were grown for 24 h and harvested with trypsin.
Staining was performed as described above. The emis-
sion (488-nm wavelength) was detected via high
throughput flow cytometry (CyAn, Beckman Coulter,
Brea, USA).

Scatter plots of breast cancer microarray data
We obtained normalized microarray data (Affymetrix
Human Genome U133A Array) from the Gene Expres-
sion Omnibus (GEO, NCBI) [27]. The samples were nor-
malized using global scaling by the data set authors. We
confirmed the value distribution using mean values and
boxplots. Technical replicates were averaged. The values
of a selected panel of reporters were correlated against a
PGRMC1 reporter utilizing Spearman’s correlation.

Xenograft models
NOD.CB17-Prkdcscid (SCID) mice (female, 6-weeks old)
were obtained from the Jackson Laboratory (Bar Harbor,

Maine) and were bred in the SPF animal facility of the
Institute of Genetics at the Biological Research Centre,
Szeged, Hungary. Young adult SCID female mice were
transplanted subcutaneously in the flank with 17β-
estradiol pellet (containing biodegradable carrier-binder,
1.7 mg/pellet, 60-day release; SE-121, Innovative Re-
search of America, Sarasota, Florida) under pentobar-
bital anesthesia. The next day, the mice were injected
subcutaneously with 3 × 106 tumor cells in the opposite
flank. The mice were checked daily, and the tumor size
was measured twice weekly. At the end of the experi-
ment, the animals were euthanized, by pentobarbital
overdose, and the tumors dissected.

Treatment with simvastatin
For treatment with simvastatin, cells (105 cells per well)
were seeded in 96-well plates in complete medium for
24 h/37 °C. Afterwards, the medium was removed and
the cells were incubated with 100, 50, 25, 12.5, 6.25, and
3.125 μg/mL simvastatin for MCF7 cells and 20, 10, 5,
2.5, 1.25, and 0.625 μg/mL simvastatin for MDA-MB-
231. MTT assays were performed after 24 h, 48 h, and
72 h.

Statistical analysis
All experiments were performed with several independ-
ent biological replicates and repeated a minimum of
three iterations. Results are reported as means with
standard deviation. The data were tested for normal dis-
tribution using Shapiro-Wilk and Kolmogorov-Smirnov
test. Differences between groups were determined by un-
paired Student’s t test. Statistical analysis was performed
using R (RStudio) and IBM SPSS. Spearman’s ρ was cal-
culated in R using normalized microarray data and was
plotted as a scatterplot using the ggpubr R library. p <
0.05 was considered as statistically significant.

Results
PGRMC1 promotes viability of breast cancer cells and
growth of xenograft tumors while PGRMC1 inhibition and
downregulation reduce viability of breast cancer cells
As already shown in previous studies by us and others,
PGRMC1 overexpression results in increased prolifera-
tion of tumor cells [28–30]. In accordance with these re-
sults, in our study, MCF7/PGRMC1 and T47D/
PGRMC1 cells also profit from a significantly higher via-
bility compared to the respective empty vector control
cells (Fig. 1b, supplemental Figure 1A). For MDA-MB-
231 cells overexpressing PGRMC1, no such effects can
be observed (Fig. 1b). To further strengthen our theory,
we examined the impact of PGRMC1 silencing on tumor
proliferation by knocking down endogenous PGRMC1
expression. As hypothesized, the knockdown of PGRMC1
led to significantly decreased viability of MCF7 and T47D
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cells but not of MDA-MB-231 cells (Fig. 1a, supplemental
Figure 1B).
To validate and strengthen the in vivo findings of

Ruan et al. [30], to verify “our” cell models but also to
extend the data to other ER-positive BC cells, we

investigated effects of PGRMC1 overexpression on
MCF7 and T47D breast cancer cell growth in a xeno-
graft model. On that account, MCF7/PGRMC1 and
T47D/PGRMC1 cells were injected into the flanks of im-
munodeficient mice. As control, we used EVC cells.

Fig. 1 a Cell viability of MCF7/EVC and MCF7/PGRMC1 cells as well as MDA-MB-231/EVC and MDA-MB-231/PGRMC1 cells (n = 3). Viability was
analyzed by MTT assay at t = 0 h, 24 h, 48 h, 72 h, and 96 h/37 °C. Values were normalized to t = 0 (100%). *p≤ 0.05, **p≤ 0.01 (Student’s t test, n =
3). b Cell viability of MCF7 and MDA-MB-231 cells, treated with siRNA against PGRMC1 (siPGRMC1) and scrambled siRNA (siControl) (Student’s t
test, n = 3). Viability was analyzed at t = 0 h, 24 h, 48 h, and 72 h/37 °C. Values were normalized to t = 0 (100%). *p ≤ 0.05, **p≤ 0.01 (Student’s t
test, n = 3). c Tumor volumes of immunodeficient mice bearing human breast cancer MCF7/EVC and MCF7/PGRMC1 xenografts. ***p≤ 0.001,
****p≤ 0.0001 (Student’s t test, n = 11 mice each group). Images of tumor tissue dissected from each mouse
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Subsequently, the size of the developed tumor mass was
measured. As assumed, mice injected with PGRMC1
overexpressing breast cancer cells matured significantly
larger tumor masses, than mice injected with the re-
spective EVC cells (Fig. 1c, supplemental Figure 1C).

PGRMC1 interacts with proteins of the mevalonate
pathway
As already shown in previous studies from different re-
search groups, PGRMC1 might regulate cholesterol syn-
thesis in different ways, e.g., by activating enzymes of the
mevalonate pathway like CYP51/lanosterol demethylase
or by binding to the proteins Insig and Scap, which span
the endoplasmic reticulum and sense cholesterol levels
[31, 32]. In our present study, we focused on this regu-
lating influence and its possible involvement in PGRM
C1-induced breast cancer promotion.
In order to get a broader view about the role of PGRM

C1 in this context, we screened for potential PGRMC1
interaction partners by mass spectrometry analysis of
proteins co-immunoprecipitated from whole cell lysates
of MCF7 cells that had been transfected with PGRMC1-
HA, utilizing an antibody directed against the HA-tag
(Fig. 2a). Among proteins with higher significance, we
found various potential interaction partners involved in
the mevalonate pathway (e.g., SCD1, FDFT1, and
CYP51A1) and cellular transport processes such as
vesicle trafficking (e.g., Coatomer subunit beta and Coat-
omer subunit gamma-1) and nuclear export or import
(e.g., Exportin-1, Exportin-2, Exportin-5, Exportin-7 or
Importin-4 and Importin-5) processes. Since SCD1,
FDFT1, and CYP51A1 indicate a high evidence for pro-
tein interaction with PGRMC1 and since they play an
important role in cholesterol metabolism, we scrutinized
these interactions. Interaction of PGRMC1 with SCD1,
FDFT1, and CYP51A1 was confirmed by immunopreci-
pitating PGRMC1-HA in MCF7/PGRMC1 cells and by
subsequently visualizing the respective interaction part-
ners via western blot (Fig. 2b). To verify the observed in-
teractions in different cell lines independently of PGRM
C1 overexpression and immunoprecipitation, we per-
formed proximity ligation assay of candidate proteins
with endogenous PGRMC1 in MCF7 (Fig. 2c) and
MDA-MB-231 cells (supplemental Figure 1B). Interac-
tions between PGRMC1 and the respective enzymes are
represented by single spots in fluorescence microscopy.
While in MCF7 cells, a high number of spots per cell
were visible for the interaction with CYP51, FDFT1, and
SCD1, the low number of spots in MDA-MB-231 cells
indicated no or little interaction (Fig. 2d). Interactions of
PGRMC1 with FDFT1 and SCD1 were also observed in
T47D cells (supplemental Figure 2B,C). Western blot
analysis of protein expression of SCD1, FDFT1, and
CYP51 revealed higher CYP51 and SCD1 protein levels

in MCF7/PGRMC1 cells compared to MCF7/EVC, while
no difference in MDA-MB-231/PGRMC1 cells could be
observed compared to MDA-MB-231/EVC cells (Fig. 2e).
These results implicate not only a direct interaction of
PGRMC1 with SCD1, FDFT1, and CYP51, but also an
increased PGRMC1-driven upregulation of these en-
zymes in estrogen receptor-positive cells, that appeared
absent in hormone receptor-negative cells.

Overexpression of PGRMC1 leads to higher levels of
cholesterol in hormone receptor-positive breast cancer
cells
We hypothesized that the interaction of PGRMC1 with
enzymes of the mevalonate pathway might alter their
function and thus affects cholesterol synthesis, resulting
in elevated cholesterol levels, which may provide energy
and components supporting cancer metabolism. There-
fore, we measured intracellular cholesterol levels in syn-
chronized PGRMC1 overexpressing and empty vector
control MCF7 and MDA-MB-231 cells via mass spec-
trometry (Fig. 2f). Overexpression of PGRMC1 in MCF7
cells caused a significant increase (p < 0.05) of intracellu-
lar cholesterol levels compared to the empty vector con-
trol, while no difference in MDA-MB-231/PGRMC1
cells was observed (Fig. 2f). Additionally, levels of lathos-
terol, a precursor of cholesterol, were measured (Fig. 2f).
For MCF7/PGRMC1 cells, we detected a significantly
decreased ratio compared to MCF7/EVC cells. Interest-
ingly, a significantly decreased ratio of lathosterol/chol-
esterol in MDA-MB-231/PGRMC1 cells was observed
compared to MDA-MB-231/EVC cells, pointing towards
a small influence of PGRMC1 on cholesterol de novo
synthesis in these cells. The data reveal an impact of
PGRMC1 on de novo synthesis of cholesterol regarding
cholesterol levels and enzymatic turnover.

Upregulation of ERα, ERα downstream targets, and E2
levels mediated by PGRMC1
Since cholesterol is the precursor for steroid hormones,
we assumed that enhanced cholesterol synthesis may
affect E2 levels. E2 plays an essential role in hormone
receptor-positive breast cancer, e.g., by activating ERα
which is leading to tumor proliferation. E2 levels were
determined in the supernatant of MCF7/PGRMC1 cells
by ELISA (Fig. 3a). Consistent with the higher amounts
of cholesterol in MCF7/PGRMC1 cells, we found signifi-
cantly increased levels of E2 in the supernatant of
MCF7/PGRMC1 cells in comparison to MCF7/EVC
cells. To analyze the effect of higher E2 levels in MCF7/
PGRMC1 cells on breast cancer signaling, we deter-
mined the expression of different proteins known to play
a role in key signaling cascades in breast cancer via re-
verse phase protein array technology (RPPA) (Fig. 3b).
RPPA analysis revealed significantly (p < 0.05) elevated
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expression of ERα in MCF7/PGRMC1 cells compared to
MCF7/EVC cells (Fig. 3b). Subsequently higher levels of
HER2 and c-Myc proteins, whose expression depend on
the transcriptional activity of ERα, were observed while
c-Fos and PR levels were not altered (Fig. 3b). To verify
the results from RPPA, western blots were performed to
detect protein expression of ERα, HER2, and c-Myc
(Fig. 3c). In MCF7/PGRMC1 cells, expression of ERα,
HER2, and c-Myc is increased. Because E2 activates ERα
and our previous studies have demonstrated higher E2

levels in MCF7/PGRMC1 cells compared to MCF7/EVC
(Fig. 3a), we analyzed ERα phosphorylation at S118
(ERα-P-S118), which was also significantly increased
(p < 0.01) in MCF7/PGRMC1 cells compared to MCF7/
EVC (Fig. 3c). Additionally, we performed qPCR analysis
of mRNA expression for ESR1, Tff1, HER2, CCND1,
Myc, and PGR in the PGRMC1 overexpressing cell lines
in comparison to the empty vector control (Fig. 3d, sup-
plemental Figure 3B). In MCF7/PGRMC1 and T47D/
PGRMC1 we detected higher mRNA levels for ESR1 and

Fig. 2 a Scatter plot of proteins with significantly higher intensities in PGRMC1-HA samples compared to PGRMC1-GFP samples identified by
mass spectrometry. The most significant proteins exhibit very high value for Student’s t test difference HA_GFP and –log Student’s t test p value
HA_GFP and are found in the upper right corner. Highlighted are proteins with important functions in steroid synthesis. b Detection of co-
immunoprecipitated proteins CYP51A1, Stearoyl-CoA desaturase (SCD1), and FDFT1 by western blot. c Verification of the interactions via proximity
ligation assay. Quantification of dots per cell. d Visualization via immunofluorescence microscopy. e Quantification of protein expression of CYP51,
SCD1, and FDFT1 in MCF7/PGRMC1 cells and MDA-MB-231/PGRMC1 cells compared to their respective empty vector control by western blot.
*p≤ 0.05, ***p ≤ 0.001. f Detection of cholesterol and its precursor lathosterol in PGRMC1 overexpressing cells compared to the empty vector
control cells with mass spectrometry *p≤ 0.05, ***p ≤ 0.001 (Student’s t test, n = 3)
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the ERα-dependent gene trefoil factor 1 (Tff1), CCND1
and Myc as reporter genes for ERα activation compared
to MCF7/EVC and T47D/EVC. Interestingly, mRNA
levels of PGR were significantly lower in the PGRMC1

overexpressing cells compared to their empty vector
control. To further consolidate our hypothesis, we sig-
nificantly silenced (p < 0.01) PGRMC1 expression by
siPGRMC1 (Fig. 3e). As expected, the expression of ERα,

Fig. 3 a Amount of E2 in the supernatant of MCF7/PGRMC1 cells compared to the empty vector control after 48 h, detected with ELISA. **p ≤
0.01. b NFI (blank-corrected mean fluorescence intensity) ratio of protein expression of ERα, Her2, PR, c-Myc, and c-Fos analyzed by RPPA. Protein
expression was normalized to MCF7/EVC and protein expression measured in MCF7/EVC cells was set to 1. Up-/downregulation of protein
expression in MCF7/PGRMC1 cells were calculated. *p≤ 0.05 (Student’s t test, n = 3). c Western blot analysis of ERα, Her2, and c-Myc protein levels
in MCF7/EVC and MCF7/PGRMC1 cells. Representative picture of 3 independent analyses. d qRT-PCR analysis of ESR1, TFF1, HER2, CCND1, Myc, and
PGR mRNA expression in MCF7/EVC and MCF7/PGRMC1 cells, MDA-MB-231/EVC and MDA-MB-231/PGRMC1 cells. *p≤ 0.05, ***p≤ 0.001 (Student’s
t test, n = 3). e qRT-PCR analysis of PGRMC1, ESR1, HER2, and TFF1 mRNA expression in MCF7 siCtrl and MCF7 siPGRMC1 cells. *p≤ 0.05, **p < 0.01,
****p≤ 0.0001 (Student’s t test, n = 3). f Western blot analysis of ERα and Her2 protein levels in MCF7 siCtrl and MCF7 siPGRMC1 cells.
Representative blot from 3 independent analyses. g Quantification of HER2 protein in membranes of unpermeabilized MCF7/EVC and MCF7/
PGRMC1 cells, MDA-MB-231/EVC and MDA-MB-231/PGRMC1 cells, and MCF7 siCtrl and MCF7 siPGRMC1 cells (h) via flow cytometry. *p≤ 0.05
(Student’s t test, n = 3)

Asperger et al. Breast Cancer Research           (2020) 22:75 Page 8 of 16



ESR1, and Tff1 were significantly downregulated (Fig. 3e),
albeit no significant upregulation was detected for
mRNA levels of HER2 pointing towards a post-
transcriptional regulation of HER2 levels by PGRMC1
(Fig. 3e). In accordance, western blot analysis revealed
decreased expression of ERα and HER2 in MCF7/
siPGRMC1 (Fig. 3f). Previous studies revealed that
HER2 overexpression causes deformation of the cell
membrane and a subsequent disruption of epithelial fea-
tures independent of receptor signaling [25, 33]. We
demonstrated higher HER2 expression on the surface of
non-permeabilized MCF7/PGRMC1 cells compared to
MCF7/EVC cells using flow cytometry (Fig. 3g). Simi-
larly, HER2 levels were reduced on the surface of
MCF7/siPGRMC1 cells (Fig. 3h). MDA-MB-231/
PGRMC1 cells even showed lower expression of HER2
compared to MDA-MB-231/EVC cells (Fig. 3g).

PGRMC1 overexpressing breast cancer cells show higher
amounts of neutral lipids and lipid droplets
Lipid droplets recently emerged as new organelles not
only due to their role in energy storage, but also as mod-
ulators of cell signaling and lipid homeostasis in several
diseases including breast cancer [34–36].
By altering cholesterol levels in breast cancer cells,

PGRMC1 could have a major influence on tumor growth
via an enhanced lipid droplet formation in hormone
receptor-positive breast cancer. To quantify the amount
of neutral lipids, PGRMC1 overexpressing cell lines and
their respective empty vector control were examined by
BODIPY® staining of neutral lipids respectively lipid
droplets. Subsequent flow cytometry analysis showed
that PGRMC1 overexpressing hormone receptor-
positive cells have a significantly higher amount of neu-
tral lipids in comparison to the empty vector control
(Fig. 4a, supplemental Figure 4A). Interestingly, we
found significantly lower levels of lipids in MDA-MB-
231/PGRMC1 cells compared to MDA-MB-231/EVC
(Fig. 4a). Our results point towards an upregulation of
lipid synthesis due to PGRMC1 overexpression in hor-
mone receptor-positive breast cancer, which might lead
to enhanced tumor growth.

PGRMC1 fuels endogenous lipid synthesis and lipid
uptake and upregulates enzymes of the cholesterol
metabolism
Besides the direct interaction of PGRMC1 with enzymes
of the mevalonate pathway, the influence of PGRMC1
on lipid metabolism might be explained by increased
mRNA expression of enzymes involved in endogenous
and exogenous lipid metabolism.
Quantitative PCR analysis revealed increased levels of

mRNA for SREBF1, SREBF2, LDLR, HMGS1, SCD,
FASN, and ACAT1 in MCF7/PGRMC1 cells compared

to MCF7/EVC cells (Fig. 4b, supplemental Figure 4B).
These enzymes are not only key players in cholesterol
and fatty acid synthesis, but also upregulated in breast
cancer and they are associated with a worse outcome. In
MDA-MB-231 cells, PGRMC1 overexpression did not
result in higher expression of the abovementioned pro-
teins (Fig. 4b). To show the increasing effect of PGRM
C1 on expression of enzymes of the lipid metabolism,
we obtained normalized microarray data of 63 hormone
receptor-positive breast cancers tissue samples [37].
Spearman’s correlation between the PGMRC1 expres-
sion level and various expression levels of proteins
(FASN, FDFT1, HMGCS1, HMGCR, LDLR, SCD) indi-
cated positive correlations between PGRMC1 and the re-
spective enzymes in luminal A breast cancer tissue
samples (Fig. 4c). Our findings advert to a complex and
diverse impact of PGRMC1 on lipid homeostasis in
breast cancer.

PGRMC1 enhances expression of lipid rafts in cell
membranes of breast cancer cells
Lipid rafts are cholesterol-rich microdomains in cell
membranes, which have functions in cell proliferation
and growth, membrane trafficking, metastasis, and apop-
tosis [23, 24, 38]. Furthermore, lipid raft formation in
cell membranes is influenced by FDFT1 activity [39].
Since lipid rafts play a role in breast cancer progression
and due to the fact that (a) PGRMC1 overexpressing
hormone receptor-positive breast cancer cells have
higher amounts of cholesterol and that (b) PGRMC1 in-
teracts with FDFT1, we determined the abundance of
lipid rafts in MCF7 and MDA-MB-231 cells with PGRM
C1 overexpression and respective empty vector control
as well as in MCF7 cells treated with siRNAs directed
against PGRMC1, to knockdown PGRMC1 (Fig. 4d).
Cells were stained with Vybrant™ Alexa Fluor™ 488 Lipid
Raft Labeling Kit and detected by flow cytometry.
MCF7/PGRMC1 cells showed significantly higher levels
of lipid rafts compared to the respective empty vector
control (Fig. 4d, upper). In addition, we found signifi-
cantly lower expression of lipid rafts when endogenous
PGRMC1 was knocked down in MCF7 cells (Fig. 4d,
lower). Interestingly, lipid rafts were decreased in PGRM
C1 overexpressing MDA-MB-231 cells (Fig. 4d).
Elevated proliferation mediated by lipid rafts is, among

others, attributed to modulation of signaling functions of
growth factor receptors like the ErbB (HER) receptor
family.
Since we found higher expression of HER2 in the

membrane of PGRMC1 overexpressing MCF7 cells
(Fig. 3g), we analyzed the HER2 expression in lipid rafts
in more detail.
PGRMC1 overexpressing MCF7 and MDA-MB-231

cells and respective empty vector control cells were co-
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Fig. 4 a Detection of neutral lipids and lipid droplets in MCF7/EVC and MCF7/PGRMC1, MDA-MB-231/EVC and MDA-MB-231/PGRMC1 cells by
BODIPY® staining and quantification via flow cytometry. *p≤ 0.05, **p≤ 0.01. (Student’s t test, n = 3). b qRT-PCR analysis of SREBF1, SREBF2, LDLR,
HMGS1, SCD, FASN, ACAT mRNA expression in MCF7/PGRMC1 and MDA-MB-231/PGRMC1 cells compared to the respective EVC cells. *p≤ 0.05,
**p≤ 0.01, ***p≤ 0.001 (Student’s t test, n = 3). c Spearman’s correlation between the PGMRC1 expression level and various expression levels of
proteins (FASN, FDFT1, HMGCS1, HMGCR, LDLR, SCD) involved in lipid metabolism. Data obtained from normalized microarray data (Affymetrix
Human Genome U133A Array) of 63 hormone receptor-positive breast cancer tissue samples. d Detection of lipid rafts in cell membranes of
MCF7/EVC and MCF7/PGRMC1 cells, MDA-MB-231/EVC and MDA-MB-231/PGRMC1 cells, and MCF7 siCtrl and MCF7 siPGRMC1 cells by Vybrant™
Alexa Fluor™ 488 and subsequent quantification via flow cytometry. *p≤ 0.05, **p≤ 0.01 (Student’s t test, n = 3). e Immunofluorescence staining
with Vybrant™ Alexa Fluor™ 488, fluorescence immunocytochemistry for HER2, and nuclear staining with DAPI. 63-fold magnification. Cells were
grown on chamber slides for 24 h
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stained for HER2 and lipid rafts (Fig. 4e, supplemental
Figure 3C). Especially in MCF7/PGRMC1 cells, we
found a strong co-localization of HER2 in lipid rafts
(Fig. 4e).

PGRMC1 influences activation of EGFR signaling
Another important member of the ErbB receptor family,
which plays a major role in breast cancer signaling, is
the EGFR. Several studies suggest that PGRMC1 may
promote EGFR phosphorylation and activation [8, 9, 13,
40]. The hypothesis of PGRMC1 enhancing EGFR sig-
naling was investigated by reverse phase protein array
(RPPA) with a focus on phosphorylation of EGFR and
its downstream targets in MCF7/PGRMC1 and MCF7/
EVC cells (Fig. 5a). Our results point towards an in-
creased phosphorylation of EGFR (p-Tyr1068), Akt (p-
Ser473 and p-Thr308), MEK1/2 (p-Ser217/Ser221),
ERK1/2 (p-Thr202/Tyr204), and S6 (p-Ser240/Ser244)
in PGRMC1/MCF7 cells compared to EVC cells (Fig. 5a).
In combination with our results from immunofluores-
cence staining, this suggests that there might exist a
powerful link between PGRMC1 expression and activa-
tion of oncogenic signaling pathways in MCF7 cells
(Fig. 5c).
To verify the RPPA results, we performed western blot

analysis of EGFR signaling induced with EGF (Fig. 5b).
Phosphorylation of EGFR, Akt, MEK1/2, and ERK1/2
was observed (Fig. 5b). Compatible, significantly elevated
levels of EGFR (p-Tyr1068), Akt (p-Ser473), MEK1/2 (p-
Ser217/Ser221), and ERK1/2 (p-Thr202/Tyr204) were
monitored in MCF7/PGRMC1 cells. In contrast, expres-
sion levels of total protein did not vary significantly
(Fig. 5c). MDA-MB-231 showed no difference in expres-
sion levels of EGFR (p-Tyr1068), Akt (p-Ser473), MEK1/
2 (p-Ser217/Ser221), and ERK1/2 (p-Thr202/Tyr204),
suggesting a subordinated role of PGRMC1 in EGFR sig-
naling in triple-negative breast cancer (supplemental Fig-
ure 4A, 4B).

Cholesterol and fatty acid depletion induced by statins
reverses the growth benefit interceded by PGRMC1
Our findings suggest a complex and broad role of
PGRMC1 in cholesterol and lipid metabolism (Fig. 5d).
Based on our research concerning the influence of
PGRMC1 on lipid homeostasis and increased viability of
PGRMC1 overexpressing cells, we hypothesized that a
higher lipid synthesis might lead to a survival benefit of
PGRMC1 overexpressing cells.
To verify this hypothesis, we treated PGRMC1 overex-

pressing MCF7 and MDA-MB-231 cells and the respect-
ive controls with different concentrations of simvastatin,
a competitive inhibitor of HMG-CoA reductase, and
performed subsequent viability assays (Fig. 5d).

Interestingly, contrary to expectations, inhibition of
HMG-CoA reductase and following depletion of choles-
terol not only assimilated viability in MCF7/PGRMC1
cells compared to MCF7/EVC cells, but even led to in-
ferior viability. This suggests a higher dependence of
PGRMC1 overexpressing cells on cholesterol. Intri-
guingly, MDA-MB-231 cells with PGRMC1 overexpres-
sion reacted similar to MCF7 cells (Fig. 5d).

Discussion
Although previous studies report on the proliferative ef-
fect of PGRMC1 in breast cancer, little is known about
the mechanisms by which PGRMC1 effects carcinogen-
esis. Therefore, our present study focuses on the modify-
ing function of PGRMC1 on lipid metabolism and
oncogenic signaling. Evidence is pointing towards a
meaningful impact of modified lipid metabolism in
breast cancer progression and metastasis [41–44]. Al-
though one of the most relevant mechanisms of energy
usage of cancer cells is their increase in glucose uptake
and their use of non-oxidative glycolysis, also known as
Warburg effect, breast cancer cells upregulate lipid de
novo synthesis and the uptake of free fatty acids and
low-density lipoproteins [44, 45]. Our findings suggest
the function of PGRMC1 as an important enhancer es-
pecially of lipid synthesis resulting in oncogenic signal-
ing and tumor progression. For the first time, we
detected enhanced mRNA expression of proteins regu-
lating lipid synthesis and uptake in PGRMC1 overex-
pressing hormone receptor-positive MCF7 and T47D
cells resulting in significantly higher lipid levels in
MCF7/PGRMC1 and T47D/PGRMC1 cells compared to
the empty vector control cells. Further, we could dem-
onstrate that PGRMC1 interacts with CYP51, FDFT1,
and SCD1, which are major players in lipogenesis. Inter-
estingly, these interactions are less pronounced in
MDA-MB-231 cells. An explanation for the lower inter-
action might be that triple-negative breast cancer cells
have been reported to cover their needs for lipids via the
uptake of exogenous fatty acids in contrast to perform-
ing lipid de novo synthesis [44, 46].
A possible result of the detected interactions between

PGRMC1 and CYP51, FDFT1, and SCD1 could be the
increase of cholesterol and neutral lipid levels in MCF7/
PGRMC1 and T47D/PGRMC1 cells. Since cholesterol is
the precursor of steroid hormones like estradiol, elevated
levels of cholesterol may subsequently lead to higher
levels of estradiol as indicated by our measurements in
the supernatant of MCF7/PGRMC1 cells of this sce-
nario. One consequence could be that PGRMC1 pro-
motes tumor progression by upregulation of ERα
protein and ESR1 mRNA directly via a transcriptional
mechanism or indirectly via elevated steroid synthesis.
Since various studies showed an upregulation of steady-
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Fig. 5 (See legend on next page.)
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state ERα levels by long-term exposure to E2 [47], in-
creased levels of ERα plus a simultaneous autocrine/
paracrine activation by E2 may trigger a proliferative
cycle support in tumor growth. For the first time, we
also observed that PGRMC1 impacts on lipid rafts,
another regulator of cancer progression. Lipid rafts
are important, e.g., in modulation of membrane
geometry, lateral movement of molecules, and signal
transduction [23, 48]. We observed increased lipid
raft formation in PGRMC1 overexpressing hormone
receptor-positive breast cancer cells. The co-
localization of HER2 in lipid rafts, also reported by
other research groups [49, 50], may influence EGFR
signaling. Zhuang et al. reported an EGF-induced and
constitutive signaling via the Akt serine-threonine
kinase and subsequent survival in cancer cells [51].
Furthermore, EGFR and HER2 localization in lipid
rafts is discussed to play a role in cancer cell drug resist-
ance, e.g., regarding treatment with trastuzumab or tyro-
sine kinase inhibitors [49, 50]. On the other hand, Orr
et al. showed that altered cholesterol levels modify the
mobility of EGFR in the cell membrane leading to its de-
creased activation due to reduced dimerization of EGFR
monomeres [25]. The relevant role of PGRMC1 in pro-
moting phosphorylation and activation of receptors for ex-
ample by heme-dependent PGRMC1 dimerization has
already been reported [8, 9, 13, 40]. Here, elevated phos-
phorylation levels of EGFR and its downstream targets in
MCF7/PGRMC1 cells were discovered. The crosstalk be-
tween EGFR/Her2 and ERα signaling cascades has often
been reported, whereby ERα can induce the E2-dependent
activation of the EGFR signaling pathway by promoting
phosphorylation of Akt (P-Ser473) via the non-genomic
pathway. Alternatively, ERα activation can be accom-
plished independently of estrogens by EGFR-activated
MAPK-signaling or PI3K pathway [52, 53]. In the current
study, we demonstrate that both MAPK and PI3K path-
way components (i.e., MEK1/2, ERK1/2, and AKT) are

activated in PGRMC1 overexpressing MCF7 cells. This
may lead to increased ERα activation and finally to in-
creased cancer proliferation. Additionally, ERα and HER2
correlate positively in HER2 non-overexpressing breast
cancer [54, 55]. Hence, higher levels of ER in MCF7/
PGRMC1 cells could lead to higher expression of HER2.
However, the influence of PGRMC1 on EGFR/HER2 sig-
naling in lipid rafts and its impact on tumor progression
requires further studies.
Due to the role of the mevalonate pathway and its dual

role in cholesterol synthesis and prenylation of signaling
proteins, statins have been tested as anti-cancer drugs.
Statins block the HMG-CoA reductase, the gatekeeper of
the mevalonate pathway. We speculated due to increased
activation of the mevalonate pathway and due to higher
cholesterol and neutral lipids production that PGRMC1
overexpressing cells may be more dependent on the meva-
lonate pathway. Hence, they might be more susceptible to
statin treatment [56–60]. For the first time, we detected
that MCF7/PGRMC1 and MDA-MB-231/PGRMC1 cells
are more sensitive to treatment with simvastatin com-
pared to the respective controls. We assume that PGRM
C1 overexpression leads to higher dependence on choles-
terol and fatty acids of cancer cells due to an alteration of
fatty acid metabolism, by enhanced driving of the mevalo-
nate pathway and related synthesis of the isoprenoids ger-
anylgeranyl pyrophosphate (GGPP) and farnesyl
pyrophosphate (FPP) [61, 62], e.g., leading to inhibition of
small Rho GTPase prenylation [63].
Indeed, PGRMC1 might also reduce viability of breast

cancer cells under treatment with statins, because
PGRMC1 is known to interact with CYP enzymes [3, 5,
13–15]. Specifically, inhibition of cytochromes P450
could increase the concentration of simvastatin, since
statins are metabolized by CYP3A4.
Hence, PGRMC1 overexpressing tumors may be an in-

teresting target for additional cholesterol lowering
therapy.

(See figure on previous page.)
Fig. 5 a Protein phosphorylation of EGFR P-Tyr1068, Akt P-Ser473, Akt P-Thr308, MEK1/2 P-Ser217/Ser221, Erk1/2 P-Thr202/Tyr204, and S6 P-
Ser240/Ser244 analyzed by RPPA. NFI (blank-corrected mean fluorescence intensity) ratio of phospho-protein/total protein was calculated,
normalized to MCF7/EVC, and ratio in MCF7/EVC cells was set to 1. Up-/downregulation of protein phosphorylation in MCF7/PGRMC1 cells was
calculated. *p≤ 0.05, **p≤ 0.01 (Student’s t test, n = 3). b Protein phosphorylation of EGFR P-Tyr1068, Akt P-Ser473, MEK1/2 P-Ser217/Ser221, and
Erk1/2 P-Thr202/Tyr204 verified by western blot analysis. Cells were treated with EGF (10 ng/mL) for 10 min/37 °C. Representative blot of 3
independent analyses. Total protein expression of EGFR, Akt, MEK1/2, and Erk1/2 verified by western blot analysis. Representative blot of 3
independent analyses shown. c PGRMC1 mediates phosphorylation of EGFR and its downstream targets and upregulates E2 levels, ERα
expression, and ERα-target genes. EGFR phosphorylation activates the MAPK signaling cascade (including MEK1/2-, ERK1/2-, and S6-
phosphorylation) and PI3K signaling cascade (including Akt- and S6-phosphorylation). Phosphorylation of S6 induces transcription of genes,
involved in the regulation of cell cycle progression, cell proliferation, and glucose homeostasis. ERα translocates into the nucleus upon ligand-
dependent or ligand-independent activation and acts as a transcription factor to transcribe genes involved in tumor progression. d Overview of
the influence of PGRMC1 in cholesterol and lipid metabolism. e MCF7/EVC and MCF7/PGRMC1 cells were treated with 100 μM, 50 μM, 25 μM,
12.5 μM, 6.25 μM, and 3.175 μM simvastatin and respective DMSO control. MDA-MB-231/EVC and MDA-MB-231/PGRMC1 cells were treated with
20 μM, 10 μM, 5 μM, 2.5 μM, 1.25 μm, and 0.625 μM simvastatin and respective DMSO control. Viability was analyzed by MTT assay at t = 24 h, t =
48 h, t = 72 h and 37 °C. Depicted are results after 48 h of treatment. Viability is normalized on the DMSO control. p values were adjusted using
the Bonferroni correction (ndoses = 6; nreplicates = 9)
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Conclusion
We demonstrate that PGRMC1 mediates progression of
breast cancer cells potentially by altering cholesterol and
lipid metabolism and activating key drivers of tumor
progression in breast cancer, namely ERα expression
and activation, as well as EGFR signaling. Our data
underline the contribution of PGRMC1 to especially
hormone receptor-positive breast cancer pathogenesis
in vitro and in vivo and suggest its potential as a target
for anti-cancer therapy.
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1186/s13058-020-01312-8.
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Supplements 
 
Methods 
 
Quantification of lathosterol and cholesterol 
Cholesterol and lathosterol were quantified by GC-MS analysis as described previously 
(Maier et al., 2009), with minor modifications. 
Briefly, the cell pellet was extracted with hexane:2-propanol 3:2 v/v, spiked with internal 
standards [2H5]cholesterol and [2H7]lathosterol and evaporated to dryness under nitrogen. 
The residue was saponified with 1 M NaOH in 90% ethanol for 1 h at 70 °C and subsequently 
extracted with cyclohexane. The organic phase was evaporated and the tert-
butyldimethylsilyl derivatives prepared by addition of 20 µl of N-tert-butyldimethylsilyl-N-
methyltrifluoroacetamide (MBDSTFA) and 20 µl of DMF. Cholesterol and lathosterol were 
measured by GC-MS on a 5975C inert XL MSD, coupled to a 7890A GC (Agilent) in selected 
ion monitoring (SIM) mode at m/z 443.4, [2H5]cholesterol at m/z 448.4, and [2H7]lathosterol 
at m/z 450.4. Calibration samples prepared directly from the working solutions, were 
worked up as described above, and analyzed together with the unknown samples. 
Calibration curves based on internal standard calibration were obtained by weighted (1/x) 
linear regression for the peak-area ratio of the analyte to the respective internal standard 
against the amount of the analyte. The concentration of the analytes in unknown samples 
was obtained from the regression line. 
PGRMC1 was immunoprecipitated from four individual replicates of MCF7/PGRMC1-HA 
cells. As a negative control, GFP-labelled MCF7/PGRMC1 cells (MCF7/PGRMC1-GFP) were 
used. Resulting protein preparations were shortly separated in a 4-12% polyacrylamide gel 
(about 4 mm running distance), silver stained and processed as 
 
Mass spectrometry of PGRMC1 interaction partners 
PGRMC1 was immunoprecipitated from four individual replicates of MCF7/PGRMC1-HA 
cells. As a negative control, GFP-labelled MCF7/PGRMC1 cells (MCF7/PGRMC1-GFP) were 
used. Resulting protein preparations were shortly separated in a 4-12% polyacrylamide gel 
(about 4 mm running distance), silver stained and processed as 
previously described. Briefly, samples were destained, reduced with dithiothreitol, alkylated 
with iodoacetamide, digested with trypsin peptides extracted from the gel and finally 
resuspended in 0.1 % trifluoroacetic acid. Subsequently, the samples were analyzed on a 
liquid chromatography coupled electrospray ionization Orbitrap mass spectrometer. An 
Ultimate 3000 Rapid Separation Liquid Chromatography System was used for peptide 
separation: peptides were initially pre-concentrated on a trap column (Acclaim PepMap100, 
3 µm C18 particle size, 100 Å pore size, 75 µm inner diameter, 2 cm length) at a flow rate of 
6 µl/min for ten minutes using 0.1 % TFA as mobile phase and thereafter separated on an 
analytical column (Acclaim PepMapRSLC, 2 µm C18 particle size, 100 Å pore size, 75 µm 
inner diameter, 25 cm length) at a flow rate of 300 nl/min at 60°C using a 2 h gradient from 4 
to 40 % solvent B (0.1 % (v/v) formic acid, 84 % (v/v) acetonitrile in water) in solvent A (0.1 % 
(v/v) formic acid in water). The liquid chromatography system was online coupled to an 
Orbitrap Elite mass spectrometer via a nano electrospray ionization source and peptides 
injected by distal coated Silica Tip emitters using a spray voltage of 1.45 kV. The mass 
spectrometer was operated in positive, data-dependent mode with capillary temperature 
set to 225 °C. First, full scans (350-1700 m/z, resolution 60,000) were recorded in the 



Orbitrap analyzer of the instrument with a maximal ion time of 200 ms and the target value 
for automatic gain control set to 1,000,000. In the linear ion trap part of the instrument 
subsequently up to twenty double- and triple-charged precursors with a minimal signal of 
500 were isolated (isolation window 2 m/z), fragmented by collision induced dissociation 
(CID) and analyzed with a maximal ion time of 50 ms and the target value for automatic gain 
control set to 3000 (available mass range 50-2000 m/z, resolution 5400). Already analyzed 
precursors were excluded from further isolation and fragmentation for 45 sec. 
For data analysis, the MaxQuant environment (version 1.5.3.8, was used with standard 
parameters if not otherwise stated. Spectra were searched against 20187 Swiss-Prot entries 
from the Homo sapiens proteome (UP000005640, downloaded on 18 th November 2015 
from UniProt KB). Label-free quantification was enabled as well as the match between runs 
option. Tryptic cleavage specificity was chosen, as well as carbamidomethyl at cysteines as 
fixed and methionine oxidation, phosphorylation (threonine, serine and tyrosine), 
acetylation at protein n-termini and ubiquitination at lysine (GlyGly, +114.0429) as variable 
modifications. Mass tolerances were 20 ppm (first search) and 4.5 ppm (second search after 
recalibration) for precursor masses and 0.5 Da for fragment masses. Phosphorylation sites 
were reported showing the highest probability calculated form an MS/MS spectrum peak 
matches. Peptides and proteins were accepted at a false discovery rate of 1 %. For relative 
quantification of phosphorylated peptides, peptide intensities were normalized to 
progesterone receptor amounts by dividing them by the total progesterone receptor 
intensity. 
 
Reverse Phase Protein Assay (RPPA) 
The following primary antibodies were used (provider and product number): Akt (CST 4685), 
Akt-P-Ser473 (CST 4060), Akt-P-Thr308 (CST 9275), c-Fos (CST 4384), c-myc (CST 9402), c-
myc-P-Thr58/Ser62 (Abcam ab32029), EGFR (ErB-1, HER1) (CST 4405), EGFR (ErB-1, HER1)-P-
Tyr1068 (CST 2234), ER (estrogen receptor) (Thermo RM-9101-S), Erk1/2 (MAPK p44/42) 
(CST 4695), Erk1/2 (MAPK p44/42)-P-Thr202/Tyr204 (CST 4370), Her2 (Dako A0485), Her2-P-
Tyr1221/Tyr1222 (CST 2243), MEK1 (CST 9124), MEK1/2-P-Ser217/Ser221 (CST 9154), MEK2 
(CST 9125), Rb-P-Ser807/Ser811 (CST 8516), S6 ribosomal protein (CST 2217), S6 ribosomal 
protein-P-Ser235/Ser236 (CST 2211), S6 ribosomal protein-P-Ser240/Ser244 (CST 2215), PR 
(progesterone receptor) (sc-810). 
The antibodies were purchased from CST (Cell Signaling Technology, Danvers, 
Massachusetts), Abcam (Abcam plc, Cambridge, UK), Thermo (Thermo Fisher Scientific, 
Waltham, Massachusetts), Dako (Dako Products, Hamburg, Germany), Santa Cruz (Santa 
Cruz Biotechnology, Dallas, USA). 
 
Western Blot analysis and Immunofluorescence 
The following primary antibodies were used (provider and product number): Akt (CST 4685), 
Akt-P-Ser473 (CST 4060), β-Actin (sc-2004), c-Fos (CST 4384), c-myc (CST 9402), CYP51A1 
(ab210792 ), EGFR (ErB-1, HER1) (CST 4405), EGFR (ErB-1, HER1)-P-Tyr1068 (CST 2234), ERα 
(CST 8644), ERα (p-Ser118) (CST 2511), Erk1/2 (MAPK p44/42) (CST 4695), Erk1/2 (MAPK 
p44/42)-P-Thr202/Tyr204 (CST 4370), HER2 (CST 2165), Her2-P-Tyr1221/Tyr1222 (CST 2243), 
MEK1 (CST 9124), MEK1/2-P-Ser217/Ser221 (CST 9154), PGRMC1 (ab48012), PGRMC1 
(13856), PR (progesterone receptor) (sc-810).  
The antibodies were purchased from CST (Cell Signaling Technology, Danvers, 
Massachusetts), Abcam (Abcam plc, Cambridge, UK), Thermo (Thermo Fisher Scientific, 
Waltham, Massachusetts), and Santa Cruz (Santa Cruz Biotechnology, Dallas, USA). 



qRT-PCR 
We evaluated the qPCR results as follows: At first, we calculated the mean of all matching 
technical replicates [𝐶!]. Then we calculated Δ𝐶!  with Δ𝐶! = 𝐶!	!#$%&'	(&)& −
𝐶!	*&+&$&),&	(&)&. Our reference was the expression of PDH, we subtracted its value from the 
other expression levels. Afterwards we determined ΔΔ𝐶!  with ΔΔ𝐶! = Δ𝐶!	-#./0& −
Δ𝐶!	*&+&$&),&	-#./0&. 

The standard deviation of Δ𝐶!  is defined as 𝜎 = &𝜎!#$%&'	(&)&1 + 𝜎*&+&$&),&	(&)&1  [with 𝜎 as 

the standard deviation]. At last the fold-difference, which is defined as the range: 
[22334!56; 22334!26], was calculated. 
 
Scatter Plots of breast cancer microarray data 
The normalized data was obtained from the Gene Expression Omnibus (GEO, NCBI) and 
analysed via a R script. At first, we utilized GeoQuery for the GSE download. Afterwards we 
plotted the per sample expression values to ensure proper normalization. As the data 
contained technical replicates, we generated the mean value per sample. Finally, we 
calculated Spearman’s correlation and plotted a scatterplot with a regression line in R. 
  



 
Figure 1: (A) Cell viability of T47D/EVC and T47D/PGRMC1 cells (n = 3). Viability was analyzed by MTT assay at t = 0 h, 24h, 
48h, 72h and 96h/37°C. Values were normalized to t = 0 (100%). *: p ≤ 0.05, **: p ≤ 0.01. (Student’s t-test, n = 3). (B) Cell 
viability of T47D cells, treated with siRNA against PGRMC1 (siPGRMC1) and scrambled siRNA (siControl). (Student’s t-test, 
n = 3). Viability was analyzed at t = 0h, 24h, 48h and 72h/37°C. Values were normalized to t = 0 (100%). *: p ≤ 0.05, **: 
p ≤ 0.01. (Student’s t-test, n = 3). (C) Tumor volumes of immunodeficient mice bearing human breast cancer T47D/EVC and 
T47D/PGRMC1 xenografts. ***: p ≤ 0.001, ****: p ≤ 0.0001. (Student’s t-test, n = 11 mice each group). Images of tumor 
tissue dissected from each mouse. 
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Figure 2: (A) PGRMC1 interaction partners associated with GO-annotations for biological functions. Number of proteins 
assigned to the respective biological function. The dataset was analyzed using Gene Ontology (geneontology.org). Total 
number of proteins in the dataset: 100. (B) PLA of PGRMC1 and Cyp51, FDFT1, SCD1 SCD1 and negative control rabbit 
isotype IgG (TexasRed) in T47D. Subsequent staining of Cytokeratin (FITC) and DAPI. Quantification of dots per cell and (C) 
Visualization via immunofluorescence microscopy. Magnification: 63 x. (D) PLA for protein interactions between PGRMC1 
and CYP51, FDFT1, SCD1 and negative control rabbit isotype IgG (TexasRed) in MDA-MB-231 cells. Subsequent staining of 
Cytokeratin (FITC) and DAPI. Magnification: 63 x. (E) Western Blot analysis of CYP51, SCD1 and FDFT1 in MCF7/PGRMC1 
cells and MDA-MB-231/PGRMC1 cells compared to their respective empty vector control. 
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Figure 3: (A) Western blot analysis of PR and cfos protein levels in MCF7/EVC and MCF7/PGRMC1 cells. (B) qRT-PCR analysis 
of ESR1, TFF1, HER2, CCND1, Myc and PR mRNA expression in T47D/EVC and T47D/PGRMC1 cells *: p ≤ 0.05, ***: p ≤ 0.001. 
(Student’s t-test, n = 3) 
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 Figure 4: (A) Detection of neutral lipids and lipid droplets in T47D/EVC and T47D/PGRMC1 cells by BODIPY® staining and 
quantification via flow cytometry. *: p ≤ 0.05, **: p ≤ 0.01. (Student’s t-test, n = 3) (B) qRT-PCR analysis of SREPF1, SREBF2, 
LDLR, HMGS1, SCD, FASN, ACAT mRNA expression in T47D/PGRMC1 cells compared to the respective EVC cells. *: p ≤ 0.05, 
**: p ≤ 0.01, ***: p ≤ 0.001. (Student’s t-test, n = 3). (C) Staining of lipid droplets in MCF7/EVC and MCF7/PGRMC1, MDA-
MB-231/EVC and MDA-MB-231/PGRMC1 with BODIPY™ 493/503. Nuclear stain with DAPI. Magnification: 63 x. (D) 
Immunofluorescence staining in MDA-MB-231/EVC and MDA-MB-231/PGRMC1 with Vybrant™ Alexa Fluor™ 488, 
fluorescence immunocytochemistry for HER2 and nuclear staining with DAPI. Magnification: 63 x. Negative control staining 
with rabbit isotype IgG (TexasRed) and Anti-CT-B only (FITC) in (E) MDA-MB-231/EVC and MDA-MB-231/PGRMC1 and (F) 
MCF7/EVC and MCF7/PGRMC1. 
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Figure 5 (A) Protein phosphorylation of EGFR P-Tyr1068, Akt P-Ser473, MEK1/2 P-Ser217/Ser221 and Erk1/2 P-
Thr202/Tyr204) and total protein expression of EGFR, Akt, MEK1/2 and Erk1/2 in  MDA-MB-231/EVC and MDA-MB-
231/PGRMC1 analyzed by Western blot analysis. Cells were treated with EGF (10 ng/mL) for 10 min/37°C. (B) Total protein 
expression of EGFR, Akt, MEK1/2 and Erk1/2 in MCF7/EVC and MCF7/PGRMC1 analyzed by western blot analysis. MCF7/EVC 
and MCF7/PGRMC1 cells were treated with 100µM, 50µM, 25µM, 12.5µM, 6.25 µM and 3.175 µM simvastatin and 
respective DMSO control. MDA-MB-231/EVC and MDA-MB-231/PGRMC1 cells were treated with 20µM, 10µM, 5µM, 2.5µM, 
1.25µm and 0.625µM simvastatin and respective DMSO control. Viability was analyzed by MTT assay at t=24h, t=48h, t=72h 
and 37°C. Depicted are results after 72 h (C, D) of treatment. Viability is normalized on the DMSO control. P-Values were 
adjusted using Bonferroni correction (ndoses = 6; nreplicates = 9) 
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3 Additional Research

3.1 Complementary Studies in T47D Cells

Additional experiments were performed in T47D cell lines that were not reported in

the paper.

As in the published results from the GC-MS analysis in MCF7 and MDA-MB-

231 cells, intracellular contents of cholesterol and its intermediate lathosterol were

investigated in synchronized T47D/PGRMC1 and T47D/EVC. While no signifi-

cant difference in the total amount of cholesterol per cell was observed between

T47D/PGRMC1 and T47D/EVC (Figure 7a), overexpression of PGRMC1 in T47D

cells resulted in a substantial shift toward a positive lathosterol/cholesterol propor-

tion (Figure 7b), suggesting that PGRMC1 might boost especially the initial steps

in the mevalonat pathway in this cell line.

(a) (b)

Figure 7: Intracellular content of cholesterol and its precursor lathosterol
Quantification of intracellular cholesterol and its precursor lathosterol via mass spectrometry in

T47D/EVC and T47D/PGRMC1. Absolute levels of intracellular cholesterol and significant de-

crease of lathosterol to cholesterol ratio. *: p≤0.05, ***: p≤0.001

Similar to our results from western blot analysis in MCF7 cells, we found that

PGRMC1 overexpression in T47D cells leads to higher protein expression of CYP51

and SCD1 compared to the EVC, whereas the protein expression of FDFT1 was

slightly lower upon PGRMC1 overexpression (Figure 8).
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(a) (b)

Figure 8: Protein expression of CYP51, SCD1, and FDFT1
Quantification of protein expression of CYP51, SCD1, and FDFT1 in T47D/PGRMC1 cells com-

pared to their respective empty vector control by western blot. **: p≤0.005, ***: p≤0.001

We hypothesized that cholesterol synthesis is related to the level of E2, which

plays a key role in HR+ breast cancer, e.g., due to its effects on ERα. In contrast

to our studies in the modified MCF7 cells, we found a significantly lower E2 content

in the supernatant of T47D/PGRMC1 cells than in that of the EVC (Figure 9a).

Nonetheless, PGRMC1 overexpression in T47D cells also resulted in upregulation of

the ERα downstream targets ESR1, TFF1, CCND1, and MYC, which were analyzed

via real-time RT-PCR analysis. However, no significant upregulation was detected

for mRNA levels of HER2, and PGR levels were even lower in T47D/PGRMC1 in

relation to T47D/EVC (Figure 9b).

(a) (b)

Figure 9: ERα signaling in T47D/EVC and T47D/PGRMC1
(a) ELISA analysis of E2 in the supernatant of PGRMC1 overexpressing T47D cells compared

to the EVC after 48h normalized to cell count. (b) qRT-PCR analysis of ESR1, TFF1, HER2,

CCND1, MYC and PR mRNA expression *: p ≤ 0.05, **: p≤0.01, ***: p ≤ 0.001 (Student’s t

test, n=3)

We further studied formation of lipid rafts in the modified T47D cells. Therefore,

not permeabilized T47D/PGRMC1 and T47D/EVC were stained for lipid rafts and
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analyzed by flow cytometry. We observed that PGRMC1 overexpression resulted in a

significant increase in lipid raft expression (Figure 10a). We accessorily investigated

whether PGRMC1 overexpression affects HER2 expression in the cell membrane,

which could result in a change of the membrane conformation. As with the results

for mRNA expression, there was no significant difference in the outer membrane

HER2 level in T47D/PGRMC1 cells and the respective EVC (Figure 10b).

(a) (b)

Figure 10: Lipid raft and HER2 expression in T47D/EVC and
T47D/PGRMC1
(a) Detection of lipid rafts in cell membranes by Vybrant™ Alexa Fluor™ 488 and subsequent quan-

tification via flow cytometry. (b) Quantification of HER2 protein in unpermeabilized T47D/EVC

and T47D/PGRMC1 via flow cytometry. ***: p ≤ 0.001 (Student’s t test, n=3)

The PGRMC1 overexpressing T47D cells in particular showed co-localization of

HER2 with lipid rafts, as visualized via fluorescence microscopy (Figure 11).

Figure 11: Co-staining of lipid rafts and HER2 in T47D/EVC and
T47D/PGRMC1
IF staining with Vybrant™ Alexa Fluor™ 488, fluorescence IC for HER2 and nuclear staining with

DAPI. Magnification: 63 x

Based on our research concerning the influence of PGRMC1 on lipid homeostasis
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in breast cancer cells, we suggested that vulnerability of cell proliferation to inhibi-

tion of cholesterol synthesis might be related to PGRMC1 expression. Accordingly,

PGRMC1 overexpressing cells and the respective controls were treated with differ-

ent concentrations of simvastatin, a competitive inhibitor of HMG-CoA reductase,

and subsequent viability assays were performed at different time points. In contrast

to MCF7 and MDA-MB-231 cells, in T47D cells, we found no significant difference

in viability between PGRMC1 overexpressing cells and their EVC, pointing towards

a different adjustment mechanism under inhibition of de novo cholesterol synthesis

(Figure 12).
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Figure 12: Simvastatin treatment of T47D/EVC and T47D/PGRMC1
T47D/EVC and T47D/PGRMC1 were treated with 100 µM, 50 µM, 25 µM, 12.5 µM, 6.25 µM
and 3.175 µM simvastatin and respective DMSO control. Viability was analyzed by MTT assay at

t=24 h, t=48 h, and t=72 h and 37 °C. Depicted are results after 72 h of treatment. Viability was

normalized on the DMSO control. P-Values were adjusted using Bonferroni correction (ndoses =

6; nreplicates = 9)

PGRMC1 mediated activation and enhancement of EGFR signaling has already

been shown in previous studies. Nevertheless, contrary to MCF7 cells, PGRMC1

overexpression in T47D cells did not eventuate in enhanced phosphorylation of

EGFR, AKT, MEK1/2 and ERK1/2. EGFR activation by EGF treatment en-

tailed elevated levels of EGFR (p-Y1068 p-Y1068), AKT (p-Ser473), MEK1/2 (p-

S217/S221) and ERK1/2 (p-T202/Y204) mainly in T47D/EVC, whereas no or only

scarce phosphorylation effect was observed in T47D/PGRMC1 (Figure 13a). In ad-

dition, the PGRMC1 overexpressing T47D cells showed significantly lower protein

expression of total EGFR, while protein expression of total AKT protein was higher

than in the EVC (Figure 13a).

23



T47D

β-actin

EGFR P-Tyr1068

Akt P-Ser473

ERK1/2 P-Thr202/Tyr204

MEK1/2 P-Ser217/Ser221

EGF - + - +

EV
C

PR
GM

C1

(a)

β-actin

EGFR

Akt

ERK1/2

MEK1/2

EV
C

PR
GM

C1

T47D

(b)

Figure 13: Influence of PGRMC1 overexpression on EGFR signaling in
T47D cells
(a) Protein phosphorylation of EGFR p-Y1068, Akt p-S473, MEK1/2 p-S217/S221 and ERK1/2

p-T202/Y204 verified by western blot analysis. Cells were treated with EGF (10 ng/mL) for

10 min/37°C. Representative blot of 3 independent analysis. (b) Total protein expression of

EGFR, AKT, MEK1/2 and ERK1/2 in T47D/EVC and T47D/PGRMC1 analyzed by Western

blot analysis. Representative blot of 3 independent analysis.

3.2 PGRMC1 Overexpression in MCF7 Cells Leads to

Redistribution of the ERα

Because our previous experiments showed that PGRMC1 overexpression is associ-

ated with elevated ERα expression at least in MCF7 cells, we investigated whether

there were also differences in the localization of ERα in MCF7/PGRMC1 and

MCF7/EVC. To explore a possible redistribution and co-localisation, a co-staining

for ERα with PGRMC1 was performed. In the MCF7/EVC cells, ERα was predom-

inantly displayed in the nucleus, whereas in PGRMC1 overexpressing MCF7 cells it

was more likely to be distributed in the cell membrane region. In addition, a partly

overlapping staining pattern of PGRMC1 and ERα was evident in the PGRMC1

overexpressing cells (Figure 14). Redistribution of ERα and co-localisation with

PGRMC1 could have influence on cell signalling and behaviour.
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Figure 14: Co-staining of PGRMC1 and ERα in MCF7/EVC and
MCF7/PGRMC1
IF staining with Vybrant™ Alexa Fluor™ 488, fluorescence IC for HER2 and nuclear staining with

DAPI. Magnification: 63 x

3.3 Effects of PGRMC1 Phosphorylation on Cholesterol

and Steroid Hormone Synthesis

The diverse roles of PGRMC1 in cell metabolism and cell signaling have been linked

to different PTM. Phosphorylation of PGRMC1 in particular might affect its prop-

erties and regulate its function, e.g., via altering the affinity of protein interactions

and ligand binding. In previous work from our laboratory, several phosphorylation

sites of PGRMC1 were recognized via mass spectrometry in MCF7/PGRMC1 cells.

The phosphorylation sites S57 and S181 were anticipated to be phosphorylated by

casein kinase 2 and were closely located to the SH3 and SH2 domains of PGRMC1

[185]. We explored whether S57 and S181 phosphorylation also functionally im-

pacts cholesterol synthesis. Therefore in addition to the MCF7 cells overexpressing

the HA-tagged PGRMC1 and the respective EVC, cholesterol and lathosterol were

quantificated in the variants MCF7/PGRMC1 S57A, MCF7/PGRMC1 S181A and

MCF7/PGRMC1 S57A S181A. Concerning absolute levels of cholesterol no sig-

nificant difference was observed between the groups (Figure 15a). Nevertheless,

MCF7/PGRMC1 S57 and MCF7/PGRMC1 S181 exhibited a lathosterol/cholesterol

ratio similar to MCF7/PGRMC1, while the ratio of MCF7/PGRMC1 S57A S181A

differed significantly from that of MCF7/PGRMC1 and MCF7/EVC (Figure 15b).

These results suggest that the influence of PGRMC1 on cholesterol synthesis and

turnover in MCF7 cells depend at least partly on phosphorylation of S57 and S181.
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(a)

(b)

Figure 15: Intracellular content of cholesterol and its precursor lathosterol
in MCF7 cells dependent on the phosphorylation status of PGRMC1
Mass spectrometry analysis indicated (a) no significant difference in absolute cholesterol levels but

(b) a significant difference in lathosterol/cholesterol ratios related to the modification of PGRMC1

phosphorylation sites S57 and S181. *: p≤0.05

We also investigated levels of E2 in the supernatant of MCF7/PGRMC1 cells

and the MCF7 cells overexpressing the HA-tagged PGRMC1 variants via ELISA.

The detected concentration of E2 in the supernatant of MCF7/PGRMC1 was signif-

icantly higher than in the EVC. Notably, E2 levels were also significantly higher in

the in MCF7/PGRMC1 S181 than in the EVC. There was no significant difference

between MCF7/PGRMC1 and the different phosphorylation site mutated variants.

These results suggest that phosphorylation at site S181 may inhibit E2 synthesis.

In addition, our analysis indicated a trend towards phosphorylation site S57 as a

negative regulator of E2 production.
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Figure 16: E2 levels in the supernatant of MCF7 cells dependent on the
phosphorylation status of PGRMC1
ELISA analysis of E2 in the supernatant of MCF7/PGRMC1, MCF7/PGRMC1 S57A,

MCF7/PGRMC1 S181A, and MCF7/PGRMC1 S57A S181A (normalized to cell count) after 48 h

showed a significant difference in E2 content related to the modification of PGRMC1 phosphory-

lation site S181. *: p≤0.05

3.4 Tamoxifen and Exemestane Treatment of PGRMC1

Overexpressing MCF7 Cells Moderately Reduces

Viability Compared to the EVC

Our studies show an upregulation of ERα, ERα downstream targets, and E2 lev-

els in MCF7/PGRMC1 cells compared to MCF7/EVC cells. Since tamoxifen, a

SERM, and aromatase inhibitors are routinely used in the treatment of HR+ breast

cancer, we investigated whether PGRMC1 expression might have a role in treat-

ment response. We treated PGRMC1 overexpressing MCF7 cells and the respective

control with different concentrations of tamoxifen and exemestane, a steroidal aro-

matase inhibitor. Viability assays were performed to assess the extent of cell growth

inhibition. Although in the main our results did not indicate significant viability

differences between MCF7/PGRMC1 and MCF7/EVC cells in our tamoxifen and

exemestane experiments, we did note some exceptions. At some concentrations,

PGRMC1 overexpression was associated with significantly lower viability compared

to MCF7/EVC cells. This suggests that interference with estrogen metabolism and

ERα signaling may have a greater impact on PGRMC1 overexpressing cells, at least

related to MCF7 cells and in the short term.
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(a) (b)

(c) (d)

Figure 17: Exemestane and Tamoxifen Treatment of MCF7/EVC and
MCF7/PGRMC1
MCF7/EVC and MCF7/PGRMC1 cells were treated with (a)+(b) 200 µM, 100 µM, 50 µM, 25

µM, 12.5 µM Exemestane and (c)+(d) 50 µM, 37.5 µM, 25 µM, 18.75 µM, 12.5 µM Tamoxifen.

Viability was analyzed by MTT assay at t = 24 h, t = 48 h, and t = 72 h and 37°C. Viability

values were normalized to the respective DMSO control. Depicted are results after 48 h and 72 h

of treatment. P-Values were adjusted using Bonferroni correction (ndoses = 5; nreplicates = 9) *:

p≤0.05, **: p≤0.01, ***: p≤0.001
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4 Discussion

Although numerous studies show that PGRMC1 is involved in cancer development

and progression, the mechanisms of how PGRMC1 influences signaling pathways

are not fully understood. Reprogramming lipid metabolism allows cancer cells to

evolve new mechanisms that satisfy their increased energy demands and drive the

EMT, or even achieve therapy resistance. Although PGRMC1 has been identified

as involved in various metabolic pathways, its role in the lipid metabolism of breast

cancer is poorly studied. In the present study, we aimed to unveil mechanisms

by which PGRMC1 changes lipid metabolism and oncogenic pathways in different

breast cancer types.

4.1 PGRMC1 as Driver for Proliferation

In vitro experiments conducted in our laboratory demonstrated that PGRMC1 over-

expressing breast cancer cell lines proliferate faster than their respective control cells

and that knockdown of PGRMC1 with siRNA leads to the opposite effect. Interest-

ingly, according to our research, only the HR+ cell lines (MCF7 and T47D) exhibit

this behavior. Since we found no difference in proliferation upon PGRMC1 expres-

sion in the triple negative cell line (MDA-MB-231), only MCF7 and T47D cells

were used to validate the impact of PGRMC1 overexpression in a xenograft mouse

model. Most other in vitro and in vivo studies show that PGRMC1 expression has

an enhancing effect on cancer cell proliferation [131,135,146,173,181,186,187,188,-

189,190,191,192,193,194]. However, similar to our results on MDA-MB-231 cells,

Kabe et al. [123] found no effect of PGRMC1 overexpression or silencing on prolif-

eration of HCT116 cells.

4.2 Impact on Lipid Metabolism

The present study determined the effect of PGRMC1 on lipid metabolism in breast

cancer cells. Our findings suggest that PGRMC1 is an important enhancer of lipid

synthesis in HR+ breast cancer resulting in oncogenic signaling and tumor progres-

sion.

4.2.1 PGRMC1 Fuels Lipid Synthesis and Uptake in HR+ Breast

Cancer

In this work, we reported enhanced mRNA expression of proteins involved in lipid

regulation, synthesis, and uptake in PGRMC1 overexpressing MCF7 and T47D cells.

Furthermore, we found a positive Spearman’s correlation between the PGRMC1 ex-
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pression level and various expression levels of proteins involved in cholesterol and

fatty acid synthesis by analyzing microarray data from HR+ breast cancer tissue

samples. Recent studies demonstrated that a high fat diet, insulin, or thiazolidine

(a PPARγ agonist) increase PGRMC1 expression in adipocytes, e.g., via mecha-

nisms involving transcription factors such as PPARγ and CREB/ATF via PPRE or

CRE of the regulatory regions of the PGRMC1 gene. Additionally, PGRMC1 KO

decreases PPARγ and FABP4 expression [160]. The transcription factor PPARγ

transactivates fatty acid transport proteins, like FABP4 or CD36, which in turn

enable insulin signaling and glucose uptake, e.g., via IRS2 and GLUT4 [195,196,-

197]. Furthermore, PPARγ enhances expression of lipogenic proteins, such as FASN,

SCD, ACSL1, SREBF1 and SREBF2 [198,199,200]. A similar cross-talk between

PGRMC1 and PPARγ in breast cancer cells might contribute to the mRNA increase

of lipogenic proteins in PGRMC1 overexpressing MCF7 and T47D cells. Interest-

ingly, most studies found that PPARγ activation and accumulation inhibits cancer

cell proliferation. However, in HER+ cancer cells PPARγ facilitates the formation of

a lipogenesis/lipolysis joining point via conversion and storage of excess fatty acids

to TAGs to prevent palmitate toxicity. Concurrently, palmitate can be incorporated

into fat stores to avoid feedback inhibition on FASN [201]. In addition, interac-

tion of heme-dimerized PGRMC1 with VLDLR, LDLR, or GLUT4 facilitates the

translocation of these receptors to the plasma membrane, leading to de novo fatty

acid synthesis and lipid uptake in adipocytes [160]. Other research groups also

showed that PGRMC1 interacts with the IR and increases plasma membrane levels

of IR, GLUT4 and GLUT1 in lung cancer cell lines [159]. Thereby PGRMC1 might

elevate the intracellular glucose concentration, especially in terms of high fat diet

and insulin resistance. Under conditions of high intracellular glucose concentration,

stabilization of SCAP via N-glycosylation promotes its dissociation from INSIG1,

leading to translocation of SCAP/SREBP1 to the golgi. Proteolytic activation of

SREBP1 in turn leads to conversion of glucose into fatty acids [202,203].

4.2.2 PGRMC1 Influences Lipid Accumulation

The surplus lipids can be stored in the core of lipid droplet, which are a charac-

teristic of hypoxic cancer cells, and released through a combination of lipolysis and

lipophagy [204]. In line with this, we detected higher amounts of lipid droplets in

MCF7 and T47D overexpressing cells compared to their EVC, while PGRMC1 over-

expression in MDA-MB-231 cells decreased lipid droplet expression. Lipid droplet

are utilized by cancer cells to adjust their metabolism, ensure energy production and

redox balance, modulate autophagy, and control their membrane composition in re-

sponse to nutrient and oxygen supply. Various studies showed, that lipid droplet
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accumulation correlates with a more aggressive cancer phenotype, increased migra-

tion and stemness features [205,206,207,208,209,210,211,212]. Commensurately, the

HR- and less differentiated MDA-MB-231/EVC exhibited higher lipid droplet for-

mation than the HR+ MCF7/EVC and T47D/EVC. The heterogeneity of breast

cancer subtypes is reflected in specific lipid profiles. In principle, HR- breast can-

cer subtypes concentrate on uptake and storage of exogeneous fatty acids and HR+

breast cancer subtypes enhance de novo fatty acid synthesis and oxidation [213,214,-

215,216]. The capacity of MDA-MB-231 cells to accumulate further lipid droplets

may be limited by the large number of lipid droplets already present in the basal

state, so overexpression of PGRMC1 might have no or a negative impact on lipid

accumulation. Furthermore, lipid overload tends to provoke the autophagy of cancer

cells [217].

4.2.3 Cholesterol Metabolism is Altered upon PGRMC1

Overexpression

Prior research groups found that PGRMC1 interacts with both INSIG1 and SCAP.

In prior work from our lab, we found a strong interaction of PGRMC1 with FDFT1

and SCD1 in MCF7 and T47D cells. Interestingly, interactions were barely de-

tectable in MDA-MB-231 cells. Lower levels of FDFT1 and SCD1 were observed

via immunofluorescence in these cells, suggesting that lower numbers of interac-

tions might be influenced by decreased numbers of these proteins. However, the

consequences of interactions between PGRMC1 and FDFT1 and SCD1 were not

fully understood. Different authors investigated the role of PGRMC1 on CYP51,

finding that downregulation of PGRMC1 leads to decreased sterol synthesis [171,-

218,219]. We also demonstrated that PGRMC1 interacts with CYP51 in MCF7

cells. Surprisingly, in the T47D cells, levels of interaction were substantially lower.

One explanation might be, that CYP51 and PGRMC1 expression are compara-

tively lower in T47D than in MCF7 cells. Different research groups showed that the

dimerization of PGRMC1 via heme facilitates interaction with diverse subclasses

of cytochrome P450 enzymes. CYP enzymes interacting with PGRMC1 via heme

dependent dimerization are, among others, CYP1A2, CYP3A4, and CYP51 [123].

Alternatively, it is possible that the interaction of CYP51 with PGRMC1 is less

common in T47D cells because PGRMC1 is more often present in its monomeric

state in this cell line. More research in this field is necessary. By performing mass

spectrometry analysis, we found higher amounts of cholesterol in contrast to its

precursor lathosterol in MCF7/PGRMC1 compared to MCF7/EVC. The decreased

lathosterol/cholesterol ratio in MCF7/PGRMC1 compared to MCF7/EVC points

towards a higher turnover of lathosterol. Interestingly, overexpression of PGRMC1
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in T47D cells had different effects on the terminal branch of the mevalonate path-

way. Although the T47D/PGRMC1 and T47D/EVC cells exhibited no significant

differences in their levels of absolute cholesterol, the PGRMC1 overexpressing cells

manifested an increase in the level of lathosterol and, by inference, a correspond-

ing rise in the ratio between cholesterol and lathosterol. Further research is needed

to determine the impact of this marked increase in lathosterol in T47D/PGRMC1

cells. Our western blot results showed that FDFT1, SCD1, and CYP51 protein

levels in PGRMC1 overexpressing MCF7 cells were significantly higher than in the

MCF7 control group. In the triple negative MDA-MB-231 cells, overexpression of

PGRMC1 did not significantly alter the levels of these proteins. Surprisingly, in

T47D/PGRMC1 cells we found significantly lower expression of FDFT1 compared

to the EVC. FDFT1 serves as a critical enzyme, directing the flow of the metabolite

farnesyl pyrophosphate (FPP) to either sterol or non sterol biosynthetic branches

[220]. A possible consequence of the lower expression of FDFT1 in PGRMC1 over-

expressing cells could be that the metabolites are increasingly used for prenylation

of proteins such as RAS, thus possibly contributing to the cellular transformation.

Since cholesterol is the precursor of steroid hormones like estradiol, we determined

levels of E2 in the supernatant of PGRMC1 overexpressing cancer cells and their

respective EVC. Consistent with our previous findings, we found that E2 levels were

significantly higher in the supernatant of MCF7/PGRMC1 than in the MCF7/EVC,

whereas we determined no difference in the T47D cells.

4.2.4 PGRMC1 Phosphorylation Regulates Cholesterol and E2 Levels

Because the influence of PGRMC1 in cell signaling and metabolism depends not only

on its protein expression but also on PTMs, especially phosphorylation, we investi-

gated whether inhibiting CK2 phosphorylation sites S57 and/or S181 of PGRMC1

affects cholesterol and estradiol synthesis, respectively. No significant differences in

total intracellular cholesterol levels were found between PGRMC1 S57A,

PGRMC1 S181A, and PGRMC1 S57A S181A cells compared to MCF7/PGRMC1

cells. Interestingly, for lathosterol/cholesterol ratio, which reflects the efficiency of

the late stages of cholesterol biosynthesis, we found a significant disparity between,

on the one hand, MCF7/PGRMC1, MCF7/PGRMC1 S57A and -/PGRMC1 S181A

and, on the other hand, the MCF7/EVC and MCF7/PGRMC1 S57A S181A, indi-

cating that phosphorylation at S57 and S181 are at least partly involved in choles-

terol de novo biosynthesis. These results are consistent with preliminary data

from our laboratory, which demonstrated that phosphorylation of PGRMC1 at

S57 and/or S181 are at least partly responsible for its interaction with CYP51,

FDFT1 and SCD1. Interestingly, mutation at the S57 phosphorylation site and
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also to a lesser degree mutation at the S181 phosphorylation site resulted in signif-

icantly higher E2 levels in the cell supernatant compared to MCF7/PGRMC1 and

MCF7/PGRMC1 S57A S181A.

4.3 PGRMC1 Influences EGFR and ERα Signaling

We suggested that PGRMC1 promotes tumor progression by upregulation of ERα

and ESR1 mRNA via a transcriptional mechanism and via elevated steroid syn-

thesis. Studies on ERα levels indicate that long term exposure of breast cancer

cells to estrogen leads to an increase in ERα levels [221]. Together with the au-

tocrine/paracrine activation by E2, increased levels of ERα may trigger a prolifera-

tive cycle support in tumor growth. Cross talk between ERα and EGFR signaling

cascades has been described, whereby ERα stimulates E2 dependent activation of

the EGFR pathway by promoting p-S473 phosphorylation of AKT through the

non genomic pathway. Alternatively, ERα activation can occur independently of

estrogens by EGFR activated MAPK signaling or PI3K pathway [222,223]. The

involvement of PGRMC1 in promoting phosphorylation and activation of recep-

tors, e.g., through heme-dependent PGRMC1 dimerization, has already been re-

ported [123,131,179,224]. In this study, elevated phosphorylation levels of EGFR

and its downstream targets in MCF7/PGRMC1 cells were discovered for the first

time. Subsequent investigations from other laboratories also demonstrated that

PGRMC1 alters PI3K/AKT/mTOR and EGFR signalling mechanisms in breast

cancer cell lines [186,225]. We demonstrated enhanced activation in several com-

ponents of the MAPK and PI3K pathways (i.e., MEK1/2, ERK1/2, and AKT)

in MCF7/PGRMC1 cells. It is possible that these changes contribute to the in-

crease in proliferation and ability of these cells to form tumors among others via

interaction with ERα signaling. Growth factor signaling has been linked to tran-

scriptional repression of ERα expression in breast cancer cells, resulting in endocrine

resistance. A positive correlation between expression of ERα and HER2 has been

demonstrated in HER2 non overexpressing HR+ breast cancer, taking into account

that E2/ERα stimulation decreased the expression of HER2 [226,227]. Interestingly,

ERα knockdown in MCF7 cells resulted in an aggressive phenotype with downreg-

ulation of HER2 and upregulation of EGFR followed by increased phosphorylation

of ERK1/2 (predominantly ERK2), indicating a subsidiary role for EGFR/HER2

heterodimerization compared to EGFR homodimerization for cancer cell behavior

[228,229]. Elevated ERα levels could at least partly explain the higher HER2 ex-

pression in the MCF7/PGRMC1 cells compared to their EVC despite increased E2

levels. Considering that in MCF7/PGRMC1 cells EGFR and HER2 signaling is

also enhanced, it is possible that in MCF7 cells PGRMC1 simultaneously amplifies
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ligand-dependent and -independent ERα as well as EGFR/HER2 signaling with-

out a negative feedback. Astonishingly, the T47D cells displayed different behavior

depending on PGRMC1 overexpression. On the one hand, EGF treatment only

induced a distinct phosphorylation of EGFR and subsequent activation of AKT

and ERK in T47D/EVC compared to T47D/PGRMC1. This could be due in part

to the fact that T47D/EVC cells had significantly higher EGFR expression levels

than PGRMC1 overexpressing cells. On the other hand, T47D/PGRMC1 cells do

not show higher levels of HER2 protein despite higher mRNA expression of ESR1

and its target genes compared to their EVC. Since ERα silencing decreased ex-

pression and activation of the β5-subunit of the proteasome, which is involved in

EGFR endocytosis, lysosomal trafficking and degradation [228,230,231], inhibition

or degradation of ERα might increase EGFR protein levels via protein stabilization.

Via exaggerated ERα signaling, PGRMC1 overexpression in T47D cells might fuel

proteasomal degradation of EGFR leading to mitigated MAPK and PI3K down-

stream signaling. In addition, interaction of PGRMC1 with the ERα modulators

prohibitin-1 (PHB1) and prohibitin-2 (PHB2) diminished binding of PHBs to ERα

inhibiting subsequent ERα activation. Interaction of PHBs and PGRMC1, which

is dependent on S181 phosphorylation of PGRMC1, could drive ERα signaling in

T47D/PGRMC1 cells further, alleviating EGFR signaling [232]. Furthermore, in-

teraction of PHB with RAS located to the cell membrane is inalienable for the EGF

induced activation of the RAF/MEK/ERK pathway [233,234]. It is possible that

PGRMC1 interferes with this signaling cascade via directly interacting with PHB.

However, further research is needed to examine the role of PGRMC1 in ERα and

ErbB signaling to understand the mechanisms behind the observed cell specific dif-

ferences better.

4.4 PGRMC1 Impacts Lipid Raft Formation and Signaling

For the first time, we observed that PGRMC1 rises lipid raft formation in HR+

breast cancer cells. Interestingly, PGRMC1 overexpression caused multiple lipid

rafts to form in T47D breast cancer cells even despite unchanged cholesterol con-

tent compared to the EVC. Several biochemical trials revealed that late precursors of

cholesterol containing 7-8 double bonds such as lathosterol and 7-dehydrocholesterol

stabilize lipid rafts to a greater degree than cholesterol [235,236,237,238]. The

greater lipid raft formation in T47D/PGRMC1 cells might therefore be attributed to

the also significantly elevated lathosterol levels found within these cells compared to

the EVC. Since lipid rafts are important among others in modulation of membrane

geometry, lateral movement of molecules, and signal transduction, they are suggested

as major regulators in cancer progression. Although a lot of RTKs are localized to
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lipid rafts, ligand-dependant and -independent effects are highly variable. To date,

it is not possible to predict conclusively the function of HER signaling in lipid rafts

and some systems seem to be more reliant on lipid rafts for suppressing than for

supporting signaling. Upon activation by ligand, unlike other RTK, EGFR typically

moves out of lipid rafts [239]. The effects of cholesterol depletion on receptor local-

ization and downstream signaling are influenced by different aspects, determined by

the specific RTK. Altered cholesterol levels modify the mobility of EGF receptors

in the plane of membranes leading to a decrease of activation through less dimer-

ization of EGFR monomers. Hence, depletion of cholesterol resulted in increased

EGF binding, enhanced dimer formation and autophosphorylation with subsequent

MAPK activation and decreased receptor internalization and down regulation [240,-

241,242,243,244,245], whereas phosphatidylinositol turnover was inhibited [246,247].

Lower lipid raft formation in T47D/EVC cells than in PGRMC1 overexpressing cells

might, at least in part, explain the greater expression of EGFR and enhanced activa-

tion after EGF binding observed in these cells. Notwithstanding, EGF receptors are

also distributed in the plasma membrane and subcellular compartments outside of

rafts and their activation and downstream signaling depends on further factors [248].

In addition, cholesterol depletion unequally affected EGFR autophosphorylation, so

that phosphorylation of Y992 and Y1173 was enhanced while phosphorylation at

Y1045 and Y1068 was unchanged [243]. Thus, our results on enhanced phosphory-

lation of EGFR at Y1068 after EGF treatment do not contradict the likewise higher

lipid raft expression in MCF7/PGRMC1 compared with the EVC. In other RTKs,

such as the IR, cholesterol depletion tends to inhibit downstream signaling and cell

metabolism, e.g., leading to suppression of IRS1 and ACLY phosphorylation fol-

lowed by decreased glucose uptake and oxidation as well as PKB/AKT activation

[88,249,250,251]. Different studies, among others in breast cancer, showed the as-

sociation of HER2, which is comparatively mobile in the plane of the membrane,

with lipid rafts, where a low calcium and PIP2-enriched microenvironment facilitates

HER2 membrane maintenance and downstream PI3K/AKT signaling [244,252,253].

HER2 colocalized with extranuclear ERα in membrane signaling domains, leading

to proliferation of breast cancer cells [254]. Lipid rafts are necessary for the lo-

calization of the ERα in the plasma membrane and its membrane initiated effects

[255,256]. A limitation of this study is that downstream signaling of RTKs was not

examined in specific dependence on their localization in lipid rafts. One possibility is

to isolate the raft and nonraft membranes and after stimulation with growth factors

determinate in which compartment a specific signaling event has occurred. Fur-

thermore, function of lipid rafts can be studied after cholesterol depletion, e.g., by

treating cells with agents such as filipin and methyl-β-cyclodextrin that sequester or

remove cholesterol or by treating cells with cholesterol lowering agents like statins.
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In contrast to membrane fractionation, cholesterol depletion allows the analysis of

the impact of lipid rafts in cell signaling in intact cells. Further research is needed

to understand how PGRMC1 expression and modification affect the activation and

downstream signaling of RTKs in lipid rafts.

4.5 PGRMC1 and Therapy Options

Researchers in the PGRMC1 field face the challenge of translating their findings from

the lab to the clinic. In addition to supporting the use of PGRMC1 in diagnostics

and prognostics, researchers are investigating how the protein could play a role

in therapeutic approaches, such as the treatment of cancer, metabolic diseases, or

neurodegenerative diseases [165,166,257,258]. Several studies have demonstrated the

influence of PGRMC1 in pharmacological contexts. PGRMC1 has been shown to

promote chemoresistance against classical chemotherapeutics, such as doxorubicin

or paclitaxel, as well as newer agents such as EGFR tyrosine kinase inhibitors,

e.g., erlotinibin in xenograft tumors and in vitro cancer cell line experiments [123,-

135,181,259,260]. In previous studies among others conducted in our laboratory,

PGRMC1 conferred resistance to doxorubicin and epirubicin in breast cancer cell

lines when treated simultaneously with P4 [146,261]. Furthermore, patients who

did not respond to anthracycline based therapy had significantly higher PGRMC1

expression than patients who achieved partial remission, implying that there is a

correlation between the expression of PGRMC1 and response to cancer therapy.

No differences were found in PGRMC1 expression of tumor cells between therapy

responders and non-responders using aromatase inhibitors [16].

4.5.1 Endocrine Therapy

Recent clinical strategies for HR+ breast cancer treatment include the use of en-

docrine therapy to block ERα signaling. Aromatase inhibitors prevent the conver-

sion of androgens to estradiol via inhibition of aromatase activity, whereas antie-

strogen therapy with tamoxifen antagonizes the binding of estrogen to its receptor

by competing with estrogen for binding sites on the receptor and by recruiting core-

pressors. Although the endocrine treatment regimen of tamoxifen and aromatase

inhibitors like exemestane, either alone or in combination with tamoxifen, has been

found to be an important option for (postmenopausal) women with HR+ breast can-

cer, patients often relapse with either de-novo or acquired resistance [262,263,264].

The mechanisms underlying endocrine resistance have been aided by the develop-

ment of cellular models for resistant breast cancers and include cross-talk between

ERα and HER signaling or upregulation of the cholesterol biosynthesis pathway

[265,266,267,268]. We treated MCF7/PGRMC1 and MCF7/EVC cells with tamox-
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ifen and exemestane to test whether PGRMC1 expression could play a role in treat-

ment resistance. Only at a few concentrations did MCF7/PGRMC1 cells differ

significantly from EVC cells; although interestingly, MCF7/PGRMC1 cells showed

a tendency toward decreased viability in the context of endocrine therapy. An ex-

planation for the decreased viability of MCF7/PGRMC1 cells in response to short

term estrogen signaling suppression could be that upregulation of E2 levels, ERα

protein expression, and ERα downstream targets in MCF7/PGRMC1 compared to

the EVC simultaneously results in a temporarily increased dependency on estrogen

signaling. One limitation of our experimental approach is that we suppressed estro-

gen synthesis and ERα signaling only for a short period of time. However, long term

adaptation to estrogen deprivation occurs in many different ways, so that definitive

conclusions about long term treatment resistance should not be drawn from these

viability assays. Future studies should examine the effect of PGRMC1 on long term

estrogen deprived cells and whether the protein influences specific LTED signaling

types.

4.5.2 Statins

Statins are the first-line agents for the treatment of hypercholesterolemia or hyper-

lipidemia in a cardiovascular setting. However, recently they have also been used

in anti-cancer research [269,270,271,272]. The antiproliferative effect of statins is

attributed to many mechanisms [273,274,275,276]. Besides reducing cholesterol lev-

els, blocking the mevalonate pathway leads to apoptosis in different ways, e.g., by

decreasing the synthesis of the isoprenoids geranylgeranyl pyrophosphate (GGPP)

and farnesyl pyrophosphate (FPP), resulting, e.g., in inhibition of small Rho GT-

Pase prenylation [277,278,279]. We speculated that PGRMC1 overexpressing cells

might be more susceptible to statin treatment because of their increased activity in

the mevalonate pathway and lipid production. Therefore, we treated the PGRMC1

overexpressing cells with simvastatin to investigate the influence of PGRMC1 on

tumor viability under cholesterol depletion. Surprisingly, we detected, for the first

time, that MCF7/PGRMC1 and MDA-MB-231/PGRMC1 cells are more sensitive to

treatment with simvastatin than their respective controls. Previous studies showed,

that HR+ breast cancer cell lines are differentially affected by statins than HR- cell

lines [280]. MCF7 cells are more resistant to a statin treatment than MDA-MB-231

cells, possibly because of their ability to induce HMGCR, their expression of estro-

gen receptor, and the lower levels of activated NF-kB [280,281]. Since statins act in

a pleiotropic way, they may also affect HR+ and negative cells differently. Cancer

cells have a higher demand on lipids, cholesterol, and its metabolites, which makes

them much more sensitive to a cholesterol-depleting therapy. A similar mechanism
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was supposed in paclitaxel-tolerant persister cancer cells which became vulnerable

to ferroptosis by xCT inhibitors and had markedly elevated expression of PGRMC1,

possibly contributing to the development of drug resistance [282]. In MCF7 cells,

overexpression of PGRMC1 leads to higher levels of cholesterol, but also fuels ac-

tivation of MAPK signaling. By blocking the mevalonate pathway, important pro-

liferation advantages are inhibited. In MDA-MB-231 cells PGRMC1 overexpression

does not change levels of free cholesterol but led to decreased lipid droplet levels.

MDA-MB-231 cells cover their lipid requirement more by lipid uptake than de novo

synthesis [283]. The significantly decreased lathosterol/cholesterol ratio might be

because of increased de novo synthesis through PGRMC1 overexpression. Conse-

quently, cholesterol uptake might decrease through feedback inhibition. By blocking

the mevalonate pathway MDA-MB-231 cells might be more vulnerable, e.g., because

of their smaller lipid storage. The sensitizing influence of PGRMC1 on a statin

treatment in both cell lines might strengthen the hypothesis of a grand and complex

involvement and cross link of the mevalonate pathway not only on cholesterol/lipid

levels but also on oncogenic signaling. Simvastatin induces expression and activation

of antioxidant enzymes like the heme oxygenase-1 (HO-1), an enzyme that degrades

heme, producing CO, biliverdin, and ferrous iron (Fe2+) [284,285,286]. Kabe et

al. [123] showed that heme dependent dimerization of PGRMC1 is essential for

its interactions with EGFR and that CO binds to to the sixth coordination site

of the heme, preventing dimerization of PGRMC1. Enhanced CO synthesis in the

context of HO-1 induction by simvastatin treatment is consistent with the hypoth-

esis that PGRMC1 dimerization and associated interactions with EGFR and CYP

enzymes is inhibited. This effect, in turn, could particularly explain the decrease

in viability of PGRMC1 overexpressing cells. This work did not investigate the ef-

fect of simvastatin treatment on cell signaling and metabolism. Accordingly, future

studies should further investigate how PGRMC1 expression affects proteomic and

metabolomic profiles under treatment conditions. In addition, future studies should

investigate whether PGRMC1 dimerization affects potential treatment response. In

breast cancer cell lines, EGFR localization to lipid rafts correlated with EGFR ty-

rosin kinase inhibitor resistance and depletion of cholesterol, e.g., via repression of

cholesterol biosynthesis after treatment with lovastatin, sensitized resistant breast

cancer cells to therapeutic tyrosin kinase inhibiton [287]. Therefore, a combination

of chemotherapeutic agents and statins—especially when considering the PGRMC1

protein expression—may play an important role in future cancer treatment plans.
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4.6 General Limitations of this Study

In this work, we investigate the influence of PGRMC1 on lipid metabolism and asso-

ciated signaling pathways in a cell model. Most of the experiments in this work were

performed in cells stably transfected with the expression vector pcDNA3.1/Hygro(+),

containing 3x human influenza hemagglutinin-tagged PGRMC1. As a control, cells

were transfected with an empty vector. One drawback of using this cell line as a

model is that the cells also express endogenous PGRMC1, so they are still subject to

influences of PGRMC1; another is that the function of the overexpressed PGRMC1

may be altered by the hemagglutinin tag. For this reason, we also conducted some

of the experiments in MCF7 cells with knock-down of PGRMC1 by using siRNAs.

To elucidate the role of PGRMC1 in breast cancer, we investigated its expression

in different HR+ and negative breast cancer cell lines. Nevertheless, to account

for the heterogeneity of breast cancer cells, additional cell lines, for example with

HER2 overexpression, should be investigated. The experimental investigation in

different breast cancer cell lines offers a good foundation for understanding the role

of PGRMC1 in metabolism and signaling. However, the heterogeneity of tumor

tissue and the fluidity of different metabolic conditions can only be inadequately

represented. Furthermore, the media used in tissue culture differ significantly from

in vivo environments. Additionally, we did not use dynamic measures of metabolic

and proteomic flux. Thus, only steady-state levels of lipids and signaling proteins

were examined. Moreover, in this study, only a few lipid metabolites were investi-

gated. A more thorough understanding of PGRMC1 may be gained by examining

the large scale changes in the context of its expression and post-translational mod-

ifications. Our viability analysis of breast cancer cell lines treated with simvastatin

identified PGRMC1 as a potential biomarker for future therapeutic approaches in

multimodal cancer therapy. However, this hypothesis is largely built on in vitro

studies. Clinical investigations and trials are necessary to establish PGRMC1 as a

breast cancer biomarker.

4.7 Conclusion and Outlook

In this study, we were able to achieve a better understanding of how PGRMC1 is

involved in lipid metabolism and important breast cancer signaling pathways (Fig-

ure 18). PGRMC1 fuels cell proliferation and cancer progression, potentially via

higher levels of neutral lipids, cholesterol and E2 in HR+ breast cancer. It can be

hypothesized that several factors account for this including interaction of PGRMC1

with key enzymes of the mevalonat pathway and altered expression of proteins re-

sponsible for lipid homeostasis, lipid uptake, and lipid synthesis. Nevertheless, the
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exact molecular mechanisms involved are not yet fully understood. Future research

should address how PGRMC1 affects cell proliferation and signaling under different

metabolic conditions. Moreover, the effect of degree of differentiation and hormone

status on the mode of action of PGRMC1 in breast cancer should be examined. We

found that PGRMC1 overexpressing MCF7 cells display higher amounts of E2. We

demonstrated that phosphorylation of PGRMC1 affects cholesterol and E2 level.

Further investigation is necessary to characterize the phosphorylation of PGRMC1

and its associated function. In addition, signaling pathways facilitating ERα expres-

sion and activation are enhanced in PGRMC1 overexpressing HR+ breast cancer

cells. We also investigated the impact of PGRMC1 expression on breast cancer

cells’ response to endogenous hormone therapy. Our experiments suggest that in-

terference with estrogen metabolism and ERα signaling may have a greater impact

on PGRMC1 overexpressing MCF7 cells in the short term. In particular, future

research should investigate the role of PGRMC1 in the development of resistance

to endogenous therapy. One interesting avenue of research could be to explore

the expression and mode of action of PGRMC1 in long term estrogen deprived cells.

Furthermore, PGRMC1 altered EGFR signaling and HER2 expression. The present

study showed that overexpression of PGRMC1 results in significantly higher lipid

raft formation. However, the underlying mechanisms of how PGRMC1 influences

lipid raft expression and signaling are not fully understood. We demonstrated that

inhibition of HMG-CoA reductase and following depletion of cholesterol not only

assimilated viability of PGRMC1 overexpressing breast cancer cells but even result

in inferior viability. Further examination and analysis of these findings in vivo is

needed. Concluding, PGRMC1 may promote proliferation and progression of breast

cancer cells potentially via modification of lipid homeostasis and key oncogenic sig-

naling pathways. This study emphasizes the potential of PGRMC1 as a target for

multimodal anti-cancer therapy.
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Figure 18: Interaction of PGRMC1 in lipid metabolism and oncogenic sig-
naling pathways
Schematic model for the regulation of lipid metabolism and signaling pathways that contribute to

proliferation, invasion, cell survival, and apoptosis inhibition by PGRMC1. Targets of PGRMC1

that are involved in lipid and signaling homeostasis are boxed in red.

Abbreviation: ACAT: acetyl-CoA acetyltransferase; AKT: protein kinase B; CCND1: cyclin D1;

CD36: cluster of differentiation 36; CYP51: lanosterol 14 alpha-demethylase; DGAT: diglyceride

acyltransferase; DHCR7: 7-dehydrocholesterol reductase; EGFR: epidermal growth factor recep-

tor; ERK: extracellular signal-regulated kinase; ERα: estrogen receptor α; E2: estradiol; FA:

fatty acid; FABPs: fatty acid binding proteins; FASN: fatty acid synthase; FDFT1: farnesyl-

diphosphate farnesyltransferase 1; GPAT: glycerol-3-phosphate O-acyltransferase; HER: human

epidermal growth factor receptor; HMGCR: 3-hydroxy-3-methylglutaryl-coenzyme A reductase;

HMGCS: hydroxymethylglutaryl-CoA synthase; LDLR: low density lipoprotein receptor; LPA:

lysophosphatidic acid; MEK: mitogen-activated protein kinase kinase; OSC: oxidosqualene cy-

clases; PA: phosphatidic acid; SCD: stearoyl-CoA desaturase; SQLE: squalene epoxidase; SREBF:

sterol regulatory element binding transcription factor; TAG: triacylglycerol; TFF: trefoil factor
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6 Appendix

6.1 Supplements

(a) (b)

Figure 19: Intracellular content of cholesterol and its precursor lathosterol
Quantification of intracellular cholesterol and its precursor lathosterol via mass spectrometry in

MCF7/siControl and MCF7/siPGRMC1. Absolute levels of intracellular cholesterol and significant

decrease of lathosterol to cholesterol ratio. *: p≤0.05, ***: p≤0.001
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Figure 20: IF staining of lipid droplets in T47D/EVC and T47D/PGRMC1
Staining of lipid droplets in T47D/EVC and T47D/PGRMC1 with BODIPY™ 493/503. Nuclear

stain with DAPI. Magnification: 63 x.
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Figure 21: Negative control for lipid raft and HER2 staining in T47D/EVC
and T47D/PGRMC1 cells
Negative control staining with rabbit isotype IgG (TexasRed) and Anti-CT-B only (FITC) in

T47D/EVC and T47D/PGRMC1. Nuclear stain with DAPI. Magnification: 63 x.
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(b)

Figure 22: Simvastatin treatment of T47D/EVC and T47D/PGRMC1
T47D/EVC and T47D/PGRMC1 were treated with 100 µM, 50 µM, 25 µM, 12.5 µM, 6.25 µM
and 3.175 µM simvastatin and respective DMSO control. Viability was analyzed by MTT assay at

t = 24 h, t = 48 h, and t = 72 h and 37°C. Depicted are results after 24 h and 48 h of treatment.

Viability was normalized on the DMSO control. P-Values were adjusted using Bonferroni correction

(ndoses = 6; nreplicates = 9) ***: p≤0.001
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(a) (b)

Figure 23: Exemestane and Tamoxifen Treatment of MCF7/EVC and
MCF7/PGRMC1
MCF7/EVC and MCF7/PGRMC1 cells were treated with (a) 200 µM, 100 µM, 50 µM, 25 µM,

12.5 µM Exemestane and (b) 50 µM, 37.5 µM, 25 µM, 18.75 µM, 12.5 µM Tamoxifen. Viability

was analyzed by MTT assay at t = 24 h, t = 48 h, and t = 72 h and 37°C. Viability values were

normalized to the respective DMSO control. Depicted are results after 24 h of treatment. P-Values

were adjusted using Bonferroni correction (ndoses = 5; nreplicates = 9) *: p≤0.05, **: p≤0.01,

***: p≤0.001
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