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Kurzfassung

Das Studium der aktiven Materie offenbart bedeutende Einblicke in die Physik
beweglicher lebender Organismen und motiviert die Entwicklung synthetischer
Mikroroboter, welche Anwendungen in Bereichen wie dem Gesundheitswesen und
den Materialwissenschaften versprechen. Beispiele fiir aktive Materie lassen sich
iiberall um uns herum finden - von der mikroskopischen bis zur makroskopischen
Skala - einschliefllich molekularer Motoren, Bakterien, Algen, Insekten wie Ameisen
oder Heuschrecken und sogar grofierer Tiere wie Vogel und Fische. Diese Wesen
operieren unter Nichtgleichgewichtsbedingungen, indem sie die verfiighare Ener-
gie ihrer Umgebung nutzen, um sich persistent zu bewegen oder Krifte auf das
umgebende Medium auszuiiben. In dieser Arbeit untersuchen wir den Einfluss der
Tragheit des Teilchens, einer anisotropen oder viskoelastischen Umgebung und
moglicher geometrischer Begrenzungen auf die Dynamik eines einzelnen aktiven
Teilchens. Das Verstdandnis der zugrunde liegenden Physik fiir ein einzelnes Teil-
chen stellt den entscheidenden ersten Schritt dar, bevor man sich komplizierteren
Vielteilchensystemen zuwendet.

Der Grof3teil dieser Arbeit basiert auf dem wegweisenden Active Brownian
Particle (ABP) Modells und diskutiert mehrere Verallgemeinerungen. Zunéchst
untersuchen wir die iiberdampfte Dynamik von Teilchen, die sich mit orientie-
rungsabhéngiger Motilitdt bewegen, unter Verwendung von Experimenten an kon-
trollierten aktiven Kolloiden und der Theorie der aktiven Brownschen Bewegung.
Die Studie liefert eine Methode zur Konstruktion komplexer anisotroper Moti-
litdten mit potenziellen Anwendungen in der Navigation von Mikroschwimmern
und bietet gleichzeitig einen theoretischen Rahmen fiir selbstangetriebene Teilchen
in anisotropen Umgebungen. Wéhrend viele Experimente an aktiven Teilchen mit
einem newtonschen Hintergrundfluid durchgefithrt werden, bewegen sich Mikro-
organismen in vivo durch komplexere Umgebungen. Um dies zu beriicksichtigen,
schaffen wir einen theoretischen Rahmen fiir ABPs in einer viskoelastischen Umge-
bung. Wir verwenden zeitabhéngige Reibungskerne, um die verzogerte Reaktion
des Mediums zu beschreiben, und finden eine gedéchtnisinduzierte Verzogerung
zwischen der effektiven Selbstantriebskraft und der Partikelorientierung. Ahnliche
Gedachtniseffekte treten bei selbstangetriebenen Objekten auf, die grof3 genug
sind, um Tragheitseffekte zu zeigen. Wir diskutieren explizit zeitabhédngige Mas-
sen und Tragheitsmomente und schlagen spezifische Bewegungsgleichungen in
Abhéngigkeit vom physikalischen Ursprung der Tréagheitsénderung vor. Diese Situa-
tion ist in verschiedenen Systemen relevant, von Miniaturraketen iiber Staubpartikel
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in Plasma bis hin zu Walkern mit begrenzter Aktivitit. Wir analysieren ebenfalls
verschiedene Massenausstofistrategien um die Reichweite einer Langevin-Rakete
zu maximieren, die wir definieren, indem wir Orientierungsfluktuationen in die
traditionelle Tsiolkovsky-Raketengleichung miteinbeziehen. Als néchstes betrachten
wir die kombinierte Wirkung von Teilchentrégheit und orientierungsabhéngiger
Motilitdt in einem System aktiver Vibrobots auf einem gestreiften Substrat. Die
Auswertung zeigt anisotrope Bewegung auf verschiedenen Zeitskalen, die durch eine
Erweiterung des ABP-Modells erklirt wird das orientierungsabhéngige Motilitat
und Tragheitseffekte umfasst. Das Modell kann auf n-fache rotationssymmetrische
Anisotropie angewendet werden und zur Vorhersage der Dynamik aktiver Materie
in komplexen Umgebungen verwendet werden. Der quantitative Vergleich zwischen
experimentellen Daten und theoretischen Vorhersagen beruht auf der korrekten
Bestimmung der Modellparameter. In einer technischen Studie diskutieren wir
mehrere Fitting-Methoden fiir die mittlere quadratische Verschiebung eines ABPs
mit verbesserter Parameterbestimmung.

Obwohl das ABP-Modell zweifellos das bekannteste ist, teilt es betréachtliche
Ahnlichkeiten mit dem mathematisch zugénglicheren Active Ornstein-Uhlenbeck
Particle (AOUP) Modell. Wir verdeutlichen die Gemeinsamkeiten und Unterschiede,
indem wir ein Parental Active Modell (PAM) einfithren, dass diese beiden Para-
digmen als Spezialfille beriicksichtigt. Als néchstes wenden wir den vorteilhaften
Ornstein-Uhlenbeck-Ansatz auf die Modellierung von tragheitsbehafteten selbstan-
getriebenen Teilchen an. Wir stellen daher ein tragheitsbehaftetes AOUP-Modell
vor, das sowohl die Translations- als auch die Rotationstragheit beriicksichtigt. Die-
ses neue Modell erfasst die wichtigsten Merkmale des etablierten tréagheitsbehafteten
ABP-Modells. Die beiden Modelle sagen im Allgemeinen dhnliche Dynamiken bis
hin zu moderatem Trégheitsmoment voraus.

Im letzten Abschnitt dieser Arbeit untersuchen wir die hydrodynamischen
Stromungsfelder in unmittelbarer Nahe zu Grenzflachen und die daraus resultie-
rende hydrodynamische Wechselwirkung an aktiven und passiven Teilchen. Unsere
Arbeit bietet einen theoretischen Rahmen fiir das Versténdnis der Bewegung aktiver
Teilchen in viskosen Tropfen, mit oder ohne Tenside. Diese Erkenntnisse haben
potenzielle Anwendungen bei der Kontrolle von Systemen aktiver Materie und
der Verwendung synthetischer Mikroschwimmer fiir zielgerichtete Arzneifreiset-
zung. Dariiber hinaus untersuchen wir die Stokes-Stromung zwischen zwei starren
Scheiben, die durch einen Stokeslet oder Rotlet erzeugt wird, und den daraus
resultierenden Effekt der Scheiben auf die Teilchenmobilitdt. Diese Systeme kénnen
potenzielle Anwendungen beim Mikromischen und der Herstellung von mikroparti-
kelbasierten Sensoren haben.



Abstract

The study of active matter reveals significant insight into the physics of motile living
organisms and motivates the engineering of synthetic micro-robots, which hold
promising applications in areas like health care and material science. Examples
of active matter can be found all around us - from the microscopic up to the
macroscopic scale - including molecular motors, bacteria, algae, insects like ants or
locusts, and even larger animals such as birds and fish. Those entities operate under
non-equilibrium conditions by using the available energy of their environment to
move persistently or exert forces on the surrounding medium. In this dissertation,
we study the influence of the particle’s inertia, an anisotropic or viscoelastic
environment, and possible geometric confinement on the dynamics of a single active
particle. Understanding the underlying physics at a single-particle level constitutes
the crucial first step before advancing to more complicated many-particle systems.

The bulk of this dissertation is based on the seminal active Brownian particle
(ABP) model and discusses several generalizations. We first examine the over-
damped dynamics of particles that move with orientation-dependent motility, using
experiments on controlled active colloids and the theory of active Brownian mo-
tion. The study yields a method for engineering complex anisotropic motilities
with potential applications in microswimmer navigation and provides a theoretical
framework for self-propelled particles in anisotropic environments. While many ex-
periments on active particles are performed with a Newtonian background fluid, in
many in-vivo situations, microorganisms move through more complex environments.
To account for this, we create a theoretical framework for ABPs in a viscoelastic
environment. We use time-dependent friction kernels to represent the delayed
response of the medium and find a memory-induced delay between the effective
self-propulsion force and particle orientation. Similar memory effects occur for
self-propelled objects large enough to exhibit inertial effects. We explicitly discuss
time-dependent mass and moment of inertia and propose specific equations of
motion depending on the physical origin of the change in inertia. This situation
is relevant in various systems, from mini-rockets to dust particles in plasma and
walkers with limited activity. We also analyze different mass ejection strategies to
maximize the reach of the Langevin rocket, which we define by including orienta-
tional fluctuations in the traditional Tsiolkovsky rocket equation. Next, the work
examines the combined effect of particle inertia and orientation-dependent motility
in a system of active vibrobots on a striated substrate. The results show anisotropic
movement at different time scales, explained by an extension of the ABP model
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that includes orientation-dependent motility and inertial effects. The model can
be applied to n-fold symmetric anisotropy and used to predict the dynamics of
active matter in complex environments. The quantitative comparison between
experimental data and theoretical predictions relies on the correct determination
of input parameters. In a technical study, we discuss several fitting schemes for an
ABP’s mean-squared displacement with improved parameter estimation.

Whilst the ABP model is arguably the most prominent one, it shares considerable
similarities with the mathematically more accessible active Ornstein-Uhlenbeck
particle (AOUP) model. We elucidate the similarities and differences by introducing
a parental active model (PAM) which accommodates these two paradigms as
decedents. Next, we apply the advantageous Ornstein-Uhlenbeck approach to the
modeling of inertial self-propelled particles. Thus, we introduce an inertial AOUP
model which accounts for both translational and rotational inertia. This new model
captures the key features of the established inertial ABP model. The two models
generally predict similar dynamics up to moderate moment of inertia.

In the final section of this dissertation, we investigate hydrodynamic flow fields
in close proximity to boundaries and the resulting hydrodynamic interaction on
both active and passive particles. Our work provides a theoretical framework for
understanding the motion of active particles in viscous drops, with or without
surfactants. These findings have potential applications in the control of active
matter systems and the use of synthetic microswimmers for targeted drug delivery.
Moreover, we investigate the Stokes flow between two rigid disks generated by
a Stokeslet or rotlet and the consequent effect of the disks on particle mobility.
These systems may have potential applications in micromixing and the creation of
microparticle-based sensors.
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Chapter 1

Introduction

The natural world is a continuously evolving and dynamic place filled with living
organisms going about in a state of constant movement and adaptation to their
environment — from the microscopic motion of cells in the human body up to the
giant swarming behavior of birds in the sky — understanding the principles that
govern these movements has given rise to a most fascinating field of study known
as active matter.

Located at the intersection of physics, chemistry, biology, and engineering, the
field of active matter offers a vast range of problems to tackle. By delving into
questions such as how animals like birds or fish move together in swarms, what
interaction rules drive penguins to organize in huddles, or how bacteria navigate
towards nutrients, we can gain insights into the remarkable strategies living matter
have developed to optimize evolutionary benefit.

As a theoretical field, active matter research makes for a rewarding experience
as models and theories find applications in a wide range of systems. Moreover, the
autonomous navigation of living organisms has inspired the engineering of artificial
active swimmers. These micro-sized particles can convert the energy from their
environment to self-propel in fluids at short-length scales, thus holding promising
applications in health care to perform medical drug delivery.

From a physical standpoint, moving objects at this length scale face various
problems starting with fluctuations due to the many collisions with fluid molecules
or how to overcome the viscous nature of microscopic hydrodynamics. To accurately
describe the stochastic active motion of these particles, theoretical descriptions often
rely on a mixed approach of non-equilibrium statistical physics and hydrodynamic
field theories.

In this dissertation, we seek to contribute to the growing field of active matter
by exploring the influence of the particle’s inertia, an anisotropic or viscoelastic
environment, and possible geometric confinement on the dynamics of a single active
particle. By developing theoretical models and analyzing experimental data, we
aim to deepen our understanding at a single-particle level and build a physical
intuition for their dynamics. The description of more complicated many-particle
systems can build upon our work in the future.



2 Chapter 1 Introduction

This dissertation is written as a cumulative thesis that theoretically examines
active matter physics and covers a wide range of topics. The content of this
thesis is organized in the following way. Chapter 2] provides an exposition of
various modeling approaches in active matter, highlighting the contextual links
between the various publications constituting this dissertation. This chapter
begins by discussing different statistical descriptions of self-propelled particles, with
the active Brownian particle (ABP) model being the most prominent example.
Standard analytical methods for studying stochastic dynamics are introduced,
along with a brief discussion of the properties of the ABP. Generalizations of this
model and the phenomenology in many-particle systems of active particles are also
presented. Additionally, the active Ornstein-Uhlenbeck particle (AOUP) model
is introduced and compared to the ABP model. The second part of Chapter
starts discussing classical hydrodynamic descriptions and low Reynolds number
hydrodynamics, with a focus on how to describe flow near boundaries. Next, a
simplified description of a self-propelled microswimmer in an unbounded bulk
fluid is introduced in terms of a superposition of Stokes singularities. The use of
Faxén’s law to determine hydrodynamic interactions with boundaries and other
microswimmers is also explained. Chapter |3|lists the scientific publications, with the
first five focused on the ABP model, and the sixth and seventh on the AOUP model
(and its relation to the ABP model), while the last three explore hydrodynamics
near boundaries. Finally, Chapter |4] provides a conclusion and outlook for the
thesis.



Chapter 2

Exposition: Theoretical Models of
Active Matter

This chapter aims to glue the individual contributions of this thesis together. The
field of active matter spans across a vast array of systems [1H3]. One usually
distinguishes between dry and wet active matter based on whether the system
conserves or dissipates momentum. In that sense, we categorize the contributions
of this thesis. The first seven publications use dry stochastic approaches, while the
last three employ wet hydrodynamic descriptions.

Dry models consist of equations of motion only for the particles, without explicitly
including the liquid solvent [4,5]. Thus, they are naturally used to describe active
systems such as granular particles on vibrating plates [6,[7], robots [8], insects like
ants [9], locusts [10] and beetles [11] or various animals [12H15].

In contrast, wet models allow for the study of the interaction between microswim-
mers and the surrounding solvent, as well as the cross interactions among different
microswimmers and confining boundaries [16-{19]. Examples include microswimmers
such as synthetic active colloids [20-24], droplet swimmers [25-27], and biological
microorganisms like bacteria [28,29], algae [30], or sperm cells [31]. Generally, wet
models are more difficult to study. Therefore, dry models are also commonly used
as simplified descriptions of active matter systems that involve a solvent, where
the solvent is only effectively represented and acts as a thermal bath that induces
fluctuations in the equations of motion of individual particles.

In Sec. 2.1 we will discuss concepts of dry active matter. Starting by giving a
brief outline of the historical development of the first statistical theories in soft
condensed matter up to contemporary models in active matter. We then introduce
two commonly used paradigm in active matter: the active Brownian particle model
(ABP) and the Ornstein-Uhlenbeck particle model (AOUP). Further, we comment
on their single particle statistics and collective phenomena.

In Sec. 2.2. we introduce a general framework for describing hydrodynamic
flow fields, with an emphasis on the flow patterns of motile swimming particles
including puller, pusher and squirmer-type microswimmer. Additionally, we will
discuss hydrodynamic interactions induced by boundaries as well as other particles.
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2.1 Statistical description of active particles

The origins of stochastic models can be traced back to Einstein’s pioneering work
on Brownian motion in 1905 [32,33], which refers to the erratic movement of small
pollen grains in a water solution [34.35]. Einstein’s approach in terms of positional
probability distributions was soon followed by similar works by Smoluchowski [36437],
Fokker [38,139], and Planck [40]. Langevin then formulated the first stochastic
equation based on Newton’s second law, which recovered Einstein’s result [41].
Since then, Brownian motion and stochastic concepts have played a significant role
in soft matter physics due to their sensitivity to thermal fluctuations.

When botanist Brown first observed the erratic motion of small pollen grains in
a liquid, his initial impression was that they were living entities. It is noteworthy
that as early as 1913, Przibram highlighted this natural intuition and proposed that
the mathematical description of Brownian motion could be indeed used to explain
the erratic motion of self-propelled living organisms [42,43]. However, he noted
that the diffusion for microorganisms is generally much larger than that set by the
thermal temperature. Subsequently, Fiirth demonstrated that persistent random
walks provide a better description for self-propelled particles |[44]. Interestingly, his
theoretical results were formally equivalent to the considerations made by Ornstein
and Uhlenbeck, who studied inertial passive Brownian particles [45]46].

Next, the run-and-tumble particle was a pioneering concept that since then has
been studied extensively. It refers to the motion of an organism, such as the E. coli
bacterium, that moves in a straight line for a period of time, and then changes
direction by tumbling. In 1972, his type of motion was first reported by Berg
and Brown [47]. They found that E. coli tunes its tumbling rate in response to
nutrient concentration to migrate to favorable regions. This phenomenon is known
as chemotaxis, and many mathematical models have been developed to describe
the run-and-tumble motion of particles [48-53].

The birth of active matter can be attributed to the groundbreaking works by
Vicsek and Tonner and Tu in 1995 [54-56]. These physicists studied the collective
motion of self-propelled particles and developed a simple understanding of the
seemingly complicated behavior of active entities by assuming some sort of local
interaction. These models showed non-trivial self-organization leading to complex
global behavior fundamentally different from equilibrium model approaches. In the
last 20 years, active matter physics has undergone rapid development and become
a booming discipline.

After the turn of the 21st century, there was a growing interest in manufacturing
artificial active swimmers. This interest was motivated by microorganisms’ ability
to autonomously navigate complex environments. Various methods for designing
artificial microswimmers have been developed, such as autochemotactic Janus
particles, which feature two differently coated hemispheres, and can swim in self-
produced phoretic gradients of electrophoretic, thermophoretic, or diffusiophoretic
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origin [57,58]. Other methods include propulsion through ultrasound [59}|60],
quincke rollers [61-63|, active droplets [25H27], or actuation via magnetic or electric
fields [64,65]. In contrast to run-and-tumble particles, these active colloids random-
ize their orientation continuously due to rotational diffusion. From the theoretical
side, these experimental advances were answered by an intuitive model coupling
active propulsion with rotational diffusivity — namely the Active Brownian particle
model.

2.1.1 Active Brownian particle model

Although theoretical models of persistent random walks have been around since
the early 20th century, the notion of an active Brownian particle (ABP) emerged
with the manufacturing of artificial microswimmers. One of the first experimental
realizations of an artificial microswimmer was reported by Paxton et al. who
observed the autonomous motion of platinum-gold nanorods [66]. Later, Howse et al.
studied self-motile Janus spheres which move by a process of self-diffusiophoresis [67].
They were also one of the first to give analytic expressions for the mean-square
displacement of an ABP. Soon after the model was generalized to account for
an effective torque acting on the particle thereby presenting the first Langevin
equations for a Brownian circle swimmer [68]. Later, a rigorous analysis of the
stochastic dynamics of a single ABP was given by ten Hagen and coworkers [69,70].
With the success of describing non-equilibrium phenomena like motility-induced
phase separation [71-74], the ABP model is nowadays an established framework
to study self-propelled particles. To elucidate its fundamental properties, we shall
now introduce the model in its most rudimentary form.

Fitting the scope of this thesis, we consider only a single particle at the position
r(t) and propelling with constant speed vy along the body-fixed orientation n(t).
We consider the dynamics in two dimensions, thus, the orientation can analogously
be described by the angle ¢(t) between the x-axis and the orientation n(t) =
(cos @(t),sing(t))T. In addition, to its activity, there is translational £€(t) and
rotational noise 7(t) with respective diffusivity D; and D,. The noise is specified as
zero-mean unit-variance white noise, i.e., (§(t)) =0, (n(¢)) = 0 and (&(¢)&;(t)) =
3;; 0 (t—=1t), (n(t)n(t')) = o0 (t —t'). Accounting for previous considerations the
overdamped dynamics are given by the following coupled Langevin equations

r(t) = von(t) + /2D,E(1), (2.1a)

o(t) = v 2Dn(1). (2.1b)

Here, we assumed that the particle’s motion is overdamped, i.e., the inertia of the
particle is negligible. In this form, the ABP model is often used to describe the
stochastic motion of artificial and living microswimmers. Although the description

does not include the dynamics in the surrounding fluid, the fluid is effectively rep-
resented in the dissipation and fluctuations. In that case, a fluctuation-dissipation
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relation is often assumed which is also reflected in the Einstein-Smoluchowski
relation Dy = kgT'/~; (analogously D, = kgT'/~,), which relates the translational
diffusivity D, (or rotational diffusivity D,) with the thermal energy of the fluid
kpT and the translational frictions coefficient 7; (or rotational friction coefficient
v) [75,[76]. Further, in the ABP model, the origin of the motility is not specified,
rather effective forces and torques are used to model the self-propulsion of mi-
croswimmers (thus, not in contradiction to the fact that a swimmer at low-Reynolds
number is force-free and torque-free [77]). We note that Egs. only describe
the dynamics of an active particle in the most basic form. Generalizations will be
discussed in Chapter [2.1.3]

In contrast to deterministic differential equations that always have a unique
solution for a given initial condition, the stochastic differential Eqs. does not
produce repeatable solutions. Instead, each solution represents a realization of a
random trajectory, and the ensemble behavior of numerous sample paths becomes
a significant deterministic characteristic. Therefore, one usually characterizes the
stochastic nature of self-propelled particles in terms of correlation functions and low-
order moments for the displacement. Analogously to Egs. (2.1)), the dynamics can
also be described in terms of a probability density function P(r, ¢, t), which gives
the probability, at time ¢, of finding a particle at position r and with orientation ¢.
This probability distribution obeys the following Fokker-Planck equation

6t P(I‘, ¢, t) =V. (Dt \ Vo ﬂ) P(I‘7 ¢7 t) + Dr a;P(I‘, ¢7 t) (22)

The stochastic description via the Langevin equations and the Fokker-Planck
equation is formally equivalent [761[78]. However, the Langevin approach is
often preferred since it is analytically more accessible when compared to the Fokker-
Planck approach. As a result, stochastic analysis is usually limited to investigating
the noise-averaged trajectory and mean-square displacement, which still offer
valuable insight into stochastic motion and can be measured in experiments. On
the other hand, the Fokker-Planck equation is commonly used as a starting point
for simplified field theories [79,80].

Next, we will first discuss the single-particle statistics of active Brownian par-
ticles followed up by a brief review of collective phenomena and their theoretical
description.

Single particle statistics

In the absence of fluctuations (D; = D, = 0), the particle moves on trivial linear
trajectories r(t) = r(0) + vot n(0). However, when noise is present, the trajectory
of an ABP goes through a period of directed motion before the self-propulsion
direction becomes randomized due to rotational diffusion. This decorrelation is
characterized by the exponential decay of the orientational correlation function

(a(t) -0(0)) = e, (2.3)
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from which the persistence time of an active particle is deduced

Ty, = /Ooo<f1(t) -0n(0)) dt = Do (2.4)

which represents the average time that an ABP retains its orientation.

Next, we discuss the positional correlation functions — the mean and mean square
displacement. The time-averaged mean displacement vanishes due to uniformity
in all orientations. To get a meaningful result, we consider the conditional mean
displacement for a given initial orientation n(0),

Vo

(x(t) ~x(0)) = 35 (1 - e*DTt>f1(O). (2.5)

For short times, the particle moves ballistic in time with (r(¢) — r(0)) = vt 2(0) +
O (t?), while over intermediate times, the orientation of the particle begins to
decorrelate and then eventually the mean displacement saturates to the persistence
length

Vo .

L, = lim (r(t) — r(0)) = -2 (0), (2.6)

t—o00 Dr

for long times. The mean-square displacement (MSD) can be expressed as

2
<(r(t) - r(O))2> — 4Dt + 2%(07&5 1+ e*Drt), (2.7)
The temporal scaling behavior of the MSD can be studied to classify the dynamics of
ABPs into different temporal regimes, {(r(t) — r(0))?) o t*, with scaling exponent
a. By expanding the analytic result for the mean-square displacement in time,
we obtain {((r(t) — r(0))?) = 4Dyt + v3t? + O (t*). Therefore the mean-square
displacement starts in a short-time diffusion regime (o = 1), increasing linearly
in time with the short-time diffusion coefficient Dg = D,. If the deterministic
swimming motion dominates translational diffusion, a transition from the short-time
diffusive regime to a ballistic regime occurs (o = 2). Ultimately, the particle enters
a long-time diffusive regime for times greater than the persistence time 7, = 1/D,
(v = 1). This diffusive regime is characterized by an enhanced long-time diffusion

coefficient
. <(r(t) — r(O))2> 2
Dr =l " =Petap,
Understanding the averaged dynamics of a single particle provides a useful
intuition when studying more complicated systems. In this context, the persistence
time 7, and length L, and long-time diffusion coefficient D;, are useful quantities.

(2.8)
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In to [P4, we will provide analytic expressions for the here-introduced
observables for different physical settings. Especially, the MSD is frequently
measured in soft matter physics as it characterizes the dynamics of the observed
particle as well as the surrounding fluid. In active matter, experimental investigation
often involves measuring physical properties such as the self-propulsion velocity or
the rotational diffusion coefficient. In we compare different fitting methods
for extracting these parameters using the theoretical expression for the MSD of an
ABP. We also address issues such as heteroscedasticity and the effect of hidden
correlations when using overlapping displacements.

Collective phenomena

When many self-propelled particles interact with one another, large-scale patterns
and complex dynamics can emerge. Although collective effects exceed the scope of
the thesis, we want to briefly touch upon some of the most notable phenomena in
active matter. However, it is important to note that we tackle only a fraction of
the collective phenomena and instead we refer to Refs. [1-4].

As we already mentioned, one of the first studied collective effects is the formation
of swarms or flocks, in which individual particles self-organize to create large-scale
structures [54-56,[81]. Another important collective effect in active matter is the
emergence of active turbulence, a type of fluid-like motion that arises when the
self-propulsion of individual particles creates large-scale flow patterns [82-84].

Collective effects are not limited to biological systems, but can also be observed
in synthetic materials, such as colloidal suspensions. In stark contrast to passive
colloidal particles, self-propelled particles with purely repulsive interactions can
undergo a liquid-gas phase transition known as motility-induced phase separation
(MIPS) [71H73,[85]. This clustering occurs because the effective motility of an
active particle in a many-body system depends on the local particle density due
to steric repulsion, which leads to the accumulation of particles in regions of low
motility. This positive feedback loop can cause nucleation when the effective
motility decreases as the local density increases. Also, clogging and jamming are
common phenomena in active matter with important implications for the transport
properties of self-propelled particles [86-89].

When examining suspensions of self-propelled particles, an interesting question
naturally arises: Can the principles of equilibrium statistical mechanics be employed
to describe the macroscopic characteristics of active matter in terms of thermo-
dynamic properties, such as pressure and temperature? To address this question,
researchers have gained a deeper understanding of the departure of active systems
from equilibrium by examining the entropy production due to time irreversibil-
ity [90-94]. Furthermore, non-equilibrium definitions for effective temperature and
pressure have been proposed [95,96].
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2.1.2 Active Ornstein-Uhlenbeck particle model

Recently, a new model called the active Ornstein-Uhlenbeck particles (AOUP) model
has been proposed as an alternative to the traditional active Brownian particle
(ABP) model [97,98]. The AOUP model was initially introduced to describe the
motion of a passive colloid in a bath formed by active bacteria [99-H102]. In the ABP
model, the activity term von(t) introduces a non-linear combination of Gaussian
variables which leads to non-Gaussian behavior for intermediate times [103]. This
non-Gaussian nature of the ABP model generally complicates analytic calculations.
To tackle this issue, the AOUP model replaces the non-Gaussian orientation vector
n(t) = (cos ¢(t),sin¢(t))” in the ABP model with an Ornstein-Uhlenbeck process
n(t), while ensuring that the steady-state temporal correlations of both models are
equal. The corresponding equations of motion can be written in the following way

i(t) = von(t) + /2D, £(1), (2.9)
: n(t) 1

n(t) = = + \/?x(t). (2.9b)
The equations of motion for the AOUP model involve zero-mean unit-variance white
noise x(t) and the persistence time 7. The ABP and AOUP models share the same
autocorrelation function for the self-propulsion vector (n(t) - n(0)) = e~¥/7, when
implying that 7 = 1/D, (compare with Eq. (2.3)). The AOUP model provides
a great starting point for analytic studies [104H108]. We remark, that usually
the AOUP model is introduced in terms of an equation for the self-propulsion
u(t) = von(t) (or effective force f,(t) = voyn(t)) with 7a(t) = —u(t) + /2D, x(t),
where the active diffusivity D, serves as an additional free parameter connecting
the AOUP to the ABP model via the mapping 2D,/ = vy.

With this mapping, the AOUP model can correctly reproduce the single-particle
statics of ABPs up to the mean-square displacement (Egs. —). Moreso,
AOUPs shows similar accumulation behavior near walls and obstacle [109}(110], the
famous motility-induced clustering [111}/112], spontaneous velocity alignment in
MIPS [113}/114] and active glassy dynamics [115],116].

Per definition, the ABP and AOUP models differ in their descriptions of self-
propulsion. In ABPs, the direction is described by a steady-state distribution
with a uniformly distributed orientational angle and a fixed modulus. In contrast,
in AOUPs, the distribution is a two-dimensional Gaussian, with each component
fluctuating around a vanishing mean value with unitary variance. This fundamental
difference is why AOUPs fail to reproduce the bimodal spatial distribution in a
harmonic potential [97,117].

In[P6] we define the parental active model (PAM) which allows for a more general
distribution of the fluctuating self-propulsion vector n. The distribution is given
by P(n) ~ exp (— (In| — u)?/(2a*(1))), where p is a single free parameter that
determines the most likely value of the modulus |n|, and a?(u) is a quantity that



10 Chapter 2 Exposition: Theoretical Models of Active Matter

constrains the width of the distribution such that (n?) = 1. In that way, the PAM
includes both ABPs (1 = 1) and AOUPs (¢ = 0) as limiting cases while providing
a better description for active particles which exhibit natural speed fluctuations.

In [P7], we introduce a generalized AOUP model that accounts for inertial effects
in mesoscopic self-propelled particles [118}|119]. In inertial ABPs, rotational inertia
introduces memory into the angular velocity, leading to a double exponential
decorrelation in the orientational correlation function |7]. To approximate the
non-Gaussian rotational dynamics of inertial ABPs, we replace the white noise term
x(t) with another Ornstein-Uhlenbeck process. Consequently, the inertial AOUP
model is characterized not only by a typical timescale 7 (which coincides with
the persistence time in overdamped systems) but also by an additional timescale
and diffusivity. These two free parameters are determined by ensuring that the
orientation correlations are normalized (n?) = 1 and that the inertial AOUP model
has the same persistence time 7, as the inertial ABP model. We benchmark the
inertial AOUP model against the inertial ABP model and thus provide a Gaussian
alternative for future studies on inertial active matter.

2.1.3 Beyond active Brownian motion

The basic ABP model and its alternatives have been successfully generalized to ac-
count for various specific particle properties or to include effective interactions with
the environment. Hereunder, we shall provide an overview of a few generalizations
and outline the contribution of this thesis.

Particle shape and chirality

Additional effective torques and translation-rotation coupling can arise from
anisotropy in shape or propulsion mechanism. Wittkowski et al. have provided
a rigorous theoretical framework for active Brownian particles with arbitrary
shapes [120,121], and several theoretical studies have inferred their statistical prop-
erties [68},/122,123]. Circle swimmers have been experimentally realized as active
L-shaped particles [124,/125], and many motile microorganisms exhibit circular
motion near surfaces and substrates [126],[127]. In dense suspensions, collective
effects can result in the formation of circling clusters [128}/129]. In macroscopic
active chiral fluids, spinners rotating clockwise and anti-clockwise can separate
into distinct phases [130], but the addition of active surfactants can prevent this
phenomenon [131].

In and [P3], we explore how memory - be it caused by its particle inertia or
by fluid-viscoelasticity - affects the dynamics of circle swimmers. The ABP model
predicts that a combination of circle swimming and rotational noise leads to a spira
mirabilis for the mean trajectory. For once, the perfect spira mirabilis gets distorted
in the presence of memory. Further, we discuss the non-monotonic behavior long-
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time diffusion coefficient of circle swimmer as a function of memory. Predicting
optimal memory (or more precisely an optimal particle inertia or fluid-viscoelasticity,
respectively) for optimal diffusivity.

External potentials

Applying external potentials to active particles, such as simple harmonic traps
[117,/132,/133] or complex potential landscapes [134,/135], can result in different
statistical behavior. Optical tweezers, acoustic traps, and parabolic dishes are used
to apply external potentials to active colloids [136-139]. Numerous theoretical
studies have explored the movement of self-propelled particles in external harmonic
traps and have revealed that self-propulsion induces greater delocalization within
the trap [117,/132/133]. In addition, active particles can also show non-equilibrium
phenomena such as ratchet effects where they exhibit directed motion in the
presence of a spatially varying potential, even in the absence of an external driving
force [140H142].

In [P6] we explore the behavior of ABPs and AOUPs in a harmonic potential.
Our approach involves developing a unified, parental active model (PAM) that
allows for continuous interpolation between the ABP and AOUP models. The
key distinction between the two models is the distribution of the self-propulsion
velocity modulus, which can range from a Gaussian form (AOUP) to a sharp peak
(ABP). Further, we conducted a benchmark study of the stationary distribution in
a harmonic potential. Our findings revealed a transition from unimodal to bimodal
distributions, which signifies the failure of AOUPs to replicate the behavior of
ABPs in the large-persistence regime.

State-dependent motility

A rich phenomenology is found for active particles with state-dependent motility (i.e.,
dependency on position, orientation, and/or time). The motility of active matter
can be tuned externally via several means, such as the variation of illumination,
which can increase or decrease the swim velocity leading to complex self-assembly
[111}|143-145]. This experimental advance provides intriguing possibilities for
active matter research and offers exciting applications, from micro-motors [146,
147] and rectification devices |148,/149] to motility-ratchets [150]. Researchers
have also employed spatial motility landscapes to trap Janus particles [151] and
investigate polarization patterns induced by motility gradients |[152]. Among the
most fascinating applications based on light-sensitive active particles is the painting
with bacteria, which was experimentally realized by Arlt et al. [28]. Theoretical
studies include [153-156]. Further, the basic model of an ABP can be generalized to
situations where the self-propulsion velocity is time-dependent, such as in the run-
and-tumble motion of many bacteria [157]. State-dependent motilities are relevant
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steering methods in the context of optimized navigation of active agents [158-162].

In and [P4], we study the orientational analog to a position-dependent motility
landscape namely an orientation-dependent motility. In we implemented a feed-
back scheme to program the propulsion velocity of magnetic dumbbells as a function
of the particles’ orientation. While in [P4] we introduced orientation-dependent
motility to macroscopic granular walkers by utilizing an anisotropic substrate.
Accompanying, we developed a theoretical framework that explains the dynamic
features of the particles moving with arbitrary orientation-dependent motility.
Thus, our description can be used for all sorts of different experimental realizations
— for example, anisotropic illuminated Janus particles or triangular microparticles
in traveling ultrasound [163-165]. Most recently, complicated anisotropic clusters
have been formed with particles moving with orientation-dependent motility [166].

Memory effects

Self-propelled or swimming particles often encounter environments that deviate
from Newtonian fluids [167H171]. For instance, they may navigate through polymer
solutions [172H175], micelles [176,177], crystalline [178/179] or liquid crystalline [180),
181] environments, or even biologically relevant substrates such as the cytoplasm
[182H184]. The simplest generalization is introduced for the Maxwell fluid for
passive [185.|186] and active |187,/188|] particles. There are several memory effects
for active particles in non-Newtonian media: first, the noise which perturbs the
swimming motion is temporally correlated, and second dissipation involves non-
instantaneous but with time delay. Recently, Narinder et al. proposed a model
for self-propelled Janus particles in a viscoelastic fluid [189], which contains an
additional torque proportional to the swim force, explaining an increase of rotational
diffusion [190] and the onset of circular trajectories [189).

In[P2] we decouple the swim torque from the swim force, allowing us to solve the
stochastic Langevin equations for arbitrary memory delay in an analytical manner.
We applied our general results to the Maxwell fluid, which introduces exponentially
decaying memory to the standard instantaneous Stokes friction. Our analysis
revealed a double-exponential pattern in the orientational correlation function,
featuring partial decorrelation in the short term and persistent plateaus in the
intermediate term. We also discussed how memory affects the mean and mean-
square displacement of the particle at intermediate and long timescales. Finally,
we established the memory delay function quantifying the mismatch between the
effective self-propulsion force and the particle orientation.

Auto-chemotactic Janus particles [191], swimming oil droplets [192], and crawling
microorganisms [193] are also affected by memory effects. As these particles move,
they leave diffusing substances in their wake that impact their own dynamics [194].
The diffusing substances exhibit independent dynamics, resulting in interactions
that are non-local in time. This gives rise to intriguing collective phenomena such
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as Keller-Segel clustering, traveling patterns, and more [195-200].

Inertial effects

Even macroscopic active matter that exhibits inertial effects can still suffer from
environmental fluctuations [118|119]. Prominent examples include granular particles
on vibrating plates [6,[7], robots [§], inertial dust particles in complex plasma [201-
205], insects like ants 9], locusts [10], and beetles [11], and various larger animals
[13,/15]. On a single particle level, inertial particle show enhanced orientational
correlation, non-trivial inertial scaling behavior, and an inertia-induced delay
between velocity and orientation [206-208]. Moreover, these theoretical models
have been employed to evaluate the effect of inertia on the collective phenomena
typical of active matter [209-215], revealing that translational inertia reduces
MIPS [216}217].

In [P3] we accounted for the case of time-dependent inertia and discussed various
specific setups - including a Langevin-rocket model. Describing the dynamic in
the case of time-dependent inertia is not a straightforward task as the underlying
equations of motion will depend on the precise mechanism behind the change
of inertia [218-220]. To do this systematically, we discuss the idealized cases of
directed mass ejection, isotropic mass evaporation, and isotropic shape change. For
those systems, we compare several dynamic correlation functions for an exponential
mass/moment of inertia loss. Further, we provide an adiabatic approximation
for the long-time diffusivity in the case of slow temporal variation [221]. For a
simplified model of directed mass ejection, which we refer to as the Langevin rocket,
we provide analytic results for the mean reach. Interestingly, the optimal strategy
of a Langevin rocket for achieving maximal reach undergoes a discontinuous change
from a complete, extended mass ejection over time to an instantaneous ejection of
a mass fraction as rotational noise increases.

In general, the mass and the moment of inertia have different effects on the dy-
namics of active particles. For increasing mass, the dynamics of the particle involve
stronger delay effects smoothing the trajectory. On the other hand, increasing the
moment of inertia leads to more resistance to reorientation and subsequently to
higher persistence. In [P4] we explore the combined effect of orientation-dependent
motility and inertia on the dynamics of self-propelled particles. Interestingly, the
anisotropy on short, intermediate, and long times is not only set by the anisotropic
propulsion but depends on the particle inertia.

In [P7] we propose an inertial AOUP model that includes both translational and
rotational inertia. We validate the inertial AOUP model by comparing the analytic
correlations for appropriate parameters to those of the inertial ABP. This Gaussian
model of inertial active matter offers a platform for future studies and a potential
starting point to understand interactions between inertial self-propelled particles.
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2.2 Hydrodynamic description of microswimmer

Microswimmers are able to propel in self-generated flow fields by exerting forces
on the surrounding fluid. The flows can be reflected by nearby solid obstacles,
boundaries, or other active particles and, in turn, affect the orientation and
translation of the microswimmer itself. In this section, we will introduce a general
framework for describing hydrodynamic flow fields, with an emphasis on the flow
patterns of motile swimming particles. Additionally, we will discuss hydrodynamic
interactions induced by both boundaries and other particles.

2.2.1 Hydrodynamics

The Navier-Stokes equation together with the continuity equation provides a
classical continuum theory describing the motion of fluids [222]. Euler initially
presented the continuity equation in 1757 [223], and the Navier-Stokes equation
was first proposed by Navier in 1822 [224], and later refined by Stokes in 1845 [225].
We describe the dynamical state of the fluid in terms of fields, namely the density
field p(r,t) and flow field v(r,t). Note, we now employ an Eulerian point of view,
i.e., the position vector r is now a variable of the field and not the location of a
particle. The Navier-Stokes equation reads as

p(r, 1) <8tv(r, t) +v(r,t) - Vv(r, t)> =V o(r,t) + fy(r, 1), (2.10)

The left hand side denotes the change of momentum per volume p Dv/Dt, where
D/Dt = 0y + v - V denotes the material derivative which guarantees that we
correctly consider the temporal change in the velocity of the fluid element (at
position r) in analogy to Newton’s law for a single particle. The right hand side
gives the sum of the bulk force density f;, and surface force density f;, = n - o,
where the latter is expressed in terms of the stress tensor

o(r,t) = —p(r, i) [+ o'(r,1). (2.11)

The first term in Eq. (2.11)), is given by the local pressure field p(r,¢) describing
acceleration of fluid elements in pressure gradients from areas of high pressure
towards areas of low pressure. The second term involves the viscous stress tensor

a'(r,t) = n(Vv(r,t) + (Vv(r, t))T - ;V -v(r,t) I) +(V - v(r, )L, (2.12)

which describes frictional forces due to internal shearing and compression. These
contribution depend on the specific fluid under study and are characterized in
terms of the shear viscosity 1 and the compressive viscosity (. Following from the
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conservation of mass, the continuity equation governs the temporal change of the
density field
Orp(r,t) + V- (p(r, 1) v(r,t)) = 0. (2.13)

To solve for the flow and density field for a given bulk force density, an additional
equation is necessary to close our system of equations and specify the pressure field.
Depending on the specific fluid under observation additional laws can be applied.
Common examples involve the equation of state for an ideal gas or the Bernoulli
equation for ideal and incompressible fluids [222].

A frequently used approximation assumes incompressibility for the fluids (meaning
p = const). From Eq. follows in that case, that the flow field is source free
and the Navier-Stokes equation for incompressible fluids reads as

p (@V(r, t) +v(r,t)- Vv(r, t)) = —Vp(r,t) + nAv(r,t) + fi(r,t), (2.14a)

V v(r,t)=0 (2.14b)

Note that the pressure is not an independent field for incompressible fluids. It must
guarantee that V - v holds at all time.

Interestingly, the whole dynamics of incompressible fluids only depend on a single
dimensionless number, namely the Reynolds number [226]

_LVp
T] )

Re (2.15)
where L is the typical length scale and V typical speed of the system. For Re > 1,
the momentum part (Lh.s. of Eq. (2.14a)) dominates the viscous part (nAv) and
turbulence may arise. In that case analytic solutions are hard to derive due to
the non-linear character of the equations of motion. For Re < 1, the viscous part
dominates the momentum one. This case is particular relevant for active matter
since lots of microorganism operate at small enough length and velocity scales and
thus produce flows of small Reynolds number.

Low Reynolds number Hydrodynamics

At the short length and velocity scales of propelling microorganisms, the generated
fluid flow field is mainly dominated by viscous dissipation (Re < 1). In that
case the Navier-Stokes equation for incompressible fluids simplifies to the Stokes
equation

—Vp(r) + nAv(r) + f,(r) = 0, (2.16a)
V -v(r) =0. (2.16Dh)

Stokes flows evolve instantaneous and are fully reversible. There are no time-delay
effects and the flow is solely due to momentary pressure gradients and bulk force
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densities. When one reverses p(t) and f(¢) in time the flow reverses accordingly in
time. Further Eq. (2.16al) describes a linear differential equation and a fundamental
solution in terms of a Green’s function can be derived as

v(r)= [ G(r—71)-f,(r') d®’ (2.17)

Rf’)

with the Oseen tensor [227]

G(r) = 87T1W (1+15). (2.18)

It’s worth noting that the pressure field does not factor into the ultimate solution
for the velocity field. Rather, it is the pressure that guarantees that V - v = 0 to
begin with. If there were a net inflow of fluid into a volume element, it would violate
V -v = 0. Nevertheless, the pressure would increase locally and counterbalance the
net inflow (in the case of an incompressible fluid, this happens instantaneously).
The pressure field is given as

p(r) = /R;I)(r —1') - £, (r)) dPr. (2.19)

with the respective Green’s function

(2.20)

Boundary conditions

In the following we comment on the most common types of boundary conditions
used to model fluid flow near surfaces and interfaces. Up to now, we only considered
the unhindered fluid flow in the bulk without any boundary conditions at walls,
obstacles or other objects. However, close to a boundary the confinement affects
the flow field as it introduces extra boundary conditions to the solutions of the
Stokes equations. The two most common boundary conditions are no-slip and
free-slip boundary conditions.

Dirichlet-type no-slip condition assumes that the fluid in contact with the solid
boundary is at rest relative to the boundary 09, i.e., its velocity is zero,

v(r,t) =0, forredS. (2.21)

This condition implies that there is no slip between the fluid and the boundary,
and that the fluid velocity smoothly transitions from a non-zero value in the bulk
to zero at the boundary. The no-slip condition is often used to model flows over
rough surfaces.
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In contrast, a free-slip boundary condition assumes that the flow velocity in
the normal direction of the boundary is zero, i.e., impermeable boundary and the
tangential stress of fluid at the boundary is zero, i.e., no shear force is exerted from
the fluid to the boundary

v(r,t)-§=0, forreds, (2.22a)
(o(r,t)-8) x§=0, forreds, (2.22b)

with the unit normal vector s of the boundary 0S at position r. This condition
implies that the fluid slips freely over the surface without any frictional drag. The
free-slip condition is often used to model flows over smooth surfaces or liquid-air
interfaces.

Other types of boundary conditions may be used depending on the specific
problem being studied including inlet/outlet boundary condition, constant pres-
sure boundary condition, slip boundary condition (introducing a slip length L),
symmetric, and periodic boundary conditions [228]. In the context of this thesis we
want to highlight the surface tension boundary condition used to model surfactants
at an interface. The presence of surfactants can affect the surface tension of the fluid
interface. This effect can be modeled using a surface tension boundary condition
that depends on the concentration of the surfactant at the interface [229-231].

There are several analytic and numerical methods that can be used to solve
hydrodynamic problems with boundary conditions. For specific geometries, analytic
solutions can be found using integral-transformations, perturbation approaches
and the method of images [232]. Solutions for fluid flows near various types of
geometries can be found in Ref. [233]. As an example, similar to electrostatic
boundary value problems, the methods of images can be used to satisfy free-slip
conditions at an infinite flat wall. For an infinite flat no-slip wall the solution is
more complicated and the corresponding Green’s function is given in terms of the
Blake tensor [234].

In we derive the Stokes flow for a point force and dipole singularities within
a spherical drop, with both clean and surfactant-covered surfaces. Our derivation is
similar to the method initially introduced by Fuentes et al. [235]236], who derived
the solution for a point force acting outside a clean viscous drop. An analogous
approaches report the Stokeslet solution outside [237,1238] or inside [239,240] a
spherical elastic object, and outside a surfactant-covered drop [241].

In and [P10], we solve for the Stokes flow of an axisymmetric Stokeslet and
rotlet singularity between two equal-radius circular disks, respectively. In both
cases, we transformed the solution of the flow field into integral equations and
used standard numerical approaches to solve them. The approach is similar the
approach by Kim who studied the Stokes flow near a single disk [242]. Recently
the method has been applied to derive the flow field of a parallel Stokeslet between
two coaxially positioned rigid no-slip disk [243].
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2.2.2 Self-propelled microswimmer

This section explores various swimming mechanisms used by microswimmers and
how to describe the flow fields they produce. Microwsimmer including artificially
engineered particles as well as microorganism like Escherichia coli (bacteria) or
Chlamydomonas reinhardtii (alga) operate usually under low-Reynolds number
conditions. Typical dimensions are L ~ 10 pum, V ~ 10 pum/s, p ~ 10% kg/ m® and
n ~ 1073 Pas which results in a low Reynolds number of Re ~ 107 < 1. When it
comes to self-propulsion at low Reynolds numbers, a different swimming mechanism
is needed than what we experience with our own swimming. Our inertia-based
swimming doesn’t work due to the reversibility of the Stokes flow, which means
that reciprocal deformations of swimmers won’t result in net migration, as the
Scallop theorem states [49]. Bacteria solve this problem by using a complicated
rotary motor [244], while sperm cells make their reciprocal beating of the flagellum
non-reciprocal through elasticity [245]. Similarly, Chlamydomonas can move despite
its nearly reciprocal breaststrokes [246]. In contrast, artificial microswimmers either
mimic the non-reciprocal shape change of self-propelled microorganisms [247], or
swim in self-generated phoretic fields [58]. In the latter case, swimming requires
breaking symmetry in the design, which is often accomplished by combining two
half-spheres with different physical properties, creating what is known as Janus
spheres [57].

In the following, we outline the general procedure of how to hydrodynamically
describe a microswimmer. In essence, the specific swimming mechanism is incor-
porated with appropriate boundary conditions for the flow field over the surface
of the swimmer. Living active particles, which swim by changing their shape, are
described using sticky boundary conditions (swimmers). Janus particles or ciliated
organisms, on the other hand, are well-described using slip velocity boundary
conditions tangential to the particle’s surface (squirmers). With these boundary
conditions, the swimming problem is completely defined and is typically studied
in three steps. First, the Stokes equation with boundary conditions is solved to
obtain the flow field. Second, the total force F = | ¢ a(r,t)-ndS and total torque
T = [,r x (o(r,t) - n)dS acting on the microswimmer are calculated, where S
and dS denote the surface of the microswimmer and a differential element of it,
respectively. Finally, employing the force-free condition (F = 0 and T = 0), the
translational self-propulsion velocity vy and angular velocity wg can be determined.
We would like to mention two minimal microswimmer models for the swimmer
case [248] and the squirmer case [249,250].

The detailed description of the hydrodynamic interactions of microswimmers has
the disadvantage of being too complicated for analytic treatment and numerically
costly. To simplify matters, a common approach is to perform a multipole expansion
of the swimmer’s velocity field. Such an approach allows for the creation of
theoretical models of microswimmers that can reproduce certain physical features
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in a simplified but analytically tractable way. Each term in the multipole expansion
can be associated with a physical property of the swimmer. It should be noted
that a multipole description has its limitations and falls short in the near vicinity
of boundaries or other particles. The agents are effectively treated as point-like
unless steric or other interactions are included. In the following section, we will
introduce the multipole description of a microswimmer.

Multipole representation of a mircoswimmer

In the following, we will describe the state of the microswimmer by its position
vector rog and orientation ng. Analogously, we denote the self-propulsion velocity
as vg and the angular velocity as wq. Every bulk flow field generated by a uniaxial
microswimmer can be expanded as [16,251],

Vb(I‘) = VFD(I') + VSD(I') + VFQ(I') + VRD(I') + O(|I‘ — I'o‘_4), (223)

where the terms correspond to contributions of a force dipole vgp(r), source
dipole vgp(r), force quadrupole vpq(r), and rotlet dipole vgrp(r). Next, we will
systematically discuss these terms step by step.

For a general bulk force density f,(r), the first contribution is given by the so
called ‘Stokeslet’” which is defined as a single point force of stength f at position r
oriented along ny, i.e., fy(r) = fnyd (r — ry), and produces the following flow field

vs(r) = AgGg(r —ro; np) (2.24)

with Ag = f/(87n) and where we defined the Green’s function associated with the
ng-directed Stokeslet acting at the position rg of an unbounded fluid medium as

Gs(r; 1)) = ﬁ(n+ <ﬁ|1;|1;)r). (2.25)

However, for microswimmer, this first contribution vanishes Ag = 0 since mi-
croswimmer propel under force-free conditions.

The leading-order flow field for microswimmer is generated by the force dipole,
which consists out of two opposing ng-directed Stokeslets separated by a distance ¢
along the direction ng [252,253|,

Vip(r) = 87]:—77<Gg(r — (ro + (hg/2): ig) — Gs(r — (ro — liag/2); ﬁ0)>

~ _AFD ﬁo . VGs(I' — I, flO), (226)
where Eq. (2.26]) remains valid for small ¢ and we have introduced the strength

of the force dipole App = f¢/(8mn). This allows us to introduce the force-dipolar
singularity solution as

GFD(I'; ﬂl, flg) = —ﬂg . VGs(I'; ﬂ1> (227)
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This flow is generated by two equal and opposite forces that represent balanced
propulsion and drag (force-free in total). A "pusher” swimmer has a positive dipole
moment (App > 0), with forces pointing away from each other, while a ”puller”
has a negative dipole moment (App < 0), with forces pointing towards each other.
Pushers push liquid forward with their head and backward with their tail, while
pullers pull liquid in towards their body with their flagella. This creates an extensile
flow for pushers and a contractile flow for pullers. For example, Escherichia coli
bacteria generates an extensile flow [254}255], while Chlamydomonas reinhardtii
algae generates on average a contractile flow [256,257].

Similar relations hold for the higher-order singularities. Neutral swimmers are
characterized by a balanced spread of propulsion and drag forces over their surface,
resulting in App &~ 0, and a predominantly quadrupolar flow field. Examples of
neutral swimmers include ciliated organisms [256] and active droplets [25-27].

In particular, the source dipole flow field describes the far-field hydrodynamics
induced by the finite size of the swimmer

VSD<I‘) = ASDGSD (I‘ — TI'p, fl), (228)

where the source-dipolar singularity solution can be expressed in terms of the
Stokeslet solution via

. 1 R
Ggp(r;ng) = —§V2Gs(r;n1), (2.29)

and Agp denotes the strength of the source dipole. Ciliated organisms like Volvox
carteri, with a slip velocity at their surface, have a positive value (Agp > 0), while
flagellated organisms have a negative value (App < 0) [256].

We can use the force quadrupole to describe the shape-asymmetry of a swimmer

viq(r) = ApqGrq(r — ro; i, n, n), (2.30)
with
GFQ(I‘;fll,flg,flg) = —flg : VGFD(r;fll,fl2> (231)

A positive force-quadrupolar strength Apg > 0 (Apq < 0) corresponds to swimmers
with long (short) flagella compared to its body size [251].
Additionally, the rotlet-dipolar flow field is given by

vrp(r) = ArpGrp(n, 1) (2.32)

with the rotlet dipole strength Agp and its corresponding singularity solution
Grp(r;ng, ny) = —ny - VGgr(r;ny). (2.33)
obtained from the singularity solution of a rotletGg(r;n) = [GFD(ﬁLL,ﬁL) -

Grp(ng, flJ_J_)} /2 with unit vectors n; and n, ; obeying n; xn,; =n [251]. The
rotlet dipole can be used to describe the flow field produced by the rotation of the
flagellum and counter-rotation of the cell body.
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2.2.3 Hydrodynamic interactions

In the following we introduce Faxen’s law which we consequently use to determine
hydrodynamic interactions with solid objects (boundaries and other particles).
First, we consider the fluid flow around a sphere of radius a at position ry being
dragged with velocity vo. Assuming stick boundary conditions on the surface of
the particle (or equivalently no-slip conditions in the rest frame of the particle) the
flow field can be derived as [222],

v(r) = 67r77a(1 + %2V2)Q(r —1g) - V. (2.34)

Integrating the stress over the surface of the particle gives the Stokes’ friction law
F = 67navy, relating the force F needed to drag the particle with the velocity v
in terms of the Stokesian friction coefficient v, = 67na. Analogously, the relation
between a torque T needed to rotate a sphere with an angular velocity wy is given
as T = 8mna®wy, with the rotational friction coefficient ~, = 8mna®. Reversing
the point of view, Faxen’s first and second law consider the force F and torque T
exerted by the fluid onto the sphere

2
F — 6mra {(1 n %V2>V(r) . vo} : (2.358)
r=ro

.1
T = 8mna’ [§V x v(r)

- wo] : (2.35b)
r=ro

in the presence of an advective flow field v(r). In the overdamped limit at low-
Reynolds number, it readily follows for the translational vy and angular velocity
wy of the sphere that

2
vo = (1 + %V2>V(r) . (2.364)
1
Wy = §V X V(I‘) B (236b)

Particle-boundary interactions

To determine the hydrodynamic interactions between a boundary and both passive
or active particles, one first needs to solve the Stokes equations with corresponding
boundary conditions.The solution for the fluid flow is then split into two contri-
butions v(r) = v,(r) + v*(r), wherein v,(r) denotes the bulk flow field solution
(if boundaries were absent), and v*(r) is the image flow field that is required to
satisfy the boundary conditions.

The boundary effect on passive particles is usually described in terms of the
corrections factor of the hydrodynamic mobility function Ap/p [233]258,259].
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Hydrodynamic mobility is a measure of how easily a particle or object moves through
a fluid under the influence of drag forces Fy,ay (and torques Tgy,g). Specifically, it
is defined as the ratio of the velocity vy (and rotation wy) of the particle to the
magnitude of the force acting on it

A
ot (]— + ﬁ) Fdrag = Vo, (2373)
Mt
Aty
e (1 + =k )Tdrag — w, (2.37h)

where p; = 1/(6mna) (and pu, = 1/(87na®)) corresponds to the bulk mobility
function of a spherical particle of radius a [260]. In the presence of boundary, the
leading-order correction to the particle mobility Au is obtained by evaluating the
image flow field v*(r) at the particle position as

Aty Farag = V(1) : (2.38a)

r=ro

1
Aty Tirag = §V X v*(r)

(2.38h)

r=ro

In the case of more than one boundary, the hydrodynamic correction is often
approximated by superimposing the effects induced by the individual boundaries
[261].

In [P9] and we study the hydrodynamic effect of two equal-radius circular
disks on a small particle axially moving or rotating between the plates. We derive
the correction for the translational and rotational mobility. We further test the
superposition approximation using the solution for a single disk against the mobility
correction for two disk.

For active particles, Faxen’s law (see Egs. ) relates the flow field induced
by the mirror images of the swimmer to the corresponding corrections to the
translational vy and rotational velocity wyr,

2
_ a 2 *
VI = (1 + 5 v )V (r) , (2.39a)

r=ro

1
WHI — §V X V*(I')

(2.39Db)
r=ro
here v*(r) denotes the image flow field to the far-field flow of the microswimmer as
specified in Eq. . Thus the hydrodynamic effect of each multipole contribution
can be calculated. By including the boundary-induced corrections in particle-based
descriptions like the active Brownian particle model (see Eqgs. (2.1))), one can study
the dynamics of a microswimmer near boundaries.
For instance, motile microorganisms exhibit circular motion near surfaces and
substrates [126,127,262-264]. Further, confined microswimmers in a microchannel
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with two interfaces or immersed in a thin liquid film exhibit a wide range of complex
trajectories [265-269]. Microswimmer can be trapped at round obstacles [270,271] or
in wedge confinements [265,272]. Additionally, curved boundaries can significantly
affect the stability and topology of active suspensions under confinement [273-277].

In [P§] the translational and rotational velocities of a microswimmer in a viscous
drop were analyzed by developing analytical expressions for the hydrodynamic cor-
rection. The analysis included drops with and without homogeneously distributed
surfactant on their surface, and was based on a description of the swimmer in terms
of a force dipole. Our findings serve as a starting point for an analytical description
of active microswimmers in clean and surfactant-covered drops, and our framework
can be expanded to include higher multipole terms and study swimmer dynamics
inside the drop. This study may prove to be helpful in describing bacteria-driven
droplets, which have been realized recently [278}279].

Particle-particle interactions

In this final section, we will briefly discuss the hydrodynamic interactions among
microswimmers. For Stokes flows, hydrodynamic interactions between particles are
described in terms of the mobility matrix - a linear relation between the individual
forces or torques and the resulting translational or rotational velocities of the
particles [280]. Unfortunately, there is no exact analytical solution for this problem
when dealing with many interacting suspended particles of finite size. However,
several approximation methods have been established for suspensions of both passive
and active colloidal particles including the method of reflections or the method of
induced force multipoles [280-282]. For dilute suspensions, these approximation
methods provide reliable results for the interaction between active particles [252253].
In denser suspensions, one usually recourses by simulating finite-sized microswimmer
[283H286] using squirmer-type swimmer or sorts. Hydrodynamic interactions are
essential for understanding the fundamental physics of active matter suspensions
as they influence their collective behavior. Further, they play an important role in
efficient nutrition and maintaining biofunctionality in active carpets of bacteria or
self-propelled colloids [287,28g].
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ABSTRACT: Combining experiments on active colloids, whose propulsion
velocity can be controlled via a feedback loop, and the theory of active Brownian
motion, we explore the dynamics of an overdamped active particle with a motility
that depends explicitly on the particle orientation. In this case, the active particle
moves faster when oriented along one direction and slower when oriented along
another, leading to anisotropic translational dynamics which is coupled to the
particle’s rotational diffusion. We propose a basic model of active Brownian
motion for orientation-dependent motility. On the basis of this model, we obtain
analytical results for the mean trajectories, averaged over the Brownian noise for

various initial configurations, and for the mean-square displacements including

their non-Gaussian behavior. The theoretical results are found to be in good agreement with the experimental data. Orientation-
dependent motility is found to induce significant anisotropy in the particle displacement, mean-square displacement, and non-
Gaussian parameter even in the long-time limit. Our findings establish a methodology for engineering complex anisotropic motilities
of active Brownian particles, with a potential impact in the study of the swimming behavior of microorganisms subjected to

anisotropic driving fields.

H INTRODUCTION

Active Brownian particles, the synthetic analogues of biological
microswimmers such as bacteria and protozoa, have the ability
to self-propel at low Reynolds numbers via the conversion of
energy available in their surroundings into directed motion by
exploiting intrinsic asymmetries in their shape and material
properties.””> Their motion arises from the interplay between
thermal fluctuations and propulsion, which renders active
colloids an excellent model system for studying far-from-
equilibrium physical phenomena,® " also featured in their
biological counterparts. The basic model for describing the
trajectories of a self-propelling colloid, called active Brownian
motion, couples a constant velocity v along the particle’s
asymmetry direction with its rotational diffusivity Dy, which
constantly randomizes the propulsion direction with a character-
istic time scale 7z = 1/Dg. In this model, the particle
displacements result from propulsion combined with stochastic
translational and rotational noise. The propensity for straight
paths is defined by the persistence length of the trajectory, L, =
v/Dg. To date, various propulsion mechanisms have been
realized for active colloids. Among them are self-propulsion
induced by chemical reactions,”® illumination,”**
sound" and actuation by magnetic'*™" or electric®*" fields.
Regardless of the origin of propulsion, the scenario defined by

. . . 1 . . .
active Brownian motion was Vel’lﬁed mn expenments for a range
22-24

or ultra-

of artificial microswimmers.

© 2020 American Chemical Society
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Despite the success of ordinary active Brownian motion, the
complexity of some behaviors found in biological and artificial
microswimmers implies the urge to extend our experimental and
theoretical models, in particular, to include complex spatio-
temporal dependencies of propulsion velocity as well as
translational and rotational noise. These situations are
frequently encountered for systems where the external stimulus
governing the motility is inhomogfeneous.zs_32 Recently,
motility landscapes, where the particle propulsion speed
depends on spatial coordinates, time, or a combination of
both,™*™* have been experimentally realized”>*"*"~*' and
numerically modeled.>""**™*° However, with rare recent
exceptions aside,” the orientational analogue to a position-
dependent motility landscape, which is an orientation-depend-
ent motility, remains unexplored for systems of noninteracting
anisotropic active particles.

In this article, we experimentally and theoretically study active
dumbbells with an orientation-dependent motility. This system
offers a basic setup for anisotropic actuation in which the
particle’s propulsion speed is modulated according to its
orientation, which is constantly randomized by rotational
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diffusion, thus introducing anisotropy into the particle
dynamics. In our experiments, we use active dumbbell-shaped
colloids composed of a polystyrene and a magnetic silica particle
assembled via sequential capillary assembly”" and self-pm}aelling
on a planar substrate via alternating electric fields.>>>* The
particle’s position and orientation are tracked in real time and
used as the input for a feedback loc 4p that updates the particle
velocity with full programmability.”” These results are used to
verify the basic theoretical model for active Brownian motion
with an orientation-dependent velocity, which we propose and
establish here. We obtain analytical results for mean trajectories
averaged over the Brownian noise for various initial config-
urations and arbitrary angular dependencies of the velocity. We
further calculate the corresponding mean-square displacements,
including their anisotropic non-Gaussian behavior, and
characterize the anisotropy as a function of time. We find that
the theoretical calculations are in good agreement with the
experimental data. The results of this work shed new light on
anisotropically active Brownian particles, inspiring both a better
understanding of the behavior exhibited by motile micro-
organisms when subjected to inhomogeneous or anisotropic
driving fields®® and new design ideas for smarter synthetic
microswimmers.

B MATERIALS AND METHODS

Theoretical Description. In our theoretical model, we consider a
single overdamped active Brownian particle in two spatial dimensions.
The state of this particle is fully described by the center-of-mass
position r(t) and the angle of orientation ¢)(t), which denotes the angle
between the orientation vector & = (cos ¢, sin ¢) and the positive x axis,
at the corresponding time t. The centerpiece of our model is an arbitrary
orientation-dependent motility v(¢). Without a loss of generality, we
represent the propulsion velocity v(¢)) as a Fourier series

S
V() =7 Y, cexp(ikg)

k=—c0

)

where 7 denotes a reference velocity, ¢, is the Fourier coefficient vector
of mode k, and i denotes the imaginary number. For a given propulsion
velocity v(¢), these Fourier coefficients can be calculated as ¢, =
/Z”(V((ﬁ)/(llﬁ)) exp (— ikgp) d¢. The overdamped Brownian
dynamics of the particle is described by the coupled Langevin equations
for orientation-dependent motility

i(t) = v(¢(t)) + 2D &(t) )
$(t) = \[2Dgn(t) (3)

where Dp and Dy are the translational and rotational short-time
diffusion coefficients of the particle, respectively. To take translational
and rotational diffusion into account, the Langevin equations contain
independent Gaussian white noise terms &(t) and #5(t), with zero
means, (€(t)) = 0 and (n(t)) = 0, and delta-correlated variances,
(@(tl);(tz» = 5:;5(t1 — 1) and (n(t)n(t)) = 8(t; — t,), where i, j €
{x, y}. The brackets (--) denote the noise average, and &; is the
Kronecker delta.

To keep the model initially as general as possible, we prescribe the
self-propulsion by a vector function v(¢). Later, we will focus on special
motility scenarios and proceed to the less general factorization vo(¢)
G(¢) that is typically assumed in the literature." The special case of
isotropic self-propulsion corresponds to the form vyli(¢) with a
constant speed v,. It is associated with the only nonzero Fourier
coefficient vectors ¢; = (1, —i)/2 and c_, = (1,i)/2. In the following
sections, we neglect mode k = 0 in eq 1, which would describe a trivial
constant drift.

Fabrication of Active Magnetic Dumbbells. Active magnetic
dumbbells composed of a 2.0-um-diameter polysterene (PS) and a 1.7-
pum-diameter magnetic silica (SiO,-mag) particle (Microparticles
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GmbH) were fabricated using the sequential capillarity-assisted particle
assembly (sCAPA) technique as described in previous work.”" First, a
40 uL water droplet (Milli-Q) with 0.1 mM sodium dodecyl sulfate
(SDS, 99.0%, Sigma-Aldrich), 0.01 wt % of surfactant Triton X-45
(Sigma), and 0.5 wt % PS particles was deposited and dragged at a
controlled speed over a polydimethylsiloxane (PDMS) template with
rectangular traps of 2.2 ym X 1.1 um lateral dimensions and 0.5 ym
depth, fabricated by conventional photolithography. This deposition
step resulted in one PS particle deposited per trap, leaving space for a
second particle. The process was then repeated with a dispersion of
SiO,-mag particles. Individual SiO,-mag particles were deposited inside
the traps in close contact with the PS particles forming dumbbells. Next,
the dumbbells were sintered in the traps by heating the template to 85
°C for 25 min. Finally, the dumbbells were harvested by freezing a
droplet of a 10 uM KCI (Fluka) aqueous solution over the traps and
lifting it from the template. The thawed droplet containing the
dumbbells was used to fill the experimental cell as described below.

Cell Preparation and Active Motion Control. Transparent
electrodes were fabricated from 22 mm X 22 mm glass slides (85—115
um thick, Menzel Gliser, Germany) coated via e-beam metal
evaporation with 3 nm of Cr and 10 nm of Au (Evatec BAKSO1 LL,
Switzerland), followed by a top layer of 10 nm of SiO, (STS Multiplex
CVD, U.K.) deposited by plasma-enhanced chemical vapor deposition.
A 7.4 uL droplet of the dumbbell suspension was placed on the bottom
electrode inside a 0.12-mm-thick sealing spacer with a 9 mm circular
opening (Grace Bio-Laboratories SecureSeal, U.S.).

After sealing the cell with the top electrode, both electrodes were
connected to a signal generator (National Instruments Agilent 3352X,
U.S.) to apply an ac electric field with a fixed frequency of 1 kHz and
varying peak-to-peak voltage Vpp(t) of between 1 and 10 V, depending
on the dumbbell orientation. The particles are propelled thanks to
unbalanced electrohydrodynamic (EHD) flows on each side of the
dumbbell, with the SiO,-mag lobe leading the motion. The propulsion
velocity is proportional to VPPZ.SZ'53

We furthermore imposed a fixed rotational diffusivity D = 0.25
rad?/s for the dumbbells in all experiments, as described in a previous
work.”* In brief, we applied external magnetic fields via two pairs of
independent Helmholtz coils to align the magnetic moment of the
SiO,-mag particle. The angle ¢(t) of the applied magnetic field is
randomly varied in time according to the relation
¢(t + At) = ¢(t) + /2Dy Atn(t), where in the experiments At = 1
ms and 7(t) is defined as above.

Imaging and Feedback Loop. The dumbbells were imaged in
transmission mode with a home-built bright-field microscope. Image
sequences were taken with a sSCMOS camera (Andor Zyla) with a 1024
pixels X 1024 pixels field of view and a S0X objective (Thorlabs). The
center of mass r(t) and the angle ¢(t) of the dumbbells with respect to
the x axis were tracked in real time using customized software written in
Labview and Matlab. The detected orientation of the dumbbell is
symmetric with respect to 7, being 0 or 7 when it is perfectly aligned
with the x axis. After the experiments, we postprocessed the acquired
images to identify both lobes of the dumbbell and convert the angles to
the interval from 0 to 27. The velocity of the dumbbell was varied as a
function of its orientation by changing the applied peak-to-peak voltage
Vpp according to

Ver(t) = (Vip™ = V") sin(np(1)) + V" )
where Vip* and Vpp' are the maximum and minimum values of the
applied peak-to-peak voltage and n = 1, 2 is the number of symmetric
lobes in v(¢). For n = 1, the dumbbell velocity is maximal when the
particle is aligned with the y axis and minimal when it is aligned with the
x axis. In the case of n = 2, the dumbbell velocity is maximal for an
orientation angle /4 and minimal when the particle is aligned with the
X or y axis.

There is an inherent delay in capturing an image, extracting the
dumbbell angle, and updating the voltage according to it. In our
experimental setup, a full cycle takes 400 ms, leading to an update
frequency of the particle velocity of 2.5 Hz. This frequency is much
lower than the one used to randomize the dumbbell orientation (1

https://dx.doi.org/10.1021/acs.langmuir.9b03617
Langmuir 2020, 36, 7066—7073
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kHz) so that there is a clear separation of time scales between the two
types of updates, and the dumbbell undergoes standard rotational
diffusion at an imposed rate.

Bl RESULTS AND DISCUSSION

Orientation-Dependent Motility. Our active colloidal
dumbbells are produced by sequential capillary assembly,’" as
represented in Figure la in Materials and Methods, and self-
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Figure 1. (a) Side-view representation of the sCAPA fabrication of
active magnetic dumbbells. The PS particles (gray spheres) are
deposited first, followed by the SiO,-mag particles (brown spheres).
The black arrows indicate the deposition direction. The insets show
SEM images of the particles in the traps after each deposition step (2
pm scale bar). (b) Scheme of the experimental setup. Four magnetic
coils impose a randomly oriented magnetic field B (blue arrow) to set
the rotational diffusivity of the dumbbells to Dy = 0.25 rad?/s. An ac
electric field applied between two transparent electrodes is used to
actuate the dumbbell with velocity v oc Vip(t). A feedback loop updates
the applied voltage as a function of the dumbbell orientation angle ¢(t)
to achieve an orientation-dependent propulsion velocity. (c, d)
Trajectories of active magnetic dumbbells with a motility with 2-fold
(c) and 4-fold (d) rotational symmetry. The particle positions at
discrete times are represented by arrows indicating the dumbbell
orientation and are color coded according to the applied voltage in the
range from V" to Vg% which corresponds to mod(¢(t), 7/2) (c) and
mod(¢(t), 7/4) (d). See the corresponding Supporting Information
Movies.

propel under an ac electric fields thanks to induced-charge
elec'crophoresis.’%_58 The compositional asymmetry of the
dumbbell results in local unbalanced EHD flows producing a
net force that generates propulsion along the long axis of the
dumbbell.*>** In order to achieve robust experimental control of
orientational dynamics, we decouple it from the thermal bath by
randomizing the dumbbell orientation using an external
magnetic field (Figure 1b) to set a constant rotational diffusivity
of Dg = 0.25 rad?/s.>* We furthermore include a feedback loop
to update the dumbbell’s propulsion velocity according to its
orientation, as described in Materials and Methods and sketched
in Figure S1 in the Supporting Information, to experimentally
realize active Brownian particles with orientation-dependent
motility.
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In this work, we study two representative orientation-
dependent motilities. In the first case, the particle’s motility
has a 2-fold rotational symmetry, with the lowest velocity
occurring when the particle is oriented along the x axis and the
highest when it is oriented along the y axis (Figure lc and
Supporting Information Movie 1). We incorporate this motility
effectively in leading order as

vi(#) = 27, sin” ¢ a(p) (s)

where 7, denotes the orientationally averaged speed of the
particle. In the second case, the velocity has 4-fold symmetry,
where the dumbbell achieves the highest velocity when it is
aligned along the diagonal corresponding to an orientation angle
7/4 and the lowest when it is aligned with the x or y axis (Figure
1d and Supporting Information Movie 2). This case is
analogously described as

v($) = 27, sin® (2¢) a(¢) (6)

Figure 2 shows that the prescribed motility scenarios are
experimentally realized. In Figure 2a,b, we fit eqs 5 and 6 to the

2 — 1
=\C
= =2
2 3
s z
<\:;/
0 0
0 Dgt 5
2 —— 1
=N\d
~ e
£ z
0 L L L 0 X
0 ¢ 2z 0 Dgrt 5

Figure 2. (a, b) Orientation-dependent motility with 2-fold rotational
symmetry v,(¢)/7; = 2 sin’> ¢ and 4-fold rotational symmetry
vy(¢p) /7, = 2 sin® (2¢0). Solid dark-blue and dashed red curves show
the experimental data and a trigonometric fit, respectively. The fits yield
7, = 1.4 ym/s and ¥, = 1.1 um/s. Light-blue areas express the standard
error of the mean. (c, d) Orientation-correlation function (f(t)-(0))
for the two experiments and the expected function (@(t)-a(0)) =
exp(—Dgt) for comparison, validating the imposed rotational diffusivity
Dy = 0.25 rad?/s.

data for the orientation-dependent velocity observed in the
experiments corresponding to the first and second scenario,
respectively. We find good agreement of the fit curves and
experimental data and determine orientationally averaged
speeds 7, = 1.4 ym/s and 7, = 1.1 um/s. The orientational
decorrelation of the velocity vector obeys a simple exponential
decay with a rate corresponding to the imposed rotational
diffusivity Dy = 0.25 rad?/s (Figure 2c,d). In the following
sections, we will denote all lengths in units of the orientationally
averaged persistence length L =7/Dy, (i.e, r = r/L) and time in
units of the persistence time 7z = 1/Dg (ie, t = Dgt). The
importance of translational noise relative to the imposed speed v
and rotational diffusion can be defined by the dimensionless
Péclet number, Pe = v/,/DgDy, where the thermal transla-

https://dx.doi.org/10.1021/acs.langmuir.9b03617
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Figure 3. Comparison between theoretical and experimental results for a propulsion velocity with 2-fold symmetry. (a—f) The anisotropic motion of
the particle is visualized by plotting the mean displacement (Ar(¢,)) as a function of the initial orientation ¢, for fixed times (a) Dyt = 0.1, (b) Dyt =
0.2, (c) Dyt = 0.4, (d) Dyt = 0.8, (e) Dyt = 1.6, and (f) Dyt = 3.2. Solid dark-blue and dashed red curves show the experimental data and analytical
results, respectively. Light-blue areas express the standard error of the mean. (g) Mean-square displacement (Ar*(t)) for initial orientations ¢, = 0
(blue), ¢y = /4 (red), and ¢, = /2 (green). Symbols and dashed curves show the experimental data and analytical results, respectively. In addition,
reference slopes are included for diffusive (v = 1), ballistic (v = 2), and quartic (v = 4) temporal behavior. (h) Non-Gaussian parameter a,(t) for the
same initial orientations. Lengths are given in units of L = 5.6 ym and time in units of 1/Dg = 0.4 s, and the Péclet number is set to Pe = 12.

tional diffusion coefficient of the dumbbells was experimentally
determined to be Dy = 0.055 ,umz/s.

Mean Displacement. To characterize the effect of
orientation-dependent motility on the Brownian dynamics, we
first discuss the mean displacement {(Ar(t)) of the particle. In
Figures 3a—f and 4a—f, the experimentally determined mean
displacement is compared with that resulting from our
theoretical model, where we emphasize the anisotropic motion
of the particle by plotting the mean displacement as a function of
the initial orientation ¢y = ¢(0) after fixed times t. The
theoretical result for the mean displacement is given for a general
orientation-dependent motility as

(Ar(t)) _

oo
ik,
¢, C, (Dgt)e %0
"= Y a0

ky=—c0
k#0

™)

with

Ll
Ckl(t)—klz(l e )

where the Fourier-coefficient vectors ¢ are determined by the
motility V(). Here, ¢, = /% ,(v,(h)/(27,)) exp(—ike) dgh for
n =1, 2. (All analytical results for the two studied scenarios are
listed explicitly in the Supporting Information.) For short times
t < 7y, the particle moves linearly in time with
(Ar(t)) = v(d,)t + O(t?), and the anisotropy with respect to
the initial orientation, as is visible in Figures 3a and 4a, is a
deterministic consequence of the anisotropic propulsion of the
particle. For intermediate times ¢t & 7y, the orientation of the
particle starts to decorrelate, which directly affects the
anisotropic shape of the mean displacement (Figures 3b—e
and 4b—e). Finally, for long times t > 73 the mean
displacement saturates to an anisotropic persistence length
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lim (Ar(t)) =LY (k0 e’ /k? (Figures 3fand 4f). The
t—o00 !

faster varying contributions (ie., the higher Fourier modes) of
the propulsion velocity saturate faster and have a smaller impact
on the mean motion of the particle, resulting in a more isotropic
final shape (cf. Figures 3f and 4).

Mean-Square Displacement. The dynamics of active
Brownian motion can be further classified in temporal regimes
by investigating the scaling behavior of the mean-square
displacement (i.e, (Ar’(t)) o ). For v = 1, the particle
shows ordinary diffusive behavior. If v < 1 or v > 1, then the
particle undergoes subdiffusion or superdiffusion, respectively.
The mean-square displacement for a general orientation-
dependent motility is given by

) ©
@1# = % + k,:Zm kz;m €, ¢, (Crg,,(Dyt)
L#EO  ky#0
+ Ckzkl(DRt))e'(k‘JrkZ)’f’” )
with
Chus(t) =
Akt = (1 - k), for ky = —ks,
(1= (1 kpt)e ), for y = —2ks,
e (R (L= ™) = b (1= e k™)) else
(10)

In Figures 3h and 4h, we compare the experimentally
determined mean-square displacement with the corresponding
theoretical result. We observe three temporal regimes,
characterized by two crossover times. By expanding the

https://dx.doi.org/10.1021/acs.langmuir.9b03617
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Figure 4. The same as in Figure 3 for a propulsion velocity with 4-fold symmetry. Lengths are given in units of L = 4.4 ym and time in units of 1/Dy =

0.4 s, and the Péclet number is Pe = 9.

analytical result for the mean-square displacement in time, we
obtain

(Ar*(t)) = 4Dgt + v (g )t + DR(30§,OVZ(¢0)

- 20,9 (#)P)5 + Ot W

where d;, denotes the partial derivative with respect to the initial

orientation ¢b,. Thus, the mean-square displacement starts in a
short-time diffusion regime (v = 1), increasing linearly in time
with the short-time diffusion coefficient Dg = Dy. A transition
from the short-time diffusive regime to a superdiffusive regime
(v > 1) occurs if the deterministic swimming motion dominates
translational diffusion. This condition is fulfilled for times t
greater than the translational diffusion time 7, = Dy/v*(¢h,). As
shown in Figure 3h, the transition to an intermediate
superdiffusive regime is sensitive with respect to the initial
velocity. If the particle is oriented initially along directions of
high motility (see Figure 3h for ¢y = 77/2), then the mean-square
displacement displays a crossover to the ballistic regime (v = 2).
However, if the initial velocity of the particle is not large enough
to dominate translational diffusion or even vanishes (eq 11),
then we observe a delayed crossover (see Figure 3h for ¢, = 0).
In that case, the particle has to undergo an angular displacement
first such that its propulsion grows until it overcomes
translational diffusion. Due to this multiplicative coupling of
diffusive and ballistic behavior for the angular and positional
displacements, respectively, the mean-square displacement
shows a superballistic power-law behavior (v > 2), which is
masked by finite translational diffusion (eq 11). For the specific
initial orientation ¢, = 0, the second- and even third-order terms
in eq 11 vanish such that the next leading order after normal
diffusion scales even quartically (v = 4), which is more visible for
a higher Péclet number Pe. (See Figure S2 in the Supporting
Information for the emergence of this scaling regime.) For times
t greater than the rotational diffusion time 7y = 1/Dy, the mean-
square displacement evolves toward the diffusive limit (v = 1)
again, and it is described by a long-time diffusion coefficient
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=2
v

D, = lim

t— 00

Dp +

)

k=1

@) _ o

4t Dy (12)
In the two experimental scenarios, the long-time diffusion
coefficients are Dy, = S.1 um®/s and D, = 2.6 um?/s,
respectively.

Non-Gaussian Parameter. Finally, we study the non-
Gaussian features of our active dynamics in more detail. Hence,
we introduce the non-Gaussian parameter, which is defined in
two spatial dimensions as*’

L (Ar'(0))

a0 = ey

(13)

The non-Gaussian parameter quantifies how far the
distribution of displacements deviates from a Gaussian (ie.,
a,(t) = 0 for an isotropic Gaussian distribution). For a,(t) < 0 or
ay(t) > 0, the underlying distribution has less- or more-
pronounced tails, respectively. Interesting for active Brownian
motion is the case of deterministic motion (no tails), for which
the non-Gaussian parameter is a,(t) = —1/2. To derive the
analytical expression for the non-Gaussian parameter from our
theoretical model, in addition to the mean-square displacement
(Ar*(t)) the mean-quartic displacement (Ar*(t)) is also
required, which is explicitly calculated in the Supporting
Information. In Figures 3h and 4h, the anisotropy of the non-
Gaussian behavior is visualized. For very small times ¢ < 7p, the
displacements are simply diffusive (i.e., Gaussian), thus the non-
Gaussian parameter a,(t) is zero. For intermediate times 7, < £ <
Ty, the non-Gaussian parameter behaves anisotropically with
respect to the initial orientation ¢b,. For a sufficiently high initial
velocity, a,(t) becomes negative, which is characteristic of
persistently swimming Brownian particles (see Figure 3h for
¢o = /2). When the initial velocity vanishes (i.e., v(¢),) = 0; see
Figure 3h for ¢y = 0), we observe a positive non-Gaussian
parameter. In this case, the particle moves mostly diffusively
even for intermediate times, except for rare events where a
fluctuation rotates the particle sufficiently such that it
experiences a large ballistic step. The underlying distribution
of displacements is thus Gaussian with pronounced tails which

https://dx.doi.org/10.1021/acs.langmuir.9b03617
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dominate the fourth moment over the second and lead to
positive non-Gaussian character. Finally, for long times t > 7y, we
observe long-lived non-Gaussian behavior in the case of 2-fold
symmetry and Gaussian behavior in the case of 4-fold symmetry.
To explain this observation, we consider the covariance matrix of
the displacement distribution, and we define the long-time
diffusion matrix

(Ar(t) Ar(8))
O0) = o =

)
v 1
= DT‘Sij + o z —z(ck“ic_k“/ + c_k“ick”)
R k=151

(14)

for i, j € {x, y}. The eigenvalues of this matrix are given as D, =
Dy, + AD;, where AD; denotes the long-time anisotropy

R

| 2 2 2, 2

AD =— ¥ ¥ W(|ch-ckz| +leg el = legPle, )
172

DR\“k,=1 ky=1 (15)

which describes the long-time diffusion along the principal axes
of maximal and minimal diffusion, respectively. In the two
experimental scenarios, the long-time anisotropy yields AD; ; =
4.0 ym®/s and AD;, = 0 um?/s, respectively. Using the
introduced notation, the long-time behavior of the non-
Gaussian parameter can be EXPI'ESSed as

2
lim a(f) = l(ﬂ]
t—o0 2\ Dy (16)
which coincides with the non-Gaussian character of an
anisotropic Gaussian distribution with covariance matrix 2D .
Thus, the long-time behavior of the non-Gaussian parameter
quantifies the anisotropy of the long-time diffusion. For the
motility with 2-fold symmetry, we have enhanced long-time
diffusion along the y axis and decreased long-time diffusion
along the x axis leading to non-Gaussian character for long times
(Figure 3h). In the second scenario, the long-time behavior can
be described with solely one long-time diffusion coefficient, thus
the non-Gaussian parameter vanishes (Figure 4h).

B CONCLUSIONS

In this work, we reported on a new methodology to impose
complex anisotropic motility behavior on active Brownian
particles. We engineered the orientation-dependent motility of
active dumbbells whose rotational diffusivity is externally
controlled by randomized magnetic fields and whose propulsion
velocity is prescribed using a feedback scheme, which updates
the velocity based on the particles” orientation. To describe the
dynamic features of the particles, we developed a theoretical
framework that proved to be in good agreement with the
corresponding experimental data. In particular, a particle’s mean
displacement shows deterministic active motion at very short
times, decorrelation at intermediate times, and saturation to
anisotropic persistence trajectories at long times. The mean-
square displacement is also characterized by different temporal
regimes. We found that the transition from isotropic diffusion at
short times to a superdiffusive intermediate regime is very
sensitive to the initial velocity of the particle such that the
coupling of diffusive-rotational and ballistic-translational motion
can result in superballistic motion. Moreover, the motion is
characterized by anisotropic diffusion at long times, as described
by the long-time diffusion coefficient and the long-time
anisotropy. Finally, we have investigated the deviation from a
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standard Gaussian distribution by calculating the non-Gaussian
parameter as a function of time. It becomes nonzero for
intermediate times: negative when there is persistent swimming
and positive during reorientation events from an initial
orientation with low velocity to orientations with high velocity.
Furthermore, the long-time behavior quantifies the anisotropy
of the long-time diffusion, being nonzero for the 2-fold-
symmetric motility and zero for the 4-fold-symmetric motility.

The basic model we proposed here is applicable to a broad
range of systems with anisotropic external propulsion
mechanisms and relevant in the context of the orientational
dependence of the propulsion speed, which can intrinsically
emerge for both artificial and biological microswimmers.””*> In
the future, intricate combinations of spatial, orientational, and
temporal modulations of motility could be considered. One
could also proceed to particles with a complex shape, which have
more involved trajectories.”>" Finally, although in our current
experiments one particle at a time is controlled, we envision
possible experimental realizations to control many particles to
explore emerging collective effects.””
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Real-time feedback
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Figure S1: Scheme of the real-time feedback applied in the experiments.

Post-processing and data analysis

We collected 45 trajectories (86 min recording time in total) with a propulsion velocity with
two-fold symmetry and 15 trajectories (28 min recording time in total) with a propulsion
velocity with four-fold symmetry. Their lengths were limited by the time after which the
particles left the field of view of the microscope. The position r and the orientation ¢
were recorded at 2.5 fps and the velocity was calculated from the displacement of successive
positions of the particle as v(t) = (r(t + At) — r(t)) /At, where At = 0.4 is the time between
two frames. The time steps are not fully equidistant, therefore the experimental data were
linearly interpolated to obtain equidistant points. Initially, we did not distinguish each lobe
of the dumbbell and thus we measured its orientation modulo 7. From the direction of the
velocity we could post-process the trajectory to reconstruct the angles in the interval [0, 27).
Finally, we rescaled all displacements with a characteristic length L = /Dy and all times
with the inverse rotational diffusion coefficient 1/Dg, where T is the orientationally averaged
speed for a trajectory. Experimental means with respect to a specific initial orientation
¢o were calculated by averaging in the interval [pg — d¢, pg + 0¢]. We chose ¢ = 25°
and modified the theoretical results accordingly by exp(ik¢) — exp(iko) sin(kd¢p)/(kd@). In
Figs. 3g-h and 4g-h, we took advantage of the rotational and inflection symmetries of the
experiment to increase the statistics.
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General theoretical result

In this section, we calculate the n-th moment of the translational displacement (Ar"(t)) =
((r(t) —ro)") for active Brownian motion with a general orientation-dependent motility.
With respect to initial conditions r(0) = ro and ¢(0) = ¢y, solutions to the Langevin
equations (2) and (3) are obtained via simple integration as

r(t) = ro + /O (v(o(t)) +v2Dre(w)) at., (S1)
o10) = 60 + VD[ ity (2

Since ¢(t) is a linear combination of Gaussian variables, the corresponding probability dis-
tribution is Gaussian as well and the conditional probability density P(¢q,ta|¢1,t1) is given

by
(2 —)?
mexp < 1Dn{ts— 1) tl)) . (S3)

The conditional probability density P (¢, ts|¢1,t1) embodies the probability of finding the
particle with orientation ¢, at time ¢, under the condition that the particle was oriented at
an angle ¢, at former time ¢;. Next, we construct the joint probability density of finding the
particle at an angle ¢ at time 1, at an angle ¢ at time ¢, ..., and at an angle ¢,, at time ¢,, as
P(pn,tn;...;1,t1) = H;l:l P(¢;,t;|¢;j—1,t;—1) using the Markovian property of the Gaussian
white noise. The knowledge of the joint probability density P(¢y,t,;...; ¢1,t1) allows for
an analytic calculation of the n-th moment of the translational displacement (Ar”(¢)). The
translational displacement Ar(t) = Ara(t) + Arp(t) can be split into an active contribution
Arp(t) = fotv(gb(tl)) dt; and a diffusive contribution Arp(t) = /2Dr fotﬁ(tl) dt,. These two
parts are stochastically independent and therefore the n-th moment of the total displacement
can be represented as

<Al‘2n(t)> _ Z nill <Al‘i(n1+m)(t)> <Ar]23(n2+n3)(t)> , (84)

n1!ns!ng!n.
ni1+2n2+n3=n 1:102:002:008

<Ar2"+l(t)> _ Z ni" <Ar2A(n1+nz)+1(t)> <Ar2D(n2+ns)(t)> (S5)

ny!na!ng!ng!
ni+2ns+nz=n 1eto2et2eres

n! 2(n1+na)+1 2natngt1)
" —w LR SN
’ Z ny!ng!(ng + 1)!ng! < A () D (t)

ni+2ns+nz=n—1

P(¢, ta|1,t1) =

Like the orientation angle, also the diffusive displacement Arp(f) is a sum of Gaussian
variables and hence it follows a Gaussian distribution. The corresponding moments are
calculated as

(Arg(t)) = n! (4Drt)", (S6)
(Argti(t)) = 0. (S7)
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In contrast to the diffusive displacement, the active displacement Ar(t) is a nonlinear
combination of Gaussian variables. Here, the joint probability density P(¢n, ty;. .. ; é1,t1) is
used to calculate the n-th moment as

D)=L 3 S ey, TR ST O (Det),  (S8)

ki=—00 k oESh

n=—00
k170 kn#0

where the sum has to be performed over the n! permutations of the symmetric group S,, and
t tn to n n 2
Chopoore () = / dt,, / Aty / dt [J e~ Eih) -0, (S9)
0 0 0 .
j=1

Low-order moments

The low-order moments for Brownian motion with an orientation-dependent motility are

(Ar(t)) _ (Ara(t))

= 1
7 T (510)
(Ar’(t)) _ 4Dgt  (Ari(1))
- 11
12 Pe? 2’ (S11)
(Ar'(t)) _ 32(Drt)*  16Dgt (Ari(t)) | (Ari(t))
- . 12
Lt Pt pe 2t (512)
For a propulsion velocity with two-fold symmetry vi(¢) = 27 sin? (¢)@(¢), with non-
zero Fourier-coefficient vectors ¢_3 = —(1,i)/4, c_; = (1,3i)/4, ¢; = (1,-3i)/4, and
c3 = (—1,1)/4, one obtains
(Ary(t)) 1 —r ( cos(do) 1 —ory ([ €os(3¢0)
L D) (1—c ) 3sin(¢g)) 18 (1—c ) sin(3¢y) / (813)
<Ar2A(t)> 1 - -9 cos(2¢o) - —4 -9
A ANl 414 _ 4 4 T 9T - \NTTYS . 4 > T T T
13 T (4147 — 406 4 405¢~" 4+ ¢~7) e (35— 457 + 9 +777)
COS(4¢0) -7 —97 —167
=010 (175 — 168¢™" — 40e™7 + 33¢~17) (S14)
(Arj(t) 1 2 -
e = T Teed (6615 (477619.27% — 16464247 + 2289911.3) — 2057529.6(20257
+ 7376)e™" 4 27905245.2¢ 47 — 6.4(841057 — 92242)e ™" + 79388.1¢7 167 - 986*3“)
_ cos(200) (14553(21396 — 41812.87) + 314344.8(8547 + 1986.9)e " — 80.19(221648
28201032 T ' O e ' i
+203425.3)e "7 — 8.8(37724.47 — 24587.89)e " + 25776.63¢ 167 + 1422.36e " + 116.3756’367)
cos(4¢y) _ 4
0 (97027(301357 — 50390.53) + 119189.07(42 1143.67)e ™™ + 4580265.69¢ "
v 41956( 7027(301357 — 50390.53) + 119189.07(42967 + 1143.67)e " + 4580265.69¢

+ 7.15(9994327 — 779845.1)e 7 — 21.06(1288987 + 27634.9)e !5 + 340798.185¢ %"
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+ 10718.75¢ 367 + 1318.2756*4%)

_cos(6¢y)
3895779888
—130.1)e™%" + 563165.46e 15" — 565994.52¢257 — 49(11441 — 1918.79)e 30" + 20255.46_49T)

COS(8¢0)
217945728

(122694(1967’ — 70.67) + 1082161.08¢ 7 + 8541342.81¢ %7 + 8179.6(1127

(24277.11 — 31231.2¢77 + 7207.2¢7* — 2955.68¢ 97 4 4204.2¢ 167

— 1515.36e257 + 3086707 — 491.04e %" + 196.776’647) (S15)

with L =7,/Dg and 7 = Dgt. In the case of a propulsion velocity with four-fold symmetry
vo(p) = 20y sin? (2¢) (), with non-zero Fourier-coefficient vectors ¢c_5 = —(1,i)/4, c_3 =
(—1,1)/4, c1 = (—1,1)/2, ¢; = (1, -1)/2, c3 = —(1,1)/4, and ¢5 = (—1,1)/4, one finds

S () 0 () w0 (G6)

(S16)
<Ar§2(t)> = 1011250 (2101507 — 203206 + 202500 " + 625¢ 7 + 81e~>")
- % (847 — 840e™™ — 100e 77 + 65¢ 107 + 28¢7*7)
+ % (2431 — 20807 — 1056¢*" + 705¢ ') , (517)
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29728209352842 2 ( T )+ ( T

+ 65452.9)e™7 — 2689320626.8929¢ 47 + 10917.4(257421787 + 588955.9)e ™"
— 302.328(3530176657 + 138167563)e 6" — 65.1168(3438284857 — 31369636.51)e2°"
+1905187479.104e 367 + 32724549.585¢ 497 + 21910524.654375¢ %47 + 13975832.871e 817

+ 3112728.1305126*1007)

cos(8¢y)
154412.13645(1431879469027 — 107200347827.9
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+ 72681246322.059375¢ 1217 + 14384547897.7736256’1697)
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cos(16¢y)
3836848982174208
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with L = Uy/Dg and 7 = Dgt.

Emergence of the quartic intermediate regime
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Figure S2: Theoretical results for a propulsion velocity with two-fold symmetry. a-f The
mean-square displacement (Ar?(t)) as well as the non-Gaussian parameter as(t) are shown
for initial orientations ¢y = 0 (blue), ¢g = 7/4 (red), and ¢y = m/2 (green) and for different
Péclet numbers Pe = 10, Pe = 100, and Pe = co. A reference slope indicates the quartic
(v = 4) temporal behavior.
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By now active Brownian motion is a well-established model to describe the motion of mesoscopic self-
propelled particles in a Newtonian fluid. On the basis of the generalized Langevin equation, we present an
analytic framework for active Brownian motion with memory delay assuming time-dependent friction kernels for
both translational and orientational degrees of freedom to account for the time-delayed response of a viscoelastic
medium. Analytical results are obtained for the orientational correlation function, mean displacement, and
mean-square displacement which we evaluate in particular for a Maxwell fluid characterized by a kernel which
decays exponentially in time. Further, we identify a memory-induced delay between the effective self-propulsion
force and the particle orientation which we quantify in terms of a special dynamical correlation function. In
principle, our predictions can be verified for an active colloidal particle in various viscoelastic environments

such as a polymer solution.

DOI: 10.1103/PhysRevE.105.044610

L. INTRODUCTION

The physics of active matter is a booming research area
exploring nonequilibrium phenomena of self-propelled parti-
cles [1,2]. Apart from viscous damping in a fluid medium,
fluctuations become important if the particle size is on the
mesoscopic colloidal scale. A by now well-established model
to describe the persistent random dynamics of a single self-
propelled particle is so-called active Brownian motion [1-7].
Here the translational coordinate of the particle is coupled to
its self-propulsion direction, which is the orientational degree
of freedom establishing basically a persistent random walk.
Active Brownian motion assumes an instantaneous friction
which is a well-justified assumption for a Newtonian back-
ground fluid, or in other terms, there is no memory effect
of the medium. However, in many situations, self-propelled
or swimming particles are exposed to environments different
from a Newtonian fluid [8—19]. Important examples for non-
Newtonian backgrounds offered to self-propelled particles are
polymer solutions [20-24] and crystalline [25-27] or liquid
crystalline [28-36] environments or even biologically relevant
backgrounds such as mucus [37,38], dense tissues, [39] or soil
[40].

In this paper we use an extended model for active Brownian
motion in a viscoelastic medium. In doing so we assume
memory effects of the solvent via a friction kernel for both
translational and orientational degrees of freedom besides
fluctuations. In fact, there are different models for active
Brownian motion with memory effects induced by the sur-
rounding medium [41-53] and for passive Brownian motion
in a viscoelastic medium [54-59]. Here we include activity
explicitly. In contrast to Ref. [46] where an active Ornstein-
Uhlenbeck approach was chosen and to Ref. [52] where

“sprenger @thphy.uni-duesseldorf.de
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044610-1

negative friction was used to achieve activity, we choose
our model to recover the established active Brownian motion
case for a Newtonian medium as a clear reference state. In
particular, the model used here is a special case of that re-
cently proposed by Narinder et al. [45], which contains an
additional term of translation-rotation coupling between the
swim force and the swim torque. We consider here the spe-
cial case of decoupled effective swim force and swim torque
with the benefit that we can solve the stochastic Langevin
equations analytically. We evaluate the solution in particular
for a Maxwell fluid which is characterized by a kernel that
decays exponentially in time and obtain analytical results for
the mean displacement, the mean-square displacements, and
the orientational correlation function. Further we define a
memory delay function which measures the memory-induced
delay between the effective driving force and particle orienta-
tion. In principle, our predictions can be verified for an active
colloidal particle in various viscoelastic environments such as
a polymer solution.

The paper is organized as follows. The model is introduced
and discussed in Sec. II. In Sec. III general results are listed.
The solution is evaluated further for a generalized Maxwell
(or Jeffrey) kernel with a memory exponentially decaying in
time in Sec. IV. We summarize in Sec. V.

II. MODEL

In our model we consider a colloidal self-propelled particle
in two spatial dimensions moving at a constant speed vy along
its orientation f(r) through a fluid with memory properties.
We describe the state of the particle by its position r(r) and
its angle of orientation ¢(¢), which denotes the angle between
the orientation vector fi(t) = (cos ¢, sin ¢) and the positive x
axis, at the corresponding time ¢. The time-delayed response
of the fluid is incorporated in the model in terms of a trans-
lational memory kernel I'7(¢) and a rotational memory kernel

©2022 American Physical Society
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I'r(¢) which directly couple to the translation and rotation of
the particle, respectively. To further model circle swimming,
we also include an effective swim torque which acts on the
particle and leads to a circling frequency wp. On the basis of
the generalized Langevin equation, the overdamped Brownian
dynamics of the particle is described by the coupled non-
Markovian Langevin equations

f Tt — W) — vA()de = £0). (1)

/ Tr(t — [P(t") — woldt’ = n(t),  (1b)

where &(¢) and () denote zero-mean Gaussian colored noise

(&) =0, (EO)QE)) =TkgTyr(t —1'), (2a)
(n@) =0, (")) =kgTyr(t —1'), (2b)

with the translational noise correlator yr(#) and the rota-
tional noise correlator yg(t). Here ® is the dyadic product,
I is the identity matrix, kg7 is the thermal energy, and (- - - )
denotes the noise average.

In discussing Egs. (1a) and (1b), we first suppose we are at
zero temperature 7 = 0 (no noise). In this case, the velocity
is identical to the active propulsion and the particle performs
either linear or circular swimming motion. Now we introduce
fluctuations or noise in the system that kick the particle out of
that particular situation. Then there are two effects: first tem-
porally correlated noise which perturbs the swimming motion
and second dissipation incorporated in the memory kernels
which lead to a relaxation back to the steady state.

For reasons of generality, we first do not imply any relation
between the dissipation and the fluctuations in the system.
However, in the case of internal noise, the memory kernels
are related to the correlation function of the noise via the sec-
ond fluctuation-dissipation theorem, i.e., I'r () = yr(t) and
I'r(t) = yr(t) [60]. On the other hand, when fluctuation and
dissipation come from different sources, the memory kernel
and the noise correlator are independent [61,62]. This was
explicitly realized in a recent experiment on magnetic active
dumbbells where the rotational diffusivity was artificially en-
hanced with magnetic fields and therefore decoupled from the
thermal bath [63].

The memory kernels I'7(¢) and I'g(¢) describe the vis-
coelastic response of the fluid and can be determined
experimentally. Probably most commonly used are microrhe-
ological measurements on passive probe particles to extract
the functional form of the memory kernel by tracking the
particles mean-square displacement [64,65]. Alternatively, the
memory kernel can be approximately linked to the shear re-
laxation modulus of the medium which can be measured with
oscillatory shear experiments [66]. Further, we point out that
the stochastic process given by Eqs. (1a) and (1b) is defined
as stationary by setting the lower limit of the integral equal to
—o0 (see Ref. [54] for a detailed discussion on the choice of
the lower limit in the memory term).

In Eq. (1a), the effective self-propulsion force is of the
form F,(t) = vy fix 7 (t —t")A@’)dt’. This choice is not
unique but could in principle vary for different systems (for
instance, externally actuated or mesoscopic swimmers). In our

model, we describe the force-free propulsion of a colloidal
microswimmer which sets the fluid around itself in motion
and translates in the resulting flow field. As a consequence, the
propulsion force is linked to the viscoelastic response of the
fluid and the internal active force F,(¢) lags generally behind
the orientation fi(z) [45].

Importantly, we remark that Eqs. (1a) and (Ib) mark a
special case of the model recently proposed by Narinder et al.
[45] which contains an additional torque proportional to the
swim force, proportional to fi(t) x F,(t), explaining an in-
crease of rotational diffusion [47] and the onset of circular
trajectories [45] for self-propelled Janus particles in a vis-
coelastic fluid. Here we decouple the swim torque from the
swim force with the benefit that we can solve the stochastic
Langevin equations analytically.

Finally, the special case of active Brownian motion [67-69]
is recovered for instantaneous friction and zero-mean Gaus-
sian white noise

Pr@) = yr(t) = 2y:8(0), (3a)
Lr(t) = yr(t) = 2y,:8(1), (3b)

where y, and y, are translational and rotational friction coef-
ficients, respectively.

III. GENERAL RESULTS

In this section we present analytic results for the arbi-
trary memory kernel and noise correlator. By calculating the
Fourier transform of Egs. (1a) and (1b), a solution for the
position r(z) and the orientation angle ¢ (¢) can be derived as

r(t) =r(f) + U()/ @ )dt’

+ / :[xm — ) = xrto — I, ()
B(1) = $(t0) + wnlt — 10)
+ / " Lttt — 1) — xalto — Y@ dr. (@)
with the inverse o]jourier transform of
Fr(@) = ol @)1, THO = 00w,  (5a)
Fr@) = ioFf @17, TH©) = Te®)O@),  (5b)

where we used the convention f(w) = [ f(t)e™*'dt for
the Fourier transform of a function f(¢) and, multiplied with
the Heaviside function f(1)O(t), f+(w) yields the one-sided
Fourier transform [~ f(t)e~""dt.

The deterministic solution of Eqgs. (1) (at zero temperature
T = 0) is independent of the specific form of the memory
kernel and the particle moves on either linear or circular
trajectories

r(0) + vor A(0),

_ wy = 0
O =00 + 21.(0) — h, ()],

wy£0, ©

with fi; (#) = ( — sin[¢(0) + wot], cos[¢(0) + wot])’. In the
presence of noise, the motion of the particle can be charac-
terized in terms of the low-order moments of the stochastic
process. Although Eq. (1b) is nonlocal in time (and thus

044610-2



P2 Phys. Rev. E 105, 044610 (2022)

ACTIVE BROWNIAN MOTION WITH MEMORY DELAY ...

PHYSICAL REVIEW E 105, 044610 (2022)

non-Markovian), the transitional probability for an angular
displacements A¢ after a time ¢ is still Gaussian and specified
by the mean u(r) = (A¢(t)) and the variance of the angular
displacement o (1) = (A¢>(t)) — (Ap(t))?, which are given
by

wu(t) = wot, @)

kgT [ )
a(t>=“7 / (1 — e p@)Fr(@)Fr(—w)dw.  (8)

From that the orientation correlation function C(¢) = (fi(¢) -
11(0)) can be readily derived and follows from

(8(tr) - f(t))) = cos[u(|ty — ri])]e 71272 (9)

Due to the stationarity of the underlying stochastic process,
the two-time orientational correlation function only depends
on the time difference.

The general result for the mean displacement (Ar(7)) =

(r(t) — £(0)) is
(AF(®) = vo fo (RO, (10)

where the conditional average
A(n)|A)) = f)[efa(rz—n )/2+il¢(n)+n(trr|)l] a1

is the mean orientation at time #, under the condition that the
particle had the angle ¢(#;) at previous time #; and Plz] =
(Re(z), Im(z))” transforms a complex number z into its two-
dimensional vector. We remark that the mean displacement is
in general independent of the specific choice of the transla-
tional memory kernel I'7 (#) and only involves the coupling to
the rotational dynamics of the particle.
Next the mean-square displacement is given by

<Ar2(z))=ug/ /(ﬁ(z’)~ﬁ(t”))dt”dt’
0 0

2kgT [ ot s~ ~ 5
+ 2 / (1 — 6 )77 (@) fr (@)% (—w)do.

(12

The first term describes the active contribution to mean-square
displacement, while the second term contains information on
the passive translation caused by the noise [via yr(#)] and
influenced by dissipation [via I'7(¢)].

The effective self-propulsion force F, () does not follow
instantaneously the orientation of the particle. It rather con-
tains integrated information of past orientations and therefore
lags behind fi(). To quantify the delay between the effective
self-propulsion force and the particle orientation, we define
the memory delay function

d(t) = (Fy(1) - 8(0)) — (F,,(0) - A(1)) 13)

as the average difference between the projection of the active
force F,(¢) on the initial orientation f(0) and the projection
of the orientation fi(¢) and the initial active force F,(0). In
Newtonian fluids, the effective self-propulsion force is pro-
portional and instantaneous in the orientation, and thus the
delay function equates to zero for all time. In a similar man-
ner, the inertial delay function was previously defined for

macroscopic active particles which measured the mismatch
between the particle velocity r(z) and the particle orientation
n(r) [5,70,71]. In our overdamped system, this inertial delay
function is always zero since the average velocity is aligned
with the orientation. Conversely, for inertial particles subject
to instantaneous friction, the memory delay function vanishes.

In the following section we explicitly evaluate the in-
troduced quantities for an exponential memory kernel and
discuss the effect of memory on the dynamics of active Brow-
nian particles.

IV. MAXWELL KERNEL

Arguably, the most prominently used memory kernel is
given by the generalized Maxwell model (also know as Jef-
frey’s model) which adds additional exponential memory to
the instantaneous friction [72]. For simplicity, we assume
internal noise such that the memory kernels are related to the
correlation functions of the noise via the second fluctuation-
dissipation theorem. Further, the same temporal dependence
is adopted for the translation and the rotation, respectively,

Ir(t) =yrt) =y <2a<z) + ée*"‘“) (14a)

Tr(t) = yalt) = %(28(1) + ée*"‘/’). (14b)

Here y, and y, denote reference translational and rotational
friction coefficients, respectively. The first term in Egs. (14a)
and (14b) accounts for the instantaneous relaxation, whereas
the second term introduces the time-delayed response of the
viscoelastic fluid with the relaxation time t and the memory
strength A. We remark that for A=0, 7 — 0, or T — 00
the translation and rotational memory kernels become solely
instantaneous and we recover the Markovian (no-memory)
active Brownian particle model [67-69].

Numerous rheological measurements have shown this
Maxwell-like behavior in fluids including polymer solutions
[73,74], micelles [75,76], and cytoplasm [77,78]. From the
theoretical side, there exist several works which considered
the effects of exponential memory on the Brownian motion of
passive [56,57] and active colloids [44—46,52].

A. Orientation correlation function

The dynamical orientation correlation function C(t) =
(A(r) - 1(0)) has a double-exponential structure

C(t) = cos(wpt)

D, TA
_ r t 1— —(14+A)t/t ,
XeXp[ 1+A<+1+A( ¢ )
(15)

with the short-time rotational diffusion coefficient D, =
kgT /y,. Equation (15) simplifies to a single-exponential de-
cay for either short relaxation times t or long ones

cos(wpt) e P, Dit>1+A

cos(agt) e /0+0N D r < 1+ A (16)

C(t) ~ {

These Markovian (no-memory) extreme cases are shown in
orange (t — 0) and black (r — o0) in Fig. 1, where we plot-
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FIG. 1. Orientation correlation (fi(¢) - fi(0)) as a function of D,
for different reduced relaxation times D,t, obtained with wy =0
and (a) A = 10 and (b) A = 100. For D, — 0 and D, — o0, the
orientation decorrelates single exponentially. For in-between values,
we find partial decorrelations at separated timescales.

ted the orientation correlation for sufficiently high memory
strength A and various values of D,t. We note that memory
effects only occur when

Dt =1+ A. a7

In this case, we first see a partial decorrelation at time 1/D,
and a final decorrelation at a later time (1 + A)/D, (see
Fig. 1).

A double-exponential structure for the orientation correla-
tion was previously reported by Ghosch et al. [44] and for
inertial active particles [70,79]. Compared to these systems,
we find different behavior for short times where the exponent
is linear in time

C(t) = cos(wpt ) e~ Prl—(B/20+00)] (18)

One characterizing quantity of active particles is the per-
sistence time 7, = f0°Q C(t)dt, which is the average time the
particle holds its orientation. Here the persistence time is
evaluated as

T _
%= 754 RelS 26512, 0, 91, 19
with
—A1D, T D, X
=" = - , 20
1+ A2 1+A(l+ ’wo) 20
and the incomplete Gamma function TI'(x,zp,z1) =

/;' t*~le~'dt. Obvious from Eq. (16), the persistence time
simplifies for short or long relaxation times t to

D,
N el Dit>1+A .
Tp D,.(1+A) Dt <1+A @n
D2+a}(14+A)2° r ’

representing the known result for active Brownian particles in
simple Newtonian fluids [68,69,80].

B. Mean displacement
Next we address the mean displacement (Ar(¢)) for a given
initial orientation ¢(0) at ¢t = 0,
VT

» Af’[S’QeSF(Q, Se~(+M1/T_§),i90] 22y

(Ar@) = 5

with the operator Plz] = (Re(z), Im(z2))”. The mean displace-
ment increases linearly for short times (Ar(z)) = vorfi(0) +

y/(vo/Dy)

0 2 4 6
a/(v0/Dy)

FIG. 2. Mean displacement (Ar(¢)) in the xy plane for A = 10,
wy = D,, and several values of D,7. The initial orientation is set
along the x axis and the starting point at # = 0 is denoted by a black
dot. For D,t — 0 and D,t — oo, the trajectory displays a perfect
spira mirabilis.

O(?) and saturates to a finite persistence length
VT & .
lim (Ar(1)) = ——P[S~%5T(Q,0, ™). (23)
t—00 1+ A

We again mention that the mean trajectory is independent of
the translational memory kernel noise [see Eq. (14a)] and only
involves the coupling to the rotational dynamics of the particle
[see Eq. (10)].

In Fig. 2 we show the mean trajectory of a circle swimmer
(wo # 0) for different values of D, t. For very long relaxation
times, the particle decorrelates before additional memory can
prolong the persistence. Consequently, the mean trajectory
displays a spira mirabilis known for active particles in Newto-
nian fluids (see the black curve in Fig. 2). When the relaxation
time T becomes comparable to (1 + A)/D,, the rotational
friction gets enhanced at later times and circular motion gets
more stable against noise perturbation (see the purple and blue
curves in Fig. 2). Upon further decreasing the relaxation time
(see the green and red curves in Fig. 2) the mean displace-
ment approaches again the form of a spira mirabilis with a
decreased rotational diffusion coefficient D, /(1 4+ A) (see the
orange curve in Fig. 2).

disol
. Mean-square displacement

The mean-square displacement can be calculated as

4ATD;
AT(1)) = 4Dyt + ———L (] — ¢~ UH2N/T
(Ar*(1)) L+<1+A)2( e )
25T £0) — Fo) (24)
(1+A)? ’
with the long-time diffusion coefficient
Dy vitT o
Dy = —L_Re[S79T(Q,0,5 25
LETA T4 sy e TeT@ 05129
and
&S Q, Q
F() = Re{ =528 s _Se(+AN/T
@ QrLe+1
X e—(H—AJ&'Zt/r]’ 26)
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FIG. 3. Mean-square displacement (Ar?(¢)) and the correspond-
ing dynamic exponent «(7) as a function of time ¢ for several values
of D,t, obtained with wy = 0 and (a) and (c) A = 10 and (b) and
(d) A = 100.

where F, represents the generalized hypergeometric func-
tion. In the passive case (vop = 0), the particle starts in a
diffusive regime (Ar?(t)) = 4D;t + O(t?), characterized by
the short-time translational diffusion coefficient D, = kT /y;,
and then enters a subdiffusive regime which leads to long-time
diffusion with a reduced translational diffusivity D, /(1 + A).
Considering the active contribution (D, = 0), the particle
moves ballistic for short times ~v3¢? and then undergoes a
superdiffusive (or subballistic) transition towards a long-time
diffusive regime proportional to the speed squared and the
persistence time ~v37,t/2. In Fig. 3 we plot the active con-
tribution of the mean-square displacement (D, = 0) for two
values of the memory strength A over the range of relevant
values of D,t and also show the corresponding dynamic ex-
ponent given by the logarithmic derivative

N dlog[(Ar?(1))]
0= loet)

The dynamic exponent «(t) is able to resolve the relevant
timescales of the system more clearly: If, for example, the

@n

mean-square displacement follows a power law (Ar?(t)) ~
t*, a(t) is equal to the power-law exponent «. For the Marko-
vian extreme cases (tr — 0 and T — 00), we find a clean
transition from a ballistic regime (o« = 2) to a diffusive one
(¢ = 1). For in-between values of D, t, the dynamic exponent
«(t) starts decreasing when the first decorrelation happens at
times ¢ 2 1/D,. If the memory strength A is sufficiently high
[see Fig. 3(d)], the dynamic exponent is increasing again at
times ¢ = 7/(1 + A). This event coincides with the persistent
plateau in the orientation correlation function [see Fig. 1(d)].
Finally, the particle transitions to a diffusive regime (¢ = 1)
for times 7 2 (1 + A)/D;.

The long-time diffusion coefficient Dy, [see Eq. (25)] de-
pends nontrivially on the parameter of the model. In Fig. 4
we show the long-time diffusion coefficient as a function
of the memory strength A and various values of D,t. For
a vanishing circling frequency (wy = 0), the long-time dif-
fusion coefficient is monotonically increasing as a function
of the memory strength A and monotonically decreasing as
a function of the relaxation time t [see Fig. 4(a)]. How-
ever, for a finite relaxation time, the asymptotic behavior of
the long-time diffusion coefficient for high A is given by
Dy ~ vSA/ZD,. For low circling frequency [see Fig. 4(b)],
the long-time diffusion behaves nonmonotonically in A. The
optimal memory Ay is increasing as a function of relaxation
time 7, while the corresponding maximal value Dy (Agy) is
decreasing. At higher circling frequency [see Fig. 4(c)], the
long-time diffusion decreases immediately as a function of A,
Dy ~ 3D, [2Aw}.

D. Delay function

In Eq. (13) we defined the memory delay function d(¢) to
quantify the memory-induced mismatch between the effective
self-propulsion force F,(#) and the particle orientation f(z).
Evaluated for the Maxwell kernel, we find

d@) =y voA—es Re{S™* (2, 0, $)e /"
1T+ A A

(R, 0, Se~(1HaN/T)1/7y

+ 8 T(Q, SeUHAN/T §)pmi/Ty, (28)

D,

10°F e 0 1 10'F 1 100
B o 1 B B
I ° 10 I I
da 1} © 100 J a4 9 <ok 4
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FIG. 4. Long-time diffusion coefficient D; as a function of the memory strength A for several values of D,t and different circling
frequencies (a) wy = 0, (b) wy = 0.1D,, and (c) wy = D,. The translational diffusion coefficient was set to zero, D, = 0.
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FIG. 5. (a) Memory delay function d(t) as a function of D,t
for different reduced relaxation times D,7, A = 10, and wy = 0.
(b) Total delay dy, weighted with A2 as a function of the reduced
relaxation time D, t for different values of the memory strength A
and wy = 0.

with

Q= — b 1, 29)
T A\l )

The memory delay function is constructed such that it
vanishes when the translational memory function responds
instantaneously [meaning I'7(t) = 2y,8(¢)]. Thus, consistent
with previous considerations, d(¢) vanishes for the Markovian
limits of the model A =0, t — 0, and t — oo. In Fig. 5(a)
we show the delay function d(¢) as a function of time for in-
between values of D, t. The delay function is always positive
for a linear swimmer (w = 0), starts at zero, has a positive
peak d(top) after a typical delay time #.y, and decorrelates to
zero for long times. Both the peak value and the typical delay
time depend nonmonotonically on the relaxation time 7 and
show a single maximum around D,7 >~ 1 + A [recalling the
condition for memory effects (17)].

We define the total delay of the particle as di =
Jo7 d(t)dt, which yields

286
Z2¢ Re[S™*T(RQ:,0,8)]  (30)

diot = Yi00T
tot V'01+A

and is shown in Fig. 5(b) as a function of the reduced re-
laxation time D, . Similar to the peak value d(top), the total
delay becomes maximal around D,t >~ 1 4+ A. For represen-
tative reasons, we decided to weight the total memory by
the memory strength square, i.e., diot/y,voA? in Fig. 5(b). In
that way, we find that dy, ~ A? around the relevant values
of D,t [see Eq. (17)]. Although d(¢t) — 0 for T — oo, the

total memory saturates to the nonzero value dio ~ 2Ay; v for
T — oo (the limit and integral do not commute in this case).

V. CONCLUSION

In this work we studied a self-propelled colloid in a vis-
coelastic medium. The particle itself was modeled in terms of
non-Markovian Langevin equations which included memory
effects in the particle friction to account for the viscoelastic
background. Analytical solutions were presented. This model
may serve as a benchmark and simple framework to evaluate
and interpret experimental or simulation data for particle tra-
jectories obtained in realistic and more complex environments
[50]. In particular, the nature of the memory kernel can in prin-
ciple be determined by fitting the experimental correlations to
the solutions of our model corresponding to microrheology
[81-85].

We evaluated our general results explicitly for the Maxwell
kernel, which adds exponentially decaying memory to the
standard instantaneous Stokes friction. In particular, we found
a double-exponential structure for the orientational correlation
function exhibiting partial decorrelation at short times and
the existence of persistent plateaus for intermediate times. In
order for memory effects to occur, we identified a relation
between the short-time rotational diffusion coefficient, the
memory strength, and the corresponding relaxation time [see
Eq. (17)] and discussed the influence of memory at inter-
mediate and long timescales for the mean and mean-square
displacement of the particle. Finally, we quantified the delay
between effective self-propulsion force and the particle orien-
tation in terms of a defined memory delay function.

Our model can be extended to higher spatial dimensions
[69], to harmonic confinement [86-89], to external fields
[90,91], and to include inertia [5,70,71,92-95] where an an-
alytical solution seems to be in reach as well. Moreover,
different combinations of friction and memory kernel as
well as colored noise can be considered for future work
[96-100], for instance, Mittag-Leffler noise [101,102] or
power-law memory [103,104]. Finally, the collective behavior
of many interacting active particles in a viscoelastic medium
[105-111] needs to be explored more and will be an important
area of future research.
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Many self-propelled objects are large enough to exhibit inertial effects but still suffer from environmental
fluctuations. The corresponding basic equations of motion are governed by active Langevin dynamics, which
involve inertia, friction, and stochastic noise for both the translational and orientational degrees of freedom
coupled via the self-propulsion along the particle orientation. In this paper, we generalize the active Langevin
model to time-dependent parameters and explicitly discuss the effect of time-dependent inertia for achiral and
chiral particles. Realizations of this situation are manifold, ranging from minirockets (which are self-propelled
by burning their own mass), to dust particles in plasma (which lose mass by evaporating material), to walkers
with expiring activity. Here we present analytical solutions for several dynamical correlation functions, such
as mean-square displacement and orientational and velocity autocorrelation functions. If the parameters exhibit
a slow power law in time, we obtain anomalous superdiffusion with a nontrivial dynamical exponent. Finally,
we constitute the “Langevin rocket” model by including orientational fluctuations in the traditional Tsiolkovsky
rocket equation. We calculate the mean reach of the Langevin rocket and discuss different mass ejection strategies
to maximize it. Our results can be tested in experiments on macroscopic robotic or living particles or in self-

propelled mesoscopic objects moving in media of low viscosity, such as complex plasma.

DOI: 10.1103/PhysRevE.103.042601

L. INTRODUCTION

The nonequilibrium dynamics of active Brownian
particles—also referred to as microswimmers—are typically
described in the overdamped limit, where inertial effects
are sufficiently small relative to viscous ones [1—4]. This is
an excellent approximation for micron-sized self-propelled
particles swimming in a viscous Newtonian liquid such as
water [5] at low Reynolds number. The standard model
of a single active Brownian particle [1,4,6] involves a
translational and an orientational degree of freedom and
includes Stokesian friction and fluctuations. These degrees
of freedom are coupled via self-propulsion along the particle
orientation, which is modeled in a simple averaged way by an
internal velocity, sometimes referred to as the particle activity.

However, inertial effects become relevant for larger
particle sizes or the motion in gaseous media of lower
viscosity. Though highly relevant for swimming and flying
organisms as well as for autonomous machines (e.g., flying
insect-drones, marine robots, etc.) [7], mesoscale active
matter at intermediate Reynolds number has been much less
studied. Aiming at a simple description of a single particle
first, one basic model is that of active Langevin motion [8—11]:
it generalizes the common overdamped model of active
Brownian motion [1,4,6] toward underdamped dynamics by
including the finite particle mass and the moment of inertia in
the equations of motion [12-20]. The inertial self-propelled
particles may therefore be called “microflyers” (rather

“A.R.S. and S.J. contributed equally to this work.
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than “microswimmers”); sometimes they are also termed
“runners,” “walkers,” or “hoppers” [21-23]. Examples of
inanimate inertial self-propelled particles modeled by active
Langevin dynamics are manifold. They include a complex
plasma consisting of mesoscopic dust particles in a weakly
ionized gas [24-29], vibration-driven granular particles
[22,30-39], autorotating seeds and fruits [40,41], camphor
surfers [42], hexbug crawlers [42], trapped aerosols [43], and
minirobots [44—48]. Moreover, there are numerous examples
of animals moving at intermediate Reynolds number, such as
swimming organisms (nematodes, brine shrimps, whirligig
beetles, etc.) [7,49] and flying insects and birds [S0-56].

In this paper, we extend the active Langevin model to
time-dependent parameters such as time-dependent inertia,
self-propulsion, and friction. This is a situation frequently
encountered in nature and realizable in laboratory experi-
ments on artificial self-propelled objects. Let us mention some
examples: scallops move their shells and accelerate by jet
propulsion. Therefore, they become smaller in the course of
the motion such that their moment of inertia and their friction
coefficients become time-dependent. Moving animals typi-
cally have a finite energy reservoir [21] implying that their
self-propulsion velocity is getting slower as a function of time.
The maneuverability of animal motion is provided by changes
in the body shape [57,58], which implies a change in the mo-
ment of inertia at fixed total mass. Likewise, in the inanimate
world, minirockets, which are propelled by ejecting mass, are
getting lighter as a function of time [59,60]. Similarly, inflated
toy balloons [61,62] are self-propelled by jet propulsion and
strongly subject to random fluctuations in their orientation;
their body size shrinks as a function of time, and so does

©2021 American Physical Society
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the mass, the moment of inertia, the friction coefficient, and
the self-propulsion speed. Granulate hoppers equipped with
an internal vibration motor (“hexbugs”) [39] will consume
energy such that the self-propulsion speed will slowly expire
and fade away as a function of time. Robots that pick up
or release objects also possess a mass variation [63], and a
time-dependent mass can bring about time-dependent friction
coefficients [64]. Last but not least, any prescribed time de-
pendence can be programed artificially for man-made robots,
artificial walkers, and microswimmers: the self-propulsion
speed can be made time-dependent by exposing particles to
external optical fields [65], the noise strength can be steered
by external fields [66,67], the damping by the solvent viscos-
ity [68,69], or both by the external vibration amplitude and
frequency [8,34,70,71].

For the active Langevin model with prescribed time-
dependent parameters, we present here analytical solutions
for several dynamical correlation functions, such as the ori-
entational and velocity autocorrelation function, the mean
displacement, the mean-square displacement, and the delay
function. Our results are as follows: First, we constitute a
model that we refer to as the Langevin rocket. In doing so, we
combine orientational fluctuations and mass loss described by
the traditional Tsiolkovsky rocket equation [72]. We calculate
the mean reach of the Langevin rocket and discuss differ-
ent mass ejection strategies to maximize it. For increasing
rotational noise, the optimal strategy to achieve a maximal
reach changes discontinuously from a complete mass ejec-
tion extended over a long time to an instantaneous ejection
of a mass fraction. Second, we compare different setups of
time-dependent inertia, such as directed and isotropic mass
ejection and isotropic shape changes with constant mass.
Last, we study the case of slow (“adiabatic”) variation of
system parameters. In particular, for a change in the system
parameters described by a power law in time, we predict a
superdiffusive anomalous diffusion involving a mean-square
displacement o< #* which scales as a power law in time 7 with a
nontrivial exponent « [73-81]. In particular, we discuss chiral
particles exposed to a torque that exhibit circling motion. This
generalizes earlier work for overdamped systems [82-84].
Our predictions can be tested in various experimental setups
ranging from macroscopic vibrated granular matter, robots,
or living systems to self-propelled micron particles that are
flying in a gaseous medium or in a plasma.

The paper is organized as follows: In Sec. II, we introduce
the theoretical model for active Langevin motion describ-
ing an inertial particle. In Sec. III, we recapitulate the case
of time-independent self-propulsion, inertia, damping, and
fluctuations found earlier [8,13], but we include also results
such as an analytical expression for the time-resolved mean
trajectory and mean-square displacement. In Sec. IV, we
demonstrate how time-dependent parameters change the dy-
namics of the system: in particular, we introduce the Langevin
rocket model and study slow temporal variations. Finally, we
conclude in Sec. V.

II. BASIC MODEL AND DIFFERENT SETUPS

In this section, we define the basic model of under-
damped Langevin motion for a self-propelled particle with

FIG. 1. Self-propelled inertial particle with center position R(#)
at time t moving with its center in the two-dimensional xy plane.
The particle position is indicated as R(z) (black arrow). Moreover,
the particle possesses an orientational degree of freedom that is
characterized by a unit vector fi = (cos ¢, sin¢) with ¢ denoting
the angle relative to the x-axis. The particle self-propels along its
orientation with the velocity voh (red arrow). It may also experience
atorque M along the z-axis leading to rotational motion as indicated
by the blue arrow. The translational motion is further influenced by
a translational friction & and the noise strength D (as indicated by
the light red horizontal double arrow) while the rotational motion
is influenced by a rotational friction &, and the orientational noise
strength D, (as indicated by the light blue curved double arrow).

time-dependent inertia. We consider a self-propelled inertial
particle with a center-of-mass coordinate R(¢) at time # mov-
ing with its center in the two-dimensional xy-plane, see Fig. 1
for a sketch. The particle is polar such that it possesses an
orientational degree of freedom characterized by a unit vector
N(r) = (cos p(t), sin p(t)), where ¢(¢) is the angle relative to
the x-axis. The particle self-propels along its orientation with
the self-propulsion velocity vofi, also indicated in Fig. 1. It
may also additionally be exposed to an external or internal
torque M along the z-axis leading to an angular velocity as
shown by the blue arrow in Fig. 1. As the particle has inertia
in both translation and rotation, its configuration is fully spec-
ified by its center-of-mass coordinate R(?), its center-of-mass
velocity R(t) = dR(t)/dt, its orientational angle ¢(¢), and its
angular velocity o).

While previous work [8,11,19] has considered constant
particle mass and moment of inertia, here we generalize the
model toward time-dependent parameters with a particular
focus on a time-dependent particle mass m(¢) and a time-
dependent moment of inertia J(¢), which we define with
respect to the center-of-mass to describe the rotation around
the z-axis. It turns out that the corresponding equations of
motion need to be discussed with care as they depend on the
physical origin of the change in inertia. To do this system-
atically step by step, we first consider four different setups,
which are outlined in Fig. 2 and which are actually realizable
in nature. We then give the most general model equation,
which accommodates all these setups as special cases.

A. Time-independent inertia

First of all, as a reference, the special case of time-
independent inertia is considered. This setup is sketched in

042601-2
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(a,) time-independent (b) directed mass
inertia ejection
~—0
(C) isotropic mass (d) isotropic shape
evaporation change

k) g X

L Q

FIG. 2. Schematic illustration of the different special setups for
an active inertial particle. The particle is shown as a dark-gray sphere
and its inertia is characterized by the particle mass m and its moment
of inertia J. (a) Time-independent inertia with constant m and J as a
reference situation (gray background). (b) Directed mass ejection:
Per unit time, the mass ri(¢) is ejected centrally with a velocity
—ufi(?) along the particle orientation fi(f) which leads to a change
—ufirii(t) in the translational momentum of the particle and a time-
dependent particle mass m(t) but a constant moment of inertia J (red
background). (c) Isotropic mass evaporation. Here the translational
and the angular momentum of the particle are both conserved, but
the particle mass m(t) and moment of inertia J(¢) are time-dependent
(green background). (d) Isotropic change in the particle shape. Here
again the linear and the angular momentum of the particle are both
conserved, the particle mass m is constant, but the moment of inertia
J(t) is time-dependent (blue background).

Fig. 2(a) (gray background). The particle has a constant mass
m and a constant moment of inertia J. In this case, the
Langevin equation of motion reads

mR(t) = v @) — ER@) +EV2DE.(), (D)
J§(t) =M — & (1) + £/2D, T4 (t). ()

As far as the translational dynamics is concerned, there is
a frictional damping force —& R() and a self-propelling ef-
fective force along the particle orientation & v fi(f), which
gives rise to the particle self-propulsion velocity vy [85]. The
latter does not stem from mass ejection but is of another
origin, such as diffusiophoresis or photophoresis. This self-
propulsion force couples the orientational and translational
degrees of freedom. Furthermore, there is a stochastic force
(“noise”) £+/2D f (1), where the effective translational diffu-
sion coefficient D quantifies the noise strength. We describe
the stochastic term f(¢) as zero-mean Gaussian white noise
with unit variance,

fa () @fu(t’) =8¢t — 1)1, 3)

where ~~- indicates a noise average and I is the unit ma-
trix. Likewise, the rotational dynamics in Eq. (2) involves a
frictional torque —&,¢ and an imposed torque M plus the

stochastic torque &,+/2D, t4(t), where the effective rotational
diffusion coefficient D, now quantifies the rotational noise
strength, and the Gaussian noise 7y (#) has zero-mean and unit
variance

T ()T (t) = 8(r —1'). “

One of the best experimental realizations of active
Langevin motion [see Eqs. (1) and (2)] can be found in self-
propelled granular particles. These particles are capable of
transferring the energy of a vibrating surface or an internal
motor to translational or rotational motion. Asymmetry in
the particle design causes them to jump forward or to rotate
when lifted from the ground. From a recent experiment on
these active granular particles [8], we list exemplary orders of
magnitude for our model parameters m = 1 g, J = 10 gmm?,
£=10g/s, & = 100 g mm?/s, D = 100 mm?/s, D, = 1/s,
vg = 10-100 mm/s, and M = 107 Nm.

We shall revisit this standard situation again in Sec. III. In
the absence of any inertial effects, i.e., when m = J = 0, the
equations of motion are overdamped and lead to the standard
picture of active Brownian motion [1,4,6].

B. Directed mass ejection

A rocket is self-propelled by directed mass ejection, so it
establishes a fundamental setup of time-dependent inertia. In
the typical geometry assumed here and shown in Fig. 2(b) (red
background), the direction of the mass ejection is centrally
outward opposite to the particle orientation. For simplicity,
the mass ejection occurs with a constant velocity u relative
to the moving rocket (# > 0) and the outlet coincides with
the center of mass as indicated by a wedge in Fig. 2(b). The
general case in which the ejection occurs not from the center
but from a point distant to the center leads to additional terms
that complicate the analysis, thus it is left for future studies.

We assume, however, for more generality here that the
rocket also has an internal motor, which leads to an addi-
tional self-propulsion of velocity vg. In typical descriptions
of macroscopic rockets, translational and rotational fluctua-
tions are ignored. While this is a reasonable assumption for
macroscopic rockets, it breaks down for minirockets. The
characteristic equations of motion for a self-propelled particle
with directed mass ejection are

d . .
S mOR®) =E v A() —ERO) + EV2D 1 (1)
— (i) — R@)), )

and the orientational equation of motion is given by (2).

In discussing the basic physics of Eq. (5), we use Newton’s
second postulate, which states that the total change in transla-
tional momentum is the total force, which is in this case the
sum of friction, translational stochastic, and self-propulsion
forces. But even in the force-free case, the ejected mass carries
away the momentum (¢ )(u fi(t) — R(¢)) per unit time, which
needs to be included in the balance of (5) with a minus sign
due to the conservation of total momentum; see also [86—88].
This constitutes in fact the thrust force which accelerates the
rocket. It is important to note here that the special case of
the traditional Tsiolkovsky rocket equation is obtained as a
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special limit of no fluctuations, no frictions, no additional self-
propulsion, no external torque, and a vanishing initial angular
velocity, i.e., for D=D, =& =& =vg=M = ¢(t =0) =
0[72].

Since we assume that the outlet/tank of the particle coin-
cides with the center-of-mass, the moment of inertia is not
affected by the mass ejection and remains constant. Hence
the orientational motion is identical to the case of time-
independent inertia. Clearly, via the mass ejection, the two
equations (5) and (2) are coupled.

Realizations of the rocketlike self-propelled objects can
in principle be found for self-propelled Janus particles in
a complex plasma, which are laser-heated such that they
evaporate mass in a certain direction [29,59,60], or even
for inflated toy balloons [61,62] or active granular particles
equipped with compressed air tanks. For the latter, we would
expect the particle loss mass at a rate of approximately m =
—1 g/s by exhausting air at a velocity # = 100 mm/s. The
initial mass and moment of inertia are my = 10 g and J =
100 gmm?. The remaining parameters are of the order of
& =10 g/s, £ = 100 gmm?/s, D = 100 mm?/s, D, = 1/s,
vg = 10-100 mm/s, and M = 10~7 Nm. We finally remark
that there is some overdamped counterpart of rocketlike mo-
tion in the osmotophoresis of semipermeable vesicles [89]
where the ejection of molecules out of the vesicle body leads
to self-propulsion driven by the osmotic pressure difference
[90] and for Janus-particles and nanorockets driven by reac-
tive momentum transfer [91,92].

C. Isotropic mass evaporation

A different situation occurs if the mass ejection is not
directed but isotropic as sketched in Fig. 2(c) (green back-
ground). Imagine a particle coated with an isotropic layer that
evaporates likewise in all directions, as realizable in dusty
plasmas [29,59,60]. In this case, the ejected mass on}y carries
away the translational momentum given by —rmi(t) R(7) such
that the translational equations of motion for this case coincide
with Eq. (5) for u = 0. However, the mass ejection is radial
only in the body frame, but for a rotating particle the angular
momentum J (t)d)(t) is taken away in the laboratory frame
even in the absence of any torque. Therefore, the orientational
equation of motion reads as (2) with J replaced by J(¢), as
follows:

JWO)Gt) =M — & (1) + £/2D, Ty (1). (6)

This setup could be realized in experiments by placing
a leaking water tank or evaporating material on an active
granular particle. The order of magnitude of the parameters
might be my =10 g, = —1 g/s, Jo = 100 gmm?, & =
10 g/s, & = 100 gmm?/s, D = 100 mm?/s, D, = 1/s, vy =
10-100 mm/s, and M = 107 N'm.

Finally, we remark that the inverse situation of mass ad-
sorption can be treated in a similar way with a positive sign of
m(t).

D. Isotropic shape change

The pirouette in figure skating is an example of a fourth
situation in which the total mass m of the body is time-
independent but the moment of inertia does change due to a

shape change of the body. In this special case, sketched in
Fig. 2(d) (blue background), the shape change does not carry
away angular momentum but the total angular momentum is
conserved. Consequently, while the translational equation of
motion is identical with Eq. (1), the orientational equation of
motion is given by

d . .
E(J(t)lb(t)) =M =& ¢@)+&5V2D, (@) (7)

Lastly, this model could describe an active granular particle
with a stretched elastic material attached to it. In that way,
the initial moment of inertia could be increased by an order
of magnitude Jo = 100 gmm?, relaxing over a few seconds
to its equilibrium shape with / = —1 gmm?/s. The order
of magnitude of the other parameters might be m =1 g,
&£ =10 g/s, & = 100 gmm?/s, D = 100 mm?/s, D, = 1/s,
vo = 10 — 100 mm/s, and M = 1077 N'm.

E. General model

The lesson to be learned from the previous examples is
that the equations of motion depend on the imposed setup of
mass change. To proceed in a general way, we now present a
general framework of equations of motion that accommodates
all previous special cases. To define this model as gener-
ally as possible, we also assume an effective time-dependent
self-propulsion speed vy (), a time-dependent internal torque
M(t), a time-dependent translational &(¢) and rotational fric-
tion coefficient &,(¢), as well as a time-dependent translational
D(t) and rotational diffusion coefficient D,(¢) and a time-
dependent mass ejection velocity u(t).

‘We now consider the following general Langevin equations
governing the translational and the rotational motion for a
self-propelled particle:

d . .
E(m(f)R(t)) =& (o)) — R(t) + /2D(1) £ (1))
— () (u(t) A(r) — R(1)), ®)

d . .
E(J(t)q’)(t)) =M(t) — &(t) (1) + &-(t)y/2D, (1) T ()
+vJ(@) (). ©)

Clearly, all situations discussed so far and shown in Fig. 2
are obtained from these equations as special cases: of course,
Fig. 2(a) is the special limit where the parameters m, J, &, &,,
D, D,, vg, and M are constant. The rocket setup in Fig. 2(b)
coincides with the general equations (8) and (9) when the
parameters J, &, &, D, D,, vy, M, and the relative velocity
u are constant. The isotropic mass evaporation [Fig. 2(c)] is
contained in (8) and (9) when the parameters &, &,, D, D,, vy,
and M are constant, the relative velocity vanishes, u = 0, and
v = 1. Finally, the equations for an isotropic shape change
[Fig. 2(d)] follow when in (8) and (9) the parameters m, &, &,
D, D,, vy, and M are constant and v = 0.

At this stage, we remark that more realistic situations can
also be accommodated in the general equations (8) and (9).
These include, for example, a rocket where the outlet of the
mass ejection does not coincide with the center-of-mass or
where the ejection direction is not parallel to the particle
orientation [93].
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From a mathematical point of view, the equations of mo-
tion (8) and (9) are stochastic differential equations with
Gaussian noise. The rotational equation (9) is linear so that
the distribution of the angle and angular velocity is Gaussian
for any time. We give the corresponding general solutions of
(8) and (9) in Appendix A.

III. TIME-INDEPENDENT INERTIA

We now turn to the special case of time-independent pa-
rameters defined by Egs. (1) and (2). These equations of
motion were studied before in Refs. [8,11,19]. Here we
summarize essential known results, but we also provide ad-
ditional analytical results for the full time-resolved mean
displacement, velocity correlation function, and mean-square
displacement. In doing so, we first consider the noise-free case
and then we include the effects of noise.

A. Results for vanishing noise

For given initial orientations ¢y = ¢(0) and angular veloc-
ities g = $(0) at time ¢ = 0, the deterministic solution of the
general orientational equation of motion (2) in the absence of
noise is

¢ — o
¢(t)=¢o+wt+7(lfe 7y (10)
with the spinning frequency w = M/§, and rotational damp-
ing rate y, = &,/J. Plugging this solution into the noise-free
translational equation (1), we obtain for given initial positions
Ry = R(0) and velocities Ry = R(0) at time ¢ = 0 the parti-
cle velocity

R(t) =Roe™" + vgP[§ (i0)7 i@/ @0+
x T(—(7 +i®), i0e™ """, i0)]e™ ", (11)
where we introduced the translational damping rate y = & /m
and the notations ¥ = y/y,, &@ = ®/yr, 0 = (o — @)/ s

Moreover, I'(s, x1, x2) denotes the generalized Gamma func-
tion [94],

X2
I'(s, x1, x2) :/ der* e, 12)
X1

and the operator P formally transforms a complex number z
into its two-dimensional vector (Rez, Imz) in the complex
plane. This results in the particle trajectory

R
R(t) =R+ —(1 —e7")
V4

Vo A U
+—P[(i0) P MO (i, ige 7, i0)]
Vo A R
— 2P (i0)7HO LGN (— (5 + i), i0e 7V, i0)]e ",
Yr
(13)
In the limit of long times, the angular velocity reaches the

spinning frequency, lim;_, ., ¢(f) = w, so that the particle is
rotating with this frequency around a circle of radius

2

Vo )4
=2/ 14
"= Y2+ w? 14

centered at the position

R . o
R, = Ry + — + LP[(i0) @@+ (—ia, 0,i0)]. (15)
Y Vr

Clearly, the spinning frequency @ does not depend on any
inertia. However, the circle radius r depends on the mass m via
the translational damping rate y due to the centrifugal force,
but it is independent on the moment of inertia J. The center
of the circle depends on Ry, RO, ¢o, and dﬁo, demonstrating
that for vanishing noise even the long-time limit may depend
on the initial conditions. Finally, in the overdamped limit of
vanishing inertia, the results reduce to that of Brownian circle
swimmers [82,95].

B. Effect of Brownian noise

Subjected to Brownian noise, the particle will relax to
a steady state after a long time forgetting about its initial
conditions Ry, Ry, ¢o, and ¢¢ at time r = 0. The static and
dynamical correlation in the steady state can be calculated as
a time average over a very long time window, which we shall
denote with angular brackets (---). In the sequel, we shall
consider several of such dynamical correlations. In the steady
state, one can also calculate conditional averages. For exam-
ple, one can build dynamical averages in the steady state after
a lag time under the condition that the particle’s position and
orientation are prescribed at an initial time. We shall compile
analytical results for the different correlation functions first
and show examples for numerical evaluations of the analytical
formula.

1. Velocity correlation function

First we introduce the translational velocity correlation
function [96],

Z(t) = (R(1) - R(0)), (16)

where ¢+ now denotes a lag time and R(O) is taken from
the velocity distribution in the steady state. We remark that
the latter was computed recently for small inertia [97] and
for the formally equivalent model of an overdamped parti-
cle in a harmonic potential [98]. The velocity distribution is
non-Gaussian (i.e., non-Maxwellian), and its second moment,
Z(0) = (R(0) - R(0)), which is proportional to the mean ki-
netic energy, is known analytically [8] as

Z(0) =2Dy + v} Re[#e” D % I(Q,,0,D,)], (17

where we introduced D, = D,/y, and Qi = (D, £ (y +
iw))/yr. For an active inertial particle considered here, we
have obtained the analytical result

Z(t) =2Dye " + %((R(t) -8(0)) + (R(0) - A1) (18)

with
(R(1) - A(0)) = vy Re [e? (B;* I(Q_, D,e "', ;)
+ D7 (2,0, D,))e ] 19)
and
(R(0) - (1)) = voRe [7e” Dy ¥ T (4, 0, D,e " )e"],
(20)
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which implies that the long-time behavior of Z(¢) is exponen-
tial in time.

2. Orientation correlation function

Similarly, the dynamical orientational correlation function
C(t) = (f(z) - f1(0)) in the steady state can be expressed ana-
lytically as a double exponential as

C(t) = cos(wr)e” Py A=, @n

which was found previously in another context by Ghosh and
co-workers [13] for w = 0 and for general w in Ref. [8]. Again
it decays exponentially in time for long times. A characteristic
orientational persistence time 7, can be determined as

*© 1 o _
rp:/O C(t)dt:ERe[D,eD'D:QF(Q,O,D,)], (22)

with @ = (D, — iw)/y,. For vanishing inertia, we recover
the known result of the persistence time 1, = D,/(D? + ?*)
[82,95], which simplifies further to the standard result 7, =
1/D, for a linear swimmer [1].

3. Mean displacement

Next, we address the mean displacement (AR(?)) =
(R(t) — Ry) of the particle in the steady state as a function
of time 7. The average is now taken in the steady state but
under the condition that for the initial time = 0, the position
R(0) = Ry and the orientation fi(0) [embodied in ¢(0) = ¢y]
are prescribed. Since the particle velocities and the orien-
tations are correlated in the steady state, the average over
the translational velocity (R(0)) is not vanishing due to the
prescribed orientation fi(0). This average is given by

(R(0)) = woP[peP Dy T(24,0,D,)e™].  (23)
‘We obtain for the mean displacement

(R(0))

(AR(M)) =——(1—e™")
14

+ 22 P[D,e™ (D;T(Q, Dre ", D)
,

+ D7 I(Q-, Dye™  De™)e ™). (24)

For short times ¢, the particle proceeds on average ballistically
(i.e., linearly in time) with

(AR()) = (RO))r + O(F?). (25)

Then the rotational noise decorrelates the current orientation
from the initial orientation, and the mean displacement satu-
rates to a finite persistence length L, = lim;_, .o (AR(#)) given
as

L,= <R](/0)> + %‘iﬁ[ﬁ,e’)r D7eT(R,0,D,)¢™].  (26)
In the case of a vanishing spinning frequency (o = 0), the per-
sistence length simplifies to L, = (R(0))/y + vot,fip with 7,
given by (22). In the overdamped limit, we obtain the standard
results of the persistence length for linear microswimmers
L, = vohy/D, (w = 0) [1]. Moreover, for an overdamped cir-
cle swimmer, the full time-resolved mean displacement given
by (24) simplifies to a spira mirabilis [82,99]. The presence of

T spira chiral particle i
mirabilis
J=0 J=01&/Dr J=1&/Dr J=10¢&/Dr
oy L m=0 m=01¢/D, m=0.1¢&/D, m=0.1¢/D,}
—~
>
0 9 L L L L
0 1 2

FIG. 3. Mean displacement (AR(z)) in the xy-plane for a chi-
ral particle with initial orientation along the x-axis for different
moment of inertia, / = 0.1 &,/D, (orange), J =1 &,/D, (red), and
J =10&,/D, (purple). Lengths are given in units of /, = vo/D,. The
parameters are @ = 4 D,, m = 0.1 £/D,. The starting point at r = 0
is denoted by a black dot. The spira mirabilis of the overdamped
limit is plotted on the left (black) for comparison.

inertia will distort the ideal spira mirabilis and give rise to a
more complex mean trajectory. This is shown in Fig. 3, where
three shapes of the mean trajectory for increasing moment of
inertia J are compared to the overdamped case. Increasing
J reduces effectively the role of fluctuations such that there
are more turns until the particle reaches half of the distance
to its final fixpoint. Even though fi(0) is oriented toward the
positive x-axis in all cases, the inertial mean trajectory first
“oversteers” the initial orientation due to the velocity average,
an effect that we shall elaborate on and quantify further in Sec.
I B 5.

4. Mean-square displacement

The full time-resolved mean-square displacement (MSD)
can be calculated as

2
(ARX() = 4Dyt + (20— Z0) + 222 F (), 27)
Y Y

&
with the long-time diffusion coefficient

v
2D,

D =D+ =2 Re[D,”D;21(Q,0,D,)], (28)

and the function
o Q.Q N
F(t) =Re !QZ(ZFZ[Q +1,Q+ 1,—D,-i|

Q,Q ~
— > . =il | o= VU
2F2[Q+1,Q+1’ Dre ]e )} (29)

where ,F; represents the generalized hypergeometric function
[100].

Figures 4(a)-4(d) compare the temporal behavior of the
mean-square displacement of an achiral particle to that of
a chiral particle for different masses and moments of iner-
tia J. All curves exhibit the characteristic crossover from a
short-time ballistic behavior

(AR%(1)) = Z(0) 1> + O() (30)
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achiral particle

() w=0 (b)

chiral particle
w=4D,

FIG. 4. Mean-square displacement as a function of time on a
double-logarithmic plot. (a) For an achiral particle with fixed mass
m and varied moment of inertia J. (b) For a chiral particle with fixed
mass m and varied moment of inertia J. The fixed parameters are
m = 0.1£/D,, D = 0 and the moment of inertiais J/ = 0.1 &,/D, (or-
ange),J = 1§,/D, (red), or J = 10 &, /D, (purple). (c) For an achiral
particle with varied m and fixed J. (d) For a chiral particle with
varied m and fixed J. Here, the fixed parameters are J = 0.1 &,/D,,
D = 0 and the mass is m = 0.1 £ /D, (orange), m = 1 §/D, (red), or
m =10 & /D, (purple).

to the long-time diffusive behavior governed by

(AR%(r)) ~ 4D t. (31)
In the limit of small J, the short-time ballistic dynamics is
. (y +D,)
lim (AR (1)) = 2Dy + v} —2 22 )2 4 o6
lim (AR?(1)) ( ey werprel LEREIUPS
(32)

while for large J we have

)/2

. 2 _ 2
Jim (AR?() = <2Dy +v e

)tz + 0. (33)
In general, the long-time diffusion coefficient D; [see
Eq. (28)] can be represented as

2
%

2
where the first term in Eq. (22) captures the diffusive behavior
of a passive particle and the second is consistent with the
standard picture of a typical jump length of vy7, and a typical
jump time of 7, similar to the overdamped expression of mi-
croswimmers when w = 0 [1]. It was emphasized in Ref. [8]
that D;, depends on the moment of inertia J but not explicitly
on the mass m.

In the case of small moments of inertia, the long-time
diffusion coefficient of the circle flyer asymptotically goes
to [8]

DL =D+ X, (34)

vé D,

D, )
zm 14+ —J)+0("), (35)

SI‘

102 1 .

102~

=0)

Dy/Dp(J

1072 107! 10° 10! 10% 103
JD, /&,

FIG. 5. Long-time diffusion coefficient D, as a function of the
moment of inertia J for different circling frequencies w = 10D,,
w = 1D,, w = 0.1D,, and w = 0. The translational diffusion coeffi-
cient was set to zero, D = 0. In the inset, the global maximum point
Jmax for a given circling frequency w is depicted. The corresponding
maximal value Dy (Jyay) is shown as a red dot in the main figure.

which grows dominantly in proportion to the moment of
inertia. The asymptotic behavior of the long-time diffusion
coefficient for large moments of inertia is [8]

2 [_m —
Dy~ {Uo O 36)

D (@ % 0).

As the moment of inertia grows for w # 0, the activity-
induced part of the long-time diffusion coefficient goes
asymptotically to zero [see Eq. (36)] since diffusion is ham-
pered by systematic circling motion, i.e., the particle gets
trapped in a circular path due to its huge moment of inertia.

Figures 4(a) and 4(c) show data for an achiral swimmer
with different moments of inertia J and different masses. The
short-time ballistic prefactor is somewhat independent of J
but decreases with increasing m. The latter trend follows from
the fact that for large m the particle cannot accelerate toward
its self-propulsion velocity vy. Conversely, the long-time dif-
fusivity is also increasing with J according to (35) and (36)
as the persistence in orientation increases with J but it is
independent of m. For a chiral particle, shown in Figs. 4(b)
and 4(d), the MSD exhibits wiggles due to the circling.

An immediate consequence of (35) and (36) is that the
long-time diffusivity behaves nonmonotonically in J. Explicit
data are presented in Fig. 5, which illustrates the nonmono-
tonic dependence of D, on the moment of inertia J for
different spinning frequencies w for the special case D = 0.
There is an intermediate maximum in D; which is indicated
in Fig. 5 by a red point. This peak could be exploited for
an optimal exploration of an unknown territory by adapting
the moment of inertia accordingly. The associated optimal
moment of inertia is plotted as a function of the spinning
frequency w in the inset of Fig. 5.
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5. Delay function

Contrary to the overdamped case, the velocity of an inertial
particle does not coincide with its self-propulsion direction,
and in Ref. [8] a dynamical correlation function, referred to
as a delay function d(¢), was introduced to quantify the delay
between the velocity and orientation dynamics,

d(t) = (R(1) - 1(0)) — (R(0) - fi(r)). (37

The “mixed” difference ensures that this function is trivially
zero in the overdamped limit, but when nonzero its sign con-
tains valuable information about the delay process between
n(r) and R(z). If, for example, d(¢) is positive, this means
that—on average—first the particle orientation changes and
then the velocity will follow that change after a time 7. A
positive d(¢) is the standard behavior exploited by the over-
steering of racing cars, which is also expected for achiral
particles. The full analytical result for d(¢) directly follows
from (19) and (20) and was given in Ref. [8]. Most notably,
for an achiral particle, d(t) has a positive peak after a typical
delay time, while for a chiral particle, d() oscillates due to
the systematic change in orientation. The latter oscillation was
recently observed in macroscopic whirligig beetles swimming
at the water surface [49].

Here we also provide analytical limits of small and large
moments of inertia J. For small J we get

d@t) = 2v0A(t)<1 + %1) + 0%, (38)
with
2_p2_ 2 —Dyt _ -yt
A = y D, (y D:—w )[cos(wt)e e 7

((y + D) + o)) ((y — D;)* + 0?)

y o (y? + D? 4+ w?) sin(wt) e~
(v +D, P + ) ((y — D)2 + )
Since A(t) is positive for small times ¢, the delay effect is
enhanced for increasing J. Moreover, the oscillatory behavior

of a chiral particle can be seen here directly. In the opposite
limit of large moment of inertia, the inertial delay approaches

(39)

. yo .
Jlin;o d(t) = 2vom sin(wt), (40)

independent of the rotational diffusion coefficient D,, which
documents again the oscillatory behavior for chiral particles.

IV. TIME-DEPENDENT INERTIA

Here we study the effect of time-dependent inertia on the
Langevin motion of an underdamped particle. We first intro-
duce a reduced Langevin rocket model in which the mass
of the particle gets burned to accelerate the particle giving
rise to a time-dependent mass and propulsion speed. Then we
compare the four different setups introduced in Sec. II. Last,
we consider the limiting case of slowly varying parameters
with respect to time.

A. Langevin rocket

We define the “Langevin rocket” model by including ori-
entational fluctuations in the traditional Tsiolkovsky rocket

equation [72]. The effect of noise on rocket motion has been
considered previously (see, e.g., [101]), but a simple basis
reference model for that is missing. We therefore simplify the
general Eqs. (5) and (2) for directed mass ejection and as-
sume a vanishing moment of inertia, torque, and translational
diffusion (/ =0, M =0, and D = 0) The Langevin rocket
dynamics for a prescribed m(z) is then given by

m@)R@) + ER@E) = —um()n(@), 1)

&) = V2D, 7 (0). “2)

This set of equations approaches the ideal Tsiolkovsky rocket
equation, m(r) R(t) = —um(t)ng, in the limit of vanishing
damping (¢ = 0) and noise (D, = 0) [72].

For the sake of simplicity, we assume that the rocket is
ejecting mass at a constant rate (ms, — mgp)/At, where my
denotes the initial mass, m is the final rest mass of the rocket,
and At is the total burn time. The ejection process happens in
the window 0 < ¢ < At such that the time-dependent particle
mass is
min(z, At)

At

In the following, we discuss the average reach of the rocket
(i.e., its mean displacement) as a function time. In particular,
we investigate the final reach for long times as a function of
the burn time At and the propellant mass fraction

m(t) = mo + (Moo — mo) 43)

my — Meo

(= (44)

my

1. Results for vanishing noise

In the absence of rotational noise, the displacement of the
rocket for a vanishing initial velocity atr = 0 is

. m(t)\S1
t, At nl1—(07
ARG =M AD @) G,
S1+1 Yo Mo Si+1

)5
um@) 1= (52
- ( ) ( my ) (1 _ efyx(max(f,m)fm))ﬁo’

Yo Mo N
45)

with the initial damping rate yy = &/my, the final damping
rate Yoo = & /Moo, and the reduced burn time S; = YAt /¢.

For short times, the rocket exhibits an acceleration by eject-
ing mass such that the displacement scales with ¢2,

ug

2At
After the burn time At, the rocket reaches its maximal ve-
locity, which is subsequently exponentially damped with the
final damping rate y,, until the rocket comes to a standstill.
The total long-time displacement ARy = lim,_, o |AR(?)] is
given by

AR() = g 12 4+ 0(3). (46)

_uAt u (=) =1 -=0)%)
S+l S +D

In Fig. 6, we show the long-time displacement AR, as a
function of the propellant mass fraction ¢ for different burn
times At. For long burn times At >> 1/yp, the ultimate dis-
placement increases linearly with the propellant mass fraction

AR, @7
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FIG. 6. Maximal reach AR, as a function of the propellant mass
fraction ¢ for several burn times At = 1072/yy, At = 1/y,, and
At = 10?/y,. The inset depicts the optimal propellant mass fraction
Cmax for a given burn time At. The corresponding maximal value
R (Emax) s shown as a red dot in the main figure.

AR ~ u ¢ /yo. The rocket reaches the longest distance when
Cmax ~ 1, a situation that can be called complete extended
mass ejection. Interestingly, however, there is a qualitatively
different behavior for burn times that are comparable to or
smaller than the characteristic damping time 1/y,, where the
displacements behave nonmonotonically in the mass fraction
¢. This can be intuitively understood as follows: for small
mass fractions, more ejection means more propulsion and
acceleration such that AR, increases with ¢. Conversely for
¢ close to 1, the rocket becomes very light after the burn time
and therefore very quickly stops within an extremely short
damping time 1/y,, which reduces its reach relative to a
situation of smaller {. Consequently, the optimal value {max
for the mass ratio for which the reach is maximal is smaller
than 1. These corresponding optimal mass ratios are marked
by red points in Fig. 6 and plotted as a function of the reduced
burn time in the inset. For decreasing burn times the optimal
mass ratio {,x exhibits a bifurcation-like behavior from com-
plete mass ejection to a finite fraction with the special limit of
Cmax ~ 1 — e~ ~0.63 as At approaches zero.

The special limit of At < 1/y, deserves some more atten-
tion. In this case of fractional instantaneous mass ejection,
the particle ejects only a fraction of its propellant to gain
momentum very quickly. But it keeps a rest mass in order
to still proceed during the subsequent damping time. In this
limit, we obtain

AR() = ———(1 = ) In(1 = £)(1 — e ")y, (48)
Yo
which scales for At « t < 1/yp linearly in time,
AR() = —u In(1 — ¢) gt + O(?). (49)
For long times, ¢ > 1/yy, we obtain
u
ARy = —y—(l —¢)In(1 —¢). (50)
0

We finally remark that one can consider a full optimization
problem with respect to both burn time Ar and the mass frac-
tion ¢ by posing the following question: What is the maximal
reach of the rocket if the burn time At and the mass fraction
¢ can be varied freely and independently? The answer in the
fluctuation-free case is simple: the best strategy is to burn all
mass {max — 1 and do this over a very long time At — oo.
Then one achieves the maximum

max(ARy) = 1,
Yo

(51

shown in the upper right corner of Fig. 6. In other terms, the
strategy of complete extended mass ejection always outper-
forms that of an fractional instantaneous mass ejection. This
simple answer will change if orientational noise is included, a
case that we shall address next.

2. Noise-averaged mean reach and noise-induced transition
between two mass ejection strategies
In the case of finite rotational noise (D, > 0), we obtain

for the noise-averaged displacement of the Langevin rocket
the analytical result

AR(r)
u 1 .
= — 1— —D, min(t,At) Y
DS+ ¢ Mo
- N
(M)S'Jrl (M)Sﬁl
( my _\m (11— e*yac(max(r,m)fm)))
S1+1 S s

(52)

with S, = D, At /¢ proportional to the rotational noise. Ori-
entational fluctuations do not contribute to the short-time
behavior as witnessed by the fact that in this limit the mean
displacement coincides with the noise-free acceleration be-
havior of Eq. (46). For long times, on the other hand, the mean
reach of the Langevin rocket is

—  u 1 _ u (1 =¢)5+!
AR — — 1— D, At -
R TS L SN TS
x Re[e%(=8,)5 T (=8, =85(1 — ¢), —$2)].

(53)

Returning to the previous optimization problem, we now max-
imize the mean reach as a function of burn time Az and
mass fraction ¢ for fixed prescribed noise strength D, /yp. In
Fig. 7(a), the resulting maximal reach max(ARy) is shown
for varied noise strength D, /yy in units of its universal noise-
free limit u/yy of complete extended mass ejection. The
associated optimal burn time Ay, and optimal mass fraction
Zmax are also presented [see Figs. 7(b) and 7(c)]. If rotational
noise is increased, the complete extended mass ejection is
still the best strategy, but it is optimal to burn the full mass
over a finite burn time. This strategy defies best the ultimate
orientational decorrelation, which reduces the mean reach. In
the opposite limit of very large orientational noise, the best
strategy is to get momentum quickly by ejecting part of the
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FIG. 7. (a) The optimal mean reach max (AR,,) maximized with respect to the propellant mass fraction ¢ and the burn time At as a
function of the rotational noise strength D, /y,. (b) Optimal burn time Aty as a function of the rotational noise strength D, /y;. (c) Optimal
propellant mass fraction {m,x as a function of the rotational noise strength D, /yy. The transition from the complete extended mass ejection
strategy to that of the fractional instantaneous mass ejection is marked by vertical black lines at D,, iy & 0.72 y, in all three figures.

mass and using it to proceed further within the characteristic
damping time. If one were to eject the mass completely, the
system would be overdamped after the burn time and would
stop immediately, lacking the additional benefit of the iner-
tia. Hence the fractional instantaneous mass ejection is the
optimal strategy. Interestingly, there is a sharp noise-induced
discontinuous transition between the two strategies for an
intermediate finite value

Dr,cril ~0.72 Yo (54)

of the orientational noise. The latter is signaled by a sharp
jump in the optimal burn time from 1.39 y; to O [see Fig. 7(b)].
The optimal propellant mass fraction jumps from 1 to the
universal value of 1 — e~! A 0.63 [see Fig. 7(c)] and can thus
be viewed as the “order parameter” of the transition.

B. Comparison between the different setups

We now compare the different setups for time-dependent
inertia as discussed in Sec. II in more detail (see again
Fig. 2). In the case of directed mass ejection or isotropic
mass evaporation [Figs. 2(b) and 2(c)], we assume a mass loss
exponentially in time ¢ as

m(t) = meo 4 (Mo — Moo e ", (55)

where my is the initial mass, ms, is the rest mass, which
remains after the fuel is burned, and y,, is the mass decay rate.
As outlined in Appendix B, an exponential mass loss occurs
in particular for a rocket that ejects gas molecules at constant
speed from a tank under isothermal and isochoric conditions.
In this case, the exponential mass reduction follows from the
reduction of the gas density in the tank. Accordingly, we also
assume an exponential decrease in the moment of inertia,

J(t) = Joo + (Jo = Joo)e ™", (56)

where Jy is the initial and J, the final moment of inertia,
and y; is the decay rate of the moment of inertia. For the
isotropic shape change [Fig. 2(d)], the mass is assumed to be
constant, and only an exponential loss in the moment of inertia
is prescribed.

The protocol is as follows. At time r = 0, we start from a
steady state achieved for constant parameters and then initiate
the mass loss and moment of inertia change (or in gen-
eral arbitrary time dependences). For the different dynamical
correlation functions, we correlate the system configuration
after a time ¢ with the steady-state condition at time ¢t =0
(over which we perform the average). For the different dy-
namical correlation functions, we correlate the steady-state
condition at time ¢+ = 0 over which we perform the average
with the system configuration after a time ¢. Under these
conditions, we obtain general analytical results for arbitrary
time dependences. Since the system is relaxing or “aging,” the
two-point correlation functions now depend explicitly on two
times—t;, f,—not just on the time difference as in the steady
state.

For t; <t,, the orientational
C(n, 1) = (A(r) - A(12)) is given by

correlation  function

1
Clt. 1) = cos(u(n. m))e 270112 (57)
with the mean angle difference

n " E (l‘/) —_
)= [ di” dt’ 222 ot )e ), 58
ultr, ) / L ol (58)

the corresponding variance

n 1"
ot =4 [ [ ar
n n
" ’ 2
5 (/t dl,(sr(f/)) Dr(t/)e_zr,(f’,r”)>e_r,(r”,,”')’
oo J(@)

(59

and the rotational damping function

I G N0 ()
1",(t1,t2)—/;I dt %) + (1 —=v)ln (J(t1)>' (60)

Here, v = 0 in the case of isotropic shape change, and v = 1
in the case of isotropic mass evaporation.
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TABLE 1. Simulation parameter for the different setups.

Time-independent inertia

Directed mass ejection

Isotropic mass ejection Isotropic shape change

m(t) g Moo + (Mg — Mg )e™ " Moo + (Mg — Moo e~ mo

Vin 0.1 D, 0.1 D,

Moo /Mg 0.1 0.1

u 1 vy

J(t) Jo Jo Joo + (Jo — Joo)e ! Joo + (Jo = Joo)e™ ™!
v 0.1 D, 0.1 D,
Jo/Jo 0.1 0.1

_Similarly, the velocity correlation function Z(t;,1;) =
(R(t)) - R(np)) fort) <1y is

Z(t, 1)
’ 2
:4/” dt’(S(t )> D)o T T 0

o0 m(t')

+/| dt//z d[//a(t/)a(t”)(fl(t/)'ﬁ(l‘”))efr(t/'“)

x e ), (61)

with the acceleration

0) (t)
a(t) = mvo(f) - mu(f) (62)
and the translational damping function
[ EW)
Lt t) = [t. dt )’ (63)

For the delay function d(t;, 1) = (R(,) - iu(t))) — (R(1)) -
fi(z;)), we obtain

)
dti) = [ draw) ) - a)) e

*/ L dral) (B - ) e TCN. (64)

=)

The general expression for
(AR, 1)) = (R(12) — R(11)) is

the mean displacement

n t
(AR(1. 1)) = / dr / d"a(t") (B A )e T,
n —o0

(65)
where the conditional average
()[R (11))
p[e—%a(tz,tlw i +u(tz,t1))] fort > 1.

p[e—%a(n,tzw i(¢n +u(t1,tz))] fort < 1.
(66)

denotes the mean orientation under the condition that the
particle has the angle ¢(#;) = ¢; at time #,.

Last, the mean-square displacement (ARZ(tl, 1)) =
((R(t2) — R(1))?) is

153 153
(AR, 1)) = / ar / aZE . 67
n h

For time-independent parameters, we recover the results
discussed in Sec. III. In particular, we have C(t;, ;) = C(|t; —
n|) [see Eq. 2D, Z(1, ) = Z(Ity — 12]) [see Eq. (18)],
dt;, ) =d(|h —n]) [see Eq. 37)], (AR(t,n)) =
(AR(In — 1)) [see Eq. (24)], and (AR*(11,1)) =
(AR*(|ty — 1)) [see Eq. (27)].

Numerical data for the special case of an exponential mass
loss [see Eq. (55)] and/or an exponential decay of the moment
of inertia [see Eq. (56)] as summarized in Table I are presented
in Figs. 8 and 9. Figure 8 is for an achiral particle and Fig. 9 for
a chiral particle. The case of time-independent inertia (with
the parameters at time ¢+ = 0) is shown as a reference, too.
Equations (8) and (9) were discretized to perform Brownian
dynamics simulations. For these simulations, we chose the
time step At = 1072/D, and we performed 10° realizations
to calculate the respective ensemble averages.

We first discuss the case of an achiral particle. For isotropic
shape change, the orientational correlation function C(0,t)
decorrelates faster [see Fig. 8(a)], since the rotational noise
is amplified during the decay of the moment of inertia. The
velocity autocorrelation Z(0, ¢) as well as the delay function
d(0,1) decorrelate faster if the particle actually loses mass
[see Figs. 8(b) and 8(c)]. For the particle with directed mass
ejection, we see an increase in the velocity autocorrelation for
short times and a more pronounced peak in the delay function
due to the additional acceleration, which enhances the particle
velocity. The mean displacement along the initial displace-
ment (AR(O, #)) - Ry is displayed in Fig. 8(d). Although the
particle with directed mass ejection is the fastest for short
times, it gets overtaken for long times by the particle with
time-independent inertia. Last, we discuss the mean-square
displacement (AR?(0,¢)). Besides the additional accelera-
tion for the particle with directed mass ejection for short
times, the long-time diffusivity is identical to the case of
time-independent inertia. In contrast, the cases of isotropic
mass evaporation and isotropic shape end up with a de-
creased long-time diffusion coefficient [see Fig. 8(e)] due
to a smaller persistence. The differences between the setups
become clearer by considering the logarithmic derivative of
the mean-square displacement

dIn({AR*(1y,
(i 1) = W )

If the mean-square displacement follows a power law
(AR (11, 1)) ~ (t — )%, a(t;, 1) is equal to the power-law
exponent «. This scaling exponent is shown in Fig. 8(f). All
setups start in a ballistic regime (o = 2) for short times and
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achiral particle
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FIG. 8. Comparison of the different special setups for an achiral
active particle (w = 0) with time-dependent inertia: (a) orientation
autocorrelation function C(0, ¢), (b) velocity autocorrelation func-
tion Z(0, t), (c) delay function d(0, 7), (d) mean displacement along
the initial orientation (AR(0, 1)) - iy, (¢) mean-square displacement
(AR?(0, 1)), and (f) the corresponding scaling exponent «(0, ¢) for
time-independent inertia (dashed black), directed mass ejection (red),
isotropic mass evaporation (green), and an isotropic change in the
particle shape (blue). Velocities are given in units of vy, times in
1/D,, and lengths in [, = vy/D,. The time dependencies of the
mass m(t) and the moment of inertia J(z) for the different setups
are summarized in Table I. The remaining parameters are D = 0,
Yo =§&/mo = 0.1D,, and y,,o = §,/Jo = 0.1D,.

end up in a diffusive regime (¢ = 1) for long times. Again
for the particle with directed mass ejection we observe faster
motion for short times indicated by a superballistic scaling
o > 2 due to the acceleration. For times greater than the
inverse decay rate of the moment of inertia 1/y;,, the parti-
cles with isotropic mass evaporation and an isotropic shape
change behave subdiffusively with & < 1 since their effective
diffusivity decreases.

Now we turn to the case of a chiral particle. First of
all, even for constant parameters, the presence of the torque
M yields systematic oscillations in the orientation and ve-
locity autocorrelations, and also in the delay function [see
Figs. 9(a)-9(c)]. Indeed, such oscillations in the delay func-
tion have been found recently in data for whirligig beetles
[49]. Turning to the time-dependent cases, similar to the
pirouette of figure skating, the particle with an isotropic shape
contraction is spinning with a higher frequency during the
decay of the moment of inertia. This is visible in the orien-
tational and velocity autocorrelation functions and the delay

chiral particle

(a) (b)

x1072
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—
=
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FIG. 9. Same as in Fig. 8 for a chiral particle with a spinning
frequency of w = 0.1D,.

function [see Figs. 9(a)-9(c)]. Also, when the particle loses
mass, the oscillation becomes more pronounced since the par-
ticle can adapt more easily to orientation changes. In contrast
to the achiral case, the long-time behavior of the mean-square
displacement increases for the time-dependent setups when
the moment of inertia J(¢) decreases [see Fig. 9(e)] in line
with the trend discussed previously in Fig. 5. This is marked
by a peak in the scaling exponent for times larger than 1/y;
[see Fig. 9(f)].

C. Adiabatic approximation for slow variations

When the parameters [such as mass m(¢), moment of in-
ertia J(t), friction coefficients £(¢) and &,(¢), noise strengths
D(t) and D,(t), and self-propulsion velocity vy(¢)] change
very slowly in time, i.e., much slower than any other timescale
inherent in the model, the system can be analyzed using the
adiabatic approximation. In other words, one can take the ex-
pressions for the dynamical correlation function with constant
parameters (as discussed in Sec. III) and insert into these ex-
pressions the slowly varying time-dependent parameters. This
approximation becomes exact if the two time scales (largest
system timescale and fastest timescale governing the change
of all parameters) are separated completely.

Let us elaborate on the adiabatic approximation for the
MSD by considering an achiral active particle. Corresponding
analytical expressions for the MSD in the two limits of small
and high moments of inertia J are given by (35) and (36),
respectively. Using the long-time limit (31), we obtain within
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the adiabatic approximation for large J,

v3(t) | 2rJ(t)
4 \/Dr(nsr(r))” ©

when the moment of inertia J becomes sufficiently large, and

3O viO)JI(@)
20,0 T 250) )” 70

in the case of a small moment of inertia J. Let us now as-
sume a slow power law in time for the moment of inertia,
the self-propulsion, the rotational friction, and the diffusion
coefficients,

(AR*(1)) ~ 4(0(:) +

(AR (1)) ~ 4<D(t)+

J@)~ 1%, &) ~1°, ()]

with prescribed dynamical exponents 8, §, €, and 1. Plugging
this into the expressions (69) and (70), we obtain a power law
for the long-time MSD of the active particle,

vo(t) ~ 18, Dy(1) ~ 1",

(AR?(1)) ~ 1°, (72)
with
a=max(l, 1 +28— (e —8+1n)) (73)
for large J and
a =max (1,1 + 28 — min(e — §, 1)) (74)

for small J. If & > 1, the adiabatic term is dominated over-
whelmingly by the standard diffusion such that the particle
exhibits anomalous superdiffusion. If @ = 1, the full MSD is
dominated by the translational diffusion. We finally remark
that simpler scaling laws were obtained earlier in the over-
damped limit [83].

V. CONCLUSIONS

To conclude, we have investigated the dynamics of an
inertia-dominated Brownian particle, referred to as active
Langevin dynamics. Dynamical correlations within a simple
model were calculated for a single “microflyer,” which is
simultaneously subjected to self-propulsion, inertia, damp-
ing, and fluctuations, and analytical results known for the
overdamped limit of microswimmers were generalized to the
inertial situation. In particular, we considered the case of
time-dependent inertia. Furthermore, we identified a basic
Langevin model for a rocketlike particle self-propelled by
the ejection of mass for which we calculated its mean reach
and found a noise-induced discontinuous transition in the
optimal propulsion strategy for reaching the furthest distance.
The case of chiral particles referred to as circle-flyers was
included. One characteristic dynamical correlation absent in
the overdamped case concerns the inertial delay between the
orientation variations and the subsequent changes in the ve-
locity direction. For achiral particles with vanishing spinning
frequency, the inertial delay decays to zero after a profound
peak at a typical delay time. Conversely, for chiral particles,
the inertial delay correlation may oscillate between positive
and negative values. Finally, we have also addressed the lim-
iting “adiabatic” case of very slow inertia variation, and we
have highlighted that a microflyer can undergo anomalous
diffusion if the parameters are varying as a power law in time.

Future work should generalize the present model to exter-
nal potentials such as optical fields, disorder, and confinement
[39,102-105], and to motion in noninertial rotating frames
[106,107]. Furthermore, anisotropic particles that show out-
of-plane orientations and positions relevant for active complex
plasmas [108] should be considered in the future. In this case,
the equations of motion are getting more complex involving
friction and inertia tensors significantly more complicated
than in the overdamped limit [109,110]. Next, the “rocketlike”
particles studied here should be realized in experiments; the
most promising way seems to be dust particles in the plasma
with evaporating mass. Moreover, it would be interesting to
study collective effects of inertia-dominated active particles
such as motility-induced phase separation [111-116] or pat-
tern formation in general [117]. Finally, it would be interesting
to generalize the more coarse-grained Ornstein-Uhlenbeck
model for inertial active particles [118,119] to the situation
of time-dependent parameters.
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APPENDIX A: GENERAL SOLUTION

For an analytical solution of the equations of motion, we
first consider the rotational part [see Eq. (9)]. For ¢ = ¢(r =
0) and ¢p = ¢(t = 0), the solution of Eq. (9) is

B) =doe” 7OV
t ’
( _ ,
+/ dt/é( )a)(t’)e L
0

J(@)
! /Sr(ﬂ) 7 N =Dt 1)
+ [ dt 70 V2D, (t)ty () e s (A1)
0

and thus

t
¢() = o + / di'goe "0
0

t t ”

t "o

+/ dt// dt//gf( )w(t//)e—l",(t )
0 0 J@")

t t "
(1 PR
+/ dt,/ ars )VzDr(I”)rs[(t Ye )
0 0

J(l”)
(A2)
where
e (1)
1‘,(tl,t2)—/r1 dt 7@ + (1 —=v)ln (J(t1)>’ (A3)

The translational equation of motion yields for the particle
velocity

t
R() =Rpe ") + / dr'a(t'y (') e """
0

+ / dr’ ) V2Dt (1) e T,
o m)

(A4)
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Hence, the center-of-mass position is calculated as

1
R([) :R()+/ dI’R() e—F(O,r’)
0
t ' L
+/ dl,/ dt//a(t//)ﬁ(t//)e—l‘(l 1)
0 0

t t I o
+/ dt// a5 2D(t" ) (8" )e T,
0 0

m(tr/)
(A5)
where ) i)
! m(t
at) = mvo(l) - mu(l) (A6)
and
()
l“(tl,t2)_/1I dt e (A7)

Here R, and Ry are the initial position and velocity at time
t=0.

APPENDIX B: EXPONENTIAL MASS LOSS

In an isothermal environment of temperature 7', the mass
loss through a small leak of cross section S in the rocket tank
of volume V in quasiequilibrium is governed by

. 1S [3kgT
Miyel (1) = 76? Mool Mpyer (1) = —Vm Meyer (1), (B1)
'mo

where my,o is the mass of the ejected molecules and kg is
the Boltzmann constant. Equation (B1) implies an exponential
decay of the rocket fuel, i.e., Mgue1 () = Migyer (0) e with the
mass decay rate y,, and thus motivates Eq. (55).
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Self-propelled particles in anisotropic environments can exhibit a motility that depends on their
orientation. This dependence is relevant for a plethora of living organisms but difficult to study
in controlled environments. Here, we present a macroscopic system of self-propelled vibrated gran-
ular particles on a striated substrate that displays orientation-dependent motility. An extension
of the active Brownian motion model involving orientation-dependent motility and inertial effects
reproduces and explains our experimental observations. The model can be applied to general n-
fold symmetric anisotropy and can be helpful for predictive optimization of the dynamics of active

matter in complex environments.

The survival of organisms in complex environments
essentially depends on their fitness and strategy to re-
act and adapt to external conditions. In particular,
a realistic environment is never isotropic but typically
anisotropic, i.e., its traversability depends on the direc-
tion of motion [1]. Anisotropy can be caused on vari-
ous scales by many different means: by an external force
arising from gravity [2, 3], viscosity [4], light [5], and
chemical gradients [6], electromagnetic fields [7], through
steric confinement by channels, veins, and anisotropic
porous media [8, 9], or by motion in a liquid-crystalline
[10-14] or crystalline [15-17] medium. Anisotropic en-
vironments can have a pronounced impact on the mo-
tion of self-propelled particles. These “active” particles
convert energy from their environment into directed mo-
tion and comprise both living organisms and artificial
inanimate objects, like activated colloids [18-20], gran-
ules [21-25], and robots [26-28]. Standard models of
self-propelled particles [29] assume that the propulsion
force is isotropic in the sense that it always points into
the direction of the particle orientation with a constant
self-propulsion speed even in an inhomogeneous environ-
ment [30-36]. In anisotropic environments, a dependence
of the self-propulsion speed of the particle on its orien-
tation is frequently observed. Some biological organisms
react to their environment in a sense that the propulsion
force depends on their orientation relative to the environ-
ment. For instance, microorganisms can move faster to-
wards light sources [37] or in the direction of food sources
[38]. Additionally, flying animals such as bees and birds
control their flying speed by relative changes of their en-
vironment, which in turn leads to anisotropic flying ve-
locities within structured environments [39-41]. Simi-
larly, anisotropic movement is also observed for smaller
insects like ants in guiding structures [42, 43]. Those
macroscopic self-propelled particles in low-friction envi-
ronments (e.g., such as flying insects) where the effect
of anisotropy is most prominent, are also governed by
inertial effects [44]. This poses a challenging problem be-
cause inertia introduces correlations that can persist for

longer times [45-53).

In this communication, we present an experimental
realization of a self-propelled granular particle on an
anisotropically structured substrate, which mimics this
behavior. For these inanimate self-propelled objects, we
find pronounced anisotropy in the motion of the parti-
cles, which is well explained by an extension of the ac-
tive Brownian motion model with inertia and orientation-
dependent motility. The orientation-dependence can be
written in terms of a Fourier series which allows a gen-
eral solution for anisotropic motility that can be applied
to our experiments. Our findings not only open a new
model class of active matter in anisotropic environments
but also shed new light on the self-propulsion strategies of
organisms in such anisotropies. Our model is particularly
relevant for predictive optimization of control parameters
of artificial active agents, such as robots [26-28], to better
explore anisotropic environments [54].

RESULTS

Experimental observation of anisotropic
self-propulsion

Macroscopic active matter with orientation-dependent
motility can be realized from self-propelled 3D-printed
agents called vibrobots (see Fig. 1a) on structured sub-
strates. These particles are excited by vertical vibra-
tions generated by a rectangular acrylic baseplate at-
tached to an electromagnetic shaker. The particles stand
on slightly tilted legs, which causes the particles to hop
forward. These legs are all tilted equally along the ori-
entation (or symmetry axis) of the particle. The base-
plate is covered with a lenticular plastic sheet on top,
which is the source for the anisotropic motility. The ex-
perimental setup is depicted in Fig. 1b. An illustration
with a side-view of the particle resting on such a grooved
surface are shown in Fig. 1c. The vibration frequency
is set to f = 80Hz, which ensures robust experimental
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vibrobot

1 : F6=n/2
trajectory density  max

[
/\/ min
T

Figure 1. Vibrationally driven self-propelled particle (vibrobot) manufactured by 3D printing (a). The white cross indicates
the particle orientation. Experimental setup (b): Rectangular acrylic baseplate attached to an electromagnetic shaker. Cross-
section of the anisotropic substrate (lenticular foil) with particle to scale (c). Panels d,e: Trajectory density for vibrobots
starting parallel (d) and perpendicular (e) to grooves with an excitation amplitude A = 1.28 g. Panels f-h: Sketch of the two
velocity contributions. The particle moves with increased velocity v; when aligned along the grooves (f). When orientated
diagonally, the particle moves with average velocity v|| along its orientation while simultaneously experiencing active propulsion
v, perpendicular to it (g). The particle moves with decreased velocity v when perpendicularly aligned to the grooves (h).
Panels i-k: Three representative trajectories with an excitation amplitude A = 1.60g. The persistence length is noticeably
shorter for perpendicularly aligned particles than for parallel aligned particles. Length ratios and velocity contributions are not

§_> y grooved baseplate

to scale.

conditions [47]. Three different peak acceleration am-
plitudes A = 1.28 ¢, 1.44 g, and 1.60 g are investigated,
which varies the motility and motion properties of the
vibrobot.

We find pronounced anisotropy in the motion of the
particle and observe a modulation of the velocity parallel
but also perpendicular to the orientation of the grooves,
as well as an increased activity with increasing excitation
amplitude. The motion of the particles is illustrated in
Supplementary videos 1 - 6, where we show a montage
of all measured trajectories for each excitation amplitude
as well as for parallel and perpendicular initial orienta-
tion, respectively. From the trajectories, the anisotropy
is already visible by the naked eye, in particular when
comparing parallel and perpendicular starting orienta-
tions.

This anisotropy is best illustrated when displaying
all recorded trajectories (integrated and smoothed) and
distinguishing parallel and perpendicular initial orienta-
tions, as shown in Fig. 1d, e. For particles starting paral-
lel to the grooves, we observe that the peak of the density
(which is linked to the starting position of the particles)
is broad along and narrow perpendicular to the starting
orientation since the particles tend to move faster paral-
lel to the grooves and therefore propagate further before
they reorient. In the case of perpendicular starting orien-
tation, the density spreads more around the peak, since

particles reorient near to the starting position. Hence the
persistence length depends on the orientation of the par-
ticle. Surprisingly, from individual particle trajectories,
we also identify a driving-force component perpendicu-
lar to the orientation, whenever a particle is not moving
exactly parallel or perpendicular to the grooves.

The anisotropic self-propulsion is caused by the
grooved surface of the vibrating plate. Our conjecture is
that this is due to the strong dependence of the particle
speed on the relative inclination angle between legs and
surface [55]. When resting on the vibrating plate, the legs
are bent along the orientation of the particle. This defor-
mation stores elastic energy. Then, after detaching from
the base, the energy is released and the vibrobot jumps
forward. When the particle is oriented perpendicular to
the grooves, the legs face an elliptical half-cylinder and
the relative inclination angle of the legs is decreased (see
Fig. 1c). As a result, the legs will bend less compared to
the case where the particle is oriented along the grooves.
If the particle is diagonally aligned with the grooves, the
legs will not bend along the orientation and the particle
experiences a force perpendicular to its orientation. This
in fact results in propulsion perpendicular to the orien-
tation of the particle. In Fig. 1f-h, we illustrate the two
velocity contributions for three different orientations of
the particle.

As described in the literature, we also observe orienta-
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tional fluctuations, caused by an instability of the driving
mechanism to the microscopic surface roughness, and in-
ertial delay effects due to the mass of the particles [47].
When vibrobots are excited above a certain amplitude
threshold, they begin to tumble [56]. As a result, they
randomly reorient while moving and eventually change
the direction of their path. Figure li-k shows three rep-
resentative trajectories with different initial orientations.
Clearly, the particle does not show a deterministic mo-
tion, apart from short-time correlations due to initial ori-
entation and inertia. The particle rather undergoes an
anisotropic two dimensional random walk with a certain
persistence length.

Due to the simplicity of our particles, compared to liv-
ing active matter, our experiment allows us to investigate
kinetic properties of particles with orientation-dependent
motility, which can be useful for optimization of motion
and search strategies of active matter in general. This
requires an analytical description of the motion that cap-
tures the essential properties of the particle and must be
applicable to general cases of anisotropic motility.

Langevin dynamics model

Finding an analytical description for macroscopic self-
propelled systems can be challenging due to the com-
plex interaction of particles and environment. Here, we
model those interactions with an effective driving force
and thereby introduce a minimal model, where the in-
terplay of orientation-dependent motility, inertia, and
fluctuations, is treated in terms of a generalized active
Langevin dynamics model. Our model reproduces the
experimental observations quantitatively despite its com-
plex anisotropic nature.

We assume that the particle has non-negligible mass M
and moment of inertia .J. The motion of such an under-
damped particle is in general characterized by the trans-
lational center-of-mass velocity r(t) with the center-of-
mass position r(¢) and the time variable ¢ as well as by the
angular velocity ¢(£) and the angle of orientation ¢(¢),
which denotes the angle between the orientation vector
i = (cos ¢, sin ¢) and the positive z-axis. By taking the
above considerations into account, the translational and
rotational motion of the particle is governed by the force
balance between inertial, frictional, self-propulsive driv-
ing, and random forces and torques

Mi@®) +ri(t) =y v(6®) + V2Dryr €(t), (1)
J(t) +vr d(t) = Yrw + V/2Drvr (). (2)

Here, vy and g denote the translational and rotational
friction coefficients, respectively. To take translational
and rotational diffusion into account, the Langevin equa-
tions contain independent Gaussian white noise terms
£(t) and n(t), with zero means (£(t)) = 0 and (n(t)) =0

and delta-correlated variances (&;(¢1)&;(t2)) = 0;5 6(t1 —
to) and (n(t1)n(t2)) = 6(t1 — t2), where 4,5 € {x,y}.
Therein, Dy and Dpg are the translational and rotational
short-time diffusion coefficients of the particle, respec-
tively. The brackets (...) denote the noise average in the
stationary state (meaning after losing correlation with
initial conditions [52]) and ¢;; is the Kronecker delta.

Most importantly, v(¢) denotes an arbitrary
orientation-dependent motility which accounts for
the interaction between the particle and environment.
For mathematical convenience, we represent v(¢) as a
Fourier series

V(o)=Y crexp(ike), (3)

k=—oc0

where c; is the Fourier-coefficient vector of the mode
k, and i denotes the imaginary unit. This representa-
tion lets us solve the model for any type of orientation-
dependence and then apply the results to our exper-
imental system. In particular, this description can
be used for different experimental realizations ranging
from anisotropic illuminated Janus particles, triangu-
lar microparticles in traveling ultrasound waves, and
the motion of living insects in guiding structures to
the specific setup studied in this communication [57,
58]. In general, for a given propulsion velocity v(¢),
these Fourier coefficients can be calculated as ¢ =
ST (v(¢)/(27)) exp(—ike) dé (thus we have after com-
plex conjugation ¢}, = c_j). The seminal case of isotropic
propulsion is recovered for the two non-zero coefficients
cx1 = v(1,Fi)/2. Note that we exclude the mode k =0
in Eq. (3), which would correspond to a drift velocity
induced by a constant external force (e.g., gravity) not
measured in the experiment.

Moreover, as typical 3D-printed particles are not per-
fectly symmetrical, they tend to perform circular motions
on long time scales. To capture this behaviour, we as-
sume a systematic torque which acts on the particle and
leads to an angular speed w. In contrast to v(¢), we mea-
sured no orientational dependency in the angular speed
which could in principle be caused by the anisotropic
substrate.

Concluding, our theoretical model depends on a num-
ber of parameters: the angular velocity w, the rota-
tional diffusion coefficient Dpg, the rotational friction
time 7; = J/vg, the set of Fourier coefficients {cj} de-
scribing the anisotropic motility, the translational dif-
fusion coefficient D7 and the translational friction time
T = M/vr. In the context of the experimental obser-
vations, we assume that the vibrobot is moving with an
orientation-dependent velocity

v(g) = (v) + bv) cos(29)) fi(p) — bv sin(2¢)hL (¢), (4)

where N(¢) = (cos¢,sing) is pointing parallel and
i) (¢) = (—sing,cos¢) is pointing perpendicular to
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the particle’s orientation. The sine and cosine terms in
Eq. (4) reflect the orientation dependence of the parti-
cle velocity and the symmetry of the system. This adds
the parallel speed v||, the parallel speed anisotropy v,
and the perpendicular speed anisotropy dv , leading to
a total of 8 independent parameters. The four non-zero
Fourier coefficients of Eq. (4) read c+1 = v (1,Fi)/2 +
(Jv“ + (SVJ_)(l, ﬂ:l)/4 and Ci3 = (5V|| — (SVJ_)(l, :Fl)/4

These parameters are determined from analytic fits
to the experimental results. We use temporal correla-
tion functions, like the orientational correlation function
C(t) = (n(t)-1(0)) and the velocity correlation function
Z(t) = (r(t)-1(0)), to determine the relevant timescales
and diffusion coefficients. Further stationary observables,
like the mean translational velocity vo = (¢(0)) and the
mean angular velocity (¢(0)), are used to estimate all
motility parameters. More information on the parame-
ter estimation can be found in the Methods section and
the parameter values are listed in Tab. I. In the following,
we compare the experimental data with analytic predic-
tions derived from the theoretical model and discuss the
anisotropy found in several observables.

Comparison between analytical results and
experiment

As described above, the mean self-propulsion strongly
depends on the relative orientation of the particle with
respect to the groove direction. The model describes this
via two orthogonal velocity components. In Fig. 2, we
separately show the mean velocity along the body-axis
V| = Vo -1 and perpendicular to it v, = vq- -0, as func-
tions of the orientation ¢. The parallel contribution v
in Fig. 2a shows considerably greater propulsion along
the grooves than perpendicular to them. For the perpen-
dicular contribution (see Fig. 2b) we find the assumed
sin(2¢)-modulation (see Eq. (4)), which has an align-
ment effect on the overall velocity direction in favor of
the groove direction. Overall, we measure increased ac-
tivity for larger excitation amplitudes while the degree
of anisotropy remains almost the same for all three mea-
surements. From the theoretical side, the mean instan-
taneous velocity vo = (£(0)) at a specific orientation ¢g
can be computed in general as instatanteous

ST S eSS Tl 0,508, (5
Vo leckek (7, 0,8)e™™,  (5)

M k=—o0

with the dimensionless coefficients S, = Dr7sk?, Q,:r =
Dp7sk®+iwt k477 /7o, and the generalized incomplete
gamma function T'(s,z1,72) = f;fts’le"dt. The ana-
lytic result is plotted in Fig. 2 and yields good agreement
with the experimental data. In contrast to overdamped

motion, where the particle’s mean velocity is simply equal

1.28¢

A=

1.44g

A=

1.60g

A=

3n/2

3n/2

Figure 2. Stationary parallel velocity v (a) and stationary
perpendicular velocity vi (b) plotted as a function of the
orientation angle ¢ for three different excitation amplitudes
A =1.28 g (upper row), A = 1.44 g (middle row), and 1.60 g
(lower row). Solid dark blue and dashed red curves show the
experimental data and analytical results, respectively. Blue
experimental error intervals represent the standard error of
the mean.

to the internal self-propulsion velocity, here the particle
moves on average with a smaller velocity due to inertial
delay effects, i.e., [vo(¢)| < |v(¢)|. Further, the faster
varying contributions (i.e., the higher Fourier modes) of
the propulsion are more affected by these inertial delay
effects, resulting in a more isotropic mean velocity for in-
creasing mass M. Conversely, the anisotropy is restored
for increasing moment of inertia: limj_,oc vo(¢) = v(¢).

A suitable quantifier for the presence of inertial effects
is the delay function d(t) = (#(¢)-0(0)) — (r(0)-n(t))
[47, 48, 59]. This function quantifies the average dif-
ference between the projection of the initial velocity on
the orientation and the projection of the initial orienta-
tion on the velocity. In overdamped systems, this func-
tion is zero at all times. Here, we find that this func-
tion is significantly different from zero in particular for
large excitation amplitudes A (see the Methods section).
The standard delay function can be generalized to re-
solve anisotropy in the system by conditioning the aver-
age with a specific initial orientation ¢o at time ¢ = 0.
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Figure 3. Panels a: The anisotropic delay function dg,(t)
plotted as function of the initial orientation ¢o after fixed
times ¢t = 0.1s, t = 0.4s. Solid blue and dashed red curves
show the experimental data and analytical results, respec-
tively. Panels b: The anisotropic delay function dg,(t) plot-
ted as a function time ¢ for parallel ¢ = 0 (cyan), diagonal
¢o = /4 (green), and perpendicular ¢o = 7/2 (yellow) ori-
entations, each. Both for excitation amplitude A = 1.28g
(upper row), A = 1.44 g (middle row) and A = 1.60g (lower
row). Solid and dashed curves the experimental data and the
simulated data (using the parameter values given in Tab. I),
respectively.

In Fig. 3 we plot the anisotropic delay function dg,(¢)
both as a function of ¢ for given ¢ and as a function of
t for given ¢g. We compare the experimental data with
simulations which follow Egs. (1) and (2) and are ini-
tialized similar to the experiments. The delay function
is a highly fluctuating quantity making the experimental
data difficult to interpret. The simulated data suggests
an isotropic delay for short times and a larger delay along
the grooves as time proceeds mimicking the modulation
of the self-propulsion velocity. The simulated data al-
ways fits within the standard error of the experimental
data.

For stochastic processes, it is common to analyze the

5
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Figure 4. Comparison between model and measurement with
excitation amplitude A = 1.28g (upper row), A = 1.44g
(middle row), and A = 1.60g (lower row). Panels a: The
anisotropic motion of the particle is visualized by plotting the
mean displacement (Ar(¢o)) for ¢o € [0,27) and fixed times
t =0.2s,t=0.6s and t = 1.0s. Solid blue and dashed red
curves show the experimental data and analytical results, re-
spectively. Light blue area expresses the standard error of the
mean. Panels b: The absolute mean displacement |(Ar(¢))] is
plotted as a function of time ¢ for initial orientations ¢o = 0
(cyan) and ¢o = 7/2 (yellow). Solid colored curves represent
the experimental data and dashed colored curves the analytic
results. In addition, dashed black curves depict simulation
data for a particle in confinement. Black dots correspond to
the experimental values for the fixed times of Fig. 4a. Theo-
retical predictions and simulations use the parameters given
in Tab. I.

first and seconds moments of the motion, i.e., the mean
and mean square displacement. In anisotropic systems,
these quantities will strongly depend on the initial ori-
entation of a particle. In Fig. 4, we compare the exper-
imental mean displacement (Ar(t)) conditioned at dif-
ferent initial orientations ¢ with that resulting from
our theoretical model. To demonstrate the effect of the
orientation-dependent motility, we show the mean dis-
placement as a function of the initial orientation ¢q after
fixed times ¢ forming elliptic-like shapes in the xy—plane
(see Fig. 4a). In Fig. 4b, we plot the absolute mean dis-
placement |[(Ar(t))| as a function of time ¢ for particles



78

Chapter 3 Scientific publications

which are initially orientated along the grooves (blue)
and for those starting perpendicular to the grooves (red).
The experimental data fit within theoretical results for
short time, where the particle moves linearly in time with
(Ar(t)) = vot + O(t?). For longer time, confinement ef-
fects play an increasing role. Since recordings are stopped
once a particle hits the boundary, events where the parti-
cle reorients beforehand dominate the statistic. As a con-
sequence, the measured mean displacement decreases for
times larger than the mean first-passage time of hitting
the boundary. We perform simulations with absorbing
boundaries and find an excellent agreement for all ex-
perimental accessible time scales (indicated by the black
dashed lines in Fig. 4b). Without confinement, the the-
oretical mean displacement saturates to an anisotropic
persistence length Ly, = lim;_, o (Ar(t)) for long times

o0
Lp = VoTMm + Z CL Tk eikd)o, (6)
k=—occ
k#0
with the persistence time of mode k
T = TJES’“S;ri(Qk, 0,S5) (7)

and Q; = Dgr7sk? + iwrsk. The persistence length L,
consists of two contributions: the first term is given by
the mean stationary velocity vy which is damped over
the translational friction time 75;. The second term in
Eq. (6) describes the active propulsion getting decorre-
lated due to the rotational noise Dg. Again, the degree
of anisotropy increases as a function of the moment of
inertia J. For vanishing angular speed w = 0, we find
the following asymptotic behavior for small and large J,
respectively:

2
ﬁ(u%ﬂ, for J — 0,

Tk ~
1 s
3 \/ 2DrVR \/j’

Note that for large J the contribution of higher modes de-
cays only linearly instead of quadratically, demonstrating
the relevance of the moment of inertia as an important
control parameter.

Last, we address the mean-square displacement, which
is most commonly investigated for passive and active
Brownian motion. In Fig. 5, we compare the experi-
mentally determined mean-square displacement with the
corresponding theoretical result. For short times, the
particle is moving ballistically, as (Ar2(t)) = (#%(0)) £2 +
O(t?). For larger times, the particle transitions towards a
diffusive regime (Ar?(t)) ~ 4Dpt, which is characterized
by the long-time diffusion coefficient

8
for J — oo. (®)

o0
Dp=Dr+ Y _|ck|* Re{r}.
k=1

9)

Similar to the mean displacement, the mean-square dis-
placement is affected by the confinement for long times

1.28¢

A=

(Ar?(t)) (mm?)

(Az2(1)), (A2 (1)) (mm?) T

1.44g

A=

(Ar?(t)) (mm?)
(A1), (Ay?(t)) (mm?)

1.60g

A

(Ar?(t)) (mm?)

(Aa*(1)), (Ay()) (mm?)

107" 10 100 10?
t(s)

Figure 5. Comparison between model and measurement with
excitation amplitude A = 1.28 g (upper row), A = 1.44 g (mid-
dle row), and A = 1.60g (lower row). Panels a: The to-
tal mean-square displacement as a function of time ¢ (double
logarithmic scaling). Open blue circles and dashed red curves
show the experimental data and analytical results, respec-
tively. Panels b: The mean-square displacement along the
z-axis (cyan) and y-axis (yellow) as functions of time ¢. Solid
colored curves and dashed colored curves show the experi-
mental data and analytical results, respectively. Light col-
ored areas represent the standard error of the mean. Dashed
black curves show simulation data for a particle in confine-
ment. Theoretical predictions correspond to the parameters
given in Tab. I.

which hinders the particle to reach a diffusive state. In
Fig. 5b, we show the mean-square displacement parallel
and perpendicular to the grooves comparing experiment,
theory, and simulation. Interestingly, the mean-square
displacement is non-monotonic in time due to the con-
finement. At longer times, the particle needs to reori-
ent before hitting the wall. The non-monotonic behavior
results from the persistency of the particle and there-
fore is not observed for passive particles. The particle
makes larger displacements along the grooves than per-
pendicular to them. In the absence of confinement, this
anisotropy can persist even in the long-time limit char-
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acterized by the long-time diffusion matrix

(DL)i]- = DT(S“‘ =+ Z (Ck.’ic_k,]‘ =+ C—k,ick,]’) Re{Tk},

k=1
(10)
for i,j € {x,y}. The eigenvalues of this matrix are given
as Dy = Dy, + ADy,, with the long-time anisotropy

e}

ADp = ( Z (lek - ei® + [ex - c—i* = Jex)?[er]?)
k=1

X Re{Tk}Re{ﬂ}> 1/2, (11)

which describes the long-time diffusion along the princi-
pal axes of maximal and minimal diffusion, respectively.
The existence of a long-time anisotropy ADj, # 0 will
depend in general on the specific form of v(¢).

DISCUSSION

Anisotropic motility has a strong impact on the motion
of active particles both on short and long time scales.
Our experiments demonstrate this explicitly for short
and intermediate times and implicitly for long time-scales
through simulations. Anisotropy persists for long times
in the mean and mean-square displacement. We derived
an analytical description that explains this behavior in
terms of the Fourier series of the anisotropic driving term.
The Fourier modes of the motility are linked to different
time scales that add up and have an effect on the station-
ary mean velocity, persistence length and long-time dif-
fusion. Specifically, these quantities are mostly affected
by the low-order Fourier coefficients.

Our theoretical results predict that the degree of
anisotropy is not only set by the orientation-dependent
motility itself but depends non-trivially on all time scales
1/Dpg, 1/|w|, Tm, and 7; of the model. In Fig. 6,
we depict the anisotropy of the stationary mean veloc-
ity, persistence length, and long-time diffusion for dif-
ferent values of the moment of inertia J and two ex-
emplary orientation-dependent motilities v(¢) = v(1 +
cos(ng))i(¢p) with 2-fold symmetry (n = 2) and 3-fold
symmetry (n = 3). In general, the mass and the mo-
ment of inertia have contrary effects on the anisotropy
for short and intermediate times. For increasing mass,
the dynamics of the particle involves stronger delay ef-
fects, smoothing the trajectories of the particle and ef-
fectively decreasing the anisotropy. On the other hand,
increasing the moment of inertia leads to more resistance
to reorientation and subsequently to higher persistence.
The stationary parallel velocity in Fig. 6a,b shows an
increasing degree of anisotropy (being the ratio of out-
ermost points to the innermost points on these curves)
for increasing moment of inertia J. For the persistence
length (see Fig. 6c¢,d), the degree of anisotropy remains

Ly(9)-0(6)
v/Dr

3n/2 3n/2

2-fold symmetry 3-fold symmetry

v(¢) = v(1 + cos(2¢))(¢) v(¢) = v(1 + cos(3¢))n(¢)

Figure 6. Anisotropy of the stationary mean velocity v, per-
sistence length L,, and long-time diffusion Dy for various
values of the moment of inertia J evaluated for a 2-fold sym-
metric motility (left column) and a 3-fold symmetric motil-
ity (right column). Stationary mean velocity as a function
of the current orientation vo(¢)-f(¢) (a, b). Persistence
length as a function of the initial orientation L, (¢)-fA(¢)
(c, d). Long-time diffusion projected along different di-
rections 1(¢) Dy Ai(4) (e, f). The moment of inertia is
set to J = 0.1yr/Dgr (orange), J = ~r/Dr (red), and
J =10~r/Dr (purple). The mass is fixed at M = 7 /Drg.

fairly invariant with increasing J but overall we find a
large persistence length (recalling Eq. (8)). Note that
the mean displacement and thus the persistence length
inherit the symmetry of the driving velocity v(¢). This
symmetry is in general lost for long times, since the long-
time diffusion can either follow a 2-fold symmetric mod-
ulation or behaves fully isotropic in every direction (see
Fig. 6e,f). In fact, for motilities with higher rotational
symmetry than two-fold, the long-time diffusion is always
isotropic. Thus, we like to stress that even a system show-
ing isotropic diffusion can hide anisotropic dynamics on
shorter time scales.

Our model can be used to predictively optimize driv-
ing parameters for the navigation of active matter in
anisotropic environments [60-63], for instance robotic
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systems. In particular, the persistence length is an im-
portant control parameter that strongly impacts collec-
tive phenomena, like motility-induced phase separation
[64-66]. Swarms of self-propelled particles moving with
an orientation-dependent motility would be an interest-
ing topic for future research, for which our model pro-
vides a baseline [67-70].

METHODS

Particle fabrication

The particle used in this work has been manufactured
by 3D-printing using a stereolithographic acrylic based
photopolymer 3D printer (Formlabs Form 2, using Grey
V3 material, identical to Ref. [47]). Figure la shows an
image of the particle. It consists of a cylindrical core
(diameter 9 mm, height 4 mm) and a cap (diameter
15 mm, height 2 mm). Seven tilted cylindrical legs
(diameter 0.8 mm, inclination angle 4 degrees) are
attached to the cap in a regular heptagon around the
bottom cylinder. The legs are tilted parallel to each
other defining the orientation of the particle. The length
of the legs is chosen such that the bottom of the particle
is lifted by 1 mm above the surface. The particle is
marked with a sticker from which the orientation can be
determined using computational image processing. The
particle’s mass is about m = 0.76g. From the particle’s
mass and shape, its moment of inertia is computed to be
J = 1.64 x 1078 kg m?, assuming homogeneous density.

Experimental setup and analysis

Particle motion is excited by vertical vibrations of a
rectangular acrylic baseplate (side length 300 mm, thick-
ness 15 mm) with a lenticular plastic sheet on top, at-
tached to an electromagnetic shaker (Tira TV 51140).
The sheet’s surface consists of equally spaced elliptical
half-cylinders with a density of 0.787mm™! (20 lines per
inch) and a groove depth of 0.315 mm. An illustra-
tion and a cross-section of the particle resting on such a
grooved surface are shown in Fig. 1c, respectively. Lentic-
ular sheets of this kind are typically used in digital print-
ing or displays to create images with the illusion of depth.
Here, we use it to induce an anisotropic driving of the
particle parallel and perpendicular to the lines, since the
speed of the particle is very sensitive to the contact angle
of the legs to the surface. Note that the width and height
of the grooves are chosen such that the particle legs can-
not be significantly trapped (see Fig. 1c), in order to
prevent the particle simply from sliding along grooves.

The tilt of the plate is adjusted with an accuracy of
0.01° to minimize gravitational drift. The vibration fre-

quency is set to f = 80Hz and three different peak ac-
celeration amplitudes A = 1.28¢g, 1.44¢g and 1.60 g are
studied.

A mid-to-high-speed camera system (Allied Vision
Mako-U130B) operating at 150 frames per second is used
to record the experiment with a spatial resolution of
1024 x 1024 pixels. The particle location and orienta-
tion are determined and tracked using standard image
recognition methods (Hough transform and morphologi-
cal image region analysis) to a spatial accuracy of about
+3 x 107° m and a orientational accuracy of £0.74° [47].
Multiple single trajectories are recorded for each am-
plitude, until 20 min of data are acquired per record-
ing. Half of the recorded time the particle starts parallel
and the other half of the time it starts perpendicular to
the grooves. Events involving particle-border collisions
mark a trajectory’s termination and are subsequently dis-
carded, resulting in trajectories of various lengths.

The velocity was calculated from the displace-
ment of successive positions of the particle as
v(t) = (r(t+At)—r(t))/At, where At = 1/150s
is the time between two frames. The time steps are not
fully equidistant between recorded frames, therefore the
experimental data were linearly interpolated to obtain
equidistant points. Experimental means with respect to
a specific initial orientation ¢y were calculated by averag-
ing in the interval [¢g — 0, o + 0¢]. We chose d¢p = 10°
and modified the theoretical results accordingly by
exp(ik¢) — exp(iko) sin(kdp)/(kdp). We took advantage
of the rotational and inflection symmetries of the exper-
iment (by rotating some trajectories by 180 degrees) to
increase the angular statistics for the mean displacement.

Analytic results

Both the translational velocity #(¢) and the angular ve-
locity ¢>(t) undergo a simple stochastic process for which
a general solution is easily obtained (see Egs. (1) and
(2)). Several dynamical correlation function as well as
low-order moments can be consequently calculated using
standard methods of stochastic calculus [71]. The orien-
tational correlation function C(t) = (fi(t) - 0n(0)) displays
a double exponential decay

C(t) = cos(wt)efD“(F”(1764/7")), (12)
(as previously discussed in Ref. [45-47]). The velocity
correlation function Z(t) = (£(t) - r(0)) is given as

D o0
Z(t) =27 e M 23 ek PRe(V (1)), (13)
™ =1

where the Fourier-coefficient vectors are determined
by the orientation-dependent motility, as ¢, =
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Figure 7. Determination of model parameters for different vibration amplitudes, A = 1.28 g (upper row), A = 1.44 g (middle
row) and A = 1.60 g (lower row). Orientational correlation function C(t) (a), velocity correlation function Z(t) (b), stationary
parallel velocity v (c), stationary perpendicular velocity v, (d). Solid dark blue and dashed red curves show the experimental
data and analytical results, respectively. Experimental error intervals represent the standard error of the mean. The parameter
values are listed in Tab. I.e Time-dependence of the delay function d(t) testing the parameters on an independent quantity.

ffwv(qﬁ) exp(—ike)/(2m) d¢ (see Eq. (3)), and

Sk ot
ViE(t) = TTTJ;% < 8,77 (9,0, 877 ) et/

=87 (07,0, ) e (1)
+ (87T (@080 + 5. (2,0,5,)) e*t/’M),

with Qki = Dgrrsk® £ (wrsk + 7;/7:m) and Sy =
Dgr7sk?. The real part is denoted by Re{...} and the
generalized incomplete gamma function is I'(s, 1, x2) =
[.2t=7te~" dt. The delay function measuring the differ-
ence between the direction of the velocity and the current
orientation, d(t) = (£(t) -0n(0)) — (£(0) - fa(¢)), is given by

d(t) = Re{(c1x +¢i , +ilery —ciy))Vi (O}, (15)

which coincides with the result for isotropic self-
propulsion [47] (due to the projection onto the orienta-
tion). Next, we give the mean displacement (Ar(t)) =
(r(t) — ro) under the condition that initially the position
ro and the orientation ¢ are prescribed,
oo
(Ar(t)) = vora(1— /™) + Y~ cpRe(t)e*, (16)
k=—oc0

k#0

with the stationary velocity vo (see Eq. (5)),

Ry (t) =75€5 (S,:Q"‘I‘ (Qk,, Spe "t/ Sk) 1m)

- SI:SZ’?F (QI:7 S]\/eit/T‘] bl Sk) eit/Tl‘1> bl

and Qi = Dr7sk?+iwTtsk . Lastly, we provide the result
for the mean-square displacement (Ar?(t)) = ((r(t) —
ro)?) which can be expressed as

(Ar?(t)) = 4Dpt + 2(Z(t) — Z(0)) 13, — 4F(t)75  (18)

with the long-time diffusion coefficient Dy, (see Eq. (9)),
the velocity correlation function Z(t) (see Eq. (13)) and

> Sk ., U
F(t) = 2Re{ &5 F[ ko 2k ;_s}
®) Z|Ck‘ e{Qi (2 Pl +1, Qe+ 1 k

k=1
(19)

Oy . —t/75 | o=t/ Ty
2F2[Qk+1, Qp + 17 Ske € ’

where o F5 denotes the generalized hypergeometric func-

tion. Last we remark that in the overdamped limit,
iem — 0 and J — 0, we recover the results of
orientation-dependent motility in underdamped systems
[7] and similarly for an isotropic self-propulsion v(¢) =
vofi(¢), we obtain the expressions of Ref. [52].

Parameter estimation

The underdamped active Brownian motion model de-
pends on eight independent parameters. All parame-
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ters were obtained using the MatLab standard optimizer
fminsearch (Nelder-Mead optimization of a function of
several variables on an unbounded domain). Our cost
function consists of five terms covering different param-
eters. Each term is constructed as follows: The abso-
lute deviation between the experimental mean and the
analytical expectation is weighted with the standard er-
ror of the mean and then averaged over time or orien-
tation. This procedure takes into account the experi-
mental uncertainty. At the same time, the value of our
cost function quantifies the fit itself. We call a fit suf-
ficiently representative of the experimental mean if the
mean deviation between experimental mean and analyt-
ical expectation is no greater than one standard error.
We use this definition to determine an error interval for
our optimal parameters. The orientational correlation
function C(t) (see Eq. (12)) is used to determine the ro-
tational diffusion constant Dr and the rotational friction
time 7. In addition, we use the mean stationary angu-
lar velocity <¢(0)> = w to determine the angular speed w.
Further, we use the velocity correlation function Z(t) (see
Eq. (13)) to extract values for the translational friction
time 7y, and the translational short-time diffusion coef-
ficient Dp. Lastly, we use the mean stationary velocity
vo (see Eq. (5)), which is projected parallel (v = vo- 1)
and perpendicular (v = vg-fi) to the body axis, to
determine all the motility parameters v, dv|, and dv,.
In Fig. 7a-d, the analytic fitting curves to the experimen-
tal data are shown and the resulting set of parameter is
listed in Tab. I. For vibrobots, the delay function d(t)
(see Eq. (15)) proved to be a sensitive measure for the
quality of the determined parameter-set [47]. Figure 7e
shows good agreement between theory and experiment
for all three measurements.

Table I. Model parameters obtained from analytical fits to
measurements in Fig. 7. Lower and upper 95% confidence
bounds are displayed behind each value.

A (2) 1.28 1.44 1.60

w  (1/s) 0.09 578 0.2 £555  0.11 #9590

Dr (1/s) 0.39 ¥9:9%  0.80 ¥595 118 54

75 (s) 0.05 £3%2  0.06 £5:93  0.07 £5:93

v (mm/s) 57.5 148 73.2 749 85.0 53

dvy  (mm/s) 9.2 +1-0 8.5 F1:3 15.7 +§:8

ovi (mm/s) 15.6 £2°7 19.3 7} 23.8 T94

Dy (mm?/s) 27.89 13185 36.23 T4333  59.41 F49-99
™ (s) 0.07 X589 0.10 #5893 0.13 £38

10
Simulation

Numerical data for a self-propelled particle with
orientation-dependent motility enclosed by absorbing
boundaries are included in Figs. 3, 4b, and 5b. Equa-
tions (1) and (2) were discretized to perform Brown-
ian dynamics simulations using first-order finite differ-
ence discretization. For these simulations, we chose the
time step size At = 10725 and we performed 10° realiza-
tions in Fig. 4b, and 5b and 2000 realizations in Fig. 3 to
calculate the respective ensemble averages. Half of the
trajectories started at xp = Omm, yo = —100mm, and
¢o = m/2 and the other half at zo = 100 mm, yo = 0 mm
and ¢9 = 7 (modelling the initialisation in the experi-
ment). The rectangular absorbing boundary was set at
{(z,y)|(z = £130mm, y € [—130mm, 130mm]) V (z €
[-130 mm, 130 mm)], y = £130 mm)}.
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The active Brownian particle (ABP) model is widely used to describe the dynamics of active matter systems,
such as Janus microswimmers. In particular, the analytical expression for an ABP’s mean-squared displacement
(MSD) is useful as it provides a means to describe the essential physics of a self-propelled, spherical Brownian
particle. However, the truncated or “short-time” form of the MSD equation is typically fitted, which can lead
to significant problems in parameter estimation. Furthermore, heteroscedasticity and the often statistically
dependent observations of an ABP’s MSD lead to a situation where standard ordinary least-squares regression
leads to biased estimates and unreliable confidence intervals. Instead, we propose here to revert to always fitting
the full expression of an ABP’s MSD at short timescales, using bootstrapping to construct confidence intervals
of the fitted parameters. Additionally, after comparison between different fitting strategies, we propose to extract
the physical parameters of an ABP using its mean logarithmic squared displacement. These steps improve the
estimation of an ABP’s physical properties and provide more reliable confidence intervals, which are critical
in the context of a growing interest in the interactions of microswimmers with confining boundaries and the

influence on their motion.

DOI: 10.1103/PhysRevE.106.L052602

Overdamped active Brownian motion is often invoked to
describe the physics of experimental realizations of active
matter [1,2]. The “active Brownian particle’s” (ABP) motion
is described using Langevin dynamics in the overdamped
(inertia-free) regime and consists of an object simultaneously
subjected to thermal fluctuations and directed self-propulsion.
In this model, the particle moves with a constant velocity
Vo in the direction of its internal orientation axis &, which
fluctuates over time due to rotational Brownian motion [3].
Particles therefore travel ballistically over times shorter than
the characteristic timescale for rotational diffusion (persistent
motion), displaying diffusive motion (with a larger, effective
diffusion coefficient) at longer times, as their direction of
motion is randomized [4]. This model provides meaningful
statistical quantities such as an analytical description for the
mean-squared displacement (MSD) of spherical microswim-
mers, which often shows good agreement with experimental
findings [5]. Most analyses in the experimental literature on
microswimmers are in fact based on parameters estimated
by fitting the sample MSD to the ABP model, extracting
particle velocity Vj, translational diffusivity D7, and rotational
diffusivity Dg. In two spatial dimensions, the ABP model
prescribes the following expression for the MSD (Ar?(z)) as
a function of lag time t [1,6]:

2v2
(A (1)) = 4Dr1 + D—;’(Dkr —1+e ™). (D)
R
“maximilian.bailey @mat.ethz.ch
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The standard approach to parameter estimation from a defined
model is to use ordinary least-squares (OLS) regression [7,8]
following

»
8 = argmin Z(Yi — fio), @
0

i=1

where @ is the vector of estimated parameters, Y; are indi-
vidual observations from the data set P (here given by the
sample’s MSD after a given lag time 7), and f; ¢ corresponds
to the values of the fitted model [here given by the theo-
retical prediction; see Eq. (1)]. argmin, finds the vector 6,
which minimizes the objective function. In practice, there are
two main strategies to determine the MSD of a population
of particles from their coordinates: one can perform either
an ensemble average or a time average over the displace-
ments. Ensemble averaging over many particles preserves the
statistical independence of the observations and efficiently
averages out spurious noise [9], but collecting sufficient statis-
tics in the dilute limit where Eq. (1) holds is experimentally
challenging.

Therefore, one often resorts to the calculation of the MSD
via time averaging the displacements of a few ABP tra-
jectories followed over time. Moreover, time averaging is
advantageous in that it describes the physics of individual
microswimmers, whereas studying the EMSD removes infor-
mation about the heterogeneities present within the system,
such as particles displaying atypical motion or changing
dynamics within different spatial domains [10]. The time-
averaged MSD (TAMSD) of a single particle at a lag time

©2022 American Physical Society
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nAT is calculated as

M—n
TAMSD |ar= ) |

m=1

{r[(n + m)At] — r(mAT))?
M—n ’

3

where r[(n + m)ATt] is the particle position at lag time nAt
from its previous (reference) position r(mAt), for a trajectory
of length M. By collecting sufficiently long trajectories, there
is the implicit assumption that statistically robust averaging is
performed, which is required for accurate parameter estima-
tion with OLS.

However, there are several key assumptions that must be
satisfied when using least-squares regression: of these, two
can be violated when evaluating the MSD of an ABP. The ro-
tational and time symmetry of a theoretical ABP ensures that
consecutive nonoverlapping squared displacements are statis-
tically independent, but nonidealities in experimental systems
can create hidden correlations, thereby violating the as-
sumption of statistically independent measurements [11,12].
Furthermore, to increase the statistics, one typically evaluates
overlapping squared displacements when investigating ABPs,
which are in fact correlated (see below for further discussion).
This impacts the reliability of the estimated confidence in-
tervals, which can become unrealistically narrow. In the case
of statistically dependent measurements, confidence intervals
for estimated parameters can nevertheless be constructed by
fitting the model to bootstrapped datasets from experimental
values [11,13].

The second violation is the assumption of homoscedas-
ticity in the error terms of the MSD. There are two sources
for heteroscedasticity (nonconstant variance) within the error
terms of the MSD with lag time. First, as we show later, the
theoretical population variance of an ABP’s MSD increases
with lag time. Furthermore, the number of data points used
to estimate the TAMSD decreases with increasing lag time
when evaluating single trajectories, further amplifying the
sampling error. These factors, coupled with the presence of
localization errors at shorter timescales [14], create a situation
where there is an optimal lag time over which the TAMSD of a
particle should be evaluated to obtain proper fits of its physical
properties [15,16].

To this end, weighted least-squares (WLS) regression is
often implemented in order to reduce the dependence of the
fit on data points with greater variance, following

P
8 =argmin Y wio(Y; — fi0)?, (€]
e > wie fio

i=1

where 8 is again the vector of estimated parameters, ¥; are
the P data observations, w; ¢ are the weights, and f; ¢ is the
model fitted. Here argmin, now finds the vector @, which
minimizes the weighted objective function. The objective
function can be weighted by the inverse of the analytical
expression of the population variance (here the variance of
the squared displacements) as an estimation of the sample
error of the mean [15,17]. The variance of the mean of
a random variable X, i.e., E[X] = Zf\;] X;/N, can be ob-
tained using the variance sum law for uncorrelated variables

as

Y x g o2
Var[E[X]] = Var[ > — [=— ) Var[X]=—, (5
(E[X]] [;N} NZ; Xl=—=. ©
where N is the sample size, and o2 is the variance of the ran-
dom variable X. Thus, from Eq. (5), we obtain the following
expression for the weights w; o:

- _N
T Var[E[X]] T o2,

i

, (6)

Wi.0

where N, is the number of statistically independent data points
contributing to each observation i, and Jfg is the population
variance of each observation i, in terms of the fitted values 6.

Nonetheless, the standard approach in the literature is
parameter estimation from TAMSDs using unweighted least-
squares regression [18]. Additionally, perhaps the most
widespread expression that is fitted is the so-called “short-
time” MSD of ABPs [19] (7). First proposed by Howse
et al. for the analysis of Janus catalytic microswimmers [1],
the short-time MSD equation approximates the full MSD
[Eq. (1)] at an arbitrarily short time lag, typically defined as
10% of the characteristic persistence or rotational diffusion
time tg = 1/Dg, using a Maclaurin series expansion assuming
T/t — 0[6]

(Ar?(t)) ~ 4Dyt + VT2 N

This simplification provides reasonable fits to the experi-
mental TAMSD of single particles under certain conditions,
particularly in relation to the extraction of microswimmer
velocities [1,18,20-23]. However, care should be taken when
fitting this truncated form of the MSD to short experimental
trajectories, as it can lead to the spurious detection of velocity
in the presence of experimental artifacts [24]. The problems
associated with the standard fitting of the truncated form
of the MSD were comprehensively demonstrated by Mestre
et al. [8]. Interestingly, their proposed solution was to expand
the Maclaurin series to higher polynomial orders. Nonethe-
less, we are interested in evaluating the fitting of the full
ABP’s MSD to the “short-time” regime, as the approximation
is simply that: an approximation of a theoretical model.

In this work, we propose multiple approaches to improve
the fitting of the full ABP MSD model. We verify the robust-
ness of our approach by comparing it against the “standard”
approach of performing unweighted OLS regression on the
truncated form of an ABP’s MSD at short lag times. We begin
by considering the case where Dy and Dy are coupled by the
Einstein relation Dy = dﬁDR /3 to avoid the introduction of
additional fitting parameters and thus allow a fair comparison
between the standard approach and our proposed alternatives.
In the final section of this study, we then treat Dy as an ad-
ditional free fitting parameter, corresponding to experimental
situations where Dr and Dy are often decoupled. We eval-
uate the different fitting procedures against simulated ABP
trajectories using input values representative of experiments.
Specifically, in the coupled case, our ABPs are simulated
via Langevin dynamics [25], with an active velocity of Vy =
5um s~! and diffusivities Dy = 0.2 um?s~' and Dg = 0.15
rad?> s~'. The simulations are numerically solved at 1 ms

L052602-2
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FIG. 1. Parameter estimation from fitting the truncated (blue)
and full MSD (red) expression to simulated data (estimates Vo, Dr
respectively normalized to the simulation inputs Vj, Dr). The same
trajectory is fitted to increasing maximal lag times T, up to the
persistence time of an ABP (tg). We obtain 95% confidence intervals
by bootstrapping. Inset (right): Fits of Dy for short 7, indicating
the rapid deviation from the input simulation value when using the
truncated expression.

increments and sampled at 20 frames per second (fps) for 60 s
to replicate experimental videos.

Properly applied, there are several advantages to the stan-
dard approach of fitting the TAMSD at short timescales.
Generally, the scatter of the sample MSD will increase with
lag time. This increase not only is caused by the decrease in
data points for a trajectory of a given length, but also is due to
the growing correlation between sequential observations [see
Eq. (3)]. Therefore, the fitting of the MSD to unnecessarily
long lag times is generally discouraged [17]. By evaluating
the TAMSD over a time period during which the variance
does not grow significantly, the effects of heteroscedasticity
on parameter estimation are reduced [15]. Nonetheless, the
term “‘short lag times,” where the simplified expression holds,
is flawed since it is often arbitrarily defined and used in the
literature. Furthermore, by eliminating the opportunity to fit
Dg, the truncated form of Eq. (7) removes characteristic infor-
mation on the physics of ABPs. Finally, for smaller particles,
the characteristic persistence time may be so short that only
a few data points can be used to fit the expression, unless ex-
periments are performed at very high frame rates, introducing
measurement error and reducing the accuracy of parameter
estimation [14].

There are, in fact, further model-specific problems associ-
ated with fitting the truncated form of the MSD. As seen in
Eq. (2), OLS regression is weighted towards larger values,
i.e., MSD values at longer lag times. If left untreated, the
fitting of the MSD will therefore be weighted towards the
“long-time diffusive” regime of the ABP [4]. Moreover, due to
the monotonically growing variance in the error terms of the
MSD (discussed below in more detail), this procedure assigns
greater importance to more uncertain values, leading to poorer
estimates. The effects of these considerations are illustrated
by comparing the estimates for Dy and V; obtained by fitting
the truncated and full form of the MSD equation to simulated
trajectories (see Fig. 1).

The problems of using Eq. (7) become quickly apparent
as the lag times evaluated increase beyond small fractions of
the characteristic relaxation time tz. As the estimated velocity

decreases, the fitted Dy value rapidly increases to over an
order of magnitude greater than the simulation input (see
Fig. 1, blue). The inverse relationship between V, and Dr
can be understood by their respective contributions to the
overall MSD of an ABP. The increasingly diffusive nature of
an ABP’s motion with time [4] results in an overestimated Dy
at the expense of a reduction in the fitted V;. This problem
is caused by the absence of the Dg-related terms in Eq. (7),
which would otherwise result in the crossover to a long-time
diffusive regime (see Eq. (1)). In short, due to the system-
atic errors associated with using Eq. (7) we strongly advise
against its use when fitting the MSD of ABPs. To compare the
accuracy of our different fitting methods, we use the median
symmetric accuracy metric as described in [26]. By evaluating
the point estimates over the range of lag times studied, we
obtain errors of 14.5% for V; and 799.2% for Dy respectively
when using the truncated expression for an ABP’s MSD.

In contrast, the bootstrapped confidence intervals of the
estimated parameters using Eq. (1) more often include the true
simulation input values for different maximal lag times T4
and also converge to reasonable values as the lag time evalu-
ated approaches the characteristic rotational relaxation time tg
(see Fig. 1, red). Fitting Eq. (1) also carries the advantage of
not assuming a limited short-time regime, enabling the fitting
to longer lag times and thus providing more data points for
better parameter estimation. Errors on the model parameters
estimated are improved to 0.6% and 12.1% for Vo and Dy,
respectively. We again emphasize that we do not fit Dg as
a free parameter here but instead assume that the Einstein
relation Dy = ngR /3 holds and fit Eq. (1) accordingly. How-
ever, decoupling D7 and D better approximates experimental
situations where the presence of confining boundaries [27],
activity [28-30], or external fields [31] can have a different
effect on rotation and translation respectively.

Despite the significant improvement in estimating the
physical parameters of an ABP by using the full form of its
MSD equation, this operation still does not address underlying
statistical issues such as heteroscedasticity of the data. The
presence of heteroscedasticity can be clearly observed in the
residuals of the fitted ABP model (see Fig. 2, top row, red).
One of the most frequently used heuristic approach to address
heteroscedasticity is to log transform the data and fit the
model’s log-transformed analog. Log transforms work partic-
ularly well for right skew, constantly positive, and increasing
data, such as the case for the ABP’s MSD. Studying the “mean
logarithmic squared displacement” (MLSD) has previously
been suggested to improve the estimation of the distribution
of anomalous diffusion coefficients in a population of hetero-
geneous particles [10].

By fitting the log-transformed (cyan) data, we observe a
clear reduction of the heteroscedasticity of the residuals. This
provides improved estimated fits and confidence intervals ob-
tained from bootstrapping, and we obtain percentage errors of
the point estimates of 0.5% and 2.3% for V, and Dy respec-
tively. In Fig. 2 (bottom row), we highlight the improvement
in fitting after this simple preprocessing step, evaluating the
same trajectory as in Fig. 1 but now with the log-transformed,
full MSD ABP fit included as a comparison to the full fit
without log transformation. We see both a reduction in the
width of the confidence intervals and a smaller difference
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FIG. 2. Top row: Plots of the residuals from the mean squared
displacements based on the point estimates in the bottom row for
Tmax/Tr = 1 as a function of lag time 7. Left (red): Residuals of
Eq. (1) fitted to unprocessed data (MSD). Right (cyan): Residuals
of log[Eq. (1)] fitted to log-transformed data (MLSD). The extent
of heteroscedasticity is clearly reduced, as the variance remains
relatively constant with 7 after log transformation. Bottom row: Pa-
rameter estimation without (red) and with (cyan) log transformation
of the data and the model.

between the point estimate and the input simulation values.
In particular, the estimates for Dy are notably improved.

As a next step, we turn to WLS regression as a tool for
determining the parameters of an ABP. As previously al-
luded to, within the WLS regression approach, one typically
relates the weights to the variance of the expectation value
[see Eq. (6)]. Under the assumption that all observations are
statistically independent, the variance of the expectation value
can be obtained from the population variance itself, using the
variance sum law as shown in Eq. (5). Where applicable, we
will follow this approach and specify the weights in terms
of the theoretical result for the variance of the mean-squared
displacement [5,32,33]

o(v) = (Ar'(0)) — (Ar*(1))?
2 2 V02 —DgT
= 16D7.7% + 16D77 —> (DT — 1 + ¢77%7)

Dy
v 79 64
+ D—Z<4D§rz — 22Dpt + 5~ ?DRre’D’2r
R
320 pe —2D, I
- _ 4 RT I RT . 8
5 e e + 18e ®)

We note that this result is an exact representation of the
variance of the mean only if nonoverlapping squared dis-
placements are considered. For overlapping displacements, a
proper analysis requires additional covariance contributions
in Eq. (5), describing the correlation between subsequent dis-
placements. In that case, we will still employ Eq. (8), however,
as an approximation, and without the contributing term of
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FIG. 3. (a) Definition of overlapping and nonoverlapping dis-
placements from the simulated trajectory shown in (b). (c) Number of
displacements as a function of lag time when overlapping (red) and
nonoverlapping (black) displacements are evaluated. (d) Normalized
variance of the MSD as a function of 7 (o, is the variance at the
shortest lag time 7, = 0.05 s), as derived by Eq. (8). (e) Correspond-
ing normalized weight at time t (w; is the weight at 7; = 0.05 s)
extracted according to Eq. (4) as a function of t for the TAMSD of a
single particle.

the number of observations. Equipped with this expression,
we can now investigate the presence of heteroscedasticity
in an ABP’s MSD and attempt to minimize its effects on
parameter estimation using WLS regression. As discussed
before, we stress that in an experimental context, there might
be further hidden correlations between square displacements
requiring special consideration, whose evaluation lies beyond
the aims of this work. As alluded to above, the TAMSD
of particles can be evaluated with one of two different ap-
proaches: by determining the overlapping or nonoverlapping
particle displacements [see Figs. 3(a) and 3(b)]. Evaluating
nonoverlapping squared displacements reduces the correlation
between subsequent observations of motion in experimental
scenarios and removes it entirely within the framework of the
ABP model. However, in this case, the decay in the num-
ber of displacements is hyperbolic, decreasing much more
rapidly than when overlapping displacements are evaluated
[see Fig. 3(c)]. Furthermore, using only nonoverlapping dis-
placements leads to a different sampling of points along the
trajectory depending on how many prime factors are present
in the number of the time step. These factors lead to a situation
where using overlapping displacements typically improves
fitting performance and is generally preferable [17].

We now discuss the potential benefits of applying the
weighting coefficient to minimize the effects of the large and
high-variance long lag time values in the objective function
[see Eq. (4)]. From Eq. (8), we find that the variance increases
with time [see Fig. 3(d)], and combined with the decay in
the number of observations [see Fig. 3(c)], we obtain with
Eq. (5) a weighting vector that rapidly decays with time [see
Fig. 3(e)]. This in turn demonstrates that the low numbers
of observations at longer timescales, which inherently have
a larger variance due to the nature of the TAMSD, will have a
significantly reduced influence on parameter estimation.
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FIG. 4. Top row: Parameter estimation using WLS regression
on nonoverlapping (green) and overlapping (purple) displacements.
Bottom row: Parameter estimation on overlapping displacements
using WLS regression (purple) and the MLSD (cyan).

We now fit the TAMSD of a single particle using WLS
regression, beginning with the analysis of nonoverlapping dis-
placements (see Fig. 4, top row, green). We obtain percentage
errors of 2.0% and 5.9% for VO and D}, respectively, for
the point estimates. We note a significant instability in the
point estimates and confidence intervals, particularly for Dy,
in direct comparison to the fits obtained with the MLSD.
Therefore, we also evaluate the performance of WLS regres-
sion on overlapping displacements, noting that the underlying
assumption of statistically independent observations no longer
holds (see Fig. 4, top row, purple). We again highlight here
that the variance sum law no longer holds, and therefore we
weight the objective function for overlapping displacements
using only Eq. (8). Comparing the overlapping to the nonover-
lapping case, we find that the resulting confidence intervals
and point estimates for WLS regression are much narrower
and less subject to fluctuations. Under these conditions, we
observe percentage errors of 0.7% and 0.5% for V, and Dy,
respectively. We expect this discrepancy arises, in large part,
from the statistical issues associated with evaluating nonover-
lapping displacements, as described in [17]. Motivated by the
improved parameter estimation, we continue to evaluate WLS
regression using overlapping displacements for the rest of this
work.

‘We now compare the performance of the MLSD and WLS
regression for parameter estimation from overlapping dis-
placements (see Fig. 4, bottom row). Although the resulting
confidence intervals are broader for the WLS regression than
for the MLSD, we note that in the former case the estimate for
Dy is more stable, and the true simulation input parameters are
included for all values of 7,,,.. We conclude that for a two-
parameter fit, where Dy = dﬁDR/Z%, the estimates obtained
from WLS regression and OLS regression of the MLSD are
similar.
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FIG. 5. Parameter estimation of an ABP’s MSD where D7 and
Dy are uncoupled, using WLS regression (purple), MLSD (cyan),
and the third-order truncation of the MSD equation (orange). Top
row: Comparison of the three fitting approaches. The truncated ex-
pression clearly performs worse, particularly at larger 7, (see the
estimates for Dr and Dg). Bottom row: Only the MLSD and WLS

regression are represented for better visualization.

So far, we have considered only particles satisfying the
ideal condition where Dy and Dy are related by the Einstein
relationship for freely diffusing spherical particles. However,
in many situations, e.g., when in proximity with a solid wall,
Dr and Dy are likely to be decoupled [2,27-30], and it
is therefore important, in most experimental realizations of
ABBPs, to fit these parameters separately. We account for these
circumstances by modifying the value of D7, while keeping
the same value of Dy in our simulations. In particular, we
modify the translational diffusivity by applying Faxen’s cor-
rection factor to Dr, as if to mimic the presence of a solid wall
250 nm away from the particle surface [34]. This correction
approximately reduces the theoretical Dy value we initially
used by half.

In Fig. 5 we compare the performance of the MLSD and
WLS regression approaches when estimating the parameters
Vo, Dr, and Dy, (blue and purple, respectively). For the MLSD,
we determine percentage errors of 1.5%, 7.8%, and 7.9% for
\70, D}, and [5R, respectively, for the point estimates across
all the lag times evaluated, while for the WLS regression we
obtain corresponding errors of 1.4%, 8.7%, and 5.9%. We also
study the truncated MSD equation expanded to third order,
as outlined in [8] (Fig. 5, top row, orange). This expression
is obtained by evaluating the Maclaurin series expansion of
Eq. (1) to the third order

V2
(AT (1)) ~ 4Drt + Vit — %H. ©

We find that as before, the truncated form of the full MSD
equation is not able to satisfactorily capture the input simu-
lation parameters, an effect which is particularly noticeable
for Dy as 1, increases, as previously observed in Fig. 1. We
determine percentage errors of 1.6%, 32.2%, and 24.4% for
Vo, Dr, and Dy respectively. We note the use of the median
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function in the median symmetric accuracy metric [26], and
the effect this has on the measured accuracy relative to the
instability observed in Fig. 5 (top row, orange).

When evaluating overlapping displacements using WLS
regression and the MLSD, we note a remarkable overlap in
both the point estimates and confidence intervals (see Fig. 5,
bottom row). This observation indicates that both the log
transformation and weighting of the data have a similar ef-
fect on addressing the heteroscedasticity present in an ABP’s
MSD. In both instances, we also note the instability of the
short-time estimates for Dg, which is unsurprising given the
independence of the MSD from Dy at short lag times [see
Eq. (7)].

In conclusion, the ABP model provides a useful framework
to study the motion of microswimmers and extract meaningful
physical properties from mean quantities. However, “blind”
fitting of MSDs can affect results, as hidden correlations
may arise in experimental systems. Therefore, we recommend
constructing confidence intervals by bootstrapping in almost
all experimental situations. We additionally always advise
against the use of the truncated form of the MSD equation.
Further steps beyond fitting to short lag times should also
be taken to treat the heteroscedasticity of an ABP’s MSD. In
particular, we find that log transforming the data before fitting
the MLSD equation outperforms standard approaches used
in literature, and provides similar estimates as WLS regres-
sion using the theoretical variance of an ABP’s MSD. With
this approach, overlapping displacements can be evaluated,

significantly increasing the amount of data available. Further-
more, the simplicity of fitting log-transformed data to shorter
lag times should assist in its widespread uptake. We never-
theless stress that we have studied simulated data of an ideal,
noninteracting ABP model, neglecting, e.g., the presence of
torque in the Langevin force balance [28,35], a situation that
is often observed in experiments due to nonsymmetric surface
modification [36] or shape [37], which can significantly affect
the fitting of model parameters. Signatures for an angular
propulsion velocity should therefore be additionally investi-
gated when analyzing experimental trajectories, and its effect
duly included in the fits. We have also not treated the ef-
fect of ABP speed on the coupling between Dy and V; [38]
and experimental errors from static and dynamic localization
errors [10,15,16,39]. These are nevertheless critical factors
which should be considered when designing experiments and
analyzing data.
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ABSTRACT

We propose a new overarching model for self-propelled particles that flexibly generates a full family of “descendants.” The general dynamics
introduced in this paper, which we denote as the “parental” active model (PAM), unifies two special cases commonly used to describe active
matter, namely, active Brownian particles (ABPs) and active Ornstein-Uhlenbeck particles (AOUPs). We thereby document the existence of
a deep and close stochastic relationship between them, resulting in the subtle balance between fluctuations in the magnitude and direction of
the self-propulsion velocity. Besides illustrating the relation between these two common models, the PAM can generate additional offsprings,
interpolating between ABP and AOUP dynamics, that could provide more suitable models for a large class of living and inanimate active
matter systems, possessing characteristic distributions of their self-propulsion velocity. Our general model is evaluated in the presence of a
harmonic external confinement. For this reference example, we present a two-state phase diagram that sheds light on the transition in the

shape of the positional density distribution from a unimodal Gaussian for AOUPs to a Mexican-hat-like profile for ABPs.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0084213

INTRODUCTION

Active matter includes a broad variety of biological and physi-
cal systems,  ranging from bacteria,”” colloids,” ' more complex
organisms, such as sperms and cells,”” and even animals at the
macroscopic scales, """ such as birds'® and fish.'® Each of these
systems is formed by individual active units that convert energy
into motion, a property that allows them to be denoted as active
systems.'” Despite this generic label, the multitude of mechanisms
behind active motion results in a large amount of diversity, e.g., giv-
ing rise to systems whose typical active velocity is constant or subject
to fluctuations.

On the theoretical side, there are two major paradigms for
modeling active particles as a diffusive stochastic process:'""’
active Brownian particles (ABPs),”"”® introduced to describe
the diffusion-driven behavior of active colloids, and active
Ornstein-Uhlenbeck particles (AOUPs),” ™ originally proposed
for mathematical convenience””* but also found to be a good
approximation for a passive particle in an active bath.” "’ Both
models possess two major common ingredients: the typical self-
propulsion velocity induced by the active force (sometimes called

the swim velocity), which is constant for ABPs or given by an average
value for AOUPs, and the persistence time, indicating the strength
of rotational diffusion for ABPs and the characteristic time scale in
the autocorrelation of the active noise for AOUPs.

It is well known that ABPs and AOUPs share a similar phe-
nomenology in a large range of fundamental physical problems,
e.g., both predict the accumulation near walls and obstacles,” "’
clustering""*" and motility induced phase separation,””***”*" and
spatial velocity correlations in dense systems™*”* ** and active
glasses.””* However, some prominent differences emerge in a few
special cases, such as the failure of AOUPs to reproduce the bimodal
spatial distribution in a harmonic potential (for instance, see Ref. 36
for AOUPs and Refs. 57 and 58 for ABPs) or the distinct behavior
of the density in the bulk of a confined system.” ' For this rea-
son, ABPs are usually perceived as the established model to describe
active colloids, while AOUPs are considered as a useful but over-
simplified approximation for ABPs when the model parameters are
appropriately chosen. However, the propitious theoretical possibil-
ities offered by the AOUPs have contributed to establish it as an
important model for active matter systems in its own right. This
has led to a continuously increasing number of works dedicated to
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FIG. 1. lllustration of the considered family of active models, uniquely charac-
terized by a velocity scale v and the self-propulsion vector n, determined by a
stochastic process of unit variance. The parental active model (PAM) is described
by the shown distribution P(n) in the form of a shifted Gaussian [see Eq. (7)] with
the single free parameter 4, which identifies the most likely value of the modulus
[n|. The width of the distribution, quantified by «(u), is constrained by the condi-
tion (n?) = 1 [see Eq. (9)]. The 3d plots at the bottom show P(n) for three specific
choices of y, indicated by the axis below, which are further discussed in the text.

the AOUP model with the aim of deriving exact or approximate
analytical results for single-particle’*’ or interacting systems.”*
The recent interest in AOUPs implies the need to reevaluate the
unilateral relation to the ABP model by going beyond the standard
qualitative way to compare these two fundamental approaches.

In this work, we propose a general model to describe the self-
propulsion mechanism of active particles on the microscale, which
we call the parental active model (PAM) because it includes both
ABPs and AOUPs as two subcases. We thus show that these classical
models actually stand on the same hierarchical level as descendants
of the PAM; see Fig. | for an illustrative picture. Specifically, they dif-
fer only by the value of a single parameter, indicating the shape of the
probability distribution of the radial component of the active velo-
city. In other words, the relation between ABPs and AOUPs is that of
two sisters rather than two cousins. By considering a whole class of
overarching models, we both uncover the deep connection between
ABPs and AOUPs going beyond a mutual mapping”*”’ and bridge
the gap between these two extreme cases, which may provide a cru-
cial step toward a more realistic description of experimental systems.
To explore the whole family of models, we compare the (famously
distinct) probability density of ABPs and AOUPs in a harmonic trap
to the results for intermediate offspring of the PAM.

GENERIC DYNAMICS OF ACTIVE PARTICLES

The typical overdamped dynamics of a generic active particle is
described by the differential equation

yX = puon + y\/2D;w + F(x) (1)
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for its position x, where F(x) is the external force exerted on the
particle, w is a white noise with unit variance and zero average,
and y and Dy are the friction coefficient and the translational diffu-
sion coefficient, respectively, related to the temperature of the bath
through the Einstein relation. The term voyn is called the active force
and von is the resulting self-propulsion velocity, where the constant
vo provides a velocity scale. The self-propulsion vector n is a gen-
eral stochastic process with unit variance whose specific dynamics
determine the active model under consideration. For simplicity, we
restrict ourselves to two spatial dimensions.

ACTIVE BROWNIAN PARTICLES (ABPs)

In the case of ABPs, n represents a unit vector, which denotes
the fluctuating particle orientation. In other words, the direction of
n = (cos 6, sin ) is described by the steady-state distribution

PABP(H,G) ~ %Tné(n—l) (2)

with a uniformly distributed orientational angle 6 and fluctuation-
free modulus n = |n| that is always fixed to the average value (n)
= 1. As known, the ABP dynamics in polar coordinates is simply a

diffusive process,
: 2
b= \/j £ 3
T

for 6, where £ is a white noise with unit variance and zero average,
and the time scale 7 = 1/D; represents the persistence time induced
by the rotational diffusion coefficient D;.

ACTIVE ORNSTEIN-UHLENBECK PARTICLES (AOUPs)

In the case of AOUPs, n is represented by a two-dimensional
Ornstein-Uhlenbeck process that allows both the modulus n and
the orientation 6 to fluctuate with related amplitudes. The AOUP
distribution is a two-dimensional Gaussian such that each compo-
nent fluctuates around a vanishing mean value with unitary variance.
In polar coordinates, the probability distribution of the AOUP
self-propulsion reads

1
Paoup(n, 0) ~ 2 exp(-n*). (4)

The dynamicsn = -2 + \/g x generating the process is usually writ-
ten in Cartesian coordinates, where y is a two-dimensional vector of
white noises with uncorrelated components having unitary variance
and zero average. To shed light on the relation with the ABP, it is
convenient to express the dynamics of AOUP in polar coordinates,
which gives (It6 integration)

n= n+ ! + ! (5a)
T PG -

9= \ﬁl" (5b)
Thn
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where x, and y, are white noises with unit variance and zero average.
While still being coupled to the dynamics of n, the angular equation
for 6 is quite similar to that describing the ABP dynamics in Eq. (3).

MAPPING BETWEEN ABPs AND AOUPs

Usually, the connection between ABPs and AOUPs is estab-
lished by demanding that the steady-state temporal correlations of
the self-propulsion velocity von of ABPs and AOUPs are equal. Note
that by introducing this generic form of the active force in Eq. (1),
we have already included in the dynamics the mapping 2D,/t=v]
through which we have eliminated the active diffusivity D, from the
conventional notation for the AOUP dynamics. Likewise, the second
relation D, = 1/7 is implied in Eq. (3). As a result, both models share
the same autocorrelation function

(n(t) n(0)) = exp(- ) ©

of the self-propulsion vector n, despite possessing different distri-
bution Pagp(n,6) # Paour(n, 0). Apart from this mapping, there is
currently no apparent deeper relation between the stochastic pro-
cesses Eq. (3) and Eq. (5b), underlying the dynamics of ABP and
AOUP, respectively. As a next step, we establish such a connection
by introducing a more general model.

UNIFICATION IN THE PARENTAL ACTIVE MODEL
(PAM)

Now, we are ready to define a “parental” active model (PAM)
from which one can recover both ABPs and AOUPs as limiting cases.
The most natural steady-state distribution for a PAM accounting for
these features simply introduces Gaussian fluctuations and reads

P(n,0) ~ %exp(—(n_#)z). %)

202

This is one of the most simple distributions that allow the modu-
lus to fluctuate around a nonzero peak of the distribution, y, with
modulus fluctuations, o, which are independent of those of the
active force direction 6. Note that P(n,6) is constant in 6 so that
P(n,0) ~P(n), where P = ["d0P is the reduced distribution of the
self-propulsion velocity modulus (cf. Fig. 2).

The dynamics of the PAM, i.e., the dynamics that gener-

ate the steady-state distribution (7) in polar coordinates are (Ito

integration)
- 2 2
I Gl B L (8)
T T ™
RVEIONG (8b)
T n

where f(«) = 1 — «® and & € [0,1/1/2]. The representation of Eq. (8)
in Cartesian coordinates is discussed in Appendix A. The form
of f(«) guarantees that the total noise strength remains constant
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1
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FIG. 2. Stationary solution for the self-propulsion vector n in the PAM. Panel
(a): distribution P(n) = foz”dGP(n, 0), given by Eq. (7), of the radial compo-
nent n = |n| for different values of g, interpolating between AOUP (u = 0) and
ABP (u = 1). Panel (b): relation between the parameters « and 4, which guaran-
tees that (n?) = 1, leaving the velocity scale v, invariant. Red and yellow dashed
curves indicate the asymptotic solutions for 4 — 0 and i — 1, respectively, given
by Eq. (9).

throughout all offsprings of the PAM, namely, a* + f(«) = 1. Fixing
« =1/\/2 and y = 0, the dynamics coincides with that of an AOUP
[cf. Equation (5)]. For & = 0 and y = 1, we obtain the ABP dynamics
because the deterministic time evolution of 1, Eq. (8a), admits the
general solution n(t) = 1+ (n(0) — 1) exp(~t/7) for n(0) # 1 and
the special solution n(t) = 1 for n(0) = 1. In fact, the latter initial
condition, n(0) = 1, is the only physical choice (consistent with the
requirement (n*) = 1 stated below). This implies that the normalized
self-propulsion vector n = (cos 6, sin ) of an ABP is recovered for
every time t. Moreover, the dynamics, Eq. (8b), for the angle 6 then
reverts to Eq. (3).

While our general PAM contains the two parameters a and y, it
is sufficient to restrict the offspring to those models that give rise
to the typical speed vy as a common scale of the self-propulsion
velocity. To see this, we note that any process n with {n”) = a can be
rewritten as \/af, where fi has unit standard deviation, such that the
case a # 1 would merely correspond to renormalizing vo in Eq. (1).
Therefore, we can simply relate the modulus fluctuations « to the
peak position y by requiring (n*) = 1. The resulting relation a(u)
(see Appendix B) leaves y as the only free parameter of the PAM (at
fixed vo). Near the two limiting cases of the AOUP (u — 0) and ABP
(4 — 1), the relation a(y) simplifies and reads

1 v
—|1-——u) -0,
ﬂ( 1 “) g ©

ar

u—1

In Fig. 2(b), we compare these simple representations to a(u),
obtained by solving numerically {n*) = 1, and we find good agree-
ment in the regimes 0 <y $0.3 and 0.7 Sy < 1. The resulting
steady-state distributions are shown in Fig. 2(a) for different y, inter-
polating between AOUPs (green curve) and ABPs (yellow curve); see
also Fig. 1 for the representation in Cartesian coordinates.

Apart from the free parameter y, which uniquely characterizes
each descendant of the PAM for a given scale vy of the self-
propulsion velocity, the whole family of models shares a common
persistence time 7 of the active motion and an equal dynamical
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correlation, given by Eq. (6). As a result, some basic dynamical prop-
erties for a potential-free particle are the same for each value of
4, such as the velocity autocorrelation function and the mean and
mean-squared displacements, in accordance with the well-known
results in the limiting cases of ABPs’"" and AOUPs.'*

PAM IN HARMONIC CONFINEMENT

The main difference between ABPs and AOUPs occurs in the
dynamics of the radial component of the active force. The conse-
quences of that become highly relevant if the particle is subject to an
additional, external potential. As a reference study, we confine the
system via a harmonic trap so that the external force F(x) = —kx is
exerted on the active particle. The curvature of the potential k intro-
duces an additional time scale that is recast onto a dimensionless
parameter k controlling the dynamics. In Fig. 3, we study the radial
probability distribution, p(r), and the reduced distribution in Carte-
sian coordinates, p(x), projected onto the x axis for different values
of yand k.

Before discussing the behavior of the generic PAM in detail, we
provide further analytic insight into the extreme cases (calculations
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are reported in Appendixes C and D). As a Gaussian process, the
AOUP gives rise to the exact solution, """

kP

p(r) ~exp 7( (10)

Dr+ %) 2

where as usual, in AOUP systems, I = 1+ k7 plays the role of an
effective friction coefficient.”* Assuming large persistence, kt > 1,
we further develop the analytical prediction

1)1 :
p(r)~r1/2 exp(—(k+ ;)E(r—kfoz%) ) (11)

for the ABP, which reflects the bimodality of the density
distribution™”"""* (see also Refs. 57 and 79 for experimental studies)
as a distinct feature compared to the Gaussian shape of the AOUP
solution.

When the active force relaxes faster than the particle position
such that k7 <« 1, the dynamical details of the active force in the
generic PAM cannot affect the distribution, which is thus inde-
pendent of y, as shown in Figs. 3(a) and 3(d). In this regime, the

(a) 2 o~ | @
15 u=0.6 1}t
p=08 - | _ A
< 09~ | X ¥
= u=0.9 fa3 4
e ! pu=1 e e \
05 4 3
05 / A
s kN
W #“! R
o 0 boncsses? o
0 05 2 45 1 05 0 05 1 15

FIG. 3. Probability distribution of the

active particle position in a harmonic
external potential. Panels (a)-(c) show
the radial density distribution p(r) as a
function of rk/vg, while panels (d)—(f)
plot the distribution (projected onto one
axis) p(x) as a function of xk/vo. Pan-
els (a) and (d) are obtained with kr
=10~", panels (b) and (e) with k7 =1,
and finally, panels (c) and (f) with k
= 102. The black dashed lines in all the
panels are obtained by Eq. (10), while

the black dashed-dotted line in panel
(c) by Eq. (11). Panels (a) and (d), (b)

and (e), and (c) and (f) share the same
legend.

J. Chem. Phys. 156, 071102 (2022); doi: 10.1063/5.0084213

Published under an exclusive license by AIP Publishing

156, 071102-4



P6 J. Chem. Phys. 156, 071102 (2022)

101

The Journal
of Chemical Physics

Bimodal p(x)
2.8

2.6

S1S01NY

2.4

22

kT

FIG. 4. Two-states phase diagram of the active harmonic oscillator by varying k=
and u [and, thus, a(y) accordingly] distinguishing between the regions where the
spatial distribution, p(x), is unimodal and bimodal, as explicitly indicated in the
graph. The two regions are separated by a black solid line, y, (), tracked in
correspondence with the first value of k= such that p(x) shows a bimodality: in
practice, we fit the exponential of a fourth order polynomial exp(—ax* + bx? + ¢),
identifying a point on the critical line u, (7¢) as the smaller value of u (for each k7)
such that b < 0. In addition, we plot the kurtosis of p(x), namely, (x*)/(x?)?, as a
color gradient. We remark that the typical values of the kurtosis in correspondence
with the transition line are between 2.3 and 2.5.

shape of p(r) [or equivalently p(x)] coincides with the analytical
AOUP result, Eq. (10) with T — 1, for every y. This approximation
can be explicitly derived also in the opposite extreme case of ABPs
(see Appendix D). This occurs because the active force behaves as
a noise term, and thus, it only modifies the variance of p(r) with
respect to the passive case in the spirit of an effective temperature.
In the intermediate persistence regime, k7 ~ 1, Figs. 3(b) and 3(e)
indicate that the density gradually departs from its Gaussian form,
given by Eq. (10), when y is increased: the position of the main
peak of p(r) shifts toward larger values of r while the shape p(x)
displays the onset of bimodality. These differences become most
significant in the large persistence regime, kt > 1, where the ABP
solution is well-represented by Eq. (11), roughly centered around
vo/[k +1/(27)] = vo/k (for kr > 1). In addition, for smaller y, the
radial density p(r) has a strongly non-Gaussian shape [see Fig. 3(c)].
We further show in Fig. 3(f) that for a large persistence, even a small
increase of  induces drastic changes in the shape of p(x), eventually
inducing a unimodal — bimodal transition.

In Fig. 4, such a transition is depicted through a phase dia-
gram as a function of y and k7, distinguishing between unimodal and
bimodal configurations and showing the kurtosis of p(x) as a color
gradient. For small values of g, the distribution p(x) is unimodal
(region 1) independently of k7. Starting from y = 0 (AOUP model),
which is Gaussian, the increase of ¢ induces non-Gaussianity in the
shape of p(x), which reflects onto the decrease in the kurtosis to
values smaller than 3. However, while for small values of k7, p(x)
still remains unimodal upon increasing ¢ [compare Fig. 3(d)], a
transition toward a bimodal distribution, which is characterized by
kurtosis values ~2, takes place (region 2) as soon as k7 ~ 1. The cor-
responding critical curve y,(7.) (black line in Fig. 4) decreases when
kt is increased until reaching a plateau for k7 > 1. This is consis-
tent with Eq. (10) and Eq. (11) in which p(r) does not depend on kt
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for k7 >> 1. In general, the fluctuation of the modulus # of the self-
propulsion vector inhibits the ability of the active particle to stay far
from the potential minimum, even in the harmonic oscillator case.

CONCLUSIONS

We developed a unifying parental active model (PAM) for the
stochastic dynamics of active particles. This PAM shows that the
established ABPs and AOUPs descriptions stand on an equal level
as being sisters rather than cousins. The family of explored models
shares defining properties of active matter, such as the exponential
dynamical correlations on the scale of the persistence time 7 and the
common velocity scale vo. The only differences lie in the modulus
distributions of the self-propulsion velocity, which can be contin-
uously transferred from a Gaussian form (AOUP) to a sharp peak
(ABP) by sweeping a single parameter. As a benchmark study, we
examined the stationary distribution in a harmonic potential and
mapped out the transition between unimodal and bimodal, which
marks the classical “failure” of AOUPs to reproduce the behavior of
ABPs in the large-persistence regime.

For the purpose of realistic modeling, however, both AOUPs
and ABPs are idealized. This is because a perfectly constant mod-
ulus of the self-propulsion velocity is highly unlikely due to the
individual nature of biological agents and various types of fluctu-
ations. Bacteria, for example, can display fairly broad””*" or even
bimodal™" speed distributions. In addition, macroscopic agents,
such as locusts,** whirligig beetles,* or zebrafish, "*“*” exhibit nat-
ural speed fluctuations. To realistically describe these systems, a
theoretical approach should incorporate both fluctuations of the
modulus and the direction of the self-propulsion velocity.” ** For
this purpose, our description within the PAM is particularly con-
venient because it is based on a single stochastic process n of unit
standard deviation (i.e., vo is treated as a velocity scale and does not
fluctuate itself) such that all descendant models with an intermediate
value of the parameter y can be evaluated with the same numerical
effort as ABPs and AOUPs.

The family of models can be systematically extended by realiz-
ing that the PAM merely gives rise to more diversity in the stationary
properties of the underlying stochastic process, while the autocorre-
lation (6) of the self-propulsion velocity remains equal for all off-
springs. Another common model of active particles involves the run
and tumble motion”" ** where the autocorrelation is a step function
because after running for a straight path, the particle instantaneously
changes the direction of its active velocity after a typical tumbling
rate. In our line of reasoning, this particular shape (at the same per-
sistence time scale 7 related to the inverse of the tumbling rate) of the
dynamical autocorrelation function could be viewed as, say, a differ-
ent gender. In practice, the notion of run-and-tumble-like dynamics
can be easily combined with our PAM by drawing after each tum-
bling event the new direction and modulus of the self-propulsion
vector according to the stationary distribution in Eq. (7).

In conclusion, the PAM both unifies ABPs and AOUPs and
provides a crucial step toward more realistic modeling of over-
damped (dry) active motion, in general, which should in future
work be employed to provide an improved fit of experimental
swim-velocity distributions. Investigating the effect of the swim-
velocity fluctuations could represent an interesting perspective
for circle swimming,” "’ systems with spatial-dependent swim
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velocity,” " and inertial dynamics even affecting the ori-
entational degrees of freedom.''"'"” The generalization of PAM to
these cases could be responsible for new intriguing phenomena,
which will be investigated in future works.
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APPENDIX A: PAM DYNAMICS IN CARTESIAN
COORDINATES

In this appendix, we report the expression for the PAM
dynamics in Cartesian coordinates. Applying It6 calculus, we obtain

1

l'l:—*(n u— ) —*(0( —f((x))

/20> n /2f(tx (A)

with R denoting the rotational matrix of 90°. Alternatively, the last
term can be expressed in a more familiar form

n n
R- 2= A2
pr Ui (A2)

in terms of the cross product. By setting 4 =0 and a = 1/v/2 in
Eq. (A1), we recover the AOUP model. Indeed, only the term —n/7
survives on the first line, while the noise terms in the second line
reduce to a vector of white noise because any orthogonal transfor-
mation applied on a vector of white noises is still a vector of white
noise. Instead, by setting 4 = 1 and & = 0 in Eq. (A1), only the term
—n/7 survives on the first line because n* = 1 = 1and only the second
noise survives on the second line so that we obtain the ABP equation
(Tt6 integration)

n=-Dmn++2Dnxzé (A3)

in Cartesian coordinates, where z = (0,0,1).

APPENDIX B: OBEYING THE UNIT-VARIANCE
CONDITION

In this appendix, we give the analytic expression of the second
moment (nz) of the PAM distribution [see Eq. (7)] needed to impose
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the constraint (n*) = 1 dictated by the given velocity scale vo. After
algebraic manipulations, we get

2
(n*) :3(x2+;427./\f(x4e_;7, (B1)

where Nis the normalization constant of the distribution (7), which

explicitly reads

= & W
T=———4 r-=,-— B2

2 V2a ( Vi ( 2" 202 )) ®2)
Here, I'(s,x) denotes the upper incomplete gamma function. The
condition requiring (n) = 1 follows as

2
302+ - Note 3 =1, (B3)

which is solved for a(u) in Fig. 2 and yields the asymptotic solutions
near the two limiting cases of the AOUP (y — 0) and ABP (4 — 1)
models, given by Eq. (9).

APPENDIX C: AOUP IN A HARMONIC POTENTIAL
Here, we provide the solution of Eq. (1) with the external force
F(x) = —kx. In the AOUP case (or the PAM with 4 =0 and thus

a=1/\/2), the dynamics can be solved exactly because of its lin-
earity. The whole solution for the probability distribution P(x,n)

reads
Ik
D+ 4 2

2
X exp _Lz n—kzrviﬂx s (C1)
Yo 2(% +D)

where % = x? + y? in two spatial dimensions. By integrating out the
self-propulsion vector n and switching to polar coordinates, we eas-
ily obtain the expression for the radial probability distribution, p(r),
which reads

P(x,n) = Nexp(—

p(r) =Nexp((Drlir,i,)i)» (C2)
2

where T plays the role of an effective friction coefficient and reads
I=1+kr, (C3)

as stated in Eq. (10) of the main text. From Eq. (C2), we can identify
an effective temperature, say the variance of the distribution, as

Teft = (D + %) (CH

APPENDIX D: ABP IN A HARMONIC POTENTIAL

To get analytical results in the case of an ABP (or the PAM with
u =1and thus a = 0) in a harmonic trap, it is convenient to express
the positional dynamics (1) in polar coordinates, (x,y) — (r,¢),

such that r = \/x + y* and ¢ = atanZ. Applying It6 calculus to the
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dynamics (1) of the main text to perform the change in variables,
we get

i=—kr+ ? +wg cos(0 - ¢) + V2Dwy, (D1a)
b= UOM + @@w«» (D1b)

where the orientation 6 of the (normalized) self-propulsion vector n
evolves according to Eq. (3). From here, the Fokker-Planck equation
for the probability distribution, p = p(r, ¢, 0), reads

op = ar[kr— ? — g cos(0 - ¢) +D8,]p
D v 1.,
+ 8,45[72(% - 7 sm(B - ¢)]p + ;89‘17 (D2)

Separating angular and radial currents in Eq. (D2) allows us to
find approximated solutions for the conditional angular probability
distribution f(6 — ¢|r) (i.e., the angular probability distribution at
the fixed radial position r), which we will use later to estimate the
radial density distribution p(r). In other words, by setting the second
line in Eq. (D2) equal to zero, we obtain

F(0-glr) = Ne" 9, (D3)
where a reads
Vo r
a=—-——5. (D4)
D (1+5)

In the small persistence regime, k7 < 1, this distribution converges
to a flat profile because a — 0 vanishes. This reflects the fact that both
0 and ¢ are uniformly distributed and, thus, also their difference.
Instead, in the large persistence regime, Eq. (D3) is peaked around
¢ ~ 0 and its variance becomes smaller as k7 is increased.

As a first step to finding an approximation for p(r), we now
calculate the average

(cos(6-¢)) = §E§ (D5)

with respect to the conditional angular distribution, Eq. (D3), where
Io(a) and I;(a) are the modified Bessel functions of the first kind
of order 0 and 1, respectively. With this result, we can achieve
the derivation starting directly from Eq. (D2). First, we assume
the zero-current condition for the radial current, namely, we set
to zero the first line in Eq. (D2). Then, we replace cos(6 - ¢)
— (cos(0 — ¢)), where we approximate the result from Eq. (D5) in
two different regimes.

Small-persistence regime

In the small persistence regime such that kT << 1, we havea « 1
and we can approximate

_h@) e _lw v
Ia) 2 2D(1+%)

(cos(0-¢)) (D6)
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The small persistence time regime further allows us to replace
>

- () = %(D+ %) in Eq. (D6). The expression for (r?) is

achieved by recalling that the active particle in the small persis-

tence regime is subject to the effective temperature D +v37/2, a

result holding for a general potential. From here, the zero-current
condition in Eq. (D2) leads to the equation

. D 0
[k r77+DE]p(r):0 (D7)

for p(r), where

2
K=ky — 0 (D8)

D+ ﬁ(D+ %21)

This equation can be easily solved to obtain an expression for p(r)
that after algebraic manipulation reads

kT ”
vt
(pr+4r) 2
whereT = 1 + kt — 1is defined according to Eq. (C3). This distribu-
tion coincides with the AOUP one (C2).

We observe that in the limit of very small 7, the above result
(D9) coincides with that obtained in the passive limit, which can
be achieved by setting vo — 0. In this case, we have a — 0 and thus
(cos(8—¢)) =0 in Eq. (D2) (and the same for the sinus) because
0 is uniformly distributed between 0 and 27. Therefore, Eq. (D1)
simply converges onto the equation of a passive particle holding for
va7 < D. We further remark that our result is consistent with that
obtained by the hydrodynamic approach holding in the case of ABP
in the regime of small 7, which allows us to recover Eq. (D9) with
I'-1.

p(r) = Nexp| - (D9)

Large-persistence regime

In the large persistence case, kT > 1, the self-propulsion relaxes
much slower than the position distribution. In addition, in this case,
we can adopt the same strategy used in the small persistence regime
with the crucial difference that now we have a > 1 so that we can
approximate Eq. (D5) as

(cos(@-¢) =8 oy Ly 20U D),

T ha) 0 2a 2w\ 1

(D10)

Plugging this result into Eq. (D2) and using the zero-current condi-
tion allow us to find the equation for the radial density, p(r), which
reads

1 D 0
[r(k+ E)—m—vo-#DE]p(r):O (D11)
and whose solution can be explicitly obtained,

VA% B 1\1/( w :
p(r) =Nr''* exp k+2‘r o\ ez | (D12)

27

Here, the result is fairly different from the Gaussian distribution
(C2) obtained in the case of AOUP dynamics. The profile (D12) is
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well-approximated by a Gaussian centered at r = vo/(k + 1/27) with
variance D/(k + 1/27).

Note that the result (D12) is almost consistent with that
obtained in Ref. 69 in the limit 7 - co. However, with respect to
Ref. 69, here, we improve the approximation for the angular distri-
bution that leads to a prefactor r** (instead of simply ), which is
in better agreement with the data. To establish a closer relation to
this result, we remark that in the large persistence regime, the angu-
lar distribution (DD3) derived here can be further approximated by a
Gaussian

F(0-¢lr) = Ne 3O (D13)
after expanding the cosine around 6 ~ ¢. The expression for p(r)
resulting from this approximation is then consistent with the
previous prediction® in the large persistence regime.
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