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Kurzfassung

Das Studium der aktiven Materie offenbart bedeutende Einblicke in die Physik
beweglicher lebender Organismen und motiviert die Entwicklung synthetischer
Mikroroboter, welche Anwendungen in Bereichen wie dem Gesundheitswesen und
den Materialwissenschaften versprechen. Beispiele für aktive Materie lassen sich
überall um uns herum finden - von der mikroskopischen bis zur makroskopischen
Skala - einschließlich molekularer Motoren, Bakterien, Algen, Insekten wie Ameisen
oder Heuschrecken und sogar größerer Tiere wie Vögel und Fische. Diese Wesen
operieren unter Nichtgleichgewichtsbedingungen, indem sie die verfügbare Ener-
gie ihrer Umgebung nutzen, um sich persistent zu bewegen oder Kräfte auf das
umgebende Medium auszuüben. In dieser Arbeit untersuchen wir den Einfluss der
Trägheit des Teilchens, einer anisotropen oder viskoelastischen Umgebung und
möglicher geometrischer Begrenzungen auf die Dynamik eines einzelnen aktiven
Teilchens. Das Verständnis der zugrunde liegenden Physik für ein einzelnes Teil-
chen stellt den entscheidenden ersten Schritt dar, bevor man sich komplizierteren
Vielteilchensystemen zuwendet.
Der Großteil dieser Arbeit basiert auf dem wegweisenden Active Brownian

Particle (ABP) Modells und diskutiert mehrere Verallgemeinerungen. Zunächst
untersuchen wir die überdämpfte Dynamik von Teilchen, die sich mit orientie-
rungsabhängiger Motilität bewegen, unter Verwendung von Experimenten an kon-
trollierten aktiven Kolloiden und der Theorie der aktiven Brownschen Bewegung.
Die Studie liefert eine Methode zur Konstruktion komplexer anisotroper Moti-
litäten mit potenziellen Anwendungen in der Navigation von Mikroschwimmern
und bietet gleichzeitig einen theoretischen Rahmen für selbstangetriebene Teilchen
in anisotropen Umgebungen. Während viele Experimente an aktiven Teilchen mit
einem newtonschen Hintergrundfluid durchgeführt werden, bewegen sich Mikro-
organismen in vivo durch komplexere Umgebungen. Um dies zu berücksichtigen,
schaffen wir einen theoretischen Rahmen für ABPs in einer viskoelastischen Umge-
bung. Wir verwenden zeitabhängige Reibungskerne, um die verzögerte Reaktion
des Mediums zu beschreiben, und finden eine gedächtnisinduzierte Verzögerung
zwischen der effektiven Selbstantriebskraft und der Partikelorientierung. Ähnliche
Gedächtniseffekte treten bei selbstangetriebenen Objekten auf, die groß genug
sind, um Trägheitseffekte zu zeigen. Wir diskutieren explizit zeitabhängige Mas-
sen und Trägheitsmomente und schlagen spezifische Bewegungsgleichungen in
Abhängigkeit vom physikalischen Ursprung der Trägheitsänderung vor. Diese Situa-
tion ist in verschiedenen Systemen relevant, von Miniaturraketen über Staubpartikel
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in Plasma bis hin zu Walkern mit begrenzter Aktivität. Wir analysieren ebenfalls
verschiedene Massenausstoßstrategien um die Reichweite einer Langevin-Rakete
zu maximieren, die wir definieren, indem wir Orientierungsfluktuationen in die
traditionelle Tsiolkovsky-Raketengleichung miteinbeziehen. Als nächstes betrachten
wir die kombinierte Wirkung von Teilchenträgheit und orientierungsabhängiger
Motilität in einem System aktiver Vibrobots auf einem gestreiften Substrat. Die
Auswertung zeigt anisotrope Bewegung auf verschiedenen Zeitskalen, die durch eine
Erweiterung des ABP-Modells erklärt wird das orientierungsabhängige Motilität
und Trägheitseffekte umfasst. Das Modell kann auf n-fache rotationssymmetrische
Anisotropie angewendet werden und zur Vorhersage der Dynamik aktiver Materie
in komplexen Umgebungen verwendet werden. Der quantitative Vergleich zwischen
experimentellen Daten und theoretischen Vorhersagen beruht auf der korrekten
Bestimmung der Modellparameter. In einer technischen Studie diskutieren wir
mehrere Fitting-Methoden für die mittlere quadratische Verschiebung eines ABPs
mit verbesserter Parameterbestimmung.
Obwohl das ABP-Modell zweifellos das bekannteste ist, teilt es beträchtliche

Ähnlichkeiten mit dem mathematisch zugänglicheren Active Ornstein-Uhlenbeck
Particle (AOUP) Modell. Wir verdeutlichen die Gemeinsamkeiten und Unterschiede,
indem wir ein Parental Active Modell (PAM) einführen, dass diese beiden Para-
digmen als Spezialfälle berücksichtigt. Als nächstes wenden wir den vorteilhaften
Ornstein-Uhlenbeck-Ansatz auf die Modellierung von trägheitsbehafteten selbstan-
getriebenen Teilchen an. Wir stellen daher ein trägheitsbehaftetes AOUP-Modell
vor, das sowohl die Translations- als auch die Rotationsträgheit berücksichtigt. Die-
ses neue Modell erfasst die wichtigsten Merkmale des etablierten trägheitsbehafteten
ABP-Modells. Die beiden Modelle sagen im Allgemeinen ähnliche Dynamiken bis
hin zu moderatem Trägheitsmoment voraus.
Im letzten Abschnitt dieser Arbeit untersuchen wir die hydrodynamischen

Strömungsfelder in unmittelbarer Nähe zu Grenzflächen und die daraus resultie-
rende hydrodynamische Wechselwirkung an aktiven und passiven Teilchen. Unsere
Arbeit bietet einen theoretischen Rahmen für das Verständnis der Bewegung aktiver
Teilchen in viskosen Tropfen, mit oder ohne Tenside. Diese Erkenntnisse haben
potenzielle Anwendungen bei der Kontrolle von Systemen aktiver Materie und
der Verwendung synthetischer Mikroschwimmer für zielgerichtete Arzneifreiset-
zung. Darüber hinaus untersuchen wir die Stokes-Strömung zwischen zwei starren
Scheiben, die durch einen Stokeslet oder Rotlet erzeugt wird, und den daraus
resultierenden Effekt der Scheiben auf die Teilchenmobilität. Diese Systeme können
potenzielle Anwendungen beim Mikromischen und der Herstellung von mikroparti-
kelbasierten Sensoren haben.
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Abstract

The study of active matter reveals significant insight into the physics of motile living
organisms and motivates the engineering of synthetic micro-robots, which hold
promising applications in areas like health care and material science. Examples
of active matter can be found all around us - from the microscopic up to the
macroscopic scale - including molecular motors, bacteria, algae, insects like ants or
locusts, and even larger animals such as birds and fish. Those entities operate under
non-equilibrium conditions by using the available energy of their environment to
move persistently or exert forces on the surrounding medium. In this dissertation,
we study the influence of the particle’s inertia, an anisotropic or viscoelastic
environment, and possible geometric confinement on the dynamics of a single active
particle. Understanding the underlying physics at a single-particle level constitutes
the crucial first step before advancing to more complicated many-particle systems.
The bulk of this dissertation is based on the seminal active Brownian particle

(ABP) model and discusses several generalizations. We first examine the over-
damped dynamics of particles that move with orientation-dependent motility, using
experiments on controlled active colloids and the theory of active Brownian mo-
tion. The study yields a method for engineering complex anisotropic motilities
with potential applications in microswimmer navigation and provides a theoretical
framework for self-propelled particles in anisotropic environments. While many ex-
periments on active particles are performed with a Newtonian background fluid, in
many in-vivo situations, microorganisms move through more complex environments.
To account for this, we create a theoretical framework for ABPs in a viscoelastic
environment. We use time-dependent friction kernels to represent the delayed
response of the medium and find a memory-induced delay between the effective
self-propulsion force and particle orientation. Similar memory effects occur for
self-propelled objects large enough to exhibit inertial effects. We explicitly discuss
time-dependent mass and moment of inertia and propose specific equations of
motion depending on the physical origin of the change in inertia. This situation
is relevant in various systems, from mini-rockets to dust particles in plasma and
walkers with limited activity. We also analyze different mass ejection strategies to
maximize the reach of the Langevin rocket, which we define by including orienta-
tional fluctuations in the traditional Tsiolkovsky rocket equation. Next, the work
examines the combined effect of particle inertia and orientation-dependent motility
in a system of active vibrobots on a striated substrate. The results show anisotropic
movement at different time scales, explained by an extension of the ABP model
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that includes orientation-dependent motility and inertial effects. The model can
be applied to n-fold symmetric anisotropy and used to predict the dynamics of
active matter in complex environments. The quantitative comparison between
experimental data and theoretical predictions relies on the correct determination
of input parameters. In a technical study, we discuss several fitting schemes for an
ABP’s mean-squared displacement with improved parameter estimation.

Whilst the ABP model is arguably the most prominent one, it shares considerable
similarities with the mathematically more accessible active Ornstein-Uhlenbeck
particle (AOUP) model. We elucidate the similarities and differences by introducing
a parental active model (PAM) which accommodates these two paradigms as
decedents. Next, we apply the advantageous Ornstein-Uhlenbeck approach to the
modeling of inertial self-propelled particles. Thus, we introduce an inertial AOUP
model which accounts for both translational and rotational inertia. This new model
captures the key features of the established inertial ABP model. The two models
generally predict similar dynamics up to moderate moment of inertia.
In the final section of this dissertation, we investigate hydrodynamic flow fields

in close proximity to boundaries and the resulting hydrodynamic interaction on
both active and passive particles. Our work provides a theoretical framework for
understanding the motion of active particles in viscous drops, with or without
surfactants. These findings have potential applications in the control of active
matter systems and the use of synthetic microswimmers for targeted drug delivery.
Moreover, we investigate the Stokes flow between two rigid disks generated by
a Stokeslet or rotlet and the consequent effect of the disks on particle mobility.
These systems may have potential applications in micromixing and the creation of
microparticle-based sensors.
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Chapter 1

Introduction

The natural world is a continuously evolving and dynamic place filled with living
organisms going about in a state of constant movement and adaptation to their
environment – from the microscopic motion of cells in the human body up to the
giant swarming behavior of birds in the sky – understanding the principles that
govern these movements has given rise to a most fascinating field of study known
as active matter.

Located at the intersection of physics, chemistry, biology, and engineering, the
field of active matter offers a vast range of problems to tackle. By delving into
questions such as how animals like birds or fish move together in swarms, what
interaction rules drive penguins to organize in huddles, or how bacteria navigate
towards nutrients, we can gain insights into the remarkable strategies living matter
have developed to optimize evolutionary benefit.

As a theoretical field, active matter research makes for a rewarding experience
as models and theories find applications in a wide range of systems. Moreover, the
autonomous navigation of living organisms has inspired the engineering of artificial
active swimmers. These micro-sized particles can convert the energy from their
environment to self-propel in fluids at short-length scales, thus holding promising
applications in health care to perform medical drug delivery.

From a physical standpoint, moving objects at this length scale face various
problems starting with fluctuations due to the many collisions with fluid molecules
or how to overcome the viscous nature of microscopic hydrodynamics. To accurately
describe the stochastic active motion of these particles, theoretical descriptions often
rely on a mixed approach of non-equilibrium statistical physics and hydrodynamic
field theories.

In this dissertation, we seek to contribute to the growing field of active matter
by exploring the influence of the particle’s inertia, an anisotropic or viscoelastic
environment, and possible geometric confinement on the dynamics of a single active
particle. By developing theoretical models and analyzing experimental data, we
aim to deepen our understanding at a single-particle level and build a physical
intuition for their dynamics. The description of more complicated many-particle
systems can build upon our work in the future.
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This dissertation is written as a cumulative thesis that theoretically examines
active matter physics and covers a wide range of topics. The content of this
thesis is organized in the following way. Chapter 2 provides an exposition of
various modeling approaches in active matter, highlighting the contextual links
between the various publications constituting this dissertation. This chapter
begins by discussing different statistical descriptions of self-propelled particles, with
the active Brownian particle (ABP) model being the most prominent example.
Standard analytical methods for studying stochastic dynamics are introduced,
along with a brief discussion of the properties of the ABP. Generalizations of this
model and the phenomenology in many-particle systems of active particles are also
presented. Additionally, the active Ornstein-Uhlenbeck particle (AOUP) model
is introduced and compared to the ABP model. The second part of Chapter 2
starts discussing classical hydrodynamic descriptions and low Reynolds number
hydrodynamics, with a focus on how to describe flow near boundaries. Next, a
simplified description of a self-propelled microswimmer in an unbounded bulk
fluid is introduced in terms of a superposition of Stokes singularities. The use of
Faxén’s law to determine hydrodynamic interactions with boundaries and other
microswimmers is also explained. Chapter 3 lists the scientific publications, with the
first five focused on the ABP model, and the sixth and seventh on the AOUP model
(and its relation to the ABP model), while the last three explore hydrodynamics
near boundaries. Finally, Chapter 4 provides a conclusion and outlook for the
thesis.
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Chapter 2

Exposition: Theoretical Models of
Active Matter

This chapter aims to glue the individual contributions of this thesis together. The
field of active matter spans across a vast array of systems [1–3]. One usually
distinguishes between dry and wet active matter based on whether the system
conserves or dissipates momentum. In that sense, we categorize the contributions
of this thesis. The first seven publications use dry stochastic approaches, while the
last three employ wet hydrodynamic descriptions.

Dry models consist of equations of motion only for the particles, without explicitly
including the liquid solvent [4, 5]. Thus, they are naturally used to describe active
systems such as granular particles on vibrating plates [6, 7], robots [8], insects like
ants [9], locusts [10] and beetles [11] or various animals [12–15].

In contrast, wet models allow for the study of the interaction between microswim-
mers and the surrounding solvent, as well as the cross interactions among different
microswimmers and confining boundaries [16–19]. Examples include microswimmers
such as synthetic active colloids [20–24], droplet swimmers [25–27], and biological
microorganisms like bacteria [28, 29], algae [30], or sperm cells [31]. Generally, wet
models are more difficult to study. Therefore, dry models are also commonly used
as simplified descriptions of active matter systems that involve a solvent, where
the solvent is only effectively represented and acts as a thermal bath that induces
fluctuations in the equations of motion of individual particles.

In Sec. 2.1 we will discuss concepts of dry active matter. Starting by giving a
brief outline of the historical development of the first statistical theories in soft
condensed matter up to contemporary models in active matter. We then introduce
two commonly used paradigm in active matter: the active Brownian particle model
(ABP) and the Ornstein-Uhlenbeck particle model (AOUP). Further, we comment
on their single particle statistics and collective phenomena.

In Sec. 2.2. we introduce a general framework for describing hydrodynamic
flow fields, with an emphasis on the flow patterns of motile swimming particles
including puller, pusher and squirmer-type microswimmer. Additionally, we will
discuss hydrodynamic interactions induced by boundaries as well as other particles.
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2.1 Statistical description of active particles

The origins of stochastic models can be traced back to Einstein’s pioneering work
on Brownian motion in 1905 [32, 33], which refers to the erratic movement of small
pollen grains in a water solution [34,35]. Einstein’s approach in terms of positional
probability distributions was soon followed by similar works by Smoluchowski [36,37],
Fokker [38, 39], and Planck [40]. Langevin then formulated the first stochastic
equation based on Newton’s second law, which recovered Einstein’s result [41].
Since then, Brownian motion and stochastic concepts have played a significant role
in soft matter physics due to their sensitivity to thermal fluctuations.
When botanist Brown first observed the erratic motion of small pollen grains in

a liquid, his initial impression was that they were living entities. It is noteworthy
that as early as 1913, Przibram highlighted this natural intuition and proposed that
the mathematical description of Brownian motion could be indeed used to explain
the erratic motion of self-propelled living organisms [42, 43]. However, he noted
that the diffusion for microorganisms is generally much larger than that set by the
thermal temperature. Subsequently, Fürth demonstrated that persistent random
walks provide a better description for self-propelled particles [44]. Interestingly, his
theoretical results were formally equivalent to the considerations made by Ornstein
and Uhlenbeck, who studied inertial passive Brownian particles [45,46].
Next, the run-and-tumble particle was a pioneering concept that since then has

been studied extensively. It refers to the motion of an organism, such as the E. coli
bacterium, that moves in a straight line for a period of time, and then changes
direction by tumbling. In 1972, his type of motion was first reported by Berg
and Brown [47]. They found that E. coli tunes its tumbling rate in response to
nutrient concentration to migrate to favorable regions. This phenomenon is known
as chemotaxis, and many mathematical models have been developed to describe
the run-and-tumble motion of particles [48–53].
The birth of active matter can be attributed to the groundbreaking works by

Vicsek and Tonner and Tu in 1995 [54–56]. These physicists studied the collective
motion of self-propelled particles and developed a simple understanding of the
seemingly complicated behavior of active entities by assuming some sort of local
interaction. These models showed non-trivial self-organization leading to complex
global behavior fundamentally different from equilibrium model approaches. In the
last 20 years, active matter physics has undergone rapid development and become
a booming discipline.
After the turn of the 21st century, there was a growing interest in manufacturing

artificial active swimmers. This interest was motivated by microorganisms’ ability
to autonomously navigate complex environments. Various methods for designing
artificial microswimmers have been developed, such as autochemotactic Janus
particles, which feature two differently coated hemispheres, and can swim in self-
produced phoretic gradients of electrophoretic, thermophoretic, or diffusiophoretic
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origin [57, 58]. Other methods include propulsion through ultrasound [59, 60],
quincke rollers [61–63], active droplets [25–27], or actuation via magnetic or electric
fields [64,65]. In contrast to run-and-tumble particles, these active colloids random-
ize their orientation continuously due to rotational diffusion. From the theoretical
side, these experimental advances were answered by an intuitive model coupling
active propulsion with rotational diffusivity – namely the Active Brownian particle
model.

2.1.1 Active Brownian particle model

Although theoretical models of persistent random walks have been around since
the early 20th century, the notion of an active Brownian particle (ABP) emerged
with the manufacturing of artificial microswimmers. One of the first experimental
realizations of an artificial microswimmer was reported by Paxton et al. who
observed the autonomous motion of platinum-gold nanorods [66]. Later, Howse et al.
studied self-motile Janus spheres which move by a process of self-diffusiophoresis [67].
They were also one of the first to give analytic expressions for the mean-square
displacement of an ABP. Soon after the model was generalized to account for
an effective torque acting on the particle thereby presenting the first Langevin
equations for a Brownian circle swimmer [68]. Later, a rigorous analysis of the
stochastic dynamics of a single ABP was given by ten Hagen and coworkers [69,70].
With the success of describing non-equilibrium phenomena like motility-induced
phase separation [71–74], the ABP model is nowadays an established framework
to study self-propelled particles. To elucidate its fundamental properties, we shall
now introduce the model in its most rudimentary form.
Fitting the scope of this thesis, we consider only a single particle at the position

r(t) and propelling with constant speed v0 along the body-fixed orientation n̂(t).
We consider the dynamics in two dimensions, thus, the orientation can analogously
be described by the angle ϕ(t) between the x-axis and the orientation n̂(t) =
(cosϕ(t), sinϕ(t))T . In addition, to its activity, there is translational ξ(t) and
rotational noise η(t) with respective diffusivity Dt and Dr. The noise is specified as
zero-mean unit-variance white noise, i.e., ⟨ξ(t)⟩ = 0, ⟨η(t)⟩ = 0 and ⟨ξi(t)ξj(t′)⟩ =
δij δ (t− t′), ⟨η(t)η(t′)⟩ = δ (t− t′). Accounting for previous considerations the
overdamped dynamics are given by the following coupled Langevin equations

ṙ(t) = v0n̂(t) +
√

2Dtξ(t), (2.1a)

ϕ̇(t) =
√

2Drη(t). (2.1b)

Here, we assumed that the particle’s motion is overdamped, i.e., the inertia of the
particle is negligible. In this form, the ABP model is often used to describe the
stochastic motion of artificial and living microswimmers. Although the description
does not include the dynamics in the surrounding fluid, the fluid is effectively rep-
resented in the dissipation and fluctuations. In that case, a fluctuation-dissipation
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relation is often assumed which is also reflected in the Einstein–Smoluchowski
relation Dt = kBT/γt (analogously Dr = kBT/γr), which relates the translational
diffusivity Dt (or rotational diffusivity Dr) with the thermal energy of the fluid
kBT and the translational frictions coefficient γt (or rotational friction coefficient
γr) [75, 76]. Further, in the ABP model, the origin of the motility is not specified,
rather effective forces and torques are used to model the self-propulsion of mi-
croswimmers (thus, not in contradiction to the fact that a swimmer at low-Reynolds
number is force-free and torque-free [77]). We note that Eqs. (2.1) only describe
the dynamics of an active particle in the most basic form. Generalizations will be
discussed in Chapter 2.1.3.
In contrast to deterministic differential equations that always have a unique

solution for a given initial condition, the stochastic differential Eqs. (2.1) does not
produce repeatable solutions. Instead, each solution represents a realization of a
random trajectory, and the ensemble behavior of numerous sample paths becomes
a significant deterministic characteristic. Therefore, one usually characterizes the
stochastic nature of self-propelled particles in terms of correlation functions and low-
order moments for the displacement. Analogously to Eqs. (2.1), the dynamics can
also be described in terms of a probability density function P(r, ϕ, t), which gives
the probability, at time t, of finding a particle at position r and with orientation ϕ.
This probability distribution obeys the following Fokker-Planck equation

∂t P(r, ϕ, t) = ∇ ·
(
Dt ∇− v0 n̂

)
P(r, ϕ, t) +Dr ∂

2
ϕ P(r, ϕ, t). (2.2)

The stochastic description via the Langevin equations (2.1) and the Fokker-Planck
equation (2.2) is formally equivalent [76,78]. However, the Langevin approach is
often preferred since it is analytically more accessible when compared to the Fokker-
Planck approach. As a result, stochastic analysis is usually limited to investigating
the noise-averaged trajectory and mean-square displacement, which still offer
valuable insight into stochastic motion and can be measured in experiments. On
the other hand, the Fokker-Planck equation is commonly used as a starting point
for simplified field theories [79,80].
Next, we will first discuss the single-particle statistics of active Brownian par-

ticles followed up by a brief review of collective phenomena and their theoretical
description.

Single particle statistics

In the absence of fluctuations (Dt = Dr = 0), the particle moves on trivial linear
trajectories r(t) = r(0) + v0t n̂(0). However, when noise is present, the trajectory
of an ABP goes through a period of directed motion before the self-propulsion
direction becomes randomized due to rotational diffusion. This decorrelation is
characterized by the exponential decay of the orientational correlation function

⟨n̂(t) · n̂(0)⟩ = e−Drt, (2.3)
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from which the persistence time of an active particle is deduced

τp =

∫ ∞

0

⟨n̂(t) · n̂(0)⟩ dt = 1

Dr

, (2.4)

which represents the average time that an ABP retains its orientation.
Next, we discuss the positional correlation functions – the mean and mean square

displacement. The time-averaged mean displacement vanishes due to uniformity
in all orientations. To get a meaningful result, we consider the conditional mean
displacement for a given initial orientation n̂(0),

⟨r(t)− r(0)⟩ = v0
Dr

(
1− e−Drt

)
n̂(0). (2.5)

For short times, the particle moves ballistic in time with ⟨r(t)− r(0)⟩ = v0t n̂(0) +
O (t2), while over intermediate times, the orientation of the particle begins to
decorrelate and then eventually the mean displacement saturates to the persistence
length

Lp = lim
t→∞

⟨r(t)− r(0)⟩ = v0
Dr

n̂(0), (2.6)

for long times. The mean-square displacement (MSD) can be expressed as

〈(
r(t)− r(0)

)2〉
= 4Dtt+ 2

v20
D2

r

(
Drt− 1 + e−Drt

)
, (2.7)

The temporal scaling behavior of the MSD can be studied to classify the dynamics of
ABPs into different temporal regimes, ⟨(r(t)− r(0))2⟩ ∝ tα, with scaling exponent
α. By expanding the analytic result for the mean-square displacement in time,
we obtain ⟨(r(t)− r(0))2⟩ = 4Dtt + v20t

2 + O (t3). Therefore the mean-square
displacement starts in a short-time diffusion regime (α = 1), increasing linearly
in time with the short-time diffusion coefficient DS = Dt. If the deterministic
swimming motion dominates translational diffusion, a transition from the short-time
diffusive regime to a ballistic regime occurs (α = 2). Ultimately, the particle enters
a long-time diffusive regime for times greater than the persistence time τp = 1/Dr

(α = 1). This diffusive regime is characterized by an enhanced long-time diffusion
coefficient

DL = lim
t→∞

〈(
r(t)− r(0)

)2〉

4t
= Dt +

v20
2Dr

. (2.8)

Understanding the averaged dynamics of a single particle provides a useful
intuition when studying more complicated systems. In this context, the persistence
time τp and length Lp and long-time diffusion coefficient DL are useful quantities.
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In P1 to P4, we will provide analytic expressions for the here-introduced
observables for different physical settings. Especially, the MSD is frequently
measured in soft matter physics as it characterizes the dynamics of the observed
particle as well as the surrounding fluid. In active matter, experimental investigation
often involves measuring physical properties such as the self-propulsion velocity or
the rotational diffusion coefficient. In P5, we compare different fitting methods
for extracting these parameters using the theoretical expression for the MSD of an
ABP. We also address issues such as heteroscedasticity and the effect of hidden
correlations when using overlapping displacements.

Collective phenomena

When many self-propelled particles interact with one another, large-scale patterns
and complex dynamics can emerge. Although collective effects exceed the scope of
the thesis, we want to briefly touch upon some of the most notable phenomena in
active matter. However, it is important to note that we tackle only a fraction of
the collective phenomena and instead we refer to Refs. [1–4].

As we already mentioned, one of the first studied collective effects is the formation
of swarms or flocks, in which individual particles self-organize to create large-scale
structures [54–56,81]. Another important collective effect in active matter is the
emergence of active turbulence, a type of fluid-like motion that arises when the
self-propulsion of individual particles creates large-scale flow patterns [82–84].

Collective effects are not limited to biological systems, but can also be observed
in synthetic materials, such as colloidal suspensions. In stark contrast to passive
colloidal particles, self-propelled particles with purely repulsive interactions can
undergo a liquid-gas phase transition known as motility-induced phase separation
(MIPS) [71–73, 85]. This clustering occurs because the effective motility of an
active particle in a many-body system depends on the local particle density due
to steric repulsion, which leads to the accumulation of particles in regions of low
motility. This positive feedback loop can cause nucleation when the effective
motility decreases as the local density increases. Also, clogging and jamming are
common phenomena in active matter with important implications for the transport
properties of self-propelled particles [86–89].

When examining suspensions of self-propelled particles, an interesting question
naturally arises: Can the principles of equilibrium statistical mechanics be employed
to describe the macroscopic characteristics of active matter in terms of thermo-
dynamic properties, such as pressure and temperature? To address this question,
researchers have gained a deeper understanding of the departure of active systems
from equilibrium by examining the entropy production due to time irreversibil-
ity [90–94]. Furthermore, non-equilibrium definitions for effective temperature and
pressure have been proposed [95,96].



2.1 Statistical description of active particles 9

2.1.2 Active Ornstein-Uhlenbeck particle model

Recently, a new model called the active Ornstein-Uhlenbeck particles (AOUP) model
has been proposed as an alternative to the traditional active Brownian particle
(ABP) model [97,98]. The AOUP model was initially introduced to describe the
motion of a passive colloid in a bath formed by active bacteria [99–102]. In the ABP
model, the activity term v0n̂(t) introduces a non-linear combination of Gaussian
variables which leads to non-Gaussian behavior for intermediate times [103]. This
non-Gaussian nature of the ABP model generally complicates analytic calculations.
To tackle this issue, the AOUP model replaces the non-Gaussian orientation vector
n̂(t) = (cosϕ(t), sinϕ(t))T in the ABP model with an Ornstein-Uhlenbeck process
n(t), while ensuring that the steady-state temporal correlations of both models are
equal. The corresponding equations of motion can be written in the following way

ṙ(t) = v0n(t) +
√
2Dt ξ(t), (2.9a)

ṅ(t) = −n(t)

τ
+

1√
τ
χ(t). (2.9b)

The equations of motion for the AOUP model involve zero-mean unit-variance white
noise χ(t) and the persistence time τ . The ABP and AOUP models share the same
autocorrelation function for the self-propulsion vector ⟨n(t) · n(0)⟩ = e−t/τ , when
implying that τ = 1/Dr (compare with Eq. (2.3)). The AOUP model provides
a great starting point for analytic studies [104–108]. We remark, that usually
the AOUP model is introduced in terms of an equation for the self-propulsion
u(t) = v0n(t) (or effective force fa(t) = v0γtn(t)) with τ u̇(t) = −u(t) +

√
2Daχ(t),

where the active diffusivity Da serves as an additional free parameter connecting
the AOUP to the ABP model via the mapping 2Da/τ = v0.
With this mapping, the AOUP model can correctly reproduce the single-particle

statics of ABPs up to the mean-square displacement (Eqs. (2.3)-(2.8)). Moreso,
AOUPs shows similar accumulation behavior near walls and obstacle [109,110], the
famous motility-induced clustering [111,112], spontaneous velocity alignment in
MIPS [113,114] and active glassy dynamics [115,116].
Per definition, the ABP and AOUP models differ in their descriptions of self-

propulsion. In ABPs, the direction is described by a steady-state distribution
with a uniformly distributed orientational angle and a fixed modulus. In contrast,
in AOUPs, the distribution is a two-dimensional Gaussian, with each component
fluctuating around a vanishing mean value with unitary variance. This fundamental
difference is why AOUPs fail to reproduce the bimodal spatial distribution in a
harmonic potential [97, 117].
In P6, we define the parental active model (PAM) which allows for a more general

distribution of the fluctuating self-propulsion vector n. The distribution is given
by P (n) ∼ exp

(
− (|n| − µ)2/(2α2(µ))

)
, where µ is a single free parameter that

determines the most likely value of the modulus |n|, and α2(µ) is a quantity that
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constrains the width of the distribution such that ⟨n2⟩ = 1. In that way, the PAM
includes both ABPs (µ = 1) and AOUPs (µ = 0) as limiting cases while providing
a better description for active particles which exhibit natural speed fluctuations.
In P7, we introduce a generalized AOUP model that accounts for inertial effects

in mesoscopic self-propelled particles [118,119]. In inertial ABPs, rotational inertia
introduces memory into the angular velocity, leading to a double exponential
decorrelation in the orientational correlation function [7]. To approximate the
non-Gaussian rotational dynamics of inertial ABPs, we replace the white noise term
χ(t) with another Ornstein-Uhlenbeck process. Consequently, the inertial AOUP
model is characterized not only by a typical timescale τ (which coincides with
the persistence time in overdamped systems) but also by an additional timescale
and diffusivity. These two free parameters are determined by ensuring that the
orientation correlations are normalized ⟨n2⟩ = 1 and that the inertial AOUP model
has the same persistence time τp as the inertial ABP model. We benchmark the
inertial AOUP model against the inertial ABP model and thus provide a Gaussian
alternative for future studies on inertial active matter.

2.1.3 Beyond active Brownian motion

The basic ABP model and its alternatives have been successfully generalized to ac-
count for various specific particle properties or to include effective interactions with
the environment. Hereunder, we shall provide an overview of a few generalizations
and outline the contribution of this thesis.

Particle shape and chirality

Additional effective torques and translation-rotation coupling can arise from
anisotropy in shape or propulsion mechanism. Wittkowski et al. have provided
a rigorous theoretical framework for active Brownian particles with arbitrary
shapes [120,121], and several theoretical studies have inferred their statistical prop-
erties [68,122,123]. Circle swimmers have been experimentally realized as active
L-shaped particles [124, 125], and many motile microorganisms exhibit circular
motion near surfaces and substrates [126, 127]. In dense suspensions, collective
effects can result in the formation of circling clusters [128, 129]. In macroscopic
active chiral fluids, spinners rotating clockwise and anti-clockwise can separate
into distinct phases [130], but the addition of active surfactants can prevent this
phenomenon [131].
In P2 and P3, we explore how memory - be it caused by its particle inertia or

by fluid-viscoelasticity - affects the dynamics of circle swimmers. The ABP model
predicts that a combination of circle swimming and rotational noise leads to a spira
mirabilis for the mean trajectory. For once, the perfect spira mirabilis gets distorted
in the presence of memory. Further, we discuss the non-monotonic behavior long-
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time diffusion coefficient of circle swimmer as a function of memory. Predicting
optimal memory (or more precisely an optimal particle inertia or fluid-viscoelasticity,
respectively) for optimal diffusivity.

External potentials

Applying external potentials to active particles, such as simple harmonic traps
[117, 132, 133] or complex potential landscapes [134, 135], can result in different
statistical behavior. Optical tweezers, acoustic traps, and parabolic dishes are used
to apply external potentials to active colloids [136–139]. Numerous theoretical
studies have explored the movement of self-propelled particles in external harmonic
traps and have revealed that self-propulsion induces greater delocalization within
the trap [117,132,133]. In addition, active particles can also show non-equilibrium
phenomena such as ratchet effects where they exhibit directed motion in the
presence of a spatially varying potential, even in the absence of an external driving
force [140–142].
In P6, we explore the behavior of ABPs and AOUPs in a harmonic potential.

Our approach involves developing a unified, parental active model (PAM) that
allows for continuous interpolation between the ABP and AOUP models. The
key distinction between the two models is the distribution of the self-propulsion
velocity modulus, which can range from a Gaussian form (AOUP) to a sharp peak
(ABP). Further, we conducted a benchmark study of the stationary distribution in
a harmonic potential. Our findings revealed a transition from unimodal to bimodal
distributions, which signifies the failure of AOUPs to replicate the behavior of
ABPs in the large-persistence regime.

State-dependent motility

A rich phenomenology is found for active particles with state-dependent motility (i.e.,
dependency on position, orientation, and/or time). The motility of active matter
can be tuned externally via several means, such as the variation of illumination,
which can increase or decrease the swim velocity leading to complex self-assembly
[111, 143–145]. This experimental advance provides intriguing possibilities for
active matter research and offers exciting applications, from micro-motors [146,
147] and rectification devices [148, 149] to motility-ratchets [150]. Researchers
have also employed spatial motility landscapes to trap Janus particles [151] and
investigate polarization patterns induced by motility gradients [152]. Among the
most fascinating applications based on light-sensitive active particles is the painting
with bacteria, which was experimentally realized by Arlt et al. [28]. Theoretical
studies include [153–156]. Further, the basic model of an ABP can be generalized to
situations where the self-propulsion velocity is time-dependent, such as in the run-
and-tumble motion of many bacteria [157]. State-dependent motilities are relevant
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steering methods in the context of optimized navigation of active agents [158–162].
In P1 and P4, we study the orientational analog to a position-dependent motility

landscape namely an orientation-dependent motility. In P1, we implemented a feed-
back scheme to program the propulsion velocity of magnetic dumbbells as a function
of the particles’ orientation. While in P4, we introduced orientation-dependent
motility to macroscopic granular walkers by utilizing an anisotropic substrate.
Accompanying, we developed a theoretical framework that explains the dynamic
features of the particles moving with arbitrary orientation-dependent motility.
Thus, our description can be used for all sorts of different experimental realizations
– for example, anisotropic illuminated Janus particles or triangular microparticles
in traveling ultrasound [163–165]. Most recently, complicated anisotropic clusters
have been formed with particles moving with orientation-dependent motility [166].

Memory effects

Self-propelled or swimming particles often encounter environments that deviate
from Newtonian fluids [167–171]. For instance, they may navigate through polymer
solutions [172–175], micelles [176,177], crystalline [178,179] or liquid crystalline [180,
181] environments, or even biologically relevant substrates such as the cytoplasm
[182–184]. The simplest generalization is introduced for the Maxwell fluid for
passive [185,186] and active [187,188] particles. There are several memory effects
for active particles in non-Newtonian media: first, the noise which perturbs the
swimming motion is temporally correlated, and second dissipation involves non-
instantaneous but with time delay. Recently, Narinder et al. proposed a model
for self-propelled Janus particles in a viscoelastic fluid [189], which contains an
additional torque proportional to the swim force, explaining an increase of rotational
diffusion [190] and the onset of circular trajectories [189].
In P2, we decouple the swim torque from the swim force, allowing us to solve the

stochastic Langevin equations for arbitrary memory delay in an analytical manner.
We applied our general results to the Maxwell fluid, which introduces exponentially
decaying memory to the standard instantaneous Stokes friction. Our analysis
revealed a double-exponential pattern in the orientational correlation function,
featuring partial decorrelation in the short term and persistent plateaus in the
intermediate term. We also discussed how memory affects the mean and mean-
square displacement of the particle at intermediate and long timescales. Finally,
we established the memory delay function quantifying the mismatch between the
effective self-propulsion force and the particle orientation.
Auto-chemotactic Janus particles [191], swimming oil droplets [192], and crawling

microorganisms [193] are also affected by memory effects. As these particles move,
they leave diffusing substances in their wake that impact their own dynamics [194].
The diffusing substances exhibit independent dynamics, resulting in interactions
that are non-local in time. This gives rise to intriguing collective phenomena such
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as Keller-Segel clustering, traveling patterns, and more [195–200].

Inertial effects

Even macroscopic active matter that exhibits inertial effects can still suffer from
environmental fluctuations [118,119]. Prominent examples include granular particles
on vibrating plates [6, 7], robots [8], inertial dust particles in complex plasma [201–
205], insects like ants [9], locusts [10], and beetles [11], and various larger animals
[13, 15]. On a single particle level, inertial particle show enhanced orientational
correlation, non-trivial inertial scaling behavior, and an inertia-induced delay
between velocity and orientation [206–208]. Moreover, these theoretical models
have been employed to evaluate the effect of inertia on the collective phenomena
typical of active matter [209–215], revealing that translational inertia reduces
MIPS [216,217].

In P3, we accounted for the case of time-dependent inertia and discussed various
specific setups - including a Langevin-rocket model. Describing the dynamic in
the case of time-dependent inertia is not a straightforward task as the underlying
equations of motion will depend on the precise mechanism behind the change
of inertia [218–220]. To do this systematically, we discuss the idealized cases of
directed mass ejection, isotropic mass evaporation, and isotropic shape change. For
those systems, we compare several dynamic correlation functions for an exponential
mass/moment of inertia loss. Further, we provide an adiabatic approximation
for the long-time diffusivity in the case of slow temporal variation [221]. For a
simplified model of directed mass ejection, which we refer to as the Langevin rocket,
we provide analytic results for the mean reach. Interestingly, the optimal strategy
of a Langevin rocket for achieving maximal reach undergoes a discontinuous change
from a complete, extended mass ejection over time to an instantaneous ejection of
a mass fraction as rotational noise increases.

In general, the mass and the moment of inertia have different effects on the dy-
namics of active particles. For increasing mass, the dynamics of the particle involve
stronger delay effects smoothing the trajectory. On the other hand, increasing the
moment of inertia leads to more resistance to reorientation and subsequently to
higher persistence. In P4, we explore the combined effect of orientation-dependent
motility and inertia on the dynamics of self-propelled particles. Interestingly, the
anisotropy on short, intermediate, and long times is not only set by the anisotropic
propulsion but depends on the particle inertia.

In P7, we propose an inertial AOUP model that includes both translational and
rotational inertia. We validate the inertial AOUP model by comparing the analytic
correlations for appropriate parameters to those of the inertial ABP. This Gaussian
model of inertial active matter offers a platform for future studies and a potential
starting point to understand interactions between inertial self-propelled particles.
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2.2 Hydrodynamic description of microswimmer

Microswimmers are able to propel in self-generated flow fields by exerting forces
on the surrounding fluid. The flows can be reflected by nearby solid obstacles,
boundaries, or other active particles and, in turn, affect the orientation and
translation of the microswimmer itself. In this section, we will introduce a general
framework for describing hydrodynamic flow fields, with an emphasis on the flow
patterns of motile swimming particles. Additionally, we will discuss hydrodynamic
interactions induced by both boundaries and other particles.

2.2.1 Hydrodynamics

The Navier-Stokes equation together with the continuity equation provides a
classical continuum theory describing the motion of fluids [222]. Euler initially
presented the continuity equation in 1757 [223], and the Navier-Stokes equation
was first proposed by Navier in 1822 [224], and later refined by Stokes in 1845 [225].
We describe the dynamical state of the fluid in terms of fields, namely the density
field ρ(r, t) and flow field v(r, t). Note, we now employ an Eulerian point of view,
i.e., the position vector r is now a variable of the field and not the location of a
particle. The Navier-Stokes equation reads as

ρ(r, t)
(
∂tv(r, t) + v(r, t) ·∇v(r, t)

)
= ∇ · σ(r, t) + f b(r, t), (2.10)

The left hand side denotes the change of momentum per volume ρDv/Dt, where
D/Dt = ∂t + v · ∇ denotes the material derivative which guarantees that we
correctly consider the temporal change in the velocity of the fluid element (at
position r) in analogy to Newton’s law for a single particle. The right hand side
gives the sum of the bulk force density f b and surface force density f s = n̂ · σ,
where the latter is expressed in terms of the stress tensor

σ(r, t) = −p(r, t) I+ σ′(r, t). (2.11)

The first term in Eq. (2.11), is given by the local pressure field p(r, t) describing
acceleration of fluid elements in pressure gradients from areas of high pressure
towards areas of low pressure. The second term involves the viscous stress tensor

σ′(r, t) = η

(
∇v(r, t) +

(∇v(r, t)
)T − 2

3
∇ · v(r, t) I

)
+ ζ∇ · v(r, t) I, (2.12)

which describes frictional forces due to internal shearing and compression. These
contribution depend on the specific fluid under study and are characterized in
terms of the shear viscosity η and the compressive viscosity ζ. Following from the
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conservation of mass, the continuity equation governs the temporal change of the
density field

∂tρ(r, t) +∇ · (ρ(r, t)v(r, t)) = 0. (2.13)

To solve for the flow and density field for a given bulk force density, an additional
equation is necessary to close our system of equations and specify the pressure field.
Depending on the specific fluid under observation additional laws can be applied.
Common examples involve the equation of state for an ideal gas or the Bernoulli
equation for ideal and incompressible fluids [222].
A frequently used approximation assumes incompressibility for the fluids (meaning

ρ = const). From Eq. (2.13) follows in that case, that the flow field is source free
and the Navier-Stokes equation for incompressible fluids reads as

ρ
(
∂tv(r, t) + v(r, t) ·∇v(r, t)

)
= −∇p(r, t) + η△v(r, t) + f b(r, t), (2.14a)

∇ · v(r, t) = 0 (2.14b)

Note that the pressure is not an independent field for incompressible fluids. It must
guarantee that ∇ · v holds at all time.
Interestingly, the whole dynamics of incompressible fluids only depend on a single

dimensionless number, namely the Reynolds number [226]

Re =
LV ρ

η
, (2.15)

where L is the typical length scale and V typical speed of the system. For Re ≫ 1,
the momentum part (l.h.s. of Eq. (2.14a)) dominates the viscous part (η△v) and
turbulence may arise. In that case analytic solutions are hard to derive due to
the non-linear character of the equations of motion. For Re ≪ 1, the viscous part
dominates the momentum one. This case is particular relevant for active matter
since lots of microorganism operate at small enough length and velocity scales and
thus produce flows of small Reynolds number.

Low Reynolds number Hydrodynamics

At the short length and velocity scales of propelling microorganisms, the generated
fluid flow field is mainly dominated by viscous dissipation (Re ≪ 1). In that
case the Navier-Stokes equation for incompressible fluids simplifies to the Stokes
equation

−∇p(r) + η△v(r) + f b(r) = 0, (2.16a)

∇ · v(r) = 0. (2.16b)

Stokes flows evolve instantaneous and are fully reversible. There are no time-delay
effects and the flow is solely due to momentary pressure gradients and bulk force
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densities. When one reverses p(t) and f(t) in time the flow reverses accordingly in
time. Further Eq. (2.16a) describes a linear differential equation and a fundamental
solution in terms of a Green’s function can be derived as

v(r) =

∫

R3

G(r− r′) · f b(r′) d3r′ (2.17)

with the Oseen tensor [227]

G(r) =
1

8πηr

(
I+ r̂r̂

)
. (2.18)

It’s worth noting that the pressure field does not factor into the ultimate solution
for the velocity field. Rather, it is the pressure that guarantees that ∇ · v = 0 to
begin with. If there were a net inflow of fluid into a volume element, it would violate
∇ ·v = 0. Nevertheless, the pressure would increase locally and counterbalance the
net inflow (in the case of an incompressible fluid, this happens instantaneously).
The pressure field is given as

p(r) =

∫

R3

Φ(r− r′) · f b(r′) d3r′. (2.19)

with the respective Green’s function

Φ(r) =
r

4πr3
. (2.20)

Boundary conditions

In the following we comment on the most common types of boundary conditions
used to model fluid flow near surfaces and interfaces. Up to now, we only considered
the unhindered fluid flow in the bulk without any boundary conditions at walls,
obstacles or other objects. However, close to a boundary the confinement affects
the flow field as it introduces extra boundary conditions to the solutions of the
Stokes equations. The two most common boundary conditions are no-slip and
free-slip boundary conditions.
Dirichlet-type no-slip condition assumes that the fluid in contact with the solid

boundary is at rest relative to the boundary ∂S, i.e., its velocity is zero,

v(r, t) = 0, for r ∈ ∂S. (2.21)

This condition implies that there is no slip between the fluid and the boundary,
and that the fluid velocity smoothly transitions from a non-zero value in the bulk
to zero at the boundary. The no-slip condition is often used to model flows over
rough surfaces.
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In contrast, a free-slip boundary condition assumes that the flow velocity in
the normal direction of the boundary is zero, i.e., impermeable boundary and the
tangential stress of fluid at the boundary is zero, i.e., no shear force is exerted from
the fluid to the boundary

v(r, t) · ŝ = 0, for r ∈ ∂S, (2.22a)(
σ(r, t) · ŝ

)
× ŝ = 0, for r ∈ ∂S, (2.22b)

with the unit normal vector ŝ of the boundary ∂S at position r. This condition
implies that the fluid slips freely over the surface without any frictional drag. The
free-slip condition is often used to model flows over smooth surfaces or liquid-air
interfaces.
Other types of boundary conditions may be used depending on the specific

problem being studied including inlet/outlet boundary condition, constant pres-
sure boundary condition, slip boundary condition (introducing a slip length Ls),
symmetric, and periodic boundary conditions [228]. In the context of this thesis we
want to highlight the surface tension boundary condition used to model surfactants
at an interface. The presence of surfactants can affect the surface tension of the fluid
interface. This effect can be modeled using a surface tension boundary condition
that depends on the concentration of the surfactant at the interface [229–231].
There are several analytic and numerical methods that can be used to solve

hydrodynamic problems with boundary conditions. For specific geometries, analytic
solutions can be found using integral-transformations, perturbation approaches
and the method of images [232]. Solutions for fluid flows near various types of
geometries can be found in Ref. [233]. As an example, similar to electrostatic
boundary value problems, the methods of images can be used to satisfy free-slip
conditions at an infinite flat wall. For an infinite flat no-slip wall the solution is
more complicated and the corresponding Green’s function is given in terms of the
Blake tensor [234].
In P8, we derive the Stokes flow for a point force and dipole singularities within

a spherical drop, with both clean and surfactant-covered surfaces. Our derivation is
similar to the method initially introduced by Fuentes et al. [235, 236], who derived
the solution for a point force acting outside a clean viscous drop. An analogous
approaches report the Stokeslet solution outside [237, 238] or inside [239, 240] a
spherical elastic object, and outside a surfactant-covered drop [241].
In P9 and P10, we solve for the Stokes flow of an axisymmetric Stokeslet and

rotlet singularity between two equal-radius circular disks, respectively. In both
cases, we transformed the solution of the flow field into integral equations and
used standard numerical approaches to solve them. The approach is similar the
approach by Kim who studied the Stokes flow near a single disk [242]. Recently
the method has been applied to derive the flow field of a parallel Stokeslet between
two coaxially positioned rigid no-slip disk [243].
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2.2.2 Self-propelled microswimmer

This section explores various swimming mechanisms used by microswimmers and
how to describe the flow fields they produce. Microwsimmer including artificially
engineered particles as well as microorganism like Escherichia coli (bacteria) or
Chlamydomonas reinhardtii (alga) operate usually under low-Reynolds number
conditions. Typical dimensions are L ∼ 10 µm, V ∼ 10 µm/s, ρ ∼ 103 kg/m3 and
η ∼ 10−3 Pas which results in a low Reynolds number of Re ∼ 10−4 ≪ 1. When it
comes to self-propulsion at low Reynolds numbers, a different swimming mechanism
is needed than what we experience with our own swimming. Our inertia-based
swimming doesn’t work due to the reversibility of the Stokes flow, which means
that reciprocal deformations of swimmers won’t result in net migration, as the
Scallop theorem states [49]. Bacteria solve this problem by using a complicated
rotary motor [244], while sperm cells make their reciprocal beating of the flagellum
non-reciprocal through elasticity [245]. Similarly, Chlamydomonas can move despite
its nearly reciprocal breaststrokes [246]. In contrast, artificial microswimmers either
mimic the non-reciprocal shape change of self-propelled microorganisms [247], or
swim in self-generated phoretic fields [58]. In the latter case, swimming requires
breaking symmetry in the design, which is often accomplished by combining two
half-spheres with different physical properties, creating what is known as Janus
spheres [57].

In the following, we outline the general procedure of how to hydrodynamically
describe a microswimmer. In essence, the specific swimming mechanism is incor-
porated with appropriate boundary conditions for the flow field over the surface
of the swimmer. Living active particles, which swim by changing their shape, are
described using sticky boundary conditions (swimmers). Janus particles or ciliated
organisms, on the other hand, are well-described using slip velocity boundary
conditions tangential to the particle’s surface (squirmers). With these boundary
conditions, the swimming problem is completely defined and is typically studied
in three steps. First, the Stokes equation with boundary conditions is solved to
obtain the flow field. Second, the total force F =

∫
S
σ(r, t) · n̂ dS and total torque

T =
∫
S
r × (σ(r, t) · n̂) dS acting on the microswimmer are calculated, where S

and dS denote the surface of the microswimmer and a differential element of it,
respectively. Finally, employing the force-free condition (F = 0 and T = 0), the
translational self-propulsion velocity v0 and angular velocity ω0 can be determined.
We would like to mention two minimal microswimmer models for the swimmer
case [248] and the squirmer case [249,250].

The detailed description of the hydrodynamic interactions of microswimmers has
the disadvantage of being too complicated for analytic treatment and numerically
costly. To simplify matters, a common approach is to perform a multipole expansion
of the swimmer’s velocity field. Such an approach allows for the creation of
theoretical models of microswimmers that can reproduce certain physical features
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in a simplified but analytically tractable way. Each term in the multipole expansion
can be associated with a physical property of the swimmer. It should be noted
that a multipole description has its limitations and falls short in the near vicinity
of boundaries or other particles. The agents are effectively treated as point-like
unless steric or other interactions are included. In the following section, we will
introduce the multipole description of a microswimmer.

Multipole representation of a mircoswimmer

In the following, we will describe the state of the microswimmer by its position
vector r0 and orientation n̂0. Analogously, we denote the self-propulsion velocity
as v0 and the angular velocity as ω0. Every bulk flow field generated by a uniaxial
microswimmer can be expanded as [16,251],

vb(r) = vFD(r) + vSD(r) + vFQ(r) + vRD(r) +O
(
|r− r0|−4

)
, (2.23)

where the terms correspond to contributions of a force dipole vFD(r), source
dipole vSD(r), force quadrupole vFQ(r), and rotlet dipole vRD(r). Next, we will
systematically discuss these terms step by step.
For a general bulk force density f b(r), the first contribution is given by the so

called ‘Stokeslet’ which is defined as a single point force of stength f at position r0
oriented along n̂0, i.e., f b(r) = f n̂0 δ (r− r0), and produces the following flow field

vS(r) = ΛSGS(r− r0; n̂0) (2.24)

with ΛS = f/(8πη) and where we defined the Green’s function associated with the
n̂0-directed Stokeslet acting at the position r0 of an unbounded fluid medium as

GS(r; n̂) =
1

|r|

(
n̂+

(
n̂ · r

)
r

|r|2
)
. (2.25)

However, for microswimmer, this first contribution vanishes ΛS = 0 since mi-
croswimmer propel under force-free conditions.
The leading-order flow field for microswimmer is generated by the force dipole,

which consists out of two opposing n̂0-directed Stokeslets separated by a distance ℓ
along the direction n̂0 [252,253],

vFD(r) =
f

8πη

(
GS(r− (r0 + ℓn̂0/2); n̂0)−GS(r− (r0 − ℓn̂0/2); n̂0)

)

≃ −ΛFD n̂0 ·∇GS(r− r0; n̂0), (2.26)

where Eq. (2.26) remains valid for small ℓ and we have introduced the strength
of the force dipole ΛFD = fℓ/(8πη). This allows us to introduce the force-dipolar
singularity solution as

GFD(r; n̂1, n̂2) = −n̂2 ·∇GS(r; n̂1). (2.27)
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This flow is generated by two equal and opposite forces that represent balanced
propulsion and drag (force-free in total). A ”pusher” swimmer has a positive dipole
moment (ΛFD > 0), with forces pointing away from each other, while a ”puller”
has a negative dipole moment (ΛFD < 0), with forces pointing towards each other.
Pushers push liquid forward with their head and backward with their tail, while
pullers pull liquid in towards their body with their flagella. This creates an extensile
flow for pushers and a contractile flow for pullers. For example, Escherichia coli
bacteria generates an extensile flow [254,255], while Chlamydomonas reinhardtii
algae generates on average a contractile flow [256,257].
Similar relations hold for the higher-order singularities. Neutral swimmers are

characterized by a balanced spread of propulsion and drag forces over their surface,
resulting in ΛFD ≈ 0, and a predominantly quadrupolar flow field. Examples of
neutral swimmers include ciliated organisms [256] and active droplets [25–27].
In particular, the source dipole flow field describes the far-field hydrodynamics

induced by the finite size of the swimmer

vSD(r) = ΛSDGSD(r− r0; n̂), (2.28)

where the source-dipolar singularity solution can be expressed in terms of the
Stokeslet solution via

GSD(r; n̂1) = −1

2
∇2GS(r; n̂1), (2.29)

and ΛSD denotes the strength of the source dipole. Ciliated organisms like Volvox
carteri, with a slip velocity at their surface, have a positive value (ΛFD > 0), while
flagellated organisms have a negative value (ΛFD < 0) [256].
We can use the force quadrupole to describe the shape-asymmetry of a swimmer

vFQ(r) = ΛFQGFQ(r− r0; n̂, n̂, n̂), (2.30)

with
GFQ(r; n̂1, n̂2, n̂3) = −n̂3 ·∇GFD(r; n̂1, n̂2) (2.31)

A positive force-quadrupolar strength ΛFQ > 0 (ΛFQ < 0) corresponds to swimmers
with long (short) flagella compared to its body size [251].

Additionally, the rotlet-dipolar flow field is given by

vRD(r) = ΛRDGRD(n̂, n̂) (2.32)

with the rotlet dipole strength ΛRD and its corresponding singularity solution

GRD(r; n̂1, n̂2) = −n̂2 ·∇GR(r; n̂1). (2.33)

obtained from the singularity solution of a rotletGR(r; n̂) =
[
GFD(n̂⊥⊥, n̂⊥) −

GFD(n̂⊥, n̂⊥⊥)
]
/2 with unit vectors n̂⊥ and n̂⊥⊥ obeying n̂⊥ × n̂⊥⊥ = n̂ [251]. The

rotlet dipole can be used to describe the flow field produced by the rotation of the
flagellum and counter-rotation of the cell body.
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2.2.3 Hydrodynamic interactions

In the following we introduce Faxen’s law which we consequently use to determine
hydrodynamic interactions with solid objects (boundaries and other particles).
First, we consider the fluid flow around a sphere of radius a at position r0 being
dragged with velocity v0. Assuming stick boundary conditions on the surface of
the particle (or equivalently no-slip conditions in the rest frame of the particle) the
flow field can be derived as [222],

v(r) = 6πηa
(
1 +

a2

6
∇2
)
G(r− r0) · v0. (2.34)

Integrating the stress over the surface of the particle gives the Stokes’ friction law
F = 6πηav0, relating the force F needed to drag the particle with the velocity v0

in terms of the Stokesian friction coefficient γt = 6πηa. Analogously, the relation
between a torque T needed to rotate a sphere with an angular velocity ω0 is given
as T = 8πηa3ω0, with the rotational friction coefficient γr = 8πηa3. Reversing
the point of view, Faxen’s first and second law consider the force F and torque T
exerted by the fluid onto the sphere

F = 6πηa

[(
1 +

a2

6
∇2
)
v(r)

∣∣∣
r=r0

− v0

]
, (2.35a)

T = 8πηa3
[
1

2
∇× v(r)

∣∣∣
r=r0

− ω0

]
, (2.35b)

in the presence of an advective flow field v(r). In the overdamped limit at low-
Reynolds number, it readily follows for the translational v0 and angular velocity
ω0 of the sphere that

v0 =
(
1 +

a2

6
∇2
)
v(r)

∣∣∣
r=r0

, (2.36a)

ω0 =
1

2
∇× v(r)

∣∣∣
r=r0

. (2.36b)

Particle-boundary interactions

To determine the hydrodynamic interactions between a boundary and both passive
or active particles, one first needs to solve the Stokes equations with corresponding
boundary conditions.The solution for the fluid flow is then split into two contri-
butions v(r) = vb(r) + v∗(r), wherein vb(r) denotes the bulk flow field solution
(if boundaries were absent), and v∗(r) is the image flow field that is required to
satisfy the boundary conditions.
The boundary effect on passive particles is usually described in terms of the

corrections factor of the hydrodynamic mobility function ∆µ/µ [233, 258, 259].
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Hydrodynamic mobility is a measure of how easily a particle or object moves through
a fluid under the influence of drag forces Fdrag (and torques Tdrag). Specifically, it
is defined as the ratio of the velocity v0 (and rotation ω0) of the particle to the
magnitude of the force acting on it

µt

(
1 +

∆µt

µt

)
Fdrag = v0, (2.37a)

µr

(
1 +

∆µr

µr

)
Tdrag = ω0, (2.37b)

where µt = 1/(6πηa) (and µr = 1/(8πηa3)) corresponds to the bulk mobility
function of a spherical particle of radius a [260]. In the presence of boundary, the
leading-order correction to the particle mobility ∆µ is obtained by evaluating the
image flow field v∗(r) at the particle position as

∆µtFdrag = v∗(r)
∣∣∣
r=r0

, (2.38a)

∆µr Tdrag =
1

2
∇× v∗(r)

∣∣∣
r=r0

. (2.38b)

In the case of more than one boundary, the hydrodynamic correction is often
approximated by superimposing the effects induced by the individual boundaries
[261].
In P9 and P10, we study the hydrodynamic effect of two equal-radius circular

disks on a small particle axially moving or rotating between the plates. We derive
the correction for the translational and rotational mobility. We further test the
superposition approximation using the solution for a single disk against the mobility
correction for two disk.
For active particles, Faxen’s law (see Eqs. (2.36)) relates the flow field induced

by the mirror images of the swimmer to the corresponding corrections to the
translational vHI and rotational velocity ωHI,

vHI =
(
1 +

a2

6
∇2
)
v∗(r)

∣∣∣
r=r0

, (2.39a)

ωHI =
1

2
∇× v∗(r)

∣∣∣
r=r0

. (2.39b)

here v∗(r) denotes the image flow field to the far-field flow of the microswimmer as
specified in Eq. (2.23). Thus the hydrodynamic effect of each multipole contribution
can be calculated. By including the boundary-induced corrections in particle-based
descriptions like the active Brownian particle model (see Eqs. (2.1)), one can study
the dynamics of a microswimmer near boundaries.
For instance, motile microorganisms exhibit circular motion near surfaces and

substrates [126,127,262–264]. Further, confined microswimmers in a microchannel
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with two interfaces or immersed in a thin liquid film exhibit a wide range of complex
trajectories [265–269]. Microswimmer can be trapped at round obstacles [270,271] or
in wedge confinements [265,272]. Additionally, curved boundaries can significantly
affect the stability and topology of active suspensions under confinement [273–277].
In P8, the translational and rotational velocities of a microswimmer in a viscous

drop were analyzed by developing analytical expressions for the hydrodynamic cor-
rection. The analysis included drops with and without homogeneously distributed
surfactant on their surface, and was based on a description of the swimmer in terms
of a force dipole. Our findings serve as a starting point for an analytical description
of active microswimmers in clean and surfactant-covered drops, and our framework
can be expanded to include higher multipole terms and study swimmer dynamics
inside the drop. This study may prove to be helpful in describing bacteria-driven
droplets, which have been realized recently [278,279].

Particle-particle interactions

In this final section, we will briefly discuss the hydrodynamic interactions among
microswimmers. For Stokes flows, hydrodynamic interactions between particles are
described in terms of the mobility matrix - a linear relation between the individual
forces or torques and the resulting translational or rotational velocities of the
particles [280]. Unfortunately, there is no exact analytical solution for this problem
when dealing with many interacting suspended particles of finite size. However,
several approximation methods have been established for suspensions of both passive
and active colloidal particles including the method of reflections or the method of
induced force multipoles [280–282]. For dilute suspensions, these approximation
methods provide reliable results for the interaction between active particles [252,253].
In denser suspensions, one usually recourses by simulating finite-sized microswimmer
[283–286] using squirmer-type swimmer or sorts. Hydrodynamic interactions are
essential for understanding the fundamental physics of active matter suspensions
as they influence their collective behavior. Further, they play an important role in
efficient nutrition and maintaining biofunctionality in active carpets of bacteria or
self-propelled colloids [287,288].
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ABSTRACT: Combining experiments on active colloids, whose propulsion
velocity can be controlled via a feedback loop, and the theory of active Brownian
motion, we explore the dynamics of an overdamped active particle with a motility
that depends explicitly on the particle orientation. In this case, the active particle
moves faster when oriented along one direction and slower when oriented along
another, leading to anisotropic translational dynamics which is coupled to the
particle’s rotational diffusion. We propose a basic model of active Brownian
motion for orientation-dependent motility. On the basis of this model, we obtain
analytical results for the mean trajectories, averaged over the Brownian noise for
various initial configurations, and for the mean-square displacements including
their non-Gaussian behavior. The theoretical results are found to be in good agreement with the experimental data. Orientation-
dependent motility is found to induce significant anisotropy in the particle displacement, mean-square displacement, and non-
Gaussian parameter even in the long-time limit. Our findings establish a methodology for engineering complex anisotropic motilities
of active Brownian particles, with a potential impact in the study of the swimming behavior of microorganisms subjected to
anisotropic driving fields.

■ INTRODUCTION

Active Brownian particles, the synthetic analogues of biological
microswimmers such as bacteria and protozoa, have the ability
to self-propel at low Reynolds numbers via the conversion of
energy available in their surroundings into directed motion by
exploiting intrinsic asymmetries in their shape and material
properties.1,2 Their motion arises from the interplay between
thermal fluctuations and propulsion, which renders active
colloids an excellent model system for studying far-from-
equilibrium physical phenomena,3−5 also featured in their
biological counterparts. The basic model for describing the
trajectories of a self-propelling colloid, called active Brownian
motion, couples a constant velocity v along the particle’s
asymmetry direction with its rotational diffusivity DR, which
constantly randomizes the propulsion direction with a character-
istic time scale τR = 1/DR. In this model, the particle
displacements result from propulsion combined with stochastic
translational and rotational noise. The propensity for straight
paths is defined by the persistence length of the trajectory, LP =
v/DR. To date, various propulsion mechanisms have been
realized for active colloids. Among them are self-propulsion
induced by chemical reactions,6−8 illumination,9−14 or ultra-
sound15 and actuation by magnetic16−19 or electric20,21 fields.
Regardless of the origin of propulsion, the scenario defined by
active Brownian motion1 was verified in experiments for a range
of artificial microswimmers.22−24

Despite the success of ordinary active Brownian motion, the
complexity of some behaviors found in biological and artificial
microswimmers implies the urge to extend our experimental and
theoretical models, in particular, to include complex spatio-
temporal dependencies of propulsion velocity as well as
translational and rotational noise. These situations are
frequently encountered for systems where the external stimulus
governing the motility is inhomogeneous.25−32 Recently,
motility landscapes, where the particle propulsion speed
depends on spatial coordinates, time, or a combination of
both,33−36 have been experimentally realized25,31,37−41 and
numerically modeled.31,42−49 However, with rare recent
exceptions aside,50 the orientational analogue to a position-
dependent motility landscape, which is an orientation-depend-
ent motility, remains unexplored for systems of noninteracting
anisotropic active particles.
In this article, we experimentally and theoretically study active

dumbbells with an orientation-dependent motility. This system
offers a basic setup for anisotropic actuation in which the
particle’s propulsion speed is modulated according to its
orientation, which is constantly randomized by rotational
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diffusion, thus introducing anisotropy into the particle
dynamics. In our experiments, we use active dumbbell-shaped
colloids composed of a polystyrene and a magnetic silica particle
assembled via sequential capillary assembly51 and self-propelling
on a planar substrate via alternating electric fields.52,53 The
particle’s position and orientation are tracked in real time and
used as the input for a feedback loop that updates the particle
velocity with full programmability.54 These results are used to
verify the basic theoretical model for active Brownian motion
with an orientation-dependent velocity, which we propose and
establish here. We obtain analytical results for mean trajectories
averaged over the Brownian noise for various initial config-
urations and arbitrary angular dependencies of the velocity. We
further calculate the corresponding mean-square displacements,
including their anisotropic non-Gaussian behavior, and
characterize the anisotropy as a function of time. We find that
the theoretical calculations are in good agreement with the
experimental data. The results of this work shed new light on
anisotropically active Brownian particles, inspiring both a better
understanding of the behavior exhibited by motile micro-
organisms when subjected to inhomogeneous or anisotropic
driving fields55 and new design ideas for smarter synthetic
microswimmers.

■ MATERIALS AND METHODS
Theoretical Description. In our theoretical model, we consider a

single overdamped active Brownian particle in two spatial dimensions.
The state of this particle is fully described by the center-of-mass
position r(t) and the angle of orientation ϕ(t), which denotes the angle
between the orientation vector û = (cosϕ, sinϕ) and the positive x axis,
at the corresponding time t. The centerpiece of ourmodel is an arbitrary
orientation-dependent motility v(ϕ). Without a loss of generality, we
represent the propulsion velocity v(ϕ) as a Fourier series

∑ϕ ϕ= ̅
=−∞

∞
v kv c( ) exp(i )

k
k

(1)

where v̅ denotes a reference velocity, ck is the Fourier coefficient vector
of mode k, and i denotes the imaginary number. For a given propulsion
velocity v(ϕ), these Fourier coefficients can be calculated as ck =
∫ −π
π (v(ϕ)/(2πv̅)) exp (− ikϕ) dϕ. The overdamped Brownian

dynamics of the particle is described by the coupled Langevin equations
for orientation-dependent motility

ξϕ̇ = +t t D tr v( ) ( ( )) 2 ( )T (2)

ϕ η̇ =t D t( ) 2 ( )R (3)

where DT and DR are the translational and rotational short-time
diffusion coefficients of the particle, respectively. To take translational
and rotational diffusion into account, the Langevin equations contain
independent Gaussian white noise terms ξ(t) and η(t), with zero
means, ⟨ξ(t)⟩ = 0 and ⟨η(t)⟩ = 0, and delta-correlated variances,
⟨ξi(t1)ξj(t2)⟩ = δijδ(t1 − t2) and ⟨η(t1)η(t2)⟩ = δ(t1 − t2), where i, j ∈
{x, y}. The brackets ⟨···⟩ denote the noise average, and δij is the
Kronecker delta.
To keep the model initially as general as possible, we prescribe the

self-propulsion by a vector function v(ϕ). Later, we will focus on special
motility scenarios and proceed to the less general factorization v0(ϕ)
û(ϕ) that is typically assumed in the literature.1 The special case of
isotropic self-propulsion corresponds to the form v0û(ϕ) with a
constant speed v0. It is associated with the only nonzero Fourier
coefficient vectors c1 = (1, −i)/2 and c−1 = (1, i)/2. In the following
sections, we neglect mode k = 0 in eq 1, which would describe a trivial
constant drift.
Fabrication of Active Magnetic Dumbbells. Active magnetic

dumbbells composed of a 2.0-μm-diameter polysterene (PS) and a 1.7-
μm-diameter magnetic silica (SiO2-mag) particle (Microparticles

GmbH) were fabricated using the sequential capillarity-assisted particle
assembly (sCAPA) technique as described in previous work.51 First, a
40 μL water droplet (Milli-Q) with 0.1 mM sodium dodecyl sulfate
(SDS, 99.0%, Sigma-Aldrich), 0.01 wt % of surfactant Triton X-45
(Sigma), and 0.5 wt % PS particles was deposited and dragged at a
controlled speed over a polydimethylsiloxane (PDMS) template with
rectangular traps of 2.2 μm × 1.1 μm lateral dimensions and 0.5 μm
depth, fabricated by conventional photolithography. This deposition
step resulted in one PS particle deposited per trap, leaving space for a
second particle. The process was then repeated with a dispersion of
SiO2-mag particles. Individual SiO2-mag particles were deposited inside
the traps in close contact with the PS particles forming dumbbells. Next,
the dumbbells were sintered in the traps by heating the template to 85
°C for 25 min. Finally, the dumbbells were harvested by freezing a
droplet of a 10 μM KCl (Fluka) aqueous solution over the traps and
lifting it from the template. The thawed droplet containing the
dumbbells was used to fill the experimental cell as described below.

Cell Preparation and Active Motion Control. Transparent
electrodes were fabricated from 22 mm × 22 mm glass slides (85−115
μm thick, Menzel Gla ̈ser, Germany) coated via e-beam metal
evaporation with 3 nm of Cr and 10 nm of Au (Evatec BAK501 LL,
Switzerland), followed by a top layer of 10 nm of SiO2 (STS Multiplex
CVD, U.K.) deposited by plasma-enhanced chemical vapor deposition.
A 7.4 μL droplet of the dumbbell suspension was placed on the bottom
electrode inside a 0.12-mm-thick sealing spacer with a 9 mm circular
opening (Grace Bio-Laboratories SecureSeal, U.S.).

After sealing the cell with the top electrode, both electrodes were
connected to a signal generator (National Instruments Agilent 3352X,
U.S.) to apply an ac electric field with a fixed frequency of 1 kHz and
varying peak-to-peak voltage VPP(t) of between 1 and 10 V, depending
on the dumbbell orientation. The particles are propelled thanks to
unbalanced electrohydrodynamic (EHD) flows on each side of the
dumbbell, with the SiO2-mag lobe leading the motion. The propulsion
velocity is proportional to VPP

2.52,53

We furthermore imposed a fixed rotational diffusivity DR = 0.25
rad2/s for the dumbbells in all experiments, as described in a previous
work.54 In brief, we applied external magnetic fields via two pairs of
independent Helmholtz coils to align the magnetic moment of the
SiO2-mag particle. The angle ϕ(t) of the applied magnetic field is
r andomly va r i ed in t ime accord ing to the re l a t ion
ϕ ϕ η+ Δ = + Δt t t D t t( ) ( ) 2 ( )R , where in the experiments Δt = 1
ms and η(t) is defined as above.

Imaging and Feedback Loop. The dumbbells were imaged in
transmission mode with a home-built bright-field microscope. Image
sequences were taken with a sCMOS camera (Andor Zyla) with a 1024
pixels × 1024 pixels field of view and a 50× objective (Thorlabs). The
center of mass r(t) and the angle ϕ(t) of the dumbbells with respect to
the x axis were tracked in real time using customized software written in
Labview and Matlab. The detected orientation of the dumbbell is
symmetric with respect to π, being 0 or π when it is perfectly aligned
with the x axis. After the experiments, we postprocessed the acquired
images to identify both lobes of the dumbbell and convert the angles to
the interval from 0 to 2π. The velocity of the dumbbell was varied as a
function of its orientation by changing the applied peak-to-peak voltage
VPP according to

ϕ= − +V t V V n t V( ) ( ) sin ( ( ))PP PP
max

PP
min 2

PP
min (4)

where VPP
max and VPP

min are the maximum and minimum values of the
applied peak-to-peak voltage and n = 1, 2 is the number of symmetric
lobes in v(ϕ). For n = 1, the dumbbell velocity is maximal when the
particle is aligned with the y axis and minimal when it is aligned with the
x axis. In the case of n = 2, the dumbbell velocity is maximal for an
orientation angle π/4 and minimal when the particle is aligned with the
x or y axis.

There is an inherent delay in capturing an image, extracting the
dumbbell angle, and updating the voltage according to it. In our
experimental setup, a full cycle takes 400 ms, leading to an update
frequency of the particle velocity of 2.5 Hz. This frequency is much
lower than the one used to randomize the dumbbell orientation (1
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kHz) so that there is a clear separation of time scales between the two
types of updates, and the dumbbell undergoes standard rotational
diffusion at an imposed rate.

■ RESULTS AND DISCUSSION
Orientation-Dependent Motility. Our active colloidal

dumbbells are produced by sequential capillary assembly,51 as
represented in Figure 1a in Materials and Methods, and self-

propel under an ac electric fields thanks to induced-charge
electrophoresis.56−58 The compositional asymmetry of the
dumbbell results in local unbalanced EHD flows producing a
net force that generates propulsion along the long axis of the
dumbbell.52,53 In order to achieve robust experimental control of
orientational dynamics, we decouple it from the thermal bath by
randomizing the dumbbell orientation using an external
magnetic field (Figure 1b) to set a constant rotational diffusivity
of DR = 0.25 rad2/s.54 We furthermore include a feedback loop
to update the dumbbell’s propulsion velocity according to its
orientation, as described inMaterials andMethods and sketched
in Figure S1 in the Supporting Information, to experimentally
realize active Brownian particles with orientation-dependent
motility.

In this work, we study two representative orientation-
dependent motilities. In the first case, the particle’s motility
has a 2-fold rotational symmetry, with the lowest velocity
occurring when the particle is oriented along the x axis and the
highest when it is oriented along the y axis (Figure 1c and
Supporting Information Movie 1). We incorporate this motility
effectively in leading order as

ϕ ϕ ϕ= ̅ ̂vv u( ) 2 sin ( )1 1
2

(5)

where v̅1 denotes the orientationally averaged speed of the
particle. In the second case, the velocity has 4-fold symmetry,
where the dumbbell achieves the highest velocity when it is
aligned along the diagonal corresponding to an orientation angle
π/4 and the lowest when it is aligned with the x or y axis (Figure
1d and Supporting Information Movie 2). This case is
analogously described as

ϕ ϕ ϕ= ̅ ̂vv u( ) 2 sin (2 ) ( )2 2
2

(6)

Figure 2 shows that the prescribed motility scenarios are
experimentally realized. In Figure 2a,b, we fit eqs 5 and 6 to the

data for the orientation-dependent velocity observed in the
experiments corresponding to the first and second scenario,
respectively. We find good agreement of the fit curves and
experimental data and determine orientationally averaged
speeds v̅1 = 1.4 μm/s and v̅2 = 1.1 μm/s. The orientational
decorrelation of the velocity vector obeys a simple exponential
decay with a rate corresponding to the imposed rotational
diffusivity DR = 0.25 rad2/s (Figure 2c,d). In the following
sections, we will denote all lengths in units of the orientationally
averaged persistence length L = v̅/DR (i.e., r→ r/L) and time in
units of the persistence time τR = 1/DR (i.e., t → DRt). The
importance of translational noise relative to the imposed speed v̅
and rotational diffusion can be defined by the dimensionless
Pećlet number, = ̅Pe v D D/ R T , where the thermal transla-

Figure 1. (a) Side-view representation of the sCAPA fabrication of
active magnetic dumbbells. The PS particles (gray spheres) are
deposited first, followed by the SiO2-mag particles (brown spheres).
The black arrows indicate the deposition direction. The insets show
SEM images of the particles in the traps after each deposition step (2
μm scale bar). (b) Scheme of the experimental setup. Four magnetic
coils impose a randomly oriented magnetic field B (blue arrow) to set
the rotational diffusivity of the dumbbells to DR = 0.25 rad2/s. An ac
electric field applied between two transparent electrodes is used to
actuate the dumbbell with velocity v∝ VPP

2 (t). A feedback loop updates
the applied voltage as a function of the dumbbell orientation angle ϕ(t)
to achieve an orientation-dependent propulsion velocity. (c, d)
Trajectories of active magnetic dumbbells with a motility with 2-fold
(c) and 4-fold (d) rotational symmetry. The particle positions at
discrete times are represented by arrows indicating the dumbbell
orientation and are color coded according to the applied voltage in the
range from VPP

min to VPP
max, which corresponds to mod(ϕ(t), π/2) (c) and

mod(ϕ(t), π/4) (d). See the corresponding Supporting Information
Movies.

Figure 2. (a, b) Orientation-dependent motility with 2-fold rotational
symmetry v1(ϕ)/v̅1 = 2 sin2 ϕ and 4-fold rotational symmetry
v2(ϕ)/v̅2 = 2 sin2 (2ϕ). Solid dark-blue and dashed red curves show
the experimental data and a trigonometric fit, respectively. The fits yield
v̅1 = 1.4 μm/s and v̅2 = 1.1 μm/s. Light-blue areas express the standard
error of the mean. (c, d) Orientation-correlation function ⟨û(t)·û(0)⟩
for the two experiments and the expected function ⟨û(t)·û(0)⟩ =
exp(−DRt) for comparison, validating the imposed rotational diffusivity
DR = 0.25 rad2/s.
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tional diffusion coefficient of the dumbbells was experimentally
determined to be DT = 0.055 μm2/s.
Mean Displacement. To characterize the effect of

orientation-dependent motility on the Brownian dynamics, we
first discuss the mean displacement ⟨Δr(t)⟩ of the particle. In
Figures 3a−f and 4a−f, the experimentally determined mean
displacement is compared with that resulting from our
theoretical model, where we emphasize the anisotropic motion
of the particle by plotting the mean displacement as a function of
the initial orientation ϕ0 = ϕ(0) after fixed times t. The
theoretical result for themean displacement is given for a general
orientation-dependent motility as

∑⟨Δ ⟩ = ϕ

=−∞
≠

∞t
L

C D t
r

c
( )

( )e
k

k

k k
k

0

R
i

1

1

1 1
1 0

(7)

with

= − −t
k

C ( )
1

(1 e )k
k t

1
21

1
2

(8)

where the Fourier-coefficient vectors ck are determined by the
motility v(ϕ). Here, ck = ∫ −π

π (vn(ϕ)/(2πv̅n)) exp(−ikϕ) dϕ for
n = 1, 2. (All analytical results for the two studied scenarios are
listed explicitly in the Supporting Information.) For short times
t ≲ τR, the particle moves linearly in time with

ϕ⟨Δ ⟩ = +t t tr v( ) ( ) ( )0
2 , and the anisotropy with respect to

the initial orientation, as is visible in Figures 3a and 4a, is a
deterministic consequence of the anisotropic propulsion of the
particle. For intermediate times t ≈ τR, the orientation of the
particle starts to decorrelate, which directly affects the
anisotropic shape of the mean displacement (Figures 3b−e
and 4b−e). Finally, for long times t ≳ τR, the mean
displacement saturates to an anisotropic persistence length

⟨Δ ⟩ = ∑ ϕ

→∞ =−∞ ≠
∞t L kr clim ( ) e /

t k k k
k

, 0
i 20 (Figures 3f and 4f). The

faster varying contributions (i.e., the higher Fourier modes) of
the propulsion velocity saturate faster and have a smaller impact
on the mean motion of the particle, resulting in a more isotropic
final shape (cf. Figures 3f and 4).

Mean-Square Displacement. The dynamics of active
Brownian motion can be further classified in temporal regimes
by investigating the scaling behavior of the mean-square
displacement (i.e., ⟨Δr2(t)⟩ ∝ tν). For ν = 1, the particle
shows ordinary diffusive behavior. If ν < 1 or ν > 1, then the
particle undergoes subdiffusion or superdiffusion, respectively.
The mean-square displacement for a general orientation-
dependent motility is given by

∑ ∑⟨Δ ⟩ = + ·

+ ϕ

=−∞
≠

∞

=−∞
≠

∞

+

t
L

D t
Pe

C D t

C D t

r
c c

( ) 4
( ( )

( ))e

k

k

k

k

k k k k

k k
k k

2

2
R
2

0 0

R

R
i( )

1

1

2

2

1 2 1 2

2 1
1 2 0 (9)

with

In Figures 3h and 4h, we compare the experimentally
determined mean-square displacement with the corresponding
theoretical result. We observe three temporal regimes,
characterized by two crossover times. By expanding the

Figure 3. Comparison between theoretical and experimental results for a propulsion velocity with 2-fold symmetry. (a−f) The anisotropic motion of
the particle is visualized by plotting the mean displacement ⟨Δr(ϕ0)⟩ as a function of the initial orientation ϕ0 for fixed times (a) DRt = 0.1, (b) DRt =
0.2, (c) DRt = 0.4, (d) DRt = 0.8, (e) DRt = 1.6, and (f) DRt = 3.2. Solid dark-blue and dashed red curves show the experimental data and analytical
results, respectively. Light-blue areas express the standard error of the mean. (g) Mean-square displacement ⟨Δr2(t)⟩ for initial orientations ϕ0 = 0
(blue), ϕ0 = π/4 (red), and ϕ0 = π/2 (green). Symbols and dashed curves show the experimental data and analytical results, respectively. In addition,
reference slopes are included for diffusive (ν = 1), ballistic (ν = 2), and quartic (ν = 4) temporal behavior. (h) Non-Gaussian parameter α2(t) for the
same initial orientations. Lengths are given in units of L = 5.6 μm and time in units of 1/DR = 0.4 s, and the Pećlet number is set to Pe = 12.
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analytical result for the mean-square displacement in time, we
obtain

ϕ ϕ

ϕ

⟨Δ ⟩ = + + ∂

− ∂ +
ϕ

ϕ

t D t t D

t
t

r v v

v

( ) 4 ( ) (3 ( )

2( ( )) )
6

( )

2
T

2
0

2
R

2 2
0

0
2

3
4

0

0 (11)

where ∂ϕ0
denotes the partial derivative with respect to the initial

orientation ϕ0. Thus, the mean-square displacement starts in a
short-time diffusion regime (ν = 1), increasing linearly in time
with the short-time diffusion coefficient DS = DT. A transition
from the short-time diffusive regime to a superdiffusive regime
(ν > 1) occurs if the deterministic swimming motion dominates
translational diffusion. This condition is fulfilled for times t
greater than the translational diffusion time τD = DT/v

2(ϕ0). As
shown in Figure 3h, the transition to an intermediate
superdiffusive regime is sensitive with respect to the initial
velocity. If the particle is oriented initially along directions of
highmotility (see Figure 3h forϕ0 = π/2), then the mean-square
displacement displays a crossover to the ballistic regime (ν = 2).
However, if the initial velocity of the particle is not large enough
to dominate translational diffusion or even vanishes (eq 11),
then we observe a delayed crossover (see Figure 3h for ϕ0 = 0).
In that case, the particle has to undergo an angular displacement
first such that its propulsion grows until it overcomes
translational diffusion. Due to this multiplicative coupling of
diffusive and ballistic behavior for the angular and positional
displacements, respectively, the mean-square displacement
shows a superballistic power-law behavior (ν > 2), which is
masked by finite translational diffusion (eq 11). For the specific
initial orientationϕ0 = 0, the second- and even third-order terms
in eq 11 vanish such that the next leading order after normal
diffusion scales even quartically (ν = 4), which is more visible for
a higher Pećlet number Pe. (See Figure S2 in the Supporting
Information for the emergence of this scaling regime.) For times
t greater than the rotational diffusion time τR = 1/DR, the mean-
square displacement evolves toward the diffusive limit (ν = 1)
again, and it is described by a long-time diffusion coefficient

∑= ⟨Δ ⟩ = + ̅ | |
→∞ =

∞
D

t
t

D
v
D k

r c
lim

( )
4t k

k
L

2

T

2

R 1

2

1
2

1

1

(12)

In the two experimental scenarios, the long-time diffusion
coefficients are DL,1 = 5.1 μm2/s and DL,2 = 2.6 μm2/s,
respectively.

Non-Gaussian Parameter. Finally, we study the non-
Gaussian features of our active dynamics in more detail. Hence,
we introduce the non-Gaussian parameter, which is defined in
two spatial dimensions as59

α = ⟨Δ ⟩
⟨Δ ⟩ −t

t
t

r
r

( )
1
2

( )
( )

12

4

2 2
(13)

The non-Gaussian parameter quantifies how far the
distribution of displacements deviates from a Gaussian (i.e.,
α2(t) = 0 for an isotropic Gaussian distribution). For α2(t) < 0 or
α2(t) > 0, the underlying distribution has less- or more-
pronounced tails, respectively. Interesting for active Brownian
motion is the case of deterministic motion (no tails), for which
the non-Gaussian parameter is α2(t) = −1/2. To derive the
analytical expression for the non-Gaussian parameter from our
theoretical model, in addition to the mean-square displacement
⟨Δr2(t)⟩ the mean-quartic displacement ⟨Δr4(t)⟩ is also
required, which is explicitly calculated in the Supporting
Information. In Figures 3h and 4h, the anisotropy of the non-
Gaussian behavior is visualized. For very small times t≪ τD, the
displacements are simply diffusive (i.e., Gaussian), thus the non-
Gaussian parameter α2(t) is zero. For intermediate times τD < t <
τR, the non-Gaussian parameter behaves anisotropically with
respect to the initial orientation ϕ0. For a sufficiently high initial
velocity, α2(t) becomes negative, which is characteristic of
persistently swimming Brownian particles (see Figure 3h for
ϕ0 = π/2). When the initial velocity vanishes (i.e., v(ϕ0) = 0; see
Figure 3h for ϕ0 = 0), we observe a positive non-Gaussian
parameter. In this case, the particle moves mostly diffusively
even for intermediate times, except for rare events where a
fluctuation rotates the particle sufficiently such that it
experiences a large ballistic step. The underlying distribution
of displacements is thus Gaussian with pronounced tails which

Figure 4. The same as in Figure 3 for a propulsion velocity with 4-fold symmetry. Lengths are given in units of L = 4.4 μm and time in units of 1/DR =
0.4 s, and the Pećlet number is Pe = 9.
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dominate the fourth moment over the second and lead to
positive non-Gaussian character. Finally, for long times t > τR, we
observe long-lived non-Gaussian behavior in the case of 2-fold
symmetry and Gaussian behavior in the case of 4-fold symmetry.
To explain this observation, we consider the covariancematrix of
the displacement distribution, and we define the long-time
diffusion matrix

∑δ

= ⟨Δ Δ ⟩

= + ̅ +
→∞

=

∞
− −

t t

t

D
v
D k

D( ) lim
r ( ) r ( )

2
1

(c c c c )

ij
t

i j

ij
k

k i k j k i k j

L

T

2

R 1 1
2 , , , ,

1

1 1 1 1
(14)

for i, j ∈ {x, y}. The eigenvalues of this matrix are given as D± =
DL ± ΔDL, where ΔDL denotes the long-time anisotropy

∑ ∑Δ = ̅ | · | + | · | − | | | |
=

∞

=

∞
−D v

D k k
c c c c c c

1
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k k
k k k k k kL

2

R 1 1 1
2

2
2

2 2 2 2

1 2
1 2 1 2 1 2

(15)

which describes the long-time diffusion along the principal axes
of maximal and minimal diffusion, respectively. In the two
experimental scenarios, the long-time anisotropy yields ΔDL,1 =
4.0 μm2/s and ΔDL,2 = 0 μm2/s, respectively. Using the
introduced notation, the long-time behavior of the non-
Gaussian parameter can be expressed as

i
k
jjjjj

y
{
zzzzzα = Δ

→∞
t

D
D

lim ( )
1
2t

2
L

L

2

(16)

which coincides with the non-Gaussian character of an
anisotropic Gaussian distribution with covariance matrix 2DLt.
Thus, the long-time behavior of the non-Gaussian parameter
quantifies the anisotropy of the long-time diffusion. For the
motility with 2-fold symmetry, we have enhanced long-time
diffusion along the y axis and decreased long-time diffusion
along the x axis leading to non-Gaussian character for long times
(Figure 3h). In the second scenario, the long-time behavior can
be described with solely one long-time diffusion coefficient, thus
the non-Gaussian parameter vanishes (Figure 4h).

■ CONCLUSIONS
In this work, we reported on a new methodology to impose
complex anisotropic motility behavior on active Brownian
particles. We engineered the orientation-dependent motility of
active dumbbells whose rotational diffusivity is externally
controlled by randomized magnetic fields and whose propulsion
velocity is prescribed using a feedback scheme, which updates
the velocity based on the particles’ orientation. To describe the
dynamic features of the particles, we developed a theoretical
framework that proved to be in good agreement with the
corresponding experimental data. In particular, a particle’s mean
displacement shows deterministic active motion at very short
times, decorrelation at intermediate times, and saturation to
anisotropic persistence trajectories at long times. The mean-
square displacement is also characterized by different temporal
regimes. We found that the transition from isotropic diffusion at
short times to a superdiffusive intermediate regime is very
sensitive to the initial velocity of the particle such that the
coupling of diffusive-rotational and ballistic-translational motion
can result in superballistic motion. Moreover, the motion is
characterized by anisotropic diffusion at long times, as described
by the long-time diffusion coefficient and the long-time
anisotropy. Finally, we have investigated the deviation from a

standard Gaussian distribution by calculating the non-Gaussian
parameter as a function of time. It becomes nonzero for
intermediate times: negative when there is persistent swimming
and positive during reorientation events from an initial
orientation with low velocity to orientations with high velocity.
Furthermore, the long-time behavior quantifies the anisotropy
of the long-time diffusion, being nonzero for the 2-fold-
symmetric motility and zero for the 4-fold-symmetric motility.
The basic model we proposed here is applicable to a broad

range of systems with anisotropic external propulsion
mechanisms and relevant in the context of the orientational
dependence of the propulsion speed, which can intrinsically
emerge for both artificial and biological microswimmers.50,55 In
the future, intricate combinations of spatial, orientational, and
temporal modulations of motility could be considered. One
could also proceed to particles with a complex shape, which have
more involved trajectories.60,61 Finally, although in our current
experiments one particle at a time is controlled, we envision
possible experimental realizations to control many particles to
explore emerging collective effects.62
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†Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität

Düsseldorf, D-40225 Düsseldorf, Germany

‡Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, 8093
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Real-time feedback

Figure S1: Scheme of the real-time feedback applied in the experiments.

Post-processing and data analysis

We collected 45 trajectories (86 min recording time in total) with a propulsion velocity with
two-fold symmetry and 15 trajectories (28 min recording time in total) with a propulsion
velocity with four-fold symmetry. Their lengths were limited by the time after which the
particles left the feld of view of the microscope. The position r and the orientation φ
were recorded at 2.5 fps and the velocity was calculated from the displacement of successive
positions of the particle as v(t) = (r(t+ ∆t)- r(t)) /∆t, where ∆t = 0.4 s is the time between
two frames. The time steps are not fully equidistant, therefore the experimental data were
linearly interpolated to obtain equidistant points. Initially, we did not distinguish each lobe
of the dumbbell and thus we measured its orientation modulo π. From the direction of the
velocity we could post-process the trajectory to reconstruct the angles in the interval [0, 2π).
Finally, we rescaled all displacements with a characteristic length L = v/DR and all times
with the inverse rotational difusion coefcient 1/DR, where v is the orientationally averaged
speed for a trajectory. Experimental means with respect to a specifc initial orientation
φ0 were calculated by averaging in the interval [φ0 - δφ, φ0 + δφ]. We chose δφ = 25◦

and modifed the theoretical results accordingly by exp(ikφ)→ exp(ikφ) sin(kδφ)/(kδφ). In
Figs. 3g-h and 4g-h, we took advantage of the rotational and infection symmetries of the
experiment to increase the statistics.
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General theoretical result

In this section, we calculate the n-th moment of the translational displacement h∆rn(t)i =
h(r(t)- r0)

ni for active Brownian motion with a general orientation-dependent motility.
With respect to initial conditions r(0) = r0 and φ(0) = φ0, solutions to the Langevin
equations (2) and (3) are obtained via simple integration as

r(t) = r0 +

Z t

0

�
v
(
φ(t0)

�
+
p

2DTξ(t0)
�
dt0, (S1)

φ(t) = φ0 +
p

2DR

Z t

0

η(t0) dt0. (S2)

Since φ(t) is a linear combination of Gaussian variables, the corresponding probability dis-
tribution is Gaussian as well and the conditional probability density P(φ2, t2|φ1, t1) is given
by

P(φ2, t2|φ1, t1) =
1p

4πDR(t2 - t1)
exp

�
- (φ2 - φ1)

2

4DR(t2 - t1)

�
. (S3)

The conditional probability density P(φ2, t2|φ1, t1) embodies the probability of fnding the
particle with orientation φ2 at time t2 under the condition that the particle was oriented at
an angle φ1 at former time t1. Next, we construct the joint probability density of fnding the
particle at an angle φ1 at time t1, at an angle φ2 at time t2, . . . , and at an angle φn at time tn as
P(φn, tn; . . . ;φ1, t1) =

Qn
j=1 P(φj, tj|φj-1, tj-1) using the Markovian property of the Gaussian

white noise. The knowledge of the joint probability density P(φn, tn; . . . ;φ1, t1) allows for
an analytic calculation of the n-th moment of the translational displacement h∆rn(t)i. The
translational displacement ∆r(t) = ∆rA(t) + ∆rD(t) can be split into an active contribution
∆rA(t) =

R t
0
v
(
φ(t1)

�
dt1 and a difusive contribution ∆rD(t) =

√
2DT

R t
0
ξ(t1) dt1. These two

parts are stochastically independent and therefore the n-th moment of the total displacement
can be represented as



∆r2n(t)

�
=

X

n1+2n2+n3=n

n!

n1!n2!n2!n3!

D
∆r

2(n1+n2)
A (t)

ED
∆r

2(n2+n3)
D (t)

E
, (S4)



∆r2n+1(t)

�
=

X

n1+2n2+n3=n

n!

n1!n2!n2!n3!

D
∆r

2(n1+n2)+1
A (t)

ED
∆r

2(n2+n3)
D (t)

E
(S5)

+
X

n1+2n2+n3=n-1

n!

n1!n2!(n2 + 1)!n3!

D
∆r

2(n1+n2)+1
A (t)

ED
∆r

2(n2+n3+1)
D (t)

E
.

Like the orientation angle, also the difusive displacement ∆rD(t) is a sum of Gaussian
variables and hence it follows a Gaussian distribution. The corresponding moments are
calculated as



∆r2nD (t)

�
= n! (4DTt)

n , (S6)

∆r2n+1

D (t)
�

= 0. (S7)
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In contrast to the difusive displacement, the active displacement ∆rA(t) is a nonlinear
combination of Gaussian variables. Here, the joint probability density P(φn, tn; . . . ;φ1, t1) is
used to calculate the n-th moment as

h∆rnA(t)i = Ln
∞X

k1=-∞
k1 6=0

· · ·
∞X

kn=-∞
kn 6=0

ck1 · · · · · cknei(
Pn
j=1 kj)φ0

X

σ∈Sn
Ckσ(1)···kσ(n)(DRt), (S8)

where the sum has to be performed over the n! permutations of the symmetric group Sn and

Ck1···kn(t) =

Z t

0

dtn

Z tn

0

dtn-1· · ·
Z t2

0

dt1

nY

j=1

e-(
Pn
l=j kl)

2
(tj-tj−1). (S9)

Low-order moments

The low-order moments for Brownian motion with an orientation-dependent motility are

h∆r(t)i
L

=
h∆rA(t)i

L
, (S10)

h∆r2(t)i
L2

=
4DRt

Pe2
+
h∆r2A(t)i

L2
, (S11)

h∆r4(t)i
L4

=
32(DRt)

2

Pe4
+

16DRt

Pe2
h∆r2A(t)i

L2
+
h∆r4A(t)i

L4
. (S12)

For a propulsion velocity with two-fold symmetry v1(φ) = 2v1 sin2 (φ) û(φ), with non-
zero Fourier-coefcient vectors c-3 = -(1, i)/4, c-1 = (1, 3i)/4, c1 = (1,-3i)/4, and
c3 = (-1, i)/4, one obtains

h∆rA(t)i
L

=
1

2

(
1- e-τ

�� cos(φ0)
3 sin(φ0)

�
- 1

18

(
1- e-9τ
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, (S13)
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with L = v1/DR and τ = DRt. In the case of a propulsion velocity with four-fold symmetry
v2(φ) = 2v2 sin2 (2φ) û(φ), with non-zero Fourier-coefcient vectors c-5 = -(1, i)/4, c-3 =
(-1, i)/4, c-1 = (-1, i)/2, c1 = (1,-i)/2, c3 = -(1, i)/4, and c5 = (-1, i)/4, one fnds

h∆rA(t)i
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with L = v2/DR and τ = DRt.

Emergence of the quartic intermediate regime
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Figure S2: Theoretical results for a propulsion velocity with two-fold symmetry. a-f The
mean-square displacement h∆r2(t)i as well as the non-Gaussian parameter α2(t) are shown
for initial orientations φ0 = 0 (blue), φ0 = π/4 (red), and φ0 = π/2 (green) and for diferent
Péclet numbers Pe = 10, Pe = 100, and Pe = ∞. A reference slope indicates the quartic
(ν = 4) temporal behavior.
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Active Brownian motion with memory delay induced by a viscoelastic medium

Alexander R. Sprenger ,* Christian Bair , and Hartmut Löwen
Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
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By now active Brownian motion is a well-established model to describe the motion of mesoscopic self-
propelled particles in a Newtonian fuid. On the basis of the generalized Langevin equation, we present an
analytic framework for active Brownian motion with memory delay assuming time-dependent friction kernels for
both translational and orientational degrees of freedom to account for the time-delayed response of a viscoelastic
medium. Analytical results are obtained for the orientational correlation function, mean displacement, and
mean-square displacement which we evaluate in particular for a Maxwell fuid characterized by a kernel which
decays exponentially in time. Further, we identify a memory-induced delay between the effective self-propulsion
force and the particle orientation which we quantify in terms of a special dynamical correlation function. In
principle, our predictions can be verifed for an active colloidal particle in various viscoelastic environments
such as a polymer solution.

DOI: 10.1103/PhysRevE.105.044610

I. INTRODUCTION

The physics of active matter is a booming research area
exploring nonequilibrium phenomena of self-propelled parti-
cles [1,2]. Apart from viscous damping in a fuid medium,
fuctuations become important if the particle size is on the
mesoscopic colloidal scale. A by now well-established model
to describe the persistent random dynamics of a single self-
propelled particle is so-called active Brownian motion [1–7].
Here the translational coordinate of the particle is coupled to
its self-propulsion direction, which is the orientational degree
of freedom establishing basically a persistent random walk.
Active Brownian motion assumes an instantaneous friction
which is a well-justifed assumption for a Newtonian back-
ground fuid, or in other terms, there is no memory effect
of the medium. However, in many situations, self-propelled
or swimming particles are exposed to environments different
from a Newtonian fuid [8–19]. Important examples for non-
Newtonian backgrounds offered to self-propelled particles are
polymer solutions [20–24] and crystalline [25–27] or liquid
crystalline [28–36] environments or even biologically relevant
backgrounds such as mucus [37,38], dense tissues, [39] or soil
[40].

In this paper we use an extended model for active Brownian
motion in a viscoelastic medium. In doing so we assume
memory effects of the solvent via a friction kernel for both
translational and orientational degrees of freedom besides
fuctuations. In fact, there are different models for active
Brownian motion with memory effects induced by the sur-
rounding medium [41–53] and for passive Brownian motion
in a viscoelastic medium [54–59]. Here we include activity
explicitly. In contrast to Ref. [46] where an active Ornstein-
Uhlenbeck approach was chosen and to Ref. [52] where

*sprenger@thphy.uni-duesseldorf.de

negative friction was used to achieve activity, we choose
our model to recover the established active Brownian motion
case for a Newtonian medium as a clear reference state. In
particular, the model used here is a special case of that re-
cently proposed by Narinder et al. [45], which contains an
additional term of translation-rotation coupling between the
swim force and the swim torque. We consider here the spe-
cial case of decoupled effective swim force and swim torque
with the beneft that we can solve the stochastic Langevin
equations analytically. We evaluate the solution in particular
for a Maxwell fuid which is characterized by a kernel that
decays exponentially in time and obtain analytical results for
the mean displacement, the mean-square displacements, and
the orientational correlation function. Further we defne a
memory delay function which measures the memory-induced
delay between the effective driving force and particle orienta-
tion. In principle, our predictions can be verifed for an active
colloidal particle in various viscoelastic environments such as
a polymer solution.

The paper is organized as follows. The model is introduced
and discussed in Sec. II. In Sec. III general results are listed.
The solution is evaluated further for a generalized Maxwell
(or Jeffrey) kernel with a memory exponentially decaying in
time in Sec. IV. We summarize in Sec. V.

II. MODEL

In our model we consider a colloidal self-propelled particle
in two spatial dimensions moving at a constant speed v0 along
its orientation n̂(t ) through a fuid with memory properties.
We describe the state of the particle by its position r(t ) and
its angle of orientation φ(t ), which denotes the angle between
the orientation vector n̂(t ) = (cos φ, sin φ) and the positive x
axis, at the corresponding time t . The time-delayed response
of the fuid is incorporated in the model in terms of a trans-
lational memory kernel �T (t ) and a rotational memory kernel
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�R(t ) which directly couple to the translation and rotation of
the particle, respectively. To further model circle swimming,
we also include an effective swim torque which acts on the
particle and leads to a circling frequency ω0. On the basis of
the generalized Langevin equation, the overdamped Brownian
dynamics of the particle is described by the coupled non-
Markovian Langevin equations∫ t

−∞
�T (t − t ′)[ṙ(t ′) − v0n̂(t ′)]dt ′ = ξ(t ), (1a)

∫ t

−∞
�R(t − t ′)[φ̇(t ′) − ω0]dt ′ = η(t ), (1b)

where ξ(t ) and η(t ) denote zero-mean Gaussian colored noise

〈ξ(t )〉 = 0, 〈ξ(t ) ⊗ ξ(t ′)〉 = IkBT γT (t − t ′), (2a)

〈η(t )〉 = 0, 〈η(t )η(t ′)〉 = kBT γR(t − t ′), (2b)

with the translational noise correlator γT (t ) and the rota-
tional noise correlator γR(t ). Here ⊗ is the dyadic product,
I is the identity matrix, kBT is the thermal energy, and 〈· · · 〉
denotes the noise average.

In discussing Eqs. (1a) and (1b), we frst suppose we are at
zero temperature T = 0 (no noise). In this case, the velocity
is identical to the active propulsion and the particle performs
either linear or circular swimming motion. Now we introduce
fuctuations or noise in the system that kick the particle out of
that particular situation. Then there are two effects: frst tem-
porally correlated noise which perturbs the swimming motion
and second dissipation incorporated in the memory kernels
which lead to a relaxation back to the steady state.

For reasons of generality, we frst do not imply any relation
between the dissipation and the fuctuations in the system.
However, in the case of internal noise, the memory kernels
are related to the correlation function of the noise via the sec-
ond fuctuation-dissipation theorem, i.e., �T (t ) = γT (t ) and
�R(t ) = γR(t ) [60]. On the other hand, when fuctuation and
dissipation come from different sources, the memory kernel
and the noise correlator are independent [61,62]. This was
explicitly realized in a recent experiment on magnetic active
dumbbells where the rotational diffusivity was artifcially en-
hanced with magnetic felds and therefore decoupled from the
thermal bath [63].

The memory kernels �T (t ) and �R(t ) describe the vis-
coelastic response of the fuid and can be determined
experimentally. Probably most commonly used are microrhe-
ological measurements on passive probe particles to extract
the functional form of the memory kernel by tracking the
particles mean-square displacement [64,65]. Alternatively, the
memory kernel can be approximately linked to the shear re-
laxation modulus of the medium which can be measured with
oscillatory shear experiments [66]. Further, we point out that
the stochastic process given by Eqs. (1a) and (1b) is defned
as stationary by setting the lower limit of the integral equal to
−∞ (see Ref. [54] for a detailed discussion on the choice of
the lower limit in the memory term).

In Eq. (1a), the effective self-propulsion force is of the
form Fv (t ) = v0

∫ t
−∞ �T (t − t ′)n̂(t ′)dt ′. This choice is not

unique but could in principle vary for different systems (for
instance, externally actuated or mesoscopic swimmers). In our

model, we describe the force-free propulsion of a colloidal
microswimmer which sets the fuid around itself in motion
and translates in the resulting fow feld. As a consequence, the
propulsion force is linked to the viscoelastic response of the
fuid and the internal active force Fv (t ) lags generally behind
the orientation n̂(t ) [45].

Importantly, we remark that Eqs. (1a) and (1b) mark a
special case of the model recently proposed by Narinder et al.
[45] which contains an additional torque proportional to the
swim force, proportional to n̂(t ) × Fv (t ), explaining an in-
crease of rotational diffusion [47] and the onset of circular
trajectories [45] for self-propelled Janus particles in a vis-
coelastic fuid. Here we decouple the swim torque from the
swim force with the beneft that we can solve the stochastic
Langevin equations analytically.

Finally, the special case of active Brownian motion [67–69]
is recovered for instantaneous friction and zero-mean Gaus-
sian white noise

�T (t ) = γT (t ) = 2γtδ(t ), (3a)

�R(t ) = γR(t ) = 2γrδ(t ), (3b)

where γt and γr are translational and rotational friction coef-
fcients, respectively.

III. GENERAL RESULTS

In this section we present analytic results for the arbi-
trary memory kernel and noise correlator. By calculating the
Fourier transform of Eqs. (1a) and (1b), a solution for the
position r(t ) and the orientation angle φ(t ) can be derived as

r(t ) = r(t0) + v0

∫ t

t0

n̂(t ′)dt ′

+
∫ ∞

−∞
[χT (t − t ′) − χT (t0 − t ′)]ξ(t ′)dt ′, (4a)

φ(t ) = φ(t0) + ω0(t − t0)

+
∫ ∞

−∞
[χR(t − t ′) − χR(t0 − t ′)]η(t ′)dt ′, (4b)

with the inverse Fourier transform of

χ̃T (ω) = [iω�̃+
T (ω)]−1, �+

T (t ) = �T (t )	(t ), (5a)

χ̃R(ω) = [iω�̃+
R (ω)]−1, �+

R (t ) = �R(t )	(t ), (5b)

where we used the convention f̃ (ω) = ∫ ∞
−∞ f (t )e−iωt dt for

the Fourier transform of a function f (t ) and, multiplied with
the Heaviside function f (t )	(t ), f̃ +(ω) yields the one-sided
Fourier transform

∫ ∞
0 f (t )e−iωt dt .

The deterministic solution of Eqs. (1) (at zero temperature
T = 0) is independent of the specifc form of the memory
kernel and the particle moves on either linear or circular
trajectories

r(t ) =
{

r(0) + v0t n̂(0), ω0 = 0
r(0) + v0

ω0
[n̂⊥(0) − n̂⊥(t )], ω0 �= 0,

(6)

with n̂⊥(t ) = ( − sin[φ(0) + ω0t], cos[φ(0) + ω0t])T . In the
presence of noise, the motion of the particle can be charac-
terized in terms of the low-order moments of the stochastic
process. Although Eq. (1b) is nonlocal in time (and thus
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non-Markovian), the transitional probability for an angular
displacements 
φ after a time t is still Gaussian and specifed
by the mean μ(t ) = 〈
φ(t )〉 and the variance of the angular
displacement σ (t ) = 〈
φ2(t )〉 − 〈
φ(t )〉2, which are given
by

μ(t ) = ω0t, (7)

σ (t ) = kBT

π

∫ ∞

−∞
(1 − eiωt )γ̃R(ω)χ̃R(ω)χ̃R(−ω)dω. (8)

From that the orientation correlation function C(t ) = 〈n̂(t ) ·
n̂(0)〉 can be readily derived and follows from

〈n̂(t2) · n̂(t1)〉 = cos[μ(|t2 − t1|)]e−σ (|t2−t1|)/2. (9)

Due to the stationarity of the underlying stochastic process,
the two-time orientational correlation function only depends
on the time difference.

The general result for the mean displacement 〈
r(t )〉 =
〈r(t ) − r(0)〉 is

〈
r(t )〉 = v0

∫ t

0
〈n̂(t ′)|n̂(0)〉dt ′, (10)

where the conditional average

〈n̂(t2)|n̂(t1)〉 = P̂[e−σ (t2−t1 )/2+i[φ(t1 )+μ(t2−t1 )]] (11)

is the mean orientation at time t2 under the condition that the
particle had the angle φ(t1) at previous time t1 and P̂[z] =
(Re(z), Im(z))T transforms a complex number z into its two-
dimensional vector. We remark that the mean displacement is
in general independent of the specifc choice of the transla-
tional memory kernel �T (t ) and only involves the coupling to
the rotational dynamics of the particle.

Next the mean-square displacement is given by

〈
r2(t )〉 = v2
0

∫ t

0

∫ t

0
〈n̂(t ′) · n̂(t ′′)〉dt ′′dt ′

+ 2kBT

π

∫ ∞

−∞
(1 − eiωt )γ̃T (ω)χ̃T (ω)χ̃T (−ω)dω.

(12)

The frst term describes the active contribution to mean-square
displacement, while the second term contains information on
the passive translation caused by the noise [via γT (t )] and
infuenced by dissipation [via �T (t )].

The effective self-propulsion force Fv (t ) does not follow
instantaneously the orientation of the particle. It rather con-
tains integrated information of past orientations and therefore
lags behind n̂(t ). To quantify the delay between the effective
self-propulsion force and the particle orientation, we defne
the memory delay function

d (t ) = 〈Fv (t ) · n̂(0)〉 − 〈Fv (0) · n̂(t )〉 (13)

as the average difference between the projection of the active
force Fv (t ) on the initial orientation n̂(0) and the projection
of the orientation n̂(t ) and the initial active force Fv (0). In
Newtonian fuids, the effective self-propulsion force is pro-
portional and instantaneous in the orientation, and thus the
delay function equates to zero for all time. In a similar man-
ner, the inertial delay function was previously defned for

macroscopic active particles which measured the mismatch
between the particle velocity ṙ(t ) and the particle orientation
n̂(t ) [5,70,71]. In our overdamped system, this inertial delay
function is always zero since the average velocity is aligned
with the orientation. Conversely, for inertial particles subject
to instantaneous friction, the memory delay function vanishes.

In the following section we explicitly evaluate the in-
troduced quantities for an exponential memory kernel and
discuss the effect of memory on the dynamics of active Brow-
nian particles.

IV. MAXWELL KERNEL

Arguably, the most prominently used memory kernel is
given by the generalized Maxwell model (also know as Jef-
frey’s model) which adds additional exponential memory to
the instantaneous friction [72]. For simplicity, we assume
internal noise such that the memory kernels are related to the
correlation functions of the noise via the second fuctuation-
dissipation theorem. Further, the same temporal dependence
is adopted for the translation and the rotation, respectively,

�T (t ) = γT (t ) = γt

(
2δ(t ) + 


τ
e−|t |/τ

)
, (14a)

�R(t ) = γR(t ) = γr

(
2δ(t ) + 


τ
e−|t |/τ

)
. (14b)

Here γt and γr denote reference translational and rotational
friction coeffcients, respectively. The frst term in Eqs. (14a)
and (14b) accounts for the instantaneous relaxation, whereas
the second term introduces the time-delayed response of the
viscoelastic fuid with the relaxation time τ and the memory
strength 
. We remark that for 
 = 0, τ → 0, or τ → ∞
the translation and rotational memory kernels become solely
instantaneous and we recover the Markovian (no-memory)
active Brownian particle model [67–69].

Numerous rheological measurements have shown this
Maxwell-like behavior in fuids including polymer solutions
[73,74], micelles [75,76], and cytoplasm [77,78]. From the
theoretical side, there exist several works which considered
the effects of exponential memory on the Brownian motion of
passive [56,57] and active colloids [44–46,52].

A. Orientation correlation function

The dynamical orientation correlation function C(t ) =
〈n̂(t ) · n̂(0)〉 has a double-exponential structure

C(t ) = cos(ω0t )

× exp

[
− Dr

1 + 


(
t + τ


1 + 

(1 − e−(1+
)t/τ )

)]
,

(15)

with the short-time rotational diffusion coeffcient Dr =
kBT/γr . Equation (15) simplifes to a single-exponential de-
cay for either short relaxation times τ or long ones

C(t ) ∼
{

cos(ω0t ) e−Drt , Drτ � 1 + 


cos(ω0t ) e−[Dr/(1+
)]t , Drτ � 1 + 
.
(16)

These Markovian (no-memory) extreme cases are shown in
orange (τ → 0) and black (τ → ∞) in Fig. 1, where we plot-
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FIG. 1. Orientation correlation 〈n̂(t ) · n̂(0)〉 as a function of Drt
for different reduced relaxation times Drτ , obtained with ω0 = 0
and (a) 
 = 10 and (b) 
 = 100. For Drτ → 0 and Drτ → ∞, the
orientation decorrelates single exponentially. For in-between values,
we fnd partial decorrelations at separated timescales.

ted the orientation correlation for suffciently high memory
strength 
 and various values of Drτ . We note that memory
effects only occur when

Drτ  1 + 
. (17)

In this case, we frst see a partial decorrelation at time 1/Dr

and a fnal decorrelation at a later time (1 + 
)/Dr (see
Fig. 1).

A double-exponential structure for the orientation correla-
tion was previously reported by Ghosch et al. [44] and for
inertial active particles [70,79]. Compared to these systems,
we fnd different behavior for short times where the exponent
is linear in time

C(t ) = cos(ω0t ) e−Dr [t−(
/2τ )t2+O(t3 )]. (18)

One characterizing quantity of active particles is the per-
sistence time τp = ∫ ∞

0 C(t )dt , which is the average time the
particle holds its orientation. Here the persistence time is
evaluated as

τp = τ

1 + 

Re[S−�eS�(�, 0, S)], (19)

with

S = −
τDr

(1 + 
)2
, � = τ

1 + 


( Dr

1 + 

− iω0

)
, (20)

and the incomplete Gamma function �(x, z0, z1) =∫ z1

z0
t x−1e−t dt . Obvious from Eq. (16), the persistence time

simplifes for short or long relaxation times τ to

τp ∼
{ Dr

D2
r +ω2

0
, Drτ � 1 + 


Dr (1+
)
D2

r +ω2
0 (1+
)2 , Drτ � 1 + 
,

(21)

representing the known result for active Brownian particles in
simple Newtonian fuids [68,69,80].

B. Mean displacement

Next we address the mean displacement 〈
r(t )〉 for a given
initial orientation φ(0) at t = 0,

〈
r(t )〉 = v0τ

1 + 

P̂[S−�eS�(�, Se−(1+
)t/τ , S)eiφ(0)], (22)

with the operator P̂[z] = (Re(z), Im(z))T . The mean displace-
ment increases linearly for short times 〈
r(t )〉 = v0t n̂(0) +

FIG. 2. Mean displacement 〈
r(t )〉 in the xy plane for 
 = 10,
ω0 = Dr , and several values of Drτ . The initial orientation is set
along the x axis and the starting point at t = 0 is denoted by a black
dot. For Drτ → 0 and Drτ → ∞, the trajectory displays a perfect
spira mirabilis.

O(t2) and saturates to a fnite persistence length

lim
t→∞〈
r(t )〉 = v0τ

1 + 

P̂[S−�eS�(�, 0, S)eiφ0 ]. (23)

We again mention that the mean trajectory is independent of
the translational memory kernel noise [see Eq. (14a)] and only
involves the coupling to the rotational dynamics of the particle
[see Eq. (10)].

In Fig. 2 we show the mean trajectory of a circle swimmer
(ω0 �= 0) for different values of Drτ . For very long relaxation
times, the particle decorrelates before additional memory can
prolong the persistence. Consequently, the mean trajectory
displays a spira mirabilis known for active particles in Newto-
nian fuids (see the black curve in Fig. 2). When the relaxation
time τ becomes comparable to (1 + 
)/Dr , the rotational
friction gets enhanced at later times and circular motion gets
more stable against noise perturbation (see the purple and blue
curves in Fig. 2). Upon further decreasing the relaxation time
(see the green and red curves in Fig. 2) the mean displace-
ment approaches again the form of a spira mirabilis with a
decreased rotational diffusion coeffcient Dr/(1 + 
) (see the
orange curve in Fig. 2).

C. Mean-square displacement

The mean-square displacement can be calculated as

〈
r2(t )〉 = 4DLt + 4
τDt

(1 + 
)2
(1 − e−(1+
)t/τ )

− 2v2
0τ

2

(1 + 
)2
[F (0) − F (t )], (24)

with the long-time diffusion coeffcient

DL = Dt

1 + 

+ v2

0 τ

2(1 + 
)
Re[S−�eS�(�, 0, S)] (25)

and

F (t ) = Re

{
eS

�2 2F2

⎡
⎣ �, �

; −Se−(1+
)t/τ

� + 1,� + 1

⎤
⎦

× e−(1+
)�t/τ

}
, (26)
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FIG. 3. Mean-square displacement 〈
r2(t )〉 and the correspond-
ing dynamic exponent α(t ) as a function of time t for several values
of Drτ , obtained with ω0 = 0 and (a) and (c) 
 = 10 and (b) and
(d) 
 = 100.

where qFp represents the generalized hypergeometric func-
tion. In the passive case (v0 = 0), the particle starts in a
diffusive regime 〈
r2(t )〉 = 4Dtt + O(t2), characterized by
the short-time translational diffusion coeffcient Dt = kBT/γt ,
and then enters a subdiffusive regime which leads to long-time
diffusion with a reduced translational diffusivity Dt/(1 + 
).
Considering the active contribution (Dt = 0), the particle
moves ballistic for short times ∼v2

0t2 and then undergoes a
superdiffusive (or subballistic) transition towards a long-time
diffusive regime proportional to the speed squared and the
persistence time ∼v2

0τpt/2. In Fig. 3 we plot the active con-
tribution of the mean-square displacement (Dt = 0) for two
values of the memory strength 
 over the range of relevant
values of Drτ and also show the corresponding dynamic ex-
ponent given by the logarithmic derivative

α(t ) = d log[〈
r2(t )〉]
d log(t )

. (27)

The dynamic exponent α(t ) is able to resolve the relevant
timescales of the system more clearly: If, for example, the

mean-square displacement follows a power law 〈
r2(t )〉 ∼
tα , α(t ) is equal to the power-law exponent α. For the Marko-
vian extreme cases (τ → 0 and τ → ∞), we fnd a clean
transition from a ballistic regime (α = 2) to a diffusive one
(α = 1). For in-between values of Drτ , the dynamic exponent
α(t ) starts decreasing when the frst decorrelation happens at
times t � 1/Dr . If the memory strength 
 is suffciently high
[see Fig. 3(d)], the dynamic exponent is increasing again at
times t � τ/(1 + 
). This event coincides with the persistent
plateau in the orientation correlation function [see Fig. 1(d)].
Finally, the particle transitions to a diffusive regime (α = 1)
for times t � (1 + 
)/Dr .

The long-time diffusion coeffcient DL [see Eq. (25)] de-
pends nontrivially on the parameter of the model. In Fig. 4
we show the long-time diffusion coeffcient as a function
of the memory strength 
 and various values of Drτ . For
a vanishing circling frequency (ω0 = 0), the long-time dif-
fusion coeffcient is monotonically increasing as a function
of the memory strength 
 and monotonically decreasing as
a function of the relaxation time τ [see Fig. 4(a)]. How-
ever, for a fnite relaxation time, the asymptotic behavior of
the long-time diffusion coeffcient for high 
 is given by
DL ∼ v2

0
/2Dr . For low circling frequency [see Fig. 4(b)],
the long-time diffusion behaves nonmonotonically in 
. The
optimal memory 
opt is increasing as a function of relaxation
time τ , while the corresponding maximal value DL(
opt) is
decreasing. At higher circling frequency [see Fig. 4(c)], the
long-time diffusion decreases immediately as a function of 
,
DL ∼ v2

0Dr/2
ω2
0.

D. Delay function

In Eq. (13) we defned the memory delay function d (t ) to
quantify the memory-induced mismatch between the effective
self-propulsion force Fv (t ) and the particle orientation n̂(t ).
Evaluated for the Maxwell kernel, we fnd

d (t ) = γtv0

eS

1 + 

Re{S−�+ [�(�+, 0, S)e−t/τ

− �(�+, 0, Se−(1+
)t/τ )et/τ ]

+ S−�−�(�−, Se−(1+
)t/τ , S)e−t/τ }, (28)

FIG. 4. Long-time diffusion coeffcient DL as a function of the memory strength 
 for several values of Drτ and different circling
frequencies (a) ω0 = 0, (b) ω0 = 0.1Dr , and (c) ω0 = Dr . The translational diffusion coeffcient was set to zero, Dt = 0.
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FIG. 5. (a) Memory delay function d (t ) as a function of Drt
for different reduced relaxation times Drτ , 
 = 10, and ω0 = 0.
(b) Total delay dtot weighted with 
2 as a function of the reduced
relaxation time Drτ for different values of the memory strength 


and ω0 = 0.

with

�± = τ

1 + 


(
Dr

1 + 

± 1

τ
− iω0

)
. (29)

The memory delay function is constructed such that it
vanishes when the translational memory function responds
instantaneously [meaning �T (t ) = 2γtδ(t )]. Thus, consistent
with previous considerations, d (t ) vanishes for the Markovian
limits of the model 
 = 0, τ → 0, and τ → ∞. In Fig. 5(a)
we show the delay function d (t ) as a function of time for in-
between values of Drτ . The delay function is always positive
for a linear swimmer (ω0 = 0), starts at zero, has a positive
peak d (topt) after a typical delay time topt, and decorrelates to
zero for long times. Both the peak value and the typical delay
time depend nonmonotonically on the relaxation time τ and
show a single maximum around Drτ  1 + 
 [recalling the
condition for memory effects (17)].

We defne the total delay of the particle as dtot =∫ ∞
0 d (t )dt , which yields

dtot = γtv0τ
2
eS

1 + 

Re[S−�+�(�+, 0, S)] (30)

and is shown in Fig. 5(b) as a function of the reduced re-
laxation time Drτ . Similar to the peak value d (topt), the total
delay becomes maximal around Drτ  1 + 
. For represen-
tative reasons, we decided to weight the total memory by
the memory strength square, i.e., dtot/γtv0


2 in Fig. 5(b). In
that way, we fnd that dtot ∼ 
2 around the relevant values
of Drτ [see Eq. (17)]. Although d (t ) → 0 for τ → ∞, the

total memory saturates to the nonzero value dtot ∼ 2
γtv0 for
τ → ∞ (the limit and integral do not commute in this case).

V. CONCLUSION

In this work we studied a self-propelled colloid in a vis-
coelastic medium. The particle itself was modeled in terms of
non-Markovian Langevin equations which included memory
effects in the particle friction to account for the viscoelastic
background. Analytical solutions were presented. This model
may serve as a benchmark and simple framework to evaluate
and interpret experimental or simulation data for particle tra-
jectories obtained in realistic and more complex environments
[50]. In particular, the nature of the memory kernel can in prin-
ciple be determined by ftting the experimental correlations to
the solutions of our model corresponding to microrheology
[81–85].

We evaluated our general results explicitly for the Maxwell
kernel, which adds exponentially decaying memory to the
standard instantaneous Stokes friction. In particular, we found
a double-exponential structure for the orientational correlation
function exhibiting partial decorrelation at short times and
the existence of persistent plateaus for intermediate times. In
order for memory effects to occur, we identifed a relation
between the short-time rotational diffusion coeffcient, the
memory strength, and the corresponding relaxation time [see
Eq. (17)] and discussed the infuence of memory at inter-
mediate and long timescales for the mean and mean-square
displacement of the particle. Finally, we quantifed the delay
between effective self-propulsion force and the particle orien-
tation in terms of a defned memory delay function.

Our model can be extended to higher spatial dimensions
[69], to harmonic confnement [86–89], to external felds
[90,91], and to include inertia [5,70,71,92–95] where an an-
alytical solution seems to be in reach as well. Moreover,
different combinations of friction and memory kernel as
well as colored noise can be considered for future work
[96–100], for instance, Mittag-Leffer noise [101,102] or
power-law memory [103,104]. Finally, the collective behavior
of many interacting active particles in a viscoelastic medium
[105–111] needs to be explored more and will be an important
area of future research.
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Many self-propelled objects are large enough to exhibit inertial effects but still suffer from environmental
fuctuations. The corresponding basic equations of motion are governed by active Langevin dynamics, which
involve inertia, friction, and stochastic noise for both the translational and orientational degrees of freedom
coupled via the self-propulsion along the particle orientation. In this paper, we generalize the active Langevin
model to time-dependent parameters and explicitly discuss the effect of time-dependent inertia for achiral and
chiral particles. Realizations of this situation are manifold, ranging from minirockets (which are self-propelled
by burning their own mass), to dust particles in plasma (which lose mass by evaporating material), to walkers
with expiring activity. Here we present analytical solutions for several dynamical correlation functions, such
as mean-square displacement and orientational and velocity autocorrelation functions. If the parameters exhibit
a slow power law in time, we obtain anomalous superdiffusion with a nontrivial dynamical exponent. Finally,
we constitute the “Langevin rocket” model by including orientational fuctuations in the traditional Tsiolkovsky
rocket equation. We calculate the mean reach of the Langevin rocket and discuss different mass ejection strategies
to maximize it. Our results can be tested in experiments on macroscopic robotic or living particles or in self-
propelled mesoscopic objects moving in media of low viscosity, such as complex plasma.

DOI: 10.1103/PhysRevE.103.042601

I. INTRODUCTION

The nonequilibrium dynamics of active Brownian
particles—also referred to as microswimmers—are typically
described in the overdamped limit, where inertial effects
are suffciently small relative to viscous ones [1–4]. This is
an excellent approximation for micron-sized self-propelled
particles swimming in a viscous Newtonian liquid such as
water [5] at low Reynolds number. The standard model
of a single active Brownian particle [1,4,6] involves a
translational and an orientational degree of freedom and
includes Stokesian friction and fuctuations. These degrees
of freedom are coupled via self-propulsion along the particle
orientation, which is modeled in a simple averaged way by an
internal velocity, sometimes referred to as the particle activity.

However, inertial effects become relevant for larger
particle sizes or the motion in gaseous media of lower
viscosity. Though highly relevant for swimming and fying
organisms as well as for autonomous machines (e.g., fying
insect-drones, marine robots, etc.) [7], mesoscale active
matter at intermediate Reynolds number has been much less
studied. Aiming at a simple description of a single particle
frst, one basic model is that of active Langevin motion [8–11]:
it generalizes the common overdamped model of active
Brownian motion [1,4,6] toward underdamped dynamics by
including the fnite particle mass and the moment of inertia in
the equations of motion [12–20]. The inertial self-propelled
particles may therefore be called “microfyers” (rather

*A.R.S. and S.J. contributed equally to this work.

than “microswimmers”); sometimes they are also termed
“runners,” “walkers,” or “hoppers” [21–23]. Examples of
inanimate inertial self-propelled particles modeled by active
Langevin dynamics are manifold. They include a complex
plasma consisting of mesoscopic dust particles in a weakly
ionized gas [24–29], vibration-driven granular particles
[22,30–39], autorotating seeds and fruits [40,41], camphor
surfers [42], hexbug crawlers [42], trapped aerosols [43], and
minirobots [44–48]. Moreover, there are numerous examples
of animals moving at intermediate Reynolds number, such as
swimming organisms (nematodes, brine shrimps, whirligig
beetles, etc.) [7,49] and fying insects and birds [50–56].

In this paper, we extend the active Langevin model to
time-dependent parameters such as time-dependent inertia,
self-propulsion, and friction. This is a situation frequently
encountered in nature and realizable in laboratory experi-
ments on artifcial self-propelled objects. Let us mention some
examples: scallops move their shells and accelerate by jet
propulsion. Therefore, they become smaller in the course of
the motion such that their moment of inertia and their friction
coeffcients become time-dependent. Moving animals typi-
cally have a fnite energy reservoir [21] implying that their
self-propulsion velocity is getting slower as a function of time.
The maneuverability of animal motion is provided by changes
in the body shape [57,58], which implies a change in the mo-
ment of inertia at fxed total mass. Likewise, in the inanimate
world, minirockets, which are propelled by ejecting mass, are
getting lighter as a function of time [59,60]. Similarly, infated
toy balloons [61,62] are self-propelled by jet propulsion and
strongly subject to random fuctuations in their orientation;
their body size shrinks as a function of time, and so does

2470-0045/2021/103(4)/042601(16) 042601-1 ©2021 American Physical Society
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the mass, the moment of inertia, the friction coeffcient, and
the self-propulsion speed. Granulate hoppers equipped with
an internal vibration motor (“hexbugs”) [39] will consume
energy such that the self-propulsion speed will slowly expire
and fade away as a function of time. Robots that pick up
or release objects also possess a mass variation [63], and a
time-dependent mass can bring about time-dependent friction
coeffcients [64]. Last but not least, any prescribed time de-
pendence can be programed artifcially for man-made robots,
artifcial walkers, and microswimmers: the self-propulsion
speed can be made time-dependent by exposing particles to
external optical felds [65], the noise strength can be steered
by external felds [66,67], the damping by the solvent viscos-
ity [68,69], or both by the external vibration amplitude and
frequency [8,34,70,71].

For the active Langevin model with prescribed time-
dependent parameters, we present here analytical solutions
for several dynamical correlation functions, such as the ori-
entational and velocity autocorrelation function, the mean
displacement, the mean-square displacement, and the delay
function. Our results are as follows: First, we constitute a
model that we refer to as the Langevin rocket. In doing so, we
combine orientational fuctuations and mass loss described by
the traditional Tsiolkovsky rocket equation [72]. We calculate
the mean reach of the Langevin rocket and discuss differ-
ent mass ejection strategies to maximize it. For increasing
rotational noise, the optimal strategy to achieve a maximal
reach changes discontinuously from a complete mass ejec-
tion extended over a long time to an instantaneous ejection
of a mass fraction. Second, we compare different setups of
time-dependent inertia, such as directed and isotropic mass
ejection and isotropic shape changes with constant mass.
Last, we study the case of slow (“adiabatic”) variation of
system parameters. In particular, for a change in the system
parameters described by a power law in time, we predict a
superdiffusive anomalous diffusion involving a mean-square
displacement ∝ tα which scales as a power law in time t with a
nontrivial exponent α [73–81]. In particular, we discuss chiral
particles exposed to a torque that exhibit circling motion. This
generalizes earlier work for overdamped systems [82–84].
Our predictions can be tested in various experimental setups
ranging from macroscopic vibrated granular matter, robots,
or living systems to self-propelled micron particles that are
fying in a gaseous medium or in a plasma.

The paper is organized as follows: In Sec. II, we introduce
the theoretical model for active Langevin motion describ-
ing an inertial particle. In Sec. III, we recapitulate the case
of time-independent self-propulsion, inertia, damping, and
fuctuations found earlier [8,13], but we include also results
such as an analytical expression for the time-resolved mean
trajectory and mean-square displacement. In Sec. IV, we
demonstrate how time-dependent parameters change the dy-
namics of the system: in particular, we introduce the Langevin
rocket model and study slow temporal variations. Finally, we
conclude in Sec. V.

II. BASIC MODEL AND DIFFERENT SETUPS

In this section, we defne the basic model of under-
damped Langevin motion for a self-propelled particle with

y

x

v0 n̂(t)

φ(t)
m, J

M

ξr, Dr

ξ, D

R(t)

FIG. 1. Self-propelled inertial particle with center position R(t )
at time t moving with its center in the two-dimensional xy plane.
The particle position is indicated as R(t ) (black arrow). Moreover,
the particle possesses an orientational degree of freedom that is
characterized by a unit vector n̂ = (cos φ, sin φ) with φ denoting
the angle relative to the x-axis. The particle self-propels along its
orientation with the velocity v0n̂ (red arrow). It may also experience
a torque M along the z-axis leading to rotational motion as indicated
by the blue arrow. The translational motion is further infuenced by
a translational friction ξ and the noise strength D (as indicated by
the light red horizontal double arrow) while the rotational motion
is infuenced by a rotational friction ξr and the orientational noise
strength Dr (as indicated by the light blue curved double arrow).

time-dependent inertia. We consider a self-propelled inertial
particle with a center-of-mass coordinate R(t ) at time t mov-
ing with its center in the two-dimensional xy-plane, see Fig. 1
for a sketch. The particle is polar such that it possesses an
orientational degree of freedom characterized by a unit vector
n̂(t ) = ( cos φ(t ), sin φ(t )), where φ(t ) is the angle relative to
the x-axis. The particle self-propels along its orientation with
the self-propulsion velocity v0n̂, also indicated in Fig. 1. It
may also additionally be exposed to an external or internal
torque M along the z-axis leading to an angular velocity as
shown by the blue arrow in Fig. 1. As the particle has inertia
in both translation and rotation, its confguration is fully spec-
ifed by its center-of-mass coordinate R(t ), its center-of-mass
velocity Ṙ(t ) = dR(t )/dt , its orientational angle φ(t ), and its
angular velocity φ̇(t ).

While previous work [8,11,19] has considered constant
particle mass and moment of inertia, here we generalize the
model toward time-dependent parameters with a particular
focus on a time-dependent particle mass m(t ) and a time-
dependent moment of inertia J (t ), which we defne with
respect to the center-of-mass to describe the rotation around
the z-axis. It turns out that the corresponding equations of
motion need to be discussed with care as they depend on the
physical origin of the change in inertia. To do this system-
atically step by step, we frst consider four different setups,
which are outlined in Fig. 2 and which are actually realizable
in nature. We then give the most general model equation,
which accommodates all these setups as special cases.

A. Time-independent inertia

First of all, as a reference, the special case of time-
independent inertia is considered. This setup is sketched in
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(a) time-independent
inertia

m,J

(b) directed mass
ejection

m(t),

J

(c) isotropic mass
evaporation

m(t),
J(t)

(d) isotropic shape
change

m,

J(t)

FIG. 2. Schematic illustration of the different special setups for
an active inertial particle. The particle is shown as a dark-gray sphere
and its inertia is characterized by the particle mass m and its moment
of inertia J . (a) Time-independent inertia with constant m and J as a
reference situation (gray background). (b) Directed mass ejection:
Per unit time, the mass ṁ(t ) is ejected centrally with a velocity
−un̂(t ) along the particle orientation n̂(t ) which leads to a change
−un̂ṁ(t ) in the translational momentum of the particle and a time-
dependent particle mass m(t ) but a constant moment of inertia J (red
background). (c) Isotropic mass evaporation. Here the translational
and the angular momentum of the particle are both conserved, but
the particle mass m(t ) and moment of inertia J (t ) are time-dependent
(green background). (d) Isotropic change in the particle shape. Here
again the linear and the angular momentum of the particle are both
conserved, the particle mass m is constant, but the moment of inertia
J (t ) is time-dependent (blue background).

Fig. 2(a) (gray background). The particle has a constant mass
m and a constant moment of inertia J . In this case, the
Langevin equation of motion reads

m R̈(t ) = ξ v0 n̂(t ) − ξ Ṙ(t ) + ξ
√

2D f st (t ), (1)

J φ̈(t ) = M − ξr φ̇(t ) + ξr

√
2Dr τst (t ). (2)

As far as the translational dynamics is concerned, there is
a frictional damping force −ξ Ṙ(t ) and a self-propelling ef-
fective force along the particle orientation ξ v0 n̂(t ), which
gives rise to the particle self-propulsion velocity v0 [85]. The
latter does not stem from mass ejection but is of another
origin, such as diffusiophoresis or photophoresis. This self-
propulsion force couples the orientational and translational
degrees of freedom. Furthermore, there is a stochastic force
(“noise”) ξ

√
2D f st (t ), where the effective translational diffu-

sion coeffcient D quantifes the noise strength. We describe
the stochastic term f st (t ) as zero-mean Gaussian white noise
with unit variance,

f st (t ) ⊗ f st (t ′) = δ(t − t ′)I, (3)

where · · · indicates a noise average and I is the unit ma-
trix. Likewise, the rotational dynamics in Eq. (2) involves a
frictional torque −ξr φ̇ and an imposed torque M plus the

stochastic torque ξr
√

2Dr τst (t ), where the effective rotational
diffusion coeffcient Dr now quantifes the rotational noise
strength, and the Gaussian noise τst (t ) has zero-mean and unit
variance

τst (t )τst (t ′) = δ(t − t ′). (4)

One of the best experimental realizations of active
Langevin motion [see Eqs. (1) and (2)] can be found in self-
propelled granular particles. These particles are capable of
transferring the energy of a vibrating surface or an internal
motor to translational or rotational motion. Asymmetry in
the particle design causes them to jump forward or to rotate
when lifted from the ground. From a recent experiment on
these active granular particles [8], we list exemplary orders of
magnitude for our model parameters m = 1 g, J = 10 g mm2,
ξ = 10 g/s, ξr = 100 g mm2/s, D = 100 mm2/s, Dr = 1/s,
v0 = 10–100 mm/s, and M = 10−7 N m.

We shall revisit this standard situation again in Sec. III. In
the absence of any inertial effects, i.e., when m = J = 0, the
equations of motion are overdamped and lead to the standard
picture of active Brownian motion [1,4,6].

B. Directed mass ejection

A rocket is self-propelled by directed mass ejection, so it
establishes a fundamental setup of time-dependent inertia. In
the typical geometry assumed here and shown in Fig. 2(b) (red
background), the direction of the mass ejection is centrally
outward opposite to the particle orientation. For simplicity,
the mass ejection occurs with a constant velocity u relative
to the moving rocket (u > 0) and the outlet coincides with
the center of mass as indicated by a wedge in Fig. 2(b). The
general case in which the ejection occurs not from the center
but from a point distant to the center leads to additional terms
that complicate the analysis, thus it is left for future studies.

We assume, however, for more generality here that the
rocket also has an internal motor, which leads to an addi-
tional self-propulsion of velocity v0. In typical descriptions
of macroscopic rockets, translational and rotational fuctua-
tions are ignored. While this is a reasonable assumption for
macroscopic rockets, it breaks down for minirockets. The
characteristic equations of motion for a self-propelled particle
with directed mass ejection are

d

dt
(m(t ) Ṙ(t )) = ξ v0 n̂(t ) − ξ Ṙ(t ) + ξ

√
2D f st (t )

− ṁ(t )(u n̂(t ) − Ṙ(t )), (5)

and the orientational equation of motion is given by (2).
In discussing the basic physics of Eq. (5), we use Newton’s

second postulate, which states that the total change in transla-
tional momentum is the total force, which is in this case the
sum of friction, translational stochastic, and self-propulsion
forces. But even in the force-free case, the ejected mass carries
away the momentum ṁ(t )(u n̂(t ) − Ṙ(t )) per unit time, which
needs to be included in the balance of (5) with a minus sign
due to the conservation of total momentum; see also [86–88].
This constitutes in fact the thrust force which accelerates the
rocket. It is important to note here that the special case of
the traditional Tsiolkovsky rocket equation is obtained as a
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special limit of no fuctuations, no frictions, no additional self-
propulsion, no external torque, and a vanishing initial angular
velocity, i.e., for D = Dr = ξ = ξr = v0 = M = φ̇(t = 0) =
0 [72].

Since we assume that the outlet/tank of the particle coin-
cides with the center-of-mass, the moment of inertia is not
affected by the mass ejection and remains constant. Hence
the orientational motion is identical to the case of time-
independent inertia. Clearly, via the mass ejection, the two
equations (5) and (2) are coupled.

Realizations of the rocketlike self-propelled objects can
in principle be found for self-propelled Janus particles in
a complex plasma, which are laser-heated such that they
evaporate mass in a certain direction [29,59,60], or even
for infated toy balloons [61,62] or active granular particles
equipped with compressed air tanks. For the latter, we would
expect the particle loss mass at a rate of approximately ṁ =
−1 g/s by exhausting air at a velocity u = 100 mm/s. The
initial mass and moment of inertia are m0 = 10 g and J =
100 g mm2. The remaining parameters are of the order of
ξ = 10 g/s, ξr = 100 g mm2/s, D = 100 mm2/s, Dr = 1/s,
v0 = 10–100 mm/s, and M = 10−7 N m. We fnally remark
that there is some overdamped counterpart of rocketlike mo-
tion in the osmotophoresis of semipermeable vesicles [89]
where the ejection of molecules out of the vesicle body leads
to self-propulsion driven by the osmotic pressure difference
[90] and for Janus-particles and nanorockets driven by reac-
tive momentum transfer [91,92].

C. Isotropic mass evaporation

A different situation occurs if the mass ejection is not
directed but isotropic as sketched in Fig. 2(c) (green back-
ground). Imagine a particle coated with an isotropic layer that
evaporates likewise in all directions, as realizable in dusty
plasmas [29,59,60]. In this case, the ejected mass only carries
away the translational momentum given by −ṁ(t ) Ṙ(t ) such
that the translational equations of motion for this case coincide
with Eq. (5) for u = 0. However, the mass ejection is radial
only in the body frame, but for a rotating particle the angular
momentum J̇ (t ) φ̇(t ) is taken away in the laboratory frame
even in the absence of any torque. Therefore, the orientational
equation of motion reads as (2) with J replaced by J (t ), as
follows:

J (t ) φ̈(t ) = M − ξr φ̇(t ) + ξr

√
2Dr τst (t ). (6)

This setup could be realized in experiments by placing
a leaking water tank or evaporating material on an active
granular particle. The order of magnitude of the parameters
might be m0 = 10 g, ṁ = −1 g/s, J0 = 100 g mm2, ξ =
10 g/s, ξr = 100 g mm2/s, D = 100 mm2/s, Dr = 1/s, v0 =
10–100 mm/s, and M = 10−7 N m.

Finally, we remark that the inverse situation of mass ad-
sorption can be treated in a similar way with a positive sign of
ṁ(t ).

D. Isotropic shape change

The pirouette in fgure skating is an example of a fourth
situation in which the total mass m of the body is time-
independent but the moment of inertia does change due to a

shape change of the body. In this special case, sketched in
Fig. 2(d) (blue background), the shape change does not carry
away angular momentum but the total angular momentum is
conserved. Consequently, while the translational equation of
motion is identical with Eq. (1), the orientational equation of
motion is given by

d

dt
(J (t ) φ̇(t )) = M − ξr φ̇(t ) + ξr

√
2Dr τst (t ). (7)

Lastly, this model could describe an active granular particle
with a stretched elastic material attached to it. In that way,
the initial moment of inertia could be increased by an order
of magnitude J0 = 100 g mm2, relaxing over a few seconds
to its equilibrium shape with J̇ = −1 g mm2/s. The order
of magnitude of the other parameters might be m = 1 g,
ξ = 10 g/s, ξr = 100 g mm2/s, D = 100 mm2/s, Dr = 1/s,
v0 = 10 − 100 mm/s, and M = 10−7 N m.

E. General model

The lesson to be learned from the previous examples is
that the equations of motion depend on the imposed setup of
mass change. To proceed in a general way, we now present a
general framework of equations of motion that accommodates
all previous special cases. To defne this model as gener-
ally as possible, we also assume an effective time-dependent
self-propulsion speed v0(t ), a time-dependent internal torque
M(t ), a time-dependent translational ξ (t ) and rotational fric-
tion coeffcient ξr (t ), as well as a time-dependent translational
D(t ) and rotational diffusion coeffcient Dr (t ) and a time-
dependent mass ejection velocity u(t ).

We now consider the following general Langevin equations
governing the translational and the rotational motion for a
self-propelled particle:

d

dt
(m(t ) Ṙ(t )) = ξ (t )(v0(t ) n̂(t ) − Ṙ(t ) +

√
2D(t ) f st (t ))

− ṁ(t )(u(t ) n̂(t ) − Ṙ(t )), (8)

d

dt
(J (t ) φ̇(t )) = M(t ) − ξr (t ) φ̇(t ) + ξr (t )

√
2Dr (t ) τst (t )

+ ν J̇ (t ) φ̇(t ). (9)

Clearly, all situations discussed so far and shown in Fig. 2
are obtained from these equations as special cases: of course,
Fig. 2(a) is the special limit where the parameters m, J , ξ , ξr ,
D, Dr , v0, and M are constant. The rocket setup in Fig. 2(b)
coincides with the general equations (8) and (9) when the
parameters J , ξ , ξr , D, Dr , v0, M, and the relative velocity
u are constant. The isotropic mass evaporation [Fig. 2(c)] is
contained in (8) and (9) when the parameters ξ , ξr , D, Dr , v0,
and M are constant, the relative velocity vanishes, u = 0, and
ν = 1. Finally, the equations for an isotropic shape change
[Fig. 2(d)] follow when in (8) and (9) the parameters m, ξ , ξr ,
D, Dr , v0, and M are constant and ν = 0.

At this stage, we remark that more realistic situations can
also be accommodated in the general equations (8) and (9).
These include, for example, a rocket where the outlet of the
mass ejection does not coincide with the center-of-mass or
where the ejection direction is not parallel to the particle
orientation [93].

042601-4

58 Chapter 3 Scientific publications



TIME-DEPENDENT INERTIA OF SELF-PROPELLED … PHYSICAL REVIEW E 103, 042601 (2021)

From a mathematical point of view, the equations of mo-
tion (8) and (9) are stochastic differential equations with
Gaussian noise. The rotational equation (9) is linear so that
the distribution of the angle and angular velocity is Gaussian
for any time. We give the corresponding general solutions of
(8) and (9) in Appendix A.

III. TIME-INDEPENDENT INERTIA

We now turn to the special case of time-independent pa-
rameters defned by Eqs. (1) and (2). These equations of
motion were studied before in Refs. [8,11,19]. Here we
summarize essential known results, but we also provide ad-
ditional analytical results for the full time-resolved mean
displacement, velocity correlation function, and mean-square
displacement. In doing so, we frst consider the noise-free case
and then we include the effects of noise.

A. Results for vanishing noise

For given initial orientations φ0 = φ(0) and angular veloc-
ities φ̇0 = φ̇(0) at time t = 0, the deterministic solution of the
general orientational equation of motion (2) in the absence of
noise is

φ(t ) = φ0 + ωt + φ̇0 − ω

γr
(1 − e−γr t ) (10)

with the spinning frequency ω = M/ξr and rotational damp-
ing rate γr = ξr/J . Plugging this solution into the noise-free
translational equation (1), we obtain for given initial positions
R0 = R(0) and velocities Ṙ0 = Ṙ(0) at time t = 0 the parti-
cle velocity

Ṙ(t ) = Ṙ0e−γ t + v0P̂[γ̃ (iθ )γ̃+iω̃ei(φ0+θ )

× �(−(γ̃ + iω̃), iθe−γr t , iθ )]e−γ t , (11)

where we introduced the translational damping rate γ = ξ/m
and the notations γ̃ = γ /γr , ω̃ = ω/γr , θ = (φ̇0 − ω)/γr .
Moreover, �(s, x1, x2) denotes the generalized Gamma func-
tion [94],

�(s, x1, x2) =
∫ x2

x1

dt t s−1e−t , (12)

and the operator P̂ formally transforms a complex number z
into its two-dimensional vector (Re z, Im z) in the complex
plane. This results in the particle trajectory

R(t ) = R0 + Ṙ0

γ
(1 − e−γ t )

+ v0

γr
P̂[(iθ )iω̃ei(φ0+θ )�(−iω̃, iθe−γr t , iθ )]

− v0

γr
P̂[(iθ )γ̃+iω̃ei(φ0+θ )�(−(γ̃ +iω̃), iθe−γr t , iθ )]e−γ t .

(13)

In the limit of long times, the angular velocity reaches the
spinning frequency, limt→∞ φ̇(t ) = ω, so that the particle is
rotating with this frequency around a circle of radius

r = v0

ω

√
γ 2

γ 2 + ω2
, (14)

centered at the position

Rc = R0 + Ṙ0

γ
+ v0

γr
P̂[(iθ )iω̃ei(φ0+θ )�(−iω̃, 0, iθ )]. (15)

Clearly, the spinning frequency ω does not depend on any
inertia. However, the circle radius r depends on the mass m via
the translational damping rate γ due to the centrifugal force,
but it is independent on the moment of inertia J . The center
of the circle depends on R0, Ṙ0, φ0, and φ̇0, demonstrating
that for vanishing noise even the long-time limit may depend
on the initial conditions. Finally, in the overdamped limit of
vanishing inertia, the results reduce to that of Brownian circle
swimmers [82,95].

B. Effect of Brownian noise

Subjected to Brownian noise, the particle will relax to
a steady state after a long time forgetting about its initial
conditions R0, Ṙ0, φ0, and φ̇0 at time t = 0. The static and
dynamical correlation in the steady state can be calculated as
a time average over a very long time window, which we shall
denote with angular brackets 〈· · · 〉. In the sequel, we shall
consider several of such dynamical correlations. In the steady
state, one can also calculate conditional averages. For exam-
ple, one can build dynamical averages in the steady state after
a lag time under the condition that the particle’s position and
orientation are prescribed at an initial time. We shall compile
analytical results for the different correlation functions frst
and show examples for numerical evaluations of the analytical
formula.

1. Velocity correlation function

First we introduce the translational velocity correlation
function [96],

Z (t ) = 〈Ṙ(t ) · Ṙ(0)〉, (16)

where t now denotes a lag time and Ṙ(0) is taken from
the velocity distribution in the steady state. We remark that
the latter was computed recently for small inertia [97] and
for the formally equivalent model of an overdamped parti-
cle in a harmonic potential [98]. The velocity distribution is
non-Gaussian (i.e., non-Maxwellian), and its second moment,
Z (0) = 〈Ṙ(0) · Ṙ(0)〉, which is proportional to the mean ki-
netic energy, is known analytically [8] as

Z (0) = 2Dγ + v2
0 Re[γ̃ eD̃r D̃−�+

r �(�+, 0, D̃r )], (17)

where we introduced D̃r = Dr/γr and �± = (Dr ± (γ +
iω))/γr . For an active inertial particle considered here, we
have obtained the analytical result

Z (t ) = 2Dγ e−γ t + v0

2
(〈Ṙ(t ) · n̂(0)〉 + 〈Ṙ(0) · n̂(t )〉) (18)

with

〈Ṙ(t ) · n̂(0)〉 = v0 Re
[
γ̃ eD̃r

(
D̃−�−

r �(�−, D̃re−γr t , D̃r )

+ D̃−�+
r �(�+, 0, D̃r )

)
e−γ t

]
(19)

and

〈Ṙ(0) · n̂(t )〉 = v0 Re
[
γ̃ eD̃r D̃−�+

r �(�+, 0, D̃re−γr t )eγ t
]
,

(20)
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which implies that the long-time behavior of Z (t ) is exponen-
tial in time.

2. Orientation correlation function

Similarly, the dynamical orientational correlation function
C(t ) = 〈n̂(t ) · n̂(0)〉 in the steady state can be expressed ana-
lytically as a double exponential as

C(t ) = cos(ωt )e−Dr [t−γ −1
r (1−e−γr t )], (21)

which was found previously in another context by Ghosh and
co-workers [13] for ω = 0 and for general ω in Ref. [8]. Again
it decays exponentially in time for long times. A characteristic
orientational persistence time τp can be determined as

τp =
∫ ∞

0
C(t )dt = 1

Dr
Re

[
D̃reD̃r D̃−�

r �(�, 0, D̃r )
]
, (22)

with � = (Dr − iω)/γr . For vanishing inertia, we recover
the known result of the persistence time τp = Dr/(D2

r + ω2)
[82,95], which simplifes further to the standard result τp =
1/Dr for a linear swimmer [1].

3. Mean displacement

Next, we address the mean displacement 〈R(t )〉 =
〈R(t ) − R0〉 of the particle in the steady state as a function
of time t . The average is now taken in the steady state but
under the condition that for the initial time t = 0, the position
R(0) = R0 and the orientation n̂(0) [embodied in φ(0) = φ0]
are prescribed. Since the particle velocities and the orien-
tations are correlated in the steady state, the average over
the translational velocity 〈Ṙ(0)〉 is not vanishing due to the
prescribed orientation n̂(0). This average is given by

〈Ṙ(0)〉 = v0P̂
[
γ̃ eD̃r D̃−�+

r �(�+, 0, D̃r )eiφ0
]
. (23)

We obtain for the mean displacement

〈R(t )〉 = 〈Ṙ(0)〉
γ

(1 − e−γ t )

+ v0

Dr
P̂
[
D̃reD̃r

(
D̃−�

r �(�, D̃re−γr t , D̃r )

+ D̃−�−
r �(�−, D̃re−γr t , D̃r )e−γ t

)
eiφ0

]
. (24)

For short times t , the particle proceeds on average ballistically
(i.e., linearly in time) with

〈R(t )〉 = 〈Ṙ(0)〉t + O(t2). (25)

Then the rotational noise decorrelates the current orientation
from the initial orientation, and the mean displacement satu-
rates to a fnite persistence length Lp = limt→∞〈R(t )〉 given
as

Lp = 〈Ṙ(0)〉
γ

+ v0

Dr
P̂
[
D̃reD̃r D̃−�

r �(�, 0, D̃r )eiφ0
]
. (26)

In the case of a vanishing spinning frequency (ω = 0), the per-
sistence length simplifes to Lp = 〈Ṙ(0)〉/γ + v0τpn̂0 with τp

given by (22). In the overdamped limit, we obtain the standard
results of the persistence length for linear microswimmers
Lp = v0n̂0/Dr (ω = 0) [1]. Moreover, for an overdamped cir-
cle swimmer, the full time-resolved mean displacement given
by (24) simplifes to a spira mirabilis [82,99]. The presence of

0 1 2
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y
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x/lp

chiral particlespira
mirabilis

J = 0

m = 0

J = 0.1 ξr/Dr

m = 0.1 ξ/Dr

J = 1 ξr/Dr

m = 0.1 ξ/Dr

J = 10 ξr/Dr

m = 0.1 ξ/Dr

FIG. 3. Mean displacement 〈R(t )〉 in the xy-plane for a chi-
ral particle with initial orientation along the x-axis for different
moment of inertia, J = 0.1 ξr/Dr (orange), J = 1 ξr/Dr (red), and
J = 10 ξr/Dr (purple). Lengths are given in units of lp = v0/Dr . The
parameters are ω = 4 Dr , m = 0.1 ξ/Dr . The starting point at t = 0
is denoted by a black dot. The spira mirabilis of the overdamped
limit is plotted on the left (black) for comparison.

inertia will distort the ideal spira mirabilis and give rise to a
more complex mean trajectory. This is shown in Fig. 3, where
three shapes of the mean trajectory for increasing moment of
inertia J are compared to the overdamped case. Increasing
J reduces effectively the role of fuctuations such that there
are more turns until the particle reaches half of the distance
to its fnal fxpoint. Even though n̂(0) is oriented toward the
positive x-axis in all cases, the inertial mean trajectory frst
“oversteers” the initial orientation due to the velocity average,
an effect that we shall elaborate on and quantify further in Sec.
III B 5.

4. Mean-square displacement

The full time-resolved mean-square displacement (MSD)
can be calculated as

〈R2(t )〉 = 4DLt + 2

γ 2
(Z (t ) − Z (0)) + 2

v2
0

γ 2
r

F (t ), (27)

with the long-time diffusion coeffcient

DL = D + v2
0

2Dr
Re[D̃reD̃r D̃−�

r �(�, 0, D̃r )], (28)

and the function

F (t ) = Re

{
eD̃r

�2

(
2F2

[
�,�

� + 1,� + 1; −D̃r

]

− 2F2

[
�,�

� + 1,� + 1; −D̃re−γr t

]
e−γr�t

)}
, (29)

where pFq represents the generalized hypergeometric function
[100].

Figures 4(a)–4(d) compare the temporal behavior of the
mean-square displacement of an achiral particle to that of
a chiral particle for different masses and moments of iner-
tia J . All curves exhibit the characteristic crossover from a
short-time ballistic behavior

〈R2(t )〉 = Z (0) t2 + O(t3) (30)
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FIG. 4. Mean-square displacement as a function of time on a
double-logarithmic plot. (a) For an achiral particle with fxed mass
m and varied moment of inertia J . (b) For a chiral particle with fxed
mass m and varied moment of inertia J . The fxed parameters are
m = 0.1 ξ/Dr , D = 0 and the moment of inertia is J = 0.1 ξr/Dr (or-
ange), J = 1 ξr/Dr (red), or J = 10 ξr/Dr (purple). (c) For an achiral
particle with varied m and fxed J . (d) For a chiral particle with
varied m and fxed J . Here, the fxed parameters are J = 0.1 ξr/Dr ,
D = 0 and the mass is m = 0.1 ξ/Dr (orange), m = 1 ξ/Dr (red), or
m = 10 ξ/Dr (purple).

to the long-time diffusive behavior governed by

〈R2(t )〉 ∼ 4DLt . (31)

In the limit of small J , the short-time ballistic dynamics is

lim
J→0

〈R2(t )〉 =
(

2Dγ + v2
0

γ (γ + Dr )

(γ + Dr )2 + ω2

)
t2 + O(t3),

(32)
while for large J we have

lim
J→∞

〈R2(t )〉 =
(

2Dγ + v2
0

γ 2

γ 2 + ω2

)
t2 + O(t3). (33)

In general, the long-time diffusion coeffcient DL [see
Eq. (28)] can be represented as

DL = D + v2
0

2
τp, (34)

where the frst term in Eq. (22) captures the diffusive behavior
of a passive particle and the second is consistent with the
standard picture of a typical jump length of v0τp and a typical
jump time of τp, similar to the overdamped expression of mi-
croswimmers when ω = 0 [1]. It was emphasized in Ref. [8]
that DL depends on the moment of inertia J but not explicitly
on the mass m.

In the case of small moments of inertia, the long-time
diffusion coeffcient of the circle fyer asymptotically goes
to [8]

DL = D + v2
0

2

Dr

D2
r + ω2

(
1 + Dr

ξr
J

)
+ O(J2), (35)
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FIG. 5. Long-time diffusion coeffcient DL as a function of the
moment of inertia J for different circling frequencies ω = 10Dr ,
ω = 1Dr , ω = 0.1Dr , and ω = 0. The translational diffusion coeff-
cient was set to zero, D = 0. In the inset, the global maximum point
Jmax for a given circling frequency ω is depicted. The corresponding
maximal value DL (Jmax) is shown as a red dot in the main fgure.

which grows dominantly in proportion to the moment of
inertia. The asymptotic behavior of the long-time diffusion
coeffcient for large moments of inertia is [8]

DL ∼
{

v2
0

√
π

8Drξr

√
J (ω = 0),

D (ω �= 0).
(36)

As the moment of inertia grows for ω �= 0, the activity-
induced part of the long-time diffusion coeffcient goes
asymptotically to zero [see Eq. (36)] since diffusion is ham-
pered by systematic circling motion, i.e., the particle gets
trapped in a circular path due to its huge moment of inertia.

Figures 4(a) and 4(c) show data for an achiral swimmer
with different moments of inertia J and different masses. The
short-time ballistic prefactor is somewhat independent of J
but decreases with increasing m. The latter trend follows from
the fact that for large m the particle cannot accelerate toward
its self-propulsion velocity v0. Conversely, the long-time dif-
fusivity is also increasing with J according to (35) and (36)
as the persistence in orientation increases with J but it is
independent of m. For a chiral particle, shown in Figs. 4(b)
and 4(d), the MSD exhibits wiggles due to the circling.

An immediate consequence of (35) and (36) is that the
long-time diffusivity behaves nonmonotonically in J . Explicit
data are presented in Fig. 5, which illustrates the nonmono-
tonic dependence of DL on the moment of inertia J for
different spinning frequencies ω for the special case D = 0.
There is an intermediate maximum in DL which is indicated
in Fig. 5 by a red point. This peak could be exploited for
an optimal exploration of an unknown territory by adapting
the moment of inertia accordingly. The associated optimal
moment of inertia is plotted as a function of the spinning
frequency ω in the inset of Fig. 5.
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5. Delay function

Contrary to the overdamped case, the velocity of an inertial
particle does not coincide with its self-propulsion direction,
and in Ref. [8] a dynamical correlation function, referred to
as a delay function d (t ), was introduced to quantify the delay
between the velocity and orientation dynamics,

d (t ) = 〈Ṙ(t ) · n̂(0)〉 − 〈Ṙ(0) · n̂(t )〉. (37)

The “mixed” difference ensures that this function is trivially
zero in the overdamped limit, but when nonzero its sign con-
tains valuable information about the delay process between
n̂(t ) and Ṙ(t ). If, for example, d (t ) is positive, this means
that—on average—frst the particle orientation changes and
then the velocity will follow that change after a time t . A
positive d (t ) is the standard behavior exploited by the over-
steering of racing cars, which is also expected for achiral
particles. The full analytical result for d (t ) directly follows
from (19) and (20) and was given in Ref. [8]. Most notably,
for an achiral particle, d (t ) has a positive peak after a typical
delay time, while for a chiral particle, d (t ) oscillates due to
the systematic change in orientation. The latter oscillation was
recently observed in macroscopic whirligig beetles swimming
at the water surface [49].

Here we also provide analytical limits of small and large
moments of inertia J . For small J we get

d (t ) = 2v0A(t )

(
1 + Dr

ξr
J

)
+ O(J2), (38)

with

A(t ) = γ Dr
(
γ 2 − D2

r − ω2
)
[cos(ωt ) e−Drt − e−γ t ]

((γ + Dr )2 + ω2)((γ − Dr )2 + ω2)

+ γ ω
(
γ 2 + D2

r + ω2
)

sin(ωt ) e−Drt

((γ + Dr )2 + ω2)((γ − Dr )2 + ω2)
. (39)

Since A(t ) is positive for small times t , the delay effect is
enhanced for increasing J . Moreover, the oscillatory behavior
of a chiral particle can be seen here directly. In the opposite
limit of large moment of inertia, the inertial delay approaches

lim
J→∞

d (t ) = 2v0
γ ω

γ 2 + ω2
sin(ωt ), (40)

independent of the rotational diffusion coeffcient Dr , which
documents again the oscillatory behavior for chiral particles.

IV. TIME-DEPENDENT INERTIA

Here we study the effect of time-dependent inertia on the
Langevin motion of an underdamped particle. We frst intro-
duce a reduced Langevin rocket model in which the mass
of the particle gets burned to accelerate the particle giving
rise to a time-dependent mass and propulsion speed. Then we
compare the four different setups introduced in Sec. II. Last,
we consider the limiting case of slowly varying parameters
with respect to time.

A. Langevin rocket

We defne the “Langevin rocket” model by including ori-
entational fuctuations in the traditional Tsiolkovsky rocket

equation [72]. The effect of noise on rocket motion has been
considered previously (see, e.g., [101]), but a simple basis
reference model for that is missing. We therefore simplify the
general Eqs. (5) and (2) for directed mass ejection and as-
sume a vanishing moment of inertia, torque, and translational
diffusion (J = 0, M = 0, and D = 0) The Langevin rocket
dynamics for a prescribed m(t ) is then given by

m(t ) R̈(t ) + ξ Ṙ(t ) = −u ṁ(t ) n(t ), (41)

φ̇(t ) =
√

2Dr τst (t ). (42)

This set of equations approaches the ideal Tsiolkovsky rocket
equation, m(t ) R̈(t ) = −u ṁ(t ) n0, in the limit of vanishing
damping (ξ = 0) and noise (Dr = 0) [72].

For the sake of simplicity, we assume that the rocket is
ejecting mass at a constant rate (m∞ − m0)/t , where m0

denotes the initial mass, m∞ is the fnal rest mass of the rocket,
and t is the total burn time. The ejection process happens in
the window 0 < t < t such that the time-dependent particle
mass is

m(t ) = m0 + (m∞ − m0)
min(t,t )

t
. (43)

In the following, we discuss the average reach of the rocket
(i.e., its mean displacement) as a function time. In particular,
we investigate the fnal reach for long times as a function of
the burn time t and the propellant mass fraction

ζ = m0 − m∞
m0

. (44)

1. Results for vanishing noise

In the absence of rotational noise, the displacement of the
rocket for a vanishing initial velocity at t = 0 is

R(t ) = u
min(t,t )

S1 + 1
n̂0 − u

γ0

m(t )

m0

1 − (m(t )
m0

)S1

S1 + 1
n̂0

+ u

γ0

m(t )

m0

1 − (m(t )
m0

)S1

S1
(1 − e−γ∞( max(t,t )−t ))n̂0,

(45)

with the initial damping rate γ0 = ξ/m0, the fnal damping
rate γ∞ = ξ/m∞, and the reduced burn time S1 = γ0t/ζ .

For short times, the rocket exhibits an acceleration by eject-
ing mass such that the displacement scales with t2,

R(t ) = uζ

2t
n̂0 t2 + O(t3). (46)

After the burn time t , the rocket reaches its maximal ve-
locity, which is subsequently exponentially damped with the
fnal damping rate γ∞ until the rocket comes to a standstill.
The total long-time displacement R∞ = limt→∞ |R(t )| is
given by

R∞ = ut

S1 + 1
+ u

γ0

(1 − ζ )(1 − (1 − ζ )S1 )

S1(S1 + 1)
. (47)

In Fig. 6, we show the long-time displacement R∞ as a
function of the propellant mass fraction ζ for different burn
times t . For long burn times t � 1/γ0, the ultimate dis-
placement increases linearly with the propellant mass fraction
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FIG. 6. Maximal reach R∞ as a function of the propellant mass
fraction ζ for several burn times t = 10−2/γ0, t = 1/γ0, and
t = 102/γ0. The inset depicts the optimal propellant mass fraction
ζmax for a given burn time t . The corresponding maximal value
R∞(ζmax) is shown as a red dot in the main fgure.

R∞ ∼ u ζ/γ0. The rocket reaches the longest distance when
ζmax ∼ 1, a situation that can be called complete extended
mass ejection. Interestingly, however, there is a qualitatively
different behavior for burn times that are comparable to or
smaller than the characteristic damping time 1/γ0, where the
displacements behave nonmonotonically in the mass fraction
ζ . This can be intuitively understood as follows: for small
mass fractions, more ejection means more propulsion and
acceleration such that R∞ increases with ζ . Conversely for
ζ close to 1, the rocket becomes very light after the burn time
and therefore very quickly stops within an extremely short
damping time 1/γ∞, which reduces its reach relative to a
situation of smaller ζ . Consequently, the optimal value ζmax

for the mass ratio for which the reach is maximal is smaller
than 1. These corresponding optimal mass ratios are marked
by red points in Fig. 6 and plotted as a function of the reduced
burn time in the inset. For decreasing burn times the optimal
mass ratio ζmax exhibits a bifurcation-like behavior from com-
plete mass ejection to a fnite fraction with the special limit of
ζmax ∼ 1 − e−1 ≈ 0.63 as t approaches zero.

The special limit of t � 1/γ0 deserves some more atten-
tion. In this case of fractional instantaneous mass ejection,
the particle ejects only a fraction of its propellant to gain
momentum very quickly. But it keeps a rest mass in order
to still proceed during the subsequent damping time. In this
limit, we obtain

R(t ) = − u

γ0
(1 − ζ ) ln(1 − ζ )(1 − e−γ∞t )n̂0, (48)

which scales for t � t � 1/γ0 linearly in time,

R(t ) = −u ln(1 − ζ ) n̂0 t + O(t2). (49)

For long times, t � 1/γ0, we obtain

R∞ = − u

γ0
(1 − ζ ) ln(1 − ζ ). (50)

We fnally remark that one can consider a full optimization
problem with respect to both burn time t and the mass frac-
tion ζ by posing the following question: What is the maximal
reach of the rocket if the burn time t and the mass fraction
ζ can be varied freely and independently? The answer in the
fuctuation-free case is simple: the best strategy is to burn all
mass ζmax → 1 and do this over a very long time t → ∞.
Then one achieves the maximum

max(R∞) = u

γ0
, (51)

shown in the upper right corner of Fig. 6. In other terms, the
strategy of complete extended mass ejection always outper-
forms that of an fractional instantaneous mass ejection. This
simple answer will change if orientational noise is included, a
case that we shall address next.

2. Noise-averaged mean reach and noise-induced transition
between two mass ejection strategies

In the case of fnite rotational noise (Dr > 0), we obtain
for the noise-averaged displacement of the Langevin rocket
the analytical result

R(t )

= u

Dr

1

S1 + 1
(1 − e−Dr min(t,t ) )n̂0

+ u

Dr
Re

[
eS2 (−S2)S1+1�

(
− S1,−S2

(m(t )
m0

)
,−S2

)]
n̂0

×
((m(t )

m0

)S1+1

S1 + 1
−

(m(t )
m0

)S1+1

S1
(1 − e−γ∞( max(t,t )−t ))

)
,

(52)

with S2 = Drt/ζ proportional to the rotational noise. Ori-
entational fuctuations do not contribute to the short-time
behavior as witnessed by the fact that in this limit the mean
displacement coincides with the noise-free acceleration be-
havior of Eq. (46). For long times, on the other hand, the mean
reach of the Langevin rocket is

R∞ = u

Dr

1

S1 + 1
(1 − e−Drt ) + u

Dr

(1 − ζ )S1+1

S1(S1 + 1)

× Re[eS2 (−S2)S1+1�(−S1,−S2(1 − ζ ),−S2)].
(53)

Returning to the previous optimization problem, we now max-
imize the mean reach as a function of burn time t and
mass fraction ζ for fxed prescribed noise strength Dr/γ0. In
Fig. 7(a), the resulting maximal reach max(R∞) is shown
for varied noise strength Dr/γ0 in units of its universal noise-
free limit u/γ0 of complete extended mass ejection. The
associated optimal burn time tmax and optimal mass fraction
ζmax are also presented [see Figs. 7(b) and 7(c)]. If rotational
noise is increased, the complete extended mass ejection is
still the best strategy, but it is optimal to burn the full mass
over a fnite burn time. This strategy defes best the ultimate
orientational decorrelation, which reduces the mean reach. In
the opposite limit of very large orientational noise, the best
strategy is to get momentum quickly by ejecting part of the
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FIG. 7. (a) The optimal mean reach max (R∞) maximized with respect to the propellant mass fraction ζ and the burn time t as a
function of the rotational noise strength Dr/γ0. (b) Optimal burn time tmax as a function of the rotational noise strength Dr/γ0. (c) Optimal
propellant mass fraction ζmax as a function of the rotational noise strength Dr/γ0. The transition from the complete extended mass ejection
strategy to that of the fractional instantaneous mass ejection is marked by vertical black lines at Dr, crit ≈ 0.72 γ0 in all three fgures.

mass and using it to proceed further within the characteristic
damping time. If one were to eject the mass completely, the
system would be overdamped after the burn time and would
stop immediately, lacking the additional beneft of the iner-
tia. Hence the fractional instantaneous mass ejection is the
optimal strategy. Interestingly, there is a sharp noise-induced
discontinuous transition between the two strategies for an
intermediate fnite value

Dr,crit ≈ 0.72 γ0 (54)

of the orientational noise. The latter is signaled by a sharp
jump in the optimal burn time from 1.39 γ0 to 0 [see Fig. 7(b)].
The optimal propellant mass fraction jumps from 1 to the
universal value of 1 − e−1 ≈ 0.63 [see Fig. 7(c)] and can thus
be viewed as the “order parameter” of the transition.

B. Comparison between the different setups

We now compare the different setups for time-dependent
inertia as discussed in Sec. II in more detail (see again
Fig. 2). In the case of directed mass ejection or isotropic
mass evaporation [Figs. 2(b) and 2(c)], we assume a mass loss
exponentially in time t as

m(t ) = m∞ + (m0 − m∞)e−γmt , (55)

where m0 is the initial mass, m∞ is the rest mass, which
remains after the fuel is burned, and γm is the mass decay rate.
As outlined in Appendix B, an exponential mass loss occurs
in particular for a rocket that ejects gas molecules at constant
speed from a tank under isothermal and isochoric conditions.
In this case, the exponential mass reduction follows from the
reduction of the gas density in the tank. Accordingly, we also
assume an exponential decrease in the moment of inertia,

J (t ) = J∞ + (J0 − J∞)e−γJ t , (56)

where J0 is the initial and J∞ the fnal moment of inertia,
and γJ is the decay rate of the moment of inertia. For the
isotropic shape change [Fig. 2(d)], the mass is assumed to be
constant, and only an exponential loss in the moment of inertia
is prescribed.

The protocol is as follows. At time t = 0, we start from a
steady state achieved for constant parameters and then initiate
the mass loss and moment of inertia change (or in gen-
eral arbitrary time dependences). For the different dynamical
correlation functions, we correlate the system confguration
after a time t with the steady-state condition at time t = 0
(over which we perform the average). For the different dy-
namical correlation functions, we correlate the steady-state
condition at time t = 0 over which we perform the average
with the system confguration after a time t . Under these
conditions, we obtain general analytical results for arbitrary
time dependences. Since the system is relaxing or “aging,” the
two-point correlation functions now depend explicitly on two
times—t1, t2—not just on the time difference as in the steady
state.

For t1 < t2, the orientational correlation function
C(t1, t2) = 〈n̂(t1) · n̂(t2)〉 is given by

C(t1, t2) = cos(μ(t1, t2)) e− 1
2σ (t1, t2)

, (57)

with the mean angle difference

μ(t1, t2) =
∫ t2

t1

dt ′′
∫ t ′′

−∞
dt ′ ξr (t ′)

J (t ′)
ω(t ′)e−�r (t ′,t ′′ ), (58)

the corresponding variance

σ (t1, t2) = 4
∫ t2

t1

dt ′′′
∫ t ′′′

t1

dt ′′

×
( ∫ t ′′

−∞
dt ′

(
ξr (t ′)
J (t ′)

)2

Dr (t ′)e−2�r (t ′,t ′′ )
)

e−�r (t ′′,t ′′′ ),

(59)

and the rotational damping function

�r (t1, t2) =
∫ t2

t1

dt ′ ξr (t ′)
J (t ′)

+ (1 − ν) ln

(
J (t2)

J (t1)

)
. (60)

Here, ν = 0 in the case of isotropic shape change, and ν = 1
in the case of isotropic mass evaporation.
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TABLE I. Simulation parameter for the different setups.

Time-independent inertia Directed mass ejection Isotropic mass ejection Isotropic shape change

m(t ) m0 m∞ + (m0 − m∞)e−γmt m∞ + (m0 − m∞)e−γmt m0

γm 0.1 Dr 0.1 Dr

m∞/m0 0.1 0.1
u 1 v0

J (t ) J0 J0 J∞ + (J0 − J∞)e−γJ t J∞ + (J0 − J∞)e−γJ t

γJ 0.1 Dr 0.1 Dr

J∞/J0 0.1 0.1

Similarly, the velocity correlation function Z (t1, t2) =
〈Ṙ(t1) · Ṙ(t2)〉 for t1 < t2 is

Z (t1, t2)

= 4
∫ t1

−∞
dt ′

(
ξ (t ′)
m(t ′)

)2

D(t ′)e−�(t ′,t1 )e−�(t ′,t2 )

+
∫ t1

−∞
dt ′

∫ t2

−∞
dt ′′a(t ′)a(t ′′)〈n̂(t ′) · n̂(t ′′)〉e−�(t ′,t1 )

× e−�(t ′′,t2 ), (61)

with the acceleration

a(t ) = ξ (t )

m(t )
v0(t ) − ṁ(t )

m(t )
u(t ) (62)

and the translational damping function

�(t1, t2) =
∫ t2

t1

dt ′ ξ (t ′)
m(t ′)

. (63)

For the delay function d (t1, t2) = 〈Ṙ(t2) · n̂(t1)〉 − 〈Ṙ(t1) ·
n̂(t2)〉, we obtain

d (t1, t2) =
∫ t2

−∞
dt ′a(t ′) 〈n̂(t ′) · n̂(t1)〉 e−�(t ′,t2 )

−
∫ t1

−∞
dt ′a(t ′) 〈n̂(t ′) · n̂(t2)〉 e−�(t ′,t1 ). (64)

The general expression for the mean displacement
〈R(t1, t2)〉 = 〈R(t2) − R(t1)〉 is

〈R(t1, t2)〉 =
∫ t2

t1

dt ′
∫ t ′

−∞
dt ′′a(t ′′) 〈n̂(t ′′)|n̂(t1)〉e−�(t ′′,t ′ ),

(65)
where the conditional average

〈n̂(t2)|n̂(t1)〉

=
⎧⎨
⎩

P̂
[
e− 1

2σ (t2, t1) + i(φ1 + μ(t2, t1))
]

for t2 > t1,

P̂
[
e− 1

2σ (t1, t2) + i(φ1 + μ(t1, t2))
]

for t2 < t1,

(66)

denotes the mean orientation under the condition that the
particle has the angle φ(t1) = φ1 at time t1.

Last, the mean-square displacement 〈R2(t1, t2)〉 =
〈(R(t2) − R(t1))2〉 is

〈R2(t1, t2)〉 =
∫ t2

t1

dt ′
∫ t2

t1

dt ′′Z (t ′, t ′′). (67)

For time-independent parameters, we recover the results
discussed in Sec. III. In particular, we have C(t1, t2) = C(|t1 −
t2|) [see Eq. (21)], Z (t1, t2) = Z (|t1 − t2|) [see Eq. (18)],
d (t1, t2) = d (|t1 − t2|) [see Eq. (37)], 〈R(t1, t2)〉 =
〈R(|t1 − t2|)〉 [see Eq. (24)], and 〈R2(t1, t2)〉 =
〈R2(|t1 − t2|)〉 [see Eq. (27)].

Numerical data for the special case of an exponential mass
loss [see Eq. (55)] and/or an exponential decay of the moment
of inertia [see Eq. (56)] as summarized in Table I are presented
in Figs. 8 and 9. Figure 8 is for an achiral particle and Fig. 9 for
a chiral particle. The case of time-independent inertia (with
the parameters at time t = 0) is shown as a reference, too.
Equations (8) and (9) were discretized to perform Brownian
dynamics simulations. For these simulations, we chose the
time step t = 10−2/Dr and we performed 106 realizations
to calculate the respective ensemble averages.

We frst discuss the case of an achiral particle. For isotropic
shape change, the orientational correlation function C(0, t )
decorrelates faster [see Fig. 8(a)], since the rotational noise
is amplifed during the decay of the moment of inertia. The
velocity autocorrelation Z (0, t ) as well as the delay function
d (0, t ) decorrelate faster if the particle actually loses mass
[see Figs. 8(b) and 8(c)]. For the particle with directed mass
ejection, we see an increase in the velocity autocorrelation for
short times and a more pronounced peak in the delay function
due to the additional acceleration, which enhances the particle
velocity. The mean displacement along the initial displace-
ment 〈R(0, t )〉 · n̂0 is displayed in Fig. 8(d). Although the
particle with directed mass ejection is the fastest for short
times, it gets overtaken for long times by the particle with
time-independent inertia. Last, we discuss the mean-square
displacement 〈R2(0, t )〉. Besides the additional accelera-
tion for the particle with directed mass ejection for short
times, the long-time diffusivity is identical to the case of
time-independent inertia. In contrast, the cases of isotropic
mass evaporation and isotropic shape end up with a de-
creased long-time diffusion coeffcient [see Fig. 8(e)] due
to a smaller persistence. The differences between the setups
become clearer by considering the logarithmic derivative of
the mean-square displacement

α(t1, t2) = d ln(〈R2(t1, t2)〉)

d ln(t2)
. (68)

If the mean-square displacement follows a power law
〈R2(t1, t2)〉 ∼ (t2 − t1)α , α(t1, t2) is equal to the power-law
exponent α. This scaling exponent is shown in Fig. 8(f). All
setups start in a ballistic regime (α = 2) for short times and
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FIG. 8. Comparison of the different special setups for an achiral
active particle (ω = 0) with time-dependent inertia: (a) orientation
autocorrelation function C(0, t ), (b) velocity autocorrelation func-
tion Z (0, t ), (c) delay function d (0, t ), (d) mean displacement along
the initial orientation 〈R(0, t )〉 · n̂0, (e) mean-square displacement
〈R2(0, t )〉, and (f) the corresponding scaling exponent α(0, t ) for
time-independent inertia (dashed black), directed mass ejection (red),
isotropic mass evaporation (green), and an isotropic change in the
particle shape (blue). Velocities are given in units of v0, times in
1/Dr , and lengths in lp = v0/Dr . The time dependencies of the
mass m(t ) and the moment of inertia J (t ) for the different setups
are summarized in Table I. The remaining parameters are D = 0,
γ0 = ξ/m0 = 0.1Dr , and γr,0 = ξr/J0 = 0.1Dr .

end up in a diffusive regime (α = 1) for long times. Again
for the particle with directed mass ejection we observe faster
motion for short times indicated by a superballistic scaling
α > 2 due to the acceleration. For times greater than the
inverse decay rate of the moment of inertia 1/γJ , the parti-
cles with isotropic mass evaporation and an isotropic shape
change behave subdiffusively with α < 1 since their effective
diffusivity decreases.

Now we turn to the case of a chiral particle. First of
all, even for constant parameters, the presence of the torque
M yields systematic oscillations in the orientation and ve-
locity autocorrelations, and also in the delay function [see
Figs. 9(a)–9(c)]. Indeed, such oscillations in the delay func-
tion have been found recently in data for whirligig beetles
[49]. Turning to the time-dependent cases, similar to the
pirouette of fgure skating, the particle with an isotropic shape
contraction is spinning with a higher frequency during the
decay of the moment of inertia. This is visible in the orien-
tational and velocity autocorrelation functions and the delay

chiral particle
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FIG. 9. Same as in Fig. 8 for a chiral particle with a spinning
frequency of ω = 0.1Dr .

function [see Figs. 9(a)–9(c)]. Also, when the particle loses
mass, the oscillation becomes more pronounced since the par-
ticle can adapt more easily to orientation changes. In contrast
to the achiral case, the long-time behavior of the mean-square
displacement increases for the time-dependent setups when
the moment of inertia J (t ) decreases [see Fig. 9(e)] in line
with the trend discussed previously in Fig. 5. This is marked
by a peak in the scaling exponent for times larger than 1/γJ

[see Fig. 9(f)].

C. Adiabatic approximation for slow variations

When the parameters [such as mass m(t ), moment of in-
ertia J (t ), friction coeffcients ξ (t ) and ξr (t ), noise strengths
D(t ) and Dr (t ), and self-propulsion velocity v0(t )] change
very slowly in time, i.e., much slower than any other timescale
inherent in the model, the system can be analyzed using the
adiabatic approximation. In other words, one can take the ex-
pressions for the dynamical correlation function with constant
parameters (as discussed in Sec. III) and insert into these ex-
pressions the slowly varying time-dependent parameters. This
approximation becomes exact if the two time scales (largest
system timescale and fastest timescale governing the change
of all parameters) are separated completely.

Let us elaborate on the adiabatic approximation for the
MSD by considering an achiral active particle. Corresponding
analytical expressions for the MSD in the two limits of small
and high moments of inertia J are given by (35) and (36),
respectively. Using the long-time limit (31), we obtain within
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the adiabatic approximation for large J ,

〈R2(t )〉 ∼ 4

(
D(t ) + v2

0 (t )

4

√
2πJ (t )

Dr (t ) ξr (t )

)
t, (69)

when the moment of inertia J becomes suffciently large, and

〈R2(t )〉 ∼ 4

(
D(t ) + v2

0 (t )

2Dr (t )
+ v2

0 (t )J (t )

2ξr (t )

)
t, (70)

in the case of a small moment of inertia J . Let us now as-
sume a slow power law in time for the moment of inertia,
the self-propulsion, the rotational friction, and the diffusion
coeffcients,

v0(t ) ∼ tβ, J (t ) ∼ t δ, ξr (t ) ∼ t ε, Dr (t ) ∼ tη, (71)

with prescribed dynamical exponents β, δ, ε, and η. Plugging
this into the expressions (69) and (70), we obtain a power law
for the long-time MSD of the active particle,

〈R2(t )〉 ∼ tα, (72)

with

α = max(1, 1 + 2β − 1
2 (ε − δ + η)) (73)

for large J and

α = max (1, 1 + 2β − min(ε − δ, η)) (74)

for small J . If α > 1, the adiabatic term is dominated over-
whelmingly by the standard diffusion such that the particle
exhibits anomalous superdiffusion. If α = 1, the full MSD is
dominated by the translational diffusion. We fnally remark
that simpler scaling laws were obtained earlier in the over-
damped limit [83].

V. CONCLUSIONS

To conclude, we have investigated the dynamics of an
inertia-dominated Brownian particle, referred to as active
Langevin dynamics. Dynamical correlations within a simple
model were calculated for a single “microfyer,” which is
simultaneously subjected to self-propulsion, inertia, damp-
ing, and fuctuations, and analytical results known for the
overdamped limit of microswimmers were generalized to the
inertial situation. In particular, we considered the case of
time-dependent inertia. Furthermore, we identifed a basic
Langevin model for a rocketlike particle self-propelled by
the ejection of mass for which we calculated its mean reach
and found a noise-induced discontinuous transition in the
optimal propulsion strategy for reaching the furthest distance.
The case of chiral particles referred to as circle-fyers was
included. One characteristic dynamical correlation absent in
the overdamped case concerns the inertial delay between the
orientation variations and the subsequent changes in the ve-
locity direction. For achiral particles with vanishing spinning
frequency, the inertial delay decays to zero after a profound
peak at a typical delay time. Conversely, for chiral particles,
the inertial delay correlation may oscillate between positive
and negative values. Finally, we have also addressed the lim-
iting “adiabatic” case of very slow inertia variation, and we
have highlighted that a microfyer can undergo anomalous
diffusion if the parameters are varying as a power law in time.

Future work should generalize the present model to exter-
nal potentials such as optical felds, disorder, and confnement
[39,102–105], and to motion in noninertial rotating frames
[106,107]. Furthermore, anisotropic particles that show out-
of-plane orientations and positions relevant for active complex
plasmas [108] should be considered in the future. In this case,
the equations of motion are getting more complex involving
friction and inertia tensors signifcantly more complicated
than in the overdamped limit [109,110]. Next, the “rocketlike”
particles studied here should be realized in experiments; the
most promising way seems to be dust particles in the plasma
with evaporating mass. Moreover, it would be interesting to
study collective effects of inertia-dominated active particles
such as motility-induced phase separation [111–116] or pat-
tern formation in general [117]. Finally, it would be interesting
to generalize the more coarse-grained Ornstein-Uhlenbeck
model for inertial active particles [118,119] to the situation
of time-dependent parameters.
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APPENDIX A: GENERAL SOLUTION

For an analytical solution of the equations of motion, we
frst consider the rotational part [see Eq. (9)]. For φ0 = φ(t =
0) and φ̇0 = φ̇(t = 0), the solution of Eq. (9) is

φ̇(t ) = φ̇0 e−�r (0,t )

+
∫ t

0
dt ′ ξr (t ′)

J (t ′)
ω(t ′) e−�r (t ′,t )

+
∫ t

0
dt ′ ξr (t ′)

J (t ′)

√
2Dr (t ′)τst (t

′) e−�r (t ′,t ), (A1)

and thus

φ(t ) = φ0 +
∫ t

0
dt ′φ̇0 e−�r (0,t ′ )

+
∫ t

0
dt ′

∫ t ′

0
dt ′′ ξr (t ′′)

J (t ′′)
ω(t ′′)e−�r (t ′′,t ′ )

+
∫ t

0
dt ′

∫ t ′

0
dt ′′ ξr (t ′′)

J (t ′′)

√
2Dr (t ′′)τst (t

′′)e−�r (t ′′,t ′ ),

(A2)

where

�r (t1, t2) =
∫ t2

t1

dt ′ ξr (t ′)
J (t ′)

+ (1 − ν) ln

(
J (t2)

J (t1)

)
. (A3)

The translational equation of motion yields for the particle
velocity

Ṙ(t ) = Ṙ0 e−�(0,t ) +
∫ t

0
dt ′a(t ′) n̂(t ′) e−�(t ′,t )

+
∫ t

0
dt ′ ξ (t ′)

m(t ′)

√
2D(t ′)f st (t

′) e−�(t ′,t ). (A4)
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Hence, the center-of-mass position is calculated as

R(t ) = R0 +
∫ t

0
dt ′Ṙ0 e−�(0,t ′ )

+
∫ t

0
dt ′

∫ t ′

0
dt ′′a(t ′′) n̂(t ′′)e−�(t ′′,t ′ )

+
∫ t

0
dt ′

∫ t ′

0
dt ′′ ξ (t ′′)

m(t ′′)

√
2D(t ′′)f st (t

′′)e−�(t ′′,t ′ ),

(A5)
where

a(t ) = ξ (t )

m(t )
v0(t ) − ṁ(t )

m(t )
u(t ) (A6)

and

�(t1, t2) =
∫ t2

t1

dt ′ ξ (t ′)
m(t ′)

. (A7)

Here R0 and Ṙ0 are the initial position and velocity at time
t = 0.

APPENDIX B: EXPONENTIAL MASS LOSS

In an isothermal environment of temperature T , the mass
loss through a small leak of cross section S in the rocket tank
of volume V in quasiequilibrium is governed by

ṁfuel(t ) = −1

6

S

V

√
3kBT

mmol
mfuel(t ) = −γm mfuel(t ), (B1)

where mmol is the mass of the ejected molecules and kB is
the Boltzmann constant. Equation (B1) implies an exponential
decay of the rocket fuel, i.e., mfuel(t ) = mfuel(0) e−γmt with the
mass decay rate γm and thus motivates Eq. (55).
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Inertial self-propelled particles in anisotropic environments

Alexander R. Sprenger,1 Christian Scholz,1 Anton Ldov,1 Raphael Wittkowski,2 and Hartmut Löwen1
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Self-propelled particles in anisotropic environments can exhibit a motility that depends on their
orientation. This dependence is relevant for a plethora of living organisms but difcult to study
in controlled environments. Here, we present a macroscopic system of self-propelled vibrated gran-
ular particles on a striated substrate that displays orientation-dependent motility. An extension
of the active Brownian motion model involving orientation-dependent motility and inertial efects
reproduces and explains our experimental observations. The model can be applied to general n-
fold symmetric anisotropy and can be helpful for predictive optimization of the dynamics of active
matter in complex environments.

The survival of organisms in complex environments
essentially depends on their ftness and strategy to re-
act and adapt to external conditions. In particular,
a realistic environment is never isotropic but typically
anisotropic, i.e., its traversability depends on the direc-
tion of motion [1]. Anisotropy can be caused on vari-
ous scales by many diferent means: by an external force
arising from gravity [2, 3], viscosity [4], light [5], and
chemical gradients [6], electromagnetic felds [7], through
steric confnement by channels, veins, and anisotropic
porous media [8, 9], or by motion in a liquid-crystalline
[10–14] or crystalline [15–17] medium. Anisotropic en-
vironments can have a pronounced impact on the mo-
tion of self-propelled particles. These “active” particles
convert energy from their environment into directed mo-
tion and comprise both living organisms and artifcial
inanimate objects, like activated colloids [18–20], gran-
ules [21–25], and robots [26–28]. Standard models of
self-propelled particles [29] assume that the propulsion
force is isotropic in the sense that it always points into
the direction of the particle orientation with a constant
self-propulsion speed even in an inhomogeneous environ-
ment [30–36]. In anisotropic environments, a dependence
of the self-propulsion speed of the particle on its orien-
tation is frequently observed. Some biological organisms
react to their environment in a sense that the propulsion
force depends on their orientation relative to the environ-
ment. For instance, microorganisms can move faster to-
wards light sources [37] or in the direction of food sources
[38]. Additionally, fying animals such as bees and birds
control their fying speed by relative changes of their en-
vironment, which in turn leads to anisotropic fying ve-
locities within structured environments [39–41]. Simi-
larly, anisotropic movement is also observed for smaller
insects like ants in guiding structures [42, 43]. Those
macroscopic self-propelled particles in low-friction envi-
ronments (e.g., such as fying insects) where the efect
of anisotropy is most prominent, are also governed by
inertial efects [44]. This poses a challenging problem be-
cause inertia introduces correlations that can persist for

longer times [45–53].

In this communication, we present an experimental
realization of a self-propelled granular particle on an
anisotropically structured substrate, which mimics this
behavior. For these inanimate self-propelled objects, we
fnd pronounced anisotropy in the motion of the parti-
cles, which is well explained by an extension of the ac-
tive Brownian motion model with inertia and orientation-
dependent motility. The orientation-dependence can be
written in terms of a Fourier series which allows a gen-
eral solution for anisotropic motility that can be applied
to our experiments. Our fndings not only open a new
model class of active matter in anisotropic environments
but also shed new light on the self-propulsion strategies of
organisms in such anisotropies. Our model is particularly
relevant for predictive optimization of control parameters
of artifcial active agents, such as robots [26–28], to better
explore anisotropic environments [54].

RESULTS

Experimental observation of anisotropic
self-propulsion

Macroscopic active matter with orientation-dependent
motility can be realized from self-propelled 3D-printed
agents called vibrobots (see Fig. 1a) on structured sub-
strates. These particles are excited by vertical vibra-
tions generated by a rectangular acrylic baseplate at-
tached to an electromagnetic shaker. The particles stand
on slightly tilted legs, which causes the particles to hop
forward. These legs are all tilted equally along the ori-
entation (or symmetry axis) of the particle. The base-
plate is covered with a lenticular plastic sheet on top,
which is the source for the anisotropic motility. The ex-
perimental setup is depicted in Fig. 1b. An illustration
with a side-view of the particle resting on such a grooved
surface are shown in Fig. 1c. The vibration frequency
is set to f = 80 Hz, which ensures robust experimental
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Figure 1. Vibrationally driven self-propelled particle (vibrobot) manufactured by 3D printing (a). The white cross indicates
the particle orientation. Experimental setup (b): Rectangular acrylic baseplate attached to an electromagnetic shaker. Cross-
section of the anisotropic substrate (lenticular foil) with particle to scale (c). Panels d,e: Trajectory density for vibrobots
starting parallel (d) and perpendicular (e) to grooves with an excitation amplitude A = 1.28 g. Panels f -h: Sketch of the two
velocity contributions. The particle moves with increased velocity vk when aligned along the grooves (f). When orientated
diagonally, the particle moves with average velocity vk along its orientation while simultaneously experiencing active propulsion
v⊥ perpendicular to it (g). The particle moves with decreased velocity vk when perpendicularly aligned to the grooves (h).
Panels i-k: Three representative trajectories with an excitation amplitude A = 1.60 g. The persistence length is noticeably
shorter for perpendicularly aligned particles than for parallel aligned particles. Length ratios and velocity contributions are not
to scale.

conditions [47]. Three diferent peak acceleration am-
plitudes A = 1.28 g, 1.44 g, and 1.60 g are investigated,
which varies the motility and motion properties of the
vibrobot.

We fnd pronounced anisotropy in the motion of the
particle and observe a modulation of the velocity parallel
but also perpendicular to the orientation of the grooves,
as well as an increased activity with increasing excitation
amplitude. The motion of the particles is illustrated in
Supplementary videos 1 - 6, where we show a montage
of all measured trajectories for each excitation amplitude
as well as for parallel and perpendicular initial orienta-
tion, respectively. From the trajectories, the anisotropy
is already visible by the naked eye, in particular when
comparing parallel and perpendicular starting orienta-
tions.

This anisotropy is best illustrated when displaying
all recorded trajectories (integrated and smoothed) and
distinguishing parallel and perpendicular initial orienta-
tions, as shown in Fig. 1d, e. For particles starting paral-
lel to the grooves, we observe that the peak of the density
(which is linked to the starting position of the particles)
is broad along and narrow perpendicular to the starting
orientation since the particles tend to move faster paral-
lel to the grooves and therefore propagate further before
they reorient. In the case of perpendicular starting orien-
tation, the density spreads more around the peak, since

particles reorient near to the starting position. Hence the
persistence length depends on the orientation of the par-
ticle. Surprisingly, from individual particle trajectories,
we also identify a driving-force component perpendicu-
lar to the orientation, whenever a particle is not moving
exactly parallel or perpendicular to the grooves.

The anisotropic self-propulsion is caused by the
grooved surface of the vibrating plate. Our conjecture is
that this is due to the strong dependence of the particle
speed on the relative inclination angle between legs and
surface [55]. When resting on the vibrating plate, the legs
are bent along the orientation of the particle. This defor-
mation stores elastic energy. Then, after detaching from
the base, the energy is released and the vibrobot jumps
forward. When the particle is oriented perpendicular to
the grooves, the legs face an elliptical half-cylinder and
the relative inclination angle of the legs is decreased (see
Fig. 1c). As a result, the legs will bend less compared to
the case where the particle is oriented along the grooves.
If the particle is diagonally aligned with the grooves, the
legs will not bend along the orientation and the particle
experiences a force perpendicular to its orientation. This
in fact results in propulsion perpendicular to the orien-
tation of the particle. In Fig. 1f-h, we illustrate the two
velocity contributions for three diferent orientations of
the particle.

As described in the literature, we also observe orienta-
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tional fuctuations, caused by an instability of the driving
mechanism to the microscopic surface roughness, and in-
ertial delay efects due to the mass of the particles [47].
When vibrobots are excited above a certain amplitude
threshold, they begin to tumble [56]. As a result, they
randomly reorient while moving and eventually change
the direction of their path. Figure 1i-k shows three rep-
resentative trajectories with diferent initial orientations.
Clearly, the particle does not show a deterministic mo-
tion, apart from short-time correlations due to initial ori-
entation and inertia. The particle rather undergoes an
anisotropic two dimensional random walk with a certain
persistence length.

Due to the simplicity of our particles, compared to liv-
ing active matter, our experiment allows us to investigate
kinetic properties of particles with orientation-dependent
motility, which can be useful for optimization of motion
and search strategies of active matter in general. This
requires an analytical description of the motion that cap-
tures the essential properties of the particle and must be
applicable to general cases of anisotropic motility.

Langevin dynamics model

Finding an analytical description for macroscopic self-
propelled systems can be challenging due to the com-
plex interaction of particles and environment. Here, we
model those interactions with an efective driving force
and thereby introduce a minimal model, where the in-
terplay of orientation-dependent motility, inertia, and
fuctuations, is treated in terms of a generalized active
Langevin dynamics model. Our model reproduces the
experimental observations quantitatively despite its com-
plex anisotropic nature.

We assume that the particle has non-negligible mass M
and moment of inertia J . The motion of such an under-
damped particle is in general characterized by the trans-
lational center-of-mass velocity ṙ(t) with the center-of-
mass position r(t) and the time variable t as well as by the
angular velocity φ̇(t) and the angle of orientation φ(t),
which denotes the angle between the orientation vector
n̂ = (cosφ, sinφ) and the positive x-axis. By taking the
above considerations into account, the translational and
rotational motion of the particle is governed by the force
balance between inertial, frictional, self-propulsive driv-
ing, and random forces and torques

M r̈(t) + γT ṙ(t) = γT v
(
φ(t)

�
+
p

2DT γT ξ(t), (1)

J φ̈(t) + γR φ̇(t) = γR ω +
p

2DR γR η(t). (2)

Here, γT and γR denote the translational and rotational
friction coefcients, respectively. To take translational
and rotational difusion into account, the Langevin equa-
tions contain independent Gaussian white noise terms
ξ(t) and η(t), with zero means hξ(t)i = 0 and hη(t)i = 0

and delta-correlated variances hξi(t1)ξj(t2)i = δij δ(t1 -
t2) and hη(t1)η(t2)i = δ(t1 - t2), where i, j ∈ {x, y}.
Therein, DT and DR are the translational and rotational
short-time difusion coefcients of the particle, respec-
tively. The brackets h. . .i denote the noise average in the
stationary state (meaning after losing correlation with
initial conditions [52]) and δij is the Kronecker delta.

Most importantly, v(φ) denotes an arbitrary
orientation-dependent motility which accounts for
the interaction between the particle and environment.
For mathematical convenience, we represent v(φ) as a
Fourier series

v(φ) =

∞X

k=-∞
k 6=0

ck exp(ikφ), (3)

where ck is the Fourier-coefcient vector of the mode
k, and i denotes the imaginary unit. This representa-
tion lets us solve the model for any type of orientation-
dependence and then apply the results to our exper-
imental system. In particular, this description can
be used for diferent experimental realizations ranging
from anisotropic illuminated Janus particles, triangu-
lar microparticles in traveling ultrasound waves, and
the motion of living insects in guiding structures to
the specifc setup studied in this communication [57,
58]. In general, for a given propulsion velocity v(φ),
these Fourier coefcients can be calculated as ck =R π
-π(v(φ)/(2π)) exp(-ikφ) dφ (thus we have after com-

plex conjugation c∗k = c-k). The seminal case of isotropic
propulsion is recovered for the two non-zero coefcients
c±1 = v(1,�i)/2. Note that we exclude the mode k = 0
in Eq. (3), which would correspond to a drift velocity
induced by a constant external force (e.g., gravity) not
measured in the experiment.

Moreover, as typical 3D-printed particles are not per-
fectly symmetrical, they tend to perform circular motions
on long time scales. To capture this behaviour, we as-
sume a systematic torque which acts on the particle and
leads to an angular speed ω. In contrast to v(φ), we mea-
sured no orientational dependency in the angular speed
which could in principle be caused by the anisotropic
substrate.

Concluding, our theoretical model depends on a num-
ber of parameters: the angular velocity ω, the rota-
tional difusion coefcient DR, the rotational friction
time τJ = J/γR, the set of Fourier coefcients {ck} de-
scribing the anisotropic motility, the translational dif-
fusion coefcient DT and the translational friction time
τM = M/γT . In the context of the experimental obser-
vations, we assume that the vibrobot is moving with an
orientation-dependent velocity

v(φ) =
(
vk + δvk cos(2φ)

�
n̂(φ)- δv⊥ sin(2φ)n̂⊥(φ), (4)

where n̂(φ) = (cosφ, sinφ) is pointing parallel and
n̂⊥(φ) = (- sinφ, cosφ) is pointing perpendicular to
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the particle’s orientation. The sine and cosine terms in
Eq. (4) refect the orientation dependence of the parti-
cle velocity and the symmetry of the system. This adds
the parallel speed vk, the parallel speed anisotropy δvk,
and the perpendicular speed anisotropy δv⊥, leading to
a total of 8 independent parameters. The four non-zero
Fourier coefcients of Eq. (4) read c±1 = vk(1,�i)/2 +
(δvk + δv⊥)(1,±i)/4 and c±3 = (δvk - δv⊥)(1,�i)/4.

These parameters are determined from analytic fts
to the experimental results. We use temporal correla-
tion functions, like the orientational correlation function
C(t) = hn̂(t) · n̂(0)i and the velocity correlation function
Z(t) = hṙ(t) · ṙ(0)i, to determine the relevant timescales
and difusion coefcients. Further stationary observables,
like the mean translational velocity v0 = hṙ(0)i and the
mean angular velocity hφ̇(0)i, are used to estimate all
motility parameters. More information on the parame-
ter estimation can be found in the Methods section and
the parameter values are listed in Tab. I. In the following,
we compare the experimental data with analytic predic-
tions derived from the theoretical model and discuss the
anisotropy found in several observables.

Comparison between analytical results and
experiment

As described above, the mean self-propulsion strongly
depends on the relative orientation of the particle with
respect to the groove direction. The model describes this
via two orthogonal velocity components. In Fig. 2, we
separately show the mean velocity along the body-axis
vk = v0 · n̂ and perpendicular to it v⊥ = v0 · n̂⊥ as func-
tions of the orientation φ. The parallel contribution vk
in Fig. 2a shows considerably greater propulsion along
the grooves than perpendicular to them. For the perpen-
dicular contribution (see Fig. 2b) we fnd the assumed
sin(2φ)-modulation (see Eq. (4)), which has an align-
ment efect on the overall velocity direction in favor of
the groove direction. Overall, we measure increased ac-
tivity for larger excitation amplitudes while the degree
of anisotropy remains almost the same for all three mea-
surements. From the theoretical side, the mean instan-
taneous velocity v0 = hṙ(0)i at a specifc orientation φ0

can be computed in general as instatanteous

v0 =
τJ
τM

∞X

k=-∞
k 6=0

cke
SkS
-Ω+

k

k Γ(Ω+
k , 0,Sk)eikφ0 , (5)

with the dimensionless coefcients Sk = DRτJk
2, Ω+

k =
DRτJk

2 +iωτJk+τJ/τM , and the generalized incomplete
gamma function Γ(s, x1, x2) =

R x2

x1
ts-1e-t dt. The ana-

lytic result is plotted in Fig. 2 and yields good agreement
with the experimental data. In contrast to overdamped
motion, where the particle’s mean velocity is simply equal
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Figure 2. Stationary parallel velocity vk (a) and stationary
perpendicular velocity v⊥ (b) plotted as a function of the
orientation angle φ for three diferent excitation amplitudes
A = 1.28 g (upper row), A = 1.44 g (middle row), and 1.60 g
(lower row). Solid dark blue and dashed red curves show the
experimental data and analytical results, respectively. Blue
experimental error intervals represent the standard error of
the mean.

to the internal self-propulsion velocity, here the particle
moves on average with a smaller velocity due to inertial
delay efects, i.e., |v0(φ)| ≤ |v(φ)|. Further, the faster
varying contributions (i.e., the higher Fourier modes) of
the propulsion are more afected by these inertial delay
efects, resulting in a more isotropic mean velocity for in-
creasing mass M . Conversely, the anisotropy is restored
for increasing moment of inertia: limJ→∞ v0(φ) = v(φ).

A suitable quantifer for the presence of inertial efects
is the delay function d(t) = hṙ(t) · n̂(0)i - hṙ(0) · n̂(t)i
[47, 48, 59]. This function quantifes the average dif-
ference between the projection of the initial velocity on
the orientation and the projection of the initial orienta-
tion on the velocity. In overdamped systems, this func-
tion is zero at all times. Here, we fnd that this func-
tion is signifcantly diferent from zero in particular for
large excitation amplitudes A (see the Methods section).
The standard delay function can be generalized to re-
solve anisotropy in the system by conditioning the aver-
age with a specifc initial orientation φ0 at time t = 0.
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Figure 3. Panels a: The anisotropic delay function dφ0(t)
plotted as function of the initial orientation φ0 after fxed
times t = 0.1 s, t = 0.4 s. Solid blue and dashed red curves
show the experimental data and analytical results, respec-
tively. Panels b: The anisotropic delay function dφ0(t) plot-
ted as a function time t for parallel φ0 = 0 (cyan), diagonal
φ0 = π/4 (green), and perpendicular φ0 = π/2 (yellow) ori-
entations, each. Both for excitation amplitude A = 1.28 g
(upper row), A = 1.44 g (middle row) and A = 1.60 g (lower
row). Solid and dashed curves the experimental data and the
simulated data (using the parameter values given in Tab. I),
respectively.

In Fig. 3 we plot the anisotropic delay function dφ0(t)
both as a function of φ0 for given t and as a function of
t for given φ0. We compare the experimental data with
simulations which follow Eqs. (1) and (2) and are ini-
tialized similar to the experiments. The delay function
is a highly fuctuating quantity making the experimental
data difcult to interpret. The simulated data suggests
an isotropic delay for short times and a larger delay along
the grooves as time proceeds mimicking the modulation
of the self-propulsion velocity. The simulated data al-
ways fts within the standard error of the experimental
data.

For stochastic processes, it is common to analyze the
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Figure 4. Comparison between model and measurement with
excitation amplitude A = 1.28 g (upper row), A = 1.44 g
(middle row), and A = 1.60 g (lower row). Panels a: The
anisotropic motion of the particle is visualized by plotting the
mean displacement h∆r(φ0)i for φ0 ∈ [0, 2π) and fxed times
t = 0.2 s, t = 0.6 s and t = 1.0 s. Solid blue and dashed red
curves show the experimental data and analytical results, re-
spectively. Light blue area expresses the standard error of the
mean. Panels b: The absolute mean displacement |h∆r(t)i| is
plotted as a function of time t for initial orientations φ0 = 0
(cyan) and φ0 = π/2 (yellow). Solid colored curves represent
the experimental data and dashed colored curves the analytic
results. In addition, dashed black curves depict simulation
data for a particle in confnement. Black dots correspond to
the experimental values for the fxed times of Fig. 4a. Theo-
retical predictions and simulations use the parameters given
in Tab. I.

frst and seconds moments of the motion, i.e., the mean
and mean square displacement. In anisotropic systems,
these quantities will strongly depend on the initial ori-
entation of a particle. In Fig. 4, we compare the exper-
imental mean displacement h∆r(t)i conditioned at dif-
ferent initial orientations φ0 with that resulting from
our theoretical model. To demonstrate the efect of the
orientation-dependent motility, we show the mean dis-
placement as a function of the initial orientation φ0 after
fxed times t forming elliptic-like shapes in the xy-plane
(see Fig. 4a). In Fig. 4b, we plot the absolute mean dis-
placement |h∆r(t)i| as a function of time t for particles
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which are initially orientated along the grooves (blue)
and for those starting perpendicular to the grooves (red).
The experimental data ft within theoretical results for
short time, where the particle moves linearly in time with
h∆r(t)i = v0t + O(t2). For longer time, confnement ef-
fects play an increasing role. Since recordings are stopped
once a particle hits the boundary, events where the parti-
cle reorients beforehand dominate the statistic. As a con-
sequence, the measured mean displacement decreases for
times larger than the mean frst-passage time of hitting
the boundary. We perform simulations with absorbing
boundaries and fnd an excellent agreement for all ex-
perimental accessible time scales (indicated by the black
dashed lines in Fig. 4b). Without confnement, the the-
oretical mean displacement saturates to an anisotropic
persistence length Lp = limt→∞h∆r(t)i for long times

Lp = v0τM +
∞X

k=-∞
k 6=0

ck τk e
ikφ0 , (6)

with the persistence time of mode k

τk = τJe
SkS-Ωk

k Γ(Ωk, 0,Sk) (7)

and Ωk = DRτJk
2 + iωτJk. The persistence length Lp

consists of two contributions: the frst term is given by
the mean stationary velocity v0 which is damped over
the translational friction time τM . The second term in
Eq. (6) describes the active propulsion getting decorre-
lated due to the rotational noise DR. Again, the degree
of anisotropy increases as a function of the moment of
inertia J . For vanishing angular speed ω = 0, we fnd
the following asymptotic behavior for small and large J ,
respectively:

τk ∼

8
<
:

1
DRk2

�
1 + DRk

2

γR
J
�
, for J → 0,

1
k

q
π

2DRγR

√
J, for J →∞.

(8)

Note that for large J the contribution of higher modes de-
cays only linearly instead of quadratically, demonstrating
the relevance of the moment of inertia as an important
control parameter.

Last, we address the mean-square displacement, which
is most commonly investigated for passive and active
Brownian motion. In Fig. 5, we compare the experi-
mentally determined mean-square displacement with the
corresponding theoretical result. For short times, the
particle is moving ballistically, as h∆r2(t)i = hṙ2(0)i t2 +
O(t3). For larger times, the particle transitions towards a
difusive regime h∆r2(t)i ∼ 4DLt, which is characterized
by the long-time difusion coefcient

DL = DT +
∞X

k=1

|ck|2 Re{τk}. (9)

Similar to the mean displacement, the mean-square dis-
placement is afected by the confnement for long times
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Figure 5. Comparison between model and measurement with
excitation amplitude A = 1.28 g (upper row), A = 1.44 g (mid-
dle row), and A = 1.60 g (lower row). Panels a: The to-
tal mean-square displacement as a function of time t (double
logarithmic scaling). Open blue circles and dashed red curves
show the experimental data and analytical results, respec-
tively. Panels b: The mean-square displacement along the
x-axis (cyan) and y-axis (yellow) as functions of time t. Solid
colored curves and dashed colored curves show the experi-
mental data and analytical results, respectively. Light col-
ored areas represent the standard error of the mean. Dashed
black curves show simulation data for a particle in confne-
ment. Theoretical predictions correspond to the parameters
given in Tab. I.

which hinders the particle to reach a difusive state. In
Fig. 5b, we show the mean-square displacement parallel
and perpendicular to the grooves comparing experiment,
theory, and simulation. Interestingly, the mean-square
displacement is non-monotonic in time due to the con-
fnement. At longer times, the particle needs to reori-
ent before hitting the wall. The non-monotonic behavior
results from the persistency of the particle and there-
fore is not observed for passive particles. The particle
makes larger displacements along the grooves than per-
pendicular to them. In the absence of confnement, this
anisotropy can persist even in the long-time limit char-
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acterized by the long-time difusion matrix

(
DL

�
ij

= DT δij +
∞X

k=1

(ck,ic-k,j + c-k,ick,j) Re{τk},

(10)
for i, j ∈ {x, y}. The eigenvalues of this matrix are given
as D± = DL ±∆DL, with the long-time anisotropy

∆DL =
� ∞X

k,l=1

(
|ck · cl|2 + |ck · c-l|2 - |ck|2|cl|2

�

× Re{τk}Re{τl}
�1/2

, (11)

which describes the long-time difusion along the princi-
pal axes of maximal and minimal difusion, respectively.
The existence of a long-time anisotropy ∆DL 6= 0 will
depend in general on the specifc form of v(φ).

DISCUSSION

Anisotropic motility has a strong impact on the motion
of active particles both on short and long time scales.
Our experiments demonstrate this explicitly for short
and intermediate times and implicitly for long time-scales
through simulations. Anisotropy persists for long times
in the mean and mean-square displacement. We derived
an analytical description that explains this behavior in
terms of the Fourier series of the anisotropic driving term.
The Fourier modes of the motility are linked to diferent
time scales that add up and have an efect on the station-
ary mean velocity, persistence length and long-time dif-
fusion. Specifcally, these quantities are mostly afected
by the low-order Fourier coefcients.

Our theoretical results predict that the degree of
anisotropy is not only set by the orientation-dependent
motility itself but depends non-trivially on all time scales
1/DR, 1/|ω|, τM , and τJ of the model. In Fig. 6,
we depict the anisotropy of the stationary mean veloc-
ity, persistence length, and long-time difusion for dif-
ferent values of the moment of inertia J and two ex-
emplary orientation-dependent motilities v(φ) = v(1 +
cos(nφ))n̂(φ) with 2-fold symmetry (n = 2) and 3-fold
symmetry (n = 3). In general, the mass and the mo-
ment of inertia have contrary efects on the anisotropy
for short and intermediate times. For increasing mass,
the dynamics of the particle involves stronger delay ef-
fects, smoothing the trajectories of the particle and ef-
fectively decreasing the anisotropy. On the other hand,
increasing the moment of inertia leads to more resistance
to reorientation and subsequently to higher persistence.
The stationary parallel velocity in Fig. 6a,b shows an
increasing degree of anisotropy (being the ratio of out-
ermost points to the innermost points on these curves)
for increasing moment of inertia J . For the persistence
length (see Fig. 6c,d), the degree of anisotropy remains
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Figure 6. Anisotropy of the stationary mean velocity v0, per-
sistence length Lp, and long-time difusion DL for various
values of the moment of inertia J evaluated for a 2-fold sym-
metric motility (left column) and a 3-fold symmetric motil-
ity (right column). Stationary mean velocity as a function
of the current orientation v0(φ) · n̂(φ) (a, b). Persistence
length as a function of the initial orientation Lp(φ) · n̂(φ)
(c, d). Long-time difusion projected along diferent di-
rections n̂T(φ)DL n̂(φ) (e, f). The moment of inertia is
set to J = 0.1 γR/DR (orange), J = γR/DR (red), and
J = 10 γR/DR (purple). The mass is fxed at M = γT /DR.

fairly invariant with increasing J but overall we fnd a
large persistence length (recalling Eq. (8)). Note that
the mean displacement and thus the persistence length
inherit the symmetry of the driving velocity v(φ). This
symmetry is in general lost for long times, since the long-
time difusion can either follow a 2-fold symmetric mod-
ulation or behaves fully isotropic in every direction (see
Fig. 6e,f). In fact, for motilities with higher rotational
symmetry than two-fold, the long-time difusion is always
isotropic. Thus, we like to stress that even a system show-
ing isotropic difusion can hide anisotropic dynamics on
shorter time scales.

Our model can be used to predictively optimize driv-
ing parameters for the navigation of active matter in
anisotropic environments [60–63], for instance robotic
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systems. In particular, the persistence length is an im-
portant control parameter that strongly impacts collec-
tive phenomena, like motility-induced phase separation
[64–66]. Swarms of self-propelled particles moving with
an orientation-dependent motility would be an interest-
ing topic for future research, for which our model pro-
vides a baseline [67–70].

METHODS

Particle fabrication

The particle used in this work has been manufactured
by 3D-printing using a stereolithographic acrylic based
photopolymer 3D printer (Formlabs Form 2, using Grey
V3 material, identical to Ref. [47]). Figure 1a shows an
image of the particle. It consists of a cylindrical core
(diameter 9 mm, height 4 mm) and a cap (diameter
15 mm, height 2 mm). Seven tilted cylindrical legs
(diameter 0.8 mm, inclination angle 4 degrees) are
attached to the cap in a regular heptagon around the
bottom cylinder. The legs are tilted parallel to each
other defning the orientation of the particle. The length
of the legs is chosen such that the bottom of the particle
is lifted by 1 mm above the surface. The particle is
marked with a sticker from which the orientation can be
determined using computational image processing. The
particle’s mass is about m = 0.76 g. From the particle’s
mass and shape, its moment of inertia is computed to be
J = 1.64× 10-8 kg m2, assuming homogeneous density.

Experimental setup and analysis

Particle motion is excited by vertical vibrations of a
rectangular acrylic baseplate (side length 300 mm, thick-
ness 15 mm) with a lenticular plastic sheet on top, at-
tached to an electromagnetic shaker (Tira TV 51140).
The sheet’s surface consists of equally spaced elliptical
half-cylinders with a density of 0.787mm-1 (20 lines per
inch) and a groove depth of 0.315 mm. An illustra-
tion and a cross-section of the particle resting on such a
grooved surface are shown in Fig. 1c, respectively. Lentic-
ular sheets of this kind are typically used in digital print-
ing or displays to create images with the illusion of depth.
Here, we use it to induce an anisotropic driving of the
particle parallel and perpendicular to the lines, since the
speed of the particle is very sensitive to the contact angle
of the legs to the surface. Note that the width and height
of the grooves are chosen such that the particle legs can-
not be signifcantly trapped (see Fig. 1c), in order to
prevent the particle simply from sliding along grooves.

The tilt of the plate is adjusted with an accuracy of
0.01◦ to minimize gravitational drift. The vibration fre-

quency is set to f = 80 Hz and three diferent peak ac-
celeration amplitudes A = 1.28 g, 1.44 g and 1.60 g are
studied.

A mid-to-high-speed camera system (Allied Vision
Mako-U130B) operating at 150 frames per second is used
to record the experiment with a spatial resolution of
1024 × 1024 pixels. The particle location and orienta-
tion are determined and tracked using standard image
recognition methods (Hough transform and morphologi-
cal image region analysis) to a spatial accuracy of about
±3×10-5 m and a orientational accuracy of ±0.74◦ [47].
Multiple single trajectories are recorded for each am-
plitude, until 20 min of data are acquired per record-
ing. Half of the recorded time the particle starts parallel
and the other half of the time it starts perpendicular to
the grooves. Events involving particle-border collisions
mark a trajectory’s termination and are subsequently dis-
carded, resulting in trajectories of various lengths.

The velocity was calculated from the displace-
ment of successive positions of the particle as
v(t) = (r(t+ ∆t)- r(t)) /∆t, where ∆t = 1/150 s
is the time between two frames. The time steps are not
fully equidistant between recorded frames, therefore the
experimental data were linearly interpolated to obtain
equidistant points. Experimental means with respect to
a specifc initial orientation φ0 were calculated by averag-
ing in the interval [φ0 - δφ, φ0 + δφ]. We chose δφ = 10◦

and modifed the theoretical results accordingly by
exp(ikφ)→ exp(ikφ) sin(kδφ)/(kδφ). We took advantage
of the rotational and infection symmetries of the exper-
iment (by rotating some trajectories by 180 degrees) to
increase the angular statistics for the mean displacement.

Analytic results

Both the translational velocity ṙ(t) and the angular ve-
locity φ̇(t) undergo a simple stochastic process for which
a general solution is easily obtained (see Eqs. (1) and
(2)). Several dynamical correlation function as well as
low-order moments can be consequently calculated using
standard methods of stochastic calculus [71]. The orien-
tational correlation function C(t) = hn̂(t) · n̂(0)i displays
a double exponential decay

C(t) = cos(ωt)e-DR(t-τJ(1-e−t/τJ )), (12)

(as previously discussed in Ref. [45–47]). The velocity
correlation function Z(t) = hṙ(t) · ṙ(0)i is given as

Z(t) = 2
DT

τM
e-t/τM + 2

∞X

k=1

|ck|2 Re{V +
k (t)}, (13)

where the Fourier-coefcient vectors are determined
by the orientation-dependent motility, as ck =
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Figure 7. Determination of model parameters for diferent vibration amplitudes, A = 1.28 g (upper row), A = 1.44 g (middle
row) and A = 1.60 g (lower row). Orientational correlation function C(t) (a), velocity correlation function Z(t) (b), stationary
parallel velocity vk (c), stationary perpendicular velocity v⊥ (d). Solid dark blue and dashed red curves show the experimental
data and analytical results, respectively. Experimental error intervals represent the standard error of the mean. The parameter
values are listed in Tab. I.e Time-dependence of the delay function d(t) testing the parameters on an independent quantity.

R π
-πv(φ) exp(-ikφ)/(2π) dφ (see Eq. (3)), and

V ±k (t) =
τJ
τM

eSk

2

�
± S
-Ω+

k

k Γ
�

Ω+
k , 0,Ske

-t/τJ
�
et/τM

- S
-Ω−

k

k Γ
�

Ω-k , 0,Ske
-t/τJ

�
e-t/τM (14)

+
�

S
-Ω+

k

k Γ
(
Ω+
k , 0,Sk

�
+ S
-Ω−

k

k Γ
(
Ω-k , 0,Sk

��
e-t/τM

�
,

with Ω±k = DRτJk
2 ± (iωτJk + τJ/τM ) and Sk =

DRτJk
2. The real part is denoted by Re{. . . } and the

generalized incomplete gamma function is Γ(s, x1, x2) =R x2

x1
ts-1e-t dt. The delay function measuring the difer-

ence between the direction of the velocity and the current
orientation, d(t) = hṙ(t) · n̂(0)i - hṙ(0) · n̂(t)i, is given by

d(t) = Re{
(
c1,x + c∗1,x + i(c1,y - c∗1,y)

�
V -1 (t)}, (15)

which coincides with the result for isotropic self-
propulsion [47] (due to the projection onto the orienta-
tion). Next, we give the mean displacement h∆r(t)i =
hr(t)- r0i under the condition that initially the position
r0 and the orientation φ0 are prescribed,

h∆r(t)i = v0τM (1- e-t/τM ) +
∞X

k=-∞
k 6=0

ckRk(t)eikφ0 , (16)

with the stationary velocity v0 (see Eq. (5)),

Rk(t) =τJe
Sk

�
S-Ωk
k Γ

�
Ωk,Ske

-t/τJ ,Sk
�

(17)

- S
-Ω−

k

k Γ
�

Ω-k ,Ske
-t/τJ ,Sk

�
e-t/τM

�
,

and Ωk = DRτJk
2+iωτJk . Lastly, we provide the result

for the mean-square displacement h∆r2(t)i = h(r(t) -
r0)2i which can be expressed as

h∆r2(t)i = 4DLt+ 2
(
Z(t)- Z(0)

�
τ2
M - 4F (t)τ2

J (18)

with the long-time difusion coefcient DL (see Eq. (9)),
the velocity correlation function Z(t) (see Eq. (13)) and

F (t) =
∞X

k=1

|ck|2 Re

(
eSk

Ω2
k

 
2F2

�
Ωk, Ωk

Ωk + 1, Ωk + 1
;-Sk

�

(19)

- 2F2

�
Ωk, Ωk

Ωk + 1, Ωk + 1
;-Ske

-t/τJ
�
e-Ωkt/τJ

!)
,

where 2F2 denotes the generalized hypergeometric func-
tion. Last we remark that in the overdamped limit,
i.e.m → 0 and J → 0, we recover the results of
orientation-dependent motility in underdamped systems
[7] and similarly for an isotropic self-propulsion v(φ) =
v0n̂(φ), we obtain the expressions of Ref. [52].

Parameter estimation

The underdamped active Brownian motion model de-
pends on eight independent parameters. All parame-
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ters were obtained using the MatLab standard optimizer
fminsearch (Nelder-Mead optimization of a function of
several variables on an unbounded domain). Our cost
function consists of fve terms covering diferent param-
eters. Each term is constructed as follows: The abso-
lute deviation between the experimental mean and the
analytical expectation is weighted with the standard er-
ror of the mean and then averaged over time or orien-
tation. This procedure takes into account the experi-
mental uncertainty. At the same time, the value of our
cost function quantifes the ft itself. We call a ft suf-
fciently representative of the experimental mean if the
mean deviation between experimental mean and analyt-
ical expectation is no greater than one standard error.
We use this defnition to determine an error interval for
our optimal parameters. The orientational correlation
function C(t) (see Eq. (12)) is used to determine the ro-
tational difusion constant DR and the rotational friction
time τJ . In addition, we use the mean stationary angu-
lar velocity hφ̇(0)i = ω to determine the angular speed ω.
Further, we use the velocity correlation function Z(t) (see
Eq. (13)) to extract values for the translational friction
time τM and the translational short-time difusion coef-
fcient DT . Lastly, we use the mean stationary velocity
v0 (see Eq. (5)), which is projected parallel (vk = v0 · n̂)
and perpendicular (v⊥ = v0 · n̂⊥) to the body axis, to
determine all the motility parameters v⊥, δvk, and δv⊥.
In Fig. 7a-d, the analytic ftting curves to the experimen-
tal data are shown and the resulting set of parameter is
listed in Tab. I. For vibrobots, the delay function d(t)
(see Eq. (15)) proved to be a sensitive measure for the
quality of the determined parameter-set [47]. Figure 7e
shows good agreement between theory and experiment
for all three measurements.

Table I. Model parameters obtained from analytical fts to
measurements in Fig. 7. Lower and upper 95% confdence
bounds are displayed behind each value.

A (g) 1.28 1.44 1.60

ω (1/s) 0.09 +0.76
-0.76 0.12 +0.88

-0.99 0.11 +0.89
-1.11

DR (1/s) 0.39 +0.05
-0.04 0.80 +0.07

-0.10 1.18 +0.11
-0.13

τJ (s) 0.05 +0.02
-0.02 0.06 +0.03

-0.01 0.07 +0.03
-0.02

vk (mm/s) 57.5 +4.8
-4.1 73.2 +4.9

-4.4 85.0 +5.3
-4.8

δvk (mm/s) 9.2 +7.0
-6.8 8.5 +7.5

-7.3 15.7 +8.6
-8.5

δv⊥ (mm/s) 15.6 +5.7
-5.5 19.3 +7.1

-7.0 23.8 +9.4
-9.1

DT (mm2/s) 27.89 +31.85
-27.89 36.23 +44.38

-36.23 59.41 +40.59
-59.41

τM (s) 0.07 +0.10
-0.07 0.10 +0.09

-0.06 0.13 +0.6
-0.6

Simulation

Numerical data for a self-propelled particle with
orientation-dependent motility enclosed by absorbing
boundaries are included in Figs. 3, 4b, and 5b. Equa-
tions (1) and (2) were discretized to perform Brown-
ian dynamics simulations using frst-order fnite difer-
ence discretization. For these simulations, we chose the
time step size ∆t = 10-2s and we performed 105 realiza-
tions in Fig. 4b, and 5b and 2000 realizations in Fig. 3 to
calculate the respective ensemble averages. Half of the
trajectories started at x0 = 0 mm, y0 = -100 mm, and
φ0 = π/2 and the other half at x0 = 100 mm, y0 = 0 mm
and φ0 = π (modelling the initialisation in the experi-
ment). The rectangular absorbing boundary was set at
{(x, y)|(x = ±130 mm, y ∈ [-130 mm, 130 mm]) ∨ (x ∈
[-130 mm, 130 mm], y = ±130 mm)}.
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motion with orientation-dependent motility: Theory and
experiments,” Langmuir 36, 7066–7073 (2020).

[8] A. Wysocki, J. Elgeti, and G. Gompper, “Giant adsorp-
tion of microswimmers: Duality of shape asymmetry and
wall curvature,” Physical Review E 91, 050302 (2015).

[9] D. R. Parisi, R. C. Hidalgo, and I. Zuriguel, “Active
particles with desired orientation fowing through a bot-
tleneck,” Scientifc Reports 8, 9133 (2018).

[10] P. C. Mushenheim, R. R. Trivedi, H. H. Tuson, D. B.
Weibel, and N. L. Abbott, “Dynamic self-assembly of
motile bacteria in liquid crystals,” Soft Matter 10, 88–95
(2014).

[11] S. Zhou, A. Sokolov, O. D. Lavrentovich, and I. S. Aran-
son, “Living liquid crystals,” Proceedings of the National
Academy of Sciences U.S.A. 111, 1265–1270 (2014).

[12] P. Guillamat, J. Ignés-Mullol, and F. Sagués, “Control of
active liquid crystals with a magnetic feld,” Proceedings
of the National Academy of Sciences U.S.A. 113, 5498–
5502 (2016).
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rotational inertia for collective phenomena in active
matter,” Physical Chemistry Chemical Physics (2022),
10.1039/D2CP02940E.

[67] J. A. Cohen and R. Golestanian, “Emergent cometlike
swarming of optically driven thermally active colloids,”
Physical Review Letters 112, 068302 (2014).

[68] F. A. Lavergne, H. Wendehenne, T. Bäuerle, and
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[70] A. Solon, H. Chaté, J. Toner, and J. Tailleur, “Sus-
ceptibility of polar focks to spatial anisotropy,” Physical
Review Letters 128, 208004 (2022).

[71] H. Risken, The Fokker-Planck Equation: Methods of So-
lution and Applications, Springer Series in Synergetics
(Springer, Berlin Heidelberg, 1996).

84 Chapter 3 Scientific publications



P5 Phys. Rev. E 106, L052602 (2022) 85

P5 Fitting an active Brownian particle’s mean-
squared displacement with improved parameter
estimation

Reproduced from

M. R. Bailey, A. R. Sprenger, F. Grillo, H. Löwen, and L. Isa,
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The active Brownian particle (ABP) model is widely used to describe the dynamics of active matter systems,
such as Janus microswimmers. In particular, the analytical expression for an ABP’s mean-squared displacement
(MSD) is useful as it provides a means to describe the essential physics of a self-propelled, spherical Brownian
particle. However, the truncated or “short-time” form of the MSD equation is typically ftted, which can lead
to signifcant problems in parameter estimation. Furthermore, heteroscedasticity and the often statistically
dependent observations of an ABP’s MSD lead to a situation where standard ordinary least-squares regression
leads to biased estimates and unreliable confdence intervals. Instead, we propose here to revert to always ftting
the full expression of an ABP’s MSD at short timescales, using bootstrapping to construct confdence intervals
of the ftted parameters. Additionally, after comparison between different ftting strategies, we propose to extract
the physical parameters of an ABP using its mean logarithmic squared displacement. These steps improve the
estimation of an ABP’s physical properties and provide more reliable confdence intervals, which are critical
in the context of a growing interest in the interactions of microswimmers with confning boundaries and the
infuence on their motion.

DOI: 10.1103/PhysRevE.106.L052602

Overdamped active Brownian motion is often invoked to
describe the physics of experimental realizations of active
matter [1,2]. The “active Brownian particle’s” (ABP) motion
is described using Langevin dynamics in the overdamped
(inertia-free) regime and consists of an object simultaneously
subjected to thermal fuctuations and directed self-propulsion.
In this model, the particle moves with a constant velocity
V0 in the direction of its internal orientation axis û, which
fuctuates over time due to rotational Brownian motion [3].
Particles therefore travel ballistically over times shorter than
the characteristic timescale for rotational diffusion (persistent
motion), displaying diffusive motion (with a larger, effective
diffusion coeffcient) at longer times, as their direction of
motion is randomized [4]. This model provides meaningful
statistical quantities such as an analytical description for the
mean-squared displacement (MSD) of spherical microswim-
mers, which often shows good agreement with experimental
fndings [5]. Most analyses in the experimental literature on
microswimmers are in fact based on parameters estimated
by ftting the sample MSD to the ABP model, extracting
particle velocity V0, translational diffusivity DT , and rotational
diffusivity DR. In two spatial dimensions, the ABP model
prescribes the following expression for the MSD 〈�r2(τ )〉 as
a function of lag time τ [1,6]:

〈�r2(τ )〉 = 4DT τ + 2V 2
0

D2
R

�
DRτ − 1 + e−DRτ

�
. (1)
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The standard approach to parameter estimation from a defned
model is to use ordinary least-squares (OLS) regression [7,8]
following

θ̂ = argmin
θ

P�
i=1

(Yi − fi,θ )2, (2)

where θ̂ is the vector of estimated parameters, Yi are indi-
vidual observations from the data set P (here given by the
sample’s MSD after a given lag time τ ), and fi,θ corresponds
to the values of the ftted model [here given by the theo-
retical prediction; see Eq. (1)]. argminθ fnds the vector θ,
which minimizes the objective function. In practice, there are
two main strategies to determine the MSD of a population
of particles from their coordinates: one can perform either
an ensemble average or a time average over the displace-
ments. Ensemble averaging over many particles preserves the
statistical independence of the observations and effciently
averages out spurious noise [9], but collecting suffcient statis-
tics in the dilute limit where Eq. (1) holds is experimentally
challenging.

Therefore, one often resorts to the calculation of the MSD
via time averaging the displacements of a few ABP tra-
jectories followed over time. Moreover, time averaging is
advantageous in that it describes the physics of individual
microswimmers, whereas studying the EMSD removes infor-
mation about the heterogeneities present within the system,
such as particles displaying atypical motion or changing
dynamics within different spatial domains [10]. The time-
averaged MSD (TAMSD) of a single particle at a lag time

2470-0045/2022/106(5)/L052602(7) L052602-1 ©2022 American Physical Society
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n�τ is calculated as

TAMSD |n�τ=
M−n�
m=1

{r[(n + m)�τ ] − r(m�τ )}2

M − n
, (3)

where r[(n + m)�τ ] is the particle position at lag time n�τ

from its previous (reference) position r(m�τ ), for a trajectory
of length M. By collecting suffciently long trajectories, there
is the implicit assumption that statistically robust averaging is
performed, which is required for accurate parameter estima-
tion with OLS.

However, there are several key assumptions that must be
satisfed when using least-squares regression: of these, two
can be violated when evaluating the MSD of an ABP. The ro-
tational and time symmetry of a theoretical ABP ensures that
consecutive nonoverlapping squared displacements are statis-
tically independent, but nonidealities in experimental systems
can create hidden correlations, thereby violating the as-
sumption of statistically independent measurements [11,12].
Furthermore, to increase the statistics, one typically evaluates
overlapping squared displacements when investigating ABPs,
which are in fact correlated (see below for further discussion).
This impacts the reliability of the estimated confdence in-
tervals, which can become unrealistically narrow. In the case
of statistically dependent measurements, confdence intervals
for estimated parameters can nevertheless be constructed by
ftting the model to bootstrapped datasets from experimental
values [11,13].

The second violation is the assumption of homoscedas-
ticity in the error terms of the MSD. There are two sources
for heteroscedasticity (nonconstant variance) within the error
terms of the MSD with lag time. First, as we show later, the
theoretical population variance of an ABP’s MSD increases
with lag time. Furthermore, the number of data points used
to estimate the TAMSD decreases with increasing lag time
when evaluating single trajectories, further amplifying the
sampling error. These factors, coupled with the presence of
localization errors at shorter timescales [14], create a situation
where there is an optimal lag time over which the TAMSD of a
particle should be evaluated to obtain proper fts of its physical
properties [15,16].

To this end, weighted least-squares (WLS) regression is
often implemented in order to reduce the dependence of the
ft on data points with greater variance, following

θ̂ = argmin
θ

P�
i=1

wi,θ (Yi − fi,θ )2, (4)

where θ̂ is again the vector of estimated parameters, Yi are
the P data observations, wi,θ are the weights, and fi,θ is the
model ftted. Here argminθ now fnds the vector θ, which
minimizes the weighted objective function. The objective
function can be weighted by the inverse of the analytical
expression of the population variance (here the variance of
the squared displacements) as an estimation of the sample
error of the mean [15,17]. The variance of the mean of
a random variable X , i.e., E[X ] = �N

i=1 Xi/N , can be ob-
tained using the variance sum law for uncorrelated variables

as

Var[E[X ]] = Var

�
N�

i=1

Xi

N

�
= 1

N2

N�
i=1

Var[Xi] = σ 2

N
, (5)

where N is the sample size, and σ 2 is the variance of the ran-
dom variable X . Thus, from Eq. (5), we obtain the following
expression for the weights wi,θ :

wi,θ = 1

Var[E[X ]]
= Ni

σ 2
i,θ

, (6)

where Ni is the number of statistically independent data points
contributing to each observation i, and σ 2

i,θ is the population
variance of each observation i, in terms of the ftted values θ.

Nonetheless, the standard approach in the literature is
parameter estimation from TAMSDs using unweighted least-
squares regression [18]. Additionally, perhaps the most
widespread expression that is ftted is the so-called “short-
time” MSD of ABPs [19] (7). First proposed by Howse
et al. for the analysis of Janus catalytic microswimmers [1],
the short-time MSD equation approximates the full MSD
[Eq. (1)] at an arbitrarily short time lag, typically defned as
10% of the characteristic persistence or rotational diffusion
time τR = 1/DR, using a Maclaurin series expansion assuming
τ/τR → 0 [6]

〈�r2(τ )〉 ∼ 4DT τ + V 2
0 τ 2. (7)

This simplifcation provides reasonable fts to the experi-
mental TAMSD of single particles under certain conditions,
particularly in relation to the extraction of microswimmer
velocities [1,18,20–23]. However, care should be taken when
ftting this truncated form of the MSD to short experimental
trajectories, as it can lead to the spurious detection of velocity
in the presence of experimental artifacts [24]. The problems
associated with the standard ftting of the truncated form
of the MSD were comprehensively demonstrated by Mestre
et al. [8]. Interestingly, their proposed solution was to expand
the Maclaurin series to higher polynomial orders. Nonethe-
less, we are interested in evaluating the ftting of the full
ABP’s MSD to the “short-time” regime, as the approximation
is simply that: an approximation of a theoretical model.

In this work, we propose multiple approaches to improve
the ftting of the full ABP MSD model. We verify the robust-
ness of our approach by comparing it against the “standard”
approach of performing unweighted OLS regression on the
truncated form of an ABP’s MSD at short lag times. We begin
by considering the case where DT and DR are coupled by the
Einstein relation DT = d2

pDR/3 to avoid the introduction of
additional ftting parameters and thus allow a fair comparison
between the standard approach and our proposed alternatives.
In the fnal section of this study, we then treat DR as an ad-
ditional free ftting parameter, corresponding to experimental
situations where DT and DR are often decoupled. We eval-
uate the different ftting procedures against simulated ABP
trajectories using input values representative of experiments.
Specifcally, in the coupled case, our ABPs are simulated
via Langevin dynamics [25], with an active velocity of V0 =
5 μm s−1 and diffusivities DT = 0.2 μm2 s−1 and DR = 0.15
rad2 s−1. The simulations are numerically solved at 1 ms
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FIG. 1. Parameter estimation from ftting the truncated (blue)
and full MSD (red) expression to simulated data (estimates V̂0, D̂T

respectively normalized to the simulation inputs V0, DT ). The same
trajectory is ftted to increasing maximal lag times τmax , up to the
persistence time of an ABP (τR). We obtain 95% confdence intervals
by bootstrapping. Inset (right): Fits of DT for short τmax , indicating
the rapid deviation from the input simulation value when using the
truncated expression.

increments and sampled at 20 frames per second (fps) for 60 s
to replicate experimental videos.

Properly applied, there are several advantages to the stan-
dard approach of ftting the TAMSD at short timescales.
Generally, the scatter of the sample MSD will increase with
lag time. This increase not only is caused by the decrease in
data points for a trajectory of a given length, but also is due to
the growing correlation between sequential observations [see
Eq. (3)]. Therefore, the ftting of the MSD to unnecessarily
long lag times is generally discouraged [17]. By evaluating
the TAMSD over a time period during which the variance
does not grow signifcantly, the effects of heteroscedasticity
on parameter estimation are reduced [15]. Nonetheless, the
term “short lag times,” where the simplifed expression holds,
is fawed since it is often arbitrarily defned and used in the
literature. Furthermore, by eliminating the opportunity to ft
DR, the truncated form of Eq. (7) removes characteristic infor-
mation on the physics of ABPs. Finally, for smaller particles,
the characteristic persistence time may be so short that only
a few data points can be used to ft the expression, unless ex-
periments are performed at very high frame rates, introducing
measurement error and reducing the accuracy of parameter
estimation [14].

There are, in fact, further model-specifc problems associ-
ated with ftting the truncated form of the MSD. As seen in
Eq. (2), OLS regression is weighted towards larger values,
i.e., MSD values at longer lag times. If left untreated, the
ftting of the MSD will therefore be weighted towards the
“long-time diffusive” regime of the ABP [4]. Moreover, due to
the monotonically growing variance in the error terms of the
MSD (discussed below in more detail), this procedure assigns
greater importance to more uncertain values, leading to poorer
estimates. The effects of these considerations are illustrated
by comparing the estimates for DT and V0 obtained by ftting
the truncated and full form of the MSD equation to simulated
trajectories (see Fig. 1).

The problems of using Eq. (7) become quickly apparent
as the lag times evaluated increase beyond small fractions of
the characteristic relaxation time τR. As the estimated velocity

decreases, the ftted DT value rapidly increases to over an
order of magnitude greater than the simulation input (see
Fig. 1, blue). The inverse relationship between V0 and DT

can be understood by their respective contributions to the
overall MSD of an ABP. The increasingly diffusive nature of
an ABP’s motion with time [4] results in an overestimated DT

at the expense of a reduction in the ftted V0. This problem
is caused by the absence of the DR-related terms in Eq. (7),
which would otherwise result in the crossover to a long-time
diffusive regime (see Eq. (1)). In short, due to the system-
atic errors associated with using Eq. (7) we strongly advise
against its use when ftting the MSD of ABPs. To compare the
accuracy of our different ftting methods, we use the median
symmetric accuracy metric as described in [26]. By evaluating
the point estimates over the range of lag times studied, we
obtain errors of 14.5% for V̂0 and 799.2% for D̂T respectively
when using the truncated expression for an ABP’s MSD.

In contrast, the bootstrapped confdence intervals of the
estimated parameters using Eq. (1) more often include the true
simulation input values for different maximal lag times τmax

and also converge to reasonable values as the lag time evalu-
ated approaches the characteristic rotational relaxation time τR

(see Fig. 1, red). Fitting Eq. (1) also carries the advantage of
not assuming a limited short-time regime, enabling the ftting
to longer lag times and thus providing more data points for
better parameter estimation. Errors on the model parameters
estimated are improved to 0.6% and 12.1% for V̂0 and D̂T ,
respectively. We again emphasize that we do not ft DR as
a free parameter here but instead assume that the Einstein
relation DT = d2

pDR/3 holds and ft Eq. (1) accordingly. How-
ever, decoupling DT and DR better approximates experimental
situations where the presence of confning boundaries [27],
activity [28–30], or external felds [31] can have a different
effect on rotation and translation respectively.

Despite the signifcant improvement in estimating the
physical parameters of an ABP by using the full form of its
MSD equation, this operation still does not address underlying
statistical issues such as heteroscedasticity of the data. The
presence of heteroscedasticity can be clearly observed in the
residuals of the ftted ABP model (see Fig. 2, top row, red).
One of the most frequently used heuristic approach to address
heteroscedasticity is to log transform the data and ft the
model’s log-transformed analog. Log transforms work partic-
ularly well for right skew, constantly positive, and increasing
data, such as the case for the ABP’s MSD. Studying the “mean
logarithmic squared displacement” (MLSD) has previously
been suggested to improve the estimation of the distribution
of anomalous diffusion coeffcients in a population of hetero-
geneous particles [10].

By ftting the log-transformed (cyan) data, we observe a
clear reduction of the heteroscedasticity of the residuals. This
provides improved estimated fts and confdence intervals ob-
tained from bootstrapping, and we obtain percentage errors of
the point estimates of 0.5% and 2.3% for V̂0 and D̂T respec-
tively. In Fig. 2 (bottom row), we highlight the improvement
in ftting after this simple preprocessing step, evaluating the
same trajectory as in Fig. 1 but now with the log-transformed,
full MSD ABP ft included as a comparison to the full ft
without log transformation. We see both a reduction in the
width of the confdence intervals and a smaller difference
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FIG. 2. Top row: Plots of the residuals from the mean squared
displacements based on the point estimates in the bottom row for
τmax/τR = 1 as a function of lag time τ . Left (red): Residuals of
Eq. (1) ftted to unprocessed data (MSD). Right (cyan): Residuals
of log[Eq. (1)] ftted to log-transformed data (MLSD). The extent
of heteroscedasticity is clearly reduced, as the variance remains
relatively constant with τ after log transformation. Bottom row: Pa-
rameter estimation without (red) and with (cyan) log transformation
of the data and the model.

between the point estimate and the input simulation values.
In particular, the estimates for DT are notably improved.

As a next step, we turn to WLS regression as a tool for
determining the parameters of an ABP. As previously al-
luded to, within the WLS regression approach, one typically
relates the weights to the variance of the expectation value
[see Eq. (6)]. Under the assumption that all observations are
statistically independent, the variance of the expectation value
can be obtained from the population variance itself, using the
variance sum law as shown in Eq. (5). Where applicable, we
will follow this approach and specify the weights in terms
of the theoretical result for the variance of the mean-squared
displacement [5,32,33]

σ 2(τ ) = 〈�r4(τ )〉 − 〈�r2(τ )〉2

= 16D2
T τ 2 + 16DT τ

V 2
0

D2
R

�
DRτ − 1 + e−DRτ

�

+ V 4
0

D4
R

�
4D2

Rτ 2 − 22DRτ + 79

2
− 64

3
DRτe−DRτ

−320

9
e−DRτ − 4e−2DRτ + 1

18
e−4DRτ

	
. (8)

We note that this result is an exact representation of the
variance of the mean only if nonoverlapping squared dis-
placements are considered. For overlapping displacements, a
proper analysis requires additional covariance contributions
in Eq. (5), describing the correlation between subsequent dis-
placements. In that case, we will still employ Eq. (8), however,
as an approximation, and without the contributing term of

FIG. 3. (a) Defnition of overlapping and nonoverlapping dis-
placements from the simulated trajectory shown in (b). (c) Number of
displacements as a function of lag time when overlapping (red) and
nonoverlapping (black) displacements are evaluated. (d) Normalized
variance of the MSD as a function of τ (σ1 is the variance at the
shortest lag time τ1 = 0.05 s), as derived by Eq. (8). (e) Correspond-
ing normalized weight at time τ (w1 is the weight at τ1 = 0.05 s)
extracted according to Eq. (4) as a function of τ for the TAMSD of a
single particle.

the number of observations. Equipped with this expression,
we can now investigate the presence of heteroscedasticity
in an ABP’s MSD and attempt to minimize its effects on
parameter estimation using WLS regression. As discussed
before, we stress that in an experimental context, there might
be further hidden correlations between square displacements
requiring special consideration, whose evaluation lies beyond
the aims of this work. As alluded to above, the TAMSD
of particles can be evaluated with one of two different ap-
proaches: by determining the overlapping or nonoverlapping
particle displacements [see Figs. 3(a) and 3(b)]. Evaluating
nonoverlapping squared displacements reduces the correlation
between subsequent observations of motion in experimental
scenarios and removes it entirely within the framework of the
ABP model. However, in this case, the decay in the num-
ber of displacements is hyperbolic, decreasing much more
rapidly than when overlapping displacements are evaluated
[see Fig. 3(c)]. Furthermore, using only nonoverlapping dis-
placements leads to a different sampling of points along the
trajectory depending on how many prime factors are present
in the number of the time step. These factors lead to a situation
where using overlapping displacements typically improves
ftting performance and is generally preferable [17].

We now discuss the potential benefts of applying the
weighting coeffcient to minimize the effects of the large and
high-variance long lag time values in the objective function
[see Eq. (4)]. From Eq. (8), we fnd that the variance increases
with time [see Fig. 3(d)], and combined with the decay in
the number of observations [see Fig. 3(c)], we obtain with
Eq. (5) a weighting vector that rapidly decays with time [see
Fig. 3(e)]. This in turn demonstrates that the low numbers
of observations at longer timescales, which inherently have
a larger variance due to the nature of the TAMSD, will have a
signifcantly reduced infuence on parameter estimation.
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FIG. 4. Top row: Parameter estimation using WLS regression
on nonoverlapping (green) and overlapping (purple) displacements.
Bottom row: Parameter estimation on overlapping displacements
using WLS regression (purple) and the MLSD (cyan).

We now ft the TAMSD of a single particle using WLS
regression, beginning with the analysis of nonoverlapping dis-
placements (see Fig. 4, top row, green). We obtain percentage
errors of 2.0% and 5.9% for V̂0 and D̂T , respectively, for
the point estimates. We note a signifcant instability in the
point estimates and confdence intervals, particularly for D̂T ,
in direct comparison to the fts obtained with the MLSD.
Therefore, we also evaluate the performance of WLS regres-
sion on overlapping displacements, noting that the underlying
assumption of statistically independent observations no longer
holds (see Fig. 4, top row, purple). We again highlight here
that the variance sum law no longer holds, and therefore we
weight the objective function for overlapping displacements
using only Eq. (8). Comparing the overlapping to the nonover-
lapping case, we fnd that the resulting confdence intervals
and point estimates for WLS regression are much narrower
and less subject to fuctuations. Under these conditions, we
observe percentage errors of 0.7% and 0.5% for V̂0 and D̂T ,
respectively. We expect this discrepancy arises, in large part,
from the statistical issues associated with evaluating nonover-
lapping displacements, as described in [17]. Motivated by the
improved parameter estimation, we continue to evaluate WLS
regression using overlapping displacements for the rest of this
work.

We now compare the performance of the MLSD and WLS
regression for parameter estimation from overlapping dis-
placements (see Fig. 4, bottom row). Although the resulting
confdence intervals are broader for the WLS regression than
for the MLSD, we note that in the former case the estimate for
DT is more stable, and the true simulation input parameters are
included for all values of τmax. We conclude that for a two-
parameter ft, where DT = d2

pDR/3, the estimates obtained
from WLS regression and OLS regression of the MLSD are
similar.

FIG. 5. Parameter estimation of an ABP’s MSD where DT and
DR are uncoupled, using WLS regression (purple), MLSD (cyan),
and the third-order truncation of the MSD equation (orange). Top
row: Comparison of the three ftting approaches. The truncated ex-
pression clearly performs worse, particularly at larger τmax (see the
estimates for DT and DR). Bottom row: Only the MLSD and WLS
regression are represented for better visualization.

So far, we have considered only particles satisfying the
ideal condition where DT and DR are related by the Einstein
relationship for freely diffusing spherical particles. However,
in many situations, e.g., when in proximity with a solid wall,
DT and DR are likely to be decoupled [2,27–30], and it
is therefore important, in most experimental realizations of
ABPs, to ft these parameters separately. We account for these
circumstances by modifying the value of DT , while keeping
the same value of DR in our simulations. In particular, we
modify the translational diffusivity by applying Faxen’s cor-
rection factor to DT , as if to mimic the presence of a solid wall
250 nm away from the particle surface [34]. This correction
approximately reduces the theoretical DT value we initially
used by half.

In Fig. 5 we compare the performance of the MLSD and
WLS regression approaches when estimating the parameters
V0, DT , and DR (blue and purple, respectively). For the MLSD,
we determine percentage errors of 1.5%, 7.8%, and 7.9% for
V̂0, D̂T , and D̂R, respectively, for the point estimates across
all the lag times evaluated, while for the WLS regression we
obtain corresponding errors of 1.4%, 8.7%, and 5.9%. We also
study the truncated MSD equation expanded to third order,
as outlined in [8] (Fig. 5, top row, orange). This expression
is obtained by evaluating the Maclaurin series expansion of
Eq. (1) to the third order

〈�r2(τ )〉 ∼ 4DT τ + V 2
0 τ 2 − V 2

0

3τR
τ 3. (9)

We fnd that as before, the truncated form of the full MSD
equation is not able to satisfactorily capture the input simu-
lation parameters, an effect which is particularly noticeable
for DT as τmax increases, as previously observed in Fig. 1. We
determine percentage errors of 1.6%, 32.2%, and 24.4% for
V̂0, D̂T , and D̂R respectively. We note the use of the median
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function in the median symmetric accuracy metric [26], and
the effect this has on the measured accuracy relative to the
instability observed in Fig. 5 (top row, orange).

When evaluating overlapping displacements using WLS
regression and the MLSD, we note a remarkable overlap in
both the point estimates and confdence intervals (see Fig. 5,
bottom row). This observation indicates that both the log
transformation and weighting of the data have a similar ef-
fect on addressing the heteroscedasticity present in an ABP’s
MSD. In both instances, we also note the instability of the
short-time estimates for DR, which is unsurprising given the
independence of the MSD from DR at short lag times [see
Eq. (7)].

In conclusion, the ABP model provides a useful framework
to study the motion of microswimmers and extract meaningful
physical properties from mean quantities. However, “blind”
ftting of MSDs can affect results, as hidden correlations
may arise in experimental systems. Therefore, we recommend
constructing confdence intervals by bootstrapping in almost
all experimental situations. We additionally always advise
against the use of the truncated form of the MSD equation.
Further steps beyond ftting to short lag times should also
be taken to treat the heteroscedasticity of an ABP’s MSD. In
particular, we fnd that log transforming the data before ftting
the MLSD equation outperforms standard approaches used
in literature, and provides similar estimates as WLS regres-
sion using the theoretical variance of an ABP’s MSD. With
this approach, overlapping displacements can be evaluated,

signifcantly increasing the amount of data available. Further-
more, the simplicity of ftting log-transformed data to shorter
lag times should assist in its widespread uptake. We never-
theless stress that we have studied simulated data of an ideal,
noninteracting ABP model, neglecting, e.g., the presence of
torque in the Langevin force balance [28,35], a situation that
is often observed in experiments due to nonsymmetric surface
modifcation [36] or shape [37], which can signifcantly affect
the ftting of model parameters. Signatures for an angular
propulsion velocity should therefore be additionally investi-
gated when analyzing experimental trajectories, and its effect
duly included in the fts. We have also not treated the ef-
fect of ABP speed on the coupling between DT and V0 [38]
and experimental errors from static and dynamic localization
errors [10,15,16,39]. These are nevertheless critical factors
which should be considered when designing experiments and
analyzing data.
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ABSTRACT

We propose a new overarching model for self-propelled particles that flexibly generates a full family of “descendants.” The general dynamics
introduced in this paper, which we denote as the “parental” active model (PAM), unifies two special cases commonly used to describe active
matter, namely, active Brownian particles (ABPs) and active Ornstein–Uhlenbeck particles (AOUPs). We thereby document the existence of
a deep and close stochastic relationship between them, resulting in the subtle balance between fluctuations in the magnitude and direction of
the self-propulsion velocity. Besides illustrating the relation between these two common models, the PAM can generate additional offsprings,
interpolating between ABP and AOUP dynamics, that could provide more suitable models for a large class of living and inanimate active
matter systems, possessing characteristic distributions of their self-propulsion velocity. Our general model is evaluated in the presence of a
harmonic external confinement. For this reference example, we present a two-state phase diagram that sheds light on the transition in the
shape of the positional density distribution from a unimodal Gaussian for AOUPs to a Mexican-hat-like profile for ABPs.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0084213

INTRODUCTION

Active matter includes a broad variety of biological and physi-
cal systems,1–3 ranging from bacteria,4,5 colloids,6–11 more complex
organisms, such as sperms and cells,12 and even animals at the
macroscopic scales,13,14 such as birds15 and fish.16 Each of these
systems is formed by individual active units that convert energy
into motion, a property that allows them to be denoted as active
systems.17 Despite this generic label, the multitude of mechanisms
behind active motion results in a large amount of diversity, e.g., giv-
ing rise to systems whose typical active velocity is constant or subject
to fluctuations.

On the theoretical side, there are two major paradigms for
modeling active particles as a diffusive stochastic process:18,19

active Brownian particles (ABPs),20–26 introduced to describe
the diffusion-driven behavior of active colloids, and active
Ornstein–Uhlenbeck particles (AOUPs),27–34 originally proposed
for mathematical convenience35,36 but also found to be a good
approximation for a passive particle in an active bath.37–40 Both
models possess two major common ingredients: the typical self-
propulsion velocity induced by the active force (sometimes called

the swim velocity), which is constant for ABPs or given by an average
value for AOUPs, and the persistence time, indicating the strength
of rotational diffusion for ABPs and the characteristic time scale in
the autocorrelation of the active noise for AOUPs.

It is well known that ABPs and AOUPs share a similar phe-
nomenology in a large range of fundamental physical problems,
e.g., both predict the accumulation near walls and obstacles,41–43

clustering44,45 and motility induced phase separation,20,24,46–51 and
spatial velocity correlations in dense systems26,52–54 and active
glasses.55,56 However, some prominent differences emerge in a few
special cases, such as the failure of AOUPs to reproduce the bimodal
spatial distribution in a harmonic potential (for instance, see Ref. 36
for AOUPs and Refs. 57 and 58 for ABPs) or the distinct behavior
of the density in the bulk of a confined system.59–61 For this rea-
son, ABPs are usually perceived as the established model to describe
active colloids, while AOUPs are considered as a useful but over-
simplified approximation for ABPs when the model parameters are
appropriately chosen. However, the propitious theoretical possibil-
ities offered by the AOUPs have contributed to establish it as an
important model for active matter systems in its own right. This
has led to a continuously increasing number of works dedicated to
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FIG. 1. Illustration of the considered family of active models, uniquely charac-
terized by a velocity scale v0 and the self-propulsion vector n, determined by a
stochastic process of unit variance. The parental active model (PAM) is described
by the shown distribution P(n) in the form of a shifted Gaussian [see Eq. (7)] with
the single free parameter μ, which identifies the most likely value of the modulus∣n∣. The width of the distribution, quantified by α(μ), is constrained by the condi-
tion ⟨n2⟩ = 1 [see Eq. (9)]. The 3d plots at the bottom show P(n) for three specific
choices of μ, indicated by the axis below, which are further discussed in the text.

the AOUP model with the aim of deriving exact or approximate
analytical results for single-particle62,63 or interacting systems.64–68

The recent interest in AOUPs implies the need to reevaluate the
unilateral relation to the ABP model by going beyond the standard
qualitative way to compare these two fundamental approaches.

In this work, we propose a general model to describe the self-
propulsion mechanism of active particles on the microscale, which
we call the parental active model (PAM) because it includes both
ABPs and AOUPs as two subcases. We thus show that these classical
models actually stand on the same hierarchical level as descendants
of the PAM; see Fig. 1 for an illustrative picture. Specifically, they dif-
fer only by the value of a single parameter, indicating the shape of the
probability distribution of the radial component of the active velo-
city. In other words, the relation between ABPs and AOUPs is that of
two sisters rather than two cousins. By considering a whole class of
overarching models, we both uncover the deep connection between
ABPs and AOUPs going beyond a mutual mapping64,69 and bridge
the gap between these two extreme cases, which may provide a cru-
cial step toward a more realistic description of experimental systems.
To explore the whole family of models, we compare the (famously
distinct) probability density of ABPs and AOUPs in a harmonic trap
to the results for intermediate offspring of the PAM.

GENERIC DYNAMICS OF ACTIVE PARTICLES

The typical overdamped dynamics of a generic active particle is
described by the differential equation

γẋ = γv0n + γ
√

2Dtw + F(x) (1)

for its position x, where F(x) is the external force exerted on the
particle, w is a white noise with unit variance and zero average,
and γ and Dt are the friction coefficient and the translational diffu-
sion coefficient, respectively, related to the temperature of the bath
through the Einstein relation. The term v0γn is called the active force
and v0n is the resulting self-propulsion velocity, where the constant
v0 provides a velocity scale. The self-propulsion vector n is a gen-
eral stochastic process with unit variance whose specific dynamics
determine the active model under consideration. For simplicity, we
restrict ourselves to two spatial dimensions.

ACTIVE BROWNIAN PARTICLES (ABPs)

In the case of ABPs, n represents a unit vector, which denotes
the fluctuating particle orientation. In other words, the direction of
n = (cos θ, sin θ) is described by the steady-state distribution

PABP(n, θ) ∼ 1
2π

nδ(n − 1) (2)

with a uniformly distributed orientational angle θ and fluctuation-
free modulus n = ∣n∣ that is always fixed to the average value ⟨n⟩= 1. As known, the ABP dynamics in polar coordinates is simply a
diffusive process,

θ̇ =
√

2
τ

ξ (3)

for θ, where ξ is a white noise with unit variance and zero average,
and the time scale τ = 1/Dr represents the persistence time induced
by the rotational diffusion coefficient Dr.

ACTIVE ORNSTEIN–UHLENBECK PARTICLES (AOUPs)

In the case of AOUPs, n is represented by a two-dimensional
Ornstein–Uhlenbeck process that allows both the modulus n and
the orientation θ to fluctuate with related amplitudes. The AOUP
distribution is a two-dimensional Gaussian such that each compo-
nent fluctuates around a vanishing mean value with unitary variance.
In polar coordinates, the probability distribution of the AOUP
self-propulsion reads

PAOUP(n, θ) ∼ 1
2π

n exp(−n2). (4)

The dynamics ṅ = − n
τ +√ 1

τ χ generating the process is usually writ-
ten in Cartesian coordinates, where χ is a two-dimensional vector of
white noises with uncorrelated components having unitary variance
and zero average. To shed light on the relation with the ABP, it is
convenient to express the dynamics of AOUP in polar coordinates,
which gives (Itô integration)

ṅ = −n
τ
+
√

1
τ

χn + 1
2τn

, (5a)

θ̇ =
√

1
τ

χθ

n
, (5b)
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where χn and χθ are white noises with unit variance and zero average.
While still being coupled to the dynamics of n, the angular equation
for θ is quite similar to that describing the ABP dynamics in Eq. (3).

MAPPING BETWEEN ABPs AND AOUPs

Usually, the connection between ABPs and AOUPs is estab-
lished by demanding that the steady-state temporal correlations of
the self-propulsion velocity v0n of ABPs and AOUPs are equal. Note
that by introducing this generic form of the active force in Eq. (1),
we have already included in the dynamics the mapping 2Da/τ=v2

0
through which we have eliminated the active diffusivity Da from the
conventional notation for the AOUP dynamics. Likewise, the second
relation Dr = 1/τ is implied in Eq. (3). As a result, both models share
the same autocorrelation function

⟨n(t) ⋅ n(0)⟩ = exp(− t
τ
) (6)

of the self-propulsion vector n, despite possessing different distri-
bution PABP(n, θ) ≠ PAOUP(n, θ). Apart from this mapping, there is
currently no apparent deeper relation between the stochastic pro-
cesses Eq. (3) and Eq. (5b), underlying the dynamics of ABP and
AOUP, respectively. As a next step, we establish such a connection
by introducing a more general model.

UNIFICATION IN THE PARENTAL ACTIVE MODEL
(PAM)

Now, we are ready to define a “parental” active model (PAM)
from which one can recover both ABPs and AOUPs as limiting cases.
The most natural steady-state distribution for a PAM accounting for
these features simply introduces Gaussian fluctuations and reads

P(n, θ) ∼ n
2π

exp(−(n − μ)2

2α2 ). (7)

This is one of the most simple distributions that allow the modu-
lus to fluctuate around a nonzero peak of the distribution, μ, with
modulus fluctuations, α2, which are independent of those of the
active force direction θ. Note that P(n, θ) is constant in θ so that
P(n, θ)∼P̄(n), where P̄ = ∫ 2π

0 dθP is the reduced distribution of the
self-propulsion velocity modulus (cf. Fig. 2).

The dynamics of the PAM, i.e., the dynamics that gener-
ate the steady-state distribution (7) in polar coordinates are (Itô
integration)

ṅ = −(n − μ)
τ

+
√

2α2

τ
χn + α2

τn
, (8a)

θ̇ =
√

2 f (α)
τ

χθ

n
, (8b)

where f (α) = 1 − α2 and α ∈ [0, 1/√2]. The representation of Eq. (8)
in Cartesian coordinates is discussed in Appendix A. The form
of f (α) guarantees that the total noise strength remains constant

FIG. 2. Stationary solution for the self-propulsion vector n in the PAM. Panel
(a): distribution P̄(n) = ∫ 2π

0 dθP(n, θ), given by Eq. (7), of the radial compo-
nent n = ∣n∣ for different values of μ, interpolating between AOUP (μ = 0) and
ABP (μ = 1). Panel (b): relation between the parameters α and μ, which guaran-
tees that ⟨n2⟩ = 1, leaving the velocity scale v0 invariant. Red and yellow dashed
curves indicate the asymptotic solutions for μ→ 0 and μ→ 1, respectively, given
by Eq. (9).

throughout all offsprings of the PAM, namely, α2 + f (α) = 1. Fixing
α = 1/√2 and μ = 0, the dynamics coincides with that of an AOUP
[cf. Equation (5)]. For α = 0 and μ = 1, we obtain the ABP dynamics
because the deterministic time evolution of n, Eq. (8a), admits the
general solution n(t) = 1 + (n(0) − 1) exp(−t/τ) for n(0) ≠ 1 and
the special solution n(t) ≡ 1 for n(0) = 1. In fact, the latter initial
condition, n(0) = 1, is the only physical choice (consistent with the
requirement ⟨n2⟩ = 1 stated below). This implies that the normalized
self-propulsion vector n = (cos θ, sin θ) of an ABP is recovered for
every time t. Moreover, the dynamics, Eq. (8b), for the angle θ then
reverts to Eq. (3).

While our general PAM contains the two parameters α and μ, it
is sufficient to restrict the offspring to those models that give rise
to the typical speed v0 as a common scale of the self-propulsion
velocity. To see this, we note that any process n with ⟨n2⟩ = a can be
rewritten as

√
añ, where ñ has unit standard deviation, such that the

case a ≠ 1 would merely correspond to renormalizing v0 in Eq. (1).
Therefore, we can simply relate the modulus fluctuations α to the
peak position μ by requiring ⟨n2⟩ = 1. The resulting relation α(μ)
(see Appendix B) leaves μ as the only free parameter of the PAM (at
fixed v0). Near the two limiting cases of the AOUP (μ→ 0) and ABP(μ→ 1), the relation α(μ) simplifies and reads

α ≈
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1√
2
(1 − √π

4
μ), μ→ 0,√

1 − μ2

3
, μ→ 1.

(9)

In Fig. 2(b), we compare these simple representations to α(μ),
obtained by solving numerically ⟨n2⟩ = 1, and we find good agree-
ment in the regimes 0 ≤ μ ≲ 0.3 and 0.7 ≲ μ ≤ 1. The resulting
steady-state distributions are shown in Fig. 2(a) for different μ, inter-
polating between AOUPs (green curve) and ABPs (yellow curve); see
also Fig. 1 for the representation in Cartesian coordinates.

Apart from the free parameter μ, which uniquely characterizes
each descendant of the PAM for a given scale v0 of the self-
propulsion velocity, the whole family of models shares a common
persistence time τ of the active motion and an equal dynamical
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correlation, given by Eq. (6). As a result, some basic dynamical prop-
erties for a potential-free particle are the same for each value of
μ, such as the velocity autocorrelation function and the mean and
mean-squared displacements, in accordance with the well-known
results in the limiting cases of ABPs70,71 and AOUPs.18

PAM IN HARMONIC CONFINEMENT

The main difference between ABPs and AOUPs occurs in the
dynamics of the radial component of the active force. The conse-
quences of that become highly relevant if the particle is subject to an
additional, external potential. As a reference study, we confine the
system via a harmonic trap so that the external force F(x) = −kx is
exerted on the active particle. The curvature of the potential k intro-
duces an additional time scale that is recast onto a dimensionless
parameter kτ controlling the dynamics. In Fig. 3, we study the radial
probability distribution, ρ(r), and the reduced distribution in Carte-
sian coordinates, p(x), projected onto the x axis for different values
of μ and kτ.

Before discussing the behavior of the generic PAM in detail, we
provide further analytic insight into the extreme cases (calculations

are reported in Appendixes C and D). As a Gaussian process, the
AOUP gives rise to the exact solution,42,69,72

ρ(r) ∼ exp
⎛⎜⎝−

kΓ

(DΓ + v2
0 τ
2 )

r2

2

⎞⎟⎠, (10)

where as usual, in AOUP systems, Γ = 1 + kτ plays the role of an
effective friction coefficient.73 Assuming large persistence, kτ ≫ 1,
we further develop the analytical prediction

ρ(r) ∼ r1/2 exp
⎛⎝−(k + 1

2τ
) 1

2D
(r − v0

k + 1
2τ
)2⎞⎠ (11)

for the ABP, which reflects the bimodality of the density
distribution58,74–78 (see also Refs. 57 and 79 for experimental studies)
as a distinct feature compared to the Gaussian shape of the AOUP
solution.

When the active force relaxes faster than the particle position
such that kτ ≪ 1, the dynamical details of the active force in the
generic PAM cannot affect the distribution, which is thus inde-
pendent of μ, as shown in Figs. 3(a) and 3(d). In this regime, the

FIG. 3. Probability distribution of the
active particle position in a harmonic
external potential. Panels (a)–(c) show
the radial density distribution ρ(r) as a
function of rk/v0, while panels (d)–(f)
plot the distribution (projected onto one
axis) p(x) as a function of xk/v0. Pan-
els (a) and (d) are obtained with kτ= 10−1, panels (b) and (e) with kτ = 1,
and finally, panels (c) and (f) with kτ= 102. The black dashed lines in all the
panels are obtained by Eq. (10), while
the black dashed–dotted line in panel
(c) by Eq. (11). Panels (a) and (d), (b)
and (e), and (c) and (f) share the same
legend.

J. Chem. Phys. 156, 071102 (2022); doi: 10.1063/5.0084213 156, 071102-4

Published under an exclusive license by AIP Publishing

100 Chapter 3 Scientific publications



The Journal
of Chemical Physics COMMUNICATION scitation.org/journal/jcp

FIG. 4. Two-states phase diagram of the active harmonic oscillator by varying kτ
and μ [and, thus, α(μ) accordingly] distinguishing between the regions where the
spatial distribution, p(x), is unimodal and bimodal, as explicitly indicated in the
graph. The two regions are separated by a black solid line, μc(τc), tracked in
correspondence with the first value of kτ such that p(x) shows a bimodality: in
practice, we fit the exponential of a fourth order polynomial exp(−ax4 + bx2 + c),
identifying a point on the critical line μc(τc) as the smaller value of μ (for each kτ)
such that b < 0. In addition, we plot the kurtosis of p(x), namely, ⟨x4⟩/⟨x2⟩2, as a
color gradient. We remark that the typical values of the kurtosis in correspondence
with the transition line are between 2.3 and 2.5.

shape of ρ(r) [or equivalently p(x)] coincides with the analytical
AOUP result, Eq. (10) with Γ→ 1, for every μ. This approximation
can be explicitly derived also in the opposite extreme case of ABPs
(see Appendix D). This occurs because the active force behaves as
a noise term, and thus, it only modifies the variance of ρ(r) with
respect to the passive case in the spirit of an effective temperature.
In the intermediate persistence regime, kτ ∼ 1, Figs. 3(b) and 3(e)
indicate that the density gradually departs from its Gaussian form,
given by Eq. (10), when μ is increased: the position of the main
peak of ρ(r) shifts toward larger values of r while the shape p(x)
displays the onset of bimodality. These differences become most
significant in the large persistence regime, kτ ≫ 1, where the ABP
solution is well-represented by Eq. (11), roughly centered around
v0/[k + 1/(2τ)]→ v0/k (for kτ ≫ 1). In addition, for smaller μ, the
radial density ρ(r) has a strongly non-Gaussian shape [see Fig. 3(c)].
We further show in Fig. 3(f) that for a large persistence, even a small
increase of μ induces drastic changes in the shape of p(x), eventually
inducing a unimodal→ bimodal transition.

In Fig. 4, such a transition is depicted through a phase dia-
gram as a function of μ and kτ, distinguishing between unimodal and
bimodal configurations and showing the kurtosis of p(x) as a color
gradient. For small values of μ, the distribution p(x) is unimodal
(region 1) independently of kτ. Starting from μ = 0 (AOUP model),
which is Gaussian, the increase of μ induces non-Gaussianity in the
shape of p(x), which reflects onto the decrease in the kurtosis to
values smaller than 3. However, while for small values of kτ, p(x)
still remains unimodal upon increasing μ [compare Fig. 3(d)], a
transition toward a bimodal distribution, which is characterized by
kurtosis values ∼2, takes place (region 2) as soon as kτ ∼ 1. The cor-
responding critical curve μc(τc) (black line in Fig. 4) decreases when
kτ is increased until reaching a plateau for kτ ≫ 1. This is consis-
tent with Eq. (10) and Eq. (11) in which ρ(r) does not depend on kτ

for kτ ≫ 1. In general, the fluctuation of the modulus n of the self-
propulsion vector inhibits the ability of the active particle to stay far
from the potential minimum, even in the harmonic oscillator case.

CONCLUSIONS

We developed a unifying parental active model (PAM) for the
stochastic dynamics of active particles. This PAM shows that the
established ABPs and AOUPs descriptions stand on an equal level
as being sisters rather than cousins. The family of explored models
shares defining properties of active matter, such as the exponential
dynamical correlations on the scale of the persistence time τ and the
common velocity scale v0. The only differences lie in the modulus
distributions of the self-propulsion velocity, which can be contin-
uously transferred from a Gaussian form (AOUP) to a sharp peak
(ABP) by sweeping a single parameter. As a benchmark study, we
examined the stationary distribution in a harmonic potential and
mapped out the transition between unimodal and bimodal, which
marks the classical “failure” of AOUPs to reproduce the behavior of
ABPs in the large-persistence regime.

For the purpose of realistic modeling, however, both AOUPs
and ABPs are idealized. This is because a perfectly constant mod-
ulus of the self-propulsion velocity is highly unlikely due to the
individual nature of biological agents and various types of fluctu-
ations. Bacteria, for example, can display fairly broad80,81 or even
bimodal82,83 speed distributions. In addition, macroscopic agents,
such as locusts,84 whirligig beetles,85 or zebrafish,14,86,87 exhibit nat-
ural speed fluctuations. To realistically describe these systems, a
theoretical approach should incorporate both fluctuations of the
modulus and the direction of the self-propulsion velocity.86–92 For
this purpose, our description within the PAM is particularly con-
venient because it is based on a single stochastic process n of unit
standard deviation (i.e., v0 is treated as a velocity scale and does not
fluctuate itself) such that all descendant models with an intermediate
value of the parameter μ can be evaluated with the same numerical
effort as ABPs and AOUPs.

The family of models can be systematically extended by realiz-
ing that the PAM merely gives rise to more diversity in the stationary
properties of the underlying stochastic process, while the autocorre-
lation (6) of the self-propulsion velocity remains equal for all off-
springs. Another common model of active particles involves the run
and tumble motion93–96 where the autocorrelation is a step function
because after running for a straight path, the particle instantaneously
changes the direction of its active velocity after a typical tumbling
rate. In our line of reasoning, this particular shape (at the same per-
sistence time scale τ related to the inverse of the tumbling rate) of the
dynamical autocorrelation function could be viewed as, say, a differ-
ent gender. In practice, the notion of run-and-tumble-like dynamics
can be easily combined with our PAM by drawing after each tum-
bling event the new direction and modulus of the self-propulsion
vector according to the stationary distribution in Eq. (7).

In conclusion, the PAM both unifies ABPs and AOUPs and
provides a crucial step toward more realistic modeling of over-
damped (dry) active motion, in general, which should in future
work be employed to provide an improved fit of experimental
swim-velocity distributions. Investigating the effect of the swim-
velocity fluctuations could represent an interesting perspective
for circle swimming,97–102 systems with spatial-dependent swim
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velocity,103–108 and inertial dynamics109–113 even affecting the ori-
entational degrees of freedom.114,115 The generalization of PAM to
these cases could be responsible for new intriguing phenomena,
which will be investigated in future works.
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APPENDIX A: PAM DYNAMICS IN CARTESIAN
COORDINATES

In this appendix, we report the expression for the PAM
dynamics in Cartesian coordinates. Applying Itô calculus, we obtain

ṅ = −1
τ
(n − μ

n
n
) + n

n2
1
τ
(α2 − f (α))

+
√

2α2

τ
n
n

χn +
√

2 f (α)
τ

R ⋅ n
n

χθ (A1)

with R denoting the rotational matrix of 90○. Alternatively, the last
term can be expressed in a more familiar form

R ⋅ n
n

χθ = n
n
× ẑχθ (A2)

in terms of the cross product. By setting μ = 0 and α = 1/√2 in
Eq. (A1), we recover the AOUP model. Indeed, only the term −n/τ
survives on the first line, while the noise terms in the second line
reduce to a vector of white noise because any orthogonal transfor-
mation applied on a vector of white noises is still a vector of white
noise. Instead, by setting μ = 1 and α = 0 in Eq. (A1), only the term−n/τ survives on the first line because n2 = n = 1 and only the second
noise survives on the second line so that we obtain the ABP equation
(Itô integration)

ṅ = −Drn +√2Drn × z ξ (A3)

in Cartesian coordinates, where z = (0, 0, 1).
APPENDIX B: OBEYING THE UNIT-VARIANCE
CONDITION

In this appendix, we give the analytic expression of the second
moment ⟨n2⟩ of the PAM distribution [see Eq. (7)] needed to impose

the constraint ⟨n2⟩ = 1 dictated by the given velocity scale v0. After
algebraic manipulations, we get

⟨n2⟩ = 3α2 + μ2 −Nα4e− μ2

2α2 , (B1)

where N is the normalization constant of the distribution (7), which
explicitly reads

N −1 = α2

2
μ√
2α
(4
√

π + Γ(−1
2

,
μ2

2α2 )). (B2)

Here, Γ(s, x) denotes the upper incomplete gamma function. The
condition requiring ⟨n2⟩ = 1 follows as

3α2 + μ2 −Nα4e− μ2

2α2 = 1, (B3)

which is solved for α(μ) in Fig. 2 and yields the asymptotic solutions
near the two limiting cases of the AOUP (μ→ 0) and ABP (μ→ 1)
models, given by Eq. (9).

APPENDIX C: AOUP IN A HARMONIC POTENTIAL

Here, we provide the solution of Eq. (1) with the external force
F(x) = −kx. In the AOUP case (or the PAM with μ = 0 and thus
α = 1/√2), the dynamics can be solved exactly because of its lin-
earity. The whole solution for the probability distribution P(x, n)
reads

P(x, n) = N exp
⎛⎝− Γk

ΓD + v2
0 τ
2

r2

2
⎞⎠

× exp
⎛⎜⎝−

Γ
v2

0

⎛⎜⎝n − k
2

Γv2
0τ

(v2
0 τ
2 +D)x

⎞⎟⎠
⎞⎟⎠, (C1)

where r2 = x2 + y2 in two spatial dimensions. By integrating out the
self-propulsion vector n and switching to polar coordinates, we eas-
ily obtain the expression for the radial probability distribution, ρ(r),
which reads

ρ(r) = N exp
⎛⎜⎝−

kΓ

(DΓ + v2
0 τ
2 )

r2

2

⎞⎟⎠, (C2)

where Γ plays the role of an effective friction coefficient and reads

Γ = 1 + kτ, (C3)

as stated in Eq. (10) of the main text. From Eq. (C2), we can identify
an effective temperature, say the variance of the distribution, as

Teff = (D + v2
0τ

2Γ
). (C4)

APPENDIX D: ABP IN A HARMONIC POTENTIAL

To get analytical results in the case of an ABP (or the PAM with
μ = 1 and thus α = 0) in a harmonic trap, it is convenient to express
the positional dynamics (1) in polar coordinates, (x, y)→ (r, ϕ),
such that r =√x2 + y2 and ϕ = atan y

x . Applying Itô calculus to the
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dynamics (1) of the main text to perform the change in variables,
we get

ṙ = −k r + D
r
+ v0 cos(θ − ϕ) +√2Dwr , (D1a)

ϕ̇ = v0
sin(θ − ϕ)

r
+ √2D

r

√
2Dwϕ, (D1b)

where the orientation θ of the (normalized) self-propulsion vector n
evolves according to Eq. (3). From here, the Fokker–Planck equation
for the probability distribution, p = p(r, ϕ, θ), reads

∂tp = ∂r[k r − D
r
− v0 cos(θ − ϕ) +D∂r]p

+ ∂ϕ[D
r2 ∂ϕ − v0

r
sin(θ − ϕ)]p + 1

τ
∂2

θ p. (D2)

Separating angular and radial currents in Eq. (D2) allows us to
find approximated solutions for the conditional angular probability
distribution f (θ − ϕ∣r) (i.e., the angular probability distribution at
the fixed radial position r), which we will use later to estimate the
radial density distribution ρ(r). In other words, by setting the second
line in Eq. (D2) equal to zero, we obtain

f (θ − ϕ∣r) = Nea cos(θ−ϕ), (D3)

where a reads

a = v0

D
r(1 + r2

Dτ ) . (D4)

In the small persistence regime, kτ ≪ 1, this distribution converges
to a flat profile because a→ 0 vanishes. This reflects the fact that both
θ and ϕ are uniformly distributed and, thus, also their difference.
Instead, in the large persistence regime, Eq. (D3) is peaked around
ϕ ∼ θ and its variance becomes smaller as kτ is increased.

As a first step to finding an approximation for ρ(r), we now
calculate the average

⟨cos(θ − ϕ)⟩ = I1(a)
I0(a) (D5)

with respect to the conditional angular distribution, Eq. (D3), where
I0(a) and I1(a) are the modified Bessel functions of the first kind
of order 0 and 1, respectively. With this result, we can achieve
the derivation starting directly from Eq. (D2). First, we assume
the zero-current condition for the radial current, namely, we set
to zero the first line in Eq. (D2). Then, we replace cos(θ − ϕ)→ ⟨cos(θ − ϕ)⟩, where we approximate the result from Eq. (D5) in
two different regimes.

Small-persistence regime

In the small persistence regime such that kτ ≪ 1, we have a≪ 1
and we can approximate

⟨cos(θ − ϕ)⟩ = I1(a)
I0(a) ≈ a

2
= 1

2
v0

D
r(1 + r2

Dτ ) . (D6)

The small persistence time regime further allows us to replace

r2 → ⟨r2⟩ = 1
k(D + v2

0 τ
2 ) in Eq. (D6). The expression for ⟨r2⟩ is

achieved by recalling that the active particle in the small persis-
tence regime is subject to the effective temperature D + v2

0τ/2, a
result holding for a general potential. From here, the zero-current
condition in Eq. (D2) leads to the equation

[k∗r − D
r
+D

∂

∂r
]ρ(r) = 0 (D7)

for ρ(r), where

k∗ = k + v2
0

D + 1
kτ (D + v2

0 τ
2 ) . (D8)

This equation can be easily solved to obtain an expression for ρ(r)
that after algebraic manipulation reads

ρ(r) = N exp
⎛⎜⎝−

kΓ

(DΓ + v2
0 τ
2 )

r2

2

⎞⎟⎠, (D9)

where Γ = 1 + kτ → 1 is defined according to Eq. (C3). This distribu-
tion coincides with the AOUP one (C2).

We observe that in the limit of very small τ, the above result
(D9) coincides with that obtained in the passive limit, which can
be achieved by setting v0 → 0. In this case, we have a→ 0 and thus⟨cos(θ − ϕ)⟩ = 0 in Eq. (D2) (and the same for the sinus) because
θ is uniformly distributed between 0 and 2π. Therefore, Eq. (D1)
simply converges onto the equation of a passive particle holding for
v2

0τ ≪ D. We further remark that our result is consistent with that
obtained by the hydrodynamic approach holding in the case of ABP
in the regime of small τ, which allows us to recover Eq. (D9) with
Γ→ 1.

Large-persistence regime

In the large persistence case, kτ ≫ 1, the self-propulsion relaxes
much slower than the position distribution. In addition, in this case,
we can adopt the same strategy used in the small persistence regime
with the crucial difference that now we have a≫ 1 so that we can
approximate Eq. (D5) as

⟨cos(θ − ϕ)⟩ = I1(a)
I0(a) ≈ 1 − 1

2a
= 1 − 1

2
r
v0
(D

r2 + 1
τ
). (D10)

Plugging this result into Eq. (D2) and using the zero-current condi-
tion allow us to find the equation for the radial density, ρ(r), which
reads

[r(k + 1
2τ
) − D

r1/2 − v0 +D
∂

∂r
]ρ(r) = 0 (D11)

and whose solution can be explicitly obtained,

ρ(r) = Nr1/2 exp
⎛⎝−(k + 1

2τ
) 1

2D
(r − v0

k + 1
2τ
)2⎞⎠. (D12)

Here, the result is fairly different from the Gaussian distribution
(C2) obtained in the case of AOUP dynamics. The profile (D12) is
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well-approximated by a Gaussian centered at r = v0/(k + 1/2τ)with
variance D/(k + 1/2τ).

Note that the result (D12) is almost consistent with that
obtained in Ref. 69 in the limit τ →∞. However, with respect to
Ref. 69, here, we improve the approximation for the angular distri-
bution that leads to a prefactor r1/2 (instead of simply r), which is
in better agreement with the data. To establish a closer relation to
this result, we remark that in the large persistence regime, the angu-
lar distribution (D3) derived here can be further approximated by a
Gaussian

f (θ − ϕ∣r) = Ne− a
2 (θ−ϕ)2

(D13)

after expanding the cosine around θ ∼ ϕ. The expression for ρ(r)
resulting from this approximation is then consistent with the
previous prediction69 in the large persistence regime.
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Dynamics of active particles with translational and rotational inertia
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Inertial effects affecting both the translational and rotational dynamics are inherent to a broad
range of active systems at the macroscopic scale. Thus, there is a pivotal need for proper models
in the framework of active matter to correctly reproduce experimental results, hopefully achieving
theoretical insights. For this purpose, we propose an inertial version of the active Ornstein-Uhlenbeck
particle (AOUP) model accounting for particle mass (translational inertia) as well as its moment of
inertia (rotational inertia) and derive the full expression for its steady-state properties. The inertial
AOUP dynamics introduced in this paper is designed to capture the basic features of the well-
established inertial active Brownian particle (ABP) model, i.e., the persistence time of the active
motion and the long-time diffusion coefficient. For a small or moderate rotational inertia, these
two models predict similar dynamics at all timescales and, in general, our inertial AOUP model
consistently yields the same trend upon changing the moment of inertia for various dynamical
correlation functions.

I. INTRODUCTION

Active motion can be observed at both microscopic and
macroscopic scales [1–3], with typical examples ranging
from birds, fish and insects to colloids and bacteria or cell
monolayers. A common feature of such active systems is
the capability to convert energy from the environment
to produce directed motion [3, 4], which allows them to
swim, move or fly in their environment. As a conse-
quence, their dynamics qualitatively differs from that of
”passive” Brownian particles, originally introduced to de-
scribe the random motion of pollen grains in water solu-
tion [5] and extensively employed to model colloidal par-
ticles. While the (overdamped) passive motion of passive
colloids is characterized by random (Brownian) trajec-
tories, showing a pure diffusive behavior, active motion
generally gives rise to persistent single-particle trajecto-
ries [3, 6]: an active particle typically moves persistently
in one spatial direction with a typical velocity, known as
the swim velocity, and only after a typical time, known
as persistence time, randomizes its direction of motion.

These features have been identified as the basic ingre-
dients to build coarse-grained models in the framework
of stochastic processes, able to capture the essential be-
havior of this class of active systems. Among them, the
famous model of active Brownian particles (ABPs) [7–
15] introduces the ”activity” as a time-dependent force
of constant magnitude with a stochastic evolution of its
direction. It is commonly used due to its simplicity while
it also presents an accurate representation of active col-
loids [16–20] subject to both translational and rotational
Brownian motion. Recently, an alternative model, known
as active Ornstein-Uhlenbeck particles (AOUPs) [21–25],
has been introduced, firstly, to describe the motion of a
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passive colloid in a bath formed by active bacteria [26–
29], and, secondly, to further simplify the ABP dynam-
ics in terms of Gaussian correlations [30–32], which al-
lows to obtain exact analytical predictions [33–36] or
devise approximate theories [37–39]. The two models
show consistent results, being both able to reproduce
the typical non-equilibrium phase coexistence of active
particles, known as motility-induced phase separation
(MIPS) [14, 16, 30, 40–45], as well as the accumula-
tion or wetting at boundaries or generic obstacles [46–
50]. Beyond the qualitative level, the results of the two
models have been compared in several cases of inter-
est [32, 51, 52], and, recently, their relation has been
comprehensively investigated in Ref. [53].

Both ABPs and AOUPs have been originally devel-
oped to model the overdamped dynamics of microscopic
active particles. However, also macroscopic active “par-
ticles” are rather common in the animal world, such as
birds [54], fish [55] and insects [56, 57], as well as in
the inanimate world, such as walking droplets [58], flying
whirling fruits [59] and active granular particles [60–66].
The recent significant increase of interest in these sys-
tems generates the need to develop manageable general-
ized theoretical descriptions including inertial effects [67].

The first, and most obvious, step to model inertial ac-
tive systems, is to account for a larger particle’s mass
or, equivalently, a smaller translational friction coeffi-
cient. Such inertial forces are easily included in an un-
derdamped description for the translational motion of
ABPs [68–75] and AOUPs [76–81] to obtain fully con-
sistent results for dynamical observables like the mean-
squared displacement [82, 83], which reveals a mass-
independent long-time diffusive behavior of the single
particle. Moreover, these theoretical models have been
employed to evaluate the effect of inertia on the collective
phenomena typical of active matter. It was found that
(translational) inertia reduces MIPS [71, 84–86], hinders
the crystallization [87, 88], promotes hexatic ordering [89]
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in homogeneous phases and, in general, reduces the spa-
tial velocity correlations characterizing dense active sys-
tems [90–92] both the liquid and solid state.

The second, and arguably the more critical, step is to
include the effect of a non-vanishing moment of inertia
affecting the rotational motion. This ingredient is funda-
mentally relevant in granular experiments to reproduce
the inertial delay, i.e., the temporal delay between the
active force and particle velocity observed for a single
active granular particle [93]. To model such a generic
inertial active particle not only the overdamped transla-
tional equation of motion but also the stochastic process
describing the dynamics of the active velocity (or active
force) itself needs to be modified. Again, this can be quite
naturally achieved by a second extension of the ABP dy-
namics through including inertia on the rotational veloc-
ity [93–98]. Using this inertial ABP (or active Langevin)
model, it has been found that the long-time dynamics are
strongly affected by a nonzero moment of inertia. Suc-
cessively, the effect of rotational inertia in systems of in-
teracting particles has been investigated and identified as
a strategy to promote collective phenomena [99, 100]. Fi-
nally, rotational inertia has been recently considered also
in macroscopic descriptions, such as active phase crys-
tal model [101, 102], to investigate sound waves in active
matter.

Despite the success of AOUPs for describing over-
damped active particles or active particles with trans-
lational inertia, a comprehensive inertial AOUP model,
i.e., a Gaussian process for the active velocity also ac-
counting for rotational inertia, has not been properly in-
troduced. While such an achievement would be helpful
in view of making further theoretical progress, this chal-
lenge is complicated by the intrinsic coupling between the
angular dynamics and those of the modulus of the active
velocity [53], preventing conformance with inertial ABPs.
A first attempt to do so has been introduced in Ref. [103]
by mapping rotational inertia onto effective parameters
of the AOUP model.

In this paper, we propose a generalization of the in-
ertial active Ornstein-Uhlenbeck particle (AOUP) model
incorporating the characteristic time scales of active par-
ticles with both translational and rotational inertia. As
illustrated in Fig. 1, this ensures that, in analogy to the
inertial ABP, the decay of the autocorrelation function
of the self-propulsion vector takes longer that the single-
exponential decay for zero moment of inertia [93]. As a
result, both models consistently predict persistent trajec-
tories, which also show inertial delay [93, 97]. However,
the velocity distribution of the inertial AOUP has, by
construction, a Gaussian shape at variance with the bi-
modal shape of the inertial ABP [96].

The paper is structured as follows. We first provide
in Sec. II a rundown of the inertial ABP model and dis-
cuss briefly the effect of rotational inertia on the persis-
tence time of the active motion. Then, in Sec. III, we
extend the inertial AOUP to account for rotational iner-
tia. Subsequently, in Sec. IV we discuss the dynamical
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Figure 1. Schematic comparison of two models for active
particles displaying both translational and rotational iner-
tia. The left panel shows an inertial active Brownian par-
ticle (ABP) [97], while the right panel shows an inertial ac-
tive Ornstein-Uhlenbeck particle (AOUP), introduced here
through Eqs. (1) and (11). Top: both models display per-
sistent trajectories with inertial delay (the particle velocity
v(t) lags behind the self-propulsion vector n(t)). Middle:
the overall velocity distribution P(v) of the inertial AOUP
has the advantageous Gaussian form, while that of the in-
ertial ABP is bimodal. Bottom: The autocorrelation func-
tions ⟨n(t) ·n(0)⟩ of the self-propulsion vector have a different
form, contrast the recursive exponential decay (Eq. (5)) with
the additive exponential decay (Eq. (14)), but each model in-
corporates three characteristic time scales of inertial active
motion, see Eq. (3) or also Eq. (16a).

predictions for the time-dependent orientational correla-
tion, velocity autocorrelation, delay function, as well as
the mean and mean-square displacement. To validate
the inertial AOUP model introduced in this paper, we
compare the results for appropriately identified parame-
ters to those of the inertial ABP. Finally, we present a
conclusive discussion in Sec. V.

II. INERTIAL ABP MODEL

We consider an inertial self-propelled particle in two
spatial dimensions, characterized by its mass m and mo-
ment of inertia J . The particle dynamics is described by
stochastic evolution for the center-of-mass velocity v = ṙ
(with r being the center-of-mass position) and the angu-

lar velocity ω = ϕ̇ (with ϕ being the orientational angle
of the particle). The translational motion is governed by
Newton’s second law of motion

ṙ = v , (1a)

m v̇ = −γ v −∇U(r) + γ
√

2Dtξ + γv0n , (1b)
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where the acceleration term m v̇ accounts for transla-
tional inertia. The total force on the right-hand-side of
Eq. (1b) is given by the sum of the friction force −γv,
proportional to the translational frictions coefficient γ,
the external force −∇U(r) with the potential U(r), and
the thermal force γ

√
2Dtξ, whose intensity is given by

the translational diffusion coefficient Dt and distributed
like a zero-mean unit variance Gaussian white noise ξ.
Finally, the active force γv0n couples via the orienta-
tion vector, n = (cosϕ, sinϕ), the translational motion
to a rotational degree of freedom. In the ABP model
the modulus of the active force is constant and sets the
self-propulsion speed v0.

In a similar manner, the rotational motion

ϕ̇ = ω , (2a)

J ω̇ + γr ω = γr
√

2Drη , (2b)

involves a friction torque −γrω with the rotational fric-
tion coefficient γr and a stochastic torque γr

√
2Drη,

where the effective rotational diffusion coefficient Dr

quantifies the rotational noise strength and the Gaus-
sian noise η has zero-mean and unit variance. Here, the
angular acceleration term J ω̇ accounts for rotational in-
ertia. Overall, the inertial ABP is characterized by three
typical times

τ :=
1

Dr
, τJ :=

J

γr
, τm :=

m

γ
, (3)

representing rotational diffusion, translational memory
and rotational memory, respectively. In what follows, we
use τ as the unit time.

By taking a closer look at Eq. (2b), we see that the
angular velocity ω is described by an Ornstein-Uhlenbeck
process such that

⟨ω(t)ω(0)⟩ =
1

ττJ
e−t/τJ . (4)

Thus, the time scale τJ , entering in Eq. (4), introduces
memory in the angular velocity, such that the orienta-
tional correlation function

⟨n(t) ·n(0)⟩ = e−(t/τ−τJ/τ(1−e−t/τJ )) (5)

exhibits a recursive exponential decay (see footnote [104]
for a clarification of the use of the term “recursive”), in-
stead of the single-exponential decay in the absence of
rotational inertia, τJ → 0. In particular, this orienta-
tional correlation decays quadratically for short times,

⟨n(t) ·n(0)⟩ = 1 − t2/(2ττJ) + O
(
t3
)
, (6)

and the overdamped result τp = τ for the characteristic
persistence time τp =

∫∞
0
⟨n(t) ·n(0)⟩dt generalizes to

τp = τJ eτJ/τ (τJ/τ)−τJ/τ Γ(τJ/τ, 0, τJ/τ) , (7)

where Γ(x, z0, z1) =
∫ z1
z0

tx−1e−t dt is the incomplete
gamma function.

In general, the persistence time τp increases when τ
is increased. Compared to the overdamped case, this in-
crease is more significant when the typical time τJ (or the
moment of inertia) is increased. Therefore, it is apparent
that inertial effects hinder the particle’s ability of chang-
ing the direction of its self-propulsion vector in response
to an applied torque. Further results for an inertial ABP
are contained in Appendix A. It should be noted that,
due to the implicit dependence of most quantities on τJ ,
such as τp in Eq. (7), a comprehensive analytical picture
is impaired. Explicit analytical insight can be obtained
in the small-rotational-inertia limit.

A. ABP for small rotational inertia

Neglecting rotational inertia, τJ → 0, the rotational
dynamics of the inertial ABP coincides with the usual
ones, expected for overdamped ABP. In this limit, the an-
gular velocity ω converges onto a zero-mean δ-correlated
Gaussian white noise with

⟨ω(t)ω(t′)⟩ ∼ 2

τ
δ(t− t′) (8)

as a result of the asymptotic limit of Eq. (4). Secondly,
expanding Eq. (5) in powers of τJ , the autocorrelation of
the orientational vector, n, reads

⟨n(t) ·n(0)⟩ = e−t/τ
(

1 + τJ/τ + O
(
τ2J
) )

(9a)

= e−t/τ
(

1 + τJ/τ(1 − e−t/τJ ) + O
(
τ2J
) )

, (9b)

where the second equality conveniently retains τJ as a
typical exponential decay time. From Eq. (9), we can nat-
urally identify the persistence time, τp, as the inverse of
the rotational diffusion coefficient, τ , in the overdamped
limit τJ → 0. This can be explicitly verified by expanding
Eq. (7) in powers of τJ , such that

τp = τ + τJ − τ2J
2τ

+ O
(
τ3J
)
, (10)

and then considering the limit τJ → 0.

III. FULLY INERTIAL AOUP MODEL

Despite the simplicity and intuitive nature of the ABP
model, obtaining analytical results that go beyond the
potential-free particle is not an easy task [105], even
more so, in the presence of rotational inertia. The
AOUP model, initially proposed in overdamped systems
(without inertia) represents an alternative and simplified
model to the ABP which is obtained by replacing the ori-
entation vector n in Eq. (1b) by an Ornstein-Uhlenbeck
process with correlation time τ and unit variance. This
simple approach works well because the autocorrelation
⟨n(t) ·n(0)⟩ of both an (overdamped) ABP and AOUP
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has the same exponential shape decaying with a typical
correlation time, that coincides with the common persis-
tence time. To get consistent results, it is merely required
to ensure that τ ≡ 1/Dr describing the AOUP dynam-
ics represents the inverse rotational diffusion coefficient
of the ABP in two dimensions [32], as we imply here
through Eq. (3). In the AOUP case, the whole stochas-
tic process modeling the active self-propulsion vector n
is Gaussian, thus offering a simplified platform to derive
analytical results in the presence of interactions and ex-
ternal potentials [53].

The inclusion of translational inertia in the AOUP
model has been proposed and investigated [78, 79], and,
in general, does not present any additional conceptual or
technical difficulties compared to the ABP model. This
is because translational inertia does not affect the dy-
namics of the active force, i.e., the orientational angle ϕ
in the ABP case or the Ornstein-Uhlenbeck process for
the self-propulsion vector n (see below) in the AOUP
case. In the presence of rotational inertia, pursuing a
similar strategy of deriving a Gaussian approximation
to the ABP dynamics is not straightforward because of
the intricate structure of Eq. (5), which does no longer
posses a single-exponential shape as in the overdamped
case, Eq. (9a). Intuitively, a minimal description of ro-
tational inertia requires (i) an additional time scale, τJ ,
and (ii) an additional scaling factor, τJ/τ , both related to
the moment of inertia, which affects the angular velocity
autocorrelation.

To generalize the AOUP model to the presence of ro-
tational inertia, we introduce an additional colored noise
χ in the dynamics of the self-propulsion vector n, char-
acterized by its own rotational memory time τχ and the
noise strength Dχ/τ

2
χ, so that n evolves as

ṅ = −n

τ
+

√
1

τ
χ, (11a)

χ̇ = − χ

τχ
+

√
2Dχ

τχ
ζ . (11b)

This model ensures that Eq. (11a) formally coincides
with the overdamped AOUP model, i.e., when the aux-
iliary process χ is a white noise. Here, the additional
Ornstein-Uhlembeck process for χ, evolving according to
Eq. (11b), prescribes a more general colored noise. As
a consequence, the rotational AOUP model is not only
characterized by one typical time τ (which in overdamped
systems coincides with the persistence time), but also by
an additional time τχ and the inertial diffusivity Dχ. The
latter can be conveniently determined as

Dχ =
τ + τχ

2τ
(12)

from the condition

⟨n(0) ·n(0)⟩ = 1 , (13)

ensuring the unitary normalization of n(t) (which is a
unit vector in the ABP case) to set the velocity scale by
v0 without ambiguity [53].

The standard AOUP model in the overdamped limit
is naturally achieved by requiring τχ → 0 and Dχ → 1/2
such that Eq. (11b) reduces to a white noise with zero
average and unit variance. Moreover, the linearity of
Eq. (11) allows us to analytically derive the autocorrela-
tion function

⟨n(t) ·n(0)⟩ =
2Dχτ

τ2 − τ2χ

(
τ e−t/τ − τχ e−t/τχ

)
(14)

of the self-propulsion vector n, which is characterized
by an additive exponential decay (see footnote [104] for
a clarification of the use of the term “additive”), i.e.,
the superposition of two exponential functions with the
correlation times τ and τχ. Comparing this result to the
expansion in Eq. (9b) for the inertial ABP, we deduce
that the structure of Eq. (14) with two different decay
times constitutes the minimal ingredient to account for
rotational inertia. In the rest of this work, we validate the
inertial AOUP model by establishing a suitable relation
between the parameters τχ and Dχ in and those, τ and
τJ , of the inertial ABP model to quantify the impact of
rotational inertia through Eq. (11).

A. Relation to inertial ABP model

Comparing the full predictions of the two models
for the autocorrelation function given by Eq. (5) and
Eq. (14), it becomes apparent that, at variance with the
overdamped limit (τχ → 0 or τJ → 0), the shape of
⟨n(t) ·n(0)⟩ does not coincide, see also Fig. 1. To provide
a coherent scheme for identifying the rotational memory
time τχ of our inertial AOUP model, we impose here, in
addition to Eq. (13), the second natural condition

∫ ∞

0

⟨n(t) ·n(0)⟩dt = τp (15)

satisfied by the inertial ABP model, which enforces that
both models have the same autocorrelation time and,
thus, predict the same long-time diffusion behavior. Thus
we can identify the parameters of both models according
to

τχ = τp − τ = τJ + O
(
τ2J
)
, (16a)

Dχ =
τp
2τ

=
1

2
+

τJ
2τ

+ O
(
τ2J
)
, (16b)

where the provided small-τJ expansions are apparent
from Eq. (10).

To understand the meaning of the new inertial param-
eters τχ and Dχ of our generalized AOUP model, their
values are shown in Fig. 2 as a function of the rotational
memory time τJ of the inertial ABP. It can be seen that
both parameters τχ and Dχ are increasing functions of τJ .

They scale as ∼
√

τJ/τ for τJ/τ ≫ 1, as can be deduced
from the function τp given by Eq. (7). Moreover, the limit
of vanishing rotational inertia, τJ → 0, is consistent with
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Figure 2. Additional parameters of the inertial AOUP model,
τχ/τ (blue curve) and Dχ (red curve), related to the inertial
ABP model through Eq. (16) as a function of the normalized
rotational memory time τJ of the inertial ABP. Dashed black
lines indicate the scaling ∼ √

τJ occurring for large τJ while
for τJ → 0 the limiting values Dχ → 1/2 and τχ → 0 are
approached and τχ scales as ∼ τJ (dotted black line).

the overdamped AOUP, since according to Eq. (10) the
persistence time τp reduces to τ , such that we observe
the limits τχ → 0 and Dχ → 1/2. As a consequence,
Eq. (11a) reduces in the overdamped limit to a standard
Ornstein-Uhlenbeck process with the white noise χ = ζ,
employed to describe active particles without rotational
inertia. Further aspects of the small-rotational-inertia
limit are discussed in Sec. III C. In the opposite limit,
τJ → ∞, the inertial AOUP persistently moves along a
straight line, which is consistent with the inertial ABP.
Thus our model accurately includes both limits of van-
ishing and infinite rotational inertia.

B. Probability densities for inertial AOUPs

One of the main advantages of the inertial AOUP
model, defined by Eqs. (1) and (11), is that the sta-
tionary probability density P(v,n,χ) can be explicitly
derived via its correlation matrix. We list these results
in Appendix B. Here, we discuss the reduced probabil-
ity P(v,n) to find a given velocity v and self-propulsion
n which is obtained via integration of the full probabil-
ity density with respect to the auxiliary process χ. The
distribution P(v,n) can be expressed as

P(v,n) = P(v|n)P(n), (17)

where P(n) is the marginal probability density of the
self-propulsion vector n with unit-variance, thus

P(n) ∝ exp
(
− n2

)
, (18)

and P(v|n) defines the conditional probability to find a
particle at a velocity v with prescribed n. Using the time

scales τ and τm from Eq. (3) and the rotational memory
time τχ of the inertial AOUP, we have

P(v|n) ∝ exp

(
−
(
v − ⟨v|n⟩

)2

σ(v|n)

)
, (19a)

⟨v|n⟩ =
v0

τ − τχ

(
τ2

τ + τm
− τ2χ

τχ + τm

)
n, (19b)

σ(v|n) =
2Dt

τm
+

v20τ
2
m(ττm + τmτχ + ττχ)

(τ + τm)2(τχ + τm)2
, (19c)

where P(v|n) is centered around the conditional average
⟨v|n⟩ of v at given n with its corresponding conditional
variance σ(v|n).

By integrating the distribution P(v|n) in Eq. (17) over
n, we derive the velocity distribution of a system of ideal
inertial AOUPs

P(v) ∝ exp

(
− v2

⟨v2⟩

)
, (20a)

⟨v2⟩ =
2Dt

τm
+

v20
τ − τχ

(
τ2

τ + τm
− τ2χ

τχ + τm

)
, (20b)

with the mean-square velocity ⟨v⟩2. Such a distribu-
tion has a typical Boltzmann-like shape as illustrated in
Fig. 1, with an effective temperature determined by the
swim velocity v0 and the three typical time scales τ , τm,
and τχ.

C. AOUP for small rotational inertia

In the absence of rotational inertia, the inertial AOUP
model converges onto the standard AOUP model em-
ployed to describe overdamped active particles or active
particles with translational inertia only. This is evident
by taking the overdamped limit in Eq. (11b), i.e., con-
sidering τχ → 0. The nature of the Ornstein-Uhlenbeck
process χ allows us to derive the steady-state autocorre-
lation

⟨χ(t) ·χ(0)⟩ = 2
Dχ

τχ
e−t/τχ =

τ + τJ
ττJ

e−t/τJ + O
(
τ2J
)
,

(21)
where, in the last equality, we have used Eqs. (16) hold-
ing at first order in τJ . This shape links the correlator
of χ to the correlator, Eq. (4), of the angular velocity
ω in the inertial ABP model. This confirms our iden-
tification of the additional degree of freedom χ in the
inertial AOUP model as the key dynamical variable able
to capture the effects of rotational inertia. To see this,
we further note that, in Cartesian coordinates, the dy-
namics of the self-propulsion vector n can be expressed
as ṅ = n× zω, where z is the unit vector perpendicular
to the two-dimensional plane of motion [97]. Similarly to
the overdamped case [53], the AOUP approximation can
then be imagined as replacing this term by an Orstein-
Uhlenbeck process.
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In the same spirit, the autocorrelation (14) of the self-
propulsion vector n can be expanded with the help of
Eq. (16) as

⟨n(t) ·n(0)⟩ =
1

τ − τJ

(
τ e−t/τ − τJ e−t/τJ

)
+ O

(
τ2J
)
.

(22)
By additionally setting τ ≫ τJ for small moment of in-
ertia, we recover Eq. (9b). Thus, our model goes beyond
a naive mapping of this small-rotational-inertia limit.

In addition, the probability distribution P(v|n) in
Eq. (19) converges to the one found in Ref. [78] with-
out rotational inertia. By expanding for small τJ , mean
and variance of the Gaussian distribution reads

⟨v|n⟩ =
v0τ

τ + τm
n +

v0τJ
τ + τm

n + O
(
τ2J
)
, (23a)

σ(v|n) =
2Dt

τm
+

v20τmτ

(τ + τm)2
− v20(τ − τm)τJ

(τ + τm)2
+ O

(
τ2J
)
,

(23b)

where we have neglected order τ2J . The zero-order re-
sult in Eq. (23) coincides with the variance calculated in
Ref. [78], while the first correction in τJ decreases the
velocity variance if τ > τJ (long-persistent regime) and
increases the variance in the opposite limit.

IV. COMPARISON BETWEEN INERTIAL ABP
AND INERTIAL AOUP

The inertial AOUP model introduced in Sec. III de-
fines a purely Gaussian process which in general signifi-
cantly simplifies the theoretical analysis compared to the
inertial ABP model, specified in Sec. II. However, at
variance with the overdamped case, there is no one-to-
one identification of the parameters in these two models,
since the shape of the autocorrelations, Eqs. (5) and (14),
does not coincide. Therefore, a careful comparison be-
tween the inertial ABP and inertial AOUP is needed. To
this end, we evaluate in the following several observables
for different values of the rotational memory time τJ of
the inertial ABP which sets the corresponding rotational
memory time τχ of the inertial AOUP through Eqs. (16a)
and (7). We thus explore all regimes where the rotational
inertia plays a marginal (τJ ≪ τ), intermediate (τJ ≈ τ)
and relevant (τJ ≫ τ) role. In particular, we compare
the autocorrelation of the self-propulsion vector, veloc-
ity correlations and the cross correlation between self-
propulsion vector and velocity, known as delay function.
Finally, we consider the mean-square displacement and
the long-time diffusion coefficient. The implicit analytic
reference results for the inertial ABP model are listed in
Appendix A.

A. Orientational correlation function

Having established in Sec. III C that both inertial ABP
and AOUP models yield the same autocorrelation func-
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Figure 3. Orientational correlation ⟨n(t) ·n(0)⟩ as a function
of time t/τ for different moments of inertia given through
τJ/τ (as labeled). Solid and dashed lines correspond to an
AOUP and ABP, respectively. Vertical dotted lines indicate
the rotational memory time τχ of the inertial AOUP.

tion ⟨n(t) ·n(0)⟩ of the self-propulsion vector n for small
rotational inertia, we provide in Fig. 3 a comparison for
different reduced moments of inertia τJ/τ . As expected,
for τJ ≪ τ and τJ ≈ τ , a good agreement is obtained
on all timescales (see the comparison between solid and
dashed lines). However, for τJ ≫ τ , we observe small
deviations between the two models. In particular, the
inertial AOUP model predicts a faster early decay, which
we understand from comparing the short-time expansion

⟨n(t) ·n(0)⟩ = 1 − t2

2 ττχ
+ O

(
t3
)

(24)

to the ABP result in Eq. (6) and recognizing that τχ ≤ τJ
(see Fig. 2). At later times, there is a crossover between
τχ ≲ t ≲ τJ as the autocorrelation of the inertial AOUP
has a longer decay tail, which reflects the nature of the
additive exponential decay, compared to the faster recur-
sive exponential decay the of inertial ABP.

B. Velocity correlation function

The velocity correlation of the inertial AOUP reads

⟨v(t) ·v(0)⟩ =
2Dt

τm
e−t/τm+

v0
2

(
⟨v(t) ·n(0)⟩+⟨v(0) ·n(t)⟩

)
,

(25)
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Figure 4. Velocity correlation function, ⟨v(t) ·v(0)⟩, as a func-
tion of time t/τ for a fixed mass m given through τm/τ = 1
different moments of inertia J given through τJ/τ (as la-
beled). Solid and dashed lines correspond to an AOUP and
ABP, respectively.

with

⟨v(t) ·n(0)⟩ =
v0

τ − τχ

(
τ2e−t/τ

τ − τm
− τ2χe

−t/τχ

τχ − τm

)

+
2v0τ

3
m(τ + τχ)e−t/τm

(τ2 − τ2m)(τ2χ − τ2m)
, (26a)

⟨v(0) ·n(t)⟩ =
v0

τ − τχ

(
τ2e−t/τ

τ + τm
− τ2χe

−t/τχ

τχ + τm

)
. (26b)

This result serves as a closed-form approximation for the
inertial ABP result. As shown in Fig. 4, our model consis-
tently predicts stronger velocity correlations for all times
when the rotational inertia is increased. The small de-
viations for large moment of inertia and the crossover of
the decay behavior are quite similar to those discussed in
Sec. IV A for the orientational correlation function.

In addition, we observe in Fig. 4 an offset at t = 0 be-
tween the two models, i.e., they predict a distinct mean-
square velocity ⟨v2⟩ ≡ ⟨v(0) ·v(0)⟩. For the inertial
AOUP, we recover the result for ⟨v2⟩ given by Eq. (20b).
We can thus conclude that rotational inertia increases the
translational kinetic temperature (which is proportional
to ⟨v2⟩). Taking the limit τJ → ∞ in Eq. (20b), we find
that ⟨v2⟩ → 2Dt/τm + v20 reaches a plateau value which
is the same as found for an inertial ABP.

C. Delay Function

Next we consider the delay function between the veloc-
ity and orientation of the inertial active particle, defined
as [93, 97]

d(t) = ⟨v(t) ·n(0)⟩ − ⟨v(0) ·n(t)⟩ . (27)

0 3 6 9 12
0

0.25

0.5

d
(t

)/
v 0

t/τ

τJ/τ

10
4
1

0.1

τm/τ = 1

ABP

AOUP

Figure 5. Delay function, d(t), defined in Eq. (27), shown in
the same style and for the same parameters as in Fig. (4).

The two required correlation functions are given by
Eq. (26) for the inertial AOUP. The inertial delay d(t) has
been introduced in Ref. [93] as one of the main dynami-
cal effects characterizing ABP with inertia: the velocity
v tends to lag behind the self-propulsion n at a typical
delay time.

We see in Fig. 5 that our model also provides an ac-
curate qualitative picture of effect of rotational inertia
on the delay function, regarding both the maximal delay
and the characteristic duration of this effect. Comparing
the prediction to the inertial ABP, we find two crossover
regimes for large moment of inertia: the inertial AOUP
predicts a stronger delay at both short and long times.

Another benefit of our closed AOUP result is that the
total inertial delay dtot :=

∫
dt d(t), i.e., the time integral

of Eq. (27), can be determined in the compact form

dtot =
2v0τm(ττχ + ττm + τχτm)

(τ + τm)(τχ + τm)
, (28)

which immediately reveals that the delay effect is en-
hanced by increasing either of the relevant time scales of
inertial active motion, given by Eq. (3).

D. Positional correlation functions

The conditional mean displacement for a given initial
value n0 = n(0) of the self-propulsion vector can be cal-
culated for an inertial AOUP as

⟨∆r(t)|n0⟩ =⟨v|n0⟩τm
(

1 − e−t/τm
)

+ v0n0

(
τ + τχ

)

+ v0n0

(
τme−t/τm(ττm − ττχ + τmτχ)

(τ − τm)(τm − τχ)

− τ3e−t/τ

(τ − τm)(τ − τχ)
− τ3χe

−t/τχ

(τχ − τ)(τχ − τm)

)
,

(29)

P7 arXiv:2301.01865, (under review) (2023) 115



8

10-1 100 101 102

10-2

100

102

h∆
r2

(t
)i
/(
v 0
τ
)2

t/τ

τJ/τ

10
4
1

0.1

τm/τ = 1

ABP

AOUP∝ t2

∝ t

Figure 6. Mean-square displacement, ⟨∆r2(t)⟩, shown in the
same style (mind the logarithmic scales) and for the same
parameters as in Fig. (4). The curves for the two models
cannot be distinguished here.

where we have used the initial condition χ0 = ⟨χ|n0⟩ =
n0/

√
τ for the auxiliary process χ (see Eq. (B12b)) and

the initial velocity ⟨v|n0⟩ follows from Eq. (19b). For
t → ∞ we find the persistence length

Lp = ⟨v|n0⟩τm + v0n0

(
τ + τχ

)
, (30)

which has the same form as that of an inertial ABP.
Moreover, the mean-square displacement MSD(t) can

be expressed as

⟨∆r2(t)⟩ =4DLt + 2
(
⟨v(t) ·v(0)⟩ − ⟨v2⟩

)
τ2m (31)

− 2v20
τ − τχ

(
τ3(1 − e−t/τ ) − τ3χ(1 − e−t/τχ)

)
,

where the velocity correlation ⟨v(t) ·v(0)⟩ and the mean-
square velocity ⟨v2⟩ are given by Eq. (25) and Eq. (20b),
respectively. The long-time diffusion coefficient

DL = Dt +
v20
2

(
τ + τχ

)
(32)

is in full agreement with that of an inertial ABP. As
shown in Fig. 6 the mean-square displacement MSD(t)
of inertial AOUPs agrees fairly well with the ABP result
also at intermediate times.

V. CONCLUSIONS

In this paper, we have generalized the inertial active
Ornstein-Uhlenbeck particle (AOUP) model to account
for translational and, in particular, for rotational iner-
tia in two spatial dimensions. The inertial AOUP model
introduced in this paper goes beyond mapping the rota-
tional inertia onto an effective rotational diffusion coeffi-
cient [103] by incorporating a second characteristic time

scale (in addition to the one related to the inverse rota-
tional diffusion coefficient), which we have demonstrated
to be the crucial ingredient for describing the proper long-
time behavior. As such, our model matches both the
small- and long-time regime with the inertial ABP model
and thus represents a suitable alternative, which allows
to determine closed analytical predictions for dynami-
cal correlations. Indeed, the agreement between inertial
ABP and AOUP models has been certified by comparing
velocity correlations, the delay function and the mean-
square displacement. For small or moderate moment of
inertia, we have found similar predictions of these two
models at all times, while small deviations only occur
at intermediate times for large moment of inertia. In
general, the effect of increasing rotational inertia is qual-
itatively captured well by the inertial AOUP model. In
conclusion we have introduced and validated a Gaussian
model to describe inertial active matter, which can be
considered as an alternative to the inertial ABP model.

In analogy with the overdamped AOUP model, we ex-
pect that the inertial AOUP model presented here will
offer an intriguing platform to provide analytic insight
into various phenomena exhibited by active particles gov-
erned by both translational and rotational inertia. Most
notably, future studies could focus on the generalization
of effective-equilibrium theories with the inertial AOUP
as a starting point. The extension of the unified colored
noise approximation (UCNA) [33, 106–108] or Fox ap-
proach [38, 39, 109, 110] will helpful to understand the
behavior of inertial active particles in the presence of in-
teractions.

While, recently, it was shown that rotational inertia
is able to promote phase separation [99] in purely repul-
sive systems, further interesting questions remain to be
addressed at the collective level. For example, the effect
of rotational inertia on the (continuous or discontinu-
ous) nature of MIPS [85] or on the kinetic temperature
difference between high- and low-density phases [71] is
still unexplored. More generally, it would interesting to
shed light on the effect of inertia on the recent micro-
phase separation observed in field theories [111, 112]
and overdamped particle-based simulations of repulsive
ABPs [12, 43] or dumbbells [113]. To this end, it will be
insightful to apply effective interactions [32, 48] or hy-
drodynamics [92, 114] and mean-field methods [115], to
obtain theoretical predictions that take advantage of the
intrinsic simplicity of the inertial AOUP model.

Appendix A: Results for an inertial ABP

For reference, we summarize here the essential ana-
lytic results of the inertial ABP model. Using methods
of stochastic integration, we obtain the orientational cor-
relation function in the steady state as

⟨n(t) ·n(0)⟩ = e−Dr

(
t−τJ (1−e−t/τJ )

)
. (A1)
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A characteristic orientational persistence time τp can be
determined as

τp =

∫ ∞

0

⟨n(t) ·n(0)⟩dt = τJe
JJ−J Γ(J , 0,J ) (A2)

with the reduced moment of inertia J := τJ/τ .
Similarly, the translational velocity correlation func-

tion can be computed as

⟨v(t) ·v(0)⟩ =
2Dt

τm
e−t/τm+

v0
2

(
⟨v(t) ·n(0)⟩+⟨v(0) ·n(t)⟩

)
,

(A3)
as well as the delay function

d(t) = ⟨v(t) ·n(0)⟩ − ⟨v(0) ·n(t)⟩ (A4)

with

⟨v(t) ·n(0)⟩ =v0
τJ
τm

eJ
(
J−Ω−Γ(Ω−,J e−t/τJ ,J )

+ J−Ω+Γ(Ω+, 0,J )
)
e−t/τm , (A5)

⟨v(0) ·n(t)⟩ =v0
τJ
τm

eJJ−Ω+Γ(Ω+, 0,J e−t/τJ )et/τm

(A6)

and Ω± = τJ/τ ± τJ/τm.
Next, we address the mean displacement ⟨∆r(t)|n0⟩ at

prescribed initial orientation n0, which reads

⟨∆r(t)|n0⟩ =⟨v|n0⟩τm
(

1 − e−t/τm
)

(A7)

+
v0
Dr

J eJ
(
J−J Γ(J ,J e−t/τJ ,J )

+ J−Ω−Γ(Ω−,J e−t/τJ ,J )e−t/τm
)
n̂0

with the mean initial velocity

⟨v|n0⟩ = v0
τJ
τm

eΩΩ−Ω+Γ(Ω+, 0,J )n̂0 (A8)

at given n0. Thus, the long-time limit of Eq. (A7) yields
the persistence length

Lp = ⟨v|n0⟩τm + v0n0τp , (A9)

which has the same form as Eq. (30), while the required
expression for ⟨v|n0⟩ differs.

Last, the mean-square-displacement (MSD) is given by

⟨∆r2(t)⟩ =4DLt + 2
(
⟨v(t) ·v(0)⟩ − ⟨v2⟩

)
τ2m (A10)

+ 2v20τ
2
J

eJ

J 2

(
2F2

[ J , J
J + 1, J + 1

;−J
]

− 2F2

[ J , J
J + 1, J + 1

;−J e−t/τJ

]
e−t/τ

)

with the long-time diffusion coefficient

DL = Dt +
v20
2
τp (A11)

and the generalized hypergeometric function pFq.
Appendix B: Stationary probability distribution for

the inertial AOUP model

In this Appendix, we derive the stationary probabil-
ity distribution P(v,n,χ) for the AOUP model with ro-
tational and translational inertia. First, we note that
Eqs. (1b), (11a) and (11b), can be written in the form

ẇ = −Aw + σ η , (B1)

where A and σ are the drift and the noise matrices, re-
spectively, w the vector of dynamical variables, and η
a white noise vector with unit-variance. The stationary
probability distribution of this system is a multivariate
Gaussian of the form

P(w) ∝ exp
(
−wT C−1 w

)
, (B2)

where C−1 is the inverse of the correlation matrix C to
be determined by solving the following matrix equation

AC + CAT = σσT . (B3)

Here, AT and σT the transpose of drift and noise matrix,
respectively.

Applying this general approach for w = (v,n,χ), we
obtain

P(v,n,χ) ∝ exp

(
−v2

2
C−1
vv − n2

2
C−1
nn − χ2

2
C−1
χχ

)

× exp
(
− v ·n C−1

vn − v ·χ C−1
vχ − n ·χ C−1

nχ

)
, (B4)

where
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C−1
vv =

(
Dt

τm
+

v20τ
3
m(τ + τχ)

2(τ + τm)2(τχ + τm)2

)−1

, (B5a)

C−1
nn =

τ + τχ
τ

(
2Dt

τm
+ v20

τ2χτ
2
m + τ2(τχ + τm)2 + ττmτχ(2τm + 3τχ)

(τ + τm)(τ + τχ)(τχ + τm)2

)(
Dt

τm
+

v20τ
3
m(τ + τχ)

2(τ + τm)2(τχ + τm)2

)−1

, (B5b)

C−1
χχ =2τχ +

v20ττ
2
χτ

2
m

(τ + τm)2(τχ + τm)2

(
Dt

τm
+

v20τ
3
m(τ + τχ)

2(τ + τm)2(τχ + τm)2

)−1

, (B5c)

C−1
vn = − v0

τ + τm

(
τ +

2τχτm
τχ + τm

)(
Dt

τm
+

v20τ
3
m(τ + τχ)

2(τ + τm)2(τχ + τm)2

)−1

, (B5d)

C−1
vχ =

v0
√
ττχτm

(τ + τm)(τχ + τm)

(
Dt

τm
+

v20τ
3
m(τ + τχ)

2(τ + τm)2(τχ + τm)2

)−1

, (B5e)

C−1
nχ = − τχ√

τ

(
2Dt

τm
+

v20τm
(τ + τm)(τχ + τm)

(
τ +

τχτm
τχ + τm

))(
Dt

τm
+

v20τ
3
m(τ + τχ)

2(τ + τm)2(τχ + τm)2

)−1

. (B5f)

The stationary probability distribution P(v,n,χ)
(Eq. (B4)) can be rewritten as

P(v,n,χ) = P(v|n,χ)P(n,χ) , (B6)

where P(n,χ) is the reduced probability describing the
active self-propulsion and the P(v|n,χ) defines the con-
ditional probability to find a particle at a velocity v with
prescribed n and χ

P(v|n,χ) ∝ exp

(
−
(
v − ⟨v|n,χ⟩

)2

σ(v|n,χ)

)
, (B7a)

⟨v|n,χ⟩ =
v0(ττm + 2τmτχ + ττχ)

(τ + τm)(τχ + τm)
n

− v0
√
ττmτχ

(τ + τm)(τχ + τm)
χ, (B7b)

σ(v|n,χ) =
2Dt

τm
+

v20τ
3
m(τ + τχ)

(τ + τm)2(τχ + τm)2
. (B7c)

The latter distribution fluctuates around the conditional
average ⟨v|n,χ⟩ of v at given n and χ with its corre-
sponding variance σ(v|n,χ). Integration over the auxil-
iary process χ yields the results stated and discussed in
Sec. III B

In a similar way, the reduced probability P(n,χ) can
be expressed as

P(n,χ) = P(n|χ)P(χ) (B8)

with

P(n|χ) ∝ exp

(
−
(
n− ⟨n|χ⟩

)2

σ(n|χ)

)
, (B9a)

⟨n|χ⟩ =

√
ττχ

τ + τχ
χ, (B9b)

σ(n|χ) =
τ

τ + τχ
(B9c)

and

P(χ) ∝ exp

(
− χ2

⟨χ2⟩

)
, (B10a)

⟨χ2⟩ =
τ + τχ
ττχ

, (B10b)

or alternatively

P(n,χ) = P(χ|n)P(n) (B11)

with

P(χ|n) ∝ exp

(
−
(
χ− ⟨χ|n⟩

)2

σ(χ|n)

)
, (B12a)

⟨χ|n⟩ = n/
√
τ , (B12b)

σ(χ|n) = 1/τχ (B12c)

and

P(n) ∝ exp
(
− n2

)
. (B13)

The distribution P(v,n) (see Eq.(17)) can be derived via
integration of the full probability density P(v,n,χ) (see
Eq.(B4)) with respect to χ.
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Abstract. Geometric confinements are frequently encountered in the biological world and strongly affect
the stability, topology, and transport properties of active suspensions in viscous flow. Based on a far-
field analytical model, the low-Reynolds-number locomotion of a self-propelled microswimmer moving
inside a clean viscous drop or a drop covered with a homogeneously distributed surfactant, is theoretically
examined. The interfacial viscous stresses induced by the surfactant are described by the well-established
Boussinesq-Scriven constitutive rheological model. Moreover, the active agent is represented by a force
dipole and the resulting fluid-mediated hydrodynamic couplings between the swimmer and the confining
drop are investigated. We find that the presence of the surfactant significantly alters the dynamics of
the encapsulated swimmer by enhancing its reorientation. Exact solutions for the velocity images for the
Stokeslet and dipolar flow singularities inside the drop are introduced and expressed in terms of infinite
series of harmonic components. Our results offer useful insights into guiding principles for the control of
confined active matter systems and support the objective of utilizing synthetic microswimmers to drive
drops for targeted drug delivery applications.

1 Introduction

Controlled locomotion of nano- and micro-scale objects
in viscous media is of considerable importance in many
areas of engineering and science [1]. Synthetic nano- and
micro-motors hold significant promise for future biotech-
nological and medical applications such as precise assem-
bly of materials [2–8], non-invasive microsurgery [9–11],
targeted drug delivery [12–16], and biosensing [17]. Over
the last few decades, there has been a rapidly mounting
interest among researchers in understanding and unveil-
ing the physics of self-propelled active particles and mi-

� Contribution to the Topical Issue “Motile Active Matter”
edited by Gerhard Gompper, Clemens Bechinger, Roland G.
Winkler, Holger Stark.

a e-mail: sprenger@thphy.uni-duesseldorf.de
b e-mail: ider@thphy.uni-duesseldorf.de

croswimmers, see refs. [18–28] for recent reviews. Various
intriguing effects of collective behavior are displayed and
fascinating self-organized spatiotemporal patterns are cre-
ated by the mutual interaction of many active agents.
Notable examples include the formation of propagat-
ing density waves [29–31], the emergence of mesoscale
turbulence [32–39], the motility-induced phase separa-
tion [40–48], and lane formation [49–55].

In many biologically and technologically relevant situ-
ations, actively swimming biological microorganisms and
artificial self-driven particles are present. Typically, they
function and survive in confined environments which are
known to strongly affect their swimming and propulsion
behavior as well as the transport properties in viscous
media. Examples include Bacillus subtilis in soil [56, 57],
Escherichia coli in intestines [58, 59], pathogenic bacte-
ria in microvasculature [60], and spermatozoa navigation
through the mammalian female reproductive tract [61–63].
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Geometric confinement caused by a plane rigid or fluid in-
terface affects the dynamics of microswimmers by altering
their speed and orientation with respect to the inter-
face [64–90] and changing their swimming trajectories
from straight lines in a bulk fluid to circular shapes near
interfaces [91–96]. Studies of the dynamics of microswim-
mers in a microchannel bounded by two interfaces [97–101]
or immersed in a thin liquid film [102–104] or spherical
cavity [105] revealed complex evolution scenarios of mi-
croswimmers in the presence of narrow confinement [106].

Curved boundaries strongly affect the stability and
topology of active suspensions under confinement and
drive self-organization in a wide class of active matter
systems [107–109]. For instance, a dense aqueous suspen-
sion of Bacillus subtilis confined inside a viscous drop
self-organizes into a stable spiral vortex surrounded by a
counter-rotating boundary layer of motile cells [107, 110].
In addition, a sessile drop containing photocatalytic parti-
cles exhibits a transition to a collective behavior leading to
self-organized flow patterns [111]. Under the effect of an
external magnetic field, swimming magnetotactic bacte-
ria confined into water-in-oil drops can self-assemble into
a rotary motor that exerts a net torque on the surround-
ing oil phase [112,113]. In microfluidic systems, synthetic
microswimmers, such as artificial bacterial flagella, are fre-
quently used to drive drops in the context of targeted drug
delivery systems [114, 115]. Along these lines, nontrivial
dynamics of a particle-encapsulating drop in shear flow
were revealed [116]. To understand the self-organization
or the energy transport from the swimmer scale to the sys-
tem scale or to develop efficient and reliable drug delivery
systems, we need to unravel the physics underlying the
dynamics of a motile microorganism encapsulated inside
drop. This is the focus of the present work, concentrating
on clean drops or those covered by a surfactant.

The swimming dynamics in the vicinity of a rigid
spherical obstacle [117–119], a clean or a surfactant-
covered drop [120–122] have been investigated theoreti-
cally. It has been demonstrated that a swimming organism
reorients itself and gets scattered from the obstacle or gets
trapped or captured by it if the size of the obstacle is large
enough and the settling/rising speed of the microorgan-
ism is small enough. Near a viscous drop, the surfactant
increases the trapping capability [120] and can even break
the kinematic reversibility associated with the inertialess
realm of swimming microorganisms [123]. In contrast to
that, the presence of a surfactant near a planar interface
was found not to change the reorientation dynamics [74]
but to change the swimming speed [124] in addition to the
circling direction [74].

In the theoretical investigation of locomotion under
confinement, swimming microorganisms are commonly
approximated by microswimmer models, frequently using
a far-field representation based on higher-order flow sin-
gularities [18]. Well-established model microswimmers in-
clude Taylor’s swimming sheet [125–129] and the spherical
squirmer [130–143]. The former is a good representation of
the tail of human spermatozoa and Caenorhabditis elegans
while the latter is believed to describe well the behavior
of Paramecium, Opalina, and Volvox. Linked spheres that

are able to propel forward when the mutual distance be-
tween the spheres is varied in a nonreciprocal fashion con-
stitute another class of model microswimmers [144–151].
Moreover, various minimal model microswimmers have
been proposed to model swimming agents with rigid bod-
ies and flexible propelling appendages [152–159]. Many
of the organisms are approximately neutrally buoyant, so
they hardly experience any gravitational force or torque.
This implies that the action of a swimming organism
in far-field representation can conveniently be described
by a force dipole and higher-order singularities to in-
vestigate its motion under confinement. The accuracy of
this simple far-field analysis was verified by comparison
with other theoretical and fully resolved computer simula-
tions [70,103,160]. In particular, the far-field analysis was
shown to predict and reproduce experimental and numeri-
cal observations [66,74,104,118]. This motivates us to em-
ploy the far-field representation to examine the swimming
behavior inside a clean or surfactant-covered viscous drop.

Theoretically, one of the first studies of low-Reynolds-
number locomotion inside a drop considered a spherical
squirmer encapsulated inside a drop of a comparable size
immersed in an otherwise quiescent viscous medium [161,
162]. The analytical theory was complemented and supple-
mented by numerical implementations based on a bound-
ary element method [163]. It was reported that the drop
can be propelled by the encaged swimmer, and in some sit-
uations the swimmer-drop composite remains in a stable
co-swimming state so that the swimmer and drop main-
tain a concentric configuration and move with the same
velocity [161]. Meanwhile, the presence of a surfactant on
the surface of the drop was found to increase or decrease
the squirmer or drop velocities depending on the precise
location of the swimmer inside the confining drop [123].
In the presence of a shear flow, it was demonstrated that
the activity of a squirmer inside a drop can significantly
enhance or reduce the deformation of the drop depending
on the orientation of the swimmer [164]. More recently,
the dynamics of a drop driven by an internal active device
composed of a three-point-force moving on a prescribed
track was examined [165,166].

The dynamics of a squirmer inside a drop is not analyt-
ically tractable for arbitrary positions and orientations of
the swimmer. Therefore, recourse to numerical techniques
is generally necessary to obtain a complete understanding
of the low-Reynolds-number locomotion [161]. However,
when keeping all details, these methods are not easily ex-
tensible to the case of multiple swimmers. To deal with
these limitations, the swimming organism can be modeled
in the far-field limit under confinement using the classical
method of images [167,168]. The latter has the advantage
of being easily extensible to the case of a drop containing
many active and hydrodynamically interacting organisms
in the dilute suspension limit. In this context, an image
system for a point force bounded by a rigid spherical con-
tainer has previously been reported [169–176]. Neverthe-
less, image systems for force dipoles or higher-order sin-
gularities bounded by a spherical fluid interface possibly
covered by a surfactant are still missing.
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In the present contribution, we derive the image solu-
tion for a point force (Stokeslet) and dipole singularities
inside a spherical drop, both with a clean surface, or cov-
ered by a surfactant. We model the interfacial viscous
stresses at the surfactant-covered drop boundary by the
well-established Boussinesq-Scriven rheological constitu-
tive model [177]. Our approach is based on the method
originally introduced by Fuentes et al. [178,179], who de-
rived the solution for a Stokeslet acting outside a clean
viscous drop. An analogous approach was employed by
some of us to derive the Stokeslet solution near [180,181]
or inside [182, 183] a spherical elastic object, and outside
a surfactant-covered drop [184]. We find that the pres-
ence of the surfactant alters the swimming behavior of the
encaged microswimmer by enhancing its rate of rotation.

We organize the remainder of the paper as follows. In
sect. 2, we derive the solution for the viscous flow field in-
duced by an axisymmetric or transverse Stokeslet acting
inside a clean and a surfactant-covered drop. We then use
this flow field in sect. 3 to obtain the corresponding image
solution for a force-dipole singularity of arbitrary location
and orientation within the spherical drop. In sect. 4, we de-
rive the induced translational and rotational velocities re-
sulting from hydrodynamic couplings in the present geom-
etry. Finally, concluding remarks are contained in sect. 5
and technical details are shifted to appendices A and B.

2 Monopole singularity

We derive the solution of the viscous incompressible flow
induced by a point-force singularity of strength F acting
at position x2 inside a viscous drop of radius a. The origin
of the system of coordinates is located at position x1, the
center of the viscous drop. We denote by r = x − x1

the position vector and by r := |r| the radial distance
from the origin. Moreover, we refer by η(i) and η(e) to
the dynamic viscosities of the Newtonian fluids inside and
outside the drop, respectively. Next, we define the unit
vector d = (x1 − x2)/R with R = |x1 − x2| denoting the
distance between the singularity position and the origin.
In addition, we define the unit vector e orthogonal to d so
that the force F can be decomposed into an axisymmetric
component F ‖d and a transverse component F⊥e. See
fig. 1 for an illustration of the system setup.

In the remainder of this article, we rescale all lengths
by the radius a of the drop. We will denote by super-
scripts (i) and (e) quantities referring to the inside and
outside of the drop, respectively. The problem of finding
the incompressible hydrodynamic flow is thus equivalent
to solving the singularly forced Stokes equations [185] for
the fluid inside the drop

η(i)∇2v(i) − ∇p(i) + F δ (x − x2) = 0, (1a)

∇ · v(i) = 0 (1b)

for r < 1, and the homogeneous Stokes equations for the
fluid outside the drop

η(e)∇2v(e) − ∇p(e) = 0, (2a)

∇ · v(e) = 0 (2b)

Fig. 1. Schematic illustration of the system setup. A point-
force singularity of strength F is acting at the position x2

inside a spherical viscous drop of radius a. The origin of the
system of coordinates coincides with the center of the drop
x1. We denote the distance between the origin and the posi-
tion of the singularity as R. The viscosities inside and outside
the drop are designated as η(i) and η(e), respectively. For an
arbitrary orientation, the point force is decomposed into an ax-
isymmetric component F ‖ directed along the unit vector d and
an transverse component F ⊥ pointing along the unit vector e.
Without loss of generality, the point force is taken to be lo-
cated on the z-axis, with components along z and x directions,
where d = −ẑ and e = x̂.

for r > 1, wherein v(q) and p(q), q ∈ {i, e}, denote the cor-
responding fluid-velocity and pressure fields, respectively.
We focus on the small-deformation regime concerning the
shape of the drop so that deviations from sphericity are
assumed to be negligible. Moreover, we first assume the
drop to be stationary. This implies that it is held fixed in
space, for instance by means of optical tweezers [186]. Ac-
cordingly, the radial component of the fluid-velocity field
at the surface of the stationary drop is assumed to vanish
in the frame of reference associated with the viscous drop.

Under these assumptions, eqs. (1) and (2) are subject
to the regularity conditions

|v(i)| < ∞ for r → 0, v(e) → 0 as r → ∞, (3)

in addition to the boundary conditions imposed at the
surface of the stationary drop at r = 1,

v(i)
r = v(e)

r = 0, (4a)

vS := Π · v(i) = Π · v(e), (4b)

where Π = 1−erer is the projection operator, with 1 de-
noting the identity tensor, and vS is the tangential veloc-
ity. Equation (4a) represents the kinematic condition stat-
ing that the drop remains undeformed whereas eq. (4b)
stands for the natural continuity of the tangential veloci-
ties across the surface of the drop.

On the one hand, for a clean drop, i.e., without sur-
factant, shear elasticity, or bending rigidity, the tangential
hydrodynamic stresses across the surface of the drop are
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continuous [187]. Then,

Π ·
�
T (i) − T (e)

�
= 0, (5)

where T (q) = σ(q) · er with σ(q), q ∈ {i, e}, denoting the
hydrodynamic viscous stress tensor.

On the other hand, to model the surfactant-covered
drop, we use the boundary conditions [184]

∇S · vS = 0, (6a)

Π ·
�
T (i) − T (e)

�
= ∇Sγ + ∇S · τ S, (6b)

where γ denotes the interfacial tension, ∇S = Π ·∇ is the
surface gradient operator, and τ S is the interfacial viscous
stress tensor. Using the Boussinesq-Scriven constitutive
law we have [184]

∇S · τ S = ηS

�
2vS

r2
+

1

r sin θ

∂�

∂φ
eθ − 1

r

∂�

∂θ
eφ

�
, (7)

wherein θ and φ, respectively, denote the polar and az-
imuthal angles in the system of spherical coordinates at-
tached to the center of the drop, ηS denotes the interfacial
shear viscosity, which we assume to be constant, and

� =
1

r sin θ

�
∂vθ

∂φ
− ∂

∂θ
(vφ sin θ)

�
. (8)

Equation (6a) represents the transport equation for an in-
soluble, non-diffusing, incompressible, and homogeneously
distributed surfactant [184, 188], which may be rewritten
as

∂vSφ

∂φ
+

∂

∂θ
(vSθ sin θ) = 0. (9)

We note that the tangential components of the viscous
stress vector are expressed in the usual way as

T
(q)
θ = η(q)

�
∂v

(q)
θ

∂r
+

1

r

�
∂v

(q)
r

∂θ
− v

(q)
θ

��
, (10a)

T
(q)
φ = η(q)

�
∂v

(q)
φ

∂r
+

1

r

�
1

sin θ

∂v
(q)
r

∂φ
− v

(q)
φ

��
, (10b)

for q ∈ {i, e}.
To solve the Stokes equations (1) and (2), we write the

solution for the fluid flow inside the drop as a sum of two
contributions

v(i) = vS + v∗, (11)

wherein vS denotes the velocity field induced by a point-
force singularity in an unbounded bulk medium of viscos-
ity η(i), i.e., in the case of an infinitely extended drop, and
v∗ is the auxiliary solution (also known as the image or
reflected flow field) that is required to satisfy the above
regularity and boundary conditions.

We now sketch briefly the main steps of the resolution
procedure. First, the fluid velocity induced by the free-
space Stokeslet vS for an infinitely large drop is expressed
in terms of harmonic functions based at x2, which are

subsequently transformed into harmonics based at x1 by
means of the Legendre expansion [189]. Second, the im-
age solution v∗ as well as the flow field outside the cavity
v(e) are, respectively, expressed in terms of interior and
exterior harmonics based at x1. To this end, we make use
of Lamb’s general solution of Stokes flows in a spherical
domain [190–192]. Finally, the unknown series expansion
coefficients associated with each fluid domain are deter-
mined by satisfying the boundary conditions prescribed
at the surface of the drop.

Thanks to the linearity of the Stokes equations, the
Green’s function for a point force directed along an arbi-
trary direction in space can be obtained by linear superpo-
sition of the solutions for the axisymmetric and transverse
problems [171]. In the following, we detail the derivation
of the solution for these two problems independently.

2.1 Axisymmetric Stokeslet

The velocity field induced by a free-space Stokeslet located
at x2 is expressed in terms of the Oseen tensor as

vS = G(x−x2)·F =
1

8πη(i)

�
1

s
+ s∇2

�
1

s

��
·F , (12)

where s = x−x2, s = |s|, and ∇2 = ∂/∂x2 stands for the
partial derivative with respect to the singularity position.
The details of derivation have previously been reported by
some of us in ref. [182], and will thus be omitted here. As
shown there, the free-space Stokeslet for an axisymmetric
point force F = F ‖d can be expanded in terms of an
infinite series of harmonics centered at x1 via the Legendre
expansion as

8πη(i)vS = F ‖
∞�

n=1

�
αn∇ϕn − 2(n + 1)

2n − 1
rϕn

�
Rn−1,

(13)
wherein

αn =
n − 2

2n − 1
r2 − n

2n + 3
R2, (14)

and ϕn are harmonics of degree n, that are related to the
Legendre polynomials of degree n via [193]

ϕn(r, θ) =
(d · ∇)n

n!

1

r
= r−(n+1) Pn(cos θ). (15)

In addition, the image solution inside the drop can
readily be determined from Lamb’s general solution [191,
194], and can conveniently be expressed in terms of inte-
rior harmonics based at x1 as [182]

8πη(i)v∗ = F ‖
∞�

n=1

�
A‖

nS(1)
n + B‖

nS(2)
n

�
, (16)

where we have defined the vector functions

S(1)
n =

1

2

	
(n + 3)r2 ∇ϕn + (n + 1)(2n + 3)rϕn



r2n+1,

(17a)

S(2)
n =

	
r2∇ϕn + (2n + 1)rϕn



r2n−1. (17b)
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The total flow field inside the drop is obtained by
summing both contributions stated by eqs. (13) and (16),

while the series coefficients A
‖
n and B

‖
n remain to be de-

termined.

Next, the solution of the flow problem outside the drop
can likewise be obtained using Lamb’s general solution,
and can be expressed in terms of exterior harmonics based
at x1 as [182]

8πη(i)v(e) = F ‖
∞�

n=1

	
a‖

nΦ + b‖
n∇ϕn



, (18)

where

Φ = (n + 1) rϕn − n − 2

2
r2 ∇ϕn. (19)

It is worth noting that, for the ease of matching the bound-
ary conditions at the surface of the drop, we have chosen
to rescale the exterior velocity field given by eq. (18) by
8πη(i) rather than by 8πη(e).

Having expressed the velocity field on both sides of the
drop in terms of harmonics based at the origin, we next

determine the unknown series coefficients {A
‖
n, B

‖
n} and

{a
‖
n, b

‖
n}. By applying the boundary conditions prescribed

at the surface of the drop, given by eqs. (4) and (5) for
a clean drop, and by eqs. (4) and (6) for a surfactant-
covered drop, and using the fact that ∇ϕn and rϕn form
a set of orthogonal vector harmonics, we obtain a system
of linear equations. Its solution yields the expressions of
the series coefficients associated with the solution of the
flow field inside and outside the drop. Further details of
derivation are shifted to appendix A. For a clean drop, the
coefficients are given by

A‖
n =

�
Λ − 1 +

�
2n + 1

2n + 3
− Λ

�
R2

�
Rn−1, (20a)

B‖
n =

n + 1

2

�
2n + 1

2n − 1
− Λ + (Λ − 1)R2

�
Rn−1, (20b)

a‖
n = Λ

	
1 − R2



Rn−1, (20c)

b‖
n =

Λn

2

	
1 − R2



Rn−1, (20d)

where we have defined for convenience the dimensionless
number Λ = λ/(1 + λ) with λ = η(i)/η(e) denoting the
viscosity contrast. Accordingly, Λ vanishes in the rigid-
cavity limit (e.g. water drop in extremely viscous oil) and
approaches one for drops with a large viscosity compared
to the external medium (e.g. water drop in air).

For a surfactant-covered drop, it follows from eq. (9)
that the surface velocity vanishes in the axisymmetric
case. Accordingly, the solution of the axisymmetric flow
problem for a Stokeslet acting inside a viscous drop cov-
ered with a non-diffusing, insoluble, and incompressible
layer of surfactant is identical to that inside a rigid spher-

ical cavity (Λ = 0). Specifically,

A‖
n =

�
2n + 1

2n + 3
R2 − 1

�
Rn−1, (21a)

B‖
n =

n + 1

2

�
2n + 1

2n − 1
− R2

�
Rn−1, (21b)

a‖
n = b‖

n = 0. (21c)

It is worth mentioning that analogous behavior has been
found for a Stokeslet acting near a planar interface covered
with surfactant [195] and for a Stokeslet acting outside a
surfactant-covered drop [184].

2.2 Transverse Stokeslet

We proceed in an analogous way as in the axisymmetric
case and express the velocity field on both sides of the
drop in terms of harmonics based at x1. As demonstrated
in detail in ref. [183], the free-space Stokeslet solution for
a transverse point force F = F⊥e acting at the position
x2 can be written via Legendre expansion as an infinite
series as

8πη(i)vS = F⊥
∞�

n=1

�
βn∇ψn−1 − 2Rn

n + 1
γn−1 + τn

�
,

(22)
where

βn =

�
n − 2

n(2n − 1)
r2 − nR2

(n + 2)(2n + 3)

�
Rn−1, (23a)

τn = −2(n + 1)Rn−1

n(2n − 1)
rψn−1, (23b)

and where we have defined the harmonics ψn = (e · ∇)ϕn

and γn = t × ∇ϕn, with the unit vector t = e × d. By
construction, ψn = γn · d. In contrast to the simple ax-
isymmetric case for which only two orthogonal vector har-
monics are needed as basis function for the expansion of
the flow field, the transverse situation requires three vector
harmonics that we chose here for convenience to be ∇ψn,
rψn, and γn.

In addition, the image solution inside the drop can
likewise be obtained using Lamb’s general solution and be
expressed in terms of interior harmonics as [183]

8πη(i)v∗ = F⊥
∞�

n=1

�
A⊥

n Q(1)
n + B⊥

n Q(2)
n + C⊥

n Q(3)
n

�
,

(24)
where we have defined the vector functions

Q(1)
n =

�
n+3

2n
r2∇ψn−1 +

(n+1)(2n+3)

2n
rψn−1

�
r2n+1,

(25a)

Q(2)
n =

1

n

�
r2 ∇ψn−1 + (2n + 1) rψn−1

�
r2n−1, (25b)

Q(3)
n =

�
γn−1 +

2n − 1

r2
(t × r)ϕn−1

�
r2n−1. (25c)
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Finally, the solution of the flow problem outside the
spherical drop can be expressed in terms of exterior har-
monics as [183]

8πη(i)v(e) = F⊥
∞�

n=1

�
a⊥

n

�
n − 2

2(n + 1)
r2∇ψn−1 − rψn−1

�

− b⊥
n

n + 1
∇ψn−1 + c⊥

n γn−1

�
, (26)

where, again, we have chosen, for the sake of convenience,
to rescale the exterior flow field by 8πη(i) rather than by
8πη(e).

For a clean drop, solving for the series coefficients
{A⊥

n , B⊥
n , C⊥

n } and {a⊥
n , b⊥

n , c⊥
n } associated with the flow

fields inside and outside the drop, respectively, yields

A⊥
n =

�
Λ − 1 +

n + 3

n + 1

�
2n + 1

2n + 3
− Λ

�
R2

�
Rn−1, (27a)

B⊥
n =

�
(n + 1)kn − n + 3

2
(1 − Λ)R2

�
Rn−1, (27b)

C⊥
n =

2n(1 − 2Λ)Rn−2

(n − 2)(3Λ − n)
, (27c)

a⊥
n =

Λ

n
((n + 3)R2 − n − 1)Rn−1, (27d)

b⊥
n = Λ

��
gn+1 +

n + 3

2

�
R2 − n + 1

2

�
Rn−1, (27e)

c⊥
n = Λgn Rn, (27f)

where we have defined

kn =
2(1 − 2Λ)

(n − 1)(3Λ − n − 1)
+

2n + 1

2(2n − 1)
− Λ

2
, (28a)

gn =
2(2n + 1)

(n + 1)(3Λ − n − 2)
. (28b)

For a surfactant-covered drop, the corresponding coef-
ficients are given by

A⊥
n =

�
(n + 3)(2n + 1)

(n + 1)(2n + 3)
R2 − 1

�
Rn−1, (29a)

B⊥
n =

1

2

�
(n+1)jn

(n−1)(2n−1)hn
− (n+3)R2

�
Rn−1, (29b)

C⊥
n =

2n(λ + 3w − 1 − wn)Rn−2

(n − 2)(wn2 + (1 + λ − 3w)n − 3λ)
, (29c)

a⊥
n = 0, (29d)

b⊥
n = − 2λ(2n + 3)Rn+1

(n + 2)(wn2 + (1 + λ + 3w)n + 3)
, (29e)

c⊥
n = b⊥

n−1, (29f)

where we have defined

w =
ηS

η(e)
(30)

as an inverse length parameter. In addition,

jn = 2wn4 + (2 + 2λ − 3w) n3 + (1 − 5λ − 12w) n2

+(9λ + 23w − 10) n + 3 − 2λ − 6w, (31a)

hn = wn2 + (1 + λ − w) n + 1 − 2λ − 2w. (31b)

For further details of derivation, we refer to appendix A.
Notably, the series coefficients A⊥

n and a⊥
n for a surfactant-

covered drop are equal to those for a rigid spherical cavity
(Λ = 0). We note that the rigid cavity limit is recovered for
all the other series coefficients by taking the limits λ → 0
(or alternatively Λ → 0).

In the limit w → ∞, the fluid flow outside the cavity is
described by the only non-vanishing coefficient c⊥

1 = −λR.

2.3 Solution for a freely moving drop

So far, we have assumed that the fluid velocity normal to
the interface of the drop vanishes that the drop remains
at rest. This implies that in general an external force has
to be exerted on the drop to maintain it at its present
location. The additionally applied force is equal in mag-
nitude but different in sign when compared to the hydro-
dynamic force exerted by the Stokeslets on the stationary
drop. Accordingly, the solution of the flow problem for a
freely moving drop can be obtained by accounting for the
Stokeslet solution derived above and adding a flow field
induced by a drop subject to an external force that just
balances the force applied previously to maintain the drop
in position.

For a Stokeslet acting inside a stationary drop, the
hydrodynamic force against the flow of the outside fluid
is obtained by integrating the traction vector on the outer
surface of the drop as [196]

F S
Drop =

� 2π

0

� π

0

T (e) sin θ dθ dφ, (32)

which after calculation leads to

F S
Drop = λ−1

�
a

‖
1F

‖ d − a⊥
1

4
F⊥ e

�
. (33)

This force is necessary to be imposed on the surface of the
drop to maintain it in position, which ensures the surface
condition in eq. (4a). For a rigid cavity the flow field out-

side the cavity vanishes, a
‖
1 = a⊥

1 = 0, and thus the cavity
does not experience any force. Upon substitution of the

two series coefficients a
‖
1 and a⊥

1 , we obtain for a clean
drop

F S
Drop =

1 − Λ

2
((1 − R2)F ‖ d + (1 − 2R2)F⊥ e). (34)

The resulting translational velocity can then be ob-
tained as V S

Drop = μF S
Drop, with μ = 1/(2π(2+Λ)η(e)) de-

noting the translational hydrodynamic mobility of a clean
drop. We find

V S
Drop =

(1 − Λ)((1 − R2)F ‖ d + (1 − 2R2)F⊥ e)

4π(2 + Λ)η(e)
.

(35)
The axisymmetric flow field induced by a drop trans-

lating with a constant velocity V d is known as the
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Hadamard-Rybczynski solution and can be found in clas-
sic fluid mechanics textbooks. It is given in the frame of
the drop by [196] (Chapt. 7, p. 482)

v(e)
r = −V

�
1 − 2 + Λ

2r
+

Λ

2r3

�
cos θ, (36a)

v
(e)
θ = V

�
−1 +

2 + Λ

4r
+

Λ

4r3

�
sin θ, (36b)

for the outer fluid, and by

v(i)
r =

V

2
(1 − Λ)

	
1 − r2



cos θ, (37a)

v
(i)
θ =

V

2
(1 − Λ)

	
1 − 2r2



sin θ, (37b)

for the inner fluid. Consequently, the total flow field in-
duced by a Stokeslet acting inside a freely movable drop
is obtained by superimposing the flow field resulting from
a Stokeslet acting inside a stationary drop and the flow
field induced by a drop translated with a constant veloc-
ity −V S

Drop. That is, we impose a flow field that is in

principle resulting from a force −F S
Drop added to cancel

the force F S
Drop that we had effectively imposed before to

keep the drop in position and thus to satisfy eq. (4a).
For a surfactant-covered drop, we have shown that

a
‖
1 = a⊥

1 = 0. Thus for a rigid cavity and a surfactant-
covered drop the total net force transmitted to the drop
vanishes. This similarity can be motivated as follows. Any
flow past a spherical surface, irrespective of boundary con-
ditions on the surface, can be decomposed into a sur-
face solenoidal and a surface irrotational flow field on
the spherical surface [184]. The surface irrotational flow
field is torque-free and it exerts a force and a stresslet on
the particle, whereas the surface solenoidal flow field is
force-free and stresslet-free and it exerts a torque on the
particle. For a viscous drop (both clean and surfactant-
covered), the surface solenoidal flow field is additionally
torque-free [197]. For a drop covered with an incompress-
ible surfactant of zero surface diffusivity, the surface irro-
tational flow field is the same as that of a rigid spherical
cavity [184]. For this reason, the force and stresslet ex-
perienced by a surfactant-covered drop are the same as
those experienced by a rigid spherical cavity, regardless of
the specific value of the viscosity contrast λ and surface
to external bulk viscosity ratio w.

The resulting flow fields can now be computed for an
arbitrary position and viscosity ratio. As an illustration,
in fig. 2, we draw on the left-hand side the streamlines and
the magnitude of the flow field created by a point force
inside a stiff spherical cavity (for Λ = 0), which coincides
with the well-known image solution [170]. On the right-
hand side, we depict the case of Λ = 1/2 for a freely mov-
ing drop in the absence of the surfactant. Here, the flow
inside the drop induces motion of the exterior fluid. The
magnitude of the flow velocity fields is shown on a logarith-
mic scale. In particular, the case of stiff confinement (left
column) leads to a faster decay of the velocity magnitude
due to an increased dissipation at the boundary. For the

Fig. 2. Streamlines and contour plots of the flow field induced
by an axisymmetric ((a)–(d)) and transverse Stokeslet ((e) and
(f)) inside a clean freely moving drop for different values of R
and Λ. The Stokeslet singularity is represented by a red one-
headed arrow. In the left column, Λ = 0 corresponds to a rigid
spherical cavity, while the right column of Λ = 1/2 allows
flow fields to be induced in the outer fluid by the presence of a
point force inside the drop. The velocity magnitude is scaled by
1/(8πη(i)). To indicate the magnitude of the flow field, shading
is used on a logarithmic scale.

radially oriented Stokeslet, the patterns retain rotational
symmetry about the Stokeslet direction. Accordingly, the
flow field inside the drop consists of toroidal eddies owing
to the axisymmetric nature of the flow [198]. In contrast
to that, a single vortex is created inside the drop for the
transverse point force.

In fig. 3, we include the effect of the surfactant by
examining two non-zero values of Λ and w. The non-
vanishing surfactant shear viscosity does not change quali-
tatively the shape of the streamlines inside the drop. How-
ever, the outer fluid shows concentric circular streamlines
similar to those resulting from the uniform rotation of
a rigid body. For a fixed viscosity contrast, we observe
a weak dependence of the velocity magnitude on the pa-
rameter w, whereas the topology and structure of the flow
field remain nearly invariant in the investigated parameter
regime.

Having derived the image solution for a point-force
singularity acting inside a spherical viscous drop, we next
make use of this solution to derive the corresponding im-
age for a force dipole singularity.
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Fig. 3. Streamlines and contour plots of the flow field induced
by a transverse Stokeslet inside a surfactant-covered drop for
R = 4/5 and two different values for Λ and w. The transverse
Stokeslet is represented by a red one-headed arrow. The inner
flow field resembles that of a clean drop whereas the outer
flow field consists of circular streamlines. Here, the velocity
magnitude is scaled by 1/(8πη(i)).

3 Dipole singularity

In the following, we denote by q := F /|F | the unit vector
pointing along the direction of the force. Additionally, we
define the Green’s function associated with the q-directed
Stokeslet acting at the position x2 of an unbounded fluid
medium as

G(q) = 8πη(i) G(x − x2) · q. (38)

In the far-field limit, the force monopole decays with
inverse distance from the singularity position. For an ar-
bitrary orientation of the Stokeslet, the unit vector q can
be projected along the axisymmetric and transverse direc-
tions as

q = sin δ d + cos δ e. (39)

The flow field induced by force- and torque-free swim-
ming microorganisms can be written as a multipole ex-
pansion of the solution of the Stokes equations [199].
To leading order, this flow field appears as induced
by a force dipole, which exhibits a decay with inverse
distance squared and thus faster than flows induced
by force monopoles. Higher-order singularities associated
with Stokes flows can be obtained by differentiations of
the Stokeslet solution.

We define the free-space flow field caused by a force
dipole as

GD(q,p) = (p · ∇)G(q), (40)

where p is a unit vector along which the gradient oper-
ator is exerted. In an unbounded fluid medium, i.e., for
an infinitely large radius of the drop, the self-generated

flow induced by an active force-dipole model microswim-
mer oriented along the direction of the unit vector q is
expressed as vD = −α GD(q, q). Accordingly,

vD = −α (q · ∇) (sin δ G(d) + cos δ G(e)) , (41)

where α sets the strength of the force dipole. Then, for a
general orientation, the force dipole can be written as a
linear combination of axisymmetric and transverse force
dipole singularities as

GD(q, q) = GD(d,d) sin2 δ + GD(e,e) cos2 δ

+
1

2
(GD(e,d) + GD(d,e))

� � �
GSS(e,d)

sin(2δ), (42)

where GSS(e,d) = GSS(d,e) stands for the symmetric
part of the Green’s function associated with the force
dipole, which is commonly termed the stresslet [200].

We now summarize the main mathematical operations
required for the calculation of each of the image flow fields
resulting for eq. (42). Denoting by I{v} the image solution
for a given flow field v, it can be shown that [178,179,184]

I{GD(d,d)} = − (d · ∇2) I{G(d)}, (43a)

I{GD(e,e)} = − (e · ∇2) I{G(e)}+R−1 I{G(d)}, (43b)

I{GD(e,d)} = − (d · ∇2) I{G(e)}, (43c)

I{GD(d,e)} = − (e · ∇2) I{G(d)}−R−1 I{G(e)}. (43d)

Here, we have made use of the relations (e · ∇2)R = 0,
(e · ∇2)d = −(1/R)e, and (e · ∇2)e = (1/R)d.

By noting that d · ∇2 = −∂/∂R, it follows from
eqs. (16) and (43a) that the image solution for the ax-
isymmetric force dipole can be expressed as

I{GD(d,d)} =

∞�

n=1

�
∂A

‖
n

∂R
S(1)

n +
∂B

‖
n

∂R
S(2)

n

�
, (44)

where the vector functions S(j)
n (j ∈ {1, 2}) involve the

harmonics ∇ϕn and rϕn, and have previously been de-
fined by eqs. (17).

In addition, it follows from eqs. (24) and (43c) that

I{GD(e,d)}=

∞�

n=1

�
∂A⊥

n

∂R
Q(1)

n +
∂B⊥

n

∂R
Q(2)

n +
∂C⊥

n

∂R
Q(3)

n

�
,

(45)

where the vector functions Q(j)
n (j ∈ {1, 2, 3}) involve the

harmonics ∇ψn−1, rψn−1, and γn−1, see the definitions
in eqs. (25).

Involving the relation

(e · ∇2) ϕn = −R−1 (e · ∇) ϕn−1 = −R−1 ψn−1, (46)

we readily obtain

(e · ∇2) I{G(d)} = − 1

R

∞�

n=1

n
�
A‖

nQ(1)
n + B‖

nQ(2)
n

�
.

(47)
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Combining results, the image of the stresslet field can
be cast in the final form

I{GSS(d,e)} =

∞�

n=1

�
ÂnQ(1)

n + B̂nQ(2)
n + ĈnQ(3)

n

�
,

(48)
where the series coefficients are given by

Ân =
1

2

�
n

R
A‖

n + R
∂

∂R

�
A⊥

n

R

��
, (49a)

B̂n =
1

2

�
n

R
B‖

n + R
∂

∂R

�
B⊥

n

R

��
, (49b)

Ĉn =
R

2

∂

∂R

�
C⊥

n

R

�
. (49c)

Next, by making use of the relation

(e · ∇2) ψn−1 = R−1
	
(d · ∇) ϕn−1 − (e · ∇) ψn−2




= R−1 (nϕn − ξn−2) , (50a)

together with ξn := (e · ∇)ψn, we readily obtain

(e · ∇2) I{G(e)} =
∞�

n=1

1

R

�
A⊥

n W (1)
n + B⊥

n W (2)
n + C⊥

n W (3)
n

�
, (51)

where we have defined the vector functions

W (1)
n = S(1)

n − 1

2n

	
(n + 3) r2∇ξn−2 + ρn r ξn−2



r2n+1,

W (2)
n = S(2)

n − 1

n

	
r2 ∇ξn−2 + (2n + 1) r ξn−2



r2n−1,

W (3)
n = −

�
t × ∇ψn−2 +

2n − 1

r2
(t × r)ψn−2

�
r2n−1,

together with ρn = (n + 1)(2n + 3).
Having derived the image flow field for a force dipole

singularity acting inside a stationary drop, we next deter-
mine the external force that is needed to maintain the drop
in position, which corresponds to the condition of vanish-
ing normal velocity at the interface imposed by eq. (4a).

The hydrodynamic force against the outside fluid flow
in the presence of the force dipole can again be obtained
by integrating the hydrodynamic traction vector on the
outer surface as [196]

F D
Drop =

� 2π

0

� π

0

T
(e)
D sin θ dθ dφ, (53)

which leads to

F D
Drop = −απη(e)

	
2f‖d + f⊥e



, (54)

together with the definitions

f‖ =
2a

‖
1 + a⊥

1

R
cos2 δ − 2

∂a
‖
1

∂R
sin2 δ, (55a)

f⊥ =

�
2a

‖
1 + a⊥

1

R
− ∂a⊥

1

∂R

�
sin(2δ). (55b)

Fig. 4. Streamlines and contour plots of the flow field induced
by an axisymmetric ((a)–(d)) and transverse force dipole (e)-
(f) inside a clean drop for different positions R, orientations,
and values of Λ. Similarly to the case of a point force, see
fig. 2, for the effectively stiff spherical cavity (left column), we
observe by construction a quick decay of the flow field towards
the boundary of the drop. In the case of equal viscosity in-
side and outside the drop (right column), we find additional
recirculation zones appearing close to the surface of the freely
moving drop.

Upon substitution of the series coefficients, we readily ob-
tain for a clean viscous drop

F D
Drop = −2απη(e)RΛ((3 − cos(2δ))d − 3 sin(2δ)e). (56)

Again, the induced translational velocity of a freely mov-
ing drop subject to this net force follows as V D

Drop =

μF D
Drop and can thus be expressed as

V D
Drop = − αRΛ

2 + Λ
((3 − cos(2δ))d − 3 sin(2δ)e). (57)

Altogether, the total flow field resulting from a force-
dipole acting inside a freely moving drop is obtained by su-
perimposing the dipolar flow field inside a stationary drop
derived above and the flow field induced by a drop trans-
lating with velocity −V D

Drop provided by the Hadamard-
Rybczynski solution (cf. eqs. (36) and (37)). Again, for a
rigid cavity and a surfactant-covered drop the total hy-

drodynamic force vanishes because a
‖
1 = a⊥

1 = 0.
In analogy to the flow fields caused by a Stokeslet pre-

sented above, we now illustrate the flow induced by a force
dipole. Figure 4 shows corresponding results for a stiff
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Fig. 5. Streamlines and contour plots of the flow field induced
inside a clean drop by a stresslet placed at the origin ((a) and
(b)) or off-center ((c) and (d)) for two different values of the
viscosity contrast, corresponding to an effectively stiff bound-
ary (Λ = 0) and to an equal viscosity of the inner and outer
fluids for a freely moving drop. The flow far away from the
drop, retains the same geometric signature as the generating
stresslet.

spherical confinement of Λ = 0 (left column) and for the
case of Λ = 1/2 (right column) for a clean freely moving
drop in the absence of a surfactant. By varying the po-
sition of the force dipole inside the drop, we can control
the additional recirculation zones appearing in the exterior
fluid. The flow fields generally lose the axial symmetry, ex-
cept for when the dipole is oriented radially. Similarly, in
fig. 5, we present related results caused by a pure stresslet.

Adding a surfactant significantly changes the observed
dynamics. In fig. 6, we present the flow fields caused by
a dipole (left column) and a stresslet (right column) for
various values of w. Increasing the shear viscosity of the
surfactant leads to a “stiffening” that drastically reduces
the effect of the singularity on the exterior flow. The exte-
rior region consists of circular streamlines similar to those
induced by rigid-body rotation.

4 Swimmer dynamics

We now analyze the effect of the drop on the dynamics
of an active swimming microorganism encapsulated on
the inside. To this end, we decompose in the usual way
the generated flow field into a bulk contribution given by
eq. (41) in addition to the correction due to the presence of
the confining drop. For a clean drop, an additional contri-
bution has to be considered to account for the free motion
of the drop.

Here, we model the swimming microorganism as a pro-
late spheroidal particle of aspect ratio σ. The latter is
defined as the ratio of major to minor semi-axes of the
spheroid. For instance, the aspect ratio of the bacterium

Fig. 6. Streamlines and contour plots of the flow field induced
by a force dipole ((a), (c), and (e)) and a stresslet ((b), (d),
and (f)) for R = 4/5, Λ = 1/2, and three different values
of w when the surface of the drop contains a surfactant. The
structure of the streamlines is qualitatively different from that
of a clean drop.

Bacillus subtilis [201] has been measured experimentally
to be about σ = 4.

The induced translational and rotational velocities re-
sulting from the fluid-mediated hydrodynamic interac-
tions between the microswimmer and the surface of the
drop are provided by Faxén’s laws as [103,199,202,203]

vHI = v∗
D(x)

���
x=x2

, (58a)

ΩHI = 1
2 ∇×v∗

D(x)
���
x=x2

+ Γq×E∗
D(x)

���
x=x2

· q, (58b)

where we have restricted these expressions to the leading
order in the swimmer size. Here, v∗

D denotes the image
dipole flow field inside a freely moving drop. In addition,
E∗

D = (∇v∗
D + (∇v∗

D)�)/2 denotes the symmetric rate-
of-strain tensor associated with the image force dipole,
and � represents the transposition operation. In addition,
Γ = (σ2 − 1)/(σ2 + 1) ∈ [0, 1) is a shape factor, where
Γ = 0 holds for a spherical particle and Γ → 1 for a
needle-like particle of a significantly pronounced aspect
ratio.

Then, the induced translational velocity of the swim-
mer can be written as

vHI = −α
	
(V1 + V2 cos(2δ))d + V3 sin (2δ) e



, (59)
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Ω1 = ω1 +
3

4

∞
X

n=1

(n2 − 1)(2Λ2 − 4Λ + 2 + n)

n + 2 − 3Λ
R2n−2, (65a)

Ω2 = ω2 +
3(3Λ − 1)

32
− 3

32

∞
X

n=1

(n − 2)(2(1 + Λ)n2 + (6Λ2 − 13Λ + 3)n − (1 − Λ)(2 + 3Λ))

n + 2 − 3Λ
R2n−2, (65b)

Ω3 = ω3 +
3(3Λ − 1)

32
+

3

32

∞
X

n=1

2(3 − Λ)n3 + (2Λ − 1)(5Λ − 9)n2 − (1 − Λ)((Λ + 8)n + 2(2 − Λ))

n + 2 − 3Λ
R2n−2, (65c)

Ω1 =
∞
X

n=1

3wn4 + (3 + 5λ + 3w)n3 + (6 − 2λ − 9w)n2 − (3 + 5λ + 3w)n − 6 + 2λ + 6w

4(wn2 + (1 + λ + w)n + 2 − λ − 2w)
R2n−2, (66a)

Ω2 = − 3

32
− 3

32

∞
X

n=1

2wn4 + (2 + 6λ − 3w)n3 − (1 + 17λ + 7w)n2 + (9λ + 12w − 8)n + 4 + 2λ − 4w

wn2 + (1 + λ + w)n + 2 − λ − 2w
R2n−2, (66b)

Ω3 = − 3

32
+

∞
X

n=1

18wn4 + (18 + 22λ + 9w)n3 + (27 − 21λ − 51w)n2 − (24 + 3λ − 12w)n − 12 + 2λ + 12w

32(wn2 + (1 + λ + w)n + 2 − λ − 2w)
R2n−2. (66c)

where for a clean drop

V1 = v1 − (3 − Λ)R

4(1 − R2)2
, (60a)

V2 = v2 +
3(3 − Λ)R

4(1 − R2)2
, (60b)

V3 = v3 +

∞�

n=1

3(1−Λ)(2n+1)(Λ−n−2)

4(n+2−3Λ)
R2n−1, (60c)

where

−v1 = 3v2 = 3LR(1 − R2), v3 = 3LR(1 − 2R2) (61)

are additional contributions required to account for the
free motion of the drop, with

L =
Λ(1 − Λ)

2(2 + Λ)
. (62)

For a surfactant-covered drop, we obtain

V1 = −V2

3
= − 3R

4(1 − R2)2
, (63a)

V3 =

∞�

n=1

un

sn
R2n−1, (63b)

where we have defined

un = −(2n + 1)
	
3wn2 + (3 + λ + 3w)n + 6 − λ − 6w



,

sn = 4
	
wn2 + (1 + λ + w)n + 2 − λ − 2w



.

The induced rotational velocity due to hydrodynamic
interactions with the surface of the drop can be cast in
the form

ΩHI = −α
	
Ω1 + Γ

	
Ω2 cos(2δ) + Ω3




sin(2δ)t, (64)

where, again, t = e × d. For a clean drop, we find

see eqs. (65) above

where ω1 = −15R2L/2, ω2 = −9R2L/2, and ω3 = 6R2L
are contributions accounting for the free motion of the
drop. For a surfactant-covered drop, we obtain

see eqs. (66) above

In particular, the induced translational and rotational
swimming velocities inside a rigid spherical cavity are re-
covered when taking in eqs. (65) and (66) the limit λ → 0.

It is worth noting that the infinite series appearing in
eq. (60c) providing the velocity V3 for a clean drop can
be expressed in terms of Hurwitz-Lerch transcendent and
Gauss hypergeometric functions [193]. However, the sum
representation is more convenient for computational pur-
poses. For a clean drop, for Λ = 0 (corresponding to the
rigid-cavity limit), for Λ = 1/2 (corresponding to equal
viscosities of the inner and outer fluids), and for Λ = 1
(corresponding to an infinitely small outer viscosity), the
infinite sum can be expressed in terms of polynomial frac-
tions as summarized in table 1. For the sake of clarity, we
summarize in table 2 the basic operations that have been
used to calculate the translational and rotational velocities
stated by eqs. (59) and (64), respectively. In appendix B,
we discuss the convergence properties of these series func-
tions and estimate the number of terms required for their
evaluation up to a given precision.

The addition of a surfactant increases the complexity
of the solution. The magnitudes of the velocities V1 and V2

for a surfactant-covered drop given by eq. (63a) are inde-
pendent of Λ and are generally larger than those for a
clean drop given by eqs. (60). In fig. 7, we present the
Λ-dependence of the components V3 and Ωi, i ∈ {1, 2, 3},
for different values of the surface viscosity ratio w. The in-
duced translational swimming velocity V3 and the rotation
rates increase monotonically from the rigid-cavity limit
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Table 1. Expressions of the infinite sums for a clean drop, given in eqs. (60) and (65) in terms of polynomial fractions for Λ = 0
(rigid-cavity limit), Λ = 1/2 (equal viscosities of the inner and outer fluids), and Λ = 1 (infinitely small outer viscosity).

Λ V3 − v3 Ω1 − ω1 Ω2 − ω2 Ω3 − ω3

0 −3

4

R(3 − R2)

(1 − R2)2
3

4

R2(3 − R2)

(1 − R2)3
− 3

32

R4(5 − R2)

(1 − R2)3
3

32

R2(16 − 5R2 + R4)

(1 − R2)3

1

2
−3

8

R(5 − 3R2)

(1 − R2)2
3

4

R2(3 − R2)

(1 − R2)3
− 3

64

R4(11 + R2)

(1 − R2)3
3

64

R2(24 − 3R2 − R4)

(1 − R2)3

1 0
2

(1 − R2)3
−3

8

R4(3 − R2)

(1 − R2)3
3

8

R2(4 − 3R2 + R4)

(1 − R2)3

Table 2. Summary of the basic operations required for the calculations of the translational and rotational velocities given by
eqs. (59) and (64), respectively, for a surfactant-free, clean drop.

f f |x=x2 ∇ × f |x=x2 q × 1

2
(∇f + (∇f )�)|x=x2 · q

S
(1)
n −1

2
n(n + 1)Rn+1 d 0

3

8
n(n + 1)2Rn sin(2δ)t

S
(2)
n −nRn−1 d 0

3

4
n(n − 1)Rn−2 sin(2δ)t

Q(1)
n −1

4
(n + 1)(n + 3)Rn+1 e −1

2
(n + 1)(2n + 3)Rn t

1

4
n(n + 1)(n + 2)Rn cos(2δ)t

Q(2)
n −1

2
(n + 1)Rn−1 e 0

1

2
(n2 − 1)Rn−2 cos(2δ)t

Q(3)
n (n − 1)Rn−2 e

1

2
(n − 1)(n − 2)Rn−3 t −3

4
(n − 1)(n − 2)Rn−3 cos(2δ)t

W
(1)
n −1

4
n(n + 1)2Rn+1 d 0

1

32
(n + 1)(7n3 + 16n2 + 7n − 6)Rn sin(2δ)t

W
(2)
n −1

2
n(n + 1)Rn−1 d 0

1

16
(n2 − 1)(7n + 2)Rn−2 sin(2δ)t

W
(3)
n

1

2
n(n − 1)Rn−2 d 0 −1

2
n(n − 1)(n − 2)Rn−3 sin(2δ)t

(Λ = 0) to the infinitely large viscosity contrast (Λ = 1).
The presence of a surfactant strongly alters the dynamics
of the encapsulated swimmer by enhancing its reorienta-
tion when compared to the situation of a clean drop.

Finally, we exploit our results to estimate the veloc-
ity and rotation rates for real biological microswimmers
confined by the spherical drop. As an example, we chose
the bacterium E. coli, which provides a frequently stud-
ied example system to unravel the physics of microswim-
mers [204–206]. We recall that throughout the article, we
have rescaled all length by the radius a of the drop. In the
following, we use the subscript “ph” to denote non-scaled
quantities in physical units, which implies αph = a3α,

vHI
ph = avHI, and ΩHI

ph = ΩHI. The functions Vi and Ωi,

i ∈ {1, 2, 3}, are dimensionless quantities.

In a bulk Newtonian fluid of dynamic viscosity η =
10−3 Pa · s, E. coli bacteria swim with an average veloc-
ity of v0 ≈ 20μm/s. By approximating the flagella thrust
forces as f ≈ 0.5 pN [207, 208] and the inter-dipole dis-
tance as � ≈ 1μm [209], the resulting force dipolar coeffi-
cient is estimated as αph = f�/(8πη) ≈ 20μm3/s. Rescal-

ing the induced translational velocity by v0 and the rota-
tion rate by v0/a, it follows from eqs. (59) and (64) that

|vHI
ph|
v0

= Ξ
�	

V1 + V2 cos(2δ)

2

+ V 2
3 sin2(2δ)

� 1
2

, (67a)

|ΩHI
ph|

v0/a
= Ξ

���(Ω1 + Γ (Ω2 cos(2δ) + Ω3)) sin(2δ)
���, (67b)

where Ξ := αph/(a2v0) = 10−4.
In fig. 8, we present the variation of the magnitude of

the rescaled swimming velocities as stated by eqs. (67) ver-
sus the parameter Λ for various values of the surface to ex-
ternal bulk viscosity ratio w. Here, we consider a spherical
viscous drop of radius a = 0.1mm. To limit the parameter
space, we assume that the bacterium has an orientation
angle δ = π/4 and an aspect ratio σ = 2 (Γ = 3/5) [209].
Compared to a microswimmer in a clean drop, we observe
that the presence of a surfactant enhances the magnitude
of the induced translational velocity as well as the rota-
tion rate. For increasing w, the magnitude of the induced
translational velocity approaches the maximal value found
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Fig. 7. Variation of the component V3 of the induced swim-
ming velocity (a) and Ωi, i ∈ {1, 2, 3}, associated with the ro-
tational swimming velocity ((b)–(d)) inside a clean drop (ma-
genta dashed line) and surfactant-covered drops (solid lines)
for various values of scaled interfacial viscosity w. The pres-
ence of a surfactant strongly alters the observed dynamics,
particularly by enhancing reorientation. Here, we set R = 4/5.

for a swimmer inside a rigid cavity. Whether the induced
translational velocity impedes or supports the translation
of the microswimmer depends, in the end, on the orienta-
tion angle δ. In contrast to that, the effect of the surfactant
on the rotation rate is weakened with increasing w and is
the most severe in the case of vanishing shear viscosity
(i.e., w = 0), for which particularly the incompressibility
of the surfactant on the surface of the drop distinguishes
the situation from that of a clean drop. Since |vHI

ph| ∼ a−2

and |ΩHI
ph| ∼ a−3, the confinement effect on the induced

swimming velocities and rotation rates becomes more im-
portant upon decreasing the size of the drop.

5 Conclusions

Stokes flows in complex and confined geometries have sig-
nificant relevance for a variety of applications in industrial
and biological systems. In this context, drops of particu-
lar importance, because a number of microfluidic realiza-
tions exploits their potential for trapping active or pas-
sive particles and biological material, including proteins,
biopolymers, and microswimmers. Understanding the dy-
namics inside these micro-containers requires an adequate
description of the flow generated by the enclosed matter.

In this contribution, we have developed analytical
expressions for the lowest-order flow singularities, namely
the Stokeslet and force dipole, enclosed inside a liquid
drop surrounded by a fluid environment. We have ex-
plored the flow structure for arbitrary viscosity contrast
between the spherical drop and the suspending fluid.
First, we have provided our results both for the case
when the drop is clean, and thus tangential stresses
are continuous across the boundary. Second, we have
analyzed the effect of the presence of a homogeneously

Fig. 8. Variations of the magnitude of the induced transla-
tional (a) and rotational (b) velocities for an E. coli bacterium
of aspect ratio σ = 2. Here, we set R = 4/5 and δ = π/4. For
the other parameters, see main text.

distributed, incompressible surfactant on the surface
of the drop on the resulting flow fields. To model the
surfactant, we have employed the Boussinesq-Scriven
constitutive law, with the surfactant characterized by
an interfacial shear viscosity. Using spherical harmonic
expansion techniques, we have been able to determine the
flow fields in each case and present them for a varying
interior/exterior fluid viscosity ratio and also for different
values of the surfactant shear viscosity.

Having derived the image flows in each case, we have
further discussed the effective forces exerted on the sur-
face of the drop due to the presence of the enclosed point
singularities. On our way, this was necessary to render the
drop moving freely. Next, we have focused our discussion
on the case of drops with entrapped microswimmers and
found the resulting translational and rotational velocities
of force- and torque-free swimmers inside such spherical
confinements. To this end, we have used the Faxén rela-
tions and modeled the swimmer as a prolate spheroid. We
have found that the presence of the surfactant tends to
enhance the rotation rate of the encapsulated swimmer.

The results derived in this paper constitute a step to-
wards understanding the complex dynamics resulting from
hydrodynamic interactions in a confined and complex en-
vironment. The minimal model proposed here for the in-
terpretation of any experimentally observed motion of ac-
tive or passive particles can be directly employed to de-
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scribe the dynamics observed in flows both internal and
external to the drop, e.g. in colloidal suspension of micro-
drops and microfluidic diagnostic devices.
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Appendix A. Determination of the series
coefficients

In this appendix, we provide the resulting equations for
the boundary conditions stated by eqs. (4) and (5) for
clean drop and by eqs. (4) and (6) for a surfactant-covered
drop.

Appendix A.1. Axisymmetric Stokeslet

As already mentioned, the solution of the axisymmetric
flow field induced by a point force inside a surfactant-
covered drop is identical to that inside a rigid cavity for
which λ → 0 (or alternatively Λ → 0). Thus, in the ax-
isymmetric case, we will provide in the following the re-
sulting equations for the boundary conditions for a clean
viscous drop only.

By applying the boundary conditions of vanishing ra-
dial velocity at the surface of the drop, given by eq. (4a),
and using the fact that ∇ϕn and rϕn form a set of inde-
pendent vector harmonics, we find

n(n + 1)

2
A‖

n + nB‖
n =

n(n + 1)

2n − 1
Rn−1 − n(n + 1)

2n + 3
Rn+1,

n(n + 1)

2
a‖

n − (n + 1)b‖
n = 0. (A.1)

In addition, the continuity of the tangential compo-
nents of the velocity and stress vector fields, respectively
given by eqs. (4b) and (5), leads to two additional equa-
tions

−n + 3

2
A‖

n − B‖
n − n − 2

2
a‖

n + b‖
n =

n − 2

2n − 1
Rn−1 − n

2n + 3
Rn+1, (A.2a)

n(n+3)

2
A‖

n+(n − 2)B‖
n− (n + 1)(n − 2)

2λ
a‖

n+
n + 3

λ
b‖
n =

(n + 1)(n − 2)

2n − 1
Rn−1 − n(n + 3)

2n + 3
Rn+1. (A.2b)

Equations (A.1) and (A.2) form a linear system of equa-
tions, amenable to resolution using the standard substi-
tution technique. From here, we obtain the expressions

of the series coefficients {A
‖
n, B

‖
n} and {a

‖
n, b

‖
n} associated

with the solution for the flow field inside and outside the
drop, respectively, see eqs. (20) of the main text.

Appendix A.2. Transverse Stokeslet

Applying the boundary condition of vanishing radial ve-
locity field at the surface of the drop, as given by eq. (4a),
yields

n + 1

2
A⊥

n + B⊥
n − C⊥

n+1 =
n + 1

2n − 1
Rn−1 − n + 3

2n + 3
Rn+1,

−n

2
a⊥

n + b⊥
n − c⊥

n+1 = 0. (A.3)

In addition, the continuity of the tangential compo-
nents of the velocity vector field, as given by eq. (4b),
implies

n + 1

n + 2
C⊥

p+3 + c⊥
n+1 = −2Rn+1

n + 2
, (A.4a)

n + 3

2n
A⊥

n +
B⊥

n

n
− C⊥

n+1

n
+

C⊥
n+3

n + 2
− (n − 2)a⊥

n

2(n + 1)
+

b⊥
n

n + 1
=

�
− n − 2

n(2n − 1)
+

nR2

(n + 2)(2n + 3)

�
Rn−1. (A.4b)

On the one hand, for a clean drop, the continuity of the
tangential hydrodynamic stresses stated by eq. (5) yields

n(n + 1)

n + 2
C⊥

n+3 − n + 3

λ
c⊥
n+1 =

2(n + 3)

n + 2
Rn+1, (A.5a)

n + 3

2
A⊥

n +
n − 2

n
(B⊥

n − C⊥
n+1) +

nC⊥
n+3

n + 2

+
n − 2

2λ
a⊥

n − n + 3

λ(n + 1)
b⊥
n =

�
(n + 1)(n − 2)

n(2n − 1)
− n(n + 3)R2

(2n + 3)(n + 2)

�
Rn−1. (A.5b)

Next we solve eqs. (A.3) through (A.5) for the se-
ries coefficients {A⊥

n , B⊥
n , C⊥

n } and {a⊥
n , b⊥

n , c⊥
n } associated
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with the flow fields inside and outside the drop, respec-
tively. Explicit expressions of these coefficients are given
in eq. (27).

On the other hand, for a surfactant-covered drop,
eqs. (6) representing the incompressibility of the in-plane
surfactant flow and the discontinuity of the tangential hy-
drodynamic stresses, lead to

�n

2
− 1

�
a⊥

n − b⊥
n + c⊥

n+1 = 0, (A.6a)

n(n + 1)(wn + λ + 3w)Cn+3 − (n + 2)(n + 3)cn+1 =

2(n + 3)(λ − wn)Rn+1. (A.6b)

It is worth noting that eq. (A.6b) is obtained upon oper-
ating er · ∇S× on both sides of eq. (6b) to eliminate the
term ∇Sγ.

The expressions of the series coefficients follow forth-
with upon solving the linear system of equations composed
of eqs. (4a), (A.4), and (A.6) to yield the expressions given
by eqs. (29) of the main body of the paper.

Appendix B. Convergence and estimation of
the number of terms required for the
evaluation of infinite series functions

In this appendix, we discuss the convergence of the se-
ries functions for the induced translational and rotational
swimming velocities given by eqs. (60c) and (65) for a
clean drop, and by eqs. (63b) and (66) for a surfactant-
covered drop.

Let us denote by v3n the general term of the infinite
series for V3 given for a clean drop eq. (60c), i.e., V3 =�∞

n=1 v3n. To test the convergence of the series, we define
in the usual way the ratio L = limn→∞ |v3n+1/v3n| =
R2 < 1 in rescaled units of length. Therefore, the series
is absolutely convergent [210]. Then, for n ∼ ∞, we have
the leading-order asymptotic behavior

v3n = −3

4
(1−Λ)(2n+1+4Λ)R2n−1+O

�
R2n

n

�
. (B.1)

To compute the infinite series at a given desired pre-
cision, we define the truncation error as

E{V3} :=

�����
∞�

n=N+1

v3n

����� � 3(1 − Λ)N

2(1 − R2)
R1+2N . (B.2)

The number of terms required to achieve a certain preci-
sion ε can readily be obtained by solving numerically the
inequality E(V3) < ε.

For a surfactant-covered drop, it can be shown that

E{V3} � 3N

2(1 − R2)
R1+2N . (B.3)

We proceed analogously for the series functions for the
rotational velocity given for a clean drop by eq. (65). Here,

we obtain

E{Ω1} � 3N2

4(1 − R2)
R2N , (B.4a)

E{Ω2} � 3(1 + Λ)N2

16(1 − R2)
R2N , (B.4b)

E{Ω3} � 3(3 − Λ)N2

16(1 − R2)
R2N . (B.4c)

Similarly, for a surfactant-covered drop, we obtain

E{Ω1} � 4E{Ω2} � 4

3
E{Ω3} � 3N2

4(1 − R2)
R2N . (B.5)

For instance, for R = 4/5 about 30–40 terms are re-
quired for ε = 10−3 whereas about 40–50 terms are re-
quired for ε = 10−6. The number of required terms in-
creases quickly as R → 1.
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10. D. Walker, B.T. Käsdorf, H.H. Jeong, O. Lieleg, P. Fis-
cher, Sci. Adv. 1, e1500501 (2015).

11. B.J. Nelson, I.K. Kaliakatsos, J.J. Abbott, Annu. Rev.
Biomed. Eng. 12, 55 (2010).

12. F. Qiu, S. Fujita, R. Mhanna, L. Zhang, B.R. Simona,
B.J. Nelson, Adv. Funct. Mater. 25, 1666 (2015).

13. B.W. Park, J. Zhuang, O. Yasa, M. Sitti, ACS Nano 11,
8910 (2017).

14. B. Mostaghaci, O. Yasa, J. Zhuang, M. Sitti, Adv. Sci. 4,
1700058 (2017).

P8 Eur. Phys. J. E 43, 58 (2020) 139



Page 16 of 18 Eur. Phys. J. E (2020) 43: 58

15. D. Gourevich, O. Dogadkin, A. Volovick, L. Wang, J.
Gnaim, S. Cochran, A. Melzer, J. Control. Release 170,
316 (2013).

16. U. Kei Cheang, K. Lee, A.A. Julius, M.J. Kim, Appl.
Phys. Lett. 105, 083705 (2014).

17. J. Wang, M.S. Lin, Anal. Chem. 60, 1545 (1988).
18. E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601

(2009).
19. M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liv-

erpool, J. Prost, M. Rao, R.A. Simha, Rev. Mod. Phys.
85, 1143 (2013).

20. J. Elgeti, R.G. Winkler, G. Gompper, Rep. Prog. Phys.
78, 056601 (2015).

21. A.M. Menzel, Phys. Rep. 554, 1 (2015).
22. C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt,
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32. H.H. Wensink, H. Löwen, J. Phys.: Condens. Matter 24,

464130 (2012).
33. H.H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher,
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77. K. Schaar, A. Zöttl, H. Stark, Phys. Rev. Lett. 115,

038101 (2015).
78. S. Das, A. Garg, A.I. Campbell, J. Howse, A. Sen, D.

Velegol, R. Golestanian, S.J. Ebbens, Nat. Commun. 6,
8999 (2015).

79. J. Elgeti, G. Gompper, Eur. Phys. J. ST 225, 2333 (2016).
80. A. Mozaffari, N. Sharifi-Mood, J. Koplik, C. Maldarelli,

Phys. Fluids 28, 053107 (2016).
81. J. Simmchen, J. Katuri, W.E. Uspal, M.N. Popescu, M.

Tasinkevych, S. Sánchez, Nat. Commun. 7, 10598 (2016).
82. J.S. Lintuvuori, A.T. Brown, K. Stratford, D. Maren-

duzzo, Soft Matter 12, 7959 (2016).

140 Chapter 3 Scientific publications



Eur. Phys. J. E (2020) 43: 58 Page 17 of 18

83. E. Lushi, V. Kantsler, R.E. Goldstein, Phys. Rev. E 96,
023102 (2017).

84. K. Ishimoto, Phys. Rev. E 96, 043103 (2017).
85. S. Yazdi, A. Borhan, Phys. Fluids 29, 093104 (2017).
86. F. Rühle, J. Blaschke, J.-T. Kuhr, H. Stark, New J. Phys.

20, 025003 (2018).
87. A. Mozaffari, N. Sharifi-Mood, J. Koplik, C. Maldarelli,

Phys. Rev. Fluids 3, 014104 (2018).
88. Z. Shen, A. Würger, J.S. Lintuvuori, Eur. Phys. J. E 41,

39 (2018).
89. M. Mirzakhanloo, M.R. Alam, Phys. Rev. E 98, 012603

(2018).
90. A. Ahmadzadegan, S. Wang, P.P. Vlachos, A.M.

Ardekani, Phys. Rev. E 100, 062605 (2019).
91. E. Lauga, W.R. DiLuzio, G.M. Whitesides, H.A. Stone,

Biophys. J. 90, 400 (2006).
92. R. Di Leonardo, D. Dell’Arciprete, L. Angelani, V. Iebba,

Phys. Rev. Lett. 106, 038101 (2011).
93. J. Hu, A. Wysocki, R.G. Winkler, G. Gompper, Sci. Rep.

5, 9586 (2015).
94. A. Daddi-Moussa-Ider, M. Lisicki, C. Hoell, H. Löwen, J.
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zel, Phys. Fluids 32, 021902 (2020).
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We investigate theoretically, on the basis of the steady Stokes equations for a viscous
incompressible fuid, the fow induced by a stokeslet located on the centre axis of two
coaxially positioned rigid disks. The stokeslet is directed along the centre axis. No-slip
boundary conditions are assumed to hold at the surfaces of the disks. We perform the
calculation of the associated Green’s function in large parts analytically, reducing the
spatial evaluation of the fow feld to one-dimensional integrations amenable to numerical
treatment. To this end, we formulate the solution of the hydrodynamic problem for the
viscous fow surrounding the two disks as a mixed boundary-value problem, which we
then reduce to a system of four dual integral equations. We show the existence of viscous
toroidal eddies arising in the fuid domain bounded by the two disks, manifested in the
plane containing the centre axis through adjacent counter-rotating eddies. Additionally,
we probe the effect of the confning disks on the slow dynamics of a point-like particle by
evaluating the hydrodynamic mobility function associated with axial motion. Thereupon,
we assess the appropriateness of the commonly employed superposition approximation
and discuss its validity and applicability as a function of the geometrical properties of
the system. Additionally, we complement our semi-analytical approach by fnite-element
computer simulations, which reveals a good agreement. Our results may fnd applications

† Email address for correspondence: abdallah.daddi.moussa.ider@uni-duesseldorf.de
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in guiding the design of microparticle-based sensing devices and electrokinetic transport
in small-scale capacitors.

Key words: colloids, Navier–Stokes equations

1. Introduction

Manipulating colloidal particles suspended in viscous media is a challenging task and is
of paramount importance in various felds of engineering and natural sciences. Frequently,
taking into account the fuid-mediated hydrodynamic interactions between particles
moving through a liquid is essential to predict the behaviour of colloidal suspensions and
polymer solutions (Probstein 2005; Mewis & Wagner 2012). Recent advances in micro-
and nanofuidic technologies have permitted the fabrication and manufacturing of channels
with well-defned geometries and characteristic dimensions ranging from the micro- to the
nanoscale. A deep understanding of the nature of the mutual interactions between particles
and their confning interfaces is of crucial importance in guiding the design of devices and
tools for an optimal nanoscale control of biological macromolecules. Notable examples
include single-molecule manipulation (Turner et al. 1998; Campbell et al. 2004), DNA
mapping for genomic applications (Reisner et al. 2005; Riehn et al. 2005; Persson &
Tegenfeldt 2010), DNA separation and sorting (Doyle et al. 2002; Cross, Strychalski &
Craighead 2007; Xia, Yan & Hou 2012), and rheological probing of complex structures
using atomic force microscopy cantilevers (François et al. 2008, 2009; Dufour et al. 2012;
Darwiche et al. 2013).

At these small scales, fuid fows are governed by low-Reynolds-number hydrodynamics,
where viscous effects dominate over inertial effects (Kim & Karrila 2013). Solutions for
fuid fows due to point forces, or stokeslets, acting close to confning boundaries have
been tabulated for various types of geometries, as summarised in the classic textbook by
Happel & Brenner (1983). The study of the fuid-mediated hydrodynamic interactions in
a channel confnement has received signifcant attention from many researchers over the
past couple of years. In the following, we provide a survey of the current state of the art
and summarise the relevant literature on this subject.

The frst attempt to address the motion of a spherical particle confned between two
infnitely extended no-slip walls dates back to Faxén (1921), who calculated in his
PhD dissertation the hydrodynamic mobility parallel to the walls. These calculations
were performed when the particle is located in the quarter-plane or mid-plane between
the two confning walls (Happel & Brenner 1983). Later, Oseen (1928) suggested that
the hydrodynamic mobility between two walls could approximately be obtained by
superposition of the contributions resulting from each single wall. A modifed coherent
superposition approximation was further suggested by Benesch, Yiacoumi & Tsouris
(2003), providing the diffusion coeffcients of a Brownian sphere in confning channels.
These predictions were found to match more accurately the existing experimental data
reported in the literature.

Exact solutions for a point-force singularity acting at an arbitrary position between
two walls were frst obtained using the image technique in a seminal article by Liron &
Mochon (1976). It was noted that the effect of the second wall becomes important when
the distance separating the particle from the closest wall is larger than approximately
one-tenth of the channel width (Brenner 1999). Using this solution, Liron (1978)
further investigated the fuid transport problem of cilia between two parallel plates.
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A joint analytical–numerical approach (Ganatos, Pfeffer & Weinbaum 1980a; Ganatos,
Weinbaum & Pfeffer 1980b) as well as a multipole expansion technique (Swan & Brady
2010) were presented to address the motion of an extended particle confned between two
hard walls. Bhattacharya & Bławzdziewicz (2002) constructed the image system for the
fow feld produced by a force multipole in a space bounded by two parallel walls using the
image representation for Stokes fow. In addition, compressibility effects were examined by
Felderhof (2006, 2010a,b). In this context, Hackborn (1990) investigated the asymmetric
Stokes fow between two parallel planes due to a rotlet singularity, the axis of which
is parallel to the boundary planes. Further, Ozarkar & Sangani (2008) prescribed an
analytical approach using the image-system technique for determining the Stokes fow
around particles in a thin flm bounded by a wall and a gas–liquid interface. More recently,
Daddi-Moussa-Ider, Guckenberger & Gekle (2016) provided the frequency-dependent
hydrodynamic mobility functions between two planar elastic interfaces endowed with
resistance towards shear and bending deformation modes.

Experimentally, Dufresne, Altman & Grier (2001) reported direct imaging
measurements of a colloidal particle diffusing between two parallel surfaces, fnding a
good agreement with the superposition approximation suggested by Oseen. In addition,
video microscopy (Faucheux & Libchaber 1994) combined with optical tweezers (Lin, Yu
& Rice 2000; Tränkle, Ruh & Rohrbach 2016) as well as dynamic light scattering (Lobry
& Ostrowsky 1996) have also allowed for good agreement with available theoretical
predictions. Further experimental investigations have focused on DNA conformation and
diffusion in slit-like confnements (Balducci et al. 2006; Stein et al. 2006; Strychalski,
Levy & Craighead 2008; Tang et al. 2010; Graham 2011; Dai et al. 2013; Jones, van der
Maarel & Doyle 2013).

Concerning collective properties, the behaviour of suspensions in a channel bounded by
two planar walls has received a lot of attention. For instance, Bhattacharya, Bławzdziewicz
& Wajnryb (2005) examined the fuid-mediated hydrodynamic interactions in a suspension
of spherical particles confned between two parallel planar walls under creeping-fow
conditions. In addition, Bhattacharya (2008) considered the collective motion of a
two-dimensional periodic array of colloidal particles in a slit pore. Using a novel
accelerated Stokesian-dynamics algorithm, Baron, Bławzdziewicz & Wajnryb (2008)
performed fully resolved computer simulations to investigate the collective motion of
linear trains and regular square arrays of particles suspended in a viscous fuid bounded
by two parallel plates. Further, Bławzdziewicz & Wajnryb (2008) analysed the far-feld
response to external forcing of a suspension of particles in a channel. Swan & Brady (2011)
presented a numerical method for computing the hydrodynamic forces exerted on particles
in a suspension confned between two parallel walls. Furthermore, Saintillan, Shaqfeh
& Darve (2006) employed Brownian dynamics simulations to investigate the effect of
chain fexibility on the cross-streamline migration of short polymers in a pressure-driven
fow between two fat plates. The latter numerical study confrmed the existence of a
shear-induced migration towards the channel centreline away from the confning solid
boundaries.

The hydrodynamic problem of particles freely moving between plane-parallel walls in
the presence of an incident fow has been further considered in still more details. Under an
external fow, Uspal, Eral & Doyle (2013) showed how shape and geometric confnement
of rigid microparticles can conveniently be tailored for self-steering. Jones (2004) made
use of a two-dimensional Fourier-transform technique to obtain an analytic expression of
the Green tensor for the Stokes equations with an incident Poiseuille fow. In addition,
he provided the elements of the resistance and mobility tensors in this slit-like geometry.
Bhattacharya, Bławzdziewicz & Wajnryb (2006) introduced a novel numerical algorithm
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based on transformations between Cartesian and spherical representations of Stokes fow
to account for an incident Poiseuille fow. Staben, Zinchenko & Davis (2003) presented
a novel boundary-integral algorithm for the motion of a particle between two parallel
planar walls in Poiseuille fow. The boundary-integral method formulated in their work
allowed the effects of the confning walls to be directly incorporated into the stress tensor,
without requiring discretisation of the two walls. In this context, Griggs, Zinchenko &
Davis (2007) and Janssen & Anderson (2007, 2008) employed boundary-integral methods
to examine the motion of a deformable drop between two parallel walls in Poiseuille fow,
where lateral migration towards the channel centre is observed.

Geometric confnement significantly alters the behaviour of swimming micro-organisms
and can affect the motility of self-propelling active particles in a pronounced way (Lauga
& Powers 2009; Menzel 2013, 2015; Bechinger et al. 2016; Lauga 2016; Zöttl & Stark 2016;
Ostapenko et al. 2018; Gompper et al. 2020; Shaebani et al. 2020). Surface-related effects
on microswimmers can lead to crucial implications for bioflm formation and microbial
activity. In a channel bounded by two walls, Bilbao et al. (2013) studied the locomotion of
a model nematode, fnding that the swimming organism tends to swim faster and navigate
more effectively under confnement. Furthermore, Wu et al. (2015, 2016) investigated the
effect of confnement on the swimming behaviour of a model eukaryotic cell undergoing
amoeboid motion. There, the swimmer has been modelled as an inextensible membrane
deploying local active force. It has been found that confnement can strongly alter the
swimming gait. In addition, Brotto et al. (2013) described theoretically the dynamics of
self-propelling active particles in rigidly confned thin liquid flms. They demonstrated
that, due to hydrodynamic friction with the nearby rigid walls, confned microswimmers
not only reorient themselves in response to fow gradients but also can show reorientation
in uniform fows. In this context, Mathijssen et al. (2016) investigated theoretically the
hydrodynamics of self-propelling microswimmers in a thin flm. Daddi-Moussa-Ider et al.
(2018) examined the behaviour of a three-sphere microswimmer in a channel bounded by
two walls, where different swimming states have been observed. More recently, amoeboid
swimming in a compliant channel was numerically investigated (Dalal, Farutin & Misbah
2020).

In all of the above-mentioned studies, the confning channel was assumed to be of
infnite extent or periodically replicated along the lateral directions. Instead, here we
consider the hydrodynamic problem for a point force acting near two coaxially positioned
disks of fnite radius. In many biologically and industrially relevant applications, fnite-size
effects become crucial for an accurate and reliable description of transport processes
ranging from the microscale to the nanoscale. Prime examples include the ionic transport
and electrokinetics in small-scale capacitors (Marini Bettolo Marconi & Melchionna
2012; Thakore & Hickman 2015; Babel, Eikerling & Löwen 2018; Asta et al. 2019),
electrochemomechanical energy conversion in microfuidic channels (Daiguji et al. 2004),
and the rheology of droplets, capsules or cells in constricted/structured microchannels
(Park & Dimitrakopoulos 2013; Le Goff et al. 2017; Trégouët et al. 2018, 2019), where
boundary effects may play a pivotal role.

In this paper, we take a step towards addressing this context by presenting an analytical
theory for the viscous fow resulting from a stokeslet singularity acting along the centre
axis of two coaxially positioned disks of no-slip surfaces. We formulate the hydrodynamic
problem as a mixed boundary-value problem, which we then transform into a system of
dual integral equations. Along this path, we show that the solution of the fow feld in
the fuid region bounded by the two disks exhibits viscous toroidal eddies. In addition
to that, we derive expressions for the hydrodynamics mobility functions and discuss the
applicability and limitations of the superposition approximation. Moreover, we support
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H
h

F

R

êx

êy

êz

η

FIGURE 1. Schematic of the system. The surrounding viscous Newtonian fuid is set into motion
through the action of a point-force singularity located on the symmetry axis of two coaxially
positioned disks.

our semi-analytical results by numerical simulations using a fnite-element method (FEM),
which leads to a good agreement.

The remainder of this paper is organised as follows. In § 2, we formulate the problem
mathematically and derive the corresponding system of dual integral equations, from
which the solution for the hydrodynamic fow felds can be obtained. We then make use of
this solution in § 3 to yield an integral expression of the mobility function of a point-like
particle slowly translating along the axis of the disks. Concluding remarks and outlooks are
contained in § 4. In appendix A, we detail the analytical derivation of the kernel functions
arising in the resulting integral equations.

2. Mathematical formulation

We examine the axisymmetric fow induced by a stokeslet singularity acting on the
axis of symmetry of two coaxially positioned circular disks of equal radius R. Moreover,
we suppose that the disks are located within the planes z = −H/2 and z = H/2, with H
denoting the separation distance between the disks. Their centres are positioned on the z
axis. In addition, we assume that the surrounding viscous fuid is Newtonian, of constant
dynamic viscosity η, and that the fow is incompressible.

2.1. Governing equations
In low-Reynolds-number hydrodynamics, the fuid dynamics is governed by the Stokes
equations (Happel & Brenner 1983)

∇ · v = 0, (2.1a)

∇ · σ + Fδ(r − r0) êz = 0, (2.1b)

where v and σ denote, respectively, the fuid velocity feld and the hydrodynamic stress
tensor. For a Newtonian fuid, the latter is given by σ = −pI + 2ηE , where p is the
pressure feld and E = (∇v + (∇v)T)/2 is the rate-of-strain tensor, with the superscript
T denoting a transpose. In addition, δ stands for the Dirac delta function, and F is the
amplitude of a stationary point force acting on the fuid at position r0 = hêz, where
−H/2 < h < H/2, with êz denoting the unit vector along the z direction. See fgure 1
for an illustration of the system set-up. In the remainder of this paper, we scale all the
lengths involved in the problem by the separation H of the two disks.
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We designate by the subscript 1 the variables and parameters in the fuid region
underneath the plane containing the lower disk, for which z ≤ −1/2, by the subscript 2
the fuid domain bounded by the planes z = −1/2 and z = 1/2, and by the subscript 3 the
region above the plane containing the upper disk, for which z ≥ 1/2. Since the system is
axisymmetric, all feld variables are thus functions of the radial and axial coordinates only.
Accordingly, the Stokes equations (2.1) can be projected onto the cylindrical coordinate
system as

vr

r
+ ∂vr

∂r
+ ∂vz

∂z
= 0, (2.2a)

−∂p
∂r

+ η
(
�vr − vr

r2

)
= 0, (2.2b)

−∂p
∂z

+ η�vz + Fδ(r − r0) = 0, (2.2c)

wherein vr and vz denote the radial and axial fuid velocities, respectively, and � is the
Laplace operator given by

� := ∂2

∂r2
+ 1

r
∂

∂r
+ ∂2

∂z2
. (2.3)

We note that the three-dimensional Dirac delta function is expressed in axisymmetric
cylindrical coordinates as δ(r − r0) = (πr)−1δ(r)δ(z − h) (Bracewell 1999).

In an unbounded viscous fuid, i.e. in the absence of the disks, the solution of equations
(2.2) is given by the Oseen tensor, commonly denominated as the free-space Green
function (Kim & Karrila 2013)

vS
r = F

8πη

r (z − h)
ρ3

, vS
z = F

8πη

(
2
ρ

− r2

ρ3

)
, (2.4a,b)

with the distance from the position of the point force ρ = (r2 + (z − h)2)1/2. The
corresponding pressure feld reads

pS = F
4π

z − h
ρ3

. (2.5)

In the presence of the confning disks, the solution of the fow problem can be expressed
as a superposition of the solution in an unbounded fuid, given above by (2.4a,b) and (2.5),
and a complementary solution, the sum of the two solutions being required to satisfy the
underlying regularity and boundary conditions. Then

v = vS + v∗, p = pS + p∗, (2.6a,b)

wherein v∗ and p∗ stand for the complementary solutions (also referred to as the image
solution (Blake 1971)) for the velocity and pressure felds, respectively.

For an axisymmetric Stokes fow, the general solution can be expressed in terms of two
harmonic functions φ and ψ as (Imai 1973; Kim 1983)

v∗
r = z

∂φ

∂r
+ ∂ψ

∂r
, v∗

z = z
∂φ

∂z
− φ + ∂ψ

∂z
, p∗ = 2η

∂φ

∂z
, (2.7a–c)

with
�φ = 0, �ψ = 0. (2.8a,b)
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In each of the three fuid domains introduced above, the solution of Laplace’s equations
(2.8a,b) can be expressed in terms of Fourier–Bessel integrals as

φi = F
8πη

∫ ∞

0

(
A+

i (λ)e
λz + A−

i (λ)e
−λz) J0(λr) dλ, (2.9a)

ψi = F
8πη

∫ ∞

0

(
B+

i (λ)e
λz + B−

i (λ)e
−λz) J0(λr) dλ, (2.9b)

for i ∈ {1, 2, 3}, with λ denoting the wavenumber and Jk the kth-order Bessel
function of the frst kind (Abramowitz & Stegun 1972). In addition, A±

i and B±
i are

wavenumber-dependent unknown coeffcients, to be determined from the regularity and
boundary conditions. Then, the components of the image velocity and pressure felds are
given by

v∗
r i = − F

8πη

∫ ∞

0
λ
(
(zA+

i + B+
i )e

λz + (zA−
i + B−

i )e
−λz) J1(λr) dλ, (2.10a)

v∗
z i = − F

8πη

∫ ∞

0

(
E+

i eλz + E−
i e−λz) J0(λr) dλ, (2.10b)

p∗
i = F

4π

∫ ∞

0
λ
(
A+

i eλz − A−
i e−λz) J0(λr) dλ, (2.10c)

for i ∈ {1, 2, 3}, where we have defned the abbreviations E±
i = (1 ∓ λz)A±

i ∓ λB±
i .

2.2. Boundary conditions and dual integral equations
As regularity conditions, for the image feld we require the velocity and pressure far away
from the singularity location to vanish as ρ → ∞. This implies that A−

1 = B−
1 = A+

3 =
B+

3 = 0. In what follows, to simplify notation, we drop the plus sign in the fuid domain
underneath the lower disk to denote A1 = A+

1 and B1 = B+
1 , and we drop the minus sign in

the fuid domain above the upper disk to denote A3 = A−
3 and B3 = B−

3 .
The boundary conditions consist of requiring (a) the natural continuity of the total

fuid velocity feld at the interfaces between the fuid domains, (b) vanishing total
velocities at the surfaces of the disks (the no-slip and no-permeability boundary condition
Lauga, Brenner & Stone 2007), and (c) continuity of the total viscous-stress vectors
at the interfaces between the fuid domains outside the regions occupied by the disks.
Mathematically, these conditions can be expressed as

(v1 − v2)|z=−1/2 = (v2 − v3)|z=1/2 = 0 (r > 0), (2.11a)

v1|z=−1/2 = v2|z=±1/2 = v3|z=1/2 = 0 (r < R), (2.11b)

(σ 2 − σ 1) · êz|z=−1/2 = (σ 3 − σ 2) · êz|z=1/2 = 0 (r > R), (2.11c)

where the components of the stress vector are expressed in cylindrical coordinates for an
axisymmetric fow feld by

σ i · êz = η

(
∂vri

∂z
+ ∂vzi

∂r

)
êr +

(
−pi + 2η

∂vzi

∂z

)
êz, i ∈ {1, 2, 3}. (2.12)

Applying the continuity of the radial components of the fuid velocity at the
surfaces occupied by the two disks yields the expressions of the wavenumber-dependent
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904 A34-8 A. Daddi-Moussa-Ider and others

coeffcients associated with the intermediate fuid domain bounded by the two disks as
functions of those in the lower and upper fuid domains. Defning X 2 = (A−

2 ,B−
2 ,A+

2 ,B+
2 )

T

and X 13 = (A1,B1,A3,B3)
T, we obtain

X 2 = Q · X 13, (2.13)

where the matrix Q is given by

Q = (
s2 − λ2)−1

⎛
⎜⎜⎜⎜⎜⎝

1
2 (s + λc) −λs − 1

2 φ
+ −λ2

1
4λs

1
2 (s − λc) − 1

4λ
2 − 1

2 φ
−

− 1
2 φ

+ λ2 1
2 (s + λc) λs

1
4λ

2 − 1
2 φ

− − 1
4λs

1
2 (s − λc)

⎞
⎟⎟⎟⎟⎟⎠ . (2.14)

Here, we have defned for convenience the abbreviations s = sinh(λ) and c = cosh(λ). In
addition, φ± = λ(λ± 1)+ se−λ.

On the one hand, by addressing the no-slip velocity boundary conditions at the surfaces
of the disks prescribed by (2.11b) and projecting the resulting equations onto the radial
and tangential directions, four integral equations on the inner domain are obtained:

∫ ∞

0
λ
(

1
2 A1 − B1

)
e−(λ/2)J1(λr) dλ = ψ+

1 (r) (r < R), (2.15a)

∫ ∞

0
λ
(

1
2 A3 + B3

)
e−(λ/2)J1(λr) dλ = ψ−

1 (r) (r < R), (2.15b)

∫ ∞

0

(
A1 + λ ( 1

2 A1 − B1
))

e−(λ/2)J0(λr) dλ = ψ+
2 (r) (r < R), (2.15c)

∫ ∞

0

(
A3 + λ ( 1

2 A3 + B3
))

e−(λ/2)J0(λr) dλ = ψ−
2 (r) (r < R). (2.15d)

Here the terms appearing on the right-hand sides in these equations are radial functions
resulting from the evaluation of the terms associated with the fow velocity feld induced by
the free-space stokeslet at the surfaces of the coaxially positioned disks. They are explicitly
given by

ψ±
1 (r) = ±r

(
h ± 1

2

)
(

r2 + (
h ± 1

2

)2
)3/2 , ψ±

2 (r) = r2 + 2
(
h ± 1

2

)2

(
r2 + (

h ± 1
2

)2
)3/2 . (2.16a,b)

On the other hand, four integral equations on the outer domain are obtained by
addressing the continuity of the hydrodynamic stress vector at z = ±1/2 prescribed by
(2.11c). They can be cast in the form∫ ∞

0
gi(λ)J1(λr) dλ = 0 (r > R), i ∈ {1, 3}, (2.17a)

∫ ∞

0
gi(λ)J0(λr) dλ = 0 (r > R), i ∈ {2, 4}, (2.17b)
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where we have defned the wavenumber-dependent quantities

g1(λ) = λ2 (( 1
2 A−

2 − B−
2

)
eλ/2 + (

1
2

(
A1 − A+

2

)+ B+
2 − B1

)
e−(λ/2)) , (2.18a)

g3(λ) = λ2 (( 1
2 A+

2 + B+
2

)
eλ/2 + (

1
2

(
A3 − A−

2

)+ B3 − B−
2

)
e−(λ/2)) , (2.18b)

g2(λ) = C−eλ/2 + λ ((1 + 1
2λ
) (

A1 − A+
2

)+ λ (B+
2 − B1

))
e−(λ/2), (2.18c)

g4(λ) = C+eλ/2 + λ ((1 + 1
2λ
) (

A3 − A−
2

)+ λ (B3 − B−
2

))
e−(λ/2), (2.18d)

wherein C± = λ((1 − λ/2)A±
2 ∓ λB±

2 ).
Inserting (2.13) and (2.14), equations (2.15)–(2.18) form a system of four dual integral

equations (Tricomi 1985) for the unknown wavenumber-dependent coeffcients regrouped
in X 13. A solution of such types of dual integral equations with Bessel kernels can
be obtained by the methods prescribed by Sneddon (1960, 1966) and Copson (1961).
A similar procedure has recently been employed by some of us to address the axisymmetric
fow induced by a stokeslet near a circular elastic membrane (Daddi-Moussa-Ider,
Kaoui & Löwen 2019), and the asymmetric fow feld near a fnite-sized rigid disk
(Daddi-Moussa-Ider et al. 2020). Once X 13 is determined from solving the dual integral
equations derived above, the remaining wavenumber-dependent coeffcients expressed by
X 2 follow forthwith from (2.13) and (2.14).

The core idea of our solution approach consists of expressing the solution of (2.17) as
defnite integrals of the forms

gi(λ) = 2λ1/2
∫ R

0
fi(t)J3/2(λt) dt, i ∈ {1, 3}, (2.19a)

and

gi(λ) = 2λ1/2
∫ R

0
fi(t)J1/2(λt) dt, i ∈ {2, 4}, (2.19b)

where fi : [0,R] → R, for i ∈ {1, 2, 3, 4}, are unknown functions to be determined.
Accordingly, the integral equations in the outer domain boundaries are automatically
satisfed upon making use of the following identity, which holds for any positive integer p
(Abramowitz & Stegun 1972),∫ ∞

0
λ1/2Jp(λr)Jp+1/2(λt) dλ = 0 (0 < t < r). (2.20)

By solving (2.18) for the coeffcients A1, B1, A3 and B3 upon making use of (2.13) and
(2.14), equation (2.15) can be rewritten as∫ ∞

0
(2λ)−1 (g1(λ)+ (λ− 1) e−λg3(λ)+ λe−λg4(λ)

)
J1(λr) dλ = ψ+

1 (r), (2.21a)

∫ ∞

0
(2λ)−1 ((λ− 1) e−λg1(λ)+ λe−λg2(λ)+ g3(λ)

)
J1(λr) dλ = ψ−

1 (r), (2.21b)

∫ ∞

0
(2λ)−1 (g2(λ)+ λe−λg3(λ)+ (λ+ 1) e−λg4(λ)

)
J0(λr) dλ = ψ+

2 (r), (2.21c)

∫ ∞

0
(2λ)−1 (λe−λg1(λ)+ (λ+ 1) e−λg2(λ)+ g4(λ)

)
J0(λr) dλ = ψ−

2 (r). (2.21d)
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904 A34-10 A. Daddi-Moussa-Ider and others

Next, by substituting (2.19) into (2.21) and interchanging the order of the integrations
with respect to the variables t and λ, the equations associated with the inner problem can
be expressed in the following fnal forms:

∫ R

0
(L5(r, t)f1(t)+ L4(r, t)f3(t)+ L1(r, t)f4(t)) dt = ψ+

1 (r), (2.22a)

∫ R

0
(L4(r, t)f1(t)+ L1(r, t)f2(t)+ L5(r, t)f3(t)) dt = ψ−

1 (r), (2.22b)

∫ R

0
(L6(r, t)f2(t)+ L3(r, t)f3(t)+ L2(r, t)f4(t)) dt = ψ+

2 (r), (2.22c)

∫ R

0
(L3(r, t)f1(t)+ L2(r, t)f2(t)+ L6(r, t)f4(t)) dt = ψ−

2 (r), (2.22d)

where the kernels Li : [0,R]2 → R, for i ∈ {1, 2, 3, 4}, are complex mathematical
functions that are defned and provided in appendix A.

Equations (2.22) form a system of four Fredholm integral equations of the frst
kind (Smithies 1958; Polyanin & Manzhirov 1998) for the unknown functions fi(t),
i ∈ {1, 2, 3, 4}. Owing to the complicated nature of the kernel functions, we make recourse
to numerical solutions.

2.3. Numerical solution of the integral equations and comparison with FEM simulations
We now summarise the main steps involved in the numerical computations of the fow
feld. First, the integration over the intervals [0,R] in (2.22) are partitioned into N
subintervals and each integral is approximated by the standard middle Riemann sum
(Davis & Rabinowitz 2007). The four resulting equations are evaluated at N values of
tj that are uniformly distributed over the interval [0,R] such that tj = (j − 1/2)(R/N),
with j = 1, . . . ,N. Secondly, the discrete values of fi(tj), with i ∈ {1, 2, 3, 4}, are obtained
by solving the resulting linear system of 4N equations. Thirdly, the four integrals in
(2.19) are converted into well-behaved defnite integrals over [0,π/2] by using the
change of variable λ = tan u and thus dλ = du/cos2 u. Thereupon, the resulting integrals
are also approximated by the middle Riemann sum, and the wavenumber-dependent
functions gi(λk = tan uk), k = 1, . . . ,M, are evaluated at discrete values of uk such that
uk = (k − 1/2)(π/2)/M. Fourthly, the values of X 2 at each discrete point λk are readily
obtained by inverting the linear system of four equations given by (2.18). In addition, it
follows from (2.13) that X 13 = Q−1 · X 2. Finally, the image fow felds are obtained from
(2.10) by approximating, again, the integrals by the middle Riemann sum.

Even though the approach employed here may seem cumbersome at frst glance, it
has the advantage of being amenable to straightforward implementation. Unlike many
direct numerical simulation techniques, which generally require discretisation of the entire
three-dimensional fuid domain, or of at least an effectively two-dimensional domain when
the axial symmetry is exploited, the integral formulation presented in this work reduces
the solution of the fow problem to a set of one-dimensional integrals. Besides, the present
semi-analytical approach might serve as a motivation for various theoretical investigations
of related problems that could possibly pave the way towards real engineering applications.

In fgure 2, we present a log–log plot of the variations of the discretisation error (Roy
2010) associated with the numerical computation of the amplitude of the image velocity
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FIGURE 2. Log–log plot of the relative discretisation error occurring in the computation of the
amplitude of the image velocity feld versus the number of discretisation points, evaluated at
various positions within the fuid domain. Here, we set R = H, h/H = 0.3 and M = 10N. The
errors are estimated relative to the corresponding values computed using a fner grid spacing
with N = 15 000 and M = 150 000.

feld versus the number of discrete points used in the numerical integration of (2.22)
while keeping M = 10N in the discretisation of (2.19) and (2.10). The error is estimated
relative to the numerical solution on a fner gird size for N = 15 000 and M = 150 000 at
three different points of the fuid domain. We observe that the error decays approximately
algebraically as N−3/2 over the whole range of considered values of N and lies well below
10−3 % for N ≥ 5000. We have checked that a similar behaviour is also found when
varying the position of the stokeslet or the evaluation point within the fuid domain.

To validate our semi-analytical solution, we perform direct numerical simulations for
the same geometry as well. We use a piecewise-quadratic fnite-element discretisation of
the Stokes problem stated by (2.2) in cylindrical coordinates. Since such an equal-order
discretisation does not satisfy the inf-sup condition, we add stabilisation terms of local
projection type (Becker & Braack 2001). The numerical domain is artifcially limited to
(0,R)× (−Z,Z) with R,Z ∈ R being suffciently large numbers so as to avoid spurious
feedback to the region of interest close to the plates. In addition, the Dirac delta function
forcing the fow is represented exactly in the variational formulation by means of∫ R

0

∫ Z

−Z
rδ(r − r0)φz(r) dr dz = φz(r0), (2.23)

where φz is the test function corresponding to the vertical direction. Numerically, the
singularity calls for very fne mesh resolution close to r0 and in proximity to the coaxially
positioned plates, which we accomplish by local mesh adaptivity (Braack & Richter 2006).
Further details on the discretisation method and the solution of the resulting linear systems
of equations can be found in Richter (2017).

In fgure 3, we represent the graphs of the resulting streamlines as well as contour plots
of the total velocity feld resulting from a stokeslet singularity axisymmetrically acting
at various positions along the axis of two coaxially disposed disks of unit radius. Here,
we set the numbers of discrete points to N = 15 000 and M = 150 000 in our numerical
evaluation of the analytical description. The magnitude of the scaled velocity feld is
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904 A34-12 A. Daddi-Moussa-Ider and others

shown on a logarithmic scale in order to better appreciate the difference in magnitude
between the different fuid regions. In each panel, we depict on the left-hand side the
results obtained via our semi-analytical approach derived in the present work. On the
right-hand side in each panel, we include the corresponding fow felds determined
via the FEM simulations. Good agreement between the two solution procedures is
obtained over the whole fuid domain, demonstrating the robustness and applicability
of our semi-analytical approach. Most noticeably, we observe the existence of adjacent
counter-rotating eddies, the axis of rotation of which is directed along the azimuthal
direction. Accordingly, the resulting fow feld in the inner region consists of toroidal
eddies on account of the axisymmetric nature of the fow (Moffatt 1964). In contrast
to that, descending streamlines are obtained in the outer region. For infnitely large
disks, analogous toroidal structures have previously been identifed and proven to decay
exponentially with distance from the singularity position (Liron & Blake 1981). Moreover,
we remark that the overall magnitude of the fow feld becomes less important as the point
force gets closer to a confning plate. This behaviour is accompanied by a notable increase
of the asymmetry of the counter-rotating eddies.

Having derived the solution of the fow problem due to an axisymmetric stokeslet acting
near two fnite-sized coaxially positioned disks, we next employ our formalism to recover
the solution earlier obtained by Liron & Mochon (1976) for a stokeslet acting between two
parallel planar walls of infnite extent along the transverse direction.

2.4. Solution for R → ∞
For infnitely large disks, the integral equations (2.21) in the inner domain become defned
for the whole axis of positive real numbers. Accordingly, the solution for the unknown
functions gi(λ), for i ∈ {1, 2, 3, 4}, can be obtained using inverse Hankel transforms. By
making use of the orthogonality property of Bessel functions (Abramowitz & Stegun 1972)∫ ∞

0
rJν(λr)Jν(λ′r) dr = λ−1δ(λ− λ′), (2.24)

we readily obtain

H · g = ψ̂, (2.25)

where we have defned the unknown vector g = (g1, g2, g3, g4)
T, the wavenumber-dependent

matrix

H =

⎛
⎜⎜⎜⎜⎝

eλ 0 λ− 1 λ

λ− 1 λ eλ 0

0 eλ λ λ+ 1

λ λ+ 1 0 eλ

⎞
⎟⎟⎟⎟⎠ , (2.26)

and where ψ̂ = (ψ̂+
1 , ψ̂

−
1 , ψ̂

+
2 , ψ̂

−
2 )

T gathers the inverse Hankel transforms of the
previously introduced auxiliary functions defned by (2.16a,b). Specifcally, we have

ψ̂±
1 (λ) =

∫ ∞

0
rψ±

1 (r)J1(λr) dr = ( 1
2 ± h) exp(−λ( 1

2 ± h)), (2.27a)

ψ̂±
2 (λ) =

∫ ∞

0
rψ±

2 (r)J0(λr) dr =
(

1
λ

+ 1
2

± h
)

exp
(

−λ
(

1
2

± h
))

, (2.27b)
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FIGURE 3. Streamlines and contour plots of the fow feld induced by a point-force singularity
acting inside two coaxially positioned disks of no-slip surfaces and of rescaled unit radius for
various values of the vertical distance h/H. In each panel, the fow velocity feld obtained
using the present semi-analytical approach is displayed in the left domain corresponding to
x ≤ 0, while the solution obtained using FEM simulations is presented in the right domain
corresponding to x ≥ 0 for the same set of parameters. Here, we have defned the scaled fow
velocity as V = v/(F/(8πη)). (a) h/H = 0, (b) h/H = 0.1, (c) h/H = 0.2, (d) h/H = 0.25,
(e) h/H = 0.3, ( f ) h/H = 0.4.

for |h| < 1/2. Solving the linear system of equations given by (2.25) and (2.26) for the
unknown vector function g upon making use of (2.13), (2.14) and (2.18) leads to

X 13 = (e−λh,−he−λh, eλh,−heλh)T. (2.28)
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Accordingly, the total velocity and pressure felds in the lower and upper regions vanish
in the limit R → ∞. The corresponding solution in the intermediate fuid domain can
readily be obtained by invoking (2.13) and (2.14).

3. Hydrodynamic mobility

Our calculation of the fow feld presented in the previous section can be employed
in order to probe the effect of the two hard disks on the hydrodynamic drag acting on
an enclosed point-like particle axially moving along the coaxially positioned axis. This
effect is commonly quantifed by the hydrodynamic mobility function, which relates the
velocity of a particle to the net force exerted on its surface (Leal 1980; Swan & Brady
2007; Daddi-Moussa-Ider & Gekle 2016, 2017, 2018; Driscoll & Delmotte 2019). In a bulk
Newtonian fuid of constant dynamic viscosity η, the mobility function μ of a spherical
particle of radius a is given by the familiar Stokes law (Stokes 1851), which states that
in this case the mobility is μ0 = 1/(6πηa). In the presence of the confning disks, the
leading-order correction to the particle mobility for an axisymmetric motion along the
axis is obtained by evaluating the image fow feld at the particle position as

�μ = F−1 lim
(r,z)→(0,h)

v∗
z 2(r, z). (3.1)

Evaluating the limit in the latter equation and scaling by the bulk mobility, the scaled
correction to the particle mobility is obtained as

�μ

μ0
= −ka, (3.2)

where

k = 3
4

∫ ∞

0

((
(1 − λh)A+

2 − λB+
2

)
eλh + (

(1 + λh)A−
2 + λB−

2

)
e−λh) dλ (3.3)

is a positive dimensionless number commonly denominated as the correction factor of the
Stokes steady mobility (Happel & Brenner 1983). Unfortunately, an analytical evaluation
of this infnite integral is not auspicious. Therefore, we make recourse to a numerical
evaluation.

For infnitely large disks, i.e. as R → ∞, the correction factor k in (3.2) can conveniently
be cast into the simple integral form

k∞ = 3
8

∫ ∞

0
W(λ)

(
sinh2 λ− λ2)−1

dλ, (3.4)

where we have defned the wavenumber-dependent function

W(λ) = Γ+ + Γ− + γ+ + γ− + e−2λ − β+β−λ3 − 2λ2 − 2λ− 1, (3.5)

with

β± = 1 ± 2h, Γ± = (1 + 1
2 λ

2β2
±) sinh(λβ∓), γ± = λβ± cosh(λβ∓). (3.6a–c)

This result is found to be in full agreement with the expression obtained by Swan & Brady
(2010), who used a two-dimensional Fourier transform technique.
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FIGURE 4. Variations of the correction factor of the hydrodynamic mobility as defned by (3.3)
versus R/H for various values of h/H. Horizontal dashed lines correspond to the correction factor
near two infnitely large disks as given by (3.4). Inset: Evolution of R99/H versus h/H, where
R99 is defned such that k(R99/H) = 0.99k∞, for which the correction factor near infnitely large
disks is almost recovered.

In fgure 4, we present a linear–logarithmic plot of the correction factor of the mobility
function versus the radius of the disks for various values of the singularity position.
Results are obtained by integrating (3.3) numerically. We observe that the curves follow
a sigmoid-logistic-like phenomenology, implying that the correction factor increases
signifcantly in the range of small radii before it reaches a saturation value. The latter
corresponds to the correction factor predicted near two infnitely large disks given by (3.4).

Next, in order to quantify the effect of fnite disk size on the correction to the
hydrodynamic mobility, we customarily defne the radius R99 for which the mobility near
infnitely large disks is essentially reached, such that k(R99) = 0.99k∞. In the inset of
fgure 4, we display the variations of R99 versus h based on the data presented in the main
plot. We observe that R99 reaches a maximum value of approximately 0.62 at the mid-plane
of the channel before it monotonically decreases with h. This observation suggests that,
to a good approximation, the mobility near two infnitely large disks can adequately be
used to estimate the mobility at an arbitrary position along the axis provided that the ratio
of radius to channel height is above 0.62. Hence, accounting for the fnite-size effect here
becomes crucial only for values below this threshold.

Finally, we comment on the applicability of the often-used approximation originally
suggested by Oseen (1928) to predict the particle mobility between two boundaries by
superimposing separately the leading-order effects of each boundary. Accordingly,

�μSup

μ0
= −kSupa, kSup = −a−1

(
�μDisk

μ0

∣∣∣∣
b=1/2−h

+ �μDisk

μ0

∣∣∣∣
b=1/2+h

)
, (3.7a,b)

where the leading-order correction to the mobility function for axisymmetric motion
normal to one rigid circular disk has previously been obtained by Kim (1983) and is
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FIGURE 5. Percentage relative error between the correction factor of the Stokes steady mobility
as obtained from the superposition approximation given by (3.7a,b) and the exact expression
given by (3.3).

expressed by

�μDisk

μ0
= − 3

4π

(
3 + 5ξ 2

(1 + ξ 2)2
+ 3
ξ

arctan
(

1
ξ

))
a
R
, (3.8)

wherein ξ = b/R is a dimensionless parameter with b denoting the distance between the
particle and the centre of the disk. This solution was obtained by formulating the fow
problem in terms of a mixed boundary-value problem and solving the resulting dual
integral equations using an approach analogous to that employed in the present work.
Notably, for ξ → 0 we recover the familiar correction to the hydrodynamic mobility near
an infnitely extended plane solid wall of no-slip boundary condition at its surface, namely
�μDisk/μ0 = −9a/(8b), as originally obtained by Lorentz using the reciprocal theorem
more than a century ago (Lorentz 1907; Lee, Chadwick & Leal 1979).

We now assess the accuracy of the superposition approximation stated by (3.7a,b)
by direct comparison with the exact prediction given by (3.3). In fgure 5, we plot the
variations of the percentage relative error between the correction factors kSup and k versus
the radius of the disks R for various values of the particle position h. In the range of
small values of R, the relative error amounts to small values, typically smaller than 10 %
for R < 0.1. Upon increasing R, the relative error gradually increases in a logistic-like
manner, before it saturates on a plateau value as R gets larger. The maximum error is
obtained for the particle located on the mid-plane between the two disks for h = 0 and
is found to be approximately 55 % in the limit of infnite disk radius. Therefore, the
superposition approximation cannot be applied properly in this case. Nonetheless, as the
particle position gets closer to either disk, the maximum error notably decreases to amount
to only approximately 12 % for h = 0.4. Consequently, the superposition approximation
can frequently be utilised in this range of values to predict the hydrodynamic mobility for
axisymmetric motion along the axis of the disks.
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4. Conclusions

To summarise, we have examined the axisymmetric Stokes fow resulting from a
stokeslet singularity acting on the axis of two coaxially positioned circular disks of equal
radius. We have formulated the solution for the viscous incompressible fow feld as a
mixed boundary-value problem, which we have then reduced to a system of dual integral
equations for four unknown wavenumber-dependent functions. Most importantly, we have
shown the existence of viscous toroidal eddies in the fuid region bounded by the two
plates. In the limit of infnitely large disks, we have successfully recovered the classic
solution by Liron & Mochon (1976) for a stokeslet acting normal to two parallel planar
walls.

Additionally, we have provided an integral expression of the hydrodynamic mobility
function quantifying the effect of the confning plates on the motion of a point-like
particle moving along the axis of the coaxially positioned disks. Furthermore, we have
demonstrated that accounting for the fnite-size effect of the disks becomes essential
only below a threshold value of the ratio of radius to channel height. Beyond this
value, the mobility near two infnitely large disks can appropriately be employed. Finally,
we have tested the validity and robustness of Oseen’s approximation that postulates
that the particle mobility between two boundaries could approximately be predicted by
superimposing the contributions from each boundary independently. We have found that
this simplistic approximation works quite well as the particle gets closer to either boundary
but severely breaks down when the particle is located in the mid-plane between the two
disks.

The analytical approach in the present paper is based on the assumption of fow
axisymmetry. The Stokes fow induced by a stokeslet directed along an arbitrary direction
in the presence of two coaxially positioned disks would be worth investigating in a
future study. We conjecture that this solution might be obtained by making use of
the Green and Neumann functions supplemented by the edge function, following the
approach by Miyazaki (1984). This solution can then be employed to evaluate the
translational and rotational mobility functions of particles located at arbitrary positions
between the two disks. Alternatively, the problem can possibly be approached differently
by means of multipole expansion methods involving the expression of the relevant
hydrodynamic felds using oblate spheroidal coordinates (Lee & Leal 1980). This approach
has been widely employed in the context of micromechanics of heterogeneous composite
materials and fracture analysis (Kushch & Sangani 2000; Kushch 2013). In principle,
our calculations can be extended to account for higher-order correction factors in the
aspect ratio between the radius of the disks and the distance between the particle and
the bounding plates (Swan & Brady 2010), but this would require a very challenging
effort.

For applications requiring the precise manipulation of single molecules at the nanoscale
level, the no-slip boundary condition may need to be lifted. In this context, the effect of
partial slip at the surfaces of the disks is commonly characterised by assuming that the
velocity components of the fuid tangent to the surfaces of the disks is proportional to
the rate of strain at the surfaces (Lauga & Squires 2005; Lasne et al. 2008). This is an
interesting aspect that could be included in our formalism and represents a worthwhile
extension of the problem for future studies. We hope that our study will prove useful to
researchers as well as practitioners working on particulate fow problems involving fnitely
sized boundaries, and pave the way towards better design and control of various processes
in micro- and nanofuidic systems.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

70
6

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ita

et
s 

un
d 

La
nd

es
bi

bl
io

th
ek

 D
ue

ss
el

do
rf

, o
n 

09
 M

ar
 2

02
2 

at
 1

5:
29

:4
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

P9 J. Fluid Mech. 904, A34 (2020) 161



904 A34-18 A. Daddi-Moussa-Ider and others

Acknowledgements

A.D.M.I., H.L. and A.M.M. gratefully acknowledge support from the DFG (Deutsche
Forschungsgemeinschaft) through the projects DA 2107/1-1, LO 418/16-3 and ME
3571/2-2.

Declaration of interests

The authors report no confict of interest.

Appendix A. Analytical expressions for the kernel functions

In this appendix, we provide technical details regarding the analytical derivation of the
kernel functions appearing in the system of Fredholm integral equations of the frst kind
given by (2.22) of the main body of the paper.

The kernel functions can be expressed as infnite integrals over the wavenumber λ as

L1(r, t) =
∫ ∞

0
λ1/2e−λJ1(λr)J1/2(λt) dλ, (A 1a)

L2(r, t) =
∫ ∞

0

(
λ1/2 + λ−1/2) e−λJ0(λr)J1/2(λt) dλ, (A 1b)

L3(r, t) =
∫ ∞

0
λ1/2e−λJ0(λr)J3/2(λt) dλ, (A 1c)

L4(r, t) =
∫ ∞

0

(
λ1/2 − λ−1/2) e−λJ1(λr)J3/2(λt) dλ, (A 1d)

L5(r, t) =
∫ ∞

0
λ−1/2J1(λr)J3/2(λt) dλ, (A 1e)

L6(r, t) =
∫ ∞

0
λ−1/2J0(λr)J1/2(λt) dλ, (A 1f )

where (r, t) ∈ [0,R]2. It can be shown that the frst four integrals can conveniently be
expressed in closed mathematical forms as

L1(r, t) =
(

2
πt

)1/2 1
r

Im(ξ+δ+), (A 2a)

L2(r, t) =
(

2
πt

)1/2

(Re(Λ)+ Im(δ−)) , (A 2b)

L3(r, t) =
(

2
πt

)1/2

Re(Λt−1 − δ−), (A 2c)

L4(r, t) =
(

2
πt

)1/2

(Re(χ1)+ Im(χ2)) , (A 2d)
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where we have defned the abbreviations

ξ± = 1 ± it, δ± = (
r2 + ξ 2

±
)−1/2

, Λ = arcsin
(

t + i
r

)
, σ = r

ξ− + δ−1
−
, (A 3a)

α = t
r
, χ1 = δ−

(
r
2

(
1 + σ 2)+ ξ−

r

)
− Λ

2α
, χ2 = 1

rtδ−
+ δ−

8α

(
ξ− − rσ 3) . (A 3b)

In addition, the integrals L5 and L6 have analytical forms and can be calculated
directly from standard integration tables or software algebra systems such as Mathematica
(Wolfram 1999) as

L5(r, t) = 1
2

(π

2t

)1/2
α−1H(t − r)+

(
1

2πt

)1/2 (
α−1 arcsin(α)− (1 − α2)1/2

)
H(r − t),

(A 4a)

L6(r, t) =
(π

2t

)1/2
H(t − r)+

(
2
πt

)1/2

arcsin(α)H(r − t), (A 4b)

where H(·) denotes the Heaviside step function.
In the following, we will show how the integrals given by (A 1) can be evaluated

analytically. The core idea of our approach consists of expressing these integrals in the
form of Laplace transforms of Bessel functions of the frst kind (Spiegel 1965; Widder
2015),

L {Jk(z)} ( p) = (1 + p2)−1/2 (p + (1 + p2)1/2
)−k

, (A 5)

and using the recurrence relation (Abramowitz & Stegun 1972)

2k
z

Jk(z) = Jk−1(z)+ Jk+1(z). (A 6)

In addition, we will employ the following identities providing closed-form expressions
for the Bessel functions of the frst kind of half-integer order in terms of the standard
trigonometric functions,

J1/2(z) =
(

2
πz

)1/2

sin(z), (A 7a)

J−1/2(z) =
(

2
πz

)1/2

cos(z). (A 7b)

A.1. Evaluation of the integral L1

By making use of the identity given by (A 7a), the integral L1 stated by (A 1a) can be
expressed as

L1(r, t) =
(

2
πt

)1/2 ∫ ∞

0
e−λJ1(λr) sin(λt) dλ. (A 8)

Using the change of variable x = λr and Euler’s representation of the sine function, the
latter integral can be expressed as

L1(r, t) =
(

2
πt

)1/2 1
r

Im
(∫ ∞

0
exp

(
− x

r
(1 − it)

)
J1(x) dx

)
. (A 9)
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This leads to (A 2a) after making use of the Laplace transform given by (A 5) for k = 1
and p = (1 − it)/r. We note that Im(z) = − Im(z̄) for z ∈ C, where z̄ denotes the complex
conjugate of z.

A.2. Evaluation of the integral L2

We next consider the integral defned by (A 1b), which can conveniently be decomposed
into two parts as

L2(r, t) = L2,1(r, t)+ L2,2(r, t), (A 10)

where

L2,1(r, t) =
(

2
πt

)1/2 ∫ ∞

0
e−λJ0(λr) sin(λt) dλ, (A 11a)

L2,2(r, t) =
(

2
πt

)1/2 ∫ t

0
du
∫ ∞

0
e−λJ0(λr) cos(λu) dλ. (A 11b)

Here, we have made use of (A 7a) together with the integral representation

sin(λt) = λ
∫ t

0
cos(λu) du. (A 12)

Using Euler’s relation together with (A 5) for k = 0, (A 11) can be evaluated as

L2,1(r, t) =
(

2
πt

)1/2

Im
((

r2 + (1 − it)2
)−1/2

)
, (A 13a)

L2,2(r, t) =
(

2
πt

)1/2

Re
(∫ t

0

(
r2 + (1 − iu)2

)−1/2
du
)
. (A 13b)

The defnite integral in (A 13b) can be evaluated as

L2,2(r, t) =
(

2
πt

)1/2

Re
(

arcsin
(

t + i
r

))
. (A 14)

Equation (A 2b) follows forthwith after collecting terms.
It is worth mentioning that, for a given complex number z = x + iy, the arcsine function

is defned when ±x /∈ (1,∞) as (Abramowitz & Stegun 1972)

arcsin(z) = arcsin(α−)+ i sign( y) ln
(
α+ + (

α2
+ − 1

)1/2
)
, (A 15)

where

α± = 1
2((x + 1)2 + y2)1/2 ± 1

2((x − 1)2 + y2)1/2. (A 16)
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A.3. Evaluation of the integral L3

Analogously, the integral L3 defned by (A 1c) can be decomposed into two parts as

L3(r, t) = L3,1(r, t)− L3,2(r, t), (A 17)

upon using the recurrence relation stated by (A 6) and setting k = 1/2 together with the
identities given by (A 7). Here, we have defned L3,1(r, t) = t−1L2,2(r, t) and

L3,2(r, t) =
(

2
πt

)1/2 ∫ ∞

0
e−λJ0(λr) cos(λt) dλ, (A 18)

which can readily be evaluated as (A 11a) but this time by taking the real part. This leads
to (A 2c) upon collecting terms.

A.4. Evaluation of the integral L4

Finally, upon using (A 6) for k = 1/2 and the identities given by (A 7), the integral L4 can
be decomposed into four parts:

L4(r, t) = L4,1 + L4,2 − (L4,3 + L4,4), (A 19)

where we have defned

L4,1(r, t) =
(

2
πt

)1/2

t−1
∫ ∞

0
λ−1e−λJ1(λr) sin(λt) dλ, (A 20a)

L4,2(r, t) =
(

2
πt

)1/2 ∫ ∞

0
λ−1e−λJ1(λr) cos(λt) dλ, (A 20b)

L4,3(r, t) =
(

2
πt

)1/2 ∫ ∞

0
e−λJ1(λr) cos(λt) dλ, (A 20c)

L4,4(r, t) =
(

2
πt

)1/2

t−1
∫ ∞

0
λ−2e−λJ1(λr) sin(λt) dλ. (A 20d)

In the following, we will make use when appropriate of the shorthand notation defned
in (A 3a). By using the integral representation of the sine function given by (A 12), the
frst integral can be expressed as

L4,1(r, t) =
(

2
πt

)1/2

t−1
∫ t

0
du
∫ ∞

0
e−λJ1(λr) cos(λu) dλ. (A 21)

Similarly, the evaluation of the indefnite integral over λ can be performed using the
Laplace transform of the Bessel function given by (A 5) to obtain

L4,1(r, t) =
(

2
πt

)1/2

(tr)−1 Re
(∫ t

0

(
1 − (1 − iu)

(
r2 + (1 − iu)2

)−1/2
)

du
)
. (A 22)

The defnite integral in the latter equation can then be evaluated and cast in the fnal
simplifed form

L4,1(r, t) =
(

2
πt

)1/2

r−1 (1 + t−1 Im(δ−1
− )
)
. (A 23)

Next, the evaluation of the second integral is straightforward after expressing the
frst-order Bessel function as a function of the zeroth- and second-order Bessel functions
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using the recurrence relation given by (A 6) for k = 1 to obtain

L4,2(r, t) = r(2πt)−1/2
∫ ∞

0
e−λ (J0(λr)+ J2(λr)) cos(λt) dλ, (A 24)

which can readily be evaluated as

L4,2(r, t) = r(2πt)−1/2 Re
(
δ−
(
1 + σ 2)) . (A 25)

The third integral can be deduced from the calculation of L1(r, t) given by (A 9), this
time by taking the real part to obtain

L4,3 =
(

2
πt

)1/2

r−1 Re(1 − ξ−δ−). (A 26)

Lastly, the fourth integral can be decomposed into two parts as

L4,4(r, t) = L4,4,1(r, t)+ L4,4,2(r, t), (A 27)

where L4,4,1(r, t) = (2α)−1L2,2(r, t) and

L4,4,2(r, t) = (2πt)−1/2 r
t

∫ ∞

0
λ−1e−λJ2(λr) sin(λt) dλ. (A 28)

This integral can be handled using the recurrence formula given by (A 6) to obtain

L4,4,2(r, t) = (2πt)−1/2 r2

4t

∫ ∞

0
e−λ (J1(λr)+ J3(λr)) sin(λt) dλ. (A 29)

The latter integral can be calculated and cast in the fnal simplifed form

L4,4,2(r, t) = (2πt)−1/2(4α)−1 (r Im(δ−σ 3)− Im(ξ−δ−)
)
. (A 30)

By collecting terms, (A 2d) is readily obtained.
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Steady azimuthal flow field induced by a rotating sphere near a rigid disk or inside

a gap between two coaxially positioned rigid disks,
Phys. Fluids 33, 082011 (2021),

with the permission of AIP Publishing [297].

Digital Object Identifier (DOI): doi.org/10.1063/5.0062688

Statement of contribution

A.D.M.I. conceived the study and prepared the figures. A.R.S. and A.D.M.I. carried
out the analytical calculations. T.R. performed the numerical simulations. A.D.M.I.
drafted the manuscript. All authors discussed and interpreted the results, edited
the text, and finalized the manuscript.

Copyright and license notice

©AIP Publishing LLC.
AIP Publishing permits authors to reprint the Version of Record (VOR) in their
theses or dissertations. It is understood and agreed that the thesis or dissertation
may be made available electronically on the university’s site or in its repository
and that copies may be offered for sale on demand.

https://doi.org/10.1063/5.0062688


172 Chapter 3 Scientific publications



Steady azimuthal flow field induced by a rotating
sphere near a rigid disk or inside a gap between
two coaxially positioned rigid disks

Cite as: Phys. Fluids 33, 082011 (2021); doi: 10.1063/5.0062688
Submitted: 7 July 2021 . Accepted: 6 August 2021 .
Published Online: 20 August 2021

Abdallah Daddi-Moussa-Ider,1,2,a) Alexander R. Sprenger,1 Thomas Richter,3 Hartmut L€owen,1

and Andreas M. Menzel4

AFFILIATIONS
1Institut f€ur Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universit€at D€usseldorf, Universit€atsstraße 1, D-40225 D€usseldorf,
Germany

2Abteilung Physik lebender Materie, Max-Planck-Institut f€ur Dynamik und Selbstorganisation, Am Faßberg 17, D-37077 G€ottingen,
Germany

3Institut f€ur Analysis und Numerik, Otto-von-Guericke-Universit€at Magdeburg, Universit€atsplatz 2, D-39106 Magdeburg, Germany
4Institut f€ur Physik, Otto-von-Guericke-Universit€at Magdeburg, Universit€atsplatz 2, D-39106 Magdeburg, Germany

a)Author to whom correspondence should be addressed: ider@ds.mpg.de

ABSTRACT

Geometric confinements play an important role in many physical and biological processes and significantly affect the rheology and behavior
of colloidal suspensions at low Reynolds numbers. On the basis of the linear Stokes equations, we investigate theoretically and
computationally the viscous azimuthal flow induced by the slow rotation of a small spherical particle located in the vicinity of a rigid no-slip
disk or inside a gap between two coaxially positioned rigid no-slip disks of the same radius. We formulate the solution of the hydrodynamic
problem as a mixed-boundary-value problem in the whole fluid domain, which we subsequently transform into a system of dual integral
equations. Near a stationary disk, we show that the resulting integral equation can be reduced into an elementary Abel integral equation that
admits a unique analytical solution. Between two coaxially positioned stationary disks, we demonstrate that the flow problem can be trans-
formed into a system of two Fredholm integral equations of the first kind. The latter are solved by means of numerical approaches. Using
our solution, we further investigate the effect of the disks on the slow rotational motion of a colloidal particle and provide expressions of the
hydrodynamic mobility as a function of the system geometry. We compare our results with corresponding finite-element simulations and
observe very good agreement.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0062688

I. INTRODUCTION

Hydrodynamic interactions in viscous flows are ubiquitous
in nature and find numerous applications in various industrial
and environmental processes. Simultaneously, confinements play
a pivotal role in a wide range of biological and biotechnological
processes, including the dynamics of polymer solutions and melts
in microfluidic devices,1–4 DNA translocation through pores,5,6

transport and rheology of red blood cell suspensions in microcir-
culation,7–12 colloidal gelation,13 biofilm formation in microchan-
nels,14–17 and swimming behavior of active self-propelled agents
in viscous media.18–23

Fluid flows at small length scales are characterized by low
Reynolds numbers, where the viscous forces typically dominate the

inertial forces. Under such conditions, the fluid dynamics can well be
described by the linear Stokes equations.24 Over the past few decades,
there has been mounting interest in the theoretical and experimental
characterization of the behavior of hydrodynamically interacting par-
ticles near confining interfaces.25 These include, for instance, a flat
rigid wall,26–35 a planar surface with partial slip,29 a flat interface sepa-
rating two immiscible fluids,36–39 an interface covered with a surfac-
tant,40,41 a rough boundary characterized by random surface
textures,42 or a soft deformable membrane possessing elastic and
bending properties.43–57 Thanks to the advent of new particle tracking
and measurement techniques, the field has benefited from important
recent advances in the characterization of the behavior of colloidal
particles near confinement at small scales.58–62
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From a chronological standpoint, one of the first attempts to
address the creeping flow induced by a spherical particle confined
between two infinitely extended planar walls dates back to Fax�en.63

One century ago, Fax�en provided in his doctoral dissertation a few
approximate analytical expressions of the hydrodynamic mobility
function for parallel translational motion in a channel bounded by two
flat plates. Later, using the method of images, Liron and Mochon64

obtained in a pioneering work an exact solution of the Stokes flow
induced by a point-force singularity acting between two parallel no-
slip walls. The problem of fluid motion in a channel bounded by two
no-slip walls has further been addressed using the multipole expansion
technique65,66 and a strong interaction theory.67,68

In the present article, we proceed a step further by examining the
low-Reynolds-number flow induced by a point-like particle rotating
near a rigid finite-sized no-slip disk or between two coaxially posi-
tioned rigid finite-sized no-slip disks of the same radius.
Mathematically, we model the situation using a rotlet (also called a
point-torque or point-couple) singularity acting on the surrounding
fluid medium. We formulate the flow problem at hand as a mixed-
boundary-value problem which we subsequently transform into a sys-
tem of dual integral equations on the domain boundary. For their
solution, we employ conventional procedures outlined by Sneddon
and Copson so as to express the solutions of the flow problems in
terms of convergent definite integrals. Moreover, we quantify the effect
of the confining finite-sized disks on the rotational motion by calculat-
ing the effect on the corresponding hydrodynamic mobility function.

The remainder of this article is organized as follows. In Sec. II, we
derive the solution of the hydrodynamic equations for a rotlet singu-
larity acting near a fixed no-slip disk. We show that the induced veloc-
ity field can be presented in a compact analytical form in terms of a
definite one-dimensional integral. Afterwards, we obtain in Sec. III a
semi-analytical solution of the flow problem inside a gap between two
coaxially positioned rigid no-slip disks. We demonstrate that the solu-
tion can be reduced into a system of two Fredholm equations of the
first kind that can be solved by means of standard numerical
approaches. Finally, concluding remarks are contained in Sec. IV.
Technical aspects and simulation details regarding the finite-element
method we employ to compare our theory with are shifted to the
Appendixes.

II. SOLUTION NEAR A SINGLE DISK
A. Problem formulation

First, we examine the low-Reynolds-number dynamics of a
point-like particle undergoing rotational motion near one fixed finite-
sized disk of radius R. We assume a no-slip boundary condition to
hold at the surface of the disk. In addition, we suppose that the disk is
located within the plane z¼ 0 and that the center of the disk coincides
with the origin of our coordinate frame; see Fig. 1 for an illustration of
the system setup. In addition, we assume that the fluid is incompress-
ible and Newtonian with constant shear viscosity g.

At low Reynolds numbers, the fluid dynamics is thus governed
by the steady Stokes equations,69

g$2v� $pþ FB ¼ 0 ; $ � v ¼ 0; (1)

wherein v and p denote the hydrodynamic velocity and pressure fields,
respectively. In addition, FB represents an arbitrary bulk force density
acting on the fluid at position r0 ¼ hez with ez denoting the unit

vector directed along the z direction. The torque L on the particle is
transmitted to the fluid and linked to the surface force density F acting
on the fluid via the surface of the spherical particle

L ¼
þ
A

r � r0ð Þ � F dS; (2)

with A denoting the surface area of the tiny particle. In the point-
particle approximation, the asymmetric dipolar term in the multipole
expansion is associated with the flow field induced by a rotlet singular-
ity of strength L acting above the disk at position r0. Here, we consider
the case in which the point torque is directed along the axis of symme-
try of the disk and set L ¼ Lez .

In an unbounded (infinite) fluid medium, the flow field induced
by a rotlet singularity is given by

v1ðrÞ ¼ 1
8pg

L� s
s3

; (3)

wherein s ¼ r � r0 and s ¼ jsj is the distance from the singularity
position. Using cylindrical coordinates ðr;/; zÞ, the azimuthal compo-
nent of the flow velocity field induced by a free-space rotlet oriented
along the z direction reads

v1/ ðr; zÞ ¼
Kr

r2 þ z � hð Þ2
� �3

2

; (4)

where we have defined, for convenience, the abbreviation K
¼ L=ð8pgÞ of dimension (length)3 (time)�1.

The solution of the flow problem in the presence of the confining
disk can generally be expressed as a linear superposition of the solution
in an unbounded fluid medium, given by Eq. (4), and a complemen-
tary solution that is required to satisfy the underlying regularity and
boundary conditions for the total induced flow field. Specifically,

v/ ¼ v1/ þ v�/; (5)

with v�/ standing for the complementary solution for the azimuthal
flow velocity, also sometimes called the image solution.70

FIG. 1. Graphical illustration of the system setup. A point-like particle undergoing
slow rotational motion near a rigid no-slip disk of radius R sets the fluid into motion.
The center of the particle is located at a distance h above the center of the disk,
while the surrounding viscous fluid medium is characterized by a dynamic shear
viscosity g. L ¼ Lêz sets the torque acting via the particle at the particle position
on the fluid.
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The solution of the homogeneous equations governing the fluid
motion can be expressed in our case in terms of a single harmonic
function as v�/ ¼ �@X=@r [cf. Ref. 69, Eq. (3–3.58), or Ref. 71, Eq. (5),
and references therein for the expression of the complete solution]
with X satisfying the Laplace equation $2X ¼ 0. Then, the harmonic
function X can be written in the general form in terms of a
Fourier–Bessel integral of the form

Xðr; zÞ ¼ K
ð1
0

xðkÞJ0ðkrÞe�kjzj dk; (6)

wherein xðkÞ is an unknown wavenumber-dependent function to be
subsequently determined from the prescribed boundary conditions. In
addition, J� denotes the Bessel function

72 of the first kind of order �.
The image solution for the azimuthal component of the velocity field
is then obtained as

v�/ðr; zÞ ¼ K
ð1
0

kxðkÞJ1ðkrÞe�kjzj dk: (7)

Evidently, the solution form given by Eq. (7) satisfies the natural conti-
nuity of the azimuthal velocity field at the plane z¼ 0. We note that
the rotlet singularity does not induce a pressure gradient and that the
radial and axial components of the fluid velocity vanish. Therefore, the
solution of the flow problem reduces to the search for the azimuthal
component of the velocity field only.

B. Boundary conditions and dual integral equations

We require no-slip boundary conditions on the surface of the
disk and assume the continuity of the azimuthal component of the
normal stress vector on the plane z¼ 0 outside the disk. Specifically,

v1/ þ v�/jz¼0 ¼ 0 for r < R; (8a)

g
@v�/
@z

����
z¼0þ
� g

@v�/
@z

����
z¼0�
¼ 0 for r > R: (8b)

By inserting the expressions of the free-space and image fields
given by Eqs. (4) and (7), respectively, into Eq. (8), we obtain the
mixed-boundary-value problem on the inner and outer domain
boundaries. Specifically,ð1

0
kxðkÞJ1ðkrÞ dk ¼ f ðrÞ ðr < RÞ; (9a)ð1

0
k2xðkÞJ1ðkrÞ dk ¼ 0 ðr > RÞ; (9b)

with the radial function

f ðrÞ ¼ � r

r2 þ h2ð Þ
3
2

; (10)

stemming from the free-space rotlet field.
The solution of the type of dual integral equations stated by Eq.

(9) can generally be obtained using the theory of Mellin trans-
forms.73,74 We will follow in the present article a different route based
on the analytical approach outlined by Sneddon75 and Copson.76 In
the sequel, we will show that the present dual integral equations prob-
lem with Bessel function kernels can conveniently be reduced to an
elementary Abel integral equation that may readily be inverted. This

solution strategy has previously been employed to examine the low-
Reynolds-number flow induced by nonrotational force singularities
near a finite-sized elastic disk possessing shear and bending proper-
ties,77,78 the flow field near a no-slip disk,79,80 or the axisymmetric flow
due to a Stokeslet acting between two coaxially positioned rigid no-slip
disks.81

We search a solution for the unknown wavenumber-dependent
function xðkÞ of the integral form

xðkÞ ¼ k�
1
2

ðR
0

x̂ðtÞJ1
2
ðktÞ dt; (11)

wherein x̂ðtÞ, with t 2 ½0;R�, is an unknown function later to be
determined. We will show in the sequel that the equation for the outer
problem (9b) is indeed satisfied using this form of solution.

First, it can readily be checked that Eq. (11) can further be
expressed in the form

xðkÞ ¼ k�
3
2

ðR
0

x̂ðtÞ t�3
2
d
dt

t
3
2J3

2
ðktÞ

� �
dt: (12)

By defining

F̂ðtÞ ¼ t
3
2
d
dt

t�
3
2x̂ðtÞ

� �
; (13)

and assuming that t
3
2 x̂ðtÞ ! 0 as t ! 0þ, Eq. (12) can be rewritten

upon integration by parts as

xðkÞ ¼ k�
3
2 x̂ðRÞJ3

2
ðkRÞ �

ðR
0
F̂ðtÞJ3

2
ðktÞ dt

 !
: (14)

Then, by substituting the modified form of solution given by Eq.
(14) into Eq. (9b), the integral equation for the outer problem can be
expressed as

Kþðr;RÞ x̂ðRÞ �
ðR
0
Kþðr; tÞF̂ðtÞ dt ¼ 0 ðr > RÞ: (15)

In this context, we define the kernel functions

K6ðr; tÞ ¼
ð1
0

k
1
2J161

2
ðktÞJ1ðkrÞ dk: (16)

It turned out that the latter improper (infinite) integral can be evalu-
ated analytically as

Kþðr; tÞ ¼
2
pt

� �1
2 r
t

Hðt � rÞ
t2 � r2ð Þ

1
2

; (17)

with Hð�Þ denoting the Heaviside step function (or the unit step func-
tion). Since r>R, it can readily be perceived that the transformed inte-
gral equation for the outer problem stated by Eq. (15) is trivially
satisfied.

Thereafter, substituting Eq. (11) into the integral equation for the
inner problem given by Eq. (9a) yieldsðR

0
K�ðr; tÞ x̂ðtÞ dt ¼ f ðrÞ ðr < RÞ: (18)

By noting that
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K�ðr; tÞ ¼
2t
p

� �1
2 1
r

Hðr � tÞ
r2 � t2ð Þ

1
2

: (19)

Equation (18) can subsequently be rewritten in a much simplified
form as

ðr
0

t
1
2x̂ðtÞ

r2 � t2ð Þ
1
2

dt ¼ p
2

� �1
2

rf ðrÞ ðr < RÞ: (20)

Equation (20) is a classical Abel integral equation which consti-
tutes a special form of the linear Volterra equation of the first kind
having a weakly singular kernel.82–84 It admits a unique solution if and
only if f(r) is a continuously differentiable function.85–87 Its solution is
formally given in an integral form as (cf. Appendix A for further
details)

x̂ðtÞ ¼ 2
pt

� �1
2 d
dt

ðt
0

v2f ðvÞ dv
t2 � v2ð Þ

1
2

: (21)

Inserting the expression of f(r) stated by Eq. (10) into Eq. (21) and per-
forming the resulting integration yields

x̂ðtÞ ¼ �2 2t
p

� �1
2 ht

t2 þ h2ð Þ2
: (22)

Evidently, the condition t
3
2 x̂ðtÞ ! 0 as t ! 0þ assumed above

upon integrating by parts is well satisfied.
Next, by substituting Eq. (22) into Eq. (11) upon noting that

J1
2

ktð Þ ¼ 2
p

� �1
2

ktð Þ�
1
2 sin ktð Þ; (23)

the unknown wavenumber-dependent function xðkÞ can be written
in a compact integral form as

xðkÞ ¼ � 4h
pk

ðR
0

t sin ðktÞ dt
t2 þ h2ð Þ2

: (24)

The latter integral can be expressed in a general way in terms of hyper-
bolic functions and trigonometric integrals. However, choosing the
integral form is more convenient for later treatment. In particular, it
follows that xðkÞ ¼ �e�kh as R!1. Finally, by inserting Eq. (24)
into Eq. (7) and interchanging the order of integration with respect to
the variables k and t, the solution for the image azimuthal velocity field
follows as

v�/ðr; zÞ ¼ �
4Kh
p

ðR
0

tQðr; z; tÞ dt
t2 þ h2ð Þ2

; (25)

where we have defined the kernel function

Qðr; z; tÞ ¼
ð1
0
J1ðkrÞ sin ðktÞ e�kjzj dk: (26)

To obtain an analytical expression for Q, we proceed by making
use of Euler’s formula in complex analysis88 and write sin ðktÞ
¼ Im eiktf g, with Im denoting the imaginary part of the argument. By
using the change of variable u ¼ kr, Eq. (26) can be rewritten in the
form

Qðr; z; tÞ ¼ 1
r
Im

ð1
0
J1ðuÞ e�su du

	 

; (27)

with s ¼ ðjzj � itÞ=r. By invoking the Laplace transform89 of J1ðuÞ
given as 1� sð1þ s2Þ�

1
2, Eq. (27) can then be evaluated as

Qðr; z; tÞ ¼ � 1
r
Im

jzj � it

r2 þ jzj � itð Þ2
� �1

2

( )
: (28)

The latter can further be cast in the final form as

Qðr; z; tÞ ¼ 2
1
2

2rU
t U þ Vð Þ

1
2 � jzj U � Vð Þ

1
2

� �
; (29)

where we have defined

U ¼ q2 þ t2
� �2 � 4r2t2
� �1

2

; V ¼ q2 � t2; (30)

where q2 ¼ r2 þ z2. It can be shown that Q is always well defined
except when U¼ 0, for which z¼ 0 and t¼ r. In this case,
Qðr; z; tÞ � ðr � tÞ�

1
2Hðr � tÞ. We note that Qðr; z; tÞ ! 0 as

r ! 0.
An analytical integration of Eq. (25) is delicate, if not downright

impossible. Therefore, recourse to numerical procedures is necessary.
To this end, we approximate the integral by a standard middle
Riemann sum using the partition t1;…; tN , where ti ¼ ði� 1=2Þd,
with i ¼ 1;…;N and d ¼ R=N . Here, N denotes the number of dis-
cretization points. Throughout this work, we consistently set
N ¼ 10 000.

In Fig. 2, we show contour plots of the scaled azimuthal flow
velocity induced by a rotlet singularity positioned at different distances
along the axis of the disk. The analytical predictions [(a), (b), and (c)]
are in good agreement with the results from finite-element simulations
[(d), (e), and (f); see Appendix B for technical details regarding the
simulation method].

The magnitude of the scaled velocity field is shown on a logarith-
mic scale to emphasize the difference between the different regions.
Similarly, as in the bulk, the flow velocity is decaying faster along the z
direction (or axis of rotation) compared to the radial direction.
However, near the disk, the azimuthal flow velocity becomes asym-
metric with respect to the rotlet position, and for z< 0 the total flow
field almost vanishes completely. Last, we remark that the overall mag-
nitude of the flow field reduces as the rotlet gets closer to the disk.

C. Exact solution for R!1
The solution for a rotlet oriented normal to a hard wall can be

obtained using the image system technique noted by Blake.70 For com-
pleteness, we here derive this solution in a different way using our for-
malism. For an infinitely large disk located at z¼ 0, the integral
equations (9a) for the inner domain hold for all positive r, and thus we
can directly apply a Hankel transform90 on both sides of this equation.
Here, we make use of the orthogonality property of Bessel functions,72ð1

0
rJ�ðkrÞJ�ðk0rÞ dr ¼ k�1dðk� k0Þ; (31)

and obtain the solution for
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xðkÞ ¼
ð1
0
rf ðrÞJ1ðkrÞ dr ¼ �e�kh: (32)

Inserting the latter result into Eq. (7) yields

v�/Blakeðr; zÞ ¼ �
Kr

r2 þ jzj þ hð Þ2
� �3

2

: (33)

The image solution for the azimuthal component in the limit R!1
can alternatively be calculated analytically from Eq. (25).
Consequently, the total flow field vanishes underneath the disk, i.e., for
z< 0.

Figure 3 shows the variation of the percentage relative error in
the flow velocity field as obtained using Blake’s solution given by Eq.
(33) in comparison with the exact solution derived in the present work
for a finite-sized disk given in an integral form by Eq. (25). Here, the
flow field is evaluated at five different axial distances z/h, while keeping
the radial position r=R ¼ 0:2. We observe that the error is vanishingly
small for h� R and increases monotonically as the ratio h/R gets
larger. In addition, the error amounts to small values in the fluid
domain close to the singularity position in which the flow velocity is
primarily determined by the infinite-space rotlet. Upon increasing z/h,
the maximum percentage relative error (MPRE) increases and it was
found to be as high as approximately 55% for z=h ¼ 10 and
h=R ¼ 102. We have systematically checked that the MPRE is, in gen-
eral, less sensitive to variations in the radial position.

D. Hydrodynamic rotational mobility

Having derived the solution of the flow problem for a point-
torque singularity acting near a finite-sized disk, we next investigate

how the presence of the nearby disk affects the rotational mobility. For
this purpose, we think of the rotlet generated by a small colloidal parti-
cle of radius a. By restricting ourselves to the situation in which
a� h, the leading-order correction to the particle rotational mobility
can be obtained by evaluating the image angular velocity of the fluid,

FIG. 2. Contour plot of the amplitude of the scaled azimuthal flow velocity as obtained theoretically [first row, (a), (b), and (c)] and using finite-element simulations [second row,
(d), (e), and (f)]. The flows are induced by a rotlet singularity positioned at h=R ¼ 4 [(a) and (d)], h=R ¼ 1 [(b) and (e)] and h=R ¼ 0:25 [(c) and (f)] on the axis of a no-slip
disk of radius R (red). The scaled azimuthal velocity is defined as V/ ¼ v/=ðL=ð8pgR2ÞÞ. The results are presented on a decimal logarithmic scale.

FIG. 3. Percentage relative error in the flow field as obtained using Blake’s solution
for an infinitely extended disk in comparison with the exact solution for a disk of
finite size, as a function of increasing vertical distance h/R of the rotlet from the
disk. The flow field is evaluated at five different values of z/h while keeping
r=R ¼ 0:2.
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1
2 $� v�, at the singularity position.30 In a scaled form, it can be pre-
sented as

Dl
l0
¼ a3

K
lim

ðr;zÞ!ð0;hÞ

1
2r
@

@r
rv�/
� �

; (34)

wherein l0 ¼ ð8pga3Þ�1 is the bulk rotational mobility, i.e., in the
absence of the disk.

Following the notation employed in our previous consider-
ations,77–79 we define the positive dimensionless number k1 to be the
scaled correction factor to the mobility near a no-slip disk as

k1 ¼ �
Dl
l0

�
a
h

� �3

; (35)

and substituting Eq. (7) expressing the image azimuthal velocity into
Eq. (34), we obtain

k1 ¼ �
h3

2

ð1
0

k2xðkÞe�kh dk: (36)

Next, by inserting the expression of xðkÞ stated by Eq. (24) into
Eq. (36) and using the changes of variables u ¼ kh and v ¼ t=R, the
scaled correction factor can be presented as an integral over the inter-
val ½0; 1� as

k1ðnÞ ¼
2
p

n2
ð1
0

vGðv; nÞ dv
v2 þ n2
� �2 ; (37)

with the dimensionless number n ¼ h=R. Here,

Gðv; nÞ ¼
ð1
0
u sin

uv
n

� �
e�u du ¼ 2vn3

v2 þ n2
� �2 : (38)

Finally, evaluating the definite integral in Eq. (37) yields the
expression of the scaled correction factor as

k1ðnÞ ¼
1
8
� 1
4p

arctannþ n n2 � 3
� �

1þ 3n2
� �

3 1þ n2
� �3

 !
: (39)

In particular, for n� 1 (or h� R), we obtain

k1ðnÞ ¼
1
8
� 4
5p

n5 þO n7
� �

: (40)

Notably, the familiar correction factor k1 ¼ 1=8 near an infinitely
extended hard wall is recovered in the limit n! 0. For n	 1, we get

k1ðnÞ ¼
4
3p

n�3 þO n�5
� �

: (41)

Interestingly, the correction factor takes a particularly simple expres-
sion when n ¼

ffiffiffi
3
p

, for which k1 ¼ 1=24.
In Fig. 4, we present the variation of the scaled correction factor

given by Eq. (39) as a function of the dimensionless number n ¼ h=R.
We observe that the scaled correction factor is a monotonically decay-
ing function of n. On a semilogarithmic scale (main plot), the curve
exhibits an inverse logistic-like (sigmoid) evolution between two pla-
teau values. The scaled correction factor undergoes a cubic decay with
n while vanishing in the limit n!1.

Recapitulating, we have presented a dual integral equation
approach to determine the solution of the hydrodynamic equations

for a point-torque singularity acting near a rigid disk. In the following,
we will employ a similar technique to obtain the corresponding solu-
tion of the flow problem in the presence of two coaxially positioned
rigid disks.

III. SOLUTION FOR TWO COAXIALLY POSITIONED
DISKS
A. Problem formulation

We now assume that two parallel coaxially positioned rigid disks
are located within the planes at z ¼ �H=2 and z ¼ H=2, where H
represents the distance separating the two disks. The z axis passes
through the centers of the coaxially positioned disks. We suppose that
the rotlet is acting between the disks at position r0 ¼ hez , where
�H=2 < h < H=2; see Fig. 5 for a graphical illustration of the setup.

To find a solution to the flow problem, we partition the fluid
medium into three distinct parts. We label by the superscript 1 the
flow velocity field in the fluid domain beneath the plane z ¼ �H=2
containing the lower disk, subscript 2 the fluid region delimited by the
planes at z ¼ �H=2 and z ¼ H=2, and we designate by the subscript
3 the fluid domain above the plane z ¼ H=2 containing the top disk.
In the remainder of this article, we choose, for convenience, to scale all
lengths by the gap widthH.

We now express the solution for the azimuthal velocity field in
each region of the fluid domain as

v�/1 ¼ K
ð1
0
AðkÞekzJ1ðkrÞ dk; (42a)

v�/2 ¼ K
ð1
0

BðkÞe�kz þ CðkÞekz
� �

J1ðkrÞ dk; (42b)

v�/3 ¼ K
ð1
0
DðkÞe�kzJ1ðkrÞ dk; (42c)

where AðkÞ; BðkÞ; CðkÞ, and DðkÞ are unknown functions to be
determined from the underlying boundary conditions. It can readily

FIG. 4. Scaled correction factor k1 to the rotational hydrodynamic mobility near a
rigid no-slip disk, Eq. (39), vs the dimensionless number n ¼ h=R plotted on a
semilogarithmic scale. The same curve is shown in the inset on a log –log scale,
where the scaling law n�3 is displayed in the range n	 1 (gray).
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be checked that the regularity condition of a finite velocity field is
inherently satisfied in the whole domain.

B. Boundary conditions and dual integral equations

Requiring the natural continuity of the velocity field at the planes
z ¼ 61=2 yields the expressions of the functions associated with the
intermediate fluid domain in terms of those related to the lower and
upper domains. Specifically,

BðkÞ ¼ 1
2

AðkÞ � DðkÞe�k
� �

cschðkÞ; (43a)

CðkÞ ¼ 1
2

DðkÞ � AðkÞe�k
� �

cschðkÞ; (43b)

with csch denoting the hyperbolic cosecant function, defined as
cschðkÞ ¼ 1=sinhk ¼ 2=ðek � e�kÞ.

By imposing the no-slip boundary condition at the surfaces of the
two disks, we obtain the equations for the inner problem for r<R asð1

0
AðkÞe�k

2J1ðkrÞ dk ¼ wþðrÞ; (44a)ð1
0
DðkÞe�k

2J1ðkrÞ dk ¼ w�ðrÞ; (44b)

where we have defined the radially symmetric functions

w6ðrÞ ¼ �
r

r2 þ h6
1
2

� �2
 !3

2

: (45)

In addition, the continuity of the azimuthal stress vector outside
the regions containing the disk yields the equations for the outer prob-
lem for r>R. Specifically,ð1

0
k AðkÞek

2 � DðkÞe�k
2

� �
cschðkÞJ1ðkrÞ dk ¼ 0; (46a)

ð1
0

k AðkÞe�k
2 � DðkÞek

2

� �
cschðkÞJ1ðkrÞ dk ¼ 0: (46b)

Equations (44) and (46) constitute a system of dual integral equa-
tions for the unknown functions AðkÞ and DðkÞ. For its solution, we
employ the standard solution approach outlined by Sneddon75 and
Copson76 and set

1
2

AðkÞek
2 � DðkÞe�k

2

� �
cschðkÞ ¼ k

1
2f1ðkÞ; (47a)

1
2

AðkÞe�k
2 � DðkÞek

2

� �
cschðkÞ ¼ k

1
2f2ðkÞ; (47b)

where

fiðkÞ ¼
ðR
0
f̂ iðtÞJ12ðktÞ dt; (48)

with f̂ iðtÞ; i 2 f1; 2g are two unknown functions defined on the inter-
val ½0;R� to be subsequently determined. In this way, the equations for
the outer problem are automatically satisfied following the same rea-
soning in Sec. II. Solving Eq. (47) for AðkÞ andDðkÞ yields

AðkÞ ¼ k
1
2 f1ðkÞe

k
2 � f2ðkÞe�

k
2

� �
; (49a)

DðkÞ ¼ k
1
2 f1ðkÞe�

k
2 � f2ðkÞe

k
2

� �
: (49b)

Upon substitution of Eq. (49) into Eq. (44), the inner problem
can be expressed in the formðR

0
K�ðr; tÞf̂ 1ðtÞ � Sðr; tÞf̂ 2ðtÞ
� �

dt ¼ wþðrÞ; (50a)

ðR
0
Sðr; tÞf̂ 1ðtÞ � K�ðr; tÞf̂ 2ðtÞ
� �

dt ¼ w�ðrÞ: (50b)

Here, we have defined the kernel function

Sðr; tÞ ¼ 2
pt

� �1
2

Qðr; 1; tÞ; (51)

whereQ has been defined earlier by Eq. (27). We note that the expres-
sion of the kernel function K� has previously been given by Eq. (19)
and can further be expressed in term ofQ as

K�ðr; tÞ ¼
2
pt

� �1
2

Qðr; 0; tÞ: (52)

Equation (50) represent a system of Fredholm integral equations
of the first kind.91 Due to the complicated expressions of their kernel
functions, exact analytical expressions for the unknown functions
f̂ 1ðtÞ and f̂ 2ðtÞ are far from trivial. Following a computational
approach, we partition the integration intervals ½0;R� intoN subinterv-
als, approximating the integrals by the standard middle Riemann sum.
We then evaluate the two resulting equations at N discrete values of r
that are distributed uniformly over the interval ½0;R�. Inverting the
resulting linear system of 2N independent equations, we obtain accu-
rate values of f̂ 1ðtÞ and f̂ 2ðtÞ at each discretization point.

Inserting the expressions of AðkÞ and DðkÞ stated by Eq. (49)
into Eq. (42), the image solution for the azimuthal flow field every-
where in the fluid domain can be cast in the final compact form

FIG. 5. Slow rotational motion of a point-like particle confined between two coaxially
positioned rigid no-slip disks of identical radius R. The confining disks are located
within the planes z ¼ 6H=2 with H denoting the separation distance between the
parallel disks. The particle is located at a distance h from the origin of the system
of coordinates on the axis of the disks.
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v�/ðr; zÞ ¼ K
ðR
0

2
pt

� �1
2

ĝ ðr; z; tÞ dt; (53)

wherein

ĝ ðr; z; tÞ ¼ Q r; z þ 1
2
; t

� �
f̂ 1ðtÞ � Q r; z � 1

2
; t

� �
f̂ 2ðtÞ:

Notably, the system of Fredholm integral equations stated by Eq.
(50) is recovered when enforcing the no-slip condition at z ¼ 61=2.

Likewise, the definite integral given by Eq. (53) can be discretized
via the middle Riemann sum to yield an approximate solution for the
image velocity field at any point (r, z) in the entire fluid domain.

Figure 6 shows the contour plots of the amplitude of the scaled
azimuthal flow velocity for different positions on the axis of two coax-
ial disks, as obtained analytically and by means of finite-element simu-
lations. Again, the flow velocity is the highest in the near vicinity of the
rotlet and decays faster along the z direction compared to the radial
direction. Moreover, the magnitude is substantially smaller above and
below the disks. As the rotlet approaches one side of the confining
disks, the overall magnitude of the flow field becomes reduced and the
structure becomes more asymmetric. Good agreement is obtained
between the semi-analytical theory and the finite-element simulations.

C. Solution for R! ‘

For completeness, we additionally address by our approach the
solution for the flow field in a gap bounded by two infinitely extended
planar walls located at z ¼ 61=2. To this end, a Hankel transform is
applied on both sides of Eq. (44). We obtain

AðkÞ ¼ ke
k
2 �w
þðkÞ ¼ �ke�kh; (54a)

DðkÞ ¼ ke
k
2 �w
�ðkÞ ¼ �kekh; (54b)

with

�w
6ðkÞ ¼

ð1
0
rw6ðrÞJ1ðkrÞ dr ¼ �e�kð126hÞ; (55)

for jhj < 1=2. Then, it follows from Eq. (43) that the wavenumber-
dependent function associated with the fluid domain bounded by the
planes z ¼ 61=2 is given by

BðkÞ ¼ � k
2

e�kh � e�k 1�hð Þ
� �

cschðkÞ; (56a)

CðkÞ ¼ � k
2

ekh � e�k 1þhð Þð ÞcschðkÞ: (56b)

Finally, the corresponding solution of the image flow field can be
obtained by inserting Eqs. (54) and (56) into Eq. (42). As expected, the
total velocity in the lower and upper regions vanishes in the limit
R!1. Figure 7 illustrates exemplary contour plots of the azimuthal
flow field induced by a rotlet acting between two infinitely extended
no-slip walls for three different positions of the singularity.

D. Hydrodynamic rotational mobility

The scaled correction to the particle rotational mobility in the
point-particle approximation can be obtained from the image velocity
field via Eq. (34). Between two coaxially positioned disks, we alterna-
tively choose to define the scaled correction factor as

k2 ¼ �
Dl
l0

�
a3: (57)

Then, it follows from Eq. (53) that the scaled correction to leading
order can conveniently be expressed as

k2 ¼
1
2

2
p

� �1
2
ðR
0
t�

1
2ðv�ðtÞf̂ 2ðtÞ � vþðtÞf̂ 1ðtÞÞdt; (58)

where we have defined

FIG. 6. Contour plots of the amplitude of the scaled azimuthal velocity as obtained semi-analytically [first row, (a)–(d)] and by means of finite-element simulations [second row,
(e)–(h)]. The results are shown for a rotlet acting at h=H ¼ 0 [(a) and (e)], h=H ¼ 0:1 [(b) and (f)], h=H ¼ 0:2 [(c) and (g)], and h=H ¼ 0:3 [(d) and (h)] on the axis of two
coaxially positioned no-slip disks of radius R¼H (red). Here, the scaled azimuthal velocity is defined as V/ ¼ v/=ðL=ð8pgR2ÞÞ, and the results are presented on a decimal
logarithmic scale.
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v6ðtÞ ¼ Im
1
2

6h� it

� ��2( )
: (59)

Again, an approximate evaluation of the definite integral given by Eq.
(58) can be performed by numerical discretization via the standard
middle Riemann sum.

In the limit of an infinitely extended channel R!1, we obtain

k2 ¼
1
2

ð1
0

k2cschðkÞ cosh 2khð Þ � e�k
� �

dk: (60)

Using computer algebra systems such as Mathematica,92 the latter can
further be expressed as

k2 ¼
1
8

f 3;
1
2
þ h

� �
þ f 3;

1
2
� h

� �
� 2fð3Þ

� �
; (61)

wherein

f s; tð Þ ¼
X

n>m
1
n�sm�t; (62)

denotes the double zeta functions with s> 1 and t 
 0. Moreover, fðsÞ
is the Riemann zeta function with s> 1 defined as fðsÞ ¼

P
n
1 n

�s. In
particular, fð3Þ is an irrational number known as Ap�ery’s constant.93

We quote the famous identity derived by Euler fð3Þ ¼ fð2; 1Þ. In the
mid-plane of the channel, the correction factor reaches its minimum
value k2ðh ¼ 0Þ ¼ 3

2 fð3Þ � 1:8031. Performing a Taylor expansion
near the upper wall around h¼ 1/2, we obtain

k2 ¼
1
8
��3 þ 3

2
fð5Þ�2 þO �4ð Þ; (63)

where � ¼ 1
2� h.

In Fig. 8, we present on a log –log scale the variation of the scaled
correction factor to the rotational hydrodynamic mobility given by Eq.
(58) vs the scaled radius of the coaxially positioned rigid disks for vari-
ous values of the singularity position within the gap between the two
disks. The correction factor increases monotonically upon increasing
the size of the disks because the rotational motion of the confined par-
ticle becomes more restricted. In the limit of infinitely large disks, the
correction factor asymptotically tends to the value given by Eq. (61).

FIG. 7. Contour plots of the amplitude of the scaled azimuthal velocity induced by a
rotlet singularity acting between two infinitely extended no-slip walls. Again, the
scaled azimuthal velocity is defined as V/ ¼ v/=ðL=ð8pgR2ÞÞ.

FIG. 8. Scaled correction factor stated by Eq. (61) vs R/H for various singularity
positions along the axis of two coaxially positioned rigid no-slip disks. Horizontal
dashed lines correspond to the scaled correction factors inside an infinitely
extended channel. The lines shown in gray displays the scaling law k2 � ðR=HÞ3
in the range of small values of R� H (cf. Appendix C for the derivation of this
scaling relation).
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1. Superposition approximation

In the presence of two sufficiently separated confining bound-
aries, the correction to the hydrodynamic mobility can sometimes be
approximated by superimposing the individual contributions arising
from each boundary.94–100 This superposition approximation has orig-
inally been introduced by Oseen101 to estimate the translational hydro-
dynamic mobility in a channel bounded by two plates. In this
approach, the scaled correction factor can be approximated by

kSup2 ¼ R�3 n�3� k1 n�ð Þ þ n�3þ k1 nþð Þ
� �

; (64)

wherein n6 ¼ 1
2 6h
� �

=R with k1 representing the scaled correction
factor near a single disk given by Eq. (39). In particular, near the upper
wall, a Taylor expansion around h¼ 1/2 leads to

kSup2 ¼ 1
8
��3 þ k1 R�1ð Þ þ O �ð Þ: (65)

Figure 9 displays the evolution of the percentage relative error
committed by using Oseen’s superposition approximation. We observe
that the error increases monotonically with the system size and reaches
its maximum value in the limit R!1. In particular, the error attains
its extreme value in the mid-plane of the channel for h¼ 0, where the
MPRE amounts to about 11%. The latter value is remarkably lower
than the one previously obtained for axisymmetric translational motion
along the axis of two coaxially positioned rigid no-slip disks81 for which
the MPRE was found to be as high as 55% in the mid-plane.
Consequently, the superposition approximation can be employed to
estimate the rotational mobility between two confining disks without
significantly compromising the accuracy of the prediction.

IV. CONCLUSIONS

To summarize, we have presented an analytical and semi-
analytical theory to quantify the low-Reynolds-number flow induced
by a point-torque singularity acting near a single disk or between two

coaxially positioned rigid disks, respectively, satisfying no-slip bound-
ary conditions on the surfaces of the disks. The rotlet is assumed to be
located on the axis of symmetry of the disks with the torque directed
along that axis. We have formulated the solution of the hydrodynamic
equations as mixed-boundary-value problems, which we subsequently
reduced into systems of dual integral equations with Bessel-function
kernels. On the one hand, we have demonstrated that, near a single
disk, the resulting integral equation can appropriately be transformed
into a classical Abel integral equation that admits a unique solution.
On the other hand, we have shown that, between two coaxially posi-
tioned disks, a system of two Fredholm integral equations of the first
kind arises. For its solution, we have approximated the integral by
standard middle Riemann sums reducing the dual integral equations
into a linear system of equations amenable to immediate inversion
using standard numerical approaches.

Moreover, we have made use of the derived solution of the flow
problems to probe the effect of confinement on the rotational hydro-
dynamic mobility of a small colloidal particle through which the tor-
que is exerted on the fluid. More importantly, we have assessed the
accuracy and reliability of Oseen’s superposition approximation,
which is commonly employed to predict the rotational mobility in
confined geometries. We have found that the maximum percentage
relative error of Oseen’s approximation is only about 11% in the mid-
plane of the channel, suggesting that this simplistic approximation
could generally be employed to estimate the rotational mobility
between two finite-sized disks.

The systems addressed in the present study may find useful appli-
cations in various biologically and technologically relevant processes.
On the one hand, the solution of the flow problem for a rotlet singular-
ity acting near a finite-sized disk may be employed in the context of
micromixing, as a small-scale analog to a magnetic stir bar mixer
driven by an external rotating magnetic field. On the other hand, the
solution inside a gap bounded by two coaxially positioned disks may
prove to be useful, for instance, in the modeling of ionic transport in
small-scale capacitors.

The present results may be extended to further explore the rota-
tional motion of a spherical particle of finite size, with a radius compa-
rable to the radii of the confining disks. For that purpose, the solution
of the flow problem could, in principle, be formulated in bipolar coor-
dinates. Another possible extension of the present work could be to
address the general problem of rotational motion near one or two no-
slip disks for arbitrary positioning of the singularity and arbitrary ori-
entation of the torque. These steps could be the subject of possible
future investigations.
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APPENDIX A: SOLUTION OF THE INTEGRAL
EQUATION (20)

In this Appendix, we show that the solution of the resulting
integral equation (20) can be cast in the form of solution of a

FIG. 9. Percentage relative error of the scaled correction factor of the rotational
hydrodynamic mobility between two coaxially positioned rigid no-slip disks as
obtained using the simplistic superposition approximation stated by Eq. (64) in com-
parison with the exact formula given by Eq. (58).
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classical Abel integral equation. The general form of an Abel inte-
gral equation can be presented as102ðx

0

/ðsÞ
x � sð Þ

1
2

ds ¼ gðxÞ; (A1)

the solution of which is given by

/ðxÞ ¼ 1
p
d
dx

ðx
0

gðuÞ
x � uð Þ

1
2

du: (A2)

Using the changes of variables s ¼ t2 and x ¼ r2, Eq. (20) can
be written as ðx

0

s�
1
4 x̂ s

1
2ð Þ

x � sð Þ
1
2

ds ¼ 2pð Þ
1
2x

1
2f x

1
2ð Þ: (A3)

By identification with Eq. (A1), we get /ðsÞ ¼ s�
1
4 x̂ s

1
2ð Þ and

gðxÞ ¼ ð2pÞ
1
2x

1
2f x

1
2ð Þ. Using the solution form given by Eq. (A2), we

then obtain

x�
1
4x̂ x

1
2ð Þ ¼ 2

p

� �1
2 d
dx

ðx
0

u
1
2f u

1
2ð Þ

x � uð Þ
1
2

du: (A4)

Next, applying the change of variable r ¼ x
1
2, the latter equa-

tion can readily be expressed as

x̂ðrÞ ¼ 1
2

2
pr

� �1
2 d
dr

ðr2
0

u
1
2f u

1
2ð Þ

r2 � uð Þ
1
2

du: (A5)

Finally, the change of variable v ¼ u
1
2 yields

x̂ðrÞ ¼ 2
pr

� �1
2 d
dr

ðr
0

v2f ðvÞ
r2 � v2ð Þ

1
2

dv; (A6)

which exactly corresponds to Eq. (21) rewriting r¼ t.

APPENDIX B: COMPARISON WITH NUMERICAL
CALCULATIONS USING THE FINITE-ELEMENT
METHOD

To confirm our analytical solutions, we perform numerical
simulations using the finite-element method. Formulated in cylin-
drical coordinates, v ¼ ðvr ; vh; vzÞ, we can take advantage of the
fact that the solution is constant in angular direction, @hv ¼ 0. This
reduces the problem to a two-dimensional equation formulated in
the r/z-plane for the angular component vh only. Since there is also
no coupling to the pressure field, the problem reduces to a scalar
one. In the following, we illustrate our approach for the two-disk
geometry and denote by

X ¼ ðð0;RmaxÞ � ð�Zmax;ZmaxÞÞn
ðð0;RÞ � fH=2g [ ð0;RÞ � f�H=2gÞ; (B1)

the numerical domain, artificially restricted to 0 < r < Rmax and
�Zmax < z < Zmax . To limit the impact of the artificial outer
boundaries, we set Rmax ¼ Zmax ¼ 6:625. We could not identify a
significant effect by further extending these limits.

The variational formulation of the problem is then given by103

ð
X
gr

@vh

@r
@/
@r
þ @vh

@z
@/
@z
þ 1

r
vh/

� �
dr dz ¼ Fð/Þ; (B2)

8/ 2 H1
0ðX;DÞ, where we denote by H1

0ðX;DÞ the space of square
integrable functions with weak derivatives that are zero on the two
disks D ¼ ð0;RÞ � f�H=2g [ ð0;RÞ � fH=2g. On the right-hand
side of Eq. (B2), the problem is driven by a Dirac form as

Fð/Þ ¼ /ðrhÞ; (B3)

centered in a point close to the z-axis rh ¼ ðr0; zhÞ, zh ¼ 1=128.
The equation is discretized with quadratic finite-elements

using piecewise quadratic elements on a quadrilateral mesh104 fea-
turing about 1 750 000 unknowns. All computations are performed
in the finite-element software library Gascoigne 3D.105

APPENDIX C: MOBILITY BETWEEN TWO DISKS
IN THE LIMIT R� 1

In the range of small values of R� 1, we attempt to find an
approximate expression of the scaled correction factor. For t � 1,
it follows from Eqs. (19) and (51) that K�ðtÞ � t

1
2 and SðtÞ � t�

1
2,

respectively. Therefore, to ensure the convergence of the system
of integral equations (50) at the lower limit t¼ 0, we require that
the unknown functions f̂ 1ðtÞ and f̂ 2ðtÞ scale (at least) as t

1
2 as

t ! 0.
We now use the ansatz f̂ 1ðtÞ ¼ a1t

1
2 and f̂ 2ðtÞ ¼ a2t

1
2, where a1

and a2 are two real numbers to be subsequently determined.
Inserting these expressions into Eq. (50) evaluated at r ¼ bR, with
b 2 ð0; 1Þ, performing analytically the integration, expanding the
resulting expressions into Taylor series of R, and solving for a1 and
a2 yield

a1 ¼ �
p
2

� �1
2 bR

1
2
þ h

� �3 ; a2 ¼
p
2

� �1
2 bR

1
2
� h

� �3 : (C1)

Next, by substituting the above expressions of f̂ 1ðtÞ and f̂ 2ðtÞ
into Eq. (58), evaluating the integral analytically and performing a
series expansion about R¼ 0, we obtain

k2 ’
R2

2
2
p

� �1
2 a2

1
2
� h

� �3 �
a1

1
2
þ h

� �3

0
B@

1
CA: (C2)

Finally, by inserting the expressions of a1 and a2 stated by Eq.
(C1) into Eq. (C2), the correction factor in the range R� 1 can be
obtained as

k2 ’
bR3

2
1
2
� h

� ��6
þ 1

2
þ h

� ��6 !
: (C3)

By setting b ¼ 5=6, the latter approximate expression is found to be
in good agreement with the numerical results.
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Chapter 4

Conclusion

This dissertation explored a wide range of problems in active matter physics.
Ranging from effects of memory – be it caused by its particle inertia or by the
viscoelastic response of the dispersion medium in the case of non-Newtonian fluids
– to complex orientation-dependent propulsion strategies. Using among others the
theory of active Brownian motion, we characterized the stochastic dynamics of
self-propelled particles in terms of averaged quantities and dynamic correlation
functions. It is crucial to understand how the physical properties of the particle
and its environment affect its individual dynamics before examining more complex
collective behavior. In the following, we provide concise summaries of the findings
from each contribution constituting this dissertation:

First, in P1, we introduced a new method to impose complex anisotropic motility
behavior on ABPs: Using a feedback scheme, we programmed the propulsion velocity
of magnetic dumbells as a function of the particles’ orientation. Accompanying,
we developed a theoretical framework that explains the dynamic features of the
particles entirely by deriving an analytic expression for the n-th translational
moment for arbitrary orientation-dependent motility. We studied the motion on
short, intermediate, and long time scales and found fair agreement between our
theoretical predictions and experimental data.

Next, in P2, we studied a self-propelled colloid in a viscoelastic medium using
generalized Langevin equations. In the model, the temporal properties of the
dispersion medium are incorporated in memory kernels for translation and rota-
tion. For arbitrary memory, we presented analytical solutions for several dynamic
correlations and evaluated them explicitly in the prominent case of a Maxwell
fluid. This model provides a simple framework to interpret particle trajectories
in complex environments and starting point for further research adding external
potential, inertia, and many-particle interactions.

The motion of self-propelled colloids in viscoelastic media shares considerable
similarities with mesoscopic active particles subject to inertial effects. From
increased orientational correlation (i.e., higher persistence) to delay between self-
propulsion or velocity and the particles’ orientation. In P3, we studied the behavior
of mesoscopic active particles, both small enough to experience fluctuations and
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large enough to display inertial effects. In particular, we accounted for the case of
time-dependent inertia and discussed various specific setups - including a Langevin-
rocket model. The optimal strategy of a Langevin-rocket for achieving maximal
reach undergoes a discontinuous change from a complete, extended mass ejection
over time to an instantaneous ejection of a mass fraction as rotational noise increases.
Experiments on macroscopic robots, living particles, or self-propelled mesoscopic
objects in low-viscosity media, such as complex plasma, can be used to test our
results.
Subsequently, in P4, we investigated a macroscopic system comprising self-

propelled vibrated granular particles on a striated substrate that exhibits orientation-
dependent motility. From the theoretical side, we combined aspects from P1 and
P3: proposing an extension of the active Brownian motion model that incorporates
inertial effects and orientation-dependent motility. The persistence length, time,
and long-time diffusion are important control-parameter for collective phenomena
and can be predicted by our model. Thus, our model can be used to optimize driving
parameters for navigation in anisotropic environments and provides a baseline for
future research on swarms of self-propelled particles.
Both the experimental investigation in P1 and P4 relied on the measurement

of physical properties like the self-propulsion velocity or the rotational diffusion
coefficient. InP5, we compared different fitting methods to extract those parameters
by using the theoretical expression for the mean-squared displacement (MSD)
of an ABP. We address heteroscedasticity and the effect of hidden correlations
when using overlapping displacements. We recommend using bootstrapping to
construct confidence intervals and avoiding the truncated form of the MSD equation.
Generally, we found that log transforming the data before fitting works better than
other methods and is easy to use. However, our results only apply to ideal, non-
interacting ABP models and do not account for factors such as torque, anisotropic
shape, or experimental errors, which should be considered with care in experimental
design and data analysis.
In the next two contributions, we examined the active Ornstein-Uhlenbeck particle

(AOUP) model, also commonly employed to depict the stochastic behavior of self-
propelled particles. Although the ABP model is arguably the more prominent,
the AOUP model has significant similarities while being mathematically more
accessible. To clarify similarities and differences, we propose, in P6, the Parental
Active Model (PAM) that incorporates both models and interpolates between
them. The ABP and AOUP model share the same defining features of active
matter, like an exponential orientation correlation and a shared velocity scale. The
characterizing difference between them is the distribution of the self-propulsion
velocity, which can be changed by adjusting one parameter within the PAM: going
from Gaussian-distributed for AOUPs to a ring-shaped distribution for ABPs.
However, both ABPs and AOUPs are idealized, and PAM provides a more realistic
approach as it includes fluctuations in both velocity modulus and direction.
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Advancing in P7, we extended the AOUP model to include both translational
and rotational inertia. Our inertial AOUP model goes beyond previous models by
incorporating a second timescale and accurately matching both small- and long-time
regimes with the inertial active Brownian particle (ABP) model. We compared
velocity correlations, delay function, and mean-square displacement to confirm the
agreement between the two models. The effect of increasing rotational inertia is
well captured by the inertial AOUP model, making it a suitable alternative for
analytical predictions of dynamical correlations. This Gaussian model of inertial
active matter offers a platform for future studies and a potential starting point for
effective equilibrium theories and colored noise approximations.
In the last part of this thesis, we studied hydrodynamic flow fields in the vicinity

of boundaries and their induced hydrodynamic interaction on active and passive
particles nearby. In P8, we derived analytic expressions for the flow field induced
by a Stokeslet and force dipole singularity inside a liquid drop surrounded by
fluid. We explored the flow structure with and without homogeneously distributed
surfactant on the surface and calculated the effective force exerted on the viscous
drop. Our results also include the hydrodynamic correction to translational and
rotational velocities of microswimmers moving inside. This theoretical description
advances our understanding of hydrodynamic interactions in complex environments
and provides a minimal model for interpreting the motion of active or passive
particles in colloidal suspensions and microfluidic diagnostic devices.
In P9 and P10, we studied the Stokes flow from an axisymmetric stokeslet and

rotlet singularity between two equal-radius circular disks, respectively. In both
cases, we transformed the solution of the flow field into integral equations and
used standard numerical approaches to solve them. Our semi-analytic solutions
exhibit excellent conformity with corresponding finite-element simulations. We
also provided an expression for the translational and rotational mobility that
quantifies the effect of the confining plates on a small particle axially moving or
rotating. These systems could have applications in micromixing and the design of
microparticle-based sensors.
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[43] K. Przibram, Über die ungeordnete Bewegung niederer Tiere. II, Archiv für En-
twicklungsmechanik der Organismen 43, 20 (1917).

[44] R. Fürth, Die Brownsche Bewegung bei Berücksichtigung einer Persistenz der
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M. Kröger, and L. Isa, Reconfigurable artificial microswimmers with internal
feedback, Nat. Commun. 12, 4762 (2021).

[66] W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St. Angelo, Y. Cao, T. E.
Mallouk, P. E. Lammert, and V. H. Crespi, Catalytic nanomotors: autonomous
movement of striped nanorods, J. Am. Chem. Soc. 126, 13424 (2004).

[67] J. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh, and R. Golesta-
nian, Self-motile colloidal particles: From directed propulsion to random walk, Phys.
Rev. Lett. 99, 048102 (2007).
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[69] B. Hagen, S. van Teeffelen, and H. Löwen, Non–gaussian behaviour of a self-propelled
particle on a substrate, Condens Matter Phys. 12, 725 (2009).

[70] B. ten Hagen, S. van Teeffelen, and H. Löwen, Brownian motion of a self-propelled
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[90] É. Fodor, C. Nardini, M. E. Cates, J. Tailleur, P. Visco, and F. van Wijland, How
far from equilibrium is active matter?, Phys. Rev. Lett. 117, 038103 (2016).

[91] D. Mandal, K. Klymko, and M. R. DeWeese, Entropy production and fluctuation
theorems for active matter, Phys. Rev. Lett. 119, 258001 (2017).

[92] P. Pietzonka and U. Seifert, Entropy production of active particles and for particles
in active baths, J. Phys. A Math. Gen. 51, 01LT01 (2018).

[93] L. Dabelow, S. Bo, and R. Eichhorn, Irreversibility in active matter systems:
Fluctuation theorem and mutual information, Phys. Rev. X 9, 021009 (2019).

[94] J. O’Byrne, Y. Kafri, J. Tailleur, and F. van Wijland, Time irreversibility in active
matter, from micro to macro, Nat. Rev. Phys. 4, 167 (2022).

[95] L. F. Cugliandolo, The effective temperature, J. Phys. A: Math. Theor. 44, 483001
(2011).

[96] A. P. Solon, Y. Fily, A. Baskaran, M. E. Cates, Y. Kafri, M. Kardar, and J. Tailleur,
Pressure is not a state function for generic active fluids, Nat. Phys. 11, 673 (2015).

[97] G. Szamel, Self-propelled particle in an external potential: Existence of an effective
temperature, Phys. Rev. E 90, 012111 (2014).

[98] C. Maggi, U. M. B. Marconi, N. Gnan, and R. Di Leonardo, Multidimensional
stationary probability distribution for interacting active particles, Sci. Rep. 5, 10742
(2015).

[99] C. Maggi, M. Paoluzzi, N. Pellicciotta, A. Lepore, L. Angelani, and R. Di Leonardo,
Generalized energy equipartition in harmonic oscillators driven by active baths,
Phys. Rev. Lett. 113, 238303 (2014).

[100] C. Maggi, M. Paoluzzi, L. Angelani, and R. Di Leonardo, Memory-less response
and violation of the fluctuation-dissipation theorem in colloids suspended in an
active bath, Sci. Rep. 7, 17588 (2017).

[101] S. Chaki and R. Chakrabarti, Effects of active fluctuations on energetics of a
colloidal particle: Superdiffusion, dissipation and entropy production, Physica A
530, 121574 (2019).

[102] K. Goswami, Work fluctuations in a generalized gaussian active bath, Physica A
566, 125609 (2021).

[103] X. Zheng, B. ten Hagen, A. Kaiser, M. Wu, H. Cui, Z. Silber-Li, and H. Löwen,
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[124] F. Kümmel, B. ten Hagen, R. Wittkowski, I. Buttinoni, R. Eichhorn, G. Volpe,
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in active chiral fluids, Sci. Adv. 7, eabf8998 (2021).
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