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Abstract

Proceeding digitization leads to a growing amount of computationally processible and
storable information. In fact, at no time the amount of data was as huge as it is
today during the Digital Revolution and far beyond the volume, which is manually
manageable. Visual data is one of the most important among all data types because of
its unsophisticated interpretability for humans and high information density. However,
there is also a major drawback. Working on visual data is computationally expensive.
The progressive development of the hardware in recent years, especially the graphic
units, as well as its affordability allow complex analysis in terms of visual inspection.
Consequentially, automation and quality assurance of processes get feasible based on
the image data interpretation.

This work deals with the following question: How can image data be com-
putationally processed, analyzed and interpreted to allow automation of a
conventionally manual process and assure its quality? To answer this ques-
tion, we consider three independent image source areas: medical imaging, underwater
photographs and natural images. The showcased selection presents its strengths in
different image characteristics representative for particular data. The medical imaging,
consisting of CT- and MRI-recordings, is presented as 3D images and therefore contain
depth information while being standardized to specific scanners. The underwater pho-
tographs compose a large-scale collection of images belonging to a coral reef monitoring
project around the world and naturally differing in quality regarding sharpness and
color balance. The natural images are taken from an ongoing sales process by rather
primitive hardware and therefore contain several differences regarding visual obstacles
and lower resolution as well as image quality in general.

Due to different data characteristics, diverse approaches are required. During
examining the research question, we tackle a series of challenging classification and
object detection tasks. As a result, in this thesis we present multiple novel machine
learning and deep learning algorithms. Concerning medical imaging, we investigate
severity scoring for lung tuberculosis in CT-recording and compare traditional feature
engineering and deep learning. Moreover, we introduce a unique algorithm for the
orientation estimation of prostate cancer patients in MRI-recordings. Apart from the
medical application field, we present two competitive approaches for maritime inventory
monitoring. Furthermore, we propose a novel approach for efficient counting and
classification in retail applications. All research results presented in this work can be
assigned to the field of AI and have the main focus on computer vision.

Overall, our approaches on various real-world data show convincing results regarding
the main research question and show the potentials as well as limitations in applying com-
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puter vision to solve quality assurance of processes and automation tasks. Furthermore,
we propose several algorithms which are at least competitive to the state-state-of-the-art
or even are state-of-the-art in the field of deep learning and computer vision.



Zusammenfassung

Die fortschreitende Digitalisierung führt zu einer wachsenden Menge an maschinell verar-
beitbaren und speicherbaren Informationen. Die tatsächliche Datenmenge war zu keiner
Zeit so groß wie heute während der digitalen Revolution. Die Tendenz bleibt steigend.
Dabei ist deren Menge bereits heute größer als jene, die manuell verarbeitbar wäre. Unter
allen dabei entstandenen Datenarten gehören Bilddaten aufgrund ihrer vorteilhaften
Eigenschaften wie zum Beispiel der einfachen Interpretierbarkeit für Menschen und der
hohen Informationsdichte, zu den wichtigsten aller Datenarten. Dennoch sind gerade
diese sehr rechenlastig und erfordern für die Verarbeitung entsprechende Hardware. Die
fortschreitende Entwicklung dieser in den letzten Jahren, insbesondere der grafischen
Einheiten sowie ihre Erschwinglichkeit, nicht nur für große Rechenzentren, sondern auch
für einfache Nutzende, schaffen Grundlage für komplexe visuelle Analysen und Inspek-
tionen. Damit werden Automatisierung und Qualitätssicherung von Prozessen, die auf
der Bilddateninterpretation basieren, realisierbar. Folglich beschäftigt sich diese Arbeit
mit folgender Frage: Wie lassen sich Bilddaten rechnergestützt verarbeiten,
analysieren und interpretieren, um eine Automatisierung von traditionell
manuell durchgeführten Prozessen und deren Qualität zu sichern? Um diese
Frage beantworten zu können, werden drei unabhängige Bildquellenbereiche betrachtet:
medizinische Bilder, Unterwasseraufnahmen und gewöhnliche 2D-Aufnahmen. Die
Auswahl weißt unterschiedliche charakteristische Bildeigenschaften vor, die für diese
Datentypen repräsentativ sind. Die medizinische Datengrundlage setzt sich aus CT-
und MRT-Bildern, die als 3D Aufnahmen vorliegen, zusammen und besitzt deshalb
eine Tiefeninformation, die für die entsprechenden Aufnahmegeräte (Scanner) stan-
dardisiert ist. Die Unterwasserbilder bilden eine weitere Kategorie. Der vorliegende
Datensatz setzt sich zusammen aus hochauflösenden Bildern von Korallenriffen, die auf
der ganzen Welt im Rahmen eines Bestandsüberwachungsprojekts gesammelt wurden
und sich dementsprechend in der Qualität hinsichtlich der Schärfe und der Farbbal-
ance stark unterschieden. Die Sammlung der gewöhnlichen 2D-Bilder stammt aus
dem laufenden Verkaufsprozess unterschiedlicher Supermärkte. Die Bilder wurden
durch eine kostengünstige Hardware aufgenommen und verfügen über eine geringere
Auflösung. Zusätzlich besteht eine Reihe von Schwierigkeiten in Bezug auf visuelle
Hindernisse. Aufgrund unterschiedlicher Eigenschaften, die die verschiedenen Bildtypen
mit sich bringen, sind in Bezug auf die Fragestellung unterschiedliche Herangehensweisen
erforderlich. Während der Untersuchung der Forschungsfrage gehen wir eine Reihe
herausfordernder Klassifikations- und Objekterkennungsaufgaben unter Berücksichti-
gung dieser Nuancen an. Die Lösungen dieser Aufgaben stellen wir in dieser Arbeit in
Form von mehreren neuartigen Maschine Learning und Deep Learning Algorithmen
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vor. Auf den medizinischen Daten der Radiologie, wurde der Frage nachgegangen,
wie sich automatisch der Schweregrad der Lungentuberkulose anhand von CT-Bildern
ermitteln lässt. Dabei wurde traditionelles Feature Engineering und Deep Learning
gegenübergestellt. Darüber hinaus führen wir einen einzigartigen Algorithmus zur
Bestimmung der Orientierung von MRT-Aufnahmen von an Prostatakrebs erkrankten
Patienten ein. Neben dem medizinischen Anwendungsbereich werden zwei State-of-
the-Art Ansätze für die Bestandsüberwachung von Korallen vorgestellt. Außerdem
präsentieren wir einen neuartigen Ansatz für effizientes Zählen und Klassifizieren für
den Einsatz im Einzelhandel. Alle in dieser Arbeit vorgestellten Forschungsergebnisse
lassen sich dem Bereich der KI zuordnen und haben den Schwerpunkt Computer Vision.
Insgesamt zeigen unsere Ansätze auf den verschiedenen Datensätzen aus der realen Welt
im Hinblick auf die Hauptforschungsfrage überzeugende Ergebnisse und decken sowohl
die Potenziale als auch die Grenzen der Verwendung von Computer Vision zu Zwecken
der Qualitätssicherung und der Automatisierung von Prozessen auf. Darüber hinaus
stellen wir mehrere Algorithmen vor, die entweder konkurrenzfähig zu den aktuellen
State-of-the-Art Verfahren im Bereich von Deep Learning und Computer Vision sind
oder sogar selbst State-of-the-Art Verfahren bilden.
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1
Introduction

“Just as electricity transformed almost everything 100 years ago, today I actually
have a hard time thinking of an industry that I don’t think AI (Artificial

Intelligence) will transform in the next several years”
— Andrew Ng (A. Ng, 2017)

The Digital Revolution (also called the Third Industrial Revolution) has lasted since
its beginning in the middle of the 20th century continuously. One can expect that the
trend will continue and that we will be confronted with its development, as well as
concomitant chances in the future. One of its largest fields is the Digitization, which
means the process of transforming information into a digital format1. Among a large
number of data types that this process made available, digital image is one of the most
fundamental. Primarily, its most important advantage is the ability to picture the
current as-is state, as it is perceived by humans. Coupled with the computational-
friendly raster representation of images along with the possibility of lossless storage,
the field of digital image processing (DIP) was created. According to Castleman
(1996), this topic concerns the manipulation of images by computers. Furthermore,
DIP involves diverse essential processes. These processes use images as input and
provide either images or attributes as output. The first case includes methods such
as image enhancement, image acquisition, image restoration, colour image processing,
compression and wavelets, among others. The second case includes methods such as
morphological processing, segmentation, description, representation and recognition.
The processed input information can be passed on for further operations such as digital
image analysis, which addresses the description and recognition of the image content.
A methodology that simulates human vision and is therefore called computer vision
(CV)(Pitas, 2000). Apart from simple digital imaging, complex imaging techniques such
as MRI and CT provide an even higher information density and open up completely
new possibilities for digital analysis. Fast capturing, the availability of low-priced
hardware as well as the ability to store and share digital images lead to an increasing

1https://www.collinsdictionary.com/dictionary/english/digitize

1
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volume of data and provide a reliable foundation for a set of technologies that can be
summarized under the heading “Industry 4.0”. The term describes mostly IT-driven
changes in primarily but not exclusively business-related applications. For instance,
high innovation capability, faster decision-making procedures and resource efficiency are
some of its targets. Therefore increasing automation and inbound product and quality
control is indispensable (Lasi et al., 2014).

For visual tasks, CV is the driving force behind computer-assisted diagnosis, process
monitoring and quality assurance, as well as automation. Especially the latest achieve-
ments in object detection (OD) enable the localization of objects in larger numbers
and with an ever-increasing variety of objects (Zou et al., 2019b). The monitoring of
presence, condition and amount of relevant objects is the mainstay of a large number of
automation of processes and quality assurance tasks. Both are strongly interrelated.
To be more specific, processes possess specific characteristics that can be measured,
analyzed, improved and monitored. Even though processes that run automatically need
processes that control the output quality according to predefined specifications.

A wide range of technologies are associated with the Industry 4.0 concept: cloud
services, Big Data, digital automation with sensors, analysis of virtual models and many
more (Dalenogare et al., 2018). From the perspective of computer science, Big Data is
particularly interesting: the concept is defined as the information asset that includes
a high volume, variety and velocity and therefore requires special technology and
analytical methods to be transformed into value (De Mauro et al., 2016). This value can
go beyond understanding the data. It can be used to automate visual processes and to
assure the quality of ongoing processes with computer-aided systems, which is our main
aim. In this thesis, we mainly deal with the following question: How can image data
be computationally processed, analyzed and interpreted to allow automation
of a conventionally manual process and assure its quality? This question is
examined below in three different and at first glance to a great extent independent
areas. The three areas are: medical imaging, maritime inventory monitoring and retail
applications. What these areas have in common is, on the one hand the kind of data
basis they share, to be specific - images. On the other hand, they share the main focus
the data is used for. Responsible and costly processes that traditionally usually are
done by humans, which often is error-prone, should be handled computer-aided. In
such a manner, the quality of the systems is expected to be improved, while reducing
the error caused by humans.

The first section is structured as follows: In Chapter 1.1, the research field and main
ideas of Quality Assurance(QA) are introduced. Then, in Chapter 1.2, we introduce
the detailed research questions partitioned to the core application scenarios that are
handled in this thesis. In Chapter 1.3 we present the contributions to the given research
area. The introduction is finalized, giving an overview of this thesis in Chapter 1.4.

1.1 Automation and Quality Assurance

Each series of actions that is taken in order to achieve a result can be defined as a
process (Process definition, Cambridge 2022). Therefore different types of processes
exist, for instance sales processes (Oakes, 1990), research processes (Bouma et al., 2004)
and diagnostic processes (Crombie, 1963) are model examples. In accordance with
“Industry 4.0” and the possibilities it offers, a large number of until then manually
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handled processes need to be automated. Many processes are either to be solved based
on visual information or visually controllable. Human resources may be appointed
for visual inspection (VI) and quality control (QC). However, human labor can be
expensive, slow and error-prone, especially compared to machine labor. A satisfying
result of a process needs to be a measurable unit. In modern applications, quality and
processing time are two desired essentials. While the acceptance of the processing time
depends on its application field and may be of secondary importance, quality is always
a key factor. The question therefore arises, what is quality? Beforehand: there does
not seem to be any agreement; hence the term is interpreted differently in relation to
diverse topics. In accordance with (Shewfelt, 1999), quality is defined as a series of
attributes chosen based on precision and accuracy of measurements. These attributes
depend on the particular context and must be therefore selected individually. Despite
the affirming statement of (Shewfelt, 1999), which conveys that “internal validity” is
provided by precision and accuracy of measurement to any scientific study, a number of
other metrics may be meaningful.
Especially quality in the medical sense, also referred to as quality of care, is a vague term
that can be interpreted differently according to personal needs and individual context.
According to (Campbell et al., 2000), there is no widely accepted definition of terms
such as quality or quality of care. It is assumed that the quality of care is measured
by several factors, the availability of effective care with the aim of covering health
benefits in relation to personal needs (Campbell et al., 2000). Preceding definitions
emphasize very different aspects of quality of care. The agreement is to be found in two
dimensions: effectiveness and efficiency (Donabedian, 1966; Maxwell, 1992; Association
et al., 1992; D. S. O’Leary and M. R. O’Leary, 1992). Both properties are subject to
positive sentiment, but just like QC, they leave much room for interpretation. The
effectiveness and efficiency can only be measured in the context of a specific task and
correspond to the specified metrics. Finally, these metrics monitor the quality and allow
a comparison between the results and the expectations. The desire to ensure the best
possible performance of a process gives rise to the desire for Quality Assurance. The
online community for developers, architects and executives (TechTarget) defines QA as
any systematic process of determining whether a product or service meets predefined
requirements. Starting in the manufacturing industry, QA has since spread to the
majority of industries, software development is no exemption (QA Definition 2022).
QA and quality improvement (QI) go hand-in-hand in some cases, notably in medical
care. While QA focuses on correcting errors in patients care quality, QI tends to focus
on possibilities to improve quality by changing systems. QA relies on guidelines and
standards. QI concentrates on a comparison to statistics against which the improvement
is meant to be made (Schyve and Prevost, 1990).
Contrarily to medical application fields, QA for systems based on natural imaging
provides, after launch of a reliable system, QI of underlying processes inherently.
Automation and QA of processes share the commonality that both can be handled using
CV. Consequently, their quality is only as good as the performance of the Machine
Learning models behind them. These are monitored using firmly defined metrics and
therefore monitor the quality of the processes. Further details on evaluation metrics
that are chosen for this work are presented in Chapter 2.2.
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1.2 Current Research Questions

The main research question this work deals with can be summarized as follows: How
can image data be computationally processed, analyzed and interpreted to
allow automation of a conventionally manual process and assure its quality?
In order to answer this question, we chose several representative research areas with
different requirements and needs. For this reason, this work is divided into three
corresponding chapters: Medical Imaging QA, Maritime Inventory Monitoring and
Retail Applications QA. Each of these fields has its own demands with reference to
image data and the particular objectives. The latter depend on requirements that need
to be fulfilled to achieve QA or automation. Therefore we define more detailed research
questions (RQ) below.

In contrast to some related previous research, our studies provide a higher complexity
of real-world data we use, as well as a wider spectrum of our investigations which consider
different categories of images, origins and thematic context. Previous studies as well as
related work are subject of the discussion in the corresponding chapters of this thesis.

1.2.1 Medical Imaging QA
The diagnosis of lung tuberculosis is made by experienced radiologists using tomographic
images. Classification of disease severity is often done with the goal of an individualized
treatment strategy based on the symptoms identified. This is referred to as severity
scoring. Consequently, we want to deal with the following questions:

RQ1: Is an automatic severity scoring of lung tuberculosis from CT images feasible?
The considered question contains the following aspects:

• Which features may be calculated using image data only?

• Which features are the most relevant?

• Is it possible to generate a report on the basis of 3D image data automatically?

• Which potential do neural networks offer for automatic report generation
and severity scoring?

RQ2: How can sagittal rotation in MRI of prostate cancer patients be estimated using
CV to monitor the quality of recordings?
The considered question contains the following aspects:

• Which sections of the recordings are particularly important for determining
the rotation angle?

• Which neural network components out of a set of potentially meaningful and
in which order contribute to a reliable performance?

1.2.2 Maritime Inventory Monitoring
Monitoring coral reefs is necessary to be able to prevent the effects of global warming and
ecological destruction. For this purpose, large scale images of stocks must be recorded
and compared at regular intervals. Therefore, annotation of recordings is required.
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In theory, object detection is ideal for this task, since manual processing is almost
impossible. However, one encounters a number of challenges. These include: High
resolution and thus large sizes of input data, naturally unbalanced object distribution,
fluctuating recording quality in terms of sharpness, color balance and many more. This
raises the following question:

RQ3: Is an automatic localization and annotation of corals in large scale images feasible?

The considered question contains the following aspects:

• Can neural networks benefit from traditional feature engineering on large
scale images?

• Do specific difficulties and limitations of OD occur in relation to large scale
underwater images?

• Does an improvement of the image quality have a direct impact on the
performance of OD?

• How can a fair data split in terms of train and validation splits be generated
for highly unbalanced data?

• Does an ensemble of different algorithmic solutions provide more reliability?

1.2.3 Retail Applications QA

The results of previous RQs cannot be easily transferred to areas in which the time
component plays an important role. One example of this is retail, which is limited in
terms of time and hardware because of financial reasons. For that reason, we want to
address the following questions:

RQ4: How can the quality of the sales process be ensured by counting and classifying
barcode-free goods, such as fruits and vegetables, at local markets using CV?

The considered question contains the following aspects:

• Under which condition is the task an object detection task?

• How to manage object detection on budget hardware?

• Is it possible to avoid manual annotation work completely?

Furthermore, we consider alternative solutions and investigate for OD the following
questions:

• How can the annotation effort be reduced and to what extent?

• Do representative super classes exist?

• Which accuracy value can be achieved using pseudo labels?
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Research
question

Research
topic Chapter Publication

RQ1 Medical
Imaging QA Chapter 3.1 Bogomasov et al. (2018)

RQ1 Medical
Imaging QA Chapter 3.2 Bogomasov et al. (2019a)

RQ2 Medical
Imaging QA Chapter 3.3 Bogomasov et al. (2021)

RQ3
Maritime
Inventory

Monitoring
Chapter 4.1 Bogomasov et al. (2019b)

RQ3
Maritime
Inventory

Monitoring
Chapter 4.2 Bogomasov et al. (2020)

RQ4
Retail

Applications
QA

Chapter 5 Bogomasov and Conrad (2021)

Table 1.1: Research questions and contributions

1.3 Contributions

This thesis contains a mixture of required ML and CV fundamentals, published peer-
reviewed papers, which were presented at international conferences and workshops, as
well as additions to the published research. A schematic overview with regard to the
RQ from the previous chapter is shown in Table 1.1.

Additionally, we published another work, methodically related but without a direct
contribution to the listed research questions:

• In Bogomasov (2016), we examined how different sky conditions in images of
mountainous area can be classified in order to select a proper segmentation
algorithm for the present conditions.

• In Kerlin et al. (2022), we searched for ways to improve image quality in underwater
images to reduce the impact of color casts. Furthermore, we investigated the
impact of the backbone depth using faster R-CNN. Additionally, we tackled
erratic annotations by proposing a merging strategy for predictions based on
Non-maximum Suppression.

• In Bogomasov et al. (2023), we presented an application which is able to run
inference on custom data for models created using the most popular machine
learning frameworks (e.g. TensorFlow, PyTorch), visualize the output and evaluate
it based on numerous provided filtering options. One of the major advances of
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the contributed application is that all operations run locally without leaving the
working space. All these features allow detailed analysis and evaluation of the
performance of customly constructed DL models which is a key to understanding
the strength and weaknesses of each OD model. The shared application is free-to-
use and particularly useful while working with licensed image data.

1.4 Outline of this Thesis

This thesis follows the following structure: Having presented the main question and
related research questions in Chapter 1, Chapter 2 provides an overview over theoretical
concepts and methods which form the basis of this work. The second Chapter is finalized
defining required evaluation metrics for object detection, classification, regression and
counting, as they build the methodical core of automation and QA strategies presented
in this dissertation. Accordingly to the defined RQs, the thesis is split in the further
course into QA in medical imaging and QA in natural imaging. In Chapter 3, we
distinguish the problem of false diagnosis resulting in incorrect treatment of patients
by medical experts. The special focus is on radiological imaging procedures. In the
same chapter, we present approaches that are capable of automatic report generation
and severity scoring of lung tuberculosis in CT. Furthermore, we provide an approach
for automatic orientation estimation in MRI. Aside from medical application fields, we
present two models for maritime inventory monitoring (Chapter 4). Chapter 5 presents
an approach we contributed that differs from previous methods in its specific efficiency
to meet the needs of the retail sector, which are also discussed in this chapter. Finally,
Chapter 6 discusses the results and draws a conclusion, followed by an outlook.



8 1. INTRODUCTION



2
Fundamentals

“It is a capital mistake to theorize before one has data.”
— Sherlock Holmes

This chapter introduces fundamentals that form the core of this thesis. Since this
work focuses on automation and quality assurance, the necessary fundamentals may be
found in machine learning. For this reason, these field is briefly described first. Because
the entire work focuses on handling visual information, the corresponding terms such
as computer vision, visual inspection, visual data storage and image file formats are
explained subsequently.

2.1 Machine Learning

ML has been defined as a branch of artificial intelligence (AI) that aims to perform
predefined tasks using intelligent software. The backbone of such software is built
by statistical learning methods, which form the developed machine intelligence. ML
requires properly selected data to be able to learn. The data is mainly stored in a
database (Mohammed et al., 2016). ML can additionally be seen as a set of methods
for automated analysis of structure in data. These methods can be divided into two
categories: supervised and unsupervised (Fisher et al., 2013). Both require properly
prepared data.

In terms of supervised learning, we can assume the data having the following form:

D = {(xi, yi), i = 1, . . . , n}
with xi ∈ X is a data sample and yi ∈ Y its corresponding label.

In terms of unsupervised learning, the data is unlabeled:

D = {xi ∈ Rm, i = 1, . . . , n;n,m ∈ N}
Furthermore, we call machine learning the process of deriving optimal parameters

of the model M from data D, s. t. a trained model can be defined as: M : X → Y .

9
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Figure 2.1: Model building procedure. Inspired by (Brazdil et al., 2008)

Supervised learning can be distinguished into either a classification task or a regression
task. While in the case of classification, the target label yi ∈ {1, . . . , C} is an element of
a finite class, the target label in the case of regression is yi ∈ Rq with q ∈ N and can be
continuous. In both cases the aim is M(xi) = yi which we call prediction. Unsupervised
learning does not need target labels. It completely relies on understanding the data
patterns itself. Commonly the aim of ML is called generalization which means the
mapping of x ∈ X s.t. (x, y) ̸∈ D for any x ∈ X to some y ∈ Y . The challenge is
to avoid phenomena such as overfitting and underfitting. The first occurs when the
training examples are memorized but no true generalization is reached. The second
occurs in case when a ML model has an insufficient capacity or the training procedure
is not fully completed (Bashir et al., 2020). The ability to learn is a key concept to the
entire field of artificial intelligence (AI). Another strand of ML is called reinforcement
learning (RL). It has a different approach behind. The idea behind RL follows an
approach, which involves a learner interaction. The learner hat to discover which actions
provide the most reward. The actions may not only affect the immediate reward but
all the subsequent actions and rewards. Both characteristics - the trial-and-error and
the delayed reward are the most distinctive features of RL (Sutton and Barto, 2018).
Since RL is not part of this work, any deeper explanation will not be given (for a useful
overview of RL, see (Y. Li, 2017)).

2.1.1 Data Mining
The process of automatically extracting valuable information from data sets is described
as data mining (DM) (P.-N. Tan et al., 2016). The extracted information may be
descriptive or predictive. While descriptive information provides understanding of
patterns and structure of data, predictive information provides a prediction of one or
more variables. Although the terms DM and ML are often used as synonyms, because
of their common similarities, the idea behind DM is rather to learn structural patterns
or behaviors from data, whereas ML is about independent machine operation (Fisher
et al., 2013). Fig. 2.1 shows a traditional data mining procedure adopted to any kind
of image data. Always starting from a formulation of a question, the image domain
must be understood and data must be pre-selected, i.e. it must be divided into disjoint
subsets. Subsequently, after preprocessing, the prepared data is passed to a model
for training. Finally, the trained model is able to provide further understanding of
the data, answer a posed question, or independently solve a given task if it meets the
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Figure 2.2: Data Science. Inspired by (Goodfellow et al., 2016)

predefined evaluation criteria. The special feature in this illustration is that there is no
differentiation made between the different kinds of data science types. For that reason,
it works well for both ML and DM.

2.1.2 Computer Vision

Computer vision (CV) is one of the essential fields of AI. One of the fundamental
definitions denotes CV as a process that interprets an image and relates the result of
this analysis to some action (Bisiani, 1987). This definition is quite powerful, because
it assigns to a technical system the capability to see, understand and act.

Starting in the early 1970s at computer science (CS) impelling universities such as
Massachusetts Institute of Technology, Carnegie Mellon University and Stanford by the
early pioneers of AI, CV quickly received considerable attention. From the beginning,
the key objective has been set to teaching the computer to depict the image content.
Unlike the related digital image processing, which focuses on processing digital images
by means of computer (Gonzalez and Woods, 2008) and aims to enhance images for
further processing by vision algorithms (Parker, 2010), CV was meant to capture the
three-dimensional world from a natural image and be used to fully understand the
scene. In some way, CV intersects the field of digital image analysis, which is also about
“extracting sense” from image data. The main difference lies in the level of “sense”.
There is also an overlap between image processing and image analysis. For example,
recognition of regions can be categorized in a sense as both. Nevertheless, these three
fields are not always clearly separable. Probably, a clear separation is also not necessary,
since each of these research fields has been in the interest of research continuously.
From its early days in universities until the early 2000s, CV dealt with a variety of
topics such as edge and contour detection, quantitative image and scene analysis, image
segmentation, and a whole host of other topics, with methods becoming more accurate
respectively approaching the ground truth over the years (Feng et al., 2019). Convincing
results on the whole range of topics summoned then a large number of opportunities
for MV applications.

By implication, these fields partly belong to artificial intelligence (AI) that itself
has the objective to emulate human intelligence (Gonzalez and Woods, 2008). AI is
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a small part of a huge field of data science (DS). DS includes subject areas such as
machine learning and deep learning (see Fig. 2.2). All of these fields, especially CV,
offer research-relevant approaches that could be used for automation and QA.

Generally, most CV algorithms tasks can be mapped to one of the three main CV
tasks.

• Object recognition

• Object detection

• Scene understanding

While object recognition (OR) determines the presence of a specific object in an image,
object detection (OD) goes beyond classification and appoints the location of a specific
object of a known class. Both OR and OD are fundamental for Chapters 3.1, 4 and
5. In order to give a more complete “picture”, scene understanding needs also to be
mentioned. This field is about subdividing an image into meaningful segments (Feng
et al., 2019) and is not part of this thesis.

CV offers a great variety of applications a reliable computer aided support, to name
a few: vehicle guidance, automated inspection, analysis of remotely sensed images and
bio-metric measurement (Davies, 2012). Monitoring and control surveillance should also
not stay unmentioned. By way of example, automated recognition of traffic signs has
been an important application of CV in cars for a long time and still is a sought-after
feature for prospective buyers.

In most cases, a rough guiding principle of the feasibility of each CV solution, in the
case of OR and OD, is the question of whether the human eye can see and recognize
the object of interest. If it is the case, the computer is supposed to do the same and
needs to be taught. In what way must the computer be trained to recognize the object
of interest? - is the question that needs to be solved and hence the question that the
research is concerned with. Particularly challenging and thus significant are scenarios
in which an untrained eye either is not able to see and recognize the object of interest
immediately or is not able to recognize it at all. This applies in particular to images
that presuppose subject-specific knowledge, coming commonly from medical or other
scientific sources. This dissertation deals with these kinds of questions in different
application fields with the aim to simulate expertise by the computing unit.

2.1.3 Visual Inspection

A direct reference to the application of computer vision and at the same time the bridge
to industrial and other business-oriented applications can be found in visual inspection
(VI). Since the 1970s, automated VI, meaning “inspecting by looking”, has been imbedded
not merely in the industrial sector with a growth of double-digit percentage yearly
(Beyerer et al., 2015). Beyerer et al. define the typical tasks of VI as follows:

• Object and pattern recognition for completeness

• Position and orientation

• Persistence of dimensions
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Figure 2.3: RGB color space cube

• Surface and texture condition

• Measurement of visual properties

• Identification of materials and surfaces

• Detection of defects

Davies (2012) defined the objective of automated visual inspection as the comparison
of individual manufactured items with the preestablished standard with a view to the
maintenance of quality. In order to extend the definition and reduce the limitation
to manufacturing, we define a visual inspection as a process that aims to locate and
compare individual objects to the expected ground truth with a view to the maintenance
of quality.

The same author (Davies, 2012) separated VI into three stages:

• Image acquisition

• Object location

• Object measurement and scrutiny

In order to obtain a complete picture, the results after the stages need to be evaluated
on real world data, paying special attention to influencing factors like: noise, occlusions,
optical distortions, nonuniform lighting, shadows, reflections and rotations.

In general, VI being part of a visual inspection process relies on a number of
technological methodologies. For the most part, CV and machine vision (MV). The
often confused terms are clearly distinguishable. MV is associated with, but distinct
from CV as well as the related fields: image processing and AI. However, it is less of a
scientific topic, but rather a subset of systems engineering. As defined, it necessarily
has to involve mechanical handling or other machine-related interaction (Batchelor and
Waltz, 2001).

2.1.4 Visual Data Storage
Computationally, the storage and all arithmetic operations on image data in the
computer are realized as matrix operations. The modern Graphics Processing Units
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(GPUs) offer great parallelism for matrix-based operations, high memory bandwidth
and support for single- as well as double-precision IEEE floating arithmetic (Che et al.,
2008). They are many times faster than equally modern Central Processing Units
(CPUs) on image data. Accordingly, CUDA GPUs are fundamental to computation for
all contributions presented in this thesis.

Let Mn×m×c be a set of all n ×m × c matrices with entries in Z where n ∈ N ̸=0,
m ∈ N ̸=0 and c ∈ {1, 2, 3}. Because of the way visual data is stored in memory, we
chose the following formulation for RGB images that describes it as it is:

Irgb ∈Mn×m×c({z ∈ Z|0 ≤ z ≤ 255})
where n ×m is the size of a 2 dimensional image with x < n and y < m and c = 3
which is the number of channels of the image. Although several mathematical models
describe the way colors can be represented numerically (Joblove and Greenberg, 1978),
the most common color space a.k.a. color model is RGB. The RGB color model, as
visualized in Fig. 2.3, is an additive model, which means that the values of the three
channels that stand for red, green and blue are added together to produce a new color.
Each pixel value p is therefore represented as:

prgb(x, y) =



c1
c2
c3




We thus write:
Irgb = (prgb(x, y))x<n,y<m

The three bytes per pixel form a space of the size of 23∗8, which results in a number
of presentable colors of ≈ 16.78 millions. Pixels form the smallest unit of a digital
image stored as a two-dimensional graphic. In the case of a three-dimensional image,
a pixel is called voxel since it represents a volume. RGB images establish the basis
for Chapters 4 and 5 that include work on natural photographs. Medical imaging,
specifically MRI and CT images contain depth information furthermore they provide
various meta information, which will be addressed in the subsequent course of this work.

The image material of the medical image data, which visually is a 3-dimensional
image I3D, can formally be reduced to a 4-dimensional matrix for the purpose of this
work.

I3D ∈Mn×m×d×c({z ∈ R})
where d is the depth dimension, representing the amount of slices in the 3D recording.

Two additional image types are essential to our work: grayscale and binary. Grayscale
is a frequently used color space in the area of information retrieval and data mining
in images and a common transformation method in the sense of preprocessing. It
represents the intensities of an image, ranging from black to white.

Numerous works deal with the extraction of distinctive features on basis of natural
images transformed to grayscale (Schulz-Mirbach, 1995; Tuytelaars and Mikolajczyk,
2008; Ojala et al., 2002; Forsyth and Ponce, 2011). Any transformation involves the
risk of information loss in the first step. Sometimes such a reduction can lead to
an increase of information in another place. In the case of true color images, for
example, a transformation to grayscale is logically related to loss of color information.
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However, grayscale can provide a better distinction between the background and edges.
Furthermore, it can minimize computational costs and complexity compared to edge
detection performed on color images. Under ideal circumstances, the detected edges
may outline relevant objects within an image and thus provide the information basis
for subsequent steps such as localization, quantification and further analysis.

Further is
Igray ∈Mn×m×1({z ∈ Z|0 ≤ z ≤ 255})})

a grayscale image with pgray(x, y) = g accordingly.
In literature, there is a number of conceivable approaches for transformation from

RGB to grayscale (Cadík, 2008). The most common methods are Intensity, which
assumes an equal weighting of the three channels, as well as Luminance (Jack, 2011),
which can be calculated using the following formula: g = 0.2125 ∗ c1 + 0.7154 ∗ c2 +
0.0721 ∗ c3

The transformation is carried out component-wise. Via the additive merging of the
channel, certain image properties can be strengthened or weakened to the same extent.
Theoretically, a weighted mean of the three channels in any proportion is imaginable.

Luminance has the advantage that it is designed to match human brightness
perception and was proven to be a good choice for texture recognition (Kanan and
Cottrell, 2012). Additionally, the method is computationally inexpensive because of its
linear time complexity.

A further simplification of the image can be achieved via binarization. As a result,
an image is created that consists only of the two colors black and white. One way of
binarization is thresholding, where binarization is an operation f : {z ∈ Z|0 ≤ z ≤
255} → {0, 1} with

f(pgray(x, y)) =

{
1, if pgray(x, y) > c
0, else

where c is the threshold that separates back- and foreground. Various methods
for the determination of an optimal value for segmentation have been proposed (Dong
and G. Yu, 2004; Moallem and Razmjooy, 2012), starting with the pioneer algorithm
proposed by Otsu (1979). In this work, binary images are used as segmentation masks
in Chapter 3.1 to restrict the region of interest to the area of the lungs and to increase
both the speed and the accuracy of the presented algorithms.

2.1.5 Image File Formats

Great importance can be attached to a deep understanding of the way visual material
is stored: a large number of image formats to hold the information has been developed
over the last decades (Wiggins et al., 2001). The most commonly used for 2D-data
are Joint Photographic Experts Group (JPEG), Tagged Image File Format (TIFF),
Portable Network Graphics (PNG), BMP file format (Bitmap), Graphics Interchange
Format (GIF), Encapsulated Postscript (Eps), complemented by a series of raw image
file formats such as raw, cr2 or nef. Covering over 70% of all image formats used on 10
millions websites, PNG and JPEG were the most frequently used (Technology Usage
Statistics 2022). Thus, JPEG being the most commonly applied format is used in
all chapters of this work that handle with photographs. Certainly, its most assertive
driving force is memory efficiency which is realized by compression. Although JPEG, for
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example as JPEG 2000 standard, is capable of lossless compression, such approaches are
not noteworthy beneficial in most cases and therefore not convenient. The most present
JPEG images are compressed with discrete cosine transform (DCT) (Miano, 1999).
Different compression techniques have in common that they take advantage of patterns
within an image with the aim to find an equivalent representation that allocates less
space. Considering the fact that the human eye has difficulty recognizing the difference
between compressed and uncompressed images, and due to the great similarity of
colors, compressed data offers a great advantage, not only in storage or sharing, but
also in image processing and analysis in particular. Thus, the way in which image
data is stored is the first important step towards efficiency. In spite of all mentioned
advantages, lossy compression, as such occurs during quantization of DCT coefficients,
always means to a greater or lesser extent an information loss and can produce artifacts.
While for most applications the threshold between the content of information and
storage space, compression still is a good idea, for a few others it is not. Especially
it is not recommended for compressing text and drawings as well as editing images
repeatedly (Miano, 1999). Even for medical imaging, there is a high acceptance of the
use of compression by American College of Radiology (ACR) and Canadian Association
of Radiologists (CAR) standards (Koff and Shulman, 2006). In the case of medical
images, two main groups of formats exist. The first aim to standardize the image by
corresponding diagnostic modalities. The largest representative of this group, which
has been widely accepted in a clinical context, is Digital Imaging and Communications
in Medicine (Dicom) (Mildenberger et al., 2002). The second is intended to simplify
post-processing analysis. It includes: MINC (MINC File Format 2022), Analyze (Robb
et al., 1989) and Neuroimaging Informatics Technology Initiative (Nifti)(NIfTI File
Format 2022). Along with visual information, descriptive information is stored inside of
images. In simple formats at least resolution, pixel depth and the title provide a brief
information about the origin of the file and its characteristics. More complex formats
such as those used in medical imaging may contain deeper insights. Quantitative
analysis in a clinical context requires image-related and image-specific information to
be instantly available. This creates the need for specialized image formats. Commonly
used formats for MRI and CT images are Dicom and Nifti. Each Nifti file consists of raw
voxel intensities in Hounsfield Units (HU) (Hounsfield, 1973). Furthermore, the image
contains the corresponding meta information i.a. slice thickness, image dimensions
and voxel size in physical units. Each of these properties has an impact on the quality
of the recording and requires great attention. Especially the latter may have a large
impact on diagnosis accuracy along with the clinical decision making (Cooper et al.,
2007; Shafiq-ul-Hassan et al., 2017). Dicom supports JPEG. JPEG2000 is a further
development of JPEG which offers superior results to established image compression
standards (Rabbani and Joshi, 2002) but is rather used in DICOM images than in
natural photographs. While Dicom is limited to signed and unsigned integers as data
types, Nifti additionally supports floats (Larobina and Murino, 2014). This means a
great advantage for normalization but also all kinds of post-processing operations as
well as the subsequent processing using DL. Because these show a beneficial effect on
data scaled to the range -1 and 1. For this reason, a conversion might be advisable.
The conversion from Dicom to Nifti is possible but not trivial (X. Li et al., 2016). The
other way round, it is straightforward (Whitcher et al., 2011).

The part of this thesis, which is concerned with medical imaging, operates on Nifti,
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as such were provided by the challenge organization, if no further meta information is
required, and Dicom otherwise.

2.1.6 Minimum Bounding Box
Object localization (OL) implies the need to save the position of each object in a memory
efficient way. An approximate and still commonly accepted solution is the Minimum
bounding box (BB). The idea behind BB is to enclose completely an existing object
within an image in such a manner that its area is minimal, which leads to a unique and
translational invariant result. BBs offer several advantageous properties:

• Linear computational costs

• Fast comparison using intersection metrics

• Efficient storage with only two spacial points and class label information, if needed

(Sidlauskas et al., 2018)
BB is not the most precise form of object representation. A few other, more

accurate formulations have been proposed, which include: Rotated minimum bounding
box (RMRB), Minimum bounding circle (MBC), Minimum bounding ellipse (MBE),
Convex hull (CH) and Minimum bounding n-corner (NC) (Brinkhoff et al., 1993).
Apart from, in some cases, more detailed delimitation, these representations are only
interesting for selective fields of application. Additionally, they are more complex and
less efficient in terms of the previously mentioned properties. Since none of the topics
included in this thesis deal with the area, the work in the following is based on the
conservative MBB variant.

Accordingly to the chosen notation, a bounding box can be defined as a 4-tuple
B = (x1, y1, x2, y2) in the case of 2D. Furthermore, we define B̄ = {(x, y)|x1 ≤ x ≤
x2, y1 ≤ y ≤ y2} as all the points (x, y) that lie inside of a bounding box B. A
formalization for the 3D case is also possible but will be left out since it is not relevant to
this thesis. While OL expects only the objects to be localized, the aim of object detection
is not only to localize the object, but also to recognize it. Therefore, object detection
can be seen as the power set P of bounding boxes containing single class information
c. Thus, f : Mn×m×3 → P({(ς, B̂)|0 ≤ ς ≤ 1, B̂ ∈ R4 × N+

0 }) and Irgb 7→ f(Irgb).
Multi-class mapping is also possible, but not part of this thesis. Each of the bounding
boxes corresponds to a specific class c, so that B̂ = (x1, y1, x2, y2, c). Furthermore, a
distinction between ground truth BB and output prediction BB, generated by an ML
model, has to be made. While a ground truth BB is a tuple of 5 elements, prediction
BB perceives an additional element called confidence score ς. Hereafter ς is referred
to as confidence. This score is usually used for filtering to ensure the resulting output
object to have a certain minimum score.

Therefore in terms of OD, we can assume the data to have the following form:

D = {(Ik, {(ςkl , B̂k
l )|1 ≤ l ≤ nk})|1 ≤ k ≤ K,nk ∈ N}

where Ik ∈ X is an image, B̂k
l is the l-th BB belonging to image k and ςkl ∈ {ς ∈ R |

0 ≤ ς ≤ 1} its corresponding confidence.
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2.2 Evaluation Measures

The quality of an ML-based assurance system can only be as good as the performance of
the ML processes behind it. The evaluation of the performance, i.e. bench-marking of the
degree to which each model is able to generalize, requires quality measures that enable a
numerical comparison. Since this work covers several categories classification, regression
and object detection, we will introduce measures for each category respectively.

2.2.1 Classification Measures

A wide range of metrics was introduced and compared to evaluate classification results
(Ferri et al., 2009). Four cases can arise for each data sample during a classification
process:

• True positive (TP) - A sample has been correctly classified to belong to the
positive class

• False positive (FP) - A sample has been falsely classified to belong to the positive
class

• True negative (TN) - A sample has been correctly classified to belong to the
negative class

• False negative (FN) - A sample has been falsely classified to belong to the negative
class

These prediction results create space for various metrics. In the following we consider
the most commonly used:

Precision =
#TP

#TP +#FP
Recall =

#TP

#TP +#FN

Accuracy =
#TP +#TN

#TP +#FN +#FP +#TN
F1 =

2 ∗ Pr ∗Rec

Pr +Rec

(2.1)

In general, none of these metrics considered alone is sufficient for evaluating a
classification process. While Precision(Pr) shows how many objects classified to a
certain class C indeed belong to this label, Recall(Rec) indicates a ratio of how many
objects of class C are classified as C correctly. The disadvantage of Pr is that it does
not provide any information about how many samples are not labeled correctly, whereas
Rec does not take into account how many samples of other classes were falsely labeled
as C. Accuracy(Acc) behaves differently. It reflects the ratio of correctly classified data
samples in the sum of all samples. Next to all of these F1 reveals as a harmonic mean
between Pr and Rec. It is also worth mentioning that besides F1, further weightings
exist. However, these are less common and more suitable for context-related questions,
where one of the two measures is more important. In fact, individual metrics complement
each other. In order to achieve reliable evidence, a combination of measures is required.



2.2. EVALUATION MEASURES 19

2.2.2 Regression Measures

In contrast to classification, regression is a function that maps input data onto a
continuous space. For this reason, a categorical comparison, as presented in the case
of classification, is not suitable for the evaluation. Rather, a distance measurement
needs to be calculated, to evaluate the prediction quality. Two measurements are
widely used, absolute mean error (MAE) and the root mean square error (RMSE).
For every (xi, yi) ∈ D, let ŷi = M(xi) be the prediction for xi made by model M ,
then RMSE =

√
( 1
n
)
∑n

i=1(yi − ŷi)2. Where yi ∈ D denotes the ground-truth value.
To be listed accordingly, MAE = ( 1

n
)
∑n

i=1 |yi − ŷi|. The range of possible values for
both MAE and RMSE is not bounded above. Therefore, both results should not be
considered by themselves, but only in connection with the data distribution. A typical
way is to consider the spread of the values (i.e. standard deviation (SD) and variation

(Var)). While V ar = ( 1
n
)

n∑

i=1

(ŷi−µ)2, standard deviation is its root value SD =
√
V AR.

In addition, boundary values min
x∈D

f(x) and max
x∈D

f(x) are often given in order to face
the outliers.

2.2.3 Object Detection Measures

The question of a proper bench-marking of an object detection algorithm is a more
complex topic that was discussed over a longer period of time. Already as early as the
beginning of the 2000s, metrics such as Area-based Recall and Area-based Precision,
Average Object Area Recall, Average Detected Box Area Precision and also Localized
Output Box Count Precision have been introduced. These metrics promised a meaningful
evaluation (Mariano et al., 2002). Metrics, based on Precision and Recall, were later on
further developed by implicating of the overlap of objects including bounding boxes.

Common objects in context (COCO), one of the most important data sets for OD
ever published as part of an object detection challenge, included an extensive selection
of twelve evaluation metrics, made explicitly for the evaluation of the performance
of OD (T.-Y. Lin et al., 2014a). The primary challenge metric was the Averange
Precision (AP), which was already used in the equally well-known “Pascal Visual Object
Classes Challenge” (VOC) (Everingham et al., 2010a). This metric has the advantage
of taking into account both the class match information and the perceptual overlap (i.e.
Intersection over Union (IoU)) of the corresponding BBs as well. As a result, only BBs
that overlap over a larger area than a certain accepted threshold τ and also belong to
the same class have a positive impact on the metric. Only BBs that fit this precondition
are counted as TP. For two BB B and B′ let B̄ and B̄′ be the corresponding sets of
points that lie in B and B′, respectively. Then the overlapping area of two BB with
the same class is calculated as IoU>τ (B̄, B̄′) = area(B̄ ∩ B̄′)

area(B̄ ∪ B̄′) . Two essentials Pr and Rec
need to be calculated in the first step. Subsequently, both components have to be put
in relation to each other and thus form a curve (PrRec), where recall is mapped to
the x-axis and precision to the y-axis. Comparable to F1-Measure, the PrRec curve
is obtained to make an easy observation of the trade-off between the two metrics.
This curve is designed as an interpolational approximation of precision Printerpolated.
The interpolation is calculated over eleven equally distanced recall levels taking the
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maximum precision measured for which the corresponding recall rises at least to the
value of Rec. Respectively, Printerpolated(Rec) = max

R̂ec:R̂ec≥Rec

Pr(R̂ec), where Pr(R̂ec) is

the value of precision at recall level R̂ec. The area enclosed by the curve, is called AP

and can be calculated as follows: AP = 1
11
∗

∑

Rec∈{0,0.1,...,1}

Printerpolated(Rec) (Everingham

et al., 2010b). While for classification tasks the average over all classes is calculated and
thus called mAP, no distinction is usually made in the case of OD. Later on, a more
precise approximation including a 101-point interpolation has been used by COCO
challenge organization (COCO evaluatation metrics, 2020). However, the version that
is never omitted is the PASCAL VOC (mAP0.5). The index indicates the least required
overlap of the bounding boxes to be counted. The standard is 0.5, which corresponds
to an overlap of 50%. Additionally, in some cases, mAP0 is also expected. It indicates
great results, if the detection successfully matches the class name, but without the
consideration of the corresponding position.

2.3 Deep Learning

Deep learning is a conglomerate of computational models containing multiple processing
layers that allow learning data representations with multiple layers of abstraction
(Voulodimos et al., 2018). This property offered in recent years an advantage for different
fields of AI applications, natural language processing (Otter et al., 2020), clustering
(Min et al., 2018), transfer learning (Weiss et al., 2016) and visual understanding
(Y. Guo et al., 2016), just to name a few. Various vision tasks, e.g. such as image
classification (Rawat and Z. Wang, 2017), object detection (Jiao et al., 2019a), image
retrieval (W. Chen et al., 2021), human pose estimation (Zheng et al., 2020; Yucheng
Chen et al., 2020) and semantic segmentation (Garcia-Garcia et al., 2018; Y. Guo
et al., 2018; Lateef and Ruichek, 2019) are the driving force behind the development of
architectures of all kinds. CV-related architectures can be roughly divided into three
major categories: Convolutional Neural Networks (CNNs), the “Boltzmann family”
including Deep Belief Networks and Deep Boltzmann Machines as well as the Stacked
Autoencoders (Voulodimos et al., 2018). Due to the fact that a substantial part of
this thesis concerns with CNNs, a brief explanation of their origin and theoretical
background together with their prevalent buildup will be provided in the following.

It has been over 60 years since the idea for the first neural network was presented.
Back then, the underlying idea presented a probabilistic model for information storage
and organization in the brain called Perceptron (Rosenblatt, 1958). At that time, the
presented theory set a milestone and inspired the development of NN architectures with
different constructions and designs but consisting of just a few hidden layers, while the
compatibility remained a main issue. To this day, the research strongly coupled with
technological development, provided architectures of growing complexity. Considering
architectures for object detection in the course of time, a steady increasing of depth can
be observed. Going from five layers (LeCun et al., 1989), over twelve layers in AlexNet
(Krizhevsky et al., 2012), up to nineteen layers in VGG (Simonyan and Zisserman,
2014), twenty-two layers in GoogleNet (Szegedy et al., 2015), the depth increased up
to 152 layers in ResNet (K. He et al., 2016). The currently deepest network counts
1200 layers (Huang et al., 2016). A development that is exciting merely from a research
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Figure 2.4: Schematical NN with one neuron

point of view, since a meaningful application is rarely found due to a lack of sufficient
resources.

To understand the theory behind the complex models, we have to start with
very simple ones. Fig. 2.4 visualises a NN with just one neuron. It takes an input
vector X = [x1, . . . , xn]

T and solves the function f : X → Y that can be defined as:
f(x) = σ(b+

∑n
i=1(xi ∗wi)) = y, where W = [w1, . . . , wn]

T is the corresponding weights
that are optimized during training and b is the bias term which is also learned for each
neuron and allows to shift the activation output. In total, the given scheme provides
n trainable parameter and additionally one tunable. Accordingly, to the construction
idea, σ is the so-called activation function. An essential requirement for a NN is, similar
to previously discussed ML, the ability to learn. Activation functions have a central
role in improving the learning process of a NN and help avoiding characteristic learning
problems such as the vanishing gradient problem (VGP) - more on this later. Renouncing
activation functions would lead to a limitation of the NN to learn only a linear relation
between input and the expected output (Apicella et al., 2021). The most commonly
used activation function remains Rectified Linear Unit (ReLU), ReLU(x) = max{x, 0}.
Its popularity can be traced back to its simplicity and efficiency. If a restriction in
terms of the range of value is reasonable, frequently σ(x) = 1/(1 + 1/ex) and tanh(x)
are taken use of (Bingham et al., 2020). These activation functions are generic and are
used regardless of the specifics of the individual application fields.

On the side, Glorot et al. (2011) proved that NNs with rectifier nonlinearities instead
of widely used sigmoids perform much greater on image recognition tasks. Additionally,
NNs using sigmoidal activation functions can also suffer from VGP, which may happen
if lower layers gradients of a NN are almost 0, because higher layer values are nearly
-1 or 1, depending on the valid range (Maas et al., 2013; Nwankpa et al., 2018). In
general, VGP slows down the optimization convergence or, in the worst case, leads to
a weak local minimum. Whenever a unit, e.g. a neuron, is not activated, its gradient
is 0 which is not ideal since in an environment where the optimization is performed
based on gradient, a unit might never be activated. Therefore, a saturated unit, if not
activated, gets a value close to zero but not a hard zero. In this particular case, we
speak of leaky rectifier linear units (lReLU) (Maas et al., 2013). Surprisingly, leaky
rectifiers perform almost identically to standard rectifiers. To give an example, both
have been compared on CIFAR (Xu et al., 2015) and LVCSR (Maas et al., 2013). In the
further course of the research, a series of modifications has been introduced. However,
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Figure 2.5: Backpropagation in a neural network with two hidden layers

ReLU remains the most approved.
The brief explanation above serves as an example of NN’s functionality and general

structure. For an extended overview of prevalent activation functions, the survey of
Dube (2021) is recommended.

Going one step further, a simple NN can be extended and gain depth. Fig. 2.5
shows an enlarged fully connected NN with two hidden layers. Usually, hidden layers
consist of neurons along with any thinkable operations that take previous layers’ input
and apply commonly a linear transformation followed by overturning linearity. The aim
of intermediate layers is to convert input information into "something" the subsequent
layers are able to use. A more precise specification depends on the construction and the
field of application. However, the internal values are learned during the training while
the loss is minimized. The loss value is minimized using optimization algorithms, usually
referred to as optimizer. Among optimization algorithms, gradient descent optimization
(GDO) is one of the most popular. It is also considered as “black box optimization”
(Ruder, 2016). The convenience of not having to comprehend the lapse in detail is
probably one of the major reasons for its success. The idea behind gradient descent
optimization is the minimization of the objective function Θ(P ), where P ∈ Rd is a
set of the model parameters. The minimization is realized by updating the parameter
set in the reverse direction of the gradient of the function ∇PΘ(P ) in relation to
the parameters. Each update is performed with a certain step-size also referred to
as learning rate λ. The choice of step size is essential. If λ is chosen too large, a
global minimum might be skipped. On the downside, if λ is too small, the training
is lengthened unnecessarily and might end at a local minimum. According to (Ruder,
2016), GDO can be roughly divided into three categories: batch gradient descent (Géron,
2020), mini-batch gradient descent (Khirirat et al., 2017) and the most established
stochastic gradient descent (SGD) (Robbins and Monro, 1951; Kiefer and Wolfowitz,
1952). These in turn have their own successors and optimizations. Gradient is calculated
via backpropagation by calculating the gradient of the loss function and updating the
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weights. The backpropagation (Rumelhart et al., 1986) algorithm is divided into two
logical steps: forward pass and backward pass. The first pass denotes the computation
run from the input all the way to the output and is finalized by calculating the loss
based on the output value compared to the ground truth information. The second pass
goes all the way back through the computation graph, while partial derivatives with
respect to the parameter terms are computed (Dube, 2021). From a practical point of
view, the loss is a default optimization metric. During training, a combination of several
metrics is common. Especially OD benefits from a combination of several values, since
a differentiation of the individual components of the NN gets feasible. For this purpose,
we select the metrics presented in chapter 2.2 and expand these individually if required
regarding to application scenario. Taking a closer look at SGD shows that after each
step a recalculation is provided on each training sample (xi, yi) over a predefined learning
rate λ by bringing to update P = P − λ ∗ ∇PΘ(P )(P, (xi, yi)) (Ruder, 2016). Thus,
the learning rate has a multiplicative effect on the optimization. However, a perfectly
suitable value is difficult to choose in case no insight information is available. An ongoing
trend is not to keep the learning rate constant, but to reduce it dynamically while
setting an initially high value as proposed by Zeiler (2012). Even though dynamically
changing learning rate improves the training time, it still does not provide from passing
the local optima. Qian (1999) contributed the idea to help the NN out during training
from a local minimum using a function termed momentum. The idea behind momentum
is to multiply a non-negative floating-point number m to the previously calculated
weight w. In closing it takes the form: ∆wt = m∆wt−1 + (−∇PΘ(P )). By the addition
of the previous time step value multiplied by the momentum, momentum smoothes
out variations along different directions. Still another major problem may occur. Even
though input data may be normalized, standardized or both, the output of the activation
function may become increasingly large. If during optimization a specific neuron weight
becomes an outrageously large value compared to other neurons, it may have a cascading
impact on the successive neurons and cause instability. Preventing huge values may be
handled using a strategy named batch normalization (Ioffe and Szegedy, 2015). The
strategy follows the idea to include two arbitrary trainable parameters γ(i), β(i) for each
activation α(i). Therefore, the output value y(i) is scaled and shifted y(i) = γ(i)α̂(i) + β(i)

(Ioffe and Szegedy, 2015). Thereby, normalization is included in the gradient process
per batch basis and reduces instability during training.

Data is processed in batches. The batch size is a parameter that can affect both
the duration of the training and the generalization as well. Therefore, the ideal size is
addressed in many publications (G. Zhang et al., 2019; T. Wang et al., 2020; Smith et al.,
2017; Kandel and Castelli, 2020). A major insight is that no general recommendation
can be given; rather, the size depends on many factors, such as the area of application,
interaction with other components of the system, but also and for most the image
properties. However, the following applies with restrictions: increasing batch size
provides a speed-up during training but may lead to a diminishing return (Golmant
et al., 2018; Yuxin Chen and Krause, 2013), though increasing is not always viable.
The availability of hardware and its properties, especially for image data, is a factor
that quickly sets a limit. F. He et al. (2019) highlighted two important rules for the
training of DL models. Firstly, during employing SGD to train DL networks, the best
generalization is achieved when the batch size is not too large and the learning rate
too small. Secondly, the ability of a DL model to generalize is negatively correlated
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Figure 2.6: Max pooling operation with a stride of 2 and a 2 × 2 filter visualised on
exemplary data

Figure 2.7: Schematic visualization of a convolution operation computed on an 6× 5
image. For instance, the highlighted result of the convolution operation for r11 is then
calculated by the following equation: r11 =

∑3
i=1

∑3
j=1 pij · kij

with the ratio of batch size to the learning rate. However, both rules are valid only for
SGD-based approaches. These formulations are also quite vague and lose their validity
with an increasing number of hyper parameters. Thus, all in all even the basics of DL
have not been sufficiently researched. The described fundamentals already allow the
development of a simple but sustainable neural network for simple classification and
regression tasks. Subsequently, we will have a look at the basics required for processing
of visual information.

2.4 Convolutional Neural Networks

The most important class of ANN in terms of visual imagery is convolutional neural
networks (CNN). The key concept of each CNN is its eponymous convolutional operation.
A typical CNN consists of a convolution with a number of linear filters leading to a
linear output, nonlinearity via activation functions (e.g., ReLU), and local pooling
e.g. max or average pooling). Fig. 2.7 shows a simplified convolutional operation
on an one-channel 6 × 5 image. A field of view called kernel k, most commonly of
shape 3× 3, is moved one by one over the image matrix. For the purpose of reduction
of the resolution, a larger step size also referred to as stride, can be selected. Each
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movement is followed by element-wise multiplication and addition. For instance, the
highlighted result is then calculated by the following equation: r11 =

∑3
i=1

∑3
j=1 pij · kij .

Due to the limitation of the example showing only the first result, the mirroring of
coefficients, which is common for convolutional operations, is omitted for simplicity
in the calculation. Since the kernel usually operates on existing values the output is
reduced in shape w.r.t. the input. Usually, a convolution is followed by an operation
known as pooling. The aim of pooling is to reduce spatial sensitivity. In addition
to a more compact representation, better robustness against noise and clutter is also
expected (Boureau et al., 2010). Therefore a sliding window of size s× s (e.g. 2× 2
or 3 × 3) is moved over rectified feature maps (the result of previous operations) in
an arbitrary step size. Each time the values inside the window are processed using a
commutative combination rule. A large number of calculation strategies is conceivable
(Gholamalinezhad and Khosravi, 2020). Generally, the pooling operations are split
into two categories: rank-based and value-based (Bera and Shrivastava, 2020). The
latter are widely used. Among these, the most common is max pooling (Ranzato et al.,
2007). It is calculated using the following equation: fmax = maxi(xi), where x is a
vector containing the activation values from a selected pooling region. Its exemplary
representation is visualised in Fig. 2.6. Finally, the output is processed by an activation
function. The result r is named: feature map. Usually, feature maps are used as input
for further convolutions subsequently. The depth of the operations, performed in a row,
forms the “deepness” in the DL architectures. The overall goal of the convolution is the
extraction of distinctive features. In contrast to features that might be predefined by
the developer, the features in a CNN are not fixed since the weights of each kernel are
learned during the training procedure. Different types of implementation for convolution
layers have been proposed: 1× 1-convolution (M. Lin et al., 2013), dilated convolution
(F. Yu and Koltun, 2015), transposed convolution (Dumoulin and Visin, 2016), flattened
convolutions (Jin et al., 2014), depthwise or spatially separable convolutions (Chollet,
2017), grouped convolution (Krizhevsky et al., 2012), pointwise grouped convolution
(Xiangyu Zhang et al., 2018), etc. They differ not only in the way the source pixels
are processed, but also in the computing load. For example, the 1 × 1-convolutions
are much faster to be calculated, than their ordinary variant, as described previously.
Therefore they are popular for the dimensional reduction in CNNs (Szegedy et al.,
2015). This work makes use of different advantages of the listed techniques.

These basics already allow the development of a simple image classification network.
Subsequently, we will have a look at the basics required for object detection.

2.4.1 Object Recognition

Object recognition (OR) can be defined as the act of finding an accumulation of pixels
that describe an object of interest and the assignment of a name to it. The assigned
name is then called: label (Parker, 2010). Usually, the object has characteristic patterns,
sometimes also referred to as features. Indeed, contrary to patterns, which are “chunks”
of visual data, features can be a calculated representation of any specific area.

Traditionally, OR is started by finding elementary patterns in low-level objects, then
patterns of a higher level are searched for. One after another, these patterns form the
complete object representation. To give a vivid example, the easiest way to recognize a
car might be to search for tires, windshields, head- or backlights and doors at first and
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build up the car from these pieces as the next stage.
Parker (2010) summarized the general procedure of traditional OR as a four-steps

approach:

• Object candidates isolation

• Finding of descriptive features

• Measurement of feature ambiguity for each label

• Searching for other features in case measurement results are not satisfying, followed
by repeated measurement

The quality of a visual OR model depends on its stability against real world difficulties
such as noise, lighting, orientation, scale, overlapping and others.

2.4.1.1 Object Detection Using DL

In the past 20 years hardly any other area on the field of ML received as much attention
as object detection did (Zou et al., 2019a; Jiao et al., 2019b; Liu et al., 2020). The
main goal of object detection, as mentioned previously, is the analysis of the presence of
certain predefined instances of objects in visual data. In contrast to object recognition,
object detection additionally is about providing positioning information to each object
instance. Therefore it is one of the most challenging disciplines in computer vision,
if not the most challenging since there are several conditions that have an impact on
successful detection. The first is localization: each object instance, independently of its
size, rotation and illumination, needs to be localized. The second is classification: each
found instance has to be classified. Both presuppose the extraction of object-specific
features from labeled data. Additionally, the features have to be learned on a great
level of abstraction which in turn allows the ability to recognize similar but previously
unseen objects. Therefore, deep learning is great for this task. Generally speaking,
there are two types of detectors: Single-stage and two-stage. Both have in common that
they make use of CNNs for feature extraction. However, there are essential differences
in the structure, which in turn influence crucial network properties such as efficiency
and accuracy. Both properties are essential for OD-based automation and quality
assurance systems. The two types of detectors are part of this thesis and therefore
briefly described in the following.

2.4.1.2 Two-stage Detectors

Multi-stage detectors follow the principle of subdividing the logical steps that lead to
the detection of one or more objects. As is usual, detectors consist of two steps. For
the most part, the first step is about generating object proposals based on features
extracted from image data. Then in the second step, the most probable object regions
are classified.

R-CNN (Girshick et al., 2014) is presumably the most prominent two-stage detector.
Fig. 2.8 illustrates its detection procedure. Starting with an image, bottom-up region
proposals are extracted taking advantage of selective search (Uijlings et al., 2013; X.
Wang et al., 2013). Right after, for each proposal features are computed using a large
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Figure 2.8: Two-stage R-CNN (Girshick et al., 2014) detector visualized on custom
data set presented in Chapter 5.2

Figure 2.9: Single-stage detector visualized on custom data set presented in Chapter 5.2

CNN. Finally, each proposal is classified making use of class-specific linear SVMs. The
individual steps have been optimized over time, but the general process has remained
unchanged (Girshick, 2015; Ren et al., 2015).

2.4.1.3 Single-stage Detectors

In contrast to multi-stage detectors, single-stage detectors, as the name suggests, work
in one go.

Yolo (Redmon et al., 2016) is one of the most popular single-stage object detection
frameworks. Instead of using a classifier to perform object detection, as seen in Fig.
2.8, the detection is framed as a regression problem to spatially separated BBs and
related class probabilities. A single network includes the entire object detection pipeline.
Therefore, the training can be considered an end-to-end optimization problem. Fig.
2.9 visualizes the idea behind bounding box regression. Initially, the image is divided
into a S × S grid. Then, for each grid cell, the model regresses bounding boxes,
including corresponding confidence and class probabilities. In Fig. 2.9 cells with a
higher probability of containing the object of interest are highlighted in blue. Being a
pioneer architecture, Yolo has a few limitations: Each grid cell can only have one class,
which restricts the recognition of nearby objects sharing a cell. Additionally, since the
learning is grid-based, errors are threatened the same for small and large bounding
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Figure 2.10: An illustration of the one-stage RetinaNet (T.-Y. Lin et al., 2017b)
architecture is adopted to the custom data set presented in Chapter 5.2

boxes as well. However, errors in a small box have a greater effect on IoU.
Taking everything into consideration, we can recognize that Yolo in its first version

is not suitable for images with imbalanced object distribution, as they occur in real
world data.

One of the most outstanding architectures for imbalanced object distribution is
RetinaNet (T.-Y. Lin et al., 2017b). Its composition, as illustrated in Fig. 2.10, is
quite straightforward. Starting with a backbone consisting of a feedforward ResNet
(K. He et al., 2016) architecture and a Feature Pyramid Network (FPN) a multi-scale
convolutional pyramid is generated. Feature maps are primarily used for object detection.
Since feature maps naturally decrease in shape during consecutive convolutions in a
CNN, each level of the pyramid is used for object detection at a different scale. As
visualized in Fig. 2.10 (b) a FPN has an inherent multi-scale pyramidal hierarchy.
Therefore they contribute to instances of objects of a different size or the same instances
with discrete features. For this reason, a Feature Pyramid Network (T.-Y. Lin et al.,
2017a) is highly beneficial. On top of this formation, two sub-networks are attached.
The first is used to calculate classifying anchor boxes. The second aims to regress
anchor boxes to ground-truth object bounding boxes. The combination of these two
enables objects of interest of different sizes to be completely enclosed.

RetinaNet is particularly interesting for real world applications, because of its built-
in consideration as a rule that the foreground objects usually cover much less image area
than the background. In contrast to the previously published one-step architectures
such as Yolo, this circumstance is solved to a great extent via so-called focal loss (FL).
This loss function is an extension to the widely accepted cross entropy (CE). Including
a focusing parameter γ ≥ 0, it is defined as FL(pt) = −αt(1− pt)

γlog(pt), where pt is
the estimated probability of the class with a specific label and α ∈ [0, 1] a weighting
factor such as the inverse class frequency. In case γ = 0, FC is equivalent to CE. As
γ = 0 grows, the error on easy examples is downgraded and the loss isw reduced. The
loss for hard negative examples grows counter-actively.

Because of several disciplines that object detection brings together, it certainly may
be considered one of the most complex and demanding research fields in CV. However,
it creates opportunities for real world scenarios like no other. Visual control and hence
quality assurance are a prime example of a successful integration.
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Quality Assurance in Medical

Applications

“Nothing in life is to be feared, it is only to be understood. Now is the time to
understand more, so that we may fear less.”

— Marie Curie

A starting point for this research is Quality Assurance in medical applications, not
least because it allows diagnostic and treatment errors to be avoided or at least reduced.
As early as 2000, Donaldson et al. (2000) draw attention on the necessity of QA, naming
number of affected patients who have suffered from medical errors. They pointed out
that medical errors caused annually at least 44 thousand deaths in the United States
(US). According to other sources, the number of humans affected was estimated even
higher. The fatal outcome is not only dramatic for the patients themselves and their
relatives but also detrimental to the economy. In the US, the annual additional costs in
2008 have been estimated to be at least $17 billion dollar due to measurable medical
errors (Van Den Bos et al., 2011). The measured value naturally forms the lower bound
of spending, the actual costs are likely to be considerably higher. Therefore, error
prevention is of primary concern, not only because of medical reasons, but also financial.
The reasons for errors might be diverse. In about 75% of all diagnostic errors cognitive
issues are involved. These are not cohering to deficiency in personal experience or
expertise but to flaws in data (Nendaz and Perrier, 2012). Quality improvement and
avoidance of mistreatment using AI have been studied for several cases (Davenport
and Kalakota, 2019; K.-H. Yu et al., 2018; K.-H. Yu et al., 2018). The findings show
that there is a rising need for all application scenarios since no medical diagnosis is
guaranteed to be completely accurate. A proper strategy for a high quality treatment
as a result of an image-based diagnosis requires first of all a reliable and error-free
image acquisition. Additionally, a proceeding diagnosis could be accompanied by a
computer-aided solution or might even be replaced by it.

In the following subchapters, we will present our contribution to diagnostic au-
tomation and QA of examinations on selected radiological topics, as such are not only
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very important from an ethical point of view but also from the view of CV because of
the way the image data is generated. On the one hand, in comparison to regular 2D
images, the radiological imaging receives an additional dimension, namely the depth,
which creates the spatiality. The third dimension builds up a sequence of individual
2D recordings (called slices). In doing so, organs, bones but also soft tissue objects e.g.
injuries, damages and particularly tumors, including cancer distributed over a number
of successive slices, are combined. On the other hand, the properties of recordings can
differ greatly depending on the acquisition device. In practice, different devices are
commonly used, which increases the complexity of applications. In this context, we will
address these challenges regarding the research questions. More specifically, we will
examine whether an automated determination of the severity scores can be calculated
using images of the lungs of patients with tuberculosis. Furthermore, an investigation
of to what extent the image quality of the prostate of cancer patients can be ensured
in terms of the ideal orientation of the recording. The reason for both investigations
is that the data, as well as the diagnosis, are prone to errors and therefore require a
quality control for automation and support.
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3.1 Severity Scoring of Lung Tuberculosis from CT
Images

Pulmonary Tuberculosis is a serious disease which is caused by bacterial infection of
the lungs. If not treated properly, this illness can have fatal consequences to this day.
Even nowadays it still is widespread and concerns the health care system on a daily
basis (Lowbridge and Ralph, 2020). Multiple occurrences are common, and even worse
any organ might be involved. However, in almost 75 % of the cases, it affects the lungs
(Suárez et al., 2019). For this reason, this work focuses on tuberculosis that occurs in
this particular area. Potential medical treatment of tuberculosis depends on the course
of the disease and the associated symptoms. These symptoms reveal the progression
of the illness and can be classified in severity scores. This kind of classification is
currently done manually and is made possible by the latest technological developments
in the field of radiology. The basis for such a classification is provided by computed
tomography (CT). During image acquisition the tomographic signal is processed by the
computer to generate “slices” of the body, i.e. cross-sectional images. These slices are
provided as 3D-images and form a digital model of a part of a human body or even
its complete representation. The offered spatial information enables a more precise
diagnosis in comparison to conventional imaging technologies such as 2D-based X-Ray.
The reason for this is obvious since disease-typical abnormalities can be located and
identified more easily in 3D because of spatial characteristics. However, relying only
on manual examinations may always be risky. Errors easily may occur while assigning
a severity score to an examination. Such mistakes can have a serious impact on the
appointed treatment. Therefore, we investigate whether automatic severity scoring
of lung tuberculosis from CT images is feasible? Our main goal is to contribute a
descriptive classification framework based on custom features that provides information
about the influence of different kinds of irregularities in lungs on severity scoring. Such a
development brings a whole series of advantages with it. On the one hand, an automatic
classification could be used for QA of diagnosis, on the other hand, it could highlight
and visualize the findings and thus offer a supporting function.

During our research on meaningful features, we simulate the thinking of medical
experts who, in their manual examination, look for irregularities specific for tuberculosis
within the lungs. We implemented and evaluated such features as lung calcification,
lung wateriness, pulmonary cavities, infection ratio, Hounsfield histograms or lung
shape comparison. The feature choice in our approach was for the most part based
on our own observations that could be approved by medical studies published in the
literature in recent years. However, while building these features, we entirely forego
sources other than image data. In the following, the obtained features were used for
the prediction of the severity score and the severity level of tuberculosis using different
classifiers. Among the chosen classifiers, we evaluated support vector machine (SVM),
k-nearest-neighbor (kNN), but also decision tree (DT), random forest (RF) and linear
regression (LR). All of the mentioned topics are part of the next chapter.
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Abstract. Nowadays tuberculosis is still a widespread disease that causes
worldwide more than one million deaths and ten million new infections
every year. As part of ImageCLEF 2018, we investigated whether the
severity of the disease can be determined from CT scans, only. We there-
fore extracted features from the images which we then tested with several
classifiers. Afterwards we chose the best combinations of different feature
sets and classification models. Our best approach is based on three fea-
tures, namely cavitation, cavity tissue, and infection ratio. Combined
with random forests we achieved rank 10 regarding the RMSE measure.
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1 Introduction

In 2018 tuberculosis was listed as one of the top ten causes of death worldwide
[1]. Depending on the severity degree of the disease different medical treatments
are necessary. To this day the distinction of the severity degree has been exe-
cuted by medical experts based on diverse information including the results of
the mycobacterial culture test, pleural fluid and cerebrospinal fluid (CSF) anal-
yses, lesion patterns in radiological images of the lungs, patient’s age, duration
of treatment and others [10]. In patients with tuberculosis, computed tomogra-
phy (CT) is often performed for analyzing the lesion patterns in the lungs. The
human-based analysis of the existing data is an expensive and time-consuming
task. Additionally, a manual classification can be error-prone. In contrast to the
manual examination of CT scans, a computer-based method could lower the er-
ror rate and simplify the procedure.
In this paper we present a feature-based approach for severity scoring of lung
tuberculosis exclusively based on CT scans. This work is a contribution to the
severity score tuberculosis task of ImageCLEF 2018 [6]. Besides the tuberculosis
degree determination, the main goal of our approach was to create a descrip-
tive classification framework that provides information about the influence of
different kinds of irregularities in lungs on severity scores.
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2 Feature Extraction

We extracted features from CT images assuming that medical experts look for
irregularities in the lungs that are typical for tuberculosis while analyzing CT
scans in the context of severity score determination. In the medical literature,
different kinds of irregularities and lesions in the lung associated with pulmonary
tuberculosis are described. Our feature choice is for the most part based on this
description. In this section, feature extraction methods are described that we
used in our approach. Since the most of our feature extraction methods worked
on binary images, we binarized all CT images using IsoData method [15] in a
preprocessing step. Hereby we also used lung masks which were extracted by the
algorithm that was published in [7].

2.1 Lung Calcification

Calcification is significant to the disease pattern of tuberculosis[2]. We assume
that the identification and quantification of chalk within lung lobes can be a
meaningful feature. Hounsfield Units (HU)[4] of chalk vary around 700 depending
on its density. These HU values overlap with those of bones (300 HU - 1500 HU),
which are often located in the boundary area of the masks. Hence, a simple
thresholding approach is not sufficient. In order to avoid misclassification, we
therefore had to adapt the size of the masks as long as parts of the bones were
contained. Finally, pixel with the value ≥ 700 are counted because we regard
those as calcifications. In detail our approach contains the following steps:

(1) Slice-wise CT scan preparation: Set values below 700 to −3024 (no density)

(2) Slice-wise boundary analysis:

2.1 Boundary identification in mask slices:
boundary[i] = mask[i]− erode(mask[i]), with i ∈ {0, slices(mask)}

2.2 Boundary extraction from CT scans:
bscan[i] = boundary[i] ∗ scan[i]

2.3 Adaption of masks:

while (max(bscan[i]) ≥ 700) do
mask[i] = erode(mask[i])
Step 2.2

end while

(3) Summation of pixels with value ≥ 700 in mask[i] ∗ scan[i]
With erode [9], the function which executes an erosion on a binarized image slice.

2.2 Lung Wateriness

Water accumulation is a potential concomitant of an existing tuberculosis dis-
ease. Nevertheless we assumed that an existing tuberculosis infection weakens
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the immune system of the patient and may lead to trace-diseases. There are
several indispositions that are associated with fluid retention within the lungs or
in the pleural space between the lungs and the ribs, such as pleural effusion[18].
Our assumption was that water effusion is a clear evidence for an advanced level
of infection or traces of a cured serious illness. The process of searching the wa-
ter retention was based on the HU[4]. The searching algorithm is the same as in
Section 2.1.

2.3 Pulmonary Cavities

One of the classic indicators of lung tuberculosis are the pulmonary cavities
which occur in 50 percent of patients [13]. According to [12] pulmonary cavitation
formed as a result of tuberculosis is a site of very high mycobacterial burden.
They may lead to transmission of the infection to other humans and they are
associated with emergence of drug resistance. Furthermore, in [11], the authors
reported about the relationship between the cavity wall thickness combined with
the diameter of the lesion and the malignancy of the disease. Therefore, we
extracted the size of pulmonary cavities and cavity walls from CT images as
further features for severity scoring of lung tuberculosis. Although pulmonary
cavities may also occur as a result of other diseases like lung cancer [13], the
presence of additional pulmonary diseases in patients with lung tuberculosis
may increase the degree of tuberculosis.

We extracted the pulmonary cavities from single CT image slices as dark
spots completely surrounded by light tissue. Since we wanted to avoid finding
similar structures in other parts of CT images than lungs, we used the lung masks
that were provided by the organizers of the task using the approach described
in [7]. Due to variations of Hounsfield Units in different regions of cavities and
cavity walls in different CT images, first, we binarized the CT images as described

(a) (b)

Fig. 1. An example of missing pulmonary cavitation in the mask: (a) CT scan showing
cavitation in the left lung, (b) corresponding lung mask.
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above. We had to make some adjustments to the lung masks because they did
not cover the entire lung and often the cavities were cut out from the masks
(compare Figure 1). Therefore, we closed all holes in the masks. Since we also
closed the holes that correctly indicated bronchi, we cut out the middle part of
the lung masks to avoid incorrectly recognizing bronchi as pulmonary cavities.

After processing the lung masks we performed the pulmonary cavitation
search in binarized CT images as follows: First, we removed all objects smaller
than 20 pixels because it is unlikely for a cavitation to be of such small size and
analyzing such objects would unnecessarily require processing time. Since bron-
chioles scanned across and shadows caused by breathing and body movements
could be falsely recognized as cavities, in the second step, we closed all holes that
were smaller than two pixels. Obviously, the internal parts of undesired objects
could be larger than 2 pixels, but, on the other side, we had to prevent erro-
neously discarding parts of real cavities. Because cavity walls are usually thicker
than bronchiole walls, in the third step, we performed morphological opening
with a 2× 2 square to discard undesired objects remained after the second step.
We considered all holes that were completely surrounded by walls as pulmonary
cavities after performing these three preprocessing steps. For performance rea-
sons we estimated the volumes of pulmonary cavities by simply summing up the
pixels of found cavities and cavity walls, respectively, over all CT scan slices in
the file.

2.4 Infection Ratio

Pulmonary tuberculosis is an infectious lung disease whose bacilli spread through
the lungs and cause lung tissue damage. Depending on the type of tuberculosis
different types of lesions occur in the lungs (see Figure 2). That makes it difficult
to estimate the amount of the affected part of the lungs automatically. Since the
infection of the most tuberculosis types cause a thickening of the lung tissue
which can be recognized in CT scans, we simply estimated the ratio of the lung
tissue to the entire lung volume. In our approach we did not differentiate between
healthy and affected lung tissue which is a difficult task, our approach is based
on the assumption that the lung tissue ratio compared to the lung volume is

Fig. 2. Different types of lesions in the lung.
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smaller in healthy persons than in persons suffering from tuberculosis. In order
to highlight the lung lesions, we first binarized the CT images as described above.
After the binarization we simply counted the number of white pixels and related
it to the number of pixels in the lung mask [7].

2.5 Hounsfield Histograms

Since its introduction in 1972 [16] the technology of X-Ray computed tomog-
raphy (CT) has been continuously refined. Over time several different devices
with different parameter sets were developed [5]. The different technology and
the parameters do not only concern the distance and time between images, but
also the Hounsfield Units represented in the final image [14]. That leads to the
problem, that the same object can have different Hounsfield Units on different
images [5]. As there is no information provided what hardware and what param-
eters were involved in creating the scans for the dataset, it is difficult to look for
certain Hounsfield Units which are comparable throughout all scans.

In order to overcome this problem we decided to compare intervals of Houns-
field Units with the help of histograms. As the intervals of Hounsfield Units of
different tissues overlap, it is difficult to determine reasonable bins. Therefore we
divided the interval of [−1024, 3000] into 20 equal sized bins. In the classification
task every bin has been regarded as a single feature.

2.6 Lung Shape Comparison

Since we assume that the degree of pulmonary tuberculosis can correlate with
the overall health of a patient, we considered the shape of the lungs, as well. We
also assume that the difference between the shapes of the two lungs can provide
information about the patient’s health. To obtain a comparison measure, it is
sufficient to look at the masks.

Note, that the following procedure needs all slices to be processed separately.
In order to compare the different lungs, all masks have to be divided into two
separate lung masks. Afterwards the contours of the relevant regions are calcu-
lated. In [17] a border following method is introduced to describe the contour
of an object. The silhouettes of the lungs are calculated and stored in a vec-
tor of points using the findContours-method of OpenCV [3]. They can then be
matched with OpenCV’s matchShapes-method. A measure for the match can be
computed by the following equation:

I(A,B) =
7∑

i=1

|mA
i −mB

i | (1)

with

mA
i = sign(hA

i ) · log(hA
i ) and mB

i = sign(hB
i ) · log(hB

i ) ,

where hA
i and hB

i are the Hu Moments of the contours A and B [8].
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Now there are comparison values for each slice of the CT Scan but it is desired
to receive one representative measure for the match. So finally, the average value
over all slices has to be calculated.

3 Classification Methods

We used different classifiers for predicting the severity score and the severity
level of tuberculosis using the feature set obtained from the feature extraction
step described in Section 2. In the training phase of classification models, we
performed feature selection based on the cross-validation mean square error for
severity score on the training set. We tried different classification methods in-
cluding the multi-class support vector machine (SVM) with RBF kernel, the
k-nearest-neighbor (kNN) algorithm, and the multi-layer perceptron classifier
with different parameter settings. Below we describe the best classification mod-
els with respect to the mean square error on the training set and the way of
predicting the severity score and the severity level of tuberculosis.

3.1 Decision Tree

Using the Chi Square method it turned out that 13 of the 17 features are the
most meaningful. Apparently the histograms of the higher Hounsfield Units are
not very informative. Therefore, all features have been considered for the decision
tree, except for the histograms of ranges with values greater than 50.
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Fig. 3. Illustration of the decision tree using 13 features.
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In Figure 3 the structure of the resulting decision tree is demonstrated. The
numbers followed by an H stand for the ranges of the histograms. The assigned
classes of the leaf nodes are highlighted in blue. Arrows to the left indicate
that the condition of the parent node applies. Arrows to the right represent the
non-applicability. The classifier was fitted using the Gini Impurity, a minimum
fraction of 3% per leaf and a minimum quality gain of 0.01. The structure shows
that most scores of the same severity class (”LOW”/”HIGH”) share similar
features. But the scores 3 and 4 are often separated by only one property, as
well. According to the paths of the decision tree, the distinction between score
3 and 4 is the most difficult task and probably represents the biggest source of
errors regarding the AUC score, since both degrees belong to different severity
classes.

3.2 Random Forests and Linear Regression

Using random forests and linear regression as classifiers we interpreted the pre-
diction of the severity score and the severity level of tuberculosis as a regression
problem. In our first attempt, we converted the severity level into the numbers 0
and 1, where 1 means ”HIGH” and 0 means ”LOW” severity level. We used the
random forest classifier with the maximum depth value of 2 because the larger
values led to overfitting of the classification model. We calculated the severity
scores from the predicted severity levels by dividing the severity level values into
intervals.

In the second test, we trained two separate classification models for the sever-
ity score and the severity level prediction. Since the severity score and the severity
level values mismatched for some data items, we adjusted the severity score val-
ues depending on the corresponding severity level values at the extreme bound-
aries of the severity level. In particular, we set the severity score values to 1
if the corresponding severity level values were higher than 0.95. If the severity
level values were below 0.22, we set the corresponding severity score values to
5 regardless the values that were predicted for the severity score before. Here,
we also used the random forest classifier with the maximum depth value of 3.
Additionally, we submitted a linear regression model which we trained on a sub-
set of the training set for which we achieved the best results with respect to
the cross-validation mean square error for the severity score. We used only a
subset of the training set because linear regression is sensitive to outliers that
we assumed in the training set due to variations in the mean square errors in
different cross-validation runs.

Due to performance variations for the severity level in different cross-validation
runs for the random forest model trained in the second test, we assumed that the
classification model for prediction of the severity level overfitted on the training
set. Therefore, in the third test, we reduced the maximum depth value to 2 for
the random forest model. Furthermore, we refrained from the adjustment of the
severity score values based on the severity level.
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4 Evaluation and Results

A maximum of 10 runs could be submitted by each group per subtask in the
ImageCLEF 2018 TB task. This section shows the final performance results of
our feature-based approach in the severity scoring challenge (subtask 3). The
final ranking was based on the root mean square error (RMSE) for the severity
score. Table 1 summarizes the results for different runs of our approach ordered
by the ranking provided by the subtask organizers. Additionally, we listed the
results of the best runs with respect to the root mean square error (RMSE) and
the Area Under the ROC Curve (AUC) submitted in the competition.

The best run of our approach was obtained by the random forest classification
model with severity score adjustment described in the second test in Section
3.2 (indicated as Rnd Frst depth 3 in the table) using only three features: size
of cavity, size of cavity tissue, and the infection ratio. Although our best run
achieved the tenth rank regarding the RMSE measure, it was ranked sixteenth
according to the AUC measure. In order to improve the results regarding the
AUC measure too, we performed feature selection based on the cross-validation
AUC value for the severity level on the training set using the same classification
method. The so selected features were calcification, infection ratio, size of cavity,
and the third, the sixth and the tenth bins of the histogram. Although this run
was only ranked on the 25th placed regarding the RMSE, it achieved the eight
place regarding the AUC measure.

Our second best run was achieved by the random forest classification model
with the maximum depth value of 2 without severity score adjustment and the
linear regression model trained on the subset of the training set (indicated as
Rnd Frst depth 2 and Lin Reg part in the table) on the same feature subset
as our best run. The performance results of our approach that calculated the
severity score from the predicted severity level values by the random forest classi-
fication model (indicated as Rnd Frst score by level in the table) were the worst
among the regression based approaches described in Section 3.2. Although the
AUC value for the severity level was the same as for our best run, the RMSE
value for the severity score calculated based on the severity level was much worse
than for the separate severity scores prediction model.

Table 1. Results for our top 5 runs for Subtask 3 – Severity scoring.

Classification model Features RMSE RankRMSE AUC RankAUC

– – 0.7840 1 0.7025 6

– – 0.8934 5 0.7708 1

Rnd Frst depth 3 cav., cav. tissue, inf. ratio 0.9626 10 0.6484 16

Rnd Frst depth 2 cav., cav. tissue, inf. ratio 0.9768 13 0.6620 13

Lin Reg part cav., cav. tissue, inf. ratio 0.9768 14 0.6507 15

Rnd Frst depth 3 calc., inf. ratio, cav., 1.1046 25 0.6862 8
hist. bins 3,6,10

Rnd Frst score by level cav., cav. tissue, inf. ratio 1.2040 29 0.6484 17
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The decision trees unfortunately performed worst. They only achieved the
ranks 32-34 regarding the RMSE measure. The severity class was determined
on the basis of the received scores. For this, two methods were used. In the first
approach, the values 1, 2 and 3 represent the class ”HIGH”, and 4 and 5 belong
to class ”LOW”. In the other method the probability p of a high severity was
calculated by the formula p = 5−ŷ

4 , where ŷ stands for the predicted severity score
of the decision tree. The results showed that the first method scored significantly
better AUC values. Our best decision tree even reached the ninth rank in regard
to the AUC measure.

5 Conclusion

In this paper we have shown that our feature-based approach is competitive to
other participants of the ImageCLEF 2018 challenge [6]. With our best methods
we achieved rank 10 regarding the RMSE and rank 8 regarding the AUC mea-
sure. Almost all features in our approach were extracted using the lung masks
provided by the organizers of the task. These masks were created by an auto-
matic segmentation algorithm [7] that failed to recognize especially large lesions
in the lungs in some cases. Consequently, our feature extraction algorithms also
failed to work in such cases. Therefore, we assume that an optimization of the
masks could lead to a more precise feature extraction and improvement of the
final results of our approach. As the reproduction of Hounsfield Units of CT
scanners may vary, further information about the hardware and the used pa-
rameters could lead to an improvement of the results. These could also be used
to determine reasonable bins for the Hounsfield histograms.

Finally, the feature choice in our approach was for the most part based on
own observations that could be approved by medical studies published in the
literature in recent years. We believe that we could improve the feature extraction
and consequently the final results of our approach by consulting medical experts
specialized in treatment of pulmonary tuberculosis.
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3.2 Feature and Deep Learning Based Approaches
for Automatic Report Generation and Severity
Scoring of Lung Tuberculosis from CT Images

In the previous Chapter 3.1, we presented a framework that is able to forecast the
severity score based on image data only. The results are promising, especially compared
to related work, described in the previous publication. However, there is still room
for improvement. To close the gap in the following chapter, we will improve our
results by further investigations including meta information such as the position of
the affected lung, presence of calcification, presence of caverns, pleurisy and lung
capacity decrease. All these features are part of a common CT report. Thus, we
will extend our framework for the previously presented ability of severity scoring by
the new feature, namely the automated CT report generation. Both tasks are part
of the ImageCLEFmed Tuberculosis challenge and therefore originated by medical
experts. Besides our research on custom features, we will investigate the possibility of a
feature-independent processing. Therefore we engaged in the development of a novel
DL approach for CT report generation as well as severity scoring. This could also be
helpful for physicians during manual diagnosis while providing less predictable insights.
Both approaches will be discussed in the further course.
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Abstract. The paper presents two approaches for automatic Computed
Tomography (CT) report and tuberculosis (TB) severity scoring which
were two subtasks of ImageCLEFtuberculosis 2019 challenge. While our
first approach uses image processing techniques for feature extraction
from CT scans, our second approach uses artificial neural networks (ANN)
for predicting probabilities for different lung irregularities associated with
pulmonary tuberculosis and tuberculosis severity assessment. The results
showed that our feature-based approach is still a competitive method
that achieved rank 3 of 54 in the severity scoring subtask and rank 7 of
35 in the CT report subtask.

Keywords: automatic CT report · tuberculosis severity scoring · med-
ical image classification · feature extraction · deep learning

1 Introduction

The tuberculosis task [5] of the ImageCLEF 2019 [10] challenge consisted of
two subtasks dealing with analysis of Computed Tomography (CT) images of
patients suffering from pulmonary tuberculosis. The aim of subtask #1 was
the tuberculosis severity assessment based on CT scans. The subtask #2 was
dedicated to the automatic generation of a CT report including the information
about the left and right lung affection, presence of calcifications, presence of
caverns, pleurisy, and lung capacity decrease. Both subtasks shared the same
data set consisting of CT images and additional patient’s meta data including
information about education, imprisonment, disability, comorbidity, and others.

Last year our team participated in the severity scoring subtask at Image-
CLEFtuberculosis 2018 challenge [6]. Our feature-based approach achieved rank

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0). CLEF 2019, 9-12 Septem-
ber 2019, Lugano, Switzerland.
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10 of 36 regarding the RMSE measure [2]. This result showed that our methods
could compete with more complicated and computationally intensive methods
in the field of deep learning. Since our feature-based approach provided a de-
scriptive image classification framework, we decided to improve and to adapt it
to the requirements of both subtasks of the ImageCLEF 2019 challenge [5]. On
the other hand, taking the last years research trends into account, we developed
a new deep learning-based approach.

2 Feature Based Approach for Automatic CT Report
Generation and Tuberculosis Severity Scoring

In this section we describe our feature-based approach for automatic CT report
and severity score prediction from CT scans. The main motive for developing
a feature-based approach was the ability not only to predict the probabilities
for different lung irregularities but also the ability to mark them in CT scans.
This could also be helpful for physicians during manual assessment of CT scans.
Furthermore, our approach provides information about the influence of different
lung damages and additional patient’s data on the tuberculosis severity score.

2.1 Preprocessing

Some features that we used for the automatic CT report were extracted from
the original CT scans, while other features were easier to extract from binary
images. Therefore, we binarized all CT scans using IsoData method [13]. We
used lung masks for extraction of all features for the CT report task. Some of
the lung masks that were provided by the organizers of the task [7] still did
not cover large lesions. For this reason we decide to use our own lung masks ex-
tracted by the segmentation algorithm described in [4]. This algorithm examines
the silhouettes of extracted masks for irregularities and reconstructs the masks.
Although the reconstructed lung masks did not perfectly cover the entire lung,
they still contained more lung pixels than lung masks provided by the organizers
of the task.

2.2 Automatic CT Report Generation

Presence of Calcification Pulmonary calcification in CT scans was deter-
mined for left and right lung separately depending on the number of pixels
that were identified as part of calcification. Since different Hounsfield Unit (HU)
ranges for pulmonary calcification in CT scans were proposed in the literature
[3, 8, 12] and the Hounsfield Units were not standardized in CT scans in the
data set, we decided on a relatively large range between 300 HU and 3000 HU.
In this way, we were able to identify calcifications of different density. On the
other hand, our range for calcification contains the HU range for bones that
were often erroneously covered by the lung masks. To reduce the presence of
bones in the examined lung area, we adjusted the lung masks in a preprocessing
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step by removing pixels of their boundaries along the z-axis using morphologi-
cal erosion function [11] with a disk of radius four pixels. Since many CT scans
contained noise patches that could be erroneously classified as calcified nodules,
we removed all objects smaller than 10 pixels that were identified as calcifica-
tions. Finally, we added up the pixels of found calcifications over all CT scan
slices along the z-axis in the file. If either left or right lung or both contained
more than 400 calcification pixels, we stated the probability of presence of lung
calcifications as 1 otherwise as 0. This threshold value was determined based on
the cross-validation Area Under the ROC Curve (AUC) value for presence of
calcification on the training set.

Since Hounsfield Unit range for plastic and metal overlaps our range for
calcification, our method for detection of calcification presence tended to false
positives for patients that had medical appliances in the lung. To prevent misclas-
sifications in such cases, the shape of found calcifications could be additionally
examined.

Presence of Caverns At ImageCLEFtuberculosis 2018 [6], we used a simple
approach for detection of pulmonary caverns. The principal idea of the method
was detecting caverns as dark spots surrounded by light tissue in binarized CT
image slices along the z-axis [2]. The main weak point of our approach was
that trachea and bronchi were incorrectly recognized as caverns. Therefore, we
cut out the middle part of the lung to avoid false positives. Unfortunately, that
workaround has led to many false negatives because our method did not detect
caverns that were either completely or partly located in the cut out part of
the lung. For this reason we improved our last year approach for detection of
pulmonary caverns by examining the entire lung.

The Fleischner glossary defines pulmonary cavities as thick-walled gas-filled
spaces [9]. The main difference to trachea and bronchi is that cavities are com-
pletely covered by cavity walls. Therefore, we validated a cavern in a binarized
CT scan slice along the z-axis as such only if its pixels were detected as pixels of
a cavern in the CT scan slices along the x- and y-axes. We estimated the volumes
of pulmonary caverns and their walls for right and left lung separately by adding
up the pixels of validated cavities and cavity walls over all CT image slices along
the z-axis. We used these four features for training a linear regression model for
predicting the presence of caverns.

Our improved method reliably detected caverns in CT scans in the training
set as long as the distances between the slices in the scans were not too large so
that all cavity walls were depicted in the CT images. Unfortunately, our approach
still produced false positives due to artifacts on the images mainly caused by the
heartbeat of patients. Therefore, an additional preprocessing step is needed for
elimination of artifacts in CT scans.

Presence of Pleurisy Pleurisy is inflammation of pleura which is a thin mem-
brane that covers the lungs [1]. Since inflammation often leads to thickening of
the tissue and pleura thickening increases the distance between the lung and
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bones, in our approach for pleurisy detection, we compared the average distance
between the boundaries of the lung masks and bones in images along the z-axis
in patients with and without pleurisy. For that purpose we overlayed the lung
masks and the bone masks which represent pixels of the original CT scan with
Hounsfield Units between 300 and 3000. In the resulting image, we calculated
the average distance between pixels of the lung mask boundaries and the nearest
bone pixels. Then we averaged the distances between lung and bones over all
CT scan slices along the z-axis for right and left lung separately and used them
for training a linear regression model for pleurisy prediction.

Lung Capacity Decrease The lung capacity is the maximum amount of air
that the lung can hold. Some kinds of lung tissue damage caused by Mycobac-
terium tuberculosis (MTB) bacteria may decrease the capacity of the lung. Since
an automatic detection and classification of different types of lung lesions from
CT scans is a challenging problem, we predicted the probability of the lung
capacity decrease based on the estimated ratio of the lung tissue to the entire
lung volume. Assuming that the lung tissue ratio compared to the lung volume
is larger in patients with decreased lung capacity than in patients with normal
lung capacity, in our approach, we did not differentiated between healthy and
damaged lung tissue. Similar to our last year approach [2], we calculated the
ratio of the lung tissue as a relation of white pixels in the binarized CT im-
age to the number of pixels in the lung mask averaged over all slices along the
z-axis. Finally, we trained a linear regression model for lung capacity decrease
prediction using the ratios of the lung tissue for left and right lungs as features.

Right and Left Lungs Affected Mycobacterium tuberculosis (MTB) bacteria
causes more kinds of lung damage than calcifications, caverns, pleurisy, and
lung capacity decrease. Therefore, the estimation model for probability of lung
affection based on the probabilities for lung damage described before did not
achieve satisfactory results on the training set. On the other hand, raw feature
values that we extracted for predicting the probability of aforementioned lung
damage, provided more information about further lesions in the lung. For this
reason, we used the number of calcification pixels in the lung, average distance
between the lung and bones, and the ratio of lung tissue to the lung volume for
left and right lung, separately, as features for training random forests models for
predicting the probabilities of affection of lungs.

2.3 Tuberculosis Severity Scoring

At ImageCLEFtuberculosis 2018 [6], our system achieved its best results for tu-
berculosis severity score prediction using three features: the cavern volume, the
volume of cavern walls, and the infection ratio [2]. This year we used data from
the CT report task combined with provided patient’s meta data. Using linear
regression as classifier, we obtained the 5-fold cross-validation AUC of approx-
imately 0.8 for severity score on the training set. The most important features
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for severity score prediction were the probability of left and right lung affection,
information about the imprisonment, the probability for pleurisy, and informa-
tion about education. Although some features seemed to play an insignificant
role, their elimination diminished the AUC value for severity score. Since some
features from meta data were very important for severity score prediction, we
tested our linear regression model on the training set only using patient’s meta
data. We obtained AUC value of approximately 0.75. On the other hand, the lin-
ear regression model trained only using data from CT report achieved the same
AUC value. Although we were aware that feature values predicted for the CT
report task were inaccurate to some degree, we used them combined with pro-
vided patient’s meta data for training a linear regression model for TB severity
score prediction.

3 Deep Learning Based Approach

Deep Learning has been applied on solving medical relevant research questions.
Among other things it is used for classification of brain and lung tumors. Thus,
Liu and Kang [17] for example achieves an AUC value of 0.981 with their ANN
on the LIDC-IDRI data set [18] for the binary classification of lung cancer.

In addition to the classification of the CT scans into the predefined disease
stages, the task can be subdivided into a further subtask, namely the segmen-
tation. We suspect that the occurrence of disease-typical symptoms, such as
calcification, caverns and pleurisy, may help in the subsequent classification.
The topic of the localization and classification of objects is the subject of many
scientific publications.

Some of the most promising approaches are based on the U-Net architecture
[15]. This is shown, for example, by the fact that the winner of the 2018 BraTS
Challenge used a U-Net variant [16]. The BraTS data set contains of CT scans
of brain tumor patients and is therefor similar to the given tuberculosis data.On
the one hand an advantage of the U-Net architecture is that the network consid-
ers the semantic context of the entire image during segmentation, on the other
the hand U-Net architecture needs only a small amount of training examples
to produce good results. Regarding the low amount of training data of the two
tuberculosis tasks, this is a sufficiently important feature. We will use one archi-
tecture for both tasks, severity scoring and CT report, with the only difference
being the number of final classifications to represent the different amount of pos-
sible labels. Isensee et al. showed that the architecture of the U-Nets is already
so high-performant that a meaningful pre- and post-processing offers a greater
potential for improvement than the change of the architecture [14]. Therefore,
we start our processing pipeline with preprocessing and extend the architecture
of the original U-Net [15] by an additional classification CNN. Afterwards we
finish our approach with postprocessing. The exact explanation follows in the
next sub-chapters.
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Fig. 1. Left: No preprocessing. Middle: Only segmentation. Right: Full preprocessing.

3.1 Preprocessing

The data set contains several anomalies which make preprocessing necessary. The
CT scans in the given data set have 3 different values {−3024,−2048,−1024} for
”outside of body” - mark. Probably because the images were taken by different
scanners and are not standardized. For this reason, some serious jumps can be
found in the value ranges of the Hounsfield Units. Beside of that, there are
even higher values for some noisy pixels. Similar to [19], we used a four-stage
preprocessing to standardize the CT scans.

– Step 1: Remove empty gap. ”NULL”-representing pixel values outside of
body are often much lower than the values inside. To prevent that no area of
the examination remains empty, each ”NULL” - representing pixel is replaced
with the next higher value.

– Step 2: Removing noise by range limits. The new value range is limited to
[-1000; +2000]. Outside pixel values are set to the limit value.

– Step 3: Min-max normalization to [0,1].
– Optional Step 4: In the following the lung area is segmented with the binary

masks from the original data set 1. Finally we reduced the image size by
removing ”0”-values in border area.

Figure 1 shows the three options of preprocessing.

3.2 Architecture

As mentioned previously, our chosen architecture is based on the original U-Net
approach, but we changed the original 2D convolutional layer to 3D. Additionally
we added a final classification CNN, based on the well known VGG19 architec-
ture [20], for a binary output, since we have a two-classes problem. Figure 2
shows a draft of the resulting network architecture.

During the training and in the later classification we limit the input to 16-
slice sliding windows, which contains coherent slices along z-axis, for two reasons.
First, this reduces the requirements on GPU memory. Second, we now have a
fixed input depth without the need to scale it. This not only serves to reduce
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Fig. 2. The architecture of the proposed network.

the requirements on GPU memory, but has also proven to be a useful value to
enhance the precision. Complementary, a more accurate prediction is produced,
because of a several classification results for each image. In the next step, we
halve the image, separating it into left and right lungs. This distinction is not
taken into account during training. Finally, we scale the input data to 192 × 256
with a bilinear interpolation. This results in an input tensor of 192 × 256 × 16.

For the U-Net, as segmentation network, we chose a depth of four with a
number of eight filters for the first convolutional layers. We use maxpooling for
the downscaling path and a transposed convolution for the upscaling path. Fur-
thermore, batch normalization is applied after each convolution and a dropout
value of 30% for the last convolutional layer in the downscaling path. As acti-
vation function we use the rectified linear unit. To get our segmentation mask
we use a convolutional layer with filter size one in each direction. For task one
this results in one segmentation mask, due to the fact that we have a binary
classification. Contrary to that, we use five segmentation masks for task two.
Even though there exist six labels in the task, we only need one probability to
distinguish the affection of the left or right lung due to the splitting of the lung
as preprocessing. An example of different segmentation masks for task two can
be seen in Figure 3.

Fig. 3. The left image shows the input slice. All others show the activations in the
different segmentation masks.

3.2. AUTOMATIC REPORT GENERATION AND SEVERITY SCORING OF LUNG
TUBERCULOSIS FROM CT IMAGES 49



Algorithm 1 Definition of Max-Rule

Require: τ ∈ N
if |Dleft −Dright| > τ then

P ⇐ max(Spos ∪ Sneg)
else

if |Spos| = |Sneg| then
if 1−max(Spos) < min(Sneg) then

P ⇐ max(Spos)
else

P ⇐ min(Sneg)
end if

else
if |Spos| > |Sneg| then

P ⇐ max(Spos)
else

P ⇐ min(Sneg)
end if

end if
end if
return P

The segmentation mask is used as input in our final classification CNN. For
the CNN we also use a depth of four with eight as number of filters for the first
convolutional layers. Like for the segmentation network, batch normalisation
for all and a 30% dropout for the last convolutional layer are applied. A leaky
rectified linear unit is used as activation. The final layer is a dense layer with
one neuron to represent the probability of the label. In task one we have one
classification network, but for task two we use five independent classification
networks, one for each label.

3.3 Postprocessing

The network predicts the class of 16-slice windows of the CT scan. To get an
overall prediction P for a whole CT-scan, an aggregation of a set of predictions
has to be made. Therefore we divide each CT scan into three sections of same
size. For each of these sections a prediction pi with {pi ∈ R|0 ≤ pi ≤ 1 ∧ i ∈
{1, . . . , 6}} is calculated. Taking into account the left and right half, we get a
total of six results.

Now we propose four methods to merge these six partial results pi into one
final result P .

1. Average: The result is defined as P = {pi|i ∈ {1, . . . , 6}}, namely the average
prediction value over all partial predictions.

2. Max-Rule: For this rule we define Dleft and Dright as the number of lung
slices in z-direction of the left respectively right lung. Also let Spos be the
set of positive predictions for which holds that pi ≥ 0.5 with i ∈ {1, . . . , 6}.
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Similary, Sneg is the set of negative predictions defined as Sneg = {pi <
0.5|i ∈ {1, . . . , 6}}. Like Algorithm 1 shows, we first check if part of the
lungs is missing. This occurs due to the fact that the size of the left and
the right lung can diverge due to the preprocessing while reducing the zero
values at the image borders. Consequently, we make the assumption that
this difference is a sign of serious illness. Therefore, if the difference between
Dleft and Dright exceeds a threshold τ ∈ N, the maximal partial prediction
value pi is chosen as probability. If the depth of the lung does not differ
too much, we let the majority decide and therefore choose the maximum
respectively the minimum value from the set, Spos or Sneg, that has more
elements. If the two sets have an equal amount of elements, the value with
the smallest distance to the respective target value 0 or 1 is chosen.

3. Average-Rule: Similar to Max-Rule, the only difference is that the calcu-
lation of the resulting prediction value P does not select the maximum or
minimum but the average over all values of the corresponding result set Spos

respectively Sneg.
4. Confidence correction: For each window of a CT scan from the validation

data set, consisting of 16 slices, the coefficient which is necessary to change
the prediction of the respective window, is calculated so that the classification
result is the correct class.

4 Evaluation and Results

This section shows final performance results of submitted runs in the severity
scoring (subtask #1) and CT report (subtask #2) challenge. The final ranking
in the severity task was done based on the Area Under the ROC Curve (AUC)
value, while the final ranking in the CT report task was done based on the average
AUC value. Table 1 summarizes the results for Top-10 submitted runs with the
highest AUC value and the best run for our deep learning-based approach for

Table 1. Short overview of submitted runs for subtask 1 – Severity scoring.

Group name Run AUC Accuracy Rank

UIIP BioMed SRV run1 linear.txt 0.7877 0.7179 1
UIIP subm SVR Severity 0.7754 0.7179 2
HHU SVR HHU DBS2 run01.txt 0.7695 0.6923 3
HHU SVR HHU DBS2 run02.txt 0.7660 0.6838 4
UIIP BioMed SRV run2 less features.txt 0.7636 0.7350 5
CompElecEngCU SVR mlp-text.txt 0.7629 0.6581 6
San Diego VA HCS/UCSD SVR From Meta Report1c.csv 0.7214 0.6838 7
San Diego VA HCS/UCSD SVR From Meta Report1c.csv 0.7214 0.6838 8
MedGIFT SVR SVM.txt 0.7196 0.6410 9
San Diego VA HCS/UCSD SVR Meta Ensemble.txt 0.7123 0.6667 10
... ... ... ... ...
HHU run 6.csv 0.6393 0.5812 27
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Table 2. Short overview of submitted runs for subtask 2 – CT report.

Group name Run Mean AUC Min AUC Rank

UIIP BioMed CTR run3 pleurisy as SegmDiff.txt 0.7968 0.6860 1
UIIP BioMed CTR run2 2binary.txt 0.7953 0.6766 2
UIIP BioMed CTR run1 multilabel.txt 0.7812 0.6766 3
CompElecEngCU CTRcnn.txt 0.7066 0.5739 4
MedGIFT CTR SVM.txt 0.6795 0.5626 5
San Diego VA

CTR Cor 32 montage.txt 0.6631 0.5541 6
HCS/UCSD
HHU CTR HHU DBS2 run01.txt 0.6591 0.5159 7
HHU CTR HHU DBS2 run02.txt 0.6560 0.5159 8
San Diego VA

CTR ReportsubmissionEnsemble2.csv 0.6532 0.5904 9
HCS/UCSD
UIIP subm CT Report 0.6464 0.4099 10
... ... ... ... ...
HHU CTR run 1.csv 0.6315 0.5161 12

severity scoring task. Table 2 lists the results for Top-10 submitted runs with the
highest mean AUC value and the best run for our deep learning-based approach
for CT report task. In the following subsection we describe the results for our
approaches in detail.

4.1 Evaluation Results for the Feature Based Approach

Since we used results from the CT report task for TB severity score prediction, it
is more sensible to start describing results for the CT report task. As highlighted
in Table 2, our best run for the feature based approach was ranked on the
seventh place. In this run we predicted the probabilities for lung irregularities as
described in Section 2.2. In our second best run, we predicted the probability of
presence of caverns only based on the number of cavern pixels in left and right
lungs, separately, omitting the pixels of cavern walls. This run was ranked on
the eighth place which is a worse result. Unfortunately, we did not receive the
detailed evaluation results, so we can not comment on the performance of our
approach regarding prediction of other lung irregularities.

In severity scoring task, the best run for our feature based approach was
ranked on the third place among 54 submitted runs. In this run we predicted
the severity score using patient’s meta data and the results from our best run
in CT report task. The prediction of severity score in our second best run was
based on patient’s meta data and the results from our second best run in CT
report task. Although we did not submit a run for TB severity score predicted
only on the basis of provided patient’s meta data, the results for these two runs
showed a positive impact of results from the CT report task on the tuberculosis
severity score prediction.
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Table 3. Deep Learning-based Approach for Severity Scoring.

Run name AUC Accuracy Preprocessing Postprocessing Data

run 06 0.6393 0.5812 - method 1 validation split
run 08 1 0.6258 0.6068 mixed method 1 validation split
run 04 0.6070 0.5641 complete method 1 validation split
run 07 0.6050 0.5556 complete method 3, τ = 5 all data
run 03 0.5692 0.5385 complete method 3, τ = 10 validation split
run 05 0.5419 0.5470 segmentation only method 1 all data
baseline 0.5103 0.4872 complete method 2, τ = 5 validation split
run 02 0.4452 0.4530 complete method 4 validation split

4.2 Evaluation Results for the Deep Learning Based Approach

For our evaluation we used different input data. We differentiated between train-
/validation split and the complete dataset as training basis. The validation set
consists of 10 images.

For Severity Score Task we set up the preprocessing, as shown in Table 3. For
our runs, we used either full preprocessing, just segmentation or no preprocessing
at all. Run 08 is an exception, therefore we took an average of run 5, run 6 and
run 7. Table 3 shows the list of postprocessing configurations of each run.

The highest AUC score is achieved by run 06. In this case the network got
the raw input data. We presume that the good AUC score is due to the fact
that the network finds relevant points outside our region of interest, which is
removed through preprocessing. This can be supported by the fact that the
segmentation alone generates the worst results. However, the accuracy of run 06
is lower than that of run 08. It is interesting that no neural network from those
three, that we calculate the average on, can achieve such a high accuracy by
itself. It seems that the networks found different features and learned differently,
so in the connection they complemented each other and the accuracy increased.
Surprisingly, with an accuracy of 0.453, run 02 score performed significantly
worse than the other constellations. Presumably, this is because of our validation
set size of only 10 images, which is potentially too small. And thus, the calculated
coefficients cannot be generalized.

Since we had only a limited amount of runs for CT reportings, we decided to
use only those constellations, that were trained on the whole data set. Because it
seemed to be more reasonable to train on more data. Table 4 shows the results.
The greatest value for Mean AUC of 0.6315 and Min AUC share CTR run 1
and CTR run 2. Compared to the third run, this shows, that for this task the
preprocessing may be more valuable as for task 1. CTR run 3.csv shows rather
moderate results of 0.561 Mean AUC, which is still better than random, but still
leaves space for improvement.

1 conglomerate of run 5, run 6 and run 7
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Table 4. Deep Learning-based Approach for CT Report.

Run name Mean AUC Min AUC Preprocessing Postprocessing Data

CTR run 1.csv 0.6315 0.5161 complete method 1 all data
CTR run 2.csv 0.6315 0.5161 complete method 1 all data
CTR run 3.csv 0.5610 0.4477 segmentation only method 1 all data

5 Conclusion

In this paper we have shown that our feature-based approach is still competitive
to our deep learning-based method and to methods of other participants of the
tuberculosis task. Our best run achieved the third place regarding the AUC
value in the severity assessment subtask and the seventh place regarding the
mean AUC value in the CT report subtask. Although the results obtained by our
approach are promising, we still see potential for improvement of our approach
to achieve even better results in both subtasks.

Regarding that our neural network was not as deep as other networks in the
literature, our results are promising. Especially the U-Net architecture seems to
be beneficial and can be a good starting point for more research. Our prepro-
cessing was only beneficial for subtask #2, which is surprising and therefore it
would be interesting to investigate which parts of the lung had an effect on the
resulting predictions. Data augmentation unexpectedly led to bad results in our
first tests and we therefore refrained from using it. But we like to further inves-
tigate the usefulness of data augmentation for this task in combination with our
network. Furthermore, we will test the network on other data sets, especially
with segmentation data to train the U-Net separately. We hope that by this the
segmentation layers will find meaningful areas, that can show us symptoms of
such diseases. And regarding the results for subtask #2, more training epochs
would be surely beneficial too and therefore the training will continue.
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3.3 Orientation Estimation in MRI of Prostate Can-
cer Patients: When Simple Models Perform
Better

Inspired by the success of the previously referenced ImageCLEFtuberculosis challenge,
we set the goal to make a transition of our findings and algorithms to a productive
environment. Convinced of our intent and in accordance with present necessities,
the Institute of Radiology of Heinrich-Heine University has agreed to a cooperation.
The pursued goal includes the idea of developing a Quality Assurance system that
accompanies MRI-recordings procedure for prostate cancer patients and monitors the
image quality during the acquisition. According to the agreement, the core research
question, in this case, is how can sagittal rotation in MRI of prostate cancer
patients be estimated using CV? This question has a prior importance for the
reliability of diagnosis. In fact, standardized and controlled image acquisition is an
essential component of QA. In general, different aspects may contribute to the quality
of recordings. In particular, a correctly adjusted angle enables more precise recording
and allows a better insight into the tissue. It also reduces the overlapping of organs
in the field of view. Therefore the image acquisition has to be monitored, to avoid
imprecise and flawed imaging. To answer this question, the data basis is changed again.
DICOM recordings were provided for investigation. These images differ in that meta
information, such as the optimal angle rotation, is presented. The optimal angle is
not chosen arbitrarily, but as a consensus of several radiologists with many years of
professional experience. Despite many efforts to automate QA processes in the medical
application field, there is no work directly related to the issued RQ, which means that
we are the first to deal with this important topic. This makes our work way more
challenging but also more eminent. During our investigation, we tackle a series of
real-world data challenges, such as unbalanced distribution in labeling, different image
data origin and diverse image dimensions regarding the depth. All these difficulties are
addressed in the following paper.
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Abstract—Magnet Resonance Imaging (MRI) is an important
modality in the diagnostic workup of prostate cancer. Poor
image quality is critical for detection of tumors and classification
according to the Prostate Imaging Reporting and Data System
(PI-RADS v2.1). Because of that a precise image acquisition is
highly important. Therefore a fully automated quality check is
crucial.

In this paper we present the first step of an automated
multi-step quality check, which consists of deep learning-based
orientation estimation for prostate MRI. It is a new field of
application in terms of medical quality control. The proposed
method achieves a mean absolute error of less than two degree
regarding the optimal axial orientation based on the sagittal
view. By this means, we achieve values which improve the axial
orientation up to 36 % on provided examination data. The perfect
setting enables the best possible viewing angle and reduces the
risk of overlooking a tumor.

Index Terms—Image Orientation, Deep Learning, Quality
Control

I. INTRODUCTION

The demographic change affects society and individuals.
The average life expectancy rises, the human population ages
correspondingly. Advancing age is the most important risk
factor for cancer1. Due to a rising age a higher percentage
of people get cancer in their lifetime. This increases the
burden on medical staff and also on the medical system
[1]. An effective treatment both medicinal and operational
requires the most precise diagnosis and tumor staging possible.
The detection of prostate cancer is currently based on a
combination of prostate-specific antigen measurement (PSA)
and magnetic resonance imaging (MRI). While the PSA testing
is almost standardized in these times, the image quality still
depends on various setting parameters for example due to
medical devices and external factors by means of patients
characteristics. Magnetic Resonance allows organs to be seen
in a detailed non-invasive way due to cross-sectional images.

1https://www.cancer.gov/about-cancer/causes-prevention/risk/age

The acquisition of MRI sequences is planned manually for
each patient. Due to the much higher in-plane resolution of
2D MRI when compared to 3D MRI, MRI of the prostate is
usually acquired as 2D imaging in a sagittal, coronal and axial
orientation with regard to the prostate. Structured reporting
of prostate MRI examinations is conducted according to the
Prostate Imaging Reporting and Data System (PI-RADS),
which requires a division into different sectors and zones. The
latter is significantly alleviated by imaging perfectly aligned
to the transversal axis of the prostate. Experienced staff use
sagittal images to plan the best possible transversal alignment.
An automatic estimation of the optimal angle is a significant
improvement. It saves time and reduces subjectivity since
no more manual intervention is needed. To tackle this task
we investigated several leading approaches for rotation angle
estimation from different application fields. We adapted them
to own needs and compared to our own algorithm. In this
paper we present a new deep learning based approach which
allows a reliable orientation estimation of transversal MRI of
the prosta

II. RELATED WORK

Angle estimation in 2D images is not a novel field of
research. There are some established procedures in the field of
document analysis. Often, those methods are applied in mobile
applications for transfer of image data to text documents.
In this case the image data needs to be rotated for the
perfect crop of a rectangular shot. These methods mainly work
with edges such as borders of the scanned documents, lines
within text areas and other rather strong features like dark
letters on a bright background [2]. Another, currently more
popular application field is natural images, which is not very
related in terms of context but is still much more researched
in terms of orientation estimation. Joshi et al. [3] applied
convolutional neural networks on real world photographs with
the goal of determining the correct orientation. They defined
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four categories for the task of 0◦, 90◦, 180◦ and 270◦ degrees
and achieved an average accuracy of up to 98.5% with a pre-
trained VGG-16 architecture. Cao et al. [4] used self made
low-level features inspired by the biological simple cells of
the visual cortex to estimate the overall image orientation of
a natural image. They achieved comparable results. Fischer
et al. [5] presented another deep learning approach for orien-
tation prediction of arbitrary natural photographs. In contrast
to prior works that just classify the orientation in different
predetermined angles, the network regresses the orientation
angle. The authors differentiate between three different levels
of difficulty ±30◦, ±45◦, and the full circle.

The largest graphic cards manufacturer in the world
NVIDIA, also took advantage of convolutional neural net-
works being able to estimate orientation of natural images.
The presented CNN-based system learns detecting useful road
features from front view image data combined with steering
angle as the training signal [6]. The CNN architecture which
was empirically found, has a depth of only nine layers,
including a normalization layer, five convolution layers, three
fully connected layers and is finalized with a Dense Layer. The
network shows that smaller architectures are quite capable of
solving given tasks and in some cases even do better than
larger ones.

Several publications deal with estimation orientation in
medical field of research: [7] presents a deep learning approach
for estimating the fiber orientation from MRI data. The mean
angular error is split into categories of 15◦ steps. Unfortunately
the algorithm cannot be used for finer data with an entire
angular spectrum. In addition, the results are evaluated on
synthetic data and are neither comparable nor capable to the
given task. Zhang [8] proposes an encoder decoder based
approach for recognition of orientation in CMR images. Still
the task is simpler because the rotation recognition is reduced
to a classification problem with only 8 classes, 30◦ steps each.

The closest work in terms of medical data is presented by
Baltruschat et al. [9]. The authors used transfer learning to
take benefit from a very deep network, namely ResNet trained
on ImageNet to determine the rotation of X-Ray images of
human hands. The task is still much easier, since the bone
information of hands alone is sufficient to calculate the rotation
angles. Additionally a full rotation spectrum is not realistic in
terms of prostate examination scenario. However, it makes the
investigation elementary since the features are more clearly
distinguishable.

In contrast to the previous work, our data is more complex
and contains a much smaller range of orientation angles. To
the best of our knowledge none of the published researches
deal with such a fine spectrum of angles of only 33.5◦ within
the presented dataset and also on such a complex application
field.

III. EXPERIMENTAL SETUP

The sequence of our processing pipeline is shown in Fig. 2.
The input data was firstly pre-processed and augmented. In
the following step a large selection of different neural network

Fig. 1. (a) Original examintation, (b) shifted and rotated, (c) shifted, rotated
and modified brightness

MRI Data
Preprocessing
Augmentation Training

Evaluation Angle Transformation
Visualization

Fig. 2. Experimental workflow

architectures was trained. Our choices were based on architec-
tures of the State-of-the-Art and also on the selection from the
related work. In the following steps test data was predicted,
evaluated and graphically analyzed. We also trained a large
number of custom architectures to outperform the previously
generated results.

1) MRI Data: Prostate MRI examinations from the De-
partment of Diagnostic and Interventional Radiology of the
Düsseldorf University Hospital were retrospectively included
(01/2018 to 06/2019). An expert uroradiologist (10 years of
experience) reviewed each examination for perfect alignment
of the transversal imaging of prostate. Imperfect acquired
examinations were excluded. Finally, a total number of 200
MRI examinations were included, each of which included the
perfect alignment angle G. The given data is presented as
DICOM. All recordings were made with Siemens scanners
”Prisma” and ”Skyra”. The recordings naturally differ in depth.
The depth of the sagittal point of view varies between 18 and
36 slices. For normalization purposes we only consider the
middle 18 slices of all images. Since the prostate is usually
not visible on the beginning and ending slices of every MRI,
we did not loose any information. This leads to a total of 3600
image slices that are used only for training and validation.
For a fair split, the data was analyzed and split into groups in
such a manner that as far as possible the whole spectrum of
ground truth angles γ with {γ ∈ R|88.2◦ ≤ γ ≤ 121.7◦}
is present in each of the groups. Finally 150 MRIs were
used for training, 40 for validation and another 10 for pre-
diction. The orientation γ within the test data was as follows
{120.49, 113.00, 110.69, 109.49, 107.10, 104.59, 102.89,
101.00, 99.39, 96.89}
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Fig. 3. (a) Sagittal view, (b) Transversal view, (c) Coronar view

2) Preprocessing and data augmentation: Firstly we pre-
pared the image pixel values prior to augmentation, such as
normalizing the value from [0, 4095] to [0, 1] by dividing
all pixel values by the largest pixel value of each image.
Secondly we scaled each image if its size was larger than
default. 320 × 320 was chosen as default because it is the
size of the smallest images of the dataset. Since we are
working in most cases with Grey-scale data, the used image
resolution is 320 × 320 × 1 . In cases of working with
pre-trained networks, the input is transformed to RGB with
320 × 320 × 3 dimensional input by replicating the existing
channel. Regarding the given data distribution (Fig. 4), we
recognized that the data is overall highly unbalanced. To tackle
this problem, we applied techniques of data augmentation.
Therefore we used only methods which manipulate the input
data in a way that the output is close to the real. Those methods
are shifting, changing of brightness and distortion (Fig. 1).
Since the dataset is rather small and the manual annotation
is very labor intensive, we subsequently rotated the images to
balance the angle distribution within the generated dataset as
shown in Fig. 4. Doing so, we enlarged the existing images
by five in total.

DICOM images contain among other things information
about sagittal, transversal and coronal orientation. For given
task only sagittal information is necessary by reason that it de-
fines the orientation which is needed for a proper examination
of prostate as can be seen in Fig. 3.

Furthermore the given task is regarded as a regression
problem, since a subdivision of existing orientation angles into
sub classes for a classification task would lead to a loss of
accuracy and also a reduction of significance of the evaluation.

3) Baseline: We have selected several architectures of the
gold standard and modified them to regression output. For
this we replaced the head with fully connected layers ending
with a single neuron. Our selection contains large models
such as InceptionV3 [10], Xception [11] and ResNet50 [12]
which proved outstanding accuracy in several application
fields. Besides very deep solutions we went for compact and
more computation-efficient architectures like ShuffleNet [13],
MobileNet [14] and MobileNetV2 [15]. Their advantage is the
ability to achieve comparable results with a smaller number

of trainable parameters and being therefore more suitable for
smaller datasets. In addition, we implemented and trained the
architecture for self-driving cars which we mentioned in the
related work and thus created a baseline. In the following
we call it ”NVIDIA”. All used weights were the result of
500 epochs of training, since no further improvement in any
experimental run with a higher epoch setting was observed.
4) Architecture: During experimental research, we investi-

gated hundreds of different neural construction constellations
which covered various depths, convolutional kernel sizes,
normalization techniques, activation functions etc. Separately
we searched for the greatest parameters using Auto-Keras [16].
Therefore, a varying amount of convolutional blocks {1, . . . ,
6} with up to two layers either convolutional or separable
convolutional, was build. We also worked with with different
kernel sizes {(3, 3), (5, 5), (7, 7), (9, 9)} and dropout rates {0,
0.25, 0.5}. Finally, a flatten and global average pooling layers
finalized the architecture search space.

The following architectures proved to be the most accurate
for angle estimation and outperformed any architectures tested
by Auto-Keras. The preprocessed and augmented data is fed
to the input layer. The input layer is chosen to have the size of
320 × 320 × 1, since it is the size of the smallest image and
also because we worked with single channel input data. Each
convolution layer is followed by Batch Normalization, Max
Pooling and Dropout. The rate for Dropout was set to 0.4.
Experimentally, this value showed to be the best. Since Adam
showed the greatest results in medical images of ten most
popular optimizer [17], we applied it with the recommended
learning rate of 0.01. For each of the seven convolution layers
we used Mish as activation function, since it showed to be
the most promising out of the set of activation functions. In
contrast to the trend of only using small filter sizes of, for
example, 3 × 3, we started with rather larger filters of 11
× 11 and kept the size at each level. Following this strategy
we extracted more information from the adjacent pixels right
from the start. The architecture is finalized by a flattening
layer which is connected to a Dense layer with one neuron for
regression output, powered by Softmax. The final architecture
is shown in [18]. The batch size was set to 18, though all
image slices of an examination are processed at once.
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Fig. 4. (a) Angle destribution, (b) Balanced angle destribution

5) Prediction: The network regresses the angle for each of
18 slices of the MRI examination out of the dataset separately.
The overall prediction P is calculated from the aggregation
of a set of predictions pi with {pi ∈ R| − 1 ≤ pi ≤
1 ∧ i ∈ {1, ..., 18}}. The resulting angle is than defined as
P = {pi|i ∈ {1, ..., 18}}, namely the average prediction over
all partial results. Further the angle needs to be transformed
to the 360◦ scale. Finally the mean absolute error MAE =
|G− P |, where G is the ground truth angle, is calculated.

6) Visualization: Before the predicted angle pi can be
visualized, it firstly need to be transformed to a gradient g
according to the following formula:

g =
1

tan arccos pi
(1)

Then the calculated gradient is used for visualization of the
estimated orientation line.

Fig. 5 shows a few prediction examples. Both the ground
truth and the predicted orientation are visualized. The distance
between the ground truth line and the prediction line are
visually marginal for image (a) with only 2.25◦ deviation of
the ground truth value. Image (b) shows a large deviation of
5.47◦.

Fig. 5. Predicted angle (blue), ground truth (red)

IV. RESULTS

Tab. I illustrates the results for all selected architectures.
We used pre-trained weights for all architectures that these
were available for, because transfer learning was proven to
be effective for small datasets [19]. All these weights were
generated on the ImageNet data.

Our evaluation differentiates between end-to-end training
procedure and training where we freeze the body and retrain

only the regression head. The MAE shows the mean absolute
error for all predictions compared to the corresponding ground
truth. Our goal was to get as close to the perfect orientation
(ground truth) as possible. In terms of average prediction a ran-
dom estimation value based on the dataset is valued by 6.19◦.
Several architectures reached this goal. Particularly noteworthy
are NVIDIA with a MAE of 4.20◦, MobileNet with 4.73◦

and our proposed architecture with 3.81◦. It is also noticeable
that networks with many millions of parameters performed
significantly worse than smaller ones. In contrast to ResNet50
and InceptionV3 with ≈ 25 millions trainable parameters, our
proposed architecture has almost one million parameters and
NVIDIA’s more than seven millions. We suspect that these
numbers are approximately an optimal range of parameters
for this kind of data.

The key elements that lead to great values were Batch
Normalization [20] and Mish activation function [21]. We
assume that Batch Normalization on one hand allowed higher
learning rates and on the other added a little noise to the net-
work. This leads to a decreased overfitting. Mish outperforms
other already established activation function like ReLU on
medical data because of its non-monotonic property, which
helps stabilizing the networks gradient flow, hence preserv-
ing small negative values. This activation function behaves
differently compared to commonly used ReLU of which the
differentiation is 0 for negative values.

V. DISCUSSION

Fig. 6. Vizualization of neural activity

Fig. 6 shows heat maps that are created using our custom
made architecture. Areas of highest neural activity are high-
lighted. It seems that rather dark regions or regions that are
close to a high contrast change are the most relevant. As it
happens, radiologists sometimes use the relative position of
patient’s rectum in relation to his prostate and mark the tilt
angle orthogonally for angle estimation. We suspect a similar
relationship based on the heat maps. Considering the small size
of the test dataset, we want to emphasize that it was generated
in such a way that the entire range of existing angles is present.
This is obviously more convincing than a random split, since it
contains not only angles with a smaller deviation which would
tend to result in a more accurate prediction, but also those that
have major differences to the ground truth.

In addition, it must be taken into account that even after
balancing the data distribution of orientation angles using
augmentation, in some cases only single images were available
and therefore had been added multiple times to the set in
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TABLE I
EXPERIMENTAL RESULTS

Architecture Pre-trained End to end MAE Min. Error Max. Error Std
InceptionV3 3 3 5.34◦ 0.51◦ 12.05◦ 3.90◦

ResNet50 3 3 5.50◦ 0.73◦ 11.00◦ 3.60◦

ResNet50Baseline 3 7 5.22◦ 1.30◦ 13.14◦ 3.33◦

ShuffleNet 7 3 6.14◦ 0.65◦ 14.91◦ 4.01◦

MobileNet 3 7 6.01◦ 1.63◦ 16.26◦ 3.91◦

MobileNetV2 3 7 4.73◦ 0.00◦ 13.08◦ 3.96◦

MobileNetV2 7 7 5.53◦ 0.34◦ 11.77◦ 3.44◦

MobileNetV2 3 3 5.20◦ 0.50◦ 8.97◦ 2.89◦

NVIDIA 7 3 4.20◦ 0.02◦ 12.96◦ 3.31◦

Proposed model 7 3 3.81◦ 0.67◦ 7.88◦ 2.68◦
Xception 3 3 4.82◦ 1.36◦ 10.13◦ 2.90◦

a modified form as shown in Fig. 4. This tends to lead
to overfitting. Hence, the ground truth data was annotated
manually by medical professionals, there still may be small
inexactness in the ground truth data. Therefore, the results
are quite satisfying. Unfortunately, the dataset on which the
NVIDIA architecture was evaluated is not publicly available.
A test run of the self-created architecture on this would be
quite informative. There are a few limitations of this work. On
one hand we are facing a classical problem of a small dataset.
The proposed architecture performed best on the validation
dataset as well as on the presented test data. For a meaningful
evaluation, we have split the data in such a way that the
angle distribution is balanced in test data. However, we do not
know whether the networks generalization ability is sufficient
for angles outside the range we considered. On the other
hand, all the data is made by only two scanners of the same
manufacturer which share the same protocol. It is difficult to
say whether the proposed network architecture would perform
just as well on the input generated by another hardware. A
simulation on synthetic data could provide some insights.
For this a deep understanding of hardware and protocols is
required.

In future work we will consider more rather rare edge cases
with particularly large deviations from the optimum, which
require additional data acquisition. In addition, we will try to
include areas that are identified as particularly relevant through
heat map information.

VI. CONCLUSION

To the best of our knowledge, this work presents the first
deep learning approach for orientation estimation of prostate
image data in MRI. In this paper we have shown that the
architecture we have presented allows orientation estimation
of prostate MRI data in a quality, which is at least as good as
State-of-the-Art architectures in this research field achieve. We
suppose that the information density of the training data, that
the network needs to be able to carry out a correct regression is
not large enough for very deep architectures. This might be the
reason for large networks such as InceptionV3 or ResNet50
performing a little less accurate than mobile networks such
as MobileNetV2, thus overfitting. The architecture that is

proposed by NVIDIA’s research team outperforms all tested
networks on the MRI dataset except the model we propose.

We proved that convolutional neural networks are able
to learn subtle features that are necessary for prediction of
canonical orientation of MRI. We also found out that certain
image areas are more important for orientation estimation. In
the near future we will use these findings and investigate,
whether preceding segmentation input of prostate will lead
to improvement. Furthermore, we will look out for additional
appropriate MRI data to be published, which we might be used
as a second dataset for evaluation.

Finally, we will contemplate an MRI quality rating system,
which will consist of several examination steps and operate
while image registration. Firstly, axial orientation estimation,
as introduced in this paper. Secondly, evaluation of sharpness,
clarity and several other factors along with the decision,
whether an injection of a contrast agent is necessary.
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4
Maritime Inventory Monitoring

“Learn how to see. Realize that everything connects to everything else”
— Leonardo da Vinci

4.1 A two-staged Approach for Localization and
Classification of Coral Reef Structures and Com-
positions

As already shown in the previous chapter, the quality assurance and automation of
processes is already promising for medical applications. However, there are some
limitations. One of the reasons, as seen previously, is the data itself. Therefore, the
following chapter will deal with the analysis of image sources, which differ greatly from
the medical ones. Further insights into process automation and QA are expected from
this breakdown.

In recent years, the changes in climate and nature have attracted great attention
from researchers and public as well. The experts agree that protective actions are
necessary. An appropriate intervention for environmental protection requires a contin-
uing monitoring. One substantial environment is coral reefs. Coral reefs are highly
endangered and need to be protected. Many marine biologists deal with this topic on a
daily basis. The importance of early detection of changes on coral reefs is high (Fabricius
and De’Ath, 2004). Some publications deal with the detection of damage to coral reefs
in terms of coverage (Nurdin et al., 2015) or coral reef environmental change (Zhou
et al., 2018). However, the total area covered by coral reefs is as large as 284 300 km2

(M. Spalding et al., 2001). An area of this size can not be reviewed by experts manually.
This raises the question of whether an automatic localization and annotation
of corals in large scale images is feasible. In the following publication we tackle
this question. In particular, we investigate how much computer vision can contribute
to this task. During our further investigation and in contrast to the previous chapter,
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the image type changes from 3D images to 2D. In addition, we are moving away from
classification towards object localization. In this context, we can not use previously
introduced algorithms. Therefore, we needed new appropriate baseline architecture. At
the starting point of our study, we could not find any related work even roughly similar
to the RQs. Particular attention while searching for a baseline architecture was paid
to the fact that the images are of a large scale, meaning a high resolution. Not many
publications on the topic of object localization deal with this constriction regardless of
data origin. High resolution images have special importance for satellite imaging and
aerial imaging. This is why there is a demand to automatically localize the objects
in this area (Ševo and Avramović, 2016), (W. Guo et al., 2018), (Tayara and Chong,
2018). Even though the area of application is different, the idea behind the mapping of
the largest possible area to a small number is very similar. However, the algorithms
developed for this kind of data are not applicable to coral images since the objects of
interest in geospatial data are often of a homogeneous shape and mostly non-overlapping.
For this reason, the rather simple methods for object detection are not transferable.
In terms of maritime environment Object Detection is rather researched above the
water surface (Farahnakian et al., 2018), (Makantasis et al., 2013), (Farahnakian et al.,
2018). Several publications deal with underwater object detection using sonar imagery
(Williams, 2011), (N. Wang et al., 2017), (Galceran et al., 2012), (Kim and S.-C. Yu,
2017), (Mandhouj et al., 2012) or remote sensing (Cao et al., 2016). However, these
works focus on rather large objects with predominantly simple complexity. Speaking of
recognition of large underwater objects (Rizzini et al., 2015), (Zhu et al., 2016) should
not stay unmentioned since contrary to the previously mentioned publications, they
deal with natural imaging. Nevertheless, the objects are of a similar large shape.

The provided ImageCLEF data set differs from standard data sets used for OD
bench marking, such as COCO, in its significant complexity and small number of
images. The complexity is caused by a highly variable object size, as well as a large
number of tiny objects. What makes it even more difficult is the fact that the data
is highly imbalanced. However, inspired by the success of the One-Stage-Detectors in
several application fields (Jiao et al., 2019a), as well as our developments in the field
of traditional feature engineering presented in previous chapters, which were able to
keep up with the deep learning concepts, we decided to investigate how we can combine
both techniques. In the following paper, we present a novel two-stage procedure for
localization and classification. One of the main advantages of the proposed approach
is that a detailed evaluation is possible. This allows a deep insight into strengths and
weaknesses and thus a further discussion. Subsequently, we hope to draw attention to
the complexity of the problem and raise research interest on the given application field.
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Abstract. In this paper we present the approaches that achieved the
first place in this years ImageCLEFcoral challenge. The task of the chal-
lenge was the localization and classification of corals within images of
sea ground. Therefore we had to extract bounding boxes for each coral
and labeling them with the specific type of substrate.
We applied a state-of-the-art deep learning approach (YOLO) and also
developed a two-staged approach, using a grid along with two classifiers.
One that classifies the tiles of the grid, the other that classifies the found
boxes.
We had moderate results using YOLO and discovered that locating the
corals is the most challenging part. Furthermore class imbalance and
intersecting boxes, made the problem even harder.

Keywords: Image Segmentation · Image Classification · Object Local-
ization

1 Introduction

Climate change is one of the major problems of the 21st century. Its impact
is growing every year and therefore researched a lot. Since corals are a signifi-
cant part of the maritime environment they are affected by the climate change
in many ways [6]. Corals have their own self-contained and over many decades
developed ecosystem, which is why the influence of damage to coral reefs can
have serious consequences for every maritime organism. Every year the danger
of complete destruction of coral reefs becomes more realistic. To sophisticatedly
plan protective procedures, coverage of current stocks are required. For this pur-
pose, images of the sea ground are currently viewed and annotated manually,
which is nearly impossible for the whole considered surface area. This raises the
question of whether an automatic localication and annotation of the coral is
feasible. We will address this question in this paper. Therefore we use this year’s

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0). CLEF 2019, 9-12 Septem-
ber 2019, Lugano, Switzerland.
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ImageCLEFcoral dataset [2] as the base for our research and also participated
in their challenge, which is part of the ImageCLEF 2019 [8]. The task can be
divided into two logical subtasks, localization and classification of objects. This
is a wide spread research field of computer science, with many fields of appli-
cation. The automotive industry seems to be an obvious field of research [3]
and is commercially relevant. Today, driver assistance systems are ubiquitous.
Recognition of road signs is a part of it. At first images of the road are taken via
vehicle camera while driving. Second road signs are searched and classified in
these recordings. The greatest results in such application scenarios are achieved
by artificial neural networks. YOLO [11] showed one of the best results. The ap-
plication scenario can be transferred very well. The localization and labeling of
corals is similar, because the images are taken automatically and contain corals
in unknown areas.

2 Data

The training set, which we define as dataset (A), contains 240 images with 6670
annotated substrates. Generally there is a differentiation between 13 substrate
types. Which are: “Hard Coral – Branching, Hard Coral – Submassive, Hard
Coral – Boulder, Hard Coral – Encrusting, Hard Coral – Table, Hard Coral –
Foliose, Hard Coral – Mushroom, Soft Coral, Soft Coral – Gorgonian, Sponge,
Sponge – Barrel, Fire Coral – Millepora and Algae - Macro or Leaves” [2]. For
the submitted runs a test set containing 200 raw images is used, which correct
labels and boxes were not available at the time of the publication.

Table 1: Substrate types with their relative frequency in the training set.
Class label Relative frequency

c algae macro or leaves 0.0046
c fire coral millepora 0.0015
c hard coral boulder 0.1549
c hard coral branching 0.1280
c hard coral encrusting 0.0528
c hard coral foliose 0.0082
c hard coral mushroom 0.0258
c hard coral submassive 0.0031
c hard coral table 0.0009
c soft coral 0.5223
c soft coral gorgonian 0.0024
c sponge 0.0808
c sponge barrel 0.0145

The substrate types have an unbalanced distribution, as shown in table 1. Fur-
thermore does the quality of the images vary, as well as the resolution. Some of
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the images contain a measurement white line, which is an obstacle while image
processing.

2.1 Investigating the Dataset

When investigating the dataset, the problem of overlapping boxes appeared to
us. Many of these bounding boxes fully contained or intersected with other boxes.
To be more specific, only 2672 of 6670 bounding boxes do neither overlap or are
contained in a bigger one. For this reason, we had started to investigate whether
the substrates differ from each other at all, why we searched for meaningful
features. These features were extracted from extracted bounding boxes. We ap-
plied a classical approach using SIFT [9]. Furthermore we calculated structure[5],
texture[7] and color histograms in another approach. We used the calculated fea-
tures to train a k-Nearest Neighbors classifier. The considered neighborhood k
was set to [3, 25] = {k ∈ N|3 ≤ k ≤ 25}. Setting k to a higher value would
lead to a strong dominatation of the neighborhood by frequent classes. With a
train-/validation split of 80 : 20 we got our best results on a combination of
texture, structure and color features. The following values show that the rare
substrates are basically not found. In this way, we did not succeed in improving
these values.

2.2 Augmentation

The amount of given data is remarkably low. Usually even a pre-trained neural
network requires a larger data set, why we decided to use data augmentation.
To generate new data, we used the following methods: noise and blur[1]. Other
augmentation methods did not seem practical, since it would change bounding
boxes. Therefore, we generated a second dataset (B) and could triple the data
set size. Within the new dataset, which consists of substrate bounding boxes,
we kept the class distribution, due to the probability of finding a frequently
represented substrate type is significantly higher than that of a rare one. Also
because balancing the dataset would require to cut frequent substrate types,
which did not seem appropriate regarding the low number of annotated corals.

2.3 Sharpening

The images vary in quality and many of them are out of focus or blurry. To
counter this and to create an improved dataset (C), we increased the contrast
of entire images and highlighted the details. For this purpose, each pixel value
was replaced by the weighted average of its 3 × 3 neighborhood. The following
matrix shows the filter:



−1 −1 −1
−1 12 −1
−1 −1 −1
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3 Approaches

The challenge of the annotation and localization task is to find corals within
images of sea ground, define bounding boxes for each coral and label them with
their specific type of substrate.
We applied one state-of-the-art deep learning approach and additionally devel-
oped an own one. These two are presented in the following subsections, whereas
the focus lies on explaining our own approach.

3.1 YOLO

In contrast to comparable neural networks, like ”fast R-CNN” [4], which locate
and classify objects multiple times for various regions of an image, the YOLO
architecture passes the whole input image at once. That is achieved by dividing
each image into square cells inside of which bounding boxes are predicted. In our
work we scaled input images to a size of 608 x 608 pixels, because of the many
corals contained in each image. This is the largest resolution we tested on our
GPU and was the most promising. The classification process is basically a regres-
sion problem, which leads from image pixel values to bounding boxes with their
class probabilities in one go. Part of the training is the optimization of predicted
class probabilities, which defines the bounding boxes. In doing so, the calcula-
tion of each box considers features of the entire image. Therefore YOLO has the
advantage of making less background errors as R-CNN, because more context
information is taken into account. YOLO also outputs a confidence, which is
calculated as the product of the precision of an object and its intersection over
union (IoU). In a later step, this is multiplied by the conditional class probabil-
ity of an object. Finally an output confidence is obtained, which describes how
probable the particular class of the box is and how well the predicted bounding
box fits this particular object.

Limitations However, there are some limitations. On the one hand each cell
of the grid predicts only two boxes, which share the same class label. This is
an algorithmic limitation on the number of objects with different labels, if the
objects are close to each other. On the other hand the authors of YOLO mention
that they treat errors in small bounding boxes the same way they treat large
bounding box errors. Because of that, errors in small boxes have a larger impact
on IoU, which leads to incorrect localization.

3.2 Own Developments

We developed a two-staged approach that first locates and then labels the sub-
strates. Both of these steps make use of machine learning, to be more precise
classification algorithms. This leaves room to improve the classification task, e.g.
by evaluating different classification algorithms.
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Fig. 1: Flow diagram of our approach. Red clouds are input data and green
ones output data. The blue boxes are steps described in text.

One advantage of this two-staged approach is, that the two stages are indepen-
dent from each other, which makes it possible to combine different algorithms
and approaches together. The algorithm of our approach is shown in figure 1.

Locating Substrates The main idea behind locating substrates is based on
the assumption, that the coral images have coral and non-coral areas. Such
non-coral areas should look relatively similar for all coral types. This is quite
different for images showing objects like cars or birds. Following our assumption,
we segmented an image in coral and non-coral areas. First the image is divided
in a grid, small enough to predict all boxes. To classify these areas we used a
grid and then extract features from the tiles of this grid. We used a square of
a fixed size for the tiles, which is based on the size of the smallest boxes in the
training set, i.e. the integer average of the smallest width and height. Based on
the training set, we recommend to use a tile size of 12× 12, so that the smallest
box can be located completely without background. To ensure that all tiles of
an image have the same size, i.e. image size is the whole multiple of the tile size,
the image is scaled to fit.
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Next we extracted features for every tile of each of the training set images.
For this purpose we used concatenated feature vectors consisting of features
describing the color, texture and shape. For color, normalized histograms are
used which describe the characteristics regarding the color [10]. The textural
features of the tiles are modeled by Haralick texture features [5], which applies
co-occurrence matrices on the gray scale level. Lastly the shape is represented
by Hu moments [7]. Hu moments are invariant to translation, rotation and scale.
All of these characteristics are useful for the domain of coral images.
These features are used to train a binary classifier, which classifies whether a tile
is a coral area or a non-coral area. An area of a training set image is considered
a coral area, if more than 50% of its area intersects with a bounding box area of
the ground truth. To classify areas of images that should be predicted, this image
is also divided into tiles of the same previously defined size. Now the labels were
obtained by feeding the features into the learned classifier. We decided to use
K-Nearest-Neighbor with k = 15 to classify the tiles, because k = 15 performed
best on our validation split.
After each tile of the grid was classified, we got an black and white image with
12 × 12 pixel large tiles. There are multiple strategies to extract boxes out of
the resulting picture. We used a relatively naive approach with the application
of connected-component labeling. Since we discovered a large amount of single,
not connected tiles, we only kept components, that consisted of more than ten
tiles. This counters a less beneficial performance of our classifier.
Each unique component is now bordered with a bounding box, that borders the
outside tiles of the component. Figure 2 is showing the different stages of the
location process (b - d), as well as the ground truth (a).

Labeling Found Boxes The found bounding boxes were classified on previ-
ously mentioned features 2.1 using a k-Nearest Neighbors Classifier. In addition
to this already presented classification approaches, we studied whether the fea-
tures can also be classified using a convolutional neural network. For the research,
we subdivided the training data into a training and validation set in a ratio of
80:20 as previously. For comparability of the results we scaled the input data to
the size of our grid. In consideration of the low amount of image data, we begun
our work with a correspondingly small CNN, which we call baseline. The given
CNN consists of one convolutional layer with maxpooling and rectified linear
activation. We use dropout to prevent overfitting. The deactivation of neurons
happens with a 20% probability. Subsequently, the data is handed to a flattening
layer which serves as connection between convolutional and following dense lay-
ers. The result first enters a dense layer with RELU as the activation function
and is then passed on to a density layer with softmax as activation function.
This leads us to a confidence for each bounding box to belong to one of our 13
classes.
Considering that such a simple architecture may not be able to ”remember” all
relevant features of coral images, we extended our baseline architecture. There-
fore we enlarged the existing architecture with two additional convolutional hid-
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(a) Grund truth boxes. (b) Inside (white) and outside tiles
(black).

(c) Refined inside and outside areas. (d) Bounding boxes of connected compo-
nents.

Fig. 2: Visualized process of localization corals with our approach. The raw pic-
ture is taken from the ImageCLEFcoral dataset [2].

den layers.
Finally we looked for an extra deep architecture for comparison. All networks
were trained with a batch size of 100 and with up to 1000 epochs. We decided
to use VGG19 [12] and trained it on our data via transfer learning, since it has
been proven to be gold standard in recent years.

4 Evaluation and Results

The following section discusses the submitted runs at ImageCLEF 2019. For
a better understanding of the results of the approaches, we evaluated the lo-
calization and labeling separately. The results show that YOLO is considered
state-of-the-art for a reason.
Besides presenting our results of the submissions, we also discuss the limitations
and potentials of our approach as well.
In table 2 we present the results of our submissions. Our own approach is marked
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with I, and YOLO based submissions with II. MAP 0.5 stands for the localised
mean average precision for each submitted method with an IoU ≥ 0.5 of the
ground truth and R 0.5 for the recall value, respectively MAP 0 represents the
image annotation average without any localization. The results for I show, that
CNNs and k-NN deliver comparable results. Sharpening has not led to better
results, perhaps because it accentuates noise. YOLO combined with statistical
probability distribution provides best results with an precision of 0.243 and a
recall of 0.131.
Table 2 shows that we worked only on data set (A) and (C). We did not use data
set (B) for our run submissions, since it did not lead to any kind of improvement.

Table 2: Results of our submitted runs at ImageCLEF 2019. Comparison
of the results of the different approaches in our submissions. The methods used
in I are our developed two-staged approach, whereas II are approaches using
YOLO.

Approach Dataset MAP 0.5 R 0.5 MAP 0

I

k-NN, k = 13 A 0.003 0.004 0.272
Statistical labeling A 0.002 0.003 0.203
Baseline CNN A 0.003 0.004 0.228
Transfer Learning A 0.003 0.004 0.291
3-Layer CNN A 0.003 0.004 0.205

II

YOLO + k-NN A 0.229 0.131 0.500
YOLO + Statistical A 0.243 0.131 0.488
YOLO + k-NN C 0.210 0.122 0.455
YOLO + Statistical C 0.220 0.122 0.442

All approaches we used have some limitations and therefore leave space for
improvement. Some of which we will describe in the following.

YOLO The weakness of YOLO is evident on rather smaller bounding boxes.
Predictions on the validation data set showed that small coral substrates are
either not found or subsequently labeled incorrectly. This results in the low
recall value of 0.131. Corals that are found however, are mostly labeled as
”c soft coral”. Nevertheless, even on larger corals, YOLO shows rather mod-
erate results. In a quarter of images it did not find boxes at all, that is why we
used the found boxes from our other approach I to complete the results.

Our Approach Not only the performance (see Table 2) shows flaws in our
approach, but also some obvious conclusions do. Since we got an accuracy of
0.534 on labeling boxes, which was evaluated on a 80 : 20 split of the training
set, we assume that our approach fails to locate corals correctly. We also tested
using SIFT features which had an accuracy of 0.4744.
One problem of the two-staged approach is the assumption, features of coral and
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non-coral tiles are distinct enough. This leaves room for further evaluation and
research, regarding the choice of features and labels. It might be beneficial to use
more than two labels, i.e. more than just coral and non-coral. This could e.g. be
water in the background, because we discovered that water in the background is
often ”false positive” classified, i.e. as coral area. An additional label would also
need an additional annotation.
The question arises, whether 14 (13 substrate classes + background) labels could
be used. This approach would only need one, instead of two classifiers.
Regarding the tile classification, the usage of CNNs to classify the tiles sounds
promising because of the high number of tiles.
Another issue with our approach is the size of the tiles. Big tiles prevent small
boxes from getting found and increase the chance of two corals in one tile. From
a design perspective, boxes should be as small as possible to be as precise as
possible. But if tiles are chosen relatively small, not only does the computa-
tional time extend, but features contain less information. This could lead e.g.
to forms not getting recognized. We encountered the problem of an enormous
computational time, because of that we increased the size to 24 × 24. Also we
reduced the training set of tiles by 80%, which decreases the performance not
significantly as seen in table 3. An approach of using a sliding window should
also be considered in future work.

Table 3: Performance of 20% of the training set tiles compared to all tiles.
Amount of dataset Precision Recall F1 Score

Non-coral Coral Non-coral Coral Non-coral Coral

1.0 0.6916 0.4950 0.7664 0.4013 0.7271 0.4433

0.2 0.6907 0.4900 0.7603 0.4034 0.7238 0.4425

Lastly using connected components as the method to extract boxes from the
tile images, could be not sophisticated enough. Firstly with a perfect labeling
of coral and non-coral tiles, it would not be able to recognize inlying boxes.
And secondly it only considers two labels as features. The use of density-based
clustering, working on more than just the predicted labels could lead to better
results.

5 Conclusion

Overall, our approaches show moderate results. The idea to use neural networks
proved to be promising. However, afterwards we can assert that YOLO was not
the best choice. It completely fails to find smaller bounding boxes.

The concept of using feature engineering and searching for features or feature
constellations, which are able to describe and represent different types of benthic
substrate, still seems to be useful regarding the small amount of given data. But
there is a lot of room for improvement.
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Beside of that there are multiple images in the data set that show the same sea
ground and contain for the most part the same corals. This kind of information
can be used locally to improve the bounding boxes of corals, since their position
can be tracked.

With regard to our approach 2b of labeling coral and non-coral areas, we can
make the conclusion that the chosen features are not working properly. Probably
we need a kind of back propagation to mark wrong labeled areas and process
images multiple times. Additionally we could investigate the set of our features
for a more performant subset using boosting. We would also stick to the deep
learning approach and try another, maybe more time consuming but also more
precise neural network, like an R-CNN.

Finally, the concept of combining deep learning and classic feature engineer-
ing is where we see the most potential.

Besides that, another point of potential improvement is the correction and
balancing of the data set itself. Currently, seven of 13 coral type classes have a
relative ratio of less than two percent, six out of them even less than one percent.
The quality of the pictures is very variable too. Some of the images do not even
seem to be completely annotated.

For future approaches, we would recommend publishing a larger and more
balanced data set, in which each class has almost the same number of represen-
tatives.

To address the initial question whether an automatic localization and anno-
tation of corals is feasible, we see good chances for future research.
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4.2 Enhanced Localization and Classification of Coral
Reef Structures and Compositions

The results we have achieved during our investigation of the research question, whether
an automatic localization and annotation of corals in large scale images
is feasible outperformed those of the other top competitors of the ImageCLEFcoral
challenge (Caridade and Marçal, 2019), (Jaisakthi et al., 2019) and (Steffens et al.,
2019) but still showed a lot of space for improvement. Therefore, the proposed two-
step architecture can not yet be considered a key concept for the automation of the
annotation process or QA for monitoring of inventory control. For this reason, we
want to benefit from the gained knowledge and deal with the same research question
once again. Previously, in Chapter 4.1 we have discovered and discussed a series of
hidden difficulties so far. To overcome these difficulties a closer look is necessary: on
the one hand there are complications that can be summed up as special challenges
in maritime imaging. These include certain quality issues of underwater images, such
as color distribution, contrast, blueish cast and sharpness. At this point, we want to
raise a more detailed question whether an improvement of the image quality has
a direct impact on the performance of OD. Therefore, we apply and evaluate
algorithms developed for the improvement of image quality of underwater images to
coral data in the next publication. On the other hand, we saw issues concerning the
given data set itself. Unbalanced class distribution in conjunction with a low number of
images is a major challenge for most ML algorithms. Therefore we tackle the question
how a fair data split can be provided in terms of train and validation splits
on the same data. We consider in the next publication the split as fair if the amount
of class represents in each subset is close to equal relative to the required percentage
value. Although the common OD benchmark data sets such as COCO (T.-Y. Lin et al.,
2014b) and Pascal VOC (Everingham et al., 2010c) do not benefit from the proposed
method, because of their low complexity in regards to class distribution, our solution
might be of a high significance for more complex data sets. In addition, we encountered
the fact that small objects stay almost undetected. The reasons for this can be of
different nature. Already Ferrari et al. (2007) drew attention to a correlation between
loss of spatial information and weakness in localization performance, in general. In our
opinion, this applies to both ML and DL. In terms of limitation of DL, Y. Zhang et al.
(2019) found out that the CNN-based methods take mostly global features i.e. the fully
connected for sizing and refinement of the bounding boxes, while local features being
the more delicate input are more suitable of OD. Relating to One-Stage-Detectors such
as YOLO, this insight can be expanded by the fact that the features from the bottom
layers in high resolution are not used for detection because of a lack of semantic values
(Xin Zhang et al., 2020). The missing ability to construct higher resolution layers and
therefore benefit from the bottom as well as higher levels may be solved by Feature
Pyramid Network (FPN) (T.-Y. Lin et al., 2017a), which we want to integrate in the
further research. In the following paper, we rework both stages of our approach. Both
DL and classical feature engineering are revised.
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Abstract. The automatic annotation of coral images is important for
researching the underwater ecosystem, which is the focus of the Image-
CLEFcoral task. We participated by refining our approaches from the
last years challenge for localization and classification of corals within
images of sea floor. Underwater images bear multiple difficulties which
we tackle with applying image enhancement algorithms. To locate and
classify the corals we applied multiple deep learning approaches and also
revisioned our two-staged algorithm. The results show that deep learn-
ing approaches are the most convincing. Still, the localization of corals is
the most challenging part for us, but we managed to increase our models
performance significantly.

Keywords: Image Segmentation · Image Classification · Object Local-
ization

1 Introduction

Monitoring coral reefs and their health is an important component to understand
effects of the climate change on maritime life [8]. Experts annotate underwater
images, who not only have to deal with the complex morphology of the corals
but also the large number of pictures. Computer vision based localization and
classification of corals seems to be a reasonable solution. Unlike typical datasets
for object detection tasks, underwater images hold more problems regarding the
image quality and thus need very specific features and preprocessing.

In this paper we present the improvements of our approaches which are based
on the last years ImageCLEFcoral [3][5] submission. Additionally we used an-
other deep learning approach, namely RetinaNet [13], since this seemed to be
the most promising. The classical machine learning is revisioned, but still not
compatible with deep learning approaches regarding its performance. Lastly we
implemented a popular suggestion to increase the image quality by preprocessing
the images with algorithms made for underwater photography [7][1].

Overall we increased the performance of our approaches and can provide
more insights, which we present in the following sections.

Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0). CLEF 2020, 22-25 Septem-
ber 2020, Thessaloniki, Greece.

4.2. ENHANCED LOCALIZATION AND CLASSIFICATION OF CORAL REEF
STRUCTURES AND COMPOSITIONS 77



2 Related Work

The research of last year coral task can be divided into classical feature engineer-
ing and deep learning approaches. Caridade and Marçal [4] used random forest
classification, based on a selected feature set, consisting of color and texture
features to localize and classify the substrate types. Jaisakthi et al. [10] used a
faster R-CNN to solve this task. Another solution proposal presented by Steffens
at el. [22] is based on a DCNN architecture. Our approach differs from the men-
tioned research. Considering the different properties, distributions and sizes of
the corals, we rely on a combination of both categories of image processing. The
good results substantiate our approach and make it one of the most promising
so far.

3 Data

For the purpose of the task [9][6], a training dataset with 440 images and 12077
annotated substrates, which are labeled with one of 13 substarte types, is pro-
vided. An additional dataset contains 400 raw images, that is used for testing
the predictions while no further information about the images is given to the
participants.

Table 1: Substrate types with their relative frequency in the training set.
Class label Relative frequency

c algae macro or leaves 0.00761463
c fire coral millepora 0.00157259
c hard coral boulder 0.13590465
c hard coral branching 0.09774872
c hard coral encrusting 0.07829829
c hard coral foliose 0.01464989
c hard coral mushroom 0.01845721
c hard coral submassive 0.01638802
c hard coral table 0.00173812
c soft coral 0.46871379
c soft coral gorgonian 0.0074491
c sponge 0.13996027
c sponge barrel 0.01150472

The substrate representatives have a highly imbalanced distribution as shown
in table 1. A random split of the data can lead to an even more disadvantageous
class distribution, since it can exclude the representatives of the rare classes in
one of the sets or increase the impact of frequent classes on the set. We give an
example with a split into train and validation subsets with a ratio of 80 : 20 which
distribution can be seen in table 2. To prevent the tendency of high imbalance,
we propose the following procedure similar to [22].
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May P (D) be the relative distribution of classes of the complete image
dataset D. Since both splits of the dataset should have the same distribution of
classes, P (D) is our target distribution. May A and B, with A ∩ B = ∅, be the
two sets after splitting D with the relative distributions P (A) and P (B). The
key idea is to swap images between the two initial random splits A and B to
make P (A), P (B) and P (D) as similar as possible. Let a, b with a ∈ A and b ∈ B
be the two images to swap between A and B. We define A∗ = (A \ {a}) ∪ {b}
and respectively B∗ = (B \{b})∪{a}. If the similarity between P (A∗) and P (D)
is smaller than the similarity between P (A) and P (D), we swap the items, so
that A = A∗ and B = B∗. Since the similarity between P (B∗) and P (D) de-
creases when the similarity between P (A∗) and P (D) decreases, this approach
works w.l.o.g. The loop over the images is running until there are no more swaps,
i.e. no swap increases the similarity. To measure this similarity we use Jensen-
Shannon divergence [11]. Since this procedure only converges to a local, but
not global optimum, not every random split ends up in the same balanced split
but consequently the optimal split is not found every time. Further research is
needed to evaluate this approach, in regards of optimizations and metrics. The
results of the balancing algorithm are shown in the table 3.

The Jensen-Shannon divergence between the train and validation set before
swapping is 0.040313, whereas after swapping its divergence is 0.0061. This is
an improvement by a factor of almost 8.

Table 2: Substrate distribution before balancing.
Class label Relative frequency train Relative frequency valid

c algae macro or leaves 0.00799747 0.005827505
c fire coral millepora 0.00126276 0.00271950272
c hard coral boulder 0.12722298 0.167443667
c hard coral branching 0.0967063 0.101787102
c hard coral encrusting 0.07965906 0.0730380730
c hard coral foliose 0.01515311 0.012810513
c hard coral mushroom 0.01894139 0.0167055167
c hard coral submassive 0.01746817 0.01243201
c hard coral table 0.0021046 0.000388500389
c soft coral 0.47606019 0.442113442
c soft coral gorgonian 0.00683995 0.00971250971
c sponge 0.13869304 0.144910645
c sponge barrel 0.01189098 0.101010101

4 Approaches

The ”Coral reef image annotation and localisation task” can be divided into
two tasks. Segmentation of various coral objects from images of sea ground and
classification of those with their specific type of one of the 13 known types of
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Table 3: Substrate distribution after balancing.
Class label Relative frequency train Relative frequency valid

c algae macro or leaves 0.00758972 0.00735809
c fire coral millepora 0.00140952 0.00210231
c hard coral boulder 0.13574759 0.13594954
c hard coral branching 0.09779898 0.09775753
c hard coral encrusting 0.07828255 0.07813595
c hard coral foliose 0.01474574 0.0143658
c hard coral mushroom 0.01843218 0.01857043
c hard coral submassive 0.01637211 0.01646811
c hard coral table 0.00173479 0.00175193
c soft coral 0.46882793 0.4688157
c soft coral gorgonian 0.0074813 0.00735809
c sponge 0.14008457 0.13980378
c sponge barrel 0.01149301 0.01156272

substrates.

Due to multiple difficulties that underwater images bear, strategies to en-
hance the image quality which should help to find better features are used. We
applied two of the state-of-the-art deep learning approaches and additionally
combined these with an improvement of our own development [3]. Those ap-
proaches are presented in the following subsections.

4.1 Image Enhancement

Underwater images inherit problems, like the attenuation of light or the suspen-
sion of particles reflecting the light. Those conditions distort colors and visibility,
which affect the performance of machine learning algorithms. Therefore we ap-
plied and evaluated multiple enhancement algorithms, that are specialized on
underwater images.

Ancuti et al. [1] use Fusion [24] and work without knowledge of a physical
model of the lighting conditions. Two derivations of the image, improving the
white balance and the contrast, are fused together using different weight mea-
sures to restore the image. The authors show that they retrieve more features
using SIFT [15] through applying their image enhancement. Ghani and Isa [7]
use Rayleigh-stretching, as well as stretching using the HSV color model, to first
correct the contrast and then correct the color. Further on the processings are
referred to as Fusion and RD. Since we do not have access to already corrected
images of the instant dataset, we use three evaluation measures that predict
how human would perceive the image, based on learned examples. Namely the
measures are BRISQUE [16], NIQE [17] and PIQUE [23]. For all of them smaller
values mean better image quality.
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The evaluation [18] of the dataset of 2019 showed an improvement in image
quality using the two enhancement algorithms, as seen in table 4 as well as in
the subsections 4.4 and 5. Example images are shown in figure 1.

Table 4: Image enhancement algorithms evaluated on ImageCLEF Coral
dataset 2019.

Algorithm BRISQUE NIQE PIQUE

None 25.98 3.61 26.34
Fusion 22.66 3.43 30.99
RD 20.92 2.94 25.06

(a) Original (b) Fusion (c) RD

Fig. 1: Comparison of the image enhancements.

4.2 Yolo - Improvement

Neural networks are still state of the art in segmentation and classification tasks.
Last year we used Yolov3 [20] as our main neural network approach. Especially
areas with a particularly large denseness of smaller corals were challenging. The
reason for this is on one hand Yolo’s native ROI restraints which sets a natural
limit on the regions considered within a certain area. On the other hand we were
limited by the input data size with the largest resolution we could use with GPU
of 608 × 608 pixels. Regarding the original resolution of images of 4032 × 3024,
we preserve a scaling factor of at least of 5, i.e. each pixel represents an area of
more than 25 pixels in the original image. Considering that the smallest corals
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consists of 12 × 12 pixels, the information loss is significant. We split the images
into overlapping subimages of 608 × 608 pixels and trained the network on
unscaled input. Consequently we got a large amount of images which also meant
that the training time of our network was almost one month. Unfortunately,
there was a mistake in the training data, therefore a revision of the results of the
last years challenge was just recently announced. This left us with not enough
time to retrain our working setup.

4.3 RetinaNET

For our second neural network approch we chose RetinaNet. The network showed
impressive results on the COCO dataset and outperformed Yolov2 with a 17%
higher AP0.5 value. RetinaNet is well suited, since it is able to produce more
predictions and is capable to work with less balanced data. At its core, the
architecture consists of the following components: a feature pyramid network
[12] (based on Resnet), a regressor for bounding box prediction and a classifier.
Basically, it is a one-stage detector. The particular advantage of RetinaNet is
the focal loss [14]. In case of end-to-end object detection, background predictions
oftentimes dominate. The optimizer rates the prediction as correct and the loss of
the positive background prediction forms the complete return loss. This mostly
leads to an optimizer return value of zero for the background areas in case of
cross entropy and thus reduce the loss. Focal loss weights the positive samples
higher and ensures that the network performs better on unbalanced data.

Right suited anchor boxes are the key to quality of object detection for any
architecture that works with a ”regions of interest”. If the anchors are not prop-
erly prepared, the network has in many cases no chance of finding particularly
small, neither large objects. In our dataset, we experience a wide variety of sizes
of corals. Starting from a box size of 18 × 9 to a size of 3966 × 2662 pixels,
the standard deviation of the areas is 629 assuming a square size. That means
that irregular or peripherally sized objects present a special challenge. To tackle
this problem, we chose a solution that was originally used on medical data [25].
In our opinion, the potential for improvement can be easily transferred to coral
context, since tumors and nodules as smaller objects are comparable to coral
objects of small size.

4.4 Own Developments

Besides the deep learning we also increased the performance of our classic feature
based approaches. We evaluated the use of principal component analysis (PCA)
[19] to select the best features, which increased the performance slightly. Apart
from the features the choice of the classifier is important. Last year we used
k-NN, which is depended from the parameter k. To overcome the search for
the right parameter we evaluated the use of näıve bayes [21] for locating and
classifying substrates.

When classifying the coral areas and non-coral areas, the features along with
the approach are the same as in [3], which is illustrated in figure 2. A problem
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that can be seen with k-NN is the low precision. This is due to labeling non-coral
areas as coral areas, because most often water gets falsely classified. There are
multiple ways to evaluate, as well as multiple things to evaluate. Beside the pure
evaluation of the coral and non-coral tiles, we also evaluate the bounding boxes
that enclose those coral tiles. In the end the evaluation of the found bounding
boxes is more significant, but the pure evaluation of the coral and non-coral tiles
helps with the assessment of the performance of finding bounding boxes in the
generated black and white images (see figure 2b - 2d). Likewise this creates the
opportunity to compare different image enhancement algorithms. All results are
discussed in the following.

Table 5 holds the evaluation of the coral/non-coral grid that is compared
with a grid representing the ground truth. The results show that the näıve bayes
classifier has increased the accuracy, as well as the precision but greatly decreased
the recall. PCA on the other hand did not have a big impact.

It could be shown that image enhancement increases the performance, even
if just slightly. Table 6 showed that connected components works much better
with the näıve bayes classifier that k-NN. The näıve bayes classifier has an in-
significantly increased, whereas k-NN has significantly worse performance. We
believe that this is caused by k-NN having to much false-positives which results
in big boxes, that cover rather more than less area. Another indication for this
assumption is the decrease of precision but increase of recall (compare figure
2b).

Table 5: Evaluation of the coral/non-coral classification, based on the tiles.
Image enhancement

None Fusion RD

Approach Acc Prec Rec Acc Prec Rec Acc Prec Rec

k-NN 0.617 0.4496 0.5283 0.5823 0.4066 0.4813 0.6146 0.4355 0.4275
k-NN with PCA 0.6146 0.4471 0.5343 0.5858 0.4075 0.4637 0.6171 0.4371 0.4134
Bayes with PCA 0.6488 0.4545 0.1317 0.6570 0.3550 0.0031 0.6575 0.4857 0.0192

Table 6: Evaluation of the coral/non-coral classification, based on the bounding
boxes.

Image enhancement

None Fusion RD

Approach Acc Prec Rec Acc Prec Rec Acc Prec Rec

k-NN 0.4234 0.3920 0.8755 0.3919 0.4386 0.8543 0.4812 0.3973 0.8302
k-NN with PCA 0.4088 0.4088 0.8927 0.4097 0.4345 0.83106 0.4879 0.3888 0.8186
Bayes with PCA 0.6518 0.4833 0.2558 0.6571 0.3373 0.0025 0.6606 0.5948 0.0254
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We also used the same two classifiers for classifying the bounding boxes.
While using the same set of features, k-NN outperformed näıve bayes by far.
Image enhancement shows its contribution again with tripling the accuracy of the
näıve bayes classier, as seen in table 7. This substantiate that the enhancement
proposed by Ghani and Isa [7] leads to increased performance with our dataset.

Table 7: Evaluation of substrate classification. The given values represent the
accuracy.

Image enhancement

Approach None Fusion RD

k-NN 0.4332 0.4550 0.4374
Bayes 0.1261 0.3328 0.3672

5 Evaluation of the Submitted runs

The evaluation was processed on test data that consists of images from four
different geographical regions than the training set:

– same location
– similar location
– geographically distinct but ecologically connected
– geographically and ecologically distinct

In total the test dataset has 400 images, made by 100 images per subset. The
results are examined in more detail below, while the interesting and informative
values are discussed in the text. For the complete list of results, the reader
is referred to the task overview working note [6]. Each submitted result was
produced by one of our approaches, all of which were trained on the full training
set.

The classification of the substrate types based on the classic features alone
fails largely with an MAP0 value of around 27.4. and an MAP0.5 of 1. Although
we improved the MAP0.5 value compared to last year by 300 percent, the results
are still not really useful due to the low absolute values. This applies to both
experiments, for the classification by means of k-NN based on the chosen features
boosted by PCA and to statistical label assignment as well.

Our neuronal Network based approaches show a significantly better perfor-
mance.

Since we had a limitation in the number of submissions, we chose none lin-
ear composition of available options. Our pool of options consisted alongside to
classical features of RetinaNet and Yolov3, which both were trained on the un-
preprocessed data and also on enhanced images by RD and Fusion. In addition,
we worked with a variation of threshold τ ∈ {0.001, 0.1, 0.2, 0.5}, which limits
the MAP.
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(a) Grund truth boxes. (b) Inside (white) and outside tiles (black)
using k-NN.

(c) Inside (white) and outside tiles (black)
using PCA and k-NN.

(d) Inside (white) and outside tiles (black)
with PCA and naive Bayes.

Fig. 2: Visualized process of localization corals with our approach. The raw pic-
ture is taken from the ImageCLEFcoral dataset [6].

We achieve our best result with an ensemble of RetinaNet and Yolov3.
Whereby the predictions of RetinaNet were extended by the predictions of
Yolov3. Both Networks were trained on RD-preprocessed images, with a τ of
0.1. The combination of both systems results in a MAP0.5 of 39.2 % and MAP0

of 80.6 %. It is noticeable that we predicted very few bounding boxes for a
MAP0.5 both through Yolov3 and through RetinaNet, additionally the found
predictions were far from being present in all of the images.

In case of reduction of the accepted overlap, we get significantly more bound-
ing boxes which also leads to a higher chance of hitting the right coral within the
test images on cost of our overall accuracy. However, if we increase the accuracy,
the MAP value drops. The following are significant examples: RetinaNet (τ =
0.01) combined with Yolov3 (τ = 0.01) has an MAP0.5 of 0.303 and an MAP0

of 0.727, but only an overall accuracy of 7 %. In contrast to it RetinaNet alone
produces significantly fewer boxes with (τ = 0.2), but achieves the best overall
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accuracy of 14.2 % with an MAP0.5 of only 30.3 and a MAP0 of 66.3 % while
the accuracy is 10 % higher than in our best run.

A possible explanation is probably that RetinaNet has not finished training
in 35 epochs. The large amount of predictions with a low overlap value could
probably be boosted by non-maximum suppression. However, we were not aware
of this problem until the results were published.
When provided with such a variety of possibilities, it can not be clearly deter-
mined which enhancement variant is the best choice. Certainly enhanced images
improve the predictions, while we suspect that RD is superior to Fusion for coral
images.

5.1 Transferability of the results within the test data subsets

One major question is the transferability of the results within the test dataset,
considering that results, that form the average measure, vary widely. For our
best run the MAP0.5 for same location increases by 6 percent to 45.7 % and by
1 % to 81.5 % the MAP0. For similar location, however, it drops to 28.3 % for
MAP0.5, but reaches a value of 86.4 % for MAP0 and thus has the highest score
among all presented submissions by all participants. Our best approach performs
very well on geographically similar data. The MAP0.5 is 42.6 % and the MAP0

81.2 %. Overall, this part of the test dataset seems to be less complex, which is
shown by the fact that the performance of almost all of our approaches have an
increased performance on it.

It is also worth mentioning that we perform significantly worse on geographi-
cally distinct data with just an MAP0.5 0.125 and an MAP0 0.362. This tendency
is also evident in the other approaches we used. The data seems to differ signif-
icantly, we either generalize less or the classes that are harder to recognize are
more present. Some additional, yet unknown substrate types may be more dom-
inant in geographically and ecologically distinct rocky reef and lead to distorted
results. A further investigation of the dataset is required.

6 Conclusion

Overall, our approaches show significantly better results than last year. A com-
parison of our best approaches between the two years shows that we have im-
proved the MAP0.5 by 13.4 %. The classification of the tiles into in- and outside
boxes could also be improved by a Bayesian classifier, but is still far from being
accurate.

Image enhancement techniques on the last years data were confirmed by the
evaluation of the current test dataset, which leads us to the conclusion that the
correction of blurry images in terms of contrast and sharpness is necessary. The
RD algorithm makes the greatest contribution to improving the quality of the
images. Less noteworthy results are made with the classical feature engineering
approach. A deeper examination of the features and their information value is
needed.
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It can be assumed that the fair partitioning of images according to our bal-
ancing strategy, also has significantly contributed to the improved results. Deep
learning strategies generalize quiet well and are superior when using for this
task. Especially the performance of RetinaNet, since it is not only better on
the coco dataset than the state of the art. So far, the complexity of the images
can hardly be handled by a single approach. We still see the most potential in
an ensemble of several architectures. The combination of advantages of different
approaches is the key to a stable solution. Since the amount of data has grown,
while remaining relatively small, we still cannot exclude the potential of classic
machine learning. Usually neural networks show a much better performance with
an increased amount of data. For this reason, the images should be split into
overlapping images and thus increase the number of training samples.

For future approaches, we recommend the usage of more specific features
that are suitable for corals, such as used in [2]. However, we would rather rely
on an ensemble of neural networks of the gold standard, which we would reduce
in depth to shorten the training time and increase in terms of input resolution
to decrease the information loss.
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5
Quality Assurance in Retail

Applications

“The first rule of any technology used in a business is that automation applied to
an efficient operation will magnify the efficiency. The second is that automation

applied to an inefficient operation will magnify the inefficiency.”
— (Furrer, 2019)

5.1 Efficient Fruit and Vegetable Classification and
Counting for Retail Applications Using Deep
Learning

In order to be able to answer the research question listed at the beginning of this thesis
in Chapter 1.2 also for smaller images with a rather low resolution and correspondingly
a lower information density, further data needs to be analyzed. This entails additional
requirements, including efficiency and processing time issues.

Inspired by the success of the ImageCLEF coral challenge, we set the goal to make
a transition of our findings and algorithms from object detection on natural images to
business-related applications. Convinced of our intent and in accordance with our own
development, REWE IT Solutions have agreed to cooperate with us. According to the
agreement, the core research question, in this case, is how to ensure the quality
of the sales process by counting and classifying barcode-free goods, such
as fruits and vegetables in local markets using CV. The motivation behind
this question is to make the cashier’s work easier, make the process smoother while
reducing errors, and additionally monitor the stocks for each market. Therefore, images
of these products created by a webcam at the checkout in supermarkets and labeled
by the corresponding class but without localization information were provided. The
practical insights have shown that the process of image acquisition entails a wide variety
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of obstacles in images. For instance, customer hands, carrier bags or wrong camera
placement, to a great extent, preclude a conventional feature-based ML approach.
Likewise, a large variation in lighting conditions makes the data set even more irregular.

The first idea to solve this problem was to use object localization techniques to find
objects and count these subsequently. Our initial approach to apply the methods that
we primarily developed for complex images with high resolution and thus benefit from
preliminary work did not succeed. Since only budget-friendly hardware was intended to
be installed in markets, it was necessary to switch from powerful GPUs to CPUs. The
tested inference time on CPU of our architecture presented in chapter 4 on the new
data set was well over a second and did not meet the expectations of the project partner
because the process took too long and was therefore not practicable. Starting from
this finding, we realized that the baseline had to be built on an architecture that has a
mobile application area as a background. Usually, the efficiency of such architectures
is achieved through less depth, less computationally intensive 1-depth convolutions,
and also less trainable parameters. Obviously, fewer trainable parameters might mean
less accuracy. However, the decrease of performance usually takes place on rather tiny
objects, which are unusual in this specific case.

In the following publication, we investigate the performance of different mobile
networks for a counting and classification task on real-world data. In particular, the
evaluation results are compared to an own innovative two-step architecture which
includes the weight information for each image.
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ABSTRACT
The process of manual classification and counting of fruits and
vegetables, from the moment the customer places items on the
conveyor belt to their weighing by the cashier on the checkout scale
is time consuming and may be burdensome for cashiers, who need
to look up or remember the identification code for each product. Not
any more: We built a real-life application, which is capable of doing
both tasks simultaneously. The presented research is focused on a
case that is attractive for its practical applications, in which data is
expanded by product weight information.We approach the problem
as that of estimating the object count as a classification task and
evade the more resource consuming object detection. We introduce
a new hybrid architecture which is an ensemble of EfficientNet [31]
for image classification and a Decision Tree [3] for object counting
based on weight and previous classification result. The trained
architecture provides accurate object count and requires fewer
resources and less time than current object detection architectures.
The proposed architecture accomplishes a counting accuracy of
around 80% and an inference time of 0.2 sec. per image. It is a
good candidate for handling huge amount of visual information
involving fast processing on a CPU.
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1 INTRODUCTION
In Germany, each citizen consumes on average 200 g vegetables
and 250 g fruits every single day [10]. Selling such amounts is chal-
lenging for retail and all associated processes. Checkout scales in
supermarkets are an essential part of the sales process. Incorrect
or incomplete billing of sold products have serious effects on cor-
porate balance sheets and on the inventories as well. Additionally,
mistakes on a regular basis can lead to customer dissatisfaction [30]
and mistrust of the retailer. Both potentially may result in a loss of
customers.

Usage of such systems requires cashiers to scan the bar code of
each product, which is then retrieved from the connected database.
Products from the group of fruits and vegetables usually do not have
a bar code due to time restrictions and effort in placing a sticker on
each piece. Goods, that do not have a bar code have to be included
manually by a trained cashier, which can cause a bottleneck. Speed
and accuracy of registration of product identification codes depends
on the level of experience of staff and also on the duration that the
product was being part of the assortment. Especially seasonal goods
are frequently exchanged and therefore their codes often have to be
looked up manually. This results in long queues for customers and
also suggests another source of error, leading in turn to customer
dissatisfaction [35]. There is a large need for quality assurance
systems that support cashiers in classification and counting of fresh
fruits and vegetables. Several publications covered this topic in the
last few years, mostly in terms of object detection [22, 24, 25]. None
of them deal with the issue from a more pragmatic cost-benefit
perspective.

The limited transferability of the concepts is a big challenge
for companies, and the body of existing research is so small, it
is barely worth mentioning. Cost-benefit analysis determines the
course of action. Ventures often do not have enough resources to
set up a computing cluster to monitor their production, processing
or sales. Especially challenging are opulent hardware requirements
for Deep Learning-based solutions such as a large storage GPU.
These are high-priced, have to be cooled at great expense and,
with a few exceptions, are mostly used in workstations, which is
why the question of an easy-to-implement solution without special
hardware (i.e. GPU) and architectural design requirements arises.

In this paper we present a hybrid model, which solves classifi-
cation and counting on the basis of information retrieved from a
scale supplemented with a simple webcam. To be specific, product
image and corresponding weight are retrieved in ongoing oper-
ation. The model is able to steadily recognize products passing
the scale without a bar code in a fraction of a second. This allows
object classification on a single core CPU or even in real time on
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Coral Ai Edge TPU1. This also renders usage of high-priced and
maintenance-intensive GPU unnecessary. Additionally, our model
is able to count classified objects simultaneously. Both model prop-
erties allow a novel quality assurance system, which speeds up
the checkout processing, minimizes potential errors and enables
monitoring of the remaining stocks in markets. The latter could
subsequently be used to a timed parenthetical restocking.

To summarize, our key contributions in this paper are:
• Presenting an efficient and innovative solution for classifica-
tion and counting of fruits and vegetables for retail.

• Showing that the introduced architecture does not require
extensive manual annotation of examples for training, unlike
current object detection architectures.

• Comparing our solution with leading technologies in the
field of mobile object detection and providing that the pro-
posed solution is faster and less expensive while still being
accurate.

2 RELATED WORK
The goal of object counting is to count the number of object in-
stances in a single image or within an image sequence, which is
just part of the problem. Every counted object needs to be labeled
correctly, otherwise an error will lead to a serious miscalculation.
Therefore, we see counting as an interdisciplinary task. Conse-
quently, there are several task-related research fields.

Object Detection The counting problem can be considered as
the estimation of the number of objects in an image or a video frame.
Therefore, object detection is ideal for this goal. Sai et al. [26] rely
on Faster R-CNN for a two-class problem and count the objects
found in the images. Zhang et al. [38] showed that an additional
subitizing technique using end-to-end CNN models may increase
the performance of object localization. Proposed subitizing method
was based on global image features. Chattopadhyay et al. were an-
other research group who used subitizing [5]. Hsieh et al. [11] used
case adapted spatial layout information to improve the counting
process of a regularized regional proposal network. Zhang et al. [39]
proposed a neural counting component for R-CNN architecture,
which was primarily used for Visual Question Answering (VQA). In
general, counting is commonly used in visual question answering
[34]. The attention-based model [1] was applied for transcribing
house number sequences from Google Street View images. Some
rather large deep learning-based architectures specifically designed
for counting were recently presented: Few-shot detection [20] and
Count-ception [6].

Non-deep learning methods for object quantification are less
common and outdated. Probably the most interesting idea was pre-
sented by Lempitsky [14], who used image density whose integral
over any image region gave the count of objects within a selected
region.

However, none of these approaches took efficiency in any way
into account. Real time calculability was also not considered. All
of the proposed architectures were computationally expensive and
thus not appliable for the given task.

Hardware Some research is focused on acceleration of Deep
Convolutional Neural Networks. The largest resource-consuming
1https://coral.ai/

and computation-intensivemodules are Convolutional Layers, which
constitute over 90% of total operations [18]. The problem is some-
times reduced to maximization of parallelism for computation and
reducing required memory bandwidth (e.g. using FPGA) [15]. In
some cases SVD decomposition can be used to lower the complexity
of algorithms [15]. To overcome the problem of limited memory,
bandwidth weights are stored in the on-chip memory to reduce data
accesses, which sets another constraint, since sufficient memory
is still required. Other research is focused on techniques to lower
the power consumption on CNN methods. Yu et al. [37] give an
extended overview on this. However, such approaches are not uni-
versal and often need to be adapted to particular hardware. For this,
deep insights are required. Since the only limitation we want to
make is the ability to run on a CPU, we no longer consider hardware
specifics.

Fruits and Vegetables Another respective research field is the
fruit and vegetable classification. A detailed overview on this topic
can be found in [8]. Practice-inspired research is done on fruit
detection. Bargotti et al. [2] presented Deep Fruit detection of 3
categories for robotic harvesting. Another application called "Deep
Count" [22], which is based on a modified Inception-ResNet and
is used for robotic agriculture. The application focuses only on
tomato images from Google Images. A more specific application
is presented in "DeepFruits" [25], which is a Faster Region-based
CNN working on two types of input images RGB and Near-Infrared
(NIR) (7 classes).

Scale A lot of research was done on checkout-support-systems.
These systems are used in the same context as checkout scales.
The key aspect was set to reduce costs and gain more flexibility.
Several self-checkout systems are using Deep Learning for product
detection. Katarzyna et al. [12] presented an approach based on
Yolov3 [23]. They also pointed out a number of difficulties in the
sales process of fresh products. The authors studied classification of
apples and were successful with Yolov3 and a simple CNN architec-
ture. Zhang et al. [4] used Feature Pyramid Network for the same
task. Both publications dealt with packaged goods, which could
be classified on packaging. Rojas et al. [24] was probably the first
study to consider fruit classification inside or without plastic bags.
Due to complexity, the dataset was limited to just three classes
of fruits with only 1067 image in total. According to the chosen
classes of apples, oranges and bananas the task seems more easy
to handle. The best performance was achieved by slightly adapted
MobileNetV2. By this reason, we use MobileNetV2 as part of our
study.

Weight Little contribution was done on inclusion of product
weight information.Wu et al. [36] used constant weight information
for single packed products to combat fraud on self-checkout systems
based on "ticket switching". The authors use visual features like
SIFT, since only single packages are regarded. Hameed et al. used
the weight information to change the coarse classification of 15
classes down to three, which were further classified on an AdaBoost-
based CNN. The used weight was the average weight of each class
[9]. Somehow, weight is discussed in several publications, but rarely
successfully applied.
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Figure 1: Apple Figure 2: Apple Figure 3: Pepper Figure 4: MC pepper

Figure 5: Kohlrabi Figure 6: Mango Figure 7: Tomato Figure 8: Kiwi

Figure 9: Example self-collected images from each class.

3 DATASET
Our dataset has been collected in ongoing selling processes in
stores of a large German supermarket chain, so it is the most in
step with actual practice. The dataset has been composed of 2380
images in total. Images with visually ambiguous quantity of objects
were removed previously. All examples were divided into seven
classes, with c ∈ {tomato, mango, pepper, mixed color pepper,
apple, kohlrabi}. There were 340 single class images i along with
weight informationwi , withw ∈ N for each class. The classes were
carefully selected as representatives of the full range of products,
which covered convenient difficulties such as product similarity
in color, shape and weight. The pictures were taken in different
markets and naturally differ in brightness and camera orientation
(viewing angle) due to different environmental conditions and set-
tings. We manually annotated each product in each image by a
labeled bounding box. Many pictures contained obstacles such as
plastic bags and shopping nets and were not removed with the aim
of retaining the complexity. However, the resolution of 640 × 480
pixels is the same for all images. For each experiment, we use the
same random train and test subsets split by a ratio of 80:20. Namely,
268 images are used for training and 72 for testing. Example im-
ages from each class can be found in Fig. 9. The object quantity
distribution is visualized in Fig. 12.

4 APPROACH
Our task is to accurately count the number of instances of correctly
predicted classes in an image of fruits and vegetables. The most
promising object detection architecture in terms of processing time
and accuracy has been shown to be MobileNetV2 [24, 27]. In the
meantime, a higher-performance successor model has been pre-
sented, namely EfficientDet [32]. We include both in our research

for comparison. Additionally, one of the components of EfficientDet
becomes part of our model, which we present in this section.

4.1 Baseline Architectures
The specified architectures described below naturally differ in input
data resolution due to their technological properties. If not prede-
termined in original publications, we try to keep the size of the
input images as close to the original one as possible. In terms of
batch size, it varies due to limitations of GPU storage.

4.1.1 MobileNetV2. MobileNetV2 is one of the most promising
mobile architectures and the gold standard for object detection. It
is based on inverted residual structure. The intermediate expansion
layer uses lightweight depth-wise convolutions to filter features
and thus reduces non-linearity. These properties and a few more
lead to a significant increase in speed [27]. We use an architecture
that the authors call SSDLite. The settings are as follows: batch
size = 2, Adam optimizer [13] with an initial learning rate = 0.001.
Further settings are upon the recommendation of the authors.

4.1.2 EfficientDet. EfficientDet showed the ability to produce sim-
ilar accuracy with at least 19 × fewer FLOPs than NAS-FPN[7],
RetinaNet[16] and YOLOV3[23] [32]. The architecture uses Effi-
cientNet as a backbone and can easily reuse ImageNet-pretrained
checkpoints, which we used in all approaches, EfficientDet and our
own Hybrid Architecture to hold the results comparable.

The reason for detection head efficiency is that a weighted bi-
directional feature pyramid network allows a fast multi-scale fea-
ture fusion. From a practical point of view, this is quite interesting
because the network fuses features at different resolution scales.

Each model is trained using Adam optimizer with a cosine restart
learning rate with an initial learning rate of 0.001. Synchronized
batch normalization is added after every convolution with batch
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norm decay of 0.99 and ϵ = 1e−3. We also use swish activation with
an exponential moving average with decay of 0.9998, as proposed
in [32].

We used a focal loss as common with α = 0.25 and γ = 1.5, while
the aspect ratio was 1/2, 1, 2 for both EfficientNet and EfficientDet
and MobileNetV2 as well.

EfficientDet D0 is trained with a batch size of 32, EfficientDet
D1 with size of 8 and EfficientDet D2 with size of 2.

4.2 Hybrid EfficientNet Architecture
Object localization is computationally an expensive task. While
localization always requires calculation of numerous precise bound-
ing boxes to fit the object, counting does not. Basically, the posi-
tional information is not relevant at all. Because of this we built a
two step approach to handle the task and relinquish localization.
This reduced the calculation complexity extensively. The developed
hybrid architecture is shown in Fig. 10. The first step consists of
a classification head (EfficientNet), which provides a confidence
score s with s ∈ [0, 1] provided by Softmax function for each class
label c . Afterwards, Argmax is applied to get the index location of
the maximum value inside the output tensor, which in fact is the
most probable class ci for the input image i ∈ I . The second step
is classification too. The chosen classifier is a Decision Tree (DT)
which takes a combination of the previously predicted object class
ci and additional weight informationwi as input and returns the
object count q. Taking into account the output of EfficientNet, we
are able to tell the class and the amount of items.

Due to limitations imposed by the hardware, we only consider
models with the sizes B0 - B2 in case of EfficientNet and D0 - D2 in
case of EfficientDet accordingly. The input size of D0, D1 and D2 is
224 × 224, 240 × 240 and 260 × 260 for B0, B1 and B2 accordingly.

4.2.1 EfficientNet. EfficientNets indicate better efficiency than the
previously widely used backbones [32]. Especially attractive is
its advantage of different width/depth scaling coefficients, which
allow a custom case dependent thread-off between accuracy and
resource consumption. Therefore, we investigate the accuracy for
three configurations: B0, B1 and B2. The settings are equivalent
to the settings of EfficientDet as far as present. The batch size is
increased to 32, due to a smaller input size of 224 × 224, 240 × 240
and 260 × 260 for B0, B1 and B2.

4.2.2 DecisionTree. Decision tree algorithms are widely used in
machine learning [21]. The input data is filtered down through the
leafs to get the right output to the input pattern. Many algorithms
have been proposed, we use one of its newer versions [33], which
has been shown later on to have better performance than previ-
ous versions [17]. One of the most important advantages is the
simplicity of the algorithm and the fact that in the chosen version,
it has just a few parameters. We set the maximal depth to 5 to
keep decisions traceable and prevent the classifier from over-fitting.
The decision criterion for information gain is entropy [28], like in
several other publications [29].

5 EVALUATION
All architectures are trained for 500 epochs on Tesla V100 GPU.
Since transfer learning has proven to be useful in the context of

comparable data, we use model weights trained on ImageNet data
for eachmentioned architecture. To increase the quantity of training
samples augmentation techniques are applied on trainings data. We
use rotation (f = 0.15), which results in an output rotation by a
random amount in the range of [−15% ∗ π ,+15% ∗ π ]. We also
use translation (height_f = 0.1, width_f = 0.1) which leads to an
output height and width shift by a random amount in the range
[−10%,+10%], a contrast change (f = 0.1) randomly picked and
adjusted to each x for each channel to (x − mean) ∗ f + mean.
Finally, a random flip is randomly applied on the input data.

In case of inference, each model is run on a single-thread Xeon
CPU. For the purpose of counting, each image is processed sepa-
rately. We consider only bounding boxes with a confidence score
higher than 0.3 to prevent vice versa classification of similar classes
like mixed color pepper ("MCPepper") and red pepper ("Pepper").
We report model accuracy, which is extended by RMSE, MAE since
the count error is also relevant for stock monitoring. Additionally,
we report standard deviation and variance for prediction results.

5.1 Performance Metrics
Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE)
are widely used for counting performance measurement [19, 40].
Since both metrics are used to measure the error for same class
instances, they first need to be extended to be able to benchmark
the counting error in case of misclassification. Let i be an image
with i ∈ I , c ∈ C the ground truth class, c ′ the predicted class.
Furthermore, let q be the ground truth quantity of objects and q′
the predicted quantity then ground truth д and prediction p are
defined as:

д,p : i ∈ I → C × N
which means:

д(i) = (c,q)
p(i) = (c ′,q′)

and

pr1(c,q) = c
pr2(c,q) = q

Accordingly, prediction ˆp(i) is defined as:

p̂i B
{
pr2(p(i)), if pr1(p(i)) = pr1(д(i))
0, otherwise

FinallyMAE and RMSE are defined as following:

MAE =
1
|I |

∑
i ∈I

|pr2(д(i)) − p̂(i)|

RMSE =
1
|I |

√∑
i ∈I

(pr2(д(i)) − p̂(i))2

where |I | is the number of test set images, д̂ and p̂ are ground truth
and predicted count for correctly classified images, otherwise p̂ = 0
because wrongly-classified objects should not be counted, as they
can not be subtracted from the stocks.
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Figure 10: Flow-diagram of proposed hybrid architecture.

Table 1: Inference results.

Architecture Inference Time (in sec.) # Parameters
EfficientDet D0 0.41 4.3 M
EfficientDet D1 0.86 6.6 M
EfficientDet D2 1.43 8.1 M

MobileNetV2 (SSDLite) 0.36 -
Hybrid EfficientNet B0 0.20 4.0 M
Hybrid EfficientNet B1 0.28 6.5 M
Hybrid EfficientNet B2 0.36 7.8 M

Accuracy (Acc_countinд) is another important metric, which
shows how many images are counted as well as classified correctly.
We defined it as:

Acc_countinд = |{i ∈ I |p(i) = д(i)}|
|I |

where |I | is the number of test set images and the counter is the
number of prediction with correct class and count. The evaluation
is extended by standard deviation and variance of predictions. Ad-
ditionally, we report inference time on the CPU for processing of a
single image.

Tab. 1 illustrates the comparison of inference time and model
size (trainable parameters). The number of trainable parameters is
according to original contribution in the case of EfficientDet. Each
inference time calculation is a sum over all predictions divided by
the number of all images, while processing each image separately.
The inference time was measured as an average of ten calls. Tab.
2 shows an extensive performance accuracy. For fair comparison,
only results on the same test data and machine settings are included.
Standard deviation and variance are calculated over ˆp(i).

6 DISCUSSION
The measurements show that the inference time on CPU ranges
between 0.2 and 1.43 sec./image. We think that a processing time
of over a second makes an application unusable in the context of
sales. Because of this we can exclude EfficientDet D2.

Our proposed hybrid EfficientNet B0 is twice as fast as Efficient-
Det D0. This is due to the fact that no object detection is required,

Table 2: Evaluation results.

Architecture Acc MAE RMSE Std Variance

EfficientDet D0 0.87 0.20 0.63 2.00 4.00
EfficientDet D1 0.86 0.20 0.57 2.04 4.18
EfficientDet D2 0.90 0.16 0.59 2.15 4.62

MobileNetV2 (SSDLite) 0.76 0.39 0.92 2.24 5.02
Hybrid EfficientNet B0 0.79 0.32 0.82 2.00 4.02
Hybrid EfficientNet B1 0.80 0.30 0.79 1.98 3.94
Hybrid EfficientNet B2 0.82 0.288 0.76 1.95 3.81

Figure 11: Training Accuracy and Training Loss of Efficient-
Net B0.

Figure 12: Label distribution within the complete dataset
and Confusion Matrix over EfficientNet B0 predictions.

which we see as a huge advantage. Although the new methods can-
not reach the same accuracy that comparable detectors do, we still
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see values up to 82% combined with relatively small errors. Efficient-
Net achieves very good numbers (Accuracy = 96.85) already in its
smallest version B0, as can be seen in Fig. 11. During training, a few
spikes still can occur because of augmentation. Small errors appear
for similar classes such as "apples" and "tomatoes", just like "pepper"
and "mixed color pepper" (MCPepper). The accuracy for B1 is even
higher (97.27%) and the same is true for B2 (99.16%) but it also takes
a lot of additional time 1. A bigger source of error is the variation in
weight/item within the individual product groups. While for some
products, presorting on the level of wholesale tends to result in
roughly the same size and weight, for others the weight is a kind
of approximation. For example, the range of tomato weights in
our dataset is from 60-140 g/piece. The result is therefore rather
satisfying. EfficientDet’s accuracy of up to 90% is quiet impressive.
However, the result should be viewed with caution. Fig. 17 shows a
few existing challenges. Images 13 and 14 are part of the dataset,
while images 15 and 16 were excluded since the number of objects
could only be guessed. A precise annotation was not possible for im-
ages with heavily stacked fruits and vegetables (image 15), just like
images where cashiers’ hands obscured products (image 16). For
this reason, these were not included, just like those where the goods
could not be recognized due to packaging. In real sales, however,
such instances occur frequently, which might reduce performance.
The accuracy of our hybrid approach would remain unaffected, as
long as a preceding classification remains possible. The weight is in-
dependent of the image quality and remains a reliable classification
attribute.

Another still very major limitation of EfficientDet in particular
and object detection in general is its large variety of required op-
erations that need to be supported. There is always a large leap
in time between model publication and its adaptation for differ-
ent platforms, i.e. EfficientDet which was published in 2020 is not
available for Coral Ai so far.

7 CONCLUSION
We created an efficient and reliable hybrid networking for object
counting which consists of EfficientNet and a Decision Tree. Our
evaluation showed satisfying results and revealed our architecture
to be more efficient than the state-of-the-art methods of mobile
object detection techniques regarding model size and inference
time. The evaluation on seven classes is more convincing than
that of related work, which often operated on 1 to 3 classes [2, 22].
During research, we focused on practical usage on a CPU. The
use of GPU was excluded by given guidelines of retail. In the case
of Hybrid EfficientNet B0, we achieved a FPS of 5 on CPU which
seems to be fast enough. For real-time, a portability to a cheap
Edge TPU is possible. Object detection is quite complicated on
TPU, usually because of limitations in available operations due to
hardware restrictions. While EfficientDet is not available for Coral
Ai yet, EfficientNet has already been provided. The processing of
EfficientNet on coral ai Edge TPU is indicated with a latency of
24.5 ms/1000 objects2. The decision tree, as proposed in section
4.2.2, processed 1000 images separately in approximately 6.2 ms. A
combination of both should clearly perform in real time but needs
to be tested in production.

2https://coral.ai/models/image-classification/

In upcoming work, we will expand the quantity of classes of
fruits and vegetables to the complete assortment. It remains to be
tested how well the performance of Hybrid EfficientDet scales to an
increased number of classes. The transferability of architecture to
other production-related areas with images containing additional
meta data also needs to be researched.
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5.2 Supplement: Expansion of the product range

Subsequent to Bogomasov and Conrad (2021), the cooperation partners made the
decision to expand the investments for markets with a large range of fruits and vegetables
and equip the stores with GPUs. At this point, a distinction regarding the computational
capabilities has to be made between a discount food retailer and a full-range market.
As seen in the previous chapter, object detection promises a more precise detection
than a stochastic approximation using weight information, presupposed that the objects
to be detected are not widely covered by obstacles. A precise object detection, for all
currently common architectures, presupposes that the entire range of known classes
is present and labeled within the training data. Due to the nature of deep learning,
only known classes can be recognized. The prerequisite for training a neural network is
always labeling, a work which is mostly handled manually. Typical for food markets is
a seasonal rotation of the assortment in the stores, as well as a regular expansion of
offered products. While the product range that a discount food retailer offers has barely
more than 70 basic products that keep coming back every year, the number of fresh
fruits and vegetables in a full-range market contains up to 250 entities and is extended
yearly. Concerning this matter, a continuing expansion by new classes is indispensable,
which in terms entails a completely reapplied training routine, labeling work included.
This is a huge drawback for a business that has to be agile.

Therefore, in the case of object localization, each sample of the training data
set requires the corresponding bounding box information for each object containing
its position. The amount of required manual annotation work is huge. In practice,
however, it is not only the amount of annotation work that needs to be done that limits
the applicability of object detection for the given task, but also the period of time
until an updated model is accessible. Thus, the question arises how to reduce the
annotation effort and make object counting using object localization relevant
for business. The answer to this question would allow both, increasing flexibility in
usage while simultaneously reducing costs. For a deeper investigation, an extended data
set was made available. This set contains 36 classes from currently available products
of a discount supermarket. Each class has 300 representatives. This results in 10800
images in total. Due to the nature of image acquisition during the sales process, class
labeling is known for each image, since cashiers already labeled the products at the
checkout system. This is an important benefit that we want to take advantage of.
However, neither the number of objects nor their position are known and had to be
labeled manually for a proper evaluation as well as the initial subset. The concept
of the initial subset will be explained later in this chapter. The following set C of 36
classes is available: {apple, kiwi, orange, radish, aubergine, banana, sweet potato, blue
grapes, pomegranate, lemon, celery, pickle, green apple, leek, mango, fennel, nectarine,
vine tomato, garden leek, chiquita banana, white cabbage, bio banana, light grapes,
cauliflower, lettuce, lychee, carrot, bio hokkaido pumkin, mandarin with leaves, bio
pepper mix, pear, zucchini, avocado, ginger, grapefruit, kohlrabi}. A visualization of
the listing can be seen in Fig. 5.2 and Fig. 5.3.

To tackle this problem and reduce the overhead of annotation work of the full set
of classes without human interaction, we had the idea to find a subset of products
which consists of distinctive objects. These objects need to be annotated manually. In
our imagination, the semantical similarity among the selected classes in each case is
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Figure 5.1: Overview of a simple human-in-the-loop machine learning system. Adapted
from (Munro, 2020) to OL

less present than that among the classes that are left out. The hypothesis we stated
implies that some of the classes share similar characteristics such as shape, color and
texture which the implemented network learns to be able to separate objects from the
background. This idea can be summarized as semi-supervised active learning (AL).
Usually, AL is seen as the process of selecting the right data for human review (Munro,
2020). The reviewer then decides if the prediction quality is satisfying or adjusts it
if necessary. In contrast, the proposed algorithm does the adjustments independently
(Step 2). There are three main active learning strategies: diversity (selecting the most
diverse), uncertainty and random. Probably the most conventional is sampling for
uncertainty, which takes the difference between the maximally possible percentage
and the highest predicted label confidence for each object. A popular methodology
to semi-automated annotation is to use the model itself for predictions annotation.
This approach is called semi-supervised learning (Munro, 2020). A basic architecture
including human as well as ML model as annotators is visualized in Fig. 5.1. The
so-called human-in-the-loop machine learning system iteratively provides data that is
labeled by humans and the ML model for human review or labeling. On this basis, a
couple of AL-publications for OD have been introduced (Choi et al., 2021), (Haussmann
et al., 2020), (Kao et al., 2018), (Brust et al., 2018), (Yuan et al., 2021). However, the
main differences to our approach are that on the one hand we do not need to evaluate
the uncertainty or score images for informativeness and on the other that there is no
need in removing noisy images. Additionally, these related systems still rely on manual
effort while learning procedure and is therefore not limited to the one-time work at
the beginning in terms of annotation effort. An additional advantage of our approach
is that we do not have a composition of different models but use a single one. In the
following we explain our contribution in detail:

The idea can be divided into three logical steps: In Step 1 an initial subset is built.
It contains only selected classes and is used for the training of a mobile object detection
network. As EfficientDet D0 (M. Tan et al., 2020) has proven great performance in
previous works, it is selected as the core OD module. In Step 2 the model is trained
on the initial subset. Afterwards, an inference on the left-out classes of the training
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set is calculated. The resulting output is inaccurate and contains false labels only,
therefore it needs to be post-processed. The post-processing procedure is based on
filtering, non-maximum suppression, relabeling and augmentation. Finally, in Step
3 the training is resumed on the union of the initial subset and in Step 2 generated
pseudo-labels. It is continued as long as the evaluation on the test data, consisting
of the full set of classes, shows any improvement. All experiments were based on a
subdivision of 80:20, while 80% of data was used for training, 20% was left out for
testing. The next paragraph describes the algorithm in detail.

• Step 1: Building initial subsets

Possibly the simplest way in finding the greatest subset is a grid search, building
subsets over all combinations of its elements. In the case of the given 36 elements
c ∈ C the quantity of possible subsets is 236−2 = 68719476734, empty set excluded.
This is an absolutely gigantic number for practical experiments. Diverse strategies
may reduce the number of subsets as initial candidates. The most promising
because of its efficiency is a genetic algorithm, as described in Loussaief and
Abdelkrim (2018). Further on, each of the subsets Cinitial ⊂ C is used as input
for the second step.

• Step 2: Iterative semi-supervised object detection training

The starting point for each supervised and semi-supervised learning is providing
labeled examples. Based on this input data the training procedure is continued
at best as long as something new is being learned and stopped as soon as the
evaluation results stop improving. Training stopped at the maximum is a great
way to avoid overfitting and reduction of generalization appropriately. Therefore
the initial subset that was defined in Step 1 is provided to Algorithm 1 as input
for training with the main intention to learn Cinitial classes. Meanwhile, the set of
labels for images of the target classes Ltarget remains empty. Having a fully trained
model, predictions are calculated on the remaining classes Ctarget. All images
Itarget belonging to new classes are unlabeled as unseen at this point. Therefore it
is to be assumed that the prediction results are subject to large fluctuations. To
counteract such inaccuracy, in filterOnConfidence only bounding boxes with
particularly high confidence τ are extracted. We use a dynamic value τ = 0.7 as
a starting point. This value is reduced in constant steps of 0.1 until the returned
result list of predictions contains at least one object. What is important to note
here is that, in the case of the presence of multiple objects of the same class, a
similar confidence score is assigned to all objects of the same appearance. This
leads naturally to the fact that there is a great chance to extract all found objects
at once, not just the first that has been found.

In the next step, called nonMaxSupression (NMS), all redundant bounding
boxes are deleted by applying the name-giving algorithm (Bodla et al., 2017).
Finally, the remaining predictions in relabelBoundingBox are set to the correct
class. In spite of filtering on confidence, some predictions may be empty. In this
case, registerMissing is called to make a record of an image without detected
objects for each class c ∈ Ctarget. An important aspect to the most ML algorithms
is the overall balance of classes in a data set. Therefore the amount of images with
empty predictions needs to be filled up. For this purpose, we use augmentation
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methods such as rotation, flipping, blurring and adding noise. In terms of source
images for the augmentation function, the successfully created pseudo-labeled
images (pLD) are passed. Finally, the set of previously used training images
is expanded by the newly annotated set and used in the following step 3 for
subsequent training steps.

• Step 3: Resumption of the training

The algorithm 2 shows the continuation of the learning processes on the complete
data set, including the artificial pseudo bounding boxes including true class labels.
The training continues as long as the performance of the model improves. Our
previously defined evaluation metrics (Bogomasov and Conrad, 2021) are used
for performance measurements. In case the inference for a single image contains
more than one class label, a minority rule is applied to stabilize the output as
part of post-processing in evaluate.
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Algorithm 1: First step of the iterative semi-supervised object detection
training
Input : a bag of images of the train split Ic for each class of products

c ∈ C = Cinitial ∪ Ctarget and Cinitial ⊈ Ctarget, labeling for images of
the initial classes Linitial, confidence threshold ρ, number of required
images ntrain, object detection model M , number of epochs nepochs,
initial confidence τ , pretrained weights W

Output :Predicted labeling L̂target for images of the target domain, model
weights Ŵ

1 M, Ŵ ← trainModel(M, Ic,Linitial, Cinitial, nepochs,W )

2 save(Ŵ )

3 L̂target ← predict(M,Ctarget)
foreach ci ∈ Ctarget do

4 foreach lj ∈ L̂target do
5 if lj ̸= ∅ then
6 lj ← filterOnConfidence(lj, τ)
7 l̂j ← nonMaxSupression(lj))
8 l̂j ← relabelBoundingBoxes(l̂j, ci)
9 pLD ← append(ij, l̂j)

10 appendToInitialTrainSet(ij, l̂j)
11 end
12 else
13 missingij ← registerMissing(ci, i)
14 end
15 end
16 end
17 Îc, L̂c ← augment(missing, pLD, ntrain)

18 appendToInitialTrainSet(Îc, L̂c)

19 save(Ic ← Ic ∪ Îc)

20 save(Ltarget ← Linitial ∪ L̂target)
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Algorithm 2: Resumption of the iterative semi-supervised object detection
training
Input : a bag of images of the train and test splits Itrain∪test for each class of

products c ∈ C = Ctrain ∪ Ctest and Ctrain = Ctest, labeling for images
Ltrain∪test a sequence of evaluation metrics Ψ = (f1, f2, . . . , fn), object
detection model M , maximum number of epochs nepochs, starting
learning rate τ

Output :model weights Ŵ , metrics Φ̂
1 foreach fi ∈ Ψ do
2 fi ← 0
3 end
4 while nepochs > 0 do
5 M, Ŵ ← trainModel(M, Itrain,Ltrain, Ctrain, nepochs, Ŵ , τ)
6 nepochs ← nepochs − 1
7 if nepochs mod 10 then
8 Φ̂← evaluate(M, Itest,Ltest, Ctest, Ŵ )

9 if ∃NinN : (N ≤ n ∧ ϕn < ϕ̂n) then
10 Φ← Φ̂;
11 else
12 break
13 end
14 end
15 end
16 save(Ŵ )
17 save(Φ)
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Set Acc RMSE Std V ariance

Best subset 1 0.83 0.70 0.76 0.58
Full set 0.86 0.67 1.11 1.24

Table 5.1: Counting results on 36 classes

Among the examined subsets c ∈ C, the following subset Cinitial has shown the best
results {apple, aubergine, banana, blue grapes, celery, green apple, kiwi, lemon, orange,
pickle, pomegranate, radish, sweet potato}. Tab. 5.1 shows a comparison between
the training on the entire data set and the chosen subset as initial using the proposed
algorithm.

The evaluation results do not show that the final subset is objectively the most
suitable and provides the greatest disparity over the selected classes. Much more can
be seen from the fact that the developed solution already achieves great results and
reduces the annotation overhead at this point. Based on this insight, we examined
whether reducing the subsets by individual classes would lead to equivalent results. It
is noticeable that the reduction of the final proposed set by any of the included classes
leads to the fact that the overall performance error grows. Obviously, the choice of
classes is an important decision. Due to the computational effort, while forming the
initial classes, we could not try out all classes C using grid searches. In light of the
computing effort of an average of four days for one iteration on a Tesla GPU, even
including a genetic search algorithm, the total computing time was not reasonable.
For this reason, we choose a random selection for all compilations. Furthermore, the
results show that on the one hand, the manual annotation of a small proper subset is
sufficient for a precise annotation as the result of the full algorithm cycle, while further
classes are being learned in an iterative learning step, assuming a single class multi
label task. Moreover, we suspect that while training with a range of 36 known classes
we already cover the semantic diversity of foreground objects to a great extent. In turn,
this assertion means that any future classes, while being semantically comparable to the
known classes, may be separated from the background by the currently trained model.
This effectively allows adding new products and keeping the architecture up-to-date
without manual annotation effort. Already a few sample images of the new product
class are sufficient for retraining the network starting at Step 2 with a prediction.
Afterwards, an updated network can be used again for QA in retail. While for most of
the products the expected prediction performance of the model is promising, in some
cases the counting accuracy may drop. Although we could not observe such behavior
in the currently available data, it cannot be fully excluded. A possible reason for this
deviation may be a strong visual dissimilarity including differences in shape, color and
texture to previously known data. These particular cases would still require manual
annotation. However, the expected benefit of the proposed approach could reduce
the manual annotation effort significantly. Since we use only 13 out of 36 classes for
annotation, the overall saving is around 64%. The evaluation on the best set found
shows that our algorithm achieves results comparable to the training on the complete
data. In terms of counting accuracy, we achieve values of 83% to 86%.

Object detection proved great results for the task of counting fresh fruits and
vegetables using GPU power. However, the limitation of object detection as part of CV
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is always that objects that are not visible, are impossible to detect. In this situation,
we can rely on the previously introduced Hybrid EfficientNet. A combination of both
algorithms is even more promising. In order to get the maximum out of both systems
in business applications, instead of images the entire video sequence could be analyzed
in real-time. For optimisation purposes, the sales process for each product or set of
products can be logically divided into several steps. In the first step, the field of vision
should be verified by means of completeness and excluding stationary obstacles and
thus allowing object tracking. In the next step, products could be classified and counted
over the entire period of their movement over the scale surface. Afterwards, while no
longer being moved, a prediction result would appear on the screen. Accordingly, the
inference could be calculated as an arithmetic mean of inferences, comparable to 3.2,
made over the entire period of each particular set of products passing the scale. This
would lead to additional stability without restricting the noticeable performance in the
perception of the cashier. However, this is not part of this work, but an outlook for
future developments.
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(a) green apple (b) apple (c) pear (d) pickle

(e) zucchini (f) avocado (g) ginger (h) grapefruit

(i) kohlrabi (j) kiwi (k) leek (l) mango

(m) fennel (n) nectarine (o) orange (p) radish

(q) vine tomato (r) garden leek (s) aubergine (t) banana

(u) banana chiquita (v) white cabbage (w) sweet potato (x) banana bio

Figure 5.2: Examples of new classes
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(a) blue grapes (b) light grapes (c) cauliflower (d) lettuce

(e) pomegranate (f) lemon (g) lychee (h) carrot

(i) pumpkin h. bio (j) celery (k) mandarin
(leaves)

(l) pepper mix bio

Figure 5.3: Examples of new classes
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6
Conclusion

This chapter contains the conclusion of the thesis. In Section 6.1, we summarize the
contributions of our research and describe the results of the addressed problems. In
Section 6.2, we discuss the results we achieved and deal with insights accomplished.
Finally, Section 6.3 presents starting ideas for future research, further subdivided into
corresponding research areas.

6.1 Overall Summary

In this thesis, the focus has been laid on extracting useful knowledge from image data
with the goal of enabling automation and quality assurance of visual processes. In order
to diversify the research and contribute more general results, we decided to include
real world data from several thematically independent application fields. Therefore
we analyzed four data sets that share the data type, to be specific — digital image
and also the common goal — automation and QA of processes using CV. For this
purpose, in Chapter 2, we gave a short introduction into basic concepts of ML and
CV that are relevant to this work. In Chapter 3, we addressed the task of QA for
two medical applications. Therefore, we focused on the analysis of 3D images. Firstly,
we have provided convincing algorithmic solutions for severity scoring and automatic
report generation of lung tuberculosis. Secondly, we introduced in Chapter 3.3 the idea
of QA for prostate MRI with the purpose of controlling the orientation of recordings
and presented a reliable solution as well. Both algorithmic solutions aim to reduce
inaccuracies and thus avoid diagnostic errors. Furthermore, in Chapter 4, we have
changed the data to large scale images, which in turn have their own peculiarities, and
researched the possibility of detecting different types of corals in underwater images.
The result offers, for the first time, the possibility of computer-aided monitoring of
maritime inventory, which is necessary for offering species-appropriate conservation
as well as countermeasures in terms of the effects of global warming. Finally, we set
the goal to make the transition of CV support systems to business applications in
Chapter 5. As it has turned out, the previously introduced algorithms were not suitable
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for applications with time and resource constraints. Because of that, we focused on
efficiency and presented another architecture for classification and counting, specialised
in products passing a conveyors belt in retail. In particular, the presented approach is
capable of reducing manual effort. Furthermore, it reduces costs and errors. All in all,
this thesis provides a compilation of ML solutions on different real world data sets and
reveals the benefits and limitations of CV for automation and QA of visual processes.

6.2 Discussion

After accomplishing extensive research on different kinds of images with feature-based
models, we can conclude that while they are often useful and constructive, the future
of automation and QA for visual processes lies more in the area of deep learning. This
is due to the fact that while self designed features are limited to defined formulations,
deep learning methods are not. They share the ability to learn properties that have
been classified as relevant by the system itself, a great advantage for data with complex
texture, structure or color distribution, or even a combination of these properties.
Especially in real world data, these factors frequently come together. Overall, it can be
stated that DL will be an indispensable part of QA systems for both image data as well
as visual data consigned with meta information. Another insight that should not go
unmentioned, is that based on the chosen heterogeneous data we can conclude that the
state-of-the art architectures, irrespective of their theoretical background, are rarely the
ne plus ultra for other, even comparable, application fields. These are usually optimized
for more or less context-similar benchmark data sets, such as the most common COCO
or Pascal VOC in case of object recognition for instance. The similarities among e.g.
image resolution, object size, class distribution and object complexity are greater than
the differences. The reality, however, looks quite the opposite. We often encounter data
that differs significantly from the benchmark data sets, but also data that is clearly
superior to the benchmark data sets in terms of complexity. In such quite specific, but
regularly occurring real world scenarios, a case study as well as the analysis of the
particular demands are required. To put it in detail: A DL architecture that showed
great performance on benchmark data, such as Pascal VOC, probably will not show the
same results on underwater large scale images. On the contrary, a solution tailored to
the application is more likely to meet expectations using the data conditions. Likewise,
an architecture designed for high-resolution images is not very suitable for doing a
corresponding job on medical data.

We have elaborated various AI strategies. These strategies have their fundamentals
in either DL or conventional features engineering in connection with established ML.
In both cases, the prime aim is the accomplishment of a stable generalization. Along
with a fitting model design, generalization is a matter of the amount of sample data.
Although DL proved to be a better choice in most cases, some exceptions exist, as
seen in Chapter 4.1. Any time the data may be considered complex, in terms of its
internal diversity and in relation to the low quantity of labeled samples, a conventional
feature engineering solution may still be preferred. Having a large number of samples,
DL might be a better choice. The features that a DL architecture learns in order to
be able to solve the mapping from input to a pre-specified output are often unknown
and therefore more difficult to control, a property which can be both — a disadvantage
and an advantage as well. Detailed insights on meaningful areas may be provided by
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analyzing the heat maps. Decisive region identification i.e., explainable AI, is often
considered helpful. Indeed, these technologies share the limitation that statements are
made on the basis of selected examples, while in the case of feature-based methods, the
specified rules provide full control over the results. Therefore, if observations are made,
the confidence is more comprehensible compared to DL and, thereby, more preferred.
Concerning less complex images, the NN is also able to converge on a small number of
examples and accordingly make a choice confidently, similar to feature-based methods.
It follows that there is a trade-off between the complexity of the image associated with
the task and the number of examples required for generalization. Hence, ML is always
about the evaluation of the striven generalizability.

The presented research work focuses on the technical point of view of QA and process
automation providing massive benefits to the respective target group. Apart from all the
advantages, the work might entail an ethical and social component. However, predicting
the social impact is an open question on its own and requires a separate expertise. It is
therefore not part of this work. For a first insight into this topic, we recommend the
work of Helbing (2019).

Referring to the main research question on how the image data can be computa-
tionally processed, analyzed and interpreted to allow automation of a conventionally
manual process and assure its quality, and summing up the results, CV proved to
offer an enormous potential. The presented research work shows which possibilities
for automation and quality assurance of processes in the various application areas of
the real world exist using examples of representatively selected application scenarios
in relation to the developed algorithms. In this context, the origin of the image data
hardly seems to matter. After finishing the research work on four use cases, presented
in this thesis, we can say that the available technological tools, regardless of the pro-
cessing unit i.e. GPU, CPU or even TPU, already allow the development of stable
and reliable solutions. These solutions can both, reduce the manual effort of various
processes and thus save time and costs, as well as decrease the error rate of manual
processes. Crucial to successful automation and QA of processes that rely on visual
information is that visual data provides the information necessary to answer a specific
question or to ensure automation in particular. Since this might not always be the case,
supplementary meta-information, if available, can be used as shown by the example of
weight information in Chapter 5. However, the image characteristics, such as resolution
and quality, along with the number of available samples are still crucial factors in finding
a reliable solution. As is so often the case, the CV algorithms too become little by little
more accurate and stable over time. Thus, in the future, numerous application fields
for QA and automation will arise.

6.3 Outlook and Future Research

In this thesis, we have presented multiple successful CV approaches for a number of
different application fields focusing on the task of automation and QA. The imposed
requirements in terms of accuracy and, if needed, processing time constraints while
adhering to hardware limitations were met to a great extent. However, we faced several
technical limitations. These were often due to the availability of essential hardware
such as high memory GPUs but also to the quality and size of the data sets. Truly, the
aphorism that “any data are better than no data” (Shahian et al., 2016) is wrong since
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it can produce serious unintended consequences. While the last two aspects, i.e. the
quality and the size, are often improvable as described in respective chapters of this
work, the hardware issues are beyond our influence. For example, in the case of the
ImageCLEF coral challenge, the reduction of the input size of data for processing with
CNN architectures was inevitable because of the Video Direct Access Memory (VRAM)
limitation of currently accessible GPUs. Nevertheless, it is not entirely unreasonable
that an NN with the ability to use unscaled images in its input layer would lead to
more accurate results. In this context, however, an input layer with greater capacity
can only be handled at the expense of network depth, which in turn is also crucial for
reliable performance. A way out could be found by dividing the source images into
overlapping sub-images using a sliding window approach and subsequently using them
as input data unscaled. In this particular case, the images for predictions would have to
be split in the same manner and compounded afterwards to the complete image. Under
these circumstances, this approach requires a multiple of training time while using the
unchanged strategy as presented in Chapter 4, and can be estimated to take months on
current hardware. Fortunately, the technological development of GPUs is progressing
rapidly, so that processing of unscaled images will be possible in the foreseeable future
and thus, greater performance on large scale images can be assumed leaving the same
architectures unchanged. In the field of QA and automation of prostate cancer diagnosis,
we suggest to follow the previously mentioned plan of developing a system based on
the guidance of the Prostate Imaging Reporting and Data System (PI-RADS v2.1).
In this thesis, we already presented the first step of the planned system in Chapter
3.3. The second step could consist of image quality evaluation such as formulated in
PI-RADS v2.1. However, this step could not be developed yet, since the preliminary
annotation work was not provided by the cooperating physicians so far. The final vision
on the QA system can be designed according to a “traffic light” principle, which during
the recording of MRI, based on the preceding steps, classifies the image quality and
provides a supportive indication. Negative feedback, as expressed by the “red light”,
can in turn serve as an indication of poor recording quality and lead to an instruction
to automatically repeat the recording process.
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Abbreviations

ACC accuracy

ACR video direct access memory

AI artificial intelligence

AP average precision

AUC area under the roc curve

BB minimum bounding box

BITMAP BMP file format

CAR Association of Radiologists

CH convex hull

CNN convolutional neural network

COCO common objects in context

CS computer science

CT computed tomography

CV computer vision

DI digital image

DIA digital image analysis

DICOM Digital Imaging and Communications in Medicine

DIP digital image processing

DL deep learning

DM data mining

DS data science
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DT decision tree

EPS encapsulated Postscript

FL focal loss

FN false negative

FP false positive

FPN feature pyramid network

GIF graphics Interchange Format

HU Hounsfield units

JPEG joint Photographic Experts Group

KNN k-nearest-neighbour

LR linear regression

MAE mean absolute error

MBC minimum bounding circle

MBE minimum bounding ellipse

MI medical imaging

ML machine learning

MM millions

MRI magnetic resonance imaging

MTB mycobacterium tuberculosis

NC minimum bounding n-corner

NIfTI Neuroimaging Informatics Technology Initiative

OD object detection

OL object localization

OR object recognition

PCA principal component analysis

PNG portable Network Graphics
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PR precision

QA quality assurance

QC quality control

QI quality improvement

REC recall

RF random forest

RGB RGB color space

RL reinforcement learning

RMBB rotated minimum bounding box

RMSE root mean square error

RQ research question

SD standard deviation

SGD stochastic gradient descent

SL supervised learning

SVM support vector machine

TIFF tagged Image File Format

TN true negative

TP true positive

UL unsupervised learning

VA visual assurance

VAR variance

VI visual inspection

VOC pascal visual object classes challenge

VRAM video direct access memory
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