
Orientational topology of layered systems
and reinforcement learning in active

matter

Inaugural-Dissertation

zur Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Paul Arne Monderkamp
aus Düsseldorf

Düsseldorf, April 2023



aus dem Institut für Theoretische Physik II: Weiche Materie
der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der
Heinrich-Heine-Universität Düsseldorf

Referent: Prof. Dr. Hartmut Löwen
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I came into physics for the meaning of life. I believe I know now, what is a rod.
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Abstract

The largest fraction of research attention in this thesis is dedicated to the study
of topological defects in the regular layered structure of colloidal smectic liquid
crystals. Liquid crystals are materials which, due to characteristic particle shapes,
display a plethora of interesting ordered phases, depending on, for instance, density.
At intermediate densities, elongated particles tend to align, into so-called nematic
ordering. Additionally, at high densities, they display a tendency to reside in
layers, called a smectic phase. These ordered phases are accompanied by local
disruptions in their ordered structure, so-called topological defects. In ch. 1, I
introduce the necessary fundamentals to understand the topological concepts,
applied in the corresponding publications in ch. 3. Furthermore, the Monte-Carlo
simulation protocol is elaborated, which marks my main contribution to the scientific
publications on smectic liquid crystal topology (P1, P2, P3 and P4). Over the
course of these scientific publications, we investigate how the concept of topological
defect charges, known from nematic liquid crystals, generalises to the defects,
which are inherent to smectics (P1,P3). We present how grain boundaries can
be classified with these charges. We furthermore show that the rigidity of the
smectic structure causes the formation of so-called tetratic defect pairs. These
resemble points in two, and line defects in three dimensions. Even though, in three
dimensions, topological charge is not strictly conserved, we find that it can result
from the smectic rigidity (P2). Lastly, in this part on liquid crystals, we explore
how graph-theoretical approaches can be used to interpret the structure of systems
composed of chiral particles (P4).
This thesis contains a study of the application of reinforcement learning to an

active swimmer. In our case, we equip single microswimmers in Brownian dynamics
simulations with the means to intelligent steering via tabular Q-learning (P5).
Details on the physical model as well as a simple, illustrative example for a problem,
solved with tabular Q-learning algorithm, can be found in ch. 2. Our research
provides a model for the understanding of autonomous decision-making in biological
microorganisms, as well as for the design of intelligent microrobotic machines. The
swimmer utilises his capabilities to learn to navigate through complicated, random
environments. We find, that it not only outperforms suitable reference cases, but
the strategy also generalises well to classes of environments, unknown until after
the training.
The last scientific publication in this thesis comprises a study of the equilibrium

statistics of carrier-cargo complexes (P6). These represent microscopic particles,
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which possess the ability to engulf smaller cargo particles. This is relevant, for
instance, for quantitative methods in medicine or the study of biological objects
such as vesicles or phagocytes. The main findings of this work are obtained via
density functional theory: the formation of carrier-cargo complexes can be tuned by
carrier and cargo densities. Furthermore, the theory predicts structural properties of
the mixture. The theoretical results are complimented by Monte-Carlo simulation.
The Monte-Carlo simulation protocol, which I contribute to this work is the same,
which is applied in the equilibration of liquid crystal phases, summarised in ch. 1.4.
The theory itself is extensively discussed in the main text of the publication.
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Kurzfassung

Der größte Teil der Forschung in dieser Arbeit ist der Studie topologischer Defekte
in der geschichteten Struktur kolloidaler smektischer Flüssigkristalle gewidmet.
Flüssigkristalle sind Materialien, welche durch die charakteristischen Formen der
einzelnen Teilchen eine Fülle an interessanten geordneten Phasen aufweisen. Diese
hängen mitunter von der Dichte ab. Bei mittleren Dichten haben längliche Teilchen
die Eigenschaft sich vornehmlich parallel auszurichten. Dies definiert die sogenannte
nematische Ordnung. Zusätzlich entsteht bei hohen Dichten eine geschichtete Struk-
tur, die sogenannte smektische Phase. Diese geordneten Phasen werden häufig durch
topologische Defekte lokal unterbrochen. In Kapitel 1 werden die notwendigsten
Grundlagen vermittelt, welche in den jeweiligen Publikationen, welche in Kapitel 3
präsentiert werden, angewandt werden. Außerdem wird das generelle Monte-Carlo
Simulationsprotokoll erläutert, mit welchem die Simulationsergebnisse generiert
wurden, die ich zu den wissenschaftlichen Veröffentlichungen zur Topologie der
smektischen Flüssigkristalle beigetragen habe. (P1, P2, P3 und P4). Wir erfor-
schen, wie sich das Konzept der topologischen Defektladungen, welches aus den
nematischen Flüssigkristallen bekannt ist, auf topologische Defekte in Smektischen
Flüssigkristallen verallgemeinern lässt (P1,P3). Außerdem demonstrieren wir, wie
Grenzlinien (sogenannte grain boundaries) mit dem Konzept der topologischen
Ladungen klassifiziert werden können. Es zeigt sich, dass die Festigkeit der smek-
tischen Struktur die Bildung von sogenannten tetratischen Defektpaaren erzeugt.
Diese haben in zwei Dimensionen die Form von Punktladungen und sind in drei
Dimensionen linienförmig. Obwohl topologische Ladungen dieser Objekte in drei
Dimensionen nicht gesetzmäßig streng erhalten sind, zeigen wir, dass Ladungser-
haltung als Konsequenz der Festigkeit der smektischen Struktur folgen kann (P2).
Zuletzt erforschen wir, in diesem Teil über Flüssigkristalle, wie Graphentheorie für
das Verständnis komplizierter Strukturen chiraler Teilchen nutzbar ist (P4).
Diese Arbeit beinhaltet eine Studie zur Anwendung von Reinforcement Learning

auf einen aktiven Schwimmer. In unserer Arbeit statten wir Mikroschwimmer
in einer Simulation Brownscher Dynamik mit der Fähigkeit aus, intelligent zu
steuern. Dies geschieht mit der Hilfe eines tabularen Q-Learning Algorithmus (P5).
Details zu dem physikalischen Modell, sowie ein illustratives Beispiel für ein Q-
Reinforcement Learning Problem, werden in Kapitel 2 präsentiert. Unsere Arbeit
leistet sowohl einen Beitrag zum Verständnis autonomer Entscheidungsfindung in
biologischen Mikroorganismen, als auch ein Modell zum Entwurf von intelligenten
mikroskopischen Maschinen. Der Schwimmer nutzt seine Fähigkeiten, um durch
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komplizierte zufällige Umgebungen zu navigieren. Wir stellen fest, dass er die
Fähigkeit besitzt, besser zu navigieren als angemessene vergleichbare Schwimmer
ohne Reinforcement Learning. Außerdem kann er seine Strategie erfolgreich auf
Arten von Umgebungen anzuwenden, welche bis nach Ende des initialen Trainings
unbekannt sind.
Der letzte wissenschaftliche Artikel in dieser Arbeit ist eine Studie der Equilibri-

umstatistik von Carrier-Cargo Komplexen. (P6). Diese repräsentieren mikroskopi-
sche Teilchen, welche die Fähigkeit besitzen kleinere Cargo-Teilchen aufzunehmen.
Dies ist beispielsweise relevant für quantitative Methoden in der Medizin oder
das Verständnis von Vesikeln oder Phagozyten. Die Hauptergebnisse dieser Arbeit
stammen aus Dichtefunktionaltheorie: Die Entstehung von Carrier-Cargo Kom-
plexen wird hauptsächlich durch die Dichten der Carrier und Cargos beeinflusst.
Außerdem ist die Theorie in der Lage, strukturelle Eigenschaften der Mischung
vorherzusagen. Diese Ergebnisse werden mit Monte-Carlo Simulationen verglichen.
Diese folgt demselben Protokoll, welches auf die Simulation der Flüssigkristalle
angewandt wird und in Kapitel 1.4 zusammengefasst wird. Die Theorie selber wird
ausführlich im Haupttext der Veröffentlichung diskutiert.
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Preface

The content of this dissertation is based on articles that I co-authored, and that have
been published in/ submitted to peer-reviewed scientific journals. These articles are
reproduced in ch. 3 and are listed in the following (in topical order):

• P1 P. A. Monderkamp* , R. Wittmann*, L. B. G. Cortes, D. G. A. L. Aarts,
F. Smallenburg, and H. Löwen,
Topology of Orientational Defects in Confined Smectic Liquid Crystals,
Phys. Rev. Lett. 127, 198001 (2021),
* P. A. Monderkamp and R. Wittmann have equally contributed to the manuscript.

• P2 P. A. Monderkamp, R. Wittmann, M. te Vrugt, A. Voigt, R. Wittkowski, and
H. Löwen,
Topological fine structure of smectic grain boundaries and tetratic disclination lines
within three-dimensional smectic liquid crystals,
Phys. Chem. Chem. Phys. 24, 15691 (2022)

• P3 R. Wittmann, P. A. Monderkamp, J. Xia, L. B. G. Cortes, I. Grobas, P. E. Far-
rell, D. G. A. L. Aarts and H. Löwen
Smectic structures in button-like confinements: experiment and theory,
arXiv:2303.01425 (2023),

• P4 P. A. Monderkamp, R. S. Windisch, R. Wittmann and H. Löwen,
Network topology of interlocked chiral particles,
accepted for publication at J. Chem. Phys.,
arXiv:2301.09541 (2023),

• P5 P. A. Monderkamp, F. J. Schwarzendahl, M. A. Klatt and H. Löwen,
Active particles using reinforcement learning to navigate in complex motility land-
scapes,
MLST, 3, 045024 (2022),

• P6 R. Wittmann, P. A. Monderkamp and H. Löwen
Statistics of carrier-cargo complexes,
arXiv:2303.04005 (2023),



xii

Detailed author contributions to the scientific publications above are specified in ch. 3.
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Chapter 1

Liquid crystal topology

Four out of the six publications in this thesis are dedicated to the study of the
topology of defects in liquid crystal phases (P1, P2, P4, P3). This chapter aims
to introduce the reader into the prerequisite knowledge for understanding those
articles. It elaborates mostly on the concepts, which are typically not explicitly
contained in scientific publications, but are usually implied knowledge. Therefore, I
hope, that the reader will be able to appreciate the publications in ch. 3 thoroughly.
Section 1.1 explains what liquid crystals are in the first place and why they

are interesting and important. In Sec. 1.2, the concept of defects in their regular
structure is explained from the ground up. Section 1.3 discusses a simple toy system
of two rods on a lattice, to develop an intuition for the causes of nematic alignment.
Lastly, Sec. 1.4 discusses the aspects of the simulation procedure, used throughout
this thesis (the above articles, as well as P6).

1.1 What are liquid crystals?

Liquid crystals are a most curious class of materials. This umbrella term refers,
in general, to a range of materials, which gain their remarkable and occasionally
unexpected properties through the peculiarity of the constituting particles. These
are the microscopic subunits, which take virtually arbitrary shapes across different
types of liquid crystals. This causes properties, which can neither be exclusively
associated with liquids, nor with crystals, but rather in between. The scientific world
distinguishes most prominently between two classes: (i) thermotropic liquid crystals,
composed of molecules with sizes around the nano-scale, where the characteristic
shapes emerge from the architecture of the individual molecules and (ii) lyotropic
liquid crystals, denoting macro-molecules on the micron-scale, dispersed in a fluid
solvent. Nowadays, these macro-molecules are often synthesised colloids, where the
geometry of the particles depends on the creativity and technical proficiency of the
creator [1–4].
Anyone who has boiled spaghetti in a pot, has handled nails in a toolbox, or has

looked upon cookies in a cookie jar, will testify, that the particular arrangement
of the objects in question vastly depends on the respective particle geometry.
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Figure 1.1: Schematic depiction of the liquid crystal particles, which are the focus
of this thesis, and three excerpts of simulation snapshots of three typical
bulk phases. (a): Uniaxial rod, defined by a cylinder with length L
and spherical caps with diameter D on each end. (b): Isotropic phase,
found at low packing fractions, characterised by uniform distribution
of the rods across space, and isotropic distribution of the orientations.
(c): Nematic phase, found at intermediate packing fractions, where the
particles tend to globally align, with uniform distribution of positions.
(d): Smectic phase at high densities. To occupy the volume most
efficiently, the rods align and additionally stack in layers.

Spaghetti and nails can be efficiently packed by aligning them along their long axes,
whereas flat cookies tend to stack perpendicular to their principle plane. Such
it is also with liquid crystals. In lyotropic liquid crystals, which are the focus of
this thesis, short-ranged hard-body interactions between particles govern the phase
behaviour. In order to fill the volume occupied by the dispersion most efficiently,
e.g., flat particles often stack, while elongated particles align. Therefore, the study
of liquid crystals is a study of ordering and packing phenomena [5–9].

The centre of research attention in this thesis are lyotropic liquid crystals,
composed of uniaxial hard rods (see Fig. 1.1). In those, the phase behaviour, for a
given rod aspect ratio, is determined by the density. At different densities, different
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mesophases emerge ∗, among which this thesis is foremost interested in the so-called
smectic phase, which occurs at high packing fractions.

The structure of the smectic phase is best understood, by first considering the
phases, which occur at low densities. At sufficiently low densities, the particles
rarely come into contact. They move therefore almost freely across the accessible
space, while also rotating freely (see Fig. 1.1.(b)), resulting in uniform distribution
of the positions and isotropic distribution of orientations. Therefore, this phase is
called the isotropic phase. With increasing packing fraction, the material undergoes
a phase transition. Through the elongated shapes, the particles display a strong
tendency for local alignment along their long axis, while retaining a uniform
distribution in space. This phase is denoted the nematic phase (see Fig. 1.1.(c)).
Upon further increase of the packing fraction, the liquid crystal undergoes yet
another phase transition. The rods start packing into layers, breaking up the
uniform distribution of the positions in the nematic phase (see Fig. 1.1.(d)) [11–15].
This apparent wealth of ordered phases lends itself to a vast range of applications,

e.g., as coatings with a sophisticated surface chemistry [16, 17] or in functional
materials in technical applications. One of the most prominent of the latter are
displays containing liquid crystals (LCD), where steering of the local orientation
of the rods through confinement as well as electromagnetic fields enables external
control of the translucency of individual screen pixels [18,19].
The detailed structure of the liquid crystal, i.e., the positions and orientations of

the constituent particles, is typically described in terms of a space-dependent number
density ρ(r) (often also expressed alternatively as packing fraction η(r) = ρ(r)Vrod,
with the volume of a single particle Vrod) and a local orientation n̂(r) †, commonly
referred to as director. In experiment and simulation, both quantities are typically
understood as mean local quantities and are usually sampled, from configurations
of particles through local averaging [20–22]. Coarse-grained continuum theories
approach the investigation of the liquid crystal by resolving these quantities directly
[23–26].

1.2 Liquid crystal defects in two dimensions

The regular structure of a bulk liquid crystal phase may be disrupted by a range
of various factors, such as fluctuations [27, 28] or external influences such as
electromagnetic fields [29–33], confinement [34–45] or the insertion of obstacles
[46–52]. In liquid crystals, composed of hard rods, for instance, confinement to
finite cavities leads to an alignment of the elongated particles with the outer walls

∗meso- from ancient greek : middle- hinting at their partially ordered structure setting them
between liquid and crystalline matter [10].

†For the purposes of this thesis, n̂ can be viewed as a conventional vector field with ∥n̂∥ = 1,
with n̂ = −n̂, to accommodate for the apolarity of the rods.
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of the container or the surfaces of hard obstacles [53–57]. These external constraints
enter into competition with the liquid crystal’s tendency to retain an ordered bulk
structure throughout the hole domain. More specifically, this leads to a formation
of defects, which are associated with locations in space, where the director n̂ is
ill-defined and jumps discontinuously.

The study of defects is of particular importance to the understanding of liquid
crystal materials. Similarly to, e.g., (metallic) solids where the presence of defects
has dramatic impact on the material properties [58–60], so-called topological
charges in liquid crystals are descriptive of physical properties such as type and
strength of deformations [8,61–63]. Additionally, since topological defects are often
associated with conservation laws, akin to, for instance, charge conservation in
classical electrodynamics, the underlying topological theory is equipped with a
predictive power: topological theorems dictate, that the total topological charge
within a confinement is determined by the topology/connectivity of the confining
container. This enables one to predict large amounts of information about the
deformations, present in a material, only from the container [20,21,53–57].

In nematic liquid crystals in two dimensions, these defects, so-called disclinations,
are commonly singular points, while in three dimensions, they often take the
shape of elongated defect lines. This has been well studied and classified with the
help of group-theory, which describes the conservation and recombination laws
of topological defect charges in nematic liquid crystals in different dimensions
and environments [61,64–66]. In smectic liquid crystals however, which break the
uniformity of the nematic phase through their characteristic layering, the emerging
defect structures take more complicated shapes such as edge dislocations in two
dimensions [67–72] (cf. Fig. 1.1.(d), where one layer terminates, the two adjacent
layers splay out) and focal conics in three dimensions [73–76]. Both types of defects
are commonly associated with the layer structure. Since the orientational ordering,
which is characteristic for the nematic phase, is also inherent to the smectics, the
emerging defects can often additionally be interpreted in terms of the topology of
the director field n̂.

The concept of the following section (Sec. 1.2.1) is well established knowledge
from literature and is reiterated to serve as an introduction to nematic liquid crystal
topology. The subsequent section (Sec. 1.2.2) elaborates on the generalisation of
the concept from nematics to smectic liquid crystals. That section is largely based
on the insight gained in P1, P2 and P3.

The topology of defects in the layer structure, presented in Sec. 1.2.3, is once
again, well established in literature. This introductory section aims to explain how
topological charges are treated from the viewpoint of layers smectics. This concept
forms the basis for the analysis performed in publication P4.
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Figure 1.2: Simulation snapshot of a nematic liquid crystal featuring a defect in
the mean local orientation/director n̂ in the middle of the confinement.
Locally, the long axes of the rods point into the corners. This forces a
defect in the middle, where n̂ jumps discontinuously. The green lines
serve as guide to the eye for the local director. The topological charge
of the defect (cf. Eq. (1.2)) is Q = −1/2.

1.2.1 Orientational defects in nematic liquid crystals

Since the topological model for the orientational defects in the director n̂ of a
smectic liquid crystal derives from the description of the defects in a nematic liquid
crystal, this section elaborates the topology of two-dimensional nematic defects
first.

In Fig. 1.2, a simulated snapshot of a nematic liquid crystal, confined to a
two-dimensional cavity with almost hard walls, is depicted. Due to the hardness
of the walls, the rods tend to favour parallel wall alignment [77, 78]. Since the
wall segments feature different orientations, the rods are prohibited from assuming
a state in which all long axes point into the same direction, leading to a space-
dependent n̂(r). Most notably, the rods locally point into the corners, resulting
in a star-shaped geometry with three spikes in the field lines of n̂ (indicated by
the green lines). Inevitably this leads to a singular point in the centre, where n̂
is ill-defined and across which n̂ jumps discontinuously. The director in the close
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vicinity around this defect may be approximated as

n̂(r) =

(
cos (Qϕ)
sin (Qϕ)

)
, (1.1)

where ϕ denotes the polar angle of the position r = r(cos(ϕ), sin(ϕ)) and r = ∥r∥.
Here, Q represents the topological charge of the defect. In Fig. 1.2, the value of Q
is equal to −1/2.
In general, for any two-dimensional director field n̂ = (n̂1, n̂2), the topological

charge of a defect is equal to the winding number of n̂. This is the total in-plane
rotation of the direction of the field, along a path that goes around the defect once,
in counter-clockwise direction. It can be calculated as

Q =
1

2π

∮

C(κ)

[
n̂1(κ)

∂n̂2(κ)

∂κ
− n̂2(κ)

∂n̂1(κ)

∂κ

]
dκ, (1.2)

where C(κ) is a closed path with
∮
C(κ) dκ = 2π [21, 61]. The charge, defined in

this manner, is a conserved quantity in two dimensions, which behaves in many
ways comparable to conventional particles with electromagnetic charges [79–81].
Defects of different charges may, for instance, recombine/annihilate. Details on
the group-theoretical treatment of topological charges are discussed in Sec. 2.3 of
publication P2.
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Figure 1.3: Experimental snapshots of a smectic liquid crystal composed of rods
in a quasi two-dimensional environment. The picture is taken under
a light microscope from the bottom glass pane of a cavity, filled with
colloidal silica rods in aqueous NaCl-solution (experimental details
are described in ref. [54]). The rods display a visible tendency to
align with the hexagonal black walls, exemplified by the orientational
colour coding. The liquid crystal displays domain formation, each with
intrinsic uniform orientation. Those are separated by relatively sharp
boundaries, which can be identified as defects in the director n̂. These
can be analysed with the topological theory, presented in Sec. 1.2.2.
(image received by the courtesy of Dr. Louis B. G. Cortes, unpublished
personal correspondence)

1.2.2 Orientational defects in smectic liquid crystals

The previous section (Sec. 1.2.1) elaborates on the behaviour of topological defects
in the orientational field n̂(r) in nematic liquid crystals. This section now discusses
how the concept of the orientational defects in nematics generalises to the smectic
phase: upon increase of the packing fraction, a hard-rod nematic liquid crystal
undergoes a phase transition into the smectic phase, where the particles arrange
into characteristic layers [11–15]. In Fig. 1.3, an experimental snapshot of a two-
dimensional smectic liquid crystal, observed under a light microscope, is shown. The
bulk structure of the liquid crystal is obstructed by an arrangement of hexagonal
walls and additionally hexagonal obstacles within the hexagons in the bottom row.
The hexagonal walls serve both as (i) confinement for the liquid crystal within and
(ii) hexagonal obstacles to the bulk structure on the outside. The colour coding
represents the orientations of the rods. It can be seen, that the smectic liquid
crystal prefers the formation of domains, with largely uniform orientations and
layer structure.
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Figure 1.4: Schematic of the classification of topological defects in two dimensions,
present as discontinuities in the director field n̂(r). The topological
charge of a defect corresponds to the net rotation of n̂(r) traversing the
defect in counter-clockwise direction (indicated by the circular arrow in
(b, top)) around the defects. (a): The schematic shows an exemplary
line defect of total charge Q = 1/2. Due to the preferred difference
in orientation angles of π/2, the line defects can be classified as two
isolated tetratic point defects of charge q = 1/4, sitting on the ends.
(b): Schematic of point defects for particles of π rotational symmetry
with charges Q = +1/2 (top) and Q = −1/2 (bottom). The Q = +1/2
charge is analogous to the line defect in (a), which can be thought
of as a stretched version of this point defect. (c): Point defects for
particles with π/2 rotational symmetry. Charges are q = +1/4 (top) and
q = −1/4 (bottom). For ease of observing the continuous rotation, the
two main axes are decorated differently. (figure and caption reproduced
and adapted from [21] licensed under CC BY 3.0)

These domains are separated by grain boundaries, which represent extended
discontinuities in the director field n̂ across which the director jumps, in analogy
to the points defects, presented in the previous section (Sec. 1.2.1). Since local
orientational ordering is also inherent to the smectic phase, and since these grain
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boundaries represent discontinuities in the director field n̂, they are eligible for
classification through topological charges [20,21,54].
In Fig. 1.4.(a) a schematic of an elongated grain boundary is shown. Considering

the total rotation around the defect, it shows that this defect carries a charge of
Q = 1/2. For comparison, Fig. 1.4.(b) shows point defects with Q = 1/2 (top) and
Q = −1/2 (bottom). Indeed, the grain boundary in Fig. 1.4.(a) can be obtained,
through continuous deformation, from the Q = 1/2 defect in Fig. 1.4.(b). This can
be envisioned by splitting the picture of the Q = 1/2 point defect visually in top-
and bottom half, directly through the middle of the defect, and then stretching
the defect and the surrounding field in vertical direction like molten cheese or
chewing gum, thereby stretching the point defect into a line (unrelated to the true
viscoelastic properties of the physical material).
The topological charge distribution within grain boundaries can be further

resolved due to the strong preference of smectic layers to form a tilt angle of π/2
across grain boundaries [82–84]. This results in a tendency for the rotation of the
rods to occur at the end-points, which can be visualised, by analysing the hard-rod
system with an order parameter, which measures tetratic order. Perfect tetratic
order occurs, when all particles are at 0 or π/2 angles to each other. The end-points
on the grain boundaries can be interpreted as quarter-integer tetratic point charges,
which constitute the total charge of the defect. The grain boundary in Fig. 1.4.(a)
with Q = 1/2 is composed of two q = 1/4 end-point defects [20,21,54].

To elucidate this concept further, two isolated tetratic defects with charges are
shown in Fig. 1.4.(c): q = 1/4 (top) and q = −1/4 (bottom). These tetratic
point charges are local discontinuities in the orientation of particles with fourfold
rotational symmetry (e.g. squares or crosses, such as here). For ease of observation
of the continuous rotation around the defect, one principal axes of the particles is
coloured in orange.

1.2.3 Layer defects in smectic liquid crystals

The previous section (Sec. 1.2.2) elaborates on the analysis of the topology of a
smectic structure by considering the grain boundaries as orientational defects with
a fine-structure. The conventional treatment in literature of the topology of a
smectic liquid crystal, happens from the viewpoint of the smectic layers [67–76].
This approach is explained in this section, and forms the basis for the analysis,
performed in publication P4.
A defect in the layer structure is defined as a singular location in space, where

multiple layers meet at an angle, i.e., layers terminate. A schematic of such a defect
is depicted in Fig. 1.5, where n = 3 layers converge into a single point. As the
layer structure (black lines) around this defect is continuously deformed around
the defect, it can be classified in terms of the total rotation of the rods. Since in
smectic structures, the particles typically possess a preferred angle to the layers,
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Figure 1.5: Schematic of a topological defect in a smectic liquid crystal as con-
sidered via the layers (black lines) of particle positions. The defect is a
point, where a number of layers meet at an angle, thereby perturbing the
regular smectic bulk structure. The defect strength can be quantified
by a layer topological charge Q, computed through the total rotation
of the rods (blue) around the defect, divided by 2π similar as in defects
in the director field n̂ (see Sec. 1.2.1). Between two outgoing layers A
and B, at an angle αi, the rotation angle of the rods is equal to αi − π.
Consequently, the total layer topological charge around the defect can
be obtained via summation over all incident layers: Q = 1− n/2. The
charge of the depicted defect with star shape is Q = −1/2, since n = 3,
consistent with the orientational topological charges (cf. depiction of
confined nematic in Fig. 1.2).

the rotation of the rods equates to the rotation of the layers around the point
defect [85–89].
As visible, the rotation of a rod ∆ϕi (i = 1, ..., n), between two incident layers

A and B is equal to αi − π, where αi denotes the angles between both layers.
Accordingly, the charge of the defects, computed from the total rotation around
the defect, is equal to Q = (

∑n
i ∆ϕi)/2π = (1− n/2) [85–89].

To assure that this definition of the charges is indeed topological, i.e., the sum
of confined charges matches the topology of the finite container and local charge
conservation persists, additional considerations are usually made, that involve the
inclusion of density minima as topological objects [85–89].
To illustrate this, an exemplary simulated configuration is depicted in Fig. 1.6.

The particle snapshot is shown in Fig. 1.6.(a). The rods display layering, mutual
local alignment as well as parallel alignment with the boundaries of the cavity, as
expected at this packing fraction (η = 0.75, aspect ratio L/D = 15). The external
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Figure 1.6: Topological analysis of confined hard-rod smectics from the viewpoint
of the layers. (a): Particle snapshot from Monte-Carlo simulation in
circular confinement. The particles display a visual tendency to align
and form layers, as expected at this packing fraction. (b): The layers
from the particle configuration are labelled in magenta. In order to
obtain a picture, where the layer topological charges are conserved, the
minima in between layers (half-layers, green) are explicitly considered
as charge bearing (positive charges are blue, negative brown). To obtain
global charge conservation, the boundaries can be designated to the
original particle layer network. (c): Schematic of the defectious layer
configuration. Summing the layer defects within the dashed circle shows
that the system features regions with layer topological charge Q = 1/2,
distributed between both layer species, close to the top bottom of the
confinement. (d): Orientational order parameter field S(r), visualising
the defects in the orientations n̂. It can be seen, that S is decreased,
where the layer structure in (b) displays defects. Since both defects are
single grain boundaries, they contain orientational topological charges
Q = 1/2, each. It shows how orientational and layer charge pictures
are consistent in terms of the total charges.

constraints from the confinement clearly prohibit the intrinsic preference of the
smectic liquid crystal to form a bulk structure with defect-free, undeformed, parallel
and equidistant layers. As such, the system is expected to display the formation
of defects. The detailed layer structure is depicted in Fig. 1.6.(b). A meaningful
topological charge conservation is obtained via the explicit consideration of the
density minima (green) in between the smectic layers (magenta) as topological
entities. Those are, due to their intermediate positions between smectic layers,
typically denoted as half-layers [85–89]. The outer walls are associated with the
smectic layers, which introduces boundary defects.

The depiction in Fig. 1.6.(b) shows a large defect free central domain, with
largely parallel layers and half-layers. Above and below this are two regions with a
multitude of short layers, orthogonal to the central domain. A simplified schematic
of this characteristic structure is shown in Fig. 1.6.(c). It indicates that the two
defect regions contain layer defects whose topological charge sums up to Q = 1/2
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each. At the same time, the rest of the confinement is charge neutral.
In Fig. 1.6.(d), the orientational order parameter field S(r) = | ⟨exp (i2ϕ)⟩ |

of the system is shown. Minima in S(r) are associated with defects in n̂. It
prominently shows two grain boundaries in the top and bottom of the cavity,
where S is significantly decreased. Both possess an orientational topological charge
Q = 1/2, which can be inferred from the particle configuration in Fig. 1.6.(a), from
the layer networks in Fig. 1.6.(b), or from the Euler characteristic χ = 1 of the
confinement. This consideration displays, how both pictures of topological charges
are consistent with respect to the total amount of charges in a defectious region.
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Figure 1.7: Hard-rod system on a finite square lattice realised on a Goban (board
of the game of Go). The board is a lattice of thin lines, on which white
and black stones are placed. These, placed connected and in rows,
generates a system of two rods on a square lattice. We analyse this
as an instructive toy system, which can investigated with the help of
classical statistical mechanics, by assigning a probability distribution
to the configurations. This allows for the exact calculation of statistical
properties such as a partition function and entropy, which is in general
not possible for hard-rod systems in two or three dimensions with
continuous orientations and positions of an arbitrary number of N rods.

1.3 Two-rod system on a finite square lattice

Unfortunately, it is quite a common fallacy to assume, that the term “entropy”
is more or less synonymous with the word “disorder” [90, 91]. This, however,
can raise wrong expectations towards many natural phenomena, since in liquid
crystals, entropy often plays a crucial constructive role in the formation of ordered
phases [92–94]. This section shall address this misconception by analysing a simple
toy system of two hard rods on a square lattice. In this system, the positions of the
rods are discretised and only two orientations, horizontal and vertical, are possible.

In Fig. 1.7 a photograph of a Goban, a board from the game of Go, is shown. The
board features black and white stones, placed horizontally or vertically adjacent
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on the vertices of a square lattice of size 19 × 19. Stones placed in this manner,
here of length eight, symbolise the vertices which are occupied by the respective
rods. Since any vertex can only be occupied by a single stone, the rods symbolise
hard-body repulsion. The simplicity of this model allows for the explicit calculation
of thermodynamical quantities such as entropy with the standard tools, given by
classical statistical mechanics [95].
This consideration aims to provide a very basic intuitive understanding of the

role of entropy, as derived from the microscopic, i.e., particle-resolved statistical
mechanics, in the context of alignment phenomena and the formation of mesophases
in hard-rod liquid crystals. It features furthermore confinement (to a square box),
which is a reoccurring theme throughout the publications in this thesis (P1, P2,
P4, P3).
To obtain an appropriate analogy to the alignment phenomena, present in real

hard-rod liquid crystals, we assume that the rods can discretely diffuse and rotate
about the lattice. The two rods display short-ranged, hard-body repulsion and so,
the interaction potential can be defined as

V ({Pn}) =
{
∞ if i ̸= j and Pi ∩ Pj ̸= ∅
0 else.

(1.3)

Here, Pn denotes the set of points occupied by the n-th rod (n = 1, ..., N). The set-
intersection operator is denoted by ∩ and ∅ denotes the empty set. The argument
{Pn} denotes the set of all Pn, for which the interaction energy is considered. Note
that this definition is valid for more than two rods. This interaction essentially
describes, that while the rods randomly propagate about the lattice, overlaps never
occur. At the same time, because all possible configurations have the same energy
V = 0, all are occupied with the same probability

pk =
1

Z(L□, L•)
, (1.4)

where k indexes the configurations. [95–99]. The total number of configurations is
denoted by Z, which depends on the size (i.e, number of vertices) of the square
lattice in one direction L□ and the length of the rods L• (number of occupied
vertices).

These individual states, which resolve the microscopic positions of the individual
rods (short microstates) are in real physical systems, however, usually inaccessible
and also uninteresting. When considering, e.g, a cubic meter of breathable air,
containing around 1023 individual gas particles, one is usually concerned, instead,
with macroscopic observables such as temperature or pressure [95,99]. A macrostate
can be defined by these macroscopic observables, and encompasses all microstates,
which result in the same macroscopic observables. In the case of our two-rod
system, we are interested in whether the two rods are parallel, or whether the two



1.3 Two-rod system on a finite square lattice 15

Figure 1.8: Schematic of one possible partition of all possible configurations of
two hard rods on a two-dimensional square lattice, facilitating the
computation of the number of states Z(L□, L•) as a function of box
length L□ and rod length L•. In order to assign probabilities to either
(1): perpendicular or (2): parallel macrostates for given L□ and L•,
one calculates the amount of respective configurations. All states can
be classified, by the second particle (orange) being (a): to the side (b):
above or below, the designated first particle (blue), within the respective
bands, indicated by the dashed red lines. In this schematic L• = 3 and
L□ = 11. This analysis can be applied with any combination of L• and
L□.

rods are perpendicular as a function of the system parameters lattice length L□ and
rod length L•. Accordingly, we define a parallel macrostate and a perpendicular
macrostate. The respective probability for the parallel macrostate is given by

P∥(L□, L•) =
Z∥(L□, L•)

Z(L□, L•)
=

Z∥(L□, L•)

Z∥(L□, L•) + Z⊥(L□, L•)
, (1.5)

with the number of microstates Z∥, where the rods are parallel, and the number of
microstates Z⊥, where the rods are perpendicular. Both quantities depend on L□
and L•. Analogously, the probability for perpendicularity is

P⊥(L□, L•) =
Z⊥(L□, L•)

Z(L□, L•)
=

Z⊥(L□, L•)

Z∥(L□, L•) + Z⊥(L□, L•)
. (1.6)
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Figure 1.9: Fraction of parallel configurations P∥(λ) of two rods on a square lattice
as a function of the ratio λ of the length of the rod L• to the length
of the confining box L□. P ranges between 1/2 for isotropy and 1, for
guaranteed alignment.

The number of microstates Z∥ and Z⊥ can be calculated explicitly, as shown in
Fig. 1.8. The figure shows a schematic of a possible further partitioning, which
simplifies the calculation. For instance, the number of configurations where the
rods are parallel but do not lie on a single line aligned (Fig. 1.8.(1a), orange
outside red dashed lines) is equal to 2(L□ + 1 − L•)2L□(L□ − 1). Each rod has
(L□ + 1 − L•) possible positions on the line along its vertical, combined with
L□(L□ − 1) combinations for the two rods along the horizontal, as well as a factor
of 2, for the microstates, when both rods are horizontal. The other terms follow
through similar combinatoric computations. Accordingly, the number of parallel
microstates reads as

Z∥(L□, L•) =2(L□ + 1− L•)
2L□(L□ − 1)+

2(L□ + 2− 2L•)(L□ + 1− 2L•)L□Θ(L□ − 2L•), (1.7)

where Θ(x) denotes the Heaviside step function with the convention Θ(0) = 1. The
number of perpendicular microstates reads as

Z⊥(L□, L•) = 2(L□ + 1− L•)
2(L□ − L•)(L□ + L•). (1.8)

In Fig. 1.9, the probability for parallelity P∥ (cf. Eq. (1.5)) is shown as a function
of λ = L•/L□. Since L□ can be arbitrarily large, λ can take the value of any rational
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number. When the rods have lengths L• = 1 (λ = 1/L□), i.e., the smallest possible
value corresponding to hard spheres, there is no distinction possible between parallel
and perpendicular. Consequently P∥(1/L□) = P⊥(1/L□) = 1/2. On the other hand,
when L• = L□, i.e., λ =1, perpendicularity is impossible. Therefore P∥(1) = 1.
The quantity 2P∥ − 1 ∈ [0, 1] can be thought of as an order parameter for the

continuous transition of the system from a disordered isotropic state, where all
orientations are present with equal probability, into an orientationally ordered
state. This may give a good intuition for, e.g., the spontaneous alignment, which
happens at the isotropic to nematic phase transition in hard-rod liquid crystals.
The term phase transition, is in the strict sense of the word, not applicable to
the lattice two-rod system, discussed in this section. It is reserved for a range of
phenomena in nature, which fulfil a special set of criteria, most prominently reside
in the thermodynamic limit (N →∞, V →∞, N/V = const) [95,100,101].
We can, in general, identify the entropy S of a macrostate, given its partition

function, i.e., the total number of microstates Z via:

S =
∂

∂T
kBT lnZ = kB lnZ, (1.9)

if Z is temperature independent ‡. Here kB denotes the Boltzmann constant [102].
Since P∥ > 1/2 (cf. Fig. 1.9), the difference in entropy for the two macrostates

S∥ − S⊥ = kB ln

(
Z∥
Z⊥

)
= kB ln

(
P∥

1− P∥

)
≥ 0 (1.10)

is always greater than 0 and diverges as λ approaches 1 and therefore P∥ approaches
1. For all values λ < 1, this particular system will, over the course of its physical
evolution, randomly switch between higher and lower entropy macrostates, parallel
and perpendicular.
This discussion illustrates how the entropy in hard repulsive systems is directly

linked to the amount of states, which a system can occupy. Furthermore, the
entropy of the aligned state is always larger than the orthogonal state, and this
effect increases with length of the rods. This might serve as an analogy for
understanding ordering transitions in nature, such as the isotropic to nematic phase
transition in liquid crystals. Here, beyond a certain rod aspect ratio or density,
the entropy associated with translational freedom of motion along the long axes,

‡Note that this notation assumes the canonical ensemble, as utilised also in Sec. 1.4 for the
simulation. The partial derivative is taken at constant V and N . The absence of temperature
dependence, with only hard interactions in this section, simplifies the calculations of the
entropy. There are several justifications for why the terms in the partition functions, regarding
the translational and angular momenta can be neglected for the computation of the entropy of
lyotropic liquid crystals in general, and thus also for the lattice rod system. One, which shall
suffice for this context, is the diminished influence of inertial effects on microscopic particles
in solution (overdamped dynamics).



18 Chapter 1 Liquid crystal topology

outweighs the entropy associated with freedom of rotation. Unlike the example
discussed in this section, the liquid crystal usually does not switch freely between
isotropic and ordered state, but remains in the ordered state that features the
higher entropy [5, 92, 93].

1.4 Canonical Monte-Carlo method for liquid crystals

The name Monte-Carlo method apparently derives from the gambling habits of an
uncle of Stanislav Ulam, one of the original inventors of this technique. It is stated
by Nikolas Metropolis himself, one of the inventors, that it references a famous
casino in Monaco, due to the probabilistic nature of the algorithm [103]. It has
evolved into a highly versatile method, which finds itself applicable in, for instance,
optimisation problems and the numerical solution of integrals [104,105]. Among
these, it is famously utilised today, to solve problems in machine learning [106–108]
and to model the seemed randomness of the financial market [109,110]. The method
remains a powerful tool for the study of the statistical mechanics of multi-particle
systems [111,112].
The basic scheme samples the configuration space of all particles, by starting

at an arbitrary configuration and iteratively generating new configurations by
generating trial displacements, which are accepted according to the probability P
given by the Metropolis criterion [112,113]

P = min
(
1, e

− ∆U
kBT

)
, (1.11)

where ∆U designates the change in energy of the system, kB is the Boltzmann
constant and T the temperature. The total number of trial configurations is highly
dependent on the considered system and typically requires fundamental knowledge
about the problem. Moreover, the particular choice of trial displacement is quite
flexible, but must be chosen such that the algorithm is not biased towards a certain
configuration/region of the configuration space [102,114].
This probabilistic approach has several major properties: (i) when applying this

scheme to finding extrema of an arbitrary function, it does not require the explicit
evaluation of gradients, contrary to minimisation algorithms such as gradient descent,
which might, in a sufficiently complicated setting, either be entirely impossible,
or at least computationally unfeasible. (ii) In the same context, the algorithm
possesses the ability to overcome local minima, due to the finite probability of
accepting a trial move towards an upward slope. (iii) Lastly, and most crucially
for the simulation of multi-particle systems, all possible configurations are sampled
according to the probability given by the Boltzmann factor exp(−U/(kBT )) in the
canonical ensemble [96,97]. Accordingly, the goal of the Monte-Carlo simulation
is commonly to obtain a state, which reflects an equilibrium configuration that
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Figure 1.10: Fraction of parallel configurations P∥(λ) of two rods on a square
lattice (as already depicted in Fig. 1.9). The analytical solution (green
solid line) is complemented by simulation results obtained via Monte-
Carlo simulation for L□ = 19 (orange points). As visible through the
agreement of the simulation with the exact result, the Monte-Carlo
simulation samples the configuration space according to the correct
probability distributions, approximating the exact result. We show
the results of ten independent simulation runs per L• ∈ {1, 2, ..., 19}.

minimises the free energy

F = U − TS. (1.12)

In other words, if done properly, the system resides in a state, which is determined
by the competition of the entropy and the internal energies associated with soft
interactions, such as soft interaction potentials or external potentials such as soft
confining walls. In pure hard-body systems, the Boltzmann factor is globally equal
to 1 and the configuration space is sampled accordingly. The goal is, to obtain a
configuration, which reflects an equilibrium state with maximal entropy.
To illustrate the simplicity but effectiveness of Monte-Carlo simulation, we

recollect the two-rod system from the previous section (Sec. 1.3). In Fig. 1.10, the
solution to the fraction of parallel states P∥(λ) for two rods on a square lattice
is shown, again. The green line shows the exact analytical solution, depicted in
Fig. 1.9 (see Sec. 1.3). In addition, the same quantity obtained via Monte-Carlo
simulation, is now indicated as orange points The simulation simply generates 104

valid overlap-free configurations, from which the relative frequencies are extracted.
The figure shows ten independent simulation results runs per L• ∈ {1, 2, ..., 19},
indicated by the orange dots. It is visible, that the fractions, obtained via simulation,
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approximate the exact solution.
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1.4.1 Compression protocol for self-assembly of ordered phases

Large parts of the craft of proper Monte-Carlo simulation is to enable the system
to reside in a state which reflects a true equilibrium configuration§. While this
can never be fully guaranteed, without additional techniques, which enable the
calculation of free energy F or entropy S [115,116], precautions can be made, such
as an unbiased displacement function and an appropriate equilibration protocol.
An example for the latter is briefly introduced in this section.

The general discussion of the Monte-Carlo scheme in the previous section (Sec. 1.4)
prescribes to initialise the physical system at an arbitrary random configuration
before running the Monte-Carlo scheme. However, the fundamental reason why any
ordered phase exists at all in hard-rod liquid crystals, is due to the lack of space
at higher densities, which forces the rods into alignment and/or positional order.
Accordingly, guessing a random configuration, which fits into the simulation volume,
is equivalent to guessing the result of the simulation in the first place. Therefore,
a simulation protocol is necessary, which allows for the random initialisation at
low densities and subsequent transition into ordered phases. Further specifics of
the simulation procedure, regarding the individual publications, are given by the
respective sections in ch. 3 (P1, P2, P4, P3, P6). This section describes the
general scheme.
We follow compression schemes, where we initialise the particle configuration

randomly at low volume fraction, several orders of magnitude below the volume
fraction of interest. The positions of the particles are uniformly randomised across
the simulation volume. The orientations of the particles are uniformly randomised
on the unit sphere S2 in three dimensions and on the unit circle S1 in two dimensions.
The system resides in an isotropic phase.
All liquid crystal publications in this thesis feature confinement. In order to

obtain a state at a high packing fraction, the size of the cavity is gradually decreased
after initialisation. In order to be able to shrink the cavity, without generating
unphysical configurations, i.e., a particle sitting inside a hard wall, the confining
walls are modelled as soft walls, with a very steep interaction potential. One such
possibility is given by a cut-off WCA potential

V (x) =

{
Φ(x0) + Φ′(x0)(x− x0) for x ≤ x0,

Φ(x) for x0 > x,
(1.13)

where Φ(x) denotes the standard 12-6-WCA potential [117]. Here, x can denote,
i.e, the distance of the particle on the outside of the walls to the inside, where
V = 0 and x0 denotes an arbitrary cut-off, beyond which the potential is linearised.

§except Monte-Carlo simulation being applied to out-of-equilibrium Brownian dynamics (with
an appropriate displacement function) or the investigation of non-equilibrium states. The
discussion of both is far out of scope for this brief section.
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The shrinking of the simulation volume is performed sufficiently slowly, such
that the simulated system can be considered close to equilibrium for any given
volume throughout the compression. This is to enable the system to reach a
final configuration at the end of the simulation, which most accurately reflects an
equilibrium, instead of getting quenched into a kinetically arrested state, which
features an unfavourable free energy.
The algorithm can be expected to reach equilibrium drastically faster in the

isotropic phase, because the particles are relatively far apart, and there are extremely
little rejected trial moves due to the absence of particle overlap. Therefore, the
compression rate, with which the simulation volume is shrunk, is typically varied.
This is usually done, in order to save computation time. In the projects in this
thesis, we utilise two slightly different approaches: (i) employing a two-phase
compression, where we quickly compress the system, with a constant compression
rate, to a packing fraction, where self-assembly is expected. In liquid crystals, this
corresponds to just below the bulk isotropic to nematic phase transition. Reaching
this regime, the simulation enters a second compression phase, with a drastically
reduced compression rate to allow the systems to equilibrate into the ordered phases.
(ii) Employing a single-phase compression, where the compression rate explicitly
depends on the simulation progress but is drastically faster in the beginning of the
simulation. This can be expressed as (see e.g. P4):

η(τ) = η(τ) = (η1 − η0)τ
1
3 + η0, (1.14)

where τ ∈ [0, 1] denotes the fraction of performed trial moves (in the beginning of
the simulation τ = 0, in the end τ = 1). Additional numerical indicators, which
can be sampled to investigate how well the simulation reflects equilibrium, are
discussed in more detail in Appendix A of publication P4.

1.5 Topological grain boundaries beyond liquid
crystals

The concept of grain boundaries, which possess a topological charge, that splits into
end-points, such as introduced in Sec. 1.2.2 is a remarkably general topological idea.
To illustrate this, Fig. 1.11 shows simulation results for a two-dimensional out-of-
equilibrium system of spherical active Brownian particles [118–121] (cf. Sec. 2.1),
which repel through a standard 12-6-WCA potential. Active particles typically
feature the so-called motility induced phase separation, i.e., a coexistence between
a dense and a dilute phase. This collective phenomenon occurs due to the intrinsic
persistence of active particles, even in the absence of attractive interactions [118,122].
Furthermore, within these clusters, spontaneous velocity alignment can be observed
[123,124].
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Figure 1.11: Topological grain boundaries in a cluster of active Brownian particles
for a system showing motility induced phase separation. Within
the cluster, the particles velocities are spontaneously aligned. (a1):
Polar order parameter P(r) of normalised velocities displaying grain
boundaries. (b1): Local polar angle of the velocities in radian. It is
visible, that P displays grain boundaries, at which the orientation angle
jumps discontinuously. (a2): Particles (dots) and normalised velocities
around a local grain boundary (blue background). Across the grain
boundary, the angular discrepancy ∆ϕ is equal to π. (b2): Nematic
order parameter S(r). Due to the angular discrepancy ∆ϕ = π, the
polar grain boundary splits into two apolar (nematic) end point charges
with Q = 1/2 each, encircled in green (raw data received by courtesy
of Dr. Lorenzo Caprini, unpublished personal correspondence).

The polar order parameter P = | ⟨exp (iϕ)⟩ |, where ϕ denotes the polar angles of
the velocities, is shown in Fig. 1.11.(a1), as a scalar field. It distinctively displays
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large regions with P ≈ 1, i.e., domains with strongly aligned velocities. Across the
grain boundaries where P ≈ 0, the polar angles discontinuously jump, as visible
in Fig. 1.11.(b1), where ϕ(r) (in radian) is displayed. In Fig. 1.11.(a2), the local
particle configuration is shown around a grain boundary in the centre of the cluster.
It is visible how, across the grain boundary, the polar angle of the velocities jumps
by ∆ϕ = π. At the end-points of the grain boundary, a continuous rotation of
the velocities can be observed. The total rotation of the polar angle around the
defect is 2π. As such, this defects carries a topological charge Q = 1. Since the
rotation occurs around the end-points, the polar grain boundary splits into two
apolar (nematic) end-point defects with Q = 1/2 each, as visible in Fig. 1.11.(b2)
(encircled in green). This is analogous to how the charge of a grain boundary in
apolar smectic systems splits into two constituting tetratic defects (cf. Sec. 1.2.2).
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Reinforcement learning in active
matter systems

This chapter aims to equip the reader with the tools to appreciate publication
P5 in ch. 3, which is an application of reinforcement learning to a simple active
matter system. To this end, Sec. 2.1 introduces the concept of the active Brownian
particle. The reinforcement learning algorithm, used in this context, is set into the
broader context of machine learning, and discussed in detail in Sec. 2.2.

2.1 What is active matter?

All the publications in this thesis, except P5: Active particles using reinforcement
learning to navigate in complex motility landscapes, are studies of systems which are
considered to reside in thermodynamical equilibrium. While this is an extremely
appropriate assumption to understand the physics of, e.g., liquid crystals, the
majority of systems which we encounter in our everyday life are, in fact, not in
equilibrium. For instance, every piece of electrical machinery consumes energy
and radiates heat. The human perception of temperature is largely based on
temperature gradients. We ourselves are out-of-equilibrium systems [125, 126].
Indeed, one of the fundamental bases for biological life is the consumption of
nutrients through particle exchange. The term active matter describes any object,
or ensemble of objects, which consumes energy from its surroundings and turns it
into a self-propelled motion.
A simple model/dynamics to describe self-propelled microorganisms, such as

biological swimmers or active colloids, is given by the so-called active Brownian
particle [118, 127]. Active designates the aforementioned conversion of ambient
energy into a self-propelled motion. Brownian corresponds to the subjection to
Brownian motion, i.e., random noise in the equations of motion, representing
translational and/or rotational diffusion. In the context of publication P5, we
equip an active Brownian particle with the means of intelligent decision-making
through a machine learning algorithm. This model shall (i) show avenues for the
engineering of intelligent microscopic robotic components [128] and (ii) provide
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a model for autonomous steering in biological microorganisms, which is based on
active decision-making.

2.1.1 Equations of motion of the active Brownian particle in 2d

The active Brownian particle model is characterised by its equation of motion,
which can be written in terms of the corresponding Langevin equation [129]:

ṙ(t) = û(t)v0 +
√
2Dtξ(t) (2.1)

ϕ̇ =
√

2Drζ(t). (2.2)

Here, r is the position of the particle and û = (cosϕ, sinϕ) is the orientation of the
particle. The self propulsion velocity of the particle is denoted by v0. Dt and Dr

denote translational and rotational diffusion coefficient, respectively. The Brownian
random forces are implemented via Gaussian noises ξ and ζ, which fulfil:

⟨ξ(t)⟩ = 0 (2.3)

⟨ξi(t)ξj(t′)⟩ = δ(t− t′)δij (2.4)

⟨ζ(t)⟩ = 0 (2.5)

⟨ζ(t)ζ(t′)⟩ = δ(t− t′). (2.6)

The angle brackets denote an average over the realisations of the Gaussian noise
[118, 127]. In practise, the equations of motion are solved by writing a formal
solution in the form

r(t)− r(0) =

∫ t

0

ṙ(t′)dt′, (2.7)

which enables one to calculate noise averaged quantities such as the mean squared
displacement

〈
(r(t)− r(0))2

〉
= 4Dtt+

2v20
D2

r

(
tDr − 1 + e−tDr

)
≈ 2v20

D2
r

(
tDr − 1 + e−tDr

)
(2.8)

utilising Eqs. (2.3), (2.4) and ⟨û(t) · û(0)⟩ = e−tDr [130]. In typical experimental
active systems, we can neglect the translational noise given by Dt, since its contri-
bution to the dynamics often ranks several orders of magnitude below the rotational
noise [118].
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2.1.2 Mean first passage time and augmentation with
intelligent steering

Microscopic robots may, for instance, be used to perform minimal invasive medicine
through targeted drug delivery in the human body [131–135]. In this application,
the time and the reliability with which a robot reaches its target, e.g., a specific
cancer cell, are crucial factors in the efficiency and cost of the therapy.
In many relevant medical applications, the distance a over which the particle

travels, is much greater than the length scale on which its trajectory is persistent,
due to self propulsion (persistence length v0/Dr). We therefore consider the diffusive
behaviour in the long-time regime with the effective diffusion constant v20/(2Dr).
In this case, the mean time of first passage of an active Brownian particle over the
distance a in any direction, scales as

tfp(→ a) ∝ a2Dr

v20
. (2.9)

Here, travelling by a in either direction is counted as passage [136]. Even in this
idealised case, the scaling of the first passage time is suboptimal. In a more applied
setting, e.g., a microrobot travelling through human veins, no better results are to
be expected. This is because for medical applications, e.g., with drug delivery, the
direction of the travel usually matters. For a directed first passage, i.e., travelling
a certain distance in a certain direction, the mean time of first passage diverges to
infinity [136].
These considerations show, that it seems extremely unpractical, to say the least,

to inject simple active Brownian particles into a patient, and hope for delivery. To
this end, it makes sense, to augment the microrobots with a means of intelligent
steering, such that the random Brownian motion turns into a directed, guided
motion. In publication P5, we model this with a reinforcement learning algorithm.
This gives an additional term in the equation of motion Eq. (2.2) for the orientation,
which turns into

ϕ̇ =
√

2Drζ(t) + ωQ(r(t), t). (2.10)

In this new equation for the orientation, ωQ(r(t), t) represents the steering strategy,
i.e., an angular velocity, which the particle exerts on its own orientation. In the
next section (Sec. 2.2), we give a general and simple explanation of the basic
functionality of the applied algorithm.
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2.2 What is reinforcement learning?

Reinforcement learning is a category of machine learning algorithms, which in turn
describes a subset of artificial intelligence (AI). In a general sense, artificial intelli-
gence is any machine, which emulates the intelligent problem-solving capabilities,
that can be found in biological intelligence [106,107,137]. This can be a fixed set of
instructions, given in the form of a number of conditional statements, or a dynamic
set of instructions which may evolve upon acquisition of data. The latter defines a
machine learning algorithm [138,139].
The basic functionality of teaching an artificial intelligence (agent) through

reinforcement learning, is based on defining a set of operations, called actions,
which the agent may perform. Furthermore, the agent is given a certain amount of
information, defining its state. It decides on an action, depending on the state, in
which it resides, on the basis of its artificial brain. The artificial brain represents
some form of data storage and can vary with the specific implementation. Among
the most common are neural networks, or Q-matrix tables. The latter is used in
publication P5. In general, the goal of training the agent is to optimise its brain
towards a specific task. To this end, it is given the ability to distinguish whether
the task has been successfully completed. The agent is trained by trial and error,
updating the brain accordingly [140]. To elucidate how the above concepts are
applied in publication P5, the next section (Sec. 2.2.1) discusses a simple example
of reinforcement learning problem, namely a path finding problem on a finite lattice,
solved with tabular Q-learning.

2.2.1 Target finding on a finite lattice

This section aims to explain tabular Q-learning, which is applied in publication P5.
In this section, we elucidate the basic functionality by explaining its application to
a simple example, namely a target finding problem on a finite lattice. A schematic
of the problem is shown in Fig. 2.1. An artificial intelligence (agent, symbolised by
the dog) is placed anywhere on a finite lattice (symbolised by the square boxes).
The objective is, to enable the agent to navigate reliably to the lattice position
of a target (symbolised by the snack), irrespective of the starting point. In order
to build a reinforcement learning model, one needs to decide, what information
the agent receives. All possible positions on the lattice are indexed arbitrarily, but
uniquely. The agent knows the index of its current location. In the case depicted
in Fig. 2.1, this defines the state space of 32 states. One furthermore defines the
actions, which the agent can perform in order to solve the given task. Here, the
agent may go one discrete step in each vertical and horizontal direction. These
actions are also uniquely indexed, e.g., going right =̂ 1, going up =̂ 2, going left =̂ 3,
going down =̂ 4.
The artificial brain, which encodes the strategy of the agent, is given by a simple
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Figure 2.1: Schematic of the setup for target finding on a finite lattice. The artificial
intelligence (represented by the dog) learns to navigate towards a goal
(represented by the snack, right). The boxes define the states, and
are uniquely indexed (i ∈ {1, 2, 3, ..}). The actions going in a certain
direction ({→, ↑, ←, ↓}) are also uniquely indexed (j ∈ {1, 2, 3, 4}).
The navigation strategy is encoded in the matrix elements Qij. The
objective of the reinforcement learning algorithm is to optimise Q
towards an optimal strategy.

matrix, commonly denoted as Q, giving the algorithm Q-learning its name. The
strategy, which the agent executes, can be simply stated by:

action in state i = argmax
j

(Qij). (2.11)

In other words, in any given state, the agent performs the action, which corresponds
to the column with the highest value in row i, corresponding to its current state
index.
In order to obtain a matrix, which represents the best possible navigation strategy,

the agent performs the task a fixed number of M times. One single execution
is denoted as an episode. Throughout the training procedure, the agent either
performs an action, which is chosen at random, or performs an action, dictated
by the matrix Q. The a priori probability to perform a random action in the first
place, instead of dictated by Q, is commonly denoted as ϵ, which is decreased over
the course of the training procedure, for instance linearly as

ϵ(m,M) = 1− m

M
, (2.12)

where m denotes the current episode and M the total number of episodes. This
decreasing probability of executing a random action reflects the lack of knowledge
of the agent in the beginning, and on the other hand, the confidence in the trained
strategy, at the end of the training.
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The optimisation of the matrix Q is performed through the formula

Qnew
ij = Qold

ij + α
(
R+ γmax

k
(Qi′k)−Qold

ij

)
, (2.13)

which is applied after each executed action [141,142]. Here, i denotes the state prior
to the performed action with index j, chosen through Eq. (2.11). R denotes the
instantaneous reward, according to the outcome of the action. In this example, it
may be R = 1, only if the agent reaches the target. The term γmaxk(Qi′k) enables
the agent to value rewards in the future of the episode. maxk(Qi′k) denotes the value
in the i′-th row after the action. The discount rate γ ∈ [0, 1] quantifies how much the
agent values future rewards against instantaneous rewards, and is typically chosen
close to 1. Finally, the parameter α ∈ [0, 1] denotes the learning rate. At α = 0, the
agent learns nothing, while at α = 1, the algorithm displays no convergence, since
the update via Eq. (2.13), deletes previous experience immediately. In practice, α
is typically chosen close to 0. After all M episodes are performed, the hope is to
receive a matrix Q, which enables the agent to navigate to the target efficiently,
irrespective of the initial position [141,142].
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We propose a general formalism to characterize orientational frustration of smectic liquid crystals in
confinement by interpreting the emerging networks of grain boundaries as objects with a topological
charge. In a formal idealization, this charge is distributed in pointlike units of quarter-integer magnitude,
which we identify with tetratic disclinations located at the end points and nodes. This coexisting nematic
and tetratic order is analyzed with the help of extensive Monte Carlo simulations for a broad range of two-
dimensional confining geometries as well as colloidal experiments, showing how the observed defect
networks can be universally reconstructed from simple building blocks. We further find that the curvature
of the confining wall determines the anchoring behavior of grain boundaries, such that the number of nodes
in the emerging networks and the location of their end points can be tuned by changing the number and
smoothness of corners, respectively.

DOI: 10.1103/PhysRevLett.127.198001

Topological defects are ubiquitous in ordered states of
matter [1–5] and thus also emerge as a characteristic feature
of liquid crystals [6–11], which exhibit various degrees of
positional and orientational ordering [6,12–17]. Frustrated
orientational order in nematic liquid crystals typically
manifests itself in the form of singular points or lines.
Defects of this type may spontaneously form and annihilate
in bulk due to fluctuations [18], external influences such as
electromagnetic fields [19–23], changes in temperature
[24,25], or active motion [26–28]. In these processes,
the defect strength, quantified by a half-integer topological
chargeQ, is subject to a universal conservation law [29,30].
The formation of topological defects can further be
triggered in a controlled manner through confining the
particles [31–47] or inserting an obstacle [48–55]. In this
case, the precise type, number, and location of defects
depend on the particular geometry [56–58] and particle
properties [43,59–62], due to a delicate balance between
elastic distortions and surface anchoring.
The characteristic positional order of smectic liquid

crystals breaks the symmetry of the homogeneous nematic
phase and affects the elastic properties [6,63]. The con-
straints associated with the layer structure [64,65] stabilize
distortions of the bulk smectic lattice [66,67] which do not
exist in nematic liquid crystals [6]. These include purely
positional defects called edge dislocations [68–71] but also
more complex objects like focal conic domains [72–75]. In
many cases, orientational frustration in smectic phases can

be well described in terms of topological defects in the
nematic order that is inherent to the symmetry of the
smectic phase. However, in the paradigmatic case of
confined two-dimensional lyotropic systems, the formation
of grain boundaries largely dominates over strong elastic
deformations [76–78]. At these grain boundaries, the
nematic order present in the bulk smectic phase breaks
down, hindering a classification of the emerging orienta-
tional patterns in terms of nematic topology alone.
In this Letter, we demonstrate that extremely confined

smectic systems can be effectively described in terms of
topological defects in the tetratic order due to the strong
preference of smectic layers to tilt at a grain boundary by
approximately 90°. The tetratic topology is thus not only
important in systems with tetratic bulk symmetry [79–82]
but also a vital ingredient to a comprehensive picture of
frustrated smectics. In detail, we identify quarter-integer
tetratic disclinations, which materialize in pairs at the
extremities of grain boundaries, as the elementary topo-
logical unit of smectic liquid crystals. In turn, the notion of
a nematic disclination expands to a spatially extended
defect structure whose half-integer charge follows from the
sum of its tetratic components, thereby acting as a spatial
charge distribution, as exemplified in Fig. 1. To unveil the
full implications of coexisting nematic and tetratic order,
we use particle-resolved computer simulations and colloi-
dal experiments on hard rods to create different defect
structures in a large range of two-dimensional geometries.
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Defining the grain boundaries connecting different types of
tetratic disclinations as fundamental building blocks, we
provide the basic toolbox to characterize the more complex
smectic defect networks emerging in the presence of
multiple corners, as illustrated in Fig. 2. Thereby, our
approach visualizes the topological charge conservationP

q ¼ P
Q ¼ 1 for both individual tetratic point defects q

and defect networks with nematic charge Q, whose typical
connectivity depends on the curvature landscape of the
confining wall.
To create the smectic structures for each confinement, we

perform canonical Monte Carlo (MC) simulations on N ¼
1000 hard discorectangles [84] of aspect ratio p ¼ 15
within two-dimensional cavities, bounded by WCA-like
soft walls [85,86]; see Supplemental Material [83]. We
randomly initialize the system at a low area fraction
η0 ≪ 1. The system is quickly compressed at a rate of
Δη1 ¼ 4.15 × 10−7 per MC cycle to an area fraction
η1 ≈ 0.29, where the isotropic-nematic transition is
expected [87]. We subsequently compress the system at
a lower rate Δη2 ¼ 4.625 × 10−8 per MC cycle until the
system reaches the target area fraction of η2 ¼ 0.75 and
exhibits smectic order. This protocol ensures that the
system is close to equilibrium at all times. After equili-
bration, we use cluster analysis to identify domains with
different orientational order and generate statistics. For
each state, we determine local nematic SðrÞ and tetratic
TðrÞ order parameter fields to identify the composition of
topological defects [83].

On the experimental side, we analyze smectic structures
emerging at the bottom of tailored cavities at sedimenta-
tion-diffusion equilibrium of colloidal silica rods [77]. The
synthetic rods [88] have a small polydispersity in length
and diameter. They are dispersed into a 1 mM NaCl
aqueous solution [78], which leads to a short-ranged
repulsion and effective hard-rod-like interactions. The
degenerate planar anchoring at the bottom wall allows
us to capture images of quasi-two-dimensional smectic
states in the horizontal plane. Using bright-field

FIG. 1. Topological characterization of grain boundaries in
confined smectic liquid crystals. Left: coarse-grained topological
structure with an idealized nematic disclination of half-integer
charge Q induced by the presumed planar alignment with the
nearby wall. Middle: particle-resolved simulation snapshots of
hard rods with highlighted grain boundaries in the form of a line
close to a circular wall (top row) and a network induced by
corners (bottom row). Right: continuum model with quarter-
integer tetratic point charges q at the end points and nodes, which
can be interpreted as the distribution of the spatially extended
charge Q.

FIG. 2. Survey of grain boundaries with different connectivities
in smectic liquid crystals at a convex confining wall. Top:
composition of the two fundamental building blocks with total
nematic charge Q ¼ 1=2 (type A, red line) and Q ¼ 0 (type B,
orange line), determined by the tetratic quarter charges q (dots) at
the end points. The illustration of bulk orientational ordering
depicts a typical arrangement of the surrounding rods and a
schematic continuum picture with idealized straight grain boun-
daries separating regions of perpendicular smectic layers (grey
lines). The closed contour C (green line) highlights the contri-
bution of the tetratic end points to Q ¼ P

q. Bottom: relation
between the geometry-dependent manifestations of Q ¼ þ1=2
grain-boundary networks (red) in smectics confined to polygons.
The simplest structure ðAmÞ only contains one type-A defect with
m ∈ f0; 1; 2g of its end points attached to a corner of the
confining wall. In general, complex networks ðAþ nBÞ can
form, which amounts to adding n building blocks of type B.
Approaching the limit n → ∞, the network detaches from the
increasingly smooth corners, gradually reverting to (A0), as the
tetratic defects in the type-B branches annihilate [83].
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microscopy with an objective of high numerical aperture,
we can discriminate most rods and thus determine the
local order.
Our numerical observations are summarized in Fig. 3.

The common feature of all structures is a large, defect-free
central domain, characteristic for the bridge state [76–78].
The detailed appearance of the topological defects,
however, sensitively depends on the confining geometry.
To verify that the overall topology is universal, we decorate
[83] all representative snapshots with a defect structure
assembled from the building blocks in Fig. 2. By doing so,
we recognize in each system in Fig. 3 two separate grain-
boundary networks representing a Q ¼ þ1=2 charge each,
while the remaining defects do not carry any nematic
charge Q as a whole. The intriguing dependence of the
emerging defect networks on the geometric properties of
the confining wall can be perceived according to the

schematic cycle in Fig. 2, as laid out in the following
three paragraphs.
The most common defects are linear grain boundaries of

the general type A, which we further discriminate by the
location of the two positively charged tetratic end points,
cf. Fig. 2. The circular cavity in Fig. 3 typically features
two opposing bulk defects of subtype A0, i.e., both end
points possessing isolated tetratic signals are detached from
the wall. Therefore, the orientation of rods around the
perimeter changes continuously and all particles within
the system belong to a single domain. Upon switching from
the uniformly curved circular confinement to different
polygons, the grain boundaries usually extend towards
the corners, such that the tetratic defects anchor at the wall.
The invariance of our topological picture can be illustrated
by considering confinements with smooth corners [83]. The
example of a rounded equilateral triangle in Fig. 3 indicates

FIG. 3. Topological defect structure of representative simulations for hard rods with aspect ratio p ¼ 15 in different convex confining
geometries. Top row: particle snapshots with superimposed networks of grain boundaries and isolated tetratic point defects, compare
Fig. 2. The color of the rods highlights individual domains according to cluster analysis. Second row: nematic order parameter field SðrÞ.
Third row: tetratic order parameter field TðrÞ. Point defects at the confining wall are not visible. Bottom row: idealized continuum
interpretation of the depicted snapshots, as detailed in the Supplemental Material [83].
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that one grain boundary turns into a true domain boundary,
i.e., a type-A2 defect, as both its end points move towards
two of the three corners. The second grain boundary
gradually turns into a type-A1 defect, as one end point
attaches with the remaining corner and the other end
extends into the center of the large domain. This structure
is most pronounced in the limit of sharp corners. We further
observe that a grain boundary of type A1 gradually
contracts to a Q ¼ þ1=2 point defect upon decreasing
the opening angle [83]. Turning to a square cavity in Fig. 3,
the additional corner can accommodate the loose end point
of the type-A1 defect, resulting in the eponymous bridge
structure [76,77] with two parallel type-A2 domain boun-
daries, as in circular confinement, but with perfect tetratic
bulk order.
Following in Fig. 3 a sequence of geometries represented

by regular polygons, the increasing number of q ¼ þ1=4
charges at each corner is compensated accordingly by
negative bulk charges. We thus introduce an additional
type-B building block representing a pair of tetratic
q ¼ �1=4 charges. This overall charge-neutral object with
Q ¼ 0 either occurs on its own (at edge dislocations in the
bulk or attached to a single corner) or attaches with its
negative end to other building blocks, forming a large
network of grain boundaries, cf. Fig. 2. In particular, the
pentagon can accommodate an individual type-B defect in
addition to the two type-A2 domain boundaries also found
in square confinement (notice the difference with the free-
standing type-A1 defect with Q ¼ 1=2 in the triangle). The
hexagon typically features two parallel type-(Aþ B) net-
works, each separating two small domains from the central
bridging layers and resembling a type-A defect, like in the
square, with an attached type-B defect emerging from the
additional corner in the middle.
The addition of further corners allows for the formation

of complex type-ðAþ nBÞ networks, which contain n
nodes with q ¼ −1=4 and nþ 2 branches ending on a
q ¼ þ1=4 charge. The typical defect structure, however,
gradually reverts to that in circular confinement, closing the
cycle in Fig. 2. The defect networks in Fig. 3 thus detach
from the confining wall, as adjacent pairs of opposite
tetratic charges annihilate. Grain boundaries between pairs
of defects close to annihilation typically induce only a
small tilt between smectic layers, such that their nematic
signal weakens and qualitatively resembles the tetratic
signal (contrast, e.g., the free-standing type-B defects in
the pentagon and heptagon). In general, the degree of the
annihilation increases with increasing opening angle at the
corners [83].
To demonstrate the experimental relevance of our clas-

sification scheme, we analyze in Fig. 4 microscopy images
of colloidal rods for their orientational order, here focusing
on a hexagonal domain. The experimental defect networks
are typically less complex than those in the pure hard-rod
simulations [83], due to the higher elasticity of the smectic

layers. Nonetheless, the defect networks found consist of
the same fundamental building blocks, confirming the
broad applicability of our approach. Additionally, our
simulation results match the previously reported experi-
ments in square [77] and circular [78] confinement, and
hence the same analysis is directly suitable to those
experiments as well.
Beyond the chosen methodology, our topological tool-

box can be readily employed to illustrate the coexisting
nematic and tetratic orientational order of frustrated smec-
tics in free-energy based theoretical studies [15,78,89–91],
granular experiments [80–82] or molecular systems [92–94].
Regarding nonconvex confinements [78] or two-dimensional
manifolds [65,95], our set of building blocks can be supple-
mented by a line connecting two negative tetratic charges. A
generalized approach can shed more light on intersecting
surfaces of grain boundaries in three-dimensions. One central
implication of our analysis is that the motion of grain
boundaries can be tracked through tetratic point defects,
providing additional insights into the dynamics of smectics
[96–99] and their nucleation [100–102], which is particularly
interesting for biologically inspired nonequilibrium systems

FIG. 4. Two selected sets of experimental reference data in
hexagonal confinement, presented as in Fig. 3. Shown are bare
bright-field microscopy images with N ¼ 1400� 150 colloidal
rods of effective hard-rod aspect ratio peff ¼ 10.6 in the field of
view and the extracted order parameters.
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like self-propelled rods [103–106] or growing bacterial
colonies [107–109] as candidates for active smectics.
Finally, we expect that the classification of the fine

structure of defects on the length scale of individual
particles put forward in this work will be helpful to analyze
quenched or undercooled systems, in particular those where
the symmetry of an ordered phase is broken by grain
boundaries that may still impose a preferred alignment
between adjacent domains. One possible example would be
fine-grained polycrystals, which are challenging to distin-
guish from amorphous solids on the single-particle level
[110]. More generally, those methods could lead to a better
understanding of defects in complex solids (such as protein
[111] or aerosol [112] crystals) relevant for photonics
[113], phononics [114] and metamaterials [115].
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1. NUMERICAL METHODS

A. Model system

We model our system as fluid of hard discorectangles that are defined as rectangles with length L and width D
capped by two half discs with diameter D, interacting via pure excluded-volume interaction [1]. We focus on particles
with length-to-width ratio p = L/D = 15. The coordinates of the particles are defined via their position vectors rn
and orientation vectors ûn = (cosϕn, sinϕn)T , where ϕn is the angle of the nth particle with an arbitrary fixed axis.
The particles are confined within various two dimensional cavities as depicted in Fig. 3 in the main manuscript. To
force particles from the outside of the cavity to the inside, we model the interaction of the particles with the walls
as a soft cut-off Weeks-Chandler-Anderson (WCA) potential [2]. To determine the interaction energy of the particles
with the walls in our model, we consider the discoidal caps sitting at rn ±L/2 ûn. Defining the relative positions x+
and x− of both discs to the walls of the confinement, we compute the wall energy of the nth rod as

V (rn, ûn) = V (x+) + V (x−) (S.1)

with the potential

V (x) =

{
Φ(x0) + Φ′(x0)(x− x0) for x ≤ x0
Φ(x) for x0 > x

(S.2)

providing a version, linearized below x0 = D/2 and thus extended to the outside of the cavity, of the regular WCA-
potential

Φ(x) =

{
4ε
[(

D
x

)12 −
(
D
x

)6]
+ ε for x/D ≤ 2

1
6

0 for x/D > 2
1
6

, (S.3)

where we use the energy scale ε = 10 kBT to mimic nearly hard walls, thereby imposing a bias for planar surface
anchoring.

B. Simulation procedure

We study systems at constant particle number N and constant temperature T using standard canonical Monte-
Carlo simulations. We define the area fraction of the confined particles as η = NAHDR/A with the area of a hard
discorectangle

AHDR = LD +
πD2

4
(S.4)

and the area A of the confining geometry, assuming hard walls at x = 0. We focus on the study of smectic states at
an area fraction η ≈ 0.75, where the smectic phase is stable in bulk [3].

Every simulation runs for at least 107 Monte-Carlo cycles. One cycle consists of N trial moves where we randomly
choose one particle and, by equal probability, either displace it or rotate it. The particles are displaced by changing
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their x- and y-coordinates by ∆x,y ∈ [−∆max
x,y ,∆

max
x,y ]. Rotation is done by displacing the orientation vector ûn along

its orthogonal by ∆û ∈ [−∆max
û ,∆max

û ] and then renormalizing. The whole trial step is accepted with the standard
acceptance probability Pacc = min(eβ∆U , 1) [4] where ∆U is the total change in the energy of the system. The rate
with which particle trial moves are accepted depends on ∆max

x,y and ∆max
û . Those quantities are adjusted over the

course of the simulation to stabilize the acceptance rate at about 0.1.
To obtain the desired high-density states, we initialize our simulation by randomly placing all N particles within an

augmented confinement, such that the initial area fraction is η0 � 1. We then follow a compression protocol to bring
the system slowly to the desired density. This is done at sufficiently low compression rates to allow the system to
reach thermodynamic equilibrium at each density. Specifically, the compression procedure is divided into two stages:
a first one where we increase the area fraction of by shrinking the confinement with a relatively high compression rate
∆η1 = 4.15×10−7 per MC-cycle to an area fraction η1 ≈ 0.29 where nematic ordering starts to occur. This is observed
to lie slightly below the area fraction of the isotropic to nematic phase transition [5]. Once the system reaches η1 we
reduce the compression rate to ∆η2 = 4.625× 10−8 per MC-cycle and compress further until the desired target area
fraction η2 (we typically choose η2 = 0.75) is reached and we sample the results. As there is a significant difference
between nematic and smectic states in a square cavity, we equilibrated the systems confined to square cavities at
compression rates that were slower than those for the other geometries by a factor of four.

C. Data analysis

In this section, we define the local quantities, we use characterize the structure of the confined systems. The central
quantities to our topological analysis are the nematic

S(r) =
∣∣〈ei2ϕn〉r

∣∣ (S.5)

and the tetratic

T (r) =
∣∣〈ei4ϕn〉r

∣∣ (S.6)

orientational order parameters, where the angled brackets 〈...〉r denote the average over all particles which intersect
a local circle around r with radius ξ = 5D. S(r) and T (r) take values in the interval [0, 1], where 0 denotes low local
orientational order and 1 corresponds to high local orientational order. Furthermore we measure the local nematic
director angle ψ2(r) and tetratic director angle ψ4(r) as

ψm(r) =
1

m
arccos

(
<
( 〈eimϕn〉r
|〈eimϕn〉r|

))
(S.7)

with m ∈ {2, 4} and the real part <(...) of a complex number. The normalized nematic n̂(r) and tetratic director
fields t̂(r) are defined as n̂(r)= cos(ψ2)êx + sin(ψ2)êy and t̂(r) = cos(ψ4)êx + sin(ψ4)êy, respectively.

To facilitate the identification of grain boundaries and to determine the number of the domains within the confine-
ment, we perform a cluster analysis on the final equilibrated configuration based on the inter-particle distances and
the relative orientations. We chose the pairwise domain criterion such that two particles k and l are assigned to the
same domain if (i) the distance of their position vectors is smaller than a threshold |rk − rl| ≤ 1.3 (L + D) and (ii)
their relative orientation follows the criterion

|ûk · ûl| ≥ 0.95 . (S.8)

To further identify the fine structure of the system, we draw bonds between neighboring particles that we consider
to be in the same smectic layer. For each particle i with position ri and orientation ui, we also define the vector u⊥

i,
which is taken to be perpendicular to ui. We then consider two possible neighbors: the particle that is closest to the
point ri + u⊥

i and the particle that is closest to ri − u⊥
i. By closest, we here mean the distance of the chosen point

to any point on the particle’s surface. A chosen particle j on each side of particle i is now considered a neighbor if

1. |ûi · ûj | > 0.9, and

2. |rij · ûi| < 0.45L, and

3. |rij · ûj | < 0.45L,

where rij = ri − rj. To ensure symmetry, we remove any bonds from particle i to j where particle j is not bonded to
particle i.
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FIG. 1: Schematic depictions of the topological charge of a singularity in the director field n̂(r), illustrated for a
point-like Q = +1/2 disclination. The topological charge is calculated according to Eq. (S.9) via the winding

number along a closed contour C (green). Circling around the defect once, the particles orientation changes by an
angle of π, which results in q = +1/2.

2. CHARACTERIZING THE TOPOLOGICAL DEFECT STRUCTURE

A. Topological charge conservation of pointlike nematic bulk and boundary defects

To introduce the fundamental topological concepts relevant to determine and interpret the charge of a defect, we
first reiterate the established methods for a fluid with pure nematic symmetry. Nematic orientational order of uniaxial
liquid crystals is described by the director field n̂(r), with the identification n̂ ≡ −n̂, reflecting the apolarity of the
particles. To determine the charge of the topological defects emerging in a two-dimensional system, we consider a
closed contour C with one revolution in counter-clockwise direction, as illustrated in Fig. 1, assuming that C does not
pass any points or regions with a discontinuous n̂(r). Hence, the local orientation of the director will always return to
its initial value, when traversing once along a given C from any starting point. This results in the topological charge
Q, defined as the number of revolutions of the director relative to those of C, being always a multiple of 1/2, see
Fig. 1a for an example with Q = 1/2. Introducing a parametrization κ of the contour C(κ), the topological charge
can be explicitly calculated according to [6, 7]

Q =
1

2π

∮

C(κ)

[
n̂(κ)× ∂n̂(κ)

∂κ

]
dκ , (S.9)

where
∮
C(κ) dκ = 2π. Since Q takes only discrete values but must change continuously whilst continuously altering

the path C in a region without singularities, it has to be constant in such a region [8]. Moreover, the total charge
within a given domain can be computed as the sum of individual charges.

In a confined system, the external boundary induces a particular alignment of the particles, which is preferably
parallel to the walls in case of hard rods at a hard wall. This typically enforces the formation of defects. If all particles
obey a strong tangential anchoring condition at each point of the boundary, then the sum of all topological charges
is determined by the Euler characteristic χ = 1 of the simply-connected confining domains considered here [8]. The
corresponding fundamental law of charge conservation reads

∑

i

Qi = 1 , (S.10)

where the index i labels all defects in the system.
The topological defects occurring in nematic liquid crystals can be generally classified according to their location

relative to the confining walls as bulk, boundary or virtual defects [9, 10]. The charge of a bulk defect determined
according to Eq. (S.9) is not affected by the presence of the boundary. A boundary defect indicates a violation of
the anchoring condition. This is particularly the case at a corner, i.e., a singular point of the boundary curvature,
which is not compatible with the symmetry of the director field n̂(r). The sudden jump of n̂(r) when traversing the
confining wall can be related to the deficiency angle τ = 180◦ − α at the corner of opening angle α, which leads to
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FIG. 2: Overview of how to determine the topological charge distribution (superimposed points and lines) within
different simulation snapshots. Each defect represents a discontinuity in the director field, which can be enclosed by
a closed contour C (green paths), only traversing regions with a continuous director. Virtually extending the director
fields to the region outside the cavity (representative black lines) allows to assign a topological bulk charge to each
defect, irrespective of its connectivity with the system boundaries. The labeled contours are explicitly referred to in

the text. Top row: The nematic director field n̂(r)is parallel to the rod axes and thus discontinuous at a grain
boundary. Every network of grain boundaries, i.e., an assembly of interconnected nematic line defects can be

assigned a charge Q as a whole by integrating up the local rotation angle of n̂(r) along C, according to Eq. (S.9).
Bottom row: The field lines of the tetratic director t̂(r) are both parallel and perpendicular to the rod axes and

thus continuous at a grain boundary with typical deficiency angle 90◦, while the rotation of the field happens around
the end points. The charge q = 1− c/4 of these tetratic defects follows from Eq. (S.12) and can be directly inferred
from counting the number c of 90◦-corners (yellow points) of a polygonal integration loop C on top of the field lines.

A grain-boundary network can therefore be understood as a consolidation of isolated tetratic defects. As one
principal axis of t̂(r) is always equal to n̂(r), the nematic charge of such a network always equals the total tetratic
charge of its end points and nodes according to Eq. (S.13), compare contour C1 with C2 and C3. Grain boundaries

with a deficiency angle < 90◦ can only be assigned a topological charge q = Q as a whole, see contour C6.

the common definition [7, 9, 11] m = k/2 − τ/(2π) of a of a boundary charge m, where k takes integer values. The
corresponding conservation law generalizing Eq. (S.10) then reads

∑

i

(
mi +

τi
2π

)
+
∑

j

Qj = 1 , (S.11)

with the bulk defect charges Qj . Finally, a virtual defect represents a director field which does not uniformly align
with the boundary, such that the center of this distortion can be thought to lie outside the actual system [10]. For
smectic liquid crystals, which also exhibit positional order, the interpretation of the defect structure, described in the
remainder of this section, requires further care.
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B. Nematic and tetratic topological charge within smectic grain boundaries

In this section we describe the classification of topological defects in a smectic fluid, which are of central interest
in our simulations and experiments. Regarding the spatially extended defect structure represented by the emerging
smectic grain boundaries, a clear distinction between bulk and boundary defects is not always possible. For example,
depending on the local curvature of the wall, we observe a continuous transition between grain-boundary lines repre-
senting pure bulk defects and those with one or both end points attached to the boundary (see, e.g., Fig. 7). On a
second level of our classification, the end points of grain boundaries themselves can be identified as tetratic bulk or
boundary defects, which could be classified along the lines of Sec. 2 A. However, in what follows, we seek for a unifying
virtual treatment for all defects, irrespective of their location, which we illustrate for both nematic and tetratic order
in Fig. 2.

As a first step, we introduce a virtual extension of the director field that is tangential to the boundary and
continuously circulates each corner in the outside region. Hence, we avoid the ambiguity arising from the angular
deficiency at the corners and treat all defects as bulk defects, compare, e.g., the contour C1 in Fig. 2. This picture
allows us to associate a well-defined topological charge Q ∈ {±1/2,±1,±3/2 . . .}, determined via Eq. (S.9), with any
defect in the nematic order, irrespective of its spatial extension and connectivity with the boundary, see Fig. 2 for
representative examples. A point-like defect at the system boundary, in particular, is thus interpreted as a virtual
defect with half-integer topological charge Q = m + τ/(2π), such that the charge conservation law for internal bulk
charges from Eq. (S.10), which applies to our classification, is recovered from Eq. (S.11). This concept is best justified
regarding the detachment of defects from the boundary in polygons with rounded corners, as detailed in Sec. 5 B.

As a second step, we apply the continuum assumption of a tilt angle between smectic layers at opposite sides of
grain boundaries that is exactly 90◦. Therefore, each grain boundary is compatible with tetratic orientational order,
described by the director field t̂(r), which is similar to the nematic director field n̂(r) but with the identification
t̂ ≡ -̂t ≡ êz × t̂ ≡ - êz × t̂ of both parallel and perpendicular orientations (êz is the unit vector perpendicular
to the two-dimensional system). The topological charge q of a tetratic defect is always a multiple of 1/4 and can be
defined analogously to Eq. (S.9) as

q =
1

2π

∮

C(κ)

[
t̂(κ)× ∂t̂(κ)

∂κ

]
dκ , (S.12)

where the closed contour C may traverse grain boundaries, which is forbidden for a nematic director field. This allows
us to identify two isolated point-like tetratic defects at the end points of a grain boundary. For example, the contours
C2 and C3 in Fig. 2 enclose a tetratic bulk defect and a virtual defect at the boundary, respectively.

As a third step, we apply the same continuum assumption to networks of grain boundaries, which reveals the
location of additional tetratic point defects at the nodes, which represent a junction point of three grain boundaries,
compare, e.g., the contour C4 in Fig. 2. For the convex confinement shapes considered in our work, we typically
observe defect networks of total nematic charge Q = 1/2, consisting of n nodes and n + 2 end points with tetratic
charge q = −1/4 and q = +1/4, respectively. This decomposition reflects the fact that the nematic charge

Q =
∑

j

qj (S.13)

of a defect equals the sum of all tetratic point charges qj enclosed by the same contour, compare, e.g., the contour C5
in Fig. 2. Formally, the topological charge of a grain-boundary network is thus exclusively located at its nodes and
end points. Globally, the fundamental conservation laws, Eq. (S.10), for the total nematic charge Q and accordingly∑

i qi = 1 for the total tetratic charge q can be nicely illustrated in terms of the two types A (with Q = 1/4+1/4 = 1/2)
and B (with Q = 1/4−1/4 = 0) of grain-boundary lines, introduced in the main text as building blocks of the emerging
defect structures: we usually identify two A+ nB networks, which consist of one type-A and n type-B defect, and a
number of standalone type-B grain boundaries.

As a final step, we must decide for which of the observed grain boundaries the continuum assumption is justified
and how to classify the defect structures in the case it is not. This issue is dealt with in the following section.

3. DETECTION OF TETRATIC DEFECTS IN FRUSTRATED SMECTICS

A. Local fields of the orientational order parameters

Having introduced a continuum classification of smectic grain boundaries in Sec. 2 B, we now address the defect
structure arising from frustrated smectic order in extreme confinement as represented by our simulation data. One
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FIG. 3: Schematic illustration of the behavior of the nematic order parameter S (red curves) and the tetratic order
parameter T (green curves) along a grain-boundary line (horizontal coordinate in the plots) together with selected

fields extracted from the simulation data representing the indicated scenario. We also draw in each case a contour C
(green arrow) that encloses a representative nematic charge Q and/or tetratic charge q. Top: type-A bulk defect,

typically found in circular confinement. Bottom: the typical defect type emerging at a corner of the confining wall
depends on the opening angle α. If no tetratic point charges are drawn at the endpoints of a grain boundary, we

consider these as partially annihilated. Further details are given in the text.

way to visualize the emerging topological defects is through the local profiles of the nematic order parameter S and
the tetratic order parameter T . If a grain-boundary line is located in the bulk, i.e., not attached to the boundary, its
topological structure is unambiguously revealed by these fields. As emphasized in Fig. 3, the lines along which the
S field is close to zero are clearly visible, whereas the tetratic signal in the middle of the line is not distinguishable
from the background. However, the T field is low at both ends of the line, indicating the two end-point defects. If a
grain-boundary network is connected to the wall, both the strength of the signal in the order parameters (deviation
from the bulk value one) along a grain boundary and the observed type of the free-standing defects typically depends
on the opening angle α of the adjacent corner, as illustrated in Fig. 3 and detailed in the following. Corners with
α ' 90◦ induce ideal grain boundaries with with S ' 0 and promote perfect tetratic ordering throughout the system.
The tetratic end point defects are fully located on the system boundary and can therefore not be resolved in the T
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field. Departing from the particular case α ' 90◦, the tetratic order along a grain boundary is also frustrated close to
the confining wall. For 45◦ . α . 90◦ and 90◦ . α . 135◦ the nematic signal along a grain-boundary line opposes the
tetratic signal (S increases when T decreases and vice versa). For both 0◦ . α . 45◦ and 135◦ . α . 180◦ the tetratic
charges no longer provide isolated signals, i.e., they are partially merged to a line defect whose order parameter field
qualitatively resembles the nematic one. Such a grain boundary does not accommodate perpendicular smectic layers,
compare, e.g., the contour C6 in Fig. 2. In the limit α → 180◦, adjacent smectic layers are parallel and there is no
topological defect. This corresponds to a type-B grain boundary, typically observed for α & 90◦, whose oppositely
charged tetratic endpoints are completely annihilated. In the opposite case, α→ 0◦, there is a point defect of charge
Q = q = 1/2 in the corner, corresponding to the two merged endpoints of a type-A defect, generally preferred for
α . 90◦.

The given thresholds for the opening angle α reflect the different symmetry inherent to the nematic and tetratic
order. The resulting intuition helps to predict the expected type of defect induced by a corner. In particular if there is
only a single grain-boundary line, the information in the order-parameter field can be used as a basis for the decision
whether or not to assign isolated tetratic end points to the defect, as indicated in Fig. 3. Regarding, however, the
variety of possible defect structures laid out in Sec. 4, we take a cue from our domain criterion described in Sec. 1 C
and attach a branch of type B to a grain-boundary network only if it separates two different domains. Otherwise, we
consider the endpoints of such a building block as annihilated and no such branch is drawn into our schematic defect
structures.

B. Tetratic defect analysis based on smectic layers

To provide an alternative point of view on tetratic defects in frustrated smectics, we focus our analysis on the smectic
layers, instead of the particle-resolved picture in the previous section. Our main goals are to provide a deterministic
distinction between isolated and (partially) annihilated defects and to explicitly detect boundary defects. In the
frustrated smectic configurations we consider here, many of the smectic layers are tilted to some degree, and as
a result the particles are not aligned perpendicular to the direction of the smectic layer. Hence, the difference in
nematic orientation across a grain boundary can be significantly different from π/2, resulting in a low local tetratic
order parameter near the grain boundary. As a result, pinpointing defects based on the tetratic order parameter is
not easy in practice. We thus require a more robust way of identifying the topological defects associated with the
tetratic order in frustrated smectic liquid crystals from our simulation data.

To circumvent the difficulties associated with the local order parameter field, we determine the directions and
connectivity of the smectic layers. Specifically, we consider two particles to be in the same smectic layer based on a
bonding criterion that takes into account the positions and orientations of pairs of particles, see Sec.1 C for details.
We then draw a smoothened center line along the length of each layer to mark its direction. The smoothening is
performed by first determining an overall direction for the smectic layer (taken to be perpendicular to the nematic
director of all particles in the layer), and then applying a low-pass filter to the component of the particle positions
perpendicular to this director. We can now use these lines to guide us in identifying the behavior of the tetratic
director as we move through the system. Along the center line of the smectic layers, the orientation of the tetratic
director varies smoothly. Moreover, we can connect two lines by green arrows that are either parallel, or meet at an
approximately perpendicular junction, such that the tetratic director can be assumed to vary smoothly along this
connection. The resulting closed lines allow us to locate the defects in the tetratic order, as illustrated in Fig. 4.
To do this, we consider two types connections between smectic layers. First, between two parallel smectic layers
within the same smectic domain, we can draw direct connections perpendicular to the two smectic layers, denoted by
double-headed green arrows. Second, when a smectic layer terminates against the side of another layer, such that the
last particle in the first layer lies parallel to the smectic direction of the second layer, we draw a single-headed arrow,
which by definition crosses an area of low nematic order.

As shown in Fig. 4, it is then possible to identify a topological charge q = 1− t/4 of tetratic defects by counting the
number t of turns represented by the tips of the green arrows. In an idealized interpretation of any loop, switching
direction at the tip of a green arrow is a turn of 90◦, which has no effect on the tetratic order. Following the closed loop
in Fig. 4b, we encounter three sharp corners of 90◦ (with no effect on the tetratic order) plus the smooth rotation of the
smectic director by a final 90◦, completing the loop. This quarter-turn of the tetratic director indicates the presence
of a defect with q = +1/4 topological charge. Similarly, closed loops with 5 turns at a right angle, like in Fig. 4c
must carry a topological charge of q = −1/4. Finally, we should consider non-topological defects that are common
in our configurations. These can be either dislocations or simply sudden shifts in a smectic layer perpendicular to
its smectic direction, and do not significantly impact the orientations of the particles: they occur in regions of high
nematic order. An example is shown in Fig. 4d, with connections between the different layers drawn to show that no
topological defects occur, as the closed loop has exactly four sharp corners of 90◦.
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FIG. 4: Detecting tetratic charges based on smectic layers determined by the algorithm outlined in Sec. 1 C. a)
Exemplary distribution of tetratic point charges in three simulation snapshots. b-d) Illustration of how to identify

different tetratic charges. The gray lines indicate the detected smectic layers. Green arrows with one or two tips are
added manually to indicate connections between these layers in the vicinity of the topological defects. Then the

tetratic charge q = 1− t/4 can be read of from the number t of tips. Further details are given in the text.

We can now apply this approach to the simulated configurations, as illustrated in Fig. 4a. For this, it is convenient
to include the nematic order parameter field as a background. In particular, as terminations of one smectic layer
against another (single-headed green arrows) only occur in regions of low nematic order, in practice we only have to
focus on the regions close to the grain boundaries to find tetratic defects. In each figure, we draw only the connections
required to identify the topological defects in the system. Then, additional connections between parallel layers are
added to narrow down the regions where defects are located. Moreover, as detailed in Sec. 2 B, we assume the tetratic
director field to vary smoothly along the outside wall. To reflect this, we draw a smoothened outline of the system
boundary in each image. Smectic layers can terminate at the wall, providing an additional connection that should
again be interpreted as a rotation by 90◦ in any closed loop that includes it. In other words, the wall represents a
double-headed arrow (which is not drawn for presentation reasons).

We stress that identifying tetratic defects in this way is relatively straightforward. Arrows are drawn manually,
but there is usually no freedom of choice: when a smectic layer terminates in a region of low nematic order, it is
connected to the perpendicular layer just ahead of it. If no such layer is immediately visible, then occasionally another
connection in this region should be made first to allow the first layer to terminate by drawing an arrow which ends on
another perpendicular arrow (see, e.g., on the right-hand side of the heptagon in Fig. 4a. The only freedom of choice
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FIG. 5: Comparison of representative bridge states with K domains as labeled from simulations of N = 1000 hard
rods confined to a hexagonal cavity. The corresponding relative frequencies are given in Tab. I. The structure on the

right illustrates that we do not count singular domains located in the middle of the cavity, as described in the
caption of Tab. I. Top row: particle snapshots with superimposed grain-boundary networks (compare Fig. 2 in

main manuscript). Second row: nematic order parameter field S(r).

in this method occurs when it is not clear whether two adjacent smectic lines should be considered perpendicular or
parallel. For example, one could imagine continuously deforming the region around the defect pair just to the left of
the center of the heptagon in Fig. 4a to be more similar to an edge dislocation, as in Fig. 4d, which would result in
the annihilation of the two defects. However, note that any choice leaves the overall topological charge of the system
intact, as one would expect.

Compared to the analysis of order-parameter fields, described in Sec. 3 A, our layer-based approach generally resolves
a larger number of defect pairs, albeit these are usually close to annihilation. For example, the distribution of tetratic
charges in the free-standing grain boundary at the top corner of the heptagon in Fig. 4a corroborates our interpretation
of partially annihilated endpoint charges. In conclusion, while both methods provide a solid understanding of the
tetratic topology in their own right, the algorithm presented above is perhaps most suitable to track the defect motion
in a dynamical setup.

4. RELATIVE FREQUENCIES OF OBSERVED LIQUID CRYSTAL STRUCTURES

In general, each smectic structure in simply-connected confinement features a total topological charge Q = q = 1
typically distributed over two A+nB grain-boundary networks (containing one type-A and n type-B building blocks
each) and a number of additional type-B grain boundaries. To identify the most likely network composition, we
differentiate between the occurring defect structures by counting the number of domains, according to the analysis in
Sec. 1 C. Considering hexagonal confinement as an exemplary case, Fig. 5 shows how the number of domains relates
to the complexity of the emerging networks: when completely connected to the wall, an A + nB network separates
(n+ 2) domains.

In Tab. I, we list the relative frequencies for structures labeled according to the number of domains for a range
of polygonal confinements. For polygons with smaller numbers of corners, we observe that the average number of
domains K increases with increasing number of corners, peaking for dodecagon (12 corners) and tridecagon (13
corners). Further increasing the number of corners, K decreases again, as the confinement gradually approaches a
circular shape. This behavior reflects a general trend, which is also reflected by the most frequently observed defect
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confinement number of domains (K)
(corners) K 1 2 3 4 5 6 7 8 9 10 11
circle (0, ∞) 1.64 0.55 0.10 0.03 0.01
triangle (3) 2.34 0.08 0.53 0.35 0.03
square (4) 2.82 0.21 0.75 0.03
pentagon (5) 3.52 0.03 0.45 0.49 0.03
hexagon (6) 4.72 0.05 0.21 0.68 0.05
heptagon (7) 5.16 0.01 0.16 0.54 0.25 0.04
octagon (8) 5.49 0.05 0.53 0.32 0.09 0.02
nonagon (9) 6.17 0.02 0.20 0.46 0.26 0.06 0.01
decagon (10) 6.25 0.02 0.18 0.40 0.33 0.06 0.01
hendecagon (11) 6.76 0.02 0.10 0.27 0.36 0.20 0.05
dodecagon (12) 7.04 0.02 0.08 0.22 0.35 0.22 0.08 0.03 0.01
tridecagon (13) 7.05 0.01 0.03 0.09 0.21 0.30 0.25 0.10 0.02
tetradecagon (14) 6.46 0.02 0.05 0.16 0.27 0.28 0.26 0.05 0.01
pentadecagon (15) 5.71 0.02 0.05 0.13 0.23 0.26 0.20 0.08 0.03
hexdecagon (16) 2.97 0.14 0.28 0.26 0.16 0.10 0.04 0.01
icosagon (20) 2.43 0.23 0.36 0.24 0.11 0.05 0.01
triacontagon (30) 1.09 0.91 0.08
tetracontagon (40) 1.88 0.44 0.34 0.16 0.05 0.02

TABLE I: Average number of domains K and relative frequencies of structures with K domains occurring in our
simulations, rounded to two decimal places. The most frequent structure is marked by a boldfaced number. The

data are sampled from 1000 simulations for each confinement. For this statistic, we only count domains which align
with at least one wall to better reflect the typical defect geometry of the confinement, compare Fig. 5.

structure for a given confinement. The particular distribution for a given polygon depends in detail on the ratio of
the side length (determined by the fixed particle number and area fraction) to the length of the rods. For instance,
the triacontagonal (30 corners) confinement, for which this ratio is equal to 1.07, displays a relatively large number
(compared to 40 corners) of single-domain structures, which can be related to the high probability of a continuous
string of rods around the perimeter.

5. ADDITIONAL SIMULATION DATA

The distinctive topology of the defects, we observe in our confined systems, is influenced by various quantities, such
as area fraction η2, geometry of the particles (aspect ratio p), as well as confining geometry and system size (particle
number N). To further explore these different aspects, we present in the following sets of simulation data generated
with the protocol described in Sec. 1 B. First, we consider additional geometries for the simulation parameters N =
1000, p = 15 and η2 = 0.75 used in the main text. In detail, we exemplify the dependence of the typical length of a
grain boundary on the sharpness of the adjacent corner by considering a range of isosceles triangles in Sec. 5 A and
discuss the effects of a varying local curvature of the confining walls by the example of different rounded triangles
in Sec. 5 B. We then elaborate on the dependence of the topological defect structure on the system size in Sec. 5 C.
Finally, to shed light on the relation between simulation and experiment, we explore a range of area fractions and
aspect ratios in Sec. 5 D.

A. Isosceles triangles

To study the effect of the of the sharpness of a corner on the typical length of the adjacent grain boundary, we
consider in Fig. 6 a range of sharp isosceles triangles. The appearance of the free-standing type-A defect, typically
attached to the sharpest corner of the polygons, critically depends on the opening angle, as illustrated in Fig. 3 and
depicted in Fig. 6. As elaborated in the main manuscript, the free-standing grain boundary in equilateral triangles
tends to protrude deeply into the bulk. For intermediate opening angles, we typically observe that the length of the
defect decreases compared to the legs of the triangle and the degree of orientational frustration becomes lower as the
tetratic endpoints begin to merge. For angles . 15◦ we observe an isolated perfect point defect with Q = q = +1/2
as smectic layering is suppressed by the cramped geometry in the vicinity of the tip.
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FIG. 6: Topological defect structure of representative simulation results for hard rods with aspect ratio p = 15
confined to isosceles triangular cavities with tip angles (as labeled), where the structure shown at 60◦ coincides with
that in Fig. 3 in the main manuscript. Particle snapshots and orientational order parameter field S(r) as in Fig. 5.

FIG. 7: Topological defect structures of representative simulation results for N = 1000 hard rods with aspect ratio
p = 15 confined to triangular cavities with varying roundness ζ, defined in Eq. (S.14), as labeled. The structures

with ζ ∈ {2, 3, ∞} coincide with those presented in Fig. 3 in the main manuscript.
Particle snapshots and orientational order parameter field S(r) as in Fig. 5.
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B. Rounded triangles

As mentioned in the main manuscript, the curvature of the outer system boundary plays a central role in the
formation and resulting topological interpretation of grain-boundary networks. To elaborate on the dependence of
the topological defect structure on the curvature of confining cavities, we consider rounded polygons generally defined
by the equation

1 =

[
M∑

k

(r · bk −W)
ζ

]1/ζ
(S.14)

with r ∈ R2, bk = (cos(k2π/M), sin(k2π/M)) and W = tan(π/(2M)) sin(2π/M), such that M and ζ denote the
number and sharpness of the corners, respectively. In particular, ζ = 2 defines a circle and the limit ζ → ∞
corresponds to sharp corners.

Focusing on M = 3, Fig. 7 compares the typical structure for a large range of rounded triangles. For sharp corners
with infinite local curvature, the sudden shift in the orientation of the wall causes a frustration of the orientational
order directly at the walls, resulting in grain boundaries attached to each corner. The resulting defect structure
with two clearly separated domains remains dominant for rounded triangles with ζ & 4 throughout. For ζ . 4,
the dominant structure resembles that in circular confinement, characterized by a single domain and two opposite
grain-boundary lines on each side of the confinement, which tend to align locally with the confining wall. The degree
of attachment to the system boundary, generally decreases with ζ, which demonstrates the convenience of our virtual
treatment of boundary defects.

For intermediate values of the roundness parameter around ζ ≈ 4.0, where the curvature radius at the corners is
comparable to the rod length, we find additional structural elements: the grain boundaries tend to branch out close
to the corners, resulting in small domains incorporating one to two smectic layers. Moreover, in this parameter range,
we find structures that feature either one, two or three large domains, reflecting a strongly fluctuating connectivity
of the defect networks.

FIG. 8: Topological defect structure of representative simulations for N = 500 hard rods with aspect ratio p = 15 in
a range of regular polygons. Particle snapshots and orientational order parameter field S(r) as in Fig. 5.

P1 Phys. Rev. Lett. 127, 198001 (2021); Supplemental material 55



13

FIG. 9: Topological defect structure of representative simulations for N = 2000 hard rods with aspect ratio p = 15
in a range of regular polygons. Particle snapshots and orientational order parameter field S(r) as in Fig. 5.

FIG. 10: Topological defect structure of representative simulations for N = 5000 hard rods with aspect ratio p = 15
in a range of regular polygons. Particle snapshots and orientational order parameter field S(r) as in Fig. 5.
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number of domains (K)
N sim-# K 1 2 3 4 5 6 7
500 1000 4.85 0.03 0.23 0.62 0.11 0.01
1000 1000 4.72 0.05 0.21 0.68 0.05
1500 1000 4.62 0.01 0.06 0.33 0.50 0.09 0.01
1777 300 3.74 0.01 0.12 0.25 0.38 0.22 0.02
2000 1000 3.71 0.02 0.10 0.31 0.34 0.21 0.03
2500 250 3.30 0.06 0.14 0.38 0.31 0.12
3000 250 2.87 0.11 0.27 0.35 0.19 0.07 0.01
5000 155 3.01 0.14 0.28 0.23 0.15 0.19 0.01

TABLE II: Average number of domains K and relative frequencies of structures with K domains in hexagonal
cavities as in Tab. I, but for systems with different particle numbers N at area fraction η = 0.75. The number of

simulations from which the data are sampled is given in the second column.

C. Polygons with different particle numbers

The typical extent of the topological defects we observe in extreme confinement, depends on the elastic deformation
energy of the smectic layers. On smaller length scales, positional distortions of the smectic layers are favored, whereas
bent smectic layers are dominant on larger length scales [6]. This results in the formation of the described networks
of grain boundaries in smaller systems while in bigger systems large scale bends, connecting different walls of the
confinement, suppress the formation of separated domains. Accordingly, we show in Figs. 8, 9 and 10 exemplary
simulation results with different particle numbers N , leaving the area fraction η = NAHDR/A = 0.75 constant for any
confinement. In general, we observe that the average number of domains in each confinement decreases with increasing
system size, which is statistically quantified in Tab. II. Moreover, the relative length of free-standing type-B grain
boundaries is reduced for larger systems, which can be observed, e.g., by comparing the structures in the heptagons.

The extremely confined structures with N = 500 particles shown in Fig. 8 display a tendency to develop pronounced
positional distortions all across the central bridging domain. This is for instance visible through the slightly rotated
dislocated layer in the hexagon and the strong elastic deformations in combination with the almost system-spanning
central grain boundary in the heptagon. Moreover, the triangular cavity typically displays a single Q = 1 network
featuring a positively charged node with q = +1/4, separating three equally-sized domains. Strictly speaking, this
structure is different from the bridge state, irrespective of the identical set of building blocks. For systems larger than
those considered in the main text, the enhanced flexibility leads to a higher frequency of smectic layers interrupting and

number of domains (K)
η p N K 1 2 3 4 5 6 7
0.7 10 1147 2.78 0.09 0.32 0.38 0.16 0.04 0.01

11.5 1301 2.49 0.16 0.37 0.32 0.14 0.02
13 1454 2.60 0.12 0.33 0.39 0.14 0.01
15 1659 2.62 0.15 0.28 0.41 0.14 0.03
18 1965 2.52 0.14 0.33 0.41 0.11 0.01

0.725 10 1188 3.18 0.05 0.20 0.39 0.25 0.10 0.01
11.5 1347 3.09 0.06 0.20 0.41 0.26 0.06 0.01
13 1506 3.30 0.04 0.16 0.40 0.28 0.11 0.01
15 1718 3.23 0.03 0.20 0.40 0.25 0.11 0.01
18 2036 3.05 0.06 0.21 0.41 0.25 0.05 0.01

0.75 10 1229 3.51 0.03 0.13 0.35 0.30 0.16 0.03
11.5 1394 3.71 0.01 0.8 0.33 0.38 0.17 0.02 0.01
13 1558 3.57 0.03 0.10 0.35 0.34 0.16 0.02
15 1777 3.74 0.01 0.12 0.25 0.38 0.22 0.02
18 2106 3.56 0.03 0.13 0.31 0.35 0.17 0.02

TABLE III: Average number of domains K and relative frequencies of structures with K domains in hexagonal
cavities as in Tab. I, but for different particle numbers N , area fractions η and aspect ratios p = L/D, fixing the

ratio 7.5 between side length of the confining hexagon and rod length. The number of simulations is equal to 300 for
each row. The parameters η = 0.75 and p = 15 used in all other simulations are highlighted in magenta.
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FIG. 11: Particle snapshot, nematic order parameter S and tetratic order parameter T for a representative
simulation of hard rods in a hexagon with N = 1347, η = 0.725 and p = 11.5.

thus disconnecting the individual grain-boundary networks. In return, this results in a higher frequency of structures
with unified neighboring domains, as can be nicely observed for N = 2000 in Fig. 9. This behavior is exemplified
in a more pronounced way for N = 5000 in Fig. 10, depicting a larger number of grain boundaries with partially
annihilated tetratic end points, while the length of all grain boundaries relative to the cavity size decreases.

D. Comparison between simulation and experiment

To establish a closer connection to the experimental data shown in the main manuscript, we show in Tab. III a set of
simulation data for systems with a constant ratio ahex/(L+D) = 7.5 of the side length of the hexagonal confinement
and the rod length. This allows for the formation of seven to eight smectic layers at each side like in the experiment.
The remaining parameters are the area fraction η and the rod aspect ratio p.

Keeping the packing fraction fixed, we find that the distribution of the different structures is largely independent
of the aspect ratio, although a change in p is accompanied by a relatively big change in the particle number N . This
means that the effect described in Sec. 5 C of increasing N is mainly due to increasing the typical length scale of the
confinement relative to the particle length. Therefore, the difference of (effective) aspect ratios in our simulations and
experiments has no significant effect. In contrast, we observe a clear trend that the distribution of domain numbers
shifts to smaller values when the packing fraction η is reduced. In conclusion, structures with more flexible smectic
layers as well as less separated domains, which are typical for our colloidal experiment, are best reproduced in our
hard-rod simulations for choosing a particle number N and aspect ratio p compatible with the desired number of
layers in a given geometry and reducing the packing fraction η, see Fig. 11 for an exemplary structure.

In principle, a closer match between simulation and experiment could likely be reached by taking into account (i)
the effects of the slight softness and polydispersity of the silica rods, which also tend to reduce the rigidity of the
smectic layers, (ii) the three-dimensional nature of the experiment, which makes it difficult to estimate and compare
an explicit packing fraction at the bottom, and (iii) the particular equilibration protocol of the two-dimensional
simulation, contrasting the experimental sedimentation process (also note that the compression in our experiments is
faster than in Ref. [12], since in this work we use a larger number of rods, which results in a higher osmotic pressure
at the bottom of the cavity).
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Topological fine structure of smectic grain
boundaries and tetratic disclination lines within
three-dimensional smectic liquid crystals

Paul A. Monderkamp, a René Wittmann, *a Michael te Vrugt, b Axel Voigt, c

Raphael Wittkowski b and Hartmut Löwen a

Observing and characterizing the complex ordering phenomena of liquid crystals subjected to external

constraints constitutes an ongoing challenge for chemists and physicists alike. To elucidate the delicate

balance appearing when the intrinsic positional order of smectic liquid crystals comes into play, we

perform Monte-Carlo simulations of rod-like particles in a range of cavities with a cylindrical symmetry.

Based on recent insights into the topology of smectic orientational grain boundaries in two dimensions,

we analyze the emerging three-dimensional defect structures from the perspective of tetratic symmetry.

Using an appropriate three-dimensional tetratic order parameter constructed from the Steinhardt order

parameters, we show that those grain boundaries can be interpreted as a pair of tetratic disclination

lines that are located on the edges of the nematic domain boundary. Thereby, we shed light on the fine

structure of grain boundaries in three-dimensional confined smectics.

1 Introduction

Omnipresent throughout a vast range of chemical and physical
systems,1–12 topological defects play a central role in character-
izing collective ordering phenomena. As one of the default
systems for investigating such ordering phenomena, liquid
crystals13 have been enjoying continuous attention within the
physical chemistry and chemical physics communities over the
past decades and remain an active field of research.14 Liquid-
crystalline mesophases accompanied by topological defects
occur, e.g., in viral colonies,15 bacterial DNA,16 biopolymers,17

and active systems18–21 realized, e.g., by swarms of bacteria22–25

or driven filaments.26,27 Topological analysis even provides a
tool for insight into the collective behavior of animals on a
macroscopic scale, e.g., shoals of fish, where local coherent
swimming is a vital tool in the evasion of predators.28,29

The most prominent type of ordering, which is typically
found in liquid crystals, is orientational (nematic) ordering,
where the characteristically shaped subunits, i.e., molecules or
colloidal particles in close proximity, show a tendency to align.
This alignment can be induced or enhanced by the system

boundaries.30–32 If the nematic order gets frustrated, e.g.,
within floating droplets,33–37 by external confinement,38–48 near
obstacles,49–58 or on curved surfaces,59–65 topological defects
emerge, which are discontinuities in the ordered structures
that can display particle-like properties themselves.1,20,66–68

In liquid crystals which feature exclusively orientational order
of the fluid particles, so-called nematics, the commonly observed
stable defects are singular points in a two-dimensional (2d)
plane and curves in three-dimensional (3d) space that are either
closed or end on system boundaries. The defect strength in 2d
nematic liquid crystals is characterized by a so-called topological
charge, which obeys an additive conservation law in analogy to
the electric charge. This topological charge is determined by the
total change of the preferred local orientation of the fluid on
a contour around the defects.69,70 At higher densities and/or
low temperatures, certain liquid crystals form the so-called
smectic phase, which additionally displays positional order.
Traditionally, the study of defects in smectic liquid crystals is
mainly concerned with the purely positional defects, such as
edge dislocations71–74 or complex structures like focal
conics.75–77 However in situations, where frustration of nematic
ordering takes a pronounced role, the consideration of the
topology of the local orientations has proven insightful.

Smectic liquid crystals are characterized by an intrinsic
layering, such that the discontinuities in the local order
preferably appear as grain boundaries separating different
domains within the fluid. These elongated defects possess a
linear shape in two and a planar shape in three dimensions.78
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The formation of grain boundaries can be enforced when the
fluid is confined to a container, such that the local preferred
orientation in the system depends heavily on the position. This
is in particular the case for colloidal liquid crystals which
interact mainly through volume exclusion and possess a strong
tendency to maintain a uniform layering, such that the relaxation
of external constraints by elastic deformations only plays a minor
role (unless favored by the confining topology).79 For such 2d
colloidal liquid crystals, we have previously elaborated that the
notion of the emerging domain boundaries as topological objects
with coexisting nematic and tetratic charges yields insight into
the orientational topology of smectics80 (for a comprehensive
summary see Section 2.3). However, the role of the orientations
within smectic liquid crystals still remains to be further under-
stood. This concerns in particular the analysis of three-dimensional
systems.

To shed more light on this issue, we present a range of
simulation results for confined hard rods, representing colloidal
smectic liquid crystals in three dimensions. The confinement
causes frustration of the bulk symmetry and induces the
formation of topological defects, which are observed and
analyzed on the particle scale by treating the local orientations
of the rods as indicative of the local director field. As elaborated
in Section 2.3, the investigation of orientational topology in three
dimensions is more involved, since 3d topological charges do
not adhere to an additive charge conservation like their 2d
counterparts.69,81 However, under specific circumstances, this
additive charge conservation is recovered. By elaborating on the
analogy to the 2d case, we explain the effects of the introduction
of the third dimension and investigate the conditions for
additive topological charge conservation.

This article is structured as follows: in Section 2, we present
our methodology. After elaborating in Section 2.1 on the
simulation protocol, we introduce the order parameters used
to characterize the simulation results in Section 2.2, while we
provide a detailed discussion of the three-dimensional tetratic
order parameter in Appendix A. In Section 2.3, we explain the
analysis of the topological charge and the details of the charge
conservation. In Section 3, we present our results, by first
evaluating in Section 3.1 the order parameters to detect and
classify the emerging defects in our particle-resolved snapshots.
Then we characterize the layer structure and orientations within
the two confinements in Section 3.2, where Appendix B provides
more detailed account of the cylindrical geometry. We discuss
the implications on the topological charge in Section 3.3. Lastly,
we conclude in Section 4.

2 Methods
2.1 Simulations

We perform canonical Monte Carlo (MC) simulations of a
model for colloidal rods confined to 3d cavities, see Fig. 1.
Specifically, we consider soft walls in the shape of cylinders {rA
R3|rx

2 + ry
2 r R2, 0 r rz r h} and spherical caps, resembling a

drop-like shape, {r A R3|rx
2 + ry

2 + rz
2 o R2, rz 4 R � h}, both of

radius R and height h. The rods are modeled as hard sphero-
cylinders with aspect ratio p = L/D = 5, with core length L and
diameter D. Note that in two dimensions, one would require
significantly longer rods to observe stable smectic structures.

The pair potential for the particle–particle interaction is
given by the standard hard-core repulsion82

Uðri; rj ; ûi; ûjÞ ¼
1 for di;j � D;

0 for di;j 4D

(
(1)

for spherocylinders with

di;j ¼ min
a;bj joL

2

ri þ aûi � ðrj þ bûjÞ
�� ��; (2)

where rk and ûk are the position and normalized orientation of
the k-th rod, respectively. The convexity of the confining cavities
enables us to specify a wall–particle interaction potential
V(x) by modeling the rods as two virtual point-like particles at
r� = rk � (L/2)uk. The interaction potential is then given by

VðxÞ ¼
Fðx0Þ þ F0ðx0Þðx� x0Þ for x � x0;

FðxÞ for x0 4 x;

(
(3)

where |x| denotes the minimal perpendicular distance from
either of the two points to the wall and x4 0 corresponds to the
inside of the cavity. The cut-off point, below which V(x) is
linear, is chosen as x0 = 0.5D. Moreover, F(x) is the canonical
Weeks–Chandler–Andersen-potential

FðxÞ ¼
4e

D

x

� �12

� D

x

� �6
" #

þ e for x � 2
1
6D

0 for x4 2
1
6D;

8>>><
>>>:

(4)

with e = 10kBT (with the Boltzmann constant kB and the
temperature T),83 mimicking nearly hard walls. In what follows,

Fig. 1 Schematic depiction of the confinement considered in our simulation
of three-dimensional liquid crystals. We simulate the liquid crystals by a
system of N spherocylinders with length L and diameter D in confinement
to suppress the bulk symmetry of the fluid in order to observe topological
defects. (A) Cylindrical cavity with radius R and height h. (B) Spherical-cap
cavity with radius R and height h.

Paper PCCP

O
pe

n 
A

cc
es

s A
rti

cl
e.

 P
ub

lis
he

d 
on

 0
5 

M
ay

 2
02

2.
 D

ow
nl

oa
de

d 
on

 7
/2

3/
20

22
 1

2:
16

:3
1 

PM
. 

 T
hi

s a
rti

cl
e 

is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
Li

ce
nc

e.

View Article Online

64 Chapter 3 Scientific publications



This journal is © the Owner Societies 2022 Phys. Chem. Chem. Phys., 2022, 24, 15691–15704 |  15693

we consider confinements with fixed footprint radius R = 4L
and different heights hA [0.3L, 4.5L], whereas in Appendix B we
discuss additional data for cylinder heights up to h = 15L.

To create the smectic structures in our 3d cavities, we follow
a compression protocol, where we initialize the system at a low
volume fraction Z0 = 5 � 10�3 and compress until the volume
fraction Z2 = 0.52 is reached, at which the smectic-A phase is
stable in the bulk. Here, the volume fraction Z is defined as
Z = NVhsc/Vcav, with the particle number N, the volume of a hard
spherocylinder Vhsc and the total volume of the confining cavity
Vcav. Since in each simulation run the particle geometry, the
shape and size of the confinement and the final volume
fraction are fixed, the particle number N is a variable that gets
adjusted accordingly. The values of N we investigate, deter-
mined by the parameters above, typically lie between N E 200
for extremely shallow cavities and N E 3300 for the tallest
cavities with h = 4.5L that are addressed in the main part of this
publication.

After initialization at Z0 = 5 � 10�3, we perform a large
number of MC cycles, each of which consists of a trial displace-
ment or rotation of each particle. The acceptance probability

P ¼ min 1; exp �DU
kBT

� �� �
is given by the Metropolis criterion

from the difference DU of the energies (see eqn (1) and (3)) in
the system before and after trial move.84 In detail, we compress
the system for 106 MC cycles B109 trial moves with a rate of
DZ1 = 2.45 � 10�7 per MC cycle to the volume fraction Z1 = 0.25
and then, in a second stage for 5 � 106 MC cyclesB5� 109 trial
moves, with a rate DZ2 = 5.4 � 10�8 per MC cycle to Z2 = 0.52.
This two-step simulation protocol is implemented such that the
majority of the simulation takes place in the regime of the
packing fraction where self-assembly into the ordered phases
occurs, ensuring a proper equilibration. To calculate average
distribution functions and global order parameters, we gather
statistics from up to 15 simulation runs.

2.2 Order parameters

We examine the structure of the confined fluid with the help of
two orientational order parameters. The first one is the standard
nematic order parameter S, associated with orientational ordering
of uniaxial particles, which corresponds to the largest eigenvalue
of the nematic tensor Q.13,85 To numerically generate the scalar
field SðrÞ, we sample the nematic tensor within a spherical
subsystem of radius 2.5D around each point r as

QðrÞ ¼ 3

2
ûk � ûk �

1

2
I3

� �
B2:5DðrÞ

: (5)

Here, the brackets denote an average over all NB particles con-
tained within the ball B2.5D(r) with the individual orientations
ûk = (sinyk cosfk, sinyk sinfk, cosyk)

T in spherical coordinates for
k A {1,. . .,NB}, where y and f are the angles to the z- and x-axes,
respectively, and the 3d unit matrix I3. SðrÞ denotes the largest
eigenvalue of QðrÞ. The mean local orientation n̂(r) = n(r)/8n(r)8
of the rods, i.e., the nematic director, can be computed by

normalizing the eigenvector n(r) associated with SðrÞ, where 8�8
is the Euclidean norm.

As will be discussed later, the favorable nematic bulk
symmetry of orientational ordering is broken when the fluid
is confined to a cavity. In two dimensions, the topological fine
structure of the spatially extended defect lines in the director
field n̂(r) can be investigated using a scalar tetratic order-
parameter field, which can be defined as

T ð2dÞðrÞ ¼ expði4fkÞh iB2:5DðrÞ

��� ��� (6)

for a 2d subsystem with radius 2.5D, with the imaginary unit i
and the 2d polar angle of the k-th particle fk.

86,87 Note that this
tetratic order parameter evaluates to T 2d ¼ 1 when each pair of
rods is either mutually parallel or perpendicular.

Similarly, in three dimensions, the discontinuities in the
director field typically form grain boundaries, e.g., defect
planes. To develop a classification concept in three dimen-
sions, we construct in Appendix A a 3d tetratic order parameter
from the Steinhardt order parameters88

Il ¼
Xl

m¼�l

Ylmh ij j2 (7)

with the spherical harmonics Ylm. Globally, this tetratic order
parameter T is given by

T ¼ 16p
21N2

X4
m¼�4

XN
k¼1

Y4mðyk;fkÞ
�����

�����
2

������
� 3

4

X2
m¼�2

XN
k¼1

Y2mðyk;fkÞ
�����

�����
2
������:

(8)

This definition results in T ¼ 0 for an isotropic system, where
the orientations {ûk} are uniformly distributed on the unit
sphere S2 and T ¼ 1 for a system where all orientations are
pairwise either parallel or orthogonal, i.e., if we have a local
Cartesian coordinate system, where all rods are aligned to
either of the axes. Analogously to the 2d tetratic order para-
meter T ð2dÞ, our definition (8) of T implies both perfect cubatic

(T ¼ 1, S ¼ 0) and perfect nematic order (T ¼ 1, S ¼ 1) as
special cases of T ¼ 1, such that we cannot measure this kind
of tetratic order in a 3d system with either the standard
cubatic89,90 or the standard nematic order parameter.

We now prove that the 3d tetratic order parameter (8) has
the desired properties. First, we show that it is 0 for an isotropic
system. In this case, the orientations {yk, fk} approach a uni-
form distribution on the unit sphere S2, such that the inner
sums over k in eqn (8) approach an integral over S2. This
integral vanishes since the spherical harmonics satisfyð

S2

dOYlmðy;fÞ ¼ 0 (9)

for l a 0. Second, we show that it is 1 for a system where all
particles are pairwise either parallel or orthogonal. Since T is
by construction invariant under coordinate transformations
and since the functions Y4m and Y2m are invariant under parity
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transformation, we can assume without loss of generality
that we have a configuration (L) of a particles with orientation
(y,f) = (p/2, 0), b particles with orientation (y,f) = (p, 0) and c
particles with orientation (y,f) = (p/2, p/2) (with a, b, c A N0).
The order parameter (8) then evaluates to

T ðLÞ ¼ 16p
21ðaþ bþ cÞ2

�
X4
m¼�4

aY4m
p
2
; 0

� 	
þ bY4mðp; 0Þ þ cY4m

p
2
;
p
2

� 	��� ���2
�����
� 3

4

X2
m¼�2

aY2m
p
2
; 0

� 	
þ bY2mðp; 0Þ þ cY2m

p
2
;
p
2

� 	��� ���2
�����

¼ 1;

(10)

as can be easily confirmed by evaluating eqn (10) using a computer
algebra system. Further examples are given in Appendix A.2.

Finally, to generate a local field T ðrÞ of the tetratic order
parameter from our simulation data, we sample the spherical
harmonics entering eqn (8) only within local spherical subsys-
tems B2.5D(r), which yields

T ðrÞ ¼ 16p
21

X4
m¼�4

Y4mðyk;fkÞh iB2:5DðrÞ

��� ���2
�����

� 3

4

X2
m¼�2

hY2mðyk;fkÞiB2:5DðrÞ

��� ���2
�����;

(11)

analogously to the nematic tensor, cf. eqn (5).

2.3 Topological charge

Topological defects are identified as discontinuities in the
director field n̂(r), see Fig. 2. In 2d nematic liquid crystals,
the types of stable bulk defects are point defects. The strength
of the defect, i.e., the degree of deformation of the surrounding
fluid, is typically analyzed by a topological charge Q that
equates to the total rotation of the director traversing any
contour C around the defect. This charge is given by the
winding number that can be explicitly calculated as the closed
line integral along the contour C parametrized by k, i.e.,

Q ¼ 1

2p

þ
CðkÞ

n̂1ðkÞ
@n̂2ðkÞ
@k

� n̂2ðkÞ
@n̂1ðkÞ
@k


 �
dk; (12)

where
Þ
CðkÞ dk ¼ 2p.85 Due to the apolarity of the particles, the

configuration space of the orientations is a semicircle with end
points identified, commonly denoted by S1/Z2, i.e., we now consider
n̂ to be a headless vector in the sense that we identify n̂ and �n̂.

From a topological point of view, we define the charge via
the winding number because (since the winding number is a
discrete quantity) different contours with different winding
numbers can not be continuously transformed into each other,
i.e., are not homotopic. All possible contours in the liquid
crystal correspond to loops in S1/Z2. The fundamental group
p1(S

1/Z2) classifies loops in S1/Z2 up to homotopy equivalence.

Consequently, all possible defects are classified by the funda-
mental group p1(S

1/Z2). This group is given by Z=2 with the
addition operation +. (The prefactor 1/2 is a convention used in
physics that is motivated by the geometric definition of charges
via the winding number.) Therefore, the possible charges are
QA {k/2|kA Z} and these charges can be added to find the total
charge of a combination of two defects. The sum of all charges
is a conserved quantity in two dimensions (since it has to
match the Euler characteristic of the confinement91). As an
example, we illustrate Q = 1/2 in Fig. 2A1 and Q = �1/2 in

Fig. 2 Schematic of the classification of topological defects in two
dimensions, present as discontinuities in the director field n̂(r). The
topological charge of a defect corresponds to the net rotation of n̂(r)
traversing the defect in counter-clockwise direction (indicated by the
arrow in A1) around the defects. (A) Point defects for particles of p
rotational symmetry with chargesQ = +1/2 (A1) andQ = �1/2 (A2) typically
present in nematic liquid crystals. (B) Decomposition of smectic grain
boundaries into tetratic point defects. Due to the preferred difference in
orientation angles of p/2, the line defects can be classified as two isolated
tetratic point defects of charge q = �1/4. The schematic shows an
exemplary line defect of total charge Q = q1 + q2 = 1/2. (C) Point defects
for particles with p/2 rotational symmetry. Charges are q = +1/4 (C1) and
q = �1/4 (C2). For ease of observing the continuous rotation, the two main
axes are decorated differently.
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Fig. 2A2. Moreover, the number of elements in p1(S
1/Z2) is

infinite, which is exemplified by the fact that the winding
number can be any half-integer.

Defects typically observed in 3d nematics are disclination
lines, along which the local orientational order is frustrated.
(Point defects in three dimensions (hedgehogs) are not con-
sidered in this work.) In analogy to the 2d case, topological
defects can be classified by considering closed loops in the
orientational configuration space, up to homotopy equivalence.
One typically analyses the defect in terms of the topology of a
planar cross-section perpendicular to the disclination line.92

Since the configuration space of the orientations in three
dimensions is a hemisphere with antipodal points identified,
commonly denoted by S2/Z2, the rotation of n̂(r) along C forms
loops in S2/Z2, classified by p1(S

2/Z2). By rotation into the third
dimension, all half-integer disclinations can be continuously
mapped onto each other. Correspondingly, p1(S

2/Z2) has only
two elements. As a result, for instance, 3d defects with cross-
sections like in Fig. 2A1 (Q = +1/2) and Fig. 2A2 (Q = �1/2) are
homotopically equivalent. More specifically, the opposite
charges �1/2 correspond to opposite paths around half of the
base of the hemisphere S2/Z2, both connecting two antipodal
points. A +1/2 defect can be transformed into a �1/2 defect by
passing the corresponding path in S2/Z2 over the north pole of
the hemisphere. This implies that (a) the charge defined by
eqn (12) is no longer a conserved quantity and (b) it can no
longer be used to classify the possible configurations of the
nematic liquid crystal up to homotopy equivalence. There are
only two topologically distinct configurations left, namely
defect and no defect. (The discussion in this paragraph and
the previous paragraph follows ref. 69.)

Smectic liquid crystals, which additionally feature layering
of the fluid particles, can be treated in the same spirit as
nematics by considering a vector field normal to the smectic
layers93,94 or by directly working with the nematic director95,96

(which coincides with the layer normals in the case of smectic-A
order). However, if the smectic layers are sufficiently rigid,
which is a prominent feature of colloidal systems, the disconti-
nuities in the layered structure take the distinct form of
elongated grain boundaries. Those grain boundaries are lines
in two dimensions and planes in three dimensions. Recent
insight into the orientational topology of colloidal smectics
in two dimensions80 suggests that these grain boundaries can
be analyzed from the viewpoint of orientational topology by
associating a topological charge to these defects as a whole.
Furthermore, it has been shown that the rotation of the local
director occurs mainly around the endpoints of the grain
boundaries (see Fig. 2B). Those endpoints can be analyzed as
isolated tetratic point defects by superimposing a tetratic
director onto the fluid particles, i.e., considering orientations
with p/2 rotational symmetry, where one of the axis points
along the main axes of the rods (see Fig. 2C). Due to the
preferred difference of p/2 in the orientation angle across the
grain boundary in smectics, those tetratic point defects display
quarter charges Q A {k/4|k A Z} (see Fig. 2C). Geometrically
speaking, this is a consequence of the fact that the rotation of

the director around such a defect (divided by 2p) is an integer
multiple of 1/4 (and not of 1/2 as for standard nematic defects).
Topologically speaking, this is a consequence of the fact that
the tetratic order parameter superimposed in Fig. 2C takes
values in (S1/Z2)/Z2, which is a quarter-circle with end points
identified. This order parameter becomes singular only at
the endpoints, such that we can classify these endpoints as
topological defects by integrating along a closed contour
around them without having to pass through a singular point.
The fundamental group is p1 S1

�
Z2

 ��
Z2

 �
¼ Z=4, where the

conventional prefactor has now been set to 1/4.
An important property of smectic structures is their rigidity

due to the additional constraint provided by the positional
order. As will be detailed in the results in Section 3, the space
occupied by the orientations {ûk} is drastically reduced in our
simulations of 3d colloidal smectic systems, i.e., all orientations
are approximately perpendicular close to the line disclinations.
Therefore, it is no longer possible to transform the defects with
Q = +1/2 into defects with Q = �1/2, implying that they are
topologically distinct and that the charge Q defined by eqn (12) is
effectively a conserved quantity. In this way, we construct a
formalism for analyzing the 3d grain boundaries in Section 3
with the help of the previously defined 2d model.80

3 Results
3.1 Detection of defects via order parameters

Previous studies on 2d smectics in a simply-connected convex
confining cavity79,97,98 have shown the existence of a large,
relatively defect-free central domain, encompassing several
smectic layers, which connect opposite ends of the cavity. This
bridge state can generally be observed for a large range of
confinements.80 Indeed, we find that this reference structure
also persists when extending the system into the third
dimension.

In our 3d study, we compare typical simulation results,
shown both in Fig. 3 from a bird’s eye view and in Fig. 4 using
a 2d depiction, for two representative systems of hard rods
confined to a cylindrical container (column 1) and spherical
cap (column 2). The snapshots in Fig. 3A1 and A2 give an
indication of the chosen dimensions of the confinement in
terms of the dimensions of the individual particles: The height
h of both cylinder and spherical cap is 2.4L, while the diameter
2R of the footprint is fixed at 8L. Both systems display what can
be considered a generalized 3d bridge state. This becomes even
clearer when considering the bottom view of both systems in
Fig. 4A1 and A2. Apparently, the bottom layer of rods in our 3d
systems forms 2d bridge states. Due to the symmetry of the
cylinder, this structure is also mirrored on the top side. Even
though the top surface of the spherical cap is strongly curved,
the structure on it still resembles a 2d bridge state.

To study the particle orientation throughout the system in
more detail, we examine the topology of the corresponding
order-parameter fields. In Fig. 3B1 and B2, we visualize the data
points of low nematic order by showing the regions with
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S rð Þo0:8 in gray. For both confinements, the resulting plots
show a pair of planar disclinations, nestled to the sides of the
central bridge domain. These defect planes reach from the top to
the bottom of the container, while their shape barely varies along
the vertical axis. Moreover, at cross sections of constant height,
they have very little contact to the outer walls. This picture is
reinforced in Fig. 4B1 and B2, which show the nematic field of
the systems projected on the horizontal plane, i.e., the plane
perpendicular to the symmetry axis. Indeed, these projections
closely resemble the nematic field S rð Þ for 2d systems, confirm-
ing that the shape of the defect planes varies little along the
vertical axis. In addition to these grain-boundary planes, the
simulated cylindrical structure gives rise to several spots where
S rð Þ is significantly decreased at the mantle surface. As can be
seen in Fig. 3A1, these spots correspond to locations where layers
of single-rod depth align with the cylinder mantle. For the
spherical cap, the formation of such domains is largely sup-
pressed by the curved boundary.

Fig. 3C1 and C2 similarly show regions of low 3d tetratic
order according to the order parameter T rð Þ. In analogy to the
nematic case, we locate the defects by identifying the regions
where this order is minimal. Due to the relatively high sensi-
tivity to orientational fluctuations of T rð Þ, we display the data
points only for T rð Þo 0:3 in gray. It is then clearly visible that
the nematic defect planes split into two tetratic defect pillars,

each spanning from the bottom plane of the cavity to the top
surface. Fig. 4C1 and C2 show the corresponding tetratic order-
parameter field for the systems projected on the horizontal
plane. This visualization shows that the minima in the order-
parameter field are well localized and take an almost point-like
shape. This again confirms that the tetratic disclinations in 3d
appear as relatively straight lines, parallel to the vertical axis of
the confinement.

In general, one identifies orientational defects as singular
geometric objects in space, where the local director field n̂(r)
(see eqn (5)) jumps discontinuously. In particular, in 2d/3d
liquid crystals with a smectic-A symmetry, the typical difference
across any defect is p/2. As a result, nematic defects can be
identified with the help of S rð Þ. The same angular difference
leads to a promotion of tetratic order everywhere except for the
endpoints/edges, where the preferred orientation rotates. As a
result, we identify a set of tetratic disclination points/lines, with
the help of T rð Þ, that sit on the endpoints/edges of each
nematic defect.

3.2 Confined smectic structure

To better understand the structural details of our confined
smectics, we consider the number density

rðr; zÞ ¼ 1

NV0

XN
k¼1

Y
D

10
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� zkÞ2 þ ðr� rkÞ2

q� �
(13)

of the center positions of the rods, averaged over the azimuth,
where rk and zk refer to the positions of the particles in

Fig. 3 Exemplary simulation results for two systems of 3d confined
smectic liquid crystals. Column 1: cylinder. Column 2: spherical cap. Both
systems feature height h = 2.4L and diameter 2R = 8L. Row A: Bird’s eye
view of the simulated system of hard rods. Row B: 3d visualization of the
nematic defects according to the order parameter SðrÞ. In order to observe
the regions of low nematic order, i.e., defect regions, we display the data
points with SðrÞo 0:8 as opaque gray clouds. Row C: 3d visualization of the
tetratic defects according to the 3d tetratic order parameter T ðrÞ. To
visualize the defect regions, we only display the data points with T ðrÞo 0:3.

Fig. 4 The same two 3d systems as depicted in Fig. 3, but shown from a
2d perspective. Column 1: cylinder. Column 2: spherical cap. Row A:
bottom view of the snapshots to exemplify the structure of the 2d
cross-sections. Row B: S rð Þ for the system projected onto the horizontal
plane. Row C: T rð Þ for the system projected onto the horizontal plane.
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cylindrical coordinates. Here, the Heaviside step function is
denoted by Y(x) and V0 is the intersection volume of the
respective toroidal bin with the container. We further divide
by the particle number N, such that r(r, z) corresponds to the
probability distribution for the position of a single particle.
Additionally, we show the local orientational distribution
function

g2(r, z) = hP2(sin yk)iB2.5D(r,z), (14)

of the rods at position (r, z), where sin yk denotes the orienta-
tion of the k-th particle projected into the horizontal plane and
P2(x) is the second Legendre polynomial. To obtain an appro-
priate resolution, we average within a spherical subsystem of
radius 2.5D.

Both quantities r(r, z) and g2(r, z) are averaged over 15
simulations runs, with different randomized initial states.

We show the resulting distribution functions in Fig. 5 for the
same confinements of container height h = 2.4L and diameter
2R = 8L, presented in Section 3.1. For ease of observation, the
plots are stretched in the vertical direction. We generally
observe for both confinements that the density profiles dis-
tinctly show the layering structure of the fluid, reflected by the
relatively localized lines close to the outside walls. This
indicates, that the positions of the layers are strongly influenced
by the planar surface anchoring on the outer walls. While these
peaks are less pronounced further inside the cavity, the dia-
grams show clear indication of horizontal stacking from the
bottom to the top of the confinement. We stress that the kind of
layering visible in the density profiles happens on the scale of
the particle diameter D and should not be confused with smectic
layering along the direction of the rod axes of length L + D.

Along the vertical axis, the density profile for cylindrical
confinement in Fig. 5A1 shows 11 layers of particles within a

Fig. 5 Averaged structural properties of smectic liquid crystals confined in a cylinder (row 1) and spherical cap (row 2) of height h = 2.4L and diameter
2R = 8L. All diagrams are shown in cylindrical coordinates, averaged over the azimuth around the vertical center axis of the confinement (shown as a
dashed green line). All diagrams are additionally averaged over 15 simulations. Column A: one-particle density r(r, z) (defined by eqn (13)). These fields
exemplify the layered fluid structure along a radial slice of the confinement, influenced by the planar surface anchoring of the confinement. To improve
the contrast, we set the interval of the color bar to [0, 3.75], ensuring that the structures are clearly visible. All values above 3.75 are mapped to 3.75.
Column B: correlation g2(r, z) (defined by eqn (14)) of the orientations at a certain position with the orientations projected into the horizontal plane. This
function illustrates the deviation from the preferred horizontal orientation depending on the position within the confinement.
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length interval of 2.4L = 12D, indicating that their typical
orientation is horizontal. This observation is reinforced in
Fig. 5B1, showing that the orientations of the rods strongly
correlate with the horizontal plane in almost the whole con-
tainer. The depicted correlation function additionally indicates
the presence of vertical rods close to the mantle of the cylinder,
where g2(r, z) drops to g2 E 0.3, consistent with the occasional
appearance of vertical rods on the perimeter of the cylinder
shown in the snapshot in Fig. 3A1. Accordingly, the density
profile in Fig. 5A1 indicates a transition between vertical layers
close to the mantle and horizontal layers in all other regions.
In the corners, where the horizontal and vertical layers are
compatible, we find fairly sharp isolated point-like peaks,
exemplifying the high probability of a rod to sit aligned to both
neighboring walls.

The density profile for the spherical-cap-shaped container in
Fig. 5A2 indicates 12 stacked fluid layers in the middle of the
confinement, indicating a stronger compression of the fluid
than in the cylinder. Layers which are closer to the curved
surface of the container are bent, while those closer to the
bottom surface are horizontal. Again, we see localized peaks
close to the corner, which are even more pronounced than in
the cylindrical container due to the smaller opening angle.
Here, the roughly 20 isolated peaks are arranged on an approxi-
mately hexagonal grid, representing the structure of rods
sitting at an angle of p/2 to both walls, at approximately the
same distances to the perimeter in all simulations. This clearly
demonstrates the influence of the extreme confinement.
Fig. 5B2 shows the orientational correlation of the rods g2 with
the bottom plane. It is visible that all rods are aligned fairly
horizontally within the whole spherical cap (mind the different
color scale compared to the cylindrical cavity). Only in the
vicinity of the curved surface of the container, g2(r, z) is slightly
reduced to values of g2 E 0.9, indicating that the rods rotate
slightly out of the horizontal plane when aligning with the
curved wall.

To study the effect of confinement height h in more detail,
we vary this geometrical parameter from h = 0.3L to h = 4.5L in
steps of 0.3L, performing in each case 15 simulations for each
confining geometry. In Fig. 6, we show the resulting nematic
order parameter S and the 3d tetratic order parameter T
evaluated for the entire system as a function of h. For the
spherical cap, both order parameters S and T globally remain
at fairly constant values, irrespective of the confinement
height h. In detail, the nematic order parameter settles at
S � 0:5, while the tetratic order parameter settles at T � 0:1,
only showing a slight downwards trend. In stark contrast, for
cylindrical confinement the tetratic order parameter increases
strongly with increasing h, while the nematic order parameter
displays a nonmonotonic behavior.

Comparing the ordering behavior in the two types of cavities
in more detail, we also observe in Fig. 6 that for the most
shallow confinements with h = 0.3L the two values of T are
qualitatively similar, whereas S takes a slightly lower value in
the cylinder than in the cap. For this small height of the
cavities, there are practically no effects of the third dimension,

such that, like in a true 2d system, the aspect ratio p = 5 of the
rods considered here is too small to result in a significant
orientational order and much less a smectic bridge state.
The fact that the global nematic ordering in the spherical cap
is still higher than in the cylinder, relates to the decreased
accessible radius of the effective circular confinement. Upon
departing from this quasi-2d case by increasing h, the global
order generally increases. For the cylinder, however, the
nematic order parameter decreases again from S � 0:5 to
S � 0:3, while T drastically increases from T � 0:1 to T � 0:4

as soon as h 4 1.5L. This behavior, which is specific for the
cylindrical geometry, can be explained by the fact that we
observe a higher fraction of vertical rods on the mantle surface
for taller confinements, reducing the global nematic order.
In turn, this alignment even leads to an increase of the tetratic
order, since the vertical rods are perfectly perpendicular to the
central domain, such that the tetratic defects, which are
exclusively formed by the horizontal rods, take a smaller
percentage of the total system size. This kind of behavior is
not observed for the spherical cap due to its curved boundary.
For even larger cylinder heights h, the majority of rods aligns
with the mantle surface such that the global nematic order
increases again. This is studied in detail in Appendix B.

3.3 Topological charge

In Section 3.1, we discussed the detection of the topological
defects with the help of the order parameters. As elaborated in
Section 2.3, topological defects that span between system
boundaries, such as those in Fig. 3 and 4, can be assigned a

Fig. 6 Nematic order parameter S and tetratic order parameter T
(see Section 2.2) for the smectic liquid crystals confined to 3d cavities in
the shape of cylinders and spherical caps (see Fig. 1). Along the horizontal
axis we show a range of confinements with different heights h in units of
spherocylinder length L. The vertical axis represents different values of the
order parameters evaluated for the entire system. For each confinement,
we performed 15 simulations for each value of h. The height h is swept
from h = 0.3L up to h = 4.5L in steps of 0.3L. For each simulation run, we
show two sets of data points, corresponding to the two order parameters
S and T . The curves show the order parameters averaged over the
15 simulation runs.
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topological charge defined via the net rotation of the director
n̂(r) along an encircling closed contour. More specifically, these
contours can be defined within any cross section parallel to the
bottom plane. Note that the sum of all topological charges,
defined in this way, is a conserved quantity in 3d only under
specific circumstances like in the smectic systems considered
here, which can be understood as follows. Imagine, e.g., that
Fig. 2A1 and A2 represent cross sections of a 3d nematic system
(rather than a purely 2d system). In this case, the Q = +1/2 defect
from Fig. 2A1 can be transformed into the Q = �1/2 defect from
Fig. 2A2 by flipping the orientations ûk of all rods individually
across the vertical picture axis. This transformation can be
performed as a continuous mapping in 3d space, thereby
obtaining a Q = +1/2 defect from a Q = �1/2 or vice versa.
Additionally, this rotation can occur continuously along a
disclination line, resulting in different values for topological
charges, depending on the respective chosen cross section.81 As
a result, all possible structures can in principle be either
homotopically equivalent to a charge-free structure with Q = 0
or to a defect structure with Q = 1/2.

In the previous Section 3.2, we elaborated that the confined
smectic fluids in our simulations majorly consist of stacked
quasi-2d layers. By showing that the 3d systems consist of a
number of stacked quasi-2d layers, with no out-of-plane rota-
tion, the defects do not undergo the transitions mentioned
above. We thus argue that, in our simulations, the topological
charge is equal for all horizontal cross sections, such that we
can consistently define charges of any of the defects visible in
Fig. 3. Additionally, we observe very similar structures on the
top and bottom surface of the cylindrical systems and even on
the curved surface of the spherical cap. This similarity of top
and bottom structures is a further indication for a persisting
structure through all horizontal slices. We can thus assume, to
a good degree of approximation, that the director n̂(r) does not
rotate out of the 2d layers the 3d system consists of.
This reduces the orientational configuration space from S2/Z2
to S1/Z2, implying that we can treat the topology in full analogy
to the 2d case. In this way, by observing the bottom plane, we
can infer that the total topological charge of the nematic grain
boundary is equal to Q = 1/2 and matches the charge of the 2d
counterpart. More specifically, the grain boundaries split into
two pillars, i.e., tetratic disclination lines, with q = 1/4 each,
corresponding to q = 1/4 point charges in the cross-sections.

Less frequent exceptions to the ordering behavior described
above for the considered confinements are given by the
occasional alignment of the rods with the curved surface of
the cap-shaped container as well as the small vertical clusters
present at the mantle surface of the cylindrical container. The
former case does not undergo a transition between �1/2
charged cross sections, as no rods are present that are drasti-
cally rotated out of plane. This is supported by the fact that the
flat projection of the structure on the curved surface still
mirrors the structure of the bottom plane. For cylindrical
cavities of comparable height, according to our observation, a
director field n̂(r) can most of the time be defined in a
neighborhood around the defect, such that the vertical clusters

do not influence the topological charges. This is in general no
longer the case when the cylinder becomes sufficiently tall. As
shown in Appendix B, for h \ 5L full layers of vertical rods
persist throughout several cross sections.

From mathematical topology it follows that for liquid crys-
tals confined to 2d manifolds, the total topological charge in
the director field has to match the Euler characteristic w of the
container.91 The Euler characteristic w is an algebraic invariant.
Accordingly, results of previous work agree for nematic59 as well
as smectic liquid crystals80 confined to simply-connected con-
vex cavities and for smectics confined to 2d spherical surfaces
embedded in 3d.60 In this work, we have presented examples
for 3d simply-connected convex confinements, where the sum
of topological charges defined through integrating around a
closed contour in a 2d cross section matches the Euler char-
acteristic w = 1 of this cross section.

4 Conclusion

In this work, we provided an insight into the topology of defects
in 3d smectic liquid crystals. In 3d smectic liquid crystals,
orientational defects take the shape of extended planar grain
boundaries, across which the local preferred direction jumps by
an angle of p/2. Combining the established knowledge of
classification of 3d nematic disclination lines with recent
insights into the classification of grain boundaries as orienta-
tional defects in 2d smectic liquid crystals, we presented a
formalism for the analysis of topological charge distribution.
We exemplified this formalism on smectic structures in cylind-
rical and spherical cap containers, obtained using Monte-Carlo
simulation.

In the 2d analysis one can utilize the coexistence of nematic
and tetratic defects and, with the help of the tetratic order
parameter, locate the points where the preferred direction
rotates. Accordingly, we introduced a tetratic order parameter
which can be readily applied to 3d systems. The 3d tetratic line
defects were then analyzed along 2d cross sections.

In a 3d system, the sum of the winding numbers of all
defects is not in general a conserved quantity since defects with
different winding numbers can be transformed into each other.
However, since the confined structures can be interpreted as
stacked quasi-2d systems, topological charge behaves akin to
electromagnetic charge and follows similar additive conserva-
tion laws. We thus found in the simulated systems that the total
topological charge matches the Euler characteristic w = 1 of the
containers and splits into two orientational defects, i.e., two
grain boundaries with topological charge Q = 1/2 each. Those
can in turn be split into two tetratic disclination lines with
charges q = 1/4. In general terms, we find it remarkable that the
2d topological charge, which does not have to be conserved for
mathematical reasons in three dimensions, is conserved for
physical reasons in the systems considered in this work.

To better understand the physical origin of the pronounced
grain boundaries emerging in our confined system, let us recall
that a key property of the (hard-core) colloidal system under

PCCP Paper

O
pe

n 
A

cc
es

s A
rti

cl
e.

 P
ub

lis
he

d 
on

 0
5 

M
ay

 2
02

2.
 D

ow
nl

oa
de

d 
on

 7
/2

3/
20

22
 1

2:
16

:3
1 

PM
. 

 T
hi

s a
rti

cl
e 

is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
Li

ce
nc

e.

View Article Online

P2 Phys. Chem. Chem. Phys. 24, 15691 (2022) 71



15700 |  Phys. Chem. Chem. Phys., 2022, 24, 15691–15704 This journal is © the Owner Societies 2022

consideration is the rigidity of the smectic layers, such that the
balance between intrinsic structure and external constraints
mostly results in extended defects (grain boundaries) rather
than elastic deformations. A similar observation has been made
for a related 2d system using both microscopic density func-
tional theory and colloidal experiments79 and we expect that
the same mechanism is at work in three dimensions. To get
further insight, the confined systems considered in this work
could therefore be investigated using density functionals for
hard spherocylinders.99,100 Alternatively, density functional
theory also allows to determine elastic parameters of fluids of
hard spherocylinders101 which could then be used to fix the
parameters in phenomenological elasticity theories100,102,103 for
the smectic phase.

Throughout this paper, we have in particular shed light on
planar grain boundaries which split into two tetratic disclina-
tion lines. Our insight will thus be useful for the interpretation
of future computational,104,105 theoretical,99–104,106 and
experimental79,98,107–109 research on confined smectic struc-
tures in three dimensions. To this end, our topological picture
can be extended to study more complex geometries and
topologies in 3d, e.g., by observing q = �1/4 tetratic defects,
which, in analogy to the 2d case, should emerge at junction
points of defect networks in confinements that promote multi-
ple domains80 or close to concave regions of the system
boundary.79 Of interest may also be the investigation of the
connection of orientational defects to positional defects, such
as dislocations and focal conic domains. In nematic systems, it
is widely accepted that the dynamical properties of a defect are
influenced by the respective topological charge.1,20,66–68,110

Therefore, understanding the role of smectic orientational
defects, i.e., grain boundaries analyzed as a connected pair of
tetratic defects, in nonequilibrium is also of particular impor-
tance for understanding, e.g., nucleation processes111–114 and
the dynamics115 of smectics, as well as active liquid crystal
systems,18–21 which might also exhibit smectic order.
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Appendix A: tetratic order parameter in
three dimensions

In this appendix, we provide an appropriate definition of the
tetratic order parameter to characterize the topological fine
structure in smectic systems of uniaxial rods.

1. Definition

In general, a system of N uniaxial particles can be microscopi-
cally described by a distribution function f (û) that reads

f ðûÞ ¼ 1

N

XN
k¼1

dðy� ykÞdðf� fkÞ; (A1)

where û = (sin y cosf, sin y sinf, cos y)T is the orientation

vector. Such a function can be expanded as116

f ðûÞ ¼
X1
l¼0

X3
i1;...;il¼1

f
ð3dÞ
i1 ���il ui1 � � � uil ; (A2)

where ui is the i-th element of the orientation vector and the
expansion coefficients are given by116

f
ð3dÞ
i1 ���il ¼

2l þ 1

4p

ð
S2

dOf ðûÞPð3dÞ
i1 ���il (A3)

with the tensor Legendre polynomials Pð3dÞ
i1 ���il . An expansion of

the form (A2) is also possible in a 2d system, in this case û is a
2d vector depending on just one angle and the expression (A3)
is slightly modified (see ref. 116). The second-order contribu-

tion f
ð3dÞ
i1���i2 is the nematic tensor. (In the main text (eqn (5)), we

have, as is common, defined it with a different normalization
that corresponds to multiplying the one resulting from eqn (A3)
by 4p/5.) An interesting mathematical property of the Cartesian
expansion (A2) is that it is orderwise equivalent to the spherical
multipole expansion

f ðy;fÞ ¼
X1
l¼0

Xl

m¼�l

flmYlmðy;fÞ (A4)

with the spherical harmonics Ylm and the expansion coeffi-
cients

flm ¼
ð
S2

dOf ðy;fÞY	
lmðy;fÞ; (A5)

where * denotes a complex conjugation.116,117

We are now looking for an order parameter that identifies
configurations as ordered if the rods are either parallel or
orthogonal to each other. In the 2d case, this can be simply
done by superimposing tetratic order,80 i.e., fourfold rotational
symmetry. Mathematically, this corresponds to measuring
defects not in the nematic order-parameter field, corres-
ponding to the second-order term in the 2d version of
eqn (A2), but in the fourth-order contribution. This suggests
that the desired order parameter can be constructed from the
fourth-order term (l = 4) in eqn (A2) also in the 3d case. Since
the Cartesian order parameter at fourth order has 81 compo-
nents of which, due to symmetry and tracelessness, only 9 are
independent, it is more convenient to work with the expansion
coefficients of the angular expansion (A4) instead.

From eqn (A1) and (A5) we would then get the order
parameters

f4m ¼ 1

N

XN
k¼1

Y	
4mðyk;fkÞ (A6)

of order l = 4. The values of these order parameters (A6) depend,
however, on the choice of the coordinate system. We now make
use of the fact that the quantity

Il ¼
Xl

m¼�l

Ylmh ij j2 (A7)

with the average hYlmi is an invariant of the spherical
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harmonics88 (i.e., it takes the same value for all choices of the
coordinate system). This fact has been exploited in the study of
bonding in liquids88,118,119 or orientational order in liquid
crystals.120 Consequently, we should consider I4 instead of f4m.

Finally, we also need to take into account that the order
parameter constructed from the invariants Il should (a) be
normalized – this can simply be ensured by multiplying it by
an appropriate prefactor – and (b) not distinguish between
parallel and orthogonal rods. Unfortunately, the invariant I4
gives a larger value for parallel than for orthogonal configura-
tions. To correct for this, we exploit the fact that the invariant I2
measures nematic order,120,121 such that it is large for parallel
configurations. Hence, our generalized order parameter should
be proportional to I4 � bI2, where b is a suitable prefactor. We
have found an appropriate choice to be b = 3/4. Thus, we arrive
at the tetratic order parameter

T ¼ 16p
21N2

X4
m¼�4

XN
k¼1

Y4mðyk;fkÞ
�����

�����
2

�3

4

X2
m¼�2

XN
k¼1

Y2mðyk;fkÞ
�����

�����
2

������
������

(A8)

stated in eqn (8). The prefactor ensures a proper normalization.
Moreover, we use absolute values to ensure that T is always
positive. We have tested a range of possible configurations and
found that I4 � bI2 o 0 is measured only for isotropic systems
with |I4 � bI2| { 1 (probably due to numerical fluctuations).
This is reinforced by the notion that I2 measures nematic order
and systems with high nematic order result in T E 1.

5.2 Examples

To get an exemplary system that should be perfectly ordered by
our definition, consider three orthogonal particles with orien-
tations (y1, f1) = (p/2, 0), (y2, f2) = (p, 0) and (y3, f3) = (p/2, p/2).
We find

T ¼ 16p
21 � 32

X4
m¼�4

Y4m
p
2
; 0

� 	
þ Y4mðp; 0Þ þ Y4m

p
2
;
p
2

� 	��� ���2
�����

� 3

4

X2
m¼�2

Y2m
p
2
; 0

� 	
þ Y2mðp; 0Þ þ Y2m

p
2
;
p
2

� 	��� ���2
����� ¼ 1;

(A9)

as required. Similarly, for three parallel particles with orienta-
tions (y1, f1) = (y2, f2) = (y3, f3) = (p/2, 0), we get

T ¼ 16p
21 � 32

X4
m¼�4

3Y4m
p
2
; 0

� 	��� ���2�3

4

X2
m¼�2

3Y2m
p
2
; 0

� 	��� ���2
�����

����� ¼ 1:

(A10)

Finally, we flip the orientation of one particle by p to show that
this leaves the order parameter invariant, implying that it is

apolar. We find

T ¼ 16p
21 � 32

X4
m¼�4

2Y4m
p
2
; 0

� 	
þ Y4m

p
2
; p

� 	��� ���2
�����

� 3

4

X2
m¼�2

2Y2m
p
2
; 0

� 	
þ Y2m

p
2
; p

� 	��� ���2
����� ¼ 1;

(A11)

such that eqn (A8) constitutes a solid basis for exploring tetratic
order phenomena in three dimensions.

Appendix B: taller cylinders

The height h of a spherical cap is limited by the full sphere with
h = 2R, but the respective height of a cylindrical cavity can, in
principle, be chosen arbitrarily large. While in the main text, we
focus on heights of the cylinder which are also possible in the
cap geometry, we discuss in this appendix the behavior of the
same liquid crystal systems confined to taller cylinders up to a
height h = 15L (i.e., up to N E 1.1 � 104 particles). Our results
are shown in Fig. 7.

The snapshot in Fig. 7A depicts a system in a cylinder of
height h = 14L. It is clearly visible that, along the entire mantle
surface, the rods are aligned with the main axis of the cylinder.
The structure at both the top and bottom layer in the cylinder
(visible in the upper and lower picture, respectively, shown
from the same, azimuthal viewing angle) still resembles a
bridge state, which for the shorter cylindrical cavities was
found to persist throughout the whole system. However, the
two bridging domains have a different in-plane orientation,
indicating that the structures at the top and bottom are
independent.

Fig. 7B shows the orientational distribution g2(r, z) (defined
by eqn (14)) sampled as average over five simulation snapshots
from systems with h = 14L. Here, the independence of the two
horizontal layers of rods at the top and bottom of the cavity
becomes apparent, since throughout the majority of the system
the rods are vertical. More specifically, contrasting this obser-
vation to Fig. 5B1, we notice that here the signal indicating a
vertical orientation percolates throughout several horizontal
slices, while for shorter cylinders the signal indicating the
horizontal orientation percolates from top to bottom. Taking
a closer look at the distribution for the tall cylinder, we observe
that the vertical regime is slightly perturbed by horizontal
stripes in the field at a distance corresponding to the smectic
layer spacing. These dips correspond to the occasional occur-
rence of horizontal rods between the layers,122 as is also visible
in the snapshot in Fig. 7A.

Fig. 7C shows the 3d tetratic order parameter T as well as
the standard nematic order parameter S (see Section 2.2) for a
range h A [0.3L, 15L] of cylinder heights as an extension of
Fig. 6. As the behavior for extremely shallow cavities has been
discussed in detail in Section 3.2, we focus here on larger values
of h. It is clearly visible from Fig. 7C that S has a minimum at
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h E 5L, which reflects the transition from a structure with the
majority of rods aligning horizontally along the top and bottom
plates for short cylinders to a structure with the majority of rods
aligning vertically along the cylinder mantle for tall cylinders.
In the latter case, two additional grain boundaries between
horizontal and vertical rods emerge close to the two ends of the
cylinder, decreasing the global nematic order. When further
increasing h \ 5L, the nematic order parameter S increases
again until eventually reaching a plateau when the fraction of
the horizontal rods and the corresponding defects become
negligible. In stark contrast, the value of the tetratic order
parameter T is not affected by the relative size of the interface
between horizontal and vertical domains, such that there is no
minimum around h E 5L. Instead, as soon as the vertical rods
become relevant, T increases monotonously with increasing
cylinder height h and plateaus already at h E 6L, since the
tetratic defects (cf. Fig. 3C1) are only located in the horizontal
layers.
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Liquid crystals can self-organize into a layered smectic phase. While in bulk the smectic layers
are typically straight forming a lamellar pattern, external confinement may drastically distort the
layers due to the boundary conditions imposed on the orientational director field. Resolving this
distortion leads to complex structures with topological defects. Here, we explore the configurations
adopted by two-dimensional smectic liquid crystals of rod-like particles in complex confinements
characterized by a button-like structure with two internal boundaries (inclusions): a two-holed disk
and a double annulus. The topology of the confinement generates new structures which we classify as
generalized laminar and generalized Shubnikov states. To explore these configurations, we combine
particle-resolved experiments on colloidal rods with three complementary theoretical approaches:
Monte-Carlo simulation, first-principles density functional theory and phenomenological Q-tensor
modeling. This yields a consistent and comprehensive description of the structural details. In
particular, we characterize a nontrivial tilt angle between the direction of the layers and symmetry
axes of the confinement.

I. INTRODUCTION

Liquid crystals [1, 2] have proven to be an important
tool in the investigation of various topological phenom-
ena. In nematic liquid crystals, topological defects reflect
the frustrated orientational order due to, e.g., confining
geometries [3–11], active dynamics [12–16] or a combina-
tion of both [17–19]. This diversity of defects and for-
mation pathways has led to extensive research attention
devoted to understanding and accurately modeling the
emerging topological defect structures [20–26].

In recent years, there has been an increasing interest
in layered liquid crystals [27] and, in particular, smec-
tic phases [28–32], which possess both orientational or-
der and a periodic modulation of the center-of-mass den-
sity in the form of layers. This development owes to
progress in (i) advances in experiments [33–46], (ii) con-
tinuum modeling [47–50] and (iii) first-principles theory
[51–53], complemented by (iv) topological insight [54–
57] reinforced by (v) simulating particle-resolved defect
structures [58–61]. Despite these advances, there remains
a gap between theoretical approaches (of all kinds) and
experiments for smectic liquid crystals.

In this paper, we bring four complementary approaches
together to understand the structure of colloidal smec-
tics, confined to two-dimensional domains with a complex
topology involving two holes. We use particle-resolved
colloidal experiments on silica rods [44], Monte-Carlo

∗ rene.wittmann@hhu.de
† jingmin.xia@nudt.edu.cn
‡ dirk.aarts@chem.ox.ac.uk
§ Hartmut.Loewen@uni-duesseldorf.de

simulations of a hard-rod model [59], microscopic den-
sity functional theory (DFT) for hard rods [53] and a
recent continuum Q-tensor model extending the Landau–
de Gennes theory for nematics [49]. These methods not
only yield consistent predictions but also allow us to
tackle the problems from different viewpoints.

In particular, we investigate responses of the system
to both changes of the confining geometry and varia-
tion of interaction parameters. This allows us to sys-
tematically explore the ranges of stability of different
topological states as well as different alignment phenom-
ena and structures in the absence of a continuous ro-
tational symmetry. To this end, we provide details on
the confining geometries, methods and topological clas-
sification scheme in Sec. II, before discussing our results
in Sec. III. After summarizing our observations, we con-
clude in Sec. IV.

II. CONFINED SMECTIC STATES

Our goal is to identify the structure and topology of
the smectic states emerging in various two-dimensional
confinements. The complexity of a confining domain can
be both of explicit geometrical origin, related to the cur-
vature of the walls, or of topological origin. The latter
can be quantified by the Euler characteristic χ, which
in two dimensions counts the number of connected com-
ponents minus the number of holes, irrespective of the
particular geometric shape of the domain. In the follow-
ing, we elaborate on the relevant geometrical parameters
(Sec. II A), describe how we resolve smectic structures in
experiments and three theoretical approaches (Sec. II B)
and provide details on the topological analysis (Sec. II C).
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FIG. 1. Schematic depiction of the button-like confining ge-
ometries investigated in this work generalizing an annulus
(middle) with inclusion size ratio b = Rin/Rout, where Rout

is the radius of the outer confining wall and Rin is the ra-
dius of the circular wall in the interior, called inclusion [62].
Here, we consider two inclusions at distance C, introducing
the inclusion distance ratio c = C/Rout. In detail, we define
the two-holed-disk geometry (top), where the outer wall is
always circular, and the double-annulus geometry (bottom),
where the outer wall is defined via two intersecting circles at
the same distance C. The outer radius Rout is kept at a fixed
value throughout the manuscript, which corresponds to about
five smectic layers. Further details are provided in Sec. II A.

A. Button-like confinements

As confining domains, we consider two generalizations
of an annular geometry (central drawing in Fig. 1). This
allows us to compare against solutions characterized for
an annulus in previous work [62]. An annulus is com-
posed of a large circle of radius Rout > 0 with a single cir-
cular hole (inclusion) of radius Rin < Rout in the center.
This topology has an Euler characteristic χ = 0, which
allows for a structure free of orientational topological de-
fects (Shubnikov state). Depending on the particular ge-
ometry, this structure competes, among others, with an
undeformed structure (laminar state), which comes at
the cost of the formation of grain boundaries, i.e., de-
fects in both orientational and positional order [62].

The central geometrical parameter which determines
the stability of a structure emerging in annular geometry

is the inclusion size ratio b = Rin/Rout. For each of
our two related geometries, further specified below, we
add a second inclusion of the same inclusion size ratio
b and introduce the geometrical parameter C = cRout,
which denotes the distance between the centers of the two
inclusions. In general, for small enough relative distance
c ≤ 2b the inclusions intersect, resulting in a distorted
annulus with an effectively stretched inclusion (χ = 0),
while for larger distances c, there are two separated holes
such that the Euler characteristic equals χ = −1.

First, we consider the two-holed-disk geometry (top
drawing in Fig. 1), made of a single outer circle of radius
Rout, and two inclusions whose centers are shifted away
from each other in opposite directions with the mutual
distance C, such that the distance to the center of the
outer disk is C/2 in each case. Regarding the region
accessible to the particles, the shortest distance between
outer and inner walls varies upon circling along the outer
wall. Note that, for extreme distances c ≥ 2 − 2b, the
inclusions are in contact with the outer wall, such that
the geometry becomes simply connected again (χ = 1).

Second, we consider the double-annulus geometry (bot-
tom drawing in Fig. 1), composed of two outer circles,
which are shifted alongside the two inner circles, such
that each pair of inner and outer circles has the same
center with a mutual distance of C. Each point of the
outer confining wall thus has the same shortest distance
(1− b)Rout to one of the inclusions.

To summarize, each geometry in Fig. 1 is fully deter-
mined by three parameters: the inclusion size ratio b, the
inclusion distance ratio c and the total size of the con-
fining domain specified by the radius Rout of the outer
wall. Throughout the manuscript, we keep Rout ≈ 5λ
fixed, where λ is the layer spacing of the smectic.

B. Complementary methods

Next we briefly introduce our methods to generate two-
dimensional smectic states in extreme confinement and
describe how to interpret the final smectic structures de-
picted in Fig. 2. In general, smectic order is character-
ized by positional order of the particle centers in equidis-
tant layers and orientational order along a director at
a constant angle to these layers. Confinement induces
frustration of this preferred alignment in the form of de-
formations or discontinuities of the layers and/or the di-
rector field. The complementary use of our different ap-
proaches, allows us to optimally exploit their advantages
when it comes to understanding the driving forces behind
the formation, the stability range and the topology of the
emerging structures. Further details on each method are
provided in Appendix A.

Our experiments exploit the sedimentation equilibrium
of silica rods in an aqueous solution, as described in Ap-
pendix A 1. The particle-resolved optical micrographs,
displayed in the first row of Fig. 2, are then taken from
the bottom, where the rods settle within tailor-made
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FIG. 2. Example structures in the two confining geome-
tries shown in Fig. 1 with two inclusions. The left and right
columns depict the two-holed-disk geometry for b ≈ 0.25 and
c ≈ 1.0 and the double-annulus geometry for b ≈ 0.3 and
c ≈ 1.2, respectively. In both geometries we show (from top
to bottom) typical particle configurations in colloidal experi-
ments, Monte-Carlo simulations of rod-like particles, density
profiles and director fields from hard-rod density functional
theory (DFT) and Q-tensor theory with suitably adapted pa-
rameters (see text).

cavities. These quasi-two-dimensional smectic structures
can then be analyzed by direct optical inspection or read-
ing out individual particle coordinates and orientations
from processed images.

We also perform Monte-Carlo simulations on confined
systems of rods modeled as hard discorectangles in the
canonical ensemble, as described in Appendix A 2. The
simulation snapshots, as displayed in the second row of
Fig. 2, can be analyzed in the same manner as those from
the experiments, while this particle-resolved numerical
method leaves us in full control of the particle shape,
number density and geometrical parameters. This al-
lows us to gather a large amount of statistics for any
prescribed geometry. From that we can further locate
the grain boundaries by sampling a local version (cf.
Fig. 9) of the two-dimensional orientational order pa-
rameter S(r) = | 〈exp (i2φ(r))〉 |, where φ denotes the

orientation angle of the individual rods within a local
environment around the position r.

On the theory side, we employ classical density func-
tional theory (DFT) [63] for hard discorectangles, as de-
scribed in Appendix A 3. In DFT, all structural informa-
tion is comprised within the number density ρ(r, φ) found
by minimizing an appropriate functional Ω[ρ]. This cen-
tral quantity reflects the probability of finding a particle
with the center-of-mass position r and its long axis ori-
ented in a direction given by the angle φ. The typical
density profiles, as displayed in the third row of Fig. 2,
indicate both the smectic layers by a color plot of the
local density (averaged over all orientations) and the di-
rector by green bars. In the employed version of DFT
[53, 62] based on fundamental measure theory [64, 65] the
interactions are treated on a microscopic level through
the geometry of individual particles, such that the den-
sity profiles reflect the particle dimensions. As DFT is
founded in statistical mechanics, no additional averaging
is required and the most stable state can be identified
among multiple solutions from the minimal value of the
corresponding free energy.

Furthermore, we study a recent phenomenonlogical
model for smectic layering, based on an extension of
Landau–de Gennes theory to smectics, as described in
Appendix A 4. It minimizes a total free energy J (u,Q)
of the local density perturbation u(r) for smectic phases
and a tensorial order parameter Q(r) encoding the orien-
tational order. As displayed in the fourth row of Fig. 2,
typical profiles of the smectic density variation u exhibit
maxima (light yellow) and minima (light blue) which
both can be interpreted as the smectic layers, while the
orientational director field (gray rods) corresponds to the
eigenvector of tensor Q with the largest eigenvalue. In
this smectic Q-tensor theory, the interactions are implic-
itly described through a range of phenomenological pa-
rameters. To connect to our other approaches, we con-
sider two of these parameters as free variables: the elas-
ticity parameter K of the director field and the anchoring
parameter w, which indicates the strength of tangential
alignment of directors at the outer wall. As the latter
depends on curvature, the alignment at the inner wall
is accordingly weaker (see Appendix A 4 for further de-
tails). When choosing K = 0.5 and w = 5 (two-holed
disk) or K = 1 and w = 10 (double annulus) we find
convincing agreement with our other methods in Fig. 2.

C. Topological classification

The hard rods described in our particle-based ap-
proaches favorably align parallel to the system walls.
This externally imposed boundary condition competes
with the intrinsic smectic structure favoring defect-free,
undeformed, parallel and equidistant layers. The result-
ing (stable or metastable) equilibrium structure are thus
governed by a balance between elastic deformations and
topological defects. The type, location and shape of the
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FIG. 3. Illustrative overview of topological structures. The
rows show different realizations of generalized laminar (L, two
+1/2 and four −1/2 charges), composite (C, one +1/2 and
three −1/2 charges) and generalized Shubnikov (S, two −1/2
charges) states. The first three rows display the structures
with a continuous central domain which is tilted by the angle
α relative to the axis that connects the two inclusion cen-
ters, as annotated (the definition of α is included in the first
illustration of the second row). The fourth row displays the
structures for α = π/2 with the central domain interrupted by
a few layers spanning between the two inclusions, which we re-
fer to as inclusion tunnel. The illustrations depict the typical
appearance of these generalized states in the two-holed-disk
geometry (where we also speak of dual laminar and stretched
Shubnikov states), but the same general classification also
holds for the double-annulus geometry. Further details are
provided in Sec. II C.

emerging topological defects provides a convenient way
to classify and distinguish between the observed smec-
tic states, as illustrated in Fig. 3. [59, 62]. In smectics,
we typically observe spatially extended grain boundaries
or virtual boundary defects (misalignment of rods at the
wall), whose orientational frustration can be quantified
by a topological charge Q in analogy to nematic discli-
nations [59, 60]. The Poincaré–Hopf theorem gives rise
to a fundamental law of charge conservation for two-
dimensional smectic structures: the total sum of topo-
logical charges

∑
Q = χ in a confined system must equal

the confining domain’s Euler characteristic χ. The two
main types of grain boundaries relevant in our study pos-

sess a Q = +1/2 or a Q = −1/2 topological charge, asso-
ciated with a clockwise and counterclockwise rotation of
the director field around the defect, respectively. In both
cases, the main rotation occurs at the end points of the
grain boundaries, which can then be identified as point-
like tetratic defects of quarter-integer magnitude [59].

As a first step of our topological analysis, we focus on
the structural properties on the largest scale and ignore
the details in the region between the two inclusions. By
doing so, we can classify the overall smectic states in the
same spirit as in an annular geometry [62], i.e., by con-
sidering an effective geometry with Euler characteristic
χeff = 0, obtained by formally replacing the two inclu-
sions with a single inclusion given by their convex hull
(indicated by the magenta shaded areas in Fig. 1). On
this level, we can classify solutions into (i) generalized
laminar states, with two Q = +1/2 defects close to the
outer wall and two Q = −1/2 defects at the effective in-
clusion, (ii) generalized composite states, combining fea-
tures of both (one Q = +1/2, one Q = −1/2 defect and
edge dislocations), or (iii) generalized Shubnikov states,
with no topological charges but edge dislocations of the
layers, as sketched in the different columns of Fig. 3. Due
to the particular appearance of these states in the two-
holed-disk geometry, we also speak of dual laminar and
stretched Shubnikov states in this case.

As a second step, we account for the broken continu-
ous rotational symmetry for a nonzero inclusion distance
c > 0. We introduce the tilt angle α ∈ [0, π/2] of the cen-
tral domain with respect to the axis that connects the two
inclusion centers (cf. the second row in Fig. 3) as an ad-
ditional structural quantifier. The rows of Fig. 3 depict
the different states for α = 0 (layers parallel to the con-
necting axis), an intermediate value of α, and α = π/2
(layers perpendicular to the connecting axis).

The third step of our topological analysis concerns the
fine structure between the inclusions, i.e., the location
and shape of the two additional Q = −1/2 defects re-
quired by the charge conservation to match the overall
Euler characteristic χ = −1 in the presence of two holes.
In general, there are two possibilities. First, the layers
between the inclusions can align with the adjacent lay-
ers outside to become part of a larger domain, compar-
ing the first three rows in Fig. 3. In this case, the two
Q = −1/2 defects are directly located at the inclusions.
Second, if α & π/4, it is also possible that the two in-
clusions are connected by one or more isolated smectic
layers, such that the rods in the central region fulfill the
parallel wall anchoring condition. However, this inclu-
sion tunnel then interrupts the central domain, compare
the last row in Fig. 3, which results in two grain bound-
aries with Q = −1/2, parallel to the line connecting the
inclusions. Note that for α . π/4, the anchoring condi-
tion can be fulfilled without forming an inclusion tunnel,
i.e., when the layers connecting the inclusions are part of
the defect-free central domain.

We comment that the stretched Shubnikov state in the
two-holed-disk geometry cannot be realized for small tilt
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angles. When decreasing the tilt angle α of a structure
below α . π/4, the central domain eventually fulfills the
first criterion for an inclusion tunnel (layers connecting
the inclusions), comparing with the generalized laminar
state in the top-right illustration of Fig. 3 for α = 0. In
turn, a generalized Shubnikov state is only possible if the
second criterion for an inclusion tunnel is also fulfilled,
i.e., that there exists a larger domain outside the con-
vex hull of the inclusions which has a tilt angle α & π/4
and is separated from the inclusion tunnel by two grain
boundaries, comparing with the bottom-right illustration
of Fig. 3 for α = π/2. Combining these two structures,
the composite state depicted in Fig. 3 for α = 0 consti-
tutes a particular example with two domains of compa-
rable size.

III. RESULTS

A. Two-holed disk

We focus first on the two-holed-disk geometry. As in
the annulus, the circular shape of the outer confining
wall remains invariant for all choices of the geometrical
parameters b and c, where an annular geometry is recov-
ered for c = 0. To quantify the emerging structures in
full detail, we proceed stepwise. First, in Sec. III A 1, we
study the transition between the generalized laminar and
Shubnikov states, focusing only on the smectic structures
outside the convex hull of the two inclusions. Then, we
use these insights to explain our general observations in
experiments and Monte-Carlo simulations in Sec. III A 2
before quantifying the two structural aspects indicated
in Fig. 3. In particular, we study the tilt angle α of the
central smectic domain in Sec. III A 3 and investigate the
locations of the topological defects in the region between
the inclusions in Sec. III A 4.

1. Theoretical laminar-Shubnikov transition

We start by systematically mapping out a simple state
diagram using DFT, which gives us full control over the
structures we wish to compare. In particular, to under-
stand the general structural response upon varying both
b and c, we focus on (dual) laminar and (stretched) Shub-
nikov states, as specified in Sec. II C. Moreover, we re-
strict ourselves to (fairly) axially symmetric structures,
i.e., we impose the two extreme tilt angles α = 0 or
α = π/2 in the laminar case and just α = π/2 in the
Shubnikov case.

Our results are compiled in Fig. 4. We find that the
laminar state is destabilized in favor of the Shubnikov
state upon increasing the inclusion size ratio b, as in
the special case c = 0 of an annulus [62]. The lami-
nar state is also destabilized upon increasing the spac-
ing c between the inclusions for a fixed value of b. This

FIG. 4. DFT state diagram in the two-holed-disk geometry
indicating the stable laminar (square symbols) or Shubnikov
(round symbols) states for different inclusion distance ratios
c and inclusion size ratios b. The data for c = 0, indicat-
ing the special case of annular confinement, are taken from
Ref. [62]. The color denotes the relative free energy differ-

ence ∆Frel := (F (L)
0 −F (S)

0 )/F0 between the optimal laminar

(L) and Shubnikov (S) states, where F0 := min{F (L)
0 ,F (S)

0 }
is the free energy of the overall optimal state. For b = 0.3
and c = 1.4 the inclusions are in contact with the outer wall,
such that no Shubnikov state can exist. The snapshots in
the bottom panel depict four representative examples of op-
timal structures: laminar structures with tilt angles α = 0
or α = π/2 (intermediate values of α are examined below in
Fig. 7) and Shubnikov structures without and with an inclu-
sion tunnel.

behavior matches expectations, since the size of the ef-
fective inclusion increases when the two inclusions have
a larger distance, such that Shubnikov structures, char-
acterized by layers spanning from the inclusions to the
outer wall, become generally more favorable. Since only
the structure outside the convex hull of the inclusions is
relevant for this first part of our discussion, it is not im-
portant whether or not the two inclusions are connected
(topological details arising from disconnected inclusions
at c > 2b are discussed in Sec. III A 4). However, we
stress that, as soon as c ≥ 2− 2b, the inclusions overlap
with the outer confining wall, such that it is no longer
possible to fulfill the criterion to identify a Shubnikov
state (cf. the missing top-right state point in Fig. 4).
In these extreme cases, the confining geometry is, once
again, simply connected and only deformed variants of
a bridge state (laminar state without negatively charged
defects) [62] exist, which are not our main interest here.
In the trivial bounding cases c > 2 + 2b or b = 0 (not
shown), the confinement simply reduces to a disk.

In general, the laminar-Shubnikov transition is driven
by the tendency of the system to achieve an optimal bal-

84 Chapter 3 Scientific publications



6

FIG. 5. State diagram from Q-tensor theory in the two-holed-
disk geometry for different values of the elastic parameter K
and the wall anchoring parameter w. The inclusion size ratio
b = 0.2 and the inclusion distance ratio c = 0.6 are kept fixed.
We distinguish between four different structures: laminar (L),
composite (C), Shubnikov without (S) and with an inclusion
tunnel (S∗). The bottom panel depicts one representative
snapshot for each case (parameters according to the connected
stars).

ance between satisfying the external constraints of the
confining geometry (since the rods preferably align par-
allel to the wall) and maintaining the intrinsic smectic
structure. This results in a trade-off between deforma-
tions, as dominant in the Shubnikov structures, and topo-
logical defects, governing the laminar structures.

To better characterize this competition, we employ the
smectic Q-tensor theory to examine how the structural
transitions can be induced by tuning the elastic behavior
and the strength of the tangential wall alignment, deter-
mined by the parameters K and w, respectively. To this
end, we fix the inclusion size ratio b = 0.2 and the in-
clusion distance ratio c = 0.6, so as to take values close
to the laminar-Shubnikov transition predicted by DFT
in Fig. 4. The state diagram from Q-tensor theory in
Fig. 5 confirms the expectation that Shubnikov states
are stabilized upon imposing stronger anchoring condi-
tions (i.e., larger w) to minimize the number of defects.
In particular, the observed laminar states are typically
characterized by a single domain with the defects ap-
pearing through a misalignment at the walls (as also fre-
quently observed in DFT). Moreover, we see that the
laminar state is generally stabilized upon increasing K
and thus the bending rigidity of the layers. For smaller
values of K < 0.3, composite structures are also found
and the laminar state becomes compatible with strongly
deformed layers. Such highly elastic behavior is, however,

rather atypical in the context of hard rods. These results
demonstrate a reassuring consistency between the DFT
and smectic Q-tensor results, even without extensive tun-
ing of the other parameters of the Q-tensor model.

Returning to microscopic DFT structures, we can
make more precise statements regarding the stability of
the generalized laminar and Shubnikov states, by com-
paring the examples shown at the bottom of Fig. 4. First
of all, both the number of layers in the central domain
and their orientation in the optimal laminar state (un-
der the symmetry constraints imposed so far) strongly
depend on the geometrical parameters. This suggests
that by allowing for different values of the tilt angle α
we should find states with an even smaller free energy,
which will be studied in Sec. III A 3. Second, and most
importantly, we notice for α = π/2 that the structural
differences between states classified as laminar or Shub-
nikov become less pronounced upon increasing the in-
clusion distance c, due to the larger size of the central
domain. This intuitively explains the destabilization of
the laminar state for increasing c: the number of laminar
layers between the inclusions and outer wall decreases,
which brings the two defects closer to annihilation, while
the extreme case of zero laminar layers eventually corre-
sponds to a Shubnikov structure. Third, for b = 0.1, we
even observe in Fig. 4 a particular example of a re-entrant
stable laminar state at c = 1.4, in which the spacing be-
tween the inclusions and outer wall allows for all layers
being parallel. Finally, we expect that, within a small
range of parameters, there exists a stable intermediate
composite state [62], as in the illustrations in the middle
panel of Fig. 3.

2. General particle-based observations

In our colloidal experiments, we focus on a few se-
lected sets of geometrical parameters. Qualitatively in-
specting our snapshots for b ≈ 0.25 and 0.6 < c < 1.2,
we arrive at the following general picture. We predom-
inantly observe the Shubnikov state, in agreement with
the DFT prediction. All of these Shubnikov structures
possess large tilt angles α > π/4 of the central domain.
Recalling the discussion in Sec. II C, such an alignment
allows for a larger number of straight layers in the central
domain between the inclusions. Quite remarkably, how-
ever, only one of our 104 inspected structures depicts a
nearly laminar state (see the second snapshot in Fig. 6),
while only three of them can be clearly identified as com-
posite states. In all these cases, the laminar parts of the
structure possess a small tilt angle α < π/4. To quantify
the tilt-angle statistics, we measure in Fig. 6 the global
orientational distribution of all rods, averaged over all
cavities with comparable geometry. In accordance with
the typical orientation α of the central domain, we find
that the most frequent angles are close to π/2, where
the exact location of this peak appears to depend on the
inclusion distance.
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FIG. 6. Global orientational distribution in the two-holed-
disk geometry for the inclusion size ratio b = 0.25. As illus-
trated at the top right, the relative frequency of individual
rod orientations (blue) reflects the preferred tilt angle α of
the layers (gray line) relative to the axis that connects the
two inclusions (dotted line), see also Fig. 3. We compare ex-
perimental data for different inclusion distance ratios c ≈ 0.8,
c ≈ 1.0 and c ≈ 1.2, averaged over 21, 24 and 15 available
structures, respectively, and Monte-Carlo data for c = 1.0,
sampled from 1800 independent simulation runs. For symme-
try reasons we map orientations with α > π/2 onto π−α and
only consider 0 ≤ α ≤ π/2. The bottom panel depicts one
particular snapshot for each case, where the rods are colored
according to their orientation.

Overall, the suppression of the stability of laminar
states, upon increasing the distance between the inclu-
sions, appears to be even more pronounced in the ex-
periments than predicted theoretically in Fig. 4. This
observation can be explained by the typically lower num-
ber of parallel layers in the experiment compared to the
most stable DFT solution [62] in combination with the
preference of the rods to align in a central domain at
large tilt angles. To understand this, consider, for in-
stance, the experimental laminar structure depicted in
Fig. 6 with b = 0.25 and c = 1.0. Now imagine, in-
stead, the inclusions placed over the top and bottom
grain boundary. This would both reduce the defect re-
gion and classify the structure as a Shubnikov state with
a significantly increased tilt angle α, intuitively explain-
ing our predominant observations of large tilt angles and
Shubnikov structures.

Our Monte-Carlo simulations of hard rods carried out
for b = 0.25 and c = 1.0 confirm the basic experimental
observations that nearly all identified structures reflect
stretched Shubnikov states and that large tilt angles are

FIG. 7. Energy landscape for different structures depending
on the tilt angle α of the central domain in the two-holed-disk
geometry for the inclusion size ratio b = 0.25 and the inclusion
distance ratio c = 1.0. According to the legend, we compare
different laminar DFT structures Lab, where the indices a
and b denote the number of layers in the central domain and
perpendicular to it, respectively, and several minimizers of
the energy functional from Q-tensor theory with K = 1 and
w = 5. Exemplary snapshots are shown in the bottom panel.
As only the energy difference is relevant for the stability, the
vertical axes depicts the rescaled difference to the global min-
imum (indicated by the dotted line), calculated separately for
DFT and Q-tensor results in arbitrary units [a.u.]. Since the
minima for large angles α are generally deeper, it is more
likely to find such structures, consistent with the observation
in Fig. 6.

favored. We depict the global orientational distribution
and the typical snapshot at the bottom-right of Fig. 6.
Moreover, our particle-resolved simulations allow us to
further explore smaller inclusion sizes than those real-
ized experimentally (not shown). As expected from the
discussion above, there is still a high probability to ob-
serve Shubnikov structures for b = 0.1, while the laminar
state becomes dominant for b = 0.05.

3. Orientation of the central domain

Our experimental and Monte-Carlo results suggest
that the assumption, made in Sec. III A 1 for DFT, of
imposing smectic structures with the same symmetry as
the confining geometry is not justified in general. While
the orientational distribution in Fig. 6 generally suggests
that large tilt angles α > π/4 are most likely, we also
notice that the maximum is not always located at the
extreme value α = π/2. Even more so, we expect that
the geometrical constraints on laminar structures, arising
from the competition of the preferred layer spacing with
both the distance between the two inclusions and the
distance from each inclusion to the outer wall, can be
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efficiently relaxed by aligning the central domain along
characteristic tilt angles. A first evidence for this predic-
tion stems from the DFT results in Fig. 4, where the tilt
angle of the optimal laminar structure (given the con-
straint to either α = 0 or α = π/2) strongly depends
on the particular geometry (contrast the two depicted
laminar structures).

To learn more about the preferred tilt angle, we com-
pare in Fig. 7 the energy of different states as a function of
α for a fixed geometry with b = 0.25 and c = 1.0. In the
smectic Q-tensor theory, we only find solutions with large
tilt angles α > 0.4π for the intrinsic parameters K = 1
and w = 5, which demonstrates the instability of struc-
tures with smaller α under these conditions. The corre-
sponding free energy decreases with increasing tilt angle,
such that the global minimum is found for α ' 0.5π,
which is in principal agreement with the statistics from
experiment and Monte-Carlo simulation.

To systematically study the tilt-angle dependence in
DFT, we restrict ourselves to laminar states. We choose
three representative template structures with a well-
defined numbers of layers both in the central domain and
perpendicular to it (c.f. the example structures shown at
the bottom of Fig. 7). By doing so, all structures gen-
erated by imposing different tilt angles remain compa-
rable among each other. For the parameters b = 0.25
and c = 1.0, we find that structures with two layers in-
terrupted by each inclusion are generally favorable. We
further focus in each case on three typical ranges of the
tilt angle, such that there are (with increasing α) three,
two or one laminar layers between one inclusion and the
outer wall, respectively. These values of α depend on
whether the central point of the geometry is occupied
by a layer (central domain with nine layers in total) or
by the void space in between two layers (central domain
with eight layers in total). The corresponding free en-
ergy landscapes shown in Fig. 7 reveal that the most
stable structures correspond to the minima in the range
of tilt angles with the largest values. This reflects the
intuition that the two inclusions are preferably located
close to (or even on) the edge of the central domain and
not in its center, such that the extent of deformations
of the central smectic layers is reduced. The existence
of distinct local free energy minima in Fig. 7 explains
the nonmonotonic and geometry-dependent experimen-
tal distributions in Fig. 6.

4. Fine structure between the inclusions

Having understood the large-scale layering behavior of
the central domain, we now investigate structure inside
the convex hull of the inclusions in more detail. For
c > 2b, the two inclusions are disconnected and we antic-
ipate two additional (compared to a single or two over-
lapping inclusions) topological defects with a negative
charge. As generally described in Sec. II C, there are
two possible scenarios, related to how the smectic layers

FIG. 8. Relative frequencies of structures with an inclusion
tunnel (cf. the second row in Fig. 3) in the two-holed-disk
geometry for the inclusion size ratio b = 0.25. We compare
experimental data (green bars) for different inclusion distance
ratios c ≈ 0.6, c ≈ 0.8, c ≈ 1.0 and c ≈ 1.2, averaged over 44,
21, 24 and 15 available structures, respectively, and Monte-
Carlo data (black crosses) averaged over 20 simulations for
each selected c. The dotted line serves as a guide to the eye,
illustrating how the fraction of inclusion tunnels decreases
with increasing inclusion distance. Regarding the occurrence
of structures with inclusion tunnel in DFT and Q-tensor the-
ory, please refer to the bottom-right snapshot in Fig. 4 and
the state diagram in Fig. 5, respectively.

between the inclusions align. The first possibility, which
has been silently implied so far when discussing our large-
scale results in the previous sections, is that the central
domain and the layers between the inclusions align with
each other, compare the first three rows of Fig. 3. To
be more specific, we can conclude that the layers need
to fill the space between the inclusions in an entropically
convenient way is probably one of the main driving forces
that determines the geometry-dependent tilt angle of the
central domain as a whole.

The second possibility of alignment between the in-
clusions is an inclusion tunnel, compare the last row of
Fig. 3. This structure is defined by one or more smectic
layers spanning between the two inclusions, irrespective
of the orientation of the central domain. The driving
force behind the formation of an inclusion tunnel is the
adherence to the preferred wall alignment which comes
at the cost of a larger grain boundary within the system.
This is nicely reflected by additionally differentiating in
the state diagram from Q-tensor theory, as in Fig. 5, be-
tween Shubnikov states with and without an inclusion
tunnel. It is apparent from the state diagram that struc-
tures with an inclusion tunnel stabilize upon increasing
the anchoring parameter w and decreasing the elastic pa-
rameter K.

In our DFT study, we find that structures with the
central domain interrupted by an inclusion tunnel are
almost always less stable than comparable ones with a
continuous central domain, for both laminar and Shub-
nikov structures alike. The fact that the central domain
tends to tilt, renders such an inclusion tunnel even less
favorable due to the general preference of hard rods to
meet at a grain boundary with nearly perpendicular ori-
entations, instead of an oblique alignment. An inclusion
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FIG. 9. Structures in the double-annulus geometry for different inclusion size ratios b and inclusion distance ratios c. While
in the annular arcs we generally observe layering of the Shubnikov type for the parameters considered, we distinguish three
states by the layer arrangement in the intersection region: inclusion tunnel (red), double-Shubnikov state (yellow) and diagonal
tunnel (blue). Left panel: state diagram indicating the relative frequencies of the three structures between the two inclusions.
The experimental and Monte-Carlo results are represented by pie charts and background pixels with proportional color mixing,
respectively. For c . 2b no rods fit in between the inclusions and there is no distinction (black pixels). Right panel: observed
structures for three pairs of b and c corresponding to the state points indicated by the arrows. We depict experimental snapshots
(top), solution profiles of the Q-tensor model with for K = 1.0 and w = 10 (middle) and the orientational order parameter S(r)
averaged over 103 independent Monte-Carlo simulation runs per parameter pair, revealing the typical location of the topological
defects through the darker shades (bottom).

tunnel only becomes energetically favorable for extremely
small distances between the surfaces of the two inclu-
sions, of about one rod length or less, as e.g. for b = 0.25
and c = 0.6, compare the fourth structure shown at the
bottom of Fig. 4.

In practice, however, it is much more likely to observe
these inclusion tunnels as a result of the equilibration pro-
tocol. More specifically, in our experiments and Monte-
Carlo simulations, the growth of an inclusion tunnel can
be triggered by small domains aligning with the inclusion
at an early stage. Hence, such structures are observed
with a noticeable probability, even for relatively large c,
as verified in Fig. 8.

B. Double annulus

We have seen in Sec. III A that the inclusion distance
ratio c and, therefore, the minimal distance from the in-
clusions to the outer wall is an important criterion which
determines the globally observed state in the two-holed-
disk geometry. The smectic structure between the in-
clusions then largely follows the alignment of the central
domain, while inclusion tunnels are only rarely observed.

Now we focus on the double-annulus geometry, illus-
trated at the bottom of Fig. 1, for which a larger range
b < c < 2 of inclusion distance ratios c can be examined
without changing the Euler characteristic χ = −1. Since

the shortest distance from any point on the outer wall to
one of the inclusions remains the same for all c, the smec-
tic structure in the two annular arcs is largely determined
by the inclusion size ratio b alone and can thus be well
understood by taking cues from the state diagram in an-
nular confinement [62]. This gives us a better control of
how the central smectic layers in the intersection region
of the two annular halves respond to changes of the inclu-
sion distance compared to the single circular outer wall
of the two-holed-disk geometry. We are thus primarily
interested in the question of how the structure between
the two inclusions of the double annulus is determined
by the geometrical parameters b and c, as we focus on
inclusion size ratios b ≥ 0.25 which predominantly give
rise to generalized Shubnikov structures in the annular
arcs.

Our state diagram, compiled from experiments and
particle-resolved Monte-Carlo simulations, is shown in
the left panel of Fig. 9. Both methods consistently pre-
dict three different types of structures, shown in the right
panel. First, for relatively large and nearby inclusions,
we typically observe an inclusion tunnel, similar to the
two-holed-disk geometry (cf. Sec. III A 4). Second, for
relatively small and distant inclusions, we typically ob-
serve a structure with a large central domain of verti-
cal layers, which is similar to the α = π/2 alignment in
the two-holed-disk geometry (cf. Sec. III A 3). As men-
tioned in the previous paragraph this extreme tilt angle
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is favored here due to the broken rotational symmetry
and the non-convex shape of the outer wall. We refer
to such a structure as the double Shubnikov state, as
there are no grain boundaries (the two Q = −1/2 de-
fects are mostly due to misalignment at the inclusions).
Third, for relatively large and distant inclusions, we typ-
ically observe a structure which is characterized by both
a large tilted central domain and grain boundaries. The
tilt angle is again roughly set by the geometry, such that
the orientation of the rods follows an infinity symbol.
This diagonal-tunnel state possesses no analogue in the
two-holed-disk geometry. To corroborate these observa-
tions, we also evaluated our Q-tensor theory for represen-
tative pairs of parameters and find consistent minimizers,
shown in the right panel of Fig. 9. Moreover, the exem-
plary double-Shubnikov structures shown in Fig. 3 using
all four methods are in close agreement.

To further highlight the topological distinction be-
tween the three different structures observed in the
double-annulus geometry, we additionally show in the
right panel of Fig. 9 Monte-Carlo results for the local
order parameter field S(r), sampled as an average from
103 independent simulation runs. Due to the averaging,
we obtain in each case a characteristic pattern, which
possesses the same symmetry as the confinement. The
inclusion tunnel is characterized by its orthogonal align-
ment relative to the nearby layers and therefore a large
degree of orientational frustration between the inclusions.
In the double Shubnikov state, the region between the
inclusion largely aligns with the central domain and the
orientational frustration is manifest only close to the in-
clusions (usually due to small domains of a few rods).
Finally, for the diagonal tunnel, it is clearly visible that
the grain boundaries are located at the edges of the cen-
tral crossing of the annular arcs.

IV. SUMMARY AND CONCLUSIONS

In this work, we investigate smectic states, confined
to complex geometries, illustrated in Fig. 1, with two
circular inclusions (interior boundaries) by means of
colloidal experiments, Monte-Carlo simulations, density
functional theory (DFT) and smectic Q-tensor theory.
Our four approaches consistently predict the main struc-
tural features, as exemplified in Fig. 2. All observed and
expected structures are compiled in Fig. 3.

For large inclusions (or strong wall anchoring), the lay-
ers arrange into a generalized Shubnikov state, character-
ized by an overall perpendicular alignment of layers (or
parallel alignment of rod-like particles) at the outer wall,
which minimizes the number of topological defects. This
is observed in both the two-holed-disk geometry (see the
circular data points in Fig. 4 and the bottom-right and
central regions (both shades of blue) in Fig. 5), where
a stretched Shubnikov state also stabilizes for increasing
inclusion distance, and the double-annulus geometry (see
all data in Fig. 9). On the contrary, for small inclusions

(or weak wall anchoring), the layers arrange into a gen-
eralized laminar state characterized by two Q = −1/2
defects at either of the two inclusions and two Q = +1/2
defects close to the outer wall. This is explicitly observed
in the two-holed-disk geometry (see the quadratic data
points in Fig. 4 and the leftmost region (yellow) in Fig. 5)
but we expect the same upon further decreasing the in-
clusion size the double-annulus geometry.

If the two inclusions are sufficiently close to each other,
we observe an inclusion tunnel in both the two-holed-disk
geometry (see the bottom-right structure in Fig. 4, dark
blue color in Fig. 5 and the statistics in Fig. 8) and the
double-annulus geometry (see the data with red color in
Fig. 9). This structure forms an isolated domain between
the two inclusions and two grain boundaries, irrespective
of whether global state. More distant inclusions allow
for the layers to align in a larger central domain at the
cost of misalignment at the inclusions. In fact, in the
two-holed-disk geometry, this relative alignment of the
central layers to the axis connecting the two inclusions
is characterized by large tilt angles α ' π/2 (see Figs. 6
and 7). In the double-annulus geometry, we further dis-
tinguish between two cases (identified here for general-
ized Shubnikov states). The double Shubnikov structure
possesses a large central domain which extends over all
four ends of the geometry’s central junction at a fixed tilt
angle α ≈ π/2 (see the data with yellow color in Fig. 9),
while for even larger inclusion distances, we observe a di-
agonal tunnel, characterized by two grain boundaries at
two opposing ends of the central junction and a tilt angle
0 < α < π/2 dictated by the geometry (see the data with
yellow color in Fig. 9).

Our study represents a first step towards the study of
liquid crystals confined to topologically highly complex
environments such as random porous media [66–69] or
arrays of obstacles [68]. Our complementary approaches
can, in principle, be applied to any kind of confinement
[24, 59, 70, 71]. This applies in particular also to systems
in three dimensions to which our experimental, computa-
tional and theoretical methods, as well as, our topological
concepts can be generalized [49, 52, 60]. Another gen-
eralization is to proceed towards more complex particle
shapes and interactions such as hard polygons [69, 72],
non-convex [73–77], or chiral particles [61, 78–84]. Fi-
nally it bears mentioning that many bacteria have rod-
like shapes [85–88] and are living on two-dimensional sub-
strates, where they can be easily be put in confinement
[89, 90]. Bacterial colonies can approach high densities,
where smectic layering is expected [91–93], such that our
work may have important consequences for the structure
in dense biofilms.
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Appendix A: Details on the methods

1. Experiment

The experimental methods follow from our previ-
ous work [44, 62]. In short, home-synthesized silica
rods [94] suspended in a 1mM NaCl water solution
form sedimentation-diffusion equilibrium into a cylinder-
shaped reservoir glued to a glass coverslip (see Fig. 1a
in Ref. [62]). Confinement cavities, as shown in the first
row of Fig. 2, are printed on the coverslip using poly-
dimethylsiloxane (PDMS) mold and Norland Optical Ad-
hesive glue. PDMS molds are made using standard soft
lithography technique.

Particles have average effective length of 5.3µm, aspect
ratio of 10.6 and gravitational length of 0.8µm. After in-
sertion they start forming a concentration gradient along
the direction of gravity. At the bottom, inside the cav-
ities, we successively observe the formation of isotropic,
nematic and finally smectic phases. The total amount of
particles is chosen such that there is no crystalline state.
The smectic structures are left to equilibrate for at least
12 hours.

Experimental snapshots capture the rods in direct
vicinity of the bottom wall of the cavity that, paired
with gravity, imposes a quasi-two dimensional confine-
ment. We record images by mean of confocal microscopy
with a Zeiss LSM Exciter 5 microscope and a 63x Zeiss
Plan Apo Chromat objective. We collect scattered light
to form images as this batch of rods is not fluorescent.

A custom python script is used to segment single rods
and detect position and orientation (Wolfram Mathemat-
ica [62] and python scripts [60] are already available).
The specific python script used to process the snapshots
of Fig. 6 is provided along with an experimental snapshot
as supplementary material.

2. Monte-Carlo simulations

With the help of canonical Monte-Carlo simulations we
generate equilibrium states for liquid crystals composed
of hard rods at bulk smectic area fraction η2 = 0.725.
The rods are modeled as discorectangles with aspect ratio
p = L/D = 16.5, where L denotes the length and D the
width of the particles. The kth rod is parametrized by a
line segment ak = rk+αkûk, with position rk, normalized

orientation ûk and |αk| < L/2. All points within the
area of the rod are characterized by {x ∈ R2| ‖x− ak‖ ≤
D/2} such that the standard hard-core repulsion between
a pair of rods i, j can be defined by

U(ri, rj , ûi, ûj) =

{
∞ for di,j ≤ D ,

0 for di,j > D ,
(A1)

where

di,j = min
|α,β|<L

2

‖ri + αûi − (rj + βûj)‖ (A2)

corresponds to the smallest distance between the oppos-
ing line segments [95].

The interaction of the rods with the walls is modeled
by considering the rods as three virtual point particles at
rk + γûk, γ ∈ {−L/2, 0, L/2}. The wall potential reads
as

V (x) =

{
Φ(x0) + Φ′(x0)(x− x0) for x ≤ x0 ,

Φ(x) for x0 > x .
(A3)

Here, |x| denotes the minimal perpendicular distance
from either of the two points to the wall and x > 0 corre-
sponds to the inside of the cavity. The cut-off point,
below which V (x) is linear, is chosen as x0 = 0.5D.
For Φ(x), we choose the standard 12-6-Weeks-Chandler-
Andersen-potential [96]

Φ(x) =

{
4ε
[(
D
x

)12 −
(
D
x

)6]
+ ε for x ≤ 2

1
6D ,

0 for x > 2
1
6D

(A4)

with ε = 10kBT , with the Boltzmann constant kB and
temperature T . The potential landscapes to model the
two-holed-disk and double-annulus geometries can be ex-
pressed as combination of circular well and obstacles.
The outer radius of the cavity is chosen as Rout = 6L.

To obtain the equilibrated configurations, we initialize
the system at a dilute area fraction η0 = 0.01. We sub-
sequently compress the system, by rescaling the cavity,
at a compression rate of ∆η1 = 3.50 × 10−7 per MC cy-
cle to an intermediate area fraction just below the bulk
isotropic-nematic phase transition. In a second stage, we
compress the system with ∆η1 = 7.33 × 10−8 per MC
cycle to the final area fraction η2 = 0.725. The area frac-
tion is given by the fraction of the sum of the individual
volumes of the rods Vrod to the total volume of the cavity
Vcav. Since the final area fraction and the final volume
are fixed variables, by the geometric parameters b, c (see
Fig. 1) and Rout in terms of the particle size, the particle
number N remains a free parameter that is determined
at the start of the simulation via the relation

η =
NVrod

Vcav
=

N

Vcav

(
πD2

4
+DL

)
. (A5)

The typical values for N we investigate are on the scale
of several thousand. Typical snapshots in the two geome-
tries are shown in the second row of Fig. 2.
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3. Density functional theory (DFT)

Classical density functional theory DFT [63] allows us
to predict the structure of anisotropic fluids in an ex-
ternal potential Vext(r, φ) by calculating the equilibrium
density profile ρ(r, φ) from a variational principle, where
r denotes the center-of-mass position and φ the particle
orientation. This is achieved by minimizing the grand
potential functional

Ω[ρ] = F [ρ] +

∫
dr

∫ 2π

0

dφ

2π
ρ(r, φ)(Vext(r, φ)− µ) , (A6)

at given chemical potential µ by iterating the Euler-
Lagrange equation δΩ[ρ]/δρ(r, φ) = 0, where F [ρ] is the
intrinsic Helmholtz free energy functional. The solution
density profile ρ(r, φ) for a given initial guess is given
by a local minimum of the grand potential Ω. Here, we
minimize under the constraint of a fixed total particle

number
∫

dr
∫ 2π

0
dφ
2π ρ(r, φ), to obtain local minima of the

Helmholtz free energy F .
For an explicit calculation, we need to specify the

Helmholtz free energy functional F [ρ] = Fid[ρ] + Fex[ρ],
which is conveniently split into an exactly known ideal
part

βFid[ρ] =

∫
dr

∫ 2π

0

dφ

2π
ρ(r, φ)

(
ln(ρ(r, φ)Λ2)− 1

)
(A7)

and an excess part Fex[ρ]. The irrelevant thermal wave
length Λ is set to unity the inverse temperature β :=
(kBT )−1 is just a scaling factor. The excess free energy
is based on fundamental measure theory [64, 65, 97] for
anisotropic hard particles in two dimensions [53, 62], ex-
pressing the functional Fex[ρ] as a function of weighted
densities

nν(r) =

∫
dr1

∫ 2π

0

dφ

2π
ρ(r1, φ)ω(ν)(r− r1, φ) . (A8)

These are calculated by convolution of the density and
the scalar, vectorial or tensorial one-body measures
ω(ν)(r, φ), which describe the geometry of the hard par-
ticles. The explicit expression for Fex[ρ] makes use of a
truncated and corrected expansion up to rank-two ten-
sors, see Ref. [62] for further details.

In this study we focus on hard discorectangles with
rectangular length L and circular diameter D at fixed
aspect ratio p = L/D = 10. Throughout the manuscript,
we consider structures with fixed area fraction η = 0.65,
as defined in Eq. (A5). Typical density profiles in the two
geometries are shown in the third row of Fig. 2, which
displays the dimensionless total density

ρ̄(r) :=

(
LD +

D2π

4

)∫ 2π

0

dφ

2π
ρ(r, φ) . (A9)

through a color coding and the local orientational direc-
tor field (representing the locally preferred value of φ)
through green arrows.

All structures are calculated by free minimization of
the density functional on a spatial grid with resolution
∆x = ∆y = 0.2 and Nφ = 96 orientational angles. Lami-
nar structures are typically initialized by cutting out the
inclusions from equilibrium structures in circular confine-
ment. Then we can also smoothly change the inclusion
size ratio b and/or the inclusion distance ratio c to dif-
ferent target values, while continuously minimizing the
functional. To examine the stability of an inclusion tun-
nel, appropriate structures are superimposed and subse-
quently minimized for comparison. To generate compara-
ble structures with different tilt angles for Fig. 7, we also
start from two specific structures in circular confinement,
possessing eight or nine parallel layers in the central do-
main. Then we cut out the two inclusions at typical
angles α at which a regular layer structure is maintained
and smoothly rotate the inclusions towards other target
tilt angles, while continuously minimizing the functional.
Shubnikov structures are initialized either by superim-
posing a perpendicular domain aligning with the inclu-
sions on equilibrium laminar structures with α = π/2 or
from a random structure with circular orientational di-
rector [62]. After minimization of multiple structures for
a given set of parameters, we compare the values of the
free energy F [ρ] to determine the most stable state with
minimal free energy.

4. Smectic Q-tensor theory

It is also possible to adapt continuum models to in-
vestigate the qualitative behavior of smectics. Recently,
[49] proposes a new continuum model, solving for a real-
valued smectic order parameter u, indicating the local
density variation, and a tensor-valued nematic order pa-
rameter Q. A detailed discussion about deriving contin-
uum model can be found in [98].

Specifically, we use the two-dimensional version of the
Q-tensor model from [49] with the volumetric free energy:

Jv(u,Q) =

∫

Ω

(
fs(u) +B

∣∣∣∣D2u+ q2

(
Q +

I2

2

)
u

∣∣∣∣
2

+ fn(Q,∇Q)

)
,

(A10)

where

fs(u) :=
a1

2
u2 +

a2

3
u3 +

a3

4
u4, (A11)

and

fn(Q,∇Q) :=
K

2
|∇Q|2 − l

(
tr(Q2)

)
+ l
(
tr(Q2)

)2
.

(A12)
Here, K is the nematic elastic constant, l represents the
nematic bulk parameter, I2 is the 2 × 2 identity ma-
trix and a1, a2, a3, B, q are given real parameters. We
fix a1 = −5, a2 = 0, a3 = 5, B = 10−5, q = 30 and
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l = 2, similar to the choice in Ref. [49]. In Eq. (A10),
D2 denotes the Hessian operator, so that the associated
Euler–Lagrange equation for u is a fourth-order partial
differential equation. One can intuitively understand the
free energy functional J as a combination of three contri-
butions: the smectic bulk energy fs, the coupling effect
(B-term) between the nematic director and smectic lay-
ers and the nematic elastic and bulk energies fn.

In extreme confinement, we cannot expect the hard
rods to perfectly satisfy tangential wall anchoring, as
represented by Dirichlet boundary conditions. There-
fore, we weakly impose tangential boundary conditions
on both inner boundaries (denoted as Γ1 and Γ2) and
outer boundary Γouter by means of Rapini–Papoular sur-
face anchoring. To this end, an additional anchoring en-
ergy is added to Eq. (A10), leading to the following total
energy:

J (u,Q) = Jv(u,Q) +
w

2

(∫

Γouter

|Q−Qouter|2

+ ar

( ∫

Γ1

|Q−Q1|2 +

∫

Γ2

|Q−Q2|2
))

(A13)

with the prescribed tangential configurations given by

Qouter =

[
y2

x2+y2 − 1
2 − xy

x2+y2

− xy
x2+y2

x2

x2+y2 − 1
2

]
, (A14)

Q1 =

[
y2

(x−c/2)2+y2 − 1
2 − (x−c/2)y

(x−c/2)2+y2

− (x−c/2)y
(x−c/2)2+y2

(x−0.3)2

(x−c/2)2+y2 − 1
2

]
, (A15)

Q2 =

[
y2

(x+c/2)2+y2 − 1
2 − (x+c/2)y

(x+c/2)2+y2

− (x+c/2)y
(x+c/2)2+y2

(x+c/2)2

(x+c/2)2+y2 − 1
2

]
. (A16)

Here, c is the inclusion distance ratio as defined in
Fig. 1, w denotes the anchoring weight with larger val-
ues representing stronger anchoring and ar accounts for
the expected curvature dependence of surface anchoring.
Specifically, the choice of ar indicates different anchoring
strength w on the outer and arw on the inner bound-
aries, which can affect the resulting final minimizer with
the lowest energy. Accordingly, we have verified that a
slightly weaker anchoring strength, ar < 1, on the in-
ner boundary gives a better consistency with experimen-
tal results for the two-holed disk problem. Therefore,
we take ar = 0.7 throughout the manuscript, except for
Fig. 5, where the focus lies on illustrating the Laminar-
Shubnikov transitions using the same anchoring strength
variation on both boundaries for each w-continuation
step and thus ar = 1 is taken for simplicity.

Due to the nonconvexity of J , there typically exist
multiple local minimizers. In our work we employ the
deflation technique to discover them [99]; in all figures,
we plot the minimizer with lowest energy found for dif-
ferent input parameters K and w (specified accordingly
in the manuscript) of the energy functional in Eq. (A13).
More details about the model and associated numerical
methods can be found in Refs. [49, 100] and [98, Chap-
ters 8-10]. Typical solution profiles in the two geometries
are shown in the fourth row of Fig. 2.
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Alexander, Phys. Rev. X 9, 021004 (2019).
[82] R. B. Meyer, Mol. Cryst. Liq. 40, 33 (1977).
[83] I. Dierking, Sym. 6, 444 (2014).
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Network topology of interlocked chiral particles
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Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany

Self-assembly of chiral particles with an L-shape is explored by Monte-Carlo computer simula-
tions in two spatial dimensions. For sufficiently high packing densities in confinement, a carpet-like
texture emerges due to the interlocking of L-shaped particles, resembling a distorted smectic liquid
crystalline layer pattern. From the positions of either of the two axes of the particles, two differ-
ent types of layers can be extracted, which form distinct but complementary entangled networks.
These coarse-grained network structures are then analyzed from a topological point of view. We
propose a global charge conservation law by using an analogy to uniaxial smectics and show that
the individual network topology can be steered by both confinement and particle geometry. Our
topological analysis provides a general classification framework for applications to other intertwined
dual networks.

I. INTRODUCTION

The response of any liquid crystal to external con-
straints, such as confinement, intricately depends on
the density but crucially also on the geometry of the
particles. In fluids of uniaxial rod-like particles, for
instance, the particles tend to align at intermediate
densities, forming a so-called nematic phase. At the
same time, the rods favor certain alignments with
confining walls, such that the material becomes contin-
uously deformed, to balance the competition between
these two factors [1–4]. Upon increasing packing
fraction, the liquid crystal tends to transition into a
smectic phase, where the particles additionally stack
into layers. Consequently, confinement typically leads
to a fragmentation into several domains, separated by
grain boundaries [5–8]. Advances in the synthesis of
molecular and colloidal liquid crystals, enables the study
of systems with increasing geometrical complexity of the
particles. Non-convex particles such as polygonal rings,
banana-shaped particles and colloidal alphabet soups
allow for geometric interlocking, increasing the rigidity
of the material [9–14]. In particular, particles with a
characteristic chiral shape can exhibit interlocking at
high densities providing an ideal playground for a wealth
of interesting ordered structures [15–21].

In this work, we study the topology of smectic-like
layers for interlocked chiral particles under the influence
of confinement (see Fig. 1). To this end, with the
aid of Monte-Carlo simulations, we generate systems of
particles with the chiral shape of the letter L (see Fig. 2),
which are confined to circular and annular cavities. We
observe the emergence of highly complex structures
through the interlocking of the chiral, non-convex par-
ticles (see Fig. 1.(a)). In particular, both particle axes
display a tendency for layering, while the competition
between these two rigidly connected building blocks

∗ paul.monderkamp@hhu.de

(c)

(b)

(c)

(b)

FIG. 1. Circularly confined L-particles on different levels of
coarse-graining according to the yellow arrows. (a): Simula-
tion snapshot. The long axis of the L is colored in red, the
short axis in green. (b): The coarse-grained layer structures
of both axes are visualized (long axis layers: magenta, short
axis layers: green). (c): Further coarse-grained structures
with their vertices (dots). We assign the vertices a topologi-
cal charge q, according to the number of adjacent edges (blue:
q > 0, yellow q < 0). The number of these charges q serves
the quantification of disorder in the confined systems.

prevents the formation of regular layered patterns found
in ordinary smectics. Each layer associated with one
axis of the L-shaped particles can be interpreted as
a network such that the whole confined liquid crystal
can be understood as an interwoven structure of two
coexisting species of networks (see Fig. 1.(b)). We
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analyze the topology of the systems by only considering
these coarse-grained networks and assigning an index to
the vertices, depending on the number of adjacent edges
(see Fig. 1.(c)).

The algorithm for the extraction of these layers is
designed to create an output analogous to the topological
picture of conventional uniaxial smectics. There, topo-
logical charge conservation is guaranteed by explicitly
considering smectic layers (density peaks) and so-called
half-layers in between (density minima) as topological
entities, that carry topological charge [22–25]. In that
way, the indices of the vertices become topological, i.e.,
adhere to topological charge conservation in analogy to
conventional electrodynamics, where the total charge,
consisting of inside and boundary charge, adjusts to the
topology of the confining container. In that way, the
circle and the annulus yield different total topological
charges, due to their different connectivity.

Moreover, we show that the structure of the individual
networks can be largely steered by the particle shape.
The vertical axis of the letter L is denoted as leg, while
the horizontal axis is denoted as foot. In particular,
the spatial distribution as well as the amount of inside
topological charges depends delicately on the foot to leg
ratio p = Lf/Ll (see Fig. 2) of the L-shaped particle.
Specifically, the total amount of charge within the
interior depends non-monotonically on p.

Finally, We expect that our general topological
treatment of the convoluted network structures is also
of practical value as a classification framework for other
systems, where intertwined dual network structures
can be found, such as gyroid phases in celestial nuclear
matter [26, 27], technical applications [28], blood vessels
in living organisms or traffic networks [29, 30].

The paper is arranged as follows. In Sec. II A, we
present our simulation protocol, while we elaborate on
the graph-theoretical foundations of the network topol-
ogy in Sec. II B. We present our results in Sec. III, before
we conclude in Sec. IV.

II. METHODS

A. Simulations

We perform canonical Monte-Carlo simulations for
particles that have the shape of the letter L (see Fig. 2).
We confine the particles to two-dimensional spherical
and annular cavities. The particles are modeled as a pair
of rigidly connected almost hard discorectangles with
equal diameters D, and core lengths Lf, Ll, expressed in
units of D. Throughout this work, we vary p = Lf/Ll,
while Lf + Ll = 28D stays constant. The interactions of
the L-shaped particles are conveniently specified through

FIG. 2. Schematic of the particles with the shape of the
letter L as considered in this work. The lengths of the two
axes are referred to as Lf (foot of the letter L, green) and Ll

(leg of the letter L, red), respectively. The ratio of the axes
is denoted by p = Lf/Ll.

those of the individual rod-like building blocks.

For any two rods, i and j, not constituting to the same
L-particle, with positions ri, rj and orientations ûi and
ûj , the pair potential is defined as harmonic repulsion

Ui,j(ri, rj , ûi, ûj) =

{
U0(τ)(D − dij)2 dij < D
0 dij ≥ D, (1)

di,j = min
|α,β|<L

2

‖ri + αûi − (rj + βûj)‖ , (2)

with α, β ∈ [−L/2, L/2], with L in {Lf, Ll} defines the
overlap [31] and U0(τ) is the interaction coefficient,
which is linearly increasing as a function of the simula-
tion progress τ ∈ [0, 1], i.e., fraction of completed total
of 106 MC-cycles. U0(τ = 1) is chosen as 103kBT to
mimic almost hard repulsion in the equilibrated system.

We model the wall interaction by representing the rods
as three virtual point-like particles sitting at the ends,
and middle of the k-th rod rλ = rk + λûk, with λ ∈
{−L/2, 0, L/2}. The interaction potential

V (x) =

{
V0 (τ) x2 for rλ outside,
0 for rλ inside the cavity

(3)

with the walls is once again harmonic, where x denotes
the closest distance of rλ to the inside of the respective
cavity. Similarly to U0, V0 is linearly increased as a
function of the completed Monte-Carlo cycles τ ∈ [0, 1]
up to as 103kBT to mimic hard walls. We simulate
the systems at packing fractions η1 = NaL/acav = 0.4
and 0.6, with the area of a single L-shaped particle
aL and the area of the cavity acav. The radii of the
confinements are typically in the range 4L . R . 50L.
Correspondingly, typical particle numbers N are be-
tween several hundreds and several thousands. In the
annular confinement, we keep the width of the annular
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ring constant (∆R ≈ 1.83Ll), while we vary the inner
radius (Rin) and outer radius (Rin + ∆R).

We follow a compression protocol, where we randomly
initialize the system at a low volume fraction η0 = 0.1η1.
Each MC-cycle consists of a trial displacement or rota-
tion of each particle. The acceptance probability P =
min(1, exp(−∆U/kBT )), for any trial move, is given by
the Metropolis criterion from the difference ∆U of the
energies (see Eqs. (1) and (3)) in the system before and
after trial [32]. Over the course of the simulation, we
gradually rescale the positions of the walls and particles
to increase η according to

η(τ) = η(τ) = (η1 − η0)τ
1
3 + η0 (4)

until the volume fraction η1 = 0.4 is reached. This type
of decelerating compression aids the equilibration speed,
since the system is quickly compressed in the dilute stage,
while being allowed to undergo a larger fraction of MC-
cycles in the regime, where self-assembly of the ordered
structures is expected (for more details on the protocol,
see Appendix A).

B. Network topological charge analysis

As illustrated in Fig. 2, we denote the vertical (red)
axis by leg which we distinguish from the horizontal foot
(green) axis by presuming a parallel wall alignment of
the leg (see Appendix B for more details). As visible in
Fig. 1, each ensemble of smectic-like layers associated
with either foot or leg (perceived as individual rods)
forms convoluted networks and correspondingly can be
analyzed with the help of mathematical graph theory.

Each network consists of a set of vertices . Those
vertices are connected via a set of edge lines [33, 34].
As known from the treatment of the topology of layers
in conventional smectics [22–25], a charge conservation
follows, if the species of networks alternate. In other
words, between any two smectic layers has to be a den-
sity minimum, i.e., a half-layer. Accordingly, our graph
generation is designed, such that empty loops are con-
tracted into a single vertex (see Appendix B). Therefore,
we only observe the occurrence of loops (see Fig. 1), that
each envelop a simply connected graph (without loops)
of the other species. This is schematically visualized in
Fig. 3.(a). More seldom, multiple loops of alternating
species are nestled into each other, with a simply con-
nected graph in the middle. To characterize this behav-
ior in general, we assign a topological network charge to
any vertex in the network as

q = 1− d
2

(5)

with the degree d , i.e., the adjacent number of edges.
Note, that this definition of the network charges is anal-

FIG. 3. Schematic of the network topological model (see
Eq. (5)). (a): Serving charge conservation, our algorithm is
designed such that there can not be empty loops. As such,
any loop contains a network of the respective other species.
The total network topological charge in the system is con-
served under this condition, since the charges of a loop and
a simply connected network cancel. (b): The total charge
q, within any area of a single network, is calculated from the
number of in-/outgoing edges through the boundary, inserted
into Eq. (5). Dangling ends, such as within the dashed cir-
cle, are charge neutral. Vertices with two adjacent edges,
carry no charge, and are therefore not explicitly labeled. Non
charge-neutral operations are (i) adding loops (∆q = −1) or
(ii) new networks (∆q = +1) adds to the total charge within
the system. (c): A vertex with four outgoing edges (d = 4,
q = −1 see Eq. 5) can be understood as two infinitesimally
close vertices with d = 3, q = −1/2, respectively.

ogous to the layer topological charges, typically consid-
ered in smectic liquid crystals, where the edge lines repre-
sent smectic layers (see Appendix C). As such, the total
charge of a network species reads as

Qa =
∑

vertices
in a

q (6)

with a ∈ {f, l}, standing for foot and leg. where Qf + Ql

is a conserved quantity.
The total charge of a network is only determined

by its connectivity and not by the total number of
vertices. As visible from Fig. 3.(b), adding a dangling
end to a previously existing network, is a charge neutral
operation. Consequently, any simply connected network,
carries the charge of a single isolated vertex q = 1. Only
the addition of loops, i.e., adding an edge between two
existing vertices, decreases the net charge by 1. This
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(c)(a)

(1)

(2)

(b) (c)(a)

(1)

(2)

(b)

p = 2.5 p = 0.4 p ≈ 0

FIG. 4. Results of three independent simulation runs for L-shaped particles confined to spherical cavities with packing fraction
η = 0.4 and (a): p = 0.4, (b): p = 2.5 and the hard-rod limit (c): p ≈ 0. The upper row (1) displays particle snapshots
superimposed with the layer networks of both species (see sec. II B). The lower row (2) shows the isolated networks. The
negative network charges are indicated in brown, while the positive are shown in blue. In all cases, the boundary charges
are assigned to the magenta leg-network. Therefore the inside charge of the foot-species, matches the respective total charge

(Q
(in)
f = Qf), which is not true for the leg-species (Q

(in)
l 6= Ql). Accordingly (a) and (b) correspond to a color swap, only in the

inside of the cavity. The total network charge in the system Qf +Ql matches the Euler characteristic of the confinement χ = 1.

network topological charge can only be conserved, if
every loop coincides with a simply connected (loop-less)
network, e.g., at its center.

This definition of the charge is consistent, such that
the charge within any area, can be calculated from the
number of in-/outgoing edges, similar to Gauss’s law in
classical electrodynamics (see Fig. 3.(c)). Any vertex of
higher degree can be viewed as a composition of merged
q = −1/2 charges. Vertices with d = 2 carry no charge,
and can be therefore, together with the edges, viewed
as constituting the layers, in between the rest of the
charges. Respecting these properties of the network
charge, our algorithm which generates the final networks
(see Appendix B) is designed to systematically eliminate
vertices, such that the final network structure, as shown
in Fig. 1.(c), both illustrates the network connectivity
and allows us to properly determine the total charges Qf

and Ql.

Typically, considering the conservation of topological
charges in confined geometries, e.g., orientational topo-
logical defects in nematically ordered fluids [7, 35], re-
quires the identification of boundary defects on the sys-
tem walls if no global alignment condition is obeyed. Due
to the invariance of the total charge within the cavity
Q = Qf +Ql (determined by the topology of the confin-
ing domain), we have the liberty to assign the outer walls
of the confinement to any of the two network species. In
the following, without loss of generality, we choose to as-
sign the boundary defects to the layer network of the leg,

generating the boundary charge Q
(b)
l . We will denote

the inside network charges, i.e., charges without explicit

inclusion of boundary charge, as Q
(in)
f and Q

(in)
l . As de-
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tailed in Sec. III, the total sum

Q
(in)
f +Q

(in)
l = Q−Q(b)

l (7)

is not conserved. Still, these quantities contain struc-
tural information about the confined state. Through
our choice of assigning the boundary charges to the leg-

network, clearly Q
(in)
f = Qf but Q

(in)
l 6= Ql = Q

(in)
l +Q

(b)
l .

III. RESULTS

A. Circular confinement

For circular cavities, we show simulation results
for systems of L-shaped particles, with three different
ratios of axes lengths p in Fig. 4. at packing fraction
η = 0.4. In Fig. 4.(a1) a typical snapshot, for p = 2.5,
is depicted. The particles locally interlock, while the
longer foot-axes display a strong tendency for alignment,
leading to elongated clusters. Global orientational
ordering, however, is not visible, such as would be ex-
pected from, e.g., a conventional smectic liquid crystal.
Through the interlocking, the shorter leg-axes fill the
spaces in between. Below, in Fig. 4.(a2), we show
the corresponding graph network, resulting from our
analysis of the layers. The elongated foot-clusters are
represented in Fig. 4.(a2) by the green network. The
leg-network is depicted in magenta. The relative higher
stiffness of the wider foot-layers results in a favoring
of longer simply-connected networks, each contained
in a loop of a single large magenta leg-network. This
results in the presence of majorly negative defects
(indicated in brown), due to the loops. Conversely,
every separated component of the foot-network contains
a charge

∑
q = 1. As elaborated in Sec. II B, this results

in a total network charge within the system of Q = 1.
Similarly, Fig. 4.(b) shows a simulation snapshot for the
inverse length ratio p = 0.4. Accordingly, the behavior
of the networks within the interior of the confinement,
visible in Fig. 4.(b2) is analogous to the former case
with inverted species. The assignment of the boundary
charges remains with the leg-network, as in Fig. 4.(a).
As the total charge is invariant of our choice of this
alignment condition, the inclusion of the boundary
charges still retains total network charge within the
confined system as Q = 1. Finally, Fig. 4.(c) shows
a simulation snapshot, where p ≈ 0, i.e., hard rods.
The confined system resides in a state, where global
orientational ordering is present. Through the lack of
interlocking, no strong indications of layers are visible,
as expected from the unconfined nematic bulk phase
which is stable at the chosen packing fraction η = 0.4
[36, 37]. Nevertheless, the network analysis can still be
used to quantify the global topology. Naturally, the
total charge is still conserved as Q = 1.

In Fig. 5.(a) we show the inside charges Q
(in)
f and

FIG. 5. Simulation results of liquid crystals composed of
L-shaped particles for a range of different length ratios p
of both particle axes, illustrating a topological transition in
the networks at p = 1, where the chirality of the particles

flips. (a): Inside charges Q
(in)
f (green), Q

(in)
l (magenta) and

sum Q
(in)
f + Q

(in)
l (dashed black) (b): Global orientational

order parameter S. We observe, that at each point of the
horizontal axes, the respective longer axis network has a
positive charge, and the shorter axis network a negative
charge. Above approximately 0.2, the systems reside in
interlocked layered states without global orientational order.
Below 0.2, the systems converge against conventional nematic
order. The results are shown at packing fraction η = 0.4
.The lines correspond to averages over 75 simulations per p.

Q
(in)
l of both network species as well as their sum,

i.e., the total charge without the inclusion of boundary
charges, as a function of p. Additionally, along the
same horizontal axis, in Fig. 5.(b), we show the global
orientational order parameter S = | 〈exp(i2φ)〉 |, where
〈...〉 denotes an average over all particles. The data
shown in both figures can be roughly divided into three
characteristic regions along the horizontal axis, namely
p > 1 (cf. Fig. 4.(a)), 0.2 . p < 1 (cf. Fig. 4.(b), as
well as p . 0.2 (cf. Fig. 4.(c)). In the case p > 1,
the simply-connected, but isolated foot-layers (green)
result in positive inside charge. At the same time, the
single large leg-network with loops results in negative
charges (magenta). Analogously, the same holds true
in the regime 0.2 . p < 1, only with inverted network

species. Therefore, the signs of Q
(in)
f and Q

(in)
l are

flipped. For p . 0.2, the shapes of the particles are
approaching the hard-rod limit. The absence of an
entropic contribution from the interlocking mechanism
of the L-shaped particles, allows the liquid crystal to
undergo a transition into a nematic state with global ori-
entational ordering. Correspondingly, Fig. 5.(b) shows
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an increased orientational order parameter S. In the
transition regime, complicated packing effects dominate

the system, causing non-trivial behavior in Q
(in)
f and

Q
(in)
l . We observe that the first peak in Q

(in)
l decreases

for larger systems, where the interior of the confinement
is less influenced by the system boundaries (not shown).
We therefore infer, that the behavior in Fig. 5 stems
from the extreme influence exerted by the confinement.
Due to the symmetry of the particles, all the observables
are symmetric around 1, i.e., S(p) = S(1/p), as well as

Q
(in)
l (p) = Q

(in)
f (1/p) (see Appendix D). Naturally, the

total charges Qf and Ql do not adhere to this symmetry,
which is broken by the assignment of the boundary
charges to the leg-network.

In general, the total inside charge Q
(in)
f +Q

(in)
l within

the cavity, i.e., the sum of all network charges in Fig. 5 is
constantly greater than zero. This is consistent with our
observation, of the presence of isolated networks within
the inside, without the existence of empty loops. More-
over, including the boundary to the leg-network does by

construction only add negative defects, i.e., Q
(b)
l < 0,

compare, e.g., Fig. 4.(2). Taking a closer look at the be-

havior of Q
(in)
f + Q

(in)
l in Fig. 5.(a), we notice two local

maxima. The first one at p ≈ 0.1 coincides with the onset
of global orientational order, i.e., close to the transition
between confined nematic and interlocked layer states.
The second one is located around p = 1, i.e., where nei-
ther network dominates the structure, such that the mu-
tual interruption of the layering of the two building blocks
is most pronounced. We thus conclude that the total in-

side charge Q
(in)
f + Q

(in)
l provides a useful measure for

disorder in interlocked or frustrated systems.

B. Annular confinement

One of the important characteristics of a topolog-
ical conservation law within a confined liquid crystal
system is the relevance of the topology of the con-
fining container [38, 39]. To further explore this, we
introduce a confining domain with annular shape, that
possesses Euler characteristic χ = 0. In Fig. 6.(a), a
corresponding particle snapshot is shown (Rin = 4Ll,
∆R ≈ 1.83Ll, η = 0.6, p = 0.1). Through the high
packing fraction and the relatively long leg-axes (red),
the particles show a visible tendency to reside in locally
parallel layers, where the long axes of the particles are
parallel align with the outer walls. At the same time,
the protruding foot-axes (green) cause a relative shift
of neighboring particles, resulting in a characteristic
smectic-C-like shape, where the particles are tilted with
respect to the layers. The associated network structure
is visible in Fig. 6.(b). As in the previous section, the
boundary charges are assigned to the leg-network. Each
smectic block of particles results in an isolated simply
connected foot-network, wrapped into a loop of the

(a)

(b)

FIG. 6. Simulation results for a system of L-shaped particles
in annular confinement. (a): The system resides in a smectic-
C-like state, where due to the interlocking, the layer director
is at an angle to the local orientation. (b): The network
structure roughly shows one foot-network per smectic layer.
The boundary charges are assigned to the leg-network, there-
fore the network charge is conserved. Through the empty loop
on the inner wall, the total network charge matches the Euler
characteristic χ = 0 of the confinement. Packing fraction and
axes length ratio are η = 0.6 and p = 0.1.

large leg-network. The inner confinement walls cause an
additional empty loop. As a result, all charges sum up
to the Euler characteristic of an annulus χ = Q = 0.

The previous results are for systems with relatively
small particle numbers N = 320. We make this par-
ticular choice to illustrate the network charges on the
particle-resolved level. Naturally, all of the above holds
true also for larger systems. In Fig. 7, we present
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FIG. 7. Network topological charge of the foot-species Qf =
−Ql within annular confinement as a function of the inner
radius Rin. Packing fraction and particle dimensions match
Fig. 6. We show results of 20 simulations per considered Rin

and a linear fit. The slope of the line m divided by 2π is
approximately one, confirming that there is slightly less than
one charge per particle length around the perimeter. This
represents, as expected, one smectic-like layer per particle
length (cf. Fig. 6).

the total topological charge Qf = Q
(in)
f = −Ql of the

foot-species as a function of the inner radius Rin of the
annular confinement, while keeping the width of the
annulus ∆R = 1.83Ll constant. Since the boundary
charges are assigned to the leg-network, the total charge

Qf coincides with the inside charge Q
(in)
f . Each depicted

point represents an individual simulation. As visible in
the plot, the data points lie fairly accurately on a straight
line, indicated by a linear fit with slope m = 0.912× 2π.
More specifically, there is slightly less than one positive
charge per particle length along the inner circumference
of the annulus. This is consistent with the observations
made in Fig. 6, where each particle layer forms a new
network. Since any particle layer has a width, which is
slightly larger than Ll, m/(2π) is slightly smaller than
one.

To further investigate the origin of the smectic-C-like
tilted layers for these L-shaped particles, additional re-
sults are presented in Fig. 8. In conventional hard-rod
smectics, confined to annular cavities, the layers typi-
cally align with the outer walls, while the direction of the
layer is typically in radial direction of the confinement,
i.e., orthogonal to the walls [2, 5]. Here, we observe lay-
ers which are tilted with respect to the radial direction.
This is nicely visible in Fig. 6 and Fig. 8.(a). The lat-
ter shows an excerpt from a simulation in an annulus
with inner radius Rin = 40Ll. We see similar tilt angles
in both snapshots, irrespective of the large difference in
curvature of the respective confinement walls. In order

(a)

(b)

(a)

(b)(b)

(a)

(b)(b)

FIG. 8. Simulation results in annuli with large inner radii
Rin = 40Ll. The other simulation parameters match Fig. 6.
(a): Excerpt from a simulation snapshot. The tilt angle of the
layers with respect to the walls of the annular ring is clearly
visible. (b): Annular pair distribution function g◦(r) between
the positions of the foot-particles (green) in the xy-plane up
to a radial distance of Ll (cf. Eq. (8)). The slanted peaks
represent the slanted foot-layers in (a). The angle relative
to the horizontal is equal to ≈ 34.4◦. (c): schematic of L-
particles in close packing. For Dfoot = Dleg = D, the optimal
tilt angles of the layers is equal to 45◦ (vertical and horizontal
sides of the right triangle in the figure have to be equal). The
deviation in the measured angle in (b) possibly stems from
complex entropic interactions of the layer species at lower
packing fraction.

to show the local structure within the annular ring, we
introduce the two-dimensional annular pair distribution
function

g◦(r) =
1

Nρ

〈
N∑

i,j=1
i6=j

δ(r−R · (ri − rj))

〉
. (8)

This is obtained via the matrix

R = R(φi) =

(
cos(π/2− φi) − sin(π/2− φi)
sin(π/2− φi) cos(π/2− φi)

)
, (9)

where φi is the polar angle of the position ri of the i-
th particle with respect to the annulus center. Here, N
and ρ are the global particle numbers and densities, re-
spectively, and δ(r) denotes the delta-distribution. The
physical interpretation of g◦(r) is a distribution function
of rotated relative vectors. The data to obtain g◦(r) are
sampled from 20 independent simulation runs. We com-
pute g◦(r) for the positions of the green foot-particles,
as depicted in Fig. 8.(b). In the depiction, the horizon-
tal axis denotes the tangential direction of the annular
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walls. The center of the diagram shows an anisotropic
depletion zone around the particles, resulting from the al-
most hard repulsion. Furthermore, slanted density peaks
are visible, representing the tilted layers within the an-
nular ring. These peaks form an approximate angle of
α = 55.6◦ with the radial direction. In Fig. 8.(c), it is
illustrated that for identical width of the particle axes
(Dfoot = Dleg = D), an angle of α = 45◦ leads to ef-
ficient packing at extreme packing fractions. At lower
packing fractions, however, this would lead to a drastic
decrease of the free length out of the layer, parallel to
the longer leg-particles. More specifically, the measured
angle can be understood as a result of two competing en-
tropic factors: (i) the aforementioned free length along
the leg orientation, which tends to increase the tilt an-
gle relative to the radial direction, and (ii) the systems
tendency to reside in a smectic-like layered structure per-
pendicular to the leg orientation, due to the high density,
which tends to decrease the tilt angle (as presumably, the
layered structure breaks apart for α→ π/2).

IV. CONCLUSION

In this work, we present a formalism for the analysis of
the topology of liquid crystals with chiral particle shapes,
which give rise to irregular defect structures in confine-
ment. This approach is based on the consideration of the
entangled network structure formed by the respective
axes positions. In order to analyze the structures with
two layer species, we generate networks utilizing Delau-
nay triangulations and identify topological charges, from
the degrees (number of adjacent edges) of the network
vertices. This procedure leans on the concept of layers
and half-layers that characterize the topology in con-
ventional smectics [22, 23], as, e.g., formed by uniaxial
hard rods. Like these previous applications, our study
relies on coexisting but disjoint network species, which
as a whole adhere to a common topological conservation
law, where the sum of the respective topological charges
in a confined system equals the Euler characteristic χ
of the finite container. However, there are two crucial
differences. (i) In our study, both network species
explicitly refer to an axis of the particles. In contrast,
in conventional smectics, one layer species represents
the density minima in between the particle layers. (ii)
Our approach is based on the analysis of the layer
network structure on the particle-resolved level, while
the observation of conventional smectic point defects
(see Appendix C) typically happens on much larger
length scales and was hitherto majorly employed in
approaches that describe the coarse-grained smectic
layer structure [22–25, 40, 41]. Moreover, we exemplify
that the bare inside charges serve as a useful quantifier
of disorder.

We use this framework of network topology to analyze
the structure of liquid crystals composed of particles

with the shape of the letter L, confined to circular
(χ = 1) and annular (χ = 0) cavities. These are gener-
ated via the use of canonical Monte-Carlo simulation.
We find that the global inside charges of the two network
species intricately depend on both the local particle
symmetries and the global degree of order. We observe
a variety of remarkable states at different packing frac-
tions and L-axes lengths: at intermediate densities, the
particles prefer interlocking with suppression of global
orientational order, when both axes of the L-shape have
comparable sizes. Otherwise the system tends towards a
conventional nematic state [1, 36, 42]. At high packing
fractions in the annulus, the particles arrange in more
rigid layers, which resembles a smectic-C structure. In
regards to the latter, we present additional simulation
for annuli with large radii elucidating the origin of the
tilt angle of the layers.

Based on this insight, we expect that the formalism
used throughout this work can positively contribute to a
variety of future endeavors. In particular we expect, that
it will be useful in the interpretation of future computa-
tional, theoretical and experimental studies of systems
with complicated particle shapes [43–51]. Even though
we introduce this method as a tool for the investigation
of relatively complex chiral particles, we also suspect that
it will be insightful to apply it to hard-rod fluids, since
the network analysis can be readily applied to visualize
the half-layers in conventional smectics. We expect it
to provide also insight, applied in the analysis of gyroid
phases in systems of particles without chirality [52, 53].
This will possibly be a powerful tool in understanding the
emergent topological structures [54–56]. Recent years
have also seen an increased interest in non-equilibrium
systems, where the individual particles consume energy
from their surrounding to propel themselves [57–60]. It
has been shown, that in these systems, the orientational
defects have dynamical properties, which in turn depend
on the respective topological charges [61–63]. It seems
therefore very reasonable to assume, that network topo-
logical charges will carry interesting dynamical properties
in collectively moving L-shaped or other chiral swimmers
[64–67].
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Appendix A: Details on the equilibration protocol

In the main manuscript, the simulation results are gen-
erated with the help of a canonical Monte-Carlo simu-
lation, as described in Sec. II A. The fundamental goal
of the procedure is to find a configuration at a relatively
high packing fraction which reflects the equilibrium state.
Since it is practically impossible to obtain a randomized
configuration at the target packing fraction (since guess-
ing a configuration which fits into the cavity corresponds
to guessing the final simulation result), the systems are
initialized several orders of magnitude below the target
packing fraction. They are subsequently compressed with
a decelerating compression rate (cf. Eq. (4)). Addition-
ally, the interaction constant U0 (cf. Eq. (1)) between the
particles and the wall interaction constant V0 (cf. Eq. (3))
are linearly increased as a function of the fraction of com-
pleted Monte-Carlo cycles τ ∈ [0, 1]. The initial softness
of the interactions helps the particles heal-out overlaps,
which may occur in the beginning of the simulation due
to random initialization. At the end of the simulation,
U0 and V0 are 103kBT . We find that the τ -dependence of
these constants becomes less relevant, as the simulation
progresses, since the particles effectively feature hard re-
pulsion at a certain point. This positively contributes to
the equilibration.

To obtain configurations, which reflect the equilibrium
configuration, without explicitly evaluating free energies,
the equilibration is performed slowly enough, such that

FIG. 9. Delaunay triangulation of the union of all coordinate
positions of both axes of all L-shaped particles, used as a base
point for the generation of the graphs networks, considered
in this manuscript. The corresponding particle snapshot is
shown in Fig. 1. The edges, connecting the foot-positions are
colored in green, while the edges, connecting the leg-axes are
colored magenta. Grey edges connect foot- and leg-vertices.
In order to obtain lines, representing the layer structure of the
respective axes, the gray edges are deleted, and the remaining
colored networks are transformed into simple lines.

two assumptions can be made about the transient config-
urations over the course of the simulation. (i): The sys-
tem is ergodic (samples the whole configuration space),
in the stage of self-assembly, such that the system con-
figuration space at higher densities is also sampled fairly
over independent different simulation runs. (ii): The
compression of the system and increase of the interac-
tion strengths occurs slowly enough, that the system can
equilibrate faster than the parameters change, such that
the final configuration reflects a state close to equilib-
rium.

Below, we show additional simulation results, which
aim to support both assumptions. The simulations are
performed as described in Sec. II A with axis length ratio
p = 1 and fraction η1 = 0.4 inserted into the formula for
compression (Eq. (4)). But instead of equilibrating up to
η1 = 0.4, the compression and increase of the interaction
constants are stopped at the half-point of the simulation
τ = 1/2. This value coincides with η ≈ 0.32 (cf. Eq. (4))
Subsequently, the simulation runs at constant parameters
for the second half to illustrate the change of the system
without compression at intermediate densities.
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FIG. 10. Trajectory of a single particle within a Monte-Carlo
simulation, where the compression and change of interaction
constants is stopped at half the number of total Monte-Carlo
cycles τ = 1/2. The simulation starts as described in Sec. II A,
but runs with constant parameters after τ = 1/2. The dis-
played particle positions are rescaled with the radius of the
confinement, i.e. the depicted trajectory shows r(τ)/R(τ).
The green arrow denotes the direction of motion within the
trajectory. Note that the trajectory reflects Monte-Carlo dis-
placement (contrary to a standard equation of motion). The
relatively unconstrained motion suggests, that the system is
in principle able to occupy all configurations. The particle
also samples the whole orientation space (not shown).

1. Ergodicity

Here, we support the assumption, that the simulation
protocol samples the configuration space ergodically at
intermediate densities. This is to guarantee that the
configuration space at higher densities is sampled fairly
across many simulations. To this end, we show the
trajectory of the leg-axis of a single particle over the
course of the simulation in Fig. 10. The displayed po-
sitions are rescaled with radius of the confinement R(τ)
(R(τ)2 ∝ 1/η(τ)1/2, cf. Eq. (4)). As such, the fig-
ure shows r(τ)/R(τ). The fact that the particle moves
throughout the whole cavity strongly suggests, that the
entire configuration space is sampled fairly, since the par-
ticles can freely rearrange at intermediate densities, and
therefore the system is not hindered from occupying spe-
cific configurations. Note that not every single particle
has to be able to traverse the whole cavity, since they can
be considered physically indistinguishable in terms of the
states. We consider this numerical indication, that the
system arrests into a high-density state, which is close to
the equilibrium and independent of the initialization.

FIG. 11. Total network charge of the foot-network as a
function of simulation progress τ , i.e., the fraction of com-
pleted Monte-Carlo cycles. The compression and adjustment
of interaction constants is stopped at the half-way point, after
which the simulation runs at constant parameters. We pick
six instances of simulation progress at which we average Qf.
Those averages are denoted Qf (see red box). We perform a

hypothesis test for equality of all six Qf , via a one-way F -test.
We find an F -value of approximately 0.70 and a p-value of ap-
proximately 0.62. We view this as indication, that the system
at τ = 1/2 already reflects an equilibrium configuration well.

2. Slow compression

In a simulation protocol, such as described in Sec. II A,
one needs to guarantee, that the final configuration re-
flects/is close to a true equilibrium configuration. In
practice, this corresponds to the execution of the pro-
tocol slowly enough, such that the system does not get
quenched into an unfavorable kinetically arrested state.
In particular, we execute the protocol slowly enough, that
all configurations throughout the simulation (beyond the
initial fast compression given by Eq. (4)) reflect a state
close to equilibrium for any instance of parameters across
the simulation.

To reinforce this claim, we show simulation results
in this section, where we stop the compression and in-
crease of the interaction constants, U0 and V0, after half
the number of Monte-Carlo cycles is completed (τ =
1/2). More specifically, we start the simulation with the
same equilibration protocol as described in Sec. II A. We
abruptly terminate the change of parameters at τ = 1/2.
We continue the Monte-Carlo simulation at constant pa-
rameters and show that the foot-network charge Qf does
not significantly change afterwards. We do this, to illus-
trate, that the system is close to equilibrium throughout
the simulation. In Fig. 11, we show distributions of Qf

over 20 independent simulations as a function of simu-
lation progress τ (completed number of Monte-Carlo cy-
cles). We denote the average value of Qf for a constant
τ by Qf . We test whether the Qf vary significantly af-
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ter stopping the compression at τ = 1/2. To this end,
we set up a hypothesis test for the equality of all val-
ues with τ ≥ 1/2 [68] (the conditions for the hypothe-
sis test: equal variance, approximate normality, indepen-
dence, were checked). The null hypothesis is given by H0:
“All measured Qf (τ ≥ 1/2) do not differ significantly”
i.e., the true average Qf from all possible configurations,
which can theoretically be obtained in simulation, is con-
stant. The alternate hypothesis is Ha: “At least one pair
is not equal.”. If the alternate hypothesis is true, we
have to assume that the Qf (τ ≥ 1/2) vary significantly,
and so the simulation has not reached near-equilibrium.
Through a one-way F -test [69], we find F ≈ 0.70 and a
p-value of 0.62. The value F denotes the variance be-
tween Qf for different τ divided by the variance for a
constant τ . The p-value indicates that a distribution of
Qf with such a variance, or more, is expected to occur
with probability p = 0.62. We conclude, that given this
data, the null hypothesis H0 can not be rejected with
any reasonable significance level. We furthermore infer
that, in combination with the absence of a clear up- or
downwards trend after τ = 1/2, we have reason to be-
lieve, that the observables do not change after stopping
compression. This can be considered indication, that at
τ = 1/2, the system resides in a state which reflects equi-
librium well.

Appendix B: Network generation

The networks, considered in this work, are generated
by considering the Delaunay triangulation [70] of the
union of the geometrical centers of both axes of the
L-shaped particles (see Fig. 9, corresponding to the
particle snapshot in Fig. 1.(a)). The emerging network
is disconnected into the two network species, by deleting
edges between opposing foot and leg vertices (Fig. 9,
gray). Furthermore, to obtain a physical picture of
these two intertwined networks as a pair of smectic-like
layers with a topological charge conservation, we require
two further systematic modifications. Firstly, we assign
the boundary to the leg-network. This corresponds to
assuming that the leg of the particles align preferably
parallel with the wall, while other local configurations
are interpreted as a defect. Such a presumed uniform
alignment rule stands at the basis of any topological
conservation law in confinement. Secondly, to ensure
that the final networks represent global layer structures,
we transform the triangular meshes into simple lines
through merging vertices that form empty triangles
(without changing the hierarchy between the two net-
works). Thereby we delete any empty loops which are
not compatible with the concept of alternating layers
required for topological charge conservation. This is
in accordance with the layer and half-layer picture of
conventional smectics and can be readily applied to
uniaxial rods by considering the limit Ll = 0. The final
network, after applying this protocol to Fig. 9, is shown

αi

A

αi

AAA

B

FIG. 12. Schematic of an orientational topological defect in a
smectic liquid crystal. The defect is a point, where the local
orientation n̂(r), typically orthogonal to the smectic layers,
indicated as black lines, is ill-defined. The rotation ∆φi from
A to B is equal to αi − π. Therefore the total rotation Φ is
equal to

∑n
i ∆φi = 2π(1−n/2), with the number of outgoing

layers n. The topological charge is equal to Φ/2π = 1− n/2,
in analogy to Eq. (5).

in Fig. 1.(c).

Appendix C: Analogy to topological charges in
smectics

The network topological charges, introduced in
Sec. II B share a close relation with the orientational
topological charges, typically considered in smectic
liquid crystals [71–73]. In this manuscript, we assign a
network topological charge q = 1 − d /2 to any vertex
in the observed network via its degree d (see Eq. (5)).
Similarly, topological charges of defects in smectic
systems can be understood in terms of adjacent layers
[22, 23].

Orientational topological defects in liquid crystals,
that display local alignment of the molecules, can be
understood as singular locations in space, where the lo-
cal orientation n̂(r) undergoes a discontinuous jump and
is therefore ill-defined. In smectic systems, where the
particles additionally arrange in layers, this can happen
across grain boundaries in two and three dimensions, or
across points in two dimensions. A schematic of a two-
dimensional point defect is depicted in Fig. 12. Smectic
layers are represented by black lines. In this particular
example, five layers meet in a singular point. Around
this point, the layers, and thus n̂(r), typically at a con-
stant angle to the layers, are continuously bent. The
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(b)

(a)

FIG. 13. Simulation results of liquid crystals composed
of L-shaped particles for a range of different length ratios p
of both particle axes as Fig. 5 in the main text. Through
the logarithmic scaling of the horizontal axis, the symmetry
around p = 1 becomes apparent.

strength of the defect is characterized by the total ro-
tation of n̂(r) traversing the defect in counterclockwise
direction. Consider one wedge of the rotation A → B

between two layers at an angle αi: The rotation angle is
equal to ∆φi = αi − π. Consequently, the total rotation
around the defect is equal to

Φ =

n∑

i

∆φi = 2π(1− n/2), (C1)

with the number of outgoing layers n. The topological
charge of the defect is defined by Φ/2π resulting in
Eq. (5), with the vertex degree d identified with n.

Appendix D: Larger axes length ratios

We denote the conventionally short (length Lf) hori-
zontal axis of the letter L by foot and the conventionally
long (length Ll) vertical axis by leg. The length ratio p
of the axes can in practice vary between 0 and ∞. If
the symmetry between the two axes is not broken, e.g.,
by assignment of boundary charges to any of the two
corresponding network species, the physical observables
should generally be symmetric around p = 1. This is con-
firmed in Fig. 13, where (a) the inside network charges
and (b) the global orientational order parameter S are
depicted. The figure features the simulation data de-
picted in Fig. 5 supplemented with simulation data for
larger p. In particular, we verify that S(p) = S(1/p), as
well as Q

(in)
l (p) = Q

(in)
f (1/p), i.e., the symmetry around

p = 1 is clearly visible.
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Abstract
As the length scales of the smallest technology continue to advance beyond the micron scale it
becomes increasingly important to equip robotic components with the means for intelligent and
autonomous decision making with limited information. With the help of a tabular Q-learning
algorithm, we design a model for training a microswimmer, to navigate quickly through an
environment given by various different scalar motility fields, while receiving a limited amount of
local information. We compare the performances of the microswimmer, defined via time of first
passage to a target, with performances of suitable reference cases. We show that the strategy
obtained with our reinforcement learning model indeed represents an efficient navigation strategy,
that outperforms the reference cases. By confronting the swimmer with a variety of unfamiliar
environments after the finalised training, we show that the obtained strategy generalises to
different classes of random fields.

1. Introduction

Technological advances in producing micron sized swimmers and robots give hope for applications to
minimal invasive medicine [1]. The possibilities reach from targeted drug delivery, over material removal in
minimal invasive surgery, to telemetric applications where microrobots transmit information that is
otherwise hard to obtain. In all of these examples, microrobots need to find a specific target, e.g. the location
to which a drug needs to be delivered, or an infected piece of tissue that needs to be surgically extracted. In
order to find these targets, usually only local information about the surrounding environment of the robot is
given. The robots might need to travel through a complex network of veines or pass through mucus, which
makes navigation challenging. Hence, smart navigation strategies for microswimmers need to be found.
Here, we develop intelligent strategies, that utilise only limited local information, for microswimmers in a
complex motility field by employing reinforcement machine learning techniques.

Recently, machine learning techniques have been applied to active and soft matter systems [2–4].
Specifically, artificial microswimmers, which have been studied intensely [5], might be used for technological
applications such as decontamination of polluted water [6], or minimal invasive surgery [1, 7–9]. Active
particles have been taught to navigate in different environments, for example optimal paths in force
fields [10–12] or flow [13–16] have been computed. Related to the latter, gliders have learned to navigate in a
turbulent flow [17, 18] and microswimmers learned a complex flow field [19–24]. In experiments,
reinforcement learning has been applied to microswimmers [25] and artificial visual perception has been
given to active colloids [26].

The motility of active particles is strongly influenced by the surrounding medium [27], and in particular,
viscous landscapes have been studied [28–33], giving rise to viscotaxis. Furthermore, active particles can be
steered with an orientation dependent motility [34].

© 2022 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Training an ABP to navigate, with limited local information, through a complex random environment given by a scalar
motility field. (a) Typical trajectory after the finalised training procedure (solid orange line) and optimal trajectory obtained with
the help of Dijkstras (shortest path) algorithm (dashed red line). (b) Average passage time through the simulation box (from
bottom to top) at each percent of the training procedure (red line), sampled from 30 independent training procedures. Each blue
dot denotes an average over 104 trajectories.

In this paper, we teach an active particle that has only local information about its environment to
navigate through a complex motility field. A reinforcement learning technique (Q-learning, see section 2.2)
that requires a limited amount of data storage is used, making it usable for real life applications. Over the
training time, the Q-learning active Brownian particle (QABP) learns to solve different realisations of a
random environment, with increasing success (figure 1(b)). At the end of training, the particle outperforms a
simple active Brownian particle (ABP), and comes close to the globally optimal path (figure 1(a)) with only
local information. Furthermore, once the particle has learned a strategy, we place it in qualitatively different
environments, in which it still finds an almost optimal path.

2. Methods

2.1. Equations of motion
We model the swimmer as an overdamped ABP in two dimensions with position r(t) and orientation
û(t) = (cosϕ(t), sinϕ(t)). It exerts a space-dependent self-propulsion velocity v0µ(r) along its orientation.
µ(r) ∈ (0,1] represents the motility field around the particle, such that the particle velocity is bound between
0 and the self-propulsion velocity v0. In order to perform intelligent navigation, the QABP is capable of
either rotating itself with an angular velocity ωQ(r(t), t) =± ω0 in either direction or retaining it is
orientation such that ωQ(r(t), t) = 0. Accordingly, the equations of motion are

ṙ(t) = v0µ(r(t))û(t), (1)

ϕ̇(t) = ωQ(r(t), t)+
√
2Drξ, (2)

where ξ represents Gaussian white noise exerted from the solvent environment on the orientation of the
particle, with ⟨ξ(t)⟩= 0 and ⟨ξ(t)ξ(t ′)⟩= δ(t− t ′).

2
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Figure 2. Schematic of the local information, that the QABP receives for the decision making. The swimmer knows the discretised
polar angle of its own orientation û= (cos(ϕ), sin(ϕ)), and the polar angle ψ of the local gradient∇µ of the motility field.
Further, it has information about low motility zones, defined by µ < µ0, as indicated by the red circle.

The swimmer moves within a box of side lengths Lx = 100v0τQ and Ly = 85v0τQ, where τQ denotes the
characteristic time scale of an intelligent decision (see section 2.2). The reinforcement learning problem is
defined by navigating as quickly as possible from the bottom hard wall to the top hard wall of the box.
Depending on the specific model of µ(r), either reflecting or periodic boundary conditions in horizontal
direction are used. The QABP and the reference case of the ABP start their trajectories at r(t= 0)= (0.5Lx,0),
oriented upwards (û(t= 0) = (0,1)). The swimmers are trained in a motility field that is generated with a
Gaussian random wave model (GRW), with wave vectors kn of wavelength ∥kn∥= 20/Ly (for details see
supplementary material section 1). The GRW gives isotropic non-periodic random waves, a typical example
is shown figure 1(a). A remarkable property of this model is an optimal suppression of density fluctuations
above a certain wavelength, a property known as stealthy hyperuniformity [35–38]. The use of stealthy
hyperuniform models as randomly generated motility fields has the advantage that the formation of large
clusters of low motility zones is suppressed. This typically results in the presence of several global paths
through the environment without an imminent danger of getting stuck in a dead end at a non-convex low
motility zone, which greatly facilitates the learning of the QABP.

2.2. Q-learning algorithm
To enable swimmer navigation within the simulated physical environment, a tabular Q-learning
algorithm [39] is superimposed on the Brownian dynamics simulation, giving the QABP the ability for self
rotation through the torque expressed by ωQ. Such an algorithm is characterised by a matrix tableQ, which
encompasses the strategy and learned experience by the active agent. This matrix functions as a decision
matrix, where the rows represent all possible discrete states, in which the swimmer can reside and the
columns represent all possible discrete actions. At any time t of action, the swimmer checks its current state i,
and performs the action Ai corresponding to the highest value within row i of the matrix:

Ai = argmax
j

Qi j(t). (3)

In our model, the swimmer has information (see figure 2) about its own orientation ϕ(t) and the polar
angle ψ (r(t)) of the local gradient of the motility field∇µ(r(t)). Furthermore, it knows whether µ(r(t)) is
above or below a threshold value µ0 = 0.25 (see supplementary material section 4).

The orientational dynamics of the QABP (see equation (2)) are approximated by run and tumble
dynamics, where the swimmer tumbles in each integration time step tn = n∆t with a probability
Ptumble = 2Dr∆t/(∆ϕ)2, where∆ϕ = 2π/Mϕ. The local gradient direction and swimmer orientation are
discretised on the unit circle withMϕ =Mψ = 12 (see supplementary material section 3). All possible
combinations of discrete orientations and gradient directions as well as the binary information about the
velocity form the complete state space of the Q-learning algorithm. With a given periodicity τQ = 10∆t, the
swimmer takes action, by rotating itself in either direction by∆ϕ, or not rotating, depending on the decision
matrixQ. This rotation defines an effective angular velocity ω0 =∆ϕ/τQ = 2π/(Nϕ τQ).

In order to obtain a decision matrix, which represents a good strategy for navigating through the
complex environment given by µ(r),Q is optimised over the course of Nepi = 106 episodes, i.e. trajectories.
Before the training procedure,Q is initialised with zero values. For each episode in the learning phase, the
trajectory of the swimmer is simulated until it either reaches the top of the box, swims into a region with

3
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µ < 0.5µ0 = 0.125 or the travel time surpasses an upper bound Tmax, obtained by 100 times the time of a
comparable optimal trajectory, obtained with Dijkstra’s algorithm (see supplementary material section 2). To
obtain a navigation strategy, as general as possible, 103 realisations of the random environment are used over
of Nepi = 106 episodes. The results are sampled, with the trained QABP, on 103 new environments.

During training, when an action j is performed, the QABP transitions from state i to i′. ThenQ is
updated, following the update formula

Qnew
i j =Qi j +α

(
R+ γmax

k
(Qi ′k)−Qi j

)
. (4)

Here, α,γ ∈ [0,1] denote hyperparameters of the learning algorithm and R denotes the sum of the
specific numeric rewards, that the active agent obtained through performing the current action j. The
learning rate α is initialised at 10−4 and linearly decreases to 10−5 at the end of the training, reinforcing the
reliability ofQ with proceeding learning. The term γmax j(Qi′ j) incorporates the highest entry in a row from
the following state into the currentQi j, estimating the future reward. Since a reasonably different behaviour
in neighbouring states is expected across the swimmers state space, γ= 0.3 is used. During training an
ϵ-greedy policy is used. Here, random actions are chosen with probability ϵ= 1 at the beginning of training,
then during training ϵ is decreased linearly to 0 such that equation (3) is used for any decision at the end of
training (see supplementary material section 5).

In order to navigate efficiently the swimmer is rewarded once it reaches the top of the simulation box.
Further, it is punished when it enters a low motility region, or if its displacement is very small (for reward
details supplementary material section 4.).

3. Results

To give an intuition on the development of the strategy, three characteristic trajectories from different stages
of the learning process are shown in figure 3. For visual reference, each panel additionally shows a globally
optimal trajectory obtained via Dijkstra’s algorithm. In figure 3(a) we show a trajectory from an episode early
in the training procedure. Since the QABP has yet to learn about its environment, the probability ϵ to
perform a random rotation in either direction is close to 1. Accordingly, the trajectory is similar to that of a
common ABP. Due to the indecisiveness of the QABP at this explorative stage, the episode terminates
eventually by entering a low motility zone.

Figure 3(b) depicts a trajectory from an episode halfway through the training procedure. The
corresponding probability to perform random actions ϵ is approximately 0.45. The trajectory shows
randomness, through rotational diffusion as well as random active rotation. Despite the fact that more than
half of the actions are randomly chosen, it is visible, how the QABP displays noticeable competence of
avoiding the regions with µ≪ 1 to reach the finish line. Finally, the trajectory in figure 3(c) shows the
dynamics of the QABP after the learning procedure when ϵ= 0. The QABP swims decisively in vertical
direction, such that the trajectory exhibits little dents, thereby maneuvering around the low motility zone in
its path.

3.1. Quantitative performance
Optimising the navigation through the environment, given by the motility field µ(r), relies on the balancing
between two opposing principles: minimising the length of the path while simultaneously maximising the
instantaneous velocity v0µ(r) [40, 41]. Formally, this problem is solved by the solution that minimises the
following functional

T[c] =

ˆ c1

c0

∥ċ(t)∥
v0µ(c(t))

dt, (5)

which is the passage time T from the starting point c0 to any point on the finish line c1. Here, c(t) is a curve
through the environment, parameterised by t. A convenient figure of merit for the performance of the
swimmer along any trajectory r(t) is defined as

vy
v0

:=
Ly

T[r(t)]v0
. (6)

This quantity is in the interval (0,1] for any trajectory. After each independent training procedure, the
resultingQ is tested in 103 trajectories on every independent realisation µ(r) respectively. Performance data

4
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Figure 3. Three typical trajectories (orange solid lines) in three motility fields µ(r) over the course of the training procedure of
the QABP. The particle’s objective is to cross the box from bottom to top as fast as possible. The environments are generated with
the help of modified isotropic Gaussian random waves. The probablities to perform random actions are (a) ϵ= 1.0, (b) ϵ≈ 0.58,
(c) ϵ≈ 0. The red dashed line highlight the optimal trajectories obtained with Dijkstras algorithm (see supplementary material
section 2). Motility fields are generated as modified isotropic Gaussian random waves and in the horizontal direction reflecting
boundary conditions are employed.

Figure 4. Distributions of scalar values µ(r(t)) = ∥ṙ∥/v0 along trajectories with ⟨µ⟩ ≈ 0.557 and Prot ≈ 46, sampled from 15
simulations with 1000 trajectories each. The lines indicate ABP (solid orange), straight trajectory, i.e. ABP∞ (solid green), and
intelligent swimmer (QABP, solid blue). The dashed black line shows the distribution of the µ(r)-values within the environment,
averaged from 1000 independent µ(r). The dashed green line corresponds to µ f(µ) of the ABP∞ trajectory. The dotted vertical
line denotes the velocity state threshold µ0 = 0.25.

was additionally gathered from multiple independent training procedures for each set a parameters. The
general performance of the resulting strategy, encoded inQ, is determined by averaging over the 103

trajectories, giving
〈
vy
〉
/v0. The performance will depend on the average motility ⟨µ⟩ and the rotational

Péclet number, which is defined as

Prot = (∆ϕ)2/2DrotτQ (7)

comparing the typical time scale of the rotational diffusion to that of the intelligent active rotation.
The total passage time T (see equation (5)) can be calculated from the non-normalised distribution of

velocities f(µ), sampled with a time step of τQ, along a given trajectory as

T= τQ

ˆ 1

0
f(µ)dµ. (8)

To quantify the behaviour of the individual swimmers, the frequencies f(µ) of the scalar values of µ(r)
are shown in figure 4. The data is averaged from 15 independent simulation runs with 103 trajectories each.
Additionally µ f(µ) is shown for the ABP, for a straight line (i.e. an ABP in the limit of vanishing diffusion
denoted by ABP∞), and for the distribution of function values µ(r) within the environment, averaged from
103 independent motility fields. More specifically, the distribution of the ABP∞ trajectory (green solid line)

5
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Figure 5. Performances ⟨vy⟩/v0 of the QABP as well as an ABP and a particle swimming in a straight line without diffusion
(ABP∞) as reference swimmers. The scattered data data points indicate a simulation with 103 trajectories each. The solid lines
denote the averages over the respective ten data points per parameter set. (a) shows the performance for varying rotational Péclet
number Prot and (b) for varying environment ⟨µ⟩.

counts the frequencies of function values of µ(r) along a vertical line, sampled in time. Due to the longer
retention time at slower velocities, we obtain the distribution in space, sampled at constant distances, as
µ f(µ). Since the data is averaged over 1.5× 104 different environments, the corresponding µ f(µ) (green
dashed line) is proportional to the distribution of the values in the total field (black dashed line). On the
other hand, the ABP∞ reflects the limit of the ABP, for vanishing diffusion. As visible in the plot, the
respective curves are proportional to each other, emphasising that the performances of the ABP is tangible
through consideration of the motility field alone. Observing the QABP case, it is visible that the distribution
in the lower velocities is approximately constant and lies orders of magnitude below both ABP cases. Instead,
f(µ) displays a significant peak above the velocity state threshold indicated by the vertical line at µ0 = 0.25.
This exemplifies how the navigation strategy of the QABP relies on circumvention of the low motility zones,
through higher motility regions, thereby elongating the trajectory, but saving time through the faster
swimming.

The performances
〈
vy
〉
/v0 of the QABP, and the two reference cases (ABP, ABP∞) are shown as a

function of Prot in figure 5(a), where ⟨µ⟩ ≈ 0.557 is chosen. For large Prot, the
〈
vy
〉
/v0 of the ABP

approaches the performance of the ABP∞. More specifically, the ABP is bounded by the ABP∞, and
〈
vy
〉
/v0

is monotonous in Prot. For small Prot, the performance of the ABP approaches 0. For almost the whole
parameter range the QABP is faster than both reference cases. Additionally

〈
vy
〉
/v0 seems to be independent

from Prot for Prot ≳ 1. This demonstrates the QABP’s ability to steer against the kicks from rotational
diffusion. Only for Prot ≲ 1, the QABP loses its ability to correct for rotational noise, and hence the
performance declines with decreasing values of Prot. Figure 5(b) shows the respective performances as a
function the environment parameter ⟨µ⟩ for a constant Prot ≈ 46. For all three cases,

〈
vy
〉
/v0 increases with

µ. Once again, the QABP surpasses the ABP across all ⟨µ⟩, and the ABP∞ for most of the shown parameter
range. For ⟨µ⟩ ≈ 1, the performances

〈
vy
〉
/v0 of both QABP and ABP∞ approach 1, since the optimal

trajectory becomes a straight line. For ⟨µ⟩= 0.5, the motility field µ(r) displays a percolation transition of
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Figure 6. Trajectories of QABPs, trained in non-periodic Gaussian random wave environments (see figure 3), placed in unknown
environments, after the finalised learning process (Prot ≈ 46, ⟨µ⟩ ≈ 0.557). The globally optimised trajectories, generated with
the help of Dijkstra’s algorithm, are shown as dashed red lines. The motility fields µ(r) are generated with the help of (a) Gaussian
random waves (see. Supplemental Material section 1) periodic in horizontal direction, (b), (c) Gaussian random waves periodic
in both Carthesian directions, (d) Gray–Scott model for reaction-diffusion (e) 30 Gauss peaks scattered randomly across the
simulation box and (f) Eight Gauss peaks scattered randomly across the simulation box, superimposed with solutions to the
randomly initialised Gray–Scott model.

the low motility zones, and therefore the Q-learning model of avoiding low motility zones becomes less
viable. It is visible in the figure, however, that the QABP surpasses the ABP∞ down to ⟨µ⟩ ≈ 0.35.

3.2. Generalisation to unfamiliar environments
In order to demonstrate the generality of the learned strategy, i.e. to show that the final resultQ of the
learning process transcends the specific implementation of our learning environment, we test the QABP’s
ability to navigate in other motility fields that represent different types of long- and short-order order in
space. More specifically, the swimmer is first trained on the previously used non-periodic Gaussian random
fields with reflecting boundary conditions. After the learning procedure is finalised, the swimmer is placed in
the respective unfamiliar environment.

A selection of the emerging trajectories (Prot ≈ 46) is shown in figure 6. All fields are generated such that
⟨µ⟩ ≈ 0.557. Additionally, a performance

〈
vy
〉
/v0 is given averaged from ten independent training

procedures with 103 trajectories each. For all fields, the QABP outperforms the references cases and displays
performances reasonably close to the globally optimal solutions (the exact numerical values of the different
performances can be found in the supplementary material section 9).

3.2.1. Directional patterns
The first instance in figure 6(a) displays an environment that is periodic in horizontal direction. The
horizontal components of the random wave vectors fulfill |kn · êx|= 6π/L. The absolute value of the vertical
components

∣∣kn · êy
∣∣ are randomised uniformly in [0,12π/L]. The QABP visually displays competence of

maneuvering through the new environment. Furthermore,
〈
vy
〉
/v0 shows similar values as presented for the

same parameters (Prot ≈ 46, ⟨µ⟩ ≈ 0.557) in section 3.1. This likely stems from the similarity of the wave
vectors kn and the resulting characteristic length scales in the environments µ(r).

Figures 6(b) and (c) show trajectories through periodic Gaussian random fields with kn · êx = 2π/L and
kn · êy =± 8π/L, respectively. It is visible through the global solutions, that the optimal paths are obtained
by avoiding the low motility stripes through the periodicity of the box, persistently swimming in the same
slanted direction. The performance of both environments with opposite parity are approximately equal. We
thereby show, that the machine learning model is on average not subject to unexpected symmetry breaking.
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Furthermore, the swimmers exhibit a significant tendency to slide across the boundary of the low motility
zones. This behaviour exemplifies the strategy of the QABP to avoid motilities below a certain threshold
rather than optimising the instantaneous velocity at all times.

3.2.2. Gray-Scott field
Figure 6(d) shows an environment obtained through integration of the Gray–Scott equations for
reaction-diffusion [42, 43] (see supplementary material section 1.A). The typical length scales of the low
motility zones obtained through this model are drastically smaller, than the previous examples. Furthermore,
due to the entirely different algorithm, the functional form at the edges of the low motility zones is different.
Despite these drastic differences to the original training data, the QABP displays the capability of efficiently
maneuvering through the environment.

3.2.3. Strongly clustering patterns
All of the previously shown examples of scalar fields are based on hyperuniform models with suppressed
density fluctuations. Next, we show that after training, the QABP also successfully navigates in random
motility fields with strong heterogeneities (based on non-hyperuniform models).

Figure 6(e) shows an environment, which is generated by scattering 30 points qk uniformly in the
simulation box, and assigning each a characteristic randomly chosen length scale κk. Explicitly, the motility
field is given by

µ(r) =
30∏

k=1

[
1− exp

(
∥r− qk∥2
κk2

)]
, (9)

with periodic boundary conditions. The environment in figure 6(e) displays several clusters of peaks.
Nevertheless, we observe that the QABP finds a quick path through the environment by evading low motility
zones of any size (for which it was efficiently trained in the stealthy hyperuniform GRW).

Finally, figure 6(f) shows a trajectory through a motility field that is given by a sum of equation (9) and a
randomly initialised solution to the Gray–Scott model with amplitude 0.1 (see supplementary material
section 1.A). This approach yields a motility field, with large low motility zones throughout the
environment, overlaid with a more regular perturbation, that causes local gradients, which drastically
influence local information. Even though, not having learned about the local structure, our results show, that
the QABP noticeably interacts with the respective local gradients only at low swimming velocities. This result
emphasises the significance of the inclusion of the swimming velocity in the QABPs state space.

4. Conclusions

In this work, we used a reinforcement learning algorithm to teach a microswimmer (QABP) to navigate
through complex environments, given by scalar motility fields, that determine the local swimming velocity of
the particle. Brownian dynamics simulations were used to investigate the dynamics of the QABP in this
two-dimensional physical environment. To enable smart navigation, a tabular Q-learning algorithm was
superimposed. The swimmer receives the ability to perform deterministic rotations, while only receiving
local information about its environment.

First, modified Gaussian random waves were employed as motility fields. Two reference cases of an ABP
and a particle swimming in a straight line (ABP∞) were simulated and it was shown that the time of first
passage of the ABP to a given target can be inferred from the motility field. The performance, i.e. the speed of
finding the target, of the ABP, is bounded by the ABP∞, as the limit of low diffusion. We demonstrate, that
our intelligent QABP outperforms both the ABP and ABP∞. To demonstrate the applicability of the resulting
strategy, we test the ability of the QABP to solve different environments, generated with various algorithms,
though only having learned the Gaussian random wave environment. The swimmers display competence of
maneuvering through all the displayed examples of motility fields and again outperforms the ABP and
ABP∞. Our stealthy hyperuniform model provides a random yet relatively homogeneous environment that
is well suited for the initial training of the QABP. In our observation, QABP provides competitive results in
non-hyperuniform fields unseen during the training phase. Furthermore, due to the translational
symmetries of our scalar random fields, we expect that the strategy, which has been learned in the training
on relatively small box sizes, can automatically be transferred to applications, which feature meaningfully
large environments.

Throughout this paper, we lay emphasis on the fact, that the final decision matrix only requires the
microswimmer to know little local information about its environment. This will be of particular relevance to
future microrobotic applications, where individual autonomous agents rarely possess the ability to capture
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information about the whole environment at once, and the amount of data storage is dictated by the size of
the technical components. Future studies of this local algorithm can be extended to more complex problems
such as the inclusion of hydrodynamic force fields, or more general vectorial fields. [13, 16]. The explicit
inclusion of cargo uptake and delivery [44, 45], as well as the consumption of fuel, into the machine learning
model, may be of interest to medical applications [1]. Swimming strategies, which combine a deterministic
approach to the decision making, such as through our reinforcement learning, with undeterministic
approaches, e.g. random actions (cf figure 3(b)), may yield insight as models for biological microswimmers,
that are motivated, for instance by the search for nutrients.
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1. Learning environments

We train the swimmer in a Gaussian random wave model (GRW). To construct an

appropriate motility field, we use a sinusoidal function

g(r) =
M∑

n=1

cos (knr + ηn) , (1)

where the kn and random wave vectors with ‖kn‖ = 20/L, drawn from an isotropic

probability distribution and the ηn are random phases, uniformly distributed in [0, 2π).

M denotes the number of superposed harmonic waves. We pick M = 100, which is

sufficient to obtain peaks with the shape of Gaussian bell curves. The motility field

µ(r)GRW is obtained from g(r) via

µ(r)GRW =
1

1 + exp (λ [0.5− [g̃(r)]ν ])
, (2)

where g̃(r) is obtained from g(r) via renormalising to the interval [0, 1]. We vary the

exponent ν, in order to shift the whole function towards 0 or 1, and therefore control the

average function value 〈µ〉, by which the difficulty of a given field is characterised. Here,

〈µ〉 denotes the average over space and independent realisations of the field µ(r). With

the help of the outside sigmoid function, with the parameter λ = 10, µ(r)GRW is pushed

away from 0.5 towards 0 and 1. This modification is performed to obtain a continuous

field, where the majority of the space is occupied by either low motility regions or

high motility regions. One example is shown in Fig. 1.(a) (main text). Furthermore,

the final µ(r) is modified with appropriate sigmoid functions of the y-coordinate, to

avoid low motility zones on the starting- or finish line. To test the versatility of the

machine learning model, different methods for the generation of the motility field µ(r)

are employed (see Sec.3B (main text)).

1.1. Gray-Scott model for field generation

The Gray-Scott model for reaction diffusion through integration of the Gray-Scott model

for reaction-diffusion [1, 2] can be used to generate fields, that can be used as motility

fields µ(r). The equations model the time evolution of two scalar fields, that diffuse and

interact with each other through the dynamics prescribed be the equations

∂u

∂t
= Du∇2u+ uv2 + f(1− u), (3)

∂v

∂t
= Dv∇2v + uv2 − (f + k)v. (4)

In Fig. 6 (d) (main text), we use a single solution, that fulfills 〈µ〉 ≈ 0.557,

generated with the parameters with Du = 0.2, Dv = 0.1, f = 0.0545, k = 0.06125.

u and v are initialised to 0.5 and 0.25 within a square of side length L/5 in the middle

of the simulation box, respectively. Random Gray-Scott fields, as used in Fig. 6 (f)
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Figure 1: Trajectories approximating the globally optimal trajectory obtained with

Dijkstra’s algorithm. Blue solid curve: Trajectory obtained after employing Dijkstra’s

algorithm on a discrete square grid in the simulation box, using local swimming time

(Eq. (5)) as grid distances. Red dashed curve: Approximation to the globally optimal

trajectory, obtained after heuristic optimisation with a Monte-Carlo approach, using

continuous trajectory nodes.

(main text), can be generated for this choice of parameters, for instance, by initialising

each node of the u-mesh to a random number in [0, 1] and the each node on the v-mesh

to a random number in [0, 0.5]. The fields are discretised on a quadratic mesh of size

150× 150. We solve the equations via an explicit forward Euler scheme in time, where

we integrate for 104 time-steps with ∆t = 1, with periodic boundary conditions. Finally,

after appropriate renormalisation, we use the resulting v(r) as motility field µ(r).

2. Augmented Dijkstra’s algorithm

In order to obtain a visual reference for the ability of the swimmer to find a reasonable

path through the environment, as well as having a quantitative benchmark for the

difficulty of any environment µ(r), we perform a global optimisation scheme with the

help of Dijkstra’s (shortest path) algorithm [3]. E.W. Dijkstra initially conceptualised

this algorithm for finding the shortest distance between two given nodes in a discrete

network. A slightly more modern version, assumes an origin node and calculates the

shortest distance from each node to the origin node.

In our version, we start with a network, where the positions of the nodes fall on

the grid positions of the discretised motility field. We assign the node, closest to the

designated starting position of the swimmer as origin node. The neighbours of the

network are vertical, horizontal and diagonal next neighbours within the square grid.

In accordance to the standard procedure of Dijkstra’s algorithm, we initialise the total

distances of all nodes to the starting node to ∞, except itself. We update all total

distances iteratively by evaluating the distances to all next neighbours, starting from
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the origin node, visiting each node once. The network distance di,j between a pair of

neighbouring grid nodes i, j at ri,rj we define by the Euclidian distance divided by the

mean local swimmer velocity

di,j =
2 ‖ri − rj‖

v0(µ(ri) + µ(rj))
. (5)

Minimising with respect to the sum of the instantaneous swimming times
∑

k dk,k+1,

in a trajectory, yields an approximation to the solution of the functional, given in Eq.

(5) (main text), for any point in the simulation box r1 and the starting point r0 assuming

the constraint, that the swimmer may only turn by angles that are multiples of π/4 .

We choose as destination node, the node on the finish line, with the shortest distance to

the origin node. Over the execution of Dijkstra’s algorithm, we save for each node the

ancestor node, from which the shortest distance is obtained, such that we can backtrace

optimal trajectories to the origin node in this step (see Fig. 1, blue solid line).

In a second step, we augment the search for an optimal trajectory with a Monte-

Carlo optimisation, to accommodate for the lack for continuous angles. More specifically,

we perform 1000 Monte-Carlo cycles in which we displace the individual nodes to

optimise for the total travel time along the trajectory. We accept a trial displacement

only, if it decreases the total travel time. This heuristic supplementation results in

smoother curves, and slightly reduces the total travel time (see. Fig. 1, red dashed

line).

In practice, we use this optimal first passage time as quantitative measure of

the difficulty for the swimmer to maneuver through environments for a given set of

parameters. More specifically, in the beginning of each training procedure, we use the

current environment parameters, to generate a set of typical environments and solve it

with the protocol described above. We multiply the obtained average first passage time

with 100 and use this as a termination criterion Tmax for the individual episodes. We

have found that this value of all the simulated environments typically corresponds to

10−3 . vy/v0 . 10−2.

3. Angular discretisation Mφ

To investigate the influence of the discretisation of the orientation angles Mφ, on

the overall performance of the algorithm, we here present results for different values

than the one used in the main manuscript (Mφ = 12). We generated additional simu-

lation results with the physical parameters used throughout the majority of the main

manuscript, i.e., with rotational Peclét number Prot ≈ 46 (see main manuscript Eq. (7))

and average value of the Gaussian random wave based motility fields 〈µ〉 ≈ 0.557 (see

Sec. 1). Fig. 2.(a) shows a typical trajectory for the QABP with Mφ = 24. Qualita-

tively, the trajectory looks similar to the trajectories with Mφ = 12 presented in the

main manuscript. We have additionally gathered performance data from 103 trajectories

from ten independent simulations. The resulting performance 〈vy〉 /v0 ≈ 40.5 is very
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Figure 2: Trajectories of QABP with different angular discretisations (a) Mφ = 24

and (b) Mφ = 6 (Mφ = 12 in the main manuscript). The results are simulated at

rotational Peclét number Prot ≈ 46 (see main manuscript Eq. (7)) within fields µ(r)

with 〈µ〉 ≈ 0.557 . As visible from the shape of the trajectory, the reinforcement learning

algorithm converges quickly in Mφ. For Mφ = 24, the performance 〈vy〉 /v0 ≈ 40.5 is

very similar to that with Mφ = 12. Crucially, the performance of the QABP with

Mφ = 6, 〈vy〉 /v0 ≈ 35.4, is still very close even though, due to the discretisation of the

allowed swimming directions, the QABP is not allowed to swim directly towards the

target in the upwards vertical direction (see zig-zag pattern in the trajectory close to

the finish line in (b)).

similar to the case with Mφ = 12 (cf. performance Figs. 5.(a) and Figs. 5.(b) in the

main manuscript). Importantly, the algorithm performs similarly well even for the case,

where the discretisation is as coarse as Mφ = 6. For this value, the allowed swimming

directions k× 2π/Mφ, k ∈ {0, 1, ...,Mφ− 1} do not include the vertical direction, which

is prominently visible in the zig-zag pattern close to the finish line in Fig. 2.(b). Nev-

ertheless, the QABP is able to perform well with 〈vy〉 /v0 ≈ 35.4.

4. Velocity state threshold µ0

In our reinforcement learning model, the QABP receives information about its own

instantaneous velocity v0µ(r) in form of a binary discretisation. The state space of

the agent encodes the information, whether the current µ(r) is either above or below

a threshold value µ0. As visible from the large peak just above µ0 in the velocity

distribution of the QABP in Fig. 4 (main text), this threshold value directly determines

the regions in the environment, that the swimmer aims to evade. Consequently, µ0

directly influences the performance 〈vy〉 /v0 of the swimmer (see Eq. (6) (main text)).
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Figure 3: Performances 〈vy〉 /v0 of the QABP as a function of the velocity state threshold

µ0 at Prot ≈ 46. The environments are generated with the help of as Gaussian random

waves (see. Sec. 1) with 〈µ〉 ≈ 0.557. The scattered data data points indicate a

simulation with 103 trajectories each. The solid lines denote the averages over the

respective ten data points per parameter set. For reference, the figure shows the

respective performances of ABP and ABP∞, which swims in a straight line.

It is reasonable to expect, that a variable threshold for the velocity discretisation,

thus creating a possibility for the swimmers to adjust better to their surroundings, can

substantially increase the performance. A concrete implementation, which retains the

local quality of the algorithm might be to allow the swimmer to collect and store in-

formation about the previously encountered scalar field values of µ(r), which in turn

would increase the swimmers capabilities, but also increase the required storage space

(cf. SM Sec. 7). In the interest of keeping the model as simple as possible, we opt for a

constant choice of µ0.

We show 〈vy〉 /v0 as a function of µ0 in Fig. 3 at Prot ≈ 46. The environments

are generated with the help of Gaussian random waves (see. Sec. 1) with 〈µ〉 ≈ 0.557.

Even though independent of µ0, we show the performance of an active Brownian particle

(ABP) and a particle swimming along a straight line trajectory (ABP∞) for reference.

As expected, the performance 〈vy〉 /v0 as a function of µ0 shows non-monotonic

behaviour. For µ0 � 1, the lowest velocity, that the particle tolerates increases, hence

〈vy〉 /v0 increases. In the limit µ0 = 1, the QABP considers the whole environment as

low motility to avoid and the algorithm ceases to function. As a result, for larger

µ0, the relative differences between the instantaneous swimming velocities decrease

in importance. Instead, the free space to maneuver dominates. In between the

two competing limits, there is an optimal µ0 at approximately 0.3 for this choice of

environment and 〈µ〉. In the training of the QABP, we choose µ0 = 0.25.
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5. Reward for QABP

To impel a net upward motion of the swimmer, the last action is rewarded with Rf = 100

if the swimmer reaches the top of the box. To disincentivise the motion through low

motility zones, an action is punished with Rµ = −0.5, if it coincides with the termination

of the episode due to entering a low motility region µ < 0.125.

Maneuvering with only local information in randomly generated fields almost

inevitably leads to the encounter of dead end situations, depending on the difficulty

of the environment, i.e. 〈µ〉. In these cases, given only the two aforementioned rewards

Rf , Rµ, the swimmers trajectory coils up, and the swimmer is almost stuck in place. We

suppress this issue, by introducing a third reward, which aims to incentivise the QABP

towards trajectories with higher persistence. To this end, the swimmer memorises 100

of its own local position, over a time of 100τQ. The swimmer measures its displacement

with respect to the average of its saved positions.

In almost all trajectories, where the swimmer does not get stuck, the respective

displacement lies around 1.0. On the contrary, when it does get stuck, the displacement

is close to 0. Therefore we introduce an additional punishment. If the displacement

above falls below a value 0.5, the current action is punished by Rp = −0.4. In general,

the choice of this threshold value depends on the typical length scale of the environment.

Here, employing a general threshold value sufficiently enhances the performance of the

QABP across all simulated parameters.

6. ε-greedy policy

In every episode, the swimmer is given a random probability ε, with which random

actions are performed. Otherwise it uses Q as basis for decision. In episode 1, ε is

initialised as 1 and linearly decreases until episode 103, after which another 1000 episodes

are performed at ε = 0, each in a new environment. At ε = 0 the training procedure is

considered to be finalised, Q to be converged, and the corresponding results are sampled.

While sampling, the trajectories upon entering low motility zones are not terminated. If

the swimmer surpasses the upper bound Tmax, the trajectory is terminated and the first

passage time is considered to be equal to ∞. This protocol of a decreasing ε takes into

consideration the initial ignorance of the swimmer about his environment, and therefore

the swimmer relies on random exploration. As the training proceeds, the decision matrix

Q becomes gradually more reliable, and the swimmer targets the Q entries which are

more likely to be the locally correct choices.

7. Data storage

The total amount of data storage that is needed for the decision matrix (Q-matrix) in

our model necessitates 12 × 12 × 2 × 3 = 864 floating point numbers. The additional

amount of data that is needed for the displacement reward Rp incorporates 200 floating
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Landscape structure QABP Dijkstra’s ABP∞ ABP

standard GRW-based 0.405± 3×10−2 0.698± 3×10−2 0.320± 6×10−2 0.204± 6×10−2

periodic GRW-based [6.(a)] 0.401± 3×10−2 0.675± 3×10−2 0.273± 5×10−3 0.170± 5×10−3

slanted left [6.(b)] 0.123± 1×10−2 0.678± 6×10−2 0.042± 4×10−5 0.011± 3×10−4

slanted right [6.(c)] 0.128± 7×10−3 0.720± 6×10−2 0.042± 3×10−5 0.011± 3×10−4

Gray-Scott [6.(d)] 0.578± 4×10−2 0.709± 5×10−2 0.102± 0.00 0.186± 5×10−3

randomly scattered [6.(e)] 0.428± 3×10−2 0.686± 4×10−2 0.302± 6×10−3 0.194± 4×10−3

GS & scattered [6.(f)] 0.410± 2×10−2 0.670± 8×10−2 0.372± 5×10−3 0.245± 3×10−3

Table 1: Performances 〈vy〉 /v0 (and respective standard deviations) of different

trajectories within the environments, and the same physical parameters, as presented in

Fig. 6 in the main manuscript. Presented are the performances of all methods used in

the main text: the QABP, the trajectory obtained with Dijkstra’s algorithm, ABP∞ and

ABP. The different environments pose challenges of varying difficulty to the different

swimmers. The trajectory obtained with Dijkstra’s algorithm stays relatively constant.

point numbers for the hundred positions in two-dimensional space. The latter 200

floating point numbers can be ommited in practical applications, by employing a finalised

decision matrix Q obtained, e.g., in our computer simulation.

8. Computational cost of the simulation

The simulation code is written in standard python, where all of the calculations are

done within the algebraic framework given by the numpy library [4] without any ex-

ternal machine learning specific libraries. Additionally, large fractions of the code was

just-in-time compiled with the help of numba [5], reaching computation speeds that are

competitive against precompiled code in languages such as C/C++.

Much of the development and testing was done on a single computer, with an IN-

TEL(R) CORE(TM) i5-4460 with a clock speed of 3.2 GHz, where the code ran purely

in python without parallelisation and took around 20 minutes per independent training

procedure, including the rendering and output of around 50 pictures.

Two significant parameters that determine the runtime of the simulation are the

number of episodes of Nepi and the average function value of the motility field 〈µ〉. In

our experience, the time of execution of the learning protocol scales approximately as

Texec ∝ N1
epi. Secondly, since the average velocity of the particle is determined by 〈µ〉,

we expect that Texec ∝ 〈µ〉−1, which is coherent with our observations.

9. Performances of different trajectories within different environments

In Fig. 6 of the main manuscript, we present a range of simulation results, where we

train the QABP on a standard Gaussian random wave based (GRW) environment (see

Sec. 1), and after completion of the learning phase, place it into different environments,
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which were unknown until after the training. Each of the six panels (a-f) in Fig. 6 cor-

responds to a different protocol/algorithm of generating environments. In Fig. 6 we give

the performances 〈vy〉 /v0 of the QABP for the different environments to draw a quan-

titative comparison of the swimmers capabilities in different unknown environments.

In Tab. 1 in this section, we present the performances for the trajectories of QABP,

the optimal trajectory, calculated with Dijkstra’s algorithm (cf. Sec. 2), as well as the

performances of the straight line trajectory (ABP∞) and an active Brownian particle

(ABP). The data is gathered from ten simulation runs per data paint with 103 trajec-

tories each, at the same parameters as in Fig. 6 of the main manuscript (Prot ≈ 46,

〈µ〉 ≈ 0.557). The performance 〈vy〉 /v0 of the optimal trajectory is fairly uniform at

approximately 0.7, across all environments. Despite this, the performances of the QABP

vary in the different fields. This illustrates the relative difficulty of the different environ-

ments, due to their different local structures, for the QABP with only local information.

As an example, we consider the slanted environments (b,c). Here, the swimmer

continuously attempts to swim upwards, sliding across the lower boundaries of the

slanted low motility zones, because it has learned in the training on the GRW based

environments, that this is a profitable strategy. This keeps its velocity permanently

drastically reduced at v ≈ µ0v0 = 0.25v0. Instead, training on these environments im-

mediately, the swimmer incorporates this structure into his learned experience, and will

utilise this during performance testing.

Note that for our Gray-Scott model, the standard deviation of 〈vy〉 /v0 of the ABP∞
is zero, since the environment is solved from the same initial conditions every time, and

the trajectory is deterministic.
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Statistics of carrier-cargo complexes

René Wittmann,1, ∗ Paul A. Monderkamp,1 and Hartmut Löwen1

1Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
(Dated: March 8, 2023)

We explore the statistics of assembling soft-matter building blocks to investigate the uptake and
encapsulation of cargo particles by carriers engulfing their load. While the such carrier-cargo com-
plexes are important for many applications out of equilibrium, such as drug delivery and synthetic
cell encapsulation, we uncover here the basic statistical physics in minimal hard-core-like mod-
els for particle uptake. Introducing an exactly solvable equilibrium model in one dimension, we
demonstrate that the formation of carrier-cargo complexes can be largely tuned by both the cargo
concentration and the carriers’ interior size. These findings are intuitively explained by interpreting
the internal free space (partition function) of the cargo inside a carrier as its engulfment strength,
which can be mapped to an external control parameter (chemical potential) of an additional effective
particle species. Such a mapping can be generally applied to account for attractive interactions,
multiple cargo uptake and various carrier or cargo species. Within this effective equilibrium pic-
ture, we then suggest to employ effective non-Boltzmann occupation laws to describe the statistics
of non-equilibrium particle uptake on the coarse-grained level. As a particular example, we put
forward a Bose-Einstein-like phase transition associated with polydisperse carrier properties.

I. INTRODUCTION

When two or more soft-matter building blocks are com-
bined, self-organization can lead to novel hierarchical
structures with unusual material properties [1–10]. One
archetypal problem is a mesoscopic carrier particle that
swallows or uptakes smaller cargo particles to build a
carrier-cargo complex. These superstructures can occur
in quite diverse situations ranging from greenhouse gases
stored in porous liquids [11, 12] over adsorbed or encapsu-
lated drugs which need to be delivered to a target [13–18]
to molecules or nanoparticles that penetrate through the
membrane of synthetic and living cells [19–25] or bacte-
ria engulfed by phagocytes [26, 27]. Complex assemblies
on a larger scale involve colloidal particles that are em-
bedded within, e.g., droplets [28–31] or vesicles [32–35],
or dock at surfaces [36–39].

Despite this plethora of realizations of particle uptake
or encapsulation, the collective properties of larger as-
semblies of such interacting particles have not yet been
systematically explored. Even with simple pair interac-
tions, the statistics of carrier-cargo mixtures has barely
been considered from the angle of classical statistical me-
chanics. This is most likely due to the intrinsic com-
plexity of internal degrees of freedom, needed for a basic
description of particles which are swallowed (or ejected
again) and thus continuously change their role from freely
floating to loaded cargo. Therefore there is a principal
need for minimal models which provide insight into the
composition and structure of such carrier-cargo mixtures.

Here, we develop a controlled setting, which allows us
to classify the occupation statistics of different carrier-
cargo mixtures and predict their structural properties
within a first-principles framework of statistical mechan-

∗ Rene.Wittmann@hhu.de

ics. First, we devise a basic model involving hollow carri-
ers with excluded-volume interactions to exemplify that
the emerging complexes of carriers occupied by cargo can
be efficiently considered as individual species. This equi-
librium picture allows us relate the occupation proba-
bility (or engulfment strength) directly to the partition
functions of confined cargo particles. Second, in view of
the variety of the soft matter zoo or applications in biol-
ogy, we interpret the individual engulfment strength as
a coarse-grained quantity that should take into account
processes at the carrier membrane. Third, we postulate
effective non-equilibrium occupation laws for uptake of
multiple carriers and show that these can lead to in-
triguing collective effects, as exemplified by identifying a
Bose-Einstein condensation outside the quantum world
[40–42].

The paper is arranged as follows. We first introduce
our excluded-volume model in Sec. II and outline a gen-
eral rigorous mapping to an effective system, which al-
lows for an exact solution in one dimension. This map-
ping is then applied in Sec. III to determine different
properties of carrier-cargo mixtures, where we also show
that our theoretical treatment leads to highly accurate
predictions in higher dimensions. Moreover, we elaborate
on the role of attractive or soft interactions and propose
the relevance for applications to non-equilibrium particle
uptake on a coarse-grained level. We then conclude in
Sec. IV.

II. THEORETICAL TREATMENT

A. Excluded-volume model

The ingredients of our minimal model in d spatial di-
mensions are illustrated in Fig. 1. We consider two fun-
damental types of particles: carriers, which offer internal
storage space, and cargo, which can occupy this space.
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FIG. 1. Hard-body model for complex-forming carrier-cargo
mixtures. (a) A hollow carrier (blue) and a smaller cargo (red)
with annotated size parameters as basic building blocks. The
d-dimensional free volume `d (black circle) available to the
center of the loaded cargo drives the formation of a carrier-
cargo complex (CCC). For λ}• −σ• < σ• there exists only one
possible CCC. (b) A carrier with larger interior (λ}•−σ• > σ•)
can hold more than one cargo and thus different CCCs can
form, illustrated here for occupation numbers ν = 1, . . . , 5.

A carrier whose internal degrees of freedom are explored
by cargo, represents a carrier-cargo complex (CCC). All
particles are radially symmetric and interact solely via
their excluded volume. The carriers have diameter σ}•
and posses a void space of diameter λ}• in their interior.
The diameter of the cargo is denoted by σ•. While par-
ticles of the same species i ∈ {}• , •} interact with each
other as d-dimensional hard spheres with the potential

Uii(r) =

{
0 for r ≥ σi ,
∞ else ,

(1)

the interaction between a cargo and a carrier is given by

U•}• (r) = U}• •(r) =





0 for r < (λ}• − σ•) /2 ,
0 for r ≥ (σ}• + σ•) /2 ,
∞ else ,

(2)

where r is the center-to-center distance between a pair of
particles.

As illustrated in Fig. 1a, there exists a single possible
CCC, representing a carrier holding exactly one cargo, if
σ• < λ}• < 2σ•. For carriers with larger interiors, multi-
ple CCCs can form, see Fig. 1b. We will outline below,
that the driving force of CCC formation is generally re-
lated to the standard Boltzmann statistics for a system
of cargo particles in a cavity with the shape of the inte-
rior of the carrier. Hence, the carrier occupation in our
hard-body model is limited by close packing. Our model
is evaluated via Monte-Carlo simulation in the canonical
ensemble with M carriers and N cargo particles, as de-
scribed in appendix A, and, in the following, by statistical

FIG. 2. Effective description of the carrier-cargo mixtures
depicted in Fig. 1 as d-dimensional hard spheres. Each CCC
consisting of one carrier and exactly ν cargo particles is as-
sociated with an effective species. All CCCs have the same
physical properties, i.e., the same diameter σ}• ≡ σ}• , as the
carriers (indicated by the shaded interior). The internal de-
grees of freedom due to carrier occupation are mapped onto
the effective chemical potential(s) (a) µ}• , defined in Eq. (10),
or (b) µν , defined in Eq. (25), of the CCCs. The empty car-
riers and free cargo have the chemical potentials µ}• and µ•,
respectively.

calculations in the grand canonical ensemble, where µ}•
and µ• denote the chemical potentials of the two particle
species.

B. Exact solution in one dimension

To demonstrate step by step how to treat the general
problem of CCC formation in an elegant way through
effective chemical potentials, we first consider the most
intuitive model for a carrier-cargo mixture in which the
carriers can hold at most one cargo. We further focus for
the moment on one spatial dimension where it is exactly
solvable. For this setup, we define the free length

` := λ}• − σ• (3)

of one loaded cargo within a carrier, such that ` < σ•.
Note that also the case with λ}• > 2σ•, allowing for
multiple carrier occupation, is exactly solvable in one di-
mension, but for clarity of the following presentation, we
will discuss this scenario later in Sec. II C.

1. Canonical partition function

As a first step we provide the exact canonical partition
function ZMN of the carrier-cargo mixture. The stan-

dard partition function Z(L)
N1,N2,...,NK

(σ1, σ2, . . . , σK) of a
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K-component hard rod mixture in a system of length
L, consisting of Ni particles of length σi for species
i = 1, . . . ,K, in is stated in appendix B as a reference.
Denoting by C ≤ min(M,N) the number of CCCs (the
carrier particles which are occupied by a cargo particle),
we find

ZMN =

min(M,N)∑

C=0

Z(L)
M,N−C(σ}• , σ•)

`C

ΛCC!

M !

(M − C)!
,

(4)

where Λ is the thermal wave length. Each term in this
sum corresponds to a number N −C of free cargo parti-
cles interacting with the M carriers as hard rods, while a
multiplicative factor accounts for the occupation statis-
tics of the C bounded cargo particles within the CCCs.

Substituting Z(L)
M,N into Eq. (4) we get

ZMN =

min(M,N)∑

C=0

(L−Mσ}• − (N − C)σ•)
(M+N−C)

`C

ΛM+N (M − C)!(N − C)!C!
.

(5)

Although the sum over C cannot be explicitly calcu-
lated, this result suggests an alternative interpretation
of the binary carrier-cargo mixture as an effective three-
component mixture, illustrated in Fig. 2, with the species
denoted as empty carriers, free cargo and occupied car-
riers, i.e., CCCs. As shown in appendix C, this becomes
clear by expressing Eq. (5) solely in terms of the partition

functions Z(L)
M−C,N−C,C(σ}• , σ•, σ}• ) and Z(λ}• )

1 (σ•) =

`/Λ.

2. Grand canonical partition function

The interpretation of the CCCs as members of a third
particle species with ` being an intrinsic control param-
eter, becomes more transparent when switching to the
grand-canonical picture. The exact grand canonical par-
tition function

Ξ =
∞∑

M=0

∞∑

N=0

min(M,N)∑

C=0

zM}• zN• `C
(M − C)!(N − C)!C!

(6)

× (L−Mσ}• − (N − C)σ•)
(M+N−C)

of the carrier-cargo mixture can be determined from
weighting Eq. (5) with the fugacities zi := eβµi/Λ of
species i ∈ {}• , •}, where µi are the respective chemical
potentials and β = (kBT )−1 is the inverse of the temper-
ature T with Boltzmann’s constant kB. Recognizing the
identity

∞∑

M=0

∞∑

N=0

min(M,N)∑

C=0

=
∞∑

C=0

∞∑

M=C

∞∑

N=C

(7)

for the infinite series and shifting the indices through the
substitutions M → A+ C and N → B + C, Eq. (6) can
be further evaluated as

Ξ =

∞∑

A=0

∞∑

B=0

∞∑

C=0

zA}• zB• (z}• z•`)C
A!B!C!

(8)

× (L−Aσ}• −Bσ• − Cσ}• )
(A+B+C)

,

where we have introduced the diameter σ}• ≡ σ}• of the
CCCs for later convenience.

3. Exact mapping onto an effective ternary mixture

Defining the effective fugacity

z}• := `z}• z• (9)

associated with the third species of CCCs, we have estab-
lished a proper mapping of the two-component carrier-
cargo mixture onto a three-component mixture, illus-
trated in Fig. 2, of three (reacting) species: empty carri-
ers, controlled by the chemical potential µ}• , free cargo,
controlled by the chemical potential µ•, and CCCs com-
posed of one carrier and one cargo, with the effective
chemical potential

µ}• := kBT ln(`/Λ) + µ}• + µ• . (10)

The interpretation of this mapping is, that the average
number of CCCs is determined by both the two exter-
nal particle reservoirs, represented by µ}• and µ• of the
carrier-cargo mixture, and the internal degrees of free-
dom, represented by the free length ` explored by the
cargo upon occupying a carrier.

While the sums in Eq. (8) can be explicitly carried
out, we refrain here from doing so. Instead, we empha-
size that, as soon as an effective fugacity (9) or chemical
potential (10) is specified, the properties of the mixture
can be explicitly evaluated using the vast toolbox from
liquid-state theory [43]. This fundamental mapping holds
even if the grand-canonical partition function cannot be
exactly determined and will be generalized later to mul-
tiple cargo loading. In fact, to (approximately) describe
a general interacting system, it is sufficient to know the
combinatorics of the CCC formation to specify z}• and
thus µ}• , as explored in more detail in appendix D.

In this manuscript, we make use of the framework of
classical density functional theory (DFT) [44] introduced
in appendix E In the special case of one-dimensional hard
rods, considered so far, we can thus obtain the exact
statistics by evaluating the Percus functional [45, 46] for
a mixture of empty carriers of length σ}• , free cargo of
length σ• and CCCs of the same length σ}• ≡ σ}• as the
carriers.
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4. Number densities

Focusing on a spatially homogeneous system, we can
gain general insight into the carrier-cargo mixture from
Eq. (8). Introducing the homogeneous density opera-
tors ρ̂X = X

L , where X ∈ {M,N,A,B,C} represents the
number of particles in the different (effective) species,
the probabilities of aggregation of the carrier and cargo
into a CCC can be determined from the ensemble aver-
age (grand-canonical trace) 〈ρ̂X〉 of ρ̂X . Specifically, the
total densities ρt}• := 〈ρ̂M 〉 of all carriers and ρt• := 〈ρ̂N 〉
of all cargo particles in the carrier-cargo mixture can be
calculated from Eq. (6) and the densities ρ}• := 〈ρ̂A〉 of
empty carriers, ρ• := 〈ρ̂B〉 of free cargo and ρ}• := 〈ρ̂C〉
of CCCs follow from Eq. (8).

Performing the same manipulations which were used
to derive Eq. (8) from Eq. (6), it is easy to show that

ρt}• = ρ}• + ρ}• and ρt• = ρ• + ρ}• (11)

These relations hold for any kind of interactions between
the particles and also for a spatially inhomogeneous sys-
tem. It is thus generally possible to recover information
on the physical system from an effective DFT calculation
based on the mapping in Eq. (10).

Moreover, if one is only interested in ratios of the (ho-
mogeneous) densities, it suffices to know the respective
fugacities. For example, the fraction ρ}• /ρt}• of CCCs,
indicating the percentage of occupied carriers, follows as
ρ}• /ρt}• = z}• /zt}• . A concise discussion can be found in
appendix D.

5. Pair distributions

To extract structural information on the carrier-cargo
mixture from a standard calculation in the effective sys-
tem, the relation, Eq. (11), between the number densi-
ties can also be generalized to pair distribution functions,
which indicate the probability to find two particles of a
certain species at distance x = |x1 − x2|. This can be
achieved by use of the additivity of the two-body den-
sities while taking into account that a CCC represents
both a carrier and a cargo with blurred position.

As further explained in appendix F, it is possible to
express the pair distributions gtij(x) with i, j ∈ {}• , •} of
the physical carrier-cargo mixture in terms of the (exactly
known [47]) effective pair distributions gij(x) with i, j ∈
{}• , •,}•} of a three-component hard-rod mixture as

gt}•}• = g}•}• , (12)

gt•• =
ρ2•g•• + ρ•ρ}•

(
g
(b)

•}• + g
(b)

}• •
)

+ ρ2}• g
(bb)

}•}•
(ρt•)2

, (13)

gt}• • =
ρ}• ρ•g}• • + ρ}• ρ}• g(b)}•}• + ρ•ρ}• g}• • +G

(b)

}•}•
ρt}• ρt•

,

(14)

gt•}• = gt}• • . (15)

Here, the functions

g
(b)

}• l :=
1

`

∫
dx′Θ(`/2− |x1 − x′|)g}• l(|x′ − x2|) = g

(b)

l}• ,
(16)

g
(bb)

}•}• :=
1

`2

∫
dx′
∫

dx′′Θ(`/2− |x2 − x′′|) (17)

× g}•}• (|x′ − x′′|)Θ(`/2− |x1 − x′|)
with l ∈ {}• , •,}•} denote the blurred effective distribu-
tions and

G
(b)

}•}• :=
ρ}•
`

Θ(`/2− |x2 − x1|) + ρ2}• g
(b)

}•}• (|x1 − x2|) (18)

denotes the blurred effective two-body density of two
CCCs extended by a blurred self contribution.

C. Combinatorics of general particle complexes

As a next step, we extend our treatment (10) to gen-
eral d-dimensional mixtures of κ different particle species,
representing different types of both carriers and cargo.
To this end, let us recall from Sec. II B 3 that it is suffi-
cient to consider ideal point-like particles which only in-
teract by forming complexes and establish the mapping
for such a system. The notion of carrier and cargo parti-
cles then follows by assigning appropriate interactions in
the effective system. In a more abstract manner, we can
in general simply speak of free particles which can join to
form a complex particle with internal degrees of freedom.
This allows for further applications, for example, in the
context of aggregation or clustering. In what follows, we
continue using the term CCC when referring to any kind
of effective complex particle.

1. General properties of a CCC

In a general mixture of κ components, the total num-
ber k of possible CCCs depends on both κ and the par-
ticular occupation statistics of the carriers determined
by the physical interactions in the system. To establish
the underlying combinatorics, let us denote the particle
number, chemical potential and fugacity of species i =
1, . . . , κ as Ni, µi and zi = eβµi/Λd, respectively. Now
suppose a generic CCC of effective species ν = 1, . . . , k

is made up from joining in total Xν =
∑
i x

(i)
ν building

blocks, where the x
(i)
ν denote the numbers of particles of

species i contributing to that particular type of CCC.
Such a CCC has d external configurational degrees of

freedom, associated with its spatial coordinates. The re-
maining (Xν−1)d internal configurational degrees of free-
dom act as a statistical weight for the aggregation and are
specified by the underlying model. For example, in our
hard-body model for carrier-cargo mixtures, we discuss in
Sec. II D 3 that these correspond to the free volume avail-
able for the loaded cargo particles (or their canonical par-
tition function for more general interactions). Therefore,
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we choose for each ν an effective length scale `ν counting
the number of states associated with one internal degree
of freedom. In other words, the occupation parameters
`ν follow from an occupation law of the carriers, which
for equilibrium carrier-cargo mixtures always obeys stan-
dard Boltzmann statistics. More general occupation laws
are suggested and discussed in Sec. III B 5.

2. Exact mapping onto a general effective mixture

In generalization of Eq. (9), the occurrence of general
CCCs of species ν can be understood in terms of the
effective fugacity

z
(ν)

}• := `(Xν−1)dν

κ∏

i

z
x(i)
ν
i , (19)

as we show below in Sec. II C 3. Upon expressing zi and

z
(ν)

}• in terms of µi and µ
(ν)

}• = kBT ln
(
z
(ν)

}• Λd
)
, respec-

tively, we find the effective chemical potentials

µ
(ν)

}• := kBT (Xν − 1) d ln(`ν/Λ) +

κ∑

i=1

x(i)ν µi . (20)

This comprehensive combination law (20) can be utilized
to describe any conceivable soft-matter system involving
particle uptake or other types of bonding mechanisms in
terms of κ+ k effective components.

3. General ideal partition functions

To derive Eq. (19), we consider point particles in a
d-dimensional box of length L. For ν = 1, . . . , k let us
denote by Cν the number of CCCs of species ν that are
present in a specific (allowed) configuration. Then there

are in total C(i) =
∑k
ν=1 Cνx

(i)
ν particles of species i

which contribute to any CCC, such that Ni−C(i) parti-
cles of that species remain free (or empty). The condition
that Ni − C(i) ≥ 0 for all i sets an upper bound to the
numbers Cν of CCCs in a given composition.

Now, taking the analogy to the considerations outlined
in Sec. II B 1, we can write the canonical partition func-
tion from Eq. (C1) as

Z
(id)
N1,N2,...,Nκ

=

{Ni−C(i)≥0}∑

{Cν}
Z(L)

N1−C(1),...,Nκ−C(κ),C1,...,Ck

×
k∏

ν=1

(
`
(Xν−1)
ν

Λ

)dCν
, (21)

where the sum counts all sets of admissible numbers {Cν}
of CCCs such that the numbers {Ni − C(i)} of free par-
ticles are non-negative for all species.

Again, switching to the grand-canonical picture allows
us to remove the interdependence of the sums. Subse-
quently introducing Ai := Ni − C(i), we find the ideal
grand-canonical partition function

Ξ(id) =
∑∑∑

AC

κ∏

i=1

(Ld zi)
Ai

Ai!

k∏

ν=1

(Ld z
(ν)

}• )Cν

Cν !

= exp

(
κ∑

i=1

Ldzi +
k∑

ν=1

Ldz
(ν)

}•

)
. (22)

with
∑∑∑

AC ≡
∑∞
A1=0 . . .

∑∞
Aκ=0

∑∞
C1=0 . . .

∑∞
Ck=0 and

the effective fugacities z
(ν)

}• from Eq. (20). Such an ef-
fective κ + k-component mixture can then be equipped
with physical interactions and evaluated accordingly.

4. Number densities for general complexes

As discussed in Sec. II B 4, the composition of the ef-
fective mixture can be studied by calculating the ensem-
ble average of the density operators {ρ̂X}, where X now
represents {Ni}, {Ni − C(i)} and {Cν}. It follows that
the respective total number densities {ρti} of particles of
species i, the number densities {ρi} of free particles of
species i (which are not bound in a CCC) and the num-

ber densities {ρ(ν)}• } of CCCs of species ν are related by

ρti = ρi +
k∑

ν=1

x(i)ν ρ
(ν)

}• , i ∈ {1, . . . , κ} . (23)

In generalization of Eq. (11), the contribution of the
CCCs to the total densities is weighted by the number

x
(i)
ν of a single CCC’s ingredients of species i.

D. Combinatorics of carrier-cargo mixtures

To apply the general combinatorics established in
Sec. II C to carrier-cargo mixtures with κ = 2 compo-
nents, such that i ∈ {1, 2}, which is equivalent to i ∈
{}• , •} in our pictorial notation introduced in Sec. II A.

Thus, a CCC of index ν = 1, . . . , k consists of x
(1)
ν = 1

carrier and x
(2)
ν = ν cargo particles, which makes in total

Xν = 1+ν building blocks. Below, we elaborate how our
general results can be applied to this case. Moreover, we
discuss in appendix G a more general mixtures involving
κ− 1 carrier species.

1. Fugacities and number densities

Upon inserting κ = 2, x
(1)
ν = 1 and x

(2)
ν = ν into

Eq. (19) and we get the effective fugacities

z
(ν)

}• = z}• (`dνz•)
ν , (24)
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such that we further recover z
(1)

}• ' z}• from Eq. (9) in
the special case k = 1 with `1 ' ` for d = 1. Similarly,
the effective chemical potentials from Eq. (20) become

µ
(ν)

}• = kBTν d ln(`ν/Λ) + µ}• + ν µ• (25)

in accordance with Eq. (10).
Accordingly, the relations in Eq. (23) for the number

densities become

ρt}• = ρ}• +

k∑

ν=1

ρ
(ν)

}• , ρt• = ρ• +

k∑

ν=1

νρ
(ν)

}• , (26)

where again recover Eq. (11) for k = 1 with ρ
(1)

}• ' ρ}• .
Depending on the system of interest, it may be quite

cumbersome to determine all ρ
(ν)

}• in Eq. (26). It may
further prove insightful to explicitly evaluate the sums
and we discuss below a convenient way to do so.

2. Total number densities of CCCs and loaded cargo

To keep the following discussion general, we formally

take the limit k →∞, noting that ρ
(ν)

}• = 0 if there exists
no CCC that contains ν cargo particles, i.e., if there is
no free space, `ν = 0, to place ν cargo particles inside a
carrier. We can thus define the total number density

ρ}• :=
∞∑

ν=1

ρ
(ν)

}• (27)

of all CCCs (irrespective of their species) in a way that
is consistent with the definition of ρ}• in Sec. II B 4 for
k = 1. Moreover, we define

ρ~ :=
∞∑

ν=1

νρ
(ν)

}• (28)

as the total number density of loaded cargo, which scales
with the average occupation number of a single CCC and
is, in general, different from the total number density of
CCCs, specifically ρ~ ≤ ρ}• . To further express these
total number densities we make use of the relations as
exemplified in appendix D.

First, we define the appropriate effective fugacity

z}• :=

∞∑

ν=1

z
(ν)

}• = z}•
∞∑

ν=1

(`dνz•)
ν (29)

of a generalized CCC by adding up the individual contri-
butions from Eq. (24). Hence, all CCCs with the same
physical length σ}• can be treated as a single species with
number density ρ}• , i.e., we may merely distinguish be-
tween an empty and a nonempty carrier.

Second, we define zt}• = z}• + z}• and use the scaling
relations

ρt}•
zt}•

=
ρ}•
z}•

=
ρ
(ν)

}•
z
(ν)

}•
=
ρ}•
z}•

(30)

to determine the generalized CCC fraction ρ}• /ρt}• , as

ρ}•
ρt}•

=
z}•
zt}•

=
−1 +

∑∞
ν=0(`dνz•)

ν

∑∞
ν=0(`dνz•)ν

. (31)

and the loaded-cargo fraction ρ}• /ρt}• , i.e., the number of
loaded cargo per carrier, as

ρ~
ρt}•

=

∑∞
ν=1 ν z

(ν)

}•
zt}•

=

∑∞
ν=0 ν(`dνz•)

ν

∑∞
ν=0(`dνz•)ν

. (32)

We stress that these ratios are independent of the specific
interparticle interactions. What is left to be done is to
specify all `ν for ν = 1, . . . , k and then evaluate Eqs. (31)
and (32) as the fundamental characteristics of the carrier-
cargo mixture.

3. Boltzmann occupation law in equilibrium

As exemplified in Sec. II B 1 and appendix C for one-
dimensional excluded volume interactions allowing only
for a single type, the canonical partition function ZMN

of a general carrier-cargo mixture can be expressed as an
appropriate combination of auxiliary partition functions.
In particular, upon properly deriving Eq. (21) with κ = 2
and Xν − 1 = ν, the terms

(
`ν
Λ

)νd
= Z(I}• )

ν (B•) , ν = 1, 2, . . . (33)

emerge when accounting for a configuration in which ν
cargo particles with a certain shape (denoted by B•) are
confined to a carrier with a certain interior shape (de-
noted by I}• ). The weight of all possible configurations

is given by the canonical partition function Z(I}• )
ν (B•).

Hence, through Eq. (33), all occupation parameters `ν
characterizing the formation of CCCs in our equilibrium
model have an explicit interpretation in terms of Boltz-
mann statistics and we say that the carrier occupation
follows a Boltzmann law. We substantiate this general
result by providing three relevant examples.

For spherically symmetric hard bodies in d dimen-
sions with σ• < λ}• < 2σ•, as illustrated in Fig. 1a,
`d1 represents the spherical free volume with the diameter
` = λ}• − σ• given in Eq. (3), while all other occupation
parameters are zero. Hence we have

`1 =
`
√
π

2

(
Γ

(
d

2
+ 1

))− 1
d

,

`ν = 0 , ν > 1 (34)

with the gamma function Γ. Together with Eq. (24), we
have fully recovered the result of Sec. II B in the special
case d = 1, where we have `1 = `.

Next we consider in our excluded-volume model the
case of carriers which can hold at most k cargo particles,
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as illustrated in Fig. 1b. Specifically for d = 1 this cor-
responds to particles with kσ• < λ}• < (k + 1)σ•, such
that

`νν =
(λ}• − νσ•)ν

ν!
=

(`− (ν − 1)σ•)ν

ν!
ν ≤ k ,

`νν = 0 ν > k . (35)

Together with Eq. (24) and an appropriate treatment of
interactions, these occupation parameters allow for an ex-
act description of this one-dimensional carrier-cargo mix-
ture, where Eq. (34) is recovered for k = 1.

We conclude by discussing the particularly simple case
of non-interacting cargo with σ• = 0, sticking to d =
1 for simplicity. Due to the absence of interactions in
the occupied carrier, we formally have k → ∞ with all
occupation parameters

`ν =
`

(ν!)
1
ν

(36)

depending on a single length scale ` = `1 = λ}• . In this
case, the expressions from Eqs. (29), (31) and (32) can
be considerably simplified to

z}• = z}•
(
e`z• − 1

)
,

ρ}•
ρt}•

= 1− e−`z• , ρ~
ρt}•

= `z• ,

(37)

where we have used
∑∞
ν=0(`z•)ν/ν! = e`z• and∑∞

ν=1(`z•)ν/(ν − 1)! = `z•e`z• . We notice that the
CCC fraction exponentially approaches the limiting value
ρ}• /ρt}• → 1, i.e., a system in which all carriers are occu-
pied, when taking the limit z• →∞.

III. EVALUATION OF THE MODEL

A. Results for hard bodies

To illustrate the results of our theoretical treatment
from Sec. II, we study the effective mixture within clas-
sical density functional theory (DFT), as described in
appendix E. This amounts to solving a system of κ + k
coupled algebraic equation (one for each component of
the effective system). While our treatment based on Fun-
damental Measure Theory (FMT) [48–50] is exact in one
spatial dimension [45, 46], there exists no exact theory for
interacting systems in higher spatial dimensions. Hence,
we also compare our results to Monte-Carlo simulations
as described in appendix A.

Specifically, we study the composition, given by the

fraction ρ}• /ρt}• or ρ
(ν)

}• /ρt}• of all CCCs or CCCs of
species ν, respectively, among the carriers, as introduced
in Secs. II B 4 and II D 2, and the structure, characterized
by the pair distribution gtij in the physical carrier-cargo
mixture, as discussed in Sec. II B 5.

FIG. 3. Composition of a carrier-cargo mixture, cf. Fig. 1a,
with σ• = 0.4σ}• and λ}• = 0.6σ}• determined using density
functional theory (lines) and Monte-Carlo simulation (sym-
bols). We show the CCC fraction ρ}• /ρt}• , indicating the per-
centage of occupied carriers, as a function of the total cargo
density ρt• for different total carrier densities ρt}• (as labeled).
As illustrated in Fig. 2, our theory describes an effective sys-
tem with an additional CCC species, compare Eq. (10). Be-
low we show excerpts of typical simulation snapshots in which
the CCCs are detected and colored in green, according to the
scheme in Fig. 2a. The frames provide the color code for our
results in d = 1, 2, 3 dimensions, where the one-dimensional
system is illustrated as two-dimensional particles whose cen-
ters are confined to a line.

1. Single-cargo uptake without interactions

For a mixture of interacting particles, it is not possible
to determine an explicit solution for the CCC fraction
ρ}• /ρt}• as a function of the total number densities ρt}•
of the carriers and ρt• of the cargo, even if a carrier can
hold no more that a single cargo. Thus, before discussing
these results, we consider a simplified model of a point-
like carrier-cargo mixture with σ}• = σ• = σ}• = 0.
However, we still assume a positive interior length scale
`1 > 0 of the carrier, such that the only interaction is by
cargo uptake, see Sec. III B 2 or Sec. III B 5 for possible
interpretations of such a scenario.

In this particular case, the CCC fraction follows in the
desired closed form

ρ}•
ρt}•

=
1 + L(1 +R)−

√
1 + 2L(1 +R) + L2(1−R)2

2L
(38)

as the explicit solution of the three equations given by
the two relations in Eq. (11) and ρ}• := `d1ρ}• ρ•, which
follows from Eq. (24) with ν = 1 upon identifying the
fugacities as number densities in the absence of effective
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interactions. Here, the dimensionless parameters are the
weighted interior volume L := `d1ρ

t
}• , where `1 is specified

in d spatial dimensions by Eq. (34), and the cargo-to-
carrier ratio R := ρt•/ρ

t
}• .

From Eq. (38) we can directly infer the basic behavior
and qualitatively understand the composition of carrier-
cargo mixtures. Specifically, the CCC fraction is a pos-
itive and monotone increasing function of both parame-
ters L and R, which vanishes for either L = 0 or R = 0.
In the limit L → ∞ of an infinitely large available space
inside the carrier, we obtain ρ}• /ρt}• → min(R, 1), i.e.,
all cargo particles are engulfed by a carrier, while not
all carriers are occupied for small cargo-to-carrier ratio
R < 1. In turn, for an infinite number of available cargo
particles, R →∞, all carriers are occupied, ρ}• /ρt}• → 1.
This nicely confirms the intuition that the number of
CCCs in the system increases upon increasing either the
free space in the interior of the carriers or the total num-
ber of cargo in the system. However, the approximation
in terms of non-interacting particles does not provide any
insight into the structure of carrier-cargo mixtures.

2. Single-cargo uptake in d dimensions

In our excluded-volume model, the behavior of a
carrier-cargo mixture is governed by the competition be-
tween the overall gain of external free volume and the
individual building blocks’ sacrifice of entropy upon form-
ing a CCC. To gain further insight, we first discuss the
statistical properties associated with carriers that can
hold no more that a single cargo particle. The CCC
fraction ρ}• /ρt}• is shown in Fig. 3 as a function of the

cargo-to-carrier ratio ρt•/ρ
t
}• . Also in spatial dimensions

d > 1, the results from our approximate DFT treatment
relying on state-of-the art fundamental measure theory
are in excellent agreement with the Monte-Carlo data.

Specifically, we predict in Fig. 3 that the fraction
ρ}• /ρt}• of CCCs gradually increases with increasing

cargo-to-carrier ratio ρt•/ρ
t
}• in any of the three consid-

ered spatial dimensions. The same holds true when in-
creasing the absolute number density ρt}• of all carriers

while keeping ρt•/ρ
t
}• fixed, since an enhanced CCC for-

mation balances the increase of global packing. These re-
sults are qualitatively consistent with the analytical pre-
diction in Eq. (38) for increasing R at constant L or vice
versa. Likewise, an increasing CCC fraction is observed
for an increasing internal size ` = λ}• − σ• < of the car-
rier (not shown), until multiple cargo uptake occurs for
` > σ• (see Sec. III A 3).

Increasing the dimensionality of the system at fixed
number densities, the onset of the CCC formation in
Fig. 3 shifts to higher cargo-to-carrier ratios. This can
be attributed on the one hand to the decreased pack-
ing efficiency of hard-sphere systems for larger d, such
that cargo can also occupy the voids between the car-
riers, thereby lowering the external drive towards CCC
formation. On the other hand, also the internal drive

FIG. 4. Composition of a carrier-cargo mixture (κ = 2) with
multiple carrier occupation (k = 5), cf. Fig. 1b, for d = 1.
Different from Fig. 3, we consider here ρt}• σ}• = 0.25 and
the size parameters σ• = σ}• /6 and λ}• = 11σ}• /12, such
that up to k = 5 cargo particles fit into one carrier. The
exact theoretical fraction of empty carriers, ρ}• , CCCs with

1 ≤ ν ≤ 5 cargo, ρ
(ν)

}• , and total CCCs, ρ}• =
∑5
ν=1 ρ

(ν)

}• , are
shown as labeled, using the same coloring as in Fig. 2b. The
two boxes at the sides display typical excerpts from simulation
snapshots, illustrated as in Fig. 3, which reflect the plotted
CCC fractions at the densities indicated by the teal arrows
and dotted vertical lines.

towards CCC formation is lowered for larger d, as the
free volume `d1 of the carrier decreases relatively to σd}• ,
compare Eq. (34). Hence, also this dimensional aspect is
qualitatively captured by Eq. (38).

3. Multiple-cargo uptake in one dimension

Turning to systems with carriers that offer more space
to their cargo, we predict specifically for d = 1 the ex-

act density ρ
(ν)

}• of each CCC representing ν = 1, . . . , k
loaded cargo particles and the exact density ρ}• of all
CCCs according to Eq. (27). The corresponding CCC
fractions are shown in Fig. 4 for a maximal carrier load
k = 5. In this case, we see that the balance between
internal and external entropical forces results in subse-
quent peaks of the different CCC fractions located at a
higher total cargo density for larger ν. The simulation
snapshots in Fig. 4 illustrate these percentages at the se-
lected cargo-to-carrier ratios. Due to the larger interior
size of the carriers, compared to those in Sec. III A 2 with
k = 1, the total CCC fraction ρ}• /ρt}• of non-empty carri-
ers increases more rapidly than in Fig. 3 for a comparable
density.

4. Exact structure for one-dimensional single-cargo uptake

The possibility of spherical cargo to occupy the interior
of hollow carriers is accompanied by structural changes of
the carrier-cargo mixture compared to an ordinary hard-
sphere mixture described by the effective system. We
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FIG. 5. Structure of the d = 1 dimensional carrier-cargo mix-
ture from Fig. 3 with σ• = 0.4σ}• and λ}• = 0.6σ}• . We show
exact results obtained using density functional theory for the
pair distribution functions at the densities ρt•σ}• = 0.625
and ρt}• σ}• = 0.72. The distributions for an effective hard-
rod mixture (top) can be recombined to obtain the structure
of the physical carrier-cargo mixture (bottom) according to
Eqs. (12) to (15). By providing a direct measurement via
Monte-Carlo simulation in appendix A, this result is exactly
confirmed. The lengths associated with the drawn charac-
teristic two-particle configurations are highlighted by vertical
lines.

illustrate the deeper connection between these two sys-
tems by discussing the exact pair distributions for the
one-dimensional particles considered in Sec. III A 2. This
can be conveniently achieved by reconstructing the dis-
tributions gtij(x) with i, j ∈ {}• , •} of the physical carrier-
cargo mixture from the effective DFT results gij(x) with
i, j ∈ {}• , •,}•} according to Eqs. (12) to (15).

While Fig. 5 illustrates the basic relation gt}•}• = g}•}• ,

it also shows that gt}• • possesses as a remarkable signature
of CCC formation a strong signal for short distances.
Moreover, gt}• • exhibits two (additional) and gt•• even
three main peaks, associated with those of a binary hard-
sphere mixture. The broadening of the peaks related to
cargo within CCCs is apparent, as most clearly visible
for gt•• at the distance corresponding to two CCCs at
contact.

B. Further applications

In Sec. III A we have presented the main observations,
derived in Sec. II, for our binary carrier-cargo mixture
with excluded volume interactions in equilibrium. Our
central theoretical result, the combination law in Eq. (19)
or Eq. (20), is however, more versatile. This general re-
lation between the internal degrees of freedom and an
effective external particle reservoir is exact for all inter-
actions which allows to make a clear distinction between
the interior and the exterior of the carrier.

Our model also offers the flexibility for investigating

more complex interactions between the occurring (effec-
tive) species. We can therefore formally assign an in-
dividual interaction to each CCC species which may be
distinct from that of the carrier species and interpret the
`ν as generalized parameters for controlling the carrier
occupation. In the remainder of this section, we will fur-
ther elaborate on selected aspects related to these points.

1. Interpretation of the model

The driving force of a generic carrier to engulf its cargo
may have different physical, chemical or biological ori-
gins, e.g., resulting from entropic, energetic, active or
even intelligent mechanisms. Based on phenomenologi-
cal intuition, a basic model for CCC formation should
account for two internal properties: (i) an engulfment
strength, which quantifies the individual uptake proba-
bility and (ii) a corresponding occupation law governing
multiple cargo uptake. In our model, both properties are
comprised within the parameters `ν entering in Eq. (24)
or Eq. (25), which carry microscopic information.

In our simple hard-body model, introduced in Sec. II A
the engulfment strength `1, associated with the first
cargo loaded, is given explicitly by its available d-
dimensional free volume, compare Eq. (34). The engulf-
ment strength `ν , associated with the ν-th cargo loaded,
is generally reduced (or even zero), since the occupation
law is based on Boltzmann statistics, compare Eq. (35).
Even for non-interacting particles, there is still an effec-
tive repulsion of the cargo within the carrier upon mul-
tiple uptake due to the factor 1/(ν!) in Eq. (36). Due to
this indistinguishability, the tendency towards cargo up-
take depends on number of cargo already engulfed, which
is a signature of the equilibrium nature of our model.

2. Attraction-enhanced engulfment strength

While hitherto we have exclusively used typical lengths
`ν to quantify cargo uptake, we stress that our model is
not limited to excluded-volume interactions. As demon-
strated by Eq. (33), the engulfment strength is rather
associated with dimensionless partition functions of the
confined cargo. Thus an equally valid interpretation of
engulfment strength is possible in terms of the binding
energies

Eν := −kBTd ln(`ν/Λ) . (39)

In general, we can describe cargo uptake, that is gov-
erned by a combination of soft interactions and available
space inside vesicles, while both driving forces can then
be commonly quantified by either `ν or Eν .

Since attraction mechanisms are expected to play an
important role in the process of cargo uptake, we propose
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the modified carrier-cargo interaction potential

U•}• (r) = U}• •(r) =




−a for r < (λ}• − σ•) /2 ,
0 for r ≥ (σ}• + σ•) /2 ,
∞ else

(40)

as a basic example, which extends Eq. (2) by introducing
the attraction parameter a ≥ 0. Apparently, upon eval-
uating Eq. (33), there is an additional Boltzmann factor
exp(βa/d), which enhances the engulfment strengths `ν
according to setting `ν → `ν exp(βa/d). Therefore, a
carrier-cargo mixture interacting according to Eq. (40)
remains exactly solvable in one spatial dimension.

This generalized consideration shows that the use of
the parameters `ν (which have the dimensions of length)
is not limited to describe excluded-volume interactions,
but allows for a quite general description of engulfment
strength. In particular, the value of `ν can exceed the
dimensions of the carrier. Also with this interpretation,
the parameters `ν rigorously derive from a microscopic
model, as specified here through Eq. (40), which imposes
a Boltzmann occupation law.

3. Soft interactions and membranes

In many practical applications, cargo uptake is gov-
erned by soft interactions with a carrier membrane,
which controls the encapsulation (and release) of parti-
cles. Within our model, the interaction between a cargo
and a carrier can be most generally described as

U•}• (r) = U}• •(r) =

{
Uout(r) for r ≥ σ}• /2 ,
Uin(r) else ,

(41)

where σ}• /2 is the radius of the carrier membrane and
the potentials Uin(r) and Uout(r) act inside and out-
side this membrane, respectively. Then the engulfment
strengths can be determined from Uin(r) for r < σ}• /2,
while Uout(r) describes the interaction of the CCC. The
effective interaction of the CCC should then be assumed
to have hard core for r < σ}• /2.

A soft carrier model can thus be conveniently devised
by choosing only bounded potentials in Eq. (41) and re-
lating the carrier radius σ}• /2 to a potential maximum.
However, the resulting effective treatment neglects direct
cargo-cargo interactions through the carrier membrane,
which cannot be accounted for in the picture described
above. Despite such an approximation, the resulting pa-
rameters `ν describing the engulfment strengths in an
effective system are still related to a microscopic model,
as specified here through Eq. (41), and thus obey a Boltz-
mann occupation law.

4. Coarse-grained engulfment strength

In biological carrier-cargo systems, the complexity of
physical processes that happen at the carrier membrane

FIG. 6. Empirical applications of our model. (a) Different
occupation laws can emerge on a coarse-grained level when
Boltzmann law (top) is effectively broken out of equilibrium.
Taking cues from quantum statistics, we conceive Fermi-Dirac
occupation (left) if a carrier is designed to engulf no more
than a single cargo, while Bose-Einstein occupation (right)
formally corresponds to distinguishable cargo storage, illus-
trated here by drawing multiple compartments, each charac-
terized by the same engulfment strength `. (b) Polydispersity
of the engulfment strength ` (indicated by the particle colors)
can result in a Bose-Einstein condensation of cargo on the
carriers with the maximal value ` = `∗ (blue).

goes beyond refined equilibrium models based on soft po-
tentials. For example, a proper description should take
into account adhesive forces, bending rigidity, surface
tension or signaling. Moreover, there exist mechanisms,
such as the digestion of encapsulated cargo, which pre-
vent its release. This can apparently break detailed bal-
ance, an important underlying principle of equilibrium
physics.

Microscopic models, which accurately reflect all micro-
scopic properties of such processes are often difficult to
handle. As an approximate alternative, our treatment al-
lows to effectively model various (non-equilibrium) driv-
ing forces for cargo uptake by directly choosing appropri-
ate values of the occupation parameters `ν . For applying
such a coarse-grained equilibrium picture, we stress that
systems in nature often suggest occupation laws that are
not of the Boltzmann type.

5. Coarse-grained occupation laws

Having elaborated that the fundamental Boltzmann
law of particle uptake may be broken for general carrier-
cargo mixtures, we suggest the possibility to use non-
Boltzmann occupation laws for modeling non-equilibrium
driving forces of cargo uptake, such as conscious sensing,
active chasing or digestion mechanisms. To discuss the
basic implications, we assume that typical cargo can be
much smaller than the carriers and consider again an ide-
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alized system with non-interacting cargo in d = 1 dimen-
sions. Recalling the results in Eq. (37) obtained with the
ideal Boltzmann occupation law from Eq. (36), we pro-
pose and compare two examples, inspired by quantum
statistics, compare the illustration in Fig. 6a.

A carrier that closes down after taking up a single cargo
particle constitutes the Soft-Matter analogy to Pauli ex-
clusion. This Fermi-Dirac occupation law is defined by
`1 = ` and `ν = 0 for ν > 1, as in Eq. (34) but with
` being completely unrelated to any particle dimension
or other interactions. In this case, the expressions from
Eqs. (29), (31) and (32) can simply be calculated by trun-
cating all sums after ν = 1, which yields

z}• = z}• `z• ,
ρ}•
ρt}•

=
`z•

1 + `z•
,

ρ~
ρt}•

=
`z•

1 + `z•
. (42)

In contrast to Boltzmann occupation, the limit
ρ}• /ρt}• → 1 for z• →∞ is approached algebraically as a
function of z•.

If a carrier can store all cargo particles independently,
or, more generally, if the effective engulfment strength
does not depend on the number of cargo already en-
gulfed by the carrier, there is effectively no repulsion at
all between the engulfed non-interacting cargo particles,
as if each of them is stored in an individual compart-
ment of size `. This reflects the behavior of effectively
distinguishable particles (for example due to instant di-
gestion), which is governed by a Bose-Einstein occupa-
tion law which is defined as

`ν = ` , ν = 1, 2, . . . (43)

and yields

z}• = z}•
`z•

1− `z•
,

ρ}•
ρt}•

= `z• ,
ρ~
ρt}•

=
`z•

1− `z•
(44)

with the restriction to `z• < 1. Here we have used
the identities

∑∞
ν=0(`z•)ν = 1

1−`z• and
∑∞
ν=1 ν(`z•)ν =

z•`
(1−`z•)2 for the case `z• < 1 and silently omitted in-

cluding the step function Θ(1 − `z•) in these formulas.
For larger `z• > 1 the above quantities are ill-defined,
as both the effective fugacity and the loaded-cargo frac-
tion diverge for `z• → 1. The CCC fraction approaches
the limiting value ρ}• /ρt}• → 1 already at the finite value

z• → `−1 of the fugacity of the cargo particles.

Comparing the different scenarios (37) (42) (44), it can
be shown that Fermi-Dirac (Bose-Einstein) occupation
yields the smallest (largest) values of both ρ}• and ρ~
and the weakest (strongest) increase of the CCC frac-
tion, ρ}• /ρt}• as a function of ρt•. One intriguing result
is that, in each case, the number of loaded cargo per
carrier, ρ~/ρt}• , takes the same functional form as the
average occupation number of a certain energy level in
quantum statistics.

FIG. 7. Bose-Einstein condensation for carriers with poly-
dispersity p(`) ∝ `α(`∗ − `)α in the engulfment strength
0 ≤ ` ≤ `∗ = Λ for representative exponents α = 0, 1, 2
(colors as labeled) and the total carrier density ρ̄t}•Λ = 1. a)
Normalized distributions p(`) with illustrations of the result-
ing average occupation by cargo, cf. Fig. 1c., b) The total
cargo density ρt• increases with the chemical potential µ•. At
µ• = µcr (vertical line) ρt• diverges if α ≤ 1 and reaches
the finite critical value ρcr (bullets) otherwise. c) Order pa-
rameter B (Eq. (51)) of the Bose-Einstein condensation, i.e.,
fraction of cargo on carriers with largest engulfment strength
`∗, as a function of ρt•.

C. Bose-Einstein condensation with polydispersity

To demonstrate the collective effects that can
arise from a certain coarse-grained treatment of non-
equilibrium cargo uptake, we further investigate the im-
plications of assuming a Bose-Einstein occupation law
according to Eq. (43). Here, we additionally consider a
polydisperse mixture of carriers, each with a characteris-
tic engulfment strength 0 ≤ ` ≤ `∗. Then, as illustrated
in Fig. 6b, a Bose-Einstein condensation of the cargo can
occur on the carriers with the strongest drive to engulf
their cargo, represented by ` = `∗. The conditions for
this phase transition are elaborated below and exempli-
fied in Fig. 7.

The following considerations are independent of the in-
teractions between the particles. However, our working
hypothesis assumes that cargo particles become distin-
guishable and non-interacting upon being engulfed, e.g.,
as an effective picture for being gradually digested.

1. Polydisperse carriers

To consider a mixture of different carrier species i, the
definitions in Sec. II D 2 can be easily generalized, as per-
formed in appendix G. In particular, engulfment strength
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`[i], and thus the resulting densities of (empty) carriers,
CCCs and loaded cargo now additionally depend on the
carrier species i. Here, we are specifically interested in

the total number density ρ
[i]
~ of cargo loaded on carriers

of species i under Bose-Einstein occupation, which we
can express from the result in Eq. (44) as

ρ
[i]
~ =

`[i]z•
1− `[i]z•

ρ
([i],t)

}• (45)

with the restriction to `[i]z• < 1.
For a mixture of carriers with polydisperse engulfment

strengths ` the quantities of interest become continu-
ous functions of `. As input, we suppose that the to-
tal number density ρt}• (`) = ρ̄t}• p(`) of carriers is dis-
tributed according to a known normalized function p(`),
which vanishes beyond a maximal size `∗, see Fig. 7a for
three examples considered here. The total number den-

sity ρ̄t}• =
∫ `∗
0

d` ρt}• (`)/`∗ of all carriers follows by inte-

gration (and we write here ρ̄t}• instead of ρt}• to indicate
the averaging involved). With the knowledge of p(`), we
can take the continuum limit of Eq. (45) to express the
total number density ρ~(`) of cargo loaded on carriers of
engulfment strength ` under Bose-Einstein occupation as

ρ~(`) = ρ̄t}• p(`)
`z•

1− `z•
(46)

with the restriction `z• < 1.
Then, the total number of carriers is given by

ρt• = ρ• +
ρ̄t}•
`∗

∫ `∗

0

d` p(`)
z•`

1− `z•
Θ(1− `z•) , (47)

where Θ(1 − `z•) denotes the Heaviside step function.
Note that, since the particular expression for ρ~(`) in
Eq. (46) diverges for `z• → 1 and p(` is chosen such that
` ≤ `∗, the expression in Eq. (47) is only valid for `z• < 1.
Exploiting the mathematical analogy to quantum statis-
tics [51], we show next how to identify a Bose-Einstein
condensation in our model, where p(`) takes the role of
the density of states.

2. Bose-Einstein order parameter

Regarding the denominator in Eq. (46), we recog-
nize that the fugacity z• has an upper bound given by
the condition `∗z• < 1, which defines the critical fu-
gacity zcr := 1/`∗ (or the critical chemical potential
µcr := −kBT ln(`∗/Λ)). Despite this divergence, setting
`∗z• = 1 is allowed if the limit z• → zcr of Eq. (47) exists,
i.e., if the critical density

ρcr := lim
z•→zcr

ρt• (48)

has a finite value. In this case, a further increase of the
total number density ρt• of loaded cargo is only possi-
ble by loading the largest carrier, i.e., by increasing the

number density ρ~(`∗) at constant z• = zcr. While, for
z• < zcr, the expression

ρ~(`∗) = ρ̄t}• p(`∗)
z•`∗

1− `∗z•
(49)

holds, such that the contribution to ρcr is infinitesimal,
the value of ρ~(`∗) may become finite as the denominator
approaches zero for z• → zcr.

In a system with a finite ρcr, defined in Eq. (48), the
total number density ρt• must account for the explicit
contribution of ρ~(`∗). The according generalization of
Eq. (47) yields

ρt• = z• + ρ~(`∗) +
ρ̄t}•
`∗

∫ `∗

0

d`
z•`

1− `z•
p(`) Θ(1− `z•) .

(50)
Then, we find that the fraction of cargo particles occu-
pying the largest carrier is given by

B :=
ρ~(`∗)
ρt•

=

{
0

1− ρcr
ρt•

if z• < zcr ,
if z• = zcr .

(51)

This ratio constitutes the order parameter of a density-
driven Bose-Einstein condensation [51] into a state with
a macroscopic occupation of a single carrier species with
engulfment strength `∗ for ρt• > ρcr.

3. Illustration and discussion

To illustrate the conditions for a Bose-Einstein con-
densation in a polydisperse carrier-cargo mixture, we dis-
cuss, as a particular example, a system in which all cargo
particles (not only those engulfed by a carrier) are non-
interacting. This allows us to express the critical density
from Eq. (48) in the closed form

ρcr =
1

`∗
+ lim
z•→zcr

ρ̄t}•
`∗

∫ `∗

0

d`
z•`

1− `z•
p(`) Θ(1− `z•) ,

(52)
where we have replaced the number density ρ• → z• by
the corresponding fugacity, which equals `∗ in the limit
taken.

To evaluate the integral in the second term of Eq. (52)
we consider a family of normalized distribution functions

p(`) ∝
(
−
(
`− `∗

2

)2

+
`∗ 2

4

)α
= `α(`∗ − `)α , (53)

given by an inverse parabola exponentiated by α. The
form of p(`) is shown in Fig. 7a for α = 0, 1, 2. For α > 0,
we have p(`∗) = 0 and the scaling for `→ `∗ is given by

p(`) ∝ (`∗ − `)α +O
(
(`∗ − `)α+1

)
. (54)

Then ρcr can be explicitly calculated as a function of α
and we find that it takes a finite value (blue and green
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dots in Fig. 7b and c) if α > 0, while it diverges logarith-
mically for α = 0.

As shown in Fig. 7b, there are two possibilities for the
behavior of the total number density ρt• of cargo parti-
cles, depending on the exponent α of p(`) as `→ `∗ and
thus on the critical density ρcr. First, if ρcr diverges, all
carriers take up an infinitesimal fraction of cargo parti-
cles for z• < zcr and no phase transition occurs. Sec-
ond, if ρcr remains finite, then ρt• can be increased indef-
initely at constant critical fugacity z• = zcr by loading
further cargo particles on the carriers with largest en-
gulfment strength `∗. As a consequence, a Bose-Einstein
condensation occurs at ρt• = ρcr towards a state with a
macroscopic number of cargo occupying the carriers with
` = `∗.

For z• < zcr, the behavior of ρt• as a function of z• is
given by either Eq. (47) or Eq. (50), since ρ~(`∗) = 0.
Therefore, the order parameter B in Eq. (51) remains
zero. However, when ρt• = ρcr is exceeded for z• = zcr,
we have ρ~(`∗) > 0, Hence, the value of B increases
continuously as a function of ρt• in the new phase. This
behavior is illustrated in Fig. 7c.

We conclude that there is no Bose-Einstein condensa-
tion for a constant distribution of engulfment strengths in
a certain interval, while the formation of a Bose-Einstein
condensate is facilitated for mixtures of carriers with an
increasingly weaker polydispersity (such that p(`) has a
smaller variance). This observation is analogous to Bose-
Einstein condensation in quantum statistics, where the
density of states of a three dimensional ideal Bose gas
has the exponent 1/2 and gives rise to a phase transi-
tion, in contrast to the exponents 0 and −1/2 in two
and one dimensions, respectively. Finally, we stress that
the crucial technical difference between a classical sys-
tem and quantum statistics is that, in the present case,
the momenta of the particles are thermalized and repre-
sented by the thermal wave length Λ. Thus, following
the discussion in Sec. III B 2, the respective energy lev-
els E := −kBT ln(`/Λ) are provided by a configurational
quantity modeling the non-equilibrium drive of the carri-
ers to engulf their cargo. Moreover, the spatial dimension
(taken here as d = 1) would only enter here as a trivial
factor.

IV. CONCLUSIONS

In this work, we have introduced a combination
law (20) that illustrates that the internal degrees of free-
dom associated with the formation of soft-matter com-
plexes can be exactly mapped onto effective chemical po-
tentials, which allow to describe such complexes as an
independent particle species. We demonstrated the va-
lidity of our approach for carrier-cargo mixtures through
exactly matching simulation results for a one-dimensional
hard-rod model, where the formation of CCCs is purely
driven by entropic free-volume effects. Then we argued
that non-Boltzmann occupation laws provide a coarse-

grained description of non-equilibrium particle uptake,
as exemplified by recognizing a Bose-Einstein condensa-
tion for a polydisperse carrier model.

The versatility of our approach can be exploited when
accounting for emergent properties of the assembled com-
plexes that are distinct from their building blocks. While
the present application to carrier-mixtures involves CCCs
whose external length is strictly set by the carrier, we
can also account for a shape change upon cargo uptake.
Likewise, by appropriately adapting the interactions, it
is possible to describe various types of aggregates [52]
such as dimers formed by lock and key colloids [53–56],
colloidal molecules [7, 57–61] or building blocks of sys-
tems with entropic bonds [62–64]. Exploiting the full
potential of modern fundamental-measure density func-
tional theory [48–50, 65, 66] the statistical treatment of
such anisotropic interactions or inhomogeneities induced
by external stimuli is within reach.

Another important application of our model would be
a dynamical description of particle uptake, which can
be achieved in two ways. The first possibility is via di-
rect computer simulation of the dynamics. This requires,
however, soft models for the carrier membrane as dis-
cussed in Sec. III B 3. The second possibility amounts to
a direct application of our effective picture through an
extension [67, 68] of dynamical density functional theory
[69–71] in which appropriate reaction rates should be de-
termined from the equilibrium statistics. Such dynamical
approaches could also be used to explicitly study more
complex carrier-cargo mixtures involving self-propelled
building blocks [33–36, 61, 72–75] or emerging active mo-
tion of the assembled complex [31, 37, 39, 76–78].

A critical open question which could stimulate future
efforts concerns the experimental realization of cargo up-
take and release in equilibrium soft-matter systems, e.g.,
involving colloidal carriers or lipid vesicles. Further ex-
perimental challenges will be to discover or train func-
tional carriers [79] whose non-equilibrium driving force
for cargo uptake is not limited to Boltzmann occupation
or develop intelligent micromachines [80] which learn to
collect their cargo as programmed.
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Appendix A: Monte-Carlo simulation

To corroborate our analytic treatment, we perform
canonical Monte-Carlo simulation of bulk systems of
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M carriers and N cargo particles, realized via periodic
boundary conditions, in d = 1, 2, 3 dimensions. The
total particle number M + N = 2000 is always fixed,
while we vary the ratio N/M = ρt•/ρ

t
}• of cargo to car-

rier particles between independent simulation runs. The
input densities ρt• and ρt}• are determined by the final
size of the simulation box. The overlap criterion be-
tween a pair of particles is given by Eqs. (1) and (2).
We perform 106 Monte Carlo cycles, each consisting of
M + N trial moves. In each trial move, one of the par-
ticles is displaced by a distance vector ∆r, whose com-
ponents ∆ri with i = 1, . . . , d are independent random
numbers drawn from a uniform distribution in the in-
terval [−∆max,∆max]. Any trial move is accepted with
probability P = min(1, exp(−∆U/kBT )) [81], i.e, over-
lap free trial moves are accepted, while overlapping trial
moves are rejected. Over the course of the simulation,
the value of ∆max is adjusted such that acceptance ratio
remains close to 0.3.

We obtain the particle configurations at high densi-
ties by following a compression protocol. We randomly
initialize the system at low number densities ρt• + ρt}• =

5×10−3/σ}• . Over the course of the simulation, we grad-
ually rescale all coordinate axes xi, i ∈ {1, 2, 3}, such that
xi ∝ τ−1/(3d), where d is the number of spatial dimen-
sions, effectively increasing all total densities within the
system as ρt• ∝ ρt}• ∝ τ1/3. Here, τ ∈ [0, 1] denotes the
simulation progress, i.e., the number of completed Monte-
Carlo cycles. This type of decelerating compression aids
the equilibration speed, since the system is quickly com-
pressed in the density regime where the particles are ex-
pected to rarely come in contact, while being allowed to
undergo a larger fraction of Monte Carlo cycles at higher
densities.

Exemplary simulation data is shown as dots in Fig. 2a
of the main manuscript. In addition, Fig. 8 shows the
pair distribution functions in one dimension for ρt•σ}• =
0.625 and ρt}• σ}• = 0.72. Additionally, corresponding
results are shown, obtained from the average over 200
simulation runs (dashed red). As visible, the theoretical
graphs (blue, cf. Fig. 2b of the main manuscript), calcu-
lated as described in Sec. II B 5, agree with the simulation
results to an excellent degree.

Appendix B: Canonical partition function of a
hard-rod mixture in one dimension

To aid the discussion in Sec. II B 1, we state here the
exact canonical partition function

Z(L)
N1,N2,...,NK

(σ1, σ2, . . . , σK)

=
K∏

i=1

1

Ni!ΛNi


L−

K∑

j=1

Njσj



Ni

Θ


L−

K∑

j=1

Njσj


(B1)

a K-component mixture of hard rods (one-dimensional
hard spheres or Tonks gas). Specifically, Ni denote the

FIG. 8. Theoretical pair distribution functions (blue) in
d = 1 dimension for ρt•σ}• = 0.625 and ρt}• σ}• = 0.72, as
shown at the bottom of Fig. 5. The respective pair distri-
bution functions obtained from simulation (dashed red) show
excellent agreement.

particle numbers of each species i ∈ {1, 2, . . . ,K} con-
fined in a one-dimensional interval of length L, while
we ignore the trivial dependence on the temperature T
through the thermal wavelength Λ. For later conve-

nience, we further write Z(L)
N1,N2,...,NK

as a function of the
particle lengths σi of each species, while the explicit de-
pendence on the particle numbers and the system length
is written as a subscript and a superscript, respectively.
The Heaviside function Θ(x) merely ensures that the sys-
tem is below close packing for the given particle numbers
and is silently omitted elsewhere to ease the notation.

Appendix C: Canonical partition function of the
carrier-cargo mixture

To better understand the notion of our system con-
sisting of M carriers and N cargo as an effective three-
component mixture, we rewrite Eq. (5) in the less intu-
itive but more instructive form

ZMN =

min(M,N)∑

C=0

Z(L)
M−C,N−C,C(σ}• , σ•, σ}• )

(
Z(λ}• )

1 (σ•)
)C

,

(C1)

which contains no factorial expressions. In the second
equality, we made use of the fact that the free length

` ≡ ΛZ(λ}• )

1 (σ•) . (C2)

accessible to a cargo particle within a CCC, as defined in
Eq. (3), can be explicitly interpreted as the canonical par-
tition function of single particle, i.e., Eq. (B1) with K = 1
and N1 = 1. Therefore, we see that the total partition
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function ZMN of our carrier-cargo mixture can be per-
ceived as sum over products of different partition func-

tions: Z(L)
M−C,N−C,C represents the external interactions

and Z(λ}• )

1 denotes the internal occupation statistics of
a single CCC. By external interaction we generally mean
the physical interactions between the particles excluding
the possibility to engulf one another, which here is the
hard-core repulsion of diameters σ}• and σ•. In other
words, we have demonstrated that an occupied carrier
represents a third species of size σ}• := σ}• which addi-
tionally possesses internal degrees of freedom. We can
therefore speak of an effective mixture of A := M − C
empty carriers, B := N − C free cargo particles and C
CCCs (occupied carriers).

Appendix D: Relation between fugacities and
homogeneous number densities

In Eq. (8) we have derived the grand partition function
for an effective ternary system representing the carrier-
cargo mixture. To prepare for the effective treatment
of more general mixtures, it is instructive to discuss an
even simpler mapping. In fact, since empty carriers have
the same length σ}• ≡ σ}• as the corresponding CCCs,
a two-species picture is sufficient if one is only interested
in information contained in ρt}• . To see this, we recast
Eq. (8) as

Ξ =

∞∑

M=0

∞∑

B=0

(z}• + z}• )MzB•
M !B!

(L−Mσ}• −Bσ•)(M+B)

(D1)

by undoing the substitution M → A + C and rearrang-
ing the sums to obtain a binomial series. In such a two-
species mixture, the carrier species (with no distinction
of empty or occupied) can be interpreted to be coupled
to a single effective particle reservoir with an enhanced
fugacity zt}• := z}• + z}• also accounting for the internal
degrees of freedom. Thus, Eq. (D1) illustrates the addi-
tivity ρt}• = ρ}• +ρ}• of the effective densities in Eq. (11)
directly by the additivity of the corresponding fugacities.

More generally, as long as the interactions σ}• = σ}•
between two (or more) species are the same, one finds
the following scaling relation between densities and fu-
gacities:

ρt}•
zt}•

=
ρ}•
z}•

=
ρ}•
z}•

. (D2)

We thus see that the fraction ρ}• /ρt}• of CCCs (the num-
ber of carriers occupied by a cargo divided by the total
number of carriers) can be determined solely from the
corresponding fugacities for any interaction between the
particles as ρ}• /ρt}• = z}• /zt}• . To determine the CCC
fraction as an explicit function of total carrier and cargo
density, as, e.g., in Fig. 3, further calculations are neces-
sary.

The above relations between (effective) fugacities and
number densities become most apparent in an effective
system without interactions, i.e., when setting σ}• =
σ• = σ}• = 0. In this ideal case, indicated by the super-

script (id), the homogeneous number densities ρ
(id)

}• = z}•
and ρ

(id)

}• = z}• are explicitly given by the corresponding
fugacities. Moreover, without (external) interactions, it
is easy to see from either Eq. (8) or Eq. (D1) that the
grand partition function can be explicitly written in the
closed form

Ξ(id) = eL(z}• +z•+z}• ) . (D3)

This result underlines that the combinatorics underlying
the generic definition, Eq. (10), of the effective fugacity
z}• , is independent of the explicit interactions.

For practical reasons, considering two species with fu-
gacities zt}• and z• in Eq. (D1) is not very helpful, since
the information on the distribution ρ}• of CCCs and thus
also the total density ρt• of cargo particles is not avail-
able, as it requires knowing both ρ}• and ρt}• . As such, it
is in general more appropriate to work with Eq. (8) and
to distinguish between physically indistinguishable par-
ticles (empty carriers and CCCs) in our effective system.
Then, ρt• can be determined from the auxiliary relation
ρt• = ρ• + ρ}• in Eq. (11). However, it is not possible to
derive ρt• in the spirit of Eq. (D1), i.e., directly from the
statistics underlying Ξ. This is because loaded cargo does
not contribute to external interactions. In other words,
the total packing fraction ηt}• := ρt}• σ}• = ρ}• σ}• +ρ}• σ}•
of carriers is not affected by the number of CCCs and
follows the addition law, Eq. (11), of number densities,
while only the free cargo particles contribute to the total
packing fraction ηt• := ρ•σ• 6= ρt•σ•.

Appendix E: Classical Density Functional Theory
(DFT)

Here we provide a compact introduction to classical
density functional theory (DFT) [43, 44], a powerful tool-
box to determine the configuration and structure of in-
teracting fluid mixtures. First, in Sec. E 1, we introduce
the DFT framework for general inhomogeneous fluid mix-
tures and explain how to determine the homogeneous
number densities in our effective description of carrier-
cargo mixtures. Second, in Sec. E 2, we explain how to
determine the effective pair distribution functions and
from those recover the exact expressions for the physical
carrier-cargo mixture in one spatial dimension.

1. Composition of a mixture from DFT

Consider in general a fluid mixture of K different

components in the external one-body potentials V
(i)
ext(r)

acting on the particles of species i ∈ {1, 2, . . . ,K}.
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Then, the corresponding (inhomogeneous) number den-
sities ρi(r) in equilibrium can be obtained from solving
the Euler-Lagrange equations

δΩ[{ρi}]
δρi(r)

= 0 , (E1)

where Ω[{ρi}] is a density functional which becomes min-
imal when the equilibrium solutions are inserted. This
minimal value of the functional corresponds to the grand
potential βΩ = − ln Ξ of the system. Hence, we can
recover the grand-canonical partition functions Ξ calcu-
lated in the main text (or appropriate generalizations to
arbitrary external fields). As a prerequisite, we need to
know the proper functional.

The general form of the density functional reads

Ω[{ρi}] = Ω(id)[{ρi}] + Fex[{ρi}] , (E2)

where the excess (over ideal gas) free energy Fex describes
the interactions between the particles and the exactly
known functional Ω(id) for an ideal gas of point-like par-

ticles in an externally applied potential V
(i)
ext(r) reads

βΩ(id) =

K∑

i=1

∫
dr ρi(r)

(
ln

(
ρi(r

zi

)
− 1 + βV

(i)
ext(r)

)
(E3)

in d spatial dimensions, recalling the definitions
β = (kBT )−1 of the inverse temperature and zi :=
exp(βµi)/Λ

d of the fugacities.
For the hard-body interactions considered in this work,

we employ fundamental measure theory (FMT) [48–50]
for the excess free energy Fex which follows the same
recipe in all spatial dimensions. Specifically, the FMT in
one spatial dimension [45, 46], most commonly known as
the Percus functional is exact. Here,

βFex = −
∫

dxn0(x) ln(1− n1(x)) (E4)

follows as a function of the weighted densities

n0/1(x) =
K∑

i=1

∫
dx1 ρi(x1)ω

(0/1)
i (x− x1) (E5)

which consist of convolution integrals of the densities and
the weight functions

ω
(1)
i (x) = Θ(σi/2− |x|) ,

ω
(0)
i (x) =

1

2
(δ(σi/2− x) + δ(σi/2 + x)) , (E6)

where σi is the length of a hard rod of species i. These
weight functions represent the geometry of particle i be-
ing local measures of the one-dimensional volume (rod
length) and the surface area (characteristic function), re-
spectively. In higher spatial dimensions, there exists a
larger set of required weight functions.

For our calculations we consider homogeneous bulk

systems with V
(i)
ext(r) = 0, such that the number den-

sities ρi do not depend on the position r. Then, the
one-dimensional weighted densities simply read

n0 =
K∑

i=1

ρi , n1 =
K∑

i=1

ρiσi , (E7)

such that the density functional Ω[{ρi}] turns into an
explicit function of the number densities and the func-
tional derivative in Eq. (E1) turns into a partial deriva-
tive. Thus, we only need to solve a set of algebraic equa-
tions to find the desired relation between the fugacities
and densities. In one spatial dimension these are

ln(ρi/zi) = −
2∑

ν=1

∂Fex

∂nν

∂nν
∂ρi

= ln(1− n1)− n0
1− n1

σi

(E8)

for i = 1, . . . ,K. In higher spatial dimensions, the struc-
ture is exactly the same but then the sum over ν must
include the additional weighted densities.

To briefly connect to our previous statistical results,
let us note that upon applying the variational scheme
from Eq. (E1) to an ideal gas in an external field, with
the functional from Eq. (E3), it is easy to show that the
partition function reads

Ξ(id) = exp

(
K∑

i=1

(∫
dr e−βV

(i)
ext (r)

)
zi

)
. (E9)

In the absence of an external potential the integral must
be replaced by the system volume Ld =

∫
dr. We have

thus recovered Eq. (22) from our DFT formalism upon
setting K = k + κ and using the corresponding (effec-
tive) fugacities. Likewise, with interactions, we can also
recover the exact result of Eq. (8) for the particular one-
dimensional case, while the DFT calculation directly ex-
tends (in a good approximation) to higher spatial dimen-
sions.

2. Structure of a mixture from DFT

Structural information on the system can be extracted
from DFT by calculating functional derivatives of the ex-
cess free energy. In particular, the direct correlation func-
tions cij(r) of a fluid mixture with i, j ∈ {1, 2, . . . ,K} are
defined as

cij(r = |r1 − r2|) = − δ2βFex

δρi(r1)δρj(r2)
. (E10)

For a homogeneous system of hard rods, we find the exact
direct correlation functions

cij(x) = − n0
(1− n1)2

W
(11)
ij (x)− 1

1− n1
W

(10)
ij (x) (E11)
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from the Percus functional with the weighted densities
given by Eq. (E7) and the functions

W
(11)
ij (x) = min(σi, σj) Θ(∆a− |x|)

+ (aij − |x|) Θ(aij − |x|) Θ(|x| −∆a) ,

W
(10)
ij (x) = Θ(aij − |x|) , (E12)

where aij := (σi + σj)/2, ∆a := |σi − σj |/2 and
min(σi, σj) returns the smaller one of the two length.

In general, W
(νµ)
ij can be calculated through convolution

products of ω
(ν)
i and ω

(µ)
j . Note that, if i = j, we have

∆a = 0 and only the second term in W
(11)
ii (x) is relevant.

Next, the pair distributions gij(x) = hij(x) + 1 can
be calculated from the total correlation functions hij(x),
which are related to the direct correlation functions cij(x)
via the multicomponent Ornstein-Zernike equation

hij(x1 − x2) = cij(x1 − x2) (E13)

+
K∑

l=1

ρl

∫
dx3 cil(x1 − x3)hlj(x3 − x2) .

The matrix solutions in Fourier space read

Ĥ(q) = (1− Ĉ(q))−1 − 1 , (E14)

where the components of the auxiliary matrices Ĥij(q) =√
ρiρj ĥij(q) and Ĉij(q) =

√
ρiρj ĉij(q) can be obtained

by weighting the Fourier transforms ĥij(q) and ĉij(q) of
hij(x) and cij(x), respectively, with the corresponding
homogeneous densities. For hard rods in one dimension
it is possible to determine an exact analytical solution of
Eq. (E14) [47]. However, for simplicity, we perform the

final inverse Fourier transform of ĥij(q) numerically.

Appendix F: Pair distributions for a
one-dimensional carrier-cargo mixture

In this appendix, we provide further background on the
relations, stated in Sec. II B 5, between the effective and
physical pair distributions of the carrier-cargo mixture.
For our minimal model of a carrier holding at most one
cargo, the basic relation between the effective number
densities, ρ}• , ρ• and ρ}• , and the total densities, ρt}•
and ρt•, of the physical system is given by Eq. (11). For
the pair distributions these relations are generally more
involved since a CCC represents both carrier and cargo.

To determine the effective pair distributions gij(x)
with i, j ∈ {}• , •,}•} for the mapped hard-rod system
in one dimension and the pair distributions gtij(x) with
i, j ∈ {}• , •} for our physical carrier-cargo mixture, let
us first recall from appendix E that the former fol-
low directly from the exact direct correlation function,
Eq. (E11), in the effective system. Moreover, following
the structural equivalence of empty carriers and CCCs

(both species have the same hard-core diameter σ}• ) we
have

g}•}• ≡ g}•}• ≡ g}•}• . (F1)

As a result, it is sufficient to determine the pair distri-
bution for an effective binary mixture of hard rods with
ρt}• = ρ}• + ρn and ρ•, as discussed in appendix D. For

this reason, we apparently have gt}•}• = g}•}• in Eq. (12).
The remaining pair distributions of the physical system
require additional care.

To understand the formulas in Sec. II B 5, we first point
out that the relation, Eq. (11), between the one-body
densities analogously applies to the two-body densities
ρiρjgij and ρtiρ

t
jg

t
ij . Solving for gtij yields the basic struc-

ture of Eqs. (12) to (15) Specifically, gt}•}• = g}•}• , di-
rectly follows as

gt}•}• =
ρ2}• g}•}• + ρ}• ρ}• (g}•}• + g}•}• ) + ρ2}• g}•}•

(ρt}• )2
.

(F2)

Second, for the remaining pair distributions, we need to
take into account the fact that the center of a cargo
particle, which is contained in a CCC does not neces-
sarily coincide with the center of the carrier but is uni-
formly distributed within the accessible space of length `.
Therefore, the effective distributions need to be blurred
by calculating a convolution with the indicator function
Θ(`/2 − |x|) in the corresponding coordinate(s). This is
indicated by the superscript (b) in Eqs. (16) and (17).
Third, specifically for the correlations between carrier
and cargo particles in Eqs. (14) and (15), we need to
manually account for the presence of a cargo particle
within a carrier. This is achieved by redefining the effec-

tive two-body density ρ
(2)

}•}• upon adding this self contri-
bution (which for an ordinary fluid must be subtracted
from the two-point correlation function to recover the
two-body density). In practice, this amounts to set-

ting ρ
(2)

}•}• (x) → ρ
(2)

}•}• (x) + ρ}• δ(x), and then blurring
the whole expression as described above. This yields the
generalized contribution

G
(b)

}•}• (x1 − x2) :=
1

`

∫
dx′Θ(`/2− |x2 − x′|) (F3)

×
(
ρ2}• g}•}• (|x1 − x′|) + ρ}• δ(x1 − x′)

)
,

which can be simplified to yield Eq. (18).

Appendix G: Mixtures with multiple carriers

The relations from Sec. II D can be easily generalized
to describe mixtures involving cargo with fugacity z• and

now κ− 1 different carrier species with fugacities z
[i]

}• for
i ∈ {1, . . . , κ−1}. In particular, introducing for each car-

rier the typical lengths `[i] entering in the `
[i]
ν (compare,
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e.g., Eq. (35)), we can define as in Eq. (24) the effec-

tive fugacities z
[i,ν]

}• of a CCC composed of one carrier of
species i and exactly ν cargo. Thus, Eq. (29) generalizes
to

z
[i]

}• :=

∞∑

ν=1

z
[i,ν]

}• = z
[i]

}•
∞∑

ν=1

((
`[i]ν

)d
z•

)ν
. (G1)

By accordingly rewriting Eqs. (27) and (28) as

ρ
[i]

}• :=
∞∑

ν=1

ρ
[i,ν]

}• , ρ
[i]
~ :=

∞∑

ν=1

νρ
[i,ν]

}• (G2)

for each carrier, we obtain from Eq. (23) the total number
densities

ρt}• =
κ−1∑

i=1

ρ
([i],t)

}• , (G3)

ρ
([i],t)

}• = ρ
[i]

}• + ρ
[i]

}• , (G4)

ρt• = ρ• +

κ−1∑

i=1

ρ
[i]
~ . (G5)

As an application, the results for the CCC fraction
and loaded-carrier fraction of species i can be di-
rectly obtained for the respective occupation laws from
Eqs. (37), (42) or (44) by simply introducing the super-
script [i] to `→ `[i] as a species label.

As a next step, let us consider the case κ → ∞ of
a polydisperse mixtures of carriers, whose engulfment
strengths `[i] → ` are continuously distributed accord-
ing to a normalized distribution p(`), such that all sums

κ−1∑

i=1

f [i] → 1

`∗

∫ `∗

0

d` f(`) (G6)

turn into integrals and the superscript [i] of a quantity
f [i] turns into the argument ` of a function f(`). By
introducing the upper bound `∗ in Eq. (G6) we imply
that the distribution p(` > `∗) = 0 vanishes beyond a
maximal size `∗ to prevent a collapse towards (uncon-
trolled) infinite occupation for ` → ∞. Specifically, let
us prescribe the function p(`) such that the total number
density ρt}• (`) = ρ̄t}• p(`) of each carrier with engulfment
strengths ` is a specified input quantity. Then we can
recast Eq. (G3) in the continuous form

ρ̄t}• =
1

`∗

∫ `∗

0

d` ρt}• (`) =
ρ̄t}•
`∗

∫ `∗

0

d` p(`) , (G7)

where we chose the notation ρ̄t}• for the total number
density of all carriers to indicate that it is an average of
ρt}• (`). Moreover, Eq. (G5) becomes

ρt• = ρ• +
1

`∗

∫ `∗

0

d` ρ~(`) (G8)

in the polydisperse continuum.
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Chapter 4

Concluding remarks

The first publication P1 Topology of Orientational Defects in Confined Smectic
Liquid Crystals [20] aims to classify the previously little explored facet of defects in
the orientation field of smectic liquid crystals. Those defects, which, as previously
known, typically take the shape of extended grain boundaries in two dimensions,
can be classified by a half integer index, that describes the rotation of local fluid
particles around the whole defect. We found, that the fine structures of those defect
lines, can be further resolved by considering it as an ensemble of point defects
sitting at the respective nodes of the line. This comes, in particular, as a result of
the properties of the smectic phase instead of the topological theory.

The second publication P2 Topological fine structure of smectic grain boundaries
and tetratic disclination lines within three-dimensional smectic liquid crystals [21]
elevates the concept of the previous publication into the third dimension. The grain
boundaries, which are lines in two dimensions, now take the shape of planes in three
dimensions. We show that the fine structure of the planar grain boundary is still
characterised by its topological boundary, i.e., lines wrapping around the surfaces.
To this end, we introduce the concept of tetratic order in three dimensions, along
with an appropriate order parameter. In three dimensions, where the topological
charge is not in general a conserved quantity, the rigidity of the smectic phase,
yet again, compliments the topological theory, by granting charge conservation via
stacked quasi two-dimensional layers.

In the third publication P3 Smectic structures in button-like confinements:
experiment and theory [143] we study the influence of complicated confinements
on the overall topology of the smectic structure. As a defining feature of this
work, we bring four complementary approaches, experiment, density functional
theory, Q-tensor theory and simulation together, and show that they display the
same structural properties of the confined state. In particular, we show that the
smectic layers in individual snapshots display a non-trivial symmetry breaking via
a preferred angle to the confinements.

In the fourth publication P4 Network topology of interlocked chiral particles [144],
we utilise the conception of a smectic layer topology, which involves considering
networks of smectic layers. We employ this network-topological model to the
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analysis of more complicated chiral particles of the shape of the letter L. This is
done, by constructing networks from the positions of both arms of the particles. We
find, that the aspect ratio of the particles, is intricately connected to the topology
of the emerging networks.
These studies of extended smectic defects show, how assumed symmetry of the

system relates to the dimensionality of the defects. For instance: in 3d, planar
nematic grain boundaries are wrapped by tetratic line defects on its rim. This
invites further studies on, for instance, more complicated particles, with different
symmetries than rods, where the material properties may be influenced differently
by the underlying topological theory. It is known, how the topological charges
characterise the dynamics of point defects within active nematic [79–81] and
active smectic systems [85]. This seems to propose, that tetratic point charges, as
introduced in our particle-resolved works, also bear certain dynamical properties.
A future study may be of interest. The network topological model, as presented in
P4 may yield fruitful insight.
The fifth publication P5 Active particles using reinforcement learning to navigate

in complex motility landscapes [145] explores reinforcement learning models for
microswimmers, whose target is to navigate complex environments in a preferably
quick manner. This work’s findings can be applied to the understanding of intelligent
behaviour in biological life on microscopic length scales, and thus can be used
in the engineering of microscopic technical components. Future endeavours may
build upon this model to investigate more elaborate biological mechanisms, such
as for instance the behaviour of bacteria in search of nutrition, with the explicit
consideration of, e.g., a cell cycle [146,147].
Finally, in the sixth publication P6 Statistics of carrier-cargo complexes [148],

we explore a statistical model for mixtures of colloidal particles, where one type
is capable of engulfing the other to form a complex, which is a fairly common
mechanism, e.g., in vesicles, which take up materials within their membrane
(endocytosis) [149]. We find that the formation of complexes is largely steered
by the respective densities of both components and show, that the microscopic
structure of the system can be predicted from the model. We argue, that this work
is relevant for predictive methods in medicine, which revolve around endocytic
processes [150, 151]. This work may also stimulate research in the engineering
of artificial functional carriers, and the various types of occupation laws may be
appropriate to describe out-of-equilibrium phenomena such as engulfment and
subsequent digestion.
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[79] G. Tóth, C. Denniston, and J. M. Yeomans, Hydrodynamics of Topological Defects
in Nematic Liquid Crystals, Phys. Rev. Lett. 88, 105504 (2002).

[80] C. D. Muzny and N. A. Clark, Direct observation of the Brownian motion of a
liquid-crystal topological defect, Phys. Rev. Lett. 68, 804 (1992).

[81] S. J. DeCamp, G. S. Redner, A. Baskaran, M. F. Hagan, and Z. Dogic, Orientational
order of motile defects in active nematics, Nat. Mater. 14, 1110 (2015).

[82] A. Dı́az-De Armas, M. Maza-Cuello, Y. Mart́ınez-Ratón, and E. Velasco, Domain
walls in vertically vibrated monolayers of cylinders confined in annuli, Phys. Rev.
Research 2, 033436 (2020).
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