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Abstract

Interatomic energy transfer phenomena caused by e�cient long-range electron cor-

relations are among the most studied processes in atomic physics today. They can

provide important insights into the interaction dynamics of single atomic species

with their environment in more complex systems. For this reason, such processes

are also of great interest to various other areas of physics like plasma physics, astro-

physics, biophysics, and physical chemistry.

Part I of this thesis covers fundamental aspects of two interatomic ionization pro-

cesses relying on the e�cient transfer of electronic energy via long-range electron

correlations between two spatially well-separated atomic species with an emphasis

on the in�uence of relativistic e�ects on ionization. The �rst process is two-center

impact ionization, proceeding in a weakly bound diatomic system bombarded by

charged particles and involving impact excitation of one atom with its subsequent

decay via e�cient energy transfer to the other atom that ionizes it. This process

was already considered for nonrelativistic electron impact, where it can substantially

enhance total electron emission. In this thesis, two-center impact ionization is fur-

ther developed by considering the impact of relativistic bare ions and by including

the relativistic retardation e�ect, accounting for the �nite propagation of the elec-

tromagnetic interaction between the atoms. We show that two-center ion impact

ionization can signi�cantly enhance total electron emission and relativistic e�ects

caused by a high collision velocity can greatly in�uence the angular distribution of

emitted electrons while retardation e�ects are mostly negligible. The second process

is two-center resonant photonionization (2CPI) occurring in a diatomic system ex-

posed to a weak laser �eld and involving resonant photoexcitation of one atom with

its consequent decay via e�cient energy transfer to the other atom which ionizes it.
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� Abstract �

This process, whose high e�ciency in weakly bound systems was con�rmed in ex-

periments with Ne�He dimers and Ar-Ne clusters, was studied theoretically in slow

atomic collisions when the interatomic energy transfer is driven by the exchange of

virtual photons. In this thesis, we extend the theory of collisional 2CPI by including

the relativistic retardation e�ect, enabling the energy transfer to occur also via the

exchange of real photons that dramatically increases the e�ective interaction range.

Our results show that such an approach to collisional 2CPI can profoundly modify

this process and strongly enhance its reaction rate.

Part II of this thesis deals with an application of interatomic energy transfer in

antimatter physics, investigating attachment mechanisms for the production of sub-

stantial amounts of the positive ion of antihydrogen H̄+ in view of experiments on

the free-fall of antihydrogen H̄ currently planned at CERN. We perform a compar-

ative study of various radiative and nonradiative attachment mechanisms for the

formation of H̄+, where special focus lies on those mechanisms driven by the e�-

cient transfer of positronic energy via long-range positron-electron correlations in

systems of antimatter embedded in matter. In the process of two-center dileptonic

attachment (2CDA), a positron incident on H̄ is attached to H̄ by resonant energy

transfer to a neighboring (matter) atom, which gets excited and subsequently relaxes

through spontaneous radiative decay. In the process of electron-assisted three-body

attachment (3BAe), a free positron and electron are incident on H̄ and the positron

is attached to H̄ via e�cient energy transfer to the electron with consequent increase

of its kinetic energy. Our results imply, in particular, that for relatively low positron

energies . 0.1 eV (typical of current antimatter experiments) 3BAe strongly outper-

forms 2CDA whereas at larger energies ' 1 eV 2CDA can greatly dominate 3BAe.
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Zusammenfassung

Interatomare Energietransferphänomene, verursacht durch e�ziente langreichweiti-

ge Elektronenkorrelationen, gehören heute zu den meistuntersuchten Prozessen der

Atomphysik. Sie können wichtige Einblicke in die Wechselwirkungsdynamik einzel-

ner atomarer Spezies mit ihrer Umgebung in komplexeren Systemen liefern. Daher

sind solche Prozesse auch für verschiedene andere Bereiche der Physik wie Plasma-

physik, Astrophysik, Biophysik und physikalische Chemie von groÿem Interesse.

Teil I dieser Arbeit befasst sich mit grundlegenden Aspekten zweier interatomarer

Ionisationsprozesse, die auf der e�zienten Übertragung elektronischer Energie über

langreichweitige Elektronenkorrelationen zwischen zwei räumlich getrennten atoma-

ren Spezies beruhen, wobei ein Schwerpunkt auf dem Ein�uss relativistischer E�ekte

auf die Ionisation liegt. Der erste Prozess ist die Zwei-Zentren-Stoÿionisation, die

in einem schwach gebundenen zweiatomigen System statt�ndet, das von gelade-

nen Teilchen beschossen wird und welche die Stoÿanregung eines der Atome mit

seiner anschlieÿenden Abregung durch e�ziente Energieübertragung auf das andere

Atom, das dadurch ionisiert wird, beinhaltet. Dieser Prozess wurde bereits für Stöÿe

mit nichtrelativistischen Elektronen betrachtet, wo er die Gesamtelektronenemissi-

on erheblich steigern kann. In dieser Arbeit wird die Zwei-Zentren-Stoÿionisation

weiterentwickelt, indem Stöÿe mit relativistischen Ionen sowie der Retardierungsef-

fekt, welcher die endliche Ausbreitung der elektromagnetischen Wechselwirkung zwi-

schen den Atomen widerspiegelt, berücksichtigt werden. Wir zeigen, dass die Zwei-

Zentren-Ionen-Stoÿionisation die Gesamtelektronenemission deutlich steigern kann

und dass relativistische E�ekte, verursacht durch eine hohe Stoÿgeschwindigkeit,

die Winkelverteilung der emittierten Elektronen stark beein�ussen können, während

Retardierungse�ekte weitgehend vernachlässigbar sind. Der zweite Prozess ist die
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� Zusammenfassung �

resonante Zwei-Zentren-Photoionisation (2CPI), die in einem diatomaren System

auftritt, das einem schwachen Laserfeld ausgesetzt ist, und welche die resonante Pho-

toanregung eines der Atome mit seiner anschlieÿenden Abregung durch e�ziente En-

ergieübertragung auf das andere Atom, welches daraufhin ionisiert wird, einschlieÿt.

Dieser Prozess, dessen hohe E�zienz in schwach gebundenen Systemen in Experi-

menten mit Ne�He Dimeren und Ar-Ne Clustern bestätigt wurde, wurde theoretisch

in langsamen atomaren Stöÿen untersucht, wenn der interatomare Energietransfer

durch den Austausch virtueller Photonen erfolgt. In dieser Arbeit erweitern wir

die Theorie von 2CPI in Stöÿen, indem wir den relativistischen Retardierungse�ekt

berücksichtigen, sodass der Energietransfer auch durch den Austausch realer Photo-

nen auftreten kann, was die e�ektive Wechselwirkungsreichweite dramatisch erhöht.

Unsere Ergebnisse zeigen, dass ein solcher Ansatz für 2CPI in Stöÿen diesen Prozess

erheblich modi�zieren und seine Reaktionsrate stark erhöhen kann.

Teil II dieser Arbeit umfasst eine Anwendung von interatomarem Energietrans-

fer in der Antimateriephysik und untersucht Bindungsmechanismen für die Erzeu-

gung wesentlicher Mengen des positiven Antiwassersto�ons H̄+ im Hinblick auf die

derzeit am CERN geplanten Experimente zum freien Fall von Antiwassersto� H̄.

Wir führen eine vergleichende Studie verschiedener radiativer und nicht-radiativer

Bindungsmechanismen für die Bildung von H̄+ durch, wobei der Fokus auf jenen

Mechanismen liegt, die durch den e�zienten Transfer positronischer Energie über

langreichweitige Positron-Elektron-Korrelationen in Systemen von in Materie einge-

betteter Antimaterie ermöglicht werden. Bei dem Zwei-Zentren dileptonischen Ein-

fang (2CDA) wird ein Positron, das auf H̄ auftri�t, an H̄ gebunden, indem Energie

resonant auf ein benachbartes (Materie-)Atom übertragen wird, welches daraufhin

angeregt wird und durch spontanen radiativen Zerfall relaxiert. Bei dem elektronen-

unterstützten Dreikörpereinfang (3BAe) tre�en ein freies Positron und Elektron auf

H̄ und das Positron wird durch e�ziente Energieübertragung auf das Elektron an H̄

gebunden, was mit einer Erhöhung der kinetischen Energie des Elektrons einhergeht.

Unsere Ergebnisse implizieren insbesondere, dass für relativ niedrige Positronenen-

ergien . 0.1 eV (typisch für aktuelle Antimaterieexperimente) der 3BAe Prozess

den 2CDA Prozess deutlich übertri�t, wohingegen bei gröÿeren Energien ' 1 eV der

2CDA Prozess den 3BAe Prozess stark dominieren kann.
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� Electric �eld strength: F0 = 1 a.u. = 5.14 × 109 V/cm (strength of Coulomb

�eld experienced by electron in 1st Bohr orbit of atomic hydrogen)
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Relativistic e�ects in interatomic

ionization processes





1 | Introduction and preliminary

remarks

1.1 Historical background and motivation

The single ionization of an atom, i.e. the emission of a bound electron, by impact of

ions or photoabsorption belong to the basic phenomena studied by atomic physics

and can reveal insights into the structure of the atom as well as the interaction

dynamics of the atom with its environment upon ionization. These well-known

processes (for ion impact ionization see, e.g. [1�4] and references therein and for

photoionization see, e.g. [5�8] and references therein) have been considered for a

wide range of incident energies and, still today, there is great interest in further

improving theoretical descriptions and experimental techniques.

The interaction between an atom and a (quantized) electromagnetic �eld can lead

to various basic processes, e.g. resonant photon scattering, photoexcitation and

photoionization, which have been studied for a long time. The famous photoelectric

e�ect, in which electrons are emitted when electromagnetic radiation impinges on

a (solid) material, was �rst experimentally observed by Hertz and Hallwachs in

1887/88 [9, 10] and later theoretically explained by Einstein in 1905 [11]. At the

time, the understanding of the photoelectric e�ect was a very important step towards

the development of quantum mechanics. Since then, there has been steady progress

in experimental techniques especially due to more advanced light sources such as

the optical laser, �rst completed in 1960 [12], which allowed the precise tuning of

the incident light to atomic transitions. Besides, the development of synchrotron-

based X-ray sources up to modern free electron lasers, which can produce ultra-
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short and -intense X-ray pulses, largely contributed to a more re�ned understanding

of the (time-resolved) dynamics of photoionization mechanisms (see, e.g. [13] and

references therein).

Ion-atom collisions can result in elastic scattering, charge exchange, impact excita-

tion and impact ionization. A variety of such collision processes have been inves-

tigated for more than a century with one of the most prominent examples being

the classical Rutherford scattering, in which alpha particles are elastically scat-

tered on gold atoms. Experimentally observed by Geiger and Marsden in 1909 [14]

and theoretically explained by Rutherford in 1911 [15], the Rutherford scattering

process formed the early basis for today's picture of the atom. During the last

decades the construction of accelerators that can produce energetic ion beams has

seen a strong progress and enabled the investigation of fast ion-atom collisions up

to highly relativistic impact energies, leading to a deeper understanding about the

atomic structure and the dynamics involved in the collisions (see, e.g. [16, 17] and

references therein).

In experiments on photoionization and ion impact ionization, the momenta of the

product ions and/or ejected electrons have to be detected in order to rebuild the

particles dynamics during the ionization process. Due to continuous development of

more re�ned detectors, in modern experiments, one can obtain the particles momen-

tum vectors by time of �ight and position measurements using detector geometries

with time- and position-sensitive detectors (see, e.g. [18,19]).

There also exist more complex ionization mechanisms based on the decay of an

autoionization state, which is an atomic bound state whose discrete energy level lies

above the boundary of the continuous spectrum. An autoionization state arises, for

instance, from the excitation of two atomic electrons whose total excitation energy

exceeds the �rst ionization potential of the atom and it can decay, caused by electron

correlations, where one electron makes a transition into a lower lying state and the

second electron gets released by taking the energy excess. However, this is only one

out of several types of autoionization states and associated ionization mechanisms

(see, e.g. [20]).

Another type of autoionization state refers to the formation of an inner-shell vacancy
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by atomic excitation or ionization via photoabsorption or particle impact, where the

excitation energy of the resulting atomic state is larger than its ionization potential.

Such state is unstable and can decay through spontaneous radiative decay, in which

an outer-lying electron �lls the inner-shell vacancy and the energy release is carried

away by spontaneous emission of a photon. However, the unstable state may also

undergo radiationless decay, caused by electron correlations, where an outer-lying

electron �lls the inner-shell vacancy and the energy release is transferred to another

outer-lying electron that, as a result, is ejected from the atom (see, e.g. [20]). The

process involving the latter decay channel is called Auger process and the electron

released upon decay is named Auger electron. The Auger process (or Auger-Meitner

process) was independently discovered by Meitner in 1922 [21] and Auger in 1925 [22]

and marked the beginning of investigations on atomic autoionization states.

Autoionization states can also exist in systems consisting of two atomic or molecular

particles, where one of them is initially in an electronically excited state with the

excitation energy exceeding the ionization potential of the other particle. There are

various processes, driven by correlations between electrons located at two di�erent

atomic or molecular centers, which involve the relaxation of such nonlocal autoion-

ization states. Penning ionization, originally considered by Penning in 1927 [23],

typically occurs in collisions of an atom or molecule in a metastable excited elec-

tronic state (that is not allowed to decay by an optical dipole transition) with a

second atom or molecule being in its electronic ground state. When the colliding

partners approach each other very closely, their electronic orbitals overlap and radi-

ationless relaxation of the initially excited particle with simultaneous ionization of

the other particle (mainly) proceeds via charge transfer. This ionization process is

of very short range and its e�ciency decreases exponentially with increasing inter-

atomic/intermolecular distance. Motivated by experimental studies on de-excitation

processes in metallic compounds by Gallon and Matthew in 1970 [24] as well as Lord

and Gallon in 1973 [25], the radiationless relaxation of an optically excited atom by

energy transfer to a neighboring ground-state atom, resulting in its ionization, was

theoretically considered by Matthew and Komninos in 1975 [26] and called inter-

atomic Auger decay (IAAD). Here, the excited atom initially has an inner-shell

vacancy which is �lled by an outer-lying electron but unlike in the intraatomic
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Auger process (that was discussed further above) the energy release is transferred

via a (long-range) dipole-dipole interaction to a neighboring ground-state atom and

the latter is ionized. It was shown in [26] that IAAD is very e�cient and can even

dominate over the competing intraatomic Auger process. The mechanism of IAAD

proceeding in a system of two atomic species where relaxation of the excited par-

ticle via the intraatomic Auger process is energetically forbidden was calculated by

Cederbaum et. al. in 1997 [27] and termed there interatomic Coulombic decay

(ICD). It was experimentally observed by Marburger et. al. in 2003 [28] and Jahnke

et. al. in 2004 [29]. The ICD mechanism can be extremely e�cient, strongly out-

performing the (direct) spontaneous radiative decay of the initially electronically

excited atom, for a large range of interatomic separations. We mention that the

term ICD is now often understood more generally to refer to all long-range inter-

atomic (or intermolecular) radiationless relaxation mechanisms proceeding at large

distances via the dipole-dipole interaction.

A well-known excitation mechanism caused by long-range electron correlations be-

tween neighboring molecules is Förster resonance energy transfer which was de-

scribed by Förster in 1948 [30]. This energy transfer mechanism can occur between

chromophores (light-sensitive molecules) in biological systems [31], where an initially

electronically excited chromophore may transfer energy to another chromophore via

a (long-range) dipole�dipole interaction such that the latter makes a transition from

its electronic ground state into an electronically excited bound state.

In general, the e�ectiveness of electron correlations between neighboring atoms

and/or molecules makes the theoretical and experimental investigation of processes

based on such long-range correlations particularly interesting. Therefore, within

the last two decades, several more nonlocal electron correlation phenomena were

considered including electron transfer mediated decay [32], interatomic Coulombic

electron capture in weakly bound systems [33] and in atomic collisions [34], collective

autoionization/ICD (see, e.g. [35�38] and references therein), two-center resonance

scattering [39] as well as two-center dielectronic recombination in weakly bound

systems [40] and in atomic collisions [41]. (The latter process will be discussed in

detail in Part II of this thesis in the context of the formation of positive ions of

antihydrogen.)
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Besides, there exist two additional mechanisms for single ionization of diatomic

systems, caused by interatomic electron correlations, that are crucial for the present

study. They will be discussed in the following Section.

1.2 Overview of direct and two-center impact and

photoionization mechanisms

One of the interatomic ionization processes which will be considered in this thesis

is termed two-center impact ionization,

(i) A+B + P → A+B∗ + P → A+ + e− +B + P.

It involves the excitation of a dipole-allowed transition in an atomic species B by

impact of a charged projectile P (e.g. an ion or electron) with subsequent relaxation

via ICD that means the radiationless decay of the excited state of B by transmitting

the de-excitation energy � due to interatomic electron correlations � to a neighboring

atom A which, as a consequence, is ionized. This process was considered (using an

instantaneous dipole-dipole interaction) for nonrelativistic electron impact in [42],

where it was concluded that the two-center mechanism can substantially enhance

the total electron emission from the A − B system. In this work, based on the

results of [43], two-center impact ionization will be further developed by considering

the impact of relativistic bare ions and by taking into account that the interatomic

interaction propagates with a �nite velocity, resulting in the retardation e�ect.

The other interatomic process is called two-center resonant photoionization (2CPI),

(ii) A+B +N~ω → A+B∗ + (N − 1)~ω → A+ + e− +B + (N − 1)~ω,

in which the diatomic system, consisting of atoms A and B, is exposed to a weak

laser �eld with frequency ω that is resonantly tuned to a dipole-allowed transition

in B. Then, excitation of B occurs via (resonant) photoabsorption with consequent

relaxation by ICD, i.e. via the transfer of the excitation energy to A, induced

by interatomic electron correlations, causing its ionization. 2CPI was originally
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considered for a weakly bound system in [44, 45], where it was shown that this

ionization mechanism can strongly outperform the direct photoionization of A by

the laser �eld. Its very high e�ciency was experimentally con�rmed in experiments

on photoionization of Ne�He dimers [46,47] and Ar-Ne clusters [48]. 2CPI was also

studied theoretically in slow atomic collisions [49], where the interaction between

the colliding atoms was regarded as instantaneous, being transmitted by virtual

(o�-shell) photons only. In this work, following the consideration in [50], we extend

the theory of collisional 2CPI to a more complete treatment, in which the collisional

interaction is described fully relativistically, accounting for the retardation e�ect,

that opens the possibility to transmit the interaction by real (on-shell) photons.

It is of general interest to discuss the relative e�ectiveness of the two-center ioniza-

tion channels (i) and (ii) compared with the corresponding direct ionization by ion

impact,

(iii) A+ P → A+ + e− + P,

and by photoabsorption in the presence of a laser �eld,

(iv) A+N~ω → A+ + e− + (N − 1)~ω.

In reaction (iii), atom A is ionized as a direct result of the collisional interaction with

the incident ion P , while in reaction (iv) the ionization of A is a direct consequence

of the absorption of a photon with frequency ω from a weak laser �eld.

Indeed, we will see that the interatomic ionization mechanisms of (i) two-center ion

impact ionization and (ii) two-center resonant photoionization (in atomic collisions)

can outperform the corresponding local ionization mechanisms of (iii) direct ion

impact ionization and (iv) direct photoionization, respectively.

Atomic units (see overview on p. xxi) are used throughout if not stated otherwise.
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1.3 Relativistic e�ects in two-center impact and

photoionization

In general, there exist three types of relativistic e�ects that may be relevant to our

consideration of ionization of diatomic systems. The �rst and second type are based

on a large electron orbiting and projectile impact velocity, respectively, and the third

one is caused by a large interatomic distance.

The �rst type of relativistic e�ect is due to a large orbiting velocity ve of atomic

electrons, approaching the speed of light c (c ≈ 137 a.u.). In such case, the rela-

tivistic motion of electrons involved in atomic excitation and ionization processes

has to be described by the Dirac equation. However, in this thesis, we consider only

relatively light atomic species with atomic number Z � c for which the descrip-

tion of the electronic motion in atomic excitation and ionization processes by the

nonrelativistic Schrödinger equation is regarded as valid (see, e.g. [51]). It is worth

mentioning that for ionization by impact of charged projectiles the vast majority

of electrons emitted from light atomic targets have nonrelativistic velocities in the

target frame even for extremely relativistic impact energies [51].

The second type of relativistic e�ect results from a large projectile impact velocity v

that approaches the speed of light c. It will be investigated in the context of impact

ionization of a weakly bound diatomic system by relativistic bare ions in Chapter 2.

To get an idea about the general e�ect resulting from relativistic collision velocities,

let us suppose that a pointlike positively charged projectile (representing e.g. a

bare ion) is incident on a target atom whose nucleus is located at the origin of the

coordinate system. The projectile moves along a classical straight-line trajectory

R(t) = b + vt, where v = (0, 0, v) is its constant velocity and b = (b, 0, 0) is the

impact parameter for the collision. In such situation, the scalar potential φ(r, t) and

vector potential A(r, t) produced by the projectile in the restframe of the target at

the point of observation r = (x, y, z) at the time t are given by the Liénard-Wiechert

potentials in the forms [2]

φ(r, t) =
γZP√

(x− b)2 + y2 + γ2(z − vt)2
, A(r, t) =

v

c
φ(r, t). (1.1)
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Here, γ = 1/
√

1− β2 is the Lorentz factor with the reduced velocity β = v/c and ZP
is the projectile charge. The potentials in (1.1) satisfy the Lorenz gauge condition
1
c
∂φ
∂t

+∇ ·A = 0.

Following the consideration in [2], the corresponding electric �eld at the observation

point located at the position of the target nucleus is directed radially from the

present position of the projectile to the observation point and is obtained to be

E =
−ZPR

γ2R3(1− β2 sin2 θ)3/2
, (1.2)

where θ is the angle between the vector −R and the z-axis. In the longitudinal

direction with respect to the projectile motion (θ = 0 or θ = π) the �eld strength

becomes

E‖ =
ZP
R2

1

γ2
. (1.3)

It is decreased by a factor γ−2 compared with the �eld strength for a point charge

at rest. Moreover, in the transverse direction with respect to the projectile motion

(θ = π/2) the �eld strength reads

E⊥ =
ZP
R2

γ. (1.4)

It is increased by a factor γ as compared to the �eld strength for a point charge at

rest. One can think of this as a �attening of the electric �eld of a moving charge into

a disk-like shape in the direction of motion that arises from the Lorentz contraction

of electromagnetic �elds. For instance, the �attening of the electric �eld for γ = 2

(corresponding to v ≈ 0.87c) is already quite pronounced with a decrease in the

longitudinal �eld strength by a factor of 4 and an increase in the transverse �eld

strength by a factor of 2.

The third type of relativistic e�ect which may occur in a system of two interacting

atoms is the so-called retardation e�ect. It accounts for the �nite propagation

time of the electromagnetic �eld transmitting the interaction with the velocity c

and becomes relevant at large interatomic distances. The retardation e�ect will be
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investigated in the context of ion impact ionization of a weakly bound diatomic

system in Chapter 2 as well as in the context of two-center resonant photoionization

in slow atomic collisions in Chapter 3.

In order to estimate the importance of the retardation e�ect, we may compare the

propagation time T = R/c that is necessary for the electromagnetic �eld to propa-

gate the distance R between the atoms and the electronic transition time τ . In case

when T � τ , the �eld propagates essentially instantaneously and the retardation ef-

fect is expected to have no substantial impact on the interatomic interaction. On the

other hand, if T � τ , the comparatively large propagation time of the �eld results

in a retardation e�ect which strongly in�uences the interaction between the atoms

dramatically increasing its e�ective range. The latter condition can be rewritten as

R � τc, indicating that the interatomic distance R must be su�ciently large for

the retardation e�ect to be signi�cant. For instance, assuming a typical electronic

transition time τ ∼ 1 a.u., we can expect that the retardation e�ect is important

when R� 102 a.u.

In particular, let us consider a nonlocal energy transfer in a diatomic system con-

sisting of two atoms A and B with a relatively large interatomic distance R, where

the transfer of energy is caused by the long-range interatomic electron correlations

between an electron in A and another electron in B. Then, the interatomic interac-

tion can be described in very good approximation by the dipole-dipole interaction

(see Section 2.1.1 and Appendix 9.1 for a detailed derivation)

V̂AB = ei
R
τc

[(
r · ξ − 3(r ·R)(ξ ·R)

R2

)
1− i R

τc

R3

−
(
r · ξ − (r ·R)(ξ ·R)

R2

)( 1
τc

)2

R

]
(1.5)

with R the interatomic distance vector, which is constant for a bound diatomic

system and depends on the time t in the case of atomic collisions. Further, r (ξ) is

the coordinate of the partaking electron in atom A (B) with respect to the nucleus

of A (B).

The dependence of (1.5) on the interatomic distance R in leading order is given
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by V̂AB ∼ R−1. In the limit of comparatively small propagation times T � τ ,

corresponding to comparatively small interatomic distances R� τc, the interaction

(1.5) takes the familiar form (see, e.g. [52]) of the instantaneous interaction between

two electric dipoles

V̂AB =

(
r · ξ − 3(r ·R)(ξ ·R)

R2

)
1

R3
, (1.6)

which scales with the interatomic distance as R−3.

Note that the general form of the dipole-dipole interaction in (1.5) takes into ac-

count the relativistic retardation e�ect resulting from the �nite propagation of the

electromagnetic interaction. It can be concluded from the form of (1.5) that the

retardation e�ect starts to become important for interatomic distances R & τc,

changing the R-dependence of V̂AB from ∼ R−3 at R� τc to ∼ R−1 at R� τc and

therefore tremendously increasing the e�ective range of the interatomic interaction.

One of the main goals of this study is to investigate the in�uence of the relativistic

e�ects discussed above on interatomic ionization processes.

Concerning two-center ion impact ionization of a weakly bound diatomic system,

it will be shown that the in�uence of relativistic e�ects, resulting from a high ion

impact velocity, on the angular distribution of emitted electrons can be quite strong

already at rather low Lorentz factors of γ = 1/
√

1− v2/c2 ≈ 2. On the other hand,

these e�ects may only have a substantial impact on the energy distribution and the

total cross section for γ � 1. In addition, we will see that the relativistic retardation

e�ect, taking into account the �nite propagation of the electromagnetic interaction

between the atoms, has essentially no in�uence on the two-center ionization even for

rather large diatomic systems such as the 7Li�He dimer whose mean size is ≈ 53 a.u.

However, this dramatically changes when considering atomic collisions instead of a

weakly bound system. As an example, we take the process of two-center resonant

photoionization in atomic collisions, where the collision velocity v shall be much

smaller than the typical orbiting velocities ve of the participating electrons. We will

see that in collisions the retardation e�ect, accounting for the �nite propagation

of the interaction between the colliding atoms, leads to an e�cient coupling of
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the diatomic system to the quantum radiation �eld. This enables the interaction

to proceed via the exchange of an on-shell photon, thus dramatically increasing its

e�ective range, which may profoundly modify the two-center photoionization process

and strongly enhance its reaction rate.

Part I of this thesis is essentially organized as follows. In Chapter 2, we consider the

theoretical framework for the single ionization of a weakly bound diatomic system

by relativistic charged projectiles and obtain formulas for di�erential and total cross

sections of direct and two-center ion impact ionization, respectively. Afterwards,

numerical results are illustrated and extensively discussed. Finally, we draw some

main conclusions. Chapter 3 is dedicated to the theory of radiation-�eld-driven

ionization in laser-assisted slow atomic collisions, where we derive simple formulas

for the cross section and reaction rate of the two-center photoionization process.

We then present numerical results, discuss them in detail and summarize our main

�ndings.
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2 | Ionization of a weakly bound

diatomic system by relativistic

charged projectiles

This chapter provides a detailed insight into the theoretical treatment of the sin-

gle electron emission from a weakly bound diatomic system by relativistic charged

projectiles via direct and two-center impact ionization. We derive the angular and

energy distributions as well as the total cross section for these ionization mecha-

nisms. Based on their numerical results we discuss, in particular, the in�uence of

the relativistic e�ects, caused by a large projectile velocity and a large size of the

diatomic system, on the two-center ionization channel. Besides, we also consider the

relative e�ectiveness of two-center impact ionization compared with direct impact

ionization. The following chapter is mainly based on results published initially in

Ref. [43].

2.1 Theoretical consideration

2.1.1 General approach

Let us consider a weakly bound diatomic system consisting of two atomic species

A and B which are in their electronic ground states with energies εg and εg, re-

spectively. We assume that there exist an excited state with energy εe in atom B

which can be populated via a dipole-allowed transition from its ground state, where

the corresponding transition energy ωB = εe − εg shall be larger than the ionization
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potential IA (= −εg) of atom A. Further, it is supposed that the interatomic dis-

tance R between the nuclei of A and B is much larger than the typical atomic size

so that the electronic orbitals of atoms A and B essentially do not overlap and the

interaction between them is relatively weak. Consequently, the electronic structure

of the A−B system may be approximated by that of two individual non-interacting

atomic species A and B.

Now, let us envisage a situation in which the A−B system is bombarded by a bare

ion P with charge ZP and relative (with respect to the diatomic system) velocity v.

In the present treatment, we shall suppose the condition ZP/v � 1, which means

that we only consider relatively light projectiles having comparatively low charges.

Then, the electric �eld of the projectile will just represent a weak perturbation for

the A − B system and we may treat the interaction between this system and the

projectile by using the �rst order of time dependent perturbation theory. Moreover,

the above condition also implies that the (total) ionization of the A−B system will

be largely dominated by ionization processes leading to single electron emission.

Single ionization of the A−B system in collisions with charged projectiles may occur

via two direct (one-step) and one indirect (two-step) ionization processes. The two

direct processes are the direct impact ionization of either atom A or B due to the

collisional interaction of the incident ion P with A or B. The indirect process is

two-center impact ionization which involves both atomic species A and B. In the

�rst step of this process, the collisional interaction between the incident ion P and

atom B causes a dipole-allowed transition from the ground state of B with energy

εg into its excited state with energy εe. In the second step, atom B radiationlessly

decays into its initial ground state where the released energy is transferred � via long-

range interatomic electron correlations � to atom A which consequently undergoes a

transition from its ground state with energy εg into a continuum state with energy

εk. A scheme of two-center impact ionization is illustrated in Fig. 2.1 (a). Note

that due to the condition εe − εg > IA we just have to deal with two-center impact

ionization of atom A and not of atom B.

In contrast to direct impact ionization, two-center ionization is a resonant process

which only proceeds e�ciently within a very narrow interval of electron emission

energies centered at the resonance energy εkr = (εe − εg) + εg = ωB − IA. However,
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Figure 2.1: (a) Scheme of two-center ion impact ionization. (b) Schematic represen-
tation of space coordinates characterizing the collision. This �gure was
originally published in Ref. [43].

as we will see, the two-center ionization is so tremendously strong on and close to the

resonance that, despite the energy range a�ected by the two-center channel being
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very small, its presence can even have a noticeable impact on the total ionization

cross section.

In our present treatment of all ionization channels, we use the single-electron approx-

imation and thus only consider one active electron in each atom A and B. Further,

our description of collisions between the projectile P and the A − B system will

be based on the semi-classical approximation which is very well justi�ed for high

energy collisions (see, e.g. [2]). In this approximation, the relative motion of the

heavy nuclei is considered classically while the active electrons are treated quantum

mechanically.

We choose a reference frame in which the A − B system is at rest and the nucleus

of atom B is located at the origin. Further, let r (ξ) be the coordinate of the single

active electron in A (B) with respect to the nucleus of A (B) and let R be the

interatomic distance vector between the nuclei of A and B. In this reference frame,

the projectile ion P performs a classical motion along a straight-line trajectory

dB(t) = bB + vt. Here, bB = (bx, by, 0) is the impact parameter in collisions of the

ion P with atom B and v = (0, 0, v) is the collision velocity. In addition, sB(t) =

ξ − dB(t) is the distance vector between the ion P and the active electron in atom

B. The collision geometry for two-center impact ionization is shown in Fig. 2.1 (b).

It is worth mentioning that the corresponding coordinates for collisions between the

projectile ion P and atom A can be obtained by simple vector addition. Thus, the

straight-line trajectory of the projectile can be written as dA(t) = bA − R + vt,

where bA = (b̃x, b̃y, 0) is the impact parameter in P − A collisions and the distance

vector between P and the active electron in A is obtained to be sA(t) = r − dA(t).

Based on the discussion in Section 1.3, the motion of the active electrons may be

described by using the nonrelativistic Schrödinger equation

i
∂Ψ(t)

∂t
= ĤΨ(t) (2.1)

with the total Hamiltonian

Ĥ = ĤA + ĤB + V̂AB + ŴA + ŴB. (2.2)
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In (2.2), ĤA (ĤB) is the Hamiltonian of the free non-interacting atom A (B), V̂AB
is the interaction between A and B, and ŴA (ŴB) is the interaction between the

projectile ion P and atom A (B).

The free Hamiltonians ĤA and ĤB of atoms A and B, respectively, are given by

ĤA =
(p̂r)

2

2
− ZA

r
,

ĤB =
(p̂ξ)

2

2
− ZB

ξ
. (2.3)

Here, p̂r (p̂ξ) is the momentum operator for the active electron in A (B) with respect

to the nucleus of A (B) and ZA (ZB) is the e�ective nuclear charge of atom A (B).

The interaction V̂AB between atoms A and B at relatively large interatomic distances

R is primarily of the dipole-dipole type and can be derived by considering the

coupling jAµA
µ
B between the transition four-current jAµ of the active electron in A

and the four-potential AµB of the �eld created by the other active electron in B (or

vice versa). Its detailed derivation can be found in Appendix 9.1 and results in the

expression

V̂AB = eiR
ωB
c

[(
r · ξ − 3(r ·R)(ξ ·R)

R2

)
1− iRωB

c

R3

−
(
r · ξ − (r ·R)(ξ ·R)

R2

)(ωB
c

)2

R

]
. (2.4)

Note that (2.4) yields the form in (1.5) by applying τ = 1/ωB. The interaction in

(2.4) incorporates the relativistic retardation e�ect, accounting for the �nite prop-

agation of the electromagnetic interaction, and its limit for comparatively small

interatomic distances, R � c/ωB, is the instantaneous interaction between two

electric dipoles given by (1.6). Further details can be found in Section 1.3.

Now, we consider the interactions ŴA and ŴB between the projectile ion P and

atoms A and B, respectively. Keeping in mind that we suppose a nonrelativistic
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electron motion these interactions read

ŴA =
1

2c

[
p̂r ·AA +AA · p̂r

]
− φA +

1

2c2
A2
A +

1

2c
σ ·BA,

ŴB =
1

2c

[
p̂ξ ·AB +AB · p̂ξ

]
− φB +

1

2c2
A2
B +

1

2c
σ ·BB (2.5)

with φA (φB) and AA (AB) the scalar and vector potential, respectively, which

determine the electromagnetic �eld of the projectile ion P acting on the active

electron in A (B). These potentials can be described by the Liénard-Wiechert

potentials whose forms are similar to those in (1.1) but are adapted to the present

collision geometry. They can be written as

φA =
γZP
|s′A(t)|

, AA =
v

c
φA,

φB =
γZP
|s′B(t)|

, AB =
v

c
φB, (2.6)

where γ = 1/
√

1− β2 is the Lorentz factor with the reduced velocity β = v/c and

s′A(t) =
(
r⊥ − bA −R⊥, γ(r‖ −R‖ − vt)

)
,

s′B(t) =
(
ξ⊥ − bB, γ(ξ‖ − vt)

)
. (2.7)

Here, r⊥ (r‖), ξ⊥ (ξ‖) and R⊥ (R‖) are the transverse (longitudinal) parts of the

coordinates r, ξ and R, respectively, which are perpendicular (parallel) to the colli-

sion velocity v. It is worth mentioning that the potentials in (2.6) satisfy the Lorenz

condition ∂µA
µ
j = 0 for the four-potential Aµj = (φj,Aj) with j = A,B.

Further, in (2.5), σ are the Pauli matrices and BA (BB) is the magnetic �eld

of the projectile ion P acting on the active electron in atom A (B). Since it is

known (see, e.g. [53]) from the theory of direct impact ionization that spin e�ects

are negligible for light atomic targets, we drop the corresponding interaction term
1
2c
σ ·Bj (j = A,B) in our consideration.
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The interaction term 1
2c2
A2
j (j = A,B) in (2.5) requires special care. In particular,

it was shown in [51] that this term has to be omitted in the Schrödinger equation in

order to obtain a self-consistent �rst order treatment. Consequently, we drop this

term in our consideration as well.

The initial state Ψgg of the A−B system is given by

Ψgg(ξ,ν, t) = φg(ν −R)e−iεgtχg(ξ)e−iεgt (2.8)

with φg (χg) the ground state of atom A (B) and ν = R+r. Concerning the direct

impact ionization of atom A, the �nal state Ψkg is determined by

Ψkg(ξ,ν, t) = φk(ν −R)e−iεktχg(ξ)e−iεgt. (2.9)

In (2.9), φk is the continuum state of the electron emitted from A with an asymptotic

momentum k and energy εk = k2/2. Accordingly, the �nal state Ψgκ for the direct

impact ionization of atom B reads

Ψgκ(ξ,ν, t) = φg(ν −R)e−iεgtχκ(ξ)e−iεκt. (2.10)

Here, χκ is the continuum state of the electron ejected from B having an asymptotic

momentum κ and energy εκ = κ2/2. Considering two-center impact ionization of

atom A, in addition to the initial state (2.8) and the �nal state (2.9), we also have

to take into account the intermediate state(s)

Ψge(ξ,ν, t) = φg(ν −R)e−iεgtχe(ξ)e−iεet, (2.11)

where χe is the excited state of B.

The channels for two-center and direct impact ionization of atom A result in the

same �nal state (2.9) of the A−B system and thus they interfere with each other.

Consequently, the transition amplitude for the ionization of A is composed of the

two-center amplitude S2C(bB) and direct amplitude SAD(bA) according to

S2C+D(bB, bA) = S2C(bB) + SAD(bA). (2.12)
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We remark that the channel for direct impact ionization of atomB leads to a di�erent

�nal state (2.10) and therefore does not interfere with the other two ionization

channels.

However, it is worth mentioning that the impact ionization of atom B may trigger

subsequent radiative capture of an electron from atom A by the residual ion B+,

resulting in the same A+−B system as the direct and two-center impact ionization

of A. In particular, the B+ ion formed via impact ionization of B will polarize atom

A leading to the appearance of an attractive force between B+ and A. In case the

two atomic centers approach su�ciently close each other, an outer shell electron of

atom A may be captured by the B+ ion accompanied by the emission of a photon

that results in a diatomic system consisting of the neutral atom B in its ground

state and the ion A+. Since the above described process involves the interaction

between two atomic centers, namely the B+ ion and atom A, it may also be seen

as a kind of two-center ionization which might signi�cantly increase the number of

collision events leading to the A+ − B system with an associated decrease in the

number of collision events which result in the A−B+ system. However, in contrast

to two-center impact ionization, the process involving radiative electron capture is

not resonant, having a shape of the electron emission spectrum similar to that of

the direct impact ionization of atom B, and we will not consider it in this work.

2.1.2 Amplitude for two-center impact ionization of atom A

The transition amplitude S2C(bB) for two-center impact ionization of atom A in

(2.12) is described by using the second order of time dependent perturbation theory

in which both the interaction ŴB between the projectile ion P and atom B and the

interatomic interaction V̂AB between atoms A and B are accounted for and it can

be written as

S2C(bB) =
1∑

∆m=−1

S∆m
2C (bB). (2.13)
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In (2.13), ∆m ∈ {0,±1} indicates the change in the magnetic quantum number for

the dipole-allowed excitation transition in B and

S∆m
2C (bB) =

1

i2

∫ ∞
−∞

dtM∆m
2 (t)

∫ t

−∞
dt′ M∆m

1 (bB, t
′) (2.14)

withM∆m
1 (bB, t

′) = 〈Ψge| ŴB(bB, t
′) |Ψgg〉 andM∆m

2 (t) = 〈Ψkg| V̂AB |Ψge〉. Insert-
ing the states from (2.8), (2.9) and (2.11) into (2.14) and taking advantage of the

orthonormalization condition 〈φg|φg〉 = 1 provides

S∆m
2C (bB) =

1

i2

∫ ∞
−∞

dtM∆m
AB e

i(ωA−ωB)t

∫ t

−∞
dt′ M∆m

B (bB, t
′)eiωBt

′
, (2.15)

where

M∆m
AB = 〈φkχg| V̂AB |φgχe〉 (2.16)

is the interatomic matrix element describing the de-excitation in atom B and the

ionization of atom A and

M∆m
B = 〈χe| ŴB |χg〉 (2.17)

is the matrix element for the impact excitation of B. Further, ωA = εk − εg is the
transition energy in A.

By de�ning F (t) =
∫ t
−∞ dt

′ M∆m
B (bB, t

′)eiωBt
′
, the transition amplitude in (2.15)

yields

S∆m
2C (bB) =

1

i2

∫ ∞
−∞

dtM∆m
AB e

i(ωA−ωB)tF (t). (2.18)

Taking into account that the interatomic matrix elementM∆m
AB is constant for �nite

t and vanishes at the boundaries t = ±∞, which corresponds to the assumption

that the interaction between atoms A and B is adiabatically switched on and o� at
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t→ −∞ and t→ +∞, respectively, integration by parts in (2.18) results in

S∆m
2C (bB) =

−iM∆m
AB

ωA − ωB + iγ/2

∫ ∞
−∞

dtM∆m
B (bB, t)e

iωAt. (2.19)

Here, the appearance of γ (γ → 0+) re�ects the assumption about adiabatic switch-

ing the interatomic interaction on and o� at |t| → ∞ according to ∼ exp(−γ|t|/2).

Following a more careful consideration of two-center ionization, including also the

channel of spontaneous radiative decay of the excited state of atom B and going

beyond the standard perturbation theory, we should replace the in�nitesimally small

parameter γ in (2.19) by the �nite total decay width Γ∆m of the intermediate state

(2.11), which accounts for the �nite lifetime of this state, leading to

S∆m
2C (bB) =

−iM∆m
AB

ωA − ωB + iΓ∆m/2

∫ ∞
−∞

dtM∆m
B (bB, t)e

iωAt. (2.20)

The total width Γ∆m consists of the radiative width ΓBr and two-center autoioniza-

tion width Γ∆m
a according to

Γ∆m = ΓBr + Γ∆m
a . (2.21)

In (2.21), the radiative width due to the spontaneous radiative decay of the excited

state χe is given by

ΓBr =
4ω3

B

3c3
| 〈χe| ξ |χg〉 |2 (2.22)

and the two-center autoionization width arising due to the nonradiative decay of the

excited state χe via interatomic electron correlations reads

Γ∆m
a =

kr
(2π)2

∫
dΩk |M∆m

AB (kr)|2 (2.23)

with kr =
√

2(ωB + εg) the absolute value of the momentum of the emitted electron

evaluated at the resonance and Ωk the solid angle for electron emission.

In fact, it is more reasonable to consider the amplitude (2.20) in momentum space.
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In general, for collisions between the projectile ion P and the A − B system, the

Fourier transform of the transition amplitude to momentum space and its inverse

can be written as

S̃(q⊥) =
1

2π

∫
d2b S(b)eiq⊥·b,

S(b) =
1

2π

∫
d2q⊥ S̃(q⊥)e−iq⊥·b. (2.24)

Here, q⊥ describes the perpendicular part of the momentum transfer between the

projectile P and the A−B system in the collision.

Using the �rst equation in (2.24), the amplitude for two-center impact ionization in

momentum space is obtained to be

S̃∆m
2C (q⊥) =

1

2π

∫
d2bB S∆m

2C (bB)eiq⊥·bB . (2.25)

Now, inserting (2.20) into (2.25), we arrive at

S̃∆m
2C (q⊥) =

1

2π

−iM∆m
AB

ωA − ωB + iΓ∆m/2

∫
d2bB eiq⊥·bB

∫ ∞
−∞

dtM∆m
B (bB, t)e

iωAt. (2.26)

In order to continue, we have to specify the matrix elementM∆m
B , which is de�ned in

(2.17) and enters equation (2.26). To do so, we apply the interaction ŴB from (2.5),

where the vector potential AB is expressed via the scalar potential φB according to

(2.6). Then, the matrix elementM∆m
B becomes

M∆m
B =

〈
χe

∣∣∣∣φBc2
v · p̂ξ +

1

2c2
v ·
[
p̂ξφB

]
− φB

∣∣∣∣χg〉. (2.27)

We want to remind that the Liénard-Wiechert potentials from (2.6) satisfy the

Lorenz condition ∂µA
µ
B = 0 with the four-potential AµB = (φB,AB). It is easy to

show that this condition can be rewritten as v ·
[
p̂ξφB

]
= i∂φB

∂t
. Inserting the latter
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term into (2.27) provides

M∆m
B =

〈
χe

∣∣∣∣φBc2
v · p̂ξ +

i

2c2

∂φB
∂t
− φB

∣∣∣∣χg〉. (2.28)

Next, we insert the matrix element (2.28) into the amplitude (2.26) and get

S̃∆m
2C (q⊥) =

1

2π

−iM∆m
AB

ωA − ωB + iΓ∆m/2

∫
d2bB eiq⊥·bB

×
〈
χe

∣∣∣∣ ∫ ∞
−∞

dt

{
φB
c2
v · p̂ξ +

i

2c2

∂φB
∂t
− φB

}
eiωAt

∣∣∣∣χg〉. (2.29)

Using integration by parts for the second time integral in (2.29), where we suppose

that the scalar potential φB vanishes at the boundaries t = ±∞, yields

S̃∆m
2C (q⊥) =

1

2π

−iM∆m
AB

ωA − ωB + iΓ∆m/2

∫
d2bB eiq⊥·bB

×
∫ ∞
−∞

dt

〈
χe

∣∣∣∣φB(v · p̂ξc2
+
ωA
2c2
− 1

)∣∣∣∣χg〉eiωAt. (2.30)

In (2.30), we express the remaining matrix element in its explicit form as a space

integral over the coordinate ξ and insert the scalar potential φB from (2.6). Subse-

quently, the amplitude S̃∆m
2C reads

S̃∆m
2C (q⊥) =

γZP
2π

−iM∆m
AB

ωA − ωB + iΓ∆m/2

∫
d2bB

∫ ∞
−∞

dt

∫
d3ξ eiq⊥·bBeiωAt

× χ∗e

v·p̂ξ
c2

+ ωA
2c2
− 1√

(ξ⊥ − bB)2 + γ2(ξ‖ − vt)2
χg. (2.31)
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Applying some simple manipulations, (2.31) can also be written in the form

S̃∆m
2C (q⊥) =

ZP
2πv

−iM∆m
AB

ωA − ωB + iΓ∆m/2

∫
d2bB

∫ ∞
−∞

d(γvt)

∫
d3ξ

e−i[q⊥·(ξ⊥−bB)+
ωA
γv
γ(ξ‖−vt)]χ∗e

ei[q⊥·ξ⊥+
ωA
γv
γξ‖]
(v·p̂ξ

c2
+ ωA

2c2
− 1
)√

(ξ⊥ − bB)2 + γ2(ξ‖ − vt)2
χg.(2.32)

Taking into consideration that s′B(t) =
(
ξ⊥ − bB, γ(ξ‖ − vt)

)
=
(
s′B⊥, s

′
B‖
)
, we can

rewrite the integrals over bB and γvt in (2.32) into integrals over s′B⊥ and s′B‖,

respectively. Further, we de�ne the vectors

q =

(
q⊥,

ωA
v

)
=
(
q⊥, q‖

)
,

q′ =

(
q⊥,

ωA
γv

)
=
(
q⊥, q

′
‖
)
, (2.33)

where q and q′ describe the momentum transfer from the projectile ion P to the

target atom B as viewed in the rest frame of the target and projectile, respectively.

Then, the amplitude (2.32) becomes

S̃∆m
2C (q⊥) =

ZP
2πv

−iM∆m
AB

ωA − ωB + iΓ∆m/2

∫
d2s′B⊥

∫ ∞
−∞

ds′B‖

∫
d3ξ e

−i[q⊥·s′B⊥+q′‖s
′
B‖]

× χ∗e
ei[q⊥·ξ⊥+q‖ξ‖]

(v·p̂ξ
c2

+ ωA
2c2
− 1
)√

s′B
2
⊥ + s′B

2
‖

χg, (2.34)

which can be further simpli�ed to two decoupled three-dimensional integrals accord-

ing to

S̃∆m
2C (q⊥) =

ZP
2πv

−iM∆m
AB

ωA − ωB + iΓ∆m/2

×
∫
d3s′B

e−iq
′·s′B

s′B

∫
d3ξ χ∗ee

iq·ξ
(
v · p̂ξ
c2

+
ωA
2c2
− 1

)
χg. (2.35)
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In (2.35), the s′B-integral can be calculated straightforwardly and its solution is

given by ∫
d3s′B

e−iq
′·s′B

s′B
=

4π

q′2
. (2.36)

Besides, we introduce the notation

F∆m
eg (q) =

〈
χe

∣∣∣∣eiq·ξ(v · p̂ξc2
+
ωA
2c2
− 1

)∣∣∣∣χg〉

=

∫
d3ξ χ∗ee

iq·ξ
(
v · p̂ξ
c2

+
ωA
2c2
− 1

)
χg. (2.37)

Employing (2.36) and (2.37), the transition amplitude in (2.35) reads

S̃∆m
2C (q⊥) =

2ZP
ivq′2

M∆m
ABF∆m

eg (q)

ωA − ωB + iΓ∆m/2
. (2.38)

Finally, using (2.38) and taking into account that ∆m ∈ {0,±1}, the total transition
amplitude for two-center impact ionization in momentum space is obtained to be

S̃2C(q⊥) =
1∑

∆m=−1

S̃∆m
2C (q⊥) =

2ZP
ivq′2

1∑
∆m=−1

M∆m
ABF∆m

eg (q)

ωA − ωB + iΓ∆m/2
. (2.39)

2.1.3 Amplitudes for direct impact ionization of atoms

A and B

Within the �rst order of time dependent perturbation theory, the transition ampli-

tude SAD(bA) for direct impact ionization of atom A in (2.12) can be written as

SAD(bA) =
1

i

∫ ∞
−∞

dt 〈φk| ŴA(bA, t) |φg〉 eiωAt (2.40)

with the interaction ŴA between the projectile ion P and atom A given by (2.5).

Again, it is more convenient to consider the amplitude (2.40) in momentum space
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by taking advantage of the �rst equation in (2.24), which provides

S̃AD(q⊥) =
1

2π

∫
d2bA SAD(bA)eiq⊥·bA . (2.41)

At this point, one can perform a quite similar calculation to (2.25) - (2.38) in the

previous Section and the resulting transition amplitude for direct impact ionization

of atom A in momentum space is given by

S̃AD(q⊥) =
2ZP
ivq′2

F∆m
kg (q)eiq·R, (2.42)

where

F∆m
kg (q) =

〈
φk

∣∣∣∣eiq·r(v · p̂rc2
+
ωA
2c2
− 1

)∣∣∣∣φg〉. (2.43)

We note that in (2.42), q and q′, which are formally de�ned as in (2.33), now refer

to the momentum transfer from the projectile ion P to the target atom A (instead

of B) as viewed in the rest frame of the target and projectile, respectively.

Accordingly, the transition amplitude SBD(bB) for direct impact ionization of atom

B in the �rst order of time dependent perturbation theory is determined by

SBD(bB) =
1

i

∫ ∞
−∞

dt 〈χκ| ŴB(bB, t) |χg〉 eiω
ion

B t. (2.44)

Here, the interaction ŴB between the projectile ion P and atom B is given in (2.5)

and ωion
B = εκ − εg is the transition energy for the bound-continuum transition in

B. Applying the �rst equation in (2.24), the amplitude (2.44) in momentum space

reads

S̃BD(q⊥) =
1

2π

∫
d2bB SBD(bB)eiq⊥·bB . (2.45)

As before, one can perform a rather similar calculation to (2.25) - (2.38) in the

previous Section. Then, the transition amplitude for direct impact ionization of
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atom B in momentum space is obtained to be

S̃BD(q⊥) =
2ZP
ivq′2B

F∆m
κg (qB) (2.46)

with

F∆m
κg (qB) =

〈
χκ

∣∣∣∣eiqB ·ξ(v · p̂ξc2
+
ωion
B

2c2
− 1

)∣∣∣∣χg〉 (2.47)

and

qB =

(
q⊥,

ωion
B

v

)
,

q′B =

(
q⊥,

ωion
B

γv

)
, (2.48)

where qB and q′B are the momenta transferred in the P − B collision resulting

in ionization of atom B as viewed in the rest frame of the target and projectile,

respectively.

2.1.4 Cross sections for impact ionization of atom A

The spectrum of electrons emitted from atom A is characterized by the cross section

di�erential in the electron momentum

d3σD+2C

dk3
=

1

(2π)3

∫
d2q⊥ |S̃AD(q⊥) + S̃2C(q⊥)|2 (2.49)

with the integration running over the plane of perpendicular momentum transfer.

The cross section in (2.49) can be divided into the sum

d3σD+2C

dk3
=
d3σAD
dk3

+
d3σ2C

dk3
+
d3σinterf.
dk3

, (2.50)

where

d3σAD
dk3

=
1

(2π)3

∫
d2q⊥ |S̃AD(q⊥)|2 (2.51)
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and

d3σ2C

dk3
=

1

(2π)3

∫
d2q⊥ |S̃2C(q⊥)|2 (2.52)

describe the partial contributions of the direct and two-center ionization mecha-

nisms, respectively, and the term

d3σinterf.
dk3

=
1

(2π)3

∫
d2q⊥

(
S̃ADS̃∗2C + (S̃AD)∗S̃2C

)
(2.53)

arises due to the interference between the direct and two-center ionization channels.

The resonant nature of the two-center mechanism leads to the conjecture that in

the small range ωB + εg − Γ∆m . εk . ωB + εg + Γ∆m of electron emission ener-

gies, centered at the resonance energy εkr = ωB + εg and having a width of a few

Γ∆m, only the second term in (2.50) will be important. Indeed, we have performed

numerical calculations1 which show that, close to the resonance, the direct term

(2.51) and interference term (2.53) are several orders of magnitude smaller than the

two-center term (2.52). Moreover, these calculations also show that in the range of

emission energies far away from the resonance, the direct channel is the dominant

ionization mechanism and only the �rst term in (2.50) is important. Consequently,

interference between the direct and two-center channels is expected to be overall of

minor importance and the interference term (2.53) in the cross section (2.50) can,

in good approximation, be neglected.

Inserting (2.42) into (2.51) and (2.39) into (2.52) yields

d3σAD
dk3

=
Z2
P

2π3v2

∫
d2q⊥

|F∆m
kg (q)|2

q′4
(2.54)

1In particular, we have compared the energy emission spectra associated with the cross sections
given by (2.51), (2.52) and (2.53) for ionization of the Li�He dimer by proton impact with electron
emission from the 2s ground state in Li and two-center ionization involving the 1s2 → 1s2p dipole
excitation transition in He.
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and

d3σ2C

dk3
=

Z2
P

2π3v2

∫
d2q⊥

1

q′4

∣∣∣∣ 1∑
∆m=−1

M∆m
ABF∆m

eg (q)

ωA − ωB + iΓ∆m/2

∣∣∣∣2, (2.55)

respectively.

Now, rewriting dk3 =
√

2εkdεkdΩk, the direct and two-center ionization cross section

di�erential in the emission energy and solid angle is given by

d3σAD
dεkdΩk

=
Z2
P

√
εk√

2π3v2

∫
d2q⊥

∣∣F∆m
kg (q)

∣∣2
q′4

(2.56)

and

d3σ2C

dεkdΩk
=
Z2
P

√
εk√

2π3v2

∫
d2q⊥

1

q′4

∣∣∣∣ 1∑
∆m=−1

M∆m
ABF∆m

eg (q)

ωA − ωB + iΓ∆m/2

∣∣∣∣2, (2.57)

respectively. Here, the quantities F∆m
kg (q) in (2.56) as well asM∆m

AB and F∆m
eg (q) in

(2.57) depend on the diatomic system under consideration and they are discussed

in Appendix 9.2.

Furthermore, the energy distribution of emitted electrons is described by the cross

section di�erential in the emission energy, which reads

dσAD
dεk

=

∫
dΩk

d3σAD
dεkdΩk

(2.58)

and

dσ2C

dεk
=

∫
dΩk

d3σ2C

dεkdΩk
(2.59)

for direct and two-center ionization, respectively.

Finally, the corresponding total cross sections can be obtained according to

σAD =

∫ ∞
0

dεk
dσAD
dεk

(2.60)
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and

σ2C =

∫ ∞
0

dεk
dσ2C

dεk
. (2.61)

2.1.5 Cross section for impact ionization of atom B

The spectrum of electrons ejected from atom B, which solely arises due to the direct

impact ionization of B, is determined by the cross section di�erential in the electron

momentum

d3σBD
dκ3

=
1

(2π)3

∫
d2q⊥ |S̃BD(q⊥)|2. (2.62)

Substitution of (2.46) into (2.62) provides

d3σBD
dκ3

=
Z2
P

2π3v2

∫
d2q⊥

|F∆m
κg (qB)|2

q′4B
. (2.63)

Taking advantage of dκ3 =
√

2εκdεκdΩκ, the direct ionization cross section di�er-

ential in the emission energy and solid angle becomes

d3σBD
dεκdΩκ

=
Z2
p

√
εκ√

2π3v2

∫
d2q⊥

∣∣F∆m
κg (qB)

∣∣2
q′4B

, (2.64)

where F∆m
κg (qB) depends on the diatomic system under consideration and is dis-

cussed in Appendix 9.2. The corresponding energy di�erential and total cross sec-

tions can be calculated via

dσBD
dεκ

=

∫
dΩκ

d3σBD
dεκdΩκ

(2.65)

and

σBD =

∫ ∞
0

dεκ
dσBD
dεκ

, (2.66)

respectively.

33



� CHAPTER 2. IONIZATION OF A WEAKLY BOUND DIATOMIC SYSTEM
BY RELATIVISTIC CHARGED PROJECTILES �

2.1.6 Analytical cross sections for two-center impact

ionization

Now, we derive simple approximate formulas for the two-center impact ionization

cross sections which are expressed via local atomic quantities for the individual atoms

A and B accessible from the literature. In an approximate manner, we suppose that

there is only one intermediate state Ψge of the diatomic system and thus only one

dipole transition in B. Then, the two-center cross section (2.57) di�erential in the

emission energy and solid angle simpli�es to

d3σ∆m
2C

dεkdΩk
=
Z2
P

√
εk√

2π3v2

|M∆m
AB |2

(ωA − ωB)2 + (Γ∆m)2/4

∫
d2q⊥

|F∆m
eg (q)|2

q′4
. (2.67)

Using
√
εk = k/

√
2 and performing some basic manipulations, (2.67) can also be

written in the form

d3σ∆m
2C

dεkdΩk
=

k

(2π)3

|M∆m
AB |2

(ωA − ωB)2 + (Γ∆m)2/4

(∫
d2q⊥

∣∣∣∣2ZPF∆m
eg (q)

ivq′2

∣∣∣∣2). (2.68)

Here, the last term in the brackets represents the direct excitation cross section

σB,∆mexc for atomB by ion impact and the remaining term refers to the probability that

the de-excitation of B results in ionization of A. Finally, the two-center ionization

cross section di�erential in the emission energy and solid angle is obtained to be

d3σ∆m
2C

dεkdΩk
=

k

(2π)3

|M∆m
AB |2

(ωA − ωB)2 + (Γ∆m)2/4
σB,∆mexc . (2.69)

For determining the energy distribution of emitted electrons, we have to integrate

equation (2.69) over the solid angle Ωk for electron emission according to

dσ∆m
2C

dεk
=

1

2π

σB,∆mexc

(ωA − ωB)2 + (Γ∆m)2/4

(
k

(2π)2

∫
dΩk |M∆m

AB |2
)
. (2.70)

We remind that due to the resonant nature of the two-center mechanism, the cross

section in (2.70) noticeably contributes to the ionization of atom A only in the tiny

interval ωB + εg−Γ∆m . εk . ωB + εg + Γ∆m of electron emission energies, centered
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at the resonance energy εkr = ωB + εg and having a width of a few Γ∆m. Within

this energy range, the last term in the brackets in (2.70) is almost constant with

respect to εk. Thus, we may evaluate this term in very good approximation at the

resonance energy εkr corresponding to the resonant value kr =
√

2(ωB + εg) of the

momentum of the emitted electron, such that it takes the form of the two-center

autoionization width Γ∆m
a given in (2.23). Taking this into account, the two-center

ionization cross section di�erential in the emission energy results in

dσ∆m
2C

dεk
=

1

2π

Γ∆m
a

(ωA − ωB)2 + (Γ∆m)2/4
σB,∆mexc . (2.71)

In order to obtain the total cross section for two-center ionization, we have to inte-

grate equation (2.71) over the emission energy εk according to

σ∆m
2C =

Γ∆m
a σB,∆mexc

2π

∫ ∞
0

dεk
1

(ωA − ωB)2 + (Γ∆m)2/4
. (2.72)

The integral in (2.72) is solved by substituting u = ωA − ωB = εk − εg − ωB and

afterwards taking advantage of the fact that the resulting integrand only contributes

to the integral in a very narrow interval −Γ∆m . u . Γ∆m so that the lower

integration boundary −(εg + ωB) can be extended to −∞. Then, the total two-

center ionization cross section becomes

σ∆m
2C =

Γ∆m
a

Γ∆m
σB,∆mexc . (2.73)

It is worth mentioning that the above expression has a particularly simple physical

meaning, where the total cross section for two-center ionization of atom A by ion

impact is the product of the impact excitation cross section of atom B times the

corresponding branching ratio between the two possible pathways (nonradiative two-

center autoionization and spontaneous radiative decay) of the de-excitation of B.

To conclude this Section, we will show that the quantities |M∆m
AB |2 and Γ∆m

a in

(2.69), (2.71) and (2.73) can be rather simply expressed via the photoionization

cross section σAPI of atom A by a photon of frequency ωB and the radiative width
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ΓBr of the excited state of atom B. Using (2.4) and (2.16), we obtain

M∆m
AB = eiR

ωB
c

[(
M∆m

A ·M∆m
B − 3(M∆m

A ·R)(M∆m
B ·R)

R2

)
1− iRωB

c

R3

−
(
M∆m

A ·M∆m
B − (M∆m

A ·R)(M∆m
B ·R)

R2

)(ωB
c

)2

R

]
, (2.74)

where M∆m
A = 〈φk| r |φg〉 and M∆m

B = 〈χg| ξ |χe〉 are the (local) dipole transition
matrix elements for atoms A and B, respectively. Next, we separate the bound

states of A and B into radial and angular parts according to

φnAlAmA(r) = RlA
nA

(r)Y mA
lA

(ϑr, ϕr),

χnB lBmB(ξ) = RlB
nB

(ξ)Y mB
lB

(ϑξ, ϕξ). (2.75)

Here Rlj
nj is the radial part and Y

mj
lj

the angular part (described by the spherical

harmonics) of the electronic state of atom j and (nj, lj,mj) is the set of principal,

orbital, and magnetic quantum numbers of j (j = A,B). The separation into radial

and angular parts is also considered for the continuum state of the emitted electron

which, accordingly, can be written as

φk(r) =
2π

k

∞∑
lA=0

ilAe−iδlARlA
k (r)

lA∑
mA=−lA

Y mA
lA

(ϑk, ϕk)
[
Y mA
lA

(ϑr, ϕr)
]∗
, (2.76)

where RlA
k is the radial function of the continuum state and e−iδlA is a phase factor.

In (2.76), we only keep the term in lA leading to the strongest dipole-allowed bound-

continuum transition in atom A. Inserting the states (2.75) and (2.76) into (2.74)

and performing the integrations over all the angles ϑr, ϕr, ϑξ, ϕξ, we get

|M∆m
AB |2 =

8π

27
A∆m(R,Ωk, ωB)

r2
Ar

2
B

k2
. (2.77)

Furthermore, substituting (2.77) into (2.23) and calculating the Ωk−integral, the
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two-center autoionization width reads

Γ∆m
a =

8π

27
B∆m(R, ωB)

(r2
A)k=krr

2
B

kr
. (2.78)

In (2.77) and (2.78), rA =
∫∞

0
dr r3R

l′A
k R

lA
nA

and rB =
∫∞

0
dξ ξ3R

l′B
n′B
RlB
nB

are the radial

matrix elements for the ionization of A and the de-excitation of B, respectively.

Besides, A∆m and B∆m are geometric factors, depending on the internal structure

of the two-center system, which are discussed in Appendix 9.3. Now, we can express

r2
A and r2

B via the photoionization cross section σAPI of A by a photon of frequency

ωB and the radiative width ΓBr of the excited state of B, respectively, according to

r2
A =

3

2π

ck

ωB
σAPI(ωB),

r2
B =

9

4

(
c

ωB

)3

ΓBr . (2.79)

Finally, inserting (2.79) into (2.77) and (2.78), we obtain

|M∆m
AB |2 = A∆m(R,Ωk, ωB)

1

k

(
c

ωB

)4

ΓBr σ
A
PI(ωB) (2.80)

and

Γ∆m
a = B∆m(R, ωB)

(
c

ωB

)4

ΓBr σ
A
PI(ωB). (2.81)

2.2 Numerical results and discussion

In this Section, we present the results of numerical calculations for direct and two-

center impact ionization cross sections based on the theoretical treatment considered

in Section 2.1.
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2.2.1 Properties of the relativistic charged projectiles

In what follows, we set the projectile charge ZP = 1 and thus consider the single

ionization of a diatomic system by proton impact. Within the �rst order of pertur-

bation theory, ionization cross sections for projectile-target collisions depend on the

projectile charge as Z2
P and are independent of the projectile mass. For this reason,

as long as the �rst order perturbative condition ZP/v � 1 is satis�ed, the numerical

results calculated for projectiles with ZP = 1 can easily be generalized to collisions

involving bare ions with ZP > 1.

Furthermore, concerning impact ionization by relativistic electrons, the momentum

und energy transfers from the electron to the target atom are negligibly small com-

pared with the initial momentum and energy of the projectile electron. Besides,

the projectile electron and atomic electrons have essentially no overlap in the phase

space. Consequently, the results obtained for collisions with proton projectiles can

directly be applied also to collisions with electron (or positron) projectiles.

2.2.2 Properties of the diatomic targets: The Li�He and

Ne�He dimers

As diatomic targets, we may consider two heteroatomic Van-der-Waals molecules

namely the Li�He dimer2 and the Ne�He dimer.

In Li�He, both atoms are very weakly bound by the Van-der-Waals force resulting

in a binding energy of just ≈ 0.5 µeV [54] which is considerably smaller than the

�rst ionization potentials of Li (IA = −εg = 5.39 eV) and He (IB = −εg = 24.59 eV).

The mean distance between Li and He is rather large at ≈ 28 Å (≈ 53 a.u.) [54]

while their equilibrium distance is ≈ 6 Å (≈ 11 a.u.) [55]. For the two-center

ionization of the Li�He dimer, we only take into account the channel involving the

1s2 → 1s2p transition in He with an energy ωB = 21.22 eV, which is the �rst

and strongest dipole-allowed transition in He. The resonance energy of the emitted

electron corresponding to this transition is given by εkr = ωB + εg = 15.83 eV. In

2There exist two Li�He dimers, 7Li�He and 6Li�He (with binding energies of 5.6 mK and 1.5 mK,
respectively), the former of which is about four times stronger bound than the latter. Because 7Li
is much more abundant on Earth than 6Li, we only consider 7Li�He dimers in this thesis.
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addition, the radiative width of the excited 1s2p state in He is ΓBr = 7.44× 10−6 eV

[56] and the partial photoionization cross section for the 2s subshell in Li determined

at ωB is σAPI(21.22 eV) = 7.64× 10−20 cm2 [57].

In Ne�He, both atoms are weakly bound by the Van-der-Waals force with a binding

energy of ≈ 2 meV [46] that is four orders of magnitude smaller than the �rst

ionization potentials of Ne (IA = −εg = 21.56 eV) and He (IB = −εg = 24.59 eV).

The equilibrium distance between Ne and He is ≈ 3 Å (≈ 5.7 a.u.) [46] and the

mean distance is close to the equilibrium one. Concerning two-center ionization of

the Ne�He dimer, we only consider the channel based on the 1s2 → 1s3p transition in

He with an energy ωB = 23.09 eV. This transition is the �rst (and strongest) dipole-

allowed transition in He for which the transition energy is larger than the ionization

potential of Ne (and which has proven [46] to be highly e�cient for photoionization

of the Ne�He dimer). The associated resonant electron emission energy is εkr =

ωB + εg = 1.52 eV. Besides, the radiative width of the excited 1s3p state in He

is given by ΓBr = 2.34 × 10−6 eV [56] and the photoionization cross section for Ne

evaluated at ωB is σAPI(23.09 eV) = 7.05× 10−18 cm2 [57].

In contrast to Ne�He, the mean size of Li�He (≈ 53 a.u.) signi�cantly di�ers from

its equilibrium size (≈ 11 a.u.). Due to the strong dependence of the two-center

cross sections on the interatomic distance R, the question naturally arises which

values of R should be taken in order to provide theoretical predictions allowing for

experimental veri�cation. In case of reactions involving fast electronic transitions

in a dimer resulting in its breakup, the measurement of the kinetic energies of the

reaction fragments often enables one to determine fairly accurate values for the

magnitude of the distance R at which the process took place. Indeed, based on

the results of a recent study [58], we can expect that the most likely outcome of

two-center impact ionization, which we consider in this work, will be a breakup of

the Li�He dimer into Li+ and He fragments. But it can also be concluded from

the results in [58] that there is no one-to-one correspondence between the kinetic

energies of the fragments and the interatomic distance R.

Taking all this into account, we shall only consider cross sections for the two-center

ionization of the Li�He dimer which are averaged over the size of its vibrational
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ground state according to

σaver =

∫ ∞
0

dR σ(R)|Ψ0(R)|2. (2.82)

Here, σ(R) is a cross section evaluated at an interatomic distance R and Ψ0(R) is

the wave function of the molecular ground state of the Li�He dimer. Using results

of [59, 60], the wave function Ψ0(R) can be approximated by

Ψ0(R) =

√
α(κ− 1)

Γ(κ)
e−z/2z(κ−1)/2 (2.83)

with κ =
√

8µD
α2 , z = κe−α(R−Req), µ = 4.62 × 103 a.u. the reduced mass of Li�He

and the �tting parameters Req = 11.9 a.u., D = 5.7 × 10−6 a.u. and α = 0.43 a.u.

Note that we consider the interatomic interaction in the dipole-dipole form (2.4)

which is only valid at su�ciently large interatomic distances. Consequently, the

lower boundary Rmin of the integration over R in (2.82) should e�ectively not be 0

but instead ful�ll the condition Rmin � 1 a.u. However, introducing such a lower

bound is no major issue due to the very rapid decrease of the probability density

|Ψ0(R)|2 with decreasing the interatomic distance R in the range R . 10 a.u. Indeed,

according to our calculations, the di�erence between results obtained by setting

Rmin = 1 a.u. and Rmin = 10 a.u. does not exceed 1 % − 16 % (depending on the

type of cross section being averaged).

2.2.3 Analytical cross sections for He, Li and Ne

Concerning the diatomic systems Li�He and Ne�He as well as the single atoms He, Li

and Ne, we have performed two di�erent sets of numerical calculations for obtaining

ionization cross sections. The �rst one is based on the results of the theoretical

approach shown in Secs. 2.1.1�2.1.5. The second set of numerical calculations

employs approximate analytical formulas for direct and two-center ionization cross

sections. In particular, the cross sections for the single ionization of atoms are

calculated by using the relativistic Bethe formula. The same formula can also be

applied to obtain atomic excitation cross sections, the latter of which are needed
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in order to calculate the approximate two-center ionization cross sections given in

Section 2.1.6.

The relativistic Bethe formula for cross sections for excitation and single ionization

of atoms can be written as (see, e.g. [61])

σ =
8πZ2

P

v2

[
M2

{
ln

(
γv

c

)
− v2

2c2

}
+ C

]
(2.84)

and is known to provide quite accurate results starting with impact energies of a

few MeV/u. We note that expression (2.84) was derived within the �rst order of

time-dependent perturbation theory in the projectile-target interaction.

In (2.84), the parameters M2 and C depend on the internal structure of the atomic

target. They can be speci�ed for the ionization from individual subshells and for

discrete excitation transitions between two subshells. We have extracted experi-

mentally determined values for M2 for the 2s and 2p subshell ionization of Li and

Ne from [62], obtaining M2
Li,2s = 0.515351 and M2

Ne,2p = 1.519, respectively. How-

ever, in the literature we could not �nd any experimental or theoretical data for the

parameter C for these atoms. As a reasonable alternative, we have calculated the

parameter C within the scope of the relativistic binary-encounter-Q (RBEQ) model

from [63] by taking advantage of the known experimental values forM2 which yields

CLi,2s = 3.49 and CNe,2p = 5.89. Considering He, there exist accurate theoretical

values for the parameters M2 and C for discrete 1s2 → 1snp (n = 2, 3) excitation

transitions [64] (M2
He,1s→2p = 0.177, CHe,1s→2p = 0.82825, M2

He,1s→3p = 0.0433 and

CHe,1s→3p = 0.20338) as well as for the ionization from the 1s2 ground state [65]

(M2
He,1s = 0.489 and CHe,1s = 2.763).

It is worth mentioning that the RBEQ model also includes an analytical expression

41



� CHAPTER 2. IONIZATION OF A WEAKLY BOUND DIATOMIC SYSTEM
BY RELATIVISTIC CHARGED PROJECTILES �

for the cross section di�erential in the electron emission energy ε, which reads [63]

dσD
dε

=
2πNT

c4(β2
t + β2

b )b
′

{
Q− 2

t+ 1

(
1

w + 1
+

1

t− w

)
1 + 2t′

(1 + t′/2)2

+(2−Q)

[
1

(w + 1)2
+

1

(t− w)2
+

(b′)2

(1 + t′/2)2

]

+
W

NT (w + 1)

[
ln

(
β2
t

1− β2
t

)
− β2

t − ln(2b′)

]}
, (2.85)

where t = EP/IT , w = ε/IT , t′ = EP/c
2, b′ = IT/c

2, βt =
√

1− (1 + t′)−2, βb =√
1− (1 + b′)−2, Q = 4ITM

2/NT and W = Q/(w + 1)3 with EP the impact energy

of the projectile, IT the ionization potential of the target atom, NT the number of

bound electrons in the atomic subshell under consideration and M2 the parameter

which was discussed above. Equation (2.85) can be used in order to calculate the

energy di�erential cross sections for the direct impact ionization of He, Li and Ne.

2.2.4 Angular distributions

In the following Section, we evaluate the angular distribution of electrons emitted

from the diatomic system having the resonance emission energy εkr = ωB + εg

at which the ionization cross section is largely dominated by two-center impact

ionization of atom A. (Moreover, as we will see in Section 2.2.6, the two-center

channel may strongly dominate the total electron emission in the range of emission

energies centered at the resonance energy and being as broad as δεk ∼ 1 eV.)

For exploring relativistic e�ects in the angular distribution, in addition to relativistic

calculations, we have also performed nonrelativistic calculations in which we set

c→∞.

Note that according to both, the relativistic and nonrelativistic treatments, the

shape of the angular distribution is determined by a subtle interplay between the

amplitudes for two-center ionization involving ion impact excitation of the di�erent

magnetic substates of the excited level of atom B. Since one cannot extract these

amplitudes from cross sections, the calculation method discussed in Section 2.1.6 is
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not applicable here. Instead, we employ the set of numerical calculations based on

the results given in Section 2.1.4.

In Fig. 2.2, we show the angular distributions of electrons emitted with the resonance

energy εkr ≈ 15.83 eV in the process of ionization of the Li�He dimer by 1 GeV

protons. These distributions are described by the cross section d2σ
dεk sinϑkdϑk

considered

as a function of the polar emission angle ϑk for a given (resonance) emission energy

εk. We can draw three main conclusions from Fig. 2.2.

First of all, the angular distributions are symmetric with respect to the polar emis-

sion angle ϑk = 90◦. This feature can be explained by the fact that the two-center

process is solely driven by dipole transitions (including those transitions which result

in the excitation of atom B and those leading to the subsequent energy exchange

between atoms B and A). It is worth mentioning that this symmetry feature is

absent in the direct ionization of A (or B) where the interference between dipole

and non-dipole (mainly quadrupole) transitions results in an asymmetry between

the forward (ϑk ≤ 90◦) and backward (ϑk ≥ 90◦) semisphere of electron emission

(with more electrons being ejected into the forward semisphere).

Second, at an impact energy of 1 GeV/u, corresponding to a quite moderate value

of the collisional Lorentz factor of γ ≈ 2.1, the shape of the angular distribution is

already strongly in�uenced by relativistic e�ects. The latter enhance the electron

emission into the transverse direction and reduce the emission into the longitudinal

direction with respect to the collision velocity v. Note that numerical calculations

for orientations of the dimer other than those considered in Fig. 2.2 show that such

redistributive action of the relativistic e�ects is present for any orientation of the

dimer (although its strength depends on the particular orientation). This feature

arises from the fact that in high energy ion-atom collisions, in which the motion of

atomic electrons is supposed to remain nonrelativistic, the main relativistic e�ect is

related to the �attening of the electric �eld created by the projectile ion, occurring

at impact velocities approaching the speed of light c and being a consequence of the

Lorentz contraction of electromagnetic �elds. This �attening, which was discussed

in detail in Section 1.3, increases the transverse �eld component E⊥ (⊥ v) and de-

creases the longitudinal �eld component E‖ (‖ v), thus enhancing electron emission

in the transverse direction and reducing it in the longitudinal direction.
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Figure 2.2: (a) The angular distribution of electrons emitted with the resonance
energy from the Li�He dimer in collisions with 1 GeV protons. The
distribution was obtained by averaging over the size of the dimer and
is presented for the parallel (R ‖ v, thick dashed) and perpendicular
(R ⊥ v, thick dotted) orientation as well as for the orientational average
(thick solid). In addition, the corresponding results in the nonrelativistic
limit (c → ∞) are depicted by thin dashed, thin dotted and thin solid
curves, respectively. (b) The relativistic�to�nonrelativistic cross section
ratio shown for R ‖ v (dashed), R ⊥ v (dotted) and the orientational
average (solid). This �gure was originally published in Ref. [43].

Third, when averaging over the orientation of the dimer, the angular distribution

of emitted electrons turns out to be quite weakly dependent on the polar emission

angle being almost spherically symmetric. This implies that, in case of two-center

ionization, the angular momentum imparted into the initial system in the collision

(via the absorption of a virtual photon) on average mainly goes to the nuclei, which

results in the excitation of rotational degrees of freedom of the residual (Li�He)+
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system.

Furthermore, it is worth mentioning that the rather pronounced maximum of the

electron emission at ϑk = 90◦ for R ‖ v and R ⊥ v on the one hand as well as

the very weak dependence of the electron emission on ϑk after averaging over the

orientation of the dimer on the other hand indicate that the shape of the angular

distribution has a non-trivial dependence on the angle θR = arccos(R · v/Rv).

Indeed, as additional numerical calculations show, for the angular ranges 0◦ ≤ θR .

18◦ and 63◦ . θR ≤ 90◦ the angular distribution of emitted electrons has a maximum

at ϑk = 90◦ and two equal minima at ϑk = 0◦ and ϑk = 180◦, whereas for the range

18◦ . θR . 63◦ it has two equal maxima at ϑk = 0◦ and ϑk = 180◦ as well as a

minimum at ϑk = 90◦.

In addition, the shape of the angular distribution for Li�He after performing the

average over the orientation of the dimer qualitatively di�ers not only from those

at R ‖ v and R ⊥ v but also from the shape of the angular distribution for

ionization from an s state of a single atom, the latter of which is characterized by a

pronounced emission maximum at ϑk ≈ 90◦ and very low electron emission in the

forward (ϑk ≈ 0◦) and backward (ϑk ≈ 180◦) directions. Hence, in the interval of

emission energies centered at the resonance energy and having a width of δεk ∼ 1 eV,

in which electron emission mainly proceeds via the two-center ionization mechanism

(as it will be shown in Section 2.2.6), the overall angular distribution of emitted

electrons will qualitatively di�er from that typical for the ionization of single Li and

He atoms (and also from that of a Li�He dimer very far from the resonance where

the two-center channel is negligible).

Note that e�ects similar to those discussed for the Li�He system also arise in the

impact ionization of Ne�He dimers. In particular, relativistic e�ects related to the

�attening of the electric �eld generated by the projectile ion tend to enhance elec-

tron emission in the transverse direction and reduce it in the longitudinal direction

with respect to the collision velocity v. Further, the angular distribution of electrons

emitted from Ne�He via the two-center ionization channel averaged over the orien-

tation of the dimer signi�cantly di�ers from the angular emission spectra occurring

in the direct impact ionization of single Ne and He atoms.
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2.2.5 Energy distributions

In this Section, we discuss the energy distribution of emitted electrons for the pro-

cesses of direct and two-center impact ionization for the diatomic systems Li�He and

Ne�He. In Fig. 2.3, we present the energy distribution of electrons emitted from the

Li�He and Ne�He dimers via impact ionization by 1 GeV protons, which is given by

the cross section dσ
dεk

evaluated as a function of the energy detuning δ = ωA − ωB.
More precisely, we display the two-center ionization cross section, determined by the

(incoherent) sum of partial cross sections (2.71) over all intermediate states Ψge of

the diatomic system, and the cross sections for the direct ionization of Li and Ne,

the latter of which were calculated by employing equation (2.85).

It can be seen in Fig. 2.3 that the two-center cross section has a resonant structure

with a maximum at the respective resonance energy εkr = ωB + εg (≈ 15.83 eV for

Li�He and ≈ 1.52 eV for Ne�He). It rapidly decreases for electron emission energies

εk ≶ εkr , where the width of the resonance is determined by the total decay width Γ

(which consists of the radiative width ΓBr and the two-center autoionization width

Γa). In contrast to this, the cross sections for direct ionization of Li and Ne are only

weakly dependent on the electron emission energy εk.

At the resonance and in a small vicinity of emission energies surrounding the res-

onant emission energy, the two-center ionization of atom A can exceed the direct

ionization of A by several orders of magnitude. Indeed, the ratio of two-center and

direct cross sections

µ(1) =
dσ2C/dεk
dσAD/dεk

(2.86)

evaluated at the resonance yields ≈ 105 for Li�He and ≈ 4×104 for Ne�He. However,

outside the resonant energy range, ωB + εg − Γ . εk . ωB + εg + Γ, the two-center

channel substantially diminishes and direct impact ionization is the dominating

ionization mechanism.

We note that for both diatomic systems, Li�He and Ne�He, the two-center cross

section in the relativistic treatment is about 7.5 % larger compared with the corre-

sponding cross section in the nonrelativistic limit (c→∞).
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Figure 2.3: (a) The energy distribution of emitted electrons considered as a function
of the detuning δ = ωA − ωB for the Li�He dimer for two-center ioniza-
tion (solid) and direct ionization of Li (dashed) in collisions with 1 GeV
protons. The two-center distribution was obtained by averaging over the
interatomic vector R of the dimer. (b) The corresponding energy distri-
bution for the Ne�He dimer for two-center ionization (solid) and direct
ionization of Ne (dashed). The two-center distribution was calculated
by averaging over the orientation of the dimer for a �xed interatomic
distance R = 3 Å . This �gure was originally published in Ref. [43].

In our theoretical consideration, we treat dimers as diatomic systems consisting of

two independent atoms which interact with each other but otherwise keep their

identities. However, in reality, even a quite weakly bound dimer is a molecule and

thus the interaction between the dimer and the projectile ion will in general lead

not only to excitation of electronic states but also of vibrational (and rotational)

states of the molecular dimer. As a consequence, the energy spectrum of electrons

emitted from the dimer will be split into several emission lines corresponding to

the involvement of di�erent vibrational (and rotational) states in the ionization
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process (see, e.g. [46, 47, 60]). Here, the electron emission lines will be rather close

to each other due to the fact that the molecular states have much smaller energy

separations than electronic states. For this reason, we expect that when averaging

the energy spectrum of emitted electrons over the energy interval which contains

all the emission lines it will correspond to that energy spectrum which is predicted

by our two independent atom model of the ionization process after averaging this

spectrum over the same energy interval.

2.2.6 Total cross sections

In the following Section, the total cross section for electron emission from the di-

atomic system by ion impact as a function of the projectile energy is considered.

Fig. 2.4 displays the dependence of the total two-center ionization cross section, eval-

uated as the (incoherent) sum of partial cross sections (2.73) over all intermediate

states Ψge of the diatomic system, on the projectile energy (per nucleon) EP for the

Li�He and Ne�He dimers. Moreover, in this �gure, we also show the corresponding

direct ionization cross sections for single Li, Ne and He atoms.

As it can be concluded from Fig. 2.4, the two-center and direct ionization cross sec-

tions of atom A possess the same asymptotic behaviour for high projectile energies.

This may be explained by two facts. First, according to equation (2.73), the energy

dependence of the total two-center ionization cross section is solely determined by

the energy dependence of the cross section for impact excitation of atom B and,

second, at high impact energies the cross sections for direct impact ionization and

(dipole-allowed) impact excitation have a rather similar dependence on the projectile

energy.

The overall e�ect of two-center ionization on the total electron emission from atom

A can be characterized by the ratio

µ(2) =
σ2C

σAD
(2.87)

of total two-center and direct ionization cross sections. Evaluating (2.87) at EP =

1 GeV/u provides ≈ 3.8×10−4 and ≈ 2.9×10−2 for Li�He and Ne�He, respectively.
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Figure 2.4: The total cross section considered as a function of the projectile en-
ergy (per nucleon) Ep. (a) Results for two-center ionization of Li�He
(thick solid) and direct ionization of Li (thick dashed) and He (thick
dotted). The two-center cross section was obtained by averaging over
the interatomic vector R of the dimer. In addition, the corresponding
cross sections in the nonrelativistic limit (c→∞) are presented by thin
solid, thin dashed and thin dotted curves, respectively. (b) Results for
two-center ionization of Ne�He (thick solid) and direct ionization of Ne
(thick dashed) and He (thick dotted). The two-center cross section was
calculated by averaging over the orientation of the dimer at a �xed in-
teratomic distance R = 3 Å . Further, the corresponding cross sections
in the nonrelativistic limit are depicted by thin solid, thin dashed and
thin dotted curves, respectively. Part (b) of this �gure was originally
published in Ref. [43].

Therefore, regarding the Li�He dimer, the two-center channel adds only very little

to the total electron emission from Li whereas for the Ne�He dimer, which has a

much smaller size, two-center ionization gives a more signi�cant contribution to the

total emission from Ne. The relative overall weakness of the two-center mechanism
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for the ionization of Li�He is due to two main reasons. First, the size of the Li�He

dimer is much larger compared to the size of the Ne�He dimer which weakens the

atom-atom interaction. Second, in case of Li�He, the two-center resonance involving

the 1s2 → 1s2p dipole transition in He with a transition frequency of ωB ≈ 21 eV

results in the emission of electrons from Li with kinetic energy εk ≈ 16 eV that is

about three times larger than the ionization potential of Li (IA ≈ 5 eV). On the

other hand, for Ne�He, the two-center resonance related to the 1s2 → 1s3p dipole

transition in He with a frequency of ωB ≈ 23 eV leads to electron emission with

energy εk ≈ 2 eV, which is very small compared with the ionization potential of

Ne (IA ≈ 22 eV). Further, it is known that in high energy collisions with charged

projectiles the majority of electrons emitted from the target have kinetic energies

that do not exceed their initial atomic binding energy. Consequently, comparing

the ionization of Li�He and Ne�He, the range of relatively large emission energies

∼ 16 eV contributes much less to the total electron emission from Li than the range

of comparatively low emission energies ∼ 2 eV contributes to the total emission from

Ne.

Although it has turned out that the two-center channel contributes quite less to

the total electron emission from atom A, we should mention the following interest-

ing fact. For obtaining the above discussed total cross sections, we naturally have

taken into account the whole range of electron emission energies upon integration.

However, if instead the integration is limited to an interval of emission energies

centered at the resonance energy εkr and having the width δεk ≈ 0.5 eV, which is

much smaller than the e�ective width of the atomic continuum of A (∼ 10 eV) but

several orders of magnitude larger compared to the resonance width, then the ratio

(2.87) of total two-center and direct ionization cross sections at EP = 1 GeV/u be-

comes µ(2) ≈ 174 and µ(2) ≈ 200 for Li�He and Ne�He, respectively. Therefore, we

can conclude that in a small (δεk ∼ 1 eV) but experimentally very well resolvable

range of electron emission energies, containing the resonance energy, the two-center

ionization mechanism still largely dominates the direct ionization of atom A.

Up to this point, we only have discussed electron emission from atom A (via di-

rect and two-center impact ionization). Now, we also take into account the direct

ionization of atom B by ion impact, the latter of which also contributes to the to-
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tal electron emission from the whole diatomic system. The consideration of direct

impact ionization of B results in a decrease of the total number of neutral atomic

species B which are crucial for two-center ionization to proceed. However, this point

is of minor importance as long as the condition ZP/v � 1 is satis�ed. Moreover, the

direct impact ionization of B may noticeably enhance the total electron emission

from the diatomic system, this way reducing the role of the two-center channel. To

get an idea about the contribution of two-center ionization on the total electron

emission from both atomic species A and B, we introduce the ratio

µ(3) =
σ2C

σAD + σBD
(2.88)

of the total two-center cross section and the sum of the direct cross sections for A

and B. The ratio (2.88) is evaluated by considering only the interval of emission

energies centered at the resonance energy εkr and having the width δεk ≈ 0.5 eV

when integrating over the emission energy for obtaining total cross sections. At

a projectile energy of EP = 1 GeV/u, we get µ(3) ≈ 8.3 for the Li�He dimer and

µ(3) ≈ 152 for the Ne�He dimer. These values may be compared with the ratio (2.87)

for the same interval of emission energies (and for the same impact energy) which

is given by µ(2) ≈ 174 for Li�He and µ(2) ≈ 200 for Ne�He as it is already known.

We can conclude from these numbers that the inclusion of electrons ejected from

He to the total electron emission reduces the relative contribution of the two-center

channel for both diatomic systems. For Ne�He this e�ect is quite weak while for

Li�He the relative contribution of two-center ionization is greatly reduced (but still

highly visible). To get even more information on how electron emission from He

e�ects the total electron emission from the dimers, we look at the total cross section

for direct impact ionization of He which is displayed in Fig. 2.4. Over the range of

impact energies shown in this �gure, the total cross section for direct ionization of Li

is between 15 % and 37 % larger than that of He while the direct cross section for Ne

is signi�cantly larger compared with that for He, dominating the latter by a factor

of 1.62 to 2.65. Consequently, regarding the Li�He dimer, the electron emission from

He cannot be neglected whereas for the Ne�He dimer it is not too important.

The total two-center and direct impact ionization cross sections in the relativistic
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treatment, shown in Fig. 2.4, grow logarithmically starting with projectile energies

of a few GeV/u that is a typical relativistic e�ect observed for any dipole-allowed

transition and being once again related to the �attening of the electric �eld of the

projectile ion, which occurs at impact velocities approaching the speed of light c.

On the other hand, in the nonrelativistic limit (c → ∞) the �attening of the �eld

disappears and so does the logarithmic growth of the considered cross sections, the

latter of which now simply saturate at highly relativistic impact energies.

2.2.7 Retardation e�ect in two-center impact ionization

Finally, in this Section, we consider the role of the retardation e�ect in the diatomic

system that results from the �nite propagation time of the electromagnetic �eld

which transmits the interaction between atoms A and B. In Fig. 2.5, we show the

total two-center impact ionization cross section, given by the (incoherent) sum of

partial cross sections (2.73) over all intermediate states Ψge of the diatomic system,

multiplied by R6 as a function of the interatomic distance R between A and B for

the Li�He dimer. When evaluating the cross section, we either use the retarded

dipole-dipole interaction (2.4) or its instantaneous limit (1.6).

Based on our detailed discussion of the retardation e�ect in diatomic systems in

Section 1.3, this e�ect can be neglected as long as T � τ , where T = R/c is

the time necessary for the electromagnetic �eld to propagate between the atoms

and τ = 1/ωB is the electronic transition time. In this case, the �eld propagates

essentially instantaneously and the instantaneous interaction (1.6) may be applied in

very good approximation. In contrast, if T � τ , the �nite propagation of the �eld

becomes important, the retardation e�ect signi�cantly in�uences the interatomic

interaction and the latter has to be considered in its retarded form (2.4).

Accordingly, a simple estimate for the importance of the retardation e�ect in di-

atomic systems is given by the magnitude of the ratio

η = T/τ = ωBR/c (2.89)

of the propagation time T and transition time τ . Regarding two-center ionization

of the Ne�He dimer, whose size is relatively small, this ratio evaluated at R ≈ 3 Å
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Figure 2.5: The total cross section for the Li�He dimer multiplied by R6 as a function
of the interatomic distance R at EP = 1 GeV/u using the retarded
dipole-dipole interaction (2.4) (solid) and the instantaneous interaction
(1.6) (dashed). The cross section is averaged over the orientation of the
dimer. This �gure was originally published in Ref. [43].

and ωB ≈ 23 eV provides η ≈ 0.04 that is quite small. Hence, the retardation e�ect

is expected to be negligible, which also follows from our calculated total two-center

cross section. Concerning two-center ionization of the Li�He dimer, whose mean size

is much larger compared with that of Ne�He, the ratio (2.89) evaluated at R ≈ 28 Å

and ωB ≈ 21 eV yields η ≈ 0.3. For this not very small value of η one could

expect a noticeable retardation e�ect. However, di�erent to this simple estimate,

the retardation e�ect on the calculated total two-center cross section in fact becomes

only important at interatomic distances R which are signi�cantly larger than the

mean size of Li�He (see Fig. 2.5) and when we average over the size of the dimer,

the retardation e�ect on the cross section gets very small being below 1 %.

Note that rather than focusing on very large dimers with relatively low transition

frequencies (like the Li�He system) perhaps a more feasible way of highlighting

retardation in two-center ionization of a diatomic system would be to consider ion-

ization of a relatively small dimer but involving much larger transition frequencies.
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In order to get an idea of the importance of the retardation e�ect on the two-center

ionization in such case, we suppose that the active electron in atom B undergoes

a dipole-allowed transition between two atomic states, in which it is e�ectively re-

stricted to the space region around the nucleus of B having a linear size aB. Then,

the dipole matrix elements of atom B will scale as aB while its transition frequencies

ωB would scale as a−2
B . Now, let aB ' 0.1 a.u., so that ωB ' 102 a.u. In this case,

according to (2.89), the retardation e�ect on the interatomic interaction between

atom B and its neighbor atom A would become of relevance beginning already at

interatomic distances R as small as R ' 1 a.u. Such simple estimate indicates that

the retardation e�ect in two-center ionization could become important in diatomic

systems where atom B contains tightly bound electrons and the two-center channel

involves excitation of such an electron.

2.3 Summary and concluding remarks

We have considered the single electron emission from a diatomic system, consisting

of two weakly bound di�erent atomic species A and B, in relativistic collisions with

charged projectiles represented by bare ions.

In systems, in which the ionization potential of atom A is smaller than an excitation

energy for a dipole-allowed transition in atom B, three single ionization channels

can occur: (i) direct impact ionization of A, (ii) direct impact ionization of B, and

(iii) two-center impact ionization of A. Here, channels (i) and (ii) describe the

well-known mechanism of direct ionization of a single atom by ion impact whereas

in channel (iii) ionization of A proceeds by impact excitation of B with subsequent

radiationless transfer of the excitation energy � via (long-range) interatomic electron

correlations � to A, leading to its ionization.

The theoretical treatment of collisions between the A−B system and the projectile

was based on the semiclassical approximation, where the relative motion of the

(heavy) nuclei is described classically while the active electrons are treated quantum

mechanically. The semiclassical approximation is very well justi�ed at high impact

velocities. Further, the ionization channels (i)�(iii) were considered within the lowest

(possible) order of the time-dependent perturbation theory. On the one hand, we
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obtained the transition amplitude for the direct channels by applying the �rst order

of perturbation theory in the projectile-atom interaction. On the other hand, the

transition amplitude for the two-center channel was derived by employing the second

order of perturbation theory, in which both the interaction between the projectile

and atom B as well as the interatomic interaction between atoms A and B are

included.

We have used our theoretical approach to the ionization of diatomic systems by

impact of relativistic ions in order to study single electron emission from the Li�He

and Ne�He dimers. Concerning the Ne�He system, its mean size and equilibrium

interatomic distance are close (both being ≈ 3 Å) and thus the calculations were

carried out at a �xed value of the interatomic distance R = 3 Å. In contrast, regard-

ing the Li�He system, whose mean size and equilibrium interatomic distance di�er

considerably, the calculations were performed by averaging cross sections obtained

for a �xed interatomic distance R over the vibrational ground state of the dimer. A

couple of main conclusions can be drawn from our results for the ionization of these

dimers.

Relativistic e�ects related to the �attening of the electric �eld of the projectile ion

in the transverse direction (with respect to the incident direction of motion of the

ion), which arises as a result of the Lorentz contraction of electromagnetic �elds

when the collision velocity approaches the speed of light, have turned out to be

signi�cant in the ionization of a weakly bound diatomic system. However, the other

type of relativistic e�ect of interest for us, namely the retardation in the interatomic

interaction caused by the �nite propagation of the electromagnetic �eld transmitting

this interaction, has proven to be negligibly small, even for the Li�He system where

one might expect a sizeable retardation e�ect due to the rather large mean size

(≈ 28 Å) of this dimer on the atomic scale.

In two-center ionization, the relativistic e�ects due to the �attening of the pro-

jectile's electric �eld �rst and foremost impact the angular distribution of emitted

electrons by enhancing electron emission into the transverse direction and reduc-

ing it in the longitudinal direction (counted from the collision velocity v) and they

become substantial already at quite small values of the Lorentz factor γ ∼ 1 − 2.

In addition, these e�ects increase the magnitude of the energy spectrum of emitted
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electrons and the total ionization cross section. However, a signi�cant increase may

only be visible at rather large values of the Lorentz factor γ � 1.

Besides, at the resonance energy and in its close vicinity, the two-center channel is

by far the dominant ionization channel. It is so strong that it remains dominant even

when considering the range of emission energies centered at the resonance energy

and having a width δεk ∼ 1 eV, the latter of which is already orders of magnitude

larger compared to the resonance width. Note that these �ndings are in accordance

with the results for two-center impact ionization by nonrelativistic electrons [42].

To conclude this topic on the ionization of a weakly bound diatomic system by

relativistic charged projectiles, we take a brief outlook on possible experimental

veri�cation of our theoretical predictions. The e�ects predicted in this study can,

for instance, be tested in experiments in which the Li�He and Ne�He dimer serve as

the diatomic target which is bombarded by a beam of high energy charged particles

(e.g. ions) exciting especially the 1s2 → 1s2p and 1s2 → 1s3p transition in He in

order to trigger e�cient two-center ionization of Li and Ne, respectively. Here, it

is worth mentioning that the Ne�He system (involving the 1s2 → 1s3p transition

in He) was already successfully used in recent experiments on the related process

of two-center resonant photoionization in a weakly bound system [46,47] indicating

that this dimer could as well be a promising candidate for experiments on two-center

impact ionization.
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3 | Radiation-�eld-driven ionization

in laser-assisted slow atomic

collisions

This chapter provides a detailed insight into the theoretical treatment of the single

electron emission in slow atomic collisions in the presence of a weak laser �eld via

two-center resonant photoionization driven by the coupling of the colliding system

to the radiation �eld when considering the fully relativistic interatomic interaction

which accounts for the retardation e�ect. We derive the reaction rate for this pro-

cess and compare the numerical results to those for two-center photoionization in the

nonrelativistic treatment where the retardation e�ect, allowing for the e�cient cou-

pling to the radiation �eld, is not included and the interaction between the colliding

atoms is regarded as instantaneous. Besides, we also discuss the relative e�ectiveness

of two-center photoionization with respect to direct photoionization. The following

chapter is mainly based on results published initially in Ref. [50].

3.1 Theoretical consideration

3.1.1 The coupling to the radiation �eld

First, let us consider the relativistic dispersion relation of a particle with total energy

ω, momentum q and rest mass m0, which is given by (see, e.g. [52])

ω2 − (|q|c)2 = (m0c
2)2. (3.1)
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The solutions of (3.1) determine the surface (the mass-shell) of a hyperboloid in

energy-momentum space and are referred to as being on-mass-shell. Accordingly, if

(3.1) is not satis�ed, the phrase o�-mass-shell is used. Equation (3.1) may also be

written in terms of the particle's four-momentum qµ = (ω/c, q) according to

qµqµ = (m0c)
2. (3.2)

For a massless particle with m0 = 0, as it is the case for a photon, the on-mass-shell

condition (3.2) simpli�es to

qµqµ = 0. (3.3)

Within the theory of Quantum Electrodynamics, atomic particles interact with each

other by exchanging virtual photons whose four-momentum qµ obeys the o�-mass-

shell condition

qµqµ 6= 0. (3.4)

Virtual photons are represented as inner lines between two vertices in Feynman

diagrams, where they can be thought of as being emitted at one vertex and absorbed

at the other. The concept of virtual photons works particularly well in systems in

which the interaction is relatively weak and the interacting particles are spatially

well separated. It can provide a detailed insight into the basic physics of many

di�erent processes, including Förster resonance energy transfer [30], de-excitation

processes in metallic compounds [24,25], metal oxides [66], rare gas dimers [29] and

clusters [28, 67], as well as ionization reactions occurring in fast atomic collisions

[68�70].

However, in some processes the kinematics of the particles allows the interaction be-

tween them to be transmitted also via the exchange of real (on-mass-shell) photons

whose four-momentum qµ satis�es condition (3.3). In particular, due to the relativis-

tic retardation e�ect, taking into account the �nite propagation of the interaction

between the colliding particles, the coupling of the particles to the quantum radiation

�eld becomes e�cient. This enables the interaction to proceed via the exchange of
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on-shell photons, dramatically increasing its e�ective range, which may signi�cantly

a�ect the characteristics of the process in question. As an example, the process of

electron-positron pair production in the collision of an extreme relativistic electron

with an intense laser �eld mainly proceeds via the emission of an on-shell photon, the

latter of which is converted in the laser �eld into an electron-positron pair [71]. In

addition, the exchange of on-shell photons can strongly promote projectile-electron

loss in high energy collisions with atoms [72] and excitation of ions by high energy

electrons in the presence of an intense laser �eld [73].

It is worth mentioning that there also exists a connecting bridge between the in-

teractions transmitted by o�- and on-shell photons. For instance, the Weizsäcker-

Williams approximation [74�76] exploits the fact that the electromagnetic �eld gen-

erated by an extreme relativistic charged particle, moving with velocities very closely

approaching the speed of light, becomes almost identical to the �eld of an electro-

magnetic wave. As a consequence, the e�ects due to the interaction of a relativistic

charged projectile with some system are in close correspondence to those e�ects re-

sulting from the interaction of equivalent photons with the same system and thus

the projectile's �eld may be replaced by equivalent photons. This approximation is

well established in high energy physics (see, e.g. [52,77,78]).

The above examples of processes in which charged particles interact with each other

by exchanging on-shell photons as well as the discussed bridging regime belong to the

relativistic domain of AMO (atomic, molecular and optical) physics. However, in its

low energy domain the situation looks rather di�erent, both for processes involving

weakly bound systems and collisional processes. For instance, important relaxation

mechanisms that occur in weakly bound systems, like interatomic Auger [26] and

Coulombic [27, 79] decay, studied in detail during the last two decades in a wide

range of systems [35�38], proceed via the exchange of o�-shell photons whereas the

retardation e�ect and thus the coupling to the radiation �eld is unimportant for

these mechanisms (see, e.g. [80]). Note that we have drawn similar conclusions

in Section 2.2.7 regarding the two-step process of two-center impact ionization of

a weakly bound diatomic system whose second step is represented by interatomic

Coulombic decay. Here, we have seen that in the ionization of Li�He and Ne�He

dimers the retardation e�ect and hence the coupling to the radiation �eld plays
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essentially no role. Furthermore, textbooks suggest [81�83] that the coupling to the

radiation �eld is fully irrelevant for ionization and excitation processes taking place

in (not only slow but also quite energetic) nonrelativistic atomic collisions.

It is the main goal of this study to show that � contrary to expectations � the coupling

to the quantum radiation �eld can also strongly in�uence atomic processes occurring

at very low energies. As an exemplary process, we will consider two-center resonant

photoionization (2CPI) in slow atomic collisions, where ionization of atoms A occur

in slow collisions with atoms B in the presence of a weak laser �eld resonantly tuned

to electron transitions in B. For 2CPI in weakly bound systems, the retardation

e�ect and therefore the coupling to the radiation �eld plays essentially no role [45].

However, in the following we shall see that this is not the case for 2CPI in slow

collisions.

3.1.2 General approach

Let us suppose that a beam of atomic species A (e.g. ions or atoms) moves slowly in

a dilute and cold gas of atoms B, where both, A and B, are initially in their ground

states. The A − B system is exposed to a weak monochromatic laser �eld whose

frequency ω is resonant to a dipole-allowed transition between the ground state with

energy εg and an excited state with energy εe of B. Further, we assume that the

ionization potential of atom A is smaller than the transition energy ωB = εe − εg
for the excitation of atom B. In such a case, laser-induced electron emission from

atom A may not only occur via direct photoionization by its interaction with the

laser �eld but also via the indirect process of two-center resonant photoionization.

For a single pair of colliding atoms A and B, the latter process can proceed by the

following two steps. First, B undergoes a dipole transition from the ground state

with energy εg into the excited state with energy εe via (resonant) absorption of a

photon from the laser �eld. Afterwards, B de-excites to its initial ground state and

the energy excess is transferred, due to the long-range interatomic interaction, to A

which, as a result, undergoes a transition from its ground state with energy εg into

a continuum state with energy εk. A scheme of collisional 2CPI is shown in Fig. 3.1.

According to the standard theories (see, e.g. [81�83]) of nonrelativistic collisions
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Figure 3.1: Scheme of collisional two-center resonant photoionization (2CPI). This
�gure was originally published in Ref. [50].

of light atomic species (where all the particles involved move with velocities much

smaller than the speed of light), the interaction between atoms A and B may be

approximated by its instantaneous Coulomb form. In this work, however, we perform

a relativistic calculation which incorporates the retardation e�ect accounting for the

�nite propagation of the electromagnetic �eld that transmits the interaction between

A and B. This in turn allows the e�cient (resonant) coupling of the A−B system

to the radiation �eld. In particular, as it follows from our consideration (and as

we will see later on), the coupling to the radiation �eld becomes e�cient in the

narrow interval of resonant electron emission energies for which 2CPI proceeds via

the exchange of on-shell photons whose four-momentum qµ satis�es the on-mass-
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shell condition qµqµ = 0.

In what follows, we use the single-electron approximation in which only one active

electron in each atom A and B is considered.

Our treatment of atomic collisions is restricted to relative velocities v between

A and B that are much smaller than the typical orbiting velocities ve ∼ 1 a.u.

(≈ 2.18 × 108 cm/s) of the active electrons in A and B. If we assume a typi-

cal transition frequency ωfi ∼ 1 a.u. for the active electrons involved in collisions

of ground state atom A with ground state atom B, we obtain ωfi/v � 1. Taking

into account the Massey adiabatic criterion (see, e.g. [84]), we can conclude from the

above condition that the impact excitation or ionization of atom A (or B) is strongly

suppressed upon collisions. Therefore, in slow collisions (v � 1 a.u.), e�ectively we

only have to deal with direct and two-center photoionization of A.

We apply the semiclassical approximation, in which the relative motion of the heavy

nuclei of A and B is treated classically while the active electrons are considered

quantum mechanically. Note that this approximation is well justi�ed starting with

rather low impact energies E ∼ 1 eV/u (see, e.g. [81]) corresponding to collision

velocities v ∼ 10−2 a.u.

The overwhelming majority of electrons emitted by 2CPI via on-shell photon ex-

change originate from extremely distant collisions, the latter of which are of primary

interest for the present work. For such collisions, the electronic orbitals of atoms

A and B do not overlap, the interaction between A and B is weak and their nuclei

move practically unde�ected along straight lines.

We choose a reference frame in which atom B is at rest and take the position of

its nucleus as the origin. In this frame, atom A moves along a classical straight-

line trajectory R(t) = b + vt, where b = (bx, by, 0) is the impact parameter and

v = (0, 0, v) the collision velocity.

Two interactions are involved in the process of 2CPI, namely the interaction of

atom B with the laser �eld and the (long-range) interatomic interaction in collisions

between atoms A and B. When calculating the transition amplitude for 2CPI, we

account for both interactions by proceeding as follows. First, we derive the �eld-

dressed states of atom B in the presence of a resonant laser �eld. Afterwards, we
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calculate a �rst-order amplitude for 2CPI by considering collisions between atom A

and �eld-dressed atom B.

3.1.3 Field-dressed states of atom B interacting with a

resonant laser �eld

We start our consideration of 2CPI by deriving the �eld-dressed states of atom B

when it interacts with a weak laser �eld resonant to a dipole-allowed transition in

B. The �eld-dressed states Ψ of B are solutions of the Schrödinger equation

i
∂Ψ(x, t)

∂t
= (ĤB + ŴB(t))Ψ(x, t), (3.5)

where the coordinate x refers to the active electron in B and is given with respect

to the nucleus of B and

ĤB =
(p̂x)2

2
− ZB

x
(3.6)

is the Hamiltonian for the free (non-interacting) atom B with p̂x the momentum

operator for the active electron in B with respect to the nucleus of B and ZB the

e�ective nuclear charge of B. Further, in (3.5),

ŴB(t) =
1

c
AL(t) · p̂x (3.7)

is the interaction of atom B with the laser �eld, where AL is the vector potential

describing the �eld. We take the laser �eld as a classical monochromatic electro-

magnetic wave of linear polarization along the collision velocity v in the dipole

approximation, F (t) = F0ez sin(ωt) with F0 the strength of the �eld. In addition,

we use the so-called velocity gauge, in which the electric �eld F is determined solely

by the vector potential AL according to F (t) = −1
c
∂AL(t)
∂t

. Then, the (classical)

vector potential AL associated with the �eld F is obtained to be

AL(t) =
cF0

ω
ez cos(ωt). (3.8)
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We consider a dipole transition between the ground state χg (with energy εg) and

an excited state χe (with energy εe) of atom B. The frequency ω of the laser �eld

shall be resonantly tuned to the corresponding excitation energy ωB = εe − εg. In

this case, the �eld-dressed (bound) states Ψ± of B can be written as

Ψ±(x, t) = a±g (t)χg(x)e−iεgt + a±e (t)χe(x)e−iεet. (3.9)

Here, a±g (t) and a±e (t) are time-dependent coe�cients to be determined. In addition,

we suppose that the laser �eld is switched on adiabatically at t → −∞ and set

the boundary conditions Ψ+(x, t → −∞) = χg(x)e−iεgt (or a+
g (t → −∞) = 1,

a+
e (t → −∞) = 0) and Ψ−(x, t → −∞) = χe(x)e−iεet (or a−g (t → −∞) = 0,

a−e (t→ −∞) = 1).

Next, we insert (3.9) into (3.5). The resulting equation is projected on 〈χg| and 〈χe|,
respectively. Afterwards, we take advantage of the rotating wave approximation

(see, e.g. [85]), in which the rapidly oscillating time-dependent terms are dropped.

Taking all this into account, the set of equations for the unknown coe�cients a±g (t)

and a±e (t) in (3.9) reads

iȧ±g (t) =Wgea
±
e (t)e−i∆t,

iȧ±e (t) =W∗gea±g (t)ei∆t, (3.10)

where ∆ = (εe − εg)− ω = ωB − ω is the detuning between the excitation energy of

atom B and the laser frequency,

Wge =
F0

2ω
〈χg| ez · p̂x |χe〉 (3.11)

andW∗ge is the complex conjugate ofWge. Now, we de�ne ã±e (t) = a±e (t)e−i∆t, where

ã+
e (t→ −∞) = 0 and ã−e (t→ −∞) = e−i∆t. Then, (3.10) becomes

iȧ±g (t) =Wgeã
±
e (t),

i ˙̃a±e (t)−∆ã±e (t) =W∗gea±g (t). (3.12)
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The set of equations (3.12) can be straightforwardly solved by considering stationary

solutions ag(t) = Age
−iEt and ãe(t) = Aee

−iEt with |Ag|2 + |Ae|2 = 1 and using the

boundary conditions for a±g (t) and ã±e (t) from above. Finally, noting that a±e (t) =

ã±e (t)ei∆t, the solutions for the coe�cients a±g (t) and a±e (t), which determine the

�eld-dressed states of atom B in (3.9), are given by

a+
g (t) =

Wge√
E2

+ + |Wge|2
e−iE+te−iϕ0 ,

a+
e (t) =

√
E2

+

E2
+ + |Wge|2

e−i(E+−∆)te−iϕ0 (3.13)

and

a−g (t) =
Wge√

E2
− + |Wge|2

e−iE−t,

a−e (t) =

√
E2
−

E2
− + |Wge|2

e−i(E−−∆)t (3.14)

with ϕ0 = arg Wge and E± = 1
2

(
∆∓ ∆

|∆|

√
∆2 + 4|Wge|2

)
.

3.1.4 Amplitude for two-center photoionization via coupling

to the radiation �eld

In the last Section, we have obtained the states Ψ± of atom B dressed by the laser

�eld, this way taking into account the interaction between B and the �eld. Now,

we turn to the ionization of atom A by its collisional (long-range) interaction with

�eld-dressed atom B.

In general, there are di�erent ways to arrive at the transition amplitude for 2CPI. In

our approach to this process, which accounts for the coupling of the A− B system

to the quantum radiation �eld, we start by considering the coupling jAµA
µ
B between

the transition four-current jAµ = (cρA, jA) of the active electron in atom A and the

four-potential AµB = (φ,A) of the �eld created by the other active electron in atom
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B. The corresponding �rst-order transition amplitude for the interaction between

A and B can be written as (see, e.g. [86])

a2C = − i

c2

∫
d4x jAµ (x)AµB(x), (3.15)

where xµ = (ct,x) is the four-space-time vector.

In (3.15), we insert the inverse Fourier transforms

jAµ (x) =
1

(2π)2

∫
d4kA j̃

A
µ (kA)e−ikAx,

AµB(x) =
1

(2π)2

∫
d4kB ÃµB(kB)e−ikBx (3.16)

with kµA = (ω̃A/c,kA) and kµB = (ω̃B/c,kB) the four-wave vectors of the active

electrons in A and B, respectively. Subsequent integration over the space-time

provides

a2C = − i

c2

∫
d4kA

∫
d4kB j̃Aµ (kA)ÃµB(kB)δ(kA + kB). (3.17)

Next, we integrate over kB by taking advantage of the delta function which yields

a2C = − i

c2

∫
d4kA j̃

A
µ (kA)ÃµB(−kA). (3.18)

The four-potential AµB(x) satis�es the Maxwell equations(
1

c2

∂2

∂t2
−∆x

)
AµB(x) =

4π

c
jµB(x), (3.19)

the latter of which can be solved in the four-dimensional kB space leading to

ÃµB(kB) = −4π

c
G̃F (kB)j̃µB(kB). (3.20)

Here, G̃F (kB) =
(
(ω̃B/c)

2 − k2
B + iη

)−1
(η → 0+) is the Feynman propagator for

a massless Klein-Gordon particle. Using (3.20), the transition amplitude in (3.18)
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becomes

a2C =
4πi

c3

∫
d4kA G̃F (−kA)j̃Aµ (kA)j̃µB(−kA). (3.21)

In (3.21), the Fourier transforms of the transition four-currents are given by

j̃Aµ (kA) =
1

(2π)2

∫
d4x jAµ (x)eikAx,

j̃µB(−kA) =
1

(2π)2

∫
d4x jµB(x)ei(−kA)x. (3.22)

According to the discussion in Section 1.3, we consider a nonrelativistic electron

motion and thus the four-current for the electron in atom A is determined by

jAµ (x) = (cρA,−jA), (3.23)

where

ρA(x) =

∫
d3ν Φ∗ke(ν, t)

[
ZA
e�δ(x−R(t))− δ(x− ν)

]
Φg(ν, t),

jA(x) =

∫
d3ν δ(x− ν)

(−1)

2

{
Φ∗ke(ν, t)p̂νΦg(ν, t) + Φg(ν, t)p̂

∗
νΦ∗ke(ν, t)

}
(3.24)

with Φg and Φke the initial and �nal states of A, respectively, and ZA
e� the e�ective

charge of A. In (3.24), the ν-integral in the �rst term of ρA(x) vanishes since the

states Φg and Φke are orthogonal. The remaining integrals over ν are solved by

taking advantage of the delta function δ(x− ν). Then, we arrive at

ρA(x) = −Φ∗ke(x, t)Φg(x, t),

jA(x) = −1

2

{
Φ∗ke(x, t)p̂xΦg(x, t) + Φg(x, t)p̂

∗
xΦ∗ke(x, t)

}
. (3.25)
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Here, the initial and �nal states of atom A can be written as

Φg(x, t) = ϕg(x−R(t))e−iεgtα(x, t),

Φke(x, t) = ϕke(x−R(t))e−iεke tα(x, t), (3.26)

where ϕg is the ground state (with energy εg) and ϕke the continuum state (with

asymptotic momentum ke and energy εke = k2
e/2) of A in its restframe. Further,

α(x, t) = ei[v·(x−R(t))−v2/2] is the so-called translational factor that accounts for the

motion of atom A in the restframe of atom B.

The corresponding four-current jµB(x) for the electron in atom B reads

jµB(x) = (cρB, jB) (3.27)

with

ρB(x) =

∫
d3ν Ψ∗f (ν, t)

[
ZB
e�δ(x)− δ(x− ν)

]
Ψi(ν, t),

jB(x) =

∫
d3ν δ(x− ν)

(−1)

2

{
Ψ∗f (ν, t)p̂νΨi(ν, t) + Ψi(ν, t)p̂

∗
νΨ∗f (ν, t)

}
,

(3.28)

where Ψi and Ψf are the initial and �nal states of B, respectively, and ZB
e� is the

e�ective charge of B. Taking into account that atom B is initially in its ground state

when the laser �eld is switched on, Ψi and Ψf are determined by the �eld-dressed

states Ψ± of B from (3.9), (3.13) and (3.14) according to Ψi = Ψ+ and Ψf = Ψ±.

In (3.28), the ν-integral in the �rst term of ρB(x) is solved by accounting for the

orthonormality of the ground (χg) and excited (χe) states of B. The remaining

integrals over ν are performed by using the delta function δ(x− ν). Subsequently,

we get

ρB(x) = ZB
e�δ(x)

[(
a±g (t)

)∗
a+
g (t) +

(
a±e (t)

)∗
a+
e (t)

]
− (Ψ±(x, t))∗Ψ+(x, t),
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jB(x) = −1

2

{(
Ψ±(x, t)

)∗
p̂xΨ+(x, t) + Ψ+(x, t)p̂∗x

(
Ψ±(x, t)

)∗}
. (3.29)

Next, we insert the four-current jAµ (x) of the electron in atom A, given by equations

(3.23) and (3.25), into the �rst expression of (3.22), rewrite the integral over the

space coordinate x into an integral over the coordinate r = x−R(t) of the electron

in A with respect to the nucleus of A and afterwards perform the integration over

the time t, which yields

j̃Aµ (kA) =

(
− c2

2π
e−ikA·bδ(ωA + ω̃A − kA · v)FA,0

keg
(kA),

c

4π
e−ikA·bδ(ωA + ω̃A − kA · v)

{
F A,1
keg

(kA) + 2vFA,0
keg

(kA)
})

(3.30)

with

FA,0
keg

(kA) = 〈ϕke(r)| e−ikA·r |ϕg(r)〉 ,

F A,1
keg

(kA) = 〈ϕke(r)| e−ikA·rp̂r + p̂re
−ikA·r |ϕg(r)〉 . (3.31)

Further, we insert the four-current jµB(x) of the electron in atom B, given by equa-

tions (3.27) and (3.29), into the second expression of (3.22) and calculate in j̃0
B(−kA)

the x-integral over the term which contains δ(x) by using the latter. Subsequently,

we perform the integration over the time t, where we exploit the fact that |E+−E−|
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is much smaller than the transition energies in A and B. Then, we arrive at

(j̃µB)±(−kA) =

(
c2

2π

[{
D±ggF

B,0
gg (kA) +D±eeF

B,0
ee (kA)

}
δ(ω̃A)

+D±geF
B,0
ge (kA)δ(ω̃A + ω) +D±egF

B,0
eg (kA)δ(ω̃A − ω)

]
,

− c

4π

[{
D±ggF

B,1
gg (kA) +D±eeF

B,1
ee (kA)

}
δ(ω̃A)

+D±geF
B,1
ge (kA)δ(ω̃A + ω) +D±egF

B,1
eg (kA)δ(ω̃A − ω)

])
.

(3.32)

Here,

FB,0
αβ (kA) = ZB

e�δαβ − 〈χα(x)| eikA·x |χβ(x)〉 ,

FB,1
αβ (kA) = 〈χα(x)| eikA·xp̂x + p̂xe

ikA·x |χβ(x)〉 (3.33)

for αβ ∈ {gg, ee, ge, eg} and

D±gg = e−iϕ±
|Wge|2√

(E2
± + |Wge|2)(E2

+ + |Wge|2)
,

D±ee = e−iϕ±

√
E2
±E

2
+

(E2
± + |Wge|2)(E2

+ + |Wge|2)
,

D±ge = e−iϕ±

√
E2

+

(E2
± + |Wge|2)(E2

+ + |Wge|2)
W∗ge,

D±eg = e−iϕ±

√
E2
±

(E2
± + |Wge|2)(E2

+ + |Wge|2)
Wge, (3.34)

where ϕ+ = 0 and ϕ− = ϕ0.

Now, insertion of j̃Aµ (kA) and (j̃µB)±(−kA) from (3.30) and (3.32), respectively, into
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(3.21) provides the amplitude a±2C for the collisional interaction between atom A and

�eld-dressed atom B. It can be separated into contributions a±gg and a
±
ee related to

elastic transitions χg → χg and χe → χe in B as well as a±ge and a±eg referring to

de-excitation and excitation transitions χe → χg and χg → χe in B:

a±2C = a±gg + a±ee + a±ge + a±eg. (3.35)

Here,

a±gg = −ic
π
D±gg

(
Igg,01 +

Igg,02

4c2
+
v · Igg,03

2c2

)
,

a±ee = −ic
π
D±ee

(
Iee,01 +

Iee,02

4c2
+
v · Iee,03

2c2

)
,

a±ge = −ic
π
D±ge

(
Ige,ω1 +

Ige,ω2

4c2
+
v · Ige,ω3

2c2

)
,

a±eg = −ic
π
D±eg

(
Ieg,−ω1 +

Ieg,−ω2

4c2
+
v · Ieg,−ω3

2c2

)
(3.36)

with

Iαβ,Ω1 =

∫
d4kA δ(ω̃A + Ω)δ(ωA + ω̃A − kA · v)

e−ikA·bFA,0
keg

(kA)FB,0
αβ (kA)(

ω̃A
c

)2 − k2
A + iη

,

Iαβ,Ω2 =

∫
d4kA δ(ω̃A + Ω)δ(ωA + ω̃A − kA · v)

e−ikA·bF A,1
keg

(kA) · FB,1
αβ (kA)(

ω̃A
c

)2 − k2
A + iη

,

Iαβ,Ω3 =

∫
d4kA δ(ω̃A + Ω)δ(ωA + ω̃A − kA · v)

e−ikA·bFA,0
keg

(kA)FB,1
αβ (kA)(

ω̃A
c

)2 − k2
A + iη

(3.37)

for (αβ,Ω) ∈ {(gg, 0), (ee, 0), (ge, ω), (eg,−ω)}.

In the amplitude (3.35), the contribution a±ge corresponds to the case, where in

collisions between A and B the energy necessary for the ionization of A is gained from
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the energy excess upon de-excitation in B. Consequently, a±ge is associated with the

ionization mechanism underlying the process of 2CPI. For the other contributions

in (3.35), single electron emission from A is accompanied by excitation or elastic

transitions in B, such that the energy needed for ionizing A has to be provided

by the relative motion of colliding atoms A and B. Since we are only interested

in ionization of A via the 2CPI channel, in (3.35), we may only keep the term a±ge

and omit the other contributions. (Note that for collision velocities v � 1 a.u., the

energy gained from the relative motion would not be su�cient to ionize A anyway.)

Now that we solely deal with de-excitation transitions in B, we introduce the sim-

plifying notations

D± = D±ge = e−iϕ±

√
E2

+

(E2
± + |Wge|2)(E2

+ + |Wge|2)
W∗ge (3.38)

and

I1 = Ige,ω1 =

∫
d4kA δ(ω̃A + ω)δ(ωA + ω̃A − kA · v)

e−ikA·bFA,0
keg

(kA)FB,0
ge (kA)(

ω̃A
c

)2 − k2
A + iη

,

I2 = Ige,ω2 =

∫
d4kA δ(ω̃A + ω)δ(ωA + ω̃A − kA · v)

e−ikA·bF A,1
keg

(kA) · FB,1
ge (kA)(

ω̃A
c

)2 − k2
A + iη

,

I3 = Ige,ω3 =

∫
d4kA δ(ω̃A + ω)δ(ωA + ω̃A − kA · v)

e−ikA·bFA,0
keg

(kA)FB,1
ge (kA)(

ω̃A
c

)2 − k2
A + iη

.

(3.39)

Then, the transition amplitude for ionization of atom A via 2CPI is given by

a±2CPI = −ic
π
D±
(
I1 +

I2

4c2
+
v · I3

2c2

)
. (3.40)

In (3.39), we may perform the integration over the frequency ω̃A by taking advantage
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of the delta function δ(ω̃A + ω) and rewrite the results in the following form

I1 = −1

c
〈ϕke(r)χg(x)| I4 |ϕg(r)χe(x)〉 ,

I2 =
1

c
〈ϕke(r)χg(x)| I4p̂rp̂x + p̂xI4p̂r + p̂rI4p̂x + p̂rp̂xI4 |ϕg(r)χe(x)〉 ,

I3 =
1

c
〈ϕke(r)χg(x)| I4p̂x + p̂xI4 |ϕg(r)χe(x)〉 , (3.41)

where

I4 =

∫
d3kA δ(ωA − ω − kA · v)

e−ikA·(b+r−x)(
ω
c

)2 − k2
A + iη

. (3.42)

Splitting the coordinates kA, r and x into their transverse parts, kA⊥ , r⊥ and x⊥,

and longitudinal parts, kA‖ , r‖ and x‖, respectively, as counted from the collision

velocity v, the integral I4 becomes

I4 =

∫
d2kA⊥

∫ ∞
−∞

dkA‖ δ(ωA − ω − kA‖v)
e
−i[kA⊥ ·(b+r⊥−x⊥)+kA‖ (r‖−x‖)](

ω
c

)2 − k2
A⊥
− k2

A‖
+ iη

. (3.43)

In (3.43), we integrate over kA‖ by applying the delta function δ(ωA − ω − kA‖v) =

δ([ωA − ω]/v − kA‖)/v and obtain

I4 =
e−i

ωA−ω
v

(r‖−x‖)

v

∫
d2kA⊥

e−ikA⊥ ·(b+r⊥−x⊥)(
ω
c

)2 − k2
A⊥
−
(
ωA−ω
v

)2
+ iη

. (3.44)

Next, we introduce the vector

q =

(
kA⊥ ,

ωA − ω
v

)
=
(
q⊥, q‖

)
. (3.45)

It describes the momentum transferred in the collision between atoms A and B,

where q⊥ and q‖ are the transverse and longitudinal parts (with respect to the

collision velocity v) of the momentum transfer, respectively. In addition, we use the
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notation ρ = b+ r⊥ − x⊥. Then, (3.44) can be written as

I4 = −e
−iq‖(r‖−x‖)

v
J (3.46)

with

J =

∫
d2q⊥

e−iq⊥·ρ

q2
⊥ + q2

‖ −
(
ω
c

)2 − iη
. (3.47)

In contrast to the standard theories of nonrelativistic collisions of light atomic par-

ticles, in the present calculation the electromagnetic �eld which transmits the inter-

action between A and B is not approximated by an instantaneous Coulomb form

but is described relativistically that includes the presence of the retardation term

−
(
ω
c

)2
in the denominator of the integrand in (3.47). The retardation term allows

the singularity of the integrand in (3.47) to appear at real q⊥. This becomes possible

if

q2
‖ −

(
ω

c

)2

< 0 (3.48)

corresponding to the range of electron emission energies

εg + ω

(
1− v

c

)
< εke < εg + ω

(
1 +

v

c

)
. (3.49)

Note that at v � 1 a.u., this resonant energy range is quite narrow. Within and

outside of it, the process of 2CPI can be considered as proceeding via di�erent phys-

ical mechanisms. On the one hand, within the energy interval (3.49), the coupling of

the A−B system to the radiation �eld becomes e�cient and 2CPI proceeds via the

exchange of an on-mass-shell photon whose four-momentum qµ = (ω/c, q) satis�es

the on-shell condition

qµqµ =

(
ω

c

)2

− q2 = 0 (3.50)

which re�ects the real pole of the integrand in (3.47). In the restframe of B, the
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on-shell photon has a frequency ω while in the restframe of A its frequency ω′ is

Doppler shifted and occupies the range ω
(
1 − v

c

)
< ω′ < ω

(
1 + v

c

)
. On the other

hand, outside the energy interval (3.49), 2CPI takes place by the exchange of an

o�-shell photon that is re�ected by the complex pole of the integrand in (3.47).

In the following, we restrict our treatment of 2CPI to those collisions between atoms

A and B for which the energies of the emitted electrons populate the range (3.49) and

the interaction between A and B is exchanged by an on-shell photon. Consequently,

the integral J in (3.47) will be evaluated under the constraint (3.48).

In (3.47), we introduce the polar coordinates q⊥ = (q⊥ cosϕq⊥ , q⊥ sinϕq⊥ , 0) and

ρ = (ρ cosϕρ, ρ sinϕρ, 0), which yields

J =

∫ ∞
0

dq⊥
q⊥

q2
⊥ + q2

‖ −
(
ω
c

)2 − iη

∫ 2π

0

dϕq⊥ e
−iq⊥ρ cos(ϕq⊥−ϕρ). (3.51)

Here, the integral over the azimuthal angle ϕq⊥ can be calculated straightforwardly

and we arrive at

J = 2π

∫ ∞
0

dq⊥
q⊥J0(q⊥ρ)

q2
⊥ + q2

‖ −
(
ω
c

)2 − iη
, (3.52)

where J0(x) is the Bessel function [87].

Now, we use the asymptotic expansion [87]

J0(q⊥ρ) ≈
√

2

πq⊥ρ
cos(q⊥ρ−

π

4
) (3.53)

which is valid for large arguments q⊥ρ → ∞. Since the vast majority of electrons

ejected from A via 2CPI driven by on-shell photon exchange originate from very

distant collisions where the absolute value b of the impact parameter is (extremely)

large, the corresponding argument in such case, q⊥ρ = q⊥|b + r⊥ − x⊥| ≈ q⊥b, is

assumed to be su�ciently large to apply (3.53) in good approximation (provided
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that q⊥ 6= 0). Then, (3.52) becomes

J =

√
23π

ρ

∫ ∞
0

dq⊥

√
q⊥ cos(q⊥ρ− π

4
)

q2
⊥ + q2

‖ −
(
ω
c

)2 − iη
. (3.54)

It is worth noting that, like the integrand in (3.52), the integrand in (3.54) ap-

proaches zero when q⊥ → 0. In (3.54), we substitute u = q⊥ρ and get

J =
√

23π

∫ ∞
0

du

√
u cos(u− π

4
)

u2 − u2
0 − iη̃

(3.55)

with −u2
0 = ρ2

[
q2
‖ −

(
ω
c

)2]
< 0 and η̃ = ρ2η → 0+. Applying cos(u − π

4
) =

1
2

[
ei(u−

π
4

) + e−i(u−
π
4

)
]
, expression (3.55) reads

J =
√

2π

[
e−i

π
4

∫ ∞
0

du

√
ueiu

u2 − u2
0 − iη̃

+ ei
π
4

∫ ∞
0

du

√
ue−iu

u2 − u2
0 − iη̃

]
. (3.56)

In the second integral in (3.56), we substitute w = −u and take into consideration

that
√
−w =

√
we−i

π
2 . Subsequently, we obtain

J =
√

2π

[
e−i

π
4

∫ ∞
0

du

√
ueiu

u2 − u2
0 − iη̃

+ e−i
π
4

∫ 0

−∞
dw

√
weiw

w2 − u2
0 − iη̃

]
. (3.57)

Renaming w = u in the second integral in (3.57) provides

J =
√

2πe−i
π
4

∫ ∞
−∞

du

√
ueiu

u2 − u2
0 − iη̃

. (3.58)

The remaining integral in (3.58) can be solved by employing the Residue theorem,

which yields

J = i
√

2π3e−i
π
4
ei|u0|√
|u0|

. (3.59)

Recalling that −u2
0 = ρ2

[
q2
‖ −

(
ω
c

)2]
, we have |u0| = pρ with p =

√(
ω
c

)2 − q2
‖ > 0.
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Then, the �nal result for the integral J can be written as

J = i

√
2π3

p
e−i

π
4
eipρ
√
ρ
. (3.60)

Next, we insert (3.60) into I4 from (3.46) leading to

I4 = − i
v

√
2π3

p
e−i

π
4 e−iq‖(r‖−x‖)

eipρ
√
ρ

= − i
v

√
2π3

p
e−i

π
4

(
e−iq‖(r‖−x‖)eip|b+r⊥−x⊥|√

|b+ r⊥ − x⊥|

)
, (3.61)

where in the last line we have reinserted ρ = b+ r⊥ − x⊥.

Expression (3.61) is related to all kinds of multipole-interactions between the two

active electrons in A and B. However, we are only interested in their strongest

coupling, namely the dipole-dipole interaction. Therefore, in (3.61), we consider

appropriate multipole expansions up to second order in r − x = (r⊥ − x⊥, r‖ − x‖)
in the last term in brackets. In particular, we expand the term e−iq‖(r‖−x‖) around

0 up to second order in r‖ − x‖ and the terms eip|b+r⊥−x⊥| and 1/
√
|b+ r⊥ − x⊥|

around b up to second order in r⊥ − x⊥, respectively. Afterwards, we build the

product of these expansions and keep only terms up to second order in r − x.
Moreover, since collisions with extremely large impact parameters b (b� c/ω) give

the overwhelming contribution to the process of 2CPI in case when it is driven by

the exchange of an on-shell photon, in the �nal expansion of (3.61), we can omit

terms that are not of leading order ∼ 1/
√
b in b. Taking all this into account, I4 in

(3.61) is approximated by

I4 ≈ −
i

v

√
2π3

p
e−i

π
4 eipb

[
1√
b

+ ip
(r⊥ − x⊥) · b

b3/2
− p2

2

[(r⊥ − x⊥) · b]2

b5/2
− iq‖

r‖ − x‖√
b

+q‖p
(r‖ − x‖)[(r⊥ − x⊥) · b]

b3/2
−
q2
‖

2

(r‖ − x‖)2

√
b

]
. (3.62)
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Now, within some elaborate but basic steps, we �rst insert (3.62) into I1, I2 and I3

in (3.41) and subsequently keep only those matrix elements that will lead to dipole-

allowed transitions in atoms A and B. Substituting the resulting expressions for I1,

I2 and I3 into the transition amplitude a±2CPI in (3.40), the latter is obtained to be

a±2CPI(b) =
1

v

√
2π

p
e−i

π
4 eipbD±Λ(b). (3.63)

Here, the quantity Λ(b), which depends on the internal transitions of A and B and

which is quite cumbersome, is given by equations (9.34)�(9.37) in Appendix 9.4.

In what follows, we present results for the amplitude (3.63) when ϕg and χg are

s states. Since atom B is excited by a laser �eld of linear polarization, the �eld res-

onantly couples to dipole transitions where the excited state χe of B has a magnetic

quantum number mB = 0. Furthermore, we assume that ωB ≈ ω for those terms in

(3.63) which smoothly depend on ωB. (This is a very good approximation because

the laser �eld is resonantly coupled to B, meaning that its frequency ω lies within

a very narrow interval centered at the atomic transition frequency ωB.)

Using the set (nj, lj,mj) of principal, orbital, and magnetic quantum numbers of

atom j (j = A,B), we may separate the bound states of A and B into their radial

and angular parts according to

ϕg(r) = φnA,lA=0,mA=0(r) = glA=0
nA

(r)Y mA=0
lA=0 (ϑr, ϕr),

χg(x) = χnB ,lB=0,mB=0(x) = hlB=0
nB

(x)Y mB=0
lB=0 (ϑx, ϕx),

χe(x) = χn′B ,lB=1,mB=0(x) = hlB=1
n′B

(x)Y mB=0
lB=1 (ϑx, ϕx) (3.64)

with glA=0
nA

the radial part and Y mA=0
lA=0 the angular part of the ground state of atom

A. Similarly, hlB=0
nB

and hlB=1
n′B

(nB < n′B) are the radial parts and Y
mB=0
lB=0 and Y mB=0

lB=1

the angular parts of the ground and excited state of atom B, respectively. Here, the

angular parts Y mj
lj

are described by the spherical harmonics. The continuum state

of the electron emitted from A is also separated into radial and angular parts and
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can be expressed by

ϕke(r) =
1√
Vel

2π

ke

∞∑
lA=0

ilAe−iδlAglAke (r)

lA∑
mA=−lA

Y mA
lA

(ϑke , ϕke)
[
Y mA
lA

(ϑr, ϕr)
]∗
, (3.65)

where glAke is the radial function of the continuum state, Vel the normalization volume

for the electron emitted from A and e−iδlA is a phase factor. Since we are only

interested in dipole-allowed bound-continuum transitions between the ground state

of A with lA = 0 and its continuum state with lA = 1, in (3.65), only the term with

lA = 1 is kept.

First, we focus on the matrix element Wge given by (3.11) which determines the

quantity D± in the amplitude (3.63). Taking advantage of the commutator relation

p̂x = i[ĤB,x] and accounting for the fact that χg and χe are eigenstates of the atomic

Hamiltonian ĤB, we obtain the relation 〈χg| p̂x |χe〉 = −iωB 〈χg|x |χe〉. Employing
this relation to expression (3.11), the latter becomes

Wge =
F0

2i
ez ·MB (3.66)

with

MB = 〈χg(x)|x |χe(x)〉 . (3.67)

Now, in (3.67), we apply the electronic states from (3.64) and calculate the angular

integrals over ϕx and ϑx, leading to

MB =
rB√

3
ez. (3.68)

Here, rB =
∫∞

0
dx x3

[
hlB=0
nB

(x)
]∗
hlB=1
n′B

(x) is the radial matrix element for transitions

from the excited state χe into the ground state χg in B. Insertion of (3.68) into

(3.66) provides

Wge =
F0rB√

12i
. (3.69)
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Next, we consider the quantity Λ(b) which enters the amplitude (3.63) and which is

determined by equations (9.34)�(9.37) in Appendix 9.4. Employing the electronic

states from (3.64) and (3.65), the quantity Λ(b) is obtained to be (see Appendix 9.4)

Λ(b) =

√
π

3

eiδ1

i

rArB√
Velk2

e

[
q2
‖ −

(
ω
c

)2]
ke‖ − q‖p cos(ϕb − ϕke⊥ )ke⊥√

b
. (3.70)

Inserting (3.70) into (3.63), the transition amplitude for 2CPI via the coupling to

the radiation �eld can be written as

a±2CPI(b) = eiα
√

2π2

3

D±rArB
v
√
Velpk2

e

[
q2
‖ −

(
ω
c

)2]
ke‖ − q‖p cos(ϕb − ϕke⊥ )ke⊥√

b
, (3.71)

where α = pb + δ1 − 3π
4
. Note that the amplitude in (3.71) scales as 1/

√
b and

therefore the transition probability |a±2CPI |2 behaves as 1/b. This re�ects the very

long range of the interatomic interaction in case when atoms A and B interact with

each other by the exchange of an on-shell photon.

3.1.5 Cross section and reaction rate for two-center

photoionization via coupling to the radiation �eld

The spectrum of electrons emitted from atom A by the process of 2CPI via the

coupling to the radiation �eld is determined by the cross section di�erential in the

electron momentum ke, which is given by

d3σ±2CPI
dk3

e

=
Vel

(2π)3

∫
d2b |a±2CPI(b)|

2

=
Vel

(2π)3

∫ 2π

0

dϕb

∫ bmax

b1

db b |a±2CPI(b)|
2. (3.72)

In (3.72), the integrations run over the azimuthal angle ϕb and the absolute value

b of the impact parameter b. The integration for the absolute value of the impact

parameter is limited to the range between b = b1 and b = bmax. Here, bmax is the

maximum possible value of b in the collision and b1 is not too small in order to
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justify the usage of the asymptotic expansion (3.53) for the Bessel function in the

derivation of the transition amplitude a±2CPI . We mention that in experiments, bmax
is typically of macroscopic size (bmax ∼ 1− 10 mm) and thus one has bmax � b1.

Substituting the amplitude (3.71) into (3.72), we get

d3σ±2CPI
dk3

e

=
1

12π

|D±|2r2
Ar

2
B

v2pk4
e

×
{[

q2
‖ −

(
ω

c

)2]2

k2
e‖
I8 − 2

[
q2
‖ −

(
ω

c

)2]
q‖pke‖ke⊥I9 + q2

‖p
2k2
e⊥
I10

}
(3.73)

with

I8 =

∫ 2π

0

dϕb

∫ bmax

b1

db,

I9 =

∫ 2π

0

dϕb cos(ϕb − ϕke⊥ )

∫ bmax

b1

db,

I10 =

∫ 2π

0

dϕb cos2(ϕb − ϕke⊥ )

∫ bmax

b1

db. (3.74)

The integrals in (3.74) are easily calculated and using bmax � b1 their results read

I8 = 2πbmax,

I9 = 0,

I10 = πbmax. (3.75)

Insertion of (3.75) into (3.73) yields the cross section

d3σ±2CPI
dk3

e

=
1

12

|D±|2r2
Ar

2
Bbmax

v2pk4
e

{
2

[
q2
‖ −

(
ω

c

)2]2

k2
e‖

+ q2
‖p

2k2
e⊥

}
. (3.76)
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Expression (3.76) contains the quantities r2
A and r2

B which can be expressed via the

cross section σAPI for direct photoionization of atom A and the radiative width ΓBr

of the excited state in atom B, respectively, according to

r2
A =

3cke
2πω

σAPI(ω),

r2
B =

9c3

4ω3
ΓBr . (3.77)

Then, substituting (3.77) into (3.76), the cross section di�erential in the electron

momentum for 2CPI via the coupling to the radiation �eld can be written as

d3σ±2CPI
dk3

e

=
9

32π

|D±|2σAPI(ω)ΓBr bmax
v2pk3

e

(
c

ω

)4{
2

[
q2
‖ −

(
ω

c

)2]2

k2
e‖

+ q2
‖p

2k2
e⊥

}
.(3.78)

The cross section di�erential in the solid angle Ωke for 2CPI when it proceeds via

the exchange of an on-shell photon is given by

d2σ±2CPI
dΩke

=

∫
q2
‖<(ω

c
)2

dke k
2
e

d3σ±2CPI
dk3

e

. (3.79)

Here, we integrate over the absolute value ke of the electron momentum ke where

the integration interval is determined by the condition q2
‖ <

(
ω
c

)2
(for which 2CPI

occurs via the exchange of an on-shell photon).

Now, we insert (3.78) into (3.79). Moreover, we introduce the spherical coordinates

ke = (ke sinϑke cosϕke , ke sinϑke sinϕke , ke cosϑke), such that k2
e⊥

= k2
ex + k2

ey =

k2
e sin2 ϑke and k

2
e‖

= k2
ez = k2

e cos2 ϑke . Afterwards, we arrive at

d2σ±2CPI
dΩke

=
9

32π

|D±|2σAPI(ω)ΓBr bmax
v2

(
c

ω

)4{
2 cos2 ϑkeI11 + sin2 ϑkeI12

}
(3.80)

with

I11 =

∫
q2
‖<(ω

c
)2

dke
ke
p

[
q2
‖ −

(
ω

c

)2]2

,
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I12 =

∫
q2
‖<(ω

c
)2

dke kepq
2
‖. (3.81)

We remind that p =
√(

ω
c

)2 − q2
‖ and rewrite the integrals over the coordinate ke in

(3.81) into integrals over the coordinate q‖ according to

I11 = v

(
ω

c

)3 ∫ ω/c

−ω/c
dq‖

[
1−

(
c
ω
q‖
)2]2√

1−
(
c
ω
q‖
)2
,

I12 = v

(
ω

c

)3 ∫ ω/c

−ω/c
dq‖

(
c

ω
q‖

)2
√

1−
(
c

ω
q‖

)2

. (3.82)

Performing the substitution u = c
ω
q‖ in (3.82) provides

I11 = v

(
ω

c

)4 ∫ 1

−1

du

[
1− u2

]2
√

1− u2
= 2v

(
ω

c

)4 ∫ 1

0

du

[
1− u2

]2
√

1− u2
,

I12 = v

(
ω

c

)4 ∫ 1

−1

du u2
√

1− u2 = 2v

(
ω

c

)4 ∫ 1

0

du u2
√

1− u2. (3.83)

The solutions of the basic integrals in (3.83) read

∫ 1

0

du

[
1− u2

]2
√

1− u2
=

3π

16
,

∫ 1

0

du u2
√

1− u2 =
π

16
(3.84)

and consequently I11 and I12 are obtained to be

I11 =
3π

8
v

(
ω

c

)4

,

I12 =
π

8
v

(
ω

c

)4

. (3.85)
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Inserting (3.85) into (3.80), the cross section di�erential in the solid angle Ωke for

2CPI when it proceeds via the exchange of an on-shell photon becomes

d2σ±2CPI
dΩke

=
9

256
|D±|2σAPI(ω)ΓBr

bmax
v

{
1 + 5 cos2 ϑke

}
. (3.86)

The total cross section for 2CPI via the coupling to the radiation �eld is given by

σ±2CPI =

∫
dΩke

d2σ±2CPI
dΩke

=

∫ 2π

0

dϕke

∫ π

0

dϑke sinϑke
d2σ±2CPI
dΩke

, (3.87)

where we integrate over the angles ϕke and ϑke of the electron momentum ke.

Substituting (3.86) into (3.87) and calculating the angular integrals, the total cross

section can be written as

σ±2CPI = |D±|2 × 3π

8

σAPI(ω)ΓBr bmax
v

. (3.88)

For the sake of completeness, we note that the quantity |D±|2 in (3.88) is determined
by |Wge|2 which, using (3.69) and (3.77), reads |Wge|2 = 3c3F 2

0 ΓBr /(16ω3).

It is worth mentioning that the cross section in (3.88) has a rather simple struc-

ture that allows for a straightforward interpretation of the process of 2CPI via the

coupling to the radiation �eld. The factor |D±|2 describes the probability for atom

B to enter the collision in an excited state and the remaining part 3π
8

σAPI(ω)ΓBr bmax
v

represents the cross section for ionization of atom A in collisions with excited atom

B by the exchange of an on-shell photon between them. The magnitude of the nu-

merical prefactor in the latter cross section depends on the speci�c dipole-allowed

transition which is involved in de-excitation of B during the collision.

Let us suppose for the moment that the interatomic distance R between A and B

is �xed and that this distance is very large, R � c/ω. Further, we only consider

the second step of 2CPI in which atom B de-excites and the de-excitation energy is

transferred to atom A leading to its ionization. In such case, the relativistic form of
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the dipole-dipole interaction V̂AB between atoms A and B is given by equation (2.4).

It accounts for the retardation e�ect and therefore implies the coupling of the A−B
system to the radiation �eld. We may use V̂AB in order to calculate the decay rate

Γ1 for the second step of 2CPI when the distance between A and B is �xed, yielding

Γ1 ∝
σAPI(ω)ΓBr

R2 . Now, we can obtain the corresponding cross section σ1 for collisions

between atoms A and B by introducing R(t) = b+vt and subsequently performing

the integration σ1 =
∫
d2b

∫∞
−∞ dt Γ1(b, t) under the assumption b ∈ [b1, bmax]. The

resulting cross section is proportional to σAPI(ω)ΓBr bmax
v

. The latter term also appears in

the cross section (3.88), so based on the above simple consideration, we can conclude

that this term arises because in our approach to the process of 2CPI the ionization

proceeds via the coupling to the radiation �eld.

Taking into account that atom A moves in a gas of atoms B having an atomic

density nB, the reaction rate per unit of time (per atom A) corresponding to the

total cross section (3.88) is obtained to be

R±2CPI = σ±2CPInBv = |D±|2 × 3π

8
σAPI(ω)ΓBr bmaxnB. (3.89)

3.2 Numerical results and discussion

In this Section, we present numerical results of our theoretical �ndings in Section

3.1 for the relativistic two-center photoionization channel (in which the interaction

between atoms A and B incorporates retardation) and compare them to the re-

sults of the nonrelativistic two-center channel (where the interatomic interaction

is considered in its instantaneous Coulomb form). Further, we discuss the relative

e�ectiveness of 2CPI compared with direct photoionization of atom A.

3.2.1 Two-center photoionization via two-center

autoionization

In the theoretical consideration in Section 3.1, we have pointed out that the pro-

cess of 2CPI occurring in distant collisions between atoms A and B can be splitted

into two contributions. The relativistic two-center channel, for which results were
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obtained in Section 3.1, describes those collisions where 2CPI proceeds via the ex-

change of an on-shell photon between B and A resulting in electron emission into the

continuum of A with energies εg + ω
(
1− v/c

)
< εke < εg + ω

(
1 + v/c

)
. In contrast,

the nonrelativistic channel takes into account collisions for which 2CPI involves the

exchange of an o�-shell photon between B and A with consequent electron emission

into the continuum of A having energies outside the above energy range.

The cross section σ±2CPI,nr for 2CPI via the exchange of an o�-shell photon was

obtained in [49] for a laser �eld of linear polarization (F0 ‖ v) using the �rst order

of perturbation theory in the interaction between atom B and the laser �eld1. It

can be expressed in the form

σ±2CPI,nr = |β±|2 × 9π

64

(
c

ω

)4
σAPI(ω)ΓBr

vb3
0

. (3.90)

Here, |β+|2 = |Wge|2/(∆2 + (ΓBr /2)2), |β−|2 ≈ 0 and b0 is the minimum value of the

impact parameter for which the electronic shells of atoms A and B do not overlap.

Similar to the cross section (3.88) for 2CPI via the exchange of an on-shell photon,

the cross section in (3.90) has a simple and transparent structure. The factor |β±|2

represents the probability for atom B to enter the collision in an excited state and

the remaining part 9π
64

(
c
ω

)4 σAPI(ω)ΓBr
vb30

describes the cross section for ionization of atom

A in collisions with excited atom B by the exchange of an o�-shell photon between

them. The magnitude of the numerical prefactor in the latter cross section depends

on the speci�c dipole-allowed transition which is involved in de-excitation of B upon

collisions.

Let us suppose for the moment that the interatomic distance R between A and

B is �xed with 1 � R � c/ω. In addition, we only consider the second step of

2CPI where atom B de-excites and the de-excitation energy is transferred to atom

A resulting in its ionization. In such case, the dipole-dipole interaction V̂AB between

atoms A and B can be approximated by the instantaneous interaction between two

electric dipoles given by equation (1.6). We may use V̂AB in order to calculate

1We note that the �eld-dressed states of atom B were calculated by supposing that the laser �eld
is switched on adiabatically at t→ −∞ and imposing the boundary conditions which were also
used in the present work (see below equation (3.9)).
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the decay rate Γ2 for the second step of 2CPI when the distance between A and

B is �xed. Then, we arrive at Γ2 ∝
(
c
ω

)4 σAPI(ω)ΓBr
R6 , which represents the known

result (see, e.g. [26, 88]) for the two-center autoionization rate at large interatomic

distances (R � 1 a.u.). Next, we can obtain the corresponding cross section σ2

for collisions between atoms A and B by introducing R(t) = b+ vt and afterwards

calculating the integral σ2 =
∫
d2b

∫∞
−∞ dt Γ2(b, t) under the assumption b ≥ b0. The

resulting cross section is proportional to
(
c
ω

)4 σAPI(ω)ΓBr
vb30

. The latter term also appears

in the cross section (3.90), so the above simple consideration suggests that this term

arises because in the nonrelativistic approach to the process of 2CPI the ionization

occurs via the two-center autoionization mechanism (in which ionization of A is a

consequence of the transfer of de-excitation energy from B by the exchange of an

o�-shell photon between B and A).

When atom A moves in a gas of atoms B with an atomic density nB, the reaction

rate per unit of time (per atom A) corresponding to the total cross section (3.90) is

given by

R±2CPI,nr = σ±2CPI,nrnBv = |β±|2 × 9π

64

(
c

ω

)4
σAPI(ω)ΓBr nB

b3
0

. (3.91)

3.2.2 Two-center photoionization via coupling to the

radiation �eld vs. two-center photoionization via

two-center autoionization

The relative e�ectiveness of the relativistic and nonrelativistic two-center photoion-

ization channels can be characterized by the ratio of their reaction rates. In the

derivation of the rate R±2CPI,nr for 2CPI via the exchange of an o�-shell photon, the

�eld-dressed states of atom B were calculated by using the �rst order of perturba-

tion theory in the interaction between atom B and the laser �eld. However, in our

derivation of the rate R±2CPI for 2CPI via the exchange of an on-shell photon, the

�eld-dressed states of B were obtained by applying the rotating wave approxima-

tion. The latter allows the consideration of stronger �elds as compared with the

�rst order of perturbation theory. The di�erent approaches to the calculation of the
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�eld-dressed states are manifested in the rates (3.89) and (3.91) by the quantities

|D±|2 and |β±|2, respectively, both of which describe the probability for B to enter

the collision in an excited state.

In order to get comparable results for the rates (3.89) and (3.91), we restrict our

result forR±2CPI to the case of a weak laser �eld that obeys the condition |Wge| � |∆|
for which the �rst order of perturbation theory in the interaction between B and

the laser �eld is applicable. Then, one can show in some basic steps that |D+|2 ≈
|Wge|2/(∆2 + (ΓBr /2)2) = |β+|2 and |D−|2 ≈ 0 ≈ |β−|2 in very good approximation.

In the above case, the rate (3.89) for 2CPI via the exchange of an on-shell photon

becomes

R±2CPI,r = |β±|2 × 3π

8
σAPI(ω)ΓBr bmaxnB. (3.92)

In the following, we only consider the non-zero reaction rates R+
2CPI,r and R

+
2CPI,nr

in (3.92) and (3.91), respectively. The corresponding ratio of these rates takes the

rather simple form

η =
R+

2CPI,r

R+
2CPI,nr

=
8

3

(
ω

c

)4

bmaxb
3
0. (3.93)

The ratio in (3.93) strongly depends on the amount of energy ωB ≈ ω that is

transferred from atom B to A. In particular, 2CPI in slow collisions involving a

large (small) energy transfer will likely be dominated by the exchange of an on-shell

(o�-shell) photon. It is worth mentioning that the correspondence between 2CPI via

the coupling to the radiation �eld and 2CPI via two-center autoionization closely

resembles that between spontaneous radiative decay and autoionization in single

atoms and ions where the former dominates transitions with a large energy release

and the latter dominates transitions with a small energy release.

Let us consider two examples for 2CPI in slow collisions where it involves a large and

small energy transfer, respectively, from B to A. In the �rst example, atomic species

B is represented by He atoms which are driven by a laser �eld whose frequency ω

is resonantly tuned to the 1 1S0 − 2 1P1 dipole transition (ωB ≈ 21.2 eV) in He. In

the second example, we take Rb atoms as atomic species B and the laser �eld shall
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be resonant to the 5s1/2 − 5p3/2 dipole transition (ωB ≈ 1.59 eV) in Rb. For the

above examples, Fig. 3.2 shows the ratio η as a function of the maximum possible

value bmax of the impact parameter b. We can conclude from Fig. 3.2 that when

2CPI involves the 1 1S0 − 2 1P1 transition in He (and the energy transfer is large),

it will be dominated by the exchange of an on-shell photon provided bmax & 1 mm.

However, when 2CPI involves the 5s1/2 − 5p3/2 transition in Rb (and the energy

transfer is small), it will be dominated by the exchange of an o�-shell photon for

any realistic choice of bmax.

Figure 3.2: The ratio η = R+
2CPI,r/R

+
2CPI,nr considered as a function of the maximum

impact parameter bmax at b0 = 3 a.u. for 2CPI in slow collisions involving
the 1 1S0− 2 1P1 transition in He (solid) and the 5s1/2− 5p3/2 transition
in Rb (dashed), respectively.
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3.2.3 Two-center photoionization vs. direct photoionization

Two-center resonant photoionization competes with direct photoionization of atom

A by the laser �eld. The reaction rate RDPI for direct photoionization of A per unit

of time (per atom A) was obtained in [49] and can be written in the form

RDPI =
cF 2

0 σ
A
PI(ω)

8πω
. (3.94)

The relative e�ectiveness of two-center and direct photoionization can be character-

ized by the ratio of the total rate R2CPI = R+
2CPI,r + R+

2CPI,nr for 2CPI and the

rate RDPI for direct photoionization. Using the corresponding rates given in (3.91),

(3.92) and (3.94), this ratio becomes

ζ =
R2CPI

RDPI

=
R+

2CPI,r

RDPI

+
R+

2CPI,nr

RDPI

=
3π2|β+|2ωΓBr bmaxnB

cF 2
0

+
9π2|β+|2c3ΓBr nB

8ω3F 2
0 b

3
0

=
3π

8

bmax
ΛB
rad

+
9π

64

(c/ω)4

ΛB
radb

3
0

, (3.95)

where for the last line in (3.95) we have taken advantage of the explicit expres-

sion |β+|2 = 3c3F 2
0 ΓBr /(16ω3(∆2 + (ΓBr /2)2)) and afterwards introduced the mean

free path ΛB
rad = 1/(nBσ

B
sc) of the radiation in the gas of atoms B with σBsc =

3π/2(c/ω)2(ΓBr )2/(∆2 + (ΓBr /2)2) denoting the cross section for resonant photon

scattering on B.

The second term of the sum in (3.95) suggests that 2CPI via the exchange of an

o�-shell photon can be more e�cient than direct photoionization as long as the

energy transfer ωB ≈ ω from B to A is su�ciently small. In the opposite case,

when the energy transfer is relatively large and 2CPI is already dominated by the

exchange of an on-shell photon, the ratio ζ will be determined by the �rst term of

the sum in (3.95), involving the ratio bmax/ΛB
rad of the maximum impact parameter

bmax and the mean free path ΛB
rad of the radiation in the gas of atoms B. Here,
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the magnitude of bmax depends on the size of the target gas of atoms B and/or the

size of the projectile beam of atoms A. It can however not considerably exceed ΛB
rad

since otherwise the gas of atoms B becomes intransparent for the radiation with

respect to the mechanism of 2CPI via the exchange of an on-shell photon. In case

that bmax = ΛB
rad, we get ζ = 3π/8, meaning that 2CPI when it proceeds via the

coupling to the radiation �eld can more than double the rate for ionization of atoms

A.

3.2.4 Experiments on two-center photoionization

We now consider a possible experiment on 2CPI which involves the simplest atoms,

namely H and He. Let a beam of slow H atoms penetrate a gas of cold He atoms ir-

radiated by a weak (intensity I . 102 W/cm2, where I = cF 2
0 /(8π)) monochromatic

laser �eld of linear polarization (F0 ‖ v) whose frequency is resonantly tuned to the

1 1S0 − 2 1P1 transition in He (ω ≈ 21.2 eV). Further, we set bmax = 5 mm and

b0 = 3 a.u. (which is a quite conservative estimate for b0). Then, equation (3.93)

yields η ≈ 7 from which we can conclude that 2CPI is strongly dominated by the

exchange of an on-shell photon.

Moreover, the total cross section for photon scattering on He evaluated at the exact

resonance (∆ = 0) is given by σBsc = 6π(c/ω)2 ≈ 1.63×10−11 cm2. Consequently, the

mean free path ΛB
rad of the radiation in the He gas will be equal to bmax = 5 mm at

the gas density of nB = 1/(bmaxσ
B
sc) ≈ 1.22×1011 cm−3. Under the above conditions,

equation (3.95) provides ζ = 3π/8, implying that 2CPI when it takes place via the

coupling to the radiation �eld results in a slightly larger ionization rate for H atoms

than direct photoionization.

Note that in order to achieve an e�cient excitation of the target atoms by the

resonant laser �eld, the Doppler broadening of the spectral line for the 1 1S0−2 1P1

transition in He, caused by the thermal motion of He atoms in the target gas, should

be su�ciently small. By cooling down the He target to temperatures T . 0.1 K, the

Doppler broadening becomes considerably smaller than the natural linewidth of the

2 1P1 → 1 1S0 transition in He and the laser �eld can e�ciently excite the target

atoms.
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Finally, we want to point out that one can also envisage experiments in which 2CPI

via on-shell photon exchange is the only ionization mechanism to occur. Here, a

projectile beam of atoms A passes close by the target gas of atoms B, the latter of

which is irradiated by a weak laser �eld. The projectile beam does not penetrate

the target gas and is not exposed to the laser �eld. In such case, the (relative)

short-range interaction between A and B via the exchange of an o�-shell photon as

well as the interaction of A with the laser �eld are excluded and only the long-range

interaction between A and B via the exchange of an on-shell photon can contribute

to the ionization of atom A.

3.2.5 Two-center photoionization and the Breit interaction

The interaction between slowly moving charged particles usually occurs primarily

via the (instantaneous) Coulomb interaction related to the exchange of time-like

and longitudinal photons between them. If the interacting particles are electrons,

the leading relativistic correction to the Coulomb interaction is provided by the

(generalized) Breit interaction (see, e.g. [89] and references therein). The latter

follows from Quantum Electrodynamics in �rst-order perturbation theory, where it

occurs as a result of the exchange of single transverse photons between the electrons.

In our case, the contributions of the Coulomb and Breit interactions to the ampli-

tude for 2CPI can be made explicit by using the conservation of electric charge

and proceeding similarly as in [86] in order to rewrite the amplitude a±2CPI(b)

given by equations (3.40)�(3.41) & (3.46)�(3.47) as a sum of two terms a±2CPI(b) =

a±Coul(b) + a±Breit(b). The term a±Coul, whose integrand is proportional to q−2 which

does not possess a pole on the real axis of q⊥, refers to the exchange of time-like

and longitudinal photons that transmit the Coulomb interaction between the active

electrons in atoms A and B, where these photons satisfy the o�-mass shell condition.

The term a±Breit, whose integrand is proportional to (q2−ω2/c2− iη)−1, arises due to

the exchange of transverse photons which are responsible for the Breit interaction

between the electrons in A and B, where these photons can satisfy the on-mass shell

or o�-mass shell condition. Under the constraint q2
‖ − ω2/c2 < 0, corresponding to

electron emission into the narrow resonant energy range εg + ω
(
1 − v/c

)
< εke <
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εg + ω
(
1 + v/c

)
, the term (q2 − ω2/c2 − iη)−1 exhibits a pole at real q⊥ and the

Breit interaction is transmitted by photons that satisfy the on-mass shell condition.

In such case, a±Breit simply refers to the process of 2CPI when it is driven by the

exchange of on-shell photons and the Breit interaction can become very e�cient,

even dominating over the Coulomb interaction.

This e�ciency of the Breit interaction at very low energies is quite remarkable,

because normally the Breit interaction plays only a relatively minor role in atomic

physics, including processes in which high energy electrons are involved.

3.2.6 Ionization at larger collision velocities

In our treatment of atomic collisions, we have assumed that the collision velocity v is

much smaller than the typical orbiting velocities ve ∼ 1 a.u. of the active electrons

in atoms A and B. The main reason for this assumption was that for v � 1 a.u.

the impact excitation or ionization of atom A (or B) is strongly suppressed and we

are e�ectively dealing only with direct and two-center photoionization of A (see also

Section 3.1.2).

However, in the derivation of the total cross section (3.88) and the rate (3.89) resp.

(3.92) for 2CPI via the coupling to the radiation �eld, the assumption v � 1 a.u.

was not required, meaning that these results remain valid also for much larger colli-

sion velocities as long as v is much less than the speed of light c. In particular, this

suggests that the rate for 2CPI when it occurs via the exchange of an on-shell pho-

ton does not depend on the collision velocity up to impact energies ∼ 10 MeV/u.

On the other hand, for impact energies & 0.5 MeV/u, the strength of all ioniza-

tion mechanisms proceeding via the exchange of o�-shell photons rapidly decreases

with increasing the collision velocity (see, e.g. [82]). Therefore, it is expected that

the coupling of the A − B system to the radiation �eld is also very important for

ionization of atoms A at larger collision velocities.
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3.3 Summary and concluding remarks

We have considered single electron emission from atomic species A in slow distant

collisions with another species B excited by a weak laser �eld when it proceeds via

two-center resonant photoionization driven by the coupling of the colliding system

to the radiation �eld.

In systems in which the ionization potential of atom A is smaller than an excitation

energy for a dipole-allowed transition in atom B, two-center ionization of A occurs

via resonant photoexcitation of the dipole transition in B by the laser �eld with

subsequent de-excitation of B, where the energy excess is transferred � via the

(long-range) interatomic interaction � to A, resulting in its ionization.

The theoretical treatment of collisions between A and B was based on the semiclas-

sical approximation, in which the relative motion of the (heavy) nuclei is described

classically while the active electrons are treated quantum mechanically. This ap-

proximation is well justi�ed starting with quite low impact energies (∼ 1 eV/u). We

have performed a relativistic calculation which incorporates the retardation e�ect

accounting for the �nite propagation of the electromagnetic �eld that transmits the

interaction between A and B.

2CPI in slow distant collisions of two atomic species A and B was already consid-

ered in [49] by regarding the interaction between A and B as instantaneous, where

in such case, 2CPI proceeds via two-center autoionization and the interaction is

transmitted by o�-shell photons only. In fact, textbooks on atomic collisions (see,

e.g. [81�83]) strongly recommend that such an approach is appropriate for describ-

ing slow collisions of light atomic species (in which all the particles involved move

with velocities orders of magnitude smaller than the speed of light). However, we

have seen that a more complete treatment of 2CPI has to take into account the

relativistic retardation e�ect, which allows for a very e�cient (resonant) coupling of

the A− B system to the radiation �eld. This in turn enables the interaction to be

transmitted by on-shell photons that dramatically increases its e�ective range and

can profoundly modify the process of 2CPI.

We have compared our calculated rate for 2CPI occurring via the coupling to the

radiation �eld (where the interatomic interaction is transmitted by on-shell photons)
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to the rate for 2CPI proceeding via two-center autoionization (where the interaction

is transmitted by o�-shell photons). It was concluded that 2CPI in slow collisions

when it involves a (relatively) large energy transfer from atom B to A, can be

strongly dominated by the exchange of on-shell photons. Since 2CPI competes with

the direct photoionization of A by the laser �eld, we have further discussed the

relative e�ectiveness of these two processes. Here, we have shown that in case 2CPI

is already dominated by the exchange of on-shell photons, it can more than double

the rate for ionization of atoms A.

Besides, we have considered the process of 2CPI as a competition between the

Coulomb and Breit interactions, where the latter can be transmitted by the ex-

change of on-shell photons, corresponding to 2CPI when it is driven by the coupling

to the radiation �eld. In this case, the Breit interaction can become very e�cient

and even dominate over the Coulomb interaction.

Our �ndings are not exclusive to the process of collisional 2CPI but are more general,

because the coupling to the radiation �eld may strongly a�ect collisions in which

one of the atomic species enters the collision in an excited state, independent of how

the excitation occurs (for instance, instead of photoexcitation by a laser �eld one

may have impact excitation by charged particles in a plasma). This immediately

follows from the structure of the cross section (3.88) for 2CPI via the coupling to

the radiation �eld. The general part of this cross section is described by the second

factor in (3.88) and does not depend on a particular excitation mechanism for atom

B.

Another point worth mentioning is that in collisional 2CPI the retardation e�ect can

become tremendously more important than in the process of two-center ion impact

ionization of a weakly bound diatomic system, the latter of which was discussed in

Chapter 2. This may be explained by comparing the particle distances character-

istic of the respective ionization processes. Regarding collisional 2CPI via on-shell

photon exchange, by far the main contribution to the ionization cross section comes

from extremely far collisions with absolute values of the impact parameter reaching

macroscopic sizes ∼ 1 cm. In contrast, concerning two-center impact ionization of

weakly bound systems, even the largest dimers in question, such as the Li-He system

with a mean distance between Li and He of ≈ 53 a.u., do not exceed linear spatial
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extensions of . 102 a.u. Now, reminding that retardation strongly a�ects the inter-

atomic interaction when the distance R between the interacting particles is relatively

large, R� c/ω ∼ 102 a.u. (where ω ∼ 1 a.u. is a typical electronic transition energy

for the diatomic systems under consideration), it is evident that retardation can be

crucial for 2CPI in slow atomic collisions but is practically negligible for two-center

ion impact ionization of weakly bound diatomic systems.

To conclude this study on the radiation-�eld-driven ionization in laser-assisted slow

atomic collisions, we give a brief outlook on possible experimental veri�cation of

our theoretical predictions. For example, the e�ects predicted in this study can be

tested in experiments where a beam of slowly moving projectile atoms or ions (e.g.

H, H−, Mg+, Ca+, Ti+, Fe+, Sr+, Ba+) penetrates (or passes close by) a cold He

gas target that is exposed to a weak laser �eld resonant to the 1 1S0 − 2 1P1 dipole

transition in He. Such experiments may also be performed at considerably larger

impact energies (up to several MeV/u), for which we expect that the coupling of the

collision system to the radiation �eld still plays a crucial role in ionization of the

projectiles. However, this expectation needs to be re�ned in future studies, where

the various competing ionization channels occurring at larger collision velocities

should be compared in detail.
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Formation of antimatter ions in

interatomic attachment reactions





4 | Introduction and preliminary

remarks

4.1 Historical background and motivation

Until today, we do not fully understand the asymmetry between matter and antimat-

ter in the Universe. This makes the study of antimatter in theory and experiment

a very important subject from the point of view of fundamental physics.

The �rst theoretical postulation of antimatter goes back to Dirac who proposed

the antiparticle to the electron e− in 1931 [90]. Shortly afterwards, the positron

e+ was experimentally discovered in 1932 [91, 92]. Just over 20 years later, the

antiproton p̄ was discovered in 1955 [93, 94]. In the following decades, the amounts

of positrons and antiprotons that could be produced in laboratories had grown

steadily. Naturally, the next goal was to produce the simplest atom of antimatter,

the antihydrogen atom H̄, which is an p̄e+ bound system. The �rst attempts for

producing small amounts of H̄ were made at CERN [95] and Fermilab [96] in the

mid and late 90's. In both experiments, H̄ was produced in relativistic collisions of

antiprotons with a matter atomic species, involving the creation of e+e− pairs and

the subsequent capture of e+ by p̄. While antiatoms could be successfully observed

for the �rst time, the main issue in these experiments was that the produced H̄ were

far too fast to capture them in magnetic traps and perform experiments with them.

However, in 2002, the ATHENA Collaboration at CERN was able to produce sub-

stantial amounts of H̄ at very low energies by mixing cooled and trapped antiprotons

and positrons in a cryogenic environment at temperatures ∼ 10 K [97]. At the low
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temperatures and high positron densities present in the ATHENA experiment, H̄

is dominantly formed via the three-body reaction e+ + e+ + p̄ → H̄ + e+ (see,

e.g. [98, 99]), in which one of the positrons is captured by the antiproton whereas

the other positron carries away the energy excess. In 2004, the ATRAP Collab-

oration at CERN introduced another experiment based on the capture reaction

Ps∗ + p̄ → H̄∗ + e−, in which low energy excited antihydrogen is formed via reso-

nant charge exchange between excited positronium Ps (Ps is a bound e+e− system)

and cold antiprotons [100].

Once the produced antihydrogen atoms reach temperatures . 0.5 K, they can be

con�ned in magnetic traps, which was �rst achieved by the ALPHA Collaboration

[101] at CERN in 2010/11 [102, 103]. This enables one to perform high precision

experiments with H̄ in a controlled environment (see, e.g. [104�106]).

One of the main interests in experiments involving antimatter is the veri�cation

of the CPT symmetry which is a fundamental property of the Standard Model of

particle physics. The CPT theorem states that the laws of physics are invariant

under the combined discrete operations of charge conjugation (C), parity (P) and

time reversal (T). A direct consequence of the CPT theorem is that every particle

has an antiparticle with equal mass, spin and total lifetime but opposite charge

and magnetic moment (for more details see, e.g. [99]). Therefore, antihydrogen, the

simplest and currently only accessible antiatom, is an ideal system for studying the

CPT symmetry by comparing atomic interactions in antihydrogen and hydrogen

atoms under identical experimental conditions. In 2018, the ALPHA Collaboration

measured the 1S−2S transition in H̄ and concluded that their results are consistent

with the CPT symmetry at a relative precision of 2× 10−12 [107].

Another key interest in laboratory studies of antimatter is measuring the Earth's

local gravitational force exerted on antiparticles as a test of the WEP (weak equiv-

alence principle). In simple terms, the WEP states that in a uniform gravitational

�eld all bodies, independent from their composition, fall with the exact same ac-

celeration (for more details see, e.g. [108]). This implies that the Earth's local

gravitational acceleration g is the same for matter and antimatter particles. So far,

the gravitational interaction between matter and antimatter systems has not been

measured directly. The AEGIS experiment [109] at CERN aims to perform a direct
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measurement of g on antihydrogen. For this purpose, low energy antihydrogen atoms

in excited states are formed via the capture reaction Ps∗+p̄ → H̄∗+e−. Afterwards,

a pulsed cold H̄∗ beam is created by Stark acceleration and passes through a Moiré

de�ectometer in which the free fall of the antihydrogen atoms is measured [110].

The GBAR experiment [111] at CERN also plans to perform free fall measurements

with cold H̄ in the Earth's gravitational �eld. Here, they will use the positive ion

of antihydrogen H̄+, which is an p̄e+e+ bound system and the antimatter counter-

part of the negative ion of hydrogen H−, as an intermediate particle. First, a cold

antiproton beam penetrates a cloud of (excited) positronium and low energy H̄+ is

produced via the two successive charge exchange collisions Ps + p̄ → H̄ + e− and

Ps + H̄ → H̄+
+e−. Afterwards, the H̄+ ions are accumulated and sympathetically

cooled to ∼ 10 µK in an ion trap. Then, a laser pulse is applied to the trap region

and induces photodetachment of the loosely bound positron in H̄+. The remaining

neutral H̄ will begin to fall down from the ion trap and measurements of the free

fall of antihydrogen atoms can be carried out [112].

In this thesis, we consider the formation of the positive ion of antihydrogen H̄+.

From the point of view of theoretical atomic physics there is a general interest in

�nding new mechanisms for the formation of H̄+ ions (see, e.g. [113�115]). Moreover,

the GBAR experiment, in which H̄+ will be used as an intermediate particle in free

fall experiments on H̄ in the gravitational �eld of the Earth, shows that theory on

e�ciently producing H̄+ ions is of great importance for experimental purposes as

well (see, e.g. [116�119]).

4.2 Overview of H̄
+
formation mechanisms

There exist two main pathways for producing positive ions of antihydrogen di-

rectly from antihydrogen atoms. The �rst one involves the charge exchange collision

Ps + H̄ → H̄+
+ e−, where a bound e+ is captured by H̄ to form the H̄+ ion (see,

e.g. [115,117�119]). The second one is based on free positrons which are incident on

H̄ atoms and H̄+ ions can be produced either via radiative or nonradiative attach-

ment of e+ to H̄. In the present work, we focus on H̄+ formation according to the
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second pathway, including the radiative attachment mechanisms

(i) e+ + H̄ → H̄+
+ ~ωk,

(ii) e+ + H̄ +N~ω0 → H̄+
+ (N + 1)~ω0,

(iii) e+ + H̄ +B → H̄+
+B∗ → H̄+

+B + ~ωk

as well as the nonradiative three-body reactions

(iv) e− + e+ + H̄ → e− + H̄+
,

(v) e+ + e+ + H̄ → e+ + H̄+
.

The radiative formation mechanisms (i)�(iii) share photoemission as their key sig-

nature. Reaction (i) is spontaneous radiative attachment, in which H̄+ is formed

due to spontaneous emission of a photon with frequency ωk by a positron incident

on H̄. When positrons are incident on H̄ atoms in the presence of a laser �eld with

frequency ω0, the formation of H̄+ ions can also proceed via induced emission of a

photon with frequency ω0. This process is described by mechanism (ii) and called

(laser-)induced radiative attachment. Reaction (iii) is two-center dileptonic attach-

ment, which becomes possible in the presence of a neighboring (matter) atom B and

where an incident positron is attached to H̄ via resonant transfer of excess energy

� driven by the two-center positron-electron (dileptonic) interaction � to B which,

as a result, undergoes a transition into an excited state. Subsequently, B relaxes

through spontaneous emission of a photon with frequency ωk and the two-center

system becomes stable implying the formation of the H̄+ ion [120].

Mechanism (iv) is electron-assisted three-body attachment, in which H̄+ is formed

when free positrons are incident on H̄ embedded in a gas of low energy (≈ meV)

electrons and positron capture by H̄ proceeds via the positron-electron interaction

where the electron takes the energy excess. If the incident electron in mechanism

(iv) is replaced by a second incident positron, one positron is attached to H̄ � due to

the positron-positron interaction � while the other positron carries away the energy

excess. The latter process is characterized by reaction (v) and termed positron-

assisted three-body attachment [121].
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The main goal of this study is a comparative consideration of the radiative and non-

radiative formation mechanisms (i)�(v) in the range of incident positron energies

from sub-meV to eV. It will be shown that for positron energies . 0.1 eV, electron-

assisted three-body attachment (iv) can strongly dominate over the radiative mech-

anisms (i)�(iii). In addition, for positron energies ' 1 eV, two-center dileptonic

attachment (ii) and induced radiative attachment (iii) can be much more e�cient

than spontaneous radiative attachment (i) and electron-assisted three-body attach-

ment (iv). Moreover, we will see that over the whole range of positron energies

under consideration, positron-assisted three-body attachment (v) has vanishingly

small formation rates.

Part II of this thesis is essentially organized as follows. In the next Section, we

introduce the bound state of the H̄+ ion that will be used throughout this work. Af-

terwards, in Chapters 5 & 6, we consider the theoretical framework of the radiative

attachment mechanisms (i)�(iii) and the nonradiative three-body reactions (iv)�(v),

respectively, and obtain formulas for the corresponding H̄+ formation rates. Numer-

ical results and a detailed comparative discussion of the attachment mechanisms are

given in Chapter 7. Finally, we summarize our main �ndings in Chapter 8.

Atomic units (see overview on p. xxi) are used throughout if not stated otherwise.

4.3 The bound state of H̄
+

Concerning the attachment of a positron to antihydrogen via the mechanisms (i)�(v),

we regard the positive ion of antihydrogen as an e�ectively single-positron system.

Here, the positron which is initially bound to the antiproton is treated as passive

and forms together with the latter a single-rigid body that produces an external

(short-range) �eld which acts on the incident active positron. Thus, the identical

positrons are considered as strongly asymmetrical, being subdivided into active and

passive. Note that such an approach has been quite successful in the treatment of

electron (positron) detachment from H− (H̄+) by photoabsorption and of its time-

inverse process of spontaneous radiative attachment of an electron (positron) to H

(H̄) (see, e.g. [113,114] and references therein) as well as in the treatment of electron

detachment from H− by ion impact [122]. Furthermore, a similar approach was used
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for describing the single ionization of He atoms by charged particles [123, 124] and

by a laser �eld [125].

Considering H̄+ as an e�ectively single-positron system, we can approximate its

bound state by

φb(rp) = N
e−αrp − e−βrp

rp
, (4.1)

where rp is the coordinate of the positron with respect to the antiproton. Further,

N =
√

αβ(α+β)
2π(β−α)2 , α = 0.235 a.u. (εb = −α2/2 = −0.0275 a.u. ≈ −0.748 eV is

the binding energy) and β = 0.913 a.u. The wave function (4.1) was obtained

by employing a nonlocal separable potential of Yamaguchi [126] for describing a

short-range e�ective interaction of the active positron with the core of the H̄+ ion.

To get an idea about the accuracy of our theoretical treatments of the H̄+ forma-

tion mechanisms (i)�(v) using the wavefunction (4.1), we take as an example the

spontaneous radiative attachment of a positron to H̄, which will be discussed in

Section 5.1. Employing (4.1), our calculations for spontaneous radiative attachment

provide a cross section that has basically the same shape but is about 30% larger

compared with the results of a more accurate approach [114], in which a 200-term

two-positron wave function was applied to describe the bound state of H̄+. Such

accuracy is quite su�cient for this study, as we focus on order of magnitude e�ects

regarding the competing attachment mechanisms (i)�(v).
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This chapter provides a detailed insight into the theoretical treatments of the ra-

diative attachment mechanisms which are spontaneous and (laser-)induced radiative

attachment as well as two-center dileptonic attachment. For each of these processes,

we derive the formation rate of positive ions of antihydrogen per unit of time and

per antihydrogen atom. The following chapter is mainly based on results published

initially in Ref. [120].

5.1 Spontaneous radiative attachment

Radiative recombination of an electron with a positive ion via emission of a photon

has been studied in detail in the past with energies of the incident electrons ranging

from below 1 eV to relativistic values (see, e.g. [127�130] and references therein).

Note that radiative recombination is the time-inverse process of photoionization (the

latter of which is considered in Chapter 3).

Radiative attachment of an electron to a neutral atom is essentially similar to ra-

diative recombination and is subject to the same fundamental mechanism, which is

the interaction of the electron-atom system with the radiation �eld. The theoretical

consideration of spontaneous radiative attachment of an electron to hydrogen (see,

e.g. [20,131,132]) and of a positron to antihydrogen (see, e.g. [113,114]) is basically

identical from the point of view of Quantum Electrodynamics. Therefore, both pro-

cesses may be based on the same treatment. Although the spontaneous radiative

attachment of a positron to antihydrogen has already been studied, we include the

calculation of its reaction rate into this work for completeness and consistency.

We consider spontaneous radiative attachment as an e�ectively single-positron pro-
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cess. This means that we treat the H̄+ ion as an e�ectively single-positron system,

in which the attached positron is a weakly bound outer positron that moves in the

short-range �eld of the ionic core, which is regarded as a single-rigid body formed

by the antiproton and the initially bound positron.

Let us consider an environment where free positrons e+ are incident on antihydrogen

atoms H̄. In this case, the positive ion of antihydrogen H̄+ can be formed via

spontaneous radiative attachment, in which a free e+ with kinetic energy εkp is

captured by H̄ into the ground state of H̄+ with energy εb and the energy release is

taken away by emission of a photon with energy ~ωk (see Fig. 5.1 for illustration).

Figure 5.1: Scheme of spontaneous radiative attachment (SRA). This �gure was orig-
inally published in Ref. [120].

We choose a reference frame in which H̄ is at rest and take the position of its nucleus

(the antiproton) as the origin. In this frame, we can describe the attachment process

by the Schrödinger equation

i
∂Ψ

∂t
= Ĥ(t)Ψ (5.1)

with the total Hamiltonian

Ĥ(t) = Ĥa + Ĥγ + V̂γ(t). (5.2)
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In (5.2),

Ĥa =
(p̂rp)

2

2
− 1

rp
(5.3)

is the free Hamiltonian of the (e+ + H̄) system, where rp and p̂rp are the coordinate

and momentum operator of the positron with respect to the antiproton, respectively.

In addition,

Ĥγ =
∑
λ=1,2

ωkâ
†
kλâkλ (5.4)

describes the Hamiltonian of the (single-mode) quantized radiation �eld with the

wave vector k, the angular frequency ωk = ck, where c is the speed of light (c ≈
137 a.u.), as well as the creation operator â†kλ and annihilation operator âkλ. The

two polarization directions of the �eld are denoted by λ = 1, 2. Moreover, in (5.2),

V̂γ(t) = −1

c
Â(rp, t) · p̂rp +

1

2c2
Â2(rp, t) (5.5)

is the interaction between the (e+ + H̄) system and the radiation �eld. The latter

can be described by the (single-mode) quantized vector potential

Â(rp, t) =

√
2πc2

Vphωk
ekλ

[
âkλe

i(k·rp−ωkt) + H.c.
]
. (5.6)

Here, ekλ (λ = 1, 2) are the unit polarization vectors (ek1 · ek2 = 0, ekλ ·k = 0) and

Vph is the normalization volume for the �eld. Further, we treat the interaction V̂γ(t)

in the dipole approximation, i.e. k · rp ≈ 0.

The initial (Ψi) and �nal (Ψf ) states of the total system, (e+ + H̄) + radiation �eld,

read

Ψi = φkp(rp)e
−iεkp t × |0kλ〉 ,

Ψf = φb(rp)e
−iεbt × |1kλ〉 , (5.7)
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where φkp is the continuum state of the incident positron, which has an asymptotic

momentum kp (as is seen in the rest frame of H̄) with corresponding kinetic energy

εkp = k2
p/2, and φb is the bound state of the H̄

+ ion. Besides, |0kλ〉 and |1kλ〉 are the
states of the radiation �eld before and after the emission of the photon, respectively.

From the perspective of the incident positron, the (attractive) Coulomb �eld of the

antiproton is largely screened by the presence of the bound (anti-)atomic positron

in H̄. Therefore, we can describe, in very good approximation, the incident positron

by a plane wave

φkp(rp) =
eikp·rp√
Vp

. (5.8)

Here, Vp is the normalization volume for the positron. Further, following the con-

sideration in Section 4.3, we can approximate the bound state φb of the H̄
+ ion by

the wavefunction (4.1).

Using the �rst order of time-dependent perturbation theory in the interaction be-

tween the (e+ + H̄) system and the radiation �eld, the transition amplitude for

spontaneous radiative attachment can be written as

aSRA = −i
∫ ∞
−∞

dt 〈Ψf | V̂γ(t) |Ψi〉 . (5.9)

Next, we insert (5.5) and (5.7) into (5.9), perform the time integration and obtain

aSRA = ic

√
(2π)3

VpVphωk
δ(εkp − εb − ωk) 〈φb(rp)| ekλ · p̂rp |eikp·rp〉 , (5.10)

where the delta function re�ects the energy conservation, ωk = εkp − εb, of the at-
tachment process. Taking into account that p̂rp |eikp·rp〉 = kp |eikp·rp〉, the amplitude
(5.10) becomes

aSRA = ic

√
(2π)3

VpVphωk
δ(εkp − εb − ωk)ekλ · kp〈φb(rp)|eikp·rp〉. (5.11)

The result of the remaining space integral 〈φb(rp)|eikp·rp〉 can be easily derived and

108



� CHAPTER 5. THEORY OF RADIATIVE ATTACHMENT �

is given by

〈φb(rp)|eikp·rp〉 =

∫
d3rp N

e−αrp − e−βrp
rp

eikp·rp = 4πN
β2 − α2

(α2 + k2
p)(β

2 + k2
p)
. (5.12)

Inserting (5.12) into (5.11), the transition amplitude for spontaneous radiative at-

tachment reads

aSRA =
i
√

27π5Nc(β2 − α2)δ(εkp − εb − ωk)√
VpVphωk(α2 + k2

p)(β
2 + k2

p)
ekλ · kp. (5.13)

The formation rate of H̄+ ions per unit of time (per H̄) for spontaneous radiative

attachment is obtained by calculating the quantity

RSRA =
Vph

(2π)3

∑
λ=1,2

∫
d3k
|aSRA|2

T
. (5.14)

Here, the time duration T is of the order of the interaction time. We insert (5.13) into

(5.14), employ the identity
[
2πδ(εkp−εb−ωk)

]2
= 2πδ(εkp−εb−ωk)T and choose the

unit polarization vectors as ek1 = eϑk = (cosϑk cosϕk, cosϑk sinϕk,− sinϑk) and

ek2 = eϕk = (− sinϕk, cosϕk, 0), where eϑk and eϕk are the polar and azimuthal unit

vectors, respectively, when expressing the wave vector k in spherical coordinates.

Afterwards, the rate (5.14) can be written as

RSRA =
8πN2c2(β2 − α2)2k2

p

Vp(α2 + k2
p)

2(β2 + k2
p)

2

∫
d3k

δ(εkp − εb − ωk)
ωk

sin2 ϑk. (5.15)

Now, we carry out the k-integral in (5.15) by using ωk = ck and δ(εkp − εb − ωk) =

δ(k − εkp−εb
c

)/c and get

RSRA =
64π2N2(β2 − α2)2k2

p(εkp − εb)
3Vpc(α2 + k2

p)
2(β2 + k2

p)
2

. (5.16)

Expressing the normalization volume Vp for the incident positron in terms of the

corresponding number density np of positrons according to Vp = 1/np, the �nal

result for the formation rate of H̄+ ions per unit of time (per H̄) for spontaneous
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radiative attachment is given by

RSRA =
64π2npN

2(β2 − α2)2k2
p(εkp − εb)

3c(α2 + k2
p)

2(β2 + k2
p)

2
. (5.17)

5.2 (Laser-)induced radiative attachment

In a situation, in which free positrons e+ are incident on antihydrogen atoms H̄ in

the presence of a laser �eld having the frequency ω0, the formation of the positive

ion of antihydrogen H̄+ can also take place via induced emission of a photon with

energy ~ω0 (see Fig. 5.2 for illustration). We refer to this process as (laser-)induced

radiative attachment.

Figure 5.2: Scheme of (laser-)induced radiative attachment (LIRA). This �gure was
originally published in Ref. [120].

The laser �eld is considered as a classical monochromatic electromagnetic wave of

linear polarization in the dipole approximation, F (t) = F0 sin(ω0t) with |F0| = F0

the strength of the �eld. It shall e�ciently stimulate attachment without destroying

the produced H̄+ ions (and obviously without destroying the H̄ atoms themselves).

In order to accomplish this, we assume that the laser �eld is su�ciently weak,

F0 � Fa with Fa the typical atomic �eld which is produced by the ionic core and

acts on the loosely bound outer positron in H̄+. Moreover, it is also assumed that

the laser frequency ω0 is resonantly tuned to the positron transitions which lead to

the formation of the H̄+ ion, i.e. ω0 ≈ εkp − εb.
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For describing the process of (laser-)induced radiative attachment (as well as of

(laser-)induced resonant scattering), we can use the Schrödinger equation

i
∂Ψ

∂t
= (Ĥa + Ŵ (t))Ψ (5.18)

with Ĥa the Hamiltonian of the �eld-free (e+ + H̄) system, given by (5.3), and

Ŵ (t) = −1

c
AL(t) · p̂rp (5.19)

the interaction between the incident positron and the laser �eld. In (5.19),

AL(t) =
cF0

ω0

cos(ω0t) (5.20)

is the (classical) vector potential that is associated with the �eld F (t) when applying

the so-called velocity gauge, in which the electric �eld F is determined solely by the

vector potential AL according to F (t) = −1
c
∂AL(t)
∂t

.

We expand the wave function |Ψ〉 into the complete set of states

|Ψ〉 = ab(t) |φb(rp)〉 e−iεbt +

∫
d3kp bkp(t) |φkp(rp)〉 e−iεkp t (5.21)

and insert (5.21) into (5.18). The resulting equation is projected on 〈φb| and 〈φk′p|,
respectively. Afterwards, we employ the rotating wave approximation (see, e.g.

[85]), in which the rapidly oscillating time-dependent terms are dropped. Since the

electromagnetic �eld is assumed to be su�ciently weak, it is further possible to

neglect the laser-induced transitions between the continuum states. In addition, we

assume that the laser �eld is switched on suddenly at t = ti = 0. Taking all this into

account, the set of equations for the unknown coe�cients ab(t) and bkp(t) in (5.21)

is obtained to be

iȧb(t) =

∫
d3kpbkp(t)Wbkpe

−i(εkp−εb−ω0)t,

iḃkp(t) = ab(t)W∗bkpe
i(εkp−εb−ω0)t (5.22)
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with the initial conditions ab(t = ti = 0) = 0 and bkp(t = ti = 0) = δ3(kp − kp,0),

where kp,0 is the incident positron momentum. The transition matrix element Wbkp

in (5.22) reads

Wbkp = − 1

2ω0

〈φb(rp)|F0 · p̂rp |φkp(rp)〉 (5.23)

and W∗bkp is the complex conjugate of Wbkp .

Next, we de�ne b̃kp(t) = bkp(t)e
−i(εkp−εb−ω0)t with b̃kp(t = ti = 0) = bkp(t = 0) =

δ3(kp − kp,0). Then, (5.22) becomes

iȧb(t) =

∫
d3kpb̃kp(t)Wbkp ,

i ˙̃bkp(t)− (εkp − εb − ω0)b̃kp(t) = ab(t)W∗bkp . (5.24)

The system of equations (5.24) can be solved by using the Laplace transform (see,

e.g. [133])

Lf (s) =

∫ ∞
0

dt f(t)e−st. (5.25)

For this purpose, we �rst multiply both equations in (5.24) by the factor e−st and

subsequently integrate them over the time from t = 0 to t = ∞ while taking

advantage of the initial conditions ab(t = 0) = 0 and b̃kp(t = 0) = δ3(kp − kp,0),

which yields

isLab(s) =

∫
d3kpLb̃kp (s)Wbkp ,

(is− εkp + εb + ω0)Lb̃kp (s)− iδ3(kp − kp,0) = Lab(s)W∗bkp . (5.26)

Solving the set of equations (5.26) for Lab(s) provides

Lab(s) =
iWbkp,0(

is− εkp,0 + εb + ω0

)(
is−

∫
d3kp

|Wbkp |2

is−εkp+εb+ω0

) . (5.27)

112



� CHAPTER 5. THEORY OF RADIATIVE ATTACHMENT �

The inverse Laplace transform is de�ned by (see, e.g. [133])

f(t) =
1

2πi

∫ γ+i∞

γ−i∞
ds Lf (s)e

st, (5.28)

where γ ∈ R is a constant that exceeds the real part of any of the singular points of

Lf (s). Applying (5.28) to (5.27) leads to

ab(t) =
Wbkp,0

2π

∫ γ+i∞

γ−i∞
ds

est(
is− εkp,0 + εb + ω0

)(
is−

∫
d3kp

|Wbkp |2

is−εkp+εb+ω0

) . (5.29)

Further, in (5.29), we substitute z = is ∈ C and get

ab(t) =
iWbkp,0

2π

∫ ∞+iγ

−∞+iγ

dz
e−izt(

z − εkp,0 + εb + ω0

)(
z −

∫
d3kp

|Wbkp |2

z−εkp+εb+ω0

) . (5.30)

The integral in (5.30) can be calculated by employing the so-called pole approxima-

tion [120], in which ∫
d3kp

|Wbkp |2

z − εkp + εb + ω0

≈ ∆− iΓ
2
. (5.31)

Here,

∆ = P.V.
∫
d3kp

|Wbkp|2

εb + ω0 − εkp
(5.32)

is a small energy shift and

Γ = 2π

∫
d2Ωkp |Wbkp |2kp=|kp|=

√
2(εb+ω0)

, (5.33)

where the integration runs over the solid angle Ωkp of the positron, is the width of

the bound state φb of the H̄
+ ion due to the interaction with the laser �eld. The

pole approximation is very accurate as long as εb + ω0 � max{∆,Γ}, which in case
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of a relatively weak �eld is well satis�ed. Insertion of (5.31) into (5.30) yields

ab(t) =
iWbkp,0

2π

∫ ∞+iγ

−∞+iγ

dz
e−izt(

z − εkp,0 + εb + ω0

)(
z −∆ + iΓ

2

) . (5.34)

Now, we can easily perform the integration in (5.34) by using the Residue theorem

and obtain

ab(t) =
Wbkp,0e

−i(εkp,0−εb−ω0)t
(
1− ei(εkp,0−εb−ω0+iΓ

2
)t
)

εkp,0 − εb − ω0 + iΓ
2

, (5.35)

where it is assumed that the small shift ∆ is already included into the energy εb.

The probability to �nd the incident positron in the bound state of H̄+ is given by

Pab(t) = |ab(t)|2

=
|Wbkp,0|2

(εkp,0 − εb − ω0)2 + Γ2

4

(
1− 2 cos((εkp,0 − εb − ω0)t)e−

Γ
2
t + e−Γt

)
.(5.36)

Note that the factor
[
(εkp,0 − εb − ω0)2 + Γ2/4

]−1
in (5.36) describes a well-known

resonance structure (see, e.g. [39,40,44]) having a maximum at the exact resonance

εkp,res = εb + ω0. In contrast to spontaneous radiative attachment, (laser-)induced

radiative attachment is a resonant process that is only e�cient in a very narrow

interval of incident positron energies centered at εkp,res = εb + ω0 and having an

e�ective width of a few Γ's.

If the incident positrons do not have a �xed momentum kp,0, one may average the

probability (5.36) over their momentum distribution function f(kp,0) according to

〈Pab(t)〉 =

∫
d3kp,0 f(kp,0)Pab(t). (5.37)

In order to derive a simple analytical result for the averaged probability, we make

the following assumptions: (i) the polarization of the laser �eld is chosen along the

z-axis (F0 = F0ez), (ii) we assume that the incident positrons move along the �eld

polarization (kp,0 = kp,0ez), and (iii) their energies are supposed to be uniformly
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distributed over an interval Iε = [εkp,res−∆εkp/2, εkp,res +∆εkp/2] that is centered at

the resonance energy εkp,res = εb +ω0 and has a width ∆εkp which is much narrower

than the e�ective energy width ∆E of the H̄+ continuum (∆E ' 1 eV) but at the

same time is much broader than the width Γ of the H̄+ bound state. Note that

in a relatively weak laser �eld Γ amounts to just a tiny fraction of 1 eV, such that

our assumptions on ∆εkp in (iii) are very well compatible with each other. Taking

all this into account, the resulting momentum distribution function f(kp,0) for the

incident positrons can be written as

f(kp,0) =
δ(1− cosϑkp,0)χ{εkp,0∈Iε}(εkp,0)

2πkp,0∆εkp
, (5.38)

where χ{εkp,0∈Iε}(εkp,0) is the indicator function which takes the value 1 for εkp,0 ∈ Iε
and 0 otherwise. Inserting (5.38) as well as (5.36) into (5.37) and rewriting the

integral over kp,0 = |kp,0| into an integral over the positron energy εkp,0 = k2
p,0/2, we

arrive at

〈Pab(t)〉 =
1

2π∆εkp

∫
Iε

dεkp,0

(
1− 2 cos((εkp,0 − εb − ω0)t)e−

Γ
2
t + e−Γt

)
(εkp,0 − εb − ω0)2 + Γ2

4

×
∫
d2Ωkp,0 δ(1− cosϑkp,0)|Wbkp,0|2. (5.39)

First, we focus on the solid angle integral in (5.39). When performing the integration

over the polar angle ϑkp,0 , the resulting integrand |Wbkp,0|2ϑkp,0=0 = |Wbkp,0|2kp,0=kp,0ez

does not depend on the azimuthal angle ϕkp,0 . Thus, the subsequent integration

over ϕkp,0 simply yields 2π|Wbkp,0|2kp,0=kp,0ez
and the averaged probability 〈Pab(t)〉

becomes

〈Pab(t)〉 =
1

∆εkp

∫
Iε

dεkp,0

(
1− 2 cos((εkp,0 − εb − ω0)t)e−

Γ
2
t + e−Γt

)
(εkp,0 − εb − ω0)2 + Γ2

4

× |Wbkp,0|2kp,0=kp,0ez
. (5.40)

In (5.40), the resonant factor g(εkp,0) =
[
(εkp,0−εb−ω0)2 +Γ2/4

]−1
only contributes
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to the integral in a very narrow interval of energies of the incident positron centered

at the maximum εkp,res = εb + ω0 of the function g(εkp,0) and having a width of a

few Γ's (which is of course much smaller than the width ∆εkp of the interval Iε).

Within this interval, εkp,res − Γ . εkp,0 . εkp,res + Γ, the function g(εkp,0) varies

much faster in εkp,0 than the quantity |Wbkp,0|2kp,0=kp,0ez
and we can treat, in an

approximate manner, the latter as a constant evaluated at the resonance energy

εkp,res = εb + ω0. Furthermore, since the contribution of the integrand is negligibly

small outside the small interval εkp,res − Γ . εkp,0 . εkp,res + Γ, we can extend the

integration boundaries to 0 to ∞. Then, (5.40) reads

〈Pab(t)〉 =
|Wbkp,0|2kp,0=kp,resez

∆εkp

×
∫ ∞

0

dεkp,0

(
1− 2 cos((εkp,0 − εb − ω0)t)e−

Γ
2
t + e−Γt

)
(εkp,0 − εb − ω0)2 + Γ2

4

(5.41)

with kp,res =
√

2(εb + ω0). The remaining integral in (5.41) can be solved quite

easily by substituting u = εkp,0−εb−ω0 and afterwards taking advantage of the fact

that the resulting integrand only contributes to the integral in a very narrow interval

−Γ . u . Γ, so that the lower integration boundary −(εb + ω0) can be extended

to −∞. Then, the averaged probability 〈Pab(t)〉 to �nd the incident positron in the

bound state of H̄+ is obtained to be

〈Pab(t)〉 =
|Wbkp,0|2kp,0=kp,resez

∆εkp

2π

Γ

(
1− e−Γt

)
. (5.42)

The time derivative of (5.42) yields the (averaged) formation rate of H̄+ ions per

unit of time (per H̄) that is

〈RLIRA〉 =
d

dt
〈Pab(t)〉 =

|Wbkp,0|2kp,0=kp,resez

∆εkp
2πe−Γt. (5.43)

The rate (5.43) contains the transition matrix element Wbkp,0 from (5.23). For its

evaluation, we use the same continuum and bound states which have already been
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used in the consideration of spontaneous radiative attachment in Section 5.1 and

which are given by (5.8) and (4.1), respectively. Recalling that F0 = F0ez, the

quantity |Wbkp,0 |2kp,0=kp,resez
can be written as

|Wbkp,0|2kp,0=kp,resez =

∣∣∣∣− 1

2ω0

〈φb(rp)|F0 · p̂rp |φkp,0(rp)〉
∣∣∣∣2
kp,0=kp,resez

=
F 2

0

4ω2
0Vp

∣∣ 〈φb(rp)| ez · p̂rp |eikp,resez ·rp〉 ∣∣2. (5.44)

Next, we apply p̂rp |eikp,resez ·rp〉 = kp,resez |eikp,resez ·rp〉 and (5.44) becomes

|Wbkp,0|2kp,0=kp,resez =
F 2

0 k
2
p,res

4ω2
0Vp

∣∣〈φb(rp)|eikp,resez ·rp〉∣∣2. (5.45)

The result of 〈φb(rp)|eikp,resez ·rp〉 in (5.45) can be obtained from (5.12) and we arrive

at

|Wbkp,0|2kp,0=kp,resez =
4π2N2F 2

0 k
2
p,res(β

2 − α2)2

ω2
0Vp(α

2 + k2
p,res)

2(β2 + k2
p,res)

2
. (5.46)

Inserting (5.46) into (5.43) and expressing the normalization volume Vp of the inci-

dent positron via the corresponding number density np of positrons as Vp = 1/np, the

(averaged) H̄+ formation rate per unit of time (per H̄) for (laser-)induced radiative

attachment reads

〈RLIRA〉 =
8π3npN

2F 2
0 k

2
p,res(β

2 − α2)2

∆εkpω
2
0(α2 + k2

p,res)
2(β2 + k2

p,res)
2
e−Γt. (5.47)

As can be concluded from (5.47), the formation rate substantially diminishes for

Γt ' 1 and already essentially vanishes for Γt� 1. The reason for this is that in the

presence of a laser �eld, besides induced radiative attachment, photodetachment (of

the loosely bound positron in H̄+) also occurs. Hence, with increasing the population

of the bound state of H̄+, the attachment and detachment events may balance each

other after some time, resulting in a zero net formation rate. Let the laser pulse

have a time duration T , where 0 ≤ t ≤ T . In order to e�ciently produce H̄+ ions via
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(laser-)induced radiative attachment during the whole pulse, the duration T should

be su�ciently small so that ΓT � 1 and consequently Γt� 1.

Note that the formation of H̄+ ions via induced radiative attachment involving a

weak laser �eld has also been considered independently in [134]. However, compared

with our theoretical approach to this process, in which the Schrödinger equation

describing the induced attachment is solved by applying the rotating wave approx-

imation, the approach in [134] is quite di�erent. It treats the attachment by taking

advantage of the �rst order of time-dependent perturbation theory in the interaction

between the incident positron and the weak laser �eld.

5.3 Two-center dileptonic attachment

Let us now consider attachment of a positron e+ to an antihydrogen atom H̄ pro-

ceeding in the presence of a neighboring (matter) atom B. For the moment, we

ignore possible annihilation channels and also other processes that might occur in

an environment in which antimatter is embedded in matter. These will be discussed

in detail in Section 7.2.

At �rst, we assume a �xed interatomic distance R0 (R0 � 1 a.u.) between H̄ and

B. If the energy excess ω
H̄

+ = εkp − εb in the process of e+ + H̄ attachment is

close to an excitation energy ωB = εe − εg of a dipole-allowed transition in atom B

(εe and εg are the energies of the excited and ground state of B, respectively), the

released energy can be transferred � via the two-center positron-electron (dileptonic)

interaction � to atom B, which, as a result, undergoes a transition into an excited

state. Afterwards, B radiatively decays to its initial (ground) state by emission

of a photon with energy ~ωk and the two-center system, (e+ + H̄) + B, becomes

stable, meaning that the H̄+ ion has been formed. A scheme of this process, termed

two-center dileptonic attachment, is shown in Fig. 5.3.

In the 'matter' case of two-center dielectronic recombination (attachment), in which

an electron e− recombines with (is attached to) a positive charged ion (a neutral

atom) A in the presence of a neighbor atom B driven by the two-center electron-

electron interaction, it is well-known [39, 40, 45] that, because of its resonant na-

ture, the two-center channel can enhance the corresponding recombination (attach-
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Figure 5.3: Scheme of two-center dileptonic attachment (2CDA). This �gure was
originally published in Ref. [120].

ment) rate by orders of magnitude as compared with the case where B is absent

and recombination (attachment) is only possible via direct photoemission from the

(e− + A) system. We mention that two-center dielectronic recombination (attach-

ment) is the time-inverse process of two-center photoionization (photodetachment),

which was considered for colliding atomic species A and B in Chapter 3.

Suppose now that free positrons and a beam of H̄ move in a (dilute) gas of atoms

B. As previously mentioned, two-center dileptonic attachment relies on an energy

transfer which is resonant to a dipole transition in B. However, the relative motion

of H̄ and B results in uncertainty in positron and electron transition energies (as

they are seen by the corresponding collision partner), e�ectively broadening them.

For this reason, the e�ciency of the two-center attachment channel is limited to low

velocity collisions, in which the velocity v of H̄ with regard to B is much less than
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1 a.u. [41, 135].

In a recent study [41,135], we have considered two-center dielectronic recombination

(attachment) when electrons and a beam of slow positive ions (neutral atoms) A

move in a gas of atomic species B. In the same manner as for the direct correspon-

dence between spontaneous radiative attachment of an electron to an atom and of

a positron to an antiatom (see Section 5.1), the results obtained in [41, 135] can be

straightforwardly adapted to the process of two-center dileptonic attachment of a

positron to H̄ proceeding in an environment where free positrons and a slow H̄ beam

move in a gas of atoms B.

Using the results from [41,135], the formation rate of H̄+ ions per unit of time (per

H̄) for two-center dileptonic attachment is given by

R2CDA =RSRA ×
9π

4

nB
v b2

min

c6ΓBr
ω3
H̄

+ω3
B

η2

{
sin2 ϑkpK

2
1(η)

+
(
1 + cos2 ϑkp)ηK0(η)K1(η

)}
. (5.48)

Here, RSRA is the rate for spontaneous radiative attachment of a positron to H̄

from (5.17), nB is the density of atoms B, bmin is the minimum impact parameter

in the H̄ − B collisions, ΓBr is the radiative width of the excited state of atom B,

η = |ω
H̄

+ − ωB|bmin/v and ϑkp is the incident positron angle (which is counted

from the collision velocity v). Further, Kj(x) (j = 0, 1) are the modi�ed Bessel

functions [87].

Note that within the theoretical approach of two-center dielectronic recombination

(attachment) in [41,135], only contributions to the two-center channel from distant

collisions, in which bmin � 1 a.u., were taken into account. Therefore, the rate (5.48)

represents just a lower boundary of the H̄+ formation rate for two-center dileptonic

attachment.

The functions Kj(x) (j = 0, 1) diverge at x → 0 and decrease exponentially at

x > 1 [87]. Thus, in distant (bmin � 1 a.u.) and low velocity (v � 1 a.u.)

collisions, the formation of H̄+ ions via two-center attachment is most favorable,

according to (5.48), when the energy of the incident positrons lies within the small
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interval εb + ωB − v/bmin . εkp . εb + ωB + v/bmin centered at εkp,res = εb + ωB

and having the width δεkp ∼ v/bmin. Because the quantity v/bmin is typically

orders of magnitude larger than the radiative width ΓBr , we can conclude that the

relative motion of H̄ and B strongly smears out the 'static' resonance condition

εb + ωB − ΓBr . εkp . εb + ωB + ΓBr [41, 135], in case where the distance between

H̄ and B is �xed, and leads to a much broader range of 'quasiresonance' energies of

the incident positron.
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6 | Theory of nonradiative

attachment

This chapter provides a detailed insight into the theoretical treatments of the non-

radiative three-body reactions, which are electron-assisted three-body attachment

and positron-assisted three-body attachment. For each of these processes, we derive

the formation rate of positive ions of antihydrogen per unit of time and per antihy-

drogen atom. The following chapter is mainly based on results published initially in

Ref. [121].

6.1 Electron-assisted three-body attachment

In an environment, in which free positrons e+ and electrons e− move in a close vicin-

ity of antihydrogen atoms H̄, attachment of a positron to H̄ may occur due to the

positron-electron interaction, where the energy excess is taken away by an electron.

We call this process electron-assisted three-body attachment and its schematic rep-

resentation is pictured in Fig. 6.1, where εke and εk′e are the energies of the incident

and outgoing electron, respectively.

For the moment, we ignore the possibility of positron-electron annihilation, whose

in�uence on the three-body reaction will be discussed in detail in Section 7.2.

The considered attachment mechanism is a four-body problem that is rather di�-

cult to handle from a theoretical point of view. Hence, we may treat this process

as an e�ectively three-body problem by regarding the initially bound positron as

passive, forming together with the antiproton a single-rigid body which produces an

external (short-range) �eld that acts on the active positron and the electron. Such
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Figure 6.1: Scheme of electron-assisted three-body attachment (3BAe). This �gure
was originally published in Refs. [120,121].

an approximation, in which identical particles are considered as sharply asymmetri-

cally, subdividing them into active and passive, was already used for the treatments

of spontaneous and (laser-)induced radiative attachment in Section 5.1 and Sec-

tion 5.2, where we pointed out that this approximation has been fairly successful in

describing several atomic processes involving two-electron (positron) systems.

Let us choose a reference frame in which H̄ is at rest and take the position of the

antiproton as the origin. We start our consideration of the three-body attachment

with the exact transition amplitude in the post form which can be written as (see,

e.g. [129])

a3BAe = −i
∫ ∞
−∞

dt

〈(
Ĥ − i ∂

∂t

)
χf (t)

∣∣∣∣Ψ(+)
i (t)

〉
, (6.1)

where Ψ
(+)
i (t) is the exact solution of the full Schrödinger equation (whose Hamilto-

nian Ĥ includes all the interactions) that satis�es the incoming boundary condition

and χf (t) is the �nal asymptotic state that is a solution of the Schrödinger equation
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with the corresponding asymptotic Hamiltonian Ĥf .

The Hamiltonian Ĥ in (6.1) reads

Ĥ =
(p̂re)

2

2
+ V̂e(re) +

(p̂rp)
2

2
+ V̂p(rp) + V̂ep(re, rp) (6.2)

with re and p̂re the coordinate and momentum operator for the incident electron

with respect to the antiproton, respectively. Further, V̂e(re) is the interaction be-

tween the electron and H̄. Similarly, V̂p(rp) describes the interaction between the

positron and H̄. Besides, V̂ep(re, rp) = − 1
|re−rp| is the Coulomb interaction between

the incident electron and positron.

Taking advantage of the fact that the Coulomb interaction between the incident

electron and positron is much stronger than the interactions of these particles with

the (neutral) antihydrogen, we can approximate the exact state Ψ
(+)
i (t) according

to

Ψ
(+)
i (re, rp, t) = eiP ·Rψ(+)

κ (r)e−i(εkp+εke )t. (6.3)

In (6.3), R = (re + rp)/2 is the coordinate of the center-of-mass of the incident

electron-positron pair and P = ke + kp is their total momentum, where ke is the

asymptotic momentum of the incident electron (as is seen in the rest frame of H̄)

with corresponding kinetic energy εke = k2
e/2. In addition,

ψ(+)
κ (r) =

1√
VpVe

e
π
2κΓ

(
1− i

κ

)
eiκ·rF

(
i

κ
, 1, i(κr − κ · r)

)
(6.4)

is the Coulomb wave function which describes the relative motion of the incident

electron and positron. Here, r = re − rp is the relative coordinate of the electron-
positron pair, κ = (ke−kp)/2, Ve is the electron normalization volume and F (a, b, z)

is the con�uent hypergeometric function [87]. Consequently, the state (6.3) describes

the motion of the incident electron and positron by fully accounting for the long-

range Coulomb interaction between them while neglecting their interaction with the

(neutral) antihydrogen.
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We choose the �nal state χf (t) as

χf (re, rp, t) = φb(rp)ϕf (re, rp)e
−i(εb+εk′e )t (6.5)

with φb(rp) the (undistorted) bound state of the positron which was attached to H̄

and ϕf (re, rp) the state of the outgoing electron that moves in the �eld of the H̄+

ion formed. We treat H̄+ as an e�ectively one-positron system with the positron

attached being a weakly bound outer positron moving in the short-range �eld of the

(single-body) ionic core. Then, following the consideration in Section 4.3, we can

approximate the state φb by the wavefunction (4.1). Furthermore, we suppose that

the state ϕf is described by the Coulomb wave function which takes into account the

in�uence of the Coulomb interaction between the outgoing electron and the bound

positron on each of these two particles and which is given by

ϕ
(−)
k′e

(r) =
1√
Ve
e

π
2k′e Γ

(
1 +

i

k′e

)
eik
′
e·rF

(
− i

k′e
, 1,−i(k′er + k′e · r)

)
, (6.6)

where k′e is the asymptotic momentum of the outgoing electron with the correspond-

ing kinetic energy εk′e = k′2e /2.

Using the Hamiltonian (6.2), in which the weak interaction V̂e(re) between the

electron and the (neutral) antihydrogen is being neglected, and using (6.5), the

quantity
(
Ĥ − i ∂

∂t

)
χf (t) in the amplitude (6.1) becomes(

Ĥ − i ∂
∂t

)
χf (t) = −i ∂

∂t
φb(rp)ϕ

(−)
k′e

(r)e−i(εb+εk′e )t

+

[
(p̂re)

2

2
− 1

r

]
φb(rp)ϕ

(−)
k′e

(r)e−i(εb+εk′e )t

+

[
(p̂rp)

2

2
+ V̂p(rp)

]
φb(rp)ϕ

(−)
k′e

(r)e−i(εb+εk′e )t. (6.7)

By taking advantage of the eigenvalue equations
[ (p̂rp )2

2
+ V̂p(rp)

]
φb(rp) = εbφb(rp)

and
[

(p̂re )2

2
− 1

r

]
ϕ

(−)
k′e

(r) =
[ (p̂r)2

2
− 1

r

]
ϕ

(−)
k′e

(r) = εk′eϕ
(−)
k′e

(r), it can be easily shown
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that (6.7) yields(
Ĥ − i ∂

∂t

)
χf (t) =

{[
εk′e +

1

r

]
φb(rp)ϕ

(−)
k′e

(r)

−
[
p̂rpφb(rp)

]
·
[
p̂reϕ

(−)
k′e

(r)
]}
e−i(εb+εk′e )t. (6.8)

Now, we insert (6.3) and (6.8) into the transition amplitude (6.1), perform the

integration over the time t and obtain

a3BAe = −2πiδ(εkp − εb − (εk′e − εke))
(
M1 + εk′eM2 −M3

)
. (6.9)

Here,

M1 =

〈
1

r
φb(rp)ϕ

(−)
k′e

(r)

∣∣∣∣eiP ·Rψ(+)
κ (r)

〉
,

M2 =

〈
φb(rp)ϕ

(−)
k′e

(r)

∣∣∣∣eiP ·Rψ(+)
κ (r)

〉
,

M3 =

〈[
p̂rpφb(rp)

]
·
[
p̂reϕ

(−)
k′e

(r)
]∣∣∣∣eiP ·Rψ(+)

κ (r)

〉
. (6.10)

In (6.10), we �rst consider the space integralM1 which reads

M1 =

∫
d3rp

∫
d3re

(
1

r
φb(rp)ϕ

(−)
k′e

(r)

)∗
eiP ·Rψ(+)

κ (r). (6.11)

Rewriting the integral over the electron coordinate re in (6.11) into an integral over

the relative coordinate r = re − rp of the electron-positron pair provides

M1 =

(∫
d3rp e

iP ·rpφ∗b(rp)

)(∫
d3r

eiP ·
r
2

r
ψ(+)
κ (r)[ϕ

(−)
k′e

(r)]∗
)

= I1 I2. (6.12)
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The calculation of the integral I1 in (6.12) is quite simple and yields

I1 =

∫
d3rp e

iP ·rpN
e−αrp − e−βrp

rp
= 4πN

β2 − α2

(α2 + P 2)(β2 + P 2)
. (6.13)

The integral I2 in (6.12) requires a more careful treatment. Applying the Coulomb

wave functions (6.4) and (6.6) and introducing the in�nitesimal small positive pa-

rameter λ (λ→ 0+), I2 can be written as

I2 =
1√
VpVe

e
π
2κΓ

(
1− i

κ

)
1√
Ve
e

π
2k′e Γ

(
1− i

k′e

)
J (6.14)

with

J =

∫
d3r e−λr

eiq·r

r
F

(
i

κ
, 1, i(κr − κ · r)

)
F

(
i

k′e
, 1, i(k′er + k′e · r)

)
, (6.15)

where q = P
2

+κ−k′e = ke−k′e. An integral of the same form as J also appears in

the theory of Bremsstrahlung and it was calculated in [136]. Then, using the results

of [136], the integral J in (6.15) is obtained to be

J =
2π

α̃
e−

π
κ

(
α̃

γ̃

) i
κ
(
γ̃ + δ̃

γ̃

)− i
k′e
F

(
1− i

κ
,
i

k′e
, 1, z

)
. (6.16)

Here, z = α̃δ̃−β̃γ̃
α̃(γ̃+δ̃)

, α̃ = (q2 + λ2)/2, β̃ = k′e · q − iλk′e, γ̃ = κ · q + iλκ − α̃,

δ̃ = κk′e + κ · k′e − β̃ and F (a, b, c, z) is the hypergeometric function [87].

Inserting (6.16) into (6.14) and afterwards inserting the resulting expression for I2

as well as the result for I1 from (6.13) into (6.12), the quantityM1 becomes

M1 = 8π2N
β2 − α2

(α2 + P 2)(β2 + P 2)

1√
VpVe

e−
π
2κΓ

(
1− i

κ

)
1√
Ve
e

π
2k′e Γ

(
1− i

k′e

)

× 1

α̃

(
α̃

γ̃

) i
κ
(
γ̃ + δ̃

γ̃

)− i
k′e
F

(
1− i

κ
,
i

k′e
, 1, z

)
. (6.17)
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Next, we evaluate the space integralM2 in (6.10) that reads

M2 =

∫
d3rp

∫
d3re

(
φb(rp)ϕ

(−)
k′e

(r)

)∗
eiP ·Rψ(+)

κ (r). (6.18)

The integral over the coordinate re in (6.18) is rewritten into an integral over the

relative coordinate r = re − rp and we arrive at

M2 =

(∫
d3rp e

iP ·rpφ∗b(rp)

)(∫
d3r eiP ·

r
2ψ(+)

κ (r)[ϕ
(−)
k′e

(r)]∗
)

= I1 I3, (6.19)

where the result of the integral I1 is given by (6.13).

Employing the states (6.4) and (6.6) and, as before, introducing the in�nitesimal

small positive parameter λ (λ→ 0+), the integral I3 in (6.19) yields

I3 =
1√
VpVe

e
π
2κΓ

(
1− i

κ

)
1√
Ve
e

π
2k′e Γ

(
1− i

k′e

)

×
∫
d3r e−λreiq·rF

(
i

κ
, 1, i(κr − κ · r)

)
F

(
i

k′e
, 1, i(k′er + k′e · r)

)
.(6.20)

In (6.20), we can recover the integral J from (6.15) by di�erentiation with respect to

λ. In particular, taking into account that e−λr = − ∂
∂λ

(
e−λr

r

)
, (6.20) can be written

as

I3 = − 1√
VpVe

e
π
2κΓ

(
1− i

κ

)
1√
Ve
e

π
2k′e Γ

(
1− i

k′e

)(
∂

∂λ
J
)
. (6.21)

The solution of the integral J is given by (6.16). Applying the di�erentiation formula

(see, e.g. [87]) d
dz
F (a, b, c, z) = ab

c
F (a + 1, b + 1, c + 1, z) for the hypergeometric

function, the derivative of (6.16) with respect to λ is straightforward and provides

∂

∂λ
J =

2π

α̃
e−

π
κ

(
α̃

γ̃

) i
κ
(
γ̃ + δ̃

γ̃

)− i
k′e
[
A1F

(
1− i

κ
,
i

k′e
, 1, z

)

+A2F

(
2− i

κ
,
i

k′e
+ 1, 2, z

)]
. (6.22)
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Here, the quite cumbersome quantities A1,2 = A1,2(kp,ke,k
′
e) are shown in Appendix

9.5.

Inserting (6.22) into (6.21) and subsequently inserting the resulting expression for

I3 as well as the result for I1 from (6.13) into (6.19), the quantityM2 is obtained

to be

M2 = −8π2N
β2 − α2

(α2 + P 2)(β2 + P 2)

1√
VpVe

e−
π
2κΓ

(
1− i

κ

)
1√
Ve
e

π
2k′e Γ

(
1− i

k′e

)

× 1

α̃

(
α̃

γ̃

) i
κ
(
γ̃ + δ̃

γ̃

)− i
k′e
[
A1F

(
1− i

κ
,
i

k′e
, 1, z

)

+A2F

(
2− i

κ
,
i

k′e
+ 1, 2, z

)]
. (6.23)

The last (and most complicated) quantity to be determined in (6.10) is the space

integralM3 which reads

M3 =

∫
d3rp

∫
d3re

([
p̂rpφb(rp)

]
·
[
p̂reϕ

(−)
k′e

(r)
])∗

eiP ·Rψ(+)
κ (r). (6.24)

Rewriting the integral over the coordinate re in (6.24) into an integral over the

relative coordinate r = re − rp leads to

M3 =

(∫
d3rp e

iP ·rp
[
p̂rpφb(rp)

]∗)(∫
d3r eiP ·

r
2ψ(+)

κ (r)
[
p̂rϕ

(−)
k′e

(r)
]∗)

= I4 I5. (6.25)

Using integration by parts, where φb(rp)→ 0 as |rp| → ∞, the integral I4 in (6.25)

becomes

I4 = P

∫
d3rp e

iP ·rpφ∗b(rp) = P I1 = P 4πN
β2 − α2

(α2 + P 2)(β2 + P 2)
(6.26)

with the result of the integral I1 given by (6.13).
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Now, we turn to the integral I5 in (6.25), whose evaluation is quite laborious. Ap-

plying the states (6.4) and (6.6) and, once again, introducing the in�nitesimal small

positive parameter λ (λ→ 0+), I5 yields

I5 = i
1√
VpVe

e
π
2κΓ

(
1− i

κ

)
1√
Ve
e

π
2k′e Γ

(
1− i

k′e

)

×
∫
d3r e−λrei

(
P
2

+κ
)
·rF

(
i

κ
, 1, i(κr − κ · r)

)

× ∇r

[
e−ik

′
e·rF

(
i

k′e
, 1, i(k′er + k′e · r)

)]
. (6.27)

Employing ∇rF
(
iν, 1, i(k′er+k′e ·r)

)
= k′e

r
∇k′e

[
F
(
iν, 1, i(k′er+k′e ·r)

)]
ν=const.

, where

ν = 1/k′e is regarded as a constant with respect to ∇k′e , it is easy to show that the

quantity ∇r

[
e−ik

′
e·rF

(
i
k′e
, 1, i(k′er + k′e · r)

)]
in (6.27) can be expressed as

∇r

[
e−ik

′
e·rF

(
iν, 1, i(k′er + k′e · r)

)]
=

(
k′e
r
∇k′e +

k′e
r
ir − ik′e

)[
e−ik

′
e·rF

(
iν, 1, i(k′er + k′e · r)

)]
. (6.28)

Inserting (6.28) into (6.27) provides

I5 = i
1√
VpVe

e
π
2κΓ

(
1− i

κ

)
1√
Ve
e

π
2k′e Γ

(
1− i

k′e

)[
k′e(∇k′eJ )

+k′e

∫
d3r e−λrir

eiq·r

r
F

(
i

κ
, 1, i(κr − κ · r)

)
F

(
iν, 1, i(k′er + k′e · r)

)

−ik′e
∫
d3r e−λreiq·rF

(
i

κ
, 1, i(κr − κ · r)

)
F

(
iν, 1, i(k′er + k′e · r)

)]
,

(6.29)

where the integral J in the �rst term is de�ned by (6.15). The second and third
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term of (6.29) can also be expressed in terms of J by di�erentiation with respect

to q and λ, respectively. Thus, using ir e
iq·r

r
= ∇q

(
eiq·r

r

)
in the second term and

e−λr = − ∂
∂λ

( e
−λr

r
) in the third term, (6.29) can be written as

I5 = i
1√
VpVe

e
π
2κΓ

(
1− i

κ

)
1√
Ve
e

π
2k′e Γ

(
1− i

k′e

)[
k′e(∇k′eJ )

+k′e(∇qJ ) + ik′e

(
∂

∂λ
J
)]
. (6.30)

Here, the derivative ∂
∂λ
J is given by (6.22). Further, taking into consideration

the solution of the integral J from (6.16) and the di�erentiation formula (see, e.g.

[87]) d
dz
F (a, b, c, z) = ab

c
F (a+ 1, b+ 1, c+ 1, z) for the hypergeometric function, the

gradients ∇k′eJ and ∇qJ are easily calculated. They read

∇k′eJ =
2π

α̃
e−

π
κ

(
α̃

γ̃

) i
κ
(
γ̃ + δ̃

γ̃

)−iν[
A3F

(
1− i

κ
, iν, 1, z

)

+A4F

(
2− i

κ
, iν + 1, 2, z

)]
(6.31)

and

∇qJ =
2π

α̃
e−

π
κ

(
α̃

γ̃

) i
κ
(
γ̃ + δ̃

γ̃

)−iν[
A5F

(
1− i

κ
, iν, 1, z

)

+A6F

(
2− i

κ
, iν + 1, 2, z

)]
(6.32)

with the rather cumbersome vectors A3,4,5,6 = A3,4,5,6(kp,ke,k
′
e) speci�ed in Ap-

pendix 9.5. Note that ∇k′eJ was evaluated under the assumption ν = 1/k′e = const.

with respect to ∇k′e .

Inserting (6.22), (6.31) and (6.32) into (6.30) and afterwards inserting the resulting

expression for I5 as well as the result for I4 from (6.26) into (6.25), the quantity
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M3 yields

M3 = 8π2iN
β2 − α2

(α2 + P 2)(β2 + P 2)

1√
VpVe

e−
π
2κΓ

(
1− i

κ

)
1√
Ve
e

π
2k′e Γ

(
1− i

k′e

)
k′e

× 1

α̃

(
α̃

γ̃

) i
κ
(
γ̃ + δ̃

γ̃

)−iν[
P ·

(
i
k′e
k′e
A1 +A3 +A5

)
F

(
1− i

κ
, iν, 1, z

)

+P ·
(
i
k′e
k′e
A2 +A4 +A6

)
F

(
2− i

κ
, iν + 1, 2, z

)]
. (6.33)

We now apply the results forM1−3 from (6.17), (6.23) and (6.33) in order to obtain

the �nal expression for the transition amplitude (6.9), which is given by

a3BAe =
16π3N(β2 − α2)

i
√
VpVe(α2 + P 2)(β2 + P 2)

e−
π
2κΓ

(
1− i

κ

)
e

π
2k′e Γ

(
1− i

k′e

)

× Qpeδ(εkp − εb − (εk′e − εke)), (6.34)

where

Qpe =
1

α̃

(
α̃

γ̃

) i
κ
(
γ̃ + δ̃

γ̃

)− i
k′e
[
Λ1F

(
1− i

κ
,
i

k′e
, 1, z

)

−Λ2F

(
2− i

κ
,
i

k′e
+ 1, 2, z

)]
(6.35)

with

Λ1 = 1− εk′eA1 − ik′eP ·
(
i
k′e
k′e
A1 +A3 +A5

)
,

Λ2 = εk′eA2 + ik′eP ·
(
i
k′e
k′e
A2 +A4 +A6

)
. (6.36)

The formation rate of H̄+ ions per unit of time (per H̄) for electron-assisted three-
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body attachment is determined by calculating the quantity

R3BAe =
Ve

(2π)3

∫
d3k′e

|a3BAe|2

T
. (6.37)

In (6.37), we integrate over the momentum k′e of the outgoing electron and, similar

as for the spontaneous radiative attachment rate (5.14), the time duration T is of

the order of the interaction time. Inserting the amplitude (6.34) into (6.37) and

employing the identity
[
2πδ(εkp − εb − (εk′e − εke))

]2
= 2πδ(εkp − εb − (εk′e − εke))T ,

the rate R3BAe becomes

R3BAe =
16π2N2(β2 − α2)2

VpVe(α2 + P 2)2(β2 + P 2)2
e−

π
κ

∣∣∣∣Γ(1− i

κ

)∣∣∣∣2

×
∫
d3k′e δ(εkp − εb − (εk′e − εke))e

π
k′e

∣∣∣∣Γ(1− i

k′e

)∣∣∣∣2|Qpe|2. (6.38)

We use the relation δ(g(x)) =
∑

xj∈{simple roots of g(x)}
1

|g′(xj)|δ(x − xj) and write the

delta function in (6.38) as δ(εkp − εb − (εk′e − εke)) = 1
k′c
δ(k′e − k′c), where k

′
c =√

k2
p + k2

e − 2εb. Subsequently, performing the integration over the absolute value

k′e = |k′e| of the outgoing electron momentum and expressing the positron and

electron normalization volumes Vp and Ve by the corresponding number densities

np and ne of positrons and electrons according to Vp = 1/np and Ve = 1/ne, the

formation rate R3BAe is obtained to be

R3BAe =
16π2npneN

2(β2 − α2)2

(α2 + P 2)2(β2 + P 2)2
e−

2π
κ G(κ)G(k′c)k

′
c

∫
dΩk′e(|Qpe|2)k′e=k′c . (6.39)

Here,

G(k) = e
π
k

∣∣∣∣Γ(1− i

k

)∣∣∣∣2 =
2π

k
(
1− e− 2π

k

) (6.40)

is the Gamow factor for a charged particle with absolute momentum k that moves

in an attractive Coulomb �eld (see, e.g. [137]).

In the following, we consider antihydrogen atoms embedded in a gas of low energy
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(≈ meV) electrons which is penetrated by a positron beam. We assume that the

beam of positrons propagates in a �xed direction and its (sharp) energy varies in

a relatively broad range from sub-meV up to eV. In such a case, the H̄+ formation

rate can be obtained by averaging (6.39) over the absolute value ke of the incident

electron momentum by applying a Maxwell-Boltzmann distribution. Furthermore,

we account for all relative orientations between the incident positron and the incident

electron momenta by performing the average over the solid angle Ωke of the incident

electron momentum while the direction of the incident positron is �xed. Therefore,

the averaged formation rate 〈R3BAe〉 of H̄
+ ions per unit of time (per H̄) can be

calculated according to

〈R3BAe〉 =
1

4π

∫
dΩke

∫ ∞
0

dke wET (ke)R3BAe, (6.41)

where wET (ke) = 4πk2
e

(2πET )3/2 e
− k2

e
2ET is the Maxwell-Boltzmann distribution for the inci-

dent electron. In addition, ET = kBT is the average thermal energy associated with

the electron gas of temperature T , where kB is the Boltzmann constant. It is worth

mentioning that the rate (6.41) now only depends on the absolute momentum kp of

the incident positron.

6.2 Positron-assisted three-body attachment

We suppose a situation, where free positrons e+ move in close proximity to an-

tihydrogen atoms H̄. Then, one positron may be attached to H̄ � driven by the

positron-positron interaction � whereas another positron carries away the energy

release. A scheme of this process, referred to as positron-assisted three-body attach-

ment, can be found in Fig. 6.2, where εk̃p and εk̃′p are the energies of the incident

and outgoing assisting positron, respectively.

The di�erence between electron-assisted and positron-assisted three-body attach-

ment is that the incident electron involved in the former process is replaced by a

second incident positron in the latter process. Hence, their theoretical treatments

are quite similar but with two changes. The �rst minor change is that the positron-

positron interaction in the treatment of 3BAp has a di�erent sign than the positron-
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Figure 6.2: Scheme of positron-assisted three-body attachment (3BAp). This �gure
was originally published in Ref. [120].

electron interaction in the 3BAe treatment. The second major change involves the

Coulomb wave functions appearing in the initial and �nal states of the e�ectively

three-body system. In particular, the Coulomb wave (6.4) which accounts for the at-

tractive Coulomb interaction between the incident electron and positron in the initial

state in the treatment of 3BAe has to be replaced by a corresponding Coulomb wave

that takes into account the repulsive Coulomb interaction between the two incident

positrons in the initial state in the 3BAp treatment. Accordingly, the Coulomb wave

(6.6) which accounts for the attractive Coulomb interaction between the outgoing

electron and the attached positron in the �nal state in the treatment of 3BAe has to

be replaced by a corresponding Coulomb wave that takes into account the repulsive

Coulomb interaction between the outgoing positron and the attached positron in

the �nal state in the 3BAp treatment.

Accounting for the above changes in the theoretical treatment in Section 6.1 results

in a formation rate of H̄+ ions for 3BAp that is many orders of magnitude smaller

than the rate for 3BAe, which will be discussed in detail later in Section 7.1.3.
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7 | Numerical results and discussion

This chapter provides a comparative discussion of the numerical results for the

radiative and nonradiative attachment mechanisms under consideration. In this

context, we also brie�y discuss the e�ciency of positron capture in collisions of

positronium with antihydrogen. Further, we discuss the role of annihilation and

other processes related to the interaction between matter and antimatter for two-

center dileptonic and electron-assisted three-body attachment, both in which matter

particles are involved. The following chapter is mainly based on results published

initially in Refs. [120,121].

7.1 Comparative analysis of the radiative and

nonradiative attachment mechanisms

The H̄+ formation rates for all considered attachment mechanisms depend on the

density np of incident positrons. Here, we choose np = 108 cm−3, which corresponds

to the typical positron density in H̄ and H̄+ experiments (see, e.g. [99, 138]).

7.1.1 Spontaneous radiative vs. two-center dileptonic vs.

electron-assisted three-body attachment

For evaluating the two-center dileptonic attachment rate (5.48), we consider the case

when positrons and a beam of slow H̄ move in a gas of Cs atoms. The corresponding

attachment reaction can be written as (H̄+ e+) +Cs(6 2S1/2) → H̄+
+Cs(6 2P3/2)

→ H̄+
+Cs(6 2S1/2)+~ωk. Consequently, the positron capture by antihydrogen pro-

ceeds due to the transfer of the energy release to Cs, exciting the 6 2S1/2 → 6 2P3/2

137



� CHAPTER 7. NUMERICAL RESULTS AND DISCUSSION �

dipole transition (ωB ≈ 1.46 eV) with subsequent de-excitation via spontaneous

radiative decay (ΓBr ≈ 2.14 × 10−8 eV [56]). Based on the discussion of colli-

sional two-center dielectronic recombination (attachment) in [41, 135], we choose

here bmin = 5 a.u. in order to account for as much of the total rate as possible while

at the same time satisfying all assumptions which the approach to the two-center

process relies on. In addition, we set nB = 1015 cm−3, v = 0.01 a.u. and ϑkp = π/2.

Note that averaging the rate (5.48) over the direction of the incident positron yields

a result which is ≈ 34 % smaller than that at a �xed ϑkp = π/2.

A numerical result for the electron-assisted three-body attachment rate (6.41) is

obtained by performing the average over the absolute value of the momentum of the

incident electron, using a Maxwell-Boltzmann distribution with an average thermal

energy ET = kBT = 1 meV (≈ 11.6 K). Such energy is in the range of typical energies

for electrons or positrons in the cryogenic environments of CERN experiments on

H̄ and H̄+ (see, e.g. [99, 138]). Further, we choose the incident electron density as

ne = 5×1010 cm−3 which, at the moment, is the highest possible density of electrons

that can be experimentally realized in a cryogenic environment at temperatures

T ≈ 10 K [139].

In Fig. 7.1, we illustrate the rates (5.17), (5.48) and (6.41) for the formation of H̄+

ions via spontaneous radiative attachment (the dotted curve), two-center dileptonic

attachment (the dashed curve) and electron-assisted three-body attachment (the

solid curve) as a function of the incident positron energy.

We can conclude from Fig. 7.1 that, in the interval of energies of the incident

positron from 10−4 to 2 eV, the rate 〈R3BAe〉 is maximal at the smallest energy

displayed, changes only weakly between 10−4 and 10−3 eV and then decreases faster

and faster with further increasing energy. The dependence of the rate 〈R3BAe〉 on the
incident positron energy re�ects the presence of the Coulomb singularity in the wave

function (6.4), describing the relative motion of the incident electron-positron pair,

as the energy of this motion approaches 0. Consequently, the observed decrease

of the rate 〈R3BAe〉 results from a corresponding decrease in the strength of the

Coulomb interaction between the electron and positron when their relative energy

increases.
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Figure 7.1: The H̄+ formation rate per unit of time (per H̄) as a function of the
energy εkp of the incident positron for spontaneous radiative attach-
ment (dotted), two-center dileptonic attachment (dashed) and electron-
assisted three-body attachment (solid). See text for the choice of param-
eters. This �gure was originally published in Ref. [121].

The rate RSRA behaves rather di�erently. It grows when εkp increases and sub-

sequently saturates at the largest energies shown (and decreases for even higher

energies). In contrast to the long-range Coulomb interaction between the incident

electron and positron present in the 3BAe process, here the interaction of the in-

cident positron with a neutral H̄(1s) is of short range and the rate RSRA has a

minimum (zero) as the incident positron energy tends to 0. In fact, within the

dipole approximation, the incident positron must be in a state with one unit of the

orbital angular momentum, so there is a centrifugal barrier (leading to an e�ective

repulsive force), which at very low energies does not allow the positron to come close
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enough to H̄(1s) that is necessary for the SRA to occur.

In addition, the rate R2CDA exhibits a resonant shape, having a maximum close to

the resonant positron energy at εkp,res = εb + ωB ≈ 0.71 eV and decreasing rapidly

when deviating from this point. Due to the relative motion of H̄ and Cs, the width

of the maximum (δεkp ∼ v/bmin = 2 × 10−3 eV) is rather large and it exceeds the

corresponding radiative width of the excited state of Cs (ΓBr ≈ 2.14 × 10−8 eV) by

several orders of magnitude.

It can be seen in Fig. 7.1 that the 2CDA is only competitive for energies of the inci-

dent positron which are close to the resonance energy at εkp,res ≈ 0.71 eV. Especially,

exactly on the resonance, the 2CDA is much more e�cient than the SRA and 3BAe,

dominating the SRA by a factor ≈ 9.3× 102 and the 3BAe by a factor ≈ 4.9× 103.

(We recall that the rate R2CDA does not account for contributions from collisions

with smaller impact parameters than bmin = 5 a.u. and therefore represents a lower

boundary for the H̄+ production via the 2CDA.) However, for (much) smaller en-

ergies εkp . 10−2 eV, which are most favorable for the 3BAe, the rate 〈R3BAe〉 is
orders of magnitude larger than the rateRSRA and even many more orders of magni-

tude larger compared with the rate R2CDA (since the incident positron energy is far

o� the two-center resonance). Furthermore, the 3BAe mechanism remains stronger

than the SRA and 2CDA mechanisms up to energies εkp ≈ 0.1 eV.

7.1.2 Spontaneous vs. (laser-)induced radiative attachment

Now, we evaluate the (laser-)induced radiative attachment rate (5.47). We remind

that, unlike SRA, the LIRA is a resonant process which only proceeds e�ciently in

a very narrow range of incident positron energies centered at the resonance energy

εkp,res = εb + ω0 and having an e�ective width of a few Γ's. The laser �eld is

assumed to have the frequency ω0 = 1.5 eV, corresponding to a resonant positron

energy εkp,res = εb + ω0 ≈ 0.75 eV. Further, the (averaged over the period) intensity

I0 = cF 2
0 /(8π) of the �eld is chosen as I0 = 106 W/cm2, which is su�ciently weak

so that the laser �eld does not destroy the produced H̄+ ions (see Section 5.2). In

addition, we set ∆εkp = 0.1 eV and assume that the duration T of the laser pulse

is not too long, Γt ≤ ΓT � 1, such that e−Γt ≈ 1 (note that Γ ≈ 2 × 107 s−1 at
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I0 = 106 W/cm2). Then, the rate (5.47) for the formation of H̄+ ions via the LIRA

is obtained to be 〈RLIRA〉 ≈ 2.1× 10−5 s−1. It outperforms the corresponding SRA

rate, evaluated at εkp = 0.75 eV, by a factor ≈ 26.

It is worth mentioning that there were suggestions ( [140, 141], see also [99]) to

increase the production of antihydrogen atoms H̄ by using (laser-)induced recom-

bination of positrons with antiprotons. However, to our knowledge, there is no ex-

perimental evidence for this process in collisions between positrons and antiprotons.

Especially, the induced recombination could not be con�rmed in an experiment [142]

in which no e�ect of the laser �eld on the antihydrogen formation was observed. This

was explained by the dominance of three-body recombination, e++e++p̄ → e++H̄,

under the given experimental conditions, where the capture of low energy positrons

into highly excited Rydberg states of H̄ was most probable. Note that such states

are absent for the formation of the H̄+ ion. Moreover, as we will see below, the

rate for H̄+ formation in collisions between positrons and antihydrogen atoms via

three-body attachment, e+ +e+ +H̄ → e+ +H̄+, is vanishingly small for all positron

energies under consideration. Therefore, the (laser-)induced radiative attachment

of a positron to antihydrogen is not expected to be hidden by the nonradiative

three-body attachment.

7.1.3 Electron-assisted vs. positron-assisted three-body

attachment

Next, let us brie�y consider positron-assisted three-body attachment, where the

corresponding formation rate 〈R3BAp〉 is evaluated similarly to the rate 〈R3BAe〉 for
electron-assisted three-body attachment. In Fig. 7.2, we show the rate 〈R3BAp〉 as
a function of the incident positron energy and, for a comparison, we also display the

rate 〈R3BAe〉 from Fig. 7.1.

It can be observed in Fig. 7.2 that, in the range of positron energies from 10−4

to 2 eV, the 3BAp mechanism has vanishingly small formation rates as compared

with the 3BAe mechanism. We can explain this result by the fact that an attraction

between the incident positron and electron in the 3BAe is replaced by a repulsion

between two incident positrons in the 3BAp, not allowing them to come close to
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Figure 7.2: The H̄+ formation rate per unit of time (per H̄) as a function of the en-
ergy εkp of the incident positron for electron-assisted (solid) and positron-
assisted (dashed) three-body attachment.

each other, which (strongly) weakens the attachment reaction.

Note however that the corresponding three-body recombination reaction leading to

the formation of an antihydrogen atom, e++e++p̄ → e++H̄, can be rather e�cient.

It is indeed used for the production of antihydrogen in laboratories [97�99]. As

compared with the formation of H̄+ via positron-assisted three-body attachment,

here the mutual repulsion of the two incident positrons is compensated by their

attraction to the antiproton, which is now not screened by the bound (anti)atomic

positron.
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7.1.4 Electron-assisted three-body attachment vs.

Ps− H̄ charge exchange collision

The attachment mechanisms under consideration involve capture of a free positron

by antihydrogen. However, as it was pointed out in Section 4.2, there exist another

H̄+ formation channel which involves positron capture in collisions between positro-

nium Ps and H̄: Ps+ H̄(1s) → e−+ H̄+. For the sake of completeness, we compare

this charge exchange reaction to the electron-assisted three-body attachment.

A recent theoretical study [143] predicts relatively large cross sections (∼ 10−16 -

10−15 cm2) for the formation of the H̄+ ion in Ps−H̄ collisions, where Ps is assumed to

be initially in states with the principal quantum number n ∈ {1, 2, 3}. In particular,
for comparable Ps and positron densities (nPs ≈ np = 108 cm−3), the resulting

production rate RPs−H̄ is much higher than the rate 〈R3BAe〉 for the 3BAe from

Fig. 7.1. (We remind that 〈R3BAe〉 is evaluated at ne = 5×1010 cm−3.) This can be

explained by the fact that it is strongly bene�cial for the charge exchange reaction

to have average distances 〈aPs〉 between the electron and positron in Ps bound states
which are many orders of magnitude smaller compared with the average distances

〈rep〉 between free electrons and positrons when a beam of positrons penetrates an

electron gas. More precisely, in the ground state of Ps the average distance is 〈aPs〉 ≈
1.1 × 10−8 cm (see, e.g. [144]) while for a gas of electrons having the density ne =

5×1010 cm−3 the average distance is obtained to be 〈rep〉 = n
−1/3
e ≈ 2.7 × 10−4 cm.

This huge di�erence even overcompensates a much weaker intrinsic capture e�ciency

for an initially bound positron compared to an initially free positron.

Considering Ps which is initially in a state with the principal quantum number n = 3,

the energy threshold for H̄+ formation in Ps− H̄ collisions is ≈ 1.7 meV [143], which

is in the range of the very low relative energies where the 3BAe is most e�cient.

In this case, taking advantage of the results in [143], we obtain RPs−H̄ ≈ 〈R3BAe〉
starting already at ne ≈ 2× 1014 cm−3 for which 〈rep〉 ≈ 1.7× 10−5 cm that is still

much larger than 〈aPs〉.

Note however that if Ps is initially in the ground state (in states having the principal

quantum number n = 2), the energy threshold for H̄+ production in Ps−H̄ collisions

is ≈ 6.05 eV (≈ 0.95 eV) [143]. Consequently, in such a case, the charge exchange

143



� CHAPTER 7. NUMERICAL RESULTS AND DISCUSSION �

reaction cannot compete with the 3BAe process at the very low relative energies at

which the 3BAe is most e�cient.

7.2 The role of annihilation and other processes

related to the interaction between matter

and antimatter

The results in Section 7.1 suggests that the H̄+ formation via two-center dileptonic

and electron-assisted three-body attachment can be quite e�cient. However, the

2CDA and 3BAe mechanisms proceed in environments consisting of matter and

antimatter and hence the question naturally arises whether annihilation and other

processes related to the interaction between matter and antimatter would not e�ec-

tively eliminate them.

7.2.1 Two-center dileptonic attachment in an environment

consisting of matter and antimatter

The particles to be considered in an environment where two-center dileptonic at-

tachment takes place are free positrons, H̄ atoms, H̄+ ions (that are produced) and

neutral atoms B. Thus, we have to discuss what can happen to a free positron and

to H̄ and H̄+ which move in a gas of neutral atoms B.

Let us �rst suppose a positron which penetrates a gas of neutral atoms. In this

case, elastic positron scattering (see, e.g. [145] and references therein) is by far the

dominant process. Especially for the incident positron energies of interest (εkp .

1 eV) its cross section is rather large (up to a few tens of 10−16 cm2). Yet, elastic

scattering does not a�ect the number and energy of free positrons. Therefore, this

process is not expected to signi�cantly impact the e�ciency of the 2CDA.

The cross sections for positron impact excitation of neutral atoms can be quite

substantial. However, at the (relatively low) positron energies under consideration,

excitation from the ground state of neutral atoms is not allowed by the energy

conservation.
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If a positron moves in the close vicinity of a neutral atom, positronium Ps can be

formed via a charge exchange collision. In case of collisions between positrons and

Cs atoms the cross section for Ps formation at the positron energies of interest is

σPs ≈ 2× 10−16 cm2 [146]. The mean free path lp of a positron in a gas of Cs atoms

with regard to this process is given by lp = (σPsnB)−1 ≈ 5× 103 cm and ≈ 5 cm at

an atomic density of nB ≈ 1012 cm−3 and ≈ 1015 cm−3, respectively. Consequently,

although the charge exchange collision reduces the total number of positrons which

are available for the 2CDA mechanism, this process is not assumed to crucially

impact the e�ciency of the 2CDA (unless the density of atoms B approaches rather

high values). Moreover, it is worth mentioning that the formation of Ps does not

eliminate the pathway for the production of H̄+ ions since the latter can still be

formed via the charge exchange collision Ps + H̄ → e− + H̄+ (see Section 7.1.4).

In addition, a positron may form a bound state with some neutral atoms, which

would reduce the total number of positrons available for the 2CDA process. Yet,

we note that it is unlikely for a positron to form a bound state with Cs (or Rb)

atoms [147].

The last process to consider when a positron moves in a gas of neutral atoms is

positron annihilation. In contrast to the previous processes, positron annihilation

would completely terminate the formation of H̄+ ions. However, annihilation of

a positron with a bound atomic electron is relatively unlikely. In particular, if

we assume that a positron annihilates mainly with electrons from outer atomic

shells by two-photon emission and that this process can essentially be considered

as annihilation of a free positron-electron pair, the annihilation cross section at the

positron energies of interest is σannihil. ≈ 1.7× 10−22 cm2, which is very small. The

value for σannihil. was obtained by using formulas for the annihilation cross section of

a free positron-electron pair from [148]. At an atomic density of nB ≈ 1015 cm−3, the

mean free path of a positron with respect to the annihilation process is very large,

lp = (σannihil.nB)−1 ≈ 59 km. Therefore, we can expect that positron annihilation

will not have any noticeable impact on the e�ciency of the 2CDA.

Besides from free positrons, we should also consider H̄ and H̄+ moving in a gas of

neutral atoms B. To our knowledge there exist neither experimental nor theoretical

studies for processes which involve H̄+ ions penetrating matter. However, at the
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impact energies of interest (≈ 10 − 150 eV/u), there exist theoretical results for

collisions between the H̄ atom and the simplest matter atoms and molecules (H, He,

H2, H+
2 ) (see [149]). On their basis, we might expect that in collisions with impact

energies & 20− 30 eV/u annihilation of antiprotons will not be the main reason for

H̄ and H̄+ losses.

Furthermore, since the H̄+ ion has a much lower binding energy and a much bigger

size (r
H̄

+ ≈ 4.26 a.u.) than H̄, it is reasonable to suppose that the loss of H̄+ in

collisions with matter atoms will be signi�cantly larger compared with the loss of

H̄. In order to have at least some rough estimate for the H̄+ loss, we assume that

any collision between H̄+ and a matter atom that occurs in the range of impact

parameters 0 ≤ b ≤ r
H̄

+ will result in the destruction of the H̄+ ion (for one reason

or another). Then, the corresponding total loss cross section is given by σloss =

πr2
H̄

+ ≈ 1.6 × 10−15 cm2 and the mean-free path with respect to the loss of H̄+ is

obtained to be l
H̄

+ = (σlossnB)−1 ≈ 6.3×102 cm and ≈ 0.63 cm at an atomic density

of nB ≈ 1012 cm−3 and ≈ 1015 cm−3, respectively.

7.2.2 Electron-assisted three-body attachment in an

environment consisting of matter and antimatter

The particles to be taken into account in an environment in which electron-assisted

three-body attachment occurs are free positrons and electrons, H̄ atoms as well as

H̄+ ions (that are produced). We point out that the positron-electron annihilation,

proceeding either in a free positron-electron pair or in a pair consisting of a bound

positron and free electron, is the only process which possibly a�ects the e�ciency

of the 3BAe mechanism.

We �rst consider annihilation of a free positron-electron pair at an energy of 1 meV

for the relative motion between the positron and electron. Applying formulas for

the annihilation cross section of a free positron-electron pair from [148], we arrive

at a quite small cross section σannihil. ≈ 4× 10−21 cm2. Consequently, the mean-free

path of positrons in a gas of electrons (having the density ne = 5× 1010 cm−3) with

respect to the annihilation process is obtained to be lp = (σannihil.ne)
−1 ≈ 5×107 m,

which is huge. Thus, annihilation of a free positron-electron pair is not assumed to
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have any noticeable impact on the e�ciency of the 3BAe. Note that a free positron-

electron pair could also emit a photon to form a positronium which is eventually

annihilated, but at the low energies under consideration the cross section for this

process is very small and can be neglected.

When free electrons pass close by H̄, annihilation in a subsystem of a bound positron

and free electron can occur. Supposing that the relative velocity between the electron

and positron is ∼ 1 a.u. and employing formulas from [148], the resulting annihi-

lation cross section, σannihil. ∼ 10−23 cm2, is even smaller than the cross section for

annihilation in a free positron-electron pair.

It is worth mentioning that, in case of free electrons passing close by H̄, one could

also imagine the formation of positronium via positron capture from H̄ by a free

electron or the existence of bound or long-lived resonance states in the e− − H̄

system. However, at the energies of interest, positronium formation is energetically

forbidden and since it is known that the e+ − H system neither has stable bound

states nor has, at low positron energies, long-lived resonance states (see, e.g. [150]),

we can expect all corresponding states in the e− − H̄ system to be absent as well.
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8 | Summary and concluding remarks

We have considered the formation of the positive ion of antihydrogen via radiative

and nonradiative attachment of an incident positron to an antihydrogen atom.

Three radiative formation mechanisms were discussed, all of which have photoemis-

sion as a common feature. The �rst mechanism is spontaneous radiative attachment

of an incident positron to antihydrogen, e+ + H̄ → H̄+
+ ~ωk. The driving force of

this mechanism is the interaction of the e+−H̄ system with the (quantum) radiation

�eld resulting in spontaneous emission of a photon which takes away the energy ex-

cess in the attachment process. The second mechanism is (laser-)induced radiative

attachment, e+ + H̄+N~ω0 → H̄+
+ (N + 1)~ω0. This mechanism is driven by the

interaction of the e+− H̄ system with a relatively weak laser �eld, resonantly tuned

to positron transitions, leading to induced photoemission. The last radiative mecha-

nism is two-center dileptonic attachment, e+ +H̄+B → H̄+
+B∗ → H̄+

+B+~ωk,
which proceeds when beams of positrons and antihydrogens cross in a gas of (mat-

ter) atoms B. Then, the attachment takes place by resonant transfer of energy from

the e+ − H̄ subsystem to atom B via the two-center positron-electron (dileptonic)

interaction, resulting in excitation of B with its subsequent relaxation through spon-

taneous radiative decay. Therefore, similar to (laser-)induced radiative attachment,

two-center dileptonic attachment is a resonant process (although its resonance na-

ture is strongly washed out by the relative motion of H̄ and B). Furthermore, in

contrast to the other radiative mechanisms, the two-center process involves two in-

teractions, namely the (Coulomb) interaction between the e+ − H̄ subsystem and

atom B as well as the interaction of B with the (quantum) radiation �eld.

In addition, we have considered the formation of positive ions of antihydrogen via

two nonradiative three-body reactions. The �rst reaction is electron-assisted three-
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body attachment, e−+e++H̄ → e−+H̄+. It is driven by the interaction between the

incident electron and positron resulting in the attachment of the positron whereas

the electron carries away the energy release. The second nonradiative reaction is

positron-assisted three-body attachment, e+ + e+ + H̄ → e+ + H̄+. Here, the

driving force is the positron-positron interaction leading to the attachment of one

of the incident positrons while the other takes away the released energy.

First, we have performed a comparison between the radiative mechanisms SRA

and 2CDA and the nonradiative mechanism 3BAe, where the 2CDA involves Cs as

atomic speciesB with the 6 2S1/2 → 6 2P3/2 dipole transition in Cs. Our results show

that at low incident energies (. 10−2 eV) of the positron and electron with respect to

the antihydrogen atom, the rate for the 3BAe can be orders of magnitude larger than

the rate for SRA and 2CDA. The situation changes at incident positron energies

εkp ' 1 eV, which are most favourable for the radiative attachment mechanisms,

with SRA and 2CDA now strongly dominating the 3BAe. In particular, close to

the two-center resonance at εkp,res ≈ 0.71 eV, the rate for 2CDA not only greatly

exceeds the rate for 3BAe but also that for SRA.

Next, we have compared the radiative mechanisms SRA and LIRA in the range of

incident positron energies εkp ' 1 eV. Here, the LIRA can, under certain conditions

(including a relatively small frequency and short time duration of the laser pulse),

markedly outperform the SRA.

Further, we have seen that over the whole range of incident positron energies under

consideration, the 3BAp has vanishingly small rates compared to the 3BAe. This

was attributed to a relatively large spatial separation of the two incident positrons

in the 3BAp reaction, caused by their mutual repulsion, which greatly reduces the

probability for the attachment to occur.

Besides, in order to have a more complete treatment of H̄+ formation mechanisms,

we have compared the 3BAe with the charge exchange collision Ps+ H̄ → H̄+
+ e−,

in which the bound positron in positronium is captured by antihydrogen. At the very

low relative energies where the 3BAe is most e�cient, the charge exchange collision

is energetically not allowed if the incident Ps is in the ground state (n = 1) or �rst

excited states (n = 2). However, considering Ps to be initially in excited states with
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n = 3, the rate for H̄+ formation in H̄−Ps collisions becomes relatively large, where
the 3BAe rate will become comparable to this rate starting with electron densities

of ne & 1014 cm−3.

The 2CDA and 3BAe both proceed in environments where antimatter is embedded

in matter. Nevertheless, we have concluded that 2CDA and 3BAe are essentially not

in�uenced by annihilation or other processes which involve the interaction between

matter and antimatter.

To conclude this study on the formation of H̄+ via radiative and nonradiative at-

tachment of e+ to H̄, we take a brief outlook on the experimental realization of the

considered attachment mechanisms. The overwhelming majority of antihydrogen

atoms produced in the antihydrogen experiments at CERN are in a broad range of

(highly excited) Rydberg states and the main challenge to date is the e�cient de-

excitation of the formed antiatoms to the ground state. Therefore, the production

of substantial amounts of H̄+ ions via the discussed attachment mechanisms, which

rely on antihydrogen being in the ground state, is currently not feasible [151]. How-

ever, there is an ongoing work on e�ciently de-exciting Rydberg antihydrogen to its

ground state (see, e.g. [152, 153]) indicating that, in the near future, the radiative

and nonradiative attachment mechanisms considered in this work could be realized

in an experiment.
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9 | Appendices

9.1 Derivation of the dipole-dipole interaction

V̂AB entering the theoretical consideration

for two-center impact ionization

In this Section, we will derive the dipole-dipole interaction V̂AB between atoms A

and B given by equation (1.5) respectively (2.4). This interaction may be obtained

by regarding the electromagnetic �eld as quantized (see, e.g. [45]). Here, however, we

will derive V̂AB by using a di�erent approach, in which the �eld is treated classically.

We begin our consideration with the coupling jAµA
µ
B between the transition four-

current jAµ = (cρA, jA) of the active electron in atom A and the four-potential

AµB = (φ,A) of the �eld created by the other active electron in atom B. The

corresponding �rst-order transition amplitude reads (see, e.g. [86])

a
(1)
fi = − i

c2

∫
d4x jAµ (x)AµB(x), (9.1)

where xµ = (ct,x) is the four-space-time vector.

First, we introduce the inverse Fourier transforms

jAµ (x) =
1

(2π)2

∫
d4kA j̃

A
µ (kA)e−ikAx,

AµB(x) =
1

(2π)2

∫
d4kB ÃµB(kB)e−ikBx. (9.2)
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Here, kµA = (ω̃A/c,kA) and kµB = (ω̃B/c,kB) are the four-wave vectors of the ac-

tive electrons in A and B, respectively. Inserting (9.2) into (9.1) and afterwards

integrating over the space-time yields

a
(1)
fi = − i

c2

∫
d4kA

∫
d4kB j̃Aµ (kA)ÃµB(kB)δ(kA + kB). (9.3)

We can perform the integration over kB by taking advantage of the delta function

and get

a
(1)
fi = − i

c2

∫
d4kA j̃

A
µ (kA)ÃµB(−kA). (9.4)

The four-potential AµB(x) satis�es the Maxwell equations(
1

c2

∂2

∂t2
−∆x

)
AµB(x) =

4π

c
jµB(x), (9.5)

which can be solved in the four-dimensional kB space resulting in

ÃµB(kB) = −4π

c
G̃F (kB)j̃µB(kB) (9.6)

with G̃F (kB) =
(
(ω̃B/c)

2 − k2
B + iη

)−1
(η → 0+) the Feynman propagator for a

massless Klein-Gordon particle. Taking into account (9.6), the amplitude in (9.4)

becomes

a
(1)
fi =

4πi

c3

∫
d4kA G̃F (−kA)j̃Aµ (kA)j̃µB(−kA). (9.7)

In (9.7), the Fourier transforms of the transition four-currents are given by

j̃Aµ (kA) =
1

(2π)2

∫
d4xjAµ (x)eikAx,

j̃µB(−kA) =
1

(2π)2

∫
d4xjµB(x)ei(−kA)x. (9.8)

Based on the discussion in Section 1.3, we consider a nonrelativistic motion of the
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active electrons in atoms A and B. Consequently, we can approximate their cor-

responding currents jAµ (x) and jµB(x) in (9.8) by the Schrödinger transition four-

currents (see, e.g. [137])

jAµ (x) =

(
− cφ∗f (r)φi(r)ei(εf−εi)t,

1

2

{
φ∗f (r)p̂xφi(r) + φi(r)p̂∗xφ

∗
f (r)

}
ei(εf−εi)t

)
,

jµB(x) =

(
− cχ∗f (ξ)χi(ξ)ei(εf−εi)t, − 1

2

{
χ∗f (ξ)p̂xχi(ξ) + χi(ξ)p̂∗xχ

∗
f (ξ)

}
ei(εf−εi)t

)
,

(9.9)

where φi (χi) is the initial state of atom A (B) with an energy εi (εi), φf (χf ) is

the �nal state of A (B) with an energy εf (εf ) and p̂x = −i∇x is the momentum

operator. Further, r = x−RA and ξ = x−RB with RA and RB the coordinates

of the nuclei of A and B, respectively. Now, we insert (9.9) into (9.8) and perform

the time integrations. Then, we rewrite the remaining space integrals into integrals

over the coordinates r = x−RA and ξ = x−RB. Finally, insertion of the resulting

expressions into (9.7) provides

a
(1)
fi =

i

4πc2

∫ ∞
−∞

dω̃A δ
(
(εf − εi) + ω̃A

)
δ
(
(εf − εi)− ω̃A

)
× 〈φfχf | (2c)2I − Ip̂rp̂ξ − p̂ξIp̂r − p̂rIp̂ξ − p̂rp̂ξI |φiχi〉 . (9.10)

Here,

I =

∫
d3kA G̃F (−kA)e−iρ·kA , (9.11)

where ρ = R+ r − ξ with R = RA −RB the internuclear distance vector.

Next, we integrate in (9.11) over the solid angle ΩkA and obtain

I =
2πi

ρ

{∫ ∞
0

dkA
kAe

−iρkA

(ω̃A/c)2 − k2
A + iη

−
∫ ∞

0

dkA
kAe

iρkA

(ω̃A/c)2 − k2
A + iη

}
. (9.12)

Substituting k′A = −kA in the second integral in (9.12), we can rewrite I according
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to

I =
2π

iρ

∫ ∞
−∞

dkA
kAe

−iρkA

k2
A − (ω̃A/c)2 − iη

. (9.13)

The remaining integral in (9.13) is calculated by using the Residue theorem and we

arrive at

I = −2π2 e
iρ
|ω̃A|
c

ρ
. (9.14)

Inserting (9.14) into (9.10) and subsequently solving the ω̃A integral by taking ad-

vantage of one of the delta functions, the transition amplitude becomes

a
(1)
fi =

2π

i
δ
(
(εf − εi) + (εf − εi)

)

×
〈
φfχf

∣∣∣∣ 1

(2c)2

{
(2c)2 e

iρ
|εf−εi|

c

ρ
− eiρ

|εf−εi|
c

ρ
p̂rp̂ξ − p̂ξ

eiρ
|εf−εi|

c

ρ
p̂r

−p̂r
eiρ
|εf−εi|

c

ρ
p̂ξ − p̂rp̂ξ

eiρ
|εf−εi|

c

ρ

}∣∣∣∣φiχi〉. (9.15)

Concerning two-center ionization we are interested in de-excitation of atom B and

ionization of atom A, where, in particular, B makes a transition from an excited

state with energy εi = εe into its ground state with energy εf = εg and A makes

a transition from its ground state with energy εi = εg into a continuum state with

energy εf = εk. In this case, (9.15) yields

a
(1)
fi =

2π

i
δ
(
ωA − ωB

)

×
〈
φfχf

∣∣∣∣ 1

(2c)2

{
(2c)2 e

iρ
ωB
c

ρ
− eiρ

ωB
c

ρ
p̂rp̂ξ − p̂ξ

eiρ
ωB
c

ρ
p̂r

−p̂r
eiρ

ωB
c

ρ
p̂ξ − p̂rp̂ξ

eiρ
ωB
c

ρ

}∣∣∣∣φiχi〉 (9.16)
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with the transition energies ωA = εk − εg > 0 and ωB = εe − εg > 0 in atoms A and

B, respectively.

Supposing that the interaction V̂AB between the two active electrons in atoms A and

B can be treated as a small perturbation, the corresponding quantum mechanical

transition amplitude within the �rst order of time-dependent perturbation theory is

given by

a
(1)
fi =

1

i

∫ ∞
−∞

dt 〈φfχf | V̂AB |φiχi〉 ei(ωA−ωB)t. (9.17)

Performing the time integration in (9.17) provides

a
(1)
fi =

2π

i
δ
(
ωA − ωB

)
〈φfχf | V̂AB |φiχi〉 . (9.18)

Now, comparing the amplitudes (9.16) and (9.18), the interaction V̂AB is obtained

to be

V̂AB =
1

(2c)2

{
(2c)2 e

iρ
ωB
c

ρ
− eiρ

ωB
c

ρ
p̂rp̂ξ − p̂ξ

eiρ
ωB
c

ρ
p̂r

−p̂r
eiρ

ωB
c

ρ
p̂ξ − p̂rp̂ξ

eiρ
ωB
c

ρ

}
. (9.19)

Expression (9.19) includes all kinds of multipole-interactions between the two ac-

tive electrons in A and B. However, we are only interested in the dipole-dipole

interaction, which is the strongest coupling between the electrons. Therefore, we

consider appropriate multipole expansions in the term eiρ
ωB
c /ρ in (9.19). First, we

expand the term 1/ρ up to second order in h = r − ξ. Then, the term eiρ
ωB
c is

expanded up to second order in h by doing the following. We expand the term ρ

in the exponent up to second order in h resulting in a product of exponentials each

of which is expanded again up to second order in h. Afterwards, in the product of

expanded exponentials we keep only terms up to second order in h. Finally, building

the product of the expanded terms for 1/ρ and eiρ
ωB
c and keeping only terms up to
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second order in h, we arrive at

eiρ
ωB
c

ρ
≈ eiR

ωB
c

{
1

R
− [(r − ξ) ·R]2

2R3

(
ωB
c

)2

+

(
3[(r − ξ) ·R]2

2R5
− (r − ξ)2

2R3
− (r − ξ) ·R

R3

)(
1− iRωB

c

)}
. (9.20)

Next, we insert (9.20) into (9.19) and neglect all terms that will not lead to dipole-

allowed transitions. Subsequently, the identities p̂r = iωAr = iωBr and p̂ξ = −iωBξ
are used, where in the former we have exploited the fact that a(1)

fi ∝ δ
(
ωA − ωB

)
.

They arise from the commutator relations p̂r = i[ĤA, r] and p̂ξ = i[ĤB, ξ], respec-

tively, in which ĤA (ĤB) is the Hamiltonian of the free non-interacting atom A (B).

Afterwards, the �nal result for the dipole-dipole interaction V̂AB can be written as

V̂AB = eiR
ωB
c

[(
r · ξ − 3(r ·R)(ξ ·R)

R2

)
1− iRωB

c

R3

−
(
r · ξ − (r ·R)(ξ ·R)

R2

)(ωB
c

)2

R

]
. (9.21)

9.2 The quantitiesM∆m
AB , F∆m

eg (q), F∆m
kg (q) and

F∆m
κg (qB) entering the cross sections for direct

and two-center impact ionization

In the following, we present the quantitiesM∆m
AB and F∆m

eg (q) which enter the two-

center ionization cross section (2.57).

Let us �rst consider the interatomic matrix element M∆m
AB = 〈φkχg| V̂AB |φgχe〉

referring to the de-excitation in atom B and the ionization of atom A. Using the
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dipole-dipole interaction V̂AB given by (2.4),M∆m
AB reads

M∆m
AB = eiR

ωB
c

[(
M∆m

A ·M∆m
B − 3(M∆m

A ·R)(M∆m
B ·R)

R2

)
1− iRωB

c

R3

−
(
M∆m

A ·M∆m
B − (M∆m

A ·R)(M∆m
B ·R)

R2

)(ωB
c

)2

R

]
, (9.22)

where M∆m
A = 〈φk| r |φg〉 and M∆m

B = 〈χg| ξ |χe〉 are the (local) dipole transition
matrix elements for atoms A and B, respectively. We have calculated M∆m

A and

M∆m
B for the diatomic system Li�He (Ne�He) with M∆m

A describing the electron

emission from the 2s (2p) ground state in Li (Ne) and M∆m
B characterizing the

1s2p→ 1s2 (1s3p→ 1s2) de-excitation transition in He.

For the atomic bound states of Li, Ne and He, we have used the hydrogen-like bound

states

φLi2s(r) =

√
Z3
Li

32π
(2− ZLir)e

−ZLi
2
r,

φNe2p0
(r) =

√
Z5
Ne

32π
r cosϑre

−ZNe
2
r,

φNe2p±1
(r) =

√
Z5
Ne

64π
r sinϑre

−ZNe
2
re±iϕr ,

χHe
1s (ξ) =

√
Z3
He

π
e−ZHeξ,

χHe
2p0

(ξ) =

√
Z5
He

32π
ξ cosϑξe

−ZHe
2
ξ,

χHe
2p±1

(ξ) =

√
Z5
He

64π
ξ sinϑξe

−ZHe
2
ξe±iϕξ ,

χHe
3p0

(ξ) =

√
2Z5

He

38π
ξ cosϑξ(6− ZHeξ)e

−ZHe
3
ξ,
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χHe
3p±1

(ξ) =

√
Z5
He

38π
ξ sinϑξ(6− ZHeξ)e

−ZHe
3
ξe±iϕξ . (9.23)

Here, ZLi, ZNe and ZHe are the e�ective nuclear charges for Li, Ne and He, respec-

tively (which vary with di�erent atomic states). Further, the continuum states of

Li and Ne are described by the Coulomb wave function

φjk(r) = e
πZj
2k Γ

(
1 +

iZj
k

)
eik·rF

(
− iZj

k
, 1,−i(kr + k · r)

)
(9.24)

with j = Li,Ne.

Taking advantage of the states in (9.23) and (9.24) and performing quite long but

straightforward calculations, we arrive at the results for the dipole matrix elements

of interest which are given by

〈φLik | r |φLi2s〉 =
i
√

23πZ
5/2
Li

ωA
e
πZLi

2k Γ

(
1− iZLi

k

)
(sLi2 )−2

(
1− sLi1

sLi2

)− iZLi
k
(

1− iZLi

k

)

×
(

1 +
Z2
Li

4

4sLi2 +
(
iZLi
k
− 2
)
sLi1(

1− sLi1

sLi2

)
(sLi2 )2

)
k,

〈φNek | r |φNe2p0
〉 =

√
2πZ

7/2
Ne

ωA
e
πZNe

2k Γ

(
1− iZNe

k

)
(sNe2 )−4

(
1− sNe1

sNe2

)− iZNe
k
−1

×
{

(sNe2 )2

[
1− 1

2

(
1− iZNe

k

)
sNe1

sNe2

]
ez

−
(

1− iZNe

k

)2

(sNe2 − sNe1 )kzk

−
(

1− iZNe

k

)(
(sNe2 − sNe1 )kzk −

sNe1 sNe2

2
ez

)}
,
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〈φNek | r |φNe2p±1
〉 =
−
√
πZ

7/2
Ne

ωA
e
πZNe

2k Γ

(
1− iZNe

k

)
(sNe2 )−4

(
1− sNe1

sNe2

)− iZNe
k
−1

×
{(

1− iZNe

k

)2

(sNe2 − sNe1 )kxk +
(sNe2 )2

2
ex

+

(
1− iZNe

k

)(
(sNe2 − sNe1 )kxk −

sNe1 sNe2

2
ex

)

±i
[(

1− iZNe

k

)2

(sNe2 − sNe1 )kyk +
(sNe2 )2

2
ey

+

(
1− iZNe

k

)(
(sNe2 − sNe1 )kyk −

sNe1 sNe2

2
ey

)]}
,

〈χHe
1s | ξ |χHe

2p0
〉 =

215/2

35ZHe

ez,

〈χHe
1s | ξ |χHe

2p±1
〉 =

27

35ZHe

(ex ± iey),

〈χHe
1s | ξ |χHe

3p0
〉 =

33

213/2ZHe

ez,

〈χHe
1s | ξ |χHe

3p±1
〉 =

33

27ZHe

(ex ± iey), (9.25)

where sj1 = −2(k2 + ikZj/2), sj2 = −(k2 +Z2
j /4) and ex, ey and ez are the canonical

unit vectors.

Next, we consider the matrix element F∆m
eg (q) =

〈
χe
∣∣eiq·ξ(v·p̂ξ

c2
+ ωA

2c2
−1
)∣∣χg〉 referring

to impact-excitation transitions in atom B. It may be rewritten according to

F∆m
eg (q) =

1

c2

〈
χe

∣∣∣∣eiq·ξ v · p̂ξ∣∣∣∣χg〉+

(
ωA
2c2
− 1

)〈
χe

∣∣∣∣eiq·ξ∣∣∣∣χg〉. (9.26)

In case of two-center ionization of the Li�He (Ne�He) dimer, the excitation transition
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in He of interest is the 1s2 → 1s2p (1s2 → 1s3p) dipole transition. Applying the

states in (9.23) and performing rather elaborate but fundamental calculations, the

matrix elements of importance are obtained to be

〈
χHe

2p0

∣∣∣∣eiq·ξ v · p̂ξ∣∣∣∣χHe
1s

〉
=

29/2iZHev

34

1 +
(

2q
3ZHe

)2 − 4
( 2q‖

3ZHe

)2[
1 +

(
2q

3ZHe

)2
]3 ,

〈
χHe

2p0

∣∣∣∣eiq·ξ∣∣∣∣χHe
1s

〉
=

215/2i

35ZHe

q‖[
1 +

(
2q

3ZHe

)2
]3 ,

〈
χHe

2p±1

∣∣∣∣eiq·ξ v · p̂ξ∣∣∣∣χHe
1s

〉
=

28v

36iZHe

q‖q⊥e
∓iϕq[

1 +
(

2q
3ZHe

)2
]3 ,

〈
χHe

2p±1

∣∣∣∣eiq·ξ∣∣∣∣χHe
1s

〉
=

27i

35ZHe

q⊥e
∓iϕq[

1 +
(

2q
3ZHe

)2
]3 ,

〈
χHe

3p0

∣∣∣∣eiq·ξ v · p̂ξ∣∣∣∣χHe
1s

〉
=

29/2iZ5
Hev

33

[
16

9
Z2
He + q2

]−3

×
[

20

9
Z2
He + q2 − 4q2

‖ −
4

3
Z2
He

16
9
Z2
He + q2 − 4q2

‖
16
9
Z2
He + q2

]
,

〈
χHe

3p0

∣∣∣∣eiq·ξ∣∣∣∣χHe
1s

〉
=

211/2iZ5
He

33

q‖[
16
9
Z2
He + q2

]3

[
3−

32
9
Z2
He

16
9
Z2
He + q2

]
,

〈
χHe

3p±1

∣∣∣∣eiq·ξ v · p̂ξ∣∣∣∣χHe
1s

〉
=

26Z5
Hev

33i

q‖q⊥e
∓iϕq[

16
9
Z2
He + q2

]3

[
1−

4
3
Z2
He

16
9
Z2
He + q2

]
,
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〈
χHe

3p±1

∣∣∣∣eiq·ξ∣∣∣∣χHe
1s

〉
=

25iZ5
He

33

q⊥e
∓iϕq[

16
9
Z2
He + q2

]3

[
3−

32
9
Z2
He

16
9
Z2
He + q2

]
. (9.27)

It is worth mentioning that in order to evaluate the transition matrix elements given

in (9.25) and (9.27), we have set ZLi = 1.259, ZNe = 2.518 as well as ZHe = 1.425

and ZHe = 1.35 in case when the 1s2− 1s2p and 1s2− 1s3p dipole transitions in He

are involved, respectively.

Finally, we note that for the purpose of this study it is well su�cient to use simple

analytical cross sections for the direct impact ionization of atoms A and B from

the literature (which will be introduced in Section 2.2.3) instead of the more sophis-

ticated cross sections derived in the theoretical treatment in Sections 2.1.1−2.1.5.
Therefore, we will not need the results for the quantities F∆m

kg (q) and F∆m
κg (qB)

entering the direct ionization cross sections (2.56) and (2.64), respectively.

9.3 The quantities A∆m and B∆m entering the

analytical formulas for two-center impact

ionization

In order to evaluate the analytical cross sections for two-center impact ionization

given by equations (2.69), (2.71) and (2.73) for the systems Li�He and Ne�He,

here we present the corresponding geometric factors A∆m and B∆m which enter

expressions (2.80) and (2.81).

In particular, for �xed principal quantum numbers nA and n′A and nB and n′B
in atoms A and B, respectively, in case of Li�He, A∆m and B∆m were derived

for all possible nBpmB → n′Bs (mB ∈ {−1, 0, 1}) bound-bound transitions (3 in

total) in B for a �xed nAs → εkp bound-continuum transition in A. Further, in

case of Ne�He, A∆m and B∆m were calculated for all combinations (9 in total) of

nBpmB → n′Bs bound-bound transitions in B and nApmA → εkd (mA ∈ {−1, 0, 1})
bound-continuum transitions in A. Here, it is worth mentioning that the dipole

selection rules would also allow nAp → εks transitions in A. However, for rare
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gases in general [154] and especially for the 2p−subshell in Ne [155, 156] the main

contribution to the nAp−subshell ionization cross section comes from nAp → εkd

transitions, so we only consider these.

(i) Geometric factors A∆m(R,Ωk, ωB) and B∆m(R, ωB) for the nAs → εkp bound-

continuum transition in atom A and nBpmB → n′Bs bound-bound transitions in

atom B:

A0 =
9

8

∣∣ek · ρ0

∣∣2,
A±1 =

9

16

∣∣ek · ρ±1

∣∣2,
B0 =

3

8π

[∣∣(ρ0)x
∣∣2 +

∣∣(ρ0)y
∣∣2 +

∣∣(ρ0)z
∣∣2],

B±1 =
3

16π

[∣∣(ρ±1)x
∣∣2 +

∣∣(ρ±1)y
∣∣2 +

∣∣(ρ±1)z
∣∣2]. (9.28)

Here, ek = k/k,

ρ0 =

(
3(R · ez)R

R2
− ez

)
1− iRωB

c

R3
−
(

(R · ez)R
R2

− ez
)(ωB

c

)2

R
(9.29)

and

ρ±1 =

(
3(R · e±)R

R2
− e±

)
1− iRωB

c

R3
−
(

(R · e±)R

R2
− e±

)(ωB
c

)2

R
(9.30)

with e± = ex ± iey and ex, ey and ez the canonical unit vectors.

(ii) A∆m(R,Ωk, ωB) and B∆m(R, ωB) for the nAp0 → εkd bound-continuum transi-

tion in A and nBpmB → n′Bs bound-bound transitions in B:

A0 =
3

8

∣∣e0 · ρ0

∣∣2,
A±1 =

3

16

∣∣e0 · ρ±1

∣∣2,
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B0 =
9

40π

[∣∣(ρ0)x
∣∣2 +

∣∣(ρ0)y
∣∣2 +

4

3

∣∣(ρ0)z
∣∣2],

B±1 =
9

80π

[∣∣(ρ±1)x
∣∣2 +

∣∣(ρ±1)y
∣∣2 +

4

3

∣∣(ρ±1)z
∣∣2], (9.31)

where e0 = 3 cosϑkek − ez.

(iii) A∆m(R,Ωk, ωB) and B∆m(R, ωB) for the nAp1 → εkd bound-continuum tran-

sition in A and nBpmB → n′Bs bound-bound transitions in B:

A0 =
3

64

(
3 cos2 ϑk − 1

)2∣∣ez · ρ1

∣∣2,
A±1 =

3

128

(
3 cos2 ϑk − 1

)2∣∣e+ · ρ±1

∣∣2,
B0 =

3

80π

R2
z(R

2
x +R2

y)

R4

[(
3

R3
−

(ωB
c

)2

R

)2

+
9(ωB

c
)2

R4

]
,

B±1 =
3

160π

∣∣∣∣[ 3

R2

(
R2
x ∓R2

y + 2iRxRyδm,1
)
− 2δm,−1

]
1− iRωB

c

R3

−
[

1

R2

(
R2
x ∓R2

y + 2iRxRyδm,1
)
− 2δm,−1

]
(ωB
c

)2

R

∣∣∣∣2. (9.32)

(iv) A∆m(R,Ωk, ωB) and B∆m(R, ωB) for the nAp−1 → εkd bound-continuum tran-

sition in A and nBpmB → n′Bs bound-bound transitions in B:

A0 =
3

64

(
3 cos2 ϑk − 1

)2∣∣ez · ρ−1

∣∣2,
A±1 =

3

128

(
3 cos2 ϑk − 1

)2∣∣e− · ρ±1

∣∣2,
B0 =

3

80π

R2
z(R

2
x +R2

y)

R4

[(
3

R3
−

(ωB
c

)2

R

)2

+
9(ωB

c
)2

R4

]
,

165



� CHAPTER 9. APPENDICES �

B±1 =
3

160π

∣∣∣∣[ 3

R2

(
R2
x ±R2

y − 2iRxRyδm,−1

)
− 2δm,1

]
1− iRωB

c

R3

−
[

1

R2

(
R2
x ±R2

y − 2iRxRyδm,−1

)
− 2δm,1

]
(ωB
c

)2

R

∣∣∣∣2. (9.33)

9.4 The quantity Λ(b) entering the transition

amplitude for two-center photoionization

via the coupling to the radiation �eld

In the following, we show the quantity Λ(b) which enters the amplitude (3.63). It

reads

Λ(b) =
p2

b5/2
M1 +

q2
‖√
b
M2 −

q‖p

b3/2
M3

− 1

2c2

[
2√
b
M4 +

ip2

b5/2
M5 +

iq2
‖√
b
M6 −

iq‖p

b3/2
M7

]

− 1

c2

[
ip

b3/2
v ·M8 −

iq‖√
b
v ·M9

]
. (9.34)

Here,

M1 = 〈ϕkeχg| (r⊥ · b)(x⊥ · b) |ϕgχe〉 ,

M2 = 〈ϕkeχg| r‖x‖ |ϕgχe〉 ,

M3 = 〈ϕkeχg| r‖(x⊥ · b) + x‖(r⊥ · b) |ϕgχe〉 ,

M4 = 〈ϕkeχg| p̂rp̂x |ϕgχe〉 ,

M5 = 〈ϕkeχg| (x⊥ · b)(p̂r · b) + (r⊥ · b)(p̂x · b) |ϕgχe〉 ,
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M6 = 〈ϕkeχg|x‖p̂r‖ + r‖p̂x‖ |ϕgχe〉 ,

M7 = 〈ϕkeχg|x‖(p̂r · b) + (x⊥ · b)p̂r‖ + r‖(p̂x · b) + (r⊥ · b)p̂x‖ |ϕgχe〉 ,

M8 = 〈ϕkeχg| (r⊥ · b)p̂x |ϕgχe〉 ,

M9 = 〈ϕkeχg| r‖p̂x |ϕgχe〉 (9.35)

with ϕke = ϕke(r), ϕg = ϕg(r), χg = χg(x) and χe = χe(x).

Using the commutator relation p̂r = i[ĤA, r] and taking advantage of the fact

that ϕg and ϕke are eigenstates of the atomic Hamiltonian ĤA, we obtain the re-

lation 〈ϕke| p̂r |ϕg〉 = iωA 〈ϕke| r |ϕg〉. Similarly, applying the commutator relation

p̂x = i[ĤB,x] and taking into account that χg and χe are eigenstates of the atomic

Hamiltonian ĤB, we obtain the relation 〈χg| p̂x |χe〉 = −iωB 〈χg|x |χe〉. Now, in

(9.35), we perform some simple manipulations and employ the above two relations.

Subsequently, the matrix elements in (9.35) can be written as

M1 = (b ·MA)(b ·MB),

M2 = (ez ·MA)(ez ·MB),

M3 = (ez ·MA)(b ·MB) + (b ·MA)(ez ·MB),

M4 = ωAωB(MA ·MB),

M5 = i(ωA − ωB)(b ·MA)(b ·MB),

M6 = i(ωA − ωB)(ez ·MA)(ez ·MB),

M7 = i(ωA − ωB)
[
(b ·MA)(ez ·MB) + (ez ·MA)(b ·MB)

]
,

M8 = −iωB(b ·MA)MB,
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M9 = −iωB(ez ·MA)MB, (9.36)

where

MA = 〈ϕke(r)| r |ϕg(r)〉 ,

MB = 〈χg(x)|x |χe(x)〉 . (9.37)

In the following, we suppose that ϕg and χg are s states and that the excited state χe
of atom B has a magnetic quantum number mB = 0 (since χg and χe are coupled by

a laser �eld of linear polarization). Consequently, we may apply the electronic states

given by (3.64) and (3.65) for calculating the matrix elements in (9.37). Integration

over all the angles ϕr, ϑr, ϕx and ϑx yields

MA =

√
π

Vel

eiδ1rA
ik2
e

ke,

MB =
rB√

3
ez. (9.38)

Here, rA =
∫∞

0
dr r3

[
glA=1
ke

(r)
]∗
glA=0
nA

(r) is the radial matrix element for transitions

from the ground state ϕg into the continuum state ϕke in atom A. Similarly, rB =∫∞
0
dx x3

[
hlB=0
nB

(x)
]∗
hlB=1
n′B

(x) describes the radial matrix element for transitions from

the excited state χe into the ground state χg in atom B.

Now, we insert (9.38) into (9.36). Afterwards, we substitute the resulting matrix

elements M1,2,3,4,5,6,7 and M8,9 into (9.34) and introduce the polar coordinates

b = (b cosϕb, b sinϕb, 0) and ke⊥ = (ke⊥ cosϕke⊥ , ke⊥ sinϕke⊥ , 0). Then, the quantity

Λ(b) becomes

Λ(b) =

√
π

3

eiδ1

i

rArB√
Velk2

e

γ1ke‖ + γ2p cos(ϕb − ϕke⊥ )ke⊥√
b

(9.39)

with

γ1 =

(
1 +

ωA − ω
2c2

)
q2
‖ +

ωv

c2
q‖ −

ωAω

c2
,
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γ2 = −
(

1 +
ωA − ω

2c2

)
q‖ −

ωv

c2
. (9.40)

The terms in (9.40) can be simpli�ed (in very good approximation) to

γ1 = q2
‖ −

(
ω

c

)2

,

γ2 = −q‖. (9.41)

Using (9.41), the quantity Λ(b) in (9.39) can �nally be expressed as

Λ(b) =

√
π

3

eiδ1

i

rArB√
Velk2

e

[
q2
‖ −

(
ω
c

)2]
ke‖ − q‖p cos(ϕb − ϕke⊥ )ke⊥√

b
. (9.42)

9.5 The quantities A1,2 and A3,4,5,6 entering

the results for electron-assisted three-body

attachment

In this Section, we present the quantities A1,2 = A1,2(kp,ke,k
′
e) and A3,4,5,6 =

A3,4,5,6(kp,ke,k
′
e) which enter expressions (6.34), (6.35) and (6.36). They are given

by

A1 =
i

κ

λ(α̃ + γ̃)− iκα̃
α̃γ̃

− λ

α̃
− i

k′e

λδ̃ + i(k′eγ̃ − κδ̃)
(γ̃ + δ̃)γ̃

,

A2 =
i

k′e

1− i/κ
α̃2(γ̃ + δ̃)2

{
(λ(δ̃ + β̃) + ik′e(α̃ + γ̃)− iκβ̃)α̃(γ̃ + δ̃)

−(α̃δ̃ − β̃γ̃)(λ(γ̃ + δ̃ − α̃) + iα̃(κ+ k′e))

}
,

A3 =
q

α̃
+
i

κ

α̃κ− (α̃ + γ̃)q

α̃γ̃
− i

k′e

(1 + κ/k′e + λi/k′e)γ̃k
′
e − (γ̃ + δ̃)(q − κ)

(γ̃ + δ̃)γ̃
,
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A4 =
i

k′e

1− i/κ
α̃2(γ̃ + δ̃)2

{
(−δ̃q + α̃(κ− q + (1 + κ/k′e + λi/k′e)k

′
e)

−γ̃(q − (1 + λi/k′e)k
′
e)− β̃(q − κ))α̃(γ̃ + δ̃)

−(α̃δ̃ − β̃γ̃)(−(γ̃ + δ̃)q + α̃(1 + κ/k′e + λi/k′e)k
′
e)

}
,

A5 =
i

κ

γ̃q − α̃(κ− q)

α̃γ̃
− q
α̃
− i

k′e

γ̃(κ− q − k′e)− (γ̃ + δ̃)(κ− q)

(γ̃ + δ̃)γ̃
,

A6 =
i

k′e

1− i/κ
α̃2(γ̃ + δ̃)2

{
(δ̃q − (α̃ + γ̃)k′e − β̃(κ− q))α̃(γ̃ + δ̃)

−(α̃δ̃ − β̃γ̃)((γ̃ + δ̃)q + α̃(κ− q − k′e))
}
. (9.43)
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