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Abstract

Interatomic energy transfer phenomena caused by efficient long-range electron cor-
relations are among the most studied processes in atomic physics today. They can
provide important insights into the interaction dynamics of single atomic species
with their environment in more complex systems. For this reason, such processes
are also of great interest to various other areas of physics like plasma physics, astro-
physics, biophysics, and physical chemistry.

Part I of this thesis covers fundamental aspects of two interatomic ionization pro-
cesses relying on the efficient transfer of electronic energy via long-range electron
correlations between two spatially well-separated atomic species with an emphasis
on the influence of relativistic effects on ionization. The first process is two-center
impact ionization, proceeding in a weakly bound diatomic system bombarded by
charged particles and involving impact excitation of one atom with its subsequent
decay via efficient energy transfer to the other atom that ionizes it. This process
was already considered for nonrelativistic electron impact, where it can substantially
enhance total electron emission. In this thesis, two-center impact ionization is fur-
ther developed by considering the impact of relativistic bare ions and by including
the relativistic retardation effect, accounting for the finite propagation of the elec-
tromagnetic interaction between the atoms. We show that two-center ion impact
ionization can significantly enhance total electron emission and relativistic effects
caused by a high collision velocity can greatly influence the angular distribution of
emitted electrons while retardation effects are mostly negligible. The second process
is two-center resonant photonionization (2CPI) occurring in a diatomic system ex-
posed to a weak laser field and involving resonant photoexcitation of one atom with

its consequent decay via efficient energy transfer to the other atom which ionizes it.
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This process, whose high efficiency in weakly bound systems was confirmed in ex-
periments with Ne—He dimers and Ar-Ne clusters, was studied theoretically in slow
atomic collisions when the interatomic energy transfer is driven by the exchange of
virtual photons. In this thesis, we extend the theory of collisional 2CPI by including
the relativistic retardation effect, enabling the energy transfer to occur also via the
exchange of real photons that dramatically increases the effective interaction range.
Our results show that such an approach to collisional 2CPI can profoundly modify

this process and strongly enhance its reaction rate.

Part II of this thesis deals with an application of interatomic energy transfer in
antimatter physics, investigating attachment mechanisms for the production of sub-
stantial amounts of the positive ion of antihydrogen H' in view of experiments on
the free-fall of antihydrogen H currently planned at CERN. We perform a compar-
ative study of various radiative and nonradiative attachment mechanisms for the
formation of H', where special focus lies on those mechanisms driven by the effi-
cient transfer of positronic energy via long-range positron-electron correlations in
systems of antimatter embedded in matter. In the process of two-center dileptonic
attachment (2CDA), a positron incident on H is attached to H by resonant energy
transfer to a neighboring (matter) atom, which gets excited and subsequently relaxes
through spontaneous radiative decay. In the process of electron-assisted three-body
attachment (3BAe), a free positron and electron are incident on H and the positron
is attached to H via efficient energy transfer to the electron with consequent increase
of its kinetic energy. Our results imply, in particular, that for relatively low positron
energies < 0.1 eV (typical of current antimatter experiments) 3BAe strongly outper-

forms 2CDA whereas at larger energies >~ 1 eV 2CDA can greatly dominate 3BAe.
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Zusammenfassung

Interatomare Energietransferphinomene, verursacht durch effiziente langreichweiti-
ge Elektronenkorrelationen, gehdren heute zu den meistuntersuchten Prozessen der
Atomphysik. Sie kénnen wichtige Einblicke in die Wechselwirkungsdynamik einzel-
ner atomarer Spezies mit ihrer Umgebung in komplexeren Systemen liefern. Daher
sind solche Prozesse auch fiir verschiedene andere Bereiche der Physik wie Plasma-

physik, Astrophysik, Biophysik und physikalische Chemie von grofem Interesse.

Teil I dieser Arbeit befasst sich mit grundlegenden Aspekten zweier interatomarer
Tonisationsprozesse, die auf der effizienten Ubertragung elektronischer Energie {iber
langreichweitige Elektronenkorrelationen zwischen zwei rdumlich getrennten atoma-
ren Spezies beruhen, wobei ein Schwerpunkt auf dem Einfluss relativistischer Effekte
auf die Ionisation liegt. Der erste Prozess ist die Zwei-Zentren-Stofionisation, die
in einem schwach gebundenen zweiatomigen System stattfindet, das von gelade-
nen Teilchen beschossen wird und welche die Stofanregung eines der Atome mit
seiner anschliefenden Abregung durch effiziente Energielibertragung auf das andere
Atom, das dadurch ionisiert wird, beinhaltet. Dieser Prozess wurde bereits fiir Stofe
mit nichtrelativistischen Elektronen betrachtet, wo er die Gesamtelektronenemissi-
on erheblich steigern kann. In dieser Arbeit wird die Zwei-Zentren-Stofsionisation
weiterentwickelt, indem Stofe mit relativistischen Ionen sowie der Retardierungsef-
fekt, welcher die endliche Ausbreitung der elektromagnetischen Wechselwirkung zwi-
schen den Atomen widerspiegelt, beriicksichtigt werden. Wir zeigen, dass die Zwei-
Zentren-lonen-Stofkionisation die Gesamtelektronenemission deutlich steigern kann
und dass relativistische Effekte, verursacht durch eine hohe Stokgeschwindigkeit,
die Winkelverteilung der emittierten Elektronen stark beeinflussen kénnen, wihrend

Retardierungseffekte weitgehend vernachlassigbar sind. Der zweite Prozess ist die

Vil
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resonante Zwei-Zentren-Photoionisation (2CPI), die in einem diatomaren System
auftritt, das einem schwachen Laserfeld ausgesetzt ist, und welche die resonante Pho-
toanregung eines der Atome mit seiner anschlieflenden Abregung durch effiziente En-
ergieiibertragung auf das andere Atom, welches daraufthin ionisiert wird, einschliefst.
Dieser Prozess, dessen hohe Effizienz in schwach gebundenen Systemen in Experi-
menten mit Ne-He Dimeren und Ar-Ne Clustern bestétigt wurde, wurde theoretisch
in langsamen atomaren Stoflen untersucht, wenn der interatomare Energietransfer
durch den Austausch virtueller Photonen erfolgt. In dieser Arbeit erweitern wir
die Theorie von 2CPT in Stofen, indem wir den relativistischen Retardierungseffekt
beriicksichtigen, sodass der Energietransfer auch durch den Austausch realer Photo-
nen auftreten kann, was die effektive Wechselwirkungsreichweite dramatisch erhoht.
Unsere Ergebnisse zeigen, dass ein solcher Ansatz fiir 2CPI in Stofen diesen Prozess

erheblich modifizieren und seine Reaktionsrate stark erhohen kann.

Teil 1T dieser Arbeit umfasst eine Anwendung von interatomarem Energietrans-
fer in der Antimateriephysik und untersucht Bindungsmechanismen fiir die Erzeu-
gung wesentlicher Mengen des positiven Antiwasserstoffions H' im Hinblick auf die
derzeit am CERN geplanten Experimente zum freien Fall von Antiwasserstoff H.
Wir fiihren eine vergleichende Studie verschiedener radiativer und nicht-radiativer
Bindungsmechanismen fiir die Bildung von H' durch, wobei der Fokus auf jenen
Mechanismen liegt, die durch den effizienten Transfer positronischer Energie iiber
langreichweitige Positron-Elektron-Korrelationen in Systemen von in Materie einge-
betteter Antimaterie ermoglicht werden. Bei dem Zwei-Zentren dileptonischen Ein-
fang (2CDA) wird ein Positron, das auf H auftrifft, an H gebunden, indem Energie
resonant auf ein benachbartes (Materie-)Atom iibertragen wird, welches daraufhin
angeregt wird und durch spontanen radiativen Zerfall relaxiert. Bei dem elektronen-
unterstiitzten Dreikorpereinfang (3BAe) treffen ein freies Positron und Elektron auf
H und das Positron wird durch effiziente Energieiibertragung auf das Elektron an H
gebunden, was mit einer Erhohung der kinetischen Energie des Elektrons einhergeht.
Unsere Ergebnisse implizieren insbesondere, dass fiir relativ niedrige Positronenen-
ergien < 0.1 eV (typisch fiir aktuelle Antimaterieexperimente) der 3BAe Prozess
den 2CDA Prozess deutlich iibertrifft, wohingegen bei groferen Energien ~ 1 eV der

2CDA Prozess den 3BAe Prozess stark dominieren kann.
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Relativistic effects 1n interatomic

lonization processes






1 Introduction and preliminary

remarks

1.1 Historical background and motivation

The single ionization of an atom, i.e. the emission of a bound electron, by impact of
ions or photoabsorption belong to the basic phenomena studied by atomic physics
and can reveal insights into the structure of the atom as well as the interaction
dynamics of the atom with its environment upon ionization. These well-known
processes (for ion impact ionization see, e.g. [1-4] and references therein and for
photoionization see, e.g. [5-8] and references therein) have been considered for a
wide range of incident energies and, still today, there is great interest in further

improving theoretical descriptions and experimental techniques.

The interaction between an atom and a (quantized) electromagnetic field can lead
to various basic processes, e.g. resonant photon scattering, photoexcitation and
photoionization, which have been studied for a long time. The famous photoelectric
effect, in which electrons are emitted when electromagnetic radiation impinges on
a (solid) material, was first experimentally observed by Hertz and Hallwachs in
1887/88 |9, 10] and later theoretically explained by Einstein in 1905 [11]. At the
time, the understanding of the photoelectric effect was a very important step towards
the development of quantum mechanics. Since then, there has been steady progress
in experimental techniques especially due to more advanced light sources such as
the optical laser, first completed in 1960 [12], which allowed the precise tuning of
the incident light to atomic transitions. Besides, the development of synchrotron-

based X-ray sources up to modern free electron lasers, which can produce ultra-
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short and -intense X-ray pulses, largely contributed to a more refined understanding
of the (time-resolved) dynamics of photoionization mechanisms (see, e.g. [13] and

references therein).

Ion-atom collisions can result in elastic scattering, charge exchange, impact excita-
tion and impact ionization. A variety of such collision processes have been inves-
tigated for more than a century with one of the most prominent examples being
the classical Rutherford scattering, in which alpha particles are elastically scat-
tered on gold atoms. Experimentally observed by Geiger and Marsden in 1909 [14]
and theoretically explained by Rutherford in 1911 [15], the Rutherford scattering
process formed the early basis for today’s picture of the atom. During the last
decades the construction of accelerators that can produce energetic ion beams has
seen a strong progress and enabled the investigation of fast ion-atom collisions up
to highly relativistic impact energies, leading to a deeper understanding about the
atomic structure and the dynamics involved in the collisions (see, e.g. [16,17] and

references therein).

In experiments on photoionization and ion impact ionization, the momenta of the
product ions and/or ejected electrons have to be detected in order to rebuild the
particles dynamics during the ionization process. Due to continuous development of
more refined detectors, in modern experiments, one can obtain the particles momen-
tum vectors by time of flight and position measurements using detector geometries

with time- and position-sensitive detectors (see, e.g. [18,19]).

There also exist more complex ionization mechanisms based on the decay of an
autoionization state, which is an atomic bound state whose discrete energy level lies
above the boundary of the continuous spectrum. An autoionization state arises, for
instance, from the excitation of two atomic electrons whose total excitation energy
exceeds the first ionization potential of the atom and it can decay, caused by electron
correlations, where one electron makes a transition into a lower lying state and the
second electron gets released by taking the energy excess. However, this is only one
out of several types of autoionization states and associated ionization mechanisms

(see, e.g. [20]).

Another type of autoionization state refers to the formation of an inner-shell vacancy
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by atomic excitation or ionization via photoabsorption or particle impact, where the
excitation energy of the resulting atomic state is larger than its ionization potential.
Such state is unstable and can decay through spontaneous radiative decay, in which
an outer-lying electron fills the inner-shell vacancy and the energy release is carried
away by spontaneous emission of a photon. However, the unstable state may also
undergo radiationless decay, caused by electron correlations, where an outer-lying
electron fills the inner-shell vacancy and the energy release is transferred to another
outer-lying electron that, as a result, is ejected from the atom (see, e.g. [20]). The
process involving the latter decay channel is called Auger process and the electron
released upon decay is named Auger electron. The Auger process (or Auger-Meitner
process) was independently discovered by Meitner in 1922 [21] and Auger in 1925 [22]

and marked the beginning of investigations on atomic autoionization states.

Autoionization states can also exist in systems consisting of two atomic or molecular
particles, where one of them is initially in an electronically excited state with the
excitation energy exceeding the ionization potential of the other particle. There are
various processes, driven by correlations between electrons located at two different
atomic or molecular centers, which involve the relaxation of such nonlocal autoion-
ization states. Penning ionization, originally considered by Penning in 1927 [23],
typically occurs in collisions of an atom or molecule in a metastable excited elec-
tronic state (that is not allowed to decay by an optical dipole transition) with a
second atom or molecule being in its electronic ground state. When the colliding
partners approach each other very closely, their electronic orbitals overlap and radi-
ationless relaxation of the initially excited particle with simultaneous ionization of
the other particle (mainly) proceeds via charge transfer. This ionization process is
of very short range and its efficiency decreases exponentially with increasing inter-
atomic/intermolecular distance. Motivated by experimental studies on de-excitation
processes in metallic compounds by Gallon and Matthew in 1970 [24] as well as Lord
and Gallon in 1973 [25], the radiationless relaxation of an optically excited atom by
energy transfer to a neighboring ground-state atom, resulting in its ionization, was
theoretically considered by Matthew and Komninos in 1975 [26] and called inter-
atomic Auger decay (IAAD). Here, the excited atom initially has an inner-shell

vacancy which is filled by an outer-lying electron but unlike in the intraatomic
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Auger process (that was discussed further above) the energy release is transferred
via a (long-range) dipole-dipole interaction to a neighboring ground-state atom and
the latter is ionized. It was shown in |26 that TAAD is very efficient and can even
dominate over the competing intraatomic Auger process. The mechanism of [AAD
proceeding in a system of two atomic species where relaxation of the excited par-
ticle via the intraatomic Auger process is energetically forbidden was calculated by
Cederbaum et. al. in 1997 [27] and termed there interatomic Coulombic decay
(ICD). It was experimentally observed by Marburger et. al. in 2003 [28] and Jahnke
et. al. in 2004 [29]. The ICD mechanism can be extremely efficient, strongly out-
performing the (direct) spontaneous radiative decay of the initially electronically
excited atom, for a large range of interatomic separations. We mention that the
term ICD is now often understood more generally to refer to all long-range inter-
atomic (or intermolecular) radiationless relaxation mechanisms proceeding at large

distances via the dipole-dipole interaction.

A well-known excitation mechanism caused by long-range electron correlations be-
tween neighboring molecules is Forster resonance energy transfer which was de-
scribed by Forster in 1948 [30]. This energy transfer mechanism can occur between
chromophores (light-sensitive molecules) in biological systems [31], where an initially
electronically excited chromophore may transfer energy to another chromophore via
a (long-range) dipole—dipole interaction such that the latter makes a transition from

its electronic ground state into an electronically excited bound state.

In general, the effectiveness of electron correlations between neighboring atoms
and /or molecules makes the theoretical and experimental investigation of processes
based on such long-range correlations particularly interesting. Therefore, within
the last two decades, several more nonlocal electron correlation phenomena were
considered including electron transfer mediated decay [32], interatomic Coulombic
electron capture in weakly bound systems [33] and in atomic collisions [34], collective
autoionization/ICD (see, e.g. |35-38| and references therein), two-center resonance
scattering [39] as well as two-center dielectronic recombination in weakly bound
systems [40] and in atomic collisions [41]. (The latter process will be discussed in
detail in Part IT of this thesis in the context of the formation of positive ions of

antihydrogen.)
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Besides, there exist two additional mechanisms for single ionization of diatomic
systems, caused by interatomic electron correlations, that are crucial for the present

study. They will be discussed in the following Section.

1.2 Overview of direct and two-center impact and
photoionization mechanisms

One of the interatomic ionization processes which will be considered in this thesis

is termed two-center impact ionization,
(i) A+B+P —» A+B*+P - A" +e +B+P.

It involves the excitation of a dipole-allowed transition in an atomic species B by
impact of a charged projectile P (e.g. an ion or electron) with subsequent relaxation
via ICD that means the radiationless decay of the excited state of B by transmitting
the de-excitation energy — due to interatomic electron correlations — to a neighboring
atom A which, as a consequence, is ionized. This process was considered (using an
instantaneous dipole-dipole interaction) for nonrelativistic electron impact in [42],
where it was concluded that the two-center mechanism can substantially enhance
the total electron emission from the A — B system. In this work, based on the
results of [43], two-center impact ionization will be further developed by considering
the impact of relativistic bare ions and by taking into account that the interatomic

interaction propagates with a finite velocity, resulting in the retardation effect.

The other interatomic process is called two-center resonant photoionization (2CPI),
(ii) A+B+Nhw — A+ B*"+(N—1)hw — AT +e + B+ (N —1)hw,

in which the diatomic system, consisting of atoms A and B, is exposed to a weak
laser field with frequency w that is resonantly tuned to a dipole-allowed transition
in B. Then, excitation of B occurs via (resonant) photoabsorption with consequent
relaxation by ICD, i.e. via the transfer of the excitation energy to A, induced

by interatomic electron correlations, causing its ionization. 2CPI was originally
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considered for a weakly bound system in [44, 45|, where it was shown that this
ionization mechanism can strongly outperform the direct photoionization of A by
the laser field. Its very high efficiency was experimentally confirmed in experiments
on photoionization of Ne-He dimers [46,47| and Ar-Ne clusters [48]. 2CPI was also
studied theoretically in slow atomic collisions [49], where the interaction between
the colliding atoms was regarded as instantaneous, being transmitted by virtual
(off-shell) photons only. In this work, following the consideration in [50], we extend
the theory of collisional 2CPI to a more complete treatment, in which the collisional
interaction is described fully relativistically, accounting for the retardation effect,

that opens the possibility to transmit the interaction by real (on-shell) photons.

It is of general interest to discuss the relative effectiveness of the two-center ioniza-
tion channels (i) and (ii) compared with the corresponding direct ionization by ion

impact,
(iii) A+P — AT +e + P,
and by photoabsorption in the presence of a laser field,
(iv) A+ Nhw — A" +e + (N —1)hw.

In reaction (iii), atom A is ionized as a direct result of the collisional interaction with
the incident ion P, while in reaction (iv) the ionization of A is a direct consequence

of the absorption of a photon with frequency w from a weak laser field.

Indeed, we will see that the interatomic ionization mechanisms of (i) two-center ion
impact ionization and (ii) two-center resonant photoionization (in atomic collisions)
can outperform the corresponding local ionization mechanisms of (iii) direct ion

impact ionization and (iv) direct photoionization, respectively.

Atomic units (see overview on p. xxi) are used throughout if not stated otherwise.
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1.3 Relativistic effects in two-center impact and
photoionization

In general, there exist three types of relativistic effects that may be relevant to our
consideration of ionization of diatomic systems. The first and second type are based
on a large electron orbiting and projectile impact velocity, respectively, and the third

one is caused by a large interatomic distance.

The first type of relativistic effect is due to a large orbiting velocity v, of atomic
electrons, approaching the speed of light ¢ (¢ &~ 137 a.u.). In such case, the rela-
tivistic motion of electrons involved in atomic excitation and ionization processes
has to be described by the Dirac equation. However, in this thesis, we consider only
relatively light atomic species with atomic number Z < ¢ for which the descrip-
tion of the electronic motion in atomic excitation and ionization processes by the
nonrelativistic Schrodinger equation is regarded as valid (see, e.g. [51]). It is worth
mentioning that for ionization by impact of charged projectiles the vast majority
of electrons emitted from light atomic targets have nonrelativistic velocities in the

target frame even for extremely relativistic impact energies [51].

The second type of relativistic effect results from a large projectile impact velocity v
that approaches the speed of light c. It will be investigated in the context of impact

ionization of a weakly bound diatomic system by relativistic bare ions in Chapter 2.

To get an idea about the general effect resulting from relativistic collision velocities,
let us suppose that a pointlike positively charged projectile (representing e.g. a
bare ion) is incident on a target atom whose nucleus is located at the origin of the
coordinate system. The projectile moves along a classical straight-line trajectory
R(t) = b + vt, where v = (0,0,v) is its constant velocity and b = (,0,0) is the
impact parameter for the collision. In such situation, the scalar potential ¢(r, t) and
vector potential A(r,t) produced by the projectile in the restframe of the target at
the point of observation r = (z,y, z) at the time ¢ are given by the Liénard-Wiechert

potentials in the forms [2]

¢(T7t) =

. A(rt) = %w,t). (1.1)
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Here, v = 1/4/1 — (2 is the Lorentz factor with the reduced velocity = v/c and Zp

is the projectile charge. The potentials in (1.1) satisfy the Lorenz gauge condition

10¢ —

oy tV-A=0.

Following the consideration in [2], the corresponding electric field at the observation

point located at the position of the target nucleus is directed radially from the

present position of the projectile to the observation point and is obtained to be
—ZpR

E= R P 0P (1.2)

where 6 is the angle between the vector —R and the z-axis. In the longitudinal
direction with respect to the projectile motion (§ = 0 or 6 = 7) the field strength

becomes

Zp 1

It is decreased by a factor v~2 compared with the field strength for a point charge
at rest. Moreover, in the transverse direction with respect to the projectile motion
(0 = 7/2) the field strength reads

Zp

El:ﬁ’}/

(1.4)

It is increased by a factor v as compared to the field strength for a point charge at
rest. One can think of this as a flattening of the electric field of a moving charge into
a disk-like shape in the direction of motion that arises from the Lorentz contraction
of electromagnetic fields. For instance, the flattening of the electric field for v = 2
(corresponding to v ~ 0.87¢) is already quite pronounced with a decrease in the
longitudinal field strength by a factor of 4 and an increase in the transverse field

strength by a factor of 2.

The third type of relativistic effect which may occur in a system of two interacting
atoms is the so-called retardation effect. It accounts for the finite propagation
time of the electromagnetic field transmitting the interaction with the velocity c

and becomes relevant at large interatomic distances. The retardation effect will be

10



— CHAPTER 1. INTRODUCTION AND PRELIMINARY REMARKS —

investigated in the context of ion impact ionization of a weakly bound diatomic
system in Chapter 2 as well as in the context of two-center resonant photoionization

in slow atomic collisions in Chapter 3.

In order to estimate the importance of the retardation effect, we may compare the
propagation time 7' = R/c that is necessary for the electromagnetic field to propa-
gate the distance R between the atoms and the electronic transition time 7. In case
when 7" < 7, the field propagates essentially instantaneously and the retardation ef-
fect is expected to have no substantial impact on the interatomic interaction. On the
other hand, if 7" > 7, the comparatively large propagation time of the field results
in a retardation effect which strongly influences the interaction between the atoms
dramatically increasing its effective range. The latter condition can be rewritten as
R > 7c, indicating that the interatomic distance R must be sufficiently large for
the retardation effect to be significant. For instance, assuming a typical electronic
transition time 7 ~ 1 a.u., we can expect that the retardation effect is important
when R > 10? a.u.

In particular, let us consider a nonlocal energy transfer in a diatomic system con-
sisting of two atoms A and B with a relatively large interatomic distance R, where
the transfer of energy is caused by the long-range interatomic electron correlations
between an electron in A and another electron in B. Then, the interatomic interac-
tion can be described in very good approximation by the dipole-dipole interaction

(see Section 2.1.1 and Appendix 9.1 for a detailed derivation)

. . —i &
it (- - A TS L

—(r-é— “'R};ﬁm) (icj} (1.5)

with R the interatomic distance vector, which is constant for a bound diatomic
system and depends on the time ¢ in the case of atomic collisions. Further, r (£) is
the coordinate of the partaking electron in atom A (B) with respect to the nucleus
of A (B).

The dependence of (1.5) on the interatomic distance R in leading order is given

11
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by Vag ~ R™'. In the limit of comparatively small propagation times 7" < T,
corresponding to comparatively small interatomic distances R < 7¢, the interaction
(1.5) takes the familiar form (see, e.g. [52]) of the instantaneous interaction between

two electric dipoles

(1.6)

Vap = (fr-g_?’("“‘R)(&-R)) 1

R2 R3’

which scales with the interatomic distance as R~5.

Note that the general form of the dipole-dipole interaction in (1.5) takes into ac-
count the relativistic retardation effect resulting from the finite propagation of the
electromagnetic interaction. It can be concluded from the form of (1.5) that the
retardation effect starts to become important for interatomic distances R 2> 7c,
changing the R-dependence of Vag from ~ R3 at R < 7cto ~ R~ at R> 7¢ and

therefore tremendously increasing the effective range of the interatomic interaction.

One of the main goals of this study is to investigate the influence of the relativistic

effects discussed above on interatomic ionization processes.

Concerning two-center ion impact ionization of a weakly bound diatomic system,
it will be shown that the influence of relativistic effects, resulting from a high ion
impact velocity, on the angular distribution of emitted electrons can be quite strong
already at rather low Lorentz factors of v = l/m ~ 2. On the other hand,
these effects may only have a substantial impact on the energy distribution and the
total cross section for v > 1. In addition, we will see that the relativistic retardation
effect, taking into account the finite propagation of the electromagnetic interaction
between the atoms, has essentially no influence on the two-center ionization even for

rather large diatomic systems such as the "Li-He dimer whose mean size is ~ 53 a.u.

However, this dramatically changes when considering atomic collisions instead of a
weakly bound system. As an example, we take the process of two-center resonant
photoionization in atomic collisions, where the collision velocity v shall be much
smaller than the typical orbiting velocities v, of the participating electrons. We will
see that in collisions the retardation effect, accounting for the finite propagation

of the interaction between the colliding atoms, leads to an efficient coupling of

12
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the diatomic system to the quantum radiation field. This enables the interaction
to proceed via the exchange of an on-shell photon, thus dramatically increasing its
effective range, which may profoundly modify the two-center photoionization process

and strongly enhance its reaction rate.

Part T of this thesis is essentially organized as follows. In Chapter 2, we consider the
theoretical framework for the single ionization of a weakly bound diatomic system
by relativistic charged projectiles and obtain formulas for differential and total cross
sections of direct and two-center ion impact ionization, respectively. Afterwards,
numerical results are illustrated and extensively discussed. Finally, we draw some
main conclusions. Chapter 3 is dedicated to the theory of radiation-field-driven
ionization in laser-assisted slow atomic collisions, where we derive simple formulas
for the cross section and reaction rate of the two-center photoionization process.
We then present numerical results, discuss them in detail and summarize our main

findings.

13






2 lonization of a weakly bound
diatomic system by relativistic

charged projectiles

This chapter provides a detailed insight into the theoretical treatment of the sin-
gle electron emission from a weakly bound diatomic system by relativistic charged
projectiles via direct and two-center impact ionization. We derive the angular and
energy distributions as well as the total cross section for these ionization mecha-
nisms. Based on their numerical results we discuss, in particular, the influence of
the relativistic effects, caused by a large projectile velocity and a large size of the
diatomic system, on the two-center ionization channel. Besides, we also consider the
relative effectiveness of two-center impact ionization compared with direct impact
ionization. The following chapter is mainly based on results published initially in
Ref. [43].

2.1 Theoretical consideration

2.1.1 General approach

Let us consider a weakly bound diatomic system consisting of two atomic species
A and B which are in their electronic ground states with energies ¢, and ¢4, re-
spectively. We assume that there exist an excited state with energy e, in atom B
which can be populated via a dipole-allowed transition from its ground state, where

the corresponding transition energy wp = €. — €, shall be larger than the ionization

15
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potential /4 (= —¢,) of atom A. Further, it is supposed that the interatomic dis-
tance R between the nuclei of A and B is much larger than the typical atomic size
so that the electronic orbitals of atoms A and B essentially do not overlap and the
interaction between them is relatively weak. Consequently, the electronic structure
of the A — B system may be approximated by that of two individual non-interacting

atomic species A and B.

Now, let us envisage a situation in which the A — B system is bombarded by a bare
ion P with charge Zp and relative (with respect to the diatomic system) velocity v.
In the present treatment, we shall suppose the condition Zp/v < 1, which means
that we only consider relatively light projectiles having comparatively low charges.
Then, the electric field of the projectile will just represent a weak perturbation for
the A — B system and we may treat the interaction between this system and the
projectile by using the first order of time dependent perturbation theory. Moreover,
the above condition also implies that the (total) ionization of the A — B system will

be largely dominated by ionization processes leading to single electron emission.

Single ionization of the A— B system in collisions with charged projectiles may occur
via two direct (one-step) and one indirect (two-step) ionization processes. The two
direct processes are the direct impact ionization of either atom A or B due to the
collisional interaction of the incident ion P with A or B. The indirect process is
two-center impact ionization which involves both atomic species A and B. In the
first step of this process, the collisional interaction between the incident ion P and
atom B causes a dipole-allowed transition from the ground state of B with energy
€g into its excited state with energy e.. In the second step, atom B radiationlessly
decays into its initial ground state where the released energy is transferred — via long-
range interatomic electron correlations — to atom A which consequently undergoes a
transition from its ground state with energy ¢, into a continuum state with energy
er. A scheme of two-center impact ionization is illustrated in Fig. 2.1 (a). Note
that due to the condition e, — €, > I4 we just have to deal with two-center impact

ionization of atom A and not of atom B.

In contrast to direct impact ionization, two-center ionization is a resonant process
which only proceeds efficiently within a very narrow interval of electron emission

energies centered at the resonance energy e;, = (€. — ¢;) + ¢, = wp — I4. However,

16
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projectile P dg (t) = bg + vt _
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(b)

Figure 2.1: (a) Scheme of two-center ion impact ionization. (b) Schematic represen-
tation of space coordinates characterizing the collision. This figure was
originally published in Ref. [43].

as we will see, the two-center ionization is so tremendously strong on and close to the

resonance that, despite the energy range affected by the two-center channel being

17
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very small, its presence can even have a noticeable impact on the total ionization

cross section.

In our present treatment of all ionization channels, we use the single-electron approx-
imation and thus only consider one active electron in each atom A and B. Further,
our description of collisions between the projectile P and the A — B system will
be based on the semi-classical approximation which is very well justified for high
energy collisions (see, e.g. [2]). In this approximation, the relative motion of the
heavy nuclei is considered classically while the active electrons are treated quantum

mechanically.

We choose a reference frame in which the A — B system is at rest and the nucleus
of atom B is located at the origin. Further, let r (§) be the coordinate of the single
active electron in A (B) with respect to the nucleus of A (B) and let R be the
interatomic distance vector between the nuclei of A and B. In this reference frame,
the projectile ion P performs a classical motion along a straight-line trajectory
dp(t) = bp + vt. Here, bg = (b,,b,,0) is the impact parameter in collisions of the
ion P with atom B and v = (0,0, v) is the collision velocity. In addition, sp(t) =
& — dp(t) is the distance vector between the ion P and the active electron in atom
B. The collision geometry for two-center impact ionization is shown in Fig. 2.1 (b).
It is worth mentioning that the corresponding coordinates for collisions between the
projectile ion P and atom A can be obtained by simple vector addition. Thus, the
straight-line trajectory of the projectile can be written as da(t) = by — R + vt,
where by = (Bx, By, 0) is the impact parameter in P — A collisions and the distance

vector between P and the active electron in A is obtained to be s4(t) = 7 — da(t).

Based on the discussion in Section 1.3, the motion of the active electrons may be

described by using the nonrelativistic Schrodinger equation

0V (t) .
= HU(t 2.1
i = A 21)
with the total Hamiltonian
H=His+ Hg+ Vag+ Wa+ W;g. (2.2)
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In (2.2), Hy (Hp) is the Hamiltonian of the free non-interacting atom A (B), Vap
is the interaction between A and B, and W, (WB) is the interaction between the

projectile ion P and atom A (B).

The free Hamiltonians H4 and Hp of atoms A and B, respectively, are given by

~\2
HA — (p'r) ZA,
2 T
2 (155)2 ZB
Hgp = - —. 2.3
B 5 : (2.3)

Here, p, (P¢) is the momentum operator for the active electron in A (B) with respect
to the nucleus of A (B) and Z4 (Zp) is the effective nuclear charge of atom A (B).

The interaction Vsp between atoms A and B at relatively large interatomic distances
R is primarily of the dipole-dipole type and can be derived by considering the
coupling jl’j‘A% between the transition four-current j;j‘ of the active electron in A
and the four-potential A% of the field created by the other active electron in B (or
vice versa). Its detailed derivation can be found in Appendix 9.1 and results in the

expression

N L wp . . — 1R¥B
VAB:€ZRC|:<T'£—3(T 125& R)>]‘ ég c

—(r.g_ ("'R])%gé‘R)) (wi)z} (2.4)

Note that (2.4) yields the form in (1.5) by applying 7 = 1/wpg. The interaction in
(2.4) incorporates the relativistic retardation effect, accounting for the finite prop-
agation of the electromagnetic interaction, and its limit for comparatively small
interatomic distances, R < c¢/wpg, is the instantaneous interaction between two

electric dipoles given by (1.6). Further details can be found in Section 1.3.

Now, we consider the interactions W, and Wpg between the projectile ion P and

atoms A and B, respectively. Keeping in mind that we suppose a nonrelativistic
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electron motion these interactions read

. 1T 1 1
Wi=—|p,. A Ay-Dr| — — A% + —0 - By,
A 2C_p A+ Anp p_ ¢A+262 A+260 A
W, L Ap+ A 5] ¢+1A2+1 B (2.5)
= — . . — — —0 - )
B 20_p€ B B Pg_ B 52 B T 5 B

with ¢4 (¢p) and Ay (Ap) the scalar and vector potential, respectively, which
determine the electromagnetic field of the projectile ion P acting on the active
electron in A (B). These potentials can be described by the Liénard-Wiechert
potentials whose forms are similar to those in (1.1) but are adapted to the present

collision geometry. They can be written as

’)/Zp v

= Ay =—
®a RO A C¢A,

’)/Zp (%

where v = 1/4/1 — 2 is the Lorentz factor with the reduced velocity f = v/c and
shy(t) = (rL—ba— Ry, y(r) — Ry — vt)),

sp(t) = (&L — b, y(§ — vt)). (2.7)

Here, 7, (7)), &L (&) and R, (R)) are the transverse (longitudinal) parts of the
coordinates r, € and R, respectively, which are perpendicular (parallel) to the colli-
sion velocity v. It is worth mentioning that the potentials in (2.6) satisfy the Lorenz
condition 9, A} = 0 for the four-potential A} = (¢;, A;) with j = A, B.

Further, in (2.5), o are the Pauli matrices and By (Bp) is the magnetic field
of the projectile ion P acting on the active electron in atom A (B). Since it is
known (see, e.g. [53]) from the theory of direct impact ionization that spin effects
are negligible for light atomic targets, we drop the corresponding interaction term

50 - B; (j = A, B) in our consideration.
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1
2c2

it was shown in [51] that this term has to be omitted in the Schrodinger equation in

The interaction term A? (j = A, B) in (2.5) requires special care. In particular,

order to obtain a self-consistent first order treatment. Consequently, we drop this

term in our consideration as well.

The initial state ¥,, of the A — B system is given by

\I/gg(ga v,t) = ¢g(V - R)e_iathg(é)e_iEgt (2.8)

with ¢, (x,) the ground state of atom A (B) and v = R+ r. Concerning the direct

impact ionization of atom A, the final state Wy, is determined by

Wig(§,v,1) = di(v — R)e " xy (§)e ™" (2.9)

In (2.9), ¢k is the continuum state of the electron emitted from A with an asymptotic
momentum k and energy ¢, = k?/2. Accordingly, the final state ¥, for the direct

impact ionization of atom B reads

V(& v,t) = dg(v — R)e_igthn(g)e_mt- (2.10)

Here, x, is the continuum state of the electron ejected from B having an asymptotic
momentum k and energy ¢, = k?/2. Considering two-center impact ionization of
atom A, in addition to the initial state (2.8) and the final state (2.9), we also have

to take into account the intermediate state(s)

Woe(€,v,) = dg(v — R)e™ ™" xo(€)e ™, (2.11)

where Y. is the excited state of B.

The channels for two-center and direct impact ionization of atom A result in the
same final state (2.9) of the A — B system and thus they interfere with each other.
Consequently, the transition amplitude for the ionization of A is composed of the

two-center amplitude Syo(bg) and direct amplitude S5 (b4) according to

Socap(bp,ba) = Sac(bp) + Sh(ba). (2.12)
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We remark that the channel for direct impact ionization of atom B leads to a different
final state (2.10) and therefore does not interfere with the other two ionization

channels.

However, it is worth mentioning that the impact ionization of atom B may trigger
subsequent radiative capture of an electron from atom A by the residual ion BT,
resulting in the same AT — B system as the direct and two-center impact ionization
of A. In particular, the BT ion formed via impact ionization of B will polarize atom
A leading to the appearance of an attractive force between BT and A. In case the
two atomic centers approach sufficiently close each other, an outer shell electron of
atom A may be captured by the B™ ion accompanied by the emission of a photon
that results in a diatomic system consisting of the neutral atom B in its ground
state and the ion AT. Since the above described process involves the interaction
between two atomic centers, namely the B* ion and atom A, it may also be seen
as a kind of two-center ionization which might significantly increase the number of
collision events leading to the A™ — B system with an associated decrease in the
number of collision events which result in the A — Bt system. However, in contrast
to two-center impact ionization, the process involving radiative electron capture is
not resonant, having a shape of the electron emission spectrum similar to that of

the direct impact ionization of atom B, and we will not consider it in this work.

2.1.2 Amplitude for two-center impact ionization of atom A

The transition amplitude Sac(bp) for two-center impact ionization of atom A in
(2.12) is described by using the second order of time dependent perturbation theory
in which both the interaction Wp between the projectile ion P and atom B and the
interatomic interaction VAB between atoms A and B are accounted for and it can

be written as

1

Sac(bp) = Z Sy (bp)- (2.13)

Am=—1
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In (2.13), Am € {0,%1} indicates the change in the magnetic quantum number for

the dipole-allowed excitation transition in B and

1 00 t
Ssm(bg) = 3 / dt M?m(t)/ dt’ My (bg, t) (2.14)
with MlAm(bB,t/> = <\Ilge‘ WB(bB,t/) |\Ifgg> and MzAm(t) = <\I/k:g| VAB |\I/ge>. Insert-
ing the states from (2.8), (2.9) and (2.11) into (2.14) and taking advantage of the

orthonormalization condition (¢4|¢,) = 1 provides

1 t y

S&m () = Z/ dt MEmeilwa= WBﬁ/ At MA™ (b, t')e 5" (2.15)
where

MEE = (drXg| Vas |dgxe) (2.16)

is the interatomic matrix element describing the de-excitation in atom B and the

ionization of atom A and
MB™ = (xel Wi |xg) (2.17)

is the matrix element for the impact excitation of B. Further, wy = e, — ¢4 is the

transition energy in A.

By defining F'(¢ f dt’ M5™(bg, t')e™5" | the transition amplitude in (2.15)
yields

1
Sy (bg) = / dt Mymelwa=ens)lp(t), (2.18)
i? )
Taking into account that the interatomic matrix element M4% is constant for finite

t and vanishes at the boundaries ¢ = £o00, which corresponds to the assumption

that the interaction between atoms A and B is adiabatically switched on and off at
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t — —oo and t — 400, respectively, integration by parts in (2.18) results in

Sa(bp) = —iMAE /OO dt M5™(bp,t)e™", (2.19)
2¢ wa—wp+iv/2 J_o B ’
Here, the appearance of v (7 — 07) reflects the assumption about adiabatic switch-

ing the interatomic interaction on and off at |[t| — oo according to ~ exp(—~|t|/2).

Following a more careful consideration of two-center ionization, including also the
channel of spontaneous radiative decay of the excited state of atom B and going
beyond the standard perturbation theory, we should replace the infinitesimally small
parameter 7 in (2.19) by the finite total decay width T'™ of the intermediate state
(2.11), which accounts for the finite lifetime of this state, leading to

_'MAm oo )
Am b — G AB / dt Am be.t zwAt. 2.9

The total width T2™ consists of the radiative width T'Z and two-center autoioniza-

tion width I'2™ according to

ram =B pam, (2.21)
In (2.21), the radiative width due to the spontaneous radiative decay of the excited
state x. is given by

3
p_ Awp

IV = @’ (Xel € Ixg) I” (2.22)

and the two-center autoionization width arising due to the nonradiative decay of the

excited state x. via interatomic electron correlations reads

K, .
ram = o [ 0 M3 (2.23)

with k, = \/2(wp + ¢,) the absolute value of the momentum of the emitted electron

evaluated at the resonance and {2 the solid angle for electron emission.

In fact, it is more reasonable to consider the amplitude (2.20) in momentum space.
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In general, for collisions between the projectile ion P and the A — B system, the
Fourier transform of the transition amplitude to momentum space and its inverse

can be written as

~ 1 .
S(qL) = 7 /d2b S(b)el1+?,
1 ~ .
S(b) = 5 /dqu_ S(gy)e "Lb, (2.24)

Here, q, describes the perpendicular part of the momentum transfer between the

projectile P and the A — B system in the collision.

Using the first equation in (2.24), the amplitude for two-center impact ionization in

momentum space is obtained to be
5 1 ‘
Sy(au) = %/d%’B Sy (bp)e - bm, (2.25)

Now, inserting (2.20) into (2.25), we arrive at

~ 1 — i MAm . o0 ,
SAm - AB /de iq) -bp / dt Am bn.t ’LU.)At‘ 2.96

In order to continue, we have to specify the matrix element M%5™, which is defined in
(2.17) and enters equation (2.26). To do so, we apply the interaction W from (2.5),
where the vector potential Ap is expressed via the scalar potential ¢ according to

(2.6). Then, the matrix element M45™ becomes

o5 . 1 R
2V Pe + 22V [Peds] — 05

Mém = <Xe

Xg>- (2.27)
We want to remind that the Liénard-Wiechert potentials from (2.6) satisfy the

Lorenz condition 0,A%; = 0 with the four-potential A%, = (¢p, Ap). It is easy to

show that this condition can be rewritten as v - [ﬁgqﬁg} = i%. Inserting the latter
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term into (2.27) provides

R 0

Am
M5" = <Xe 2¢2 Ot

Xg>. (2.28)

Next, we insert the matrix element (2.28) into the amplitude (2.26) and get

. 1 —iME® :
SAm — AB /de iq) -bp
2" (q1) 2wy — wpg + 2™ /2 B e

> qu ~ ZagbB WA
<"/ dt{c—?”"’“@w—% e

Using integration by parts for the second time integral in (2.29), where we suppose

Xg>. (2.29)

that the scalar potential ¢p vanishes at the boundaries ¢t = 00, yields

. 1 —iM~ER :
SAm - AB /d2b iqy -bp
¢ (q_L) 27TWA—WB—|-iFAm/2 B¢

X / dt <xe¢3(v'pg+w—é—1>

c? 2¢
In (2.30), we express the remaining matrix element in its explicit form as a space

Xg>eiwf‘t. (2.30)

integral over the coordinate & and insert the scalar potential ¢p from (2.6). Subse-

quently, the amplitude 32%7” reads

- 7 _ 5 Am 00 . ‘
S2ACm<QJ_> = Rl ZMAB /deB/ dt/d3£ eltu_-bBezwAt

21 wy — wp + 104 /2

vPe | wa _
c? + 2c2 1

G b G =l

(2.31)
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Applying some simple manipulations, (2.31) can also be written in the form

. Z —IMAE >
S (aL) = 5— LrAD / d*bp / d(~yvt) / d*¢

B 2w — wpg +il'A™ /2

la-6o+2406) (v
il (€ —bayt g ] € (T 4 5 — 1)

© V(€L —bp)?+2(g —vt)?

Xo-(2.32)

Taking into consideration that s;(t) = (€1 — bp,v(§) — vt)) = (s, s’BH), we can
rewrite the integrals over bp and vt in (2.32) into integrals over sj, and sp,

respectively. Further, we define the vectors

q= <qJ_7u;_A> = (qJ_7Q||)7

WA
q/ = (QJ_7 %) = (qu CI|,|>7 (233)

where g and q’ describe the momentum transfer from the projectile ion P to the
target atom B as viewed in the rest frame of the target and projectile, respectively.
Then, the amplitude (2.32) becomes

SAm(qJ_) _ Zp _ZMﬁgl /dQS/ /OO ds' /d3£ e—i[qJ_-s/BJ_—l-q"‘s’BH]
¢ 2T wy — wp +i0A™ /2 BL ) B

3 . + ’U-ﬁg
*ez[t;u_ €L Q\|£|\]<C_2 + 62% _ 1)
X Xe ;2 , 2 ng
\/SB1 T 5B

which can be further simplified to two decoupled three-dimensional integrals accord-

(2.34)

ing to
Zp _ —iMRE

2TV Wy — WR +’iFAm/2

e e[V P w
x / sy — / &g ><:e“1f(7p5 + A - 1)xg- (2.35)

B

SzAcm(QJ.) =
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In (2.35), the sz-integral can be calculated straightforwardly and its solution is

given by

—ig'-s’ 4
/d?’sjge N (2.36)

! 12
Sg q

Besides, we introduce the notation

igg( Y Pe WA
e ( c? +202 1)

y p
/d3§ qﬁ( Cgﬁ+@—1>xg. (2.37)

Employing (2.36) and (2.37), the transition amplitude in (2.35) reads

Fo"a) = <Xe

2Zp M%gfeAgm<q)
wq?wa — wp + i0A™ /2

SsMay) = (2.38)

Finally, using (2.38) and taking into account that Am € {0, +1}, the total transition
amplitude for two-center impact ionization in momentum space is obtained to be
1

MEEFE™ (@)

2Zp
Sac(qu) Z Ss(qu) Z TAm /9"
AT Am:—1 wa —wpg +il'Am /2

(2.39)

2.1.3 Amplitudes for direct impact ionization of atoms
A and B

Within the first order of time dependent perturbation theory, the transition ampli-

tude SA(ba) for direct impact ionization of atom A in (2.12) can be written as

Shba) =5 [ dt (0ul1Wa(bait) o) (2.40)

[e.9]

with the interaction W, between the projectile ion P and atom A given by (2.5).

Again, it is more convenient to consider the amplitude (2.40) in momentum space
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by taking advantage of the first equation in (2.24), which provides
~ 1 A
Shlar) = 5= [ dba Slbajen (2.41)
T

At this point, one can perform a quite similar calculation to (2.25) - (2.38) in the
previous Section and the resulting transition amplitude for direct impact ionization

of atom A in momentum space is given by

‘Fkg (q)eiqARv (242)

where

]f?%q)=:<¢k

iq-r v - ﬁ WA

w(cf+@—0%> (2.43)
We note that in (2.42), g and q’, which are formally defined as in (2.33), now refer
to the momentum transfer from the projectile ion P to the target atom A (instead

of B) as viewed in the rest frame of the target and projectile, respectively.

Accordingly, the transition amplitude S5(bpg) for direct impact ionization of atom

B in the first order of time dependent perturbation theory is determined by

o0

]. ~ . ion
SB ) =5 [ dt Gl Wb, ) ) 5" (2.44)

—0o0

Here, the interaction Wy between the projectile ion P and atom B is given in (2.5)
and wig™ = €, — €, is the transition energy for the bound-continuum transition in
B. Applying the first equation in (2.24), the amplitude (2.44) in momentum space

reads
- 1 |
Shas) = 5 [ #bn Sh(bayea- . (2.5)

As before, one can perform a rather similar calculation to (2.25) - (2.38) in the

previous Section. Then, the transition amplitude for direct impact ionization of
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atom B in momentum space is obtained to be

SHla) = BT ) (2.46)

with
Fol(ap) = <xn eifo(v;—f’ﬁ + 2?2 — 1> Xg> (2.47)

and

wion
qs = (qJ_, “ > (2.48)

where gqp and g% are the momenta transferred in the P — B collision resulting
in ionization of atom B as viewed in the rest frame of the target and projectile,

respectively.

2.1.4 Cross sections for impact ionization of atom A

The spectrum of electrons emitted from atom A is characterized by the cross section

differential in the electron momentum

d*opiac 1
a2

3/d2ql Sh(qL) +Sac(gL)l’ (2.49)

with the integration running over the plane of perpendicular momentum transfer.

The cross section in (2.49) can be divided into the sum

3 3 LA 3 3
d OD+2C d Op d’ooc d°Cingert.

= 2.50
dk3 dk3 dk3 dk3 (2:50)
where
d*ofs 1 ~
= d*q, |SA 2 2.51
= e [ e 1Shan) (2.51)
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and

d3c 1 .
dkffac ~ (2n)? /dQQJ- [Sac(g)l? (2.52)

describe the partial contributions of the direct and two-center ionization mecha-

nisms, respectively, and the term

dSUin erf. 1 SA Ox SANE &
dk:; "= (27)3 / Pqu (SpSic +(S5p)"Sxc) (2.53)

arises due to the interference between the direct and two-center ionization channels.

The resonant nature of the two-center mechanism leads to the conjecture that in
the small range wp + ¢, — ['*™ < & < wp + &, + ['2™ of electron emission ener-
gies, centered at the resonance energy €, = wp + ¢, and having a width of a few
2™ only the second term in (2.50) will be important. Indeed, we have performed
numerical calculations! which show that, close to the resonance, the direct term
(2.51) and interference term (2.53) are several orders of magnitude smaller than the
two-center term (2.52). Moreover, these calculations also show that in the range of
emission energies far away from the resonance, the direct channel is the dominant
ionization mechanism and only the first term in (2.50) is important. Consequently,
interference between the direct and two-center channels is expected to be overall of
minor importance and the interference term (2.53) in the cross section (2.50) can,

in good approximation, be neglected.

Inserting (2.42) into (2.51) and (2.39) into (2.52) yields

(2.54)

Popy _ 2 [ Vi@l
dkd 2w | ¢ 9E

= q/4

'In particular, we have compared the energy emission spectra associated with the cross sections
given by (2.51), (2.52) and (2.53) for ionization of the Li-He dimer by proton impact with electron
emission from the 2s ground state in Li and two-center ionization involving the 1s?> — 1s52p dipole
excitation transition in He.
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and

—~  MipFLm@) |

Z _ T Am ’
N—— WA wp + i /2

(2.55)

dk3 27T3U2 q/4

respectively.

Now, rewriting dk® = \/2e,de,dQ, the direct and two-center ionization cross section

differential in the emission energy and solid angle is given by

|2
o _ ZIQD@ 2 |]:ch9 (Q)‘

= 2.56
depd /2302 qL 7 (2.56)
and
43 72 1 1 MAm.FeAm 2
020 Zp\Ek Pq —| Y ABF ey (9) 7 (2.57)
depdQy /27302 g wa —wp +il'Am/2

Am=—1

respectively. Here, the quantities 2" (q) in (2.56) as well as M2% and F5™(q) in
(2.57) depend on the diatomic system under consideration and they are discussed
in Appendix 9.2.

Furthermore, the energy distribution of emitted electrons is described by the cross

section differential in the emission energy, which reads

dos d3o4
—= = [ dQ 2.58
dék / k de’fdek ( )
and
doyc / o
= [ dQ) 2.59
dEk § dEdek ( )

for direct and two-center ionization, respectively.

Finally, the corresponding total cross sections can be obtained according to

A
do?,

A
op = d€ I 260
b /0 . dek ( )
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and

> dO’QC
Ooc = de . 2.61
o [ da (2.61)

2.1.5 Cross section for impact ionization of atom B

The spectrum of electrons ejected from atom B, which solely arises due to the direct
impact ionization of B, is determined by the cross section differential in the electron

momentum

d3oB 1 ~
= e [ e 1SE @ (262)

Substitution of (2.46) into (2.62) provides

(2.63)

P B[ g, a0

de3 21302 s

Taking advantage of dk3 = \/2¢,.de,.dQ,, the direct ionization cross section differ-

ential in the emission energy and solid angle becomes

m 2
deodQy /271302 a5 g '

where ]-",fgm(qg) depends on the diatomic system under consideration and is dis-
cussed in Appendix 9.2. The corresponding energy differential and total cross sec-

tions can be calculated via

doB d3oB
= [ dQ,, ———— 2.65
de,, / de . dS2,, ( )
and
o doB
= de, =2 2.66
b= [ e P (2.66)
respectively.
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2.1.6 Analytical cross sections for two-center impact

ionization

Now, we derive simple approximate formulas for the two-center impact ionization
cross sections which are expressed via local atomic quantities for the individual atoms
A and B accessible from the literature. In an approximate manner, we suppose that
there is only one intermediate state W, of the diatomic system and thus only one
dipole transition in B. Then, the two-center cross section (2.57) differential in the

emission energy and solid angle simplifies to

Popr TR MEp 2 / £q, Ta @
derdQ /271302 (wa — wp)? + ([A™m)2/4 q*

(2.67)

Using /ex = k/+/2 and performing some basic manipulations, (2.67) can also be

written in the form

Bofr ok | MEm 2 ( / . 2ZpF"(q)

ivq’2

2
= : 2.68
de’fdek (271')3 (wA — w3)2 + (FAm)2/4 ) ( )
Here, the last term in the brackets represents the direct excitation cross section

B,Am
exc

o for atom B by ion impact and the remaining term refers to the probability that

the de-excitation of B results in ionization of A. Finally, the two-center ionization

cross section differential in the emission energy and solid angle is obtained to be
dSUQACT'n k ‘Mﬁgp B,Am

- : 2.69
deydQy  (2n)? (wa — wp)? + (DAm)2/4 e (2.69)

For determining the energy distribution of emitted electrons, we have to integrate

equation (2.69) over the solid angle €, for electron emission according to

dosin 1 gB,am k Ami12
— = — cexe ds? w . 2.70
dep, 27 (wa —wp)? + (TA™)2 /4 \ (27)? / k [Mi ( )

We remind that due to the resonant nature of the two-center mechanism, the cross
section in (2.70) noticeably contributes to the ionization of atom A only in the tiny

interval wp +e, — 2™ < g, S wp+e,+ 2™ of electron emission energies, centered
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at the resonance energy e;, = wp + ¢, and having a width of a few I'*™. Within
this energy range, the last term in the brackets in (2.70) is almost constant with
respect to €. Thus, we may evaluate this term in very good approximation at the
resonance energy €. corresponding to the resonant value k, = \/m of the
momentum of the emitted electron, such that it takes the form of the two-center
autoionization width I'2™ given in (2.23). Taking this into account, the two-center

ionization cross section differential in the emission energy results in

dUQACT'n 1 I_‘CLAWL B,Am
e - o
dey, 27 (wa — wp)? 4 (['Am)2 /4 ¢

(2.71)

In order to obtain the total cross section for two-center ionization, we have to inte-

grate equation (2.71) over the emission energy ¢ according to

Am B,Am
Am LMo 1

— exc d .
720 27 /; “k (wA — w3)2 —+ (FAm)Q/Zl

(2.72)

The integral in (2.72) is solved by substituting u = wy —wp = ¢, — ¢, —wp and
afterwards taking advantage of the fact that the resulting integrand only contributes
to the integral in a very narrow interval —I'A™ < u < '™ g0 that the lower
integration boundary —(e, + wp) can be extended to —oo. Then, the total two-

center ionization cross section becomes

am L™ Bam
o = hoBn, (273)
It is worth mentioning that the above expression has a particularly simple physical
meaning, where the total cross section for two-center ionization of atom A by ion
impact is the product of the impact excitation cross section of atom B times the
corresponding branching ratio between the two possible pathways (nonradiative two-
center autoionization and spontaneous radiative decay) of the de-excitation of B.

To conclude this Section, we will show that the quantities |[M2%%|* and T5™ in

(2.69), (2.71) and (2.73) can be rather simply expressed via the photoionization

cross section o7, of atom A by a photon of frequency wp and the radiative width
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['B of the excited state of atom B. Using (2.4) and (2.16), we obtain

M3™ . R)(MA™ - R)\ 1 — iR2=
MAB :e - |:(M Mﬁm_ 3( A R)( B R)) ¢ c

R? R3

)2], (2.74)

(e nage - (M3" - R)(Mj™ R>>(

wB
R? R
where M3™ = (¢g|7|0,) and ME™ = (x,| € |x.) are the (local) dipole transition
matrix elements for atoms A and B, respectively. Next, we separate the bound

states of A and B into radial and angular parts according to

Pratama (T) = Rf{; (T)YQZ%A (797‘7 907')’

Xnplpmp (£> - quBB (f)YE:B (1957 @5)‘ (275)

Here Ri{j is the radial part and Yl:nj the angular part (described by the spherical
harmonics) of the electronic state of atom j and (n;,;,m;) is the set of principal,
orbital, and magnetic quantum numbers of j (j = A, B). The separation into radial
and angular parts is also considered for the continuum state of the emitted electron

which, accordingly, can be written as

2”2 e i0i RlA Z Y™ (O ) [V (O 00)] s (2.76)

14=0 ma=—lz

where RLA is the radial function of the continuum state and e~ is a phase factor.
In (2.76), we only keep the term in /4 leading to the strongest dipole-allowed bound-
continuum transition in atom A. Inserting the states (2.75) and (2.76) into (2.74)

and performing the integrations over all the angles U, p,., U¢, @, we get

2.2
s rYTh

IMET? = AAm(R Qp, wp) o

(2.77)

Furthermore, substituting (2.77) into (2.23) and calculating the Qg —integral, the
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two-center autoionization width reads

8 (7’2 )k:k 7’2
FAm _ " A r B'

(2.78)
In (2.77) and (2.78), ra = [;°dr 1Ry Ry, and v = [ d€ 3R Rz are the radial
matrix elements for the ionization of A and the de-excitation of B, respectively.
Besides, Aa,, and Ba,, are geometric factors, depending on the internal structure
of the two-center system, which are discussed in Appendix 9.3. Now, we can express
7% and r% via the photoionization cross section os; of A by a photon of frequency

wp and the radiative width T'Z of the excited state of B, respectively, according to

3 ck
Ti:%@ffﬁf(wB)a

9/ ¢ \*
2—-Z(—) s 2.79
B=4() (279)

Finally, inserting (2.79) into (2.77) and (2.78), we obtain

1/ c\*
IMAE? = Aam(R, QmwB)E(E) 2648, (wp) (2.80)
and
o\
2™ — Bam(R, wp) (E) IBo5(wp). (2.81)

2.2 Numerical results and discussion

In this Section, we present the results of numerical calculations for direct and two-
center impact ionization cross sections based on the theoretical treatment considered

in Section 2.1.
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2.2.1 Properties of the relativistic charged projectiles

In what follows, we set the projectile charge Zp = 1 and thus consider the single
ionization of a diatomic system by proton impact. Within the first order of pertur-
bation theory, ionization cross sections for projectile-target collisions depend on the
projectile charge as Z% and are independent of the projectile mass. For this reason,
as long as the first order perturbative condition Zp/v < 1 is satisfied, the numerical
results calculated for projectiles with Zp = 1 can easily be generalized to collisions

involving bare ions with Zp > 1.

Furthermore, concerning impact ionization by relativistic electrons, the momentum
und energy transfers from the electron to the target atom are negligibly small com-
pared with the initial momentum and energy of the projectile electron. Besides,
the projectile electron and atomic electrons have essentially no overlap in the phase
space. Consequently, the results obtained for collisions with proton projectiles can

directly be applied also to collisions with electron (or positron) projectiles.

2.2.2 Properties of the diatomic targets: The Li-He and

Ne-He dimers

As diatomic targets, we may consider two heteroatomic Van-der-Waals molecules

namely the Li-He dimer? and the Ne-He dimer.

In Li-He, both atoms are very weakly bound by the Van-der-Waals force resulting
in a binding energy of just ~ 0.5 ueV [54] which is considerably smaller than the
first ionization potentials of Li (I = —e, = 5.39 ¢V) and He (I = —¢, = 24.59 eV).
The mean distance between Li and He is rather large at ~ 28 A (~ 53 a.u.) |54
while their equilibrium distance is ~ 6 A (=~ 11 a.u.) [55]. For the two-center
ionization of the Li-He dimer, we only take into account the channel involving the
15> — 1s2p transition in He with an energy wp = 21.22 €V, which is the first
and strongest dipole-allowed transition in He. The resonance energy of the emitted

electron corresponding to this transition is given by €5, = wp + ¢4 = 15.83 eV. In

2There exist two Li-He dimers, “Li-He and 5Li-He (with binding energies of 5.6 mK and 1.5 mK,
respectively), the former of which is about four times stronger bound than the latter. Because "Li
is much more abundant on Earth than %Li, we only consider “Li-He dimers in this thesis.
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addition, the radiative width of the excited 1s2p state in He is I'? = 7.44 x 107¢ eV
[56] and the partial photoionization cross section for the 2s subshell in Li determined
at wp is 04;(21.22 eV) = 7.64 x 10720 ¢cm? [57].

In Ne-He, both atoms are weakly bound by the Van-der-Waals force with a binding
energy of ~ 2 meV [46] that is four orders of magnitude smaller than the first
ionization potentials of Ne (I, = —¢, = 21.56 €V) and He (Ip = —¢, = 24.59 eV).
The equilibrium distance between Ne and He is ~ 3 A (~ 5.7 a.u.) [46] and the
mean distance is close to the equilibrium one. Concerning two-center ionization of
the Ne-He dimer, we only consider the channel based on the 152 — 1s3p transition in
He with an energy wp = 23.09 V. This transition is the first (and strongest) dipole-
allowed transition in He for which the transition energy is larger than the ionization
potential of Ne (and which has proven [46] to be highly efficient for photoionization
of the Ne-He dimer). The associated resonant electron emission energy is e, =
wp + g4 = 1.52 eV. Besides, the radiative width of the excited 1s3p state in He
is given by T'Z = 2.34 x 1075 eV [56] and the photoionization cross section for Ne
evaluated at wg is 05;(23.09 eV) = 7.05 x 10718 cm? [57].

In contrast to Ne-He, the mean size of Li-He (= 53 a.u.) significantly differs from
its equilibrium size (=~ 11 a.u.). Due to the strong dependence of the two-center
cross sections on the interatomic distance R, the question naturally arises which
values of R should be taken in order to provide theoretical predictions allowing for
experimental verification. In case of reactions involving fast electronic transitions
in a dimer resulting in its breakup, the measurement of the kinetic energies of the
reaction fragments often enables one to determine fairly accurate values for the
magnitude of the distance R at which the process took place. Indeed, based on
the results of a recent study [58], we can expect that the most likely outcome of
two-center impact ionization, which we consider in this work, will be a breakup of
the Li-He dimer into Li* and He fragments. But it can also be concluded from
the results in [58] that there is no one-to-one correspondence between the kinetic

energies of the fragments and the interatomic distance R.

Taking all this into account, we shall only consider cross sections for the two-center

ionization of the Li—He dimer which are averaged over the size of its vibrational
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ground state according to
O aver :/ dR o(R)|¥o(R)|*. (2.82)
0

Here, o(R) is a cross section evaluated at an interatomic distance R and Wy (R) is
the wave function of the molecular ground state of the Li-He dimer. Using results

of [59,60], the wave function Wy(R) can be approximated by

Wo(R) = —O‘(? (;)1)6—2/2,2(”-1)/2 (2.83)

with k = \/85?, 2 = ke ®WB=Red) ) — 462 x 10° a.u. the reduced mass of Li-He
and the fitting parameters R, = 11.9 a.u., D = 5.7 x 107% a.u. and o = 0.43 a.u.
Note that we consider the interatomic interaction in the dipole-dipole form (2.4)
which is only valid at sufficiently large interatomic distances. Consequently, the
lower boundary R,,;, of the integration over R in (2.82) should effectively not be 0
but instead fulfill the condition R,,;, > 1 a.u. However, introducing such a lower
bound is no major issue due to the very rapid decrease of the probability density
|Wo(R)|* with decreasing the interatomic distance R in the range R < 10 a.u. Indeed,
according to our calculations, the difference between results obtained by setting
Rpin = 1 a.u. and R,,;, = 10 a.u. does not exceed 1% — 16 % (depending on the

type of cross section being averaged).

2.2.3 Analytical cross sections for He, Li and Ne

Concerning the diatomic systems Li-He and Ne—He as well as the single atoms He, Li
and Ne, we have performed two different sets of numerical calculations for obtaining
ionization cross sections. The first one is based on the results of the theoretical
approach shown in Secs. 2.1.1-2.1.5. The second set of numerical calculations
employs approximate analytical formulas for direct and two-center ionization cross
sections. In particular, the cross sections for the single ionization of atoms are
calculated by using the relativistic Bethe formula. The same formula can also be

applied to obtain atomic excitation cross sections, the latter of which are needed
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in order to calculate the approximate two-center ionization cross sections given in
Section 2.1.6.

The relativistic Bethe formula for cross sections for excitation and single ionization

of atoms can be written as (see, e.g. [61])

81 7% yv v?

=—LIM{In(—)|-=—=3s+C 2.84
7 v? [ { " ( c 2c? * (2.84)
and is known to provide quite accurate results starting with impact energies of a

few MeV/u. We note that expression (2.84) was derived within the first order of

time-dependent perturbation theory in the projectile-target interaction.

In (2.84), the parameters M? and C depend on the internal structure of the atomic
target. They can be specified for the ionization from individual subshells and for
discrete excitation transitions between two subshells. We have extracted experi-
mentally determined values for M? for the 2s and 2p subshell ionization of Li and
Ne from [62], obtaining My, ,, = 0.515351 and Mg, ,, = 1.519, respectively. How-
ever, in the literature we could not find any experimental or theoretical data for the
parameter C' for these atoms. As a reasonable alternative, we have calculated the
parameter C' within the scope of the relativistic binary-encounter-Q (RBEQ) model
from [63] by taking advantage of the known experimental values for M? which yields
Crigs = 3.49 and Cycgp = 5.89. Considering He, there exist accurate theoretical
values for the parameters M? and C for discrete 1s> — lsnp (n = 2,3) excitation
transitions [64] (M, 1,0, = 0.177, Che 152y = 0.82825, My = 0.0433 and
Che1s—3p = 0.20338) as well as for the ionization from the 1s* ground state [65]
(Mée,u = 0.489 and Cye 15 = 2.763).

e,1s—3p

It is worth mentioning that the RBE(Q model also includes an analytical expression

41



— CHAPTER 2. IONIZATION OF A WEAKLY BOUND DIATOMIC SYSTEM
BY RELATIVISTIC CHARGED PROJECTILES —

for the cross section differential in the electron emission energy e, which reads [63]

dop 27 Np Q-2 1 1 1+ 2t
de — ABF+BHY | t+1 \w+1 t—w/)(1+1/2)?

1 1 (b)?
-0 e

w (2
1 L) — 87— In(2b 2.85
() - owen]l e
where t = Ep/Iy, w = ¢/Ip, t' = Ep/?, b = Ip/c?, By = /1 —(1+1t)2 3 =
V1= (14+¥)2 Q=4I M?/Ny and W = Q/(w + 1)® with Ep the impact energy
of the projectile, I the ionization potential of the target atom, N the number of

bound electrons in the atomic subshell under consideration and M? the parameter
which was discussed above. Equation (2.85) can be used in order to calculate the

energy differential cross sections for the direct impact ionization of He, Li and Ne.

2.2.4 Angular distributions

In the following Section, we evaluate the angular distribution of electrons emitted
from the diatomic system having the resonance emission energy e, = wp + &
at which the ionization cross section is largely dominated by two-center impact
ionization of atom A. (Moreover, as we will see in Section 2.2.6, the two-center
channel may strongly dominate the total electron emission in the range of emission

energies centered at the resonance energy and being as broad as de; ~ 1 eV.)

For exploring relativistic effects in the angular distribution, in addition to relativistic
calculations, we have also performed nonrelativistic calculations in which we set

Cc — Q.

Note that according to both, the relativistic and nonrelativistic treatments, the
shape of the angular distribution is determined by a subtle interplay between the
amplitudes for two-center ionization involving ion impact excitation of the different
magnetic substates of the excited level of atom B. Since one cannot extract these

amplitudes from cross sections, the calculation method discussed in Section 2.1.6 is
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not applicable here. Instead, we employ the set of numerical calculations based on

the results given in Section 2.1.4.

In Fig. 2.2, we show the angular distributions of electrons emitted with the resonance

energy €. ~ 15.83 eV in the process of ionization of the Li-He dimer by 1 GeV
d’o
dé‘k sin ﬁkdﬁk

as a function of the polar emission angle ¥y, for a given (resonance) emission energy

protons. These distributions are described by the cross section considered

ex. We can draw three main conclusions from Fig. 2.2.

First of all, the angular distributions are symmetric with respect to the polar emis-
sion angle ¥, = 90°. This feature can be explained by the fact that the two-center
process is solely driven by dipole transitions (including those transitions which result
in the excitation of atom B and those leading to the subsequent energy exchange
between atoms B and A). It is worth mentioning that this symmetry feature is
absent in the direct ionization of A (or B) where the interference between dipole
and non-dipole (mainly quadrupole) transitions results in an asymmetry between
the forward (¥ < 90°) and backward (¥ > 90°) semisphere of electron emission

(with more electrons being ejected into the forward semisphere).

Second, at an impact energy of 1 GeV /u, corresponding to a quite moderate value
of the collisional Lorentz factor of v ~ 2.1, the shape of the angular distribution is
already strongly influenced by relativistic effects. The latter enhance the electron
emission into the transverse direction and reduce the emission into the longitudinal
direction with respect to the collision velocity v. Note that numerical calculations
for orientations of the dimer other than those considered in Fig. 2.2 show that such
redistributive action of the relativistic effects is present for any orientation of the
dimer (although its strength depends on the particular orientation). This feature
arises from the fact that in high energy ion-atom collisions, in which the motion of
atomic electrons is supposed to remain nonrelativistic, the main relativistic effect is
related to the flattening of the electric field created by the projectile ion, occurring
at impact velocities approaching the speed of light ¢ and being a consequence of the
Lorentz contraction of electromagnetic fields. This flattening, which was discussed
in detail in Section 1.3, increases the transverse field component E, (L v) and de-
creases the longitudinal field component E; (|| v), thus enhancing electron emission

in the transverse direction and reducing it in the longitudinal direction.
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Figure 2.2: (a) The angular distribution of electrons emitted with the resonance
energy from the Li-He dimer in collisions with 1 GeV protons. The

distribution was obtained by averaging over the size of the dimer and
is presented for the parallel (R || v, thick dashed) and perpendicular
(R L v, thick dotted) orientation as well as for the orientational average
(thick solid). In addition, the corresponding results in the nonrelativistic
limit (¢ — o0) are depicted by thin dashed, thin dotted and thin solid
curves, respectively. (b) The relativistic-to—nonrelativistic cross section
ratio shown for R || v (dashed), R 1 v (dotted) and the orientational
average (solid). This figure was originally published in Ref. [43].

Third, when averaging over the orientation of the dimer, the angular distribution
of emitted electrons turns out to be quite weakly dependent on the polar emission
angle being almost spherically symmetric. This implies that, in case of two-center
ionization, the angular momentum imparted into the initial system in the collision
(via the absorption of a virtual photon) on average mainly goes to the nuclei, which
results in the excitation of rotational degrees of freedom of the residual (Li—He)™
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system.

Furthermore, it is worth mentioning that the rather pronounced maximum of the
electron emission at ¥, = 90° for R || v and R L v on the one hand as well as
the very weak dependence of the electron emission on v, after averaging over the
orientation of the dimer on the other hand indicate that the shape of the angular
distribution has a non-trivial dependence on the angle g = arccos(R - v/Rwv).
Indeed, as additional numerical calculations show, for the angular ranges 0° < g <
18° and 63° < fr < 90° the angular distribution of emitted electrons has a maximum
at ¥, = 90° and two equal minima at 9 = 0° and ¥, = 180°, whereas for the range
18° < Or < 63° it has two equal maxima at U = 0° and J = 180° as well as a
minimum at ¥, = 90°.

In addition, the shape of the angular distribution for Li—He after performing the
average over the orientation of the dimer qualitatively differs not only from those
at R || v and R L v but also from the shape of the angular distribution for
ionization from an s state of a single atom, the latter of which is characterized by a
pronounced emission maximum at ¥ ~ 90° and very low electron emission in the
forward (U ~ 0°) and backward (¥ =~ 180°) directions. Hence, in the interval of
emission energies centered at the resonance energy and having a width of e, ~ 1 eV,
in which electron emission mainly proceeds via the two-center ionization mechanism
(as it will be shown in Section 2.2.6), the overall angular distribution of emitted
electrons will qualitatively differ from that typical for the ionization of single Li and
He atoms (and also from that of a Li-He dimer very far from the resonance where

the two-center channel is negligible).

Note that effects similar to those discussed for the Li—-He system also arise in the
impact ionization of Ne—He dimers. In particular, relativistic effects related to the
flattening of the electric field generated by the projectile ion tend to enhance elec-
tron emission in the transverse direction and reduce it in the longitudinal direction
with respect to the collision velocity v. Further, the angular distribution of electrons
emitted from Ne-He via the two-center ionization channel averaged over the orien-
tation of the dimer significantly differs from the angular emission spectra occurring

in the direct impact ionization of single Ne and He atoms.
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2.2.5 Energy distributions

In this Section, we discuss the energy distribution of emitted electrons for the pro-
cesses of direct and two-center impact ionization for the diatomic systems Li-He and
Ne-He. In Fig. 2.3, we present the energy distribution of electrons emitted from the
Li-He and Ne-He dimers via impact ionization by 1 GeV protons, which is given by
the cross section % evaluated as a function of the energy detuning 6 = wyx — wp.
More precisely, we display the two-center ionization cross section, determined by the
(incoherent) sum of partial cross sections (2.71) over all intermediate states W, of
the diatomic system, and the cross sections for the direct ionization of Li and Ne,

the latter of which were calculated by employing equation (2.85).

It can be seen in Fig. 2.3 that the two-center cross section has a resonant structure
with a maximum at the respective resonance energy ;. = wp + ¢, (~ 15.83 eV for
Li-He and = 1.52 eV for Ne—He). It rapidly decreases for electron emission energies
£k S €k,, where the width of the resonance is determined by the total decay width I
(which consists of the radiative width T'Z and the two-center autoionization width
I',). In contrast to this, the cross sections for direct ionization of Li and Ne are only

weakly dependent on the electron emission energy .

At the resonance and in a small vicinity of emission energies surrounding the res-
onant emission energy, the two-center ionization of atom A can exceed the direct
ionization of A by several orders of magnitude. Indeed, the ratio of two-center and

direct cross sections

(1) . dO’QC/d{:‘k

==/ " 2.
dUé/dEk ( 86)

evaluated at the resonance yields ~ 10° for Li-He and ~ 4 x 10* for Ne-He. However,
outside the resonant energy range, wp +¢, — I' S e, S wp + ¢, + I, the two-center
channel substantially diminishes and direct impact ionization is the dominating

ionization mechanism.

We note that for both diatomic systems, Li-He and Ne-He, the two-center cross
section in the relativistic treatment is about 7.5 % larger compared with the corre-

sponding cross section in the nonrelativistic limit (¢ — oo).
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Figure 2.3: (a) The energy distribution of emitted electrons considered as a function
of the detuning § = ws — wp for the Li-He dimer for two-center ioniza-
tion (solid) and direct ionization of Li (dashed) in collisions with 1 GeV
protons. The two-center distribution was obtained by averaging over the
interatomic vector R of the dimer. (b) The corresponding energy distri-
bution for the Ne-He dimer for two-center ionization (solid) and direct
ionization of Ne (dashed). The two-center distribution was calculated
by averaging over the orientation of the dimer for a fixed interatomic
distance R = 3 A . This figure was originally published in Ref. [43].

In our theoretical consideration, we treat dimers as diatomic systems consisting of
two independent atoms which interact with each other but otherwise keep their
identities. However, in reality, even a quite weakly bound dimer is a molecule and
thus the interaction between the dimer and the projectile ion will in general lead
not only to excitation of electronic states but also of vibrational (and rotational)
states of the molecular dimer. As a consequence, the energy spectrum of electrons
emitted from the dimer will be split into several emission lines corresponding to

the involvement of different vibrational (and rotational) states in the ionization
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process (see, e.g. [46,47,60]). Here, the electron emission lines will be rather close
to each other due to the fact that the molecular states have much smaller energy
separations than electronic states. For this reason, we expect that when averaging
the energy spectrum of emitted electrons over the energy interval which contains
all the emission lines it will correspond to that energy spectrum which is predicted
by our two independent atom model of the ionization process after averaging this

spectrum over the same energy interval.

2.2.6 Total cross sections

In the following Section, the total cross section for electron emission from the di-
atomic system by ion impact as a function of the projectile energy is considered.
Fig. 2.4 displays the dependence of the total two-center ionization cross section, eval-
uated as the (incoherent) sum of partial cross sections (2.73) over all intermediate
states W, of the diatomic system, on the projectile energy (per nucleon) Ep for the
Li-He and Ne—He dimers. Moreover, in this figure, we also show the corresponding

direct ionization cross sections for single Li, Ne and He atoms.

As it can be concluded from Fig. 2.4, the two-center and direct ionization cross sec-
tions of atom A possess the same asymptotic behaviour for high projectile energies.
This may be explained by two facts. First, according to equation (2.73), the energy
dependence of the total two-center ionization cross section is solely determined by
the energy dependence of the cross section for impact excitation of atom B and,
second, at high impact energies the cross sections for direct impact ionization and
(dipole-allowed) impact excitation have a rather similar dependence on the projectile

energy.

The overall effect of two-center ionization on the total electron emission from atom

A can be characterized by the ratio

020

5]

of total two-center and direct ionization cross sections. Evaluating (2.87) at Ep =
1 GeV /u provides ~ 3.8 x 107% and =~ 2.9 x 1072 for Li-He and Ne-He, respectively.
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Figure 2.4: The total cross section considered as a function of the projectile en-
ergy (per nucleon) E,. (a) Results for two-center ionization of Li-He
(thick solid) and direct ionization of Li (thick dashed) and He (thick
dotted). The two-center cross section was obtained by averaging over
the interatomic vector R of the dimer. In addition, the corresponding
cross sections in the nonrelativistic limit (¢ — oco) are presented by thin
solid, thin dashed and thin dotted curves, respectively. (b) Results for
two-center ionization of Ne—He (thick solid) and direct ionization of Ne
(thick dashed) and He (thick dotted). The two-center cross section was
calculated by averaging over the orientation of the dimer at a fixed in-
teratomic distance R = 3 A . Further, the corresponding cross sections
in the nonrelativistic limit are depicted by thin solid, thin dashed and
thin dotted curves, respectively. Part (b) of this figure was originally
published in Ref. [43].

Therefore, regarding the Li-He dimer, the two-center channel adds only very little
to the total electron emission from Li whereas for the Ne-He dimer, which has a
much smaller size, two-center ionization gives a more significant contribution to the

total emission from Ne. The relative overall weakness of the two-center mechanism
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for the ionization of Li—He is due to two main reasons. First, the size of the Li—He
dimer is much larger compared to the size of the Ne-He dimer which weakens the
atom-atom interaction. Second, in case of Li-He, the two-center resonance involving
the 1s2 — 1s2p dipole transition in He with a transition frequency of wp ~ 21 eV
results in the emission of electrons from Li with kinetic energy ¢, ~ 16 €V that is
about three times larger than the ionization potential of Li (I4 ~ 5 eV). On the
other hand, for Ne-He, the two-center resonance related to the 1s> — 1s3p dipole
transition in He with a frequency of wp ~ 23 eV leads to electron emission with
energy €, ~ 2 eV, which is very small compared with the ionization potential of
Ne (I4 =~ 22 eV). Further, it is known that in high energy collisions with charged
projectiles the majority of electrons emitted from the target have kinetic energies
that do not exceed their initial atomic binding energy. Consequently, comparing
the ionization of Li-He and Ne-He, the range of relatively large emission energies
~ 16 eV contributes much less to the total electron emission from Li than the range
of comparatively low emission energies ~ 2 eV contributes to the total emission from
Ne.

Although it has turned out that the two-center channel contributes quite less to
the total electron emission from atom A, we should mention the following interest-
ing fact. For obtaining the above discussed total cross sections, we naturally have
taken into account the whole range of electron emission energies upon integration.
However, if instead the integration is limited to an interval of emission energies
centered at the resonance energy €5, and having the width 6., ~ 0.5 eV, which is
much smaller than the effective width of the atomic continuum of A (~ 10 eV) but
several orders of magnitude larger compared to the resonance width, then the ratio
(2.87) of total two-center and direct ionization cross sections at Ep = 1 GeV /u be-
comes p?) ~ 174 and pu® = 200 for Li-He and Ne-He, respectively. Therefore, we
can conclude that in a small (6., ~ 1 eV) but experimentally very well resolvable
range of electron emission energies, containing the resonance energy, the two-center

ionization mechanism still largely dominates the direct ionization of atom A.

Up to this point, we only have discussed electron emission from atom A (via di-
rect and two-center impact ionization). Now, we also take into account the direct

ionization of atom B by ion impact, the latter of which also contributes to the to-
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tal electron emission from the whole diatomic system. The consideration of direct
impact ionization of B results in a decrease of the total number of neutral atomic
species B which are crucial for two-center ionization to proceed. However, this point
is of minor importance as long as the condition Zp/v < 1 is satisfied. Moreover, the
direct impact ionization of B may noticeably enhance the total electron emission
from the diatomic system, this way reducing the role of the two-center channel. To
get an idea about the contribution of two-center ionization on the total electron

emission from both atomic species A and B, we introduce the ratio

(3) _ _ %2
o+ o8B

(2.88)

of the total two-center cross section and the sum of the direct cross sections for A
and B. The ratio (2.88) is evaluated by considering only the interval of emission
energies centered at the resonance energy e;, and having the width J., ~ 0.5 eV
when integrating over the emission energy for obtaining total cross sections. At
a projectile energy of Ep = 1 GeV/u, we get u® ~ 8.3 for the Li-He dimer and
13 ~ 152 for the Ne-He dimer. These values may be compared with the ratio (2.87)
for the same interval of emission energies (and for the same impact energy) which
is given by u® ~ 174 for Li-He and p® = 200 for Ne-He as it is already known.
We can conclude from these numbers that the inclusion of electrons ejected from
He to the total electron emission reduces the relative contribution of the two-center
channel for both diatomic systems. For Ne-He this effect is quite weak while for
Li-He the relative contribution of two-center ionization is greatly reduced (but still
highly visible). To get even more information on how electron emission from He
effects the total electron emission from the dimers, we look at the total cross section
for direct impact ionization of He which is displayed in Fig. 2.4. Over the range of
impact energies shown in this figure, the total cross section for direct ionization of Li
is between 15 % and 37 % larger than that of He while the direct cross section for Ne
is significantly larger compared with that for He, dominating the latter by a factor
of 1.62 to 2.65. Consequently, regarding the Li-He dimer, the electron emission from

He cannot be neglected whereas for the Ne-He dimer it is not too important.

The total two-center and direct impact ionization cross sections in the relativistic
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treatment, shown in Fig. 2.4, grow logarithmically starting with projectile energies
of a few GeV /u that is a typical relativistic effect observed for any dipole-allowed
transition and being once again related to the flattening of the electric field of the
projectile ion, which occurs at impact velocities approaching the speed of light c.
On the other hand, in the nonrelativistic limit (¢ — oo) the flattening of the field
disappears and so does the logarithmic growth of the considered cross sections, the

latter of which now simply saturate at highly relativistic impact energies.

2.2.7 Retardation effect in two-center impact ionization

Finally, in this Section, we consider the role of the retardation effect in the diatomic
system that results from the finite propagation time of the electromagnetic field
which transmits the interaction between atoms A and B. In Fig. 2.5, we show the
total two-center impact ionization cross section, given by the (incoherent) sum of
partial cross sections (2.73) over all intermediate states W . of the diatomic system,
multiplied by R® as a function of the interatomic distance R between A and B for
the Li-He dimer. When evaluating the cross section, we either use the retarded

dipole-dipole interaction (2.4) or its instantaneous limit (1.6).

Based on our detailed discussion of the retardation effect in diatomic systems in
Section 1.3, this effect can be neglected as long as T' < 7, where T = R/c is
the time necessary for the electromagnetic field to propagate between the atoms
and 7 = 1/wg is the electronic transition time. In this case, the field propagates
essentially instantaneously and the instantaneous interaction (1.6) may be applied in
very good approximation. In contrast, if 7' >> 7, the finite propagation of the field
becomes important, the retardation effect significantly influences the interatomic

interaction and the latter has to be considered in its retarded form (2.4).

Accordingly, a simple estimate for the importance of the retardation effect in di-

atomic systems is given by the magnitude of the ratio
n=T/T =wpR/c (2.89)
of the propagation time 7" and transition time 7. Regarding two-center ionization

of the Ne—He dimer, whose size is relatively small, this ratio evaluated at R ~ 3 A
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Figure 2.5: The total cross section for the Li—He dimer multiplied by R° as a function
of the interatomic distance R at Ep = 1 GeV/u using the retarded
dipole-dipole interaction (2.4) (solid) and the instantaneous interaction
(1.6) (dashed). The cross section is averaged over the orientation of the
dimer. This figure was originally published in Ref. [43].

and wpg ~ 23 eV provides 1 =~ 0.04 that is quite small. Hence, the retardation effect
is expected to be negligible, which also follows from our calculated total two-center
cross section. Concerning two-center ionization of the Li-He dimer, whose mean size
is much larger compared with that of Ne-He, the ratio (2.89) evaluated at R ~ 28 A
and wp ~ 21 eV yields n = 0.3. For this not very small value of 1 one could
expect a noticeable retardation effect. However, different to this simple estimate,
the retardation effect on the calculated total two-center cross section in fact becomes
only important at interatomic distances R which are significantly larger than the
mean size of Li-He (see Fig. 2.5) and when we average over the size of the dimer,

the retardation effect on the cross section gets very small being below 1 %.

Note that rather than focusing on very large dimers with relatively low transition
frequencies (like the Li-He system) perhaps a more feasible way of highlighting
retardation in two-center ionization of a diatomic system would be to consider ion-

ization of a relatively small dimer but involving much larger transition frequencies.
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In order to get an idea of the importance of the retardation effect on the two-center
ionization in such case, we suppose that the active electron in atom B undergoes
a dipole-allowed transition between two atomic states, in which it is effectively re-
stricted to the space region around the nucleus of B having a linear size ag. Then,
the dipole matrix elements of atom B will scale as ag while its transition frequencies
wp would scale as a]_;. Now, let ag ~ 0.1 a.u., so that wg ~ 10? a.u. In this case,
according to (2.89), the retardation effect on the interatomic interaction between
atom B and its neighbor atom A would become of relevance beginning already at
interatomic distances R as small as R ~ 1 a.u. Such simple estimate indicates that
the retardation effect in two-center ionization could become important in diatomic
systems where atom B contains tightly bound electrons and the two-center channel

involves excitation of such an electron.

2.3 Summary and concluding remarks

We have considered the single electron emission from a diatomic system, consisting
of two weakly bound different atomic species A and B, in relativistic collisions with

charged projectiles represented by bare ions.

In systems, in which the ionization potential of atom A is smaller than an excitation
energy for a dipole-allowed transition in atom B, three single ionization channels
can occur: (i) direct impact ionization of A, (ii) direct impact ionization of B, and
(iii) two-center impact ionization of A. Here, channels (i) and (ii) describe the
well-known mechanism of direct ionization of a single atom by ion impact whereas
in channel (iii) ionization of A proceeds by impact excitation of B with subsequent
radiationless transfer of the excitation energy — via (long-range) interatomic electron

correlations — to A, leading to its ionization.

The theoretical treatment of collisions between the A — B system and the projectile
was based on the semiclassical approximation, where the relative motion of the
(heavy) nuclei is described classically while the active electrons are treated quantum
mechanically. The semiclassical approximation is very well justified at high impact
velocities. Further, the ionization channels (i)—(iii) were considered within the lowest

(possible) order of the time-dependent perturbation theory. On the one hand, we

o4



— CHAPTER 2. IONIZATION OF A WEAKLY BOUND DIATOMIC SYSTEM
BY RELATIVISTIC CHARGED PROJECTILES —

obtained the transition amplitude for the direct channels by applying the first order
of perturbation theory in the projectile-atom interaction. On the other hand, the
transition amplitude for the two-center channel was derived by employing the second
order of perturbation theory, in which both the interaction between the projectile
and atom B as well as the interatomic interaction between atoms A and B are

included.

We have used our theoretical approach to the ionization of diatomic systems by
impact of relativistic ions in order to study single electron emission from the Li-He
and Ne-He dimers. Concerning the Ne-He system, its mean size and equilibrium
interatomic distance are close (both being ~ 3 A) and thus the calculations were
carried out at a fixed value of the interatomic distance R = 3 A. In contrast, regard-
ing the Li-He system, whose mean size and equilibrium interatomic distance differ
considerably, the calculations were performed by averaging cross sections obtained
for a fixed interatomic distance R over the vibrational ground state of the dimer. A
couple of main conclusions can be drawn from our results for the ionization of these

dimers.

Relativistic effects related to the flattening of the electric field of the projectile ion
in the transverse direction (with respect to the incident direction of motion of the
ion), which arises as a result of the Lorentz contraction of electromagnetic fields
when the collision velocity approaches the speed of light, have turned out to be
significant in the ionization of a weakly bound diatomic system. However, the other
type of relativistic effect of interest for us, namely the retardation in the interatomic
interaction caused by the finite propagation of the electromagnetic field transmitting
this interaction, has proven to be negligibly small, even for the Li-He system where
one might expect a sizeable retardation effect due to the rather large mean size

(~ 28 A) of this dimer on the atomic scale.

In two-center ionization, the relativistic effects due to the flattening of the pro-
jectile’s electric field first and foremost impact the angular distribution of emitted
electrons by enhancing electron emission into the transverse direction and reduc-
ing it in the longitudinal direction (counted from the collision velocity v) and they
become substantial already at quite small values of the Lorentz factor v ~ 1 — 2.

In addition, these effects increase the magnitude of the energy spectrum of emitted
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electrons and the total ionization cross section. However, a significant increase may

only be visible at rather large values of the Lorentz factor v > 1.

Besides, at the resonance energy and in its close vicinity, the two-center channel is
by far the dominant ionization channel. It is so strong that it remains dominant even
when considering the range of emission energies centered at the resonance energy
and having a width J., ~ 1 eV, the latter of which is already orders of magnitude
larger compared to the resonance width. Note that these findings are in accordance

with the results for two-center impact ionization by nonrelativistic electrons [42].

To conclude this topic on the ionization of a weakly bound diatomic system by
relativistic charged projectiles, we take a brief outlook on possible experimental
verification of our theoretical predictions. The effects predicted in this study can,
for instance, be tested in experiments in which the Li-He and Ne—He dimer serve as
the diatomic target which is bombarded by a beam of high energy charged particles
(e.g. ions) exciting especially the 1s> — 1s2p and 1s®> — 1s3p transition in He in
order to trigger efficient two-center ionization of Li and Ne, respectively. Here, it
is worth mentioning that the Ne-He system (involving the 1s> — 1s3p transition
in He) was already successfully used in recent experiments on the related process
of two-center resonant photoionization in a weakly bound system [46,47| indicating
that this dimer could as well be a promising candidate for experiments on two-center

impact ionization.
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3 Radiation-field-driven 1onization
1n laser-assisted slow atomic

collisions

This chapter provides a detailed insight into the theoretical treatment of the single
electron emission in slow atomic collisions in the presence of a weak laser field via
two-center resonant photoionization driven by the coupling of the colliding system
to the radiation field when considering the fully relativistic interatomic interaction
which accounts for the retardation effect. We derive the reaction rate for this pro-
cess and compare the numerical results to those for two-center photoionization in the
nonrelativistic treatment where the retardation effect, allowing for the efficient cou-
pling to the radiation field, is not included and the interaction between the colliding
atoms is regarded as instantaneous. Besides, we also discuss the relative effectiveness
of two-center photoionization with respect to direct photoionization. The following

chapter is mainly based on results published initially in Ref. [50].

3.1 Theoretical consideration

3.1.1 The coupling to the radiation field

First, let us consider the relativistic dispersion relation of a particle with total energy

w, momentum q and rest mass mg, which is given by (see, e.g. [52])

W? = (lgle)? = (moc?)?. (3.1)
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The solutions of (3.1) determine the surface (the mass-shell) of a hyperboloid in
energy-momentum space and are referred to as being on-mass-shell. Accordingly, if
(3.1) is not satisfied, the phrase off-mass-shell is used. Equation (3.1) may also be

written in terms of the particle’s four-momentum ¢* = (w/c, g) according to
¢"q, = (moc)?. (3.2)

For a massless particle with my = 0, as it is the case for a photon, the on-mass-shell

condition (3.2) simplifies to
¢"q. = 0. (3.3)

Within the theory of Quantum Electrodynamics, atomic particles interact with each
other by exchanging virtual photons whose four-momentum ¢* obeys the off-mass-

shell condition

¢"q. # 0. (3.4)

Virtual photons are represented as inner lines between two vertices in Feynman
diagrams, where they can be thought of as being emitted at one vertex and absorbed
at the other. The concept of virtual photons works particularly well in systems in
which the interaction is relatively weak and the interacting particles are spatially
well separated. It can provide a detailed insight into the basic physics of many
different processes, including Forster resonance energy transfer [30], de-excitation
processes in metallic compounds [24,25], metal oxides [66], rare gas dimers [29] and
clusters [28, 67|, as well as ionization reactions occurring in fast atomic collisions
[68-70].

However, in some processes the kinematics of the particles allows the interaction be-
tween them to be transmitted also via the exchange of real (on-mass-shell) photons
whose four-momentum ¢* satisfies condition (3.3). In particular, due to the relativis-
tic retardation effect, taking into account the finite propagation of the interaction
between the colliding particles, the coupling of the particles to the quantum radiation

field becomes efficient. This enables the interaction to proceed via the exchange of
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on-shell photons, dramatically increasing its effective range, which may significantly
affect the characteristics of the process in question. As an example, the process of
electron-positron pair production in the collision of an extreme relativistic electron
with an intense laser field mainly proceeds via the emission of an on-shell photon, the
latter of which is converted in the laser field into an electron-positron pair [71]. In
addition, the exchange of on-shell photons can strongly promote projectile-electron
loss in high energy collisions with atoms [72] and excitation of ions by high energy

electrons in the presence of an intense laser field [73].

It is worth mentioning that there also exists a connecting bridge between the in-
teractions transmitted by off- and on-shell photons. For instance, the Weizsicker-
Williams approximation [74-76] exploits the fact that the electromagnetic field gen-
erated by an extreme relativistic charged particle, moving with velocities very closely
approaching the speed of light, becomes almost identical to the field of an electro-
magnetic wave. As a consequence, the effects due to the interaction of a relativistic
charged projectile with some system are in close correspondence to those effects re-
sulting from the interaction of equivalent photons with the same system and thus
the projectile’s field may be replaced by equivalent photons. This approximation is

well established in high energy physics (see, e.g. [52,77,78]).

The above examples of processes in which charged particles interact with each other
by exchanging on-shell photons as well as the discussed bridging regime belong to the
relativistic domain of AMO (atomic, molecular and optical) physics. However, in its
low energy domain the situation looks rather different, both for processes involving
weakly bound systems and collisional processes. For instance, important relaxation
mechanisms that occur in weakly bound systems, like interatomic Auger [26] and
Coulombic [27,79] decay, studied in detail during the last two decades in a wide
range of systems [35-38|, proceed via the exchange of off-shell photons whereas the
retardation effect and thus the coupling to the radiation field is unimportant for
these mechanisms (see, e.g. [80]). Note that we have drawn similar conclusions
in Section 2.2.7 regarding the two-step process of two-center impact ionization of
a weakly bound diatomic system whose second step is represented by interatomic
Coulombic decay. Here, we have seen that in the ionization of Li-He and Ne-He

dimers the retardation effect and hence the coupling to the radiation field plays
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essentially no role. Furthermore, textbooks suggest [81-83] that the coupling to the
radiation field is fully irrelevant for ionization and excitation processes taking place

in (not only slow but also quite energetic) nonrelativistic atomic collisions.

It is the main goal of this study to show that — contrary to expectations — the coupling
to the quantum radiation field can also strongly influence atomic processes occurring
at very low energies. As an exemplary process, we will consider two-center resonant
photoionization (2CPI) in slow atomic collisions, where ionization of atoms A occur
in slow collisions with atoms B in the presence of a weak laser field resonantly tuned
to electron transitions in B. For 2CPI in weakly bound systems, the retardation
effect and therefore the coupling to the radiation field plays essentially no role [45].
However, in the following we shall see that this is not the case for 2CPI in slow

collisions.

3.1.2 General approach

Let us suppose that a beam of atomic species A (e.g. ions or atoms) moves slowly in
a dilute and cold gas of atoms B, where both, A and B, are initially in their ground
states. The A — B system is exposed to a weak monochromatic laser field whose
frequency w is resonant to a dipole-allowed transition between the ground state with
energy €, and an excited state with energy e, of B. Further, we assume that the
ionization potential of atom A is smaller than the transition energy wp = €. — ¢,
for the excitation of atom B. In such a case, laser-induced electron emission from
atom A may not only occur via direct photoionization by its interaction with the
laser field but also via the indirect process of two-center resonant photoionization.
For a single pair of colliding atoms A and B, the latter process can proceed by the
following two steps. First, B undergoes a dipole transition from the ground state
with energy e, into the excited state with energy e, via (resonant) absorption of a
photon from the laser field. Afterwards, B de-excites to its initial ground state and
the energy excess is transferred, due to the long-range interatomic interaction, to A
which, as a result, undergoes a transition from its ground state with energy ¢, into

a continuum state with energy €. A scheme of collisional 2CPI is shown in Fig. 3.1.

According to the standard theories (see, e.g. [81-83]) of nonrelativistic collisions
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atom B W

atom B

Figure 3.1: Scheme of collisional two-center resonant photoionization (2CPI). This
figure was originally published in Ref. [50].

of light atomic species (where all the particles involved move with velocities much
smaller than the speed of light), the interaction between atoms A and B may be
approximated by its instantaneous Coulomb form. In this work, however, we perform
a relativistic calculation which incorporates the retardation effect accounting for the
finite propagation of the electromagnetic field that transmits the interaction between
A and B. This in turn allows the efficient (resonant) coupling of the A — B system
to the radiation field. In particular, as it follows from our consideration (and as
we will see later on), the coupling to the radiation field becomes efficient in the
narrow interval of resonant electron emission energies for which 2CPI proceeds via

the exchange of on-shell photons whose four-momentum ¢* satisfies the on-mass-
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shell condition ¢gq, = 0.

In what follows, we use the single-electron approximation in which only one active

electron in each atom A and B is considered.

Our treatment of atomic collisions is restricted to relative velocities v between
A and B that are much smaller than the typical orbiting velocities v, ~ 1 a.u.
(~ 2.18 x 10% cm/s) of the active electrons in A and B. If we assume a typi-
cal transition frequency wy; ~ 1 a.u. for the active electrons involved in collisions
of ground state atom A with ground state atom B, we obtain wy;/v > 1. Taking
into account the Massey adiabatic criterion (see, e.g. [84]), we can conclude from the
above condition that the impact excitation or ionization of atom A (or B) is strongly
suppressed upon collisions. Therefore, in slow collisions (v < 1 a.u.), effectively we

only have to deal with direct and two-center photoionization of A.

We apply the semiclassical approximation, in which the relative motion of the heavy
nuclei of A and B is treated classically while the active electrons are considered
quantum mechanically. Note that this approximation is well justified starting with
rather low impact energies £ ~ 1 eV /u (see, e.g. [81]) corresponding to collision

velocities v ~ 1072 a.u.

The overwhelming majority of electrons emitted by 2CPI via on-shell photon ex-
change originate from extremely distant collisions, the latter of which are of primary
interest for the present work. For such collisions, the electronic orbitals of atoms
A and B do not overlap, the interaction between A and B is weak and their nuclei

move practically undeflected along straight lines.

We choose a reference frame in which atom B is at rest and take the position of
its nucleus as the origin. In this frame, atom A moves along a classical straight-
line trajectory R(t) = b+ vt, where b = (b,,b,,0) is the impact parameter and
v = (0,0, v) the collision velocity.

Two interactions are involved in the process of 2CPI, namely the interaction of
atom B with the laser field and the (long-range) interatomic interaction in collisions
between atoms A and B. When calculating the transition amplitude for 2CPI, we
account, for both interactions by proceeding as follows. First, we derive the field-

dressed states of atom B in the presence of a resonant laser field. Afterwards, we
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calculate a first-order amplitude for 2CPI by considering collisions between atom A
and field-dressed atom B.

3.1.3 Field-dressed states of atom B interacting with a

resonant laser field

We start our consideration of 2CPI by deriving the field-dressed states of atom B
when it interacts with a weak laser field resonant to a dipole-allowed transition in
B. The field-dressed states W of B are solutions of the Schrédinger equation

OV (x,t) ~ .

v (Hp + Wg(1))¥(, 1), (3.5)
where the coordinate @ refers to the active electron in B and is given with respect
to the nucleus of B and

& (ﬁw)2 ZB

Hp = - — .
B 2 T (36)

is the Hamiltonian for the free (non-interacting) atom B with p, the momentum
operator for the active electron in B with respect to the nucleus of B and Zg the

effective nuclear charge of B. Further, in (3.5),

A

Wpg(t) = %AL(t) - P (3.7)

is the interaction of atom B with the laser field, where Ay is the vector potential
describing the field. We take the laser field as a classical monochromatic electro-
magnetic wave of linear polarization along the collision velocity v in the dipole
approximation, F'(t) = Fye, sin(wt) with Fy the strength of the field. In addition,
we use the so-called velocity gauge, in which the electric field F' is determined solely
by the vector potential A, according to F(t) = —%M. Then, the (classical)

ot
vector potential A associated with the field F' is obtained to be

Ap(t) = C—Foez cos(wt). (3.8)

w
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We consider a dipole transition between the ground state y, (with energy ¢,) and
an excited state x. (with energy €.) of atom B. The frequency w of the laser field
shall be resonantly tuned to the corresponding excitation energy wp = €. — €,. In
this case, the field-dressed (bound) states = of B can be written as

U (@, 1) = ag ()xg(®)e ™" + ag () xe(w)e ™" (3.9)

+
g

we suppose that the laser field is switched on adiabatically at ¢ — —oo and set
t

Here, a=(t) and a*(t) are time-dependent coefficients to be determined. In addition,

the boundary conditions W*(x,t — —o00) = xy(x)e"" (or af(t — —o0) = 1,
af(t — —o0) = 0) and ¥~ (x,t - —00) = x(x)e ! (or a, (t — —o0) = 0,
a; (t — —o0) = 1).

Next, we insert (3.9) into (3.5). The resulting equation is projected on (x,| and (x.|,
respectively. Afterwards, we take advantage of the rotating wave approximation
(see, e.g. [85]), in which the rapidly oscillating time-dependent terms are dropped.
Taking all this into account, the set of equations for the unknown coefficients a_f]t(t)
and a*(t) in (3.9) reads

z'dgi(t) = Wgeaf(t)e’mt,

ia(t) = Wrat(t)e'™, (3.10)

ge~g

where A = (6. — ¢;) —w = wp — w is the detuning between the excitation energy of

atom B and the laser frequency,

Fy R
Wge = % <Xg| €; Dz |Xe> (311)

and W, is the complex conjugate of W,.. Now, we define aF(t) = aF(t)e **', where
af(t — —oo0) =0 and a; (t — —o0) = e *%. Then, (3.10) becomes

iag (1) = Weea (t),

iak(t) — Aat(t) = Wria(t). (3.12)

ge—g
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The set of equations (3.12) can be straightforwardly solved by considering stationary

solutions a,(t) = Aje *F* and a.(t) = Ace™ ! with |A,* + |Ac|* = 1 and using the

boundary conditions for a7 (t) and aF(t) from above. Finally, noting that o} (t) =
=

aX(t)e'!, the solutions for the coefficients a}(¢) and aX(t), which determine the

field-dressed states of atom B in (3.9), are given by

Wie __
g e zE+te ipo

VEL + Wy|? ’

E? ) )
al (t) = | =t B At ivo (3.13)
B3 + [Weel?

47 (1) = — gt
VE?Z + Wy |?

- | E? (B
a, (t) = me ( )t (314)

with ¢y = arg Wy, and Fy = %(A F ﬁVAz + 4|Wge’2>‘

a;(t) =

and

3.1.4 Amplitude for two-center photoionization via coupling
to the radiation field

In the last Section, we have obtained the states U* of atom B dressed by the laser
field, this way taking into account the interaction between B and the field. Now,
we turn to the ionization of atom A by its collisional (long-range) interaction with
field-dressed atom B.

In general, there are different ways to arrive at the transition amplitude for 2CPI. In
our approach to this process, which accounts for the coupling of the A — B system
to the quantum radiation field, we start by considering the coupling j:j‘A% between
the transition four-current j/‘f = (cpa, ja) of the active electron in atom A and the

four-potential A% = (¢, A) of the field created by the other active electron in atom
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B. The corresponding first-order transition amplitude for the interaction between

A and B can be written as (see, e.g. [86])

i |
0 =~ [ ' ) AL(a), (3.15)

where z# = (ct, x) is the four-space-time vector.

In (3.15), we insert the inverse Fourier transforms

: 1 = —ikax
ja(x) = @) /d4kA Ji(ka)e*a®,
| ) |
Aj(a) = o / By Al (e ikoe (3.16)

with &y = (0a/c,ka) and kfy = (@p/c,kp) the four-wave vectors of the active
electrons in A and B, respectively. Subsequent integration over the space-time

provides
e = —C% /d4kA/d4kB it (ka) Al (kp)d(ka + k). (3.17)
Next, we integrate over kg by taking advantage of the delta function which yields
o — —CiQ /d“k:A G (k) Al (). (3.18)
The four-potential A% (z) satisfies the Maxwell equations

1 02 47
(g@ - Aw) Al(x) = —jp(2), (3.19)

T c
the latter of which can be solved in the four-dimensional kg space leading to
Alp(kp) = —7C~¥F(k3)§f§(k3). (3.20)
Here, Gp(kp) = ((0p/c)? — k% + ’in)_l (n — 0T) is the Feynman propagator for

a massless Klein-Gordon particle. Using (3.20), the transition amplitude in (3.18)
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becomes

4

asc = ? d4k‘A GF(—kA)jf(kA)jg(—k‘A) (3.21)

In (3.21), the Fourier transforms of the transition four-currents are given by

= 1 . tkax

J(—ka) =

1 . i(— T
L /d4x i (z)elha)T, (3.22)

According to the discussion in Section 1.3, we consider a nonrelativistic electron

motion and thus the four-current for the electron in atom A is determined by

G (@) = (cpa, =), (3.23)

where
pala) = [ & B (0.0)[Z46(@ ~ RE) - 5z~ v)]2,(0.1),

into) = [ @ st ) S0 w0 0p,, 0.0+ 2,0, 05207, 001

(3.24)

with ®, and @y, the initial and final states of A, respectively, and ZZ; the effective
charge of A. In (3.24), the v-integral in the first term of p4(z) vanishes since the
states ®, and P, are orthogonal. The remaining integrals over v are solved by

taking advantage of the delta function 6(x — v). Then, we arrive at

pa(r) = =y (z,1)0y(,1),

Ja(z) = —%{Cb,’;(w,t)ﬁmq)g(w,t) + Oy (x, )p; Py, (, t)} (3.25)
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Here, the initial and final states of atom A can be written as
D,(x,t) = py(x — R(t))e "“'a(x,t),
Oy, (2, 1) = i (@ — R(t))e " a(z,1), (3.26)

where ¢, is the ground state (with energy ¢,) and ¢k, the continuum state (with
asymptotic momentum k. and energy e, = k?/2) of A in its restframe. Further,
o, t) = el @=RO)=v*/2A 5 the so-called translational factor that accounts for the

motion of atom A in the restframe of atom B.

The corresponding four-current ji5(x) for the electron in atom B reads

Jjp(x) = (cpp,JB) (3.27)

with
pp(z) = /d3V Ui(v,t) [ngé(w) —(x — I/)]\I’i(lj,t),

jp(z) = /d31/ 5z — ,/)(_—ZU{\IJ}(u,t)ﬁV\IfZ-(V,t) + Wi (v, 1)p, Vi (v, t)},

(3.28)

where ¥; and ¥, are the initial and final states of B, respectively, and ZZ; is the
effective charge of B. Taking into account that atom B is initially in its ground state
when the laser field is switched on, ¥; and ¥, are determined by the field-dressed
states U* of B from (3.9), (3.13) and (3.14) according to ¥; = UT and ¥; = U+
In (3.28), the v-integral in the first term of pp(z) is solved by accounting for the
orthonormality of the ground (x,) and excited (x.) states of B. The remaining
integrals over v are performed by using the delta function é(x — v). Subsequently,

we get

pe(r) = Zg0(x) [(ag (1)) "ag () + (ag (1) "af ()] — (T (z, ) U (@, 1),
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jp(x) = —%{ (UF(2, 1) Pu ¥ (2, t) + ﬂl+($,t)ﬁ;(\lfi(w,t))*}. (3.29)

Next, we insert the four-current j/f(x) of the electron in atom A, given by equations
(3.23) and (3.25), into the first expression of (3.22), rewrite the integral over the
space coordinate x into an integral over the coordinate r = & — R(t) of the electron
in A with respect to the nucleus of A and afterwards perform the integration over
the time ¢, which yields

e FAPG(wy +@a — ka - 0)F) (k)

Ji(ka) = (—26—2

T

C ; -
Ee_mba(w, +oa — k- v){F (ka) + va,j‘eﬁ(kA)}> (3.30)

with
F{(ka) = (pn. (1) e7F47 i0y(r))

Fli7;<kA) = (pr. (7)€ FATH, + Pre R AT o (7)) . (3.31)

Further, we insert the four-current ji5(x) of the electron in atom B, given by equa-
tions (3.27) and (3.29), into the second expression of (3.22) and calculate in j%(—k4)
the a-integral over the term which contains §(x) by using the latter. Subsequently,

we perform the integration over the time ¢, where we exploit the fact that |[E, — E_|
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is much smaller than the transition energies in A and B. Then, we arrive at
~ ? ~
() = (5= | (Do) + DEFEY B0}

+ DEFBO(k,)6(0a + w) + DEFBO(k,)6(0a — w)} :

ge~ ge €eg— eg

gg— gg ee™ ee

_ i {{Di F2' ka)+ DEF2! (ka)}o(0a)

+ DEFPY(k)5(0a +w) + DEFBY (kA)5(04 — w)} ) :

ge™ ge egtleg
(3.32)
Here,
Fii(ka) = Z56as — (Xa(@)] €*47 [x5()) ,
FJ5 (k) = (xa(®)| €54 p, + poe™ x5 (x)) (3.33)
for a8 € {gg, ee, ge, eg} and
+ _ —ipt ’Wge|2
Dgg =€ 2 2\( 2 2)’
V(EZ + Wi D (EZ + Wy )
. 152122
Dj:e = e W& 3 2i +2 =,
(Ei + |Wge| )<E+ + |Wge| )
. 2
D:i == e—upi + W*e,
’ \/(Ei Wi P)(EZ + Wyel?)
l)i = e_i‘pi E:2|: W (3 34)
eg (E:QI: + |Wge|2)<E-2|- + ’WgeP) ge

where ¢, =0 and p_ = .
Now, insertion of }l‘j‘(k‘A) and (j%)*(—k4) from (3.30) and (3.32), respectively, into
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(3.21) provides the amplitude aj, for the collisional interaction between atom A and
field-dressed atom B. It can be separated into contributions agig and aZ related to
elastic transitions x, — x4, and x. — Xx. in B as well as ofgte and aeig referring to

de-excitation and excitation transitions x. — x, and x, — X, in B:

Uyp = gy + gy + ag, + agy,. (3.35)
Here,
. 0 99,0
Agg = __Dgg (Il + A2 + 22 ’
. ee,0 ee,0
+ i i reeo | 1o I
=——D"(I}™
aee T ee ( 1 + 462 202 > )
L _E N gous Iéqe,w v Ié]e,w
Qo = 7% D <Il 4¢? 2¢2 )7
+ i + eg,—w [269,*“1 v - I§!L*W
at = —-—DE (11 s (3.36)
with

e kAt N ke a) oy (K a)
(‘Zﬁ)2 — k% +in

[

JoPA — /d4kA 5(0a +Q)0(wa + @4 — ks -v) ,
ek FM (k) - FO (k)
(@—A)2 — k4 +in

[

;7 = / d*ka (@4 + Q)0(wa +Da — ks - )

e kA I (kA Frs' (k)
(‘Iﬁ)2 — k% +in

[

(3.37)

;7 = /dm 0(@a +Q)d(wa +@a — ka - v)

for (a3, ) € {(99,0), (ee,0), (ge,w), (eg, —w)}.

In the amplitude (3.35), the contribution a;te corresponds to the case, where in

collisions between A and B the energy necessary for the ionization of A is gained from
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the energy excess upon de-excitation in B. Consequently, agie is associated with the
ionization mechanism underlying the process of 2CPI. For the other contributions
in (3.35), single electron emission from A is accompanied by excitation or elastic
transitions in B, such that the energy needed for ionizing A has to be provided

by the relative motion of colliding atoms A and B. Since we are only interested

+
ge

and omit the other contributions. (Note that for collision velocities v < 1 a.u., the

in ionization of A via the 2CPI channel, in (3.35), we may only keep the term a

energy gained from the relative motion would not be sufficient to ionize A anyway.)

Now that we solely deal with de-excitation transitions in B, we introduce the sim-

plifying notations

. E2
D* = DE = ¢7ivx + 2% 3.38
g \/(Ei PN ET + 5%
and
e~ tkab FAY (| \\FBO (K
I =1 = /d4kA 0(@a +w)d(wa +wa — ka-v) (@A;EQ( ,:2) _i : -
A S
efikA'bFA’l k -FB’l k
=I5 = /d4k;A (s +w)d(wa + @04 —ka-v) (@Ak;g< 2)2 +g:e ( A)7
o) TRaTm
e kab FA (o)) FE (K
Iy =TI = /d4k:4 0(wa+w)d(wa +wa —ka-v) (@A§§g< ,:2) j : ( A)‘
rA — k3 277

C

(3.39)

Then, the transition amplitude for ionization of atom A via 2CPI is given by

ic I, v-I3
agtcplz_;pi([1+4—62+ 50 ) (3.40)

In (3.39), we may perform the integration over the frequency w4 by taking advantage
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of the delta function §(@w4 + w) and rewrite the results in the following form

1
I = =~ {pr.(1)Xo ()| La |y (r)xe ()
Iy = = (k. (T)Xg (@) L1PrP + Palsbr + PrliPe + Prali|oy(r)xe())
1 . .
1= o (1) (@) L + Bl 2y @) (341)
where

efikA-(b+r7m)

(2)" — K3 +in

I4Z/d3kA 5(wA—w—kA-v) (342)

Splitting the coordinates k4, » and x into their transverse parts, k4, , r; and x|,
and longitudinal parts, ka , rj and z), respectively, as counted from the collision

velocity v, the integral I, becomes

e—i[kAL (b7 _wL)""kA” (TH - )]

I4:/d2k;Al/ dka, 6(wA—w—k:AHU) (3.43)

(2)° = k3, — K3, +

In (3.43), we integrate over k4, by applying the delta function d(ws — w — ka v) =
6([wa — w]/v — ka,)/v and obtain

wp—w

e i (=) ) e ika, (btr—x)
14:—/611% L (3.44)
Y (2)" = k3, — (=472) +in

C

Next, we introduce the vector

q= (kAlvaA;w) = (qL,q)- (3.45)

It describes the momentum transferred in the collision between atoms A and B,
where g, and ¢ are the transverse and longitudinal parts (with respect to the

collision velocity v) of the momentum transfer, respectively. In addition, we use the
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notation p=b+ 7, —x,. Then, (3.44) can be written as

et (r—z))
Ihy=—7J (3.46)
v
with
e~taLp
j—/d2q1_2 — (3.47)
¢t +af — (%) —in

In contrast to the standard theories of nonrelativistic collisions of light atomic par-
ticles, in the present calculation the electromagnetic field which transmits the inter-
action between A and B is not approximated by an instantaneous Coulomb form
but is described relativistically that includes the presence of the retardation term
—(%)2 in the denominator of the integrand in (3.47). The retardation term allows

the singularity of the integrand in (3.47) to appear at real ¢, . This becomes possible
if

g - (%)2 <0 (3.48)

corresponding to the range of electron emission energies

5g+w<1—%)<ske<eg+w(1+%). (3.49)

Note that at v < 1 a.u., this resonant energy range is quite narrow. Within and
outside of it, the process of 2CPI can be considered as proceeding via different phys-
ical mechanisms. On the one hand, within the energy interval (3.49), the coupling of
the A — B system to the radiation field becomes efficient and 2CPI proceeds via the
exchange of an on-mass-shell photon whose four-momentum ¢* = (w/c, q) satisfies

the on-shell condition
w2
v = (7) =0 (3.50)

which reflects the real pole of the integrand in (3.47). In the restframe of B, the
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on-shell photon has a frequency w while in the restframe of A its frequency w’ is
Doppler shifted and occupies the range w(l — %) <w < w(l + %) On the other
hand, outside the energy interval (3.49), 2CPI takes place by the exchange of an
off-shell photon that is reflected by the complex pole of the integrand in (3.47).

In the following, we restrict our treatment of 2CPI to those collisions between atoms
A and B for which the energies of the emitted electrons populate the range (3.49) and
the interaction between A and B is exchanged by an on-shell photon. Consequently,
the integral J in (3.47) will be evaluated under the constraint (3.48).

In (3.47), we introduce the polar coordinates q; = (g1 cosq, ,q1 sing,,,0) and

p = (pcosp,, psinp,, 0), which yields

00 2
J = / dq. 5 5 a1 — . / dgqu— e*iQLPCOS(S@qL —¢p) (351)
0 qL + qH - (E) - Zn 0

Here, the integral over the azimuthal angle ¢, can be calculated straightforwardly

and we arrive at

o J

J = 27r/ dgy —2 0<qif’3 -, (3.52)
0 qL—i—q”—(;) —in

where Jy(x) is the Bessel function [87].

Now, we use the asymptotic expansion [87]

2 T

cos(qrLp — — 3.53
— (arp—7) (3.53)

Jo(qLp) =~

which is valid for large arguments ¢, p — oo. Since the vast majority of electrons
ejected from A via 2CPI driven by on-shell photon exchange originate from very
distant collisions where the absolute value b of the impact parameter is (extremely)
large, the corresponding argument in such case, ¢, p = qi|b+ 1, — x| =~ q. b, is

assumed to be sufficiently large to apply (3.53) in good approximation (provided
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that ¢, # 0). Then, (3.52) becomes

23 cos -z
/ 7T/ q1 cos(qLp ) ' (3.54)
QL + qH (C) —1m
It is worth noting that, like the integrand in (3.52), the integrand in (3.54) ap-
proaches zero when ¢; — 0. In (3.54), we substitute u = ¢, p and get

J = \/23_/ du \/ac_oz(“_m;) (3.55)

with —ug = p? [qH — (—)2} < 0 and 7 = p?’n — 0". Applying cos(u —

C

INE
N—
I

J =V2r [e_iz/ du \/ﬂ—ew + eiz/ du %} (3.56)
0 0

2 _ .2 2
u* —uf — i1 —uf — i1

In the second integral in (3.56), we substitute w = —u and take into consideration
that /—w = \Jwe™"2. Subsequently, we obtain

oo iu 0 w
J =V2r leiz/ du % + eiz/ dw #] (3.57)
0

2 _ 2 _ 2 _ 2 —
u® —ug — 1) NS w* — ug — 1)

Renaming w = u in the second integral in (3.57) provides

J= \/27rei1/ du VU (3.58)

o UT—ug —m

The remaining integral in (3.58) can be solved by employing the Residue theorem,
which yields

. | uo]
J = iv2mse T S, (3.59)
V[t
Recalling that —u2 = p? [qﬁ - (%)2], we have |ug| = pp with p = (%)2 — qﬁ > 0.
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Then, the final result for the integral J can be written as

. 273 n et

J =iy —e "4 . 3.60
p VP (8.60)
Next, we insert (3.60) into I from (3.46) leading to
) 3 ipp
I, = ! Ee*i%eﬂ‘qw(ruﬂu)e_
vy p VP
(o3 [ e~ (r =) giplbtr L —a L |
_ i (6 ¢ ) (3.61)
v\ p b+7ry — x|

where in the last line we have reinserted p=b+1r, —x,.

Expression (3.61) is related to all kinds of multipole-interactions between the two
active electrons in A and B. However, we are only interested in their strongest
coupling, namely the dipole-dipole interaction. Therefore, in (3.61), we consider
appropriate multipole expansions up to second order in r —x = (r, —x,r| — x|)
in the last term in brackets. In particular, we expand the term e~“I"1=21) around
0 up to second order in r| — z and the terms ePlbtri—z.l and l/m
around b up to second order in 7, — @, respectively. Afterwards, we build the
product of these expansions and keep only terms up to second order in r — «.
Moreover, since collisions with extremely large impact parameters b (b > c/w) give
the overwhelming contribution to the process of 2CPI in case when it is driven by
the exchange of an on-shell photon, in the final expansion of (3.61), we can omit
terms that are not of leading order ~ 1/\/1_) in b. Taking all this into account, I, in
(3.61) is approximated by

i /2w a . 1
[l L

v\l p Vb

(ro—x)-b p*l(ri—=z.) b?* . -
L R - N/

+ip

+q”p(7“|| - x|)[(b?;j2— z,)-b q;(?“n ;_;Un)? '

(3.62)
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Now, within some elaborate but basic steps, we first insert (3.62) into I, Iy and I3
in (3.41) and subsequently keep only those matrix elements that will lead to dipole-
allowed transitions in atoms A and B. Substituting the resulting expressions for Iy,

I, and I into the transition amplitude ai,p; in (3.40), the latter is obtained to be

1 /2 o
apy (b) = = | —e TP DEA (D). (3.63)
vy p
Here, the quantity A(b), which depends on the internal transitions of A and B and
which is quite cumbersome, is given by equations (9.34)—(9.37) in Appendix 9.4.

In what follows, we present results for the amplitude (3.63) when ¢, and x, are
s states. Since atom B is excited by a laser field of linear polarization, the field res-
onantly couples to dipole transitions where the excited state x. of B has a magnetic
quantum number mpg = 0. Furthermore, we assume that wp ~ w for those terms in
(3.63) which smoothly depend on wg. (This is a very good approximation because
the laser field is resonantly coupled to B, meaning that its frequency w lies within

a very narrow interval centered at the atomic transition frequency wpg.)

Using the set (n;,[;, m;) of principal, orbital, and magnetic quantum numbers of
atom j (j = A, B), we may separate the bound states of A and B into their radial

and angular parts according to
©g(T) = Gnpis=0ma=o(T) = gql{::()(ﬂylzgozo(ﬁr: ©r),
Xg(a:) = XnB,lB=07mB=0(w) = hlrzli'g:()(x)%glgo:o(ﬁwa 9098)7

Xe(w) - Xn/B,lB:LmBZO(w) - hii:1<x>}/l$:31:0(19m7 (pm) (364)

14=0
na

A. Similarly, hl2=" and hln‘?;l (np < nlg) are the radial parts and Y;"2™ and Y;72 "

the angular parts of the ground and excited state of atom B, respectively. Here, the

with g the radial part and Y4 O the angular part of the ground state of atom

angular parts Yljnj are described by the spherical harmonics. The continuum state

of the electron emitted from A is also separated into radial and angular parts and
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can be expressed by

) 1 27 —
(r) = ——=7-
DOk, 7 2

la
e Paga(r) Y Y (Uk,, ok [V (O, 00)] 7, (3.65)

ma=—lg

where g,lf is the radial function of the continuum state, V,; the normalization volume
for the electron emitted from A and e *u4 is a phase factor. Since we are only
interested in dipole-allowed bound-continuum transitions between the ground state
of A with [, = 0 and its continuum state with [, = 1, in (3.65), only the term with
la =1 1is kept.

First, we focus on the matrix element W, given by (3.11) which determines the
quantity D in the amplitude (3.63). Taking advantage of the commutator relation
Pz = i[f[B, x| and accounting for the fact that x, and x. are eigenstates of the atomic
Hamiltonian Hp, we obtain the relation (Xg| Pz |Xe) = —iwp (X4| T |Xe). Employing

this relation to expression (3.11), the latter becomes

Wy = L0e My, (3.66)
21
with
Mp = (x4(x)| x| xe()) - (3.67)

Now, in (3.67), we apply the electronic states from (3.64) and calculate the angular

integrals over ¢, and 9., leading to

B
Mp=—e,. 3.68
B \/g ( )
Here, rp = [* da 2®[hlp70(x)] *hln]?B:l(x) is the radial matrix element for transitions
from the excited state x. into the ground state x, in B. Insertion of (3.68) into
(3.66) provides

Forg

W, = .
/126

(3.69)
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Next, we consider the quantity A(b) which enters the amplitude (3.63) and which is
determined by equations (9.34)-(9.37) in Appendix 9.4. Employing the electronic
states from (3.64) and (3.65), the quantity A(b) is obtained to be (see Appendix 9.4)

A(b)

. w2
\/?6151 TATB [C]ﬁ - (E) ]keu —qPp cos(pp — @kﬂ)kn ' (3.70)

V3 JVak? Vb

Inserting (3.70) into (3.63), the transition amplitude for 2CPI via the coupling to

the radiation field can be written as

w

2
a:t (b) _ eia 272 DiTATB [qﬁ - (Z) ]ken —q|p COS(SOb - kaej_)kej_
A VAT v ’

where o = pb+ §; — 2%, Note that the amplitude in (3.71) scales as 1/v/b and

therefore the transition probability |aj,p;|? behaves as 1/b. This reflects the very

(3.71)

long range of the interatomic interaction in case when atoms A and B interact with

each other by the exchange of an on-shell photon.

3.1.5 Cross section and reaction rate for two-center
photoionization via coupling to the radiation field
The spectrum of electrons emitted from atom A by the process of 2CPI via the

coupling to the radiation field is determined by the cross section differential in the

electron momentum k., which is given by

Ao Vel
et S [ e )

Vl 2m bmaz N
= — d / db b |a b)|°. 3.72
oo |, e [ bl ) (37)

In (3.72), the integrations run over the azimuthal angle ¢, and the absolute value
b of the impact parameter b. The integration for the absolute value of the impact
parameter is limited to the range between b = by and b = b,,4,. Here, b,,., is the

maximum possible value of b in the collision and b; is not too small in order to
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justify the usage of the asymptotic expansion (3.53) for the Bessel function in the
derivation of the transition amplitude a2ic pr- We mention that in experiments, by,q,
is typically of macroscopic size (byar ~ 1 — 10 mm) and thus one has b4, > by.
Substituting the amplitude (3.71) into (3.72), we get

d3‘72iCP1 1 |D**rirg

dk? 127 v?pk?

2712 2
w w
X {{qﬁ - (C) ] ke Is — [qﬁ— ( ) ]qpke,,kellqu”p ke [10}

(3.73)
with
bma:ﬂ
:/ dg&b/ b,
by
bm(lw
/ dpp cos(pp — ‘szel)/ db,
0 by
27 b'mu,;c
I :/ dpy cos?(pp — gpkﬂ)/ db. (3.74)
0 by

The integrals in (3.74) are easily calculated and using b,,,, > b; their results read

18 = 27Tbmax7
]9 = Oa
[10 = Wbmax' (375)

Insertion of (3.75) into (3.73) yields the cross section

d3020P1 1 |Di|2rir%bmw 2 o ? 2 2 279
dk3 = E U2pk4 2 q” — c ke” + q”p keJ_ . (376)
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Expression (3.76) contains the quantities 74 and r% which can be expressed via the
cross section o, for direct photoionization of atom A and the radiative width I'Z

of the excited state in atom B, respectively, according to

3ck,

93
2 =T858 3.77
Uz 403" ( )

Then, substituting (3.77) into (3.76), the cross section differential in the electron

momentum for 2CPT via the coupling to the radiation field can be written as

ng;CPI 9 |Di|20£1(w)F§bmax e\ 2 w)*1? 2 2 972
dkS = 97 U2pk3 <;) {2|:q — <E> :| keH + q”p kel}(378)

The cross section differential in the solid angle 2 for 2CPI when it proceeds via

the exchange of an on-shell photon is given by

oacpy oy,
2 72CPI _ dk, k> — 720PI )
0. /q o M N kg (3.79)

Here, we integrate over the absolute value k. of the electron momentum k. where
the integration interval is determined by the condition qﬁ < (%)2 (for which 2CPT

occurs via the exchange of an on-shell photon).

Now, we insert (3.78) into (3.79). Moreover, we introduce the spherical coordinates
k. = (kesindy, cos gg,, kesindy, singy,, kecosdy,), such that k2 = k2 + kﬁy =

k2 sin? ¥y, and k2, = ki, = ki cos® Uk, Afterwards, we arrive at

dPo 9 |DE204 (W) Bbpas [ ¢\ ,
e, 12327r’ | Plz;) (5> {QCoszﬁkJmLsmzﬁkJm} (350

with
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Iy = / dke kepgi. (3.81)
g <(%)?
We remind that p = (%)2 — qﬁ and rewrite the integrals over the coordinate k. in

(3.81) into integrals over the coordinate g according to

3 rw/c 1— (< 272
I _U(E) / dg LG |
¢ —w/c

1= (sa))’

w\? ele e \2 N
hhp = U(—) / dg (-%) 1- (—cu) - (3.82)
c —w/e w w

Performing the substitution v = <¢) in (3.82) provides

() Lo o () [

4,1 4 1
Ly = v(‘—d) / du u*V1 —u? = 2v (‘-") / du u*V1 — u2. (3.83)
c _1 c 0
The solutions of the basic integrals in (3.83) read

/1 [1—u2}2 3
du L2 ="
0 \/1—u2 16

1
/ du u*V1 — u2 = % (3.84)
0
and consequently I;; and I, are obtained to be
3r (w\*
Iy = ?U(E) )
r (w)\*

83



— CHAPTER 3. RADIATION-FIELD-DRIVEN IONIZATION IN
LASER-ASSISTED SLOW ATOMIC COLLISIONS —

Inserting (3.85) into (3.80), the cross section differential in the solid angle €, for

2CPI when it proceeds via the exchange of an on-shell photon becomes

Coyeps _ 9
dQr, 256

bmar
|D* 2o, (w)T B {1—1—50052 19,%}. (3.86)
v
The total cross section for 2CPI via the coupling to the radiation field is given by

d?o5;
Tacpr = / A€, —déij[

2T d
/ dpy, / Ay, sin O, M, (3.87)
A%,

where we integrate over the angles g, and Uy, of the electron momentum k..

Substituting (3.86) into (3.87) and calculating the angular integrals, the total cross

section can be written as

31 0p (W) Bbas

Uétcpl ’Di|2 ) U

(3.88)
For the sake of completeness, we note that the quantity | D*|? in (3.88) is determined
by |Wye|* which, using (3.69) and (3.77), reads |W,.|> = 3 FET2 /(16w?).

It is worth mentioning that the cross section in (3.88) has a rather simple struc-
ture that allows for a straightforward interpretation of the process of 2CPI via the
coupling to the radiation field. The factor |[D*|* describes the probability for atom
B to enter the collision in an excited state and the remaining part 3”M
represents the cross section for ionization of atom A in collisions with excited atom
B by the exchange of an on-shell photon between them. The magnitude of the nu-
merical prefactor in the latter cross section depends on the specific dipole-allowed

transition which is involved in de-excitation of B during the collision.

Let us suppose for the moment that the interatomic distance R between A and B
is fixed and that this distance is very large, R > c¢/w. Further, we only consider
the second step of 2CPI in which atom B de-excites and the de-excitation energy is

transferred to atom A leading to its ionization. In such case, the relativistic form of
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the dipole-dipole interaction Viaz between atoms A and B is given by equation (2.4).
It accounts for the retardation effect and therefore implies the coupling of the A — B
system to the radiation field. We may use Vap in order to calculate the decay rate
I'y for the second step of 2CPI when the distance between A and B is fixed, yielding

A B
o5 (w)l . . . ..
' x £ 11(%2) ~. Now, we can obtain the corresponding cross section oy for collisions

between atoms A and B by introducing R(t) = b+ vt and subsequently performing
the integration oy = [d?b [*°_dt T'1(b,t) under the assumption b € [by, bings). The

A B
e bmar - Tha Jagter term also appears in

resulting cross section is proportional to
the cross section (3.88), so based on the above simple consideration, we can conclude
that this term arises because in our approach to the process of 2CPI the ionization

proceeds via the coupling to the radiation field.

Taking into account that atom A moves in a gas of atoms B having an atomic
density np, the reaction rate per unit of time (per atom A) corresponding to the
total cross section (3.88) is obtained to be

3T
Rétcpl = UziCPInBU = ‘Di,z X gaﬁl(w)Ffbmaan. (3.89)

3.2 Numerical results and discussion

In this Section, we present numerical results of our theoretical findings in Section
3.1 for the relativistic two-center photoionization channel (in which the interaction
between atoms A and B incorporates retardation) and compare them to the re-
sults of the nonrelativistic two-center channel (where the interatomic interaction
is considered in its instantaneous Coulomb form). Further, we discuss the relative

effectiveness of 2CPI compared with direct photoionization of atom A.

3.2.1 Two-center photoionization via two-center

autoionization

In the theoretical consideration in Section 3.1, we have pointed out that the pro-
cess of 2CPT occurring in distant collisions between atoms A and B can be splitted

into two contributions. The relativistic two-center channel, for which results were
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obtained in Section 3.1, describes those collisions where 2CPI proceeds via the ex-
change of an on-shell photon between B and A resulting in electron emission into the
continuum of A with energies e, + w(1 —v/c) < ek, < &4+ w(l+v/c). In contrast,
the nonrelativistic channel takes into account collisions for which 2CPI involves the
exchange of an off-shell photon between B and A with consequent electron emission

into the continuum of A having energies outside the above energy range.

The cross section ‘72iCP1,m for 2CPI via the exchange of an off-shell photon was
obtained in [49] for a laser field of linear polarization (Fj || v) using the first order
of perturbation theory in the interaction between atom B and the laser field!. It

can be expressed in the form

97 [ ¢\ o, (w)B
O-;:CPI,nr = |5i|2 X 6_4 (;) Plvbg : (390)

Here, |3F]% = [W,e|?/(A% + ('8 /2)?), |37]* ~ 0 and by is the minimum value of the

impact parameter for which the electronic shells of atoms A and B do not overlap.

Similar to the cross section (3.88) for 2CPI via the exchange of an on-shell photon,
the cross section in (3.90) has a simple and transparent structure. The factor |5*|?

represents the probability for atom B to enter the collision in an excited state and
4U§I(w)rf
vbg

A in collisions with excited atom B by the exchange of an off-shell photon between

the remaining part 2—Z (2) describes the cross section for ionization of atom

w
them. The magnitude of the numerical prefactor in the latter cross section depends
on the specific dipole-allowed transition which is involved in de-excitation of B upon

collisions.

Let us suppose for the moment that the interatomic distance R between A and
B is fixed with 1 < R < ¢/w. In addition, we only consider the second step of
2CPI where atom B de-excites and the de-excitation energy is transferred to atom
A resulting in its ionization. In such case, the dipole-dipole interaction Vap between
atoms A and B can be approximated by the instantaneous interaction between two

electric dipoles given by equation (1.6). We may use Vg in order to calculate

!'We note that the field-dressed states of atom B were calculated by supposing that the laser field
is switched on adiabatically at ¢ — —oo and imposing the boundary conditions which were also
used in the present work (see below equation (3.9)).
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the decay rate I'y for the second step of 2CPI when the distance between A and

2) 4 aél(w)f‘f
w RS

result (see, e.g. [26,88]) for the two-center autoionization rate at large interatomic

B is fixed. Then, we arrive at I'y o ( , which represents the known
distances (R > 1 a.u.). Next, we can obtain the corresponding cross section oy
for collisions between atoms A and B by introducing R(t) = b+ vt and afterwards
calculating the integral o, = [ d?b [ dt T'5(b,t) under the assumption b > by. The
A B
4%. The latter term also appears
0

in the cross section (3.90), so the above simple consideration suggests that this term

resulting cross section is proportional to (5)

arises because in the nonrelativistic approach to the process of 2CPI the ionization
occurs via the two-center autoionization mechanism (in which ionization of A is a
consequence of the transfer of de-excitation energy from B by the exchange of an
off-shell photon between B and A).

When atom A moves in a gas of atoms B with an atomic density ng, the reaction
rate per unit of time (per atom A) corresponding to the total cross section (3.90) is

given by

97 [ ¢\ o, (W) Bng
Rg:C’PI,nr = UziOPz,nr”BU = |5i|2 X 6_4(;) PIT- (3.91)
0

3.2.2 Two-center photoionization via coupling to the
radiation field vs. two-center photoionization via

two-center autoionization

The relative effectiveness of the relativistic and nonrelativistic two-center photoion-
ization channels can be characterized by the ratio of their reaction rates. In the
derivation of the rate R, pr.nr f0r 2CPI via the exchange of an off-shell photon, the
field-dressed states of atom B were calculated by using the first order of perturba-
tion theory in the interaction between atom B and the laser field. However, in our
derivation of the rate R§ECPI for 2CPI via the exchange of an on-shell photon, the
field-dressed states of B were obtained by applying the rotating wave approxima-
tion. The latter allows the consideration of stronger fields as compared with the

first order of perturbation theory. The different approaches to the calculation of the
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field-dressed states are manifested in the rates (3.89) and (3.91) by the quantities
|D*]? and |B%|?, respectively, both of which describe the probability for B to enter

the collision in an excited state.

In order to get comparable results for the rates (3.89) and (3.91), we restrict our
result for R, p; to the case of a weak laser field that obeys the condition |W,.| < |A|
for which the first order of perturbation theory in the interaction between B and
the laser field is applicable. Then, one can show in some basic steps that |[DT|* ~
Weel?/(A% + (T8 /2)?) = |87]? and |D~|? &~ 0 &= |37|* in very good approximation.
In the above case, the rate (3.89) for 2CPI via the exchange of an on-shell photon

becomes
+ L 3T 4 B
Rocpry = 16717 % §0P1<W)Fr bmazB- (3.92)

In the following, we only consider the non-zero reaction rates Ryop;,. and Rycpy .
in (3.92) and (3.91), respectively. The corresponding ratio of these rates takes the

rather simple form

R;—C’Pl 8(w *
= 0" — (2 bebs 3.93
R;rcpl,m- 3 ( c ) 0 ( )

The ratio in (3.93) strongly depends on the amount of energy wp ~ w that is
transferred from atom B to A. In particular, 2CPI in slow collisions involving a
large (small) energy transfer will likely be dominated by the exchange of an on-shell
(off-shell) photon. It is worth mentioning that the correspondence between 2CPI via
the coupling to the radiation field and 2CPI via two-center autoionization closely
resembles that between spontaneous radiative decay and autoionization in single
atoms and ions where the former dominates transitions with a large energy release

and the latter dominates transitions with a small energy release.

Let us consider two examples for 2CPI in slow collisions where it involves a large and
small energy transfer, respectively, from B to A. In the first example, atomic species
B is represented by He atoms which are driven by a laser field whose frequency w
is resonantly tuned to the 1 1Sy — 2 'P; dipole transition (wp ~ 21.2 ¢V) in He. In

the second example, we take Rb atoms as atomic species B and the laser field shall
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be resonant to the 5s;/5 — 5p3/» dipole transition (wp =~ 1.59 V) in Rb. For the
above examples, Fig. 3.2 shows the ratio n as a function of the maximum possible
value b, of the impact parameter b. We can conclude from Fig. 3.2 that when
2CPI involves the 1 1Sy — 2 1 P, transition in He (and the energy transfer is large),
it will be dominated by the exchange of an on-shell photon provided b,,,,; = 1 mm.
However, when 2CPI involves the 551/ — 5p3/ transition in Rb (and the energy
transfer is small), it will be dominated by the exchange of an off-shell photon for

any realistic choice of b4
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Figure 3.2: The ratio n = R3cp; ./ Racpr e cOnsidered as a function of the maximum
impact parameter b,,,, at by = 3 a.u. for 2CPI in slow collisions involving

the 1 'Sy —2 ' P, transition in He (solid) and the 5s;/5 — 5ps/ transition
in Rb (dashed), respectively.
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3.2.3 Two-center photoionization vs. direct photoionization

Two-center resonant photoionization competes with direct photoionization of atom
A by the laser field. The reaction rate Rpp; for direct photoionization of A per unit

of time (per atom A) was obtained in [49] and can be written in the form

cFgop(w)

Smw

RDPI = (394)
The relative effectiveness of two-center and direct photoionization can be character-
ized by the ratio of the total rate Rocpr = Ricpr, + Ricprn, for 2CPI and the
rate Rppy for direct photoionization. Using the corresponding rates given in (3.91),
(3.92) and (3.94), this ratio becomes

+ +
= Rocer  Rocrrr ~ Racpin
Rppr Rprr Rprr

_ 3W2|6+|2quﬂ3bmaxn3 9772|6+|203F7BHB
- ckg 8w FEbE

3 bmas | 97 (c/w)?
8 Aid 64 Af;dbg ’

(3.95)

where for the last line in (3.95) we have taken advantage of the explicit expres-
sion |BT|> = 33F2TB /(16w3(A? + (T'2/2)?)) and afterwards introduced the mean
free path A2, = 1/(ngo®) of the radiation in the gas of atoms B with of =
3m/2(c/w)*(T2)?/(A? + (I'B/2)?) denoting the cross section for resonant photon
scattering on B.

The second term of the sum in (3.95) suggests that 2CPI via the exchange of an
off-shell photon can be more efficient than direct photoionization as long as the
energy transfer wg ~ w from B to A is sufficiently small. In the opposite case,
when the energy transfer is relatively large and 2CPI is already dominated by the
exchange of an on-shell photon, the ratio ( will be determined by the first term of

the sum in (3.95), involving the ratio b,,q./AZ ; of the maximum impact parameter

B
rad

bmar and the mean free path A7, of the radiation in the gas of atoms B. Here,
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the magnitude of b,,,, depends on the size of the target gas of atoms B and/or the

B

size of the projectile beam of atoms A. It can however not considerably exceed A, ,

since otherwise the gas of atoms B becomes intransparent for the radiation with
respect to the mechanism of 2CPI via the exchange of an on-shell photon. In case
that b, = A2, we get ¢ = 37/8, meaning that 2CPI when it proceeds via the

coupling to the radiation field can more than double the rate for ionization of atoms

A.

3.2.4 Experiments on two-center photoionization

We now consider a possible experiment on 2CPI which involves the simplest atoms,
namely H and He. Let a beam of slow H atoms penetrate a gas of cold He atoms ir-
radiated by a weak (intensity I < 10> W/cm?, where I = cF¢/(87)) monochromatic
laser field of linear polarization (Fj || v) whose frequency is resonantly tuned to the
1 1Sy — 2 1P, transition in He (w ~ 21.2 V). Further, we set b,,., = 5 mm and
bo = 3 a.u. (which is a quite conservative estimate for by). Then, equation (3.93)
yields n ~ 7 from which we can conclude that 2CPI is strongly dominated by the

exchange of an on-shell photon.

Moreover, the total cross section for photon scattering on He evaluated at the exact

resonance (A = 0) is given by 02 = 67(c/w)? =~ 1.63x 107! cm?. Consequently, the

B

nq Of the radiation in the He gas will be equal to b, = 5 mm at

mean free path A
the gas density of ng = 1/(bpnae02) &~ 1.22x 10! ¢cm~3. Under the above conditions,
equation (3.95) provides ¢ = 37/8, implying that 2CPI when it takes place via the
coupling to the radiation field results in a slightly larger ionization rate for H atoms

than direct photoionization.

Note that in order to achieve an efficient excitation of the target atoms by the
resonant laser field, the Doppler broadening of the spectral line for the 1 1S, —2 1P
transition in He, caused by the thermal motion of He atoms in the target gas, should
be sufficiently small. By cooling down the He target to temperatures 7' < 0.1 K, the
Doppler broadening becomes considerably smaller than the natural linewidth of the
2 1P, — 1 1S, transition in He and the laser field can efficiently excite the target

atoms.
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Finally, we want to point out that one can also envisage experiments in which 2CPI
via on-shell photon exchange is the only ionization mechanism to occur. Here, a
projectile beam of atoms A passes close by the target gas of atoms B, the latter of
which is irradiated by a weak laser field. The projectile beam does not penetrate
the target gas and is not exposed to the laser field. In such case, the (relative)
short-range interaction between A and B via the exchange of an off-shell photon as
well as the interaction of A with the laser field are excluded and only the long-range
interaction between A and B via the exchange of an on-shell photon can contribute

to the ionization of atom A.

3.2.5 Two-center photoionization and the Breit interaction

The interaction between slowly moving charged particles usually occurs primarily
via the (instantaneous) Coulomb interaction related to the exchange of time-like
and longitudinal photons between them. If the interacting particles are electrons,
the leading relativistic correction to the Coulomb interaction is provided by the
(generalized) Breit interaction (see, e.g. [89] and references therein). The latter
follows from Quantum Electrodynamics in first-order perturbation theory, where it

occurs as a result of the exchange of single transverse photons between the electrons.

In our case, the contributions of the Coulomb and Breit interactions to the ampli-
tude for 2CPI can be made explicit by using the conservation of electric charge
and proceeding similarly as in [86] in order to rewrite the amplitude ag.p(b)
given by equations (3.40)(3.41) & (3.46)—(3.47) as a sum of two terms ay,p;(b) =
aGyu (D) + a%,ir(b). The term aF,,;, whose integrand is proportional to g~ which
does not possess a pole on the real axis of ¢, refers to the exchange of time-like
and longitudinal photons that transmit the Coulomb interaction between the active
electrons in atoms A and B, where these photons satisfy the off-mass shell condition.
The term a3,;,, whose integrand is proportional to (g% —w?/c? —in)~!, arises due to
the exchange of transverse photons which are responsible for the Breit interaction
between the electrons in A and B, where these photons can satisfy the on-mass shell
or off-mass shell condition. Under the constraint qﬁ — w?/c* < 0, corresponding to

electron emission into the narrow resonant energy range e, + w(l — v/c) < g, <
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g+ w(l + v/c), the term (g* — w?/c* — in)~" exhibits a pole at real ¢, and the
Breit interaction is transmitted by photons that satisfy the on-mass shell condition.
In such case, a3, simply refers to the process of 2CPI when it is driven by the
exchange of on-shell photons and the Breit interaction can become very efficient,

even dominating over the Coulomb interaction.

This efficiency of the Breit interaction at very low energies is quite remarkable,
because normally the Breit interaction plays only a relatively minor role in atomic

physics, including processes in which high energy electrons are involved.

3.2.6 Ionization at larger collision velocities

In our treatment of atomic collisions, we have assumed that the collision velocity v is
much smaller than the typical orbiting velocities v, ~ 1 a.u. of the active electrons
in atoms A and B. The main reason for this assumption was that for v < 1 a.u.
the impact excitation or ionization of atom A (or B) is strongly suppressed and we
are effectively dealing only with direct and two-center photoionization of A (see also
Section 3.1.2).

However, in the derivation of the total cross section (3.88) and the rate (3.89) resp.
(3.92) for 2CPI via the coupling to the radiation field, the assumption v < 1 a.u.
was not required, meaning that these results remain valid also for much larger colli-
sion velocities as long as v is much less than the speed of light c. In particular, this
suggests that the rate for 2CPI when it occurs via the exchange of an on-shell pho-
ton does not depend on the collision velocity up to impact energies ~ 10 MeV /u.
On the other hand, for impact energies 2 0.5 MeV /u, the strength of all ioniza-
tion mechanisms proceeding via the exchange of off-shell photons rapidly decreases
with increasing the collision velocity (see, e.g. [82]). Therefore, it is expected that
the coupling of the A — B system to the radiation field is also very important for

ionization of atoms A at larger collision velocities.
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3.3 Summary and concluding remarks

We have considered single electron emission from atomic species A in slow distant
collisions with another species B excited by a weak laser field when it proceeds via
two-center resonant photoionization driven by the coupling of the colliding system
to the radiation field.

In systems in which the ionization potential of atom A is smaller than an excitation
energy for a dipole-allowed transition in atom B, two-center ionization of A occurs
via resonant photoexcitation of the dipole transition in B by the laser field with
subsequent de-excitation of B, where the energy excess is transferred — via the

(long-range) interatomic interaction — to A, resulting in its ionization.

The theoretical treatment of collisions between A and B was based on the semiclas-
sical approximation, in which the relative motion of the (heavy) nuclei is described
classically while the active electrons are treated quantum mechanically. This ap-
proximation is well justified starting with quite low impact energies (~ 1 eV/u). We
have performed a relativistic calculation which incorporates the retardation effect
accounting for the finite propagation of the electromagnetic field that transmits the

interaction between A and B.

2CPI in slow distant collisions of two atomic species A and B was already consid-
ered in [49] by regarding the interaction between A and B as instantaneous, where
in such case, 2CPI proceeds via two-center autoionization and the interaction is
transmitted by off-shell photons only. In fact, textbooks on atomic collisions (see,
e.g. [81-83]) strongly recommend that such an approach is appropriate for describ-
ing slow collisions of light atomic species (in which all the particles involved move
with velocities orders of magnitude smaller than the speed of light). However, we
have seen that a more complete treatment of 2CPI has to take into account the
relativistic retardation effect, which allows for a very efficient (resonant) coupling of
the A — B system to the radiation field. This in turn enables the interaction to be
transmitted by on-shell photons that dramatically increases its effective range and

can profoundly modify the process of 2CPI.

We have compared our calculated rate for 2CPI occurring via the coupling to the

radiation field (where the interatomic interaction is transmitted by on-shell photons)
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to the rate for 2CPI proceeding via two-center autoionization (where the interaction
is transmitted by off-shell photons). It was concluded that 2CPI in slow collisions
when it involves a (relatively) large energy transfer from atom B to A, can be
strongly dominated by the exchange of on-shell photons. Since 2CPI competes with
the direct photoionization of A by the laser field, we have further discussed the
relative effectiveness of these two processes. Here, we have shown that in case 2CPI
is already dominated by the exchange of on-shell photons, it can more than double

the rate for ionization of atoms A.

Besides, we have considered the process of 2CPI as a competition between the
Coulomb and Breit interactions, where the latter can be transmitted by the ex-
change of on-shell photons, corresponding to 2CPI when it is driven by the coupling
to the radiation field. In this case, the Breit interaction can become very efficient

and even dominate over the Coulomb interaction.

Our findings are not exclusive to the process of collisional 2CPI but are more general,
because the coupling to the radiation field may strongly affect collisions in which
one of the atomic species enters the collision in an excited state, independent of how
the excitation occurs (for instance, instead of photoexcitation by a laser field one
may have impact excitation by charged particles in a plasma). This immediately
follows from the structure of the cross section (3.88) for 2CPI via the coupling to
the radiation field. The general part of this cross section is described by the second

factor in (3.88) and does not depend on a particular excitation mechanism for atom
B.

Another point worth mentioning is that in collisional 2CPT the retardation effect can
become tremendously more important than in the process of two-center ion impact
ionization of a weakly bound diatomic system, the latter of which was discussed in
Chapter 2. This may be explained by comparing the particle distances character-
istic of the respective ionization processes. Regarding collisional 2CPI via on-shell
photon exchange, by far the main contribution to the ionization cross section comes
from extremely far collisions with absolute values of the impact parameter reaching
macroscopic sizes ~ 1 cm. In contrast, concerning two-center impact ionization of
weakly bound systems, even the largest dimers in question, such as the Li-He system

with a mean distance between Li and He of ~ 53 a.u., do not exceed linear spatial
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extensions of < 10? a.u. Now, reminding that retardation strongly affects the inter-
atomic interaction when the distance R between the interacting particles is relatively
large, R > c/w ~ 10% a.u. (where w ~ 1 a.u. is a typical electronic transition energy
for the diatomic systems under consideration), it is evident that retardation can be
crucial for 2CPT in slow atomic collisions but is practically negligible for two-center

ion impact ionization of weakly bound diatomic systems.

To conclude this study on the radiation-field-driven ionization in laser-assisted slow
atomic collisions, we give a brief outlook on possible experimental verification of
our theoretical predictions. For example, the effects predicted in this study can be
tested in experiments where a beam of slowly moving projectile atoms or ions (e.g.
H, H-, Mg*, Ca™, Tit, Fet, Sr*, Ba') penetrates (or passes close by) a cold He
gas target that is exposed to a weak laser field resonant to the 1 1Sy — 2 1P, dipole
transition in He. Such experiments may also be performed at considerably larger
impact energies (up to several MeV /u), for which we expect that the coupling of the
collision system to the radiation field still plays a crucial role in ionization of the
projectiles. However, this expectation needs to be refined in future studies, where
the various competing ionization channels occurring at larger collision velocities

should be compared in detail.
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interatomic attachment reactions






4 Introduction and preliminary

remarks

4.1 Historical background and motivation

Until today, we do not fully understand the asymmetry between matter and antimat-
ter in the Universe. This makes the study of antimatter in theory and experiment

a very important subject from the point of view of fundamental physics.

The first theoretical postulation of antimatter goes back to Dirac who proposed
the antiparticle to the electron e~ in 1931 [90]. Shortly afterwards, the positron

* was experimentally discovered in 1932 [91,92]. Just over 20 years later, the

e
antiproton p was discovered in 1955 [93,94]. In the following decades, the amounts
of positrons and antiprotons that could be produced in laboratories had grown
steadily. Naturally, the next goal was to produce the simplest atom of antimatter,
the antihydrogen atom H, which is an pe™ bound system. The first attempts for
producing small amounts of H were made at CERN [95] and Fermilab [96] in the
mid and late 90’s. In both experiments, H was produced in relativistic collisions of
antiprotons with a matter atomic species, involving the creation of eTe™ pairs and
the subsequent capture of et by p. While antiatoms could be successfully observed
for the first time, the main issue in these experiments was that the produced H were

far too fast to capture them in magnetic traps and perform experiments with them.

However, in 2002, the ATHENA Collaboration at CERN was able to produce sub-
stantial amounts of H at very low energies by mixing cooled and trapped antiprotons

and positrons in a cryogenic environment at temperatures ~ 10 K [97]. At the low
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temperatures and high positron densities present in the ATHENA experiment, H
is dominantly formed via the three-body reaction et +e* +p — H 4 et (see,
e.g. 198,99|), in which one of the positrons is captured by the antiproton whereas
the other positron carries away the energy excess. In 2004, the ATRAP Collab-
oration at CERN introduced another experiment based on the capture reaction
Ps*+p — H' +e, in which low energy excited antihydrogen is formed via reso-
nant charge exchange between excited positronium Ps (Ps is a bound e*e™ system)

and cold antiprotons [100].

Once the produced antihydrogen atoms reach temperatures < 0.5 K, they can be
confined in magnetic traps, which was first achieved by the ALPHA Collaboration
[101] at CERN in 2010/11 [102,103]. This enables one to perform high precision

experiments with H in a controlled environment (see, e.g. [104-106]).

One of the main interests in experiments involving antimatter is the verification
of the CPT symmetry which is a fundamental property of the Standard Model of
particle physics. The CPT theorem states that the laws of physics are invariant
under the combined discrete operations of charge conjugation (C), parity (P) and
time reversal (T). A direct consequence of the CPT theorem is that every particle
has an antiparticle with equal mass, spin and total lifetime but opposite charge
and magnetic moment (for more details see, e.g. [99]). Therefore, antihydrogen, the
simplest and currently only accessible antiatom, is an ideal system for studying the
CPT symmetry by comparing atomic interactions in antihydrogen and hydrogen
atoms under identical experimental conditions. In 2018, the ALPHA Collaboration
measured the 15 — 25 transition in H and concluded that their results are consistent

with the CPT symmetry at a relative precision of 2 x 1072 [107].

Another key interest in laboratory studies of antimatter is measuring the Earth’s
local gravitational force exerted on antiparticles as a test of the WEP (weak equiv-
alence principle). In simple terms, the WEP states that in a uniform gravitational
field all bodies, independent from their composition, fall with the exact same ac-
celeration (for more details see, e.g. [108]). This implies that the Earth’s local
gravitational acceleration g is the same for matter and antimatter particles. So far,
the gravitational interaction between matter and antimatter systems has not been
measured directly. The AEGIS experiment [109] at CERN aims to perform a direct
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measurement of g on antihydrogen. For this purpose, low energy antihydrogen atoms
in excited states are formed via the capture reaction Ps*+p — H +e~. Afterwards,
a pulsed cold H' beam is created by Stark acceleration and passes through a Moiré

deflectometer in which the free fall of the antihydrogen atoms is measured [110].

The GBAR experiment [111] at CERN also plans to perform free fall measurements
with cold H in the Earth’s gravitational field. Here, they will use the positive ion
of antihydrogen H', which is an petet bound system and the antimatter counter-
part of the negative ion of hydrogen H™, as an intermediate particle. First, a cold
antiproton beam penetrates a cloud of (excited) positronium and low energy H' is
produced via the two successive charge exchange collisions Ps +p — H +e~ and
Ps+H — H +e . Afterwards, the H" ions are accumulated and sympathetically
cooled to ~ 10 pK in an ion trap. Then, a laser pulse is applied to the trap region
and induces photodetachment of the loosely bound positron in H'. The remaining
neutral H will begin to fall down from the ion trap and measurements of the free

fall of antihydrogen atoms can be carried out [112].

In this thesis, we consider the formation of the positive ion of antihydrogen H.
From the point of view of theoretical atomic physics there is a general interest in
finding new mechanisms for the formation of H ions (see, e.g. [113-115]). Moreover,
the GBAR experiment, in which H" will be used as an intermediate particle in free
fall experiments on H in the gravitational field of the Earth, shows that theory on
efficiently producing H' ions is of great importance for experimental purposes as
well (see, e.g. [116-119]).

4.2 Overview of }_I+ formation mechanisms

There exist two main pathways for producing positive ions of antihydrogen di-
rectly from antihydrogen atoms. The first one involves the charge exchange collision
Ps + H —» H + e”, where a bound e is captured by H to form the H' ion (see,
e.g. [115,117-119]). The second one is based on free positrons which are incident on
H atoms and H" ions can be produced either via radiative or nonradiative attach-

ment of et to H. In the present work, we focus on H' formation according to the
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second pathway, including the radiative attachment mechanisms

(i) et +H — H + hwy,
(ii) "+ H+ Nhwy — H' + (N + 1)hw,,
(iii) e"+H+B — H +B* - H + B+ hw,

as well as the nonradiative three-body reactions

(iv) e +et+H = e +H',
(v) et +et+H — e +H.

The radiative formation mechanisms (i)—(iii) share photoemission as their key sig-
nature. Reaction (i) is spontaneous radiative attachment, in which H' is formed
due to spontaneous emission of a photon with frequency wy by a positron incident
on H. When positrons are incident on H atoms in the presence of a laser field with
frequency wy, the formation of H" ions can also proceed via induced emission of a
photon with frequency wg. This process is described by mechanism (ii) and called
(laser-)induced radiative attachment. Reaction (iii) is two-center dileptonic attach-
ment, which becomes possible in the presence of a neighboring (matter) atom B and
where an incident positron is attached to H via resonant transfer of excess energy
— driven by the two-center positron-electron (dileptonic) interaction — to B which,
as a result, undergoes a transition into an excited state. Subsequently, B relaxes
through spontaneous emission of a photon with frequency wy and the two-center

system becomes stable implying the formation of the A" ion [120].

Mechanism (iv) is electron-assisted three-body attachment, in which H' is formed
when free positrons are incident on H embedded in a gas of low energy (=~ meV)
electrons and positron capture by H proceeds via the positron-electron interaction
where the electron takes the energy excess. If the incident electron in mechanism
(iv) is replaced by a second incident positron, one positron is attached to H — due to
the positron-positron interaction — while the other positron carries away the energy
excess. The latter process is characterized by reaction (v) and termed positron-
assisted three-body attachment [121].
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The main goal of this study is a comparative consideration of the radiative and non-
radiative formation mechanisms (i)—(v) in the range of incident positron energies
from sub-meV to eV. It will be shown that for positron energies < 0.1 eV, electron-
assisted three-body attachment (iv) can strongly dominate over the radiative mech-
anisms (i)—(ili). In addition, for positron energies ~ 1 eV, two-center dileptonic
attachment (ii) and induced radiative attachment (iii) can be much more efficient
than spontaneous radiative attachment (i) and electron-assisted three-body attach-
ment (iv). Moreover, we will see that over the whole range of positron energies
under consideration, positron-assisted three-body attachment (v) has vanishingly

small formation rates.

Part TI of this thesis is essentially organized as follows. In the next Section, we
introduce the bound state of the H" ion that will be used throughout this work. Af-
terwards, in Chapters 5 & 6, we consider the theoretical framework of the radiative
attachment mechanisms (i)—(iii) and the nonradiative three-body reactions (iv)—(v),
respectively, and obtain formulas for the corresponding H" formation rates. Numer-
ical results and a detailed comparative discussion of the attachment mechanisms are

given in Chapter 7. Finally, we summarize our main findings in Chapter 8.

Atomic units (see overview on p. xxi) are used throughout if not stated otherwise.

4.3 The bound state of H"

Concerning the attachment of a positron to antihydrogen via the mechanisms (i)—(v),
we regard the positive ion of antihydrogen as an effectively single-positron system.
Here, the positron which is initially bound to the antiproton is treated as passive
and forms together with the latter a single-rigid body that produces an external
(short-range) field which acts on the incident active positron. Thus, the identical
positrons are considered as strongly asymmetrical, being subdivided into active and
passive. Note that such an approach has been quite successful in the treatment of
electron (positron) detachment from H™ (H") by photoabsorption and of its time-
inverse process of spontaneous radiative attachment of an electron (positron) to H
(H) (see, e.g. [113,114] and references therein) as well as in the treatment of electron

detachment from H™ by ion impact [122]. Furthermore, a similar approach was used
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for describing the single ionization of He atoms by charged particles [123,124] and
by a laser field [125].

Considering H' as an effectively single-positron system, we can approximate its

bound state by

e Y — e_ﬂ"'z)

Py(rp) = N—, (4.1)

Tp
where 7, is the coordinate of the positron with respect to the antiproton. Further,
N = 3258 a = 0235 au. (5 = —a?/2 = —0.0275 au. ~ —0.748 &V is
the binding energy) and 5 = 0.913 a.u. The wave function (4.1) was obtained

by employing a nonlocal separable potential of Yamaguchi [126] for describing a

short-range effective interaction of the active positron with the core of the H' ion.

To get an idea about the accuracy of our theoretical treatments of the H' forma-
tion mechanisms (i)—(v) using the wavefunction (4.1), we take as an example the
spontaneous radiative attachment of a positron to H, which will be discussed in
Section 5.1. Employing (4.1), our calculations for spontaneous radiative attachment
provide a cross section that has basically the same shape but is about 30% larger
compared with the results of a more accurate approach [114], in which a 200-term
two-positron wave function was applied to describe the bound state of H'. Such
accuracy is quite sufficient for this study, as we focus on order of magnitude effects

regarding the competing attachment mechanisms (i)—(v).
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5 Theory of radiative attachment

This chapter provides a detailed insight into the theoretical treatments of the ra-
diative attachment mechanisms which are spontaneous and (laser-)induced radiative
attachment as well as two-center dileptonic attachment. For each of these processes,
we derive the formation rate of positive ions of antihydrogen per unit of time and
per antihydrogen atom. The following chapter is mainly based on results published
initially in Ref. [120].

5.1 Spontaneous radiative attachment

Radiative recombination of an electron with a positive ion via emission of a photon
has been studied in detail in the past with energies of the incident electrons ranging
from below 1 eV to relativistic values (see, e.g. [127-130] and references therein).
Note that radiative recombination is the time-inverse process of photoionization (the

latter of which is considered in Chapter 3).

Radiative attachment of an electron to a neutral atom is essentially similar to ra-
diative recombination and is subject to the same fundamental mechanism, which is
the interaction of the electron-atom system with the radiation field. The theoretical
consideration of spontaneous radiative attachment of an electron to hydrogen (see,
e.g. [20,131,132|) and of a positron to antihydrogen (see, e.g. [113,114]) is basically
identical from the point of view of Quantum Electrodynamics. Therefore, both pro-
cesses may be based on the same treatment. Although the spontaneous radiative
attachment of a positron to antihydrogen has already been studied, we include the

calculation of its reaction rate into this work for completeness and consistency.

We consider spontaneous radiative attachment as an effectively single-positron pro-
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cess. This means that we treat the H' ion as an effectively single-positron system,
in which the attached positron is a weakly bound outer positron that moves in the
short-range field of the ionic core, which is regarded as a single-rigid body formed

by the antiproton and the initially bound positron.

Let us consider an environment where free positrons e™ are incident on antihydrogen
atoms H. In this case, the positive ion of antihydrogen H' can be formed via
spontaneous radiative attachment, in which a free e™ with kinetic energy ey, is
captured by H into the ground state of H" with energy ¢, and the energy release is

taken away by emission of a photon with energy hwy, (see Fig. 5.1 for illustration).

Skp

IIIII*

Fl(l)k
€p

e++H—> H++h(l)k

Figure 5.1: Scheme of spontaneous radiative attachment (SRA). This figure was orig-
inally published in Ref. [120].

We choose a reference frame in which H is at rest and take the position of its nucleus
(the antiproton) as the origin. In this frame, we can describe the attachment process

by the Schrodinger equation

ov .
— = H(t)U 5.1
i = H() (1)
with the total Hamiltonian
H(t) = H, + H, + V,(t). (5.2)
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In (5.2),

A, = - (5.3)

is the free Hamiltonian of the (e™ + H) system, where 7, and p,., are the coordinate
and momentum operator of the positron with respect to the antiproton, respectively.
In addition,

I‘if,y = Z wkd;fc/\dk,)\ (54)

A=1,2

describes the Hamiltonian of the (single-mode) quantized radiation field with the
wave vector k, the angular frequency wy = ck, where ¢ is the speed of light (¢ ~
137 a.u.), as well as the creation operator dL/\ and annihilation operator ag,. The

two polarization directions of the field are denoted by A = 1,2. Moreover, in (5.2),

. 1. . [
Vi(t) = _EA(TP? t) - Pr, + Q_CZAQ(Tpat) (5.5)
is the interaction between the (et + H) system and the radiation field. The latter

can be described by the (single-mode) quantized vector potential

A 2mc? ~ i(k-rp—wit)
A(rp,t) = Vhwkek/\ [ak,\e + HC] . (56)
p

Here, ek (A = 1,2) are the unit polarization vectors (eg; - €ga = 0, ey -k = 0) and
V5, is the normalization volume for the field. Further, we treat the interaction V,(t)

in the dipole approximation, i.e. k-7, ~ 0.

The initial (¥;) and final (¥ ;) states of the total system, (e* + H) + radiation field,

read
U; = P, (rp)e " X |Op)

Wy = du(rp)e”™ X [1pa) (5.7)
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where ¢y, is the continuum state of the incident positron, which has an asymptotic
momentum k, (as is seen in the rest frame of H) with corresponding kinetic energy
ek, = k2/2, and ¢ is the bound state of the H' ion. Besides, |Og) and |15,) are the

states of the radiation field before and after the emission of the photon, respectively.

From the perspective of the incident positron, the (attractive) Coulomb field of the
antiproton is largely screened by the presence of the bound (anti-)atomic positron
in H. Therefore, we can describe, in very good approximation, the incident positron

by a plane wave

ez’kp Tp

Nos

Here, V), is the normalization volume for the positron. Further, following the con-

Dk, (Tp) = (5.8)

sideration in Section 4.3, we can approximate the bound state ¢, of the H' ion by

the wavefunction (4.1).

Using the first order of time-dependent perturbation theory in the interaction be-
tween the (e* + H) system and the radiation field, the transition amplitude for

spontaneous radiative attachment can be written as

aspA = —z/_oo dt (U V. () [, . (5.9)

(e 9]

Next, we insert (5.5) and (5.7) into (5.9), perform the time integration and obtain

(27)°

mé(% — &b — wi) (B (7p)| €nr - Do, [€77) (5.10)

ASRA = ic
where the delta function reflects the energy conservation, wy = €3, — &, of the at-
tachment process. Taking into account that p,, |e*» ") = k, |e’*» "), the amplitude
(5.10) becomes

(27)°

—= 7 (e, —ep — -k ik Ty, 5.11
‘/p‘/phwk (gkp 5[) wk)ek)\ p<¢b(rp)‘e > ( )

asrA = iC

The result of the remaining space integral (¢ (r,)|e?*> ™) can be easily derived and
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is given by

e_arp — e_BTP ’ikp~7‘p 4 N 62 - 052
——————————¢€ = a7
z (@ + (7 + &)

(@ntr)lem) = [ o, (5.12)

Inserting (5.12) into (5.11), the transition amplitude for spontaneous radiative at-

tachment reads

V2N (8% — o)d(ex, — b — wi)
VVoVonwr(a? + k2) (6% + k7)

ASRA — (5% k:p. (513)

The formation rate of H' ions per unit of time (per H) for spontaneous radiative

attachment is obtained by calculating the quantity

Rens = 2! Z/d?’k lasnal” (5.14)
T en) &, T '

Here, the time duration T is of the order of the interaction time. We insert (5.13) into
(5.14), employ the identity [276(ey, —ep—wy)] = 276 (e, —ep—wi)T and choose the
unit polarization vectors as eg; = ey, = (cos I cos @x, cos U sin @g, — sinvy) and
ez = €y, = (—sin py, cos pg, 0), where ey, and e, are the polar and azimuthal unit
vectors, respectively, when expressing the wave vector k in spherical coordinates.
Afterwards, the rate (5.14) can be written as

sin® Oy (5.15)

Rens — 8TN22(8% — ozz)zk:g /dgk d(er, — b — Wi)

Vo(oE T P R m
Now, we carry out the k-integral in (5.15) by using wy, = ck and d(eg, — & — wy) =
S(k — 2222y /¢ and get

c

_ GAmANZ(B? — a®)?kp(ex, — )
ST T 3V,c(0? + K2)2(B2 + K2)?

(5.16)

Expressing the normalization volume V), for the incident positron in terms of the
corresponding number density n, of positrons according to V, = 1/n,, the final

result for the formation rate of H' ions per unit of time (per H) for spontaneous
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radiative attachment is given by

647°n, N?(5* — o®)?k) (ex, — &)

3c(o? 1 R2)2(32 + K22 (5.17)

Rsra =

5.2 (Laser-)induced radiative attachment

In a situation, in which free positrons e* are incident on antihydrogen atoms H in
the presence of a laser field having the frequency wy, the formation of the positive
ion of antihydrogen H' can also take place via induced emission of a photon with
energy hwy (see Fig. 5.2 for illustration). We refer to this process as (laser-)induced

radiative attachment.

lllll*
IIIII* gk IIIII*
IIIII* p lllll*
IIIII* lllll*
IIIII* lllll*
lllll* Illll’
lllll* lllll*
lllll* Illll*
IIIII’ gb lllll’
IIIII* lllll’

et + H+ Nhwy, — H* + (N + 1)hw,

Figure 5.2: Scheme of (laser-)induced radiative attachment (LIRA). This figure was
originally published in Ref. [120].

The laser field is considered as a classical monochromatic electromagnetic wave of
linear polarization in the dipole approximation, F'(t) = Fjsin(wot) with |Fy| = Fj
the strength of the field. It shall efficiently stimulate attachment without destroying
the produced H' ions (and obviously without destroying the H atoms themselves).
In order to accomplish this, we assume that the laser field is sufficiently weak,
Fy < F, with F, the typical atomic field which is produced by the ionic core and
acts on the loosely bound outer positron in a. Moreover, it is also assumed that
the laser frequency wy is resonantly tuned to the positron transitions which lead to

. =+ . .
the formation of the H' ion, i.e. wy ~ &;, — €.
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For describing the process of (laser-)induced radiative attachment (as well as of

(laser-)induced resonant scattering), we can use the Schrodinger equation

i = (H, + W(t))U (5.18)

with H, the Hamiltonian of the field-free (e* + H) system, given by (5.3), and
A 1 R
Wi(t) = _EAL(t) “ Pr, (5.19)

the interaction between the incident positron and the laser field. In (5.19),

F
A(t) = 2 cos(wot) (5.20)
Wo
is the (classical) vector potential that is associated with the field F'(¢) when applying

the so-called velocity gauge, in which the electric field F' is determined solely by the

_19AL()

vector potential Ay according to F'(t) = —:~;

We expand the wave function |¥) into the complete set of states

W) = ) on(r) e+ [ Py b (0] ) " (5.21)

and insert (5.21) into (5.18). The resulting equation is projected on (¢y| and (¢ |,
respectively. Afterwards, we employ the rotating wave approximation (see, e.g.
[85]), in which the rapidly oscillating time-dependent terms are dropped. Since the
electromagnetic field is assumed to be sufficiently weak, it is further possible to
neglect the laser-induced transitions between the continuum states. In addition, we
assume that the laser field is switched on suddenly at ¢ = ¢; = 0. Taking all this into
account, the set of equations for the unknown coeflicients a,(t) and by, (¢) in (5.21)

is obtained to be

Z(lb(t) = /dgkpbk,p (t)kape_i(Ekp_gb_w())t,

b, (1) = ap(t) Wy, e/ hr 070! (5.22)
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with the initial conditions ay(t = ¢; = 0) = 0 and by, (t = t; = 0) = 6°(k, — ky0),
where k, is the incident positron momentum. The transition matrix element Wiy,
in (5.22) reads

Wik, = =5 — (0u(r)] B B, |00, (1) (523)
Wo

and ngp is the complex conjugate of Wiy, .

Next, we define by, (t) = by, (t)e =070 with by (t = t; = 0) = by, (t = 0) =
63(k, — kpo). Then, (5.22) becomes

iay(t) = / d* kb, (t) Wk,

iy (£) = (25, — 25 — wo)b, (£) = an(t) W, - (5.24)

The system of equations (5.24) can be solved by using the Laplace transform (see,
e.g. [133])

Ly(s) :/ dt f(t)e ™. (5.25)

0
For this purpose, we first multiply both equations in (5.24) by the factor e and
subsequently integrate them over the time from ¢ = 0 to ¢ = oo while taking

advantage of the initial conditions a,(t = 0) = 0 and ka(t =0) = *(k, — kpo),
which yields

i$Lq, () Z/d?’kagkp(S)kap,

(is —ex, +p+ wO)Lka (5) —i5°(ky — kpo) = L, ($)Wi, - (5.26)

Solving the set of equations (5.26) for L,,(s) provides

Wk, o

Lay(s) =
' (is — en,o + v +wo) (is — [k

(5.27)

Wi, |2 ) '
P is—eg,teptwo
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The inverse Laplace transform is defined by (see, e.g. [133])

1 Y+ioo

f(t) = —/ ds Lg(s)e™, (5.28)

21 S oo

where v € R is a constant that exceeds the real part of any of the singular points of
L(s). Applying (5.28) to (5.27) leads to

+i00 t
. ka“o v 65

ap(t) = / ds : 02
21 Jysico (is — ex,o + &b +wo) (is — [ &k, %)

Further, in (5.29), we substitute z = is € C and get

W, oco-+1y —izt
MQ:Lﬁ&/ dz ¢ S (5.30)
2 —oo-+iy (z — €k,o Tt &b+ wo) (z — f A3k 2kp )

p Z—Eky +eptwo

The integral in (5.30) can be calculated by employing the so-called pole approxima-
tion [120], in which

Wik, |2 r
/&@ W, ~A i (5.31)
2 — Ek, T €+ Wo 2

Here,

Wk, |

A= P.V./d3kp —_—
Eb T Wo — €k,

(5.32)

is a small energy shift and

— 2 2
I'= 27T/d Qkp |kap|kp:|kp|:\/m’ (533)

where the integration runs over the solid angle (2 of the positron, is the width of
the bound state ¢, of the H" ion due to the interaction with the laser field. The

pole approximation is very accurate as long as &, + wp > max{A, I'}, which in case
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of a relatively weak field is well satisfied. Insertion of (5.31) into (5.30) yields

W ooty —izt
ay(t) = —r0 / dz ‘ - (5.34)
2 —cortin (z — €k, T &b+ wo) (z — A+ 25)

Now, we can easily perform the integration in (5.34) by using the Residue theorem

and obtain

. . .T
kapyoe—z(ak.p’o—ab—wo)t(1 N el(fkpyo—fb—WO'f‘lg)t)

ay(t) : (5.35)

-
€kpo — Eb — Wo + 15

where it is assumed that the small shift A is already included into the energy &y.

The probability to find the incident positron in the bound state of H' is given by
Po(t) = ay(t)[*

Wik, o | L
- (€k,0 — Eb —7210)2 + 2 (1 — 2c08((ex,, — & — wo)t)e ot te Ft).(5.36)
p,0 4

Note that the factor [(ex,, — & — wo)? + FQ/ZL}_1 in (5.36) describes a well-known
resonance structure (see, e.g. [39,40,44]) having a maximum at the exact resonance
E€kpres = Eb + wo. In contrast to spontaneous radiative attachment, (laser-)induced
radiative attachment is a resonant process that is only efficient in a very narrow

interval of incident positron energies centered at e = &, + wp and having an

p,Tes

effective width of a few I's.

If the incident positrons do not have a fixed momentum k,,, one may average the

probability (5.36) over their momentum distribution function f(k, o) according to

(Put)) = [ ks ) Pu), (5.7

In order to derive a simple analytical result for the averaged probability, we make
the following assumptions: (i) the polarization of the laser field is chosen along the
z-axis (Fy = Fpe,), (ii) we assume that the incident positrons move along the field

polarization (k,o = kpoe), and (iii) their energies are supposed to be uniformly
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distributed over an interval I, = [y, ., — A&y, /2, €k, + Ack, /2] that is centered at
the resonance energy €y, ... = €, +wp and has a width Ag, which is much narrower
than the effective energy width AE of the H' continuum (AE ~ 1 ¢V) but at the
same time is much broader than the width I' of the H™ bound state. Note that
in a relatively weak laser field I' amounts to just a tiny fraction of 1 eV, such that
our assumptions on Agy, in (iii) are very well compatible with each other. Taking
all this into account, the resulting momentum distribution function f(k,o) for the

incident positrons can be written as

5(1 — COS 19kp,O)X{5kp,oEIE} <€kp,0)
27T/£p70A5kp ’

flkpo) = (5.38)
where X{ex, 0615}(5;%’0) is the indicator function which takes the value 1 for e, , € I.
and 0 otherwise. Inserting (5.38) as well as (5.36) into (5.37) and rewriting the
integral over k,o = |kj| into an integral over the positron energy e, , = k> ,/2, we

arrive at

(P, (1))

1 / (1 —2cos((ex,o — &b — wo)t)e 2t + e )
2rler, Jr. " (Ekpo — &b — wo)? + FTQ

« / P, o 5(1 — cos i, ) [ Wi, | (5.39)

First, we focus on the solid angle integral in (5.39). When performing the integration

over the polar angle Uy, ,, the resulting integrand Wik, 5, —o = [Wek,o [k, o=, ve.
’ ’ p,0 ’ ’ ’

does not depend on the azimuthal angle ¢y, ,. Thus, the subsequent integration

over ¢y, simply yields 27 Wi, |7 and the averaged probability (P, (t))

p,0=kp,0€z
becomes

1 (1 —2cos((en,, — b — wo)t)e =t + e 1)
<Pab (t)> = A dgkpo 9 | I?
€kP e (5l€p,0 — & — WO) + x

X |kap,0|z:p,0:kp?oez' (540)

In (5.40), the resonant factor g(ey, ) = [(ex,, — & —wo)? +1?/4] ~! only contributes
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to the integral in a very narrow interval of energies of the incident positron centered
at the maximum ¢y, ,., = &, + wy of the function g(e, ,) and having a width of a
few I's (which is of course much smaller than the width Aey, of the interval I.).
Within this interval, e, .., — ' < e

~J p,0 ~v E:k?p,?“es

+ I, the function g(ey,,) varies

much faster in e , than the quantity [Wi, | and we can treat, in an

p.0=FKp,0€z

approximate manner, the latter as a constant evaluated at the resonance energy
Ekpres = Eb + wp. Furthermore, since the contribution of the integrand is negligibly

small outside the small interval e, ., —I' S e,y S ke + 1, We can extend the

p,0 ~

integration boundaries to 0 to co. Then, (5.40) reads

2
01kp 0=Fkp res€z
P t — P, P,
(Fay (1)) Ay,

o0 1—2cos((ep, . — gy — wo)t)e 2t 4+ Tt
y / dey,. ( ((Ekpo — €6 — wo)t) )
0

(5.41)
(€kpo — €6 — wo)? + %2

with kp,es = \/2(6p +wp). The remaining integral in (5.41) can be solved quite
easily by substituting u = €y, , — 5 — wp and afterwards taking advantage of the fact
that the resulting integrand only contributes to the integral in a very narrow interval
—I' S u ST, so that the lower integration boundary —(e, 4+ wp) can be extended
to —oo. Then, the averaged probability (P, (t)) to find the incident positron in the
bound state of I is obtained to be

Wkyol 8, o=kpreses 270 _
(P, (1)) = OAQZ : T(1—e . (5.42)

The time derivative of (5.42) yields the (averaged) formation rate of H' ions per

unit of time (per H) that is

d Wk, 0% o= veser o
(Reina) = 2 (P (1)) = 0 K0 hprests e Tt (5.43)

Agkp

The rate (5.43) contains the transition matrix element Wy, , from (5.23). For its

evaluation, we use the same continuum and bound states which have already been
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used in the consideration of spontaneous radiative attachment in Section 5.1 and
which are given by (5.8) and (4.1), respectively. Recalling that Fy = Fye,, the

quantity Wi, . [% can be written as

p,0:kp,res €z

2

1 .
Waky ol oty veser = | — 57— (D6(Tp)| Fo - Pr, |9k, (1))
2(&)0 kp,():k'p,resez
FO2 ~ ik res€s T\ |2
= 4(«08‘/;)‘ <¢b(rp)| eZ ) prp |6 pres® TP> ‘ ‘ (544)
Next, we apply py, [¢*prese=Tr) = L, e, |errese=Tr) and (5.44) becomes
32 -
Wk, oty 0=y yever = 4w§7"/p *[{gy(rp) |eFrrese=Te) |, (5.45)

The result of {¢y(r,)|e*rme=€=T7) in (5.45) can be obtained from (5.12) and we arrive

at

47.‘_2N2F2k2 7«63(62 _ 062)2
Wik, o7 = -

0.0=kp res€s wg‘/;)(QQ + kgwesy(ﬁ? + k?%,res)z

(5.46)

Inserting (5.46) into (5.43) and expressing the normalization volume V), of the inci-
dent positron via the corresponding number density n, of positrons as V,, = 1/n,, the
(averaged) H formation rate per unit of time (per H) for (laser-)induced radiative
attachment reads

813, N2F2k2, (6% — a?)?

R - 0 “pires e Tt 5.47
< LIRA> Agkpwg(az + kg,res)2(52 + k}%,res)Q ( )

As can be concluded from (5.47), the formation rate substantially diminishes for
I't ~ 1 and already essentially vanishes for I't > 1. The reason for this is that in the
presence of a laser field, besides induced radiative attachment, photodetachment (of
the loosely bound positron in I_{+) also occurs. Hence, with increasing the population
of the bound state of I:IJr, the attachment and detachment events may balance each
other after some time, resulting in a zero net formation rate. Let the laser pulse

have a time duration T, where 0 < ¢t < T'. In order to efficiently produce 0" ions via
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(laser-)induced radiative attachment during the whole pulse, the duration 7" should
be sufficiently small so that I'T" < 1 and consequently I't < 1.

Note that the formation of H ions via induced radiative attachment involving a
weak laser field has also been considered independently in [134]. However, compared
with our theoretical approach to this process, in which the Schrédinger equation
describing the induced attachment is solved by applying the rotating wave approx-
imation, the approach in [134] is quite different. It treats the attachment by taking
advantage of the first order of time-dependent perturbation theory in the interaction

between the incident positron and the weak laser field.

5.3 Two-center dileptonic attachment

Let us now consider attachment of a positron e to an antihydrogen atom H pro-
ceeding in the presence of a neighboring (matter) atom B. For the moment, we
ignore possible annihilation channels and also other processes that might occur in
an environment in which antimatter is embedded in matter. These will be discussed

in detail in Section 7.2.

At first, we assume a fixed interatomic distance Ry (Ry > 1 a.u.) between H and
B. 1If the energy excess wg+ = €, — & in the process of e + H attachment is
close to an excitation energy wp = €. — ¢, of a dipole-allowed transition in atom B
(€. and €, are the energies of the excited and ground state of B, respectively), the
released energy can be transferred — via the two-center positron-electron (dileptonic)
interaction — to atom B, which, as a result, undergoes a transition into an excited
state. Afterwards, B radiatively decays to its initial (ground) state by emission
of a photon with energy Aw;, and the two-center system, (e* + H) + B, becomes
stable, meaning that the H" ion has been formed. A scheme of this process, termed

two-center dileptonic attachment, is shown in Fig. 5.3.

In the 'matter’ case of two-center dielectronic recombination (attachment), in which
an electron e~ recombines with (is attached to) a positive charged ion (a neutral
atom) A in the presence of a neighbor atom B driven by the two-center electron-
electron interaction, it is well-known [39, 40, 45| that, because of its resonant na-

ture, the two-center channel can enhance the corresponding recombination (attach-
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Skp
dileptonic
interaction
€p

et4+H+B —» Ht +B*

€e
.ll-l’
h(i)k
€g

H* + B* — H* + B + hw,

Figure 5.3: Scheme of two-center dileptonic attachment (2CDA). This figure was
originally published in Ref. [120].

ment) rate by orders of magnitude as compared with the case where B is absent
and recombination (attachment) is only possible via direct photoemission from the
(e~ + A) system. We mention that two-center dielectronic recombination (attach-
ment) is the time-inverse process of two-center photoionization (photodetachment),

which was considered for colliding atomic species A and B in Chapter 3.

Suppose now that free positrons and a beam of I move in a (dilute) gas of atoms
B. As previously mentioned, two-center dileptonic attachment relies on an energy
transfer which is resonant to a dipole transition in B. However, the relative motion
of H and B results in uncertainty in positron and electron transition energies (as
they are seen by the corresponding collision partner), effectively broadening them.
For this reason, the efficiency of the two-center attachment channel is limited to low

velocity collisions, in which the velocity v of H with regard to B is much less than
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1 a.u. [41,135].

In a recent study [41,135], we have considered two-center dielectronic recombination
(attachment) when electrons and a beam of slow positive ions (neutral atoms) A
move in a gas of atomic species B. In the same manner as for the direct correspon-
dence between spontaneous radiative attachment of an electron to an atom and of
a positron to an antiatom (see Section 5.1), the results obtained in [41,135] can be
straightforwardly adapted to the process of two-center dileptonic attachment of a
positron to H proceeding in an environment where free positrons and a slow H beam

move in a gas of atoms B.

Using the results from [41,135|, the formation rate of H™ ions per unit of time (per

H) for two-center dileptonic attachment is given by

97 np TP :
Raocpa = Rsra X ER TN n*< sin® dy, K7 (n)
mn H

+ (1 + cos”® O, )nKo(n) K1 (n) } (5.48)

Here, Rgra is the rate for spontaneous radiative attachment of a positron to H
from (5.17), np is the density of atoms B, b, is the minimum impact parameter
in the H — B collisions, I'Z is the radiative width of the excited state of atom B,
n = |wgt — wB|bmin/v and Vg, is the incident positron angle (which is counted
from the collision velocity v). Further, K;(z) (j = 0,1) are the modified Bessel
functions [87].

Note that within the theoretical approach of two-center dielectronic recombination
(attachment) in [41,135], only contributions to the two-center channel from distant
collisions, in which b,,;, > 1 a.u., were taken into account. Therefore, the rate (5.48)
represents just a lower boundary of the H formation rate for two-center dileptonic

attachment.

The functions Kj(x) (j = 0,1) diverge at + — 0 and decrease exponentially at
x > 1 [87]. Thus, in distant (b, > 1 a.u.) and low velocity (v < 1 a.u.)
collisions, the formation of H' ions via two-center attachment is most favorable,

according to (5.48), when the energy of the incident positrons lies within the small
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interval e, + wp — V/bmin S €k, S €6 + Wi + V/bpin centered at ey, ., = & + wp

~Y

and having the width de;, ~ v/bn;,. Because the quantity v/bp, is typically

orders of magnitude larger than the radiative width T'Z, we can conclude that the
relative motion of H and B strongly smears out the ’static’ resonance condition
er +wp — I8 S ey, Sep+wp + TP [41,135], in case where the distance between

H and B is fixed, and leads to a much broader range of ’quasiresonance’ energies of

the incident positron.
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6 Theory of nonradiative

attachment

This chapter provides a detailed insight into the theoretical treatments of the non-
radiative three-body reactions, which are electron-assisted three-body attachment
and positron-assisted three-body attachment. For each of these processes, we derive
the formation rate of positive ions of antihydrogen per unit of time and per antihy-
drogen atom. The following chapter is mainly based on results published initially in
Ref. [121].

6.1 Electron-assisted three-body attachment

In an environment, in which free positrons e™ and electrons e~ move in a close vicin-
ity of antihydrogen atoms H, attachment of a positron to H may occur due to the
positron-electron interaction, where the energy excess is taken away by an electron.
We call this process electron-assisted three-body attachment and its schematic rep-
resentation is pictured in Fig. 6.1, where €, and €, are the energies of the incident

and outgoing electron, respectively.

For the moment, we ignore the possibility of positron-electron annihilation, whose

influence on the three-body reaction will be discussed in detail in Section 7.2.

The considered attachment mechanism is a four-body problem that is rather diffi-
cult to handle from a theoretical point of view. Hence, we may treat this process
as an effectively three-body problem by regarding the initially bound positron as
passive, forming together with the antiproton a single-rigid body which produces an

external (short-range) field that acts on the active positron and the electron. Such
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€k
ositron-electron ¢
posioneecon. tuszy
€ky interaction
€p

e +et*+H —> e  +HY

Figure 6.1: Scheme of electron-assisted three-body attachment (3BAe). This figure
was originally published in Refs. [120,121].

an approximation, in which identical particles are considered as sharply asymmetri-
cally, subdividing them into active and passive, was already used for the treatments
of spontaneous and (laser-)induced radiative attachment in Section 5.1 and Sec-
tion 5.2, where we pointed out that this approximation has been fairly successful in

describing several atomic processes involving two-electron (positron) systems.

Let us choose a reference frame in which H is at rest and take the position of the
antiproton as the origin. We start our consideration of the three-body attachment

with the exact transition amplitude in the post form which can be written as (see,

e.g. [129])
U3pAc = —i /Z dt <(H — z‘%)xf(t)

where \IIEH(t) is the exact solution of the full Schrédinger equation (whose Hamilto-

w5+><t>>, (6.1)

nian H includes all the interactions) that satisfies the incoming boundary condition

and x(t) is the final asymptotic state that is a solution of the Schrédinger equation
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with the corresponding asymptotic Hamiltonian H £

The Hamiltonian H in (6.1) reads

-~ (Pr) HZ(qqu(p;p) V(1) + Vip(re, 1) (6.2)

with r. and p,. the coordinate and momentum operator for the incident electron
with respect to the antiproton, respectively. Further, Ve(re) is the interaction be-
tween the electron and H. Similarly, V,(r,) describes the interaction between the

positron and H. Besides, Kp(re, r,) = — | is the Coulomb interaction between

1
[re—rp
the incident electron and positron.

Taking advantage of the fact that the Coulomb interaction between the incident

electron and positron is much stronger than the interactions of these particles with
(+)

the (neutral) antihydrogen, we can approximate the exact state W,"’(¢) according

to
U (g vy, 1) = P RYD ()RR (6.3)

In (6.3), R = (r. + r,)/2 is the coordinate of the center-of-mass of the incident
electron-positron pair and P = k. + k, is their total momentum, where k. is the
asymptotic momentum of the incident electron (as is seen in the rest frame of H)

with corresponding kinetic energy e, = k?/2. In addition,

ez"nr(1 — i')e“"’“F(i, 1i(kr — K - r)) (6.4)

K Y

VpVe

is the Coulomb wave function which describes the relative motion of the incident
electron and positron. Here, 7 = r. — 7, is the relative coordinate of the electron-
positron pair, k = (k.—k,)/2, V. is the electron normalization volume and F'(a, b, z)
is the confluent hypergeometric function [87]. Consequently, the state (6.3) describes
the motion of the incident electron and positron by fully accounting for the long-
range Coulomb interaction between them while neglecting their interaction with the

(neutral) antihydrogen.
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We choose the final state x¢(t) as

Xf (Te, Tp, t) = o (Tp)‘Pf (e, Tp)eii(sﬁské)t (6.5)

with ¢(r,) the (undistorted) bound state of the positron which was attached to H
and ¢s(re,r,) the state of the outgoing electron that moves in the field of the H*
ion formed. We treat H™ as an effectively one-positron system with the positron
attached being a weakly bound outer positron moving in the short-range field of the
(single-body) ionic core. Then, following the consideration in Section 4.3, we can
approximate the state ¢, by the wavefunction (4.1). Furthermore, we suppose that
the state ¢ is described by the Coulomb wave function which takes into account the
influence of the Coulomb interaction between the outgoing electron and the bound

positron on each of these two particles and which is given by

(=) 1 CTen i ikl -r i N /
o (1) = \/_e%eF(l - —)e e F( — — 1, —i(kr+ k- 7')), (6.6)
‘ Ve ke ke
where k is the asymptotic momentum of the outgoing electron with the correspond-
ing kinetic energy ey, = k/?/2.

Using the Hamiltonian (6.2), in which the weak interaction V.(r.) between the
electron and the (neutral) antihydrogen is being neglected, and using (6.5), the
quantity (lf[ —i2)x(t) in the amplitude (6.1) becomes

/
e

~ . 8 . a —i(epters
(H B Za)w) = i n(ry)ey (r)e R

C (A 2
p’l‘e 1 — —i(epte,L
+ ( 2) __]%("“p)wi/)("“)e (ober, )t
L r ©
-(ﬁ"‘p)Q > — —i(e E 1
|+ Vi) | d(rp)e (r)e e (6.7)

By taking advantage of the eigenvalue equations [(ﬁg’)Q + ‘A/p(rp)}gbb(rp) = epp(Tp)

and [@ — %]apgg)(r) = [% - %M;)(r) = ékégogg)(r), it can be easily shown
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that (6.7) yields

/
e

(i Dot ={ [+ 1 entrped

~[Bran(ry)] - [Pl ()] }<> (68)

Now, we insert (6.3) and (6.8) into the transition amplitude (6.1), perform the

integration over the time ¢ and obtain
A3BAe — —27Ti5(€kp — &y — (Ek/e — Eke))<M1 -+ 5kéM2 — Mg) (69)

Here,

M,

/
e

(Fontret )

e PRy (H) <r>>,

M — <¢b<rp>so;><r>

/
e

e“"%,&”(r>>,

/
e

M3 = <[ﬁrp¢b<rp)} : [ﬁreSOEc )(T)}

eiP'Rz/)fj)(r)>. (6.10)
In (6.10), we first consider the space integral M; which reads

M= / d’ry / d'r. (%aﬁb(rp)w,&?(r))*eip‘%wr). (6.11)

Rewriting the integral over the electron coordinate 7. in (6.11) into an integral over

the relative coordinate » = r. — 7, of the electron-positron pair provides

P-T

M= ([ er, o)) [ar Sl o)) =52 612)
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The calculation of the integral Z; in (6.12) is quite simple and yields

) —ary __ ,—PBrp 52 _ 042
I, = | #r, PPN T N .
' / e - e Pyt Y

(6.13)

The integral Z, in (6.12) requires a more careful treatment. Applying the Coulomb
wave functions (6.4) and (6.6) and introducing the infinitesimal small positive pa-

rameter A (A — 07), Z, can be written as

1 x 7 1 = 7
7T, = [ 1 —— 2k 1 — — 6.14
VA ( n) N ( kg>‘7 (6.14)

with

iqr . .
J = /d3'r e s F(l, Li(kr — K- r))F(%, Li(klr + K - r)), (6.15)

r K A
where ¢ = £ + k — k| = k. — k.. An integral of the same form as J also appears in
the theory of Bremsstrahlung and it was calculated in [136]. Then, using the results
of [136], the integral 7 in (6.15) is obtained to be

L A T A\ o
J="e" (g) (ﬂ) F(l—i,i,l,z). (6.16)
a A o kK.

Here, : = S G = (¢ +X)/2, f = k.- q— i\ 5 = k- q+ ik — &,

6 =rk! + K-k — B and F(a,b,c,z) is the hypergeometric function [87].

Inserting (6.16) into (6.14) and afterwards inserting the resulting expression for Z,
as well as the result for Z; from (6.13) into (6.12), the quantity M; becomes

M, = 872N f — o ! e‘Z"F(l Z) 1 e?ZT(l Z)
= o7 K _ - e -
1 (a? + P2)(5* + P?) /V, V. k) V. K,

X l(g)(ﬂ) keF<1—1,i,1,z). (6.17)
a\y ¥ Kok,

128



— CHAPTER 6. THEORY OF NONRADIATIVE ATTACHMENT —

Next, we evaluate the space integral Mo in (6.10) that reads

M, = / &r, / &Pr. (gbb(rp)gogcz)(r))*eiP'Rw,(f)(r). (6.18)

The integral over the coordinate r. in (6.18) is rewritten into an integral over the

relative coordinate r = r. — r, and we arrive at

/
e

M= ([ r, ePmaiin) ) ([ P 0@ o) ) =TT (619

where the result of the integral Z; is given by (6.13).

Employing the states (6.4) and (6.6) and, as before, introducing the infinitesimal
small positive parameter A (A — 07), the integral Z; in (6.19) yields

1 n 1 1 = 1
Ty = [ 1—— (1 — —
SEVIAA ( m) A ( k‘é)

X /d%« e_’\”"eiq""F(%, 1i(kr — K - r))F(%, 1i(kr + k.- r)) (6.20)

€

In (6.20), we can recover the integral 7 from (6.15) by differentiation with respect to

A. In particular, taking into account that e™*" = —2 (67”), (6.20) can be written

T o

r
as

1 7r 1 1 = 7 0
I3 = ————=e2x[(1—— ke 1—— || =T ). 6.21
=5 (- 1) (39) (21
The solution of the integral J is given by (6.16). Applying the differentiation formula
(see, e.g. [87]) LF(a,b,c,2) = LF(a+ 1,b+ 1,c+ 1,z) for the hypergeometric

function, the derivative of (6.16) with respect to A is straightforward and provides

o _x(G\"[(F+6\ i i i
3 I i) AF(1-L 11
wr =2 () (50) T i)
i i
+A2F 2 — E7 /{}_é + 1, 2, z . (622)
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Here, the quite cumbersome quantities A; o = A; 2(k,, ke, k) are shown in Appendix
9.5.

Inserting (6.22) into (6.21) and subsequently inserting the resulting expression for
Z; as well as the result for Z; from (6.13) into (6.19), the quantity M, is obtained
to be

R

My = —872N f - o ! a$r<1—i) 1eﬁr(y—i>
2 (a2 + P2)(52 + P2) V. V. V. k,

ENEN

Lfa\E (R N
SRR 0 R (e T I R
a\7 gl K kg
i
+A2F 2 — E, ]{j_é —+ 1, 2, z . (623)

The last (and most complicated) quantity to be determined in (6.10) is the space
integral M3 which reads

/
e

Ms = / &r, / d&*r, ([ﬁrpgbb(rp)} : [ﬁresoﬁ(m])*eiP'me (6.24)

Rewriting the integral over the coordinate 7. in (6.24) into an integral over the

relative coordinate r = r. — r, leads to

My = ([ar, e lpnontn) ) ([ Er e it o))
- LT (6.25)

Using integration by parts, where ¢(7,) — 0 as |r,| — oo, the integral Z, in (6.25)
becomes

52 _ a2
(07 + P2)(37 + P?)

L:P/f%a”wmw:PL:PMN (6.26)

with the result of the integral Z; given by (6.13).
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Now, we turn to the integral Z5 in (6.25), whose evaluation is quite laborious. Ap-

plying the states (6.4) and (6.6) and, once again, introducing the infinitesimal small

positive parameter A (A — 07), Zy yields

1 1 1 = 1
Ty =i wr(1-2 wr(1- -
VA ( m) VA ( kp@)
X /d3r e_’\’"ei(%”) 'rF<%, Li(kr — k- r))

x V, [e ike: rF(y,l,Z(k/T—Fk/ ))1 (6.27)
Employing V,.F (iv, 1,i(kir+k.-r)) = %Vk/e [F(il/, 1, i(k:;r—i—k’e-r))]yzmnst., where
v = 1/k, is regarded as a constant with respect to Vy,, it is easy to show that the

quantity V,.[e~ ke "F(k, ,1,i(klr + K. -7))] in (6.27) can be expressed as
Vv, {e‘ik/&'TFGl/, Li(kyr + k., - r))] =
k?l ké . 1t —ik! - . N /
Vk/ + —Sir —ik, | |e T F v, 1 i(kr + kL -7) ||, (6.28)
r

Inserting (6.28) into (6.27) provides

1 uy Z ]_ L )
Ts =i T (1—~ (11— — ) |E(Ve
i) g (1 g [

iq-r ;
+K / Pr eV ipS F<£, Li(kr — K - ’r’)) F<iu, 1,i(klr + K. - 'r)>

r K

—ik, / &r e M (i, Li(kr — K - r)) F(il/, 1i(klr + K., - r))] ,
K
(6.29)

where the integral 7 in the first term is defined by (6.15). The second and third
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term of (6.29) can also be expressed in terms of J by differentiation with respect

to g and A, respectively. Thus, using r eiZ‘T = Vq(ei#) in the second term and
e N = —%(ef:r) in the third term, (6.29) can be written as
1 x iy 1 = 7
Is=1i w1 —— ke 1 — — | |k (Vg
VAT < n) A ( kg> { (ViJ)
/ q! 0
+k,(VoJT) + ik, <aj)} . (6.30)

Here, the derivative %j is given by (6.22). Further, taking into consideration
the solution of the integral J from (6.16) and the differentiation formula (see, e.g.
87]) LF(a,b,c,z) = “LF(a+1,b+1,c+1,z2) for the hypergeometric function, the
gradients Vi, J and VJ are easily calculated. They read

Vid = Tﬂe_i <3) (7 —f 5) {A?)F (1 — i,iy, 1,2)
a A A K

+AF (2 —liv+1,2 2)1 (6.31)
K

and

7 ~

" (—7 + 5) {Ag,F(l L 1,2)
")/ K

+AGF (2 —Liv+1,2 z)] (6.32)
K

<

Q

Q

Il
S

)

213
A~
=21 2
~

with the rather cumbersome vectors As 56 = Asa56(k,, ke, k) specified in Ap-
pendix 9.5. Note that Vi, J was evaluated under the assumption v = 1/k, = const.

with respect to V.

Inserting (6.22), (6.31) and (6.32) into (6.30) and afterwards inserting the resulting
expression for Zs as well as the result for Z, from (6.26) into (6.25), the quantity
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M yields

M =814 N B — o L e 2 AN e (11— — |k
(w5 P+ P T, <) VT gt

g

K '
+P- (ik—fA2+A4+A6)F<2—%,il/+1,2,z>]. (6.33)

x|

X <ﬂ> |:P (ZEA1+A3+A5)F(]_—ﬁ,ll/,LZ)
K

gl ke

SHE

We now apply the results for M;_3 from (6.17), (6.23) and (6.33) in order to obtain

the final expression for the transition amplitude (6.9), which is given by

1 3 2 2 . . s .
A3BAe = - bm N(ﬂ a ) e_MF(l — 1)62’9’5F<1 — i)
iv/ViVe(o? + P2)(82 + P?) n K

X Qped(er, — € — (€ky — €k)), (6.34)

where
1/a\ " 5\ i
Qpe = = g L ' AlF 1_171717'2
a\7¥ gl A
i 9
A F 2__’E+1’2’Z (6.35)
with

e

k'
A1 =1- 6kéA1 — Zl{?éP . (Zk—,eAl + A3 + A5),

k'
Ag = gkéAQ + Zk’éP . (Zk—/eAg + A4 + A6) . (636)

e

The formation rate of H' ions per unit of time (per H) for electron-assisted three-
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body attachment is determined by calculating the quantity

Ve |aspac|?
Riapae = d°K! . 6.37
e = g [ R (6:37)
In (6.37), we integrate over the momentum k. of the outgoing electron and, similar
as for the spontaneous radiative attachment rate (5.14), the time duration 7" is of
the order of the interaction time. Inserting the amplitude (6.34) into (6.37) and
employing the identity [270(ey, — &, — (e, — 5%))}2 = 2m0(ep, — ey — (en, —er.))T,

(-2

: = ¢
X /dgkie 6(5kp — &y — (5k; — €ke))€ke F(l — E)
We use the relation 5(9(1')) = Z:cje{simple roots of g(z)} mé(l‘ - xj) and write the
delta function in (6.38) as d(ex, — ep — (ex, — €k.)) = =0(k. — k.), where k =
k2 + kZ — 2g,. Subsequently, performing the integration over the absolute value

k. = |k.| of the outgoing electron momentum and expressing the positron and

the rate Rapa. becomes

167T2N2(62 _ 042)2 i 2

%%(Q2+P2)2(62—|—P2)26

RBBAe =

2
1Quel®. (6.38)

electron normalization volumes V}, and V. by the corresponding number densities
n, and n. of positrons and electrons according to V, = 1/n, and V. = 1/n,, the
formation rate Rsp4. 1S obtained to be

1672n,n.N?(5% — a?)? 2

Rspae = (o + P22(52 1 P2)2 e = G(k) G(kf;)ké/dﬁk;(@pep)k;kg. (6.39)

Here,

2 27

= (6.40)

Glk) = et (- )

-3

is the Gamow factor for a charged particle with absolute momentum £ that moves

in an attractive Coulomb field (see, e.g. [137]).

In the following, we consider antihydrogen atoms embedded in a gas of low energy
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(= meV) electrons which is penetrated by a positron beam. We assume that the
beam of positrons propagates in a fixed direction and its (sharp) energy varies in
a relatively broad range from sub-meV up to eV. In such a case, the H" formation
rate can be obtained by averaging (6.39) over the absolute value k. of the incident
electron momentum by applying a Maxwell-Boltzmann distribution. Furthermore,
we account for all relative orientations between the incident positron and the incident
electron momenta by performing the average over the solid angle €2, of the incident
electron momentum while the direction of the incident positron is fixed. Therefore,
the averaged formation rate (Rspa.) of I ions per unit of time (per ) can be

calculated according to
1 oo
(Ropn) = 1= [ %, [ b ws, (k) Rapa (6.41)
0
2

Amk?
(2nEr)3/2
dent electron. In addition, Ep = kgT'is the average thermal energy associated with

kﬁ
where wg,. (k) = e 2Pr is the Maxwell-Boltzmann distribution for the inci-
the electron gas of temperature T', where kg is the Boltzmann constant. It is worth
mentioning that the rate (6.41) now only depends on the absolute momentum £, of

the incident positron.

6.2 Positron-assisted three-body attachment

We suppose a situation, where free positrons et move in close proximity to an-
tihydrogen atoms H. Then, one positron may be attached to H — driven by the
positron-positron interaction — whereas another positron carries away the energy
release. A scheme of this process, referred to as positron-assisted three-body attach-
ment, can be found in Fig. 6.2, where o and £fy are the energies of the incident

and outgoing assisting positron, respectively.

The difference between electron-assisted and positron-assisted three-body attach-
ment is that the incident electron involved in the former process is replaced by a
second incident positron in the latter process. Hence, their theoretical treatments
are quite similar but with two changes. The first minor change is that the positron-

positron interaction in the treatment of 3BAp has a different sign than the positron-
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Figure 6.2: Scheme of positron-assisted three-body attachment (3BAp). This figure
was originally published in Ref. [120].

electron interaction in the 3BAe treatment. The second major change involves the
Coulomb wave functions appearing in the initial and final states of the effectively
three-body system. In particular, the Coulomb wave (6.4) which accounts for the at-
tractive Coulomb interaction between the incident electron and positron in the initial
state in the treatment of 3BAe has to be replaced by a corresponding Coulomb wave
that takes into account the repulsive Coulomb interaction between the two incident
positrons in the initial state in the 3BAp treatment. Accordingly, the Coulomb wave
(6.6) which accounts for the attractive Coulomb interaction between the outgoing
electron and the attached positron in the final state in the treatment of 3BAe has to
be replaced by a corresponding Coulomb wave that takes into account the repulsive
Coulomb interaction between the outgoing positron and the attached positron in
the final state in the 3BAp treatment.

Accounting for the above changes in the theoretical treatment in Section 6.1 results
in a formation rate of H' ions for 3BAp that is many orders of magnitude smaller
than the rate for 3BAe, which will be discussed in detail later in Section 7.1.3.
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7 Numerical results and discussion

This chapter provides a comparative discussion of the numerical results for the
radiative and nonradiative attachment mechanisms under consideration. In this
context, we also briefly discuss the efficiency of positron capture in collisions of
positronium with antihydrogen. Further, we discuss the role of annihilation and
other processes related to the interaction between matter and antimatter for two-
center dileptonic and electron-assisted three-body attachment, both in which matter
particles are involved. The following chapter is mainly based on results published
initially in Refs. [120,121].

7.1 Comparative analysis of the radiative and

nonradiative attachment mechanisms

The H" formation rates for all considered attachment mechanisms depend on the
density n, of incident positrons. Here, we choose n, = 10® cm ™3, which corresponds

to the typical positron density in H and H' experiments (see, e.g. [99,138]).

7.1.1 Spontaneous radiative vs. two-center dileptonic vs.

electron-assisted three-body attachment

For evaluating the two-center dileptonic attachment rate (5.48), we consider the case
when positrons and a beam of slow H move in a gas of Cs atoms. The corresponding
attachment reaction can be written as (H+e") + Cs(6 25,2) — H" +Cs(6 2P3)5)
— HT +Cs(6 251/2) + hwy. Consequently, the positron capture by antihydrogen pro-

ceeds due to the transfer of the energy release to Cs, exciting the 6 2S1/2 — 6 2P3/2
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dipole transition (wp ~ 1.46 e€V) with subsequent de-excitation via spontaneous
radiative decay (I'? ~ 2.14 x 107® eV [56]). Based on the discussion of colli-
sional two-center dielectronic recombination (attachment) in |41, 135], we choose
here b,,;,, = 5 a.u. in order to account for as much of the total rate as possible while
at the same time satisfying all assumptions which the approach to the two-center
process relies on. In addition, we set ng = 10" ¢cm™, v = 0.01 a.u. and Jp, = 7/2.
Note that averaging the rate (5.48) over the direction of the incident positron yields
a result which is ~ 34 % smaller than that at a fixed ¥y, = 7/2.

A numerical result for the electron-assisted three-body attachment rate (6.41) is
obtained by performing the average over the absolute value of the momentum of the
incident electron, using a Maxwell-Boltzmann distribution with an average thermal
energy Ep = kT = 1 meV (=~ 11.6 K). Such energy is in the range of typical energies
for electrons or positrons in the cryogenic environments of CERN experiments on
H and H' (see, e.g. [99,138]). Further, we choose the incident electron density as
ne = 5x 10 em ™3 which, at the moment, is the highest possible density of electrons
that can be experimentally realized in a cryogenic environment at temperatures
T ~ 10 K [139].

In Fig. 7.1, we illustrate the rates (5.17), (5.48) and (6.41) for the formation of H*
ions via spontaneous radiative attachment (the dotted curve), two-center dileptonic
attachment (the dashed curve) and electron-assisted three-body attachment (the

solid curve) as a function of the incident positron energy.

We can conclude from Fig. 7.1 that, in the interval of energies of the incident
positron from 107 to 2 €V, the rate (R3pae) is maximal at the smallest energy
displayed, changes only weakly between 10~% and 1073 eV and then decreases faster
and faster with further increasing energy. The dependence of the rate (R3p4.) on the
incident positron energy reflects the presence of the Coulomb singularity in the wave
function (6.4), describing the relative motion of the incident electron-positron pair,
as the energy of this motion approaches 0. Consequently, the observed decrease
of the rate (R3pae) results from a corresponding decrease in the strength of the
Coulomb interaction between the electron and positron when their relative energy

increases.
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Figure 7.1: The H' formation rate per unit of time (per H) as a function of the
energy €, of the incident positron for spontaneous radiative attach-
ment (dotted), two-center dileptonic attachment (dashed) and electron-
assisted three-body attachment (solid). See text for the choice of param-
eters. This figure was originally published in Ref. [121].

The rate Rgra behaves rather differently. It grows when g, increases and sub-
sequently saturates at the largest energies shown (and decreases for even higher
energies). In contrast to the long-range Coulomb interaction between the incident
electron and positron present in the 3BAe process, here the interaction of the in-
cident positron with a neutral I_{(ls) is of short range and the rate Rgr4 has a
minimum (zero) as the incident positron energy tends to 0. In fact, within the
dipole approximation, the incident positron must be in a state with one unit of the
orbital angular momentum, so there is a centrifugal barrier (leading to an effective

repulsive force), which at very low energies does not allow the positron to come close
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enough to H(1s) that is necessary for the SRA to occur.

In addition, the rate Rocpa exhibits a resonant shape, having a maximum close to
the resonant positron energy at ¢, .., = & +wp ~ 0.71 eV and decreasing rapidly
when deviating from this point. Due to the relative motion of H and Cs, the width
of the maximum (0ey, ~ v/bpin = 2 x 1072 €V) is rather large and it exceeds the
corresponding radiative width of the excited state of Cs (I'? ~ 2.14 x 1078 V) by

several orders of magnitude.

It can be seen in Fig. 7.1 that the 2CDA is only competitive for energies of the inci-
dent positron which are close to the resonance energy at ¢, ., ~ 0.71 eV. Especially,
exactly on the resonance, the 2CDA is much more efficient than the SRA and 3BAe,
dominating the SRA by a factor ~ 9.3 x 10 and the 3BAe by a factor ~ 4.9 x 103.
(We recall that the rate Rocpa does not account for contributions from collisions
with smaller impact parameters than b,,;, = 5 a.u. and therefore represents a lower
boundary for the H' production via the 2CDA.) However, for (much) smaller en-
ergies e, < 1072 eV, which are most favorable for the 3BAe, the rate (Rspac) is
orders of magnitude larger than the rate Rgra and even many more orders of magni-
tude larger compared with the rate Rocpa (since the incident positron energy is far
off the two-center resonance). Furthermore, the 3BAe mechanism remains stronger
than the SRA and 2CDA mechanisms up to energies g, ~ 0.1 eV.

7.1.2 Spontaneous vs. (laser-)induced radiative attachment

Now, we evaluate the (laser-)induced radiative attachment rate (5.47). We remind
that, unlike SRA, the LIRA is a resonant process which only proceeds efficiently in
a very narrow range of incident positron energies centered at the resonance energy
Ekpres = Eb + wo and having an effective width of a few I"s. The laser field is
assumed to have the frequency wy = 1.5 eV, corresponding to a resonant positron
energy €, .., = € +wo ~ 0.75 eV. Further, the (averaged over the period) intensity
Iy = cFZ/(87) of the field is chosen as Iy = 10¢® W/ecm?, which is sufficiently weak
so that the laser field does not destroy the produced H' ions (see Section 5.2). In
addition, we set Agj, = 0.1 eV and assume that the duration T of the laser pulse
is not too long, I't < I'T" < 1, such that e™'* ~ 1 (note that ' ~ 2 x 107 s7! at
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Io = 105 W/cm?). Then, the rate (5.47) for the formation of H' ions via the LIRA
is obtained to be (Rprra) ~ 2.1 x 107° s71. Tt outperforms the corresponding SRA
rate, evaluated at g, = 0.75 eV, by a factor ~ 26.

It is worth mentioning that there were suggestions ( [140, 141], see also [99]) to
increase the production of antihydrogen atoms H by using (laser-)induced recom-
bination of positrons with antiprotons. However, to our knowledge, there is no ex-
perimental evidence for this process in collisions between positrons and antiprotons.
Especially, the induced recombination could not be confirmed in an experiment [142]
in which no effect of the laser field on the antihydrogen formation was observed. This
was explained by the dominance of three-body recombination, et +et+p — et +H,
under the given experimental conditions, where the capture of low energy positrons
into highly excited Rydberg states of H was most probable. Note that such states
are absent for the formation of the H' ion. Moreover, as we will see below, the
rate for H' formation in collisions between positrons and antihydrogen atoms via
three-body attachment, et +et+H — eT+H", is vanishingly small for all positron
energies under consideration. Therefore, the (laser-)induced radiative attachment
of a positron to antihydrogen is not expected to be hidden by the nonradiative

three-body attachment.

7.1.3 Electron-assisted vs. positron-assisted three-body

attachment

Next, let us briefly consider positron-assisted three-body attachment, where the
corresponding formation rate (Rspa,) is evaluated similarly to the rate (R3pa.) for
electron-assisted three-body attachment. In Fig. 7.2, we show the rate (R3pa,) as
a function of the incident positron energy and, for a comparison, we also display the
rate (R3pae) from Fig. 7.1.

It can be observed in Fig. 7.2 that, in the range of positron energies from 1074
to 2 eV, the 3BAp mechanism has vanishingly small formation rates as compared
with the 3BAe mechanism. We can explain this result by the fact that an attraction
between the incident positron and electron in the 3BAe is replaced by a repulsion

between two incident positrons in the 3BAp, not allowing them to come close to
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Figure 7.2: The H' formation rate per unit of time (per H) as a function of the en-
ergy e, of the incident positron for electron-assisted (solid) and positron-
assisted (dashed) three-body attachment.

each other, which (strongly) weakens the attachment reaction.

Note however that the corresponding three-body recombination reaction leading to
the formation of an antihydrogen atom, et +e*+p — et +1I1, can be rather efficient.
It is indeed used for the production of antihydrogen in laboratories [97-99]. As
compared with the formation of H' via positron-assisted three-body attachment,
here the mutual repulsion of the two incident positrons is compensated by their
attraction to the antiproton, which is now not screened by the bound (anti)atomic

positron.
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7.1.4 Electron-assisted three-body attachment vs.

Ps — H charge exchange collision

The attachment mechanisms under consideration involve capture of a free positron
by antihydrogen. However, as it was pointed out in Section 4.2, there exist another
H" formation channel which involves positron capture in collisions between positro-
nium Ps and H: Ps+H(1s) — e+ H'. For the sake of completeness, we compare

this charge exchange reaction to the electron-assisted three-body attachment.

A recent theoretical study [143] predicts relatively large cross sections (~ 10716 -
1013 ¢m?) for the formation of the H' ion in Ps—H collisions, where Ps is assumed to
be initially in states with the principal quantum number n € {1,2,3}. In particular,
for comparable Ps and positron densities (nps ~ n, = 10® ¢cm™3), the resulting
production rate Rpg_j is much higher than the rate (R3pae) for the 3BAe from
Fig. 7.1. (We remind that (R3pa.) is evaluated at n, = 5 x 10'% em=3.) This can be
explained by the fact that it is strongly beneficial for the charge exchange reaction
to have average distances (aps) between the electron and positron in Ps bound states
which are many orders of magnitude smaller compared with the average distances
(rep) between free electrons and positrons when a beam of positrons penetrates an
electron gas. More precisely, in the ground state of Ps the average distance is (aps) ~
1.1 x 107® cm (see, e.g. [144]) while for a gas of electrons having the density n, =
5x 10 ¢m™3 the average distance is obtained to be (ro,) = no /® &~ 2.7 x 1074 cm.
This huge difference even overcompensates a much weaker intrinsic capture efficiency

for an initially bound positron compared to an initially free positron.

Considering Ps which is initially in a state with the principal quantum number n = 3,
the energy threshold for H™ formation in Ps— H collisions is ~ 1.7 meV [143], which
is in the range of the very low relative energies where the 3BAe is most efficient.
In this case, taking advantage of the results in [143], we obtain Rp,_ g ~ (R3pac)
starting already at n, ~ 2 x 10! ¢m™3 for which (r.,) ~ 1.7 x 107° cm that is still

much larger than (aps).

Note however that if Ps is initially in the ground state (in states having the principal
quantum number n = 2), the energy threshold for o production in Ps—H collisions

is &= 6.05 eV (= 0.95 eV) [143]. Consequently, in such a case, the charge exchange
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reaction cannot compete with the 3BAe process at the very low relative energies at
which the 3BAe is most efficient.

7.2 The role of annihilation and other processes
related to the interaction between matter

and antimatter

The results in Section 7.1 suggests that the H" formation via two-center dileptonic
and electron-assisted three-body attachment can be quite efficient. However, the
2CDA and 3BAe mechanisms proceed in environments consisting of matter and
antimatter and hence the question naturally arises whether annihilation and other
processes related to the interaction between matter and antimatter would not effec-

tively eliminate them.

7.2.1 Two-center dileptonic attachment in an environment

consisting of matter and antimatter

The particles to be considered in an environment where two-center dileptonic at-
tachment takes place are free positrons, H atoms, H' ions (that are produced) and
neutral atoms B. Thus, we have to discuss what can happen to a free positron and

to H and H' which move in a gas of neutral atoms B.

Let us first suppose a positron which penetrates a gas of neutral atoms. In this
case, elastic positron scattering (see, e.g. [145] and references therein) is by far the
dominant process. Especially for the incident positron energies of interest (e, <
1 eV) its cross section is rather large (up to a few tens of 1076 cm?). Yet, elastic
scattering does not affect the number and energy of free positrons. Therefore, this

process is not expected to significantly impact the efficiency of the 2CDA.

The cross sections for positron impact excitation of neutral atoms can be quite
substantial. However, at the (relatively low) positron energies under consideration,
excitation from the ground state of neutral atoms is not allowed by the energy

conservation.
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If a positron moves in the close vicinity of a neutral atom, positronium Ps can be
formed via a charge exchange collision. In case of collisions between positrons and
Cs atoms the cross section for Ps formation at the positron energies of interest is
ops & 2 x 10710 ¢m? [146]. The mean free path [, of a positron in a gas of Cs atoms
with regard to this process is given by [, = (apsnB)_1 ~5x 10® cm and ~ 5 cm at
an atomic density of ng ~ 102 cm™3 and ~ 10" cm™3, respectively. Consequently,
although the charge exchange collision reduces the total number of positrons which
are available for the 2CDA mechanism, this process is not assumed to crucially
impact the efficiency of the 2CDA (unless the density of atoms B approaches rather
high values). Moreover, it is worth mentioning that the formation of Ps does not
eliminate the pathway for the production of H" ions since the latter can still be

formed via the charge exchange collision Ps + H — e~ +H" (see Section 7.1.4).

In addition, a positron may form a bound state with some neutral atoms, which
would reduce the total number of positrons available for the 2CDA process. Yet,
we note that it is unlikely for a positron to form a bound state with Cs (or Rb)
atoms [147].

The last process to consider when a positron moves in a gas of neutral atoms is
positron annihilation. In contrast to the previous processes, positron annihilation
would completely terminate the formation of H' ions. However, annihilation of
a positron with a bound atomic electron is relatively unlikely. In particular, if
we assume that a positron annihilates mainly with electrons from outer atomic
shells by two-photon emission and that this process can essentially be considered
as annihilation of a free positron-electron pair, the annihilation cross section at the
positron energies of interest is oanning. ~ 1.7 x 10722 ¢cm?, which is very small. The
value for o,,nini. Was obtained by using formulas for the annihilation cross section of
a free positron-electron pair from [148]. At an atomic density of np ~ 10'® cm ™3, the
mean free path of a positron with respect to the annihilation process is very large,
l, = (Camminiinp) "' &~ 59 km. Therefore, we can expect that positron annihilation

will not have any noticeable impact on the efficiency of the 2CDA.

Besides from free positrons, we should also consider H and 0" moving in a gas of
neutral atoms B. To our knowledge there exist neither experimental nor theoretical

studies for processes which involve H' ions penetrating matter. However, at the
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impact energies of interest (= 10 — 150 eV /u), there exist theoretical results for
collisions between the H atom and the simplest matter atoms and molecules (H, He,
H,, HJ) (see [149]). On their basis, we might expect that in collisions with impact
energies 2 20 — 30 ¢V /u annihilation of antiprotons will not be the main reason for

H and H' losses.

Furthermore, since the H" ion has a much lower binding energy and a much bigger
size (rg+ ~ 4.26 a.w.) than H, it is reasonable to suppose that the loss of H' in
collisions with matter atoms will be significantly larger compared with the loss of
H. In order to have at least some rough estimate for the H' loss, we assume that
any collision between H' and a matter atom that occurs in the range of impact
parameters 0 < b < rg+ will result in the destruction of the H ion (for one reason

or another). Then, the corresponding total loss cross section is given by 0,55 =

7T7‘12;I+ ~ 1.6 x 1071 cm? and the mean-free path with respect to the loss of H' is
obtained to be Ig+ = (alossnB)_l ~ 6.3x10% cm and ~ 0.63 cm at an atomic density

of ng ~ 10" cm ™ and ~ 10" cm™3, respectively.

7.2.2 Electron-assisted three-body attachment in an

environment consisting of matter and antimatter

The particles to be taken into account in an environment in which electron-assisted
three-body attachment occurs are free positrons and electrons, H atoms as well as
H' ions (that are produced). We point out that the positron-electron annihilation,
proceeding either in a free positron-electron pair or in a pair consisting of a bound
positron and free electron, is the only process which possibly affects the efficiency
of the 3BAe mechanism.

We first consider annihilation of a free positron-electron pair at an energy of 1 meV
for the relative motion between the positron and electron. Applying formulas for
the annihilation cross section of a free positron-electron pair from [148]|, we arrive
at a quite small cross section ogpninii. ~ 4 x 1072! cm?. Consequently, the mean-free
path of positrons in a gas of electrons (having the density n, = 5 x 10’ ¢cm™3) with
respect to the annihilation process is obtained to be [, = (Canninitne) + &~ 5x 10" m,

which is huge. Thus, annihilation of a free positron-electron pair is not assumed to
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have any noticeable impact on the efficiency of the 3BAe. Note that a free positron-
electron pair could also emit a photon to form a positronium which is eventually
annihilated, but at the low energies under consideration the cross section for this

process is very small and can be neglected.

When free electrons pass close by H, annihilation in a subsystem of a bound positron
and free electron can occur. Supposing that the relative velocity between the electron
and positron is ~ 1 a.u. and employing formulas from [148|, the resulting annihi-
lation cross section, oannini. ~ 1072% ¢cm?, is even smaller than the cross section for

annihilation in a free positron-electron pair.

It is worth mentioning that, in case of free electrons passing close by H, one could
also imagine the formation of positronium via positron capture from H by a free
electron or the existence of bound or long-lived resonance states in the e~ — H
system. However, at the energies of interest, positronium formation is energetically
forbidden and since it is known that the e™ — H system neither has stable bound
states nor has, at low positron energies, long-lived resonance states (see, e.g. [150]),

we can expect all corresponding states in the e~ — H system to be absent as well.

147






8 Summary and concluding remarks

We have considered the formation of the positive ion of antihydrogen via radiative

and nonradiative attachment of an incident positron to an antihydrogen atom.

Three radiative formation mechanisms were discussed, all of which have photoemis-
sion as a common feature. The first mechanism is spontaneous radiative attachment
of an incident positron to antihydrogen, et +H — H" + hwg. The driving force of
this mechanism is the interaction of the e™ —H system with the (quantum) radiation
field resulting in spontaneous emission of a photon which takes away the energy ex-
cess in the attachment process. The second mechanism is (laser-)induced radiative
attachment, et + H+ Nhwy — H' + (N + 1)hwo. This mechanism is driven by the
interaction of the et — H system with a relatively weak laser field, resonantly tuned
to positron transitions, leading to induced photoemission. The last radiative mecha-
nism is two-center dileptonic attachment, et +H+B — H +B* — H' + B+ hwy,
which proceeds when beams of positrons and antihydrogens cross in a gas of (mat-
ter) atoms B. Then, the attachment takes place by resonant transfer of energy from
the et — H subsystem to atom B via the two-center positron-electron (dileptonic)
interaction, resulting in excitation of B with its subsequent relaxation through spon-
taneous radiative decay. Therefore, similar to (laser-)induced radiative attachment,
two-center dileptonic attachment is a resonant process (although its resonance na-
ture is strongly washed out by the relative motion of H and B). Furthermore, in
contrast to the other radiative mechanisms, the two-center process involves two in-
teractions, namely the (Coulomb) interaction between the et — H subsystem and

atom B as well as the interaction of B with the (quantum) radiation field.

In addition, we have considered the formation of positive ions of antihydrogen via

two nonradiative three-body reactions. The first reaction is electron-assisted three-
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body attachment, e~ +et+H — e+H". Itisdriven by the interaction between the
incident electron and positron resulting in the attachment of the positron whereas
the electron carries away the energy release. The second nonradiative reaction is
positron-assisted three-body attachment, et +e* + H — " + H'. Here, the
driving force is the positron-positron interaction leading to the attachment of one

of the incident positrons while the other takes away the released energy.

First, we have performed a comparison between the radiative mechanisms SRA
and 2CDA and the nonradiative mechanism 3BAe, where the 2CDA involves Cs as
atomic species B with the 6 251/2 — 6 2P3/2 dipole transition in Cs. Our results show
that at low incident energies (< 1072 eV) of the positron and electron with respect to
the antihydrogen atom, the rate for the 3BAe can be orders of magnitude larger than
the rate for SRA and 2CDA. The situation changes at incident positron energies
€k, ~ 1 eV, which are most favourable for the radiative attachment mechanisms,
with SRA and 2CDA now strongly dominating the 3BAe. In particular, close to
the two-center resonance at ey, .. ~ 0.71 eV, the rate for 2CDA not only greatly

exceeds the rate for 3BAe but also that for SRA.

Next, we have compared the radiative mechanisms SRA and LIRA in the range of
incident positron energies €, ~ 1 eV. Here, the LIRA can, under certain conditions
(including a relatively small frequency and short time duration of the laser pulse),

markedly outperform the SRA.

Further, we have seen that over the whole range of incident positron energies under
consideration, the 3BAp has vanishingly small rates compared to the 3BAe. This
was attributed to a relatively large spatial separation of the two incident positrons
in the 3BAp reaction, caused by their mutual repulsion, which greatly reduces the

probability for the attachment to occur.

Besides, in order to have a more complete treatment of H' formation mechanisms,
we have compared the 3BAe with the charge exchange collision Ps +H — H' +e,
in which the bound positron in positronium is captured by antihydrogen. At the very
low relative energies where the 3BAe is most efficient, the charge exchange collision
is energetically not allowed if the incident Ps is in the ground state (n = 1) or first

excited states (n = 2). However, considering Ps to be initially in excited states with
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n = 3, the rate for H™ formation in H— Ps collisions becomes relatively large, where
the 3BAe rate will become comparable to this rate starting with electron densities

of ne > 10 em™3.

The 2CDA and 3BAe both proceed in environments where antimatter is embedded
in matter. Nevertheless, we have concluded that 2CDA and 3BAe are essentially not
influenced by annihilation or other processes which involve the interaction between

matter and antimatter.

To conclude this study on the formation of H" via radiative and nonradiative at-
tachment of et to H, we take a brief outlook on the experimental realization of the
considered attachment mechanisms. The overwhelming majority of antihydrogen
atoms produced in the antihydrogen experiments at CERN are in a broad range of
(highly excited) Rydberg states and the main challenge to date is the efficient de-
excitation of the formed antiatoms to the ground state. Therefore, the production
of substantial amounts of H' ions via the discussed attachment mechanisms, which
rely on antihydrogen being in the ground state, is currently not feasible [151]. How-
ever, there is an ongoing work on efficiently de-exciting Rydberg antihydrogen to its
ground state (see, e.g. [152,153]) indicating that, in the near future, the radiative
and nonradiative attachment mechanisms considered in this work could be realized

in an experiment.
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9 Appendices

9.1 Derivation of the dipole-dipole interaction
VAB entering the theoretical consideration

for two-center impact ionization

In this Section, we will derive the dipole-dipole interaction Vap between atoms A
and B given by equation (1.5) respectively (2.4). This interaction may be obtained
by regarding the electromagnetic field as quantized (see, e.g. [45]). Here, however, we
will derive Vi by using a different approach, in which the field is treated classically.
We begin our consideration with the coupling jlfA’é between the transition four-
current jf = (cpa,ja) of the active electron in atom A and the four-potential
Al = (¢, A) of the field created by the other active electron in atom B. The

corresponding first-order transition amplitude reads (see, e.g. [86])

i .
a;li) = —6—2/d4:c j;‘(x)Ag(:c), (9.1)

where x# = (ct, x) is the four-space-time vector.

First, we introduce the inverse Fourier transforms

. 1 ~ —ikax

j;?(l’) - (271')2 /d4kA j;?(kA>e Fa )

Al(z) = ! / d*kg A¥(kg)e BT, (9.2)
B (27T)2 B
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Here, Ky = (0a/c,ka) and ki = (0p/c,kp) are the four-wave vectors of the ac-
tive electrons in A and B, respectively. Inserting (9.2) into (9.1) and afterwards

integrating over the space-time yields

afz = /d4]€A/d4/{?B j# k’A (/{ZB)(S(/{ZA—F/{ZB) (93)

We can perform the integration over kp by taking advantage of the delta function

and get
of) =~ [ dha ) A (). (9.4
The four-potential A%;(x) satisfies the Maxwell equations
1 02 Am
(g~ Be) i) = T 9.5
which can be solved in the four-dimensional kp space resulting in
jn At ~ T
Ap(kp) = ——Gr(ks)sp(ks) (9.6)
with Gr(kp) = ((@p/c)? — k% + 2'77)_1 (n — 0T) the Feynman propagator for a

massless Klein-Gordon particle. Taking into account (9.6), the amplitude in (9.4)

becomes
4mi
off =5 [ ' Gr(—ka)i A a) (ko) (9.7)

In (9.7), the Fourier transforms of the transition four-currents are given by

1 4 A tkax
)2 /d zj,; (x)e™a®,

Fa(—ka) = (2% / 0 () ke (9.8)

Ji(ka) =

Based on the discussion in Section 1.3, we consider a nonrelativistic motion of the
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active electrons in atoms A and B. Consequently, we can approximate their cor-
responding currents j;'(x) and ji(x) in (9.8) by the Schrédinger transition four-

currents (see, e.g. [137])
(@) = (— cgp(r)pu(r)e =", %{cb}(r)ﬁmcbi(r) + (/ﬁi(T)ﬁZQb}(’r‘)}@i(ff—Ei)t)’

ip(x) = < - CX}(E)Xi(é)ei(ef_Q)ta - 1{)(}(5)1%9(1’(5) + Xi(E)ﬁfcx}(g)}ei(ff—fi)t),

2
(9.9)

where ¢; (x;) is the initial state of atom A (B) with an energy ¢; (€;), ¢5 (xy) is
the final state of A (B) with an energy ¢ (¢7) and p, = —iV, is the momentum
operator. Further, r =x — R4 and £ = x — Rp with R4 and Rp the coordinates
of the nuclei of A and B, respectively. Now, we insert (9.9) into (9.8) and perform
the time integrations. Then, we rewrite the remaining space integrals into integrals
over the coordinates r = x — R4 and £ = x — Rp. Finally, insertion of the resulting

expressions into (9.7) provides

agcli)— ! / d(IJA (5((2’5]0—8¢)+@A)(5((€f—€i)—@A

o 2
Adme? J_o

N~—

X {¢pxsl (2¢)°T — Ip,pe — PeIpr — PrIDe — PeDeL |Pixi) - (9.10)
Here,
T = /dgkA GF(—]{?A)e_ip‘kA, (911)

where p = R+ r — £ with R = R4 — Rp the internuclear distance vector.

Next, we integrate in (9.11) over the solid angle 2, and obtain

2mi > kge” k4 / ) k gePha }
7= dk — | dk . (9.12
p {/o Y @afeR =K+ Jo " (@afe)? — kL +in (9-12)

Substituting £’y = —k4 in the second integral in (9.12), we can rewrite Z according
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to

o [ kpe—iPka
y A . —
ip ) o Ki—(@a/c)?—in

(9.13)

The remaining integral in (9.13) is calculated by using the Residue theorem and we

arrive at

26”‘@?‘
1=-2m : (9.14)
p

Inserting (9.14) into (9.10) and subsequently solving the @4 integral by taking ad-

vantage of one of the delta functions, the transition amplitude becomes

2T
ap) = =0((er <) + (e — )

1 e~ < e < € c .
X<@”%w{%f Ty PR

. eip‘éfjil . o eipefceil}
“Pr—————P¢ —PrPe—
P P

¢iXi>- (9.15)

Concerning two-center ionization we are interested in de-excitation of atom B and
ionization of atom A, where, in particular, B makes a transition from an excited
state with energy €; = €. into its ground state with energy e¢; = ¢, and A makes
a transition from its ground state with energy ¢; = ¢, into a continuum state with

energy €y = ¢;. In this case, (9.15) yields
2
VR .

wp . wp . wp

1 ere e e
X 2 2 - Ar Dg — P A'r‘
<¢fo‘ OE {( c) p S PrPe —Pe— P

e . Aeipwf}
—Dr D¢ — PrD
pot “p

¢iXi> (9.16)
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with the transition energies wq = ¢, — e, > 0 and wp = €. — €, > 0 in atoms A and

B, respectively.

Supposing that the interaction Vap between the two active electrons in atoms A and
B can be treated as a small perturbation, the corresponding quantum mechanical
transition amplitude within the first order of time-dependent perturbation theory is

given by

1 [ . .
a;lz‘) = ;/ dt (ppxsl Vap |gixi) €2 st (9.17)

o0

Performing the time integration in (9.17) provides
m _ 27 '
afi = 7(5(&)14 — wB) <¢fo’ VAB |¢1X1> . (918)

Now, comparing the amplitudes (9.16) and (9.18), the interaction Vyp is obtained
to be

. 1 2€ipwc ezpwf o R lpwf R
el s
—Dr P D¢ — DD P } (919)

Expression (9.19) includes all kinds of multipole-interactions between the two ac-
tive electrons in A and B. However, we are only interested in the dipole-dipole
interaction, which is the strongest coupling between the electrons. Therefore, we
consider appropriate multipole expansions in the term e ¢ /p in (9.19). First, we
expand the term 1/p up to second order in h = r — £. Then, the term e is
expanded up to second order in h by doing the following. We expand the term p
in the exponent up to second order in h resulting in a product of exponentials each
of which is expanded again up to second order in h. Afterwards, in the product of
expanded exponentials we keep only terms up to second order in h. Finally, building

the product of the expanded terms for 1/p and eirE and keeping only terms up to
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second order in h, we arrive at

_N{g [(r—£)~R]2(w_B)2

o c

R 2R3

+<3[(7~ —2}2 ‘R* (r2;%§)2 o (r —}_? ' R> <1 _ iR%) } (9.20)

Next, we insert (9.20) into (9.19) and neglect all terms that will not lead to dipole-
allowed transitions. Subsequently, the identities p, = iwar = iwpr and pg = —iwp§
are used, where in the former we have exploited the fact that agcli) o 5(w A — wB).
They arise from the commutator relations p, = i[H4,r] and pe = i[Hp, €], respec-
tively, in which H, (Hp) is the Hamiltonian of the free non-interacting atom A (B).

Afterwards, the final result for the dipole-dipole interaction Vap can be written as

Van = | (g - O LS

_(r.g_cr R)(§- R))(

= )2}. (9.21)

R
9.2 The quantities M3}, F."(q), F,fgm(q) and

F,fgm(qg) entering the cross sections for direct

and two-center impact ionization

In the following, we present the quantities M4 and F. Am( ) which enter the two-

center ionization cross section (2.57).

Let us first consider the interatomic matrix element MA5% = (drXo| Vas |dgxe)

referring to the de-excitation in atom B and the ionization of atom A. Using the
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dipole-dipole interaction Vyp given by (2.4), M3% reads

M4™ . R)(MA™ - R)\ 1 — iRz
MAB :e == |:(M Mém_ 3( A R)( B R)) L

R? R3

I:U|w

_(Mﬁm. o (M RJLLMém R>)<

)2], (9.22)

where MA™ = (¢g| 7 |d,) and ME™ = (x,| € |x.) are the (local) dipole transition
matrix elements for atoms A and B, respectively. We have calculated M4{™ and
MBE™ for the diatomic system Li-He (Ne-He) with M23™ describing the electron
emission from the 2s (2p) ground state in Li (Ne) and MZ5™ characterizing the

1s2p — 1s* (1s3p — 1s%) de-excitation transition in He.

For the atomic bound states of Li, Ne and He, we have used the hydrogen-like bound

states

Zis
327

| Z3s e
¢§;0(r)— o —Crcost,e Z%’",
Z5 ZN ZNe 7
¢2pi1( ) V 6$e7181n?9 e 2 e:t 907"7
ZS
Xis (§) =) —tem e,
T

fcos Uee™ Heg

Zr -
Ll,,‘

(2_ZL1 ) )

5(r) =

2P0

Ze ZHee
An “Heegin Vee™ fej”‘pf,

ngfﬂ (5) 6

e 273, e
X (€) = | Fee€ cos Vg (6 — Zne€)e™ 5,
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Z5 .
N (6) = ) Se€ sin (6 — Zneg)e™ 4 6e*ive. 9.23)

Here, Zy;, Zne and Zy, are the effective nuclear charges for Li, Ne and He, respec-
tively (which vary with different atomic states). Further, the continuum states of

Li and Ne are described by the Coulomb wave function
' 7, iZ; Z;
Gl(r) = e F<1+ - ) “”'F(—ZT —i(kr + k- 'I‘)) (9.24)

with j = Li, Ne.
Taking advantage of the states in (9.23) and (9.24) and performing quite long but
straightforward calculations, we arrive at the results for the dipole matrix elements

of interest which are given by

iZ14

i 237 Zl/ 21 ZZLi iy — SLi G iZLi

(I lof) = AL (1 T o2 (1- ) (1- )

2
y (1+Z_L2A43Li+ (iZkLi _2) Li)
4 (1 . 5i1>( L1)
iZNe
- Ve zy} 2 iZxe\ ) News e ~ 21
(| T ‘¢2p0> o I 11— 2 (52°) 1_82Ne
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7/2 . Ne 7iZNe71
Ne TNy 7ne 1ZNe Ne\—4 S1 *
eI lots,) = Ve (1 ) (1 2
Z o 2 Ne\2
x {<1JkN > ( §e—s¥e)kxk+(s22) .

i 7N 2 sNey2
:|:'l|:(1— kN) (gle_ ll\Ie)kyk+(22) ’
Ne .Ne
(1= 2 ) (63 = e = 2%, ) 1
915/2
< ‘5 |X2p0> = 35—ZHe€z,
27 .
< e‘ £ ’X2pi1> - %(em + Zey)7
e 3
<X15 ‘ E ’X3p0> = 213/2ZHe 513/27_ €z
33 .
ST € IXpe,) = m(e:c +ie,), (9.25)

where s] = —2(k*>+ikZ;/2), s, = — (k> +Z3/4) and e,, e, and e, are the canonical

unit vectors.

Next, we consider the matrix element F_, am (g <X ‘e’q ¢ (U Pe | 0 o5 — ‘ Xg> referring

to impact-excitation transitions in atom B. It may be rewritten according to

X>+(%—1><Xee

In case of two-center ionization of the Li-He (Ne-He) dimer, the excitation transition

€. pg iq-§

FoMa) = 5 . <Xe

Xg>. (9.26)
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in He of interest is the 1s* — 1s2p (1s*> — 1s3p) dipole transition. Applying the
states in (9.23) and performing rather elaborate but fundamental calculations, the

matrix elements of importance are obtained to be

<><§50

9/2; 29 \2 _ 4( 29\
e 4 . ﬁ£ X{15e> _ 2%/ (VAT 1+ (3ZHe) 4(3ZHe)

3 o 2]”
L ()]
He | Jig-&|, He \ __ 215/%’ q”
XQpO € X]_s - 35Z 39
He 1 2(] 2
[ + (52%) }
iaf 280 qqueT?a
<X51pl ¢t v - pe lef> B |

365 74,
o [1

3
v ()]

el

<x§5ﬂ
H
<X3I?0

e\ 274 qLejF“"q
Xls

35y 87
"+ ]

e 29/2; 75 v [16 -
e ) <0

16 72 2 2
9 e Il 3 “He %Z%Ie + ¢2
. 32
He | iq-§|, He \ __ 211/QZZIL:)Ie q|| 3 — ?ZI%IG
X3pg |€ X1s ) = 3 3 16 72 217
3 16 772 2 9 ZHe T4
?ZHe —+ q

675 Fip

3 Zfe }
337 ’
{%Zée + ¢

1 —
]3[ 5 + @

He
<X3Pi1
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22}21
3=t } (9.27)
ﬂJ B+ 7

PR3

He
<X3P;t1

It is worth mentioning that in order to evaluate the transition matrix elements given
in (9.25) and (9.27), we have set Z; = 1.259, Zy, = 2.518 as well as Zy, = 1.425

and Zy. = 1.35 in case when the 15 — 152p and 15 — 1s3p dipole transitions in He

5,575 i
He \ __ 2 ZZHe QL6¥qu
X1s -

3
{%6212{6 +q

are involved, respectively.

Finally, we note that for the purpose of this study it is well sufficient to use simple
analytical cross sections for the direct impact ionization of atoms A and B from
the literature (which will be introduced in Section 2.2.3) instead of the more sophis-
ticated cross sections derived in the theoretical treatment in Sections 2.1.1—2.1.5.
Therefore, we will not need the results for the quantities Fi™(q) and F5"(qp)

entering the direct ionization cross sections (2.56) and (2.64), respectively.

9.3 The quantities Ax,, and B, entering the
analytical formulas for two-center impact
ionization

In order to evaluate the analytical cross sections for two-center impact ionization
given by equations (2.69), (2.71) and (2.73) for the systems Li-He and Ne-He,
here we present the corresponding geometric factors Aa,, and Ba, which enter
expressions (2.80) and (2.81).

In particular, for fixed principal quantum numbers ny and n/y and np and n'y
in atoms A and B, respectively, in case of Li-He, Aa,, and Ba,, were derived
for all possible ngp,,, — nlgs (mp € {—1,0,1}) bound-bound transitions (3 in
total) in B for a fixed ngs — exp bound-continuum transition in A. Further, in
case of Ne-He, An,, and Ba,, were calculated for all combinations (9 in total) of
NBPmy — Ngs bound-bound transitions in B and nap,,, — exd (ma € {—1,0,1})
bound-continuum transitions in A. Here, it is worth mentioning that the dipole

selection rules would also allow nap — eps transitions in A. However, for rare
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gases in general [154] and especially for the 2p—subshell in Ne [155,156] the main
contribution to the n4p—subshell ionization cross section comes from nsp — epd

transitions, so we only consider these.

(i) Geometric factors Aa, (R, Qk, wp) and Ba, (R, wp) for the nas — &,p bound-

continuum transition in atom A and npp,, — n’zps bound-bound transitions in

atom B:
9
Ao = g‘ek " Po 27
9
Al = E}ek : pi1‘27
Bo= = ||(po)al” + (o) + |(00): .
8
Bir = —||(pe)al + ()| + | (ps)-[*] (9.28)
167
Here, e, = k/k,
3(R-e,)R 1—iR“  ((R-e.)R (£2)?
oo (eI YIS (e T,
and

2
3(R-e1)R 1 —iR%e (R-e+)R (22)
P+1 = (T — ei> R3 - R2 — €4 R (930)

with eL = e, *ie, and e,, e, and e, the canonical unit vectors.

(i) Aam (R, Qk, wp) and Ba, (R, wp) for the napg — exd bound-continuum transi-

tion in A and ngp,,,. — n’»s bound-bound transitions in B:
Pmp B

3
Ay = §’€0'Po‘2

Y

3
A = 1—6‘60 : p:l:1|2a
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9 T 4
8= o ltowf* + liownf + 3l(eol ]
Bas = = [[(ps) + [(pan), [ + 2](ps)- . (9.31)
807 | 3

where eg = 3cos Ve, — €.

(ili)) Aam (R, Qk,wp) and Ba, (R, wp) for the nap; — d bound-continuum tran-

sition in A and nppy,, — nzs bound-bound transitions in B:

3
Ao = a(f—icos2 i — 1)2‘62 . p1|2,

3 2 2
A = 1—28(3005279k —1)"|es - pual,
3 RARI+R)[(3  (%2)\* 9(=2)
By = = = +—=1;
807 R R3 R R*

1—iR%e

3 3 ~
= | [ ) 20,

~ 1607 || R?

(“2)*|"

R

1
- {— (R2F R2 4 2iR,Ry0m1) — 25,,1,_1} (9.32)

RZ

(iv) Aam (R, Q,wp) and Bay, (R, wp) for the nap_; — €xd bound-continuum tran-

sition in A and ngp,,, — nzs bound-bound transitions in B:

3 2 2
Ay = 6—4(3005219k - 1) ’ez-p_1| ,

3
A:I:l = 58(30082 19/4: — 1)2‘6_ . p:l:1|27

80:

3 Rz<R2+R§>K3 (%_1*)2)19(%)2}

807 R* R R R4
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1 —iRes

3 3 .
Bt = o] [ (2 1 2R ) = 2|

~ 1607 || R?

(=2)

R

1
— {—(Ri + R2 — 2R, Ry, 1) — 25m71} (9.33)

RQ

9.4 The quantity A(b) entering the transition
amplitude for two-center photoionization
via the coupling to the radiation field

In the following, we show the quantity A(b) which enters the amplitude (3.63). It

reads

2 2
p q q|p
A(b) = 125 M+ 7'5/\42 - #Mg
L2, iy iq M. lawp
22 :73 4 %-2575 5<+-:7z 6 — 32 17
1 ip qu
= {m - Mg — %U Mg, (9.34)

Here,
My = (pr. Xl (rL-b)(@L - b) [@gXe)
Mo = (@r. Xg| 17| |PgXe) -
Mz = (k. Xg| (L - ) + (L - b) [ogxe)
My = (k. Xg| PrPx [9gXe) 5

M = (e Xal (XL B)(Pr - b) + (7L B) (P - B) [Pgxe)
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Mg = (k. Xgl T1Dry + 7Pay [0gXe) 5
M7 = <90keXg| .TH(ﬁ,,, . b) + (wl_ : b)ﬁru + T||(ﬁw : b) + (TJ_ : b)ﬁxu |909Xe> 3
Mg = (k. Xg| (7L )P [0gXe)

My = (k. Xg| TPz [0 Xe) (9.35)

with @r, = @& (1), 05 = ©g(r), Xg = Xg(2) and xe = xe().
Using the commutator relation p, = i[H,7] and taking advantage of the fact
that ¢, and ¢y, are eigenstates of the atomic Hamiltonian H,, we obtain the re-

Pr|@g) = iwa (Pr,
Pz = i[Hp, x| and taking into account that y, and x. are eigenstates of the atomic

lation (v, T |pg). Similarly, applying the commutator relation

Hamiltonian Hp, we obtain the relation (x| Pz |xe) = —iws (X4| T |xe). Now, in

(9.35), we perform some simple manipulations and employ the above two relations.

Subsequently, the matrix elements in (9.35) can be written as
My = (b- M) (b- Mp),
M; = (e, May)(e. - Mp),
Msz = (e, Myu)(b- Mp) + (b- My)(e, - Mp),
My =wawp(My - Mp),
M =i(wa — wp)(b- Ma)(b- Mp),
M =i(wa —wg)(e, - Mu)(e, - Mp),
Mz =i(wa —wp)[(b- Ma)(e. - Mp) + (e, - My)(b- Mp)],

Mg = —in(b . MA)MB,
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Mg = —in(eZ . MA)MB, (936)

where

M = (pr. (7)| T [py(7)) ,
Mg = (x4(x)| z |xc(T)) - (9.37)

In the following, we suppose that ¢, and x, are s states and that the excited state x.
of atom B has a magnetic quantum number mp = 0 (since y, and x. are coupled by
a laser field of linear polarization). Consequently, we may apply the electronic states
given by (3.64) and (3.65) for calculating the matrix elements in (9.37). Integration
over all the angles ¢,., 9., ¢, and U, yields

i6
T ePlry
My=,/— — k.,
Ve ik?

B
Mp=—e,. 9.38
B \/ge ( )

Here, ra = [ dr r3[gi#=' (r)] "g!4=(r) is the radial matrix element for transitions

from the ground state ¢, into the continuum state ¢, in atom A. Similarly, rp =
[ da 2®[RE0(2)] "R 7" (2) describes the radial matrix element for transitions from
B

the excited state x. into the ground state x, in atom B.

Now, we insert (9.38) into (9.36). Afterwards, we substitute the resulting matrix

b = (bcos pp, bsinpy, 0) and ke, = (ke, cos g, ke, singg, ,0). Then, the quantity
A(b) becomes

A(b)

\/Fei(sl rATR %ke” + Y2p cos(pp — gpka)kel (9.39)

V3 V Ve k? Vb

with

B wa—w) o W WAW
M= (1+ 2—02>q a2l
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The terms in (9.40) can be simplified (in very good approximation) to

o\ 2
712(]ﬁ—(z) )

Y2 = —q-

Using (9.41), the quantity A(b) in (9.39) can finally be expressed as

A(b)

RN N

9.5 The quantities A, and A3 456 entering

the results for electron-assisted three-body

attachment

\/?6"'51 rarp 4} — (%)2] key — qup cos(@s — @i ke,

(9.40)

(9.41)

(9.42)

In this Section, we present the quantities Ayo = Aj2(ky, ke, k.) and Azy56 =
As 156(ky, ke, kL) which enter expressions (6.34), (6.35) and (6.36). They are given

by

4 i/\(d—i—ﬁ)—ma_i_i’)\g—ki(k(’j—/{g)

s & Gk (7+0)

I Sl MG + B) + ik (& +7) — irB)a(3 + d)

Q_k?éoﬂ(’y—l—g)Q k(0 +7y) —rp)a(y
—<aa—5a><x<a+8—d>+za<m+k;>>},

A 9 1aR—(@+3)g i (Lt k/k+ Ni/k)Tk — (5 +6)(q — k)

Ak & k. (G +017
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i 1—i/k < :
Ay =— = — — 1 K. k)K!
= ] (e e = a (L R R

—3(g — (1 +XNi/k)kt) — Bg — k))a(7 +9)

A
(o))
>,
|
@™
N
=

—(7+ S)q +a(l+rk/k + Az’/kg)k:;)},

i 1-i/k
ke 62(7+0)”

6
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